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Łódź
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Preface

This book belongs to a series of three books written simultaneously (the remaining
two are titled Classical Mechanics: Dynamics and Classical Mechanics: Applied
Mechanics and Mechatronics). This book’s triad attempts to cover different subjects
in classical mechanics and creates a link between them by introducing them from
the same root. The classical mechanics approach extended to the study of electro–
magneto–mechanical systems is also emphasized. Another important objective in
writing the series of three volumes with the repeated title Classical Mechanics was
to include and unify sometimes different approaches to the subject in the English,
Russian, Polish, and German literature. This explains why sometimes the list of
references includes works written either in Russian or Polish (the English literature
is now easily available using Google or Scopus). Although the list of references
includes works written not necessarily in English, the way of the book material
presentation does not require to read the reference sources.

This first volume contains problems of classical mechanics including kinematics
and statics. It is recommended as a textbook for undergraduate and graduate students
in mechanical and civil engineering and applied physics as well as for researchers
and engineers dealing with mechanics. It could also be a main reference for other
courses, but it is suited for a course in statics and dynamics.

In Chap. 1 the fundamental principles of mechanics are formulated, illustrated,
and discussed. In the introduction, the general historical path of the development
of mechanics and its pioneers is described with an emphasis on mechanical
modeling of planetary motion and Newtonian mechanics. Three of Newton’s laws
are formulated and discussed. The definitions of force and mass are given, and then a
classification of forces is introduced. Next, the principles of mechanics are given and
briefly discussed. In addition, the impact of classical mechanics on electrodynamics
(Maxwell’s equations) and relativistic mechanics (Einstein’s theories) is presented.
Kinetic units, and in particular the principal SI units, are introduced and discussed.
In Sect. 1.2, D’Alembert’s principle is introduced, illustrated, and discussed. In
Sect. 1.3, the principle of virtual work is derived and illustrated. In Sect. 1.4,
the increment and the variation of a function are presented, and two examples
supporting the introduced theoretical background are given.

v
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Chapter 2 is devoted to statics. First, a concept of equilibrium is introduced,
including the formulation of several theorems. The notations of moment of force
about a point and about an axis are illustrated, statically determinate and indeter-
minate problems are defined, and the “freezing principle” is described. In Sect. 2.2,
the geometrical equilibrium conditions of a plane force system are introduced and
discussed. The force polygon and funicular polygon are introduced and illustrated
through two examples. In Sect. 2.3, the geometrical conditions for a space system
are formulated. In particular, Poinsot’s method is described. Analytical equilibrium
conditions are given in Sect. 2.4. The three-moments theorem is formulated and
proved. Two reduction invariants as well as the fields of forces are defined. Two
theorems regarding mechanical systems with parallel forces are formulated and
proved, among others. In Sect. 2.5, mechanical interactions, constraints, and sup-
ports are described, and examples of supports carrying three-dimensional systems
of forces are graphically illustrated. In addition, three computational examples
are shown. Reductions of a space force system to a system of two skew forces
(Sect. 2.6) and to a wrench (Sect. 2.7) are carried out. Theoretical considerations
are supported by figures and examples, and two reduction invariants are also
introduced. In Sect. 2.8, the phenomenon of friction is described including limiting
and fully developed friction forces, three Coulomb laws, sliding friction, and rolling
resistance. Three illustrative examples are also given. The paradoxical behavior of
bodies coupled by friction is presented and discussed in Sect. 2.9, which includes
the following examples: (a) supply of energy by means of friction; (b) Coulomb
friction as a force exciting rigid body motion; (c) Coulomb friction as viscous
damping. Two different approaches to the Euler formula derivation are shown in
Sect. 2.10 while dealing with friction of strings wrapped around a cylinder. Friction
models are presented and discussed in Sect. 2.11. First, some friction models used
in research and frequently found in the literature are presented, and then particular
attention is paid to the so-called CCZ (Coulomb–Contensou–Zhuravlev) three-
dimensional friction model. Some computational examples putting emphasis on
the coupling of sliding and rotation of a body moving on an inclined plane are
included.

Chapter 3 is devoted to the geometry of masses. In Sect. 3.1, basic concepts are
introduced including mass center, moment of inertia of a system of particles with
respect to a plane (an axis), polar moment of inertia. Four illustrative computational
examples are provided. Centroids of common shapes of areas, lines, and volumes
are given in tables. Two Pappus–Guldinus rules are formulated and supplementary
examples of their applications are provided. In Sect. 3.2, the moments of inertia
(second moments) are discussed, and formulas for their values for common
geometric figures and three-dimensional bodies are included in tables. The inertia
matrix and its transformations are discussed in Sect. 3.3. Steiner theorems are
formulated, and an illustrative example is provided. In Sect. 3.4, principal axes
and principal moments on a plane are defined, and in particular the plane inertia
circle (Mohr’s circle) is discussed. The inertia tensor, principal axes of inertia,
and ellipsoid of inertia are the theme of Sect. 3.5. In particular, an ellipsoid of



Preface vii

inertia of a body, principal axes of inertia, invariants of an inertia tensor, and
inertia triangle inequalities are illustrated and discussed. Section 3.6 presents the
properties of principal and principal centroidal axes of inertia, whereas Sect. 3.7
addresses problems related to the determination of moments of inertia of a rigid
body.

The kinematics of a particle, the curvilinear and normal coordinates, and
kinematic pairs and chains constitute the focus of Chap. 4. In Sect. 4.1, the motion
of a particle and trajectory (path) of motion are defined including its velocity and
acceleration. Section 4.2 deals with selected problems of plane motion of a particle
putting emphasis on circular, rectilinear and curvilinear motion and the vectorial
approach. Section 4.3 focuses on introduction and application of rectangular and
curvilinear coordinates in space. It includes the classification of a particle’s motion
with respect to acceleration. In Sect. 4.4, the concept of natural coordinates is
illustrated and discussed. The motion of a radius vector and rectangular and
curvilinear coordinates in space are introduced and their properties and applications
described. Both vector and tensor notations are used, and in particular covariant
and contravariant unit vectors are applied. Orthogonal and orthonormal bases
are introduced, and then displacement, velocity, and acceleration components are
defined via the kinetic energy of a particle. Unit vectors and their first derivatives
are derived for rectangular, cylindrical, and spherical coordinate systems. The
position, velocity, and acceleration of a particle in rectangular, cylindrical, spherical,
and arbitrary curvilinear coordinates are reported. Two illustrative examples are
given. Natural coordinates (velocities and accelerations, the Darboux vector, torsion
of a curvature, Frenet–Serret formulas, and examples) are studied in Sect. 4.4.
Kinematic pairs and chains, joint variables, and the Denavit–Hartenberg convention
are considered in Sect. 4.5. Definitions of a class of kinematic pairs, a mechanism,
and a group are introduced, and low-order kinematic pairs are presented in a table.
Finally, Sect. 4.6 provides a classification of problems in kinematics.

In Chap. 5, the kinematics of a rigid body and the composite motion of a
point (particle) are studied. In Sect. 5.1, translational and rotational motions are
considered. The study includes the movement of a rigid body in a three-dimensional
space and the definition of degree of freedom. In particular, angular velocities and
angular accelerations as vectors and the notation of a vector of small rotation are
illustrated. Planar motion is studied in Sect. 5.2. It is demonstrated that planar
motion can be treated as a composition (geometric sum) of translational and
rotational motions, and the first of Euler’s theorem is formulated. Moving and
fixed centrode concepts are illustrated and discussed. Two theorems regarding the
instantaneous points of zero velocity (point C ) and zero acceleration (point S ) are
formulated and then proved. Various vector methods of velocity and acceleration
determination on the basis of a point’s planar motion are presented and illustrated
analytically and geometrically. Burmester’s theorems are formulated and their
applications are illustrated. A few illustrative examples are provided. In Sect. 5.3
(5.3), a composite point motion in three-dimensional (two-dimensional) space is
illustrated and analyzed. The general motion of a rigid body in three-dimensional
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space is studied in Sect. 5.5. Following a brief introduction, the angular velocity
and angular acceleration of a rigid body are defined using both vector and tensor
calculus. Euler’s proposal is introduced rigorously, and Euler’s formula is derived.
In particular, the Eulerian angles are illustratively introduced and explained step by
step. A rotation matrix that is a product of three matrices of elementary rotations
is derived, and their elements are explicitly given. The matrix’s non-commutivity is
discussed, among other topis. An important theorem is formulated and proved. In
Sect. 5.5.4, Eulerian angles are introduced, whereas in Sect. 5.5.5, Euler’s kinematic
equations are formulated, and both Euler’s angles and angular velocities are derived
and graphically presented. The displacement of a rigid body with one point fixed is
studied in a subsequent section. Several basic theorems regarding the displacement
and rotation of a rigid body are formulated in Sect. 5.5.7. In the subsequent short
subsections, the parallel translation and rotation of a rigid body and a homogenous
transformation, kinematic states of a rigid body’s velocity and acceleration in trans-
lational motion and in motion about a point are illustrated and studied. In particular,
rotational, centripetal, and normal accelerations are analyzed. Then, in Sects. 5.5.12
and 5.5.13, the velocities and accelerations in the motion of a body about a fixed
axis and in various coordinate systems are studied. The velocities of a point of a
rigid body in various coordinate systems are considered in Sect. 5.5.14, the regular
precessions of a rigid body are analyzed in Sect. 5.5.15 (two additional examples
support the introduced theoretical considerations). Screw motion is illustrated and
discussed in Sect. 5.5.16, whereas the geometrical interpretation of velocity and
acceleration of a point of a rigid body in general motion is given in Sect. 5.5.17.
The latter subsection also includes a few important theorems, sometimes rigorously
proved. The composite motion of a rigid body is analyzed in Sect. 5.6. It consists of
the composition of two instanteneous translational (rotational) motions, a couple
of instanteneous rotations, and the composition of rotational motions of a rigid
body about intersecting axes. Two theorems are formulated and proved, among
others.

In Chap. 6, the kinematics of a deformable body is studied. In Sect. 6.1, the role
of tensor notation in mechanics is described. In Sect. 6.2, particular attention is paid
to the stress tensor. Symmetric and asymmetric tensors are introduced, and their
actions are explained analytically and geometrically. Elastic body deformation is
studied via introduction of a tensor governing the velocity of body deformation.
Two simple examples of theoretical considerations are provided. The definition of
Clapeyron systems is introduced, and then Betti’s and Castigliano’s theorems are
formulated and proved.

I wish to express my thanks to P. Da̧bek and M. Kamierczak for their help in the
book’s preparation.

I gratefully acknowledge many helpful comments and suggestions given by my
colleagues and coworkers, and in particular the contributions of W. Blajer and K.
Januszkiewicz as well as of J. Mrozowski and G. Kudra, among others.

Special thanks go to A. Kireenkov and G. Kudra for their help in preparing
Sect. 2.11.
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Chapter 1
Fundamental Principles of Mechanics

1.1 Introduction

Mechanics is a branch of physics. In general, mechanics allows one to describe
and predict the conditions of rest or movement of particles and bodies subjected to
the action of forces. Aristotle1 was among the first scholars to introduce the term
mechanics. At first, the development of mechanics was related to that of knowledge
about the modeling of the Universe. Plato,2 Eudoxus,3 and Aristotle are among
the creators of the homocentric system, whereas Apollonius,4 Hipparchus,5 and
Ptolemy6 created the epicyclic system. The theory they developed, according to
which the motionless Earth is the center of the Universe, is called the geocentric
theory. As was mentioned previously, Ptolemy, an Alexandrian scholar, was the
originator of this theory. He based his ideas on the works of Hipparchus, one of
the greatest astronomers of antiquity who explained the complexity of the motion
of planets while retaining the central location of the Earth and introducing the
combination of circular motions. The geocentric theory is based on the assumptions
that the immovable Earth is located at the center of the Universe and that other
celestial bodies shaped like spheres revolve around Earth, moving uniformly in
circular orbits.

1Aristotle (384–322 BC), Greek philosopher (Plato’s student).
2Plato (428–348 BC), Greek philosopher and mathematician.
3Eudoxus of Cnidus (408–355 BC), Greek philosopher, astronomer and mathematician.
4Apollonius of Perga (260–190 BC), Greek mathematician and astronomer (focused on conics and
the movement of the Moon).
5Hipparchus of Nicaea (190–120 BC), Greek astronomer, mathematician, and geographer; consid-
ered a precursor of astronomy.
6Claudius Ptolemaeus (100–168), Greek mathematician, astronomer, and geographer; one of the
creators of the geocentric theory.

J. Awrejcewicz, Classical Mechanics: Kinematics and Statics, Advances in Mechanics
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© Springer Science+Business Media New York 2012

1



2 1 Fundamental Principles of Mechanics

Aristotle was the unquestioned authority in the domain of philosophy and
mechanics; nonetheless, he made a fundamental error that adversely affected the
development of mechanics. First of all, he assumed that the laws governing the
motion of bodies are different for the Earth than for other celestial bodies. It was
only Galileo Galilei7 who, over twenty centuries later, pointed out the incorrectness
of the Aristotle’s viewpoint.

The heliocentric model, in which the Sun is the center of the world, was
introduced by Nicolaus Copernicus8 in his fundamental work De revolutionibus
orbium coelestium (On the Revolutions of Heavenly Spheres). This view was
subsequently modified by Giordano Bruno,9 who maintained that the solar system
was but one of an infinite number of such systems in the Universe.

Problems connected with the motion of bodies were raised for the first time by
Galileo Galilei, a dedicated proponent of Copernicus’s theory. To Galileo is also
attributed the discovery of the law of the pendulum (1583) and the law of freely
falling objects (1602).

A great contribution to the development of mechanics was made by Johannes
Kepler,10 who formulated the following three laws of planetary motion on the basis
of empirical observations previously made by Tycho Brahe.11

1. All the planets move in elliptical orbits with the Sun at one focus.
2. The position vector of any planet attached at this focus of an orbit where the Sun

is located sweeps equal areas in equal times.
3. The squares of the orbital periods of the planets are proportional to the cubes of

the semimajor axes of their orbits.

Kepler’s three laws served as the foundation of the mechanics of Isaac Newton,12

who assumed that space was homogeneous and isotropic and that phenomena are
uniform with respect to the choice of the time instant. The equations derived by
Newton are invariant with respect to Galilean transformation. Classical mechanics
is also called Newtonian mechanics.

From Newton’s point of view (Newtonian mechanics) time, space, and mass
are absolute attributes that are independent of each other. These concepts cannot
be a priori defined and are rather motivated by our intention and experience. The
concept of mass allows us to compare the behavior of bodies. For instance, we say
that two bodies have the same mass if they are attracted by the Earth in the same
manner and they exhibit the same resistance to changes in translational motion.

7Galileo Galilei (1564–1642), Italian philosopher, astronomer, astrologer, and physicist who
acknowledged the supremacy of the heliocentric theory of Copernicus.
8Nicolaus Copernicus (1473–1543), Polish astronomer and mathematician, creator of the helio-
centric theory.
9Giordano Bruno (1548–1600), Italian Catholic cleric, philosopher.
10Johannes Kepler (1571–1630), German mathematician, astronomer, and physicist.
11Tycho Brahe (1546–1601), Danish astronomer.
12Isaac Newton (1642–1727) English physicist, mathematician, philosopher, and astronomer.
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A point mass (particle) position and a body position require an introduction of
the concept of space. It is necessary first to define an event. Newton also introduced
the concept of force. It may depend on the mass of the body on which it acts and on
changes in the velocity of the body over time. Therefore, force cannot be treated as
an absolute, independent attribute of mechanics.

Mechanics can also be defined as the science of the motion of bodies. Instead of
using real objects, mechanics makes use of their models. In general, the model of a
given object (body) is an image reflecting only those attributes of the object that are
essential to investigate the phenomena of interest for a particular branch of science.
To the basic models applied in mechanics belong the following ones:

A particle (material point): A body possessing mass but having such small
dimensions that it can be treated as a point in a geometric sense. However, in
practice, bodies whose angular velocities are zero by assumption or whose rotational
motion can be neglected are treated as particles regardless of their dimensions;

A system of particles: A collection of particles;

A rigid body: The distances between elements of such a body remain constant for
arbitrarily large magnitudes of forces acting on the body.

In reality, structures, machines, and mechanisms are deformable bodies.
However, usually their deformations are small, and hence in many cases their
effect on the statics/dynamics of the studied bodies can be neglected.

A system of rigid bodies: A collection of rigid bodies.

The laws of mechanics introduced by Newton serve to illuminate the motions
of material systems. They enable us to create a mathematical model, that is, to
formulate equations of motion of particles and bodies.

The main goal of mechanics is to formulate the laws of motion suitable for the
investigation of a variety of real bodies. It turns out that any real body, solid, liquid,
or gaseous, can be modeled as a collection of particles. The following branches of
mechanics deal with problems in the previously mentioned fields:

1. Mechanics of rigid bodies (statics and dynamics).
2. Mechanics of deformable bodies (strength of materials, elasticity theory, plastic

theory, or rheology).
3. Mechanics of fluids: Incompressible (mechanics of liquids) and compressible

(mechanics of gases, aeromechanics); the mechanics of incompressible fluids
such as water is known as hydraulics.

In technical mechanics, during the modeling process we deal with the geometry
(decomposition) of mass and the description of materials from which bodies are
formed. In rigid-body mechanics, we assume that the distance between any two
points of a body does not change. We can talk about a completely different problem
when there is a possibility of changing the distance between the points of a body.
The load of bodies in this last case leads to the change in the distance between body
atoms, and interatomic forces (internal) will balance the external load. Bodies and
material systems made of metal as encountered in technology have regular structures
of arranged atomic networks on the order of 1030. With regard to the large amount
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of atoms, analysis is performed on the micro scale, which leads to the averaging
of anisotropy of microcrystal systems. Generally, most technical materials, after
having a cubicoid cut out of them with sides of around 10�3 m, have the same
properties irrespective of the orientation of the “cutting out,” and such materials
are called isotropic (of the same direction). There are also anisotropic materials
(of different directions) in technology whose enduring properties depend on the
orientation in which the cube of material is cut out (e.g., rolled plates, timber,
fabrics, and paper).

The laws originally formulated by Newton generated a set of other fundamental
laws of mechanics such as the conservation of linear momentum, the conservation
of angular momentum, and the conservation of kinetic energy.

Below are the laws formulated by Newton, which are valid for particles.

First law. A body at rest not acted upon by an external force (the resultant force
acting on a particle is zero) will remain at rest, and a body in motion moving at
a constant speed along a straight line will remain in motion unless acted upon by
an external force.

Second law. The acceleration of a particle is proportional to the net force acting on
the particle; the direction and the sense of acceleration are identical to those of
the force.

Third law. The mutual forces of action and reaction between two bodies are equal,
opposite, and collinear.

The first two laws are true in an inertial system, whereas the third law is binding
in any system. It can be shown that Newton’s first law is a particular case of his
second law.

It should be noted that Newton’s laws are based on a concept of force as a vector
quantity. Force appears here as a primitive notion and requires the introduction of
at least two bodies. Correlation of reactions between bodies results from Newton’s
third law, where the action (forces) causes immediate reaction, which is graphically
characterized by the description presented by Newton: “If I put pressure with a
finger upon a stone with a certain force, then the stone also puts pressure upon my
finger with the same force.” The interaction of bodies can be implemented by the
direct pressure of one body on another or by indirect reaction at a distance.

The latter case is connected with Newton’s law of gravitation since, if we
consider two particles of masses m1 and m2, the gravity force F12 with which the
particle of the massm2 attracts the particle of the mass m1 is given by

F12 D G
m1m2

r3
r12; (1.1)

where G D 6:67 � 10�11 Nm2 kg�2, and r12 is a vector joining these two points and
directed from point 1 toward point 2.



1.1 Introduction 5

The gravitational constant G is used for describing the gravitational field and was
determined for the first time by Henry Cavendish.13 It should be noted, however, that
there exists a certain arbitrariness in the definition of force. Nobel laureate Richard
Feynman14 draws attention to the fact that the definition of force in a strict sense
is difficult. This is due to the approximate character of Newton’s second law and
generally due to the approximate character of the laws of physics.

A concept of mass can also be introduced based on Newton’s second law.
Let us consider an arbitrary particle and apply to it, in turn, forces of various
magnitudes F1; F2; F3; : : : ; FN . Each of the forces produces motion of the particle
with accelerations a1; a2; a3; : : : ; aN , respectively. These accelerations, according
to Newton’s second law, are proportional to the magnitudes of the forces, i.e.,

F1
a1

D F2
a2

D F3
a3

D � � � D FN
aN
: (1.2)

The foregoing ratios describe the inertia of a body (particle) and define the mass
of the body. Recall that the weight of a body is a product of body mass m and
acceleration of gravity g. The mass defined in that way is called a gravitational
mass. Empirical research conducted by Hungarian physicist Roland Eötvös15 proved
that the inertial mass (defining the inertia of a particle) and the gravitational mass
(being a measure of the gravitation) are identical. In other words, if we take a particle
located on the Earth’s surface, then we may use (1.1) to define the weight G of a
particle of mass m. That is, introducing r D R (R is now the Earth’s radius) and
introducing g D Gm1

R2
; m2 D m, the weight of a particle of mass m is G D mg.

Observe that R depends on the particle elevation and on its latitude (the Earth is not
perfectly spherical), and hence the value of g varies with the particle position.

Newton’s second law can be formulated in the following form:

ma D F: (1.3)

Newton’s third law is also known as the law of action and reaction. It is valid
both for bodies in contact and for bodies interacting at a distance .F12 D �F21/.

Finally, it should be noted that Newton’s three laws were presented in a modified
form. Newton’s original text from his 1687 work Philosophiae Naturalis Principia
Mathematica (Mathematical Principles of Natural Philosophy) is slightly different.
For instance, Newton does not use the notion of a particle but that of a body. The
concept of force was defined by him through a series of axioms and not in vector
notation.

It is worth emphasizing that historically the concept of force was a very
subjective notion as it was connected with the individual sensation of the exertion
of muscles. Thanks to the efforts of Newton and other scholars, the concept of force

13Henry Cavendish (1731–1810), British physician and chemist.
14Richard Feynman (1918–1988), American physicist and creator of quantum electrodynamics.
15Roland Eötvös (1848–1919), Hungarian mathematician and physicist.
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obtained its objective character. Nowadays, one can even observe certain feedback,
i.e., through an objective understanding of force, scientists seek to deepen fully the
notion of the so-called biological force connected with the ability of the muscular
nervous system to, e.g., lift (lowering) material objects [1, 2]. In this case the force
depends on the properties of fast twitch and slow twitch of muscle fibers as well as
age, sex, etc.

Forces can be divided into several classes:

1. Mass (gravitational and inertial).
2. Surface and volumetric (pressure and hydrostatic pressure).
3. Electromagnetic and electrostatic.
4. Muscular (of humans or animals).
5. Contact: Compressive, acting on a surface or along a line.
6. Tensile: Such as the forces in threads, cables, strings.
7. Passive (reactive), i.e., counteracting the active forces.
8. External and internal.
9. Interaction of bodies.

Apart from the described laws, it is possible to introduce several principles of
mechanics. While the laws describe relationships between mechanical quantities
often leading to solutions (e.g., through the first integrals of momentum, angular
momentum, or energy), the principles only support the formulation of equations of
motion. The principles possess the value of universality since they can be applied,
for example, in the theory of relativity, quantum mechanics, and some branches of
physics. One can divide them into differential principles and integral principles. The
principles used in classical mechanics are a part of so-called analytical mechanics.

The principle of independent force of action is a generalization of Newton’s
second law. If several forces act upon a particle, the acceleration of this particle
is a result of a geometric sum of the accelerations produced by each of the forces
acting separately (superposition principle).

Let us recall, finally, that the description of the behavior of electromagnetic
fields introduced by Maxwell’s16 equations was in disagreement with Newton’s
idea of particle motion. It turned out that electromagnetic waves could propagate
in a vacuum. This contradicts a purely mechanical approach whereby waves
can propagate only in a material medium filling up space. Moreover, Maxwell’s
equations were invariant with respect to the Lorentz17 transformation, whereas
Newton’s equations are invariant with respect to the Galilean transformation.

Albert Einstein18 succeeded in resolving that problem thanks to the introduc-
tion of the so-called special theory of relativity in 1905. He introduced space-
time as an invariant quantity, creating the foundations of so-called relativistic

16James Clerk Maxwell (1831–1879), Scottish mathematician and physicist.
17Hendrik Antoon Lorentz (1853–1928), Dutch physicist and Nobel laureate.
18Albert Einstein (1879–1955), distinguished German physicist, creator of the special and general
theories of relativity.
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mechanics. In this way, two deductive systems became unified, i.e., mechanics
and electrodynamics (relativistic mechanics, like electrodynamics, is invariant with
respect to the Lorentz transformation). In relativistic mechanics, space, time, and
mass depend on each other and cannot be treated as absolute independent attributes.

Fortunately, the differences between relativistic mechanics and Newton’s
mechanics appear at particles speeds close to the speed of light or in the analysis of
large distances. Neither of these cases will be considered in this book.

The four fundamental concepts of classical mechanics discussed so far, i.e.,
space, time, mass, and force, allow us to introduce the so-called kinetic units.
However, in order to satisfy Newton’s second law they cannot be taken arbitrarily,
and they will be further referred to as base units. The remaining fourth unit will
be referred to as a derived unit. Then the kinetic units will create the so-called
consistent system of units. In what follows we further address only the universal
system of units (SI units). In this system the base units are the units of length
(meter, m), mass (kilogram, kg), and time (second, s). A meter is here defined as
1650763:73 wavelengths of orange-red light corresponding to a certain transition
in an atom of krypton-86 (originally defined as one ten-millionth of the distance
from the equator to either pole). A kilogram is equal to a mass of 10�3 m3 of water,
and the mass of a platinum–iridium standard kilogram is kept at the International
Bureau of Weights and Measures in Sèvres in France. A second is defined as the
radiation corresponding to the transition between two levels of the fundamental
state of the cesium-133 atom (originally defined to represent 1

86;400
of the mean

solar day). Equation (1.3) yields the derived unit of force 1N D 1 kg � m � s�2.
The weight of a body or the force of gravity is G D mg, and for a body with a
mass of 1 kg, its weight is 9:81N. There are numerous multiples and submultiples
of the fundamental SI units as follows: 1012 (tera-T), 109 (giga-G), 106 (mega-M),
103 (kilo-k), 102 (hecto-h), 10 (deka-da), 10�2 (deci-d), 10�2 (centi-c), 10�3 (milli-
m), 10�6 (micro-�), 10�9 (nano-n), 10�12 (pico-p), 10�15 (femto-f), 10�18 (atto-a).
For instance 1 km D 1;000m, 1�m D 10�6 m, 1Mg D 1;000 kg, 1 g D 10�6 kg,
1MN D 106 N, etc.

In the case of time units, we have the minute (min) and the hour (h), and
1min D 60 s, whereas 1 h D 60min.

We may introduce also units of area and volume. The square meter (m2) is the
unit of area representing the area of a square of side 1 m. The cubic meter is the unit
of volume equal to the volume of a cube of side 1 m.
In general, the following principal SI units are applied in mechanics:

1. Acceleration ( m
s2

).
2. Angle [radian (rad)].
3. Angular acceleration ( rad

s2
).

4. Angular velocity ( rad
s ).

5. Area (m2).
6. Density ( kg

m3 ).
7. Energy and work [Joule (J)].
8. Force [Newton (N)].



8 1 Fundamental Principles of Mechanics

9. Frequency [Hertz (Hz)].
10. Impulse [Newton � second (N � s D kg � m

s )].
11. Length [meter (m)].
12. Mass [kilogram (kg)].
13. Moment of a force [Newton � meter (N�m)].
14. Power [Watt (W D J

s )].
15. Pressure and stress [Pascal (Pa D N

m2 )].
16. Time [second (s)].
17. Velocity [meter per second ( m

s )].
18. Solid volume [cubic meter (m3)].
19. Liquid volume [liter (10�3 m3)].

In general, in classical mechanics one may adhere to the following fundamental
steps yielding the solution to a stated (given) problem. First, one needs to define the
statement of a problem clearly and precisely. Diagrams indicating the force acting
on each body considered known as free-body diagrams should be constructed. Then
the fundamental principles and laws of mechanics should be used to derive the
governing equations holding the condition of statics (rest) or dynamics (motion)
of the bodies studied.

The short historical outline of the development of mechanics presented above
reveals its deep roots in ancient times, and the reader will not make the mistake of
thinking that only today in the field of general mechanics do many coursebooks and
monographs exist. It is almost impossible to present a complete bibliography in the
field of classical mechanics. Therefore, a few sources in English are given to make
the book more readable, especially for students. Therefore, no attempt was made
to provide an exhaustive list of references; only those works are included that were
either used by the author [3–12] or are important competitors to this book [13–25].

1.2 D’Alembert’s Principle

Let us consider a constrained material system (subjected to constraints) consisting
of particles, described by the following equations of motion based on Newton’s
second law:

mnan D Fen C Fin C FRn ; n D 1; : : : ; N; (1.4)

where Fen, Fin, and FRn denote, respectively, external forces, internal forces, and re-
actions, which follow directly from Newton’s second law. Every particle, numbered
n, can be subjected to the action of forces Fin coming from other (even all) particles
of the considered system of particles. The external forces Fen, in turn, represent the
action of the environment on our material system isolated from that environment or
from other isolated system parts.

If Fen D 0 (absence of external influence), then such a system in mechanics
is known as autonomous (isolated). Moreover, in a general case, a system of
particles (SoP) can be free or constrained. The reaction forces FRn are reactions
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of the constraints, that is, of the restrictions imposed on the particles, i.e., on their
displacements and velocities. By the free system we will understand either the SoP
on which the constraints are not imposed or one for which the reaction of the
constraints can be determined explicitly in the form of reaction forces, i.e., they
will not require solving additional so-called equations of constraints, and then the
forces FRn can be treated as Fen. Otherwise, SoP will be called constrained. The
forces that occur on the right-hand side of (1.4) and concerning material point n
in a general case may depend on the position and velocity of other particles of
the SoP as well as explicitly on time, i.e., Fen D Fen .r1; : : : ;rN ; Pr1; : : : ;PrN ; t/,
Fin D Fin.r1; : : : ;rN ; Pr1; : : : ;PrN ; t/, FRn D FRn .r1; : : : ;rN ; Pr1; : : : ;PrN ; t/.

Let every particle undergo a virtual displacement ırn, where rn is a radius vector
of the particle n. Multiplying (scalar product) (1.4) by ırn and adding by sides, we
obtain

NX

nD1
.Fen C Fin C FRn �mnan/ ı ırn D 0: (1.5)

Assuming that only ideal constraints are considered, which by definition satisfy the
relation

NX

nD1
FRn ı ırn D 0; (1.6)

(1.5) will take the form

NX

nD1
.Fen C Fin �mnan/ ı ırn D 0: (1.7)

The equation just obtained enables us to formulate d’Alembert’s principle, which
reads:

The sum of scalar products of virtual displacements and external forces, internal
forces and vectors .�mnan/ of particles of a material system equals zero.

One may conclude from (1.7) that d’Alembert’s principle transforms a problem
of dynamic equilibrium to that of a static equilibrium by adding the inertia force
terms (�mnan) and extends the principle of virtual work to dynamics.

Performing a projection of the vectors appearing in (1.7) on the axes of the
adopted Cartesian coordinate system .OX1X2X3/, we obtain

NX

nD1

�
.F e

nx1
C F i

nx1
�mn Rx1n/ıx1n C .F e

nx2
C F i

nx2
�mn Rx2n/ıx2n

C .F e
nx3

C F i
nx3

�mn Rx3n/ıx3n
� D 0; (1.8)

where an D Rx1nE1 C Rx2nE2 C Rx3nE3, and Ei , i D 1; 2; 3, are unit vectors of the
coordinate system OX1X2X3.
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The equation just obtained is often called a general equation of mechanics.
D’Alembert’s principle and the general equation of mechanics are sometimes
difficult in applications because they refer to coordinates of the particles. In
Hamilton’s and Lagrange’s mechanics the introduced scalar energy functions allow
one to omit the foregoing problem. Because we are considering a free system,
all virtual displacements are independent. This means that the general equation is
satisfied only if the expressions in brackets equal zero.

In this way we obtain three second-order differential equations of the following
form:

NX

nD1
.F e

nx1
C F i

nx1
�mn Rx1n/ D 0;

NX

nD1
.F e

nx2
C F i

nx2
�mn Rx2n/ D 0;

NX

nD1
.F e

nx3
C F i

nx3
�mn Rx3n/ D 0: (1.9)

The preceding equations are simplified even more when the sum of internal forces
equals zero taking the form of

NX

nD1
.F e

nx1
�mn Rx1n/ D 0;

NX

nD1
.F e

nx2
�mn Rx2n/ D 0;

NX

nD1
.F e

nx3
�mn Rx3n/ D 0: (1.10)

The three equations above can be rewritten in the vector form

NX

nD1
.FBn C Fen/ D 0: (1.11)

It was assumed above that the force FBn D �mnan. That force is also known as
inertia force or d’Alembert’s force acting on a particle n. Its sense is opposite to the
active force Fen.

Let us recall that position vectors rn determine the position of material point n
measured from the origin of the coordinate system. After vector premultiplication
(cross product) of (1.11) by rn we obtain

NX

nD1
.rn � FBn C rn � Fen/ D 0: (1.12)
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Let us note that the sums of vector products occurring above represent the main
moment of force vectors of the system of external forces Fen and of the system of
inertia forces FBn, that is,

MO D
NX

nD1
.rn � Fen/; (1.13)

MBO D
NX

nD1
.rn � FBn/: (1.14)

Let us introduce the notions of main force vector of external forces, inertia forces
and reactions, and the main moment of a force vector of reaction in the following
form:

Fe D
NX

nD1
Fen; FB D

NX

nD1
FBn;

FR D
NX

nD1
FRn ; MRO D

NX

nD1
.Rn � Frn/: (1.15)

They were introduced to the system after being released from constraints. In
this way the material system remains in equilibrium under the action of inertia
forces, active forces and reactions, and the torques (moments of forces) due to the
aforementioned forces only if

Fe C FB C FR D 0; (1.16)

MO C MBO C MRO D 0: (1.17)

The obtained result [(1.16) and (1.17)] is summarized in the following principle:

A system of vectors consisting of inertia forces, external forces, reactions constrain-
ing the movement of this system, and their torques is equivalent to zero.

In the case of free systems (no constraints and therefore no reactions) (1.16) and
(1.17) are reduced to

Fe C FB D 0; (1.18)

MO C MBO D 0: (1.19)

Thus, we obtain the following principle for free material systems: A system of
external forces and torques produced by the forces acting on particles of a free
material system is in every time instant balanced by a system of inertia forces and
torques produced by these inertia forces.
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1.3 Principle of Virtual Work

Let us consider a material system composed of N particles at rest. Since the system
is at rest, the accelerations of all its particles equal zero. From (1.5) we obtain

NX

nD1

�
Fen C Fin C FRn

� ı ırn D 0: (1.20)

Because the scalar product of force and virtual displacement represents a virtual
work of the force, (1.20) can be interpreted in the following way:

In an equilibrium position of a material system, the sum of virtual works of all
external forces, internal forces, and reactions equals zero.

The foregoing principle was formulated on the basis of equilibrium equations and
is a necessary condition of equilibrium. Now, let us assume that the forces acting on
the system would do the work that would result in a change of kinetic energy�Ekn
of every particle of the system. The kinetic energy would be created, however, from
the work of the mentioned forces, and in view of that we have

NX

nD1

�
Fen C Fin C FRn

� ı ırn D
NX

nD1
ıEkn D 0: (1.21)

This means that the increment of the kinetic energy of the system of particles
is zero, and therefore the system is not moving. That is a sufficient condition of
equilibrium. Thus, the principle of virtual work shows the necessary and sufficient
condition of system equilibrium. In the case of ideal constraints (the sum of works
produced by reaction forces equals zero) and rigid systems (the sum of works
produced by internal forces equals zero), the stated principle is simplified and takes
the form of

NX

nD1
Fen ı ırn D

NX

nD1

�
F e
x1n
ıx1n C F e

x2n
ıx2n C F e

x3n
ıx3n

� D 0:

The principle of virtual work in this case reads:

In an equilibrium position of a material system, the sum of virtual works of all
external forces through the virtual displacements allowed by kinematics (compatible
with the constraints) of the system equals zero.

In applications, the foregoing principle has some advantageous consequences,
which are listed below:

1. Reaction forces (for smooth surfaces without friction) and internal forces can be
removed from consideration (this will be shown in Example 1.1).

2. The problem of statics, after application of that principle, can be solved as a
problem of kinematics.
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Fig. 1.1 Mechanism remaining in static equilibrium

3. The problem can be directly formulated in so-called generalized coordinates qn
of the form

NX

nD1
Qnıqn D 0:

It should be noted that in the case where the virtual work principle is related to
d’Alembert’s principle of the form (1.4), then item (3) is no longer valid since, in
general, the latter cannot be directly formulated in terms of generalized coordinates,
which makes its application much more difficult.

Example 1.1. Determine the magnitude of force F so that the flat mechanism
depicted in Fig. 1.1 remains in static equilibrium, where the weight of slide block is
denoted by G D mg.

After introducing the Cartesian coordinate system OX1X2X3, the kinematics of
points A and B is defined by the following equations:

x1A D 2l cos';

x2B D 6l sin ':

According to the principle of virtual work and making use of the preceding
geometric relations, we obtain

F ıx2B Cmgıx1A D 0:

Since

ıx1A D �2l sin'ı';

ıx2B D 6l cos'ı';

we have

.3F cos' �mg sin '/ı' D 0;

which holds true for an arbitrary ı'.
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At the change of ı' (clockwise or counterclockwise), the mechanism remains in
static equilibrium when

F D 1

3
mg tan ': ut

1.4 Increment of a Function and Variation of a Function

In traditional mechanics textbooks, the presentation usually starts with a so-called
geometric approach, based on the application of vector calculus and Newton’s
laws of momentum and angular momentum. Sometimes, however, it is virtually
inconceivable how one should bring about the release from constraints and consider
all internal and reaction forces for each single particle of a system composed of a
large number of particles. Therefore, a natural question arises as to whether there
exists a possibility of simplifying the problem provided that the considered system
is in static or dynamic equilibrium and that internal forces in the considered system
cancel each other (actions and reactions). It turns out that such a possibility exists
based on the concepts of virtual work and virtual displacement, which were the
subject of consideration in the previous section. In the present section, some basic
information will be presented regarding a function variation in connection with the
concept of virtual work, which is widely used in mechanics.

Let us first introduce the notion of virtual displacement (Fig. 1.2) after adopting
the Cartesian coordinate system OX1X2X3.

Fig. 1.2 Real .dr/ and virtual .ır/ displacement of a material point A
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Let pointA be moving in an arbitrary fashion on the surface of constraints around
its position described by the radius vector r. The arbitrariness regards both the
displacement direction of point A and the length of a vector connecting the current
position of point A with its position after a small displacement on the surface of
constraints f .x1; x2; x3/ D 0 (a time-dependent surface can be considered as well).
We shall note that the arbitrariness of the direction is associated with removal of the
point motion dependency on acting forces, whereas the arbitrariness of the length
ır means removing the dependency on time.

In reality, the elementary displacement of the particle takes place in the direction
of the vector dr along the curve indicated in Fig. 1.2.

However, there exists a certain law defining the virtual displacement of point A.
That point moves on the surface of constraints f .x1; x2; x3/ D 0, which means that

gradf ı ır D 0; (1.22)

where the vector

gradf D @f

@r
D

3X

iD1
Ei
@f

@xi
(1.23)

is a gradient vector (normal to the surface of constraints) at the current position of
the particle (for a “frozen” moment in time).

Observe that point A subjected to a virtual displacement, i.e., when its position
is defined by a radius vector r C ır, also satisfies the equation of constraints.

Since we have

f .r C ır/ D f .r/C @f

@r
ı ır CO.ır/2; (1.24)

and because after displacement ır the point still lies on the surface of constraints,
we have

f .r C ır/ D 0: (1.25)

Taylor’s19 expansion about point A, and on the assumption of a small variation
ır, showed that a point in a new position also satisfies equation of constraints (1.25).
Moreover, the mentioned operation shows that @f

@r � grad f must be a vector since

the result of the product @f
@r ı ır must be a scalar.

Let us note that a number of geometric constraints determines a number of
additional conditions of the type (1.22) imposed on the considered material system.

According to the assumption that En are unit vectors of axes of the introduced
coordinate system, we obtain

ır D
3X

nD1
Enıxn: (1.26)

19Brook Taylor (1685–1731), English mathematician.
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Fig. 1.3 Geometric interpretation of isochronous variation of a function (a) and derivative of a
function (b) regarding point x

Let us note that r D r.t/ and the notion of virtual displacement was introduced
for the “frozen” moment in time, that is, ır does not depend on time, as remarked
earlier.

In a general case the notion of virtual displacement is connected with a math-
ematically motivated concept of function variation, which will be briefly recalled
now based on the monograph [3]. At first, we will consider a so-called isochronous
variation of a function

g D g.x/: (1.27)

The following function is called a variation of function g.x/:

ıg.x/ D Qg.x/ � g.x/ (1.28)

where ıg.x/ � 1. It is shown that a function variation (in contrast to a function
derivative) is calculated for a fixed x, whereas a function derivative about x makes
use of an increment x C�x (Fig. 1.3).

A derivative of the variation of a function is as follows:

d

dx
Œıg.x/� D d

dx
Œ Qg.x/ � g.x/�

D d

dx
Qg.x/ � d

dx
g.x/ D Qg0.x/ � g0.x/; (1.29)

where 0 D d
dx .
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Let us now introduce the notion of variation of derivative of Qg0.x/ and g0.x/.
From the definition of isochronous variation we have

ıg0.x/ D Qg0.x/ � g0.x/ D ı

�
d Qg.x/

dx
� dg.x/

dx

�
: (1.30)

By comparing (1.29) with (1.30) we obtain

d

dx
Œıg.x/� D ı

�
d Qg.x/

dx
� dg.x/

dx

�
: (1.31)

This means that the derivative of an isochronous variation of a function is equal
to the isochronous variation of a derivative of a function. Let us consider now a
composite function of the form

f � f .g; g0; x/: (1.32)

For a fixed x we perform variations of the functions g and g0 with values ıg and
ıg0, respectively, which means that the function f will undergo the variation ıf .
Owing to (1.32) we have

f C ıf D f .g C ıg; g0 C ıg0; x/

D f C @f

@g
ıg C @f

@g
ıg0 CO

�
.ıg/2 C .ıg0/2

�
: (1.33)

From (1.33) we obtain

ıf D @f

@g
ıg C @f

@g0 ıg
0: (1.34)

Let us go back now to our function g and assume that this time we have

g D g.x; t/: (1.35)

Let us introduce now the following time variation:

ıt D Qt � t: (1.36)

A total variation ı�g.x; t/ of the function (1.35) can be determined from the
equation

g C ı�g D g C ıg C dg

dt
ıt; (1.37)

which means that

ı�g D ıg C dg

dt
ıt D ıg C Pgıt: (1.38)
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It can be shown easily that also in the case of an independent variable such as
time, we have

d.ıt/ D ı.dt/: (1.39)

Let us calculate now the total variation of a derivative of the function g with
respect to time [see (1.38), where instead of g we take Pg]:

ı� Pg D ı Pg C d Pg
dt
ıt D ı Pg C Rgıt: (1.40)

After differentiation of (1.38) we obtain

d

dt

�
ı�g

� D ı Pg C Rgıt C Pg d.ıt/

dt
: (1.41)

Equations (1.40) and (1.41) yield

d

dt

�
ı�g

� D ı� Pg C Pg d.ıt/

dt
; (1.42)

which means that total variation is not commutative with differentiation. Although
the calculations were conducted regarding a scalar function, they are also valid for
a vector-valued function.

Example 1.2. Three rigid bodies of masses mi .i D 1; 2; 3/ are attached to a
massless inextensible cable wrapped around three pulleys of negligible masses
(Fig. 1.4). The bodies are in translatory motion. Determine the accelerations of the
bodies.

Let us associate the virtual displacements ıx1, ıx2, and ıx3 with the respective
coordinates. According to (1.7) we have

3X

iDn
.Fen �mnan/ ı ırn D 0:

In the present case the weights of the bodies play the role of external forces

F1 D m1g; F2 D m2g; F3 D m3g;

and, moreover, ırn D ıxnEn, n D 1; 2; 3.
We obtain the following equilibrium state equation:

�
m1g �m1 Rx1

�
ıx1 C �

m2g �m2 Rx2
�
ıx2 C C�m3g �m3 Rx3

�
ıx3 D 0:

Because the cable is inextensible, we have

x1 C 2x2 C x3 D C � const:
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x1

x2

x3
m3x3

m3g

m2g

m1g

m2x2

m1x1

Fig. 1.4 Three bodies of
masses mi , i D 1; 2; 3 in
translatory motion

Let us assume that the coordinates x1 and x3 are independent. From the last
equation we obtain

x2 D �1
2
.x1 C x3 � C/;

that is,

Rx2 D �1
2

� Rx1 C Rx3
�
;

ıx2 D �1
2

�
ıx1 C ıx3

�
:

Substituting the preceding equation into the equilibrium state equation we have

m1

�
g � Rx1

�
ıx1 � 1

2
m2

�
g C 1

2

� Rx1 C Rx3
��
.ıx1 C ıx3/Cm3

�
g � Rx3

�
ıx3 D 0;

or equivalently

ıx1

�
g
�
m1 � 1

2
m2

	
� Rx1

�
m1 C 1

4
m2

	
� Rx3 1

4
m2

�

C ıx3

�
g
�
m3 � 1

2
m2

	
� Rx3

�
m3 C 1

4
m2

	
� Rx1 1

4
m2

�
D 0:
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Since the virtual displacements ıx1 and ıx3 are independent, we obtain

�
m1 C m2

4

	
Rx1 C m2

4
Rx3 D g

�
� m2

2
Cm1

	
;

�
m3 C m2

4

	
Rx3 C m2

4
Rx1 D g

�
� m2

2
Cm3

	
:

The determinant of the foregoing system of equations is equal to

W D
ˇ̌
ˇ̌
ˇ
m1 C m2

4
m2
4

m2
4

m3 C m2
4

ˇ̌
ˇ̌
ˇ D m1m3 C m2

4
.m1 Cm3/;

and the remaining determinants have the form

W Rx1 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

g



� m2

2
Cm1

�
m2
4

g



� m2

2
Cm3

�
m3 C m2

4

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D g

�
� 3

4
m2m3 Cm1

�
m3 C 1

4
m2

	�
;

W Rx3 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

m1 C m2
4

g



� m2

2
Cm1

�

m2
4

g



� m2

2
Cm3

�

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D g

�
� 3

4
m1m2 Cm3

�
m1 C m2

4

	�
:

Eventually, the desired accelerations are as follows:

Rx1 D W Rx1
W

D
g

�
� 3

4
m2m3 Cm1

�
m3 C 1

4
m2

��

m1m3 C m2.m1Cm3/
4

;

Rx3 D W Rx3
W

D
g

�
� 3

4
m1m2 Cm3

�
m1 C 1

4
m2

��

m1m3 C m2.m1Cm3/
4

: ut

Example 1.3. A rod of weight G and length l is hinged at point O and a pin con-
nected to a rod has length 2l and weight 2G (Fig. 1.5). Determine the configuration
of rods as a result of the action of the weight forces (neglect the friction).
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0
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180°-2j
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j

Fig. 1.5 Configuration of homogeneous rods of lengths l and 2l loaded with their weights

As a generalized coordinate we will take an angle ' because the analyzed system
has one degree of freedom. In other words, a possible system movement can be
described by only one coordinate '. From Fig. 1.5 it follows that

x1 D l

2
sin 2';

x2 D l sin 2' � l sin':

Because the constraints of the system are ideal, only the weight forces perform
the work through the virtual displacements. The work done by the forces G and 2G
through the displacements ıxn (n D 1; 2) is equal to

Gıx1 C 2Gıx2 D 0:

A slight shake of the system, which remains in static equilibrium, will produce
the displacements ıx1; ıx2 and change in the coordinate ' by ı'. We will determine
the relations between ıxn and ı' by applying the first two equations:

ıx1 D l cos 2'ı'; ıx2 D .2 cos 2' � cos'/lı';

and the obtained variations are substituted into the second equation, yielding

Gl cos 2' C 2Gl.2 cos2' � cos'/ D 0:

Because

cos 2' D cos2 ' � sin2 ' D 2 cos2 ' � 1;
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our problem is reduced to the following second-order algebraic equation:

cos2 ' � 1

5
cos' � 1

2
D 0:

Solving the preceding quadratic equation we obtain

cos'1 D 0:814; cos'2 D �0:614:

We select the physically feasible solution for which ' D '1 � 35ı300. ut
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Chapter 2
Statics

2.1 A Concept of Equilibrium

If the velocity and acceleration of every particle in a material system are equal to
zero, such a system is at rest. On the other hand, as we recall, from Newton’s first
law it follows that a particle having mass to which no force is applied or the applied
forces are balanced is either at rest or in uniform motion along a straight line.

If a material system acted on by a force system does not change its position
during an arbitrarily (infinitely) long time, we say that it is in equilibrium under the
action of that force system.

Statics is the branch of mechanics that focuses on the equilibrium of material
bodies (particles) under the action of forces (moments of force). It deals with the
analysis of forces acting on material systems at rest or moving in uniform motion
along a straight line and, as will become clear later, may be treated as a special
case of dynamics. This chapter, devoted to statics, might be extended by material
presented in books devoted to classical mechanics like, for instance, [1–25].

It turns out that for a material system to remain in equilibrium under the action
of a certain force system, that force system must satisfy the so-called equilibrium
conditions.

In order to emphasize the lack of time influence on equilibrium conditions, in
statics the term state of static equilibrium is often used. In general, statics can be
divided into elementary statics and analytical statics. In the case of elementary
statics, during analysis of static equilibrium states vector algebra and graphical
methods are applied. On the other hand, in the case of analytical statics the concepts
of virtual displacement and principle of virtual work are used, which in part was
discussed in Chap. 1.

Let us assume that the nth particle is subjected to K forces Fk, L reactions FRl ,
and M internal forces Fim (Fig. 2.1). The equilibrium condition has the following
form:

Fn C FRn C Fin D 0; (2.1)

J. Awrejcewicz, Classical Mechanics: Kinematics and Statics, Advances in Mechanics
and Mathematics 28, DOI 10.1007/978-1-4614-3791-8 2,
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where

Fn D
KX

kD1
Fk; FRn D

LX

lD1
FRl ; Fin D

MX

mD1
Fim: (2.2)

After multiplying both sides of (2.1) by the unit vectors Ej of the coordinate
system OX1X2X3 (scalar product) and taking into account (2.2), we obtain the so-
called analytical conditions of equilibrium of the form

KX

kD1
Fkxj C

LX

lD1
F R
lxj

C
MX

mD1
F i
mxj

D 0; j D 1; 2; 3: (2.3)

Because in general the forces may be projected onto the axes of any curvilinear
coordinate system, the following theorem is valid.

Theorem 2.1. A particle is in equilibrium if the sum of projections of external,
internal, and reaction forces (acting on this particle) onto axes of the adopted
coordinate system is equal to zero.

The three conditions (2.3) are necessary, but not sufficient, for the particle to
remain at rest, as follows from Newton’s first law.

In order to formulate the equilibrium conditions for a whole material system
or a body (infinite number of particles), one should formulate such equations for
every particle n 2 Œ1; N � (N D 1 in the case of the body) and add them together,
obtaining

S D
NX

nD1
.Fn C FRn C Fin/ D 0; (2.4)

where N is the number of particles of the material system.
A system of particles will be in equilibrium if the sum of projections of external,

internal, and reaction forces, acting on every particle of the system, onto three axes
of the adopted coordinate system is equal to zero. After projection we obtain 3N
analytical equilibrium conditions for the system of N particles.

According to Newton’s third law, the internal forces are the effect of action and
reaction and they are pairs of opposite forces, which means that they cancel out one
another, that is,

PN
nD1 Fin D 0.

Observe that the result of action of a given force on a rigid body remains
unchanged when that force is applied at any point of its line of action (the so-called
principle of transmissibility), and hence the forces acting on a rigid body can be
represented by sliding vectors. In other words, if instead of a force F at a given
point of the rigid body we apply a force F0 of the same magnitude and direction at
a point A0 .A ¤ A0/, then the equilibrium state, or motion of a rigid body, is not
affected provided that the two forces have the same line of action. The principle of
transmissibility is based on experimental evidence, and the mentioned forces F and
F0 are called equivalent.



2.1 A Concept of Equilibrium 25

Fig. 2.1 A particle n (point A) under the action of forces Fk and reactions FRl , and the same
particle under the action of the resultant forces F and reactions FR (internal forces not shown)

Fig. 2.2 Concurrent forces acting on a rigid body (a) and a force polygon (b)

In Fig. 2.1 it was shown that all forces are applied at a single point A. Now we
will consider a more general case of a rigid body loaded with a discrete system of
forces applied at points An of magnitudes Fn; n D 1; : : : ; N and of lines of action
passing through a certain point A (Fig. 2.2).

The force system that we call concurrent and those forces need not lie in a
common plane. Because, by assumption, the lines of action of the forces intersect
at point A, the system in Fig. 2.2a is equivalent to the force system depicted in
Fig. 2.2b. Adding successively the force vectors and using the “triangle rule,” that
is, replacing every two forces by their resultant force (marked by a dotted line) we
obtain a so-called force polygon. The action of the resultant vector Fr is equivalent
to the simultaneous action of all forces, that is,

Fr D
NX

iDn
Fn: (2.5)
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Fig. 2.3 Geometrical
interpretation of the
three-forces theorem

The method of construction of a force polygon indicates that in order to obtain
vector Fr we can add the vectors Fn together directly (i.e., the vectors denoted by
dotted lines can be omitted during addition).

The vectors Fn are called sides of a force polygon and the vector Fr is called a
closing vector of a force polygon. Moreover, the sign of the sum (sigma) denotes
addition of vectors from left to right, that is, from F1; F2; : : : to FN .

The presented construction is easy in the case of a planar force system. In space,
the force polygon is a broken line whose sides are the force vectors and the resultant
Fr connects the tail of the first force vector to the tip of the last force vector of the
given force system. In this section we will take up the analysis of the planar force
polygon.

From the foregoing considerations it follows directly that because the action
of many forces can be replaced by the action of one resultant force, a rigid body
remains in equilibrium under the action of a concurrent force system if Fr D 0, that
is, according to (2.5) if

NX

nD1
Fn D 0: (2.6)

If the above equation is satisfied, the polygon of forces Fn is closed, that is, the
tail of the first force vector coincides with the tip of the last force vector.

Theorem 2.2. (On three forces) If a body remains in equilibrium under the action
of only three non-parallel coplanar forces, then their lines of action must intersect
at a single point, that is, the system of forces must be concurrent.

To prove the above theorem it is enough to observe that if we have three forces
F1, F2, and F3, then the action of any two of them, e.g., F1 and F2, can be replaced
with their resultant Fr . According to Newton’s first law, the body is in equilibrium
if Fr D �F3 and these vectors are collinear. Therefore, the lines of action of the
three forces must intersect at a single point (Fig. 2.3).

Let us note that if we are dealing with a system of three concurrent forces and a
body under the action of these forces is in equilibrium, all of these forces must be
coplanar (i.e., lie in one plane).

Later we will show (by making use of Theorem 2.2) how to reduce an arbitrary
three-dimensional system of non-concurrent forces to a so-called equivalent system
of two skew forces.
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Fig. 2.4 Coordinate systems OX1X2X3 and O 0X 0

1X
0

2X
0

3 and the force vector F

In practice many problems of statics boil down to the construction of the force
polygon. The approach is like we call a geometrical approach and is complemented
by the use of trigonometric functions to find unknown quantities. In order to use this
method the magnitudes, the lines of action, and the senses of forces must be known.

Apart from the geometrical, the analytical approach is commonly applied. Let us
introduce the fixed Cartesian coordinate system OX1X2X3. In order to analytically
describe a force F one should know its point of application O 0.x1; x2; x3/ and
magnitudes of its projections onto axes OX1, OX2, and OX3 of the form Fx1 , Fx2 ,
and Fx3 .

In Fig. 2.4 the location of point O 0 in the coordinate system O 0X 0
1X

0
2X

0
3 and the

vectors F, FXi .i D 1; 2; 3/, are shown.
Let the vector of force F lie on the l axis of unit vector l , and let Ei and E0

i be
unit vectors respectively of the axes OXi and O 0X 0

i , and because the axes of the
systems OX1X2X3 and O 0X 0

1X
0
2X

0
3 are parallel, we have Ei k E0

i . According to the
introduced notation we have

F � lF D Fx1E1 C Fx2E2 C Fx3E3 D Fx1 C Fx2 C Fx3 : (2.7)

In other words, a force F is said to have been resolved into three rectangular
components Fxi ; i D 1; 2; 3 if they are perpendicular to each other and directed
along the coordinate axes.

After multiplication (scalar product) of the above equation in turn by E1, E2, and
E3 we obtain

Fx1 D F l ı E1 D F cos.l ;E1/;

Fx2 D F l ı E2 D F cos.l ;E2/;

Fx3 D F l ı E3 D F cos.l ;E3/; (2.8)
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because
jl j D jE1j D jE2j D jE3j D 1:

If we know the vector F, that is, its magnitude F and direction defined by the unit
vector l, the coordinates of the components of the vector are described by (2.8).

After squaring (2.7) by sides we obtain

F D
q
F 2
x1

C F 2
x2

C F 2
x3
; (2.9)

and after taking into account (2.9) in (2.8) we calculate the cosines of the angles
formed by the force vector with the axes of the coordinate system (called direction
cosines)

cos.l ;E1/ D Fx1
F

D Fx1q
F 2
x1

C F 2
x2

C F 2
x3

;

cos.l ;E2/ D Fx2
F

D Fx2q
F 2
x1

C F 2
x2

C F 2
x3

;

cos.l ;E3/ D Fx3
F

D Fx3q
F 2
x1

C F 2
x2

C F 2
x3

: (2.10)

If Fx1 , Fx2 and Fx3 are known, then on the basis of (2.9) and (2.10) we can
determine vector F, that is, its magnitude jFj D F and its direction defined by the
direction cosines. It follows directly from (2.10) that cos2.l ;E1/ C cos2.l ;E2/ C
cos2.l ;E3/ D 1, and hence angles describing a position of the force F in relation to
the Cartesian axes depend on each other.

Let us now return to Fig. 2.2, where the system of concurrent forces acts solely on
the rigid body. If such a body is in equilibrium, according to (2.5), we have Fr D 0,
and after multiplying (2.5) by E1, E2, and E3 we obtain

F1x1 C F2x1 C � � � C FNx1 D 0;

F1x2 C F2x2 C � � � C FNx2 D 0;

F1x3 C F2x3 C � � � C FNx3 D 0: (2.11)

The equilibrium condition of the rigid body subjected to the action of a three-
dimensional system of concurrent forces is described by three algebraic (2.11), in
view of the fact that the number of unknowns should not exceed three (or, in the case
of the planar system of forces, two) for the considered force system to be statically
determinate. In Fig. 2.5 a symmetrical system of concurrent forces formed after
suspending the body of weight G from three ropes is shown.

After introducing the Cartesian coordinate system and including the system
geometry we can (through some trigonometric relations) determine three unknowns
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Fig. 2.5 A weight G
suspended from three (four)
ropes in space (a) and a
system of concurrent
forces (b)

from three equations and, consequently, describe the forces F1, F2, and F3. Let us
assume now that at the center O of the triangle ABC an extra fourth rope was
attached. If the length of that rope differs even slightly from the distance h, either
that rope exclusively carries the total weight G (if slightly shorter) or it carries no
load at all (if slightly longer).

If we assume that the weight G is carried by four ropes, it is impossible to
determine the four forces F1, F2, F3, and F4 in the ropes; such a problem is
statically indeterminate. This appears also in the planar system of concurrent forces
if point C becomes coincident with point B and then AO D OB . The problem is
statically determinate if the weight G is suspended from two ropes AO 0 and BO 0
and statically indeterminate if, additionally, we introduce the third ropeOO 0 and all
three ropes are loaded.

One deals with a statically indeterminate problem when the number of unknown
values of forces (torques) denoted by N is larger than the number of equilibrium
equations Nr . The difference N � Nr is called a degree of static indeterminacy.
As will be shown later, additional equilibrium equations are obtained after taking
into account deformations of the investigated mechanical system. In general, while
solving a statically indeterminate problem, the method of forces and the method of
displacements are often applied.

The first approach consists of three stages [26]:

1. Determination of degree of static indeterminacy.
2. Transformation of a statically indeterminate system to a statically determinate

one with unknown values of loads but known character and point of application.
3. Determination of a set of desired force values from condition of displacement

continuity at the force application points.

The second method, i.e., the displacements method, is to use the relationship
between external forces, displacement nodes of the construction, displacements of
the ends of particular ropes (rods) and their geometric and material properties.
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Fig. 2.6 Graphical
representation of a moment of
force F about a point O

It takes advantage of the emergence of movements of rod ends in a strict dependence
resulting from the continuity of the structure.

The displacement method will be described in Example 2.5.
The static indeterminacy of a mechanical system is often due to the introduction

of the so-called technologically justified assembling stress (e.g., stresses resulting
from the initial stretch of the ropes supporting the structure). In addition, the state of
stress may appear as a result of non-uniform heating of the system. The loading state
of a mechanical system following from the introduction of assembly and thermal
stresses is an independent and additional loading of the considered mechanical
system.

In a general case a non-concurrent force system may act on a rigid body. In order
to describe the equilibrium conditions in this case it is necessary to introduce the
notions of moment of force about a point and moment of force about an axis (which
was discussed in Sect. 1.2).

The notion of moment of force about a point was first used by Archimedes, but
it concerned planar systems.

The moment of force F about point O is defined by a vector product of the form

MO � MO.F/ D r � F; (2.12)

which after introduction of the Cartesian coordinate system OX1X2X3 is illustrated
in Fig. 2.6.

According to the definition of vector product [see (1.13), (1.14)] and Fig. 2.6, we
have

j MO j� MO D rF sin' D Fh; (2.13)

that is, the magnitude of the moment of force is equal to the doubled area of a
triangle (in blue) of sides r and F . Its direction is given by the right-hand rule,
that is, the arrow of the vector MO points toward an eye of a person looking if the
vector r is rotated toward the vector F counterclockwise (positive sense) provided
that the coordinate system is right-handed. However, if the system of coordinates is
left-handed (its axes in parentheses in Fig. 2.6), the sense of the vector MO changes
(vector marked by a dashed line in Fig. 2.6).
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Let us note that vectors describing a real physical quantity (e.g., force, velocity,
acceleration) do not change when the adopted coordinate system is changed. In the
considered case the vector of the moment of force MO changes when the coordinate
system is changed from right-handed to left-handed. Vectors having such a property
are called pseudovectors.

Theorem 2.3. (Varignon1) The moment of a resultant force of a system of concur-
rent forces about an arbitrary point O (a pole) is equal to the sum of individual
moments of each force of the system about that pole.

Proof of the above theorem is obvious if one uses the property of distributivity of
a vector product with respect to addition.

Let us note that Varignon’s theorem includes also the special case of concurrent
forces when the point of intersection of their lines of action is situated in infinity (in
that case we are dealing with a system of parallel forces). Moreover, let us note that
the introduction of any force F0 of the direction along that of r does not change the
moment since we have

MO D r � .F C F0/ D r � F C r � F0 D r � F; (2.14)

because r � F0 D 0.
This trivial observation will be exploited later during the reduction of an arbitrary

three-dimensional force system to two skew forces in space (forces that do not lie
in one plane).

If by a resultant force we understand the force replacing the action of the system
of concurrent forces, such a notion loses its meaning in the case of an arbitrary force
system in space. Then the closing vector of a three-dimensional polygon of forces
is called a main force vector.

The components of the moment of force vector about a pole O is obtained
directly from the definition using the determinant, that is,

MO D r � F D
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
rx1 rx2 rx3
Fx1 Fx2 Fx3

ˇ̌
ˇ̌
ˇ̌

D E1.rx2Fx3 � rx3Fx2/C E2.�rx1Fx3 C rx3Fx1/C E3.rx1Fx2 � rx2Fx1/

� MOx1E1 CMOx2E2 CMOx3E3: (2.15)

Let us introduce now the concept of the moment of force F with respect to an
axis l of unit vector l (Fig. 2.7).

1Pierre Varignon (1654–1722), French mathematician (friend of Newton, Leibniz, and the
Bernoulli family).
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Fig. 2.7 Moment of force
F about an axis l

Definition 2.1. The magnitude of the moment of force about an axis l is equal to
the scalar product of the moment of force about an arbitrary point O on that axis
and a unit vector l of the axis (thus it is a scalar that respects the sign determined
by the sense in agreement or opposite to the unit vector l).

According to the above definition, and after taking into account (2.15), we have

Ml.F/ D l ı M0.F/

D MOx1 cos.l ;E1/CMOx2 cos.l ;E2/CMOx3 cos.l ;E3/

D .rx2Fx3 � rx3Fx2/ cos.l ;E1/C .�rx1Fx3 C rx3Fx1/ cos.l ;E2/

C .rx1Fx2 � rx2Fx1/ cos.l ;E3/

D
ˇ̌
ˇ̌
ˇ̌
cos.l ;E1/ cos.l ;E2/ cos.l ;E3/

rx1 rx2 rx3
Fx1 Fx2 Fx3

ˇ̌
ˇ̌
ˇ̌ : (2.16)

Observe thatMl.F/ is the magnitude of the moment of force about axis l, that is,
it depends on the versor l sense.

Let us resolve F.r/ into two rectangular components kF.kr/ and ?F.?r/ (lying
in a plane perpendicular to l ). Then from (2.16) we obtain Ml.F/ D l ı .kr C
?r/� .kF C ?F/ D l ı .?r � ?F/. In other words the momentMl.F/ describes the
tendency of the force M to give to the rigid body a rotation about the fixed axis l .

At the end of this section we will present definitions of a couple and a moment
of a couple and introduce the basic properties of a couple.

Definition 2.2. A system of two parallel forces with opposite senses and equal
values we call a couple of forces. A plane in which these forces lie is called a
plane of a couple of forces.

In Fig. 2.8 a couple of forces and a moment of a couple of forces are presented
graphically.
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Fig. 2.8 A couple of forces and its moment about a point O

The moment of a couple of forces about a point O is the geometric sum of
moments of each of the forces about pointO , that is,

M D MO.F/C MO.�F/ D r � F C r1 � .�F/

D r � F � r1 � F D .r � r1/ � F: (2.17)

From (2.17) it follows that the moment M of a couple of forces about point O
does not depend on the location of this point, but only on the vector r�r1 describing
the relative position of points of application of forces forming the couple and lying
in a plane of the couple of forces � .

The magnitude of moment of a couple of forces is equal to

M D F jr � r1j sin' D Fh; (2.18)

where h is the distance between lines of action of the couple and is called the
arm of a couple of forces. Thus, the magnitude of a moment of a couple of forces
corresponds to the area of a rectangle with sides F and h. It is clear that a couple
applied to a body tends to rotate it. Since r � r1 is independent of the choice of the
originO , the moment M of a couple is a free vector.

Let us note that M is perpendicular to the plane � and its sense is determined by
senses of vectors of the couple of forces. The static action of a couple is equivalent
to the moment of a couple. What follows are some theorems regarding a couple of
forces (proofs are left to the reader).

Theorem 2.4. The action of an arbitrary couple of forces on a rigid body is
invariant with respect to the rotation of the plane of the couple through an arbitrary
angle.

Theorem 2.5. The action of an arbitrary couple of forces on a rigid body is
invariant with respect to the choice of an arbitrary plane parallel to the plane of
the couple.
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Theorem 2.6. The action of an arbitrary couple of forces on a rigid body is
invariant if the product Fh [see (2.18)] remains unchanged, that is, it is possible to
vary the magnitude of force and its arm as long as Fh remains constant.

Theorem 2.7. An arbitrary system of couples of forces in R3 space is statically
equivalent to a single couple of forces whose moment is the geometrical (vector)
sum of moments coming from each couple of forces in the system.

The reader is encouraged to prove that two couples possessing the same moment
M are equivalent. Since the couples can be presented by vectors, they can be
summed up in a geometrical manner. In addition, any given force F acting on a
rigid body can be resolved into a force at an arbitrary given pole O and a couple,
that is, at point O we have an equivalent force–couple .F � MO/ system provided
that the couple’s moment is equal to the moment of F about O . In what follows we
apply the statements and comments introduced thus far.

Let us emphasize that the net result of a couple relies on the production of a
moment M (couple vector). Since M is independent of the point about which it takes
place (free vector), then in practice it should be computed about a most convenient
point for analysis. One may add two or more couples in a geometric way. One
may also replace a force with (a) an equivalent force couple at a specified point;
(b) a single equivalent force provided that F ? M, which is satisfied in all two-
dimensional problems.

In Fig. 2.1 the position of a particle is described by the vector rn in the adopted
Cartesian coordinate system. In the case of a system of particles, each particle n
of the system is described by a radius vector rn, n D 1; : : : ;N . After multiplying
equilibrium condition (2.1) by rn (cross product) and adding together the obtained
equations (after assuming Fin D 0) we obtain

MO D
NX

nD1
.rn � Fn/C

NX

nD1
.rn � FRn / D 0: (2.19)

Let us note that (2.19) is also valid for Fin ¤ 0 because
PN

nD1.rn � Fin/ D 0
(internal forces of the system exist in pairs that are equal, act along the same line
of action, but have opposite senses; therefore, taken together they all yield zero
moment about any point).

According to (2.4) and (2.19) a material system is in equilibrium if the system of
forces and reactions, and the main moment produced by these forces and reactions,
is equal to zero, that is, we have

S D 0; MO D 0: (2.20)

Let us note that the above condition is a necessary condition, but in general it
is not a sufficient one. According to Newton’s first law, particles can move along
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Fig. 2.9 A rigid (a) and flexible (b) beam with a concentrated force applied in the middle of their
lengths

straight lines in uniform motion, that is, they can change their relative position in
spite of being subjected to the action of balanced forces. If we are dealing with
a rigid material system or a rigid body, then the relative motion of the particles
of the body is impossible and conditions (2.20) are both necessary and sufficient
conditions.

If, however, we consider a continuous material system (CMS), such as de-
formable solid bodies, gases, or liquids, then conditions (2.20) are necessary
conditions, but not sufficient ones.

In a general case for an arbitrary material system the necessary and sufficient
equilibrium conditions are described by the following equations for every particle n:

Fen C Fin C FRn D 0; n D 1; 2 : : : ; N: (2.21)

Although (2.21) seems to be simpler, in fact it is more complicated, since
it involves determination of internal forces Fin. In order to do so one should
release from constraints the internal points of the material system and consider the
equilibrium of external, internal, and reaction forces.

As an example we will consider a beam of length l loaded at the midpoint with
the force F on the assumption that it is a rigid beam (Fig. 2.9a) and a flexible beam
(Fig. 2.9b) [9].

The absence of deflection in the first case (Fig. 2.9a) follows from the fact that
the beam is a rigid body. The presence of deflection in the second case (Fig. 2.9b) is
caused by the beam’s flexibility. The conditions of equilibrium are the same in both
cases, although the equilibrium positions are different. In both cases internal forces
are developed, but only the second case is accompanied by the beam’s deformation.
Observe that in the case of a rigid body (beam), each of the forces may be shifted in
an arbitrary way along its line of action, but this approach is prohibited for a flexible
body (beam), that is, the transmissibility principle is violated.

The above example is associated with the so-called freezing principle. Equilib-
rium of forces acting on a flexible body is not violated when the flexible beam
becomes “frozen.”
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2.2 Geometrical Equilibrium Conditions of a Planar Force
System

As has already been mentioned, in a general case formulation of geometrical
equilibrium conditions is not an easy problem, and usually this approach is applied
to systems of forces lying in a plane. As was shown earlier, according to the first
equation of (2.20) a polygon constructed from force vectors should be closed.

In the case where a material system is acted upon by a system of three non-
parallel forces equivalent to zero, these forces are coplanar and their lines of action
intersect at one point, forming a triangle (Theorem 2.2).

In a general case for an arbitrary plane force system geometrical equilibrium
conditions boil down to the force polygon becoming closed and to satisfying the
condition of the so-called funicular polygon. As an introduction let us first consider
three arbitrary forces Fn, n D 1; 2; 3 lying in one plane (Fig. 2.10).

From the construction depicted in Fig. 2.10 it follows that, at first, any two of the
three forces (in this case F1 and F2) are moved to the point of intersection of their
lines of action O 0 and then added geometrically, yielding the force F1 C F2. One
proceeds similarly with the vector F1 C F2 and the vector F3. The lines of action of
these vectors, again, determine the point O to which both vectors are moved. Next,
using the parallelogram law we obtain a resultant vector Fr replacing the action of
those forces. We also obtain the line of action of Fr (Fr is a sliding vector).

A similar procedure may be applied for any number of force vectors acting in a
plane (coplanar and non-parallel vectors). However, in practice sometimes it turns
out that the task is not easy. One reason for this is that the forces may intersect at the
points outside the drawing space. Moreover, their small angles of intersection may
lead to large inaccuracies.

Below a different graphical method called funicular polygon method will be
presented.

Fig. 2.10 Determination
of magnitude, sense, and
direction of a resultant
Fr D F1 C F2 C F3 for the
case of a planar system of
three non-parallel forces
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Fig. 2.11 An arbitrary system of four forces (a), a force polygon (b), and a funicular polygon (c)

Let us consider now an arbitrary system of forces acting in a plane on a certain
rigid body (Fig. 2.11). In order to preserve clarity of the drawing we limit ourselves
to consideration of four forces F1, F2, F3, and F4.

The procedure of construction of a force polygon is as follows. In a plane we take

an arbitrary point A, being the tail of force vector F1 D ��!
AB . Next, at the tip of that

vector we attach the vector F2 D ��!
BC , and so on. Next, we take an arbitrary point

O called a pole and connect it with points A; B; C; D, and E . Let us note that

Fr D F1 C F2 C F3 C F4

D ���!
OB � �!

OA
�C ���!

OC � ��!
OB

�C ���!
OD � ��!

OC
�C ���!

OE � ��!
OD

�

D ��!
OE � �!

OA D ��!
AO C ��!

OE: (2.22)
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The segments OA; OB; OC; OD, and OE are called rays, but in (2.10) the

vectors of their lengths appeared as forces, which means j�!
OAj D OA, and so on.

The force polygon allows for determination of the resultant Fr , that is, the force
replacing the action of forces F1; F2; F3, and F4. However, additionally we have to
determine the line of action of the resultant force (it must be parallel to the direction
of the force Fr obtained using the force polygon method, see Fig. 2.11b). In practice
this means that one should determine a point W through which the force Fr would
pass.

To this end we make use of the so-called funicular polygon. Let us take an
arbitrary point A0 lying on the line of action of the force F1 (construction is
temporarily conducted in a separate drawing). Next, we draw a line passing through
that point and parallel to OA (cf. the force polygon). Then, we step off on that

line a segment A0B 0 of length j��!AOj (one may limit oneself to the determination of
the direction of that force). Next, through point B 0 we draw a line parallel to OB

and step off the segment B 0C 0 D j��!OBj. Through the obtained point C 0 we draw

a line parallel to OC and step off the segment C 0D0 D j��!OC j, obtaining in this
way point D0. Through that point we draw a line parallel to OD and step off the

segment D0E 0 D j��!ODj. Through the obtained point E 0 we draw a line parallel to

OE and step off the segment E 0O 0 D j��!EOj. According to (2.22) the resultant can

be determined using the parallelogram law, since the force vectors
��!
AO and

��!
OE are

known [the forces represented by the other vectors (rays) cancel each other]. One

may also move the vectors
��!
AO and

��!
OB ,

��!
BO and

��!
OC ,

��!
CO and

��!
OD respectively

to points B 0; C 0;D0, and E 0. It is easy to notice that after their geometrical addition

only the vectors
��!
AO and

��!
OE remain. It follows that extending the lines passing

through points A0 and B 0, and through O 0 and E 0, leads to determination of point
W , through which passes the line of action of the resultant Fr . It follows also that
it is possible to determine the magnitude of that force (after geometrical addition of

j���!
A0B 0j and j���!

O 0E 0j).
If we took a perfectly flexible cable of negligible weight and lengthAOCOBC

OCCODCOE and fixed it at pointsA0 andO 0, then after application of the forces
F1, F2, F3, and F4 at points B 0, C 0,D0, and E 0 (Fig. 2.11c), the cable would remain
in equilibrium. That is where the name of funicular polygon comes from. At each
of these points act three forces that are in equilibrium. It is easy to check that the
choice of some other pole (point O1 in Fig. 2.11b) leads to the determination of a
different point of intersection, but it must lie on the line of action of the force Fr .

Let us now consider the particular case of the force polygon depicted in
Fig. 2.11b, namely, when Fr ! 0, that is, when E ! A, which means that

j��!EOj D j�!
OAj and the vectors

��!
OE and

��!
AO become collinear at the limit while

retaining the opposite senses. Since the polygonABCDA is closed, pointsA andE
are coincident, that is, A � E .

Such a situation is depicted in Fig. 2.12a, and the corresponding force polygon is
shown in Fig. 2.12b.
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Fig. 2.12 A closed polygon
of four forces F1, F2, F3, F4
(a) and the corresponding
funicular polygon (b) (vector
r is not a part of the funicular
polygon but was drawn only
for interpretation of a
moment of force vector
M D r � P perpendicular to
the drawing’s plane)

From the figure it follows that the vectors of forces
���!
A0B 0 D ��!

AO and
���!
E 0O 0 D ��!

OE

possess the same magnitudes and opposite senses, so they produce the moment of

a force of magnitude jMj D jr � Pj D P r sin' D Ph, where P D ���!
A0B 0 and '

denotes the angle formed between vectors r and P. It is impossible to determine the
point of application of the force Fr because it is a singular case where Fr D 0 and
A0B 0 k O 0E 0. In this case the force system F1, F2, F3, and F4 is equivalent to the
couple of forces.

Let us now consider another special case of the force polygon and funicular
polygon relying on the considerations regarding Fig. 2.12. Let point E 0 ! A0,
which means that r ! 0, that is, r � P D M ! 0. When the endpoints of the
funicular polygon are coincident, that is, E 0 � A0, the moment M D 0 (this case is
presented in Fig. 2.13). Because the force polygon remains unchanged (Fig. 2.12a),
in Fig. 2.13 only the funicular polygon is shown. In this case the force system F1,
F2, F3, and F4 remains in equilibrium.

From the considerations and drawings in Figs. 2.11–2.13 the following conclu-
sions result:

1. If neither the force polygon nor the funicular polygon is closed, then the
investigated planar force system is equivalent to a resultant force.
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Fig. 2.13 Closed funicular
polygon (M D 0)

2. If the funicular polygon is not closed but the force polygon is closed, then planar
force system is equivalent to a moment of force (couple).

3. If both force and funicular polygons are closed, then the force system is
equivalent to zero.

The final geometrical equilibrium condition for a two-dimensional force system
reads:

A planar force system is equivalent to zero if both the force polygon and funicular
polygon are closed.

Example 2.1. Three vertical forces F1, F2, F3 act on a horizontal beam of length l
depicted in Fig. 2.14. The beam is pin supported at point A and has a roller support
at point B . Determine the reactions in beam supports.

In this case the forces Fn are parallel, so the unknown reactions FRA and FRB are
parallel as well and lie on the vertical lines through points A and B . According
to the previous considerations let us first construct the force polygon in a certain
assumed scale of the drawing. Next, after taking pole O we draw the rays from the
pole to the tail and the tip of every force vector. We take an arbitrary point A0 on
the vertical line passing throughA. After connecting pointsA0 and B 0 we obtain the
closing line of the force polygon (dashed line). Next, we translate it in parallel, so
that it passes through the pole. Then its point of intersection with segment A0B 0 in
the force polygon defines the unknown reactions.

Since the tip of reaction FRA must coincide with the tail of the force F1, we
complement the force polygon with reactions FRA and FRB and, as can be seen,
FRA C FRB C F1 C F2 C F3 D 0. ut
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Fig. 2.14 A horizontal beam
loaded with forces F1, F2, F3
(a) and a force polygon (b)

Fig. 2.15 Schematic for calculations of a supported beam, a force polygon, and a funicular
polygon
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Example 2.2. A horizontal beam is loaded with forces F1 and F2 (Fig. 2.15). The
beam is pin supported at point A and at point B supported by the rod with a pin
joint. Determine the reactions in pin joints A and C assuming that the beam has a
homogeneous mass distribution and weight Gb .

Because in this case only the vectors F1 and Gb are parallel to each other but are
not parallel to F2, the reactions FRA and FRC are not parallel (the direction of reaction
FRC is defined by the axis of rodBC ). We construct the force polygon for F1, Gb , F2.

The construction of the funicular polygon we start from point A (reaction FRA
must pass through point A, but its direction is unknown). Doing the construction in
the way described earlier, the line parallel to OF 0 intersects segment BC at point
B 0 and segment AB 0 is the closing line of the funicular polygon. After drawing a
line parallel to AB 0 that passes through pole O (line z) and drawing from the tip of
the vector F2 the line parallel to BC , the point of their intersection determines the
unknown reactions FRA and FRC . ut

2.3 Geometrical Equilibrium Conditions of a Space Force
System

As distinct from the previously analyzed case of the concurrent force system shown
in Fig. 2.2, we will consider now a non-concurrent force system.

Our aim is to reduce the force system F1; : : : ;FN to an arbitrary chosen pointO
of the body (or rigidly connected to the body) called a pole.

The method given below was presented already by Poinsot2 and henceforth is
called Poinsot’s method. We will show that, according to Poinsot’s method, the
action of the force F1 on a rigid body with respect to pole O is equivalent to the
action of the force F1 applied at point O and a couple F1 and F.2/1 applied at points

A1 andO , respectively, and F.2/1 D �F1.
In other words at point O we apply the forces F.1/1 and F.2/1 , where F.1/1 denotes

the vector F1 moved in a parallel translation to point O , and F.2/1 D �F.1/1 . Point O
is in equilibrium under the action of two vectors of the directions along the direction
of F1 and having the same magnitudes but opposite senses.

The action of force at point A1 manifests at pointO as the action of the force F1
at that point and the couple F1 (applied at point A1) and �F1 (applied at point O).
In turn, the action of the couple F1 and �F1 is equivalent to the action of a moment

of the couple, which according to (2.17) is equal to M1 D ��!
OA1 � F1.

In Fig. 2.16a at point O only the two forces F.1/1 and F.2/1 canceling one another
are marked, and in Fig. 2.16b reduction of the whole force system F1; : : : ;FN is

2Louis Poinsot (1777–1859), French mathematician and physicist, precursor of geometrical
mechanics.
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Fig. 2.16 Space force system F1; : : : ;FN acting on a rigid body (a) and its reduction to a pole
O (b)

shown. The latter boils down to applying at point O all the vectors of forces
F1; : : : ;FN and moments M1; : : : ;MN determined in a way that is analogous to
that shown for the case of force F1.

The application of Poinsot’s method led to obtaining the concurrent force and
moment system, which is schematically depicted in Fig. 2.16b. With the aid of the
conducted construction we can develop a force polygon and a moment of the force
polygon, which leads to the determination of the main force vector and main moment
of the force vector of the forms

S D
NX

iDn
Fn; (2.23)

MO D
NX

nD1
Mn: (2.24)

The technique described above is equivalent to the theorem on parallel transla-
tion of force.

Let us note that if the force system F1; : : : ;FN was concurrent and acted, e.g., at
point A1, the vector S according to (2.23) would be the resultant of forces applied
at point A1. The process of reduction regards poleO , and the notion of the resultant
of forces at that point concerns the sum of forces F.1/1 ;F

.1/
2 ; : : : ;F

.1/
N , and therefore

the notion of the main moment of force vector was introduced instead of using the
notion of resultant of forces.

Let us now proceed to the analysis of (2.24). Let us consider the moment of the
couple F1 and F.2/1 , which is equal to

M1 D MO.F1/C MO.F
.2/
1 / D MO.F1/; (2.25)



44 2 Statics

because the force F.2/1 passes through pole O . Similar considerations concern the
remaining forces, and finally (2.24) takes the following form:

MO D
NX

nD1
MO.Fn/: (2.26)

The result of the considerations carried out above leads to the formulation of the
general theorem of statics of a rigid body.

Theorem 2.8. An arbitrary system of non-concurrent forces in space acting on
a rigid body is statically equivalent to the action of the main force vector (2.23)
applied at an arbitrary point (pole) and the main moment of force vector (2.24).

2.4 Analytical Equilibrium Conditions

An analytical form of equilibrium conditions relies on the vectorial (2.20). Because
in the Euclidean space each of the vectors possesses three projections, the equilib-
rium conditions boil down to the following three conditions concerning the forces:

Sxj D
NX

nD1
Fxj n D 0; j D 1; 2; 3; (2.27)

and because

MO D
NX

nD1
.rn � Fn/ D

NX

nD1

ˇ̌
ˇ̌
ˇ̌

E1 E2 E3
x1n x2n x3n
Fx1n Fx2n Fx3n

ˇ̌
ˇ̌
ˇ̌

D
NX

nD1

h
E1
�
x2nFx3n � x3nFx2n

�C E2
�
x3nFx1n � x1nFx3n

�

C E3
�
x1nFx2n � x2nFx1n

�i
; (2.28)

we have an additional three equilibrium equations of the form

MOx1 �
NX

nD1

�
x2nFx3n � x3nFx2n

� D 0;

MOx2 �
NX

nD1

�
x3nFx1n � x1nFx3n

� D 0;

MOx3 �
NX

nD1

�
x1nFx2n � x2nFx1n

� D 0; (2.29)
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where MO D P3
jD1 EjMOxj . In general, the main moment changes with a change

of the reduction point (the pole).
From the equations above it follows that the force system of the lines of action

laid out arbitrarily in space is in equilibrium if the algebraic equations (2.27)
and (2.29) are satisfied. From the mentioned equations it is easy to obtain the
relations regarding the forces lying in the selected planes .O � X1 � X2/ or
.O � X1 � X3/. In the equations above the forces Fn denote external forces and
reactions.

External forces can be divided into concentrated forces (applied to points of a
body), surface forces (applied over certain areas), and volume forces (applied to
all particles of a body). An example of volume forces are the forces caused by the
body weight, and of surface forces—the forces generated by the surface of contact
between the bodies being loaded. A set of external forces consists of known forces
(active forces) and the forces that are subject to determination (passive forces).

The set of external (active and passive) forces is called the loading of a
mechanical system.

Let us consider a wheeled vehicle (a car with four wheels) with an extra load
placed on its roof. Here the active forces are the car weight Gc and load weight
Gl . At the points of contact between each wheel and road surface appear four
reactions FRi . Here the external forces are the forces Gc and Gl (active forces)
and reactions FRi (passive forces). The remaining forces acting within the system
isolated from its environment (i.e., the car and load) are called internal forces.
According to Newton’s third law these forces mutually cancel each other, and for
their determination it is necessary to employ the so-called imaginary cut technique.
For instance, in order to examine the action of the load on the car one should
“cut” the system at the points of contact of the load with the car and replace their
interaction with reactions, which are the internal forces. Thus we carry out the
imaginary division of the analyzed mechanical system into two subsystems in static
equilibrium. Then, from the equilibrium equations of either subsystem we determine
the desired internal forces.

In order to determine the analytical equilibrium conditions one may also make
use of the so-called three-moments theorem.

Theorem 2.9. If we choose three different non-collinear points Aj , then the
equilibrium conditions of a material system are

MAj D MAj

 
NX

nD1
Fn

!
D 0; j D 1; 2; 3: (2.30)

This means that the main moment of force vectors of the force system about
three arbitrary but non-collinear points are equal to zero. The proof follows. Let the
equation be satisfied forA1 (the moment about that point equals zero) and equations
for two other points not be satisfied. This means that the system is not equivalent to
the couple but to the resultant force that must pass through point A1.
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Now let two equations of moments about points A1 and A2 be satisfied. Because
it is possible to draw a line through points A1 and A2, a non-zero resultant force
must lie on that line. However, if additionally the third equation related to point A3
is satisfied and points A1, A2, and A3 are not collinear (by assumption), then the
resultant force must be equal to zero. That completes the proof.

Projecting the moments of forces (2.30) on the three axes of Cartesian coordinate
system we obtain nine algebraic equations of the form

MxnAj D 0; n; j D 1; 2; 3: (2.31)

Here, we are dealing with the apparent contradiction because there are nine (2.31)
and six (2.27) and (2.29). However, for (2.31), for each force nine coordinates
defining its distance from the chosen points A1, A2, and A3 are needed. In the
rigid body the distances A1A2, A2A3, and A1A3 are constant, which reduces the
number of independent coordinates to six. So, one may proceed in a different way.
The six mutually independent axes should be taken in such a way as to formulate
six independent equations only.

The equilibrium conditions (2.27) and (2.29) consisting of six equations resulted
from projecting the main force vector S, and the main moment of force vector MO

reduced to an arbitrary point O (Sect. 2.3), where the point of reduction O is the
origin of the Cartesian coordinate system.

The state of equilibrium of the considered rigid body means that it does not
make any displacement, that is, neither translation nor rotation about point O and
consequently with respect to the adopted coordinate system OX1X2X3. We assume
that in the absence of forces F1; : : : ;FN the rigid body does not move with respect
to the adopted coordinate system OX1X2X3, and also remains unmoved under the
action of the force system F1; : : : ;FN if (2.27) and (2.29) are satisfied. If under the
action of an arbitrary force system F1; : : : ;FN the rigid body remains in equilibrium
with respect to OX1X2X3, these forces must satisfy (2.27) and (2.29). Since, if
S ¤ 0, MO D 0, point O would be subjected to an action of the force S leading to
the loss of static equilibrium state.

If we had S D 0, MO ¤ 0, then the main moment MO would cause the rotation
of the rigid body, leading to the loss of its static equilibrium. Equilibrium equations
of the form

S D F1 C F2 C : : :C FN D 0;

MO D MO.F1/C MO.F2/C : : :C MO.FN / D 0 (2.32)

represent the necessary and sufficient equilibrium conditions for a free (uncon-
strained) rigid body subjected to the action of an arbitrary three-dimensional force
system. The above conditions transform into conditions (2.27) and (2.29) after the
introduction of the Cartesian coordinate system of origin at O .

In other words, if we reduce an arbitrary three-dimensional system of forces
Fn applied at the points An.x1n; x2n; x3n/, n D 1; : : : ; N to an arbitrary point
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(the reduction pole) O , we obtain the main force vector S and main moment of
force vector MO , and after adopting the Cartesian coordinate system at pointO , we
have

S D E1
NX

nD1
F1n C E2

NX

nD1
F2n C E3

NX

nD1
F3n

D E1S1 C E2S2 C E3S3; (2.33)

and

MO D E1
NX

nD1
ŒF3n.x2n � x20/ � F2n.x3n � x30/�

C E2
NX

nD1
ŒF1n.x3n � x30/� F3n.x1n � x10/�

C E3
NX

nD1
ŒF2n.x1n � x10/ � F1n.x2n � x20/�

� E1M01 C E2M02 C E3M03: (2.34)

In the case of reduction of a three-dimensional force system there exist two
reduction invariants. The first is the main vector S and the second the projection
of vector MO onto the direction of the vector S. The first invariant means that the
reduction of spatial forces being in fact a geometrical addition of vectors gives the
same result for an arbitrarily chosen point of reduction. The second invariant means
that for the arbitrarily chosen point of reduction the projection of the main moment
vector onto the direction of the main force vector is constant.

In the latter case it is possible to find such a direction (a straight line) where
if the points of reduction lie on that line, the magnitude of MO is minimum. On
that line we can place the vector S, which as the invariant may be freely moved in
space. Such a line, after assigning to it the sense defined by the sense of S, we call
the central axis (axis of a wrench). Every set of force vectors and moment of force
vectors can have only one central axis. The system of two vectors S and MO lying
on the central axis we call a wrench.

The general equilibrium conditions (2.27) and (2.29) may be simplified and then
boil down to the special cases of the field of forces considered earlier, which we will
briefly describe below.

A concurrent force system in space. Taking pole O at the point of intersection
of the lines of action of these forces, (2.29) are identically equal to zero, and the
equilibrium conditions are described only by three equations (2.27).
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An arbitrary force system in a plane. An arbitrary planar force system may
be reduced to the main force vector S and main moment of force vector MO .
After choosing the axis OX3 perpendicular to the plane of action of the forces the
problem of determination of static equilibrium reduces to the analysis of algebraic
equations of the form

S1 D
NX

nD1
F1n D 0; S2 D

NX

nD1
F2n D 0;

MO3 D
NX

nD1
MO3n.Fn/ D 0: (2.35)

A system of parallel forces in space. Let the axisOX3 be perpendicular to the vector
field of parallel forces. From (2.27) and (2.29) for the considered case we obtain

NX

nD1
F3n D 0;

NX

nD1
MO1n.Fn/ D 0;

NX

nD1
MO2n.Fn/ D 0: (2.36)

The last case will be analyzed in more detail because we are going to refer to it
by the introduction of the notion of a mass center of a system of particles and a mass
center of a rigid body.

In the general case an arbitrary force system acting on a rigid body is equivalent
to either an action of main force vector or main moment of force vector.

Up to this point the equivalence of two force systems (sets of forces) was
formulated in a descriptive way. The criterion of equivalence can, however, be stated
as a theorem.

Theorem 2.10. The necessary and sufficient condition of equivalence of two force
systems, acting on a rigid body, with respect to a certain point (pole) is that these
systems have identical main force vectors and main moment of force vectors with
respect to that point.

The above theorem can be proved based on the principle of virtual work [27].
The system of parallel forces in three dimensions includes four special cases:

1. The forces may lie on parallel lines and possess opposite senses and different
magnitudes.

2. The forces may lie on parallel lines and possess opposite senses but the same
magnitudes.

3. The forces may lie on parallel lines and possess the same senses but different
magnitudes.

4. The forces may lie on parallel lines and possess the same senses and magnitudes.

Let us limit our considerations to two forces representing the cases listed above.
These forces always lie in one plane as they are parallel.
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Fig. 2.17 Sketches illustrating Theorem 2.12 (a) and Theorem 2.13 (b)

We have proved already that if we have two forces of the same magnitudes and
opposite senses, we are dealing with a couple. The action of a couple is equivalent
to the action of a moment of a couple. If these forces were collinear, they would have
no effect on the body because they would cancel one another (case 2). If the forces
are parallel, had opposite senses and different or identical magnitudes, and arenot
collinear, these cases will be considered below. For that purpose we first introduce
the notion of an equivalent equilibrant force.

If the force system (F1; F2; : : : ;FN ) applied to a rigid body is equivalent to only
one force F, we will call such a force an equivalent equilibrant force.

Theorem 2.11. If a system of forces possesses an equivalent equilibrant force, then
the vector of this force QF is equal to the main force vector F of the force system, and
its moment about an arbitrary pole is equal to the main moment of force of the force
system about that pole.

We will define now an equivalent equilibrant force for the case of two forces of
different magnitudes and arbitrary senses [27].

Theorem 2.12. A system of two parallel forces .F1; F2/ having the same senses
applied to a rigid body possesses an equivalent equilibrant force QF D F1 C F2. The
force QF lies in a plane defined by the forces .F1; F2/, is parallel to them, and its line
of action divides in the inside a segment O1O2, which connects the tails of vectors
of those forces, into two parts inversely proportional to their magnitudes F1 and F2
(Fig. 2.17a).

Theorem 2.13. A system of two parallel forces .F1; F2/ having opposite senses
and different magnitudes applied to a rigid body possesses an equivalent equilibrant
force QF D F1 C F2. The force QF lies in a plane defined by the forces .F1; F2/, is
parallel to them, and its line of action divides on the outside a segmentO1O2, which
connects the tails of vectors of those forces, into two parts inversely proportional to
their magnitudes F1 and F2 (Fig. 2.17b).

We will prove Theorem 2.13. According to Varignon’s theorem for point O we
have

���!
OO1 � F1 � ���!

OO2 � F2 D 0 � QF � 0
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and

QF D F1 C F2:

From the first equation it follows for both cases that after passing to scalars we
have

j���!
OO1j � jF1j sin ' � j���!

OO2j � jF2j sin.180ı � '/ D 0;

that is,

jOO1j � jF1j D jOO2j � jF2j:
Let us consider now the special case that follows from Fig. 2.17b, that is, when

F1 is applied at point O1 and at point O2 the force F2 D �F1, that is, we are
dealing with a couple of forces. It is easy to observe that a couple does not possess
an equivalent equilibrant force because QF D F1 � F1 D 0. The couple (F1;F2) does
have, however, a different interesting property, which we have already mentioned.
The moment produced by the couple depends not on the choice of the pole in space,
but only on the distance of the points of application of the forces F1 and F2 D �F1.
It is possible to prove that couples having the same moment of force are equivalent
couples.

Let us now consider the mixed (hybrid) case of a system of parallel forces in
space acting on a rigid body, where some forces have opposite senses and some the
same senses.

As was considered earlier on examples of two parallel forces having either the
same or opposite senses, we can reduce the whole system of parallel forces to two
parallel forces QF1 and QF2, called an equivalent equilibrant force.

The force vectors Fn, n D 1; : : : ; N we will treat as bound vectors (as distinct
from the free vectors used so far), and the force QF1 represents an equivalent
equilibrant force for the forces having senses opposite to the force QF2, replacing
the action of the second group of forces. Finally, the problem of reduction in this
case is reduced to the problem presented in Fig. 2.17b, which means that we are able
to determine the location of the pointO D C , where an equivalent equilibrant force
( QF1; QF2) is applied.

The case depicted in Fig. 2.17b enables us to draw certain further conclusions.
Let us observe that according to the proof of Theorem 2.13 at the point O D C ,

the vector of force QF D QF1 C QF2 (Fig. 2.18) is applied and the location of that
point depends exclusively on the magnitudes of force vectors, that is, from F1=F2.
It follows that the locations of points C , O1, and O2 do not change at the rotation
of force vectors through the same angle ˛. Let, after the rotation through the same
angle ˛, the lines of action of the mentioned forces be parallel to the axis OX2 of
the adopted Cartesian coordinate system, that is, all the previously mentioned forces
after reduction lie in a plane parallel to the planeOX1X2.

Let us write an equation of moments about an axis OX3 (perpendicular to the
plane of the drawing in which the forces lie).

If the number of parallel forces is N , then we will denote them as F1;F2; : : : ;
FN , where those having senses opposite to the positive direction of the axis OX2
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Fig. 2.18 Rotation of forces QF1; QF2, and QF through an angle ˛

are defined as Fn ı E2 D �Fn. The sum of moments about a point O is equal to

M0 D rC � QF D
ˇ̌
ˇ̌
ˇ̌

E1 E2 E3
x1C x2C x3C
0 QF 0

ˇ̌
ˇ̌
ˇ̌ D �E1 QFx3C C E3 QFx1C ;

M1 D
N1X

nD1

�
rn � QF.1/n

� D
N1X

nD1

ˇ̌
ˇ̌
ˇ̌

E1 E2 E3
x1n x2n x3n
0 �Fn 0

ˇ̌
ˇ̌
ˇ̌

D E1
N1X

nD1
Fnx3n � E3

N1X

nD1
Fnx1n;

M2 D
NX

nDN1C1

�
rn � QF.2/n

� D
NX

nDN1C1

ˇ̌
ˇ̌
ˇ̌

E1 E2 E3
x1n x2n x3n
0 Fn 0

ˇ̌
ˇ̌
ˇ̌

D �E1
NX

nDN1C1
Fnx3n C E3

NX

nDN1C1
Fnx1n; (2.37)

and hence we obtain

QFx1C D
NX

nDN1C1
Fnx1n �

N1X

nD1
Fnx1n;

QFx3C D
NX

nDN1C1
Fnx3n �

N1X

nD1
Fnx3n; (2.38)

where

QF D
NX

nDN1C1
Fn �

N1X

nD1
Fn: (2.39)
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If we deal only with N parallel forces (we assume N1 D 0) of the same senses,
from (2.38) we obtain

 
NX

nD1
Fn

!
x1C D

NX

nD1
Fnx1n;

 
NX

nD1
Fn

!
x3C D

NX

nD1
Fnx3n; (2.40)

which defines the position of the center C of the parallel forces having the same
senses consistent with the sense of E2 in the adopted coordinate system.

The third missing equation is

 
NX

nD1
Fn

!
x2C D

NX

nD1
Fnx2n;

which allows us, through the suitable choice of two out of the three presented
equations, to determine the position of the center of parallel forces in each of the
planes OX1X2, OX2X3, andOX1X3.

If now in the selected points n D 1; : : : ; N we apply the vectors of parallel forces
mng (weights), where g is the acceleration of gravity, we can determine the center of
gravity of those forces after introducing the Cartesian coordinate system such that
Fn D mngE3.

The gravity center is coincident with the mass center of the given discrete
mechanical system in the gravitational field.

Equation (2.40) listed above can be obtained from the following equation:

rC �
NX

nD1
Fn D

NX

nD1
rn � Fn: (2.41)

2.5 Mechanical Interactions, Constraints, and Supports

In Chap. 1 the concept of material system as a collection of particles was introduced.
In many cases such simplification is not sufficient. Particles are a special case of
rigid bodies whose geometrical dimensions were reduced to zero and only their
masses were left. A natural consequence of expansion of the concept of system of
particles is a system of rigid bodies. Such bodies can act on each other depending
on how they are connected through forces and moments of forces. As was discussed
earlier, forces in the problems of statics are treated as sliding vectors and moments
of forces as free vectors.
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The introduced system of rigid bodies is a system isolated from its surroundings
in the so-called modeling process. In view of that, the surroundings act mechanically
on the isolated system of rigid bodies. Such modeling leads naturally to the
introduction of the notions of active and passive mechanical interactions.

Active mechanical interactions are forces and moments coming from the sur-
roundings and acting on the considered system of bodies (they include the interac-
tions produced by gravitational fields, by various pneumatic or hydraulic actuators,
by engines, etc.).

Active mechanical interactions produce, according to Newton’s third law, passive
mechanical interactions, that is, interactions between the rigid bodies in the
considered system. The passive interactions (forces and moments of reactions) we
determine by performing a mental release from constraints of the bodies of the
system interacting mechanically.

According to the other classification criterion of mechanical interactions we
divide them into external (the counterpart of active) and internal (the counterpart
of passive). The classification of the system of bodies depending on their number in
the system is also introduced. If we are dealing with a single body (many bodies),
the system is called simple (complex, multibody).

The simple system is one rigid body that can be in static equilibrium under the
action of either external interactions exclusively or hybrid interactions, i.e., external
and internal. Let us consider two bodies and assume that one of them was fixed.
Next, the internal interaction of these bodies is replaced by the reaction forces and
reaction moments of forces coming from the interactions (supports) of the fixed
body (now called the base) on the free body, and now the mentioned supports are
treated as external.

In the case of simple problems (one rigid body), the problem of statics boils down
to releasing the body from supports, and the introduction of the mentioned reaction
forces and reaction moments of forces, and then to application of (2.27) and (2.29)
and their solution. During the solution of statics equations the following three cases
may occur:

1. The number of equations is equal to the number of unknowns (then the problem
is statically determinate and the solution of linear algebraic equations for the
forces and moments of forces can be done easily).

2. The number of equations is smaller than the number of unknowns (then the
problem is statically indeterminate; in order to solve the problem it is necessary
to know the relation between deformation and force (stress) fields).

3. The number of equations is greater than the number of unknowns (then the body
becomes a mechanism and the excessive forces and moments of forces can be
treated as driving ones).

If we are dealing with complex system of bodies and we have a base isolated
in this system, we first detach the system from the base and after that we proceed
similarly as in the case of the simple system. Equilibrium conditions of such an
inextricable force system are necessary equilibrium conditions. In the next step
we mentally divide the system into subsystems detaching one by one the bodies
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interacting mechanically until we isolate the body and have the forces and moments
of forces coming from the interactions with other bodies clearly defined. The
equilibrium conditions of each of the isolated bodies now constitute the necessary
and sufficient conditions for the equilibrium of the isolated body.

Let us note that the solution of the statically determinate problem is reduced to
the determination of both the equilibrium position (equilibrium configuration) of
the system and the unknown forces and moments of forces keeping the system in an
equilibrium position.

The topic of constraints and degrees of freedom of a system will be covered in
detail later; however, here we will introduce some basic notions essential to solving
problems of statics.

A particle in space has three possibilities of motion (three degrees of freedom),
whereas a rigid body in space has six possibilities of motion (six degrees of
freedom). Since, if we introduce the geometry of the “point” (the dimension), the
body gains the possibility of three independent rotations. Such a body (a particle)
we call free. Its contact with another body occurs by means of constraints that in the
analyzed problems of statics are called supports.

Now, if a rigid body (particle) during its motion is in contact with a plane at
all times, the rigid body has three degrees of freedom (two translations and one
rotation), whereas the particle has two degrees of freedom (two translations in the
adopted coordinate system).

The mentioned plane plays the role of support, which in the case of a rigid body
eliminates three degrees of freedom, and in the case of a particle, one degree of
freedom. Because the particle and the rigid body by definition possess mass and
mass moments of inertia, an arbitrary support (in our case the plane) produces a
mechanical (supporting) interaction, that is, support forces and moments of support
forces.

Depending on the geometry (shape) of the supports, they can eliminate different
types of body (bodies) motion and thus create different reactions and support
moments.

Below we will briefly characterize some of the supports often used in mechanical
systems. Because we have already distinguished plane and space force systems, we
will also classify the supports in accordance with the generation of planar and spatial
force systems by them.

In Fig. 2.19 a few examples of supports with a two-dimensional force system are
presented.

In Fig. 2.19a a sliding support is shown. The unknowns are the magnitude of
reaction FR, because its direction is perpendicular to the radius of curvature of a
base, and the reaction torque MR (rotation is not possible). A similar role is played
by a sleeve and telescope. In the case of Fig. 2.19b, the pin support is also present
(see also Fig. 2.19c), where we have two unknowns (magnitude and direction of
reaction FR). In order to diminish the resistance to motion (friction) between the
systems in contact often rollers treated as massless elements and moving with no
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Fig. 2.19 Examples of supports with two-dimensional systems of forces, their schematic designa-
tions, and unknown reactions (moments)
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resistance to motion are used (Fig. 2.19c). Rollers are often introduced in order to
decrease the motion resistance (friction) between contacting bodies, and they are
treated as massless bodies that are movable without motion resistance. In Fig. 2.19d
the contact supports with and without friction are shown. In the latter case we are
dealing with one unknown, that is, the magnitude of reaction FR, since its direction
is defined.

In the case of a rigidly clamped edge and restraint (Fig. 2.19e), we have three
unknowns, that is, two components of reaction and the reaction torque.

The supports discussed above that enable the point (the element) of a rigid
body in contact with a base to move in the specific (assumed in advance) direction
(technical and technological manufacture of the elements of bodies in contact) we
call directional support. In this case the motion of the body can take place along a
straight line or a curve.

Until now, our considerations have not taken into account the phenomenon of
friction between the elements of a body in contact. The phenomenon of friction is
the subject of the next section; here it is only necessary to emphasize that in the case
of so-called fully developed friction (T D �N ) we are dealing with one unknown,
and in case where T < �N (not developed friction), two unrelated forces T and N
have to be determined.

In Fig. 2.20a, a ball-and-socket joint and a point contact are shown, and if a
rigid body makes an arbitrary motion while in contact with a plane, we are to
determine three unknown reactions FR

x1
; F R

x2
, and FR

x3
. If the connection between the

bodies is realized by ball-and-socket support, it prevents the translation of a body in
every direction but allows for rotation about any axis passing through the center
of the support (ball), and after introduction of the Cartesian coordinate system,
three magnitudes of support reaction undergo determination. If the body moves on

a rough surface with undeveloped friction, where
q
.T 21 C T 22 / < �N , then three

unknowns, T1; T2, and N , must also be determined. Finally, let us note that if the
contact surface between the contacting parts of the bodies is from one side a sphere
and from the other a cylindrical groove (the guide), the support is a ball-cylinder
joint (two unknown reactions). If, instead, the contact of bodies takes place over a
cylindrical surface, such a support we call a cylindrical joint (two unknown reaction
forces and two reaction moments).

If a rigid body is fixed in three dimensions (Fig. 2.20b), such a support prevents
any translation and any rotation of the body, and the determination of six unknown
quantities, that is, three support reactions and three reaction moments, is necessary.

If the contact of a body with a plane takes place by means of a roller moving
on a rough surface with undeveloped friction, two forces T and N are subject to
determination. If the roller moves along the guide, this kind of support generates
two unknown reactions as well (Fig. 2.20c).

In Fig. 2.20d–g, short and long radial and angular bearings are depicted along
with the corresponding reaction forces and reaction moments; their diagrams are
also shown.
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Fig. 2.20 Examples of supports carrying three-dimensional systems of forces

In Fig. 2.20h, the Cardan universal joint is shown. The quantities FR
x1
; F R

x3
, and

MRx2 , which act on the right-hand side of the joint and undergo determination, are
also marked.
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Fig. 2.20 (continued) Examples of supports carrying three dimensional systems of forces
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Fig. 2.21 Triangular plate
suspended by three massless
rods CE , CD, and BD

In Fig. 2.20i, a three-dimensional telescope is depicted along with three unknown
quantities that are subject to determination. Figures 2.19 and 2.20 were prepared
based on the textbooks [28, 29].

In practice, in order to determine the reactions of the base on a rigid body
we choose systems of axes suitable for the particular problem and perform the
projections of reaction forces and reaction moments on these axes. Let us note that
the axes do not have to be mutually perpendicular, but not all of them can lie in one
plane or be parallel.

In this way we solve a problem of statics in several stages.

Example 2.3. A homogeneous steel plate of the shape of a right, isosceles triangle
and of the weight G is fixed by means of three steel weightless cables and a ball-
and-socket joint at a point A (Fig. 2.21), and AO D OB D BC D CA D a,
AE D OD D b. Determine reactions at point A and forces in the cables.

From equations of equilibrium with respect to the axes of the coordinate system
we have

OX1 W FR
x1

� FR
2x1

D 0;

OX2 W FR
x2

� FR
1x2

� FR
2x1

� FR
3x2

D 0;

OX3 W F R
x3

C FR
1x3

C F R
2x3

C FR
3x3

�G D 0;

and from equilibrium conditions of the moments of forces we obtain

Mx1 W a
�
F R
1x3

C FR
2x3

C F R
3x3

�� 2

3
aG D 0;

Mx2 W �a �F R
1x3

C FR
2x3

� FR
x3

�C 2

3
aG D 0;

Mx3 W a
��FR

1x2
C FR

x2

� D 0;

because the gravity center of the plate is situated at the distance marked in Fig. 2.22a.
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Fig. 2.22 Auxiliary sketches: (a) location of gravity center of plate; geometry of triangles related
to rod CE (b) and CD (c)

The angles ˛ and ˇ are determined from the equations tanˇ D b=.a
p
.2// and

tan˛ D b=a and the equilibrium equations assume the following form:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

FR
x1

�
p
2

2
F R
2 cosˇ D 0;

F R
x2

� FR
1 cos˛ �

p
2

2
F R
2 cosˇ � FR

3 cos˛ D 0;

F R
x3

C FR
1 sin˛ C F R

2 sinˇ C FR
3 sin˛ �G D 0;

a.F R
1 sin˛ C F R

2 sinˇ C FR
3 sin˛/ � 2

3
aG D 0;

�a.F R
1 sin˛ C FR

2 sinˇ/ � aFR
x3

C 2

3
aG D 0;

a.�F R
1 cos˛ C FR

x2
/ D 0:

(�)

From the third equation of the system (�) we obtain

�F R
x3

CG D F R
1 sin ˛ C FR

2 sinˇ C F R
3 sin ˛;

and substituting this into the fourth equation (�) we obtain

�F R
x3

CG � 2

3
G D 0;

that is,

FR
x3

D 1

3
G:
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Substituting FR
x3

into the fifth equation of (�) we obtain

F R
1 sin ˛ C FR

2 sinˇ D 1

3
G; (��)

and substituting into the third equation of (�) we have

FR
3 D G

3 sin˛
:

According to the sixth equation of the system (�), the second equation of (�)
takes the form p

2

2
F R
2 cosˇ C FR

3 cos˛ D 0;

and hence after substituting the already known FR
3 we obtain

F R
2 D � 2G cos˛

3
p
2 sin ˛ cosˇ

D � 2

3
p
2
G

cot ˛

cosˇ
;

and substituting FR
2 into (��) we obtain

FR
1 D G

3 sin˛

�
1C p

2 cot ˛ tanˇ
	
:

Using the sixth equation of the system (�) we have

FR
x2

D G cot ˛

3

�
1C p

2 cot ˛ tanˇ
	
;

and on the basis of the first equation of (�) we finally arrive at

FR
x1

D �G
3

cot ˛: ut

Example 2.4. Determine the reactions in support bearings of a rigid body supported
along the vertical axis at two points A and B by means of ball bearings (Fig. 2.23)
and loaded with an arbitrary force system F1; : : : ;FN .

As a result of the projection of forces on the axes of the adopted coordinate
system we obtain

FR
Ax1

C F R
Bx1

C
NX

nD1
Fnx1 D 0;

F R
Ax2

C F R
Bx2

C
NX

nD1
Fnx2 D 0;
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Fig. 2.23 Rigid body
supported by ball bearings

FR
Ax3

C F R
Bx3

C
NX

nD1
Fnx3 D 0:

The equations of moments about axes AX1 and AX2 have the following form:

�FR
Bx2
AB C

NX

nD1
Mx1.Fn/ D 0;

F R
Bx1
AB C

NX

nD1
Mx2.Fn/ D 0:

From the two equations above we determine F R
Bx1

and F R
Bx2

, and from the
first and second equations of the previous system of equations we determine F R

Ax1

and F R
Ax2

.
The equation of moments about the axis AX3 reads

NX

nD1
Mx3.Fn/ D 0;

and it defines the relations between the force vectors so that the body remains in
static equilibrium.

From the considerations above it follows that the third equation of the first
system of equations allows for the determination of the sum of reactions F R

Ax3
and

FR
Bx3

, but it does not enable us to determine the individual magnitudes of FR
Ax3

and
FR
Bx3

. The problem becomes statically determinate if at point B the short radial
bearing is applied (Fig. 2.20d). Then FR

Bx3
D 0, and it is possible to determine the

reaction FR
Ax3

.
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Fig. 2.24 A beam of weight
G suspended by two steel
ropes

We will now show using an example in what way statically indeterminate prob-
lems require a knowledge of kinematics. Without knowing the basic relationships
of kinematics it is impossible to solve this category of problems. In Chap. 6 we
generalize our observations, i.e., we solve the problem of kinematics of an elastic
body (a body deformable within the limits of the linear theory). ut
Example 2.5. A homogeneous beam of weight G and length l was suspended from
two steel ropes of lengths a and cross sections S , shown in Fig. 2.24.

The sum of moments about pointO leads to the following equation:

F1
l

2
C F2l D G

l

2
;

that is,
F1 C 2F2 D G: (�)

From the equation of moments relative to the center of beam, the vertical reaction
at point O is equal to F2. Let the rigid beam be in equilibrium after deformation of
both ropes. According to Hooke’s law and displacement compatibility (the same
angle of rotation of the beam �') we have

�1 D E"1; �2 D E"2;

where E is Young’s modulus. In turn,

�1

E
� "1 D �a1

a
D l�'

2a
;

�2

E
� "2 D �a2

a
D l�'

a
:

Thus

F1

E
D l�'S

2a
;

F2

E
D l�'S

a
;

and hence
2aF1

ElS
D aF2

ElS
;
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that is, 2F1 D F2. After substituting this relation into (�) we obtain successively
F1 D 1

5
G, F2 D 2

5
G. ut

2.6 Reduction of a Space Force System to a System
of Two Skew Forces

We have already mentioned the possibility of reduction of a space force system
into a so-called equivalent system of three forces, and then to a system of two skew
forces, i.e., the forces of non-intersecting lines of action.

Let a rigid body be loaded at pointsBn with forces Fn, n D 1; : : : ; N . Let us take
one of the points on the line of action of the force Fn and denote it On. Let us take
three arbitrary, non-collinear points B1, B2, and B3 and link them with point On
(Fig. 2.25).

We attach the free vector Fn at pointOn and resolve it into components along the

axes
���!
OnB1,

���!
OnB2, and

���!
OnB3, that is,

Fn D FnB1 C FnB2 C FnB3 : (2.42)

We will proceed similarly regarding other forces, i.e., on each of their lines of
action we will take a point, where we will attach the mentioned force vector, and
again we will resolve it into components that link the selected point with the fixed
points B1, B2, and B3. In that way we will reduce all forces to three forces attached
at the three chosen points B1, B2, and B3, i.e., we have

FB1 D
NX

nD1
FnB1 ; FB2 D

NX

nD1
FnB2 ; FB3 D

NX

nD1
FnB3 : (2.43)

In a general case these three forces are situated in space and do not intersect each
other. Now we will show how to reduce those forces to two skew forces (Fig. 2.26).

At the mentioned points B1, B2, and B3 in Fig. 2.26 we attach the force vectors
FB1 , FB2 , and FB3 determined earlier.

Fig. 2.25 Reduction of a
space force system to forces
FB1 ;FB2 , and FB3
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Fig. 2.26 Reduction of a force system to two skew forces

Point B1 and vector FB2 determine the plane �2, and point B1 and vector FB3
determine the plane �3. These planes intersect along an edge on which lies pointB1.
Let us take now point C on that edge and connect both points B1 and C lying on
the edge with points B2 and B3. We will resolve the vector of force FB2 in the plane
�2 into components along the rays CB2 and B1B2, and the vector FB3 in the plane
�3 into components along the rays CB3 and B1B3 using the parallelogram law.

Because we are dealing with a rigid body, we will attach vectors F0
B2

and F0
B3

at point B1 and vectors F00
B2

and F00
B3

at point C . Let us note that at points B1 and
C we obtain three-dimensional force systems that are concurrent. According to the
considerations made earlier, the action of concurrent forces at those points can be
replaced with resultant forces

FrB1 D FB1 C F0
B2

C F0
B3
;

FrC D F00
B2

C F00
B3
: (2.44)

These forces do not intersect and their lines of action are not parallel. The system
of parallel forces Fn, n D 1; : : : ; N acting on a rigid body will be in equilibrium if
these forces are collinear and FrB1 CFrC D 0. It is difficult to satisfy such a condition
proceeding with a geometrical construction.

On the other hand, according to the previous construction, taking an arbitrary
poleO we can reduce these forces to the main force vector F D FrB1 CFrC and main
moment of force vector MO D MO.FrB1/C MO.FrC /.
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2.7 Reduction of a Space Force System to a Wrench

Expanding the earlier considerations concerning a plane force system, one can
perform the reduction of an arbitrary space force system Fn attached at the points
An.x1n; x2n; x3n/, n D 1; : : : ; N to a certain arbitrarily chosen reduction pole
O.x10; x20; x30/.

Let us consider the rigid body depicted in Fig. 2.11a; now the force system Fn
is three-dimensional. In that figure we did not introduce the moments of force as
an external load (they can be generated by the force vectors of the same lengths
and opposite senses acting in parallel directions). In this case (2.27) will remain
unchanged (now S ¤ 0), but (2.29) will assume the form

Mx1 D
NX

nD1

�
.x2n � x20/Fx3n � .x3n � x30/Fx2n

�
;

Mx2 D
NX

nD1

�
.x3n � x30/Fx1n � .x1n � x10/Fx3n

�
;

Mx3 D
NX

nD1

�
.x1n � x10/Fx2n � .x2n � x20/Fx1n

�
: (2.45)

In general, the magnitudes of the components of the main moment of force vector
depend on the choice of pole O , but the main force vector S does not change with
the position of pole O (it is the first invariant of reduction in statics). Often the
notion of that invariant would be introduced in the form I1 D S2x1 C S2x2 C S2x3 . It
turns out that the second invariant of reduction is the projection of the main moment
of force vector M on the direction of the main force vector S, which then has the
form I2 D M ı S.

Let us consider now the projection of vector M on the direction of the vector S
of the following form:

M ı S D jMjjSj cos' D MS jSj: (2.46)

Bearing in mind that
S

jSj is the unit vector, we have

MS D MS

S
jSj D M ı S

jSj2 S; (2.47)

where MıS
jSj2 D p is called the pitch of the wrench. Now, let us change the pole from

pointO to some other point O 0 (Fig. 2.27).
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Fig. 2.27 Two poles O and
O 0 with corresponding
Cartesian coordinate systems

According to Fig. 2.27, the main moment of force vector MO about pole O 0 is
equal to

MO 0 D
NX

nD1

�
rO 0n � Fn

� D
NX

nD1

�
rn C ��!

O 0O
	

� Fn

D
NX

nD1

�
rn � Fn

�C
NX

nD1

���!
O 0O � Fn

	

D M C ��!
O 0O �

NX

nD1
Fn D M C ��!

O 0O � S; (2.48)

where M is the main moment about pointO .
After projection of the vector MO 0 on the direction of S we obtain

MO 0 ı S D
�

M C
���!
O 0O � S

	�
ı S

D M ı S C
���!
O 0O � S

	
ı S D M ı S (2.49)

because the vector
��!
O 0O � S is perpendicular to vector S (the scalar product .

��!
O 0O �

S/ ı S D 0). Thus, we showed that the change of the pole does not change the
projection of a main moment of force vector on the direction of a main force vector.
Let us take once more some other arbitrary pole. Let this be point O to which we
reduced, in the already described fashion, the force system. Through point O we
will draw a line l parallel to vector S and attach at that point vector M. Vectors M
and S will determine a certain plane � (Fig. 2.28).
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Fig. 2.28 A construction
leading to the determination
of an axis of a wrench l

In that plane we will resolve vector M into two components: kSM and ?SM. Now,
through point O we will draw a line l 0 perpendicular to plane � and we choose as
the new pole O 0 (belonging to both l and l 0) with respect to which we will perform
the reduction of M and S. Let us note that

MO 0 D M C ��!
O 0O � S; (2.50)

and since

M D kSM C ?SM; (2.51)

we have

MO 0 D kSM C ?SM C ��!
O 0O � S

D MS C ?SM C ��!
O 0O � S: (2.52)

The component ?SM C��!
O 0O � S undergoes a change with the change in position

of pointO 0. Let us take pointO 0 so that M0
O D MS . From (2.52) it follows that

MS D ?SM C MS C ��!
O 0O � S;

?SM D ��!
OO 0 � S: (2.53)

From (2.53) it follows that

j��!
OO 0j D j?SMj

jSj ; (2.54)

which defines the distance of point O from point O 0.
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Fig. 2.29 Force S , main
moment of force, and location
of central axis

The axis passing through pointO 0 and parallel to vector S we call a central axis.
By the choice of an arbitrary pole O it was shown how to determine the location of
the wrench axis by means of construction through the proper choice of point O 0.

From the foregoing considerations we can draw an important conclusion.
The action of an arbitrary space force (and moments) system can be replaced by

the action of a single force (being the geometric sum of all forces) and one main
moment of force, and both vectors lie on a common line called the central axis.

Equations (2.53) allow for the determination of the central axis in space. We
obtain from them the following equation:

M�MS D
3X

iD1

�
Mxi�MSxi

�
EiD

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

E1 E2 E3

x1 x2 x3

Sx1 Sx2 Sx3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D E1
�
x2Sx3 � x3Sx2

�C E2
�
x3Sx1 � x1Sx3

�C E3
�
x1Sx2 � x2Sx1

�
; (2.55)

and hence

Mx1 �MSx1
D x2Sx3 � x3Sx2;

Mx2 �MSx2
D x3Sx1 � x1Sx3;

Mx3 �MSx3
D x1Sx2 � x2Sx1: (2.56)

The method of determination of the central axis is illustrated in Fig. 2.29.
If we treated the coordinates of the point O 0.x1; x2; x3/ in the coordinate system

OX1X2X3 as that determined from (2.56), then knowing the coordinates of vector S,
we may find the equation of the central axis.
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Fig. 2.30 Three forces and
location of a pole O

If the coordinate system is introduced at some other point of the body and the
coordinates of the pole in that system are denoted as .x10; x20; x30/, then the point
belonging to the central axis can be found from the following equations:

Mx1 �MSx1
D .x2 � x20/Sx3 � .x3 � x30/Sx2;

Mx2 �MSx2
D .x3 � x30/Sx1 � .x1 � x10/Sx3;

Mx3 �MSx3
D .x1 � x10/Sx2 � .x2 � x20/Sx1: (2.57)

Let us assume that we reduce the space force system about pole O . We are
dealing with the following special cases:

1. S ¤ 0, MO ¤ 0 and MO ? S.
Then MS D MO ı S D 0. The resultant force Fr is parallel to S but cannot

pass through point O . It is located on the central axis.
2. S ¤ 0, MO D 0.

The resultant Fr D S and passes through poleO (because it does not produce
a moment).

3. S D 0, MO ¤ 0.
The moment of force vector is a free vector, so it can be attached at an arbitrary

point in space.
4. S D 0, MO D 0.

The analyzed rigid body is in equilibrium.

Example 2.6. Reduce the three forces of magnitudes F1 D 1, F2 D p
2, and F3 Dp

2 that act as shown in Fig. 2.30.
The axes of the coordinate system are taken along the edges of the cube. We aim

to determine the components of vector S and moment M, which are equal to:
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Sx1 � F1 C
p
2

2
F2 � F3

p
2

2
D 1;

Sx2 D F2

p
2

2
D 1;

Sx3 D F3

p
2

2
D 1;

Mx1 D �F2
p
2

2
� 1C F3

p
2

2
� 1 D 0;

Mx2 D F1� 1� F3

p
2

2
� 1C F2

p
2

2
D 1;

Mx3 D F3

p
2

2
� 1 D 1:

In order to make use of formula (2.56) we need to know additionally the values
of MSx1 , MSx2 , and MSx3 . For the determination of the coordinates of vector MS

we will multiply (2.47) in turn by Ei , i D 1; 2; 3.
Since

M ı S D Mx1Sx1 CMx2Sx2 CMx3Sx3 D 2;

jSj2 D S2x1 C S2x2 C S2x3 D 3;

after using (2.47) we obtain

MSx1
D 2

3
; MSx2

D 2

3
; MSx3

D 2

3
:

According to (2.56) we have

x2 � x3 D �2
3
; �x1 C x3 D 1

3
; x1 � x2 D 1

3
:

In order to determine the point of intersection of three planes we will calculate
the determinant of the system

� D

ˇ̌
ˇ̌
ˇ̌
ˇ

0 1 �1
�1 0 1

1 �1 0

ˇ̌
ˇ̌
ˇ̌
ˇ

D 0C 1� .�1/3.�1/� 1� .�1/4.1/ D 1 � 1 D 0;
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and the minors

�x1 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

� 2
3
1 �1

1
3

0 1

1
3

�1 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1

3
� .�1/3.�1/C 1� .�1/5



2

3
� 1

3

�
D 1

3
� 1

3
D 0;

�x2 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

0 � 2
3

�1

�1 1
3

1

1 1
3

0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �2
3
.�1/3.�1/� 1� .�1/4



� 2

3

�
D �2

3
C 2

3
D 0;

�x3 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

0 1 � 2
3

�1 0 1
3

1 �1 1
3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 1� .�1/3



� 2

3

�
� 2

3
� .�1/4.1/ D 2

3
� 2

3
D 0:

Recall that if � ¤ 0, then the three planes intersect at one point. If � D �x1 D
�x2 D �x3 D 0, then the three planes have a common line.

Let us take x2 D 0. We calculate x1 D 1
3

and x3 D 2
3
. Point A.1

3
; 0; 2

3
/ belongs

to the line constituting the central axis. We determine the central axis by drawing a
line parallel to S through point A.

If the planes intersect at one point, we determine that point solving the system of
three algebraic non-homogeneous equations. Let the point of intersection have the
coordinates x1A; x2A; x3A. The central axis passes through that point and is parallel
to the vector S D E1Sx1 C E2Sx2 C E3Sx3. In view of that, the equation of central
axis has the following form:

x1 � x1A
Sx1

D x2 � x2A
Sx2

D x3 � x3A

Sx3
: ut

The steps illustrated in Sects. 2.1–2.7 that aimed to reduce and simplify force
systems (providing a lack of friction) can be briefly summarized in the following
manner:

(a) Reducing a force system to a resultant force F D PN
nD1 Fn and a couple at given

pointO (resultant moment):

MO D
NX

nD1
.r � Fn/:
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(b) Moving a force–couple system from point O1 to point O2, expressed by the
formula

MO2 D MO1 C ���!
O2O1 � F:

(c) By equivalency checking, reducing to the one point O two systems of forces,
which are equivalent if the two force–couple systems are identical, i.e.,

NX

nD1
Fn D

KX

kD1
Fk;

NX

nD1
.rn � Fn/ D

KX

kD1
.Qrk � QFk/:

(d) Reducing a given force system to a single force; this takes place only if
S ? MO , i.e., when force S and couple vector MO are mutually perpendicular
(which happens for concurrent coplanar and parallel forces). If position vector
r depicted from point O to any point on the line of action of the single force F
satisfies the equation MO D r � F:

(e) Applying force and funicular polygons (Sect. 2.2).
(f) Applying the three-moments theorem (Sect. 2.4).
(g) Reducing a system of parallel forces (Sect. 2.4).
(h) Reducing a three-dimensional force system to two skew forces (Sect. 2.6).
(i) Reducing a given force system to a wrench.

In general for a three-dimensional force system (not concurrent, coplanar, or
parallel) one may introduce the reduction on a basis of items (f), (h), and (i).
Observe that the equivalent force system consisting of the resultant force S and the
couple vector MO are not mutually perpendicular and hence, although they cannot
be reduced to a single force, they can be reduced to a wrench since they constitute
the combination of the force S and a couple vector MS .S k MS / that lie on the
wrench (case i). In other words, after reduction of a given force–couple system
.S;MO/ and after determination of the pitch p D SOıMO

S2
, Ms satisfies the equation

MS C r � S D MO . It allows one to find that point where the line of action of the
wrench intersects a special plane (r is directed from O to that point).

2.8 Friction

The phenomenon of friction is common both in mechanics and in everyday life.
Many scientific works, including monographs, cover this topic (citation is omitted
here). Also, the present author and his coworkers have published monographs on
the problems of classical friction [30–35].
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In general, friction is a force that opposes a body’s motion and possesses a sense
opposite to that of the velocity of the body’s relative motion. In order to ensure
sliding of one surface with respect to another if both remain continuously in contact,
it is necessary to act all the time on the moving body with a certain force. This
requirement is connected with the resistance to motion called sliding friction. This is
because it turns out that even apparently very smooth surfaces possess irregularities
that cause resistance to motion. Friction is divided into static and dynamic friction.
We deal with the former when we want to move one body with respect to another,
e.g., remaining at rest. In the majority of cases, static friction is greater than dynamic
friction. Sliding friction depends on the condition of the contacting surfaces (i.e.,
whether they are dry or lubricated), their smoothness and wear resistance abilities,
and humidity and temperature.

In cases where two bodies roll with respect to one another, the friction is inversely
proportional to the radius of the object that rolls. Such friction is called rolling
friction.

Moreover, we distinguish aero and hydrodynamic friction. The former concerns
the motion of objects in gases, while the latter concerns that in liquids. For small
speeds v of objects motion in a fluid (liquid or gas), the force of resistance
is proportional to the speed, whereas for medium (high) speeds of motion, the
force is proportional to v2 (v3). It should be emphasized that the character of
the mentioned dependencies presents the problem rather qualitatively since the
described phenomenon of friction depends on the temperature, viscosity, object
shape, and fluid density. In general the friction phenomenon is not yet fully
understood because it is a very complex process connected with motion resistance
and accompanied by the heat generation and wear of contacting bodies. Friction can
be treated, then, also as a certain energetic process.

In most cases the kinetic energy of objects subjected to the action of friction
forces is turned into heat energy. For instance, it is widely known that objects
moving in air such as airplanes, rockets, or spaceships are very hot, which demands
application of new materials of high quality and high heat resistance. Also, the rims
of wheeled vehicles heat and the striking of two firestones or rubbing of two pieces
of wood leads to igniting a fire. In this case we are dealing with energy dissipation,
which means that the mechanical energy (kinetic and potential) of the object is not
conserved since part of it is converted into internal energy (in this case into heat).

The friction between two solid bodies, as can be seen from the preceding
description, is a complicated physical phenomenon. Apart from the mentioned
heating of bodies, often we are dealing with their electrification, changes in the
surface of the rubbing bodies, or diffusion phenomena, i.e., migration of the
molecules of one body into another body.

Generally speaking, it is possible to distinguish three basic types of frictional
interactions during the contact of two bodies: (a) sliding friction connected with the
translational motion (no rotation) of two bodies; (b) sliding friction connected with
rotational motion; (c) rolling resistance, e.g., a train wheel on a rail; and (d) sliding
torsion friction.
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Fig. 2.31 A sliding friction
and a cone of friction

Of the many researchers dealing with the friction phenomenon, the French
physicist Amontons3 should be counted as a pioneer in the field. He proved in the
course of empirical investigations a lack of dependency of the friction force on the
area of contact of rubbing bodies. The fundamental laws of friction were formulated
by Coulomb.4

From the considerations above it follows that investigations aimed at finding the
connection of these phenomena with the atomic scale are of great importance for a
deeper understanding of the phenomenon. In this direction are moving such sciences
as tribology, physics, and nanomechanics. Those investigations are important in the
age of common miniaturization, nanotechnology, and mechatronics.

Friction depends on the pressure of one surface rubbing against another, but also
on the relative speed of the bodies in contact. In this textbook we will consider only
the classical laws of friction, but the reader particularly interested in this topic can
refer to the works cited above.

Let us consider a classical example treated in many textbooks (Fig. 2.31).
A rigid body of rectangular cross section (its height is neglected) and weight G

lies on a horizontal surface and is subjected to an action of a certain force F. If the
body remains at rest, after projection of the existing forces onto the axes OX1 and
OX2 we obtain that T D �F and G D �N, where N is the normal force and T the
friction force (static reaction) that results from the contact between the bodies.

It is easy to imagine, and it follows also from everyday experiences, that the
increase of the magnitude of force F will cause the increase of magnitude of
tangential reaction (for F D 0 there is no tangential reaction). Such a process
will continue up to a certain threshold magnitude of force Fth. After crossing this
magnitude of force the body will start to slide over the other fixed body (the base),

3Guillaume Amontons (1663–1705), self-taught French scholar dealing with, among other things,
thermodynamics and friction.
4Charles Augustin de Coulomb (1736–1806), French physicist.
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and we will be dealing with kinetic friction. The friction corresponding to Fth will
be called the limiting friction force or a fully developed friction force.

The reaction FR caused by the forces F and G can be determined based on the
normal force N and the friction force T after adding both vectors, i.e.,

FR D T C N: (2.58)

It is easy to observe that if T ! Tth, the magnitude of the resultant force vector
increases. The angle of inclination ˛ of the reaction to the vertical line increases as
well, and for T D Tth it reaches a value called the angle of repose.

Applying the classical Coulomb and Morin5 laws of friction one should re-
member that they are only a certain approximation of the complex phenomena
characterizing the friction process. According to Fig. 2.31 we have Tth D N tan˛
and after introducing the coefficient of sliding friction we finally obtain

Tth D �N: (2.59)

This moment is well worth emphasizing because for the first time mechanics
has to refer to the experiment in this case (it will happen a second time during the
analysis of impact phenomena and will be connected with the determination of the
so-called coefficient of restitution). It is not possible to determine the friction force
without knowing the coefficient �, which is obtained as a result of experimental
research. For rough surfaces the coefficient is big and diminishes for smooth and
lubricated surfaces. The coefficient of friction may depend on the manufacturing
processes connected with a material’s production, e.g., the value of coefficient of
friction in the case of rolled steel depends on the direction of rolling. For certain
materials (e.g., wood) friction has an anisotropic character, i.e., the coefficient �
depends on the direction of motion.

The Coulomb–Morin model distinguishes between static and kinetic (sliding)
friction—the forces lying in a tangent plane at the point of contact of the bodies
when the (tangential) relative velocity of the contacting bodies at that point (slip
velocity) is respectively equal to zero (no slip) or greater than zero (slip). The
magnitude of the static friction force can change from zero up to a certain maximum
value proportional to the normal force, which is usually written as T D �sN (�s

is the coefficient of static friction). This definition includes both the introduced
“tangent reaction” and the “threshold friction force” (the tangent reaction is the
friction force as well). The magnitude of the static friction force is usually not known
a priori (the reaction of the friction constraints) and its sense is determined as being
opposite to the tendency of sliding—sense of slip at the contact point for perfectly
smooth surfaces. The force of kinetic friction is defined as T D �kN (�k is the
coefficient of kinetic friction) and its sense is opposite to that of slip velocity, and
�k < �s. A separate and little researched (not adequately mathematically described)
problem is the transient phenomena for small slip velocities.

5Arthur Jules Morin (1795–1880), French general and professor of mechanics.
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Although in Fig. 2.31 we have considered so far the plane system, we may
consider friction in space as well. Then force FR will change depending on the
change in force F. The vector FR at the change of F 2 Œ0;Fth� will be located inside
the cone whose generatrix and normal force form an angle of friction ˛. In the case
of fully developed friction, the opening angle of the cone 2˛th is the greatest. If the
reaction FR is situated outside the cone, the state of rest of the investigated body
will be interrupted, and the body will start sliding over the surface of the base body.
A shift from a state of rest to motion, i.e., from statics to dynamics, will occur. The
body will remain at relative rest (because in a general case both bodies can move
with respect to the adopted fixed coordinate system) if the following inequality is
satisfied:

T 	 �sN: (2.60)

The cross section of a cone with a plane perpendicular to vector N, depicted in
Fig. 2.31, is circular. In the case of anisotropic friction, the cross section is not
circular, but it might be, for example, an ellipse.

In further considerations we will make use of the three laws connected with
friction, which had already been formulated by Coulomb.

1. The threshold friction force is proportional to the normal force, i.e., Tth D �sN ,
where �s is the coefficient of threshold static friction (fully developed).

2. The friction force does not depend on the size of area of contact between the
bodies.

3. The coefficient of friction depends on the kind of material and the condition of
surfaces of the bodies in contact.

If the body is in motion, usually the coefficient of friction �k (so-called kinetic
friction) is smaller than the coefficient of developed friction �s, that is, �k 	 �s.
This difference leads to certain theoretical difficulties connected with the transition
from rest to motion (and vice versa) and with the mathematical modeling of the
coefficient of friction because of the need to distinguish one state of the investigated
system from another.

In Table 2.1 the average values of the coefficient of sliding friction are given for
various materials of bodies being at rest or in motion for different surface conditions
(oiled and dry). In textbooks on mechanics the so-called rolling resistance is
considered as a separate problem. This topic will be described in accordance with
the textbook [9].

We will consider two cases of a heavy cylinder lying on rigid (Fig. 2.32a) and
flexible (Fig. 2.32b) planes.

In the first case (a), the cylinder is in contact with the plane along a line (the
generatrix of the cylinder). Along this generatrix of the cylinder the normal and
tangential forces will appear (in the cross section perpendicular to the cylinder’s
axis we will obtain vectors N and T). The horizontal force F acts on the cylinder at
distance h from the plane on which the cylinder is rolling. Writing the equation of
moments about point A we have

MA D Fh: (2.61)
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Table 2.1 Coefficients of sliding friction [9]

At rest .�s/ At motion .�k/

Material of contacting bodies Dry Oiled Dry Oiled

Steel vs. steel 0.15 0.1 0.1 0.01
Steel vs. cast iron or bronze 0.18 0.1 0.16 0.01
Cast iron vs. cast iron 0.45 0.25 0.2 0.05
Bronze vs. cast iron or bronze 0.21 – 0.18 –
Metal vs. wood 0.5–0.6 0.1 0.2–0.5 0.02–0.08
Wood vs. wood 0.65 0.2 0.2–0.4 0.04–0.16
Leather vs. metal 0.6 0.25 0.25 0.12
Steel vs. ice 0.03 – 0.02 –

Fig. 2.32 Rolling of a heavy cylinder on a rigid (a) and a flexible (b) plane

The moment MA D 0 if F D 0 or h D 0. Otherwise, an arbitrarily small, but
non-zero, force F for h > 0 will initiate the cylinder motion. If the force F > �N ,
then the cylinder will slide on the plane. If F < �N , then the cylinder will roll on
the plane.

The considered case is idealized since from the experiment it follows that a heavy
cylinder causes deformation of the horizontal surface (Fig. 2.32b) and the action of
force F creates a reaction connected with the force of rolling resistance Tres and the
moment of force of rolling resistance Mres. Force F, which forces the cylinder to
move, causes displacement of the point of application of the reaction of plane from
pointA to pointA0. Writing the equation of moments about a pointAwe obtain now

MA D Tf 0 CNf � Fh: (2.62)

Because f 0�f and T < N , the moment Tf 0 can be neglected, and from (2.62)
we obtain

MA D Nf � Fh: (2.63)
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Table 2.2 Rolling resistance coefficients [9]

Cylinder Basis f .10�2 m/

Cast iron Cast iron 0.005
Steel Steel rail 0.005
Wooden Wood 0.8
Roller bearings and balls

(hardened and ground)
Hardened and

ground steel
0.0005–0.001

The motion will start when the moment Fh overcomes the momentNf D Mres,
called a moment of rolling resistance. The quantity f we call a coefficient of rolling
resistance or an arm of rolling resistance. Let us note that, as distinct from the
dimensionless coefficient �, the quantity f possesses a dimension of length and
characterizes the maximum distance at which the point of application of reaction
can move preserving the state of rest of the body, i.e., when Fh D Nf . Several
average values of the coefficient of rolling resistance f for various materials of the
cylinder and ground are given in Table 2.2.

The third case of the classical division of friction, i.e., rotational friction, remains
to be described. In the case of sliding friction the problem can be reduced to the
point of contact. If, however, to one (or both) of the contacting bodies we apply
a moment of force, the assumption of their contact only at the point is not valid.
The moment of force is carried by the moment of friction forces that must occur
over a certain (although very small) area. Thus, the moment of force is balanced
not by a single force but by a couple of forces. After overcoming the moment
of rotational friction, the moment of force will cause rotation of the body on
which it acts (on the assumption that the other body remains fixed) about an axis
perpendicular to the surface of contact of the bodies. The threshold magnitude of
the moment of rotational friction is usually assumed to be proportional to the force
N (which is the force compressing the bodies, normal to the surface of contact), and
that threshold magnitude equals MF D �0N , where now �0 denotes a rotational
friction coefficient, and this time the coefficient �0 possesses a dimension of length.
The problem is relatively complex since the moment of friction force depends on
the normal stress in the area of contact (area size greater than zero) distribution,
which must be uniform over the mentioned area. Additionally, the rotational friction
coefficient depends on the coefficient of forward sliding friction because it is caused
by the normal force N. For example, from the theoretical considerations concerning
the contact problem of the cylinder of radius r making contact with the fixed surface
over the area �r2, the coefficient of rotational friction �0 D 0:25�r�, where �
denotes the sliding friction.

Let us consider a classical case of a rigid body having the shape of a rectangular
prism (Fig. 2.33), but in the present case we assume that the dimensions of its cross
section with a vertical plane, i.e., width 2b and height 2h of rectangle, are known.
We will also assume that its geometrical center coincides with the center of mass
(point C ) and that at point C the gravity force G and horizontal force F are applied
(Fig. 2.33).
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Fig. 2.33 Schematic of
forces for static equilibrium
of a block

The action of forces G and F will cause the reaction of the block in the form of
the friction force T and normal force N as in Fig. 2.33. For the force system to be in
equilibrium, on the assumption of finite area of contact, the point of application of
force N must lie at a certain distance x from vector G.

From the projection of the forces onto the axes of the adopted coordinate system
we obtain

G D N; T D F; (2.64)

and writing the equation of moments about point C we have

T h D Nx; (2.65)

which allows us to determine the unknown quantity

x D T h

N
D Fh

G
: (2.66)

According to the law of friction T D �N , we obtain that F < �G, and next we
have another inequality, that is, x D Fh

G
	 b, i.e., F 	 b

h
G. Let us trace now the

phenomena that accompany the process of increasing the magnitude of force F. If
the coefficient of friction � < b=h, then the block will remain in equilibrium until
the friction force reaches its threshold magnitude T D �N D b

h
N D b

h
G. After

exceeding this value, the block will start sliding on the plane. If the coefficient of
friction� > b=h, if only the magnitude of horizontal forceF > b

h
G, then the block

will rotate about point (edge) A.
In four subsequent examples we will consider the case of a block lying on

an inclined plane, this time neglecting its geometrical dimensions (Example 2.7),
a homogeneous cylinder rolling on an inclined plane (Example 2.8), the more
complex case of the block (wardrobe) taking into account its geometry and assuming
the presence of friction along two edges (points) of contact (Example 2.9), and,
finally, a shaft-bearing frictional problem (Example 2.10).



2.8 Friction 81

Fig. 2.34 Boundary conditions of equilibrium of bodies of masses m under the action of forces
Fd (a) and Fu (b)

Example 2.7. Determine the minimum magnitude of the force Fd .Fu/ at the
moment of block motion down (up) the inclined plane (Fig. 2.34).

In Fig. 2.34a, the equations of equilibrium read

� Fd C T �G sin ' D 0;

N �G cos' D 0:

On the verge of equilibrium loss the friction is fully developed, so T D �N , and
from the first equation we obtain

Fd D G.� cos' � sin '/:

In this case, the condition Fd D 0 is possible, which is equivalent to tan ' D �.
For tan' 	 �, the block will remain motionless on the inclined plane, and upon
increasing the angle of inclination, i.e., for tan' > �, the block will slide down.

In the second case (Fig. 2.34b), the equations of motion are as follows:

Fu � T cos' �N sin ' D 0;

�G CN cos' � T sin ' D 0:

Because T D �N , the equations take the form

Fu D N.� cos' C sin '/;

G D N.cos' � � sin '/;

so

Fu D G
� cos' C sin'

cos' � � sin '
D G

�C tan'

1� � tan '
:
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Fig. 2.35 Rolling of cylinder
on inclined plane

If tan ' ! 1=�, then Fu ! 1. In such a case, no force is able to move the block
up. We may say that a binding of the body occurs. ut
Example 2.8. A homogeneous cylinder with mass m and radius r is rolling on an
inclined plane without slipping. The plane forms an angle ˛ with a horizontal line
(Fig. 2.35). Determine the cylinder center acceleration and the angle value ˛, where
a slip begins.

The equations of motion have the following form:

m Rx1C D mg sin ˛ � T;

m Rx2C D �mg cos˛ CN;

IC R' D �T r: (*)

Because Rx2C D 0, or x2C D r , N D mg cos˛.
In turn, Px1C D �r P' because the P' value is negative, and hence, after substituting

into the third equation (*), we have

mr2

2



� Rx1C
r

�
D �T r;

or m Rx1C D 2T:

From the first equations .�/ we calculate

Rx1C D 2

3
g sin˛;

and then T D 1
3
mg sin ˛. For ˛ D ˛th, we obtain tan˛ D 3�. ut

Example 2.9. Determine the range of equilibrium of a rigid body (a wardrobe) of
weight G situated on an inclined plane (Fig. 2.36) with (without) friction present at
points A and B .
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Fig. 2.36 A wardrobe
standing on an inclined plane

Let us consider three cases.

(i) The case of no friction (�1 D �2 D 0):

F D G sin ';

N1 CN2 D G cos';

MA � �Fh �N1aCG
b

2
sin' CG

a

2
cos' D 0:

In addition, the equation of moments about point A was written above.
From the equations we determine

N1 D 1

a

�
� FhC 1

2
G.b sin' C a cos'/

�
;

N2 D 1

a

�
FhC 1

2
G.a cos' � b sin'/

�
:

If we want to move the wardrobe standing on a horizontal floor (' D 0),
from the preceding equations we obtain

F D 0; N1 D N2 D G

2
;

that is, the wardrobe will move under the action of an arbitrarily small force
F ¤ 0.

(ii) Let us introduce now the friction forces T1 and T2 and let us find the force Fmin

such that the wardrobe starts to move up the inclined plane.
The projections of force vectors on the OX1 andOX2 axes give

F D G sin' C T1 C T2;

N1 CN2 D G cos':
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The equation of moments about the center of mass of the wardrobe reads

MO � �F


h � b

2

�
� .T1 C T2/

b

2
�N1

a

2
CN2

a

2
D 0:

From the preceding equation, after assuming F D T1 D T2 and ' D 0, we
obtain N1 D N2 D G

2
, which agrees with the result obtained earlier (case i).

If we assume that T1 2 Œ0; �1N1� and T2 2 Œ0; �2N2�, then the problem
cannot be solved because we have four unknownsN1;N2; T1, and T2 but only
three equations.

In this case, we have to assume in advance the possibility of motion of
the wardrobe after equilibrium loss. While increasing the force F for certain
parameters of the system the wardrobe can first either slide or rotate about
point A. The problem, so far statically indeterminate, can be solved after
assuming one of two possible options. Let us assume that there occurs a
rotation about point A under the action of force F. This means that N1 D
T1 D 0. The equations of equilibrium of forces and moments for this case are
as follows:

F D G sin ' C T2;

N2 D G cos';

MA � �FhCG
b

2
sin' CG

a

2
cos' D 0:

Taking the angle ' D 0, we obtain

F D T2; N2 D G; F h D G
a

2
:

If we assume now that the friction force T2 is not developed and is bounded
to the range 0 < T2 < �G, we obtain the condition for rotation on horizontal
ground, which can be realized for an arbitrary T2 from the aforementioned
range if

T2h D G
a

2
;

that is,

�h D a

2
:

After transformation for ' ¤ 0 we have

F D G.sin' C �2 cos'/;

F h D G

2
.b sin ' C a cos'/;
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and, in turn,

.sin ' C �2 cos'/ D 1

2h
.b sin' C a cos'/;

that is,

sin '



1 � b

2h

�
C cos'



�2 � a

2h

�
D 0:

Note that

a cos.' �  / D a cos cos' C a sin sin '

D A cos' C B sin ':

For our case

A D a cos D �2 � 2

2h
; B D a sin D 1 � b

2h
:

The equation that we are going to solve has the form

cos.' �  / D 0;

that is,

' �  D .2k C 1/
�

2
; k D 0; 1; 2:

For k D 0 we have '0 D  C �
2

, which means that

'0 D arctan



2h� b

2h�2 � a

�
C �

2
:

For k D 1, such a problem cannot be physically realized in the considered
case.

Let us assume now that there will be a loss of equilibrium caused by moving
the wardrobe up the inclined plane. In this case the equations will take the
following form .N1 ¤ 0/:

F D G sin ' C T1 C T2;

N1 CN2 D G cos';

MA � �FhCG
b

2
sin ' CG

a

2
cos' �N1a D 0:
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For the angle ' D 0 we obtain

F D T1 C T2;

N1 CN2 D G;

�FhCG
a

2
�N1a D 0:

From the last two equations we determine (it can be seen that the sum of
friction forces is canceled out by force F):

N1 D G

2
� F

h

a
;

N2 D G

2
C F

h

a
:

The displacement will occur when N1 > 0, that is, when

G

2
> F

h

a
:

For the case �1 D �2 D � we have

G

2
> �G

h

a
; or

a

2�
> h:

Now, let us assume that ' ¤ 0, and to simplify the analysis, let us take �1 D
�2 D �. From the equations in question we obtain

F D G.sin ' C � cos'/;

N1 D 1

2
G



b

a
sin ' C cos'

�
� F h

a
:

In this case, force F cancels the action of friction forces and the component
of weight vector parallel to the surface of the inclined plane.

The condition for displacement reads

1

2



b

a
sin ' C cos'

�
> .sin ' C � cos'/

h

a
:

(iii) Let us introduce now the friction forces T1 and T2 and consider the case where
we should determine the force Fmin such that the wardrobe does not move down
the inclined plane.
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In the present case, the senses of friction forces will change and the
equations will take the following form:

F D G sin ' � T1 � T2;
N1 CN2 D G cos':

Let us assume that as a result of action of force F the rotation of the
wardrobe about point B will occur. The equation of moment is

MB � �Fh � a

2
G cos' C b

2
G sin ' CN2a D 0:

On the assumption that �1 D �2 D �, from the equations above we
determine

F D G.sin' � � cos'/;

N2 D F
h

a
C 1

2
G



cos' � b

a
sin '

�
:

Let us check if the rotation about point B is possible for ' D 0.
From the preceding equations (N2 D 0) we obtain

F D �T1;
N1 D G;

FhCG
a

2
D 0;

that is,

h D a

2�
:

From the foregoing considerations it follows that there exists a possibility
of equilibrium loss by the rotation of the wardrobe, and in the present case the
boundary value of this condition is the same as the corresponding value for
translation.

Let us assume now that ' ¤ 0 and check if there possibly exists an angle
for which the loss of equilibrium by rotation about point B takes place. In this
case we have (N2 D 0)

F D G sin ' � T1;

N1 D G cos';

�Fh� a

2
G cos' C b

2
G sin' D 0:
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Then we have

h.sin ' � � cos'/ D 1

2
.�a cos' C b sin '/;

and after transformations we obtain



� hC b

2

�
sin' C



h� � a

2

�
cos' D 0:

Let us assume now that the equilibrium loss will occur by the motion of
the wardrobe down the inclined plane, so the loss of equilibrium will result
in sliding. The condition of the motion is N2 
 0 and in the boundary case
N2 D 0. This condition is identical with the one for the rotation about pointB .

Let us note that the current example allows for the analysis of two special cases.
For ' D 0 we are dealing with the problem of equilibrium loss of the wardrobe
situated on a horizontal surface (already presented). Let us assume now that a D
b D h D 0, that is, we will be considering a particle of mass m situated on the
inclined plane .N1 C N2 D N/.

From the considerations conducted for case (i) we obtain

F D mg sin ';

N D mg cos':

This means that for the particle to remain at rest on the inclined plane one should
apply to it force F of magnitudemg sin'.

In case (ii) we have

F �
min D G.sin' C � cos'/;

whereas in case (iii) we have

Fmin D G.sin' � � cos'/:

Let us note that for the forces within the range F 2 ŒFmin; F
�
min� the particle

remains in equilibrium. Range ŒFmin; F
�
min� we will call the range of equilibrium

loading. ut
Example 2.10. Determine the angle of friction ' and so-called circle of friction of
radius r during contact of the shaft journal of radius R and the bearing shell on
the assumption that the radius of the bearing shell is slightly larger than R and was
omitted in Fig. 2.37.

Let us assume that the shaft journal is loaded with a couple of moment M and a
force F. The action of the moment causes the displacement of the point of contact
A between the journal and the bearing shell upward, i.e., we are dealing with the
phenomenon of shaft climbing.
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Fig. 2.37 Contact of a
journal (rotor) with a bearing
shell (plain bearing) with
radii and forces marked

Let us consider the idealized case where there is no dependency of the friction
force on the speed and no bearing lubrication; the rolling resistance can be
neglected.

Because the shaft journal is in equilibrium under the action of the active force F
and the couple moment M and we are dealing with a plane force system, it can be
balanced with only one force (reaction) FR, which is equal to �F and is attached
at point A. Then the value of the main vector of force is equal to F R � F D 0.
Moreover, the moment coming from the couple (F;FR) should be balanced with the
moment coming from the pair of active forces M, that is

F R.R sin / D M;

which leads to the relation

M D FR sin :

This means that the magnitudes of M and F are related by the formula above
through the angle  , i.e., the angle between the normal to the contact surface of the
journal and the bearing shell and the reaction FR. If the magnitude of moment M is
increased, for the boundary case defined by the angle of friction ' the equilibrium
will be lost and the journal will start to rotate, sliding on the surface of the bearing
shell.

In other words, the static equilibrium condition of the shaft journal is described
by the following inequality:

M 	 FR sin ';

where  	 '.
DenotingR sin' D r we will introduce the notion of a friction circle of radius r

and the center at point O (center of shaft journal). From Fig. 2.37 it follows that
static equilibrium takes place when the reaction FR crosses the friction circle and in
the boundary case is tangent to it. ut
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2.9 Friction and Relative Motion

As was mentioned earlier in Sect. 2.8 (see description of cone of friction), in fact, the
friction belongs to phenomena that should be modeled in three-dimensional space
(3D). Moreover, in reality we are dealing with friction during the impact of two
bodies treated as solids, and these two phenomena of mechanics are closely related
to one another. The description of the rolling of two bodies is more connected
with two-dimensional modeling. In the present section we will limit ourselves
to the modeling of friction as a one-dimensional phenomenon, indicating certain
mathematical difficulties already at this stage of elementary modeling. However, it
should be emphasized that from a formal point of view, reduction of the friction
phenomenon to a one-dimensional problem is justified only for “small” rotational
motions of the body and in cases where it might be possible to separate the
translational motion of the contacting bodies from their rotational motion.

The models of kinetic friction can be represented by the dependencies of the
friction force on relative velocity (static version) or described by the first-order
differential (dynamic version).

The dynamic version of friction modeling attempts to incorporate the results
obtained during tribological research and allows for, e.g., an explanation of the so-
called small displacements just before onset of sliding, which are observable for
small speeds of motion.

We will now present some examples to show how the relative motion of bodies
in contact with one another with friction may even lead to a paradoxical behavior.

1. Supply of energy by means of friction.

Let us consider the case of a rigid body lying on a stationary base, as was already
discussed in Sect. 2.8, and subjected to the action of force F (Fig. 2.38).

Let the transfer of a force interaction to a block of weightm take place by means
of a massless spring of stiffness k one of whose ends (point A) moves with speed
vA. The motion of point A causes an increase in force F acting on the block. After
attaining the value kx0

S D FS , the block will start to slide with respect to the
stationary base in the fixed (environment) coordinate system OX . It turns out that

Fig. 2.38 Action of a force F on a block: directly (a) and through a spring (b)
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Fig. 2.39 A body of mass m
lying on a conveyor moving
at constant speed vb

in many cases upon onset of motion after “breaking away” the static friction the
sudden “forward jump” of the block follows. This phenomenon can be explained
through the so-called decreasing part of the Coulomb friction versus the relative
velocity of the moving bodies.

The analyzed system from Fig. 2.38b is analogous to the system depicted in
Fig. 2.39, where the block lies on a belt moving at speed vb and the spring in the
static equilibrium position is compressed.

The equation of motion of a block (Fig. 2.39) in a fixed coordinate system reads

m Rx D �kx C T .w/; (2.67)

where
w D vb � Px (2.68)

denotes the relative velocity. In the case of static equilibrium Px D Rx D 0 and
from (2.67) we obtain

kxst D T .vb/: (2.69)

In the coordinate system connected to the point of the static equilibrium position of
the block Px D Rx D 0 we have

m R� D �k.xst C �/C T .vb � P�/; (2.70)

where

x D xst C �;

Px D P�;
w D vb � Px D vb � P�: (2.71)

Taking into account (2.69), (2.71) yields

m R� C k� D T .vb � P�/� T .vb/ � Q. P�/; (2.72)

and it can be seen that the friction force T .vb/ carries the static deflection of the
spring.
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Fig. 2.40 Characteristic of friction T .w/

Fig. 2.41 A force in a spring F.x/ with so-called clearance interval marked: h�T0=k; T0=ki for
w D 0

In both considered cases the vibrations of the block are observed and the only
known way to explain this phenomenon thus far is by adoption of the so-called
decreasing characteristic T .w/, assumed here to be a linear one (Fig. 2.40).

From the plot it can be seen that for w D 0, i.e., Px D vb , there is no functional
dependency since in the interval h�T0; T0i we have infinitely many points, i.e., there
appears an indeterminability often understood as functional inclusion.

It turns out, however, that the magnitude of friction force T .0/ 2 h�T0; T0i is
determined uniquely by the deflection of the spring on the assumption that R� D 0,
which is schematically shown in Fig. 2.41.

That characteristic does not exactly represent the real block behavior since when
the spring tension reaches kx D T0, we suddenly have w D vb , that is, at that
point (moment) the friction force is equal to T .vb/. As can be seen in Fig. 2.40, the
difference T0 � T .vb/, where T0 D T .0/, is responsible for the appearance of the
experimentally observed jump (acceleration) of the block.

We will now show that the characteristic of friction shown in Fig. 2.40 allows for
the supply of energy to the system from its “reservoir” represented by the constant
velocity vb .
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Fig. 2.42 Plot of a function
Q.v/

From (2.72), after multiplying through by P� D v, we obtain

mPvv C k�v D Q.v/v: (2.73)

The left-hand side of (2.73) can be cast in the form

d

dt
.Ek C V / D d

dt



mv2

2
C k�2

2

�
D mvPv C k�v; (2.74)

where Ek; V denotes kinetic and potential energy, respectively. After taking into
account (2.74), (2.73) will assume the following form:

dE

dt
D Q.v/v; (2.75)

where E is the total energy of the considered one-degree-of-freedom system.
The functionQ.v/ is presented in Fig. 2.42.
From (2.75) and Fig. 2.42 it follows that in certain ranges we have Q.v/v > 0,

and in the other Q.v/v < 0, that is, the energy is supplied/taken away to/from the
system, which was the subject of a detailed analysis of the works [31, 36].

2. Coulomb friction as a force exciting the motion of a rigid body.

Let us consider a one-dimensional problem, where a flat steel slat lies on two cylin-
ders rotating in opposite directions (Fig. 2.43a) and the dependency of coefficient of
friction on speed �. Px/ has the form shown in Fig. 2.43b.

The equation of motion of the slat reads

m Rx D TA � TB; (2.76)
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Fig. 2.43 A slat situated on two rotating cylinders (a) and a dependency �. Px/ (b)

where

TA D �NA; TB D �NB:

The equations of moments of forces about points A and B allow for the
determination of the unknown normal reactions

NA D .a � x/mg

2a
; NB D .a C x/mg

2a
:

From the equation of motion we obtain

m Rx D �mg

2a
Œa � x � .aC x/�;

or

Rx C �g

a
x D 0:

This means that the system vibrates harmonically with frequency ˛ D p
�ga�1.

The equation obtained is often used to determine the coefficient of friction experi-
mentally.

The careful reader may be somewhat confused by having the Coulomb friction
presented in two different forms as in Figs. 2.40 and 2.43. In the first case it is easy
to observe the self-excited vibration caused by friction, e.g., if one spreads a rosin
film on the rubbing surfaces or plays on a string instrument. In the second case we
are dealing with typical dry friction.

3. Coulomb friction playing the role of viscous damping.

Let a particle of mass m move in a plane at speed v (Fig. 2.44).
The velocity of particle v was resolved into two components:

v D vx1E1 C vx2E2I



2.9 Friction and Relative Motion 95

Fig. 2.44 Motion of a
particle in plane OX1X2

the motion of the particle has two degrees of freedom and is described by two
equations:

m Rx1 D �Tx1;
m Rx2 D �Tx2;

where
vx1
v

D Tx1
T

D sin˛;
vx2
v

D Tx2
T

D cos˛:

From the relationships above it follows that

Tx1 D T˛; Tx2 D T;

on the assumption that ˛ is a small angle; this means sin ˛ � tan˛ � ˛, cos˛ � 1.
This means that the particle moves at a high speed in the direction of the vertical

axis and a low speed in the direction of the horizontal axis. In the considered case,
the equations of motion assume the following form:

m Rx1 D �T˛ D �T vx1
v

D �T vx1
vx2

D �cvx1 D �c Px1;

m Rx2 D �T:

Assuming that only the component vx1 of vector v is changed (keeping vx2
constant), one may introduce a resistant coefficient c D T=vx2 . The resistant force
in the directionOX1 depends on the velocity vx1 , and coefficient c is called a viscous
damping coefficient.
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2.10 Friction of Strings Wrapped Around a Cylinder

Let us consider a string (rope) wrapped around a cylinder of circular cross section
(Fig. 2.45).

Let the cylinder and string have a rough surface. The weight of the string is
negligible.

It follows from Fig. 2.45a that string ends are loaded by the forces Fa (active
force) and Fp (passive force). Assume that force Fa achieved its critical value, i.e.,
infinitely small increase yields the string displacement coinciding with the Fa sense.
Beginning from that time instant we are dealing with the so-called developed friction
between the string and the cylinder.

Let us consider an element of the string defined by the angle d' (Fig. 2.45a).
After performing the projection of forces onto the axes of the adopted coordinate
system (Fig. 2.45b), we obtain

.F C dF / cos
d'

2
� F cos

d'

2
� dT D 0;

dN � .F C dF / sin
d'

2
� F sin

d'

2
D 0; (2.77)

where T denotes the friction between belt and cylinder. After assuming sin d'
2

Š d'
2

,

cos d'
2

Š 1 we have

dF � dT D 0;

dN � F d' D 0: (2.78)

Fig. 2.45 Active (Fa) and passive (Fp) force acting on a string (a) and the computational
scheme (b)
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In what follows we take for F D Fp .' D 0/ and F D Fa .' D '0/ Because
we are dealing with the fully developed friction T D �N , from the considerations
above we will obtain

FaZ

Fp

dF

F
D �

'0Z

0

d'; (2.79)

that is,

lnFa � lnFp D �'0; (2.80)

where Fa > Fp (meaning Fa overcomes friction resistance).
From the preceding equation we obtain the so-called Euler’s belt formula of the

form

Fa D Fpe
�'0 : (2.81)

From (2.81) it follows that force Fa (active) balancing the action of force Fp

(passive), e.g., the weight hung at the end of the rope, does not depend on the radius
of the cylinder on which it is pulled. For instance, assuming � D 0:1 .0:2/ and the
angle '0 D �

2
we obtain from the formula (2.81) the magnitude of active force Fa

equal to 2:19Fp .4:76Fp/.
Observe that (2.81) can be interpreted in the following way. If the active force Fa

is going to keep only the weight G in equilibrium (i.e., its infinitely small decrease
pushes the string displacement in the direction coinciding with the sense of vector
G), then the friction resistances help this force, and in this case this force value is
found from the equation Fa D Fpe

��'0 .
We are dealing with a slightly different problem in the case of application

of Euler’s formula to conveyor systems with belts wrapped around the rotating
drums, where transported material such as coal can be placed on the belt. It is
desirable, then, to determine the maximum moment carried by the drum without
slipping of the belt with respect to the drum. The friction of the strings is applied
in belt transmissions because at the slight preliminary tension of the belt (Fp) the
transmission even for a small angle of contact can carry significant torques.

We will show now a method to derive Euler’s belt formula, which is different
from that presented so far [37]. The considered contact of the drum with the rope
can be approximated by means of the broken line shown in Fig. 2.46.

Let us cut out an element OAm�1AmAmC1 from the drum and consider the
equilibrium of the rope lying on �OAm�1AmAmC1, shown in Fig. 2.47. In the case
depicted in Fig. 2.47a the problem cannot be solved. After neglecting the forces of
friction between the rope and the drum in sections Am�1Am and AmAmC1, the rope
reaction will reduce to its reaction FR caused by friction at the point Am. However,
at that point we do not know the direction of reaction because we do not know the
direction of the normal to the surface at the contact point Am (singular point) and
FR D N C T. Therefore, we cannot apply the three-forces theorem to the forces
Fp;Fa, and FR in order to determine Fa. In this case we will treat the force Fa as a
force needed to keep the passive force Fp, that is, jFaj < jFpj. In order to avoid the
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Fig. 2.46 Approximation
of a rope by a broken line

Fig. 2.47 A rope and reactions in a statically indeterminate case (a), a statically determinate case
(b), and a force polygon (c)

singularity at the point Am we can introduce the assumption of a high resistance to
the bending of the rope and consequently assume that the rope will take the shape
depicted in Fig. 2.47b around point Am. Now we know the direction of the normal
N, being perpendicular to Am�1Am, which enables us to construct the force polygon
as shown in Fig. 2.47c.

Introducing the Cartesian coordinate system AmX1X2 (Fig. 2.47b), after projec-
tion of the force vectors we obtain

Fp � T D Fa cos˛; N D Fa sin ˛: (2.82)

Considering the boundary case of fully developed friction we have T D �N . For
a large number of sectionsM the angle ˛ is small, and therefore we can assume that

sin˛ Š ˛; cos˛ Š 1: (2.83)
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Consequently, from (2.82) we obtain

Fp D Fa.cos˛ C � sin ˛/ D Fa.1C �˛/: (2.84)

We will apply the equation just obtained several times to the polygon constructed
fromM sections.

From Fig. 2.47 it follows that

F .m�1/
a D F .m/

a .1C �˛/ D Fa.1C �˛/;

F .m�2/
a D F .m�1/

a .1C �˛/ D Fa.1C �˛/2;

F .m�k/
a D F .m�k�1/

a .1C �˛/ D Fa.1C �˛/k;

: : :

F .1/
a D Fa.1C �˛/ D Fa.1C �˛/M�1;

F .0/
a D Fp D F .1/

a .1C �˛/ D Fa.1C �˛/M : (2.85)

Because ' D M˛, from the last equation of (2.85) we obtain

Fp D Fa.1C �˛/M D Fa

�
1C �

'

M

	M
: (2.86)

Moving to the exact approximation of a circle with linear sections, i.e., forM !
1, from (2.86) we obtain Euler’s formula:

Fp D Fa lim
M!1

�
1C �

'

M

	M D Fae
�'; (2.87)

where e is the base of a natural logarithm.
From (2.87) we obtain Fa D Fpe

��' , which means that to support, for example,
the weight G D Fp hung at one end of the rope, one must use the force of Fpe

��' ,
which is smaller than the magnitude of the weight G. The situation will change if
we want to pull the weight G D Fp over the drum with friction. Then one should
use the force of magnitudeGe�' . ut
Example 2.11. Find the relationship between forces G and F in an equilibrium
position for the braking system depicted in Fig. 2.48.

The massless rope is wrapped around a cylinder of radius r and pulled through
massless pulleys 1 and 2 of negligible radii. The cylinder is connected to the braking
drum of radiusR, which is wrapped around by the braking belt attached to leverAB .
The coefficient of friction on the braking drum is equal to �.

After releasing from constraints we obtain two subsystems shown in Fig. 2.49.
Let us formulate the equilibrium condition for the lever writing the equation of

moments about pointO3. Pulley 2 will be in equilibrium if Q1CQ2 D Fi and for the
equation of moments aboutO3 the vertical component of Fi , equal toQ1CQ2 cos',
is needed. The aforementioned equation of moments reads

F l C Faa1 D .Q1 CQ2 cos'/l1 C Fpa2:
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Fig. 2.48 A braking mechanism

Fig. 2.49 Computational schemes

Because Q1 D Q2 D G, the equation of moments about point O3 gives

Gr C FpR D FaR:

The relationship between forces Fa and Fp is defined by Euler’s formula:

Fa D Fpe
��:

From the preceding equation we have

Gr D FpR.e
�� � 1/;
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that is,

Fp D Gr

.e�� � 1/R
:

Coming back to the equation with force F we obtain

F D G

l

�
r.a2 � a1e��/
R.e�� � 1/ C.1Ccos'/l1

�
: ut

2.11 Friction Models

2.11.1 Introduction

The aim of the present section is not an in-depth description of a friction phe-
nomenon but only an emphasis on its complexity and a presentation of its
engineering models. As has already been mentioned, the model of sliding friction
T D �N allows us to determine this force during macroscopic sliding of one of
the analyzed surfaces on the other. In the general case the coefficient of friction
depends on the contact pressure p (normal force N ), the relative speed of sliding
vr , and temperature of the contact area � , i.e., it is a function of the form

� D �.p; vr ; �/: (2.88)

In [38] many investigations of the dry friction phenomenon were conducted and
computational methods serving to estimate this friction were proposed. In the cited
works there are references to results of experimental investigations on the depen-
dency of the friction coefficient on the speed of slippage. Various characteristics
of that dependency were found, including the minimal and maximal values and
with a monotonal decrease in value, as well as characteristics displaying a constant
coefficient of friction for varying slip speed (Fig. 2.50).

Most frequently during the analyses the linear models of friction are used, which
corresponds to a straight line 1 in Fig. 2.50.

The behavior of friction in the case of lubricated surfaces as a function of
slip speed and in the case of stationary conditions is best described by friction
characteristics called the Stribeck6 curve. For low slip speeds, the friction force
depends mainly on mechanical, structural, and physiochemical material properties
of the rubbing surfaces (dry friction). For moderate slip speeds oil wedges form, and
the resistance of a hybrid (fluid and dry) friction decreases. With further increases
in slip speed complete separation of the rubbing surfaces takes place. Then only the
fluid friction exists whose magnitude increases with increasing speed.

6Richard Stribeck (1861–1950), German engineer working mainly in Dresden, Köln, and Stuttgart.
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Fig. 2.50 Certain models of friction forces encountered in the literature

The Stribeck curve (curve 4 in Fig. 2.50) was used, for instance, in [32].
Simplified Stribeck curves (3 and 9 in Fig. 2.50) were the objects of analysis in
[39]. The models of friction force represented by curves 2, 5, 6, 7, 8, and 10 were
described among others in [36, 40]. In [33], in the numerical investigations of the
dynamics of wheeled vehicles, the model of the Magnum type brake was used.
This model relies on friction between road surface and tire. It pictures the mutual
relations between the forces of adhesive friction (forces of adhesion), Coulomb
friction, and viscous friction and the slip speed of the wheel, which are graphically
represented by the Stribeck curve. For some road surfaces the modeling of friction
with curve 7 (Fig. 2.50) is recommended.

The dependency describing curve 4 according to [41] possesses the following
form:

� D sgn.vr /
��
aC bjvr j

�
exp .�cjvr j/C d

	
; (2.89)

and the dependency approximated by curve 7 [42] is expressed by

� D sgn.vr /



f0 � fmin

1C cjvr j C fmin

�
; (2.90)

where a; b; c; d; f0; fmin are constant parameters.
The Stribeck curve [43] (Fig. 2.51) attains its minimum at vr D vmin, and for

vr < vmin a characteristic drop in value of the coefficient of friction can be observed.
Starting from the classical works of Coulomb there has been much attention

devoted to the problem of friction, which was treated as a classical process within
the framework of Coulomb hypotheses and as a complex process involving wear
and heat exchange between rubbing bodies [35]. Problems connected to one-
dimensional Coulomb friction and the chaotic dynamics of simple mechanical
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Fig. 2.51 A plot of the
coefficient of kinetic friction
against the relative speed of
rubbing bodies

systems are also described in monographs [32] and [34], where an extensive
literature on the topic was presented. However, the latest works of Contensou [44]
and Zhuravlev [45, 46] point to the fact that the classical Coulomb model seen
through the motion of contacting bodies in space can explain, to a large extent,
many phenomena encountered in everyday life and in engineering associated with
friction.

Let an arbitrary rigid body be in contact with another fixed body (a base), and
the contact between the bodies takes place at a point or over a circular patch of a
very small radius. The rigid body moving on the base has five degrees of freedom,
and its dynamics is described by the translational motion of the mass center (vector
v) and the rotational motion about the mass center (vector !). As we will show
below, the friction model from the perspective of simultaneous translational and
rotational motion of a rigid body allows for the explanation of many phenomena,
and especially allows for the elimination of the classical, often incorrect, results
associated with the interpretation of motion of a rigid body as a combination of
translational and rotational motion on the assumption that translational friction T
(treated as a force of resistance to translational motion) and torsional friction MT

(treated as a moment of resistance to rotational motion) are seen as independent
of each other. In the presented model further called CCZ (Coulomb–Contensou–
Zhuravlev) T D T .v; !/, MT D MT .v; !/, and at the point v D ! D 0 functions
T and MT do not possess a limit. The introduction of even a very small quantity
! in the case T .v; !/ and a very small quantity v in the case MT .v; !/ (which is
close to real phenomena) leads, in many cases, to the elimination of non-holonomic
constraints, which complicate many problems of classical mechanics.
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Fig. 2.52 Circular contact of rigid body and fixed plane (a) and velocity of an arbitrary point A of
body contact patch (b)

2.11.2 A Modified Model of Coulomb Friction (CCZ Model)

In Fig. 2.52a the contact of a body with a fixed surface is shown, whereas Fig. 2.52b
shows a body contact patch of circular shape in the neighborhood of pointO .

The starting point for the construction of the CCZ model is the application of
Coulomb’s law. It is assumed that the differential of an elementary friction force
dT and elementary friction moment dMT is directed against the relative motion at
point A according to the equations

dMT D ���.�/� � vA
jvAj dS; dT D ���.�/ vA

jvAjdS; (2.91)

where vA is the velocity of sliding at point A, that is, vA D v C! � r (Fig. 2.52a),
.	; 
/ are polar coordinates of point A (Fig. 2.52b), � .	/dS is a normal force
dependent on the radius 	 describing the distance of point A from point O , and
the elementary surface is equal to dS D 	d	d
.

In the adopted Cartesian coordinate system OX1X2 the velocity of point A is
equal to

vA D .v � !	 sin
/E1 C !	 cos
E2: (2.92)

In the general case a moment of force is calculated from the formula

M D � � F D
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
	1 	2 	3
F1 F2 F3

ˇ̌
ˇ̌
ˇ̌

D E1.	2F3 � 	3F2/ � E2.	1F3 � 	3F1/C E3.	1F2 � 	2F1/; (2.93)
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and hence, in the considered case, the differential of the friction moment is equal to

dMT D E3.	2dT1 � 	1dT2/: (2.94)

According to (2.91) and (2.92) we have

dT1 D ���.	/
vA

.v � !	 sin 
/	d	d
;

dT2 D ���.	/
vA

!	 cos
	d	d
;

vA D jvAj D
p

v2 � 2v!	 sin 
 C !2	2; (2.95)

and in view of that

dMT D ��.	/

vA
.!	2 � v	 sin
/	d	d
: (2.96)

We obtain the desired friction force T and friction moment MT by means of
integration of (2.91) and (2.96), and they are equal to

T D ��E1

RZ

0

2�Z

0

.v � !	 sin 
/�.	/	d	d
p
v2 � 2v!	 sin 
 C !2	2

��E2

RZ

0

2�Z

0

!	 cos
�.	/	d	d

p

v2 � 2v!	 sin 
 C !2	2
;

MT D ��E3

RZ

0

2�Z

0

.!	2 � v	 sin 
/�.	/	d	d

p

v2 � 2v!	 sin 
 C !2	2
; (2.97)

where in the considered case the second term of friction force in the first equation is
equal to zero.

After the introduction of new variables 	� D 	

R
and u D !R, where R is the

radius of the circular contact patch between the bodies, (2.97) assume the following
scalar form:

T D �R2
1Z

0

	��.	�/
2�Z

0

.v � u	� sin 
/d	�d

p

u2	�2 � 2uv	� sin 
 C v2
;

M D �R3
1Z

0

	��.	�/
2�Z

0

.u	�2 � v	� sin 
/d	�d
p
u2	�2 � 2uv	� sin
 C v2

: (2.98)
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It is well worth it to return to Fig. 2.52a and discuss the choice of the pole
(point O) about which the reduction of the friction force and friction moment were
carried out. In the general case, for the aforementioned choice of the reduction
pole, integrals (2.98) cannot be expressed in terms of elementary functions but
only in terms of elliptic integrals, which is inconvenient during the calculations.
However, it turns out that physical observations associated with the kinematics and
statics of the problem allow for (by the proper choice of the pole) the reduction
of the problem to integrals expressed in terms of elementary functions. As will be
presented, these integrals in the considered cases are expressed by simple analytical
functions. An arbitrary choice of the reduction pole leads to the necessity of taking
the force and moment of friction into account. However, it is possible to choose the
pole at the point that is an instantaneous center of rotation (this case will be given
a detailed treatment subsequently) and then, even though we are also dealing with
the force and moment of friction, integrals (2.98) assume the form of elementary
integrals. One can also choose the point of reduction such that the moment arm of
friction force is equal to zero. Because in the general case M D M.�; !/, let us
choose the reduction point such thatM.�; 0/ D 0. The physical interpretation of the
pole like that coincides with the notion of mass center of the contact patch, where the
role of mass is played by the normal stress � D �.x1; x2/ in the coordinate system
rigidly connected to the contact surface. This point is defined by two algebraic
equations:

“

D

xi�.x1; x2/dx1dx2 D 0; i D 1; 2; (2.99)

whereD is the area of contact of the bodies.
In the general case, (2.98) in the Cartesian coordinate system assume the form

T1 D ��R2
“

D

�.x1; x2/.v � ux2/dx1dx2q
.x21 C x22/u

2 C v2 � 2uvx2
;

T2 D ��R2
“

D

�.x1; x2/ux1dx1dx2q
.x21 C x22/u

2 C v2 � 2uvx2
;

M D ��R3
“

D

�.x1; x2/Œ.x
2
1 C x22/u � vx2�dx1dx2q

.x21 C x22/u
2 C v2 � 2uvx2

; (2.100)

where the designation u D !R was preserved.
As was emphasized earlier, in the case where region D is symmetrical with

respect to the pole (e.g., a disc), the problem is two-dimensional since T D T .u; v/
andM D M.u; v/, and T2 D 0. However, in the general case (for non-symmetrical
regions), we have at our disposal three (2.100) and three kinematic quantities u, v1,
and v2, that is, T D T .u; v1; v2/ and M D M.u; v1; v2/. Let us recall that earlier
for the case of the circular contact patch we chose the axis of Cartesian coordinates
as parallel to the velocity v.
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Fig. 2.53 A circular contact in the case of coordinates .r; �/ (a) and distributions of the velocity
field of selected points of the contact patch (b)

Our next aim will be to determine the force and moment of friction in simple
cases of symmetrical patches of contact between bodies. To this end we explore the
following two cases, known from the literature, of contact stresses [47]:

(i) Circular contact patch of a disc with a plane, where the dependency of stress on
the radius 	 is governed by the equation

�.	/ D 3N

2�R2
q
1 � �

	

R

�2 I (2.101)

(ii) Hertzian point contact, where

�.	/ D
3N

q
1 � �

	

R

�2

2�R2
: (2.102)

In the preceding discussion, N is the normal force pressing the bodies against
each other, R is the radius of the contact patch circle, and 	 D OA (Figs. 2.52
and 2.53).

Case (i)

In order to avoid elliptic integrals we introduce the polar coordinate system .r; �/

shown in Fig. 2.53a.
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PointO 0 is the instantaneous center of rotation, andO 0O D H . In turn, from the
velocity distribution in Fig. 2.53b it follows that in this case the friction component
T2 D 0.

Thus, by definition we have

dT D ���.	/vA cos �

vA
dS; (2.103)

that is,

T D ��
“

D

�.	/ cos � rd�dr: (2.104)

In turn, on the basis of Fig. 2.53a one can formulate the following relationship:

	2 D r2 sin2 � C .H � r cos �/2: (2.105)

From (2.104) and (2.101) we obtain

T D �3N�
2�

“

D

cos � rd�dr

R2

r
1 �

�
r2

R2
sin2 � C H2

R2
� 2H

R
r
R

cos � C r2

R2
cos2 �

	

D �3N�
2�

“

D

�
r
R

�
cos �d�

�
dr
R

�
q
1 � q2 sin2 � � k2 C 2qk cos � � q2 cos2 �

D �3N�
2�

“

D

q cos �d�dq
q
1 � q2 C 2qk cos � � k2 sin2 � � k2 cos2 �

D �3N�
2�

“

D

q cos �d�dq
q

�.q � k cos �/2 C 1 � k2 sin2 �
; (2.106)

where we set q D r
R

and k D H
R

.
The friction moment with respect to pointO 0 is equal to

MO 0

T D HT CMO
T : (2.107)

From (2.107) it follows that by calculatingMO 0

T and withH known it is possible
to determineMO

T .
During the calculation of integral (2.106) one should consider two cases, that is,

one where point O 0 lies outside the circle of radius R (then k > 1), and another
where it lies inside or at the boundary of that circle (then k 	 1). Thus the problem
boils down to the calculation of the following two integrals:
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T D �3N�
4�

�Z

0

cos �d�

q2Z

q1

qdqq
�.q � k cos �/2 C 1� k2 sin2 �

; .k � 1/;

T D �3N�
2�

�1Z

0

cos �d�

q2Z

q1

qdqq
�.q � k cos �/2 C 1� k2 sin2 �

; .k > 1/; (2.108)

where

q1;2 D k cos � �
p
1 � k2 sin2 � ; �1 D arcsin



1

k

�
:

Now, we will show how to calculate integrals (2.108). At first, let us calculate the
indefinite integral

J � D
Z

qdqq
�.q � k cos �/2 C 1 � k2 sin2 �

D
Z

qdqp�q2 C 2qk cos � C 1 � k2 D
Z

qdqp�q2 C 2qaC b
; (2.109)

where a D k cos � , b D 1 � k2. Because the parameters a and b do not depend on
q, in the course of the calculations they can be treated as constants. We successively
have

J � D �1
2

Z �2qdqp�q2 C 2qaC b
D �1

2

Z
.�2q C 2a � 2a/dqp�q2 C 2qaC b

D �1
2

Z
.�2q C 2a/dq
p�q2 C 2qaC b

C a

Z
dq

p�q2 C 2qa C b
: (2.110)

After setting J � D J1 C J2 we have

J1 D �1
2

Z
.�2q C 2a/dqp�q2 C 2qaC b

D �1
2

Z
d.�q2 C 2qa C b/p�q2 C 2qaC b

; (2.111)

and the above integral is calculated with the aid of the substitution t D �q2C
2qaC b. Thus we have

J1 D �1
2

Z
t� 1

2 dt D �1
2

t� 1
2

1
2

D �p
t D �

p
�q2 C 2qa C b: (2.112)

Now as we proceed to calculate the integral

J2 D a

Z
dqp�q2 C 2qaC b

: (2.113)
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We transform the denominator of the preceding expression into the form

p
�q2 C 2qa C b D

q
�.q � k cos �/2 C 1 � k2 sin2 �

D
p

�.q � a/2 C c; (2.114)

where c D 1� k2 sin2 � . Thus we obtain

J2 D a

Z
dq

p
c � .q � a/2 D a

Z
d.q � a/

q�p
c
�2 � .q � a/2

D a

Z
dz

q�p
c
�2 � z2

D a arcsin
zp
c

D a arcsin
q � ap
c
: (2.115)

According to (2.110) we obtain

J � D J1 C J2 D �
p

�q2 C 2qaC b C a arcsin
q � ap
c
: (2.116)

Eventually, we obtain the desired definite integral

J �
0 D

q2Z

q1

qdqq
�.q � k cos �/2 C 1 � k2 sin2 �

D J �
ˇ̌
ˇ
q2

q1
;

where q1;2 D a � p
c. We have then

J �
0 D �

q
�q22 C 2q2a C b C arcsin

q2 � ap
c

C
q

�q21 C 2q1aC b

� arcsin
q1 � ap

c
D �

q
�a2 � 2ap

c � c C 2a2 C 2a
p
c C b

C a arcsin
a C p

c � ap
c

C
q

�a2 C 2a
p
c � c C 2a2 � 2ap

c C b

� a arcsin
a � p

c � ap
c

D �
p
a2 C b � c C a arcsin.1/

C
p
a2 C b � c � a arcsin.�1/ D a

�

2
� a

�
��
2

	
D �a: (2.117)

The desired definite integral is equal to

q2Z

q1

qdq
q

�.q � k cos �/2 C 1 � k2 sin2 �
D �k cos �: (2.118)
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Eventually, the unknown indefinite integral reads

J D
Z
�k cos � cos �d� D �k

Z
cos2 �d�

D �k

2

Z
.1C cos 2�/d� D �k

2
� C �k

4
sin 2�; (2.119)

and its corresponding definite form is

J
.1/
0 D

�Z

0

cos �d�

q2Z

q1

qdqq
�.q � k cos �/2 C 1 � k2 sin2 �

D
�
�k

2
� C �k

4
sin 2�

��

0

D �2k

2
: (2.120)

The following integral remains to be calculated:

J
.2/
0 D

�1Z

0

cos �d�

q2Z

q1

qdqq
�.q � k cos �/2 C 1 � k2 sin2 �

D
�
�k

2
� C �k

4
sin 2�

��1

0

D �k

2
�1 C �k

4
sin 2�1: (2.121)

Since

�1 D arcsin



1

k

�
; (2.122)

we have

sin 2�1 D 2 sin �1 cos �1 D 2 sin �1

q
1 � sin2 �1

D 2 sin



arcsin



1

k

��s

1 � sin2



arcsin



1

k

��

D 2

k

r
1 � 1

k2
D 2

p
k2 � 1

k2
; (2.123)

and finally

J
.2/
0 D �k

2
arcsin



1

k

�
C �

p
k2 � 1

2k
: (2.124)

After taking into account the results of the calculations above in (2.108) we
obtain
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T D �3N�
2�

8
ˆ̂̂
<

ˆ̂̂
:

�2k

4
; k 	 1;

�k

2
arcsin



1

k

�
C �

2k

p
k2 � 1; k > 1:

(2.125)

Case (ii)

In this case the problem boils down to the calculation of the friction force by means
of the following definite integrals:

T D �3N�
2�

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

1

2

�Z

0

cos �d�

q2Z

q1

q
�.q � k cos �/2 C 1 � k2 sin2 � qdq;

�1Z

0

cos �d�

q2Z

q1

q
�.q � k cos �/2 C 1� k2 sin2 � qdq;

(2.126)

where further we adopt designations analogous to case (i), that is, q1;2 D k cos ��p
1 � k2 sin2 � , �1 D arcsin

�
1
k

�
.

At first, we calculate the indefinite integral

J D
Z p

�q2 C 2qa C b qdq D �1
2

Z p
�q2 C 2qaC b .�2q/dq

D �1
2

Z p
�q2 C 2qaC b .�2q C 2a � 2a/dq: (2.127)

Next, we have

J D J1 C J2; (2.128)

where

J1 D �1
2

Z p
�q2 C 2qa C b .�2q C 2a/dq;

J2 D a

Z p
�q2 C 2qaC b dq: (2.129)

Because

.�2q C 2a/dq D d
��q2 C 2aq

� D d
��q2 C 2aq C b

�
;

we have

J1 D �1
2

Z ��q2 C 2aq C b
� 1
2 d
��q2 C 2aq C b

�
: (2.130)
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In turn, after introducing the substitution

t D �q2 C 2aq C b; (2.131)

we obtain

J1 D �1
2

Z
t
1
2 dt D �1

2

t
1
2C1

�
1
2

C 1
� D �3t 32 ; (2.132)

that is, eventually we have

J1 D �3
�p

�q2 C 2aq C b
	3
: (2.133)

We calculate the integral J2 by parts:

J2 D a

�
q
p

�q2 C 2aq C b �
Z
qd
�p

�q2 C 2aq C b
	�

D a

 
q
p

�q2 C 2aq C b �
Z

q.�2q C 2a/dq

2
p�q2 C 2aq C b

!

D a

 
q
p

�q2 C 2aq C b C
Z

q2dqp�q2 C 2aq C b
� a

Z
qdqp�q2 C 2aq C b

!

D a
�
q
p

�q2 C 2aq C b C J3 � aJ4

	
; (2.134)

where

J3 D
Z

q2dqp�q2 C 2aq C b
;

J4 D qdq
p�q2 C 2aq C b

: (2.135)

According to (2.109) J4 D J �, that is,

J4 D �
p

�q2 C 2aq C b C arcsin
q � ap
c
; (2.136)

where c D 1� k2 sin2 � .
In the case of the integral J3 we have

J3 D �
Z �q2dq
p�q2 C 2aq C b

D �
Z
.�q2 C 2qaC b � 2qa � b/dq

p�q2 C 2aq C b
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D �
Z
�p

�q2 C 2aq C b
	2

dq
p

�q2 C 2aq C b
C 2a

Z
qdqp

�q2 C 2aq C b

Cb
Z

dqp
�q2 C 2aq C b

D �
Z q

�q2 C 2aq C b dq C 2aJ4 C bJ5: (2.137)

From (2.115) it follows that the integral J5 is equal to

J5 D arcsin
q � ap
c
: (2.138)

Let us note that the first integral in (2.137) is equal to � 1
a
J2 [see (2.129)], that

is, (2.137) assumes the form

J3 D �1
a
J2 C 2aJ4 C bJ5; (2.139)

where J2 is given by (2.134).
From (2.134) and after taking into account (2.139) we obtain

J2 D a



q
p

�q2 C 2aq C b � 1

a
J2 C 2aJ4 C bJ5 � aJ4

�
; (2.140)

hence we obtain

J2 D aq

2

p
�q2 C 2aq C b C a2

2
J4 C ab

2
J5: (2.141)

Let us now proceed to the calculation of the definite integral QJ corresponding to
the indefinite integral (2.127). According to the Newton–Leibniz formula we have

QJ D
q2Z

q1

p
�q2 C 2aq C b qdq D .J1 C J2/

ˇ̌
ˇ
q2

q1
D J1

ˇ̌
ˇ
q2

q1
C J2

ˇ̌
ˇ
q2

q1
: (2.142)

We successively calculate

J1

ˇ̌
ˇ
q2

q1
D �3

�p
�q2 C 2aq C b

	3 ˇ̌ˇ̌
q2

q1

D �3
�p

�q2 C 2aq C b
	3 ˇ̌ˇ̌

aCp
c

a�p
c

D �3
"
q

�.a C p
c/2 C 2a.aC p

c/C b

�3

�

q

�.a � p
c/2 C 2a.a � p

c/C b

�3#

D �3
��p

a2 C b � c
	3 �

�p
a2 C b � c

	3� � 0; (2.143)
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J2

ˇ̌
ˇ
q2

q1
D a

2

�
q
p

�q2 C 2aq C b
	 ˇ̌
ˇ̌
q2

q1

C a2

2
J4

ˇ̌
ˇ
q2

q1
C ab

2
J5

ˇ̌
ˇ
q2

q1

D a

2

h
.a C p

c/
p
a2 C b � c � .a � p

c/
p
a2 C b � c

i

C a2

2
J4

ˇ̌
ˇ
q2

q1
C ab

2
J5

ˇ̌
ˇ
q2

q1
: (2.144)

The definite integral J4
ˇ̌
ˇ
q2

q1
[see (2.136)] has already been obtained [see (2.117)]

and is equal to

J4

ˇ̌
ˇ
q2

q1
D �a; (2.145)

and the integral J5
ˇ̌
ˇ
q2

q1
[see (2.138)] has been also calculated earlier (see (2.117)) and

reads

J5

ˇ̌
ˇ
q2

q1
D �: (2.146)

From (2.144) and after taking into account (2.145) and (2.146) we obtain

J2

ˇ̌
ˇ
q2

q1
D a

p
c
p
a2 C b � c C �

2
a3 C ab�

2
: (2.147)

Returning to the original notation we have

p
a2 C b � c D

q
k2 cos2 � C 1 � k2 � �

1 � k2 sin2 �
�
;

�

2
a3 D �k3

2
cos3 �;

ab�

2
D �

2

�
1 � k2

�
k cos �; (2.148)

and in view of that

J2

ˇ̌
ˇ
q2

q1
D �k3

2
cos3 � C �

2
.1 � k2/k cos �:

The problem then boils down to the calculation of the integral

Z
QJ cos �d� D �k3

2

Z
cos4 �d� C �

2
.1� k2/k

Z
cos2 �d�: (2.149)
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The elementary integrals are calculated in the following way:

Z
cos2 �d� D 1

2

Z
.1C cos 2�/d� D �

2
C 1

4
sin 2�;

Z
cos4 �d� D 1

4

Z
.1C cos 2�/2d�

D 1

4

Z
.1C 2 cos 2� C cos2 2�/d�

D 1

4
� C 1

4
sin 2� C 1

8

Z
.1C cos 4�/d�

D 1

4
� C 1

4
sin 2� C �

8
C 1

32
sin 4�: (2.150)

In order to shorten the notation we calculate the following definite integrals:

�Z

0

cos2 �d� D


�

2
C 1

4
sin 2�

� ˇ̌
ˇ̌
�

0

D �

2
;

�1Z

0

cos2 �d� D


�

2
C 1

2
sin �

p
1 � sin2 �

� ˇ̌
ˇ̌
arcsin 1

k

0

D 1

2
arcsin

1

k
C

p
k2 � 1

2k2
;

�Z

0

cos4 �d� D


3�

8
C 1

4
sin 2� C 1

32
sin 4�

� ˇ̌
ˇ̌
�

0

D 3�

8
;

�1Z

0

cos4 �d� D


3�

8
C 1

2
sin �

p
1 � sin2 �

C1

8
sin �

p
1 � sin2 �.1 � 2 sin2 �/

� ˇ̌
ˇ̌
arcsin 1

k

0

D 3

8
arcsin

1

k
C

p
k2 � 1
2k2

C .k2 � 1/pk2 � 1

8k4

D 3

8
arcsin

1

k
C .5k2 � 2/pk2 � 1

8k4
: (2.151)

From (2.126) we eventually obtain
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T D �3N�
2�

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�Z

0

cos �d�

q2Z

q1

q
�.q � k cos �/2 C 1 � k2 sin2 � qdq

D �2k

16

�
4 � k2

� I .k 	 1/

�1Z

0

cos �d�

q2Z

q1

q
�.q � k cos �/2 C 1 � k2 sin2 � qdq

D �k

16

�
4 � k2� arcsin

1

k
C �

�
2C k2

�p
k2 � 1

16k
I .k > 1/:

(2.152)

Let us now return to the friction model presented in Figs. 2.52 and 2.53. The
friction moment about point O 0 (the instantaneous center of rotation) we obtain by
exploiting (2.106), where additionally the numerator of the integrand is multiplied
by Rr

R
D Rq to obtain

MO 0

T D �NR

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

1

2

�Z

0

d�

q2Z

q1

q2dqq
�.q � k cos �/2 C 1 � k2 sin2 �

; .k 	 1/;

�1Z

0

d�

q2Z

q1

q2dqq
�.q � k cos �/2 C 1 � k2 sin2 �

; .k > 1/:

(2.153)
After using the previous calculations [see (2.135)] we obtain

MO 0

T D �NR

8
ˆ̂<

ˆ̂:

�2.2C k2/

8
; k 	 1;

�2.2C k2/

4
arcsin

1

k
C 3�

4

p
k2 � 1; k > 1:

(2.154)

Our aim is to determine the moment of friction forces with respect to point O ,
which, according to the designations presented in Fig. 2.53a, is equal to

MO 0

T �MO
T �HT D 0; (2.155)

that is,
MO
T D MO 0

T �HT; (2.156)

where the friction force T is given by (2.106).
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Fig. 2.54 Motion of a rigid body on an inclined plane with velocity of rotation .!/ and velocity
of slip .v/ included simultaneously

As an example of the application of the introduced theoretical considerations we
will examine the motion of a disc on an inclined and a horizontal plane.

Let us consider the classical case of motion of a rigid body of mass m and mass
moment of inertia I about the principal centroidal axis of inertia perpendicular to the
surface of contact being inclined at an angle ˇ to the horizontal surface (Fig. 2.54).

The equations of motion of the body have the form

mPv D �T Cmg sinˇ;

I P! D �MT : (2.157)

The calculations will be conducted for the previously considered cases (i) and
(ii) using the Padé approximation.

Let us now return to (2.98). As has already been mentioned, integrals (2.98)
can be expressed in terms of elliptic integrals that can be checked easily, for
instance, by employing the Mathematica software. However, it turns out that
they can be approximated using the Padé approximation after introducing �.r/
described by (2.101) and (2.102), which was demonstrated by Zhuravlev [46]. The
calculations below were conducted using a Mathematica application for symbolic
calculations. Let us apply the simplest form of the Padé approximation

MT Œu; v� D M0

u

u C av
;

T Œu; v� D T0
v

v C bu
; (2.158)

where T0, M0, a, and b require determination.
The quantities T0 andM0 are determined in the following way:

T0 D T Œ0; v�; M0 D MŒu; 0�; (2.159)
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and from (2.98) we find

T0 D �R2
1Z

0

	��.	�/
2�Z

0

d	�d
 D 2��R2
1Z

0

	��.	�/d	�;

M0 D �R3

1Z

0

	��.	�/
2�Z

0

	�d	�d
 D 2��R3

1Z

0

	�2�.	�/d	�: (2.160)

The quantities a and b are obtained after the differentiation of (2.158) and (2.98)
with respect to variables u and v. After adequate differentiation of the equations we
have

@T

@v
Œu; 0� D T0

bu
;

@M

@u
Œ0; v� D M0

av
; (2.161)

and after differentiation of (2.98) we obtain

@T

@v
Œu; 0� D R�

u

1Z

0

�.	�/d	�;

@M

@u
Œ0; v� D �

Rv

1Z

0

	�3�.	�/d	�: (2.162)

After equating (2.161) and (2.162) by sides we obtain the unknown coefficients

a D
2
1R
0

	�2�.	�/d	�

1R

0

	�3�.	�/d	�
; b D

2
1R
0

	��.	�/d	�

1R

0

�.	�/d	�
: (2.163)

The desired coefficients were found using Mathematica.
Equations (2.157), after taking into account the Padé approximation, assume the

form

m
dv

dt
D � T0v

jvj C bu
Cmg sinˇ;

I
du

dt
D � RM0u

juj C av
; (2.164)

where u D R!.
In the case of a contact over the circular patch (case i) R denotes the radius, and

in the case of the point contact R ! 0.
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Following the transformation of (2.164) we obtain

m

T0

dv

dt
D � v

jvj C bu
C mg sinˇ

T0
;

I

RM0

du

dt
D � u

juj C av
: (2.165)

The preceding equations assume the following form:

dv

d�
D � v

jvj C bu
C p;

du

d�
D � eu

juj C av
; (2.166)

where the following substitution for time and two dimensionless parameters were
introduced:

� D T0

m
t; p D mg sinˇ

T0
; e D RM0m

T0I
: (2.167)

For case (i) we assume m D 	0�R
2 (	0 is the surface density) and I D 1

2
mR2,

and from (2.160) and (2.163) we obtain

M0 D 1

4
N�R� D 1

4
�RT0; a D 3�

4
; b D 4

�
;

and for case (ii) we have

M0 D 3

16
N�R� D 3

16
�RT0; a D 15�

16
; b D 8

3�
:

For case (i) e D 2R�RT0m
4T0mR2

D �
2

[for case (ii) we have M0 D 0 because R D 0].
Equations (2.166) for case (i) take the form

dv

d�
D � v�

jvj� C 4u
C p;

du

d�
D � 2�u

4juj C 3�v
; (2.168)

and for case (ii) (2.166) are as follows:

dv

d�
D � 3v�

3jvj� C 8u
C p;

du

d�
D 0: (2.169)
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Fig. 2.55 Graphs of v.ˇ/
and u.ˇ/ dependencies

Let us consider (2.168) in more detail. After dividing these equations by sides
we obtain

dv

du
D Œ.p � 1/v C pbu�.u C av/

eu.v C bu/
; (2.170)

where a D 3�
4

, b D 4
�

.
Mathematica cannot integrate (2.170) directly, although it is possible after the

introduction of adequate substitution for the coordinates. For the case p D 0

(motion of a cylindrical disc on a horizontal surface), (2.170) is integrable by
quadratures.

In the general case the numerical integration of (2.168) is made more difficult
because of singularities of these equations (the denominators may tend to zero or
to infinity). On the example of the case p D 0 we will show how to avoid the
singularities of those equations by applying the substitution of the independent
variable (time) according to the equation

� D
ˇZ

0

.3�v C 4u/.�v C 4u/dˇ: (2.171)

The obtained equations

dv

dˇ
D �v.3�v C 4u/;

du

dˇ
D �2u.�v C 4u/ (2.172)

do not have singularities at the point u D v D 0 and can be easily integrated.
Below some illustrative results are shown.
From Fig. 2.55 it can be seen that u.ˇ/ ! 0, v.ˇ/ ! 0 for ˇ ! 1.

In view of that, according to (2.171) � attains a finite value. For certain finite
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Fig. 2.56 Dependencies u.�/ and v.�/ for the following cases: (a) p D 0; (b) p D 0:5; (c) p D 1;
(d) p D 1:5 for the circular contact

values of �� (which will be shown later with the aid of numerical calculations)
u.��/ D v.��/ D 0. This means that in the case of the applied Padé approximations
both the sliding velocity v and the rotation velocity ! reach zero values at the same
time instant.

In Fig. 2.56 some illustrative graphs of v.�/ and u.�/ for p D 0, p D 0:5, p D 1,
andp D 1:5 are presented. From the qualitative analysis conducted in [46] it follows
that the behavior of the disc differs in a qualitative sense for p < 1 and for p > 1

(the critical case of p D 1).
In all the presented cases identical initial conditions are assumed: v0 D 5, u0 D 4.

The time plots for p D 0 and p D 1:5 do not deviate much from straight lines,
whereas for p D 1:5 we have !.�/ ! 0 and v.�/ ! 1. In the case p D 0:5 it
can be seen that v.�/ and !.�/ attain zero and their graphs are curves. In the critical
case of � ! 1 we have !.�/ ! 0, whereas v.�/ reaches a steady value v�, which
can be easily estimated in an analytical way.

A natural and interesting question arises as to whether the introduction of the
initial condition only for one variable causes the failure of the other variable to
appear. This case is considered in a manner analogous to that of the previously
analyzed example, and we assume respectively v0 D 0, u0 D 0, v D 5.
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Fig. 2.57 Graphs of time characteristics u.�/ and v.�/ for the initial conditions v0 D 0 and u0 D 4

and cases (a) p D 0, (b) p D 0:5, (c) p D 1, (d) p D 1:5

From Fig. 2.57 it follows that during motion on the horizontal plane the disc only
rotates with the rotation becoming gradually slower until it reaches a state of rest
with no contribution from the slip velocity. In the p D 0:5 case the angular velocity
attains zero along the curve, while the sliding velocity initially increases, reaches
the maximum, and decreases to zero. In the critical case p D 1 the velocity !.�/
drops quickly to zero, and the sliding velocity reaches a steady value.

In the case p D 0 .p D 0:5/ the velocity !.�/ ! 0 for �� D 5 .�� D 10/ at
v.�/ D 0. In the critical case p D 1 we have v.�/ D v0, !.�/ D !0, and in the case
p D 1:5 we have v.�/ D 0, while v.�/ ! 1 (Fig. 2.58).

Let us now return to the exact equations of disc motion for the case p D 0, which
have the following form:

(i) The instantaneous center of rotation lies within the contact patch of the disc and
inclined plane .!R 
 v/:

Pv D � ��p0

4	0R3
v

!
;

P! D � ��p0

4	0R3
!2R2 � v2

!2R2
I (2.173)
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Fig. 2.58 Graphs of time characteristics u.�/ and v.�/ for initial conditions v0 D 5 and u0 D 0

and cases (a) p D 0, (b) p D 0:5, (c) p D 1, (d) p D 1:5

(ii) The instantaneous center of rotation lies outside the contact patch of the disc
and inclined plane .!R < v/:

Pv D � �p0

2	0R2

 
v

!R
arcsin

!R

v
C

p
v2 � !2R2

v

!
;

P! D � �p0

2	0R2

 
!2R2 � v2

!2R2
arcsin

!R

v
C

p
v2 � !2R2
!R

!
: (2.174)

Above we have set m D 	0�R
2, I D 1

2
	0�R

4.
In Fig. 2.59 three illustrative results of calculations are shown, where besides v.t/

and !.t/ the graph of !.t/=v.t/ is presented and where (we recall) the position of
the instantaneous center of rotation is described by the equation k D v.t/

!.t/R
D r.t/

R
.

The position of the instantaneous center of rotation for v.t/ ! 0 and !.t/ ! 0

was analyzed in [48].
After dividing (2.173) and (2.174) respectively by sides we obtain

dv

d!
D R

k

2 � k2 ; .k 	 1/; (2.175)
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Fig. 2.59 Time histories of v.t /, !.t/, and !.t/=v.t / for (a) !0 D 25, (b) !0 D 16:666, (c)
!0 D 10

dv

d!
D R

k arcsin
�
1
k

�C
p
k2�1
k

.2 � k2/ arcsin
�
1
k

�C p
k2 � 1 ; .k > 1/: (2.176)

The equation of a tangent to the trajectory of the system has the form v=! D Rk,
and from (2.175) and (2.176) we obtain

k D k

2 � k2
; .k 	 1/;

k D k arcsin
�
1
k

�C
p
k2�1
k

.2 � k2/ arcsin
�
1
k

�C p
k2 � 1

; .k > 1/: (2.177)

The first equation possesses the solution k D 1, while the second one does not
have any solutions.

In the end, let us return to case (ii) and (2.169). Some illustrative calculations for
the point contact are given in Fig. 2.60 for different values of the parameter p. It can
be seen that for p 
 1 the motion changes in a qualitative sense.

As was mentioned, (2.158) at the points u D 0 and v D 0 are singular and
the limits limu;v!0 MT and limu;v!0 T do not exist. After the introduction of the
designationsm D jMT j=M0, n D jT j=T0 (2.158) take the form
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Fig. 2.60 Dependencies u.�/ and v.�/ for the point contact for the cases (a) p D 0, (b) p D 0:5,
(c) p D 1, (d) p D 1:5

m D u

u C av
; n D v

v C bu
: (2.178)

Because, as the numerical calculations showed, u and v tend to zero attaining this
singular point simultaneously, let us introduce the relationship v D ˛u. After taking
into account this relation in (2.178) we obtain

m D u

u C a˛v
; n D ˛u

˛u C bu
: (2.179)

From (2.179) we obtain

m.1C ˛a/ D 1; n



1C b

˛

�
D 1: (2.180)

From the first of (2.180) we calculate

˛ D 1 �m
ma

; (2.181)
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Fig. 2.61 Illustrative graphs of (2.182) for (a) ab D 2, (b) ab D 17=3, (c) ab D 1

and then, from the second one, after taking into account (2.181) we have

mC nŒ1C .ab � 1/m� D 1; (2.182)

and after transformations we obtain

n D 1 �m
.ab � 1/mC 1

:

In Fig. 2.61 the graphs of (2.182) are shown for the cases (a) for ab D 2, (b) for
ab D 17=3, and for ab D 1 as a critical case (c).

From the graphs in Fig. 2.61 follows a very interesting conclusion, which is often
observed in everyday life. In the case where a rigid body is at rest, the action of even
a very small moment MT leads to a rapid drop in magnitude of friction force T ,
which greatly facilitates the start of movement of a body. It is also associated with
the frequently observed dangerous skid during cornering of a wheeled vehicle.

The CCZ model allows one also to pinpoint many characteristics of bodies
moving with frictional contact. We will show that the friction does depend largely
on the area represented by the radius R. To this end let us return to (2.173), which
are solved for two values of R (Fig. 2.62).

When comparing the results presented in Figs. 2.59a and 2.62 it is clear that with
increasing radius R the time needed for the disc to stop increases in a non-linear
fashion. A similar situation can be observed also in the case of !0 D 10 and two
different values of R on the basis of (2.174) (Fig. 2.63).

Let us now analyze the effect of a two-dimensional friction on relative motion
and self-excited vibrations.
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Fig. 2.62 Time histories v.t /, !.t/, and !.t/=v.t / for !0 D 25 and R D 0:35 (a) and R D 0:45

(b) (the remaining parameters as in Fig. 2.58)

Fig. 2.63 Time histories v.t /, !.t/, and !.t/=v.t / for !0 D 10 and R D 0:35 (a) and R D 0:45

(b) (the remaining parameters as in Fig. 2.58)

Fig. 2.64 Motion of disc determined by !.t/ and v.t / for the cases u0 D 1 and v0 D 1:5 (a) and
v0 D 0:5 (b)
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Let us consider the motion of a disc on an inclined plane, where now the motion
takes place on an inclined plane remaining in contact with the moving disc and
running with a constant velocity v0. Equations of motion (2.168) assume the form

dv

d�
D � �.v � v0/

�jv � v0j C 4juj C p;

du

d�
D � 2�u

3�jv � v0j C 4juj : (2.183)

In Fig. 2.64 an example of calculations for the case u0 D 1 and for two different
initial velocities: (a) v0 D 1:5 and (b) v0 D 0:5.

From Fig. 2.64 it is seen that in both cases the velocities !.t/ ! 0 and v.t/ ! 1

attaining these values simultaneously in finite time.
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Chapter 3
Geometry of Masses

3.1 Basic Concepts

Let us consider a system of particles An .n D 1; : : : ; N / of masses mn and radius
vectors rn with respect to a certain adopted coordinate system OX1X2X3 (see also
[1–9]).

We will call the point C whose position is determined by the following radius
vector a mass center C of a system of particles:

rc D

NP
nD1

mnrn

M
; (3.1)

whereM denotes the mass of the system given by the formula

M D
NX

nD1
mn: (3.2)

Multiplying the numerator and denominator of (3.1) by the acceleration of
gravity g the problem boils down to the determination of a center of gravity in a
uniform gravitational field.

Note that the mass center is sometimes called the inertia center.
The previously introduced notion of body mass is a measure of inertia of a body

in translational motion. In rotation of the body about an axis a measure of inertia of
the body is its moment of inertia with respect to that axis.

Above we defined the position of the mass center of a discrete (lumped) system
of particles with respect to the origin of the Cartesian coordinate systemOX1X2X3.

A moment of inertia of a system of particles with respect to a plane  is defined
by the following formula:

I D
NX

nD1
mns

2
n; (3.3)
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where sn denotes the distance of point An from the plane  . It is a scalar quantity
equal to the sum of products of particle mass and the square of its distance to the
plane for each particle.

If as planes we choose those of the Cartesian coordinate system OX1X2X3, the
moment of inertia with respect to those three planes is given by the equations

IOX2X3 D
NX

nD1
mnx

2
1n; IOX1X3 D

NX

nD1
mnx

2
2n;

IOX1X2 D
NX

nD1
mnx

2
3n: (3.4)

It is also possible to define the notion of the moment of inertia of a system of
particles with respect to an axis l , namely:

Il D
NX

nD1
mnd

2
n ; (3.5)

where dn denotes the distance of point An from axis l .
The moment of inertia about axis l we can also represent in the form

Il D Md2; (3.6)

where M (mass of the system) is determined by (3.2) and we will call quantity d a
radius of gyration of a system of particles about an axis l .

The radius of gyration d describes the distance from axis l of a certain point at
which the whole mass M of a system of particles should be concentrated so as to
obtain equality of moments of inertia with respect to axis l of the system and of the
mass M at that point.

We can define the moment of inertia of a system of particles with respect to an
axis as a scalar quantity equal to the sum of products of the mass and square of the
distance from the axis for each particle.

If as axes we choose those of the Cartesian coordinate system, moments of inertia
with respect to those three axes are described by the equations

IX1 D
NX

nD1
mn.x

2
2n C x23n/; IX2 D

NX

nD1
mn.x

2
1n C x23n/;

IX3 D
NX

nD1
mn.x

2
1n C x22n/: (3.7)

The moment of inertia of a system of particles with respect to an arbitrary pole
O , the so-called polar moment of inertia, is given by the formula

IO D
NX

nD1
mnr2n D

NX

nD1
mnr

2
n: (3.8)
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Fig. 3.1 Static moment with respect to the plane  (�n > 0 and �nC1 < 0)

This is a scalar quantity equal to the sum of products of the mass and square of
the distance from the chosen pole for each point of the system of particles.

Observe that

IO D
NX

nD1
mn

�
x21n C x22n C x23n

� D IOX2X3 C IOX1X3 C IOX1X2 ; (3.9)

where (3.8) and (3.7) were used.
In order to investigate the distribution of masses of a discrete system of particles

we can make use of the plane  .
The quantity defined by the following equation we call a static moment of a

system of particles about a plane  (Fig. 3.1):

I S D
NX

nD1
mn�n; (3.10)

where �n are coordinates of pointsAn measured along the chosen axis perpendicular
to the plane (therefore they are positive or negative).

If we are dealing with a continuous system of particles, the symbols of sum used
earlier are replaced by integrals.

If, as in the last case, we consider a continuous body, the transition from the
discrete system of particles to the continuous system is connected with an increase in
the number of particles N ! 1 with the masses of those particles simultaneously
tending to zero, that is,

I S D lim
N!1
�mn!0

NX

nD1
�mn�n D

Z

M

�.x1n; x2n; x3n/dm: (3.11)
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The integral above corresponds to an infinite sum of the products of elementary
points An.x1n; x2n; x3n/ and their coordinates with respect to the mentioned plane.

The distance � (with plus or minus sign) is a function of the position of point A,
which was emphasized in (3.11).

The following integral we call the geometric static moment of the volume with
respect to a plane  of a continuous system (a solid):

I SG D
Z

V

�.A/dV; (3.12)

where V denotes the volume of a solid. It represents a distribution of the volume of
the solid with respect to the plane  .

Let us note that dm D 	dV and from (3.11) we obtain

I S D
Z

V

	.A/�.A/dV: (3.13)

The quantities 	 and � depend on the position of point A, that is, on the position
of a particle of elementary mass dm.

If the solid body under consideration is homogeneous, that is, 	.A/ � 	 D const,
then from (3.12) and (3.13) we obtain the relationship between the first moment of
mass and the first moment of the volume (geometric first moment) of the form

IS D 	IG : (3.14)

During our discussions regarding the kinematics of a rigid body we have often
used the Cartesian coordinate system OX1X2X3. Coordinates of this system are
determined by the intersection of three planes, OX1X2, OX2X3, and OX1X3. The
first moments of a discrete system of particles (DMS) and a continuous one (CMS)
with respect to the aforementioned planes are equal to

I SOX1X2 D PN
nD1 mnx3n;

I SOX1X3 D PN
nD1 mnx2n;

I SOX2X3 D PN
nD1 mnx1n; (3.15)

I SOX1X2 D
Z

M

x3dm D
Z

V

x3	.x1; x2; x3/dV;

I SOX1X3 D
Z

M

x2dm D
Z

V

x2	.x1; x2; x3/dV;

I SOX2X3 D
Z

M

x1dm D
Z

V

x1	.x1; x2; x3/dV: (3.16)
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Fig. 3.2 Representation
of a radius vector of point An

Let us now return to (3.1) determining the position of mass center of DMS. Let
us note that any point An described by the radius vector rn can also be represented
by the components of this vector (Fig. 3.2).

According to (3.1) we have

x1CE1 C x2CE2 C x3CE3 D
PN

nD1 mn.x1nE1 C x2nE2 C x3nE3/
M

: (3.17)

Multiplying (3.17) in turn by E1, E2, and E3 and taking into account (3.15) we
obtain

x1C D I SOX2X3
M

; x2C D I SOX1X3
M

; x3C D I SOX1X2
M

; (3.18)

and taking into account (3.16) we obtain

x1C D

R
V

x1	.x1; x2; x3/dV

M
;

x2C D

R
V

x2	.x1; x2; x3/dV

M
;

x3C D

R
V

x3	.x1; x2; x3/dV

M
; (3.19)

that is, we determined the position of mass center of DMS (3.18) and mass center
of CMS (3.19) using first moments with respect to planes.

It is easy to notice that a mass center C of a solid and a centroid of that solid
CG do not have to be coincident. They coincide only in the case of a homogeneous
body since we have
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xjC D

R
V

	.x1; x2; x3/xj dV
R

V

	.x1; x2; x3/dV
D
	
R
V

xj dV

	
R

V

dV
D xGjC ; j D 1; 2; 3; (3.20)

which can be treated as a sufficient condition for the coincidence.
The CMS can be three-, two-, or one-dimensional, homogeneous or non-

homogeneous. The density of such bodies is related to the volume .kg/m3/, the
surface .kg/m2/, and the curve .kg/m/, respectively. In the case of homogeneous
bodies, if they possess a plane or an axis of symmetry, their mass center lies on that
plane or axis. If the homogeneous body possesses a center of symmetry, it coincides
with the mass center.

Because the dimensions of bodies with respect to Earth’s radius are small, the
forces of attraction to Earth’s center, that is, the central forces, are approximated
with the field of parallel gravitational forces. The main force vector is equal to the
sum of forces acting on each particle of a body, and the center of those parallel
forces of identical senses is called the center of gravity of a body.

Let us consider a homogeneous volume V , which we will divide into certain
volumes �V1;�V2; : : : ; �VN , and assume that the positions of gravity centers of
each of the elementary volumes�VN are known. If one denotes the specific weight
of the body by � , its density by 	 (� D 	g), and the elementary mass corresponding
to an elementary volume by�mC , then the resultant force in such a case is equal to

G D
NX

nD1
�Gn D g

NX

nD1
	�Vn D g

NX

nD1
�mn; (3.21)

or

G D �

NX

nD1
�Vn D V �: (3.22)

We have then determined the resultant force (main force vector), and determin-
ing, using the described method, the position of the center of parallel forces C ,
from (3.1) we obtain its position:

x1C D
PN

nD1 �Gnx1n
G

D
PN

nD1 �mnx1n

M
;

x2C D
PN

nD1 �Gnx2n
G

D
PN

nD1 �mnx2n

M
;

x3C D
PN

nD1 �Gnx3n
G

D
PN

nD1 �mnx3n

M
: (3.23)

In a similar way we can determine the position of mass centers of certain surfaces
or one-dimensional mechanical systems (e.g., rope, wire).

Let us consider, e.g., a homogeneous shell of a constant thickness h and a specific
weight of material � (Fig. 3.3).
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Fig. 3.3 Determination of
the mass center of a shell
having a thickness h

Fig. 3.4 Determination of the center of gravity of a plane figure

We proceed in a way similar to that described earlier. Because we are dealing
with a continuous surface and the number of elementary cut-outs of the surface
�Sn tends to infinity and their area tends to zero, we replace the signs of sum with
integrals.

We obtain the following values of the coordinates of point C (the mass center of
the shell) in the adopted Cartesian coordinate system OX1X2X3:

xiC D

R
G

dGxi
R

G

dG
D
�h
R
S

xidS

�h
R

S

dS
D

R
S

xidS
R

S

dS
; i D 1; 2; 3: (3.24)

Let us introduce the notion of the center of a plane figure (Fig. 3.4). Any plane
body of small thickness can be treated as a plane material figure. If we assume a
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Fig. 3.5 Determination of
the mass center of a triangle

unit weight �
�
N
m2

�
and an area of the figure S , then its weight G D S� . Dividing

the area into elementary �Sn, the weight of the elementary area may be written as
�Gn D ��Sn. According to the earlier derived (3.24), the coordinates of the center
of gravity for this figure are described by the equations

xiC D
PN

nD1 x1n�Gn
G

D
PN

nD1 x1n��Sn
�S

D
PN

nD1 xin�Sn
S

; i D 1; 2: (3.25)

From the obtained equation it follows that the location of the center of gravity of
the considered (any) plane figure does not depend on the � constant. That is why the
center of gravity of a homogeneous plate is called the center of gravity of a surface
of the plate.

Definition 3.1. The sum of products of elementary areas into which an area of a
plane figure was divided and their distances from a certain axis is called the static
moment of the plane figure with respect to the axis.

Knowing the static moments of the area of a plane figure, it is possible to
determine the coordinates of the center of gravity of this figure from (3.25).

The reader can solve an example regarding the determination of mass center of,
e.g., a rope, that is, a one-dimensional system in R3 space.

In practice we calculate the mass centers of solids by introducing the division
of the given solid into a certain number of component solids in order to make the
calculations more convenient.

Let us consider some examples.

Example 3.1. Determine the position of a centroid of a triangle�ABC with respect
to the base AB (Fig. 3.5).

We will determine the position of a centroid of a triangle as the ratio of the first
moment about the axis OX1 to the area of the triangle, that is,
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Fig. 3.6 Determination
of the mass center of a
quadrilateral

x2C D IOX1
S�

D

R

F�

x2dS�

S�
D

hR

0

x2a
0dx2

1
2
ha

D
2
hR

0

x2.h� x2/dx2

h2

D
2

�
1
2
h3 � 1

3
h3
�

h2
D 2.3� 2/

6
h D 1

3
h ;

because
a0

a
D h� x2

h
;

where a D AB , a0 D A0B 0. ut
The preceding example was aimed at the presentation of the method of integra-

tion since it is well known that the centroid of a homogeneous triangle lies at the
intersection of any two of its medians.

Example 3.2. Determine the position of a mass center of the quadrilateral (homo-
geneous plate) A1A2A3A4 shown in Fig. 3.6.

Let us connect points A1 and A3 and then determine the centers of triangles
�A1A2A3 and�A1A3A4, obtaining the points C1 and C2, which we connect to one
another. Similarly, we proceed in the case of triangles�A1A2A4 and�A2A3A4, and
as a result we obtain the segment C3C4. The point of intersection of the segments
C1C2 and C3C4 determines point C , which was to be found. ut
Example 3.3. Calculate the position of the mass center of a sector of a disc of radius
r and of the angle-at-the-center 2˛ shown in Fig. 3.7.

The area of the circular sector can be treated as the area composed of elementary
triangles of altitudes r (one of them marked with a hatching line). According to
Example 3.1 the centroids of these triangles will lie at a distance of 1

3
from the base,

that is, on a circle of radius 2
3
r . The problem, then, boils down to the determination

of the centroid of a one-dimensional line, that is, the arc of a circle of radius 2
3
r .

On account of the symmetry of the problem, the centroid of that arc lies on the
axis OX2.
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Fig. 3.7 Determination of
the centroid of a circular
sector

Fig. 3.8 Graphical method
of determining the centroid
of a figure having the shape
of an asymmetric T

The centroid of the arc of a circle of length L is given by the formula

x2C D

R
L

x2ds

L
D

2
3

R
L

x2rd'

2˛r
D

2
3
r2
R̨

�˛
cos'd'

2˛r

D 2

3

r

˛

˛Z

0

cos'd' D 2

3

r

˛

�
sin '

�˛

0

D 2r sin ˛

3˛
: ut

Example 3.4. Determine the radius vector of the centroid of a figure composed of
two parts having areas S1 and S2, as shown in Fig. 3.8.

From the definition we have

rC D

2P
nD1

Snrn

S1 C S2
D S1r1 C S2r2

S
D S1

S
r1 C S1

S
r2;

and the vector sum resulting from the equation above is presented in Fig. 3.8. ut
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It has been shown that the coordinates of the centroid of an area are found by
dividing the first moments of that area by the area itself. Observe that if the centroid
of an area lies on a coordinate axis, then the first moment of the area around that
axis is zero, and vice versa.

If an area or a line has an axis of symmetry, then its first moment with respect to
the axis of symmetry is zero, and its centroid is located on that axis. Furthermore,
if an area or line has two axes of symmetry, then its centroid is located at the
intersection of the two axes.

It can be easily shown that the centroid of the area coincides with its center of
symmetry. Recall that an area is symmetric with respect to a center if for every
element of area dS.x1; x2/ there is an element dS0.�x1;�x2/ such that dS D dS0.

We have considered so far the general rules for locating the centers of gravity of
two-dimensional bodies (wires) and the centroids of plane areas and lines. We have
shown that if the considered bodies are homogeneous, their centers of gravity and
centroids coincide. If one is dealing with composite plates and wires, then such
objects should be divided into known parts (rectangles, triangles, arcs, etc.), and
one may then proceed in a standard way (see also Example 3.7).

Table 3.1 gives some examples of centroids location for common shapes of
selected plane figures and curves [4].

In the case of the solids of revolution, that is, the solids generated as a result of
the revolution of a certain curve about an axis lying in the plane of that curve but
not intersecting it (Fig. 3.9), there exists a relation between the lateral surface and
the volume of the solid that is expressed by the following two Pappus–Guldinus
rules (theorems).

Theorem 3.1 (Pappus–Guldinus1 Rule I). The area of a surface created through
a full revolution of a plane curve about an axis OX3 not intersecting the curve
and lying in its plane is equal to the product of the length of that curve and the
circumference of a circle described by the centroid of the curve while the surface is
being generated.

Theorem 3.2 (Pappus–Guldinus Rule II). The volume of a body created through
a full revolution of a plane figure about an axis not intersecting the figure and lying
in its plane is equal to the product of the area of the figure and the circumference of
a circle described by the centroid of the figure while the volume is being generated.

According to Fig. 3.9a the area of the surface of revolution is equal to

S D
Z

l

2�r.s/ds D 2�

Z

l

r.s/ds D 2�ISOX3; (3.26)

1The theorems are named after the mathematicians Pappus, who worked in Alexandria and lived
in the third or fourth century AD, and Guldin (Guldinus), who in 1635 formulated the results of
his work on the center of gravity.
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Table 3.1 Centroids of common shapes of areas and lines (see also [5])

Area/curve
Shape x1C x2C length

Triangle h
3

bh
2

Quarter-circular and
semicircular area

4r
3�

4r
3�

�r2

4

0 4r
3�

�r2

2

Quarter-elliptical

4a
3�

4b
3�

�ab
4

0 4b
3�

�ab
2

Semiparabolic
and parabolic area

3a
8

3h
5

2ah
3

0 3h
5

4ah
3

Area under curve axn nC1
nC2

a nC1
4nC2

h ah
nC1

Circular sector 2r sin˛
3˛

0 ˛r2

Quarter-circular arc
and semicircular arc

2r
�

2r
�

�r
2

0 2r
�

�r

Arc of a circle r sin˛
˛

0 2˛r
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X3
X3

l

rc

O

O

dS

dx3

r

rc

S

a b

Fig. 3.9 The lateral surface and volume of a body of revolution obtained as a result of the
revolution of a curve l (a) and a figure S (b) about an axis OX3 (see Pappus–Guldinus rules I
and II)

where I SOX3 is the first moment with respect to the axis OX3. The first moment is
equal to

I SOX3 D lrC ; (3.27)

where rC defines the position of the mass center of a curve of length S .
Substituting (3.27) into (3.26) we obtain

S D 2�lrC : (3.28)

According to Fig. 3.9b the volume of a revolution is equal to

V D 2�

Z

S

rdS D 2�ISOX3; (3.29)

where the first moment ISOX3 of a plane figure can be determined from the equation

I SOX3 D SrC ; (3.30)

that is,

V D 2�SrC : (3.31)

In what follows we show, using examples, how the Pappus–Guldinus rules can be
used to (1) compute the area of the surface of revolution and volumes of bodies of
revolution, (2) determine the centroid of a plane curve when the area of the surface
generated by the curve is known, or (3) determine the centroid of a plane area when
the volume of the body generated by this area is known.
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Fig. 3.10 Determination
of the volume of a torus

Fig. 3.11 Schematic leading
to the determination of a mass
center of a half-disc

Example 3.5. Determine the volume of a solid (torus) created as a result of the
revolution of a circle about an axis OX3 (Fig. 3.10).

Directly from the second Pappus-Guldinus rule we obtain

V D �r21 � 2�r2 D 2�2r21 r2: ut
Example 3.6. Calculate the position of a mass center of a half-disc of radius r .

Let us note that for the determination of the distance of the mass center of a half-
disc from its diameter lying on the axis OX3 (Fig. 3.11) one may use the second
Pappus–Guldinus rule if one knows the volume of a ball given by Vb D 4

3
�r3.

Since we have

Vb D 1

2
�r2 � 2�rC ;

and from that

rC D Vb

�2r2
D 4

3

�r3

�2r2
D 4

3

r

�
:

The result just obtained is identical to the one from Example 3.3 for ˛ D �=2.
ut
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X3

O

X3c3

X3c2
X3c

X3c1

X1

h1

h2

h3

d3

C3

C2

C1

d1

d2

C

Fig. 3.12 Determination of the position of a mass center of a figure consisting of two rectangles
and a triangle

Example 3.7. Determine the position of a mass center of the plane figure depicted
in Fig. 3.12.

The position of mass center of the figure is given by

x3C D S1x3C1 C S2x3C2 C S3x3C3
S1 C S2 C S3

D
d1h1

h1
2

C d2h2



h1 C h2

2

�
C 1

2
d3h3



h1 C h2 C h3

3

�

d1h1 C d2h2 C 1
2
d3h3

: ut

In general, a procedure to determine the location of the centers of gravity of
three-dimensional bodies or the centroids of their volumes is similar to that of
the thus far studied two-dimensional shapes and flat lines and hence will not be
further addressed. However, centroids of common shapes and volumes are reported
in Table 3.2.

3.2 Second Moments

Static moments (mass or area/volume) are called first moments. The moments of
inertia (with respect to a plane, axis, and pole) and products of inertia are called
second moments.
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Table 3.2 Centroid location of common shapes and volumes (see also [5, 7])

Shape Scheme xc Volume

Hemisphere 3a
8

2
3
�a3

Elliptic paraboloid h
3

1
2
�abh

Cone h
4

1
3
�a2h

Pyramid h
4

1
3
�abh

Semiellipsoid 3h
8

2
3
�a2h

of revolution

Three-axis

3c
8

2
3
�abc

nonsymmetric
ellipsoid
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Fig. 3.13 Product of inertia
of point Ai with respect to
two perpendicular planes 1
and 2

We have already introduced the notion of moment of inertia of a particle about a
plane, axis, or pole.

The position of a particle Ai can be defined also with respect to two arbitrary
perpendicular planes (Fig. 3.13).

We call the following product I12 a product of inertia of a pointAi with respect
to planes 1.OX1X3/ and 2.OX2X3/:

I12 D mix1i x2i ; (3.32)

where mi denotes the mass of the point and x1i and x2i the distances to the planes
2 and 1, respectively.

In the case of the CMS the moments of inertia and the products of inertia are
defined as follows:

I D
Z

M

s2dm; (3.33)

Il D
Z

M

d2dm; (3.34)

IO D
Z

M

r2dm; (3.35)

I12 D
Z

M

x1x2dm; (3.36)

where s, d , and r are defined in Sect. 3.1.
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Let us introduce now the stationary right-handed Cartesian coordinate system
OX1X2X3 and calculate the second moments defined using (3.33)–(3.36).

Moments of inertia with respect to planes OX1X2, OX1X3, and OX2X3 are
equal to

IOX1X2 D
Z

M

x23dm D
Z

V

	.x1; x2; x3/x
2
3dV;

IOX1X3 D
Z

M

x22dm D
Z

V

	.x1; x2; x3/x
2
2dV;

IOX2X3 D
Z

M

x21dm D
Z

V

	.x1; x2; x3/x
2
1dV: (3.37)

Moments of inertia with respect to axes OX1, OX2, andOX3 are equal to

IOX1 � IX1 D
Z

M

�
x22 C x23

�
dm D

Z

V

	.x1; x2; x3/
�
x22 C x23

�
dV;

IOX2 � IX2 D
Z

M

�
x21 C x23

�
dm D

Z

V

	.x1; x2; x3/
�
x21 C x23

�
dV;

IOX3 � IX3 D
Z

M

�
x21 C x22

�
dm D

Z

V

	.x1; x2; x3/
�
x21 C x22

�
dV: (3.38)

The moment of inertia of a rigid body with respect to the origin O of the
coordinate system is equal to

IO D
Z

M

�
x21 C x22 C x23

�
dm D

Z

V

	.x1; x2; x3/
�
x21 C x22 C x23/dV

D 1

2
.IX1 C IX2 C IX3/: (3.39)

The products of inertia of a rigid body with respect to the planes of the coordinate
system are equal to

I12 � IX1X2 D
Z

M

x1x2dm D
Z

V

	.x1; x2; x3/x1x2dV;

I13 � IX1X3 D
Z

M

x1x3dm D
Z

V

	.x1; x2; x3/x1x3dV;

I23 � IX2X3 D
Z

M

x2x3dm D
Z

V

	.x1; x2; x3/x2x3dV: (3.40)
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Fig. 3.14 Computational
scheme for calculation of the
moments of inertia of a
homogeneous cylinder

The second moments of the volume of a rigid body in the coordinate system
OX1X2X3 are obtained from (3.37)–(3.40) after omitting the quantity 	.x1; x2; x3/.

In the case where 	.x1; x2; x3/ D const, we obtain the relation between the
second moments of mass and volume in the form

I D IG	; (3.41)

where I denotes any of the moments described earlier, IG denotes the moment of
the volume corresponding to I , and 	 is the density of any particle of the continuous
system.

Example 3.8. Determine the moment of inertia of a homogeneous cylinder of mass
M , radius R, and height h with respect to a base plane, an axis of the cylinder, and
a line passing through a diameter of the cylinder base (Fig. 3.14).

The mass moment of inertia of a cylinder with respect to the plane OX1X2 is
equal to

IOX1X2 D
Z

V

	x23dV D �	R2

hZ

0

x23dx3 D 1

3
	�R2h3 D 1

3
Mh2

h
kg � m2

i
;

and the corresponding moment of the volume reads

IGOX1X2 D 1

3
�R2h3

h
m5
i
:
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Fig. 3.15 Determination
of mass center C of a
pentagonal pyramid

Let us now calculate the mass moment of inertia of the cylinder about the axis
OX3. In this case the elementary volume dV is determined by the volume of the
cylindrical shell of radius r , thickness dr , and height h, that is,

IOX3 D
Z

V

�
x21 C x22

�
	.x1; x2; x3/dV D 	

RZ

0

r22�rhdr

D 2�	h
R4

4
D 1

2
�R2h	R2 D 1

2
MR2 :

The corresponding moment of the volume reads

I VOX3 D 1

2
�R4h:

For the determination of the mass moment of inertia of the cylinder about the
axis OX1 let us note that

IOX1 D IOX1X3 C IOX1X2 ; IOX3 D IOX1X3 C IOX2X3 :

From the symmetry of the cylinder we have IOX1X3 D IOX2X3 , that is, IOX3 D
2IOX1X3 , hence

IOX1 D IOX1X2 C
1

2
IOX3 D 1

3
Mh2C 1

4
MR2 D M



h2

3
CR2

4

�
: ut



3.3 The Inertia Matrix and Its Transformations 151

Example 3.9. Determine the position of the mass center of the pentagonal pyramid
depicted in Fig. 3.15.

First, we determine the center of the pyramid base C0 and prove that point C
will lie on a line OC0 at a distance 1

4
H from the base, where H is the height of the

pyramid.
We are dealing with a solid whose elementary volumes �Vn, lying at a distance

x3n from the origin of the axisOX3, are equal to �Vn D Sn�x3n D Sn
H
N

, where N
denotes the number of elementary volumes.

From proportion it follows that Sn
S0

D x23n
H2 , where S0 is the area of the pentagon

of the pyramid base.
The position of the mass center of the pyramid is

x3C D 1

V

NX

nD1
x3n�Vn D S0

VH2

NX

nD1
x33n�x3n

Š S0

VH2

HZ

0

x33ndx3n D S0H
2

4V
:

Because V D 1
3
S0H , eventually x3C D 3

4
H . ut

The (geometric) moments of inertia for selected plane figures are reported in
Table 3.3. The moments of inertia of selected three-dimensional bodies are shown
in Table 3.4.

3.3 The Inertia Matrix and Its Transformations

We will call an array of numbers of the following form marked with superscript V
the geometric matrix of inertia (mass is not taken into account):

IV D

2
666664

I VX1 �I VX1X2 �I VX1X3
�I VX1X2 I VX2 �I VX2X3
�I VX1X3 �I VX2X3 I VX3

3
777775
; (3.42)

and the elements (numbers) of this matrix are moments of inertia of a set of points
with respect to the axes of the coordinate system OX1X2X3 and products of inertia
with respect to three planes of that coordinate system. The matrix is a representation
of the symmetric tensor of the second order for pointO (the origin of the coordinate
system OX1X2X3). Dropping the superscript V we obtain the inertia matrix of a
rigid body.
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Table 3.3 Moments of inertia of common geometric figures

Shape Schematic diagram Moment of inertia

Rectangle

IX 0

1
D 1

12
bh3

IX 0

2
D 1

12
b3h

IX1 D 1
3
bh3

IX2 D 1
3
b3h

IC D 1
12
bh.b2 C h2/

Triangle
IX 0

1
D 1

36
bh3

IX1 D 1
12
bh3

Circle
IX1 D IX2 D 1

4
�r4

IO D 1
2
�r4

Semicircle
IX1 D IX2 D 1

8
�r4

IO D 1
4
�r4

Quarter circle
IX1 D IX2 D 1

16
�r4

IO D 1
8
�r4

Ellipse

IX1 D 1
4
�ab3

IX2 D 1
4
�a3b

IO D 1
4
�ab.a2 C b2/
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Table 3.4 Moments of inertia of three-dimensional homogeneous bodies with mass m

Body Schematic diagram Moment of inertia

Cylinder
IX3 D 1

2
mR2

IX1 D IX2 D 1
4
mR2 C 1

12
mH2

IC D 1
2
mR2 C 1

12
mH2

(vertical)

Cone

IX3 D 3
10
mR2

IX1 D IX2 D 3
20
mR2 C 3

5
mH2

IO D 3
10
mR2 C 3

5
mH2

Thin cylidrical IX2 D IX3 D ml2

12

rod IX1 D 0

Ball
IX1 D IX2 D IX3 D 2

5
mR2

2IO D IX1 C IX2 C IX3

Frustum

IX3 D 3m.R52�R51/

10.R2�R1/.R
2
1CR22CR1R2/

of cone

IX1 D IX2 D 3m.R52�R51/

20.R2�R1/.R
2
1CR22CR1R2/

C 3mH2

.R21CR22CR1R2/
Œ 1
2
R1.R2 � R1/H

3

C 1
3
R21 C 1

5
.R2 �R1/

2H3�

IO D IX1 C 1
2
IX3

Rectangular
IX1 D m

12
.b2 CH2/

cuboid
IX2 D m

12
.a2 CH2/

IX3 D m
12
.a2 C b2/
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Fig. 3.16 Determination of
kinetic energy of a body
rotating about a certain
stationary axis l

An arbitrary position of a rigid body in space can be obtained from its initial position
in the adopted absolute coordinate system through translation to point O 0, and the
subsequent rotation of the coordinate system OX1X2X3 can be made to coincide
with the system OX 0

1X
0
2X

0
3.

At this point the question arises as to how the inertia matrix will change as a
result of translation and rotation of the coordinate system.

In order to derive formally the inertia matrix (3.42) we will consider the geometry
of mass of a rigid body and the notion, introduced earlier, of moment of inertia with
respect to a certain stationary axis l (Fig. 3.16).

The kinetic energy of a rigid body equals

T D 1

2

Z

M

v ı vdm: (3.43)

Because the elementary particle of a mass dm is situated at distance d from the
axis of revolution, from (3.43) we obtain

T D !2

2

Z

M

d2dm D !2

2
Il ; (3.44)

where Il is the moment of inertia with respect to axis l .
Because the position of a point A of mass dm is determined by a radius vector r,

the velocity of point A equals v D ! � r and from formula (3.43) we obtain

T D 1

2

Z

M

.! � r/ ı .! � r/dm: (3.45)
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Recall that both vectors ! and r can be expressed in the coordinates related to a
non-stationary (OX 0

1X
0
2X

0
3) or stationary (OX1X2X3) coordinate system. In turn, as

will be shown later in Chap. 5,

! � r D �!; (3.46)

where� is the tensor of angular velocity, which is a skew-symmetric tensor, that is,
˝ij D �˝ji for i ¤ j .

From (3.46) we obtain

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

E0
1 E0

2 E0
3

!0
1 !

0
2 !

0
3

r 0
1 r

0
2 r

0
3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D �
E0
1 E0

2 E0
3

�

2
666664

0 a12 a13

�a12 0 a23

�a13 �a23 0

3
777775

2
666664

!0
1

!0
2

!0
3

3
777775
: (3.47)

Next we calculate

E0
1

�
!0
2r

0
3 � r 0

2!
0
3

�C E0
2

�
!0
3r

0
1 � !0

1r
0
3

�C E0
3

�
!0
1r

0
2 � !0

2r
0
1

�

D E0
1

�
a12!

0
2 C a13!

0
3

�C E0
2

� � a12!0
1 C a23!

0
3

�C E0
3

�� a13!
0
1 � a23!0

2

�
;

and finally we obtain

a12 D r 0
3; a13 D �r 0

2; a23 D r 0
1:

The scalar product of two vectors

.! � r/ ı .! � r/ D .�!/T ı .�!/ D !T�T�!; (3.48)

because�! is a vector.
Substituting (3.48) into (3.45) we obtain

T D 1

2
! ı I!; (3.49)

where tensor I associated with mass equals

I D
Z

M

�T�dm: (3.50)

We will show that the obtained tensor �T� is a geometric matrix of iner-
tia (3.42). Since we have
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�T� D

2
666664

0 �r 0
3 r 0

2

r 0
3 0 �r 0

2

�r 0
2 r 0

1 0

3
777775

2
666664

0 r 0
3 �r 0

2

�r 0
3 0 r 0

1

r 0
2 �r 0

1 0

3
777775

D

2
666664

r 0
3
2 C r 0

2
2 �r 0

1r
0
2 �r 0

1r
0
3

�r 0
1r

0
2 r 0

1
2 C r 0

3
2 �r 0

2r
0
3

�r 0
1r

0
3 �r 0

2r
0
3 r 0

1
2 C r 0

2
2

3
777775

D

2
6666664

I V
X 0

1
�I V

X 0

1X
0

2
�I V

X 0

1X
0

3

�I V
X 0

1X
0

2
I V
X 0

2
�I V

X 0

2X
0

3

�I V
X 0

1X
0

3
�I V

X 0

2X
0

3
I V
X 0

3

3
7777775

D IV ; (3.51)

this explains the introduction of minus signs in definition (3.42).
The (0) symbol denotes the coordinates of the non-stationary system. Dropping

the primes we obtain the inertia matrix in the stationary system.
From (3.51) it follows that the inertia matrix of a rigid body is equal to

I D
Z

M

IV dm D 	
�
x0
1; x

0
2; x

0
3

� Z

V

IV dV; (3.52)

on the assumption that 	 D const at each point of the body.
In the general case by application of tensor notation to a perfectly rigid body the

coefficients of inertia matrix can be determined from the following equation:

Iij D
Z

V

	
�
ımnxmxnıij � xij

��
x1; x2; x3

�
dV; (3.53)

where ımn and ıij are the Kronecker symbols and 	 is the density of the body.
Figure 3.17 contains one rigid body (in the general case there may be many

bodies; then we introduce a numbering scheme for the bodies, e.g., if it was a body
of the number i , then its mass center would be denoted Ci ) and three coordinate
systems. The first one,OX1X2X3, is the absolute one, whereas the second and third
ones are the body’s coordinate systems rigidly connected with the body at the point
O 0 D O 00 for the description of the position of an arbitrary point A of the body.
Note that the axes of the coordinate system OX 0

1X
0
2X

0
3 are parallel to the axes of

the absolute system OX1X2X3, the system OX 00
1 X

00
2 X

00
3 is the body system, and all

systems are right-handed Cartesian systems.
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Fig. 3.17 Two coordinate systems of parallel axes and a system with rotated axes OX 00

1 X
00

2 X
00

3

The position of point A defined by the vector r can be described as follows in
the coordinate system OX

0

1X
0
2X

0
3 and OX 00

1 X
00
2 X

00
3 , where the latter is rotated with

respect to OX 0
1X

0
2X

0
3:

r D E0
1x

0
1 C E0

2x
0
2 C E0

3x
0
3 D E00

1x
00
1 C E00

2x
00
2 C E00

3x
00
3 : (3.54)

In order to determine the coordinates of the vector r D rŒx00
1 ; x

00
2 ; x

00
3 � in the system

OX 0
1X

0
2X

0
3 one should multiply (3.54) successively by the unit vectors E0

i (scalar
product), which leads to the following result:

x0
1 D r ı E0

1 D x00
1E00

1 ı E0
1 C x00

2E00
2 ı E0

1 C x00
3E00

3 ı E0
1

D x00
1 cos.E00

1 ;E
0
1/C x00

2 cos.E00
2 ;E

0
1/C x00

3 cos.E00
3 ;E

0
1/;

x0
2 D r ı E0

2 D x00
1E00

1 ı E0
2 C x00

2E00
2 ı E0

2 C x00
3E00

3 ı E0
2

D x00
1 cos.E00

1 ;E
0
2/C x00

2 cos.E00
2 ;E

0
2/C x00

3 cos.E00
3 ;E

0
2/;

x0
3 D r ı E0

3 D x00
1E00

1 ı E0
3 C x00

2E00
2 ı E0

3 C x00
3E00

3 ı E0
3

D x00
1 cos.E00

1 ;E
0
3/C x00

2 cos.E00
2 ;E

0
3/C x00

3 cos.E00
3 ;E

0
3/; (3.55)
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and can be written in matrix form:
2

666664

x0
1

x0
2

x0
3

3

777775
D

2

666664

cos.E00
1 ;E

0
1/ cos.E00

2 ;E
0
1/ cos.E00

3 ;E
0
1/

cos.E00
1 ;E

0
2/ cos.E00

2 ;E
0
2/ cos.E00

3 ;E
0
2/

cos.E00
1 ;E

0
3/ cos.E00

2 ;E
0
3/ cos.E00

3 ;E
0
3/

3

777775

2

666664

x00
1

x00
2

x00
3

3

777775

D

2

666664

a11 a12 a13

a21 a22 a23

a31 a32 a33

3

777775

2

666664

x00
1

x00
2

x00
3

3

777775
; (3.56)

or x0
i D aij x

00
j , retaining the Einstein summation convention where aij D

cos.E00
j ;E

0
i /.

The expression above means that, knowing the coordinates of the point
A.x00

1 ; x
00
2 ; x

00
3 /, one can, from the relationship above, determine the coordinates

of that point in the coordinate systemOX 0
1X

0
2X

0
3, provided that the direction cosines

are known.
Similarly, we can determine the coordinates of the vector r in the coordinate

system OX 00
1 X

00
2 X

00
3 . After multiplication of (3.53) in turn by E0

i (scalar product) we
obtain

x00
1 D x0

1 cos.E0
1;E

00
1 /C x0

2 cos.E0
2;E

00
1 /C x0

3 cos.E0
3;E

00
1 /;

x00
2 D x0

1 cos.E0
1;E

00
2 /C x0

2 cos.E0
2;E

00
2 /C x0

3 cos.E0
3;E

00
2 /;

x00
3 D x0

1 cos.E0
1;E

00
3 /C x0

2 cos.E0
2;E

00
3 /C x0

3 cos.E0
3;E

00
3 /; (3.57)

which in matrix notation will take the following form:
2

666664

x00
1

x00
2

x00
3

3

777775
D

2

666664

cos.E0
1;E

00
1 / cos.E0

2;E
00
1 / cos.E0

3;E
00
1 /

cos.E0
1;E

00
2 / cos.E0

2;E
00
2 / cos.E0

3;E
00
2 /

cos.E0
1;E

00
3 / cos.E0

2;E
00
3 / cos.E0

3;E
00
3 /

3

777775

2

666664

x0
1

x0
2

x0
3

3

777775
; (3.58)

or we have that x00
i D aj ix

0
j .

Because

cos.E0
i ;E

00
j / D cos.E00

j ;E
0
i /; i; j D 1; 2; 3;

so

Œaij �
�1 D Œaij �

T D Œaij �:

We will prove now that the matrix of direction cosines aij is an orthogonal matrix.
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According to the definition of the orthogonal matrix we have

Œaij �Œaij �
T D Œaij �

T Œaij � D E; (3.59)

where E is an identity matrix.
In our case we calculate

2
666664

a11 a12 a13

a21 a22 a23

a31 a32 a33

3
777775

2
666664

a11 a21 a31

a12 a22 a32

a13 a23 a33

3
777775

D

2

666664

a211 C a212 C a213

a21a11 C a22a12 C a23a13

a31a11 C a32a12 C a33a13

a11a21Ca12a22Ca13a23 a11a31Ca12a32Ca13a33

a221Ca222Ca223 a21a31Ca22a32Ca23a33

a31a21Ca32a22Ca33a23 a231Ca232Ca233

3

777775
:

(3.60)

Let us note that each of the unit vectors of one coordinate system can be
expressed by the unit vectors of another coordinate system. For example, we
obtain representation of the vectors E00

i in the system OX 0
1X

0
2X

0
3 from (3.58) after

substituting the column of unit vectors ŒE0
1E

0
2E

0
3�
T :

E00
1 D Œa11 a21 a31�

2

666664

E0
1

E0
2

E0
3

3

777775
;

E00
2 D Œa12 a22 a32�

2

666664

E0
1

E0
2

E0
3

3

777775
;

E00
3 D Œa13 a23 a33�

2
666664

E0
1

E0
2

E0
3

3
777775
: (3.61)
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After scalar multiplication of the equations above by each other we obtain

E00
1 ı E00

2 D .a11E0
1 C a21E0

2 C a31E0
3/ ı .a12E0

1 C a22E0
2 C a32E0

3/

D a11a12 C a21a22 C a31a32 D 0;

E00
1 ı E00

3 D .a11E0
1 C a21E0

2 C a31E0
3/ ı .a13E0

1 C a23E0
2 C a33E0

3/

D a11a13 C a21a23 C a31a33 D 0;

E00
2 ı E00

3 D .a12E0
1 C a22E0

2 C a32E0
3/ ı .a13E0

1 C a23E0
2 C a33E0

3/

D a12a13 C a22a23 C a32a33 D 0;

E00
1 ı E00

1 D .a11E0
1 C a21E0

2 C a31E0
3/ ı .a11E0

1 C a21E0
2 C a31E0

3/

D a211 C a221 C a231 D 1;

E00
2 ı E00

2 D .a12E0
1 C a22E0

2 C a32E0
3/ ı .a12E0

1 C a22E0
2 C a32E0

3/

D a212 C a222 C a232 D 1;

E00
3 ı E00

3 D .a13E0
1 C a23E0

2 C a33E0
3/ ı .a13E0

1 C a23E0
2 C a33E0

3/

D a213 C a223 C a233 D 1; (3.62)

which proves (3.59).
Below we will present a formula allowing for easy determination of the inertia

matrix in stationary and non-stationary coordinate systems [9]. Recall that the unit
vectors Ei (E0

i ) .i D 1; 2; 3/ are associated with the non-stationary (stationary)
coordinate system, and in view of that we obtain [see (3.61)]

2
666664

E0
1

E0
2

E0
3

3
777775

D

2
666664

a1
0

1 a
10

2 a
10

3

a2
0

1 a
20

2 a
20

3

a3
0

1 a
30

2 a
30

3

3
777775

2
666664

E1

E2

E3

3
777775

D

2
666664

a11 a21 a31

a12 a22 a32

a13 a23 a33

3
777775

2
666664

E1

E2

E3

3
777775
; (3.63)

and the coefficient ai
0

j denotes the cosine of an angle formed by theX 0
i axis with the

Xj axis. For example, a2
0

3 D .E0
2 ı E3/ D cos.E0

2;E3/.
Although we have nine direction cosines altogether, only three are independent.

Because we can select the latter arbitrarily, we will keep all nine coefficients.
Let us introduce new notation for the elements of the inertia matrix:

IX1 D I11; IX2 D I22; IX3 D I33;

IX1X2 D �I12; IX2X3 D �I23; IX1X3 D �I13:
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Now the elements of the inertia matrix are equal to

Iij D
Z

M

" 
3X

kD1
r2k

!
ıij � ri rj

#
dm; (3.64)

where ıij is the Kronecker delta. For example,

I23 D
Z

M

�

r21 C r22 C r23

�
� 0 � r2r3

�
dm D

Z

M

IV23dm;

I22 D
Z

M

�

r21 C r22 C r23

�
� 1 � r22

�
dm D

Z

M

IV22dm:

In the rotated system the geometrical inertia matrix has the form

I 0 D

2

666664

I1010 I1020 I1030

I2010 I2020 I2030

I3010 I3020 I3030

3

777775
; (3.65)

and dropping the (0) symbols we obtain matrix I in the stationary coordinate system.
The relation transforming the coefficients of the inertia matrix in the stationary

and non-stationary systems has the form

Ik0l 0 D
3X

i;jD1
Iij a

k0

i a
l 0

j ; (3.66)

and the application of this formula will be illustrated in Example 3.10.
We now consider the translational displacement. Let us introduce the absolute

coordinate system CX1X2X3 at the mass center C of the body and perform the

parallel translation of this system by a vector
��!
CO 0 (Fig. 3.17).

In the absolute system CX1X2X3, let the inertia matrix be known, that is, the
moments of inertia with respect to the axes IX1; IX2 ; IX3 and products of inertia
IX1X2 , IX1X3 , and IX2X3 .

As an example we will calculate the moment with respect to the X 0
2 axis, that is,

IX 0

2
D
Z

M

�
x0
1
2 C x0

3
2
	

dm: (3.67)

According to Fig. 3.17 we have

r D ��!
CO 0 C ��!

O 0A; (3.68)
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that is,

E1x1A C E2x2A C E3x3A

D E1x1O 0 C E2x2O 0 C E3x3O 0 C E0
1x

0
1A C E0

2x
0
2A C E0

3x
0
3A: (3.69)

Because for (3.67) we need the quantities x0
1 and x0

3, after dropping A in the
subscripts of (3.69) and multiplying it successively by E0

1 and E0
2, we obtain

x0
1 D x1 � x1O 0 ;

x0
3 D x3 � x3O 0 : (3.70)

Substituting (3.70) into (3.67) we have

IX 0

2
D
Z

M

Œ.x1 � x1O 0/2 C .x3 � x3O 0/2�dm

D
Z

M

�
x21 C x23

�
dm � 2

Z

M

x1x1O 0dm � 2
Z

M

x3x3O 0dm

C
Z

M

�
x21O 0 C x3O 0

�2
dm D IX2 C �

x21O 0 C x23O 0

�
M; (3.71)

because the first moments with respect to the mass center are equal to zero. The

quantity x21O 0 C x23O 0 is a square of the projection of the vector
��!
CO 0 onto the plane

CX1X3, that is, it denotes the square of the distance of the axis O 0X 0
2 from the axis

CX2.

Theorem 3.3 (Steiner’s First Theorem2). A moment of inertia with respect to an
axis passing through the mass center is the smallest compared to the moment of
inertia with respect to any other parallel axis, and the difference of these moments
of inertia is equal to the product of the square of the distance between the axes and
the body mass.

As an example we will calculate the product of inertia:

IX 0

1X
0

3
D
Z

M

x0
1x

0
3dm D

Z

M

.x1 � x1O 0/.x3 � x3O 0/dm

D
Z

M

x1x3dm� x1O 0

Z

M

x3dm � x3O 0

Z

M

x1dm

CMx1O 0x3O 0 D IX1X3 C x1O 0x3O 0M; (3.72)

2Jakob Steiner (1796–1863), Swiss mathematician and outstanding geometer, working mainly at
Humboldt University in Berlin.
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because of the fact that the second and third integrals are equal to zero (first moments
with respect to the mass center).

Theorem 3.4 (Steiner’s Second Theorem: Parallel-Axis Theorem for Products
of Inertia). We obtain the product of inertia of a body with respect to planes
O 0X 0

1X
0
2, O

0X 0
1X

0
3, andO 0X 0

2X
0
3, after adding to the products of inertia of the body

with respect to planes OX1X2, OX1X3, and OX2X3, respectively, parallel to the
primed planes and passing through the mass center of the body, a product of the
body mass and the distances between pairs of the parallel planes (the product can
be positive or negative).

Both parallel-axis theorems of Steiner follow from a general theorem about the
moments of inertia in Cartesian coordinate systems of parallel axes.

Theorem 3.5 (Moments of Inertia in Parallel Cartesian Coordinate Systems).
The mass moments of inertia matrices in Cartesian coordinate systems OX1X2X3
and O 0X 0

1X
0
2X

0
3 of parallel axes (Fig. 3.17) are related to one another by the

following relationship:

2

666664

IX 0

1
�IX 0

1X
0

2
�IX 0

1X
0

3

�IX 0

1X
0

2
IX 0

2
�IX 0

2X
0

3

�IX 0

1X
0

3
�IX 0

2X
0

3
IX 0

3

3

777775
D

2

666664

IX1 �IX1X2 �IX1X3

�IX1X2 IX2 �IX2X3

�IX1X3 �IX2X3 IX3

3

777775

CM

2

666664

x22O 0 C x23O 0 �x1O 0x2O 0 �x1O 0x3O 0

�x1O 0x2O 0 x21O 0 C x23O 0 �x2O 0x3O 0

�x1O 0x3O 0 �x2O 0x3O 0 x21O 0 C x22O 0

3

777775
; (3.73)

where .x1O 0 ; x2O 0 ; x3O 0/ are the coordinates of the origin of the coordinate system
O 0X 0

1X
0
2X

0
3 of the axes parallel to the axes of the system OX1X2X3, whose origin

coincides with the mass center of the body, i.e., O D C .

Finally, let us consider the case where the axes of two right-handed coordinate
systems possess a common origin and are rotated with respect to one another
(Fig. 3.16). Our aim is the determination of relationships between the inertia
matrices expressed in the coordinate systems OX1X2X3 and OX 0

1X
0
2X

0
3. We will

assume that the rigid body with which these two coordinate systems are associated
rotates with the angular velocity ! about a certain stationary axis l .

The momentum of a rigid body in the system OX1X2X3 is equal to

fI!g D ŒI �f!g; (3.74)
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Fig. 3.18 A rectangle and its
coordinate axes

and in the system OX 0
1X

0
2X

0
3

fI 0!0g D ŒI 0�f!0g; (3.75)

where vectors are denoted by curly brackets.
According to (3.58) we have

fI 0!0g D Œaij �fI!g; (3.76)

f!0g D Œaij �f!g: (3.77)

Substituting relationships (3.76) and (3.77) into (3.75) we obtain

Œaij �fI!g D ŒI 0�Œaij �f!g: (3.78)

Then, substituting (3.74) into (3.78) we obtain

Œaij �ŒI �f!g D ŒI 0�Œaij �f!g; (3.79)

which eventually enables us to determine the desired relationship of the form

ŒI 0� D Œaij �ŒI �Œaij �
T : (3.80)

Example 3.10. Determine the geometrical inertia matrix of the rectangle of dimen-
sions a1 and a2 depicted in Fig. 3.18 in the coordinate system OX 0

1X
0
2.

In the considered case the geometrical inertia matrices in the systems OX1X2
andOX 0

1X
0
2 assume the forms (dropping superscripts V )

I D
2

4
IX1 �IX1X2

�IX1X2 IX2

3

5 ;

I0 D

2
64

IX 0

1
�IX 0

1X
0

2

�IX 0

1X
0

2
IX 0

2

3
75 :



3.3 The Inertia Matrix and Its Transformations 165

Fig. 3.19 Determination of a
(geometric) moment of inertia
of a rectangle with respect to
the axis OX1

Let us calculate the moment of inertia with respect to the axis OX1:

IX1 D
Z

S

x22dF D
Z

S

x22a1dx2 D a1

a2Z

0

x22dx2 D 1

3
a1a

3
2;

and the method of integration is illustrated in Fig. 3.19.
Similarly we obtain

IX2 D 1

3
a2a

3
1:

Let us note that the elements of the inertia matrix of the rectangle in the system
CX1X2 will not be needed for the problem solution. The coordinate system CX1X2
will be used only to determine the product of inertia IX1X2 from the parallel-axis
theorem, that is,

IX1X2 D ICX1X2 C a1a2

�a1
2

	 �a2
2

	
D 1

4
a21a

2
2;

because ICX1X2 D 0.
In order to determine the elements of the matrix I0 we will use (3.66), and now

all the indices assume a value of either 1 or 2, because we are dealing with the
two-dimensional system

I1010 D I11a
10

1 a
10

1 C I12a
10

1 a
10

2 C I21a
10

2 a
10

1 C I22a
10

2 a
10

2 :

Let us note that

a1
0

1 D cos.E0
1;E1/ D cos˛;

a1
0

2 D cos.E0
1;E2/ D cos

��
2

� ˛
	

D sin˛:
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Therefore,

I1010 D IX 0

1
D IX1 cos2 ˛ � 2IX1X2 sin ˛ cos˛ C IX2 sin2 ˛

D IX1 cos2 ˛ C IX2 sin2 ˛ � IX1X2 sin 2˛:

Next, according to (3.66) we have

I1020 D
2X

i;jD1
Iij a

10

i a
20

j D I11a
10

1 a
20

1 C I12a
10

1 a
20

2 C I22a
10

2 a
20

2 C I21a
10

2 a
20

1 :

Because

a2
0

1 D cos.E0
2;E1/ D cos

��
2

C ˛
	

D � sin ˛;

a2
0

2 D cos.E0
2;E2/ D cos˛;

we arrive at

I1020 � �IX 0

1X
0

2
D �IX1 cos˛ sin ˛

�IX1X2 cos2 ˛ C IX2 sin˛ cos˛ C IX2X1 sin2 ˛;

that is,

IX 0

1X
0

2
D IX1 � IX2

2
sin 2˛ C IX1X2 cos 2˛:

Using the quantities IX1; IX2 and IX1X2 D IX2X1 obtained earlier we calculate
the quantities IX 0

1
; IX 0

2
; IX 0

1X
0

2
, that is, we determine elements of the matrix I

0

. ut

3.4 Principal Axes and Principal Moments on a Plane

In Fig. 3.20 we show the area S and two rectangular coordinates OX1X2 and
OX 0

1X
0
2, where � is the rotation angle between axes OX1 and OX 0

1.
Assuming a knowledge of the moments and product of inertia regarding coordi-

nates OX1X2 of the form

IX1 D
Z
x22dS; IX2 D

Z
x21dS; IX1X2 D

Z
x1x2dS; (3.81)

we will determine IX 0

1
, IX 0

2
, and IX 0

1X
0

2
. Observe that between the coordinates x0

1, x
0
2,

and x1, x2 of an element of area dS the following relations hold:

x0
1 D x1 cos� C x2 sin�;

x0
2 D x2 cos� � x1 sin�: (3.82)
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Fig. 3.20 Area S and two systems of rectangular coordinates OX1X2 and OX 0

1X
0

2

Therefore, we have

IX 0

1
D
Z
.x0
2/
2dS D

Z
.x2 cos� � x1 sin�/2dS

D cos2 �
Z
x22dS � sin 2�

Z
x1x2dS C sin2 �

Z
x21dS

D IX1 cos2 � � IX1X2 sin 2� C IX2 sin2 �

D IX1 C IX2
2

C IX1 � IX2
2

cos 2� � IX1X2 sin 2�; (3.83)

and proceeding in a similar way one obtains

IX 0

2
D IX1 C IX2

2
� IX1 � IX2

2
cos 2� C IX1X2 sin 2�; (3.84)

IX 0

1X
0

2
D IX1 � IX2

2
sin 2� C IX1X2 cos 2�: (3.85)

Observe that IO D IX1 C IX2 D IX 0

1
C IX 0

2
. We show that if we take a point

A.IX 0

1
; IX 0

1X
0

2
/ for any given value of the parameter �, then all of the points will lie

on a circle (Fig. 3.21). That is, eliminating� from (3.83)–(3.85) yields

.IX 0

1
� Ia/

2 C I 2
X 0

1X2
D R2; (3.86)

where

Ia D IX1 C IX2
2

; R2 D


IX1 � IX2

2

�2
C I 2X1X2 : (3.87)
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Fig. 3.21 Plane inertia circle
(Mohr’s circle)

The circle governed by (3.86) is shown in Fig. 3.21 and is called Mohr’s circle.3

The points corresponding to Imin and Imax can be determined from (3.83) assuming
IX 0

1X
0

2
D 0, and hence

tan 2� D � 2IX1X2
IX1 � IX2

: (3.88)

Equation (3.88) defines two values � that are 90ı apart, that is, to those of
Imin and Imax. The two axes defined by the two values of � determined so far are
perpendicular to each other and are called the principal axes of area S about point
O , whereas the corresponding values Imin and Imax are called the principal moments
of inertia of area S about pointO . Observe that the product of inertia corresponding
to the principal axes IX 0

1X
0

2
D 0. Taking into account Fig. 3.21 and (3.87) one obtains

Imax, min D Ia ˙R D IX1 C IX2
2

˙
s


IX1 � IX2
2

�2
C I 2X1X2 : (3.89)

Note that the obtained properties are valid for any point O , that is, inside or
outside of area S . However, if point O coincides with the centroid of S , then
any axis through O is a centroidal axis. Furthermore, if two principal axes of
area S have their origin in S centroid, then they are referred to as the principal
centroidal axes of area S. In what follows we show how Mohr’s circle can be used to
determine principal axes and principal moments of inertia about a pointO assuming
a knowledge of the moments and product of inertia with respect to the axesOX1 and
OX2. In Fig. 3.22 we present a given area S with a given origin and three systems
of rectangular coordinatesOX1X2,OX 0

1X
0
2, andOXp

1 X
p
2 .a/ and the corresponding

points lying on Mohr’s circle (b).

3Otto Mohr (1835–1918), German engineer.
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Fig. 3.22 An area S with three systems of rectangular coordinates (a) and the corresponding
Mohr’s circle (b)

Let B1 D B1.IX1 , IX1X2/, and B2 D B2.IX2;�IX1X2/. An intersection of B1B2
with OIX1 yields point C and then we draw the circle of diameter B1B2 having
center C . Comparing our construction in Fig. 3.22b and (3.87) we conclude that
the obtained circle is Mohr’s circle for the given area S (Fig. 3.22a) about point O ,
and hence the principal moments of inertia Imin and Imax are determined. Observe
that tan .B1CA1/ D 2IX1X2

IX1�IX2 D tan .2�p/, and hence owing to (3.88) the angle �p

defines the principal axis corresponding to pointA1. Since IX1 > IX2 and IX1X2 > 0,
the rotation of CB1 into CA1 is clockwise, and also a clockwise rotation through�p

is required to bringOX1 into the corresponding principal axis OXp
1 .

Furthermore, assume that we need to determine the moment and product of in-
ertia IX 0

1
, IX 0

2
, and IX 0

1X
0

2
regarding the axis OX 0

1 andOX 0
2 rotated counterclockwise

in comparison to OX1, as is shown in Fig. 3.22b. We rotate B1B2 counterclockwise
through an angle 2�, and the coordinates of points B 0

1 and B 0
2 define IX 0

1
, IX 0

2
, and

IX 0

1X
0

2
.

3.5 Inertia Tensor, Principal Axes of Inertia, and an Ellipsoid
of Inertia

Let us return to Fig. 3.16 and consider the moment of inertia of a discrete system of
particles with respect to an axis l .

Observe that a projection of vector r.x1n; x2n; x3n/ onto axis l of unit vector
l can be determined by applying the scalar product
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Fig. 3.23 Projection of a

vector
�!

OB of a coordinate
system OX1X2X3

r ı l D .E1x1n C E2x2n C E3x3n/ ı .E1 cos˛1 C E2 cos˛2 C E3 cos˛3/

D cos˛1x1n C cos˛2x2n C cos˛3x3n

D al
0

1 x1n C al
0

2 x2n C al
0

3 x3n � a1lx1n C a2lx2n C a3lx3n; (3.90)

which is confirmed by the auxiliary drawing in Fig. 3.23 (during the calculations
l D 1).

According to (3.66) we obtain (assuming Il D IX 0

l
D Il 0l 0)

Il � I1010 D
3X

i;jD1
Iij a

10

i a
10

j D I11a
10

1 a
10

1 C I12a
10

1 a
10

2 C I13a
10

1 a
10

3

C I21a
10

2 a
10

1 C I22a
10

2 a
10

2 C I23a
10

2 a
10

3 C I31a
10

3 a
10

1 C I32a
10

3 a
10

2

C I33a
10

3 a
10

3 D I11.a11/
2 C I22.a21/

2 C I33.a31/
2 C 2I12a11a21

C 2I13a11a31 C 2I23a21a31 D IX1a
2
11 C IX2a

2
21 C IX3a

2
31

� 2IX1X2a11a21 � 2IX1X3a11a31 � 2IX2X3a21a31: (3.91)

According to Fig. 3.23, based on the coordinates of an arbitrarily chosen point
B.x1B ; x2B ; x3B/ on axis l , we have

a11 � cos˛1 D x1Bq
x21B C x22B C x23B

;
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a21 � cos˛2 D x2Bq
x21B C x22B C x23B

;

a31 � cos˛3 D x3Bq
x21B C x22B C x23B

; (3.92)

that is,

a211 C a221 C a231 D 1: (3.93)

Let us note that relationships (3.91) can be also directly obtained from the
interpretation of the moment of inertia with respect to axis l (Fig. 3.16) and (3.90).
We have

Il D
Z

M

	d2dm D
Z

M

	fr2 � Œ.r ı l/l�2gdm

D
Z

M

	fr2 � .r ı l/2gdm

D
Z

M

	
˚�
x21n C x22n C x23n

� � .a11x1n C a21x2n C a31x3n/
2
�

dm

D
Z

M

	

�
.1 � a211/x21n C .1 � a221/x

2
2n C .1 � a231/x

2
3n

�2a11a21x1nx2n � 2a11a31x1nx3n � 2a21a31x2nx3n
�

dm

D
Z

M

	.x1; x2; x3/

�
.a221 C a231/x

2
1n C .a211 C a231/x

2
2n C .a211 C a221/x

2
3n

�2a11a21x1nx2n � 2a11a31x1nx3n � 2a21a31x2nx3n

�
dm

D
Z

M

	.x1; x2; x3/

�
a211.x

2
2n C x23n/C a221.x

2
1n C x23n/C a231.x

2
1n C x22n/

�2a11a21x1nx2n � 2a11a31x1nx3n � 2a21a31x2nx3n

�
dm

D a211

Z

M

	.x22n C x23n/dmC a221

Z

M

	.x21n C x23n/dm
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Fig. 3.24 Ellipsoid of inertia

Ca231
Z

M

	.x21n C x22n/dm� 2a11a21

Z

M

	x1nx2ndm

�2a11a31
Z

M

	x1nx3ndm� 2a21a31

Z

M

	x2nx3ndm

D a211IX1 C a221IX2 C a231IX3 � 2a11a21IX1X2 � 2a11a31IX1X3
�2a21a31IX2X3 D a211I11 C a221I22 C a231I33 C 2a11a21I12

C2a11a31I13 C 2a21a31I23; (3.94)

where (3.93) was used during transformations.
According to (3.90) the change in position of axis l is accompanied by a change

in cos˛1; cos˛2, and cos˛3, that is, the direction cosines of that axis in the adopted
stationary coordinate system. On each line l from a pencil of straight lines at point
O we will step off the segmentsOO1 and OO2, which are equal to

OO1 D OO2 D �

d
D �

s
M

Il
; (3.95)

where d is the notion of radius of gyration of the body introduced by (3.6) and � is
a certain coefficient.

Points described by (3.95) will lie on the ellipsoid presented in Fig. 3.24. Let
us assume, as earlier, that line l forms with the axes of the stationary coordinate
system the angles ˛1, ˛2, and ˛3. Therefore the coordinates of the points lying on
the surface of the ellipsoid are equal to

xi D ˙�
s
M

Il
cos˛i ; i D 1; 2; 3: (3.96)
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According to (3.91) we have

Il D IX1 cos2 ˛1 C IX2 cos2 ˛2

CIX3 cos2 ˛3 � 2IX1X2 cos˛1 cos˛2

�2IX1X3 cos˛1 cos˛3 � 2IX2X3 cos˛2 cos˛3; (3.97)

and after substitution of (3.96) we obtain

Il D


IX1x

2
1 C IX2x

2
2 C IX3x

2
3 � 2IX1X2x1x2

�2IX1X3x1x3 � 2IX2X3x2x3
�

Il

M�2
;

that is,

IX1x
2
1 C IX2x

2
2 C IX3x

2
3 � 2IX1X2x1x2

�2IX1X3x1x3 � 2IX2X3x2x3 D M�2: (3.98)

Rescaling the coordinates xi 7! �
p
Mxi we obtain

IX1x
2
1 C IX2x

2
2 C IX3x

2
3 � 2IX1X2x1x2

�2IX1X3x1x3 � 2IX2X3x2x3 D 1: (3.99)

The obtained quadric surface is a locus of the endpoints of all segments of length
inversely proportional to the radius of gyration of the body with respect to the axes
passing through the chosen point of the rigid body O ; it will be called an ellipsoid
of inertia of the body at pointO .

Let us note that for every point of the body we have a different ellipsoid of inertia.
Moreover, for a given point of the body the number of ellipsoids depends on the
choice of the parameter � (there can be infinitely many of them).

If the chosen point is the mass center of a rigid body, such an ellipsoid will be
called the centroidal ellipsoid of inertia (or the ellipsoid of inertia) of the body.

The obtained ellipsoid possesses the semiaxes a1; a2 and a3 and can be
represented in the coordinates corresponding to its axes in the following form:

A1x
0
1
2 C A2x

0
2
2 CA3x

0
3
2 D k2; (3.100)

where Aj D IX 0

j
, j D 1; 2; 3, k2 D M�2, and the products of inertia in this

coordinate system are equal to zero. We will call the axes OX 0
j ; j D 1; 2; 3 the

principal axes of inertia, and if O D C , where C is the mass center, then we call
these axes principal centroidal axes of inertia.

On the other hand, the principal axes of ellipsoid (3.100) coincide with the axes
of the ellipsoid of inertia. Because according to (3.95) the radius of the ellipsoid
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OO1 is inversely proportional to the square root of Il .OO1 � 1p
Il
/, the shortest

(longest) axis of the ellipsoid is the principal axis about which the moment of inertia
reaches its maximum (minimum).

In Fig. 3.24 the point lying on the surface of the ellipsoid and the normal vector
N, that is, the vector perpendicular to the surface at the point .x1O1 ; x2O1 ; x3O1/, are
marked. Recall that this vector l can be described by the following equation:

N D rf .x1; x2; x3/ D @f

@x1
E1 C @f

@x2
E2 C @f

@x3
E3; (3.101)

and f .x1; x2; x3/ D M�2 � const describes the left-hand side of (3.98).
Next we calculate

Nx1 � @f

@x1
D 2IX1x1 � 2IX1X2x2 � 2IX1X3x3;

Nx2 � @f

@x2
D �2IX1X2x1 C 2IX2x2 � 2IX2X3x3;

Nx3 � @f

@x3
D �2IX1X3x1 � 2IX2X3x2 C 2IX3x3: (3.102)

If point O1 lies at the end of each of three ellipsoid axes (they are perpendicular

to each other), then N k ���!
OO1, and the components of both vectors must be

proportional to one another, that is,

Nxj D 2�xj ; j D 1; 2; 3; (3.103)

where 2� denotes the proportionality factor.
Substituting (3.103) into (3.102) we obtain

.IX1 � �/x1 � IX1X2 � IX1X3x3 D 0;

�IX1X2x1 C .IX2 � �/x2 � IX2X3x3 D 0;

�IX1X3x1 � IX2X3x2 C .IX3 � �/x3 D 0: (3.104)

The unknown point .x1; x2; x3/ does not coincide with the origin of the coordi-
nate system, that is, it is not the point x1 D x2 D x3 D 0, if

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

� � IX1 IX1X2 IX1X3

IX1X2 � � IX2 IX2X3

IX1X3 IX2X3 � � IX3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D 0: (3.105)
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Expanding the determinant above we have

.� � IX1/Œ.� � IX2/.� � IX3/� I 2X2X3 � � IX1X2 ŒIX1X2.� � IX3/
� IX2X3IX1X3 �C IX1X3ŒIX1X2IX2X3 � IX1X3.� � IX2/�

D .� � IX1Œ�
2 � �.IX2 C IX3/C IX2X3 � I 2X2X3 �

� I 2X1X2.� � IX3/C IX1X2IX2X3IX1X3 C IX1X3IX1X2IX2X3

� I 2X1X3.� � IX2/ D �3 � �2.IX2 C IX3/� IX1�
2 C IX1�.IX2 C IX3/

C.� � IX1/.IX2IX3 � I 2X2X3/� I 2X1X2� C IX3I
2
X1X2

C2IX1X2IX2X3IX1X3 � I 2X1X3� C IX2I
2
X1X3

D �3

�.IX1 C IX2 C IX3/�
2 C �.IX1IX2 C IX1IX3 C IX2IX3

�I 2X1X2 � I 2X1X3 � I 2X2X3/� IX1IX2IX3

C2IX1X2IX2X3IX1X3 C IX3I
2
X1X2

C IX2I
2
X1X3

C IX1I
2
X2X3

D �3 � sI �
2 C sII � � sIII D 0; (3.106)

where we call

sI D IX1 C IX2 C IX3;

sII D IX1IX2 C IX1IX3 C IX2IX3 � I 2X1X2 � I 2X1X3 � I 2X2X3 ;
sIII D IX1IX2IX3 � 2IX1X2IX2X3IX1X3

� IX3I 2X1X2 � IX2I
2
X1X3

� IX1I 2X2X3 (3.107)

the invariants of the inertia tensor at pointO .
It is possible to demonstrate that the obtained characteristic equation of third

order always possesses three real roots, although they are not always distinct.
Each of the roots �n; n D 1; 2; 3 has a corresponding vector of eigenvalues

obtained from the equations in the matrix notation [see (3.104)]

2

666664

IX1 � �n �IX1X2 �IX1X3

�IX1X2 IX2 � �n �IX2X3

�IX1X3 �IX2X3 IX3 � �n

3

777775

2

666664

x1

x2

x3

3

777775
D 0; (3.108)

and the eigenvalues of a real symmetric matrix are real.
In the expanded form according to (3.104) and taking into account (3.96)

and (3.92) we obtain
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.IX1 � �n/a11 � IX1X2a21 � IX1X3a31 D 0;

�IX1X2a11 C .IX2 � �n/a21 � IX2X3a31 D 0;

�IX1X3a11 � IX2X3a21 C .IX3 � �n/a31 D 0: (3.109)

Let us multiply these equations in turn by a11; a21; a31, and adding them we
obtain

.IX1 � �n/a211 C .IX2 � �n/a221 C .IX3 � �n/a
2
31

�2a11a21IX1X2 � 2a11a31IX1X3 � 2a21a31IX2X3 D 0; (3.110)

and using (3.93) we have

�n D IX1a
2
11 C IX2a

2
21 C IX3a

2
31

� 2a11a21IX1X2 � 2a11a31IX1X3 � 2a21a31IX2X3 : (3.111)

From a comparison of (3.91) and (3.111) it can be seen that �n D Il . Thus,
we have demonstrated that the roots of the characteristic equation are equal to
the moments of inertia of the principal axes of inertia passing through the point
O1.x1; x2; x3/, that is, of direction cosines a11, a21, and a31 (we have three such
axes).

This line of reasoning justifies the validity of (3.66) already applied earlier but
presented without proof.

Let us assume that axis l chosen in such a way will be coincident after rotation
with one of the axes ai of the ellipsoid (Fig. 3.24). If that is the case, the products
of inertia with respect to that axis will be equal to zero. Let us take the coordinate
system OX 0

1X
0
2X

0
3 such that the axes of the ellipsoid a1, a2, and a3 coincide with

the axes of that system. The equation of ellipsoid in such a coordinate system
[see (3.100)] takes the form

IX 0

1
x0
1
2 C IX 0

2
x0
2
2 C IX 0

3
x0
3
2 D k2: (3.112)

Three such axes are called the principal axes of inertia of a body at point O (at the
mass center of the body).

If the principal axes of inertia and the corresponding moments of inertia Ai are
known, it is very easy to determine the moment of inertia with respect to axis l ,
which is equal to [see (3.97)]

Il D A1 cos2 ˛1 C A2 cos2 ˛2 C A3 cos2 ˛3; (3.113)

where the angles ˛1; ˛2; ˛3 define the position of axis l with respect to the principal
centroidal axes of inertia of the body.

If the principal moments of inertia are equal (triple root of the characteristic
equation), then
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Il D A.cos2 ˛1 C cos2 ˛2 C cos2 ˛3/ D A; (3.114)

because A1 D A2 D A3 D A.
This means that all lines passing through the mass center are principal axes and

the ellipsoid becomes a ball. The body whose ellipsoid of inertia is a ball we call a
ball-type body (the shape of such a body can be a ball or cube).

In cases where two roots of the characteristic equation are equal (double root),
from (3.113) we obtain (A1 D A2 D A ¤ A3)

Il D A.1 � cos2 ˛3/C A3 cos2 ˛3: (3.115)

Having defined the position of the axis by the angle ˛3 and the values of moments
of inertia A3 and A, we determine the moment of inertia Il . An ellipsoid defined in
that way we call an ellipsoid of revolution because an arbitrary axis perpendicular
to the one defined by the angle ˛3 is the principal axis.

If we take the equation of ellipsoid of the form (3.100) of arbitrary coefficients
IX 0

1
, IX 0

2
, and IX 0

3
, it does not have to represent the ellipsoid of inertia. We are

dealing with an ellipsoid of inertia if the mentioned coefficients satisfy the triangle
inequality of the form

IX 0

1
C IX 0

2

 IX 0

3
; IX 0

1
C IX 0

3

 IX 0

2
; IX 0

2
C IX 0

3

 IX 0

1
: (3.116)

Let us note that

IX 0

1
C IX 0

2
D
Z

M

�
X2
20 C x230 C x210 C x230

�
dm

D 2

Z

M

x230 dmC I 0
X3


 I 0
X3
: (3.117)

In a similar way we can prove the other inequalities (3.116).

3.6 Properties of Principal and Principal Centroidal
Axes of Inertia

Let us assume that axis X3 is a principal centroidal axis of inertia at point O , and
the remaining axes of the Cartesian coordinate systemOX1X2X3 are arbitrary. Each
pointO1.x1; x2; x3/ has a counterpartO2.�x1; �x2; x3/ symmetrical with respect
to the axis X3. Inserting the coordinates of pointsO1 and O2 into (3.99) we obtain
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Fig. 3.25 Principal
centroidal axis of inertia CX3
(a) and principal axis of
inertia OX3 (b)

IX1x
2
1 C IX2x

2
2 C IX3x

2
3 � 2IX1X2x1x2

� 2IX1X3x1x3 � 2IX2X3x2x3 D 1;

IX1x
2
1 C IX2x

2
2 C IX3x

2
3 � 2IX1X2x1x2

C 2IX1X3x1x3 C 2IX2X3x2x3 D 1: (3.118)

Combining those equations we obtain

x3.IX2X3x2 � IX1X3x1/ D 0; (3.119)

and because x1 ¤ 0, x2 ¤ 0, and x3 ¤ 0, from (3.119) it follows that

IX2X3 D 0; IX1X3 D 0: (3.120)

If any of the axes of the Cartesian coordinate system of origin at a given point is
the principal axis of inertia at that point, then the products of inertia in which there
appear coordinates of this axis are equal to zero.

In Fig. 3.25a an axis CX3 is shown; it is the principal centroidal axis of inertia of
a body. In Fig. 3.25b an axis OX3 is presented, and this axis is the principal axis of
inertia of the body at point O .

Both axes are principal axes of inertia, that is,

IX2X3 D
NX

nD1
mnx2nx3n D 0; IX1X3 D

NX

nD1
mnx1nx3n D 0: (3.121)

On both axes let us take pointsO 0.CO 0 D d D OO 0/ and draw through them the
axes O 0X 0

1 k OX1, O 0X 0
2 k OX2, O 0X 0

1 k CX1, and O 0X 0
2 k CX2. Let us calculate

the following products of inertia:

I
X

0

2X3
D

NX

nD1
mnx2n.x3n � d/
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D
NX

nD1
mnx2nx3n � d

NX

nD1
mnx2n D �dmx2C ;

I
X

0

1X3
D �dmx1C : (3.122)

In the case of the principal centroidal axis of inertia x1C D x2C D 0 and in view
of that, IX 0

2X3
D IX 0

1X3
D 0. The conclusion follows that the axis CX3 is the

principal axis of inertia not only at point C but also at point O 0. Because O 0 has
been arbitrarily chosen, the principal centroidal axis of inertia is the principal axis
of inertia for all its points.

If an axis is the principal axis and it does not pass through the mass center of the
body (Fig. 3.25b), then x1C ¤ 0 and x2C ¤ 0, that is, IX 0

2X3
¤ 0 and IX 0

1X3
¤ 0,

which means that the axis OX3 is not the principal axis of inertia at the pointO 0.
From that conclusion it can be deduced that if the principal axis of inertia does

not pass through the mass center of a rigid body, then it is the principal axis at only
one of its points.

The reader is advised to prove the following two observations:

1. If a homogeneous rigid body has an axis of symmetry, then that axis is its
principal centroidal axis of inertia.

2. If a homogeneous rigid body has a plane of symmetry, then at all points of this
plane one of principal axes of inertia is perpendicular to that plane.

3.7 Determination of Moments of Inertia of a Rigid Body

3.7.1 Determination of Moments of Inertia of a Body
with Respect to an Arbitrary Axis

A moment like that can be determined easily if the directions of the principal
centroidal axes of inertia and the moments of inertia of a body about those axes
are known.

Let an axis l pass through the mass center of the body (Fig. 3.26).
In this case we have

Il D
3X

iD1
Ii cos2 ˛i : (3.123)

Let axis l not pass through the mass center of a body. In this case, first the moment
of inertia with respect to an axis l 0 k l passing through point C (the mass center) is
determined, and then, by Steiner’s theorem, Il is obtained:
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Fig. 3.26 Axis l passes (a) and does not pass (b) through the mass center of a rigid body

Il 0 D
3X

iD1
Ii cos2 ˛i ;

Il D Il 0 Cmd2; (3.124)

since the distance between l and l 0 is denoted d .

3.7.2 Determination of Mass Moments of Inertia
of a Rigid Body

The mass moments of inertia of a rigid body can be determined if the directions of
the principal centroidal axes of inertia and the moments of inertia about those axes
are known.

Case 1. The axes of coordinate systems CX1X2X3 and O 0X 0
1X

0
2X

0
3 are mutually

parallel (Fig. 3.27).
From Fig. 3.27 it follows that

���!
O 0An D ��!

O 0C C ��!
CAn; (3.125)

which leads to the determination of relations between the coordinates of point A in
both coordinate systems:

x0
1n D x0

1C C x1n;

x0
2n D x0

2C C x2n;

x0
3n D x0

3C C x3n: (3.126)

As an example, we determine the product of inertia
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Fig. 3.27 Determination of
mass moments of inertia in
the system O 0X 0

1X
0

2X
0

3, where
O 0X 0

i k CXi , i D 1; 2; 3

IX 0

1X
0

2
D

1X

nD1
mnx

0
1nx

0
2n D

1X

nD1
mn.x

0
1C C x1n/.x

0
2C C x2n/

D
1X

nD1
mnx

0
1C x

0
2C C

1X

nD1
mnx

0
1C x2n C

1X

nD1
mnx1nx

0
2C

C
1X

nD1
mnx1nx2n D x0

1C x
0
2C

1X

nD1
mn C x0

1C

1X

nD1
mnx2n

C x0
2C

1X

nD1
mnx1n C

1X

nD1
mnx1nx2n: (3.127)

We have

1X

nD1
mn D M;

1X

nD1
mnx1nx2n D IX1X2 ;

1X

nD1
mnx1n D 0;

1X

nD1
mnx2n D 0; (3.128)

and the last two equations follow from the observation that axes CX1 and CX2 are
the principal centroidal axes. Proceeding in an analogous way with the remaining
axes we eventually obtain

IX 0

1X
0

2
D IX1X2 CMx0

1C x
0
2C ;

IX 0

2X
0

3
D IX2X3 CMx0

2C x
0
3C ;

IX 0

3X
0

1
D IX3X1 CMx0

3C x
0
1C : (3.129)
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Fig. 3.28 Determination of
products of inertia in case
where axes of systems
CX 0

1X
0

2X
0

3 and CX1X2X3
are rotated with respect
to each other

Case 2. The coordinate axes of the system CX
0

1X
0

2X
0

3 pass through the mass center
of a rigid body and form known angles ˛i , i D 1; 2; 3, with the system CX1X2X3
(Fig. 3.28).

From Fig. 3.28 it follows that

a11 D cos.E0
1;E1/ D E0

1 ı E1; a21 D cos.E0
2;E1/ D E0

2 ı E1;

a31 D cos.E0
3;E1/ D E0

3 ı E1;

a12 D cos.E0
1;E2/ D E0

1 ı E2; a22 D cos.E0
2;E2/ D E0

2 ı E2;

a32 D cos.E0
3;E2/ D E0

3 ı E2;

a13 D cos.E0
1;E3/ D E0

1 ı E3; a23 D cos.E0
2;E3/ D E0

2 ı E3;

a33 D cos.E0
3;E3/ D E0

3 ı E3: (3.130)

Because the vector

rn D E0
1x

0
1n C E0

2x
0
2n C E0

3x
0
3n D E1x1n C E2x2n C E3x3n; (3.131)

the above equations are successively multiplied by E0
1, E0

2, and E0
3, and taking into

account (3.130) we obtain

r0
n D Arn; (3.132)

or, in expanded matrix form,

2

666664

x0
1n

x0
2n

x0
3n

3

777775
D

2

666664

a11 a12 a13

a21 a22 a23

a31 a32 a33

3

777775

2

666664

x1n

x2n

x3n

3

777775
; (3.133)
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which defines the relation between coordinates of a point in coordinate systems
CX1X2X3 and CX 0

1X
0
2X

0
3. As an example, we determine the product of inertia

IX 0

2X
0

3
D

1X

nD1
mnx

0
2nx

0
3n D

1X

nD1
mn.a21x1n C a22x2n

C a23x3n/.a31x1n C a32x2n C a33x3n/

D
1X

nD1
mn.a21a31x

2
1n C a21a32x1nx2n C a21a33x3nx1n

C a22a31x1nx2n C a22a32x
2
2n C a22a33x2nx3n

C a23a31x3nx1n C a23a32x2nx3n C a23a33x
2
3n/

D a21a31

1X

nD1
mnx

2
1n C a22a32

1X

nD1
mnx

2
2n

C a23a33

1X

nD1
mnx

2
3n C .a21a32 C a22a31/

1X

nD1
mnx1nx2n

C .a21a33 C a23a31/

1X

nD1
mnx3nx1n

C .a22a33 C a23a32/

1X

nD1
mnx2nx3n: (3.134)

In the above equation

1X

nD1
mnx1nx2n D 0;

1X

nD1
mnx3nx1n D 0;

1X

nD1
mnx2nx3n D 0; (3.135)

because the axes CX1, CX2, and CX3 are the principal centroidal axes of inertia of
a body.

From (3.133) it follows that

2

666664

E0
1

E0
2

E0
3

3

777775
D

2

666664

a11 a12 a13

a21 a22 a23

a31 a32 a33

3

777775

2

666664

E1

E2

E3

3

777775
; (3.136)
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from which we determine

E0
2 D a21E1 C a22E2 C a23E3;

E0
3 D a31E1 C a32E2 C a33E3; (3.137)

and calculate

E0
2 ı E0

3 D .a21E1 C a22E2 C a23E3/ ı .a31E1 C a32E2 C a33E3/

D a21a31 C a22a32 C a23a33 D 0; (3.138)

and hence obtain

a23a33 D �.a21a31 C a22a32/: (3.139)

Substituting (3.139) into (3.134) we obtain

IX 0

2X
0

3
D a21a31

1X

nD1
mn.x

2
1n � x23n/C a22a32

1X

nD1
mn.x

2
2n � x23n/

D a21a31

h 1X

nD1
mn.x

2
1n C x22n/�

1X

nD1
mn.x

2
2n C x23n/

i

C a22a32

h 1X

nD1
mn.x

2
1n C x22n/�

1X

nD1
mn.x

2
3n C x21n/

i
: (3.140)

Proceeding in a similar way with the remaining products of inertia we eventually
obtain

IX 0

2X
0

3
D a21a31.IX3 � IX1/C a22a32.IX3 � IX2/;

IX 0

3X
0

1
D a11a31.IX3 � IX1/C a12a32.IX3 � IX2/;

IX 0

1X
0

2
D a11a21.IX3 � IX1/C a12a22.IX3 � IX2/: (3.141)

Case 3. The axes of the coordinate system OX 00
1 X

00
2 X

00
3 pass through an arbitrary

pointO of a rigid body (Fig. 3.29).
In order to determine the products of inertia IX 00

2 X
00

3
, IX 00

3 X
00

1
, and IX 00

1 X
00

2
we

introduce at point C the coordinate system OX 0
1X

0
2X

0
3 of axes mutually parallel

to the axes of the system OX 00
1 X

00
2 X

00
3 . Knowing the direction cosines of angles

between the axes of systems CX 0
1X

0
2X

0
3 and CX1X2X3, we can make use of (3.141)

to determine IX 0

2X
0

3
, IX 0

3X
0

1
, and IX 0

1X
0

2
. Knowing the position of the mass center C

in the coordinate system CX 00
1 X

00
2 X

00
3 , according to second Steiner’s theorem, we

obtain

IX 00

2 X
00

3
D IX 0

2X
0

3
CMx00

2C x
00
3C
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Fig. 3.29 An arbitrary
position of the coordinate
system OX 00

1 X
00

2 X
00

3

D Mx00
2C x

00
3C C a21a31.IX3 � IX1/C a22a32.IX3 � IX2/;

IX 00

3 X
00

1
D IX 0

3X
0

1
CMx00

3C x
00
1C

D Mx00
3C x

00
1C C a11a31.IX3 � IX1/C a12a32.IX3 � IX2/;

IX 00

1 X
00

2
D IX 0

1X
0

2
CMx00

1C x
00
2C

D Mx00
1C x

00
2C C a11a21.IX3 � IX1/C a12a22.IX3 � IX2/: (3.142)
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Chapter 4
Particle Kinematics and an Introduction
to the Kinematics of Rigid Bodies

4.1 Particle Motion on a Plane

First of all, the word kinematics comes from the Greek word for motion. As was
already mentioned, kinematics is the branch of mechanics that deals with the
analysis of motion of particles and rigid bodies in space, but from a geometric point
of view, that is, neglecting the forces and torques that produce the motion.

Because the motion of a particle or a mechanical system takes place in time
and space, in classical mechanics (as distinct from relativity theory), the notions of
absolute time and absolute space are introduced.

In mechanics the notion of absolute time indicates a constantly changing quantity
whose value increases from the past to the future. It is assumed that this quantity
is identical at all points of matter. It is homogeneous and does not depend on the
motion of matter.

In turn, absolute space denotes a three-dimensional, homogeneous, and isotropic
Euclidean space. Results obtained in relativistic physics show that the assumption
of such a model of space is justified for relatively small regions of physical space
(of the Universe).

The concept of motion has a relative character. We say that one rigid body moves
with respect to another if distances between certain points of the bodies change.

In order to investigate the geometrical properties of motion, in kinematics one
introduces a certain rigid body that is fixed. The motion of other bodies with
respect to that body is called absolute motion. One introduces the system of absolute
coordinates rigidly connected to the fixed body, and the motion of some other body
is described with respect to those coordinates.

During analysis or synthesis of motion on Earth or in its vicinity, as the system
of absolute coordinates one takes the system rigidly connected to Earth. The body
is in a state of relative rest if it does not move with respect to the chosen coordinate
system.

Although in calculations in Euclidean three-dimensional space time is taken into
account and has an approximate character, the calculations are sufficiently close to
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the real kinematic states of bodies and particles, provided that the considered speeds
are significantly smaller than the speed of light.

Among the pioneers of kinematics one should count Euler. Galileo was the first
to introduce the notion of acceleration, which was then extended to notions of
tangential and normal accelerations by Huygens.1

A breakthrough development of kinematics took place in the nineteenth century
due to the development of machines and mechanisms, which led to the emergence
of a branch of science called the kinematics of machines and mechanisms.

In particle kinematics only three units are used: 1 m, 1 s, and 1 rad, and all the
characteristics of motion, i.e., displacement, speed, and acceleration, are described
with the aid of these three units only.

In kinematics, the time t can be considered in the interval �1 < t < 1, since
while “being” in a particular moment of time it is possible to go back to the past by
means of a “return through time.”

In kinematics it is assumed that the notion of a particle is the same as the notion
of a geometric point.

A set of successive positions of a particle in Euclidean space is called the
trajectory of motion of that point. When the trajectory of motion of a particle in
the time interval tk < t < tkC1 is a straight line, then the motion of this particle is
called rectilinear motion. Otherwise it is called curvilinear motion. If the trajectory
of motion is closed, i.e., the motion is repetitive, then the motion can proceed, e.g.,
along a rectangle, an ellipse, or a circle.

Kinematics deals with two basic problems:

1. Prescription of motion with properties defined in advance.
2. Determination of displacements, velocities, and accelerations of the particles of

mechanical systems.

The current chapter was elaborated on the basis of the classical works [1–4] and
Polish/Russian monographs [5–11].

4.1.1 Motion of a Particle and Trajectory (Path) of Motion

As was already mentioned, the trajectory of motion of a particle can be a straight
or curved line. Let us assume that we have some trajectory given in advance along
which moves a particle A (Fig. 4.1).

1Christian Huygens (1629–1695), Dutch mathematician, physicist and astronomer; he worked on
the development of differential–integral calculus, formulated a theory of dice games, and was the
first to calculate the speed of light.



4.1 Particle Motion on a Plane 189

Fig. 4.1 Motion of a particle
A on a straight line (a) and
on a curve (b)

Thus, in the general case, the motion of a particle on a trajectory takes place
along the curve A0A D s, where A0 D A.0/, A D A.t/, that is

s D f .t/; (4.1)

and the foregoing equation shows the change in point position along the path.
The equation of motion for a particle is defined if its trajectory of motion, origin

O of motion, and direction and the function s D s.t/ are known.
The adopted arc coordinate s should not be confused with the distance traveled

by the particle because we deal with the latter only when the motion of particle A
begins at pointO and proceeds to the right, that is, in the positive direction.

The distance traveled by a particle in the time interval Œt0; t � is equal to

jA0Aj D jOA�OA0j D js � s0j: (4.2)

The total differential of an arc coordinate corresponding to time interval dt reads

ds D f 0.t/dt; (4.3)

where ds > 0 .ds < 0/ if the motion takes place to the right (to the left) with respect
to point O .

An elementary increment of the distance is equal to

jdsj D jf 0.t/jdt; (4.4)

and the distance traveled in the time interval Œ0; t � reads

jsj D
Z t

0

jf 0.t/jdt; (4.5)

and quantities s and jsj are expressed in meters, assuming that s.t/ is a monotonic
function.
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Fig. 4.2 Tracking of particle
A’s motion with the aid of a
position vector r D r.t /

The presented method of describing particle motion is called a natural way.
Let us consider another way to describe the motion of a particle A in Euclidean

space (Fig. 4.2).
Let us take one fixed point O in this space, called the center. The equation of

motion of particle A is given by the vector function

r D r.t/: (4.6)

The trajectory of motion of particle A is a set of tips of the radius vector r.t/ in
his consecutive positions.

In general, a curve formed by such a set of tips of a vector attached at a fixed
point is called a hodograph of a vector.

The particle trajectory shown in Fig. 4.2 is the hodograph of the radius vector of
that particle. The above method of describing a particle’s motion is called a vectorial
way.

The position of particle A in time can also be observed after some system of
rectilinear or curvilinear coordinates is chosen. In Fig. 4.3 the motion of a particle
A is shown in the Cartesian coordinate system.

The motion of this particle is described by three equations:

xi .t/ D fi .t/; i D 1; 2; 3: (4.7)

Equation (4.7) can be treated as parametric equations of the trajectory of a
particle’s motion. From the first equation of (4.7) we can determine the time:

t D t.x1/; (4.8)

and inserting (4.8) into the two remaining (4.7) we obtain
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Fig. 4.3 Motion of a particle
A in Cartesian coordinate
system

Fig. 4.4 Average and
instantaneous velocity
of a particle A

x2 D f2.x1/;

x3 D f3.x1/; (4.9)

which corresponds to the elimination of time, and the two equations of (4.9) describe
a curve in three-dimensional space also called the path of a particle.

4.1.2 Velocity of a Particle

The vector quantity characterizing the direction of particle motion and rate of
change in its position in the adopted way of measurement and observation is called
the velocity of a particle.

In we wish to track the motion of particle A using the radius vector r D r.t/, we
make use of the vector equation obtained on the basis of Fig. 4.4.

On a trajectory let us choose two positions of particle A described by the radii
vectors r.t/ and r1.t C�t/. From �OAA1 it follows that
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Fig. 4.5 Velocity of a
particle in natural coordinates

r1.t C�t/ D r.t/C�r; (4.10)

and dividing by �t we obtain

vav D �r
�t
; (4.11)

and the direction and sense of average velocity vav of particle A coincide with the
vector�r.

If we take �t ! 0 in (4.11), we obtain

lim
�t!0

�r
�t

D dr
dt

� v: (4.12)

The velocity vector of particle A is tangent to its trajectory of motion, and its
sense is determined by the particle motion, that is, by positions in successive time
instants.

In everyday speech, instead of the term velocity vector (acceleration vector), the
notion of velocity (acceleration) is used.

We will now describe the velocity vector of particle A using natural coordinates
(Fig. 4.5). The trajectory of particle motion, originO , and equation of motion for the
particle s D f .t/ are known. The positions of points A.s/ and A.sC�s/1 correspond
to time instants t and t C �t , and we have �s D bAA1. We choose the arbitrary
centerO1 and introduce two radius vectors describing the positions of pointsA and
A1. We successively have

v D dr
dt

D dr
ds

ds

dt
D �

ds

dt
; (4.13)

where � is a unit vector of velocity, that is, it is tangent to the trajectory at point A
and its sense is determined by increasing the arc coordinate.

On the other hand,

� D dr
ds

D lim
�s!0

�r
ds
; (4.14)
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Fig. 4.6 Velocity of particle
A in Cartesian coordinates

and its magnitude is equal to

lim
�s!0

ˇ̌
ˇ̌
ˇ
�r
�s

ˇ̌
ˇ̌
ˇ D lim

A1!A

 
AA1

bAA1

!
D 1: (4.15)

In turn, the second factor in (4.13) ds
dt is an algebraic quantity of velocity, that is,

it describes the projection of the velocity vector v onto the tangent line, that is,

v D
ˇ̌
ˇ̌
ˇ
ds

dt

ˇ̌
ˇ̌
ˇ; (4.16)

which means that the magnitude of the velocity is equal to the absolute value of the
derivative of the particle’s arc coordinate with respect to time.

If ds
dt > 0 . ds

dt < 0/, then the function f .s/ increases (decreases) and the sense
of velocity v is in agreement with (opposite to) the sense of the unit vector �. If the
direction of motion changes, then it means that ds

dt .t0/ D 0 at a certain time instant.
Eventually, we will describe the velocity vector of particle A in the system of

Cartesian coordinates (Fig. 4.6).
According to Fig. 4.6 we have

r D E1x1 C E2x2 C E3x3; (4.17)

and differentiation with respect to time

v D dr
dt

D E1 Px1 C E2 Px2 C E3 Px3 D vx1 C vx2 C vx3 : (4.18)
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Fig. 4.7 Velocity vectors at points A1; A2; : : : ; An (a) and velocity hodograph (b)

Fig. 4.8 Trajectory of motion (a) and velocity hodograph (b) of a particle A in space

The magnitude and direction of velocity of the particle is described by the
equations

v D
q

v2x1 C v2x2 C v2x3 ;

cos.v;Ei / D vxi
v
; i D 1; 2; 3: (4.19)

Let the motion of the point be a plane, i.e., let it be on the X1OX2 flat surface
and let xi D fi .t/. Thus we have

v D
q

v2x1 C v2x2;

cos.v;Ei / D vxi
v
; i D 1; 2: (4.20)

In the case of rectilinear motion x1 D f .t/, v D j dx
dt j and vx > 0 .vx < 0/ if

particle A moves in agreement with (opposite to) the sense of the axis OX1.
If the particle moves on a curve in a non-uniform way, as was shown in

Fig. 4.7a, then at the points A1; A2; : : : ; An we have different velocity vectors
vA1; vA2; : : : ; vAn ; at this point its tips will form a curve called a velocity hodograph
(Fig. 4.7b).

Figure 4.8 presents the trajectory and a velocity hodograph of particleA in space.
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Fig. 4.9 Velocities of particles A and A1 (a) and velocity hodograph (b)

From Fig. 4.8b it follows that

v D v1E1 C v2E2 C v3E3 D Px1E1 C Px2E2 C Px3E3; (4.21)

and hence we obtain three scalar equations,

Pxi D vi ; i D 1; 2; 3; (4.22)

called the parametric equations of a velocity hodograph.

4.1.3 Acceleration of a Particle

Figure 4.9 presents the motion of a particle A along a curve and the velocity
hodograph of this particle.

From Fig. 4.9a it follows that the increment of velocity �v during time �t is
equal to

�v D v1 � v; (4.23)

and dividing both sides of the above equation by �t we have

aav D �v
�t
; (4.24)

and successively

a D lim
�t!0

�v
�t

D dv
dt

D d2r
dt2

: (4.25)

The acceleration vector is equal to the first derivative of the velocity vector with
respect to time or to the second derivative of the radius vector with respect to time.

The acceleration of the particle characterizes the rate of change in magnitude and
direction of the velocity vector.
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Fig. 4.10 Motion of a
particle A on a planar curve

As can be seen from the construction presented in Fig. 4.9, the velocity vector is
tangent to the velocity hodograph.

In the general case, the trajectory of motion of particle A is not a planar curve.
The vector aav lies in the plane determined by the tangent to the trajectory at pointA
and the line passing through A and parallel to v1.

If the curve is planar, then the plane in which it lies is the osculating plane. The
velocity vector lies in the osculating plane and points to the inside of the bend of
the curve. We will describe the acceleration vector of the particle in the Cartesian
coordinate system by giving its magnitude and direction. We have

a D d2r
dt2

D E1
d2x1
dt2

C E2
d2x2
dt2

C E3
d2x3
dt2

D E1
dv1
dt

C E2
dv2
dt

C E3
dv3
dt
: (4.26)

From (4.26) it follows that projections of the acceleration vector on the axes of
the Cartesian coordinate system are equal to the second derivatives of the respective
coordinates with regard to time or to the first derivatives of projections of the
velocity vector on the respective axes with regard to time (Fig. 4.10).

The magnitude and orientation of the acceleration vector are described by the
equations

a D
q
a2x1 C a2x2 C a2x3 ; cos.a;Ei / D axi

a
; i D 1; 2; 3: (4.27)

If we are dealing with planar motion, then

a D
q
a2x1 C a2x2 ; cos.a;Ei / D axi

a
; i D 1; 2: (4.28)

Finally, in the case of rectilinear motion we have x D f .t/ and the acceleration
a is in agreement with (opposite to) the sense of the axis if ax > 0 .ax < 0/.

Let us now consider how to determine the acceleration vector in natural
coordinates (Fig. 4.11).
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Fig. 4.11 Natural coordinates

At point A of the curve we draw the osculating plane, the normal plane
perpendicular to it, and the third plane perpendicular to both of those planes; this
is called the binormal plane. The following three mutually perpendicular axes are
called natural axes:

1. Tangent axis directed in agreement with the increment of the arc coordinate.
2. Principal normal axis directed to the inside of the bend of the curvature.
3. Binormal axis chosen in such a way that the system .�; n; b/ is right-handed.

The system of natural coordinates moves on the curve simultaneously changing
orientation in space.

In Fig. 4.12 are shown two positions of particles A D s and A1 D s C �s.
Although the magnitude of the unit vector j�j D 1, this vector is not constant
because it changes direction. From Fig. 4.12 it follows that

�� D �1 � �; (4.29)

and after division by �s we obtain the vector of average curvature of the trajectory
�av, which characterizes the change in position of � on the arc AA1.

If �s ! 0, then we obtain the definition of the vector of curvature of a curve
(trajectory) at point A of the form

� D lim
�s!0

��

�s
D d�

ds
: (4.30)
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Fig. 4.12 Vector of curvature
�; vector of average curvature
�av (a) and the magnitude of
the vector �� (b)

The vector of curvature of the curve at a given point is equal to the derivative
of a unit vector of the axis tangent to the curve with respect to the arc coordinate.
The sense of the vector � is in agreement with the sense of the vector ��. The
magnitude of the vector j��j is equal to (Fig. 4.12b)

j��j D 2� sin.˛=2/ Š ˛; (4.31)

and in view of that,

� D lim
�s!0

ˇ̌
ˇ̌��
�s

ˇ̌
ˇ̌ D lim

�s!0

˛

�s
D 1

	
: (4.32)

From differential geometry it is known that the ratio of angle ˛ to the increment
of arc coordinate �s, provided that �s ! 0, is equal to the curvature of a curve
	�1, where 	 denotes the radius of curvature of a curve at point A.

The vector � lies in the osculating plane and is directed along the principal
normal toward the center of curvature and can be represented in the form of the
vector equation

� D n
1

	
; (4.33)

where 	 is the radius of curvature at point A.
The acceleration a of particle A is equal to

a D dv
dt

D d�

dt

ds

dt
C �

d2s

dt2
: (4.34)

Because v D � � ds
dt , (see (4.13)) from (4.33) and (4.34) we obtain

a D n
v2

	
C �

d2S

dt2
D nan C �a� ; (4.35)

where . ds
dt /

2 D v2.
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Fig. 4.13 Vector of
acceleration a in natural
coordinates

The projection of acceleration a of point A on the principal normal is equal to
the square of magnitude of velocity of point A divided by the radius of curvature at
this point. The projection of acceleration a of pointA on the tangent axis is equal to
the second derivative with respect to the time of the arc coordinate of this point or
to the first derivative with respect to the time of velocity dv

dt of the point.
If 	 D 1, which takes place in the case of motion of the point along a straight

line, we have an D v2=	 D 0.

Normal acceleration exists only during the motion of a particle along a curve and
characterizes the change in the direction of velocity.

During uniform motion, v D const , and then a� D dv
dt D 0.

Tangential acceleration exists only during the non-uniform motion of a particle and
characterizes the change in the magnitude of velocity.

If we know the magnitudes of velocity and acceleration of the particle in
rectilinear coordinates

v D
q

v2x1 C v2x2 C v2x3; a D
q
a2x1 C a2x2 C a2x3 ; (4.36)

then we successively calculate

a� D dv

dt
D d

dt

q
v2x1 C v2x2 C v2x3 D vx1

dvx1
dt C vx2

dvx2
dt C vx3

dvx3
dtq

v2x1 C v2x2 C v2x3

D vx1ax1 C vx2ax2 C vx3ax3
v

D v ı a
v
; (4.37)

an D
q
a2 � a2� ; 	 D v2

an
; (4.38)

that is, we determine accelerations a� and an and the radius of curvature 	 in natural
coordinates (Fig. 4.13).
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4.2 Selected Problems of Planar Motion of a Particle

4.2.1 Rectilinear Motion

If the particle selected for consideration is in rectilinear motion, then after the
introduction of axis OX , the position of particle A at time instant t is determined
by one coordinate x.t/. The time occurs here as a parameter (Fig. 4.14).

The speed of that particle directed along the OX axis is equal to

vx D lim
�t!0

�x

�t
D dx

dt
D Px.t/: (4.39)

If in equal time intervals �t the particle travels equal distances�x, then we call
such motion a uniform rectilinear motion.

The average velocity in uniform rectilinear motion is equal to vav D �x=�t ,
whereas the instantaneous velocity of the motion is defined by (4.39). If the particle
moves in agreement with (opposite to) the positive direction of the OX axis, the
speed of that particle vx > 0 (vx < 0).

The rate of change in speed of the particle is characterized by an acceleration.
When the particle travels along a straight line, its acceleration is given by

ax D lim
�t!0

�vx
�t

D d2x

dt2
D Rx.t/: (4.40)

If the considered particle moves with the acceleration constant as to direction and
magnitude, then taking the direction of theOX axis in accordance with the direction
of the acceleration, we have

jaj D ax D Rx.t/ D const: (4.41)

Integrating (4.41) we obtain

vx D Px.t/ D axt C C1; (4.42)

where C1 denotes the constant of integration. Integrating (4.42) we obtain

x D axt2

2
C C1t C C2: (4.43)

In order to define the motion it is necessary to know its initial conditions, which
we will assume to be

Fig. 4.14 Rectilinear motion
of a particle
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Fig. 4.15 Velocity and acceleration of a particle A at the time instant t0 D 0 and t

x.t D 0/ D x0;

vx.t D 0/ D vx0 : (4.44)

Substituting (4.44) into (4.42) and (4.43) we obtain

C1 D vx0 ; C2 D x0: (4.45)

Substituting (4.45) into (4.42) and (4.43) we have

x D axt2

2
C vx0 t C x0; vx D axt C vx0 : (4.46)

If the sense of initial velocity vx is in agreement with the positive direction of
the OX axis, then for the total duration of motion the values of x and vx increase
(Fig. 4.15). Motion like that is called uniformly accelerated motion.

In the case where the initial velocity vx possesses a sense opposite to the assumed
sense of the acceleration ax , (4.46) will take the form

x D axt2

2
� vx0 t C x0; vx D axt � vx0: (4.47)

In the time interval 0 	 t <
vx0
ax

, the speed vx < 0. In this time interval the
motion proceeds in agreement with the sense of initial velocity and opposite to the
sense of acceleration. Such motion is called uniformly decelerated motion. In that
interval the speed decreases and attains a value equal to zero for the time instant
t0 D vx0

ax
. For the time t > t0 the sense of velocity is in agreement with the sense

of acceleration, that is, the change in the sense of particle motion occurs at the time
instant t D t0 (Fig. 4.16).

4.2.2 Rectilinear Harmonic Motion and Special Cases
of Plane Curvilinear Motion

Apart from the described uniformly accelerated and decelerated motions, the motion
of a particle along a straight line can be harmonic motion. As we will see later, such
motion can also be described by the same equation if the particle trajectory is a
circle.
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Fig. 4.16 Graphical representation of displacement (a) and velocity (b) governed by (4.46)

The harmonic motion is described by the following second-order differential
equation:

Rx C ˛2x D 0; (4.48)

whose solution is
x D a sin.˛t C  0/: (4.49)

In the equation above a denotes an amplitude of motion, ˛ the frequency of
motion of the point, and the angle  0 is called the initial phase since the argument
˛t C �0 is called a phase of harmonic motion. The amplitude and initial phase of
motion are defined by imposing the initial conditions of the motion. We will conduct
an analysis of the motion using (4.49). It is easy to notice that the motion takes place
around pointO , which is the origin of the adopted coordinate axis. The most remote
position of a particle from the origin O is equal to a, so it is equal to the amplitude
of motion. Because the motion is harmonic, let us try to determine the shortest time
T after which the motion will start to repeat itself. The condition of repetition will
take the form

˛.t C T /C  0 D ˛t C  0 C 2�; (4.50)

from which we find T D 2�=˛. From the last equation we will determine the
frequency of motion as

f D T �1 D ˛

2�
; (4.51)

which is understood as the number of periods per unit of time. Differentiating (4.49)
we will easily determine the speed and acceleration of the point motion

vx D Px D a˛ cos.˛t C  0/;

ax D Rx D �a˛2 sin.˛t C  0/: (4.52)
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Fig. 4.17 Circular motion of
a particle with constant speed
v . D ˛t; r D a/

At the time instants in which the speed is equal to zero, the acceleration reaches
its maximum value. The simple interpretation of a harmonic motion can be obtained
by an analysis of the circular motion of a particle.

From Fig. 4.17 it follows that after projecting the point moving uniformly along
the circle onto the OX1 axis we obtain

x1 D a cos˛t D a sin
�
˛t C �

2

	
; (4.53)

which means that we are dealing with the harmonic motion (˛ D const).
The curvilinear motion of point along a circle is a special case of motion along

an ellipse.
Let us consider the motion of a point described by the following equations:

x1 D a cos˛t; x2 D b sin˛t: (4.54)

Eliminating parameter t from (4.54) we obtain the equation of an ellipse:

x21
a2

C x22
b2

D 1; (4.55)

which is depicted in Fig. 4.18.
The speed of motion of point A of coordinates x1 and x2 is equal to

v D
q

v2x1 C v2x2 D
p
.�a˛ sin ˛t/2 C .b˛ cos˛t/2

D ˛
p
b2 cos2 ˛t C a2 sin2 ˛t D ˛

r
b2

a2
x21 C a2

b2
x22 : (4.56)

If vx1 D �ab�1˛x2, vx2 D ba�1˛x1, then the vector v D vx1E1 C vx2E2 lies on
a tangent to the ellipse at point A and possesses the sense indicated in the figure.
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Fig. 4.18 Motion of a point
along an ellipse of axes 2a
and 2b

Fig. 4.19 Curvilinear planar
motion of a point determined
by initial conditions (4.58)
and (4.59)

Let us note that both values of the components of acceleration at the position of
point A (Fig. 4.18) have signs opposite to unit vectors E1 and E2 because

ax1 D �a˛2 cos˛t; ax2 D �b˛2 sin ˛t: (4.57)

The vector of acceleration a has a magnitude

a D
q

a2x1 C a2x2 D ˛2
p
a2 cos2 ˛t C b2 sin2 ˛t D ˛2r;

where r D
q
x21 C x22 (Fig. 4.18).

From the foregoing discussion one can draw the conclusion that the acceleration
of a point traveling along an ellipse depends on the position of the point and
possesses the direction of the radius vector and a sense toward the center of the
ellipse.

Finally, let us consider the case where a particle moves in a plane with a
curvilinear motion with the acceleration ja0j constant as to direction and magnitude.
We take the Cartesian coordinate systemOX1X2 in such way that the axisOX2 k a0
(Fig. 4.19).
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Let us take the following initial conditions:

x1.t D 0/ D x10; x2.t D 0/ D x20; (4.58)

vx1.t D 0/ D v0 cos˛; vx2.t D 0/ D v0 sin ˛: (4.59)

According to the adopted coordinate system we have

Rx1 D 0; Rx2 D �a0: (4.60)

Integrating the equations above we obtain

Px1 D C1x1 ; Px2 D �a0t C C1x2 ; (4.61)

x1 D C1x1 t C C2x1; x2 D �a0t2

2
C C1x2t C C2x2 : (4.62)

Taking into account the initial conditions in (4.61) and (4.62) we obtain the
following values of the introduced constants of integration

C2x1 D x10; C2x2 D x20; (4.63)

C1x1 D v0 cos˛; C1x2 D v0 sin ˛; (4.64)

and in view of that the projections of velocity and displacement of point A are
equal to

vx1 D v0 cos˛; vx2 D �a0t C v0 sin ˛; (4.65)

x1 D v0t cos˛ C x10; x2 D �a0t2

2
C v0t sin ˛ C x20: (4.66)

We determine the path of point A from (4.66) after eliminating parameter t ,
thereby obtaining

x2 D �a0.x1 � x10/2
2v20 cos2 ˛

C .x1 � x10/ tan˛ C x20: (4.67)

Let us consider the special case where the vector a0 D g, where g is the
acceleration of gravity on Earth, and where ˛ D �

2
.

In this case, from (4.65) and (4.66) we obtain

vx1 D 0; vx2 D �gt C v0; (4.68)

x1 D x10; x2 D x20 C v0t � gt2

2
: (4.69)
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Fig. 4.20 Uniform motion of
a point A along circle
of radius r and center O 0

If in this case the sense of velocity v0 was in agreement with the positive direction
of the OX2 axis, then the path of the point is a straight line and the point moves
at first in uniformly decelerated and then in uniformly accelerated motion. Such
motion is called a vertical motion, whereas the motion of the point considered earlier
is called an oblique motion.

4.2.3 Circular, Rectilinear, and Curvilinear Motion in Vector
Approach

The uniform motion of a pointA along a circle of radius r and centerO 0 is presented
in Fig. 4.20.

First let us show that in such motion, vA ? r, where PrA � vA. According to the
conditions of motion and Fig. 4.20 we have

.rA � r0/2 D r2 � const. (4.70)

Differentiating (4.70) with respect to time we obtain

2.rA � r0/ ı PrA D 0; (4.71)

which means that vA ? r.
Differentiating (4.71) with respect to time and taking into account that we are

dealing with uniform motion we obtain

Pr2A C .rA � r0/ ı RrA D 0; (4.72)

from which it follows that

.rA � r0/ ı RrA D const. (4.73)

Differentiating (4.73) with respect to time we obtain

PrA ı aA � vA ı aA D 0; (4.74)
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Fig. 4.21 Motion of point
A along a straight line

which shows that the vectors of velocity and acceleration of point A are perpen-
dicular to one another. In the equations above during transformations we used
the relations Pr2A D const and Rr2A D const (however, note that PrA ¤ const and
RrA ¤ const).

Because we are dealing with planar motion, all vectors describing the motion of
point A, i.e., r (position), vA (velocity), and aA (acceleration) lie in one plane. And
now, if vA ? r and aA ? vA, we have r k aA. The senses of vectors r and aA are
opposite, because from (4.72) it follows that (Fig. 4.20)

r ı aA D �v2A � const; (4.75)

and the magnitude of acceleration equals

aA D v2A
r
; (4.76)

where r is the radius of a circle along which point A moves uniformly.
Let us now consider the uniform motion of pointA along a straight line, depicted

in Fig. 4.21.
The trajectory of motion of pointA is a straight line, and because we will analyze

uniform motion, in any time instant t we have PrA D v0 D const. The initial position
of point A is defined by the vector r0, and in view of that from Fig. 4.21 we have

rA.t/ D v0t C r0: (4.77)

Now, let the velocity of point A along the straight line be defined by the
relationship

vA.t/ D a0t C v0; (4.78)

where a0 D const is the acceleration (the vectors of acceleration and velocity are
tangent to the path). The motion described by (4.78) is not a uniform rectilinear
motion. Integrating (4.78) we obtain

rA.t/ D 1

2
a0t2 C v0t C r0; (4.79)

which describes the change in radius vector of point A.
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Fig. 4.22 Motion of point
A during a projection at an
angle onto the horizontal
in the gravitational field

We have already assumed that the senses of vectors rA � r0 and v0 are the same.
Let us assume now that the senses of vectors a0 and v0 (initial conditions of motion)
are also in agreement.

The vector 1
2
a0t2 C v0t describes the motion of point A along a straight line in

time starting from the initial instant t0. Taking the unit vector l of axis l , (4.79) in
this case will assume the form

rA.t/ D


1

2
a0t2 C v0t

�
l C r0: (4.80)

In kinematics we do not refer to forces, but only to observations of motion
that rely on a geometrical approach. In the case just considered, the initial vectors
of motion a0 and v0 were collinear, and we considered the case of uniformly
accelerated motion (we are dealing with uniformly decelerated motion if �a0 is
substituted into (4.79)).

Let us consider now the case where vectors a0 and v0 are coplanar (i.e., they lie
in one plane) and are not parallel to one another.

We must deal with such a case during a projection at an angle onto a horizontal
in the gravitational field, where aA D g � const and g is the acceleration of gravity
on Earth.

Also in this case, the motion is governed by the vectorial equation (4.79), but
now the path of motion will not be a straight line. Therefore, for the purpose of
analysis of this motion, we introduce the Cartesian coordinate system chosen in a
special way. According to (4.79) we have

rA.t/ � r0 D 1

2
a0t2 C v0t; (4.81)

and the introduced Cartesian coordinate system is depicted in Fig. 4.22, where now
all three vectors a0 D g, rA � r0, and v0 lie in the OX1X2 plane.

In order to obtain the equations of motion in this system in scalar form we will
multiply (4.81) by Ei , bearing in mind that
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rA.t/ � r0 D x1.t/E1 C x2.t/E2;

v0 D v01E1 C v02E2;

g D �gE2: (4.82)

As a result of that operation we obtain

x1.t/ D v01t;

x2.t/ D v02t � 1

2
gt2;

x3.t/ D 0; (4.83)

which was obtained earlier using the standard approach [see (4.68) and (4.69)].

4.3 Radius Vector and Rectangular and Curvilinear
Coordinates in Space

4.3.1 Introduction

We will consider the motion of a point in Euclidean space (three-dimensional);
strictly speaking we will deal with its kinematics. Because motion is defined as
a change in the position of a point (body) with respect to the adopted (in this case
fixed) coordinate system or the point of reference, the easiest way to determine the
position of the point is to make use of the so-called radius vector (position vector).

In Fig. 4.23 point A moving along the curve in space is presented. The position
of that point may be described at every time instant by the vector-valued function
r D r.t/. The velocity of point A is defined by the relationship v D dr=dt , and the
acceleration of the point is equal to a D dv=dt D d2r=dt2.

If we are going to observe motion from point O , then we can locate there the
most popular Cartesian coordinate system. The point in the successive time instants
ti occupies the positions Ai ; i D 1; 2; : : :. These positions are also described by the
tip of the radius vector r.ti /.

The vector-valued function r.t/ defines the position of a point, whereas the tip of
vector r.t/ draws a hodograph, which is a path of point motion. In turn, taking under
consideration the adopted rectangular coordinate system OX1X2X3, we define the
position of point A by three scalar functions, x1 D x1.t/, x2 D x2.t/, x3 D x3.t/,
and the position vector can be expressed as

r D x1.t/E1 C x2.t/E2 C x3.t/E3; (4.84)

where E1, E2, E3 are the unit vectors respectively of the axesOX1, OX2, and OX3.
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Fig. 4.23 Motion of a point in a three-dimensional space

A derivative of the vector-valued function (position vector) with respect to time
Pr.t/ D dr

dt is called the velocity:

v D v1E1 C v2E2 C v3E3; (4.85)

where v1 D Px1.t/, v2 D Px2.t/, v3 D Px3.t/.
The velocity of a point is a vector tangent to the hodograph of the position vector

r.t/ (Fig. 4.23).
On the other hand, the derivative of the velocity vector of the point is called the

acceleration:

a.t/ D Pv D a1E1 C a2E2 C a3E3; (4.86)

where a1 D Pv1 D d2x1
dt 2 , a2 D Pv2 D d2x2

dt 2 , a3 D Pv3 D d2x3
dt 2 .

The magnitudes of the velocity and the acceleration are equal to

v D jv.t/j D
q

v21 C v22 C v23; (4.87)

a D ja.t/j D
q

a21 C a22 C a23; (4.88)

having the units m�s�1 and m�s�2, respectively. Let us note that the direction cosines
of the acceleration vector are equal to

cos .a;E1/ D Rx1
a
; cos .a;E2/ D Rx2

a
; cos .a;E3/ D Rx3

a
:
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The vectors of the velocity of the point at the instants t and t1 are drawn in
Fig. 4.23. The average velocity in the time interval�t D t1 � t is defined as

vav D r.t1/� r.t/
t1 � t

D �r.�t/
�t

: (4.89)

If�t ! 0, then the direction of the vector vav will tend toward the tangent to the
motion trajectory at pointA. The vectors of acceleration were not drawn in Fig. 4.23
because their determination requires slightly deeper computations. The average and
instantaneous accelerations are defined in a way that is analogous to the definitions
of average and instantaneous velocity.

Often, because of the convenience of calculations, interpretations, or simplifica-
tions regarding the point motion, one introduces its analytical description with the
aid of curvilinear coordinates.

4.3.2 Classification of Particle Motion with Regard
to Accelerations of Motion

Because a D an C a� , we introduce the classification of motion with respect to an
and a� .

1. Let the normal acceleration an D 0 and tangential acceleration a� D 0. If in
a certain time interval the normal and tangential accelerations of a particle are
equal to zero, then in this time interval neither the direction nor the magnitude
of velocity changes and the particle is in uniform rectilinear motion and its
acceleration a D 0.

2. Let an ¤ 0, a� D 0. If in a certain time interval the normal acceleration of a
particle is nonzero, but it does not have tangential acceleration, we are dealing
with a change in direction of velocity without a change in its magnitude, and the
particle is in uniform curvilinear motion, where a D v2

	
.

3. Let an D 0 and a� ¤ 0. If in a certain time interval the normal acceleration
is equal to zero, but the tangential acceleration is nonzero, then the direction
of the velocity vector does not change, but its magnitude changes, that is, the
particle moves nonuniformly along a straight line. If the senses of v and a� are
in agreement (opposite), then the particle is in accelerated (decelerated) motion.
If only in a certain time instant an D v2

	
D 0, then either the particle is not in

rectilinear motion .	 D 1/ or the magnitude of velocity v D 0, which occurs,
for instance, when the sense of the particle’s motion changes.

4. Let an ¤ 0 and a� ¤ 0. If in a certain time interval during the motion of a
particle an ¤ 0 and a� ¤ 0, then both the direction and the magnitude of the
velocity vector change. When the senses of vectors v and a� are in agreement
(opposite), then the particle is in curvilinear accelerated (decelerated) motion.
If during motion a� D const, then the particle is in uniformly variable motion.
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Fig. 4.24 Motion of a
particle on a curve with
constant tangential
acceleration

In this case (Fig. 4.24) we have

dv D a�dt: (4.90)

Integrating (4.90) by sides we obtain

ds

dt
� v D v0 C a�dt; (4.91)

and the above equation describes the velocity of the particle during its uniformly
variable motion. Now, integrating (4.91) by sides we obtain

s.t/ D s0 C v0t C a�
t2

2
; (4.92)

and (4.92) is called an equation describing the uniformly variable motion of a
particle. If v0 > 0 and a� > 0, then the motion is uniformly accelerated, and if
a� < 0, then the particle’s motion is uniformly decelerated.

4.3.3 Curvilinear Coordinates

In this section we will introduce superscripts on vectors and, generally, on tensors
(more information about tensor calculus is presented in Chap. 6). Let us start by
motivating the introduction of the superscripts (indices).

Because of the need for a concise representation of formulas and equations and
simplicity of their transformations, we can represent an arbitrary vector a in the
following form using the basis En:

a D anEn; (4.93)

where the twice occurring indices at the upper and lower levels denote the
summation (here n D 1; 2; 3). However, often apart from the Euclidean space
(which is planar, though, e.g., N -dimensional) we apply different spaces, e.g.,
Riemannian2 space, and the index n, which can be either a superscript or a subscript,
assumes the dimension of the considered space N , so it can change from 1 to N .
In the equation, we denoted the vector in the Euclidean space R3 and thus the

2Georg Riemann (1826–1866), German mathematician working in the field of analysis and
differential geometry.
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summation of the index n proceeded from 1 to 3, but if the vector were considered
in the space of dimension N , then the summation would proceed from 1 up to N .

The dot product of two vectors, e.g., in Euclidean space is equal to

a ı b D
3X

mD1

3X

nD1
ımna

mbn D
3X

nD1
anb

n; (4.94)

where

an D
3X

mD1
ımna

m: (4.95)

The summation in the formula above due to the application of the Kronecker2

delta ımn led to a decrementation of the index. However, earlier, in using a dot
product, we did not use superscripts, and (4.94) and (4.95) could be effectively
written using the subscripts only. It follows then that am D am, bn D bn, and
ımn D ımn. However, it turns out that we are allowed to proceed like that only when
using a Cartesian coordinate system. In curvilinear systems, there exists a difference
between the quantities am and am.

It should be noted then that in the Cartesian coordinate system one will not make
a mistake if one uses indices at only one or both levels.

Let us additionally consider the vector product of two vectors also in Euclidean
space. Denoting

a D aiEi ; b D ajEj ; (4.96)

we have

c � a � b D aibj .Ei � Ej /: (4.97)

An arbitrary kth component of the vector c can be directly obtained from the
formula

ck D .a � b/ ı Ek D aibj .Ei � Ej / ı Ek D aibj "kij ; (4.98)

which defines the tensor of rank three (alternating tensor) of the form

"kij D .Ei � Ej / ı Ek: (4.99)

The alternating tensor possesses the following permutation properties:

1. "kij D 0 if two out of three indices are identical.
2. "kij D 1.�1/ if the sequence of indices k; i; j is (is not) the sequence 1; 2; 3 or

its even (odd) permutation.

2Leopold Kronecker (1823–1891), German mathematician and logician; born into a Jewish family
(among other places, he worked in Wroclaw and Legnica).
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The unknown vector c can be represented in the following form making use of the
alternating tensor:

c D ıklckEl D ıkl "kij a
ibjEl : (4.100)

In the case of the Cartesian system we may use the subscripts only, and then we
obtain

ck D "kij aibj ; c D a � b D "kij aibjEk : (4.101)

Between the Kronecker delta ı and the alternating tensor " the following
relationship exists:

"kij "kmn D ıimıjn � ıinıjm: (4.102)

The validity of the preceding relationship can be proved. If m D i and j D n,
then we have ıimıjn � ıinıjm D 1, and if j D m and i D n, then we have
ıinıjn � ıinıjm D �1. This is identical to the left-hand side of (4.102) after using
the properties of the alternating tensor mentioned earlier.

We will show as an example how to apply the tensor notation and use the
transformations making use of the introduced concepts of Kronecker delta and
alternating tensor while proving the relationship known from the calculus of vectors

.a � b/ � c D .a ı c/b � .b ı c/a: (4.103)

Successively we have

.a � b/ � c D "kij aibj cm"kmnEn D "kij "kmnaibj cmEn

D .ıimıjn � ıinıjm/aibj cmEn D amcmb � bmcma

D .a ı c/b � .b ı c/a: (4.104)

Let us consider the Euclidean space of dimension N and take an arbitrary
point. Moreover, let us introduce two local systems of arbitrary coordinates, not
necessarily Cartesian. Let the chosen point have the coordinates xi in the first
coordinate system and x0j in the second one. The transition from the coordinates
xi to x0j we define as one-to-one and continuous mapping (homeomorphism) and
write it formally as

x0j D f 0j .x1; : : : ; xN /: (4.105)

According to the assumption made, the Jacobian of transformation (4.105) has
the form

J D
ˇ̌
ˇ̌
ˇ
@f 0j

@xk

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
@x0j

@xk

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

@x01

@x1
: : :

@x01

@xN

:::
: : :

:::

@x0N

@x1
: : :

@x0N

@xN

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

: (4.106)
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As a result of differentiation of (4.105) with respect to xi we obtain

dx0j D @x0j

@xi
dxi : (4.107)

The equation just obtained can be applied also in the calculus of vectors if we
assume dr D drŒdx1; : : : ; dxN �.

In general, the set of quantities T i defined at the given point of space is the set of
components of the contravariant tensor of the first rank if during the change in the
coordinate system its components undergo transformations similarly to differentials,
i.e., when according to (4.107) the following relationship holds:

T 0j D @x0j

@xi
T i ; (4.108)

and the derivatives @x0j

@xi
are calculated at the mentioned selected point. In this

book we denote the vectors by small bold letters, e.g., a;b; c; : : :, whereas we will
denote in majority of the cases the contravariant tensors by uppercase letters with
superscripts, e.g., Ai ; Bj ; C k; : : : .

We then define the contravariant tensor of the second rank in a similar way, but
it possesses the following property:

T 0mn D @x0m

@xi
@x0n

@xs
T is: (4.109)

Let

T 0i D @x0 i

@xm
T m; D0l D @x0l

@xn
Dn: (4.110)

We will demonstrate that as a result of multiplication of the foregoing
contravariant tensors of the first rank we obtain as well the contravariant tensor
of the second rank of the form

T 0iD0l D B 0i l : (4.111)

From (4.111) taking into account (4.110) we obtain

B 0i l D @x0i

@xm
T m @x

0l

@xn
Dn D @x0i

@xm
@x0l

@xn
T mDn D @x0i

@xm
@x0l

@xn
Bil : (4.112)

From (4.111) and (4.112) it follows that the multiplication of tensors leads to an
increment of tensor order, and this is the so-called outer multiplication of tensors
and is a generalization of the cross product of vectors. In turn, the so-called inner
multiplication of tensors is the extension of the operation of the dot product of
vectors and is connected with tensor contraction.
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As a result of this operation we obtain a decrementation of the rank of the tensor
of the second rank by two, that is we obtain a scalar. In the case of a scalar we have
the same value regardless of the choice of coordinates, i.e., the scalar is an invariant.

The notion of gradient may serve as an example of a covariant.
Let the scalar function 
 be given. The vector grad 
 has the following form in

the two chosen coordinate systems:

grad 
 D @


@xi
Ei ; grad 
 D @


@x0k E0k: (4.113)

The coordinates of the vector grad 
 in the new and old coordinate systems are
interrelated through the equation


.x1; : : : ; xN / D 
Œx1.x01; : : : ; x0N /; : : : ; xN .x01; : : : ; x0N /�: (4.114)

After differentiation of the foregoing composite function with respect to @

@x
0i

we
obtain

@


@x0i D @


@xl
@xl

@x0i ; (4.115)

which defines the law of transformation of the components of the gradient @


@xl
in the

old coordinate system to the components of the gradient @


@x
0i

in the new coordinate
system.

The preceding observation is expressed as

T 0
i D @xl

@x0 i Tl ; (4.116)

and T 0
i ; Tl are the components of the covariant tensor of the first rank.

The quantities Tik are the set of components of the covariant tensor of the second
rank if they undergo transformation to the coordinate system (0) according to the
following equation:

T 0
mn D @xi

@x0m
@xk

@x0n Tik: (4.117)

One may conclude that the covariant tensors are represented by subscripts.
As we already mentioned, an arbitrary vector of the components ai in the

Cartesian coordinate system is simultaneously a covariant tensor and a contravariant
tensor of the first rank.

A very important notion, used especially in Chap. 6, is the notion of a metric
tensor.

Let dr denote the difference between two points in theR3 space in the rectangular
coordinate system. The distance between those points will be determined from the
equation in the standard notation and the tensor notation

.dr/2 D .ds/2 D .dx1/2 C .dx2/2 C .dx3/2;

ds2 � .ds/2 D ıikdxidxk: (4.118)
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The square of the distance .ds/2 will not change its value if the coordinate system
changes because it is a scalar, that is, a tensor of a zeroth rank. Let us introduce,
in addition to the Cartesian system, an arbitrary system of curvilinear coordinates.
Then we have

r D r.q1; q2; q3/ (4.119)

or, in equivalent notation,

xi D xi .q
1; q2; q3/; (4.120)

from which we obtain

dxi D @xi

@qs
dqs: (4.121)

Substituting (4.121) into the second equation of (4.118) we obtain

ds2 D ıik
@xi

@qs
@xk

@qr
dqsdqr : (4.122)

On the other hand, we have

ds2 D dr2 D @r

@qs
@r

@qr
dqsdqr D gsrdq

sdqr ; (4.123)

and hence

gsr D @r

@qs
@r

@qr
D ıik

@xi

@qs
@xk

@qr
; (4.124)

where gsr are the functions of the curvilinear coordinates q1; q2; q3. It is possible to
demonstrate that gsr is a tensor of the second rank, and in the Cartesian coordinates
gsr transforms into ısr .

Because ds2 is the tensor of zeroth rank (the scalar), for the scalar the following
relationship holds:

gsrdqsdqr D g0
mndq0mdq0n: (4.125)

In turn, because dqi are the components of contravariant tensor, taking into
account

dq0m D dq0m

@qs
dqs; (4.126)

in (4.125) we obtain



gsr � g0

mn

dq0m

@qs
dq0n

@qr

�
dqsdqr D 0: (4.127)
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Changing in the preceding formula the sequence of indices s and r one obtains



grs � g0

mn

dq0m

@qr
dq0n

@qs

�
dqrdqs D 0: (4.128)

Adding by sides (4.127) and (4.128) we obtain

gsr C grs D �
g0
mn C g0

nm

� dq0m

@qs
dq0n

@qr
: (4.129)

By definition, the tensor gsr D grs is symmetrical; hence from (4.129) we obtain

gsr D g0
mn

dq0m

@qs
dq0n

@qr
: (4.130)

We call the tensor above, which is a covariant tensor of the second rank, a metric
tensor. The notion of metric tensor was introduced in the discussion of the transition
from the rectangular coordinate system to the curvilinear coordinate system. It turns
out that rectangular coordinate systems can be introduced only in flat Euclidean
spaces.

The already mentioned Riemannian space is a curved space. We will present
some of the properties of metric tensor gil on an example of two-dimensional
Riemannian space, where the position vector r in the rectangular coordinate system
can be expressed by the coordinates of the position point of coordinates .q1; q2/.

A two-dimensional Riemannian space is a surface, and assuming

r D r.q1; q2/; (4.131)

we can determine the so-called infinitesimal displacement of the form

dr D @r
@q1

dq1 C @r
@q2

dq2: (4.132)

From the preceding equation we obtain

ds2 D @r
@q1

@r
@q1

dq1dq1 C @r
@q1

@r
@q2

dq1dq2 C @r
@q2

@r
@q1

dq2dq1 C @r
@q2

@r
@q2

dq2dq2:

(4.133)

By relying on the summation convention we can write

ds2 D @r
@qj

@r
@qk

dqjdqk D qjkdqjdqk; (4.134)
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where during summation the indices change from 1 to 2, since we are dealing with
a two-dimensional Riemannian space.

The introduced metric tensor gjk allows for the determination of the metric
(length) ds. Moreover, with its aid it is possible to define the arbitrary dot product
of two vectors in space of dimension N having the form

a ı b D gjka
j bk; (4.135)

and additionally we have
gjkg

km D ımj : (4.136)

The basic notions of the tensor calculus introduced so far are based on the
classical works [12, 13], where the reader can find plenty of additional information
related to the properties of tensors and their applications.

The transformation between the coordinates of a point in Cartesian coordinate
system .x1; x2; x3/ and curvilinear coordinate system .q1; q2; q3/ has the following
form:

r D r
�
q1; q2; q3

� D x1E1 C x2E2 C x3E3 (4.137)

or, in equivalent notation,

x1 D x1
�
q1; q2; q3

�
;

x2 D x2
�
q1; q2; q3

�
;

x3 D x3
�
q1; q2; q3

�
: (4.138)

It can be assumed that three numbers, q1; q2, and q3, determine uniquely the
position of a point in Euclidean space and can be treated as curvilinear coordinates
of that point.

If the determinant of the Jacobian3 matrix (the Jacobian)

det.J/ ¤ 0; (4.139)

where J ij D @xi=@qj , then (4.138) enables us to express the curvilinear coordinates
of the point through its Cartesian coordinates:

q1 D q1
�
x1; x2; x3

�
;

q2 D q2
�
x1; x2; x3

�
;

q3 D q3
�
x1; x2; x3

�
: (4.140)

3Carl G. Jacobi (1804–1851), great Prussian mathematician, born in a Jewish family.
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It should be emphasized that despite (4.140) being theoretically motivated, in
practice it is very difficult to obtain their analytical form. The assumption det.J ¤ 0/

guarantees that the arbitrary coordinates .x1; x2; x3/ possess the uniquely corre-
sponding .q1; q2; q3/ coordinates and vice versa.

We say that the motion of a particle will be prescribed if the coordinates qi D
qi .t/; i D 1; 2; 3, are prescribed.

If one of the coordinates is assumed to be constant, that is, for example,

qk0 D qk
�
x1; x2; x3

�
; (4.141)

then that equation describes the surface qk corresponding to the coordinate qk . It is
defined by the set of points in the Cartesian coordinates described by (4.141).

Let us take, e.g., k D 1. While moving over this surface the coordinates
.x1; x2; x3/ will be changing, which implies that, according to the two remain-
ing (4.140), q2 and q3 will also undergo change.

We will use the term first coordinate curve to refer to the curve passing through
the point A0.q1; q20; q30/ and obtained for fixed q2 and q3 coordinates and for
varying q1, that is, r D r.q1; q20; q30/. In a similar way, we describe the second
and third coordinate curves.

The radius vector r of an arbitrary point can be expressed as a vector-valued
function of the curvilinear coordinates in the following way:

r D xi
�
q1; q2; q3

�
Ei ; i D 1; 2; 3; (4.142)

where Ei are unit vectors of the Cartesian coordinate system.
Let us introduce a covariant basis of vectors a1, a2, and a3 defined as follows:

ai D @r
@qi

D @xj

@qi
Ej : (4.143)

Let us note that if we calculate the derivative, e.g., for i D 2, then we will treat
q1 and q3 as constants. Then, vector a2 will be tangent to the curve q2 with the sense
corresponding to the direction of increasing values of q2. The same is valid for the
coordinates q1 and q3.

Knowing the functions x1, x2, and x3 [see (4.138)], the relationship between a
basis of covariant vectors ai and a basis of Cartesian vectors Ei can be written in
the following matrix form [see (4.143)]:

2

4
a1
a2
a3

3

5 D

2
666666664

@x1

@q1
@x2

@q1
@x3

@q1

@x1

@q2
@x2

@q2
@x3

@q2

@x1

@q3
@x2

@q3
@x3

@q3

3
777777775

2

4
E1
E2
E3

3

5 : (4.144)
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Fig. 4.25 Point A lying at an
intersection of curves qi

.i D 1; 2; 3/ and covariant
vectors ai

The physical meaning of (4.143) and (4.144) can be illustrated with aid of the
velocity of a point described by r D xiEi and xi D xi .q1; q2; q3/. That is, because
Pxi D J ij Pqj , we have v D PxiEi D J ij PqjEi D Pqj J ijEi D Pqj aj , where aj D J ijEi ,
which is equivalent to its notation in matrix form (4.144). It is important that vectors
aj refer to the speed Pqj (similar to Ei to Pxi ), constitute the covariant basis for
contravariant components Pqj , and are tangent to coordinates qj at the actual position
of the point, as illustrated in Fig. 4.25.

Let us note that just as J ij D @xi=@qj is the Jacobian matrix of the expression
xi D xi .q1; q2; q3/, the Jacobian matrix for the relation qi D qi .x1; x2; x3/ is

J
0i
j D @qi=@xj . Observe that because Pxi DJ ij Pqj DJ ij J

0j

k Pxk , we have J ij J
0j

k D ıik .
With curvilinear coordinates one may also associate the triple of basis vectors

.a1; a2; a3/ called contravariant vectors. Vector ai is perpendicular to the surface
qi . The vectors can be described in the following way:

ai D J 0i
jEj ; (4.145)

which is equivalent to the matrix notation

2

4
a1

a2

a3

3

5 D

2

66666664

@q1

@x1
@q1

@x2
@q1

@x3

@q2

@x1
@q2

@x2
@q2

@x3

@q3

@x1
@q3

@x2
@q3

@x3

3

77777775

2

4
E1

E2

E3

3

5 : (4.146)
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In general, neither covariant nor contravariant vectors are unit vectors or
constitute an orthonormal basis, that is, they can constitute an arbitrary vector basis.

However, it is easy to notice that they satisfy the following relation:

aj ı ai D J 0j
kEkJmi Em D J 0j

kEk ı EmJmi

D J 0j
kı
k
mJ

m
i D J 0j

kJ
k
i D ı

j
i ; (4.147)

because

Ek ı Em D ıkm; (4.148)

and ıji is the Kronecker delta, i.e., ıji D 1, for j D i , ıji D 0 for j ¤ i .
Covariance/contravariance of the bases and coordinates is also associated with the
notion of the metric of a vector space (metric tensors). Obviously the metric of
Cartesian space satisfies the following conditions: Ei ı Ej D ıij , Ei ı Ej D ıij ,
and Ei ı Ej D ıij , which can be exploited in several branches of mechanics
(but not in dynamics, where the metric additionally takes into account the inertia).
Therefore, covariant and contravariant bases/coordinates of Cartesian space are
often considered identical with each other.

Let us introduce covariant unit vectors a01; a
0
2; a

0
3, that is, unit vectors that are

respectively tangent to q1.t/, q2.t/, q3.t/:

a0i D ai
jai j D 1

Hi

@r
@qi

; (4.149)

where

Hi D jai j D
ˇ̌
ˇ̌ @r
@qi

ˇ̌
ˇ̌ D

s

@x1

@qi

�2
C


@x2

@qi

�2
C


@x3

@qi

�2
; (4.150)

and the quantitiesHi are called Lamé coefficients,4 and the assumption of jai j D Hi

indicates the introduction of the unit metric.
The direction cosines of angles formed by the axes of a curvilinear coordinate

system with the axes of a Cartesian coordinate system may be determined, for
instance, in the following way:

cos
�
a0i ;E1

� D a0i ı E1

D 1

Hi



@x1

@qi
E1 C @x2

@qi
E2 C @x3

@qi
E3

�
ı E1

D 1

Hi

@x1

@qi
: (4.151)

4Gabriel Lamé (1795–1870), French mathematician.
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In the general case we then have

cos
�
a0i ;Ej

� D 1

Hi

@xj

@qi
; i; j D 1; 2; 3: (4.152)

Figure 4.25 shows a covariant basis associated with the curves qi .
Recall that the differential operator

r D @

@x1
E1 C @

@x2
E2 C @

@x3
E3 � @

@xi
Ei ; (4.153)

although not a vector, can still be treated as a so-called symbolic (conventional)
vector. As a result of the action of r on scalar function f , we obtain a vector
function called a gradient, i.e., rf D @f

@xi
Ei . For example, f ı r and f � r are

operators, whereas the operations r ı f and r � f lead to a scalar function and
a vector function. The obtained scalar function is called a divergence of vector
function div f D r ı f.

Let f D Œf1; f2; f3�. Then

r � f D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

E1 E2 E3

@

@x1
@

@x2
@

@x3

f1 f2 f3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
: (4.154)

We call the obtained vector function a curl and denote it by the symbol curl f D
r � f.

Using the introduced notion of r, e.g., (4.145) may be written in the form

ak D rqk D ˇ̌rqk ˇ̌ ak0 ; (4.155)

where ak0 are unit vectors and

ˇ̌rqk ˇ̌ D
s


@qk

@x1

�2
C


@qk

@x2

�2
C


@qk

@x3

�2
(4.156)

denote the so-called scaling factors.
The vector rq1 is perpendicular to the surface rq1.x1; x2; x3/ D q10 at the

chosen point.
Let us also recall that three non-coplanar vectors bi .i D 1; 2; 3/ form a basis

if any vector can be expressed as their linear combination. The basis will be
called right-handed (left-handed) if the scalar triple product of the three vectors
.b1;b2;b3/ is positive (negative). Let us note that the scalar triple product will
change sign when the right-handed coordinate system is replaced by the left-handed
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system or upon mirror reflection of the coordinate system (in that case, the left-
handed system transforms into the right-handed one). For this reason the scalar triple
product is not a real scalar but pseudoscalar. The scalar triple product is equal to
zero (provided that none of the vectors is a zero vector) if and only if the vectors are
parallel to the same plane, that is, they are coplanar.

The scalar triple product is defined in the following way:

.b1;b2;b3/ D b1 ı b2 � b3 D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

b11 b21 b31

b12 b22 b32

b13 b23 b33

ˇ̌
ˇ̌
ˇ̌
ˇ̌
; (4.157)

and superscripts in the determinants denote vector coordinates.
We obtain another basis b1;b2;b3, called a dual basis to the chosen vectors

b1;b2, and b3, when the following condition is satisfied:

bm ı bn D ınm D

1 when m D n

0 when m ¤ n:
(4.158)

The obtained property is valid for covariant and contravariant bases.
A set of three non-zero vectors v1; v2; v3 forms an orthogonal basis if they are

mutually orthogonal, that is,
vm ı vn D 0; (4.159)

for all m ¤ n.
The set of three non-zero vectors v1; v2; v3 forms an orthonormal basis if and

only if it is orthogonal, i.e., condition (4.159) is satisfied, and additionally the
vectors of the basis are unit vectors. The unit vectors E1 D Œ1; 0; 0�T, E2 D Œ0; 1; 0�T,
E3 D Œ0; 0; 1�T used so far form the orthonormal basis.

According to the considerations above for the orthogonal system, and especially
for the orthonormal system, we have

ai ı aj D 0 .i ¤ j /; (4.160)

which after taking into account (4.149) leads to the relationship

@r
@qi

ı @r
@qj

D 0 .i ¤ j /: (4.161)

Condition (4.160) narrows our considerations to orthogonal bases of the curvi-
linear coordinates.
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Taking into account (4.143) in (4.161) we obtain

@x1

@qi
@x1

@qj
C @x2

@qi
@x2

@qj
C @x3

@qi
@x3

@qj
D 0 .i ¤ j /; (4.162)

and for i D j we have



@x1

@qi

�2
C


@x2

@qi

�2
C


@x3

@qi

�2
D H2

i : (4.163)

The differential of arc of a curve in a curvilinear coordinate system has the
following form:

dr D @r
@qi

dqi ; (4.164)

and multiplying the arc differentials by itself we obtain

.ds/2 D dr ı dr D
3X

iD1
H2
i

�
dqi
�2
; (4.165)

where (4.149) was used.
We determine the velocity in the curvilinear system .q1; q2; q3/ from the

relationship

v D dr
�
q1; q2; q3

�

dt
D @r
@qi

Pqi ; (4.166)

and taking into account (4.143) we have

v D dr
dqi

Pqi D @xj

@qi
Ej Pqi D vjEj : (4.167)

Below we will show that the relationship just presented is true:

v D dr
dq1

Pq1 C dr
dq2

Pq2 C dr
dq3

Pq3

D
 
@x1

@q1
E1 C @x2

@q1
E2 C @x3

@q1
E3

!
Pq1 C

 
@x1

@q2
E1 C @x2

@q2
E2 C @x3

@q2
E3

!
Pq2

C
 
@x1

@q3
E1 C @x2

@q3
E2 C @x3

@q3
E3

!
Pq3
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D
 
@x1

@q1
Pq1 C @x1

@q2
Pq2 C @x1

@q3
Pq3
!

E1 C
 
@x2

@q1
Pq1 C @x2

@q2
Pq2 C @x2

@q3
Pq3
!

E2

C
 
@x3

@q1
Pq1 C @x3

@q2
Pq2 C @x3

@q3
Pq3
!

E3 D vjEj ; (4.168)

where

vj D @xj

@qi
Pqi : (4.169)

From (4.169) and taking into account (4.162) and (4.163) we obtain

v2 D
3X

jD1
v2j D



@x1

@q1

�2 � Pq1�2 C


@x1

@q2

�2 � Pq2�2 C


@x1

@q3

�2 � Pq3�2

C


@x2

@q1

�2 � Pq1�2 C


@x2

@q2

�2 � Pq2�2 C


@x2

@q3

�2 � Pq3�2

C


@x3

@q1

�2 � Pq1�2 C


@x3

@q2

�2 � Pq2�2 C


@x3

@q3

�2 � Pq3�2

D
3X

iD1
H2
i

� Pqi �2 : (4.170)

In view of that, if the coordinates q1, q2, and q3 are orthogonal, then we have

v2 D
3X

iD1
H2
i

� Pqi�2 : (4.171)

In turn, from (4.165) and dividing both sides by .dt2/ we obtain



ds

dt

�2
D

3X

iD1
H2
i

� Pqi �2 : (4.172)

Eventually, from (4.171) and (4.172) we obtain

v D ds

dt
: (4.173)

We obtain the coordinates of velocity of a point in curvilinear coordinates
through projection of the velocity vector onto the directions of the unit vectors

vi D v ı a0i D 1

Hi

v ı @r
@qi

D 1

Hi

v ı @v
@ Pqi D 1

Hi

1

2

@v2

@ Pqi D 1

Hi

@T

@ Pqi ; (4.174)
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where T D v2

2
. The obtained quantity T can be interpreted as the kinetic energy of a

particle of unit mass. It is the consequence of geometrically unitary Cartesian space,
introduced earlier.

Similarly, we determine the components of the acceleration of a point in
curvilinear coordinates by projecting the acceleration vector onto the directions of
the unit vectors to obtain

ai D a ı a0i D Pv ı 1

Hi

@r
@qi

: (4.175)

Let us note that

d

dt



v ı @r

@qi

�
D Pv ı @r

@qi
C v ı d

dt



@r
@qi

�
; (4.176)

and according to (4.175) we obtain

ai D 1

Hi

�
d

dt



v ı @r

@qi

�
� v ı d

dt



@r
@qi

��
; (4.177)

and additionally, according to (4.174), we have

v ı @r
@qi

D @T

@ Pqi ; (4.178)

and the second term on the right-hand side of (4.177) is equal to

v ı d

dt



@r
@qi

�
D v ı



@2r

@qi@qj
Pqj
�
: (4.179)

In turn, differentiating expression (4.166) with respect to coordinates qi , multi-
plying through by v, and changing the index on the right-hand side of the equation
from i to j we have

v ı @v
@qi

D v ı @2r
@qi@qj

Pqj : (4.180)

Comparing (4.179) with (4.180) we obtain

v ı d

dt



@r
@qi

�
D v ı @v

@qi
D 1

2

@v2

@qi
D @T

@qi
: (4.181)

Finally, substituting (4.178) and (4.181) into (4.177) we obtain

ai D 1

Hi

�
d

dt



@T

@ Pqi
�

� @T

@qi

�
; i D 1; 2; 3: (4.182)
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Fig. 4.26 Position of a point
in Cartesian coordinates
(represented by right-handed
and orthonormal basis
.E1;E2;E3/) and in
cylindrical coordinates
.r;  ; z/

Let us now consider in more detail the two most frequently used curvilinear
coordinate systems, i.e., the cylindrical and the spherical coordinate systems.
Figure 4.26 depicts the position of a point in cylindrical coordinates.

Knowing the Cartesian coordinates of point A of the form .x1; x2; x3/ it is
possible to find, making use of Fig. 4.26, the position of that point in cylindrical
coordinates. Namely,

r D
q
x21 C x22 ;  D arctan



x2

x1

�
; z D x3; (4.183)

where  D �
0; 2�

�
.

On the other hand, if we know the position of a point in cylindrical coordinates,
the corresponding Cartesian coordinates can be determined from the following
relationships:

x1 D r cos ; x2 D r sin ; x3 D z: (4.184)

From relationships (4.183) and (4.184) it follows that given the position of
the point .r;  ; z/ it is possible to uniquely determine the corresponding position
.x1; x2; x3/ and vice versa, on the condition that x1 ¤ 0.

If the position of the point is defined by the position vector R, then we have

R D
3X

iD1
xiEi D ReR D r.cos E1 C sin E2/C zE3 D rer C zE3: (4.185)
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Fig. 4.27 Position of a point in Cartesian coordinates (represented by right-handed and orthonor-
mal basis .E1;E2;E3/) and in spherical coordinates .R;�;  /

It turns out that it is convenient to introduce the following right-handed orthonor-
mal basis

˚
er ; e ; ez

�
in the following way:

er D cos E1 C sin E2; e D cos E2 � sin E1; ez D E3: (4.186)

Moreover, the following relationships hold true (the reader is encouraged to
calculate their derivation):

Per D P e ; Pe D � P er : (4.187)

Figure 4.27 shows the position of point A in spherical coordinates.
Let us note that in the case where x3 D const for the cylindrical coordinate

system and x3 D 0 for the spherical coordinate system (Fig. 4.27) point A can
move in a plane and both systems reduce to the polar coordinate system depicted in
Fig. 4.28.

In this case we have [see (4.185)]

r D
2X

iD1
xiEi D r.cos E1 C sin E2/ D rer : (4.188)

Knowing the Cartesian coordinates of point A in the form .x1; x2; x3/ we can
find the position of that point in the spherical coordinates of the form
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Fig. 4.28 Polar coordinate
system

R D
q
x21 C x22 C x23; tan D x2

x1
; tan� D

q
x21 C x22

x3
; (4.189)

where  2 �
0; 2�

�
, � 2 .0; �/. Knowing the position of the point defined by the

spherical coordinates .R;�; / we have

x1 D R cos sin�;

x2 D R sin sin�;

x3 D R cos�: (4.190)

If the position of the point is described by a radius vector R, then we have

R D
3X

iD1
xiEi D R sin�Œcos E1 C sin E2�CR cos�E3 D ReR: (4.191)

Let us introduce the following right-handed orthonormal basis:

2

4
eR
e�
e 

3

5 D
2

4
cos sin� sin sin� cos�
cos cos� sin cos� � sin�

� sin cos 0

3

5

2

4
E1
E2
E3

3

5 : (4.192)

From (4.192) it follows that eR D sin� cos E1Csin� sin E2Ccos�E3, etc.
It is easy to prove (the reader is encouraged to carry out the relevant calculations)

that
2

4
PeR
Pe�
Pe 

3

5 D
2

4
0 P� P sin�

� P� 0 P cos�
� P sin� � P cos� 0

3

5

2

4
eR
e�
e 

3

5 : (4.193)

Now we will determine the position, velocity, and acceleration of a particle
successively in Cartesian, cylindrical, spherical, and arbitrary curvilinear coordi-
nates qi .
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The position of a point is described by the equation

3X

iD1
xiEi D rer C zE3 D ReR

D
3X

iD1
xi
�
q1; q2; q3

�
Ei : (4.194)

Differentiating the expression above with respect to time we obtain

v D
3X

iD1
PxiEi D Prer C r P e C PzE3

D PReR CR P�e� CR P sin�e D
3X

iD1
Pqi @r
@qi

D
3X

iD1
Pqiai ; (4.195)

and after yet another differentiation we obtain

a D
3X

iD1
RxiEi D � Rr � r P 2� er C �

r R C 2 Pr P � e C RzE3

D � RR �R P�2 �R P 2 sin2 �
�

eR C
�
R R� C 2 PR P� � R P 2 sin� cos�

	
e�

C
�
R R sin� C 2 PR P sin� C 2R P P� cos�

	
e 

D d

dt

� Pqiai
� D

3X

iD1



Rqiai C Pqi dai

dt

�

D
3X

iD1
Rqiai C

3X

iD1

3X

jD1



Pqi Pqj @ai

@qj

�
: (4.196)

The kinetic energy of a particle in an arbitrary curvilinear coordinate system is
given by

T D mv2

2
D m

2

 
3X

iD1
Pqiai

! 
3X

lD1
Pqlal

!
D m

2

3X

iD1

3X

lD1
ail Pqi Pql ; (4.197)

where ail D ali D al ı ai . The reader is advised to derive explicit expressions for
the kinetic energy of a particle in Cartesian, cylindrical, and spherical coordinates.
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Example 4.1. Determine the scaling factors and orthonormal covariant and
contravariant bases of vectors a0i and ai0 for the case of the cylindrical polar
coordinate system described by the equations (Fig. 4.26)

x D r cos ; y D r sin ; z D z; (�)

where r > 0, 0 	  	 2� , �1 	 z 	 1.
The Jacobian of the transformation above is equal to

J D @.x; y; z/

@.r;  ; z/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

cos � r sin 0

sin r cos 0

0 0 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌

D r
�
cos2  C sin2  

� D r ¤ 0:

(��)
From (�) we obtain

q1 D r D
p
x2 C y2;

q2 D  D tan�1 y
x
;

q3 D z:

The radius vector is described by the equation

r D xE1 C yE2 C zE3 D r cos E1 C r sin E2 C zE3:

According to (��) we have (see also 4.186)

a1 D @r
@r

D cos E1 C sin E2 D er ;

a2 D @r
@ 

D �r sin E1 C r cos E2 D re ;

a3 D @r
@z

D E3 D ez:

The scaling factors are equal to

ja1j D
q

cos2  C sin2  D 1; ja2j D r; ja3j D 1:

The covariant basis consists of the following three vectors:

a01 D a1
ja1j D cos E1 C sin E2;

a02 D a2
ja2j D � sin E1 C cos E2;

a03 D a3
ja3j D E3:
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To determine a contravariant basis, we calculate

a1 D rr D @r

@x
E1 C @r

@y
E2 C @r

@z
E3 D xE1 C yE2p

x2 C y2
D er ;

a2 D r D @ 

@x
E1 C @ 

@y
E2 C @ 

@z
E3 D �yE1 C xE2

x2 C y2
D 1

r
e ;

a3 D rz D E3 D ez:

Scaling factors are equal to

ja1j D 1; ja2j D 1

r
; ja3j D 1:

In light of that, the contravariant vectors have the form

a10 D rr
jrr j D a01;

a20 D r 
jr j D a02;

a30 D rz

jrzj D E3 D a03:

ut
Example 4.2. The coefficients of the paraboloidal coordinate system fu; v;  g are
determined by the Cartesian coordinates fx1; x2; x3g in the following way:

q1 D u D ˙
r
x3 C

q
x23 C .x21 C x22/;

q2 D v D ˙
r

�x3 C
q
x23 C .x21 C x22/;

q3 D  D tan�1


x2

x1

�
: (�)

The inverse relationships to those given above have the form

x1 D uv cos ; x2 D uv sin ; x3 D 1

2

�
u2 � v2

�
:
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Perform the following operations:

1. Draw in plane .er ;E3/ some examples of surfaces u and v.
2. Draw in space .X1 �X2 �X3/ a surface u (mark curves u and v on that surface).
3. Determine the bases of covariant and contravariant vectors.
4. Determine the singularities in the paraboloidal coordinate system and define the

velocity and energy of a particle.

Recall that in the cylindrical coordinate system we have

er D cos E1 C sin E2; e D � sin E1 C cos E2; ez D E3;

and r D
q
x21 C x22 .

1. In order to obtain the surface u we will take u D Nu D const. From the first
equation of (�) we obtain an equation with respect to x3, which is the quadratic
equation with respect to r , of the form

u2 D x3 C
q
x23 C r2;

�
u2 � x3

�2 D x23 C r2;

u4 � 2x3u2 C x23 D x23 C r2; x3 D � 1

2u2
�
r2 � u4

�
: (��)

For r D 0, x3 D 1
2
Nu2, and for x3 D 0 we have r D Nu2. In the plane .er ;E3/

surface u is given by (��) representing a curve.
That curve is presented in Fig. 4.29 for the values u D �1; 1; 1:5; 2. Rotating

the presented curves through the angle 2� about the X3 axis we obtain the
surface u in the space .X1 � X2 � X3/.

In order to obtain the surface v one should assume v D Nv D const. From (�)
we obtain

v2 D �x3 C
q
x23 C r2;

�
v2 C x3

�2 D x23 C r2;

v4 C 2x3v
2 C x23 D x23 C r2; x3 D 1

2v2
�
r2 � v4

�
:

For r D 0; Nv2 D 0, and for x3 D 0; r D Nv2. In the space .er ;E3/, the
surface v is described by (4.2). In Fig. 4.30 the curves of this surface are plotted
for Nv D �1; 1:5; 2. In the space .X1 � X2 � X3/, rotating the curve through the
angle 2� about the X3 axis we obtain the surfaces v.

From Figs. 4.29 and 4.30 it follows that by varying u and v the whole plane
.er ;E3/ is covered by the surfaces u and v. Moreover, after rotation through angle
 about the X3 axis the entire three-dimensional space will be covered by the
surfaces u and v. An arbitrary point of that space will be represented by three
numbers .u; v;  /.
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Fig. 4.29 Surfaces u

Fig. 4.30 Surfaces v
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Fig. 4.31 Example of the surface u D 1

2. At first, the relationship between r; u; v should be determined in the form

r2 D x21 C x22 D .uv cos /2 C .uv sin /2 D u2v2; r D jujjvj:

Let us take the surface Nu D 1 in Fig. 4.31. This coordinate is presented in the
space X1 �X2 �X3. Each circle represents a value of v; therefore we call it a  
curve. Each arc-shaped curve represents a certain value of ; therefore it is called
a v curve. The curves v and  together constitute a skeleton of the surface u.

3. The position of a point determined by the radius vector in paraboloidal coordi-
nates is described by the formula

r D uv cos E1 C uv sin E2 C 1

2

�
u2 � v2

�
E3:

By definition, a covariant basis is formed by the vectors ai D @r
@qi

. An example
of a set of a covariant vector basis for u D 2, v D 1, and  D 60ı is shown in
Fig. 4.32. We calculate successively

a1 D @r
@q1

D @r
@u

D @

@u



uv cos E1 C uv sin E2 C 1

2
.u2 � v2/E3

�

D v.cos E1 C sin E2/C uE3 D ver C uE3;
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Fig. 4.32 Example of a covariant basis

a2 D @r
@q2

D @r
@v

D @

@v



uv cos E1 C uv sin E2 C 1

2
.u2 � v2/E3

�

D u.cos E1 C sin E2/� vE3 D uer � vE3;

a3 D @r
@q3

D @r
@ 

D @

@ 



uv cos E1 C uv sin E2 C 1

2
.u2 � v2/E3

�

D uv.� sin E1 C cos E2/ D uve :

The contravariant basis is defined as ai D rqi . An example of a contravariant
basis for u D 2, v D 1, and  D 60ı is shown in Fig. 4.33 (a2 is very small and
is indicated by an arrow).

For the purpose of obtaining ai we will make use of the relationship

u2 C v2 D 2

q
x23 C x21 C x22;

a1 D rq1 D @q1

@x1
E1 C @q1

@x2
E2 C @q1

@x3
E3

D 1

2



x3 C

q
x23 C x21 C x22

�� 1
2 �
x23 C x21 C x22

�� 1
2 x1E1
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Fig. 4.33 Example of a contravariant basis

C 1

2



x3 C

q
x23 C x21 C x22

�� 1
2 �
x23 C x21 C x22

�� 1
2 x2E2

C 1

2



x3 C

q
x23 C x21 C x22

�� 1
2
�
1C �

x23 C x21 C x22
�� 1

2 x3

�
E3:

Substituting the relationships derived earlier into the equation above we obtain

a1 D uv cos 

u.u2 C v2/
E1 C uv sin 

u.u2 C v2/
E2 C 1

2u

�
1C u2 � v2

.u2 C v2/

�
E3

D 1

u2 C v2
Œv .cos E1 C sin E2/C uE3�

D 1

u2 C v2
.ver C uE3/ D 1

u2 C v2
a1:

Proceeding similarly we obtain

a2 D rq2 D @q2

@x1
E1 C @q2

@x2
E2 C @q2

@x3
E3

D 1

2



�x3 C

q
x23 C x21 C x22

�� 1
2 �
x23 C x21 C x22

�� 1
2 x1E1
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C 1

2



�x3 C

q
x23 C x21 C x22

�� 1
2 �
x23 C x21 C x22

�� 1
2 x2E2

C 1

2



�x3 C

q
x23 C x21 C x22

�� 1
2
�
�1C �

x23 C x21 C x22
�� 1

2 x3

�
E3

D uv cos 

v.u2 C v2/
E1 C uv sin 

v.u2 C v2/
E2 C 1

2u

�
�1C u2 � v2

.u2 C v2/

�
E3

D 1

u2 C v2
Œu.cos E1 C sin E2/� vE3�

D 1

u2 C v2
Œuer � vE3� D 1

u2 C v2
a2;

a3 D rq3 D @q3

@x1
E1 C @q3

@x2
E2 C @q3

@x3
E3

D 1
�
x2
x1

	2 C 1

�x2
x21

E1 C 1
�
x2
x1

	2 C 1

1

x1
E2 C 0E3

D 1

x21 C x22
Œ�x2E1 C x1E2�

D 1

u2v2
Œ�uv sin E1 C uv cos E2� D 1

uv
Œ� sin E1 C cos E2�

D 1

uv
e D 1

u2v2
a3:

4. In order to determine singularities one should examine the Jacobian of the system

J D @.x1; x2; x3/

@.q1; q2; q3/
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

@x1

@q1
@x2

@q1
@x3

@q1

@x1

@q2
@x2

@q2
@x3

@q2

@x1

@q3
@x2

@q3
@x3

@q3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ̌

v cos v sin u
u cos u sin �v

�uv sin uv cos 0

ˇ̌
ˇ̌
ˇ̌

D �uv sin .�v2 sin � u2 sin / � uv cos .�v2 cos � u2 cos /

D uv.v2 sin2  C u2 sin2  C v2 cos2  C u2 cos2  / D uv.v2 C u2/:

If u D 0 or v D 0, then J D 0. This means that either u D 0 or v D 0 is the
singularity of the paraboloidal system of coordinates. If u D 0 or v D 0, then ai

are undefined because the expressions 1=.v2 C u2/ and 1=.vu/ are not defined.
The velocity of the particle is equal to
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v D dr
dt

D Pua1 C Pva2 C P a3

D Pu �u2 C v2
�

a1 C Pv �u2 C v2
�

a2 C P �u2v2� a3:

The kinetic energy T reads

T D 1

2
mv ı v D 1

2
m
�Pua1 C Pva2 C P a3

�

ı
"

Pu �u2 C v2
�

a1 C Pv �u2 C v2
�

a2 C P �u2v2� a3
#

D 1

2
m

"
�Pu2 C Pv2� �u2 C v2

�C P 2 �u2v2�
#
: ut

4.4 Natural Coordinates

4.4.1 Introduction

The introduced notion of a vector will be used for the determination of the position
of a particle in space. Let us recall that motion is defined as the change in position
of a particle (the body) with respect to the considered coordinate system. In turn, by
the change in body position we will mean the changes of its configuration in time
and in a subspace of Euclidean space. Moreover, these changes will be treated as
a mapping called homeomorphism, i.e., transforming successive points in a one-to-
one naturally unique way.

4.4.2 Basic Notions

Let us use the previously considered Euclidean space, where we will introduce
the Cartesian coordinate system OX1X2X3 of basis E1;E2;E3. The position of
an arbitrary particle is known if the position vector r is known in the mentioned
coordinate system. Formulas (4.84)–(4.86) describe the changes respectively of
a particle’s position vector, a velocity vector, and acceleration vector. According
to (4.85) we have

dx1
dt

D v1.t/;
dx2
dt

D v2.t/;
dx3
dt

D v3.t/: (4.198)
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We call the preceding equations kinematic equations of motion. Recall that
dynamic equations of motion result from Newton’s laws. The notion of kinetic
equations is also used. The differential equations of motion describe bodies
possessing mass (mass moments of inertia) and subjected to the action of forces
(moments of forces). Observe that whereas dynamics deals with the science of
forces and moments of forces and its special case is statics, kinetics involves only
the dynamics of bodies in motion (not at rest).

Solving (4.198) we obtain

x1.t/ D x10 C
Z t

0

v1.t/dt ;

x2.t/ D x20 C
Z t

0

v2.t/dt ;

x3.t/ D x30 C
Z t

0

v3.t/dt : (4.199)

To determine the equation of the path of a particle one should eliminate
time from (4.199). Equation (4.199) describes, then, the trajectory of motion in
parametric form. It is worth emphasizing that rarely is it possible to successfully
carry out the integration, that is, to determine the equation of a particle’s path in
analytical form. In most cases the integration is carried out using computational
methods.

4.4.3 Velocities and Accelerations in Natural Coordinates

So far we have considered the motion of a particle using the vector-valued function
r D r.t/. We have a prescribed curve (path) along which the particle moves.
The motion along the path is described by s D s.t/.

Note the difference between the notions of path and trajectory. The trajectory
of a particle conveys more information about its motion because every position is
described additionally by the corresponding time instant. The path is rather a purely
geometrical notion. Complete paths or their parts may consist of, e.g., line segments,
arcs, circles, ellipses, hyperbolas, helical curves.

According to Fig. 4.34, let

r D r.s/ D x1.s/E1 C x2.s/E2 C x3.s/E3; (4.200)

where s is a certain parameter (in this case the length of the arc) (Fig. 4.34).
If we take an arbitrary point O (in this case the origin of the coordinate system)

and we connect this point to a point lying on the path and describing the motion
of the particle, then the created vector will be a position vector. The limit of the
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Fig. 4.34 Illustration of a
vector’s derivative, where
Ab.Af / is the starting (final)
point of the motion of point A

ratio of increment of the vector to the increment �s for �s ! 0 will be called the
derivative of the vector with respect to parameter s (in this case an arc), that is,

r0.s/ D dr
ds

D lim
�t!0

�r
�s

D lim
�t!0

r.s C�s/� r.s/
�s

: (4.201)

The chord AB becomes the tangent when �s ! 0.
We then come to the conclusion that the derivative of a vector is the vector tangent

to the curve described by the radius vector r.s/. The sense of r0.s/ is determined by
the sense of the curve arc s.

If in Euclidean space as a basis we choose three vectors a1; a2; a3, then

r D x1.t/a1 C x2.t/a2 C x3.t/a3 (4.202)

and its derivative

r0 D dr
ds

D dx1
ds

a1 C dx2
ds

a2 C dx3
ds

a3: (4.203)

The method of differentiation presented above is true only for a stationary basis
of vectors ai , i D 1; 2; 3. In the general case, rule (4.203) should be complemented
by the derivatives of the basis vectors. In a special case, instead of the vectors
a1; a2; a3, we can in (4.202) and (4.203), use the basis E1;E2;E3.

According to (4.203), we define the differential of a vector as

dr D r0.s/ds: (4.204)

The differential is a vector having the same direction as the vector of derivative,
and jdrj is called the linear arc element.

Let us now consider the following case.
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Let the vector r move in three-dimensional space and satisfy the condition

r ı r D 	2; (4.205)

where 	2 D const. Equation (4.205) describes the motion of the point on a sphere.
We will trace the motion of vector r in a Cartesian coordinate system of unit vectors
Ei , i D 1; 2; 3.

Those vectors satisfy the relationships

E2i D 1; Ei ı Ek D 0: (4.206)

According to (4.205) we have

.x1E1 C x2E2 C x3E3/2 D 	2; (4.207)

hence we obtain the equation of a sphere

x21 C x22 C x23 D 	2: (4.208)

Let r D r.s/. Differentiating (4.205) we obtain

r ı dr
ds

D 0: (4.209)

This means that these two vectors are perpendicular to one another, i.e., the
tangent to the sphere is perpendicular to the radius at that point.

From the preceding analysis we can draw two conclusions. First, if the vector
jrj D const, then dr=ds ? r. Second, if r has a fixed direction, then the derivative
dr=ds has the same direction as r (the reader is advised to prove this conclusion).

If we introduce now a unit vector � tangent to the curve (Fig. 4.34), then

dr
ds

D �; (4.210)

and in view of that,

�2 D



dr
ds

�2
D 1: (4.211)

From the last equation we have

dr D �ds; (4.212)

which implies that the differential

dr2 D ds2 D dx21 C dx22 C dx23: (4.213)



244 4 Particle Kinematics and an Introduction to the Kinematics. . .

If a vector is a function of more than one parameter, its differentiation can be
expanded to a partial differentiation. If, e.g., a D a.x1; x2; x3/, then the Cartesian
coordinates can be treated as parameters. If we treat x2 and x3 as constants and x1
as a variable, then the operator @a

@x1
is the limit of the ratio of vector increment to x1

increment when the latter tends to zero.
If x1; x2; x3 change simultaneously, then the total differential

da D @a
@x1

dx1 C @a
@x2

dx2 C @a
@x3

dx3 (4.214)

describes the total increment of the vector.

Example 4.3. (See [5]) Determine the type of curve described by a radius vector
r D ˛s cos sE1 C ˛s sin sE2 C ˇsE3. Find equations of planes normal and tangent
to the curve at the point s D 0.

In a Cartesian coordinate system we have

x1E1 C x2E2 C x3E3 D ˛s cos sE1 C ˛s sin sE2 C ˇsE3;

and in view of that,

x1 D ˛s cos s; x2 D ˛s sin s; x3 D ˇs:

Eliminating parameter s we obtain the equation of the helix surface

x2x
�1
1 D tan

�
x3ˇ

�1�

and the cone equation

x21 C x22 � ˛2ˇ�2x23 D 0:

The intersection of the found helix surface and the conical surface determines the
helix wrapped around the cone (called canonical helix curve ).
Recall that the equation of a tangent to a curve at the point r.s0/ is given by

r D r.s0/C �r0.s0/:

Since the plane normal to the curve is perpendicular to the tangent, its equation
is given by the following dot product:

Œr � r.s0/� ı r0.s0/ D 0:

Let us note that

r0.s0/ D .˛ cos s � ˛s sin s/E1 C .˛ sin s C ˛s cos s/E2 C ˇE3:
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Fig. 4.35 Normal coordinate system

For the parameter s D 0 we have r.0/ D 0; r0.0/ D ˛E1 C ˇE3; and in view
of that,

r D �.˛E1 C ˇE3/;

defines the equation of the tangent to a curve for s D 0.
The equation of a plane normal to a curve at s D 0 has the form

.˛E1 C ˇE3/ ı .x1E1 C x2E2 C x3E3/ D 0;

hence

˛x1 C ˇx2 D 0: ut

For the purpose of further analysis of motion, velocity, and acceleration in
Euclidean space, we will recall some basic notions regarding the geometry of
curves [5].

With every point of a three-dimensional curve (here point O is chosen) it
is possible to associate a certain Cartesian coordinate system determined by
the so-called accompanying basis (accompanying tripod) consisting of three unit
vectors �;n;b (Fig. 4.35).

We construct the aforementioned unit vectors in the following way. The vector
� D dr=ds lies on a tangent to the curve. The normal vector n ? � is defined by

n D d�=ds

jd�=dsj ; (4.215)

and we call it a principal normal vector.
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The third vector is perpendicular to the two previous vectors, i.e.,

b D � � n; (4.216)

and it is called a binormal vector. The vectors b;�;n form a right-handed basis,
where the vector � is called a unit tangent vector.

The osculating plane determined by the vectors � and n is tangent to the path
at point O . If vector r describes the position of point O and R determines an
arbitrary point in the osculating plane, then the three vectors �;n, and R � r lie
in the osculating plane of the equation

.R � r;�;n/ D 0; (4.217)

where the left-hand side of the preceding expression denotes the scalar triple product
of the three vectors [5].

Since r0 D dr=ds D � and r00 D 	 d2r=ds2 (which will be demonstrated
later), (4.217) can be written in the form

.R � r; r0; r00/ D 0: (4.218)

If point R lies on the principal normal, then

R � r C �n D r C �r00; (4.219)

and hence
X1 � x1
x00
1

D X2 � x2
x00
2

D X3 � x3
x00
3

; (4.220)

where R D R.X1;X2;X3/, r D r.x1; x2; x3/.
Let the particle O be moving along a path with velocity

v D �v: (4.221)

The vectors of the basis move together with the particle, and the basis performs
the translational and rotational motion while traveling along the path.

Our aim is to determine the vector of rotation called a Darboux vector5:

!D D ˛1� C ˛2n C ˛3b: (4.222)

Recall that if a body rotates about a certain axis with angular velocity!, then the
linear velocity of an arbitrary point of that body is given by

v D Pr D ! � r; (4.223)

where r is a vector describing an arbitrary point of interest of the body.

5Jean Darboux (1842–1917), French mathematician who worked in the field of differential
geometry of curves and surfaces.
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The linear velocities of the tips of the basis vectors in our right-handed system
are equal to

d�

dt
D P� D !D � � D ˛3n � ˛2b;

dn
dt

D Pn D !D � n D �˛3� C ˛1b;

db
dt

D Pb D !D � b D ˛2� � ˛1n: (4.224)

Multiplying the first of (4.224) by b we obtain ˛2 D 0, and the Darboux vector
lies in the plane determined by vectors � and b. From the first and third equations
of (4.224) we determine

˛1 D �n ı db
dt
; ˛3 D n ı d�

dt
; (4.225)

from which it follows that ˛1 is positive when n and db have opposite senses.
Since, as was mentioned, the Darboux vector lies in the plane �; b, the

coefficients ˛1 and ˛3 can be related to the arc measure.
From the definition of the arc measure of the angle formed by two neighboring

tangents it follows that it is equal to jd�j. In turn, the angle between two
neighbouring binormals is equal to ˙jdbj.

We call the ratio

jd�j
ds

D 1

	
; (4.226)

where ds is an element of the arc between the neighboring tangents, the first
curvature of a curve (always positive). We call the ratio

˙
ˇ̌
ˇ̌db
ds

ˇ̌
ˇ̌ D 1

k
(4.227)

a torsion or a second curvature of a curve (positive or negative).
Let us assume that the origin of the basis v D ds=dt D 1, that is, ds D dt . Then

d�=ds D d�=dt and ˙jdbj=ds D ˙jdbj=dt , and from (4.225) we have ˛1 D k�1
and ˛3 D 	�1, and the Darboux vector is equal to

!D D �

k
C b
	
: (4.228)

In turn, from (4.224) we obtain so-called Frenet–Serret6 formulas of the form

d�

ds
D n
	
;

dn
ds

D ��
	

C b
k
;

db
ds

D �n
k
: (4.229)

6Both scientists came up with preceding formulas independently, J. Frenet in 1847 and J. Serret in
1851.
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Let us note that, defining the so-called third curvature of the curve as

1

�
D jdnj

ds
; (4.230)

from the second equation of (4.229), we obtain the so-called Lancret formula [14]
of the form

��2 D 	�2 C k�2: (4.231)

From the preceding equation and (4.228) it follows that

1

�
D
s
1

	2
C 1

k2
D j!Dj; (4.232)

i.e., that the third or total curvature of the curve is equal to the magnitude of the
Darboux vector.

According to the definition of the tangent vector � D dr=ds and taking into
account (4.229) we have

n D 	
d�

ds
D 	

d2r
ds2

D 	

.r0 ı r0/2
�
.r0ır0/r00 � .r0ır00/r0� : (4.233)

In turn, we easily calculate that

b D � � n D dr
ds

� 	d2r
ds2

D 	
r0 � r00

.
p

r0ır0/3
: (4.234)

It is also possible to derive the formulas for the first and second curvatures as
expressed in terms of a radius vector r D r.s/, where s is the arc length.

From (4.234) we calculate the first curvature

1

	2
D .r0 � r00/2

.r0 ı r0/3
: (4.235)

Multiplying the third equation of (4.229) by n we obtain

1

k
D �n ı db

ds
D .r0; r00; r000/

.r0 � r00/2
(4.236)

The preceding formulas can be expressed by the coordinates of a vector

r.s/ D x1.s/E1 C x2.s/E2 C x3.s/E3: (4.237)
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By definition of � and from (4.233) and (4.234) we have

� D dx1
ds

E1 C dx2
ds

E2 C dx3
ds

E3;

n D 	
d2x1
ds2

E1 C 	
d2x2
ds2

E2 C 	
d2x3
ds2

E3;

b D 	

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

E1 E2 E3
dx1
ds

dx2
ds

dx3
ds

d2x1
ds2

d2x2
ds2

d2x3
ds2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

: (4.238)

In turn, the values of the radius of curvature 1
	

and curvature k of the path at the
given point are equal to

1

	
D
"


d2x1
ds2

�2
C



d2x2
ds2

�2
C



d2x3
ds2

�2# 1
2

;

1

k
D
"


d2x1
ds2

�2
C



d2x2
ds2

�2
C



d2x3
ds2

�2#�1

0

BBBBB@

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

dx1
ds

dx2
ds

dx3
ds

d2x1
ds2

d2x2
ds2

d2x3
ds2

d3x1
ds3

d3x2
ds3

d3x3
ds3

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

1

CCCCCA
: (4.239)

According to the basic notions introduced in Sect. 4.4.2 we have

Pr D v D dr
ds

ds

dt
D v�;

Rr D a D d2r
ds2

D dv

dt
� C v

d�

dt
: (4.240)

The acceleration Rr D a defined by the second of (4.240) is the sum of the
tangential and normal accelerations, i.e.,

a D a� C an; (4.241)

where

a� D dv

dt
�;

an D v
d�

dt
D v

d�

ds

ds

dt
� v2

	
n; (4.242)

and in the calculations of an (4.233) was taken into account.
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The acceleration vector a lies in the osculating plane and its magnitude equals

a D
p

Pv2 C v4	�2: (4.243)

Finally, we will consider two examples excerpted from [5].

Example 4.4. Let the helix be described by the equation r D ˛ cos uE1 C
˛ sin uE2 C ˇuE3, where u is a parameter to be expressed by the arc length.
Determine the first and second curvatures of this curve.

The arc length equals

s D
Z u

0

ˇ̌
ˇ̌dr
du

ˇ̌
ˇ̌ du D

Z u

0

p
˛2 C ˇ2du D

p
˛2 C ˇ2u:

We substitute u D s=
p
˛2 C ˇ2 into the equation describing the helix obtaining

r.s/ D ˛ cos

 
sp

˛2 C ˇ2

!
E1 C ˛ sin

 
sp

˛2 C ˇ2

!
E2 C ˇsp

˛2 C ˇ2
E3:

According to (4.235) we have

1

	2
D d2r

ds2
ı d2r

ds2
:

Since

d2r
ds2

D � ˛

˛2 C ˇ2
cos

 
sp

˛2 C ˇ2
/

!
E1 � ˛

˛2 C ˇ2
sin

 
sp

˛2 C ˇ2
/

!
E2;

we have
1

	
D ˛

˛2 C ˇ2
:

In turn, according to (4.239) we have

1

k
D .˛2 C ˇ2/2

˛2

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

� ˛p
˛2Cˇ2 sin



sp
˛2Cˇ2

�
˛p
˛2Cˇ2 cos



sp
˛2Cˇ2

�
ˇp
˛2Cˇ2

� ˛
˛2Cˇ2 cos



sp
˛2Cˇ2

�
� ˛
˛2Cˇ2 sin



sp
˛2Cˇ2

�
0

˛

.˛2Cˇ2/3=2 sin



sp
˛2Cˇ2

�
� ˛

.˛2Cˇ2/3=2 cos



sp
˛2Cˇ2

�
0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

D ˇ

˛2 C ˇ2
: ut
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Example 4.5. Demonstrate that if the position vector of a particle has the form

r D r.s/ D ˛se C e � a.s/;

where s is a length of the curve arc, ˛ is a scalar, and e is a fixed unit vector, then:

(i) Tangents to the curve r.s/ form a constant angle with e.
(ii) The principal normal and the vector e are perpendicular.

(iii) The ratio 	=k is the same for every point of the curve.

According to the definition of a vector tangent to a curve we have

dr
ds

D � D ˛e C e � da.s/
ds

:

In order to determine the angle we calculate

� ı e D


˛e C e � da.s/

ds

�
ı e D ˛ C .e � e/ ı da.s/

ds
D ˛:

Note that n k d�=ds, and hence

d�

ds
D e � d2a.s/

ds2
:

In turn,

e ı d�

ds
D e ı



e � d2a.s/

ds2

�
D .e � e/ ı d2a.s/

ds2
D 0;

which proves that n ? e.
From the foregoing considerations it follows that

e ı n D 0;

and after differentiation with respect to s we have

e ı dn
ds

D e ı



��
	

C b
k

�
D 0; (�)

where the second equation of (4.229) was taken into account.
If n ? e, vectors �, b, and e lie in one plane, i.e., they are coplanar.
Because earlier it was shown that e ı � D ˛ and from the complementarity

property it follows that e ı � D cos', we therefore have ˛ D cos' (Fig. 4.36).
From Fig. 4.36 it follows that

.e ı b/2 D
h
cos

��
2

� '
	i2 D sin2 ' D 1 � cos2 ' D 1� ˛2;
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Fig. 4.36 Helix wrapped
around a cylinder (vectors �,
b, and e lie in one plane)

hence

e ı b D ˙
p
1 � ˛2:

From the equation (�) we have

e ı dn
ds

D �e ı �
	

C e ı b
k

D �˛
	

˙
p
1 � ˛2
k

D 0;

that is
	

k
D ˙ ˛p

1 � ˛2
D const:

The obtained properties and the property e ı � D ˛ D const are characteristic of
the helix. ut

Eventually, the results of the conducted calculations were reduced to the
following (see also Fig. 4.37).

The three unit vectors �;n;b form the Frenet trihedron. Vectors � and n
determine the plane tangent to the path at point O . Vector � possesses a sense in
agreement with the positive increments of the arc length. The sense of vector n is
directed toward the center of curvature of the path. Vector b is perpendicular to the
plane determined by vectors � and n.

We showed earlier that

�.s/ D dr
ds
;

d�

ds
D 1

	
n.s/;

where 	 denotes the radius of curvature of the trajectory at pointO .
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Fig. 4.37 Normal, tangent, and rectifying plane

According to the previous calculations we also have

v D dr
dt

D dr
ds

ds

dt
D Ps dr

ds
D v��;

a D dv
dt

D dv�
dt
� C v�

d�

ds

ds

dt
D Rs� C Ps

	
n:

Since the acceleration of a particle lies always in the osculating plane, i.e., the
plane determined by vectors � and n, it is possible to resolve it into two components
of the form

a D a� C an;

where a� D Rs�, an D Ps2
	

n, which is in agreement with the so-called Huygens
theorem.

The tangent acceleration is responsible for the changes in the acceleration
magnitude, whereas the normal acceleration determines the direction of the particle
acceleration.

We will call the motion of a particle in space uniform when its velocity .Ps/ D
const. Note that d.Ps2/=dt D 2Ps Rs. If Ps Rs > 0, then we will call the motion of a

particle accelerated, otherwise decelerated. Moreover, if in a certain time interval
Rs D 0, then in this time interval particle motion is uniform. Further, if in a certain
time interval Ps ¤ 0 and an D 0, then we are dealing with rectilinear motion because
	 ! 1.



254 4 Particle Kinematics and an Introduction to the Kinematics. . .

4.5 Kinematic Pairs and Chains, Joint Variables,
and the Denavit–Hartenberg Convention

4.5.1 Kinematic Pairs and Chains

In the theory of machines and mechanisms, the theory of manipulators and robotics,
the kinematics of the mutually connected rigid bodies plays the major role because
it allows for the design of various machines, mechanisms, robots or manipulators.
Most often the moving isolated bodies in one such mechanical system can be treated
as rigid and pairwise connected to each other, and such bodies are called links
(we call the fixed body a base (frame)). The connection of two links allowing for
their relative motion is called a kinematic pair. In turn, we call the group of links
connected by means of kinematic pairs a kinematic chain.

The lower-order kinematic pairs are presented in Table 4.1.
From an analysis of Table 4.1 it follows that a cylindrical pair can be replaced

with a revolute pair and a prismatic pair of the same axis of action. In turn,
a universal pair and a spherical pair are respectively equivalent to two and
three revolute pairs of the intersecting axes. Such equivalence is exploited during
introduction of the so-called Denavit–Hartenberg7 (D–H) parameters serving the
purpose of transforming coordinates from the pair number i to i C 1 or i � 1,
i D 1; : : : ; N , where i D 0 corresponds to the base.

We call all kinematic pairs summarized in Table 4.1 the lower-order kinematic
pairs because the contact of the connected links takes place over a certain surface. In
the case of line contact or point contact between the links we introduce the notion
of higher-order kinematic pairs. The unary kinematic pairs and binary kinematic
pairs correspond to unilateral and bilateral constraints, discussed earlier.

If we treat two rigid bodies as a discrete material system (DMS), the number of
degrees of freedom of such a system is equal to 2� 6 D 12. Now we will join these
two bodies with a revolute pair. As a single rigid body (composed of two bodies
temporarily connected to one another), such a system has 6 degrees of freedom, but
the additional possibility of motion admits the revolute pair, that is, the number of
degrees of freedom of the two-body system connected by the revolute pair is equal
to seven. The mentioned pair was taken from the equivalent system of 12 � 7 D 5

degrees of freedom.

Definition 4.1 (Class of a kinematic pair). The number of degrees of freedom lost
by a system of two unconstrained rigid bodies after their connection by means of a
given kinematic pair is called the class number of this kinematic pair.

Definition 4.2 (A mechanism). A kinematic chain whose number of degrees of
freedom is equal to the number of its driven links is called a mechanism.

7The Denavit–Hartenberg convention, parameters, and matrices were introduced by Jaques Denavit
and Richard S. Hartenberg.
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Table 4.1 Lower-order kinematic pairs

Pair Example of
realization

Relative
coordinates

e.g. Euler’s
angels

Symbol

Rotational

Prismatic

Cylindrical

Universal

Spherical

j

j1,j2

j1,j2,j3

2

ϕ
1

1
x

2

x

x

x,j2

1

ϕ

ϕ1

ϕ2

2

1

21

2
1

2
1

1

2

The number of degrees of freedom of a mechanism (the movability) is deter-
mined by the structural formulas

w D 5n � 4p1 � 3p2 � 2p3 � p4;

w D 4n � 3p1 � 2p2 � p3;
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w D 3n � 2p1 � p2;

w D 2n � p1

w D n; (4.244)

where n is the number of moveable links and pi denotes the number of kinematic
pairs of the class “i” in the analyzed mechanism.

The formulas are valid for the fifth, fourth, third, second, and first mechanism
families, respectively. The third (second) family concerns plane (wedge) mecha-
nisms, whereas the first family (w D n) contains rotor mechanisms.

Definition 4.3 (A group). A kinematic chain with free kinematic pairs whose
mobility is equal to zero after its connection to a base is called a structural group.

We will classify kinematic chains in accordance with their topology. One can
distinguish, for instance, simple chains, tree-structured chains, and chains with a
kinematic loop. Chains with kinematic loops will be called closed kinematic chains,
whereas simple and tree-structured chains will be called open kinematic chains.
An example of the open kinematic chain is a manipulator.

4.5.2 Joint Variables and the Denavit–Hartenberg Convention

Let us consider an open kinematic chain consisting of N links, with its i th link
situated between joints of the numbers i � 1 and i . According to the previous
considerations we will assume that the joint transmits either rotational motion or
translational motion. It follows that the number of joints determines the number of
links. Link number 1 is connected to the base by means of one of its nodes, and the
other node is used to connect to link number 2 (see also [15, 16]).

In order to explain the D–H convention we will consider two successive links of
the numbers i � 1 and i depicted in Fig. 4.38.

From that figure it can be seen that the following procedure (algorithm) was
adopted:

1. The sense of the X.i/
3 axis can be arbitrarily taken.

2. TheX.i/
1 axis is perpendicular to the axes of joints i and iC1 and is common for

both joints. Its sense is directed toward the joint having larger number (the X.i/
2

axis, not drawn in the figure, can be easily determined using the right-hand rule).

The advantage of the D–H notation [17] consists in its using only four control
parameters (joint variables) to uniquely determine the position of the system
OiX

i
1X

i
2X

i
3 with respect to Oi�1Xi�1

1 Xi�1
2 Xi�1

3 . They are as follows:

– The angle of rotation of the link ˛i describing the rotation about the X.i/
1 axis

and formed by the X.i�1/
3 and X.i/

3 axes.
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Fig. 4.38 Links i � 1 and i and their associated local coordinate systems

– The length of link li measured along the X.i/
1 axis between the X.i�1/

3 and X.i/
3

axes.
– The linear translation in the i th joint di measured along the X.i�1/

3 axis between

X
.i�1/
1 and X.i/

1 .

– The angle of rotation of the i th joint ˇi about the X.i�1/
3 axis formed by the

X
.i�1/
1 and X.i/

1 axes.

In the case of a revolute joint, the joint variable is ˇi and di D const. In contrast,
in the case of a prismatic joint, the joint variable is the translation di and ˇi D const.

The transition from the systemOi�1Xi�1
1 Xi�1

2 Xi�1
3 to the system OiX

i
1X

i
2X

i
3 is

realized successively by means of the following four transformations:

1. The rotation about the X.i�1/
3 axis through the angle ˇi .

2. The translation along the X.i�1/
3 axis by di .

3. The translation along X.i/
1 by li .

4. The rotation about the X.i/
1 axis through the angle ˛i .

The successive application of the four preceding transformations is equivalent to
4 � 4 actions, which as a result give matrix A.i/, which is the transformation matrix
between the coordinate systems of the origins at points Oi�1 and Oi . An arbitrary
point A has coordinates determined by the relationship

r.i�1/ D A.i/r.i/; (4.245)

where the homogeneous transformation matrix A.i/ includes the four transforma-
tions mentioned earlier and has the form
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A.i/ D ˇ
�

E.i�1/3

	
D
�

E.i�1/3

	
D
�

E.i/3
	
˛.E.i/3 /

D

2
664

cosˇi � sinˇi 0 0
sinˇi cosˇi 0 0
0 0 1 0

0 0 0 1

3
775

2
664

1 0 0 0

0 1 0 0

0 0 1 d
.i�1/
3

0 0 0 1

3
775 �

2
664

1 0 0 d
.i/
1

0 1 0 0

0 0 1 0

0 0 0 1

3
775

2
664

1 0 0 0

0 cos˛i � sin ˛i 0
0 sin ˛i cos˛i 0

0 0 0 1

3
775

D

2

6664

cosˇi � sinˇi cos˛i sinˇi sin ˛i d
.i/
1 cosˇi

sinˇi cosˇi cos˛i � cosˇi sin ˛i d
.i/
1 sinˇi

0 sin ˛i cos˛i d
.i�1/
3

0 0 0 1

3

7775 : (4.246)

4.6 Classification of Kinematic Problems

In the case of the connections of rigid bodies by means of constraints and after intro-
duction of the coordinate system of the environment (e.g., Cartesian system), with
each of the successive bodies we will also associate the Cartesian coordinate system
of the body. The transmission of motion from the first body to the second, then
from the second to the third, etc., will proceed through the constraints understood as
the connection between the bodies. We will consider this problem on an example
of constraints (connections) between the bodies realized, e.g., by some human
engineering activity. In the theory of machines and mechanisms, such constraints
will be called nodes and in the theory of manipulators and in robotics, joints.

Selecting an arbitrary rigid body of number i we associate with it the local
coordinate system OiX

i
1X

i
2X

i
3 . The forward problem of kinematics consists in

the introduction of the successive transformations between the systems of bodies.
These transformations allow for the determination of the homogeneous matrix of
transformation for the whole system of bodies with respect to the coordinate system
of the environment OX1X2X3, on the assumption that they form the so-called
kinematic chain (Sect. 4.5). The homogeneous matrix is formed by the resultant
vector of the displacement r and the matrix of composite rotation A. According
to the adopted model we can also introduce constraint variables (node or joint
variables). Recall that a node eliminates a certain number of movement possibilities
(degrees of freedom) of the bodies, which it joins (from that is also derived the
term joint). The joint variables are also subjected to the transformation mentioned
above. As a result the vector of joint variables q expressed in the coordinate system
OX1X2X3 can be obtained. Prescribing various values of the joint variables one may
easily determine vector r and matrix A as vector functions of q, that is, r D r.q/ and
A D A.q/. In general, vector q belongs to the space RN , where N is the number
of rigid bodies connected together, i.e., q 2 RN . Then, the position .ri / and the
orientation .Ai / of any body i is a subset of R6 space, also called a configuration
space of body i .
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Fig. 4.39 Forward (a) and
inverse (b) kinematics
problem .M � N/

Fig. 4.40 Two different
possible positions of rigid
bodies connected by a
revolute node

Definition 4.4. Determination of the transformation of the joint space of connected
rigid bodies into a configuration space of number N .q ! r/ is called a forward
problem of kinematics.

Definition 4.5. Determination of the transformation of the configuration space of
the body of numberN into a joint space, that is, r ! q, is called an inverse problem
of kinematics.

Both definitions are illustrated in Fig. 4.39.
In general, the forward kinematics problem does not lead to serious difficulties

while being solved, whereas the inverse kinematic problem is generally a difficult
problem.

Let us assume that we demand from a body of numberN to move in a plane, i.e.,
to have three degrees of freedom. The joint space of the system of bodies should
possess at least a dimension of three. The preselection of the space of possible
movements of body N is a complex problem because it depends on the possibility
and the range of movements allowed by the successive nodes (joints) of the system
of bodies.

Only in special cases is the solution of the inverse kinematic problem unique.
It is clearly visible on an example of revolute nodes. Already the position of the
kinematic pair of the first class (two rigid bodies connected by a revolute node)
allows for two possibilities for the location of such a pair that are symmetrical with
respect to the axis passing through the remaining two joints of these two bodies
(Fig. 4.40).

The kinematic relationships between those bodies are determined by trigono-
metric functions, which exhibit singularities of various types (their values can be
equal to zero). Moreover, these relationships are non-linear and, therefore, usually
the considerations regarding the motion of the connected rigid bodies cannot be
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used for analysis of the motion of other (even of a similar structure) systems of
connections of such bodies are as well.

In the case of the analysis of an open kinematic chain of rigid bodies (links),
a forward kinematics problem reduces to the determination of the position of the
origin ON of the coordinate system associated with body N and the determination
of the orientation of that system with respect to the coordinate system of the
environmentOX1X2X3.

In the case of the considered chain consisting of N bodies we have

r D A0.q1/r0; r0 D A00.q2/r00; : : : ; rN�1 D AN .qN /rN : (4.247)

The unknown relationship has the form

r D A0.q1/A00.q2/ : : :AN .qN /rN D A.q/rN ; (4.248)

where q D Œq1; q2; : : : ; qN �
T.

The position and orientation of body N with respect to the coordinate system
of the environment is determined by relationship (4.248), where rN D rN .q/ 2
R6. The first three components of this vector determine the position of point ON ,
whereas the three remaining ones describe its orientation with respect toOX1X2X3.

The kinematics of connections of N rigid bodies into an open kinematic chain
has very wide application in the theory of manipulators and in robotics. The
changes in the vector of joint variables q.n/; n D 1; : : : ; N can be realized by
the mechanical and electrical interactions on nodes (joints). Not without reason did
we describe in Sect. 4.4 the possibility of transforming a point’s coordinates from
a Cartesian system into a curvilinear system (and vice versa) using the Jacobian of
the transformation. The singularities of the Jacobian of the transformation prevented
the uniqueness of that transformation.

In a general case, the space in which body N moves is described by a vector
rA 2 RM ; M 	 6, where A denotes a point of body N . In manipulator theory and
in robotics, body N is a tool and the space RM is called a task space. If the tool is
axisymmetrical, the dimension of the task space is equal to five.

As a result of solution to the forward kinematics problem we obtain the
relationship

rA D f.q/; (4.249)

where q D q.t/ and rA D rA.t/.
Coming back to our interpretation of body N as a tool, it seems obvious that

the motion of that body (the tool) is imposed in advance by the requirements of,
e.g., machining, the manufacturing process. In other words, having the form of
rA.t/ imposed in advance we would like to determine the vector of joint variables
q D �

q1; : : : ; qN
�T

to guarantee realization of the necessary form rA.t/. This means
that, using (4.249), we determine the unknown vector

q D f�1.rA/; q 2 RN ; rA 2 RM ; M 	 N; (4.250)
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which indicates the realization of the inverse kinematics problem. The condition
M < N indicates the redundant problem, that is, a system of connected bodies
possesses more degrees of freedom than needed to complete the task. In such a case,
the inverse kinematics problem (4.250) leads to non-uniqueness of the solutions.
Every point of the path can be obtained by (infinitely) many configurations of the
multi-body system. In order to choose the “proper” configuration, one should exploit
one of the possible optimization criteria.

Equation (4.249) is equivalent to the following matrix form:

2

6664

r1

r2
:::

rM

3

7775 D

2

6664

f1.q1; : : : ; qN /

f2.q1; : : : ; qN /
:::

fM .q1; : : : ; qN /

3

7775 ; (4.251)

and hence we obtain the total differential of the preceding expression (index A is
omitted):

dr �

2

6664

dr1
dr2
:::

drM

3

7775 D

2
666666664

@f1

@q1
dq1

@f1

@q2
dq2 � � � @f1

@qN
dqN

@f2

@q1
dq1

@f2

@q2
dq2 � � � @f2

@qN
dqN

::: � � � � � � :::
@fM

@q1
dq1

@fM

@q2
dq2 � � � @fM

@qN
dqN

3
777777775

D

2

666666664

@f1

@q1

@f1

@q2
� � � @f1

@qN
@f2

@q1

@f2

@q2
� � � @f2

@qN
::: � � � � � � :::

@fM

@q1

@fM

@q2
� � � @fM

@qN

3

777777775

2
6664

dq1
dq2
:::

dqN

3
7775 � J.q/dq: (4.252)

We obtained the Jacobian matrix (in the theory of manipulators and in robotics
the matrix J.q/ is referred to as an analytic Jacobian of a manipulator).

Dividing both sides of (4.252) by dt one obtains

dr
dt

� Pr D J.q/ Pq; (4.253)

and the preceding equation represents the forward kinematics problem for velocity,
and Pq 2 RN ; Pr 2 RM .
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Employing the foregoing reasoning, in the case of applications, we often face the
requirement of solving the inverse kinematics problem for velocity of the form

Pq D J�1.q/Pr: (4.254)

Unfortunately, this is the application side, where problems connected with the
determination of the inverse Jacobian matrix J1.q/ emerge. Transformation (4.254)
can be realized only when det .J�1.q// ¤ 0. The square Jacobian matrix is singular
when at least one of its rows can be expressed as a linear combination of the
remaining rows (then the rank of the matrix is decremented). The singularities
appear when, e.g., the axes of at least two revolute joints coincide. In the case of
a manipulator, it then loses its smooth ability to move and, despite the movements
of joints, the position and the orientation of the tool remain unchanged.
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Chapter 5
Kinematics of a Rigid Body and Composite
Motion of a Point

5.1 Translational and Rotational Motion

5.1.1 Rigid Body in a Three-Dimensional Space and Degrees
of Freedom

We will show that to determine the position of a rigid body in three-dimensional
space, it is sufficient to know the position of any three of its points, but the points
must not be collinear.

Figure 5.1 shows the stationary Cartesian coordinate system OX1X2X3 and
positions of a rigid body at two different time instants of motion. We assume that
the positions of the points A, B , and C are known, and we will show that if so,
then it is possible to determine the position of any other point of the rigid body
(in the present case point D). To this end one should construct the tetrahedron
ABCD, and then, knowing the edges CD, AD, and BD, construct the spheres of
radii equal to the lengths of those edges. An intersection of those three spherical
surfaces will be two points located symmetrically with respect to the plane of
triangle ABC . By continuous evolution in time from the original positions t0 one is
able to make the proper choice of pointD. Knowledge of the positions of points A,
B , and C implies knowledge of their coordinates .x1A; x2A; x3A/, .x1B; x2B ; x3B/,
and .x1C ; x2C ; x3C /. The relative distances of points A, B , and C do not change in
time, thus

.x1A � x1B/
2 C .x2A � x2B/2 C .x3A � x3B/2 D r2AB;

.x1A � x1C /2 C .x2A � x2C /2 C .x3A � x3C /
2 D r2AC ;

.x1B � x1C /2 C .x2B � x2C /2 C .x3B � x3C /
2 D r2BC ; (5.1)

where rAB D AB , rAC D AC , rBC D BC .
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and Mathematics 28, DOI 10.1007/978-1-4614-3791-8 5,
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Fig. 5.1 Positions of points
of a rigid body at the time
instant t0 and t

Let us note that three out of nine coordinates defining the position of points A,
B , and C can be determined from (5.1), thus only six can be chosen arbitrarily.

It follows that in order to uniquely define the position of a rigid body moving
freely (without constraints) in space, one should know six independent parameters.
They uniquely describe the instantaneous position of the rigid body and are called
its degrees of freedom.

As we will see later, the choice of parameters that determine the number of
degrees of freedom need not be associated with the selection of three non-collinear
points of the rigid body.

For instance, let us choose three coordinates of point A1. The position of the
second pointA2 can be determined with the aid of only two coordinates with respect
to point A1 because point A2 can move on the surface of the sphere of the center
A1 (the motion of the point on the surface is determined by two coordinates). Points
A1 and A2 determine the line A1A2. The position of point A3 is determined by one
coordinate with respect to that line by means of drawing the plane passing through
point A3 and perpendicular to that line. The path of that point will be a circle lying
in the mentioned plane.

The motion of point A3 is uniquely described by the radius of that circle.
Let us assume now that one of the points of the considered rigid body (e.g.,

pointA) becomes fixed. All the remaining points of that body move along the paths
lying on the concentric spheres of centers at point A (Fig. 5.2).

We will call the motion of a rigid body in space with one of the points fixed
(this point may not belong to the body) the motion about a point. Now the position
of the rigid body is determined by the position of points B and C , that is, by six
parameters (coordinates). However, three equations (5.1) must be satisfied, and in
light of that, the motion about a point of a rigid body with one point fixed has three
degrees of freedom.
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Fig. 5.2 A rigid body
in motion about a point

Fig. 5.3 Rotational motion
of a rigid body

Let us further constrain the motion of the considered body, i.e., we now fix its
two points A and B . The line determined by these two points is called an axis of
rotation of a rigid body, and the motion is called the rotational motion (Fig. 5.3).

In this case, in order to determine the instantaneous position of the considered
rigid body, it suffices to know the position of any point of the body (e.g., point C )
not lying on the axis of rotation. The position of points A and B does not play any
role here (they lie on the axis of rotation), and in view of that the distance of pointC
from points A and B is determined by the last two equations of the system (5.1).
Because point C has three coordinates .x1C ; x2C ; x3C /, and we have two equations,
only one of those coordinates can be chosen arbitrarily. This means that a rigid body
with two points fixed has one degree of freedom.

The number of degrees of freedom determines the number of equations necessary
for a complete description of rigid-body motion.
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If our rigid body is, for example, a rigid rod, it will have five degrees of freedom
(one degree of freedom associated with the rotation about the rod axis is neglected
because d � l , where d is the rod cross-sectional dimension and l its length).

The investigation of the kinematics of a rigid body reduces to the knowledge
connected with the requirement of realization of the necessary rigid-body motion
and to the determination of all the kinematic characteristics of arbitrary points of a
rigid body based on the knowledge of certain (a few) kinematic characteristics of
the body.

Let us consider two states of a rigid body, i.e., initial and final state. We call the
transition from the initial to the final state the displacement of a rigid body. One of
the tasks of kinematics is the transformation of the position of a body from the initial
to the final state, but neglecting the real process of body motion and its duration.

We distinguish the following three types of displacement of a rigid body.
Translation of a rigid body is a kind of displacement where all the points of the

body perform a geometrically identical motion (rectilinear or curvilinear).
Rotation of a rigid body is a kind of displacement where the final state of the body

is obtained from its initial state as a result of rotation about a certain line called the
axis of rotation.

Screw displacement of a rigid body is the combination of translation and
rotation such that the direction of rotation vector is coincident with the direction
of translation.

5.1.2 Velocity of Points of a Rigid Body

Let us consider the relationships between velocities of two arbitrary points of a rigid
body (Fig. 5.4).

The positions of the points are described by radius vectors rA1 and rA2 attached
at the origin of the Cartesian coordinate system OX1X2X3. The velocities of those
points are equal to

vA1 D drA1
dt

; vA2 D drA2
dt

; (5.2)

and according to Fig. 5.4 we have

rA1A2 D rA2 � rA1: (5.3)

Let us note that although the vector rA1A2 (of the tail at A1 and tip at A2) changes
direction and position, its magnitude is always the same, i.e.,

rA1A2 ı rA1A2 D r2A1A2 : (5.4)

Differentiating (5.4) with respect to time we obtain

rA1A2 ı drA1A2
dt

D 0: (5.5)
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Fig. 5.4 Projections of velocities of points A1 and A2 onto the line passing through these points

Differentiating (5.3) with respect to time and taking into account (5.2) we obtain

drA1A2
dt

D vA2 � vA1: (5.6)

Substituting (5.6) into (5.5) we have

rA1A2 ı vA2 D rA1A2 ı vA1: (5.7)

Taking into account the definition of scalar product of vectors and Fig. 5.4 we
obtain

vA2 cos˛2 D vA1 cos˛1: (5.8)

The obtained relationship enables us to formulate the following theorem.

Theorem 5.1. The projections of velocities of two arbitrary points of a rigid body
onto the line passing through these points are equal.

5.1.3 Translational Motion

If during the motion of a rigid body an arbitrary line that belongs to that body
remains continuously parallel to its previous positions, we call such motion the
translational motion.

As can be seen in Fig. 5.5, line AB (corresponding to time instant t) is parallel to
line A1B1 (tC�t), and segmentsAB and A1B1 are equal. SegmentAB underwent
translation (parallel movement) and assumed the position A1B1. In the figure, paths
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Fig. 5.5 Translational motion of a rigid body .AB k A1B1 and AB D A1B1/ (a) and velocities
and accelerations of points A and B (b)

of two arbitrary points are indicated by dotted lines (the paths can be curvilinear).
We can determine velocities of points A and B from the following formulas:

vA D lim
�t!0

�rA
�t

; vB D lim
�t!0

�rB
�t

: (5.9)

However, as we have already mentioned,�rA D �rB , and from (5.9) we obtain

vA D vB D v: (5.10)

Recall that pointsA andB are arbitrary; therefore, the following theorem is valid.

Theorem 5.2. During translational motion of a rigid body the velocities of all its
points are equal.

We will denote such a velocity by the symbol v and call it the velocity of
translational motion.

The accelerations of points A and B are equal to

aA D dvA
dt
; aB D dvB

dt
: (5.11)

Taking into account (5.10) we obtain

aA D aB D dv
dt

D a: (5.12)
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Fig. 5.6 Circular motion
of point D

During translational motion of a rigid body accelerations of all its points are equal.

We will call the introduced acceleration a the acceleration of translational
motion.

In translational motion, the paths can be parallel lines, either straight or curved.
In the textbook [1], examples of such motion encountered in technology are
presented. For instance, the motion of a piston of an internal combustion engine
takes place along a straight line, whereas the paths of points associated with the
motion of a rigid horizontal beam suspended by means of two cranks (at its ends)
are curvilinear.

5.1.4 Rotational Motion

In this section we will consider the case presented in Fig. 5.3 in more detail. Let the
cylindrical rigid body be supported in the thrust slide bearing and radial slide bearing
through two coaxial cylindrical journals. The axis OX3 of the adopted coordinate
system coincides with the axis of rotation of the body. The points belonging to that
body describe concentric circles lying in the planes perpendicular to the axis of
rotation, and the radii of these circles are determined by distances of points from
the axis of rotation. The body has one degree of freedom, and we will describe its
motion with the aid of only one parameter. In order to describe it we will choose
the stationary plane O coincident with the plane OX1X3. Next, we will take an
arbitrary point lying on the plane  and determined by the angle ' (Fig. 5.6),
henceforth called the angle of body rotation.

Looking at the arrow of the OX3 axis (from positive to negative values),
the directed angle ' will be positive if the motion of the point proceeds in a
counterclockwise direction. In the general case, the angle changes in time ' D '.t/
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and is expressed in the arc measure, that is, radians. Let us take two time instants
t and t C �t , and let the corresponding angle values be '.t/ and '1.t C �t/,
respectively. The following ratio of rotation angle increment to time increment is
called the average angular velocity of a body:

!av D '1.t C�t/ � '.t/

�t
D �'

�t
: (5.13)

If �t ! 0, then !av ! !, and from (5.13) we obtain

! D lim
�t!0

�'

�t
D d'

dt
: (5.14)

The instantaneous angular velocity of a body rotating about a fixed axis is
defined by the time derivative of an angle of rotation of that body.

A unit of angular velocity is 1 rad/s. In the general case, the angular velocity
depends on time, i.e., ! D !.t/. If ! > 0 (! < 0), then the rotation angle '
increases (decreases) in time.

In an analogous way we introduce the notion of average angular acceleration. Let
us take two time instants t and t C�t , and let the corresponding values of angular
velocity be !.t/ and !1.t C�t/, respectively.

The ratio of angular velocity increment to time increment (time in which the
angular velocity changes) is called the average angular acceleration of a body’:

"av D �.!1 � !/
�t

D �!

�t
: (5.15)

If �t ! 0, then "av ! ", and from (5.15) we obtain

" D lim
�t!0

�!

�t
D d!

dt
D d2'

dt2
: (5.16)

The instantaneous angular acceleration of a body rotating about a fixed axis is
defined by the time derivative of its angular velocity, or by the second derivative
with respect to time of its angle of rotation, and the unit of angular acceleration is
1 rad/s2.

The special cases of the rotational motion of a rigid body include uniform rota-
tional motion and uniformly variable (accelerated, decelerated) rotational motion.
In the case of uniform rotational motion, from (5.14) we obtain

! D d'

dt
D const; (5.17)

that is,

' D !t C '0; (5.18)

where '0 D '.t0/.
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In the case of this motion, often instead of the velocity expressed in radians per
second, the number of revolutions n made by the body in 1 min is given. According
to (5.13) and because

�'

2�
D n; t D 60 s; (5.19)

we have

! D �n

30

rad

s
: (5.20)

In the case of uniform motion ! D const, and so we have " D 0 according to
(5.16).

The uniformly accelerated (decelerated) motion is characterized by a constant
magnitude of angular acceleration. According to (5.16) we have

" D d!

dt
D d2'

dt2
D const: (5.21)

Integrating the preceding equation with respect to time we obtain

d'

dt
D ! D "t C !0; (5.22)

where !0 D !.t0/.
In turn, integrating (5.22) with respect to time we have

' D "
t2

2
C !0t C '0; (5.23)

where '0 D '.t0/.
If the considered body has one degree of freedom, then knowing the velocity

and acceleration of rotational motion allows for the determination of the velocity
and acceleration of any point of the body. Choosing an arbitrary point D of the
body through that point, we will draw a plane perpendicular to the axis of rotation.
Connecting the point of intersection of the plane and the rotation axis with pointD
we obtain the radius R of the circle on which point D moves. The arc measure s of
the position of point D is equal to

s D R.' C ı/; (5.24)

where ' denotes the directed angle between the planes O and  , which varies,
whereas the angle ı is constant and determines the position of pointD with respect
to the plane  (Fig. 5.6). Differentiating (5.24) we obtain

ds

dt
D R

d'

dt
D R!; (5.25)
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Fig. 5.7 Resolution of acceleration a into normal and tangential components (a) and distribution
of accelerations along the radius (b)

which describes the magnitude of velocity v of point D. In order to determine the
vector of acceleration of pointD we will resolve it into tangential at and normal an
components, that is,

at D dv
dt
; janj D v2

R
: (5.26)

The magnitudes of accelerations at and an are equal to (Fig. 5.7a)

at D "R; an D !2R: (5.27)

According to Fig. 5.7a, using the introduced angle ˛ one may determine the total
acceleration of point D, which reads

a D
q

a2t C a2n D R
p
"2 C !4; (5.28)

tan˛ D at
an

D "

!2
: (5.29)

The angle ˛ defining the direction of the total acceleration vector is independent
of the position of pointD, but the magnitude of acceleration depends on the position
described by the radius R. The dependency of the acceleration magnitude on the
distance of point D from the rotation axis is shown in Fig. 5.7b. The graph of the
velocity distribution along the distance is analogous, but the velocity vectors are
perpendicular to the radiusR.

Finally, we will determine the components of the velocity and the acceleration of
an arbitrary pointD based on the diagrams depicted in Fig. 5.8.

According to Fig. 5.8a we obtain

vx1 D �v sin.' C ı/ D �!R sin.' C ı/; (5.30)

vx2 D v cos.' C ı/ D !R cos.' C ı/: (5.31)
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Fig. 5.8 Rectangular components of the velocity vector (a) and of the acceleration vector (b)

It can be easily noticed that because

x2 D R sin.' C ı/; x1 D R cos.' C ı/; (5.32)

(5.30) and (5.31) will take the form

vx1 D �!x2; vx2 D !x1: (5.33)

Analogous considerations lead to the determination of the rectangular compo-
nents of acceleration. According to Fig. 5.8b we have

ax1 D �at sin.' C ı/� an cos.' C ı/;

ax2 D at cos.' C ı/ � an sin.' C ı/: (5.34)

Taking into account (5.32) and (5.27) we obtain

ax1 D �"x2 � !2x1; ax2 D "x1 � !2x2: (5.35)

5.1.5 Angular Velocities and Angular Accelerations as Vectors
and the Vector of Small Rotation

Let us consider a rigid body rotating about a fixed vertical axis OX3 (Fig. 5.9).
We will attach the vector ! of magnitude j!j D P' at an arbitrary point of the

OX3 axis. This vector is a sliding vector because it can be freely moved along the
OX3 axis. If P' > 0, then ! has the same direction and sense as does the OX3 axis.
According to the previous considerations

v D !R D !r sin ˛: (5.36)
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Fig. 5.9 Rigid body rotating
with angular velocity !

From Fig. 5.9 one may notice that vector v is perpendicular to the plane
determined by vectors r and !, which express vector v in the following way:

v D ! � r: (5.37)

Because the acceleration a of point D is a geometric derivative of the velocity v
with respect to time, we have

a D dv
dt

D d

dt
.! � r/ D d!

dt
� r C! � dr

dt
; (5.38)

where d!
dt D " is the angular acceleration.

The vector of angular velocity ! may change the magnitude, but not the
direction. It follows that the vector of angular acceleration also lies on the axis of
rotation OX3. If ! increases, then ! and " have the same senses. If ! decreases,
then ! and " have opposite senses. We can write (5.38) in the form

a D " � r C! � v: (5.39)

From Fig. 5.10 it follows that

at D " � r: (5.40)

The vector " � r is simultaneously perpendicular to " and r, and its magnitude
j" � rj D "r sin˛ D "R. The second vector is simultaneously perpendicular to
! and v, that is, directed along the radius R. Moreover, since ! ? v, we have
j!� vj D !v D !2R. The latter vector is the normal component of the acceleration

an D ! � v D ! � .! � r/: (5.41)
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Fig. 5.10 Normal and
tangential accelerations
of point D

Fig. 5.11 Vector of small
rotation angle ��

At the end of this section, we will introduce the notion of the small rotation
vector. Its geometrical interpretation is depicted in Fig. 5.11.

A small displacement�r caused by a rotation�� for small �' is equal to

�r D R�' D r�' sin˛: (5.42)

For small �' one can assume that vector �r is tangent to a circle of radius R,
and is equal to

�r D �� � r: (5.43)

We will demonstrate next that small rotation vectors can be added geometrically.
Let the position of point D be described by the radius vector r, and let us impose
on the body two small rotations��1 and��2 along certain intersecting axes. After
the first rotation��1 pointD will undergo displacement by

�r1 D ��1 � r; (5.44)

and its new position will be determined by the radius vector

r1 D r C�r1 D r C��1 � r: (5.45)
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In turn, the point thus obtained will, after the first rotation, take the position
described by the radius vector r1 and then be subjected to the rotation ��2. It will
undergo the following displacement:

�r2 D ��2 � r1 D ��2 � .r C��1 � r/ D ��2 � r (5.46)

because we assumed that the vector product ��2 � .��1 � r/ was a second-order
differential. The total displacement of point D is equal to

�rt D �r1 C�r2 D ��1 � r C��2 � r D .��1 C��2/ � r: (5.47)

We will obtain a similar equation if we first apply the small rotation angle ��2
and then subject the obtained point to displacement associated with rotation ��1.
Formula (5.47) has the following physical interpretation.

Two small rotations of a rigid body about two intersecting straight lines can be
replaced with one vector whose resulting rotation is the geometrical sum of the
small rotation vectors.

The introduced notion of small rotation vector will now serve to define the
angular velocity.

Recall that the velocity of an arbitrary point of a body is given by

v D lim
�t!0

�r
�t

D lim
�t!0

�� � r
�t

D lim
�t!0

��

�t
� r: (5.48)

In the preceding formula, (5.43) was used. Taking into account (5.37) we obtain

! D lim
�t!0

��

�t
: (5.49)

The angular velocity ! of a rigid body is equal to the limit to which the ratio of
a small rotation vector and the time increment tend, given a time increment that is
tending to zero.

5.2 Planar Motion

5.2.1 Introduction

Figure 5.12 shows a rigid body moving in planar motion. There are two planes 
and O in the figure. The plane O was taken arbitrarily and is fixed since motion is
measured with respect to that plane. We call such a plane a reference plane [2]. We
dealt with a similar situation in the case of particle motion where a certain point O
was taken as fixed and the distance of the particle from that point was measured by
the radius vector.
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Fig. 5.12 Position of a rigid body with respect to reference plane O at time instant t0 and t (notice
translation and rotation of the figure marked by hatching line)

Let us take an arbitrary point of a rigid body and investigate its motion. To this
end we introduce two Cartesian coordinate systems of parallel axes: OX1X2X3
(absolute system) and O 0X 0

1X
0
2X

0
3. The first system is stationary and arbitrarily

taken. The second system moves together with the investigated rigid body and is
called a non-stationary system. Its origin (pointO 0) lies on the plane figure obtained
from the intersection of the body with the plane  . The planesX1�X2 andX 0

1�X 0
2

lie in the plane  . It follows that the axes OX3 and O 0X 0
3 are perpendicular to the

chosen planes.
The motion of a rigid body during which all the points of the body move in planes

parallel to the reference plane are called the planar motion.
An arbitrary point of a rigid body moves only in a plane passing through that

point and parallel to the reference plane.
If all the points lying on an arbitrary line perpendicular to the reference plane

move along identical paths and their velocities and accelerations are also identical,
then the description of planar motion of the rigid body boils down to the description
of the planar motion of the figure obtained as a result of the intersection of that body
by a plane parallel to the reference plane.

The letter subscripts of the coordinates concern the point, e.g., x1O 0 ; x2O 0 are the
coordinates of pointO 0 in the system OX1X2, whereas x0

1A; x
0
2A are the coordinates

of point A in the system O 0X 0
1X

0
2. Moreover, the points denoted by the letter O are

the origins of Cartesian coordinate systems, e.g., O 0, O 00, O 000.
Knowing the motion of such a plane figure in its plane is sufficient to describe

the planar motion of a rigid body.
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Fig. 5.13 Motion of a planar
figure in the plane OX1X2
with the chosen pole O 0

The region where the plane  intersects the analyzed rigid body is marked by a
hatching line. All the points belonging to theX 0

3 axis move in translational motion so
they possess the same velocities and accelerations. It follows that the velocity of any
points of that body (e.g., point O 0) and its velocity of rotation completely describe
the velocity field of the body. In turn, knowing the acceleration of an arbitrary point
of the body and the angular velocity and angular acceleration of the body enables
us to determine the acceleration field of the planar figure (e.g., of point A). Next,
by drawing lines perpendicular to the plane of the figure passing through arbitrary
points of that region we can determine the velocities and accelerations of other
points of the rigid body lying on these lines.

As was mentioned earlier, the problem of planar motion boils down to an analysis
of the motion of a planar figure in some stationary plane parallel to the reference
plane. The position of the planar figure in the plane is described by the position of
its two points, which we may connect to obtain a line segment. Thus an analysis of
the kinematics of a planar figure can be reduced to an analysis of the kinematics of
a segment in a plane.

We will now show how to determine the position, velocity, and acceleration
of an arbitrary point from the region marked by a hatching line with respect to
the stationary coordinate system OX1X2X3 introduced earlier. Let us note that the
position of the marked figure is uniquely determined with respect to the adopted
coordinate system by two coordinates of an arbitrary point x1.t/, x2.t/ and an
angle '.t/. The angle ' denotes the rotation of the coordinate system O 0X 0

1X
0
2X

0
3

to the position O 00X 00
1 X

00
2 X

00
3 defined exactly by the angle ' (Fig. 5.12). The point

O 0 D O 00 is an arbitrary pole of the planar figure, and the system O 00X 00
1 X

00
2 X

00
3

is rigidly connected to that planar figure. We can always obtain the motion of an
arbitrary point A of the marked figure by the parallel translation of the coordinate
systemOX1X2X3 to the positionO 0X 0

1X
0
2X

0
3 and subsequent rotation of that system

through the angle '. The angle ' is commonly called the angle of rotation of a
planar figure.

Figure 5.13 shows an example of the motion of a planar figure.
The motion of a pole and, consequently, the translational motion of a planar

figure are described by the equations x1O 0 D x1O 0.t/ and x2O 0 D x2O 0.t/. To
describe the rotational motion of a planar figure, let us take a ray O 0A0 that does
not belong to this planar figure but moves in translational motion with the pole O 0.
Let us take point B of the figure, and let a ray O 0B belong to the planar figure
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Fig. 5.14 Translational
motion of poles O1 and O2
and rotational motion with
respect to those poles

during the whole time of motion. It follows that the angleA0O 0B D ' describes the
rotational motion of the planar figure ' D '.t/. Eventually, the motion of the planar
figure is uniquely described by the equations

x1O 0 D x1O 0.t/; x2O 0 D x2O 0.t/; ' D '.t/; (5.50)

which are called equations of planar motion of a rigid body.
We will prove that the form of the equation ' D '.t/ does not depend on the

choice of the pole. Let us consider the motion of the planar figure depicted in
Fig. 5.14.

As the two poles we choose two pointsO1 andO2 of the planar figure that during
its motion move along trajectories A1B1 and A2B2. Through the poles we draw two
parallel rays O1O 0

1 and O2O 0
2, which move in translational motion with the poles

O1 andO2 and during motion are always parallel to one another. We draw in a plane
of the figure two parallel rays, O1O 00

1 and O2O 00
2 , that belong to the figure and are

parallel to one another in an arbitrary figure position, that is,

'1.t/ D '2.t/ D '.t/: (5.51)

This means that the angle '.t/ does not depend on the choice of the pole (i.e.,
the angle is the same althoughO1 ¤ O2).

The angular velocities !i .t/ and angular accelerations "i .t/ about poles Oi are
equal to

!1 D d'1
dt

D d'2
dt

D !2; "1 D d!1
dt

D d!2
dt

D "2: (5.52)

It follows that the angular velocities and accelerations also do not depend on the
choice of poles. They are identical for all points of a plane figure, and therefore
vectors

! D d'

dt
; " D d!

dt
D d2'

dt
; (5.53)

are respectively called the angular velocity ! and the angular acceleration " of a
planar figure.
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Fig. 5.15 Angular velocities
! and angular accelerations
" during motion of a planar
figure having identical
(a) and opposite senses (b)

Fig. 5.16 Position of point A
of a rigid body in plane 

The preceding vectors are parallel to one another and perpendicular to the plane
of the figure and can have the same or opposite senses (Fig. 5.15).

Recall that throughout this book, uniform terminology and notation has been
used. In the case of the Cartesian coordinate system (used most frequently), we
denote the coordinates of, e.g., pointA using lowercase letters x1A; x2A; x3A. In turn,
we will denote the axes of a stationary Cartesian coordinate system using capital
lettersOX1X2X3, and we will denote Cartesian coordinate systems after successive
transformations by, e.g.,O 0X 0

1X
0
2X

0
3, O

00X 00
1 X

00
2 X

00
3 .

In order to determine the position of pointA in the coordinate system OX1X2X3
we will make use of Fig. 5.16.

From this figure it follows that

r D rO 0 C �; (5.54)

where � is described in the coordinate system O 00X 00
1 X

00
2 .

The angle between the unit vectors E0
1; E00

1 and E0
2; E00

2 is equal to '. In view of
that we have

E1 D E00
1 cos' � E00

2 sin ';

E2 D E00
1 sin ' C E00

2 cos': (5.55)
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Multiplying the preceding equations respectively by cos' and sin ', and then
by � sin' and cos', and adding them by sides we obtain

E00
1 D E1 cos' C E2 sin';

E00
2 D �E1 sin ' C E2 cos': (5.56)

According to (5.54) and taking into account (5.55) we have

x1AE1 C x2AE2 D x1O 0 E1 C x2O 0E2 C x00
1A.E1 cos' C E2 sin '/

C x00
2A.�E1 sin ' C E2 cos'/: (5.57)

Multiplying this equation successively by E1 and E2 we obtain

x1A.t/ D x1O 0.t/C x00
1A cos'.t/ � x00

2A sin '.t/;

x2A.t/ D x2O 0.t/C x00
1A sin '.t/C x00

2A cos'.t/: (5.58)

Returning to the introduced Cartesian coordinate systems of three axes, (5.58)
for the case of axes’ parallel translation (' D 0) can be written in the following
form:

2

4
x1A

x2A
x3A

3

5 D
2

4
x1O 0

x2O 0

x3O 0

3

5C
2

4
x0
1A

x0
2A

x0
3A

3

5 ; (5.59)

where in our plane case we have x3A D x3O 0 D x0
3A D 0 and additionally in the

absence of rotation x00
iA D x0

iA, i D 1; 2; 3.
Vector (5.54) describes in this case the position of point A in two coordinate

systems of parallel axes OX1X2 and OX 0
1X

0
2 (in the general case OX1X2X3 and

O 0X 0
1X

0
2X

0
3).

Now let us assume that we are dealing only with the rotation of the coordinate
system, say, about pointO 0.

Assuming that the rotation takes place through the angle ' in the plane parallel
to X1 � X2 and using (5.58) we have

r D '.E3/�; (5.60)

where

r D
2

4
x0
1A

x0
2A

x0
3A

3

5 ; � D
2

4
x00
1A

x00
2A

x00
3A

3

5 ; '.E3/ D
2

4
cos' � sin ' 0

sin ' cos' 0

0 0 1

3

5 : (5.61)

The vector � D ���!
O 00A is expressed in the moving coordinatesO 00X 00

1 X
00
2 X

00
3 , and

the vector r D ��!
O 0A in the coordinatesO 0X 0

1X
0
2X

0
3.
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Fig. 5.17 Plane
displacement of segment AB
into position A0B 0 and center
of rotation O

What is more, the matrix '.E3/ is the matrix of elementary rotation about theX3
axis through angle '. One may check that the matrices of rotation about the X1 and
X2 axes through angle ' have respectively the forms

'.E1/ D
2

4
1 0 0

0 cos' � sin '
0 sin' cos'

3

5 ; '.E2/ D
2

4
cos' 0 sin '
0 1 0

� sin ' 0 cos'

3

5 : (5.62)

It is easy to demonstrate that '�1 D 'T and det.'/ D 1 or, equivalently, that
�'.Ei / D 'T.Ei /.

The coordinates x00
1A and x00

2A are time independent. Vector rO 0 denotes the
displacement, whereas the time change of vector � is connected with the rotation
through angle '.t/. Vector � rotates with the angular speed P' (it changes the
direction but not the magnitude). Thus the conclusion can be drawn that planar
motion can be treated as a composition (geometric sum) of two motions, i.e., the
translational motion of an arbitrary point (in our case point O 0) and the rotational
motion about the axis perpendicular to the plane  and passing through point O 0.

In order to attribute the physical interpretation to this observation let us consider
two arbitrary positions I and I 0 of a plane figure (Fig. 5.17).

At first we perform a translation of the figure with segmentAB to pointA1. Next,
we rotate the obtained segment A1B1 through angle ' obtaining segment A0B 0. It
is also possible to move segment AB to point B 0 and then rotate this segment also
through angle ', but with the opposite sense. From the foregoing considerations it
follows that any non-translational displacement of a planar figure in its plane can
be considered a composition of two displacements and a translational displacement



5.2 Planar Motion 283

including the point chosen as a pole, and then rotation about that pole. Moreover,
the translational displacement of a planar figure depends on the choice of the pole,
whereas the magnitude of angle of rotation and its sense are independent of the
choice of pole.

We will show now that segment AB can be transformed into position A0B 0
solely by rotation about an axis passing through point O and perpendicular to the
drawing’s plane. Such a point is called a center of rotation.

The perpendicular bisectors OO 0 and OO 00 of, respectively, segments AA0 and
BB 0 divide the segments in halves, i.e., AO 0 D O 0A0, BO 00 D O 00B 0. Note that
OA D OA0 and OB D OB 0 and AB D A0B 0, that is, triangles OAB and OA0B 0
are congruent, and the former can be rotated about pointO through angle ' in order
to obtain the latter.

If positions I and I 0 are close to one another, then ' is the small rotation angle,
B 0 ! B and A0 ! A. The directions of perpendicular bisectors OO 0 and OO 00
for �t ! 0 tend to the instantaneous velocities of points A and B , and point O
tends to the instantaneous center of rotation, which coincides with the instantaneous
center of velocity. The latter is created as a result of the intersection of the lines
perpendicular to the vectors of instantaneous velocity vA and vB passing through
the tails of these vectors.

In the first special case, figures I and I 0 can be situated with respect to one
another in such way that they possess a symmetry axis. Then lines AB and A1B1
and the bisector intersect at one point called the instantaneous center of rotation C ,
and figures I and I 0 coincide only after rotation through a certain angle.

In the second special case, the figures become coincident only after displacement
by a certain distance, because I k I 0, and then point C lies in infinity.

In the book [2] there is also a discussion of the case where the position of
segments is such that AA0 k BB 0. The preceding observations lead to the following
theorem.

Theorem 5.3 (Euler’s first theorem). An arbitrary displacement of a planar
figure can be realized through rotation about a certain fixed point, called the center
of rotation, lying in the plane of the figure.

To sum up, the planar motion of a rigid body can be replaced with the motion of
a certain plane figure.

5.2.2 Instantaneous Center of Velocities

Taking an arbitrary plane that is parallel to the reference plane, and intersecting the
analyzed rigid body, we obtain as a result a planar figure. Knowing the velocity of an
arbitrary point of this figure, i.e., the linear velocity and angular velocity!, enables
us to determine the velocity of any point of the considered rigid body.
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Fig. 5.18 Velocity vA of point A

The velocity of an arbitrary point A of a rigid body is equal to (Fig. 5.18)

d

dt
.rA/ D d

dt
.rO 0 C �A/ (5.63)

or
vA D vO 0 C vAO 0; (5.64)

where vA is the velocity vector of point A, vO 0 is the velocity vector of point O 0,
and vAO 0 is the velocity vector of point A with respect to pointO 0, where

P�A � vAO 0 D ! � �A � ! � .rA � rO 0/ : (5.65)

The vector ! D P' is perpendicular to the plane of the figure.

Theorem 5.4. If the motion of a planar figure that takes place in its plane at the
given time instant is not the instantaneous translational motion, then there exists
one point C belonging to the plane of the figure such that its velocity is equal to
zero. The velocities of other points of the plane figure result from its instantaneous
rotation about point C .

Proof. The velocity of the point vC D 0 and, by assumption, ! ¤ 0. According to
(5.64) in the system O 0X 0

1X
0
2X

0
3 we have

vC D 0 D vO 0 C! � ��!
O 0C ; (�)
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where

vO 0 D
2

4
Px1O 0

Px2O 0

0

3

5 ; ! D
2

4
0

0

P'

3

5 ;
��!
O 0C D

2

4
x0
1C

x0
2C

0

3

5 :

Because

! � ��!
O 0C D

ˇ̌
ˇ̌
ˇ̌

E0
1 E0

2 E0
3

0 0 P'
x0
1C x

0
2C 0

ˇ̌
ˇ̌
ˇ̌ D �E0

1 P'x0
2C C E0

2 P'x0
1C ;

we have

Px1O 0 � x0
2C P' D 0;

Px2O 0 C x0
1C P' D 0:

The preceding equations allow for the determination of the position of point C
given knowledge of P' D !.

Premultiplying both sides of (�) by ! we obtain

! � vO 0 C! �


! � ��!

O 0C
�

D 0;

and hence

! � vO 0 D ! �

��!
O 0C �!

�
D !2

��!
O 0C �


��!
O 0C ı!

�
!:

Finally, the unknown vector is equal to

��!
O 0C D ! � vO 0

!2
:

The preceding formula enables us to construct the vector
��!
O 0C (and consequently

to determine pointC ). Looking in the direction of vector!, we rotate the vector vO 0

in the positive direction through the angle �=2, and on the obtained ray we lay off a
segment of length vO 0=!, i.e., we mark the location of point C . ut

5.2.2.1 Instantaneous Center of Velocities

We will prove that at every time instant during the motion of a planar figure there
exists its point C such that its velocity vC D 0, and we will call it the instantaneous
center of velocities.

At any time instant let the velocity of a certain point O of the plane figure
(Fig. 5.19) be known, with the considered time instant having angular velocity !.

Let pointO be the pole. We will determine the velocity of an arbitrary other point
after adding vector vO and the velocity vector of this point with respect to pole O .
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Fig. 5.19 Determination
of instantaneous center
of velocities

LetOC ? vO . We will search for the position of point C such that vOC D �vO .
The velocity of point C is equal to

vC D vO C vOC D vO � vO D 0; (5.66)

and in view of that point C is the instantaneous center of velocities. Because

vOC D OC � ! D vO; (5.67)

we have

OC D vO
!
: (5.68)

To sum up, the instantaneous center of velocities lies on a ray OC ? vO at a
distance from pole O equal to vO=!.

We will now determine the velocities of arbitrary points of a planar figure using
the introduced notion of instantaneous center of velocities. Let us take three arbitrary
points A, A1, and A2 (Fig. 5.20).

We successively have

vA D vC C vCA; vA1 D vC C vCA1; vA2 D vC C vCA2; (5.69)

and because vC D 0, we also have

jvAj D jvCAj D CA � !; vA?CA;
jvA1 j D jvCA1 j D CA1 � !; vA1?CA1;
jvA2 j D jvCA2 j D CA2 � !; vA2?CA2: (5.70)

From (5.70) the following conclusion can be drawn.

The velocity vector of an arbitrary point of a planar figure at every time instant
possesses a magnitude equal to the product of the angular velocity of this figure !
and the length of the segment connecting this point with the instantaneous center of
velocities, and its sense is in agreement with the sense of !.
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Fig. 5.20 Determination of velocities vA; vA1 , and vA2 using the instantaneous center of
velocities C

Fig. 5.21 Determination
of position of instantaneous
center of velocities if vA1
and direction of vA2
are known

From Fig. 5.20 also follow the relationships

vA
vA1

D CA

CA1
;

vA1
vA2

D CA1

CA2
: (5.71)

Let us now consider certain, qualitatively distinct, cases for determining the
position of the instantaneous center of velocities.

I. Let the velocity vA1 and the direction of velocity of point A2 be given
(Fig. 5.21).

Two rays A1C and A2C intersect at point C , that is, at the instantaneous
center of velocities, and ! D vA1=CA1. Then we determine the magnitude of
velocity vA2 from the equation vA2=vA1 D CA2=CA1 or the equation vA2 D
CA2 � !.

II. Let the velocities vA1 k vA2 and perpendicular to A1A2. To determine point C ,
the magnitudes of velocities vA1 and vA2 must be known (Fig. 5.22).
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Fig. 5.22 Determination of instantaneous center of velocities C in the case where vA1 k vA2 :
vA1 and vA2 have the same senses (a), opposite senses (b), and the same senses and equal
magnitudes (c)

Fig. 5.23 (a) Disk rolling without sliding on a straight line. (b) Velocities of pointsA1,A2,A3, and
A4 determined from the equation with respect to pole O and (c) with respect to the instantaneous
center of velocities

From Fig. 5.22a, b follows the proportion

vA1
vA2

D CA1

CA2
; (5.72)

and in the case shown in Fig. 5.22c we haveA1C D 1, that is,
vA1
A1C

D vA11 D 0.
III. Let vA1 k vA2 , but the vectors are not perpendicular toA1A2. The instantaneous

center of velocities lies in infinity, that is, A1C D 1 and ! D vA11 D 0.
Moreover, we have A1C D A2C D 1, and therefore vA1 D vA2 . We
deal with such a case in the translational motion of a plane figure because
then the velocities of all its points are equal in the geometrical sense and
the instantaneous center of velocities lies in infinity. On the other hand, if
vA1 D vA2 in a certain time interval, and not at a certain time instant only,
then the plane figure moves in translational motion.

Example 5.1. Circular disk of radius R rolls without sliding on a straight line
(Fig. 5.23). The velocity of the center of the disk vO D const. Determine the
velocities of points A1, A2, A3, and A4 lying on a circle of radius R.
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The disk moves without sliding on a certain stationary straight line. In this case
the instantaneous center of velocities C lies at the point of contact of the disk with
the line. The velocity of point C of the disk is equal to zero because it is in contact
with the point of a fixed line and there is no sliding.

The velocity of point C can be determined with respect to poleO . Then we have

vC D 0 D vO C vOC ;

that is, at point C we have vO D �vOC , which is illustrated in Fig. 5.23b.
The velocities of the remaining points A2, A3, and A4 with respect to poleO are

equal to
vOA1 D vOA2 D vOA3 D vOA4 D vO:

Geometric adding vectors vOAi , i D 1; 2; 3; 4, and vO we obtain the desired
vectors of velocities of points Ai , and their magnitudes read

vA2 D
q

v2O C v2OA2 D
q

v2O C v2O D p
2vO;

vA3 D vO C vOA4 D vO C vO D 2vO;

vA4 D
q

v2O C v2OA4 D
q

v2O C v2O D p
2vO:

The desired velocities of points Ai can be determined if as a pole we take the
instantaneous center of velocities C (Fig. 5.23c). We successively have

vA2 D vO
SA2

SO
D vO

R
p
2

R
D p

2vO;

vA3 D vO
SA3

SO
D 2vO;

vA4 D vO
SA4

SO
D vO

R
p
2

R
D p

2vO: ut

5.2.3 Moving and Fixed Centrodes

As was mentioned earlier, the analysis of motion of a plane figure in its plane can
be reduced to the analysis of an arbitrarily chosen segmentAB of this figure at time
instants t , t C�t , t C 2�t , : : : . This segment will assume the following positions:
A1B1,A2B2,A3B3, : : : . To each of those positions correspond instantaneous centers
of rotation O1; O2; O3; : : : , such that rotation through angle �'1 about point O1
moves segmentA1B1 toA2B2, rotation through�'2 aboutO2 moves segmentA2B2
toA3B3, etc. At the given time instants the positions ofO1;O2;O3; : : : are fixed and
can be joined to form a broken line O1O2O3 : : : , which belongs to the fixed plane.
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Fig. 5.24 Determination
of points O1; O2; O3; : : :
and O 0

1; O
0

2; O
0

3; : : :

We will now describe the broken line O 0
1O

0
2O

0
3 : : : corresponding to the broken

lineO1O2O3 : : : , where now the pointsO 0
1; O

0
2; O

0
3; : : : belong to the moving plane

figure. We will show how to determine point O 0
2, which after rotation through the

angle�'1, becomes coincident with the fixed pointO2 (Fig. 5.24).
We lay off the segment O1O 0

2 D O1O2 at the angle �'1 opposite to the sense
of rotation of a plane figure with respect to O1 of segment O1O2. We proceed
similarly in the next step, but now we lay off O 0

2O
0
3 at the angle �'2 with respect

to a line parallel to O2O3 and passing through point O2. The obtained broken line
O1O

0
2O

0
3 : : : belongs to the moving plane figure. If �t ! 0 and �'i ! 0, then the

broken lines will turn into smooth curves and the motion of the planar figure can be
represented as a rolling of the curve O1O 0

2O
0
3 : : : on the fixed curve O1O2O3; : : :

without sliding because O1O 0
2 D O1O2, etc. The curve O1O2O3; : : : is called a

fixed centrode, and the curve O1O 0
2O

0
3; : : : a moving centrode (point O 0

3 is omitted
in Fig. 5.24). During such rolling the point of contact of a moving centrode with a
fixed centrode is the instantaneous center of velocities C corresponding to the given
time instant.

During planar motion the instantaneous center of velocities C moves in a plane
associated with the stationary system on a curve called the fixed centrode. The
trajectory of point C in a system rigidly connected to a moving body is called the
moving centrode. During motion the moving centrode rolls on the fixed centrode
without sliding. This observation is also known as the Poinsot theorem.

The approach based on the concept of the rolling of the moving centrode on a
fixed centrode often allows for a simpler equivalent interpretation of motion.

Let us consider the rolling without sliding of a disk placed between slats moving
in opposite directions with velocities v1 and v2 (Fig. 5.25).

We determine the position of the instantaneous center of velocities from the
equation OC D .v1 � v2/=..v1 C v2/R/, and the problem is equivalent to a rolling
of the moving centrode, i.e., circle of radiusOC , on the fixed centrode, that is, on a
fixed horizontal straight line.
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Fig. 5.25 Rolling without
sliding of a disk of radius R
between two slats moving
with velocities v1 and v2
in opposite directions

In order to obtain the velocity in the coordinates associated with the unit vectors
E1 and E2, one should differentiate (5.57), which leads to the result

Px1AE1 C Px2AE2 D Px1O 0 E1 C Px2O 0E2 C x00
1A

��E0
1! sin ' C E0

2! cos'
�

C x00
2A

��E0
1! cos' � E0

2! sin '
�
: (5.73)

Multiplying (5.73) by sides one time by E1 and the other time by E2 we have

Px1A.t/ D Px1O 0 � !x00
1A sin' � !x00

2A cos';

Px2A.t/ D Px2O 0 C !x00
1A cos' � !x00

2A sin': (5.74)

Let us return to vector
��!
O 0A from Fig. 5.16. It can be expressed by the unit vectors

of both coordinate systems in the following way:

��!
O 0A D x0

1AE0
1 C x0

2AE0
2 D x00

1AE00
1 C x00

2AE00
2 : (5.75)

In order to obtain the coordinates of this vector in the system OX 0
1X

0
2 (OX 00

1 X
00
2 )

one should multiply (scalar product) the preceding equation in turn by E0
1 and E0

2

(E00
1 and E00

2 ). After that operation we obtain

x0
1A D x00

1AE00
1 ı E0

1 C x00
2AE00

2 ı E0
1 D x00

1A cos' C x00
2A cos

��
2

C '
	
;

x0
2A D x00

1AE00
1 ı E0

2 C x00
2AE00

2 ı E0
2 D x00

1A cos
��
2

� '
	

C x00
2A cos';

x00
1A D x0

1AE0
1 ı E00

1 C x0
2AE0

2 ı E00
1 D x0

1A cos' C x0
2A cos

��
2

� '
	
;

x00
2A D x0

1AE0
1 ı E00

2 C x0
2AE0

2 ı E00
2 D x0

1A cos
��
2

C '
	

C x0
2A cos'; (5.76)
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or, in matrix notation,

�
x0
1A

x0
2A

�
D
�

cos' � sin'
sin' cos'

� �
x00
1A

x00
2A

�
; (5.77)

�
x00
1A

x00
2A

�
D
�

cos' sin '
� sin ' cos'

� �
x0
1A

x0
2A

�
: (5.78)

In both of the preceding cases the transformation is connected with the rotation
through angle '. Moreover, the sum of squares of the elements of any row or column
equals one, and the sum of products of elements of two rows or columns equals
zero. We call such a linear transformation an orthogonal transformation [3]. The
determinant of both matrices is equal to one (if the determinant yielded �1, it would
indicate rotation accompanied by the mirror reflection [3]).

The transformations described by (5.55) and (5.56) are also orthogonal and
indicate rotation through angle '.

The interpretation of vector (5.64) is as follows. The velocity of an arbitrary point
A is composed of the velocity of translational motion of the system O 0X 0

1X
0
2 and

the rotational motion of that system about the axis perpendicular to the drawing’s
plane and passing through point O 0. On that axis lies the vector ! D P'. The
velocity vector vAO 0 coming from the motion of point A with respect to point O 0 is
perpendicular to line segmentO 0A.

Using (5.77), (5.74) can be represented as

Px1A.t/ D Px1O 0 � !.x00
1A sin ' C x00

2A cos'/

D Px1O 0 � !x0
2A D Px1O 0 � !.x2A � x2O 0/;

Px2A.t/ D Px2O 0 C !.x00
1A cos' � x00

2A sin'/

D Px2O 0 C !x0
1A D Px2O 0 C !.x1A � x1O 0/; (5.79)

and these are the components of the velocity of point A in the absolute system
OX1X2X3, i.e.,

vA D Px1AE1 C Px2AE2: (5.80)

On the other hand, in one case multiplying the first equation of (5.74) by cos'
and the second by sin ' and adding by sides, and in the other case the first by sin '
and the second by � cos' and adding by sides, we respectively obtain

Px1A cos' C Px2A sin' D Px1O 0 cos' C Px2O 0 sin ' � !x00
2A;

Px1A sin ' � Px2A cos' D Px1O 0 sin' � Px2O 0 cos' � !x00
1A: (5.81)

Multiplying the second equation through by .�1/ and using (5.78) we obtain
the components of velocity of point A in the non-stationary coordinate system
O 00X 00

1 X
00
2 X

00
3 :
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Fig. 5.26 Determination
of acceleration of point A

Px00
1A D Px1O 0 cos' C Px2O 0 sin ' � !x00

2A;

Px00
2A D Px2O 0 cos' � Px1O 0 sin ' C !x00

1A; (5.82)

that is,

vA D Px00
1AE00

1 C Px00
2AE00

2 : (5.83)

Let us introduce one of the physical interpretations of an absolute system and
a system rigidly connected to the moving body. The system O 00X 00

1 X
00
2 X

00
3 moving

with the body does not move with respect to that body. If we associate such a system
with a spacecraft, then with respect to an astronaut the points inside the spacecraft
do not move because vector � does not change its position. The velocity vector
of point A in the system O 00X 00

1 X
00
2 X

00
3 is described by (5.83), and the acceleration

vector will be determined in the following section.

5.2.4 Accelerations and Center of Acceleration

In a similar way we can determine the acceleration of point A. In this case we will
relate our considerations to the hodograph of velocity (Fig. 5.26).

Differentiating (5.64) with respect to time, we obtain

aA � PvA D PvO 0 C P! � �A C! � P�A: (5.84)

In the general case, aO 0 D PvO 0 can have an arbitrary direction with respect
to vO 0 because the motion of point O 0 is, generally, not a rectilinear motion.
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If we are dealing with rectilinear motion, vectors aO 0 and vO 0 are parallel. The
vector at D " � �A, where " D P! is the tangential acceleration vector resulting
from the rotation of point A about point O 0, lies in the plane of the figure, and it is
perpendicular toO 0A (since vector P! has the same direction as vector!). According
to (5.64) and (5.65) we have

P�A D ! � �A; (5.85)

and in view of that the last vector on the right-hand side of (5.84) can be expressed as

an � ! � P�A D ! � .! � �A/ : (5.86)

Next we will use the law of vector triple product expansion, i.e., for three non-
coplanar vectors we have a � �b � c

� D �
a ı c

�
b � �

a ı b
�
c.

Equation (5.86) assumes the form

an D .! ı �A/! � .! ı!/�A D �!2�A (5.87)

because ! ı �A D 0 (it follows from vectors’ being perpendicular to each other).
From the preceding equation it follows that this component of the acceleration

of point A is directed along the radius �A toward point O 0 and is called normal
acceleration (centripetal acceleration).

From the preceding considerations it follows that all three distinct vectors of
acceleration allow for the determination of the unknown acceleration of point A
through their geometrical addition according to (5.84), i.e.,

aA D aO 0 C at C an; (5.88)

where the tangential at and normal an accelerations result from the rotation of
point A about point O 0.

The magnitudes of the vectors jat j D j��!O 0Aj" and janj D j��!O 0Aj!2, so introducing
angle ˛ as shown in Fig. 5.26 we have

a D aO 0 C aw; (5.89)

where

aw D
ˇ̌
ˇ̌��!O 0A

ˇ̌
ˇ̌
p
"2 C !4;

at
an

D tan˛ D "

!2
: (5.90)

5.2.4.1 Instantaneous Center of Accelerations

Let us consider a plane figure (Fig. 5.27) and assume that we know the acceleration
aO of a certain point O of this figure, and additionally the figure has the velocity
! > 0 and acceleration " > 0. Let us introduce angle ˛ such that

˛ D arctan
"

!2
> 0; (5.91)
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Fig. 5.27 Determination
of instantaneous center
of accelerations

which means that ˛ 2 �
0; �=2

�
. We lay off angle ˛ in accordance with the

sense of ".
On a ray going away from pointO let us lay off the segment

OS D aOp
"2 C !4

: (5.92)

As a pole let us take point O , and because the acceleration of an arbitrary point
of a plane figure is a geometric sum of acceleration of a pole and the acceleration of
this point caused by its motion with respect to the pole, we have

aS D aO C aOS ; (5.93)

where aOS is in accordance with the sense of ". Our task is finding point S such that
its acceleration at the given time instant is equal to zero.

The acceleration following from the motion about pole O can be resolved into
two components:

aOS D anOS C atOS ; (5.94)

and hence

aOS D
q
.anOS /

2 C .atOS /
2 D OS

p
"2 C !4 D aO;

where (5.92) was taken into account. Additionally,

tan˛0 D atOS
anOS

D OS"

OS!2
D "

!2
D tan˛; (5.95)

where (5.91) was taken into account. We have demonstrated that ˛ D ˛0. From the
preceding considerations it follows that aOS D �aO , and in view of that, from (5.93)
we have aS D 0.
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Fig. 5.28 Accelerations
of points A1, A2, and A with
respect to S

Fig. 5.29 Instantaneous
center of accelerations S
and instantaneous center
of velocities C

If we choose as a pole the instantaneous center of accelerations found in the
described way, then we easily determine the acceleration of an arbitrary point with
respect to pole S , which is shown in Fig. 5.28.

From Fig. 5.28 we have

aA1 D aSA1 D SA1
p
"2 C !4;

aA2 D aSA2 D SA2
p
"2 C !4;

aA D aSA D SA
p
"2 C !4: (5.96)

From (5.96) follow the relationships

aA2
aA1

D SA2

SA1
;

aA

aA1
D SA

SA1
; (5.97)

where ˛ and " have the same senses.
We will show that the instantaneous center of velocities C and instantaneous

center of accelerations S are different points of a planar figure (Fig. 5.29).
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Fig. 5.30 Instantaneous center of velocities C and center of accelerations S of a disk

Let us choose an arbitrary point A of a plane figure and connect it by segments
CA and SA respectively with the center of velocities C and the center of accelera-
tions S . Point A at the given time instant has the velocity v and acceleration a. The
acceleration

a D at C an D atSA C anSA; (5.98)

and the components of the vector of acceleration are associated with the existence
of distinct points S and C .

5.2.4.2 Determination of Instantaneous Centers of Acceleration

There are three basic methods to determine the position of the instantaneous center
of accelerations:

I. The point of a planar figure whose accelaration " is at a certain time instant
equal to zero is known on the basis of the problem conditions.

A disk of radius R rolls without sliding along a straight line on a surface
[e.g., rolling of railway wheel on a rail with a constant velocity of the disk’s
center (Fig. 5.30)].

We have v D CS! D R!, and hence ! D v
R

D const. If the center
of the disk moves uniformly with velocity v D const, then aS D 0, that is,
the geometric center of the disk is the instantaneous center of accelerations.
The acceleration of every point of the disk’s circumference is directed toward
point S and is equal to v2=R. The instantaneous center of velocities C is
situated at the point of contact of the disk with the ground. Although its
instantaneous velocity is equal to zero, it has an acceleration of aC . In turn, the
instantaneous center of accelerations has an instantaneous acceleration equal to
zero but possesses velocity v.

II. The acceleration a of a point of a planar figure, as well as ! and ", is known
on the basis of the problem conditions.

Let us consider four cases connected with quantities ! and ".

(i) ! ¤ 0, " ¤ 0. In this case, the instantaneous center of accelerations is
defined the angle ˛D arctan."=!2/, where the directed angle ˛ is laid off
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Fig. 5.31 Position of instantaneous center of accelerations S in case of the same (a) and opposite
(b) senses of ! and "

Fig. 5.32 Determination of center of accelerations S knowing aA1 and aA2

from the point’s acceleration in accordance with the sense of " and the
distance AS D ap

"2C!4 (Fig. 5.31).

(ii) ! ¤ 0; " D 0. In this case, ˛ D arctan."=!2/ D 0 and the accelerations
of all points of a planar figure are directed toward the instantaneous center
of accelerations, which lies at the distance AS D a

!2
.

(iii) ! D 0; " ¤ 0. Because tan."=!2/ D 1, we have ˛ D �=2. The
accelerations of all points are perpendicular to AS .

(iv) ! D 0; " D 0. The accelerations of all points of a figure are equal.

III. The magnitudes and directions of accelerations of two points A1 and A2 of a
planar figure (Fig. 5.32) are known.
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We have

aA2 D aA1 C aA1A2 ;

and at point A2 we construct a parallelogram of sides aA1 and aA1A2 . We
determine the angle ˛, and then in accordance with the sense of " we lay off the
directed angle ˛ from vectors aA1 and aA2 . Rays forming those angles intersect
at the desired point S .

For accelerations of two points aA1 and aA2 parallel to one another, some
sketches leading to the determination of the instantaneous center of accelera-
tions are shown in Fig. 5.33. In the case where aA1 k aA2 , ! ¤ 0, " ¤ 0 the
senses of acceleration are the same (a) and opposite (b); tan˛ D . "

!2
/ D 1,

! D 0, " ¤ 0, senses of accelerations the same (c) and opposite (d); ˛ D 0,
tan˛ D . "

!2
/ D 0, ! ¤ 0, " D 0, the senses of acceleration are the same

and vectors lie on one line (e) and the senses of acceleration are opposite and
vectors lie on one line (f); aA1 D aA2 , A1S D 1 (g).

Theorem 5.5. If during the planar motion of a planar figure at least one of the
quantities ! D P', " D R' at a given time instant is different than zero, then there
exists at this time instant point S belonging to the plane of motion such that its
acceleration aS D 0.

Proof. Our task is finding such a point S that aS D 0. The position of this point can

be described by the radius vector
��!
O 0S . From (5.84) we have

a D 0 D aO 0 C " � ��!
O 0S C! � .! � ��!

O 0S/;

that is,

aO 0 C " � ��!
O 0S �!2��!O 0S D 0: (*)

Because

" � ��!
O 0S D

ˇ̌
ˇ̌
ˇ̌

E0
1 E0

2 E0
3

0 0 R

x0
1S x0

2S x0
3S

ˇ̌
ˇ̌
ˇ̌ D �E0

1
R
x0
2S C E0

2
R
x0
1S ;

the equation (*) takes the form

0 D Rx1O 0 E1 C Rx2O 0E2 � R'x0
2SE0

1 C R'x0
1SE0

2 � !2x0
1SE0

1 � !2x0
2SE0

2:

Multiplying the preceding equations successively through E0
1 and E0

2 we obtain
the following algebraic equations:

Rx1O 0 D R'x0
2S C P'2x0

1S ;

Rx2O 0 D � R'x0
1S C P'2x0

2S ;

which allow for the determination of the position of point S , which proves its
existence.
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Fig. 5.33 Determination of instantaneous center of accelerations

Solving the aforementioned system of equations we obtain

x0
1S D 1

"2 C !4
.!2 Rx1O 0 � " Rx2O 0/;

x0
2S D 1

"2 C !4
." Rx1O 0 C !2 Rx2O 0/; (5.99)
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Fig. 5.34 Motion of a planar figure and non-stationary O 0X 0

1X
0

2 and stationary OX1X2 coordinate
systems

which allows for introduction of the following vector describing the position of the
center of accelerations S :

��!
O 0S D 1

"2 C !4
.!2aO 0 C " � aO 0/: (5.100)

ut

5.2.5 Equations of Moving and Fixed Centrodes

We will show how to determine analytically equations of moving and fixed
centrodes. For the purpose of observing the motion of a plane figure in its plane we
introduce the stationary OX1X2 and non-stationary O 0X 0

1X
0
2 Cartesian coordinate

system, where pointO 0 is an arbitrary point (the pole) of a planar figure (Fig. 5.34).
The velocity of an arbitrary point A of a planar figure reads

vA D vO 0 C! � r; (5.101)

where vO 0 is the velocity of the pole O 0.x1O 0 ; x2O 0/, ! is the angular velocity of a

planar figure, and r D ��!
O 0A.
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We will express the velocity vector ! � r in a stationary system, that is,

! � r D
ˇ̌
ˇ̌
ˇ̌

E1 E2 E3
0 0 !

x1 � x1O 0 x2 � x2O 0 0

ˇ̌
ˇ̌
ˇ̌

D �E1!.x2 � x2O 0/C E2!.x1 � x1O 0/; (5.102)

and from (5.101) we obtain

vAx1 D vO 0x1 � !.x2 � x2O 0/;

vAx2 D vO 0x2 � !.x1 � x1O 0/: (5.103)

The velocities of the desired instantaneous center of velocities C are equal to
vCx1 D vCx2 D 0, and

vO 0x1 � !.x2C � x2O 0/ D Px1O 0 � !.x2C � x2O 0/ D 0;

vO 0x2 C !.x1C � x1O 0/ D Px2O 0 C !.x1C � x1O 0/ D 0: (5.104)

From the preceding equations we determine the desired coordinates of the
instantaneous center of velocities

x1C D x1O 0 � 1

!
Px2O 0 ;

x2C D x2O 0 C 1

!
Px1O 0 : (5.105)

Equations (5.105) are called equations of a fixed centrode in parametric form in
a stationary system.

The velocity of point A is equal to

EA D vO 0x1E1 C vO 0x2E2 C
ˇ̌
ˇ̌
ˇ̌
E00
1 E00

2 E00
3

0 0 !

x00
1 x00

2 0

ˇ̌
ˇ̌
ˇ̌

D vO 0x1E1 C vO 0x2E2 � E00
1!x

00
2 C E00

2!x
00
1 : (5.106)

We will multiply (scalar product) (5.106) by E00
1 and E00

2 , obtaining

vAx00

1
D vO 0x1 cos.E1;E00

1 /C vO 0x2 cos.E2;E00
1 / � !x00

2 ;

vAx00

2
D vO 0x1 cos.E1;E00

2 /C vO 0x2 cos.E2;E00
2 /C !x00

1 ; (5.107)

or

vAx00

1
D vO 0x1 cos' C vO 0x2 sin ' � !x00

2 ;

vAx00

2
D �vO 0x1 sin ' C vO 0x2 cos' C !x00

1 : (5.108)
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The desired coordinates of the instantaneous center of velocities in a non-
stationary system of coordinates are described by the equations

Px1O 0 cos' C Px2O 0 sin ' � !x00
2C D 0;

� Px1O 0 sin' C Px2O 0 cos' C !x00
1C D 0; (5.109)

from which we determine

x00
1C D 1

!
. Px1O 0 sin ' � Px2O 0 cos'/;

x00
2C D 1

!
. Px1O 0 cos' C Px2O 0 sin'/: (5.110)

The preceding equations are called equations of a moving centrode in parametric
form in a non-stationary coordinate system.

5.2.6 Vector Methods in the Kinematics of Planar Motion

5.2.6.1 Velocities

The computations conducted earlier regarding the planar motion of a rigid body lead
to the following three principal conclusions:

1. The projections of velocities of any two points of a rigid body onto the line
joining these points are equal.

2. At an arbitrary time instant the planar motion of a rigid body can be treated as the
instantaneous rotation of that body about a point called an instantaneous center
of rotation.

3. At an arbitrary time instant the planar motion of a rigid body can be treated as
motion composed of the translational motion of an arbitrary point of the body
(the pole) and the body’s rotational motion about that point.

As we showed in Sect. 5.2.1 the figure marked by a hatching line in Fig. 5.12
moves in translational motion in the plane  . In Fig. 5.17 it is shown how to
determine the position of the instantaneous center of rotation at the given time
instant t . Let us note that the instantaneous centers of rotation in the stationary
OX1X2X3 and non-stationary O 00X 00

1 X
00
2 X

00
3 coordinate systems are coincident;

however, the set of instantaneous positions of centers of rotation in the planeOX1X2
(stationary plane) forms a continuous curve called a space centrode, whereas the set
of instantaneous positions of centers of rotation in the planeOX 00

1 X
00
2 (moving plane)

forms a curve called a body centrode.
It follows that the planar motion of a rigid body can be represented as rolling

without sliding of the body centrode on the space centrode. If the plane  is moving,
the aforementioned centrodes refer to the relative motion measured with respect to
the stationary plane O .
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Fig. 5.35 Determination of velocity vA2 knowing vA1 and direction of vA2

It is worth emphasizing that because the instantaneous motion of the planar
figure (planar motion of a rigid body) is described by the motion of a pole (two
coordinates) and the rotation about the pole, the number of parameters (scalar
quantities) needed for the complete description of the planar motion of a rigid body
is equal to three (i.e., it is equal to the number of degrees of freedom of the rigid
body).

We will show using two examples, which follow from previous discussions in
this chapter, how to determine the velocities of arbitrary points of a planar figure,
that is, the points of a rigid body in planar motion.

(i) Projection of velocities of two points of a planar figure onto the line joining
these points

Let the velocity vA1 and the direction of the velocity of point A2 be given
(Fig. 5.35a). By Theorem 5.1 we find the projection of vector vA1 onto line A1A2
and attach the obtained vector v�

A1
at point A2 (Fig. 5.35b). The line perpendicular

to line A1A2 and passing through the tip of vector v�
A1

intersects the line, which
determines the direction of the unknown vector vA2 and passes through point A2 at
the point that is its tip.

On the other hand (see proof of Theorem 5.4), we have

vA1 D vA2 C! � ���!
A2A1; (5.111)

that is,

vA2 D vA1 C vA1A2 ; (5.112)

where

vA2A1 D ! � ���!
A2A1 (5.113)

and vA2A1 denotes the relative velocity of point A1 with respect to A2. According to
Theorem 5.1 we have v�

A2
D v�

A1
. Therefore,

v�
A2A1

� v�
A2

� v�
A1

D 0: (5.114)
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Fig. 5.36 Determination of
velocity of an arbitrary point
A3 if vA1 and vA2 are known
(case i)

If v�
A2A1

is the projection of vA2A1 onto line A2A1, we have vA2A1 ? A2A1, which
also follows from the interpretation of the vector product given by (5.113).

We will now show how to determine the velocity of an arbitrary point A3 if
the velocities of two points vA1 and vA2 are known (the latter was determined in
Fig. 5.35). We draw the lines through points A1 and A3 and through A2 and A3
(Fig. 5.36). Next, we project the velocity vA1 (vA2) onto direction A1A3 (A2A3).
We move the obtained projections v�

A1
and v�

A2
along the mentioned directions

to point A3. Then we draw perpendicular lines from the tips of both vectors v�
A1

and v�
A2

. The point of intersection of the lines determines the tip of the unknown
vector vA3 .

(ii) Geometric sum of motion of a pole and the rotation about that pole

Let point A1 of velocity vA1 be a pole, and let the direction of the velocity of
point A2 be given (Fig. 5.37).

The velocity of pointA2 is determined by (5.112), where vA1 denotes the velocity
of poleA1 and vA2A1 denotes the velocity resulting from the rotation of pointA2 with
respect to A1. Equation (5.112) can be written in the form

vA2 D vA1 C vA2A1 ; (5.115)

where the double underline denotes that knowledge about the vector is complete,
while the single underline indicates that only the vector’s direction is known.
Vector (5.115) allows us to determine the magnitude of vector vA2 . As can be seen
in Fig. 5.37a, vector vA1 is moved to point A2. Then through its tip we draw a line
perpendicular to A1A2, which intersects the known direction of vector vA2 at the
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Fig. 5.37 Successive determination of velocities of points A2 and A3 (case ii)

point that constitutes the tip of the unknown vector vA2 . It can be seen that the
presented vectors satisfy vector (5.115). Because we now know the velocities of
two points of the plane figure vA1 and vA2 , we are able to determine the velocity of
an arbitrary pointA3 of that figure not lying on line A1A2 from the following vector
equations

vA3 D vA1 C vA3A1 ;

vA3 D vA2 C vA3A2 ; (5.116)

which leads to a single vector equation

vA1 C vA3A1 D vA2 C vA3A2 : (5.117)

This equation enables us to find the solution because we have two unknowns.
It becomes clear after introduction of the plane Cartesian coordinate system and
projection of (5.112) onto its axes. As a result we obtain two algebraic equations
with two unknowns.

Figure 5.37b shows a geometrical construction leading to the solution of (5.117).
We attach vectors vA1 and vA2 at point A3, and through their tips we draw lines
perpendicular to A1A3 and A2A3, respectively. Their intersection point determines
the magnitude and sense of vector vA3 .

The method to determine the velocity vA3 if point A3 lies on line A1A2 is
presented in Fig. 5.38.

While the velocity vA2 was being determined, vector vA2A1 was also determined,
which allows also for the determination of vA3A1 . Now, moving vector vA1 to
point A3 we determine the unknown velocity vA3 from the parallelogram law.

(iii) The center of velocity

Making an assumption similar to that in previous cases – that we know the
velocity of point A1 and the direction of the velocity at point A2. From this we
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Fig. 5.38 Determination of
velocity of point A3 lying on
line A1A2 (case ii)

Fig. 5.39 Determination of
an instantaneous center of
velocity (case iii) and the
velocity of an arbitrary
point A3

will determine velocity vector vA2 . The perpendicular lines drawn through the
tails of velocity vectors vA1 and vA2 determine at their point of intersection the
instantaneous center of velocity C (Fig. 5.39).

Connecting the tips of vectors vA1 and vA2 with point C we determine the angle
˛ D !t , where P̨ D ! D const. Because

tan˛1 D vA1
CA1

D !;

tan˛2 D vA2
CA2

D !; (5.118)
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Fig. 5.40 Determination of
velocity vA2 with the aid of
the method of rotated
velocities (case iii)

we have ˛1 D ˛2 D ˛. If we want to determine the velocity of an arbitrary point
A3, we lay off a directed angle ˛ from segment CA3, and the point of intersection
of the line perpendicular to CA3 (at point A3) with the ray formed after rotation of
segment CA3 through angle ˛ determines the tip of vector vA3 .

It is convenient to use a certain version of that method called the method of
rotated velocities, presented in Fig. 5.40.

We join point A1 with A2. We rotate the known velocity vA1 through the angle
�=2 in the direction of the instantaneous rotation obtaining the velocity v�

A1
. Line

A�
1A

�
2 is the set of tips of the rotated velocity vectors whose tails lie on lines A1A2

and A1A2 k A�
1A

�
2 . In order to determine vA2 we can proceed in the following

way. We rotate vector vA1 through the angle �=2 and draw a line parallel to A1A2
passing through A�

1 . Its intersection with the line perpendicular to the direction of
the velocity vA2 allows for the determination of A�

2 , that is, the determination of
v�
A2

. The rotation of that vector through the angle �=2 opposite to the direction of
the instantaneous rotation leads to the determination of vector vA2 (this construction
does not require determination of point C ).

Finally, we show how to determine the velocity of an arbitrary point A3 using
the method of rotated velocities (Fig. 5.41). To this end we rotate in the previously
described way velocities vA1 and vA2 obtaining v�

A1
and v�

A2
.

We draw lines A1A3 and A2A3. Through the tip of v�
A1

we draw a line parallel to
A1A3 and through the tip of v�

A2
a line parallel to A2A3. Their point of intersection

determines the tip of the vector v�
A3

, which after rotation becomes the desired
vector vA3 .
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Fig. 5.41 Determination of
velocity of point A3 with the
aid of the method of rotated
velocities (case iii)

Fig. 5.42 Velocities of three
points Ai ; i D 1; 2; 3,
instantaneous center of
velocity C , and �A1A2A3

(iv) Burmester theorem (velocity diagram)

In Fig. 5.42, three arbitrary points of a planar figure have been chosen, and their
velocity vectors are marked (from the previous computations it follows that they
cannot be drawn arbitrarily).

In order to construct a velocity diagram we take an arbitrary pole C � to which
we move the (sliding) vectors vA1 , vA2 , and vA3 , as shown in Fig. 5.43.
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Fig. 5.43 Velocity diagram (case iv)

From the construction it follows that
����!
C �A�

1 D vA1 ,
����!
C �A�

2 D vA2 , and
����!
C �A�

3 D
vA3 . This means that vectors

����!
C �A�

1 ,
����!
C �A�

2 , and
����!
C �A�

3 shown in the velocity
diagram are perpendicular respectively to lines CA1, CA2, and CA3 in Fig. 5.42.
The marked figure (in the present case a triangle A�

1A
�
2A

�
3 ) in Fig. 5.43 is similar

to the figure (triangle) A1A2A3 (Fig. 5.42) and rotated with respect to it through the
angle �=2 in the direction of the instantaneous rotation.

From the velocity diagram it follows that

����!
C �A�

1 C ���!
A�
1A

�
2 D ����!

C �A�
2 ;

����!
C �A�

2 C ���!
A�
2A

�
3 D ����!

C �A�
3 ; (5.119)

which after returning to the velocity interpretation means

vA2 � vA1 D ���!
A�
1A

�
2 � vA2A1 ;

vA3 � vA2 D ���!
A�
1A

�
3 � vA3A2 ; (5.120)

where vA2A1 (vA3A2) denotes the relative velocity of point A2 .A3/ with respect to
A1 .A2/.

These observations can be formally stated as the following theorem.

Burmester Theorem
A figure obtained as a result of connecting the tips of vectors of a velocity diagram
of points of a rigid body moving in planar motion is similar to a figure determined
by those points of the body and rotated with respect to the second figure through an
angle �=2 in the direction of instantaneous rotation of the body.

5.2.6.2 Accelerations

The calculations conducted in the previous section can be extended to an analysis of
accelerations of a rigid body in planar motion. We will take up cases involving the
determination of accelerations of the points of a rigid body relying on three methods:
the method of geometric composition of accelerations of a pole’s translational
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motion and the rotational motion about that pole (Sect. 5.2.1), the method of
instantaneous center of acceleration, and the method of similarity (acceleration
diagram).

(i) Geometrical composition of translational and rotational motion

Let the acceleration aA1 of point A1 (the pole; previously point O 0 played this role)
be given. Our aim will be to determine the acceleration of pointA2 in the considered
time instant. According to (5.115) we have

aA2 D aA1 C aA2A1 ; (5.121)

where aA2A1 � aW denotes the acceleration resulting from the rotation of point A2
with respect to point A1. According to (5.88) this acceleration has two components,
i.e., it is a sum of two vectors

aA2A1 D anA2A1 C atA2A1 : (5.122)

Because the distance j���!
A2A1j is known, the acceleration anA2A1 is completely

known (double underline). Its sense is determined by vector
���!
A2A1, and its mag-

nitude is equal to

anA2A1 D vA2A1ˇ̌
ˇ
���!
A2A1

ˇ̌
ˇ
: (5.123)

The acceleration atA2A1 is known only as to the direction because this vector is

attached at point A2 and perpendicular to
���!
A2A1. The total acceleration of point A2

is equal to

aA2 D anA2 C atA2: (5.124)

If, according to the assumption, the radius of curvature of the path of point A2 is

known, let it be equal to j��!
A2Oj, the magnitude of the normal acceleration

anA2 D v2A2ˇ̌
ˇ
��!
A2O

ˇ̌
ˇ
; (5.125)

and its sense and direction be in agreement with those of the vector
��!
A2O (it passes

through point A2). Taking into account the preceding considerations, (5.121) will
assume the form

anA2 C atA2 D aA1 C anA2A1 C atA2A1 : (5.126)

This equation contains two unknowns and leads to their determination.
Figure 5.44 the construction leading to the determination of the acceleration of

point A2 on the assumptions introduced earlier is presented.
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Fig. 5.44 Determination of acceleration of point A2 (method i)

First we determine the accelerations anA2A1 and anA2 (Fig. 5.44a). Next we attach
vector aA1 at point A2 (Fig. 5.44b) and add to it vector anA2A1 . Then from its tip we
draw a perpendicular line on which lies vector atA2A1 . On the other hand, at pointA2
we attach vector anA2 , and from its tip we draw a perpendicular line that intersects
the direction of atA2A1 at the point representing the tip of vector aA2 .

(ii) Method of instantaneous center of accelerations

Let us assume (cf. the final considerations of Sect. 5.2.1) that the acceleration of an
arbitrary point A belonging to a figure in planar motion is equal to

aA D PvA; (5.127)

where vA is the velocity of point A. If point A moves along a curvilinear path, then

aA D anA C atA; (5.128)

where

anA D v2Aˇ̌
ˇ
��!
AO

ˇ̌
ˇ
; atA D dvA

dt
D "

ˇ̌
ˇ
��!
AO

ˇ̌
ˇ : (5.129)

The normal acceleration anA has a direction and sense in agreement with those of

vector
��!
AO. The tangential acceleration atA has a direction tangent to the path.

As was shown earlier, the acceleration aA forms the angle ˛ with the radius of
curvature, and the value of the angle is given by (5.90), i.e., tan˛ D at

an
D "

!2
, which

is illustrated in Fig. 5.45.
In planar motion angular velocity !, angular acceleration ", and angle ˛, shown

in Fig. 5.45, do not depend on the choice of pole. In particular cases, as poles we
can choose the instantaneous centers of velocity and acceleration. The origin of the
radius of curvature (pointO) determines the instantaneous center of acceleration, a
notion that is analogous to the instantaneous center of velocity introduced earlier.
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Fig. 5.45 Path of point A,
radius of curvature, and
acceleration aA with its two
components

Recall that the center of velocity is a point where the velocity is equal to zero,
and the velocity of an arbitrary point A belonging to the plane  follows from the
purely rotational motion and its magnitude is given by vA D !OA. At a given time
instant the path of pointA is approximated by the arc of a circle of radiusOA, where

vA ? �!
OA at point A, and its sense is defined by the sense of !.

Let us also assume that in order to determine the instantaneous center of velocity,
it suffices to know the directions of velocities vA1 and vA2 at arbitrary points
A1 and A2 (see case iii in Sect. 5.2.6.1). The point of intersection of the lines
perpendicular to the directions of vA1 and vA2 at points A1 and A2 determines the
desired instantaneous center of velocity C .

Although the velocity of a point is always tangent to its path (there is no notion
of normal velocity), the acceleration (except for translational motion) possesses a
normal component, which is why aA is not tangent to the path, and its position with
respect to the radius of curvature is defined by angle ˛.

From the foregoing discussion it follows that the instantaneous center of rotation
and the instantaneous center of acceleration can coincide only in special cases. At
a given time instant the planar motion of a body can be treated as an instantaneous
rotational motion, as described in Sect. 5.1.4. At another time instant the position of
the aforementioned center will change.

We will now show how to determine the instantaneous center of acceleration
based on our knowledge of the accelerations of two arbitrary points aA1 and aA2 . The
problem boils down to the determination of angle ˛ formed by these accelerations
with the direction of the path’s radius of curvature (Fig. 5.45).

Figure 5.46 shows how to graphically determine angle ˛ (if " ı ! < 0, then we
lay off angle ˛ in the opposite direction).

Let us take point A1 as a pole. The acceleration of point A2 with respect to A1
can be expressed by the vector equation

aA2 D aA1 C aA2A1 ; (5.130)

which allows for the determination of aA2A1 (Fig. 5.46a). An arbitrary point of a
planar figure can be taken as a pole because in planar motion the angular velocity!
and the angular acceleration " do not depend on the chosen pole.

Figure 5.45 provides the following information. Pole O at the given instant
remains at rest in the position indicated in the figure. The acceleration of point A
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Fig. 5.46 Determination of a center of acceleration (case ii)

with respect to the stationary point O forms angle ˛ with radius OA. The
acceleration aA2A1 denotes the acceleration of point A2 with respect to A1, which
by analogy leads to the determination of angle ˛ formed between line A1A2 and the
direction of vector aA2A1 (Fig. 5.46a). Next (Fig. 5.46b) we draw the lines passing
through points A1 and A2 and forming angle ˛ with, respectively, aA1 and aA2 , and
their point of intersection is the desired center of acceleration.

(iii) Method of similarity

By analogy to the velocity diagram (Figs. 5.42 and 5.43) it is possible to build
an acceleration diagram whose construction is based on the similarity principle. At
the arbitrary point P � (the pole) we attach the acceleration vectors aAi (we will
skip here a drawing of an acceleration diagram), and joining their tips we obtain
the triangle �A�

1A
�
2A

�
3 . At points Ai ; i D 1; 2; 3, one should draw vectors aAi ,

which form angles ˛ with segments PAi , and point P denotes the instantaneous
center of acceleration. Attaching those vectors at an arbitrary pole P � their tips will
form the triangle�A�

1A
�
2A

�
3 , which is similar to�A1A2A3 and rotated with respect

to it through the angle � � ˛ (and with respect to the velocity diagram through
angle �

2
� ˛) in agreement with the sense of !.

The proof of all the discussed principles of similarity is left to the reader.

Example 5.2. The beam AD (Fig. 5.47) moves in planar motion and is in con-
tinuous contact with points A and B , and its end A has the horizontal velocity
vA D const. Determine the positions of instantaneous centers of velocity and
acceleration during the motion of the beam. Determine also the values of angular
velocity ! and angular acceleration " of the beam.

Point B does not undergo rotation with respect to point A since it belongs to the
rigid body (the beam). In view of that the velocity vB is directed along the beam.
Drawing lines perpendicular to the velocities vA and vB passing through points A
and B , we will obtain point C as it is the instantaneous center of velocity. Because
by assumption vA D const, we have aA D 0, and pointA is the instantaneous center
of acceleration.
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Fig. 5.47 Planar motion
of a beam

Let OA � x.t/ D vAt (for t D 0 we have OA D 0), and let OB D h. The
angles denoted in the figure are equal, and we calculate successively

AB D
p
h2 C x2;

tanˇ D h

x
D AB

BC
;

AC D
p
.AB/2 C .BC /2;

hence

BC D x

h

p
h2 C x2;

AC D
r
x2.h2 C x2/

h2
C h2.h2 C x2/

h2
D h2 C x2

h
:

The beam is in the instantaneous rotational motion about pointC with the angular
velocity

! D vA
AC

D hvA
h2 C x2

:

The angular acceleration of the beam is equal to

".t/ D P! D hvA
d

dt
.h2 C x2/�1 D �hvA

2x Px
.h2 C x2/2

D � 2hv3At

.h2 C v2At
2/2
;

and because t > 0, the sense of " is opposite to the sense of !.
The velocity and acceleration of point B of the beam are equal to vB D !CB

and aB D "AB . ut
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5.3 Composite Motion of a Point in a Three-Dimensional
Space

We will call such a motion where the point (body) is simultaneously involved in
several motions the composite motion of a material point or a rigid body. Apart
from its own motion, a ship that crosses a river takes part in the motion of the river.
A man who moves on the ship, apart from his own motion, is involved in the motion
of the ship and the motion of the river. A similar situation occurs, for instance,
during a person’s motion in a moving elevator or airplane.

In many applications, especially in the case of the motion of spacecraft, there
exists a need to conduct a kinematic analysis of a particle with respect to two
coordinate systems (see, e.g., [4–11]). In the course of our calculations we have
also introduced such coordinate systems: OX1X2X3 (absolute) and O 00X 00

1 X
00
2 X

00
3

(rigidly connected to a moving body). In the latter case the position of point A was
determined by the radius vector �, where j�j D const, which means that pointA did
not move with respect to O 00X 00

1 X
00
2 X

00
3 .

We will now analyze the case where pointAmoves with respect toO 00X 00
1 X

00
2 X

00
3 ,

and in turn O 00X 00
1 X

00
2 X

00
3 moves with respect to OX1X2X3, but in a certain

prescribed way (e.g., the motion of a spacecraft is prescribed), i.e., the motion of
point O 00 and the position of the axes O 00X 00

1 X
00
2 X

00
3 with respect to the axes of

the absolute coordinate system OX1X2X3 are completely known (Fig. 5.48). We

will denote vector
��!
O

0

A describing the position of point A in the coordinate system
O 00X 00

1 X
00
2 X

00
3 by � and in the coordinate system OX1X2X3 by vector r D rA � rO 0 .

The motion of point A with respect to the system OX1X2X3 is called the com-
posite motion (absolute motion); the motion of point A with respect to the system
O 00X 00

1 X
00
2 X

00
3 is called the relative motion, whereas the motion of the O 00X 00

1 X
00
2 X

00
3

with respect to the system OX1X2X3 is called the motion of transportation.

Fig. 5.48 Composite motion
of point A in a
three-dimensional space
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Similar terminology is associated with velocity (and acceleration): absolute,
relative, and transportation.

Our aim is to determine the relationships between the displacements, velocities,
and accelerations of point A in the systems OX1X2X3 and O 00X 00

1 X
00
2 X

00
3 . The

velocity (acceleration) of transportation of point A is the velocity (acceleration) of
such a point A00 not moving with respect to the system O 00X 00

1 X
00
2 X

00
3 (i.e., the point

and the system are rigidly connected), which at a given time instant is coincident
with point A.

To the definitions introduced above we will give a physical meaning. Let a man
be moving on a certain revolving platform. The coordinate system rigidly connected
to the platform is called a non-stationary system, and the system associated with
Earth is called a stationary system. The motion of the platform is the motion of
transportation, the motion of the man with respect to the platform is called the
relative motion, and the motion of the man with respect to Earth is called the
absolute motion. The velocity (acceleration) of point C , which is associated with
the platform at which the mass center of the man is situated at a given time instant,
is called the velocity of transportation (acceleration of transportation) of the mass
center of the man.

The analysis of composite motion relies on the determination of relations
between velocities and accelerations of relative, transportation, and absolute motion.

A change in the radius vector rA (Fig. 5.48) or coordinates x1A; x2A; x3A
describes the composite motion of a point. A change in the radius vector � or
coordinates x00

1A; x
00
2A; x

00
3A describes the relative motion of point A, and a change in

the radius vector rO 0 , that is, of coordinates of the pole x1O 0 ; x2O 0 ; x3O 0 , describes
the absolute motion of pole O 0.

From Fig. 5.48 it follows that

rA D rO 0 C r: (5.131)

In turn, the vector
��!
O 0A is expressed in the system OX1X2X3 as

r D A.t/�; (5.132)

where matrix A is the matrix of transformation from the system O 00X 00
1 X

00
2 X

00
3 to

OX1X2X3. As will be shown further, it can be expressed by three independent
angles called the Euler angles, which in our case would be prescribed functions
of time.

An absolute velocity of point A in the system OX1X2X3 is obtained through
differentiation of (5.131) with respect to time:

vA � PrA D PrO 0 C Pr: (5.133)

Differentiating (5.132) we have

Pr D PA�C A P� D PAA�1r C A P�: (5.134)

In turn, we have (to be demonstrated later)

PAA�1r D ! � r; (5.135)
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and finally

vA D vO 0 C! � r C A P�; (5.136)

where vO 0 D PrO 0 .
Eventually, the absolute velocity of point A (in the system OX1X2X3) has the

form

vA D vtA C vrA;

vA D
q
.vtA/

2 C .vrA/
2 C 2vtAvrA cos.vtA; v

r
A/:

(5.137)

Velocity vrA D A P� is called the relative velocity of point A and is expressed in
the systemO 00X 00

1 X
00
2 X

00
3 . In turn, vector vtA D vO 0 C!�r defines the transportation

velocity of point A.
In order to obtain the absolute acceleration of point A one should differenti-

ate (5.136) with respect to time, and hence

aA � PvA D PvO 0 C P! � r C! � Pr C PA P�C A R�
D aO 0 C " � r C! � .! � r C A P�/C PA P�C A R�; (5.138)

where aO 0 D vO 0 D RrO 0 , P! D " and during transformations, (5.134) and (5.135)
were used. Then the term

PA P� D PAA�1A P� D ! � A P�; (5.139)

where during transformations we used relation (5.135).
Taking into account (5.139), (5.138) takes the form

aA D aO 0 C " � r C! � .! � r/C 2! � vrA C A R�
D atA C arA C aCA; (5.140)

where atA D aO 0 C " � r C! � .! � r/, aCA D 2! � vrA, arA D A R�.
The acceleration of transportation of point A is the acceleration of a point A00

rigidly connected to the systemO 00X 00
1 X

00
2 X

00
3 with respect to the system OX1X2X3,

which at the given instant coincides with point Amoving with respect to the system
O00X 00

1 X
00
2 X

00
3 .

The relative acceleration of the analyzed point arA is the acceleration of point A
measured with respect to the non-stationary system O 00X 00

1 X
00
2 X

00
3 .

The acceleration aCA is called the Coriolis acceleration.1 The emergence of this
acceleration results from two aspects, which can be traced during the derivation
of (5.140).

1Gaspard–Gustave de Coriolis (1792–1843), French physicist and mathematician working at École
Polytechnique in Paris.
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Fig. 5.49 Illustration of
causes of emergence of
Coriolis acceleration

The vector vrA rotates with respect to the system OX1X2X3 as a result of the
rotation of the systemO 00X 00

1 X
00
2 X

00
3 with velocity! and yields the acceleration 1

2
aCA .

Moreover, the position of point A in the system O 00X 00
1 X

00
2 X

00
3 undergoes change,

which leads to a change in the transportation velocity. This leads to the emergence
of the acceleration 1

2
aCA .

In the case of translational motion of transportation we have ! D 0, " D 0, and
then the Coriolis acceleration

aCA D 2.! � vrA/ D 0: (5.141)

The component of the vector of absolute acceleration of a point in composite mo-
tion, which is equal to a doubled vector product of angular velocity of transportation
! and the relative velocity of the point vrA, is called the Coriolis acceleration (return
acceleration).

We will present certain characteristics of the Coriolis acceleration using the
example of a circular platform (disk) on which a person moves along a radius
(Fig. 5.49).

If the person (point A) moves uniformly along the radius of a uniformly rotating
circular platform, then her relative velocity is the velocity vr , and her velocity of
transportation vt is the velocity of the point of the platform where the person is at
the moment. At time instant t let the person be at pointA, and at time instant tC�t

let her be at point A�. Because the relative motion is uniform and rectilinear, we
have ar D 0. However, in the time interval �t , the velocity vr changes direction to
vr� as a result of platform rotation (motion of transportation).

In this time interval �t a change in the magnitude of velocity of transportation
also occurs from a value of vt D ! �OA to vt� D ! �OA� because during time �t
the person moved from point A to A�. Those two changes in velocities vr and vt

during time �t caused the emergence of the Coriolis acceleration of magnitude

aC D 2!vr sin.!; vr /: (5.142)

From the given example it follows that the Coriolis acceleration is associated
with the following changes:

1. The magnitude and direction of the velocity of transportation of the point as a
result of its relative motion.

2. The direction of the relative velocity of the point as a result of the rotational
motion of transportation.
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Fig. 5.50 Determination of
direction and sense of aC

According to (5.142) the Coriolis acceleration is equal to zero in three cases:

1. ! D 0, which takes place in the case of translational motion of transportation or
at time instants where ! D 0 during non-translational motion.

2. vr D 0, which occurs in the case of a relative state of rest of the point or at time
instants where vr D 0 during the relative motion of the point.

3. sin.!; vr / D 0, which takes place when the angle between vectors ! and vr is
equal to 0 or � .

We will show how to determine in practice the direction and sense of the Coriolis
acceleration (Fig. 5.50).

In order to determine the direction and sense of the Coriolis acceleration one
should project the relative velocity of point vr onto the plane˘ ? ! and then rotate
vector vr� through 90ı according to the sense of !. If vr ? !, then pC D 2!vr .

Example 5.3. A rectangular plate rotates with a constant velocity ! D const about
axis OX3 (Fig. 5.51). Point A moves on the plate along a circle (Fig. 5.51a) and
ellipse (Fig. 5.51b).

Determine the absolute acceleration of point A when:

(a) The axis of plate rotation OX3 lies in its plane, the center of the circle O 0 D
O 0.x2O 0 ; x3O 0/, and the point motion along the arc of the circle is governed by
the equation s D AOA D 1

6
�	At

3, where AO D A.tO/ (Fig. 5.51a);
(b) The axis of plate rotation OX3 is perpendicular to its plane, and the motion

of point A on the plate is described by the equations x00
1 D a1 cos˛t ; x00

2 D
a2 sin ˛t (Fig. 5.51b).

In the considered case (Fig. 5.51a) the relative velocity vrA D P	rA D 1
2
�	At

2.
The relative tangent acceleration of point A is arA� D �	At , whereas the relative

normal acceleration has a value of arAn D .vrA/
2

	A
D 1

4
�2	At

4. The transportation
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Fig. 5.51 Composite motion of a point A in three-dimensional space

acceleration of point A is atA D ! � .! � �A/, i.e., atA D atAn D !2	A.2C sin'/,
where ' D s

	A
D 1

6
�t3; ' D<) .AOO

0A/. The Coriolis acceleration of point A is
acA D 2! � vrA, and hence

aCA D 2!vrA sin



�

2
C '

�

D 2!vrA cos' D 2!vrA cos



�

6
t3
�
:

The projections of acceleration vector aA onto the axes of the coordinate system
are equal to

aAx1 D �aCA D ��!	At2 cos



�

6
t3
�
;

aAx2 D �atA � arAn sin ' C arA� cos' D �!2	A
�
2C sin



�

6
t3
��

� 1

4
�2	At

4 sin



�

6
t3
�

C �	At cos



�

6
t3
�
;

aAx3 D �arA� sin ' � arAn cos' D ��	At sin



�

6
t3
�

� 1

4
�2	At

4 cos



�

6
t3
�
;

and acceleration vector aA is described by the equation

aA D aAx1E1 C aAx2E2 C aAx3E3:
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In the case of Fig. 5.51b, we have

rO 0 D E1x1O 0 C E2x2O 0 ;

where x1O 0 D const and x2O 0 D const. The position of point A is governed by the
following equation:

rA � rO 0 D E1a1 cos˛t C E2a2 sin˛t;

and because ! D const, we have " D 0.
The successive terms of (5.140) have the following form:

aO 0 D atO 0 D �!2.x1O 0E1 C x2O 0E2/; " � �A D 0; ! � .! � �A/ D �!2�A;

that is,

atA D �!2.x1O 0E1 C x2O 0E2/� !2.E1a1 cos˛t C E2a2 sin ˛t/

D �!2.a1 cos˛t C x1O 0/E1 � !2.a2 sin ˛t C x2O 0/E2:

The relative acceleration of point A is equal to

arA D �a1˛2E1 cos˛t � a2˛2E2 sin ˛t;

and its Coriolis acceleration reads

aCA D 2! � P�rA D 2

ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
0 0 !

Px00
1 Px00

2 0

ˇ̌
ˇ̌
ˇ̌ D �2E1! Px00

2 C 2E2! Px00
1

D �2a2!˛E1 cos˛t � 2a1!˛E2 sin˛t :

Finally, the absolute acceleration of point A is given by

aA D Œ�.!2 C ˛2/a1 cos˛t C 2a1!˛ sin ˛t�E1

C Œ�.˛2 C !2/a2 sin˛t � x200!2 C 2a2!˛ cos˛t�E2: ut

5.4 Composite Planar Motion of a Point

This problem is a special case of the composite motion in three-dimensional space,
but since it is very important in a discussion of the kinematics of plane mechanisms,
we will devote some attention to it. Moreover, we apply here a method of analysis
different than that described in Sect. 5.3.
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Fig. 5.52 Composite planar
motion of point A

The composite planar motion of point A is depicted in Fig. 5.52, where now,
as distinct from the analysis of the case presented in Figs. 5.18 (velocity) and 5.26
(acceleration), point A moves with respect to the non-stationary coordinate system
O 00X 00

1 X
00
2 .

In this case, the plane OX1X2 is stationary (unmovable). The motion of point A
with respect to the plane OX1X2 is called the composite planar motion, and the
motion of the point with respect to the plane O 00X 00

1 X
00
2 is called the relative plane

motion of the point, whereas the motion of the plane O 00X 00
1 X

00
2 with respect to the

planeOX1X2 is called the transportation planar motion.
From Fig. 5.52 it follows that

rA D rO 0 C �; (5.143)

and therefore

vA � PrA D vO 0 C P�; (5.144)

where vO 0 D PrO 0 , and hence

P� D E00
1 Px00

1A C E00
2 Px00

2A C PE00
1x

00
1A C PE00

2x
00
2A: (5.145)

Taking into account (5.145), (5.144) becomes

vA D vtA C vrA; (5.146)

where vtA D vO 0 C P' � � D vO 0 C P' �
�
x00
1AE00

1 C x00
2AE00

2

	
, vrA D Px00

1AE00
1 C Px00

2AE00
2 ,

and in the preceding discussion we used the relation PE 00
i D P' �E 00

i .
Equation (5.146) in comparison to (5.64) contains an additional term vrA, which

is the relative velocity of pointA in the non-stationary coordinate systemO 00X 00
1 X

00
2 .

Differentiating (5.146) with respect to time we have

aA � PvA D PvtA C PvrA; (5.147)
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where

aA D aO 0 C E00
1 Rx00

1A C E00
2 Rx00

2A C PE00
1 Px00

1A C PE00
2 Px00

2A

C R' � .x00
1AE00

1 C x00
2AE00

2 /C P' � �. Px00
1AE00

1 C Px00
2AE00

2 /C .x00
1A

PE00
1 C x00

2A
PE00
2 /
�

D aO 0 C E00
1 Rx00

1A C E00
2 Rx00

2A C 2 P' � . Px00
1AE00

1 C Px00
2AE00

2 /

C " � .x00
1AE00

1 C x00
2AE00

2 /C P' � � P' � .x00
1AE00

1 C x00
2AE00

2 /
�

D atA C arA C aCA ; (5.148)

where atA D aO 0 C " � �C P' � � P' � ��, arA D E00
1 Rx00

1A C E00
2 Rx00

2A, aCA D 2 P' � vrA.
Equation (5.148) indicates that the acceleration in the system OX1X2 (i.e., the

absolute acceleration) of pointA is the geometric sum of the acceleration of pointO 0
(the pole) in that system and the acceleration of that point in the system O 00X 00

1 X
00
2 .

The particular terms of (5.148) are equal to

aO 0 D Rx1O 0E1 C Rx200 E2;

" � �A D
ˇ̌
ˇ̌
ˇ̌
E00
1 E00

2 E00
3

0 0 "

x00
1A x

00
2A 0

ˇ̌
ˇ̌
ˇ̌ D �E00

1"x
00
2A C E00

2"x
00
1A;

P' � . P' � �A/ D . P' ı �/ P' � P'2� D � P'2�
D � P'2 �E00

1x
00
1A C E00

2x
00
2A

�
;

P' � vrA D
ˇ̌
ˇ̌
ˇ̌
E00
1 E00

2 E00
3

0 0 P'
Px00
1A Px00

2A 0

ˇ̌
ˇ̌
ˇ̌ D �E00

1 P' Px00
2A C E00

2 P' Px00
1A; (5.149)

and in view of that the acceleration of point A is determined by the following two
scalar equations:

RxiA D RxiO 0 � "x00
2A

�
E00
1 ı Ei

�C "x00
1A

�
E00
2 ı Ei

� � P'2x00
1A

�
E00
1 ı Ei

�

� P'2x00
2A

�
E00
2 ı Ei

�C Rx00
1A

�
E00
1 ı Ei

�C Rx00
2A

�
E00
2 ı Ei

�

� 2 P' Px00
2A

�
E00
1 ı Ei

�C 2 P' Px00
2A

�
E00
2 ı Ei

�
; i D 1; 2; (5.150)

where

E00
1 ı E1 D cos';

E00
2 ı E1 D cos

��
2

C '
	

D � sin';

E00
2 ı E2 D cos';

E00
1 ı E2 D cos

��
2

� '
	

D sin ': (5.151)
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The absolute velocity of pointA is described by (5.146), whose terms are equal to

vO 0 D Px1O 0 E1 C Px2O 0E2;

P' � � D
2

4
E00
1 E00

2 E00
3

0 0 P'
x00
1A x00

2A 0

3

5 D �E00
1 P'x00

2A C E00
2 P'x00

1A;

vrA D Px00
1AE00

1 C Px00
2AE00

2 ; (5.152)

and in view of that the components of the absolute velocity of pointA are described
by the following two equations:

PxiA D PxiO 0 � P'x00
2A

�
E00
1 ı Ei

�C P'x00
1A

�
E00
2 ı Ei

�

C Px00
1A

�
E00
1 ı Ei

�C Px00
2A

�
E00
2 ı Ei

�
; i D 1; 2: (5.153)

5.5 Motion in a Three-Dimensional Space

5.5.1 Introduction

In this section we will take up the kinematics of a rigid body. According to the
definition introduced earlier, a body in mechanics is a collection of particles, which
is why we take up the kinematics of a point (points) first.

Figure 5.53 presents the position of body C at the time instants t0
�
Ct0
�

and t
(Ct ) and are marked as three points of the body A;A1; A2. The minimum number
of points required to determine the position of a rigid body is four (they must not
lie in one plane). If the positions of the three points A;A1; A2 of the body and the
additional pole O are known, then the position of any other point can be easily
determined. The configuration of the considered body at time instant t0 can be
described by the function r0 D ft0.A/, whereas at time instant t that function has the
form r D ft .A/ (because we take point A arbitrarily, we will additionally drop the
subscript A, i.e., rA D r). The position of arbitrarily chosen point A can undergo
a change. The functions describe the mappings of particles A of body Ct at time
instant t in three-dimensional Euclidean space.

Using the stationary Cartesian coordinate system introduced in Fig. 5.53
(position vectors r0) we can trace the position of the body at arbitrary time instants
t (position vectors r). In other words, we will describe the motion of the body by a
certain vector function

r.t/ D F.r0; t/: (5.154)



326 5 Kinematics of a Rigid Body and Composite Motion of a Point

Fig. 5.53 Position of a body at time instants t0 and t

The preceding notation means that the motion of an arbitrary point A of body C
depends on its position and on time. In the case of a rigid body the distances between
its points do not change, i.e., if we take any two points of numbers 1 and 2, we have

kr1 � r2k D kr01 � r02k: (5.155)

Moreover, the motion of an arbitrary point of a rigid body is described by the
equation (to be demonstrated later)

r.t/ D A.t/r0 C a.t/; (5.156)

where A.t/ is the rotation tensor (matrix) and a.t/ is a vector.
Taking into account two particles A1 and A2 of a rigid body, from (5.156) we

obtain

r1 � r2 D A.r01 � r02/: (5.157)

From the preceding equation it follows that the vector connecting two arbitrary
points of a rigid body can either rotate (A ¤ E) or not rotate (A D E, where E is the
identity matrix). Thus, in order to check if the rigid body rotates during motion, one
should investigate the behavior of the vector r1 � r2 in time. Let us first consider the
simplest case, A D E. From (5.157) it follows that

r1 � r2 � r01 � r02 � const: (5.158)
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Fig. 5.54 Translational motion of a rigid body

This means that the vector r1 � r2 connecting points A1 and A2 of the rigid body
is a constant vector, i.e., this vector moves in three-dimensional space in time but
remains parallel to its initial position at time instant t0 (Fig. 5.54). We will call such
motion the translational motion of a rigid body.

The investigation of the motion of a rigid body in such a case boils down to the
investigation of motion of its arbitrary point. If we take point A, then we have

v � vA D drA
dt
; (5.159)

a � aA D d2rA
dt2

: (5.160)

Translational motion can be either rectilinear or curvilinear motion. From (5.159)
and (5.160) it follows that in translational motion the velocities and accelerations
of every point of a rigid body are the same. Recall that because the motion
of a particle can be divided into uniform (constant velocity), uniformly variable
(constant tangential acceleration), and non-uniformly variable (changing tangential
acceleration), one can similarly divide the translational motion of a rigid body.

Let us consider now a second case associated with (5.157), i.e., A ¤ E.
Recall that the rotation tensor A is an orthogonal second-order tensor possessing

the following properties:

ATA D AAT D E; (5.161)

det.A/ D 1: (5.162)

From (5.161) it follows that there are six constraints imposed on nine elements
of tensor A. Therefore, only three parameters are independent and fully describe
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rotation tensor A. Although in what follows we will mainly use matrix and vector
calculus, here some basic information connected with tensor calculus will be
introduced, which will enable readers to use it for their own purposes if necessary.

The property of the second-order rotation tensor ideally serves the purpose of
interpreting the motion of a rigid body with one point fixed. That motion can be
described by the choice of three parameters, most often the so-called Euler angles.

5.5.2 Angular Velocity and Angular Acceleration
of a Rigid Body

If rotation tensor A is known, it is possible to define the tensor of angular velocity˝
and the vector of angular velocity! of a rigid body in the following way [5,6,8,10]:

˝ D PAAT; (5.163)

! D �1
2
"Œ˝ �; (5.164)

where " is the tensor of the third order called the alternating tensor [8].
During application of (5.164) some properties of the alternating tensor were used.

Recall that an arbitrary tensor of the third order transforms the vector into second-
order tensors and can transform the tensors of the second order into the vectors

.a˝ b ˝ c/Œd ˝ e� D a.b ı d/.c ı e/; (5.165)

.a˝ b ˝ c/d D a˝ b.c ı d/: (5.166)

If we take the basis
˚
t1; t2; t3

�
, then the tensor of the third order has the form

Q D Qijkti ˝ tj ˝ tk: (5.167)

The alternating tensor has the form

" D "ijkti ˝ tj ˝ tk D t1 ˝ t2 ˝ t3 C t3 ˝ t1 ˝ t2

Ct2 ˝ t3 ˝ t1 � t2 ˝ t1 ˝ t3 � t1 ˝ t3 ˝ t2 � t3 ˝ t2 ˝ t1 (5.168)

because "123 D "312 D "231 D 1 and "213 D "132 D "321 D �1.
If B is a symmetric tensor, then "

�
B
� D 0.

If b is a vector, then

"b D "ijkti ˝ tjbk D b3.t1 ˝ t2 � t2 ˝ t1/

Cb2.t3 ˝ t1 � t1 ˝ t3/C b1.t2 ˝ t3 � t3 ˝ t2/ D �B : (5.169)
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As a result of the preceding operation we obtain the skew-symmetric tensor B.
Property (5.169) was used in (5.164). What is more, for an arbitrary vector a we
have

Ba D .�"b/a D b � a; (5.170)

that is,

˝a D ! � a: (5.171)

The angular acceleration P! of the rigid body is obtained from (5.163) and
(5.164) as

P! D �1
2
"
h RAAT C PA PAT

i
D 1

2
"
h P̋ i : (5.172)

The relative velocities and relative accelerations of two arbitrary points of a rigid
body described by position vectors r1.t/ and r2.t/ are obtained by differentiation
of (5.157) with respect to time.

The first differentiation leads to the result

v1 � v2 D Pr1 � Pr2 D PA.r01 � r02/ D PAATA.r01 � r02/

D ˝A.r01 � r02/ D ˝.r1 � r2/ D ! � .r1 � r2/; (5.173)

where relationships (5.157), (5.161), and (5.171) were used in the transformations.
The next differentiation leads to the determination of relative accelerations of the
form

Pv1 � Pv2 D P! � .r1 � r2/C! � .v1 � v2/

D P! � .r1 � r2/C! �! � .r1 � r2/: (5.174)

Equations (5.173) and (5.174) describe the dependency of relative velocities and
relative accelerations on t , r1 and r2.

5.5.3 Euler’s Proposal

We aim at the parameterization of the angular velocity tensor ˝ and the angular
velocity vector ! so as to obtain their possibly simplest representation. Euler
demonstrated that an arbitrary rotation tensor A could be represented in the
following way:

A D cos'.E � r ˝ r/� sin '."r/C r ˝ r: (5.175)

The preceding vector r is a unit vector (lying on the axis of rotation) composed
of two independent elements, and ' is the directed positive angle of rotation.
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Recall that a second order tensor is called a rotation tensor if it satisfies conditions
(5.161) and (5.162). It belongs to the class of proper orthogonal tensors, which
form a subclass of the orthogonal tensors. Moreover, the determinant of an arbitrary
second-order tensor B has the following form:

det.B/ D ŒBt1;Bt2;Bt3� D
3X

iD1

3X

jD1

3X

kD1
Bi1Bj2Bk3Œti ; tj ; tk�

D
3X

iD1

3X

jD1

3X

kD1
"ijkBi1Bj2Bk3; (5.176)

where
˚
t1; t2; t3

�
is the orthonormal right-handed basis.

Taking into account the obtained value of determinant det.B/ one may notice that
we obtain the same result calculating the determinant of the following matrix:

det.B/ D det

2

4
B11 B12 B13
B21 B22 B23
B31 B32 B33

3

5 : (5.177)

Our task is to show that the tensor (5.175) is the proper orthogonal tensor.
To this end we will make use of the orthonormal right-handed basis

˚
t1; t2; t3

�

(introduced earlier), where t3 D r.
Using the notions of the tensor calculus introduced earlier, the terms of (5.175)

have the form

E D t1 ˝ t1 C t2 ˝ t2 C t3 ˝ t3;

E � r ˝ r D t1 ˝ t2 C t2 ˝ t2;

�"r D t2 ˝ t1 � t1 ˝ t2: (5.178)

Taking into account (5.178) in (5.175) we obtain

A D cos'.t1 ˝ t1 C t2 ˝ t2/

C sin '.t2 ˝ t1 � t1 ˝ t2/C t3 ˝ t3: (5.179)

Then

AT D cos'.t1 ˝ t1 C t2 ˝ t2/C sin '.t1 ˝ t2 � t2 ˝ t1/ (5.180)

because
�
a ˝ b

�T D �
b ˝ a

� D ��a ˝ b
�
. It is easy to check now that AAT D E.

Let us note that

A D
3X

iD1

3X

kD1
Aikti ˝ tk; (5.181)
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Fig. 5.55 Action of Euler’s
rotation tensor A on vector b
.b1Cb2 D bI b1 k rI b2 ? r/

where

Aik D .Atk/ ı ti : (5.182)

The determinant of the tensor A is equal to

det.A/ D det

2

4
cos' � sin' 0

sin' cos' 0

0 0 1

3

5 D 1; (5.183)

and consequently it was demonstrated that A is a rotation tensor.
Let us now consider the action of Euler’s rotation tensor (5.175) on an arbitrary

vector b (Fig. 5.55).
As follows from Fig. 5.55, the component b2 of vector b .b D b1Cb2/ undergoes

a change, whereas b1 k r remains unchanged.
Let us note that

b1 D .b ı r/r D .r ˝ r/b;

b2 D b � b1 D b � .b ı r/r D .E � r ˝ r/b; (5.184)

and in view of that we have [see (5.175)]

A.
; r/ D Œcos
.E � r ˝ r/� sin
."r/C r ˝ r�b

D cos
.E � r ˝ r/b � sin 
."r/b C .r ˝ r/b

D cos
.E � r ˝ r/b C sin
r � b C .r ı b/r

D cos
b2 C sin 
r � b2 C b1 D Ab2 C b1; (5.185)

where (5.171) was used during the transformations.
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From the preceding calculations it follows that we obtain vector Ab by adding
vector Ab2 to vector b1 (parallel to r). The latter can be obtained easily by means
of the rotation of vector b2 through angle 
 in a counterclockwise direction, where
jAb2j D jb2j. We call (5.185) the Euler formula.

Euler’s rotation tensor (5.175) exhibits some interesting properties:

(i) A
�

; r

� D A
� � 
; r

�
;

(ii) A
�

 D 0; r

� D E.

The obtained results will be used to represent the tensor of angular velocity of a
rigid body˝ [see (5.163)] and the vector of angular velocity of a rigid body! [see
(5.164)] on the assumption that 
 D 
.t/ and r D r.t/.

Recall that P" D 0, PE D 0, and r ı Pr D 0 because r ? Pr.
Differentiating (5.175) with respect to time we obtain

PA.
; r/ D � P
 sin 
.E � r ˝ r/ � P
 cos
."r/

C .1 � cos
/.Pr ˝ r C r ˝ Pr/� sin
."Pr/: (5.186)

We will further use relationships (5.178). Additionally,

Pr D at1 C bt2; (5.187)

where a and b are certain scalars. The foregoing result follows from the equation
r ı Pr D 0, which indicates that Pr ? t3 � r. Therefore, vector Pr is expressed by˚
t1; t2

�
.

Let us calculate the cross product

r � Pr D
ˇ̌
ˇ̌
ˇ̌
t1 t2 t3
0 0 1

a b 0

ˇ̌
ˇ̌
ˇ̌ D �bt1 C at2; (5.188)

and note that [relation (5.169)]

"Pr � a.t2 ˝ t3 � t3 ˝ t2/C b.t3 ˝ t1 � t1 ˝ t3/: (5.189)

According to (5.186) we have

PA D � P
 sin 
.E � t3 ˝ t3/� P
 cos
.t1 ˝ t2 � t2 ˝ t1/

C .1 � cos
/ Œ.at1 C bt2/˝ t3 C t3 ˝ .at1 C bt2/�

� sin 
 Œa.t2 ˝ t3 � t3 ˝ t2/C b.t3 ˝ t1 � t1 ˝ t3/� ; (5.190)

AT D cos
.t1 ˝ t1 C t2 ˝ t2/

C sin
.t1 ˝ t2 � t2 ˝ t1/C t3 ˝ t3; (5.191)

PAAT D � P
"t3 � Œa.1 � cos
/C b sin 
�"t2 � Œ�b.1 � cos
/C a sin 
�"t1:

(5.192)
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Finally, we obtain

˝ D PAAT D � P
"r � .1 � cos
/".r � Pr/� sin 
"Pr; (5.193)

! D P
r � sin 
 Pr C .1 � cos
/r � Pr: (5.194)

The preceding expressions undergo significant simplification if r D const, that
is, from (5.193) and (5.194) it follows that

A D � P
"r; (5.195)

! D P
r: (5.196)

At the end of the calculations in this section we should emphasize that there exist
several different possibilities for representing the rotation tensor [8].

In the literature the following three possibilities are used most often: Euler’s
angles, Euler’s parameters, and Rodrigues2 parameters. All three of the aforemen-
tioned representations are described in the book [8], where for the analysis and
illustration of the conducted calculation, the tensor calculus was used.

In the present book during subsequent calculations we will limit ourselves to
descriptions of the most commonly used representation, i.e., Euler’s angles [4–11].

5.5.4 Eulerian Angles

Recall (Sect. 5.5.2) that the arbitrary motion of a rigid body can be represented as
a composition of the motion of its arbitrary point O (pole) and rotation of the body
about that pole. Let us assume that point O is stationary, and let us consider the
kinematics of a rigid body with one point fixed. Any four non-coplanar points of a
rigid bodyO andAi , i D 1; 2; 3, form a pyramid. With this pyramid, whose position
varies in time, we will associate the stationary coordinate system

˚
E1;E2;E3

�
and

non-stationary coordinate system
˚
E0
1;E

0
2;E

0
3

�
. We assume that the apex of the

pyramid lies at point O .
Euler noticed that an arbitrary position of a tetrahedron in three-dimensional

space can be represented through three angles. This means that the rotations of
the tetrahedron with respect to certain axes and with the aid of only three angles
of rotation in certain planes will suffice to make the stationary pyramid coincident
with the moving one. The Eulerian angles are presented in Fig. 5.56 (see, e.g., [10]).

Let us introduce the Cartesian coordinate system and choose the tetrahedron in
such way that its one vertex lies at the origin of the coordinate system O and the
remaining vertices A1, A2, and A3 lie on successive axes of this coordinate system.

2Olinde Rodrigues (1795–1851), French banker and mathematician.
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Fig. 5.56 Eulerian angles

Following the composition of three plane rotations successively through angles
 , � , and ', the tetrahedronOA1A2A3 ends up in the positionOA000

1 A
000
2 A

000
3 . The first

rotation through angle (angle of precession) takes place in the planeOA1A2 about
the OA3 � X3 axis. The second rotation through angle � (angle of nutation) takes
place in the plane OA0

2A
0
3 about the OA0

1 � X 0
1 axis. Finally, we perform rotation

through angle ' (angle of eigenrotation or spin) in the planeOA00
1A

00
2 about theOA00

3

axis. The order of rotation of the tetrahedron can be schematically presented in the
following way:

OA1A2A3
���! OA0

1A
0
2A

0
3

���! OA00
1A

00
2A

00
3

'�! OA000
1 A

000
2 A

000
3 : (5.197)

The aforementioned successive transformations are schematically presented in
Fig. 5.57.

Let us assume that the rigid body moves in motion about a point in the absolute
coordinate system OX1X2X3 and that the body system is denoted byOX 000

1 X
000
2 X

000
3 .

If we know the motion of the body system with respect to the absolute system, we
also know the motion of the rigid body itself with respect to this system. Eulerian
angles allow for the description of the system OX 000

1 X
000
2 X

000
3 with respect to the

system OX1X2X3. The edge of the intersection of the planeOX1X2 of the absolute
system with the plane OX 000

1 X
000
2 of the non-stationary system shown in Fig. 5.56 as

OA00
1 is called the line of nodes.

Angles , � , and ' are independent and can be chosen arbitrarily. Three numbers
corresponding to the values of these angles determine uniquely the position of the
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Fig. 5.57 Successive rotations through angles  (a), � (b), and ' (c)

body in three-dimensional space. It is a common practice to assume that 0 	  <

2� , 0 	 � < � , 0 	 ' < 2� . Let us note that for � D 0 or � D � the line of nodes
OA0

1 and angles  and ' are not uniquely defined. Therefore, often a different set
of angles is introduced in order to avoid this singularity of the Eulerian angles.

An arbitrary vector a can be represented as

a D a1 C a2 C a3 D a0
1 C a0

2 C a0
3 D a00

1 C a00
2 C a00

3 D a000
1 C a000

2 C a000
3 ;

where a.�/i ; i D 1; 2; 3; � D 0; 00; 000 denote the components of the vector relative
to the appropriate axes. The following relationships are valid:

a1 D a0
1 cos � a0

2 sin ;

a2 D a0
1 sin C a0

2 cos ;

a3 D a0
3; (5.198)

a0
1 D a00

1 ;

a0
2 D a00

2 cos � � a00
3 sin �;

a0
3 D a00

2 sin � C a00
3 cos �; (5.199)

a00
1 D a000

1 cos' � a000
2 sin';

a00 D a00
1 sin ' C a00

2 cos';

a00 D a000
3 : (5.200)

We will show how to derive these equations on example of (5.198). According to
the previous representation of vector a we have

a1 C a2 C a3 D a0
1 C a0

2 C a0
3;

or

a1E1 C a2E2 C a3E3 D a0
1E

0
1 C a0

2E
0
2 C a0

3E
0
3:
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Multiplying the preceding equation by sides in turn by unit vectors Ei , .i D
1; 2; 3/, we obtain

a1 D a0
1

�
E0
1 ı E1

�C a0
2

�
E0
2 ı E1

�
;

a2 D a0
1

�
E0
1 ı E2

�C a0
2

�
E0
2 ı E2

�
;

a3 D a0
3

�
E0
3 ı E3

�
:

The obtained relationships enable us to define the following second-order
rotation tensors:

� D
2

4
cos � sin 0

sin cos 0

0 0 1

3

5 ; (5.201)

	 D
2

4
1 0 0

0 cos � � sin �
0 sin � cos �

3

5 ; (5.202)


 D
2

4
cos' � sin ' 0

sin ' cos' 0

0 0 1

3

5 : (5.203)

It can be easily checked that these tensors are orthogonal and possess the
properties (5.161) and (5.162). Therefore, the inverse relationships can be easily
found after constructing transpose matrices � T, 	T, and 
T, which allows us to
determine the following relationships inverse to (5.198) and (5.200) of the form

2

4
a0
1

a0
2

a0
3

3

5 D
2

4
cos sin 0

� sin cos 0

0 0 1

3

5

2

4
a1
a2
a3

3

5 ; (5.204)

2

4
a00
1

a00
2

a00
3

3

5 D
2

4
1 0 0

0 cos � sin �
0 � sin � cos �

3

5

2

4
a0
1

a0
2

a0
3

3

5 ; (5.205)

2

4
a000
1

a000
2

a000
3

3

5 D
2

4
cos' sin ' 0

� sin ' cos' 0

0 0 1

3

5

2

4
a00
1

a00
2

a00
3

3

5 : (5.206)

The relationships described by (5.198)–(5.200) can be represented in the form

2

4
a1 � Aa000

1

a2 � Aa000
2

a3 � Aa000
3

3

5 D
2

4
A11 A12 A13
A21 A22 A23
A31 A32 A33

3

5

2

4
a000
1

a000
2

a000
3

3

5 ; (5.207)
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where

A D �	
 (5.208)

is a rotation tensor describing the result of action of the three rotation tensors
� ,	 , 
.

Multiplying according to (5.208) we obtain

A11 D cos' cos � sin' cos � sin ;

A12 D � sin ' cos � cos' cos � sin ;

A13 D sin � sin ;

A21 D cos' sin C sin ' cos � cos ;

A22 D � sin ' sin C cos' cos � cos ;

A23 D � sin � cos ;

A31 D sin ' sin �;

A32 D cos' sin �;

A33 D cos �: (5.209)

Displacement of the tetrahedron OA1A2A3 to the position OA000
1 A

000
2 A

000
3 is

performed through matrix A, which is the product of three matrices that prescribe
the rotations. Because a product of matrices is generally not commutative, the
sequence of rotations is important.

The non-commutativity can be illustrated on an example of two rotations of a
tetrahedron: one time initially through an angle D �=2 and then through � D �=2

(Fig. 5.58), and the other time in the reverse order.
Let us demonstrate that matrix A, being the product of three matrices of

elementary orthonormal rotations, is also an orthonormal matrix:

AAT D .�	
/.�	
/T

D �	

T.�	/T D �		T� T D E3�3: (5.210)

It can also be shown easily that the composition of any number of elementary
rotation matrices is an orthonormal matrix.

From the preceding calculations it follows that after taking two arbitrary
positions of two Cartesian coordinate systems in three-dimensional Euclidean space
with a common origin, in general, it is possible to achieve their coincidence by
applying the Euler rotations (in the present case, the three angles � , 	 , and 
).

The first rotation can occur about any one of the three axes of the system
OX1X2X3 (in our case, X3). Next, in the system OX 0

1X
0
2X

0
3 we have two axes

available about which to perform the rotation (in our case, X 0
1). Subsequently, in

the system OX 00
1 X

00
2 X

00
3 obtained after the last rotation, we perform the rotation
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Fig. 5.58 Non-commutativity of two rotations of tetrahedron

about one of the remaining axes, i.e., axes lying in the plane perpendicular to the
previous axis of rotation (in our case, X 000

3 ). Applying the notation already used in
Chap. 3, (5.208) can be represented in the form

A��
.X3;X
0
1; X

00
3 / D � .E3/	.E0

1/
.E
00
3 /; (5.211)

and the preceding notation contains the information concerning the axis about which
and the angle through which the transformation of rotation was performed.

According to those considerations, a number of possible Euler rotations is equal
to 3 � 2 � 2 D 12, that is, there exist 12 possibilities for choosing three subsequent
axes and angles through which we perform the rotations.

The matrices following from the composition of Eulerian rotations are distinct
since, as was mentioned previously, the product of matrices is not commutative.

Let us make use of the calculations conducted earlier where we defined matrices
of rotation about each of the three axes of the Cartesian coordinate system.
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Let us perform the rotations in turn about the X1, X 0
2, and X 000

3 axes respectively
through angles  1,  2, and  3. The resulting matrix has the form

A�1 2 3.E1;E
0
2;E

00
3 / D � 1.E1/� 2.E0

2/� 3.E00
3 /

D
2

4
1 0 0

0 cos 1 � sin 1
0 sin 1 cos 1

3

5

2

4
cos 2 0 sin 2
0 1 0

� sin 2 0 cos 2

3

5

2

4
cos 3 � sin 3 0
sin 3 cos 0

0 0 1

3

5

D
2

4
cos 2 cos 3

sin 1 sin 2 cos 3 C cos 1 sin 3
� cos 1 sin 2 cos 3 C sin 1 sin 3

� cos 2 sin 3 sin 2
� sin 1 sin 2 sin 3 C cos 1 cos 2 � sin 1 cos 2
cos 1 sin 2 sin 3 C sin 1 cos 3 cos 1 cos 2

3

5 :

(5.212)

Now, performing the rotations in the reverse order we obtain

A 3 2 1.E
00
3 ;E

0
2;E1/ D � 3.E00

3 /� 2.E0
2/� 1.E1/

D
2

4
cos 3 � sin 3 0
sin 3 cos 3 0

0 0 1

3

5

2

4
cos 2 0 sin 2
0 1 0

� sin 2 0 cos 2

3

5

2

4
1 0 0

0 cos 1 � sin 1
0 sin 1 cos 1

3

5

D
2

4
cos 2 cos 3 sin 1 sin 2 cos 3 � cos 1 sin 3
cos 2 sin 3 sin 1 sin 2 sin 3 C cos 1 cos 3

� sin 2 sin 1 cos 2

cos 1 sin 2 cos 3 C sin 1 sin 3
cos 1 sin 2 sin 3 � sin 1 cos 3

cos 1 cos 2

3

5 : (5.213)

The obtained matrices (5.212) and (5.213) differ significantly from each other.
In Sect. 5.1.5 we introduced the notion of small rotation. If the angles of Euler

rotations are small, then cos.d i/ D 1, sin.d i/ D d i . Thus from (5.212)
and (5.213) we obtain the same matrix

Ad�1d�2d�3 D Ad�3d�2d�1 D
2

4
1 �d 3 d 2

d 3 1 �d 1
�d 2 d 1 1

3

5 ; (5.214)

where small terms of second order were neglected. Observe that now the sequence
of rotations through small angles is not important, which leads to the conclusion
that small rotations are vector quantities.
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Fig. 5.59 Rotation of a rigid body about an arbitrary axis l through angle '

Knowledge of the kinematics of a rigid body finds wide application in robotics
and in the theory and practice of the design and production of manipulators. For
instance, in the case of rigid manipulators, where the description of motion of
particular links of a kinematic chain is made on the assumption that they are
rigid bodies, in order to describe the position of any of the links it is sufficient
to introduce a single stationary absolute Cartesian coordinate system and then
associate a local Cartesian coordinate system with every link (e.g., all systems
are right-handed). Apart from the aforementioned Cartesian coordinate systems,
the previously discussed spherical and cylindrical coordinate systems are also used
(Chap. 4).

One of the fundamental problems in robotics and in the theory of manipulators
is the formulation of the condition of rotation of a rigid body through a prescribed
angle ' about a prescribed axis l by means of rotations about mutually perpendicular
axes (Fig. 5.59).

According to Fig. 5.59 we have

l D l1E1 C l2E2 C l3E3; (5.215)

where jl j D 1.
Note that

cosˇ D l3E3 ı l D l3;

sinˇ D
s
.l1E1 C l2E2/

2

l 2
D
q
l21 C l22 ;

cos˛ D
s

.l1E1/
2

.l1E1 C l2E2/
2

D l1q
l21 C l22

;

sin ˛ D
s

.l2E2/
2

.l1E1 C l2E2/
2

D l2q
l21 C l22

: (5.216)
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During rotations we will use only three angles, ˛, ˇ, and '. However, the
rotations through angles ˛ and ˇ will be performed about the axes obtained as a
result of the preceding rotation.

A composite rotation matrix has the following form:

'.l / D ˛.E3/ˇ.E0
2/'.E

00
3 /.�ˇ.E000

2 //.�˛.E0000
3 //: (5.217)

As can be seen from the preceding relationship, the rotation about the l axis is
obtained after realization of five consecutive rotations. At first we rotate the system
OX1X2X3 about theX3 axis through angle ˛, obtaining the systemOX 0

1X
0
2X

0
3. Next

we rotate OX 0
1X

0
2X

0
3 about the X 0

2 axis through angle ˇ. Following the composition
of these two rotations the X 0

3 axis will coincide with the l axis. Then we rotate the
obtained systemOX 00

1 X
00
2 X

00
3 about the X 00

3 axis through angle '. Then we rotate the
obtained systemOX 000

1 X
000
2 X

000
3 through angle .�ˇ/ about the X 000

3 axis, obtaining the
system OX 0000

1 X
0000
2 X

0000
3 . We rotate this last system (for the fifth time) about the X 0000

3

axis through angle .�˛/. Because we applied Euler rotations, the composite rotation
matrix '. l / will be orthonormal, i.e., '�1. l / D 'T. l/.

Multiplying the matrices according to (5.217) and taking into account (5.216)
and the relevant transformations we obtain

'.l/ D l � lT.1 � cos'/C
2

4
cos' �l3 sin ' l2 sin '
l3 sin ' cos' �l1 sin'

�l2 sin ' l1 sin ' cos'

3

5 ; (5.218)

where

l � lT.1 � cos'/ D
2

4
l21 l1l2 l1l3
l1l2 l22 l2l3

l1l3 l2l3 l23

3

5 .1 � cos'/:

It is easy to check that matrix '. l / has the following properties:

�'.l / D 'T.l/; �'.�l / D '.l /:

Equation (5.217) can be written in the following form:

'.l/ D ˛.E3/ˇ.E0
2/'.E

00
3 /ˇ

T.E000
2 /˛

T.E0000
3 /: (5.219)

Let us perform the rotation about the E3 axis through angle '.
According to (5.219) we have

'.E3/ D
2

4
0

0

1

3

5�0 0 1
�
.1 � cos'/C

2

4
cos' � sin' 0

sin ' cos' 0

0 0 cos'

3

5
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D
2

4
0 0 0

0 0 0

0 0 1 � cos'

3

5C
2

4
cos' � sin' 0

sin ' cos' 0

0 0 cos'

3

5

D
2

4
cos' � sin ' 0

sin ' cos' 0

0 0 1

3

5 ; (5.220)

which is in agreement with the elementary rotation about the E3 axis [see (5.61)].
One can expect, as we showed earlier (Fig. 5.56), that an arbitrary matrix

'3�3 D
2

4
'11 '12 '13
'21 '22 '23
'31 '32 '33

3

5 (5.221)

will have representation by a certain axis l and an angle ’ as long as it has the
property ''T D E3�3 and det' D 1, i.e., it is an orthonormal matrix. A matrix
trace of (5.218) reads

Tr.'/ D �
l21 .1 � cos'/C cos'

�C �
l22 .1 � cos'/C cos'

�

C �
l23 .1 � cos'/C cos'

� D l21 C l22 C l23 C 3 cos'

� .l21 C l22 C l23 / cos' D 1C 2 cos' (5.222)

because l 2 D l21 C l22 C l23 D 1.
From (5.222) we can determine the angle of rotation ' representing matrix

(5.221), which is equal to

' D arccos
Tr.'/ � 1

2
D arccos

'11 C '22 C '33 � 1
2

: (5.223)

In the next step we will determine the axis about which the rotation will be
performed. Equating the terms in matrices (5.218) and (5.221) we obtain

l1l2.1 � cos'/ � l3 sin ' D '12;

l1l3.1 � cos'/C l2 sin ' D '13;

l2l3.1 � cos'/ � l1 sin ' D '23;

l1l2.1 � cos'/C l3 sin ' D '21;

l1l3.1 � cos'/ � l2 sin ' D '31;

l2l3.1 � cos'/C l1 sin ' D '32; (5.224)
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and after their appropriate subtraction we have

'13 � '31 D 2l2 sin ';

'21 � '12 D 2l3 sin ';

'32 � '23 D 2l1 sin ': (5.225)

Multiplying (5.225) by sides by the appropriate unit vectors Ei and adding the
obtained equations to each other we obtain

1

2 sin'
ŒE1.'32 � '23/C E2.'13 � '31/C E3.'21 � '12/�

D E1l1 C E2l2 C E3l3 � l ; (5.226)

which defines for us the unknown unit vector of the l axis.
Let us note that we are dealing with the singularities for ' D 0 and ' D � .
Matrix '. l/ can be written in the equivalent form

'.l / D l lT.1 � cos'/C E cos' C S.l / sin'; (5.227)

where

S.l/ D
2

4
0 �l3 l2
l3 0 �l1

�l2 l1 0

3

5 ; (5.228)

and all matrices have the dimensions 3 � 3.
Matrix S is the skew-symmetric matrix .S C ST D 0/.

Theorem 5.6. The rotation matrix '.l/ described by (5.227) satisfies the following
relationship:

d'.l /

d'
'T.l / D S.l /: (5.229)

Proof. Differentiating (5.227) with respect to ' we obtain

d'

d'
D llT sin ' � E sin ' C S.l/ cos':

The left-hand side of (5.229) takes the form

d'.l /

d'
'T.l/D.llTsin'�E sin 'CS cos'/.llT.1� cos'/CE cos'CS sin '/T

D.llTsin'�E sin 'CS cos'/.llT.1� cos'/CE cos'�S sin'/
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D llTllT.1 � cos'/ sin' C llTE sin ' cos'

� llTS sin2 ' C EllT.1 � cos'/ sin' � E2 sin ' cos'

C ES sin2 ' C Sl lT.1 � cos'/ cos' C SE cos2 ' � S2 sin' cos';

where the relationship ST D �S and the symmetry of matrix l lT were used. ut
Because

S.l/l D
2

4
0 �l3 l2
l3 0 �l1

�l2 l1 0

3

5

2

4
l1
l2

l3

3

5 D
2

4
0 � l2l3 C l2l3
l1l3 C 0 � l1l3

�l1l2 C l1l2 C 0

3

5 D 0 D lTS.l /

and

l lT D
2

4
l21 l1l2 l1l3
l2l1 l22 l2l3
l3l1 l3l2 l23

3

5 ;

lTl D �
l1 l2 l3

�
2

4
l1
l2
l3

3

5 D l21 C l22 C l23 D l 2 D 1;

and therefore the transformed left-hand side of (5.229) takes the form

d'.l/

d'
'T.l/ D llT.1 � cos'/ sin' � l lT.1 � cos'/ sin '

C llT sin ' cos' � 0 � E sin ' cos' C S sin2 ' C 0 C S cos2 '

� S2 sin' cos' D .l lT � S2 � E/ sin ' cos' C S:

Because

S2 D SS D
2

4
0 �l3 l2
l3 0 �l1

�l2 l1 0

3

5

2

4
0 �l3 l2
l3 0 �l1

�l2 l1 0

3

5

D
2

4
�l23 � l22 l1l2 l1l3
l1l2 �l23 � l21 l2l3

l1l3 l2l3 �l22 � l21

3

5 ;
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we have

l lT � S2 D
2

4
l21 l1l2 l1l3

l2l1 l22 l2l3
l3l1 l3l2 l23

3

5C
2

4
l23 C l22 �l1l2 �l1l3
�l1l2 l21 C l23 �l2l3
�l1l3 �l2l3 l21 C l22

3

5

D
2

4
1 0 0

0 1 0

0 0 1

3

5 D E;

and in view of that the matrix

.llT � S2 � E/ D .E � E/ D 0:

Eventually we obtained (5.229), which was what we had wanted to demonstrate.

5.5.5 Kinematic Eulerian Equations

Let the vector ! D P'l act along the l axis. Calculating the time derivative of the
rotation matrix and taking into account (5.229) we obtain

d'.l /

dt
D d'.l /

d'

d'

dt
D S.l /'.l / P' D S. P'l/'.l /; (5.230)

where according to (5.228) the matrix

˝ � S. P'l/ D
2

4
0 �l3 P' l2 P'
l3 P' 0 �l1 P'

�l2 P' l1 P' 0

3

5 D
2

4
0 �!3 !2

!3 0 �!1
�!2 !1 0

3

5 ; (5.231)

where the skew-symmetric matrix ˝ D S.!/ uniquely corresponds to the vector
! D !1E1 C !2E2 C !3E3 and can be interpreted as a skew-symmetric matrix
representing the angular velocity (angular velocity tensor) of a rotating rigid body
with respect to the absolute system OX1X2X3.

The matrix (tensor) of the angular velocity according to (5.230) can be ex-
pressed as

˝ D d

dt
Œ'.l/�'�1.l/: (5.232)

Thus we proved relationship (5.163). To illustrate how to determine, from the
time-dependent matrix of rotation'''.l ; t/ the angular velocity matrix˝ , the angular
velocity vector of a rigid body!, and the vector l on which the! lies from the time-
dependent rotation matrix '.l ; t/, we will consider the following matrix:
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'.t/ D
2

4
� sin 2t � 1

2
sin 3t C 1

2
sin t 1

2
cos 3t C 1

2
cos t

0 cos t sin t
cos 2t 1

2
cos 3t � 1

2
cos t 1

2
sin 3t C 1

2
sin t

3

5 : (5.233)

The preceding matrix is an orthonormal matrix because ''T D E. Differenti-
ation of rotation matrix (5.233) with respect to time reduces to a differentiation of
their elements. As a result of this procedure we obtain

d'.t/

dt
D
2

4
�2 cos 2t � 3

2
cos 3t C 1

2
cos t � 3

2
sin 3t � 1

2
sin t

0 � sin t cos t
�2 sin 2t � 3

2
sin 3t C 1

2
sin t 3

2
cos 3t C 1

2
cos t

3

5 : (5.234)

According to (5.233) the angular velocity matrix is equal to

˝ � S. P'l / D
2

4
0 � cos 2t �2

cos 2t 0 sin 2t
2 � sin 2t 0

3

5 : (5.235)

Using the matrix form (5.231) we determine the angular velocity vector

! D !l .t/ D !l1.t/E1 C !l2.t/E2 C !l3.t/E3

D !1E1 C !2E2 C !3E3 D � sin 2tE1 � 2E2 C cos 2tE3; (5.236)

and hence we calculate

!2 D !2 D sin2 2t C cos2 2t C 4 D 5;

that is, ! D p
5. The preceding equation indicates that the magnitude of vector !

remains constant in time. According to (5.236) vector l changes in time because its
direction alters, although its magnitude is constantly equal to one. The normalization
of a matrix corresponds to the normalization of a vector l.

From (5.236) we calculate

l1.t/ D !1.t/

!
D � sin 2tp

5
;

l2.t/ D !2.t/

!
D � 2p

5
;

l3.t/ D !3.t/

!
D �cos 2tp

5
;

and clearly
q
l21 C l22 C l23 D 1.

Let the constant angular velocity vectors of the body along the OX 0
3, OX

00
1 , and

OX 00
3 axes be prescribed (Fig. 5.60).
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Fig. 5.60 Eulerian angles and the angular velocity vectors P , P	 , P


From Fig. 5.60 it follows that

P� D P E0
3; (5.237)

P	 D P�E00
1 ; (5.238)

P
 D P
E000
3 : (5.239)

We wish to determine the angular velocity ! of a body in the coordinate system
OX 000

1 X
000
2 X

000
3 . Therefore, vectors (5.237)�(5.239) should be projected onto the axes

of that system. Assuming

! D !000
1 E000

1 C !000
2 E000

2 C !3E000
3 (5.240)

we obtain

2

4
!000
1

!000
2

!000
3

3

5 D
2

4
cos
 sin 
 0

� sin
 cos
 0
0 0 1

3

5

2

4
1 0 0

0 cos � sin �
0 � sin � cos �

3

5

2

4
0

0
P 

3

5

C
2

4
cos
 sin 
 0

� sin 
 cos
 0
0 0 1

3

5

2

4
P�
0

0

3

5C
2

4
0

0
P


3

5 ; (5.241)
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and in expanded form we have

!000
1 D P sin 
 sin � C P� cos
;

!000
2 D P cos
 sin � � P� sin 
;

!000
3 D P cos� C P
: (5.242)

From (5.242) we obtain the magnitude of angular velocity

! D
q�
!000
1

�2 C �
!000
2

�2 C �
!000
3

�2

D
q

P 2 C P
2 C P�2 C 2 P P
 cos �: (5.243)

The magnitude of angular velocity in the absolute coordinate system can be
obtained easily from (5.207). Substituting (5.239) into (5.207) we have

!
. P
/
1 D P
 sin � sin ;

!
. P
/
2 D � P
 sin � cos ;

!
. P
/
3 D P
 cos �: (5.244)

Vector (5.238) passes to the absolute system after one rotation. Assuming the
values � D 0 and ' D 0 in matrix A we obtain

!
. P�/
1 D P� cos ;

!
. P�/
2 D P� sin ;

!
. P�/
3 D 0: (5.245)

Vector (5.239) is already given in the absolute system since E0
3 D E3. From

(5.244), (5.245), and (5.239) we obtain

!1 D P
 sin � sin C P� cos ;

!2 D � P
 sin � cos C P� sin ;

!3 D P
 cos � C P : (5.246)

5.5.6 Displacement of a Rigid Body with One Point Fixed

Recall that a rigid body with one point fixed is in motion about a point. Such a
body has three degrees of freedom, and for a description of its motion three angles,
 D  .t/, � D �.t/, and 
 D 
.t/, can be used. With the fixed point, also called
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Fig. 5.61 Construction of axis of rotation of a rigid body in motion about a point .A1A2 D A0

1A
0

2/

the center of rotation of motion about point O , we will associate the origins of the
stationary and non-stationary Cartesian coordinate systems. Point A is situated at a

distance j�!
OAj from the center of rotation, which is equal to the radius of a sphere of

center at O . The paths of point A are closed or open curves.
On the other hand, the position of a rigid body in space can be uniquely described

after choosing its three non-collinear points. If we are dealing with the motion of a
rigid body with one point fixed, then the motion of this body can be described after
choosing its two points provided they do not lie on a common line with the fixed
pointO .

In technology as well as in everyday life we encounter many examples of motion
about a point. A spinning top (until recently a popular children’s toy) is in motion
about a point; it rotates about its own symmetry axis and simultaneously performs
rotation about other axes. A spherical pendulum, consisting of, e.g., a point mass
attached to a weightless rod that is fixed by a ball-and-socket joint at the opposite
end, also performs motion about a point. A situation occurs in the case of motion
of a differential pinion gear rolling on a stationary differential side gear [1]. The
intersection of a sphere of radius OA with the analyzed rigid body determines a
certain region of the spherical surface. The motion of this region on the sphere
uniquely describes the body motion about a point.

As in the case of planar motion, which we were able to reduce to simply
rotational motion about the center of rotation, so in the case of motion about a point
the arbitrary displacement of a rigid body can be realized through rotation about a
certain axis passing through the fixed point of body O . Figure 5.61 shows how to
determine the aforementioned axis.
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Let segment A1A2, lying on a sphere of radius OA1 at time instant t0, reach
position A0

1A
0
2 at time instant t1. In order to determine the second point belonging

to the considered axis of rotation we determine the centers of arcs A1A
0
1 and A2A

0
2,

and then through these centers S1 and S2 we draw perpendicular arcs that belong to
large circles of the spheres, which will intersect at the desired point Sk . It can be
demonstrated that the triangle A1SkA2 will coincide with A0

1SkA
0
2 after rotation

about the OSk axis through a certain angle 
. The OSk axis will be called an
instantaneous axis of rotation of a rigid body for �t ! 0. If we have determined
the instantaneous axis of rotation, then we can easily find the displacement of an
arbitrary pointA. Drawing through that point a line perpendicular to the axis we will
obtain point A0 on the axis of rotation. Therefore, point A during the motion about
a point of a rigid body will move along a circle of radius jrpj. A small displacement
�r of point A is equal to (Fig. 5.61)

�r D 2rp sin
�


2
� rp�
 D r�
 sin �: (5.247)

Let us note that
�r D r ��
: (5.248)

We will show that successive small rotations of a rigid body can be replaced with
one resultant small rotation of this body. In our calculations we will limit ourselves
to two rotations.

After the first rotation point A will reach the position described by the radius
vector

r1 D r C�r D r C .r ��
1/: (5.249)

After the second rotation point A will reach the position described by the radius
vector

r2 D r1 C .r ��
2/ D r C .r ��
1/C .r ��
2/
D r C r � .�
1 C�
2/ D r C .r ��
/; (5.250)

where

�
 D �
1 C�
2: (5.251)

The limit to which the ratio �
=�t for �t ! 0 tends is called the angular
velocity of a rigid body at time t and is equal to

! D lim
�!0

�


dt
: (5.252)

In turn, the position of the axis of rotation OA0 for �t ! 0 is called the
instantaneous axis of rotation of a rigid body corresponding to time t . The sense of!
is such that when we look along the instantaneous axis of rotation, the arrow points
toward the eye of the viewer if the body rotation is counterclockwise (Fig. 5.62).

The instantaneous axis of rotation is the set of points that, at a given time instant t ,
have a velocity equal to zero.
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Fig. 5.62 Instantaneous axis
of rotation l and vector of
angular velocity !

Fig. 5.63 Hodograph of
angular velocity and axis of
angular acceleration

During motion about a point of a rigid body the position of the instantaneous
axis of rotation undergoes a change, so both the magnitude and direction of vector!
change. If !1 D !1.tC�t/ and ! D !.t/, then it is possible to describe the average
angular acceleration

"av D !1 � !

�t
D �!

�t
; (5.253)

and then the angular acceleration vector

" D lim
�t!0

D �!

dt
D d!

dt
: (5.254)

If at a fixed point we successively lay off vectors! corresponding to consecutive
time instants, then the curve connecting their tips will be called a hodograph of
angular velocity vector (Fig. 5.63).

The vector of angular acceleration is at any time instant tangent to the hodograph
of the angular velocity, that is, it is equal to the translational velocity of the tip of
the vector of angular velocity. We move this vector to the fixed point O , and the
line passing through point O on which lies vector " is called the axis of angular
acceleration.
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Fig. 5.64 Coordinate systems of space and body, and vectors describing position of point A of a
rigid body

5.5.7 Displacement and Rotation of a Rigid Body
(Basic Theorems)

According to the convention adopted earlier, we will introduce the principal absolute
Cartesian coordinate system OX1X2X3. We will connect the body rigidly to the
coordinate system OX 00

1 X
00
2 X

00
3 , where O 00 is an arbitrary point of a rigid body. The

system OX1X2X3 is sometimes called a space system, and the system OX 00
1 X

00
2 X

00
3

a body system. The motion of the rigid body is represented by the motion of the
coordinate system OX 00

1 X
00
2 X

00
3 .

The rigid body in R3 space, generally, can be in translation and rotation. If in
a sense we hold the body still at an arbitrary time instant t (we take a “photo”)
and we have the position of the body given at the initial time instant t0 (at t0 the
pole O D O 0), then the body position at time t can be obtained by translation of
the coordinate system in parallel to the axes OX1X2X3 (dashed axes in Fig. 5.64)
up to point O 0, and then in the general case performing three Eulerian elementary
rotations (or only one after determining the axis of rotation l and the angle of
composite rotation '). In Fig. 5.64 are shown the body and space systems, and the
position of one arbitrary point A of the body is characterized.

Recall that according to the adopted convention the vector
���!
O 00A D � has known

coordinates in the system OX 00
1 X

00
2 X

00
3 . Recall that vectors are added geometrically.

If the vectors possess the matrix representation, that is, scalar notation (in terms
of coordinates), then the vectors from Fig. 5.64 should be expressed in the same
coordinate system, i.e., in eitherOX1X2X3 orOX 00

1 X
00
2 X

00
3 . Further we will describe

the position of pointA in absolute coordinates, and because vector � is expressed in
the coordinates OX 00

1 X
00
2 X

00
3 , it should be represented in the coordinates OX1X2X3
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as r D A�, where the matrix A D A.t/ (different at every time instant of the motion)
is the transformation matrix from the systemOX 00

1 X
00
2 X

00
3 toOX1X2X3 expressed in

the coordinates of the system OX1X2X3. The position of point A in the absolute
coordinates has the form

rA.t/ D rO 0.t/C A.t/�: (5.255)

The transformation matrix is an orthogonal matrix, i.e., AA�1 D E. Its elements
are connected with each other through six equations [the sum of squares of elements
in any row (column) is equal to one, and the sum of products of the remaining
elements in the columns (rows) is equal to zero]. Therefore, it has only three
independent elements (Sect. 5.2.2).

In the case of motion about a point, point O 0 is fixed, that is, vector rO 0 D const
(Fig. 5.64). Let us take the system OX1X2X3 so that it coincides with OX 00

1 X
00
2 X

00
3

at the instant t0, which means that r D � (A D E at the instant t0 and rO 0.t0/ D 0).

Next, in the motion about a point vector
�!
OAwill rotate around the pointO D O 0.

In the absolute coordinates OX1X2X3 the position of vector
�!
OA is described by

vector A.t/�. Matrix A.t/ is at any time instant an orthogonal matrix, i.e., AAT D
E. In the case of the orthogonal matrix AAT D ATA D E and det.A�1/ D det.A/�1.
Moreover, det AT D det A.

Thus we have

det .A/ det
�
AT� D .det .A//2 D det .E/ D 1:

The motion about a point of a rigid body in the absolute system can be described by
the orthogonal transformation A.t/�, where det.A/ D 1.

Theorem 5.7 (Euler’s theorem). An arbitrary displacement of a rigid body with
one point fixed can be realized through rotation about a certain axis passing through
that point.

Proof. (See Markeev [6])
As was demonstrated earlier, at any time instant the matrix A D A.t/ is an

orthogonal matrix. Let the vector rA lie on the axis of rotation, i.e., rA D ArA.
Vector rA does not change under the action of the matrix A D A.t/. If we take an
arbitrary point A not lying on the axis of rotation, the vector rA.t/ D E1x1A.t/ C
E2x2A.t/CE3x3A.t/ rotates in the systemOX1X2X3. However, if pointA lies on the
axis of rotation, the vector rA does not rotate. Further, this means that .A � E/rA D
0. That equation possesses the solution if det.A � �E/ � f .�/ D 0, where �
denotes the eigenvalue of the square matrix A and f .�/ is a polynomial of the order
n D 3 in � . For � D 1 we have rA D ArA, and eigenvector rA corresponds to
the eigenvalue � D 1 of matrix A. The proof boils down to a demonstration that
matrix A possesses the eigenvalue � D 1. ut
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Fig. 5.65 Sketch used during
proof of Theorem 5.8

We have

f .1/ D det.A � E/ D det.AT � ET/ D det.A�1 � E/

D det A det.A�1 � E/ D det.A.A�1 � E//

D det.E � A/ D det.�.A � E//

D det.�E.A � E// D det.�E/ det.A � E/

D .�1/3 det.A � E/ D �f .1/;
where the properties AT D A�1, det A D 1, were used successively.

Note that f .1/ D �f .1/ only if f .1/ D 0, which means that � D 1 is the
eigenvalue of matrix A because f .�/ D .� � 1/Pn�1.�/, where Pn�1.�/ is the
polynomial of the order n � 1 in � .

Theorem 5.8. The most complex displacement of a rigid body can be decomposed
into translation (an arbitrary pole is subjected to translation from its initial to final
position) and rotation about a certain axis passing through the pole. The direction
and length of translation change depend on the choice of the pole, but the direction
of the rotation axis and the rotation angle are independent of the choice of pole.

Proof. (See Markeev [6])
In Fig. 5.65 the absolute coordinate system OX1X2X3, along with two other

coordinate systems O 0X 00
1 X

00
2 X

00
3 and O 00

1 X
00
1 X

00
2 X

00
3 with origins at two different

poles O 00 and O 00
1 , is presented.

The system O0X 0
1X

0
2X

0
3 is obtained after the translation of the OX1X2X3 by

vector rO 0 , and the system O0
1X

0
1X

0
2X

0
3 is obtained after the translation of OX1X2X3

by vector rO 0

1
[the systems denoted by (’) are not shown]. Vectors rO 0 , rO 0

1
, and rA

(radius vector of point A) have their coordinates in the absolute system. The three
remaining vectors drawn in the figure have coordinates in the coordinate systems
rigidly connected to the body of origins at pointsO 00 and O 00

1 . ut
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According to Fig. 5.65 we have

rA D rO 0 C A
���!
O 00
AA D rO 0 C A


����!
O 00O 00

1 C ���!
O 0
AA

�

D rO 0 C A
����!
O 00O 00

1 C A
���!
O 00
1 A D rO 0

1
C A

���!
O 00
1 A;

where the vectors
����!
O 00O 00

1 and
���!
O 00
1 A are given in the coordinates of O 00X 00

1 X
00
2 X

00
3

and O 00
1 X

00
1 X

00
2 X

00
3 and A is (as previously) the transformation matrix from systems

OX 0
1X

0
2X

0
3 and O 0

1X
0
1X

0
2X

0
3 to systems O 00X 00

1 X
00
2 X

00
3 and O 00

1 X
00
1 X

00
2 X

00
3 (the same

rotation), which completes the proof.
From the preceding equality it can be seen that the introduction of different poles

O 0 andO 0
1 requires different translations rO 0 and rO 0

1
D rO 0 CA

����!
O 00O 00

1 . The position
of the rotation axis and the value of the rotation angle are prescribed by matrix A,
which according to Euler’s theorem does not depend on the choice of pole.

It is worth emphasizing that in this case the final position of the rigid body does
not depend on the order in which translation and rotation are carried out.

Theorem 5.9. The most general displacement of a rigid body is a screw displace-
ment.

The proof of this theorem can be found in [6] and is omitted here.
From that theorem follows the next one.

Theorem 5.10. The most general displacement of a plane figure in its plane can be
realized through translation or rotation about a certain point (the center of rotation).

5.5.8 Geometric Interpretation of General Motion
of a Rigid Body

For the purpose of observing the positions of a rigid body in space it is sufficient to
choose its arbitrary three points A, B , and C and connect them to obtain a triangle.
The problem of motion of a rigid body in space reduces to the analysis of motion of
4ABC in space.

In Fig. 5.66 is shown the position of a rigid body in space at time instant t
represented by 4ABC and the position of the body at time instant t1 represented
by 4A1B1C1.

At first we perform translation of 4ABC such that A D A1 and obtain
4A0

1B
0
1C

0
1 k 4ABC . Next, according to Euler’s (rotation) theorem we find axis l

passing through A1 and perform rotation with respect to this axis through angle
'1, keeping point A1 fixed. Thus, it has been demonstrated that 4ABC became
coincident with 4A0

1B
0
1C

0
1 at two independent displacements, that is, the translation

of pole A and subsequent rotation about the pole with respect to a certain axis l1
through angle '1.
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Fig. 5.66 Displacement of
triangle ABC to the position
A1B1C1 through translation
and rotation (a) and through
rotation and translation (b)

Fig. 5.67 Motion of a rigid body as composition of motion of a pole and spherical motion about
that pole

We will show that the same result can be obtained by the exchange of the
sequence of displacements. First we perform the translation of 4A1B1C1, taking
point O1 as a pole, and then we perform rotation through angle '2 with respect to a
certain axis l2 .l1 D l2; '1 D '2/.

In reality, the motion of a rigid body takes place in such a way that it is possible
to treat it as a composition of two simultaneous motions: the motion of its arbitrary
pole and the simultaneous spherical motion (or motion about a point) with respect
to that pole, which is shown in Fig. 5.67.

The arbitrarily chosen pointO 0 (the pole) moves on trajectory t r , and its motion
in the stationary system is described by three equations:

x1O 0 D x1O 0.t/; x2O 0 D x2O 0.t/; x3O 0 D x3O 0.t/: (*)



5.5 Motion in a Three-Dimensional Space 357

Fig. 5.68 Angular velocities
with respect to two poles O1
and O2 and the position of
point A

The coordinate system O 0X 0
1X

0
2X

0
3 has during motion axes that are mutually

parallel to the axes of the stationary coordinate system and moves in translational
motion together with the pole O 0. The position of a rigid body with respect to the
axesO 0X 0

1X
0
2X

0
3 is described by three Euler angles,  .t/, '.t/, and �.t/. First three

equations describe the motion of the pole and depend on the choice of pole; the three
remaining equations describe the motion about a point of a rigid body with respect
to the pole and do not depend on the choice of pole.

The description of this motion is associated with the choice of six independent
coordinates, and therefore a free rigid body has six degrees of freedom.

Theorem 5.11. The vector of angular velocity ! and the vector of angular
acceleration " of a rigid body are independent of the choice of pole.

Proof. Let us choose two poles O1 and O2 of a rigid body (Fig. 5.68).
Let us choose an arbitrary point of bodyA and determine its position with respect

to pole O1 (O2) by r1 (r2). Velocity of this point is equal to

vA D vO1 C!1 � r1;

vA D vO2 C!2 � r2: (5.256)

ut
Then,

vO2 D vO1 C!1 � ���!
O1O2; (5.257)

and substituting into (5.256) we have

vO1 C!1 � r1 D vO1 C!1 � ���!
O1O2 C!2 � r2; (5.258)

that is,

!1 � .r1 � ���!
O1O2/ D !2 � r2; (5.259)

which can be rewritten as

.!1 � !2/ � r2 D 0; (5.260)

which means that !1 D !2.
Differentiating (5.260) we obtain

"1 D "2; (5.261)

which completes the proof.
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The conclusion follows that at the given time instant the instantaneous axis of
rotation is described in the same way for each point of the body. Distinct poles
differ only as to the magnitude of velocity of the translational motion of the pole.

5.5.9 Parallel Translation and Rotation of a Rigid Body
and Homogeneous Transformations

Let us return to the motion of a rigid body whose state at any time instant can
be obtained as a result of parallel translation of the absolute system OX1X2X3
by vector rO 0 and then the rotation realized by means of rotation matrix A to the
position of the body described in the O 00X 00

1 X
00
2 X

00
3 system. The position of point A

is described by (5.255).
The notation in the form of vector (5.255), the matrix (scalar) representation of

the vector equation in the absolute system, is sometimes inconvenient to use, and
the equivalent matrix notation of the following form is introduced:

rj D Aj�j ; (5.262)

where Aj is a homogeneous matrix.
Let us note that the newly introduced homogeneous transformation matrix

Aj 4�4 D
�

A rO 0

0 1

�
(5.263)

consists of the following block matrices A3�3 (where AAT D E3�3), det.A/ D
1; 0 D Œ0; 0; 0�. Moreover

rj D
�

rA
1

�

4�1
; �j D

�
�

1

�

4�1
: (5.264)

In other words, in (5.263) matrix A is the matrix of transformation through
rotation from (5.255).

The special cases of that matrix are the following matrices:

1. Homogeneous transformation matrix of rotation

ROT.l ;'/ D
�
'.l/ 0T

0 1

�
: (5.265)

2. Homogeneous transformation matrix of translation

TRANS.rO 0/ D
�

E rO 0

0 1

�
: (5.266)
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Let us calculate the inverse of matrix (5.263). According to the definition we have
�

A11 A12

A21 A22

� �
A rO 0

0 1

�
D
�

E 0T

0 1

�
; (5.267)

and after multiplication we obtain

A�1
j D

�
AT �ATrO 0

0 1

�
: (5.268)

5.5.10 Kinematic States of a Rigid Body

In general, during the motion of a rigid body the velocities and accelerations of its
points change and are usually different for different points.

If at a certain time instant the velocities of all points of the rigid body are the
same and equal to v, we say that the rigid body is in instantaneous translational
motion with velocity v (if v D 0, then the body is instantaneously at rest). During
instantaneous rest the accelerations of the points of the body do not have to be equal
to zero.

If at a certain time instant there exist points lying on the line of zero velocities,
we say that the rigid body is in instantaneous rotation about that line, and that line
is called the instantaneous axis of rotation.

In general, the instantaneous axis of rotation at different time instants can assume
various positions in the absolute coordinate system as well as in the body system.

A body at a given time instant may participate simultaneously in two instanta-
neous motions, i.e., in translational motion with respect to an axis and in rotational
motion about that axis. In that case we say that the body performs instantaneous
screw motion.

5.5.11 Velocity and Acceleration in Translational Motion

The object of interest of our previous discussions was the displacements of a rigid
body from its initial to final position without taking into account the velocities and
accelerations. In other words, the action of the researcher (subject) takes the rigid
body to the final state. In reality the object under investigation (the rigid body)
passes from the initial state to the final state in time, and in this case all the points
of the body possess velocities and accelerations, which usually undergo change at
every time instant.

We will call the motion of a rigid body in a given time interval .t1; t2/
translational motion if for any time instants t 01 and t 02 the body, taken from this time
interval, can be guided from state t 01 to t 02 by means of translational displacement.
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An elevator (rectilinear trajectory) or a car in an amusement park (the trajectory
of motion is a circle) connected to a uniformly rotating “big wheel” moves in
translational motion.

If during the translation of a rigid body its two arbitrary points A1 and A2 have
equal free vectors of displacement�rA1 and�rA2 , then during translational motion
all points of the rigid body have identical velocities and accelerations. Therefore,
the use of the notions of velocity and acceleration of translational motion of a body
is justified. Those notions have no meaning in the case of other motions of a rigid
body because then the body’s points have different velocities and accelerations.

5.5.12 Velocity and Acceleration in Motion About a Point

Let us now move to determining the velocity and acceleration in motion about a
point, where we assume that one point of a rigid body is fixed. In Fig. 5.53 let this
point be point A2, i.e., r2 D 0 and A2 D 0, which means that the origin of the space
coordinate system is situated at point A2 associated with the rigid body (also, the
non-stationary coordinate system is rigidly connected to the body), which is shown
in Fig. 5.64. Vector ! lies on the instantaneous axis of rotation, and the position
of an arbitrary point A of a rigid body in a stationary (non-stationary) system is
described by the position vector r D r0.

The velocity of pointA is obtained from (5.173) for r2 D 0. In the stationary and
non-stationary systems it is respectively equal to

v D ! � r;

v0 D !0 � r0: (5.269)

Let us assume that the angular velocity vector possesses the following compo-
nents in the stationary and non-stationary systems:

! D !1E1 C !2E2 C !3E3 D !0
1E

0
1 C !0

2E
0
2 C !0

3E
0
3: (5.270)

Similarly, the radius vector of point A

r D r1E1 C r2E2 C r3E3 D r 0
1E

0
1 C r 0

2E
0
2 C r 0

3E
0
3; (5.271)

where E0
i D E0

i .t/ because for every time instant during the motion of the body the
position of these unit vectors changes.

The scalar quantities r 0
i are constant, and the magnitude of vector jrj remains

unchanged, but its direction changes in time, which is expressed by the relationship
E0
i D E0

i .t/. Although both vectors describing the position of point A are equal�
r D r0�, in general r1 ¤ r 0

1, r2 ¤ r 0
2, and r3 ¤ r 0

3 because we have different bases
Ei and E0

i .i D 1; 2; 3/, and we pass from the system OX1X2X3 to O 0X 0
1X

0
2X

0
3

using the rotation matrix.
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The velocity of point A in the coordinate system
˚
E0
1;E

0
2;E

0
3

�
is equal to

v0 D dr0

dt
D r 0

1
PE1 C r 0

2
PE2 C r 0

3
PE3: (5.272)

Then
PE0
i D ! � E0

i ; (5.273)

and in view of that we obtain

E0
2 ı PE0

1 D E0
2 ı �! � E0

1

� D ! ı E0
1 � E0

2 D ! � E0
3 D !0

3;

E0
3 ı PE0

2 D E0
3 ı �! � E0

2

� D ! ı E0
2 � E0

3 D ! � E0
1 D !0

1;

E0
1 ı PE0

3 D E0
1 ı �! � E0

3

� D ! ı E0
3 � E0

1 D ! � E0
2 D !0

2; (5.274)

where the so-called cyclic permutation of factors was applied, i.e., a ı b � c D
b ı c � a D c ı a � b.

From (5.273) we obtain

PE0
1 D

ˇ̌
ˇ̌
ˇ̌
E0
1 E0

2 E0
3

!0
1 !

0
2 !

0
3

1 0 0

ˇ̌
ˇ̌
ˇ̌ ; PE0

2 D
ˇ̌
ˇ̌
ˇ̌
E0
1 E0

2 E0
3

!0
1 !

0
2 !

0
3

0 1 0

ˇ̌
ˇ̌
ˇ̌ ; PE0

3 D
ˇ̌
ˇ̌
ˇ̌
E0
1 E0

2 E0
3

!0
1 !

0
2 !

0
3

0 0 1

ˇ̌
ˇ̌
ˇ̌ ; (5.275)

that is,

PE0
1 D E0

2!
0
3 � E0

3!
0
2;

PE0
2 D �E0

1!
0
3 C E0

3!
0
1;

PE0
3 D E0

1!
0
2 � E0

2!
0
1: (5.276)

Substituting (5.276) into (5.272) we obtain

v0 D r 0
1

�
E0
2!

0
3 � E0

3!
0
2

�C r 0
2

��E0
1!

0
3 C E0

3!
0
1

�

C r 0
3

�
E1!0

2 � E0
2!

0
1

� D E0
1

��r 0
2!

0
3 C r 0

3!
0
2

�

C E0
2

�
r 0
1!

0
3 � r 0

3!
0
1

�C E0
3

��r 0
1!

0
2 C r 0

2!1
�
: (5.277)

Then, according to (5.269), we have

v0 D
ˇ̌
ˇ̌
ˇ̌
E0
1 E0

2 E0
3

!0
1 !

0
2 !

0
3

r 0
1 r

0
2 r

0
3

ˇ̌
ˇ̌
ˇ̌ D E0

1

�
!0
2r

0
3 � !0

3r
0
2

�C E0
2

�
r 0
1!

0
3 � !0

1r
0
3

�C E0
3

�
!0
1r

0
2 � r 0

1!
0
2

�
:

(5.278)
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It can be seen that (5.277) and (5.278) are the same, which means that vector !
in the non-stationary system has coordinates !0

1, !
0
2, and !0

3.
In the case of the stationary system according to (5.271) we have

Pr � v D Pr1E1 C Pr2E2 C Pr3E3: (5.279)

According to (5.269) we have

v D
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
!1 !2 !3
r1 r2 r3

ˇ̌
ˇ̌
ˇ̌ D E1 .!2r3 � !3r2/C E2 .r1!3 � !1r3/C E3 .!1r2 � !2r1/ :

(5.280)

Comparing (5.279) with (5.280) we obtain

v1 � Pr1 D !2r3 � !3r2;

v2 � Pr2 D !3r1 � !1r3;

v3 � Pr3 D !1r2 � !2r1; (5.281)

where clearly

v D
3X

iD1
viEi ; (5.282)

and this equation is identical with (5.279).
As was mentioned earlier, for every time instant there exist infinitely many points

of a rigid body lying on the instantaneous axis of rotation whose velocities are equal
to zero.

If the position of the instantaneous axis of angular velocity and the velocity of
an arbitrary point of the body vA not lying on this axis are known, then ! D vA=d ,
where d is the distance of the point from the axis.

According to (5.209), in the non-stationary system for points lying on the
instantaneous rotation axis we obtain

!0 � r0 D 0; (5.283)

which indicates that vectors !0 and r0 are parallel.
In view of that they can be expressed by the relationship

r0 D � 0!0; (5.284)

where � 0 is a scalar.
From (5.284) it follows that

r 0
i D � 0!0

i : (5.285)
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Fig. 5.69 Angular velocity
! of a body in motion about a
point, velocity v of an
arbitrary point A, and the
Cartesian coordinate systems
of space OX1X2X3 and body
O 0X 0

1X
0

2X
0

3

In turn from (5.278) and (5.285) we obtain

r 0
1

!0
1

D r 0
3

!0
3

;
r 0
2

!0
2

D r 0
3

!0
3

;
r 0
1

!0
1

D r 0
2

!0
2

; (5.286)

which implies [see (5.285)]

r 0
1

!0
1

D r 0
2

!0
2

D r 0
3

!0
3

D � 0: (5.287)

Similar calculations conducted for the stationary system lead to the relationship

r1

!1
D r2

!2
D r3

!3
D �; (5.288)

where � is a parameter (scalar) assuming real values.
Equations (5.287) describe the instantaneous rotation axis in a non-stationary

coordinate system, whereas (5.288) describe it in a stationary coordinate system.
If the vector of angular velocity of a rigid body ! is known, then according to

Fig. 5.69 the velocity of an arbitrary point of the rigid body is described by (5.269).
Let us consider the motion about a point of point A situated at a distance r from

the origin of the coordinate system, i.e., from the center O of the motion about
a point. The path of point A is located on the surface of a ball of radius r. The
position of the instantaneous axes of rotation in the body and space coordinate
systems varies in time, but all the axes must always pass through the center of
motion about a point. Instantaneous axes of rotation intersect a sphere of radius
r at certain points. Sets of these points in the body and space coordinate systems
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Fig. 5.70 Axodes and centrodes associated with motion of point A

constitute the trajectories of motion of point A respectively in the body and space
coordinate systems. Point A belongs simultaneously to both trajectories at the
given time instant. The lines passing through points A and O at the time instants
t0; t1; t2; : : : form the surface called the stationary cone of instantaneous axes (fixed
axode) in the space coordinate system and the surface called the moving cone of
instantaneous axes (moving axode) in the body coordinate system (Fig. 5.70).

The path of pointA lies on a sphere and is described by the curve called the body
centrode (non-stationary) in the body coordinate system (non-stationary). These
curves are in contact at point A since it belongs simultaneously to both of them.
The motion about a point can be illustratively represented as the rolling of a moving
axode on a fixed axode. Both axodes have contact along the generating line, which
is the instantaneous axis of rotation, and do not slide with respect to one another.
The hodograph of vector ! lies on the fixed axode. Because " D P!, the angular
acceleration is tangent to the space centrode, and it does not necessarily have to lie
on the axis of vector !. Moving and fixed axodes can be non-closed surfaces.



5.5 Motion in a Three-Dimensional Space 365

Analysis of the acceleration of the particle will be performed based on (5.174),
from which we obtain

a D aO C ac; (5.289)

where

aO D P! � r D " � r; (5.290)

ac D ! � .! � r/; (5.291)

and it was assumed that r D r1 and r2 D 0.
In the preceding formulas, aO is the component of acceleration of the body point

in motion about a point called the rotational acceleration. Vector ad represents
the centripetal acceleration, also called the axial acceleration, directed toward the
instantaneous axis of rotation.

Let us resolve the angular acceleration " (Fig. 5.70) into two components, "1
and "2. Because ! D b!!, we have " D P! D P!b! C Pb!! D "1 C "2. Vector
"1 characterizes the change in the magnitude of angular velocity and vector "2 the
change in the direction of angular velocity. Moreover, vector "1 is directed along
the instantaneous axis of rotation, whereas vector "2 is perpendicular to it. If the
instantaneous axis of rotation of the body in motion about a point rotates about
pointO with velocity˝ , then "2 D ˝ �!.

Recall that for three arbitrary vectors the following relation holds true: a1� .a2�
a3/ D a2.a1ıa3/�a3.a1ıa2/. Applying the preceding formula to (5.291) we obtain

ac D !.! ı r/� !2r: (5.292)

Bearing in mind that we associated the instantaneous axis of rotation with unit
vector b!, that is, ! D b!!, from (5.292) we obtain

ac D !2d; (5.293)

where

d D b!.b! � r/� r: (5.294)

Vector d ? ! and is directed toward the instantaneous axis of rotation (Fig. 5.71).
In turn, b! ı r is the projection of vector r onto the instantaneous axis of rotation.
From Fig. 5.71 it can be seen that the rotational acceleration � is associated with
the rotation of vector r about the instantaneous axis of rotation and aO ? r. The
centripetal acceleration is perpendicular to the instantaneous axis of rotation !. It
should be emphasized that the quantity! is not a result of differentiation of a certain
angle ˛.t/ because there exists no such axis of rotation of a rigid body about which
the rotation through angle ˛ would take place.

Finally, let us emphasize a certain analogy between centripetal acceleration
and normal acceleration, and between rotational acceleration and tangential ac-
celeration, of a point in curvilinear motion. Only in special cases does rotational
acceleration coincide with tangential acceleration, and centripetal acceleration with
acceleration normal to the path of a point.
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Fig. 5.71 Rotational
acceleration aO , centripetal
acceleration ad , and the
resultant acceleration of
point A in motion about a
point of a rigid body

If the vector of acceleration aA D a is known, then we can project it directly onto
the axes of the stationary and non-stationary systems:

a D
3X

iD1
aiEi D

3X

iD1
a0
iE

0
i : (5.295)

The components of acceleration in the space (body) system will be obtained
through scalar multiplication of (5.295) respectively by E1, E2, E3 (E0

1, E0
2, E0

3).
Let us write the result in matrix form:

2

4
a1
a2
a3

3

5 D
2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

2

4
a0
1

a0
2

a0
3

3

5 : (5.296)

From (5.296) it follows that if the components of acceleration in the body
coordinate system (non-stationary) a0

1, a0
2, a0

3 are known, then through coefficients
aij we can calculate the acceleration components in the space coordinate system a1,
a2, a3. According to (5.296) we obtain the relationships between the unit vectors in
the stationary and non-stationary coordinate systems of the form

E1 D a11E0
1 C a12E0

2 C a13E0
3;

E2 D a21E0
1 C a22E0

2 C a23E0
3;

E3 D a31E0
1 C a32E0

2 C a33E0
3; (5.297)
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where aij denotes the cosines of the angles formed by the axis Xi of the stationary
system with the axisX 0

j of the non-stationary system. Let us recall that the following
relationships are valid for the direction cosines:

a211 C a212 C a213 D 1;

a221 C a222 C a223 D 1;

a231 C a232 C a233 D 1;

a11a21 C a12a22 C a13a23 D 0;

a11a31 C a12a32 C a13a33 D 0;

a21a31 C a22a32 C a23a33 D 0: (5.298)

Therefore we can choose three arbitrary independent angles between the coordi-
nate axes. The remaining six cosines of the direction angles should be determined
from (5.298).

According to (5.290) the rotational acceleration is expressed by

aO D
ˇ̌
ˇ̌
ˇ̌
E0
1 E0

2 E0
3

P!0
1 P!0

2 P!0
3

r 0
1 r

0
2 r

0
3

ˇ̌
ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
P!1 P!2 P!3
r1 r2 r3

ˇ̌
ˇ̌
ˇ̌ ; (5.299)

from which we obtain

aO D E0
1

� P!0
2r

0
3 � P!0

3r
0
2

�C E0
2

� P!0
3r

0
1 � P!0

1r
0
3

�C E0
3

� P!0
1r

0
2 � P!0

2r
0
1

�

D E1 . P!2r3 � P!3r2/C E2 . P!3r1 � P!1r3/C E3 . P!1r2 � P!2r1/ : (5.300)

We will calculate the centripetal acceleration using (5.292). But first, let us note
that

! ı r D !1r1 C !2r2 C !3r3 D !0
1r

0
1 C !0

2r
0
2 C !0

3r
0
3: (5.301)

Finally, according to (5.292) we obtain

ac D �
!1 .!1r1 C !2r2 C !3r3/ � !2r1

�
E1

C �
!2 .!1r1 C !2r2 C !3r3/ � !2r2

�
E2

C �
!3 .!1r1 C !2r2 C !3r3/ � !2r3

�
E3

D �
!0
1

�
!0
1r

0
1 C !0

2r
0
2 C !0

3r
0
3

� � !2r 0
1

�
E0
1

C �
!0
2

�
!0
1r

0
1 C !0

2r
0
2 C !0

3r
0
3

� � !2r 0
2

�
E0
2

C �
!0
3

�
!0
1r

0
1 C !0

2r
0
2 C !0

3r
0
3

� � !2r 0
3

�
E0
3: (5.302)
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Fig. 5.72 Systems of
absolute coordinates
OX1X2X3 and of coordinates
rigidly connected to a body
O 0X 0

1X
0

2X
0

3

Resolving vectors aO and ac into components in the non-stationary and stationary
systems, we will obtain easily the projections of this acceleration in terms of !i ; ri
and ! as well as !0

i ; r
0
i and !.

5.5.13 Velocities and Accelerations in Body Motion
About a Fixed Axis

Let us take two fixed points O and A1 of a rigid body, which determine the rotation
axis of this body (Fig. 5.72).

The position of the body with respect to the absolute coordinate system is traced
by the angle '.t/ between the OX1 and O 0X 0

1 axes. Any point of the body (let us
take point A) not lying on the rotation axis (this axis is collinear with the axes
OX3 and O 0X 0

3) moves along the circle in the plane passing through that point

and perpendicular to the rotation axis. Let the radius vector �A D �!
OA have the

coordinates given in the body system (i.e., the system rigidly connected to the body).
According to the previous calculations vector rA expressed in the coordinates

OX1X2X3 will be calculated through vector
�!
OA expressed in the coordinates

O 0X 0
1X

0
2X

0
3 using the transformation matrix A according to equation

r � rA D A�; A D
2

4
cos' � sin' 0
sin' cos' 0

0 0 1

3

5 : (5.303)

Differentiating (5.303) with respect to time we obtain

v � Pr D PA�C A� D PA� D PAA�1r (5.304)

because P� D 0.



5.5 Motion in a Three-Dimensional Space 369

Fig. 5.73 Kinematics of a
point in motion of a rigid
body about a fixed axis

For the considered case of motion of a rigid body about a fixed axis we obtain

! D
2

4
0

0

P'

3

5 ; " D P! D
2

4
0

0

R'

3

5 ; PAA�1 D
2

4
0 � P' 0
P' 0 0

0 0 0

3

5 : (5.305)

The reader is advised to derive the last relationship of (5.305).
From the obtained results it is possible to conclude that vector ! lies on the axis

of rotation (! D P'E3). The angular acceleration vector also lies on the rotation axis,
but its sense is in agreement with the sense of ! if P' R' > 0, and the rotation of a
rigid body is accelerated in this case. If P' R' < 0, then the rotation is decelerated, and
the senses of vectors! and ffl are opposite.

The velocity of an arbitrary point not lying on the rotation axis

v D ! � r; (5.306)

and because generally vector v lies in a plane perpendicular to the rotation axis, the
magnitude of velocity is v D j P'jd , where d is the radius of the circle along which
point A moves (Fig. 5.73).

Differentiating the preceding equation with respect to time we obtain the
following acceleration of point A:

a D P! � r C! � Pr D aO C ac; (5.307)

where aO D " � r is the rotational acceleration and ac D ! � v is the centripetal
acceleration.

The magnitudes of these accelerations are equal to

jaO j D "d; jacj D !2d; jaj D d
p
"2 C !4: (5.308)
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5.5.14 Velocities of a Point of a Rigid Body in Various
Coordinate Systems

According to the homogeneous transformation (5.262) introduced earlier, the tip of
homogeneous position vector rj .t/ determines the trajectory of motion of point A
through the homogeneous transformation matrix of displacement Aj .t/ described
by relationship (5.263).

Based on the calculations of Sect. 5.5.9, we can introduce the notion of the
homogeneous transformation matrix of the velocity of point A of a rigid body in
the space coordinate system of the form

vO 0.t/ D dAj .t/

dt
A�1
j .t/; (5.309)

where the subscript indicates that matrix vO 0 describes the velocity of the system
O 0X 0

1X
0
2X

0
3 with respect to the system OX1X2X3.

According to (5.263) and (5.268), from (5.309) we have

vO 0 D
� PA PrO 0

0 0

� �
AT �ATrO 0

0 1

�

D
� PAAT PrO 0 � PAATrO 0

0 0

�
D
�
˝O 0 vO 0 �˝O 0rO 0

0 0

�
; (5.310)

where (5.232) was used, and PrO 0 D vO 0 was assumed.
Recall that angular velocity matrix ˝ described by relationship (5.232) enables

us to determine the angular velocity of rotational motion of a rigid body since
according to (5.171) we have

˝.!/r D ! � r: (5.311)

If we use matrix (5.232) on the left-hand side of the preceding equation, it takes
the form

�
E1 E2 E3

�
2

4
0 �!3 !2
!3 0 �!1

�!2 !1 0

3

5

2

4
r1
r2
r3

3

5 D
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
!1 !2 !3
r1 r2 r3

ˇ̌
ˇ̌
ˇ̌ : (5.312)

The left-hand side of (5.312) has the form

�
E1 E2 E3

�
2

4
�!3r2 C !2r3

!3r1 � !1r3
�!2r1 C !1r2

3

5 D
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
!1 !2 !3
r1 r2 r3

ˇ̌
ˇ̌
ˇ̌ ; (5.313)

which proves relationship (5.311).
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The velocity matrix described by relationship (5.310) contains a non-zero block
describing the angular velocity matrix ˝O 0 of motion of the system O 00X 00

1 X
00
2 X

00
3

with respect to OX1X2X3, and from relationship (5.311) we can also determine the
angular velocity vector of the rotational motion of the rigid body.

From Fig. 5.64 it follows that

rA D A�C rO 0 : (5.314)

This means that knowing the coordinates of point A in the coordinate system
O 00X 00

1 X
00
2 X

00
3 given by radius vector � we can determine the radius vector of that

point in the system OX1X2X3. Conversely, knowing the position of point A in the
system OX1X2X3 from the preceding equation we can determine the position of
point A in the system O 00X 00

1 X
00
2 X

00
3 . Premultiplying (5.314) by AT we obtain

� D AT.rA � rO 0/: (5.315)

We determine the velocity of pointA in the system OX1X2X3 by differentiating,
with respect to time, relationship (5.314), obtaining

vA � PrA D PA�C A P�C PrO 0

D vO 0 C S.!O 0/�C A P�
D vO 0 C! � A�C A P�
D vO 0 C! � .rA � rO 0/C A P�
D vO 0 C! � �!

OAC A P�; (5.316)

where relationships (5.231) and (5.311) for operator˝ � S and (5.314) were used.
From relationship (5.316) we read that the velocity of point A in the system

OX1X2X3 is equal to the sum of the velocity vector of point O 0 with respect to

point O , vector !O 0 � �!
OA (vector

�!
OA is expressed in the coordinatesOX1X2X3),

and vector A P�.
If the vector P� D const, then it is easy to determine the velocity of point A in the

system O 00X 00
1 X

00
2 X

00
3 , which is equal to

v00
A D v00

O 0 C!00 � �: (5.317)

We will now show that the preceding equation can be obtained from (5.316) if
we assume P� D 0.

Let us premultiply (5.316) by AT obtaining

ATvA D ATvO 0 C AT
�
! � �!

OA
	

D ATvO 0 C .AT!/ �
�

AT�!
OA

	
; (5.318)

where the relationship Q.a1 � a2/ D .Qa1/ � .Qa2/ was used.
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An arbitrary vector including a vector denoting displacement, velocity, or
acceleration is transformed from one system to another through the transformation
matrix, in this case the rotation matrix.

Let vector a be expressed in the system OX1X2X3. Then vector a D Aa00, and
a00 is expressed in the system O 00X 00

1 X
00
2 X

00
3 . In view of that, a00 D ATa D A0a,

which implies that (5.315) is written in the system O 00X 00
1 X

00
2 X

00
3 in the form

v00
A D v00

O 0 C!00 � ��!
OA0; (5.319)

which is in agreement with (5.317), because
��!
OA00 is vector

�!
OA expressed in the

system O 00X 00
1 X

00
2 X

00
3 .

The same vector of angular velocity can be expressed in the space system as !
and in the body system as !00. Recall that according to (5.163) we have

˝.!/ D PAAT; (5.320)

and postmultiplying the preceding equation by A0T and premultiplying by A0 we
obtain

A0˝.!/A0T D A0. PAAT/A0T D AT PA; (5.321)

because as it has been shown A0 D AT.
We will show that for an arbitrary matrix function ˝.!/ and for any rotation

matrix A0
3�3 the following relationship holds true:

A0˝.!/A0T D ˝.A0!/: (5.322)

Let us examine the action of the left-hand side of equality (5.322) on an arbitrary
vector a. We have

A0˝.!/A0Ta D A0 �! � �ATa
�� D �

A0!
� �

�
A0A0Ta

	

D �
A0!

� � a D ˝
�
A0!

�
a; (5.323)

where relationship (5.311) was used.
From (5.321) and (5.323) we have

˝
�
!00� D AT PA; (5.324)

where !00 D A0!.
The obtained value of the matrix of velocity of rotational motion of the rigid

body ˝.!00/ is expressed in the system O 00X 00
1 X

00
2 X

00
3 , whereas ˝.!/, described

by (5.320), is expressed in the system OX1X2X3.
The relationship between these matrices can be easily determined based on

(5.320) and (5.324). From (5.324) we have

PA D A˝
�
!00� ; (5.325)
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and from (5.320) we have
PA D ˝.!/A; (5.326)

hence

˝
�
!00� D AT˝.!/A: (5.327)

5.5.15 Regular Precession of a Rigid Body

Let us return to the motion about a point of a rigid body presented in Fig. 5.60.
Regular precession takes place when P� D 0 .� D �0 D const/, and the body
rotates about the spin axis X 000

3 with angular speed P
 D const, and this axis, in turn,
rotates about the axisX 0

3 with angular speed P D const. The angle between the X 000
3

and X 0
3 axes equals �0, and we call the motion of the body in this case precession.

According to (5.243) we have

! D
q

P�2 C P
2 C 2 P� P
 cos�0; (5.328)

and the resultant vector of the angular velocity of the rigid body reads

! D P� C P
: (5.329)

We determine the projections of this resultant angular velocity onto the axes of
the stationary and non-stationary coordinate systems by expressing the same vector
! in the coordinates of those two systems, namely,

! D !1E1 C !2E2 C !3E3 D P�E0
3 C P
E000

3 : (5.330)

Multiplying this equation successively by E1, E2, and E3 we obtain

!1 D P�E0
3 ı E1 C P
E00

3 ı E1 D P�E3 ı E1

C P
 Œ�.� sin�E1 C cos�E2/ sin�0 C E3 cos�0� ı E1

D P
 sin�0 sin P�t;
!2 D P�E0

3 ı E2 C P
E00
3 ı E2 D P�E3 ı E2 C P
 Œ� cos� sin�0E2� ı E2

D � P
 sin�0 cos P�t;
!3 D P�E0

3 ı E3 C P
E00
3 ı E3 D P� C P
 cos�0; (5.331)

where in the preceding transformations the scalar multiplication of the vectors was
conducted using (5.204)�(5.206).
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In order to determine the components of vector ! in the non-stationary coordi-
nate system let us use (5.242), from which we obtain

!000
1 D P� sin�0 sin P
t;
!000
2 D P� sin�0 cos P
t;
!000
3 D P� cos�0 C P
: (5.332)

The instantaneous axes of rotation in the non-stationary and stationary systems
will be obtained from (5.287) and (5.288) as well as from (5.331) and (5.332). They
are described by the equations

r 000
1

P� sin�0 sin P
t D r 000
2

P� sin�0 cos P
t D r 000
3

P
 C P� cos�0
; (5.333)

r1

P
 sin�0 sin P�t D � r2

P
 sin�0 cos P�t D r3
P� C P
 cos�0

; (5.334)

where .r 000
1 ; r

000
2 ; r

000
3 / and .r1; r2; r3/ are coordinates of a point respectively in the

non-stationary and stationary system.
From (5.334) we obtain

r21� P
 sin�0
�2 D r23� P� C P
 cos�0

�2 sin2 P�t; (5.335)

r22� P
 sin�0
�2 D r23� P� C P
 cos�0

�2 cos2 P�t: (5.336)

Adding by sides (5.335) and (5.336) we obtain the equation of fixed axode of the
form

r21 C r22
P
2 sin2 �0

D r23� P� C P
 cos�0
�2 : (5.337)

Similarly, we proceed with (5.333) obtaining

�
r 000
1

�2
� P� sin�0

�2 D
�
r 000
3

�2
� P
 C P� cos�0

�2 sin2 P
t; (5.338)

�
r 000
2

�2
� P� sin�0

�2 D
�
r 000
3

�2
� P
 C P� cos�0

�2 cos2 P
t: (5.339)
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Fig. 5.74 Cone of a circular base and symmetry axis OX 000

3 (moving axode) rolls without sliding
on a cone of symmetry axis OX 0

3 (fixed axode)

Adding by sides (5.338) and (5.339) we obtain the equation of moving axode of
the form

�
r 000
1

�2 C �
r 000
2

�2

P�2 sin2 �0
D

�
r 000
3

�2
� P
 C P� cos�0

�2 : (5.340)

The moving and fixed axodes are the cones of a circular base, as shown in
Fig. 5.74.

Angular velocity vector ! rotates about theOX 0
3 axis with angular speed P , and

its magnitude is constant [see (5.328)].
The angles �1 and �2 can be determined from relationships (5.337) and (5.340):

tan �1 D


r1

r3

�

r2D0
D

P
 sin�0
P� C P
 cos�0

; (5.341)

tan �2 D


r 000
1

r 000
3

�

N 000

2 D0
D

P� sin�0
P
 C P� cos�0

: (5.342)

We determine the angular acceleration from the equation

P! D P� �! D P� �
� P
C P�

	
D P� � P
; (5.343)
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and its magnitude reads

P! D P� P
 sin�0: (5.344)

If the angle between P
 and P is an obtuse angle, the motion is called a retrograde
precession.

Example 5.4. The motion about a point of a rigid body was described by Eulerian
angles of the form 
 D 
0 C P
t ,  D  0 C P t , and � D �0 C P�t . Determine the
angular velocity ! and the angular acceleration " of a body and the acceleration of
point A.x1; x2; x3/. Additionally, determine the equations of the moving and fixed
axodes. Solve the problem for the following two cases:

(i) 
0 D 0,  0 D �
4

, �0 D �
4

, P
 D �
4

, P D �
6

, P� D 0, A.0; 0; x30/;

(ii) 
0 D �
2

,  0 D 0, �0 D �
3

, P
 D �� , P D �
2

, P� D 0, A.x10; 0; x30/.

In the considered case we are dealing with the regular precession ( P� D 0), so for
the solution we will use (5.246) and (5.280).

First, let us calculate the components of the angular velocity in a stationary
coordinate system. From (5.246) we obtain

!
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3
D 0:

According to (5.280) the velocity of an arbitrary pointA not lying on the rotation
axis is equal to

v D ! � rA D
ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
!1 !2 !3
x1 x2 x3

ˇ̌
ˇ̌
ˇ̌

D E1 .!2x3 � !3x2/C E2 .!3x1 � !1x3/C E3 .!1x2 � !2x1/ ;
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that is, the velocity components for point A are equal to

v1 D !2x3 �!3x2; v2 D !3x1 �!1x3; v3 D !1x2 �!2x1: .�/
The components of velocity for the considered cases are equal to

v.i/1 D !
.i/
2 x
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p
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2
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2
t :

Differentiation of velocity with respect to time allows us to determine the
acceleration components of point A, which are equal to

a.i/1 D Pv.i/1 D x30
�2

p
2

48
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6
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�2

p
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4
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2
t :

The results obtained lead to the determination of the angular velocity of the body:
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13� 6
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t
2 C 3�2

4
cos

�

2
t
2
� 1

2
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and subsequently also its angular acceleration

" D
q

P!21 C P!22 C P!23 :

In the considered cases we have

P!.i/1 D � �2

24
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6
t; P!.i i/1 D ��

2
p
3

4
cos

�

2
t;

P!.i/2 D � �2

24
p
2

sin
�

6
t; P!.i i/2 D ��

2
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4
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2
t;

P!.i/3 D 0; P!.i i/3 D 0;

that is,

".i/ D �2

24
p
2
; ".i i/ D �2

p
3

4
:

We calculate the acceleration of point A from the equation

a D
q

Pv21 C Pv22 C Pv23:
We will now show how to determine the fixed axode taking into account

pointA0.x1; x2; x3/ on the instantaneous axis of rotation. All the points lying on the
instantaneous axis of rotation have a velocity equal to zero, that is, from equation
(*) we obtain

!2x3 � !3x2 D 0; !3x1 � !1x3 D 0; !1x2 � !2x1 D 0;

where x1, x2, and x3 are the coordinates of pointA0. From those equations we obtain

x2

x3
D !2

!3
;

x1

x3
D !1

!3
;

x1

x2
D !1

!2
;

from which also result (5.283), derived earlier.
In the considered case (i) we then have
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2
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6
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6
t :
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From the preceding equations we obtain
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;

and after transformation

x21 C x22 �



3

2
p
2 � 3

�2
x23 D 0:

The preceding equation (fixed axode) describes a circular cone whose opening

angle is equal to 2�1, where tan �1 D 3�2p2
3

, and its axis coincides with the OX3
axis.

In order to determine the equation of the moving axode one should determine the
components of the angular velocity in the non-stationary coordinate system. A point
lying on the instantaneous axis of rotation satisfies the equations
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where
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From the preceding equations we obtain
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and hence we obtain the equation of a moving axode
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Fig. 5.75 Motion of moving
axode on fixed axode for
case (i)

The equation of a moving axode describes the cone of opening angle 2�2, where
tan �2 D 21

2C3p2
.

The motion of a moving axode on a fixed axode for case (i) is shown in Fig. 5.75.
At the end of this example we will consider rolling without sliding of a moving

axode on a fixed axode for case (ii).
In this case we have !.i i/3 D 0, so the fixed axode is the plane OX1X2, and the

instantaneous axis of rotation lies in that plane. Let us derive, then, the equation of
a moving axode. We calculate successively
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and hence we find the equation of a body cone of the form
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�
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49

�
x000
3

�2 D 0:

The motion of a cone describing a moving axode on a fixed axode (the plane
OX1X2) is shown in Fig. 5.76. ut
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Fig. 5.76 Motion of moving
axode on fixed axode for
case (ii)

5.5.16 Screw Motion

The screw motion of a point was considered in Chap. 4. Now we will consider
the screw motion of a rigid body. This motion is a composite motion because the
rigid body moves in translational motion along a fixed line with velocity v3, with
simultaneous rotation about that axis described by vector ! (Fig. 5.77). Vectors !
and v3 lie on one axis called the wrench axis.

Motion along the X3 axis is described by the position of point A of coordinate
x3 � s, and the rotation of the body is characterized by angle  . Let us introduce
the parameter of the screw motion in the following way:

� D v3
!

D v3
!

D ds

dt
� dt

d 
D ds

d 
: (5.345)

From (5.345) after integration we obtain

s D
�Z

0

�d D � ; (5.346)

on the assumption that � is a constant.
If  varies from zero to 2� , then

s � p D 2��; (5.347)

where p is called the pitch of screw motion.
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Fig. 5.77 Screw motion of a
rigid body

Using the relationships introduced earlier for the velocity in a cylindrical
coordinate system [see (4.195)] we obtain

Pr � v D Prer C r P e C PzE3 D r!e C v3E3: (5.348)

Because E3 ? e , we have

v D
q
r2!2 C v23; (5.349)

and taking into account (5.345) we obtain

v D !
p
r2 C �2: (5.350)

From Fig. 5.77 it follows that

tan ˛ D v3
r!

D �

r
: (5.351)
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Let us note that for all points lying on a cylindrical surface of radius r the angle
˛ D const, that is, the path of point A permanently forms a constant angle with
the plane perpendicular to the axis of rotation. From the figure it follows that the
projections of velocities of all points of a rigid body onto a wrench axis are equal.

5.5.17 Geometrical Interpretation of Velocity and Acceleration
of a Point of a Rigid Body in General Motion

In previous sections we conducted analyses of special cases of the motion of a rigid
body, i.e., motion about a point, planar motion, screw motion. Now we will take up
a more detailed analysis of the general motion of a rigid body (with emphasis on the
geometrical interpretation of such motion).

In order to determine the velocity and acceleration of an arbitrary point of a body
with the aid of the vector calculus we will proceed in such a way that is analogous
to that described earlier in our analysis of the planar motion of a rigid body.

According to Fig. 5.78 we have

rA D rO 0 C r00; (5.352)

and the relationships between the unit vectors in the non-stationary and stationary
coordinate systems are given by (5.297), where aij denote the cosines of the angles
respectively between the unit vectors E1, E2, E3 and E00

1 , E00
2 , E00

3 (i indices are
associated with the unit vectors Ei and j with E00

j ), i.e., aij D Ei ıE00
j , i; j D 1; 2; 3.

Observe that earlier we introduced vector � D r00.
From (5.352) it follows that

x1E1 C x2E2 C x3E3 D x1O 0 E1 C x2O 0E2 C x3O 0E3 C x00
1E00

1 C x00
2E00

2 C x00
3E00

3 ;

(5.353)

where .x1; x2; x3/ denote the coordinates of point A in the stationary coordinate
systemOX1X2X3; .x1O 0 ; x2O 0 ; x3O 0/ denote the coordinates of pointO 0 in the same
system; and .x00

1 ; x
00
2 ; x

00
3 / denote the coordinates of pointA in the moving coordinate

system O 00X 00
1 X

00
2 X

00
3 .

We will obtain the coordinates namely, of point A in a stationary coordinate
system, multiplying (5.353) successively by E1, E2, E3, are gets.

x1 D x1O 0 C x00
1

�
E00
1 ı E1

�C x00
2

�
E00
2 ı E1

�C x3
�
E00
3 ı E1

�
;

x2 D x2O 0 C x00
1

�
E00
1 ı E2

�C x00
2

�
E00
2 ı E2

�C x3
�
E00
3 ı E2

�
;

x3 D x3O 0 C x00
1

�
E00
1 ı E3

�C x00
2

�
E00
2 ı E3

�C x3
�
E00
3 ı E3

�
; (5.354)
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Fig. 5.78 Position of point A in non-stationary and stationary coordinate systems and its velocity
vA � v

and taking into account (5.297) we have

2

4
x1
x2
x3

3

5 D
2

4
x1O 0

x2O 0

x3O 0

3

5C
2

4
a11 a12 a13
a21 a22 a23
a31 a32 a33

3

5

2

4
x00
1

x00
2

x00
3

3

5 ; (5.355)

which is the expanded form of the symbolic matrix notation (5.255).
We will obtain the coordinates of point A in a non-stationary coordinate system

from (5.353) after multiplying it successively by E00
1 , E00

2 , E00
3 :

x00
1E00

1Cx00
2E00

2Cx00
3E00

3 D .x1 � x1O 0/E1C.x2 � x2O 0/E2C.x3 � x3O 0/E3; (5.356)

that is,

x00
1 D .x1 � x1O 0/

�
E1 ı E00

1

�C .x2 � x2O 0/
�
E2 ı E00

1

�C .x3 � x3O 0/
�
E3 ı E00

1

�
;
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x00
2 D .x1 � x1O 0/

�
E1 ı E00

2

�C .x2 � x2O 0/
�
E2 ı E00

2

�C .x3 � x3O 0/
�
E3 ı E00

2

�
;

x00
3 D .x1 � x1O 0/

�
E1 ı E00

3

�C .x2 � x2O 0/
�
E2 ı E00

3

�C .x3 � x3O 0/
�
E3 ı E00

3

�
;

(5.357)

and taking into account (5.237) we have

x00
1 D a11 .x1 � x1O 0/C a21 .x2 � x2O 0/C a31 .x3 � x3O 0/ ;

x00
2 D a12 .x1 � x1O 0/C a22 .x2 � x2O 0/C a32 .x3 � x3O 0/ ;

x00
3 D a13 .x1 � x1O 0/C a23 .x2 � x2O 0/C a33 .x3 � x3O 0/ : (5.358)

Let us note that the coefficients aj i , which appear in (5.358) are obtained through
the transposition of matrix Œaij �.

We call matrix Œaij � orthogonal (Chap. 4) because the sum of the squares of the
elements in the rows is equal to one, the sum of the products of the remaining
elements of the rows (three combinations) is equal to zero [see (5.298)], and the
linear transformations (5.355) and (5.358) are associated with rotation.

According to the vector function (5.352) the motion of an arbitrary point of a
rigid body can be treated as a composition of the translational motion of a certain
point of that body (point O 0) and the motion about a point taking place about the
moving pointO 0.

This observation is confirmed also by the formulas obtained earlier describing the
velocity of motion in the case of the non-stationary (5.277) and stationary (5.280)
coordinate systems. This means that the general motion of a rigid body can be
obtained as a result of the geometrical composition of the translational motion and
the motion about a point.

The velocity of point A (Fig. 5.78) is equal to

v D vO 0 C! � r00; (5.359)

where the preceding equation is a vector equation.
That result can be obtained in the following formal way.

Vector
�!
OA has the coordinates in the coordinate system OX1X2X3 and will be

denoted by r. Because the system O 00X 00
1 X

00
2 X

00
3 is rigidly connected to the body,

vector
���!
O 00A in the coordinates O 00X 00

1 X
00
2 X

00
3 will be denoted by r00, and according

to (5.355), vector rA takes the form

rA D rO 0 C Ar00; (5.360)

where after differentiation of the preceding equation with respect to time we obtain
the vector (5.359).
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Theorem 5.12. There exists one and only one vector!, called the angular velocity
of a rigid body, by means of which it is possible to describe the velocity of an
arbitrary point A of a rigid body through the following equality:

v D vO 0 C! � r;

where vO 0 is the velocity of a poleO 0 and! is independent of the choice of the pole.

Proof. Let vector r00 be constant. Differentiating (5.360) with respect to time we
obtain

v D vO 0 C PAr00 D vO 0 C PAA�1r;

where r D Ar
00

.
Because AAT D E, differentiating that equality we obtain PAAT C A PAT D 0, and

hence we obtain PAA�1 D �A PAT. Transposing both sides of the resulting equation
we obtain � PAA�1

	T D � PAAT D � PAA�1:

Because we demonstrated that

� PAA�1	T D �
� PAA�1	 ;

the matrix PAA�1 is a skew-symmetric matrix.
Let us choose this matrix in the following way:

PAA�1 D
2

4
0 �!3 !2

!3 0 �!1
�!2 !1 0

3

5 :

Then we have

PAA�1r D
2

4
0 �!3 !2

!3 0 �!1
�!2 !1 0

3

5

0

@

2

4
r1

r2
r3

3

5 �E1 E2 E3
�
1

A

D
2

4
�!3r2 C !2r3

!3r1 � !1r3
�!2r1 C !1r2

3

5 �E1 E2 E3
� D

ˇ̌
ˇ̌
ˇ̌
E1 E2 E3
!1 !2 !3
r1 r2 r3

ˇ̌
ˇ̌
ˇ̌

D ! � r;

which proves the form of the equation in the theorem.
Then the elements of vector! are determined by the elements of matrix A, which

does not depend on the choice of the pole. This completes the proof. ut
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Fig. 5.79 Vector ! and three main moments

Let us note [1] that after the change of pole (pointO 0) vector!will not change (it is
the so-called first invariant of system I1). The second invariant of the system is the
projection of the velocity of poleO 0 onto the instantaneous axis of rotation, i.e., the
scalar product I2 D b!ıvO 0 D const, whereb! is the unit vector of the instantaneous
axis of rotation. The projections of velocities of each of the points of the rigid body
onto the direction of the instantaneous axis of rotation are identical.

Figure 5.79 shows pointsO 0 and A as well as vector! and three main moments.
According to this figure we have

MA D MO 0 C! � rAO 0 D MO 0 � ! � rO 0A: (5.361)

Projecting the vectors from (5.361) onto the direction of vector ! we obtain

! ı MA D ! ı MO 0 C! ı .! � rAO 0/ D ! ı MO 0 � ! ı vO 0 (5.362)

because vector! ? !�rAO 0 . Because pointsO 0 andAwere arbitrarily chosen, one
can conclude that the invariants of the system are vector ! and the scalar product
of the angular velocity vector and the velocity vector of an arbitrary point (in the
present case, poleO 0).

By changing poleO 0 we change the moment MO 0 � vO 0 . It was shown, however,
that the projection of vector vO 0 onto the axis ! would not change [see (5.362)].
Because the main moment MO 0 can be resolved into two components, the first one
parallel to the direction of ! in the form kMO 0 and the second one perpendicular
to it ?MO 0 , only the component ?MO 0 can undergo change. One might expect that
there would exist a special point C at which ?MC D O. We will show how to find
such a point C through which passes the central axis (instantaneous screw axis),
which is parallel to the axis passing through pole O 0 (Fig. 5.80).
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Fig. 5.80 Geometrical interpretation of the procedure leading to the determination of the position
of point C (temporary screw axis)

Vectors ! and vO 0 determine a certain plane. The vector vO 0 � MO 0 we
resolve into the components kMO 0 and ?MO 0 and draw a line perpendicular to the
aforementioned plane and passing through pointO 0.

The desired point C will lie on that line at one of the sides of the aforementioned
plane.

Let that point satisfy the following condition:

vC D vO 0 C vC .!/ D ?vO 0 C kvO 0 C vC .!/ D kvO 0 : (5.363)

This means that

vC .!/C ?vO 0 D rCO 0 �!C ?vO 0 D 0;

that is, as can be seen from Fig. 5.79, the moments ?vO 0 D �vC .!/. This means
that at point C vectors ?vO 0 and vC lie on one line and have opposite senses and the
same magnitudes, which implies that they cancel out one another.

Finally, the vector of moment calculated about point C is parallel to vector !
because ! k kvO 0 . Then we take the magnitude of vector rCO 0 according to the
following condition:

jvC .!/j D j?vO 0j D rCO 0!: (5.364)

The changes in the normal components of points O 0 and A while approaching
point C are presented in Figs. 5.81 and 5.82.

From (5.364) it follows that

rCO 0 D v sin ˛

!
; (5.365)

where v is the velocity of an arbitrary pole.
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Fig. 5.81 A central axis (temporary screw axis) with point C (?vC D 0)

Fig. 5.82 Main moments (velocities) of points O 0, A, and C while approaching a wrench axis (a
wrench axis has the smallest main moment, i.e., velocity vector vC )

The equation of a central axis in a stationary and non-stationary coordinate
system in the case of motion about a point is described by (5.287) and (5.288).
Figure 5.81 shows the velocities of poles O 0 and A of the main moments while
approaching the central axis. At point C vectors ! and vC are parallel to one
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Fig. 5.83 Sketch leading to
determination of a
wrench axis

another, and at that position vC reaches the minimum value. The axis on which
lie vectors vC and ! is called the central axis, wrench axis, or temporary screw
axis.

Having determined the position of point C the problem leading to the determi-
nation of the position of the central axis passing through that point is solved since
the direction of that axis is determined by vector ! (Fig. 5.83).

From the previous calculations we know that vector ! is parallel to the central
axis. It follows that

r D rOC C �!: (5.366)

The parameter � is the proportionality coefficient between vectors rCA and !,
i.e., rCA D �!. From (5.366) we obtain

�! D r � rOC ; (5.367)

and multiplying successively by E00
i and Ei we obtain

x00
1 � x00

1C

!00
1

D x00
2 � x00

2C

!00
2

D x00
3 � x00

3C

!00
3

D �;

x1 � x1C

!1
D x2 � x2C

!2
D x3 � x3C

!3
D �; (5.368)

where ! � E1!1 C E2!2 C E3!3 D E00
1!

00
1 C E00

2!
00
2 C E00

3!
00
3 .

According to (5.368) the central axis will be described analytically if we
determine the coordinates of point C , i.e., x1C , x2C , x3C .

If point O 0 tends to point C , the angle ˛ ! 0, i.e., ?vO 0 ! 0 (Figs. 5.79–5.81).
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In other words, the velocity vO 0 will attain its minimum magnitude at the point
of coordinates .x1C ; x2C ; x3C / on the central axis. This condition can be used to
determine the coordinates of point C :

x00
1C D !00

2 v3O 0 � !00
3 v2O 0

!2
;

x00
2C D !00

3 v1O 0 � !00
1 v3O 0

!2
;

x00
3C D !00

1 v2O 0 � !00
2 v1O 0

!2
: (5.369)

The obtained equation of the central axis is an example of a line equation in
slope-intercept form since knowing point C and vector ! enables us to draw in
three-dimensional space the desired line passing through that point and parallel to
vector !.

In the stationary coordinate system the velocity of point C is equal to

v D vO 0 C vO 0C D vO 0 C! � .rC � rOO 0/

D Px1E1 C Px2E2 C Px3E3 D v1O 0E1 C v2O 0E2 C v3O 0E3

C E1 Œ!2 .x3C � x3O 0/� !3 .x2C � x2O 0/�

C E2 Œ!3 .x1C � x1O 0/� !1 .x3C � x3O 0/�

C E3 Œ!1 .x2C � x2O 0/� !2 .x1C � x1O 0/� (5.370)

because

! � .rC � rOO 0/ D
ˇ̌
ˇ̌
ˇ̌

E1 E2 E3
!1 !2 !3

x1C � x1O 0 x2C � x2O 0 x3C � x3O 0

ˇ̌
ˇ̌
ˇ̌ : (5.371)

The coordinates of point C in the stationary coordinate system are equal to

x1C D x1O 0 C !0
2v3O 0 � !0

3v2O 0

!2
;

x2C D x2O 0 C !0
3v1O 0 � !0

1v3O 0

!2
;

x3C D x3O 0 C !0
1v2O 0 � !0

2v1O 0

!2
: (5.372)

The velocities of the points of a rigid body possess certain properties. Below we
will give a few theorems whose proofs are omitted.

Theorem 5.13. The velocities of three arbitrary non-collinear points of a rigid
body completely describe the velocity of any point of that body.



392 5 Kinematics of a Rigid Body and Composite Motion of a Point

Theorem 5.14. If the velocity vectors of three arbitrary non-collinear points of
a rigid body are equal at a certain time instant, the body is in instantaneous
translational motion.

Theorem 5.15. If at a certain time instant the velocities of two points of a
rigid body are equal to zero, then this body is either at instantaneous rest or in
instantaneous rotational motion about an axis passing through these points.

Theorem 5.16. If the velocity of a certain point of a rigid body is equal to zero at
a certain time instant, then this body is at instantaneous rest or is rotating about an
instantaneous axis of rotation passing through that point.

Theorem 5.17. The instantaneous motion of a rigid body in the general case is
a composite motion composed of two motions, i.e., translational motion of an
arbitrary pole and rotational motion about an axis passing through that pole.

The carried out calculations and discussions in this section can be summed up by
the following observations.

The general motion of a rigid body can be treated as its motion along the central
axis with simultaneous rotation about that axis. Such motion we call the screw
motion.

The general motion of a rigid body can be treated as consecutive sequences of
screw motion in the successive time instants t0; t1; t2; : : : .

Also, the general motion of a rigid body is characterized by the motion of the
moving axode with respect to the fixed axode, but now the rolling of the moving
axode on the fixed axode takes place with sliding (along the generatrix).

So far we have used (5.359) to determine the velocity of an arbitrary point of
a rigid body in general motion. Differentiating that formula with respect to time
it is also possible to derive the relationships describing the acceleration of an
arbitrary point of a given body. However, here we will make use of the previous
considerations regarding the motion about a point and of the obtained (5.300)
and (5.302), which allow for the determination of, respectively, the rotational and
centripetal accelerations.

Because the general motion of a rigid body can be treated at a given instant as
the composition of translational motion and motion about a point, to accelerations
aO and ac obtained earlier one should geometrically add acceleration at , associated
with the translational motion of pointO 0, which has the form

at D Rx1O 0E1 C Rx2O 0E2 C Rx3O 0E3: (5.373)

If we wish to express the components of a in the stationary coordinate system
through components in the non-stationary system (or vice versa), then we should
multiply those equations by Ei and E00

i (Sect. 5.5.12).
The acceleration of the considered point of a rigid body in general motion is

equal to
a D at C aO C ac; (5.374)

so it is the geometrical sum of vectors at , aO , and ac.
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5.6 Composite Motion of a Rigid Body

The arbitrary motion of a rigid body encountered in a real (nature) or artificial
(technology) setting is composed of a series of four basic instantaneous motions of
that body, i.e., instantaneous rest, instantaneous translation, instantaneous rotation,
and instantaneous screw motion. Below we will briefly characterize three of these
instantaneous motions of a rigid body.

Let a rigid body be in motion with respect to the coordinate system O 0X 0
1X

0
2X

0
3.

Then, let this system be moving with respect to the absolute systemOX1X2X3. The
body will be in composite motion with respect to the coordinate system OX1X2X3.

If a passenger on Earth, for example, is traveling on a moving bus, then the bus
(a rigid body) is in motion with respect to the system O 0X 0

1X
0
2X

0
3 associated with

Earth. The absolute system can be associated with the Sun or any other star. If an
astronaut is in weightless conditions and moves with respect to a spacecraft with
which we associate the system O 0X 0

1X
0
2X

0
3, then Earth can be the absolute system.

(i) Composition of two instantaneous translational motions

Let a body be moving in translational motion, and let it have at a certain time
instant velocity v1 with respect to O 0X 0

1X
0
2X

0
3. Let the system O 0X 0

1X
0
2X

0
3 have at

the same time instant velocity v2 with respect to OX1X2X3. The absolute velocity
of an arbitrary point of the body is given by

va D v1 C v2I (5.375)

v1 will be the relative velocity of that point and v2 the velocity of transportation.

(ii) Composition of two instantaneous rotational motions about parallel axes

Let a rigid body at a given time instant have the angular velocity!1 with respect
to O 0X 0

1X
0
2X

0
3, and let the system O 0X 0

1X
0
2X

0
3 have the angular velocity !2 with

respect toOX1X2X3. Let!1 k !2. In this case the velocities of the rigid body at the
given instant will be the same as in the case of the planar motion of this body. The
points of the body lying on an arbitrary line parallel to the angular velocity vector
will have the same velocities. It suffices then to consider any plane � ? !1 and
draw a plane � 0 through !1 and !2. These planes will intersect along the line on
which points A, B , and O will lie. At these points are respectively attached vectors
!1, !2, and˝ (Fig. 5.84).

If!1 ı!2 > 0, then the instantaneous composite motion of the body is described
by the vector˝ , where

˝ D !1 C !2; (5.376)

!1AO D !2BO: (5.377)

We have

jv0j D j!1 � ��!
AO C!2 � ��!

AOj
D �!1AO C !2BO D 0: (5.378)
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Fig. 5.84 Determination of angular velocity ˝ of composite motion of a rigid body when
velocities !1 and !2 have identical (a) and opposite senses (b)

The instantaneous composite motion of a rigid body in this case can be treated
as a motion with angular velocity ˝ given by (5.376) about point O described
by (5.378).

The velocity of point B is equal to

vB D ˝ � ��!
OB D !1 � ��!

AB; (5.379)

which indicates that !1 k ˝ and !1 ı˝ > 0. From (5.379) we obtain

˝ OB D !1AB: (5.380)

According to Fig. 5.84a we have

AB D AO C BO D


!2

!1
C 1

�
BO D !2 C !1

!1
BO: (5.381)

Substituting (5.381) into (5.380) we obtain (5.376).
In a similar way it can be shown that for the case from Fig. 5.84b we have

˝ D !1 � !2; (5.382)

!1AO D !2BO; (5.383)

on the assumption that !1 > !2.

(iii) Couple of (instantaneous) rotations

A special case, depicted in Fig. 5.84b, where !1 D �!2, defines a couple of
(instantaneous) rotations. The plane determined by vectors !1 and !2 is called the
plane of a couple of rotations, the distance AB is called the arm of a couple of

rotations, and
��!
AB �!2 is called the moment of a couple of rotations. We will show

that if a rigid body is subjected to the action of a couple of rotations at a given time
instant, then it is in instantaneous translational motion with velocity equal to the the
moment of a couple of rotations.
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Fig. 5.85 Determination of
velocity of point D of a rigid
body and a couple of rotations

Let us take an arbitrary point of the rigid body D. The velocity of that point
(Fig. 5.85) is equal to

v D !1 � ��!
AD C!2 � ��!

BD

D ��!
AD �!2 � ��!

DB �!2
D
���!
AD � ��!

BD
	

�!2 D ��!
AB �!2: (5.384)

In (5.384) the subscript D in the velocity was dropped because velocity vector
v is a free vector. All points of the body have the same instantaneous translational

velocity equal to v. Vectors
��!
AB , !2, and v form a right-handed triad of vectors. If

j!1j D j!2j D !, then the velocity of an arbitrary point of the body is equal to
v D !AB .

If the body is in instantaneous translational motion with velocity v, then this
motion is equivalent to a body moving under the the action of a couple of rotations
situated in a plane perpendicular to v, of arm AB , and with magnitude of angular
velocity ! such that the equation v D !AB is satisfied, which can be realized in
infinitely many ways.

(iv) Composition of rotational motions of a rigid body about intersecting axes

The rotational motion of a rigid body can be represented by the instantaneous
axis of rotation, that is, the locus of points whose velocities at a given time instant
are equal to zero.

The angular velocity vector is the vector sliding along this axis; if we look along
its direction at its arrow, then the rotation occurs counterclockwise.

Figure 5.86 presents a rigid body (disk) rotating with angular velocity !2 about
the CO axis (it is the relative rotation), and this motion is transported by a beam
rotating with angular velocity !1 (rotation of transportation). Both axes of rotation
intersect at one point O .

Figure 5.87 shows one method for determining the absolute velocity of body 1.

Theorem 5.18. The angular velocity of absolute rotation ! of a rigid body in
composite motion associated with rotations about two intersecting axes is equal
to the geometric sum of angular velocities with respect to those axes:

! D !t C!r : (5.385)
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Fig. 5.86 Disk 1 mounted to
OC axle rotating with
angular velocity !2 D !r ,
which in turn is mounted to
AB axle rotating with angular
velocity !1 D !t

Fig. 5.87 Geometric
composition of angular
velocities of a rigid body

We will prove the validity of vector (5.385). Point O , being the vertex of
a parallelogram (Fig. 5.87), simultaneously belongs to two instantaneous axes of
rotation OC and OB , and therefore vO D 0. Point O 0 belongs to the body and
simultaneously participates in two rotations, that is, about the OC and OB axes.

The velocities

vrO 0 D !rO 0C 0 D 2F�OCO 0;

vtO 0 D !tO 0C 0 D 2F�OBO 0; (5.386)

and because the areas of the triangles on the right-hand sides of (5.386) are equal,
we have vr

O
0 D �vt

O
0 , and, finally,

vO 0 D vrO 0 C vtO 0 D 0: (5.387)

We have demonstrated that the instantaneous velocity of pointO 0 is equal to zero
and in view of that the OO 0 axis is the instantaneous axis of absolute rotation of a
rigid body.

Let us take in Fig. 5.87 an arbitrary point A of a rigid body such that
�!
OA D r.

The absolute velocity of this point

vA D vrA C vtA: (5.388)

The absolute velocity of point A reads

vA D ! � r; (5.389)
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where ! is the sliding vector of the instantaneous axis of rotation OO 0 and in turn

vrA D !r � r;

vtA D !t � r: (5.390)

Substituting (5.389) and (5.390) into (5.388) we obtain

! � r D !r � r C!t � r D .!r C!t / � r; (5.391)

which proves the validity of (5.385).
If a rigid body simultaneously rotates about N instantaneous axes of rotation

which intersect, then the angular velocity ! of the absolute rotation is equal to

! D
NX

nD1
!n: (5.392)

Theorem 5.19. The absolute angular acceleration of a rigid body rotating non-
uniformly about two intersecting axes is equal to the geometric sum of the following
angular accelerations: of transportation "t , relative "r , and rotational "c .

Proof. In order to prove the equation

" D "t C "r C "c

we will represent (5.385) in the form

! D !t C E0
1!

0r
1 C E0

2!
0r
2 C E0

3!
0r
3;

where the axes of the system O 0X 0
1X

0
2X

0
3 are rigidly connected with a rigid body

during its relative motion.
Differentiating the last equation with respect to time we obtain

" D d!

dt
D d!t

dt
C PE0

1!
0r
1 C PE0

2!
0r
2 C PE0

3!
0r
3 C E0

1
P!0r
1 C E0

2
P!0r
2 C E0

3
P!0r
3

D "t C!t � .E0
1!

0r
1 C E0

2!
0r
2 C E0

3!
0r
3/C E0

1
P!0r
1 C E0

2
P!0r
2 C E0

3
P!0r
3

D "t C!t �!r C "r D "t C "r C "c;

which proves the theorem.
We call the foregoing "c D !t �!r the angular rotational acceleration.
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Note that !r D ! � !t , and therefore

"c D !t �!r D !t � .! � !t /
D !t �! �!t �!t D !t �!: ut

The component of absolute angular acceleration equal to the vector product of the
angular velocity of transportation and the relative angular velocity or to the vector
product of the angular velocity of transportation and the absolute rotational velocity
of a body is called the rotational angular acceleration of a rigid body.

The acceleration "c characterizes the change in direction of angular velocity !r

caused by the rotational motion of transportation of the body.
Let us consider three simple cases of addition of vectors of angular accelerations

being the result of the composition of the rotational motions of a rigid body about
two intersecting axes.

1. Uniform rotation of transportation:

!t D constI "t D 0I " D "r C "c :

2. Uniform relative rotation:

!r D constI "r D 0I " D "t C "c :

3. Uniform relative and transportation rotations:

"t D 0I "r D 0I " D "c:

(v) Composition of instantaneous translational and rotational motion

Let a rigid body rotate with respect to the coordinate system O 0X 0
1X

0
2X

0
3

with instantaneous angular velocity !, and let the coordinate system O 0X 0
1X

0
2X

0
3

move with instantaneous translational velocity v with respect to the space system
OX1X2X3. Let us take an arbitrary point of body A and attach the vectors v and !
at that point (Fig. 5.88).

We will resolve velocity v into two components, v1 and v2, and replace the
component v2 with the couple of rotations of arm AB , and velocities !1 and
!2 D �!1 (!1 and !2 lie in a plane perpendicular to v2). Because !1 C !2 D 0,
in Fig. 5.88a there remain only two vectors, v1 and !2. The instantaneous motion
of the body in this case is equivalent to instantaneous rotation with velocity !2 and
instantaneous translation with velocity v1, where v1 k !2.

Because v1 D v cos˛ and vector v1 is the free vector, we can move it to point B
(Fig. 5.88b). The composition of the instantaneous translational and rotational
motions is the instantaneous screw motion. The instantaneous axis of the screw
motion is parallel to the angular velocity ! of the body, and they lie at the distance
AB D .v sin ˛/=!. The pitch of the kinematic screw is equal to � D .v cos˛/=!.
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Fig. 5.88 Composition of instantaneous translational motion with velocity v and rotational motion
with angular velocity ! (a) and the schematic diagram of a kinematic screw (b)

If the angle between v and! is equal to ˛ D �=2, then v ? ! and � D 0, and the
instantaneous composite motion of the body will be equivalent to the instantaneous
rotation with velocity ! passing through point B , where the distance AB D v=!.

If ˛ D 0, then vectors v and ! immediately form the kinematic screw.
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Chapter 6
Kinematics of a Deformable Body

6.1 Tensors in Mechanics

The notion of a tensor appears not only in kinematics, but also in statics, and the
term was intentionally used several times in previous chapters of the book (see also
[1, 2]).

Chapter 2 presented an example of a flexible beam (Fig. 2.2) that, despite being
deformed, is in static equilibrium. The deformation of that beam is described
by a deformation tensor. The application of a tensor is often indispensable also
when solving statically indeterminate problems where, as was mentioned in Chap. 2
(Example 2.5), we must know the relationships between the stresses (forces) and
deformations (displacements) in deformable bodies, that is, we must know the so-
called stress tensor, which is a two-dimensional tensor. The application of tensor
calculus appears in a natural way in the mechanics of deformable bodies and
continuum mechanics [3–8].

There are many books on classical mechanics, and all authors justify their own
way of presenting the material, motivating it by the didactic requirements of the
book. In the present book we try, as far as possible, to preserve a certain natural and
historical view of the development of mechanics while at the same time striving to
remain within the framework of Newtonian mechanics.

The fundamental attribute in mechanics for Newton was the notion of force. His
dream was the discovery and explanation of the nature of force and an explanation
of the properties of bodies’ motion with the aid of the introduced by him notions of
forces. So far, in the statics of particles and rigid bodies the attributes of the force
are the magnitude (the intensity expressed by a number), direction of action, and
sense, which allow for a description of force by means of the mathematical notion
of a force vector.

However, such an approach has its drawbacks. These consist of the lack of
information regarding the nature (physical aspect) of a force. We use the same vector
to represent the force occurring in the point of contact of two material bodies, the
gravity force (contactless), the electrostatic force, etc. Until now, in discussions on

J. Awrejcewicz, Classical Mechanics: Kinematics and Statics, Advances in Mechanics
and Mathematics 28, DOI 10.1007/978-1-4614-3791-8 6,
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the statics of a perfectly rigid body, the force vector was a sliding vector, that is,
it was possible to move it along its line of action. We will show, however, in the
following sections that this is not always the case. We cannot proceed in that way
in cases of a deformable body or a body in a field of parallel forces. Examples of
scalar and vector quantities in mechanics were presented earlier (Chap. 1).

The scalar in Euclidean space requires the definition of one quantity (a number),
whereas the vector requires the knowledge of three quantities (numbers). However,
both scalar and vector notions in mechanics have physical meaning and denote an
objective physical (mechanical) quantity.

For instance, temperature (scalar) or direction distributions, points of application,
and force magnitudes, after all, do not depend on the type of introduced coordinates
(Cartesian or curvilinear). Therefore, the main goal of mechanics is the introduction
of mathematical apparatus that would best reflect (model) the physical (mechanical)
quantities.

Neither temperature nor force depends on the choice of coordinates or axes
introduced to carry out the analysis of a problem since they are physically objective
quantities.

In the case of an arbitrary scalar quantity in a certain subspace of Euclidean space
we can build a functional dependency between a point of that subspace described by
three numbers .x1; x2; x3/ and a function value. For example, in the case of a scalar
quantity such as temperature we are dealing with the function T D T .x1; x2; x3/,
that is, with a uniquely established relationship between the point of the space and
the scalar (temperature). If in such a subspace we assign the value of that function
to every one of its points, it is said that a scalar field of the considered physical
quantity, in our case temperature field, is defined.

For any scalar field the function defining that field is invariant, that is, it does
not depend on the choice of coordinate system. Such property, however, does not
hold for a vector field. A change in the type of coordinate system, and even its
position in the considered bounded space, leads to a change in the projections of the
given vector (e.g., the aforementioned force) onto the axes of the coordinate system.
In this sense, the projection of a vector onto axes does not retain invariance and is a
variant process. Nevertheless, any choice of coordinate system preserves the length
of a vector, in this case the magnitude of the force. Thus, the length of a vector is an
invariant quantity.

Not without reason did we use earlier a certain logical numbering scheme for the
coordinates .x1; x2; x3/, the coordinate axes OX1X2X3, and for new coordinates
OX 0

1X
0
2X

0
3, OX

00
1 X

00
2 X

00
3 , etc. The introduction of the preceding numbering scheme

allows for an uncomplicated notation of the relationships between the coordinates
of points in old (OX1X2X3) and new (OX 0

1X
0
2X

0
3) coordinate systems through the

introduction of a rotation tensor.
Let us return for a while to the analysis presented in Chap. 5 and as an example

consider the relationship between “old” and “new” coordinates described, for
instance, by (5.296).

The aforementioned algebraic relationships can be obtained very quickly using
the following Table 6.1 [9].
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Table 6.1 Direction cosines

x1 x2 x3

x0

1 a11 a12 a13
x0

2 a21 a22 a23
x0

3 a31 a32 a33

where aij , .i; j D 1; 2; 3/ are direction cosines.
Using the rows of the preceding table we write

x0
1 D a11x1 C a12x2 C a13x3;

x0
2 D a21x1 C a22x2 C a23x3;

x0
3 D a31x1 C a32x2 C a33x3; (6.1)

and then, using the table columns we obtain

x1 D a11x
0
1 C a21x

0
2 C a31x

0
3;

x2 D a12x
0
1 C a22x

0
2 C a32x

0
3;

x3 D a13x
0
1 C a23x

0
2 C a33x

0
3: (6.2)

The systems of (6.1) and (6.2) are respectively equivalent to the following
shortened notation form:

x0
i D

3X

jD1
aij xj ; xj D

3X

iD1
aij x

0
i : (6.3)

The foregoing notation can be simplified even more by dropping the sigma sign,
and now (6.3) take the following form:

x0
i D aij xj .i D 1; 2; 3/; xj D aij x

0
i .j D 1; 2; 3/: (6.4)

In this notational convention, summation is done with respect to the repeated
indices (in the first case j and in the second i ), which disappear in the process of
summation and are called summation indices. The remaining indices (in the first
case i , in the second j ) are called free indices.

Let vector r have non-zero coordinates of the tail, that is, we have

r D E1.x1 � x10/C E2.x2 � x20/C E3.x3 � x30/
D E0

1.x
0
1 � x0

10/C E0
2.x

0
2 � x0

20/C E0
3.x

0
3 � x0

30/: (6.5)

Using relationship (6.4) we have

x0
i D aij xj ; xj D aij x

0
i ;

x0
i0 D aij xj 0; xj 0 D aij x

0
i0; (6.6)
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and subtracting by sides the second equation from the first one we obtain

x0
i � x0

i0 D aij .xj � xj0/; xj � xj0 D aij .x
0
i � x0

i0/; (6.7)

that is,

r 0
i D aij rj ; rj D aij r

0
i ; (6.8)

where now r
�
r1; r2; r3

� D r0�r 0
1; r

0
2; r

0
3

�
.

Relationships (6.8) concern the coordinates of a vector and have a form
analogous to the relationships regarding the coordinates of a point [(6.4)].

We will show now that relationships (6.8) preserve the physical aspect of a vector
quantity.

Using the summation convention introduced earlier we have

r 0
mr

0
m D amkrkaml rl D amkaml rkrl : (6.9)

From the properties of coefficients amk describing the cosines of angles between
axesm and k, coefficients aml describing the cosines of angles between axesm and
l , and their summation amkaml (m plays the role of summation index), and from
relationships (3.53) derived earlier we obtain

r 0
mr

0
m D rl rl ; (6.10)

that is, in expanded form,

.r 0
1/
2 C .r 0

2/
2 C .r 0

3/
2 D .r1/

2 C .r2/
2 C .r3/

2; (6.11)

which proves the invariance of the vector length.
The greatest role in mechanics, however, is played by a tensor of the second rank.

The work of Cauchy,1 published in 1827, regarding the formulation of the so-called
stress formulas in a deformable body, points to the need to apply such a tensor.
In mechanics, apart from the stress tensor there also appears, e.g., the moment of
inertia tensor (see Chap. 3), the strain tensor, deformation velocity tensor.

6.2 Body Kinematics and Stresses

So far we have introduced the idealized notions of a particle and system of particles.
If there are infinitely many particles and they are distributed very close to each other,
then we are dealing with the dense mass distribution, and a discrete mechanical

1Augustin L. Cauchy (1789–1857), French mathematician of genius, his collected works were
published in 27 volumes.
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system (e.g., of lumped mass) transforms into the continuous system (it can be
treated as a process of mass spreading). Also the mechanical properties of such
a system transform from discrete to continuous.

The simplest (idealized) example of a continuous system is a perfectly rigid body,
with which we have already dealt many times. It turns out that the methods and the
concept of equations of statics obtained on the basis of the idealized perfectly rigid
body can be applied also to flexible bodies that after deformation remain in static
equilibrium. If, for instance, one initially stretches a leather belt, and afterward the
system remains in equilibrium acted on by tension forces, then in that position we
can increase the stiffness of the belt (body) and consider it a perfectly rigid body and,
consequently, apply the methods and laws of statics discussed earlier. However, in
order to calculate the mentioned elongation of the belt it is necessary to exploit the
theory of deformable bodies. This observation will be proved later.

Until now we have used the statement that “the forces Fi are applied at points Ai
of a rigid body.” Already here the idealization appears since it is hard to imagine the
action of real, natural interactions between bodies, especially at their direct contact,
by means of the point force. Rather, the “transmission” of force takes place over
a certain (often very small) surface. Earlier we applied, especially while solving
statics examples, the method of sections (intersecting) to the massless elements of
cross sections tending to a point (e.g., massless models of rods, strings, ropes), and
we replaced the interaction caused by the “cut away” part with the action of external
force Fe (e.g., see Chap. 1).

If we expand the notion of force to a surface (which is closer to reality) instead
of a point, then we should introduce the notion of surface force (stress). If we have
a bounded surface of area S [m2], then the average density of distribution of surface
forces over the mentioned surface is described by

� av D FS
S

�
N

m2

�
; (6.12)

and vector � av is expressed in pascals. This means that at every point of surface S
the stress vector � av is applied. Now, if we consider the “contraction” of the surface
to a point (i.e., when S ! 0), from (6.12) we obtain a stress vector at the point of
the form

� D lim
S!0

F.S/

S
D ıFS

ıS
: (6.13)

The symbol ı denotes the infinitely small quantity on a surface and differs from
the notion of differential d , which signifies the increment of a certain physical
quantity related to the increment of an independent variable.

If we take a certain infinitesimal surface ıS , then we calculate the surface force
acting on it from the formula

ıF.S/ D � ıS; (6.14)

and further it is called the elementary surface force. In this way we “stretched” the
force concentrated at a point onto the surface.
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Surface forces are a model of thickly “packed” forces laid out continuously
and densely over a certain (mentally) isolated surface. If an object (a body) lies
on another and contact takes place over a certain surface, we are dealing with
surface gravity forces that are related to the given surface. If a plate is immersed
in liquid, the forces of liquid pressure act on both its sides. These surface forces
are perpendicular to the plate’s surface, and their magnitude is determined by
the distance of the horizontally oriented plate from the surface of the liquid in a
container.

The physical quantity that is most frequently encountered and described in
textbooks characterizing continuous mechanical systems is the continuity of mass
distribution in a certain volume, that is, in isolated three-dimensional space. If we
consider a volume V Œm3�, the density of mass distribution over the whole volume
is given by

	av D M

V

�
kg

m3

�
; (6.15)

and we obtain the density of mass distribution at point A from (6.15) moving on to
the limit V ! 0, that is,

	A D lim
V!0

M

V
: (6.16)

Introducing the notion of infinitesimal mass ıM and volume ıV we have

	A D ıM

ıV
: (6.17)

In a similar way we define the force distribution with respect to the volume of a
continuous system. The averaged volume force is defined by the equation

F.V /av D F
M

D F
	avV

hm

s2

i
; (6.18)

where F is a main vector (geometric sum) of forces applied at all points inside
volume V of mass M . Note that F.V /av has a dimension of acceleration.

Moving on with the volume V ! 0 we obtain a definition of volume force at a
point described by the equation

F.V / D lim
V!0

F
	avV

D ıF
	ıV

: (6.19)

Knowing the volume force at a point, we calculate the main vector of forces at
that point from the equation

ıF D 	F.V /ıV: (6.20)
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According to (6.18) we can calculate the volume force in the field of gravity
forces, which is equal to

F.V /av D M g
M

D g
hm

s2

i
: (6.21)

However, it should be noted that also here we are dealing with a certain
approximation since the gravity forces are actually not parallel. If we take two points
on the surface of the Earth separated by a distance of 1 km and lying on the meridian,
and we place there identical masses, an angle between vectors of gravity forces will
be equal to 3200.

If one of the dimensions of a surface tends to zero, then we obtain a spatial curve
(one-dimensional body), for example, a rope, and the notion of force related to a
unit of length can be introduced N/m

�
kg/s2

�
.

The summation of elementary surface forces over the whole surface under
consideration leads to the determination of a main vector of surface forces, and
the summation of elementary volume forces leads to obtaining the main vector of
volume forces. In the case of mechanical systems, such a summation is replaced
with integration over the surface or the volume.

The forces distributed along one dimension (curve) and over the surface and
volume of a solid were discussed in Chap. 3 by the introduction of the notions of
mass center, centroid of a plane figure (three dimensional figure), and center of
gravity.

Often in practice, because of the application of Cartesian coordinate systems,
right triangles or squares are introduced as elementary surfaces, and tetrahedra or
cubes as elementary volumes. Tetrahedra are such that three of their faces are right
triangles whose vertices coincide and are located at the origin of coordinate system
OX1X2X3.

Let us take an arbitrary pointO of a (rigid or deformable) body and then take the
coordinate systemOX1X2X3. Then let us cut out from our body the aforementioned
tetrahedron bounded by the faces lying in the planes O � X1 � X3, O � X2 � X3,
andO �X1 �X2. Subsequently, near pointO we draw an arbitrary plane such that
it intersects the axes of the coordinate system at pointsO1,O2, andO3, respectively
(Fig. 6.1).

We will replace the action of the body (the part left after cutting out the pyramid)
on the faces of the tetrahedron with the action of a surface force. Because we are
dealing with three elementary right triangles �OO1O3, �OO2O3, and �OO1O2
constituting the rear faces of the pyramid,�O1O2O3 constitutes its front face.

Since all three triangles are very small, we are going to assume that the density
of distribution of surface forces is the same for particular faces of triangles and is
described by one direction and sense.

The areas of the aforementioned triangles we respectively denote by S�OO2O3 D
ıS1, S�OO1O3 D ıS2, S�OO1O2 D ıS3, and S�O1O2O3 D ıS . The surface forces
acting on the faces of the triangle and coming from the part of the material
that remained after cutting are as follows: �� 1ıS1, �� 2ıS2, �� 3ıS3, � .n/ıS .
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Fig. 6.1 A tetrahedron OO1O2O3 cut out from a body; main vectors of surface forces and normal
vectors to pyramid’s faces

The convention of applied signs adopted for the named surface force vectors follows
from the observation that if point O approached face O1O2O3 and finally rested
on it, the surface force on the reverse of �O1O2O3 would have a sense opposite
to the surface force on the of �O1O2O3 (the aforementioned �O1O2O3 is in
equilibrium if these forces cancel out). The sense of the surface force acting on the
obverse of�O1O2O3 is assumed positive. Figure 6.1b illustrates how to easily write
the equation of a plane in which triangle �O1O2O3 lies after choosing a certain

point A belonging to the surface of that triangle. A vector
�!
OA D rA (which must

be perpendicular to the plane �O1O2O3) is now the position vector of the plane,
and the direction cosines of r.x1; x2; x3/ are known. The equation of the mentioned
plane, also called a normal equation of a plane, has the form

x1 cos˛1 C x2 cos˛2 C x3 cos˛3 � jrj D 0: (6.22)

Because surface forces are distributed with identical density over each of the
triangles, they can be replaced with the main vectors applied at centroidsC1, C2, C3,
C of the considered triangles. The centroids are found as a result of the intersection
of medians of every triangle.

Thus, we have the main force vector attached at the geometrical center of every
face of the pyramid. The direction of the main force vector usually does not coincide
with the direction of the normal vector of the face. Apart from the surface forces
acting on four faces of the tetrahedron, the volume force 	FdV also acts, but it is
not plotted in Fig. 6.1. The surface forces are “small,” of the second order, because
the areas of right triangles are equal to magnitudes of 1=2 ıx1ıx2, 1=2 ıx2ıx3, and
1=2 ıx1ıx3, and hence the volume of the tetrahedron is equal to 1=3 S�O1O2O3OC ,
which is “small,” of a third-order magnitude, and therefore it was neglected.

The static equilibrium of the tetrahedron requires, then, that the polygon of the
main vectors of the four surface forces be closed, and additionally the main moment
resulting from these forces and calculated with respect to point O should be equal
to zero.
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In the first case the condition of zeroing of the main vector of surface forces has
the following form:

� .n/ıS D � 1ıS1 C � 2ıS2 C � 3ıS3: (6.23)

The rear faces of the tetrahedron are projections of the front face onto the planes
O �X1 �X2, O �X2 �X3, and O � X1 �X3, and in view of that (Fig. 6.1a)

ıS1

ıS
D E1 ı n D cos.E1;n/ � n1;

ıS2

ıS
D E2 ı n D cos.E2;n/ � n2;

ıS3

ıS
D E3 ı n D cos.E3;n/ � n3: (6.24)

Substituting (6.23) into (6.22) we obtain

� .n/ D n1� 1 C n2� 2 C n3� 3: (6.25)

Let us stop for a moment at the physical interpretation of the preceding vectorial
equation. Vector � .n/ represents the physical quantity of the stress applied to
an arbitrary elementary front face. The situation was similar with other vector
quantities in mechanics considered earlier, for example, with the force vector. The
components of that vector did not have any physical interpretation either and were
dependent on the choice of coordinate system.

Surface forces similar to stress vector � .n/ do not possess the invariance property.
The change in position of a front plane involves a change in the magnitude of � .n/,
so the stress vectors � .n/ do not form a vector field. The situation is even worse with
the surface forces vectors of the rear faces of a tetrahedron, that is, with vectors � 1,
� 2, and � 3. Not only do they depend on the choice of coordinate system but they
also possess no physical interpretation and therefore are often called pseudo vectors.

Let us project vectorial (6.25) onto the axes of the OX1X2X3 coordinate system,
which, in practice, boils down to the multiplication of this equation by unit vectors
Ei ; i D 1; 2; 3.

We know that

� .n/n D �
.n/
1 E1 C �

.n/
2 E2 C �

.n/
3 E3;

� 1 D �11E1 C �12E2 C �13E3;

� 2 D �21E1 C �22E2 C �23E3;

� 3 D �31E1 C �32E2 C �33E3; (6.26)

and as a result of premultiplication we obtain the following system of three scalar
equations representing a tensor:
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Fig. 6.2 Distributions of normal and shear stresses for the face �OO2O3 (a) and for three rear
faces (b)

�
.n/
1 D n1�11 C n2�21 C n3�31;

�
.n/
2 D n1�12 C n2�22 C n3�32;

�
.n/
3 D n1�13 C n2�23 C n3�33I (6.27)

because of the scalar multiplication the equation k resulted from the projection of
the OXk axis, which corresponds to �.n/k .

Knowing the position of the triangle (face) with respect to the adopted coordinate
system OX1X2X3, that is, knowing the direction cosines n1, n2, and n3 and nine
values of �kl , k; l D 1; 2; 3, we are able to calculate �.n/1 , �.n/2 , and �.n/3 and as a
result determine the stress vector � .n/ acting on the chosen face �O1O2O3. The
table of these nine coordinates describes in a unique and invariant way the stress
� .n/, although its magnitude will now depend on the choice of plane �O1O2O3
defined by the normal n. Moreover, the obtained values �kl occurring in (6.26) have
a physical meaning. According to the adopted numeration convention, at �kl the
index l denotes the projection onto theOXl axis of a stress acting on a face (triangle)
perpendicular to the OXk axis. For instance, �21 denotes the projection of the stress
acting on a face perpendicular to theOX2 axis (i.e., of vector � 2) onto theOX1 axis.

Quantities with identical indices, that is, �11, �22, and �33, denote the projections
of the stresses � 1, � 2, and � 3 onto the directions of vectors normal (perpendicular)
to the rear faces of the tetrahedron, and we call them normal stresses. We call the
remaining six elements of the stress, that is, �12, �13, �21, �23, �31, and �32 shear
stresses. For example, according to the introduced notation the stresses �12 and �13
are tangent to the face of the triangle perpendicular to theOX1 axis (i.e.,�OO2O3)
and acting along theOX2 andOX3 axes. The latter is illustrated in Fig. 6.2a, and all
the components of the stress tensor are shown in Fig. 6.2b, where the direction of
senses is changed with respect to the senses from Fig. 6.1a.
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In the branch of mechanics regarding the mechanics of materials, normal stresses
are customarily denoted by �11 D �1, �22 D �2, and �33 D �3, whereas the
remaining tangential stresses are denoted by �12 D �12, �13 D �13, �21 D �21,
�23 D �23, �31 D �31, and �32 D �32.

Let us now proceed with the interpretation of the obtained system of (6.27),
bearing in mind that

n D n1E1 C n2E2 C n3E3;

� .n/n D �
.n/
1 E1 C �

.n/
2 E2 C �

.n/
3 E3: (6.28)

Equation (6.27) describes the transition from the components of vector n to the
components of vector � .n/ through linear transformation of the form

� .n/ D n� (6.29)

with the aid of the second-order tensor � whose matrix has the following form:

Œ�� D
2

4
�11 �21 �31
�12 �22 �32
�13 �23 �33

3

5 : (6.30)

In (6.29) we exploited postmultiplication of vector n by tensor � .
Because the rank of a tensor is determined by the number of indices that describe

it, in our case the order of tensor equals two as we have two indices. Applying the
tensor notation introduced earlier, the system of (6.27) can be written now in a very
simple form:

�
.n/

k D nl�lk; k D 1; 2; 3: (6.31)

Now the use of the tensor notation and linear transformation (transition) from
one vector .n/ into the other .� n/ is applied in accordance with (6.29).

What is more, both vectors � n and n are connected with the chosen elementary
front face and both have a physical meaning.

Recall that, for example, in the case of the force vector, its invariant quantity was
the length, although its components were dependent on the choice of coordinate
system. Also, now the values of coefficients in matrix representation of a tensor �
of the form (6.30), that is, the coefficients �kl , vary with the choice of coordinate
system, but the set of all nine coefficients possesses one physical meaning represent-
ing the stress state of a deformable body at its chosen point. For the given coordinate
system, that is, knowing the stresses acting on the side faces of the tetrahedron and
knowing vector n, that is, having the front face chosen, we are able to determine the
stress vector acting on the front face.

The reader has surely noticed that the matrix representation (6.30) possesses a
slightly different structure than the matrices encountered so far where the first index
should indicate the row number to which the particular element belongs.
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We call the tensor �� the conjugated (transposed) tensor with tensor � , and it has
the form

�� D
2

4
�11 �12 �13
�21 �22 �23
�31 �32 �33

3

5 ; (6.32)

where the following equality holds true:

��
kl D �lk; k; l D 1; 2; 3: (6.33)

For an arbitrary vector ai , for an arbitrary tensor of the second order R
represented by a matrix of the form

�
rkl
�
3�3 we have

Ra D aRT ; RT a D aR: (6.34)

We call a tensor with the property

RT D R; rkl D rlk (6.35)

a symmetric tensor.
We will demonstrate subsequently that the analyzed stress tensor is a symmetrical

tensor, that is, that the notation � n D n� used in (6.29) was also correct. The
relationships (6.35) lead to the relationships �12 D �21, �13 D �31, and �23 D �32.

In order to demonstrate the aforementioned property of the stress tensor let us
consider the second necessary condition of keeping the tetrahedron in the static
equilibrium position, that is, we will write the equation of moments caused by the
surface forces �nıS , �1ıS1, �2ıS2, and �3ıS3.

As was mentioned previously, the vectors of these surface forces will be applied
at the geometrical centers of the triangular faces of the tetrahedron which, in turn,
are the points of intersection of triangles’ medians. Therefore, we must define, with
the aid of position vectors, the four previously mentioned points in which the vectors
of external loads are applied. For this purpose we will use the diagram shown in
Fig. 6.3.

Setting r1 D ��!
OC1, r2 D ��!

OC2, r3 D ��!
OC3, and r D ��!

OC , the equation of
moments with respect to pointO assumes the following form:

r � � .n/ıS D r1 � � 1ıS1 C r2 � � 2ıS2 C r3 � � 3ıS3; (6.36)

and taking into account (6.23) and (6.25) in it we obtain

.r � r1/ � � 1n1 C .r � r2/ � � 2n2 C .r � r3/ � � 3n3 D 0: (6.37)

The projections of point C onto the rear planes of the tetrahedron are the points
C1, C2, and C3, which are the centers of the respective rear faces (triangles) of the
tetrahedron. According to Fig. 6.3 we have
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Fig. 6.3 A tetrahedron with marked face centers C , Ci .i D 1; 2; 3/ and their position vectors
rCi , r

��!
C3C D ��!

OC � ��!
OC3 D r � r3 � �3E3;

��!
C2C D ��!

OC � ��!
OC2 D r � r2 � �2E2;

��!
C1C D ��!

OC � ��!
OC1 D r � r1 � �1E1: (6.38)

This means that vectors
��!
CiC are parallel to unit vectors Ei , where the roles of

scaling factors are played by scalars �i . Substituting (6.38) into (6.37) we obtain

�1n1.E1 � � 1/C �2n2.E2 � � 2/C �3n3.E3 � � 3/ D 0: (6.39)

The terms of the equation of the form Ei � � i can be determined from (6.38)
after their scalar multiplication by n, because we have

.r � r1/ ı n D r ı n � r1 ı n;

.r � r2/ ı n D r ı n � r2 ı n;

.r � r3/ ı n D r ı n � r3 ı n: (6.40)

Let us note now that
r ı n D jrj; (6.41)
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and jrj D r denotes the distance of pointO from the planeO1O2O3. Extending the
segments OC1, OC2, and OC3 until they intersect with the sides of �O1O2O3, we
obtain points C

0

1 , C
0

2 , and C
0

3 (in Fig. 6.3 only the last two points are marked). The

projections of vectors
��!
OC

0

1 ,
��!
OC

0

2 , and
��!
OC

0

3 onto the normal vector n, that is, onto
the direction of vector r, are identical and equal to

��!
OC 0

1 ı n D ��!
OC 0

2 ı n D ��!
OC 0

3 ı n D 3

2
r1 ı n D 3

2
r2 ı n D 3

2
r3 ı n D r; (6.42)

because
��!
OC1 D 2=3

��!
OC

0

1,
��!
OC2 D 2=3

��!
OC

0

2,
��!
OC3 D 2=3

��!
OC

0

3, which follows from
the properties of the midperpendicular of the triangle.

Taking into account (6.41) and (6.42) in (6.40), and then taking into ac-
count (6.37) we obtain

r ı n � r1 ı n D 1

3
r D �1E1 ı n D �1n1;

r ı n � r2 ı n D 1

3
r D �2E2 ı n D �2n2;

r ı n � r3 ı n D 1

3
r D �3E3 ı n D �3n3; (6.43)

which allows for the determination of the desired quantities �i , i D 1; 2; 3.
Substituting (6.43) into (6.39) we obtain

E1 � �1 C E2 � �1 C E3 � �1 D 0: (6.44)

Now, let us premultiply (6.44) by Ei (vector product) to obtain

E1 � .E1 � � 1/C E1 � .E2 � � 2/C E1 � .E3 � � 3/ D 0;

E2 � .E1 � � 1/C E2 � .E2 � � 2/C E2 � .E3 � � 3/ D 0;

E3 � .E1 � � 1/C E3 � .E2 � � 2/C E3 � .E3 � � 3/ D 0; (6.45)

and then, using the following property of the vector product

a � .b � c/ D .a ı c/b � .a ı b/c; (6.46)

(6.45) can be written in the form

.E1 ı � 1/E1 C .E1 ı � 2/E2 C .E1 ı � 3/E3 D � 1;

.E2 ı � 1/E1 C .E2 ı � 2/E2 C .E2 ı � 3/E3 D � 2;

.E3 ı � 1/E1 C .E3 ı � 2/E2 C .E3 ı � 3/E3 D � 3: (6.47)
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Fig. 6.4 The considered
region of surface S cut out
of a deformable body and
volume V with elementary
main vectors of surface and
volume forces

Performing the scalar multiplications using the definitions of vectors � 1, � 2, and
� 3 introduced earlier [see (6.26)] we obtain

�11E1 C �21E2 C �31E3 D �11E1 C �12E2 C �13E3;

�12E1 C �22E2 C �32E3 D �21E1 C �22E2 C �23E3;

�13E1 C �23E2 C �33e3 D �31E1 C �32E2 C �33E3; (6.48)

from which it follows that

�12 D �21; �23 D �32; �31 D �13; (6.49)

which proves the symmetry of the stress tensor. Because of the previously men-
tioned symmetry of the stress tensor six components of the tensor are determined.

From the conducted calculations regarding the analysis of equilibrium state of
the elementary tetrahedron cut out from a deformable body it follows that the static
equilibrium conditions of this tetrahedron are necessary but not sufficient conditions.
At this stage of our study we are not in a position to completely solve the stated
problem, that is, to determine the six components of the stress tensor.

Let us recall that the elementary tetrahedron chosen by us was small enough for
the volume forces to be neglected. Now we will try to proceed in a different way,
that is, in a continuous deformable body we will isolate a volume V bounded by
the surface S large enough that this time the volume forces (which correspond to
internal forces in the body) cannot be neglected.

Figure 6.4 shows the region of volume V “cut out” of the considered body and
bounded by the surface S .2

2Subsequently we also denote by S a symmetric tensor, but these notions are made distinct in the
text.
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If after deformation of a body its cut-out volume is in equilibrium, then internal
forces must have arisen that, in the general case, cannot be determined without
taking into account the stress-strain state of the body. This was already indicated
by previous cases of so-called statically indeterminate mechanical systems.

In a deformed static equilibrium state vectors of volume and surface forces
calculated over the total surface and volume of the cut out volume must be balanced
by each other, that is,

Z

S

� .n/ıS C
Z

V

	FdV D 0: (6.50)

In order to enable further calculations we must pass from the surface integral to
the volume integral based on the so-called Gauss3–Ostrogradski4 integral formula:

Z

V

r .:/ıV D
Z

S

n.:/ıS; (6.51)

where in a Cartesian coordinate system

r D riEi D @

@x1
E1 C @

@x2
E2 C @

@x3
E3 (6.52)

is “nabla,” that is, a differential operator that, after acting on a scalar quantity,
generates a vector.

Let the scalar quantity be, for instance, the quantity � . Then (6.50) takes the form
Z

V

r�ı� D
Z

S

n�ıS; (6.53)

and, as is easily noticed, we have

r� D @�

@x1
E1 C @�

@x2
E2 C @�

@x3
E3 D grad�: (6.54)

Notation (6.53) indicates the one-to-one correspondence between the operator r
(“nabla” vector) acting in R3 and vector n in R2 since it is normal to surface S .

However, the Gauss–Ostrogradski integral formula (6.51) possesses a broader
interpretation because one may use scalar, vector, or tensor functions as the operator
.:/ In (6.29) we multiplied the vector by the tensor. In the general case, such a
multiplication is not commutative, and only regarding the symmetric tensor is the
relationship n� D �n valid [see also (6.34) and (6.35)].

3Carl F. Gauss (1777–1855), German mathematician who studied number theory, analysis,
statistics, differential geometry, astronomy, and optics.
4Michail W. Ostrogradski (1801–1862), Ukrainian mathematician who studied algebra, number
theory, analysis, and probability calculus.
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We will introduce now a postmultiplication operation of a tensorR by a vector a,

Ra D b; (6.55)

defined in the following way:

bl D .Ra/l D rl1a1 C rl2a2 C rl3a3 � rlkak; l D 1; 2; 3: (6.56)

In a similar way we introduce a premultiplication operation of tensor R by
vector a:

cl D .aR/l D r1la1 C r2la2 C r3la3 � akrkl ; l D 1; 2; 3: (6.57)

Depending on the mode of multiplication, this operation generates either vector b
or vector c.

The simplest example of the Gauss–Ostrogradski formula, that is, for one-
dimensional cases related to the three axes of a Cartesian coordinate system, is

Z

S

@'

@x1
@S D

Z

V

n1'@V;

Z

S

@'

@x2
@S D

Z

V

n2'@V;

Z

S

@'

@x3
@S D

Z

V

n3'@V: (6.58)

Multiplying the equations respectively by E1, E2, and E3 and adding them
together we obtain

Z

S



@'

@x1
E1 C @'

@x2
E2 C @'

@x3
E3

�
ıS D

Z

V

.n1'E1 C n2'E2 C n3'E3/ ıV;

(6.59)

which yields (6.51), where in place of dots we put '.
In the case of tensor 
 of elements 
kl .k; l D 1; 2; 3/, we have

Z

S

@
kl

@xk
ıS D

Z

V

nk
klıV; l D 1; 2; 3; (6.60)

and indices k are summation indices. The preceding notation is equivalent to

Z

S

rk
klıS D
Z

V

nk
klıV; l D 1; 2; 3: (6.61)
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In turn, according to (6.58) we have

Z

S

.r
/lıS D
Z

V

.n
/lıV; l D 1; 2; 3: (6.62)

Multiplying (6.62) respectively by El , that is, E1, E2, and E3, and adding them
by sides we obtain

Z

S

r
ıS D
Z

V

n
ıV; (6.63)

that is, again, we obtained (6.51) where instead of dots, tensor 
 was inserted.
According to the previous transformations we applied the following projection

along the l axis:

.r
/l D rk
kl D rk
kl D @
kl

@xk
� .div
/l : (6.64)

It follows that the vector r
 D div
 after returning to (6.63) leads to the
expression

Z

S

div
ıS D
Z

V

n
ıV; (6.65)

where projections of vector div
, that is, the divergence of tensor 
, have the form

.div
/1 D .r
/1 D @
11

@x1
C @
21

@x2
C @
31

@x3
;

.div
/2 D .r
/2 D @
12

@x1
C @
22

@x2
C @
32

@x3
;

.div
/3 D .r
/3 D @
13

@x1
C @
23

@x2
C @
33

@x3
: (6.66)

The vector of divergence of tensor 
 can be represented in a Cartesian coordinate
system in the form

div
 D E1 .r
/1 C E2 .r
/2 C E3 .r
/3
D E1



@
11

@x1
C @
21

@x2
C @
31

@x3

�
C E2



@
12

@x1
C @
22

@x2
C @
32

@x3

�

CE3



@
13

@x1
C @
23

@x2
C @
33

@x3

�
: (6.67)

Finally, the equivalent tensor form (6.65) of the Gauss–Ostrogradski
formula (6.51) was derived.
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Now, let us return to the state of equilibrium of a deformable body described
by (6.50). Using (6.65) the equation takes the form

Z

V

.div� C 	F/ ıV D 0: (6.68)

The preceding integral is calculated over volume V of the cut out volume of the
body, and also in a special case can be applied to the elementary volume ıV . In this
case from (6.68) we obtain

ıVZ

0

.div� C 	F/ ıV D Œdiv� C 	F�ıV0 D .div� C 	F/ ıV D 0: (6.69)

Because by assumption ıV is arbitrary and different than zero, from (6.69) we
finally obtain

div� C 	F D 0: (6.70)

Multiplying the preceding equations respectively by E1, E2, and E3, and taking
into account (6.67), where instead of 
 one should substitute � , we obtain the
following three scalar equations:

@�11

@x1
C @�21

@x2
C @�31

@x3
C 	F1 D 0;

@�12

@x1
C @�22

@x2
C @�32

@x3
C 	F2 D 0;

@�13

@x1
C @�23

@x2
C @�33

@x3
C 	F3 D 0: (6.71)

Because we already proved earlier that the stress tensor was symmetrical, (6.71)
can be represented in the form

@�11

@x1
C @�12

@x2
C @�13

@x3
C 	F1 D 0;

@�12

@x1
C @�22

@x2
C @�23

@x3
C 	F2 D 0;

@�13

@x1
C @�23

@x2
C @�33

@x3
C 	F3 D 0: (6.72)

At this point of our discussion let us note that we have three algebraic equa-
tions (6.72) at our disposal for the purpose of determining the six unknowns �11, �12,
�13, �22, �23, and �33, and in view of that the system of equations (6.72) constitutes
the necessary equilibrium conditions, but not sufficient conditions.
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Let us now consider the infinitesimal displacement of an elementary volume cut
out of a deformable body. Let us recall that in the course of previous considerations
it was shown that an arbitrary force system acting on a rigid body could be reduced
to a wrench. In this case the main moment of forces would cause a “small” rotation
of the rigid body about the axis of a wrench, and the main force vector would cause
a translation along the wrench axis (central axis). A rigid body, by definition, is a
body whose every point is subjected to the same translation and rotation through the
same angle measured in the plane perpendicular to the mentioned axis.

That observation, related to the whole arbitrary volume of a body, has a
global character. However, in the case of a deformable body, that is, for a purely
mathematical model allowing for the possibility of displacement of internal points
of the body, static equilibrium has a local character. The deformation of any
chosen volume of a deformable body can occur in a similar way determined by
the translation and rotation of a rigid body reflected in translational deformation
(connected with the diagonal part of of the stress) and the rotational deformation
connected with the non-diagonal elements of the deformation tensor.

Already H. Helmholtz5 in 1858 had shown that the deformation (displacement)
of an arbitrary point of elementary volume of a deformable continuous system
consisted of a so-called quasistiff deformation, including translational and rotational
displacement, as well as of deformational displacement (displacement due to
deformation).

Helmholtz formulated his observation in the form of a theorem today known as
the Helmholtz theorem.

We will now show how the two aforementioned deformation components of a
deformable medium (body) should be interpreted. However, it should be indicated
that the Helmholtz theorem regards the elementary volume of deformable medium,
and therefore, as distinct from a rigid body, it has a local character.

Since in a deformable medium (as distinct from a rigid one) the possibility of
relative displacement of two arbitrary points of the body is allowed, let us take in
an elementary volume of such a body ıV two arbitrary points B and B1 whose
positions are described by position vectors r and r1 with respect to a certain fixed
pointO (Fig. 6.5).

Let the elementary displacements (infinitely small) of points B and B1 be equal
to u D dr and u1 D dr1. Because we want to estimate the relative displacement
of the points, we introduce a radius vector with respect to pole B denoted by ır.
Before deformation B D B

0

and B1 D B
0

1, that is, u D 0 and u1 D 0.
Let us recall the operation of differentiation of a vector along the direction of the

second vector known from mathematical analysis. Let us return to symbolical vector
operator r , which has coordinates in the adopted Cartesian coordinate system of the
form

rk D @

@xk
; k D 1; 2; 3: (6.73)

5Hermann Helmholtz (1821–1894), a German physicist and mathematician who studied acoustics
and thermodynamics.
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Fig. 6.5 Position vectors r
and r1 and displacements u
and u1 of points B and B1
(see formula (6.110))

A gradient of scalar function ' can be represented in the form of a product of
vector r and the scalar ' of the form

grad' D r': (6.74)

In turn, a derivative of scalar function ' in the direction of axis l is represented
in the form

@'

@l
D l ı r' D l ı grad'; (6.75)

where as previously a dot denotes the scalar product of two vectors.
Let us note that

l ı r D l1
@

@x1
C l2

@

@x2
C l3

@

@x3
D lk

@

@xk
D @

@l
; (6.76)

where lk D cos.l ;Ek/.
We obtain the projections of the gradient of scalar function '.x1; x2; x3/ onto

the coordinate axes from (6.74) after multiplying by E1, E2, and E3 and after
substituting the unit vectors E1, E2, and E3 into (6.75) instead of l, that is,

E1 ı grad' D .grad'/1 D E1 ı r' D @

@x1
';

E2 ı grad' D .grad'/2 D E2 ı r' D @

@x2
';

E3 ı grad' D .grad'/3 D E3 ı r' D @

@x3
': (6.77)

The multiplication operation lır D @
@l

can also be applied to vectorial functions
(e.g., a D a.x1; x2; x3/) and tensor functions T in the following way:
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@a

@l
D .l ı r / a; @T

@l
D .l ı r / T: (6.78)

The first (6.78) defines a notion of projection of vector a onto the direction
of vector l. Since we have for two vectorial functions l D l .x1; x2; x3/ and
a D a.x1; x2; x3/

.l ı r / a D l



l

l
ı r

�
a D l

@a

@l
; (6.79)

because l
l

is a unit vector of the l axis. In (6.79) the symbol @ a
@l

denotes the
derivative of vector a on the direction of vector l.

With the aid of the introduced symbolic operator-vector nabla r , apart
from the aforementioned vector derivative, we can additionally define the
following two operations of spatial differentiation related to the vectorial function
a D a.x1; x2; x3/.

We call the scalar product of the form

diva D r ı a D rkak D @ak

@xk
� @a1

@x1
C @a2

@x2
C @a3

@x3
(6.80)

a divergence of a vector field (a vector).
We call the vector product of the form

curla D r � a (6.81)

a curl of a vector field (a vector) a.
The vector curl a can be represented in tensor form using the notion, introduced

earlier, of the third-order tensor "pqr (alternating tensor) of the form

curla D "pqrEp
@ar

@xq
; (6.82)

where according to (5.140) the only non-zero elements of that tensor are "123 D
"312 D "231 D 1 and "213 D "132 D "321 D �1, and the summation in (6.82) from 1
to 3 is done with respect to the three introduced repeating indices.

From (6.81) it follows directly that

curla D

ˇ̌
ˇ̌
ˇ̌
ˇ

E1 E2 E3
@
@x1

@
@x2

@
@x3

a1 a2 a3

ˇ̌
ˇ̌
ˇ̌
ˇ

D E1



@a3

@x2
� @a2

@x3

�
C E2



@a1

@x3
� @a3

@x1

�
C E3



@a2

@x1
� @a1

@x2

�

D E1curl1aC E2curl2aC E3curl3a: (6.83)
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Once the essential information on the tensor calculus is presented, we will
explain the notion of dyad referring to two physical vectors a and b of the form

ab D

2

666664

a1b1 a1b2 a1b3

a2b1 a2b2 a2b3

a3b1 a3b2 a3b3

3

777775
; (6.84)

where we do not place a dot between vectors a and b. Thus, the dyad is, apart from
the scalar product and the vector product, the third operation of multiplication of
two vectors.

For an arbitrary Cartesian coordinate system described by vectors E1, E2, and
E3 it is possible to form nine dyads of the form EpEq , where p; q D 1; 2; 3. The
elements of a dyad matrix can be determined using the following equation:

�
EpEq

�
rs

D �
Ep ı Er

� �
Eq ı Es

�
: (6.85)

Let us note that once a vector in a Cartesian coordinate system is represented by
unit vectors as

a D a1E1 C a2E2 C a3E3; (6.86)

a two-dimensional tensor T of elements Tqr is represented by dyads

T D TqrEqEr : (6.87)

In turn, a unit tensor I0 represented by a matrix

2

4
1 0 0

0 1 0

0 0 1

3

5 (6.88)

has the form

I0 D E1E1 C E2E2 C E3E3 D ıpqEpEq: (6.89)

If in (6.84) a D r , then we obtain a tensor of the form

D D rb D EpEq
@bq

@xp
; (6.90)
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and then the matrix representation of tensor D has the form

2
66666664

@b1

@x1

@b2

@x1

@b3

@x1

@b1

@x2

@b2

@x2

@b3

@x2

@b1

@x3

@b2

@x3

@b3

@x3

3
77777775

; (6.91)

and the elements of tensor D are as follows:

Dpq D rpbq D @bq

@xp
: (6.92)

So far the operator r acting on a scalar ' defined for us

r' D grad'; (6.93)

where grad' is a vector.
In turn, based on (6.90) we introduce the notion of a gradient of vectorial function

b D b.x1; x2; x3/, which will be denoted by

D D rb D Gradb: (6.94)

However, if D� is a tensor conjugated with D, then

db D D�dr D db

dr
dr D drD D dr Gradb; (6.95)

where

dbp D @bqp

@xq
; p D 1; 2; 3: (6.96)

An arbitrary non-symmetric tensor T can be represented in the form of symmet-
ric tensor .S/T � S and antisymmetric (skew-symmetric) tensor .A/T � A. Since

T � 1

2

�
T C T ��C 1

2

�
T � T �� ; (6.97)

and taking into account the introduced notations

.S/T D 1

2

�
T C T �� ; .A/T D 1

2

�
T � T �� ; (6.98)

we have

T D.S/ T C.A/ T: (6.99)
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The notion of symmetric tensor was discussed on an example of a physical stress
tensor [see (6.33)], and its basic property is

.S/T D.S/ T �; (6.100)

where the symbol .�/ denotes a transposition, that is, replacement of the rows by
columns in the matrix representation of tensor T .

An arbitrary skew-symmetric tensor A has, in turn, the property

A� D �A; Ars D �Asr ; (6.101)

which means that

A12 D �A21; A23 D �A32; A31 D �A13;
A11 D A22 D A33 D 0; (6.102)

and finally the matrix of tensor A has the form

2

4
0 A12 �A31

�A12 0 A23
A31 �A23 0

3

5 : (6.103)

The tensor has nine elements, only three of which are normally independent.
As can be seen, tensor A consists of only three elements: A12, A31, and A23. The

set of three elements (numbers) may represent a vector in three-dimensional space:

c D c1E1 C c2E2 C c3E3; (6.104)

where c1 D A23, c2 D A31, and c3 D A12.
Let us choose an arbitrary vector a and consider the case of pre- and postmulti-

plication of this vector by tensor A. In the former case we have successively

.Aa/1 D A11a1 C A12a2 C A13a3

D A12a2 � A31a3 D c3a2 � c2a3;
.Aa/2 D A21a1 C A22a2 C A23a3

D �A12a1 C A23a3 D c1a3 � c3a1;

.Aa/3 D A31a1 C A32a2 C A33a3

D A31a1 � A23a2 D c2a1 � c1a2: (6.105)
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In the latter case we have successively

.aA/1 D a1A11 C a2A21 C a3A31

D �A12a2 C A31a3 D c2a3 � c3a2;

.aA/2 D a1A12 C a2A22 C a3A32

D A12a1 � A23a3 D c3a1 � c1a3;
.aA/3 D a1A13 C a2A23 C a3A33

D A23a2 � A31a1 D c1a2 � c2a1: (6.106)

From (6.105) and (6.106) we obtain

Aa D a � c; aA D c � a: (6.107)

From (6.107) it follows that
Aa ¤ aA: (6.108)

If vector c is associated with tensorA, after the introduction of a vector c� D �c
associated with tensor A�, the following equalities are valid:

Aa D aA� D c� � a;
aA D A�a D a � c�: (6.109)

Introducing spatial derivatives of a vector function and on the basis of Fig. 6.5
we can write

u1 D u C .ır ı r /u D u C ır .ru/ D u C ırD; (6.110)

where according to (6.90) and (6.91) we have the following matrix representation
of tensorD:

2

66666664

@u1
@x1

@u2
@x1

@u3
@x1

@u1
@x2

@u2
@x2

@u3
@x2

@u1
@x3

@u2
@x3

@u3
@x3

3

77777775

: (6.111)

In turn, according to the decomposition of tensor D into symmetrical .S/D and
antisymmetrical tensor .A/D, (6.110) takes the form

u1 D u C ır.A/D C ır.S/D: (6.112)
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According to (6.104) and (6.107) we have

ır.A/D D c � ır; (6.113)

where

c1DAD23; c2DAD31; c3DAD12: (6.114)

In order to determine the values c1; c2, and c3 associated with the asymmetric
tensor we use the following relationships [see (6.110) and (6.111)]:

D D ru; D� D .ru/� ; .A/D D 1

2

�
D �D�� : (6.115)

The desired coordinates of vector c are equal to

c1 D 1

2



@u3
@x2

� @u2
@x3

�
D 1

2
.curl u/1 ;

c2 D 1

2



@u1
@x3

� @u3
@x1

�
D 1

2
.curl u/2 ;

c3 D 1

2



@u2
@x1

� @u1
@x2

�
D 1

2
.curl u/3 : (6.116)

Multiplying (6.116) respectively by E1, E2, and E3 and then adding by sides we
obtain

c D 1

2
curl u: (6.117)

We write the original (6.110) in the equivalent form

u1 D us1 C ue1; (6.118)

where

us1 D u C � � ır; � D 1

2
curl u; (6.119)

and � is the infinitesimal small rotation introduced into the study regarding the
displacement of a rigid body in Sect. 5.1.5.

Note that us1 describes a displacement of point B1 with respect to point B just as
would occur in a rigid body. It is the geometric sum of translation vector u and the
displacement resulting from rotation about an axis ır through an angle � , and hence
this term of the equation us1 is marked with a superscript abbreviation s indicating a
behavior similar to that of a rigid body.

The remaining term ue1 describes the displacement of point B1 with respect to
point B as a result of translatory deformation of the chosen cutout of a deformable
body.
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Fig. 6.6 Presentation of the action of a symmetric tensor consisting of six elements onto elastic
displacements of point O 0 � B 0 with respect to O � B

Let us note that, because of the symmetry of tensor .S/D, we have

ue1 D ır.s/DD.s/Dır: (6.120)

Using the second equation of (6.115) we determine the matrix of symmetric
tensor .S/D D " of the form

Œ"� D

2
666666664

@u1
@x1

1

2



@u1
@x2

C @u2
@x1

�
1

2



@u1
@x3

C @u2
@x1

�

1

2



@u1
@x2

C @u2
@x1

�
@u2
@x2

1

2



@u2
@x3

C @u3
@x2

�

1

2



@u1
@x3

C @u3
@x1

�
1

2



@u2
@x3

C @u3
@x2

�
@u3
@x3

3
777777775

; (6.121)

where

"km D 1

2



@uk
@xm

C @um
@xk

�
: (6.122)

Now we will show that the diagonal elements of the symmetric tensor represent
the relative strain of the infinitely small segments ır1

�
ıx1; 0; 0

�
, ır2

�
0; ıx2; 0

�
and

ır3
�
0; 0; ıx3

�
and their relative angular displacement. Let us look at Fig. 6.6, where

at the points B D O and B 0 D O 0 (Fig. 6.5) the origins of the coordinate systems
OX1X2X3 and OX 0

1X
0
2X

0
3 were introduced; note that the second system is not

rectangular.
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According to the previous discussion we have

u D dr; (6.123)

where the operator d is understood as the increment of radius vector r in time since
.d=dt/dt D d . Multiplying both sides of (6.123) by the operator ı we obtain

ıu D ı .dr/ D u1 � u D dr1 � dr D d .r1 � r/ D d .ır/ : (6.124)

Hence
u1 � u D ıu D "ır D d .ır/ ; (6.125)

where the symbol ı denotes an arbitrary infinitely small increment of the given
quantity during transition from pointO to O 0 at the given (fixed) time instant.

Multiplying (6.125) (that is, the part consisting of the two last terms) in turn by
ır1, ır2, and ır3 we obtain

"11ıx1 D dıx1; "22ıx2 D dıx2; "33ıx3 D dıx3: (6.126)

From the preceding equations it follows that

"kk D dıxk
ıxk

D "k D @uk
@xk

; (6.127)

where the elements of "11, "22, and "33 denote the relative elongations "1, "2, and "3
of the infinitely small lengths ır1 D jır1j, ır2 D jır2j, and ır3 D jır3j.

Let 'kl denote the angles between the axes k and l and ' 0
k0l 0

denote the angles
between the axes k0 and l 0 after deformation, that is,

' 0
k0l 0 D 'kl C d'kl : (6.128)

In turn, the cosines of the direction angles are equal to

cos'kl D


ırk
ıxk

ı ırl
ıxl

�
D 1

ıxkıxl
.ırk ı ırl / : (6.129)

Using operator d on both sides of (6.129) we obtain

� sin'kld'kl D 1

ıxkıxl
d .ırk ı ırl /C d



1

ıxkıxl

�
.ırk ı ırl / : (6.130)

Because before deformation for k ¤ l we have

'kl D �

2
; sin 'kl D 1; ırk ı ırl D 0; (6.131)
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from (6.131) we obtain

� d'kl � �kl D 1

ıxkıxl
d .ırk ı ırl / : (6.132)

Following the transformations of (6.132) we obtain

�kl D 1

ıxkıxl
.dırk ı ırl C ırk ı dırl / ; (6.133)

and taking into account equalities (6.125) in it we obtain

�kl D 1

ıxkıxl
Œ."ırk/ ı ırl C ."ırl ı ırk/� : (6.134)

In order to perform scalar multiplication of vectors one should take the values
k D 1; 2; 3 and l D 1; 2; 3; as a result we obtain the relationships

.ır1/1 D ıx1; .ır1/2 D0; .ır1/3 D 0;

.ır2/1 D 0; .ır2/2 Dıx2; .ır2/3 D 0;

.ır3/1 D 0; .ır3/2 D0; .ır3/3 D ıx3:

(6.135)

In turn, we conduct a summation over the repeating indices k and l in (6.134) for
k ¤ l , obtaining

."ır1/ ı ır2 C ."ır2/ ı ır1 D ."ır1/2 � ıx2 C ."ır2/1 � ıx1
D ."12 C "21/ ıx1ıx2;

."ır2/ ı ır3 C ."ır3/ ı ır2 D ."ır2/3 � ıx3 C ."ır3/2 � ıx2
D ."23 C "32/ ıx2ıx3;

."ır3/ ı ır1 C ."ır1/ ı ır3 D ."ır3/1 � ıx1 C ."ır1/3 � ıx3
D ."31 C "13/ ıx1ıx3: (6.136)

Substituting (6.136) into (6.134) and taking into account that "12 D "21,
"23 D "32, and "13 D "31 we obtain

�12 D 2"12; �23 D 2"23; �13 D 2"13: (6.137)

The values �kl .k ¤ l/, taking into account (6.137) and (6.121), are equal to

�12 D 2"12 D @u1
@x2

C @u2
@x1

;
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�23 D 2"23 D @u2
@x3

C @u3
@x2

;

�13 D 2"13 D @u1
@x3

C @u3
@x1

: (6.138)

The obtained relationships (6.138) allow for a physical interpretation of non-
diagonal elements of the symmetric tensor " that are equal to

"kl D 1

2
�kl ; k; l D 1; 2; 3; k ¤ l: (6.139)

This means that the non-diagonal elements of tensor " represent shear strain
angles between the coordinate axes in planes determined by the axes of the numbers
k and l .

If an elastic body undergoes deformation, we may speak of the velocity of
this deformation. Let us return then to our basic vectorial equation describing the
deformation of two points in an elastic body, that is, to (6.118) and (6.119). Dividing
the foregoing relationships by dt we obtain

Pu1 D Pu C P� � ır C P"ır; (6.140)

or, in equivalent form,
v1 D v C! � ır C P"ır; (6.141)

where P" denotes a tensor describing the velocity of body deformation that, according
to (6.121), has the following matrix representation:

Œ P"� D

2

666666664

@v1
@x1

1

2



@v1
@x2

C @v2
@x1

�
1

2



@v1
@x3

C @v3
@x1

�

1

2



@v1
@x2

C @v2
@x1

�
@v2
@x2

1

2



@v2
@x3

C @v3
@x2

�

1

2



@v1
@x3

C @v3
@x1

�
1

2



@v2
@x3

C @v3
@x2

�
@v3
@x3

3

777777775

: (6.142)

From (6.141) we obtain

ıv D v1 � v D ! � ır C P"ır: (6.143)

From the kinematics of a point the observation follows that if the distance
between points B and B1 remained constant (rigid body), the following condition
would have to be satisfied:

ıv ı ır D 0: (6.144)
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Let us demand that the condition be satisfied for the case (6.143). Multiplying
(6.143) through by ır we obtain

.! � ır/ ı ır C P" .ır/2 D P" .ır/2 D 0; (6.145)

which indicates that matrix (6.142) Œ P"� D Œ0�, that is, all elements of that matrix
should be equal to zero.

We aim at drawing conclusions from the fact that the elements of tensor P" became
zeros.

Let us first consider the elements lying on the diagonal of tensor (6.142). They
are equal to

@v1
@x1

D 0;
@v2
@x2

D 0;
@v3
@x3

D 0; (6.146)

which after integration yields

v1 D v1 .x2; x3; t/ ; v2 D v2 .x1; x3; t/ ; v3 D v3 .x1; x2; t/ : (6.147)

Equating the non-diagonal elements to zero we obtain

@v1
@x2

D � @v2
@x1

;
@v1
@x3

D � @v3
@x1

;
@v2
@x3

D � @v3
@x2

: (6.148)

We multiply the preceding equation by sides respectively by @=@x3, @=@x2, and
@=@x1 to obtain

@

@x2



@v1
@x3

�
D � @

@x1



@v2
@x3

�
;

@

@x3



@v1
@x2

�
D � @

@x1



@v3
@x2

�
;

@

@x3



@v2
@x1

�
D � @

@x2



@v3
@x1

�
: (6.149)

For instance, let

@v1
@x3

D  13 .x2; t/ ;
@v1
@x2

D  12 .x3; t/ ; (6.150)

and in general,

@vi
@xj

D  ij .xk; t/ : (6.151)

Differentiating the first from the preceding equations with respect to x2 and the
second with respect to x3 we have

@2v1
@x2@x3

D @ 13 .x2; t/

@x2
;

@2v1
@x2@x3

D @ 12 .x3; t/

@x3
; (6.152)
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which means that

@ 13 .x2; t/

@x2
D @ 12 .x3; t/

@x3
D �132.t/ D �123.t/: (6.153)

After integration of the preceding equation we obtain

 13 .x2; t/ D �132x2 C !13.t/;

 12 .x3; t/ D �123x3 C !12.t/; (6.154)

which can be generalized as
@ ij

@xk
D �ijk.t/; (6.155)

so generally we have �ikj .t/ D �ijk.t/.
From (6.148) it follows directly that  ij D � ji . The integration conducted

earlier allows for the introduction of a general expression of the form

 ij .xk; t/ D �ijkxk C !ij .t/: (6.156)

In a similar way we can write

 ji .xk; t/ D �j ikxk C !ji .t/: (6.157)

Adding the two preceding equations by sides we obtain
�
�ijk C �j ik

�
xk C !ij C !ji D 0: (6.158)

Equation (6.158) is satisfied when

�ijk D ��j ik; !ij D �!ji (6.159)

for i ¤ j , j ¤ k, i ¤ k.
We noted earlier that �ikj D �ijk and �ijk D ��j ik; therefore, it is possible only

if �ijk D 0 for i ¤ j , j ¤ k, i ¤ k. This means that  ij D !ij and  ji D !ji .
From a condition of lack of deformations, that is, from the zeroing P" D 0,

it follows that the velocity field in three-dimensional space has the property
!ij D �!ji , that is, !12 D �!21, !13 D �!31, and !23 D �!32. It can be seen
that we are dealing with the skew-symmetric tensor !. We take

!1 D �!32 D !23; !2 D �!13 D !31; !3 D �!21 D !12; (6.160)

which can be represented by means of an alternating tensor as

!r D 1

2
"rik!ik; (6.161)

and, in turn, introducing

! D E1!1 C E2!2 C E3!3 (6.162)
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we have
ıv D ! � ır D P� � ır: (6.163)

The zeroing of the tensor P" causes the appearance of the antisymmetric tensor !,
and we have

ır! D ! � ır D ıv; (6.164)

where ! is now the tensor !kl .
Figure 6.5 depicts the volumes of the element cut out of a deformable body before

deformation V and after deformation V 0. We will now show how the elementary
volume changes after deformation. To this end we calculate the so-called relative
coefficient of velocity expansion of the form

� D ıV 0 � ıV
ıV

; (6.165)

where
ıV D ıx1ıx2ıx3: (6.166)

The increment of the volume [numerator in (6.165)] on the assumption of
infinitely small deformation has the form

ıV 0 � ıV � d .ıV / D d .ıx1ıx2ıx3/

D d .ıx1/ ıx2ıx3 C ıx1d .ıx2/ ıx3 C ıx1ıx2d .ıx3/

D ."11 C "22 C "33/ ıx1ıx2ıx3

D ."11 C "22 C "33/ ıV; (6.167)

where (6.126) and (6.166) were used during the transformations.
From (6.165), taking into account (6.127), we obtain

� D ."11 C "22 C "33/ ıV

ıV
D @u1
@x1

C @u2
@x2

C @u3
@x3

D div u: (6.168)

Dividing the foregoing equation through by dt we obtain

P� D div v; (6.169)

which determines the speed of the relative volume dilation (expansion) of the
considered cutout of a deformable body of volume ıV .

Earlier, in our analysis of statically indeterminate problems, we mentioned that it
is not possible to solve a problem without knowing the deformations, which requires
the introduction of kinematics or, in the case of the calculation conducted in this
chapter, the tensor of deformations. Knowing the tensor of deformation in the case of
a perfectly elastic isotropic (its mechanical properties are independent of the choice
of direction of the coordinate axes) body we can express the desired stress tensor in
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Fig. 6.7 Uniaxial stress state

the following way:
�ik D 2G"ik C ıik�ımn"mn: (6.170)

The preceding equation is called a state equation, where G is a shear modulus,
ıik a Kronecker delta, and � a Lamé6 constant.

Finally, let us note that the constants G and � can be expressed in terms of two
other constants, namely, Young’s7 modulus E and Poisson’s8 ratio �:

G D E

2 .1C �/
; � D �E

.1C �/ .1 � 2�/
: (6.171)

Let us now consider the special cases resulting from the equation of state (6.170),
which will be transformed into the form

"ik D 1

E
Œ.1C v/ �ik � ��mnımnıik� ; (6.172)

and then the special cases that follow from the state (6.172).

(i) Inserting i D k D 1 into (6.172) we obtain

"11 D 1

E
Œ.1C �/ �11 � ��11� D �11

E
; (6.173)

which is illustrated in Fig. 6.7.
Equation (6.172) describes the classical Hooke’s9 law, which we used in

Example 2.5. In Fig. 6.7 the volume of a deformed homogeneous rod of
a constant cross section is indicated by V 0. The presented deformation in
the directions of axes OX2 and OX3 is caused by the uniaxial stress �11.
From (6.172) we calculate

6Gabriel Lamé (1795–1870), French mathematician.
7Thomas Young (1733–1829), English mathematician and mechanician who also studied medicine
and physiology.
8Simeon D. Poisson (1781–1840), French mathematician and physicist.
9Robert Hooke (1635–1702) formulated this law in 1676; on the basis of experimental research he
observed that the deformation caused by a load is proportional to that load.
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"22 D 1

E
Œ.1C �/ �22 � � .�11 C �22/� D ���11

E
; (6.174)

and in a similar way we calculate "33 D "22.
(ii) Let us now consider the case of a so-called pure shear, that is, when we have

shear stresses �12 D �21 exclusively. From (6.172) it follows that the only non-
zero deformations are

"12 D 1C �

E
�12; "21 D 1C �

E
�21; (6.175)

and in this case the matrices of the stress tensor and deformation tensor are as
follows:

Œ�ik� D
2

4
0 �12 0

�21 0 0

0 0 0

3

5 ; Œ"ik� D
2

4
0 "12 0

"21 0 0

0 0 0

3

5 : (6.176)

From (6.170) we have
�12 D 2G"12; (6.177)

and because from (6.138) it follows that �12 D 2"12, taking into account this
relationship in (6.177), we obtain

�12 D G�12; (6.178)

which indicates pure shear.
In general, during deformation the positions in space R3 of both elementary

surfaces and elementary volumes undergo change, and what follows is that also in
the distribution of surface forces and volume internal (or sometimes even external)
forces are subjected to change. However, by the problems discussed so far and
by the derivation of stress tensors and the speeds of their changes, that problem
was simplified because of the assumption that the so-called freezing hypothesis
was satisfied. The mathematical model of the problem was reduced, then, to an
analysis of algebraic equations and differential linear equations. Such an assumption
enables the superposition principle to be applied.

Let us return to the case discussed earlier of the loading of an elastic (deformable)
body obeying Hooke’s law with an arbitrary system of concentrated forces and
moments whose effects are linear and angular displacements. Further we will not
distinguish between forces and moments, but we introduce a notion of generalized
forces Qk and corresponding generalized displacements qk . This problem was
considered in Chap. 1.

The action of generalized forcesQk, k D 1; : : : ; K on the considered mechanical
system generates a reaction of the system in the form of displacements (deforma-
tions) of the points of this system according to a linear transformation of the form
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ql D rlkQk; k D 1; : : : ; K; (6.179)

where the matrix rlk is called the matrix of influence (transmittance). This approach
can also be applied in the case of system dynamics on the assumption of linearity of
the considered model.

If we take, for example, a matrix element rlk, it transmits the forceQk to point ql ,
which leads to the determination of a linear displacement or a rotation angle at that
point depending on whether we are dealing with a force or a moment.

We call mechanical systems in relation to which we can apply (6.179) Clapey-
ron10 systems, after the scientist who introduced this line of argumentation.

An elastic system subjected to the action of generalized forces Qk undergoes
displacements ql , that is, the following elastic potential energy accumulates in the
system:

V D 1

2
qlQl ; l D 1; : : : ; K: (6.180)

We will briefly describe a superposition principle leading to the formulation of
Betti’s11 reciprocity theorem.

Let us divide the system of generalized forces into two groups.

Theorem 6.1 (Betti’s theorem). If the Clapeyron system is subjected to two sets
of forces, then the work done by the first set of forces through the displacements
generated by the second set of forces is equal to the work done by the second set of
forces through the displacements generated by the first set of forces.

Proof. The work of the first groupQ.1/

l done through the displacement is equal to

QW .1/ D 1

2

LX

lD1
qlQ

.1/

l ;

where L denotes the number of forces of the first group.
Now, to the body already loaded with the forces Q.1/

l , l D 1; : : : ; L, we apply

additionally the forcesQ.2/
m , m D 1; : : : ;M of the second group.

In this case the work is done by the forces of both the first and second groups,
and therefore

QQW .1/ D 1

2

"
MX

mD1
q.1/m Q

.2/
m C

LX

lD1
q
.2/

l Q
.1/

l

#
;

where q.2/l denotes displacement at the points of application of the forces from

the first group generated by the forces from the second group, and q.1/m denotes
displacement at the points of application of forces from the second group produced

10Benoit Clapeyron (1799–1864), French mathematician and physicist, founder of modern ther-
modynamics.
11Enrico Betti (1823–1892), Italian mathematician.
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by the forces from the first group. The total work of the forces is equal to

W .1/ D QW .1/ C QQW .1/:

Now, assuming that at first that the body is acted upon by the forces from the
second group and then forces from the first group, we obtain

W .2/ D QW .2/ C QQW .2/;

where

QW .2/ D 1

2

LX

lD1
qlQ

.2/

l ;

QQW .2/ D 1

2

LX

mD1
q.2/m Q

.1/
m C

MX

lD1
q
.1/

l Q
.2/

l :

According to the superposition principle we have

W .1/ D W .2/;

from which it follows that

LX

mD1
q.2/m Q

.1/
m D

MX

lD1
q
.1/

l Q
.2/

l ;

which proves the theorem. ut
It is also possible to demonstrate that the transmittance matrix is a symmetrical

matrix, that is, that rlk D rkl for every k and l . Knowing the elastic (potential)
energy V of an elastic body (system) and the generalized forces Q allows us to
determine the generalized displacements q caused by these forces.

Theorem 6.2 (Castigliano’s12 theorem). Generalized displacements qk produced
by generalized forcesQk at an arbitrary point of a Clapeyron system are derivatives
of the strain energy V of the system with respect to the generalized force acting on
the generalized displacement, that is, the following equation is satisfied

qi D @V

@Qi

: (6.181)

Proof. Substituting (6.179) into (6.180) we obtain

V D 1

2
rlkQlQk:

12Carlo A. Castigliano (1847–1884), Italian engineer who completed his studies in Turin; the
theorem formulated in his diploma thesis was later named after him.
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Differentiating V with respect to Qi we obtain

@V

@Qi

D 1

2
rlk



@Ql

@Qi

Qk CQl

@Qk

@Qi

�
D 1

2
rlkı

i
lQk C 1

2
rlkQlı

i
k

D 1

2
rikQk C 1

2
rliQl ;

since @Ql

@Qi
D ıil and @Qk

@Qi
D ıik.

Finally, because of the matrix transmittance symmetry rik D rki we obtain

@V

@Qi

D 1

2
.rikQk C rliQl/ D qi ;

which completes the proof. ut
Finally, we return to the example of a beam of length l loaded in the middle

with a force (Fig. 2.9). In this case we will determine its deflection at the point of
application of the force.

The beam underwent deflection as a result of action of the force F and in effect
the internal (potential) energy due to bending was accumulated in it. A differential
of this energy is equal to

dV D 1

2
M d'; (6.182)

whereM is a bending moment and the differential d' is described by

d' D M dx

EI
; (6.183)

where EI denotes beam rigidity.
The bending moment, after introducing axis OX whose origin is at the left end

of the beam, is equal to M D 1
2
F x, that is, @M

@F
D 1

2
x.

Because V D 1
2

lR

0

M2

EI
dx, from (6.181) it follows that the displacement at the

point of application of the force F is equal to

q D @V

@F
D

lZ

0

M

EI

@M

@F
dx D F

2EI

l
2Z

0

x2dx D F l3

48EI
; (6.184)

where because of the symmetry the integration was conducted over the interval�
0; l

2

�
.
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