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Preface

The present work is not meant to contain any new material about differential
forms. There are many good books out there which give complete treatments
of the subject. Rather, the goal here is to make the topic of differential forms
accessible to the sophomore level undergraduate, while still providing material
that will be of interest to more advanced students.

There are three tracks through this text. The first is a course in Multivariable
Calculus, suitable for the third semester in a standard calculus sequence. The
second track is a sophomore level Vector Calculus class. The last track is for
advanced undergraduates, or even beginning graduate students. At many insti-
tutions, a course in linear algebra is not a prerequisite for either multivariable
calculus or vector calculus. Consequently, this book has been written so that the
earlier chapters do not require many concepts from linear algebra. What little is
needed is covered in the first section.

The book begins with basic concepts from multivariable calculus such as par-
tial derivatives, gradients and multiple integrals. All of these topics are introduced
in an informal, pictorial way to quickly get students to the point where they can
do basic calculations and understand what they mean. The second chapter fo-
cuses on parameterizations of curves, surfaces and three-dimensional regions.
We spend considerable time here developing tools which will help students find
parameterizations on their own, as this is a common stumbling block.

Chapter 3 is purely motivational. It is included to help students understand why
differential forms arise naturally when integrating over parameterized domains.

The heart of this text is Chapters 4 through 7. In these chapters, the entire ma-
chinery of differential forms is developed from a geometric standpoint. New ideas
are always introduced with a picture. Verbal descriptions of geometric actions are
set out in boxes.

Chapter 7 focuses on the development of the generalized Stokes’ Theorem.
This is really the centerpiece of the text. Everything that precedes it is there for
the sole purpose of its development. Everything that follows is an application.
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The equation is simple: ∫
∂C

ω =
∫
C

dω.

Yet it implies, for example, all integral theorems of classical vector analysis. Its
simplicity is precisely why it is easier for students to understand and remember
than these classical results.

Chapter 7 concludes with a discussion on how to recover all of vector calculus
from the generalized Stokes’Theorem. By the time students get through this they
tend to be more proficient at vector integration than after traditional classes in
vector calculus. Perhaps this will allay some of the concerns many will have in
adopting this textbook for traditional classes.

Chapter 8 contains further applications of differential forms. These include
Maxwell’s equations and an introduction to the theory of foliations and contact
structures. This material should be accessible to anyone who has worked through
Chapter 7.

Chapter 9 is intended for advanced undergraduate and beginning graduate
students. It focuses on generalizing the theory of differential forms to the setting
of abstract manifolds. The final section contains a brief introduction to DeRham
cohomology.

We now describe the three primary tracks through this text.

Track 1. Multivariable Calculus (Calculus III). For such a course, one should
focus on the definitions of n-forms on R

m, where n and m are at most 3. The
following Chapters/Sections are suggested:

• Chapter 1, perhaps supplementing Section 1.5 with additional material on
max/min problems,

• Chapter 2,
• Chapter 4, excluding Sections 4.4 and 4.5 due to time constraints,
• Chapters 5–7,
• Appendix A.

Track 2. Vector Calculus. In this course, one should mention that for n-forms
on R

m the numbers n and m could be anything, although in practice it is difficult
to work examples when either is bigger than 4. The following Chapters/Sections
are suggested:

• Section 1.1 (unless Linear Algebra is a prerequisite),
• Chapter 2,
• Chapter 3 (one lecture),
• Chapters 4–7,
• Chapter 8, as time permits.
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Track 3. Upper Division Course. Students should have had linear algebra, and
perhaps even basic courses in group theory and topology.

• Chapter 3 (perhaps as a reading assignment),
• Chapters 4–7 (relatively quickly),
• Chapters 8 and 9.

The original motivation for this book came from [GP74], the text I learned
differential topology from as a graduate student. In that text, differential forms
are defined in a highly algebraic manner, which left me craving something more
intuitive. In searching for a more geometric interpretation, I came across Chapter
7 of Arnold’s text on classical mechanics [Arn97], where there is a wonderful
introduction to differential forms given from a geometric viewpoint. In some
sense, the present work is an expansion of the presentation given there. Hubbard
and Hubbard’s text [HH01] was also a helpful reference during the preparation
of this manuscript.

The writing of this book began with a set of lecture notes from an introductory
course on differential forms, given at Portland State University, during the summer
of 2000. The notes were then revised for subsequent courses on multivariable
calculus and vector calculus at California Polytechnic State University, San Luis
Obispo and Pitzer College.

I thank several people. First and foremost, I am grateful to all those students
who survived the earlier versions of this book. I would also like to thank several
of my colleagues for giving me helpful comments. Most notably, Don Hartig,
Matthew White and Jim Hoste had several comments after using earlier versions
of this text for vector or multivariable calculus courses. John Etnyre and Danny
Calegari gave me feedback regarding Chapter 8 and Saul Schleimer suggested
Example 27. Other helpful suggestions were provided by Ryan Derby–Talbot.
Alvin Bachman suggested some of the formatting of the text. Finally, the idea to
write this text came from conversations with Robert Ghrist while I was a graduate
student at the University of Texas at Austin.

Claremont, CA David Bachman
March, 2006



Guide to the Reader

It often seems like there are two types of students of mathematics: those who prefer
to learn by studying equations and following derivations, and those who prefer
pictures. If you are of the former type, this book is not for you. However, it is the
opinion of the author that the topic of differential forms is inherently geometric,
and thus should be learned in a visual way. Of course, learning mathematics in this
way has serious limitations: how can one visualize a 23-dimensional manifold?
We take the approach that such ideas can usually be built up by analogy to simpler
cases. So the first task of the student should be to really understand the simplest
case, which CAN often be visualized.

Fig. 0.1. The faces of the n-dimensional cube come from connecting the faces of two copies
of an (n − 1)-dimensional cube.
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For example, suppose one wants to understand the combinatorics of the n-
dimensional cube. We can visualize a 1-D cube (i.e., an interval), and see just
from our mental picture that it has two boundary points. Next, we can visualize
a 2-D cube (a square), and see from our picture that this has four intervals on its
boundary. Furthermore, we see that we can construct this 2-D cube by taking two
parallel copies of our original 1-D cube and connecting the endpoints. Since there
are two endpoints, we get two new intervals, in addition to the two we started
with (see Fig. 0.1). Now, to construct a 3-D cube, we place two squares parallel
to each other, and connect up their edges. Each time we connect an edge of one
square to an edge of the other, we get a new square on the boundary of the 3-D
cube. Hence, since there were four edges on the boundary of each square, we get
four new squares, in addition to the two we started with, making six in all. Now,
if the student understands this, then it should not be hard to convince him/her that
every time we go up a dimension, the number of lower-dimensional cubes on the
boundary is the same as in the previous dimension, plus two. Finally, from this
we can conclude that there are 2n (n − 1)-dimensional cubes on the boundary of
the n-dimensional cube.

Note the strategy in the above example: we understand the “small" cases
visually, and use them to generalize to the cases we cannot visualize. This will
be our approach in studying differential forms.

Perhaps this goes against some trends in mathematics in the last several hun-
dred years. After all, there were times when people took geometric intuition
as proof, and later found that their intuition was wrong. This gave rise to the
formalists, who accepted nothing as proof that was not a sequence of formally
manipulated logical statements. We do not scoff at this point of view. We make no
claim that the above derivation for the number of (n − 1)-dimensional cubes on
the boundary of an n-dimensional cube is actually a proof. It is only a convincing
argument, that gives enough insight to actually produce a proof. Formally, a proof
would still need to be given. Unfortunately, all too often the classical math book
begins the subject with the proof, which hides all of the geometric intuition that
the above argument leads to.
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1

Multivariable Calculus

1.1 Vectors

A vector is a lot like a point in space. The primary difference is that we do
not usually think about doing algebra with points, while algebra with vectors is
common.

When one switches from talking about points like (1, 2) to vectors like 〈1, 2〉,
both the language and notation change. We will be very consistent in this text
about using parentheses to denote points and brackets to denote vectors. When
discussing the point (1, 2) we say the numbers 1 and 2 are its coordinates. If we
are discussing the vector 〈1, 2〉 then 1 and 2 are its components.

One often visualizes a vector 〈a, b〉 as an arrow from the point (0, 0) to the
point (a, b). This has some pleasant features. First, it immediately follows from
the Pythagorean Theorem that the length of the arrow representing the vector
〈a, b〉 is

|〈a, b〉| =
√

a2 + b2.

We add vectors just as one would hope:

〈a, b〉 + 〈c, d〉 = 〈a + c, b + d〉.
Geometrically, adding a vector V1 to a vector V2 is equivalent to sliding V2 along
V1 until its “tail" is at the “tip" of V1. The vector which represents the sum V1 +V2
is then the one which connects the tail of V1 to the tip of V2. See Figure 1.1.

Multiplication is a bit trickier. The most basic kind of multiplication involves
a number and a vector, as follows:

c〈a, b〉 = 〈ca, cb〉.
1.1. Use similar triangles to show that c〈a, b〉 is a vector that points in the same
direction as 〈a, b〉, but has a length that is c times as large.
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V1

V2

V1 + V2

Fig. 1.1. Adding vectors.

1.2. Find a vector that points in the same direction as 〈3, 4〉, but has length one.
(Such a vector is called a unit vector.)

To define the product of two vectors the simplest thing to do is to define the
product as follows:

〈a, b〉〈c, d〉 = 〈ac, bd〉.
There is nothing wrong with this, but it does not turn out to be terribly useful.
Perhaps the reason is that this definition does not lend itself to a good geometric
interpretation.

A more useful way to multiply vectors is called the dot product. The trick with
the dot product is to define the product of two vectors to be the number

〈a, b〉 · 〈c, d〉 = ac + bd.

V1

V2

L

Fig. 1.2. The dot product of V1 and V2 is L times the length of V1.
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There are two noteworthy things that immediately follow from this definition.
First, notice that if V1 = 〈a, b〉, then V1 · V1 = a2 + b2 = |V1|2. Second, notice
that the slope of the line containing V1 is b

a
. If V2 = 〈c, d〉 is perpendicular to V1

then d
c

= − a
b

. Cross-multiplying then gives bd = −ac, and hence, ac + bd = 0.
We conclude the dot product of perpendicular vectors is zero.

Both of these facts also follow from the geometric interpretation of the dot
product shown in Figure 1.2. In this figure, we see that V1 ·V2 is the length of the
projection of V2 onto V1, times the length of V1. Letting θ be the angle between
these two vectors leads to an alternate way to compute dot products:

V1 · V2 = |V1||V2| cos θ.

To see this, note that the length L of the projection of V2 onto V1 is given by
|V2| cos θ .

1.3. Suppose V1 = 〈a, b〉, V2 = 〈c, d〉 and θ is the angle between them. Show
that

ac + bd = |V1||V2| cos θ.

1.4. Use the dot product to compute the cosine of the angle between the vectors
〈1, 2〉 and 〈4, 2〉.

Another geometric quantity that we will need is the area of the parallelogram
spanned by two vectors.

1.5. Suppose V1 = 〈a, b〉 and V2 = 〈c, d〉. Show that the area of the parallelogram
spanned by these vectors is |ad − bc|.

One common way to denote a set of vectors is by writing a matrix where the
vectors appear as columns (or rows). The determinant of such a matrix is then
defined to be the (signed) area of the parallelogram spanned by its column vectors.
So, from the last exercise we have:∣∣∣∣a c

b d

∣∣∣∣ = ad − bc.

Notice that this answer may be negative. This is because the determinant not
only tells us area, but also something about the order of the vectors 〈a, b〉 and
〈c, d〉.

Everything we have discussed above generalizes to higher dimensions. For
example, if V1 = 〈a, b, c〉, then the length of V1 is given by

|V1| =
√

a2 + b2 + c2.

If V2 = 〈d, e, f 〉, then

V1 + V2 = 〈a + d, b + e, c + f 〉.
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The same geometric interpretation of addition (sliding V2 until its tail ends up at
the tip of V1) holds in higher dimensions as well. The dot product also works as
expected in higher dimensions:

V1 · V2 = ad + be + cf.

and its geometric interpretation as the projected length of V2, times the length of
V1, holds.

It is a bit harder to show, but if V3 = 〈g, h, i〉, then the volume of the paral-
lelpiped spanned by V1, V2 and V3 is given by the absolute value of:∣∣∣∣∣∣

a d g

b e h

c f i

∣∣∣∣∣∣ = (aei + dhc + gbf ) − (ahf + dbi + gec).

This is the formula for the determinant of a 3 × 3 matrix.

1.6. Find the volume of the parallelpiped spanned by the vectors 〈1, 0, 1〉, 〈1, 2, 3〉
and 〈2, 5, 3〉.

1.2 Functions of multiple variables

We denote by R
n the set of points with n-coordinates. If n is between 1 and 3

these spaces are very familiar. For example, R
1 is just the number line whose

depiction hangs above every elementary school blackboard. The space R
2 is just

the xy-plane that we employ so often in precalculus and calculus. And R
3 is, of

course, familiar as the three-dimensional space that we feel like we experience
every day (mathematicians and physicists debate whether or not this is really the
space we live in).

The space R
4 is probably less familiar. One can think of the extra coordinate

as time, or color, or anything else that gives more information. At some point
we must just give up on visualization. There is no way to picture R

20. This does
not mean it is useless. To model the stock market, for example, one may want to
represent its state at a particular point in time as a point with as many coordinates
as there are stocks.

Fortunately for us, if you really understand differential forms in dimensions up
to three, then very little needs to be addressed to generalize to higher dimensions.

In this text we will often represent functions abstractly by saying how many
numbers go into the function, and how many come out. So, if we write f : R

n →
R

m, we mean f is a function whose input is a point with n coordinates and whose
output is a point with m coordinates.

Some cases of this are familiar. For example, if y = f (x) is a typical function
from Calculus I, then f : R

1 → R
1.
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In this chapter, we focus on functions of the form f : R
2 → R

1. These
functions look something like z = f (x, y). To graph such a function we draw
x-, y-, and z-axes in R

3 and plot all the points where the equation z = f (x, y) is
true.

Computers can really help one visualize such graphs. It is worthwhile to
play with any software package that will graph such functions. But it is equally
worthwhile to learn a few techniques to sketch such graphs by hand.

The easiest way to begin to get a feel for a graph is by drawing its intersec-
tion with the coordinate planes. To sketch the intersection with the xz-plane, for
example, set y equal to zero and graph the resulting function. Similarly, to sketch
the intersection with the yz-plane, set x equal to zero.

A similar approach involves sketching level curves. These are just the inter-
sections of horizontal planes of the form z = n with the graph. To sketch such a
curve, one simply plots the graph of n = f (x, y).

Putting all of this information together on one set of axes can be a chal-
lenge (see Figure 1.3). Some artistic ability and some ability to visualize three-
dimensional shapes is helpful, but nothing substitutes for lots of practice.

1.7. Sketch the graphs of

1. z = 2x − 3y.

2. z = x2 + y2.

3. z = xy (compare with Figure 1.3).
4. z = √x2 + y2.

5. z = 1√
x2+y2

.

6. z = √x2 + y2 + 1.

7. z = √x2 + y2 − 1.

8. z = cos(x + y).

9. z = cos(xy).

10. z = cos(x2 + y2).

11. z = e−(x2+y2).

1.8. Find functions whose graphs are

1. A plane through the origin at 45◦ to both the x- and y-axes.
2. The top half of a sphere of radius two.
3. The top half of a torus centered around the z-axis (i.e., the tube of radius one,

say, centered around a circle of radius two in the xy-plane).
4. The top half of the cylinder of radius one which is centered around the line

where the plane y = x meets the plane z = 0.

You may find it helpful to check your answers to the above exercises with a
computer graphing program.
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y

y

y

z

zz

Fig. 1.3. Several views of the graph of z = x2 − y2. The top two figures are the intersections
with the xz- and yz-planes. The bottom left shows several level curves.

1.3 Multiple integrals

We now address the question of how to find the volume under the graph of a
function f (x, y) of two variables. Recall from Calculus I that we define the
integral of a function g(x) of one variable on the interval [0, a] by the following
steps:

1. Choose a sequence of evenly spaced points {xi}ni=0 in [0, a] such that x0 = 0
and xn = a.

2. Let �x = xi+1 − xi .
3. For each i compute g(xi)�x.
4. Sum over all i.
5. Take the limit as n goes to ∞.
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The intuition is that each term in Step 3 above gives the area of a rectangle.
Piecing all of the rectangles together gives an approximation for the function
g(x), so the result of Step 4 is an approximation for the desired area. As n goes
to ∞ in Step 5, this approximation gets better and better.

Similar steps define the volume under f (x, y). Let R be the rectangle in the
xy-plane with vertices at (0, 0), (a, 0), (0, b) and (a, b). We now perform the
following steps:

1. Choose sequences of evenly spaced points {xi}ni=0 and {yj }mj=0 such that
x0 = y0 = 0, xn = a and ym = b. This gives a lattice of points of the form
(xi, yj ) in R.

2. Let �x = xi+1 − xi and �y = yj+1 − yj .
3. For each i and j compute f (xi, yj )�x�y.
4. Sum over all i and j .
5. Take the limit as n and m go to ∞.

These steps define
∫
R

f (x, y)dx dy. The intuition as to why this represents the

desired volume is similar to that in the one variable case. In Step 3 we are com-
puting the volume of a box whose base is a �x by �y rectangle, and whose
height is f (xi, yj ) (see Figure 1.4). Putting these boxes together approximates
the function f (x, y), and this approximation gets better and better when n and m

go to ∞.
It is important to understand the above definition from a theoretical point of

view. Later in this text we will come back to it many times. Unfortunately, it is
almost impossible to use this definition to compute any integrals. For this, we
need an alternate point of view.

Instead of approximating f (x, y) with boxes as above, we will now approxi-
mate it by “slabs" whose profiles look like slices by planes parallel to one of the
coordinate planes (see Figure 1.6). To do this we carry out the following steps:

1. Choose a sequence of evenly spaced points {xi}ni=0 such that x0 = 0 and
xn = a.

2. Let �x = xi+1 − xi .

3. For each i compute

[
b∫
0

f (xi, y)dy

]
�x.

4. Sum over all i.
5. Take the limit as n goes to ∞.

Note that in Step 3 the quantity
b∫
0

f (xi, y)dy is exactly the area under the

curve that you get when you slice the graph of f (x, y) by the plane parallel
to the yz-plane at x = xi (see Figure 1.5). Multiplying by �x then gives the
volume of a slab of thickness �x, with the same profile as this slice. Putting these
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�x
�y

f (xi , yj )

(xi , yj )

x

y

z

Fig. 1.4. Using boxes to approximate a function.

slabs together still approximates the function f (x, y), and this approximation
gets better and better as n goes to ∞ (see Figure 1.6). The result is the following:

∫
R

f (x, y)dx dy =
a∫

0

⎡
⎣ b∫

0

f (x, y)dy

⎤
⎦ dx.

Of course, we could have added up volumes of the slabs that were parallel to
the xz-plane instead. This process would have produced the following equality:

∫
R

f (x, y)dx dy =
b∫

0

⎡
⎣ a∫

0

f (x, y)dx

⎤
⎦ dy.

Hence we see that Fubini’s theorem must be true:

a∫
0

b∫
0

f (x, y)dy dx =
b∫

0

a∫
0

f (x, y)dx dy.
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bx y

y

z

z

A

xi

Fig. 1.5. The area A of the slice through x = xi is given by
b∫
0

f (xi , y)dy.

�x

x

y

z

Fig. 1.6. Putting slabs together approximates the function f (x, y).
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Note 1. Be aware that we have avoided very technical issues here such as conti-
nuity and convergence. For a rigorous treatment, see any standard text in multi-
variable calculus.

Example 1. To find the volume under the graph of f (x, y) = xy2 and above the
rectangle R with vertices at (0, 0), (2, 0), (0, 3) and (2, 3) we compute:

∫
R

xy2 dx dy =
3∫

0

2∫
0

xy2 dx dy

=
3∫

0

[
1

2
x2y2

∣∣∣∣
2

x=0

]
dy

=
3∫

0

2y2 dy

= 18.

1.9. Let R be the rectangle in the xy-plane with vertices at (1, 0), (2, 0), (1, 3)

and (2, 3). Integrate the following functions over R.

1. x2y2.

2. 1.

3. x2 + y2.

4.
√

x + 2
3y.

1.4 Partial derivatives

In this section, we begin to discuss tangent lines to the graph of a function of the
form f : R

2 → R
1. If we slice the graph of such a function with the plane parallel

to the yz-plane, through the point (x0, y0), then we get a curve which represents
some function of y. We can then ask, “What is the slope of the tangent line to this
curve when y = y0?" The answer to this question is precisely the definition of
∂f
∂y

(x0, y0) (see Figure 1.7).

Example 2. Suppose f (x, y) = xy2. We wish to compute ∂f
∂y

(2, 3). The slice of
the graph of f (x, y), parallel to the yz-plane, through the point (2, 3), is given by
substituting 2 for x. This gives us the function 2y2. Differentiating with respect
to y then gives 4y. Plugging in 3 for y yields 12.

If we instead wish to compute ∂f
∂y

(4, 3), we could go through the same steps.

The slice through the point is the graph of 4y2. Differentiating with respect to y

gives 8y. Evaulating at y = 3 yields 24.
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y0
x y

y

z

z

Slope= ∂f
∂y

(x0, y0)

(x0, y0)

Fig. 1.7. The partial derivative with respect to y.

If we wish to repeat this many more times, it will be easier to leave the variable
x in, but think of it as a constant. Hence, differentiating xy2 with respect to y

gives 2xy, and we can now plug in whatever numbers we want for x and y to
obtain a final answer immediately.

Partial derivatives with respect to x are just as easy to compute. Geometrically,
we think of this as giving the slope of a line tangent to the graph which is the
slice parallel to the xz-plane. Algebraically, we think of y as a constant and take
the derivative with respect to x.

1.10. Compute ∂f
∂x

and ∂f
∂y

.

1. x2y3.

2. sin(x2y3).

3. x sin(xy).

Notice that when you take a partial derivative you get another function of x

and y. You can then do it again to find the second partials. These are denoted by:

∂2f

∂x2 = ∂

∂x

(
∂f

∂x

)
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∂2f

∂y2 = ∂

∂y

(
∂f

∂y

)

∂2f

∂x∂y
= ∂

∂x

(
∂f

∂y

)

∂2f

∂y∂x
= ∂

∂y

(
∂f

∂x

)
.

1.11. Find all second partials for each of the functions in the previous exercise.

Note that amazingly, the “mixed" partials ∂2f
∂x∂y

and ∂2f
∂y∂x

are always equal.
This is not a coincidence! Somehow the mixed partials measure the “twisting" of
the graph, and this is the same from every direction.

1.5 Gradients

Let’s look back to Figure 1.7. What if we sliced the graph of f (x, y) with some
vertical plane through the point (x0, y0) that was not parallel to the xz- or yz-
planes, as in Figure 1.8? How could we compute the slope then?

x

y

z

z

Slope=?

(x0, y0)

Fig. 1.8. A directional derivative.
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To answer this, visualize the set of all lines tangent to the graph of f (x, y) at
the point (x0, y0). The is a tangent plane.

The equation for a plane through the origin in R
3 is of the form z = mxx+myy.

Notice that the intersection of such a plane with the xz-plane is the graph of
z = mxx. Hence, mx is the slope of this line of intersection. Similarly, the
quantity my is the slope of the line which is the intersection with the yz-plane.

To get a plane through the point (x0, y0, f (x0, y0)), we can translate the origin
to this point by replacing x with x − x0, y with y − y0 and z with z − f (x0, y0):

z − f (x0, y0) = mx(x − x0) + my(y − y0).

Since we want this to actually be a tangent plane, it follows that mx must be equal
to ∂f

∂x
and my must be ∂f

∂y
. Hence, the equation of the tangent plane T is given by

T (x, y) = ∂f

∂x
(x − x0) + ∂f

∂y
(y − y0) + f

where ∂f
∂x

, ∂f
∂y

, and f are all evaluated at the point (x0, y0).
Now, suppose P is the vertical plane through the point (x0, y0) depicted in

Figure 1.9. Let l denote the line where P intersects the xy-plane. The tangent line
L to the graph of f , which lies above l, is also the line contained in T , which lies
above l. To figure out the slope of L we will simply compute “rise over run.”

Suppose l contains the vector V = 〈a, b〉, where |V | = 1. Then two points on
l, a distance of 1 apart, are (x0, y0) and (x0 + a, y0 + b). Thus the “run” will be
equal to 1. The “rise” is the difference between T (x0, y0) and T (x0 + a, y0 + b),
which we compute as follows:

T (x0 + a, y0 + b) − T (x0, y0)

=
[
∂f

∂x
(x0 + a − x0) + ∂f

∂y
(y0 + b − y0) + f

]

−
[
∂f

∂x
(x0 − x0) + ∂f

∂y
(y0 − y0) + f

]

= a
∂f

∂x
+ b

∂f

∂y
.

Since the slope of L is “rise” over “run,” and the “run” equals 1, we conclude
the slope of L is a

∂f
∂x

+ b
∂f
∂y

, where ∂f
∂x

and ∂f
∂y

are evaluated at the point (x0, y0).

1.12. Suppose f (x, y) = x2y3. Compute the slope of the line tangent to f (x, y),

at the point (2, 1), in the direction 〈
√

2
2 , −

√
2

2 〉.
1.13. Let f (x, y) = xy + x − 2y + 4. Find the slope of the tangent line to the
graph of f (x, y), in the direction of 〈1, 2〉, at the point (0, 1).
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x

y

z

(x0, y0)

L

l

P

T

V

(x0 + a, y0 + b)

Fig. 1.9. Computing the slope of the tangent line L.

The quantity a
∂f
∂x

(x0, y0)+b
∂f
∂y

(x0, y0) is defined to be the directional deriva-
tive of f , at the point (x0, y0), in the direction V . We will adopt the notation
∇V f (x0, y0) for this quantity.

Let f (x, y) = xy2. Let’s compute the directional derivative of f , at the point
(2, 3), in the direction V = 〈1, 5〉. We compute:

∇V f (2, 3) = 1
∂f

∂x
(2, 3) + 5

∂f

∂y
(2, 3)

= 1 · 32 + 5 · 2 · 2 · 3

= 69.

Is 69 the slope of the tangent line to some curve that we get when we intersect the
graph of xy2 with some plane? What this number represents is the rate of change
of f , as we walk along the line l of Figure 1.9, with speed |V |. To find the desired
slope we would have to walk with speed one. Hence, the directional derivative
only represents a slope when |V | = 1. Let’s at least see if this agrees with what
we previously found.
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If we stand at the point (x0, y0), walk in the direction 〈1, 0〉 and ask what the
rate of change of f is, we obtain the following answer:

∇〈1,0〉f (x0, y0) = 1
∂f

∂x
(x0, y0) + 0

∂f

∂y
(x0, y0) = ∂f

∂x
(x0, y0).

This certainly agrees with our interpretation of ∂f
∂x

as a slope. If we repeat this
with the vector 〈2, 0〉, then we find out how fast f changes when we walk twice
as fast in the same direction:

∇〈2,0〉f (x0, y0) = 2
∂f

∂x
(x0, y0) + 0

∂f

∂y
(x0, y0) = 2

∂f

∂x
(x0, y0).

As expected, f now changes twice as fast.
To proceed further, we write the definition of ∇V f as a dot product:

∇〈a,b〉f (x0, y0) = a
∂f

∂x
+ b

∂f

∂y
= 〈∂f

∂x
,
∂f

∂y
〉 · 〈a, b〉.

The vector 〈 ∂f
∂x

,
∂f
∂y

〉 is called the gradient of f , and is denoted ∇f . Using this
notation we obtain the following formula:

∇V f (x0, y0) = ∇f (x0, y0) · V.

Note that this dot product is greatest when V points in the same direction as
∇f . This fact leads us to the geometric significance of the gradient vector. Think
of f (x, y) as a function which represents the altitude in some mountain range,
given a location in longitude x and latitude y. Now, if all you know is f and your
location x and y, and you want to figure out which way “uphill” is, all you have
to do is point yourself in the direction of ∇f .

What if you wanted to know what the slope was in the direction of steepest
ascent? You would have to compute the directional derivative, using a vector of
length one which points in the same direction as ∇f . Such a vector is easy to
find: U = ∇f

|∇f | . Now we compute this slope:

∇Uf = ∇f · U

= ∇f · ∇f

|∇f |
= 1

|∇f | (∇f · ∇f )

= 1

|∇f | |∇f |2

= |∇f |.
Hence, the magnitude of the gradient vector represents the largest slope of a

tangent line through a particular point.
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1.14. Let f (x, y) = xy2.

1. Compute ∇f .
2. Use your answer to the previous question to compute ∇〈1,5〉f (2, 3).
3. Find a vector of length one that points in the direction of steepest ascent, at

the point (2, 3).
4. What is the largest slope of a tangent line to the graph of f when (x, y) =

(2, 3)?

1.15. Suppose (x0, y0) is a point where ∇f is non-zero and let n = f (x0, y0).
Show that the vector ∇f (x0, y0) is perpendicular to the set of points (x, y) such
that f (x, y) = n (i.e., a level curve).

1.16. For each of the following functions f (x, y):

• Compute ∇f (0, 0).
• What does this answer tell you about the slope of the lines tangent to the graph

of f at (0, 0)?
• Compute all second partials at (0, 0).
• At the point (0, 0) compute

D(x, y) =
∣∣∣∣∣∣

∂2f

∂x2
∂2f
∂x∂y

∂2f
∂y∂x

∂2f

∂y2

∣∣∣∣∣∣ =
∂2f

∂x2

∂2f

∂y2 − ∂2f

∂x∂y

∂2f

∂y∂x
.

• Describe the shape of the graph of f (x, y) near (0, 0).

1. x2 + y2.

2. −x2 − y2.

3. x2 − y2.

4. xy.

1.17. A function f (x, y) is said to have a critical point at (x0, y0) if ∇f (x0, y0) =
〈0, 0〉. Based on the previous problem, hypothesize about whether the graph of
z = f (x, y) has a maximum, minimum, or saddle at (x0, y0) if f (x, y) has a
critical point at (xo, y0),

1. D(x0, y0) > 0 and ∂2f

∂x2 < 0.

2. D(x0, y0) > 0 and ∂2f

∂x2 > 0.
3. D(x0, y0) < 0.

1.18. Find functions f (x, y) such that D(0, 0) = 0 and at (0, 0) the graph of
z = f (x, y) has a

1. Minimum.
2. Maximum.
3. Saddle.



2

Parameterizations

2.1 Parameterized curves in R
2

Given a curve C in R
2, a parameterization for C is a (one-to-one, onto, differen-

tiable) function of the form φ : R
1 → C.

Example 3. The function φ(t) = (cos t, sin t), where 0 ≤ t < 2π , is a parame-
terization for the circle of radius 1. Another parameterization for the same circle
is ψ(t) = (cos 2t, sin 2t), where 0 ≤ t < π . The difference between these two
parameterizations is that as t increases, the image of ψ(t) moves twice as fast
around the circle as the image of φ(t).

2.1. A function of the form φ(t) = (at + c, bt + d) is a parameterization of a
line.

1. What is the slope of the line parameterized by φ?
2. How does this line compare to the one parameterized by ψ(t) = (at, bt)?

2.2. Draw the curves given by the following parameterizations:

1. (t, t2), where 0 ≤ t ≤ 1.
2. (t2, t3), where 0 ≤ t ≤ 1.
3. (2 cos t, 3 sin t), where 0 ≤ t ≤ 2π .
4. (cos 2t, sin 3t), where 0 ≤ t ≤ 2π .
5. (t cos t, t sin t), where 0 ≤ t ≤ 2π .

Given a curve, it can be very difficult to find a parameterization. There are
many ways of approaching the problem, but nothing which always works. Here
are a few hints:

1. If C is the graph of a function y = f (x), then φ(t) = (t, f (t)) is a param-
eterization of C. Notice that the y-coordinate of every point in the image of
this parameterization is obtained from the x-coordinate by applying the func-
tion f .
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2. If one has a polar equation for a curve like r = f (θ), then, since x =
r cos θ and y = r sin θ , we get a parameterization of the form φ(θ) =
(f (θ) cos θ, f (θ) sin θ).

Example 4. The top half of a circle of radius one is the graph of y = √
1 − x2.

Hence a parameterization for this is (t,
√

1 − t2), where −1 ≤ t ≤ 1. This
figure is also the graph of the polar equation r = 1, 0 ≤ θ ≤ π , hence the
parameterization (cos t, sin t), where 0 ≤ t ≤ π .

2.3. Sketch and find parameterizations for the curves described by:

1. The graph of the polar equation r = cos θ .
2. The graph of y = sin x.

2.4. Find a parameterization for the line segment which connects the point (1, 1)

to the point (2, 5).

Parameterized curves may be familiar from a second semester calculus class.
Often in these classes one learns how to calculate the slope of a tangent line to
the curve. But usually one does not discuss the derivative of the parameterization
itself. One reason is that the derivative is actually a vector. If φ(t) = (f (t), g(t)),
then

φ′(t) = dφ

dt
= d

dt
(f (t), g(t)) = 〈f ′(t), g′(t)〉.

This vector has important geometric significance. The slope of a line contain-
ing this vector when t = t0 is the same as the slope of the line tangent to the curve
at the point φ(t0). The magnitude (length) of this vector gives one a concept of
the speed of the point φ(t) as t is increases through t0. For convenience, one often
draws the vector φ′(t0) based at the point φ(t0) (see Figure 2.1).

2.5. Let φ(t) = (cos t, sin t) (where 0 ≤ t ≤ π ) and ψ(t) = (t,
√

1 − t2) (where
−1 ≤ t ≤ 1) be parameterizations of the top half of the unit circle. Sketch the

vectors dφ
dt

and dψ
dt

at the points (
√

2
2 ,

√
2

2 ), (0, 1) and (−
√

2
2 ,

√
2

2 ).

2.6. Let C be the set of points in R
2 that satisfies the equation x = y2.

1. Find a parameterization for C.
2. Find a tangent vector to C at the point (4, 2).

2.2 Cylindrical and spherical coordinates

There are several ways to specify the location of a point in R
3. The most common

is to give the lengths of the projections onto the x-, y- and z-axes. These are, of
course, the x-, y- and z-coordinates. We often call the (x, y, z) coordinate system
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x

y

Fig. 2.1. The derivative of the parameterization φ(t) = (t, t2) is the vector 〈1, 2t〉. When t = 1
this is the vector 〈1, 2〉, which we picture based at the point φ(1) = (1, 1).

Cartesian coordinates (after the mathematician René Descartes), or rectangular
coordinates.

A second method of describing the location of a point is to use polar coor-
dinates (r, θ) to describe the projection onto the xy-plane, and the quantity z

to describe the height off of the xy-plane (see Figure 2.2). It follows that the
relationships between r, θ, x and y are the same as for polar coordinates:

x = r cos θ r = √x2 + y2

y = r sin θ θ = tan−1
( y

x

)
.

The (r, θ, z) coordinates are called cylindrical coordinates.
The third most common coordinate system is called spherical coordinates. In

this system, one specifies the distance ρ from the origin, the same angle θ from
cylindrical coordinates and the angle φ that a ray to the origin makes with the
z-axis (see Figure 2.3). A little basic trigonometry yields the relationships:

x = ρ sin φ cos θ ρ = √x2 + y2 + z2

y = ρ sin φ sin θ θ = tan−1
( y

x

)

z = ρ cos φ φ = tan−1
(√

x2+y2

z

)
.

2.7. Find all of the relationships between the quantities r, θ and z from cylindrical
coordinates and the quantities ρ, θ and φ from spherical coordinates.
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x

y

z

z

rθ

Fig. 2.2. Cylindrical coordinates.

x

y

z

ρ

θ

φ

Fig. 2.3. Spherical coordinates.

Each coordinate system is useful for describing different graphs, as can be
seen in the following examples.

Example 5. A cylinder of radius one, centered on the z-axis, can be described by
equations in each coordinate system as follows:

• Rectangular: x2 + y2 = 1
• Cylindrical: r = 1
• Spherical: ρ sin φ = 1.
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Example 6. A sphere of radius one is described by the equations:

• Rectangular: x2 + y2 + z2 = 1
• Cylindrical: r2 + z2 = 1
• Spherical: ρ = 1.

2.8. Sketch the shape described by the following equations:

1. θ = π
4 .

2. z = r2.

3. ρ = φ.

4. ρ = cos φ.

5. r = cos θ.

6. z = √
r2 − 1.

7. z = √
r2 + 1.

8. r = θ.

2.9. Find rectangular, cylindrical and spherical equations that describe the fol-
lowing shapes:

1. A right, circular cone centered on the z-axis, with vertex at the origin.
2. The xz-plane.
3. The xy-plane.
4. A plane that is at an angle of π

4 with both the x- and y-axes.
5. The surface found by revolving the graph of z = x3 (where x ≥ 0) around

the z-axis.

2.3 Parameterized surfaces in R
3

A parameterization for a surface S in R
3 is a (one-to-one, onto, differentiable)

function from some subset of R
2 into R

3 whose image is S.

Example 7. The function φ(u, v) = (u, v,
√

1 − u2 − v2), where (u, v) lies in-
side a disk of radius one, is a parameterization for the top half of the unit sphere.

One of the best ways to parameterize a surface is to find an equation in some
coordinate system which can be used to eliminate one unknown coordinate. Then
translate back to rectangular coordinates.

Example 8. An equation for the top half of the sphere in cylindrical coordinates is
r2 + z2 = 1. Solving for z then gives us z = √

1 − r2. Translating to rectangular
coordinates we have:

x = r cos θ

y = r sin θ
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z =
√

1 − r2.

Hence, a parameterization is given by the function

φ(r, θ) = (r cos θ, r sin θ,
√

1 − r2)

where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π .

Example 9. The equation ρ = φ describes some surface in spherical coordinates.
Translating to rectangular coordinates then gives us:

x = ρ sin ρ cos θ

y = ρ sin ρ sin θ

z = ρ cos ρ.

Hence, a parameterization for this surface is given by

φ(ρ, θ) = (ρ sin ρ cos θ, ρ sin ρ sin θ, ρ cos ρ).

2.10. Find parameterizations of the surfaces described by the equations in Prob-
lem 2.8.

2.11. Find a parameterization for the graph of an equation of the form z = f (x, y).

2.12. Use the rectangular, cylindrical and spherical equations found in Problem
2.9 to parameterize the surfaces described there.

2.13. Use spherical coordinates to find a parameterization for the portion of the
sphere of radius two, centered at the origin, which lies below the graph of z = r

and above the xy-plane.

2.14. Sketch the surfaces given by the following parameterizations:

1. ψ(θ, φ) = (φ sin φ cos θ, φ sin φ sin θ, φ cos φ), 0 ≤ φ ≤ π
2 , 0 ≤ θ ≤ 2π .

2. φ(r, θ) = (r cos θ, r sin θ, cos r), 0 ≤ r ≤ 2π , 0 ≤ θ ≤ 2π .

Just as we could differentiate parameterizations of curves in R
2, we can also

differentiate parameterizations of surfaces in R
3. In general, such a parameteri-

zation for a surface S can be written as

φ(u, v) = (f (u, v), g(u, v), h(u, v)).

Thus there are two variables we can differentiate with respect to: u and v. Each
of these gives a vector which is tangent to the parameterized surface:

∂φ

∂u
=
〈
∂f

∂u
,
∂g

∂u
,
∂h

∂u

〉

∂φ

∂v
=
〈
∂f

∂v
,
∂g

∂v
,
∂h

∂v

〉
.

The vectors ∂φ
∂u

and ∂φ
∂v

determine a plane which is tangent to the surface S at
the point φ(u, v).
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2.15. Suppose some surface is described by the parameterization

φ(u, v) = (2u, 3v, u2 + v2).

Find two (non-parallel) vectors which are tangent to this surface at the point
(4, 3, 5).

2.4 Parameterized curves in R
3

We begin with an example which demonstrates a parameterization of a curve
in R

3.

Example 10. The function φ(t) = (cos t, sin t, t) parameterizes a curve that spi-
rals upward around a cylinder of radius one.

2.16. Describe the difference between the curves with the following parameteri-
zations:

1. (cos t2, sin t2, t2).

2. (cos t, sin t, t2).

3. (t cos t, t sin t, t).

4. (cos 1
t
, sin 1

t
, t).

2.17. Describe the lines given by the following parameterizations:

1. (t, 0, 0).

2. (0, 0, t).

3. (0, t, t).

4. (t, t, t).

In the previous section, we found parameterizations of surfaces by finding an
equation for the surface (in some coordinate system), solving for a variable and
then translating to rectangular coordinates. To find a parameterization of a curve
in R

3, an effective strategy is to find some way to “eliminate” two coordinates (in
some system), and then translate into rectangular coordinates. By “eliminating”
a coordinate we mean either expressing it as some constant, or expressing it as a
function of the third, unknown coordinate.

Example 11. We demonstrate two ways to parameterize one of the lines that is at
the intersection of the cone z2 = x2 + y2 and the plane y = 2x. The coordinate
y is already expressed as a function of x. To express z as a function of x, we
substitute 2x for y in the first equation. This gives us z2 = x2 + (2x)2 = 5x2, or
z = √

5x (the negative root would give us the other intersection line). Hence, we
get the paramaterization

φ(x) = (x, 2x,
√

5x).
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Another way to describe this line is with spherical coordinates. Note that for
every point on the line φ = π

4 (from the first equation) and θ = tan−1 2 (because
tan θ = y

x
= 2, from the second equation). Converting to rectangular coordinates

then gives us

φ(ρ) =
(
ρ sin

π

4
cos(tan−1 2), ρ sin

π

4
sin(tan−1 2), ρ cos

π

4

)
which simplifies to

ψ(ρ) =
(√

10ρ

10
,

√
10ρ

5
,

√
2ρ

2

)
.

Note that dividing the first parameterization by
√

10 and simplifying yields the
second parameterization.

2.18. Find a parameterization for the curve that is at the intersection of the plane
x + y = 1 and the cone z2 = x2 + y2.

2.19. Find two parameterizations for the circle that is at the intersection of the
cylinder x2 + y2 = 4 and the paraboloid z = x2 + y2.

2.5 Parameterized regions in R
2 and R

3

In Section 1.3, we learned how to integrate functions of multiple variables over
rectangular regions. Eventually we will learn how to integrate such functions over
regions of any shape. The trick will be to parameterize such regions by functions
whose domain is a rectangle. Some cases of this are already familiar.

Example 12. A parameterization for the disk of radius one (that is, the set of points
in R

2 which are at a distance of at most one from the origin) is given using polar
coordinates:

φ(r, θ) = (r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π.

2.20. Let B be the ball of radius one in R
3 (i.e., the set of points satisfying

x2 + y2 + z2 ≤ 1).

1. Use spherical coordinates to find a parameterization for B.
2. Find a parameterization for the intersection of B with the first octant.

2.21. The “solid cylinder” of height one and radius r in R
3 is the set of points

inside the cylinder x2 + y2 = r2, and between the planes z = 0 and z = 1.

1. Use cylindrical coordinates to find a parameterization for the solid cylinder
of height one and radius one.
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2. Find a parameterization for the region that is inside the solid cylinder of height
one and radius two and outside the cylinder of radius one.

Example 13. A common type of region to integrate over is one that is bounded
by the graphs of two functions. Suppose R is the region in R

2 above the graph
of y = g1(x), below the graph of y = g2(x) and between the lines x = a and
x = b. A parameterization for R (check this!) is given by

φ(x, t) = (x, tg2(x) + (1 − t)g1(x)), a ≤ x ≤ b, 0 ≤ t ≤ 1.

2.22. Let R be the region between the (polar) graphs of r = f1(θ) and r = f2(θ),
where a ≤ θ ≤ b. Find a parameterization for R.

2.23. Find a parameterization for the region in R
2 bounded by the ellipse whose

x-intercepts are 3 and −3 and y-intercepts are 2 and −2. (Hint: Start with the
parameterization given in Example 12.)

2.24. Sketch the region in R
2 parameterized by the following:

φ(r, θ) = (2r cos θ, r sin θ)

where 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π
2 .
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Introduction to Forms

3.1 So what is a differential form?

A differential form is simply this: an integrand. In other words, it is a thing which
can be integrated over some (often complicated) domain. For example, consider

the following integral:
1∫

0
x2dx. This notation indicates that we are integrating x2

over the interval [0, 1]. In this case, x2dx is a differential form. If you have had
no exposure to this subject this may make you a little uncomfortable. After all,
in calculus we are taught that x2 is the integrand. The symbol “dx” is only there
to delineate when the integrand has ended and what variable we are integrating
with respect to. However, as an object in itself, we are not taught any meaning for
“dx.” Is it a function? Is it an operator on functions? Some professors call it an

“infinitesimal” quantity. This is very tempting. After all,
1∫

0
x2dx is defined to be

the limit, as n → ∞, of
n∑

i=1
x2
i �x, where {xi} are n evenly spaced points in the

interval [0, 1], and �x = 1/n. When we take the limit, the symbol “
∑

” becomes
“
∫

,” and the symbol “�x" becomes “dx.” This implies that dx = lim�x→0 �x,
which is absurd. lim�x→0 �x = 0!! We are not trying to make the argument that
the symbol “dx” should be eliminated. It does have meaning. This is one of the
many mysteries that this book will reveal.

One word of caution here: not all integrands are differential forms. In fact, in
the appendix we will see how to calculate arc length and surface area. These cal-
culations involve integrands which are not differential forms. Differential forms
are simply natural objects to integrate, and also the first that one should study.
As we shall see, this is much like beginning the study of all functions by un-
derstanding linear functions. The naive student may at first object to this, since
linear functions are a very restrictive class. On the other hand, eventually we
learn that any differentiable function (a much more general class) can be locally
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approximated by a linear function. Hence, in some sense, the linear functions
are the most important ones. In the same way, one can make the argument that
differential forms are the most important integrands.

3.2 Generalizing the integral

Let’s begin by studying a simple example, and trying to figure out how and what
to integrate. The function f (x, y) = y2 maps R

2 to R. Let M denote the top
half of the circle of radius one, centered at the origin. Let’s restrict the function
f to the domain, M , and try to integrate it. Here we encounter our first problem:
The given description of M is not particularly useful. If M were something more
complicated, it would have been much harder to describe it in words as we have
just done. A parameterization is far easier to communicate, and far easier to use
to determine which points of R

2 are elements of M , and which are not. But there
are lots of parameterizations of M . Here are two which we shall use:

φ1(a) = (a,
√

1 − a2), where −1 ≤ a ≤ 1, and

φ2(t) = (cos(t), sin(t)), where 0 ≤ t ≤ π .

Here is the trick: integrating f over M is difficult. It may not even be clear
as to what this means. But perhaps we can use φ1 to translate this problem into
an integral over the interval [−1, 1]. After all, an integral is a big sum. If we add
up all the numbers f (x, y) for all the points, (x, y), of M , shouldn’t we get the
same thing as if we added up all the numbers f (φ1(a)), for all the points, a, of
[−1, 1] (see Fig. 3.1)?

f

φ

f ◦ φ

3/4

M

−1 10

Fig. 3.1. Shouldn’t the integral of f over M be the same as the integral of f ◦ φ over [−1, 1]?

Let’s try it. φ1(a) = (a,
√

1 − a2), so f (φ1(a)) = 1 − a2. Hence, we are

saying that the integral of f over M should be the same as
1∫

−1
(1 − a2)da. Using

a little calculus, we can determine that this evaluates to 4/3.
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Let’s try this again, this time using φ2. Using the same argument, the integral

of f over M should be the same as
π∫
0

f (φ2(t))dt =
π∫
0

sin2(t)dt = π/2.

But hold on! The problem was stated before any parameterizations were cho-
sen. Shouldn’t the answer be independent of which one was picked? It would not
be a very meaningful problem if two people could get different correct answers,
depending on how they went about solving it. Something strange is going on!

3.3 Interlude: a review of single variable integration

In order to understand what happened, we must first review the definition of the
Riemann integral. In the usual definition of the integral the first step is to divide

the interval up into n evenly spaced subintervals. Thus,
b∫
a

f (x)dx is defined to

be the limit, as n → ∞, of
n∑

i=1
f (xi)�x, where {xi} are n evenly spaced points

in the interval [a, b], and �x = (b − a)/n. But what if the points {xi} are not

evenly spaced? We can still write down a reasonable sum:
n∑

i=1
f (xi)�xi , where

now �xi = xi+1 − xi . In order to make the integral well-defined, we can no
longer take the limit as n → ∞. Instead, we must let max{�xi} → 0. It is a
basic result of analysis that if this limit converges, then it does not matter how
we picked the points {xi}; the limit will converge to the same number. It is this

number that we define to be the value of
b∫
a

f (x)dx.

3.4 What went wrong?

We are now ready to figure out what happened in Section 3.2. Obviously,
1∫

−1
f (φ1(a))da was not what we wanted. But let’s not give up on our general

approach just yet; it would still be great if we could use φ1 to find some function
that we can integrate on [−1, 1] that will give us the same answer as the integral
of f over M . For now, let’s call this mystery function “F(a).”

Let’s look at the Riemann sum that we get for
1∫

−1
F(a)da, when we divide

the interval up into n pieces, each of width �a:
n∑

i=1
F(ai)�a. Examine Figure

3.2 to see what happens to the points, ai , under the function, φ1. Notice that the
points {φ1(ai)} are not evenly spaced along M . To use these points to estimate
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f

φ

F(a2)

F

M

−1 1a2

f (φ(a2))

�a

l1

l2 l3

l4
L1

L2 L3

L4

Fig. 3.2. We want
n∑

i=1
F(ai)�a =

n∑
i=1

f (φ1(ai))Li .

the integral of f over M , we would have to use the approach from the previous

section. A Riemann sum for f over M would be
n∑

i=1
f (φ1(ai))li , where the li

represent the arc length, along M , between φ1(ai) and φ1(ai+1).
This is a bit problematic, however, since arc-length is generally hard to cal-

culate. Instead, we can approximate li by substituting in the length of the line
segment which connects φ1(ai) to φ1(ai+1), which we shall denote as Li . Note
that this approximation gets better and better as we let n → ∞. Hence, when we
take the limit, it does not matter if we use li or Li .

So our goal is to find a function, F(a), on the interval [−1, 1], so that

n∑
i=1

F(ai)�a =
n∑

i=1

f (φ1(ai))Li.

Of course this equality will hold if F(ai)�a = f (φ1(ai))Li . Solving, we get
F(ai) = f (φ1(ai ))Li

�a
.

What happens to this function as �a → 0? First, note that Li = |φ1(ai+1) −
φ1(ai)|. Hence,

lim
�a→0

F(ai) = lim
�a→0

f (φ1(ai))Li

�a

= lim
�a→0

f (φ1(ai))|φ1(ai+1) − φ1(ai)|
�a

= f (φ1(ai)) lim
�a→0

|φ1(ai+1) − φ1(ai)|
�a

= f (φ1(ai))

∣∣∣∣ lim
�a→0

φ1(ai+1) − φ1(ai)

�a

∣∣∣∣ .
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But lim�a→0
φ1(ai+1)−φ1(ai )

�a
is precisely the definition of the derivative of φ1

at ai ,
dφ1
da

(ai). Hence, we have lim�a→0 F(ai) = f (φ1(ai))| dφ1
da

(ai)|. Finally,

this means that the integral we want to compute is
1∫

−1
f (φ1(a))| dφ1

da
|da.

3.1. Check that
1∫

−1
f (φ1(a))| dφ1

da
|da =

π∫
0

f (φ2(t))| dφ2
dt

|dt , using the function, f ,

defined in Section 3.2.

Recall that dφ1
da

is a vector, based at the point φ(a), tangent to M . If we think

of a as a time parameter, then the length of dφ1
da

tells us how fast φ1(a) is moving

along M . How can we generalize the integral,
1∫

−1
f (φ1(a))| dφ1

da
|da? Note that the

bars | · | denote a function that “eats” vectors, and “spits out” real numbers. So
we can generalize the integral by looking at other such functions. In other words,

a more general integral would be
1∫

−1
f (φ1(a))ω(

dφ1
da

)da, where f is a function

of points and ω is a function of vectors.
It is not the purpose of the present work to undertake a study of integrating

with respect to all possible functions, ω. However, as with the study of func-
tions of real variables, a natural place to start is with linear functions. This is
the study of differential forms. A differential form is precisely a linear function
which eats vectors, spits out numbers and is used in integration. The strength of
differential forms lies in the fact that their integrals do not depend on a choice of
parameterization.

3.5 What about surfaces?

Let’s repeat the previous discussion (faster this time), bumping everything up a
dimension. Let f : R

3 → R be given by f (x, y, z) = z2. Let M be the top
half of the sphere of radius one, centered at the origin. We can parameterize M

by the function, φ, where φ(r, θ) = (r cos(θ), r sin(θ),
√

1 − r2), 0 ≤ r ≤ 1,
and 0 ≤ θ ≤ 2π . Again, our goal is not to figure out how to actually integrate
f over M , but to use φ to set up an equivalent integral over the rectangle, R =
[0, 1] × [0, 2π ].

Let {xi,j } be a lattice of evenly spaced points in R. Let �r = xi+1,j − xi,j ,
and �θ = xi,j+1 − xi,j . By definition, the integral over R of a function, F(x), is
equal to lim�r,�θ→0

∑
F(xi,j )�r�θ .

To use the mesh of points, φ(xi,j ), in M to set up a Riemann sum, we write
down the following sum:

∑
f (φ(xi,j ))Area(Li,j ), where Li,j is the rectangle

spanned by the vectors φ(xi+1,j ) − φ(xi,j ) and φ(xi,j+1) − φ(xi,j ). If we want
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R

φ

r

θ

1

2π

x3,1

φ(x3,1)

∂φ
∂r

(x3,1)

∂φ
∂θ

(x3,1)

Fig. 3.3. Setting up the Riemann sum for the integral of z2 over the top half of the sphere of
radius one.

our Riemann sum over R to equal this sum, then we end up with F(xi,j ) =
f (φ(xi,j ))Area(Li,j )

�r�θ
.

We now leave it as an exercise to show that as �r and �θ get small,
Area(Li,j )

�r�θ

converges to the area of the parallelogram spanned by the vectors ∂φ
∂r

(xi,j ) and
∂φ
∂θ

(xi,j ). The upshot of all this is that the integral we want to evaluate is the
following: ∫

R

f (φ(r, θ))Area

(
∂φ

∂r
,
∂φ

∂θ

)
drdθ.

3.2. Compute the value of this integral for the function f (x, y, z) = z2.

The point of all this is not the specific integral that we have arrived at, but
the form of the integral. We integrate f ◦ φ (as in the previous section), times a
function which takes two vectors and returns a real number. Once again, we can
generalize this by using other such functions:∫

R

f (φ(r, θ))ω

(
∂φ

∂r
,
∂φ

∂θ

)
drdθ.

In particular, if we examine linear functions for ω, we arrive at a differential
form. The moral is that if we want to perform an integral over a region parame-
terized by R, as in the previous section, then we need to multiply by a function
which takes a vector and returns a number. If we want to integrate over something
parameterized by R

2, then we need to multiply by a function which takes two vec-
tors and returns a number. In general, an n-form is a linear function which takes
n vectors and returns a real number. One integrates n-forms over regions that can
be parameterized by R

n. Their strength is that the value of such an integral does
not depend on the choice of parameterization.
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Forms

4.1 Coordinates for vectors

Before we begin to discuss functions of vectors, we first need to learn how to
specify a vector. And before we can answer that, we must first learn where vectors
live. In Figure 4.1 we see a curve, C, and a tangent line to that curve. The line
can be thought of as the set of all tangent vectors at the point, p. We denote that
line as TpC, the tangent space to C at the point p.

TpC

p

C

Fig. 4.1. TpC is the set of all vectors tangents to C at p.

What if C is actually a straight line? Will TpC be the same line? To answer
this, let’s instead think about the real number line, L = R

1. Suppose p is the
point corresponding to the number 2 on L. We would like to understand TpL, the
set of all vectors tangent to L at the point p. For example, where would you draw
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a vector of length three? Would you put its base at the origin on L? Of course not.
You would put its base at the point p. This is really because the origin for TpL

is different than the origin for L. We are thus thinking about L and TpL as two
different lines, placed right on top of each other.

The key to understanding the difference between L and TpL is their coordinate
systems. Let’s pause here for a moment to look a little more closely. What are
“coordinates” anyway? They are a way of assigning a number (or, more generally,
a set of numbers) to a point in space. In other words, coordinates are functions
which take points of a space and return (sets of) numbers. When we say that the
x-coordinate of p in R

2 is 5, we really mean that we have a function, x : R
2 → R,

such that x(p) = 5.
Of course we need two numbers to specify a point in a plane, which means

that we have two coordinate functions. Suppose we denote the plane by P and
x : P → R and y : P → R are our coordinate functions. Then, saying that the
coordinates of a point, p, are (2, 3) is the same thing as saying that x(p) = 2 and
y(p) = 3. In other words, the coordinates of p are (x(p), y(p)).

So what do we use for coordinates in the tangent space? Well, first we need a
basis for the tangent space of P at p. In other words, we need to pick two vectors
which we can use to give the relative positions of all other points. Note that if the
coordinates of p are (x, y) then d(x+t,y)

dt
= 〈1, 0〉 and d(x,y+t)

dt
= 〈0, 1〉. We have

switched to the notation “〈·, ·〉” to indicate that we are not talking about points
of P anymore, but rather vectors in TpP . We take these two vectors to be a basis
for TpP . In other words, any point of TpP can be written as dx〈0, 1〉 + dy〈1, 0〉,
where dx, dy ∈ R. Hence, “dx” and “dy” are coordinate functions for TpP .
Saying that the coordinates of a vector V in TpP are 〈2, 3〉, for example, is the
same thing as saying that dx(V ) = 2 and dy(V ) = 3. In general, we may refer
to the coordinates of an arbitrary vector in TpP as 〈dx, dy〉, just as we may refer
to the coordinates of an arbitrary point in P as (x, y).

It will be helpful in the future to be able to distinguish between the vector
〈2, 3〉 in TpP and the vector 〈2, 3〉 in TqP , where p �= q. We will do this by
writing 〈2, 3〉p for the former and 〈2, 3〉q for the latter.

Let’s pause for a moment to address something that may have been bothering
you since your first term of calculus. Let’s look at the tangent line to the graph of
y = x2 at the point (1, 1). We are no longer thinking of this tangent line as lying
in the same plane that the graph does. Rather, it lies in T(1,1)R

2. The horizontal
axis for T(1,1)R

2 is the “dx” axis and the vertical axis is the “dy” axis (see Fig.
4.2). Hence, we can write the equation of the tangent line as dy = 2dx. We can
rewrite this as dy

dx
= 2. Look familiar? This is one explanation of why we use the

notation dy
dx

in calculus to denote the derivative.

4.1.

1. Draw a vector with dx = 1, dy = 2 in the tangent space T(1,−1)R
2.

2. Draw 〈−3, 1〉(0,1).
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x

y

l

dx

dy

1

1

Fig. 4.2. The line, l, lies in T(1,1)R
2. Its equation is dy = 2dx.

4.2 1-forms

Recall from the previous chapter, that a 1-form is a linear function which acts on
vectors and returns numbers. For the moment let’s just look at 1-forms on TpR

2

for some fixed point, p. Recall that a linear function, ω, is just one whose graph is
a plane through the origin. Hence, we want to write down an equation of a plane
though the origin in TpR

2 ×R, where one axis is labelled dx, another dy and the
third, ω (see Fig. 4.3). This is easy: ω = a dx + b dy. Hence, to specify a 1-form
on TpR

2 we only need to know two numbers: a and b.
Here is a quick example. Suppose ω(〈dx, dy〉) = 2dx + 3dy, then

ω(〈−1, 2〉) = 2 · −1 + 3 · 2 = 4.

The alert reader may see something familiar here: the dot product. That is,
ω(〈−1, 2〉) = 〈2, 3〉 · 〈−1, 2〉. Recall the geometric interpretation of the dot
product; you project 〈−1, 2〉 onto 〈2, 3〉 and then multiply by |〈2, 3〉| = √

13. In
other words:

Evaluating a 1-form on a vector is the same as projecting onto some line and
then multiplying by some constant.
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dx

dy

ω

Fig. 4.3. The graph of ω is a plane though the origin.

In fact, we can even interpret the act of multiplying by a constant geometrically.
Suppose ω is given by a dx + b dy. Then the value of ω(V1) is the length of the
projection of V1 onto the line, l, where 〈a,b〉

|〈a,b〉|2 is a basis vector for l.
This interpretation has a huge advantage... it is coordinate free. Recall from

the previous section that we can think of the plane, P , as existing independent of
our choice of coordinates. We only pick coordinates so that we can communicate
to someone else the location of a point. Forms are similar. They are objects that
exist independently of our choice of coordinates. This is one key as to why they
are so useful outside of mathematics.

There is still another geometric interpretation of 1-forms. Let’s first look at the
simple exampleω(〈dx, dy〉) = dx.This 1-form simply returns the first coordinate
of whatever vector you feed into it. This is also a projection; it’s the projection of
the input vector onto the dx-axis. This immediately gives us a new interpretation
of the action of a general 1-form, ω = a dx + b dy.

Evaluating a 1-form on a vector is the same as projecting onto each coordinate
axis, scaling each by some constant and adding the results.

Although this interpretation is more cumbersome, it is the one that will gen-
eralize better when we get to n-forms.

Let’s move on now to 1-forms in n dimensions. If p ∈ R
n, then we can write

p in coordinates as (x1, x2, ..., xn). The coordinates for a vector in TpR
n are



4.3 Multiplying 1-forms 37

〈dx1, dx2, ..., dxn〉. A 1-form is a linear function, ω, whose graph (in TpR
n ×R)

is a plane through the origin. Hence, we can write it as ω = a1dx1 + a2dx2 +
... + andxn. Again, this can be thought of as either projecting onto the vector
〈a1, a2, ..., an〉 and then multiplying by |〈a1, a2, ..., an〉| or as projecting onto
each coordinate axis, multiplying by ai , and then adding.

4.2. Let ω(〈dx, dy〉) = −dx + 4dy.

1. Compute ω(〈1, 0〉), ω(〈0, 1〉) and ω(〈2, 3〉).
2. What line does ω project vectors onto?

4.3. Find a 1-form which computes the length of the projection of a vector onto
the indicated line, multiplied by the indicated constant c.

1. The dx-axis, c = 3.
2. The dy-axis, c = 1

2 .
3. Find a 1-form that does both of the two preceding operations and adds the

result.
4. The line dy = 3

4dx, c = 10.

4.4. If ω is a 1-form show

1. ω(V1 + V2) = ω(V1) + ω(V2), for any vectors V1 and V2.
2. ω(cV ) = cω(V ), for any vector V and constant c.

4.3 Multiplying 1-forms

In this section we would like to explore a method of multiplying 1-forms. You
may think, “What is the big deal? If ω and ν are 1-forms can’t we just define
ω · ν(V ) = ω(V ) · ν(V )?” Well, of course we can, but then ω · ν is not a linear
function, so we have left the world of forms.

The trick is to define the product of ω and ν to be a 2-form. So as not to confuse
this with the product just mentioned, we will use the symbol “∧” (pronounced
“wedge”) to denote multiplication. So how can we possibly define ω ∧ ν to be a
2-form? We must define how it acts on a pair of vectors, (V1, V2).

Note first that there are four ways to combine all the ingredients:

ω(V1), ν(V1), ω(V2), ν(V2).

The first two of these are associated with V1 and the second two with V2. In other
words, ω and ν together give a way of taking each vector and returning a pair
of numbers. And how do we visualize pairs of numbers? In the plane, of course!
Let’s define a new plane with one axis as the ω-axis and the other as the ν-axis. So,
the coordinates of V1 in this plane are [ω(V1), ν(V1)] and the coordinates of V2
are [ω(V2), ν(V2)]. Note that we have switched to the notation “[·, ·]” to indicate
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that we are describing points in a new plane. This may seem a little confusing at
first. Just keep in mind that when we write something like (1, 2) we are describing
the location of a point in the xy-plane, whereas 〈1, 2〉 describes a vector in the
dxdy-plane and [1, 2] is a vector in the ων-plane.

Let’s not forget our goal now. We wanted to use ω and ν to take the pair of
vectors, (V1, V2), and return a number. So far all we have done is to take this pair
of vectors and return another pair of vectors. But do we know of a way to take
these vectors and get a number? Actually, we know several, but the most useful
one turns out to be the area of the parallelogram that the vectors span. This is
precisely what we define to be the value of ω ∧ ν(V1, V2) (see Fig. 4.4).

x
y

z

V1

V2

ω(V1)

ν(V1)

ω

ν

Fig. 4.4. The product of ω and ν.

Example 14. Let ω = 2dx − 3dy + dz and ν = dx + 2dy − dz be two 1-
forms on TpR

3 for some fixed p ∈ R
3. Let’s evaluate ω ∧ ν on the pair of

vectors, (〈1, 3, 1〉, 〈2, −1, 3〉). First we compute the [ω, ν] coordinates of the
vector 〈1, 3, 1〉.

[ω(〈1, 3, 1〉), ν(〈1, 3, 1〉)] = [2 · 1 − 3 · 3 + 1 · 1, 1 · 1 + 2 · 3 − 1 · 1]
= [−6, 6].

Similarly, we compute [ω(〈2, −1, 3〉), ν(〈2, −1, 3〉)] = [10, −3]. Finally, the
area of the parallelogram spanned by [−6, 6] and [10, −3] is

−6 10
6 −3

= 18 − 60 = −42.

Should we have taken the absolute value? Not if we want to define a linear
operator. The result of ω ∧ ν is not just an area, it is a signed area; it can either
be positive or negative. We will see a geometric interpretation of this soon. For
now, we define:
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ω ∧ ν(V1, V2) = ω(V1) ω(V2)

ν(V1) ν(V2)
.

4.5. Let ω and ν be the following 1-forms:

ω(〈dx, dy〉) = 2dx − 3dy

ν(〈dx, dy〉) = dx + dy.

1. Let V1 = 〈−1, 2〉 and V2 = 〈1, 1〉. Compute ω(V1), ν(V1), ω(V2) and ν(V2).
2. Use your answers to the previous question to compute ω ∧ ν(V1, V2).
3. Find a constant c such that ω ∧ ν = c dx ∧ dy.

4.6. ω ∧ ν(V1, V2) = −ω ∧ ν(V2, V1) (ω ∧ ν is skew-symmetric).

4.7. ω ∧ ν(V, V ) = 0. (This follows immediately from the previous exercise. It
should also be clear from the geometric interpretation.)

4.8. ω ∧ ν(V1 +V2, V3) = ω ∧ ν(V1, V3)+ω ∧ ν(V2, V3) and ω ∧ ν(cV1, V2) =
ω∧ν(V1, cV2) = c ω∧ν(V1, V2), where c is any real number (ω∧ν is bilinear).

4.9. ω ∧ ν(V1, V2) = −ν ∧ ω(V1, V2).

It is interesting to compare Problems 4.6 and 4.9. Problem 4.6 says that the
2-form, ω∧ν, is a skew-symmetric operator on pairs of vectors. Problem 4.9 says
that ∧ can be thought of as a skew-symmetric operator on 1-forms.

4.10. ω ∧ ω(V1, V2) = 0.

4.11. (ω + ν) ∧ ψ = ω ∧ ψ + ν ∧ ψ (∧ is distributive).

There is another way to interpret the action of ω ∧ ν which is much more
geometric. First let ω = a dx + b dy be a 1-form on TpR

2. Then we let 〈ω〉 be
the vector 〈a, b〉.
4.12. Let ω and ν be 1-forms on TpR

2. Show that ω ∧ ν(V1, V2) is the area of the
parallelogram spanned by V1 and V2, times the area of the parallelogram spanned
by 〈ω〉 and 〈ν〉.
4.13. Use the previous problem to show that if ω and ν are 1-forms on R

2 such
that ω ∧ ν = 0 then there is a constant c such that ω = cν.

There is also a more geometric way to think about ω ∧ ν if ω and ν are 1-
forms on TpR

3, although it will take us some time to develop the idea. Suppose
ω = a dx + b dy + c dz. Then we will denote the vector 〈a, b, c〉 as 〈ω〉. From
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the previous section, we know that if V is any vector, then ω(V ) = 〈ω〉 · V , and
that this is just the projection of V onto the line containing 〈ω〉, times |〈ω〉|.

Now suppose ν is some other 1-form. Choose a scalar x so that 〈ν − xω〉 is
perpendicular to 〈ω〉. Let νω = ν − xω. Note that ω ∧ νω = ω ∧ (ν − xω) =
ω ∧ ν − xω ∧ ω = ω ∧ ν. Hence, any geometric interpretation we find for the
action of ω ∧ νω is also a geometric interpretation of the action of ω ∧ ν.

Finally, we let ω = ω
|〈ω〉| and νω = νω|〈νω〉| . Note that these are 1-forms such

that 〈ω〉 and 〈νω〉 are perpendicular unit vectors. We will now present a geometric
interpretation of the action of ω ∧ νω on a pair of vectors, (V1, V2).

First, note that since 〈ω〉 is a unit vector then ω(V1) is just the projection of
V1 onto the line containing 〈ω〉. Similarly, νω(V1) is given by projecting V1 onto
the line containing 〈νω〉. As 〈ω〉 and 〈νω〉 are perpendicular, we can think of the
quantity

ω ∧ νω(V1, V2) = ω(V1) ω(V2)

νω(V1) νω(V2)

as the area of parallelogram spanned by V1 and V2, projected onto the plane
containing the vectors 〈ω〉 and 〈νω〉. This is the same plane as the one which
contains the vectors 〈ω〉 and 〈ν〉.

Now observe the following:

ω ∧ νω = ω

|〈ω〉| ∧ νω

|〈νω〉| = 1

|〈ω〉||〈νω〉|ω ∧ νω.

Hence,

ω ∧ ν = ω ∧ νω = |〈ω〉||〈νω〉|ω ∧ νω.

Finally, note that since 〈ω〉 and 〈νω〉 are perpendicular, the quantity |〈ω〉||〈νω〉|
is just the area of the rectangle spanned by these two vectors. Furthermore, the
parallelogram spanned by the vectors 〈ω〉 and 〈ν〉 is obtained from this rectangle
by skewing. Hence, they have the same area. We conclude

Evaluating ω∧ν on the pair of vectors (V1, V2) gives the area of parallelogram
spanned by V1 and V2 projected onto the plane containing the vectors 〈ω〉 and
〈ν〉, and multiplied by the area of the parallelogram spanned by 〈ω〉 and 〈ν〉.

CAUTION: While every 1-form can be thought of as projected length not
every 2-form can be thought of as projected area. The only 2-forms for which
this interpretation is valid are those that are the product of 1-forms. See Prob-
lem 4.18.

Let’s pause for a moment to look at a particularly simple 2-form on TpR
3,

dx ∧ dy. Suppose V1 = 〈a1, a2, a3〉 and V2 = 〈b1, b2, b3〉. Then
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dx ∧ dy(V1, V2) = a1 b1
a2 b2

.

This is precisely the (signed) area of the parallelogram spanned by V1 and V2
projected onto the dxdy-plane.

4.14. ω ∧ ν(〈a1, a2, a3〉, 〈b1, b2, b3〉) = c1dx ∧ dy + c2dx ∧ dz + c3dy ∧ dz,
for some real numbers c1, c2 and c3.

The preceding comments, and this last exercise, give the following geometric
interpretation of the action of a 2-form on the pair of vectors, (V1, V2):

Every 2-form projects the parallelogram spanned by V1 and V2 onto each of
the (2-dimensional) coordinate planes, computes the resulting (signed) areas,
multiplies each by some constant, and adds the results.

This interpretation holds in all dimensions. Hence, to specify a 2-form we
need to know as many constants as there are 2-dimensional coordinate planes.
For example, to give a 2-form in 4-dimensional Euclidean space we need to
specify six numbers:

c1dx ∧ dy + c2dx ∧ dz + c3dx ∧ dw + c4dy ∧ dz + c5dy ∧ dw + c6dz ∧ dw.

The skeptic may argue here. Problem 4.14 only shows that a 2-form which is
a product of 1-forms can be thought of as a sum of projected, scaled areas. What
about an arbitrary 2-form? Well, to address this, we need to know what an arbitrary
2-form is! Up until now we have not given a complete definition. Henceforth, we
shall define a 2-form to be a bilinear, skew-symmetric, real-valued function on
TpR

n×TpR
n. That is a mouthful. This just means that it is an operator which eats

pairs of vectors, spits out real numbers, and satisfies the conclusions of Problems
4.6 and 4.8. Since these are the only ingredients necessary to do Problem 4.14,
our geometric interpretation is valid for all 2-forms.

4.15. If ω(〈dx, dy, dz〉) = dx+5dy−dz, and ν(〈dx, dy, dz〉) = 2dx−dy+dz,
compute

ω ∧ ν(〈1, 2, 3〉, 〈−1, 4, −2〉).
4.16. Let ω(〈dx, dy, dz〉) = dx+5dy−dz and ν(〈dx, dy, dz〉) = 2dx−dy+dz.
Find constants c1, c2 and c3, such that

ω ∧ ν = c1dx ∧ dy + c2dy ∧ dz + c3dx ∧ dz.

4.17. Express each of the following as the product of two 1-forms:

1. 3dx ∧ dy + dy ∧ dx.

2. dx ∧ dy + dx ∧ dz.

3. 3dx ∧ dy + dy ∧ dx + dx ∧ dz.

4. dx ∧ dy + 3dz ∧ dy + 4dx ∧ dz.
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4.4 2-forms on TpR
3 (optional)

4.18. Find a 2-form which is not the product of 1-forms.

In doing this exercise, you may guess that, in fact, all 2-forms on TpR
3 can

be written as a product of 1-forms. Let’s see a proof of this fact that relies heavily
on the geometric interpretations we have developed.

Recall the correspondence introduced above between vectors and 1-forms. If
α = a1dx + a2dy + a3dz then we let 〈α〉 = 〈a1, a2, a3〉. If V is a vector, then
we let 〈V 〉−1 be the corresponding 1-form.

We now prove two lemmas:

Lemma 1. If α and β are 1-forms on TpR
3 and V is a vector in the plane spanned

by 〈α〉 and 〈β〉, then there is a vector, W , in this plane such that α ∧ β =
〈V 〉−1 ∧ 〈W 〉−1.

Proof. The proof of the above lemma relies heavily on the fact that 2-forms which
are the product of 1-forms are very flexible. The 2-formα∧β takes pairs of vectors,
projects them onto the plane spanned by the vectors 〈α〉 and 〈β〉, and computes the
area of the resulting parallelogram times the area of the parallelogram spanned by
〈α〉 and 〈β〉. Note, that for every non-zero scalar c, the area of the parallelogram
spanned by 〈α〉 and 〈β〉 is the same as the area of the parallelogram spanned by
c〈α〉 and 1/c〈β〉. (This is the same thing as saying that α ∧ β = cα ∧ 1

c
β.) The

important point here is that we can scale one of the 1-forms as much as we want
at the expense of the other and get the same 2-form as a product.

Another thing we can do is apply a rotation to the pair of vectors 〈α〉 and 〈β〉
in the plane which they determine. As the area of the parallelogram spanned by
these two vectors is unchanged by rotation, their product still determines the same
2-form. In particular, suppose V is any vector in the plane spanned by 〈α〉 and
〈β〉. Then we can rotate 〈α〉 and 〈β〉 to 〈α′〉 and 〈β ′〉 so that c〈α′〉 = V , for some
scalar c. We can then replace the pair (〈α〉, 〈β〉) with the pair (c〈α′〉, 1/c〈β ′〉) =
(V , 1/c〈β ′〉). To complete the proof, let W = 1/c〈β ′〉.
Lemma 2. If ω1 = α1 ∧ β1 and ω2 = α2 ∧ β2 are 2-forms on TpR

3, then there
exist 1-forms, α3 and β3, such that ω1 + ω2 = α3 ∧ β3.

Proof. Let’s examine the sum, α1 ∧ β1 + α2 ∧ β2. Our first case is that the
plane spanned by the pair (〈α1〉, 〈β1〉) is the same as the plane spanned by the
pair, (〈α2〉, 〈β2〉). In this case it must be that α1 ∧ β1 = Cα2 ∧ β2, and hence,
α1 ∧ β1 + α2 ∧ β2 = (1 + C)α1 ∧ β1.

If these two planes are not the same, then they intersect in a line. Let V be a
vector contained in this line. Then by the preceding lemma there are 1-forms γ

and γ ′ such that α1 ∧ β1 = 〈V 〉−1 ∧ γ and α2 ∧ β2 = 〈V 〉−1 ∧ γ ′. Hence,

α1 ∧ β1 + α2 ∧ β2 = 〈V 〉−1 ∧ γ + 〈V 〉−1 ∧ γ ′ = 〈V 〉−1 ∧ (γ + γ ′).
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Now note that any 2-form is the sum of products of 1-forms. Hence, this last
lemma implies that any 2-form on TpR

3 is a product of 1-forms. In other words:

Every 2-form on TpR
3 projects pairs of vectors onto some plane and returns

the area of the resulting parallelogram, scaled by some constant.

This fact is precisely why all of classical vector calculus works. We explore
this in the next few exercises, and further in Section 7.3.

4.19. Use the above geometric interpretation of the action of a 2-form on TpR
3 to

justify the following statement: For every 2-form ω on TpR
3 there are non-zero

vectors V1 and V2 such that V1 is not a multiple of V2, but ω(V1, V2) = 0.

4.20. Does Problem 4.19 generalize to higher dimensions?

4.21. Show that if ω is a 2-form on TpR
3, then there is a line l in TpR

3 such that
if the plane spanned by V1 and V2 contains l, then ω(V1, V2) = 0.

Note that the conditions of Problem 4.21 are satisfied when the vectors that
are perpendicular to both V1 and V2 are also perpendicular to l.

4.22. Show that if all you know about V1 and V2 is that they are vectors in TpR
3

that span a parallelogram of area A, then the value of ω(V1, V2) is maximized
when V1 and V2 are perpendicular to the line l of Problem 4.21.

Note that the conditions of this exercise are satisfied when the vectors perpen-
dicular to V1 and V2 are parallel to l.

4.23. Let N be a vector perpendicular to V1 and V2 in TpR
3 whose length is

precisely the area of the parallelogram spanned by these two vectors. Show that
there is a vector Vω in the line l of Problem 4.21 such that the value of ω(V1, V2)

is precisely Vω · N .

Remark. You may have learned that the vector N of the previous exercise is
precisely the cross product of V1 and V2. Hence, the previous problem implies
that if ω is a 2-form on TpR

3 then there is a vector Vω such that ω(V1, V2) =
Vω · (V1 × V2).

4.24. Show that if ω = Fx dy ∧ dz − Fy dx ∧ dz + Fz dx ∧ dy, then Vω =〈
Fx, Fy, Fz

〉
.
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4.5 2-forms and 3-forms on TpR
4 (optional)

Many of the techniques of the previous section can be used to prove results about
2- and 3-forms on TpR

4.

4.25. Show that any 3-form on TpR
4 can be written as the product of three 1-

forms. (Hint: Two three-dimensional subspaces of TpR
4 must meet in at least a

line.)

We now give away an answer to Problem 4.18. Let ω = dx ∧ dy + dz ∧ dw.
Then an easy computation shows that ω ∧ ω = 2dx ∧ dy ∧ dz ∧ dw. But if ω

were equal to α∧β, for some 1-forms α and β, then ω∧ω would be zero (why?).
This argument shows that in general, if ω is any 2-form such that ω∧ω �= 0, then
ω cannot be written as the product of 1-forms.

4.26. Let ω be a 2-form on TpR
4. Show that ω can be written as the sum of exactly

two products. That is, ω = α ∧ β + δ ∧ γ . (Hint: Given three planes in TpR
4

there are at least two of them that intersect in more than a point.)

Above, we saw that if ω is a 2-form such that ω ∧ ω �= 0, then ω is not the
product of 1-forms. We now use the previous exercise to show the converse:

Theorem 1. If ω is a 2-form on TpR
4 such that ω ∧ω = 0, then ω can be written

as the product of two 1-forms.

Our proof of this again relies heavily on the geometry of the situation. By the
previous exercise, ω = α ∧ β + δ ∧ γ . A short computation then shows

ω ∧ ω = 2α ∧ β ∧ δ ∧ γ.

If this 4-form is the zero 4-form, then it must be the case that the (4-
dimensional) volume of the parallelepiped spanned by 〈α〉, 〈β〉, 〈δ〉 and 〈γ 〉 is
zero. This, in turn, implies that the plane spanned by 〈α〉 and 〈β〉 meets the plane
spanned by 〈δ〉 and 〈γ 〉 in at least a line (show this!). Call such an intersection
line L.

As in the previous section, we can now rotate 〈α〉 and 〈β〉, in the plane they
span, to vectors 〈α′〉 and 〈β ′〉 such that 〈α′〉 lies in the line L. The 2-form α′ ∧ β ′
must equal α ∧ β since they determine the same plane, and span a parallelogram
of the same area. Similarly, we rotate 〈δ〉 and 〈γ 〉 to vectors 〈δ′〉 and 〈γ ′〉 such
that 〈δ′〉 ⊂ L. It follows that δ ∧ γ = δ′ ∧ γ ′.

Since 〈α′〉 and 〈δ′〉 lie on the same line, there is a constant c such that cα′ = δ′.
We now put all of this information together:
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ω = α ∧ β + δ ∧ γ

= α′ ∧ β ′ + δ′ ∧ γ ′

= (cα′) ∧ (
1

c
β ′) + δ′ ∧ γ ′

= δ′ ∧ (
1

c
β ′) + δ′ ∧ γ ′

= δ′ ∧ (
1

c
β ′ + γ ′).

4.6 n-forms

Let’s think a little more about our multiplication operator, ∧. If it is really going
to be anything like multiplication, we should be able to take three 1-forms, ω, ν

and ψ , and form the product ω ∧ ν ∧ ψ . How can we define this? A first guess
might be to say that ω ∧ ν ∧ψ = ω ∧ (ν ∧ψ), but ν ∧ψ is a 2-form and we have
not defined the product of a 2-form and a 1-form. We take a different approach
and define ω ∧ ν ∧ ψ directly.

This is completely analogous to the previous section. ω, ν and ψ each act
on a vector, V , to give three numbers. In other words, they can be thought of
as coordinate functions. We say the coordinates of V are [ω(V ), ν(V ), ψ(V )].
Hence, if we have three vectors, V1, V2 and V3, we can compute the [ω, ν, ψ]
coordinates of each. This gives us three new vectors. The signed volume of the
parallelepiped which they span is what we define to be the value of ω ∧ ν ∧
ψ(V1, V2, V3).

There is no reason to stop at three dimensions. Suppose ω1, ω2, ..., ωn are
1-forms and V1, V2, ..., Vn are vectors. Then we define the value of

ω1 ∧ ω2 ∧ ... ∧ ωn(V1, V2, ..., Vn)

to be the signed (n-dimensional) volume of the parallelepiped spanned by the
vectors [ω1(Vi), ω2(Vi), ..., ωn(Vi)]. Algebraically,

ω1 ∧ ω2 ∧ ... ∧ ωn(V1, V2, ..., Vn) =
ω1(V1) ω1(V2) ... ω1(Vn)

ω2(V1) ω2(V2) ... ω2(Vn)
...

...
...

ωn(V1) ωn(V2) ... ωn(Vn)

.

Note that, just as in Problem 4.12, if α, β and γ are 1-forms on TpR
3, then

α ∧ β ∧ γ (V1, V2, V3) is the (signed) volume of the parallelepiped spanned
by V1, V2 and V3 times the volume of the parallelepiped spanned by 〈α〉, 〈β〉
and 〈γ 〉.
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4.27. Suppose ω is a 2-form on TpR
3 and ν is a 1-form on TpR

3. Show that if
ω ∧ ν = 0, then there is a 1-form γ such that ω = ν ∧ γ . (Hint: Combine the
above geometric interpretation of a 3-form, which is the product of 1-forms on
TpR3, with the results of Section 4.4.)

It follows from linear algebra that if we swap any two rows or columns of this
matrix, the sign of the result flips. Hence, if the n-tuple, V′ = (Vi1, Vi2, ..., Vin)

is obtained from V = (V1, V2, ..., Vn) by an even number of exchanges, then the
sign of ω1 ∧ω2 ∧ ...∧ωn(V′) will be the same as the sign of ω1 ∧ω2 ∧ ...∧ωn(V).
If the number of exchanges is odd, then the sign is opposite. We sum this up by
saying that the n-form, ω1 ∧ ω2 ∧ ... ∧ ωn is alternating.

The wedge product of 1-forms is also multilinear, in the following sense:

ω1∧ω2∧...∧ωn(V1, ..., Vi +V ′
i , ..., Vn) = ω1∧ω2∧...∧ωn(V1, ..., Vi, ..., Vn)+

ω1 ∧ ω2 ∧ ... ∧ ωn(V1, ..., V
′
i , ..., Vn),

and
ω1 ∧ ω2 ∧ ... ∧ ωn(V1, ..., cVi, ..., Vn) = cω1 ∧ ω2 ∧ ... ∧ ωn(V1, ..., Vi, ..., Vn),

for all i and any real number, c.

In general, we define an n-form to be any alternating, multilinear real-valued
function which acts on n-tuples of vectors.

4.28. Prove the following geometric interpretation: (Hint: All of the steps are
completely analogous to those in the last section.)

An m-form on TpR
n can be thought of as a function which takes the paral-

lelepiped spanned by m vectors, projects it onto each of the m-dimensional
coordinate planes, computes the resulting areas, multiplies each by some con-
stant, and adds the results.

4.29. How many numbers do you need to give to specify a 5-form on TpR
10?

We turn now to the simple case of an n-form on TpR
n. Notice that there is only

one n-dimensional coordinate plane in this space, namely, the space itself. Such
a form, evaluated on an n-tuple of vectors, must therefore give the n-dimensional
volume of the parallelepiped which it spans, multiplied by some constant. For
this reason such a form is called a volume form (in 2-dimensions, an area form).

Example 15. Consider the forms, ω = dx + 2dy − dz, ν = 3dx − dy + dz and
ψ = −dx − 3dy + dz, on TpR

3. By the above argument ω ∧ ν ∧ ψ must be
a volume form. But which volume form is it? One way to tell is to compute its
value on a set of vectors which we know span a parallelepiped of volume one,
namely 〈1, 0, 0〉, 〈0, 1, 0〉 and 〈0, 0, 1〉. This will tell us how much the form scales
volume.
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ω ∧ ν ∧ ψ(〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉) =
1 2 −1
3 −1 1

−1 −3 1
= 4.

So, ω ∧ ν ∧ ψ must be the same as the form 4dx ∧ dy ∧ dz.

4.30. Let ω(〈dx, dy, dz〉) = dx + 5dy − dz, ν(〈dx, dy, dz〉) = 2dx − dy + dz

and γ (〈dx, dy, dz) = −dx + dy + 2dz.

1. If V1 = 〈1, 0, 2〉, V2 = 〈1, 1, 2〉 and V3 = 〈0, 2, 3〉, compute ω ∧ ν ∧
γ (V1, V2, V3).

2. Find a constant, c, such that ω ∧ ν ∧ γ = c dx ∧ dy ∧ dz.
3. Let α = 3dx ∧ dy + 2dy ∧ dz − dx ∧ dz. Find a constant, c, such that

α ∧ γ = c dx ∧ dy ∧ dz.

4.31. Simplify:

dx ∧ dy ∧ dz + dx ∧ dz ∧ dy + dy ∧ dz ∧ dx + dy ∧ dx ∧ dy.

4.32. Let ω be an n-form and ν an m-form.

1. Show that
ω ∧ ν = (−1)nmν ∧ ω.

2. Use this to show that if n is odd then ω ∧ ω = 0.

4.7 Algebraic computation of products

In this section, we break with the spirit of the text briefly. At this point, we have
amassed enough algebraic identities that multiplying forms becomes similar to
multiplying polynomials. We quickly summarize these identities and work a few
examples.

Let ω be an n-form and ν be an m-form. Then we have the following identities

ω ∧ ν = (−1)nmν ∧ ω

ω ∧ ω = 0 if n is odd

ω ∧ (ν + ψ) = ω ∧ ν + ω ∧ ψ

(ν + ψ) ∧ ω = ν ∧ ω + ψ ∧ ω.

Example 16.

(x dx + y dy) ∧ (y dx + x dy) = ������
xy dx ∧ dx + x2 dx ∧ dy + y2 dy ∧ dx

+������
yx dy ∧ dy

= x2 dx ∧ dy + y2 dy ∧ dx

= x2 dx ∧ dy − y2 dx ∧ dy

= (x2 − y2) dx ∧ dy.
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Example 17.

(x dx + y dy) ∧ (xz dx ∧ dz + yz dy ∧ dz)

= ��������
x2z dx ∧ dx ∧ dz + xyz dx ∧ dy ∧ dz

+yxz dy ∧ dx ∧ dz +��������
y2z dy ∧ dy ∧ dz

= xyz dx ∧ dy ∧ dz + yxz dy ∧ dx ∧ dz

= xyz dx ∧ dy ∧ dz − xyz dx ∧ dy ∧ dz

= 0.

4.33. Expand and simplify:

1. [(x − y) dx + (x + y) dy + z dz] ∧ [(x − y) dx + (x + y) dy].
2. (2dx + 3dy) ∧ (dx − dz) ∧ (dx + dy + dz).
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Differential Forms

5.1 Families of forms

Let us now go back to the example in Chapter 3. In the last section of that
chapter, we showed that the integral of a function, f : R

3 → R, over a surface
parameterized by φ : R ⊂ R

2 → R
3 is∫

R

f (φ(r, θ))Area

[
∂φ

∂r
(r, θ),

∂φ

∂θ
(r, θ)

]
drdθ.

This gave one motivation for studying differential forms. We wanted to gener-
alize this integral by considering functions other than “Area(·, ·)” that eat pairs of
vectors and return numbers. But in this integral the point at which such a pair of
vectors is based, changes. In other words, Area(·, ·) does not act on TpR

3 ×TpR
3

for a fixed p. We can make this point a little clearer by re-examining the above
integrand. Note that it is of the form f (�)Area(·, ·). For a fixed point, �, of R

3,
this is an operator on T�R

3 × T�R
3, much like a 2-form is.

But so far all we have done is to define 2-forms at fixed points of R
3. To really

generalize the above integral we must start to consider entire families of 2-forms,
ωp : TpR

3 × TpR
3 → R, where p ranges over all of R

3. Of course, for this to
be useful such a family must have some “niceness” properties. For one thing, it
should be continuous. That is, if p and q are close, then ωp and ωq should be
similar.

An even stronger property is that the family, ωp, is differentiable. To see
what this means recall that for a fixed p, a 2-form ωp can always be written as
apdx ∧ dy + bpdy ∧ dz + cpdx ∧ dz, where ap, bp, and cp are constants. But if
we let our choice of p vary over all of R

3, then so will these constants. In other
words, ap, bp and cp are all functions from R

3 to R. To say that the family, ωp,
is differentiable we mean that each of these functions is differentiable. If ωp is
differentiable, then we will refer to it as a differential form. When there can be
no confusion we will suppress the subscript, p.
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Example 18. ω = x2y dx ∧ dy − xz dy ∧ dz is a differential 2-form on
R

3. On the space T(1,2,3)R
3 it is just the 2-form 2dx ∧ dy − 3dy ∧ dz. We

will denote vectors in T(1,2,3)R
3 as 〈dx, dy, dz〉(1,2,3). Hence, the value of

ω(〈4, 0, −1〉(1,2,3), 〈3, 1, 2〉(1,2,3)) is the same as the 2-form, 2dx∧dy+dy∧dz,
evaluated on the vectors 〈4, 0, −1〉 and 〈3, 1, 2〉, which we compute:

ω(〈4, 0, −1〉(1,2,3) , 〈3, 1, 2〉(1,2,3))

= 2dx ∧ dy − 3dy ∧ dz (〈4, 0, −1〉, 〈3, 1, 2〉)
= 2

4 3
0 1

− 3
0 1

−1 2
= 5.

Suppose ω is a differential 2-form on R
3. What does ω act on? It takes a pair

of vectors at each point of R
3 and returns a number. In other words, it takes two

vector fields and returns a function from R
3 to R. A vector field is simply a choice

of vector in TpR
3, for each p ∈ R

3. In general, a differential n-form on R
m acts

on n vector fields to produce a function from R
m to R (see Fig. 5.1).

ω

2 3 π

√
7 9 −3

21 6 0

Fig. 5.1. A differential 2-form, ω, acts on a pair of vector fields, and returns a function from
R

n to R.

Example 19. V1 = 〈2y, 0, −x〉(x,y,z) is a vector field on R
3. For example, it

contains the vector 〈4, 0, −1〉 ∈ T(1,2,3)R
3. If V2 = 〈z, 1, xy〉(x,y,z) and ω is the

differential 2-form, x2y dx ∧ dy − xz dy ∧ dz, then

ω(V1, V2) = x2y dx ∧ dy − xz dy ∧ dz(〈2y, 0, x〉(x,y,z), 〈z, 1, xy〉(x,y,z))

= x2y
2y z

0 1
− xz

0 1
−x xy

= 2x2y2 − x2z,

which is a function from R
3 to R.

Notice that V2 contains the vector 〈3, 1, 2〉(1,2,3). So, from the previous ex-
ample we would expect that 2x2y2 − x2z equals 5 at the point (1, 2, 3), which is
indeed the case.
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5.1. Let ω be the differential 2-form on R
3 given by

ω = xyz dx ∧ dy + x2z dy ∧ dz − y dx ∧ dz.

Let V1 and V2 be the following vector fields:

V1 = 〈y, z, x2〉(x,y,z), V2 = 〈xy, xz, y〉(x,y,z).

1. What vectors do V1 and V2 contain at the point (1, 2, 3)?
2. Which 2-form is ω on T(1,2,3)R

3?
3. Use your answers to the previous two questions to compute ω(V1, V2) at the

point (1, 2, 3).
4. Compute ω(V1, V2) at the point (x, y, z). Then plug in x = 1, y = 2 and

z = 3 to check your answer against the previous question.

5.2 Integrating differential 2-forms

Let’s now recall the steps involved with integration of functions on subsets of
R

2, which we learned in Section 1.3. Suppose R ⊂ R
2 and f : R → R. The

following steps define the integral of f over R:

1. Choose a lattice of points in R, {(xi, yj )}.
2. For each i, j define V 1

i,j = (xi+1, yj ) − (xi, yj ) and V 2
i,j = (xi, yj+1) −

(xi, yj ) (See Fig. 5.2). Notice that V 1
i,j and V 2

i,j are both vectors in T(xi ,yj )R
2.

3. For each i, j compute f (xi, yj )Area(V 1
i,j , V

2
i,j ), where Area(V , W) is the

function which returns the area of the parallelogram spanned by the vectors
V and W .

4. Sum over all i and j .
5. Take the limit as the maximal distance between adjacent lattice points goes

to zero. This is the number that we define to be the value of
∫
R

f dx dy.

Let’s focus on Step 3. Here we compute f (xi, yj )Area(V 1
i,j , V

2
i,j ). Notice

that this is exactly the value of the differential 2-form ω = f (x, y)dx ∧ dy,
evaluated on the vectors V 1

i,j and V 2
i,j at the point (xi, yj ). Hence, in Step 4 we

can write this sum as
∑
i

∑
j

f (xi, yj )Area(V 1
i,j , V

2
i,j ) =∑

i

∑
j

ω(xi ,yj )(V
1
i,j , V

2
i,j ).

It is reasonable, then, to adopt the shorthand “
∫
R

ω” to denote the limit in Step 5.

The upshot of all this is the following:

If ω = f (x, y)dx ∧ dy, then
∫
R

ω = ∫
R

f dx dy.
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xi

yj

V 1
i,j

V 2
i,j

Fig. 5.2. The steps toward integration.

Since all differential 2-forms on R
2 are of the form f (x, y)dx ∧ dy we now

know how to integrate them.
CAUTION! When integrating 2-forms on R

2 it is tempting to always drop
the “∧” and forget you have a differential form. This is only valid with dx ∧ dy.
It is NOT valid with dy ∧dx. This may seem a bit curious since Fubini’s theorem
gives us ∫

f dx ∧ dy =
∫

f dx dy =
∫

f dy dx.

All of these are equal to − ∫ f dy ∧ dx. We will revisit this issue in Example 27.

5.2. Let ω = xy2 dx ∧ dy be a differential 2-form on R
2. Let D be the region of

R
2 where 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Calculate

∫
D

ω.

What about integration of differential 2-forms on R
3? As remarked at the end

of Section 3.5 we do this only over those subsets of R
3 which can be parameterized

by subsets of R
2. Suppose M is such a subset, like the top half of the unit sphere.

To define what we mean by
∫
M

ω we just follow the steps above:

1. Choose a lattice of points in M , {pi,j }.
2. For each i, j define V 1

i,j = pi+1,j − pi,j and V 2
i,j = pi,j+1 − pi,j . Notice

that V 1
i,j and V 2

i,j are both vectors in Tpi,j
R

3 (see Fig. 5.3).

3. For each i, j compute ωpi,j
(V 1

i,j , V
2
i,j ).
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4. Sum over all i and j .
5. Take the limit as the maximal distance between adjacent lattice points goes

to 0. This is the number that we define to be the value of
∫
M

ω.

x

y

z

pi,j

V 1
i,j

V 2
i,j

Fig. 5.3. The steps toward integrating a 2-form.

Unfortunately these steps are not so easy to follow. For one thing, it is not
always clear how to pick the lattice in Step 1. In fact, there is an even worse prob-
lem. In Step 3, why did we compute ωpi,j

(V 1
i,j , V

2
i,j ) instead of ωpi,j

(V 2
i,j , V

1
i,j )?

After all, V 1
i,j and V 2

i,j are two randomly oriented vectors in T R
3
pi,j

. There is no
reasonable way to decide which should be first and which second. There is noth-
ing to be done about this. At some point we just have to make a choice and make
it clear which choice we have made. Such a decision is called an orientation.
We will have much more to say about this later. For now, we simply note that a
different choice will only change our answer by changing its sign.

While we are on this topic, we also note that we would end up with the same
number in Step 5 if we had calculated ωpi,j

(−V 1
i,j , −V 2

i,j ) in Step 4, instead.

Similarly, if it turns out later that we should have calculated ωpi,j
(V 2

i,j , V
1
i,j ), then

we could have also arrived at the right answer by computing ωpi,j
(−V 1

i,j , V
2
i,j ). In

other words, there are really only two possibilities: either ωpi,j
(V 1

i,j , V
2
i,j ) gives

the correct answer or ωpi,j
(−V 1

i,j , V
2
i,j ) does. Which one will depend on our

choice of orientation.
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Despite all the difficulties with using the above definition of
∫
M

ω, all hope

is not lost. Remember that we are only integrating over regions which can be
parameterized by subsets of R

2. The trick is to use such a parameterization to
translate the problem into an integral of a 2-form over a region in R

2. The steps
are analogous to those in Section 3.5.

Suppose φ : R ⊂ R
2 → M is a parameterization. We want to find a 2-form,

f (x, y) dx ∧ dy, such that a Riemann sum for this 2-form over R gives the same
result as a Riemann sum for ω over M . Let’s begin:

1. Choose a rectangular lattice of points in R, {(xi, yj )}. This also gives a lattice,
{φ(xi, yj )}, in M .

2. For each i, j , define V 1
i,j = (xi+1, yj )−(xi, yj ), V 2

i,j = (xi, yj+1)−(xi, yj ),

V1
i,j = φ(xi+1, yj )−φ(xi, yj ), and V2

i,j = φ(xi, yj+1)−φ(xi, yj ) (see Fig.

5.4). Notice that V 1
i,j and V 2

i,j are vectors in T(xi ,yj )R
2 and V1

i,j and V2
i,j are

vectors in Tφ(xi ,yj )R
3.

3. For each i, j compute f (xi, yj ) dx ∧ dy(V 1
i,j , V

2
i,j ) and ωφ(xi ,yj )(V1

i,j ,V2
i,j ).

4. Sum over all i and j .

x

x

y

y

z

φ

xi

yj
V1

i,j

V2
i,j

φ(xi , yj )

V 1
i,j

V 2
i,j

Fig. 5.4. Using φ to integrate a 2-form.

At the conclusion of Step 4 we have two sums,
∑
i

∑
j

f (xi, yj ) dx ∧
dy(V 1

i,j , V
2
i,j ) and

∑
i

∑
j

ωφ(xi ,yj )(V1
i,j ,V2

i,j ). In order for these to be equal, we

must have:

f (xi, yj ) dx ∧ dy(V 1
i,j , V

2
i,j ) = ωφ(xi ,yj )(V1

i,j ,V2
i,j ).

And so,
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f (xi, yj ) = ωφ(xi ,yj )(V1
i,j ,V2

i,j )

dx ∧ dy(V 1
i,j , V

2
i,j )

.

But, since we are using a rectangular lattice in R we know dx ∧ dy(V 1
i,j , V

2
i,j ) =

Area(V 1
i,j , V

2
i,j ) = |V 1

i,j | · |V 2
i,j |. We now have

f (xi, yj ) = ωφ(xi ,yj )(V1
i,j ,V2

i,j )

|V 1
i,j | · |V 2

i,j |
.

Using the bilinearity of ω this reduces to

f (xi, yj ) = ωφ(xi ,yj )

( V1
i,j

|V 1
i,j |

,
V2

i,j

|V 2
i,j |
)
.

But, as the distance between adjacent points of our partition tends toward 0,

V1
i,j

|V 1
i,j |

= φ(xi+1, yj ) − φ(xi, yj )

|(xi+1, yj ) − (xi, yj )| = φ(xi+1, yj ) − φ(xi, yj )

|xi+1 − xi | → ∂φ

∂x
(xi, yj ).

Similarly,
V2

i,j

|V 2
i,j | converges to ∂φ

∂y
(xi, yj ).

Let’s summarize what we have so far. We defined f (x, y) so that∑
i

∑
j

ωφ(xi ,yj )(V1
i,j ,V2

i,j ) =
∑

i

∑
j

f (xi, yj ) dx ∧ dy(V 1
i,j , V

2
i,j )

=
∑

i

∑
j

ωφ(xi ,yj )

( V1
i,j

|V 1
i,j |

,
V2

i,j

|V 2
i,j |
)

dx ∧ dy(V 1
i,j , V

2
i,j ).

We have also shown that when we take the limit as the distance between
adjacent partition points tends toward zero this sum converges to the sum

∑
i

∑
j

ωφ(x,y)

(∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy(V 1

i,j , V
2
i,j ).

Hence, it must be that

∫
M

ω =
∫
R

ωφ(x,y)

(∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy. (5.1)

At first glance, this seems like a very complicated formula. Let’s break it down
by examining the integrand on the right. The most important thing to notice is
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that this is just a differential 2-form on R, even though ω is a 2-form on R
3.

For each pair of numbers, (x, y), the function ωφ(x,y)

(
∂φ
∂x

(x, y),
∂φ
∂y

(x, y)
)

just

returns some real number. Hence, the entire integrand is of the form g dx ∧ dy,
where g : R → R.

The only way to really convince oneself of the usefulness of this formula is
to actually use it.

Example 20. Let M denote the top half of the unit sphere in R
3. Let ω = z2dx∧dy

be a differential 2-form on R
3. Calculating

∫
M

ω directly by setting up a Riemann

sum would be next to impossible. So we employ the parameterization φ(r, t) =
(r cos t, r sin t,

√
1 − r2), where 0 ≤ t ≤ 2π and 0 ≤ r ≤ 1.

∫
M

ω =
∫
R

ωφ(r,t)

(∂φ

∂r
(r, t),

∂φ

∂t
(r, t)

)
dr ∧ dt

=
∫
R

ωφ(r,t)

(
〈cos t, sin t,

−r√
1 − r2

〉, 〈−r sin t, r cos t, 0〉
)
dr ∧ dt

=
∫
R

(1 − r2)
cos t −r sin t

sin t r cos t
dr ∧ dt

=
∫
R

(1 − r2)(r)dr ∧ dt

=
2π∫

0

1∫
0

r − r3dr dt = π

2
.

Notice that as promised, the term ωφ(r,t)

(
∂φ
∂r

(r, t),
∂φ
∂t

(r, t)
)

in the second

integral above simplified to a function from R to R, r − r3.

5.3. Integrate the 2-form

ω = 1

x
dy ∧ dz − 1

y
dx ∧ dz

over the top half of the unit sphere using the following parameterizations from
cylindrical and spherical coordinates:

1. (r, θ) → (r cos θ, r sin θ,
√

1 − r2), where 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1.
2. (θ, φ) → (sin φ cos θ, sin φ sin θ, cos φ), where 0 ≤ θ ≤ 2π and

0 ≤ φ ≤ π
2 .
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5.4. Let ω be the 2-form from the previous problem. Integrate ω over the surface
parameterized by the following:

φ(r, θ) = (r cos θ, r sin θ, cos r), 0 ≤ r ≤ π

2
, 0 ≤ θ ≤ 2π.

5.5. Let S be the surface in R
3 parameterized by

�(θ, z) = (cos θ, sin θ, z)

where 0 ≤ θ ≤ π and 0 ≤ z ≤ 1. Let ω = xyz dy ∧ dz. Calculate
∫
S

ω.

5.6. Let ω be the differential 2-form on R
3 given by

ω = xyz dx ∧ dy + x2z dy ∧ dz − y dx ∧ dz.

1. Let P be the portion of the plane 3 = 2x + 3y − z in R
3 that lies above the

square {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 1}. Calculate
∫
P

ω.

2. Let M be the portion of the graph of z = x2 + y2 in R
3 that lies above the

rectangle {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ 2}. Calculate
∫
M

ω.

5.7. Let D be some region in the xy-plane. Let M denote the portion of the graph
of z = g(x, y) that lies above D.

1. Let ω = f (x, y) dx ∧ dy be a differential 2-form on R
3. Show that∫

M

ω =
∫
D

f (x, y) dx dy.

Notice the answer does not depend on the function g(x, y).
2. Now suppose ω = f (x, y, z) dx ∧ dy. Show that∫

M

ω =
∫
D

f (x, y, g(x, y)) dx dy.

5.8. Let S be the surface obtained from the graph of z = f (x) = x3, where
0 ≤ x ≤ 1, by rotating around the z-axis. Integrate the 2-form ω = y dx ∧ dz

over S. (Hint: use cylindrical coordinates to parameterize S.)
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5.3 Orientations

What would have happened in Example 20 if we had used the parameterization
φ′(r, t) = (−r cos t, r sin t,

√
1 − r2) instead? We leave it to the reader to check

that we end up with the answer −π/2 rather than π/2. This is a problem. We
defined

∫
M

ω before we started talking about parameterizations. Hence, the value

which we calculate for this integral should not depend on our choice of parame-
terization. So what happened?

To analyze this completely, we need to go back to the definition of
∫
M

ω from

the previous section. We noted at the time that a choice was made to calculate
ωpi,j

(V 1
i,j , V

2
i,j ) instead of ωpi,j

(−V 1
i,j , V

2
i,j ). But was this choice correct? The

answer is a resounding maybe! We are actually missing enough information to
tell. An orientation is precisely some piece of information about M which we can
use to make the right choice. This way we can tell a friend what M is, what ω is,
and what the orientation on M is, and they are sure to get the same answer. Recall
Equation 5.1: ∫

M

ω =
∫
R

ωφ(x,y)

(
∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy.

Depending on the specified orientation of M , it may be incorrect to use Equa-
tion 5.1. Sometimes we may want to use:∫

M

ω =
∫
R

ωφ(x,y)

(
−∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy.

Both ω and
∫

are linear. This just means the negative sign in the integrand on
the right can go all the way outside. Hence, we can write both this equation and
Equation 5.1 as∫

M

ω = ±
∫
R

ωφ(x,y)

(∂φ

∂x
(x, y),

∂φ

∂y
(x, y)

)
dx ∧ dy. (5.2)

We define an orientation on M to be any piece of information that can be used
to decide, for each choice of parameterization φ, whether to use the “+” or “−”
sign in Equation 5.2, so that the integral will always yield the same answer.

We will see several ways to specify an orientation on M . The first will be
geometric. It has the advantage that it can be easily visualized, but the disadvantage
that it is actually much harder to use in calculations. All we do is draw a small
circle on M with an arrowhead on it. To use this “oriented circle” to tell if we need
the “+” or “−” sign in Equation 5.2, we draw the vectors ∂φ

∂x
(x, y) and ∂φ

∂y
(x, y)

and an arc with an arrow from the first to the second. If the direction of this arrow
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agrees with the oriented circle, then we use the “+” sign. If they disagree, then
we use the “−” sign. See Figure 5.5.

∂φ
∂x

(x, y)

∂φ
∂x

(x, y)
∂φ
∂y

(x, y)

∂φ
∂y

(x, y)

Use the “−” sign when integrating. Use the “+” sign when integrating.

Fig. 5.5. An orientation on M is given by an oriented circle.

A more algebraic way to specify an orientation is to simply pick a point p

of M and choose any 2-form ν on TpR
3 such that ν(V 1

p , V 2
p ) �= 0 whenever V 1

p

and V 2
p are vectors tangent to M , and V1 is not a multiple of V2. Do not confuse

this 2-form with the differential 2-form, ω, of Equation 5.2. The 2-form ν is only
defined at the single tangent space TpR

3, whereas ω is defined everywhere.
Let us now see how we can use ν to decide whether to use the “+” or “−” sign

in Equation 5.2. All we must do is calculate ν
(

∂φ
∂x

(xp, yp),
∂φ
∂y

(xp, yp)
)

, where

φ(xp, yp) = p. If the result is positive, then we will use the “+” sign to calculate
the integral in Equation 5.2. If it is negative then we use the “−” sign. Let’s see
how this works with an example.

Example 21. Let’s revisit Example 20. The problem was to integrate the form
z2dx ∧ dy over M , the top half of the unit sphere. But no orientation was ever
given for M , so the problem was not very well stated. Let’s pick an easy point, p,
on M: (0,

√
2/2,

√
2/2). The vectors 〈1, 0, 0〉p and 〈0, 1, −1〉p in TpR

3 are both
tangent to M . To give an orientation on M , all we do is specify a 2-form ν on
TpR

3 such that ν(〈1, 0, 0〉, 〈0, 1, −1〉) �= 0. Let’s pick an easy one: ν = dx ∧dy.
Now, let’s see what happens when we try to evaluate the integral by us-

ing the parameterization φ′(r, t) = (−r cos t, r sin t,
√

1 − r2). First, note that
φ′(

√
2/2, π/2) = (0,

√
2/2,

√
2/2) and(∂φ′

∂r
(

√
2

2
,
π

2
),

∂φ′

∂t
(

√
2

2
,
π

2
)
)

= (〈0, 1, −1〉, 〈
√

2

2
, 0, 0〉).

Now we check the value of ν when this pair is plugged in:

dx ∧ dy(〈0, 1, −1〉, 〈
√

2

2
, 0, 0〉) = 0

√
2

2
1 0

= −
√

2

2
.



60 5 Differential Forms

The sign of this result is “−,” so we need to use the negative sign in Equation
5.2 in order to use φ′ to evaluate the integral of ω over M .

∫
M

ω = −
∫
R

ωφ′(r,t)
(∂φ′

∂r
(r, t),

∂φ′

∂t
(r, t)

)
dr ∧ dt

= −
∫
R

(1 − r2)
− cos t r sin t

sin t r cos t
dr dt = π

2
.

Very often, the surface that we are going to integrate over is given to us by a
parameterization. In this case, there is a very natural choice of orientation. Just
use the “+" sign in Equation 5.2! We will call this the orientation of M induced
by the parameterization. In other words, if you see a problem phrased like this,
“Calculate the integral of the formω over the surfaceM given by parameterization
φ with the induced orientation,” then you should just go back to using Equation
5.1 and do not worry about anything else. In fact, this situation is so common
that when you are asked to integrate some form over a surface which is given by
a parameterization, but no orientation is specified, then you should assume the
induced orientation is the desired one.

5.9. Let M be the image of the parameterization, φ(a, b) = (a, a +b, ab), where
0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Integrate the form ω = 2z dx ∧ dy + y dy ∧ dz −
x dx ∧ dz over M using the orientation induced by φ.

There is one subtle technical point here that should be addressed. The novice
reader may want to skip this for now. Suppose someone gives you a surface
defined by a parameterization and tells you to integrate some 2-form over it, using
the induced orientation. But you are clever, and you realize that if you change
parameterizations you can make the integral easier. Which orientation do you
use? The problem is that the orientation induced by your new parameterization
may not be the same as the one induced by the original parameterization.

To fix this we need to see how we can define a 2-form on some tangent
space TpR

3, where p is a point of M , that yields an orientation of M con-
sistent with the one induced by a parameterization φ. This is not so hard. If

dx ∧ dy
(

∂φ
∂x

(xp, yp),
∂φ
∂y

(xp, yp)
)

is positive, then we simply let ν = dx ∧ dy.

If it is negative, then we let ν = −dx ∧ dy. In the unlikely event that

dx ∧dy
(

∂φ
∂x

(xp, yp),
∂φ
∂y

(xp, yp)
)

= 0 we can remedy things by either changing

the point p or by using dx ∧ dz instead of dx ∧ dy. Once we have defined ν, we
know how to integrate M using any other parameterization.

5.10. Let ψ be the following parameterization of the sphere of radius one:

ψ(θ, φ) = (sin φ cos θ, sin φ sin θ, cos φ).
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Which of the following 2-forms on T
(
√

2
2 ,0,

√
2

2 )
R

3 determine the same orientation

on the sphere as that induced by ψ?

1. α = dx ∧ dy + 2dy ∧ dz.

2. β = dx ∧ dy − 2dy ∧ dz.

3. γ = dx ∧ dz.

5.4 Integrating 1-forms on R
m

In the previous sections we saw how to integrate a 2-form over a region in R
2,

or over a subset of R
3 parameterized by a region in R

2. The reason that these
dimensions were chosen was because there is nothing new that needs to be intro-
duced to move to the general case. In fact, if the reader were to go back and look
at what we did, he/she would find that almost nothing would change if we had
been talking about n-forms instead.

Before we jump to the general case, we will work one example showing how
to integrate a 1-form over a parameterized curve.

Example 22. Let C be the curve in R
2 parameterized by

φ(t) = (t2, t3)

where 0 ≤ t ≤ 2. Let ν be the 1-form y dx + x dy. We calculate
∫
C

ν.

The first step is to calculate

dφ

dt
= 〈2t, 3t2〉.

So, dx = 2t and dy = 3t2. From the parameterization we also know x = t2

and y = t3. Hence, since ν = y dx + x dy, we have

νφ(t)

(
dφ

dt

)
= (t3)(2t) + (t2)(3t2) = 5t4.

Finally, we integrate:

∫
C

ν =
2∫

0

νφ(t)

(
dφ

dt

)
dt

=
2∫

0

5t4 dt

= t5
∣∣∣2
0

= 32.
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5.11. Let C be the curve in R
3 parameterized by φ(t) = (t, t2, 1 + t), where

0 ≤ t ≤ 2. Integrate the 1-form ω = y dx + z dy + xy dz over C using the
induced orientation.

5.12. Let C be the curve parameterized by the following:

φ(t) = (2 cos t, 2 sin t, t2), 0 ≤ t ≤ 2.

Integrate the 1-form (x2 + y2) dz over C.

5.13. Let C be the subset of the graph of y = x2 where 0 ≤ x ≤ 1. An orientation
on C is given by the 1-form dx on T(0,0)R

2. Let ω be the 1-form −x4 dx +xy dy.
Integrate ω over C.

5.14. Let M be the line segment in R
2 which connects (0, 0) to (4, 6). An ori-

entation on M is specified by the 1-form −dx on T(2,3)R
2. Integrate the form

ω = sin y dx + cos x dy over M .

Just as there was for surfaces, for parameterized curves there is also a pictorial
way to specify an orientation. All we have to do is place an arrowhead somewhere
along the curve, and ask whether or not the derivative of the parameterization gives
a tangent vector that points in the same direction. We illustrate this in the next
example.

Example 23. Let C be the portion of the graph of x = y2 where 0 ≤ x ≤ 1,
as pictured in Figure 5.6. Notice the arrowhead on C. We integrate the 1-form
ω = dx + dy over C with the indicated orientation.

First, parameterize C as φ(t) = (t2, t), where 0 ≤ t ≤ 1. Now notice that the
derivative of φ is

x

y

C

Fig. 5.6. An orientation on C is given by an arrowhead.
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dφ

dt
= 〈2t, 1〉.

At the point (0, 0) this is the vector 〈0, 1〉, which points in a direction opposite to
that of the arrowhead. This tells us to use a negative sign when we integrate, as
follows:

∫
C

ω = −
1∫

0

ω(t2,t)(〈2t, 1〉)

= −(2t + 1)|10
= −2.

5.5 Integrating n-forms on R
m

To proceed to the general case, we need to know what the integral of an n-form
over a region of R

n is. The steps to define such an object are precisely the same
as before, and the results are similar. If our coordinates in R

n are (x1, x2, ..., xn),
then an n-form is always given by

f (x1, ..., xn)dx1 ∧ dx2 ∧ ... ∧ dxn.

Going through the steps, we find that the definition of
∫

Rn

ω is exactly the same as

the definition we learned in Chapter 1 for
∫

Rn

f dx1dx2...dxn.

5.15. Let � be the cube in R
3

{(x, y, z)| 0 ≤ x, y, z ≤ 1}.
Let γ be the 3-form x2z dx ∧ dy ∧ dz. Calculate

∫
�

γ .

Moving on to integrals of n-forms over subsets of R
m parameterized by a

region in R
n, we again find nothing surprising. Suppose we denote such a subset

by M . Let φ : R ⊂ R
n → M ⊂ R

m be a parameterization. Then we find that the
following generalization of Equation 5.2 must hold:

∫
M

ω = ±
∫
R

ωφ(x1,...,xn)

(
∂φ

∂x1
(x1, ...xn), ...,

∂φ

∂xn

(x1, ...xn)

)
dx1 ∧ ... ∧ dxn.

(5.3)
To decide whether or not to use the negative sign in this equation we must

specify an orientation. Again, one way to do this is to give an n-form ν on TpR
m,

where p is some point of M . We use the negative sign when the value of
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ν
( ∂φ

∂x1
(x1, ...xn), ...,

∂φ

∂xn

(x1, ...xn)
)

is negative, where φ(x1, ...xn) = p. If M was originally given by a parameteri-
zation and we are instructed to use the induced orientation, then we can ignore
the negative sign.

Example 24. Suppose φ(a, b, c) = (a +b, a +c, bc, a2), where 0 ≤ a, b, c ≤ 1.
Let M be the image of φ with the induced orientation. Suppose ω = dy ∧ dz ∧
dw − dx ∧ dz ∧ dw − 2y dx ∧ dy ∧ dz. Then,

∫
M

ω =
∫
R

ωφ(a,b,c)

(
∂φ

∂a
(a, b, c),

∂φ

∂b
(a, b, c),

∂φ

∂c
(a, b, c)

)
da ∧ db ∧ dc

=
∫
R

ωφ(a,b,c) (〈1, 1, 0, 2a〉, 〈1, 0, c, 0〉, 〈0, 1, b, 0〉) da ∧ db ∧ dc

=
∫
R

∣∣∣∣∣∣
1 0 1
0 c b

2a 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣

1 1 0
0 c b

2a 0 0

∣∣∣∣∣∣− 2(a + c)

∣∣∣∣∣∣
1 1 0
1 0 1
0 c b

∣∣∣∣∣∣ da ∧ db ∧ dc

=
1∫

0

1∫
0

1∫
0

2bc + 2c2 da db dc = 7

6
.

5.6 The change of variables formula

There is a special case of Equation 5.3 which is worth noting. Suppose φ is a
parameterization that takes some subregion, R, of R

n into some other subregion,
M , of R

n and ω is an n-form on R
n. At each point, ω is just a volume form, so

it can be written as f (x1, ..., xn) dx1 ∧ ... ∧ dxn. If we let x̄ = (x1, ...xn) then
Equation 5.3 can be written as:

∫
M

f (x̄)dx1...dxn = ±
∫
R

f (φ(x̄))

∣∣∣∣ ∂φ

∂x1
(x̄)...

∂φ

∂xn

(x̄)

∣∣∣∣ dx1...dxn. (5.4)

The bars | · | indicate that we take the determinant of the matrix whose column
vectors are ∂φ

∂xi
(x̄).

5.6.1 1-forms on R
1

When n = 1 this is just the substitution rule for integration from calculus. We
demonstrate this in the following example.
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Example 25. Let’s integrate the 1-form ω = √
u du over the interval [1, 5]. This

would be easy enough to do directly, but using a parameterization of this interval
will be instructive. Let φ : [0, 2] → [1, 5] be the parameterization given by
φ(x) = x2 + 1. Then dφ

dx
= 2x. Now we compute:

5∫
1

√
u du =

∫
[1,5]

ω =
∫

[0,2]
ωφ(x)

(
dφ

dx

)
dx

=
∫

[0,2]
ωx2+1 (〈2x〉) dx

=
∫

[0,2]
2x
√

x2 + 1 dx

=
2∫

0

2x
√

x2 + 1 dx.

Reading this backwards is doing the integral
2∫

0
2x

√
x2 + 1 dx by “u-substitution.”

5.6.2 2-forms on R
2

For other n, Equation 5.4 is the general change of variables formula.

Example 26. We will use the parameterization �(u, v) = (u, u2 +v2) to evaluate∫∫
R

(x2 + y) dA

where R is the region of the xy-plane bounded by the parabolas y = x2 and
y = x2 + 4, and the lines x = 0 and x = 1.

The first step is to find out what the limits of integration will be when we
change coordinates.

y = x2 ⇒ u2 + v2 = u2 ⇒ v = 0

y = x2 + 4 ⇒ u2 + v2 = u2 + 4 ⇒ v = 2

x = 0 ⇒ u = 0

x = 1 ⇒ u = 1.

Next, we will need the partial derivatives.
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∂�

∂u
= 〈1, 2u〉

∂�

∂v
= 〈0, 2v〉.

Finally, we can integrate.∫∫
R

(x2 + y) dA =
∫
R

(x2 + y) dx ∧ dy

=
2∫

0

1∫
0

u2 + (u2 + v2)

∣∣∣∣ 1 0
2u 2v

∣∣∣∣ du dv

=
2∫

0

1∫
0

4vu2 + 2v3 du dv

=
2∫

0

4

3
v + 2v3 dv

= 8

3
+ 8 = 32

3
.

Example 27. In our second example, we revisit Fubini’s theorem, which says that
the order of integration does not matter in a multiple integral. Recall from Section
5.2 the curious fact that

∫
f dx dy = ∫ f dx∧dy, but

∫
f dy dx �= ∫ f dy∧dx.

We are now prepared to see why this is.
Let’s suppose we want to integrate the function f (x, y) over the rectangle R

in R
2 with vertices at (0, 0), (a, 0), (0, b) and (a, b). We know the answer is just

b∫
0

a∫
0

f (x, y) dx dy. We also know this integral is equal to
∫
R

f dx ∧ dy, where R

is given the “standard” orientation (e.g., the one specified by a counter-clockwise
oriented circle).

Let’s see what happens if we try to compute the integral using the following
parameterization:

φ(y, x) = (x, y), 0 ≤ y ≤ b, 0 ≤ x ≤ a.

First, we need the partials of φ:

∂φ

∂y
= 〈0, 1〉

∂φ

∂x
= 〈1, 0〉.
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Next we have to deal with the issue of orientation. The pair of vectors we just
found, 〈0, 1〉 and 〈1, 0〉 are in an order which does not agree with the orientation
of R. So we have to use the negative sign when employing Equation 5.4:

∫
R

f (x, y) dx dy = −
∫
R

f (φ(y, x))

∣∣∣∣∂φ

∂y

∂φ

∂x

∣∣∣∣ dy dx

= −
∫
R

f (x, y)

∣∣∣∣0 1
1 0

∣∣∣∣ dy ∧ dx

= −
∫
R

f (x, y)(−1)dy ∧ dx

=
∫
R

f (x, y)dy dx.

From the above, we see one of the reasons why Fubini’s theorem is true is
because when the order of integration is switched there are two negative signs.
So,

∫
R

f dy dx actually does equal
∫
R

f dy ∧ dx, but only if you remember to

switch the orientation of R!

5.16. Let E be the region in R
2 parameterized by �(u, v) = (u2 + v2, 2uv),

where 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. Evaluate∫
E

1√
x − y

dA.

Up until this point, we have only seen how to integrate functions f (x, y)

over regions in the plane which are rectangles. Let’s now see how we can use
parameterizations to integrate over more general regions. Suppose first, that R

is the region of the plane below the graph of y = g(x), above the x-axis, and
between the lines x = a and x = b.

The region R can be parameterized by

�(u, v) = (u, vg(u))

where a ≤ u ≤ b and 0 ≤ v ≤ 1. The partials of this parameterization are

∂�

∂u
=
〈
1, v

dg(u)

du

〉

∂�

∂v
= 〈0, g(u)〉 .

Hence,
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dx ∧ dy =
∣∣∣∣ 1 0
v

dg(u)
du

g(u)

∣∣∣∣ = g(u).

We conclude with the identity

∫
R

f (x, y) dy dx =
b∫

a

1∫
0

f (u, vg(u))g(u) dv du.

5.17. Let R be the region below the graph of y = x2, and between the lines x = 0
and x = 2. Calculate ∫

R

xy2 dx dy.

A slight variant is to integrate over a region bounded by the graphs of equations
y = g1(x) and y = g2(x), and by the lines x = a and x = b, where g1(x) < g2(x)

for all x ∈ [a, b]. To compute such an integral we may simply integrate over the
region below g2(x), then integrate over the region below g1(x), and subtract.

5.18. Let R be the region to the right of the y-axis, to the left of the graph of
x = g(y), above the line y = a and below the line y = b. Find a formula for∫
R

f (x, y) dx dy.

5.19. Let R be the region in the first quadrant of R
2, below the line y = x, and

bounded by x2 + y2 = 4. Integrate the 2-form

ω =
(

1 + y2

x2

)
dx ∧ dy

over R.

5.20. Let R be the region of the xy-plane bounded by the ellipse

9x2 + 4y2 = 36.

Integrate the 2-form ω = x2dx ∧ dy over R (Hint: see Problem 2.23 of Chap-
ter 1.)

5.21. Integrate the 2-form

ω = 1

x
dy ∧ dz − 1

y
dx ∧ dz

over the top half of the unit sphere using the following parameterization from
rectangular coordinates:

(x, y) → (x, y,

√
1 − x2 − y2)

where
√

x2 + y2 ≤ 1. Compare your answer to Problem 5.3.
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5.6.3 3-forms on R
3

Example 28. Let V = {(r, θ, z)|1 ≤ r ≤ 2, 0 ≤ z ≤ 1}. (V is the region between
the cylinders of radii one and two and between the planes z = 0 and z = 1.) Let’s
calculate ∫

V

z(x2 + y2) dx ∧ dy ∧ dz.

The region V is best parameterized using cylindrical coordinates:

�(r, θ, z) = (r cos θ, r sin θ, z),

where 1 ≤ r ≤ 2, 1 ≤ θ ≤ 2π , and 0 ≤ z ≤ 1.
We compute the partials:

∂�

∂r
= 〈cos θ, sin θ, 0〉

∂�

∂θ
= 〈−r sin θ, r cos θ, 0〉

∂�

∂z
= 〈0, 0, 1〉.

Hence,

dx ∧ dy ∧ dz =
∣∣∣∣∣∣
cos θ −r sin θ 0
sin θ r cos θ 0
0 0 1

∣∣∣∣∣∣ = r.

Also,
z(x2 + y2) = z(r2 cos2 θ + r2 sin2 θ) = zr2.

So we have∫
V

z(x2 + y2) dx ∧ dy ∧ dz =
1∫

0

2π∫
0

2∫
1

(zr2)(r) dr dθ dz

=
1∫

0

2π∫
0

2∫
1

zr3 dr dθ dz

= 15

4

1∫
0

2π∫
0

z dθ dz

= 15π

2

1∫
0

z dz

= 15π

4
.
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5.22. Integrate the 3-form ω = x dx ∧ dy ∧ dz over the region of R
3 in the first

octant bounded by the cylinders x2 + y2 = 1 and x2 + y2 = 4, and the plane
z = 2.

5.23. Let R be the region in the first octant of R
3 bounded by the spheres x2 +

y2 + z2 = 1 and x2 + y2 + z2 = 4. Integrate the 3-form ω = dx ∧ dy ∧ dz over
R.

5.24. Let V be the volume in the first octant, inside the cylinder of radius one,
and below the plane z = 1. Integrate the 3-form

2
√

1 + x2 + y2 dx ∧ dy ∧ dz

over V .

5.25. Let V be the region inside the cylinder of radius one, centered around
the z-axis, and between the planes z = 0 and z = 2. Integrate the function
f (x, y, z) = z over V .

5.7 Summary: How to integrate a differential form

5.7.1 The steps

To compute the integral of a differential n-form, ω, over a region, S, the steps are
as follows:

1. Choose a parameterization, � : R → S, where R is a subset of R
n (see

Figure 5.7).

x
y

z

�

u

v

R

S

Fig. 5.7.

2. Find all n vectors given by the partial derivatives of �. Geometrically, these
are tangent vectors to S which span its tangent space (see Figure 5.8).

3. Plug the tangent vectors into ω at the point �(u1, u2, ..., un).
4. Integrate the resulting function over R.
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x
y

z

∂�
∂u

∂�
∂v

Fig. 5.8.

5.7.2 Integrating 2-forms

The best way to see the above steps in action is to look at the integral of a 2-form
over a surface in R

3. In general, such a 2-form is given by

ω = f1(x, y, z) dx ∧ dy + f2(x, y, z) dy ∧ dz + f3(x, y, z) dx ∧ dz.

To integrate ω over S we now follow the steps:

1. Choose a parameterization, � : R → S, where R is a subset of R
2.

�(u, v) = (g1(u, v), g2(u, v), g3(u, v)).

2. Find both vectors given by the partial derivatives of �.

∂�

∂u
=
〈
∂g1

∂u
,
∂g2

∂u
,
∂g3

∂u

〉
∂�

∂v
=
〈
∂g1

∂v
,
∂g2

∂v
,
∂g3

∂v

〉
.

3. Plug the tangent vectors into ω at the point �(u, v).
To do this, x, y and z will come from the coordinates of �. That is,
x = g1(u, v), y = g2(u, v) and z = g3(u, v). Terms like dx ∧ dy are
determinants of 2 × 2 matrices, whose entries come from the vectors com-
puted in the previous step. Geometrically, the value of dx ∧ dy is the area of
the parallelogram spanned by the vectors ∂�

∂u
and ∂�

∂v
(tangent vectors to S),

projected onto the dxdy-plane (see Figure 5.9).
The result of all this is:
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dx dy

dz

∂�
∂u

∂�
∂v

Area=dx ∧ dy
(

∂�
∂u

, ∂�
∂v

)
Fig. 5.9. Evaluating dx ∧ dy geometrically.

f1(g1, g2, g3)

∣∣∣∣∣∣
∂g1
∂u

∂g1
∂v

∂g2
∂u

∂g2
∂v

∣∣∣∣∣∣+ f2(g1, g2, g3)

∣∣∣∣∣∣
∂g2
∂u

∂g2
∂v

∂g3
∂u

∂g3
∂v

∣∣∣∣∣∣
+f3(g1, g2, g3)

∣∣∣∣∣∣
∂g1
∂u

∂g1
∂v

∂g3
∂u

∂g3
∂v

∣∣∣∣∣∣ .
Note that simplifying this gives a function of u and v.

4. Integrate the resulting function over R. In other words, if h(u, v) is the func-
tion you ended up with in the previous step, then compute∫

R

h(u, v) du dv.

If R is not a rectangle you may have to find a parameterization of R whose
domain is a rectangle and repeat the above steps to compute this integral.

5.7.3 A sample 2-form

Let ω = (x2 + y2) dx ∧ dy + z dy ∧ dz. Let S denote the subset of the cylinder
x2 + y2 = 1 that lies between the planes z = 0 and z = 1.

1. Choose a parameterization, � : R → S.
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�(θ, z) = (cos θ, sin θ, z).

Where R = {(θ, z)|0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1}.
2. Find both vectors given by the partial derivatives of �.

∂�

∂θ
= 〈− sin θ, cos θ, 0〉

∂�

∂z
= 〈0, 0, 1〉.

3. Plug the tangent vectors into ω at the point �(θ, z). We get

(cos2 θ + sin2 θ)

∣∣∣∣− sin θ 0
cos θ 0

∣∣∣∣+ z

∣∣∣∣ cos θ 0
0 1

∣∣∣∣ .
This simplifies to the function z cos θ .

4. Integrate the resulting function over R.

1∫
0

2π∫
0

z cos θ dθ dz.

Note that the integrand comes from Step 3 and the limits of integration come
from Step 1.
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Differentiation of Forms

6.1 The derivative of a differential 1-form

The goal of this section is to figure out what we mean by the derivative of a
differential form. One way to think about a derivative is as a function which
measures the variation of some other function. Suppose ω is a 1-form on R

2.
What do we mean by the “variation” of ω? One thing we can try is to plug in a
vector field V . The result is a function from R

2 to R. We can then think about
how this function varies near a point p of R

2. But p can vary in a lot of ways, so
we need to pick one. In Section 1.5, we learned how to take another vector, W ,
and use it to vary p. Hence, the derivative of ω, which we shall denote “dω,” is a
function that acts on both V and W . In other words, it must be a 2-form!

Let’s recall how to vary a function f (x, y) in the direction of a vector W at a
point p. This was precisely the definition of the directional derivative:

∇Wf (p) = ∇f (p) · W,

where ∇f (p) is the gradient of f at p:

∇f (p) =
〈
∂f

∂x
(p),

∂f

∂y
(p)

〉
.

Going back to the 1-form ω and the vector field V , we take the directional
derivative of the function ω(V ). Let’s do this now for a specific example. Suppose
ω = y dx − x2dy, V = 〈1, 2〉, W = 〈2, 3〉, and p = (1, 1). Then ω(V ) is the
function y − 2x2. Now we compute:

∇Wω(V ) = ∇ω(V ) · W = 〈−4x, 1〉 · 〈2, 3〉 = −8x + 3.

At the point p = (1, 1) this is the number −5.
What about the variation of ω(W), in the direction of V , at the point p? The

function ω(W) is 2y − 3x2. We now compute:
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∇V ω(W) = ∇ω(W) · V = 〈−6x, 2〉 · 〈1, 2〉 = −6x + 4.

At the point p = (1, 1) this is the number −2.
This is a small problem. We want dω, the derivative of ω, to be a 2-form.

Hence, dω(V, W) should equal −dω(W, V ). How can we use the variations
above to define dω so this is true? Simple. We just define it to be the difference
in these variations:

dω(V, W) = ∇V ω(W) − ∇Wω(V ). (6.1)

Hence, in the above example, dω(〈1, 2〉, 〈2, 3〉), at the point p = (1, 1), is
the number −2 − (−5) = 3.

6.1. Suppose ω = xy2 dx + x3z dy − (y + z9) dz, V = 〈1, 2, 3〉, and W =
〈−1, 0, 1〉.

1. Compute ∇V ω(W) and ∇Wω(V ), at the point (2, 3, −1).
2. Use your answer to the previous question to compute dω(V, W) at the point

(2, 3, −1).

There are other ways to determine what dω is rather than using Equation
6.1. Recall that a 2-form acts on a pair of vectors by projecting them onto each
coordinate plane, calculating the area they span, multiplying by some constant,
and adding. So the 2-form is completely determined by the constants that you
multiply by after projecting. In order to figure out what these constants are, we
are free to examine the action of the 2-form on any pair of vectors. For example,
suppose we have two vectors that lie in the xy-plane and span a parallelogram
with area one. If we run these through some 2-form and end up with the number
five, then we know that the multiplicative constant for that 2-form, associated
with the xy-plane is 5. This, in turn, tells us that the 2-form equals 5 dx ∧dy + ν.
To figure out what ν is, we can examine the action of the 2-form on other pairs
of vectors.

Let’s try this with a general differential 2-form on R
3. Such a form always

looks like dω = a(x, y, z)dx ∧ dy + b(x, y, z)dy ∧ dz + c(x, y, z)dx ∧ dz. To
figure out what a(x, y, z) is, for example, all we need to do is determine what
dω does to the vectors 〈1, 0, 0〉(x,y,z) and 〈0, 1, 0〉(x,y,z). Let’s compute this using
Equation 6.1, assuming ω = f (x, y, z)dx + g(x, y, z)dy + h(x, y, z)dz.

dω(〈1, 0, 0〉, 〈0, 1, 0〉) = ∇〈1,0,0〉ω(〈0, 1, 0〉) − ∇〈0,1,0〉ω(〈1, 0, 0〉)
=
〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z

〉
· 〈1, 0, 0〉 −

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
· 〈0, 1, 0〉

= ∂g

∂x
− ∂f

∂y
.

Similarly, direct computation shows:
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dω(〈0, 1, 0〉, 〈0, 0, 1〉) = ∂h

∂y
− ∂g

∂z

and,

dω(〈1, 0, 0〉, 〈0, 0, 1〉) = ∂h

∂x
− ∂f

∂z
.

Hence, we conclude that

dω =
(

∂g

∂x
− ∂f

∂y

)
dx ∧ dy +

(
∂h

∂y
− ∂g

∂z

)
dy ∧ dz +

(
∂h

∂x
− ∂f

∂z

)
dx ∧ dz.

6.2. Suppose ω = f (x, y)dx + g(x, y)dy is a 1-form on R
2. Show that dω =

(
∂g
∂x

− ∂f
∂y

)dx ∧ dy.

6.3. If ω = y dx − x2 dy, find dω. Verify that dω(〈1, 2〉, 〈2, 3〉) = 3 at the point
(1, 1).

Technical Note: Equation 6.1 defines the value of dω as long as the vector fields
V and W are constant. If non-constant vector fields are used, then the answer
provided by Equation 6.1 will involve partial derivatives of the components of V

and W , and hence will not be a differential form. Despite this Equation 6.1 does
lead to the correct formulas for dω, as in Exercise 6.2 above. Once such formulas
are obtained then any vector fields can be plugged in.

6.2 Derivatives of n-forms

Before jumping to the general case, let’s look at the derivative of a 2-form. A
2-form, ω, acts on a pair of vector fields, V and W , to return a function. To find
a variation of ω we can examine how this function varies in the direction of a
third vector, U , at some point p. Hence, whatever dω turns out to be, it will be a
function of the vectors U , V , and W at each point p. So, we would like to define
it to be a 3-form.

Let’s start by looking at the variation of ω(V, W) in the direction of U . We
write this as ∇Uω(V, W). If we were to define this as the value of dω(U, V, W),
we would find that, in general, it would not be alternating. That is, usually
∇Uω(V, W) �= −∇V ω(U, W). To remedy this, we simply define dω to be the
alternating sum of all the variations:

dω(U, V, W) = ∇Uω(V, W) − ∇V ω(U, W) + ∇Wω(U, V ).

We leave it to the reader to check that dω is alternating and multilinear (as-
suming U , V , and W are constant vector fields).
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It should not be hard for the reader to now jump to the general case. Suppose
ω is an n-form and V 1, ..., V n+1 are n + 1 vector fields. Then we define

dω(V 1, ..., V n+1) =
n+1∑
i=1

(−1)i+1∇V i ω(V 1, ..., V i−1, V i+1, ..., V n+1).

In other words, dω, applied to n + 1 vectors, is the alternating sum of the
variations of ω applied to n of those vectors in the direction of the remaining one.
Note that we can think of “d” as an operator which takes n-forms to (n+1)-forms.

6.4. Show that dω is alternating.

6.5. Show that d(ω + ν) = dω + dν and d(cω) = cdω, for any constant c.

6.6. Suppose ω = f (x, y, z) dx ∧ dy + g(x, y, z) dy ∧ dz + h(x, y, z) dx ∧ dz.
Find dω (Hint: Compute dω(〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉)). Compute d(x2y dx ∧
dy + y2z dy ∧ dz).

6.3 Interlude: 0-forms

Let’s go back to Section 4.1, when we introduced coordinates for vectors. At that
time, we noted that if C was the graph of the function y = f (x) and p was a point
of C, then the tangent line to C at p lies in TpR

2 and has equation dy = m dx,
for some constant, m. Of course, if p = (x0, y0), then m is just the derivative of
f evaluated at x0.

Now, suppose we had looked at the graph of a function of 2-variables, z =
f (x, y), instead. At some point, p = (x0, y0, z0), on the graph we could look at
the tangent plane, which lies in TpR

3. Its equation is dz = m1dx + m2dy. Since
z = f (x, y), m1 = ∂f

∂x
(x0, y0) and m2 = ∂f

∂y
(x0, y0), we can rewrite this as

df = ∂f

∂x
dx + ∂f

∂y
dy.

Notice that the right-hand side of this equation is a differential 1-form. This is a
bit strange; we applied the “d” operator to something and the result was a 1-form.
However, we know that when we apply the “d" operator to a differential n-form
we get a differential (n + 1)-form. So, it must be that f (x, y) is a differential
0-form on R

2!
In retrospect, this should not be so surprising. After all, the input to a differ-

ential n-form on R
m is a point, and n vectors based at that point. So, the input to

a differential 0-form should be a point of R
m, and no vectors. In other words, a

0-form on R
m is just another word for a real-valued function on R

m.
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Let’s extend some of the things we can do with forms to 0-forms. Suppose f

is a 0-form, and ω is an n-form (where n may also be 0). What do we mean by
f ∧ω? Since the wedge product of an n-form and an m-form is an (n+m)-form,
it must be that f ∧ ω is an n form. It is hard to think of any other way to define
this as just the product, f ω.

What about integration? Remember that we integrate n-forms over subsets
of R

m that can be parameterized by a subset of R
n. So 0-forms get integrated

over things parameterized by R
0. In other words, we integrate a 0-form over a

point. How do we do this? We do the simplest possible thing; define the value of
a 0-form, f , integrated over the point, p, to be ±f (p). To specify an orientation
we just need to say whether or not to use the − sign. We do this just by writing
“−p” instead of “p” when we want the integral of f over p to be −f (p).

One word of caution here...beware of orientations! If p ∈ R
n, then we use

the notation “−p” to denote p with the negative orientation. So if p = −3 ∈ R
1,

then −p is not the same as the point, 3. −p is just the point, −3, with a negative
orientation. So, if f (x) = x2, then

∫
−p

f = −f (p) = −9.

6.7. If f is the 0-form x2y3, p is the point (−1, 1), q is the point (1, −1), and
r is the point (−1, −1), then compute the integral of f over the points −p, −q,
and −r , with the indicated orientations.

Let’s go back to our exploration of derivatives of n-forms. Suppose f (x, y) dx

is a 1-form on R
2. Then we have already shown that d(f dx) = ∂f

∂y
dy ∧ dx. We

now compute:

df ∧ dx =
(

∂f

∂x
dx + ∂f

∂y
dy

)
∧ dx

= ∂f

∂x
dx ∧ dx + ∂f

∂y
dy ∧ dx

= ∂f

∂y
dy ∧ dx

= d(f dx).

6.8. If f is a 0-form, show that d(f dx1 ∧ dx2 ∧ ... ∧ dxn) = df ∧ dx1 ∧ dx2 ∧
... ∧ dxn.

6.9. Prove: d(dω) = 0.

6.10. If ω is an n-form, and µ is an m-form, then show that d(ω ∧ µ) = dω ∧
µ + (−1)nω ∧ dµ.
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6.4 Algebraic computation of derivatives

As in Section 4.7 we break with the spirit of the text to list the identities we have
acquired, and work a few examples.

Let ω be an n-form, µ an m-form, and f a 0-form. Then we have the following
identities:

d(dω) = 0

d(ω + µ) = dω + dµ

d(ω ∧ µ) = dω ∧ µ + (−1)nω ∧ dµ

d(f dx1 ∧ dx2 ∧ ... ∧ dxn) = df ∧ dx1 ∧ dx2 ∧ ... ∧ dxn

df = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + ... + ∂f

∂xn

dxn.

Example 29.
d
(
xy dx − xy dy + xy2z3 dz

)
= d(xy) ∧ dx − d(xy) ∧ dy + d(xy2z3) ∧ dz

= (y dx + x dy) ∧ dx − (y dx + x dy) ∧ dy

+(y2z3 dx + 2xyz3 dy + 3xy2z2 dz) ∧ dz

= �����
y dx ∧ dx + x dy ∧ dx − y dx ∧ dy −�����

x dy ∧ dy

+y2z3 dx ∧ dz + 2xyz3 dy ∧ dz +�������
3xy2z2 dz ∧ dz

= x dy ∧ dx − y dx ∧ dy + y2z3 dx ∧ dz + 2xyz3 dy ∧ dz

= −x dx ∧ dy − y dx ∧ dy + y2z3 dx ∧ dz + 2xyz3 dy ∧ dz

= (−x − y) dx ∧ dy + y2z3 dx ∧ dz + 2xyz3 dy ∧ dz.

Example 30.
d
(
x2(y + z2) dx ∧ dy + z(x3 + y) dy ∧ dz

)
= d(x2(y + z2)) ∧ dx ∧ dy + d(z(x3 + y)) ∧ dy ∧ dz

= 2x2z dz ∧ dx ∧ dy + 3x2z dx ∧ dy ∧ dz

= 5x2z dx ∧ dy ∧ dz.

6.11. For each differential n-form, ω, find dω.

1. sin y dx + cos x dy.

2. xy2 dx + x3z dy − (y + z9) dz.

3. xy2 dy ∧ dz + x3z dx ∧ dz − (y + z9) dx ∧ dy.

4. x2y3z4 dx ∧ dy ∧ dz.

6.12. If f is the 0-form x2y3 and ω is the 1-form x2z dx + y3z2 dy (on R
3), then

use the identity d(f dω) = df ∧ dω to compute d(f dω).
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6.13. Let f, g and h be functions from R
3 to R. If

ω = f dy ∧ dz − g dx ∧ dz + h dx ∧ dy,

then compute dω.

6.5 Antiderivatives

Just as in single-variable calculus it will be helpful to have some proficiency in
recognizing antiderivatives. Nothing substitutes for practice...

6.14. Find forms whose derivatives are

1. dx ∧ dy.
2. dx ∧ dy ∧ dz.
3. yz dx + xz dy + xy dz.
4. y2z2 dx + 2xyz2 dy + 2xy2z dz.
5. (y2 − 2xy) cos(xy2) dx ∧ dy.

6.15. Show that ω = xy2 dx is not the derivative of any 0-form. (Hint: consider
dω.)
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Stokes’ Theorem

7.1 Cells and chains

Up until now, we have not been very specific as to the types of subsets of R
m on

which one integrates a differential n-form. All we have needed is a subset that can
be parameterized by a region in R

n. To go further we need to specify the types of
regions.

Definition 1. Let I = [0, 1]. An n-cell, σ , is the image of a differentiable map,
φ : In → R

m, with a specified orientation. We denote the same cell with opposite
orientation as −σ . We define a 0-cell to be an oriented point of R

m.

Example 31. Suppose g1(x) and g2(x) are functions such that g1(x) < g2(x)

for all x ∈ [a, b]. Let R denote the subset of R
2 bounded by the graphs of the

equations y = g1(x) and y = g2(x), and by the lines x = a and x = b. In
Example 13, we showed that R is a 2-cell (assuming the induced orientation).

We would like to treat cells as algebraic objects which can be added and
subtracted. But if σ is a cell, it may not at all be clear what “2σ” represents. One
way to think about it is as two copies of σ , placed right on top of each other.

Definition 2. An n-chain is a formal linear combination of n-cells.

As one would expect, we assume the following relations hold:

σ − σ = ∅
nσ + mσ = (n + m)σ

σ + τ = τ + σ

You may be able to guess what the integral of an n-form, ω, over an n-chain
is. Suppose C =∑ niσi . Then we define
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C

ω =
∑

i

ni

∫
σi

ω.

7.1. If f is the 0-form x2y3, p is the point (−1, 1), q is the point (1, −1), and r is
the point (−1, −1), then compute the integral of f over the following 0-chains:

1. p − q; r − p.
2. p + q − r .

Another concept that will be useful for us is the boundary of an n-chain. As
a warm-up, we define the boundary of a 1-cell. Suppose σ is the 1-cell which is
the image of φ : [0, 1] → R

m with the induced orientation. Then we define the
boundary of σ (which we shall denote “∂σ”) as the 0-chain, φ(1)−φ(0). We can
represent this pictorially as in Figure 7.1.

σ

∂σ

+

−
Fig. 7.1. Orienting the boundary of a 1-cell.

σ

∂σ

Fig. 7.2. The boundary of a 2-cell.

Figure 7.2 depicts a 2-cell and its boundary. Notice that the boundary consists
of four individually oriented 1-cells. This hints at the general formula. In general,
if the n-cell σ is the image of the parameterization φ : In → R

m with the induced
orientation then
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∂σ =
n∑

i=1

(−1)i+1
(
φ|(x1,...,xi−1,1,xi+1,...,xn) − φ|(x1,...,xi−1,0,xi+1,...,xn)

)
.

So, if σ is a 2-cell, then

∂σ = (φ(1, x2) − φ(0, x2)) − (φ(x1, 1) − φ(x1, 0))

= φ(1, x2) − φ(0, x2) − φ(x1, 1) + φ(x1, 0).

The four terms on the right side of this equality are the four 1-cells depicted
in Figure 7.2. The signs in front of these terms guarantee that the orientations are
as pictured.

If σ is a 3-cell, then

∂σ = (φ(1, x2, x3) − φ(0, x2, x3)) − (φ(x1, 1, x3) − φ(x1, 0, x3))

+ (φ(x1, x2, 1) − φ(x1, x2, 0))

= φ(1, x2, x3) − φ(0, x2, x3) − φ(x1, 1, x3) + φ(x1, 0, x3)

+φ(x1, x2, 1) − φ(x1, x2, 0).

An example will hopefully clear up the confusion this all was sure to generate:

x

y

r

θ

Fig. 7.3. Orienting the boundary of a 2-cell.

Example 32. Suppose φ(r, θ) = (r cos πθ, r sin πθ). The image of φ is the 2-cell,
σ , depicted in Figure 7.3. By the above definition,

∂σ = (φ(1, θ) − φ(0, θ)) − (φ(r, 1) − φ(r, 0))

= (cos πθ, sin πθ) − (0, 0) + (r, 0) − (−r, 0).

This is the 1-chain depicted in Figure 7.3.

Finally, we are ready to define what we mean by the boundary of an n-chain.
If C =∑ niσi , then we define ∂C =∑ ni∂σi .
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Example 33. Suppose

φ1(r, θ) = (r cos 2πθ, r sin 2πθ,
√

1 − r2),

φ2(r, θ) = (−r cos 2πθ, r sin 2πθ, −
√

1 − r2),

σ1 = Im(φ1) and σ2 = Im(φ2). Then σ1 + σ2 is a sphere in R
3. One can check

that ∂(σ1 + σ2) = ∅.

7.2. If σ is an n-cell, show that ∂∂σ = ∅. (At least show this if σ is a 2-cell and
a 3-cell. The 2-cell case can be deduced pictorially from Figures 7.1 and 7.2.)

7.3. If σ is given by the parameterization

φ(r, θ) = (r cos θ, r sin θ)

for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π
4 , then what is ∂σ?

7.4. If σ is given by the parameterization

φ(r, θ) = (r cos θ, r sin θ, r)

for 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π , then what is ∂σ?

7.2 The generalized Stokes’ Theorem

In calculus, we learn that when you take a function, differentiate it, and then
integrate the result, something special happens. In this section, we explore what
happens when we take a form, differentiate it, and then integrate the resulting
form over some chain. The general argument is quite complicated, so we start by
looking at forms of a particular type integrated over very special regions.

Suppose ω = a dx2 ∧dx3 is a 2-form on R
3, where a : R

3 → R. Let R be the
unit cube, I 3 ⊂ R

3. We would like to explore what happens when we integrate
dω over R. Note first that Problem 6.8 implies that dω = ∂a

∂x1
dx1 ∧ dx2 ∧ dx3.

Recall the steps used to define
∫
R

dω:

1. Choose a lattice of points in R, {pi,j,k}. Since R is a cube, we can choose this
lattice to be rectangular.

2. Define V 1
i,j,k = pi+1,j,k − pi,j,k . Similarly, define V 2

i,j,k and V 3
i,j,k .

3. Compute dωpi,j,k
(V 1

i,j,k, V
2
i,j,k, V

2
i,j,k).

4. Sum over all i, j and k.
5. Take the limit as the maximal distance between adjacent lattice points goes

to zero.
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Let’s focus on Step 3 for a moment. Let t be the distance between pi+1,j,k

and pi,j,k , and assume t is small. Then ∂a
∂x1

(pi,j,k) is approximately equal to
a(pi+1,j,k)−a(pi,j,k)

t
. This approximation gets better and better when we let t → 0,

in Step 5.
The vectors, V 1

i,j,k through V 3
i,j,k , form a little cube. If we say the vector V 1

i,j,k

is “vertical,” and the other two are horizontal, then the “height” of this cube is
t , and the area of its base is dx2 ∧ dx3(V

2
i,j,k, V

3
i,j,k), which makes its volume

t dx2 ∧ dx3(V
2
i,j,k, V

3
i,j,k). Putting all this together, we find that

dωpi,j,k
(V 1

i,j,k, V
2
i,j,k, V

2
i,j,k) = ∂a

∂x1
dx1 ∧ dx2 ∧ dx3(V

1
i,j,k, V

2
i,j,k, V

2
i,j,k)

≈ a(pi+1,j,k) − a(pi,j,k)

t
t dx2 ∧ dx3(V

2
i,j,k, V

3
i,j,k)

= ω(V 2
i+1,j,k, V

3
i+1,j,k) − ω(V 2

i,j,k, V
3
i,j,k).

Let’s move on to Step 4. Here we sum over all i, j and k. Suppose for the mo-
ment that i ranges between 1 and N . First, we fix j and k, and sum over all i. The re-
sult is ω(V 2

N,j,k, V
3
N,j,k)−ω(V 2

1,j,k, V
3
1,j,k). Now notice that

∑
j,k

ω(V 2
N,j,k, V

3
N,j,k)

is a Riemann sum for the integral of ω over the “top” of R, and
∑
j,k

ω(V 2
1,j,k, V

3
1,j,k)

is a Riemann sum for ω over the “bottom” of R. Lastly, note that ω, evaluated
on any pair of vectors which lie in the sides of the cube, gives zero. Hence, the
integral of ω over a side of R is zero. Putting all this together, we conclude:∫

R

dω =
∫
∂R

ω. (7.1)

7.5. Prove that Equation 7.1 holds if ω = b dx1 ∧ dx3, or if ω = c dx1 ∧ dx2.
Caution! Beware of signs and orientations.

7.6. Use the previous problem to conclude that if ω = a dx2 ∧ dx3 + b dx1 ∧
dx3 + c dx1 ∧ dx2 is an arbitrary 2-form on R

3, then Equation 7.1 holds.

7.7. If ω is an arbitrary (n − 1)-form on R
n and R is the unit cube in R

n, then
show that Equation 7.1 still holds.

In general, if C =∑ niσi is an n-chain, then

∫
∂C

ω = ∫
C

dω.
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This equation is called the generalized Stokes’Theorem. It is unquestionably
the most crucial result of this text. In fact, everything we have done up to this
point has been geared toward developing this equation and everything that fol-
lows will be applications of this equation. Technically, we have only established
this theorem when integrating over cubes and their boundaries. We postpone the
general proof to Section 9.1.

Example 34. Let ω = x dy be a 1-form on R
2. Let σ be the 2-cell which is the

image of the parameterization φ(r, θ) = (r cos θ, r sin θ), where 0 ≤ r ≤ R and
0 ≤ θ ≤ 2π . By the generalized Stokes’ Theorem,∫

∂σ

ω =
∫
σ

dω =
∫
σ

dx ∧ dy =
∫
σ

dx dy = Area(σ ) = πR2.

7.8. Verify directly that
∫
∂σ

ω = πR2.

Example 35. Let ω = x dy + y dx be a 1-form on R
2, and let σ be any 2-cell.

Then
∫
∂σ

ω = ∫
σ

dω = 0.

7.9. Find a 1-chain in R
2, which bounds a 2-cell, and integrate the form x dy+y dx

over this curve.

7.10. Let ω be a differential (n−1)-form and σ a (n+1)-cell. Use the generalized
Stokes’ Theorem in two different ways to show

∫
∂σ

dω = 0.

Example 36. Let C be the curve in R
2 parameterized by φ(t) = (t2, t3), where

−1 ≤ t ≤ 1. Let f be the 0-form x2y. We use the generalized Stokes’ Theorem
to calculate

∫
C

df .

The curve C goes from the point (1,-1) , when t = −1, to the point (1,1),
when t = 1. Hence, ∂C is the 0-chain (1, 1) − (1, −1). Now we use Stokes:∫

C

df =
∫
∂C

f =
∫

(1,1)−(1,−1)

x2y = 1 − (−1) = 2.

7.11. Calculate
∫
C

df directly.

7.12. Let C be any curve in R
3 from (0, 0, 0) to (1, 1, 1). Let ω = y2z2 dx +

2xyz2 dy + 2xy2z dz. Calculate
∫
C

ω.
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Example 37. Let ω = (x2 + y)dx + (x − y2)dy be a 1-form on R
2. We wish

to integrate ω over σ , the top half of the unit circle, oriented clockwise. First,
note that dω = 0, so that if we integrate ω over the boundary of any 2-cell, we
would get zero. Let τ denote the line segment connecting (-1,0) to (1,0). Then the
1-chain σ −τ bounds a 2-cell. So

∫
σ−τ

ω = 0, which implies that
∫
σ

ω = ∫
τ

ω. This

latter integral is a bit easier to compute. Let φ(t) = (t, 0) be a parameterization
of τ , where −1 ≤ t ≤ 1. Then

∫
σ

ω =
∫
τ

ω =
∫

[−1,1]
ω(t,0)(〈1, 0〉) dt =

1∫
−1

t2 dt = 2

3
.

7.13. Let ω = −y2 dx + x2 dy. Let σ be the 2-cell in R
2 parameterized by the

following:

φ(u, v) = (2u − v, u + v), 1 ≤ u ≤ 2, 0 ≤ v ≤ 1.

Calculate
∫
∂σ

ω.

7.14. Let ω = dx − ln x dy. Let σ be the 2-cell parameterized by the following:

φ(u, v) = (uv2, u3v), 1 ≤ u ≤ 2, 1 ≤ v ≤ 2.

Calculate:
∫
∂σ

ω.

7.15. Let σ be the 2-cell given by the following parameterization:

φ(r, θ) = (r cos θ, r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ π.

Suppose ω = x2 dx + ey dy.

1. Calculate
∫
σ

dω directly.

2. Let C1 be the horizontal segment connecting (−1, 0) to (0, 0), and C2 be
the horizontal segment connecting (0, 0) to (1, 0). Calculate

∫
C1

ω and
∫
C1

ω

directly.
3. Use your previous answers to determine the integral of ω over the top half of

the unit circle (oriented counter-clockwise).

7.16. Let ω = (x + y3) dx + 3xy2 dy be a differential 1-form on R
2. Let Q be

the rectangle {(x, y)|0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.
1. Compute dω.
2. Use the generalized Stokes’ Theorem to compute

∫
∂Q

ω.
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3. Compute
∫

∂Q

ω directly, by integrating ω over each each edge of the boundary

of the rectangle, and then adding in the appropriate manner.
4. How does

∫
R−T −L

ω compare to
∫
B

ω?

5. Let S be any curve in the upper half plane (i.e., the set {(x, y)|y ≥ 0}) that
goes from the point (3, 0) to the point (0, 0). What is

∫
S

ω? Why?

6. Let S be any curve that goes from the point (3, 0) to the point (0, 0). What is∫
S

ω? WHY?

7.17. Let ω be the following 2-form on R
3:

ω = (x2 + y2)dy ∧ dz + (x2 − y2)dx ∧ dz.

Let V be the region of R
3 bounded by the graph of y = √

1 − x2, the planes
z = 0 and z = 2, and the xz-plane (see Figure 7.4).

x

y

z

1

1

2

−1

Fig. 7.4. The region V of Problem 7.17.

1. Parameterize V using cylindrical coordinates.
2. Determine dω.
3. Calculate

∫
V

dω.

4. The sides of V are parameterized as follows:
a) Bottom: φB(r, θ) = (r cos θ, r sin θ, 0), where 0 ≤ r ≤ 1 and

0 ≤ θ ≤ π .
b) Top: φT (r, θ) = (r cos θ, r sin θ, 2), where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π .
c) Flat side: φF (x, z) = (x, 0, z), where −1 ≤ x ≤ 1 and 0 ≤ z ≤ 2.
d) Curved side: φC(θ, z) = (cos θ, sin θ, z), where

0 ≤ θ ≤ π and 0 ≤ z ≤ 2.



7.3 Vector calculus and the many faces of the generalized Stokes’ Theorem 91

Calculate the integral of ω over the top, bottom and flat side. (Do not calculate
this integral over the curved side.)

5. If C is the curved side of ∂V , use your answers to the previous questions to
determine

∫
C

ω.

7.18. Calculate the volume of a ball of radius one, {(ρ, θ, φ)|ρ ≤ 1}, by integrat-
ing some 2-form over the sphere of radius one, {(ρ, θ, φ)|ρ = 1}.
7.19. Calculate ∫

C

x3 dx +
(

1

3
x3 + xy2

)
dy

where C is the circle of radius two, centered about the origin.

7.20. Suppose ω = x dx+x dy is a 1-form on R
2. Let C be the ellipse x2

4 + y2

9 = 1.
Determine the value of

∫
C

ω by integrating some 2-form over the region bounded

by the ellipse.

7.21. Let ω = −y2 dx + x2 dy. Let σ be the 2-cell in R
2 parameterized by the

following:
φ(r, θ) = (r cosh θ, r sinh θ)

where 0 ≤ r ≤ 1 and −1 ≤ θ ≤ 1. Calculate
∫
∂σ

ω.

(
Recall: cosh θ = eθ + e−θ

2
, sinh θ = eθ − e−θ

2
.

)

7.22. Suppose ω is a 1-form on R
2 such that dω = 0. Let C1 and C2 be the 1-cells

given by the following parameterizations:

C1 : φ(t) = (t, 0), 2π ≤ t ≤ 6π

C2 : ψ(t) = (t cos t, t sin t), 2π ≤ t ≤ 6π.

Show that
∫
C1

ω = ∫
C2

ω.

(Caution: Beware of orientations!)

7.3 Vector calculus and the many faces of the generalized Stokes’
Theorem

Although the language and notation may be new, you have already seen the gen-
eralized Stokes’ Theorem in many guises. For example, let f (x) be a 0-form on
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R. Then df = f ′(x)dx. Let [a, b] be a 1-cell in R. Then the generalized Stokes’
Theorem tells us

b∫
a

f ′(x)dx =
∫

[a,b]
f ′(x)dx =

∫
∂[a,b]

f (x) =
∫

b−a

f (x) = f (b) − f (a),

which is, of course, the “Fundamental Theorem of Calculus.” If we let R be
some 2-chain in R

2 then the generalized Stokes’ Theorem implies

∫
∂R

P dx + Q dy =
∫
R

d(P dx + Q dy) =
∫
R

(
∂Q

∂x
− ∂P

∂y

)
dx dy.

This is what we call “Green’s theorem” in calculus. To proceed further, we
restrict ourselves to R

3. In this dimension, there is a nice correspondence between
vector fields and both 1- and 2-forms.

F = 〈Fx, Fy, Fz〉 ↔ ω1
F = Fxdx + Fydy + Fzdz

↔ ω2
F = Fxdy ∧ dz − Fydx ∧ dz + Fzdx ∧ dy.

On R
3 there is also a useful correspondence between 0-forms (functions) and

3-forms.
f (x, y, z) ↔ ω3

f = f dx ∧ dy ∧ dz.

We can use these correspondences to define various operations involving func-
tions and vector fields. For example, suppose f : R

3 → R is a 0-form. Then df is
the 1-form, ∂f

∂x
dx+ ∂f

∂y
dy+ ∂f

∂z
dz. The vector field associated to this 1-form is then

〈 ∂f
∂x

,
∂f
∂y

,
∂f
∂z

〉. In calculus we call this vector field grad f , or ∇f . In other words,
∇f is the vector field associated with the 1-form, df . This can be summarized
by the equation

df = ω1∇f .

It will be useful to think of this as a diagram as well.

f
grad−−−−→ ∇f∥∥∥ �⏐⏐

f −−−−→
d

df

Example 38. Suppose f = x2y3z. Then df = 2xy3z dx +3x2y2z dy +x3y3 dz.
The associated vector field, grad f , is then ∇f = 〈2xy3z, 3x2y2z, x3y3〉.
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Similarly, if we start with a vector field, F, form the associated 1-form, ω1
F,

differentiate it, and look at the corresponding vector field, then the result is called
curl F, or ∇×F. So, ∇×F is the vector field associated with the 2-form, dω1

F.
This can be summarized by the equation

dω1
F = ω2∇×F.

This can also be illustrated by the following diagram.

F
curl−−−−→ ∇ × F⏐⏐� �⏐⏐

ω1
F −−−−→

d
dω1

F

Example 39. Let F = 〈xy, yz, x2〉. The associated 1-form is then

ω1
F = xy dx + yz dy + x2 dz.

The derivative of this 1-form is the 2-form

dω1
F = −y dy ∧ dz + 2x dx ∧ dz − x dx ∧ dy.

The vector field associated to this 2-form is curl F, which is

∇ × F = 〈−y, −2x, −x〉.
Lastly, we can start with a vector field, F = 〈Fx, Fy, Fz〉, and then look at the

3-form, dω2
F = ( ∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
)dx ∧dy ∧dz (see Problem 6.13). The function,

∂Fx

∂x
+ ∂Fy

∂y
+ ∂Fz

∂z
is called div F, or ∇ · F. This is summarized in the following

equation and diagram.
dω2

F = ω3∇·F

F
div−−−−→ ∇ · F⏐⏐� �⏐⏐

ω2
F −−−−→

d
dω2

F

Example 40. Let F = 〈xy, yz, x2〉. The associated 2-form is then

ω2
F = xy dy ∧ dz − yz dx ∧ dz + x2 dx ∧ dy.

The derivative is the 3-form

dω2
F = (y + z) dx ∧ dy ∧ dz.

So div F is the function ∇ · F = y + z.
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Two important vector identities follow from the fact that for a differential
form, ω, calculating d(dω) always yields zero (see Problem 6.9). For the first
identity, consider the following diagram.

f
grad−−−−→ ∇f

curl−−−−→ ∇ × (∇f )∥∥∥ �⏐⏐ �⏐⏐
f −−−−→

d
df −−−−→

d
ddf

This shows that if f is a 0-form, then the vector field corresponding to ddf

is ∇ × (∇f ). But ddf = 0, so we conclude

∇ × (∇f ) = 0.

For the second identity, consider the diagram

F
curl−−−−→ ∇ × F

div−−−−→ ∇ · (∇ × F)⏐⏐� ⏐⏐� �⏐⏐
ω1

F −−−−→
d

dω1
F −−−−→

d
ddω1

F.

This shows that if ddω1
F is written as g dx ∧ dy ∧ dz, then the function g is

equal to ∇ · (∇ × F). But ddω1
F = 0, so we conclude

∇ · (∇ × F) = 0.

In vector calculus we also learn how to integrate vector fields over param-
eterized curves (1-chains) and surfaces (2-chains). Suppose first that σ is some
parameterized curve. Then we can integrate the component of F which points
in the direction of the tangent vectors to σ . This integral is usually denoted by∫
σ

F · ds, and its definition is precisely the same as the definition we learned here

for
∫
σ

ω1
F. A special case of this integral arises when F = ∇f , for some function,

f . In this case, ω1
F is just df , so the definition of

∫
σ

∇f · ds is the same as
∫
σ

df .

7.23. Let C be any curve in R
3 from (0, 0, 0) to (1, 1, 1). Let F be the vector field

〈yz, xz, xy〉. Show that
∫
C

F · ds does not depend on C.

We also learn to integrate vector fields over parameterized surfaces. In this
case, the quantity we integrate is the component of the vector field which is normal
to the surface. This integral is often denoted by

∫
S

F ·dS. Its definition is precisely
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the same as that of
∫
S

ω2
F (see Problems 4.23 and 4.24). A special case of this is

when F = ∇×G, for some vector field, G. Then ω2
G is just dω1

G, so we see that∫
S

(∇ × G) · dS must be the same as
∫
S

dω1
G.

The most basic thing to integrate over a 3-dimensional region (i.e., a 3-chain),
�, in R

3 is a function f (x, y, x). In calculus we denote this integral as
∫
�

f dV .

Note that this is precisely the same as
∫
�

ω3
f . A special case is when f = ∇ · F,

for some vector field F. In this case
∫
�

f dV = ∫
�

(∇ · F)dV . But we can write

this integral with differential forms as
∫
�

dω2
F.

We summarize the equivalence between the integrals developed in vector
calculus and various integrals of differential forms in Table 7.1.

Vector Calculus Differential Forms

∫
σ

F · ds
∫
σ

ω1
F∫

σ
∇f · ds

∫
σ

df

∫
S

F · dS
∫
S

ω2
F∫

S

(∇ × F) · dS
∫
S

dω1
F

∫
�

f dV
∫
�

ω3
f∫

�

(∇ · F)dV
∫
�

dω2
F

Table 7.1. The equivalence between the integrals of vector calculus and differential forms.

Let us now apply the generalized Stokes’Theorem to various situations. First,
we start with a parameterization, φ : [a, b] → σ ⊂ R

3, of a curve in R
3, and a

function, f : R
3 → R. Then we have∫

σ

∇f · ds ≡
∫
σ

df =
∫
∂σ

f = f (φ(b)) − f (φ(a)).

This shows the independence of path of line integrals of gradient fields. We can
use this to prove that a line integral of a gradient field over any simple closed curve
is 0, but for us there is an easier, direct proof, which again uses the generalized
Stokes’ Theorem. Suppose σ is a simple closed loop in R

3 (i.e., ∂σ = ∅). Then
σ = ∂D, for some 2-chain, D. We now have
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∫
σ

∇f · ds ≡
∫
σ

df =
∫
D

ddf = 0.

Now, suppose we have a vector field, F, and a parameterized surface, S. Yet
another application of the generalized Stokes’ Theorem yields∫

∂S

F · ds ≡
∫
∂S

ω1
F =

∫
S

dω1
F ≡

∫
S

(∇ × F) · dS.

In vector calculus we call this equality “Stokes’ theorem.” In some sense,
∇ × F measures the “twisting” of F at points of S. So Stokes’ theorem says
that the net twisting of F over all of S is the same as the amount F circulates
around ∂S.

Example 41. Suppose we are faced with a problem phrased as: “Use Stokes’
theorem to calculate

∫
C

F · ds, where C is the curve of intersection of the cylinder

x2 + y2 = 1 and the plane z = x + 1, and F is the vector field
〈−x2y, xy2, z3

〉
.”

We will solve this problem by translating to the language of differential forms,
and using the generalized Stokes’Theorem, instead. To begin, note that

∫
C

F ·ds =∫
C

ω1
F, and ω1

F = −x2y dx + xy2 dy + z3 dz.

Now, to use the generalized Stokes’ Theorem we will need to calculate

dω1
F = (x2 + y2) dx ∧ dy.

Let D denote the subset of the plane z = x +1 bounded by C. Then ∂D = C.
Hence, by the generalized Stokes’ Theorem we have∫

C

ω1
F =

∫
D

dω1
F =

∫
D

(x2 + y2) dx ∧ dy.

The region D is parameterized by �(r, θ) = (r cos θ, r sin θ, r cos θ + 1),
where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π . Using this one can (and should!) show that∫
D

(x2 + y2) dx ∧ dy = π
2 .

7.24. LetC be the square with sides (x, ±1, 1), where−1 ≤ x ≤ 1 and (±1, y, 1),
where −1 ≤ y ≤ 1, with the indicated orientation (see Figure 7.5). Let F be the
vector field

〈
xy, x2, y2z

〉
. Compute

∫
C

F · ds.

Suppose now that � is some volume in R
3. Then we have
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1

1

1

x

y

z

C

Fig. 7.5.

∫
∂�

F · dS ≡
∫
∂�

ω2
F =

∫
�

dω2
F ≡

∫
�

(∇ · F)dV .

This last equality is called “Gauss’ Divergence Theorem.” ∇ · F is a mea-
sure of how much F “spreads out” at a point. So Gauss’ theorem says that the
total spreading out of F inside � is the same as the net amount of F “escaping”
through ∂�.

7.25. Let � be the cube {(x, y, z)|0 ≤ x, y, z ≤ 1}. Let F be the vector field〈
xy2, y3, x2y2

〉
. Compute

∫
∂�

F · dS.
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Applications

8.1 Maxwell’s equations

As a brief application, we show how the language of differential forms can greatly
simplify the classical vector equations of Maxwell. Much of this material is taken
from [MTW73], where the interested student can find many more applications of
differential forms to physics.

Maxwell’s equations describe the relationship between electric and mag-
netic fields. Classically, both electricity and magnetism are described as a 3-
dimensional vector field which varies with time:

E = 〈Ex, Ey, Ez〉
B = 〈Bx, By, Bz〉,

where Ex, Ez, Ez, Bx, By , and Bz are all functions of x, y, z and t .
Maxwell’s equations are then:

∇ · B = 0
∂B
∂t

+ ∇ × E = 0

∇ · E = 4πρ

∂E
∂t

− ∇ × B = −4πJ.

The quantity ρ is called the charge density and the vector J = 〈Jx, Jy, Jz〉 is
called the current density.

We can make all of this look much simpler by making the following definitions.
First, we define a 2-form called the Faraday, which simultaneously describes both
the electric and magnetic fields:

F = Ex dx ∧ dt + Ey dy ∧ dt + Ez dz ∧ dt

+Bx dy ∧ dz + By dz ∧ dx + Bz dx ∧ dy.
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Next we define the “dual” 2-form, called the Maxwell:

∗F = Ex dy ∧ dz + Ey dz ∧ dx + Ez dx ∧ dy

+Bx dt ∧ dx + By dt ∧ dy + Bz dt ∧ dz.

We also define the 4-current, J, and its “dual,” ∗J:

J = 〈ρ, Jx, Jy, Jz〉
∗J = ρ dx ∧ dy ∧ dz

−Jx dt ∧ dy ∧ dz

−Jy dt ∧ dz ∧ dx

−Jz dt ∧ dx ∧ dy.

Maxwell’s four vector equations now reduce to:

dF = 0

d∗F = 4π∗J.

8.1. Show that the equation dF = 0 implies the first two of Maxwell’s equations.

8.2. Show that the equation d∗F = 4π∗J implies the second two of Maxwell’s
equations.

The differential form version of Maxwell’s equation has a huge advantage over
the vector formulation: it is coordinate free! A 2-form such as F is an operator
that “eats” pairs of vectors and “spits out” numbers. The way it acts is completely
geometric ... that is, it can be defined without any reference to the coordinate
system (t, x, y, z). This is especially poignant when one realizes that Maxwell’s
equations are laws of nature that should not depend on a man-made construction
such as coordinates.

8.2 Foliations and contact structures

Everyone has seen tree rings and layers in sedimentary rock. These are examples
of foliations. Intuitively, a foliation is when some region of space has been “filled
up” with lower-dimensional surfaces. A full treatment of foliations is a topic for
a much larger textbook than this one. Here we will only be discussing foliations
of R

3.
Let U be an open subset of R

3. We say U has been foliated if there is a family
φt : Rt → U of parameterizations (where for each t the domain Rt ⊂ R

2) such
that every point of U is in the image of exactly one such parameterization. In
other words, the images of the parameterizations φt are surfaces that fill up U ,
and no two overlap.
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Suppose p is a point of U and U has been foliated as above. Then there is a
unique value of t such that p is a point in φt (Rt ). The partial derivatives, ∂φt

∂x
(p)

and ∂φt

∂y
(p) are then two vectors that span a plane in TpR

3. Let’s call this plane
�p. In other words, if U is foliated, then at every point p of U we get a plane
�p in TpR

3.
The family {�p} is an example of a plane field. In general, a plane field is just

a choice of a plane in each tangent space which varies smoothly from point to
point in R

3. We say a plane field is integrable if it consists of the tangent planes
to a foliation.

This should remind you a little of first-term calculus. If f : R
1 → R

1 is a
differentiable function, then at every point p on its graph we get a line in TpR

2

(see Figure 4.2). If we only know the lines and want the original function, then
we integrate.

There is a theorem that says that every line field on R
2 is integrable. The

question we would like to answer in this section is whether or not this is true
of plane fields on R

3. The first step is to figure out how to specify a plane field
in some reasonably nice way. This is where differential forms come in. Suppose
{�p} is a plane field. At each point p, we can define a line in TpR

3 (i.e., a line
field) by looking at the set of all vectors that are perpendicular to �p. We can then
define a 1-form ω by projecting vectors onto these lines. So, if Vp is a vector in
�p then ω(Vp) = 0. Another way to say this is that the plane �p is the set of all
vectors which yield zero when plugged into ω. In shorthand, we write this set as
Ker ω (“Ker” comes from the word “Kernel,” a term from linear algebra). So all
we are saying is that ω is a 1-form such that �p = Ker ω. This is very convenient.
To specify a plane field, all we have to do now is write down a 1-form!

Example 42. Suppose ω = dx. Then, at each point p of R
3, the vectors of TpR

3

that yield zero when plugged into ω are all those in the dydz-plane. Hence, Ker ω

is the plane field consisting of all of the dydz-planes (one for every point of R
3).

It is obvious that this plane field is integrable; at each point p we just have the
tangent plane to the plane parallel to the yz-plane through p.

In the above example, note that any 1-form that looks like f (x, y, z)dx defines
the same plane field, as long as f is non-zero everywhere. So, knowing something
about a plane field (like the assumption that it is integrable) seems like it might
not say much about the 1-form ω, since so many different 1-forms give the same
plane field. Let’s investigate this further.

First, let’s see if there is anything special about the derivative of a 1-form that
looks like ω = f (x, y, z)dx. This is easy: dω = ∂f

∂y
dy ∧ dx + ∂f

∂z
dz ∧ dx. This

is nothing special so far. What about combining this with ω? Let’s compute:

ω ∧ dω = f (x, y, z)dx ∧
(

∂f

∂y
dy ∧ dx + ∂f

∂z
dz ∧ dx

)
= 0.
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Now that is special! In fact, recall our earlier emphasis on the fact that forms are
coordinate free. In other words, any computation one can perform with forms will
give the same answer regardless of what coordinates are chosen. The wonderful
thing about foliations is that near every point you can always choose coordinates
so that your foliation looks like planes parallel to the yz-plane. In other words,
the above computation is not as special as you might think:

Theorem 2. If Ker ω is an integrable plane field, then ω ∧ dω = 0 at every point
of R

3.

It should be noted that we have only chosen to work in R
3 for ease of visu-

alization. There are higher-dimensional definitions of foliations and plane fields.
In general, if the kernel of a 1-form ω defines an integrable plane field then
ω ∧ dωn = 0.

Our search for a plane field that is not integrable (i.e., not the tangent planes
to a foliation) has now been reduced to the search for a 1-form ω for which
ω ∧ dω �= 0 somewhere. There are many such forms. An easy one is x dy + dz.
We compute:

(x dy + dz) ∧ d(x dy + dz) = (x dy + dz) ∧ (dx ∧ dy) = dz ∧ dx ∧ dy.

Our answer is quite special. All we needed was a 1-form such that

ω ∧ dω �= 0

somewhere. What we found was a 1-form for which ω ∧ dω �= 0 everywhere.
This means that there is not a single point of R

3 which has a neighborhood in
which the planes given by Ker x dy + dz are tangent to a foliation. Such a plane
field is called a contact structure.

At this point you are probably wondering, “What could Ker x dy+dz possibly
look like?!” It is not so easy to visualize this, but we have tried to give you some
indication in Figure 8.1.1 A good exercise is to stare at this picture long enough
to convince yourself that the planes pictured cannot be the tangent planes to a
foliation.

We have just seen how we can use differential forms to tell if a plane field is
integrable. But one may still wonder if there is more we can say about a 1-form,
assuming its kernel is integrable. Let’s go back to the expression ω ∧ dω. Recall
that ω is a 1-form, which makes dω a 2-form, and hence ω ∧ dω a 3-form.

A 3-form on TpR
3 measures the volume of the parallelepiped spanned by three

vectors, multiplied by a constant. For example, if ψ = α ∧ β ∧ γ is a 3-form,
then the constant it scales volume by is given by the volume of the parallelepiped

1 Figure drawn by Stephan Schoenenberger. Taken from Introductory Lectures on Contact
Geometry by John B. Etnyre.
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x

y

z

Fig. 8.1. The plane field Ker x dy + dz.

spanned by the vectors 〈α〉, 〈β〉 and 〈γ 〉 (where “〈α〉” refers to the vector dual to
the 1-form α introduced in Section 4.3). If it turns out that ψ is the zero 3-form,
then the vector 〈α〉 must be in the plane spanned by the vectors 〈β〉 and 〈γ 〉.

On R
3 the results of Section 4.3 tell us that a 2-form such as dω can always

be written as α ∧ β, for some 1-forms α and β. If ω is a 1-form with integrable
kernel, then we have already seen that ω ∧ dω = ω ∧ α ∧ β = 0. But this tells
us that 〈ω〉 must be in the plane spanned by the vectors 〈α〉 and 〈β〉. Now we can
invoke Lemma 1 of Chapter 4, which says that we can rewrite dω as ω ∧ ν, for
some 1-form ν. (See also Problem 4.27.)

If we start with a foliation and choose a 1-form ω whose kernel consists of
planes tangent to the foliation, then the 1-form ν that we have just found is in no
way canonical. We made a lot of choices to get to ν, and different choices will end
up with different 1-forms. But here is the amazing fact: the integral of the 3-form
ν ∧dν does not depend on any of our choices! It is completely determined by the
original foliation. Whenever a mathematician runs into a situation like this they
usually throw up their hands and say, “Eureka! I’ve discovered an invariant.” The
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quantity
∫

ν ∧ dν is referred to as the Gobillion–Vey invariant of the foliation.
It is a topic of current research to identify exactly what information this number
tells us about the foliation.

Two special cases are worth noting. First, it may turn out that ν ∧ dν = 0
everywhere. This tells us that the plane field given by Ker ν is integrable, so we
get another foliation. The other interesting case is when ν ∧ dν is nowhere zero.
Then we get a contact structure.

8.3 How not to visualize a differential 1-form

There are several contemporary physics texts that attempt to give a visual inter-
pretation of differential forms that seems quite different from the one presented
here. As this alternate interpretation is much simpler than anything described in
these notes, one may wonder why we have not taken this approach.

Let’s look again at the 1-form dx on R
3. Given a vector Vp at a point p,

the value of dx(Vp) is just the projection of Vp onto the dx axis in TpR
3. Now,

let C be some parameterized curve in R
3 for which the x-coordinate is always

increasing. Then
∫
C

dx is just the length of the projection of C onto the x-axis. To

the nearest integer, this is just the number of planes that C punctures of the form
x = n, where n is an integer. So one way to visualize the form dx is to picture
these planes.

x

y

z

lp

C

p

Fig. 8.2. “Surfaces” of ω?
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This view is very appealing. After all, every 1-form ω, at every point p,
projects vectors onto some line lp. So can we integrate ω along a curve C (at least
to the nearest integer) by counting the number of surfaces punctured by C whose
tangent planes are perpendicular to the lines lp (see Figure 8.2)? If you have read
the previous section, you might guess that the answer is a categorical NO!

Recall that the planes perpendicular to the lines lp are precisely Ker ω. To
say that there are surfaces whose tangent planes are perpendicular to the lines lp
is the same thing as saying that Ker ω is an integrable plane field. But we have
seen in the previous section that there are 1-forms as simple as x dy + dz whose
kernels are nowhere integrable.

Fig. 8.3. The Reeb foliation of the solid torus.

Can we at least use this interpretation for a 1-form whose kernel is integrable?
Unfortunately, the answer is still no. Let ω be the 1-form on the solid torus whose
kernel consists of the planes tangent to the foliation pictured in Figure 8.3. (This
is called the Reeb foliation of the solid torus.) The surfaces of this foliation spiral
continually outward. So if we try to pick some number of “sample” surfaces, then
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they will “bunch up” near the boundary torus. This seems to indicate that if we
want to integrate ω over any path that cuts through the solid torus, then we should
get an infinite answer, since such a path would intersect our “sample” surfaces an
infinite number of times. However, we can certainly find a 1-form ω for which
this is not the case.

We do not want to end this section on such a down note. Although it is not
valid in general to visualize a 1-form as a sample collection of surfaces from a
foliation, we can visualize it as a plane field. For example, Figure 8.1 is a pretty
good depiction of the 1-form x dy + dz. In this picture there are a few evenly
spaced elements of its kernel, but this is enough. To get a rough idea of the value
of
∫
C

x dy + dz we can just count the number of (transverse) intersections of the

planes pictured with C. So, for example, if C is a curve whose tangents are always
contained in one of these planes (a so-called Legendrian curve), then

∫
C

x dy +dz

will be zero. Inspection of the picture reveals that examples of such curves are
the lines parallel to the x-axis.

8.3. Show that if C is a line parallel to the x-axis, then
∫
C

x dy + dz = 0.
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Manifolds

9.1 Pull-backs

Before moving on to defining forms in more general contexts, we need to introduce
one more concept. Let’s re-examine Equation 5.3:

∫
M

ω = ±
∫
R

ωφ(x1,...,xn)

( ∂φ

∂x1
(x1, ...xn), ...,

∂φ

∂xn

(x1, ...xn)
)
dx1 ∧ ... ∧ dxn.

The form in the integrand on the right was defined so as to integrate to give
the same answer as the form on the left. This is what we would like to generalize.
Suppose φ : R

n → R
m is a parameterization, and ω is a k-form on R

m. We define
the pull-back of ω under φ to be the form on R

n which gives the same integral
over any k-cell, σ , as ω does when integrated over φ(σ). Following convention,
we denote the pull-back of ω under φ as “φ∗ω.”

So how do we decide how φ∗ω acts on a k-tuple of vectors in TpR
n? The trick

is to use φ to translate the vectors to a k-tuple in Tφ(p)R
m, and then plug them into

ω. The matrix Dφ, whose columns are the partial derivatives of φ, is an n × m

matrix. This matrix acts on vectors in TpR
n, and returns vectors in Tφ(p)R

m. So,
we define (see Figure 9.1):

φ∗ω(V 1
p , ..., V k

p ) = ω(Dφ(V 1
p ), ..., Dφ(V k

p )).

Example 43. Suppose ω = y dx + z dy + x dz is a 1-form on R
3, and φ(a, b) =

(a + b, a − b, ab) is a map from R
2 to R

3. Then φ∗ω will be a 1-form on R
2. To

determine which one, we can examine how it acts on the vectors 〈1, 0〉(a,b) and
〈0, 1〉(a,b).
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TpR
n

TpR
m

Dφ

ω

V 1
p

V 2
p

Dφ(V 1
p )

Dφ(V 2
p )

φ∗ω

ω(Dφ(V 1
p ), Dφ(V 2

p ))

Fig. 9.1. Defining φ∗ω.

φ∗ω(〈1, 0〉(a,b)) = ω(Dφ(〈1, 0〉(a,b)))

= ω

⎛
⎝
⎡
⎣ 1 1

1 −1
b a

⎤
⎦[1

0

]
(a,b)

⎞
⎠

= ω(〈1, 1, b〉(a+b,a−b,ab))

= (a − b) + ab + (a + b)b

= a − b + 2ab + b2.

Similarly,

φ∗ω(〈0, 1〉(a,b)) = ω(〈1, −1, a〉(a+b,a−b,ab))

= (a − b) − ab + (a + b)a

= a − b + a2.

Hence,

φ∗ω = (a − b + 2ab + b2) da + (a − b + a2) db.

9.1. If ω = x2dy ∧ dz + y2dz ∧ dw is a 2-form on R
4, and φ(a, b, c) =

(a, b, c, abc), then what is φ∗ω?

9.2. If ω is an n-form on R
m and φ : R

n → R
m, then
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φ∗ω = ωφ(x1,...,xn)

(
∂φ

∂x1
(x1, ...xn), ...,

∂φ

∂xn

(x1, ...xn)

)
dx1 ∧ ... ∧ dxn.

In light of the preceding exercise, Equation 5.3 can be re-written as∫
M

ω =
∫
R

φ∗ω.

9.3. If σ is a k-cell in R
n, φ : R

n → R
m, and ω is a k-form on R

m then∫
σ

φ∗ω =
∫

φ(σ)

ω.

9.4. If φ : R
n → R

m and ω is a k-form on R
m, then d(φ∗ω) = φ∗(dω).

These exercises prepare us for the proof of the generalized Stokes’ Theorem
(recall that in Chapter 7 we only proved this theorem when integrating over cubes
and their boundaries). Suppose σ is an n-cell in R

m, φ : In ⊂ R
n → R

m is a
parameterization of σ and ω is an (n − 1)-form on R

m. Then we can combine
Problems 9.3, 9.4, and 7.7 to give us

∫
∂σ

ω =
∫

φ(∂In)

ω =
∫

∂In

φ∗ω =
∫
In

d(φ∗ω) =
∫
In

φ∗(dω) =
∫

φ(In)

dω =
∫
σ

dω.

9.2 Forms on subsets of R
n

The goal of this chapter is to slowly work up to defining forms in a more general
setting than just on R

n. One reason for this is because the generalized Stokes’
Theorem actually tells us that forms on R

n are not very interesting. For example,
let’s examine how a 1-form, ω, on R

2, for which dω = 0 (i.e., ω is closed),
integrates over any 1-chain, C, such that ∂C = ∅ (i.e., C is closed). It is a basic
result of topology that any such 1-chain bounds a 2-chain, D. Hence,

∫
C

ω =∫
D

dω = 0!

Fortunately, there is no reason to restrict ourselves to differential forms which
are defined on all of R

n. Instead, we can simply consider forms which are defined
on subsets, U , of R

n. For technical reasons, we will always assume such subsets
are open. This is a technical condition which means that for each p ∈ U , there is
an ε such that

{q ∈ R
n|d(p, q) < ε} ⊂ U.

In this case, T Up = T R
n
p. Since a differential n-form is nothing more than a

choice of an n-form on T R
n
p, for each p (with some condition about differentia-

bility), it makes sense to talk about a differential form on U .
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Example 44.

ω0 = − y

x2 + y2 dx + x

x2 + y2 dy

is a differential 1-form on R
2 − (0, 0).

9.5. Show that dω0 = 0.

9.6. Let C be the unit circle, oriented counter-clockwise. Show that
∫
C

ω0 = 2π .

Hint: Let ω′ = −y dx + x dy. Note that on C, ω0 = ω′.

If C is any closed 1-chain in R
2 − (0, 0), then the quantity 1

2π

∫
C

ω0 is called

the winding number of C, since it computes the number of times C winds around
the origin.

9.7. Let x+ denote the positive x-axis in R
2 − (0, 0), and let C be any closed

1-chain. Suppose Vp is a basis vector of T Cp which agrees with the orientation
of C at p. A positive (respectively, negative) intersection of C with x+ is one
where Vp has a component which points “up” (respectively, “down”). Assume all
intersections of C with x+ are either positive or negative. Let P denote the number
of positive ones and N the number of negative ones. Show that 1

2π

∫
C

ω0 = P −N .

Hint: Use the generalized Stokes’ Theorem.

9.3 Forms on parameterized subsets

Recall that at each point, a differential from is simply an alternating, multi-linear
map on a tangent plane. So all we need to define a differential form on a more
general space is a well-defined tangent space. One case in which this happens is
when we have a parameterized subset of R

m. Let φ : U ⊂ R
n → M ⊂ R

m be
a (one-to-one) parameterization of M . Then recall that T Mp is defined to be the
span of the partial derivatives of φ at φ−1(p), and is a n-dimensional Euclidean
space, regardless of the point, p. Hence, we say the dimension of M is n.

A differential k-form on M is simply an alternating, multilinear, real-valued
function on T Mp, for each p ∈ M , which varies differentiably with p. In other
words, a differential k-form on M is a whole family of k-forms, each one acting
on T Mp, for different points, p. It is not so easy to say precisely what we mean
when we say the form varies in a differentiable way with p. Fortunately, we have
already introduced the tools necessary to do this. Let’s say that ω is a family of
k-forms, defined on T Mp, for each p ∈ M . Then φ∗ω is a family of k-forms,
defined on T R

n
φ−1(p)

, for each p ∈ M . We say that ω is a differentiable k-form

on M , if φ∗ω is a differentiable family on U .
This definition illustrates an important technique which is often used when

dealing with differential forms on manifolds. Rather than working in M directly,
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we use the map φ∗ to translate problems about forms on M into problems about
forms on U . These are nice because we already know how to work with forms
which are defined on open subsets of Rn. We will have much more to say about
this later.

Example 45. The infinitely long cylinder, L, of radius one, centered along the z-

axis, is given by the parameterization,φ(a, b) =
(

a√
a2+b2 , b√

a2+b2 , ln
√

a2 + b2
)

,

whose domain is R
2 − (0, 0). We can use φ∗ to solve any problem about forms

on L, by translating it back to a problem about forms on U .

9.8. Consider the 1-form, τ ′ = −y dx +x dy, on R
3. In particular, this form acts

on vectors in T Lp, where L is the cylinder of the previous example, and p is any
point in L. Let τ be the restriction of τ ′ to vectors in T Lp. So, τ is a 1-form on
L. Compute φ∗τ . What does this tell you that τ measures?

If ω is a k-form on M , then what do we mean by dω? Whatever the definition,
we clearly want dφ∗ω = φ∗dω. So why do we not use this to define dω? After
all, we know what dφ∗ω is, since φ∗ω is a form on R

n. Recall that Dφp is a
map from T R

n
p to T R

m
p . However, if we restrict the range to T Mp, then Dφp is

one-to-one, so it makes sense to refer to Dφ−1
p . We now define

dω(V 1
p , ..., V k+1

p ) = dφ∗ω(Dφ−1
p (V 1

p ), ..., Dφ−1
p (V k+1

p )).

9.9. If τ ′ and τ are the 1-forms on R
3 and L, respectively, defined in the previous

section, compute dτ ′ and dτ .

9.4 Forms on quotients of R
n (optional)

This section requires some knowledge of topology and algebra. It is not essential
for the flow of the text.

While we are on the subject of differential forms on subsets of R
n, there is a

very common construction of a topological space for which it is very easy to define
what we mean by a differential form. Let’s look again at the cylinder, L, of the
previous section. One way to construct L is to start with the plane, R

2, and “roll
it up.” More technically, we can consider the map, µ(θ, z) = (cos θ, sin θ, z). In
general, this is a many-to-one map, so it is not a parameterization, in the strict
sense. To remedy this, one might try and restrict the domain of µ to {(θ, z) ∈
R

2|0 ≤ θ < 2π}, however this set is not open.
Note that for each point, (θ, z) ∈ R

2, Dµ is a one-to-one map from T R
2
(θ,z)

to T Lµ(θ,z). This is all we need in order for µ∗τ to make sense, where τ is the
form on L defined in the previous section.

9.10. Show that µ∗τ = dθ .
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In this case, we say that µ is a covering map, R
2 is a cover of L, and dθ is

the lift of τ to R
2.

9.11. Suppose ω0 is the 1-form on R
2 which we used to define the winding

number. Let µ(r, θ) = (r cos θ, r sin θ). Let U = {(r, θ)|r > 0}. Then µ : U →
{R2 − (0, 0)} is a covering map. Hence, there is a one-to-one correspondence
between a quotient of U and R

2 − (0, 0). Compute the lift of ω0 to U .

Let’s go back to the cylinder, L. Another way to look at things is to ask: How
can we recover L from the θz-plane? The answer is to view L as a quotient space.
Let’s put an equivalence relation, R, on the points of R

2: (θ1, z1) ∼ (θ2, z2) if
and only if z1 = z2, and θ1 − θ2 = 2nπ , for some n ∈ Z. We will denote the
quotient of R

2 under this relation as R
2/R. µ now induces a one-to-one map, µ̄,

from R
2/R onto L. Hence, these two spaces are homeomorphic.

Let’s suppose now that we have a form on U , an open subset of R
n, and we

would like to know when it descends to a form on a quotient of U . Clearly, if
we begin with the lift of a form, then it will descend. Let’s try and see why. In
general, if µ : U ⊂ R

n → M ⊂ R
m is a many-to-one map, differentiable at each

point of U , then the sets, {µ−1(p)}, partition U . Hence, we can form the quotient
space, U/µ−1, under this partition. For each x ∈ µ−1(p), Dµx is a one-to-one
map from T Ux to T Mp, and hence, Dµ−1

x is well-defined. If x and y are both in
µ−1(p), then Dµ−1

y ◦Dµx is a one-to-one map from T Ux to T Uy . We will denote
this map as Dµxy . We say a k-form, ω, on R

n descends to a k-form on U/µ−1

if and only if ω(V 1
x , ..., V k

x ) = ω(Dµxy(V
1
x ), ..., Dµxy(V

1
x )), for all x, y ∈ U

such that µ(x) = µ(y).

9.12. If τ is a differential k-form on M , then µ∗τ (the lift of τ ) is a differential
k-form on U which descends to a differential k-form on U/µ−1.

Now suppose that we have a k-form, ω̃, on U which descends to a k-form on
U/µ−1, where µ : U ⊂ R

n → M ⊂ R
m is a covering map. How can we get a

k-form on M? As we have already remarked, µ̄ : U/µ−1 → M is a one-to-one
map. Hence, we can use it to push forward the form, ω. In other words, we can
define a k-form on M as follows: Given k vectors in T Mp, we first choose a point,
x ∈ µ−1(p). We then define

µ∗ω(V 1
p , ..., V k

p ) = ω̃(Dµ−1
x (V 1

p ), ..., Dµ−1
x (V k

p )).

It follows from the fact that ω̃ descends to a form on U/µ−1 that it does not matter
which point, x, we choose in µ−1(p). Note that although µ is not one-to-one,
Dµx is, so Dµ−1

x makes sense.
If we begin with a form on U , there is a slightly more general construction of

a form on a quotient of U , which does not require the use of a covering map. Let
� be a group of transformations of U . We say � acts discretely if for each p ∈ U ,
there exists an ε > 0 such that Nε(p) does not contain γ (p), for any non-identity
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element, γ ∈ �. If � acts discretely, then we can form the quotient of U by �,
denoted U/�, as follows: p ∼ q if there exists γ ∈ � such that γ (p) = q. (The
fact that � acts discretely is what guarantees a “nice” topology on U/�.)

Now, suppose ω̃ is a k-form on U . We say ω̃ descends to a k-form, ω, on U/�,
if and only if ω̃(V 1

p , ..., V k
p ) = ω̃(Dγ (V 1

p ), ..., Dγ (V 1
p )), for all γ ∈ �.

Now that we have decided what a form on a quotient of U is, we still have to
define n-chains, and what we mean by integration of n-forms over n-chains. We
say an n-chain, C̃ ⊂ U , descends to an n-chain, C ⊂ U/�, if γ (C̃) = C̃, for all
γ ∈ �. The n-chains of U/� are simply those which are descendants of n-chains
in U .

Integration is a little more subtle. For this we need the concept of a fundamental
domain for �. This is nothing more than a closed subset of U , whose interior
does not contain two equivalent points. Furthermore, for each equivalence class,
there is at least one representative in a fundamental domain. Here is one way to
construct a fundamental domain: First, choose a point, p ∈ U . Now, let D =
{q ∈ U |d(p, q) ≤ d(γ (p), q), for all γ ∈ �}.

Now, let C̃ be an n-chain on U which descends to an n-chain, C, on U/�,
and let ω̃ be an n-form that descends to an n-form, ω. Let D be a fundamental
domain for � in U . Then we define∫

C

ω ≡
∫

C̃∩D

ω̃.

Technical note: In general, this definition is invariant of which point was
chosen in the construction of the fundamental domain, D. However, a VERY
unlucky choice will result in C̃ ∩ D ⊂ ∂D, which could give a different answer
for the above integral. Fortunately, it can be shown that the set of such “unlucky”
points has measure zero. That is, if we were to choose the point at random, then
the odds of picking an “unlucky” point are 0%. Very unlucky indeed!

Example 46. Suppose � is the group of transformations of the plane generated by
(x, y) → (x + 1, y), and (x, y) → (x, y + 1). The space R

2/� is often denoted
T 2, and referred to as a torus. Topologists often visualize the torus as the surface
of a donut. A fundamental domain for � is the unit square in R

2. The 1-form, dx,
on R

2 descends to a 1-form on T 2. Integration of this form over a closed 1-chain,
C ⊂ T 2, counts the number of times C wraps around the “hole” of the donut.

9.5 Defining manifolds

As we have already remarked, a differential n-form on R
m is just an n-form on

TpR
m, for each point p ∈ R

m, along with some condition about how the form
varies in a differentiable way as p varies. All we need to define a form on a space
other than R

m is some notion of a tangent space at every point. We call such
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a space a manifold. In addition, we insist that at each point of a manifold the
tangent space has the same dimension, n, which we then say is the dimension of
the manifold.

How do we guarantee that a given subset of R
m is a manifold? Recall that

we defined the tangent space to be the span of some partial derivatives of a
parameterization. However, insisting that the whole manifold is capable of being
parameterized is very restrictive. Instead, we only insist that every point of a
manifold lies in a subset that can be parameterized. Hence, if M is an n-manifold
in R

m then there is a set of open subsets, {Ui} ⊂ R
n, and a set of differentiable

maps, {φi : Ui → M}, such that {φi(Ui)} is a cover of M . (That is, for each point,
p ∈ M , there is an i, and a point, q ∈ Ui , such that φi(q) = p.)

Example 47. S1, the unit circle in R2, is a 1-manifold. Let Ui = (−1, 1), for i =
1, 2, 3, 4, φ1(t) = (t,

√
1 − t2), φ2(t) = (t, −√

1 − t2), φ3(t) = (
√

1 − t2, t)

and φ4(t) = (−√
1 − t2, t). Then {φi(Ui)} is certainly a cover of S1 with the

desired properties.

9.13. Show that S2, the unit sphere in R
3, is a 2-manifold.

9.6 Differential forms on manifolds

Basically, the definition of a differential n-form on an m-manifold is the same
as the definition of an n-form on a subset of R

m which was given by a single
parameterization. First and foremost it is just an n-form on TpM , for each p ∈ M .

Let’s say M is an m-manifold. Then we know there is a set of open sets,
{Ui} ⊂ R

m, and a set of differentiable maps, {φi : Ui → M}, such that {φi(Ui)}
covers M . Now, let’s say that ω is a family of n-forms, defined on TpM , for each
p ∈ M . Then we say that the family, ω, is a differentiable n-form on M if φ∗

i ω is
a differentiable n-form on Ui , for each i.

Example 48. In the previous section, we saw how S1, the unit circle in R
2, is

a 1-manifold. If (x, y) is a point of S1, then T S1
(x,y) is given by the equation

dy = − x
y
dx, in T R

2
(x,y), as long as y �= 0. If y = 0, then T S1

(x,y) is given by

dx = 0. We define a 1-form on S1, ω = −y dx + x dy. (Actually, ω is a 1-form
on all of R

2. To get a 1-form on just S1, we restrict the domain of ω to the tangent
lines to S1.) To check that this is really a differential form, we must compute all
pull-backs:

φ∗
1ω = −1√

1 − t2
dt , φ∗

2ω = 1√
1 − t2

dt,

φ∗
3ω = 1√

1 − t2
dt , φ∗

4ω = −1√
1 − t2

dt.

Since all of these are differentiable on Ui = (−1, 1), we can say that ω is a
differential form on S1.
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We now move on to integration of n-chains on manifolds. The definition of an
n-chain is no different than before; it is just a formal linear combination of n-cells
in M . Let’s suppose that C is an n-chain in M , and ω is an n-form. Then how
do we define

∫
C

ω? If C lies entirely in φi(Ui), for some i, then we could define

the value of this integral to be the value of
∫

φ−1
i (C)

φ∗
i ω. But it may be that part

of C lies in both φi(Ui) and φj (Uj ). If we define
∫
C

ω to be the sum of the two

integrals we get when we pull-back ω under φi and φj , then we end up “double
counting” the integral of ω on C ∩φi(Ui)∩φj (Uj ). Somehow, as we move from
φi(Ui) into φj (Uj ), we want the effect of the pull-back of ω under φi to “fade
out,” and the effect of the pull-back under φj to “fade in.” This is accomplished
by a partition of unity.

The technical definition of a partition of unity subordinate to the cover,
{φi(Ui)} is a set of differentiable functions, fi : M → [0, 1], such that fi(p) = 0
if p /∈ φi(Ui), and

∑
i

fi(p) = 1, for all p ∈ M . We refer the reader to any book

on differential topology for a proof of the existence of partitions of unity.
We are now ready to give the full definition of the integral of an n-form on an

n-chain in an m-manifold.∫
C

ω ≡
∑

i

∫
φ−1

i (C)

φ∗
i (fiω).

We illustrate this with a simple example.

Example 49. Let M be the manifold which is the interval (1, 10) ⊂ R. Let Ui =
(i, i + 2), for i = 1, ..., 8. Let φi : Ui → M be the identity map. Let {fi} be a
partition of unity, subordinate to the cover, {φi(Ui)}. Let ω be a 1-form on M .
Finally, let C be the 1-chain which consists of the single 1-cell, [2, 8]. Then we
have

∫
C

ω ≡
8∑

i=1

∫
φ−1

i (C)

φ∗
i (fiω) =

8∑
i=1

∫
C

fiω =
∫
C

8∑
i=1

(fiω) =
∫
C

(
8∑

i=1

fi

)
ω =

∫
C

ω

as one would expect!

Example 50. Let S1, Ui , φi and ω be defined as in Examples 47 and 48.A partition
of unity subordinate to the cover {φi(Ui)} is as follows:

f1(x, y) =
{

y2 y ≥ 0
0 y < 0

f2(x, y) =
{

0 y > 0
y2 y ≤ 0
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f3(x, y) =
{

x2 x ≥ 0
0 x < 0

f4(x, y) =
{

0 x > 0
x2 x ≤ 0

.

(Check this!) Let µ : [0, π ] → S1 be defined by µ(θ) = (cos θ, sin θ). Then the
image of µ is a 1-cell, σ , in S1. Let’s integrate ω over σ :

∫
σ

ω ≡
4∑

i=1

∫
φ−1

i (σ )

φ∗
i (fiω)

=
∫

−(−1,1)

−
√

1 − t2 dt + 0 +
∫

[0,1)

√
1 − t2 dt +

∫
−[0,1)

−
√

1 − t2 dt

=
1∫

−1

√
1 − t2 dt + 2

1∫
0

√
1 − t2 dt

= π.

CAUTION: Beware of orientations!

9.7 Application: DeRham cohomology

One of the predominant uses of differential forms is to give global information
about manifolds. Consider the space R

2 − (0, 0), as in Example 44. Near every
point of this space we can find an open set which is identical to an open set around
a point of R

2. This means that all of the local information in R
2 − (0, 0) is the

same as the local information in R
2. The fact that the origin is missing is a global

property.
For the purposes of detecting global properties, certain forms are interesting,

and certain forms are completely uninteresting. We will spend some time dis-
cussing both. The interesting forms are the ones whose derivative is zero. Such
forms are said to be closed. An example of a closed 1-form was ω0, from Example
44 of the previous chapter. For now, let’s just focus on closed 1-forms so that you
can keep this example in mind.

Let’s look at what happens when we integrate a closed 1-form ω0 over a 1-
chain C such that ∂C = 0 (i.e., C is a closed 1-chain). If C bounds a disk D then
Stokes’ theorem says ∫

C

ω0 =
∫
D

dω0 =
∫
D

0 = 0.

In a sufficiently small region of every manifold, every closed 1-chain bounds a
disk. So integrating closed 1-forms on “small” 1-chains gives us no information.
In other words, closed 1-forms give no local information.
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Suppose now that we have a closed 1-form ω0 and a closed 1-chain C such
that

∫
C

ω0 �= 0. Then we know C does not bound a disk. The fact that there exists

such a 1-chain is global information. This is why we say that the closed forms
are the ones that are interesting, from the point of view of detecting only global
information.

Now let’s suppose that we have a 1-form ω1, that is the derivative of a 0-form
f (i.e., ω1 = df ). We say such a form is exact. Again, let C be a closed 1-chain.
Let’s pick two points, p and q, on C. Then C = C1 + C2, where C1 goes from
p to q and C2 goes from q back to p. Now let’s do a quick computation:

∫
C

ω1 =
∫

C1+C2

ω1

=
∫
C1

ω1 +
∫
C2

ω1

=
∫
C1

df +
∫
C2

df

=
∫

p−q

f +
∫

q−p

f

= 0.

So integrating an exact form over a closed 1-chain always gives zero. This is
why we say the exact forms are completely uninteresting. Unfortunately, in Prob-
lem 6.9 we learned that every exact form is also closed. This is a problem, since
this would say that all of the completely uninteresting forms are also interesting!
To remedy this we define an equivalence relation.

We pause here for a moment to explain what this means. An equivalence
relation is just a way of taking one set and creating a new set by declaring certain
objects in the original set to be “the same.” This is the idea behind telling time.
To construct the clock numbers, start with the integers and declare two to be “the
same” if they differ by a multiple of 12. So 10 + 3 = 13, but 13 is the same as
one, so if it’s now 10 o’clock then in three hours it will one o’clock.

We play the same trick for differential forms. We will restrict ourselves to the
closed forms, but we will consider two of them to be “the same” if their difference
is an exact form. The set which we end up with is called the cohomology of the
manifold in question. For example, if we start with the closed 1-forms, then, after
our equivalence relation, we end up with the set which we will call H 1, or the
first cohomology (see Figure 9.2).
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Hn

dd

(n − 1)-forms n-forms (n + 1)-forms

closedexact

0

Fig. 9.2. Defining Hn.

Note that the difference between an exact form and the form which always
returns the number zero is an exact form. Hence, every exact form is equivalent
to 0 in Hn, as in the figure.

For each n the set Hn contains a lot of information about the manifold in
question. For example, if H 1 ∼= R

1 (as it turns out is the case for R
2 − (0, 0)),

then this tells us that the manifold has one “hole” in it. Studying manifolds via
cohomology is one topic of a field of mathematics called Algebraic Topology. For
a complete treatment of this subject, see [BT95].



A

Non-linear forms

A.1 Surface area

Now that we have developed some proficiency with differential forms, let’s see
what else we can integrate. A basic assumption that we used to come up with the
definition of an n-form was the fact that at every point it is a linear function which
“eats” n vectors and returns a number. But what about the non-linear functions?

Let’s go all the way back to Section 3.5. There we decided that the integral of
a function f over a surface R in R

3 should look something like:∫
R

f (φ(r, θ))Area

[
∂φ

∂r
(r, θ),

∂φ

∂θ
(r, θ)

]
drdθ. (A.1)

At the heart of the integrand is the Area function, which takes two vectors and
returns the area of the parallelogram that it spans. The 2-form dx ∧ dy does this
for two vectors in TpR

2. In TpR
3 the right function is the following:

Area(V 1
p , V 2

p ) =
√

(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.

(The reader may recognize this as the magnitude of the cross product between
V 1

p and V 2
p .) This is clearly non-linear!

Example 51. The area of the parallelogram spanned by 〈1, 1, 0〉 and 〈1, 2, 3〉 can
be computed as follows:

Area(〈1, 1, 0〉, 〈1, 2, 3〉) =
√∣∣∣∣1 0

2 3

∣∣∣∣
2

+
∣∣∣∣1 0
1 3

∣∣∣∣
2

+
∣∣∣∣1 1
1 2

∣∣∣∣
2

=
√

32 + 32 + 12

= √
19.
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The thing that makes (linear) differential forms so useful is the generalized
Stokes’Theorem. We do not have anything like this for non-linear forms, but that
is not to say that they do not have their uses. For example, there is no differential
2-form on R

3 that one can integrate over arbitrary surfaces to find their surface
area. For that we would need to compute the following:

Area(R) =
∫
S

√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.

For relatively simple surfaces, this integrand can be evaluated by hand. Inte-
grals such as this play a particularly important role in certain applied problems.
For example, if one were to dip a loop of bent wire into a soap film, the resulting
surface would be the one of minimal area. Before one can even begin to figure
out what surface this is for a given piece of wire, one must be able to know how
to compute the area of an arbitrary surface, as above.

Example 52. We compute the surface area of a sphere of radius r in R
3. A param-

eterization is given by

�(θ, φ) = (r sin φ cos θ, r sin φ sin θ, r cos φ),

where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π .
Now we compute:

Area
(

∂�
∂θ

, ∂�
∂φ

)
= Area (〈−r sin φ sin θ, r sin φ cos θ, 0〉, 〈r cos φ cos θ, r cos φ sin θ, −r sin φ〉)
=
√

(−r2 sin2 φ cos θ)2 + (r2 sin2 φ sin θ)2 + (−r2 sin φ cos φ)2

= r
√

sin4 φ + sin2 φ cos2 φ

= r sin φ.

And so the desired area is given by

∫
S

Area

(
∂�

∂θ
,
∂�

∂φ

)
dθ dφ

=
π∫

0

2π∫
0

r sin φ dθ dφ

= 4πr.

A.1. Compute the surface area of a sphere of radius r in R
3 using the parameter-

izations
�(ρ, θ) = (ρ cos θ, ρ sin θ, ±

√
r2 − ρ2)

for the top and bottom halves, where 0 ≤ ρ ≤ r and 0 ≤ θ ≤ 2π .
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Let’s now go back to EquationA.1. Classically, this is called a surface integral.
It might be a little clearer how to compute such an integral if we write it as follows:

∫
R

f (x, y, z) dS =
∫
R

f (x, y, z)

√
(dy ∧ dz)2 + (dx ∧ dz)2 + (dx ∧ dy)2.

A.2 Arc length

Lengths are very similar to areas. In calculus you learn that if you have a curve
C in the plane, for example, parameterized by the function φ(t) = (x(t), y(t)),
where a ≤ t ≤ b, then its arc length is given by

Length(C) =
b∫

a

√(
dx

dt

)2

+
(

dy

dt

)2

dt.

We can write this without making reference to the parameterization by em-
ploying a non-linear 1-form:

Length(C) =
∫
C

√
dx2 + dy2.

Finally, we can define what is classically called a line integral as follows:∮
C

f (x, y) ds =
∫
C

f (x, y)

√
dx2 + dy2.
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Solutions

Chapter 1

1.2 〈 3
5 , 4

5 〉
1.4 8

√
5

15

1.6 −8

1.8

1. x + y

2.
√

4 − x2 − y2

3.
√

1 − (2 − x2 − y2)2

4.
√

1 − (y − x)2

1.9

1. 21
2. 1
3. 3
4. 16
5. 2

5 (33 − √
2

5 − √
3

5
)

1.10

1. ∂f
∂x

= 2xy3, ∂f
∂y

= 3x2y2

2. ∂f
∂x

= 2xy3 cos(x2y3), ∂f
∂y

= 3x2y2 cos(x2y3)

3. ∂f
∂x

= sin(xy) + xy cos(xy), ∂f
∂y

= x2 cos(xy)

1.12 −4
√

2

1.13 −2
√

5
5
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1.14

1.
〈
y2, 2xy

〉
2. 69
3.
〈 9
15 , 12

15

〉
4. 15

Chapter 2

2.1

1. b
a

2. They are parallel. The one parameterized by φ can be obtained from the other
by shifting c units to the right and d units up.

2.3

1. (cos2 θ, cos θ sin θ)

2. (x, sin x)

2.4 φ(t) = (t, 4t − 3), 1 ≤ t ≤ 2 (There are many other answers.)

2.6

1. (t2, t)

2. 〈4, 1〉
2.7

r = ρ sin φ ρ = √
r2 + z2

θ = θ θ = θ

z = ρ cos φ φ = tan−1
(

r
z

)
2.9

1. z = √x2 + y2, z = r , φ = π
4

2. y = 0, θ = 0, θ = 0
3. z = 0, z = 0, φ = π

2
4. z = x + y, z = r(sin θ + cos θ), cot φ = sin θ + cos θ

5. z = (x2 + y2)3, z = r3, z = (ρ sin φ)3

2.10

1. φ(u, z) = (u, u, z)

2. φ(r, θ) = (r cos θ, r sin θ, r2)

3. ψ(θ, φ) = (φ sin φ cos θ, φ sin φ sin θ, φ cos φ)

4. ψ(θ, φ) = (cos φ sin φ cos θ, cos φ sin φ sin θ, cos φ cos φ)

5. φ(θ, z) = (cos2 θ, sin θ cos θ, z)

6. φ(r, θ) = (r cos θ, r sin θ,
√

r2 − 1)
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7. φ(r, θ) = (r cos θ, r sin θ,
√

r2 + 1)

8. φ(θ, z) = (θ cos θ, θ sin θ, z)

2.11 φ(x, y) = (x, y, f (x, y))

2.13 ψ(θ, φ) = (2 sin φ cos θ, 2 sin φ sin θ, 2 cos φ), 0 ≤ θ ≤ 2π , π
4 ≤ φ ≤ π

2

2.15 〈2, 0, 4〉, 〈0, 3, 2〉
2.17

1. The x-axis
2. The z-axis
3. The line y = z and x = 0
4. The line x = y = z

2.18 φ(t) = (t, 1 − t,
√

1 − 2t + 2t2)

2.19

1. φ(θ) = (2 cos θ, 2 sin θ, 4), 0 ≤ θ ≤ 2π

2. ψ(t) = (t, ±√
4 − t2, 4), −2 ≤ t ≤ 2

2.20

1. ψ(ρ, θ, φ) = (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ), 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π ,
0 ≤ φ ≤ π

2. ψ(ρ, θ, φ) = (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ), 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ π
2 ,

0 ≤ φ ≤ π
2

2.21

1. φ(r, θ, z) = (r cos θ, r sin θ, z), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π , 0 ≤ z ≤ 1
2. φ(r, θ, z) = (r cos θ, r sin θ, z), 1 ≤ r ≤ 2, 0 ≤ θ ≤ 2π , 0 ≤ z ≤ 2

2.22

φ(t, θ) = ([tf2(θ) + (1 − t)f1(θ)] cos θ, [tf2(θ) + (1 − t)f1(θ)] sin θ)

0 ≤ t ≤ 1, a ≤ θ ≤ b

2.23 φ(r, θ) = (3r cos θ, 2r sin θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π

Chapter 4

4.2

1. −1, 4, 10
2. dy = −4dx
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4.3

1. 3dx

2. 1
2dy

3. 3dx + 1
2dy

4. 8dx + 6dy

4.5

1. ω(V1) = −8, ν(V1) = 1, ω(V2) = −1 and ν(V2) = 2.
2. −15
3. 5

4.15 −127

4.16 c1 = −11, c2 = 4, and c3 = 3

4.17

1. 2dx ∧ dy

2. dx ∧ (dy + dz)

3. dx ∧ (2dy + dz)

4. (dx + 3dz) ∧ (dy + 4dz)

4.29 252

4.30

1. −87
2. −29
3. 5

4.31 dx ∧ dy ∧ dz

4.33

1. z(x − y)dz ∧ dx + z(x + y)dz ∧ dy

2. −4dx ∧ dy ∧ dz

Chapter 5

5.1

1. 〈2, 3, 1〉,〈2, 3, 2〉
2. 6dx ∧ dy + 3dy ∧ dz − 2dx ∧ dz

3. 5
4. x2yz2 − x5z2 − y3 + x3y2
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5.2 1
6

5.3 ±4π . (You don’t have enough information yet to properly tell the sign.)

5.4 4π

5.5 1
3

5.6

1. − 17
12

2. − 29
6

5.8 3π
5

5.9 1
6

5.10

1. Opposite orientation
2. Same orientation
3. Does not determine an orientation

5.11 16

5.12 16

5.13 1
5

5.14 2
3 cos 6 − 3

2 sin 4 − 2
3

5.15 1
6

5.16 4

5.17 32
3

5.19 2

5.20 6π

5.22 14
3

5.23 −7π
6

5.24 π
3

(
23/2 − 1

)
5.25 2π
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Chapter 6

6.1

1. ∇V ω(W) = −62, ∇Wω(V ) = 4
2. −66

6.3 dω = (−2x − 1)dx ∧ dy

6.6 d(x2y dx ∧ dy + y2z dy ∧ dz) = 0

6.7 −1, 1, 1

6.11

1. (− sin x − cos y)dx ∧ dy

2. (3x2z − 2xy)dx ∧ dy − (x3 + 1)dy ∧ dz

3. (y2 − 9z8)dx ∧ dy ∧ dz

4. 0

6.12 (3x4y2 − 4xy6z)dx ∧ dy ∧ dz

6.14

1. x dy

2. x dy ∧ dz

3. xyz

4. xy2z2

5. sin(xy2)dx + sin(xy2)dy

Chapter 7

7.1

1. 2, −2
2. 1

7.12 1

7.13 27

7.14 35
3

7.15

1. 0
2.
∫
C1

ω = ∫
C2

ω = 1
3

3. − 2
3
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7.16

1. 0
2. 0
3. If L, R, T , and B represent the 1-cells that are the left, right, top and bottom

of Q, then∫
∂Q

ω =
∫

(R−L)−(T −B)

ω =
∫
R

ω−
∫
L

ω−
∫
T

ω+
∫
B

ω = 24−0−28
1

2
+4

1

2
= 0

4. Opposite
5. 4 1

2
6. 4 1

2

7.19 8π

7.20 6π

7.21 2
3

(
e − 1

e

)
7.24 0

7.25 4
3

Chapter 9

9.9 dτ ′ = 2 dx ∧ dy and dτ = 0
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