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Preface

This book belongs to a series of three books written simultaneously (the remaining
two are titled Classical Mechanics: Dynamics and Classical Mechanics: Applied
Mechanics and Mechatronics). This book’s triad attempts to cover different subjects
in classical mechanics and creates a link between them by introducing them from
the same root. The classical mechanics approach extended to the study of electro—
magneto—mechanical systems is also emphasized. Another important objective in
writing the series of three volumes with the repeated title Classical Mechanics was
to include and unify sometimes different approaches to the subject in the English,
Russian, Polish, and German literature. This explains why sometimes the list of
references includes works written either in Russian or Polish (the English literature
is now easily available using Google or Scopus). Although the list of references
includes works written not necessarily in English, the way of the book material
presentation does not require to read the reference sources.

This first volume contains problems of classical mechanics including kinematics
and statics. It is recommended as a textbook for undergraduate and graduate students
in mechanical and civil engineering and applied physics as well as for researchers
and engineers dealing with mechanics. It could also be a main reference for other
courses, but it is suited for a course in statics and dynamics.

In Chap. I the fundamental principles of mechanics are formulated, illustrated,
and discussed. In the introduction, the general historical path of the development
of mechanics and its pioneers is described with an emphasis on mechanical
modeling of planetary motion and Newtonian mechanics. Three of Newton’s laws
are formulated and discussed. The definitions of force and mass are given, and then a
classification of forces is introduced. Next, the principles of mechanics are given and
briefly discussed. In addition, the impact of classical mechanics on electrodynamics
(Maxwell’s equations) and relativistic mechanics (Einstein’s theories) is presented.
Kinetic units, and in particular the principal SI units, are introduced and discussed.
In Sect. 1.2, D’Alembert’s principle is introduced, illustrated, and discussed. In
Sect. 1.3, the principle of virtual work is derived and illustrated. In Sect. 1.4,
the increment and the variation of a function are presented, and two examples
supporting the introduced theoretical background are given.
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Chapter 2 is devoted to statics. First, a concept of equilibrium is introduced,
including the formulation of several theorems. The notations of moment of force
about a point and about an axis are illustrated, statically determinate and indeter-
minate problems are defined, and the “freezing principle” is described. In Sect. 2.2,
the geometrical equilibrium conditions of a plane force system are introduced and
discussed. The force polygon and funicular polygon are introduced and illustrated
through two examples. In Sect. 2.3, the geometrical conditions for a space system
are formulated. In particular, Poinsot’s method is described. Analytical equilibrium
conditions are given in Sect.2.4. The three-moments theorem is formulated and
proved. Two reduction invariants as well as the fields of forces are defined. Two
theorems regarding mechanical systems with parallel forces are formulated and
proved, among others. In Sect. 2.5, mechanical interactions, constraints, and sup-
ports are described, and examples of supports carrying three-dimensional systems
of forces are graphically illustrated. In addition, three computational examples
are shown. Reductions of a space force system to a system of two skew forces
(Sect.2.6) and to a wrench (Sect.2.7) are carried out. Theoretical considerations
are supported by figures and examples, and two reduction invariants are also
introduced. In Sect. 2.8, the phenomenon of friction is described including limiting
and fully developed friction forces, three Coulomb laws, sliding friction, and rolling
resistance. Three illustrative examples are also given. The paradoxical behavior of
bodies coupled by friction is presented and discussed in Sect. 2.9, which includes
the following examples: (a) supply of energy by means of friction; (b) Coulomb
friction as a force exciting rigid body motion; (c) Coulomb friction as viscous
damping. Two different approaches to the Euler formula derivation are shown in
Sect. 2.10 while dealing with friction of strings wrapped around a cylinder. Friction
models are presented and discussed in Sect.2.11. First, some friction models used
in research and frequently found in the literature are presented, and then particular
attention is paid to the so-called CCZ (Coulomb—Contensou—Zhuravlev) three-
dimensional friction model. Some computational examples putting emphasis on
the coupling of sliding and rotation of a body moving on an inclined plane are
included.

Chapter 3 is devoted to the geometry of masses. In Sect. 3.1, basic concepts are
introduced including mass center, moment of inertia of a system of particles with
respect to a plane (an axis), polar moment of inertia. Four illustrative computational
examples are provided. Centroids of common shapes of areas, lines, and volumes
are given in tables. Two Pappus—Guldinus rules are formulated and supplementary
examples of their applications are provided. In Sect. 3.2, the moments of inertia
(second moments) are discussed, and formulas for their values for common
geometric figures and three-dimensional bodies are included in tables. The inertia
matrix and its transformations are discussed in Sect.3.3. Steiner theorems are
formulated, and an illustrative example is provided. In Sect. 3.4, principal axes
and principal moments on a plane are defined, and in particular the plane inertia
circle (Mohr’s circle) is discussed. The inertia tensor, principal axes of inertia,
and ellipsoid of inertia are the theme of Sect.3.5. In particular, an ellipsoid of



Preface vii

inertia of a body, principal axes of inertia, invariants of an inertia tensor, and
inertia triangle inequalities are illustrated and discussed. Section 3.6 presents the
properties of principal and principal centroidal axes of inertia, whereas Sect. 3.7
addresses problems related to the determination of moments of inertia of a rigid
body.

The kinematics of a particle, the curvilinear and normal coordinates, and
kinematic pairs and chains constitute the focus of Chap. 4. In Sect. 4.1, the motion
of a particle and trajectory (path) of motion are defined including its velocity and
acceleration. Section 4.2 deals with selected problems of plane motion of a particle
putting emphasis on circular, rectilinear and curvilinear motion and the vectorial
approach. Section 4.3 focuses on introduction and application of rectangular and
curvilinear coordinates in space. It includes the classification of a particle’s motion
with respect to acceleration. In Sect.4.4, the concept of natural coordinates is
illustrated and discussed. The motion of a radius vector and rectangular and
curvilinear coordinates in space are introduced and their properties and applications
described. Both vector and tensor notations are used, and in particular covariant
and contravariant unit vectors are applied. Orthogonal and orthonormal bases
are introduced, and then displacement, velocity, and acceleration components are
defined via the kinetic energy of a particle. Unit vectors and their first derivatives
are derived for rectangular, cylindrical, and spherical coordinate systems. The
position, velocity, and acceleration of a particle in rectangular, cylindrical, spherical,
and arbitrary curvilinear coordinates are reported. Two illustrative examples are
given. Natural coordinates (velocities and accelerations, the Darboux vector, torsion
of a curvature, Frenet—Serret formulas, and examples) are studied in Sect.4.4.
Kinematic pairs and chains, joint variables, and the Denavit—-Hartenberg convention
are considered in Sect.4.5. Definitions of a class of kinematic pairs, a mechanism,
and a group are introduced, and low-order kinematic pairs are presented in a table.
Finally, Sect. 4.6 provides a classification of problems in kinematics.

In Chap.5, the kinematics of a rigid body and the composite motion of a
point (particle) are studied. In Sect. 5.1, translational and rotational motions are
considered. The study includes the movement of a rigid body in a three-dimensional
space and the definition of degree of freedom. In particular, angular velocities and
angular accelerations as vectors and the notation of a vector of small rotation are
illustrated. Planar motion is studied in Sect.5.2. It is demonstrated that planar
motion can be treated as a composition (geometric sum) of translational and
rotational motions, and the first of Euler’s theorem is formulated. Moving and
fixed centrode concepts are illustrated and discussed. Two theorems regarding the
instantaneous points of zero velocity (point C) and zero acceleration (point S) are
formulated and then proved. Various vector methods of velocity and acceleration
determination on the basis of a point’s planar motion are presented and illustrated
analytically and geometrically. Burmester’s theorems are formulated and their
applications are illustrated. A few illustrative examples are provided. In Sect.5.3
(5.3), a composite point motion in three-dimensional (two-dimensional) space is
illustrated and analyzed. The general motion of a rigid body in three-dimensional
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space is studied in Sect.5.5. Following a brief introduction, the angular velocity
and angular acceleration of a rigid body are defined using both vector and tensor
calculus. Euler’s proposal is introduced rigorously, and Euler’s formula is derived.
In particular, the Eulerian angles are illustratively introduced and explained step by
step. A rotation matrix that is a product of three matrices of elementary rotations
is derived, and their elements are explicitly given. The matrix’s non-commutivity is
discussed, among other topis. An important theorem is formulated and proved. In
Sect. 5.5.4, Eulerian angles are introduced, whereas in Sect. 5.5.5, Euler’s kinematic
equations are formulated, and both Euler’s angles and angular velocities are derived
and graphically presented. The displacement of a rigid body with one point fixed is
studied in a subsequent section. Several basic theorems regarding the displacement
and rotation of a rigid body are formulated in Sect.5.5.7. In the subsequent short
subsections, the parallel translation and rotation of a rigid body and a homogenous
transformation, kinematic states of a rigid body’s velocity and acceleration in trans-
lational motion and in motion about a point are illustrated and studied. In particular,
rotational, centripetal, and normal accelerations are analyzed. Then, in Sects.5.5.12
and 5.5.13, the velocities and accelerations in the motion of a body about a fixed
axis and in various coordinate systems are studied. The velocities of a point of a
rigid body in various coordinate systems are considered in Sect. 5.5.14, the regular
precessions of a rigid body are analyzed in Sect.5.5.15 (two additional examples
support the introduced theoretical considerations). Screw motion is illustrated and
discussed in Sect.5.5.16, whereas the geometrical interpretation of velocity and
acceleration of a point of a rigid body in general motion is given in Sect.5.5.17.
The latter subsection also includes a few important theorems, sometimes rigorously
proved. The composite motion of a rigid body is analyzed in Sect. 5.6. It consists of
the composition of two instanteneous translational (rotational) motions, a couple
of instanteneous rotations, and the composition of rotational motions of a rigid
body about intersecting axes. Two theorems are formulated and proved, among
others.

In Chap. 6, the kinematics of a deformable body is studied. In Sect. 6.1, the role
of tensor notation in mechanics is described. In Sect. 6.2, particular attention is paid
to the stress tensor. Symmetric and asymmetric tensors are introduced, and their
actions are explained analytically and geometrically. Elastic body deformation is
studied via introduction of a tensor governing the velocity of body deformation.
Two simple examples of theoretical considerations are provided. The definition of
Clapeyron systems is introduced, and then Betti’s and Castigliano’s theorems are
formulated and proved.

I wish to express my thanks to P. Dabek and M. Kamierczak for their help in the
book’s preparation.

I gratefully acknowledge many helpful comments and suggestions given by my
colleagues and coworkers, and in particular the contributions of W. Blajer and K.
Januszkiewicz as well as of J. Mrozowski and G. Kudra, among others.

Special thanks go to A. Kireenkov and G. Kudra for their help in preparing
Sect.2.11.
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Finally, since the book was partly written while I was visiting the Fraunhofer
Institute of the Technical University of Darmstadt, the Humboldt Award and the
hospitality and help of my colleague P. Hagedorn are gratefully acknowledged. The
book project was also supported by the Foundation for Polish Science under the
Master program.

L6dZ and Darmstadt Jan Awrejcewicz
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Chapter 1
Fundamental Principles of Mechanics

1.1 Introduction

Mechanics is a branch of physics. In general, mechanics allows one to describe
and predict the conditions of rest or movement of particles and bodies subjected to
the action of forces. Aristotle! was among the first scholars to introduce the term
mechanics. At first, the development of mechanics was related to that of knowledge
about the modeling of the Universe. Plato,> Eudoxus,® and Aristotle are among
the creators of the homocentric system, whereas Apollonius,* Hipparchus,’ and
Ptolemy® created the epicyclic system. The theory they developed, according to
which the motionless Earth is the center of the Universe, is called the geocentric
theory. As was mentioned previously, Ptolemy, an Alexandrian scholar, was the
originator of this theory. He based his ideas on the works of Hipparchus, one of
the greatest astronomers of antiquity who explained the complexity of the motion
of planets while retaining the central location of the Earth and introducing the
combination of circular motions. The geocentric theory is based on the assumptions
that the immovable Earth is located at the center of the Universe and that other
celestial bodies shaped like spheres revolve around Earth, moving uniformly in
circular orbits.

! Aristotle (384-322 BC), Greek philosopher (Plato’s student).

2Plato (428-348 BC), Greek philosopher and mathematician.

3Eudoxus of Cnidus (408-355 BC), Greek philosopher, astronomer and mathematician.
4Apollonius of Perga (260-190 BC), Greek mathematician and astronomer (focused on conics and
the movement of the Moon).

SHipparchus of Nicaea (190-120 BC), Greek astronomer, mathematician, and geographer; consid-
ered a precursor of astronomy.

6Claudius Ptolemaeus (100-168), Greek mathematician, astronomer, and geographer; one of the
creators of the geocentric theory.

J. Awrejcewicz, Classical Mechanics: Kinematics and Statics, Advances in Mechanics 1
and Mathematics 28, DOI 10.1007/978-1-4614-3791-8_1,
© Springer Science+Business Media New York 2012



2 1 Fundamental Principles of Mechanics

Aristotle was the unquestioned authority in the domain of philosophy and
mechanics; nonetheless, he made a fundamental error that adversely affected the
development of mechanics. First of all, he assumed that the laws governing the
motion of bodies are different for the Earth than for other celestial bodies. It was
only Galileo Galilei’ who, over twenty centuries later, pointed out the incorrectness
of the Aristotle’s viewpoint.

The heliocentric model, in which the Sun is the center of the world, was
introduced by Nicolaus Copernicus® in his fundamental work De revolutionibus
orbium coelestium (On the Revolutions of Heavenly Spheres). This view was
subsequently modified by Giordano Bruno,” who maintained that the solar system
was but one of an infinite number of such systems in the Universe.

Problems connected with the motion of bodies were raised for the first time by
Galileo Galilei, a dedicated proponent of Copernicus’s theory. To Galileo is also
attributed the discovery of the law of the pendulum (1583) and the law of freely
falling objects (1602).

A great contribution to the development of mechanics was made by Johannes
Kepler,'? who formulated the following three laws of planetary motion on the basis
of empirical observations previously made by Tycho Brahe.'!

1. All the planets move in elliptical orbits with the Sun at one focus.

2. The position vector of any planet attached at this focus of an orbit where the Sun
is located sweeps equal areas in equal times.

3. The squares of the orbital periods of the planets are proportional to the cubes of
the semimajor axes of their orbits.

Kepler’s three laws served as the foundation of the mechanics of Isaac Newton, 2
who assumed that space was homogeneous and isotropic and that phenomena are
uniform with respect to the choice of the time instant. The equations derived by
Newton are invariant with respect to Galilean transformation. Classical mechanics
is also called Newtonian mechanics.

From Newton’s point of view (Newtonian mechanics) time, space, and mass
are absolute attributes that are independent of each other. These concepts cannot
be a priori defined and are rather motivated by our intention and experience. The
concept of mass allows us to compare the behavior of bodies. For instance, we say
that two bodies have the same mass if they are attracted by the Earth in the same
manner and they exhibit the same resistance to changes in translational motion.

"Galileo Galilei (1564-1642), Italian philosopher, astronomer, astrologer, and physicist who
acknowledged the supremacy of the heliocentric theory of Copernicus.

8Nicolaus Copernicus (1473-1543), Polish astronomer and mathematician, creator of the helio-
centric theory.

9Giordano Bruno (1548-1600), Ttalian Catholic cleric, philosopher.

10ohannes Kepler (1571-1630), German mathematician, astronomer, and physicist.

Tycho Brahe (1546-1601), Danish astronomer.

12Isaac Newton (1642-1727) English physicist, mathematician, philosopher, and astronomer.
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A point mass (particle) position and a body position require an introduction of
the concept of space. It is necessary first to define an event. Newton also introduced
the concept of force. It may depend on the mass of the body on which it acts and on
changes in the velocity of the body over time. Therefore, force cannot be treated as
an absolute, independent attribute of mechanics.

Mechanics can also be defined as the science of the motion of bodies. Instead of
using real objects, mechanics makes use of their models. In general, the model of a
given object (body) is an image reflecting only those attributes of the object that are
essential to investigate the phenomena of interest for a particular branch of science.
To the basic models applied in mechanics belong the following ones:

A particle (material point): A body possessing mass but having such small
dimensions that it can be treated as a point in a geometric sense. However, in
practice, bodies whose angular velocities are zero by assumption or whose rotational
motion can be neglected are treated as particles regardless of their dimensions;

A system of particles: A collection of particles;

A rigid body: The distances between elements of such a body remain constant for
arbitrarily large magnitudes of forces acting on the body.

In reality, structures, machines, and mechanisms are deformable bodies.
However, usually their deformations are small, and hence in many cases their
effect on the statics/dynamics of the studied bodies can be neglected.

A system of rigid bodies: A collection of rigid bodies.

The laws of mechanics introduced by Newton serve to illuminate the motions
of material systems. They enable us to create a mathematical model, that is, to
formulate equations of motion of particles and bodies.

The main goal of mechanics is to formulate the laws of motion suitable for the
investigation of a variety of real bodies. It turns out that any real body, solid, liquid,
or gaseous, can be modeled as a collection of particles. The following branches of
mechanics deal with problems in the previously mentioned fields:

1. Mechanics of rigid bodies (statics and dynamics).

2. Mechanics of deformable bodies (strength of materials, elasticity theory, plastic
theory, or rheology).

3. Mechanics of fluids: Incompressible (mechanics of liquids) and compressible
(mechanics of gases, aeromechanics); the mechanics of incompressible fluids
such as water is known as hydraulics.

In technical mechanics, during the modeling process we deal with the geometry
(decomposition) of mass and the description of materials from which bodies are
formed. In rigid-body mechanics, we assume that the distance between any two
points of a body does not change. We can talk about a completely different problem
when there is a possibility of changing the distance between the points of a body.
The load of bodies in this last case leads to the change in the distance between body
atoms, and interatomic forces (internal) will balance the external load. Bodies and
material systems made of metal as encountered in technology have regular structures
of arranged atomic networks on the order of 103°. With regard to the large amount
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of atoms, analysis is performed on the micro scale, which leads to the averaging
of anisotropy of microcrystal systems. Generally, most technical materials, after
having a cubicoid cut out of them with sides of around 1073 m, have the same
properties irrespective of the orientation of the “cutting out,” and such materials
are called isotropic (of the same direction). There are also anisotropic materials
(of different directions) in technology whose enduring properties depend on the
orientation in which the cube of material is cut out (e.g., rolled plates, timber,
fabrics, and paper).

The laws originally formulated by Newton generated a set of other fundamental
laws of mechanics such as the conservation of linear momentum, the conservation
of angular momentum, and the conservation of kinetic energy.

Below are the laws formulated by Newton, which are valid for particles.

First law. A body at rest not acted upon by an external force (the resultant force
acting on a particle is zero) will remain at rest, and a body in motion moving at
a constant speed along a straight line will remain in motion unless acted upon by
an external force.

Second law. The acceleration of a particle is proportional to the net force acting on
the particle; the direction and the sense of acceleration are identical to those of
the force.

Third law. The mutual forces of action and reaction between two bodies are equal,
opposite, and collinear.

The first two laws are true in an inertial system, whereas the third law is binding
in any system. It can be shown that Newton’s first law is a particular case of his
second law.

It should be noted that Newton’s laws are based on a concept of force as a vector
quantity. Force appears here as a primitive notion and requires the introduction of
at least two bodies. Correlation of reactions between bodies results from Newton’s
third law, where the action (forces) causes immediate reaction, which is graphically
characterized by the description presented by Newton: “If I put pressure with a
finger upon a stone with a certain force, then the stone also puts pressure upon my
finger with the same force.” The interaction of bodies can be implemented by the
direct pressure of one body on another or by indirect reaction at a distance.

The latter case is connected with Newton’s law of gravitation since, if we
consider two particles of masses m; and m,, the gravity force Fj, with which the
particle of the mass m, attracts the particle of the mass m is given by

mym
F,=G ;3 ’ria, (1.1)

where G = 6.67 - 107" Nm? kg2, and ry, is a vector joining these two points and
directed from point 1 toward point 2.
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The gravitational constant G is used for describing the gravitational field and was
determined for the first time by Henry Cavendish. 13 Tt should be noted, however, that
there exists a certain arbitrariness in the definition of force. Nobel laureate Richard
Feynman'# draws attention to the fact that the definition of force in a strict sense
is difficult. This is due to the approximate character of Newton’s second law and
generally due to the approximate character of the laws of physics.

A concept of mass can also be introduced based on Newton’s second law.
Let us consider an arbitrary particle and apply to it, in turn, forces of various
magnitudes Fy, F,, Fs,..., Fy. Each of the forces produces motion of the particle
with accelerations a;, aj, as,..., ay, respectively. These accelerations, according
to Newton’s second law, are proportional to the magnitudes of the forces, i.e.,

F,. b F;  Fy

(1.2)
aj a asz ay

The foregoing ratios describe the inertia of a body (particle) and define the mass
of the body. Recall that the weight of a body is a product of body mass m and
acceleration of gravity g. The mass defined in that way is called a gravitational
mass. Empirical research conducted by Hungarian physicist Roland Eotvos'® proved
that the inertial mass (defining the inertia of a particle) and the gravitational mass
(being a measure of the gravitation) are identical. In other words, if we take a particle
located on the Earth’s surface, then we may use (1.1) to define the weight G of a
particle of mass m. That is, introducing » = R (R is now the Earth’s radius) and
introducing g = %, m, = m, the weight of a particle of mass m is G = mg.
Observe that R depends on the particle elevation and on its latitude (the Earth is not
perfectly spherical), and hence the value of g varies with the particle position.

Newton’s second law can be formulated in the following form:

ma = F. (1.3)

Newton’s third law is also known as the law of action and reaction. It is valid
both for bodies in contact and for bodies interacting at a distance (Fi, = —F»y).

Finally, it should be noted that Newton’s three laws were presented in a modified
form. Newton’s original text from his 1687 work Philosophiae Naturalis Principia
Mathematica (Mathematical Principles of Natural Philosophy) is slightly different.
For instance, Newton does not use the notion of a particle but that of a body. The
concept of force was defined by him through a series of axioms and not in vector
notation.

It is worth emphasizing that historically the concept of force was a very
subjective notion as it was connected with the individual sensation of the exertion
of muscles. Thanks to the efforts of Newton and other scholars, the concept of force

3Henry Cavendish (1731-1810), British physician and chemist.
l4Richard Feynman (1918-1988), American physicist and creator of quantum electrodynamics.
SRoland Eotvos (1848-1919), Hungarian mathematician and physicist.
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obtained its objective character. Nowadays, one can even observe certain feedback,
i.e., through an objective understanding of force, scientists seek to deepen fully the
notion of the so-called biological force connected with the ability of the muscular
nervous system to, e.g., lift (lowering) material objects [1,2]. In this case the force
depends on the properties of fast twitch and slow twitch of muscle fibers as well as
age, sex, etc.

Forces can be divided into several classes:

. Mass (gravitational and inertial).

. Surface and volumetric (pressure and hydrostatic pressure).
. Electromagnetic and electrostatic.

. Muscular (of humans or animals).

. Contact: Compressive, acting on a surface or along a line.

. Tensile: Such as the forces in threads, cables, strings.

. Passive (reactive), i.e., counteracting the active forces.

. External and internal.

. Interaction of bodies.

O 01N D B WIN =

Apart from the described laws, it is possible to introduce several principles of
mechanics. While the laws describe relationships between mechanical quantities
often leading to solutions (e.g., through the first integrals of momentum, angular
momentum, or energy), the principles only support the formulation of equations of
motion. The principles possess the value of universality since they can be applied,
for example, in the theory of relativity, quantum mechanics, and some branches of
physics. One can divide them into differential principles and integral principles. The
principles used in classical mechanics are a part of so-called analytical mechanics.

The principle of independent force of action is a generalization of Newton’s
second law. If several forces act upon a particle, the acceleration of this particle
is a result of a geometric sum of the accelerations produced by each of the forces
acting separately (superposition principle).

Let us recall, finally, that the description of the behavior of electromagnetic
fields introduced by Maxwell’s!® equations was in disagreement with Newton’s
idea of particle motion. It turned out that electromagnetic waves could propagate
in a vacuum. This contradicts a purely mechanical approach whereby waves
can propagate only in a material medium filling up space. Moreover, Maxwell’s
equations were invariant with respect to the Lorentz!” transformation, whereas
Newton’s equations are invariant with respect to the Galilean transformation.

Albert Einstein'® succeeded in resolving that problem thanks to the introduc-
tion of the so-called special theory of relativity in 1905. He introduced space-
time as an invariant quantity, creating the foundations of so-called relativistic

16James Clerk Maxwell (1831-1879), Scottish mathematician and physicist.
"Hendrik Antoon Lorentz (1853-1928), Dutch physicist and Nobel laureate.

18 Albert Einstein (1879—1955), distinguished German physicist, creator of the special and general
theories of relativity.
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mechanics. In this way, two deductive systems became unified, i.e., mechanics
and electrodynamics (relativistic mechanics, like electrodynamics, is invariant with
respect to the Lorentz transformation). In relativistic mechanics, space, time, and
mass depend on each other and cannot be treated as absolute independent attributes.

Fortunately, the differences between relativistic mechanics and Newton’s
mechanics appear at particles speeds close to the speed of light or in the analysis of
large distances. Neither of these cases will be considered in this book.

The four fundamental concepts of classical mechanics discussed so far, i.e.,
space, time, mass, and force, allow us to introduce the so-called kinetic units.
However, in order to satisfy Newton’s second law they cannot be taken arbitrarily,
and they will be further referred to as base units. The remaining fourth unit will
be referred to as a derived unit. Then the kinetic units will create the so-called
consistent system of units. In what follows we further address only the universal
system of units (SI units). In this system the base units are the units of length
(meter, m), mass (kilogram, kg), and time (second, s). A meter is here defined as
1650763.73 wavelengths of orange-red light corresponding to a certain transition
in an atom of krypton-86 (originally defined as one ten-millionth of the distance
from the equator to either pole). A kilogram is equal to a mass of 1073 m? of water,
and the mass of a platinum—iridium standard kilogram is kept at the International
Bureau of Weights and Measures in Sévres in France. A second is defined as the
radiation corresponding to the transition between two levels of the fundamental

state of the cesium-133 atom (originally defined to represent m of the mean

solar day). Equation (1.3) yields the derived unit of force IN = 1 kg -m - s2.

The weight of a body or the force of gravity is G = mg, and for a body with a
mass of 1kg, its weight is 9.81 N. There are numerous multiples and submultiples
of the fundamental ST units as follows: 10'? (tera-T), 10° (giga-G), 10° (mega-M),
10? (kilo-k), 10? (hecto-h), 10 (deka-da), 1072 (deci-d), 102 (centi-c), 10~ (milli-
m), 10~° (micro-p), 1077 (nano-n), 107'2 (pico-p), 10~ (femto-f), 10~'# (atto-a).
For instance 1km = 1,000m, 1 um = 10~ m, 1 Mg = 1,000kg, 1 g = 107 kg,
1 MN = 10°N, etc.

In the case of time units, we have the minute (min) and the hour (h), and
1 min = 60 s, whereas 1 h = 60 min.

We may introduce also units of area and volume. The square meter (m?) is the
unit of area representing the area of a square of side 1 m. The cubic meter is the unit
of volume equal to the volume of a cube of side 1 m.

In general, the following principal SI units are applied in mechanics:

Acceleration (sz).

Angle [radian (rad)].
Angular acceleration (rs%d).
Angular velocity (%‘).

Area (m?).

Density (% .

Energy and work [Joule (J)].
Force [Newton (N)].

PN R LD =
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9. Frequency [Hertz (Hz)].
10. Impulse [Newton - second (N - s = kg - T)].
11. Length [meter (m)].
12. Mass [kilogram (kg)].
13. Moment of a force [Newton - meter (N-m)].
14. Power [Watt (W = 1)].
15. Pressure and stress [Pascal (Pa = %)].
16. Time [second (s)].
17. Velocity [meter per second (%)].
18. Solid volume [cubic meter (m?)].
19. Liquid volume [liter (1073 m?)].

In general, in classical mechanics one may adhere to the following fundamental
steps yielding the solution to a stated (given) problem. First, one needs to define the
statement of a problem clearly and precisely. Diagrams indicating the force acting
on each body considered known as free-body diagrams should be constructed. Then
the fundamental principles and laws of mechanics should be used to derive the
governing equations holding the condition of statics (rest) or dynamics (motion)
of the bodies studied.

The short historical outline of the development of mechanics presented above
reveals its deep roots in ancient times, and the reader will not make the mistake of
thinking that only today in the field of general mechanics do many coursebooks and
monographs exist. It is almost impossible to present a complete bibliography in the
field of classical mechanics. Therefore, a few sources in English are given to make
the book more readable, especially for students. Therefore, no attempt was made
to provide an exhaustive list of references; only those works are included that were
either used by the author [3—12] or are important competitors to this book [13-25].

1.2 D’Alembert’s Principle

Let us consider a constrained material system (subjected to constraints) consisting
of particles, described by the following equations of motion based on Newton’s
second law:

moay =F +F +FL n=1,... N, (1.4)

where F;, Ffw and Ff denote, respectively, external forces, internal forces, and re-
actions, which follow directly from Newton’s second law. Every particle, numbered
n, can be subjected to the action of forces F, coming from other (even all) particles
of the considered system of particles. The external forces F;,, in turn, represent the
action of the environment on our material system isolated from that environment or
from other isolated system parts.

If F; = 0 (absence of external influence), then such a system in mechanics
is known as autonomous (isolated). Moreover, in a general case, a system of
particles (SoP) can be free or constrained. The reaction forces FX are reactions
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of the constraints, that is, of the restrictions imposed on the particles, i.e., on their
displacements and velocities. By the free system we will understand either the SoP
on which the constraints are not imposed or one for which the reaction of the
constraints can be determined explicitly in the form of reaction forces, i.e., they
will not require solving additional so-called equations of constraints, and then the
forces FX can be treated as F¢. Otherwise, SoP will be called constrained. The
forces that occur on the right-hand side of (1.4) and concerning material point n
in a general case may depend on the position and velocity of other particles of
the SoP as well as explicitly on time, ie., F, = F{ (r;,....ry, r1,....Iy, 1),
Fln = F;(l’l, SN Y2 ST o Y Z), F,If = Fff(l'l, RS Y2 ST oY Z).

Let every particle undergo a virtual displacement 8r,,, where r,, is a radius vector
of the particle n. Multiplying (scalar product) (1.4) by dr, and adding by sides, we
obtain

N
> (F +F, + FX —my,a,) o ér, = 0. (1.5)

n=1

Assuming that only ideal constraints are considered, which by definition satisfy the
relation

N
> Ffoér, =0, (1.6)
n=1
(1.5) will take the form
N
> (K + F, —m,a,) o 8r, = 0. (1.7)
n=1

The equation just obtained enables us to formulate d’Alembert’s principle, which
reads:

The sum of scalar products of virtual displacements and external forces, internal
forces and vectors (—mya,) of particles of a material system equals zero.

One may conclude from (1.7) that d’Alembert’s principle transforms a problem
of dynamic equilibrium to that of a static equilibrium by adding the inertia force
terms (—m,a,) and extends the principle of virtual work to dynamics.

Performing a projection of the vectors appearing in (1.7) on the axes of the
adopted Cartesian coordinate system (OX| X, X3), we obtain

N
[(Fnexl + Frf)(l —myX1)dx1, + (FneXZ + Fyfo — My X2,)8%2,
n=1

+ Fi

nxs

+ (F,

nxs

- mnjé?)n)gx?)n] = Oa (18)

where a, = X1, E| + X2,E, + ¥3,E3, and E;, i = 1,2, 3, are unit vectors of the
coordinate system OX| X, Xj3.
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The equation just obtained is often called a general equation of mechanics.
D’Alembert’s principle and the general equation of mechanics are sometimes
difficult in applications because they refer to coordinates of the particles. In
Hamilton’s and Lagrange’s mechanics the introduced scalar energy functions allow
one to omit the foregoing problem. Because we are considering a free system,
all virtual displacements are independent. This means that the general equation is
satisfied only if the expressions in brackets equal zero.

In this way we obtain three second-order differential equations of the following
form:

N
Z(Fnexl + F;fxl - mnjéln) = 0,

n=1

N
Z(Fnexz + F;;'xz - mnx2n) = 0,

n=1

N
Y (Ff + Fiyy —myks) = 0. (1.9)

n=1

The preceding equations are simplified even more when the sum of internal forces
equals zero taking the form of

N
> (Ff, = madi) =0,

n=1

N
Z(F:XZ - mn-"C.Zn) =0,

n=1

N
Z(Fnex3 —myX3,) = 0. (1.10)

n=1

The three equations above can be rewritten in the vector form

N
Z(FB,, +F) =0. (1.11)
n=1

It was assumed above that the force Fg, = —m,a,. That force is also known as

inertia force or d’Alembert’s force acting on a particle n. Its sense is opposite to the
active force F¢.

Let us recall that position vectors r, determine the position of material point n
measured from the origin of the coordinate system. After vector premultiplication
(cross product) of (1.11) by r,, we obtain

N
> (ty xFy +1, xFy) = 0. (1.12)

n=1
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Let us note that the sums of vector products occurring above represent the main
moment of force vectors of the system of external forces F;, and of the system of
inertia forces F,,, that is,

N

Mo = Y (r, xFY). (1.13)
n=1
N

Mgo = Y (r, x Fg,). (1.14)
n=1

Let us introduce the notions of main force vector of external forces, inertia forces
and reactions, and the main moment of a force vector of reaction in the following
form:

N N
FeZZFz, FB:ZFBna

n=1 n=1
N N

FR = ZF,’f, Mgo = Z(R,, x F). (1.15)
n=1 n=1

They were introduced to the system after being released from constraints. In
this way the material system remains in equilibrium under the action of inertia
forces, active forces and reactions, and the torques (moments of forces) due to the
aforementioned forces only if

F° +Fg + FR =0, (1.16)
Mo + Mgo + Mgro = 0. (1.17)

The obtained result [(1.16) and (1.17)] is summarized in the following principle:

A system of vectors consisting of inertia forces, external forces, reactions constrain-
ing the movement of this system, and their torques is equivalent to zero.

In the case of free systems (no constraints and therefore no reactions) (1.16) and
(1.17) are reduced to

F 1 Fg = 0, (1.18)
Mo + Mo = 0. (1.19)

Thus, we obtain the following principle for free material systems: A system of
external forces and torques produced by the forces acting on particles of a free
material system is in every time instant balanced by a system of inertia forces and
torques produced by these inertia forces.
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1.3 Principle of Virtual Work

Let us consider a material system composed of N particles at rest. Since the system
is at rest, the accelerations of all its particles equal zero. From (1.5) we obtain

N
> (F + Fj, + Ff) o 6r, =0. (1.20)

n=1

Because the scalar product of force and virtual displacement represents a virtual
work of the force, (1.20) can be interpreted in the following way:

In an equilibrium position of a material system, the sum of virtual works of all
external forces, internal forces, and reactions equals zero.

The foregoing principle was formulated on the basis of equilibrium equations and
is a necessary condition of equilibrium. Now, let us assume that the forces acting on
the system would do the work that would result in a change of kinetic energy A Ey,,
of every particle of the system. The kinetic energy would be created, however, from
the work of the mentioned forces, and in view of that we have

N N
> (o +F, +FF)osr, =) 8Ew, =0. (121)

n=1 n=1

This means that the increment of the kinetic energy of the system of particles
is zero, and therefore the system is not moving. That is a sufficient condition of
equilibrium. Thus, the principle of virtual work shows the necessary and sufficient
condition of system equilibrium. In the case of ideal constraints (the sum of works
produced by reaction forces equals zero) and rigid systems (the sum of works
produced by internal forces equals zero), the stated principle is simplified and takes
the form of

N N
Y Foodr, =Y (F{ 8xin + FY, 8xa + FY, 8x3,) = 0.

n=1 n=1
The principle of virtual work in this case reads:

In an equilibrium position of a material system, the sum of virtual works of all
external forces through the virtual displacements allowed by kinematics (compatible
with the constraints) of the system equals zero.

In applications, the foregoing principle has some advantageous consequences,
which are listed below:

1. Reaction forces (for smooth surfaces without friction) and internal forces can be
removed from consideration (this will be shown in Example 1.1).

2. The problem of statics, after application of that principle, can be solved as a
problem of kinematics.
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v <

Fig. 1.1 Mechanism remaining in static equilibrium

3. The problem can be directly formulated in so-called generalized coordinates q,
of the form

N
Y 0uqy =0.
n=1

It should be noted that in the case where the virtual work principle is related to
d’Alembert’s principle of the form (1.4), then item (3) is no longer valid since, in
general, the latter cannot be directly formulated in terms of generalized coordinates,
which makes its application much more difficult.

Example 1.1. Determine the magnitude of force F so that the flat mechanism
depicted in Fig. 1.1 remains in static equilibrium, where the weight of slide block is
denoted by G = mg.

After introducing the Cartesian coordinate system OX X, X3, the kinematics of
points A and B is defined by the following equations:

x14 = 2l cos g,
Xpp = 6 sin@.

According to the principle of virtual work and making use of the preceding
geometric relations, we obtain

Fdx,p +mgdxiq = 0.

Since
8x14 = =21 singdg,
8x28 = 6l cospdy,
we have
(3F cosp —mgsing)dp = 0,

which holds true for an arbitrary §¢.
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At the change of ¢ (clockwise or counterclockwise), the mechanism remains in
static equilibrium when

1
F = gmgtanqo. O

1.4 Increment of a Function and Variation of a Function

In traditional mechanics textbooks, the presentation usually starts with a so-called
geometric approach, based on the application of vector calculus and Newton’s
laws of momentum and angular momentum. Sometimes, however, it is virtually
inconceivable how one should bring about the release from constraints and consider
all internal and reaction forces for each single particle of a system composed of a
large number of particles. Therefore, a natural question arises as to whether there
exists a possibility of simplifying the problem provided that the considered system
is in static or dynamic equilibrium and that internal forces in the considered system
cancel each other (actions and reactions). It turns out that such a possibility exists
based on the concepts of virtual work and virtual displacement, which were the
subject of consideration in the previous section. In the present section, some basic
information will be presented regarding a function variation in connection with the
concept of virtual work, which is widely used in mechanics.

Let us first introduce the notion of virtual displacement (Fig. 1.2) after adopting
the Cartesian coordinate system OX| X, X3.

grad f surface of constraints
(X4, %,,%,)=0
XA
or
A tangent to the point
dr trajectory
Ea“ £
E E, X,

X,

Fig. 1.2 Real (dr) and virtual (6r) displacement of a material point A
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Let point A be moving in an arbitrary fashion on the surface of constraints around
its position described by the radius vector r. The arbitrariness regards both the
displacement direction of point A and the length of a vector connecting the current
position of point A with its position after a small displacement on the surface of
constraints f(x;, x2, x3) = 0 (a time-dependent surface can be considered as well).
We shall note that the arbitrariness of the direction is associated with removal of the
point motion dependency on acting forces, whereas the arbitrariness of the length
dr means removing the dependency on time.

In reality, the elementary displacement of the particle takes place in the direction
of the vector dr along the curve indicated in Fig. 1.2.

However, there exists a certain law defining the virtual displacement of point A.
That point moves on the surface of constraints f(x;, x2, x3) = 0, which means that

gradf o ér =0, (1.22)
where the vector
W . Oof
df = — = E,— 1.23
gradf =~ ; 5 (123)

is a gradient vector (normal to the surface of constraints) at the current position of
the particle (for a “frozen” moment in time).

Observe that point A subjected to a virtual displacement, i.e., when its position
is defined by a radius vector r + dr, also satisfies the equation of constraints.

Since we have

fr+38r) = f(r) + % o 8r + O(r)?, (1.24)

and because after displacement ér the point still lies on the surface of constraints,
we have

f(r+dér)=0. (1.25)

Taylor’s' expansion about point 4, and on the assumption of a small variation
dr, showed that a point in a new position also satisfies equation of constraints (1.25).
Moreover, the mentioned operation shows that % = grad f must be a vector since

the result of the product % o §r must be a scalar.
Let us note that a number of geometric constraints determines a number of
additional conditions of the type (1.22) imposed on the considered material system.
According to the assumption that E, are unit vectors of axes of the introduced
coordinate system, we obtain

3
Sr = E,bx,. (1.26)

n=1

19Brook Taylor (1685-1731), English mathematician.
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Fig. 1.3 Geometric interpretation of isochronous variation of a function (a) and derivative of a
function (b) regarding point x

Let us note that r = r(¢) and the notion of virtual displacement was introduced
for the “frozen” moment in time, that is, §r does not depend on time, as remarked
earlier.

In a general case the notion of virtual displacement is connected with a math-
ematically motivated concept of function variation, which will be briefly recalled
now based on the monograph [3]. At first, we will consider a so-called isochronous
variation of a function

g =gx). (1.27)
The following function is called a variation of function g(x):
§g(x) = g(x) —g(x) (1.28)

where §g(x) <« 1. It is shown that a function variation (in contrast to a function
derivative) is calculated for a fixed x, whereas a function derivative about x makes
use of an increment x + Ax (Fig. 1.3).

A derivative of the variation of a function is as follows:

d d
—lBg(0)] = -[2(0) — g)]
= LB g0 = ()~ ¢, (1.29)
X dx

where = ..
X
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Let us now introduce the notion of variation of derivative of g’(x) and g’(x).
From the definition of isochronous variation we have

d d
5'(x) = &' (x) - g(x)—s[ & iff)] (130)
By comparing (1.29) with (1.30) we obtain
d _ [dgx)  dg(x)
Sl = o B2 O (1.31)

This means that the derivative of an isochronous variation of a function is equal
to the isochronous variation of a derivative of a function. Let us consider now a
composite function of the form

f=rgg.x). (1.32)

For a fixed x we perform variations of the functions g and g’ with values §g and
8g’, respectively, which means that the function f will undergo the variation §f.
Owing to (1.32) we have

f+68f=flg+8g.8 +38¢.x)

=f+ fé’g + —fé’g + 0((8g)* + (8¢)%). (1.33)
From (1.33) we obtain
8f = ié’g + Q(Sg’. (1.34)
ag ag’

Let us go back now to our function g and assume that this time we have

g = g(x,1). (1.35)
Let us introduce now the following time variation:

8t =1—t. (1.36)

A total variation §*g(x,t) of the function (1.35) can be determined from the
equation

d
g+8*g=g+8g+d—f$z, (1.37)

which means that

d
§ ¢ = 8g + d—far = §g + 861 (1.38)
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It can be shown easily that also in the case of an independent variable such as
time, we have

d(81) = 8(dr). (1.39)

Let us calculate now the total variation of a derivative of the function g with
respect to time [see (1.38), where instead of g we take g]:

ds
5*g'=5g+d—f8z = §g + got. (1.40)

After differentiation of (1.38) we obtain

d - . d(d1)
—(8*g) =6 8t —. 1.41
5 (878) = 8¢ + g3t + g — (1.41)
Equations (1.40) and (1.41) yield
d . .d(dr)
—(8*g) =8* —_—, 1.42
5078 =8+ iy (1.42)

which means that tofal variation is not commutative with differentiation. Although
the calculations were conducted regarding a scalar function, they are also valid for
a vector-valued function.

Example 1.2. Three rigid bodies of masses m; (i = 1,2,3) are attached to a
massless inextensible cable wrapped around three pulleys of negligible masses
(Fig. 1.4). The bodies are in translatory motion. Determine the accelerations of the
bodies.

Let us associate the virtual displacements §x;, §x;, and §x3 with the respective
coordinates. According to (1.7) we have

3
> (K —mya,) o ér, = 0.

In the present case the weights of the bodies play the role of external forces
Fi=mg F,=myg F3=msg

and, moreover, ér, = éx,E,,n = 1,2, 3.
We obtain the following equilibrium state equation:

(m1g —my%1)8x1 + (mag — maks)8xz + +(mag — m3ks)éxs = 0.
Because the cable is inextensible, we have

X1 + 2x, + x3 = C = const.
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Fig. 1.4 Three bodies of
masses m;,i = 1,2,3in
translatory motion

mqg

Let us assume that the coordinates x; and x3 are independent. From the last
equation we obtain

1
Xy = _E(xl +x3—C),
that is,
. 1(.. + . )
Xo = —= (X1 + X3),
2 5 X 3
1
Sxy = —E((le + 8)C3).
Substituting the preceding equation into the equilibrium state equation we have
N 1 | N
my(g — %1)8x; — 3m2| 8 + E(XI + X3) [(8x1 + 8x3) + m3(g — ¥3)8x3 = 0,
or equivalently
ox (m lm) )'c'(m—i-lm) )'élm
1| 8\ ;M2 t{m - g ma 33M2

1 1 1
+ 8)63 [g<M3 — §m2) — 553 <M3 + ZMQ) — )'511}’}12] =0.
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Since the virtual displacements §x; and §x3 are independent, we obtain

( T mz).. T ms ., ( ny 4 )
my + — — X3 =g(——=— +m),
1 1 1 4 3=8 ) 1
ny mp ., ny
(m3+T)X3+TXI —g(—7+m3)

The determinant of the foregoing system of equations is equal to

m m
[/‘/ =

m
=mms+ Tz(ml + mj3),

_|_

ms3

=3

ny
1

and the remaining determinants have the form

e(-xem) =

Wi, =
g(—%+m3) ms +
3 n ( +1 )
=g| — ~moymz +m(m3 + -m>) |,
g 4 2Mm3 1\ m3 4 2
my + "¢ g(—%+m1)
Wy, =

mo g% em)

3 n ( +m2)
= — —mm ms|m — .
g 4 1ma 3\ my 1

Eventually, the desired accelerations are as follows:

g[ - %mzms + mi(m3 + %mz)}
1

. Wi
X = — = m )
2(m1+m3)
w myms + ————
We g[—%m1m2+m3(m1 + %mz):|
X3
X3 = = ma(mi+m3) o
w myms + ————=

Example 1.3. A rod of weight G and length / is hinged at point O and a pin con-
nected to a rod has length 2/ and weight 2G (Fig. 1.5). Determine the configuration
of rods as a result of the action of the weight forces (neglect the friction).
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Fig. 1.5 Configuration of homogeneous rods of lengths / and 2/ loaded with their weights

As a generalized coordinate we will take an angle ¢ because the analyzed system
has one degree of freedom. In other words, a possible system movement can be
described by only one coordinate ¢. From Fig. 1.5 it follows that

I .
x| = 5 sin2¢,
xy = 1sin2¢ — [ sing.

Because the constraints of the system are ideal, only the weight forces perform
the work through the virtual displacements. The work done by the forces G and 2G
through the displacements §x, (n = 1,2) is equal to

Goéx; +2Géxy = 0.

A slight shake of the system, which remains in static equilibrium, will produce
the displacements 6x, §x, and change in the coordinate ¢ by §¢. We will determine
the relations between §x,, and §¢ by applying the first two equations:

8x; =1cos2¢bp, 8x; = (2cos2¢ —cosg)ldp,
and the obtained variations are substituted into the second equation, yielding

Gl cos2¢ 4+ 2GI(2cos2¢ —cosp) = 0.

Because

cos2¢p = coszqo—sinzqo =2cos’p—1,
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our problem is reduced to the following second-order algebraic equation:

cos’ —lcos —1—0
pogEeTy =

Solving the preceding quadratic equation we obtain

cosp; = 0.814, cosp, = —0.614.

We select the physically feasible solution for which ¢ = ¢; &~ 35°30'. O
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Chapter 2
Statics

2.1 A Concept of Equilibrium

If the velocity and acceleration of every particle in a material system are equal to
zero, such a system is at rest. On the other hand, as we recall, from Newton’s first
law it follows that a particle having mass to which no force is applied or the applied
forces are balanced is either at rest or in uniform motion along a straight line.

If a material system acted on by a force system does not change its position
during an arbitrarily (infinitely) long time, we say that it is in equilibrium under the
action of that force system.

Statics is the branch of mechanics that focuses on the equilibrium of material
bodies (particles) under the action of forces (moments of force). It deals with the
analysis of forces acting on material systems at rest or moving in uniform motion
along a straight line and, as will become clear later, may be treated as a special
case of dynamics. This chapter, devoted to statics, might be extended by material
presented in books devoted to classical mechanics like, for instance, [1-25].

It turns out that for a material system to remain in equilibrium under the action
of a certain force system, that force system must satisfy the so-called equilibrium
conditions.

In order to emphasize the lack of time influence on equilibrium conditions, in
statics the term state of static equilibrium is often used. In general, statics can be
divided into elementary statics and analytical statics. In the case of elementary
statics, during analysis of static equilibrium states vector algebra and graphical
methods are applied. On the other hand, in the case of analytical statics the concepts
of virtual displacement and principle of virtual work are used, which in part was
discussed in Chap. 1.

Let us assume that the nth particle is subjected to K forces Fy, L reactions FIR s
and M internal forces F;, (Fig.2.1). The equilibrium condition has the following
form:

F, +FR 4+ F =0, 2.1

J. Awrejcewicz, Classical Mechanics: Kinematics and Statics, Advances in Mechanics 23
and Mathematics 28, DOI 10.1007/978-1-4614-3791-8_2,
© Springer Science+Business Media New York 2012
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where

K L M
F,=) F. Ff=>Ff F,=>F,. (2.2)
k=1 =1 m=1

After multiplying both sides of (2.1) by the unit vectors E; of the coordinate
system OX; X, X3 (scalar product) and taking into account (2.2), we obtain the so-
called analytical conditions of equilibrium of the form

K L M
S P, + Y FR + > Fi =0 j=123 (2.3)
k=1 =1 m=1

Because in general the forces may be projected onto the axes of any curvilinear
coordinate system, the following theorem is valid.

Theorem 2.1. A particle is in equilibrium if the sum of projections of external,
internal, and reaction forces (acting on this particle) onto axes of the adopted
coordinate system is equal to zero.

The three conditions (2.3) are necessary, but not sufficient, for the particle to
remain at rest, as follows from Newton’s first law.

In order to formulate the equilibrium conditions for a whole material system
or a body (infinite number of particles), one should formulate such equations for
every particle n € [1, N] (N = oo in the case of the body) and add them together,
obtaining

N
S=> (F, +Ff+F},) =0, (2.4)
n=1
where N is the number of particles of the material system.

A system of particles will be in equilibrium if the sum of projections of external,
internal, and reaction forces, acting on every particle of the system, onto three axes
of the adopted coordinate system is equal to zero. After projection we obtain 3N
analytical equilibrium conditions for the system of N particles.

According to Newton’s third law, the internal forces are the effect of action and
reaction and they are pairs of opposite forces, which means that they cancel out one
another, that is, Zfl\;l F = 0.

Observe that the result of action of a given force on a rigid body remains
unchanged when that force is applied at any point of its line of action (the so-called
principle of transmissibility), and hence the forces acting on a rigid body can be
represented by sliding vectors. In other words, if instead of a force F at a given
point of the rigid body we apply a force F’ of the same magnitude and direction at
apoint A" (A # A’), then the equilibrium state, or motion of a rigid body, is not
affected provided that the two forces have the same line of action. The principle of
transmissibility is based on experimental evidence, and the mentioned forces F and
F’ are called equivalent.
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Fig. 2.1 A particle n (point A) under the action of forces Fj and reactions FlR, and the same
particle under the action of the resultant forces F and reactions FX (internal forces not shown)

Fig. 2.2 Concurrent forces acting on a rigid body (a) and a force polygon (b)

In Fig. 2.1 it was shown that all forces are applied at a single point A. Now we
will consider a more general case of a rigid body loaded with a discrete system of
forces applied at points A, of magnitudes F,,, n = 1,..., N and of lines of action
passing through a certain point A (Fig.2.2).

The force system that we call concurrent and those forces need not lie in a
common plane. Because, by assumption, the lines of action of the forces intersect
at point A, the system in Fig.2.2a is equivalent to the force system depicted in
Fig.2.2b. Adding successively the force vectors and using the “triangle rule,” that
is, replacing every two forces by their resultant force (marked by a dotted line) we
obtain a so-called force polygon. The action of the resultant vector F” is equivalent
to the simultaneous action of all forces, that is,

N
F = ZF (2.5)
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Fig. 2.3 Geometrical
interpretation of the
three-forces theorem

The method of construction of a force polygon indicates that in order to obtain
vector F” we can add the vectors F,, together directly (i.e., the vectors denoted by
dotted lines can be omitted during addition).

The vectors F,, are called sides of a force polygon and the vector F” is called a
closing vector of a force polygon. Moreover, the sign of the sum (sigma) denotes
addition of vectors from left to right, that is, from F;, F,, ... to Fy.

The presented construction is easy in the case of a planar force system. In space,
the force polygon is a broken line whose sides are the force vectors and the resultant
F” connects the tail of the first force vector to the tip of the last force vector of the
given force system. In this section we will take up the analysis of the planar force
polygon.

From the foregoing considerations it follows directly that because the action
of many forces can be replaced by the action of one resultant force, a rigid body
remains in equilibrium under the action of a concurrent force system if F* = 0, that
is, according to (2.5) if

> F, =0. (2.6)

If the above equation is satisfied, the polygon of forces F, is closed, that is, the
tail of the first force vector coincides with the tip of the last force vector.

Theorem 2.2. (On three forces) If a body remains in equilibrium under the action
of only three non-parallel coplanar forces, then their lines of action must intersect
at a single point, that is, the system of forces must be concurrent.

To prove the above theorem it is enough to observe that if we have three forces
Fy, F;, and F3, then the action of any two of them, e.g., F; and F», can be replaced
with their resultant F”. According to Newton’s first law, the body is in equilibrium
if F* = —F3 and these vectors are collinear. Therefore, the lines of action of the
three forces must intersect at a single point (Fig. 2.3).

Let us note that if we are dealing with a system of three concurrent forces and a
body under the action of these forces is in equilibrium, all of these forces must be
coplanar (i.e., lie in one plane).

Later we will show (by making use of Theorem 2.2) how to reduce an arbitrary
three-dimensional system of non-concurrent forces to a so-called equivalent system
of two skew forces.
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Fig. 2.4 Coordinate systems OX; X, X3 and O’ X{ X} X} and the force vector F

In practice many problems of statics boil down to the construction of the force
polygon. The approach is like we call a geometrical approach and is complemented
by the use of trigonometric functions to find unknown quantities. In order to use this
method the magnitudes, the lines of action, and the senses of forces must be known.

Apart from the geometrical, the analytical approach is commonly applied. Let us
introduce the fixed Cartesian coordinate system OX; X, X3. In order to analytically
describe a force F one should know its point of application O’(x1, x5, x3) and
magnitudes of its projections onto axes OX, OX», and OX3 of the form Fy,, Fx,,
and F,.

In Fig. 2.4 the location of point O’ in the coordinate system O’X| X)X} and the
vectors F, Fx, (i = 1,2, 3), are shown.

Let the vector of force F lie on the [ axis of unit vector [, and let E; and E/; be
unit vectors respectively of the axes OX; and O’X/, and because the axes of the
systems OX X, X3 and O’ XX} X} are parallel, we have E; || E]. According to the
introduced notation we have

F=IF = F,E + F,E, + F,Es =F,, +F,, + F,,. 2.7)

In other words, a force F is said to have been resolved into three rectangular
components Fy,, i = 1, 2, 3 if they are perpendicular to each other and directed
along the coordinate axes.

After multiplication (scalar product) of the above equation in turn by E;, E,, and
E; we obtain

Fy, =FloE| = Fcos(l,E),

Fy, =FloE; = Fcos(l,E),
Fy, = Fl oE; = Fcos(l,E3), (2.8)
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because
(7] = |Ei] = [Ez| = [E3] = L.

If we know the vector F, that is, its magnitude F and direction defined by the unit
vector [, the coordinates of the components of the vector are described by (2.8).
After squaring (2.7) by sides we obtain

and after taking into account (2.9) in (2.8) we calculate the cosines of the angles
formed by the force vector with the axes of the coordinate system (called direction
cosines)

F, F,
cos(l,E)) = Fl = - )
VL A+ FL+ F2

F, F,
cos(l,Ep) = Fz = -2 )
VL A+ FL+ F2

F., Fy,

cos(l,E3) = — = - .
F
VL T+ F

If Fy,, Fy, and F,, are known, then on the basis of (2.9) and (2.10) we can
determine vector F, that is, its magnitude |F| = F and its direction defined by the
direction cosines. It follows directly from (2.10) that cos?>(I, E;) + cos?*(l, E,) +
cos?(I,E3) = 1, and hence angles describing a position of the force F in relation to
the Cartesian axes depend on each other.

Let us now return to Fig. 2.2, where the system of concurrent forces acts solely on
the rigid body. If such a body is in equilibrium, according to (2.5), we have F" = 0,
and after multiplying (2.5) by E, E,, and E; we obtain

(2.10)

F1x1+F2x1+"'+FNx1=09
F1x2+F2x2+"'+FNx2=09
Fix, + Foy + -+ Fny, =0. (2.11)

The equilibrium condition of the rigid body subjected to the action of a three-
dimensional system of concurrent forces is described by three algebraic (2.11), in
view of the fact that the number of unknowns should not exceed three (or, in the case
of the planar system of forces, two) for the considered force system to be statically
determinate. In Fig.2.5 a symmetrical system of concurrent forces formed after
suspending the body of weight G from three ropes is shown.

After introducing the Cartesian coordinate system and including the system
geometry we can (through some trigonometric relations) determine three unknowns
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Fig. 2.5 A weight G
suspended from three (four)
ropes in space (a) and a
system of concurrent

forces (b)

from three equations and, consequently, describe the forces F, F», and F3. Let us
assume now that at the center O of the triangle ABC an extra fourth rope was
attached. If the length of that rope differs even slightly from the distance 4, either
that rope exclusively carries the total weight G (if slightly shorter) or it carries no
load at all (if slightly longer).

If we assume that the weight G is carried by four ropes, it is impossible to
determine the four forces F;, F,, F3, and F4 in the ropes; such a problem is
statically indeterminate. This appears also in the planar system of concurrent forces
if point C becomes coincident with point B and then AO = OB. The problem is
statically determinate if the weight G is suspended from two ropes AO’ and BO’
and statically indeterminate if, additionally, we introduce the third rope O O’ and all
three ropes are loaded.

One deals with a statically indeterminate problem when the number of unknown
values of forces (torques) denoted by N is larger than the number of equilibrium
equations N,. The difference N — N, is called a degree of static indeterminacy.
As will be shown later, additional equilibrium equations are obtained after taking
into account deformations of the investigated mechanical system. In general, while
solving a statically indeterminate problem, the method of forces and the method of
displacements are often applied.

The first approach consists of three stages [26]:

1. Determination of degree of static indeterminacy.

2. Transformation of a statically indeterminate system to a statically determinate
one with unknown values of loads but known character and point of application.

3. Determination of a set of desired force values from condition of displacement
continuity at the force application points.

The second method, i.e., the displacements method, is to use the relationship
between external forces, displacement nodes of the construction, displacements of
the ends of particular ropes (rods) and their geometric and material properties.
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Fig. 2.6 Graphical
representation of a moment of
force F about a point O

X (X2)

It takes advantage of the emergence of movements of rod ends in a strict dependence
resulting from the continuity of the structure.

The displacement method will be described in Example 2.5.

The static indeterminacy of a mechanical system is often due to the introduction
of the so-called technologically justified assembling stress (e.g., stresses resulting
from the initial stretch of the ropes supporting the structure). In addition, the state of
stress may appear as a result of non-uniform heating of the system. The loading state
of a mechanical system following from the introduction of assembly and thermal
stresses is an independent and additional loading of the considered mechanical
system.

In a general case a non-concurrent force system may act on a rigid body. In order
to describe the equilibrium conditions in this case it is necessary to introduce the
notions of moment of force about a point and moment of force about an axis (which
was discussed in Sect. 1.2).

The notion of moment of force about a point was first used by Archimedes, but
it concerned planar systems.

The moment of force F about point O is defined by a vector product of the form

Mo = My(F) = r x F, 2.12)

which after introduction of the Cartesian coordinate system OX| X, X3 is illustrated
in Fig.2.6.
According to the definition of vector product [see (1.13), (1.14)] and Fig. 2.6, we
have
| Mo |= Mo =rFsing = Fh, (2.13)

that is, the magnitude of the moment of force is equal to the doubled area of a
triangle (in blue) of sides r and F. Its direction is given by the right-hand rule,
that is, the arrow of the vector My points toward an eye of a person looking if the
vector r is rotated toward the vector F counterclockwise (positive sense) provided
that the coordinate system is right-handed. However, if the system of coordinates is
left-handed (its axes in parentheses in Fig. 2.6), the sense of the vector M changes
(vector marked by a dashed line in Fig. 2.6).
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Let us note that vectors describing a real physical quantity (e.g., force, velocity,
acceleration) do not change when the adopted coordinate system is changed. In the
considered case the vector of the moment of force M changes when the coordinate
system is changed from right-handed to left-handed. Vectors having such a property
are called pseudovectors.

Theorem 2.3. (Varignon') The moment of a resultant force of a system of concur-
rent forces about an arbitrary point O (a pole) is equal to the sum of individual
moments of each force of the system about that pole.

Proof of the above theorem is obvious if one uses the property of distributivity of
a vector product with respect to addition.

Let us note that Varignon’s theorem includes also the special case of concurrent
forces when the point of intersection of their lines of action is situated in infinity (in
that case we are dealing with a system of parallel forces). Moreover, let us note that
the introduction of any force F’ of the direction along that of r does not change the
moment since we have

Mo =rx(F+F)=rxF+rxF =rxF, (2.14)

becauser X F' = 0.

This trivial observation will be exploited later during the reduction of an arbitrary
three-dimensional force system to two skew forces in space (forces that do not lie
in one plane).

If by a resultant force we understand the force replacing the action of the system
of concurrent forces, such a notion loses its meaning in the case of an arbitrary force
system in space. Then the closing vector of a three-dimensional polygon of forces
is called a main force vector.

The components of the moment of force vector about a pole O is obtained
directly from the definition using the determinant, that is,

Ei E; E;
Mo =rxF=|ry 1y, Iy
Fy, Fy, Fy,
= El(rszX3 - rX3FXz) +E2(_rX1FX3 + rX3Fx1) +E3(rx1Fx2 - erFxl)
= Mo Ei + Mo, Ex + Moy, Es. (2.15)

Let us introduce now the concept of the moment of force F with respect to an
axis [ of unit vector I (Fig.2.7).

IPierre Varignon (1654-1722), French mathematician (friend of Newton, Leibniz, and the
Bernoulli family).
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Fig. 2.7 Moment of force AX,
F about an axis / '
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Definition 2.1. The magnitude of the moment of force about an axis | is equal to
the scalar product of the moment of force about an arbitrary point O on that axis
and a unit vector l of the axis (thus it is a scalar that respects the sign determined
by the sense in agreement or opposite to the unit vector l).

According to the above definition, and after taking into account (2.15), we have

M;(F) =10 My(F)
= Moy, cos(l,E)) + Moy, cos(l,Ey) + Moy, cos(l, E3)
= (o, Fro; — Ty Fry) COS(LE)) + (=i Fyy + 1 Fyy) cos(l, Ey)
+ (ry, Fx, — v, Fx,) cos(l, E3)

cos(l,Ey) cos(l,E,) cos(l, Ej3)
= T, Ty, T . (2.16)
EY] EVZ FX3

Observe that M; (F) is the magnitude of the moment of force about axis /, that is,
it depends on the versor / sense.

Let us resolve F(r) into two rectangular components |F(;r) and ; F(1r) (lying
in a plane perpendicular to /). Then from (2.16) we obtain M;(F) = [ o (yr +
1) x (F + 1F) = [ o (1r x 1 F). In other words the moment M, (F) describes the
tendency of the force M to give to the rigid body a rotation about the fixed axis /.

At the end of this section we will present definitions of a couple and a moment
of a couple and introduce the basic properties of a couple.

Definition 2.2. A system of two parallel forces with opposite senses and equal
values we call a couple of forces. A plane in which these forces lie is called a
plane of a couple of forces.

In Fig. 2.8 a couple of forces and a moment of a couple of forces are presented
graphically.
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Fig. 2.8 A couple of forces and its moment about a point O

The moment of a couple of forces about a point O is the geometric sum of
moments of each of the forces about point O, that is,

M=MyF)+Mp(-F) =rxF+r x(—F)
=rxF-r xF=(@—-r)xF. (2.17)

From (2.17) it follows that the moment M of a couple of forces about point O
does not depend on the location of this point, but only on the vector r —r; describing
the relative position of points of application of forces forming the couple and lying
in a plane of the couple of forces 7.

The magnitude of moment of a couple of forces is equal to

M = F|r—ry|sing = Fh, (2.18)

where £ is the distance between lines of action of the couple and is called the
arm of a couple of forces. Thus, the magnitude of a moment of a couple of forces
corresponds to the area of a rectangle with sides F' and h. It is clear that a couple
applied to a body tends to rotate it. Since r — r is independent of the choice of the
origin O, the moment M of a couple is a free vector.

Let us note that M is perpendicular to the plane r and its sense is determined by
senses of vectors of the couple of forces. The static action of a couple is equivalent
to the moment of a couple. What follows are some theorems regarding a couple of
forces (proofs are left to the reader).

Theorem 2.4. The action of an arbitrary couple of forces on a rigid body is
invariant with respect to the rotation of the plane of the couple through an arbitrary
angle.

Theorem 2.5. The action of an arbitrary couple of forces on a rigid body is
invariant with respect to the choice of an arbitrary plane parallel to the plane of
the couple.
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Theorem 2.6. The action of an arbitrary couple of forces on a rigid body is
invariant if the product Fh [see (2.18)] remains unchanged, that is, it is possible to
vary the magnitude of force and its arm as long as F h remains constant.

Theorem 2.7. An arbitrary system of couples of forces in R® space is statically
equivalent to a single couple of forces whose moment is the geometrical (vector)
sum of moments coming from each couple of forces in the system.

The reader is encouraged to prove that two couples possessing the same moment
M are equivalent. Since the couples can be presented by vectors, they can be
summed up in a geometrical manner. In addition, any given force F acting on a
rigid body can be resolved into a force at an arbitrary given pole O and a couple,
that is, at point O we have an equivalent force—couple (F — M) system provided
that the couple’s moment is equal to the moment of F about O. In what follows we
apply the statements and comments introduced thus far.

Let us emphasize that the net result of a couple relies on the production of a
moment M (couple vector). Since M is independent of the point about which it takes
place (free vector), then in practice it should be computed about a most convenient
point for analysis. One may add two or more couples in a geometric way. One
may also replace a force with (a) an equivalent force couple at a specified point;
(b) a single equivalent force provided that F 1 M, which is satisfied in all two-
dimensional problems.

In Fig. 2.1 the position of a particle is described by the vector r, in the adopted
Cartesian coordinate system. In the case of a system of particles, each particle n
of the system is described by a radius vector r,, n = 1,...,N. After multiplying
equilibrium condition (2.1) by r, (cross product) and adding together the obtained
equations (after assuming F!, = 0) we obtain

N N
Mo =Y (5, xF,) + > (r, xFf) =0. (2.19)

n=1 n=1

Let us note that (2.19) is also valid for !, # 0 because Y"_ (r, x F) = 0
(internal forces of the system exist in pairs that are equal, act along the same line
of action, but have opposite senses; therefore, taken together they all yield zero
moment about any point).

According to (2.4) and (2.19) a material system is in equilibrium if the system of
forces and reactions, and the main moment produced by these forces and reactions,
is equal to zero, that is, we have

S=0 M,y=0. (2.20)

Let us note that the above condition is a necessary condition, but in general it
is not a sufficient one. According to Newton’s first law, particles can move along
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Fig. 2.9 A rigid (a) and flexible (b) beam with a concentrated force applied in the middle of their
lengths

straight lines in uniform motion, that is, they can change their relative position in
spite of being subjected to the action of balanced forces. If we are dealing with
a rigid material system or a rigid body, then the relative motion of the particles
of the body is impossible and conditions (2.20) are both necessary and sufficient
conditions.

If, however, we consider a continuous material system (CMS), such as de-
formable solid bodies, gases, or liquids, then conditions (2.20) are necessary
conditions, but not sufficient ones.

In a general case for an arbitrary material system the necessary and sufficient
equilibrium conditions are described by the following equations for every particle n:

FC+F +FfR=0, n=1,2...,N. (2.21)

Although (2.21) seems to be simpler, in fact it is more complicated, since
it involves determination of internal forces F’. In order to do so one should
release from constraints the internal points of the material system and consider the
equilibrium of external, internal, and reaction forces.

As an example we will consider a beam of length / loaded at the midpoint with
the force F on the assumption that it is a rigid beam (Fig. 2.9a) and a flexible beam
(Fig.2.9b) [9].

The absence of deflection in the first case (Fig.2.9a) follows from the fact that
the beam is a rigid body. The presence of deflection in the second case (Fig.2.9b) is
caused by the beam’s flexibility. The conditions of equilibrium are the same in both
cases, although the equilibrium positions are different. In both cases internal forces
are developed, but only the second case is accompanied by the beam’s deformation.
Observe that in the case of a rigid body (beam), each of the forces may be shifted in
an arbitrary way along its line of action, but this approach is prohibited for a flexible
body (beam), that is, the transmissibility principle is violated.

The above example is associated with the so-called freezing principle. Equilib-
rium of forces acting on a flexible body is not violated when the flexible beam
becomes “frozen.”
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2.2 Geometrical Equilibrium Conditions of a Planar Force
System

As has already been mentioned, in a general case formulation of geometrical
equilibrium conditions is not an easy problem, and usually this approach is applied
to systems of forces lying in a plane. As was shown earlier, according to the first
equation of (2.20) a polygon constructed from force vectors should be closed.

In the case where a material system is acted upon by a system of three non-
parallel forces equivalent to zero, these forces are coplanar and their lines of action
intersect at one point, forming a triangle (Theorem 2.2).

In a general case for an arbitrary plane force system geometrical equilibrium
conditions boil down to the force polygon becoming closed and to satisfying the
condition of the so-called funicular polygon. As an introduction let us first consider
three arbitrary forces F,,, n = 1, 2, 3 lying in one plane (Fig.2.10).

From the construction depicted in Fig. 2.10 it follows that, at first, any two of the
three forces (in this case F; and F,) are moved to the point of intersection of their
lines of action O’ and then added geometrically, yielding the force F; + F,. One
proceeds similarly with the vector F; + F, and the vector F3. The lines of action of
these vectors, again, determine the point O to which both vectors are moved. Next,
using the parallelogram law we obtain a resultant vector F” replacing the action of
those forces. We also obtain the line of action of ¥ (F” is a sliding vector).

A similar procedure may be applied for any number of force vectors acting in a
plane (coplanar and non-parallel vectors). However, in practice sometimes it turns
out that the task is not easy. One reason for this is that the forces may intersect at the
points outside the drawing space. Moreover, their small angles of intersection may
lead to large inaccuracies.

Below a different graphical method called funicular polygon method will be
presented.

Fig. 2.10 Determination
of magnitude, sense, and
direction of a resultant

F = F] + Fz + F3 for the
case of a planar system of
three non-parallel forces
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Fig. 2.11 An arbitrary system of four forces (a), a force polygon (b), and a funicular polygon (c)

Let us consider now an arbitrary system of forces acting in a plane on a certain
rigid body (Fig.2.11). In order to preserve clarity of the drawing we limit ourselves
to consideration of four forces F;, F», F3, and Fy.

The procedure of construction of a force polygon is as follows. In a plane we take
an arbitrary point A, being the tail of force vector F; = ﬁ Next, at the tip of that

vector we attach the vector F, = ﬁ, and so on. Next, we take an arbitrary point
O called a pole and connect it with points A, B, C, D, and E. Let us note that

F =F +F,+F;+F,

— - —  —

— (0B — 04) + (OC — 0B) + (0D — 0C) + (OE — 0D)

— OF — OA = 40 + OFE. (2.22)
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The segments OA, OB, OC, OD, and OFE are called rays, but in (2.10) the

vectors of their lengths appeared as forces, which means |ﬁ| = OA, and so on.

The force polygon allows for determination of the resultant F", that is, the force
replacing the action of forces Fy, F;, F3, and F4. However, additionally we have to
determine the line of action of the resultant force (it must be parallel to the direction
of the force F” obtained using the force polygon method, see Fig.2.11b). In practice
this means that one should determine a point W through which the force F” would
pass.

To this end we make use of the so-called funicular polygon. Let us take an
arbitrary point A’ lying on the line of action of the force F; (construction is
temporarily conducted in a separate drawing). Next, we draw a line passing through
that point and parallel to OA (cf. the force polygon). Then, we step off on that

line a segment A’ B’ of length |ﬁ| (one may limit oneself to the determination of
the direction of that force). Next, through point B’ we draw a line parallel to OB

and step off the segment B'C’ = |E§|. Through the obtained point C’ we draw

a line parallel to OC and step off the segment C’'D’ = |W?>|, obtaining in this
way point D’. Through that point we draw a line parallel to OD and step off the

segment D'E’ = |O_D)| Through the obtained point E’ we draw a line parallel to
OE and step off the segment E'O’ = |E_0)| According to (2.22) the resultant can

be determined using the parallelogram law, since the force vectors ﬁ and O—E) are
known [the forces represented by the other vectors (rays) cancel each other]. One

— — — — — .
may also move the vectors AO and OB, BO and OC, CO and OD respectively
to points B, C’, D’, and E’. It is easy to notice that after their geometrical addition

only the vectors E and O_E) remain. It follows that extending the lines passing
through points A’ and B’, and through O’ and E’, leads to determination of point
W, through which passes the line of action of the resultant F”. It follows also that
it is possible to determine the magnitude of that force (after geometrical addition of
—— —

|A’B’| and |O’E’]).

If we took a perfectly flexible cable of negligible weight and length AO + OB +
OC + OD + OE and fixed it at points A" and O’, then after application of the forces
F,, F,, F;, and F4 at points B’, C’, D’, and E’ (Fig.2.11c), the cable would remain
in equilibrium. That is where the name of funicular polygon comes from. At each
of these points act three forces that are in equilibrium. It is easy to check that the
choice of some other pole (point O; in Fig.2.11b) leads to the determination of a
different point of intersection, but it must lie on the line of action of the force F".

Let us now consider the particular case of the force polygon depicted in
Fig.2.11b, namely, when F* — 0, that is, when E — A, which means that

|[EO| = |OA| and the vectors OF and AO become collinear at the limit while
retaining the opposite senses. Since the polygon ABCDA is closed, points A and E
are coincident, thatis, A = FE.

Such a situation is depicted in Fig. 2.12a, and the corresponding force polygon is
shown in Fig.2.12b.
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Fig. 2.12 A closed polygon a
of four forces Fi, F,, F5, Fy
(a) and the corresponding
funicular polygon (b) (vector
r is not a part of the funicular
polygon but was drawn only
for interpretation of a
moment of force vector

M = r X P perpendicular to
the drawing’s plane)

— _—  —
From the figure it follows that the vectors of forces A’B’ = A0 and 'O’ = OF
possess the same magnitudes and opposite senses, so they produce the moment of

a force of magnitude [M| = |r x P| = Prsing = Ph, where P = ﬁ and ¢
denotes the angle formed between vectors r and P. It is impossible to determine the
point of application of the force F” because it is a singular case where F” = 0 and
A'B’ || O’E’. In this case the force system Fy, F,, F3, and Fy is equivalent to the
couple of forces.

Let us now consider another special case of the force polygon and funicular
polygon relying on the considerations regarding Fig.2.12. Let point E/ — A,
which means that r — 0, thatis, r x P = M — 0. When the endpoints of the
funicular polygon are coincident, that is, E/ = A’, the moment M = 0 (this case is
presented in Fig. 2.13). Because the force polygon remains unchanged (Fig. 2.12a),
in Fig.2.13 only the funicular polygon is shown. In this case the force system Fy,
F,, F3, and F4 remains in equilibrium.

From the considerations and drawings in Figs. 2.11-2.13 the following conclu-
sions result:

1. If neither the force polygon nor the funicular polygon is closed, then the
investigated planar force system is equivalent to a resultant force.
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Fig. 2.13 Closed funicular
polygon (M = 0)

E=A

2. If the funicular polygon is not closed but the force polygon is closed, then planar
force system is equivalent to a moment of force (couple).

3. If both force and funicular polygons are closed, then the force system is
equivalent to zero.

The final geometrical equilibrium condition for a two-dimensional force system
reads:

A planar force system is equivalent to zero if both the force polygon and funicular
polygon are closed.

Example 2.1. Three vertical forces Fy, F, F3 act on a horizontal beam of length /
depicted in Fig.2.14. The beam is pin supported at point A and has a roller support
at point B. Determine the reactions in beam supports.

In this case the forces F, are parallel, so the unknown reactions Fﬁ and F§ are
parallel as well and lie on the vertical lines through points A and B. According
to the previous considerations let us first construct the force polygon in a certain
assumed scale of the drawing. Next, after taking pole O we draw the rays from the
pole to the tail and the tip of every force vector. We take an arbitrary point A’ on
the vertical line passing through A. After connecting points A’ and B’ we obtain the
closing line of the force polygon (dashed line). Next, we translate it in parallel, so
that it passes through the pole. Then its point of intersection with segment A’ B’ in
the force polygon defines the unknown reactions.

Since the tip of reaction Fﬁ must coincide with the tail of the force F;, we
complement the force polygon with reactions Fﬁ and F§ and, as can be seen,
F{+Ff +F +F, +F;=0. o
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Fig. 2.14 A horizontal beam a
loaded with forces Fq, F», F3
(a) and a force polygon (b)

[joc

IIOF

IIoE' /

Fig. 2.15 Schematic for calculations of a supported beam, a force polygon, and a funicular
polygon
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Example 2.2. A horizontal beam is loaded with forces F; and F, (Fig.2.15). The
beam is pin supported at point A and at point B supported by the rod with a pin
joint. Determine the reactions in pin joints A and C assuming that the beam has a
homogeneous mass distribution and weight Gy.

Because in this case only the vectors F; and G, are parallel to each other but are
not parallel to F, the reactions FX and F2 are not parallel (the direction of reaction
F2 is defined by the axis of rod BC). We construct the force polygon for Fy, Gy, F».

The construction of the funicular polygon we start from point A (reaction F¥
must pass through point A, but its direction is unknown). Doing the construction in
the way described earlier, the line parallel to OF intersects segment BC at point
B’ and segment AB’ is the closing line of the funicular polygon. After drawing a
line parallel to A B’ that passes through pole O (line z) and drawing from the tip of
the vector F; the line parallel to BC, the point of their intersection determines the
unknown reactions FX and FZ. O

2.3 Geometrical Equilibrium Conditions of a Space Force
System

As distinct from the previously analyzed case of the concurrent force system shown
in Fig. 2.2, we will consider now a non-concurrent force system.

Our aim is to reduce the force system Fy, ..., Fy to an arbitrary chosen point O
of the body (or rigidly connected to the body) called a pole.

The method given below was presented already by Poinsot® and henceforth is
called Poinsot’s method. We will show that, according to Poinsot’s method, the
action of the force F; on a rigid body with respect to pole O is equivalent to the
action of the force F; applied at point O and a couple F; and F(lz) applied at points
A and O, respectively, and F(lz) = —F,.

In other words at point O we apply the forces F(ll) and F(lz) , where F(ll) denotes

the vector F; moved in a parallel translation to point O, and F(lz) = —F(ll) . Point O
is in equilibrium under the action of two vectors of the directions along the direction
of F; and having the same magnitudes but opposite senses.

The action of force at point A; manifests at point O as the action of the force F,
at that point and the couple F; (applied at point 4;) and —F; (applied at point O).
In turn, the action of the couple F; and —F is equivalent to the action of a moment

of the couple, which according to (2.17) is equal to M; = ﬁ? x Fj.

In Fig.2.16a at point O only the two forces Fgl) and ng) canceling one another
are marked, and in Fig.2.16b reduction of the whole force system Fy,...,Fy is

2Louis Poinsot (1777-1859), French mathematician and physicist, precursor of geometrical
mechanics.
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a

Fig. 2.16 Space force system Fy,...,Fy acting on a rigid body (a) and its reduction to a pole
O (b)

shown. The latter boils down to applying at point O all the vectors of forces
Fi,...,Fy and moments My, ..., My determined in a way that is analogous to
that shown for the case of force F;.

The application of Poinsot’s method led to obtaining the concurrent force and
moment system, which is schematically depicted in Fig. 2.16b. With the aid of the
conducted construction we can develop a force polygon and a moment of the force
polygon, which leads to the determination of the main force vector and main moment
of the force vector of the forms

N
S=>F, (2.23)
N
Mo = > M, (2.24)
n=1

The technique described above is equivalent to the theorem on parallel transla-
tion of force.

Let us note that if the force system Fy, ..., Fxy was concurrent and acted, e.g., at
point A, the vector S according to (2.23) would be the resultant of forces applied
at point A;. The process of reduction regards pole O, and the notion of the resultant
of forces at that point concerns the sum of forces F(l), Fg), .. ,F%), and therefore
the notion of the main moment of force vector was introduced instead of using the
notion of resultant of forces.

Let us now proceed to the analysis of (2.24). Let us consider the moment of the
couple F; and ng), which is equal to

M, = Mo (F)) + Mo (F?) = Mo (F)), (2.25)
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because the force F(lz) passes through pole O. Similar considerations concern the
remaining forces, and finally (2.24) takes the following form:

N
Mo = > Mo (F,). (2.26)

n=1

The result of the considerations carried out above leads to the formulation of the
general theorem of statics of a rigid body.

Theorem 2.8. An arbitrary system of non-concurrent forces in space acting on
a rigid body is statically equivalent to the action of the main force vector (2.23)
applied at an arbitrary point (pole) and the main moment of force vector (2.24).

2.4 Analytical Equilibrium Conditions

An analytical form of equilibrium conditions relies on the vectorial (2.20). Because
in the Euclidean space each of the vectors possesses three projections, the equilib-
rium conditions boil down to the following three conditions concerning the forces:

N
SX/ = Z Fx/'n =0, j=12,3, (2.27)
and because
N N E1 Ez E3
My = Z(rn xF,) = Z Xin X2n X3n
n=1 n=I1 Fxln Fx2n FX?m

N
Z [El Xon F. x3n — X3n szn) + EZ(XSn Fxln — X1n wa)

n=1
+ ES(xlanzn _XZanln)]v (2.28)

we have an additional three equilibrium equations of the form

Il
M=

MOxl = (x2n Fxgn — X3 szn) =0,
n=1
N
MOxz = Z (x3an1n _xlnFX3n) =0,
n=1
N
M0X3 = Z (xlanzn — X2n Fxln) =0, (229)

1

3
I
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where My = 23:1 E; Mo,,. In general, the main moment changes with a change
of the reduction point (the pole).

From the equations above it follows that the force system of the lines of action
laid out arbitrarily in space is in equilibrium if the algebraic equations (2.27)
and (2.29) are satisfied. From the mentioned equations it is easy to obtain the
relations regarding the forces lying in the selected planes (O — X; — X3) or
(O — X| — X3). In the equations above the forces F, denote external forces and
reactions.

External forces can be divided into concentrated forces (applied to points of a
body), surface forces (applied over certain areas), and volume forces (applied to
all particles of a body). An example of volume forces are the forces caused by the
body weight, and of surface forces—the forces generated by the surface of contact
between the bodies being loaded. A set of external forces consists of known forces
(active forces) and the forces that are subject to determination (passive forces).

The set of external (active and passive) forces is called the loading of a
mechanical system.

Let us consider a wheeled vehicle (a car with four wheels) with an extra load
placed on its roof. Here the active forces are the car weight G, and load weight
G;. At the points of contact between each wheel and road surface appear four
reactions F,R. Here the external forces are the forces G, and G; (active forces)
and reactions F,R (passive forces). The remaining forces acting within the system
isolated from its environment (i.e., the car and load) are called internal forces.
According to Newton’s third law these forces mutually cancel each other, and for
their determination it is necessary to employ the so-called imaginary cut technique.
For instance, in order to examine the action of the load on the car one should
“cut” the system at the points of contact of the load with the car and replace their
interaction with reactions, which are the internal forces. Thus we carry out the
imaginary division of the analyzed mechanical system into two subsystems in static
equilibrium. Then, from the equilibrium equations of either subsystem we determine
the desired internal forces.

In order to determine the analytical equilibrium conditions one may also make
use of the so-called three-moments theorem.

Theorem 2.9. If we choose three different non-collinear points Aj, then the
equilibrium conditions of a material system are

N
My, =My, (ZF) =0, j=12.3. (2.30)
n=1

This means that the main moment of force vectors of the force system about
three arbitrary but non-collinear points are equal to zero. The proof follows. Let the
equation be satisfied for A; (the moment about that point equals zero) and equations
for two other points not be satisfied. This means that the system is not equivalent to
the couple but to the resultant force that must pass through point A4;.
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Now let two equations of moments about points A; and A, be satisfied. Because
it is possible to draw a line through points A; and A,, a non-zero resultant force
must lie on that line. However, if additionally the third equation related to point A3
is satisfied and points A, A,, and A3 are not collinear (by assumption), then the
resultant force must be equal to zero. That completes the proof.

Projecting the moments of forces (2.30) on the three axes of Cartesian coordinate
system we obtain nine algebraic equations of the form

MX”A]‘ = 07 nsj = 17 27 3' (2.31)

Here, we are dealing with the apparent contradiction because there are nine (2.31)
and six (2.27) and (2.29). However, for (2.31), for each force nine coordinates
defining its distance from the chosen points Aj, A,, and A3 are needed. In the
rigid body the distances A;A,, A>A3, and A; Az are constant, which reduces the
number of independent coordinates to six. So, one may proceed in a different way.
The six mutually independent axes should be taken in such a way as to formulate
six independent equations only.

The equilibrium conditions (2.27) and (2.29) consisting of six equations resulted
from projecting the main force vector S, and the main moment of force vector Mg
reduced to an arbitrary point O (Sect.2.3), where the point of reduction O is the
origin of the Cartesian coordinate system.

The state of equilibrium of the considered rigid body means that it does not
make any displacement, that is, neither translation nor rotation about point O and
consequently with respect to the adopted coordinate system OX; X»X3. We assume
that in the absence of forces Fy, ..., Fy the rigid body does not move with respect
to the adopted coordinate system OX;X;X3, and also remains unmoved under the
action of the force system Fy, ..., Fy if (2.27) and (2.29) are satisfied. If under the
action of an arbitrary force system F, ..., Fy the rigid body remains in equilibrium
with respect to OX; X, X3, these forces must satisfy (2.27) and (2.29). Since, if
S # 0, My = 0, point O would be subjected to an action of the force S leading to
the loss of static equilibrium state.

If we had S = 0, My # 0, then the main moment My would cause the rotation
of the rigid body, leading to the loss of its static equilibrium. Equilibrium equations
of the form

S=F +F,+...+Fy =0,
Mo =Mp(F ) + Mo(F2) +... + Mp(Fy) =0 (2.32)

represent the necessary and sufficient equilibrium conditions for a free (uncon-
strained) rigid body subjected to the action of an arbitrary three-dimensional force
system. The above conditions transform into conditions (2.27) and (2.29) after the
introduction of the Cartesian coordinate system of origin at O.

In other words, if we reduce an arbitrary three-dimensional system of forces
F, applied at the points A, (x1,, X2n,X3,), # = 1,..., N to an arbitrary point
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(the reduction pole) O, we obtain the main force vector S and main moment of
force vector My, and after adopting the Cartesian coordinate system at point O, we
have

N N N
S:EIZFln+EZZF2n+ESZF3n

n=1 n=1 n=1
=EiSi + Ex5 + EsSs, (2.33)
and
N
My =E, Z [F3n (X2 — X20) — Fa (X3, — X30)]
n=1
N
+ E; Z [Fin (30 — x30) — F3n(xX1n — x10)]
n=1
N
+E3 Y [Fan(x1n — X10) — Fin (20 — x20)]
n=1
=E Mo +Ey;Mpy + E3Mos. (2.34)

In the case of reduction of a three-dimensional force system there exist two
reduction invariants. The first is the main vector S and the second the projection
of vector M onto the direction of the vector S. The first invariant means that the
reduction of spatial forces being in fact a geometrical addition of vectors gives the
same result for an arbitrarily chosen point of reduction. The second invariant means
that for the arbitrarily chosen point of reduction the projection of the main moment
vector onto the direction of the main force vector is constant.

In the latter case it is possible to find such a direction (a straight line) where
if the points of reduction lie on that line, the magnitude of My is minimum. On
that line we can place the vector S, which as the invariant may be freely moved in
space. Such a line, after assigning to it the sense defined by the sense of S, we call
the central axis (axis of a wrench). Every set of force vectors and moment of force
vectors can have only one central axis. The system of two vectors S and My lying
on the central axis we call a wrench.

The general equilibrium conditions (2.27) and (2.29) may be simplified and then
boil down to the special cases of the field of forces considered earlier, which we will
briefly describe below.

A concurrent force system in space. Taking pole O at the point of intersection
of the lines of action of these forces, (2.29) are identically equal to zero, and the
equilibrium conditions are described only by three equations (2.27).
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An arbitrary force system in a plane. An arbitrary planar force system may
be reduced to the main force vector S and main moment of force vector My.
After choosing the axis OX3 perpendicular to the plane of action of the forces the
problem of determination of static equilibrium reduces to the analysis of algebraic
equations of the form

N N
SIZZFln:()v SzzzenZO,

n=1 n=1

N
Mo, =Y Mo, (F,) = 0. (2.35)

n=1

A system of parallel forces in space. Let the axis OX3 be perpendicular to the vector
field of parallel forces. From (2.27) and (2.29) for the considered case we obtain

N N N
Y Fuw=0, Y Mo, (F,)=0, Y Mo,(F,)=0. (2.36)

n=1 n=1 n=1

The last case will be analyzed in more detail because we are going to refer to it
by the introduction of the notion of a mass center of a system of particles and a mass
center of a rigid body.

In the general case an arbitrary force system acting on a rigid body is equivalent
to either an action of main force vector or main moment of force vector.

Up to this point the equivalence of two force systems (sets of forces) was
formulated in a descriptive way. The criterion of equivalence can, however, be stated
as a theorem.

Theorem 2.10. The necessary and sufficient condition of equivalence of two force
systems, acting on a rigid body, with respect to a certain point (pole) is that these
systems have identical main force vectors and main moment of force vectors with
respect to that point.

The above theorem can be proved based on the principle of virtual work [27].
The system of parallel forces in three dimensions includes four special cases:

1. The forces may lie on parallel lines and possess opposite senses and different
magnitudes.

2. The forces may lie on parallel lines and possess opposite senses but the same
magnitudes.

3. The forces may lie on parallel lines and possess the same senses but different
magnitudes.

4. The forces may lie on parallel lines and possess the same senses and magnitudes.

Let us limit our considerations to two forces representing the cases listed above.
These forces always lie in one plane as they are parallel.
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Fig. 2.17 Sketches illustrating Theorem 2.12 (a) and Theorem 2.13 (b)

We have proved already that if we have two forces of the same magnitudes and
opposite senses, we are dealing with a couple. The action of a couple is equivalent
to the action of a moment of a couple. If these forces were collinear, they would have
no effect on the body because they would cancel one another (case 2). If the forces
are parallel, had opposite senses and different or identical magnitudes, and arenot
collinear, these cases will be considered below. For that purpose we first introduce
the notion of an equivalent equilibrant force.

If the force system (Fy, F», ..., Fy) applied to a rigid body is equivalent to only
one force F, we will call such a force an equivalent equilibrant force.

Theorem 2.11. If a system of forces possesses an equivalent equilibrant force, then
the vector of this force F is equal to the main force vector F of the force system, and
its moment about an arbitrary pole is equal to the main moment of force of the force
system about that pole.

We will define now an equivalent equilibrant force for the case of two forces of
different magnitudes and arbitrary senses [27].

Theorem 2.12. A system of two parallel forces (Fy, F,) having the same senses
applied to a rigid body possesses an equivalent equilibrant force F=F, +F,. The
force F lies in a plane defined by the forces (Fy, ¥5), is parallel to them, and its line
of action divides in the inside a segment OO, which connects the tails of vectors
of those forces, into two parts inversely proportional to their magnitudes Fy and F,
(Fig.2.17a).

Theorem 2.13. A system of two parallel forces (Fy, ¥2) having opposite senses
and different magnitudes applied to a rigid body possesses an equivalent equilibrant
force ¥ = Fy + F,. The force F lies in a plane defined by the forces (Fi, F,), is
parallel to them, and its line of action divides on the outside a segment O O,, which
connects the tails of vectors of those forces, into two parts inversely proportional to
their magnitudes Fy and I, (Fig.2.17b).

We will prove Theorem 2.13. According to Varignon’s theorem for point O we
have

001XF1—002XF2=0XFEO
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and
F=F, +F,.

From the first equation it follows for both cases that after passing to scalars we
have

|OO| - |Fy|sing —|00;] - |F,|sin(180° — ¢) = 0,
that is,
|00, |- [Fi| =|00;] - |Fy|.

Let us consider now the special case that follows from Fig. 2.17b, that is, when
F; is applied at point O; and at point O, the force F, = —F|, that is, we are
dealing with a couple of forces. It is easy to observe that a couple does not possess
an equivalent equilibrant force because F= F, — F; = 0. The couple (F,, F;) does
have, however, a different interesting property, which we have already mentioned.
The moment produced by the couple depends not on the choice of the pole in space,
but only on the distance of the points of application of the forces F; and F, = —F.
It is possible to prove that couples having the same moment of force are equivalent
couples.

Let us now consider the mixed (hybrid) case of a system of parallel forces in
space acting on a rigid body, where some forces have opposite senses and some the
same senses.

As was considered earlier on examples of two parallel forces having either the
same or opposite senses, we can reduce the whole system of parallel forces to two
parallel forces F, and F», called an equivalent equilibrant force.

The force vectors F,,, n = 1,..., N we will treat as bound vectors (as distinct
from the free vectors used so far), and the force F; represents an equivalent
equilibrant force for the forces having senses opposite to the force Fs, replacing
the action of the second group of forces. Finally, the problem of reduction in this
case is reduced to the problem presented in Fig. 2.17b, which means that we are able
to determine the location of the point O = C, where an equivalent equilibrant force
(F1.Fy) is applied.

The case depicted in Fig. 2.17b enables us to draw certain further conclusions.

Let us observe that according to the proof of Theorem 2.13 at the point O = C,
the vector of force F = F| + F, (Fig.2.18) is applied and the location of that
point depends exclusively on the magnitudes of force vectors, that is, from F;/ F5.
It follows that the locations of points C, Oy, and O, do not change at the rotation
of force vectors through the same angle «. Let, after the rotation through the same
angle «, the lines of action of the mentioned forces be parallel to the axis OX, of
the adopted Cartesian coordinate system, that is, all the previously mentioned forces
after reduction lie in a plane parallel to the plane OX | X>.

Let us write an equation of moments about an axis OX3 (perpendicular to the
plane of the drawing in which the forces lie).

If the number of parallel forces is N, then we will denote them as F|,F,, ...,
Fy, where those having senses opposite to the positive direction of the axis OX;
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M.
AF=X F"
o L= 0

- N -:2}\
F=2F \ F=F +F,

N,+1

Fig. 2.18 Rotation of forces F;, F,, and F through an angle «

are defined as F,, o E; = —F,,. The sum of moments about a point O is equal to
E, E, E;
My =rc xF = |xic x2¢ x3¢ | = “E1Fx3sc + E3Fxic,
0O F O
Ny yM | Er Ey Ej
M, = Z (ra x Fﬁll)) = Z Xin Xon X3n
n= n=11 0 —F, 0
Ny Ny
= E1 ZFn-x3n _ESZFn-xlna
N N E1 E2 E3
M, = Z (rn X F$,2)) = Z Xin X2n X3n
n=N;+1 n=Ni+1| 0 Fn 0
N N
=-E Y Fxau+E Y Foxn. (2.37)
n=N;+1 n=N;+1

and hence we obtain

N Ny
Fxic = E F,x1, — E Fo X1,

n=N;+1 n=1
N Ni

Fxsc = Y FuXss— Y Faxa, (2.38)
n=N;+1 n=1

where

N Ny
> F.=) F. (2.39)

n=N;+1 n=1

ol
|
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If we deal only with N parallel forces (we assume N; = 0) of the same senses,
from (2.38) we obtain

N N
(Z Fn) X1c = Zanlns

n=1 n=1
N N

(Z F) X3¢ = Y Fuxa, (2.40)
n=1 n=1

which defines the position of the center C of the parallel forces having the same
senses consistent with the sense of E; in the adopted coordinate system.
The third missing equation is

N N
(Z Fn) X2c = Zan2na

n=1 n=1

which allows us, through the suitable choice of two out of the three presented
equations, to determine the position of the center of parallel forces in each of the
planes OX | X,, 0X,X3, and OX X5.

If now in the selected pointsn = 1,..., N we apply the vectors of parallel forces
m,g (weights), where g is the acceleration of gravity, we can determine the center of
gravity of those forces after introducing the Cartesian coordinate system such that
F, = m,gE;.

The gravity center is coincident with the mass center of the given discrete
mechanical system in the gravitational field.

Equation (2.40) listed above can be obtained from the following equation:

N N
rcx Yy Fy =) 1, xF, (2.41)

n=1 n=1

2.5 Mechanical Interactions, Constraints, and Supports

In Chap. 1 the concept of material system as a collection of particles was introduced.
In many cases such simplification is not sufficient. Particles are a special case of
rigid bodies whose geometrical dimensions were reduced to zero and only their
masses were left. A natural consequence of expansion of the concept of system of
particles is a system of rigid bodies. Such bodies can act on each other depending
on how they are connected through forces and moments of forces. As was discussed
earlier, forces in the problems of statics are treated as sliding vectors and moments
of forces as free vectors.



2.5 Mechanical Interactions, Constraints, and Supports 53

The introduced system of rigid bodies is a system isolated from its surroundings
in the so-called modeling process. In view of that, the surroundings act mechanically
on the isolated system of rigid bodies. Such modeling leads naturally to the
introduction of the notions of active and passive mechanical interactions.

Active mechanical interactions are forces and moments coming from the sur-
roundings and acting on the considered system of bodies (they include the interac-
tions produced by gravitational fields, by various pneumatic or hydraulic actuators,
by engines, etc.).

Active mechanical interactions produce, according to Newton’s third law, passive
mechanical interactions, that is, interactions between the rigid bodies in the
considered system. The passive interactions (forces and moments of reactions) we
determine by performing a mental release from constraints of the bodies of the
system interacting mechanically.

According to the other classification criterion of mechanical interactions we
divide them into external (the counterpart of active) and internal (the counterpart
of passive). The classification of the system of bodies depending on their number in
the system is also introduced. If we are dealing with a single body (many bodies),
the system is called simple (complex, multibody).

The simple system is one rigid body that can be in static equilibrium under the
action of either external interactions exclusively or hybrid interactions, i.e., external
and internal. Let us consider two bodies and assume that one of them was fixed.
Next, the internal interaction of these bodies is replaced by the reaction forces and
reaction moments of forces coming from the interactions (supports) of the fixed
body (now called the base) on the free body, and now the mentioned supports are
treated as external.

In the case of simple problems (one rigid body), the problem of statics boils down
to releasing the body from supports, and the introduction of the mentioned reaction
forces and reaction moments of forces, and then to application of (2.27) and (2.29)
and their solution. During the solution of statics equations the following three cases
may occur:

1. The number of equations is equal to the number of unknowns (then the problem
is statically determinate and the solution of linear algebraic equations for the
forces and moments of forces can be done easily).

2. The number of equations is smaller than the number of unknowns (then the
problem is statically indeterminate; in order to solve the problem it is necessary
to know the relation between deformation and force (stress) fields).

3. The number of equations is greater than the number of unknowns (then the body
becomes a mechanism and the excessive forces and moments of forces can be
treated as driving ones).

If we are dealing with complex system of bodies and we have a base isolated
in this system, we first detach the system from the base and after that we proceed
similarly as in the case of the simple system. Equilibrium conditions of such an
inextricable force system are necessary equilibrium conditions. In the next step
we mentally divide the system into subsystems detaching one by one the bodies
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interacting mechanically until we isolate the body and have the forces and moments
of forces coming from the interactions with other bodies clearly defined. The
equilibrium conditions of each of the isolated bodies now constitute the necessary
and sufficient conditions for the equilibrium of the isolated body.

Let us note that the solution of the statically determinate problem is reduced to
the determination of both the equilibrium position (equilibrium configuration) of
the system and the unknown forces and moments of forces keeping the system in an
equilibrium position.

The topic of constraints and degrees of freedom of a system will be covered in
detail later; however, here we will introduce some basic notions essential to solving
problems of statics.

A particle in space has three possibilities of motion (three degrees of freedom),
whereas a rigid body in space has six possibilities of motion (six degrees of
freedom). Since, if we introduce the geometry of the “point” (the dimension), the
body gains the possibility of three independent rotations. Such a body (a particle)
we call free. Its contact with another body occurs by means of constraints that in the
analyzed problems of statics are called supports.

Now, if a rigid body (particle) during its motion is in contact with a plane at
all times, the rigid body has three degrees of freedom (two translations and one
rotation), whereas the particle has two degrees of freedom (two translations in the
adopted coordinate system).

The mentioned plane plays the role of support, which in the case of a rigid body
eliminates three degrees of freedom, and in the case of a particle, one degree of
freedom. Because the particle and the rigid body by definition possess mass and
mass moments of inertia, an arbitrary support (in our case the plane) produces a
mechanical (supporting) interaction, that is, support forces and moments of support
forces.

Depending on the geometry (shape) of the supports, they can eliminate different
types of body (bodies) motion and thus create different reactions and support
moments.

Below we will briefly characterize some of the supports often used in mechanical
systems. Because we have already distinguished plane and space force systems, we
will also classify the supports in accordance with the generation of planar and spatial
force systems by them.

In Fig. 2.19 a few examples of supports with a two-dimensional force system are
presented.

In Fig.2.19a a sliding support is shown. The unknowns are the magnitude of
reaction FX, because its direction is perpendicular to the radius of curvature of a
base, and the reaction torque My (rotation is not possible). A similar role is played
by a sleeve and telescope. In the case of Fig.2.19b, the pin support is also present
(see also Fig.2.19c), where we have two unknowns (magnitude and direction of
reaction FX). In order to diminish the resistance to motion (friction) between the
systems in contact often rollers treated as massless elements and moving with no
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telescope

rigid pin support

bricking up fastening

Fig. 2.19 Examples of supports with two-dimensional systems of forces, their schematic designa-
tions, and unknown reactions (moments)
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resistance to motion are used (Fig.2.19¢). Rollers are often introduced in order to
decrease the motion resistance (friction) between contacting bodies, and they are
treated as massless bodies that are movable without motion resistance. In Fig. 2.19d
the contact supports with and without friction are shown. In the latter case we are
dealing with one unknown, that is, the magnitude of reaction FR, since its direction
is defined.

In the case of a rigidly clamped edge and restraint (Fig.2.19e), we have three
unknowns, that is, two components of reaction and the reaction torque.

The supports discussed above that enable the point (the element) of a rigid
body in contact with a base to move in the specific (assumed in advance) direction
(technical and technological manufacture of the elements of bodies in contact) we
call directional support. In this case the motion of the body can take place along a
straight line or a curve.

Until now, our considerations have not taken into account the phenomenon of
friction between the elements of a body in contact. The phenomenon of friction is
the subject of the next section; here it is only necessary to emphasize that in the case
of so-called fully developed friction (7" = uN) we are dealing with one unknown,
and in case where 7" < N (not developed friction), two unrelated forces 7" and N
have to be determined.

In Fig.2.20a, a ball-and-socket joint and a point contact are shown, and if a
rigid body makes an arbitrary motion while in contact with a plane, we are to
determine three unknown reactions X, FX, and FX. If the connection between the
bodies is realized by ball-and-socket support, it prevents the translation of a body in
every direction but allows for rotation about any axis passing through the center
of the support (ball), and after introduction of the Cartesian coordinate system,
three magnitudes of support reaction undergo determination. If the body moves on

a rough surface with undeveloped friction, where / (T12 + T22) < uN, then three
unknowns, 77, T, and N, must also be determined. Finally, let us note that if the
contact surface between the contacting parts of the bodies is from one side a sphere
and from the other a cylindrical groove (the guide), the support is a ball-cylinder
joint (two unknown reactions). If, instead, the contact of bodies takes place over a
cylindrical surface, such a support we call a cylindrical joint (two unknown reaction
forces and two reaction moments).

If a rigid body is fixed in three dimensions (Fig.2.20b), such a support prevents
any translation and any rotation of the body, and the determination of six unknown
quantities, that is, three support reactions and three reaction moments, is necessary.

If the contact of a body with a plane takes place by means of a roller moving
on a rough surface with undeveloped friction, two forces 7" and N are subject to
determination. If the roller moves along the guide, this kind of support generates
two unknown reactions as well (Fig.2.20c).

In Fig.2.20d-g, short and long radial and angular bearings are depicted along
with the corresponding reaction forces and reaction moments; their diagrams are
also shown.
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ball

surface of sphere

contact with a rough surface at
not developed friction

joint point contact
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roller with small radius uide
roller moving on rough surface
d F:_— x)
x}
X,
short radial bearing and its scheme
e F* 4 X,
*

X,

short angular bearing and its scheme

Fig. 2.20 Examples of supports carrying three-dimensional systems of forces

In Fig. 2.20h, the Cardan universal joint is shown. The quantities FX, FX, and

X1’ 7 X3

MRgy,, which act on the right-hand side of the joint and undergo determination, are

also marked.
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X,

long radial bearing and its scheme

g F! 4

X,

long angular bearing and its scheme

Cardan universal joint

three dimensional telescope and its scheme

Fig. 2.20 (continued) Examples of supports carrying three dimensional systems of forces
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Fig. 2.21 Triangular plate AKX,
suspended by three massless
rods CE, CD, and BD

In Fig. 2.20i, a three-dimensional telescope is depicted along with three unknown
quantities that are subject to determination. Figures 2.19 and 2.20 were prepared
based on the textbooks [28,29].

In practice, in order to determine the reactions of the base on a rigid body
we choose systems of axes suitable for the particular problem and perform the
projections of reaction forces and reaction moments on these axes. Let us note that
the axes do not have to be mutually perpendicular, but not all of them can lie in one
plane or be parallel.

In this way we solve a problem of statics in several stages.

Example 2.3. A homogeneous steel plate of the shape of a right, isosceles triangle
and of the weight G is fixed by means of three steel weightless cables and a ball-
and-socket joint at a point A (Fig.2.21), and AO = OB = BC = CA = a,
AE = OD = b. Determine reactions at point A and forces in the cables.

From equations of equilibrium with respect to the axes of the coordinate system
we have

. R R
OX; : F. —F,, =0,
0X; : FE—FR —F} —Ff =o,
. R R R R _
0X3: F.+ F, +F, +F,—-G=0,
and from equilibrium conditions of the moments of forces we obtain

2
+ B+ Ff)—ZaG =0,

M, : a(Ff 3

1x3
R R Ry , 2
M, : —a (le3 + Fj} — Fx3) + gaG =0,

M, : a (=Ff}, + Ff) =0,

1xy

because the gravity center of the plate is situated at the distance marked in Fig. 2.22a.
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Fig. 2.22 Auxiliary sketches: (a) location of gravity center of plate; geometry of triangles related
torod CE (b) and CD (c)

The angles o and B are determined from the equations tan 8 = b/(a+/(2)) and
tano = b/a and the equilibrium equations assume the following form:

J2

— TFzR cos B =0,

R
F
2
F,{;’ — Ffcosa — ngR cos B — Fff cosa = 0,

FX+ Ffsina + Ffsinp + Ffsina - G =0, )
a(Ffsina + Ffsing + Ffsina) — %aG =0,
—a(Ffsina + Ff sin B) —an[;’ + %aG =0,
a(—FRcosa + Fé) =0.

From the third equation of the system () we obtain
—FX+ G = Ffsina + Ffsin g + Fffsina,
and substituting this into the fourth equation (*) we obtain
2
R -
—F. +G—§G =0,
that is,

X3

1
FR = _@G.
3
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Substituting F x’§ into the fifth equation of (*) we obtain
R . R . 1
F'sina + F,"sin = EG’ (x%)

and substituting into the third equation of (*) we have

G
3sina’

=

According to the sixth equation of the system (%), the second equation of (*)
takes the form

2
%FZR cos B+ Fff cosa = 0,
and hence after substituting the already known F}¥ we obtain

R 2G cos _ 2 Gcota
: 3+/2sina cos B 3472 cosp’

and substituting FZR into () we obtain

FR = G (1 + «/Ecotatanﬂ).

3sina

Using the sixth equation of the system () we have

G cot a
R
FR= T<

14+ «/Ecotatan,B),

and on the basis of the first equation of (x) we finally arrive at
G
R
F. = -3 cot . O

Example 2.4. Determine the reactions in support bearings of a rigid body supported
along the vertical axis at two points A and B by means of ball bearings (Fig.2.23)
and loaded with an arbitrary force system Fy, ..., Fy.

As a result of the projection of forces on the axes of the adopted coordinate
system we obtain

N
F/fxl +Ff§x1 +ZFI‘IX1 =07

n=1

N
F/fxz_'_Féexz_'_Zanz =07

n=1
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Fig. 2.23 Rigid body
supported by ball bearings

N
FR 4+ FR 4+ Fuy =0

n=1
The equations of moments about axes 4 X and A X, have the following form:

N
—Ff,AB + Y M, (F,) =0,

n=1

N
FRLAB+ M (F,) =0.

n=1

From the two equations above we determine Ff. and Fj . and from the
first and second equations of the previous system of equations we determine F f)q
and F .

The equation of moments about the axis 4 X3 reads

N
> M (F,) =0,

n=1

and it defines the relations between the force vectors so that the body remains in
static equilibrium.

From the considerations above it follows that the third equation of the first
system of equations allows for the determination of the sum of reactions F  and
F §x3, but it does not enable us to determine the individual magnitudes of F fx3 and
F §x3. The problem becomes statically determinate if at point B the short radial
bearing is applied (Fig.2.20d). Then F 1§X3 = 0, and it is possible to determine the
reaction F_ .
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Fig. 2.24 A beam of weight X,
G suspended by two steel
ropes

SO NGNS

We will now show using an example in what way statically indeterminate prob-
lems require a knowledge of kinematics. Without knowing the basic relationships
of kinematics it is impossible to solve this category of problems. In Chap.6 we
generalize our observations, i.e., we solve the problem of kinematics of an elastic
body (a body deformable within the limits of the linear theory). O

Example 2.5. A homogeneous beam of weight G and length / was suspended from
two steel ropes of lengths a and cross sections S, shown in Fig. 2.24.
The sum of moments about point O leads to the following equation:

/ /
Fi—+ Fl=G-,
15 + £ 3
that is,
Fi+2F =G. (%)

From the equation of moments relative to the center of beam, the vertical reaction
at point O is equal to F,. Let the rigid beam be in equilibrium after deformation of
both ropes. According to Hooke’s law and displacement compatibility (the same
angle of rotation of the beam Ag) we have

(o5} :E81, O'2=E€2,

where E is Young’s modulus. In turn,

01_8 _Aal_lAgo crz_(9 _Aaz_lAgo
E- """ 4 T 24 E_* a4  a
Thus
Fi 1ApS F, 1ApS
E  2a’ E  a’
and hence
261F1 an

EIS ~ EIS
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that is, 2F; = F,. After substituting this relation into (%) we obtain successively
F=1G,F, =3G. o

2.6 Reduction of a Space Force System to a System
of Two Skew Forces

We have already mentioned the possibility of reduction of a space force system
into a so-called equivalent system of three forces, and then to a system of two skew
forces, i.e., the forces of non-intersecting lines of action.

Let arigid body be loaded at points B, with forces F,,n = 1,..., N.Letus take
one of the points on the line of action of the force F,, and denote it O,. Let us take
three arbitrary, non-collinear points B, B,, and B; and link them with point O,
(Fig.2.25).

We attach the free vector F,, at point O, and resolve it into components along the
axes O, B, O, B,, and O, B3, that is,

Fn:FnBl+FnBz+FnB3- (2.42)

We will proceed similarly regarding other forces, i.e., on each of their lines of
action we will take a point, where we will attach the mentioned force vector, and
again we will resolve it into components that link the selected point with the fixed
points Bj, B,, and Bs. In that way we will reduce all forces to three forces attached
at the three chosen points By, B;, and Bs, i.e., we have

N N N
Fg, =) Fup. Fp, =) Fup. Fp =) Fup,. (2.43)

n=1 n=1 n=1

In a general case these three forces are situated in space and do not intersect each
other. Now we will show how to reduce those forces to two skew forces (Fig. 2.26).

At the mentioned points Bj, B;, and Bj in Fig. 2.26 we attach the force vectors
Fp,, Fp,, and F 3, determined earlier.

Fig. 2.25 Reduction of a
space force system to forces
Fp,.Fp,, and Fp,
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Fig. 2.26 Reduction of a force system to two skew forces

Point B; and vector Fp, determine the plane m,, and point B; and vector Fp,
determine the plane rr3. These planes intersect along an edge on which lies point Bj.
Let us take now point C on that edge and connect both points B; and C lying on
the edge with points B, and B3. We will resolve the vector of force F, in the plane
1, into components along the rays CB, and B; B, and the vector Fp, in the plane
73 into components along the rays C B3 and B B3 using the parallelogram law.

Because we are dealing with a rigid body, we will attach vectors Fjgz and F/B3
at point B; and vectors ng and F%} at point C. Let us note that at points B; and
C we obtain three-dimensional force systems that are concurrent. According to the
considerations made earlier, the action of concurrent forces at those points can be
replaced with resultant forces

rB] = FBI + F/Bz + F/B3’
¢ =Fp +Fp. (2.44)

These forces do not intersect and their lines of action are not parallel. The system
of parallel forces F,,, n = 1, ..., N acting on a rigid body will be in equilibrium if
these forces are collinear and ¥ +F = 0. Itis difficult to satisfy such a condition
proceeding with a geometrical construction.

On the other hand, according to the previous construction, taking an arbitrary
pole O we can reduce these forces to the main force vector F = F +F( and main
moment of force vector Mp = Mp (F%l) + Mo (Fp).
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2.7 Reduction of a Space Force System to a Wrench

Expanding the earlier considerations concerning a plane force system, one can
perform the reduction of an arbitrary space force system F,, attached at the points
Ay (X10,X2n,X30), 1 = 1,..., N to a certain arbitrarily chosen reduction pole
O(x10, X20, X30)-

Let us consider the rigid body depicted in Fig.2.11a; now the force system F,
is three-dimensional. In that figure we did not introduce the moments of force as
an external load (they can be generated by the force vectors of the same lengths
and opposite senses acting in parallel directions). In this case (2.27) will remain
unchanged (now S # 0), but (2.29) will assume the form

Mxl = [(in - x20)FX3n - (x3n - x3O)Fx2n]a

M=

=
I
_

<
Il
M=

[(-x3n - x30)Fx1n - (xln - xlO)E‘(}l‘l]a
1

=
I

M., =

M=

[(-xln - xlO)szn - (x2n - XZO)Fxln]‘ (245)

=
I
_

In general, the magnitudes of the components of the main moment of force vector
depend on the choice of pole O, but the main force vector S does not change with
the position of pole O (it is the first invariant of reduction in statics). Often the
notion of that invariant would be introduced in the form I; = Sfl + sz + Si. It
turns out that the second invariant of reduction is the projection of the main moment
of force vector M on the direction of the main force vector S, which then has the
form I, = Mo S.

Let us consider now the projection of vector M on the direction of the vector S
of the following form:

Mo S = |M||S|cosp = Mg|S|. (2.46)
S
Bearing in mind that E is the unit vector, we have
S MoS
Mg = Mg— = ———S8, (2.47)
S| S|

where ng—("ZS = p is called the pitch of the wrench. Now, let us change the pole from

point O to some other point O’ (Fig.2.27).
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Fig. 2.27 Two poles O and X
O’ with corresponding
Cartesian coordinate systems

X,

According to Fig.2.27, the main moment of force vector My about pole O’ is
equal to

N N
My = Z(rofn xF,) = Z(r,, +0—’0>) xF,

n=1 n=1

:Z(rann)—i-Z(O—’O)an)

n=1
N
— —
=M+ O’OXZFn=M+ 0'0 xS, (2.48)
n=1

where M is the main moment about point O.
After projection of the vector My’ on the direction of S we obtain

N
My oS = [M+<0’0xS):|oS
=MoS+(0—’0)xS)oS=MoS (2.49)

because the vector O—’0> x S is perpendicular to vector S (the scalar product (0—/0) X
S) oS = 0). Thus, we showed that the change of the pole does not change the
projection of a main moment of force vector on the direction of a main force vector.
Let us take once more some other arbitrary pole. Let this be point O to which we
reduced, in the already described fashion, the force system. Through point O we
will draw a line / parallel to vector S and attach at that point vector M. Vectors M
and S will determine a certain plane 7 (Fig. 2.28).
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Fig. 2.28 A construction
leading to the determination
of an axis of a wrench /

In that plane we will resolve vector M into two components: sM and ; sM. Now,
through point O we will draw a line I’ perpendicular to plane 7 and we choose as
the new pole O’ (belonging to both [ and ") with respect to which we will perform
the reduction of M and S. Let us note that

—>
Mo =M+ 0’0 xS, (2.50)
and since
M = |sM + 1sM, (2.51)
we have

—
Mo = ||SM + 1sM + 0’0 xS

—
=Ms + 1sM+ 0’0 x8S. (2.52)

—
The component ; sM + OO x S undergoes a change with the change in position
of point O’. Let us take point O’ so that M, = M. From (2.52) it follows that

—>
Ms = ;sM+Ms + 0’0 xS,
—
sM = 00’ xS. (2.53)

From (2.53) it follows that

| LsM|
IS| -

which defines the distance of point O from point O’.

—
00| = (2.54)
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Fig. 2.29 Force S, main
moment of force, and location
of central axis

The axis passing through point O’ and parallel to vector S we call a central axis.
By the choice of an arbitrary pole O it was shown how to determine the location of
the wrench axis by means of construction through the proper choice of point O’.

From the foregoing considerations we can draw an important conclusion.

The action of an arbitrary space force (and moments) system can be replaced by
the action of a single force (being the geometric sum of all forces) and one main
moment of force, and both vectors lie on a common line called the central axis.

Equations (2.53) allow for the determination of the central axis in space. We
obtain from them the following equation:

E, E, E;
3
M—Ms = Z(Mxi_MSxi)Ei: X1 X2 X3

i=
Sei Sy, Sy,
=E (XZSXS _-x3sz) =+ Ez(X3SX1 — X1SX3) =+ E3()C1Sx2 —)Cszl), (2.55)

and hence

Mxl - Mle = szX} - x3sza
MXZ - MSX2 = x3SX1 - xlSX_?,s
My — Ms,, = x1Sx, — X28y,. (2.56)

The method of determination of the central axis is illustrated in Fig.2.29.

If we treated the coordinates of the point O’(x, x7, x3) in the coordinate system
0OX X, X3 as that determined from (2.56), then knowing the coordinates of vector S,
we may find the equation of the central axis.
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Fig. 2.30 Three forces and X4
location of a pole O

X,

If the coordinate system is introduced at some other point of the body and the
coordinates of the pole in that system are denoted as (xjg, X20, X30), then the point
belonging to the central axis can be found from the following equations:

My — Ms, = (X2 — X20)Sxy — (%3 — X30) Sy
My, — Ms,, = (x3 — x30)Sx;, — (X1 — X10)Sxs,
My, — My, = (x1 = x10) Sy, — (%2 — X20) Sy, - (2.57)

Let us assume that we reduce the space force system about pole O. We are
dealing with the following special cases:

1.S#0,Mp #0and My L S.
Then Mg = Mp oS = 0. The resultant force F” is parallel to S but cannot
pass through point O. It is located on the central axis.
2.8S#0,Mp =0.
The resultant F* = S and passes through pole O (because it does not produce
a moment).
3.S=0,Mp #0.
The moment of force vector is a free vector, so it can be attached at an arbitrary
point in space.
4.S=0,Mp =0.
The analyzed rigid body is in equilibrium.

Example 2.6. Reduce the three forces of magnitudes F} = 1, F, = V2, and F =
/2 that act as shown in Fig. 2.30.

The axes of the coordinate system are taken along the edges of the cube. We aim
to determine the components of vector S and moment M, which are equal to:
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V2 V2
le =F+—FKh—-F—=1,
2 2
V2
Sy, = B~ =1,
2 22
V2
SX3:F37:1,
2 2
Y LS C N
2 2
2 2
Mx2=F1-1—F3£-1+F2£=1,
2 2
V2

MX3:F37'1:1.

In order to make use of formula (2.56) we need to know additionally the values
of Mgy, Ms,,, and Ms,,. For the determination of the coordinates of vector Mg
we will multiply (2.47)inturnby E;,i = 1,2, 3.

Since

MOS = Mx1Sx1 + MxZsz + MX3SX3 = 2’
ISI> = 82 + 8%, + 57, =3,

after using (2.47) we obtain

2 2 2
My, = 3 Ms,, = 3 My, = 3
According to (2.56) we have
2 b= 1 1
X2 X3 = 3, X1 X3—3, X1 x2—3.

In order to determine the point of intersection of three planes we will calculate
the determinant of the system

0 1 —1
A=1-10 1 |=0+1(-DD)-1-(=D*1)=1-1=0,
1 -10



72 2 Statics

and the minors

2
-2 1 -1
1 2 1 11
Ay, =11 1= D)D)+ 1 (=) (Z—<)==-—-==0,
w=|3 0 3 CDEDHEED -5 =5—3
110
0 —2-1
2 2 2 2
Ay, =|-1 L1 1 |=-2=DD) 1D -2 )=-Z+Z=0,
n 3 ;D ED =1 =D 3 313
1 1o
0 1 -2
2\ 2 2 2
Ay =|—1 Li=1=) -2 )-Z- D' =Z=-Z=0.
a=lro b mre(<3) - ena =3 -3
1 -11

Recall that if A # 0, then the three planes intersect at one point. If A = Ax; =
Axy; = Axz = 0, then the three planes have a common line.

Let us take x, = 0. We calculate x; = % and x3 = % Point A(%, 0,2) belongs
to the line constituting the central axis. We determine the central axis by drawing a
line parallel to S through point A.

If the planes intersect at one point, we determine that point solving the system of
three algebraic non-homogeneous equations. Let the point of intersection have the
coordinates x4, X24, X34. The central axis passes through that point and is parallel
to the vector S = E; S, + Ex2Sx2 4+ E3S3. In view of that, the equation of central
axis has the following form:

X1 —X14 _ X2 —X24 _ X3— X34
Sy Sy, Sy,

The steps illustrated in Sects.2.1-2.7 that aimed to reduce and simplify force
systems (providing a lack of friction) can be briefly summarized in the following
manner:

(a) Reducing a force system to a resultant force F = Zfl\,:l F, and a couple at given
point O (resultant moment):

N
Mo = > (rxF,).

n=1
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(b) Moving a force—couple system from point O; to point O,, expressed by the
formula

e
MO2 = M01 + 0,0, xF.

(c) By equivalency checking, reducing to the one point O two systems of forces,
which are equivalent if the two force—couple systems are identical, i.e.,

N K
Y Fi=) Fi
n=1 k=1

N K _
D (e x Fo) = 3 (Fi x Fi).
n=1 k=1

(d) Reducing a given force system to a single force; this takes place only if
S L My, i.e., when force S and couple vector My are mutually perpendicular
(which happens for concurrent coplanar and parallel forces). If position vector
r depicted from point O to any point on the line of action of the single force F
satisfies the equation My = r x F.

(e) Applying force and funicular polygons (Sect. 2.2).

(f) Applying the three-moments theorem (Sect. 2.4).

(g) Reducing a system of parallel forces (Sect. 2.4).

(h) Reducing a three-dimensional force system to two skew forces (Sect. 2.6).

(i) Reducing a given force system to a wrench.

In general for a three-dimensional force system (not concurrent, coplanar, or
parallel) one may introduce the reduction on a basis of items (f), (h), and (i).
Observe that the equivalent force system consisting of the resultant force S and the
couple vector My are not mutually perpendicular and hence, although they cannot
be reduced to a single force, they can be reduced to a wrench since they constitute
the combination of the force S and a couple vector Mg (S || Mg) that lie on the
wrench (case 1). In other words, after reduction of a given force—couple system
(S,Myp) and after determination of the pitch p = SO;?"" , M satisfies the equation
Mg + r x S = Mp. It allows one to find that point where the line of action of the
wrench intersects a special plane (r is directed from O to that point).

2.8 Friction

The phenomenon of friction is common both in mechanics and in everyday life.
Many scientific works, including monographs, cover this topic (citation is omitted
here). Also, the present author and his coworkers have published monographs on
the problems of classical friction [30-35].
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In general, friction is a force that opposes a body’s motion and possesses a sense
opposite to that of the velocity of the body’s relative motion. In order to ensure
sliding of one surface with respect to another if both remain continuously in contact,
it is necessary to act all the time on the moving body with a certain force. This
requirement is connected with the resistance to motion called sliding friction. This is
because it turns out that even apparently very smooth surfaces possess irregularities
that cause resistance to motion. Friction is divided into static and dynamic friction.
We deal with the former when we want to move one body with respect to another,
e.g., remaining at rest. In the majority of cases, static friction is greater than dynamic
friction. Sliding friction depends on the condition of the contacting surfaces (i.e.,
whether they are dry or lubricated), their smoothness and wear resistance abilities,
and humidity and temperature.

In cases where two bodies roll with respect to one another, the friction is inversely
proportional to the radius of the object that rolls. Such friction is called rolling
friction.

Moreover, we distinguish aero and hydrodynamic friction. The former concerns
the motion of objects in gases, while the latter concerns that in liquids. For small
speeds v of objects motion in a fluid (liquid or gas), the force of resistance
is proportional to the speed, whereas for medium (high) speeds of motion, the
force is proportional to v> (v*). It should be emphasized that the character of
the mentioned dependencies presents the problem rather qualitatively since the
described phenomenon of friction depends on the temperature, viscosity, object
shape, and fluid density. In general the friction phenomenon is not yet fully
understood because it is a very complex process connected with motion resistance
and accompanied by the heat generation and wear of contacting bodies. Friction can
be treated, then, also as a certain energetic process.

In most cases the kinetic energy of objects subjected to the action of friction
forces is turned into heat energy. For instance, it is widely known that objects
moving in air such as airplanes, rockets, or spaceships are very hot, which demands
application of new materials of high quality and high heat resistance. Also, the rims
of wheeled vehicles heat and the striking of two firestones or rubbing of two pieces
of wood leads to igniting a fire. In this case we are dealing with energy dissipation,
which means that the mechanical energy (kinetic and potential) of the object is not
conserved since part of it is converted into internal energy (in this case into heat).

The friction between two solid bodies, as can be seen from the preceding
description, is a complicated physical phenomenon. Apart from the mentioned
heating of bodies, often we are dealing with their electrification, changes in the
surface of the rubbing bodies, or diffusion phenomena, i.e., migration of the
molecules of one body into another body.

Generally speaking, it is possible to distinguish three basic types of frictional
interactions during the contact of two bodies: (a) sliding friction connected with the
translational motion (no rotation) of two bodies; (b) sliding friction connected with
rotational motion; (c) rolling resistance, e.g., a train wheel on a rail; and (d) sliding
torsion friction.
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Fig. 2.31 A sliding friction
and a cone of friction

Of the many researchers dealing with the friction phenomenon, the French
physicist Amontons® should be counted as a pioneer in the field. He proved in the
course of empirical investigations a lack of dependency of the friction force on the
area of contact of rubbing bodies. The fundamental laws of friction were formulated
by Coulomb.*

From the considerations above it follows that investigations aimed at finding the
connection of these phenomena with the atomic scale are of great importance for a
deeper understanding of the phenomenon. In this direction are moving such sciences
as tribology, physics, and nanomechanics. Those investigations are important in the
age of common miniaturization, nanotechnology, and mechatronics.

Friction depends on the pressure of one surface rubbing against another, but also
on the relative speed of the bodies in contact. In this textbook we will consider only
the classical laws of friction, but the reader particularly interested in this topic can
refer to the works cited above.

Let us consider a classical example treated in many textbooks (Fig. 2.31).

A rigid body of rectangular cross section (its height is neglected) and weight G
lies on a horizontal surface and is subjected to an action of a certain force F. If the
body remains at rest, after projection of the existing forces onto the axes OX, and
0X, we obtain that T = —F and G = —N, where N is the normal force and T the
friction force (static reaction) that results from the contact between the bodies.

It is easy to imagine, and it follows also from everyday experiences, that the
increase of the magnitude of force F will cause the increase of magnitude of
tangential reaction (for F = 0 there is no tangential reaction). Such a process
will continue up to a certain threshold magnitude of force Fy,. After crossing this
magnitude of force the body will start to slide over the other fixed body (the base),

3Guillaume Amontons (1663-1705), self-taught French scholar dealing with, among other things,
thermodynamics and friction.

“Charles Augustin de Coulomb (1736-1806), French physicist.
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and we will be dealing with kinetic friction. The friction corresponding to Fy, will
be called the limiting friction force or a fully developed friction force.

The reaction FR caused by the forces F and G can be determined based on the
normal force N and the friction force T after adding both vectors, i.e.,

FR=T+N. (2.58)

It is easy to observe that if T — Ty,, the magnitude of the resultant force vector
increases. The angle of inclination « of the reaction to the vertical line increases as
well, and for T = Ty, it reaches a value called the angle of repose.

Applying the classical Coulomb and Morin® laws of friction one should re-
member that they are only a certain approximation of the complex phenomena
characterizing the friction process. According to Fig.2.31 we have Ty, = N tano
and after introducing the coefficient of sliding friction we finally obtain

Tin = jN. (2.59)

This moment is well worth emphasizing because for the first time mechanics
has to refer to the experiment in this case (it will happen a second time during the
analysis of impact phenomena and will be connected with the determination of the
so-called coefficient of restitution). It is not possible to determine the friction force
without knowing the coefficient i, which is obtained as a result of experimental
research. For rough surfaces the coefficient is big and diminishes for smooth and
lubricated surfaces. The coefficient of friction may depend on the manufacturing
processes connected with a material’s production, e.g., the value of coefficient of
friction in the case of rolled steel depends on the direction of rolling. For certain
materials (e.g., wood) friction has an anisotropic character, i.e., the coefficient p
depends on the direction of motion.

The Coulomb—Morin model distinguishes between static and kinetic (sliding)
friction—the forces lying in a tangent plane at the point of contact of the bodies
when the (tangential) relative velocity of the contacting bodies at that point (slip
velocity) is respectively equal to zero (no slip) or greater than zero (slip). The
magnitude of the static friction force can change from zero up to a certain maximum
value proportional to the normal force, which is usually written as 7 = usN (s
is the coefficient of static friction). This definition includes both the introduced
“tangent reaction” and the “threshold friction force” (the tangent reaction is the
friction force as well). The magnitude of the static friction force is usually not known
a priori (the reaction of the friction constraints) and its sense is determined as being
opposite to the tendency of sliding—sense of slip at the contact point for perfectly
smooth surfaces. The force of kinetic friction is defined as T = uxN (ux is the
coefficient of kinetic friction) and its sense is opposite to that of slip velocity, and
Mk < Ws. A separate and little researched (not adequately mathematically described)
problem is the transient phenomena for small slip velocities.

3 Arthur Jules Morin (1795-1880), French general and professor of mechanics.
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Although in Fig.2.31 we have considered so far the plane system, we may
consider friction in space as well. Then force F® will change depending on the
change in force F. The vector FX at the change of F € [0, Fy,] will be located inside
the cone whose generatrix and normal force form an angle of friction «. In the case
of fully developed friction, the opening angle of the cone 2y, is the greatest. If the
reaction FX is situated outside the cone, the state of rest of the investigated body
will be interrupted, and the body will start sliding over the surface of the base body.
A shift from a state of rest to motion, i.e., from statics to dynamics, will occur. The
body will remain at relative rest (because in a general case both bodies can move
with respect to the adopted fixed coordinate system) if the following inequality is
satisfied:

T < jsN. (2.60)

The cross section of a cone with a plane perpendicular to vector N, depicted in
Fig.2.31, is circular. In the case of anisotropic friction, the cross section is not
circular, but it might be, for example, an ellipse.

In further considerations we will make use of the three laws connected with
friction, which had already been formulated by Coulomb.

1. The threshold friction force is proportional to the normal force, i.e., Tth = usN,
where [ is the coefficient of threshold static friction (fully developed).

2. The friction force does not depend on the size of area of contact between the
bodies.

3. The coefficient of friction depends on the kind of material and the condition of
surfaces of the bodies in contact.

If the body is in motion, usually the coefficient of friction uy (so-called kinetic
friction) is smaller than the coefficient of developed friction us, that is, ux < us.
This difference leads to certain theoretical difficulties connected with the transition
from rest to motion (and vice versa) and with the mathematical modeling of the
coefficient of friction because of the need to distinguish one state of the investigated
system from another.

In Table 2.1 the average values of the coefficient of sliding friction are given for
various materials of bodies being at rest or in motion for different surface conditions
(oiled and dry). In textbooks on mechanics the so-called rolling resistance is
considered as a separate problem. This topic will be described in accordance with
the textbook [9].

We will consider two cases of a heavy cylinder lying on rigid (Fig.2.32a) and
flexible (Fig. 2.32b) planes.

In the first case (a), the cylinder is in contact with the plane along a line (the
generatrix of the cylinder). Along this generatrix of the cylinder the normal and
tangential forces will appear (in the cross section perpendicular to the cylinder’s
axis we will obtain vectors N and T). The horizontal force F acts on the cylinder at
distance h from the plane on which the cylinder is rolling. Writing the equation of
moments about point A we have

M, = Fh. 2.61)
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Table 2.1 Coefficients of sliding friction [9]

Atrest (ug) At motion (k)
Material of contacting bodies Dry Oiled Dry Oiled
Steel vs. steel 0.15 0.1 0.1 0.01
Steel vs. cast iron or bronze 0.18 0.1 0.16 0.01
Cast iron vs. cast iron 0.45 0.25 0.2 0.05
Bronze vs. cast iron or bronze 0.21 - 0.18 -
Metal vs. wood 0.5-0.6 0.1 0.2-0.5 0.02-0.08
Wood vs. wood 0.65 0.2 0.2-0.4 0.04-0.16
Leather vs. metal 0.6 0.25 0.25 0.12
Steel vs. ice 0.03 - 0.02 -

Fig. 2.32 Rolling of a heavy cylinder on a rigid (a) and a flexible (b) plane

The moment My = 0 if F = 0 or & = 0. Otherwise, an arbitrarily small, but
non-zero, force F for 4 > 0 will initiate the cylinder motion. If the force F > uN,
then the cylinder will slide on the plane. If F < uN, then the cylinder will roll on
the plane.

The considered case is idealized since from the experiment it follows that a heavy
cylinder causes deformation of the horizontal surface (Fig.2.32b) and the action of
force F creates a reaction connected with the force of rolling resistance T and the
moment of force of rolling resistance M;s. Force F, which forces the cylinder to
move, causes displacement of the point of application of the reaction of plane from
point A to point A’. Writing the equation of moments about a point A we obtain now

M, =Tf + Nf — Fh. (2.62)

Because f’< f and T < N, the moment T/’ can be neglected, and from (2.62)
we obtain

M4 = Nf — Fh. (2.63)
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Table 2.2 Rolling resistance coefficients [9]

Cylinder Basis (1072 m)

Cast iron Cast iron 0.005

Steel Steel rail 0.005

Wooden Wood 0.8

Roller bearings and balls Hardened and 0.0005-0.001
(hardened and ground) ground steel

The motion will start when the moment F & overcomes the moment N f = Mg,
called a moment of rolling resistance. The quantity f we call a coefficient of rolling
resistance or an arm of rolling resistance. Let us note that, as distinct from the
dimensionless coefficient p, the quantity f possesses a dimension of length and
characterizes the maximum distance at which the point of application of reaction
can move preserving the state of rest of the body, i.e., when Fh = Nf. Several
average values of the coefficient of rolling resistance f for various materials of the
cylinder and ground are given in Table 2.2.

The third case of the classical division of friction, i.e., rotational friction, remains
to be described. In the case of sliding friction the problem can be reduced to the
point of contact. If, however, to one (or both) of the contacting bodies we apply
a moment of force, the assumption of their contact only at the point is not valid.
The moment of force is carried by the moment of friction forces that must occur
over a certain (although very small) area. Thus, the moment of force is balanced
not by a single force but by a couple of forces. After overcoming the moment
of rotational friction, the moment of force will cause rotation of the body on
which it acts (on the assumption that the other body remains fixed) about an axis
perpendicular to the surface of contact of the bodies. The threshold magnitude of
the moment of rotational friction is usually assumed to be proportional to the force
N (which is the force compressing the bodies, normal to the surface of contact), and
that threshold magnitude equals Mg = u'N, where now p’ denotes a rotational
friction coefficient, and this time the coefficient u’ possesses a dimension of length.
The problem is relatively complex since the moment of friction force depends on
the normal stress in the area of contact (area size greater than zero) distribution,
which must be uniform over the mentioned area. Additionally, the rotational friction
coefficient depends on the coefficient of forward sliding friction because it is caused
by the normal force N. For example, from the theoretical considerations concerning
the contact problem of the cylinder of radius r making contact with the fixed surface
over the area 772, the coefficient of rotational friction ' = 0.257ru, where i
denotes the sliding friction.

Let us consider a classical case of a rigid body having the shape of a rectangular
prism (Fig. 2.33), but in the present case we assume that the dimensions of its cross
section with a vertical plane, i.e., width 2b and height 2/ of rectangle, are known.
We will also assume that its geometrical center coincides with the center of mass
(point C) and that at point C the gravity force G and horizontal force F are applied
(Fig.2.33).
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Fig. 2.33 Schematic of
forces for static equilibrium
of a block

The action of forces G and F will cause the reaction of the block in the form of
the friction force T and normal force N as in Fig. 2.33. For the force system to be in
equilibrium, on the assumption of finite area of contact, the point of application of
force N must lie at a certain distance x from vector G.

From the projection of the forces onto the axes of the adopted coordinate system
we obtain

G = N, T =F, (2.64)

and writing the equation of moments about point C we have
Th = Nx, (2.65)

which allows us to determine the unknown quantity

Th Fh
X == —

T (2.66)

According to the law of friction T = N, we obtain that ' < uG, and next we
have another inequality, that is, x = %h <b,ie, F < %G. Let us trace now the
phenomena that accompany the process of increasing the magnitude of force F. If
the coefficient of friction u < b/ h, then the block will remain in equilibrium until
the friction force reaches its threshold magnitude T = uN = %N = %G. After
exceeding this value, the block will start sliding on the plane. If the coefficient of
friction u > b/ h, if only the magnitude of horizontal force F' > %G, then the block
will rotate about point (edge) A.

In four subsequent examples we will consider the case of a block lying on
an inclined plane, this time neglecting its geometrical dimensions (Example 2.7),
a homogeneous cylinder rolling on an inclined plane (Example 2.8), the more
complex case of the block (wardrobe) taking into account its geometry and assuming
the presence of friction along two edges (points) of contact (Example 2.9), and,
finally, a shaft-bearing frictional problem (Example 2.10).
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Fig. 2.34 Boundary conditions of equilibrium of bodies of masses m under the action of forces
F,; (a) and F,, (b)

Example 2.7. Determine the minimum magnitude of the force F; (F,) at the
moment of block motion down (up) the inclined plane (Fig.2.34).
In Fig. 2.34a, the equations of equilibrium read

—F;+T—Gsing =0,
N —Gcosgp = 0.

On the verge of equilibrium loss the friction is fully developed, so T = N, and
from the first equation we obtain

F; = G(ucosg —sing).

In this case, the condition F; = 0 is possible, which is equivalent to tan ¢ = u.
For tang < pu, the block will remain motionless on the inclined plane, and upon
increasing the angle of inclination, i.e., for tan ¢ > u, the block will slide down.

In the second case (Fig.2.34b), the equations of motion are as follows:

F,—Tcosp —Nsing =0,
—G + Ncosp —Tsing = 0.
Because T = uN, the equations take the form
F, = N(cosg + sing),
G = N(cosgp — psing),

SO

=G,ucos<p+sin<p -G W+ tan g

F, .
cos@ — U sing 1—ptang
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Fig. 2.35 Rolling of cylinder
on inclined plane

Iftangp — 1/u, then F,, — oo. In such a case, no force is able to move the block
up. We may say that a binding of the body occurs. O

Example 2.8. A homogeneous cylinder with mass m and radius r is rolling on an
inclined plane without slipping. The plane forms an angle « with a horizontal line
(Fig. 2.35). Determine the cylinder center acceleration and the angle value v, where
a slip begins.
The equations of motion have the following form:
mXjc =mgsina — T,
mX,c = —mgcosa + N,
Icg=—Tr. ()

Because X,c = 0, 0r xoc =r, N = mgcosa.

In turn, X;c = —r¢ because the ¢ value is negative, and hence, after substituting
into the third equation (*), we have

2 ..
mr (_M) N,
2 r
ormiic = 2T.

From the first equations () we calculate

Xic = §g sin ¢,

andthen 7 = %mg sin«. For @ = a;),, we obtain tana = 3. O

Example 2.9. Determine the range of equilibrium of a rigid body (a wardrobe) of
weight G situated on an inclined plane (Fig.2.36) with (without) friction present at
points A and B.
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Fig. 2.36 A wardrobe
standing on an inclined plane

@
////////\//////////////

Let us consider three cases.

(i) The case of no friction (] = u, = 0):

F = Gsing,
N1+ N, = G cos g,

b
My=—Fh— N+ GE sing + G%COSGD =0.

In addition, the equation of moments about point A was written above.
From the equations we determine

1 1
N, = _|:_ Fh+ EG(bsimp +acos¢)],
a

1 1
N, = —|:Fh + EG(a cosp —b sinfp)}.
a
If we want to move the wardrobe standing on a horizontal floor (¢ = 0),
from the preceding equations we obtain

G
F =0, N1=N2=E,

that is, the wardrobe will move under the action of an arbitrarily small force
F #0.

(i) Let us introduce now the friction forces T and T, and let us find the force F i,
such that the wardrobe starts to move up the inclined plane.
The projections of force vectors on the OX,| and OX, axes give

F=Gsing+T,+ T,
N1+ Ny = G cos ¢.
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The equation of moments about the center of mass of the wardrobe reads
b b a a
Mo=—-F\h—=)—-(Ti+T2)= —Ni=+ N,- =0.
0 ( 2) (Th + 1) 5 ~ Nz + N3

From the preceding equation, after assuming /' = 7} = 7, and ¢ = 0, we
obtain Ny = N, = %, which agrees with the result obtained earlier (case 1).

If we assume that 77 € [0, 41 Ny] and T» € [0, 2 No], then the problem
cannot be solved because we have four unknowns Ny, N,, T1, and 75 but only
three equations.

In this case, we have to assume in advance the possibility of motion of
the wardrobe after equilibrium loss. While increasing the force F for certain
parameters of the system the wardrobe can first either slide or rotate about
point A. The problem, so far statically indeterminate, can be solved after
assuming one of two possible options. Let us assume that there occurs a
rotation about point A under the action of force F. This means that N, =
T; = 0. The equations of equilibrium of forces and moments for this case are
as follows:

F =Gsing 4+ T,
Ny, = Gceoso,

b
My=—-Fh+ stinqo—}- G%cosq) =0.

Taking the angle ¢ = 0, we obtain
a
F =T, N,=G¢G, Fh:GE.

If we assume now that the friction force T is not developed and is bounded
to the range 0 < 7, < G, we obtain the condition for rotation on horizontal
ground, which can be realized for an arbitrary T, from the aforementioned
range if

Toh = G2,
2
that is,
a
h=—.
=3
After transformation for ¢ # 0 we have

F = G(sing + pacos @),

G
Fh = E(bsinfp ~+ acos @),
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and, in turn,

. 1 .

(sing 4+ pacosp) = ﬁ(b sing + a cos ),

that is,

no(1-2) + “) -0

sin - cos —— )=

¢ 2 @\ 12 2

Note that

acos(¢ — ) = acosycose + asiny sing
= Acos¢ + Bsing.
For our case

2 b
A:aCOSWZMZ—ﬁ, B:asinwzl—ﬁ.

The equation that we are going to solve has the form
cos(p — ) =0,
that is,

(p—lﬂ=(2k+1)%, k=0,1,2.

For k = 0 we have ¢y = ¥ + 7, which means that

= arctan 2h b + il
w0 = 2hpy —a 2"

For k = 1, such a problem cannot be physically realized in the considered
case.

Let us assume now that there will be a loss of equilibrium caused by moving
the wardrobe up the inclined plane. In this case the equations will take the
following form (N, # 0):

F=Gsing + T+ Ty,
Ny + N, = G cos g,

b
My = —Fh—i—GEsinqo—}-G%cosqo—Nla = 0.
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For the angle ¢ = 0 we obtain
F=T+T1,
N1+ N, =G,
—Fh+G3 —Nia =0.

From the last two equations we determine (it can be seen that the sum of
friction forces is canceled out by force F):

G h
N =——-F—,
2 a
G h
Ny=—+ F—.
2 a

The displacement will occur when N > 0, that is, when

G
—>Fﬁ.
2 a

For the case 1 = o = u we have

h
g >uG—, or LS h.
2 a 21

Now, let us assume that ¢ # 0, and to simplify the analysis, let us take ©; =
M2 = . From the equations in question we obtain

F = G(sing + pcosg),

1 b h
N = —G(— sing + cosgo) —F—.
2 \a a
In this case, force F cancels the action of friction forces and the component
of weight vector parallel to the surface of the inclined plane.
The condition for displacement reads

1(b h
—(— sing + cos<p) > (sing + pcosg)—.
2\a a

Let us introduce now the friction forces T and T, and consider the case where
we should determine the force Fy,;, such that the wardrobe does not move down
the inclined plane.
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In the present case, the senses of friction forces will change and the
equations will take the following form:

F=Gsing—T,— T,
Ny + N, = G cosg.

Let us assume that as a result of action of force F the rotation of the
wardrobe about point B will occur. The equation of moment is

b
Mp E—Fh—chos<p+§Gsin<p+N2a =0.

On the assumption that u; = u, = pu, from the equations above we
determine

F = G(sing — pucosg),
h 1 b

N, =F—+ —G(cosgo— —sin<p).
a 2 a

Let us check if the rotation about point B is possible for ¢ = 0.
From the preceding equations (N, = 0) we obtain

F=-T,
Ny =G,
a
Fh+G=- =0,
+ 2
that is,
I —
2p

From the foregoing considerations it follows that there exists a possibility
of equilibrium loss by the rotation of the wardrobe, and in the present case the
boundary value of this condition is the same as the corresponding value for
translation.

Let us assume now that ¢ # 0 and check if there possibly exists an angle
for which the loss of equilibrium by rotation about point B takes place. In this
case we have (N, = 0)

F =Gsing — T,
N = G cos g,

b
—Fh— %Gcosqo + EG sing = 0.
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Then we have
. 1 .
h(sing — pLcosg) = 5(—a cos¢ + bsing),

and after transformations we obtain

b
(—h—i—z)sinqo—i-(hu—%)cosq)zo.

Let us assume now that the equilibrium loss will occur by the motion of
the wardrobe down the inclined plane, so the loss of equilibrium will result
in sliding. The condition of the motion is N, > 0 and in the boundary case
N, = 0. This condition is identical with the one for the rotation about point B.

Let us note that the current example allows for the analysis of two special cases.
For ¢ = 0 we are dealing with the problem of equilibrium loss of the wardrobe
situated on a horizontal surface (already presented). Let us assume now that a =
b = h = 0, that is, we will be considering a particle of mass m situated on the
inclined plane (N; + N, = N).

From the considerations conducted for case (i) we obtain

F =mgsing,
N = mgcosg.

This means that for the particle to remain at rest on the inclined plane one should
apply to it force F of magnitude mg sin ¢.
In case (ii) we have

Frin = G(sing + pcos g),

whereas in case (iii) we have
Frin = G(sing — pucos ).

Let us note that for the forces within the range F e [F_. ., Fr | the particle
remains in equilibrium. Range [F, . ., F.= ] we will call the range of equilibrium

loading. O

Example 2.10. Determine the angle of friction ¢ and so-called circle of friction of
radius r during contact of the shaft journal of radius R and the bearing shell on
the assumption that the radius of the bearing shell is slightly larger than R and was
omitted in Fig. 2.37.

Let us assume that the shaft journal is loaded with a couple of moment M and a
force F. The action of the moment causes the displacement of the point of contact
A between the journal and the bearing shell upward, i.e., we are dealing with the
phenomenon of shaft climbing.
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Fig. 2.37 Contact of a
journal (rotor) with a bearing
shell (plain bearing) with
radii and forces marked

friction

Let us consider the idealized case where there is no dependency of the friction
force on the speed and no bearing lubrication; the rolling resistance can be
neglected.

Because the shaft journal is in equilibrium under the action of the active force F
and the couple moment M and we are dealing with a plane force system, it can be
balanced with only one force (reaction) FR, which is equal to —F and is attached
at point A. Then the value of the main vector of force is equal to FR — F = 0.
Moreover, the moment coming from the couple (F, FR) should be balanced with the
moment coming from the pair of active forces M, that is

FR(Rsiny) = M,
which leads to the relation
M = FRsin .

This means that the magnitudes of M and F are related by the formula above
through the angle ¥, i.e., the angle between the normal to the contact surface of the
journal and the bearing shell and the reaction Fg. If the magnitude of moment M is
increased, for the boundary case defined by the angle of friction ¢ the equilibrium
will be lost and the journal will start to rotate, sliding on the surface of the bearing
shell.

In other words, the static equilibrium condition of the shaft journal is described
by the following inequality:

M < FRsing,

where ¥ < ¢.

Denoting R sin¢ = r we will introduce the notion of a friction circle of radius r
and the center at point O (center of shaft journal). From Fig.2.37 it follows that
static equilibrium takes place when the reaction FX crosses the friction circle and in
the boundary case is tangent to it. O
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2.9 Friction and Relative Motion

As was mentioned earlier in Sect. 2.8 (see description of cone of friction), in fact, the
friction belongs to phenomena that should be modeled in three-dimensional space
(3D). Moreover, in reality we are dealing with friction during the impact of two
bodies treated as solids, and these two phenomena of mechanics are closely related
to one another. The description of the rolling of two bodies is more connected
with two-dimensional modeling. In the present section we will limit ourselves
to the modeling of friction as a one-dimensional phenomenon, indicating certain
mathematical difficulties already at this stage of elementary modeling. However, it
should be emphasized that from a formal point of view, reduction of the friction
phenomenon to a one-dimensional problem is justified only for “small” rotational
motions of the body and in cases where it might be possible to separate the
translational motion of the contacting bodies from their rotational motion.

The models of kinetic friction can be represented by the dependencies of the
friction force on relative velocity (static version) or described by the first-order
differential (dynamic version).

The dynamic version of friction modeling attempts to incorporate the results
obtained during tribological research and allows for, e.g., an explanation of the so-
called small displacements just before onset of sliding, which are observable for
small speeds of motion.

We will now present some examples to show how the relative motion of bodies
in contact with one another with friction may even lead to a paradoxical behavior.

1. Supply of energy by means of friction.

Let us consider the case of a rigid body lying on a stationary base, as was already
discussed in Sect. 2.8, and subjected to the action of force F (Fig. 2.38).

Let the transfer of a force interaction to a block of weight m take place by means
of a massless spring of stiffness k one of whose ends (point A) moves with speed
v4. The motion of point A causes an increase in force F acting on the block. After
attaining the value kxi = Fg, the block will start to slide with respect to the
stationary base in the fixed (environment) coordinate system OX. It turns out that

T(x)

Fig. 2.38 Action of a force F on a block: directly (a) and through a spring (b)
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Fig. 2.39 A body of mass m 0 x
lying on a conveyor moving
at constant speed v,

in many cases upon onset of motion after “breaking away” the static friction the
sudden “forward jump” of the block follows. This phenomenon can be explained
through the so-called decreasing part of the Coulomb friction versus the relative
velocity of the moving bodies.

The analyzed system from Fig.2.38b is analogous to the system depicted in
Fig.2.39, where the block lies on a belt moving at speed v, and the spring in the
static equilibrium position is compressed.

The equation of motion of a block (Fig.2.39) in a fixed coordinate system reads

mx = —kx + T(w), (2.67)

where
w=v,—X (2.68)

denotes the relative velocity. In the case of static equilibrium x = ¥ = 0 and
from (2.67) we obtain
kxg = T (vp). (2.69)

In the coordinate system connected to the point of the static equilibrium position of
the block X = X = 0 we have

mé = —k(xq + &) + T(vy — ). (2.70)
where
X =xyq+E&
i=4,
w:vb—)'c:vb—é. (2.71)

Taking into account (2.69), (2.71) yields
mé + k& =Ty — &) —T(w) = 0(6), 2.72)

and it can be seen that the friction force 7' (v;) carries the static deflection of the
spring.
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T(w).ﬂ
T,
T(v,) \
o v, w
."]"‘J
Fig. 2.40 Characteristic of friction T'(w)
F -~
-T,/k
0 T,k X

Fig. 2.41 A force in a spring F(x) with so-called clearance interval marked: (—Ty/k, Ty/ k) for
w=20

In both considered cases the vibrations of the block are observed and the only
known way to explain this phenomenon thus far is by adoption of the so-called
decreasing characteristic T (w), assumed here to be a linear one (Fig. 2.40).

From the plot it can be seen that for w = 0, i.e., X = v}, there is no functional
dependency since in the interval (—Tj, Ty) we have infinitely many points, i.e., there
appears an indeterminability often understood as functional inclusion.

It turns out, however, that the magnitude of friction force T(0) € (—To, To) is
determined uniquely by the deflection of the spring on the assumption that £ = 0,
which is schematically shown in Fig.2.41.

That characteristic does not exactly represent the real block behavior since when
the spring tension reaches kx = Ty, we suddenly have w = v, that is, at that
point (moment) the friction force is equal to 7°(v;). As can be seen in Fig. 2.40, the
difference Ty — T'(vp), where Ty = T(0), is responsible for the appearance of the
experimentally observed jump (acceleration) of the block.

We will now show that the characteristic of friction shown in Fig. 2.40 allows for
the supply of energy to the system from its “reservoir” represented by the constant
velocity vp.
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Fig. 2.42 Plot of a function 4 Q(v)
o)
Vﬂ
O \.r;
From (2.72), after multiplying through by E = v, we obtain
mwv + kEv = Q(v)v. (2.73)
The left-hand side of (2.73) can be cast in the form
d d (mv? kg
dt(k+) dt(2+2) mvv + k&v (2.74)

where Ey,V denotes kinetic and potential energy, respectively. After taking into
account (2.74), (2.73) will assume the following form:

£ _ 2.75
? - Q(V)V, ( . )

where E is the total energy of the considered one-degree-of-freedom system.

The function Q (v) is presented in Fig. 2.42.

From (2.75) and Fig. 2.42 it follows that in certain ranges we have Q (v)v > 0,
and in the other Q(v)v < 0, that is, the energy is supplied/taken away to/from the
system, which was the subject of a detailed analysis of the works [31,36].

2. Coulomb friction as a force exciting the motion of a rigid body.
Let us consider a one-dimensional problem, where a flat steel slat lies on two cylin-
ders rotating in opposite directions (Fig. 2.43a) and the dependency of coefficient of

friction on speed (%) has the form shown in Fig. 2.43b.
The equation of motion of the slat reads

mX =Ty —Ts, (2.76)
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Fig. 2.43 A slat situated on two rotating cylinders (a) and a dependency . (x) (b)

where
Tq=uNs, Tp= uNs.

The equations of moments of forces about points A and B allow for the
determination of the unknown normal reactions

_ (a—x)mg
a 2a

_ (a + x)mg

N
4 2a

., Np

From the equation of motion we obtain

mi = %[a—x—(a+x)],
2a
or
)'c'—i—ﬁx:O.
a

This means that the system vibrates harmonically with frequency @ = /uga™"'.
The equation obtained is often used to determine the coefficient of friction experi-
mentally.

The careful reader may be somewhat confused by having the Coulomb friction
presented in two different forms as in Figs. 2.40 and 2.43. In the first case it is easy
to observe the self-excited vibration caused by friction, e.g., if one spreads a rosin
film on the rubbing surfaces or plays on a string instrument. In the second case we
are dealing with typical dry friction.

3. Coulomb friction playing the role of viscous damping.

Let a particle of mass m move in a plane at speed v (Fig.2.44).
The velocity of particle v was resolved into two components:

v=v,E| +v,E;
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Fig. 2.44 Motion of a
particle in plane OX; X,

L)
»
r

the motion of the particle has two degrees of freedom and is described by two
equations:

m)'c'l = —Txl,
mjéz = —sz,
where
Vx| Txl . Vi, sz
— = — =sin@, — = —— =cosda.
v T v T

From the relationships above it follows that
Ty, =Ta, T, =T,

on the assumption that « is a small angle; this means sina ~ tano ~ o, cosa ~ 1.

This means that the particle moves at a high speed in the direction of the vertical
axis and a low speed in the direction of the horizontal axis. In the considered case,
the equations of motion assume the following form:

mi; = —Ta =—-T— = -T— = —cvy = —cXy,
y
m)'C'z =-T.
Assuming that only the component v,, of vector v is changed (keeping v,,
constant), one may introduce a resistant coefficient ¢ = 7'/v,,. The resistant force

in the direction OX depends on the velocity v,,, and coefficient ¢ is called a viscous
damping coefficient.
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2.10 Friction of Strings Wrapped Around a Cylinder

Let us consider a string (rope) wrapped around a cylinder of circular cross section
(Fig.2.45).

Let the cylinder and string have a rough surface. The weight of the string is
negligible.

It follows from Fig.2.45a that string ends are loaded by the forces F, (active
force) and F,, (passive force). Assume that force F, achieved its critical value, i.e.,
infinitely small increase yields the string displacement coinciding with the F, sense.
Beginning from that time instant we are dealing with the so-called developed friction
between the string and the cylinder.

Let us consider an element of the string defined by the angle d¢ (Fig.2.45a).
After performing the projection of forces onto the axes of the adopted coordinate
system (Fig. 2.45b), we obtain

d d
(F+dF)cos7¢—F0057(p—dT —0,

d d
AN — (F + dF) sin7‘p — Fsin%p —0, (2.77)

where T denotes the friction between belt and cylinder. After assuming sin %‘/’ >~ dy,

d
cos F = 1 we have

dF —dT =0,
dN — Fdg = 0. (2.78)

Fig. 2.45 Active (F,) and passive (F,) force acting on a string (a) and the computational
scheme (b)
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In what follows we take for F' = F, (¢ = 0) and F' = F, (p = ¢o) Because
we are dealing with the fully developed friction T = N, from the considerations

above we will obtain
F, 7]

de = /d (2.79)
F 2 @, .

Fy 0
that is,

InF,—InF, = ugo, (2.80)

where F, > F, (meaning F, overcomes friction resistance).
From the preceding equation we obtain the so-called Euler’s belt formula of the
form

F, = Fyel'%. 2.81)

From (2.81) it follows that force F, (active) balancing the action of force F,
(passive), e.g., the weight hung at the end of the rope, does not depend on the radius
of the cylinder on which it is pulled. For instance, assuming ;& = 0.1 (0.2) and the
angle o = 7 we obtain from the formula (2.81) the magnitude of active force F,
equalto 2.19F, (4.76 F,).

Observe that (2.81) can be interpreted in the following way. If the active force F,
is going to keep only the weight G in equilibrium (i.e., its infinitely small decrease
pushes the string displacement in the direction coinciding with the sense of vector
G), then the friction resistances help this force, and in this case this force value is
found from the equation F, = F,e™*%.

We are dealing with a slightly different problem in the case of application
of Euler’s formula to conveyor systems with belts wrapped around the rotating
drums, where transported material such as coal can be placed on the belt. It is
desirable, then, to determine the maximum moment carried by the drum without
slipping of the belt with respect to the drum. The friction of the strings is applied
in belt transmissions because at the slight preliminary tension of the belt (F},) the
transmission even for a small angle of contact can carry significant torques.

We will show now a method to derive Euler’s belt formula, which is different
from that presented so far [37]. The considered contact of the drum with the rope
can be approximated by means of the broken line shown in Fig. 2.46.

Let us cut out an element OA,,—1A,,A;y+1 from the drum and consider the
equilibrium of the rope lying on AOA,,—1 A,y Aj+1, shown in Fig. 2.47. In the case
depicted in Fig.2.47a the problem cannot be solved. After neglecting the forces of
friction between the rope and the drum in sections A4,,— 4,, and A,, 4,,+1, the rope
reaction will reduce to its reaction FX caused by friction at the point A4,,. However,
at that point we do not know the direction of reaction because we do not know the
direction of the normal to the surface at the contact point A,, (singular point) and
FR = N + T. Therefore, we cannot apply the three-forces theorem to the forces
F,,F,, and FR in order to determine F,. In this case we will treat the force F, as a
force needed to keep the passive force Fp, that is, |F,| < |Fp|. In order to avoid the
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Fig. 2.46 Approximation
of a rope by a broken line

Fig. 2.47 A rope and reactions in a statically indeterminate case (a), a statically determinate case
(b), and a force polygon (c)

singularity at the point A,, we can introduce the assumption of a high resistance to
the bending of the rope and consequently assume that the rope will take the shape
depicted in Fig. 2.47b around point A4,,. Now we know the direction of the normal
N, being perpendicular to A4,,—; A,,, which enables us to construct the force polygon
as shown in Fig.2.47c.

Introducing the Cartesian coordinate system 4,, X X, (Fig.2.47b), after projec-
tion of the force vectors we obtain

F,—T = F,cosa, N = F,sina. (2.82)

Considering the boundary case of fully developed friction we have T = uN . For
a large number of sections M the angle « is small, and therefore we can assume that

sino =~ «, cosa =~ 1. (2.83)
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Consequently, from (2.82) we obtain
F, = Fi(cosa + psina) = Fo(1 + pa). (2.84)

We will apply the equation just obtained several times to the polygon constructed
from M sections.
From Fig. 2.47 it follows that

Fa(m—l) — Fa(m)(l + ’ua) = Fa(l + ﬂa)a
Fm™2 = Fm V(1 4 pa) = F(1 + pa)?,
Fmh = F D1 4 pa) = Fu(1 + pa),

F = F(1 + pe) = Fu(1 + poy™ ",

FO = F, = FY(1 + pa) = F(1 + pa)™. (2.85)
Because ¢ = M, from the last equation of (2.85) we obtain
M M
Fy= F,(1 4+ pa)™ = F, (1 + Mﬁ) . (2.86)

Moving to the exact approximation of a circle with linear sections, i.e., for M —
00, from (2.86) we obtain Euler’s formula:

F,=F, lim (1+ i)MzFeW (2.87)
P aM—)oo MM a B .

where e is the base of a natural logarithm.

From (2.87) we obtain F, = F,e™ "%, which means that to support, for example,
the weight G = F, hung at one end of the rope, one must use the force of F,e™"?,
which is smaller than the magnitude of the weight G. The situation will change if
we want to pull the weight G = F, over the drum with friction. Then one should
use the force of magnitude Ge*¢. O

Example 2.11. Find the relationship between forces G and F in an equilibrium
position for the braking system depicted in Fig. 2.48.

The massless rope is wrapped around a cylinder of radius » and pulled through
massless pulleys 1 and 2 of negligible radii. The cylinder is connected to the braking
drum of radius R, which is wrapped around by the braking belt attached to lever A B.
The coefficient of friction on the braking drum is equal to x.

After releasing from constraints we obtain two subsystems shown in Fig.2.49.

Let us formulate the equilibrium condition for the lever writing the equation of
moments about point O3. Pulley 2 will be in equilibrium if Q; +Q, = F’ and for the
equation of moments about Os the vertical component of F, equal to Q'+ Q cos ¢,
is needed. The aforementioned equation of moments reads

Fl 4+ Faa; = (Q1 + Qacos )l + Fypas.
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cylinder

Fig. 2.48 A braking mechanism

Fig. 2.49 Computational schemes

Because Q| = O, = G, the equation of moments about point O3 gives
Gr+ F,R = F,R.
The relationship between forces F;, and F, is defined by Euler’s formula:
F, = Fyel'™.
From the preceding equation we have

Gr = F,R(e"™ — 1),
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that is,
G
P L
(et —1)R

Coming back to the equation with force F we obtain

G [r(az —aetm)

F=—
R(er™ —1)

; ~+(14-cos (p)11:|. O

2.11 Friction Models

2.11.1 Introduction

The aim of the present section is not an in-depth description of a friction phe-
nomenon but only an emphasis on its complexity and a presentation of its
engineering models. As has already been mentioned, the model of sliding friction
T = pN allows us to determine this force during macroscopic sliding of one of
the analyzed surfaces on the other. In the general case the coefficient of friction
depends on the contact pressure p (normal force N), the relative speed of sliding
vy, and temperature of the contact area 6, i.e., it is a function of the form

= pu(p,vr,0). (2.88)

In [38] many investigations of the dry friction phenomenon were conducted and
computational methods serving to estimate this friction were proposed. In the cited
works there are references to results of experimental investigations on the depen-
dency of the friction coefficient on the speed of slippage. Various characteristics
of that dependency were found, including the minimal and maximal values and
with a monotonal decrease in value, as well as characteristics displaying a constant
coefficient of friction for varying slip speed (Fig. 2.50).

Most frequently during the analyses the linear models of friction are used, which
corresponds to a straight line 1 in Fig. 2.50.

The behavior of friction in the case of lubricated surfaces as a function of
slip speed and in the case of stationary conditions is best described by friction
characteristics called the Stribeck® curve. For low slip speeds, the friction force
depends mainly on mechanical, structural, and physiochemical material properties
of the rubbing surfaces (dry friction). For moderate slip speeds oil wedges form, and
the resistance of a hybrid (fluid and dry) friction decreases. With further increases
in slip speed complete separation of the rubbing surfaces takes place. Then only the
fluid friction exists whose magnitude increases with increasing speed.

SRichard Stribeck (1861-1950), German engineer working mainly in Dresden, Kéln, and Stuttgart.
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TS

Ve Ve

Fig. 2.50 Certain models of friction forces encountered in the literature

The Stribeck curve (curve 4 in Fig.2.50) was used, for instance, in [32].
Simplified Stribeck curves (3 and 9 in Fig.2.50) were the objects of analysis in
[39]. The models of friction force represented by curves 2, 5, 6, 7, 8, and 10 were
described among others in [36,40]. In [33], in the numerical investigations of the
dynamics of wheeled vehicles, the model of the Magnum type brake was used.
This model relies on friction between road surface and tire. It pictures the mutual
relations between the forces of adhesive friction (forces of adhesion), Coulomb
friction, and viscous friction and the slip speed of the wheel, which are graphically
represented by the Stribeck curve. For some road surfaces the modeling of friction
with curve 7 (Fig. 2.50) is recommended.

The dependency describing curve 4 according to [41] possesses the following
form:

i = sgn(v)((a + blvil) exp (~clv, ) + @), (2.89)
and the dependency approximated by curve 7 [42] is expressed by
p = sgn(v,) Jo = Juin Frwin ) (2.90)
1+ clve|

where a, b, c,d, fy, fmin are constant parameters.

The Stribeck curve [43] (Fig.2.51) attains its minimum at v, = vy, and for
v, < Vmin @ characteristic drop in value of the coefficient of friction can be observed.

Starting from the classical works of Coulomb there has been much attention
devoted to the problem of friction, which was treated as a classical process within
the framework of Coulomb hypotheses and as a complex process involving wear
and heat exchange between rubbing bodies [35]. Problems connected to one-
dimensional Coulomb friction and the chaotic dynamics of simple mechanical
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Fig. 2.51 A plot of the A u(v,)
coefficient of kinetic friction
against the relative speed of 0.12 A
rubbing bodies
0.08 A
0.04 - i
i
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systems are also described in monographs [32] and [34], where an extensive
literature on the topic was presented. However, the latest works of Contensou [44]
and Zhuravlev [45, 46] point to the fact that the classical Coulomb model seen
through the motion of contacting bodies in space can explain, to a large extent,
many phenomena encountered in everyday life and in engineering associated with
friction.

Let an arbitrary rigid body be in contact with another fixed body (a base), and
the contact between the bodies takes place at a point or over a circular patch of a
very small radius. The rigid body moving on the base has five degrees of freedom,
and its dynamics is described by the translational motion of the mass center (vector
v) and the rotational motion about the mass center (vector @). As we will show
below, the friction model from the perspective of simultaneous translational and
rotational motion of a rigid body allows for the explanation of many phenomena,
and especially allows for the elimination of the classical, often incorrect, results
associated with the interpretation of motion of a rigid body as a combination of
translational and rotational motion on the assumption that translational friction T
(treated as a force of resistance to translational motion) and torsional friction My
(treated as a moment of resistance to rotational motion) are seen as independent
of each other. In the presented model further called CCZ (Coulomb—Contensou—
Zhuravlev) T = T(v, @), M7 = M7 (v, @), and at the point v = @ = 0 functions
T and M7 do not possess a limit. The introduction of even a very small quantity
® in the case T (v, @) and a very small quantity v in the case M7 (v, @) (which is
close to real phenomena) leads, in many cases, to the elimination of non-holonomic
constraints, which complicate many problems of classical mechanics.
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w

Fig. 2.52 Circular contact of rigid body and fixed plane (a) and velocity of an arbitrary point A of
body contact patch (b)

2.11.2 A Modified Model of Coulomb Friction (CCZ Model)

In Fig. 2.52a the contact of a body with a fixed surface is shown, whereas Fig. 2.52b
shows a body contact patch of circular shape in the neighborhood of point O.

The starting point for the construction of the CCZ model is the application of
Coulomb’s law. It is assumed that the differential of an elementary friction force
dT and elementary friction moment dM7 is directed against the relative motion at
point A according to the equations
P X Vy v

ds,  dT = —uo(p)—2ds, 2.91)
[Vl [Val

where v 4 is the velocity of sliding at point A, thatis, v4 = v + @ x r (Fig. 2.52a),
(p, ¢) are polar coordinates of point A (Fig.2.52b), a(p)dS is a normal force
dependent on the radius p describing the distance of point A from point O, and
the elementary surface is equal to dS = pdpd¢.

In the adopted Cartesian coordinate system OX;X, the velocity of point A4 is
equal to

dMr = —uo(p)

va = (v—wpsind)E; + wp cos pE;. (2.92)
In the general case a moment of force is calculated from the formula
E| E; E;

M=pxF=|p p2p3
FI B F;

=Ei(p2F3 — p3F2) —Ex(p1 F3 — p3F1) + Ez(p1 2 — p2 F), (2.93)
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and hence, in the considered case, the differential of the friction moment is equal to
dM7 = E3(02dT1 — 01dT>). (2.94)
According to (2.91) and (2.92) we have

dT, = Ko (,0) ——(v—wpsing)pdpde,
d7, = — Ho (p) wp cos ppdpde,
VA
va = |va| = VV2 = 2vwpsing + w?p?, (2.95)
and in view of that
dmy = H a(p RO (00? — vpsin ) pdpdep. (2.96)

We obtain the desired friction force T and friction moment My by means of
integration of (2.91) and (2.96), and they are equal to

(v — wpsin¢)o(p)pdpde

T = —,LLE1
V2 —2vwpsin g + w?p?

St~

wp cos ¢o (p) pdpdg
V2 —2vwpsin ¢ + wlp?’

—E,

St~

(wp® —vpsinp)a(p)pdpde
V2 = 2vwpsin ¢ + w?p?

M7 = —uE; (2.97)

St ~—

where in the considered case the second term of friction force in the first equation is
equal to zero.

After the introduction of new variables p* = % and u = wR, where R is the
radius of the circular contact patch between the bodies, (2.97) assume the following
scalar form:

1
dp*d

T = HRZ/P o_(p )/ MIO S1n¢) Y ¢ .

Vu2p*2 — 2uvp* sin ¢ + 12

0

1

2
*2 * o1 *
0

) Vu2p*2 — 2uvp* sing + v2
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It is well worth it to return to Fig.2.52a and discuss the choice of the pole
(point O) about which the reduction of the friction force and friction moment were
carried out. In the general case, for the aforementioned choice of the reduction
pole, integrals (2.98) cannot be expressed in terms of elementary functions but
only in terms of elliptic integrals, which is inconvenient during the calculations.
However, it turns out that physical observations associated with the kinematics and
statics of the problem allow for (by the proper choice of the pole) the reduction
of the problem to integrals expressed in terms of elementary functions. As will be
presented, these integrals in the considered cases are expressed by simple analytical
functions. An arbitrary choice of the reduction pole leads to the necessity of taking
the force and moment of friction into account. However, it is possible to choose the
pole at the point that is an instantaneous center of rotation (this case will be given
a detailed treatment subsequently) and then, even though we are also dealing with
the force and moment of friction, integrals (2.98) assume the form of elementary
integrals. One can also choose the point of reduction such that the moment arm of
friction force is equal to zero. Because in the general case M = M (v, w), let us
choose the reduction point such that M (v, 0) = 0. The physical interpretation of the
pole like that coincides with the notion of mass center of the contact patch, where the
role of mass is played by the normal stress ¢ = o(x;, x,) in the coordinate system
rigidly connected to the contact surface. This point is defined by two algebraic
equations:

/f xio(xy, x2)dxdx; = 0, i=1,2, (2.99)
D

where D is the area of contact of the bodies.
In the general case, (2.98) in the Cartesian coordinate system assume the form

— _uR? // o (x1,x2)(v — uxy)dx;dx;
b \/(xlz + xD)u? +v2 = 2uvx,

,uR2 // o(x1, x2)ux;dxdx;
\/(x + xH)u? + v —

ZMVXQ

= _uR} // U(xl,xz) [(x? + x3)u — vxz]dxldxz’ (2.100)
(x + x2)u? + v2 — 2uvx,

where the designation u = wR was preserved.

As was emphasized earlier, in the case where region D is symmetrical with
respect to the pole (e.g., a disc), the problem is two-dimensional since 7 = T (u, v)
and M = M(u, v), and T, = 0. However, in the general case (for non-symmetrical
regions), we have at our disposal three (2.100) and three kinematic quantities u, vy,
and vy, thatis, T = T(u, vi, v) and M = M (u, v1, v2). Let us recall that earlier
for the case of the circular contact patch we chose the axis of Cartesian coordinates
as parallel to the velocity v.
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Fig. 2.53 A circular contact in the case of coordinates (r, 6) (a) and distributions of the velocity
field of selected points of the contact patch (b)

Our next aim will be to determine the force and moment of friction in simple
cases of symmetrical patches of contact between bodies. To this end we explore the
following two cases, known from the literature, of contact stresses [47]:

(i) Circular contact patch of a disc with a plane, where the dependency of stress on
the radius p is governed by the equation

o(p) = L; (2.101)

2 p)?
27 R*4/1 ( R)
(i1) Hertzian point contact, where

w1 (5)

2.102
27 R? ( )

o(p) =

In the preceding discussion, N is the normal force pressing the bodies against
each other, R is the radius of the contact patch circle, and p = OA (Figs.2.52
and 2.53).

Case (i)

In order to avoid elliptic integrals we introduce the polar coordinate system (r, 6)
shown in Fig.2.53a.
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Point O’ is the instantaneous center of rotation, and O’O = H . In turn, from the
velocity distribution in Fig. 2.53b it follows that in this case the friction component
T, =0.

Thus, by definition we have

v4cosf
dT" = —po(p)

ds, (2.103)

that is,

T=—u // o(p)cos Brdbdr. (2.104)
D
In turn, on the basis of Fig. 2.53a one can formulate the following relationship:
0% =r*sin>@ + (H — r cos ). (2.105)

From (2.104) and (2.101) we obtain

. 3Np, /f cos Ordfdr

29—1— 2%%00594—1’{—200&9)

_ 3Nu /f = (%) cos 06 (%)

q?*sin” 0 — k% + 2qk cos 6 — g2 cos? 6

_ 3NpL /f q cos 6dfdqg
\/1 g% + 2qk cos 6 — k2 sin* @ — k2 cos? 6

3N 0dod
=2 /f 4e0877cd , (2.106)
\/ (q —kcos#)? + 1 —k2sin* 6

where we set ¢ = ¢ and k = %.

The friction moment with respect to point O’ is equal to

M2 =HT + MP. (2.107)

From (2.107) it follows that by calculating MTO "and with H known it is possible
to determine M2 .

During the calculation of integral (2.106) one should consider two cases, that is,
one where point O’ lies outside the circle of radius R (then k& > 1), and another
where it lies inside or at the boundary of that circle (then & < 1). Thus the problem
boils down to the calculation of the following two integrals:
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T = cos 9d9/ qdq k<),
\/ (g —kcos0) + 1 —k2sin> 0
N q2 d
r=- zM/C"SQd@ = L1, (2.108)
i o \/—(q—kc0s9)2+1—k2sin29

where .
qi2 =kcos® F V1 —k2sin’6, 01 = arcsin (E) )

Now, we will show how to calculate integrals (2.108). At first, let us calculate the
indefinite integral

:/ qdq
\/—(q —kcos6)>+ 1 —k2sin? 0

qdq

- _ qdq
/\/—q2+2qk0059+1—k2 V= +2qa+b

where a = k cos, b = 1 — k?*. Because the parameters a and b do not depend on
q., in the course of the calculations they can be treated as constants. We successively
have

(2.109)

1 —2qdgq 1 [(=2q +2a—2a)dq

V=4 +2qa+b 2 vV—q¢*+2qa+b

J*

1 -2 2a)d d

_ L[ _(Z2ar2a)dg +a/ a . (@110

vV—¢*+2qa+b vV—¢*+2qa+b

After setting J* = J; + J, we have

1 -2 2a)d 1 [d(—¢*>+2 b
J= L [(2at2adq 1 [d(=g”+2qa+ D) @.111)

V—¢*+2qa+b 2) V-¢*+2qa+b
and the above integral is calculated with the aid of the substitution t = —g>+

2ga + b. Thus we have

1
1 1173
Ji = —E/z—%dz =3 =—Vi=—V-¢+2qa+b. (2.112)
2

Now as we proceed to calculate the integral

(2.113)

| i
J2:a .
—q>+2qa+b
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We transform the denominator of the preceding expression into the form

vV—¢*+2qa+b = \/—(q—k0059)2+1—kzsin29
=+—-(q—a)?+c, (2.114)

where ¢ = 1 — k2 sin? 6. Thus we obtain

_a/ c_(q_a)2 /\/ d(qg —a) —
o[ i -

a
Ve o
According to (2.110) we obtain

=a arcsm = @ arcsin (2.115)

7 (2.116)

J* =5+ =- —q2+2qa+b+aarcsinq

Eventually, we obtain the desired definite integral

q2

d

\/—(q—kcose)z—}- 1 —k2sin’ 6

where g1, = a F +/c. We have then

JS = _\/—qi + 2¢ra + b + arcsin qz\/_za + \/—qlz +2qia+b

. q1
— arcsin

Ve

+aarcsin%+ \/—a2+2aﬁ—c+2a2—2aﬁ+b
c

a—./c—a
—aarcsin+ = —+va? + b — ¢ + aarcsin(1)
c

+ Va2 + b —c —aarcsin(—1) :a%—a(—%) = ma. (2.117)

:—\/—a2—2a\/z—c+2a2+2a\/z+b

The desired definite integral is equal to

q2

d
74 = 7k cos 6. @.118)
\/—(q —kcos0)? 4+ 1 —k2sin’ 0
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Eventually, the unknown indefinite integral reads
J = /Jrk cosf cos 0d0 = nwk / cos? 6d6
k k wk
== /(1 +c0s26)d6 = -0 + ~= sin 26, 2.119)

and its corresponding definite form is

T q2
d
Jo(l) = /cos@d@/ 44
5 \/ (q —kcos0)? + 1 —k2sin* 6

n 2
- [—9 L sm29:| _ Tk (2.120)
4 . 2

The following integral remains to be calculated:

d
JO(Z) = /cos 9d9/ 44
\/ (g —kcosB)? 4+ 1 —k2sin® 0

nk  wk “ mk wk
= [79 + e sin 29}0 = —91 + e sin 26;. (2.121)
Since
. 1
0 = arcsin (E)’ (2.122)
we have
sin26; = 2sin#; cosf; = 2sinf4/1 — sin® 6,
= 2sin ( arcsi ! 1 in’ i !
= in 3 sin” | arcsin A
2 1 2Vk?2 -1
_2 Lol (2.123)
k k? k?
and finally
wk 1 k%2 —1
J(z) == arcsin (k) + ﬂT (2.124)

After taking into account the results of the calculations above in (2.108) we
obtain
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w2k
AN | 4 =1
T = —2—“ i | (2.125)
T
%arcsin(E)—i-%vkz—l, k> 1.
Case (ii)

In this case the problem boils down to the calculation of the friction force by means
of the following definite integrals:

T q2
1
3 / cos 6do \/—(q —kcosf)? + 1 —k2sin® 6 qdq,
0 ¢
3N (2.126)
27 0 7
/cos 0do / \/—(q —kcosf)? + 1 —k2sin® 6 qdq,
0 ¢

where further we adopt designations analogous to case (i), that is, g1 » = k cos 0F

V1 —k2sin?6, 6, = arcsin (2)-

At first, we calculate the indefinite integral

1
J :/\/—q2+2qa+quq :—E/\/—q2+2qa+b (—2¢)dg

1
=3 / —q% 4+ 2qa + b (—2q + 2a — 2a)dq. (2.127)
Next, we have
J=Ji+ /), (2.128)
where
1
=3 / —4% + 2qa + b (=2q + 2a)dq,
Jy = a/ —¢% + 2qa + b dg. (2.129)
Because
(—2q +2a)dq = d (~q” + 2aq) = d (~¢” +2aq +b),
we have

Ji = —é / (—4* +2aq + b)% d(—¢* +2aq +b). (2.130)
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In turn, after introducing the substitution

t = —q* +2aq + b, (2.131)
we obtain 1
1 [ 1 ¢zt 3
Ji=—2 [ 12dr = -2 =312, (2.132)
2 2(3+1)

that is, eventually we have

3
Jy =3 (\/—q2 t2aq + b) . (2.133)

We calculate the integral J; by parts:

h=a [q\/—qz T 2aq +b —/qd (\/—q2 T 2aq + b)}

—2q + 2a)d
=algqvy—q*+2aq9+b /2q( 1 )dg )

—q>+2aq +b

2d d
q —q2+2aq+b+/ 759 —a/ 74
V—=q>+2aq +b V—=q*>+2aq +b

—a (q\/—qz T2aq +b+Js— aJ4) , (2.134)
where
2d
s = / q-dg 7
V—4*>+2aq9 +b
d
Jy = 44 . (2.135)
V—=q>+2aq +b
According to (2.109) J4 = J*, that is,
Jy = —v/—q? + 2aq + b + arcsin - , (2.136)
Je

where ¢ = 1 — k?sin” .
In the case of the integral J3 we have

7 —q3%dg (—¢% +2ga + b —2qa — b)dq
= — T =

vV—q%+2aq+b vV—q%+2aq+b
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2
— 2
vV—q*+2aq+b vV—q*+2aq+b

+b/ Y —/ V—4¢%+2aq +bdq +2aJs+bJs. (2.137)
vV—q*+2aq +b

From (2.115) it follows that the integral Js is equal to

7

Let us note that the first integral in (2.137) is equal to —%Jz [see (2.129)], that
is, (2.137) assumes the form

Js = arcsin 9 (2.138)

1
J3 = _;JZ +2aJs+ bJs, (2.139)

where J; is given by (2.134).
From (2.134) and after taking into account (2.139) we obtain

1
Jr :a(q —q2+2aq+b—;Jz+2aJ4+bJ5—aJ4), (2.140)

hence we obtain

2 b
L= 2aq+ b+ L+ L (2.141)
2 2 2
Let us now proceed to the calculation of the definite integral J corresponding to
the indefinite integral (2.127). According to the Newton—Leibniz formula we have

9
- % 9 9
J:/\/—q2+2aq+quq:(J1+J2)) =Ji| +h (2.142)

q q q
o 1 1 1
We successively calculate
92 3|92 3 |at/c
Ji } =-3 (\/—q2+2aq+b) =-3 (\/—q2+2aq+b)
q1 q1 a—ﬁ

3
=-3 |:(\/—(a + 4/€)? + 2a(a + e) + b)

- (\/—(a — Vo) 4 2a(a— o) + b)3]

_ 3 [(mf _ (mf] —o, (2.143)
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9 2

q a a q ab 4
J> 2=—<q —q +2aq+b) + = 2+—J5 ’
a2 a2 la 2 q
a
=§[(a+\/_)\/a2+b—c—(a—\/_)\/a2+b—c]
a> @2 ab  |a
SRy N Ty (2.144)
2 q1 2 q1

q
The definite integral J4 ’

q1

[see (2.136)] has already been obtained [see (2.117)]

and is equal to

q2
= na, (2.145)
q1

J4

and the integral J5 )qz [see (2.138)] has been also calculated earlier (see (2.117)) and
a1

reads

= 7. (2.146)

From (2.144) and after taking into account (2.145) and (2.146) we obtain

e b
L =adevayb—c+ ot + L8 (2.147)
q1 2 2

Returning to the original notation we have

va:+b—c = \/kZCOSZQ—l—l—kz—(l—kzsinzé’),

3

za3 = i cos® 6,

2 2

abmw  w )

— = —(1—k )kcos@, (2.148)
2 2

and in view of that

e k3

2

= TCOS 0+ (1 — k?)k cos 6.

q1

The problem then boils down to the calculation of the integral

7 wk? 4 7 2 2
/Jcos 0do = T/COS 0do + 5(1 —k )k/cos 0deé. (2.149)
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The elementary integrals are calculated in the following way:
/cos2 0do = ! /(1 + cos20)df = o + ! sin 26
) 2 4 ’
1
/cos4 0do = 7 /(1 + c0s260)%df
1 2
=1 (1 4+ 2cos20 + cos”20)do
19+1'29—|-1/(1—|- 40)do
= - —sin = cos
4 4 8
1 1 0 1
=-0+ 7 sin26 + — + — sin44. (2.150)

4 8 32

In order to shorten the notation we calculate the following definite integrals:

r o 1

/cos2 0do = (— + —sin 29)
2 4

0

0

g

’
0

21
9 1 HICSIHE
/cos2 0do = (— + —sinfv1— sinze)
J 2 2 0
. n k2 —1
= —arcsin — + ———,
2 k 2k2

360 1 1
cos* 0do = (; + 1 sin26 + 7 sin 49)

St~

0,

/00549d9 = (% + %sinevl—sinze

in L
aresin j;

1
+3 sinfv'1 —sin® 8(1 — 2 sin’ 9))
0

WL VRS R DVE
= — arcsin —
8 k 2k2 8k*

1 (5k2—-2)Vk2—1

= —arcsin — +
8

k 8k4
From (2.126) we eventually obtain

(2.151)
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T

92
/cos 6do / \/—(q —kcosf)? + 1 —k2sin’ 6 gdg

0

Zk )

= 4 — k<1
_ 3Nu 16 ( k) k=1
- 2 61 9

/cos@d@/ \/—(q—kcose)2+1—kzsin29qdq

0 q1

wk 1 m(24+k) V-1
=16 (4—k )arcsmE + 6k : (k > 1).
(2.152)

Let us now return to the friction model presented in Figs.2.52 and 2.53. The
friction moment about point O’ (the instantaneous center of rotation) we obtain by
exploiting (2.106), where additionally the numerator of the integrand is multiplied
by % = Rgq to obtain

T 2
%/w/’ i . (k=1),
0 g \/ (q —kcos0)? + 1 —k2sin* 6

1

M2 = uNR
o b

q*dq
/w/¢@ — . (k>1).

6)2 + 1 —k2sin’ 6

(2.153)
After using the previous calculations [see (2.135)] we obtain
2 2 k2
LACRLS R
M2 = uNR (2.154)
722 + k?) .1 3m
———~arcsin— + —+VkZ -1, k> 1.
4 k 4

Our aim is to determine the moment of friction forces with respect to point O,
which, according to the designations presented in Fig. 2.53a, is equal to

M2 —MP —HT =0, (2.155)

that is, )
MP =M —HT, (2.156)

where the friction force T is given by (2.106).
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Fig. 2.54 Motion of a rigid body on an inclined plane with velocity of rotation (w) and velocity
of slip (v) included simultaneously

As an example of the application of the introduced theoretical considerations we
will examine the motion of a disc on an inclined and a horizontal plane.

Let us consider the classical case of motion of a rigid body of mass 7 and mass
moment of inertia / about the principal centroidal axis of inertia perpendicular to the
surface of contact being inclined at an angle f to the horizontal surface (Fig. 2.54).

The equations of motion of the body have the form

mv =—T + mgsin B,
I =—Mrp. (2.157)

The calculations will be conducted for the previously considered cases (i) and
(ii) using the Padé approximation.

Let us now return to (2.98). As has already been mentioned, integrals (2.98)
can be expressed in terms of elliptic integrals that can be checked easily, for
instance, by employing the Mathematica software. However, it turns out that
they can be approximated using the Padé approximation after introducing o (r)
described by (2.101) and (2.102), which was demonstrated by Zhuravlev [46]. The
calculations below were conducted using a Mathematica application for symbolic
calculations. Let us apply the simplest form of the Padé approximation

u
M ) :M ’
rlu.v] 0u+av
v
Tlu,v] =T ) 2.158
.1 0v+bu ( )

where Ty, My, a, and b require determination.
The quantities Ty and M, are determined in the following way:

To=T[0,v,  My= Mlu,o0] (2.159)
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and from (2.98) we find
1 2 1
To = uR’ / p*o(p*) / dp*d¢ = 2muR’ / p*o(p*)dp*,
0 0 0
1 2 1
My = pR? / p*o(p*) / p*dp*d¢ = 27 pR’ / pPo(p*)dp*.  (2.160)
0 0 0

The quantities @ and b are obtained after the differentiation of (2.158) and (2.98)
with respect to variables u and v. After adequate differentiation of the equations we
have

aT Ty oM M,
W[’LO] = a—u[O,V] = (2.161)
and after differentiation of (2.98) we obtain
1
oT R
R
av u
0
oM :
b4
B_u[o’ v] = R—V/p*30(p*)dp*. (2.162)

0
After equating (2.161) and (2.162) by sides we obtain the unknown coefficients

1 1
2 [ p*2o(p*)dp* 2 [ p*o(p*)dp*
a=——  b=-"" (2.163)
[ p*3a(p*)dp* Jo(p*)dp*
0 0

The desired coefficients were found using Mathematica.
Equations (2.157), after taking into account the Padé approximation, assume the
form

m dv = Tov + mgsin
dt [+ TESRE
du RMyu

I— =— , (2.164)
de lu| + av

where u = Rw.
In the case of a contact over the circular patch (case i) R denotes the radius, and
in the case of the point contact R — 0.
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Following the transformation of (2.164) we obtain

mdv v mg sin
Todt  |v|+bu Ty
I du u
— = . (2.165)
RM, dt lu| + av
The preceding equations assume the following form:
dv v n
dr — |v| + bu p:
d
a___a (2.166)
dr lu| + av

where the following substitution for time and two dimensionless parameters were
introduced:

To mg sin 8 RMym
= ¢ p=—"—, e=—-".

. (2.167)
m T() T()]

T
For case (i) we assume m = pomR? (po is the surface density) and I = %mRz,
and from (2.160) and (2.163) we obtain

1 1 3 4
My = -NnRu = —-nRTy, az—n, b=—,
4 4 n

and for case (ii) we have

3 3 157 8
My = —=NnRu = —aRTy, =—) b=—.
T Tt N T 37
For case (i) e = 25}:}% = % [for case (ii) we have My = 0 because R = 0].

Equations (2.166) for case (i) take the form

dv VI n
dr — |v|7 + 4u P
d 2
au_ _L7 (2.168)
dr 4|lu| + 37y
and for case (ii) (2.166) are as follows:
dv 3vm +
dr  3lv|w +8u p:
du
=0. (2.169)

dr
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Fig. 2.55 Graphs of v(8) v,u
and u(fB) dependencies 2.0
1.5

Let us consider (2.168) in more detail. After dividing these equations by sides
we obtain

Q _[(p=Dv+ pbu](u+ av)
du eu(v+ bu)

) (2.170)

where a = 37”,b = %.

Mathematica cannot integrate (2.170) directly, although it is possible after the
introduction of adequate substitution for the coordinates. For the case p = 0
(motion of a cylindrical disc on a horizontal surface), (2.170) is integrable by
quadratures.

In the general case the numerical integration of (2.168) is made more difficult
because of singularities of these equations (the denominators may tend to zero or
to infinity). On the example of the case p = 0 we will show how to avoid the
singularities of those equations by applying the substitution of the independent
variable (time) according to the equation

B
T = /(?mv ~+ 4u) (v + 4u)dp. 2.171)
0

The obtained equations

dv

@ = —v(3av + 4u),

D (2.172)
dp

do not have singularities at the point # = v = 0 and can be easily integrated.
Below some illustrative results are shown.
From Fig.2.55 it can be seen that u(f) — 0, v(f) — 0 for B — oc.
In view of that, according to (2.171) t attains a finite value. For certain finite
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Fig. 2.56 Dependencies u(t) and v(t) for the following cases: (a) p = 0;(b) p = 0.5;(¢c) p = 1;
(d) p = 1.5 for the circular contact

values of 7, (which will be shown later with the aid of numerical calculations)
u(t«) = v(t«) = 0. This means that in the case of the applied Padé approximations
both the sliding velocity v and the rotation velocity w reach zero values at the same
time instant.

In Fig. 2.56 some illustrative graphs of v(t) and u(t) for p =0, p = 0.5, p =1,
and p = 1.5 are presented. From the qualitative analysis conducted in [46] it follows
that the behavior of the disc differs in a qualitative sense for p < 1 and for p > 1
(the critical case of p = 1).

In all the presented cases identical initial conditions are assumed: vo = 5, uy = 4.
The time plots for p = 0 and p = 1.5 do not deviate much from straight lines,
whereas for p = 1.5 we have w(r) — 0 and v(r) — oo. In the case p = 0.5 it
can be seen that v(7) and w(7) attain zero and their graphs are curves. In the critical
case of T — oo we have w(t) — 0, whereas v(t) reaches a steady value v, which
can be easily estimated in an analytical way.

A natural and interesting question arises as to whether the introduction of the
initial condition only for one variable causes the failure of the other variable to
appear. This case is considered in a manner analogous to that of the previously
analyzed example, and we assume respectively vo = 0, up = 0, v = 5.
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Fig. 2.57 Graphs of time characteristics #(7) and v(t) for the initial conditions vy = 0 and uy = 4
andcases (@) p =0,(b) p =05,c) p=1,d) p =15

From Fig. 2.57 it follows that during motion on the horizontal plane the disc only
rotates with the rotation becoming gradually slower until it reaches a state of rest
with no contribution from the slip velocity. In the p = 0.5 case the angular velocity
attains zero along the curve, while the sliding velocity initially increases, reaches
the maximum, and decreases to zero. In the critical case p = 1 the velocity w(7)
drops quickly to zero, and the sliding velocity reaches a steady value.

In the case p = 0 (p = 0.5) the velocity w(t) — 0 for t. = 5 (z« = 10) at
v(t) = 0. In the critical case p = 1 we have v(t) = vy, @(7) = wy, and in the case
p = 1.5 we have v(7) = 0, while v(7) — oo (Fig.2.58).

Let us now return to the exact equations of disc motion for the case p = 0, which
have the following form:

(1) The instantaneous center of rotation lies within the contact patch of the disc and
inclined plane (wR > v):

_ _THKPo v
4p0R3a)’

Tpupo w*R* — v

T T 4p0R3 w?R?

(2.173)
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Fig. 2.58 Graphs of time characteristics u(t) and v(7) for initial conditions vp = 5 and uy = 0
andcases (a) p =0,(b) p =05, (¢c) p=1,d) p =15

(i1) The instantaneous center of rotation lies outside the contact patch of the disc
and inclined plane (wR < v):

PO (v . oR v2—w2R2)
—arcsm — + —— |,

- _2,00R2 wR v v
2R2_ 2 R V2 —olR2
= _HP (@ Y aresin 25 4 XV ) (2.174)
200 R? w?R? v R

Above we have set m = poR?, I = LpomR*.

In Fig. 2.59 three illustrative results of calculations are shown, where besides v()
and w(¢) the graph of w(t)/v(t) is presented and where (we recall) the position of
the instantaneous center of rotation is described by the equation k = wv(gt))R = LRI).

The position of the instantaneous center of rotation for v(t) — 0 and w(t) — 0
was analyzed in [48].

After dividing (2.173) and (2.174) respectively by sides we obtain

dv k
w - R k=D (2.175)
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Fig. 2.59 Time histories of v(¢), w(t), and w(t)/v(t) for (a) wy = 25, (b) wy = 16.666, (c)
wy = 10

d k arcsin (1) 4 &=
& () + % . (k> ). (2.176)
do (2 — k?) arcsin (%) +Vk2 -1
The equation of a tangent to the trajectory of the system has the form v/w = Rk,
and from (2.175) and (2.176) we obtain
k

T2k

k (k <1,

k arcsin (%) + ka—l

- (2 — k?)arcsin () + vVk? — 1

The first equation possesses the solution k& = 1, while the second one does not
have any solutions.

In the end, let us return to case (ii) and (2.169). Some illustrative calculations for
the point contact are given in Fig. 2.60 for different values of the parameter p. It can
be seen that for p > 1 the motion changes in a qualitative sense.

As was mentioned, (2.158) at the points # = 0 and v = 0 are singular and
the limits lim, , o M7 and lim, .o 7" do not exist. After the introduction of the
designations m = |Mr|/ Mo, n = |T|/ Ty (2.158) take the form

k> 1). (2.177)
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Fig. 2.60 Dependencies u(t) and v(t) for the point contact for the cases (a) p = 0, (b) p = 0.5,
©p=LM@p=15

u y
— , = ) 2.178
" u—+ av " v+ bu ( )

Because, as the numerical calculations showed, u and v tend to zero attaining this
singular point simultaneously, let us introduce the relationship v = au. After taking
into account this relation in (2.178) we obtain

u odu

= —, = —. 2.179
u+ aav " au+ bu ( )
From (2.179) we obtain
b
m(l + aa) =1, n|l+—)=1 (2.180)
o
From the first of (2.180) we calculate
1 —
a=—_" (2.181)
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Fig. 2.61 Illustrative graphs of (2.182) for (a) ab = 2, (b) ab = 17/3, (¢)ab =1

and then, from the second one, after taking into account (2.181) we have
m+n[l + (ab —1)m] =1, (2.182)

and after transformations we obtain

1—m
n=—————o ——.
(ab—1)ym+1

In Fig. 2.61 the graphs of (2.182) are shown for the cases (a) for ab = 2, (b) for
ab = 17/3, and for ab = 1 as a critical case (c).

From the graphs in Fig. 2.61 follows a very interesting conclusion, which is often
observed in everyday life. In the case where a rigid body is at rest, the action of even
a very small moment M7 leads to a rapid drop in magnitude of friction force T,
which greatly facilitates the start of movement of a body. It is also associated with
the frequently observed dangerous skid during cornering of a wheeled vehicle.

The CCZ model allows one also to pinpoint many characteristics of bodies
moving with frictional contact. We will show that the friction does depend largely
on the area represented by the radius R. To this end let us return to (2.173), which
are solved for two values of R (Fig.2.62).

When comparing the results presented in Figs. 2.59a and 2.62 it is clear that with
increasing radius R the time needed for the disc to stop increases in a non-linear
fashion. A similar situation can be observed also in the case of wy = 10 and two
different values of R on the basis of (2.174) (Fig.2.63).

Let us now analyze the effect of a two-dimensional friction on relative motion
and self-excited vibrations.
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Fig. 2.62 Time histories v(¢), w(t), and w(z)/v(t) for wy = 25 and R = 0.35 (a) and R = 0.45
(b) (the remaining parameters as in Fig. 2.58)
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Fig. 2.63 Time histories v(¢), w(t), and w(z)/v(t) for wp = 10 and R = 0.35 (a) and R = 0.45
(b) (the remaining parameters as in Fig. 2.58)
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Fig. 2.64 Motion of disc determined by w(¢) and v(¢) for the cases uy = 1 and vy = 1.5 (a) and
vo = 0.5 (b)
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Let us consider the motion of a disc on an inclined plane, where now the motion
takes place on an inclined plane remaining in contact with the moving disc and
running with a constant velocity vy. Equations of motion (2.168) assume the form

dv (v —wp)
dr v —vo| + 4|u
du 2mu

—_—=—_ 2.183
dr 3|y —vo| + 4|u| ( )

+P7

In Fig. 2.64 an example of calculations for the case up = 1 and for two different
initial velocities: (a) vo = 1.5 and (b) vo = 0.5.

From Fig. 2.64 it is seen that in both cases the velocities w(t) — 0 and v(¢) — 1
attaining these values simultaneously in finite time.
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Chapter 3
Geometry of Masses

3.1 Basic Concepts

Let us consider a system of particles 4, (n = 1,..., N) of masses m, and radius
vectors 1, with respect to a certain adopted coordinate system OX; X, X3 (see also
[1-9D).

We will call the point C whose position is determined by the following radius
vector a mass center C of a system of particles:

N
2 Malky
ro="=_ (3.1)
c M ) .
where M denotes the mass of the system given by the formula
N

M=Ym, (3.2)

n=1

Multiplying the numerator and denominator of (3.1) by the acceleration of
gravity g the problem boils down to the determination of a center of gravity in a
uniform gravitational field.

Note that the mass center is sometimes called the inertia center.

The previously introduced notion of body mass is a measure of inertia of a body
in translational motion. In rotation of the body about an axis a measure of inertia of
the body is its moment of inertia with respect to that axis.

Above we defined the position of the mass center of a discrete (lumped) system
of particles with respect to the origin of the Cartesian coordinate system OX; X, X3.

A moment of inertia of a system of particles with respect to a plane I' is defined
by the following formula:

N
2
Ir = Z mys,, (3.3)
n=1
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where s, denotes the distance of point 4, from the plane I". It is a scalar quantity
equal to the sum of products of particle mass and the square of its distance to the
plane for each particle.

If as planes we choose those of the Cartesian coordinate system OX; X, X3, the
moment of inertia with respect to those three planes is given by the equations

N N
I _ 2 I _ 2
0X, X3 — mnxlna 0xX1X3 — mn-xzyp

n=1 n=1

N
2
Iox,x, =Y mux,. (3.4)
n=1
It is also possible to define the notion of the moment of inertia of a system of
particles with respect to an axis [, namely:

N
L= mdj, (3.5)

n=1

where d,, denotes the distance of point A4, from axis /.
The moment of inertia about axis / we can also represent in the form

I, = Md?*, (3.6)

where M (mass of the system) is determined by (3.2) and we will call quantity d a
radius of gyration of a system of particles about an axis /.

The radius of gyration d describes the distance from axis / of a certain point at
which the whole mass M of a system of particles should be concentrated so as to
obtain equality of moments of inertia with respect to axis [ of the system and of the
mass M at that point.

We can define the moment of inertia of a system of particles with respect to an
axis as a scalar quantity equal to the sum of products of the mass and square of the
distance from the axis for each particle.

If as axes we choose those of the Cartesian coordinate system, moments of inertia
with respect to those three axes are described by the equations

N N
IXI = Zmn(xgn + x32n)’ IXZ = Zmn(xlz” +x§n)7

n=1 n=1

N
Iy, = Zm,,(xlzn +x2). 3.7

n=1

The moment of inertia of a system of particles with respect to an arbitrary pole
O, the so-called polar moment of inertia, is given by the formula

N N
Io =Y muxp =Y myr. (3.8)

n=1 n=1
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Fig. 3.1 Static moment with respect to the plane I" (A, > 0O and A, < 0)

This is a scalar quantity equal to the sum of products of the mass and square of
the distance from the chosen pole for each point of the system of particles.

Observe that

N
Ip = Zmn (Xlzn +x3, + X%,,) = lox,x; + lox,x; + Toxx,. (3.9
n=1

where (3.8) and (3.7) were used.

In order to investigate the distribution of masses of a discrete system of particles
we can make use of the plane I".

The quantity defined by the following equation we call a static moment of a
system of particles about a plane I" (Fig.3.1):

N
I3 = me (3.10)
n=1
where A,, are coordinates of points A, measured along the chosen axis perpendicular
to the plane (therefore they are positive or negative).

If we are dealing with a continuous system of particles, the symbols of sum used
earlier are replaced by integrals.

If, as in the last case, we consider a continuous body, the transition from the
discrete system of particles to the continuous system is connected with an increase in
the number of particles N — oo with the masses of those particles simultaneously
tending to zero, that is,

N—o00
Am,—>0n=1

N
If = lim > Amyh, = //\(xl,,,xz,,,x3,,)dm. (3.11)
M
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The integral above corresponds to an infinite sum of the products of elementary
points A, (x1,, X2, X3,) and their coordinates with respect to the mentioned plane.

The distance A (with plus or minus sign) is a function of the position of point A4,
which was emphasized in (3.11).

The following integral we call the geometric static moment of the volume with
respect to a plane I" of a continuous system (a solid):

130 = //\(A)dV, (3.12)
Vv

where /' denotes the volume of a solid. It represents a distribution of the volume of
the solid with respect to the plane I".
Let us note that dm = pdV and from (3.11) we obtain

15 = /p(A)A(A)dV. (3.13)
v
The quantities p and A depend on the position of point A, that is, on the position
of a particle of elementary mass dm.
If the solid body under consideration is homogeneous, that is, p(4) = p = const,

then from (3.12) and (3.13) we obtain the relationship between the first moment of
mass and the first moment of the volume (geometric first moment) of the form

15 = pIf. (3.14)

During our discussions regarding the kinematics of a rigid body we have often
used the Cartesian coordinate system OX|X;X3. Coordinates of this system are
determined by the intersection of three planes, OX X>, OX, X3, and OX| X3. The
first moments of a discrete system of particles (DMS) and a continuous one (CMS)
with respect to the aforementioned planes are equal to

nglxz = Ziv:l My X3n,

S N
Iox,x, = > n=1 MnXn,

ISy, = Yomei MaX1n, (3.15)

1ngle = /x3dm = /X3p(x1,x2,x3)dV,

M Vv
15X1X3 = /xzdm = /sz(xl,xZ,X3)dV,
M Vv

Ioxx, = /xldm = /xl,o(xl,xz,x;:,)dV. (3.16)
M Vv
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Fig. 3.2 Representation X,
of a radius vector of point A4,

Let us now return to (3.1) determining the position of mass center of DMS. Let
us note that any point A4, described by the radius vector r,, can also be represented
by the components of this vector (Fig. 3.2).

According to (3.1) we have

Zy],v=1 mn(-xlnEl + xZnEZ + x3nE3)
M .

Multiplying (3.17) in turn by E,, E,, and E; and taking into account (3.15) we
obtain

xicE1 + xocEp + x3cE3 =

(3.17)

Xie = 15X2X3’ Yo = nglxs’ Xae = ngle’ (3.18)
M M M
and taking into account (3.16) we obtain
‘{xlp(xl,xz,xzs)dV
Xic = M s
JXZP(xls-xL-’Q)dV
Xoc = M s
‘[x3p(x1,x2,x3)dV
X3¢ = i , (3.19)

that is, we determined the position of mass center of DMS (3.18) and mass center
of CMS (3.19) using first moments with respect to planes.

It is easy to notice that a mass center C of a solid and a centroid of that solid
C ¢ do not have to be coincident. They coincide only in the case of a homogeneous
body since we have
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which can be treated as a sufficient condition for the coincidence.

The CMS can be three-, two-, or one-dimensional, homogeneous or non-
homogeneous. The density of such bodies is related to the volume (kg/m?), the
surface (kg/m?), and the curve (kg/m), respectively. In the case of homogeneous
bodies, if they possess a plane or an axis of symmetry, their mass center lies on that
plane or axis. If the homogeneous body possesses a center of symmetry, it coincides
with the mass center.

Because the dimensions of bodies with respect to Earth’s radius are small, the
forces of attraction to Earth’s center, that is, the central forces, are approximated
with the field of parallel gravitational forces. The main force vector is equal to the
sum of forces acting on each particle of a body, and the center of those parallel
forces of identical senses is called the center of gravity of a body.

Let us consider a homogeneous volume V', which we will divide into certain
volumes AV}, AV,, ..., AVy, and assume that the positions of gravity centers of
each of the elementary volumes AVy are known. If one denotes the specific weight
of the body by yp, its density by p (y = pg), and the elementary mass corresponding
to an elementary volume by Am ¢, then the resultant force in such a case is equal to

N N N
G=) AG,=g) pAV,=g)_ Am,, (3.21)
n=1 n=1 n=1
or
N
G=y) AV, =Vy. (3.22)
n=1

We have then determined the resultant force (main force vector), and determin-
ing, using the described method, the position of the center of parallel forces C,
from (3.1) we obtain its position:

N N
- Zn=1 AG,x1, _ Zn=1 Amy X1y
Xic = = s

G M
or = Zﬁ:l AGpx2n _ Zﬁ:l AmpXap
¢ G M ’
Ziv:l AGpx3n Zi\;l Amy X3,
= = . 3.23
X3¢ G i (3.23)

In a similar way we can determine the position of mass centers of certain surfaces
or one-dimensional mechanical systems (e.g., rope, wire).

Let us consider, e.g., a homogeneous shell of a constant thickness /2 and a specific
weight of material y (Fig.3.3).
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Fig. 3.3 Determination of
the mass center of a shell
having a thickness /

Fig. 3.4 Determination of the center of gravity of a plane figure

We proceed in a way similar to that described earlier. Because we are dealing
with a continuous surface and the number of elementary cut-outs of the surface
AS), tends to infinity and their area tends to zero, we replace the signs of sum with
integrals.

We obtain the following values of the coordinates of point C (the mass center of
the shell) in the adopted Cartesian coordinate system OX| X, X3:

JdGx;  yh[xidS  [xdS
G 5 s

yh [dS ~ [dS
S N

Yie =g i=123. (3.24)
G

Let us introduce the notion of the center of a plane figure (Fig.3.4). Any plane
body of small thickness can be treated as a plane material figure. If we assume a
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Fig. 3.5 Determination of
the mass center of a triangle

unit weight y[%] and an area of the figure S, then its weight G = Sy. Dividing
the area into elementary AS),, the weight of the elementary area may be written as
AG, = yAS,. According to the earlier derived (3.24), the coordinates of the center
of gravity for this figure are described by the equations

_ Z,],VzlxlnAGn — Ziv=lxanASn

vie = G VS
N
= inASn .
_ Zn_lg , i=1.2. (3.25)

From the obtained equation it follows that the location of the center of gravity of
the considered (any) plane figure does not depend on the y constant. That is why the
center of gravity of a homogeneous plate is called the center of gravity of a surface
of the plate.

Definition 3.1. The sum of products of elementary areas into which an area of a
plane figure was divided and their distances from a certain axis is called the static
moment of the plane figure with respect to the axis.

Knowing the static moments of the area of a plane figure, it is possible to
determine the coordinates of the center of gravity of this figure from (3.25).

The reader can solve an example regarding the determination of mass center of,
e.g., a rope, that is, a one-dimensional system in R? space.

In practice we calculate the mass centers of solids by introducing the division
of the given solid into a certain number of component solids in order to make the
calculations more convenient.

Let us consider some examples.

Example 3.1. Determine the position of a centroid of a triangle A A B C with respect
to the base A B (Fig.3.5).

We will determine the position of a centroid of a triangle as the ratio of the first
moment about the axis OX to the area of the triangle, that is,
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Fig. 3.6 Determination
of the mass center of a

quadrilateral
h h
[ x2dS4 [ xa'dxs 2 [ x2(h — xp)dxs
o — lox, _ Fa _ 0 _ 0
* Sa Sa Ltha h?
173 113
_ z[zh ! ] _26-2, _1,
N h? 6 3
because
a _h—x;
=
wherea = AB,a’ = A'B’. O

The preceding example was aimed at the presentation of the method of integra-
tion since it is well known that the centroid of a homogeneous triangle lies at the
intersection of any two of its medians.

Example 3.2. Determine the position of a mass center of the quadrilateral (homo-
geneous plate) A; A, A3 A4 shown in Fig. 3.6.

Let us connect points A; and Az and then determine the centers of triangles
AAAyAsz and AA| Az Ay, obtaining the points C; and C,, which we connect to one
another. Similarly, we proceed in the case of triangles AA; A, A4 and AA; A3 A4, and
as a result we obtain the segment C3Cy4. The point of intersection of the segments
C,C; and C3C4 determines point C, which was to be found. O

Example 3.3. Calculate the position of the mass center of a sector of a disc of radius
r and of the angle-at-the-center 2«x shown in Fig. 3.7.

The area of the circular sector can be treated as the area composed of elementary
triangles of altitudes r (one of them marked with a hatching line). According to
Example 3.1 the centroids of these triangles will lie at a distance of % from the base,
that is, on a circle of radius %r. The problem, then, boils down to the determination
of the centroid of a one-dimensional line, that is, the arc of a circle of radius %r.
On account of the symmetry of the problem, the centroid of that arc lies on the
axis 0X,.
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Fig. 3.7 Determination of
the centroid of a circular
sector

Fig. 3.8 Graphical method
of determining the centroid
of a figure having the shape
of an asymmetric T

The centroid of the arc of a circle of length L is given by the formula

o

[xads 5 [xardgp  2r? [ cosgdg
L L

—o

e = L - 20r - 20r
2rj d 2r [ . ¢ 2rsina .
=-— | cos = ——| sin = —
3a vee 3a v 0 3a

Example 3.4. Determine the radius vector of the centroid of a figure composed of
two parts having areas S| and S5, as shown in Fig. 3.8.
From the definition we have

2

S,r,
. _nz=:1 _S1I'1+Szl‘z_ﬂr+ﬂr
CTS+s S TS e

and the vector sum resulting from the equation above is presented in Fig. 3.8. O
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It has been shown that the coordinates of the centroid of an area are found by
dividing the first moments of that area by the area itself. Observe that if the centroid
of an area lies on a coordinate axis, then the first moment of the area around that
axis is zero, and vice versa.

If an area or a line has an axis of symmetry, then its first moment with respect to
the axis of symmetry is zero, and its centroid is located on that axis. Furthermore,
if an area or line has two axes of symmetry, then its centroid is located at the
intersection of the two axes.

It can be easily shown that the centroid of the area coincides with its center of
symmetry. Recall that an area is symmetric with respect to a center if for every
element of area dS(x, x») there is an element dS’(—x;, —x,) such that dS = dS’.

We have considered so far the general rules for locating the centers of gravity of
two-dimensional bodies (wires) and the centroids of plane areas and lines. We have
shown that if the considered bodies are homogeneous, their centers of gravity and
centroids coincide. If one is dealing with composite plates and wires, then such
objects should be divided into known parts (rectangles, triangles, arcs, etc.), and
one may then proceed in a standard way (see also Example 3.7).

Table 3.1 gives some examples of centroids location for common shapes of
selected plane figures and curves [4].

In the case of the solids of revolution, that is, the solids generated as a result of
the revolution of a certain curve about an axis lying in the plane of that curve but
not intersecting it (Fig. 3.9), there exists a relation between the lateral surface and
the volume of the solid that is expressed by the following two Pappus—Guldinus
rules (theorems).

Theorem 3.1 (Pappus—Guldinus' Rule I). The area of a surface created through
a full revolution of a plane curve about an axis OX3 not intersecting the curve
and lying in its plane is equal to the product of the length of that curve and the
circumference of a circle described by the centroid of the curve while the surface is
being generated.

Theorem 3.2 (Pappus—Guldinus Rule II). The volume of a body created through
a full revolution of a plane figure about an axis not intersecting the figure and lying
in its plane is equal to the product of the area of the figure and the circumference of
a circle described by the centroid of the figure while the volume is being generated.

According to Fig. 3.9a the area of the surface of revolution is equal to

S = / 2mr(s)ds = 27 / r(s)ds =21y, (3.26)
/ 1

!The theorems are named after the mathematicians Pappus, who worked in Alexandria and lived
in the third or fourth century AD, and Guldin (Guldinus), who in 1635 formulated the results of
his work on the center of gravity.
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Table 3.1 Centroids of common shapes of areas and lines (see also [5])

Area/curve
Shape X1 X, length
C C
h
i h bh
Triangle 3 5
b2 bi2
; 4r 4r ar?
Quarter.-c'lrcular and i i o
semicircular area
4r ar?
0 w T
4a 4b mab
o 3 37 4
Quarter-elliptical
4b mab
0 3 2
Semiparabolic ' S 3 3
and parabolic area
3h 4ah
0 5 3
n n+1 n+1 ah
Area under curve ax P10 o +2h e
Circular sector Zrdng 0 ar?
Quarter-circular arc z z =
and semicircular arc
0 Z Tr
g
Arc of a circle rsing 0 2ar
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a X3 4 b

?L

o

[

Fig. 3.9 The lateral surface and volume of a body of revolution obtained as a result of the
revolution of a curve / (a) and a figure S (b) about an axis OX; (see Pappus—Guldinus rules I
and II)

where [ gX3 is the first moment with respect to the axis OX3. The first moment is
equal to

Iy, =lrc. (3.27)

where r¢ defines the position of the mass center of a curve of length S.
Substituting (3.27) into (3.26) we obtain

S =2nlrc. (3.28)
According to Fig. 3.9b the volume of a revolution is equal to
V =2n / rdS =2mly,. (3.29)
s

where the first moment / g x, of a plane figure can be determined from the equation
15y, = Src, (3.30)

that is,
V =2nSrc. (3.31)

In what follows we show, using examples, how the Pappus—Guldinus rules can be
used to (1) compute the area of the surface of revolution and volumes of bodies of
revolution, (2) determine the centroid of a plane curve when the area of the surface
generated by the curve is known, or (3) determine the centroid of a plane area when
the volume of the body generated by this area is known.
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Fig. 3.10 Determination AX,
of the volume of a torus

Fig. 3.11 Schematic leading
to the determination of a mass
center of a half-disc

Example 3.5. Determine the volume of a solid (torus) created as a result of the
revolution of a circle about an axis OX3 (Fig.3.10).
Directly from the second Pappus-Guldinus rule we obtain

V = 71’1‘12 2y = 2n2r12r2. O

Example 3.6. Calculate the position of a mass center of a half-disc of radius r.

Let us note that for the determination of the distance of the mass center of a half-
disc from its diameter lying on the axis OX3 (Fig.3.11) one may use the second
Pappus—Guldinus rule if one knows the volume of a ball given by V;, = 2773

3
Since we have
1,
Vb = Enr '27'[7'@,

and from that
o Vo 4amr’  4r
TR T 3722 3x
The result just obtained is identical to the one from Example 3.3 for « = 7/2.
|



3.2 Second Moments 145

AX,

A
L 4

Fig. 3.12 Determination of the position of a mass center of a figure consisting of two rectangles
and a triangle

Example 3.7. Determine the position of a mass center of the plane figure depicted
in Fig. 3.12.
The position of mass center of the figure is given by

_ Sixse, + Saxsc, + S3x3cy
S+ S+ 83

X3C

dlhl%]‘ + dzhz(hl + %2) + %d3h3(h1 + hy + %1)

= . O
dihy + dyhy + Sd3h;

In general, a procedure to determine the location of the centers of gravity of
three-dimensional bodies or the centroids of their volumes is similar to that of
the thus far studied two-dimensional shapes and flat lines and hence will not be
further addressed. However, centroids of common shapes and volumes are reported
in Table 3.2.

3.2 Second Moments

Static moments (mass or area/volume) are called first moments. The moments of
inertia (with respect to a plane, axis, and pole) and products of inertia are called
second moments.
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Table 3.2 Centroid location of common shapes and volumes (see also [5, 7])

Shape Scheme Xe Volume

Hemisphere 2 2ra’
Elliptic paraboloid % %nabh
Cone % % wa’h
Pyramid % % wabh
Semiellipsoid 3h 2 ah

of revolution 8 3
Three-axis

nonsymmetric

ellipsoid L 2rabe
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Fig. 3.13 Product of inertia A X,
of point A; with respect to
two perpendicular planes I
and I» I
A
L, T - A
AE, E.
E.O E, % X,
x‘l
X\

We have already introduced the notion of moment of inertia of a particle about a
plane, axis, or pole.

The position of a particle A; can be defined also with respect to two arbitrary
perpendicular planes (Fig. 3.13).

We call the following product I, -, a product of inertia of a point A; with respect
to planes I'1(OX; X3) and I5(0X, X3):

I = mixy;xy, (3.32)

where m; denotes the mass of the point and x; and x,; the distances to the planes
I'; and I, respectively.

In the case of the CMS the moments of inertia and the products of inertia are
defined as follows:

Ir = / Pdm, (333)
M

I = / d*dm, (3.34)
M

Io = /rzdm, (3.35)
M

Iplpz = /x1x2dm, (336)
M

where s, d, and r are defined in Sect. 3.1.
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Let us introduce now the stationary right-handed Cartesian coordinate system
0OX, X, X3 and calculate the second moments defined using (3.33)—(3.36).

Moments of inertia with respect to planes OX;X,, OX,X3, and OX,X; are
equal to

Iox,x, = /x%dm = /,o(xl,xz,)@)x%dV,

M 14

Tox,xy = /x%dm = /,o(xl,xz,)@)x%dV,
M Vv

Tox,x; = / xidm = / p(x1, X2, x3)x3dV. (3.37)
M Vv

Moments of inertia with respect to axes OX|, OX,, and OX3 are equal to

lox, = Ix, = / (x% + x3)dm = /p(xl,xz,x3)(x§ + x3)dV,

b, v
lox, =Ix, = / (xlz + x%)dm = /p(xl,xz,X3)(X12 + x%)dV,
b, v

Iox, = Iy, = / (x + x3)dm = /p(xl,xz,X3)(x12 + x3)dV. (3.38)
M v

The moment of inertia of a rigid body with respect to the origin O of the
coordinate system is equal to

lo = / (xf + x3 + x3)dm = /p(xl,xz,xs)(x% +x2 + x2)dV
M v
1
=5 Un + Iy + Ixy). (3.39)

The products of inertia of a rigid body with respect to the planes of the coordinate
system are equal to

Inp =Ixx, = /Xlxzdm = /P(xl,xz,x:’,)xlxde,
M Vv

Inp, =Ixx, = /X1x3dm = /P(xl,xz,x:’,)xlx:’,dV,
M Vv

Inr = Ixx, = /xycgdm = /P(Xlsxz,x3)x2x3dV- (3.40)
M i
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Fig. 3.14 Computational A X,
scheme for calculation of the
moments of inertia of a
homogeneous cylinder

y dx;

Xy

X,

The second moments of the volume of a rigid body in the coordinate system
OX1 X, X3 are obtained from (3.37)—(3.40) after omitting the quantity p(xy, X2, X3).

In the case where p(xj, x2,Xx3) = const, we obtain the relation between the
second moments of mass and volume in the form

I =1%, (3.41)

where I denotes any of the moments described earlier, / G denotes the moment of
the volume corresponding to /, and p is the density of any particle of the continuous
system.

Example 3.8. Determine the moment of inertia of a homogeneous cylinder of mass
M, radius R, and height & with respect to a base plane, an axis of the cylinder, and
a line passing through a diameter of the cylinder base (Fig. 3.14).

The mass moment of inertia of a cylinder with respect to the plane OX;X; is
equal to

h

1 1
lox,x, = /,ox%dV = npRZ/xgdxg, = §p7rR2h3 = thz [kg-mz],
0

14

and the corresponding moment of the volume reads

1
I§y,x, = 37R°W [mS].
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Fig. 3.15 Determination
of mass center C of a
pentagonal pyramid

Let us now calculate the mass moment of inertia of the cylinder about the axis
0Xj3. In this case the elementary volume dV is determined by the volume of the
cylindrical shell of radius r, thickness dr, and height A, that is,

R

lox, = / (x7 +x§)p(x1,xz,X3)dV = p/r227rrhdr
% 0

R* 1 1
= 2nph— = —7R*hpR* = ~MR> .
TP T Qe 2

The corresponding moment of the volume reads

1
I5x, = 5nR“h.

For the determination of the mass moment of inertia of the cylinder about the
axis OX, let us note that

Iox, = lox,x; + Tox,x,» loxs = Lox,x; + Lox,x;-

From the symmetry of the cylinder we have Iox,x; = lox,x,, thatis, Iox, =
21ox,x;, hence

Tox, =1 +11 —thZ—l—lMRZ—M h2+R2 u]
0X1 - 0X1X2 2 0X3 - 3 4 - 3 4 .
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Example 3.9. Determine the position of the mass center of the pentagonal pyramid
depicted in Fig. 3.15.

First, we determine the center of the pyramid base Cy and prove that point C
will lie on a line O C at a distance %H from the base, where H is the height of the
pyramid.

We are dealing with a solid whose elementary volumes AV, lying at a distance
X3, from the origin of the axis OXj3, are equalto AV, = S, Ax3, = S, %, where N
denotes the number of elementary volumes.

2
From proportion it follows that ‘;—’; = %, where Sy is the area of the pentagon
of the pyramid base.
The position of the mass center of the pyramid is
1< So —
0 3
X3¢ = 7 ;XZ;HAV,, = m ’;X3HAX3,,
H
S 3 _ SoH 2
= V2 X3,dx3, = VA
0
Because V' = %SOH , eventually x3¢ = %H . O

The (geometric) moments of inertia for selected plane figures are reported in
Table 3.3. The moments of inertia of selected three-dimensional bodies are shown
in Table 3.4.

3.3 The Inertia Matrix and Its Transformations

We will call an array of numbers of the following form marked with superscript V
the geometric matrix of inertia (mass is not taken into account):

4 4 4
IX] _IXle _1X1X3

V=|-1y, IV —IVy | (3.42)

Vv |4 Vv
_1X1X3 _IX2X3 1X3

and the elements (numbers) of this matrix are moments of inertia of a set of points
with respect to the axes of the coordinate system OX; X, X3 and products of inertia
with respect to three planes of that coordinate system. The matrix is a representation
of the symmetric tensor of the second order for point O (the origin of the coordinate
system OX; X, X3). Dropping the superscript V' we obtain the inertia matrix of a
rigid body.
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Table 3.3 Moments of inertia of common geometric figures

Shape Schematic diagram Moment of inertia
X, LS
Iy, = {5bi?
Iy = {b%h
Rectangle Iy, = % b
IXz = %b3h
Ic = 5bh(b* + h?)
Iy = L 3
Triangle Xy 3600
IXl = ﬁbh3
X.
X 7. —1_ 4
Circle Iy, = Iy, = ymr
Ip = %m‘“
R G
Semicircle Iy, = Iy, = gmr
lo=1tnrt
X
= J = Lo
Quarter circle Ix, = Ix, = {gmr
Ip = %m‘“
X
o 4 [
Iy, = imab?
_1
Ellipse Ix, = ma*h

Ip = tmab(a® + b?)
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Table 3.4 Moments of inertia of three-dimensional homogeneous bodies with mass m

Body Schematic diagram Moment of inertia

Iy, = ymR?

Cylinder Iy, = Iy, = {mR* 4 {5mH?
(vertical)
Ic = 3mR> + 5mH?
Iy, = mR?
Cone Iy, =Ix, = %mRZ + %mHz
lo = 4mR* 4 imH?
. . . 2
Thin cylidrical Iy, = Iy, = ”;12
rod Iy, =
Iy, = Iy, = Ix, = mR?
Ball 2o = Iy, + Ix, + Ix,
I — 3m(R§—R?)
X7 M0(R=RO(RTFRIF R Ry)
I = [, = 3m(R3—RY)
X I T 20(Ry—R)(RTF R+ RiR2)
m 2
Frustum +m—g_&,¢2)[%R1(R2—R1)H3
of cone
+iR} + L(Ry — R\’ H’]
Io=1Ix +1lyx,
Iy, = 50> + H?)
Rectangular w2 )
cuboid Lo = 3@+ HY)

Iy, = (@ +b)
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Fig. 3.16 Determination of
kinetic energy of a body
rotating about a certain
stationary axis /

An arbitrary position of a rigid body in space can be obtained from its initial position
in the adopted absolute coordinate system through translation to point O’, and the
subsequent rotation of the coordinate system OX; X, X3 can be made to coincide
with the system OX|X;Xj.

At this point the question arises as to how the inertia matrix will change as a
result of translation and rotation of the coordinate system.

In order to derive formally the inertia matrix (3.42) we will consider the geometry
of mass of a rigid body and the notion, introduced earlier, of moment of inertia with
respect to a certain stationary axis / (Fig. 3.16).

The kinetic energy of a rigid body equals

1
T = E/vovdm. (3.43)
M

Because the elementary particle of a mass dm is situated at distance d from the
axis of revolution, from (3.43) we obtain

2 2
T = w—/dzdm =20, (3.44)
2 2
M

where [; is the moment of inertia with respect to axis /.
Because the position of a point A of mass dm is determined by a radius vector r,
the velocity of point A equals v = @ X r and from formula (3.43) we obtain

T = %/(w XT) o (@ X r)dm. (3.45)
M
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Recall that both vectors @ and r can be expressed in the coordinates related to a
non-stationary (OX| X} X?) or stationary (OX; X, X3) coordinate system. In turn, as
will be shown later in Chap. 5,

wXr=Qw, (3.46)
where € is the tensor of angular velocity, which is a skew-symmetric tensor, that is,

Q,’j = —Qj,' fori ?é ]
From (3.46) we obtain

! ! / !

El E2 E3 0 ap a1z w
/ ’ ’ —_ / / / ’

W] Wy wy | = [El E’ E3] —ap; 0 ap wy |- (3.47)
/ / li ’

Ty Ty 1 —aiz —ayp 0 w5

Next we calculate

E (w375 — ries) + By (0] — wrs) + B} ()75 — wpr)

= E| (a0} + a1303) + E5(— apw| + anw}) + Ej(—apo] — ano)),
and finally we obtain
A =Ty, a3 =-—ry, dxp =r].
The scalar product of two vectors
(@xr)o(®@xr1)=(R0) 0 () =0 2 Qw, (3.48)

because Qw is a vector.
Substituting (3.48) into (3.45) we obtain

1
T = Ew olw, (3.49)

where tensor / associated with mass equals

I= /SZTSldm. (3.50)
M

We will show that the obtained tensor 7 & is a geometric matrix of iner-
tia (3.42). Since we have
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0 —rj 1} 0 rj —r

e’ =\ r 0 —r L 0 7

3 2 3 1

|- 0 ry —r; 0
[Pt =iy =i

— /Y /2 /2 /o
= e LA e W 1A

1o /o 72 72
s —Iyyy T+,

o1y, -1y, , -1
X{ X{x;  X{X;

_ 7V 14 _JV 14

= "lyxy Ty x| =T, (3.51)
v v v
L~ g Ty

this explains the introduction of minus signs in definition (3.42).

The (') symbol denotes the coordinates of the non-stationary system. Dropping
the primes we obtain the inertia matrix in the stationary system.

From (3.51) it follows that the inertia matrix of a rigid body is equal to

I= /IVdm = p(x;,x;,x;)/lVdV, (3.52)
M Vv

on the assumption that p = const at each point of the body.
In the general case by application of tensor notation to a perfectly rigid body the
coefficients of inertia matrix can be determined from the following equation:

I = /p(é’m,,xmxn&j — xij ) (x1, X2, x3)dV, (3.53)
Vv

where §,,, and §;; are the Kronecker symbols and p is the density of the body.

Figure 3.17 contains one rigid body (in the general case there may be many
bodies; then we introduce a numbering scheme for the bodies, e.g., if it was a body
of the number i, then its mass center would be denoted C;) and three coordinate
systems. The first one, OX| X, X3, is the absolute one, whereas the second and third
ones are the body’s coordinate systems rigidly connected with the body at the point
O’ = O’ for the description of the position of an arbitrary point 4 of the body.
Note that the axes of the coordinate system OX|X]X'; are parallel to the axes of
the absolute system OX;X,X3, the system OX{ X} X" is the body system, and all
systems are right-handed Cartesian systems.
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AX,

= !
g=0 X,

X,

Fig. 3.17 Two coordinate systems of parallel axes and a system with rotated axes OX{ X;' X

The position of point A defined by the vector r can be described as follows in
the coordinate system OX; X;X} and OX/' X7 XY, where the latter is rotated with
respect to OX| X} X}:

r = E\x| + E)x) + E\x} = E/ x| + E)x) + EjxJ. (3.54)

In order to determine the coordinates of the vector r = r[x{, x', x§] in the system
OX| X, X} one should multiply (3.54) successively by the unit vectors E! (scalar
product), which leads to the following result:

xi =ro E1 — xi/ 1" ° E/ + x// " ° E/ + x// " E/
Vi
= x| cos(E{,E}) + x5 cos(E}, E}) + x7 cos(ES, E}),
xé =ro E2 — xi/ 1 o E/ + x// // o E/ + x// // E/
_ 1 / " / "
= x] cos(E{,E}) + x cos(EJ, E}) + x3 cos(E}, E}),
x:/; =ro E3 — xi/ 1 o E/ + x// // o E/ + x// // E/

= x{ cos(E{, E}) + xJ cos(E, E}) + x¥ cos(ES, E}), (3.55)
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and can be written in matrix form:

’ B "R "R "R 7"
bt cos(E7, E}) cos(E7, E}) cos(EJ,E}) | | x|
/ — 14 U " / 14 U "
x5 | = | cos(EY,E}) cos(E7, E}) cos(EJ,E}) | | x;
/ 4 / " / 4 / "
X3 | cos(EY, E}) cos(E), E3) cos(Ej, EY) X5
B "
an appai || X
— 4
= | a21 ax ax X5 | (3.56)
4
| a31 ax as | | X3
or x; = a;xj, retaining the Einstein summation convention where a;; =

cos(E",E}).

The expression above means that, knowing the coordinates of the point
A(x{, x5, x}), one can, from the relationship above, determine the coordinates
of that point in the coordinate system OX| X)X}, provided that the direction cosines
are known.

Similarly, we can determine the coordinates of the vector r in the coordinate
system OX{' X5 XY After multiplication of (3.53) in turn by E; (scalar product) we
obtain

x! = x| cos(E},E}) 4+ x}, cos(E, E]) + x} cos(E}, E),

xy = x| cos(E},E}) 4+ xj cos(ES, E)) + x} cos(E}, EY),
xy = x| cos(E},E}) 4+ x} cos(E}, E}) + x} cos(E}, EY), (3.57)

which in matrix notation will take the following form:

xy cos(E{,E{) cos(E},E]) cos(E},E)) x|
xy | = | cos(E|,E}) cos(E,,E]) cos(E}, E)) x5, (3.58)
xy cos(E|.E;) cos(E,,E}) cos(E;, EY) x5

or we have that x/ = a;x
Because

/.
iT

cos(Eﬁ,E’j/) =cos(E",E)), i,j =1,2,3,
SO
lai; 17" = [ai]" = laij].

We will prove now that the matrix of direction cosines a;; is an orthogonal matrix.
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According to the definition of the orthogonal matrix we have
T T
[aijllai;]” = lai;] [aij] = E, (3.59)

where E is an identity matrix.
In our case we calculate

ap ap as ajy daz asg
sz dx Az ajp dx Az
as) as asjz aj3 dzsz Ass
aly +ai, +ais ayaytapantapan  apaztapayntapas;
= aziay + axpaiy + axans a3, +a3,+a3, az1az;+anaztaras;
aziayn + anan + aaiz  aza tazantasass a? +a3,+ak

(3.60)

Let us note that each of the unit vectors of one coordinate system can be
expressed by the unit vectors of another coordinate system. For example, we
obtain representation of the vectors E} in the system OX|X;X’s from (3.58) after
substituting the column of unit vectors [E|ESE;]:

"
El

lai az az] | B |,

E) = [a1p an an] | E, |.

Eg = [a13 ans a33] E/Z . (3.61)
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After scalar multiplication of the equations above by each other we obtain

" 4 1
El OE2 = (a“El

+ an E) + a3 E}) o (apE] + anE) + a3E})

anaipz + aznaxn +asazn =0,

E{ o E] = (aE| + anE) + a31E}) o (a13E| + anE) + a3E})
= anais + anax + azas; =0,

E) o E] = (apE| + anE) + anE}) o (a;3E] + anE) + a3:E))
= andaiz + anax + apasz; =0,

E/ oE| = (a1E| + a21E) + a3 E}) o (a1 E] + anE) + a3 Ej)
=afy + a3y + a3 = 1,

E] o E] = (anE| + anE) + ank}) o (apE| + ank) + anE})
=aj, + a3 + a3, =1,

E] o E] = (ai3E| + anE) + axE}) o (a3E| + anE) + aE})

_ 2 2 2 _
=aj; +ay tan =1,

which proves (3.59).
Below we will present a

(3.62)

formula allowing for easy determination of the inertia

matrix in stationary and non-stationary coordinate systems [9]. Recall that the unit

vectors E; (E)) (i = 1,2,

3) are associated with the non-stationary (stationary)

coordinate system, and in view of that we obtain [see (3.61)]

1

li
E a, a,
’ _ 2 2
E, | =47 a3
’ 3 3
E; ay a;

1/

as E, ar azr as E,
% _
3 E, | =|anaxnaxn E, |. (3.63)
’;/
3 E; as a asz E;

and the coefficient ai»/ denotes the cosine of an angle formed by the X/ axis with the

X axis. For example, a2 = (E}, o E3) = cos(E}, E3).
Although we have nine direction cosines altogether, only three are independent.
Because we can select the latter arbitrarily, we will keep all nine coefficients.

Let us introduce new not.

Iy,

IXle

ation for the elements of the inertia matrix:

I, Ix, = I, Ix, = I33,

=1, Ixyx, = =1, Ix,x; = —1s.
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Now the elements of the inertia matrix are equal to

3
L Z/Kzri) 8ij —r,-rj]dm, (3.64)
k=1

M

where §;; is the Kronecker delta. For example,

I =/|:(r12+r22+r32)-0—r2r3:|dm=/1212dm,
M M

I :/|:(r12+r22+r32)'1—r22i|dm:/12‘;dm.
M M

In the rotated system the geometrical inertia matrix has the form

11/1/ 11/2/ 11/3/
I/ = 12/1/ 12/2/ 12/3/ . (365)

Iy Iyy  Iyy

and dropping the () symbols we obtain matrix / in the stationary coordinate system.
The relation transforming the coefficients of the inertia matrix in the stationary
and non-stationary systems has the form

3
Loy =Y Iyad", (3.66)
ij=1

and the application of this formula will be illustrated in Example 3.10.

We now consider the translational displacement. Let us introduce the absolute
coordinate system CX;X,X3 at the mass center C of the body and perform the
parallel translation of this system by a vector C_)O’ (Fig.3.17).

In the absolute system CX;X,X3, let the inertia matrix be known, that is, the
moments of inertia with respect to the axes Ix,, Ix,, [x, and products of inertia
IXIXZ’ 1X1X3, and IX2X3-

As an example we will calculate the moment with respect to the X’ axis, that is,

Iy, = / (x;2 + xgz) dm. (3.67)
M

According to Fig. 3.17 we have

r=CO + 0'A, (3.68)
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that is,

Eix14 + Exxo4 + E3x34
= Eix10 + Eax20r + Esxzor + Ejx}, + EjxS, + Ejxy . (3.69)
Because for (3.67) we need the quantities x| and xj}, after dropping A in the
subscripts of (3.69) and multiplying it successively by E| and E’,, we obtain
x| = X1 — X/,
Xy = X3—X30. (3.70)

Substituting (3.70) into (3.67) we have

Iy, = /[(xl = x107)* + (x3 — X30/)°]dm

M
= / (x12 +X§) dm—2/x1x10/dm—2/x3x3o/dm
M M M

2
+ / (xTor + x307) dm = Iy, + (x{o + X30/) M. (3.71)
M
because the first moments with respect to the mass center are equal to zero. The

—
quantity xlzo, + x_,%o, is a square of the projection of the vector CO’ onto the plane
C X1 X3, that is, it denotes the square of the distance of the axis O’ Xé from the axis
CX,.

Theorem 3.3 (Steiner’s First Theorem?”). A moment of inertia with respect to an
axis passing through the mass center is the smallest compared to the moment of
inertia with respect to any other parallel axis, and the difference of these moments
of inertia is equal to the product of the square of the distance between the axes and
the body mass.

As an example we will calculate the product of inertia:

Iyix; = /x{xgdm = /(xl — X107)(x3 — x307)dm
M

M
= /x1x3dm—xlo//x3dm—x3o//x1dm
M M M
+ Mxi0:x30 = Ix,x; + X10/X30' M, (3.72)

2Jakob Steiner (1796-1863), Swiss mathematician and outstanding geometer, working mainly at
Humboldt University in Berlin.
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because of the fact that the second and third integrals are equal to zero (first moments
with respect to the mass center).

Theorem 3.4 (Steiner’s Second Theorem: Parallel-Axis Theorem for Products
of Inertia). We obtain the product of inertia of a body with respect to planes
0'X| X}, O'X|X}, and O' XX}, after adding to the products of inertia of the body
with respect to planes OX1X,, OX1X3, and OX, X3, respectively, parallel to the
primed planes and passing through the mass center of the body, a product of the
body mass and the distances between pairs of the parallel planes (the product can
be positive or negative).

Both parallel-axis theorems of Steiner follow from a general theorem about the
moments of inertia in Cartesian coordinate systems of parallel axes.

Theorem 3.5 (Moments of Inertia in Parallel Cartesian Coordinate Systems).
The mass moments of inertia matrices in Cartesian coordinate systems OXX» X3
and O'X|{X} X} of parallel axes (Fig.3.17) are related to one another by the
following relationship:

IXI/ _IXfxz/ _IXfX3/ Iy, —Ixix, —Ixx;
—Ixix; Ix; —Ixx; | =| —Ixx, Ix, —Ixx,
_IXI’X3’ —ngxg 1X3’ —Iyxy, —Ix,x,  Ix;

x%o/ +x§0, —X10’ X207 —X10’X30’
+ M| —xi0X0 Xip + X35 —X20'X30" | (3.73)

—X10'X30"  —X20/X30’ xlzo, +x§0/

where (X107, X207, X307) are the coordinates of the origin of the coordinate system
O'X| X} X} of the axes parallel to the axes of the system OX,X>X3, whose origin
coincides with the mass center of the body, i.e., O = C.

Finally, let us consider the case where the axes of two right-handed coordinate
systems possess a common origin and are rotated with respect to one another
(Fig.3.16). Our aim is the determination of relationships between the inertia
matrices expressed in the coordinate systems OX;X,X3 and OX{ X)X} We will
assume that the rigid body with which these two coordinate systems are associated
rotates with the angular velocity @ about a certain stationary axis /.

The momentum of a rigid body in the system OX; X, X3 is equal to

{Hw} = [}, (3.74)
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Fig. 3.18 A rectangle and its AX,
coordinate axes X
\ “)(2 /,x‘
\
o
g /
\ (_?'(I a,
o
[e] ay )?‘
and in the system OX| X)X}
{I'o'y = [I"{w'}, (3.75)
where vectors are denoted by curly brackets.
According to (3.58) we have
{I'o'} = [a;[{w}, (3.76)
{0} = lai; {0} (3.77)
Substituting relationships (3.76) and (3.77) into (3.75) we obtain
la;j ]} = [I'][a;;){o}. (3.78)
Then, substituting (3.74) into (3.78) we obtain
lai U {w} = [I'a;;l{w}, (3.79)

which eventually enables us to determine the desired relationship of the form

[1'] = [ai][{]]ai;]" (3.80)

Example 3.10. Determine the geometrical inertia matrix of the rectangle of dimen-
sions a; and a5 depicted in Fig. 3.18 in the coordinate system OX|X}.

In the considered case the geometrical inertia matrices in the systems OX; X,
and OX| X} assume the forms (dropping superscripts V')

IXI _IXle
I= ,
L—Ixix, Ix, |
/ Iy —Ixix;
I =
L Ixixg Iy
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Fig. 3.19 Determination of a A )(2
(geometric) moment of inertia
of a rectangle with respect to
the axis OX;

s 7. L dx,

X3

A
A J

Let us calculate the moment of inertia with respect to the axis OX:

a

1
Iy, = /x%dF = /x%aldxz :alfxgdxz = galag,
s S 0

and the method of integration is illustrated in Fig. 3.19.

Similarly we obtain

1
1 X, = gazaf.

Let us note that the elements of the inertia matrix of the rectangle in the system
C X X, will not be needed for the problem solution. The coordinate system C X X,
will be used only to determine the product of inertia Iy, y, from the parallel-axis
theorem, that is,

a a, 1
bon = e+ e (%) (2) = Jete

because I)((:1 x, = 0.

In order to determine the elements of the matrix I’ we will use (3.66), and now
all the indices assume a value of either 1 or 2, because we are dealing with the
two-dimensional system

1/ 1/ 1/ 1/ 1/ 1/ ’ 1/
Vo= 111611 a; +112a1a2 +121a2 a; +122612 a, .
Let us note that

I ’
a, =cos(E},E|) = cosa,

a{ cos(E}, E;) = cos (% - a) = sina.
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Therefore,
Iy = IX( = Iy, cos’a — 21y, x, sinacosa + Iy, sin® «
2 .2 .
= Ix, cos”a + Iy, sin” o — Iy, y, sin2a.

Next, according to (3.66) we have

2

17 2 1 2 1 2 1 2 1 2
Iy = E I,-jai a; = 111611 ay + 112611 a; + 122612 a; + 121612 aj .

ij=1
Because

a? = cos(E},E;) = cos (% + 0{) = —sina,

ag/ = cos(E}, Ep) = cosa,
we arrive at

lvy = —Iyy; = —Ix, cosasina
—Iy,x,cos’ @ + Iy, sina cosa + I,y sin’a,
that is,
Iy = I = I, sin 2« + Iy, x, cos 2a.

Using the quantities Ix,, Iy, and Ix,x, = Ix,x, obtained earlier we calculate
o . . . /
the quantities I;, Ix;, Ix;x;, thatis, we determine elements of the matrixI. O

3.4 Principal Axes and Principal Moments on a Plane

In Fig.3.20 we show the area S and two rectangular coordinates OX;X, and
OX| X}, where O is the rotation angle between axes OX; and OX].

Assuming a knowledge of the moments and product of inertia regarding coordi-
nates OX; X, of the form

Iy, = /xgds, Iy, = /x%ds, Ixx, = /xlxzdS, (3.81)

we will determine / X[ 1 pes and / XX} Observe that between the coordinates x{, xé,
and xi, x; of an element of area dS the following relations hold:
X| = x1¢c0s O + xp8in O,

Xy = x3c08 @ — x; sin O. (3.82)
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X,
Fig. 3.20 Area S and two systems of rectangular coordinates OX; X, and OX| X}
Therefore, we have
Iy, = /(xé)zdS = /(xz cos @ — x; sin @)%dS
= cos’ O / x3dS — sin 2@/x1x2dS + sin? @ / x1dS
= Iy, cos’> © — Iy,x, sin20 + Iy, sin> @
1 1 Iy, —1
=N er SER 5 %2 0826 — Iy,x, sin 20, (3.83)
and proceeding in a similar way one obtains
1 1 Iy, —1
Iy = 20 ;L 2 T 0526 + g, i 26, (3.84)
Iy, — Iy, .
IXl’Xé = TSIDZ@ + 1X1X2 cos26. (3.85)

Observe that [p = Iy, + Iy, = 1 X/ + 7 X} We show that if we take a point
A(lyy Iy Xé) for any given value of the parameter @, then all of the points will lie
on a circle (Fig. 3.21). That is, eliminating ® from (3.83)—(3.85) yields

(Ix; = 1a)* + I3y, = R, (3.86)

where

Ix, + 1 Iy, —Ix,\?
I, = ¥’ R? = (%) + I)zlez‘ (3.87)
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Fig. 3.21 Plane inertia circle b Ieiyet
(Mohr’s circle) i

The circle governed by (3.86) is shown in Fig.3.21 and is called Mohr’s circle.?
The points corresponding to I, and Iax can be determined from (3.83) assuming
le/Xé = 0, and hence

21X1X2

tan2@ = — (3.88)

Iy, — Iy,

Equation (3.88) defines two values ® that are 90° apart, that is, to those of
I'min and Iax. The two axes defined by the two values of @ determined so far are
perpendicular to each other and are called the principal axes of area S about point
O, whereas the corresponding values I, and I,y are called the principal moments
of inertia of area S about point O. Observe that the product of inertia corresponding
to the principal axes I y/y; = 0. Taking into account Fig. 3.21 and (3.87) one obtains

2
Imax,minzla:l:Rz #i \/(%) +I)2(1X2 (3.89)

Note that the obtained properties are valid for any point O, that is, inside or
outside of area S. However, if point O coincides with the centroid of §, then
any axis through O is a centroidal axis. Furthermore, if two principal axes of
area S have their origin in S centroid, then they are referred o as the principal
centroidal axes of area S. In what follows we show how Mohr’s circle can be used to
determine principal axes and principal moments of inertia about a point O assuming
a knowledge of the moments and product of inertia with respect to the axes OX; and
OX>. In Fig.3.22 we present a given area S with a given origin and three systems
of rectangular coordinates OX| X», OX {Xﬁ, and OX lp sz (a) and the corresponding
points lying on Mohr’s circle (b).

30tto Mohr (1835-1918), German engineer.
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a b

r

Ml x,

Fig. 3.22 An area S with three systems of rectangular coordinates (a) and the corresponding
Mohr’s circle (b)

Let By = Bi(Ix,, Ix,x,), and By = By(Ix,, —1Ix, x,). An intersection of B B,
with Oly, yields point C and then we draw the circle of diameter B B, having
center C. Comparing our construction in Fig.3.22b and (3.87) we conclude that
the obtained circle is Mohr’s circle for the given area S (Fig. 3.22a) about point O,
and hence the principal moments of inertia /i, and I, are determined. Observe

that tan (B,CA4;) = IZX_‘XZ = tan (207), and hence owing to (3.88) the angle ®”
defines the principal axis corresponding to point A;. Since Iy, > Iy, and Iy, x, > 0,
the rotation of C B into C A is clockwise, and also a clockwise rotation through &”
is required to bring OX; into the corresponding principal axis OX7 .

Furthermore, assume that we need to determine the moment and product of in-
ertia [/, I;, and Iy x; regarding the axis OX { and OX] rotated counterclockwise
in comparison to OX|, as is shown in Fig. 3.22b. We rotate B; B, counterclockwise

through an angle 26, and the coordinates of points B and B} define 1 x/» I'x;, and

IXI/XZ/'

3.5 Inertia Tensor, Principal Axes of Inertia, and an Ellipsoid
of Inertia

Let us return to Fig. 3.16 and consider the moment of inertia of a discrete system of
particles with respect to an axis /.

Observe that a projection of vector r(xy,, X2,, X3,) onto axis / of unit vector
I can be determined by applying the scalar product
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Fig. 3.23 Projection of a
—

vector OB of a coordinate
system OX; X, X3

X
n
X,
rol = (Eix1;, +Exxz, + Eszx3,) o (Ej cosa; + E; cosay + E; cosaz)
= COSU|X]; + COSUrX2, + COS™3X3,
= all/-xln + aé/-x2n + al3/x3n = ay X1, + ayxa, + azxz,, (3.90)

which is confirmed by the auxiliary drawing in Fig.3.23 (during the calculations
I =1).
According to (3.66) we obtain (assuming I; = [ x| = 1)

3
L =1 _ I"l/l/_l l/l/+I 1/1/+I U1
| =1y = ija; a; = 1ndpa; 124, 4, 134, ds
ij=1

1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/
+ Ia, ay + Ina, a, + Inaya; + Iz1aya; + Inas a,
Izalal =1 241 247 240271
+ Iaz ay = Iii(an)” + In(aa)” + Ia(as)” + 21nanaz
2 2 2
+ 21za1a31 + 213az1a3 = IXlall + IX2a21 + IX3a31

—2Ix,x,an1ax — 21y, x,a11a31 — 21y, x;a21a3). (3.91)

According to Fig.3.23, based on the coordinates of an arbitrarily chosen point
B(x1p,x25, x35) on axis [/, we have

X1B

ajp =cC0osu) = s
/.2 2 2
Xip T X5p + X3p
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X2B

9
[ 2 2 2
Xip T X3p + X3p

az; =cosoz = Reli (3.92)

9
[ 2 2 2
Xip T X3p + X3p

at, + a3 +a3 = 1. (3.93)

djy; = COS0y =

that is,

Let us note that relationships (3.91) can be also directly obtained from the
interpretation of the moment of inertia with respect to axis / (Fig.3.16) and (3.90).
We have

I = /,odzdm = /,o{rz—[(rol)l]z}dm

M M

= / p{r? — (rol)*}dm

p{(x7, + X3, + X3,) — (@11 X1y + a21%24 + azi1x3,)*} dm

E\ E\E

p[a @)+ (1 - )5 + (L — &),

—2ay1a X1, X2n — 2011431 X1, X3, — 26121031)62;1)63;1}(1"’!

= [ ptora x| @+ e+ @+ B, + b

—2ay1a X1, X20 — 2011431 X1, X3, — 2a21a31-x2n-x3ni|dm

_ 2 .2 2 2 .2 2 2.2 2
= /p(xl,xz,X3) |:a11(x2n +x3,) + a3 (xy, + x3,) + a3, (xj, +x3,)
M
—2a11a21 X1, X2n — 2011431 X1, X3, — 2021031X2nx3n:|dm

—a [ o, 4 am o+ [ oot + 2o
M M
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Fig. 3.24 Ellipsoid of inertia

+a32,1 /,o(xlzn +x§n)dm —2anan /,oxlnxz,,dm
M M

—2a11a31/pxlnX3ndm—2a21a31/sznx3ndm
M M

2 2 2
= alllxl + a211X2 + 0311)(3 —2a11a211X1X2 —20116131])(1)(3
2 2 2
—2anas lx,x, = aj ln + a5 1o + a5 133 + 2an1a21 112

+2ay1a31 113 + 2azaz I3, (3.94)

where (3.93) was used during transformations.

According to (3.90) the change in position of axis / is accompanied by a change
in cos o, cos &, and cos a3, that is, the direction cosines of that axis in the adopted
stationary coordinate system. On each line / from a pencil of straight lines at point
O we will step off the segments O O and O O,, which are equal to

M
00, =00, =% =u |2 (3.95)
d 7

where d is the notion of radius of gyration of the body introduced by (3.6) and u is
a certain coefficient.

Points described by (3.95) will lie on the ellipsoid presented in Fig.3.24. Let
us assume, as earlier, that line / forms with the axes of the stationary coordinate
system the angles o, s, and «3. Therefore the coordinates of the points lying on
the surface of the ellipsoid are equal to

| M
Xi = Ep I—lcosoci, i=1,2,3. (3.96)
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According to (3.91) we have
I = Iy, cos’ ay + Iy, cos’ o)
+1Ix, cos’ a3z — 21y, x, cos o cos o

—21Ix, X3 cosaj cosaz — 21y, x, COs o COs O3, (3.97)

and after substitution of (3.96) we obtain

I, = (lexlz + IXZ)Cg =+ IX3x32 — 21X1X2.x1.x2

I
—21x, x;X1X3 — 21X2X3X2X3) M

that is,

2 2 2
1X1x1 + Iszz + IX3x3 — 21X1X2.x1.x2

—21X1X3)C1X3 — 21X2X3x2x3 = M,LLZ. (398)
Rescaling the coordinates x; — pu+/ M x; we obtain

2 2 2
Iy, xi + I, x5 + Ix;x5 — 21x, x, X1 %2

=21 x,x,X1x3 — 21y, x;%0x3 = 1. (3.99)

The obtained quadric surface is a locus of the endpoints of all segments of length
inversely proportional to the radius of gyration of the body with respect to the axes
passing through the chosen point of the rigid body O; it will be called an ellipsoid
of inertia of the body at point O.

Let us note that for every point of the body we have a different ellipsoid of inertia.
Moreover, for a given point of the body the number of ellipsoids depends on the
choice of the parameter p (there can be infinitely many of them).

If the chosen point is the mass center of a rigid body, such an ellipsoid will be
called the centroidal ellipsoid of inertia (or the ellipsoid of inertia) of the body.

The obtained ellipsoid possesses the semiaxes a;, a, and as and can be
represented in the coordinates corresponding to its axes in the following form:

Axi? + Aoxy? + Asxy? = k2, (3.100)

where 4; = IX](, j = 1,2,3, k» = Mu?, and the products of inertia in this
coordinate system are equal to zero. We will call the axes OX j’ j = 1,2,3 the
principal axes of inertia, and if O = C, where C is the mass center, then we call
these axes principal centroidal axes of inertia.

On the other hand, the principal axes of ellipsoid (3.100) coincide with the axes
of the ellipsoid of inertia. Because according to (3.95) the radius of the ellipsoid
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O O, is inversely proportional to the square root of I; (00; ~ ﬁ), the shortest

(longest) axis of the ellipsoid is the principal axis about which the moment of inertia
reaches its maximum (minimum).

In Fig. 3.24 the point lying on the surface of the ellipsoid and the normal vector
N, that is, the vector perpendicular to the surface at the point (xi0,, X20,, X30,), are
marked. Recall that this vector 1 can be described by the following equation:

N =V f(x1,x2,x3) = f E + g—fE + af E;, (3.101)
X2 X3

and f(x1, X2, x3) = Mu? = const describes the left-hand side of (3.98).
Next we calculate

a
le = a—f = 21X1x1 —21X1X2x2 —21X1X3x3,
X1
d
Ny, = al = 2Ix,x,x1 + 2Ix,x5 — 21 x,x, X3,
X2
a
ng = % = —21X1X3x1 - 21X2X3x2 =+ 21)(3)63. (3.102)
3

If point O lies at the end of each of three ellipsoid axes (they are perpendicular

——
to each other), then N || OO, and the components of both vectors must be
proportional to one another, that is,

Ny, =20x;, j =123, (3.103)

where 20 denotes the proportionality factor.
Substituting (3.103) into (3.102) we obtain

Ux, —o)x1 —Ix,x, — Ix,x;x3 = 0,
—Ix,x,x1 + (Ix, — 0)x2 — Iy, x,x3 = 0,

—IX1X3x1 — 1X2X3x2 + (IX3 —o0)x; =0. (3.104)

The unknown point (x1, X2, x3) does not coincide with the origin of the coordi-
nate system, that is, it is not the point x; = x, = x3 = 0, if

U_IXI IXle IX1X3

IXle O'—IX2 1X2X3 = 0. (3105)

1X1X3 IX2X3 G_IXs
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Expanding the determinant above we have

(0 —Ix)l(0 = Ix,)(0 — Ixy) — I3, x,] — Ixyxo [ x, 3y (0 — Ixy)
—Ivox; Iy xs] + Ixoxs [ x xo Lo xs — Ix,x3 (0 — Ix,)]
= (0 —Ix[0° —o(x, + Ix,) + Ly,x; — I3,x,]
- 1)2(1)(2(0 —Ix,) + Ix,xo Lo xs Iy xs + Ixoxs Ly xo L xo xs
—I3,x,(0 —Ix,)) =0 —0>(Ix, + Ix;) — Ix,0” + Ix,0(Ix, + Ix;)
+o = Ix)UxIx, — I3,x) — I3,x,0 + Ix, 15y,
2 x,Ix I xs — 13,x,0 + I, I3 x, = 07
—(Ix, + Ix, + Ix))0? + o(Ix, Ix, + Ix, Ixy + Ix,Ix,
I3 x, = I3y x, — Tyxy) — Ixi Ixa Iy,
20y v, D xox Ixoxs + I A3y, + I I3 v, + I I3,

20'3—510'2+S110'—S111 =0, (3.106)

where we call
s;p=1Ix, + Ix, + Ix,,
sir = I I, + Do Dy + Do I = Iy, — Ly, — Ty,
sirr = Ix Iy Iy — 20 x, 5, I, x5 I x xs
2 2 2
—Ix; Iy, x, — Ixo; Iy, x, — Ix, I, x, (3.107)
the invariants of the inertia tensor at point O.
It is possible to demonstrate that the obtained characteristic equation of third
order always possesses three real roots, although they are not always distinct.

Each of the roots o0,, n = 1,2,3 has a corresponding vector of eigenvalues
obtained from the equations in the matrix notation [see (3.104)]

Ix, —o, —Ixx, —Ix x, X1
_IX1X2 IXZ — Oy _IX2X3 X2 == 0, (3108)
—Ix,x, —Ix,x, Ix,—o0y X3

and the eigenvalues of a real symmetric matrix are real.
In the expanded form according to (3.104) and taking into account (3.96)
and (3.92) we obtain
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(Ix, —on)an — Ix,x,a21 — Ix, x;a31 =0,
—Ix, x,a11 + (Ix, — 0p)az — Ix,x;a31 =0,

—Ix,x;a11 — Ix,x;a01 + (Ix; — 0p)az = 0. (3.109)

Let us multiply these equations in turn by a;;, a1, as3;, and adding them we
obtain

(Ix, —ow)ai, + (Ix, — ow)ay; + (Iy, — 0a)a3,
—2ananly, x, —2anaz Iy x, — 2axas Iy,x; =0, (3.110)
and using (3.93) we have

2 2 2
on = Ixaiy + Ix,a3 + Ix,a3

—2ananIx x, —2anaz Ix, x; — 2azas Ix,x,. (3.111)

From a comparison of (3.91) and (3.111) it can be seen that o, = I;. Thus,
we have demonstrated that the roots of the characteristic equation are equal to
the moments of inertia of the principal axes of inertia passing through the point
O1(x1, X2, x3), that is, of direction cosines a;;, a1, and as; (we have three such
axes).

This line of reasoning justifies the validity of (3.66) already applied earlier but
presented without proof.

Let us assume that axis / chosen in such a way will be coincident after rotation
with one of the axes a; of the ellipsoid (Fig. 3.24). If that is the case, the products
of inertia with respect to that axis will be equal to zero. Let us take the coordinate
system OX| X)X} such that the axes of the ellipsoid a1, a», and a3 coincide with
the axes of that system. The equation of ellipsoid in such a coordinate system
[see (3.100)] takes the form

Lyxt? + Tygxs? + Lyxi? = k2. (3.112)

Three such axes are called the principal axes of inertia of a body at point O (at the
mass center of the body).

If the principal axes of inertia and the corresponding moments of inertia A; are
known, it is very easy to determine the moment of inertia with respect to axis /,
which is equal to [see (3.97)]

I} = Ay cos® o + Ay cos® oy + Ascos® o, (3.113)

where the angles o, o, a3 define the position of axis [ with respect to the principal
centroidal axes of inertia of the body.

If the principal moments of inertia are equal (triple root of the characteristic
equation), then
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I; = A(cos2 o) + cos® ay + cos? a3) =A, (3.114)

because A = A, = A3 = A.

This means that all lines passing through the mass center are principal axes and
the ellipsoid becomes a ball. The body whose ellipsoid of inertia is a ball we call a
ball-type body (the shape of such a body can be a ball or cube).

In cases where two roots of the characteristic equation are equal (double root),
from (3.113) we obtain (A} = A, = A # A3)

I} = A(1 — cos® a3) + Az cos® as. (3.115)

Having defined the position of the axis by the angle a3 and the values of moments
of inertia A3 and A, we determine the moment of inertia /;. An ellipsoid defined in
that way we call an ellipsoid of revolution because an arbitrary axis perpendicular
to the one defined by the angle o3 is the principal axis.

If we take the equation of ellipsoid of the form (3.100) of arbitrary coefficients
1 X/ 1 X} and / pes it does not have to represent the ellipsoid of inertia. We are
dealing with an ellipsoid of inertia if the mentioned coefficients satisfy the triangle
inequality of the form

Iy + Ty = Iy, Iy + Iy = Iyy, Iy + Iy = Iy (3.116)
Let us note that

1X1/+1X2/ =/(X22/+x§/+x12/+x§/)dm
M

= 2/x32,dm + Iy, = I, (3.117)
M

In a similar way we can prove the other inequalities (3.116).

3.6 Properties of Principal and Principal Centroidal
Axes of Inertia

Let us assume that axis X3 is a principal centroidal axis of inertia at point O, and
the remaining axes of the Cartesian coordinate system OX; X, X3 are arbitrary. Each
point O;(x;, X, x3) has a counterpart O,(—x;, —x3, X3) symmetrical with respect
to the axis X3. Inserting the coordinates of points O and O, into (3.99) we obtain
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Fig. 3.25 Principal a X, b X,
centroidal axis of inertia C X3
(a) and principal axis of
inertia OX3 (b) o " o -
X; X;
d i d\
X, c X % o X
X X,

IXlxl2 + Iszg + IX3x§ — 21y, x,x1X2
— 21y, xyx1x3 — 21 x, x; 0003 = 1,
Iy, xl2 + Iszg + 1X3x§ — 21y, x,xX1X2
+ 2Ix, x;x1x3 + 2y, x; X0x3 = 1. (3.118)
Combining those equations we obtain
x3(Ix,x;%2 — Ix, x;%x1) = 0, (3.119)

and because x| # 0, x, # 0, and x5 # 0, from (3.119) it follows that
Ix,x; =0, Ix,x, =0. (3.120)

If any of the axes of the Cartesian coordinate system of origin at a given point is
the principal axis of inertia at that point, then the products of inertia in which there
appear coordinates of this axis are equal to zero.

In Fig. 3.25a an axis C X3 is shown; it is the principal centroidal axis of inertia of
a body. In Fig. 3.25b an axis OX3 is presented, and this axis is the principal axis of
inertia of the body at point O.

Both axes are principal axes of inertia, that is,

N N
Iy, = ) maXonxs, =0, Iy, = maXipXs, = 0. (3.121)
n=1 n=1

On both axes let us take points O'(CO’ = d = O0’) and draw through them the
axes O'X{ || OXy, O'X; || OX,, O'X| || CXy, and O'X} | CX>. Let us calculate
the following products of inertia:

N
IX;Xg = E mnXZn(XBn _d)
n=1
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N N
= ZmannX3n - dzmmn = —dmx,c,
n=1 n=1
IXI/X3 = —dmxc. (3.122)

In the case of the principal centroidal axis of inertia x;c = xp¢ = 0 and in view
of that, Ix;x, = Ix/x, = 0. The conclusion follows that the axis CXj is the
principal axis of inertia not only at point C but also at point O’. Because O’ has
been arbitrarily chosen, the principal centroidal axis of inertia is the principal axis
of inertia for all its points.

If an axis is the principal axis and it does not pass through the mass center of the
body (Fig.3.25b), then xic # 0 and xoc # 0, that is, Iy;y, 7 0 and Iy/x, # 0,
which means that the axis OX3 is not the principal axis of inertia at the point O’.

From that conclusion it can be deduced that if the principal axis of inertia does
not pass through the mass center of a rigid body, then it is the principal axis at only
one of its points.

The reader is advised to prove the following two observations:

1. If a homogeneous rigid body has an axis of symmetry, then that axis is its
principal centroidal axis of inertia.

2. If a homogeneous rigid body has a plane of symmetry, then at all points of this
plane one of principal axes of inertia is perpendicular to that plane.

3.7 Determination of Moments of Inertia of a Rigid Body

3.7.1 Determination of Moments of Inertia of a Body
with Respect to an Arbitrary Axis

A moment like that can be determined easily if the directions of the principal
centroidal axes of inertia and the moments of inertia of a body about those axes
are known.

Let an axis / pass through the mass center of the body (Fig. 3.26).

In this case we have

3
I =Y Iicos*a;. (3.123)
i=1

Let axis / not pass through the mass center of a body. In this case, first the moment
of inertia with respect to an axis I’ || / passing through point C (the mass center) is
determined, and then, by Steiner’s theorem, /; is obtained:
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Fig. 3.26 Axis [ passes (a) and does not pass (b) through the mass center of a rigid body

3
Iy = Z I; cos’ o,

i=1

I, = Iy +md?, (3.124)

since the distance between [ and [’ is denoted d .

3.7.2 Determination of Mass Moments of Inertia
of a Rigid Body

The mass moments of inertia of a rigid body can be determined if the directions of
the principal centroidal axes of inertia and the moments of inertia about those axes
are known.

Case 1. The axes of coordinate systems C XX, X3 and O’ XX} X} are mutually
parallel (Fig.3.27).
From Fig. 3.27 it follows that

—_— —>
0'A, =0'C +CA,, (3.125)

which leads to the determination of relations between the coordinates of point A in
both coordinate systems:

/ — /
Xip = Xj¢ + X,
/ /
Xy, = X3¢ + Xon,
/ /
X3, = X3¢ + X35. (3.126)

As an example, we determine the product of inertia
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Fig. 3.27 Determination of ’ ¥
mass moments of inertia in X
the system O’ X XX}, where
o'x |cx;,i=1,273
Flex 4 ALK X X
ac
C /XZ
| H x!
o — g
: X,
Xio P ¥
X,
I
X,
o0 o0
_ ror ’ I
Iyix; = E My X1y Xy = E My (x¢ + X1n) (X5¢ + X21)
n=1 n=1
o0 o0 o0
/ / / /
= E My X|cXpc + E My X cXon + E My X1pXyc
n=1 n=1 n=1
o0 o0 o0
/ / /
+ § My X1nXon = X1cXoc § my, + X|¢ E myXop
n=1 n=1 n=1
o0 o0
’
+ X5 E muXi, + E My X1pX2n. (3.127)
n=1 n=1
We have
o0 o0
E my = M, E My X1pnXon = IX1X27
n=1 n=1
o0 o0
E muxi, = 0, E MmuXxa, = 0, (3.128)
n=1 n=1

and the last two equations follow from the observation that axes CX; and C X, are
the principal centroidal axes. Proceeding in an analogous way with the remaining
axes we eventually obtain

Ixix; = Ixx, + Mx|c x5,

IX;XS’ = Ixx; + MxéCXQC’

ngxl’ = Iy,x, + M X\ x]c. (3.129)
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Fig. 3.28 Determination of TS
products of inertia in case
where axes of systems X! Xan
CXI/XZ/Xé and CX1X2X3 Y An
are rotated with respect ; %!
to each other Xan % G
r, i A
c 1 ey
v A ) ;
X
X:

Case 2. The coordinate axes of the system C X, X ;X ; pass through the mass center
of a rigid body and form known angles «;, i = 1,2, 3, with the system CX; X, X3

(Fig.3.28).
From Fig. 3.28 it follows that

ay = COS(EII,El) :Ell OE], (7531 :COS(EIZ,El) :E/ZOEl,
as) = COS(ES,El) = E; @) El,
ajpp = COS(E/l,Ez) = Ell ] Ez, dy = COS(EIZ,Ez) = E/2 o Ez,
aszpy = COS(E&, Ez) = E; @) Ez,
aiz = cos(E},E3) = E| oE3, ay3 = cos(E), E3) = E), o Es,
azs = cos(E;, E3) = E; o Es.
Because the vector

! ! VA
r, = Ex;, + E;x;, + E3x;, = Ejx1, + Exxap + E3xs,,

(3.130)

(3.131)

the above equations are successively multiplied by E{, E/, and E}, and taking into

account (3.130) we obtain

/
r, = Ar,,
or, in expanded matrix form,
!
X1y an  ap a3 X1n
/ —
Xop | = | a1 axn  ax Xon | »

X3, as  asx  as X3n

(3.132)

(3.133)
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which defines the relation between coordinates of a point in coordinate systems
CX:X,X3 and CX{X}X]. As an example, we determine the product of inertia

o0 o0
/ /
Iy = E My Xy, X3, = E My (a21 X1y + d22X2n
n=1 n=1

+ axx3,)(azi X1, + azxo, + azzxs,)
o0

2
= E my (a21a31x7, + A21a3X1, X2, + A21G33X3, X1,

n=1
2
+ axaz X1y Xon + a20a3X5, + a200a033X2, X3,
2
+ a23031X3, X1, + A23032X2, X3, + A23A33X7,)

o0 o0
2 2
= azas; E muyXxi, + axnasn E my X5,

n=1 n=1

o0 o0
2
+ axas; E mux3, + (azaz + anas;) E My X 10 X2n
n=1 n=1

o0

+ (aziass + azasi) E My X3, X1p
n=1
o0

+ (axnass + axas) Z My X2 X3p. (3.134)

n=1
In the above equation

00 00 00
Zmnxln-xh =0, Zmnx3nxln =0, ZmnXZnXSn =0, (3.135)

n=1 n=1 n=1

because the axes C X, CX;, and C X3 are the principal centroidal axes of inertia of
a body.
From (3.133) it follows that

E| an  ap  ap || E
E, | =|a1 an ax E, |. (3.136)

!
| DA az;  ayp  as; E;
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from which we determine

E), = a1 E| + anE, + ankEs,
E, = a3 E, + anE; + askEs, (3.137)

and calculate
E) o E; = (a21E| + anEs + a2Es) o (a31E + anEs + anEs)
= axas + anaz + axasz =0, (3.138)

and hence obtain

axazz; = —(aziaz + anasn). (3.139)
Substituting (3.139) into (3.134) we obtain

o0 o0
2 2 2 2
Iy;x; = anasz E My (X1, — X3,) + anaxn E My (X3, — Xx3,)

n=1 n=1

o0 o0
= azan| Yo ma (e, +53,) = Yo ma (6, + 53,
n=1

n=1

+ a22a32[ Z (2, + x2,) — Z ma (2, + xl,,)] (3.140)

n=1

Proceeding in a similar way with the remaining products of inertia we eventually
obtain

Iy;x; = anasi(Ix, — Ix)) + anan(lx;, — Ix,).
Iy;x; = anasi(Ix, — Ix)) + anan(lx;, — Ix,).

Ixy; = anax(Ix;, — Ix,) + anan(Ix; — Ix,). (3.141)

Case 3. The axes of the coordinate system OX| X7 X! pass through an arbitrary
point O of arigid body (Fig. 3.29).

In order to determine the products of inertia Iyyyy, I XUX/s and 1 x/'xy we
introduce at point C the coordinate system OX| X)X} of axes mutually parallel
to the axes of the system OX| X)X} Knowmg the dlrectlon cosines of angles
between the axes of systems CX/X/X/ and C X1 X» X3, we can make use of (3.141)
to determine [y’ X)X Iy XX/ and I X/X} Knowmg the position of the mass center C
in the coordinate system CX['Xy XY, according to second Steiner’s theorem, we
obtain

Iypxy = Ixjx; + M xycX5e
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Fig. 3.29 An arbitrary X,
position of the coordinate X'
system OX|" X5 X5/ g
|
X,
XN
& /P
, \
/. ]
\\I
rd
o X
S L
(@) ),1 5 -
¥ X -7
- I
B X
Xic
%
1 "
= Mxy0 X530 + aniazi(Ix; — Ix,) + axnan(Ix, — Ix,),
" 1
Iyyxy = Ixjx; + Mxzexe
" "
= Mx3cxic +anan(Iy, — Ix,) + anan(ly, — Ix,),
" "
Ixrxy = Iy;x; + MX\cxy0
" "
= MxlCXZC + apan (IX3 - IX]) + a12a22(1X3 - ]Xz)‘ (3142)
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Chapter 4
Particle Kinematics and an Introduction
to the Kinematics of Rigid Bodies

4.1 Particle Motion on a Plane

First of all, the word kinematics comes from the Greek word for motion. As was
already mentioned, kinematics is the branch of mechanics that deals with the
analysis of motion of particles and rigid bodies in space, but from a geometric point
of view, that is, neglecting the forces and torques that produce the motion.

Because the motion of a particle or a mechanical system takes place in time
and space, in classical mechanics (as distinct from relativity theory), the notions of
absolute time and absolute space are introduced.

In mechanics the notion of absolute time indicates a constantly changing quantity
whose value increases from the past to the future. It is assumed that this quantity
is identical at all points of matter. It is homogeneous and does not depend on the
motion of matter.

In turn, absolute space denotes a three-dimensional, homogeneous, and isotropic
Euclidean space. Results obtained in relativistic physics show that the assumption
of such a model of space is justified for relatively small regions of physical space
(of the Universe).

The concept of motion has a relative character. We say that one rigid body moves
with respect to another if distances between certain points of the bodies change.

In order to investigate the geometrical properties of motion, in kinematics one
introduces a certain rigid body that is fixed. The motion of other bodies with
respect to that body is called absolute motion. One introduces the system of absolute
coordinates rigidly connected to the fixed body, and the motion of some other body
is described with respect to those coordinates.

During analysis or synthesis of motion on Earth or in its vicinity, as the system
of absolute coordinates one takes the system rigidly connected to Earth. The body
is in a state of relative rest if it does not move with respect to the chosen coordinate
system.

Although in calculations in Euclidean three-dimensional space time is taken into
account and has an approximate character, the calculations are sufficiently close to
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the real kinematic states of bodies and particles, provided that the considered speeds
are significantly smaller than the speed of light.

Among the pioneers of kinematics one should count Euler. Galileo was the first
to introduce the notion of acceleration, which was then extended to notions of
tangential and normal accelerations by Huygens.'

A breakthrough development of kinematics took place in the nineteenth century
due to the development of machines and mechanisms, which led to the emergence
of a branch of science called the kinematics of machines and mechanisms.

In particle kinematics only three units are used: 1 m, 1s, and 1rad, and all the
characteristics of motion, i.e., displacement, speed, and acceleration, are described
with the aid of these three units only.

In kinematics, the time ¢ can be considered in the interval —oo < t < 00, since
while “being” in a particular moment of time it is possible to go back to the past by
means of a “return through time.”

In kinematics it is assumed that the notion of a particle is the same as the notion
of a geometric point.

A set of successive positions of a particle in Euclidean space is called the
trajectory of motion of that point. When the trajectory of motion of a particle in
the time interval #; < ¢ < f;4 is a straight line, then the motion of this particle is
called rectilinear motion. Otherwise it is called curvilinear motion. If the trajectory
of motion is closed, i.e., the motion is repetitive, then the motion can proceed, e.g.,
along a rectangle, an ellipse, or a circle.

Kinematics deals with two basic problems:

1. Prescription of motion with properties defined in advance.
2. Determination of displacements, velocities, and accelerations of the particles of
mechanical systems.

The current chapter was elaborated on the basis of the classical works [1-4] and
Polish/Russian monographs [5-11].

4.1.1 Motion of a Particle and Trajectory (Path) of Motion

As was already mentioned, the trajectory of motion of a particle can be a straight
or curved line. Let us assume that we have some trajectory given in advance along
which moves a particle A (Fig.4.1).

IChristian Huygens (1629-1695), Dutch mathematician, physicist and astronomer; he worked on
the development of differential-integral calculus, formulated a theory of dice games, and was the
first to calculate the speed of light.
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Fig. 4.1 Motion of a particle a
A on a straight line (a) and o A, A(t)
on a curve (b)

Thus, in the general case, the motion of a particle on a trajectory takes place
along the curve AgA = s, where Ag = A(0), A = A(t), that is

s = f(1), 4.1

and the foregoing equation shows the change in point position along the path.

The equation of motion for a particle is defined if its trajectory of motion, origin
O of motion, and direction and the function s = s(¢) are known.

The adopted arc coordinate s should not be confused with the distance traveled
by the particle because we deal with the latter only when the motion of particle A
begins at point O and proceeds to the right, that is, in the positive direction.

The distance traveled by a particle in the time interval [fo, 7] is equal to

|AoA| = |OA — OAp| = |s — so]. 4.2)
The total differential of an arc coordinate corresponding to time interval d¢ reads
ds = f'(r)de, 4.3)
where ds > 0 (ds < 0) if the motion takes place to the right (to the left) with respect
to point O.
An elementary increment of the distance is equal to

|ds| = | f"(6)ldr. (4.4)

and the distance traveled in the time interval [0, ¢] reads

Is| = /0 0, @.5)

and quantities s and |s| are expressed in meters, assuming that s(¢) is a monotonic
function.
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Fig. 4.2 Tracking of particle At
A’s motion with the aid of a

position vector r = r(t)
Ai(tl )

Aglt)

The presented method of describing particle motion is called a natural way.

Let us consider another way to describe the motion of a particle A in Euclidean
space (Fig.4.2).

Let us take one fixed point O in this space, called the center. The equation of
motion of particle A4 is given by the vector function

r=r(). (4.6)

The trajectory of motion of particle A is a set of tips of the radius vector r(¢) in
his consecutive positions.

In general, a curve formed by such a set of tips of a vector attached at a fixed
point is called a hodograph of a vector.

The particle trajectory shown in Fig. 4.2 is the hodograph of the radius vector of
that particle. The above method of describing a particle’s motion is called a vectorial
way.

The position of particle A in time can also be observed after some system of
rectilinear or curvilinear coordinates is chosen. In Fig. 4.3 the motion of a particle
A is shown in the Cartesian coordinate system.

The motion of this particle is described by three equations:

xi(t)= fi(t), i=123. A4.7)

Equation (4.7) can be treated as parametric equations of the trajectory of a
particle’s motion. From the first equation of (4.7) we can determine the time:

t=1(xy), (4.8)

and inserting (4.8) into the two remaining (4.7) we obtain
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Fig. 4.3 Motion of a particle %1
A in Cartesian coordinate
system

Fig. 4.4 Average and
instantaneous velocity
of a particle A

X2 = fo(x1),
x3 = f3(x1), 4.9)

which corresponds to the elimination of time, and the two equations of (4.9) describe
a curve in three-dimensional space also called the path of a particle.

4.1.2 Velocity of a Particle

The vector quantity characterizing the direction of particle motion and rate of
change in its position in the adopted way of measurement and observation is called
the velocity of a particle.

In we wish to track the motion of particle A using the radius vectorr = r(¢), we
make use of the vector equation obtained on the basis of Fig. 4.4.

On a trajectory let us choose two positions of particle A described by the radii
vectors r(¢) and ry (¢ + At). From AOAA, it follows that
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Fig. 4.5 Velocity of a
particle in natural coordinates

ri(t + At) =r(t) + Ar, (4.10)

and dividing by At we obtain

@.11)

and the direction and sense of average velocity v,, of particle A coincide with the
vector Ar.
If we take At — 0in (4.11), we obtain

Ar dr
m —=—=v 4.12)

At—0 At dr

The velocity vector of particle A is tangent to its trajectory of motion, and its
sense is determined by the particle motion, that is, by positions in successive time
instants.

In everyday speech, instead of the term velocity vector (acceleration vector), the
notion of velocity (acceleration) is used.

We will now describe the velocity vector of particle A using natural coordinates
(Fig. 4.5). The trajectory of particle motion, origin O, and equation of motion for the
particle s = f(¢) are known. The positions of points A®) and A(IS—MS) correspond

to time instants ¢ and ¢ + A¢, and we have As = X.A\l We choose the arbitrary
center O; and introduce two radius vectors describing the positions of points A and
A;. We successively have

dr drds ds

V= —=——=7—, (4.13)

dt  dsdt dr
where 7 is a unit vector of velocity, that is, it is tangent to the trajectory at point A
and its sense is determined by increasing the arc coordinate.

On the other hand,
dr . Ar
= — = lim —,
ds  4s—0 ds

T (4.14)
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Fig. 4.6 Velocity of particle X,
A in Cartesian coordinates

and its magnitude is equal to

. Ar . AA1
lim |—|=lm | — ] =1. 4.15)
As—0 | As Ai—>4\ A4,

In turn, the second factor in (4.13) g—f is an algebraic quantity of velocity, that is,
it describes the projection of the velocity vector v onto the tangent line, that is,

ds
=|—|, 4.16
Y dt ( )

which means that the magnitude of the velocity is equal to the absolute value of the
derivative of the particle’s arc coordinate with respect to time.

If g—f >0 g—f < 0), then the function f(s) increases (decreases) and the sense
of velocity v is in agreement with (opposite to) the sense of the unit vector 7. If the
direction of motion changes, then it means that % (tv) = 0 at a certain time instant.

Eventually, we will describe the velocity vector of particle A in the system of
Cartesian coordinates (Fig. 4.6).

According to Fig. 4.6 we have
r =E x| + Exx; + Ezx3, 4.17)

and differentiation with respect to time

dr
V= E =E x| + Exxy + Esx3 = Vi, + Vi, + Vi, (4.18)
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b

Fig. 4.7 Velocity vectors at points Ay, A,,..., A, (a) and velocity hodograph (b)

a X, b Vs

Fig. 4.8 Trajectory of motion (a) and velocity hodograph (b) of a particle 4 in space

The magnitude and direction of velocity of the particle is described by the

equations
= /2 2 2
v= /vy +vy, T e

cos(v,E) = 2L i=1,2,3. (4.19)
v
Let the motion of the point be a plane, i.e., let it be on the X OX, flat surface
and let x; = f;(¢). Thus we have

— |2 2
V= 4/vy F vy,

cos(v.E) = 2L i=1,2. (4.20)
1%

In the case of rectilinear motion x; = f(¢), v = |%| and vy > 0 (v, < 0) if
particle A moves in agreement with (opposite to) the sense of the axis OX].

If the particle moves on a curve in a non-uniform way, as was shown in
Fig.4.7a, then at the points A;, A,,..., A, we have different velocity vectors
VA,s VA,, ..., V4,;at this pointits tips will form a curve called a velocity hodograph
(Fig.4.7b).

Figure 4.8 presents the trajectory and a velocity hodograph of particle A in space.
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Fig. 4.9 Velocities of particles A and A, (a) and velocity hodograph (b)

From Fig. 4.8b it follows that
v=viE; + nE; +»E; = x|E| + X:E; 4+ X3E3, 4.21)
and hence we obtain three scalar equations,
Xi =i, i=1,2,3, (4.22)

called the parametric equations of a velocity hodograph.

4.1.3 Acceleration of a Particle

Figure 4.9 presents the motion of a particle A along a curve and the velocity
hodograph of this particle.

From Fig.4.9a it follows that the increment of velocity Av during time At is
equal to

AV =v, —vV, (4.23)

and dividing both sides of the above equation by At we have

(4.24)

and successively

. Av dv dPr
a= lim — = =

A T @ T A (4.25)

The acceleration vector is equal to the first derivative of the velocity vector with
respect to time or to the second derivative of the radius vector with respect to time.

The acceleration of the particle characterizes the rate of change in magnitude and
direction of the velocity vector.
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Fig. 4.10 Motion of a XA
particle A on a planar curve v
A 1 a:I
at N Ea
Et !
O E, %

As can be seen from the construction presented in Fig. 4.9, the velocity vector is
tangent to the velocity hodograph.

In the general case, the trajectory of motion of particle A is not a planar curve.
The vector a,y lies in the plane determined by the tangent to the trajectory at point A
and the line passing through A and parallel to v;.

If the curve is planar, then the plane in which it lies is the osculating plane. The
velocity vector lies in the osculating plane and points to the inside of the bend of
the curve. We will describe the acceleration vector of the particle in the Cartesian
coordinate system by giving its magnitude and direction. We have

dzl‘ dle dZ)C2 dz)C3
—— —E E E;——
A= g2 T Mg TR TR
dv1 de dV3
—E — 4 Ey—2 + E;—. 4.26
o TRy TRy (4.26)

From (4.26) it follows that projections of the acceleration vector on the axes of
the Cartesian coordinate system are equal to the second derivatives of the respective
coordinates with regard to time or to the first derivatives of projections of the
velocity vector on the respective axes with regard to time (Fig. 4.10).

The magnitude and orientation of the acceleration vector are described by the
equations

Ay
a=,la2 +a2 +a2, cos(aE)=—" i=123. (4.27)
- a

If we are dealing with planar motion, then

a=Ja +a, cos(a,Ei):%, i=1,2. (4.28)

Finally, in the case of rectilinear motion we have x = f(¢) and the acceleration
a is in agreement with (opposite to) the sense of the axis if a, > 0 (a, < 0).

Let us now consider how to determine the acceleration vector in natural
coordinates (Fig.4.11).
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binormal axis

normal
plane

binormal
plane

Xig

osculating
plane

Fig. 4.11 Natural coordinates

At point A of the curve we draw the osculating plane, the normal plane
perpendicular to it, and the third plane perpendicular to both of those planes; this
is called the binormal plane. The following three mutually perpendicular axes are
called natural axes:

1. Tangent axis directed in agreement with the increment of the arc coordinate.
2. Principal normal axis directed to the inside of the bend of the curvature.
3. Binormal axis chosen in such a way that the system (z, n, b) is right-handed.

The system of natural coordinates moves on the curve simultaneously changing
orientation in space.

In Fig.4.12 are shown two positions of particles A = s and 4 = s + As.
Although the magnitude of the unit vector |t| = 1, this vector is not constant
because it changes direction. From Fig. 4.12 it follows that

At =1 —T1, (4.29)

and after division by As we obtain the vector of average curvature of the trajectory
Xav, Which characterizes the change in position of T on the arc AA;.

If As — 0, then we obtain the definition of the vector of curvature of a curve
(trajectory) at point A of the form

AT dr
¥ = _

TA A T (30
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Fig. 4.12 Vector of curvature a 0 b
X vector of average curvature
Xav (@) and the magnitude of
the vector At (b)

T

|At|=21sin(a/2)

The vector of curvature of the curve at a given point is equal to the derivative
of a unit vector of the axis tangent to the curve with respect to the arc coordinate.
The sense of the vector y is in agreement with the sense of the vector Ar. The
magnitude of the vector |At| is equal to (Fig. 4.12b)

|At| = 2tsin(e/2) = «, 4.31)
and in view of that,
li fim % =1 (4.32)
= lim |—| = lim — = —. .
X As—0 | As As—0 As p

From differential geometry it is known that the ratio of angle « to the increment
of arc coordinate As, provided that As — 0, is equal to the curvature of a curve
p~', where p denotes the radius of curvature of a curve at point 4.

The vector y lies in the osculating plane and is directed along the principal
normal toward the center of curvature and can be represented in the form of the
vector equation

¥ =n-, 4.33)
o

where p is the radius of curvature at point A.
The acceleration a of particle A is equal to

dv  drds d3s
= —=——" 41— 4.34
a dr dr dr + Tdﬂ ( )

Becausev =1 - ‘;—f, (see (4.13)) from (4.33) and (4.34) we obtain

VZ d2
a= n; + TF =na, + tda,, (4.35)

where (§£)* =%,
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Fig. 4.13 Vector of
acceleration a in natural
coordinates

The projection of acceleration a of point A on the principal normal is equal to
the square of magnitude of velocity of point A divided by the radius of curvature at
this point. The projection of acceleration a of point A on the tangent axis is equal to
the second derivative with respect to the time of the arc coordinate of this point or
to the first derivative with respect to the time of velocity % of the point.

If p = oo, which takes place in the case of motion of the point along a straight
line, we have a, = v*/p = 0.

Normal acceleration exists only during the motion of a particle along a curve and
characterizes the change in the direction of velocity.

During uniform motion, v = const, and then a, = % =0.

Tangential acceleration exists only during the non-uniform motion of a particle and
characterizes the change in the magnitude of velocity.

If we know the magnitudes of velocity and acceleration of the particle in
rectilinear coordinates

v= V2 +v2 4+, a=,/a? +a’ +al, (4.36)

then we successively calculate

dvy;

dV d > > B vxl dr +sz ar +Vx3 dr
GTZEZE Vx1+vx2+vx3:
2 2 2
Ve TV v

dvy, dvyy

Vyx; + Vi, xy + Vi Ay voa
— 1 1 2 2 3 3 — , (4.37)
v 1%

>
a, = y/a*—a?, o= ;—, (4.38)
n

that is, we determine accelerations a, and a,, and the radius of curvature p in natural
coordinates (Fig.4.13).
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4.2 Selected Problems of Planar Motion of a Particle

4.2.1 Rectilinear Motion

If the particle selected for consideration is in rectilinear motion, then after the
introduction of axis OX, the position of particle A at time instant # is determined
by one coordinate x (¢). The time occurs here as a parameter (Fig. 4.14).

The speed of that particle directed along the OX axis is equal to

Ax dx

= i = — = x(1). 4.39
v im 4 x(1) (4.39)

At—0 E

If in equal time intervals Az the particle travels equal distances Ax, then we call
such motion a uniform rectilinear motion.

The average velocity in uniform rectilinear motion is equal to v,y = Ax/At,
whereas the instantaneous velocity of the motion is defined by (4.39). If the particle
moves in agreement with (opposite to) the positive direction of the OX axis, the
speed of that particle v, > 0 (v, < 0).

The rate of change in speed of the particle is characterized by an acceleration.
When the particle travels along a straight line, its acceleration is given by

Avy d®x

If the considered particle moves with the acceleration constant as to direction and
magnitude, then taking the direction of the OX axis in accordance with the direction
of the acceleration, we have

|a| = a, = X(¢t) = const. 4.41)
Integrating (4.41) we obtain
vy = X(t) = ayt + Cy, (4.42)
where C| denotes the constant of integration. Integrating (4.42) we obtain

axt2

X = + Cit + . (4.43)

In order to define the motion it is necessary to know its initial conditions, which
we will assume to be

x(t) )l AX
v v, X
—0 O B O - >
Fig. 4.14 Rectilinear motion o A A,
of a particle t t=t+At
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0] AV, A ,v X
a

P x() 5

1

Fig. 4.15 Velocity and acceleration of a particle A at the time instant 7y = 0 and ¢

x(t = 0) = xo,
vt = 0) = vy,. (4.44)
Substituting (4.44) into (4.42) and (4.43) we obtain
C1 = Vxq» C2 = X0-. (445)

Substituting (4.45) into (4.42) and (4.43) we have

2

X =

“"2 ol + X0, Vy = ayt + vy, (4.46)
If the sense of initial velocity v, is in agreement with the positive direction of
the OX axis, then for the total duration of motion the values of x and v, increase
(Fig. 4.15). Motion like that is called uniformly accelerated motion.
In the case where the initial velocity v, possesses a sense opposite to the assumed
sense of the acceleration a,, (4.46) will take the form

axt2
X = - - Vxot + Xo, Ve = Ayl — Vy,. 4.47)

Xi

In the time interval 0 < ¢ < Va—o, the speed v, < 0. In this time interval the
motion proceeds in agreement with ‘the sense of initial velocity and opposite to the
sense of acceleration. Such motion is called uniformly decelerated motion. In that
interval the speed decreases and attains a value equal to zero for the time instant
th = ”0 . For the time ¢ > 7, the sense of velocity is in agreement with the sense
of acceleratlon that is, the change in the sense of particle motion occurs at the time
instant t = 7o (Fig. 4.16).

4.2.2 Rectilinear Harmonic Motion and Special Cases
of Plane Curvilinear Motion

Apart from the described uniformly accelerated and decelerated motions, the motion
of a particle along a straight line can be harmonic motion. As we will see later, such
motion can also be described by the same equation if the particle trajectory is a
circle.
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a b b VKJI
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L ]
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Fig. 4.16 Graphical representation of displacement (a) and velocity (b) governed by (4.46)

The harmonic motion is described by the following second-order differential
equation:

¥+a’x=0, (4.48)

whose solution is
x = asin(at + ¥y). (4.49)

In the equation above a denotes an amplitude of motion, o the frequency of
motion of the point, and the angle v is called the initial phase since the argument
at + 6y is called a phase of harmonic motion. The amplitude and initial phase of
motion are defined by imposing the initial conditions of the motion. We will conduct
an analysis of the motion using (4.49). It is easy to notice that the motion takes place
around point O, which is the origin of the adopted coordinate axis. The most remote
position of a particle from the origin O is equal to a, so it is equal to the amplitude
of motion. Because the motion is harmonic, let us try to determine the shortest time
T after which the motion will start to repeat itself. The condition of repetition will
take the form

at +T)+ Yo = at + Yo + 27, (4.50)
from which we find T = 27 /«. From the last equation we will determine the
frequency of motion as

f=T""= "2, 451)
2

which is understood as the number of periods per unit of time. Differentiating (4.49)
we will easily determine the speed and acceleration of the point motion

vy = X = aa cos(at + ¥y),

a, = ¥ = —aa’ sin(at + Vo). (4.52)
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Fig. 4.17 Circular motion of X, A
a particle with constant speed
vy =at, r =a)

At the time instants in which the speed is equal to zero, the acceleration reaches
its maximum value. The simple interpretation of a harmonic motion can be obtained
by an analysis of the circular motion of a particle.

From Fig. 4.17 it follows that after projecting the point moving uniformly along
the circle onto the OX; axis we obtain

. bid
X] = acosat = asin (ozt + E) , (4.53)
which means that we are dealing with the harmonic motion (¢ = const).
The curvilinear motion of point along a circle is a special case of motion along
an ellipse.
Let us consider the motion of a point described by the following equations:

X| = acosat, X, = bsinat. (4.54)

Eliminating parameter ¢ from (4.54) we obtain the equation of an ellipse:

IR 455
; ﬁ_ 3 (')

which is depicted in Fig. 4.18.
The speed of motion of point A of coordinates x; and x; is equal to

v=,/vi +12 = V(—aasinat)? + (ba cos ar)?

b2 a?
= avVb2cos?at +a?sinat = oy —x? + —x2. (4.56)
a2’ p2?
Ifvy, = —ab ax,, Vi, = ba 'ax, then the vector v = vy, E1 + vy, Es lies on

a tangent to the ellipse at point A and possesses the sense indicated in the figure.
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Fig. 4.18 Motion of a point
along an ellipse of axes 2a
and 2b

Fig. 4.19 Curvilinear planar XA
motion of a point determined
by initial conditions (4.58)
and (4.59)
Xao C

Let us note that both values of the components of acceleration at the position of
point A (Fig.4.18) have signs opposite to unit vectors E; and E, because

a,, = —aa’cosat, a,, = —ba’sinat. (4.57)

The vector of acceleration a has a magnitude

a=,/al +a2 = Va2 cos?at + b2 sinat = or,

where r = ,/xl2 + x% (Fig.4.18).

From the foregoing discussion one can draw the conclusion that the acceleration
of a point traveling along an ellipse depends on the position of the point and
possesses the direction of the radius vector and a sense toward the center of the
ellipse.

Finally, let us consider the case where a particle moves in a plane with a
curvilinear motion with the acceleration |ag| constant as to direction and magnitude.
We take the Cartesian coordinate system OX X, in such way that the axis OX> || ag
(Fig.4.19).
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Let us take the following initial conditions:
x1(t =0) = x50, x2(f = 0) = x20, (4.58)

vyt =0) =vpcosa, vy, (t =0)=vgsina. (4.59)

According to the adopted coordinate system we have
551 = 0, 552 = —Aap. (4.60)
Integrating the equations above we obtain

X1 = Ciy,, X = —apt + Cyy,, (4.61)

aot?
X = Clxlt + szl, Xy = —OT + C]xZI + C2x2. (4.62)

Taking into account the initial conditions in (4.61) and (4.62) we obtain the
following values of the introduced constants of integration

Caox, = x10,  Cax, = X20, (4.63)

Clxl = ypCoS«, Clxz = SiIlOl, (464)

and in view of that the projections of velocity and displacement of point A are
equal to

Vy, = VocCOSa, Vy, = —agl + vpsina, (4.65)
a()l2 .
X| = vot cosa + Xjp9, Xp = 5 + vot sina + Xp9. (4.66)

We determine the path of point A from (4.66) after eliminating parameter ¢,
thereby obtaining

2
ap(x; —x
X = —0(2‘—210) + (%1 — X10) tan & + x2o. (4.67)
2v; cos* a
Let us consider the special case where the vector ag = g, where g is the
acceleration of gravity on Earth, and where a = 7.
In this case, from (4.65) and (4.66) we obtain

Ve =0, vy, = —gt + o, (4.68)

gt’
X1 = X10, X2 = X0 + Vol — B3 (4.69)
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Fig. 4.20 Uniform motion of
a point A along circle
of radius r and center O’

If in this case the sense of velocity vy was in agreement with the positive direction
of the OX; axis, then the path of the point is a straight line and the point moves
at first in uniformly decelerated and then in uniformly accelerated motion. Such
motion is called a vertical motion, whereas the motion of the point considered earlier
is called an oblique motion.

4.2.3 Circular, Rectilinear, and Curvilinear Motion in Vector
Approach

The uniform motion of a point 4 along a circle of radius r and center O’ is presented
in Fig. 4.20.
First let us show that in such motion, v4 | r, where r4 = v,4. According to the
conditions of motion and Fig. 4.20 we have
(rs —ro)* = r? = const. (4.70)
Differentiating (4.70) with respect to time we obtain
2(ry —ro) oty =0, 4.71)
which means that v4 L r.
Differentiating (4.71) with respect to time and taking into account that we are
dealing with uniform motion we obtain
i+ (@rg—rp) oy =0, (4.72)
from which it follows that
(rq —rg) o4 = const. 4.73)

Differentiating (4.73) with respect to time we obtain

ryoay=vyoa, =0, 4.74)
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Fig. 4.21 Motion of point
A along a straight line

which shows that the vectors of velocity and acceleration of point A are perpen-
dicular to one another. In the equations above during transformations we used
the relations % = const and ¥4 = const (however, note that r4 # const and
I4 # const).

Because we are dealing with planar motion, all vectors describing the motion of
point A, i.e., r (position), v4 (velocity), and a4 (acceleration) lie in one plane. And
now, if vy L rand ay L vy, we have r || a4. The senses of vectors r and a4 are

opposite, because from (4.72) it follows that (Fig. 4.20)
roay = —vﬁ = const, 4.75)

and the magnitude of acceleration equals

2
V4
ay = =, (4.76)
r
where r is the radius of a circle along which point A moves uniformly.
Let us now consider the uniform motion of point A along a straight line, depicted
in Fig.4.21.
The trajectory of motion of point A is a straight line, and because we will analyze
uniform motion, in any time instant ¢ we have 4 = vy = const. The initial position
of point A4 is defined by the vector ry, and in view of that from Fig. 4.21 we have

r4(t) = vot 4+ ro. “4.77)

Now, let the velocity of point A along the straight line be defined by the
relationship
VA(I) = agl + vy, (4.78)

where ap = const is the acceleration (the vectors of acceleration and velocity are
tangent to the path). The motion described by (4.78) is not a uniform rectilinear
motion. Integrating (4.78) we obtain

1
ra(t) = anzz + vot + 1y, (4.79)

which describes the change in radius vector of point A.
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Fig. 4.22 Motion of point X, A
A during a projection at an
angle onto the horizontal
in the gravitational field

lg

r.q( t) -

Y

Xs

We have already assumed that the senses of vectors r4 — ry and vy are the same.
Let us assume now that the senses of vectors ay and v (initial conditions of motion)
are also in agreement.

The vector %aot2 + vot describes the motion of point A along a straight line in
time starting from the initial instant ¢y. Taking the unit vector [ of axis /, (4.79) in
this case will assume the form

1
ry(t) = (antz + Vot) [+ 1. (4.80)

In kinematics we do not refer to forces, but only to observations of motion
that rely on a geometrical approach. In the case just considered, the initial vectors
of motion ap and vy were collinear, and we considered the case of uniformly
accelerated motion (we are dealing with uniformly decelerated motion if —ay is
substituted into (4.79)).

Let us consider now the case where vectors ap and vy are coplanar (i.e., they lie
in one plane) and are not parallel to one another.

We must deal with such a case during a projection at an angle onto a horizontal
in the gravitational field, where a4 = g = const and g is the acceleration of gravity
on Earth.

Also in this case, the motion is governed by the vectorial equation (4.79), but
now the path of motion will not be a straight line. Therefore, for the purpose of
analysis of this motion, we introduce the Cartesian coordinate system chosen in a
special way. According to (4.79) we have

1
r (t) —ro = anlz + Vvof, (4.81)

and the introduced Cartesian coordinate system is depicted in Fig. 4.22, where now
all three vectors ap = g, r4 — ro, and vy lie in the OX X, plane.

In order to obtain the equations of motion in this system in scalar form we will
multiply (4.81) by E;, bearing in mind that
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r (t) —ro = x1(1)E; + x2(1)Es,
vo = Vo1 Ei + vpEa,

g =—gE,. (4.82)
As a result of that operation we obtain
x1(t) = voit,
L 5
x2(1) = voot — ng ;

x3(t) =0, (4.83)

which was obtained earlier using the standard approach [see (4.68) and (4.69)].

4.3 Radius Vector and Rectangular and Curvilinear
Coordinates in Space

4.3.1 Introduction

We will consider the motion of a point in Euclidean space (three-dimensional);
strictly speaking we will deal with its kinematics. Because motion is defined as
a change in the position of a point (body) with respect to the adopted (in this case
fixed) coordinate system or the point of reference, the easiest way to determine the
position of the point is to make use of the so-called radius vector (position vector).

In Fig.4.23 point A moving along the curve in space is presented. The position
of that point may be described at every time instant by the vector-valued function
r = r(t). The velocity of point A4 is defined by the relationship v = dr/d¢, and the
acceleration of the point is equal to a = dv/d¢ = d’r/dz>.

If we are going to observe motion from point O, then we can locate there the
most popular Cartesian coordinate system. The point in the successive time instants
t; occupies the positions 4;,i = 1,2, .... These positions are also described by the
tip of the radius vector r(¢;).

The vector-valued function r(¢) defines the position of a point, whereas the tip of
vector r(¢) draws a hodograph, which is a path of point motion. In turn, taking under
consideration the adopted rectangular coordinate system OX; X, X3, we define the
position of point A by three scalar functions, x| = x(¢), X, = x2(t), x3 = x3(¢),
and the position vector can be expressed as

r = x;(1)E; + x2(1)Ey + x3(¢)Es, (4.84)

where E|, E,, E3 are the unit vectors respectively of the axes OX |, OX,, and OXj;.
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Fig. 4.23 Motion of a point in a three-dimensional space

A derivative of the vector-valued function (position vector) with respect to time
r(t) = ‘3—: is called the velocity:

v=viE| + »E; + »zE3, (4.85)

where vi = X1(t), vo = X2(2), v3 = X3(¢).

The velocity of a point is a vector tangent to the hodograph of the position vector
r(t) (Fig.4.23).

On the other hand, the derivative of the velocity vector of the point is called the
acceleration:

a(t) =v=aE| + a,E; + a3E;, (4.86)
: d?x . d’x . d?x
whereal =V = T;,az =V = Tf,a3 =V3 = T;

The magnitudes of the velocity and the acceleration are equal to

v=|v(t)] = V2 +13 +13, (4.87)
a=la(t)| = /al +a} + a3, (4.88)

having the units m-s~! and m-s~2, respectively. Let us note that the direction cosines
of the acceleration vector are equal to

cos(a,E)) = —1, cos(a,Ep) = —2, cos(a,E3) = —3.
a a a
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The vectors of the velocity of the point at the instants ¢ and #; are drawn in
Fig.4.23. The average velocity in the time interval At = #; — ¢ is defined as

_ r(t)) —r(t) _ Ar(At)
- n—t - At

(4.89)

av

If At — 0, then the direction of the vector v,, will tend toward the tangent to the
motion trajectory at point A. The vectors of acceleration were not drawn in Fig. 4.23
because their determination requires slightly deeper computations. The average and
instantaneous accelerations are defined in a way that is analogous to the definitions
of average and instantaneous velocity.

Often, because of the convenience of calculations, interpretations, or simplifica-
tions regarding the point motion, one introduces its analytical description with the
aid of curvilinear coordinates.

4.3.2 Classification of Particle Motion with Regard
to Accelerations of Motion

Because a = a, + a,, we introduce the classification of motion with respect to a,
and a,.

1. Let the normal acceleration a, = 0 and tangential acceleration a, = 0. If in
a certain time interval the normal and tangential accelerations of a particle are
equal to zero, then in this time interval neither the direction nor the magnitude
of velocity changes and the particle is in uniform rectilinear motion and its
acceleration a = 0.

2. Leta, # 0,a, = 0. If in a certain time interval the normal acceleration of a
particle is nonzero, but it does not have tangential acceleration, we are dealing
with a change in direction of velocity without a change in its magnitude, and the
particle is in uniform curvilinear motion, where a = %.

3. Leta, = 0 and a, # 0. If in a certain time interval the normal acceleration
is equal to zero, but the tangential acceleration is nonzero, then the direction
of the velocity vector does not change, but its magnitude changes, that is, the
particle moves nonuniformly along a straight line. If the senses of v and a, are
in agreement (opposite), then the particle is in accelerated (decelerated) motion.
If only in a certain time instant a, = % = 0, then either the particle is not in
rectilinear motion (p = oo) or the magnitude of velocity v = 0, which occurs,
for instance, when the sense of the particle’s motion changes.

4. Leta, # 0 and a, # 0. If in a certain time interval during the motion of a
particle a, # 0 and a, # 0, then both the direction and the magnitude of the
velocity vector change. When the senses of vectors v and a, are in agreement
(opposite), then the particle is in curvilinear accelerated (decelerated) motion.
If during motion a, = const, then the particle is in uniformly variable motion.
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Fig. 4.24 Motion of a
particle on a curve with
constant tangential
acceleration

In this case (Fig. 4.24) we have
dv = a.dt. (4.90)

Integrating (4.90) by sides we obtain

ds +a.de (4.91)
— =v =1+ a.dt, .
dr ’
and the above equation describes the velocity of the particle during its uniformly
variable motion. Now, integrating (4.91) by sides we obtain
12
s(t) = 5o + vot + afi, (4.92)

and (4.92) is called an equation describing the uniformly variable motion of a
particle. If vp > 0 and a, > 0, then the motion is uniformly accelerated, and if
a, < 0, then the particle’s motion is uniformly decelerated.

4.3.3 Curvilinear Coordinates

In this section we will introduce superscripts on vectors and, generally, on tensors
(more information about tensor calculus is presented in Chap.6). Let us start by
motivating the introduction of the superscripts (indices).

Because of the need for a concise representation of formulas and equations and
simplicity of their transformations, we can represent an arbitrary vector a in the
following form using the basis E,:

a=2a"E,, (4.93)

where the twice occurring indices at the upper and lower levels denote the
summation (here n = 1,2, 3). However, often apart from the Euclidean space
(which is planar, though, e.g., N-dimensional) we apply different spaces, e.g.,
Riemannian? space, and the index 7, which can be either a superscript or a subscript,
assumes the dimension of the considered space N, so it can change from 1 to N.
In the equation, we denoted the vector in the Euclidean space R*® and thus the

2Georg Riemann (1826-1866), German mathematician working in the field of analysis and
differential geometry.
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summation of the index n proceeded from 1 to 3, but if the vector were considered
in the space of dimension N, then the summation would proceed from 1 up to N.
The dot product of two vectors, e.g., in Euclidean space is equal to

3 3 3
aob=Y % 8,,d"b" =) a,b", (4.94)

m=1n=1 n=1

where

3
a, = Zsmnam. (4.95)
=1

The summation in the formula above due to the application of the Kronecker?
delta §,,, led to a decrementation of the index. However, earlier, in using a dot
product, we did not use superscripts, and (4.94) and (4.95) could be effectively
written using the subscripts only. It follows then that ¢ = a,, b" = b,, and
8" = 8,,,. However, it turns out that we are allowed to proceed like that only when
using a Cartesian coordinate system. In curvilinear systems, there exists a difference
between the quantities a” and a,,.

It should be noted then that in the Cartesian coordinate system one will not make
a mistake if one uses indices at only one or both levels.

Let us additionally consider the vector product of two vectors also in Euclidean
space. Denoting

a=dE;, b=dE;, (4.96)
we have

c=axb=db/(E xE)). (4.97)

An arbitrary kth component of the vector ¢ can be directly obtained from the
formula o o
ck =(axb)oEy =a'b/ (E; xE;)oEy = a'bl ey, (4.98)

which defines the tensor of rank three (alternating tensor) of the form
Ekij = (E, X EJ) o Ek. (499)

The alternating tensor possesses the following permutation properties:

. &kij = 01if two out of three indices are identical.
. &kxij = 1(=1) if the sequence of indices k, i, j is (is not) the sequence 1,2, 3 or
its even (odd) permutation.

DN =

2Leopold Kronecker (1823-1891), German mathematician and logician; born into a Jewish family
(among other places, he worked in Wroclaw and Legnica).
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The unknown vector ¢ can be represented in the following form making use of the
alternating tensor: o
c=8"c, By = 8Meyja’ b K. (4.100)

In the case of the Cartesian system we may use the subscripts only, and then we
obtain

Ck =£k,'jaibj, c=axb= Skija,'bjEk. (4101)

Between the Kronecker delta § and the alternating tensor e the following
relationship exists:

EkijEkmn = SimSjn — 8indjm. (4.102)

The validity of the preceding relationship can be proved. If m = i and j = n,
then we have 6,8, — 6;s0;m = 1, and if j = m and i = n, then we have
8inbjn — 8ind;m = —1. This is identical to the left-hand side of (4.102) after using
the properties of the alternating tensor mentioned earlier.

We will show as an example how to apply the tensor notation and use the
transformations making use of the introduced concepts of Kronecker delta and
alternating tensor while proving the relationship known from the calculus of vectors

(axb)xc=(aoc)b—(boca. (4.103)

Successively we have

(axb)xe= gkijaibjcmskmnEn = 6‘kij5kmnaibjcmEn
= ((Sim(sjn - Sin(sjm)aibjcmEn = pCmb — bycpa

=(aoc)b—(boc)a. (4.104)

Let us consider the Euclidean space of dimension N and take an arbitrary
point. Moreover, let us introduce two local systems of arbitrary coordinates, not
necessarily Cartesian. Let the chosen point have the coordinates x' in the first
coordinate system and x'/ in the second one. The transition from the coordinates
x' to x'/ we define as one-to-one and continuous mapping (homeomorphism) and
write it formally as

X7 =), (4.105)

According to the assumption made, the Jacobian of transformation (4.105) has
the form

ax’! ax’!
I <
af ax'’
axk axk : T ( )
ax'N ax'N
axl T o9xN
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As a result of differentiation of (4.105) with respect to x! we obtain

1]
= gy, (4.107)
ax!

The equation just obtained can be applied also in the calculus of vectors if we
assume dr = dr[dx', ... dx"].

In general, the set of quantities 7' defined at the given point of space is the set of
components of the contravariant tensor of the first rank if during the change in the
coordinate system its components undergo transformations similarly to differentials,
i.e., when according to (4.107) the following relationship holds:

ax’’
ox!

T = T, (4.108)

L ’J . . .
and the derivatives a;x,. are calculated at the mentioned selected point. In this

book we denote the vectors by small bold letters, e.g., a, b, c, ..., whereas we will
denote in majority of the cases the contravariant tensors by uppercase letters with
superscripts, e.g., A', B/, C¥, . ...

We then define the contravariant tensor of the second rank in a similar way, but
it possesses the following property:

ax’™ ax" .
7" = ———T". 4.109
ax! oxs ( )
Let
. 9 7 9 /1
T = ax ™, p'= ax D" (4.110)
XM x"

We will demonstrate that as a result of multiplication of the foregoing
contravariant tensors of the first rank we obtain as well the contravariant tensor
of the second rank of the form

7' p' = B, 4.111)

From (4.111) taking into account (4.110) we obtain

B/i/ _ '’ TmMDn — ax" ax’! Tmpn — ! MB”' (4.112)

ax™m ax" ax™M 9x" ax™m 9xm

From (4.111) and (4.112) it follows that the multiplication of tensors leads to an
increment of tensor order, and this is the so-called outer multiplication of tensors
and is a generalization of the cross product of vectors. In turn, the so-called inner
multiplication of tensors is the extension of the operation of the dot product of
vectors and is connected with tensor contraction.
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As a result of this operation we obtain a decrementation of the rank of the tensor
of the second rank by two, that is we obtain a scalar. In the case of a scalar we have
the same value regardless of the choice of coordinates, i.e., the scalar is an invariant.

The notion of gradient may serve as an example of a covariant.

Let the scalar function ¢ be given. The vector grad ¢ has the following form in
the two chosen coordinate systems:

¢

grad ¢ = WEi, grad ¢ =

d¢

dx’k

E*. (4.113)

The coordinates of the vector grad ¢ in the new and old coordinate systems are
interrelated through the equation

d(xt XNy = o L x aNe Y). (4.114)

After differentiation of the foregoing composite function with respect to f; we
obtain )

d¢p ¢ ox'

ax’t Ox! ax't’

(4.115)

which defines the law of transformation of the components of the gradient Z% in the

old coordinate system to the components of the gradient g; in the new coordinate

system.
The preceding observation is expressed as

I
and Ti’ , T are the components of the covariant tensor of the first rank.
The quantities 7} are the set of components of the covariant tensor of the second
rank if they undergo transformation to the coordinate system (') according to the
following equation:

dxi 9xk

/ —_— —
Ton = ox’™ ox"™

Tik. (4.117)

One may conclude that the covariant tensors are represented by subscripts.

As we already mentioned, an arbitrary vector of the components a’ in the
Cartesian coordinate system is simultaneously a covariant tensor and a contravariant
tensor of the first rank.

A very important notion, used especially in Chap. 6, is the notion of a metric
tensor.

Let dr denote the difference between two points in the R* space in the rectangular
coordinate system. The distance between those points will be determined from the
equation in the standard notation and the tensor notation

(dr)? = (ds)? = (dx1)? + (dx2)? + (dx3)%,
ds? = (ds)? = §;dx;dxy. (4.118)
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The square of the distance (ds)? will not change its value if the coordinate system
changes because it is a scalar, that is, a tensor of a zeroth rank. Let us introduce,
in addition to the Cartesian system, an arbitrary system of curvilinear coordinates.
Then we have

r=r(q'.q*.¢°) (4.119)
or, in equivalent notation,
xi=xi(q" 4% q%). (4.120)
from which we obtain
dx; = g; dg°. (4.121)

Substituting (4.121) into the second equation of (4.118) we obtain

ax; 0xk

ds? = §; dgdg”. 4.122
s “og 3gr 9 Y ( )
On the other hand, we have
Jar 0 o o
ds? = dr? = L 2 agsdg” = g,,dg*dg”, (4.123)
aq® 9q”
and hence
ar or ox; 0xy
= —— =§j——, 4.124
8sr aqs aqr ik aqs aqr ( )

where g, are the functions of the curvilinear coordinates ¢!, g%, ¢>. It is possible to
demonstrate that g, is a tensor of the second rank, and in the Cartesian coordinates
gsr transforms into &y,

Because ds? is the tensor of zeroth rank (the scalar), for the scalar the following
relationship holds:

gsrdg’dq” = ¢’ ,,,dq""dg". (4.125)

In turn, because dg’ are the components of contravariant tensor, taking into
account
dg™

dg" = ——
q 20

dg*, (4.126)

in (4.125) we obtain

,odg™dg™N L
gsr— 8 ’”"a_qs Y% dg’dg" = 0. (4.127)
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Changing in the preceding formula the sequence of indices s and r one obtains

d m m
&rs — &mn o - | dg"dg* = 0. (4.128)
dq" 9q°

Adding by sides (4.127) and (4.128) we obtain

dq/m dq/n
&sr + &rs = (&n + &um) 0 (4.129)
By definition, the tensor g5, = grs is symmetrical; hence from (4.129) we obtain
dq/m dq/n
7
&sr = gmna_qs o (4.130)

We call the tensor above, which is a covariant tensor of the second rank, a metric
tensor. The notion of metric tensor was introduced in the discussion of the transition
from the rectangular coordinate system to the curvilinear coordinate system. It turns
out that rectangular coordinate systems can be introduced only in flat Euclidean
spaces.

The already mentioned Riemannian space is a curved space. We will present
some of the properties of metric tensor g;; on an example of two-dimensional
Riemannian space, where the position vector r in the rectangular coordinate system
can be expressed by the coordinates of the position point of coordinates (g, ¢?).

A two-dimensional Riemannian space is a surface, and assuming

r=r(q'.q). (4.131)
we can determine the so-called infinitesimal displacement of the form

dr = 9T agt + g (4.132)

From the preceding equation we obtain

Jr or Jr or Jr or Jr or
2 14,1 14,2 29,1 2492
= ——dg'd ——dg'd — —dg-d — —dg-dg-.
S dq! 3q! q dq° + 3q' 3q° q dq” + 34> 3q" q-dq" + 34> 34 q-dq
(4.133)
By relying on the summation convention we can write
ar 0 . .
ds? = = T 4gidgk = g;1dg’ dg*, (4.134)

dq/ dgk
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where during summation the indices change from 1 to 2, since we are dealing with
a two-dimensional Riemannian space.

The introduced metric tensor g;; allows for the determination of the metric
(length) ds. Moreover, with its aid it is possible to define the arbitrary dot product
of two vectors in space of dimension N having the form

aob = g;a’ b, (4.135)

and additionally we have
gikg" =87, (4.136)

The basic notions of the tensor calculus introduced so far are based on the
classical works [12, 13], where the reader can find plenty of additional information
related to the properties of tensors and their applications.

The transformation between the coordinates of a point in Cartesian coordinate
system (x', x2, x*) and curvilinear coordinate system (¢!, g%, ¢*) has the following
form:

r=rlq¢'.¢>.¢’] = x'E| + x’E, + X’E; (4.137)

or, in equivalent notation,

! = ! (ql,qz,q3),
x2 = x2 (ql,qz,q3) 7
¥ =x(¢".q%q%). (4.138)
It can be assumed that three numbers, ¢!, g%, and ¢°, determine uniquely the
position of a point in Euclidean space and can be treated as curvilinear coordinates

of that point.
If the determinant of the Jacobian® matrix (the Jacobian)

det(J) # 0, (4.139)

where J/ = 9x/dq’, then (4.138) enables us to express the curvilinear coordinates
of the point through its Cartesian coordinates:

g =q' (x'.x%x%)
7 =q* (x' 22 x) |
¢ =q (x'.x*x). (4.140)

3Carl G. Jacobi (1804-1851), great Prussian mathematician, born in a Jewish family.
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It should be emphasized that despite (4.140) being theoretically motivated, in
practice it is very difficult to obtain their analytical form. The assumption det(J # 0)
guarantees that the arbitrary coordinates (x', x2, x3) possess the uniquely corre-
sponding (¢!, ¢?, ¢*) coordinates and vice versa.

We say that the motion of a particle will be prescribed if the coordinates ¢/ =
q'(t), i = 1,2,3, are prescribed.

If one of the coordinates is assumed to be constant, that is, for example,

gt = q" (x'.x%.x7), (4.141)

then that equation describes the surface ¢* corresponding to the coordinate g*. It is
defined by the set of points in the Cartesian coordinates described by (4.141).

Let us take, e.g., k = 1. While moving over this surface the coordinates
(x!,x2,x%) will be changing, which implies that, according to the two remain-
ing (4.140), ¢ and ¢ will also undergo change.

We will use the term first coordinate curve to refer to the curve passing through
the point A4o(¢q',¢*°,¢*°) and obtained for fixed ¢> and ¢ coordinates and for
varying ¢', that is, r = r(¢',¢%°, ¢*). In a similar way, we describe the second
and third coordinate curves.

The radius vector r of an arbitrary point can be expressed as a vector-valued
function of the curvilinear coordinates in the following way:

r=x"(¢'.¢*¢’)E;, i=123, (4.142)

where E; are unit vectors of the Cartesian coordinate system.
Let us introduce a covariant basis of vectors a;, a,, and a3 defined as follows:

ar  ax/
g, = a_; - aiqiEf" (4.143)

Let us note that if we calculate the derivative, e.g., for i = 2, then we will treat
q' and ¢ as constants. Then, vector a, will be tangent to the curve g2 with the sense
corresponding to the direction of increasing values of ¢>. The same is valid for the
coordinates ¢! and ¢>.

Knowing the functions x°, x2, and x3 [see (4.138)], the relationship between a
basis of covariant vectors a; and a basis of Cartesian vectors E; can be written in
the following matrix form [see (4.143)]:

1

rox' 9x? 9x?T

dg" 9q" 9q"
a 1 2 3 E,
a | = % % giz E |. (4.144)
o ¢ 9 0 || g

ax!  oax*  9x3
L dg® 0dg3 0qg>
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Fig. 4.25 Point A lying at an
intersection of curves ¢

(i = 1,2, 3) and covariant
vectors a;

The physical meaning of (4.143) and (4.144) can be illustrated with aid of the
velocity of a point described by r = x’E; and x' = x/(¢q', g%, ¢%). That is, because
X' =Jig/, wehavev = X'E; = JI¢'E; = ¢/ JIE; = ¢’a;, where a; = J/E;,
which is equivalent to its notation in matrix form (4.144). It is important that vectors
a; refer to the speed G’ (similar to E; to x'), constitute the covariant basis for
contravariant components ¢/, and are tangent to coordinates ¢/ at the actual position
of the point, as illustrated in Fig. 4.25.

Let us note that just as J; = dx'/dg’ is the Jacobian matrix of the expression

xt = x'(q". 4% q%), the Jacoblan matrix for the relatlon q = q'(x", x%,x%) is

J]’ = dq'/dx/. Observe that because x’ = JJ’qf = J] Jk , we have J J, = =3;.

With curvilinear coordinates one may also associate the trlple of baszs vectors
(a',a?, a%) called contravariant vectors. Vector a' is perpendicular to the surface
q". The vectors can be described in the following way:

a' = JE/, (4.145)

which is equivalent to the matrix notation

rdg'  dg' 9g'7
. ox!  ox2  0x3 gl
a 2 2 2
2 | = 3_ql 3;'12 313 B |. (4.146)
a® dx ox dx E3
0> 9q°>  9q°
L ox!  0x2  ox34
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In general, neither covariant nor contravariant vectors are unit vectors or
constitute an orthonormal basis, that is, they can constitute an arbitrary vector basis.
However, it is easy to notice that they satisfy the following relation:

al oa; = J'|EFJ"E,, = J'|EF o E,,J"
=Jskar =0k =4 (4.147)

because
EfoE, =68, (4.148)

and §/ is the Kronecker delta, ie., §/ = 1, for j = i, = 0 for j # i.
Covariance/contravariance of the bases and coordinates is also associated with the
notion of the metric of a vector space (metric tensors). Obviously the metric of
Cartesian space satisfies the following conditions: E' o E/ = §V, E' o E; = §,
and E; o E; = §;;, which can be exploited in several branches of mechanics
(but not in dynamics, where the metric additionally takes into account the inertia).
Therefore, covariant and contravariant bases/coordinates of Cartesian space are
often considered identical with each other.

Let us introduce covariant unit vectors af, a3, a, that is, unit vectors that are
respectively tangent to ¢' (¢), ¢*(¢), ¢°(¢):

0 a; 1 or
s 4.149
& la;|  H; dq' ( )
where
or x> fox2\?  [ox3)?
H =la| = |—| = - - -, 4.150
] g’ \/(8q’) +(8q’) +(8q’) ( )

and the quantities H; are called Lamé coefficients,* and the assumption of |a;| = H;
indicates the introduction of the unit metric.

The direction cosines of angles formed by the axes of a curvilinear coordinate
system with the axes of a Cartesian coordinate system may be determined, for
instance, in the following way:

cos (a),E|) = a) o E,

1 (9x! dx? ax?
H,-(Bq’ 1+an 2+8q’ 3)0 1
1 ox!
- o (4.151)
H,' Bq’

4Gabriel Lamé (1795-1870), French mathematician.
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In the general case we then have

cos(aOE-)—iaij i,j =123 (4.152)
l"]_Hiaqi’ 7]_33- .

Figure 4.25 shows a covariant basis associated with the curves ¢'.
Recall that the differential operator

d 0 d d
V=—E E —E; = —
2+ ax3 0 O

— E;, 4.153
axl 1+ axz i ( )

although not a vector, can still be treated as a so-called symbolic (conventional)
vector. As a result of the action of V on scalar function f, we obtain a vector
function called a gradient, i.e., Vf = %E, For example, fo V and f x V are
operators, whereas the operations V o f and V x f lead to a scalar function and
a vector function. The obtained scalar function is called a divergence of vector
function divf =V of.

Letf = [f1, f2, f3]. Then

E, E; E;
9 9 9
\Y = — — . 4.154
<J ox! ox2  9x3 ( )
o LS

We call the obtained vector function a curl and denote it by the symbol curlf =
V xf.
Using the introduced notion of V, e.g., (4.145) may be written in the form

a" = Vg¢* = |V4*|af, (4.155)

where ag are unit vectors and

gk \ gk \ gk \?
k
Vel = \/ (55) < (55) +(5%) (4.156)

denote the so-called scaling factors.

The vector Vg'! is perpendicular to the surface Vq'(xi,x2,x3) = ¢} at the
chosen point.
Let us also recall that three non-coplanar vectors b; (i = 1,2, 3) form a basis

if any vector can be expressed as their linear combination. The basis will be
called right-handed (left-handed) if the scalar triple product of the three vectors
(b1, b2, b3) is positive (negative). Let us note that the scalar triple product will
change sign when the right-handed coordinate system is replaced by the left-handed
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system or upon mirror reflection of the coordinate system (in that case, the left-
handed system transforms into the right-handed one). For this reason the scalar triple
product is not a real scalar but pseudoscalar. The scalar triple product is equal to
zero (provided that none of the vectors is a zero vector) if and only if the vectors are
parallel to the same plane, that is, they are coplanar.

The scalar triple product is defined in the following way:

by bi b
(bi,ba,b3) =bjoby xbs = |by b3 b5, (4.157)
by b? b3

and superscripts in the determinants denote vector coordinates.
We obtain another basis b!, b?,b?, called a dual basis to the chosen vectors
bi, by, and b3, when the following condition is satisfied:

1 when m=mn
b,ob" =§" = 4.158
° " 0 when m #n. ( )

The obtained property is valid for covariant and contravariant bases.
A set of three non-zero vectors v, v,, v3 forms an orthogonal basis if they are
mutually orthogonal, that is,
Vi ov, =0, (4.159)

forall m # n.

The set of three non-zero vectors vy, vz, v3 forms an orthonormal basis if and
only if it is orthogonal, i.e., condition (4.159) is satisfied, and additionally the
vectors of the basis are unit vectors. The unit vectors E; = [1,0,0]T, E, = [0,1,0]7,
E; = [0,0, 1]T used so far form the orthonormal basis.

According to the considerations above for the orthogonal system, and especially
for the orthonormal system, we have

ajoa; =0 (i #]), (4.160)
which after taking into account (4.149) leads to the relationship

or or

G 0gr =0 (#D. @.161)

Condition (4.160) narrows our considerations to orthogonal bases of the curvi-
linear coordinates.
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Taking into account (4.143) in (4.161) we obtain

dx1 0x1 dxy 0x2  0x3 0x3 . .
dq' dq’ + dq' dq’ + dq' dq’ @#7) ( )

and fori = j we have

8x1 2 aXQ 2 3)63)2 P
- - — | = H". 4.163
(3q’) +(3q’) +(3q’ l (169
The differential of arc of a curve in a curvilinear coordinate system has the
following form:

d .
dr = L dqt, (4.164)
ag’
and multiplying the arc differentials by itself we obtain

3
(ds)> =drodr= Y H?(dq')’. (4.165)

i=1

where (4.149) was used.
We determine the velocity in the curvilinear system (g',¢%, ¢>) from the
relationship

dr(q'.q2. ¢3 or
v = dr(g'.4*.q°) LI (4.166)
dr aq'

and taking into account (4.143) we have

dr . an .
V= d_qlq = a—qiqu =VjEj. (4167)

Below we will show that the relationship just presented is true:

8x1 8x2 8x3 .1 8x1 8x2 8X3 .2
=|—E + —E,+ —E —E + —SE + —SE
<8q1 1+ 3q) 2+ 3 3)q + Py 1+ 3 2+ F¥e 314
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a a a ox a a
- (ﬂql g P s )El + (aqqu y 20 ﬁcf)Ez

dq! 0g> dq3 0g? dq3
0x3 .,  0x3., 0x3 4
+ (Wq + e 61 + FC] E; =v;E;, (4.168)
where
0x;
v = aqjq (4.169)

From (4.169) and taking into account (4.162) and (4.163) we obtain

V= i:v? - (a—xi)z (@") + (B_x;)z (4% + (a_x;)z (4%’

= dq dq dq

Y e e

| @ | @
Q|>< Q|><
—| & Y N

=3 H2 (i) 4.171)

In turn, from (4.165) and dividing both sides by (d¢?) we obtain

ds\? 3 2 [ -in2
(E) =Y H2 @) 4.172)

i=1
Eventually, from (4.171) and (4.172) we obtain

ds

= —. 4.173
” ( )

We obtain the coordinates of velocity of a point in curvilinear coordinates
through projection of the velocity vector onto the directions of the unit vectors

o 1 r 1 v 1 1ov> 19T
Vi:VOai:—V0+: Vof:——f:—f, (4174)
H,' Bq’ H,' Bq’ H,‘ 2 Bq’ H,' Bq’
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where T = % The obtained quantity 7" can be interpreted as the kinetic energy of a
particle of unit mass. It is the consequence of geometrically unitary Cartesian space,
introduced earlier.

Similarly, we determine the components of the acceleration of a point in
curvilinear coordinates by projecting the acceleration vector onto the directions of
the unit vectors to obtain

1 or

a; :aoa?:ifoEa—qi. (4.175)
Let us note that
O (P N L (4.176)
_ o — = o — o — —_— y .
dr aq' aq' dr \ 9¢’

and according to (4.175) we obtain

1 [d or d [ or @.177)
3, =—|—[vo—)—vo—(—)]|, .
H; | dt aq" dr \ d¢’

and additionally, according to (4.174), we have

ar a1
-2 4.178
° dq' 94’ ( )

and the second term on the right-hand side of (4.177) is equal to

d [ or %r L 4.179)
o—|— | =vo —— . .
dr \ 9q’ v dq'dq’ a4

In turn, differentiating expression (4.166) with respect to coordinates ¢, multi-
plying through by v, and changing the index on the right-hand side of the equation
from1i to j we have

v ’r .
— = ——qg/ . 4.180
vo 3 vo aq’aq/q ( )

Comparing (4.179) with (4.180) we obtain

d [ or v ov 1ov:  OT @.181)
o — —_— = 0O — = —— = —. .
dr \ 9q' dgi  29dq"  dq!

Finally, substituting (4.178) and (4.181) into (4.177) we obtain

L[d 9Ty _ o1 i =1,2,3 (4.182)
a = — | — T - 37 | 1 =1,2,5. .
dr \ 9¢’ aq’
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Fig. 4.26 Position of a point X 4
in Cartesian coordinates
(represented by right-handed
and orthonormal basis =
(El,Ez,Eg)) and in ..
cylindrical coordinates e

(r,¥,2)

“Ve 4|

/ e,

x|

Let us now consider in more detail the two most frequently used curvilinear
coordinate systems, i.e., the cylindrical and the spherical coordinate systems.
Figure 4.26 depicts the position of a point in cylindrical coordinates.

Knowing the Cartesian coordinates of point A of the form (xj, x, x3) it is
possible to find, making use of Fig.4.26, the position of that point in cylindrical
coordinates. Namely,

r=./x} 4+ x3, Y = arctan (ﬂ), 7= X3, (4.183)
X1

where ¥ = [0,271).

On the other hand, if we know the position of a point in cylindrical coordinates,
the corresponding Cartesian coordinates can be determined from the following
relationships:

X] =rcosy, Xy = rsiny, X3 = Z. (4.184)

From relationships (4.183) and (4.184) it follows that given the position of
the point (r, ¥, z) it is possible to uniquely determine the corresponding position
(x1, x2, x3) and vice versa, on the condition that x; # 0.

If the position of the point is defined by the position vector R, then we have

3
R =) xE =Re =r(cosYE + sinyEy) + B3 = re, + 7B, (4.185)

i=1
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XJL
3

r=Rsin@

Fig. 4.27 Position of a point in Cartesian coordinates (represented by right-handed and orthonor-
mal basis (E, E, E3)) and in spherical coordinates (R, ©, ¥)

It turns out that it is convenient to introduce the following right-handed orthonor-
mal basis {e,., ey, ez} in the following way:

e, = cosYE; +sinyE,;, ey =cosyE; —sinyE;, e, =E;. (4.186)

Moreover, the following relationships hold true (the reader is encouraged to
calculate their derivation):

6 =ve,. &y =—ve,. (4.187)

Figure 4.27 shows the position of point A in spherical coordinates.

Let us note that in the case where x3 = const for the cylindrical coordinate
system and x3 = O for the spherical coordinate system (Fig.4.27) point A can
move in a plane and both systems reduce to the polar coordinate system depicted in
Fig.4.28.

In this case we have [see (4.185)]

2
r=>Y xE =r(cosyE +sinyE,) = re,. (4.188)

i=1

Knowing the Cartesian coordinates of point A in the form (xi, x, x3) we can
find the position of that point in the spherical coordinates of the form
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Fig. 4.28 Polar coordinate X, 4
system

xI
2 2
X Xi + X3
R=/x2+x2+x2  tany =—, tan®@=-——"  (4189)
X1 X3

where ¥ € [0, 271], ® € (0, ). Knowing the position of the point defined by the
spherical coordinates (R, @, y) we have

X1 = Rcosysin O,
Xy = Rsiny sin O,
X3 = Rcos®. (4.190)

If the position of the point is described by a radius vector R, then we have

3
R = Zx,-Ei = Rsin Ofcos YE; + sin yE;] + Rcos ®E; = Reg.  (4.191)

i=1

Let us introduce the following right-handed orthonormal basis:

er cosysin® sinysin®  cos® E;
ep | = | cospcos® sinycos® —sin® E, |. (4.192)
ey —sinyr cos ¥ 0 E;

From (4.192) it follows that eg = sin ® cos Y E| 4 sin O sin Y E, + cos OE3, etc.
It is easy to prove (the reader is encouraged to carry out the relevant calculations)
that

eg 0 e Vr sin © ep
éo | = ) 0 Vecos® || eo |. (4.193)
ey —¥sin®@  —yrcos @ 0 ey

Now we will determine the position, velocity, and acceleration of a particle
successively in Cartesian, cylindrical, spherical, and arbitrary curvilinear coordi-
nates g’ .
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The position of a point is described by the equation

ZX,‘E,’ =re, + ZE3 = ReR
i=1
3

= Zx,- (¢'.4* ¢°) E:. (4.194)

i=1
Differentiating the expression above with respect to time we obtain

3
v=Y %E =re +rjey + iE;
i=1
8r ’
= Reg + ROeg + R sin Oey = Zq = Zq’iai, (4.195)
i=1 i=1

and after yet another differentiation we obtain

3
a= Z)’éiEi = (i —ry?) e, + (ryy + 27y) ey + ZE3

i=1

= (R — RO?* — Ry/*sin” ©) e + (R@ + 2RO — Ry sin O cos @)e@

+ (Rl// sin @ + 2R sin © 4 2Ry O cos @)ew

d : da;
:E(q"ai):Z(q a +¢' d_t)

i=1

Zq a; + ZZ (q g’ ;)3] ) (4.196)

i=1 i=1j=1

The kinetic energy of a particle in an arbitrary curvilinear coordinate system is
given by

3 3 3
m m .
T = = — §: § 7! :—E:E 1d'q! 4.197

2 (z—l ! al) <l=l ! a[) 2 i=1 /=1 e ( )

where a;; = a;; = a; o a;. The reader is advised to derive explicit expressions for
the kinetic energy of a particle in Cartesian, cylindrical, and spherical coordinates.
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Example 4.1. Determine the scaling factors and orthonormal covariant and
contravariant bases of vectors a’ and aj for the case of the cylindrical polar
coordinate system described by the equations (Fig. 4.26)

X =rcosy, y=rsiny, z=z, (%)

wherer > 0,0 <y <2m, —00 <z < 0.
The Jacobian of the transformation above is equal to

cosy —rsiny 0O
siny  rcosy 0 =r(coszw+sin21p)=r7£0.
0 0 1

_0xy.2)

I = v

(%)

From (*) we obtain

g =r= VIR

¢* =y =tan™!

’

==

q’ =z
The radius vector is described by the equation
r = xE; + yE; 4+ zE3 = rcos YE; + rsin Y E, + zE3.

According to (**) we have (see also 4.186)

or
a, = 3 =cosYE; +sinyE, = e,,
r

a

a = il = —rsinYE; + rcosyE; = rey,
oy
or

a3 = B_Z = E3 = €.

The scaling factors are equal to

la|] = \Jcos2y +sin’y =1, |a|=r, |az]=1.

The covariant basis consists of the following three vectors:

a
a) = ZL = cosyE, + sinyE,,

|a;]
a .
a = — = —sinyE, + cos yE,,
|2z ]
a
3(3) = o E3.

o las|
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To determine a contravariant basis, we calculate

ad 0 ad E E
al = Vr= B+ R4 Ry = T
dx dy 0z Vx4 y?
oy oy oy —yE; + xE; 1
a ¥ ox 1+ 3y 2+ PR P rew

Scaling factors are equal to
1 2 1 3
=1 Wl=- =1

In light of that, the contravariant vectors have the form

Vr
1 0
a = —_— —a
O V| 1’
Vi
2 0
a- = —— = a
0 V| v
Vz
3 0
A= — = = a,.
0 |VZ| 3 3

O

Example 4.2. The coefficients of the paraboloidal coordinate system {u, v, ¥} are
determined by the Cartesian coordinates {x, x5, x3} in the following way:

q' =u= i\/x3+ x7 + (x7 + x3),

¢ =v= :b\/—X3+ X2+ (x? + x3),

¢ =y =tan™! (2) . ()

X1
The inverse relationships to those given above have the form

X1 = uvcos iy, X2 = uvsiny, x3 = = (u> —v?).
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RSN (S

Perform the following operations:

. Draw in plane (e,, E3) some examples of surfaces u and v.

. Draw in space (X; — X, — X3) a surface u (mark curves u and v on that surface).
. Determine the bases of covariant and contravariant vectors.

. Determine the singularities in the paraboloidal coordinate system and define the

velocity and energy of a particle.

Recall that in the cylindrical coordinate system we have

e, = cosYVE; 4 sin yE,, ey = —sinYyE; + cosyEs, e, = E3,

and r = \/x? + x3.

. In order to obtain the surface u we will take u = u = const. From the first

equation of () we obtain an equation with respect to x3, which is the quadratic
equation with respect to r, of the form

_ _ 2
W =3+ /X3 412 (@ —x3)" = x5 + 17,
—4 2 2, .2 Ly
U —2x3u + Xy = x5+ 717, x3=——(r’=u"). (%)

Forr =0, x3 = %E[Z, and for x3 = 0 we have r = 2. In the plane (e, E3)
surface u is given by () representing a curve.

That curve is presented in Fig. 4.29 for the values u = —1, 1, 1.5, 2. Rotating
the presented curves through the angle 27 about the X3 axis we obtain the
surface u in the space (X; — X, — X3).

In order to obtain the surface v one should assume v = v = const. From ()

we obtain
-2 =) 2 2 2
v :—x3+\/x§+r2, (v +x3) =x;+r,
1
V263 X =a3 k= — (P =Y.

22

Forr = 0, ¥> = 0, and for x3 = 0, r = 2. In the space (e, E3), the
surface v is described by (4.2). In Fig. 4.30 the curves of this surface are plotted
forv = —1, 1.5, 2. In the space (X| — X, — X3), rotating the curve through the
angle 27 about the X3 axis we obtain the surfaces v.

From Figs.4.29 and 4.30 it follows that by varying u and v the whole plane
(e,, E3) is covered by the surfaces u and v. Moreover, after rotation through angle
Y about the X3 axis the entire three-dimensional space will be covered by the
surfaces u and v. An arbitrary point of that space will be represented by three
numbers (u, v, V).
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Fig. 4.29 Surfaces u

Fig. 4.30 Surfaces v
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Fig. 4.31 Example of the surface u = 1

2. At first, the relationship between r, u, v should be determined in the form
r? = xf + x% = (uvcos¥)* + (uvsiny)? = u>V?, r = |ul|v|].

Let us take the surface # = 1 in Fig.4.31. This coordinate is presented in the
space X| — X, — X3. Each circle represents a value of v; therefore we call it a ¥
curve. Each arc-shaped curve represents a certain value of 1; therefore it is called
a v curve. The curves v and ¥ together constitute a skeleton of the surface u.

3. The position of a point determined by the radius vector in paraboloidal coordi-
nates is described by the formula

. Loy 5
r = uvcosYE; 4+ uvsin yE, + 3 (u*> =Vv*) Es.
By definition, a covariant basis is formed by the vectors a; = aiqu,

of a set of a covariant vector basis for u = 2, v = 1, and ¥ = 60° is shown in
Fig. 4.32. We calculate successively

. An example

3 3 3 1
a = r r (uv cosYE; +uvsinyE, + E(uz - VZ)E3)

AT ou
= v(cos YE| + sinyE,) + uE; = ve, + uEs,
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Fig. 4.32 Example of a covariant basis

0 d d 1
a, = 8_qr2 = 8_:; = . (uv cosYE| + uvsinyE, + 5(142 — v2)E3)
= u(cosYE; + sin YEy) — vE; = ue, — vE3,
0 d 0 1
a; = 8_qr3 = ﬁ = W (uv cosVE, + uvsinyE, + E(u2 — v2)E3)

= uv(—sin Y E; + cos VEy) = uvey.

The contravariant basis is defined as a' = Vq'. An example of a contravariant
basis foru = 2, v = 1, and ¥ = 60° is shown in Fig.4.33 (a® is very small and
is indicated by an arrow).

For the purpose of obtaining a’ we will make use of the relationship

ut + 2 =2/x2 + x2 4+ X2,

—1
2

(3 +x7 +x3) 2 xiE

Il
N =
~

=

W

+

=

W

+

=

)

+

=

(SRS
~—
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) 5 .
S Dy

Fig. 4.33 Example of a contravariant basis

1 _1
+5 (x3 +4/x2 + X7 +x§) (3 +x7 +33) 0k,

=

=

_1
|:1 + (%3 + x] 4+ x3) 2 x3] E;.

1
+5 (xs + /x5 4+ x} +x§)

Substituting the relationships derived earlier into the equation above we obtain

2 2

B+ l1+ 2"V |k
= (u? +12) }

2l uv cos ¥ uv sin ¥
u(u? + v2) ! u(u? + v2)

1 .
= o [v(cosYyE; + sin Y Ey) + uE;]

(ve, + uE3) =

e —=aj.
u2 + V2 u2 + v2

Proceeding similarly we obtain
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1

+3 (—x;, + /X3 + X7+ xg)
1

+3 (—x; + /X3 4+ X7 + xg)

uy cos ¥ uy sin 1 |: N u? —? :|E
—— - 3

D=

(x% + xlz + x%)_% xEs

1
2

—1
[—1 + (x5 +xf+x3) ? x3:| E;

E)+ —
? (u? 4 v?)

v(u? +v?) ! v(u? +v?) 2u

1
= m [M(COS WEl + sin 'WEZ) — VE3]

1
= m[—szl + x1E;]

1 1
= 5 [-uvsinyE; + uvcos yE;] = —[—sinyE; + cos Y E,]
uv uv

1 1
= —e;, = ——a3.
w VT w22

4. In order to determine singularities one should examine the Jacobian of the system
dgl  dq' 0q!
_ 0(xixa,x3) | dxp Oxp Oz

aq'.q%.q°) | dq> 9q*> 9q°
g3 9q3 g3

= —uvsin Y (—v? sin ¥ — u? sin ) — uv cos Y (—v? cos Y — u* cos V)

vcosy  vsiny  u
=| ucosy usiny —v
—uvsiny uvcosy 0

= uv(v?sin®> ¥ + u? sin® ¥ + v cos? ¥ + u? cos> ) = uv(v? + u?).

Ifu =0o0rv =0, then J = 0. This means that either u = 0 or v = 0 is the
singularity of the paraboloidal system of coordinates. If u = 0 or v = 0, then a’
are undefined because the expressions 1/(v> + u?) and 1/(vu) are not defined.
The velocity of the particle is equal to
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dr . .
V=E=M211+Vaz+1ﬂa3

=i’ +v*)a' + 9 (> +v?)a’ + ¥ (uh?)a’.

The kinetic energy 7" reads
1 r . . ;
T = Emvov = Em (u31 + va, + 1//33)

o [u (* +v*)a' + 9 (u® +v?) a’ + ¥ (uP?) a3:|

= %m |: (itz + \'/2) (uz + vz) + 2 (uzvz) :| |

4.4 Natural Coordinates

4.4.1 Introduction

The introduced notion of a vector will be used for the determination of the position
of a particle in space. Let us recall that motion is defined as the change in position
of a particle (the body) with respect to the considered coordinate system. In turn, by
the change in body position we will mean the changes of its configuration in time
and in a subspace of Euclidean space. Moreover, these changes will be treated as
a mapping called homeomorphism, i.e., transforming successive points in a one-to-
one naturally unique way.

4.4.2 Basic Notions

Let us use the previously considered Euclidean space, where we will introduce
the Cartesian coordinate system OX;X,X3 of basis Eq, E;, E3. The position of
an arbitrary particle is known if the position vector r is known in the mentioned
coordinate system. Formulas (4.84)—(4.86) describe the changes respectively of
a particle’s position vector, a velocity vector, and acceleration vector. According
to (4.85) we have

dx; dx, dx;
= 1), — = 1), — = 1). 4.198
a vi(t) d va(t) dr v3(t) ( )
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We call the preceding equations kinematic equations of motion. Recall that
dynamic equations of motion result from Newton’s laws. The notion of kinetic
equations is also used. The differential equations of motion describe bodies
possessing mass (mass moments of inertia) and subjected to the action of forces
(moments of forces). Observe that whereas dynamics deals with the science of
forces and moments of forces and its special case is statics, kinetics involves only
the dynamics of bodies in motion (not at rest).

Solving (4.198) we obtain

t

00 =+ [ wa,
0
t

x2(t) = xp0 +/ va(t)de,
0

x3(t) = x30 +/ va(t)de. (4.199)
0

To determine the equation of the path of a particle one should eliminate
time from (4.199). Equation (4.199) describes, then, the trajectory of motion in
parametric form. It is worth emphasizing that rarely is it possible to successfully
carry out the integration, that is, to determine the equation of a particle’s path in
analytical form. In most cases the integration is carried out using computational
methods.

4.4.3 Velocities and Accelerations in Natural Coordinates

So far we have considered the motion of a particle using the vector-valued function
r = r(t). We have a prescribed curve (path) along which the particle moves.
The motion along the path is described by s = s(¢).

Note the difference between the notions of path and trajectory. The trajectory
of a particle conveys more information about its motion because every position is
described additionally by the corresponding time instant. The path is rather a purely
geometrical notion. Complete paths or their parts may consist of, e.g., line segments,
arcs, circles, ellipses, hyperbolas, helical curves.

According to Fig. 4.34, let

r=r(s) = x1($)E; + x2(s)Ez 4+ x3(s)E3, (4.200)

where s is a certain parameter (in this case the length of the arc) (Fig. 4.34).

If we take an arbitrary point O (in this case the origin of the coordinate system)
and we connect this point to a point lying on the path and describing the motion
of the particle, then the created vector will be a position vector. The limit of the



242 4 Particle Kinematics and an Introduction to the Kinematics. . .

Fig. 4.34 Illustration of a
vector’s derivative, where
AP (A7) is the starting (final)
point of the motion of point A path of mation

ratio of increment of the vector to the increment As for As — 0 will be called the
derivative of the vector with respect to parameter s (in this case an arc), that is,

d A As) —
r'(s) = d_z — 1im 2% = jim M

A—0 As  Ai—0 As (4.201)

The chord A B becomes the tangent when As — 0.

We then come to the conclusion that the derivative of a vector is the vector tangent
to the curve described by the radius vector r(s). The sense of r'(s) is determined by
the sense of the curve arc s.

If in Euclidean space as a basis we choose three vectors aj, a,, as, then

r = x;(t)a; + x2(t)ay + x3(t)a;z (4.202)
and its derivative
dr dx dx, dx;
I il ——as. 4.203
r ds ds a ds a2+ ds a3 ( )

The method of differentiation presented above is true only for a stationary basis
of vectors a;, i = 1,2, 3. In the general case, rule (4.203) should be complemented
by the derivatives of the basis vectors. In a special case, instead of the vectors
aj, ay, a3, we can in (4.202) and (4.203), use the basis E;, E,, E3.

According to (4.203), we define the differential of a vector as

dr = r'(s)ds. (4.204)

The differential is a vector having the same direction as the vector of derivative,
and |dr| is called the linear arc element.
Let us now consider the following case.
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Let the vector r move in three-dimensional space and satisfy the condition
ror=p’, (4.205)

where p? = const. Equation (4.205) describes the motion of the point on a sphere.
We will trace the motion of vector r in a Cartesian coordinate system of unit vectors
E;,i=12.73.

Those vectors satisfy the relationships

E’=1, E;oE; =0. (4.206)

1

According to (4.205) we have
(x1E; + 0B + x3E3)* = p?, (4.207)
hence we obtain the equation of a sphere
X7+ x5 4 x5 = p. (4.208)
Let r = r(s). Differentiating (4.205) we obtain

ro j_r —0. (4.209)
S

This means that these two vectors are perpendicular to one another, i.e., the
tangent to the sphere is perpendicular to the radius at that point.

From the preceding analysis we can draw two conclusions. First, if the vector
|r| = const, then dr/ds L r. Second, if r has a fixed direction, then the derivative
dr/ds has the same direction as r (the reader is advised to prove this conclusion).

If we introduce now a unit vector t tangent to the curve (Fig.4.34), then

d
@ (4.210)
ds
and in view of that,
2 dr)?
ds
From the last equation we have
dr = ds, (4.212)

which implies that the differential

dr? = ds® = dx} + dx3 + dx3. (4.213)
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If a vector is a function of more than one parameter, its differentiation can be
expanded to a partial differentiation. If, e.g., a = a(xy, x2, x3), then the Cartesian
coordinates can be treated as parameters. If we treat x, and x3 as constants and x;
as a variable, then the operator ;—:’1 is the limit of the ratio of vector increment to x;
increment when the latter tends to zero.

If x1, x2, x3 change simultaneously, then the total differential

9 9 9
da = 2 dx, + 22 dxy + 2 4, (4.214)
9x, 9x, 0x3

describes the total increment of the vector.

Example 4.3. (See [5]) Determine the type of curve described by a radius vector
r = as cosSE; + assinsE, + BsE;. Find equations of planes normal and tangent
to the curve at the point s = 0.

In a Cartesian coordinate system we have

x1E; + x;E; 4+ x3E3 = as cos sE; + as sinsE; + BsE;,
and in view of that,
X] = asCOS S, Xp = assins, x3 = fs.
Eliminating parameter s we obtain the equation of the helix surface
xoxy ! = tan (x387")

and the cone equation
xP+ x5 —a’f X3 = 0.
The intersection of the found helix surface and the conical surface determines the

helix wrapped around the cone (called canonical helix curve ).
Recall that the equation of a tangent to a curve at the point r(so) is given by

r = r(so) + Ar'(so).

Since the plane normal to the curve is perpendicular to the tangent, its equation
is given by the following dot product:

[r —r(s0)] o ¥'(s0) = 0.
Let us note that

r'(s0) = (@ coss —assins)E; + (asins + as coss)E, + BE;.
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binormal

rectyfying plane

osculating plane

principal normal

Fig. 4.35 Normal coordinate system

For the parameter s = 0 we have r(0) = 0, r'(0) = «E; + BEs, and in view
of that,
r = A(eE; + BE;3),

defines the equation of the tangent to a curve for s = 0.
The equation of a plane normal to a curve at s = 0 has the form

(«¢E; + BE3) o (x1E| + x2E; + x3E3) =0,

hence

ax; + Bx, = 0. O

For the purpose of further analysis of motion, velocity, and acceleration in
Euclidean space, we will recall some basic notions regarding the geometry of
curves [5].

With every point of a three-dimensional curve (here point O is chosen) it
is possible to associate a certain Cartesian coordinate system determined by
the so-called accompanying basis (accompanying tripod) consisting of three unit
vectors t,n, b (Fig. 4.35).

We construct the aforementioned unit vectors in the following way. The vector
T = dr/ds lies on a tangent to the curve. The normal vector n L 7 is defined by

dzr /ds

= SES 4215
"= ldz/ds| (4.215)

and we call it a principal normal vector.
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The third vector is perpendicular to the two previous vectors, i.e.,
b=r1txn, (4.216)

and it is called a binormal vector. The vectors b, 7,n form a right-handed basis,
where the vector t is called a unit tangent vector.

The osculating plane determined by the vectors T and n is tangent to the path
at point O. If vector r describes the position of point O and R determines an
arbitrary point in the osculating plane, then the three vectors 7,n, and R —r lie
in the osculating plane of the equation

(R—r,7.n) =0, (4.217)

where the left-hand side of the preceding expression denotes the scalar triple product
of the three vectors [5].

Since ¥ = dr/ds = 7 and ¥’ = pd®r/ds? (which will be demonstrated
later), (4.217) can be written in the form

R-r,r. 1) =0. (4.218)

If point R lies on the principal normal, then

R=r+An=r+Ar’, (4.219)
and hence
X — X, — X3 —
L (4.220)
X1 X2 X3
where R = R(X1, X2, X3), r = r(xy, x2, X3).
Let the particle O be moving along a path with velocity
V=71V (4.221)

The vectors of the basis move together with the particle, and the basis performs
the translational and rotational motion while traveling along the path.
Our aim is to determine the vector of rotation called a Darboux vector>:

wp = 1T + ayn + asb. (4.222)

Recall that if a body rotates about a certain axis with angular velocity @, then the
linear velocity of an arbitrary point of that body is given by

V=F=wXTr, (4.223)

where r is a vector describing an arbitrary point of interest of the body.

SJean Darboux (1842-1917), French mathematician who worked in the field of differential
geometry of curves and surfaces.
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The linear velocities of the tips of the basis vectors in our right-handed system
are equal to

de z X n b

— =T = T = azn — ayb,

T D 3 2

dn n Xn + a1b

— =Nn=w = —o3T + a1b,

& D 3 1

db .

T =b=wp xb =0t —on. (4.224)

Multiplying the first of (4.224) by b we obtain o = 0, and the Darboux vector
lies in the plane determined by vectors T and b. From the first and third equations
of (4.224) we determine

db dr
o :—nod—t, a3 =no T (4.225)
from which it follows that «; is positive when n and db have opposite senses.

Since, as was mentioned, the Darboux vector lies in the plane =, b, the
coefficients «; and a3 can be related to the arc measure.

From the definition of the arc measure of the angle formed by two neighboring
tangents it follows that it is equal to |dz|. In turn, the angle between two
neighbouring binormals is equal to +|db|.

We call the ratio

d 1
e _ 1 (4.226)
ds o
where ds is an element of the arc between the neighboring tangents, the first
curvature of a curve (always positive). We call the ratio

db
ds

1
= (4.227)

a torsion or a second curvature of a curve (positive or negative).

Let us assume that the origin of the basis v = ds/df = 1, that is, ds = dz. Then
dr/ds = dt/dt and £|db|/ds = %|db|/d¢, and from (4.225) we have a; = k™!
and a3 = p~', and the Darboux vector is equal to

+

wp = (4.228)

Sl
SN

In turn, from (4.224) we obtain so-called Frenet—Serret® formulas of the form

dr

n dn
ds p’ ds

b b
k’ ds

n (4.229)
- .

D~

Both scientists came up with preceding formulas independently, J. Frenet in 1847 and J. Serret in
1851.
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Let us note that, defining the so-called third curvature of the curve as

1 d
1 _ ldnf (4.230)
X ds
from the second equation of (4.229), we obtain the so-called Lancret formula [14]
of the form

X T=p 7 +k (4.231)

From the preceding equation and (4.228) it follows that

1 1 1
} = ? + p = |w1)|, (4.232)
i.e., that the third or total curvature of the curve is equal to the magnitude of the
Darboux vector.
According to the definition of the tangent vector T = dr/ds and taking into
account (4.229) we have

dr d’r P
n= pd_s = d_sz = (r’o—r’)2 [(r/or/)r// — (r/or”)r/] . (4233)
In turn, we easily calculate that
d d2 / 7
b=rxn= = xpst rxr (4.234)

ds pd_s2 - p(\/r’or’ 3

It is also possible to derive the formulas for the first and second curvatures as
expressed in terms of a radius vector r = r(s), where s is the arc length.
From (4.234) we calculate the first curvature

L_ ) (4.235)
02 - (r' or’)? : :
Multiplying the third equation of (4.229) by n we obtain
1 db (r/’ r//’ r///)
—=-pno—=-—_"_~ 4.236
k ° s (r' xr”)?2 ( )

The preceding formulas can be expressed by the coordinates of a vector

r(s) = x1(S)E; + x2(5)E; + x3(s)E3. (4.237)
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By definition of T and from (4.233) and (4.234) we have

dx1 dXZ dX3
=—E —E Es,
TE T
n= dleE + x s+ o2 0E
=P 1 ’Ods2 2 ’Ods2 3,
Ei E, E;
dxl d)C2 d)C3
b=p _s ? g_s . (4.238)
d X1 d X2 d X3
ds?  ds?  ds?

In turn, the values of the radius of curvature % and curvature k of the path at the
given point are equal to

1
1 _ dle 2 + d2x2 2 + dz)C3 ik
o | \ds? ds? ds? ’

dxl d)C2 dX3

il ds ds ds
o[, (@), (@) & o, &, (4.239)
k| \ds? ds? ds? ds? ds? ds? ||
d X1 d X2 d X3
ds3 ds3 ds3

According to the basic notions introduced in Sect. 4.4.2 we have

_ dr ds
T ds de
d’r dv dr

i::a:—:— _—
o @ Va

T?

(4.240)

The acceleration ¥ = a defined by the second of (4.240) is the sum of the
tangential and normal accelerations, i.e.,

a=a;+a,, (4.241)
where
dv
ar = —7,
dr
dr drds 2
L =V— = V—— = —n, 4.242
W=V T sa - ot (4.242)

and in the calculations of a, (4.233) was taken into account.
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The acceleration vector a lies in the osculating plane and its magnitude equals

a= 2 +1vip2. (4.243)

Finally, we will consider two examples excerpted from [5].

Example 4.4. Let the helix be described by the equation r = «acosuE; +
asinuE, + PuE;, where u is a parameter to be expressed by the arc length.
Determine the first and second curvatures of this curve.

The arc length equals

/U

We substitute u = s/+/a? + 2 into the equation describing the helix obtaining

dr

du

du:/ Va2 4+ 2du = a2 + p2u.
0

s s Bs
r(s)=acos| ———=|E  +asin| ———— | E; + ——E;.
(,/oc2+,32) (\/oﬂ—l-ﬂz) Ja? + B2
According to (4.235) we have
1 dr dr
—_ = — 0 ——,
o2 ds?  ds?

Since

dzr_ ¢ cos i )|E a sin i )|E
a2 2\ ) 2 Ve )

we have
1 o

p o2+ B

In turn, according to (4.239) we have

o« : s o s B
5 - a2 +p2 st (\/a2+ﬂ2) a2 +p2 €08 (\/a2+ﬂ2) a2 +p2
1 o+ .
—=( ) ——% > cos s — % ssin | ——— 0
k o? a’+p \/a2+ﬂ2 a*+p /a2 +p2
o H N o N
@y S e ) T 0\ e
B

B
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Example 4.5. Demonstrate that if the position vector of a particle has the form
r =r(s) = ase + e x a(s),
where s is a length of the curve arc, « is a scalar, and e is a fixed unit vector, then:

(i) Tangents to the curve r(s) form a constant angle with e.
(ii) The principal normal and the vector e are perpendicular.
(iii) The ratio p/ k is the same for every point of the curve.

According to the definition of a vector tangent to a curve we have

dr

da(s)

— =1 =0e+ex .

ds

ds

In order to determine the angle we calculate

da(s)
ds

toe:(ae+ex

Note that n || d t/ds, and hence

d'r_

— =exX
ds

)oe:a+(exe)o

da(s)
=«
ds

d?a(s)
ds? -~

In turn,

d2
at) _
ds?

dr
eo— =eo|ex

s dza(s)) =(exe)o

ds?

which proves thatn L e.
From the foregoing considerations it follows that

eon=20,
and after differentiation with respect to s we have

dn ( T b)
eo— =eo|——+-—-|=0, (*)
ok

where the second equation of (4.229) was taken into account.
If n L e, vectors 7, b, and e lie in one plane, i.e., they are coplanar.
Because earlier it was shown that e o T = « and from the complementarity
property it follows that e o T = cos ¢, we therefore have o« = cos ¢ (Fig. 4.36).
From Fig. 4.36 it follows that

2
(eob)? = [cos(%—qp)] =singp =1—cos’p = 1—0a?,
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Fig. 4.36 Helix wrapped
around a cylinder (vectors T,
b, and e lie in one plane)

hence
eob==+Vv1-0a2

From the equation (x) we have

dn eor+eob_ o vl—oﬂ_

eo — = —

ds 0 k __p k

that is

o
p =+——— = const.

k V1 —a2
The obtained properties and the property e o T = « = const are characteristic of
the helix. O

Eventually, the results of the conducted calculations were reduced to the
following (see also Fig. 4.37).

The three unit vectors 7,n,b form the Frenet trihedron. Vectors T and n
determine the plane tangent to the path at point O. Vector T possesses a sense in
agreement with the positive increments of the arc length. The sense of vector n is
directed toward the center of curvature of the path. Vector b is perpendicular to the
plane determined by vectors T and n.

We showed earlier that

dr dr 1
T(s) = Fr i ;n(s),

where p denotes the radius of curvature of the trajectory at point O.
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osculating plane

Fig. 4.37 Normal, tangent, and rectifying plane

According to the previous calculations we also have

dr dr ds .dr
V= — = —— =§— =V, 7T,
dt ds dr ds
dv  dv, drds . $

a=— = —— = —n.
T T P P L

Since the acceleration of a particle lies always in the osculating plane, i.e., the
plane determined by vectors T and n, it is possible to resolve it into two components
of the form

a=a;+a,,

where a, = §t, a, = %n, which is in agreement with the so-called Huygens
theorem.

The tangent acceleration is responsible for the changes in the acceleration
magnitude, whereas the normal acceleration determines the direction of the particle
acceleration.

We will call the motion of a particle in space uniform when its velocity (§) =
const. Note that d(s?)/dt = 2§§. If §§ > 0, then we will call the motion of a
particle accelerated, otherwise decelerated. Moreover, if in a certain time interval
§ = 0, then in this time interval particle motion is uniform. Further, if in a certain
time interval § # 0 and a, = 0, then we are dealing with rectilinear motion because
p — 0.
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4.5 Kinematic Pairs and Chains, Joint Variables,
and the Denavit-Hartenberg Convention

4.5.1 Kinematic Pairs and Chains

In the theory of machines and mechanisms, the theory of manipulators and robotics,
the kinematics of the mutually connected rigid bodies plays the major role because
it allows for the design of various machines, mechanisms, robots or manipulators.
Most often the moving isolated bodies in one such mechanical system can be treated
as rigid and pairwise connected to each other, and such bodies are called links
(we call the fixed body a base (frame)). The connection of two links allowing for
their relative motion is called a kinematic pair. In turn, we call the group of links
connected by means of kinematic pairs a kinematic chain.

The lower-order kinematic pairs are presented in Table 4.1.

From an analysis of Table 4.1 it follows that a cylindrical pair can be replaced
with a revolute pair and a prismatic pair of the same axis of action. In turn,
a universal pair and a spherical pair are respectively equivalent to two and
three revolute pairs of the intersecting axes. Such equivalence is exploited during
introduction of the so-called Denavit-Hartenberg’ (D-H) parameters serving the
purpose of transforming coordinates from the pair number i to7 + 1 or i — 1,
i=1,...,N,wherei = 0 corresponds to the base.

We call all kinematic pairs summarized in Table 4.1 the lower-order kinematic
pairs because the contact of the connected links takes place over a certain surface. In
the case of line contact or point contact between the links we introduce the notion
of higher-order kinematic pairs. The unary kinematic pairs and binary kinematic
pairs correspond to unilateral and bilateral constraints, discussed earlier.

If we treat two rigid bodies as a discrete material system (DMS), the number of
degrees of freedom of such a system is equal to 2 x 6 = 12. Now we will join these
two bodies with a revolute pair. As a single rigid body (composed of two bodies
temporarily connected to one another), such a system has 6 degrees of freedom, but
the additional possibility of motion admits the revolute pair, that is, the number of
degrees of freedom of the two-body system connected by the revolute pair is equal
to seven. The mentioned pair was taken from the equivalent system of 12 —7 = 5
degrees of freedom.

Definition 4.1 (Class of a kinematic pair). The number of degrees of freedom lost
by a system of two unconstrained rigid bodies after their connection by means of a
given kinematic pair is called the class number of this kinematic pair.

Definition 4.2 (A mechanism). A kinematic chain whose number of degrees of
freedom is equal to the number of its driven links is called a mechanism.

7The Denavit-Hartenberg convention, parameters, and matrices were introduced by Jaques Denavit
and Richard S. Hartenberg.
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Table 4.1 Lower-order kinematic pairs

Pair Example of Symbol Relati_ve
realization coordinates
Rotational .ﬁ\Z 0
1
Prismatic \Q
X
1
2
Cylindrical 0
P2
\ V/a%
Universal
Pr.¢2
/
k 2 0102 P;
Spherical 2
e.g. Euler’s
—F=0 1 angels
1

The number of degrees of freedom of a mechanism (the movability) is deter-
mined by the structural formulas

w = 5n—4p; —3p>—2p3 — pa,
w=4n —3p; —2p> — p3,
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w=3n—2p| — pa,
w=2n—p

w=n, (4.244)

where 7n is the number of moveable links and p; denotes the number of kinematic
pairs of the class “i” in the analyzed mechanism.

The formulas are valid for the fifth, fourth, third, second, and first mechanism
families, respectively. The third (second) family concerns plane (wedge) mecha-
nisms, whereas the first family (w = n) contains rotor mechanisms.

Definition 4.3 (A group). A kinematic chain with free kinematic pairs whose
mobility is equal to zero after its connection to a base is called a structural group.

We will classify kinematic chains in accordance with their topology. One can
distinguish, for instance, simple chains, tree-structured chains, and chains with a
kinematic loop. Chains with kinematic loops will be called closed kinematic chains,
whereas simple and tree-structured chains will be called open kinematic chains.
An example of the open kinematic chain is a manipulator.

4.5.2 Joint Variables and the Denavit—-Hartenberg Convention

Let us consider an open kinematic chain consisting of N links, with its 7th link
situated between joints of the numbers i — 1 and i. According to the previous
considerations we will assume that the joint transmits either rotational motion or
translational motion. It follows that the number of joints determines the number of
links. Link number 1 is connected to the base by means of one of its nodes, and the
other node is used to connect to link number 2 (see also [15, 16]).

In order to explain the D—H convention we will consider two successive links of
the numbers i — 1 and i depicted in Fig. 4.38.

From that figure it can be seen that the following procedure (algorithm) was
adopted:

1. The sense of the X éi) axis can be arbitrarily taken.
2. The X 1(1) axis is perpendicular to the axes of joints i and 7 + 1 and is common for

both joints. Its sense is directed toward the joint having larger number (the X 2(i)
axis, not drawn in the figure, can be easily determined using the right-hand rule).

The advantage of the D—H notation [17] consists in its using only four control
parameters (joint variables) to uniquely determine the position of the system
0; X! X1 X1 with respect to O;—1 X' X171 X, ™1, They are as follows:

— The angle of rotation of the link «; describing the rotation about the X l(i) axis
and formed by the X3(’_1) and X3(l) axes.
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link (i+1)

Xiﬂ

(i-1)4{i-1)

E, d,

Fig. 4.38 Linksi — 1 and i and their associated local coordinate systems

— The length of link /; measured along the X 1(i) axis between the X 3(i_1) and X 3(i)
axes.

— The linear translation in the ith joint d; measured along the X 3(i_1
XD and x 9.

— The angle of rotation of the ith joint 8; about the X 3(i_1
Xl(i_l) and Xl(i) axes.

) axis between

) axis formed by the

In the case of a revolute joint, the joint variable is 8; and d; = const. In contrast,
in the case of a prismatic joint, the joint variable is the translation d; and 8; = const.

The transition from the system O;_; X{ ™' X171 X{~" (o the system O; X! X1 X! is
realized successively by means of the following four transformations:

. The rotation about the X 3(i_1) axis through the angle f;.

)

. The translation along the X 3(i_1 axis by d;.

. The translation along X l(i) by I;.

AW N =

. The rotation about the X l(i) axis through the angle «;.

The successive application of the four preceding transformations is equivalent to
4 x 4 actions, which as a result give matrix A which is the transformation matrix
between the coordinate systems of the origins at points O;_; and O;. An arbitrary
point A has coordinates determined by the relationship

ri=h = A0, (4.245)

where the homogeneous transformation matrix A®) includes the four transforma-
tions mentioned earlier and has the form
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AV =g (BS")D (ES") D (ED) a(E()

Ccos i —sinfB; 00100 0 1004771 0 0 0
| sinf; cosB; 00 010 O 010 O 0 cosa; —sina; 0
"] 0o 0 10[|o01a" | {001 0 ||Osing cose 0

0 0 01]JLoo0 1 000 1 0 0 0 1

[ cos Bi —sinB; cosa; sin B; sinq; dl(i) cos B;
sin B; cosfB;cosa; —cospf;sing; dl(i) sin f3;
0 sin «; COoS «; d;i_l)
0 0 0 1

(4.246)

4.6 Classification of Kinematic Problems

In the case of the connections of rigid bodies by means of constraints and after intro-
duction of the coordinate system of the environment (e.g., Cartesian system), with
each of the successive bodies we will also associate the Cartesian coordinate system
of the body. The transmission of motion from the first body to the second, then
from the second to the third, etc., will proceed through the constraints understood as
the connection between the bodies. We will consider this problem on an example
of constraints (connections) between the bodies realized, e.g., by some human
engineering activity. In the theory of machines and mechanisms, such constraints
will be called nodes and in the theory of manipulators and in robotics, joints.

Selecting an arbitrary rigid body of number i we associate with it the local
coordinate system O;X| X} X!. The forward problem of kinematics consists in
the introduction of the successive transformations between the systems of bodies.
These transformations allow for the determination of the homogeneous matrix of
transformation for the whole system of bodies with respect to the coordinate system
of the environment OX;X,X3, on the assumption that they form the so-called
kinematic chain (Sect.4.5). The homogeneous matrix is formed by the resultant
vector of the displacement r and the matrix of composite rotation A. According
to the adopted model we can also introduce constraint variables (node or joint
variables). Recall that a node eliminates a certain number of movement possibilities
(degrees of freedom) of the bodies, which it joins (from that is also derived the
term joint). The joint variables are also subjected to the transformation mentioned
above. As a result the vector of joint variables q expressed in the coordinate system
0OX, X, X3 can be obtained. Prescribing various values of the joint variables one may
easily determine vector r and matrix A as vector functions of q, that is, r = r(q) and
A = A(q). In general, vector q belongs to the space R, where N is the number
of rigid bodies connected together, i.e., q € RY. Then, the position (ri ) and the
orientation (A’) of any body i is a subset of R® space, also called a configuration
space of body i.
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Fig. 4.39 Forward (a) and a i
inverse (b) kinematics q - Kinematics reR
problem (M < N) equations
b
q<R"
¢ q Kinematics r
equations <

Fig. 4.40 Two different
possible positions of rigid
bodies connected by a
revolute node

Definition 4.4. Determination of the transformation of the joint space of connected
rigid bodies into a configuration space of number N (q — r) is called a forward
problem of kinematics.

Definition 4.5. Determination of the transformation of the configuration space of
the body of number N into a joint space, that is, v — q, is called an inverse problem
of kinematics.

Both definitions are illustrated in Fig. 4.39.

In general, the forward kinematics problem does not lead to serious difficulties
while being solved, whereas the inverse kinematic problem is generally a difficult
problem.

Let us assume that we demand from a body of number N to move in a plane, i.e.,
to have three degrees of freedom. The joint space of the system of bodies should
possess at least a dimension of three. The preselection of the space of possible
movements of body N is a complex problem because it depends on the possibility
and the range of movements allowed by the successive nodes (joints) of the system
of bodies.

Only in special cases is the solution of the inverse kinematic problem unique.
It is clearly visible on an example of revolute nodes. Already the position of the
kinematic pair of the first class (two rigid bodies connected by a revolute node)
allows for two possibilities for the location of such a pair that are symmetrical with
respect to the axis passing through the remaining two joints of these two bodies
(Fig. 4.40).

The kinematic relationships between those bodies are determined by trigono-
metric functions, which exhibit singularities of various types (their values can be
equal to zero). Moreover, these relationships are non-linear and, therefore, usually
the considerations regarding the motion of the connected rigid bodies cannot be
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used for analysis of the motion of other (even of a similar structure) systems of
connections of such bodies are as well.

In the case of the analysis of an open kinematic chain of rigid bodies (links),
a forward kinematics problem reduces to the determination of the position of the
origin OV of the coordinate system associated with body N and the determination
of the orientation of that system with respect to the coordinate system of the
environment OX; X, X3.

In the case of the considered chain consisting of N bodies we have

r=A(g)r, ¥=A"(g)",....r" =AY (gy)r". (4.247)
The unknown relationship has the form
r=A(q)A"(q) ... AV (gn)r" = A(Qr”, (4.248)

where q = [q1,¢2, ..., qn]T.

The position and orientation of body N with respect to the coordinate system
of the environment is determined by relationship (4.248), where r¥ = r¥(q) €
R®. The first three components of this vector determine the position of point OV,
whereas the three remaining ones describe its orientation with respect to OX| X, X3.

The kinematics of connections of N rigid bodies into an open kinematic chain
has very wide application in the theory of manipulators and in robotics. The
changes in the vector of joint variables q(”), n = 1,...,N can be realized by
the mechanical and electrical interactions on nodes (joints). Not without reason did
we describe in Sect. 4.4 the possibility of transforming a point’s coordinates from
a Cartesian system into a curvilinear system (and vice versa) using the Jacobian of
the transformation. The singularities of the Jacobian of the transformation prevented
the uniqueness of that transformation.

In a general case, the space in which body N moves is described by a vector
ry € RM, M < 6, where A denotes a point of body N. In manipulator theory and
in robotics, body N is a tool and the space R is called a task space. If the tool is
axisymmetrical, the dimension of the task space is equal to five.

As a result of solution to the forward kinematics problem we obtain the
relationship

ry = f(q), (4.249)

where q = q(t) andrg = 14(¢).

Coming back to our interpretation of body N as a tool, it seems obvious that
the motion of that body (the tool) is imposed in advance by the requirements of,
e.g., machining, the manufacturing process. In other words, having the form of
r4(¢) imposed in advance we would like to determine the vector of joint variables
q= [ql, gV ]T to guarantee realization of the necessary formr4(¢). This means
that, using (4.249), we determine the unknown vector

q=f"'(rs), qeR", r,eRY M <N, (4.250)
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which indicates the realization of the inverse kinematics problem. The condition
M < N indicates the redundant problem, that is, a system of connected bodies
possesses more degrees of freedom than needed to complete the task. In such a case,
the inverse kinematics problem (4.250) leads to non-uniqueness of the solutions.
Every point of the path can be obtained by (infinitely) many configurations of the
multi-body system. In order to choose the “proper” configuration, one should exploit
one of the possible optimization criteria.
Equation (4.249) is equivalent to the following matrix form:

r ﬁ(qls---sqN)
V.z _ f(q1. -.-"CIN) ’ 4250)
™ Iu(qi,....qn)

and hence we obtain the total differential of the preceding expression (index A is
omitted):

-9 9 9 .
aidql aidqz LU
© dry q1 9 dg N
afa fs it
dr, ——dq1 ——dqy - 7—dgn
dr=| | =] 9 9¢> dgn
_drM : .o .o :
o g, g oy
L Bql 3q2 3611\/ -
[Oh Oh AT
dq1 0qp dg N
oh o o || 4
R dg»
= | 991 dq>  dgn 7| = J(q)dq. (4.252)
fy Wy A | LI
L dq1 0q2 dgn

We obtained the Jacobian matrix (in the theory of manipulators and in robotics
the matrix J(q) is referred to as an analytic Jacobian of a manipulator).
Dividing both sides of (4.252) by dz one obtains

LS, 4.253)
a TP ’

and the preceding equation represents the forward kinematics problem for velocity,
andq e RV, F e RM,
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Employing the foregoing reasoning, in the case of applications, we often face the
requirement of solving the inverse kinematics problem for velocity of the form

q=1J"(qF. (4.254)

Unfortunately, this is the application side, where problems connected with the
determination of the inverse Jacobian matrix J!(q) emerge. Transformation (4.254)
can be realized only when det (J~'(q)) # 0. The square Jacobian matrix is singular
when at least one of its rows can be expressed as a linear combination of the
remaining rows (then the rank of the matrix is decremented). The singularities
appear when, e.g., the axes of at least two revolute joints coincide. In the case of
a manipulator, it then loses its smooth ability to move and, despite the movements
of joints, the position and the orientation of the tool remain unchanged.

References

—

. J.L. Synge, B.A. Griffith, Principles of Mechanics (McGraw-Hill, Tokyo, 1970)

2. V. Barger, M. Olsson, Classical Mechanics: A Modern Perspective (McGraw-Hill, Tokyo,
1994)

. H. Goldstein, C.P. Poole, J.L. Satko, Classical Mechanics (Addison-Wesley, Reading, 2001)

4. T.W. Kibble, F.H. Berkshire, Classical Mechanics, 5th edn. (Imperial College Press, Danvers,
2004)

. E. Karaskiewicz, Introduction of Theory of Vectors and Tensors (PWN, Warsaw, 1976), in
Polish

. M. Lavrientiev, L. Lusternik, Calculus of Variations (PWN, Warsaw, 1966), in Polish

. Z. Osinski, General Mechanics (PWN, Warsaw, 1994), in Polish

. J. Leyko, General Mechanics (PWN, Warsaw, 1996), in Polish

B. Skalmierski, Mechanics (PWN, Warsaw, 1998), in Polish

. J. Niziol, Methods of Solving Mechanical Problems (WNT, Warsaw, 2002), in Polish

. W. Kurnik, Lectures on General Mechanics (Warsaw Technological University Press, Warsaw,
2005), in Polish

12. A.J. McConnel, Applications of Tensor Analysis (Dover, New York, 1957)

13. E. Nelson, Tensor Analysis (Princeton University Press, Princeton, 1967)

14. M.A. Lanceret, Mémoire sur les courbes d double courbure. Mémoires présents a 1’Institut,

416-454 (18006), in French
15. 1.J. Craig, Introduction to Robotics: Mechanics and Control, 3rd edn. (Prentice Hall, New York,
2004)

16. E. Jezierski, Dynamics of Robots (WNT, Warsaw, 2006), in Polish

17.J. Denavit, R.S. Hartenberg, A kinematic notation for lower-pair mechanisms based on

matrices. Trans. ASME J. Appl. Mech. 23, 215-221 (1955)

—S VKN W w

—_—



Chapter 5
Kinematics of a Rigid Body and Composite
Motion of a Point

5.1 Translational and Rotational Motion

5.1.1 Rigid Body in a Three-Dimensional Space and Degrees
of Freedom

We will show that to determine the position of a rigid body in three-dimensional
space, it is sufficient to know the position of any three of its points, but the points
must not be collinear.

Figure 5.1 shows the stationary Cartesian coordinate system OX,X,X, and
positions of a rigid body at two different time instants of motion. We assume that
the positions of the points A, B, and C are known, and we will show that if so,
then it is possible to determine the position of any other point of the rigid body
(in the present case point D). To this end one should construct the tetrahedron
ABCD, and then, knowing the edges CD, AD, and BD, construct the spheres of
radii equal to the lengths of those edges. An intersection of those three spherical
surfaces will be two points located symmetrically with respect to the plane of
triangle A BC. By continuous evolution in time from the original positions #, one is
able to make the proper choice of point D. Knowledge of the positions of points A,
B, and C implies knowledge of their coordinates (x14, X24, X34), (X158, X28, X38),
and (x¢, X2¢, X3¢ ). The relative distances of points A, B, and C do not change in
time, thus

2 2 2 2
(x14 —x18)” + (X204 — X2B)" + (X34 — X38)” =743,
2 2 2 _ .2
(x14 — x10)” + (x24 — X2¢)” + (X34 — X3¢)” = Ty,
2 2 2 _ .2
(x18 — Xx1c)” + (x28 — X2c)” + (X33 — X3¢)" =T, (5.1
where ryp = AB,ryc = AC,rgc = BC.
J. Awrejcewicz, Classical Mechanics: Kinematics and Statics, Advances in Mechanics 263
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Fig. 5.1 Positions of points XA
of a rigid body at the time
instant ¢, and ¢
Golta)
At;)
o] X,

X

Let us note that three out of nine coordinates defining the position of points A,
B, and C can be determined from (5.1), thus only six can be chosen arbitrarily.

It follows that in order to uniquely define the position of a rigid body moving
freely (without constraints) in space, one should know six independent parameters.
They uniquely describe the instantaneous position of the rigid body and are called
its degrees of freedom.

As we will see later, the choice of parameters that determine the number of
degrees of freedom need not be associated with the selection of three non-collinear
points of the rigid body.

For instance, let us choose three coordinates of point A;. The position of the
second point A, can be determined with the aid of only two coordinates with respect
to point A; because point A, can move on the surface of the sphere of the center
A (the motion of the point on the surface is determined by two coordinates). Points
A and A; determine the line A A,. The position of point A3 is determined by one
coordinate with respect to that line by means of drawing the plane passing through
point A3 and perpendicular to that line. The path of that point will be a circle lying
in the mentioned plane.

The motion of point A3 is uniquely described by the radius of that circle.

Let us assume now that one of the points of the considered rigid body (e.g.,
point A) becomes fixed. All the remaining points of that body move along the paths
lying on the concentric spheres of centers at point A (Fig.5.2).

We will call the motion of a rigid body in space with one of the points fixed
(this point may not belong to the body) the motion about a point. Now the position
of the rigid body is determined by the position of points B and C, that is, by six
parameters (coordinates). However, three equations (5.1) must be satisfied, and in
light of that, the motion about a point of a rigid body with one point fixed has three
degrees of freedom.
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Fig. 5.2 A rigid body
in motion about a point

Fig. 5.3 Rotational motion
of a rigid body

X

Let us further constrain the motion of the considered body, i.e., we now fix its
two points A and B. The line determined by these two points is called an axis of
rotation of a rigid body, and the motion is called the rotational motion (Fig.5.3).

In this case, in order to determine the instantaneous position of the considered
rigid body, it suffices to know the position of any point of the body (e.g., point C)
not lying on the axis of rotation. The position of points A and B does not play any
role here (they lie on the axis of rotation), and in view of that the distance of point C
from points A and B is determined by the last two equations of the system (5.1).
Because point C has three coordinates (xi¢, Xa¢, X3¢ ), and we have two equations,
only one of those coordinates can be chosen arbitrarily. This means that a rigid body
with two points fixed has one degree of freedom.

The number of degrees of freedom determines the number of equations necessary
for a complete description of rigid-body motion.
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If our rigid body is, for example, a rigid rod, it will have five degrees of freedom
(one degree of freedom associated with the rotation about the rod axis is neglected
because d < [, where d is the rod cross-sectional dimension and / its length).

The investigation of the kinematics of a rigid body reduces to the knowledge
connected with the requirement of realization of the necessary rigid-body motion
and to the determination of all the kinematic characteristics of arbitrary points of a
rigid body based on the knowledge of certain (a few) kinematic characteristics of
the body.

Let us consider two states of a rigid body, i.e., initial and final state. We call the
transition from the initial to the final state the displacement of a rigid body. One of
the tasks of kinematics is the transformation of the position of a body from the initial
to the final state, but neglecting the real process of body motion and its duration.

We distinguish the following three types of displacement of a rigid body.

Translation of a rigid body is a kind of displacement where all the points of the
body perform a geometrically identical motion (rectilinear or curvilinear).

Rotation of arigid body is a kind of displacement where the final state of the body
is obtained from its initial state as a result of rotation about a certain line called the
axis of rotation.

Screw displacement of a rigid body is the combination of translation and
rotation such that the direction of rotation vector is coincident with the direction
of translation.

5.1.2 Velocity of Points of a Rigid Body

Let us consider the relationships between velocities of two arbitrary points of a rigid
body (Fig.5.4).

The positions of the points are described by radius vectors r4, and r,4, attached
at the origin of the Cartesian coordinate system OX, X, X;. The velocities of those
points are equal to

drA drA
Va, = ?‘, V4, = dtz, (5.2)
and according to Fig. 5.4 we have
a4, = T4, — Ty (53)

Let us note that although the vector r 4, 4, (of the tail at A, and tip at A,) changes
direction and position, its magnitude is always the same, i.e.,

Fa4, OTay4, = rfllAz' (5.4)
Differentiating (5.4) with respect to time we obtain

drAlAz

et 0. (5.5)

rq,4, ©
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Fig. 5.4 Projections of velocities of points A; and A, onto the line passing through these points

Differentiating (5.3) with respect to time and taking into account (5.2) we obtain

drg, 4
ﬁ = V4, — V4. (5.6)
Substituting (5.6) into (5.5) we have
rAlAZ © VAZ = rAlAz o vAl- (57)

Taking into account the definition of scalar product of vectors and Fig. 5.4 we
obtain

V4, COSQ) = V4, COSU]. (5.8)

The obtained relationship enables us to formulate the following theorem.

Theorem 5.1. The projections of velocities of two arbitrary points of a rigid body
onto the line passing through these points are equal.

5.1.3 Translational Motion

If during the motion of a rigid body an arbitrary line that belongs to that body
remains continuously parallel to its previous positions, we call such motion the
translational motion.

As can be seen in Fig. 5.5, line A B (corresponding to time instant ¢) is parallel to
line A; B; (t + At), and segments AB and A, B; are equal. Segment A B underwent
translation (parallel movement) and assumed the position 4 B;. In the figure, paths
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X

Fig. 5.5 Translational motion of a rigid body (AB || A;B; and AB = A, B)) (a) and velocities
and accelerations of points A and B (b)

of two arbitrary points are indicated by dotted lines (the paths can be curvilinear).
We can determine velocities of points A and B from the following formulas:

= tim 24 vp = fim 2% 5.9
VAT A A T A A ©9)

However, as we have already mentioned, Ar4 = Arp, and from (5.9) we obtain
V4 =Vp =V. (5.10)

Recall that points A and B are arbitrary; therefore, the following theorem is valid.

Theorem 5.2. During translational motion of a rigid body the velocities of all its
points are equal.

We will denote such a velocity by the symbol v and call it the velocity of
translational motion.
The accelerations of points A and B are equal to

dVA dVB
e, =9 5.11
ay ” ap ” (5.1D)

Taking into account (5.10) we obtain

ay =ap = a = a. (5.12)
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Fig. 5.6 Circular motion
of point D

During translational motion of a rigid body accelerations of all its points are equal.

We will call the introduced acceleration a the acceleration of translational
motion.

In translational motion, the paths can be parallel lines, either straight or curved.
In the textbook [1], examples of such motion encountered in technology are
presented. For instance, the motion of a piston of an internal combustion engine
takes place along a straight line, whereas the paths of points associated with the
motion of a rigid horizontal beam suspended by means of two cranks (at its ends)
are curvilinear.

5.1.4 Rotational Motion

In this section we will consider the case presented in Fig. 5.3 in more detail. Let the
cylindrical rigid body be supported in the thrust slide bearing and radial slide bearing
through two coaxial cylindrical journals. The axis OX3 of the adopted coordinate
system coincides with the axis of rotation of the body. The points belonging to that
body describe concentric circles lying in the planes perpendicular to the axis of
rotation, and the radii of these circles are determined by distances of points from
the axis of rotation. The body has one degree of freedom, and we will describe its
motion with the aid of only one parameter. In order to describe it we will choose
the stationary plane Iy coincident with the plane OXX3. Next, we will take an
arbitrary point lying on the plane I' and determined by the angle ¢ (Fig.5.6),
henceforth called the angle of body rotation.

Looking at the arrow of the OX; axis (from positive to negative values),
the directed angle ¢ will be positive if the motion of the point proceeds in a
counterclockwise direction. In the general case, the angle changes in time ¢ = ¢()
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and is expressed in the arc measure, that is, radians. Let us take two time instants
t and t + At, and let the corresponding angle values be ¢(¢) and ¢(t + At),
respectively. The following ratio of rotation angle increment to time increment is
called the average angular velocity of a body:

_ e+ A —g@) _ Ay

av . 5.13
At At ( )
If At — 0, then w,, — w, and from (5.13) we obtain
. Agp dg
o= AT ar 619

The instantaneous angular velocity of a body rotating about a fixed axis is
defined by the time derivative of an angle of rotation of that body.

A unit of angular velocity is 1rad/s. In the general case, the angular velocity
depends on time, i.e., ® = w(t). If o > 0 (w < 0), then the rotation angle ¢
increases (decreases) in time.

In an analogous way we introduce the notion of average angular acceleration. Let
us take two time instants # and ¢ + Af¢, and let the corresponding values of angular
velocity be w(¢) and w; (t + At), respectively.

The ratio of angular velocity increment to time increment (time in which the
angular velocity changes) is called the average angular acceleration of a body’:

Alw —w) Aw

= — —_ 5.15
fav At At (5.15)

If At — 0, then g,y — ¢, and from (5.15) we obtain

. Aw dw d2<p
FEAN A T W T ©.16)
The instantaneous angular acceleration of a body rotating about a fixed axis is
defined by the time derivative of its angular velocity, or by the second derivative
with respect to time of its angle of rotation, and the unit of angular acceleration is
1 rad/s?.
The special cases of the rotational motion of a rigid body include uniform rota-
tional motion and uniformly variable (accelerated, decelerated) rotational motion.
In the case of uniform rotational motion, from (5.14) we obtain

d
w = & _ const, (5.17)
dr
that is,
@ = ot + ¢o, (5.18)

where ¢y = ¢(t)-
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In the case of this motion, often instead of the velocity expressed in radians per
second, the number of revolutions n made by the body in 1 min is given. According
to (5.13) and because

Ay

n, t==~60s, (5.19)
2

we have
mn rad
0w =——": (5.20)
30 s
In the case of uniform motion @ = const, and so we have ¢ = 0 according to
(5.16).
The uniformly accelerated (decelerated) motion is characterized by a constant
magnitude of angular acceleration. According to (5.16) we have

do  d?%p
e = T = Frl = const. (5.21)

Integrating the preceding equation with respect to time we obtain

do ‘4 (5.22)
— = =e¢t + wy, )
dr 0

where wy = w(t).
In turn, integrating (5.22) with respect to time we have

t2
¢ = e + ool + g, (5.23)

where ¢y = ¢(t)).

If the considered body has one degree of freedom, then knowing the velocity
and acceleration of rotational motion allows for the determination of the velocity
and acceleration of any point of the body. Choosing an arbitrary point D of the
body through that point, we will draw a plane perpendicular to the axis of rotation.
Connecting the point of intersection of the plane and the rotation axis with point D
we obtain the radius R of the circle on which point D moves. The arc measure s of
the position of point D is equal to

s = R(p + 9), (5.24)

where ¢ denotes the directed angle between the planes I'p and I', which varies,
whereas the angle § is constant and determines the position of point D with respect
to the plane I' (Fig. 5.6). Differentiating (5.24) we obtain

d d
s R_qo_

— = = Rw, (5.25)
dr dr
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b

Fig. 5.7 Resolution of acceleration a into normal and tangential components (a) and distribution
of accelerations along the radius (b)

which describes the magnitude of velocity v of point D. In order to determine the
vector of acceleration of point D we will resolve it into tangential a, and normal a,,
components, that is,

dv v2
_ v -V 5.6
a ar |a,| R ( )

The magnitudes of accelerations g, and a, are equal to (Fig.5.7a)
a, =R, a, = w’R. (5.27)

According to Fig. 5.7a, using the introduced angle & one may determine the fotal
acceleration of point D, which reads

a= /a2 +a2 = Rve2+ w4, (5.28)

tana = & iz (5.29)
a, o

The angle o defining the direction of the total acceleration vector is independent
of the position of point D, but the magnitude of acceleration depends on the position
described by the radius R. The dependency of the acceleration magnitude on the
distance of point D from the rotation axis is shown in Fig. 5.7b. The graph of the
velocity distribution along the distance is analogous, but the velocity vectors are
perpendicular to the radius R.

Finally, we will determine the components of the velocity and the acceleration of
an arbitrary point D based on the diagrams depicted in Fig. 5.8.

According to Fig. 5.8a we obtain

vy, = —vsin(¢ + §) = —wR sin(¢ + J), (5.30)
vy, = vcos(g + ) = wR cos(p + §). (5.31)
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Fig. 5.8 Rectangular components of the velocity vector (a) and of the acceleration vector (b)

It can be easily noticed that because
Xy = Rsin(p +6), x;3 = Rcos(p + §), (5.32)
(5.30) and (5.31) will take the form
Vy = =X, Vy, = WX]. (5.33)

Analogous considerations lead to the determination of the rectangular compo-
nents of acceleration. According to Fig. 5.8b we have

ay, = —a, sin(¢ + 8) —a, cos(¢ + 4),
ay, = a; cos(¢ + 8) — a, sin(p + §). (5.34)
Taking into account (5.32) and (5.27) we obtain

ay, = —&xp — a)le, ay, = x| — a)zxz. (5.35)

5.1.5 Angular Velocities and Angular Accelerations as Vectors
and the Vector of Small Rotation

Let us consider a rigid body rotating about a fixed vertical axis OX3 (Fig.5.9).

We will attach the vector @ of magnitude |w| = ¢ at an arbitrary point of the
OX3 axis. This vector is a sliding vector because it can be freely moved along the
0Xj; axis. If ¢ > 0, then  has the same direction and sense as does the OX3 axis.
According to the previous considerations

v =wR = wrsina. (5.36)
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Fig. 5.9 Rigid body rotating
with angular velocity @

s

From Fig.5.9 one may notice that vector v is perpendicular to the plane
determined by vectors r and @, which express vector v in the following way:

V= XT. (5.37)

Because the acceleration a of point D is a geometric derivative of the velocity v
with respect to time, we have
_dv

a d( X T) dwxr—i— X
— =—(® =— ®
de de

=3 (5.38)

r
dr’
where %—‘;’ = ¢ is the angular acceleration.

The vector of angular velocity @ may change the magnitude, but not the
direction. It follows that the vector of angular acceleration also lies on the axis of
rotation OX3. If w increases, then w and & have the same senses. If w decreases,

then @ and e have opposite senses. We can write (5.38) in the form
a=exXr+owxv. (5.39)
From Fig. 5.10 it follows that
a, =& XT. (5.40)

The vector e x r is simultaneously perpendicular to & and r, and its magnitude
le xr| = ersine = eR. The second vector is simultaneously perpendicular to
® and v, that is, directed along the radius R. Moreover, since @ L v, we have
|@ x v| = wv = w?R. The latter vector is the normal component of the acceleration

2 =wXV=w X (& XT). (5.41)
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Fig. 5.10 Normal and X
tangential accelerations
of point D

Fig. 5.11 Vector of small
rotation angle Ay

At the end of this section, we will introduce the notion of the small rotation
vector. Its geometrical interpretation is depicted in Fig.5.11.
A small displacement Ar caused by a rotation Ay for small Ag is equal to

Ar = RA@p = rA¢sina. (5.42)

For small A¢ one can assume that vector Ar is tangent to a circle of radius R,
and is equal to

Ar = Ay xr. (5.43)

We will demonstrate next that small rotation vectors can be added geometrically.
Let the position of point D be described by the radius vector r, and let us impose
on the body two small rotations Ay | and Ay, along certain intersecting axes. After
the first rotation Ay, point D will undergo displacement by

Arp = Ay, xr, (5.44)
and its new position will be determined by the radius vector

ri=r+ Ar; =r+ Ay, xr. (5.45)
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In turn, the point thus obtained will, after the first rotation, take the position
described by the radius vector r; and then be subjected to the rotation Ay,. It will
undergo the following displacement:

Ary = Ay, xr; = Ay, X (r+ Ay, xr) = Ay, xXr (5.46)

because we assumed that the vector product Ay, x (Ay, x r) was a second-order
differential. The total displacement of point D is equal to

Ar; = Ary 4+ Arp = Ay xr+ Ay, xr = (Ay, + Ay,) xr. (5.47)

We will obtain a similar equation if we first apply the small rotation angle Ay,
and then subject the obtained point to displacement associated with rotation Ay ;.
Formula (5.47) has the following physical interpretation.

Two small rotations of a rigid body about two intersecting straight lines can be
replaced with one vector whose resulting rotation is the geometrical sum of the
small rotation vectors.

The introduced notion of small rotation vector will now serve to define the
angular velocity.
Recall that the velocity of an arbitrary point of a body is given by

. Ar . Ay Xxr Ay
v= lim — = lim = lim — xr. (5.48)
Al—0 At A—>0 At At—>0 At

In the preceding formula, (5.43) was used. Taking into account (5.37) we obtain

tim 27 (5.49)
®w = lim ——. .
At—>0 At
The angular velocity @ of a rigid body is equal to the limit to which the ratio of
a small rotation vector and the time increment tend, given a time increment that is
tending to zero.

5.2 Planar Motion

5.2.1 Introduction

Figure 5.12 shows a rigid body moving in planar motion. There are two planes I”
and Ip in the figure. The plane I'p was taken arbitrarily and is fixed since motion is
measured with respect to that plane. We call such a plane a reference plane [2]. We
dealt with a similar situation in the case of particle motion where a certain point O
was taken as fixed and the distance of the particle from that point was measured by
the radius vector.
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Fig. 5.12 Position of arigid body with respect to reference plane I’y at time instant ¢y and ¢ (notice
translation and rotation of the figure marked by hatching line)

Let us take an arbitrary point of a rigid body and investigate its motion. To this
end we introduce two Cartesian coordinate systems of parallel axes: OX,X,X;
(absolute system) and O’X|X;X}. The first system is stationary and arbitrarily
taken. The second system moves together with the investigated rigid body and is
called a non-stationary system. Its origin (point O’) lies on the plane figure obtained
from the intersection of the body with the plane I". The planes X; — X, and X| — X}
lie in the plane I". It follows that the axes OX3 and O’X} are perpendicular to the
chosen planes.

The motion of a rigid body during which all the points of the body move in planes
parallel to the reference plane are called the planar motion.

An arbitrary point of a rigid body moves only in a plane passing through that
point and parallel to the reference plane.

If all the points lying on an arbitrary line perpendicular to the reference plane
move along identical paths and their velocities and accelerations are also identical,
then the description of planar motion of the rigid body boils down to the description
of the planar motion of the figure obtained as a result of the intersection of that body
by a plane parallel to the reference plane.

The letter subscripts of the coordinates concern the point, e.g., Xjo’, X3¢ are the
coordinates of point O’ in the system OX;X», whereas x| ,, x5 , are the coordinates
of point A in the system O’X{X]. Moreover, the points denoted by the letter O are
the origins of Cartesian coordinate systems, e.g., 0’, 0", 0"

Knowing the motion of such a plane figure in its plane is sufficient to describe
the planar motion of a rigid body.



278 5 Kinematics of a Rigid Body and Composite Motion of a Point

Fig. 5.13 Motion of a planar X4
figure in the plane OX; X,
with the chosen pole O’
Xa0r
o Xior X,

The region where the plane I" intersects the analyzed rigid body is marked by a
hatching line. All the points belonging to the X} axis move in translational motion so
they possess the same velocities and accelerations. It follows that the velocity of any
points of that body (e.g., point O’) and its velocity of rotation completely describe
the velocity field of the body. In turn, knowing the acceleration of an arbitrary point
of the body and the angular velocity and angular acceleration of the body enables
us to determine the acceleration field of the planar figure (e.g., of point A). Next,
by drawing lines perpendicular to the plane of the figure passing through arbitrary
points of that region we can determine the velocities and accelerations of other
points of the rigid body lying on these lines.

As was mentioned earlier, the problem of planar motion boils down to an analysis
of the motion of a planar figure in some stationary plane parallel to the reference
plane. The position of the planar figure in the plane is described by the position of
its two points, which we may connect to obtain a line segment. Thus an analysis of
the kinematics of a planar figure can be reduced to an analysis of the kinematics of
a segment in a plane.

We will now show how to determine the position, velocity, and acceleration
of an arbitrary point from the region marked by a hatching line with respect to
the stationary coordinate system OX,X,X; introduced earlier. Let us note that the
position of the marked figure is uniquely determined with respect to the adopted
coordinate system by two coordinates of an arbitrary point x;(¢), x2(¢) and an
angle (7). The angle ¢ denotes the rotation of the coordinate system O’X| X} X}
to the position O” X X}/ X} defined exactly by the angle ¢ (Fig.5.12). The point
O’ = 0" is an arbitrary pole of the planar figure, and the system O”X{' X} XY
is rigidly connected to that planar figure. We can always obtain the motion of an
arbitrary point A of the marked figure by the parallel translation of the coordinate
system OX, X, X; to the position O’ X| X} X} and subsequent rotation of that system
through the angle ¢. The angle ¢ is commonly called the angle of rotation of a
planar figure.

Figure 5.13 shows an example of the motion of a planar figure.

The motion of a pole and, consequently, the translational motion of a planar
figure are described by the equations xjor = Xxj0/(¢) and x20r = x20/(¢). To
describe the rotational motion of a planar figure, let us take a ray O’A’ that does
not belong to this planar figure but moves in translational motion with the pole O’.
Let us take point B of the figure, and let a ray O’B belong to the planar figure
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Fig. 5.14 Translational
motion of poles O and O,
and rotational motion with
respect to those poles

during the whole time of motion. It follows that the angle A’O’B = ¢ describes the
rotational motion of the planar figure ¢ = ¢(¢). Eventually, the motion of the planar
figure is uniquely described by the equations

X100 = X107 (1), X200 = X20/(1), o =), (5.50)

which are called equations of planar motion of a rigid body.

We will prove that the form of the equation ¢ = ¢(¢) does not depend on the
choice of the pole. Let us consider the motion of the planar figure depicted in
Fig.5.14.

As the two poles we choose two points O; and O, of the planar figure that during
its motion move along trajectories A B; and A, B,. Through the poles we draw two
parallel rays O, 0] and 0,0}, which move in translational motion with the poles
O, and O, and during motion are always parallel to one another. We draw in a plane
of the figure two parallel rays, O; 0/ and 0,0}, that belong to the figure and are
parallel to one another in an arbitrary figure position, that is,

@1(t) = 2(1) = ¢(1). (5.51)

This means that the angle ¢(¢) does not depend on the choice of the pole (i.e.,
the angle is the same although O, # 0,).

The angular velocities w; (#) and angular accelerations ¢; (¢) about poles O; are
equal to

_dn _dpr dor _ doy

= — = — = 5.52
dr dr &2 ( )

T T e T 0T

It follows that the angular velocities and accelerations also do not depend on the

choice of poles. They are identical for all points of a plane figure, and therefore
vectors

de do d%¢
< _Le_2fe 5.53
dr T, (5.53)

are respectively called the angular velocity  and the angular acceleration & of a
planar figure.
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Fig. 5.15 Angular velocities
® and angular accelerations
& during motion of a planar
figure having identical

(a) and opposite senses (b)

Fig. 5.16 Position of point A
of a rigid body in plane I"

X

The preceding vectors are parallel to one another and perpendicular to the plane
of the figure and can have the same or opposite senses (Fig. 5.15).

Recall that throughout this book, uniform terminology and notation has been
used. In the case of the Cartesian coordinate system (used most frequently), we
denote the coordinates of, e.g., point A using lowercase letters x4, X24, X34. In turn,
we will denote the axes of a stationary Cartesian coordinate system using capital
letters OX, X, X5, and we will denote Cartesian coordinate systems after successive
transformations by, e.g., O’ X[ X; X3, 0" X X} X}

In order to determine the position of point A in the coordinate system OX, X, X,
we will make use of Fig. 5.16.

From this figure it follows that

r = 1‘0/ + p, (5.54)

where p is described in the coordinate system O” X|' X
The angle between the unit vectors E{, E{ and E}, E/ is equal to ¢. In view of
that we have

E, = E{cosp —E] sing,
E, = E{sing + E] cos¢. (5.55)
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Multiplying the preceding equations respectively by cos¢ and sin ¢, and then
by — sin ¢ and cos ¢, and adding them by sides we obtain

E! = E;cos¢ + E> sing,
E) = —E;sing + E; cos¢. (5.56)

According to (5.54) and taking into account (5.55) we have

x14E1 + x24Ey = x10/E1 + x20'Ey + x{,(E| cos ¢ + E, sin )
+ x34(—Eq sing + E; cos ¢). (5.57)

Multiplying this equation successively by E; and E, we obtain

x14(t) = x10/ () + x4 cos p(t) — x5, sin (1),
X24(1) = x20/ (1) + x{, sin@(r) + x5, cos (1). (5.58)
Returning to the introduced Cartesian coordinate systems of three axes, (5.58)

for the case of axes’ parallel translation (¢ = 0) can be written in the following
form:

/
Xi4 X10/ xXiy
J— /
Xo4 | = | X207 | T | X5y | s (5.59)
/
X34 X307’ X34

where in our plane case we have x34 = x30- = x’34 = 0 and additionally in the
absence of rotation x”, = x';4,i = 1,2, 3.

Vector (5.54) describes in this case the position of point A in two coordinate
systems of parallel axes OX,X, and OX{X) (in the general case OX,X,X; and
0'X{X;X3).

Now let us assume that we are dealing only with the rotation of the coordinate
system, say, about point O’.

Assuming that the rotation takes place through the angle ¢ in the plane parallel
to X1 — X, and using (5.58) we have

r = ¢(Es3)p, (5.60)
where
X4 X7y cosg —sing 0
r= (x|, p=1|x),|, @E3;)=]|sing cose O]|. (5.61)
X, X!, 0 0 1

—
The vector p = O” A is expressed in the moving coordinates O” X' X} X7, and

—
the vector r = O’A in the coordinates O’ X X} X}.
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Fig. 5.17 Plane
displacement of segment AB
into position A’ B” and center
of rotation O

What is more, the matrix ¢(E3) is the matrix of elementary rotation about the X3
axis through angle ¢. One may check that the matrices of rotation about the X; and
X, axes through angle ¢ have respectively the forms

1 0 0 cosp 0 sing
oE)=1]0 cosp —sing |, @E)= 0 1 0 . (5.62)
0 sing cosg —sing 0 cosg

1

It is easy to demonstrate that ¢~! = @7 and det(¢) = 1 or, equivalently, that

—o(E;) = o' (E).

The coordinates x|, and x}, are time independent. Vector ros denotes the
displacement, whereas the time change of vector p is connected with the rotation
through angle ¢(¢). Vector p rotates with the angular speed ¢ (it changes the
direction but not the magnitude). Thus the conclusion can be drawn that planar
motion can be treated as a composition (geometric sum) of two motions, i.e., the
translational motion of an arbitrary point (in our case point O') and the rotational
motion about the axis perpendicular to the plane I' and passing through point O’.

In order to attribute the physical interpretation to this observation let us consider
two arbitrary positions I and I’ of a plane figure (Fig.5.17).

At first we perform a translation of the figure with segment A B to point A;. Next,
we rotate the obtained segment A; B; through angle ¢ obtaining segment A’ B’. It
is also possible to move segment A B to point B’ and then rotate this segment also
through angle ¢, but with the opposite sense. From the foregoing considerations it
follows that any non-translational displacement of a planar figure in its plane can
be considered a composition of two displacements and a translational displacement
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including the point chosen as a pole, and then rotation about that pole. Moreover,
the translational displacement of a planar figure depends on the choice of the pole,
whereas the magnitude of angle of rotation and its sense are independent of the
choice of pole.

We will show now that segment AB can be transformed into position A’B’
solely by rotation about an axis passing through point O and perpendicular to the
drawing’s plane. Such a point is called a center of rotation.

The perpendicular bisectors OO’ and O 0" of, respectively, segments AA" and
BB’ divide the segments in halves, i.e., AO’ = O'A’, BO” = O”B’. Note that
OA = OA’ and OB = OB’ and AB = A’B’, that is, triangles OAB and OA’'B’
are congruent, and the former can be rotated about point O through angle ¢ in order
to obtain the latter.

If positions 7 and I’ are close to one another, then ¢ is the small rotation angle,
B’ — B and A" — A. The directions of perpendicular bisectors OO’ and O 0"
for At — 0 tend to the instantaneous velocities of points A and B, and point O
tends to the instantaneous center of rotation, which coincides with the instantaneous
center of velocity. The latter is created as a result of the intersection of the lines
perpendicular to the vectors of instantaneous velocity v4 and vp passing through
the tails of these vectors.

In the first special case, figures I and I’ can be situated with respect to one
another in such way that they possess a symmetry axis. Then lines AB and A, B,
and the bisector intersect at one point called the instantaneous center of rotation C,
and figures I and I’ coincide only after rotation through a certain angle.

In the second special case, the figures become coincident only after displacement
by a certain distance, because I || I’, and then point C lies in infinity.

In the book [2] there is also a discussion of the case where the position of
segments is such that A4’ | BB'. The preceding observations lead to the following
theorem.

Theorem 5.3 (Euler’s first theorem). An arbitrary displacement of a planar
figure can be realized through rotation about a certain fixed point, called the center
of rotation, lying in the plane of the figure.

To sum up, the planar motion of a rigid body can be replaced with the motion of
a certain plane figure.

5.2.2 Instantaneous Center of Velocities

Taking an arbitrary plane that is parallel to the reference plane, and intersecting the
analyzed rigid body, we obtain as a result a planar figure. Knowing the velocity of an
arbitrary point of this figure, i.e., the linear velocity and angular velocity @, enables
us to determine the velocity of any point of the considered rigid body.
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"
X,

Fig. 5.18 Velocity v4 of point A

The velocity of an arbitrary point A of a rigid body is equal to (Fig.5.18)
d d
el = — (ro 5.63
T (r0) = 1 (ro + ) (5.63)
or
V4 = Vo’ + Vao/, (5.64)
where v4 is the velocity vector of point A, v is the velocity vector of point O’,
and v 40/ is the velocity vector of point A with respect to point O’, where
PL=Vaor =@ Xpy=w X (rgy—rp’). (5.65)
The vector @ = ¢ is perpendicular to the plane of the figure.

Theorem 5.4. [f the motion of a planar figure that takes place in its plane at the
given time instant is not the instantaneous translational motion, then there exists
one point C belonging to the plane of the figure such that its velocity is equal to
zero. The velocities of other points of the plane figure result from its instantaneous
rotation about point C.

Proof. The velocity of the point v¢ = 0 and, by assumption, @ # 0. According to
(5.64) in the system O'X{ X)X} we have

—
ve=0=vop +0 x0'C, ()
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where
Xlo/ 0 x{c
Vor=|X%0o |, @=|0]|, O0'C=|x
0 @ 0
Because
_, |E} E) E;
@x0'C=10 0 ¢|=-Ejgx)c+Epxic.
Xic X 0
we have

. 12 .
X107 — Xpc@ = 0,
X207 + xicq') =0.

The preceding equations allow for the determination of the position of point C
given knowledge of ¢ = w.
Premultiplying both sides of (*) by @ we obtain

—
wXV0/+wX (wXO/C) 20,
and hence
— — —
® XV = w X (O/C xw) = 0?0'C - (O’C ow)w.

Finally, the unknown vector is equal to

- ® X Vo
0'C =

@

The preceding formula enables us to construct the vector m‘) (and consequently
to determine point C). Looking in the direction of vector @, we rotate the vector vo-
in the positive direction through the angle 7z/2, and on the obtained ray we lay off a
segment of length vp//w, i.e., we mark the location of point C. O

5.2.2.1 Instantaneous Center of Velocities

We will prove that at every time instant during the motion of a planar figure there
exists its point C such that its velocity v¢ = 0, and we will call it the instantaneous
center of velocities.
At any time instant let the velocity of a certain point O of the plane figure
(Fig.5.19) be known, with the considered time instant having angular velocity .
Let point O be the pole. We will determine the velocity of an arbitrary other point
after adding vector v and the velocity vector of this point with respect to pole O.
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Fig. 5.19 Determination
of instantaneous center
of velocities

Let OC L vp. We will search for the position of point C such that vpc = —vo.
The velocity of point C is equal to

Ve = Vo +Voc =vVvop—Vp =0, (5.66)

and in view of that point C is the instantaneous center of velocities. Because

Voc = OC - -w= Vo, (5.67)
we have
oc="2 (5.68)
w

To sum up, the instantaneous center of velocities lies on a ray OC L vp ata
distance from pole O equal to vp/w.

We will now determine the velocities of arbitrary points of a planar figure using
the introduced notion of instantaneous center of velocities. Let us take three arbitrary
points A, Ay, and A, (Fig.5.20).

We successively have

VA=Vc+Vea, Vay, =Ve + Ve, Va, = Ve +Vea, (5.69)
and because v¢ = 0, we also have
[val = |[veal = CA - o, v4LCA,
[Va | = |vea | = CAy - o, v, LCA,,
[Va,| = [Vea,| = CAs - o, V4, LCA,. (5.70)
From (5.70) the following conclusion can be drawn.

The velocity vector of an arbitrary point of a planar figure at every time instant
possesses a magnitude equal to the product of the angular velocity of this figure @
and the length of the segment connecting this point with the instantaneous center of
velocities, and its sense is in agreement with the sense of .
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Fig. 5.20 Determination of velocities v4,v4,, and v4, using the instantaneous center of
velocities C

Fig. 5.21 Determination
of position of instantaneous
center of velocities if v 4,
and direction of v4,

are known

From Fig. 5.20 also follow the relationships
VA CA VA, _ C A1

vy, CAy’ vy, CAy

(5.71)

Let us now consider certain, qualitatively distinct, cases for determining the
position of the instantaneous center of velocities.

I. Let the velocity v,4, and the direction of velocity of point A, be given
(Fig.5.21).

Two rays A;C and A,C intersect at point C, that is, at the instantaneous
center of velocities, and @ = vy4,/CA;. Then we determine the magnitude of
velocity vy, from the equation vy4,/v4, = CAy/CA, or the equation vy, =
CAz .

II. Let the velocities v4, || v4, and perpendicular to A A4,. To determine point C,
the magnitudes of velocities v4, and v4, must be known (Fig. 5.22).
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Fig. 5.22 Determination of instantaneous center of velocities C in the case where v4, || v4,:
v4, and v4, have the same senses (a), opposite senses (b), and the same senses and equal
magnitudes (c)

Fig. 5.23 (a) Disk rolling without sliding on a straight line. (b) Velocities of points Ay, A,, A3, and
Ay determined from the equation with respect to pole O and (¢) with respect to the instantaneous
center of velocities

From Fig. 5.22a, b follows the proportion

VA, CA1
A 28 5.72
V4, CAZ ( )

and in the case shown in Fig. 5.22c we have 4|C = oo, thatis, 2—;% = % =0.
III. Letvy, || va,, butthe vectors are not perpendicular to A A,. The instantaneous
center of velocities lies in infinity, that is, A;C = oo and w = % = 0.
Moreover, we have 4,C = A;C = oo, and therefore v4, = v4,. We
deal with such a case in the translational motion of a plane figure because
then the velocities of all its points are equal in the geometrical sense and
the instantaneous center of velocities lies in infinity. On the other hand, if
V4, = V4, in a certain time interval, and not at a certain time instant only,

then the plane figure moves in translational motion.

Example 5.1. Circular disk of radius R rolls without sliding on a straight line
(Fig.5.23). The velocity of the center of the disk vp = const. Determine the
velocities of points A, A,, A3, and A4 lying on a circle of radius R.
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The disk moves without sliding on a certain stationary straight line. In this case
the instantaneous center of velocities C lies at the point of contact of the disk with
the line. The velocity of point C of the disk is equal to zero because it is in contact
with the point of a fixed line and there is no sliding.

The velocity of point C can be determined with respect to pole O. Then we have

ve =0=vp +voc,

that is, at point C we have vp = —vo¢, which is illustrated in Fig. 5.23b.
The velocities of the remaining points A,, A3, and A4 with respect to pole O are
equal to

Vo4, = Vo4, = V04; = Vo4, = VoO-

Geometric adding vectors vou;, i = 1,2,3,4, and vp we obtain the desired
vectors of velocities of points 4;, and their magnitudes read

) 2 _ [ 2 _
VA, = \/VO +Vou, = \/VO +vy = V2vo,

Vo +voa, = Vo +Vvo = 2vo,

VAs

= 22— 22—
V4, = \/VO +vou, = \/VO +2 = vV2vo.

The desired velocities of points A; can be determined if as a pole we take the
instantaneous center of velocities C (Fig. 5.23c). We successively have

SA, RV2 o
= 0’

= V0S0 TR
SA;
Vg, = voﬁ = 2vo,
SA, R2
VA4=V0§=V0 R =\/§V0. O

5.2.3 Moving and Fixed Centrodes

As was mentioned earlier, the analysis of motion of a plane figure in its plane can
be reduced to the analysis of an arbitrarily chosen segment A B of this figure at time
instants 7, t + At, t + 2A¢t, .. .. This segment will assume the following positions:
A1 By, A2 B,, A3 B3, . ... To each of those positions correspond instantaneous centers
of rotation Oy, O,, Os,..., such that rotation through angle Ag; about point O,
moves segment A B to A, B,, rotation through Ag, about O, moves segment 4, B,
to A3 B3, etc. At the given time instants the positions of Oy, O,, Os, ... are fixed and
can be joined to form a broken line O; 0,05 . .., which belongs to the fixed plane.
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Fig. 5.24 Determination
of points Oy, O,, O3, ...
and O{, 03, Oj, ...

We will now describe the broken line O] 0;0j ... corresponding to the broken
line 010, 0j ..., where now the points O], 05, Oj, ... belong to the moving plane
figure. We will show how to determine point O}, which after rotation through the
angle Ag;, becomes coincident with the fixed point O, (Fig.5.24).

We lay off the segment 0,05 = 0,0, at the angle Ag; opposite to the sense
of rotation of a plane figure with respect to O; of segment O;0,. We proceed
similarly in the next step, but now we lay off O)Oj at the angle Ag, with respect
to a line parallel to O, O3 and passing through point O,. The obtained broken line
0,0;0j ... belongs to the moving plane figure. If Az — 0 and Ag; — 0, then the
broken lines will turn into smooth curves and the motion of the planar figure can be
represented as a rolling of the curve O, Oé 0§ ... on the fixed curve 0,0,0s,...
without sliding because O, Oé = 0, 0,, etc. The curve 0; 0,03, ... is called a
fixed centrode, and the curve 0,0,0, ... a moving centrode (point O} is omitted
in Fig. 5.24). During such rolling the point of contact of a moving centrode with a
fixed centrode is the instantaneous center of velocities C corresponding to the given
time instant.

During planar motion the instantaneous center of velocities C moves in a plane
associated with the stationary system on a curve called the fixed centrode. The
trajectory of point C in a system rigidly connected to a moving body is called the
moving centrode. During motion the moving centrode rolls on the fixed centrode
without sliding. This observation is also known as the Poinsot theorem.

The approach based on the concept of the rolling of the moving centrode on a
fixed centrode often allows for a simpler equivalent interpretation of motion.

Let us consider the rolling without sliding of a disk placed between slats moving
in opposite directions with velocities v; and v, (Fig. 5.25).

We determine the position of the instantaneous center of velocities from the
equation OC = (vi — v3)/((v1 + v2) R), and the problem is equivalent to a rolling
of the moving centrode, i.e., circle of radius OC, on the fixed centrode, that is, on a
fixed horizontal straight line.
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Fig. 5.25 Rolling without .
sliding of a disk of radius R e

v'I
between two slats moving e
with velocities v; and v,
in opposite directions .
Al v 'B

v,

In order to obtain the velocity in the coordinates associated with the unit vectors
E; and E,, one should differentiate (5.57), which leads to the result

X14E1 + X04E> = x100E1 + X20Ex + Xi/A ( a) sing + Eza) Ccos QD)
+ x5, (~Ejwcos g — Ejwsin ). (5.73)
Multiplying (5.73) by sides one time by E; and the other time by E, we have
X14(t) = X10 — wx{ sing — wx}, cos g,

X24(1) = X207 + wx{ cos @ — wx), sing. (5.74)

—
Let us return to vector O’ A from Fig. 5.16. It can be expressed by the unit vectors
of both coordinate systems in the following way:

O A= x| ,E + x3,E, = x{,E] + x} ,EJ. (5.75)

In order to obtain the coordinates of this vector in the system OX{ X} (OX{ X}))
one should multiply (scalar product) the preceding equation in turn by E| and E}
(EY and EY). After that operation we obtain

T
I _ " 1 A 1 / i "

xi = x{,E{ o E| + x} ,E] El—xlAcosgo—i-xZAcos(E—f-qo),
r E// E/ + E//OE/ o Z_ +x

X4 =Xy X5y = x{ycos (5 —¢) + xz, cos g,
" — ¥ E oE "' E oE =y / T
Xig = Xl o By + x5 Ky ol = x4 cosg + x; 4 cos 57%)

Xy, = x1,E| oEJ + x},E) o E] = x|, cos (% + (p) + x5, cos g, (5.76)
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or, in matrix notation,

x! cos —sin x!
X5 sing  cosg | | x5,
X7y cosg  sing | [x],
v | = . - (5.78)
x5 —sing  cosg ] [ x5,

In both of the preceding cases the transformation is connected with the rotation
through angle ¢. Moreover, the sum of squares of the elements of any row or column
equals one, and the sum of products of elements of two rows or columns equals
zero. We call such a linear transformation an orthogonal transformation [3]. The
determinant of both matrices is equal to one (if the determinant yielded —1, it would
indicate rotation accompanied by the mirror reflection [3]).

The transformations described by (5.55) and (5.56) are also orthogonal and
indicate rotation through angle ¢.

The interpretation of vector (5.64) is as follows. The velocity of an arbitrary point
A is composed of the velocity of translational motion of the system O’X|X) and
the rotational motion of that system about the axis perpendicular to the drawing’s
plane and passing through point O’. On that axis lies the vector ® = ¢. The
velocity vector v 40/ coming from the motion of point A with respect to point O’ is
perpendicular to line segment O’ A.

Using (5.77), (5.74) can be represented as

X14(1) = X10/ — 0(x{y sing + x3, cos p)
= X10/ — WXy = X100 — ©(X24 — X207),
$24(1) = 207 + w(x] cOs @ — x} sing)
= X20’ + a)xiA = Xp0/ + 0(xX14 — X107), (5.79)
and these are the components of the velocity of point A in the absolute system
0X,X,X;, ie,
vy = X14E1 + X24Es. (5.80)
On the other hand, in one case multiplying the first equation of (5.74) by cos ¢
and the second by sin ¢ and adding by sides, and in the other case the first by sin ¢
and the second by — cos ¢ and adding by sides, we respectively obtain
X14COSQ + X4 8iNQ = X107 COSY + Xa07 siNg — wXY
X148INQ — X24 COSQ = X1/ SN — X0/ COSQ — WX . (5.81)
Multiplying the second equation through by (—1) and using (5.78) we obtain

the components of velocity of point A in the non-stationary coordinate system
nynvyl!y!.
0" XX} X3
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Fig. 5.26 Determination
of acceleration of point A

(
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X7y = X107 cos @ + X207 Sing — wx3,,

Xy, = X207 cOS @ — X107 8in @ + wxyy, (5.82)
that is,
va = &/, E + 2 EL. (5.83)

Let us introduce one of the physical interpretations of an absolute system and
a system rigidly connected to the moving body. The system O” X' X} X} moving
with the body does not move with respect to that body. If we associate such a system
with a spacecraft, then with respect to an astronaut the points inside the spacecraft
do not move because vector p does not change its position. The velocity vector
of point A in the system O” X[ X)X} is described by (5.83), and the acceleration
vector will be determined in the following section.

5.2.4 Accelerations and Center of Acceleration

In a similar way we can determine the acceleration of point A. In this case we will
relate our considerations to the hodograph of velocity (Fig. 5.26).
Differentiating (5.64) with respect to time, we obtain

AU=Va=Vo+@Xp+oXxpy, (5.84)

In the general case, apr = Vo can have an arbitrary direction with respect
to vor because the motion of point O’ is, generally, not a rectilinear motion.
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If we are dealing with rectilinear motion, vectors aps and vy are parallel. The
vector a, = & x p,, where & = ® is the tangential acceleration vector resulting
from the rotation of point A about point O’, lies in the plane of the figure, and it is
perpendicularto O’ A (since vector @ has the same direction as vector @ ). According
to (5.64) and (5.65) we have

Py=® XPpy, (5.85)
and in view of that the last vector on the right-hand side of (5.84) can be expressed as
A =0XPp =0 X (@Xpy). (5.86)

Next we will use the law of vecror triple product expansion, i.e., for three non-
coplanar vectors we have a x (b x ¢) = (@ o c)b— (a o b)c.
Equation (5.86) assumes the form

A= @op)w—(@ow)py=—wp, (5.87)

because w o p 4 = 0 (it follows from vectors’ being perpendicular to each other).
From the preceding equation it follows that this component of the acceleration
of point A is directed along the radius p 4 toward point O’ and is called normal
acceleration (centripetal acceleration).
From the preceding considerations it follows that all three distinct vectors of
acceleration allow for the determination of the unknown acceleration of point 4
through their geometrical addition according to (5.84), i.e.,

ay = ap +a, + a,, (5.88)

where the tangential a, and normal a, accelerations result from the rotation of
point 4 about point O’.
. / / 2 . .
The magnitudes of the vectors |a,| = |O’A|e and |a,| = |0’ A|w?, so introducing
angle « as shown in Fig. 5.26 we have

a=ap +a,, (5.89)
where
—
a, = ‘O’A‘ Ve rol, X —tne=—. (5.90)
a, w

5.2.4.1 Instantaneous Center of Accelerations
Let us consider a plane figure (Fig. 5.27) and assume that we know the acceleration

ap of a certain point O of this figure, and additionally the figure has the velocity
® > 0 and acceleration & > 0. Let us introduce angle « such that

o = arctan — > 0, (5.91)
w
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Fig. 5.27 Determination
of instantaneous center
of accelerations

which means that o € [0, w/ 2]. We lay off angle « in accordance with the
sense of &.
On a ray going away from point O let us lay off the segment

0§ = 20 (5.92)

NIt

As a pole let us take point O, and because the acceleration of an arbitrary point
of a plane figure is a geometric sum of acceleration of a pole and the acceleration of
this point caused by its motion with respect to the pole, we have

as = ap +aps, (5.93)

where apg is in accordance with the sense of €. Our task is finding point S such that
its acceleration at the given time instant is equal to zero.

The acceleration following from the motion about pole O can be resolved into
two components:

aps = ajg + apy, (5.94)

and hence

aops = /(@hg)? + (ahg)> = OSVe? + w* = ao,

where (5.92) was taken into account. Additionally,

al OS¢ &
/ oS
ahe O0Sw?  ? e ©.95)

where (5.91) was taken into account. We have demonstrated that @ = «’. From the
preceding considerations it follows thataps = —ag, and in view of that, from (5.93)
we have ag = 0.
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Fig. 5.28 Accelerations
of points A, Ay, and A with
respect to S

Fig. 5.29 Instantaneous
center of accelerations S
and instantaneous center
of velocities C

If we choose as a pole the instantaneous center of accelerations found in the
described way, then we easily determine the acceleration of an arbitrary point with
respect to pole S, which is shown in Fig. 5.28.

From Fig.5.28 we have

as, =asa, = SAIVe? + v,
aq, = dsa, = SAr+/ 2 + w*,
ay = asg = SAVe? + w*. (5.96)

From (5.96) follow the relationships

ay, SA, ag SA
2 222 24 _ 9% 5.97
ay, SA1 ay, SA1 ( )

where o and € have the same senses.
We will show that the instantaneous center of velocities C and instantaneous
center of accelerations S are different points of a planar figure (Fig. 5.29).



5.2 Planar Motion 297

!(I!{féf 7

Fig. 5.30 Instantaneous center of velocities C and center of accelerations S of a disk

Let us choose an arbitrary point A of a plane figure and connect it by segments
CA and SA respectively with the center of velocities C and the center of accelera-
tions S. Point 4 at the given time instant has the velocity v and acceleration a. The
acceleration

a=a, +a, =al, +al,, (5.98)

and the components of the vector of acceleration are associated with the existence
of distinct points S and C.

5.2.4.2 Determination of Instantaneous Centers of Acceleration

There are three basic methods to determine the position of the instantaneous center
of accelerations:

I. The point of a planar figure whose accelaration € is at a certain time instant
equal to zero is known on the basis of the problem conditions.

A disk of radius R rolls without sliding along a straight line on a surface
[e.g., rolling of railway wheel on a rail with a constant velocity of the disk’s
center (Fig. 5.30)].

We have v = CSw = Rw, and hence w = % = const. If the center
of the disk moves uniformly with velocity v = const, then ag = 0, that is,
the geometric center of the disk is the instantaneous center of accelerations.
The acceleration of every point of the disk’s circumference is directed toward
point S and is equal to v?>/R. The instantaneous center of velocities C is
situated at the point of contact of the disk with the ground. Although its
instantaneous velocity is equal to zero, it has an acceleration of ac. In turn, the
instantaneous center of accelerations has an instantaneous acceleration equal to
zero but possesses velocity v.

II. The acceleration a of a point of a planar figure, as well as @ and €, is known
on the basis of the problem conditions.
Let us consider four cases connected with quantities @ and ¢.

(1) w # 0, & # 0. In this case, the instantaneous center of accelerations is
defined the angle o = arctan(e/w?), where the directed angle « is laid off
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Fig. 5.31 Position of instantaneous center of accelerations S in case of the same (a) and opposite
(b) senses of w and ¢

Fig. 5.32 Determination of center of accelerations S knowing a4, and a4,

from the point’s acceleration in accordance with the sense of ¢ and the
. T .
distance AS = Tora (Fig.5.31).

(i) @ # 0, & = 0. In this case, « = arctan(e/w?) = 0 and the accelerations
of all points of a planar figure are directed toward the instantaneous center
of accelerations, which lies at the distance AS = %

(iii) @ = 0, & # 0. Because tan(¢/w?) = oo, we have « = /2. The
accelerations of all points are perpendicularto AS.

(iv) w =0, ¢ = 0. The accelerations of all points of a figure are equal.

Ill. The magnitudes and directions of accelerations of two points Ay and A, of a
planar figure (Fig. 5.32) are known.
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We have

ay, = a4, + ay4,,

and at point A, we construct a parallelogram of sides a4, and a4, 4,. We
determine the angle ¢, and then in accordance with the sense of € we lay off the
directed angle « from vectors a4, and ay4,. Rays forming those angles intersect
at the desired point S

For accelerations of two points a4, and a4, parallel to one another, some
sketches leading to the determination of the instantaneous center of accelera-
tions are shown in Fig.5.33. In the case where a4, || a4,, ® # 0, ¢ # 0 the
senses of acceleration are the same (a) and opposite (b); tana = (ﬁ) = 00,
o = 0, & # 0, senses of accelerations the same (c) and opposite (d); ¢ = 0,
tano = (ﬁ) = 0,w # 0, e = 0, the senses of acceleration are the same
and vectors lie on one line (e) and the senses of acceleration are opposite and
vectors lie on one line (f); a4, = a4,, 415 = oo (g).

Theorem 5.5. If during the planar motion of a planar figure at least one of the
quantities ® = @, € = @ at a given time instant is different than zero, then there
exists at this time instant point S belonging to the plane of motion such that its
acceleration ag = 0.

Proof. Our task is finding such a point S that ag = 0. The position of this point can
—>
be described by the radius vector O’S. From (5.84) we have

— —
a=0=ap +ex0'S+wx(wx0'S),

that is,
— T
ap+ex0'S —w?’0'S =0. *)
Because
. |B E E ) )
ex0'S=10 0 ¢ |=-Eg¢xi+Edxi,

’ / ’
Xis *2s X3
the equation (*) takes the form
. . . . 2 2
0 = X10'E| + %20 By — ¢x)gE| + ¢x|E) — 0’x| (E] — 0 X} E).

Multiplying the preceding equations successively through E| and E) we obtain
the following algebraic equations:

. o~/ <2/
X107 = X5 + @7 X5,
. o/ -2
X200 = —@X|5 + ¢ X5,

which allow for the determination of the position of point S, which proves its
existence.



300 5 Kinematics of a Rigid Body and Composite Motion of a Point

Fig. 5.33 Determination of instantaneous center of accelerations

Solving the aforementioned system of equations we obtain

1
’ _ D e _ . ,
Xisg = m(w X10r — €X207),
1
r_ . 2.
Xy = m(é‘xlo/ +w X20/), (5.99)
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Fig. 5.34 Motion of a planar figure and non-stationary O’ X{ X, and stationary OX; X, coordinate
systems

which allows for introduction of the following vector describing the position of the
center of accelerations S':

52 1 2
o'S = 82+—w4(a) apr + € xap/). (5.100)
O

5.2.5 Equations of Moving and Fixed Centrodes

We will show how to determine analytically equations of moving and fixed

centrodes. For the purpose of observing the motion of a plane figure in its plane we

introduce the stationary OX;X, and non-stationary O’X{X, Cartesian coordinate

system, where point O’ is an arbitrary point (the pole) of a planar figure (Fig. 5.34).
The velocity of an arbitrary point A of a planar figure reads

V4 =Vo +®Xr, (5.101)

where v is the velocity of the pole O'(x107, X207), @ is the angular velocity of a

-
planar figure, and r = O’ A.
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We will express the velocity vector @ X r in a stationary system, that is,

E1 E2 E3
W XT = 0 0 w
X1 —Xx10r  Xp—Xx20r O

= —Ejo(x2 — x20/) + E2o0(x1 — x107), (5.102)

and from (5.101) we obtain
Vax, = Vorx, — ©(X2 — X207),
Vax, = Vorx, — 0(X1 — X107). (5.103)

The velocities of the desired instantaneous center of velocities C are equal to
Vex, = Vex, = 0, and

Vory, — @(X2c — X207) = X100 — w(x2c — X207) =0,
Vorx, + w(xic — X107) = X200 + w(x1c — x107) = 0. (5.104)

From the preceding equations we determine the desired coordinates of the
instantaneous center of velocities

1.
Xic = X107 — —X20/,
1)

1
Xoc = X0’ + 5)'610/. (5.105)

Equations (5.105) are called equations of a fixed centrode in parametric form in
a stationary system.
The velocity of point A is equal to

Ei=voyEl +vonEx+ 1] 0 0 w

x{ X0
=voyEl +vor,Er — Elox) + Ejwx]. (5.106)

We will multiply (scalar product) (5.106) by E/ and E’, obtaining
VAx) = Vory cos(E1, EY) + vory, cos(Ez, E)) — wx7,
Vaxy = vorx, cos(Er, Ey) + vory, cos(Ey, EY) 4 oxy, (5.107)
or
VAx] = V0rx COSQ + vory, sing — wxy,

VAxy = —Vorx SiNQ + vory, c0s g + wxy. (5.108)
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The desired coordinates of the instantaneous center of velocities in a non-
stationary system of coordinates are described by the equations

X107 COS ¢ + X207 Sing — WXy =0,
—X107 8in@ + X207 cos ¢ + wx|c = 0, (5.109)
from which we determine

1
" . .
Xl = Z(XIO/ sin g — X207 cos @),

1
Xje = —(10/€0s ¢ + %207 sing). (5.110)

The preceding equations are called equations of a moving centrode in parametric
form in a non-stationary coordinate system.

5.2.6 Vector Methods in the Kinematics of Planar Motion

5.2.6.1 Velocities

The computations conducted earlier regarding the planar motion of a rigid body lead
to the following three principal conclusions:

1. The projections of velocities of any two points of a rigid body onto the line
joining these points are equal.

2. Atan arbitrary time instant the planar motion of a rigid body can be treated as the
instantaneous rotation of that body about a point called an instantaneous center
of rotation.

3. At an arbitrary time instant the planar motion of a rigid body can be treated as
motion composed of the translational motion of an arbitrary point of the body
(the pole) and the body’s rotational motion about that point.

As we showed in Sect.5.2.1 the figure marked by a hatching line in Fig.5.12
moves in translational motion in the plane I'. In Fig.5.17 it is shown how to
determine the position of the instantaneous center of rotation at the given time
instant ¢. Let us note that the instantaneous centers of rotation in the stationary
OX,X,X, and non-stationary O” X[ X)X} coordinate systems are coincident;
however, the set of instantaneous positions of centers of rotation in the plane OX ;| X,
(stationary plane) forms a continuous curve called a space centrode, whereas the set
of instantaneous positions of centers of rotation in the plane OX| X} (moving plane)
forms a curve called a body centrode.

It follows that the planar motion of a rigid body can be represented as rolling
without sliding of the body centrode on the space centrode. If the plane I" is moving,
the aforementioned centrodes refer to the relative motion measured with respect to
the stationary plane [.
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Fig. 5.35 Determination of velocity v4, knowing v4, and direction of v 4,

It is worth emphasizing that because the instantaneous motion of the planar
figure (planar motion of a rigid body) is described by the motion of a pole (two
coordinates) and the rotation about the pole, the number of parameters (scalar
quantities) needed for the complete description of the planar motion of a rigid body
is equal to three (i.e., it is equal to the number of degrees of freedom of the rigid
body).

We will show using two examples, which follow from previous discussions in
this chapter, how to determine the velocities of arbitrary points of a planar figure,
that is, the points of a rigid body in planar motion.

(i) Projection of velocities of two points of a planar figure onto the line joining
these points

Let the velocity vy4, and the direction of the velocity of point A, be given
(Fig.5.35a). By Theorem 5.1 we find the projection of vector v4, onto line A4; A4,
and attach the obtained vector v}y at point A, (Fig.5.35b). The line perpendicular
to line Ay A, and passing through the tip of vector v intersects the line, which
determines the direction of the unknown vector v 4, and passes through point A4, at
the point that is its tip.

On the other hand (see proof of Theorem 5.4), we have

VA, = V4, + @ X A2A4;, (5.111)
that is,
Vi, = Va4, + Va4, (5.112)
where
—
Va4 = @ X A2A1 (5113)

and v 4,4, denotes the relative velocity of point A; with respect to A,. According to
Theorem 5.1 we have V:;z = Vzl. Therefore,

Via =V, —Vy, =0. (5.114)
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Fig. 5.36 Determination of
velocity of an arbitrary point
Ajz if vy, and v4, are known
(case 1)

If VLAI is the projection of v 4,4, onto line A4, we have v4,4, L A2A4;, which
also follows from the interpretation of the vector product given by (5.113).

We will now show how to determine the velocity of an arbitrary point Aj if
the velocities of two points v4, and v4, are known (the latter was determined in
Fig.5.35). We draw the lines through points A; and A3 and through A, and Aj
(Fig.5.36). Next, we project the velocity v4, (v4,) onto direction A;A3 (A243).
We move the obtained projections v} and v} along the mentioned directions
to point A3. Then we draw perpendicular lines from the tips of both vectors v}
and v},. The point of intersection of the lines determines the tip of the unknown
Vector v 4,.

(ii) Geometric sum of motion of a pole and the rotation about that pole

Let point A; of velocity v4, be a pole, and let the direction of the velocity of
point A, be given (Fig. 5.37).

The velocity of point A, is determined by (5.112), where v4, denotes the velocity
of pole A; and v 4, 4, denotes the velocity resulting from the rotation of point A, with
respect to A;. Equation (5.112) can be written in the form

Vay = Yay + Vaors (5.115)
where the double underline denotes that knowledge about the vector is complete,
while the single underline indicates that only the vector’s direction is known.
Vector (5.115) allows us to determine the magnitude of vector v4,. As can be seen
in Fig. 5.37a, vector v4, is moved to point A,. Then through its tip we draw a line
perpendicular to A; A», which intersects the known direction of vector v4, at the
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Fig. 5.37 Successive determination of velocities of points A, and A3 (case ii)

point that constitutes the tip of the unknown vector vy4,. It can be seen that the
presented vectors satisfy vector (5.115). Because we now know the velocities of
two points of the plane figure v4, and v4,, we are able to determine the velocity of
an arbitrary point A3 of that figure not lying on line A; A, from the following vector
equations

Vs = V4, + Va4,

Vay = Vay + Vs, (5.116)

which leads to a single vector equation
E+VA3A1 :&+VA3A2. (5.117)

This equation enables us to find the solution because we have two unknowns.
It becomes clear after introduction of the plane Cartesian coordinate system and
projection of (5.112) onto its axes. As a result we obtain two algebraic equations
with two unknowns.

Figure 5.37b shows a geometrical construction leading to the solution of (5.117).
We attach vectors v4, and v4, at point A3, and through their tips we draw lines
perpendicular to A A3 and A, A3, respectively. Their intersection point determines
the magnitude and sense of vector v 4;.

The method to determine the velocity vy, if point Az lies on line A;A; is
presented in Fig. 5.38.

While the velocity v4, was being determined, vector v4, 4, was also determined,
which allows also for the determination of v4,4,. Now, moving vector vy4, to
point A3 we determine the unknown velocity v 4, from the parallelogram law.

(iii) The center of velocity

Making an assumption similar to that in previous cases — that we know the
velocity of point A; and the direction of the velocity at point A,. From this we
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Fig. 5.38 Determination of
velocity of point A3 lying on
line A; A, (case ii)

Fig. 5.39 Determination of
an instantaneous center of
velocity (case iii) and the
velocity of an arbitrary
point A3

will determine velocity vector v4,. The perpendicular lines drawn through the
tails of velocity vectors v,4, and v4, determine at their point of intersection the
instantaneous center of velocity C (Fig.5.39).

Connecting the tips of vectors v4, and v, with point C we determine the angle
o = wt, where @ = w = const. Because

tano; = vi = w
1 CA, ,
tana, = 222 = @, (5.118)

CA,
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Fig. 5.40 Determination of
velocity v, with the aid of
the method of rotated
velocities (case iii)

AA, || KA,

we have oy = ap = «. If we want to determine the velocity of an arbitrary point
As, we lay off a directed angle « from segment C A3, and the point of intersection
of the line perpendicular to CAs (at point A3) with the ray formed after rotation of
segment C A3 through angle o determines the tip of vector v 4.

It is convenient to use a certain version of that method called the method of
rotated velocities, presented in Fig. 5.40.

We join point 4; with A,. We rotate the known velocity v,4, through the angle
/2 in the direction of the instantaneous rotation obtaining the velocity vjl. Line
AT A5 is the set of tips of the rotated velocity vectors whose tails lie on lines 4; A4,
and 414> || ATA3. In order to determine v4, we can proceed in the following
way. We rotate vector v4, through the angle /2 and draw a line parallel to 4; A
passing through A7. Its intersection with the line perpendicular to the direction of
the velocity vy, allows for the determination of A3, that is, the determination of
vjz. The rotation of that vector through the angle /2 opposite to the direction of
the instantaneous rotation leads to the determination of vector v 4, (this construction
does not require determination of point C).

Finally, we show how to determine the velocity of an arbitrary point A3 using
the method of rotated velocities (Fig. 5.41). To this end we rotate in the previously
described way velocities v4, and v4, obtaining v and v .

We draw lines A A3 and A, A3. Through the tip of Vzl we draw a line parallel to
A1 Az and through the tip of v}, a line parallel to A, A3. Their point of intersection
determines the tip of the vector VZ}, which after rotation becomes the desired
VeCtor V4.



5.2 Planar Motion 309

Fig. 5.41 Determination of
velocity of point A3 with the
aid of the method of rotated

velocities (case iii)

Fig. 5.42 Velocities of three
points A;, i =1,2,3,
instantaneous center of
velocity C, and AA; A, A3

(iv) Burmester theorem (velocity diagram)

In Fig. 5.42, three arbitrary points of a planar figure have been chosen, and their
velocity vectors are marked (from the previous computations it follows that they
cannot be drawn arbitrarily).

In order to construct a velocity diagram we take an arbitrary pole C* to which
we move the (sliding) vectors v4,, v4,, and v 4,, as shown in Fig. 5.43.
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Fig. 5.43 Velocity diagram (case iv)

S YL YL YL
From the construction it follows that C*AT = v4,, C* A5 = v4,,and C*4] =

— —— —
V4,. This means that vectors C*A}, C*A5, and C*A7 shown in the velocity
diagram are perpendicular respectively to lines CA;, CA,, and CAs in Fig.5.42.
The marked figure (in the present case a triangle A} A5 A}) in Fig. 5.43 is similar
to the figure (triangle) A; A> A3 (Fig. 5.42) and rotated with respect to it through the
angle 7r/2 in the direction of the instantaneous rotation.

From the velocity diagram it follows that

C*A* + ATAF = C* AL,

C*A; + A5 A5 = C* A7, (5.119)
which after returning to the velocity interpretation means

—_—

* g%
Va, —Va, = ATA; =V,
P
Va3 — V4, = A1A3 = Vas4,, (5120)

where V4,4, (V4,4,) denotes the relative velocity of point A, (A3) with respect to
A (Ar).
These observations can be formally stated as the following theorem.

Burmester Theorem

A figure obtained as a result of connecting the tips of vectors of a velocity diagram
of points of a rigid body moving in planar motion is similar to a figure determined
by those points of the body and rotated with respect to the second figure through an
angle 1 /2 in the direction of instantaneous rotation of the body.

5.2.6.2 Accelerations

The calculations conducted in the previous section can be extended to an analysis of
accelerations of a rigid body in planar motion. We will take up cases involving the
determination of accelerations of the points of a rigid body relying on three methods:
the method of geometric composition of accelerations of a pole’s translational
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motion and the rotational motion about that pole (Sect.5.2.1), the method of
instantaneous center of acceleration, and the method of similarity (acceleration
diagram).

(i) Geometrical composition of translational and rotational motion

Let the acceleration a4, of point A; (the pole; previously point O’ played this role)
be given. Our aim will be to determine the acceleration of point A, in the considered
time instant. According to (5.115) we have

ay, = ay +agy, (5.121)

where a4, = a" denotes the acceleration resulting from the rotation of point A,
with respect to point A;. According to (5.88) this acceleration has two components,
i.e., it is a sum of two vectors

g4 =, +al . (5.122)

Because the distance [A;A;| is known, the acceleration a’ , is completely

—
known (double underline). Its sense is determined by vector A, A, and its mag-
nitude is equal to

n VAr A
a4, ‘A_>2A‘ ) (5.123)
241

The acceleration afqz 4, 1s known only as to the direction because this vector is
—
attached at point A, and perpendicular to A, A,. The total acceleration of point A,
is equal to

ay, =y, +al, . (5.124)

If, according to the assumption, the radius of curvature of the path of point A4, is
known, let it be equal to | A, (3|, the magnitude of the normal acceleration

0w _ Vo
ay, = —7- (5.125)

b

and its sense and direction be in agreement with those of the vector A23 (it passes
through point A,). Taking into account the preceding considerations, (5.121) will
assume the form

aly, +aly, =ay +a,, +al,. (5.126)

This equation contains two unknowns and leads to their determination.
Figure 5.44 the construction leading to the determination of the acceleration of
point A, on the assumptions introduced earlier is presented.
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b

Fig. 5.44 Determination of acceleration of point A, (method i)

First we determine the accelerations a’y, , and a’y, (Fig. 5.44a). Next we attach
vector a4, at point A, (Fig.5.44b) and add to it vector a’ , . Then from its tip we
draw a perpendicular line on which lies vector atA2 4,- On the other hand, at point A,
we attach vector a’y , and from its tip we draw a perpendicular line that intersects
the direction of atA2 4, at the point representing the tip of vector a4, .

(i1) Method of instantaneous center of accelerations

Let us assume (cf. the final considerations of Sect. 5.2.1) that the acceleration of an
arbitrary point A belonging to a figure in planar motion is equal to

ay = ‘.’A, (5127)

where v 4 is the velocity of point A. If point A moves along a curvilinear path, then

a, =a, +al, (5.128)
where
2
n Va t dvy ‘?)
ay = —5-, ay=—— =¢|A0]. (5.129)
‘m) dr

i irecti i wi
The normal acceleration a’y has a direction and sense in agreement with those of

vector m The tangential acceleration a’, has a direction tangent to the path.

As was shown earlier, the acceleration a4 forms the angle o with the radius of
curvature, and the value of the angle is given by (5.90), i.e., tana = 2—; = ﬁ, which
is illustrated in Fig. 5.45.

In planar motion angular velocity @, angular acceleration &, and angle o, shown
in Fig.5.45, do not depend on the choice of pole. In particular cases, as poles we
can choose the instantaneous centers of velocity and acceleration. The origin of the
radius of curvature (point O) determines the instantaneous center of acceleration, a
notion that is analogous to the instantaneous center of velocity introduced earlier.
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Fig. 5.45 Path of point 4,
radius of curvature, and
acceleration a4 with its two
components

Recall that the center of velocity is a point where the velocity is equal to zero,
and the velocity of an arbitrary point A belonging to the plane I" follows from the
purely rotational motion and its magnitude is given by v4 = wOA. At a given time
instant the path of point A is approximated by the arc of a circle of radius OA, where

A\ ﬁ at point A, and its sense is defined by the sense of .

Let us also assume that in order to determine the instantaneous center of velocity,
it suffices to know the directions of velocities v4, and v4, at arbitrary points
A and A, (see case iii in Sect.5.2.6.1). The point of intersection of the lines
perpendicular to the directions of v4, and v, at points A; and A, determines the
desired instantaneous center of velocity C.

Although the velocity of a point is always tangent to its path (there is no notion
of normal velocity), the acceleration (except for translational motion) possesses a
normal component, which is why a4 is not tangent to the path, and its position with
respect to the radius of curvature is defined by angle «.

From the foregoing discussion it follows that the instantaneous center of rotation
and the instantaneous center of acceleration can coincide only in special cases. At
a given time instant the planar motion of a body can be treated as an instantaneous
rotational motion, as described in Sect. 5.1.4. At another time instant the position of
the aforementioned center will change.

We will now show how to determine the instantaneous center of acceleration
based on our knowledge of the accelerations of two arbitrary pointsa,, and a4,. The
problem boils down to the determination of angle « formed by these accelerations
with the direction of the path’s radius of curvature (Fig. 5.45).

Figure 5.46 shows how to graphically determine angle « (if ¢ o @ < 0, then we
lay off angle « in the opposite direction).

Let us take point A; as a pole. The acceleration of point A, with respect to A4,
can be expressed by the vector equation

ay, = ay, +agy, (5.130)

which allows for the determination of a4, 4, (Fig.5.46a). An arbitrary point of a
planar figure can be taken as a pole because in planar motion the angular velocity w
and the angular acceleration e do not depend on the chosen pole.

Figure 5.45 provides the following information. Pole O at the given instant
remains at rest in the position indicated in the figure. The acceleration of point A
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Fig. 5.46 Determination of a center of acceleration (case ii)

with respect to the stationary point O forms angle o with radius OA. The
acceleration a4, 4, denotes the acceleration of point A, with respect to A;, which
by analogy leads to the determination of angle « formed between line A; A, and the
direction of vector ay,4, (Fig.5.46a). Next (Fig.5.46b) we draw the lines passing
through points A; and A, and forming angle o with, respectively, a4, and ay4,, and
their point of intersection is the desired center of acceleration.

(iii) Method of similarity

By analogy to the velocity diagram (Figs. 5.42 and 5.43) it is possible to build
an acceleration diagram whose construction is based on the similarity principle. At
the arbitrary point P* (the pole) we attach the acceleration vectors a,, (we will
skip here a drawing of an acceleration diagram), and joining their tips we obtain
the triangle AA}ASA%. At points A;, i = 1,2,3, one should draw vectors ay,,
which form angles o with segments PA;, and point P denotes the instantaneous
center of acceleration. Attaching those vectors at an arbitrary pole P* their tips will
form the triangle AAT A5 A}, which is similar to AA4; A» A3 and rotated with respect
to it through the angle m — « (and with respect to the velocity diagram through
angle Z — «) in agreement with the sense of @.

2
The proof of all the discussed principles of similarity is left to the reader.

Example 5.2. The beam AD (Fig.5.47) moves in planar motion and is in con-
tinuous contact with points A and B, and its end A has the horizontal velocity
v4 = const. Determine the positions of instantaneous centers of velocity and
acceleration during the motion of the beam. Determine also the values of angular
velocity w and angular acceleration ¢ of the beam.

Point B does not undergo rotation with respect to point A since it belongs to the
rigid body (the beam). In view of that the velocity vp is directed along the beam.
Drawing lines perpendicular to the velocities v4 and vy passing through points A
and B, we will obtain point C as it is the instantaneous center of velocity. Because
by assumption v4 = const, we have a4 = 0, and point A is the instantaneous center
of acceleration.
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Fig. 5.47 Planar motion
of a beam

0 B NS \Ve -
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Let OA = x(t) = vat (fort = 0 we have OA = 0), and let OB = h. The
angles denoted in the figure are equal, and we calculate successively

AB = Vh? 4+ X2,
AB
BC’

AC = \/(AB)2 + (BC)2,

h
tanf = — =
X

hence

BC = ~/i? + 22,

h
o [x2R2+ X2  R2(R? +x?) R4 X
AC = \/ e + 0 = W

The beam is in the instantaneous rotational motion about point C with the angular
velocity

VA _ hVA
AC W2+ x2

The angular acceleration of the beam is equal to

d 2xX 2m3 ¢
=0 =hv—"h+x>)""=—h =— 4,
)= =hvag (F+x9 M T T ()

and because ¢ > 0, the sense of ¢ is opposite to the sense of @.
The velocity and acceleration of point B of the beam are equal to vp = wCB
and ap = ¢AB. O
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5.3 Composite Motion of a Point in a Three-Dimensional
Space

We will call such a motion where the point (body) is simultaneously involved in
several motions the composite motion of a material point or a rigid body. Apart
from its own motion, a ship that crosses a river takes part in the motion of the river.
A man who moves on the ship, apart from his own motion, is involved in the motion
of the ship and the motion of the river. A similar situation occurs, for instance,
during a person’s motion in a moving elevator or airplane.

In many applications, especially in the case of the motion of spacecraft, there
exists a need to conduct a kinematic analysis of a particle with respect to two
coordinate systems (see, e.g., [4—11]). In the course of our calculations we have
also introduced such coordinate systems: OX,X,X, (absolute) and O” X[ X/ XY
(rigidly connected to a moving body). In the latter case the position of point A was
determined by the radius vector p, where |p| = const, which means that point A did
not move with respect to 0" X{' X} X}.

We will now analyze the case where point A moves with respect to O” X' X5 X7,
and in turn O”X{ X5 XY moves with respect to OX,X,X,, but in a certain
prescribed way (e.g., the motion of a spacecraft is prescribed), i.e., the motion of
point O” and the position of the axes O”X| X)X} with respect to the axes of

the absolute coordinate system OX,X,X, are completely known (Fig.5.48). We
—

will denote vector O A describing the position of point A in the coordinate system
0" X[ Xy X} by p and in the coordinate system OX;X,X3 by vectorr =r4 —r /.

The motion of point A with respect to the system OX, X, X is called the com-
posite motion (absolute motion); the motion of point A with respect to the system
0" X[ X)X} is called the relative motion, whereas the motion of the 0" X{' X7 XY

with respect to the system OX, X, X is called the motion of transportation.

ol

i : X3
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Fig. 5.48 Composite motion
of point A in a
three-dimensional space X
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Similar terminology is associated with velocity (and acceleration): absolute,
relative, and transportation.

Our aim is to determine the relationships between the displacements, velocities,
and accelerations of point A in the systems OX,X,X; and O”X{ X} X}. The
velocity (acceleration) of transportation of point A is the velocity (acceleration) of
such a point A” not moving with respect to the system O” X[ X)X} (i.e., the point
and the system are rigidly connected), which at a given time instant is coincident
with point A.

To the definitions introduced above we will give a physical meaning. Let a man
be moving on a certain revolving platform. The coordinate system rigidly connected
to the platform is called a non-stationary system, and the system associated with
Earth is called a stationary system. The motion of the platform is the motion of
transportation, the motion of the man with respect to the platform is called the
relative motion, and the motion of the man with respect to Earth is called the
absolute motion. The velocity (acceleration) of point C, which is associated with
the platform at which the mass center of the man is situated at a given time instant,
is called the velocity of transportation (acceleration of transportation) of the mass
center of the man.

The analysis of composite motion relies on the determination of relations
between velocities and accelerations of relative, transportation, and absolute motion.

A change in the radius vector ry (Fig.5.48) or coordinates Xxj4, X24, X34
describes the composite motion of a point. A change in the radius vector p or
coordinates x{,, x4, x}, describes the relative motion of point A, and a change in
the radius vector ro/, that is, of coordinates of the pole xo/, X207, X3¢/, describes
the absolute motion of pole O’.

From Fig. 5.48 it follows that

rqy=ro +r. (5.131)
—
In turn, the vector O’ A is expressed in the system OX| X, X3 as
r=A(t)p, (5.132)

where matrix A is the matrix of transformation from the system O”X{' X7 X! to
OXX,X35. As will be shown further, it can be expressed by three independent
angles called the Euler angles, which in our case would be prescribed functions
of time.

An absolute velocity of point A in the system OX;X,X3 is obtained through
differentiation of (5.131) with respect to time:

V4 =Ty =To +T. (5.133)
Differentiating (5.132) we have
F=Ap+Ap=AA"r+Ap. (5.134)
In turn, we have (to be demonstrated later)

AA " 'r=w xr, (5.135)
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and finally
V4A=Vo +®Xr+ Ap, (5.136)

where vor = For.
Eventually, the absolute velocity of point A (in the system OX;X,X3) has the
form

, .
V4=V, +V,,

(5.137)
Va4 = \/(V’A)z + (V)2 + 20,V cos(V!y, V).

Velocity v/, = Ap is called the relative velocity of point A and is expressed in
the system O” X{' X7 X{. In turn, vector v, = vo/ 4+ X r defines the transportation
velocity of point A.

In order to obtain the absolute acceleration of point A one should differenti-
ate (5.136) with respect to time, and hence

AU=Vi=Vo +@XTr+oXi+Ap+Ap
=ao/+exr+wx(wxr+Ap)+Ap+Ab, (5.138)

where agr = vor = Fop/, ® = & and during transformations, (5.134) and (5.135)
were used. Then the term

Ap=AA"'Ap = @ x Ap, (5.139)

where during transformations we used relation (5.135).
Taking into account (5.139), (5.138) takes the form

ag=ap +exr+ox(®xr)+ 20 xv,+ Ap
=a, +a/, +af, (5.140)

wherea, = ap/ + &€ Xr+ @ X (@ x 1), a5 =20 x v, a’, = Ap.

The acceleration of transportation of point A is the acceleration of a point A”
rigidly connected to the system O” X[ X} X! with respect to the system OX,X> X3,
which at the given instant coincides with point A moving with respect to the system
O"X!X)X].

The relative acceleration of the analyzed point a’; is the acceleration of point A
measured with respect to the non-stationary system O” X{' X}/ X} .

The acceleration ag is called the Coriolis acceleration." The emergence of this
acceleration results from two aspects, which can be traced during the derivation
of (5.140).

!Gaspard—Gustave de Coriolis (1792—1843), French physicist and mathematician working at Ecole
Polytechnique in Paris.
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Fig. 5.49 Illustration of
causes of emergence of
Coriolis acceleration

The vector v/, rotates with respect to the system OX;X,X3 as a result of the
rotation of the system O” X' X X with velocity @ and yields the acceleration %ag.
Moreover, the position of point A in the system O” X X)X} undergoes change,
which leads to a change in the transportation velocity. This leads to the emergence
of the acceleration %ag.

In the case of translational motion of transportation we have ® = 0, ¢ = 0, and

then the Coriolis acceleration
a§ =2(w x V) =0. (5.141)

The component of the vector of absolute acceleration of a point in composite mo-
tion, which is equal to a doubled vector product of angular velocity of transportation
® and the relative velocity of the point v/, is called the Coriolis acceleration (return
acceleration).

We will present certain characteristics of the Coriolis acceleration using the
example of a circular platform (disk) on which a person moves along a radius
(Fig.5.49).

If the person (point A) moves uniformly along the radius of a uniformly rotating
circular platform, then her relative velocity is the velocity v", and her velocity of
transportation V' is the velocity of the point of the platform where the person is at
the moment. At time instant ¢ let the person be at point 4, and at time instant f 4+ Az
let her be at point A.. Because the relative motion is uniform and rectilinear, we
have a” = 0. However, in the time interval A¢, the velocity v'' changes direction to
v/, as a result of platform rotation (motion of transportation).

In this time interval Az a change in the magnitude of velocity of transportation
also occurs from a value of v/ = w - OA to V), = w - OA, because during time At
the person moved from point A to A.. Those two changes in velocities v" and v’
during time At caused the emergence of the Coriolis acceleration of magnitude

a® = 2wV sin(w,v"). (5.142)

From the given example it follows that the Coriolis acceleration is associated
with the following changes:

1. The magnitude and direction of the velocity of transportation of the point as a
result of its relative motion.

2. The direction of the relative velocity of the point as a result of the rotational
motion of transportation.
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Fig. 5.50 Determination of
direction and sense of a¢

According to (5.142) the Coriolis acceleration is equal to zero in three cases:

1. ® = 0, which takes place in the case of translational motion of transportation or
at time instants where @ = 0 during non-translational motion.

2. v' = 0, which occurs in the case of a relative state of rest of the point or at time
instants where v = 0 during the relative motion of the point.

3. sin(w, v") = 0, which takes place when the angle between vectors @ and v” is
equalto O or 7.

We will show how to determine in practice the direction and sense of the Coriolis
acceleration (Fig. 5.50).

In order to determine the direction and sense of the Coriolis acceleration one
should project the relative velocity of point v" onto the plane /7 | ® and then rotate
vector v/, through 90° according to the sense of . If vV | @, then p© = 2wv".

Example 5.3. A rectangular plate rotates with a constant velocity w = const about
axis OX; (Fig.5.51). Point A moves on the plate along a circle (Fig.5.51a) and
ellipse (Fig.5.51b).

Determine the absolute acceleration of point A when:

(a) The axis of plate rotation OX3 lies in its plane, the center of the circle O’ =
0’ (x207, X30), and the point motion along the arc of the circle is governed by
the equation s = ApA = %npAt3, where Ap = A(tp) (Fig.5.51a);

(b) The axis of plate rotation OX3 is perpendicular to its plane, and the motion
of point A on the plate is described by the equations x| = a; cosat; xj =
ap sinat (Fig.5.51b).

In the considered case (Fig.5.51a) the relative velocity v/, = p/, = %npAtz.
The relative tangent acceleration of point A is a’;, = mp4t, whereas the relative
)

normal acceleration has a value of a};, = —*= = 17%pat*. The transportation
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b X, A

Q5

X,

Fig. 5.51 Composite motion of a point A4 in three-dimensional space

acceleration of point A is 8’y = @ x (@ X p,), i.e.,a,, = a',, = ©?p4(2 + sing),
where ¢ = piA = énﬁ, ¢ = ¥ (Ap0’A). The Coriolis acceleration of point A4 is
a% = 20 x v/, and hence

. b
a§ = 2wv'; sin (5 + (p)
= 2wV cos @ = 2wV, cos (%t?’).

The projections of acceleration vector a4 onto the axes of the coordinate system
are equal to

b4
gy, = _aﬁ = —Nw/OAZZ cos (€l3),

agy, = —aly —a’y, sing + a’y, cosp = —w’py [2 + sin (%P)}

1
— erszt“ sin (%13) + mp4t cos (%f’),

. (T 1 b4
agy, = —a)y, sing —a’y, cosp = —mpyt sin (Et3) - erszt“ cos (313),

and acceleration vector a4 is described by the equation

ay = agy Ei +a4,E + a4, Es.



322 5 Kinematics of a Rigid Body and Composite Motion of a Point

In the case of Fig. 5.51b, we have
ro- = Eix10/ + Exx20/,

where x19/ = const and x,p, = const. The position of point A is governed by the
following equation:

rqy —ro- = Eja; cosat + Eya, sinat,

and because @ = const, we have ¢ = 0.
The successive terms of (5.140) have the following form:

apr = afo, = —a)z(xlo/El +x20Ey), expy =0, wXx(wxpy = —a)sz,
that is,

a, = —a)z(xlo/El + x20'Es) — a)z(Elal cosat + Eqa; sinat)

= —w*(a; cosat + x10/)E; — w*(az sinat + x20/)E,.
The relative acceleration of point A is equal to
a, = —a,0’°E cosat — aro’Ey sinat,

and its Coriolis acceleration reads

Ei EE;
a=20xp=2(0 0 o|=-2E0i)+2Eo0x]
X0

= 2a,waE; cosat — 2a,waE; sinat.
Finally, the absolute acceleration of point A is given by

ay = [—(a)2 + az)al cosat + 2ajwa sinat|E,

+ [—(oz2 + a)z)az sinat — Xay®> + 2arwa cos at]E;. O

5.4 Composite Planar Motion of a Point

This problem is a special case of the composite motion in three-dimensional space,
but since it is very important in a discussion of the kinematics of plane mechanisms,
we will devote some attention to it. Moreover, we apply here a method of analysis
different than that described in Sect. 5.3.
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Fig. 5.52 Composite planar
motion of point A

The composite planar motion of point A is depicted in Fig.5.52, where now,
as distinct from the analysis of the case presented in Figs. 5.18 (velocity) and 5.26
(acceleration), point A moves with respect to the non-stationary coordinate system
O//X{/Xé/.

In this case, the plane OX X is stationary (unmovable). The motion of point A
with respect to the plane OX X, is called the composite planar motion, and the
motion of the point with respect to the plane O” X' X/ is called the relative plane
motion of the point, whereas the motion of the plane O” X[ X} with respect to the
plane OX X, is called the transportation planar motion.

From Fig. 5.52 it follows that

ry =ro +p, (5.143)
and therefore
VA=Ty=Vo + P, (5.144)
where v = ros, and hence
p =B, + By, + Elx, + Ex,. (5.145)

Taking into account (5.145), (5.144) becomes
Va=V,+ V), (5.146)

Where Vi = Vor + ¢ X p = Vor + ¢ x ([, E{ + x§,E]), vy = £, + i, E,
. . . . . ./ .
and in the preceding discussion we used the relation E;, = ¢ x E.
Equation (5.146) in comparison to (5.64) contains an additional term v’;, which

is the relative velocity of point A in the non-stationary coordinate system O” X X}/.
Differentiating (5.146) with respect to time we have

ay=vy =V, +V,, (5.147)
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where
1 = g+ B, + B4, + B, + B,
+ ¢ x (x],E] + x,E)) + ¢ x [(x],E] + %3, E7) + (x],E] + xJ,E))]
= ag + E/&], + BJ), + 20 x (] B/ + £, EJ
+ & x (¥ E{ + x),E)) + ¢ x [¢ x (x], E{ + x,EY)]
=al, +a’, +af, (5.148)

where a, = ap/ + & x p+ ¢ x (¢ x p),a’, = E[¥, + E}i7,, a5 = 29 x v/,
Equation (5.148) indicates that the acceleration in the system OX; X, (i.e., the

absolute acceleration) of point A is the geometric sum of the acceleration of point O’

(the pole) in that system and the acceleration of that point in the system O” X{' X7
The particular terms of (5.148) are equal to

agr = X10'E1 + X0 Es,
E] Ej E!
exp, =10 0 &|=—Eex],+Eexi,,
Xia Xy 0
Px(@xpy)=(9pop)g—¢>p=—¢p
= —¢” (E{x], + E5x3,) .
. E/l/ EIZ/ Eg/ 4 " "
oxvi=10 0 ¢|=-El¢x), +Ej@px],, (5.149)
Xy Xy 0

and in view of that the acceleration of point A is determined by the following two
scalar equations:

i = oy — ey (B o) + ext, (B o i) — ¢, (B o )
—¢°x), (EY o E;) + &), (E] o E;) + X5, (E; o E;)
—2¢x5, (Ef o E;) +2¢x%, (E5 o E;), i = 1,2, (5.150)
where
Ell/ fo) El = cos ¢,
" s .
E2 oE; = cos (5 =+ (p) = —sing,
E] o E, = cos g,

E/ o E; = cos (% - (p) — sing. (5.151)
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The absolute velocity of point A is described by (5.146), whose terms are equal to

vor = X10’E1 + X20/Es,
. E/l/ EIZ/ Eg/ " "
oxp=1|0 0 ¢ —E{¢xy, + Ejox]y,
xX\y X34 0

v, = x/,E/ + 3! ,EJ, (5.152)

and in view of that the components of the absolute velocity of point A are described
by the following two equations:

$ia = Fior = 9xYy (B o Br) + o, (B o Ey)
+ X/ (B o E;) + %3, (ES o E;), i =1,2. (5.153)

5.5 Motion in a Three-Dimensional Space

5.5.1 Introduction

In this section we will take up the kinematics of a rigid body. According to the
definition introduced earlier, a body in mechanics is a collection of particles, which
is why we take up the kinematics of a point (points) first.

Figure 5.53 presents the position of body C at the time instants (Cto) and ¢
(Cy) and are marked as three points of the body A4, A;, A;. The minimum number
of points required to determine the position of a rigid body is four (they must not
lie in one plane). If the positions of the three points A, Ay, A, of the body and the
additional pole O are known, then the position of any other point can be easily
determined. The configuration of the considered body at time instant #, can be
described by the function ro = f;,(A), whereas at time instant ¢ that function has the
form r = f,(A) (because we take point A arbitrarily, we will additionally drop the
subscript A, i.e., r4 = r). The position of arbitrarily chosen point A can undergo
a change. The functions describe the mappings of particles A of body C; at time
instant ¢ in three-dimensional Euclidean space.

Using the stationary Cartesian coordinate system introduced in Fig.5.53
(position vectors ) we can trace the position of the body at arbitrary time instants
t (position vectors r). In other words, we will describe the motion of the body by a
certain vector function

r(t) = F(rg, ). (5.154)
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Fig. 5.53 Position of a body at time instants ¢, and ¢

The preceding notation means that the motion of an arbitrary point A of body C
depends on its position and on time. In the case of a rigid body the distances between
its points do not change, i.e., if we take any two points of numbers 1 and 2, we have

[r1 —r2|l = |lror — roz||. (5.155)

Moreover, the motion of an arbitrary point of a rigid body is described by the
equation (to be demonstrated later)

r(t) = A(t)ro + a(t), (5.156)

where A(t) is the rotation tensor (matrix) and a(z) is a vector.
Taking into account two particles A; and A, of a rigid body, from (5.156) we
obtain

ry—rn= A(l'()l — 1'02). (5157)

From the preceding equation it follows that the vector connecting two arbitrary
points of a rigid body can either rotate (A # E) or not rotate (A = E, where E is the
identity matrix). Thus, in order to check if the rigid body rotates during motion, one
should investigate the behavior of the vector r; —r; in time. Let us first consider the
simplest case, A = E. From (5.157) it follows that

ry —r, = rp — Igp = const. (5.158)
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X,

Fig. 5.54 Translational motion of a rigid body

This means that the vector r; — r, connecting points A; and A, of the rigid body
is a constant vector, i.e., this vector moves in three-dimensional space in time but
remains parallel to its initial position at time instant #y (Fig. 5.54). We will call such
motion the translational motion of a rigid body.

The investigation of the motion of a rigid body in such a case boils down to the
investigation of motion of its arbitrary point. If we take point 4, then we have

dry (5.159)
vV=Evy = —, .
T
dzl'A
—a, = 2T4 5.160
asas=-; ( )

Translational motion can be either rectilinear or curvilinear motion. From (5.159)
and (5.160) it follows that in translational motion the velocities and accelerations
of every point of a rigid body are the same. Recall that because the motion
of a particle can be divided into uniform (constant velocity), uniformly variable
(constant tangential acceleration), and non-uniformly variable (changing tangential
acceleration), one can similarly divide the translational motion of a rigid body.

Let us consider now a second case associated with (5.157),1i.e., A # E.

Recall that the rotation tensor A is an orthogonal second-order tensor possessing
the following properties:

ATA = AAT =E, (5.161)
det(A) = 1. (5.162)

From (5.161) it follows that there are six constraints imposed on nine elements
of tensor A. Therefore, only three parameters are independent and fully describe
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rotation tensor A. Although in what follows we will mainly use matrix and vector
calculus, here some basic information connected with tensor calculus will be
introduced, which will enable readers to use it for their own purposes if necessary.
The property of the second-order rotation tensor ideally serves the purpose of
interpreting the motion of a rigid body with one point fixed. That motion can be
described by the choice of three parameters, most often the so-called Euler angles.

5.5.2 Angular Velocity and Angular Acceleration
of a Rigid Body

If rotation tensor A is known, it is possible to define the tensor of angular velocity 22
and the vector of angular velocity @ of arigid body in the following way [5,6,8,10]:

2 =AA", (5.163)

® = —%e[[l], (5.164)

where ¢ is the tensor of the third order called the alternating tensor [8].

During application of (5.164) some properties of the alternating tensor were used.
Recall that an arbitrary tensor of the third order transforms the vector into second-
order tensors and can transform the tensors of the second order into the vectors

(@a®b®c)[d®e] =a(bod)(coe), (5.165)
(a®b®c)d =a®b(cod). (5.166)

If we take the basis {tl, t, t3}, then the tensor of the third order has the form
Q= Qiti t; R t. (5.167)
The alternating tensor has the form

€ =gt ®t; QL =t LG+ HL R VL,
+H B R/ — LR/ I —LILRIL—LRL Rt (5.168)
because E123 = €312 = €231 = 1 and E213 = €132 = €321 = —1.
If B is a symmetric tensor, then e[B] =0.
If b is a vector, then
eb =gt @ tjby =b3(t; @ty —t, @ ty)
+h(t: 9t -t @) + b (LRt -t @) =—-B. (5.169)
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As a result of the preceding operation we obtain the skew-symmetric tensor B.
Property (5.169) was used in (5.164). What is more, for an arbitrary vector a we
have

Ba = (—eb)a =b xa, (5.170)

that is,
2a=wxa. (5.171)

The angular acceleration @ of the rigid body is obtained from (5.163) and
(5.164) as

& = —%e [AAT + AAT] - %e [Jl] . (5.172)

The relative velocities and relative accelerations of two arbitrary points of a rigid
body described by position vectors r;(¢) and r,(¢) are obtained by differentiation
of (5.157) with respect to time.

The first differentiation leads to the result

Vi—Vy =1 — i = A(ro —r2) = AATA(ro; — 102)
=2Arg —rp) =20 —n)=wx (@ —1), (5.173)
where relationships (5.157), (5.161), and (5.171) were used in the transformations.
The next differentiation leads to the determination of relative accelerations of the
form
Vl —Vz =@ X(l‘l —I'2)+(x) X(V1 —Vz)
=@ X(rj—r)+wxw X (r —r). (5.174)

Equations (5.173) and (5.174) describe the dependency of relative velocities and
relative accelerations on 7, r; and r».

5.5.3 Euler’s Proposal

We aim at the parameterization of the angular velocity tensor §2 and the angular
velocity vector @ so as to obtain their possibly simplest representation. Euler
demonstrated that an arbitrary rotation tensor A could be represented in the
following way:

A=cosg(E—r®r)—sing(er) + rer. (5.175)

The preceding vector r is a unit vector (lying on the axis of rotation) composed
of two independent elements, and ¢ is the directed positive angle of rotation.
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Recall that a second order tensor is called a rotation tensor if it satisfies conditions
(5.161) and (5.162). It belongs to the class of proper orthogonal tensors, which
form a subclass of the orthogonal tensors. Moreover, the determinant of an arbitrary
second-order tensor B has the following form:

3 3 3
det(B) = [Bty, Bty, Bts] = Y "> > "B B2 Bs[ti. t;. t]
i=1j=1k=1

2

1j=1k

&ijk Bi1 Bj2 B3, (5.176)

3 3 3
= =1

i

where {t;, t, t3} is the orthonormal right-handed basis.
Taking into account the obtained value of determinant det(B) one may notice that
we obtain the same result calculating the determinant of the following matrix:

Bii By Bis
det(B) = det le Bzz 323 . (5177)
B3y By Bz

Our task is to show that the tensor (5.175) is the proper orthogonal tensor.

To this end we will make use of the orthonormal right-handed basis {tl, to, t3}
(introduced earlier), where t; = r.

Using the notions of the tensor calculus introduced earlier, the terms of (5.175)
have the form

E=t0t+tHL QL+t t3,
E-rer=t0t+tt,,
—er=tQt —t; Qt,. (5.178)
Taking into account (5.178) in (5.175) we obtain
A=cospt; @t +t, ®ty)
+sinp(t, @t —t; @ ty) + t3 ® t3. (5.179)

Then
AT =cosop(t; @t + 6, @ tr) +sinp(t; @ty —t, @ t)) (5.180)

because (a ® b)T = (b®a) = —(a®b). Itis easy to check now that AAT = E.
Let us note that
303
A=) Aut; @ty (5.181)

i=1k=1
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Fig. 5.55 Action of Euler’s
rotation tensor A on vector b
(by+b; =b;b; [ r;by L)

where
Air = (Aty) o t;. (5.182)

The determinant of the tensor A is equal to
cosp —sing 0

det(A) =det| sing cosgp O =1, (5.183)
0 0 1

and consequently it was demonstrated that A is a rotation tensor.
Let us now consider the action of Euler’s rotation tensor (5.175) on an arbitrary
vector b (Fig.5.55).
As follows from Fig. 5.55, the component b, of vector b (b = b; +b,) undergoes
a change, whereas b; || r remains unchanged.
Let us note that
by = (bor)r = (r ® r)b,

b=b—-b =b—(bor)r=(E—-r®r)b, (5.184)
and in view of that we have [see (5.175)]

A(p,r) =[cosp(E—r®r) —sing(er) + r®r]b
=cos¢p(E—r®r)b—sing(er)b + (r @ r)b
=cos¢p(E—r®r)b + singr xb + (rob)r
= cos¢b, + singr x b, + b; = Ab; + by, (5.185)

where (5.171) was used during the transformations.
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From the preceding calculations it follows that we obtain vector Ab by adding
vector Ab, to vector b; (parallel to r). The latter can be obtained easily by means
of the rotation of vector b, through angle ¢ in a counterclockwise direction, where
|Aby| = |b,|. We call (5.185) the Euler formula.

Euler’s rotation tensor (5.175) exhibits some interesting properties:

(i) A(g.r) = A(—¢.1);
(i) A(¢ =0.r) =E.

The obtained results will be used to represent the tensor of angular velocity of a
rigid body £2 [see (5.163)] and the vector of angular velocity of a rigid body @ [see
(5.164)] on the assumption that ¢ = ¢(¢) and r = r(¢).

Recall thaté = 0,E =0,andr ot = O because r L .

Differentiating (5.175) with respect to time we obtain

A(q&, r) = —¢sing(E—r®r) —¢cosp(er)
+(1—cosd)(r@r+r®r) —sing(er). (5.186)

We will further use relationships (5.178). Additionally,
I = at| + bty, (5.187)

where a and b are certain scalars. The foregoing result follows from the equation
r or = 0, which indicates that ¥ L t3 = r. Therefore, vector r is expressed by
{t1. &2}

Let us calculate the cross product

tt th t3
rxr=1(0 0 1|=-bt;+at, (5.188)
a b 0
and note that [relation (5.169)]
er=atb ®t; —t: Q1) + btz dt; — t; ® t3). (5.189)

According to (5.186) we have

A= —¢sing(E—t; @ t3) —pcosp(t; @t, —t, @ t;)
+ (1 —cos¢) [(at; + btr) @ t3 4+ t3 ® (at; + bty)]

—singat, ®t3 —t3 ) + btz @t —t; @ t3)], (5.190)
AT =cosp(ti @t + 1, @ ty)
+sing(th @t —HL ) +t; @ ts, (5.191)

AAT = — ety — [a(1 — cos @) + bsinplet, — [—b(1 — cos p) + a sin ¢p]et;.
(5.192)
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Finally, we obtain

2 = AAT = —ger — (1 — cos ¢)e(r x F) — sin e, (5.193)
® = ¢r —sin @F + (1 — cos P)r x F. (5.194)

The preceding expressions undergo significant simplification if r = const, that
is, from (5.193) and (5.194) it follows that

A = —der, (5.195)

© = ér. (5.196)

At the end of the calculations in this section we should emphasize that there exist
several different possibilities for representing the rotation tensor [8].

In the literature the following three possibilities are used most often: Euler’s
angles, Euler’s parameters, and Rodrigues® parameters. All three of the aforemen-
tioned representations are described in the book [8], where for the analysis and
illustration of the conducted calculation, the tensor calculus was used.

In the present book during subsequent calculations we will limit ourselves to
descriptions of the most commonly used representation, i.e., Euler’s angles [4—11].

5.5.4 Eulerian Angles

Recall (Sect. 5.5.2) that the arbitrary motion of a rigid body can be represented as
a composition of the motion of its arbitrary point O (pole) and rotation of the body
about that pole. Let us assume that point O is stationary, and let us consider the
kinematics of a rigid body with one point fixed. Any four non-coplanar points of a
rigid body O and A;,i = 1, 2, 3, form a pyramid. With this pyramid, whose position
varies in time, we will associate the stationary coordinate system {El, E,, E3} and
non-stationary coordinate system {E{,E}, E}}. We assume that the apex of the
pyramid lies at point O.

Euler noticed that an arbitrary position of a tetrahedron in three-dimensional
space can be represented through three angles. This means that the rotations of
the tetrahedron with respect to certain axes and with the aid of only three angles
of rotation in certain planes will suffice to make the stationary pyramid coincident
with the moving one. The Eulerian angles are presented in Fig. 5.56 (see, e.g., [10]).

Let us introduce the Cartesian coordinate system and choose the tetrahedron in
such way that its one vertex lies at the origin of the coordinate system O and the
remaining vertices A, A», and A3 lie on successive axes of this coordinate system.

20linde Rodrigues (1795-1851), French banker and mathematician.
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P

Fig. 5.56 Eulerian angles

Following the composition of three plane rotations successively through angles
¥, 6, and g, the tetrahedron OA; A> A3 ends up in the position OA" AL’ A}’. The first
rotation through angle ¥ (angle of precession) takes place in the plane OA; A, about
the OA; = X3 axis. The second rotation through angle 6 (angle of nutation) takes
place in the plane OA’, A} about the OA| = X| axis. Finally, we perform rotation
through angle ¢ (angle of eigenrotation or spin) in the plane OA} A’} about the OAY
axis. The order of rotation of the tetrahedron can be schematically presented in the
following way:

04, 4245 25 04, 4,4, 25 04 Al AL L oAl A AL (5.197)

The aforementioned successive transformations are schematically presented in
Fig.5.57.

Let us assume that the rigid body moves in motion about a point in the absolute
coordinate system OX;X,X3 and that the body system is denoted by OX{" X" X"
If we know the motion of the body system with respect to the absolute system, we
also know the motion of the rigid body itself with respect to this system. Eulerian
angles allow for the description of the system OX/|"X}"X}" with respect to the
system OX| X, X3. The edge of the intersection of the plane OX; X, of the absolute
system with the plane OX|”X}" of the non-stationary system shown in Fig. 5.56 as
OA/ is called the line of nodes.

Angles ¥, 0, and ¢ are independent and can be chosen arbitrarily. Three numbers
corresponding to the values of these angles determine uniquely the position of the
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Fig. 5.57 Successive rotations through angles v (a), 6 (b), and ¢ (c)

body in three-dimensional space. It is a common practice to assume that 0 < ¢ <
27,0 <6 <m,0< ¢ < 2x. Letus note that for # = 0 or § = x the line of nodes
OA', and angles ¥ and ¢ are not uniquely defined. Therefore, often a different set
of angles is introduced in order to avoid this singularity of the Eulerian angles.

An arbitrary vector a can be represented as

n " n

/ / / 4 4 4
a=a +a+a3=a, +a,+ay;=a, +a, +ay=a; +a, +ay,

where af*), i =1,2,3, = =","," denote the components of the vector relative

to the appropriate axes. The following relationships are valid:

a; = da)cosy —ajysiny,

a, = a}siny + ahcosy,

a; = aj, (5.198)
a; = ay,

o "o
ay = a; cost —aysinf,

ay = aysinf + aj cos b, (5.199)
1 " "

al = a’cosgp —ay sing,

a" = a}sing + a5 cosg,

a' = a. (5.200)

We will show how to derive these equations on example of (5.198). According to
the previous representation of vector @ we have

/ / /
a; +a +as; =a; +a,+ a;s,

or
a1E; + axEy + azE; = aiE/l + a/zE’z + a;Eg
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Multiplying the preceding equation by sides in turn by unit vectors E;, (i =
1,2, 3), we obtain

The obtained relationships enable us to define the following second-order
rotation tensors:

cosyy —siny 0

¥ = |siny cos Yy 0f, (5.201)
0 0 1
1 0 0
O =|0 cosf —sinb |, (5.202)

0 sinf cosf |

cosp —sing 0]
sin ¢ cos ¢ 0]. (5.203)
0 o 1]

<
Il

It can be easily checked that these tensors are orthogonal and possess the
properties (5.161) and (5.162). Therefore, the inverse relationships can be easily
found after constructing transpose matrices ¥, @7, and ¢, which allows us to
determine the following relationships inverse to (5.198) and (5.200) of the form

al [ cosy  siny O] [a
ay| =|—siny cosy O |az|, (5.204)
a; L O 0 1| a3
al’l 1 0 0 1[4
ay| =10 cos@ sinf | | d |, (5.205)
ay | |0 —sinf  cosf ] [ d)
al”l [ cosg sing 0 [af
ay’ | = |—sing cosp O |d)]. (5.206)
a?] L o 0 1 ]lat

The relationships described by (5.198)—(5.200) can be represented in the form

a; = Aay’ Au A A [a)
a) = Aag’ = A21 A22 A23 ag’ , (5207)

— n n
az = Adj Az1  An Az Laf
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where
A=V0Oo (5.208)

is a rotation tensor describing the result of action of the three rotation tensors
v, 0, ¢.
Multiplying according to (5.208) we obtain

A1y = cos g cos Y — sin @ cos 0 sin ¥,
Ay = —sing cos ¥ — cos g cos 0 sin ¥,
Az = sin 0 sin y,

Apy = cos g sin Y + sin ¢ cos 6 cos Y,
Ay = —singsin ¥ + cos ¢ cos 0 cos ¥,
Ay = —sin 6 cos ¥,

A3l = singsin6,

A3z, = cosgsiné,

Aszz = cos 6. (5.209)

Displacement of the tetrahedron OA;A;A3 to the position OAY A AY is
performed through matrix A, which is the product of three matrices that prescribe
the rotations. Because a product of matrices is generally not commutative, the
sequence of rotations is important.

The non-commutativity can be illustrated on an example of two rotations of a
tetrahedron: one time initially through an angle ¥ = 7/2 and then through 6 = /2
(Fig. 5.58), and the other time in the reverse order.

Let us demonstrate that matrix A, being the product of three matrices of
elementary orthonormal rotations, is also an orthonormal matrix:

AAT = (WO¢)(TOP)!
=V0O¢d WO = v OO YT = E;,;. (5.210)

It can also be shown easily that the composition of any number of elementary
rotation matrices is an orthonormal matrix.

From the preceding calculations it follows that after taking two arbitrary
positions of two Cartesian coordinate systems in three-dimensional Euclidean space
with a common origin, in general, it is possible to achieve their coincidence by
applying the Euler rotations (in the present case, the three angles ¥, @, and ¢).

The first rotation can occur about any one of the three axes of the system
OX,X>X3 (in our case, X3). Next, in the system OX|X)X} we have two axes
available about which to perform the rotation (in our case, X|). Subsequently, in
the system OX['X) X! obtained after the last rotation, we perform the rotation



338 5 Kinematics of a Rigid Body and Composite Motion of a Point

Fig. 5.58 Non-commutativity of two rotations of tetrahedron

about one of the remaining axes, i.e., axes lying in the plane perpendicular to the
previous axis of rotation (in our case, X}”). Applying the notation already used in
Chap. 3, (5.208) can be represented in the form

Aoy (X3, X, X)) = W (E5)© (E)¢ (), (5:211)

and the preceding notation contains the information concerning the axis about which
and the angle through which the transformation of rotation was performed.

According to those considerations, a number of possible Euler rotations is equal
to 3-2.2 = 12, that is, there exist 12 possibilities for choosing three subsequent
axes and angles through which we perform the rotations.

The matrices following from the composition of Eulerian rotations are distinct
since, as was mentioned previously, the product of matrices is not commutative.

Let us make use of the calculations conducted earlier where we defined matrices
of rotation about each of the three axes of the Cartesian coordinate system.
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Let us perform the rotations in turn about the X, XJ, and X} axes respectively
through angles v, ¥, and 3. The resulting matrix has the form

Ay, (B E) EY) = W (E) W, (E)W5(E

1 0 0 cos Y, 0 sin Y cos Y3 —sinyr3 0
= [ 0 cosyr; —siny 0 1 0 sinyy cosy O
0 siny; cos Y —sinyr, 0 cos Y, 0 0 1

cos Y, cos Y3
= | siny siny, cos Y3 + cos Yy sin Y3
— Cos Yy sin Yrp cos Y3 + sin g sin Y3

— COS Y sin 3 sin Y,
— sin Y sin ¥, sin Y3 4+ cos ¥ cos ¥, — sin Y| cos ¥,
cos ¥y sin ¥, sin Y3 + sin Yy cos Y3 cos ¥y cos ¥
(5.212)

Now, performing the rotations in the reverse order we obtain

Aysyoy (B3 By Ey) = W3 (ENW,(E) ¥ (E))

[‘cos 3 —sinyz 0 cosyp, Osiny, | [1 0 0
= [ siny3 cosys; O 0 1 0 0 cos Yy —sin Y
0 0 1 —sinyp 0 cosyn | |0 siny; cosyy

["cos > cos Y3 sin Y sin ¥, cos Y3 — cos Yy sin Y3
= | cos ¥, sin s sin ¥rq sin ¥ sin Y3 + cos ¥y cos Y3
—sinyn sin Yy cos ¥

cos Y1 sin Y, cos Y3 + sin Yy sin 3
cos Y sin ¥, sinyrs — sinyr; cos ¥ | . (5.213)
cos Yy cos Y

The obtained matrices (5.212) and (5.213) differ significantly from each other.

In Sect.5.1.5 we introduced the notion of small rotation. If the angles of Euler
rotations are small, then cos(dy;) = 1, sin(dy;) = dy;. Thus from (5.212)
and (5.213) we obtain the same matrix

1 —dys dyn
A avyaw; = Adwgavpaw, = | dys 1 —dyy |, (5.214)
—dyn dyy 1

where small terms of second order were neglected. Observe that now the sequence
of rotations through small angles is not important, which leads to the conclusion
that small rotations are vector quantities.
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Fig. 5.59 Rotation of a rigid body about an arbitrary axis / through angle ¢

Knowledge of the kinematics of a rigid body finds wide application in robotics
and in the theory and practice of the design and production of manipulators. For
instance, in the case of rigid manipulators, where the description of motion of
particular links of a kinematic chain is made on the assumption that they are
rigid bodies, in order to describe the position of any of the links it is sufficient
to introduce a single stationary absolute Cartesian coordinate system and then
associate a local Cartesian coordinate system with every link (e.g., all systems
are right-handed). Apart from the aforementioned Cartesian coordinate systems,
the previously discussed spherical and cylindrical coordinate systems are also used
(Chap. 4).

One of the fundamental problems in robotics and in the theory of manipulators
is the formulation of the condition of rotation of a rigid body through a prescribed
angle ¢ about a prescribed axis / by means of rotations about mutually perpendicular
axes (Fig.5.59).

According to Fig. 5.59 we have

| = LE| + LE, + LE;, (5.215)

where |I| = 1.
Note that

COS,B = l3E3 ol = 13,

. [(LE + bEy)* o
sinf8 = — 7 = 12412,
cosa — | (LE))’ __h
(LE| + LE,)? /12 + 122’
. [ (LEy’ [y
sinog = = . (5.216)
(LE| + LE,)’ [12 412
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During rotations we will use only three angles, «, B, and ¢. However, the
rotations through angles o and f will be performed about the axes obtained as a
result of the preceding rotation.

A composite rotation matrix has the following form:

o(1) = o(E3)B(Ey) e (E) (—B(E)) (—oe(E5")). (5:217)

As can be seen from the preceding relationship, the rotation about the / axis is
obtained after realization of five consecutive rotations. At first we rotate the system
OX,X>X; about the X3 axis through angle «, obtaining the system OX| X, X}. Next
we rotate OX| X)X} about the X axis through angle . Following the composition
of these two rotations the X} axis will coincide with the / axis. Then we rotate the
obtained system OX| X} X} about the X} axis through angle ¢. Then we rotate the
obtained system OX{” X}’ X}" through angle (—f) about the X" axis, obtaining the
system OX{” X" X". We rotate this last system (for the fifth time) about the X ;"
axis through angle (—«). Because we applied Euler rotations, the composite rotation
matrix ¢ ( I) will be orthonormal, i.e., o' (1) = @T(1).

Multiplying the matrices according to (5.217) and taking into account (5.216)
and the relevant transformations we obtain

cos @ —Il3sing  Ising
o) =1-1"(1 —cosg) + | I3sing cos @ —I,sing |, (5.218)
—lsing  [ising cos¢

where

2 Ll L
I-1"(1—cosp) = | L, 13 bLil;|(1—cosg).
Wiy bl 1

It is easy to check that matrix ¢( /) has the following properties:
o) =¢" (), —o(=1)= o).
Equation (5.217) can be written in the following form:
o(l) = a(Es)B(ES)@(EY) BT (Ey )e (ES"). (5.219)

Let us perform the rotation about the E; axis through angle ¢.
According to (5.219) we have

0 cosp —sing 0
oE3) = |0 [O 0 1] (I —-cosg)+ [sing cosg 0
1 0 0 cos ¢
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0 0 0 cosp —sing 0
=10 O 0 + | sing cose 0
10 0 1—cosg 0 0 cos @
[cosgp —sing 0
= |sing cosgp O], (5.220)
0 0 1

which is in agreement with the elementary rotation about the E; axis [see (5.61)].
One can expect, as we showed earlier (Fig. 5.56), that an arbitrary matrix

P11 P12 Q13
033 = | 021 ¢ ¢n (5.221)
@31 P32 @33

will have representation by a certain axis / and an angle ’ as long as it has the

property @' = Esx; and det = 1, i.e., it is an orthonormal matrix. A matrix
trace of (5.218) reads

Tr(p) = [112(1 —cos@) + cosgo] + [122(1 — cos @) + cos (p]
+ [I5(1 —cos @) + cosg| = I} + 15 4[5 4+ 3cos g
— (I} +13+13)cosgp =1+2cosg (5.222)
because 1> = 12 + 12 + 17 = 1.

From (5.222) we can determine the angle of rotation ¢ representing matrix
(5.221), which is equal to

Tr(p) — 1 o1+ ot en—1
@ = arccos T = arccos ) .

(5.223)

In the next step we will determine the axis about which the rotation will be
performed. Equating the terms in matrices (5.218) and (5.221) we obtain

I1l,(1 —cos@) — [3sing = @13,
LI3(1 —cos@) + L sing = @3,
LI3(1 —cos) — [ sing = @3,
l11(1 —cos @) + [3sing = @1,
Li3(1 —cosg) — L sing = @3,
LI3(1 —cos@) + 1 sing = @z, (5.224)
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and after their appropriate subtraction we have

@13 — @31 = 2l sin g,
@21 — @12 = 2l3sin g,
@3 — @23 = 2l sing. (5.225)

Multiplying (5.225) by sides by the appropriate unit vectors E; and adding the
obtained equations to each other we obtain

— [E1(p32 — ¢23) + Ea2(913 — ¢31) + E3(¢21 — ¢12)]
2sing

=Eili + B2 + E3l3 =1, (5.226)
which defines for us the unknown unit vector of the / axis.

Let us note that we are dealing with the singularities for ¢ = 0 and ¢ = 7.
Matrix ¢( 1) can be written in the equivalent form

o) =11"(1 —cosp) + Ecosg + S(I) sin g, (5.227)
where
0 - 5L
Sy =| Iz 0 —h|, (5.228)
L 0

and all matrices have the dimensions 3 x 3.
Matrix S is the skew-symmetric matrix (S + ST = 0).

Theorem 5.6. The rotation matrix ¢ (I) described by (5.227) satisfies the following
relationship:

do0) 14y = s, (5.229)
de

Proof. Differentiating (5.227) with respect to ¢ we obtain
de T . .
P 11" sing —Esing + S(I) cos ¢.
'
The left-hand side of (5.229) takes the form

de(l
#(pT(l):(llTsin ¢—Esin ¢+8 cos @) (U T (1— cos ¢)+E cos p+S sin )T
@

=(ll"sin ¢—E sin ¢ +S cos @) (" (1— cos ¢)+E cos p—S sin ¢)
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=TT (1 —cosg)sing + UTEsin g cos ¢
—U"Ssin’ ¢ + EIT(1 — cos @) sing — E? sing cos ¢
+ ESsin® ¢ + SIIT(1 — cos @) cos ¢ + SE cos® ¢ — 8% sin g cos ¢,

where the relationship ST = —S and the symmetry of matrix /I™ were used. O
Because
0 -3 I, I 0— L3+ s
SHl=1| 15, 0 - L= Lhiz+0—-11; :OZITS(I)
—L 14 0 I3 Ll +4Ll,+0
and

1 L, L
H"=\nl,, 1 b,
Lly L, 12

h
"l =[LLL]|L|=R+B+83=01=1,
[3

and therefore the transformed left-hand side of (5.229) takes the form

de(l
#(pT(l) =1IT(1 —cosg)sing —I1T(1 —cos¢) sing
¥
+ 1" singcosgp —0 —Esingcosg + Ssin® ¢ + 0 + Scos® ¢
—S%*singcosg = (IIT =8> —E)singpcosg + S.
Because

0 —13 Zz 0 —13 12
S?=SS=| L 0 -4 I3 (R

6L L 0 ]|l-L L o0
_—132 —122 Ly Ll
= 1112 —132 - 112 1213 )

Ll Liy — —2-1?
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we have
_112 L, L3 132+122 —11l —11l5
H'—S =Ll 13 bLhi|+| -LlL 1413 —bh
_1311 Il 132 —ll3 —hl; 112 + 122
1 0 0
=|0 1 O0f=E,
L0 0 1

and in view of that the matrix
(II"-S8*—E)=(E—E) =0.

Eventually we obtained (5.229), which was what we had wanted to demonstrate.

5.5.5 Kinematic Eulerian Equations

Let the vector ® = ¢l act along the / axis. Calculating the time derivative of the
rotation matrix and taking into account (5.229) we obtain

do(l) _ do(l) dy

= ———=S)el)p =S(ele), 5.230
m dp dr De)e = S(@ehe(l) (5.230)
where according to (5.228) the matrix
0 —lL¢ L 0 —w; w
2 = S(g{)l) = lg(p 0 —llqb = w3 0 —w1 | » (5231)
—he Lo O —w w; 0

where the skew-symmetric matrix 2 = S(w) uniquely corresponds to the vector
w = wE; + «E; + w3E; and can be interpreted as a skew-symmetric matrix
representing the angular velocity (angular velocity tensor) of a rotating rigid body
with respect to the absolute system OX| X, X3.

The matrix (tensor) of the angular velocity according to (5.230) can be ex-
pressed as

2 = Siple™ () (5232)

Thus we proved relationship (5.163). To illustrate how to determine, from the
time-dependent matrix of rotation ¢ (/, ¢) the angular velocity matrix §2, the angular
velocity vector of a rigid body w, and the vector I on which the  lies from the time-
dependent rotation matrix ¢@(Z, ¢), we will consider the following matrix:
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—sin2¢ —%sin3t+%sint %cosSt—i—%cost
o) = 0 cost sin ¢ . (5.233)
cos 2t %coth —%cost %sin3t + %Sint

The preceding matrix is an orthonormal matrix because T = E. Differenti-
ation of rotation matrix (5.233) with respect to time reduces to a differentiation of
their elements. As a result of this procedure we obtain

do(0) —2cos2f  —3cos3r+ 1cost  —3sin3r — 1sint
G = 0 —sint cost . (5.234)
—25sin2¢ —% sin 3¢ + %Sint %cos 3t + %COSI

According to (5.233) the angular velocity matrix is equal to

0 —cos2t -2
2 =S(¢l) = | cos2t 0 sin2t|. (5.235)
2 —sin2t O

Using the matrix form (5.231) we determine the angular velocity vector
o =owl(t) =ol()E; + oL(t)E; + wl5(t)E;
= w1E; + ®E; + w3E; = —sin2tE; — 2E; 4 cos2tE;, (5.236)
and hence we calculate
w? = w? =sin®2t +cos’2t +4 =5,

that is, @ = /5. The preceding equation indicates that the magnitude of vector @
remains constant in time. According to (5.236) vector I changes in time because its
direction alters, although its magnitude is constantly equal to one. The normalization
of a matrix corresponds to the normalization of a vector 1.

From (5.236) we calculate

I(t) = a)laft) _ _Siil/?’
by = 20 —%,
(1) = w3(t) _ _C(ijgzl,

and clearly /I + 13 + 15 = 1.
Let the constant angular velocity vectors of the body along the OX}, OX/, and
OX/ axes be prescribed (Fig. 5.60).
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Fig. 5.60 Eulerian angles and the angular velocity vectors 1/t o, ¢

From Fig. 5.60 it follows that

v = yE, (5.237)
O =0E], (5.238)
¢ = ¢EY. (5.239)

We wish to determine the angular velocity @ of a body in the coordinate system
O0X"X)"X}". Therefore, vectors (5.237)—(5.239) should be projected onto the axes
of that system. Assuming

© = o'E]" + 0)E) + o;EY (5.240)
we obtain
w!” cos¢p sing 0] [1 O 0 0
w)' | = | —sing cos¢p 0|0 cos@ sinf 0
wy’ 0 0 1] [0—sinfcosd | |y
cos¢ sing 0 0 0
+ | —sin¢gcospO0||0]|+ |0/, (5.241)

o o 1]lo] ¢
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and in expanded form we have
w!" = singsinf + 0 cos ¢,
o} = cos ¢ sinh — 6 sin ¢,
o =1 cosO + . (5.242)

From (5.242) we obtain the magnitude of angular velocity

0= (@)} + (@) + (@)

= U2+ ¢ + 62 + 2y cos 6. (5.243)

The magnitude of angular velocity in the absolute coordinate system can be
obtained easily from (5.207). Substituting (5.239) into (5.207) we have

a)f‘i’) = ¢ sin @ sin ¥,
a)é‘i’) = —¢sinf cos V¥,
ol = ¢ cosb. (5.244)

Vector (5.238) passes to the absolute system after one rotation. Assuming the
values 6 = 0 and ¢ = 0 in matrix A we obtain

a)fe) = 6 cos v,
wée) = fsin v,
o’ =o0. (5.245)

Vector (5.239) is already given in the absolute system since E} = E,. From
(5.244), (5.245), and (5.239) we obtain

W :q'ﬁsiné?sinlﬁ—f-@'cosw,
wy = —q'SsinOcosw + ésinl//,
w3 = ¢ cosh + . (5.246)

5.5.6 Displacement of a Rigid Body with One Point Fixed

Recall that a rigid body with one point fixed is in motion about a point. Such a
body has three degrees of freedom, and for a description of its motion three angles,
Y= y(t), 0 = 0(t),and ¢ = ¢p(t), can be used. With the fixed point, also called
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Fig. 5.61 Construction of axis of rotation of a rigid body in motion about a point (4,4, = A} A})

the center of rotation of motion about point O, we will associate the origins of the
stationary and non-stationary Cartesian coordinate systems. Point A is situated at a

distance |ﬁ| from the center of rotation, which is equal to the radius of a sphere of
center at O. The paths of point A are closed or open curves.

On the other hand, the position of a rigid body in space can be uniquely described
after choosing its three non-collinear points. If we are dealing with the motion of a
rigid body with one point fixed, then the motion of this body can be described after
choosing its two points provided they do not lie on a common line with the fixed
point O.

In technology as well as in everyday life we encounter many examples of motion
about a point. A spinning top (until recently a popular children’s toy) is in motion
about a point; it rotates about its own symmetry axis and simultaneously performs
rotation about other axes. A spherical pendulum, consisting of, e.g., a point mass
attached to a weightless rod that is fixed by a ball-and-socket joint at the opposite
end, also performs motion about a point. A situation occurs in the case of motion
of a differential pinion gear rolling on a stationary differential side gear [1]. The
intersection of a sphere of radius OA with the analyzed rigid body determines a
certain region of the spherical surface. The motion of this region on the sphere
uniquely describes the body motion about a point.

As in the case of planar motion, which we were able to reduce to simply
rotational motion about the center of rotation, so in the case of motion about a point
the arbitrary displacement of a rigid body can be realized through rotation about a
certain axis passing through the fixed point of body O. Figure 5.61 shows how to
determine the aforementioned axis.
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Let segment A;A,, lying on a sphere of radius OA; at time instant fy, reach
position A} A} at time instant #,. In order to determine the second point belonging
to the considered axis of rotation we determine the centers of arcs A4, A’1 and AZA’Z,
and then through these centers S| and S, we draw perpendicular arcs that belong to
large circles of the spheres, which will intersect at the desired point Si. It can be
demonstrated that the triangle A4Sk A, will coincide with A’1 S kA’2 after rotation
about the OSj axis through a certain angle ¢. The OS) axis will be called an
instantaneous axis of rotation of a rigid body for At — 0. If we have determined
the instantaneous axis of rotation, then we can easily find the displacement of an
arbitrary point A. Drawing through that point a line perpendicular to the axis we will
obtain point A’ on the axis of rotation. Therefore, point A during the motion about
a point of a rigid body will move along a circle of radius |r,|. A small displacement
Ar of point A is equal to (Fig. 5.61)

A
Ar = 2r, sin 7¢ ~rpAp = rAg¢siny. (5.247)
Let us note that
Ar =r X Ad. (5.248)

We will show that successive small rotations of a rigid body can be replaced with
one resultant small rotation of this body. In our calculations we will limit ourselves
to two rotations.

After the first rotation point A will reach the position described by the radius
vector

r=r+Ar=r+ (rx A¢)). (5.249)
After the second rotation point A will reach the position described by the radius
vector
r,=r+(XxA@,) =r+(rxA¢,) + (r x A¢)
=r+rx(A¢, + A¢,) =1+ (r x Ag), (5.250)

where
AP = Ad, + Ad,. (5.251)

The limit to which the ratio A¢ /At for At — 0 tends is called the angular
velocity of a rigid body at time ¢ and is equal to

. A
o= lim —. (5.252)
In turn, the position of the axis of rotation OA’ for At — 0 is called the
instantaneous axis of rotation of a rigid body corresponding to time . The sense of @
is such that when we look along the instantaneous axis of rotation, the arrow points
toward the eye of the viewer if the body rotation is counterclockwise (Fig. 5.62).

The instantaneous axis of rotation is the set of points that, at a given time instant t,
have a velocity equal to zero.
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Fig. 5.62 Instantaneous axis
of rotation I and vector of
angular velocity @

Fig. 5.63 Hodograph of
angular velocity and axis of
angular acceleration

During motion about a point of a rigid body the position of the instantaneous
axis of rotation undergoes a change, so both the magnitude and direction of vector @
change. If w; = w(t + At) and @ = w(t), then it is possible to describe the average
angular acceleration

w; —w Aw
£ = = —,
w At At

(5.253)

and then the angular acceleration vector

. Aw dw
e = Altlgo = "4 (5.254)

If at a fixed point we successively lay off vectors @ corresponding to consecutive
time instants, then the curve connecting their tips will be called a hodograph of
angular velocity vector (Fig.5.63).

The vector of angular acceleration is at any time instant tangent to the hodograph
of the angular velocity, that is, it is equal to the translational velocity of the tip of
the vector of angular velocity. We move this vector to the fixed point O, and the
line passing through point O on which lies vector ¢ is called the axis of angular
acceleration.
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X,

Fig. 5.64 Coordinate systems of space and body, and vectors describing position of point A of a
rigid body

5.5.7 Displacement and Rotation of a Rigid Body
(Basic Theorems)

According to the convention adopted earlier, we will introduce the principal absolute
Cartesian coordinate system OX,X,X;. We will connect the body rigidly to the
coordinate system OX| X)X}, where O” is an arbitrary point of a rigid body. The
system OX, X, X, is sometimes called a space system, and the system OX| X} X/
a body system. The motion of the rigid body is represented by the motion of the
coordinate system OX{' X} X7

The rigid body in R space, generally, can be in translation and rotation. If in
a sense we hold the body still at an arbitrary time instant ¢ (we take a “photo™)
and we have the position of the body given at the initial time instant 7y (at 7o the
pole O = O’), then the body position at time ¢ can be obtained by translation of
the coordinate system in parallel to the axes OX, X, X, (dashed axes in Fig.5.64)
up to point O’, and then in the general case performing three Eulerian elementary
rotations (or only one after determining the axis of rotation I and the angle of
composite rotation ¢). In Fig. 5.64 are shown the body and space systems, and the
position of one arbitrary point A of the body is characterized.

Recall that according to the adopted convention the vector W = p has known
coordinates in the system OX| X} X}. Recall that vectors are added geometrically.
If the vectors possess the matrix representation, that is, scalar notation (in terms
of coordinates), then the vectors from Fig. 5.64 should be expressed in the same
coordinate system, i.e., in either OX, X, X; or OX|' X} X . Further we will describe
the position of point 4 in absolute coordinates, and because vector p is expressed in
the coordinates OX "X X7, it should be represented in the coordinates OX;X> X3
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asT = Ap, where the matrix A = A(¢) (different at every time instant of the motion)
is the transformation matrix from the system OX{ X} X} to OX, X, X, expressed in
the coordinates of the system OX,X,X;. The position of point A in the absolute
coordinates has the form

r (t) =ro(t) + A(t)p. (5.255)

The transformation matrix is an orthogonal matrix, i.e., AA~! = E. Its elements
are connected with each other through six equations [the sum of squares of elements
in any row (column) is equal to one, and the sum of products of the remaining
elements in the columns (rows) is equal to zero]. Therefore, it has only three
independent elements (Sect. 5.2.2).

In the case of motion about a point, point O’ is fixed, that is, vector ro, = const
(Fig.5.64). Let us take the system OX,X,X; so that it coincides with OX{' X7 XY
at the instant ¢y, which means that r = p (A = E at the instant 7y and ro/(fy) = 0).

—
Next, in the motion about a point vector OA will rotate around the point O = O’.

In the absolute coordinates OX, X, X the position of vector ﬁ is described by
vector A(7)p. Matrix A(¢) is at any time instant an orthogonal matrix, i.e., AAT =
E. In the case of the orthogonal matrix AAT = ATA = E and det(A™!) = det(A)~!.
Moreover, det AT = det A.

Thus we have

det (A) det (AT) = (det (A))* = det (E) = 1.

The motion about a point of a rigid body in the absolute system can be described by
the orthogonal transformation A(¢)p, where det(A) = 1.

Theorem 5.7 (Euler’s theorem). An arbitrary displacement of a rigid body with
one point fixed can be realized through rotation about a certain axis passing through
that point.

Proof. (See Markeev [6])

As was demonstrated earlier, at any time instant the matrix A = A(¢) is an
orthogonal matrix. Let the vector r4 lie on the axis of rotation, i.e., r4 = Ary.
Vector r4 does not change under the action of the matrix A = A(¢). If we take an
arbitrary point A not lying on the axis of rotation, the vector r (1) = Ejxj4(¢) +
E>x24(t)+E3x34(t) rotates in the system OX, X, X,. However, if point A4 lies on the
axis of rotation, the vector r 4 does not rotate. Further, this means that (A — E)ry =
0. That equation possesses the solution if det(A — oE) = f(0) = 0, where o
denotes the eigenvalue of the square matrix A and f(o) is a polynomial of the order
n = 3in 0. For o = 1 we have r4 = Ary, and eigenvector r4 corresponds to
the eigenvalue 0 = 1 of matrix A. The proof boils down to a demonstration that
matrix A possesses the eigenvalue o = 1. O
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Fig. 5.65 Sketch used during
proof of Theorem 5.8

We have
f (1) = det(A —E) = det(AT — E") = det(A™! —E)
= detAdet(A™' —E) = det(A(A™' —E))
= det(E — A) = det(—(A — E))
= det(—E(A —E)) = det(—E) det(A — E)
= (1)’ det(A —E) = — (1),

where the properties AT = A™!, det A = 1, were used successively.

Note that f(1) = —f(1) only if f(1) = 0, which means that ¢ = 1 is the
eigenvalue of matrix A because f(0) = (6 — 1)P,—1(0), where P,_;(c0) is the
polynomial of the ordern — 1 in 0.

Theorem 5.8. The most complex displacement of a rigid body can be decomposed
into translation (an arbitrary pole is subjected to translation from its initial to final
position) and rotation about a certain axis passing through the pole. The direction
and length of translation change depend on the choice of the pole, but the direction
of the rotation axis and the rotation angle are independent of the choice of pole.

Proof. (See Markeev [6])

In Fig.5.65 the absolute coordinate system OX,X,X;, along with two other
coordinate systems O'X[' X)X} and O X] X)X} with origins at two different
poles O” and O, is presented.

The system O'X| X)X} is obtained after the translation of the OX,X,X; by
vector ro-, and the system O X| X} X} is obtained after the translation of OX, X, X,
by vector ro; [the systems denoted by (*) are not shown]. Vectors ro, o/, and ry
(radius vector of point A) have their coordinates in the absolute system. The three
remaining vectors drawn in the figure have coordinates in the coordinate systems
rigidly connected to the body of origins at points O” and Oy’ O
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According to Fig. 5.65 we have
— e m e
ry=ro +AO0jA=rp +A (0”0;’ + ogA)
" " " "
=ror +AO0"0] +A0/A =Ty +AOA,

where the vectors 0”0 and m are given in the coordinates of 0" XX} X
and O X{' X} X} and A is (as previously) the transformation matrix from systems
OX X)X} and O] X|X; X} to systems O” X[ X)X} and O] X{' X5 X} (the same
rotation), which completes the proof.

From the preceding equality it can be seen that the introduction of different poles

O’ and Oj requires different translations ros andro; = ro-+A0” Oy The position
of the rotation axis and the value of the rotation angle are prescribed by matrix A,
which according to Euler’s theorem does not depend on the choice of pole.

It is worth emphasizing that in this case the final position of the rigid body does
not depend on the order in which translation and rotation are carried out.

Theorem 5.9. The most general displacement of a rigid body is a screw displace-
ment.

The proof of this theorem can be found in [6] and is omitted here.
From that theorem follows the next one.

Theorem 5.10. The most general displacement of a plane figure in its plane can be
realized through translation or rotation about a certain point (the center of rotation).

5.5.8 Geometric Interpretation of General Motion
of a Rigid Body

For the purpose of observing the positions of a rigid body in space it is sufficient to
choose its arbitrary three points A, B, and C and connect them to obtain a triangle.
The problem of motion of a rigid body in space reduces to the analysis of motion of
AABC in space.

In Fig.5.66 is shown the position of a rigid body in space at time instant ¢
represented by AABC and the position of the body at time instant #; represented
by AAlB 1 C 1.

At first we perform translation of AABC such that A = A; and obtain
AA|B{C| | AABC. Next, according to Euler’s (rotation) theorem we find axis /
passing through A; and perform rotation with respect to this axis through angle
@1, keeping point A; fixed. Thus, it has been demonstrated that AABC became
coincident with A A} B{C{ at two independent displacements, that is, the translation
of pole A and subsequent rotation about the pole with respect to a certain axis /;
through angle ¢;.
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Fig. 5.66 Displacement of
triangle ABC to the position
Ay B, C, through translation
and rotation (a) and through
rotation and translation (b)

X,

Fig. 5.67 Motion of a rigid body as composition of motion of a pole and spherical motion about
that pole

We will show that the same result can be obtained by the exchange of the
sequence of displacements. First we perform the translation of AA;B;C), taking
point O as a pole, and then we perform rotation through angle ¢, with respect to a
certain axis I, (I = I, 1 = ¢2).

In reality, the motion of a rigid body takes place in such a way that it is possible
to treat it as a composition of two simultaneous motions: the motion of its arbitrary
pole and the simultaneous spherical motion (or motion about a point) with respect
to that pole, which is shown in Fig. 5.67.

The arbitrarily chosen point O’ (the pole) moves on trajectory ¢ r, and its motion
in the stationary system is described by three equations:

X100 = X107 (1), X200 = X207 (1), X300 = X307 (). *)
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Fig. 5.68 Angular velocities
with respect to two poles O
and O, and the position of
point A

0, 0,

The coordinate system O’X|X;X} has during motion axes that are mutually
parallel to the axes of the stationary coordinate system and moves in translational
motion together with the pole O’. The position of a rigid body with respect to the
axes O'X| X} X} is described by three Euler angles, v/ (¢), ¢(t), and 6(¢). First three
equations describe the motion of the pole and depend on the choice of pole; the three
remaining equations describe the motion about a point of a rigid body with respect
to the pole and do not depend on the choice of pole.

The description of this motion is associated with the choice of six independent
coordinates, and therefore a free rigid body has six degrees of freedom.

Theorem 5.11. The vector of angular velocity @ and the vector of angular
acceleration € of a rigid body are independent of the choice of pole.

Proof. Let us choose two poles O; and O, of a rigid body (Fig. 5.68).
Let us choose an arbitrary point of body A and determine its position with respect
to pole O; (O;) by r; (r2). Velocity of this point is equal to

V4 =Vp, + @ Xry,

V4 = Vo, + @2 XTI (5.256)
O
Then,
—
Vo, = Vo, + @ X 0,0,, (5.257)

and substituting into (5.256) we have

—
Vo, + w1 X1 =V, + @1 X 010, + w3 X 12, (5.258)
that is,
—
@ X (r; — 010) = wy X1, (5.259)

which can be rewritten as
(w1 —®2) x12 =0, (5.260)
which means that | = w».
Differentiating (5.260) we obtain
€] = &), (5261)

which completes the proof.



358 5 Kinematics of a Rigid Body and Composite Motion of a Point

The conclusion follows that at the given time instant the instantaneous axis of
rotation is described in the same way for each point of the body. Distinct poles
differ only as to the magnitude of velocity of the translational motion of the pole.

5.5.9 Parallel Translation and Rotation of a Rigid Body
and Homogeneous Transformations

Let us return to the motion of a rigid body whose state at any time instant can
be obtained as a result of parallel translation of the absolute system OX, X, X,
by vector rps and then the rotation realized by means of rotation matrix A to the
position of the body described in the O” X[ X} X} system. The position of point A
is described by (5.255).

The notation in the form of vector (5.255), the matrix (scalar) representation of
the vector equation in the absolute system, is sometimes inconvenient to use, and
the equivalent matrix notation of the following form is introduced:

r;=Ajp;, (5.262)

where A ; is a homogeneous matrix.
Let us note that the newly introduced homogeneous transformation matrix

Arp
Ajusa = [0 ﬂ (5.263)

consists of the following block matrices Asx; (where AAT = Esyx3), det(A) =
1,0 = [0, 0, 0]. Moreover

r
r; = [IAL . op = [’;L . (5.264)
X1 X1

In other words, in (5.263) matrix A is the matrix of transformation through
rotation from (5.255).
The special cases of that matrix are the following matrices:

1. Homogeneous transformation matrix of rotation

ROT(l, ¢) = [‘/’g’ ) ‘ﬂ. (5.265)

2. Homogeneous transformation matrix of translation

TRANS(ro/) = [13 rﬂ . (5.266)
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Let us calculate the inverse of matrix (5.263). According to the definition we have

A11 A12 A ro/ E OT
= , 5.267
|:A21 Azj [0 1 } [0 1 ( )
and after multiplication we obtain

(5.268)

5.5.10 Kinematic States of a Rigid Body

In general, during the motion of a rigid body the velocities and accelerations of its
points change and are usually different for different points.

If at a certain time instant the velocities of all points of the rigid body are the
same and equal to v, we say that the rigid body is in instantaneous translational
motion with velocity v (if v = 0, then the body is instantaneously at rest). During
instantaneous rest the accelerations of the points of the body do not have to be equal
to zero.

If at a certain time instant there exist points lying on the line of zero velocities,
we say that the rigid body is in instantaneous rotation about that line, and that line
is called the instantaneous axis of rotation.

In general, the instantaneous axis of rotation at different time instants can assume
various positions in the absolute coordinate system as well as in the body system.

A body at a given time instant may participate simultaneously in two instanta-
neous motions, i.e., in translational motion with respect to an axis and in rotational
motion about that axis. In that case we say that the body performs instantaneous
screw motion.

5.5.11 Velocity and Acceleration in Translational Motion

The object of interest of our previous discussions was the displacements of a rigid
body from its initial to final position without taking into account the velocities and
accelerations. In other words, the action of the researcher (subject) takes the rigid
body to the final state. In reality the object under investigation (the rigid body)
passes from the initial state to the final state in time, and in this case all the points
of the body possess velocities and accelerations, which usually undergo change at
every time instant.

We will call the motion of a rigid body in a given time interval (t1, t;)
translational motion if for any time instants ¢ and ¢} the body, taken from this time
interval, can be guided from state ¢; to #5 by means of translational displacement.
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An elevator (rectilinear trajectory) or a car in an amusement park (the trajectory
of motion is a circle) connected to a uniformly rotating “big wheel” moves in
translational motion.

If during the translation of a rigid body its two arbitrary points A; and A, have
equal free vectors of displacement Ary4, and Ar 4,, then during translational motion
all points of the rigid body have identical velocities and accelerations. Therefore,
the use of the notions of velocity and acceleration of translational motion of a body
is justified. Those notions have no meaning in the case of other motions of a rigid
body because then the body’s points have different velocities and accelerations.

5.5.12 Velocity and Acceleration in Motion About a Point

Let us now move to determining the velocity and acceleration in motion about a
point, where we assume that one point of a rigid body is fixed. In Fig. 5.53 let this
point be point A,, i.e., r, = 0 and A, = 0, which means that the origin of the space
coordinate system is situated at point A, associated with the rigid body (also, the
non-stationary coordinate system is rigidly connected to the body), which is shown
in Fig.5.64. Vector @ lies on the instantaneous axis of rotation, and the position
of an arbitrary point A of a rigid body in a stationary (non-stationary) system is
described by the position vector r = r’.

The velocity of point A4 is obtained from (5.173) for r, = 0. In the stationary and
non-stationary systems it is respectively equal to

v

V= xr. (5.269)

® XT,

Let us assume that the angular velocity vector possesses the following compo-
nents in the stationary and non-stationary systems:

© = 0 E| + 0 E; + 03E; = 0/ E| + 0)E), + 0jE;. (5.270)
Similarly, the radius vector of point A
r = rE; + nE + rE; = rE| + riE), + riE}, (5.271)

where E! = E!(¢) because for every time instant during the motion of the body the
position of these unit vectors changes.

The scalar quantities r] are constant, and the magnitude of vector |r| remains
unchanged, but its direction changes in time, which is expressed by the relationship
E; = E(t). Although both vectors describing the position of point A are equal
(r =r ), in general ry # r{, r» # rj, and r3 # rj because we have different bases
E, and E (i = 1,2,3), and we pass from the system OX,X,X; to O'X{X},X}
using the rotation matrix.
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The velocity of point A in the coordinate system {E/, E}, E}} is equal to

ar’ . . .
vV = d—l; =rE; + rE; + r;E;. (5.272)

Then
E, =0 xE, (5.273)

and in view of that we obtain
E,oE| =E,o0 (wxE}) =0 oE| xE, = w - E} = 0},
EjoE,=Ejo (0w xE)) =woE,xE; =0 -E| = 0],
E oE;=E|o(wxE}) =woE, xE| = -E}, = 0}, (5.274)
where the so-called cyclic permutation of factors was applied, i.e., a ob x ¢ =

bocxa =coaxb.
From (5.273) we obtain

E| = 0] o) 0|, E),=|o] o)}, Ej=|o )i, (5.275)
1 00 010 0 01

that is,
E’1 = E\0} — B0},
E) = —E0; + B0,
E, = E|0} — E,o). (5.276)
Substituting (5.276) into (5.272) we obtain
vV =1} (B0} — Ejw)) + 15 (-Ejw; + Ejo))
+ 13 (B0 — Ejo}) = E| (=05 + rj0;)
+E, (rfa)é —rjo)) + E} (—r{a)é + rjw). (5.277)
Then, according to (5.269), we have
/ E/l E/Z Eg i ’ ! 7! i /N ! ! ! / !
V' = o] o) | = E| (0315 — 0ir;) + B (r{o) — o1r3) + E; (015 = r{w)) .

ryryr;
(5.278)
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It can be seen that (5.277) and (5.278) are the same, which means that vector @
in the non-stationary system has coordinates w{, w5, and w}.
In the case of the stationary system according to (5.271) we have

r=v=rE +~”E + i3E;. (5.279)

According to (5.269) we have

E, E, E;
V= |w w w3 =E (w2r3 - 6037‘2) + E, (r1w3 — w1r3) + E; (0)17‘2 — a)zrl) .
ry . r3
(5.280)
Comparing (5.279) with (5.280) we obtain
VI = F| = war3 — w3l,
Vo = iy = w3l — w113,
V3 Ei‘3 = w1rp — wyry, (5281)
where clearly
3
v=> vk, (5.282)

i=1

and this equation is identical with (5.279).

As was mentioned earlier, for every time instant there exist infinitely many points
of arigid body lying on the instantaneous axis of rotation whose velocities are equal
to zero.

If the position of the instantaneous axis of angular velocity and the velocity of
an arbitrary point of the body v4 not lying on this axis are known, then v = v4/d,
where d is the distance of the point from the axis.

According to (5.209), in the non-stationary system for points lying on the
instantaneous rotation axis we obtain

o' xr =0, (5.283)

which indicates that vectors @’ and r’ are parallel.
In view of that they can be expressed by the relationship

r =o', (5.284)

where o’ is a scalar.
From (5.284) it follows that

ri=o'w. (5.285)
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Fig. 5.69 Angular velocity
 of a body in motion about a
point, velocity v of an
arbitrary point A, and the
Cartesian coordinate systems
of space OX, X, X3 and body
O'X/X}X!

instantaneous

axis of rotation
X
In turn from (5.278) and (5.285) we obtain
Gon L n n_n (5.286)

!’ !’
W W W3

Similar calculations conducted for the stationary system lead to the relationship

n_n_»=n_., (5.288)
(] wy w3

where o is a parameter (scalar) assuming real values.

Equations (5.287) describe the instantaneous rotation axis in a non-stationary
coordinate system, whereas (5.288) describe it in a stationary coordinate system.

If the vector of angular velocity of a rigid body @ is known, then according to
Fig.5.69 the velocity of an arbitrary point of the rigid body is described by (5.269).

Let us consider the motion about a point of point A situated at a distance r from
the origin of the coordinate system, i.e., from the center O of the motion about
a point. The path of point A is located on the surface of a ball of radius r. The
position of the instantaneous axes of rotation in the body and space coordinate
systems varies in time, but all the axes must always pass through the center of
motion about a point. Instantaneous axes of rotation intersect a sphere of radius
r at certain points. Sets of these points in the body and space coordinate systems
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space centrode
(ml'orhmphm)

Fig. 5.70 Axodes and centrodes associated with motion of point A

constitute the trajectories of motion of point A respectively in the body and space
coordinate systems. Point A belongs simultaneously to both trajectories at the
given time instant. The lines passing through points A and O at the time instants
to, 11, t2, . .. form the surface called the stationary cone of instantaneous axes (fixed
axode) in the space coordinate system and the surface called the moving cone of
instantaneous axes (moving axode) in the body coordinate system (Fig. 5.70).

The path of point A4 lies on a sphere and is described by the curve called the body
centrode (non-stationary) in the body coordinate system (non-stationary). These
curves are in contact at point A since it belongs simultaneously to both of them.
The motion about a point can be illustratively represented as the rolling of a moving
axode on a fixed axode. Both axodes have contact along the generating line, which
is the instantaneous axis of rotation, and do not slide with respect to one another.
The hodograph of vector @ lies on the fixed axode. Because ¢ = w, the angular
acceleration is tangent to the space centrode, and it does not necessarily have to lie
on the axis of vector @. Moving and fixed axodes can be non-closed surfaces.
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Analysis of the acceleration of the particle will be performed based on (5.174),
from which we obtain

a=ap + a., (5.289)

where
Q) =@ XIr =§€ XT, (5.290)
a. = X (0w Xr), (5.291)

and it was assumed thatr = ry andr, = 0.

In the preceding formulas, ap is the component of acceleration of the body point
in motion about a point called the rotational acceleration. Vector a,; represents
the centripetal acceleration, also called the axial acceleration, directed toward the
instantaneous axis of rotation.

Let us resolve the angular acceleration & (Fig.5.70) into two components, &
and &,. Because w = @w, we have ¢ = ® = w® + ow = €1 + &,. Vector
€ characterizes the change in the magnitude of angular velocity and vector &, the
change in the direction of angular velocity. Moreover, vector & is directed along
the instantaneous axis of rotation, whereas vector &, is perpendicular to it. If the
instantaneous axis of rotation of the body in motion about a point rotates about
point O with velocity 2, then &, = £ X @.

Recall that for three arbitrary vectors the following relation holds true: a; x (a; x
a3) = ay(a; oaz) —asz(a; oay). Applying the preceding formula to (5.291) we obtain

a, = w(wor) —wr. (5.292)

Bearing in mind that we associated the instantaneous axis of rotation with unit
vector @, that is, ® = ®@w, from (5.292) we obtain

a, = w’d, (5.293)

where
d=®@-r)—r. (5.294)

Vectord L ® and is directed toward the instantaneous axis of rotation (Fig. 5.71).
In turn, ® o r is the projection of vector r onto the instantaneous axis of rotation.
From Fig.5.71 it can be seen that the rotational acceleration € is associated with
the rotation of vector r about the instantaneous axis of rotation and ap L r. The
centripetal acceleration is perpendicular to the instantaneous axis of rotation @. It
should be emphasized that the quantity @ is not a result of differentiation of a certain
angle «(¢) because there exists no such axis of rotation of a rigid body about which
the rotation through angle o would take place.

Finally, let us emphasize a certain analogy between centripetal acceleration
and normal acceleration, and between rotational acceleration and tangential ac-
celeration, of a point in curvilinear motion. Only in special cases does rotational
acceleration coincide with tangential acceleration, and centripetal acceleration with
acceleration normal to the path of a point.
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Fig. 5.71 Rotational
acceleration ap, centripetal
acceleration a,, and the
resultant acceleration of
point A in motion about a
point of a rigid body

If the vector of acceleration a4 = a is known, then we can project it directly onto
the axes of the stationary and non-stationary systems:

3 3
a=)Y ak =) aE. (5.295)

i=1 i=1

The components of acceleration in the space (body) system will be obtained
through scalar multiplication of (5.295) respectively by E, E,, E3 (E|, Ej, E).
Let us write the result in matrix form:

aj ar ap aps a;
— I

a | = | dr an»n ans a |- (5.296)
I
as asi asp ass as

From (5.296) it follows that if the components of acceleration in the body
coordinate system (non-stationary) aj, aj, a’3 are known, then through coefficients
a;; we can calculate the acceleration components in the space coordinate system aj,
aj, as. According to (5.296) we obtain the relationships between the unit vectors in
the stationary and non-stationary coordinate systems of the form

E; = anE| + anE) + a;3E;,
E; = ayE| + anE, + anE],
E; = a3 E| + anE), + anE], (5.297)
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where a;; denotes the cosines of the angles formed by the axis X; of the stationary
system with the axis X ; of the non-stationary system. Let us recall that the following
relationships are valid for the direction cosines:

afy +af, +aiy = 1,

a3 +ak, + a3 =1,

agz,l + agz + a?2)3 = la

anaz + apaxn + apaz =0,

anas + apaxn + apas =0,

ar1as1 + axnasz + axsazz = 0. (5.298)

Therefore we can choose three arbitrary independent angles between the coordi-
nate axes. The remaining six cosines of the direction angles should be determined
from (5.298).

According to (5.290) the rotational acceleration is expressed by

E E,E,| [EEE;
a0 = |o] &) @ = |1 @ @3, (5.299)
ryryr; r1 Ty 13

from which we obtain

a0 = B} (a4 — o4rd) + B (@41 — 6ir!) + B4 (o} — oirf)

= Ei (02r3 — d312) + Es (0311 — 173) + E3 (0172 — wary) . (5.300)

We will calculate the centripetal acceleration using (5.292). But first, let us note
that

®or = wr + wry + w3rs = 01| + wyry + wir;. (5.301)

Finally, according to (5.292) we obtain

a. = [wi (0171 + w22 + w3r3) — 0’11 | E
+ [0 (@171 + o2 + w373) — 0’12 | Es
+ [@3 (@171 + @212 + w3r3) — 0?13 Es

— [} (0}r] + atrd + 0lrd) — ?r ] B
+ [0} (0]r] + wir} + &4r}) — 0?1} E)

+ [0} (0]r] + whr} + &4r}) — *r}] E. (5.302)
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Fig. 5.72 Systems of “X;FX;
absolute coordinates

0X, X, X3 and of coordinates +
rigidly connected to a body

O'X X)X}

Resolving vectors ap and a, into components in the non-stationary and stationary
systems, we will obtain easily the projections of this acceleration in terms of w;, r;
and w as well as ], r] and w.

5.5.13 Velocities and Accelerations in Body Motion
About a Fixed Axis

Let us take two fixed points O and A, of a rigid body, which determine the rotation
axis of this body (Fig.5.72).

The position of the body with respect to the absolute coordinate system is traced
by the angle ¢(¢) between the OX; and O’X| axes. Any point of the body (let us
take point A) not lying on the rotation axis (this axis is collinear with the axes
OX;3 and O’X}) moves along the circle in the plane passing through that point
and perpendicular to the rotation axis. Let the radius vector p, = ﬁ have the
coordinates given in the body system (i.e., the system rigidly connected to the body).

According to the previous calculations vector r4 expressed in the coordinates

OX,X,X; will be calculated through vector OA expressed in the coordinates
O'X| X, X} using the transformation matrix A according to equation

cosg —sing 0
r=ry=Ap, A= |sing cosgp O]. (5.303)
0 0 1

Differentiating (5.303) with respect to time we obtain
v=i=Ap+Ap=Ap=AA""r (5.304)

because p = 0.
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Fig. 5.73 Kinematics of a
point in motion of a rigid
body about a fixed axis

0 0 0
w=|0|, e=0o=[0]|, AA' =9
¢ ¢ 0

0
0]. (5.305)
0

The reader is advised to derive the last relationship of (5.305).

From the obtained results it is possible to conclude that vector @ lies on the axis
of rotation (w = ¢E3). The angular acceleration vector also lies on the rotation axis,
but its sense is in agreement with the sense of @ if ¢¢ > 0, and the rotation of a
rigid body is accelerated in this case. If ¢¢ < 0, then the rotation is decelerated, and
the senses of vectors @ and ffl are opposite.

The velocity of an arbitrary point not lying on the rotation axis

V= XT, (5.3006)

and because generally vector v lies in a plane perpendicular to the rotation axis, the
magnitude of velocity is v = |¢|d, where d is the radius of the circle along which
point A moves (Fig.5.73).

Differentiating the preceding equation with respect to time we obtain the
following acceleration of point A4:

Aa=@ Xr+wxr=ap + a,, (5.307)
where ap = € X r is the rotational acceleration and a, = ® X v is the centripetal

acceleration.
The magnitudes of these accelerations are equal to

lag| = ed, |a/| =ow’d, |a|=dve+ ot (5.308)
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5.5.14 Velocities of a Point of a Rigid Body in Various
Coordinate Systems

According to the homogeneous transformation (5.262) introduced earlier, the tip of
homogeneous position vector r;(¢) determines the trajectory of motion of point A
through the homogeneous transformation matrix of displacement A ; () described
by relationship (5.263).

Based on the calculations of Sect.5.5.9, we can introduce the notion of the
homogeneous transformation matrix of the velocity of point A of a rigid body in
the space coordinate system of the form

dAj (1)
dr

vor(t) = A7), (5.309)

where the subscript indicates that matrix v/ describes the velocity of the system
O'X| XX} with respect to the system OX | X, X;.
According to (5.263) and (5.268), from (5.309) we have

v, - A o [AT  —ATry
““lo o]lo 1
_ [AAT i'o/ — AATI'O/:| . |:.!2 o’ Vor — 2 o'Yo’

0 0 . . } . (5310

where (5.232) was used, and o/ = v’ was assumed.

Recall that angular velocity matrix £2 described by relationship (5.232) enables
us to determine the angular velocity of rotational motion of a rigid body since
according to (5.171) we have

2(w)r=w Xr. (5.311)

If we use matrix (5.232) on the left-hand side of the preceding equation, it takes
the form

0 —w3 Wy ry E1 Ez E3
[El E2 E}] w3 0 —w1 ry | = W wr w3 . (5312)
—Wwy Wi 0 rs ry r rs

The left-hand side of (5.312) has the form

—w3T + war3 Ei E, E;
[El E2 E3] w3ry — w13 = |1 () w3, (5313)
—wary + w1 .o rn

which proves relationship (5.311).
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The velocity matrix described by relationship (5.310) contains a non-zero block
describing the angular velocity matrix §2 o/ of motion of the system O” X{' X7 XY
with respect to OX, X, X5, and from relationship (5.311) we can also determine the
angular velocity vector of the rotational motion of the rigid body.

From Fig. 5.64 it follows that

ry =Ap+rop. (5.314)

This means that knowing the coordinates of point A in the coordinate system
O0"X{' X)X} given by radius vector p we can determine the radius vector of that
point in the system OX, X, X;. Conversely, knowing the position of point A in the
system OX, X, X, from the preceding equation we can determine the position of
point 4 in the system O” X X4 X4 Premultiplying (5.314) by AT we obtain

p=AT(@r,—ro). (5.315)

We determine the velocity of point A4 in the system OX, X, X, by differentiating,
with respect to time, relationship (5.314), obtaining

Vi=tg=Ap+Ap+ o
=vo +S(wo)p + Ap
=vo +w xAp+Ap
=vo +w X (rg—ro)+ Ap
— Vo +® x OA + Ap, (5.316)

where relationships (5.231) and (5.311) for operator 2 = S and (5.314) were used.
From relationship (5.316) we read that the velocity of point 4 in the system
0X,X,X, is equal to the sum of the velocity vector of point O" with respect to

point O, vector @ o7 X ﬁ (vector ﬁ is expressed in the coordinates OX| X, X),
and vector Ap.

If the vector p = const, then it is easy to determine the velocity of point A in the
system O” X[ X) XY, which is equal to

Vi=vy +o" xp. (5.317)
We will now show that the preceding equation can be obtained from (5.316) if
we assume p = 0.
Let us premultiply (5.316) by AT obtaining
ATvy=ATvp + AT (w X ﬁ)
= ATvy + (ATw) x (ATﬁ) , (5.318)

where the relationship Q(a; x a;) = (Qa;) x (Qa,) was used.
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An arbitrary vector including a vector denoting displacement, velocity, or
acceleration is transformed from one system to another through the transformation
matrix, in this case the rotation matrix.

Let vector a be expressed in the system OX,X,X;. Then vector a = Aa”, and
a” is expressed in the system O” XX} X}. In view of that, a” = ATa = Ala,
which implies that (5.315) is written in the system O” X' X} X} in the form

—
V= V/(/)/ +w” x 04, (5.319)

— —
which is in agreement with (5.317), because OA” is vector OA expressed in the
system O" X[ X} X} .
The same vector of angular velocity can be expressed in the space system as @
and in the body system as @”. Recall that according to (5.163) we have

2(w) = AAT, (5.320)
and postmultiplying the preceding equation by A’" and premultiplying by A’ we
obtain

A'2(@)A" = A(AADHAT = ATA, (5.321)

because as it has been shown A’ = AT,
We will show that for an arbitrary matrix function §2 (@) and for any rotation
matrix A’ ; the following relationship holds true:

AR A" = 2(A o). (5.322)

Let us examine the action of the left-hand side of equality (5.322) on an arbitrary
vector a. We have

AR @)A"a = A' (0 x (A'a)) = (4'0) x (A'A""a)
=(Aw)xa=2 (Aw)a, (5.323)

where relationship (5.311) was used.
From (5.321) and (5.323) we have

2 (0") = ATA, (5.324)

where 0" = A'w.

The obtained value of the matrix of velocity of rotational motion of the rigid
body £ (w”) is expressed in the system O” X[ X)X}, whereas 2 (@), described
by (5.320), is expressed in the system OX, X, X;.

The relationship between these matrices can be easily determined based on
(5.320) and (5.324). From (5.324) we have

A=AL2 (o), (5.325)
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and from (5.320) we have
A = 2(w)A, (5.326)

hence

2 (0") =AT2(w)A. (5.327)

5.5.15 Regular Precession of a Rigid Body

Let us return to the motion about a point of a rigid body presented in Fig.5.60.
Regular precession takes place when ©® = 0 (® = ©, = const), and the body
rotates about the spin axis X;” with angular speed ¢ = const, and this axis, in turn,
rotates about the axis X} with angular speed = const. The angle between the X}’
and X} axes equals ®, and we call the motion of the body in this case precession.

According to (5.243) we have

0= \/ U2 4 2 4 2¥g cos Oy, (5.328)
and the resultant vector of the angular velocity of the rigid body reads
w=WV+¢. (5.329)

We determine the projections of this resultant angular velocity onto the axes of
the stationary and non-stationary coordinate systems by expressing the same vector
® in the coordinates of those two systems, namely,

© = 0 E + 0By + w3E; = WE, + ¢E;. (5.330)
Multiplying this equation successively by E;, E,, and E; we obtain
w) = YE,oE; + ¢E; o E; = VE; o E,
+ ¢ [—(—sin WE, + cos WE,) sin @) + E; cos @] o E;
= ¢> sin G sin lf/t,
w) = WE, 0By + ¢E} o Ey = WE;3 0 Ey + ¢ [ cos ¥ sin OE;] o E;
= —¢3 sin ® cos lf/t,

w3 = WE; o B3 + ¢} o E3 = W + ¢ cos O, (5.331)

where in the preceding transformations the scalar multiplication of the vectors was
conducted using (5.204)—(5.206).
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In order to determine the components of vector @ in the non-stationary coordi-
nate system let us use (5.242), from which we obtain

o)’ = W¥sin O sin ¢1,
wy' = Wsin O cos @1,

Wl = W cos Oy + . (5.332)

The instantaneous axes of rotation in the non-stationary and stationary systems
will be obtained from (5.287) and (5.288) as well as from (5.331) and (5.332). They
are described by the equations

" " "
A ) 3

¥ sin O sin ¢t ~ Wsin O cos ¢t B é+WcosOy
r B r B r3
¢ sin O sin ¥t ¢ sin O cos ¥t ¥ + ¢ cos O '

(5.333)

(5.334)

where (r{”, ry’, r}’) and (ry, r», r3) are coordinates of a point respectively in the

non-stationary and stationary system.
From (5.334) we obtain

ri ry c 24
- 5 = — - 5 sin” Y1, (5.335)
(¢ sin ©y) (¥ + ¢ cos &)

2 2
B '3 S cos? . (5.336)

(¢ sin @0)2 (¥ + ¢ cos Op)

Adding by sides (5.335) and (5.336) we obtain the equation of fixed axode of the
form

2 2 2
ot 3

e = . (5.337)
¢?sin> Oy (¥ + ¢ cos @0)2

Similarly, we proceed with (5.333) obtaining

my2 my2
: ") = — (,r3 ) _sin? g, (5.338)

(¥ sin ©y) (¢ + W cos ©)

m\2 m\2

(1‘2 ) — (I‘3 ) COSZ (].51‘. (5339)

(¥ sin @0)2 (¢ + ¥ cos @0)2
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Fig. 5.74 Cone of a circular base and symmetry axis OX}” (moving axode) rolls without sliding

on a cone of symmetry axis OX} (fixed axode)

Adding by sides (5.338) and (5.339) we obtain the equation of moving axode of
the form

WP
¥2sin O (¢ + W cos @0)2

(5.340)

The moving and fixed axodes are the cones of a circular base, as shown in
Fig.5.74.

Angular velocity vector w rotates about the OX} axis with angular speed ¥, and
its magnitude is constant [see (5.328)].

The angles y; and y, can be determined from relationships (5.337) and (5.340):

o
tany; = (ﬂ) __$sin® (5.341)
3 ),=0 ¥+ ¢cos®y

" l[/ in®
tany, = (%) e (5.342)
r3 Nz’”:o (,b + Y cos @0
We determine the angular acceleration from the equation

a>=q'pxw=q'/x(q'>+s'p)=q'px¢, (5.343)
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and its magnitude reads
& = ¥¢sin 6. (5.344)

If the angle between ¢ and v/ is an obtuse angle, the motion is called a retrograde
precession.

Example 5.4. The motion about a point of a rigid body was described by Eulerian
angles of the form ¢ = ¢o + ¢1, ¥ = Yo + Y1, and @ = 6y + Or. Determine the
angular velocity @ and the angular acceleration & of a body and the acceleration of
point A(xy, x2, x3). Additionally, determine the equations of the moving and fixed
axodes. Solve the problem for the following two cases:

) ¢o=0.Y0=7F.00=7F.¢=759=7%0=0 400xx):
(i) ¢o= 3. v =0,00=7%,¢=—7m,¢ = 7,0 =0, A(x10, 0, x30).

In the considered case we are dealing with the regular precession (0 = 0), so for
the solution we will use (5.246) and (5.280).

First, let us calculate the components of the angular velocity in a stationary
coordinate system. From (5.246) we obtain

o = ¢ sin Oy sin Y1 = il sinz sin (—z)t - sin zt
! 0 47 4 6 42 6
(ii) LT T 3n . ow
W, = -—msin—sin—~f = — sin —1,
3 2 2 2
wéi) = —<;3 sin 6y cos 1/}t =T cos —t,
42 6
(i) \/§7t T
w, = cos —f,
2 2
: . . T 7w b4
w§1)=w+¢00590=—g+zcosz
2 1
_r,r (2! = (3v2-4),
6 442 2\ 4 3 24
ii T T
wi)z——ncos—zO.
: 2 3

According to (5.280) the velocity of an arbitrary point A not lying on the rotation
axis is equal to

E, E; E;
V=0 XTIy = |0 0 W3
X1 X2 X3

= E| (w2x3 — 03x2) + Ez (w3x1 — w1x3) + E3 (012 — w2x1) ,
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that is, the velocity components for point A are equal to
VI = X3 —W3X2, V2 = W3X] —W1X3, V3 = W1X2 — WaX]. (%)

The components of velocity for the considered cases are equal to

3«/5 b
W = 0D — Pl = —xy cos 1,
(”) T b
=X cos —t ,
30 )
W= 0%V — Dx = x3 sin —1,
8 6
(ii) T :
V. =X sin —f,
2 30 )
vg) _ w(t)x(t) éi)xii) =0,
(ii) JT«/§ b/
V3 = —X10 cosS Et.

Differentiation of velocity with respect to time allows us to determine the
acceleration components of point A, which are equal to

2 2
) (z) V2 o (i) _ -(ii) 4 . T
a, = =X sin —f, a =V = —X sin —1,
! T 6 ! ! 0 2
2
(i) (z) T (i) _ (u) T ﬂ T
a,’ = =X cos —1, a =X cos —1,
2 T 6 2 0Ty 2
2
. ) .o . . jr .
agl) =) =0, ag”) = Vg”) = X10 sin 31.

The results obtained lead to the determination of the angular velocity of the body:

\/a)(z)Z (1)2 ;i)z

1

7 . w2 n* ;2
T osinZt + T cosZt + L (—4+3
[32‘““6 TR %% +576( * “/_)}

n i+(4L\/_=—\/18+ 4+3f)

32 576

%\/18+ 16+18—24v2 = 2y/52-24v2
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%VB—&@

1
(i) 372 . 7w 2 3x? T 2\? 73
w =|——sin—ft + ——cos—t¢ = —,
4 4 2

2

and subsequently also its angular acceleration

— J2 L 24
&=y +w; + w3.

In the considered cases we have

) 72 T 7r2\/§

W, =— cos—1, ol =— cos —t
! 242 6 ! 4 2
() o7 i) V3 ow
w, =———=sin—t, o, =-— sin —t¢,
242 6 4 2
o =0, ol =0,

that is,

7’ i T3
. & = —.
242 4

We calculate the acceleration of point A from the equation

— 202452
a=/vi+v;+v3.

We will now show how to determine the fixed axode taking into account
point A°(x1, x», x3) on the instantaneous axis of rotation. All the points lying on the
instantaneous axis of rotation have a velocity equal to zero, that is, from equation
(*) we obtain

) —

wyXx3 — w3xy = 0, w3x1 —wix3 =0, w1Xy — wyx1 =0,

where x|, x», and x3 are the coordinates of point A°. From those equations we obtain

X2 ) X1 w1 X1 w1

s ’ s

X3 w3 X3 w3 X2 w2

from which also result (5.283), derived earlier.
In the considered case (i) we then have

X2 3 T X1 3 .o X1 g
os —f1, — = ———sin —{, — = tan —t.
6 X3 2J2-3 6 X2 6

—F—— C
X3 242-3
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From the preceding equations we obtain

() () - Ga=s)

and after transformation

3 2
2 2 2
xXi+x;3—|——] x5 =0.
! 2 (2\/5—3) ’

The preceding equation (fixed axode) describes a circular cone whose opening

angle is equal to 2y, where tany; = 3_§ﬁ, and its axis coincides with the OX3

axis.

In order to determine the equation of the moving axode one should determine the
components of the angular velocity in the non-stationary coordinate system. A point
lying on the instantaneous axis of rotation satisfies the equations

" n " " " n

X2 _ 9 Mo @ X9
mo "> nmo " "o ">
X3 s X3 ws X w,
where
/" = sin O sin ¢t T sin Z sin 2t sin ¢
= 0 = —— — — = — —I1,
! 6 4 4 62 4
. . b1 b4
@y = Y sin 6 cos pr = ———— cos —1,
62 4
" H A T /4 T T T
w; =ycosth+¢=——cos—+ — =— —

6 4 4 4 62
AR 1 _n(3‘/§_2)
_5[5_ﬁ}_56—ﬁ

From the preceding equations we obtain

:;—4(6—%/5):1”—2(3—«/5).

X (3\/§ + 2) T X" (3«/§ + 2) T

- = -~ gin —t¢, = ———>—C0S — 1,

xy’ 21 4 xy! 21 4

xy’ 12 T 2 T
= coS —f = ——  C0S — 1,

b4
W 6V2x(3-v2) 4 3(3v2-2) ¢
and hence we obtain the equation of a moving axode

24342

<x;")2+<x;")2—( N )<x;")2=o.



380 5 Kinematics of a Rigid Body and Composite Motion of a Point

Fig. 5.75 Motion of moving
axode on fixed axode for
case (i)

The equation of a moving axode describes the cone of opening angle 2y,, where
tany, = 2+231 7

The motion of a moving axode on a fixed axode for case (i) is shown in Fig. 5.75.

At the end of this example we will consider rolling without sliding of a moving
axode on a fixed axode for case (ii).

In this case we have a)g”) = 0, so the fixed axode is the plane OXX>, and the
instantaneous axis of rotation lies in that plane. Let us derive, then, the equation of
a moving axode. We calculate successively

xé// wé// (2 + 3«/5) T

= == =————"2cos—t
1 " ’
X3 w; 7 4
xi” wi” (2 =+ 3«/5) ) ”t
— =—=———— "’ g§in—1,
P 7 7

and hence we find the equation of a body cone of the form

(2+3ﬁ)

() + ()~ L () =0

The motion of a cone describing a moving axode on a fixed axode (the plane
0X,X>) is shown in Fig. 5.76. O
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Fig. 5.76 Motion of moving X A
axode on fixed axode for ¢
case (ii)

5.5.16 Screw Motion

The screw motion of a point was considered in Chap.4. Now we will consider
the screw motion of a rigid body. This motion is a composite motion because the
rigid body moves in translational motion along a fixed line with velocity vs, with
simultaneous rotation about that axis described by vector @ (Fig.5.77). Vectors @
and vy lie on one axis called the wrench axis.

Motion along the X3 axis is described by the position of point A of coordinate
x3 = s, and the rotation of the body is characterized by angle 1. Let us introduce
the parameter of the screw motion in the following way:

ds dr d
A=Yy _ds d_ds (5.345)
® w dt dy dy

From (5.345) after integration we obtain

2]
s = /Adl/f =AY, (5.346)
0
on the assumption that A is a constant.
If v varies from zero to 27, then
s=p =212, (5.347)

where p is called the pitch of screw motion.
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Fig. 5.77 Screw motion of a
rigid body

Using the relationships introduced earlier for the velocity in a cylindrical
coordinate system [see (4.195)] we obtain

r=v=re + rzl}e,/, + zE3 = roey + v»E;. (5.348)

Because E3 L ey, we have

v=/r2w? 42, (5.349)

and taking into account (5.345) we obtain

v=wVr?+ A2, (5.350)

From Fig. 5.77 it follows that

N | >

tana = > = (5.351)
rw
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Let us note that for all points lying on a cylindrical surface of radius r the angle
o = const, that is, the path of point A permanently forms a constant angle with
the plane perpendicular to the axis of rotation. From the figure it follows that the
projections of velocities of all points of a rigid body onto a wrench axis are equal.

5.5.17 Geometrical Interpretation of Velocity and Acceleration
of a Point of a Rigid Body in General Motion

In previous sections we conducted analyses of special cases of the motion of a rigid
body, i.e., motion about a point, planar motion, screw motion. Now we will take up
a more detailed analysis of the general motion of a rigid body (with emphasis on the
geometrical interpretation of such motion).

In order to determine the velocity and acceleration of an arbitrary point of a body
with the aid of the vector calculus we will proceed in such a way that is analogous
to that described earlier in our analysis of the planar motion of a rigid body.

According to Fig. 5.78 we have

ri=ro +1’, (5.352)

and the relationships between the unit vectors in the non-stationary and stationary
coordinate systems are given by (5.297), where a;; denote the cosines of the angles
respectively between the unit vectors E;, E», E; and E{, EJ, E] (i indices are
associated with the unit vectors E; and j with E’j/), ie.,a;; = E; oE’jT, i,j=123.
Observe that earlier we introduced vector p = r”.

From (5.352) it follows that

X1E1 + x2E; + x3E3 = x100E; + x20'Ez + x30/E3 + Xi/E/l/ + xé’E/Z’ + xé’Eg/,
(5.353)
where (x1, X2, x3) denote the coordinates of point A in the stationary coordinate
system OX, X, X5; (X107, X207, X30) denote the coordinates of point O’ in the same
system; and (x{, x5, x{') denote the coordinates of point A in the moving coordinate
system O" X[ X X} .
We will obtain the coordinates namely, of point A in a stationary coordinate
system, multiplying (5.353) successively by E;, E,, E3, are gets.
X1 = X10’ + Xi/ (Ell/ o E]) + x;’ (EIZ/ o El) —+ X3 (Eg o El) s
X2 = x20r + x| (Ef 0 Bp) + x7 (E5 0 Ep) + x3 (Ej 0 ) ,
X3 = X307 + Xi/ (Ell/ o E3) + Xg (E/Z/ o E3) + X3 (Eg o E3) s (5.354)
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x;i'

Ky

r

X,

Fig. 5.78 Position of point A in non-stationary and stationary coordinate systems and its velocity
V4=V

and taking into account (5.297) we have

X1 X10’ ap diz aiz X1

Xo | = | X20 | + | @ an ax | | XY |, (5.355)
1

X3 X307 asy az as_| | x5

which is the expanded form of the symbolic matrix notation (5.255).
We will obtain the coordinates of point A in a non-stationary coordinate system
from (5.353) after multiplying it successively by E/, E7, E}:

x{/E/l’—f-x;’ /2/+X§/ /3/ = (x1 — x10) E1+(x2 — x207) E2+(x3 — x307) E3, (5.356)
that is,

xi’ = (x1 — Xx107) (El o Ell/) + (x2 — x207) (Ez o Ell/) + (x3 — x307) (E3 ° E/l/) )
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x5 = (x1 —x107) (E1 0 E)) + (x2 — x207) (E2 0 E}) + (x3 — x30/) (E3 0 EJ) ,
x§ = (x1 —x107) (E1 0 Ef) + (x2 — x20/) (E2 0 E}) + (x3 — x30/) (E3 0 EY)

(5.357)
and taking into account (5.237) we have

x{ = ap (x1 — x107) + az (x2 — x207) + az (x3 — x307)

Xy = ap (X1 — x107) + an (x2 — x207) + az (x3 — x307)

x3 = a3 (x1 = x107) + a3 (x2 — X207) + @33 (x3 — x307) . (5.358)

Let us note that the coefficients a ;;, which appear in (5.358) are obtained through
the transposition of matrix [a;;].

We call matrix [a;;] orthogonal (Chap. 4) because the sum of the squares of the
elements in the rows is equal to one, the sum of the products of the remaining
elements of the rows (three combinations) is equal to zero [see (5.298)], and the
linear transformations (5.355) and (5.358) are associated with rotation.

According to the vector function (5.352) the motion of an arbitrary point of a
rigid body can be treated as a composition of the translational motion of a certain
point of that body (point O’) and the motion about a point taking place about the
moving point O’.

This observation is confirmed also by the formulas obtained earlier describing the
velocity of motion in the case of the non-stationary (5.277) and stationary (5.280)
coordinate systems. This means that the general motion of a rigid body can be
obtained as a result of the geometrical composition of the translational motion and
the motion about a point.

The velocity of point A (Fig.5.78) is equal to

v=vo + o xr’, (5.359)

where the preceding equation is a vector equation.

That result can be obtained in the following formal way.

Vector ﬁ has the coordinates in the coordinate system OX, X, X, and will be
denoted by r. Because the system O” X[ X)X is rigidly connected to the body,

—
vector 0”4 in the coordinates O” X{' X} X7 will be denoted by r”, and according
to (5.355), vector r4 takes the form

rqs =ro +Ar’, (5.360)

where after differentiation of the preceding equation with respect to time we obtain
the vector (5.359).
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Theorem 5.12. There exists one and only one vector @, called the angular velocity
of a rigid body, by means of which it is possible to describe the velocity of an
arbitrary point A of a rigid body through the following equality:

V=Vo'+® XTI,

where v is the velocity of a pole O’ and @ is independent of the choice of the pole.

Proof. Let vector r” be constant. Differentiating (5.360) with respect to time we
obtain

v=vo +Ar’ =vo +AA7r,
wherer = Ar” . ) ]
Because AAT = E, differentiating that equality we obtain AAT + AAT = 0, and

hence we obtain AA~! = —AAT. Transposing both sides of the resulting equation
we obtain

(AA—l)T — —AAT = _AA"".

Because we demonstrated that

(AA—l)T = (AA—I) ,

the matrix AA~! is a skew-symmetric matrix.
Let us choose this matrix in the following way:

. 0 —w3 Wy
AA =] w3 0 —w

—wy w; 0
Then we have

B 0 —w3 Wy r

Al

AA7'r=| o3 0 —-w " [El E, E3]
| —wy o 0 r3
_—6037’2 =+ wrr3 E| E; E;

=| wyri—wirs |[Ei EEs] = |0 0 ws

| —war + w1 ry ry 13

=@ XT,

which proves the form of the equation in the theorem.
Then the elements of vector w are determined by the elements of matrix A, which
does not depend on the choice of the pole. This completes the proof. O
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DNG=MV,

Fig. 5.79 Vector @ and three main moments

Let us note [1] that after the change of pole (point O’) vector @ will not change (it is
the so-called first invariant of system /). The second invariant of the system is the
projection of the velocity of pole O’ onto the instantaneous axis of rotation, i.e., the
scalar product I, = @ ovps = const, where @ is the unit vector of the instantaneous
axis of rotation. The projections of velocities of each of the points of the rigid body
onto the direction of the instantaneous axis of rotation are identical.

Figure 5.79 shows points O’ and A as well as vector @ and three main moments.
According to this figure we have

My=Mp +®w X130 =Mpr —@ XT0r4. (5.361)
Projecting the vectors from (5.361) onto the direction of vector @ we obtain
woMy=woMp +wo(w Xrys0)=woMp=wovVy (5.362)

because vector @ | @ Xr4¢0’. Because points O and A were arbitrarily chosen, one
can conclude that the invariants of the system are vector @ and the scalar product
of the angular velocity vector and the velocity vector of an arbitrary point (in the
present case, pole O').

By changing pole O’ we change the moment My = vo. It was shown, however,
that the projection of vector vy onto the axis @ would not change [see (5.362)].
Because the main moment M’ can be resolved into two components, the first one
parallel to the direction of @ in the form Mo’ and the second one perpendicular
to it 1 Mo/, only the component | M- can undergo change. One might expect that
there would exist a special point C at which | M¢ = O. We will show how to find
such a point C through which passes the central axis (instantaneous screw axis),
which is parallel to the axis passing through pole O’ (Fig. 5.80).
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3
A Ve
temporary
screw axis
Vo'
>\
T @=V ()
My [i1]
c
Vo

Fig. 5.80 Geometrical interpretation of the procedure leading to the determination of the position
of point C (temporary screw axis)

Vectors @ and vy determine a certain plane. The vector vor = Mgy we
resolve into the components jMos and | Mo’ and draw a line perpendicular to the
aforementioned plane and passing through point O’.

The desired point C will lie on that line at one of the sides of the aforementioned
plane.

Let that point satisfy the following condition:

Vc = Vo’ + V¢ (w) = 1Vo’ + Vo’ + V¢ (w) = Vo’ (5.363)
This means that
ve(w) + 1Vvor =rcor Xxw + 1vor =0,

that is, as can be seen from Fig. 5.79, the moments | vpr = —V¢(w). This means
that at point C vectors | Vo and v¢ lie on one line and have opposite senses and the
same magnitudes, which implies that they cancel out one another.

Finally, the vector of moment calculated about point C is parallel to vector @
because @ || | vo’. Then we take the magnitude of vector rcos according to the
following condition:

[ve(@)| = |Lvor| = reorw. (5.364)
The changes in the normal components of points O’ and A while approaching

point C are presented in Figs. 5.81 and 5.82.
From (5.364) it follows that

reor = % (5.365)
w

where v is the velocity of an arbitrary pole.
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Fig. 5.81 A central axis (temporary screw axis) with point C (1 v¢ = 0)

Fig. 5.82 Main moments (velocities) of points O’, 4, and C while approaching a wrench axis (a
wrench axis has the smallest main moment, i.e., velocity vector v¢)

The equation of a central axis in a stationary and non-stationary coordinate
system in the case of motion about a point is described by (5.287) and (5.288).
Figure 5.81 shows the velocities of poles O’ and A of the main moments while
approaching the central axis. At point C vectors @ and v¢ are parallel to one
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Fig. 5.83 Sketch leading to temporary
determination of a sScrew axis
wrench axis

another, and at that position v¢ reaches the minimum value. The axis on which
lie vectors v¢ and w is called the central axis, wrench axis, or temporary screw
axis.

Having determined the position of point C the problem leading to the determi-
nation of the position of the central axis passing through that point is solved since
the direction of that axis is determined by vector @ (Fig.5.83).

From the previous calculations we know that vector @ is parallel to the central
axis. It follows that

r =roc + Aw. (5.366)

The parameter A is the proportionality coefficient between vectors rcy and w,
i.e., rcqs = Aw. From (5.366) we obtain

Ao =r—roc, (5.367)
and multiplying successively by E; and E; we obtain

" " " " " "
X~ Y X —X¢ X3 — X3¢

= = = A,
" " " ’
w; w; w3
X1 — X1C X2 — X2C X3 — X3C
- - =, (5.368)

w1 (2] w3

where @ = E 0| + Exon + Ezw; = Ef0] + Ejo) + Ejw}.

According to (5.368) the central axis will be described analytically if we
determine the coordinates of point C, i.e., xXic, X2¢, X3C-

If point O’ tends to point C, the angle & — 0, i.e., 1 vor — 0 (Figs. 5.79-5.81).



5.5 Motion in a Three-Dimensional Space 391

In other words, the velocity v, will attain its minimum magnitude at the point
of coordinates (x;c, Xa¢, X3¢) on the central axis. This condition can be used to
determine the coordinates of point C:

” ”
y o _ WrV3or — W3Vao!
XYie=———"5

w?
" "
x// _ C()3 Vio’ — wl V30’
2C w2 ’
" "
Wi V20’ — WH V10’
xp =422 27 (5.369)

w?

The obtained equation of the central axis is an example of a line equation in
slope-intercept form since knowing point C and vector @ enables us to draw in
three-dimensional space the desired line passing through that point and parallel to

vector @.
In the stationary coordinate system the velocity of point C is equal to

V=Vo +Vorc =Vor +@X(rc —roo)
= x1E| + XE; + X3E3 = vigrEy 4+ va0/Ep + v30/E3
+ E [0z (x3¢ — X307) — @3 (20 — X20/)]

+ E; [w3 (x1c — X107) — @1 (X3¢ — X307)]

+ E;3 [601 (XZC — X207) — w2 (X1¢ — xlof)] (5.370)
because
E; E, E;
® X (r¢c —ropo’) = W) Wy w3 . (5.371)

X1c — X107 X2¢ — X207 X3¢ — X30’
The coordinates of point C in the stationary coordinate system are equal to

/ /
WHV30r — W3V20/
C()Z

Xic = X107 +

3

’ ’
_ w3V10’r — WV30/
Xoc = Xo00 + ——m————

3

w?

’ /
wiV20’ — WHV10/
X3¢ = X300 + ——— 23— (5.372)

w2
The velocities of the points of a rigid body possess certain properties. Below we

will give a few theorems whose proofs are omitted.

Theorem 5.13. The velocities of three arbitrary non-collinear points of a rigid
body completely describe the velocity of any point of that body.
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Theorem 5.14. If the velocity vectors of three arbitrary non-collinear points of
a rigid body are equal at a certain time instant, the body is in instantaneous
translational motion.

Theorem 5.15. If at a certain time instant the velocities of two points of a
rigid body are equal to zero, then this body is either at instantaneous rest or in
instantaneous rotational motion about an axis passing through these points.

Theorem 5.16. If the velocity of a certain point of a rigid body is equal to zero at
a certain time instant, then this body is at instantaneous rest or is rotating about an
instantaneous axis of rotation passing through that point.

Theorem 5.17. The instantaneous motion of a rigid body in the general case is
a composite motion composed of two motions, i.e., translational motion of an
arbitrary pole and rotational motion about an axis passing through that pole.

The carried out calculations and discussions in this section can be summed up by
the following observations.

The general motion of a rigid body can be treated as its motion along the central
axis with simultaneous rotation about that axis. Such motion we call the screw
motion.

The general motion of a rigid body can be treated as consecutive sequences of
screw motion in the successive time instants #g, 1, t7, . . . .

Also, the general motion of a rigid body is characterized by the motion of the
moving axode with respect to the fixed axode, but now the rolling of the moving
axode on the fixed axode takes place with sliding (along the generatrix).

So far we have used (5.359) to determine the velocity of an arbitrary point of
a rigid body in general motion. Differentiating that formula with respect to time
it is also possible to derive the relationships describing the acceleration of an
arbitrary point of a given body. However, here we will make use of the previous
considerations regarding the motion about a point and of the obtained (5.300)
and (5.302), which allow for the determination of, respectively, the rotational and
centripetal accelerations.

Because the general motion of a rigid body can be treated at a given instant as
the composition of translational motion and motion about a point, to accelerations
ap and a, obtained earlier one should geometrically add acceleration a,, associated
with the translational motion of point O’, which has the form

a, = X10E| + X0 Ey + X30/Es. (5.373)

If we wish to express the components of a in the stationary coordinate system
through components in the non-stationary system (or vice versa), then we should
multiply those equations by E; and E! (Sect.5.5.12).

The acceleration of the considered point of a rigid body in general motion is
equal to

a=a t+ap+a, (5.374)

so it is the geometrical sum of vectors a;, ap, and a,.
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5.6 Composite Motion of a Rigid Body

The arbitrary motion of a rigid body encountered in a real (nature) or artificial
(technology) setting is composed of a series of four basic instantaneous motions of
that body, i.e., instantaneous rest, instantaneous translation, instantaneous rotation,
and instantaneous screw motion. Below we will briefly characterize three of these
instantaneous motions of a rigid body.

Let a rigid body be in motion with respect to the coordinate system O’ X{ X} X},
Then, let this system be moving with respect to the absolute system OX, X, X;. The
body will be in composite motion with respect to the coordinate system OX, X, X;.

If a passenger on Earth, for example, is traveling on a moving bus, then the bus
(a rigid body) is in motion with respect to the system O’X|X}X} associated with
Earth. The absolute system can be associated with the Sun or any other star. If an
astronaut is in weightless conditions and moves with respect to a spacecraft with
which we associate the system O’ XX} X}, then Earth can be the absolute system.

(i) Composition of two instantaneous translational motions

Let a body be moving in translational motion, and let it have at a certain time
instant velocity v, with respect to O’X|X;Xj. Let the system O’ X[ X)X} have at
the same time instant velocity v, with respect to OX, X, X;. The absolute velocity
of an arbitrary point of the body is given by

Vg = V| + V2 (5.375)
v, will be the relative velocity of that point and v, the velocity of transportation.
(ii) Composition of two instantaneous rotational motions about parallel axes

Let arigid body at a given time instant have the angular velocity @ with respect
to O'X[X} X}, and let the system O’X|X;X} have the angular velocity @, with
respectto OX, X, X;. Letw || w». In this case the velocities of the rigid body at the
given instant will be the same as in the case of the planar motion of this body. The
points of the body lying on an arbitrary line parallel to the angular velocity vector
will have the same velocities. It suffices then to consider any plane 7 | ®; and
draw a plane 7’ through @ and @,. These planes will intersect along the line on
which points A, B, and O will lie. At these points are respectively attached vectors
@1, w,, and 2 (Fig.5.84).

If ;ow, > 0, then the instantaneous composite motion of the body is described
by the vector $2, where

2 = w + wy, (5.376)
w1AO = »,BO. (5.377)
We have
— —
[vo| = @1 X AO + w, X AO|

= —wA0 + v, BO = 0. (5.378)
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Fig. 5.84 Determination of angular velocity $2 of composite motion of a rigid body when
velocities @ and @, have identical (a) and opposite senses (b)

The instantaneous composite motion of a rigid body in this case can be treated
as a motion with angular velocity £ given by (5.376) about point O described
by (5.378).

The velocity of point B is equal to

Vs = 2 x OB =, x AB. (5.379)
which indicates that @ || 2 and @ o £ > 0. From (5.379) we obtain
20B = w, AB. (5.380)

According to Fig. 5.84a we have

AB = AO + BO = (% + 1) Bo =21 %po (5.381)
w1 w1

Substituting (5.381) into (5.380) we obtain (5.376).
In a similar way it can be shown that for the case from Fig. 5.84b we have

2 = w] — Wy, (5382)
01 AO = 0, BO, (5.383)

on the assumption that w; > w;.
(iii) Couple of (instantaneous) rotations

A special case, depicted in Fig.5.84b, where | = —w», defines a couple of
(instantaneous) rotations. The plane determined by vectors @ and @5 is called the
plane of a couple of rotations, the distance AB is called the arm of a couple of

rotations, and ﬁ X @, is called the moment of a couple of rotations. We will show
that if a rigid body is subjected to the action of a couple of rotations at a given time
instant, then it is in instantaneous translational motion with velocity equal to the the
moment of a couple of rotations.
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Fig. 5.85 Determination of D
velocity of point D of a rigid

@
body and a couple of rotations !

=y
m

@,

Let us take an arbitrary point of the rigid body D. The velocity of that point
(Fig.5.85) is equal to

—
=AD Xwy, — DB X w;
= (ﬁ—ﬁ) X @y = AB X 0. (5.384)

In (5.384) the subscript D in the velocity was dropped because velocity vector
v is a free vector. All points of the body have the same instantaneous translational

velocity equal to v. Vectors E, ®;, and v form a right-handed triad of vectors. If
@] = |w2| = w, then the velocity of an arbitrary point of the body is equal to
v=wAB.

If the body is in instantaneous translational motion with velocity v, then this
motion is equivalent to a body moving under the the action of a couple of rotations
situated in a plane perpendicular to v, of arm A B, and with magnitude of angular
velocity w such that the equation v = wAB is satisfied, which can be realized in
infinitely many ways.

(iv) Composition of rotational motions of a rigid body about intersecting axes

The rotational motion of a rigid body can be represented by the instantaneous
axis of rotation, that is, the locus of points whose velocities at a given time instant
are equal to zero.

The angular velocity vector is the vector sliding along this axis; if we look along
its direction at its arrow, then the rotation occurs counterclockwise.

Figure 5.86 presents a rigid body (disk) rotating with angular velocity w, about
the CO axis (it is the relative rotation), and this motion is transported by a beam
rotating with angular velocity w; (rotation of transportation). Both axes of rotation
intersect at one point O.

Figure 5.87 shows one method for determining the absolute velocity of body 1.

Theorem 5.18. The angular velocity of absolute rotation @ of a rigid body in
composite motion associated with rotations about two intersecting axes is equal
to the geometric sum of angular velocities with respect to those axes:

=0 +o". (5.385)
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OC axle rotating with
angular velocity w, = o',
which in turn is mounted to
AB axle rotating with angular
velocity w; = '

Fig. 5.86 Disk 1 mounted to %mfm’

Fig. 5.87 Geometric P
composition of angular )
velocities of a rigid body C.

We will prove the validity of vector (5.385). Point O, being the vertex of
a parallelogram (Fig.5.87), simultaneously belongs to two instantaneous axes of
rotation OC and OB, and therefore vo = 0. Point O’ belongs to the body and
simultaneously participates in two rotations, that is, about the OC and OB axes.
The velocities

Vir = 0" 0'C" = 2Fa0co0,
Vto/ = a)’ OIC/ = 2FA030/, (5386)

and because the areas of the triangles on the right-hand sides of (5.386) are equal,
we have v;), = —v’o,, and, finally,

Vor =V + Vv =0. (5.387)

We have demonstrated that the instantaneous velocity of point O’ is equal to zero
and in view of that the O O’ axis is the instantaneous axis of absolute rotation of a
rigid body.

Let us take in Fig. 5.87 an arbitrary point 4 of a rigid body such that ﬁ =r.
The absolute velocity of this point

V=V, +V,. (5.388)
The absolute velocity of point A reads

Vy=® XT, (5.389)
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where @ is the sliding vector of the instantaneous axis of rotation O O’ and in turn
VvV, =" xr,
vy =w' xr. (5.390)
Substituting (5.389) and (5.390) into (5.388) we obtain
OXxr=o xr+o' xr= (@ +o')xr, (5.391)

which proves the validity of (5.385).
If a rigid body simultaneously rotates about N instantaneous axes of rotation
which intersect, then the angular velocity @ of the absolute rotation is equal to

0= an (5.392)

Theorem 5.19. The absolute angular acceleration of a rigid body rotating non-
uniformly about two intersecting axes is equal to the geometric sum of the following
angular accelerations: of transportation €', relative ", and rotational &€.

Proof. In order to prove the equation
e=¢"+e +¢°
we will represent (5.385) in the form
0 =o' +Eo] + E,0) + Ej0',

where the axes of the system O’X{X; X} are rigidly connected with a rigid body
during its relative motion.
Differentiating the last equation with respect to time we obtain

do do' Lot
ezd_t: dr +E1w1+E2w2+E3w3+Ew +E2w2+E3a)’3

e + o' x (Elo'] + Eyo') + ga)3)+Elwl+E2a)2+E3a}/;

=e' +w' xw +&" =6 +6&" + &,

which proves the theorem.
We call the foregoing é° = w’ X @" the angular rotational acceleration.
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Note that ®” = w — @', and therefore

&

o' xw =0 X (©-—o')
N t r ot
=0 X0 -0 X0 =o' xXo. n]

The component of absolute angular acceleration equal to the vector product of the
angular velocity of transportation and the relative angular velocity or to the vector
product of the angular velocity of transportation and the absolute rotational velocity
of a body is called the rotational angular acceleration of a rigid body.

The acceleration ¢ characterizes the change in direction of angular velocity "
caused by the rotational motion of transportation of the body.

Let us consider three simple cases of addition of vectors of angular accelerations
being the result of the composition of the rotational motions of a rigid body about
two intersecting axes.

1. Uniform rotation of transportation:

' =const; & =0; & =¢&" + &°.
2. Uniform relative rotation:

@ =const; & =0; & =& + &,

3. Uniform relative and transportation rotations:

(v) Composition of instantaneous translational and rotational motion

Let a rigid body rotate with respect to the coordinate system O'X|X)X}
with instantaneous angular velocity @, and let the coordinate system O’X| X)X}
move with instantaneous translational velocity v with respect to the space system
OX,X,X;. Let us take an arbitrary point of body A and attach the vectors v and
at that point (Fig. 5.88).

We will resolve velocity v into two components, v; and v,, and replace the
component v, with the couple of rotations of arm AB, and velocities @; and
@y = —w] (0] and w; lie in a plane perpendicular to v,). Because @ + w, = 0,
in Fig.5.88a there remain only two vectors, v; and ;. The instantaneous motion
of the body in this case is equivalent to instantaneous rotation with velocity @, and
instantaneous translation with velocity v, where v || @».

Because vi = vcos o and vector v; is the free vector, we can move it to point B
(Fig.5.88b). The composition of the instantaneous translational and rotational
motions is the instantaneous screw motion. The instantaneous axis of the screw
motion is parallel to the angular velocity w of the body, and they lie at the distance
AB = (vsina)/w. The pitch of the kinematic screw is equal to A = (vcosa)/w.
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O, A

V,=VCOSa

v,

instantaneous axis
of screw motion

@,

A 4

Fig. 5.88 Composition of instantaneous translational motion with velocity v and rotational motion
with angular velocity @ (a) and the schematic diagram of a kinematic screw (b)

If the angle between v and @ is equal toa = 7/2,thenv L @ and A = 0, and the
instantaneous composite motion of the body will be equivalent to the instantaneous
rotation with velocity @ passing through point B, where the distance AB = v/w.

If @« = 0, then vectors v and @ immediately form the kinematic screw.
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Chapter 6
Kinematics of a Deformable Body

6.1 Tensors in Mechanics

The notion of a tensor appears not only in kinematics, but also in statics, and the
term was intentionally used several times in previous chapters of the book (see also
[L,2].

Chapter 2 presented an example of a flexible beam (Fig. 2.2) that, despite being
deformed, is in static equilibrium. The deformation of that beam is described
by a deformation tensor. The application of a tensor is often indispensable also
when solving statically indeterminate problems where, as was mentioned in Chap. 2
(Example 2.5), we must know the relationships between the stresses (forces) and
deformations (displacements) in deformable bodies, that is, we must know the so-
called stress tensor, which is a two-dimensional tensor. The application of tensor
calculus appears in a natural way in the mechanics of deformable bodies and
continuum mechanics [3-8].

There are many books on classical mechanics, and all authors justify their own
way of presenting the material, motivating it by the didactic requirements of the
book. In the present book we try, as far as possible, to preserve a certain natural and
historical view of the development of mechanics while at the same time striving to
remain within the framework of Newtonian mechanics.

The fundamental attribute in mechanics for Newton was the notion of force. His
dream was the discovery and explanation of the nature of force and an explanation
of the properties of bodies” motion with the aid of the introduced by him notions of
forces. So far, in the statics of particles and rigid bodies the attributes of the force
are the magnitude (the intensity expressed by a number), direction of action, and
sense, which allow for a description of force by means of the mathematical notion
of a force vector.

However, such an approach has its drawbacks. These consist of the lack of
information regarding the nature (physical aspect) of a force. We use the same vector
to represent the force occurring in the point of contact of two material bodies, the
gravity force (contactless), the electrostatic force, etc. Until now, in discussions on

J. Awrejcewicz, Classical Mechanics: Kinematics and Statics, Advances in Mechanics 401
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the statics of a perfectly rigid body, the force vector was a sliding vector, that is,
it was possible to move it along its line of action. We will show, however, in the
following sections that this is not always the case. We cannot proceed in that way
in cases of a deformable body or a body in a field of parallel forces. Examples of
scalar and vector quantities in mechanics were presented earlier (Chap. 1).

The scalar in Euclidean space requires the definition of one quantity (a number),
whereas the vector requires the knowledge of three quantities (numbers). However,
both scalar and vector notions in mechanics have physical meaning and denote an
objective physical (mechanical) quantity.

For instance, temperature (scalar) or direction distributions, points of application,
and force magnitudes, after all, do not depend on the type of introduced coordinates
(Cartesian or curvilinear). Therefore, the main goal of mechanics is the introduction
of mathematical apparatus that would best reflect (model) the physical (mechanical)
quantities.

Neither temperature nor force depends on the choice of coordinates or axes
introduced to carry out the analysis of a problem since they are physically objective
quantities.

In the case of an arbitrary scalar quantity in a certain subspace of Euclidean space
we can build a functional dependency between a point of that subspace described by
three numbers (X1, X2, x3) and a function value. For example, in the case of a scalar
quantity such as temperature we are dealing with the function T = T (xy, x2, X3),
that is, with a uniquely established relationship between the point of the space and
the scalar (temperature). If in such a subspace we assign the value of that function
to every one of its points, it is said that a scalar field of the considered physical
quantity, in our case temperature field, is defined.

For any scalar field the function defining that field is invariant, that is, it does
not depend on the choice of coordinate system. Such property, however, does not
hold for a vector field. A change in the type of coordinate system, and even its
position in the considered bounded space, leads to a change in the projections of the
given vector (e.g., the aforementioned force) onto the axes of the coordinate system.
In this sense, the projection of a vector onto axes does not retain invariance and is a
variant process. Nevertheless, any choice of coordinate system preserves the length
of a vector, in this case the magnitude of the force. Thus, the length of a vector is an
invariant quantity.

Not without reason did we use earlier a certain logical numbering scheme for the
coordinates (x1, X2, x3), the coordinate axes OX,X,X;, and for new coordinates
OX X)X}, OX{' X5 XY, etc. The introduction of the preceding numbering scheme
allows for an uncomplicated notation of the relationships between the coordinates
of points in old (OX, X, X;) and new (OX|X}X}) coordinate systems through the
introduction of a rotation tensor.

Let us return for a while to the analysis presented in Chap. 5 and as an example
consider the relationship between “old” and “new” coordinates described, for
instance, by (5.296).

The aforementioned algebraic relationships can be obtained very quickly using
the following Table 6.1 [9].
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Table 6.1 Direction cosines

X1 X2 X3
/
X1 ar apn a3
4
Xy any an an3
/
X3 as) asy as3

where a;;, (i, j = 1,2, 3) are direction cosines.
Using the rows of the preceding table we write

X] =anx; +anx; +ansxs,

X, = ax x|+ anx; + ansxs,

X3 = a3z X| + asxx; + assxs, (6.1)
and then, using the table columns we obtain

I I !
X1 = anx; +ax, + asx;,

/ / !
X2 apx; +anx, + anx;,
/ / !

X3 = a;3X| + asXx, + assx;. (6.2)

The systems of (6.1) and (6.2) are respectively equivalent to the following
shortened notation form:

3 3
X; = E aijxj, Xx;= E aijx;. (6.3)
j=1 i=1

The foregoing notation can be simplified even more by dropping the sigma sign,
and now (6.3) take the following form:

Xl{ = ajjX; (l = 1,2,3), Xj = aijxl{ (j = 1,2,3). (64)

In this notational convention, summation is done with respect to the repeated
indices (in the first case j and in the second i), which disappear in the process of
summation and are called summation indices. The remaining indices (in the first
case 7, in the second j) are called free indices.

Let vector r have non-zero coordinates of the tail, that is, we have

r =E;(x;1 —x10) + E2(x2 — x20) + E3(x3 — x30)

= B (x] — x}9) + E3(x3 — x30) + E3 (x5 — x3)- 6.5)
Using relationship (6.4) we have

’
X; = aijjXj, X; = da;jX;,

/
Xig = GijXjo, Xjo = djjX;q, (6.6)
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and subtracting by sides the second equation from the first one we obtain
x{—xjg=ay(x; —xjo),  x; = Xjo=a;(x; —xp), (6.7)

that is,
ri/:aijrj, rj:a,-jr,-’, (68)

where now r[rl, r, r3] = r’[r{, rs, ré]

Relationships (6.8) concern the coordinates of a vector and have a form
analogous to the relationships regarding the coordinates of a point [(6.4)].

We will show now that relationships (6.8) preserve the physical aspect of a vector
quantity.

Using the summation convention introduced earlier we have

I
Tl = QmkTkQmiTT = AmkAmi Tkl - (6.9)

From the properties of coefficients a,,; describing the cosines of angles between
axes m and k, coefficients a,,; describing the cosines of angles between axes m and
[, and their summation a,,;a,,; (m plays the role of summation index), and from
relationships (3.53) derived earlier we obtain

Tyl = TIT, (6.10)
that is, in expanded form,
() + ()7 + (r)* = (rn)” + () + (r3)°. (6.11)

which proves the invariance of the vector length.

The greatest role in mechanics, however, is played by a tensor of the second rank.
The work of Cauchy,! published in 1827, regarding the formulation of the so-called
stress formulas in a deformable body, points to the need to apply such a tensor.
In mechanics, apart from the stress tensor there also appears, e.g., the moment of
inertia tensor (see Chap. 3), the strain tensor, deformation velocity tensor.

6.2 Body Kinematics and Stresses

So far we have introduced the idealized notions of a particle and system of particles.
If there are infinitely many particles and they are distributed very close to each other,
then we are dealing with the dense mass distribution, and a discrete mechanical

'Augustin L. Cauchy (1789-1857), French mathematician of genius, his collected works were
published in 27 volumes.
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system (e.g., of lumped mass) transforms into the continuous system (it can be
treated as a process of mass spreading). Also the mechanical properties of such
a system transform from discrete to continuous.

The simplest (idealized) example of a continuous system is a perfectly rigid body,
with which we have already dealt many times. It turns out that the methods and the
concept of equations of statics obtained on the basis of the idealized perfectly rigid
body can be applied also to flexible bodies that after deformation remain in static
equilibrium. If, for instance, one initially stretches a leather belt, and afterward the
system remains in equilibrium acted on by tension forces, then in that position we
can increase the stiffness of the belt (body) and consider it a perfectly rigid body and,
consequently, apply the methods and laws of statics discussed earlier. However, in
order to calculate the mentioned elongation of the belt it is necessary to exploit the
theory of deformable bodies. This observation will be proved later.

Until now we have used the statement that “the forces F; are applied at points A;
of arigid body.” Already here the idealization appears since it is hard to imagine the
action of real, natural interactions between bodies, especially at their direct contact,
by means of the point force. Rather, the “transmission” of force takes place over
a certain (often very small) surface. Earlier we applied, especially while solving
statics examples, the method of sections (intersecting) to the massless elements of
cross sections tending to a point (e.g., massless models of rods, strings, ropes), and
we replaced the interaction caused by the “cut away” part with the action of external
force F* (e.g., see Chap. 1).

If we expand the notion of force to a surface (which is closer to reality) instead
of a point, then we should introduce the notion of surface force (stress). If we have
a bounded surface of area S [m?], then the average density of distribution of surface
forces over the mentioned surface is described by

Fs X 6.12
=g |m) (©12
and vector ¢,y is expressed in pascals. This means that at every point of surface S
the stress vector o,y is applied. Now, if we consider the “contraction” of the surface

to a point (i.e., when S — 0), from (6.12) we obtain a stress vector at the point of
the form

a—;1_>mO T = 55 (6.13)
The symbol § denotes the infinitely small quantity on a surface and differs from
the notion of differential d, which signifies the increment of a certain physical
quantity related to the increment of an independent variable.
If we take a certain infinitesimal surface 65, then we calculate the surface force
acting on it from the formula

SFS) = ¢§8, (6.14)

and further it is called the elementary surface force. In this way we “stretched” the
force concentrated at a point onto the surface.
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Surface forces are a model of thickly “packed” forces laid out continuously
and densely over a certain (mentally) isolated surface. If an object (a body) lies
on another and contact takes place over a certain surface, we are dealing with
surface gravity forces that are related to the given surface. If a plate is immersed
in liquid, the forces of liquid pressure act on both its sides. These surface forces
are perpendicular to the plate’s surface, and their magnitude is determined by
the distance of the horizontally oriented plate from the surface of the liquid in a
container.

The physical quantity that is most frequently encountered and described in
textbooks characterizing continuous mechanical systems is the continuity of mass
distribution in a certain volume, that is, in isolated three-dimensional space. If we
consider a volume V [m?], the density of mass distribution over the whole volume

is given by
M kg
Pav = 7 I:E:| ) (6.15)

and we obtain the density of mass distribution at point A from (6.15) moving on to
the limit V' — 0, that is,

.M
= 11111)107. (6.16)

Introducing the notion of infinitesimal mass §M and volume V' we have

M

In a similar way we define the force distribution with respect to the volume of a
continuous system. The averaged volume force is defined by the equation

F F m
F - 2 _ m 6.18
Y ==y 5] (6.18)

where F is a main vector (geometric sum) of forces applied at all points inside
volume V of mass M . Note that FSL/ ) has a dimension of acceleration.

Moving on with the volume V' — 0 we obtain a definition of volume force at a
point described by the equation

(6.19)

Knowing the volume force at a point, we calculate the main vector of forces at
that point from the equation

§F = pF"sV. (6.20)
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According to (6.18) we can calculate the volume force in the field of gravity
forces, which is equal to

M m
F() = Wg =g [s_z] 6.21)

However, it should be noted that also here we are dealing with a certain
approximation since the gravity forces are actually not parallel. If we take two points
on the surface of the Earth separated by a distance of 1 km and lying on the meridian,
and we place there identical masses, an angle between vectors of gravity forces will
be equal to 32”.

If one of the dimensions of a surface tends to zero, then we obtain a spatial curve
(one-dimensional body), for example, a rope, and the notion of force related to a
unit of length can be introduced N/m[kg/sz].

The summation of elementary surface forces over the whole surface under
consideration leads to the determination of a main vector of surface forces, and
the summation of elementary volume forces leads to obtaining the main vector of
volume forces. In the case of mechanical systems, such a summation is replaced
with integration over the surface or the volume.

The forces distributed along one dimension (curve) and over the surface and
volume of a solid were discussed in Chap.3 by the introduction of the notions of
mass center, centroid of a plane figure (three dimensional figure), and center of
gravity.

Often in practice, because of the application of Cartesian coordinate systems,
right triangles or squares are introduced as elementary surfaces, and tetrahedra or
cubes as elementary volumes. Tetrahedra are such that three of their faces are right
triangles whose vertices coincide and are located at the origin of coordinate system
0X1X2X3.

Let us take an arbitrary point O of a (rigid or deformable) body and then take the
coordinate system OX| X, X3. Then let us cut out from our body the aforementioned
tetrahedron bounded by the faces lying in the planes O — X; — X3, O — X, — X3,
and O — X; — X,. Subsequently, near point O we draw an arbitrary plane such that
it intersects the axes of the coordinate system at points O, O,, and O3, respectively
(Fig.6.1).

We will replace the action of the body (the part left after cutting out the pyramid)
on the faces of the tetrahedron with the action of a surface force. Because we are
dealing with three elementary right triangles AO 0,03, AO 0,03, and AO 0,0,
constituting the rear faces of the pyramid, A O O, O3 constitutes its front face.

Since all three triangles are very small, we are going to assume that the density
of distribution of surface forces is the same for particular faces of triangles and is
described by one direction and sense.

The areas of the aforementioned triangles we respectively denote by Sx00,0, =
851, Sa00,0, = 882, Sa00,0, = 853, and Sp0,0,0, = 8S. The surface forces
acting on the faces of the triangle and coming from the part of the material
that remained after cutting are as follows: —018S], —028S,, —0'38S3, a™§S.
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b X

Fig. 6.1 A tetrahedron O O; O, O; cut out from a body; main vectors of surface forces and normal
vectors to pyramid’s faces

The convention of applied signs adopted for the named surface force vectors follows
from the observation that if point O approached face O;0,0; and finally rested
on it, the surface force on the reverse of AO; 0,03 would have a sense opposite
to the surface force on the of AO; 0,05 (the aforementioned AQO; 0,03 is in
equilibrium if these forces cancel out). The sense of the surface force acting on the
obverse of AO; O, 05 is assumed positive. Figure 6.1b illustrates how to easily write
the equation of a plane in which triangle AO;O,Os lies after choosing a certain

point A belonging to the surface of that triangle. A vector ﬁ = r,4 (which must
be perpendicular to the plane AO;0,03) is now the position vector of the plane,
and the direction cosines of r(x, x3, x3) are known. The equation of the mentioned
plane, also called a normal equation of a plane, has the form

X1C08®] + Xy cosap + x3cosaz — |r| = 0. (6.22)

Because surface forces are distributed with identical density over each of the
triangles, they can be replaced with the main vectors applied at centroids C,, C;, C3,
C of the considered triangles. The centroids are found as a result of the intersection
of medians of every triangle.

Thus, we have the main force vector attached at the geometrical center of every
face of the pyramid. The direction of the main force vector usually does not coincide
with the direction of the normal vector of the face. Apart from the surface forces
acting on four faces of the tetrahedron, the volume force pFd V' also acts, but it is
not plotted in Fig. 6.1. The surface forces are “small,” of the second order, because
the areas of right triangles are equal to magnitudes of 1/2 §x;8x2, 1/2 §x26x3, and
1/2 8x16x3, and hence the volume of the tetrahedron is equal to 1/3 S10,0,0,0C,
which is “small,” of a third-order magnitude, and therefore it was neglected.

The static equilibrium of the tetrahedron requires, then, that the polygon of the
main vectors of the four surface forces be closed, and additionally the main moment
resulting from these forces and calculated with respect to point O should be equal
to zero.
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In the first case the condition of zeroing of the main vector of surface forces has
the following form:

0 ™M8S = 085) + 6285, + 638S;. (6.23)

The rear faces of the tetrahedron are projections of the front face onto the planes
O—-X,—X, O0—X,— X;3,and O — X| — X3, and in view of that (Fig. 6.1a)

58

S_SI =E,on =cos(E;,n) = ny,

58

8_SZ =E; on = cos(Ey,n) = ny,

58

8_S3 = E; on = cos(E;, n) = n;. (6.24)

Substituting (6.23) into (6.22) we obtain
o™ = n0| + ny0; + n3os. (6.25)

Let us stop for a moment at the physical interpretation of the preceding vectorial
equation. Vector o™ represents the physical quantity of the stress applied to
an arbitrary elementary front face. The situation was similar with other vector
quantities in mechanics considered earlier, for example, with the force vector. The
components of that vector did not have any physical interpretation either and were
dependent on the choice of coordinate system.

Surface forces similar to stress vector o ) do not possess the invariance property.
The change in position of a front plane involves a change in the magnitude of ¢,
so the stress vectors ¢ ") do not form a vector field. The situation is even worse with
the surface forces vectors of the rear faces of a tetrahedron, that is, with vectors o 1,
0, and o03. Not only do they depend on the choice of coordinate system but they
also possess no physical interpretation and therefore are often called pseudo vectors.

Let us project vectorial (6.25) onto the axes of the OX X, X3 coordinate system,
which, in practice, boils down to the multiplication of this equation by unit vectors
E;,i=12.73.

We know that

o =6"E, +0"E; + 0" E;,
o1 =0k +onk; + o13Es,
062 = 021E1 + onKs + 033K,
03 =031E| + 0nE; + oE;, (6.26)

and as a result of premultiplication we obtain the following system of three scalar
equations representing a tensor:
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Fig. 6.2 Distributions of normal and shear stresses for the face AOO,O; (a) and for three rear
faces (b)

o, =njo11 + ny021 + n3031,
(n) _
0,  =ni01 + N0 + N303,
(n) .
03" = ni013 + 12023 + n3033; (6.27)

because of the scalar multiplication the equation k resulted from the projection of
the OX} axis, which corresponds to a,i") .

Knowing the position of the triangle (face) with respect to the adopted coordinate
system OX; X, X3, that is, knowing the direction cosines 7, n,, and n3 and nine
values of oy, k,I = 1,2,3, we are able to calculate 01("), 02("), and 03(") and as a
result determine the stress vector g @ acting on the chosen face AO;0,0;5. The
table of these nine coordinates describes in a unique and invariant way the stress
o™, although its magnitude will now depend on the choice of plane AO; 0,05
defined by the normal n. Moreover, the obtained values oy; occurring in (6.26) have
a physical meaning. According to the adopted numeration convention, at oy; the
index [ denotes the projection onto the OX; axis of a stress acting on a face (triangle)
perpendicular to the OX}, axis. For instance, 0,; denotes the projection of the stress
acting on a face perpendicular to the OX, axis (i.e., of vector ¢;) onto the OX axis.

Quantities with identical indices, that is, 01, 022, and 033, denote the projections
of the stresses 0 |, 0, and o3 onto the directions of vectors normal (perpendicular)
to the rear faces of the tetrahedron, and we call them normal stresses. We call the
remaining six elements of the stress, that is, o2, 013, 021, 023, 031, and 03, shear
stresses. For example, according to the introduced notation the stresses o}, and o3
are tangent to the face of the triangle perpendicular to the OX axis (i.e., AO 0, 03)
and acting along the OX, and OX3 axes. The latter is illustrated in Fig. 6.2a, and all
the components of the stress tensor are shown in Fig. 6.2b, where the direction of
senses is changed with respect to the senses from Fig. 6.1a.
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In the branch of mechanics regarding the mechanics of materials, normal stresses
are customarily denoted by 0,1 = 0y, 00 = 03, and 033 = 03, whereas the
remaining tangential stresses are denoted by o2 = 112, 013 = 113, 021 = T2,
023 = 123, 031 = 731, and 03 = T3;.

Let us now proceed with the interpretation of the obtained system of (6.27),
bearing in mind that

n

nE; + noEy + n3Es,
afq") = crl(”)El + az(")Ez + 03(")E3- (6.28)

Equation (6.27) describes the transition from the components of vector n to the
components of vector o ™ through linear transformation of the form

o™ =no (6.29)

with the aid of the second-order tensor o whose matrix has the following form:

o011 021 031
[o] = | 012 022 o |- (6.30)
013 023 033

In (6.29) we exploited postmultiplication of vector n by tensor o.

Because the rank of a tensor is determined by the number of indices that describe
it, in our case the order of tensor equals two as we have two indices. Applying the
tensor notation introduced earlier, the system of (6.27) can be written now in a very
simple form:

o =moy, k=1,2,3. (6.31)

Now the use of the tensor notation and linear transformation (transition) from
one vector (n) into the other (¢,) is applied in accordance with (6.29).

What is more, both vectors o, and n are connected with the chosen elementary
front face and both have a physical meaning.

Recall that, for example, in the case of the force vector, its invariant quantity was
the length, although its components were dependent on the choice of coordinate
system. Also, now the values of coefficients in matrix representation of a tensor o
of the form (6.30), that is, the coefficients oy;, vary with the choice of coordinate
system, but the set of all nine coefficients possesses one physical meaning represent-
ing the stress state of a deformable body at its chosen point. For the given coordinate
system, that is, knowing the stresses acting on the side faces of the tetrahedron and
knowing vector n, that is, having the front face chosen, we are able to determine the
stress vector acting on the front face.

The reader has surely noticed that the matrix representation (6.30) possesses a
slightly different structure than the matrices encountered so far where the first index
should indicate the row number to which the particular element belongs.
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We call the tensor 6* the conjugated (transposed) tensor with tensor ¢, and it has
the form

o011 012 013

*

0" =|on o 023 | » (6.32)
031 o3 033

where the following equality holds true:

oy =ow, k,1=12.73. (6.33)
For an arbitrary vector a;, for an arbitrary tensor of the second order R
represented by a matrix of the form [ry;],, , we have
Ra = aRT, R"a =aR. (6.34)
We call a tensor with the property
R'=R,  ru=ry (6.35)

a symmetric tensor.

We will demonstrate subsequently that the analyzed stress tensor is a symmetrical
tensor, that is, that the notation o, = no used in (6.29) was also correct. The
relationships (6.35) lead to the relationships o1, = 071, 013 = 03, and 023 = 03».

In order to demonstrate the aforementioned property of the stress tensor let us
consider the second necessary condition of keeping the tetrahedron in the static
equilibrium position, that is, we will write the equation of moments caused by the
surface forces 0,65, 01851, 0285,, and 038.55.

As was mentioned previously, the vectors of these surface forces will be applied
at the geometrical centers of the triangular faces of the tetrahedron which, in turn,
are the points of intersection of triangles’ medians. Therefore, we must define, with
the aid of position vectors, the four previously mentioned points in which the vectors
of external loads are applied. For this purpose we will use the diagram shown in
Fig.6.3.

. — — — — .

Setting r; = OCj, r, = 0OCy, r3 = OCs, andr = OC, the equation of
moments with respect to point O assumes the following form:

rxo™8S =r; x 0185 + 12 X 0,85, 4+ 13 X 03853, (6.36)

and taking into account (6.23) and (6.25) in it we obtain
(r—r)) xon + (r—ry) Xoomy + (r—r3) xo3nz =0. (6.37)
The projections of point C onto the rear planes of the tetrahedron are the points

Cy, C,, and Cs, which are the centers of the respective rear faces (triangles) of the
tetrahedron. According to Fig. 6.3 we have
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Fig. 6.3 A tetrahedron with marked face centers C, C; (i = 1,2,3) and their position vectors
I‘C,. ,r

—_

—_—
C3C 0C3 r—r3 = A3E3,
7 —7 7_1'—1'2—12[32,
C.)C =0C—-0C, =r—r = \E,. (6.38)

's%l

This means that vectors C; () are parallel to unit vectors E;, where the roles of
scaling factors are played by scalars A;. Substituting (6.38) into (6.37) we obtain

Alnl(El X 0’1) + Aznz(Ez X 0’2) + /13]13(E3 X 0’3) =0. (6.39)

The terms of the equation of the form E; X ¢; can be determined from (6.38)
after their scalar multiplication by n, because we have
(r—r;)on =ron—ryon,
(r—r;)on =ron—ryon,
(r—r3;)on =ron—rzon. (6.40)

Let us note now that
ron=|r|, (6.41)
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and |r| = r denotes the distance of point O from the plane O; O, Os. Extending the
segments OC;, OC,, and OCj; until they intersect with the sides of A0 0,03, we
obtain points C 1/ , Cz/, and C3/ (in Fig. 6.3 only the last two points are marked). The

projections of vectors OC 1/ s 0C2/, and OC; onto the normal vector n, that is, onto
the direction of vector r, are identical and equal to

3 3 3
OCl’onz0C2’0n=0C3’on=Erlonzzrzonzzmon:r, (6.42)

— 0 —— 0 —— -
because OC, = 2/30C,, 0C, =2/30C,, 0C3 = 2/30C;, which follows from
the properties of the midperpendicular of the triangle.
Taking into account (6.41) and (6.42) in (6.40), and then taking into ac-
count (6.37) we obtain

1
ron—rlonzgrz)tlElon:Alnl,
1
ron—rzonzgrzszzonzkznz,
1
ron—r;on = gr:/\3E3on:/\3n3, (6.43)

which allows for the determination of the desired quantities A;,i = 1,2, 3.
Substituting (6.43) into (6.39) we obtain

E, xo01+E; xo01+E; x01 =0. (6.44)
Now, let us premultiply (6.44) by E; (vector product) to obtain

Ei x (E; x01)+E; x(Ey x0,) +E; x (E; x03) =0,
EzX(ElXO’1)+E2X(E2XO’2)+E2X(E3X0’3) =0,
E3X(E1XO’1)+E3X(E2XO’2)+E3X(E3 X0’3) =0, (6.45)

and then, using the following property of the vector product
ax(bxc)=(aoc)b—(aob)c, (6.46)
(6.45) can be written in the form

(EIOO'I)El+(E100’2)E2+(E100'3)E3 =01,
(EzOO’])El + (EzOO’z)Ez-i— (E200'3)E3 = 02,
(E3 o O'I)El + (Ez00,)E; + (E3 o 0'3)E3 = 03. (6.47)
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Fig. 6.4 The considered
region of surface S cut out
of a deformable body and
volume V' with elementary
main vectors of surface and
volume forces

Performing the scalar multiplications using the definitions of vectors 0, 05, and
o3 introduced earlier [see (6.26)] we obtain

onEr + 02K +031E3 = 01E| + 012E; + 013E;,
02K + 0nEs + 0nE3 = 021E1 + 022E; + 023Es3,
o013E1 + 03Ky + 03365 = 031E1 + 032Ky + 033E3, (6.48)
from which it follows that
012 = 021, 023 =03, 031 =013, (6.49)

which proves the symmetry of the stress tensor. Because of the previously men-
tioned symmetry of the stress tensor six components of the tensor are determined.

From the conducted calculations regarding the analysis of equilibrium state of
the elementary tetrahedron cut out from a deformable body it follows that the static
equilibrium conditions of this tetrahedron are necessary but not sufficient conditions.
At this stage of our study we are not in a position to completely solve the stated
problem, that is, to determine the six components of the stress tensor.

Let us recall that the elementary tetrahedron chosen by us was small enough for
the volume forces to be neglected. Now we will try to proceed in a different way,
that is, in a continuous deformable body we will isolate a volume V' bounded by
the surface S large enough that this time the volume forces (which correspond to
internal forces in the body) cannot be neglected.

Figure 6.4 shows the region of volume V' “cut out” of the considered body and
bounded by the surface S.?

2Subsequently we also denote by S a symmetric tensor, but these notions are made distinct in the
text.
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If after deformation of a body its cut-out volume is in equilibrium, then internal
forces must have arisen that, in the general case, cannot be determined without
taking into account the stress-strain state of the body. This was already indicated
by previous cases of so-called statically indeterminate mechanical systems.

In a deformed static equilibrium state vectors of volume and surface forces
calculated over the total surface and volume of the cut out volume must be balanced
by each other, that is,

/ oM8S + / pFdV = 0. (6.50)
S vV

In order to enable further calculations we must pass from the surface integral to
the volume integral based on the so-called Gauss®~Ostrogradski* integral formula:

/V(.)(SV = /n(.)ss, (6.51)

14 N

where in a Cartesian coordinate system
0
V=VE, = —E + —E, + —E; (6.52)

is “nabla,” that is, a differential operator that, after acting on a scalar quantity,
generates a vector.
Let the scalar quantity be, for instance, the quantity y. Then (6.50) takes the form

/VySv = /nySS, (6.53)

Vv N

and, as is easily noticed, we have

9
v+ g, Vg = grady. (6.54)
dax1 dxo X3

Notation (6.53) indicates the one-to-one correspondence between the operator V
(“nabla” vector) acting in R? and vector n in R? since it is normal to surface .

However, the Gauss—Ostrogradski integral formula (6.51) possesses a broader
interpretation because one may use scalar, vector, or tensor functions as the operator
(.) In (6.29) we multiplied the vector by the tensor. In the general case, such a
multiplication is not commutative, and only regarding the symmetric tensor is the
relationship no = on valid [see also (6.34) and (6.35)].

3Carl F Gauss (1777-1855), German mathematician who studied number theory, analysis,
statistics, differential geometry, astronomy, and optics.

4Michail W. Ostrogradski (1801-1862), Ukrainian mathematician who studied algebra, number
theory, analysis, and probability calculus.
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We will introduce now a postmultiplication operation of a tensor R by a vector a,
Ra = b, (6.55)

defined in the following way:
by = (Ra); = rjjay + rpa + rizas = rga, 1 =1,2,3. (6.56)

In a similar way we introduce a premultiplication operation of tensor R by
vector a:

¢ = (@R); =ryay + ryax + ryaz = agry, 1=1,2,3. (6.57)

Depending on the mode of multiplication, this operation generates either vector b
or vector c.

The simplest example of the Gauss—Ostrogradski formula, that is, for one-
dimensional cases related to the three axes of a Cartesian coordinate system, is

/—85 = /m(paV,

3x1

/ W5 = /nﬂpav,
8x2

S

vV

/ W5 = /n3<pav. (6.58)
|4

8x;

Multiplying the equations respectively by E;, E,, and E; and adding them
together we obtain

d 0 0
/ (_(pEl + _qu + ¥ )55 /(”N/)El + n2¢E; + n39E3) 8V,
S v

dxy dx 0x3
(6.59)
which yields (6.51), where in place of dots we put ¢.
In the case of tensor ¢ of elements ¢y (k,[ = 1,2,3), we have
ad
%55 /nk¢k18V, | = 1, 2, 3, (6.60)
Xk

14

and indices k are summation indices. The preceding notation is equivalent to

/Vk¢k185 = /nkq&k;é’V, | = 1,2,3. (6.61)
124

N



418 6 Kinematics of a Deformable Body

In turn, according to (6.58) we have

/(V¢),55 =/(n¢)18V, l=1,2,3. (6.62)
S 14

Multiplying (6.62) respectively by E;, that is, E;, E,, and E3, and adding them
by sides we obtain

/ V¢S = / ngsv, (6.63)
S Vv

that is, again, we obtained (6.51) where instead of dots, tensor ¢ was inserted.
According to the previous transformations we applied the following projection
along the [ axis:

(Vo) = Vi = Vi = %]Z = (dive),. (6.64)

It follows that the vector V¢p = diveg after returning to (6.63) leads to the
expression

/ divgsS = / ngsv, (6.65)
N 14

where projections of vector dive, that is, the divergence of tensor ¢, have the form

(dive), = (V¢), = 011 n 01 n 031

9x, X, axs
. _ _ 012 | 0  Idn
(dlv¢)2 - (V¢)2 - axl + axz + ax3 ’
0 0 d
(divg), = (Vo), = 228 4 90, 00 (6.66)
oxq dxo dx3

The vector of divergence of tensor ¢ can be represented in a Cartesian coordinate
system in the form

divp =E; (Vp), +E>(Vg), + E5 (Vo)
_E, (8(]511 N a1 N 8¢31) +E, (3¢1z N 0¢2 n 3¢32)

8x1 8x2 8x3 8x1 8x2 8X3
d d d

N (L AE B (6.67)
8x1 8x2 8x3

Finally, the equivalent tensor form (6.65) of the Gauss—Ostrogradski
formula (6.51) was derived.
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Now, let us return to the state of equilibrium of a deformable body described
by (6.50). Using (6.65) the equation takes the form

/ (divo + pF)§V = 0. (6.68)
Vv

The preceding integral is calculated over volume V of the cut out volume of the
body, and also in a special case can be applied to the elementary volume § V. In this
case from (6.68) we obtain

F1%
/ (dive + pF)§V = [divo + ,oF]f)V = (divo + pF)§V = 0. (6.69)
0

Because by assumption §V is arbitrary and different than zero, from (6.69) we
finally obtain

divo + pF = 0. (6.70)

Multiplying the preceding equations respectively by E, E,, and E3, and taking
into account (6.67), where instead of ¢ one should substitute o, we obtain the
following three scalar equations:

do do do
11+ 21+ 31

F =0,
8x1 aXQ 8x3 +p !
dopn  doxp  don
F, =0,
8x1 + 8x2 8X3 +,0 2
do do do
Dy 22 2B L oR=0. (6.71)
8x1 8x2 8x3

Because we already proved earlier that the stress tensor was symmetrical, (6.71)
can be represented in the form

do do do
11+ 12+ 13

F, =0,
8x1 aXQ 8x3 + P
dojp,  dop 0023
F, =0,
8x1 + aXQ 8x3 +p 2
files file; file
13 + 23 + 33 + ,OF3 =0. (672)

8x1 8x2 8x3

At this point of our discussion let us note that we have three algebraic equa-
tions (6.72) at our disposal for the purpose of determining the six unknowns 011, 012,
013, 022, 023, and 033, and in view of that the system of equations (6.72) constitutes
the necessary equilibrium conditions, but not sufficient conditions.
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Let us now consider the infinitesimal displacement of an elementary volume cut
out of a deformable body. Let us recall that in the course of previous considerations
it was shown that an arbitrary force system acting on a rigid body could be reduced
to a wrench. In this case the main moment of forces would cause a “small” rotation
of the rigid body about the axis of a wrench, and the main force vector would cause
a translation along the wrench axis (central axis). A rigid body, by definition, is a
body whose every point is subjected to the same translation and rotation through the
same angle measured in the plane perpendicular to the mentioned axis.

That observation, related to the whole arbitrary volume of a body, has a
global character. However, in the case of a deformable body, that is, for a purely
mathematical model allowing for the possibility of displacement of internal points
of the body, static equilibrium has a local character. The deformation of any
chosen volume of a deformable body can occur in a similar way determined by
the translation and rotation of a rigid body reflected in translational deformation
(connected with the diagonal part of of the stress) and the rotational deformation
connected with the non-diagonal elements of the deformation tensor.

Already H. Helmholtz> in 1858 had shown that the deformation (displacement)
of an arbitrary point of elementary volume of a deformable continuous system
consisted of a so-called quasistiff deformation, including translational and rotational
displacement, as well as of deformational displacement (displacement due to
deformation).

Helmbholtz formulated his observation in the form of a theorem today known as
the Helmholtz theorem.

We will now show how the two aforementioned deformation components of a
deformable medium (body) should be interpreted. However, it should be indicated
that the Helmholtz theorem regards the elementary volume of deformable medium,
and therefore, as distinct from a rigid body, it has a local character.

Since in a deformable medium (as distinct from a rigid one) the possibility of
relative displacement of two arbitrary points of the body is allowed, let us take in
an elementary volume of such a body §V two arbitrary points B and B; whose
positions are described by position vectors r and r; with respect to a certain fixed
point O (Fig.6.5).

Let the elementary displacements (infinitely small) of points B and B; be equal
tou = dr and u; = dr;. Because we want to estimate the relative displacement
of the points, we introduce a radius vector with respect to pole B denoted by r.
Before deformation B = B and B, = B;, thatis,u = 0andu; = 0.

Let us recall the operation of differentiation of a vector along the direction of the
second vector known from mathematical analysis. Let us return to symbolical vector
operator V, which has coordinates in the adopted Cartesian coordinate system of the
form

0
Vi=—, k=1,2,3. (6.73)
0Xx

SHermann Helmholtz (1821-1894), a German physicist and mathematician who studied acoustics
and thermodynamics.
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Fig. 6.5 Position vectors r
and r; and displacements u
and u; of points B and B
(see formula (6.110))

A gradient of scalar function ¢ can be represented in the form of a product of
vector V and the scalar ¢ of the form

gradp = V. (6.74)

In turn, a derivative of scalar function ¢ in the direction of axis [ is represented
in the form

ad
8_910 =10oVgp =1 ogradyp, (6.75)

where as previously a dot denotes the scalar product of two vectors.
Let us note that

9 9 9 3 9
V == —_— _— _— = _— = — .
LoV =hgtho+hyn =k = (6.76)

where [ = cos(l, Ey).

We obtain the projections of the gradient of scalar function ¢(xi, X2, x3) onto
the coordinate axes from (6.74) after multiplying by E;, E,, and E; and after
substituting the unit vectors E1, E,, and E; into (6.75) instead of /, that is,

0

E, o gradp = (gradg), = Ei 0 Vy = -0
1
0
E; o gradg = (gradg), =E; 0 Vg = —¢,
aXZ
0
E; o gradgp = (gradgp); = E3 0 Vg = a—(p. (6.77)
X3
The multiplication operation /oV = % can also be applied to vectorial functions

(e.g., a = a(xy, x2, x3)) and tensor functions 7 in the following way:
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da oT

— ={UoV)a, —=({AoV)T. 6.78

T =(oV)a, T =(oV) (678)
The first (6.78) defines a notion of projection of vector a onto the direction

of vector I. Since we have for two vectorial functions I = [I(x;,x,,x3) and

a = a(xi,x2,x3)

) da
(loV)azl(joV)azlﬁ, (6.79)

because % is a unit vector of the / axis. In (6.79) the symbol
derivative of vector a on the direction of vector [.

With the aid of the introduced symbolic operator-vector nabla V, apart
from the aforementioned vector derivative, we can additionally define the
following two operations of spatial differentiation related to the vectorial function
a =a(xy,x,x3).

We call the scalar product of the form

ia

o denotes the

9 da,  dar 9
diva=Voa =V = 2k % % 0B (6.80)
0Xx dx;  0xy  0x3

a divergence of a vector field (a vector).
We call the vector product of the form

curla =V xa (6.81)

a curl of a vector field (a vector) a.
The vector curl a can be represented in tensor form using the notion, introduced
earlier, of the third-order tensor ¢, (alternating tensor) of the form

da,

curla = epq,Epa—,
Xq

(6.82)

where according to (5.140) the only non-zero elements of that tensor are €13 =
&3120 = €331 = l and &713 = €133 = €331 = —1, and the summation in (6.82) from 1
to 3 is done with respect to the three introduced repeating indices.

From (6.81) it follows directly that

E, E;, E;

_la o o
curla = dx; 0xp 0x3

ap dz as

das;  dar da; Odas dar,  da;
—E (22 ) g (L ) R (2
: (8x2 3X3) e (8x3 3X1) T (axl 3X2)

= E;curlya + Ecurl,a + Escurlza. (6.83)
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Once the essential information on the tensor calculus is presented, we will
explain the notion of dyad referring to two physical vectors @ and b of the form

a1b1 albz a1b3
ab = a2b1 azbz a2b3 s (6~84)
azby azby azb;

where we do not place a dot between vectors a and b. Thus, the dyad is, apart from
the scalar product and the vector product, the third operation of multiplication of
two vectors.

For an arbitrary Cartesian coordinate system described by vectors E;, E,, and
E3 it is possible to form nine dyads of the form E,E,, where p,q = 1,2,3. The
elements of a dyad matrix can be determined using the following equation:

(E,E,), = (E, oE,) (E, oE,). (6.85)

Let us note that once a vector in a Cartesian coordinate system is represented by
unit vectors as

a=aE +aE, + azEs, (6.86)

a two-dimensional tensor 7" of elements T, is represented by dyads
T =T, EJE,. (6.87)

In turn, a unit tensor [, represented by a matrix

1 0 O
0O 1 0 (6.88)
0 0 1
has the form
Iy = E1E| + E2E; + EZEs = SpquEq. (6.89)

If in (6.84) a = V, then we obtain a tensor of the form

ob,

D =Vb=EE, ",
Xp

(6.90)
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and then the matrix representation of tensor D has the form

~ 0b; 0b, b3 7]
0x 0x dx
o by b | 691
8x2 8x2 8x2
0b, 0by 0bs
L dx3 0x3 0x3
and the elements of tensor D are as follows:
ab
D,y = Vb, = ﬁ (6.92)
So far the operator V acting on a scalar ¢ defined for us
Vo = gradg, (6.93)

where gradg is a vector.
In turn, based on (6.90) we introduce the notion of a gradient of vectorial function
b = b(x, x2, x3), which will be denoted by

D = Vb = Gradb. (6.94)

However, if D* is a tensor conjugated with D, then

db
db = D*dr = d—dr = drD = dr Gradb, (6.95)
r
where
ab
db, =2, p=1,2,3. (6.96)
0xgq

An arbitrary non-symmetric tensor 7' can be represented in the form of symmet-
ric tensor )T = S and antisymmetric (skew-symmetric) tensor ‘T = A. Since

1

T=_(T+T")+ % (T —T7%), (6.97)

N

and taking into account the introduced notations

1

ST =_(T+T*), WT=_(T-T%. (6.98)

=
N |

we have
T=®T7T4+AT (6.99)
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The notion of symmetric tensor was discussed on an example of a physical stress
tensor [see (6.33)], and its basic property is

S =) 7*, (6.100)

where the symbol (*) denotes a transposition, that is, replacement of the rows by
columns in the matrix representation of tensor 7.
An arbitrary skew-symmetric tensor A has, in turn, the property

A" = —A, Ay = —Asy, (6.101)
which means that

Ay = —Ay, Axn =—Axn, A3z =-—Ap,
A = Ap = A3 =0, (6.102)

and finally the matrix of tensor 4 has the form

0 Ay —Az
—Apn 0 Ay |. (6.103)
A1 —Ax O

The tensor has nine elements, only three of which are normally independent.
As can be seen, tensor A consists of only three elements: A5, A3, and Ay3. The
set of three elements (numbers) may represent a vector in three-dimensional space:

¢ = ciE; + :E; + c;E;3, (6.104)

where Cc1 = A23, Cy = A31, and c3 = A12-
Let us choose an arbitrary vector @ and consider the case of pre- and postmulti-
plication of this vector by tensor A. In the former case we have successively
(Aa), = Aya; + Apar + Azas
= Apar — Azaz = cza; — caas,
(Aa), = Aya; + Axar + Aszsas
= —Apay + Apaz = cjaz — czay,
(Aa); = Azja; + Azas + Azzasz

= Azja; — Axnzay = cra; —cas. (6.105)
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In the latter case we have successively

(@A), = a1An + arAz + azAs

= —Apay + As1az = a3 — c3a,
(@A), =a A+ ayAxn + azAsz

= Apa) — Apaz = cza; — c1as,
(@ad); =a1A;z +axAz + azAs;

= A23a2 — A31a1 = (C1dy — Cd;. (6.106)

From (6.105) and (6.106) we obtain

Aa =a xc, aAd =cxa. (6.107)

From (6.107) it follows that
Aa # aA. (6.108)
If vector ¢ is associated with tensor A, after the introduction of a vector ¢* = —¢

associated with tensor A*, the following equalities are valid:

Aa = aA* =c* xa,

aAd=A%a=axc". (6.109)

Introducing spatial derivatives of a vector function and on the basis of Fig. 6.5
we can write

u =u+ (froV)u=u+6r(Vu) =u+drD, (6.110)

where according to (6.90) and (6.91) we have the following matrix representation

of tensor D:

B 8141 8u2 8u3 T
ax; ox; dxp

8u1 auz 8u3
— — — . 6.111
8x2 8x2 8x2 ( )

8u1 8u2 8u3

— 8X3 8x3 8X3 -

In turn, according to the decomposition of tensor D into symmetrical ) D and
antisymmetrical tensor () D, (6.110) takes the form

w =u+8rD +5r® D, (6.112)
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According to (6.104) and (6.107) we have
srD = ¢ x 6, (6.113)

where
c1="Dy, ="D3;, c3="Dp. (6.114)

In order to determine the values ci, ¢, and c¢3 associated with the asymmetric
tensor we use the following relationships [see (6.110) and (6.111)]:

D=Vu, D*=((Vw*, “D=_-[D-D*]. (6.115)

N =

The desired coordinates of vector ¢ are equal to

1 8u3 8u2 1 ( | )
==\ 77— ———) = < cur y
“ 2 8x2 8x3 2 Wi
1 8u1 8u3 1
= — _— = — 1 s
@ 2 (8X3 8x1) 2 (CUI' U)Z
1 8142 8u1 1
— (22 _ M) L ). 6.116
G =3 ( o, 8x2) > (curlu); ( )

Multiplying (6.116) respectively by E;, E,, and E; and then adding by sides we
obtain

1
c = Ecurlu. (6.117)

We write the original (6.110) in the equivalent form
u; =uj +uj, (6.118)
where

1
uj =u+ 0 xdr, 0 = Ecurlu, (6.119)

and @ is the infinitesimal small rotation introduced into the study regarding the
displacement of a rigid body in Sect. 5.1.5.

Note that uj describes a displacement of point By with respect to point B just as
would occur in a rigid body. It is the geometric sum of translation vector u and the
displacement resulting from rotation about an axis dr through an angle 6, and hence
this term of the equation uj is marked with a superscript abbreviation s indicating a
behavior similar to that of a rigid body.

The remaining term u{ describes the displacement of point B; with respect to
point B as a result of translatory deformation of the chosen cutout of a deformable
body.
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935= 05 +dQy,

Fig. 6.6 Presentation of the action of a symmetric tensor consisting of six elements onto elastic
displacements of point O’ = B’ with respect to O = B

Let us note that, because of the symmetry of tensor ) D, we have
u$ = srD="Dgr. (6.120)

Using the second equation of (6.115) we determine the matrix of symmetric
tensor ) D = ¢ of the form

[ dw L(oum w1 fom O\
8x1 2 8x2 axl 2 8x3 8x1
1 8u1 8u2 8u2 1 auz 8u3
=l (—=+= — - =+= 121
[8] 2 (8x2 + 8x1) 8x2 2 (3X3 + 8x2) ’ (6 )
(2w dus) L (3w Ouy dus
L 2 8x3 8x1 2 8x3 8x2 8x3
where
1 auk 8um
I e A 122
o 2 (axm + axk) (6.122)

Now we will show that the diagonal elements of the symmetric tensor represent
the relative strain of the infinitely small segments §r;[8x;, 0, 0], 8r2[0. 8x2, 0] and
or; [0, 0, 8x3] and their relative angular displacement. Let us look at Fig. 6.6, where
at the points B = O and B’ = O’ (Fig.6.5) the origins of the coordinate systems
OX,X>X3 and OX{X}X} were introduced; note that the second system is not
rectangular.
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According to the previous discussion we have
u = dr, (6.123)

where the operator d is understood as the increment of radius vector r in time since
(d/dt)dt = d. Multiplying both sides of (6.123) by the operator § we obtain

du=48(dr)=u;—u=dr;—dr=d(r; —r) =d(dr). (6.124)
Hence
u; —u = éu = &dr =d(ér), (6.125)

where the symbol § denotes an arbitrary infinitely small increment of the given
quantity during transition from point O to O’ at the given (fixed) time instant.

Multiplying (6.125) (that is, the part consisting of the two last terms) in turn by
ory, 6rp, and ér; we obtain

8118)61 = d5x1, 8225)C2 = d8X2, 8338)63 = dS)C3. (6126)
From the preceding equations it follows that

ds 9
op = K gy = Tk (6.127)
8xk 8xk

where the elements of €11, €22, and €33 denote the relative elongations €, €7, and &3
of the infinitely small lengths 67, = |0ry|, 87, = |2, and 873 = |0r3].

Let ¢;; denote the angles between the axes k and / and ¢;,,, denote the angles
between the axes kK’ and I’ after deformation, that is,

O = Pt + dgp. (6.128)

In turn, the cosines of the direction angles are equal to

51‘k 51‘[ 1
=[-—0o— )= 5 ory) . 6.129
COS Pri (8xk ° SXI) Sxk6x; (8ry 0 dr1) ( )

Using operator d on both sides of (6.129) we obtain

1 1
— sin (pk]d(pk] = md (51']( ] 51'[) +d (m) (51']( ] 51'[) . (6130)

Because before deformation for k # [ we have

(pk,:%, singy =1, 81508 =0, (6.131)
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from (6.131) we obtain

— dgokl = Ykl = d (8l‘k o 81‘/) . (6.132)

1
Sxk8x1

Following the transformations of (6.132) we obtain

(déry o §r; + 8ry 0 ddry) , (6.133)

1
el = 8xk le

and taking into account equalities (6.125) in it we obtain

Vil = % [(e0rk) o 1 + (61 0 81y)] (6.134)

Xk 6X]

In order to perform scalar multiplication of vectors one should take the values
k=1,2,3and! = 1,2, 3; as a result we obtain the relationships

(dr1)y = ox1, (dr1), =0, (dr1); =0,
(6r2); =0, (8r2); =8x2, (6r2); = 0, (6.135)
(81'3)1 =0, (81'3)2 =0, (51'3)3 = §x3.

In turn, we conduct a summation over the repeating indices k and / in (6.134) for
k # [, obtaining
(gdr1) 0 81y + (68r2) 0811 = (8011), - 6X2 + (£612), - 6x)
= (e12 + 21) dx18x2,
(edrp) 0 8r3 + (68r3) 0 81y = (£812)5 - $X3 + (£613), - 6x2
= (&23 + &32) 8x28x3,

(edr3) 0 8ry + (€8r1) 0 6r3 = (£013); - 8x1 + (€011)5 - 8X3

= (e31 + €13) 6x16x3. (6.136)

Substituting (6.136) into (6.134) and taking into account that €1, = é&31,
&3 = £32, and &13 = &£31 We obtain

V2 = 2¢12, V23 = 2623, Y13 = 2¢e13. (6.137)

The values y; (k # [), taking into account (6.137) and (6.121), are equal to

2 8u1 8u2
6 9
iz 12 0xy  0x
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2 auz + 3143
= & = — _—,
Y23 23 axs 9%z
8u1 3143
= D¢ = — 4+ —.

Y13 13 FISNREr

431

(6.138)

The obtained relationships (6.138) allow for a physical interpretation of non-
diagonal elements of the symmetric tensor ¢ that are equal to

1
Ekl = =Vki,
ki 2Vkl

k,l=1,2,3,

k 1.

(6.139)

This means that the non-diagonal elements of tensor ¢ represent shear strain
angles between the coordinate axes in planes determined by the axes of the numbers

kand /.

If an elastic body undergoes deformation, we may speak of the velocity of
this deformation. Let us return then to our basic vectorial equation describing the
deformation of two points in an elastic body, that is, to (6.118) and (6.119). Dividing

the foregoing relationships by d we obtain

) =i+ 0 x8r + &r,

or, in equivalent form,

Vi :v—i—war—}—eSr,

(6.140)

(6.141)

where ¢ denotes a tensor describing the velocity of body deformation that, according
to (6.121), has the following matrix representation:

B avl 1 8v1 8vz
0x1 2 \0dx;  dxy
o 1 (v vy 0,
€] = 2 (8x2 + 3x1) dx2
1 (0w 03 1 (0w ov3
z(a—+a—) a(a—wa—h

From (6.141) we obtain

1 8v1 +
2 3)63

1 8V2 +
2 3)63

8V3
3)63

V=V —V=w X ér + &0r.

8V3 N
8x1

8V3
aXQ

(6.142)

(6.143)

From the kinematics of a point the observation follows that if the distance
between points B and B; remained constant (rigid body), the following condition

would have to be satisfied:

dvodr =0.

(6.144)
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Let us demand that the condition be satisfied for the case (6.143). Multiplying
(6.143) through by ér we obtain

(@ x 8r) o 8r+ & (8r)* = &(8r)* =0, (6.145)

which indicates that matrix (6.142) [¢] = [0], that is, all elements of that matrix
should be equal to zero.

We aim at drawing conclusions from the fact that the elements of tensor & became
ZEeros.

Let us first consider the elements lying on the diagonal of tensor (6.142). They

are equal to

v vy ov3
P O’ —_ = O’ _— = O’ 6146
ax; x> 0x3 ( )

which after integration yields
vi = v (x2,Xx3,1), v2=wvy(x1,x3,1), v3i=v3(x],x2,1). (6.147)
Equating the non-diagonal elements to zero we obtain

M - 8vz’ M - _%’ [z) — _%, (6.148)
8x2 8x1 8x3 8x1 8X3 8x2

We multiply the preceding equation by sides respectively by d/dx3, d/dx,, and
d/0dx1 to obtain

() 0 () b (m) D (0

8x2 8x3 B 8x1 8x3 ’ 8x3 8x2 n 8x1 8x2 ’

0 vy ad vz

— [ =) =——(=). .14
8x3 (8x1) 8x2 (8x1) (6 9)

For instance, let

v av
=Y na), =Y (a), (6.150)
dx3 dxo
and in general,
8v,<
P Vij (Xk,1). (6.151)
Xj

Differentiating the first from the preceding equations with respect to x; and the
second with respect to x3 we have

Pvi Y3 (xa,1) Pvi IYn (x3,1)

= , = 6.152
8x23x3 3)62 axZaX3 3)63 ( )
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which means that

Y13 (x2,1) _ 012 (x3,1)
aXQ 3)63

= y132() = y123(0). (6.153)
After integration of the preceding equation we obtain

Yz (X2,1) = yi3x2 + o13(1),

V2 (x3,1) = yi23x3 + 012(1), (6.154)
which can be generalized as
i
a—l] = Yijk (1), (6.155)
Xk
so generally we have y;i; (t) = yijk (1).
From (6.148) it follows directly that ¥;; = —v;;. The integration conducted
earlier allows for the introduction of a general expression of the form
1//,']' (Xk, t) = YijkXk + Wij (). (6.156)
In a similar way we can write
Vi (Xk, 1) = yjikXk + w;i(t). (6.157)

Adding the two preceding equations by sides we obtain
(Vijk + vjik) Xk + @i + w;; = 0. (6.158)
Equation (6.158) is satisfied when
Yijk = —Vjiks wjj = —Wj; (6.159)

fori # j,j #k,i # k.
We noted earlier that y;x; = y;jx and y;jx = —y;ix; therefore, it is possible only
if yjjx =0fori # j, j # k,i # k. This means that ¢;; = w;; and ¥;; = wj;.
From a condition of lack of deformations, that is, from the zeroing ¢ = 0,
it follows that the velocity field in three-dimensional space has the property
Wij = —Wjj, that is, w;, = —wyy, w13 = —wsy, and w3 = —w3;. It can be seen
that we are dealing with the skew-symmetric tensor . We take

W) = —wn = w3, W) = —w13 = W31, w3 = —wy1 = w2,  (6.160)

which can be represented by means of an alternating tensor as

1
W = S Erikik, (6.161)

and, in turn, introducing

w = Ew +Ew, + Ezws (6.162)
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we have )
v =@ xér =0 xor. (6.163)

The zeroing of the tensor ¢ causes the appearance of the antisymmetric tensor o,
and we have
Srw = w X 6r = Jv, (6.164)

where w is now the tensor wy;.

Figure 6.5 depicts the volumes of the element cut out of a deformable body before
deformation V and after deformation V’'. We will now show how the elementary
volume changes after deformation. To this end we calculate the so-called relative
coefficient of velocity expansion of the form

sV =8V
= — 1
X 7 (6.165)
where
8V = 8)618)628)63. (6.166)

The increment of the volume [numerator in (6.165)] on the assumption of
infinitely small deformation has the form

SV —8V =d (V) = d (§x18x28x3)
— 4 (8x1) 83283 + 8x1d (8x2) 83 + 8x18xad (Bx3)
= (e11 + &2 + 33) Sx18x28x3
= (11 + & + 33) 8V, (6.167)

where (6.126) and (6.166) were used during the transformations.
From (6.165), taking into account (6.127), we obtain

(s11 +en+e3)8V  Our  Our  Ous )
= = 2 T diva 6.168
5V TR PR P (6.168)

Dividing the foregoing equation through by dz we obtain
x =divyv, (6.169)

which determines the speed of the relative volume dilation (expansion) of the
considered cutout of a deformable body of volume § V.

Earlier, in our analysis of statically indeterminate problems, we mentioned that it
is not possible to solve a problem without knowing the deformations, which requires
the introduction of kinematics or, in the case of the calculation conducted in this
chapter, the tensor of deformations. Knowing the tensor of deformation in the case of
a perfectly elastic isotropic (its mechanical properties are independent of the choice
of direction of the coordinate axes) body we can express the desired stress tensor in
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Fig. 6.7 Uniaxial stress state

the following way:
Oir = 2Géeik + 8ik ASmnEmn- (6.170)

The preceding equation is called a state equation, where G is a shear modulus,
8:x a Kronecker delta, and A a Lamé® constant.

Finally, let us note that the constants G and A can be expressed in terms of two
other constants, namely, Young’s’ modulus E and Poisson’s® ratio v:

E vE

— , R R — 6.171
2(1+v) 14+v)(1—-2v) ( )
Let us now consider the special cases resulting from the equation of state (6.170),

which will be transformed into the form

1
Eik = E [(1 + V) Ok — UUmn(gmnSik] s (6172)

and then the special cases that follow from the state (6.172).

(i) Insertingi = k = 1 into (6.172) we obtain

e = %[(14—\1)011—\1011] = %, (6.173)
which is illustrated in Fig. 6.7.

Equation (6.172) describes the classical Hooke’s? law, which we used in
Example 2.5. In Fig.6.7 the volume of a deformed homogeneous rod of
a constant cross section is indicated by V’. The presented deformation in
the directions of axes OX, and OXj is caused by the uniaxial stress oyj.
From (6.172) we calculate

5Gabriel Lamé (1795-1870), French mathematician.

"Thomas Young (1733-1829), English mathematician and mechanician who also studied medicine
and physiology.

8Simeon D. Poisson (1781-1840), French mathematician and physicist.

“Robert Hooke (1635-1702) formulated this law in 1676; on the basis of experimental research he
observed that the deformation caused by a load is proportional to that load.
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1 Vo
=g (14 v)on—v(on +o0n)] = —%, (6.174)

and in a similar way we calculate €33 = &7.

(i) Let us now consider the case of a so-called pure shear, that is, when we have
shear stresses 01, = 0y exclusively. From (6.172) it follows that the only non-
zero deformations are

1+v 1+v
012, &1 =

Ep = 021, (6.175)

and in this case the matrices of the stress tensor and deformation tensor are as

follows:
0 o0 0 &0
[oik] = | 021 0 O], leik] = e 0 0. (6.176)
0 00 0 00

From (6.170) we have
o12 = 2Geyy, (6.177)

and because from (6.138) it follows that y;, = 2¢;,, taking into account this
relationship in (6.177), we obtain

o2 = Gy, (6.178)

which indicates pure shear.

In general, during deformation the positions in space R> of both elementary
surfaces and elementary volumes undergo change, and what follows is that also in
the distribution of surface forces and volume internal (or sometimes even external)
forces are subjected to change. However, by the problems discussed so far and
by the derivation of stress tensors and the speeds of their changes, that problem
was simplified because of the assumption that the so-called freezing hypothesis
was satisfied. The mathematical model of the problem was reduced, then, to an
analysis of algebraic equations and differential linear equations. Such an assumption
enables the superposition principle to be applied.

Let us return to the case discussed earlier of the loading of an elastic (deformable)
body obeying Hooke’s law with an arbitrary system of concentrated forces and
moments whose effects are linear and angular displacements. Further we will not
distinguish between forces and moments, but we introduce a notion of generalized
forces Qj and corresponding generalized displacements g. This problem was
considered in Chap. 1.

The action of generalized forces Qy,k = 1,..., K on the considered mechanical
system generates a reaction of the system in the form of displacements (deforma-
tions) of the points of this system according to a linear transformation of the form
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qr = rlek, k= 1,...,K, (6.179)

where the matrix ry is called the matrix of influence (transmittance). This approach
can also be applied in the case of system dynamics on the assumption of linearity of
the considered model.

If we take, for example, a matrix element ry, it transmits the force Qy to point g;,
which leads to the determination of a linear displacement or a rotation angle at that
point depending on whether we are dealing with a force or a moment.

We call mechanical systems in relation to which we can apply (6.179) Clapey-
ron'° systems, after the scientist who introduced this line of argumentation.

An elastic system subjected to the action of generalized forces Qj undergoes
displacements ¢;, that is, the following elastic potential energy accumulates in the
system:

1
V=saQn  I=1..K (6.180)

We will briefly describe a superposition principle leading to the formulation of
Betti’s'! reciprocity theorem.
Let us divide the system of generalized forces into two groups.

Theorem 6.1 (Betti’s theorem). If the Clapeyron system is subjected to two sets
of forces, then the work done by the first set of forces through the displacements
generated by the second set of forces is equal to the work done by the second set of
forces through the displacements generated by the first set of forces.

Proof. The work of the first group Ql(l) done through the displacement is equal to

L
- 1 |
WO =23 a0,
=1

where L denotes the number of forces of the first group.
Now, to the body already loaded with the forces Ql(l) I =1,...,L, we apply

additionally the forces Q,(nz) ,m=1,..., M of the second group.
In this case the work is done by the forces of both the first and second groups,
and therefore

M L
= 1 2) (1
W =3 [quﬂ”fo’ + 470 ’},
m=1 =1

where ql(z) denotes displacement at the points of application of the forces from

the first group generated by the forces from the second group, and q,(,,l ) denotes
displacement at the points of application of forces from the second group produced

19Benoit Clapeyron (1799-1864), French mathematician and physicist, founder of modern ther-
modynamics.

"Enrico Betti (1823-1892), Italian mathematician.
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by the forces from the first group. The total work of the forces is equal to
wO — O Ly,
Now, assuming that at first that the body is acted upon by the forces from the
second group and then forces from the first group, we obtain
W = O L 5@,

where

(2)

3

W —

W — (2)Q<1> 4 qu(l)Q(Z)_

=1

According to the superposition principle we have

wlh — W(2)7

from which it follows that

Zq(2)Q(1) qu(l)QQ),

which proves the theorem. O

It is also possible to demonstrate that the transmittance matrix is a symmetrical
matrix, that is, that r;, = ry; for every k and /. Knowing the elastic (potential)
energy V of an elastic body (system) and the generalized forces Q allows us to
determine the generalized displacements g caused by these forces.

Theorem 6.2 (Castigliano’s'? theorem). Generalized displacements q;. produced
by generalized forces Qy at an arbitrary point of a Clapeyron system are derivatives
of the strain energy V of the system with respect to the generalized force acting on
the generalized displacement, that is, the following equation is satisfied

v

4= 500 (6.181)

Proof. Substituting (6.179) into (6.180) we obtain

1
V= Erszle.

2Carlo A. Castigliano (1847-1884), Italian engineer who completed his studies in Turin; the
theorem formulated in his diploma thesis was later named after him.
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Differentiating V' with respect to Q; we obtain

av 1 00, 00k 1 . 1 ;
_ = = [ 81 _ 81
70, Zrlk(an Or+ Q01— 70, ) 5k 1Qk+2"lel 3
1 1
= Erika + Erlin’

since aQ = 8’ and an = 8’
Finally, because of the matrix transmittance symmetry r;; = ry; we obtain

v 1
90, 2 (rik Ok +ri Q1) = qi,
which completes the proof. O

Finally, we return to the example of a beam of length / loaded in the middle
with a force (Fig.2.9). In this case we will determine its deflection at the point of
application of the force.

The beam underwent deflection as a result of action of the force F and in effect
the internal (potential) energy due to bending was accumulated in it. A differential
of this energy is equal to

1
dv = ~Md, (6.182)

where M is a bending moment and the differential dg is described by

Mdx
dp = —=, 6.183
=% ( )
where E I denotes beam rigidity.
The bending moment, after introducing axis OX whose origin is at the left end

: 1 M _ 1
of the beam, is equal to M = Fx that is, SF = X
Because V = f dx from (6.181) it follows that the displacement at the

point of application of the force F is equal to

1

i 2
av M oM F FI3
0= g7 = [ rapir =5 [¥ar= g (6.184)
oF EI oF 2F1 48E1
0 0

where because of the symmetry the integration was conducted over the interval

[0.5]-
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