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Preface

The basic structure playing the key role in this book is a real inner product space
(X,9), i.e. a real vector space X together with a mapping § : X x X — R, a
so-called inner product, satisfying rules (i), (ii), (iii), (iv) of section 1 of chapter
1. In order to avoid uninteresting cases from the point of view of geometry, we
will assume throughout the whole book that there exist elements a,b in X which
are linearly independent. But, on the other hand, we do not ask for the exis-
tence of a positive integer n such that every subset S of X containing exactly n
elements is linearly dependent. In other words, we do not assume that X is a finite-
dimensional vector space. So, when dealing in this book with different geometries
like euclidean, hyperbolic, elliptic, spherical, Lorentz—Minkowskian geometry or
Mbobius (Lie) sphere geometry over a real inner product space (X, d), the reader
might think of X = R? or R?, of X finite-dimensional, or of X infinite-dimensional.
In fact, it plays no role, whatsoever, in our considerations whether the dimension
of X is finite or infinite: the theory as presented does not depend on the dimension
of X. In this sense we may say that our presentation in question is dimension-free.

The prerequisites for a fruitful reading of this book are essentially based
on the sophomore level, especially after mastering basic linear algebra and basic
geometry of R? and R3. Of course, hyperspheres are defined via the inner prod-
uct 6. At the same time we also define hyperplanes by this product, namely by
{z € X | (a,z) = a}, or, as we prefer to write {x € X | ax = a},with0#a € X
and « € R. This is a quite natural and simple definition and familiar to everybody
who learned geometry, say, of the plane or of R3. For us it means that we do not
need to speak about the existence of a basis of X (see, however, section 2.6 where
we describe an example of a quasi-hyperplane which is not a hyperplane) and,
furthermore, that we do not need to speak about (affine) hyperplanes as images
under translations of maximal subspaces # X of X (see R. Baer [1], p. 19), hence
avoiding transfinite methods, which could be considered as somewhat strange in
the context of geometries of Klein’s Erlangen programme. This programme was
published in 1872 by Felix Klein (1849-1925) under the title Vergleichende Be-
trachtungen uber neuere geometrische Forschungen, Programm zum Eintritt in die
philosophische Facultit und den Senat der k. Friedrich-Alexander-Universitit zu
Erlangen (Verlag von Andreas Deichert, Erlangen), and it gave rise to an ingenious

ix
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and fundamental principle that allows distinguishing between different geometries
(S, G) (see section 9 of chapter 1) on the basis of their groups G, their invariants
and invariant notions (section 9). In connection with Klein’s Erlangen programme
compare also Julian Lowell Coolidge, A History of Geometrical Methods, Claren-
don Press, Oxford, 1940, and, for instance, W. Benz [3], p. 38 {.

The papers [1] and [5] of E.M. Schréder must be considered as pioneer work
for a dimension-free presentation of geometry. In [1], for instance, E.M. Schroder
proved for arbitrary-dimensional X,dim X > 2, that a mapping f : X — X
satisfying f (0) = 0 and ||z1 — x2|| = ||f (x1) — f (22)|| for all z1,22 € X with
|21 — z2]] = 1 or 2 must be orthogonal. The methods of this result turned out to
be important for certain other results of dimension-free geometry (see Theorem 4
of chapter 1 of the present book, see also W. Benz, H. Berens [1] or F. Radé, D.
Andreescu, D. Vélcan [1]).

The main result of chapter 1 is a common characterization of euclidean and
hyperbolic geometry over (X,0). With an implicit notion of a (separable) transla-
tion group T of X with axis e € X (see sections 7, 8 of chapter 1) the following
theorem is proved (Theorem 7). Let d be a function, not identically zero, from
X x X into the set R>o of all non-negative real numbers satistying d (z,y) =
d (¢ (), ¢ (y)) and, moreover, d(Be,0) = d (0, Be) = d (0, ce) + d (e, Be) for all
z,y € X, all p € TUO (X) where O (X) is the group of orthogonal bijections of
X, and for all real a, 8 with 0 < o < . Then, up to isomorphism, there exist
exactly two geometries with distance function d in question, namely the euclidean
or the hyperbolic geometry over (X, d). We would like to stress the fact that this
result, the proof of which covers several pages, is also dimension-free, i.e. that it
characterizes classical euclidean and classical (non-euclidean) hyperbolic geometry
without restriction on the (finite or infinite) dimension of X, provided dim X > 2.
Hyperbolic geometry of the plane was discovered by J. Bolyai (1802-1860), C.F.
Gauf3 (1777-1855), and N. Lobachevski (1793-1856) by denying the euclidean par-
allel axiom. In our Theorem 7 in question it is not a weakened axiom of parallelity,
but a weakened notion of translation with a fized axis which leads inescapably to
euclidean or hyperbolic geometry and this for all dimensions of X with dim X > 2.
The methods of the proof of Theorem 7 depend heavily on the theory of functional
equations. However, all results which are needed with respect to functional equa-
tions are proved in the book. Concerning monographs on functional equations see
J. Aczél [1] and J. Aczél-J. Dhombres [1].

In chapter 2 the two metric spaces (X, eucl) (euclidean metric space) and
(X, hyp) (hyperbolic metric space) are introduced depending on the different dis-
tance functions eucl (x,y), hyp (z,y) (x,y € X) of euclidean, hyperbolic geometry,
respectively. The lines of these metric spaces are characterized in three different
ways, as lines of L.M. Blumenthal (section 2), as lines of Karl Menger (section 3), or
as follows (section 4): for given a # b of X collect as line through a,b all p € X such
that the system d (a,p) = d(a,x) and d (b,p) = d (b, x) of two equations has only
the solution x = p. Moreover, subspaces of the metric spaces in question are defined
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in chapter 2, as well as spherical subspaces, parallelism, orthogonality, angles, mea-
sures of angles and, furthermore, with respect to (X, hyp), equidistant surfaces,
ends, horocycles, and angles of parallelism. As far as isometries of (X, hyp) are
concerned, we would like to mention the following main result (Theorem 35, chap-
ter 2) which corresponds to Theorem 4 in chapter 1. Let o > 0 be a fixed real
number and N > 1 be a fixed integer. If f : X — X satisfies hyp (f (x), f (y)) <o
for all x,y € X with hyp (z,y) = o, and hyp (f (x), f (y)) > Np for all z,y € X
with hyp (x,y) = Np, then f must be an isometry of (X, hyp), i.e. satisfies
hyp (f (z), f(y)) = hyp(z,y) for all z,y € X. If the dimension of X is finite, the
theorem of B. Farrahi [1] and A.V. Kuz’minyh [1] holds true: let ¢ > 0 be a fixed
real number and f : X — X a mapping satisfying hyp (f (z), f (y)) = p for all
z,y € X with hyp (z,y) = 0. Then f must already be an isometry. In section 21
of chapter 2 an example shows that this cannot generally be carried over to the
infinite-dimensional case.

A geometry T' = (S, G) is a set S # () together with a group G of bijections
of S with the usual multiplication (fg)(z) = f (g (x)) for all z € S and f,g € G.
The geometer then studies invariants and invariant notions of (S, G) (see section
9 of chapter 1). If a geometry I' is based on an arbitrary real inner product space
X,dim X > 2, then it is useful, as we already realized before, to understand by
“I", dimension-free” a theory of I" which applies to every described X, no matter
whether finite- or infinite-dimensional, so, for instance, the same way to R? as
to C'[0,1] with fg = fol t2f (t) g (t) dt for real-valued functions f,g defined and
continuous in [0, 1] (see section 2, chapter 1). In chapter 3 we develop the geom-
etry of Mobius dimension-free, and also the sphere geometry of Sophus Lie. Even
Poincaré’s model of hyperbolic geometry can be established dimension-free (see
section 8 of chapter 3). In order to stress the fact that those and other theories are
developed dimension-free, we avoided drawings in the book: drawings, of course,
often present properly geometrical situations, but not, for instance, convincingly
the ball B (¢, 1) (see section 4 of chapter 2) of the above mentioned example with
X = ([0, 1] such that ¢ : [0,1] — R is the function ¢ (¢) = £€3. The close connection
between Lorentz transformations (see section 17 of chapter 3) and Lie transfor-
mations (section 12), more precisely Laguerre transformations (section 13), has
been known for almost a hundred years: it was discovered by H. Bateman [1] and
H.E. Timerding [1], of course, in the classical context of four dimensions (section
17). This close connection can also be established dimension-free, as shown in
chapter 3. A fundamental theorem in Lorentz—Minkowski geometry (see section
17, chapter 3) of A.D. Alexandrov [1] must be mentioned here with respect to Lie
sphere geometry: if (2 <)dim X < oo, andif A: Z — Z, Z := X R, is a bijection
such that the Lorentz—Minkowski distance I (z,y) (section 1 of chapter 4) is zero if,
and only if I (f (z), f (y)) =0 for all #,y € Z, then f is a Lorentz transformation
up to a dilatation. In fact, much more than this follows from Theorem 65 (section
17, chapter 3) which is a theorem of Lie (Laguerre) geometry: we obtain from
Theorem 65 Alexandrov’s theorem in the dimension-free version and this even in
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the Cacciafesta form (Cacciafesta [1]) (see Theorem 2 of chapter 4).

All Lorentz transformations of Lorentz—Minkowski geometry over (X, ) are
determined dimension-free in chapter 4, section 1, by Lorentz boosts (section 14,
chapter 3), orthogonal mappings and translations. Also this result follows from a
theorem (Theorem 61 in section 14, chapter 3) on Lie transformations. In The-
orem 6 (section 2, chapter 4) we prove dimension-free a well-known theorem of
Alexandrov—Ovchinnikova—Zeeman which these authors have shown under the as-
sumption dim X < oo, and in which all causal automorphisms (section 2, chapter
4) of Lorentz—Minkowski geometry over (X, J) are determined.

In sections 9, 10, 11 (chapter 4) Einstein’s cylindrical world over (X,4d) is
introduced and studied dimension-free; moreover, in sections 12, 13 we discuss de
Sitter’s world. Sections 14, 15, 16, 17, 18, 19 are devoted to elliptic and spheri-
cal geometry. They are studied dimension-free as well. In section 19 the classical
lines of spherical, elliptic geometry, respectively, are characterized via functional
equations. The notions of Lorentz boost and hyperbolic translation are closely
connected: this will be proved and discussed in section 20, again dimension-free.

It is a pleasant task for an author to thank those who have helped him. I am
deeply thankful to Alice Giinther who provided me with many valuable suggestions
on the preparation of this book. Furthermore, the manuscript was critically revised
by my colleague Jens Schwaiger from the university of Graz, Austria. He supplied
me with an extensive list of suggestions and corrections which led to substantial
improvements in my exposition. It is with pleasure that I express my gratitude to
him for all the time and energy he has spent on my work.

Waterloo, Ontario, Canada, June 2005 Walter Benz
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In this second edition a new chapter (6—Projective Mappings, Isomorphism The-
orems) was added. One of the fundamental results contained in this chapter 5 is
that the hyperbolic geometries over two (not necessarily finite-dimensional) real
inner product spaces (X, d), (V,¢) (see p. 1) are isomorphic (p. 16f) if, and only if,
the two underlying real inner product spaces are isomorphic (p. 1f) as well. Simi-
lar theorems are proved for Mobius sphere geometries and for the euclidean case.
Another result of chapter 5 we would like to mention is that the Cayley—Klein
model of hyperbolic geometry over (X, ¢), as developed dimension—{free in section
2.12, can also be established dimension—free via a certain selection of projective
mappings of X depending, however, on the chosen inner product § of X.

It remains to the author to thank Professors Hans Havlicek, Zsolt Pales, Vic-
tor Pambuccian who, through their support, their criticism and their suggestions,
contributed to the improvement of this book. Special thanks in this connection
are due to Alice Giinther and my colleagues Ludwig Reich and Jens Schwaiger.

Last, but not least, I would like to express my gratitude to the Birkhauser
publishing company and, especially, to Dr. Thomas Hempfling for their conscien-
tious work and helpful cooperation.

Hamburg, July 2007 Walter Benz
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Preface to the Third Edition

During the first decades of the 20th century, Geometry consisted of theories of
the plane and three—dimensional space, with exceptions, of course, such as Lie’s
Sphere Geometry, Pliicker’s Line Geometry, and Einstein’s Special Theory of Rel-
ativity. These theories concerned, for instance, Geometries of Klein’s Erlangen
Programme, Hilbert’s Foundations of Geometry, Higher Geometry, and Differ-
ential Geometry. Subsequently, mathematicians began to study more intensively
n—dimensional Geometry, for n an integer > 2, however, based on approaches of
A. Cayley (1821-1895), H.G. Grassmann (1809-1877). Some of the major results
of this research were most certainly the modern theory of Linear Algebra, the new
indispensable tools of general vector spaces and of real inner product spaces. The
classical inner product itself, say of R3, soon became generalized, because of its
fundamental importance in both Geometry and Analysis.

Looking to the examples X (B) in a), p. 2, of real inner product spaces, one
is astonished at how many such spaces X (B) exist, with B # () an arbitrary set,
taking into account (see p. 3) that X (Bj), X (Bs) are isomorphic if, and only if,
there exists a bijection between By and By. The many existing real inner product
spaces, including the countable set of all R”,n = 2,3, ..., and many other interest-
ing structures (see section 1.2), certainly deserve their own geometrical treatment,
namely a Geometry of Real Inner Product Spaces, as have developed in this book.

Also this should be emphasized: an important postulate of the 1950s, es-
sentially to avoid coordinates in Geometry is definitely realized when working,
without referring to a basis, with elements of arbitrary real inner product spaces.

Further developments in the Geometry of Real Inner Product Spaces are
inevitably important, an idea even now promoted by the fact that a third edition
of the book became necessary.

In this third edition a new chapter (6. Planes of Leibniz, Lines of Weierstrass,
Varia) was added. One of the fundamental results proved in this chapter concerns
the representation of hyperbolic motions: every u € M (X, hyp) can be written
in the form g = T - w with a uniquely determined hyperbolic translation 7" and
a uniquely determined bijective orthogonal transformation w (Theorem 13). We
stress the fact that this holds true for all real inner product spaces X of arbitrary
(finite or infinite) dimension > 1. Observe, however, that the set of all translations

XV
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of X is not a subgroup of the hyperbolic group of X.

Another fundamental result of chapter 6 concerns the Geometry (P,G) of
segments. Let X be a real inner product space of arbitrary (finite or infinite)
dimension > 1. Define P := {z € X | ||z|| < 1} and G to be the group of all bijec-
tions of P such that the images of P-lines are again P—lines. Then the Geometry
(P,G) of segments is isomorphic to the hyperbolic geometry over X (Theorem
16). What one usually learns in a basic course in Geometry is formulated, say for
R3, that if II is the set of points

I := {(z1,22,23) € R® | 2} + 25 + 23 < 1},

and I' is the group of all projective transformations of the 3—dimensional projec-
tive space fixing II in its entirety, but restricted on I, then (II,T") is isomorphic to
3—dimensional hyperbolic geometry. This latter Cayley—Klein model works with
the assumption that I' already consists of projective transformations only. The
corresponding theorem concerning the theory of segments does not need this as-
sumption, even not in the infinite-dimensional case.

Many discussions about the book with colleagues took place over the last
years. Thus, among others, I am thankful to Professors Ludwig Reich and Jens
Schwaiger. Moreover, the author wishes to express his gratitude to Birkhauser,
especially to Dr. Thomas Hempfling and Mrs. Sylvia Lotrovsky, for their encour-
agement and support. Last, not least, I am deeply thankful to Alice Giinther for
her continuous interest and help.

Hamburg, April 2012 Walter Benz
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Chapter 1

Translation Groups

1.1 Real inner product spaces

A real inner product space (X, 9) is a real vector space X together with a mapping
0: X x X — R satisfying

(i) 0 (z,y) =6 (y,2),

(ii) d(x +y,2) =0 (x,2) + 6 (y, 2),
(iii) 8 (Az,y) = A+ 6 (z,9),
(iv) é(z,z) >0forz #0

for all z,y,z € X and A € R. Concerning the notation § : X x X — R and others
we shall use later on, see the section Notation and symbols of this book. Instead
of § (z,y) we will write zy or, occasionally, = - y. The laws above are then the
following:

wy =y, (x+y)z=zz+yz (Az)-y =X (2y)

forall z,y,2 € X, A € R, and z? := -z > 0 for all z € X\{0}. Instead of (X,§)
we mostly will speak of X, hence tacitly assuming that X is equipped with a fixed
inner product, i.e. with a fixed 0 : X x X — R satisfying rules (i), (ii), (iii), (iv).

Two real inner product spaces (X, ), (X’,§') are called isomorphic provided
(in the sense of if, and only if) there exists a bijection

p: X =X
such that

e@+y)=¢ @) +e), ¢e(Az) = Ao (2), 6 (z,y) =8 (¢ (2), ¢ (y))

W. Benz, Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces 1
Third Edition, DOI 10.1007/978-3-0348-0420-2_1, © Springer Basel 2012



2 Chapter 1. Translation Groups

hold true for all z,y € X and A € R. The last of these equations can be replaced
by the weaker one & (z,z) = §'(¢ (), ¢ (z)) for all z € X, since

26 (z,y) =6 (x+y,x+y) — 6 (v,2) — 6 (y,y)

holds true for all 2,y € X for 6 = § as well as for all z,y € X’ for 6 = §'.

1.2 Examples

a) Let B # () be a set and define X (B) to be the set of all f: B — R such that
{be€ B| f(b) # 0} is finite. Put

(f+9)(b) := [ (b) + g (b)
for f,g € X and b € B, and
(af)(b) :=af (b)
for f € X, a € R, b € B. Finally set
fo=3" Fb)g )
beB
for f,g € X.

b) Let a < 8 be real numbers and let X be the set of all continuous functions
f o, 8] = R with [o, 8] ;= {t € R | a <t < S}. Define f + g, af as in a) and
put

B8
fg :=/ h(t) f () g (t) dt

for a fixed h € X satisfying h (t) > 0 for all ¢ € [o, 5]\T where T is a finite subset
of e, B]. This real inner product space will be denoted by X ([047 A, h).

¢) Suppose that X is the set of all sequences

(a1,az2,as,...)

of real numbers ay,as,as, ... such that .2, a? exists. Define
(al,ag,...)+(bl,b2,...) = (a1+b1,a2+b2,...),
A-(ay,a9,...) = (Aag,Aag,...),
(al,ag,...)'(bl,bg,...) = Zaibi,
i=1

by observing

(ai +b)? = a? + b7 + 2a;b; < a? +b? +a? +b?
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from (a; — b;)? > 0, i.e. by noticing

zn:amub <22a +2Zb
=1

ie. that > 2 (a; + b;)? exists. Because of

4Zazb = Z a; +b;)? —zn:(ai —b;)?,
i=1

i=1

also 22 a;b; exists.

1.3 Isomorphic, non-isomorphic spaces

Let n be a positive integer. The R™ consists of all ordered n-tuples

(x1,22,...,Zp)
of real numbers z;, ¢ = 1,2,...,n. It is a real inner product space with
(xla"'vxn)+(y1,'~'ayn) = (x1+y17"'7$n+yn)a
o (21, xn) = (Qx1,...,0xy),
(xlv"'vxn)'(ylw-'ayn) = i1+ + Tpln

for z;,y;, € R i=1,...,n
Obviously, R” and X ({1, 2,... ,n}) are isomorphic: define ¢ (z1,...,2,) to
be the function f: {1,...,n} > R with f(i)=x;,i=1,...,n.

Suppose that Bi, By are non-empty sets. The real inner product spaces
X (B1), X (B2) are isomorphic if, and only if, there exists a bijection vy : By — Bs
between B; and Bs. If there exists such a bijection, define ¢ (f) for f € X (By)
by
e (N (v ®) = [

for all b € B;. Hence ¢ : X (By) — X (Bz) establishes an isomorphism. If
X (B1), X (B3) are isomorphic, there exists a bijection

@X(Bl) %X(BQ)

with ¢ (z +y) = ¢ (z) + ¢ (y), ¢ (Az) = Ap (z) for all z,y € X (B1) and A € R.
We associate to b € By the element b of X (B;) defined by b(b) =1 and b(c) = 0
for all ¢ € By\{b}. Then By := {b | b € By} is a basis of X (By), and By and
¢ (B1) must be bases of X (By). Since By, ¢ (B;) are of the same cardinality, and
also Bg, %) (Bl)7 we get the same cardinality for Bl, 327 and hence also for By, Bs.
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Suppose that a < 3 are real numbers and that & : [, 8] — R is continuous
with A (n) > 0 in [o, 8]. Then the real inner product spaces X ([, 8],h) and
X ([0,1],1) are isomorphic. Here 1 designates the function 1(¢§) = 1 for all £ €
[0,1]. In order to prove this statement, associate to the function f : [0,1] — R,
also written as f (&), the function ¢ (f) : [, 8] — R defined by

o (f)) = | L= <Z:Z>.

Obviously, ¢ : X ([0,1],1) — X ([, 8], h) is a bijection. It satisfies

e(f+a)=v(f)+v(g), e(Af)=2rp(f)

for all A € R and f,g € X ([0,1],1). Moreover, we obtain

B 1
w(f)-w(g):/ h(n)w(f)(n)w(g)(n)dn:/() f(&)g)dé=rf-g,

and hence that X ([07 1], 1), X ([a, A, h) are isomorphic.

Remark. There exist examples of (necessarily infinite-dimensional) real vector
spaces X with mappings 6, : X x X — R, v = 1,2, satisfying rules (i),(ii), (iii),
(iv) of section 1.1 such that (X,071) and (X, d2) are not isomorphic (J. Rtz [1]).
1.4 Inequality of Cauchy—Schwarz

Inequality of Cauchy—Schwarz If a,b are elements of X, then (ab)? < a®b? holds
true.

Proof. Case b = 0. Observe, for p € X,
pb=p-0=p-(0+0)=p-0+p-0,

ie.pb=p-0=0,ie. a-b=0and b> = 0.
Case b # 0. Hence b? > 0 and thus

0< (a—ZSb)zzaQ— (ab)® (1.1)

b2
i.e. (ab)? < a?b?. O

Lemma 1. If a,b are elements of X such that (ab)? = a?b? holds true, then a,b
are linearly dependent.
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Proof. Case b=0.Here0-a+1-b=0.
Case b # 0. Hence, by (1.1), (a — Z—f . b)2 =0, ie.

a3 b=0. O

For € X, the real number s > 0 with s> = 2?2 is said to be the norm of

x, s =: ||z||. Obviously, [[Az| = |A| - ||z| for A € R and = € X. Moreover, ||z|| =0

holds true for € X if, and only if, z = 0. Observing zy < |zy| < ||z||-||y| for z,y €

X, from the inequality of Cauchy-Schwarz, we obtain (z + y)* < (||z| + Hy||)2,
i.e. we get the triangle inequality

2 +yll < [zl + [ly] for all 2,y € X. (1.2)

1.5 Orthogonal mappings

Let X be a real inner product space. In order to avoid that the underlying real
vector space of X is R or {0}, we will assume throughout the whole book that there
exist two elements in X which are linearly independent. Under this assumption the
following holds true: if x,y are elements of X, there exists w € X with w? =1 and
w- (x —y) = 0. Since there are elements a,b in X, which are linearly independent,
put w = H%H in the case © = y. If x # y, there exists z in X such that z € R-(x—y),

because otherwise a,b € R - (z — y) would be linearly dependent. Hence

z(z —y)
vi= 2 — T p ) £0.
(I*y)Q( )
Thus w := —”Zj” satisfies w? = 1 and w - (v —y) = 0.

A mapping w : X — X is called orthogonal if, and only if,
w(r+y) =w(@)+w(y), wAe) =t (), zy =w(@)w(y)

hold true for all z,y € X and A € R.

An orthogonal mapping w of X must be injective, but it need not be surjec-
tive. Assume w (z) = w (y) for the elements x,y of X. Because of

wE—y) =w@+[(-)y) =w @) + (-1 wy) =0,

we obtain (z —y)? = [w(x —y)]* =0, ie. 2 —y =0, ie z=1y.

Define B := {1,2,3,...} and take the space X = X (B) of type a). For f € X
put
w( ) =0andw(f)@)=f(E—1),i=2,3,....
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Since g € X with g(1) =1, g(i) = 0 for ¢ = 2,3,..., has no inverse image, w
cannot be surjective. But, trivially, w is orthogonal.

A linear mapping w : X — X is orthogonal if, and only if, ||z| = ||w (2)]|
holds true for all z € X. From 2 = (w (1‘))2 we get, for all a,b € X,

(a=b)?= (w(a—1b)" = (w(a) —w®)

i.e. ab=w (a)w (b), in view of a* = (w (a))Q, b = (w (b))2. On the other hand, if
w is orthogonal, then z - = w (z) w (x) holds true, i.e. |z| = ||w (z)]].

Lemma 2. Suppose that a,b,m € X satisfy
1
lm —all = }o = m|| = 5 [[b—al|.
Then m = 5 (a + b) holds true.
Proof. Put p:=|jm —al|, @’ :=m —a, b’ := b — m. Hence
(b_a)2+(a/_b/)2 _ (a/+b/)2+(a/_bl)2 :4:“2
Thus [|b— al| = 2p implies (o' —')> =0, i.e. @/ =V, ie. m = 3 (a +b). O

Proposition 3. A mapping f : X — X satisfying f(0) = 0 and ||z — y|| =
IIf (z) = f )| for all z,y € X must be orthogonal.

Proof. Obviously, for all a,b € X,

1
=5 Ib—al.

a+b H H a+bH
—all=1lb—
2 2

This implies, by ||l —y|| = ||f () — f (W)l

Hf(””)—fw>=Hﬂw—f(”+ﬁH HEe - @l

Hence, by Lemma 2, we obtain f (%) = % ( +f( )) i.e. Jensen’s functional
equation. From b = 0 we get f ( ) = %f (a) for all a € X. Thus
flatb)=f(a)+f(b)

for all a,b € X. This implies f (Aa) = A\f (a) for all rationals A and all a € X. Let
now A € R be given, and let \,, be a sequence of rational numbers with lim A,, = A.
By (1.2),

1f (Aa) = Af (@) < [If (Aa) = f (Ana)ll + [If (Ana) = Af (a)|| =
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and with [l —y| = [|f (x) = f (W),
R = |[Aa = Anall + [Anf (@) = Af (@) = X = Aal - (lall + [ f (@)]])

for all @ € X. Hence ||f (Aa) — Af (a)|| = 0, and thus f must be linear. Finally
observe ||z|| = ||f (z)]| for all z € X from |z — 0| = ||f (x) — f(0)] and f(0) =
0. 0

Of course, the set of all surjective orthogonal mappings w : X — X forms a
group under the permutation product, the so-called orthogonal group O (X) of X.

1.6 A characterization of orthogonal mappings

The following theorem characterizes the orthogonal mappings of a real inner prod-
uct space under mild hypotheses, i.e. under especially weak assumptions.

Theorem 4. Let o > 0 be a fived real number and N > 1 be a fized integer. If the
mapping [ X — X satisfies

Vagyex [z —yll=0 = [If (@) - fWI<e (1.3)
Vayex [z —yll=Ne = |f(z)—f ()l =Ne, (1.4)

it must be of the form
Veex f(z) =w(z) +1, (1.5)

where w is an orthogonal mapping, and t a fixed element of X.

Proof. We will prove

1 (@) = F Wl = llz = vl (1.6)

for all z,y € X. Then, by Proposition 3,

g(x):=f(z) - f(0) = w(x)
must be orthogonal, and f is of the form (1.5).

a) |l —yll € {e, 20} implies ||z —y|| = [|f (z) = f (W)l
If z,y € X are given with ||z — y|| = o, define z := 2y — 2. Hence ||z — z|| = 2p.

If z,z € X are given with ||z — z|| = 2, define y :=  (z + z), and we obtain

|z — y|| = o. Put

1
DA ;:gngi)\(z—x) for A\=0,1,...,N.
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Hence, by (1.4) and ||jpo — pn|| = No,

£ (po) — f (pn)|| > No.

By (1.3), for A\=0,...,N —1,

If (ox) = f (par1)ll < o,

on account of ||[px — pat+1|| = 0. Thus

No  <|f(po) = f (pn)] < IIf (po) = f (p2)ll +Jz§__:21 1F (px) = £ (pasall

<1 (o0) = £ ol + 15 00) = 7 o)l + 55 1 2) = F (prall < Ne

ie. [|f (pa) = f (prsall = o for A=0,..., N — 1, and, moreover,
1S (o) = £ (p2) Il = IIf (o) — f (p1) I + IIf (p1) — f (p2)]| = 2e.
Putting po = , p1 = y, p2 = 2, we obtain
If (@) = f W)l = ¢ and || (z) — f (2)|| = 2.
b) If z,y € X satisfy |z — y|| = o, then
flatXy—a)=f@)+X(fy) (@) (1.7)

holds true for A=10,1,2,....
This is clear for A =0 and A = 1. Put

pri=z+A(y—2x)for A\=0,1,2,....
If A e {1,2,3,...}, we obtain
0= llpr — a1l = Ipass = pall = gllpass — pacall
ie. by a),
0= 115 @) — F @r-1)ll = 1 s — £ @)l = 51F rsr) — £ o)l

and hence, by Lemma 2,

Fx) == (f (0r—1) + [ (pas1)) for A=1,2,3,....

| —

This equation implies (1.7), by induction.
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c) If v,y € X satisfy ||z —y| = %Q with A\, € {1,2,3,...}, then ||z — y|| =
If (@) = f W)l

We assumed that there exist two elements in X which are linearly independent.
This implies, as we already know, the existence of an element w € X satisfying
w-(z—y)=0and [|w| =1. Put

1 1
z::§(x+y)+)\g’/1—m~w

and observe ||z — z]| = Ao = ||z — y||. Define a,b, ',/ by means of
c=z4+A(a—2), y=z+A(b—2),
o =ztpla—z), ¥ =z+ulb-2).
Hence, by b) and [la — z|| = o = ||b — 2],
F@=FE@+Af@)-F). Fu)=FE+A(F0)~f()
fa)=fE)+u(fla)=f(), f@)=FE)+u(fd)-F(),

ie. A(f(z))=f () =p(f(x)—f(y)). Thus, by a) and ||z’ — /|| = o, we obtain
I @)= £ )l == 2 =}z = .

d) Suppose thatt > 0 is a rational number, and that for x,y € X we have ||z—y| <
to. Then || f (z) — f (y)|| < to. As in step ¢) we take w € X with w (x —y) = 0 and

[lw]] = 1. Put
1 to lz —yl\*
= o (lm=al

z 2(56+y)+2\/ ( > w,

and observe ||z — x| = 5 to = ||z — y||. Hence, by c),
1

17 (=) = f @)l = 5 te=If () = f (W),

and thus

If @) = f I <If @) = fEI+1f(2) = f @l = to
e) Let r > 0, s > 0 be rational numbers, and x,y be elements of X satisfying
ro < |z —yll < so.

Then ro < ||f () — f (v)|| < so holds true.
Put

50
p=ot L (y—a)
o=l
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and observe
50
Ip—yll = ( 1) ly— ol = so— Iy — ]l < (s ) o.
lz —yll

Hence, by d), ||f (p) — f (y)|| < (s —r) 0. Because of ||p — z|| = sp and step c), we
obtain

1f () = f (@)]| = se.
Thus

1f @) = f I = 1f @) = F@I=1If ) = F @) = se— (s =7) e

Since, moreover, ||z — y|| < sp yields, by d), ||f (z) — f (v)|| < so, e) is proved.
f) (1.6) holds true for all x,y € X.

Assuming x # y, we will consider two sequences 7,,s,(v = 1,2,3,...) of rational
numbers with limr, = % |z —y|| = lims,, and such that

ro<|lz—y| < svo
is satisfied for all v = 1,2,3,.... Step e) implies
o < ||f(z) = f W < svo

Hence ||z — y|| = || f (z) — f (v)]|- -

Remark. Steps b), ¢), d), e) ) of the previous proof were given by E.M. Schroder
in [1]. For generalizations of Theorem 4, or similar results, see F.S. Beckman, D.A.
Quarles [1], W. Benz, H. Berens [1], W. Benz [8], K. Bezdek, R. Connelly [1], J.A.
Lester [1], F. Radd, D. Andreescu, D. Valcédn [1], E.M. Schroder [5], among others.

1.7 Translation groups, axis, kernel

Let X be a real inner product space such that there exist two linearly independent
elements in X. By Perm X we designate the group of all permutations of X with
the usual permutation product

(fo)(x)=f (g (x)), for all x € X,
for f,g € Perm X. Let e be a fixed element of X with e? = 1. Put
H:=el :={zec X |ze=0},

and we obtain X = H @ Re: this means, by definition, that to every z € X there
exist uniquely determined elements * € H and zge € Re satisfying

T =T+ xpe,
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and that H,Re are subspaces of X. In fact,
= (z— (ze)e) + (ze)e
holds true with  — (ze) e € H, (xe) e € Re, and
r=T+x0e, T € H, ¢ € R,

implies ze = (T + xpe) e = xg, i.e. T = ¢ — xge = = — (xe)e. Observe H # {0},
since there exists w € X with ||w| =1 and w - (e — 0) = 0 (see the beginning of
section 1.5).
Remark. Occasionally, the following statement will be useful. If «, 5 are mappings
from X into X such that a8 = id = B« holds true, where id designates the identity
element of Perm X, then «, and, of course, 8 as well, must be bijections of X. In
fact, B (z) is an inverse image of z, since a (8 (x)) = z, and if o () is equal to
a (y), then
id (z) = B (a(z) = (a(y) =id (y)

implies x = y.

A mapping T : R — Perm X is called a translation group of X in the direc-
tion of e, or with axis e, if, and only if, the following properties hold true.
(T1) Tyrs =T - Ty for allt,s € R,
(T2) For xz,y € X satisfying x —y € Re there exists exactly one t € R with

Tt(x) =Y,
(T3) Ty(z) — x € Rxpe for allz € X and all real t > 0.
Here T; designates the image of ¢ € R under T', moreover, T; - T the permutation
product, and Ti(x) the image of x € X under the permutation T} of X. By R>

we denote the set of all non-negative reals. (T1) is called translation equation in
the theory of functional equations (J.Aczél [1]).

If we associate to t € R the permutation
Veex T — T + te,

of X, we get an example of a translation group with axis e. Another important
example is given by ¢t — T} with

Veex Te(x) = 2 + [(ze)(cosht — 1) + /1 4 22 sinht]e. (1.8)

In order to prove that ¢ — T; is a translation group, observe that the elements of
X can be written in the form

h+sinh7-+/14+ h2e
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with h € H and 7 € R: for z € X put

Lo

Vitz?

h:=7=, sinh7 :=

and notice that (1.8) yields

T;(h+sinh7 -1+ h?e) = h+sinh(7 +t) vV 1+ h2e. (1.9)

From (1.9) we get at once TsTy = Tirs = Tsyy, especially T_, Ty = id, id the
identity permutation of X, so that T; must be a bijection of X. If z,y € X satisfy
x —y € Re, put y = & + ae for a suitable a € R. Hence, by

h:=7 and x¢ =: sinh7 - /1 + h2,

we obtain y = h + (2o + @) e =: h + sinh(r + t') - V1 + h?e, ie. Ty(z) = y has
the uniquely determined solution ¢ = t’. Property (T3), finally, follows from (1.9),
since

Ty(z) — x = (sinh(7 +¢t) — sinh 7)\/1 + hZe,
and sinh(7 +¢) > sinh7 for 7+ ¢ > 7.

Suppose that T : R — Perm X is an arbitrary translation group of X in
the direction of e. Obviously, the group {7; | t € R} is a homomorphic image
of the additive group of R, and even an isomorphic image, since Ts = Ty implies
Ts(x) =To(x) forallz € X, i.e. s =0, in view of (T2); observe that Ty(x)—Ts(z) =
0 € Re yields exactly one ¢ with T;[Ty(z)] = Ts(x), i.e., s = t = 0. Usually we shall
identify the mapping T with the set {7} | ¢ € R}. Notice Ty = id € Perm X: since
x —x € Re for x € X, there exists exactly one ¢ € R with T;(z) = z in view of
(T2), moreover, (T1) implies To(z) = Ty(Ti(x)) = Ti(x) = =, i.e. we obtain 2¢t =t
from (T2).

The function po: H x R — R,

o(hyt) == [Ty(h) — h] -e = Ty(h) - e (1.10)

is called the kernel of the translation group 7. In the case (1.8), for instance, we
get

o(h,t) =sinht-\/1+ h2. (1.11)

Theorem 5. The kernel o: H x R — R of a translation group T of X with axis e
satisfies

(i) 0(h,0) =0 and o (h,t1) < o (h,t2) for all h € H and all reals t1 < to,
(ii) To h € H and £ € R there exists t € R such that o (h,t) =¢&.
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If, on the other hand, an arbitrary function o : H x R — R satisfies (i) and (ii),
then

Ty(h+o(h,7)e) =h+o(h,T+t)e (1.12)

defines a translation group of X in the direction of e; the kernel of this translation
group s 0.
Proof. a) o (h,0) = 0 follows from (1.10) and Ty = id. Suppose h € H and t; < to
for ¢1,t5 € R. Hence, by (T3),

Tt2 —t1 (Ttl (h)) - Ttl (h) € RZOB’

ie., by (T1), Ty, (h) — T3, (h) := pe, p > 0. Since ty # t1, we obtain Ty, 4, (h) # h,
by (T2), i.e. Ty, (h) # Tt (h), i.e. p# 0, i.e. ;> 0. Hence, by (1.10),
Q(hatQ) 7Q(h7tl) = (th(h) 7h)67 (Ttl(h) 7h)€
= (T, (h) = Ty, (h)) e = p > 0.
If h € H and £ € R, there exists, by (T2), t € R with T;(h) = h + £e. Hence, by

(1.10),
o(h,t) = (Tt(h) — h) e=E&.

b) ¢ in (ii) is uniquely determined: if also o (h,t') were equal to & with, say ¢ < ¢/,
then, by (i),
E=o(ht)<o(ht)=¢
If x € X, the elements h € H and 7 € R satisfying
x=h+o(h,T)e

are uniquely determined because h = T and ¢ (h,7) = x¢ has exactly one solution
7. Hence T; from (1.12) defines a mapping from X into X. Observe Tiis = T; T
from (1.12), and hence T;T_; = Ty. But, by (1.12), Ty = id. This implies that T}
is bijective.— In order to prove (T2), we consider z,y € R with y = x4 e, £ € R.
Put h :=Z, and determine, by (ii), the reals 7,¢ by means of

o(h,7) =0 and o (h,7 +1t) = & + zo.

Then
Ty(z) =Ty (h+o(h,T)e) =h+o(h,T+t)e=y.

Finally, we must prove (T3). Put again
z=h+o(h,7)e.
For ¢t > 0, we obtain

Ti(z) —x = (g(h,T—&—t)—g(h,T))eeRzoa
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in view of (i).

The kernel of this translation group is, by (1.10), (1.12), ¢ (h,0) = 0, i.e.
h = h+9(h70)ea
[,Tt(h)_h]ezg(hvt)' U

Remark. If T is an arbitrary translation group with kernel p, then, of course,
(1.12) holds true, since, by (T3), (1.10),

T.(h)=h+o(h,7)e, Tryt(h) =h+o(h,7+1t)e,
and since Ty1+(h) = TyT,(h).

1.8 Separable translation groups

The translation group T of X, in the direction of e, is called separable if, and only
if, there exist functions

o:R—-Randvy: H=et >R

such that o (h,t) = ¢ (t) - ¥ (h) holds true for all (h,t) € H x R, where o (h,t)
denotes the kernel of T'.

If there existed hg € H with ¢ (hg) = 0, then g (hg,0) = o(ho, 1), contra-
dicting (i). We put

<

(h)

¥ (0)

Again, g (h,t) = p1(t)-91(h), and we will show ¢ (h) > 0 for all h € H, moreover,
that ¢; is an increasing bijection of R with ¢;(0) = 0. Since, by (i), (ii), 0(0,t) is
an increasing bijection of R with ¢ (0,¢) = ¢1(¢t) ¥1(0) = ¢1(t), so must be ().
If there existed hy € H with ¢ (h1) < 0, then, by (i),

0 =0 (h1,0) < p1(h1,1) = p1(1) Y1 (h1) <O,

in view of 0 = ¢1(0) < ¢1(1), a contradiction.

©1(t) =@ (t) - ¥ (0) and ¥y (h) =

So we may assume, without loss of generality, that the kernel of a separable
translation group can be written in the form

o(ht) =@ (t) -1 (h)

with ¢ : H — Rso := R>\{0}, ¢ (0) = 1, and such that ¢ is an increasing
bijection of R satisfying ¢ (0) = 0.

Of course, the translation groups with kernels ¢, sinh ¢-1/1 + h2, respectively,
are separable. Separable is also the group with kernel

(sinh#**~1) - (1 + A?)
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for n € {1,2,3,...}, and non-separable the group, for instance, with kernel

sinh (12071 21°)
for n € {1,2,3,...}. Theorem 5 immediately shows that all these functions are
indeed kernels of suitable translation groups.

The following theorem characterizes separability geometrically.

Theorem 6. Suppose that T is a translation group of X in the direction of e. The
group T is separable if, and only if,
[Ta(h) =Rl _ [T (0)]]
[T5(h) =Rl [T(0)]]

(1.13)

holds true for all h € H and «, 8 € R\{0}.

Proof. Since there is exactly one ¢ € R with T3(h) = h, namely ¢t = 0, we know
Ts(h) # h and Ts(0) # 0. Hence (1.13) is well-defined. From (i) (Theorem 5) and

Ti(h) =h+o(h,t)e, (1.14)

we obtain sgn ¢ (h,t) = sgn ¢ for ¢t # 0. Assume now (1.13). Hence, by ||T;(h) —
h’” =sgnt- Q(h7t)7

o(ha) _o(0.0)
o(h,B)  0(0,8)
for all h € H and «, 8 € R\{0}, and thus

o(h,1)
0 h7t =0 Oat :
(h-1) = 2(0.7) 0(0,1)
for a =t #0, 8 = 1. Of course, this formula also holds true for ¢ = 0. Define
_o(h1)

Hence o (h,t) = ¢ (t) - ¥ (h), and thus T is separable. If, on the other hand, T
is separable, we have to prove (1.13). As we already mentioned, we may assume,
without loss of generality,

o(ht) =@ (t) -4 (h)
with ¢ : H = Rsq, ¢ (0) = 1. By (1.14),
ITe(h) = bl = e (0)] - ¢ (h),
i.e. (1.13) holds true. 0
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Remark. In view of (1.14), ¢ (h,a) - 0(0,5) = o (h,B) - 0(0, ) is equivalent with
To(h) - Tﬁ(o) = Tﬂ(h) T4 (0),

by noticing h € et. Hence (1.13) can be replaced by this latter equation which, of
course, also holds true in the case a8 = 0. Moreover, by (1.14), formula (1.13) is
equivalent with

To(hy) - Tg(ha) = Ta(h2) - T(h1)

(for all a, 8 € R and all hy,hy € H) as well, and also with
To(h) - T1(0) = To(0) - T1(h)

for all @ € R and h € H. To all these equations there correspond formulas like

(1.13), for instance
[T (h1) = hall _ [ Ta(hs) = hall

1T (h1) = hall | T5(h2) — he
for all real o, 8 with 8 # 0 and all hy, he € H.

1.9 Geometry of a group of permutations

Let S # 0 be a set and let G be a subgroup of Perm S. The structure (5, G) will
be called a geometry. Suppose that N # ) is a set and

p:GXxN—N
an action of G on N, i.e. a mapping satisfying
0) ¢(fg,l) = (f0(g,D),
(ii) @ (1) =1

for all f,g € G and I € N where j denotes the neutral element of G. We then
call (N, ) an invariant notion of the geometry (S, @). Instead of ¢ (f,1) we often
shall write f (1). Hence (i), (ii) are given by

fg ()= (o)) = (9 (1)
and j (1) =1
Let (N, ) be an invariant notion of (S, G) and let W be a set. A function

h:N—>W

is called an invariant of the geometry (S, G) provided

h(f (1) =n(D)
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holds true for all f € G and all [ € N.

Geometries (S,G) and (5’,G’) are called isomorphic if, and only if, there
exist bijections
c:S—= 8 and7:G— G

such that the following equations hold true:

7(9192) = 7(91) 7 (92), o (9(s)) =7 (9)(0(s)) (1.15)

for all s € S and ¢1, 92,9 € G. The mapping 7 is hence an isomorphism between
the groups G, G". If (S, G), (S’,G") are isomorphic, we shall write

(S,G) = (9,G").

The relation 2 is reflexive, symmetric and transitive on every set of geometries
(S, G). The isomorphism of geometries (S, G), (S’, G') was already playing an im-
portant role in geometry by the 19th century. At that time geometers spoke of
so-called Ubertragungsprinzipe which means that two geometries, based on differ-
ent terminologies, could turn out to coincide from a structural point of view, by
just following a vocabulary which associates to the objects of one geometry the
objects of the other geometry. We would like to present an example, connecting

the so-called Cayley—Klein-model of proper 1-dimensional hyperbolic
geometry, (S, G),

with

the so-called Poincaré-model of proper 1-dimensional hyperbolic geom-
etry, (S, G").

Define
S = |-1L+1[:={reR|-1<r<+1},
S = ]0,c0[:={reR|r >0},
G = {pp:S—=85|pesS}, wp(m)zfpipl,
G = {¢g: 5 = 8" |qe S} dyla) = qx,
and put

1+s
0(8): l_SvT(@P):wo(p)

for s € S and ¢, € G.
It is easy to verify that every ¢,, p € S, is a bijection of S, that

Pp1 " Pp2 = Ppi*p2 with p; *xps = Pp1 (pQ)

holds true, that o : S — S’ is a bijection and 7 : G — G’ an isomorphism satisfying

7 (#p(s)) = 7 (pp) (0 (5))
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for all s € S and @p,, @p,,0p € G. We thus established isomorphism (or an
Ubertragungsprinzip) between the geometries (S, G) and (S’,G’). (For more in-
formation about the hyperbolic line in connection with the present definitions see
W. Benz [3], sections 2.1 to 2.5).

Isomorphic geometries (S,G) and (S’,G’) have, up to notation, the same
invariant notions and the same invariants. Let (N, ) be an invariant notion of
(S,G), let N’ be a set and

v:N— N

a bijection (for instance N’ = N and v = id). We then define an invariant notion
(N, ¢") of (§',G"). Put ¢ : G’ x N' = N’ with

¢ (r(g9), v(1)) = v (e(g:1))

for g € G and | € N where 7 : G — G’ is a bijection satisfying (1.15). Obviously,

¢ (r (), v) =v(e(,)=v)

since ¢ (j,1) =1 (see (ii)). Moreover, we must prove

L= (7(£)m(9), v (D) = ¢ (v (f), ¢l (9), v(D)]) = R,
ie. (i) for ¢’ : G’ x N/ — N'. Notice

L </>(T(fg),v(l)) v (¢ (fg, ))—V(w(f,w(g,l)))
=& (T (N, v[e(g,0)) = ¢' (7 (). ¢l7 (9). v ()]) = R.

Now let
h:N—>W

be an invariant of (S, G) based on the invariant notion (N, ¢) of (S, G). We then
would like to define an invariant

N =W
of (S8, G"). (It also could be useful here to work with a set W’ and a bijection u :
W — W) Put K'(I') := h (v=1(')) for all I’ € N’, by observing that v : N — N’
is a bijection. Then
h’(so’(T (9); V(l))) =N (1/ (¢ (gvl)))
=h(e(g,0)=h()=n(v().

B’ is hence an invariant of (S’, G’). If we rewrite the definition of ¢’, namely

@' (T (9), v(1)) = v (¢ (g,1)),
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by using the abbreviations
and

we get
(9w (1) =v(g(D)

for all [ € N and g € G. In the case that N is a set of subsets of S, or that it
otherwise is based on S, the mapping v might be taken equal to ¢ in view of (1.15),
in order to construct the corresponding invariant notion of (N, ¢) for (S, G’) in
terms of this latter geometry. Principally, however, the corresponding invariant
notion of (N, ) for (S’,G') might be based on (N, ¢’) (N’ := N, v :=id) with

' (1(9), 1) = ¢ (g,1),

according to the proof above. (For more information in this connection compare
W. Benz [3], chapter 1.)

In this context it might be interesting to look again at our previous example
of two isomorphic geometries in connection with proper 1-dimensional hyperbolic
geometry,

(5,G) = (5, G).

We are interested in a special invariant notion and in a special invariant. Define
N:=8xS5,
and the action from G x N into N by
9(z,y) = (9(2), 9(y))
for all g € G and x,y € S. Define, moreover,
W:={reR|r>0}

and h: N - W by
A-2)(1+y)

Mew) = Ty

for all (z,y) € N. Obviously,

h(z,y)=h(g(x), 9())

for all g € G and (z,y) € N, so that h is an invariant of (S, G). With respect to
(8',G") define N':= 5" x S’ and v: N — N’ by

v(w,y) = (0(2), 0 (y) =0 (zy)
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for all (x,y) € N. Because of the general formula

(v (1) = h(l),

we hence define in our present situation

W (o (z), o (y)) :=h(z,y),

- R (v,w)=nh (071(1}), afl(w)) = %

for all v,w € S'. Clearly, I/ (14(v), ¥g(w)) = I/ (v, w) for all ¢,v,w € 5’

1.10 Euclidean, hyperbolic geometry

Suppose that X is a real inner product space containing two linearly independent
elements. Take a fixed element e of X with e? = 1, and a translation group T of
X with axis e. Let G (T,0 (X)) be the group generated by T and O (X), i.e. the
subgroup of Perm X consisting of all finite products of elements of TUO (X). We
obtain a geometry

(x.¢(1,0(x))). (1.16)

For T with Ti(x) =z +te, t € R, (1.16) is called euclidean geometry over the real
inner product space X, and for T' with kernel (1.11),

o(h,t) =sinht-+/1+ h?,

(1.16) is called hyperbolic geometry over X.
Define N := X x X and ¢ (f,1) for f € G(T,0(X)) and | = (z,y) € N by

o (f (@) = (f (@), ).
Hence (N, ¢) is an invariant notion of (X, G). Define
d: N —Rxg (1.17)

by d(z,y) = |Jx — y|| in the case of euclidean geometry, and by

coshd (z,y) =V1+22\/1+y?—ay (1.18)

for hyperbolic geometry, and we obtain important invariants of these geometries,
namely their distance functions. Observe that the right-hand side of (1.18) is > 1.
This is trivial for 2y < 0, and follows otherwise from (zy)? < z2y? and (z—y)? > 0,
i.e. from (1+ 22)(1+ y?) > (1 + xy)?. In the case of hyperbolic geometry and for

x=:h1+o(h1,m1)eand y=: hy+ o (he,m)e
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with hy, he € H we get, by (1.11),

V1+a22y/1+y?—ay=cosh(r1 — 72) - /(1 + h3)(1 + h3) — hiha,
ie for o’ :=Ty(x) =hi +o(h1, 71 +t)e, v :=Ti(y) = ho + 0 (ho, 72 + t) we get
VI+22\/1+y2 -2y
= COSh((Tl +t)*(7’2+t)) \/(1+h%)(1+h%)7h1h2

Hence, by (1.18), (1.17), d(z,y) = d(Tw(z), Ty(y)) for all ¢ € R. That also
d(z,y) = d(w(z),w(y)) holds true for w € O (X), follows from w (p)w (q) = pq
for all p,q € X.

Instead of d (z,y) we mostly will write eucl (z,y), hyp (z,y), respectively, in
the euclidean, hyperbolic case, and instead of the elements of X we also will speak
of the points of X.

1.11 A common characterization

Let X be a real inner product space containing two linearly independent elements,
and let e be a fixed element of X with e? = 1. The following result will be proved
in this section (W. Benz [13]).

Theorem 7. Let T be a separable translation group of X with axis e, and suppose
that d : X x X — Rx is not identically 0 and satisfies

(i) d(@,y) =d(w(@),w(y).
(it) d(z,y) = d (Ti(x), T1(y)),
(iii) d(Be,0) =d(0,8e) = d(0,ae) + d(ae, Be)
forallz,ye X, we O(X),t,a,p € R with0 < a < . Then, up to isomorphism,
(x.¢(1,0(x)))

is the euclidean or the hyperbolic geometry over X. Moreover, there exist positive
reals k,l and & such that

k

hold true for all x,y € X, h € e+, t € R, or

o(h,t) = sin\};(%lt) V14+06h?, d(z,y) = ? hyp (x\/g,y\/g)

forallz,y e X, heet, teR.
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Remark. Instead of (i) and (ii) it is possible to write

d (w(2),w (y)) = d(Ti(z), To(y)),
since (i) follows here from ¢ = 0 and (ii) from w = id.
Theorem 7 will be proved in several steps.
A. Ifpisin X, there exists v € O (X) with v (p) = ||p|| - e.

Proof. This is trivial in the case p = —||p|| e by just applying v () = —z. Otherwise
put
b:=p+|lplleand [|b]-a:=b

and, moreover, v (z) := —z + 2(za)a. Now observe that « is an involution, i.e.
that it satisfies v2 = id # ~. Hence 7 is bijective and, obviously, it satisfies
xy = v(x)v(y) for all z,y € X by noticing that v (p) = ||p|le follows from
2(pa)a = p + [lplle. 3

B. Let d be a function as described in Theorem 7. Then there exists f : K — Rxg
with
K = {(£,&,6) € R® | &,6 € Ryg and &5 < 616}
such that
d(z,y) = f(2*,y% zy) (1.19)
holds true for all x,y € X.

Proof. Take j € X with j2 = 1 and ej = 0. If (£1,&2,&3) is in K and & = 0, put
z0 := 0, yo := e+/& and

f(§1a€27§3) = d($07y0). (120)

Observe here &5 = 0, since &3 < &1&s. For (£1,62,&3) € K and & > 0 define again
f by (1.20), but now with

T = e/& and yo\/f»l:: eés +jm~

The function f : K — Rx¢ is hence determined for all elements of K, and we
finally must prove (1.19). So let z,y be elements of X and put

& =22 & =07, &=y (1.21)

Because of the inequality of Cauchy—Schwarz, (£1,&2,£3) must be in K. If we are
able to prove that there exists w € O (X) with

w(zg) =z and w (yo) = vy, (1.22)
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where zg, yo are the already defined elements with respect to (&1,&2,£3), then

d(xay) =d (W (.’I}Q)7UJ (yo)) = d(mano) = f (51762763) = f (x27y2733y>7
and hence (1.19) holds true. In order to find w € O (X) with (1.22), observe, by
(1.21),

xQ = {,C%, y2 = y37 Y = To¥Yo- (123)

If z = 0, take, by step A, v € O (X) with v (y) = ||y|le = /& e. Hence

v Hzo) =771 (0) =0 =z and v (yo) = v (e/E2) = v,

ie. w = 77! solves (1.22). So assume x # 0 and take v € O (X) with 7 (z) =
lz]| - e = e - /& = xg. As soon as we have found 7 € O (X) with 7 (x¢) = ¢ and
7 (yo) = 7 (y), we also have solved (1.22) for x # 0, namely by w = v~ 7. Put
z := v (y) and observe, by (1.21),

=12 b=1"=(1) =2% &=ay=7(@)7(y) = zoz. (1.24)

In the case z = yg, take 7 = id. If y9 = 0, we obtain, by (1.23), y = 0. Also here
put 7 =id. So we may assume

z# Yo # 0.

Observe X = st @ Rs for s := z — yg. If v € X, there exist uniquely determined
a € R and m € st satisfying
v =m+ as.

Define 7 (v) := m — as. Hence 7 € O (X). It remains to show 7 (z9) = zo and
7 (yo) = z. Observe xgz = &3 from (1.24), and zoyo = &3, by (1.23), (1.21). Hence
295 = 0, i.e. 29 € s*, and thus 7 (x¢) = x. From s = z — yy we obtain

_ 2ty s
Yo = B 5
Since (2 +yo) s = 22 —y2 = 22 —y?> = 0, by (1.23), (1.24), we get
Z+ Yo S
= ~ =z g
7 (¥o) 5 T =7

From now on we will work with the expression (1.19) for our distance function
d. Since T is a separable translation group, we may assume

o(ht) =@ (t) - (h)

with ¢ : H — Rsq, ¢ (0) = 1, H := e, and such that ¢ is an increasing bijection
of R with ¢ (0) = 0.

C. There exists a real constant k > 0 with
for all € > 0.
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Proof. Given reals 0 < a < f, we get 0 = ¢ (0) < ¢ (a) < ¢ (8). Hence (iii) of
Theorem 7 yields, with ¢ () instead of S and ¢ («) instead of a,

d(0,0(B)e) =d(0,0(a)e) +d(p(a)e, p(B)e). (1.25)
Since, by (1.12),
T_o(0+¢(B)¢(0)e) =0+p(8—a)y(0)e,
ie. T_o(p (B)e) = ¢ (B — @) e, we obtain by (ii),
d(e(@)e, p(B)e) =d (T alp(a)e), Talp(B)e)) =d (0,9 (8- a)e).
Hence, in view of (1.19), (1.25),

F(0,0%(8),0) = £ (0,¢%(a),0) + f (0,°(8 — @),0),

which implies, for £, € R>g with o :=§&, B:= & +n,

F(0,0%(€+n),0) = £(0,0%(€),0) + f (0,¢°(1),0). (1.26)
This proves C (see the following Remark). O

Remark. Define g (§) := f (0,@2(5),0) for £ > 0 and observe g : R>g — Ry,
since d : X x X — R, i.e. since d (0,4 (£)e) > 0. Because of (1.26), we get

g(E+n) =9g(&)+g((n) for all £,n € R>q. Putting £ = n = 0 we obtain g (0) = 0.
Define k := g (1). Hence k > 0. Equation (1.26) can be extended to

n

g&+-+8&) = 9(&)

=1

for every positive integer n by induction. Hence

k:g(l):g<i+-~-+i>=n-g (;)

ie g (n) = % for every positive integer n. Thus

()= (e D) = ()2

for m € {1,2,3,...}. This leads to g (r) = kr for every rational number r > 0.
Suppose that 0 < & < 7. Then n — £ > 0 and hence g (n — &) > 0. This implies
9 (&) < g(n) because

9@ +gm—8 =g
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Now let ¢ > 0 be a real number and let r1,79,73,... and s1, S2, S3, ... be sequences
of rational and non-negative numbers satisfying

limr; = ¢ =lims;
and r; < ( <s; foralli=1,2,3,.... Hence

kri=g(ri) <g(¢) <g(s:) =ks;

and thus ¢ (¢) = limkr; = k(. The equation g(§ + 1) = g(&§) + g(n) is called
a Cauchy equation in the theory of functional equations. For the other Cauchy
equations see J. Aczél [1].

D. a) To the elements © # y of X there exist wy,ws € O (X) and \,t € R with
A >0 and
w1 Tiwa(z) = 0, w1 Tywa(y) = Ae.
b) The constant k of statement C' is positive.
c)d(z,y)=d(y,z) for all z,y € X.
d) If z,y € X, then d(x,y) = 0 if, and only if, x = y.
Proof. a) Because of A there exists we € O (X) with wa(z) = ||z||e. Since ||z||e —
0 € Re, (T2) implies the existence of ¢ € R with T;(||z|le) = 0. Finally take
w1 € O (X) with wi(2) = e, A := ||z|| > 0, where z := Tyws(y). Hence g (z) =0
and g (y) = e with g := w1 Tiws. Since x # y, we obtain A > 0. This proves a).
b) The distance function d is assumed to be not identically 0. There hence exist
p,q € X with d(p,q) > 0. If p = ¢, take, in view of a), wiTyws =: g with g (p) = 0.
This implies, by (i), (ii),
0<d(p,p)=d(g(p),g(p)) =d(0,0).
But (iii) yields d(0,0) = 0 for « = 8 = 0. So p = ¢ is impossible. For p # ¢ take,
in view of a), g = w1 Tyws with g (p) =0, g(q) = Ae, A > 0. Hence 0 < d (p,q) =
d (0, Ae). If £ € R satisfies ¢ (§) = A > 0, then & > 0, because £ < 0 would imply
v (&) < (0) =0. Hence
0<d(0,xe) = f(0,X%,0) = f(0,¢%(£),0) =k,
and thus k& > 0.

¢) For x # y take g = w1Tiwe, in view of a), with g (z) =0, g(y) = Xe, A > 0.
Hence, by (iii),
d(z,y) = d (0, e) = d(Xe,0) = d (y, ).

d) If  # y, we may work again with a mapping g getting
d(z,y) =d(0,Xe) >0,
by A > 0. On the other hand, by (iii) with « = 8 =0,
d(z,xz) =d(0,0) =0. O
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E.a) p(—t) = —p(t) for allt € R.
b) ¢ (d((),:v > = ||z|| for allxz € X.

Proof. a) Assume t < 0 and define ¢ (1) := —p (¢). Hence 7 > 0. Observe, by D.c,
a0, (~t)¢) = d (T(0), Ty(p (~t)€) ) = d (¢ (1) ,0) = d (0,0 (1) ).
ie. f(0,0%(=t),0) = f(0,9%(t),0) = f(0,4%(7),0). Hence, from C we get k -

(=t) = k1, i.e. 7 = —t in view of D.b. This proves E.a for t < 0. Thus ¢ (—t) =
—p (t) for all reals ¢.

b) By C and D.b we obtain

@ <W> =p(§)

for all £ > 0, and hence ¢ (% £(0,%2, O)) =t for all ¢ > 0. Applying this formula
for t := ||z||, = € X, we obtain, by (1.19), statement E.b. O

Let x,y be elements of X with x # 0. Observe (zy)? < 2232, i.e. A > 0 where
2= 2?y? — ()2
Let j € H be given with j2 = 1, and define n € R by

Vo— o) - (VAJ). (1.27)

Bl
Of course, n seems to depend on the chosen j. Put

[z] =: ¢ (£), (1.28)

i.e. we obtain £ > 0 and also T_¢(||z|le) = 0. Obviously, by (1.27), (1.28), (1.19),
we obtain

d(z,y) = f (@ 9% 2y) = d (o (€) e, VAj+ o)y (VX)) e),
i.e. transforming the elements of X of the right-hand side by 7_¢,
d(z,y) =d(0,VXj+en—&v(VAj)e).

Hence, by E.b,

¢ (H52) =t - 9wV (1.29)
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If we repeat the same calculation for a j’ € H satisfying (j’)? = 1, we get instead
of (1.29)

¢’ (d(o;,y)> =X+ (' = VP (VAS) (1.30)
by observing
% _ 90(77,) ab (\/X]/) (1.31)

instead of (1.27). We apply (1.29) and (1.30) for zy = 0. Noticing that (1.27),
(1.31) lead to n = 0 = 7/, we obtain, in view of A = y? and ¢?(0 — &) = 22 from

E.a,
i) = 2 (#* (S52) ) = vl

So we get ¥?(aj) = ¥?(aj’) for all real o > 0 and all j, ' € H with j2 =1 = j/2.
Since ¢ (h) > 0 for h € H we obtain

¥ (h) =9 () (1.32)
for all h,h' € H with h? = (h/)%. Hence 7 in (1.27) does not depend on the chosen
7.

F. a) There exists a constant § > 0 such that for all h € H,

P (h) =1+ 0h2.

b) For all z,y € X with x # 0,
902 <d($7y)

: ) A+ €)- (146N
holds true, where ||x|| =: ¢ (&), A\x? := 2%y? — (vy)? and

zy =:p (&) ¢ (MV1+IA

Proof. Because of (1.32), formula (1.27) does not depend on the chosen j € H
satisfying j2 = 1, and thus 7 does not depend on this j. So we may define

Yo(n) == (VnJj)

for n > 0, where j € H is chosen arbitrarily with j2 = 1. Hence, by (1.29),

¢ (152) —at -0 w0 (1.33)

for all z,y € X with z # 0 and \2? = 2%y? — (2y)2.
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Take an arbitrary element h # 0 of H. We get d(e,h) = d(h,e) by D.c, i.e.
by (1.33),

W+ @ (= v(h?) =1+ 0*(n — &) vg(1) (1.34)

with 1 = ¢ (€), [|h]l = ¢ (&), 0= @) ¥§(h?),0 = @ (1) 1o(1), i.e. n = 0 and
n’ = 0. Thus, by (1.34), E.a,

h? + 95 (h%) =1+ h*yg(1),

e Y3(h?) = 1+ h2(v3(1) — 1). If ¥3(1) were < 1, then for sufficiently large
h?, 2(h?) would become negative. So we get with 2(h?) > 1 for all h € H,

bo(h?) = /1 + oh?
with 6 :=¢3(1) — 1 > 0, since ¢o(n) = 1 (y/7j) € R for n > 0. Hence
b () = o(h?) = /T 672,

This proves F.a, and F.b follows from (1.33). O
If h#0isin H and ¢t € R, then D.c and (ii) imply

Hence, by E.b, F.b,

= () = 2 (d(hw(twh)e,w(t) e)>

k
h2s02(t)>
(&) )’

WPt
G

where ¢ > 0 and 7 are given by
GO = (hre®v)e)’ =h2+ (1) v3(h),

h22(t)
(&)

+ @ n—¢) (1+5

)Y (h) = 0 ey 140

We thus get, by F.a,
R (%(€) = ¥2(1) = ¥*(n — €)(¥7(§) + 6h%¢% (1)), (1.35)
where £ > 0 and 7 satisfy
(&) = P+ )+ 6n?), (1.36)

C*(t)V1+6h2 = o)/ (&) + 5h2p>(t). (1.37)
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Take a fixed j € H with j2 = 1, and take an arbitrary real number p > 0. Put
h=./pnj. Then 0 # h € H. Defining { > 0 by

¢°(&) = n+¢*(H)(1+0p) (1.38)
(compare (1.36)), and 7 by (compare (1.37))
P2 (OVT+ 1= 0 (MV?(€) + 513 (D), (1.39)
we obtain from (1.35) and E.a,
o (06 = *(1) = ¢*(n — ) (¢* (&) + dup®(1))- (1.40)

G. Given arbitrary real numbers &€ > n > 0, there exist real numbers yu > 0 and t
such that (1.38) and (1.39) hold true.

Proof. £ > n > 0 implies ¢ (§) > ¢ (n) >0, i.e.

() (L+69%(m) > ©*(n) (1 + 69 (9)).

Therefore

1+ d0p2(§)

=% (&) — (&) e n) 1+ 60%(n)

> 0, (1.41)

i.e. p?(€) — p > 0. There hence exists t € R with

2
2 = £ & —H 1.42
Pt = H (1.42)
Obviously, (1.42) implies (1.38). From (1.41) we obtain
2 2
2 o2 _ a9 () —9°(§) 1.43
W20 n = )T e (1.43)
i.e. (1.39), if we square both sides of (1.39) by observing ¢ (1) > 0, and replacing
there p?(t) by (1.42). O

Because of G, (1.40) holds true for arbitrarily given & > n > 0, if we define
w by (1.41), and ¢?(t) by (1.42). Replacing these values in (1.40), we obtain with

o= ¢*(€) and B := ©*(n),

a— [ a—
- (a— 1+5u> =¢*(E—-n) <a+5u- 1+5u)’
ie. p2(1+0a) = @*(€ —n)(a+ 6 - 2ap — p?)), ie., by (1.43),

p? - (14 68) = ap®(€ —n),
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i.e., by (1.41),

(Val+om) VB +00) = —n). (1.44)

v (&) > ¢ (n) >0 implies a > B, i.e. a(1+68) > (1 + da). Hence, by (1.44) and
& > n >0, the functional equation

(=) =¢@V1+602(n) — e n)V1+00%(E) (1.45)
holds true for all £ > n > 0. Since ¢ (0) = 0, (1.45) also holds true for £ =n > 0.

Since § > 0 (see F.a), we will distinguish two cases, namely § = 0 and § > 0.
For § =0, (1.45) yields

pE=n)=¢E)—v)

for all £ > n > 0. Given arbitrarily t,s € R>g, put £ := ¢+ s and 7 := s. Hence
& >n >0 and thus

pt+s)=¢ )+ e(s).
Since ¢ (r) > 0 for r > 0, this implies (compare the Remark to C)
o(t) =1t (1.46)

for all t € R>o with a constant ! > 0, in view of ¢ (1) > ¢ (0) = 0. From F.a we
get ¥ (h) =1 for all h € H.

In the case § > 0 we will write f (t) := v/d ¢ () for t > 0. Hence, by (1.45),

fE&=n) = FOVI+ () = FnV1+ () (1.47)

(see Aczél-Dhombres [1], Z. Daréezy [2], M. Kuczma [2]) ) for all £ > n > 0. Since
 is an increasing bijection of R, satisfying E.a, f must be an increasing bijection
of R>¢. So define

f (&) =:sinhg (), £>0,
and g must be an increasing bijection of R>g as well. (1.47) implies
sinh g (§ —n) = sinh(g (§) — g (n))

for all £ > n > 0. Hence g (£ —n) = g (§) — g (n) and we obtain again
g(&) =1

for all £ > 0 with a constant [ > 0. Thus

o (t) = \% sinh (1) (1.48)

for all ¢ > 0. This implies, in view of E.a, that (1.48) holds true for all t € R with
a constant [ > 0. From F.a we get ¢ (h) = V1 + dh2.
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H. a) In the case 6 =0,
k
d(z,y) =7 llz -yl

holds true for all x,y € X and, moreover, g (h,t) = It.
b) For § > 0 we get

d(z,y) = ? hyp (:L‘\/g, y\/(§>

forallz,y € X and

coshhyp (p,q) = V1+p* V14> —pq,
hyp(p,q) > 0, for p,q € X. Moreover, o (h,t) = % sinh(lt) - V1 + 0h2.
Proof. H.a follows from E.b and F.b. Suppose now § > 0. From E.b and (1.48) we

get
S22 = sinh? (l a(0.2) ((])C’ :1:)) ,

i.e. 14 022 = cosh? (l . W). Hence

cosh (l . d(%x)> = cosh hyp (0,2 V/9),

and thus d (0,2) = % hyp (0,2V/5). From F.b and (1.48) we obtain for elements
x # 0 and y of X with \z? := 2%y? — (2y)?,

% sinh? <l~ d(a]c{;y)) =A+@%(n—€)- (140N (1.49)
with ||z]| = == smh(lf) and xy = ||z||¢ (n)v1+ dA. Hence

\/gcp (n — &) = sinh(ln — &) = sinh(In) - cosh(l&) — cosh(In) sinh(l§)

Vézy § (zy)? .
" vt V! el

Observing A\z? = 2%y? — (wy)? this implies

A+ @*(n—€)(1+6N)

L {(\/1 Foa2\/1+ 0y2 —5:cy)2 - 1]
—1 {(cosh hyp (2 /3, yx/S))2 . 1] .

Thus, by (1.49), we obtain H.b also for x # 0. O
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A surjective mapping f : X — X is called a motion of (X,G (T,O (X)))
provided
d(z,y) =d(f(z), f(y))
holds true for all x,y € X.
La)G(T,0(X)) ={aT;8] o, cO(X), t R}
b) In all cases 6 > 0, G (T,0(X)) is the group of motions of (X,G) where
G =G (T,0(X)).

Proof. a) If 7 is an element of G (T,0 (X)), take, by A, w € O (X) with w(p) =
Ip|l e where p := ~(0). In view of (T2), there exists s € R with

Ts(w (p)) = Ts(|lpll e) =
Hence A (0) =0 for A := Tswr.
Case § = 0. By H.a, (i), (ii), we obtain

e~y =d(.y) =A@, AW) =+ A - AGI|

Hence, by Proposition 3, A must be orthogonal. Since A is bijective, we get \ €
O (X) and v = w™1T_ A\
Case § > 0. By H.b, (i), (ii), we obtain with d (z,y) = d ()\ (), A (y))7

V14622 1+ 6y2 — Gy = /T+ 6X2(x) /1 + 0X2(y) — OA (2) A (v).

For y = 0 we get 22 = [\ (x)]? with A (0) = 0. This and the previous equation then
imply zy = A () A (y) for all x,y € X. Hence

2

(x—y)? =a*—2zy+y?

= N2(x) = 2\ (2) A (y) + X2 (1) = (A (&) = A (1)),

and thus, as in Case § =0, A € O (X).

b) In view of (i), (ii), obviously, G (T, 0 (X)) consists only of motions. Suppose
that v is an arbitrary motion. It is now possible to follow, mutatis mutandis, the
proof of L.a. So having A := Tswy with A (0) = 0 as in a), we obtain for § = 0 by
H.a and the fact that A is a motion,

lz =yl = 1A () = A ),

and for § > 0, zy = A (z) A (y) for all z,y € X, by H.b and by applying that A is
a motion. g
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J. a) Let T be the translation group with azis e and kernel o (h,t) =t and, more-
over, T' the group with azis e and kernel o (h,t) =1t, | > 0. Then

(X,G(T,O(X))) o (X,G(T',O(X))).

b) Also here the underlying axis is supposed to be e. Let now T, T be the group

with kernel
sinh ¢ - m, % sinh(lt) - \/1—&-W7
respectively, with § > 0 and | > 0. Then
(X,G(T,O(X))) =~ (X,G(T’,O(X))).
Proof. a) The distance functions of the two geometries are, by H.a,
encl () = |z — i and d (2,9) = ¥ o — .

Define o (z) := £ -« for z € X. Hence
d(o(z), o (y)) = eucl (z,y) (1.50)
holds true for all z,y € X. In view of I, the groups G, G’ of motions of our two
geometries are G (T,O (X)), G (T’,O (X)), respectively. If g € G, then 7 (g) :=
ogo~!is in G’ since (1.50) and
eucl (z,y) = eucl (g (x), 9 (y))
imply, by 2’ := 0 (2) for z € X,
d(r(a"), 7(y)) =d(og(x), a9(y)) =eucl (g(z), g(y))
= eucl (z,y) = d(z,y)
for all 2’,y' € X. Also v € G’ implies 0~ 'yo € G. Hence 7 : G — G’ is an
isomorphism satisfying
o (g(z) =7(9)0(2)

for all z € X and g € G.

b) The proof of b) is, mutatis mutandis, the same as that one of a). The distance
functions of the two geometries are, by H.b,

hyp (,y) and d (z,y) = % hyp (23, yvs).

Define o (x) = % for z € X and let G, G be the groups of motions of the two
geometries in question. Observe again I. If ¢ € G, then 7(g) = ogo~! is in G’
since

d (ar (:E)O’(y)) = %hyp (z,v)
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and
hyp (z,y) = hyp (g (), g (1))
imply, by 2’ := 0 (2) for z € X,

d(r (@), 7(y)) = d(og(x),09(y)) =%hyp (9(z), 9(v))
=% hyp (z,y) =d(«',y)

for all 2’,y" € X. Also v € G’ implies 0~ 'yo € G. Hence 7 : G — G’ is an
isomorphism satisfying
o (g(z)) =7(g9)0(2)
for all z € X and g € G. g
This finishes the proof of Theorem 7.

1.12 Other directions, a counterexample

Proposition 8. Let T be a translation group of X with azis e, e = 1, and ker-
nel o (h,t) for allt € R and h € e*. If w € O (X), then

{wTw™ | t e R}
is a translation group with azis w (e) and kernel
o(l.t) =0 (w™'(H),1)
for allt e R and b’ € [w(e)]* = w(et).

Proof. t — wTyw™!, t € R, defines a translation group of X with axis w (e). This
is shown as soon as (T1), (T2), (T3) are verified for w (e) instead of e. Of course,

w,Tt+sW71 = WTtwil 'WTswila
ie. (T1), holds true. If z — y € R>ow (e), we get
=N +mwe), y="h+7uwe)

with 71,72 € R and ' € [w(e)]t = w(et). Define 7 by 71 = o(h,7) where
h :=w~!(h'), and hence h € et. The equation

y = wlhw (z)

implies 1’ +yow (€) = wTy (h+o (h,7)€) = h'+ o (h,7+t)w (€). Since t is uniquely
determined by vo = o (h, 7 +t), (T2) holds true. Moreover, by ¢ > 0 and with the
notations before,

whw ™ (W + o (h,T)w(e)) — (W + o(h, T)w(e))
= le(h7+1) —o(h)]w(e) € Rxow (e),
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in view of (i) of Theorem 5. This proves (T3). The kernel of {wTiw™! | t € R} is
given by

oW t) = [whiw Y(R)] we)
= w(h+g(hat)6)’w(e):Q(h’t)a
in view of (1.10), for all &’ € [w (e)]* and ¢ € R. O

Proposition 9. Let T, T? be translation groups of X such that e; with e = 1 is
the axis and

o(h;,t) =sinht-\/1+h? fort €eR, h; € ei,

the kernel of T%, i = 1,2. If w € O (X) satisfies w(e1) = ez (such an w ewists
because of step A of the proof of Theorem 7), then

2 _ ol 1
T =wliw

for allt € R.

Proof. We know from Proposition 8 that {wT}!w™! | t € R} is a translation group
in the direction of w (e1) = ea with kernel

o(R,t) =sinht-/1+ w1 (W)]?2 =sinht-/1+ ()2,

in view of A’ - ' = wY(h') - w I (R'), for t € R and B’ € es. Since T? and
{wT}w™! | t € R} have the same axis and the same kernel, they must coincide
(compare (1.12) and the Remark to Theorem 5). O

The arbitrary motion oT:8 (see step I of the proof of Theorem 7) can be
written as

olya ™ty =~-87'T,8

with v := a8 € O (X), where aT;a™!, 37T, 3 are translations in the direction of
a(e), B~ 1(e), respectively.

Let (X, G) be a geometry (1.16) as defined at the beginning of section 10. The
group G is generated by O (X) and a translation group T with axis e € X, e? = 1.
The stabilizer of G in a € X consists of all g € G satisfying g (a) = a.

Proposition 10. Suppose that G = O (X) - T - O (X). The stabilizer of G in 0 is
then O (X), and that one in a € X is isomorphic to O (X).

Proof. 1. Assume g (0) = 0 for ¢ € G. Since g is of the form arf with 7 € T
and o, 3 € O (X), we get 78(0) = a~1(0), i.e. 7(0) = 0, i.e. 7 = Tp = id. Hence
g=af €O (X).

2. If a € X, take w € O(X) with w(a) = |la]| - e (see step A of the proof of
Theorem 7), and, by (T 2), Ty with 7 (a) = 0, 7 := Tyw. The stabilizer of G in a
is then given by 7710 (X) 7, the T-conjugate of the stabilizer of G in 0. O
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Because of I of the proof of Theorem 7, Proposition 10 applies to euclidean
as well as to hyperbolic geometry.

We now will present an example of a geometry (1.16) where T is even sepa-
rable, such that there exists g € G satisfying ¢ (0) = 0 and g ¢ O (X). Take the
R? (see section 3) and, by Theorem 5, the translation group T with axis e := (1,0)
and kernel

0((0,22),t) ==t (1+23)

with zo,t € R, ie. Ty(z1,22) = (Jcl +t[1+ 23], xg). Define

7T 71'
g::T_%-R(—§)-T_@'R <Z>'T1,

3

where R («) designates the rotation (in the positive sense) about 0 with angle «,
ie.

R (%) ($1,£L’2) = %(1’1_1’2,1'1 +$2)a
R (—%) (x1,22) = (w2, —21).
Hence g (0) =0 and ¢(1,0) = (%,0). Since

eucl (0, (1,0)) # eucl (g (0), g(1,0)),
g cannot be in O (X).

Proposition 11. Given again a geometry (1.16), (X, G). If the stabilizer of G in 0
is O (X), then to every g € G there exist o, f € O (X) and 7 € T with g = atf.

Proof. Put a := ¢g(0) and take o € O(X) and 7 € T with a(]ja]le) = a and
7(0) = ||a||e. Hence 771a~tg (0) = 0 and thus 8 := 7" la"1g € O (X). O



Chapter 2

Euclidean and Hyperbolic
Geometry

X designates again an arbitrary real inner product space containing two linearly
independent elements. As throughout the whole book, we do not exclude the case
that there exists an infinite and linearly independent subset of X.

A natural and satisfactory definition of hyperbolic geometry over X was
already given by Theorem 7 of chapter 1. If T is a separable translation group
of X, and d an appropriate distance function of X invariant under 7" and O (X),
then there are, up to isomorphism, exactly two geometries

(X, G (T,0 (X))).

These geometries are called euclidean, hyperbolic geometry over X. Their distance
functions are eucl (z,y), hyp (z,y), respectively.

2.1 Metric spaces

A set S # ) together with a mapping d : S x S — R is called a metric space (S, d)
provided
(i) d(z,y) =0 if, and only if, x =y,
(ii) d(z,y) =d(y,x),
(i) d(z,) < d(2,2) +d(2p)
hold true for all x,y,z € S.
Observe d (z,y) > 0 for all =,y € S, since (i), (ii), (iii) imply

0=d(z,2) <d(z,y) +d(y,z) = 2d(z,y).

W. Benz, Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces 37
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38 Chapter 2. Euclidean and Hyperbolic Geometry

(i) is called the aziom of coincidence, (ii) the symmetry aziom and (iii) the triangle
inequality.

Proposition 1. (X, eucl), (X, hyp) are metric spaces, called the euclidean, hyper-
bolic metric space, respectively, over X.

Proof. Axioms (i), (ii) hold true for both structures (X, eucl), (X, hyp), because
of D.c and D.d of step D of the proof of Theorem 7. The triangle inequality of
section 1.1 implies

Iz =2)+ (z =yl <z =z + ]z -yl

for x,y,z € X, i.e. eucl (z,y) < eucl (z,2)+ eucl (z,y). It remains to prove (iii)
for (X, hyp). We may assume x # z. Because of D.a and the invariance of hyp
under T" and O (X), it is sufficient to show (iii) for z = 0 and = = Ae with A > 0,
i.e. to prove

L :=hyp (Xe,y) < hyp (Xe,0) +hyp (0,y) =: R

or, equivalently, cosh L < cosh R. Obviously, this latter inequality can be written

as
VI+X2VT+52 = (e)y < VI+ A2+ 12+ VA2 /2.

So observe finally —(Xe) y < |(Ae) y| < /(Ae)? v/y? from the inequality of Cauchy—
Schwarz. ]

2.2 The lines of L.M. Blumenthal

Let (S, d) be a metric space and = : R — S a function satisfying

d (z (&), x(n)) = |& =] (2.1)

for all real &,n. Then {z (&) | £ € R} is called a (Blumenthal) line of (S,d) (L.M.
Blumenthal, K. Menger [1], p. 238). Observe that 2 : R — S must be injective in
view of the axiom of coincidence and (2.1).

Lemma 2. If ||z + y|| = ||z|| + |lyl| holds true for x,y € X, then x,y are linearly
dependent.

Proof. Squaring both sides, we obtain zy = ||z ||y|]|. Now apply Lemma 1 of
chapter 1. O

We would like to determine all solutions = : R — X of the functional equation
(2.1) in the case of (X eucl). Let  be a solution. If & < 8 < ~ are reals, then, by
(2.1),

le() —z(@)l=7—a, [x(v) —z@B)=7v—5, llz(B) —z ()| =B —a,
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i.e., by Lemma 2, z () — z (8), = (8) — = (o) must be linearly dependent. Put
pi=2(0), ¢:=x(1) —z(0).
Hence, by (2.1), |lq]| = 1. If 0 < 1 < &, we obtain
z(§)—z(l)=¢-(z(1) —2(0)) = og
for a suitable p € R. Thus £ — 1 = ||z (&) — x (1)|| = ||eq|| = |o|. Moreover,
§= 0=z (&) —pll =l (1) + eq —pll = 1 + ol

Hence o = £ — 1 and thus z (§) = z (1) + og = p + £q for £ > 1, a formula which
holds also true for £ = 1, £ = 0, but also in the cases 0 < £ < 1, £ <0< 1 as
similar arguments show. That, on the other hand,

z (&) :=p+&q [l =1,
solves (2.1), is obvious. Hence
{@=XNa+ | XeR}

with a,b € X and a # b are the euclidean lines of (X, eucl) by writing p :=
a,q-Ib—all :==b—a, &:= A b—al.

Theorem 3. The (hyperbolic) lines of (X, hyp) are given by all sets
{pcosh¢ + gsinh¢ | € € R},

where p,q are elements of X with pg =0 and ¢> = 1.
Proof. Let p,q be elements of X satisfying pg = 0 and ¢> = 1. Define z : R — X
by

z(§) =pcosh& + gsinh ¢ (2.2)

and observe hyp (z (£),z ()) = [ —n| for all £,y € R. Hence (2.2) is the equation
of a line of (X, hyp). Suppose now that  : R — X solves (2.1) in the case of
(X, hyp). Since z is injective, choose a real & with x (&) # 0 and put

0= z (&o)

" sinhty’

sinh g := ||-r (50)”

Define the translation group

Ti(h+sinh7-+/1+ h?e) = h+sinh(r +1¢) - V/1+ h2%e
for all h € e* and 7,t € R. Since

hyp (Ti(y), Ty(z)) = hyp (y,z) (2.3)
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holds true for all y, z € X,
£ =T (€) =Tty (z(E+ &)
must be a solution of (2.1) as well: by (2.3),
hyp (% (€), T(n)) =hyp (z (£ + &), z(n+ &) =€ =7l (2.4)
Notice Ty, (0) = z (&), i-e. Ty, (2 (£0)) = 0, i.e. T(0) = 0. By (2.4),

cosh( — 1) = \/1+72(6) \/1+72(n) —F (&) T ().
For n = 0 we get cosh& = /14 Z2(€). Thus 72(¢) = sinh® € and
Z (§) T (n) = cosh & coshn — cosh (€ — i) = sinh € sinh 7, (2.5)

Le. [Z(&)7 (n)]* =
1, chapter 1, T (£),
0, we obtain 7 (1)

sinh? ¢ sinh? y = 72(€) T2(n) for all real &, 7. Hence, by Lemma
T (n) must be linearly dependent. Since T is injective and 7 (0) =
#0.Put a-||7(1)]] :=7(1). Thus

T()=¢(&)-a (2.6)

with a suitable function ¢ : R — R satisfying ¢ (0) = 0, in view of the fact that
T (£), T (1) are linearly dependent. (2.5), (2.6) imply

© (&) ¢ (1) = sinh&sinh 1
for all real &, so especially 4,02(1) — ginh? 1, ie.
T inh
T () =sinh¢- s@(ll a

=p-coshé + q-sinh¢&

with p:=0, ¢ (1)q:=asinh1, i.e. pg = 0 and ¢®> = 1. Hence T (£) is of type (2.2),
and we finally must show that

z (&) =Ty, (T (£ — &) = Ty, (g sinh (€ — &)

is of type (2.2) as well. This turns out to be a consequence of the following
Lemma 4. g

Lemma 4. Let T be the translation group

T;(h+sinh7-v/1+4h?e) = h+sinh(r +¢t)- V1+h%e

with axis e, €2 =1, for allh € e+ and 7,t € R. If ¢ # 0 is in X and s in R, there
exist a,b € X with ab=0, b> =1 and

{acoshn + bsinhn | n € R} = {Ts(1q) | p € R}.
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Proof. There is nothing to prove for ¢ € Re or s = 0. So assume s # 0, and that
q, e are linearly independent. Hence ¢ # (ge) e. Because of

{Ts(uq) | p € RY = {Ts(p- Bq) | u € R}

for a fixed real § # 0, we may assume ||q¢ — (ge) e|]| = 1, without loss of generality.
Put
S :=sinhs, C :=coshs, j:=q— (qe)e o= qe,

and observe S #0,C > 1,2 =1,je=0,q= ae+j, ¢> = 1+ a?. Since (1.8),
(1.9) represent the same T}, we obtaln

Ty(nq) = pg + [pe (C = 1) + V1 + 2 S| e =: wre + 25
with 21 (1) = paC + /1 + p2(1 + a2) S and 22(p) = . We hence get
2?2 — 200z 15 + (0 — S%) 23 = 52
with the branch sgn (z7 — paC) = sgn S, and also

y?
f*ygzl, sgn y; = sgn S,

¢’k := S? > 0, by applying the orthogonal mapping w of the subspace ¥ of X,
spanned by e, 7, namely
oy1 = x1C — zaq,

0y = xia+z20,
= va? 4+ C?. In order to find the interesting branch sgn y; = sgn S of the

hyperbola
y% 2
k y2 = 1} 9

observe z1(p) — paC = /1 + p2(1 + «?) S, z2(p) = p, and hence
dy1 =210 — 290 = C (71 — 2200 + 22052
= (C\/1+ p2(1+a?) + za8) S

i.e. sgn y; = sgn S, if the coefficient of S is positive. But

{yle +y2j €3

0 < C%(1 4 23) + 220%(C? — 5?) = C*(1 + 23) + 23502,

Le. 23025% < C*(1+ 23(1+ a?)), ie.

—zoaS < |zaaS| < Cy/1+ 23(1 + a?).
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Obviously, ! := {Ts(uq) | p € R} C 3. Hence

w(l) = {sgn S-VEecoshn+ jsinhn | n € R},

ie.
I={sgn S-Vkw (e)coshn +w '(j)sinhn | n € R}
with
dwte) = Ce—aj,
SwTl(j) = ae+Cj.

So the line [ is given by
{acoshn + bsinhn | n € R}

with a := sgn S-Vk-w™!(e), b := w™(j). Notice ab = 0, in view of w™ ! (e)w ™ (j)
ej, and b = 1.

o

That images of lines under motions are lines follows immediately from the
definition of lines. In fact! If | = {z (¢) | £ € R} is a line and f : X — X a motion,
then, by (2.1),

d(f(@©) f =) =d (@) x(m) =gl

for all £&,7 € R. This holds true in euclidean as well as in hyperbolic geometry. In
both geometries also holds true the

Proposition 5. If a # b are elements of X, there is exactly one line | through a,b,
i.e. with 1> a,b.

Proof. From D.a (section 1.3) we know that there exists a motion f such that

f(a) = 0 and f(b) = Xe, A > 0,e a fixed element of X with e? = 1. In the
euclidean case there is exactly one line

{I-a)p+ag|acR},

p # q, through 0, Ae, namely {Be | § € R}. There hence is exactly one line, namely
f~1(Re) through a,b. In the hyperbolic case there is also exactly one line

{vcosh¢ +wsinh¢ | € € R}, vw =0, w? =1,

through 0, Ae, namely Re. This implies that f~!(Re) is the uniquely determined
line through a, b. O
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2.3 The lines of Karl Menger

Let (S, d) be a metric space. If a # b are elements of S, then
[a,b] :={xz € S|d(a,x)+d(z,b) =d(a,b)}

is called the interval (the Menger interval) [a,b] (Menger [1], [2]). Observe a,b €
[a, b] = [b, a]. Moreover,

l(a,b) :={z € S\{b} |a€[z,b}Ula,b]U{z € S\{a} | b€ [a,z]}
is called a (Menger) line of (S, d).
In the euclidean case (X, eucl), the interval [a,b] consists of all x € X with
la—o)+ @ =)l = lla = bl = la — 2 + & — bl (2.7)

Hence, by Lemma 2, the elements a — x and x — b are linearly dependent. If
x ¢ {a,b}, then z — b= A (a — x) with a suitable real A ¢ {0, —1}, i.e.

x—ia_kib—a_’_b_ia
14\ 1+X 14+ M

For A > 0 equation (2.7) holds true, but not for A €] — 1,0[ or A < —1. Hence
[a,;0] ={a+p(b—0a) |0 <p <1},

and [ (a,b) = {a+ p(b—a) | p € R}. In the case (X, eucl) the Menger lines are
thus exactly the previous lines. The same holds true for (X, hyp) as will be proved
in Theorem 6.

If a # b are elements of X and if
{pcosh& + gsinh & | £ € R}, (2.8)
pq =0, ¢> = 1, is the hyperbolic line through a, b, then
a = pcosh a + gsinh «,
b = pcoshf + ¢sinh g3

with uniquely determined reals «, 8. If 8 < a we will replace £ in (2.8) by ¢ = —¢
and ¢ by ¢’ = —¢q. So without loss of generality we may assume « < 3.

Theorem 6. Let x (£) = pcosh& 4 gsinh & be the equation of the line through a # b
with a =z (), b= (B8), « < B. Then

[a,0] ={z (§) |« <& < B} (2.9)
and I (a,b) ={z (&) | £ € R}.
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Proof. The right-hand side of (2.9) is a subset of [a, b]. This follows from o < £ < j

and
hyp (z(a), () = la—Bl=8-a,
hyp (z(a), 2 (§)) = £-a,
hyp (2 (), 2 (B)) = B¢
Let now z be an element of X with z € [a, ], i.e. with
B —a=hyp (z(a)z(B)) =hyp (z(a), z) +hyp (2,2 (B)).
Define € := a + hyp (:1: (), z) Obviously, £ — a > 0, and

B—¢&=hyp (z,2(8)) 20,
ie. a <& < B. Hence z (€) is an element of the right-hand side of (2.9). Observe

hyp (LU (@), Z) = {—a=hyp ({E (@), x(f)), (2.10)

hyp (z,2(8)) = B—&=hyp (z(£), z(B)). (2.11)

We take a motion f with f(a) = 0 and f(b) = Xe, A > 0. Since z (§) is on the
line through a, b and

hyp (a,b) = hyp (a,z (§)) +hyp (2 (€),b)
holds true, we obtain that f (m (5)) is on the line Re through 0 and Ae, and that

hyp (0.2¢) = byp (0. (2 (©)) +byp ( (2 (&), Ae),

i.e. that f (a) = esinhny, f(z(£)) = esinhny, f(b) = esinhnz with g3 = |n2] +
[ns — m2| and A = sinhns. Hence 0 = 1 < 19 < n3 and f(x (§)) =: pe with
0 < p < A If we take the images of z («), z,... in (2.10), (2.11), we get from
these equations with z := f (2),

V1i+z2 = 142,
VI+Z2V1I+ 22 —Z)e V14 p2 V1 + A2 = p),

i.e. 22 = p? and Ze = p. Thus (Ze)? = z%¢2, i.e. Z € Re, by Lemma 1, chapter 1,
i.e. Z = pe, by ze = p. Hence f (2) =z = f (z (€)), i.e. z =z (£) € [a, b).

We finally must show that the Menger lines of (X, hyp) are the hyperbolic
lines. If [ (a,b) is a Menger line, designate by g the hyperbolic line through a,b.
If z € X\{b} with a € [2,D], then the hyperbolic line through z,b must contain a
since, by (2.9), intervals are subsets of hyperbolic lines. Hence, by Proposition 5,
z € g. Moreover, z € X\{a} with b € [a, z] belongs also to g, i.e. I (a,b) C g. If
z (§) € g, we distinguish three cases £ <, a << B, <€ witha=z(«a), b=
z (B), a < B. In the first case we get

z(§) € X\{z (B)} with z (o) € [z (£), = ()],
in the last z (§) € X\{z (o)} with z (8) € [z (a), x (£)]. O

b
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2.4 Another definition of lines

We proposed the following definition of a line, W. Benz [1, 6]. Suppose that (S, d)
is a metric space and that ¢ € S and ¢ > 0 is in R. Then

B(c,0) :={x € S|d(c,z) =0}

is defined to be the ball with center ¢ and radius 9. Obviously, B (c¢,0) = {c}. If
a, b are distinct elements of .S, we will call

g(a,b):={z€S|B(a,d(a,z))NB(bd(bz)) ={z}}

a g-line. Notice a,b € g (a,b) = g (b, a).

Let S contain exactly three distinct elements a, b, ¢ and define
d(a,b) =3, d(a,c) =4, d(b,c) =5
and d(x,x2) =0, d(x,y) = d(y,x) for all z,y € S. Hence (S, d) is a metric space.
Of course, (S,d) does not contain a line in the sense of L.M. Blumenthal. The
Menger line [ (a, b) is given by
I(a,b) = {a, b},

and the g-line g (a,b) by {a,b, c}.

Define ¥ = (X, eucl) and ¥ = (X, d) with

e~y
d(z,y) = 2"
) = T e

for all z,y € X. The g-lines of the metric spaces X, ¥’ coincide. Every Menger line
of ¥/ contains exactly two distinct elements. There do not exist lines of ¥/ in the
sense of L.M. Blumenthal, because

[ (§) == ()]l
L[z (&) — = ()l

cannot be true for £ =1 and n = 0.

Theorem 7. Let X3 be one of the metric spaces (X, eucl), (X, hyp). Then l(a,b) =
g (a,b) for all a #b of X, where I (a,b) designates the Menger line through a,b.

=& —n| for all £,n e R,

Proof. If g (a,b), a # b, is a g-line, then x € X is in g (a, b) if, and only if,
Viex [d(a,z) = d(a,z)] and [d (b, z) = d (b, x)] imply z = x. (2.12)
As a consequence we get

f(g(avb)) :g(f(a)vf(b))v a#bv
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for every g-line g and motion f. In order to prove I (a,b) = g (a,b), it is hence
sufficient to prove I (0, Ae) = g (0, Ae) for A > 0, i.e. g (0, Ae) = {pe | p € R}.

a) Euclidean case. (2.12) has for a = 0 and b = Ae the form

V.ex 22 =22 and ez = ez imply z = . (2.13)
x = pe belongs to g (0, \e), because 22 = p? and ez = u imply (e2)? = €222, ie.,
by Lemma 1, chapter 1, z € Re, i.e. z = pe, by ez = p. If z € g (0, Ae) put

z:=—(z — (ze)e) + (ze)e, (2.14)
and observe z? = 22, ez = ex, i.e., by (2.13), 2 = . Hence, by (2.14), z = (ze)e €
Re.

b) Hyperbolic case. (2.12) has for a = 0 and b = Ae also the form (2.13). So also
here we get g (0, Ae) = Re. O

2.5 Balls, hyperplanes, subspaces

Proposition 8. Suppose that B (c, 0), B(c,0) are balls of (X, eucl) satisfying o >
0 and
B(c,0) € B(c,0).

Then c=c and o= ¢'.
Proof. ¢+ ﬁ € B (c, p) implies

(Ci;)x ZQLQ(QQ—QZ—(C—C')z)

for all elements x # 0 of X. If ¢ — ¢’ were # 0, the left-hand side of this equation
would be 0 for 0 # = L (¢—¢’) and # 0 for = ¢— ¢’ which is impossible, since the
right-hand side of the equation does not depend on z. (Notice that a L b stands
for ab=10.) Hence ¢ — ¢ = 0, and thus
2 2
OZQ/ _92_(0_61)229/ _‘92. O

Proposition 9. Let B (c, ), 0 > 0, be a ball of (X, hyp). Then

Blc,0) = {z € X | |lo — a| + & — b]| = 2a}
with a := ce™2, b := ce? and o := sinh p-v/1 + 2, where e denotes the exponential
function exp (t) fort € R.

Proof. Put S := sinh g, C := coshp and p := & — ¢C. Observe C + S = e? and
C—-S=e2
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a) Assume ||z —al| = 2a— ||z —b|| for a given © € X. Squaring this equation yields

S(A+c*) —ep=V1+c2|z—b|.

Observing x — b = p — Sc and squaring again, we get (cp)? = (p? — S?)(1 + 2).
This implies

ez + C| =1+ 1+ 22, (2.15)
since cx + C = cp+ C (1 + ?). If —cx — C were equal to v1 + ¢2 /1 + 22, then
1 < cosh hyp (¢, —x) = Vit /1422 +cx=-C
would follow, a contradiction. Hence, by (2.15),
cosh hyp (¢,x2) = C = cosh g,

ie. z € B(c,0).

b) Assume vice versa C = vV1+c?vV1+ 22 —cx, i.e. x € B(p,¢), for a given
2 € X. A similar calculation as in step a), but now in the other direction, leads to

Vp+¢5)2(p—c9)? =52+ ¢) —p°|. (2.16)

If S2(2 + ¢?) > p?, then ||z — a|| + ||z — b|| = 2« follows from (2.16). So observe,
by the inequality of Cauchy—Schwarz,

(cz)? < Pa? + 2,
ie., by (cx +C)? = (1 +2)(1 + 2?),
22— 2(cx) C + c? = (ca)? + 5% — *a? <257,
ie. S%2(2 +¢?) > pt O
Suppose a,b € X and let v be a positive real number. Then
{zre X |llz—al+z—bl=~}

is called a hyperellipsoid in euclidean geometry, i.e. in (X, eucl). Let now B (c, g),
o > 0, be a hyperbolic ball. If ¢ = 0, then, in view of Proposition 9, it is also a
euclidean ball with center 0 and radius sinh p. In the case ¢ # 0, the hyperbolic
ball B (¢, p) is a euclidean hyperellipsoid such that its foci ce™2, ce? are in

Rogec={Ac| 0 < X e R}.

Observe 19 > 1 for ce? =: 19(ce™?).
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Lemma 10. Let a # 0 be an element of X and 7 > 1 be a real number. Then
{z € X ||l —all + o — a]| = 20} (2.17)

is the hyperbolic ball B (a\/T,In \/T) if

1
2a = (1 —1)/=+a?
T

Proof. Since {x € X | ||z — ce™?|| + ||z — ce?|| = 2sinh o - V1 + 2} is B (c, 0), we
get with ¢ := a+/7, 0 := In /7, obviously,

1
a=ce % Ta=ce?2a=(e? —e ) V1+2=(r—-1)4/= +a O
T

Proposition 11. Suppose that B (¢, 0), B (¢, 0") are hyperbolic balls satisfying o > 0
and

B(e,0) C B(d,0). (2.18)

Then c=c and o= ¢'.

Proof. Assume that there exist balls B (c,0), B(c, o) with (2.18), ¢ # ¢ and
0> 0.If j € X is given with j2 = 1, there exists, by D.a, a motion p such that
w(c) =0, u(c)=2Aj, A > 0. Hence B(0,0) C B(\j,¢), i.e.

hyp (0,) = ¢ implies hyp (\j,z) = ¢

for all x € X, i.e.

V14 22 = cosh o implies 1+ A2y/1 + 22 — Ajz = cosh ¢’

Applying this implication twice, namely for x = jsinh g and for & = isinh g with
i€ X,i?=1,ij =0 we obtain

V14 A2cosh o — Asinh ¢ = cosh ¢’ = /1 + A2 cosh g,

a contradiction, since A > 0 and ¢ > 0. Thus ¢ = ¢/. Take now j € X with j2 =1
and jc = 0, and observe for x :=sinh g - j + cosh g - ¢,

hyp (¢,z) = o,
i.e., by (2.18), hyp (¢,z) = ¢'. Hence o = ¢'. O
Ifa#0isin X and o € R, then we will call

H(a,a):={z e X |ax = a}
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a euclidean hyperplane of X.
If e € X satisfies e? = 1, if t € R and wy,wz € O (X), then

wiThwa(e) = {w1 Tiws (z) |z € et}

will be called a hyperbolic hyperplane, where {T; | t € R} is based on the axis e
and the kernel sinh o - 1 + h2. Of course, mutatis mutandis, also the euclidean
hyperplanes can be described this way.

In Proposition 17 parametric representations of hyperbolic hyperplanes will
be given.

Proposition 12. If H (a,«) and H (b, 8) are euclidean hyperplanes with H (a,a) C
H (b,f), then H (a,«) = H (b, ) and there exists a real A # 0 with b = Aa and
8= Aa.

Proof. If a,b are linearly dependent, then there exists a real A # 0 with b = Aa
since a, b are both unequal to 0. Put zga? := aa. Hence

o € H((I,Oé> - H(b,ﬁ),

ie. B =bxry = Ma-x9 = Aa, and thus H (a,«) = H (b, ). If a,b were linearly
independent, then
b
q:=z9+b— %ae H (a,a) C H (b, ),

i.e. bxg = B = bg, i.e.

ab \? ab)?
(b—a2a> :bz—( 2) =b(qg—xo) =0,

ie. b— Z—g a = 0 would hold true. O

If a # 0 is in X and a® = 1, then the hyperplanes of (X,hyp) can also be
defined by
aTiB (a) with o, B € O(X) and t € R :

take w € O (X) with a = w (e) and observe
ol ([w(e)]') = aTiB (w(eh)) = aTifw (eh).

Obviously, w (H (a,)) = H (w(a), a) for w € O(X), where H (a,a) is a eu-
clidean hyperplane. The image of H (a,«) under y = x+t¢, ¢t € X, is H (a,at + «).
Of course, if i is a hyperbolic motion, then p [w; Tiws(et)] is again a hyperbolic
hyperplane since p - w;Tyws is also a motion (see I of the proof of Theorem 7 of
chapter 1).

A subspace of (X, eucl) (or (X,hyp)) is a set ' C X such that for all a # b
in T the euclidean (hyperbolic) line through a, b is a subset of I'. Of course, ) and
X are subspaces, also every point of X, but lines as well. Since every euclidean
(hyperbolic) line is contained in a one- or a two-dimensional subspace of the vector
space X, the following proposition must hold true.
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Proposition 13. All euclidean (hyperbolic) subspaces are given by the subspaces of
the vector space X and their images under motions.

A spherical subspace of (X, eucl) or (X, hyp) is a set
I'n B(e o),

where I' 5 ¢ is a subspace and B (c, g) a ball of (X, eucl), (X, hyp), respectively.
Without loss of generality we may assume ¢ = 0. Hence the following proposition
holds true.

Proposition 14. All spherical subspaces of X are given by the spherical subspaces
I'N B (¢, 0) withc=0 €T and their images under motions.

A subspace V of the vector space X is called mazimal if, and only if, V' # X
and, moreover, every subspace W 2O V of X is equal to X or V. If 0 # a € X,
then a' is a maximal subspace of the vector space X: observe

1) z,y € at implies x +y € a* and Az € a* for every \ € R,
2) if W D at is a subspace of X and x € W\a", then za # 0 and —z + Z¥ a €
at CW,ie. ﬂa:x—i—(—x—i— g—ga) eW,ic.ae W, ie. X =at®Ra C W,

a2

ie. X =W.

Maximal subspaces of X and their images under euclidean (hyperbolic) mo-
tions will be called euclidean (hyperbolic) quasi-hyperplanes. Since a* with 0 #
a € X is maximal, hyperplanes are quasi—hyperplanes. But there are quasi—
hyperplanes which are not hyperplanes.

2.6 A special quasi-hyperplane

Let X be the set of all power series with real coefficients and radius of convergence
greater than 1,
A€ =ao+aré+axs®+ -+,

which will be of interest for us in the interval [0, 1]. Define
A(E) = Xag+Amg+Xazg? + -
A +B(E) = (ao+bo)+ (a1 +b1)&+ (az+b2) & + -

and AB = folA(f)B (&) d€. Observe that the following set of elements of X,
namely

egﬂ ]‘757 527537 MR
ef == exp (€), is linearly independent: if

ke +ko-1+k &+ 4k, E"=0 (2.19)
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for all £ € [0,1] where k, ko, ... € R, then differentiating (2.19) (n+ 1)-times yields
ket =0, i.e. k =0, and differentiating it n-times, k, = 0, and so on, ky,_; = --- =
ko = 0. Let B be a basis of X which contains the functions e¢,1,¢,€2,.... Let V
be the subspace of X generated by B’ which is defined by B without the function
ef. Hence V is maximal. Since, of course, 0 € V, V must be a euclidean subspace
of X. We would like to show that there is no a # 0 in X such that

V = H (a,0), (2.20)

i.e. that V is a quasi-hyperplane which is not a hyperplane. Assume that (2.20)
holds true for an element a # 0 in X. Put

a(§) =ag+a§+---

and notice ) .
0< [a©a@d© =Y [ wa@cd=o.
0 =00
since the functions &%, i = 0,1, ..., belong to B’ and hence to V.

2.7 Orthogonality, equidistant surfaces

Let 11,15 be lines through s € X. We will say that [y is orthogonal to l; and write
l1 L 5 if, and only if, there exist

p1 € L\ {s}, p2 € [2\{s}

such that (see (2.21) for the euclidean and (2.22) for the hyperbolic case)

Ip1 = p2ll® = [lp2 — slI” + [|s — palI?, (2:21)
coshhyp (p1,p2) = coshhyp (p1,s) coshhyp (s,p2). (2.22)

Since (p1—p2)? = ((p1,$)+(5,p2))2’ we also may write (p; —s)(s—p2) = 0 instead
of (2.21). Formula (2.22) is the so-called theorem of Pythagoras of hyperbolic
geometry (see, for instance, W. Benz [4], p. 153) for the triangle pisps. If s =0
in (2.22), then this formula reduces to p;ps = 0, i.e. that in 0 euclidean and
hyperbolic orthogonality coincide. Observe that I3 L l5 implies l5 L [;. Moreover,
there is no line [ orthogonal to itself, [ f [: if

l={p+¢&|E€R}, ¢*=1, (2.23)

in the euclidean case or

I={x(§) =pcosh{+gsinhé | €RY, pg=0,¢° =1, (2.24)
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in the hyperbolic case, [ L [ would imply
(i —o0)(oc—m)=0fors=p+oq,pi=p+mqg#s(i=12),
a contradiction, or for s = z (o), p; = « (m;) # s (i = 1,2), by (2.1),
cosh(my — m2) = cosh(m; — o) cosh(o — m2).
Put a:= 7 — o and § := 0 — 7y, observe
cosh(a + 8) = cosh a.cosh 8 + sinh avsinh 3,

i.e. sinh(m; — o) sinh(o — m3) = 0, which is also a contradiction.

Since I [ [ holds true for every line [, we obtain, by Proposition 5, that Iy 1 o
implies #(l; Nly) = 1, i.e. that 1,5 have one single point in common.

If 11,15 are lines with {; L Iy and p is a motion, then wp(l1) L p(l2). This
follows from (2.21), (2.22) since distances are invariant under motions.

Let Iy, 15 be lines through s with I; L ls. If a; € [;\{s}, i = 1,2, are arbitrary
points, then
lay — az* = flax — s[* + [|s — az]? (2.25)
holds true in the euclidean case, and

coshhyp (a1, as) = coshhyp (ai,s) coshhyp (s,as) (2.26)

in the hyperbolic case.

Equation (2.25) follows from g1g2 = 0 (see (2.23)). In order to prove (2.26)
we may assume s = 0 by applying a suitable motion. As we already know, I; L I3
is in this case equivalent with ajas = 0. But (2.26) is given for s = 0 by

\/1+a2y\/1+a3 —ajas =\/1+a?/1+d3.

Proposition 15. Let | be a line and a & | a point. Then there exists exactly one
line g through a with g 1 1.

Proof. Hyperbolic case. Without loss of generality we may assume a = 0. Then [ is
of the form (2.24) with p # 0. If [; is the line through 0 and p, it is trivial to verify
l; L 1. So assume that there is another line l5 through 0 and z (o) # p = z (0),
i.e. a# 0, with Iy L [. This implies

coshhyp (0,p) = coshhyp (0, («)) coshhyp (z (0), z (a)),

ie. v/1+p%2=cosha-/1+p? cosha,ie a=0,ie z(a)=p, acontradiction.

Also in the euclidean case we may assume a = 0 and that [ is of the form
(2.23) with [ # 0, i.e. that p,q are linearly independent. Obviously, I L Rw with
w =

p — (pq) q. Moreover, R (p + &oq) L I implies (p + &oq) ¢ = 0. O
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If I is a subspace of (X, d), where d stands for eucl or hyp, and [ a line with
INT = {s}, then [ is called orthogonal to T', or T to I, provided I L g holds true
for all lines ¢ C I' passing through s.

Proposition 16. Let p be a point and H a hyperplane. Then there exists exactly
one linel > p withl L H.

Proof. Case p € H.
Without loss of generality we may assume p = 0. Hence in both cases (X, eucl),
(X, hyp), H is a euclidean hyperplane a* with 0 # a € X. The line Ra is orthog-
onal to every line g 5 0 with g C H: if ¢ = Rb, then g C a* implies ab = 0, i.e.
g L Ra. If Re is orthogonal to every Rb with ab = 0, then b € a* implies b € c*,
i.e. H(a,0) C H (c,0), i.e. Re = Ra, in view of Proposition 12.
Casep ¢ H.
Since a point of H can be transformed into 0 by a motion, we may assume without
loss of generality H = H (a,0) in both cases, i.e. in the euclidean as well in the
hyperbolic case. Let

p+Rg:={p+ M| X€eR}

be a euclidean line [ orthogonal to H. Hence [ L r 4+ Rb for all b € a where
relnH,ie at Cqt,ie | =p+Ra, by applying Proposition 12. On the other
hand, p + Ra L H (a,0). The point of intersection is 7 = p — £3 a. It remains to
consider p € H in the hyperbolic case. Put H = H (a,0), a®> = 1. If p— (pa) a # 0,
we define
_ p—(pa)a

Ip — (pa) al|
Take w € O (X) with w (e) = j, where e is the axis of our underlying translation
group, and t € R with wTiw™!(p) = (pa) a, in view of (T2) for j. Because of

VK

wlhiw H(z) =z + [(2j)(cosht — 1) + /1 + 22 sinht] j
for x € X, we obtain wTyw ™' (H) = H on account of j € a*. There hence exists a
motion
| wTw™! for p#(pa)a
S for p=(pa)a

with u(H) = H and p (p) € Ra\H, by p € H, i.e. pa # 0. So we assume, without
loss of generality, H = a* and p = Aa, A # 0. There hence is a hyperbolic line,
namely [ = Ra with p € [ L H. Assume now that there is another hyperbolic line
g pwithl # ¢g L H. Hence 0 ¢ g because all hyperbolic lines through 0 are of
the form Rb. Put g N H =: {r}. Hence

coshhyp (0,p) = coshhyp (r,0) - coshhyp (r,p),

ie. /1492 =vV1I+72(V1+72/1+p2—rp). But p € Ra, r € H implies pr = 0.
Thus 1 +r2 =1, i.e. r = 0, a contradiction. O
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The distance d (p, H) between a point p and a hyperplane H is defined by
d (p,r), where r is the point of intersection of H and the line I 3 p orthogonal to
H. This applies for (X, eucl) as well as for (X, hyp).

Let o > 0 be a real number and H be a hyperplane. An interesting set of
points is then given by

D,(H) ={x € X |d(z,H) = o},

a so-called equidistant surface or hypercycle of H. We will look to these sets in the
case 0 € H. In the euclidean case we get with a € X, a? =1,

DQ(H ((I, 0)) = H(a7 Q) U H(CL, _Q)a

i.e. we obtain the union of two euclidean hyperplanes parallel to a*, since the
euclidean hyperplanes Hy, Ho are called parallel, Hy || Ha, provided H; = Hs or
H; N Hy = 0 hold true. Of course, H (a,a) || H (b, 3) is satisfied if, and only if,
Ra = Rb. In hyperbolic geometry we obtain for ¢ > 0, H = H (a,0), a* = 1, as
we will show,

D,(H (a,0)) = H (a,sinh 9) U H (a, — sinh p).

As a matter of fact, this is again the union of two euclidean hyperplanes, and not,
say, of two hyperbolic hyperplanes. The point

p € {asinh g, —asinh g}

has distance g from H. Take w; € O (X) with w;(e) = j for a given j € X with
j2=1and aj =0, ie. j€ H. Now

p(0) = jsinht, p(p) =p+ jcoshpsinht

where p = ijtwj_l, t € R, holds true, and the line through x (0), & (p) must be
orthogonal to H, in view of Rp L H. Since p (0) runs over H by varying j and
t, p(p) runs over D,(H) on account of

hyp (14(0), 1 (p)) =hyp (0,p) = 0:

through h € H there is exactly one hyperbolic line [ orthogonal to H, and on [
there are exactly two points of distance g from H. Hence

D,(H) = (asinhpo+ H)U (—asinhp+ H)
where p+ H :={p+h|he H}.

2.8 A parametric representation

Proposition 17. If H is a hyperbolic hyperplane, there exist p € X with p?> = 1
and v € R>o with H =11 (p,v), where

II(p,7) := {ypcosh& + ysinh € | € € R, y € p with y? = 1}. (2.27)
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On the other hand, every IL (p, ) is a hyperbolic hyperplane provided v € R>q and
p € X satisfies p> = 1. Moreover,

I (p,0) =p~ = {z — (zp)p | = € X}, (2.28)
and for v >0,

— (zp)p

Va? = (zp)?

Proof. 1. Let v > 0 and p € X, p? = 1, be given. Take w € O (X) with w (e) = p
and t € R with sinh¢ = 7. Then wTjw™!(p*) must be a hyperbolic hyperplane.
Observe

II(p,7v) = {ypcosh & + sinh¢ | € € R, z € X\Rp}. (2.29)

whw Y (pt) = {h+sinht-/1+h2p|hcpt}
With h = ysinh&, y € pt, y? = 1, we obtain

wlhiw ' (ph) = {ypcosh & + ysinh € | € € R, y € p with y? = 1},

ie. whiw 1 (pht) =1 (p,7), i.e. I (p,7) is a hyperbolic hyperplane.

2. Given a hyperbolic line | and a point v € 1. Then there exists exactly one
hyperbolic hyperplane H > r with I 1 H. In order to prove this statement, take
b € I\{r} and a motion p with p(r) = 0, u(b) =: a. Since r # b we get 0 # a.
There is exactly one hyperbolic hyperplane through 0 which is orthogonal to the
line through a and 0, namely a. There hence is exactly one hyperbolic hyperplane
through r, namely = !(at), which is orthogonal to I.

3. Let now H be an arbitrary hyperbolic hyperplane. Because of Proposition 16
there exists exactly one hyperbolic line [ through 0 which is orthogonal to H.
Let r be the point of intersection of [ and H. Let r be the point of intersection
of [ and H. Because of step 2 we know that H is uniquely determined as the
hyperbolic hyperplane through r which is orthogonal to [. But we already know a
hyperbolic hyperplane of this kind, namely a for » = 0 and | = Ra, and II (p, )
for r #£ 0, p := ”—:”, v :=|7|l. In fact, r = yp € L for £ = 0, and g L [ for all
hyperbolic lines g through r and s := ypcosh é+ysinh & with € # 0, y € pt, y? =1
on account of
cosh hyp(0, s) = cosh hyp(0, r) cosh hyp(r, s).

Hence H =11 (p, 7).

4. Since [z — (zp) plp = 0, we get x — (zp)p € p* forall z € X. If y € p* we obtain
yp =0, i.e. y =y — (yp) p. This proves (2.28). In order to get (2.29) we must show

{ — (zp ‘weX\Rp}—{yeXH/Ep and y? = 1}.

\/7:@
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2 = (ap)? if, and only if, x € Rp, in

Because of Lemma 1, chapter 1, we have x
view of p? = 1. Obviously,

z— (zp)p

z? — (zp)?
satisfies y € pt and y? = 1. Given, finally, y € X with y € p* and % = 1, we
obtain

y:

_ _y—(yp)p
y? — (yp)?
with y & Rp. O

From (2.27) we obtain for w € O (X)),
w (I (p,7)) = {yw (p) cosh & + zsinh& [ €R, 2 € [w (p)]*with 2% = 1},
ie.
w (IL(p,7)) =1 (w (p), 7)-
In Theorem 26 we will prove that
T,(I(p, 7)) =T (', 1))
holds true for all ¢,y € R with v > 0, and all p € X with p? = 1, where
v = ~cosht+ (pe) /1 +~2sinht,
= sgn for vy #0

and p' - ||A|| = A:=p+ \/117 sinht 4 (pe)(cosht — 1)| e, by observing A # 0.

In the case 7/ = 0 the value of ¢ # 0 plays no role, since II (ep’,0) = (p')*. In
Proposition 27 we will show that II (p,v) C II(g,d) and v > 0 imply p = ¢ and
v =9.

Remark. A parametric representation of euclidean hyperplanes will be given in
section 2, chapter 3.

2.9 Ends, parallelity, measures of angles

The notion of an end as introduced by David Hilbert (1862-1943) concerns hyper-
bolic geometry. If w € X\{0}, then we will call

R>ow :={Aw | A € R and X\ > 0}

an end of X. Two ends R>owi, R>ows2 are equal if, and only if, there exists A > 0
with ws = Aw;. To every hyperbolic line [ there will be associated two ends, the
so-called ends of I. For

lpg =1={pcosh{+ gsinh¢ | £ € R} (2.30)
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with p,q € X and pg = 0, ¢*> = 1, the two ends of [ are

R>o(p+ ), Rxo(p — q). (2.31)

Note that p is the only element y in [ with |ly|| = minge;||z||. This implies for
p.0.q,¢ € X with pg = 0 = p'¢’ and ¢ = 1 = ¢'2 that the lines lpg and Ly o
coincide if and only if p = p’ and ¢’ € {q,—q}. If | = Rq, then | = (R>oq) U
(Rzo(—q)). In the case p # 0,

R>o(p+ @) UR>0(—p — q),
R>o(p —q) UR>0(=p+9q)
are the two asymptotes of the hyperbola of which (2.30) is a branch. Obviously,

(2.31) are the limiting positions of R>q(pcosh§ + ¢sinh§) for & — 400, £ = —o0,
respectively:

sinhg) . R>o(p + q) for £ = 400

R
20 (p ta cosh &

R>o(p —q) for € - —oc0
Proposition 18. Let E; = R>qw;, ¢ = 1,2, be distinct ends. Then there is exactly
one hyperbolic line, of which E1, Eo are the ends.

Proof. If E5 = —F4, i.e. if Ryows = R>o(—w1), then Rw; is the uniquely deter-
mined line with the ends E7, Fs. In the case that wy,ws are linearly independent,
we must solve

2Mw1 =p+q, 2 w2 =p—q

in A, Ag,p,q with Ay > 0, Ay > 0, pg = 0, ¢> = 1. This implies, by assuming
w} =1 = w3, without loss of generality,

P = Aw1 + Aawe, = Awi — Awa,

2)\%(1 — wlwg) = ].7 Al = )\27

with a uniquely determined solution

{ (w1 + ws) cosh & + (wy — ws) sinh & ’5 c R}

2 (1 — wlwg)

in view of wyws < |wyws| < ||w]| ||wz]] = 1 since w1y, wy are linearly independent.
g

Let E be an end of X and p be a hyperbolic motion. We would like to define
the end p(E). If E = Rxga, a®> = 1, put w(E) := Ryow(a) for w € O (X).
Suppose t € R and that T} is a translation of (X, hyp) with axis e. Then

T,({Aa| XA >0}) = {Xa+ [A(ae)(cosht — 1) + /1 + A?sinht]e | A > 0}.
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We are now interested in the question whether
R>o(T;(Aa)) (2.32)

tends to a limiting position for 0 < A — +o00. Instead of (2.32) we may write

R>o <a+ (ae)(cosht — 1) + \/% +1 sinht] e) ,

and we obtain as limiting position

R>q(a + [(ae)(cosht — 1) + sinh t] e) (2.33)
which we define as the end T;(E) = T;(R>oa). In the case 0 > A — —oo we observe

1 (Aa+ [A(ae)(cosht — 1) + V1 + A2 sinh ] e)

= a+ [(ae)(coshtf 1)— /&= +1 sinht} e

—  a+ [(ae)(cosht — 1) — sinht]e,
a result which corresponds to (2.33), replacing there a by —a, i.e. substituting
Rx>o(Ti[A - (—a)]), 0 < A = +o0, for R>o(T;(Aa)), 0 > X — —o0.
Proposition 19. If E is an end of the line I and p a motion, then u (E) is an end
of u(l).

Proof. Let x (§) = pcosh& + gsinh & be the equation of I, and let E be given,
say, by R>o(p + ¢) thus considering the case £ — +oo. If p € O (X), we obtain
R0 (1 (p) + 1 (q)) as end of (1) for & — 400, i.e. we get the end

Ro(u(p+q)) = pu(E).

ptq

©/14p2

Suppose now that u = Ty. We already know, by (2.33), with \/z;:qu ie

instead of a,

Tt(E):Rm( P+q (p+q)e

+
/1+p2 /1+p2

Moreover, R>q (Tt (pcosh & + gsinh §)) is given by

(cosht — 1) + sinh t] e) .

RZO(P + gtanh & + [(p + gtanh €) e (cosht — 1) + 4/1 + p? sinh {] e),
which tends to
R>o(p+q+ [(p+q)e(cosht — 1) + /1 + p? sinht]e)

for £ — 400, i.e. which tends to T3(E). Hence p (E) is an end of p (1). O
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Two euclidean lines

li :={pi+&q | £ €R}

are called parallel, l; || I, provided Rg; = Rgso. Parallelity is an equivalence relation
on the set of euclidean lines of X. If [ = p 4+ Rq is a euclidean line and r a point,
there exists exactly one euclidean line, namely g = r + Rq through r, parallel to .

Two hyperbolic lines of X are called parallel provided they have at least one
end in common. If [y, Iy are hyperbolic lines, of course, I; || {1 holds true and also
that Iy || lo implies I3 || I;. However, parallelity need not be transitive. In order to
verify this statement take elements a,b of X with a? = 1 = b and ab = 0. Define

Iy = {acosh +bsinhé | & € R},
lo = {—acosh&+bsinh¢ | £ € R},

and ! = R (a+b). We obtain Iy || {, because these lines have R>o(a+b) in common,
moreover, | || l2 since R>o(—a — b) is an end of both lines. But I3 || l2 does not
hold true: the ends of I; are R>¢(a + b), R>o(a —b), and those of I are

R>o(—a+0), R>o(—a—0).

If p is a point and E := R>( a an end, there is exactly one hyperbolic line through
p having FE as an end. In order to prove this statement take a motion u with
i (p) = 0. Of course, there is exactly one line through 0 having u (E) =: R>qb as
an end, namely Rb. Hence, by Proposition 19, there is exactly one line, namely
put(Rb), through p with E as an end.

If [ is a line and p ¢ [ a point, there are exactly two lines [y # [ through p
which are parallel to [: take the two distinct ends Ey, Ey associated with [, and
then the lines I, ls through p with E;, Fso, respectively, as an end.

Let | = {z (¢§) = pcosh&+¢gsinh & | € € R} be a hyperbolic line and a = z («)
be a point of [. The two sets

{z (&= a}l, {z(§)[§<a} (2.34)

are called (hyperbolic) rays with starting point x («). If | = {z (§) = p+&q | € € R}
is a euclidean line and z (o) = p + aq a point a of I, then (2.34) are said to be
(euclidean) rays with starting point x (a). Images p (R) of rays R under motions
u are rays, and if a is the starting point of R, then u (a) is the starting point of
1 (R).

It is clear how to associate each of the ends of a hyperbolic line [ to the two
rays Ry, Ry C I of [ with the same starting point. In this connection we will speak
of the end of a ray or of a ray through an end.

Let R1, R be rays with the same starting point v such that R; U Ry is not a
line. The triple (R1, Ro,v) consisting of the (unordered) pair R;, Rs and the point
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v will be called an angle. If p; € R;, i = 1,2, is the point with
d(v,p;))=1,1=1,2,

then the measure £(Ry, Ro,v) of the angle (R1, Rg,v) is defined by £(R1, Ra,v) €

[0, 7] and

1
3 [eucl (p1,p2)]?

2coshhyp (p1,p2) — 1
cosh2 —1

1 —cos £(Ry, R2,v) = (2.35)

for the euclidean, hyperbolic case, respectively. (For an axiomatic definition of
measures of angles in 2-dimensional euclidean or hyperbolic geometry see, for
instance, the book [4] of the author.)

If Ry, Ry are rays both with starting point v and g a motion, then

A(R17R27v) = A(:u (Rl)ﬂ ,L"(RQ)a M(U))'

This is clear since distances are preserved under motions.
Let a,b,v be elements of X with a # 0 # b and Ry, Ry the rays

v+ Rx>pa, v+ Rxqb,

respectively. Define p; = v + m a, pp =v+ ﬁ b, v = £(Ry1, Ry, v). Hence

ab = llall - [|b]| - (pr — v)(p2 — v)
= gllall - [IBll - ((pr = v)* + (2 — ©)* = [(p1 — v) — (p2 — v)]*)
= llall - 16l - (1 = 5 [p1r = p2]?),
ie. ab=|a] - ||b]| - cos~, in view of (2.35). As a consequence we get the so-called
cosine theorem:
[eucl (v+a, v+0b)? =[(v+a)—(v+b)]? = (a—0b)?
— @+ 5 — 2| - b]] - cos,

i.e., by A =-eucl (v,v+a), B=eucl (v,v+b),
[eucl (v + a, v+ b)]* = A% + B — 2AB cos £(R1, Ra, ).

Similarly, we would like to consider the case of hyperbolic geometry.
Let a, b, v be elements of X with a # v # b. If [; is the hyperbolic line through
v,a, and ls the one through v, b, if Ry, Ry are the (hyperbolic) rays with starting
point v and a € Ry, b € Rs, then the cosine theorem of hyperbolic geometry holds
true:
cosh C' = cosh A - cosh B — sinh A - sinh B - cos~y
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where C' = hyp (a,b), A = hyp (v,a), B =hyp (v,b), v = £(R1, R2,v).

For the proof of this statement we may assume v = 0 without loss of gen-
erality, since distances and measures of angles are preserved under motions. So
put

li = {wl(f) =4 Sinhg ‘ g € R}7 i= 1727

with ¢ = 1,i = 1,2, and with a sign for ¢; such that £ > 0 describes R; for
i =1,2. Hence z1(0) = v = 22(0) and

pi =x;(1),1=1,2, a = z1(a), b =: 22(5),
with a > 0, 5 > 0, and thus ||a|]| = sinh ¢, ||b]| = sinh 3,
coshC = +v/1+a2+/1+0b2— ab,

cosh A = V1 + a2, cosh B = /1 + b2, coshhyp (p1,p2) = (cosh1)? —qyga(sinh 1)
Moreover, sinh A = ||a||, sinh B = ||b||,

ab = z1(a) z2(8) = q1g2 sinh asinh 3,
and, by (2.35), cosh2 = 1 + 2sinh?1,

_pcoshhyp (pi,p2) — 1

=1
cos7y cosh2 —1
(1 — g1g2)[sinh 1)?
= 1 — = .
cosh2 —1 N2

Hence V1 + a2 v/1 4+ b? —ab = cosh A-cosh B—sinh A-sinh B-cos~, since sinh A =
sinh « and sinh B = sinh 3, q.e.d.

Remark. Measures of angles (R;, R2,0) coincide in euclidean and hyperbolic ge-
ometry because of the previous formulas cosy = q1¢2 and g1g2 = ||q1|| - ||¢2]| cos .
Notice, moreover, that the cosine theorem in both geometries leads for v = 7 to
(2.21), (2.22), respectively.

2.10 Angles of parallelism, horocycles
Proposition 20. Let k # [ be parallel hyperbolic lines with E as common end,
p € I\k a point, a  p the line orthogonal to k, and r the point of intersection of

k and a. If Ry C a is the ray through r with starting point p, and Ry C 1 the ray
through E, also with starting point p, then

1
tan 3 (L(]%17 Rg,p)) — ¢~ byp (B7)
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Proof. Without loss of generality we may assume p = 0,
k= {rcosh¢é +gsinh¢ | E€RY, ¢ =0, ¢* =1,

a =Rr, Ry = Rsor,l = R(r+¢q), Ra = Rxo(r + ¢q). Put v := £L(Rq, Rs,p).
Observe r # 0 = p, since r € k & p. From (2.35) we obtain

. _ coshhyp (p1,p2) =1 _ [l
—cosy = — =1- ,
sinh” 1 V1+r2
in view of r¢ =0, ¢> =1, p; = o sinh 1, py = \/% sinh 1. We hence get
ooy =
V142
i.e. v €]0, 5[ because of 0 < % < 1. From

coshhyp (p,r) = V1412

we obtain

e hyp () — (/1 442 — [, e @) — \/1 472 + 7|,

1 [l1—cosy  [VI+r2—|rll _ _yp o)
tan =y =4/ ———— =/ ——— =¢ . O
2 1+ cosvy V14724
Proposition 21. Let [ be a hyperbolic line and R C 1 a ray with starting point v.

There exists a paraboloid as limiting position for the balls B (c, hyp (c,v)) with
¢ € R and hyp (¢,v) — oo. This limiting position is called a horocycle.

Proof. If | = {z (¢) := pcosh& + gsinh¢ | € € R}, pg =0, ¢*> = 1, and v = z (),
we may assume R = {z (§) | £ > a}, without loss of generality. Put ¢ =: z (a +
0), 0 > 0. Then

BQ ::B(C7 hyp (C,U)) :B(Q’J(Oz—l—g),g) = {JJEX ‘ hyp (x(a—&—g)mc) :Q}7

ie. B, ={z € X | cosh(a+0)\/1+p? V1 + 22—z (a+0) x = cosh o} holds true.
This implies

V1+ 22 \/1+p27x(p+qtanh(oz+g)): cosh o

cosh(a + o)’

i.e.

ie. vV1+a2y/1+p?>—xz(p+q) =e @ for o = +oo. Hence the limiting position
for B,, 0 — o0, is

Byo={zeX|Vi+a2—-am=r} (2.36)
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with m = 2t je.m2=1,and 7:= - >0
/1+p2’ ) /1+p2

In view of X = m* @ Rm, we will write  =: T + zom with T € m' and
zo € R. Thus
Bo ={r € X |7 2100 +1=17%}

by observing z¢ + 7 > 0 for an element x of By,: assuming xg + 7 < 0 would lead

to

=72 - 2100+ 1> T+ 272 + 1,

ie. to Z2 + 7241 < 0. The surface S of X,
S:={¢w+nm|&neR, wemt, w?=1,£=2m+7r2+1},
is called a paraboloid, and By, = S holds true. d

If H*, H? are horocycles, there exists a hyperbolic motion p with u (H') = H?.
If H',i = 1,2, is based on the ray R; with starting point v;, we take points
pi € Ri, i = 1,2, satisfying hyp (v;, p;) = 1. Moreover, we take a motion p with
pu(v1) = v, p(p1) = pa.
Hence p(R1) = Ry and

L (B (c1,hyp (cl,vl))) =B (,u (1), hyp (p(c1), ”2)>

for all ¢; € Ry with hyp (¢1,v1) — oo, ie. for all ca := p(e1) € Ro with
hyp (c2,v2) — co. Thus pu (H') and H? coincide.

2.11 Geometrical subspaces

If S # 0 is a set of hyperplanes of (X,d), i.e. of (X, eucl) or (X, hyp), the

intersection
= () H
Hes
will be called a geometrical subspace of (X,d). In this case we often will write
¥ eI'(X,d). We also define X € I' (X, d). Let a # 0 be an element of X. Because
of
H (a,0)N H (a,1) =0,

we obtain () € I' (X, eucl). Similarly,
H(a,0)NII(a,1) =0,
ie. 0 e (X, hyp). f ¥ ¢ {0, X} is in I' (X, d), let u be a motion with p(p) =0
for a fixed element p of . Hence u (¥) is an intersection
p(E)=Na*
a€S
with 0 ¢ S C X. Observing 0+ = X, we obtain
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Proposition 22. All geometrical subspaces of (X,d) are given by 0, moreover by

(et 0£SCX,

a€s
and their images under motions.

We would like to show D := 0,y a* = {0}. In fact! If p # 0 were in D, then
p € at for all @ € X would imply p € p*, i.e. p? =0, i.e. p = 0, a contradiction.
Hence, by Proposition 22, every set consisting of one single point is in I' (X, d).

Proposition 23. Let V, dimV > 1, be a finite-dimensional subspace # X of the
vector space X . Then the images of V' under motions are in I (X, d). So especially
the lines of (X,d) are geometrical subspaces.

Proof. Let I (V) be the intersection of all hyperplanes containing the finite-dimen-
sional subspace V, dim V' > 1, of the vector space X. Of course, we assume n :=
dimV < dim X in the case that X is finite-dimensional. Hence V' C I (V). As a
matter of fact, even V = I (V') holds true. So assume there would exist

rel(V)\V. (2.37)

Let b1,...,b, be a basis of V satisfying

bib — OfOI'Z:#j:
1 fori=j

i,j € {1,...,n}. Notice V.={>", &b; | & € R} 5 0 and put

z = i (rb;) b;.
i=1

Obviously, (r—z)b; =0,i=1,...,n,and z # r since z € V and r ¢ V, by (2.37).
Hence V C H (r — 2,0), i.e. r € H (r — 2,0), by (2.37), and thus (r — 2z)r = 0. We
obtain, by z € V, i.e. by z € H (r — 2,0),

(r—22=@—2)r—(r—z2z=0,

i.e. r =z € V, a contradiction. Hence V' = I (V). Thus V must be a geometrical
subspace of (X, d). Now apply Proposition 22. a

The geometrical subspaces as described in Proposition 23 are given in the
case (X, hyp) as follows. Let p € X, v € R satisfy p> = 1 and v > 0. Suppose
that W, n := dim W > 1, is a finite-dimensional subspace of the vector space p*.
Then

{ypcosh¢ +ysinh¢ | € € R, y € W with y? = 1}

will be called an n-dimensional (geometrical) subspace of (X, hyp).
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Not every subspace of (X, d) for d = eucl or d = hyp needs to be a geometrical
subspace. Assume that Q 5 0 is a quasi-hyperplane which is not a hyperplane. If

Q C H (a,0), (2.38)

a # 0, holds true, then Q@ = H (a,0) or H (a,0) = X, since @ is a maximal
subspace of X. Hence (2.38) is impossible and, as a consequence, () cannot be a
geometrical subspace of (X, d).

Other interesting geometrical subspaces occur in the case that X is not finite-
dimensional, in the form
n
[ ai"
i=1

where n is a positive integer and where a1, ...,a, € X are linearly independent,
satisfying a? = 1 for i = 1,...,n. It will be easy to prove:

n n ay ray
ﬂaf: x—g aia; |z € X and M - = ,
i=1 i=1 o zan,

where M is given by the regular matrix
2
ai a1a9 N A
asaq a% ... G20y
M =
2
ana1 anpag ... a,

(det M is called Gram’s determinant). In fact, take an element = € X with the
described aq, ..., a,. Hence

(x — Zaa;) @ xas aq
: = — M = O,
(r — Xaya;) ap Ta, an,
ie. (z —Xwa;)a;=0for j=1,...,n,ie o —Sa, € ﬂ?zl aj-.

If, on the other hand, z € (N, ai holds true, za; = 0 is satisfied for
j=1,...,n. From

a1 Tay
M| f=| | =0
Qan Tany
we then obtain a; = --- = a,, = 0. Hence x has the required form

n
x—E Q;a;.
i=1
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2.12 The Cayley—Klein model

The Weierstrass map w: X — X,

T

w(r) = —, 2.39
=T 289
is a bijection between X and P := {z € X | 22 < 1}. In view of
2
2
[w(@)]” = T2 < L,
we obtain w (z) € P for x € X. Moreover,
1 T
w (r)=—=€X
@)= =2
is the uniquely determined y € X satisfying w (y) = « for 2 € P. Defining
g(@,y) :=hyp (w ' (z), w'(y))
for z,y € P, we get
1—ay
coshg (x,y) = . 2.40

If z # y are elements of P, then (x —y)? > 0, 1 — 22 > 0 and hence
D:=[r(z -y +(1—a?)(z—y)?* >0
Put {a,b} :={z+&(y—2) |E€R}N{z € X |22 =1}, ie. put
{a,0} :={z+&(y— ), v+ &(y —2)}
with {(z —y)2&1, (z—y)?&} = {x (x —y) £+ D}. We now would like to determine
[ In{a, b;2,y},

where In £ for 0 < £ € R is defined by the real number 7 satisfying exp (n) = &,
and where

{z1, 225 2 ,7,'}'*%1_/\3')\2_/\3
1, %2, <3, <4 '*)\1_)\4-)\2_)\4

designates the cross ratio of the ordered quadruple z1, 22, 23, 24 of four distinct
points
Zi :p+)‘zq7 1= 1727374a

on the line p+ Rgq, ¢ # 0, which does not depend on the representation of the line

p+Rg=p +Rq.
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Writing the points a, b, z,y of {a, b;z,y} in the form

z+&(y — ),
we obtain 0 < {a,b;z,y} € {L, L™} with

_ & &l

S a-1 &

Observe here &, < 0and 1 < & or & < 0 and 1 < &;. The exact value L or L1
of {a,b;z,y} depends on how we associate a,b to &1, &s. Put

(¢ —y)°6G =z (2 —y)+& VD,
i=1,2, with e = —e5 = 1. Then we get

1—zy++vD R
VI—2J1-p

by observing xy < |zy| < Va2 \/y? < 1. Because of |In L™} = |In L|, we obtain

1
glanln

1
§|ln {a,b;2,y}| = |R|, (2.41)

independent of how we associate a,b to &1,&>. Now, by (2.40),

el e R 1—2zy

2 B VI—22/1—y2
since 1 — zy + v D = ef'y/1 — 22 \/1 — 42. Hence, by (2.41),

1

cosh |R| = = cosh g (z,y),

It is certainly more convenient to work with the expression (2.40) than with (2.42),
since there the elements a, b must be determined before g (z,y) can be calculated.

We now would like to look to different notions like translation and hyperplane
as they appear in the Cayley—Klein model.

If w is a surjective orthogonal mapping, i.e. a bijective orthogonal mapping,
we obtain

- w(w(x)) = w(@) =w(w(x
wle) = w0 (0) = S —w (0 (@)

since [w (z)]? = 22%. Hence, if € X goes over in w (x), then w (7) in ww (z) =

ww (z). Thus w remains an orthogonal mapping, however, restricted on P. If x € X
goes over in Ti(x), then w (z) in

w (Ty(z)) = whw ' (w(z)).
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Thus the translation T}, say, based on e € X, e? = 1, as axis, corresponds to
z — whw (2) =: T/(2)
for all z € P. This implies for z € P,

z + [(z€)(cosht — 1) + sinht] e

Ti(z) = cosht + (ze)sinht ’ (243)
by observing cosh ¢ + (ze) sinh¢ > 0, which holds, since
—(ze)tanht > 1
would contradict
| — (ze)tanht| < Vz2Ve2 1 < 1.
Notice
T T, = whw ' - wlaw ' = wlw ' =T/,
and also Tj) = id on P, and TyT", = T§. If
{pcosh& +gsinh € | € €RY, pg =0, ¢* =1, (2.44)
is a line, we obtain its image in P as the set
{ P _, 2 tanhggeR}. (2.45)
Vi+p? 1+ p?
This is the segment of the euclidean ball B (0, 1) connecting its points
P q p q (2.46)

— and + .
V1i+p? 1+ p2 Vitp?2 /142

If u # v are points on B (0, 1), i.e. if they satisfy u? = 1 = v?, then (“;“)2 <1,
and (2.44) with

1_
p:”;ﬂ“,q— ,/1— “+“ el (2.47)

is the inverse image of the segment {u+ A (v —u) |0 < A < 1}.

Obviously, the two ends of {pcosh& + ¢sinh¢ | £ € R} can be described by
the points (2.46) of B (0, 1),
pPtyq

V1i+p?
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Proposition 24. The image of II (p,~) (see (2.27)) under the mapping w : X — P
is given by
Y
'(p,y) =={z € P|pr = ——=}

Vst

Proof. Because of

P + Y
Vit?2 14y

z:=w (ypcosh& + ysinh §) = 2tanh§

for y € pt, y? = 1, we get
~

bz = —F7—,
V1472

i.e. 2 € Il'(p, 7). Let now z € P be given satisfying (2.48). Hence, by p* = 1,

(2.48)

P _
plz——F—| =0,
< \/1+72>
i.e.Y::z—\/17_7;7EpL.ForY=0wegetw_l(z)zvpeﬂ(p,y).Supposenow
Y £ 0. We obtain, by z € P and Y L p,

Y

2
P ) _1-(1+)Y?

Vit I+9?

ie. 0 <1—(1+92)Y2< 1. There hence exists £ > 0 with

0<1£1<Y+

1

This implies tanh & = /1 +~2 - ||Y]|. Put y = = Y and observe y € p*, y%> = 1

cosh¢ =

Yl
and P Yp Y
i=— 22 )y = ¥ tanh €,
V1+792 VIt?2 1492
i.e. w(2) = ypcosh & + ysinh € € T (p, 7). O

Remark. Notice ypcosh + ysinh& = ypcosh(—¢) + (—y) sinh(—¢) and that y €
pt, y? =1 implies (—y) € p*, (—y)? = 1, so that, for instance, ¢ could be chosen
always non-negative. But in this case not all y € p~ with y? = 1 occur in the
representation of II (p, ).

Let H (p,a) be an arbitrary hyperplane of (X, eucl) with p? = 1. We will
assume « > 0, because otherwise we could work with H (—p, —«). If there is at
least one point a in

H (p,0) N B(0,1), (2.49)
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then 0 < o < 1: this follows from pa = a and a2 = 1 by means of a > 0 and
a=pa < |pal < \/p?Va?=1.

The intersection (2.49) contains exactly one point if, and only if, « = 1. For a = 1
we only have p in this intersection, since px = 1, 2 = 1 imply

1 =pzx = |pz| = V/p? Va2,

ie. x € {p, —p}, i.e. © = p because of p(—p) = —1. If 0 < a < 1, take r € X with
pr =0 and r? = 1. Then

plapEV1—a?r)=a, (aptvV1-a2r)? =1

lead to distinct points in (2.49).

Proposition 25. If p € X satisfies p> =1 and if 0 < o < 1 holds true for a € R,
then II (p,~) with

o
iy
is the image of {x € P | pr = a} under w=!: P — X.
Proof. The proof follows from Proposition 24, in view of 11 = = a. O
¥

2.13 Hyperplanes under translations

Theorem 26. Let t,y € R be given with v > 0 and p € X with p*> = 1. Suppose
that
Ti(z) =  + ((ze)(cosht — 1) + /1 + x? sinht) e,

x € X, is a hyperbolic translation based on the axis e, e = 1. Define
v = ~cosht+ (pe)y/1+ +? sinht,
= sgny fory #£0, e R\{0} for+ =0,

and p’ - ||A|| ;= A:=p+ [ L sinht¢ + (pe)(cosht — 1)] e by observing A # 0.

Vi
Then

T (T (p,~)) = M (ep’, [7']) (2.50)
holds true.

2
Proof. Notice A2 = ﬁ + (\/1172 cosht + (pe) sinht) > 0, i.e. A # 0 and,
il

moreover,

V1I+42=|A|-V1+92 (2.51)
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Instead of (2.50) we prove

wl(ep/, Y] =wTiw " |{z € P|px= S (2.52)
V1+7?
since, by Proposition 25,
-1 o Y -
w x€P|pr=—) | =1(p,7).
V1492
From Proposition 24 we obtain
,y/
w(ll(ep, ¥ =z P|pr=——ros 7, 2.53
(I (ep", [7'])] |p N (2.53)
o Y

. ;o
T can be rewritten as p'x = T
we show, with (2.43),

since ep’z = . So in order to prove (2.50),

(2.54)

24 / gl
rEP|pr=—"oa— =T/ |{2EP|pr = —~
R I | R
Applying the decomposition X = pt @ Rp, we will write
z2=Z+z2p, ZE€pt, 2 €R,

for z € X. Hence

v = Y 1= 1
2€P|pr=—F——=)=9Z+—=p|Z€p, |7 < — ;-
{ \/1+72} { V1492 V1442
;s I . A .
T} is a bijection of P. With a := T we obtain
T [{z+ap|zen, Izl < VI-a?}],

by (2.43), as the set of all points

Z+ ap+ [(Ze + ape)(cosht — 1) + sinh t] e
cosht + (Ze + ape) sinh ¢

u(z) = (2.55)

with [|Z]|? < 1 — 2. In view of (2.54), we will show

/

/ Y

U (2) = ——,
p-u(z) R
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i.e. by (2.51),
_onAr A
VI+9?2 1472
Calling the nominator, denominator of the right-hand side of (2.55) N (z), D (z),
respectively, the equation

A-u(z)

A-N(z)=D(z)- (acosht+ (pe)sinht)

must be verified, which can be accomplished easily. Observe, finally, that T; maps
hyperbolic hyperplanes onto such hyperplanes, and that consequently 7/ maps
images (under w) of hyperbolic hyperplanes of X onto images of such hyperplanes.

O

Proposition 27. Let p,q € X and v,0 € R be given with p> =1 = ¢%, v > 0 and
0>0.If

IT (p,~) C T (g,9) (2.56)

and v > 0 hold true, then p = q and v = 6. If (2.56) and v = 0 hold true, then
p==+q and § = 0.

Proof. Instead of (2.56) we will consider w (II (p,7)) € w (I (g, 0)), i.e.

y )
L={zcPlpr=———=pClaxcPlqr=——r=; =R
{ v 1+72}_{ & 1+52}
i L : 1/2 72
If v # 0 is in p—, we obtain, by 1+72+W<1’

v P
+ + €L
lollv/2(T+9%) /1472
These two points z1,x2 must hence be elements of R, ie. ¢- (z1 — x2) = 0, i.e.

v € ¢*-. Thus p* C ¢*, i.e. H (p,0) C H (q,0), i.e., by Proposition 12 we get p = ¢
or p = —q. Now

P N g g
———— € L C R implies = .
V1492 Vity?2 V1462

Hence, if v > 0, we obtain p = ¢, i.e. y =9, and if y =0, p = +q and 6 = 0 is the
consequence. D
2.14 Lines under translations

Let {pcosh& + gsinh¢ | € € R} be a hyperbolic line [ with elements p,q € X
satisfying pg = 0, ¢> = 1. For w € O (X) we obtain

w(l) ={w(p)coshé +w(g)sinhé | £ € R} (2.57)
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with 0 = p¢g = w(p)w(q),l = q¢ = w(q)w(q). Suppose that e € X, t € R
are given with e? = 1. We are then interested in the image T}(I) of I under the
hyperbolic translation T} with axis e.

Theorem 28. Define

p’ = p+[pe(cosht —1)+ +/1+ p? sinht]e,
qd = q+ (ge)(cosht—1)e,

A := gesinht,

B := pesinht+ \/W cosh t.

Then |A| < B. Define a € R by B - tanh o := —A. Then
T:(l) = {p* coshn + ¢* sinhn | n € R} (2.58)

with
p* = p’cosha + ¢ sinha,

p’sinh o + ¢’ cosh

and p*q* =0, (¢*)? = 1.

Proof. Observe
p12 — B2 _ 17

i.e. B2 > 1 because of p’? > 0, and ¢'> = 1 + A2, p'¢’ = AB. We now would like
to prove
|A| < B.

Case A > 0. Here we get
(¢ —p)esinht < |(q — p) esinht| < /(g — p)?e? sinh|t|,
ie. (¢ —p)esinht < /1 +p? sinh|t| < \/1+ p? cosht.

Case A < 0. We must prove —A < B. Observe

(—q —p)esinht < |(q + p) esinht| < y/1+ p? sinh|t| < v/1 + p? cosht.

Because of B? > 1 and |A| < B, we obtain B > 1 and

A
‘B‘ <1
i.e. tanha = —% determines o € R uniquely. Hence
B
sinha = ———, cosha =

VB A2 VBT A
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In view of p'? = B2 — 1, p'¢’ = AB, ¢'> = A% + 1, we thus obtain

@) = (B~ 1) 5o —24B 588 + (2 +1) 5 = 1,

2 2
pq = (A% + B%) 5l + AB 55 = 0.

Notice
Ti(pcosh & + gsinh &) = p’ cosh € + ¢ sinh &,

and put 7 := & — . Then
p’ cosh € + ¢’ sinh & = p* coshn + ¢* sinh ),
by cosh & = cosh a cosh ) 4 sinh asinh 7 and sinh £ = sinh acoshn + . ... Hence
Ti(l) = {p* coshn + ¢* sinhn | n € R}. O

2.15 Hyperbolic coordinates

Let n > 2 be an integer and suppose that V is a subspace of dimension n of the
vector space X. Let bq,...,b, be a basis of V satisfying b;b; = 0 for 7 # j and
b?=1foralli,je{l,...,n}. If pe V and if

p:plbl ++pnbn

holds true with py,...,p, € R, then (p1,...,p,) will be called the cartesian coor-
dinates of p, and (x1,...,x,) with

V1+pi+---+p2sinhz; = p,

V1+pi+ - +p2sinhay = po,

\/1+p%Sinh$nfl = Pn-1,
sinhx, = pn,

its hyperbolic coordinates. Designate by m the mapping which associates for every
p € V to the cartesian coordinates (p1,...,pn) of p its hyperbolic coordinates

TPy pn) = (31, ).

The mapping 7 is bijective, because 7 ~!(z1,...,r,) is given by (p1,...,p,) with
Dn = sinhx,,
Pn_1 = sinhx, 1 -coshz,,
Pn_o = sinhz,_o-coshx,_1-coshz,,

D1 = sinhxq - coshxg - coshxg - - - cosh z,.
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Proposition 29. Let e € V satisfy e = 1. Extend e =: by to a basis by,...,b, of
V., again with
0 for i#j
bib; = J ‘ 75].
1 for 1=

foralli,j € {1,...,n}. Representing then the points of V' by hyperbolic coordinates
(X1, 0y Tn),
Ti(z1,. .. xn) = (21 + 20, ..., Zp)

holds true for allt R and for all points of V' in hyperbolic coordinates (x1,. .., %y),
where Ty are hyperbolic translations with azis e.

Proof. Put Sy := sinh xy, C; := coshx1, and so on. Then
Tt(l‘l, - ,:En) = Tt(Slcg . .Coby +55C5...Crby + - + Snbn)
= p+ [pe(cosht — 1) + C1Cs...C, sinht]e
with p:= 51Cs...Cpby + -+ + Spb,. Put S; :=sinht, C; := cosht. Then
Tt(xl, - ,In) =p+ [S102 ce C’n(C’t — 1) + C1Cs. .. CnSt] by
=p+ <S1Ct - S+ C’lSt) CyC5...Cuby
= sinh(:cl + t) CQ ‘e Cnbl + 5203 ‘e Can + -+ Snbn

:(.fl —|—t,l‘2,l‘3,...,xn). O

2.16 All isometries of (X, eucl), (X, hyp)

The mapping f : S — S of a metric space (5, d) will be called an isometry of (S, d)
provided

d(f (), f(y)) = d(z,y) (2.59)

holds true for all z,y € S.
Isometries are injective mappings since x # y for x,y € S implies

0#d(z,y) =d(f (), f(y)),

ie. f(z) # f(y). However, isometries need not be surjective. In chapter 1 we

presented an example of an orthogonal mapping w which is not surjective. Because
of

d(w(2), w(y)) = d(z,y),

d(z,y) := ||l —yl|, for all 2,y of the underlying real inner product space X, this w
hence represents an isometry of the metric space (X, eucl) which is not surjective.
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Surjective isometries of (5, d) are called motions of (S,d). Of course, the set
of all motions of the metric space (5, d) is a group M (S, d) under the permutation
product. In view of T (see the proof of Theorem 7, chapter 1) we already know

M (X,d) = {aTi8 | o, 8 € O(X), t € R} (2.60)

for (X, eucl) or (X, hyp). Here and throughout section 2.3 T" is the euclidean or
hyperbolic translation group with a given axis e € X, €2 = 1, i.e.

Ti(xz) =z +te (2.61)
in the euclidean and
Ti(x) = x + [(ze)(cosht — 1) + /1 + 22 sinht]e (2.62)

in the hyperbolic case for all x € X.
The following statement now presents the set of all isometries of (X,d) in
the euclidean or hyperbolic case.

Proposition 30. The set of all isometries of (X,d) is given by
I(X,d)={aT;f|acO(X),BcO(X),tcR}, (2.63)
where O (X) designates the set of all orthogonal mappings of X.

Proof. Suppose that § is an isometry of (X, d) and that ¢ (0) =: p. Because of A
(see the proof of Theorem 7 in chapter 1) there exists v € O (X) with

76 (0) = [|plle.
In view of property (T 2) of a translation group, there exists ¢t € R satisfying
Tiv0 (0) = 0.
The mapping ¢ := Ty preserves distances and it satisfies ¢ (0) = 0.
Euclidean case. Hence for all z,y € X,
lz =yl = lle (x) = @)
Thus ¢ € O (X), in view of Proposition 3 of chapter 1. This implies
§=7""T_vp
with v~ € O (X).
Hyperbolic case. hyp (x,y) = hyp (¢ (z), ¢ (y)) for all 2,y € X implies
Videa? ity —ay=V1+E V1477 - (2.64)
with € := ¢ (x), n := ¢ (y) and, especially for z =0, y = z,
2= p(2)?
for all z € X, i.e., by (2.64), zy = ¢ (z) ¢ (y) for all z,y € X. Hence

lz —yll = lle (x) = @),
and thus ¢ € O (X), by Proposition 3, chapter 1. O
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2.17 Isometries preserving a direction

Let T be a translation group with axis e € X, €2 = 1. The following three state-
ments hold true for hyperbolic as well as for euclidean geometry. The given proof
of Lemma 31 is based on (X, hyp).

Lemma 31. Given o € O (X) with o (e) = ee, ¢ € R. Then aTya~ (z) = To(z)
forallz € X andt € R.

Proof. [a(e)]? = e? implies €2 = 1. With a~!(e) = e and
z=h+xzee, heet, 29 €R,
we obtain a~'(h) a~!(e) = he = 0 and a~'(h) € e*, and hence
aTya=Yz) = aTy(a 1 (h) + zoce)

= o (a7t (h) + [woe cosht + /1 + h? + x2 sinht]e)

= + [(xe)(coshet — 1) + V1 + 22 sinhet] e = Ty (),
by a~1(h) a=t(h) = h? and (2.62). O
Corollary. Define x (z) = h — xge for x = h+ xge with h € e and xo € R. Then

xTi =T+ x

for allt € R.
Proof. Notice x € O (X) and x (e) = —e. O
Theorem 32. Suppose that f : X — X is an isometry. Then

f(x)—z€Re forallz e X (2.65)

holds true if, and only if, f € T UTYx.

Proof. Obviously, f € T UT satisfies (2.65). Let now f : X — X be an isometry
satisfaying (2.65).
Case 1: f € O(X) Here f = id or f = x holds true. In order to prove this

statement observe
f(e) —e € Re,

i.e. f(e) = \e with a suitable A € R. Hence €% = [f (¢)]?, i.e. A2 = 1. Because of
0=he=f(h)[f(e)=f(h)-Ae
for h € e*, we obtain f (k) € et i.e.

f(h+xe) = f(h)+zole, f(h)€et, (2.66)
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for x = h + xge, h € e, 29 € R. By (2.65)
f(h+x0e) = h+ xzpe + pe (2.67)
with a suitable p € R. Hence, by (2.66), (2.67), f (h) = h, i.e. by (2.66),
f(h+x0e) = h+ x0le.
Thus f=id for A\=1, and f = x for A = —1.
Case 2: f € O (X). Since f € I(X,d),
f=ahip

with o € O(X), 8 € O(X) and t € R. Because of f & O (X), we obtain ¢ # 0.
Hence T3(0) # 0. By (2.65), o35 (0) = Ae with a suitable A € R. Thus

0# T;(0) = Aa™'(e),

which implies a~!(e) = ee, € € R, in view of T;(0) € Re. So we obtain a (e) = ce
with €2 = 1, i.e. by Lemma 31,

f=alya ' aB =Ty v

with v :=af € O (X). Since T—_¢ and f = T.; -y have property (2.65), hence also
their product «. This implies, by Case 1, v =id or v=x. Thus f e TUTyx. O

2.18 A characterization of translations

The following Theorem 33 is essentially a corollary of Theorem 32.

Theorem 33. An isometry f of (X,d) is a translation # id with azis e if, and only
if,

0# f(z)—z €Re (2.68)

holds true for all x € X.

Proof. Suppose that the isometry f: X — X satisfies (2.68). Hence, by Theorem
32, f € TUTyx. We will show that f = id and also f € Tx have at least one
fixpoint, i.e. a point x with f (z) = z, i.e. with 0 = f (x) — z, so that f must be a
translation # id with axis e.

Hyperbolic case: Here h + ev/1 + h? sinh % with h € el is a fixpoint of T} x.
FEuclidean case: Here h + %e is a fixpoint of T} .

Suppose, vice versa, that the translation 7; # id has axis e. Then, of course,
f(z) — 2 € Re holds true for all © € X. Property (T 2) of a translation group
implies that ¢ = 0 is a consequence of T () = z¢ for a point . O
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2.19 Different representations of isometries

Let again e € X be given with e? = 1 and suppose that T is the euclidean or
hyperbolic translation group with axis e. Given isometries

Ty B, vTs0

of (X,d) with o,y € O(X), 8,6 € O(X), t,s € R, we would like to answer the
question, when and only when a7} and 470 represent the same isometry.

Theorem 34. Given (X,d) € {(X, eucl), (X, hyp)} and
a,v€e0(X), 8,6 €0(X), t,s €R.
Then
oTyfB = +Tso (2.69)
holds true if, and only if,
t=s=0, af =~ forts =0,

or
0#£t=cs,e2=1, af =75, a(e) = ey (e) forts #0.

Proof. Of course, (2.69) holds true for t = s = 0, af = 4, but also if all the
presented conditions for ts # 0 are satisfied, by observing Lemma 31 and

vl =" ol (v a) Ty T e = Ty - 6.
Assume now (2.69), i.e. £T;8 = T,6 with € := v~ !a. Because of
133 (0) = T:6 (0)
we obtain
£(e) -sinht =e-sinhs (2.70)

and £ (e) € (e) = ee = 1.
Case ts = 0. Hence, by (2.70), t = s = 0, and thus a8 = 74, by (2.69).

Case ts # 0. Because of (2.70) and (& (e))2 =1, we obtain £ (e) = ee, e2 =1, 0 #
t = es. A consequence of & = vy la then is a(e) = ey (e). Finally observe, by
(2.69) and Lemma 31,

T6 =T = ETE™1 - €8 = Tet - €5,
ie T50 =TEB, 1.e. 6 =E£B. O
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2.20 A characterization of isometries

Suppose that (X, d) is one of the metric spaces (X, eucl) or (X, hyp). Then the
following theorem holds true.

Theorem 35. Let o > 0 be a fized real number and N > 1 be a fized integer. If
f: X — X is a mapping satisfying

d (f (), f (y)) <o forallx,y € X with d(x,y) = o, (2.71)
d (f (z), f (y)) > No for all v,y € X with d(xz,y) = Np, (2.72)

then f must be an isometry of (X,d).

Proof. Euclidean case: d(x,y) = ||z — y|| for all 2,y € X. In view of Theorem 4,
chapter 1, we obtain
fla) =w(x)+1

for all € X, where w € O (X), and t a fixed element of X. Obviously, f satisfies
(2.59).

Hyperbolic case: d (x,y) = hyp (z,y) for all z,y € X.
1. The mapping f preserves hyperbolic distances o and 2p.

Proof. Let p,q be points of (hyperbolic) distance g, and
x () =acoshé + bsinhé, € € R,
with a,b € X, ab = 0, b> = 1, be the line through p,q. If p = z (a), ¢ = 2 (3),

then |8 — o] = p. We may assume 8 — a = g, since otherwise we would work with
y (&) := x (=¢) instead of z (£), and o/ := —a, ' := —f instead of «, 8. Hence
p=z(a)and ¢ =z (a+ 0).
Define
zyx =z (a+Ao), A€ {0,1,...,N}.
Since hyp (xg,2n) = No, (2.72) implies
hyp (5, 27y) > No
with ¢/ := f (z) for z € X. Observe

hyp (2, 2341) <o
for A\=0,...,N —1, in view of hyp (x),zx+1) = 0. Hence

N-1

No <hyp (xf,2)y) <hyp (zf,25) + Y hyp (2,2},

A=2
N-1

< hyp (zf, ) +hyp (24, 25) + Y hyp (zh,25,;) < No.
A=2
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This yields hyp (z\,2,,) = o and hyp (zf, z5) = 2¢. Hence hyp (p',¢') = o. If
p,r are points of distance 2o, we may write

p==z(a)and r =2z (a+ 2p).

Working now with ¢ := z (a + o), the proof above leads to 2¢p = hyp (z(,z5) =
hyp (p',7'). O

2. If a,b,m are points with a # b and

1
hyp (a,m) = hyp (m,b) = 7 hyp (a,b), (2.73)

then m must be the hyperbolic midpoint of a,b.

Proof. If z (&) = pcosh& + gsinh¢, € € R, with pg = 0, ¢* = 1, contains a, b, we
may write o < 3,
a=x(a)and b=z ().

Equation (2.73) implies
hyp (a,b) = hyp (a,m) + hyp (m,b),

and hence that a,b,m are collinear, i.e. on a common line (see the notion of a
Menger line). Put m = z (7). By (2.73), we obtain

Iy —al=18-1l,
ie.v=1(a+p),in view of a < j. O
3. Given points p,q of distance o, we will write
p==z(a) and g =z (a+ ).
Ify(n), n € R, is the line through p' := f (p), ¢’ := f (q), we may write, by step 1,
P=y(B),d=y(B+o).

Then

fla(a+ o)) =y (B+Ae) (2.74)
holds true for all integers X\ > 0.
Proof. Clear for A € {0,1}. Put py := z (o + Ap). Now

1
0 ="hyp (pa—1,px) = hyp (Px,Pr41) = 5 hyp (Pr—1:Pr41)

and step 1 imply

1
o =hyp (ph_1,P\) = hyp (p),PA;1) = 5 hyp (PA_1,Prs1) (2.75)
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for A = 1,2,3,.... Assume that (2.74) is proved up to A > 1. Because of (2.75),
the points p) _,, p,p)\,, must be collinear. Put p,; =y (7). Hence

B+x\9=%(ﬂ+(>\—1)9+v)

by (2.75) and step 2. Thus v = 8+ (A+1) g, i.e. (2.74) holds true also for A+1. O

A consequence of step 3 is that f preserves all (hyperbolic) distances Ap with
re{1,2,3,...}.
4. There exists a sequence oy, g, as, ... of positive real numbers tending to 0 such
that f preserves all hyperbolic distances «;.

Proof. Let > 1 be an integer and A, B, C be points with
hyp (4, B) = pe = hyp (4,C)
and hyp (B, C) = 2p. Such a triangle exists because of
hyp (B,C) < hyp (B, A) + hyp (4,C).
We are now interested in the uniquely determined points B,,, C,, with
hyp (A, By) = o, hyp (B, B) = (n—1)e,
hyp (A,Cu) =0, hyp (C,C) =(n—1)0.

Since this configuration remains unaltered in its lengths under f, also the hyper-
bolic distance hyp (B, C,,) is preserved under f. Applying the hyperbolic cosine
theorem twice, we get

cosh? 10 — cosh 2p

coshhyp (B,,C,) = cosh? g — sinh? o - —
sinh” o

i.e. sinh pp - sinh% hyp (B,,C,) = sinh? o. The sequence
ay—1 :=hyp (B,,Cy,) >0, p=2,3,...,
hence tends to 0. All hyperbolic distances «,, are preserved under f. O

5. If a >0 and x,y € X satisfy hyp (z,y) = «, then
hyp (f (@), f () <
Proof. This is proved as soon as
Veso Vayex hyp (2,y) = a=hyp (f (), f(y)) <a+e

is shown. Let z,y be elements of X with hyp (z,y) = a and let = (£), £ € R, be
the line joining z,y with © = z(¢) and y = x (¢ + «) for a suitable o. Suppose
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that € > 0 is given. Take an element ~y of the sequence a1, s, as, ... of step 4 with
2y < ¢ and elements 71, ...,7, of {a1,as, ...} satisfying
O<a—(y1+-+vm) <27
The ;’s need not be pairwise distinct. Then
O<a—(m+ - +ym) <2y<[a—(m+ - +7)]+e (2.76)
holds true. Define vy = x (0 +71),...,&n =x (0 +71+ -+ +75). Take p € X with
hyp (zn,p) = =hyp (p,y).
The triangle x,,, p,y exists, because of
hyp (zn,y) <hyp (2n,p) +hyp (p,y),

i.e. because of hyp (z,,y) = a — (1 + -+ Yn) < 2v. If we designate f (z) by 2’
for z € X, then the triangle inequality implies

/

hyp (2',y') < hyp (¢, 2}) + -+ +hyp (27,_1,27,) + hyp (27, ") + hyp (¢, ¥/).
Since distances 71, . ..,7Vn,y are preserved under f, we get

/

y1 = hyp (x,21) = hyp («',]),..., 7 =hyp (n_1,2,) =hyp (z,_1,2),)
and v = hyp (zn,p) = hyp (z),,p'),. ... Hence
hyp (2/,¢/) <y + -+ +y+y<ate,

in view of (2.76). O
6. If r is a positive rational number, then f preserves the hyperbolic distance ro.

Proof. Let n > 1 be an integer. Then step 5 implies

Vagex hyp (¢,y) = & = hyp (£ (@), £ (1) <

S

Since distance o is preserved, we get

0 0

Veyex hyp (@,y) =n- = =hyp (f(2), f(y)) =n-—,
i.e. we get (2.71), (2.72) for £ instead of ¢ and for n instead of N. Hence steps 1
and 3, carried out for the present values £ and n, imply that all distances A - £
with A € {1,2,3,...} are preserved. O

7. If t is a positive rational number and if x,y are points satisfying hyp (z,y) < to,
then hyp (f (z), f (y)) < to.
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Proof. We shall write again v’ := f (v) for v € X. Take z € X with

hyp (z,2) = %tg = hyp (z,).
Step 6 implies hyp (2/,2') = %t@ = hyp (#/,y’). Hence
hyp (2',3') <hyp (a',2") + hyp (2',3/) = to. O
8. If r, s are positive rational numbers and x,y are points satisfying
ro <hyp (z,y) < s,
then ro < hyp (2, y") < sp holds true.

Proof. Let x (1), 7 € R, be the line joining z,y with z = 2 (£), y =z (n), £ < 7.
Hence hyp (z,y) = n — € and thus ro < n — £ < sp. Notice hyp (z/,y") < so, by
step 7. Define p := x (£ + sp). Then

hyp (y,p) = & + 50—,

i.e. hyp (y,p) = so— (n—&) < (s —r) . Hence hyp (v/,p") < (s —r) o, by step 7.
Moreover, hyp (x,p) = sp implies hyp (2’,p") = sp, on account of step 6. Hence,
by the triangle inequality,

hyp (2',y") = hyp («/,p') —hyp (y',p') Z se — (s —r) o =ro. O
9. hyp (z,y) = hyp (f (), f (y)) holds true for all x,y € X.

Proof. If hyp (z,y) > 0, take sequences r,,s, (v = 1,2,...) of positive rational
numbers satisfying

rl/g<hyp (:I/"y) <SVQ) V:1727"'7

and limr, = % hyp (z,y) = lim s,,. Hence

rvo <hyp (f (2), f(y)) <svo, v=1,2,...,

by step 8, i.e. hyp (z,y) = hyp (f (2), f (y))- O
Because of step 9 the mapping f : X — X must be a hyperbolic isometry.
This finally proves Theorem 35. U

Remark. If the dimension of X is finite, then

Vayex d(z,y) =o0=d(f(z), f(y)) =0, (2.77)

d the euclidean or the hyperbolic distance function, for a fixed g > 0 characterizes
the isometries (F.S. Beckman, D.A. Quarles [1], B. Farrahi [1], A.V. Kuz’minyh
[1]). In other words, if X is finite dimensional, then also N = 1 is allowed in
Theorem 35. The euclidean part of Theorem 35 was proved in the context of
strictly convex linear spaces by W. Benz, H. Berens [1], in the context of a more
general N € R by F. Radd, D. Andreescu, D. Valcan [1]. The theory beyond the
Beckman—Quarles result started with the important contribution of E.M. Schroder
[1]. The hyperbolic part of Theorem 35 was proved by W. Benz [8].
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2.21 A counterexample

The following examples show that (2.77) does not generally characterize the isome-
tries in the infinite dimensional case. The special example (X, eucl) was given by
Beckman, Quarles [1], the one concerning hyperbolic geometry by W. Benz [8].

Let X be the set of all sequences

a = (ay,az,as,...)

of real numbers a1, as, as, ... such that almost all a; are zero. Define
a+b = (a1+b1,a2+0bo,...),
Aa = (Aay, Nag,...),
a-b = aib; +asby +---

for all a,b in X and all real A\. This is a real inner product space which, in other
terms, we already introduced in chapter 1. Let X, be the set of all a € X such
that the a;’s of a are rational. Since X, is countable, let

w:N—= X

with N = {1,2,3,...} be a fixed bijection. Moreover, suppose that ¢ > 0 is a fixed
real number. Define

Y (w (@) = (w1, zi2,...) fori=1,2,...
with
(euclidean case) i = % and x;; = 0 for i # j,
(hyperbolic case) — x;; = /2sinh € and z;; = 0 for i # j.
We hence get a mapping ¢ : X,y — X. Another mapping ¢ : X — X, will

play a role: For every a € X choose an element ¢ (a) in X,,¢ such that

d(a,¢(a)) < g. (2.78)
It is now easy to show that

f: X=X
with f(z) := ¢ (¢(2)) for # € X preserves distance o, but no other positive
distance. In fact, if ¢ (z) = ¢ (y) for 2,y € X, we then obtain d (f (z), f (y)) = 0.
If o () # ¢ (y) for z,y € X, then d (f (z), f (y)) = o. What we finally have to

show is that d (z,y) = o implies ¢ (x) # ¢ (y). But ¢ () = ¢ (y) would lead, in
the case d (x,y) = 9, to the contradiction

+

b

o=d(z,y) <d(z,¢ () +d(e(y)y) <

in view of (2.78).

NN
INJNS)
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2.22 An extension problem
Let again (X, d) be one of the metric spaces (X, eucl), (X, hyp).
Lemma 36. Let a; # as and by # by be points with
d(a1,as) = d(by,bs). (2.79)
Then there exists a motion pu € M (X, d) satisfying
p(ar) = b1 and p(az) = ba.

Proof. Because of step D.a of the proof of Theorem 7, chapter 1, there exist
motions i1, e with pi(ar) = 0, pi(az) = Ae and pa(by) = 0, pa(bz) = Aze
where A1, Ay are suitable positive real numbers. Now

d(ar,a2) =d(p(ar), pa(az)) = d(0,\e),
—d

d(by,ba) = d (pa(b1), pa(b2)) (0, Age)
and (2.79) imply A; = Ay, in view of A1, Ay > 0. Hence
,uglul(ai):bi fori=1,2. O
Lemma 37. Let m be a positive integer, b an element of X, and suppose that
A1y .oy Oy Gy1 are m + 1 linearly independent elements of X . If
afn_‘_l =b* and amq1a; = ba; (2.80)

hold true fori=1,...,m, there exists w € O (X) with w = w™ !,

w(ame1) =b and w (a;) = a; (2.81)
fori=1,...,m.
Proof. Take an orthogonal basis c1, ..., ¢, with ¢Z =1, i = 1,...,m, of the vector
space V spanned by ai,...,a,,. Two cases are now important. If a,,41 +b €V,
put ¢pt1 =0, and if a1 + 0 € V put
a +b " /a +b
+1 +1
T i= mT — Z <7n2 Ci) Ci, (282)
=1
and, moreover, since r # 0,
r
Cm+4+1 = 777+
7]
In the second case ¢y, ..., ¢yt must be an orthogonal basis of the vector space

spanned by ai,...,Gm,@pmy1 +b. Define w: X — X by

m—+1
w(x)=—-x+2 Z (x¢;) ¢ (2.83)
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Since a; is in V, we obtain a;c,41 = 0, and hence

m
w(ay) = —a;+2) (a;¢;)ci = a;
i=1
for j = 1,...,m. If we write ¢; = g;1a1 + -+ - + 9iman, for suitable real numbers
0ij, we get, by (2.80),
Am+1C; = bCZ' (284)
fori=1,...,m. If a;p11 +b €V, then
Ami1+b = (Ami1+D
=Y ()
i=1

holds true, i.e., by (2.84), a1 +b = 2> (ams1¢i) ¢, i-e., by (2.83), w (amt1) = b.
If ayi1 +b €V, we obtain, by (2.82) and (2.80),

m . b
(ams1 —b)r Z (W— ci> (am416i — bey),

2
i=1
i.e., (by (2.84), (am+1 — b) a1 = 0. Hence from (2.84)
m+1 m—+1
A1+ 0 Ama1 + 0
ey () @ = S lamnale,
i=1

ie. w(amy1) =0b.
Since w is linear and an involution, and since it satisfies [w (x)]? = 22 for all

z € X, it must be in O (X). O
Remark. If one of the elements a,,41,b is in the vector space W spanned by
A1y .., 0m,amy1 + b, then also is the other one. In this case V' # W holds true.
We then get
m—+1 m—+1
Am+1 = Z (aerlCi) C; = Z (bCZ‘) C; = b.
i=1 i=1

The subspaces of (X, d) are given, by Proposition 13, by the subspaces Y of
the vector space X and their images under motions of (X, d). If Y has dimension
n € {0,1,2,...}, then the dimension of u(Y) for every u € M (X,d) will also
be defined by n. In order to show that this dimension of u (V") is well-defined we
consider another subspace Y of the vector space X such that there exists a motion
v with g (Y) = v (Y’). Observe Y’ = ¢ (Y) for the motion ¢ := v~!y which also
can be written, in view of Proposition 30, in the form ¢ = oT;8 with suitable
a, B € O(X) and a suitable translation with respect to an axis e. Hence

Y' =aTi8(Y), R :=a '(Y') = Ty(R)
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with R := S (Y). Since «, are linear and bijective, R and R’ are subspaces
of the vector space X with n = dimY = dim R. We will show that the equation
R’ = T;(R) implies R’ = R, i.e. dimY’ = dim R’ = dim R = n. There is nothing to
prove for t = 0. So assume ¢ # 0. As subspaces of the vector space X, both spaces
R and R’ contain 0 € X. Hence 0,7;(0) € R’ implies Re C R’, and 0,7_+(0) € R,
obviously, Re C R. Assume now z € R\Re. Hence T;(z) € R’ and R’ contains the
subspace W, of X spanned by 0,e,7;(z). Thus z € W, C R’. Similarly R’ C R,
because of R =T_,(R’).

The following theorem will now be proved.

Theorem 38. Let S # (0 be a (finite or infinite) subset of a finite-dimensional
subspace of (X, d), and let f:S — X satisfy

d(w,y) =d(f (), f(y))
for all x,y € S. Then there exists ¢ € M (X,d) with f (z) = ¢ (x) for allz € S.

Proof. 1.1f S = {a, a2} contains exactly two elements, define b; := f (a;), i = 1, 2.
Then Lemma 36 proves our theorem in this special case. If S = {a}, put b := f (a).
Because of D.a (see the proof of Theorem 7 in chapter 1), there exists a motion j
such that p1(a) = 0, and also a motion o with pa(f (a)) = 0. Hence ¢ = g
is a motion transforming a into f (a). So we may assume that S contains at least
three distinct points. Let a # p be elements of S and take a; € X with

d (Oa al) =d (aap)7
and, in view of step 1, & € M (X, d) such that « (a) =0, a(p) = a1. Because of
d(0,a1) = d(a,p) = d(f (a), f (1)),

take 8 € M (X, d) satisfying 8 (f (a)) =0, B(f (p)) = a1. Instead of S we would
like to work with « (S) containing 0, a1, and instead of f with

Bfat:a(S) = X.

Notice that « (S) 3 0 implies that a (S) is a subspace of the vector space X. It is
hence sufficient to prove Theorem 38 in the following form.

2. Let S 30, a1 with ay # 0 be a subset of a finite-dimensional subspace ¥ of the
vector space X, and let f: S — X satisfy f(0) =0, f(a1) = a1 and

for all z,y € S. Then there exists ¢ € M (X,d) with f (z) = ¢ (x) for allz € S.
3. The euclidean case. If dim > = 1, 3 = Ray holds true. Since

e =yl = IIf (x) = f (W)l (2.85)
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must be satisfied for all z,y € S, we obtain, by f(0) =0, f (a1) = au,
[Aar = Off = [[f (Aa1) = O]
and ||[Aa1 — a1] = ||f (Aa1) — a1 for all real A with Aa; € S. If

{07 ai, Aal} = {iE, Y, Z}v
we get for a suitable order
Iz =zl =llz =yl + lly — =]
This carries over to the f-images, and these must hence be collinear. Moreover,

we obtain f (Aa1) = Aaq, i.e. f(s) =s for all s € S. Put p =id.

Assume dim ¥ > 2 and that statement 2 holds true for all subspaces I of X
with dim II < m where m is a positive integer. We will show that then statement
2 holds true also in the case dim Il = m + 1, provided dim X > m + 1. Besides a;
take elements ag, ..., ap 41 in S such that aq, ..., a,,+1 are linearly independent. If
they do not exist, S must already be contained in a subspace 11 with dim Il < m,
and there is nothing to prove. Apply 2 for Sop = {0, a1,...,a,}, and there hence
exists 1 € M (X, eucl) with ¢1(0) =0 = f(0), i.e. p; € O(X), and

p1(a;) = f(a;),i=1,...,m.
Instead of f we will work with f; := <p1_1f :S = X. Observe

lz —yll = [lfi(z) = fr (W)l (2.86)
forallz,y € S,and f1(a;) = a;, i =1,...,m.Put b := fi(am+1). If we apply (2.86)
forx =0, y = am+1, and also for © = a;, y = amy1, ¢ = 1,...,m, we get (2.80). In

view of Lemma 37, there hence exists o € O (X) with pa(a;) = a;, 02(amy1) =0
fori =1,...,m. Put fo := ¢, ' f1 and observe fo(a;) = a; fori =1,...,m+ 1,
and

[z = yll = [[f2(x) = f2(y)] (2.87)

for all z,y € S.
Let now s be an arbitrary element of S and define ¢ := f5(s). Suppose that

€1,...,em+1 is an orthogonal basis of the vector space V' spanned by a, ..., Gm41
with €2 = 1,4 = 1,...,m + 1. Define e = 0 for t € V, and otherwise such that
€1,...,emas1,e is an orthogonal basis, €2 = 1, for the vector space W spanned by

ai,...,am+1,t. From (2.87) we get, by f2(0) =0¢€ S,
s?2=t*and sa; =ta;,i=1,...,m+ 1.

If e, = 0;1a1 + -+ + 0im+1Gm+1, We hence obtain se; = te;, ¢ = 1,...,m+ 1.
Observe s € S C II and therefore

s=(se1)er + -+ (s€m+1) €mt1
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and t = (ter)er + -+ + (temy1) ems+1 + (te) e, ie. t = s+ (te) e. Since se = 0, we
obtain
s =1t* = s* + (te)?,

ie. te = 0, ie. s = t. Hence fo = id on S, and the identity mapping of O (X)
extends fo on X. Thus ¢1pa(z) = f () for all z € S. This implies that if statement
2 holds true for all II, dim IT < m, then also for II with dim Il = m + 1 provided
dim X > m + 1.

4. The hyperbolic case. If dim¥ = 1, again ¥ = Ra; holds true. Since
hyp (2,y) = hyp (f (2), f (y)) (2.88)
must be satisfied for all z,y € S, we obtain, by f(0) =0, f (a1) = ay,

(Aar)? = (f (Aar)®
and A\a? = a1 f (Aap) for all real X\ with \a; € S. If

{Ovalv Aal} = {xaya Z}7

we get for a suitable order

hyp (z,x) = hyp (z,y) + hyp (y, ), (2.89)

since 0, ay, Aa; are on a common hyperbolic line. This carries over to the f-images
implying collinearity for the image points, i.e. for 0, a1, f (Aa1). Since (2.89) holds
also true for the image points

f (@), (), f(2),

we obtain f (Aa1) = Aaq, le. f(s)=sforal seS.

Assume dim ¥ > 2 and that statement 2 holds true for all subspaces IT of X
with dim IT < m where m is a positive integer. We now will proceed as in step 3
up till formula (2.86), which must be replaced by

hyp (z,y) =hyp (fi(z), f1(y)) (2.90)

for all z,y € S. It is important to note that the stabilizer of M (X, hyp) in the
point 0 is given by O (X), i.e. that v € M (X, hyp) and v (0) = 0 imply v € O (X),
so that p; € M (X, hyp) must be in O (X), because of ¢1(0) = 0. As in step
3 we put b := fi(amy1). Applying (2.90) for z = 0, y = amm+1, and also for
T=0;Y=0nt1,t=1,...,m, we get a,zm_l =b? and

\/l—i—a?\/1—|—afn+1—aiamﬂ:\/1—|—a12\/1—|—b2—aib7

i.e. (2.81). Proceeding as in step 3, we arrive at

hyp (z,y) = hyp (f2(90)» f2(y)) (2.91)
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for all z,y € S, instead of (2.87), with fo(a;) = a;, ¢ = 1,...,m + 1. With the
further definitions of step 3, we obtain from (2.91), by f2(0) =0€ S,

hyp (0,s) = hyp (0,7), hyp (a;, s) = hyp (ai, )
fori=1,...,m+1,ie.

s> =% and sa; =ta;, i =1,...,m+ 1.

This leads to s = ¢ as in step 3, and finally to ¢ipa(x) = f (z) for all z € S.
This finishes the proof of Theorem 38. O

2.23 A mapping which cannot be extended

We already know an example of an orthogonal mapping w : X — X which is
not surjective (see chapter 1 where orthogonal mappings are defined). Of course,
in this special case there cannot exist ¢ € M (X,d) with w(z) = ¢ (x) for all
xz € S := X, since p : X — X is bijective. Here S is not contained in a finite-
dimensional subspace of X.

In order to present a mapping f : S — X which cannot be extended and
where S is a proper subset of X, take as X all sequences

(al, as, as, .. )
of real numbers such that almost all of the a;’s are 0. Define, as usual,

a+b = (a1+b17a2+b2,...),
Aa = (Aag, Aag,...),

a-b = iaibi
i=1

for a,b € X, A € R. A basis of this real inner product space is
er = (1,0,0,...), ea = (0,1,0,...), ...
Define S = {0, ea,e3,€4,...}, f(0) =0 and f(e;) = e;—1 for i =2,3,.... Then

|z —yll = [If (z) — f (y)|| and hyp (x,y) = hyp (f (), f (v))

hold true for all z,y € S. The smallest subspace ¥ of X containing S is spanned
by e, €3, .... Hence ¥ is infinite-dimensional. If there existed ¢ € M (X, d) with
w(s) = f(s) for all s € S, we would obtain ¢ € O (X), in view of ¢ (0) = 0.
Assuming now

2] (61) = )\161'1 —+ -4 )\nein
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with A\; € Rand 1 <14y <y <--- <'ip, would imply
0=re1e;,41 =9 (e1) plei,+1) =@ (e1) e, =A;
for j=1,...,n,ie. ¢(e1) =0, contradicting
L=eier = (e1) p(e1).

There hence does not exist ¢ € M (X, d) extending f.



Chapter 3

Sphere Geometries of Mobius
and Lie

Also in this chapter X denotes a real inner product space of arbitrary (finite or
infinite) dimension > 2.

3.1 Mbobius balls, inversions
The elements of X' := X U {oo} are called points. A Mébius ball (M-ball) is a set
B(c,0) with c€ X and 0 < p € R,

or a set
H' (a,a) := H (a,a) U{oo} with 0 # a € X and o € R,

where B (c, 9) is a ball of (X, eucl) (see section 4, chapter 2) and H (a,«) a eu-
clidean hyperplane of X. The bijections of X’ such that images and inverse images
of M-balls are M-balls are called Mdbius transformations (M-transformations) of
X. The set of all these M-transformations is a group under the usual product
of bijections, the so-called Mdbius group M (X) of X. The geometry (X’,M (X))
(see section 9 of chapter 1) is defined to be the Mdbius sphere geometry over X.

If w € O (X) (see section 5 of chapter 1), v € R with v # 0, and a € X, then,
obviously,

f(x) =qw(x)+aforxe X, and f(00) = 0 (3.1)

is an M-transformation, called the similitude (y,w, a). Since also —w is in O (X),
(—w)(z) := —w (z) for x € X, we always will assume v > 0 in (3.1). Hence

(V,w,a) =idev=1,w=1id,a =0, (3.2)
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because © = yw (z) + a implies a = 0 for x = 0 and

implies v2 = 1 for x # 0, i.e. v = 1, by v > 0.

If H (a,«) is a euclidean hyperplane of X, then there exist to every z € X
uniquely determined h € H (a,a) = {z € X | ax = a} and A € R with

x = h+ Aa. (3.3)

In fact, if h, X exist as described, then az = ah + Aa? and (3.3) imply

ar —a ar — o
and h = x —

A =
a? a?

a. (3.4)

Vice versa, h, A of (3.4) satisfy (3.3), h € H (a,a), A € R.

The reflection in the euclidean hyperplane H (a, «) is the mapping ¢ from X
into X with

w(h+AXa)=h—Xa (3.5)
for all h € H (a,a) and A € R. The mapping ¢ is an involution of X,
p #id = ¢,

a bijection of X, and it leaves invariant exactly the points of H (a,«). By (3.4),
(3.5)

o — axr
2

p(z) =x+2 a (3.6)

a
for all z € X. Moreover, ¢ (z) = w (z) + 2%%, where

2ax

—a, (3.7)

r € X, is in O (X) because of [w(x)]? = 2?2 for all z € X, the linearity of w and
the bijectivity of ¢. The corresponding similitude

2
r= (1w )

is called the inversion in the M-ball H' (a, ). It is an involutorial M-transforma-
tion with
Fix (f):={z e X'| f(z) =2} = H (a,q).

The mapping ¢ : X’ — X' is defined by
t(r) = 2 for0# x+# o0,
t(0) := ooand:(o0):=0.
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It is an involution. In fact, putting y := ¢ (x) for 0 # 2 # oo we obtain z2y? = 1,
i.e.

Hence ¢ is a bijection of X’'. Moreover, ¢ is an M-transformation. The image

(1) of B(c,0) with ¢ # ¢? is B (ﬁ,wgggl,),
(2) of B(c,0) with ¢? = o2 is H' (2¢, 1),

(3) of H'(a,a) with a # 0 is B (5%,
4

2a?
of H' (a,0) is H' (a,0).

L’
2a

)
)
) ),
)

The inversion f = ¢(c, ) in the M-ball B (¢, p) is defined by

ﬁforc;ﬁm;éoo (3.8)
and by f(¢) = oo, f(c0) = ¢. The mapping ¢ is hence the inversion in the unit
ball B (0,1). If ¢ is the similitude

v = (o, id, c), (3.9)

flx)=c+o*-

then, obviously,

f=pupt, (3.10)

so that the inversion in B (c, ¢) is also an M-transformation. Moreover, we obtain
Fix (f) = B/(c,0). The inversion in B (c, ) can be characterized as a mapping
which interchanges ¢ and oo, and which carries the point = & {¢,00} into y € X

such that
y—c=A(z—c),

lz —c|l - lly — el = ¢
hold with 0 < A € R. The points ¢, z,y are hence on a common euclidean line.

Proposition 1. If by, by are M-balls, there exists p € M (X) with

by = p(b1) = {1 (a) | 2 € by}.

Proof. a) (p, id,c) carries B (0, 1) onto B (¢, p) for given ¢ > 0 and ¢ € X.
b) The inversion in B (0, 1) carries B (c, ||c||) onto H' (¢, 1) for all ¢ # 0.
¢) (1, id, 3% ) carries H' (¢,0) onto H' (c, 3) for all 0 # c € X. O

Let e be a fixed element of X with e = 1. If H'(a, ) is an M-ball, we may
assume a® = 1 without loss of generality, since

o= Gy )
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Take w € O (X) with w (e) = a (see step A of the proof of Theorem 7, chapter 1)
and put
v =(l,w, aa). (3.11)

Then ¢ (H'(e,0)) = H'(a,a), since ez = 0 is equivalent with w (e)w (z) = 0, i.e.
with
0=ua(p(z) —aa) =ap () — o
Let j be the inversion in H'(e,0) and f be that one in H'(a,a). Then
f=eie . (3.12)
We will prove this by applying (3.6) for H'(e,0),
j(z) =2 —2(ex)e,

and for H'(a, «),
f(z)=242(a—ax)a.

Equation (3.11) implies ¢~ !(z) = w™!(x — aa). Hence
jo Hz) =w (z — aad) — 2a(z — aa) -e,
on account of ew™!(z — aa) = w(e) - (z — aa) and w (e) = a. Thus
pip(#) = (z — aa) — 2(az — a)w (e) +aa = f (z).

For the following proposition we do not ask for a? = 1, but, of course, for a # 0.

Proposition 2. The inversion in H'(a, ), a # 0, can be written in the form fuf =1,

’wh816 ’ = Lsﬁ Umfh
(‘ 72(){ d 7(Y)
2

carries B (0,1) onto H'(a,«). Similarly, the inversion in H'(a,0) is given by

gLg~t, where g := 1pup with

3 . a
o= (lalid ), v = (1id, %),

carries B (0,1) onto H'(a,0).

3.2 An application to integral equations
If S is a subset of X, put AS := {\x | x € S} for A € R, and

a+S:={a+z|zeS}
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for a € X.
A parametric representation of the M-ball B (¢, g) is given by

Bed={e+

€ X\{O}} =c+0B(0,1),

and a parametric representation for the euclidean hyperplane H (a, a), a® = 1, by

v—(va)a

H(a7a):aa+{ T

v € B (0, 1)\{a}} . (3.13)

In order to prove (3.13), observe 1 # va, since otherwise (va)? = v2a?, i.e. v = +a,

ie. v = —a,ie. 1 =va= —1. Of course, the right-hand side of (3.13) is a subset
of H (a, ). If, vice versa, x is in H (a, a), put

2z

v::a—i-z—z,z::x—(a—i—l)a

and observe z # 0, since otherwise @ = ar = a(a + 1)a = a + 1. Hence v? =

1, v # a, and
v — (va)a
ag+ ——— =2
1—va

Equation (3.13) and B (0,1) = {T

x € X\{O}} imply

= Qa ( )
H(a,a) = +{|||

v € X\{0} with ” ” } . (3.14)

If we take the example b) of section 2, chapter 1, as space X, then formula (3.14)
solves certain integral equations:

Corollary. Let o < 8 be real numbers and h : I — R, I := [«, ], a function
continuous in I, satisfying h (t) > 0 for allt € I\T, where T is a finite subset of
1. Suppose that ¢ is a real number and a : I — R a real function also continuous
in I. All functions x (t) continuous in I satisfying

/ﬁh(t)a(t)x(t) dt = o (3.15)

are then given by (3.14), i.e. by
o=t {

The proof is obvious, since (3.15) asks for all points of the hyperplane H (a, o)
C X. As a matter of fact (3.14) solves even more integral equations. Let J # ) be
a subset of R and

v € X\{0} with ” I } . (3.16)

a:J— X\{0},0:J—=>R
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be functions. The problem then is to solve

a(s)-z(s) = e(s)

for all s € J, i.e. to solve

B
/ h(t)a(s,t)x (s, t)dt = 0(s) (3.17)

for all s € J. The solution of (3.17) is again given by (3.16), however, for each
single s € J, so that also v in (3.16) must be a function of s. Of course, instead
of J C R we could consider J C R™ as well, n a positive integer, i.e. functions

a (81, y8nst), 0(81,-.-,8n), (81, 8n,t).

3.3 A fundamental theorem

If a, b are elements of X', there exists u € M (X) with p(a) = b and p? = id. This
is clear for a = b. So assume a # b. If co € {a,b}, take the M-ball B (¢,1) with
{¢,00} = {a,b}. The inversion in this M-ball interchanges a and b. If a,b € X,

take the inversion in
a2 _ b2
H (a-b
(a-0.557).
which also interchanges a and b (apply (3.6) for the present situation). We now

would like to prove the following theorem which we call the fundamental theorem
of Mobius sphere geometry.

Theorem 3. Let [ be an M -transformation of X. If f(co) = oo then f is a
similitude. Otherwise there exist similitudes o, 8 with f = ouf.

Proof. a) Case: f(00) = oo. The restriction ¢ of f on X is then a bijection of
X, and images and inverse images under f of M-balls through oo are M-balls
containing co. Hence images and inverse images under ¢ of euclidean hyperplanes
of X are euclidean hyperplanes. Let p,q be distinct elements of X and let [ be
the euclidean line passing through p,q. In view of Proposition 23 and its proof,
chapter 2, the intersection of all euclidean hyperplanes H through p and ¢, must
be I. Hence

eM=¢ | () H|=[) »@H).
p,q€EH p,q€H

If J is a hyperplane through ¢ (p), ¢ (q), then f~1(JU{oo}) is an M-ball through
00, p, q. Thus ¢ ~1(J) is a hyperplane through p, q. Hence

c= N em= ) J

p,g€H @ (p), v ()T
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is a line, and ¢ thus maps euclidean lines of X onto such lines.

b) Based on this mapping ¢ we now would like to prove that

V(@) = (x) —¢(0), v € X, (3.18)

is a bijective linear mapping of X. Since ¢ is a bijection of X, so must be ~. If [
is a (euclidean) line of X, so is ¢ (1) and therefore 7 (1) as well. If ¢ is a line, take
distinct points p, ¢ of ¥71(g). Denote by h the line through p, . Then g and ~ (h)
are lines through ~ (p) and v (q), i.e. v~!(g) must be a line as well. Hence images
and inverse images of lines under v must be lines.

A set T C X is called collinear provided there exists a line [ O T'. Let vy, vy
be linearly independent elements of X. Define w; = v (v;), ¢ = 1,2. Then wy, ws
must also be linearly independent. Otherwise, {0, wy,ws} would be collinear, and
hence

Y {0, w1, wa}) = {0,v1,v2},

since the inverse image under -y of the line through 0, w1, wo must be a line. But the
collinearity of {0,vy,v2} contradicts the fact that vy, v are linearly independent.
Define P, Q by

P = {Oél’l)l “+ o2 | 1,090 € R},

Q {Brwi + Pows | f1, B2 € R},

respectively. v : P — @ is a bijection. Here « also denotes the restriction of the
original mapping v to P. In order to prove this statement, we only need to show
that

Vpep 7 (p) € Q and Yeeq v '(q) € P, (3.19)

since v is bijective. The image of the line & through 0,v; is the line &' through
0,ws, and the image of the line  through 0, vy is the line i’ through 0, ws. For a
given p € P choose a € £ and b € n with a # b such that a, b, p are collinear. Now
v (a), v (b), v (p) are also collinear and since vy (a) € &, v(b) € 1’ hold true, we
get v (p) € Q. For the remaining statement of (3.19) observe that also y~! maps
lines onto lines.

Write (aq,a9) instead of ajv; + agvy and (B4, f2) instead of the element
Brwy + Bows. The mapping v : P — () may then be considered to be a bijection
§ of R? by defining

§ (a1, a2) = (B, B2)

if, and only if, v (ayv1 + agve) = Brw; + Baws. Images and inverse images under
§ of lines of R2,

{(A1, A2) + (o1, 02) | € R} =1 (A1, A2) + R (01, 02), (01,02) # (0,0),

must be lines, since
v(a+Rt) =b+Rs
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for

a:alvl—i—agvg, t:Tl’Ul +’7’21)27é0,

b= piwi + Bawz, §= 01w+ o2wz # 0,
is equivalent to

5 ((a1,02) + R (11,72)) = (B1, f2) + R (01, 09).

A basic theorem of geometry (see, for instance, Proposition 2 of section 1.2
of W. Benz [3]) now says

§ (a1, a2) = (aran + agazr, arais + agags)
for fixed real numbers a;;, in view of 6 (0,0) = (0,0). In particular,
0(1,0) = (a11,a12), 6(0,1) = (as1,ass).
Hence (a11,a12) = (1,0) and (ag1, azz) = (0, 1) since
w; =7 (v;) = apnwi + apw:
for i = 1,2. Thus § (a1, a2) = (a1, az), ie.
v (1v1 + agve) = aqwy + asws = a7y (v1) + agy (v2). (3.20)

Let now pi1,p2 be linearly dependent elements of X. In this case, we would also
like to show that

v (eapr + azp2) = ary (p1) + a2y (p2)
for a1, as € R. Since there is nothing to prove for p; = 0 = p,, we may assume that
p1 # 0 without loss of generality. Then ps = gp; with ¢ € R. Since the dimension
of X is at least 2, there exists ¢ € X such that pp,q are linearly independent.
Hence, in view of (3.20),
v (aqp1 + agp2) =7 ((a1 + 0o2) p1 + 0+ q) = (o + 0az2) v (p1)

and
a1y (p1) +asy(p2) =a1y(p1+0-q)+asy(op1 +0-q)

= (a1 + 0a2) v (p1)-
¢) The mapping ¢ of step a) can hence be written, by (3.18), as
¢ (x) =7 (x)+ ¢ (0)

for all x € X, where 7 is a bijective linear mapping of X. This mapping ¢ was the
restriction of an M-transformation f of X satisfying f (c0) = oco. Since B (0,1) is
an M-ball not containing oo, we obtain

¥ (B (0, 1)) =f (B (0, 1)) = B(c,0)
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with suitable ¢ € X and o > 0. Hence

(- () ) -

(hﬁ”“*“&Qz& (3.21)

for all x # 0 in X, i.e.

with @ := ¢ (0) — ¢ for all z # 0 in X. Applying (3.21) for = and —z yields
v(x)-a=0for all x # 0 in X. If a were # 0, then

a®> =7 (v '(a)-a=0.

Hence ¢ = ¢ (0), i.e. (v (gc))2 = ¢%a? for all x € X. Since
1
o@) =@ v X,

is linear and satisfies ||z|| = |jw (z)| for all € X, it must be orthogonal (see
section 5 of chapter 1). Hence

¢ (z) = ow (x) + ¢ (0).

Thus f is a similitude.

d) Case: f(00) = c € X. Define g := ¢(c, 1) - f. Hence g is an M-transformation
with g (c0) = 0o and thus a similitude according to step ¢). In view of (3.10) there

exists a similitude o with

t(e,1) = awa™t,

Hence f =t(c,1)- g = av - (a"1g) = cu3 with the similitude 3 := a~!g O

Proposition 4. If o, 3,7, are similitudes, then awf = 1§ holds true if, and only
if, «(0) = v(0) and

M@=§j@ﬂ@, (3.22)

where ¢ := vy la =: pw with 0 < p € R and w € O (X).

Proof. Put v := 63~ 1. Then we have to prove that ¢ = 1) holds true provided
p(0)=0and ¢ = Q%cp.

a) Assume ¢ = wp. Applying this for © € {0,00}, we obtain ¢ (0) = 0 and
¥ (0) = 0. Since ¢, 1) are similitudes leaving invariant 0, we get

Y =:ow, Y =:10m
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with w, 7 € O (X) and positive reals g, o, without loss of generality. If z ¢ {0, 00},

then, by 22 = (7 (x))Z,

i.e. pow (r) = 7 (x). Hence (00)? = 1, i.e.
1 1

¢:a7r2902w25w:?<p7

ie. (3.22).
b) Assume ¢ (0) =0 and ¢ = Q% . Hence 9 (0) = 0 and thus ¢ (z) = ) (x) for
x € {0,00}. For z & {0,000} we get

Lw(.’lﬁ):L(w(g))zgw(f)chb(l‘). O

%

Remark. Suppose that «a, 8 are similitudes. All similitudes =, § satisfying a8 =
~1d are then, by Proposition 4, determined as follows. Choose v arbitrarily such
that v(0) = «(0) holds true and define ¢ to be the mapping (3.22). Of course,
there are auf8 which cannot be written in the form ¢4, for instance when « (0) #
id (0) = 0. There are also awf8 which are not of the form ~e, since a8 = ¢ is
equivalent to 8~ tia™! = 1y~ L. Clearly, at3 cannot be a similitude « if o, 8 are
similitudes, since otherwise : = a~!y3~! would be a similitude, contradicting

L (00) # oo.
3.4 Involutions

A Mobius transformation f is called an involution provided f? =id # f.

Theorem 5. The similitude f (x) = ow (x)+a with 0 > 0, w € O (X) anda € X is

an involution if, and only if, 0 = 1, w (a) = —a and w? = id # w. All involutions
f of M(X) which are not similitudes are given by
f=g-tlc,T) (3.23)
with c € X, 7> 0, ¢ € O (X) such that ¢* =id and
g9(x) =¢@)+[c—e()] (3.24)
Proof. a) Obviously, if p =1, w(a) = —a and w is an involution, then
fF=id# f (3.25)

for f (z) = ow (x) + a. Assume now (3.25). Then
F2 (@) = Q?w?(2) + [ow (a) +a] = (3.26)
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for all x € X. For = 0 we obtain gw (a) + a = 0. Since ¢ := w? is in O (X), we
get o (v) ¢ () =22 ie. o =1, by ¢*¢(z) = x and ¢ > 0. Hence, by (3.26),

Wwiz) ==
for all z € X and w (a) = —a. If w were equal to id, then
—a=w(a) = a,

i.e. a =0, i.e. f =id, a contradiction.
b) A mapping (3.23) cannot be a similitude, because otherwise the inversion
t(c,7) = g~'f would be a similitude. Observe ¢g? = id and gi(c,7)(c) = oo,
gt (c,7)(00) = c. For z € X\{c} we get

nien)o) = (225) +e=tlenate)

(x—c)
and hence [g¢ (¢, 7)]? = id.

¢) Suppose now that f € M (X) is an involution, but not a similitude. Then, by
Theorem 3, f = auf3 with suitable similitudes «, 3. Because of f2 = id, we get

af =B a1

Hence, by Proposition 4, Ba (0) = 0 and o~ ! = ? Ba - B with Ba =: pw, o > 0
and w € O (X). Thus

0 id = (fa)? = o*u?,
ie w?=1id, ie.

f=aup=apwa! (3.27)

with o € R, w € O (X) satisfying o > 0, w? = id and where p also designates the
similitude g () = 0z, x € X, 0 (0c0) = 00. Put

a(z)=1o0v(z)+c

with ¢ € X, 0 > 0 and v € O (X). Hence

Observe tow (0) = oo, tow (00) = 0 and

w (z)

Low (x) = o

for 0 # = € X, on account of w(z)w (x) = zz. This implies with (3.27) and

— -1
pi=vwrT T,

flay=222%"9 (3.28)
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for x € X\{c}. With g (z) := ¢ (z — ¢) + ¢ we hence get for z # ¢ in X,

f (@) = argwa™ (z) = ge (e, 7)(@), (3.29)
where 7 € R is defined by /o -7 = o. The formula (3.29) is also correct for
x € {¢, 00}, by observing « (0) = ¢ and that tpw interchanges 0 and co. O

Theorem 6. If s € M (X), then sts™! =1 (c, ) in the case
s(B(0,1)) = B(c,0), 0 > 0.
Moreover, sts™1 is the inversion in H'(a, ) in the case
5(B(0,1)) = H'(a, a).

If § is the inversion in the M-ball b and if s € M (X), then sjs~" is the inversion
in s (b).

Proof. a) Observe sts™! # id = (sts™1)2. Hence sts~! is an involution. Applying
again the definition
Fix (\):={z e X' | A (z) =z}

for A € M (X), we obtain Fix (sts™') = s (Fix (1)) = s (B (0,1)).

b) Case 1: s (B(0,1)) = B (c, 0).

If f:=s1s7! is a similitude, then, by Theorem 5,
fla)=w(@)+a

with a € X, w € O(X), w #id = w?, w(a) = —a. Hence

oz _ wlc ow () "
o] f( E ||) T (3.30)

for all z # 0 in X, by Fix (f) = B(c,0) and the parametric representation of
the M-ball B (c, ) (see section 2). If we apply (3.30) for  and —z, we obtain
w(x) == for all z # 0 in X, a contradiction. So f cannot be a similitude. Hence,
by Theorem 5,

-1

fi=ss"" =g-t(a,7) (3.31)

with a € X, 7> 0, € O (X) such that ¢? = id and
g(x)=¢ @) +a—ypa)

Observe f (a) # a, since otherwise a = gt (a,7)(a) = oco. Hence

gy =1 (e+1h) (3.82)
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for all z # 0 in X, by Fix (f) = B (c, 0), implies

atct (3.33)

|| H
for all x € X\{0}. By (3.31), (3.32) and b := ¢ — a, we obtain 0 # b+ IIJCH and

bo €0 _ o Ozl + oo @)l

el =7 @l on)? (3.34)

for all x # 0 in X. Applying this equation for z and —x in the case x # 0 and
xb = 0 implies

2

RN

forz =bandallz € X withx L b,i.e. zb = 0. Hence 72 = b2+ 02, by 2% = [p (2)]?
and since there exist x # 0 in X with 2b = 0. Thus b = ¢ (b) and z = ¢ (x) for all
2z Lb. Ifb=0,then c =a, 7 = o from 72 = b® + 02, and g = id because of z L b
for all z € X, i.e. because of ¢ (z) =z for all z € X. Hence f = ¢(a,7) = ¢ (¢, 0)
for b = 0 from (3.31). We now will prove that the case b # 0 does not occur. So
assume b # 0. Observe

= ¢ ()

with y — g—be_bfor all y € X. Hence

ie. p(y) =y forally € X, in view of ¢ (b) = b and ¢ (z) = x for all x L b. Thus
g=1id, ie. f =t (a,7), by (3.31). Now (3.34) and ¢ = id imply

(b-i— HEH)2 =72, by (3.33), for all z # 0 in X. Hence bz = 0 for all x # 0 in
X, by b? + 0? = 72. Since b # 0, we get b*> = 0 for x = b, a contradiction.
c) Case 2: s (B(0,1)) = H'(a, ).
Since s (B (0,1)) = s(Fix 1) = Fix (sts71), by step a), we get f(c0) = oo for
f := sts~1. Hence, by Theorem 5,

J (@) =w(@)+b
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with w € O (X), w # id = w?, w(b) = —b. Without loss of generality we will
assume a? = 1. From (3.14) we get

U*(U)
o] =

Because of Fix (f) = H'(a, «), we obtain

H(a,a)—anr{ |0#v€XW1th” I }

v— (va)a w (v) — (va) w (a)

aa + =b+ aw(a)+

[[o]| = va [v]| = va

for all v # 0 satisfying v # a - ||v||. Applying this for v and —v for 0 # v L a yields
aa=b+ aw(a) and v = w (v) (3.35)

for all v # 0 with v L a. Since = (za) a + [ — (za) a] for all x € X, we get from
(3.35)

w(z) = (za)w(a) + [z — (za) a] (3.36)

for all z € X, by observing [ — (xza)a] L a. Note w( ) ;é a because otherwise
w = id from (3.36). Hence (3.36) implies for x=w(a

3

), b
0= (w(a)—a)(w(a)a+1),
2.4? and w (a), a must be linearly

ie. w(a) -a=—1. Thus (w(a) a)2 =1=[w(a)]
a) = —a from w (a) # a. Thus

dependent by Lemma 1, chapter 1. Hence w (a) =
w(x)=2—2(za)a

from (3.36), and b = 2aa from (3.35). This implies that f is the inversion in
H'(a, ) (see section 1).

d) Let j be the inversion in the M-ball b and take, by Proposition 1, u € M (X)
with p (B (0, 1)) = b. Then, according to steps b), ¢) of the proof of the present
theorem, j = pep~t. Hence

sjs™t = (sp) 3 (sp) ™.

1

Again, by steps b), ¢), (su) 7 (sp)~! must be the inversion in

(sp)(B(0,1)) = s [ (B(0,1))] = s(b). O

Remark. If b is an M-ball, the inversion in b will be denoted by inv,. The last
statement of Theorem 6 can hence be expressed as follows: If b is an M-ball and
s an M-transformation, then

s-invy - 571 = inv, ). (3.37)
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3.5 Orthogonality

Let a,b be M-balls. a will be called orthogonal to b, a L b, provided a # b and
invy(a) = a.

Proposition 7. Let a,b be M-balls with a L b. Then p € M (X) implies p(a) L
1 (b).

Proof. From inv,, )y = p-invy - p~t, by (3.37), and invy(a) = a, we obtain

inv,, ) (1 (a)) = p - vy (a) = p(a). O

Lemma 8. If a,b are M-balls with a L b, then a N'b contains at least two distinct
points.

Proof. In view of Proposition 1 there exists p € M (X) with u(b) = B(0,1).
Hence, by Proposition 7, y(a) L B (0,1), and thus ¢ ((1(a)) = p(a).

Case 1: pu(a) = B(c, o).

Since the image of i (a) under ¢ is p(a), we obtain from the list of images of
M-balls under ¢ (see section 1),

c Y . 2 2
B =B th .

Proposition 11, chapter 2, yields

c= % and p = ¢ (3.38)

2= el

The second equation implies |c¢? — ¢?| = 1, because of ¢ > 0. Hence, if ¢ = 0, then
o0=1,ie p(b) = p(a). But b # a. Thus ¢ # 0, i.e. ¢ — ¢> = 1, by (3.38). Take
p € X with pc = 0, p? = 1 and observe

éiﬂ%p€Bwﬂﬂﬁﬂam:u@ﬂu@)

Case 2: p(a) = H'(p, a) with p? = 1.
The list of images of M-balls under ¢ yields a = 0, since ¢ (1 (a)) = p(a). Take
q € X with pg =0, ¢> = 1. Then 4q € p(a) N (b). O

Proposition 9. If a,b are M-balls with a 1 b, then also b 1 a holds true.

Proof. Take r in aNb and py € M(X) with pi(r) = oo (see the beginning of
section 3). Hence pq(a) L p1(b), by Proposition 7, and

pi(a) =: H' (p, ), pa(b) =: H'(q, B)

with p? =1, ¢> = 1.
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Because of Lemma 8 there exists a point s # r on a L b. Define the similitude
p2() :=x — pa(s)
and p := popr. Hence p(a) L p(b) and
(@) = H'(p,0), 1 (b) = H'(g,0).
Thus inv,, ;) (@ (a)) = p(a) and, by (3.7),
inv, ) (z) =z —2(qr)q, € X.
Consequently, t € p- = H (p,0) implies inv, 4 (t) € pt, ie.

(t—2(qt)q) p = 0,

i.e. (qt)(gp) = 0 for all t € p*. If gt = 0 would hold true for all t € p*, then
H (p,0) C H(q,0), contradicting p(a) # u(b), by Proposition 12, chapter 2.
Hence pg = 0, which implies
p(b) L p(a),

i.e. b L a, by Proposition 7. g
Proposition 10. 1) H'(t,a) L H'(s,8) & ts=0.

2) B(c,0) LH(t,a) & tc=a < ce H(t,a).

3) B(c,0) L B(d,0) & (c—d)? = 0®+ 02,

Proof. 1) Put a := H'(t,a), b := H'(s,) and assume ts = 0, t> = 1, s2 = 1.
Because of

invy(z) = & — 2(sx)s + 20s, (3.39)

we obtain invy(a) C a, i.e. invy(a) = a, by Proposition 12, chapter 2, i.e. a L b.
Vice versa assume a L b. Since a # b there exists xg € X with txg = « and
sxg # B, because otherwise a C b would imply a = b. Hence, by (3.39) and a L b,

a=1t-invy(zg) =t (zg — 2520 - s + 20s),

ie. (8 —sxo)ts =0, ie. ts =0.
2) Put a :== B(c¢,0), b:= H'(t,«) and assume a L b, i.e. b L a, by Proposition 9,
ie.
t(c,0)(b) =b.
Hence ¢ = ¢ (¢, 0)(c0) € b, i.e. t¢ = a. Vice versa assume ¢ € H (t,a). If x # ¢, 00

is on b, then
5 T—C

(z —¢)?

t(c,0)(x)=c+o
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is also on b, since tx = o, i.e. t (x — ¢) = 0 yields
t-[t(c,0)(x) —c] =0.

Now inv,(b) C b implies b = inv, (inv, (b)) C inve(b), i.e. b L a.
3) Assume a := B (c,9) L B(d,o) =: b. If ¢ were equal to d, then a b # @ would
imply o = 0, i.e. a = b. Put c—d =: p, take t € X with ¢ = 1, tp = 0, and observe

x:=c+ ot € B(c,0). (3.40)

Hence invy(x) € B (¢, 0), by a L b, i.e.

2
+ot—d
_d_p2tretma ) 2 41
<c o (c+gt—d)2> 0%, (3.41)

in view of (3.8). Thus, by tp = 0, |p? — 0%| = 0?. Interchanging the role of a
and b, we also obtain [p?> — ¢?| = 2. Hence p? = p? + o%. Vice versa assume
(¢ — d)? = ¢®> + o2. This implies p := ¢ —d # 0. Observe d € B (c, ), since
otherwise p? = ¢?, i.e. ¢ = 0. The arbitrary point of B (c, o) is given by (3.40)
with #2 = 1. In order to prove a L b, we will show (3.41) for all ¢t € X satisfying
t2 = 1, by noticing p + ot # 0, since otherwise p = —gt, i.e. p?> = ¢2. In fact,

2 2 4
t t
(pgz p+92) 2= o? 9,20 +9p2 "y
(p+ ot) (p+ot)*  (p+ot)
because of p? — 2 = 2. O

Remark. If B(c,0) L B(d,o0), then (z — ¢)(x —d) =0 for = € B(¢,0) N B (d,0).
This follows from
4ot =(c—d)?=((c—2)- (d—nc))2 =0*+ 0% =2z —c)(x —d).
Remark. If B (¢, 0) L B(d,o), then (z—y)(c—d) =0 for z,y € B(¢,0)N B (d,0).
This follows from
(=== —0 (x-d?=0"=(y—d)
i.e. from —2zc + 2yc = y? — 22 = —2xd + 2yd.

Proposition 11. Suppose that a is an M-ball and that p € a is a point. Then
{p, ¢ := inv,(p)} is the intersection I of all M-balls b satisfyingp € b L a.

Proof. Without loss of generality we may assume p = oo, and, by applying a
suitable similitude, even a = B (0, 1). The balls b with co € b L B (0, 1) are given
by all H'(¢,0), t # 0. Observe now ¢ = 0 and

{o0,0}= () H'(t,0)=:R
0£tEX

since r € X'\ {00, 0} implies r € R, in view of r & H'(r,0). O
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Proposition 12. a) A line cuts B (c, o) in at most two distinct points.

b) H(a,a) £ B(c,0) £ H (b, ).

c) If p € B(c,0), there is exactly one hyperplane H (a,c) with B (c,0) N
H (a,a) = {p}, namely H (c —p,(c—p) p), the so-called tangent hyperplane
to B(c, o) at p.

Proof. a) If p+Ruv, v? = 1, is a line, the points of intersection p+ Av with B (c, o)
are determined by

2=p+ —0c=p—c+2 w(p—c)+I\.

There are hence at most two solutions.

b) H (a,«) contains a line, but not B (¢, ¢). Both points

b
+0 —
T

are in B (¢, 0), but they are not both in H (b, 8).

c) Let p be a point on the M-ball B (c, ). Hence (p — c)? = 02, ie. p # c. If
H (a,«) contains p, then a = ap. Observe

2a (c —p)

2c_p— a2 aeH(a7ap)mB(C’Q)'

Asking for {p} = H (a,ap) N B (c, g), we obtain

2a (c —p)

2c—p— 2

a=p,
i.e. ¢ — p = Aa with a suitable real A # 0, in view of p # ¢. Hence
H (a,ap) = H (¢ —p,(c—p)p).

Assuming now g € H (c —p,(c—p) p) N B (c, 0), we get

(c—p)g=(c—p)pand (q—c)* = o>

This implies (¢ — p)(¢ — p) = 0 and ((q —p)—(c —p))2 =02 ie.
O =(g-p?+(-p?=(g-p’+,

i.e. g =p. O
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3.6 Mobius circles, M- and M"Y -spheres

Proposition 13. If p, q, 7 are three distinct points and also p’,q',v’, then there exists
feM(X) withp' = f(p), ¢ = f(q), " = f(r).
Proof. Case l: p=o00=7p'.

If s,t € X satisfy s = t2, then there exists w € O (X) with w (s) = t. In the case
s # t take the mapping (3.7) with a := s —

w(x):x—%(s—t),

and observe w (s) =t by 2(s — t) s = s — 2ts + t2. Now choose ¢ > 0 with
*lg—r)* =~

and put s := o(q¢ — ), t := ¢’ — r’. There hence exists w € O (X) with ¢ — 1’ =
ow (¢ — 7). Define now

f(z):=ow(x—q)+q.

Ifo(g—r)=s=t=q¢ =1 put f(z)=0(x—q) +"

Case 2: p=o00 £ p.

Take 7 € M (X) with 7 (p') = 0o and put 7 (p') =: p(, 7(¢') =: ¢ :
Because of case 1, there exists ¢ € M (X)with pj = ¢ (p), ¢ = ¢ (¢), 7§ = ¢ (7).
Now put f :=7"1p.

Case 3: p # oo.

Take o € M (X) with o (p) = oo and put o (p) =: po, 0 (q) =: qo, 0 (r) =: 70.
Because of cases 1 or 2, there exist ¢ € M (X) with p’ = ¢ (po), ¢ = ¥ (qo),
r" = ¢ (rg). Now put f := po. O

s
\‘
—
S
\_)
I
.
o~

g
q/

If p,q,r are three distinct points, then the intersection of all M-balls con-
taining p, ¢, r will be called a Mébius circle, or also an M-circle, of X.

Proposition 14. If [ is a fized euclidean line of X, then p (1U{c0}) is an M-circle
for all p € M(X). There are no other M-circles.

Proof. If | is a (euclidean) line, we will designate the set [ U {oco} by I’. Let p # ¢
be points of [ and put r = co. All the M-balls through p, ¢, r are then given by
all H'(a, o) with p,q € H (a,«). In view of step a) of the proof of Theorem 3, we
hence get that I’ is the intersection of all M-balls through p, g, r. Let p € M (X) be
given. p (I') must then be the intersection of all M-balls through p (p), p (¢), p (),
ie. (') must be an M-circle itself. If, finally, ¢ is the M-circle through the
pairwise distinct points p/, ¢, r’, we take p € M (X)), by Proposition 13, satisfying
P =p(p), ¢ =plq), " =p(r). Hence c = pu (I'). O
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Let n be a positive integer with dim X > n. If p € X and if s1,...,s, € X
are linearly independent, then

{p+§181++£n5n|§1v€n GR}

will be called an n-plane of X. An M,-sphere is a set P, = P, U {co} where P,
is an n-plane or a set P,+1 N B (¢, 0) where P,,;1 is an (n + 1)-plane containing
ceX.

Instead of P), we also will speak of an extended n-plane.

Proposition 15. All M-circles of X which are not of type l', l a line, are given by
{zeP|(z—c)?=0, (3.42)

where Py is an arbitrary 2-plane, 0 > 0 a real number, and ¢ a point in P,.

Proof. Let Py be given by
Py ={c+&r+nt|&neR}
with 72 = 1 = ¢? and rt = 0. Hence, by (3.42),
PoNB(c,0) ={c+&r+nt| & +n* =0}, (3.43)
or also
P,NB(c,0) ={c+orcosp+ otsing | 0 < ¢ < 27} (3.44)

The image of (3.43) under the inversion ¢ (¢ + or, o) is, by (3.8), I’ where [ is the
line through a,a 4+ t with a := ¢ + %gr. Hence, by Proposition 14, (3.43) is an
M-circle. Finally we must show that every M-circle Z oo is of type (3.42). If

a(z)=ow(x)+b, 0 >0, weO(X), be X, (3.45)

is a similitude, then

B(c,0) = {C+gx x#()}
]

(see section 2) implies

a(B(c,0)) = B(alc), oo).
Hence « (P2 N B (c, g)) =Q@2NB (a (o), og) where Qs is the 2-plane « (P»), must
again be of type (3.42) since « (¢) € a (P2). We will refer to this result later on by
(R).

In view of Proposition 14, let now u (I’) be an arbitrary M-circle which does

not contain co. Then p cannot be a similitude, since otherwise oo = 1 (00) € u (I').
Hence, by Theorem 3, p = a8 with similitudes «, 8. From awf (I') # oo we get

B (') # o™t (00) = o0,
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i.e. t (W) # oo where b/ := 3 (I'). Because of h/ # 17 1(c0) = 0, we may write
h={p+X|XeR}

with suitable elements p # 0 and ¢ of X with pg = 0, ¢*> = 1. If ¢ (k') is of type
(3.42), then also, by (R),

alb(W)]=apl')=pnl).

But )
p
L) ={&p+ngl&neR ﬂB<,>7
()=t nalen eRIOB o o)
since L(h’)z{O}U{ﬁ‘i’}\%MGR}. O

Remark. As a consequence of Proposition 15 we obtain that the M-circles of X
are exactly the M;-spheres.

Proposition 16. Let n be an integer satisfying 1 < n < dim X. If P, is a fized
n-plane, then w (P)) is an M,-sphere for all pw € M (X). There are no other M, -
spheres.

Proof. We already proved this result separately for the (for us) more important
case n = 1 (see Proposition 14). If p is a similitude, then p(P)) is again an
extended n-plane. So we have to show, by Theorem 3, that a3 (P)) is an M,,-
sphere, where «, 8 are similitudes. Let 3 (P)) be the extended n-plane @, with

Qn={qg+mti + - +nutn | n; € R}

such that ¢ = 1 and #;t; = 0 for i # j. If 0 € @), then ¢(Q},) = Q/, and

n? n

ar(Q),) = p(P)) is an extended n-plane. So assume 0 & Q) , i.e. oo & ¢(Q),).
Since oo € Q!,, we get 0 € ¢+ (Q!,). We may write
with 2 =1, t;t = 0 and v # 0, by 0 ¢ Q/,. Hence

(mi +7i)ti +t i € R
(i + 7i)* + 72 ' -

Thus ¢ (Q),) C Qny1 := {Enit; +nt | n;,n € R}. Moreover,

@ =muf3

/Y = o
L(Qn) - Q7L+1 mB (2,)/’ 2|'Y|) )

ie. u(P)=al(Q)]=a(@Qn+1)NB (a (%) ,ﬁ) is an M,,-sphere, where «
is defined by (3.45).
Let now X,, be an arbitrary M,,-sphere.
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Case 1: ¥, is an extended n-plane R}, with
Ry ={p+&si+-+&sn|& R}
such that s? = 1 and s;s; = 0 for i # j. Put
P, ={a+ X vi+-+ Ao, | N € R}
with v? = 1 and v;v; = 0 for i # j. Define
S={a,a+v1,...,a+v,}

and f: S — X by f(a) =p, f(a+v1) =p+s1,..., f(at+vn) =p+sn. Applying
Theorem 38 of chapter 2 for (X, eucl), we obtain that there exists ¢ € M (X, eucl)
with f () = ¢ (z) for all z € S. Hence

plx)=w(x)+d, xe€X,
with w € O (X) and a fixed d € X. Thus

¢ (a) =pand w(v;) = s,
ie. p(a+ v + -+ Avn) = @ (a) + Mis1 + -+ + A\nSn. Now observe that o,
extended by ¢ (00) = o0, is in M(X), and that ¢ (P,) = R,, i.e. ¢ (P.) = R),.

Case 2: ¥, = P41 N B(c,0), ¢ € Ppiq.

Put Ppy1 = {c+&s1+ -+ &npisntr | & € R} with s7 = 1 and s;s; = 0 for
i # j. Now observe

t(c+os1,0)(3n) = Q,
with Qn, = {c+§ s1 +Z?:21 7:8; | ;i € R}. Because of case 1 there exists ¢ € M (X)
with ¢ (P}) = @),. Hence
Sn = (et 0s1,0)(Q) = t(c+0s1,0) ¢ (Py). O

Remark. If X3, is a fixed M,,-sphere of X, then all M,-spheres of X are given by
(), p € M(X). This follows immediately from Proposition 16.

Let n be a positive integer with dim X > n. The points p1,...p,42 are called
spherically independent, if, and only if, there is no M,,_1-sphere containing these
points, where every subset T of X’ with #T = 2 is said to be an My-sphere.

Obviously, three distinct points are always spherically independent.

Proposition 17. If n is a positive integer and p1, ..., pny2 are spherically indepen-
dent, there is exactly one M, -sphere through these points.
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Proof. We may assume p,, 12 = 00, without loss of generality. Define

P:={pr+&p2—p)+ - +&@nt1 — ) | & €R}

and observe p1,...,Pnt1,Pn+2 € P If po —p1, ..., pns1 — p1 were linearly depen-
dent, say,

Pnt1 —P1 = P1(p2 —p1) + -+ Bu1(pn — p1),

then p1,...,pni2 € {p1+m(p2 —p1) + +0-1(Pn —p1) | i € R} U{oo} would
be contained in an M,,_i-sphere. There hence exists an M,-sphere, namely P’
through py, ..., ppye. i QU{oo} is another M,,-sphere through p1, ..., ppie, then,
obviously, P C Q, i.e. P = (@ since the underlying vector spaces of P and @) are
both of dimension n. O

Remark. If p1,...,pn4o are spherically independent and also qi, ..., ¢nt2, there
does not necessarily exist € M (X) with u(p;) = ¢i, ¢ = 1,...,n+ 2. Assume
dim X > 2 and that v,w € X are linearly independent. Take

pP1 =00, p2:O> p3=7v, ps=w,
@ =00, ¢@=0, g=v, q=2w

Observe that both quadruples are spherically independent. If there were p € M (X)
with p (p;) = ¢i, then p € O (X) which contradicts ||w]| = ||w (w)|| = 2||w]|.

Let n be a positive integer and assume dim X > n. Suppose that u is a
Mobius transformation and that

H(ay,a1),...,H (an, an)
are hyperplanes such that aq,...,a, are linearly independent. Then
w(H' (ar, 1) NNV H (ay, o))

will be called an M™-sphere of X.

Obviously, if X is finite-dimensional, dim X = N, then every M"-sphere is
an My _,-sphere as well.

Remark. The M!-spheres of X are exactly its M-balls.

Proposition 18. Suppose dim X > n. If A, B are M"-spheres of X, there exists
w €M (X) with u(A) = B.

Proof. According to the definition there exist representations
A= ,ul(H’(al,al) N---N H’(an,ozn))7
B = Ml(H/(b1751) n---N H/(bn76n))
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So we have to prove the existence of ¢ € M (X) with

ﬂH’ by, By) = (ﬂH ay, o ) (3.46)

Take

n
Uy = E Viual/,l:la"'an
v=1

with v? = 1 and v;v; = 0 for i # j, where ;, are suitable reals. Then

n n

ﬂ H(ai,ai) = m H(U,‘,Oé;)

i=1 i=1
with o :== >0 viww, i = 1,...,n. So we may assume, without loss of generality,

ai =1="b7 and a;a; = 0 = bb; for i # j

(3

n (3.46). Define a := Ya;a,, b := X3;b; and observe
a€()H (ai,a:), b e H (bi,Bi).

Define S = {a,a + a1,...,a+a,} and f : S — X by f(a) =, f(a+a;) =
b+ b;. Applying again Theorem 38 of chapter 2, as in Proposition 16, we obtain
a similitude ¢ = (1,w,d) with ¢ (a) = b and w (a;) = b;. It is easy to verify that
¢ satisfies (3.46): a;x = o implies a;(x —a) = 0, i.e. w(a;) w(xr —a) = 0. Hence
bi(p (z) —b) =0, ie. bip (z) = B;. O

Lemma 19. Let ¢ be an M-circle and b be an M-ball. Then #(cNb) > 3 implies
c Chb.

Proof. We may assume oo € ¢N b, without loss of generality. Hence [ := ¢\{oo} is
a euclidean line and b\{oo} a euclidean hyperplane H. But #(I N H) > 2 implies
ICH. O

If ¢ is an M-circle and b an M-ball, we will say that c is orthogonal to b, or
b is orthogonal to ¢ provided every M-ball through c is orthogonal to b. We shall
writec Lborb L c.

Proposition 20. If the M-circle ¢ is orthogonal to the M-ball b, then #(cNb) = 2.

Proof. ¢ € b, because otherwise b L b. Hence, by Lemma 19, ¢ and b have at most
two points in common. Assume ¢Nb = {p} and, without loss of generality, p = oco.
Hence c\{p} is a line

Il={r+X|XeR}
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and b\{p} a hyperplane H (¢, ). Since [ N H = (), we get tv = 0. Hence ¢ =1’ is
contained in H'(¢,¢r). Thus, by ¢ L b,

H'(t,a) =b L H'(t,tr),

which contradicts Proposition 10, statement 1. Assume, finally, cNb = (). We may
write b = H'(v,0) and, by (3.44),

c={m+ grcosp+ ptsinp | 0 < p < 27} (3.47)
with 72 = 1 = ¢2 and rt = 0. Because of cNb = (), we obtain
(m+ grcosp + ptsing) - v #0
for all ¢ € [0,27[. Since there exists ¢ € [0, 27| with
cosp - prv +sine - gtv = 0,
we obtain m - v # 0. Hence, by Proposition 10, 2),
b= H'(v,0) £ B (m,0),

which contradicts ¢ C B (m, o). O

Proposition 21. If p # q are points, and if b is an M-ball such that q is not
the image of p under the inversion in b, then there exists exactly one M -circle ¢
through p,q which is orthogonal to b.

Proof. If at least one of the points p, g is on b, we may assume g = co € b, i.e.
b=: H'(t,a). Then {p+ Mt | A € R} U{oo} is the only M-circle through p, ¢ and
orthogonal to b. If {p,q} Nb = 0, we also may assume g = oco. Hence b is in this
case of the form B (c, ). Since p is assumed not to be the image of ¢ under the
inversion in b, we get p # ¢. Then

{c+A(p—c)| XA e R}U{co}

is the only M-circle through p, ¢ and orthogonal to b. g

We already introduced in section 12, chapter 2, the notion of the cross ratio
of an ordered quadruple z1, z9, z3, z4 of four distinct points of a euclidean line .
Now we will allow that the points are even elements of I’, or more general, of an
arbitrary M-circle.

Lemma 22. Let ¢ be an M -circle, and let p1,ps, p3, pa be four distinct points on c.
If q1, q2,q3 are three distinct points, and 1, po M-transformations with

wi(p;) = gq; for alli € {1,2} and j € {1,2,3},

then p1(pa) = pa(pa).
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Proof. Take a fixed element e # 0 of X. Then, by Proposition 13, there exist
fyg € M(X) with
f(o0) =p1, f(0) =p2, f(e) =ps,

and g (00) = q1, g (0) = q2, g (e) = q3. Put g~ 'p;f =: v; for i € {1,2}. Hence
vi(00) =00, 1;(0) =0, vi(e) =e (3.48)
for ¢ € {1,2}, and v; must be a similitude
vi(x) = oyw;(x) + a;, 0; > 0, i € {1,2},

in view of Theorem 3. Thus, by (3.48), v; = w;, i € {1,2}. Since py, p2, p3, ps are
on a common M-circle, so must be their images under f~1. Hence f~!(ps) = ce
with a suitable real a ¢ {1,2}. Thus

vif T (ps) = vilae) = wi(ae) = aw;(e) = ae,

ie. p1(pa) = pa(pa). -

If p1,p2,p3,ps is an ordered quadruple consisting of four distinct points on
a common M-circle, we define its cross ratio. Take arbitrarily e # 0 in X and
take arbitrarily p € M (X) with p(p1) = oo, u(p2) = 0, u(p3) = e. If then
p(ps) = ae, a € R, put

{p1,pasps, pa} = o

Since u (p1), i (p2), i (p3), i (psa) must be on a common M-circle, there exists in
fact @ € R with p (ps) = ae. Obviously, a # 0 and « # 1. Moreover, {p1, p2; ps, pa}
does not depend on the chosen e and p, as we would like to verify now.

Lemma 23. If e # 0 and k # 0 are elements of X, and if p € M (X) satisfies
p(00) =00, u(0) =0, p(e) =k, then p(ae) = ak for all « € R.

Proof. p(00) = oo, 1 (0) = 0 imply, by Theorem 3, that u is a similitude of the
form p(z) = ow (x), 0 >0, w € O (X). Hence

p(ae) = ow (ae) = caw (e) = ak. O
In order to show that {p1, p2; p3, pa} does not depend on e and p, take e; # 0

in X and p; € M(X) with
p(p1) = 0o, pi(p2) =0, p1(ps) = ex. (3.49)

We then have to show p1(ps) = aey. In view of Proposition 13 there exists 7 €
M (X) with 7(c0) = 00, 7(0) = 0, 7(e) = e;. Lemma 23 yields 7 (ae) = aey.
Since

T (p1) =00, T (p2) =0, Ti(p3) = e
holds true, we get, by Lemma 22 and (3.49),

p1(pa) = 71 (pa),
ie. pi(ps) = 7 (ce) = aey. O
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Proposition 24. Given four distinct points
pi =71+ v, i €{1,2,3,4},

on the linel =r + Rv, v # 0, then

Q] — Qg G — O3

{p1,p2;p3,pat = (3.50)

a1 — Qg g — (g

Moreover,
Qg — Oy ap — Qg
{00, p2;p3,pa} = ———, {p1,00p3, pa} = ——,
Qo — Q3 a1 — Oy
Qo — Q4 a1 — Q3
{p1,p2;00,pa} = ———, {p1,p2;p3, 00} = ———.
Q1 — Oy Qg — Q3

If p; = m + orcosg; + otsing;, i € {1,2,3,4} are four distinct points on (3.47)
with 0 < ; < 27, then

sin (<P2 - @3)

(02 — @4)'

(1 —3) sin
(o1 — p4) sin

{p1,p2ips, pa} = (3.51)

1
2
in 1
sin 5

1
2
1
2

Proof. Given four distinct points py, p2,p3,ps € X, we define ¢ € M (X) by
¢ (z) =1t (p1,1)(z) — ¢ (p1,1)(p2).
Put e := ¢ (p3). Hence ¢ (p1) = o0, ¢ (p2) =0, ¢ (p3) =e. If
pi =1+ a4,
then ¢ (ps4) = {p1, p2; p3, p4} - €. This implies (3.50). If

pi = m + or cos @; + ot sin p;,

0 < ¢; < 2m, then ¢ (ps) = {p1,p2; 3, pa} - € yields (3.51). O
Proposition 25. Given an M -circle ¢ and four distinct points pi1,ps2,ps3, P4 ON C.
Then

{p1,p2;p3,pa} = {pa, P35 P2, 1},

{p1,p23p3, pa} = {p2. P1; P4, P3},

{p1,p2;p3,pa} - {P1,p2; P4, P3} = 1,

{p1,p2;p3, pa} + {p1,p3;p2,pa} = 1.
Proof. Apply Proposition 24. O

Proposition 26. If u € M(X) and if p1,p2,ps,ps are four distinct points on a
common M -circle, then

{w(p1), 1 (p2); 1 (p3); 1 (pa)} = {p1,p2;P3, Pa}-
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Proof. Take e # 0 in X and ¢ € M (X) with ¢ (p1) = 00, ¢ (p2) =0, ¢ (p3) = e.
Hence ¢ (p4) = {p1, p2; p3,p4} - e. Moreover with 9 := pu~1,

¥ (1 (pr)) =00, ¥ (1 (p2)) =0, % (1 (p3)) =e.

Thus {x (p1), 1 (p2); 1 (p3), 1 (pa)} - e =¥ (1 (pa)) = @ (pa). O

Let I'4(X) be the set of all ordered quadruples (p1, pa2, ps, p4) consisting of four
distinct elements of X’ which are on a common M-circle. We are then interested
in the following problem. Find all functions f : I'y — R such that

f (p1,p2,03,p4) = f (1 (p1), 1 (p2), 1 (p3), pu (pa)) (3.52)
holds true for all (p1,p2,p3,p4) € T4(X) and all p € M (X).

Theorem 27. All solutions of the functional equation (3.52) are given as follows.
Take an arbitrary function ¢ : R\{0,1} — R and put

f (p1, 02,3, p1) = @ ({P1,P2; 3, P4}) (3.53)

fO'f' all (p17p27p37p4) € F4(X)

Proof. In view of Proposition 26, (3.53) is a solution of (3.52). Let now vice versa
f:T4(X) — R solve (3.52). Take a fixed e # 0 in X and define

v (a) = f(00,0,e,ae)

for every real o ¢ {0,1}. For four distinct points p1, p2,p3,ps on a common M-
circle we hence get for suitable y € M (X) with

p(p1) =00, u(p2) =0, p(ps) =e,

by (3.52), f (p1,p2,p3,p4) = f(00,0,e,ae) = ¢ (a) with a = {p1, p2;p3,pa}. O

3.7 Stereographic projection

Besides our real inner product space X, dim > 2, we also will consider the real

vector space
Y =X&R,

equipped with the inner product
(a,) - (b,B) :==ab+ af (3.54)

for (a,a),(b,B) € Y. Obviously, Y itself is a real inner product space under the
scalar product (3.54). We hence may apply to Y everything we developed for X.
We are now interested in the unit ball of Y, namely in

U={(z,8 €Y | (2,6 =1}.
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Call N := (0,1) the North Pole of U, and put Uy := U\{N}. We identify z € X
with (2,0) € Y, so that X is a proper subset of Y. The stereographic projection ¢
associates to (x,€) € Uy the point of intersection of the line

N +R((z,6) - N) (3.55)

of Y, with X, and it associates to N the point co.
Proposition 28. The stereographic projection ¢ : U — X' is a bijection.

Proof. There is only one point (x,1), 2 € X, in U, namely N. This follows from
22 +1 = 1. Hence (z,£) € Uy implies & # 1. The line (3.55) cuts X exactly in

V8 =g (3.56)

where 22 + ¢2 = 1, in view of £ # 1. If z € X, then
2z 22-1
_— .07
<z2—|—1’z2—|—1) (3:57)
is the only point p on Uy with ¢ (p) = z. O

Also in the case of the space Y we distinguish between hyperplanes and
quasi-hyperplanes of Y. The hyperplanes are given by all

H ((a’a)7 7) = {(I,f) €y | aa:—i—ozf = '7}
with (a, @) # (0,0) =: 0.

We will call a hyperplane H of Y a suitable hyperplane of Y, if it cuts U in
more than one point.

Lemma 29. The hyperplane H ((b,ﬁ),a) of Y is suitable if, and only if, a® <
v+ B2
Proof. Assume o? < b + 32 and take (c,7y) L (b,8) with (c,7)? = 1. Then the
elements of Y,

(b,5) B+ 52— o

a — g

(b, B)? (b, B)?
are both in H NU. Suppose now, vice versa, #(H NU) > 1 and (z0,&) € HNU.
We obtain

:t)‘(cafy)a A=

(6, 8) (0, &0)]* < (b, B)* (0, €0)?,

by the inequality of Cauchy—Schwarz, i.e. a? < (b, )% = b*+ 32, since (¢, &) € U
implies (z9,&y)? = 1, and since (29, &) € H, obviously, (b, 8)(zo,&) = a. We must
exclude o? = (b, 3)2. But

[(b, B) (20, &0)]* = &® = (b, B)*(20,&0)”



122 Chapter 3. Sphere Geometries of Mobius and Lie

implies, by Lemma 1, chapter 1, (b, ) = A (x0,&), i.e. A = « from

(b, B)(x0,&0) = .

The tangent hyperplane to U = B ((07 0), 1) in (zg, &) € U is hence, by Proposi-
tion 12, ¢),

H (— (0, &), — (w0, &0)?),
i.e. H((b,8),a). Thus #(H NU) = 1, contradicting #(H NU) > 1. O

Theorem 30. If H is a suitable hyperplane of Y, then v (HNU) is an M-ball of X .
If b is an M-ball of X, then there ezists a uniquely determined suitable hyperplane
H of Y withb=1v¢ (HNU).

Proof. Let H ((b, B), a) be a suitable hyperplane. The points (y,n) on H N U are
given by the equations

by +Bn=a,y* +n*=1. (3.58)
Assume 7 # 1 and put = := 1 (y,n). Hence, by (3.56),
ba (1—n) + By =a, 2*(1 —n)* +1° =1,

ie. (B—a)z?+2bx = B+ a. From (3.58) we get N € H if, and only if, « = 8. In
this case b2 > 0, i.e. b # 0, holds true, by Lemma 29. We hence obtain

br =«
for (y,n) € HNU\{N}, N € H, and thus
Y (HNU)CH (b,a) U{oo}.
If z € H (b, o) U {oo}, then vp~1(z) = N for x = 0o, and otherwise, by (3.57)

o 22 a?—1
’(/} (x)_<l'2+1’1'2+1)7
ie. v (z) € H ((b,a),a). Hence ¢ (HNU) = H'(b, ). In the case a # 3 we get

w(H ((b,ﬁ),a)ﬂU) CB (afﬁ7 ”bt_ﬁ;fag) (3.59)

from (8 —a) 2% +2bx = B+a and x = 1 (y,7n). If x is an element of the right-hand
side of (3.59), then ¥ ~'(z) is on H ((b, 3), a). Hence equality holds true in (3.59).
If the M-ball H'(b, @) is given, we already know that its inverse image is given by
UNH ((b,e),a). What is the inverse image of B (m, 9)? Since equality holds true
in (3.59), we must solve
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with respect to b, 8, a, by observing ¥ (N) € B (m, 0), i.e. a # (. Instead of b, §, «
we determine

b o B« « _1—|—mQ—Q2
a—f Ta-p a-p a—p 2 '

The inverse image of B (m, ) is hence

UNH ((2m,m?* — 0> —1),m? — o* +1). O

3.8 Poincaré’s model of hyperbolic geometry

Let b be an M-ball. We will define the two sides of b.
Case 1: b= H'(a, o).
The two sides of b are here
{re X |ax>a}and {z € X | ax < a}.
Observe X’ = by UH'(a, o) Uby, where by, by are the two sides of b, and, moreover,
biNb=0bNby=byNby =0. (3.60)
Case 2: b= B (¢, 0).
The two sides are defined by
{reX|(x—c)?>0*}U{oo} and {z € X | (z — ¢)® < 0*}.

Here we have X’ = b; UbU b, too, and (3.60) for the sides of b.

Proposition 31. If b is an M-ball, ;v an M -transformation, and if by, by are the
two sides of b, then w(b1), p(ba) are the two sides of the M-ball 11 (D).

Proof. Case 1. b= H'(a,«) and p is a similitude.
If  (z) = ow (z) +t, 0 >0, then 1 (b) = H'(w (a), oo + tw (a)). Hence

pH{reX|ax>a}) ={yeX|w(a)y>ao+tw(a)},
p{reX|ar<a}l) ={yeX|w(a)y<ao+tw(a)},

since, for instance, ax > « is equivalent with w (a)w () > a, i.e. with

w(a) (Mw)_t) > o

a

Case 2. b= B(c,0) and p is a similitude, say, of the form as above.
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Here we get 1 (b) = B (u(c), 00) and
p{zeX[(c—a)? > Ufo}) = {yeX|(nle)—y)" > (0)?}U{oo},
n{re X | (c—w)? < 0%} = {eX|(r@-y)° < (),
since (¢ — )2 > o2 is equivalent with (w (¢) — w (z))” = (c — 2)2 > ¢?, i.e. with
([ow (c) + 1] — [ow (z) + 1])* > (00)>.

Case 3. b= H'(a, ) and p = ¢.

From section 1 we know

v (H'(a,0)) =B (%,

2all)
2c

for @« # 0. We may assume « > 0, because otherwise we would work with
H (—a,—a). If x € X satisfies ax > «, we get x # 0, i.e. ¢ (x) € X, and

a \2 a?
(@ -55) <

Vice versa,
2

a\2 a
- —) < —,y€eX,
(y 2a) 12"
implies y # 0 and a - ¢ (y) > a.

In the case a = 0, we know from section 1 that

v (H'(a,0)) = H'(a,0).

Here, of course, ax > 0 is equivalent with a¢ (z) > 0 for z € X.
Case 4. b= B(c,0) and pu = ¢.

In the case ¢* = p? we get +(B) = H’(2c,1). Since ¢ is involutorial, we also get
t(H") = B and we may apply part 1 of Case 3. So assume ¢ # ¢?. From section

1 we get
C 4
B =B .
L( (C,Q)) (629276292>

If ¢ > 02, then (c — x)% < 0? is equivalent with

for all z € X\{0}, and if ¢ > p?, then the image of

{reX|[(c—2)®> "} U{oo}
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x5 0) < (525) }

Because of Theorem 3 no other cases need to be considered. O

Let B be an M-ball, and let ¥ be one of its sides. Of course, B could be, for
instance, the M-ball B (c, ¢) and ¥ the side

under ¢ is

{zr€X|(c—2)*> o} U{oo}

of B. We now would like to define the hyperbolic geometry (B, %), or (in shorter
form) the hyperbolic geometry 3. This will be the geometry (see section 9, chapter
1)

(Z.G(®)),
where the group G (X) is defined as follows. Take the subgroup

[(S) = {u € M(X) | u(B) = B and () = £}

of M (X) and put G (X) := {u|X | x € T'(2£)}. The points of ¥ are called hyperbolic
points (h-points) of X. If ¢ is an M-circle orthogonal to B, then ¢ N X is said to
be a hyperbolic line (h-line) of ¥. The elements of G (X) are called hyperbolic
transformations of 3.

Lemma 32. Given u1,pe € I'(X) with p1|X = |, then up = po.

Proof. 1) If b is an M-ball and p € b a point, then p,invy(p) are on different sides
of b.

Because of Proposition 31 we may assume p = oo, i.e. b = B (cg, 09). Obviously,
00, cg are on different sides of b.

2) Take p € ¥/, where X, % are the two sides of B (¢, ). Define ¢ := invp(p) and

observe
{p.a}= () b

qebLB

in view of Proposition 11. Moreover, we obtain ¢ € X, by 1). Now

{i(p), mi(@)}, i € {1,2},

is the intersection of all M-balls b > pu;(q) satisfying b L p;(B) = B. Since
p1(q) = p2(q), by q € X, we obtain

{r1(p), 11(@)} = {p(p); p2(9)},

Le. p1(p) = pa(p). Hence p1 = po. O
Remark. Because of Lemma 32 we may and we will identify I' (X) and G (X).
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Proposition 33. Let also B’ be an M-ball, and let X' be one of its sides. Then the
two geometries (,G (X)) and (X',G (X)) are isomorphic.

Proof. By Proposition 1 there exists pg € M (X) with uo(B) = B’. From Propo-
sition 31 we get ¥’ € {uo(X), po(X1)}, where ¥,%; are the two sides of B. In
the case X' = po(X) put p := pg, and otherwise p := ag, where « denotes the
inversion in B’. Hence

p(B)=DB' p(x)=1x"

Define 0 : ¥ — ¥/ by o (z) := p(z) for all z € &, and
T:G(X) > G((Y)

by 7 (g) := ugp~?! for all g € G (X). Since the equations (1.15) hold true, we get
(E,G(Z)) ~ (5, G (3)). O

Remark. In Theorem 37 we will show that the geometry (X,G (X)), based on
X, is isomorphic to the hyperbolic geometry over X (see section 10, chapter 1).
(E, G (Z)) is called a Poincaré model of hyperbolic geometry.

Through two distinct h-points of ¥ there is exactly one h-line. This follows
from Proposition 21, and the fact that two distinct points p,q¢ € X’ must be on
different sides of B in the case ¢ = invp(p).

Let z,y be distinct h-points of ¥ and let ¢ 5 x,y be the, by Proposition
21, uniquely determined M-circle orthogonal to B. Because of Proposition 20, we
obtain #(cN B) = 2. If a,b are the points of intersection of ¢ and B, then

0 (x,y) := |In{a, b;z, y}| (3.61)

is called the hyperbolic distance (h-distance) of x,y. This expression is well-defined
in view of Proposition 25. Moreover, put  (z,z) = 0 for x € X. Observe that
In £ = 7 is defined by £ = exp (n) for real &, with £ > 0. So we have to show that

{a,b;2,y} >0 (3.62)

holds true for the described points a, b, x, y. Note that a, b separate ¢ into two parts
and, moreover, that x,y belong to the same part, since they are on the same side
of B. Because of Propositions 13 and 26 we may assume a = oo and b = 0 and,
moreover, that y = Az, A > 0. But then, by Proposition 24, (3.62) holds true.

Remark. If [ is a hyperbolic line of (B, X), then
wl) = {u (@) |z €1}

must be an h-line of (u(B), 1 (X)) for p € M(X), since | = ¢NY, ¢ an M-circle
orthogonal to B, implies

p(l) =pc) N p(X), plc) L p(B).
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In the case pu € G (X), i.e. in the case p(B) = B and p () = 3, p () is again an
h-line of (B,X). If z,y € ¥ and u € M (X), then

0 (x,y) with respect to (B, X)

is equal to
§ (w, (), p(y)) with respect to (u(B), 1 (X)).

This will be shown as follows: assume x # y and that c is the M-circle orthogonal
to B with z,y € ¢N 3. Define {a,b} = ¢N B. Hence

p (), p(y) € ple)Np (%)

and {u(a), p(B)} =p(c) N (B), p(c) L p(B). Thus, by Proposition 26,

6 ((x), p(y)) = Mmip(a), p(b);p(x), uy)}.

On the basis of Proposition 33 it is sufficient to study now, more intensively,
the following special situation of an M-ball B and one of its sides X.

Let t be a fixed element of X with ¢ = 1. Define
B = H'(t,0)
and ¥ := {z € X | 2y > 0} where we applied the decomposition
X=t"oRt

with x = T+xot, T € t+ = H (t,0), 29 € R (see the beginning of section 7, chapter
1).
Proposition 34. In this present geometry (B,X) the h-distance (3.61) is given by

(z —y)*

coshé (z,y) =1+ 3.63
@) =1+ (3.63)
for all x,y € ¥, and hence also by
2sinh L&29) _ e = vll (3.64)
vZoYo

Proof. We may assume x # y. By [ denote the h-line through z,y, and by ¢ the
M-circle containing [.

Case 1. 0 € c.

Hence * =y =: a and, by © = a 4+ 2ot and y := a + yot with Proposition 24,

Zo
In —

d(z,y) = [In{a, c0;z,y}| =
Yo

)
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ie.
1) -0
e +e 1 (0 o
h¢ =—==-|—4+ =
cosh d (z,y) 5 7 (yo + %o
2 2
:1+(~T0 yo):1+($ y).
220Y0 220Y0
Case 2. o ¢ c.

Define {a, b} := ¢N B. Hence 0 (z,y) = |In{a, b; z,y}|. Obviously
pi=1(bla—bl) e G (%)

and ¢ (a) = a. For arbitrary z € ¥ define 21 := z — b and observe (z1)o = 2o.
Hence z; € ¥. Put |la — b|| =: . With v := ¢ (z) and w := ¢ (y) we obtain

2 U1
v’

Ty
01:QQ~—2andw1:Q
7

and, especially, vo = vit = 0> L3, wy = QQZ—Q. Since ¢ (¢) contains ¢ (a) = a and
1 1

¢ (b) = 00, the h-line ¢ (1) is part of a euclidean line of X. With the last Remark

before Proposition 34 and in view of Case 1, we hence get
(v —w)?

cosh § (z,y) = cosh d (v, w) + ST

Observe now

(v —wi)®>  (w1-y)® 1 (’on wo >2_($1y1>2:o

VoWo ZoYo VoWo

by applying voz? = 0?z¢ and woy? = 0?yo. Hence

(v —w)? (z —y)?
ho S [T 2 A B it 2
cosh § (z,y) + 00w + T
inviewof v —w; =v—wand 1 —y; = x — y. O
Theorem 35. All bijections ¥ of % with
5 (¢ (), ¥ (y) =6 (2,y) (3.65)

for all x,y € ¥ are products of the restrictions on ¥ of the following M -transfor-
mations:

(o) the similitudes f (v) = kx with 0 < k € R,
(B) the inversion ¢,

(v) the mappings f (z) =w (z) +a withw € O (z), w(t) =t and a € H (t,0).
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Proof. a) Observe that every p € G (X) satisfies (3.65) and, moreover, that all
mappings (), (8), (7) belong to G (X). The essential result of Theorem 35 is
hence that G (X) is the group of all h-distance preserving bijections of X.

b) w € O (X) with w () = ¢ implies
w(T 4+ xot) =w (T) + zot, w(T)t =0,
since 0 = Tt = w (T) w (t) = w (T) t. Hence we get for a mapping ()
f(x) =w () +aand [f (x)]o = 2o,
in view of @ = @. The inverse mapping of () is
@) =w (@) —w ().

Observing w™! € O(X), w™'(t) =¢,0 = ta = w(t)w (a) = tw™!(a), it must

be also of type (7). The inverse mapping of f (z) = kz, k > 0, is f~(z) = %x,
i.e. it is of type («) again.
¢) Let the bijection ¢ of ¥ satisty (3.65). Hence ¢ (t) € &, i.e.

¥ (t) =: b+ bot, bo > 0, (3.66)

and thus g (z) = % T — % b is the product of a mapping (o) and a mapping (7):

x—)x—5—>i(x—5).
bo

Note g (t) = t. Put gy (2t) =: c¢. With (3.65) we get
d(t,2t) =0 (¢, ¢),

ie., by c € ¥ and (3.63),0 < %co =2+ (cg—1)2. If ¢ = 2, then ¢ = 0, i.e. c = 2t,
ie. gy (2t) = 2t. If ¢o # 2, define d € H (¢,0) by
2c
2— Co '

d:=

Put h := o' \io with o (z) :== z —d, A (2) := (1 + d?) 2. The mapping h is hence
a product of mappings («), (8), (7). We obtain

hgv (t) = t, hgt (2¢) = 21,

in view of %co =+ (co — 1) and ¢ # 2. There hence exists a product 7 of
mappings («), (5), () with 7 (t) = t and 7 (2t) = 2t. For every = € ¥ we get

d(t,z) =10 (t,m/) (a:)), d(2t,x) =0 (2t,7rz/1 (x)),

ie., by y:= 7w (x), 10 = yo and 2% = y°.
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d) Put 7 := 7. If 7 (T4 x0t) =: ¢ (T, x0) +20t, by observing 7 (z) =y = §+yot =
T + xot, with ¢ (T, 20) € H (t,0), then ¢ (T, z) = ¢ (T, &) for all positive reals xg
and &. In fact,

S(T+wot, T+EL) =6 (7 (T+ zot), 7 (T +EL))

o _ a2 .
implies (zo — £) = (¢ (T, 0) — ¢ (7,€))” + (x0 — §)?, i.e.
¢ (T, 20) = ¢ (T,€).
So ¢ (T) := ¢ (T, zo) does not depend on zy > 0.
e) In view of d), we define a bijection T of X’ with T | ¥ = 7. Put T (0c0) = o0
and

T (T + zot) := ¢ (T) + xot (3.67)

for all real zy and all T € H (t,0). Since T (t) = t, we get ¢ (0) = 0. Hence
T (0) = 0, by (3.67). Now

S@+tLY+t)=06(p@) +t, 0@ +1)

implies (Z —9)% = (¢ (T) — ¢ (y))Q and hence

(@ —y)?=(T(x)-T(y)”

forall z,y € X. Thus T € O (X), T (t) = ¢t, i.e. the mapping x — T () is of type
(7). Hence ¢ = 77T | ¥, i.e. the extension 7~ !T of 1 is a product of mappings
(), (B), (). O

Proposition 36. Fvery u € G (X) can be written in the form B or in the form a.f
with
a(r) = kr+a, k>0 a€ctt

B(z) = lw@)+m, >0, methweO(X),w(t) =t

Proof. According to step a) of the proof of Theorem 35, G (X) is exactly the group
of all h-distance preserving bijections of ¥. Let now ¢ be an arbitrary h-distance
preserving bijection of ¥, so an element of G (X) = I' (X). According to steps c),
d), e) of the proof of Theorem 35, we get

hgy (z) =w(z), w € O(X), w(t) =t,
with h = id for ¢g = 2 where ¢ := g1 (2t), and h = o~ \io for ¢ # 2 such that
2c
2 — CQ7

oc@)=2—d, A(z)=1+d*)2,d:=
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In other words, if ¢y = 2, we obtain, by observing (3.66),
¥ () = g~ w (x) = bow (x) + b, bo > 0,
i.e. a mapping of the form 3. If ¢y # 2, we get
Y=g 'hlw=g¢gto\x low,

i.e. ¥ = auf with

a(r)=gto (z) = boz+ (bod+b), bg >0, bod + b € t+,
B(r)=Altow(x) = Ilw@)+m,w(®) =t
Wherel:ﬁ>0andm:—#,m€tl. O

Theorem 37. The geometries (X, G (X)) (Poincaré model) and (X, M (X, hyp))
(Weierstrass model), both based on X, are isomorphic. Here M (X, hyp) (see
(2.60) ) is the group of hyperbolic motions of X.

Proof. a) The mapping ¢ : ¥ — X with

T x?—1
= — t 3.68
o) = -+ (3.68)

must be a bijection: if y € X, the uniquely determined inverse image x is given by

Yo + /1 + y?

T = ToY, To = 1-1—@2

Note that ¢ > 0, since y? = 7 + y2. Important will be the relation

6 (,y) =hyp (o (z), o (y)) (3.69)

for all 2,y € ¥ between the distance notions 4, (3.63), and hyp,

coshhyp (z,y) = vV1+ 221+ y% — ay.

Equation (3.69) follows from

2 1 2
(52
0
i.e. from ) )
— 2Ty
coshibyp (7 (2). 7 (1) = 3L = = cosha (x.)

for z,y € 3.
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b) Define 7 : G (£) — M (X, hyp) by 7 (1) = ouo ! for all p € G (X), and observe,
by (3.69),

hyp (o (x), 0 (y)) =0 (x,y) =0 (u(x), u(y))
=hyp (op(z), on(y)) =hyp (10 (z), 70 (y))

for z,y € ¥ and p € G (X). This implies that if p is an h-distance preserving
bijection of %, then 7 () is a motion of (X, hyp). On the other hand, if f is a
motion of (X,hyp), then u := o~ !fc is in G (¥). Hence 7 is an isomorphism
between G (X) and M (X, hyp) satisfying

op(x) =7(p)o(x)
for all z,y € ¥ and p € G (2). O

Proposition 38. All hyperbolic lines | of ¥ are given as follows:
(o) Take m,r € X with mg =0 =rg, r # 0. Then put

l={m+rcoso+|r| tsing |0 <<}

(8) Take p € X with pg =0 and put

l={p+¢&|0<&eR}.

Proof. Let ¢ be an M-circle orthogonal to B = H (¢,0). Put ¢ N B := {a,b}. If
b=o0, weget cNX ={a+&|&>0} with ag = 0, since a € B. On the other
hand, given [ from (f), then

{p+&t1 e R} U {oo0}

is an M-circle orthogonal to B. Assume now oo ¢ {a,b} = ¢N B with ¢ L B.
Define
a@)=z—1(a=0>), B(x) =z —0.

Hence auf (a) =0, auf (b) = oco. Thus, by I :=cN X,

af (1) ={¢t| & >0}, ie.
1= 6"Yia"t({et oV =<p M o\,
5 ha (et € > 0)) {+(L(a_b)+€t)2|g>
Because of a # b and a,b € B =t1, we get 0 # a — b € t1, i.e.

= AT
t(a—0) (a—b)QEt'
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Put m := 2£2 r:= 2=2 Hence ¢ (a — b) = 55 and

t(a—Db)+¢&t
{b+ (t(a—b)+£t)?

£€> o} (3.70)

1—n? 2t
= >0,
{m+rl+n2+||rl|1+7)2 " }
by putting 1 := 2||r||¢. Define
.2
sing = o P

with ¢ €]0, [ for n > 0. Hence [ gets the form (a). Vice versa, if we are given !
from (), let ¢ be the M-circle containing I, and put m+r =: a, m —r =: b. Hence
a # b and a,b € t+. Working again with (3.70), we obtain

arf (1) = {&t [ £ > 0},
ie. ¢ L B, since {&t] £ € R} U {oo} L B. O

3.9 Spears, Laguerre cycles, contact

The basis will be again a real inner product space X of (finite or infinite) dimension
> 2.

A spear of X is an ordered pair (A, E) where A is a euclidean hyperplane
H (a,a) of X and where E is one of the sides of A. Two spears (4;, E;), i = 1,2,
are called equal if, and only if, A; = Ay and E; = Es.
Occasionally, it will be useful to apply the following notation for the two
sides of H (a, ),
Ht(a,a) = {z€X|axr>a},

H (a,a) = {x€X|ax<a}.

Of course, this notation depends on a common real factor A # 0 of a, a: so observe
H"(a,a) = H (\a, Aa)

in the case A < 0, despite the fact that H (a,a) = H (Aa, Aa). Obviously, there
is no difference between the definition of the two sides of H'(a,«) of section 8
and that of the two sides H* (a, ), H™ (a, ) of H (a, «). However, there will be a
difference between the definition of the two sides of an M-ball B (m, g) and that
of the two sides of the ball B (m, ), 0 > 0, of X. We define these two sides as
follows,

B (m,0) = {zeX|(x-m)*> "},

B~ (m,0) = {z€X|(x—m)?<o?}.
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A Laguerre cycle of X is a point of X or an ordered pair (C, D) where C is a
ball B (m, p), 0 > 0, of X, and D one of its sides. Let zj, 29 be Laguerre cycles.
If 21 € X, we will say that 21, zo are equal exactly in the case that zy is the same
point. If 21 is the Laguerre cycle (C, D), then the Laguerre cycles 21, 25 are called
equal if, and only if, z5 is the Laguerre cycle (C, D) as well.

In section 5 (see Proposition 12, ¢)) we defined the notion of a tangent hy-
perplane H (a, @) to a ball B (m,g), 0 > 0, by means of
#[B(m,0) N H (a,a)] = 1. (3.71)
Proposition 39. (3.71) holds true if, and only if,
(o —am)? = g%a®. (3.72)

Proof. Assume (3.71), i.e. B(m, ) N H (a,«) =: {p}. Hence, by Proposition 12,
c),we obtain H (a,e) = H (m — p, (m — p) p). Thus, by observing Proposition 12
of chapter 2, there exists a real A\ # 0 with

a=A(m—p),a=A(m—p)p.

2

This implies (a — am)? = A2(m — p)? - (m — p)? = a® - p®. Assume, vice versa,

(3.72). Define

o —am
a2

p:=m+ a, (3.73)

and observe (p — m)? = p? and ap = «, by (3.72). Note, moreover, a — am # 0,
because of (3.72), 0 # 0, a # 0. Hence

p € B(m,0)NH (a,a),
A= amza g,
i.e., by (3.73) and ap = «,
Aa=m —p, Aa = Aap = (m — p) p.
Now apply Proposition 12, ¢) on H (a,a) = H (m —p, (m—p) p). O

If a # 0 is in X, then X = a* @ Ra holds true. Observe that z = v + w with
x € X, v €at, we Ra implies

za za
V=250, W= _sa (3.74)

Obviously, H (a,a) =z +a’ := {zg +y | y € a*} for all 29 € H, and hence
H(a,a) = {p+Xa|p€ H and A > 0}, (3.75)

H (a,a) = {p+Xa|pe Hand A<0}: (3.76)
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if x € X satisfies ax > «, then x = p + Aa with

a—ax ar — «
p=z+—5—a€ H(a,a)and \:= 5
a

> 0.
a

We already defined spears and Laguerre cycles of X. A third fundamental notion
in our present context is that one of contact between a spear and a Laguerre cycle
z. We say that the spear (A, E) is in contact with or touches z if, and only if,

(1) =z € A in the case that z is a point,
(2) A is a tangent hyperplane to C' and
EC Dor DCE in the case z = (C, D).
If the spear s touches the Laguerre cycle z we will write s — z or z — s, otherwise
§ 4z or z #£s.
Suppose that the spear s = (A, E) is in contact with the Laguerre cycle z.

The point p of contact of s and z is defined by z if z € X, and by {p} = ANC for
z=(C,D).

The pair (m, o) will be called the (cycle) coordinates of (B (m, 0), BT (m, Q))
and (m, —p) those of (B,B™). If z € X, then its cycle coordinates are defined by
(2,0).

(a, Va2, «) are called the (spear) coordinates of the spear
(H (av a)v H+ (CL, a))

and (a, —Va2, a) those of (H (a,a), H (a,)).
Since H (a,a) = H (Aa, Aa) for a real A # 0, we must determine the coordi-

nates of
S¥ = (H (Aa, Aa), HT(Aa, \av)),

Sy = (H (\a, Aa), H™ (Aa, \)),
and see how they depend on the coordinates of S;, Sy .

Case 1. A > 0.
The coordinates of Sj\r, Sy are

(Aa, v/(Aa)2, ha) = (A, A\Wa2, \a),
(A, —/(\a)2, Aa) (Aa, —\a2, \a),

respectively.
Case 2. A < 0.

Similarly, we get (Aa, —AVa2, Aa), (Aa, \Wa2, Aa), as coordinates for S;r, Sy, re-
spectively.
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Spear coordinates must be homogeneous coordinates: (a, &, o) with 0 # a? =
€% and (b,7m,8) with 0 # b? = n? determine the same spear if, and only if, there
exists A # 0 with b = Aa, n = A§, B = Aa. This follows from

SY =5F, 8, =57 for A >0,
SY=57,8, =5 for A <0.

Proposition 40. The spear (a,&, «) touches the Laguerre cycle (m,7) if, and only

if,
am+ &1 = a. (3.77)

Proof. It 7 = 0, then (3.77) characterizes the fact that m is on the underlying
hyperplane of (a,&,a). Suppose now that 7 # 0. Without loss of generality, we
may assume & = 1, since otherwise we would work with

a «
(57 17 5) )

by observing that spear coordinates are homogeneous coordinates and that (3.77)
does not depend on a common factor # 0 of a, £, . Hence a? = 1 for (a, 1, ). Thus
(a,1, ) is given by (H (a, ), H*). Denote the Laguerre cycle (m, 7) by (B, B*).

a) Assume that (a,1, «) touches (m, 7). (3.72) implies
a—am € {r,—7}, (3.78)
and {p} = H N B is given, in view of (3.73), by
p=m+ (a—am)a. (3.79)

Assume a — am = —7. Hence, by (3.79), p = m — 7a. For 7 < 0 we get B* = B™,
iie. BT CHY by (B,B™)—(H,H"),i.e.m € B~ C H*. Thus m = p+Aa, A > 0,
by (3.75), contradicting A = 7 < 0. For 7 > 0 we get B* = Bt ie. HT C B™.
Hence m € H—, since m € H U H' would imply m € H or m € BT. Thus
m=p+ Aa, A <0, by (3.76), contradicting A =7 > 0.

We obtained that our assumption @ — am = —7 does not hold true. Hence
a—am =T, by (3.78). Thus (3.77) is satisfied.
b) Assume that (3.77) holds true, i.e. am + 7 = « for the spear (a,1,a) and the
cycle (m,7), 7 # 0. The underlying hyperplane of (a,1,a) is H := H (a,«), and
the underlying ball of (m, 1) is B := B (m, |7|). Observe that (3.77) (with £ = 1)
implies (3.72), in view of a? = 1, by £ = 1, and ¢ = |7|. Hence H is a tangent
hyperplane to B with

HNB = {p},

p=m+ (a—am)a=m+ Ta, by (3.73). Since H = p + a*, we get, by (3.75),
HY ={(p+v)+Xa|veat and X > 0}.
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Case 7 > 0.

Here B* = B*. We would like to show Ht C B*, because then (B, B*)—(H,H")
holds true. But x € H' implies

(m—x)2:(m—[(p+v)—|—)\a])2:(7'+)\)2+v2>T2.

Case 7 < 0.
Here we get B~ C HT. In fact! If x € B™, then

zr—me X =at @ Ra,

ie.x—m=:v+ pa with v € a+ and p € R, i.e.

> (x —m)? =0+ p? > i,

ie. —7 > |p| > —p, i.e. p > 7. Moreover, by p = m + 7a,
r=m+4v+pa=(p+v)+(p-7)ac H'. O

Sometimes it will be useful to identify a spear s with the set of all Laguerre
cycles touching this spear s, and also a Laguerre cycle ¢ with the set of all spears
in contact with c.

Lemma 41. Denote by X the set of all spears of X, and by I the set of all Laguerre
cycles. If 1,89 € X satisfy

{ceT |c—s1}={cel|c—sa}, (3.80)
then s1 = sa, and if c1,co € T satisfy
{seX|s—at={seX|s—c},

then ¢1 = cs.

Proof. a) Let (a,1, «), (b, 1, 8) be coordinates of s1, sa, respectively. By (3.77) and
(3.80) we know that
am+1T=aand bm+71=p

have the same solutions (m, 7). If we look to the solutions (z,0), we obtain that
the hyperplanes of equations ax = «, bx =  are identical. Hence, by Proposition
12, chapter 2, there exists a real A # 0 with b = Aa and 8 = Aa. Furthermore,
a? = 1 = b? implies A2 = 1. The case A = —1 does not occur, since otherwise we
would determine all solutions (z, 1) with the consequence that the hyperplanes of
equations axz = o — 1 and ax = a + 1 would coincide.

b) Let (m,7), (n,o) be coordinates of ¢y, ca, respectively. We hence know that

am+ 7=« and an + 0 = «
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must have the same solutions (a,1, ), a> = 1. Obviously, (ev,1,evm + 1) with
veE X,v2=1,¢¢€{1,-1}, solves am + 7 = «. Hence

eon+o = (evm+ 1), € € {1, -1},
ie.o=r,ie.v(n—m)=0for all v € X. Thus m = n. O

Two euclidean hyperplanes H; = H (a,«a), Ho = H (b,3) of X are called
parallel (see section 7, chapter 2), Hy || Hy, provided H; = Hy or Hy N Hy = ().
Of course, H; || Hs is equivalent with Ra = Rb, since Ra # Rb implies £a + nb €
Hy N Hy where

a(§a+nb) = a,
b(&a+nb) = B,
by observing
a®> ab

= a?b?® — (ab)®> #0

ba b?
(see Lemma 1, chapter 1).
Two spears s1 # so are called parallel, s; || s2, provided there does not exist

c € I with s1 — ¢ — s9. Moreover, every spear is said to be parallel to itself.

Proposition 42. Two spears (a,&,«) and (b,n, 8) are parallel if, and only if, one
of the following equivalent properties hold true.

(i) €b=mna,
(ii) Hy || Hy and Vi C Vo or Vo C Vi, where (Hy,V7), (Ha,Va) are the spears
(a7£7a)7 (b7 777 /3)7 T@Spectively.

Proof. Without loss of generality we may assume £ = 1 = 7. If the two spears
coincide, then (a,1,a) = (b,1,8), and hence (i) holds true. If they are distinct
and parallel, then H; N Hy = (), because ¢ € Hy N Hy would satisfy ¢ — (H;, V;) for
i=1,2. Hence H; || Ho, i.e. b= Aa, A2 = 1. If A were -1, then, by (3.77),

(pa;6a7 agﬂ)apeHh

would touch both spears.

(i) implies (ii). In fact! a = b (observe £ = 1 = n) yields Hy || Hy. Take p; € H,
i.e. ap; = a, and put pe := p1 + (3 —a)a € Hy. If B > «, then H” C H, by
(3.75), if B < «, then H{" C H .

(ii) implies (Hy, Vi) || (Ha, Vz). If those spears are distinct, we have to show that
there does not exist ¢ € I' touching both. Since Hy || Ha, we get b = Ma, ie.
M =1IfA=-1V, CV,or V5 CV; does not hold true. Hence XA = 1, i.e. the
two distinct spears s1, $9 are (a,1,«) and (a, 1, 3). Because of a # 8 and (3.77)
there does not exist ¢ € I' with 51 — ¢ — s5. O

Remark. From Proposition 42, (i), follows that the parallel relation on ¥ is an
equivalence relation.
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3.10 Separation, cyclographic projection
If (mq,71), (ma,72) are two Laguerre cycles of X, the real number
l(Cl,Cg) = (m1 — m2)2 — (T1 — T2)2

will be called their separation, or their power.

We say that ¢; € T touches co € T', designated by ¢; — co, if, and only if,
€1 = ¢ Or
S(er,e2) ={se€X|c1—s—ca}

consists of exactly one spear.

Proposition 43. Let c1,co be Laguerre cycles. Then

() c1—co & l(c1,e2) =0,
(ﬁ) 5(61,62) ZQ = l(Cl,CQ) < 0,
(v) Ser,e) #0 & l(cr,02) >0

hold true.

Proof. (B) follows from (). Let (m;,7;) be the coordinates of c1,cy. Assume
l(c1,c2) > 0. If my = mg, then

0<l(cr,c2) = —(11 —T2)?

ie. c; = co,ie S(ci,c) # 0. If my # ma, take b € X with b> =1 and b- (my —
mg) = 0. Define a := amy + 71 and a € X by

(m1—mg)? -a:= b\/l (c1,¢2) - (m1—ma)? — (my—m2) (11 —T2). (3.81)

Hence a® = 1 and a (m;1 — ma) + (71 — 72) = 0. Thus, by Proposition 40, (a,1,a)
touches c¢; and ca, i.e. (S (c1,c2) # 0. In order to prove the other part of (7),
assume that (a, 1, «) touches ¢; and ¢g. From

ami+m=a,ame+m=0a,a=1 (3.82)
we get (11 — 72)2 = [a(m1 — m2)]? < a®(my — ma)?, ie. [(c1,c2) > 0. Finally,
we would like to prove (). Assume [ (cy,c2) = 0. There is nothing to show for
c1 = cg. If ¢1 # co, there exists, by (v), (a,1,a) touching ¢; and cy. Hence (3.82)
holds true and also, as before,

(11 —72)% = la(mi —m2)]* < a®(m1 —ma)® = (m1 —mo)?.

Since also 0 =1 (c1,c2) = (m1 —m2)? — (11 — 72)? is satisfied, we even obtain

2 2

[a (my —my)]* = a®(my —mg)?,
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i.e., by Lemma 1, chapter 1, that a, m; — my are linearly dependent. Hence m; —
mo = Aa with A € R and thus, by (3.82), A = 75 — 71. Since ¢; # c2, we get A # 0.
The spear (a, 1, «) is hence uniquely determined by

a="1""2 snda= amy + Ty. (3.83)
T2 —T1

Thus ¢; — ¢2. Vice versa assume c¢; — co. We then must prove I (¢1,¢3) = 0. This
is clear for ¢; = co. Hence suppose that ¢; # ¢a. From () we get [ (c1,¢2) > 0.
Replacing b in (3.81) by —b, we also obtain a spear (a’,1, ') touching ¢; and cs.
Since ¢ — co, the spears (a,1,a) and (a’,1,a’) must be identical. This, by (3.81),
implies [ (¢1,¢2) = 0. O

Proposition 44. Let s = (H,H*) be a spear and ci,ca be Laguerre cycles with
c1—s—co. If p;, i = 1,2, is the point of contact of s and c;, then

l(c1,02) = (p1 —p2)*. (3.84)
Proof. Let (a,1,«) be coordinates of s. Then, by (3.77), (3.73),
p; =m; +1a, 1 =1,2.
This and am; + 7, = «, ¢ = 1,2, imply

(p1 —p2)? = [(m1 —ma) + (11 — 72)al?
= (m1 —m2)? +2(11 — 72) a(my —my) + (11 — 72)?
=1

(c1,c2). -

If I (c1,¢2) > 0, i.e. by Proposition 43, (), that S (c1,c2) # 0, the expression

l (61,62) (385)

is called the tangential distance of c1,co. In other words, it exists exactly if there
is at least one spear s touching ¢; and co. By (3.84), /I (c1,c2) represents the
euclidean distance between the two points p; of contact of s and ¢;, 1 = 1, 2.

If the separation [ (¢1,c2) of ¢; and ¢y is negative, there is also a geometric
interpretation of [ (c1, ¢2):

A. If I (c1,c2) < 0, there exists ¢ € I with ¢; — ¢ — ¢3. Take e € X with €2 = 1.
Then

[6 (m1 — TTLQ)]2 < 62(m1 — m2)2 = (m1 — m2)2 < (Tl — 7'2)2,

because of I (¢1,c2) < 0. Hence k := e (my —mg) — (11 — 72) # 0. Put
m:=mg+ Xe, T:=To + A, 2kX :=1(c1, ¢2).

Now Proposition 43, («), implies ¢; — (m, 7) — ca.
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B. If there is no spear touching ¢; and ca, i.e., by Proposition 43, (8), (c1,¢2) < 0,
then, as we will prove,

l(c1,e2) = —4l(y,2) (3.86)

holds true where

(3.87)

_fmit+my T1+ T
v 2 2

is the so-called mid—cycle of ¢; and ¢y, and where z is a Laguerre cycle with
c1 — z — ¢o (see step A for the existence of such a z).

Since I (c1,cq) is negative, we obtain [ (y,z) > 0, and this latter separation
can hence be interpreted by a tangential distance.

In order to prove (3.86), we again will work with the real vector space
Z=X&R,
as in section 8, but now with the product
(m,7)-(n,0) :=mn—T10 (3.88)
instead of (a, ) - (b, B) := ab+ af as in (3.54). Observe the rules
vy =y, (x+y)z=z2+yz (Azr) -y =X (zy)

for all z,y,z € Z and A € R. However, 22 may be negative for = # 0: take e € X
with e? = 1 and put = = (e,2). We will call Z the vector space of Laguerre cycles
of X.

Equation (3.86) reads as (c¢; — ¢2)? = —4(y — 2)? in Z with
2y =rc; +cyand (¢ — 2)> =0 = (cy — 2)2

Note that we have to distinguish between the difference x —y in Z and the contact
x—yofxz,yeT. A proof of (3.86) is now given by

2
—(c1 —e2)? = —((cl —2)—(co — z)) =2(c1 — 2)(ea — 2),
2
(2y —22)2 = ((01 —2)+ (c2 — z)) =2(c1 — 2)(cg — 2). 0
The mapping which associates to a Laguerre cycle ¢ of X its coordinates

(m, ) in the vector space Z is called cyclographic projection. We are now interested
in the images of spears s,

s={cel|c—s}, (3.89)
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under this mapping. Here we will work with the inner product (3.54). In this
context we prefer to speak of the vector space Y (more precisely of the real inner
product space Y'), as we did in section 7. If s has coordinates (a, &, @), then (3.89)
is given by all (m,7) € Y satisfying

(a,8) - (m,7) =, (3.90)

according to (3.77). This is a hyperplane of the real inner product space Y, but of
course, a special hyperplane, since a? = £2 holds true. Assuming (a,£)? = 1, i.e.
a? + £2 = 1, we obtain for the cosine of the angle between (a,¢) and (0, 1),

1 1
6)-(0,)=8ed—,—F= .
@8- 0= {5
We call these hyperplanes of Y its 45°-hyperplanes,
(a,€)(m,7) = o, (a,€)* =1, V2& € {1,-1}.

The 45°-hyperplanes of Y are hence exactly the images of the spears under the
cyclographic projection. Two spears are parallel if, and only if, the image hyper-
planes are parallel (see Proposition 42, (i)).

In order to define the cylinder model for our structure of spears and Laguerre
cycles take the cylinder

C={lymeY|y =1}

of Y.If H ((b,8),7), (b, B) # 0, is a hyperplane of Y such that (b, 3) £ (0,1) holds
true, then

CNH((b28)7) (3.91)

is called a hyperplane cutof C. A line [ of Y contained in C' is said to be a generator
of C. If | C C with

L= {(a,0) + A ((5,8) - (a,a)) | A € R},

(a,a),(b,B) € C, (a,a) # (b, B), then [a+ X (b — a)]? = 1 holds true for all A\ € R,
i.e. ab=1,1i.e. a = b, by Lemma 1, chapter 1. Hence [ must be parallel to the axis

R-(0,1)

of the cylinder C. Thus we get all generators g of C' by taking a € X with a? = 1
and putting
g={(a,N)[AeR}.

We will say that the hyperplane H of Y is parallel to the line h of Y provided
there exists a line hg C H parallel to h. This implies that C N H ((b,ﬁ),'y) is a
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hyperplane cut if, and only if, H is not parallel to the axis of C. If (m,7) # (n,0)
are both in H such that

(m,7) — (n,0) € R(0,1),

then m = n, i.e. bm + 87 = v = bm + fo, i.e. (m,7) = (n,0) for  # 0. Thus
(b,8) L (0,1). If, vice versa, (3.91) is not a hyperplane cut, i.e. if (b,5) L (0,1),
i.e. 8 =0 holds true, then b # 0, by (b, 8) # 0 and

5 (0.8) +R(0.1) C H,

i.e. H is parallel to the axis of C.

This is now the cylinder model. Associate to the spear of X with coordinates
(a,1, @) the point (a,«) of C. This is a bijection between C and the set ¥ of all
spears of X. The important thing is that the image of a Laguerre cycle

c={seX|s—c} (3.92)

is a hyperplane cut of C and that the inverse image of every hyperplane cut must
be a Laguerre cycle of X. In fact, the image of (3.92) is the hyperplane cut

CNH((-m,1),7) (3.93)
where (m, T) are the coordinates of ¢: this follows from
(—m,)(a,a) —T=—ma+a—7=0

by observing (3.77) with £ = 1, by noticing a? = 1, i.e. (a,a) € C, and H / (0,1).
Let, vice versa, (3.91) be an arbitrary hyperplane cut of C. Hence 8 # 0. Put

(.t
(m,7):= < 5 ﬁ)
and (3.93) becomes (3.91).

Lemma 45. If both sides of C N H ((b, 5),7) =CNH ((b’,ﬂ’),’y’) are hyperplane
cuts, then the hyperplanes involved coincide.

Proof. We may assume 8 = 1 = 3 without loss of generality. Take arbitrarily
a € X with a? = 1. Then (a,y —ba) € C N H ((b,1),v) and hence

ba+~y—ba=+".
Take a L ' —b. Hence v = /. Thus (b’ —b)a = 0 for all @ € X with a? = 1. Hence
b =hb. O
Note that two spears are parallel if, and only if, their images on C are on the
same generator of C' (see Proposition 42, (i)).

Remark. We would like to emphasize that we designated by Y the real vector
space X & R equipped with the inner product (3.54), and that Z denotes the real
vector space X @ R furnished with the product (3.88).
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3.11 Pencils and bundles

In this section we shall work with the vector space Z, so with X @R and the product
(3.88). Of course, X is a subspace of Z in the sense that x of X is identified with
the element (z,0) of Z. As far as elements a, b of X are concerned, we get for these

ab = (a,0)(b,0) =ab—0-0,
i.e. we get their inner product in X. Hence for elements a,b of Z which already
belong to X, we may apply, for instance, Lemma 1 of chapter 1.

Note
l (Cl, Cg) = (Cl — 02)2

for elements cq, ¢y of Z.

Let ¢1 # ¢o be Laguerre cycles satisfying ¢; — ¢o. Then
Bp(ci,e0) ={cel|c1 —c—ca} (3.94)

is called a parabolic pencil of Laguerre cycles.

Proposition 46. Let ¢; # co be elements of I' with ¢y — co. Then the following
statements (o), (B), (v) hold true.

(a) If v # w are in By(ci,c2), then v —w and By(v,w) = Bp(c1,c2).
(B) The spear s touching c1,co touches every v € By(c1,¢2).

(7) Bp(cth) = {Cl + Q(Cz — 61) | RS R}.

Proof. If ¢ € By(c1,c2), then, by (3.94) and Proposition 43, I (¢c,¢;) = 0,7 = 1,2
holds true. Put
Tr; = C—C = (mi,n), 1= 1,2

Then z? = 0 for i = 1,2, and, by I (c1,c2) = 0, also (v1 — x2)? = 0, i.e. 122 = 0,
i.e. mymgy = T172. Hence, by 22 =0,

(mimg)? = 1273 = mim3.
Thus, by Lemma 1, chapter 1, mi, msy are linearly dependent. Even xq, x5 are
linearly dependent. This is clear for 1 = 0 or x5 = 0. Assume z; # 0 # zo. If
mj = Am;, A € R, for suitable {7, 5} = {1,2}, then m;my = 775 implies

 m? =71, (3.95)

and m3 = 77, by 27 = 0, yields (Am;)* = m3 = 77

2 =17 1e A1 = X?m7 = 77. Hence
Tj € {A1;, =AU 7 = A1y, then o; = Az If 7j # A1y, then 73 = —Ar; and A # 0.
Hence 0 < m? = —712 < 0, by (3.95), i.e. m; = 0 = 7;. But x; = 0 contradicts

x1 # 0 # x2. Thus x; = Az; and x1, z2 are linearly dependent.
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Now x; = Az; yields ¢ — ¢; = A(c — ¢;). Since ¢; # ¢z, we obtain A # 1, and
hence
c=ci+y(cj—ci)=cj+(c; —¢j) =2c1+0(ca — 1)

with v+ (1 —A):=1and 6 := 1 — . Thus
By(c1,¢2) C{er +o(ca—c1) | 0 € R}

Moreover, we have to show d :=¢; + ¢ (c2 — ¢1) € Bp(c1, c2) for every o € R: this
follows from

(d— 01)2 = 02(02 - 61)2 =0, (d- 02)2 =(0o— 1)2(62 - 01)2 =0,

i.e. ¢ —d — ¢o. This proves (). Statement («) follows from (). In order to show

(8), put

s=(a,1,a), ¢; =: (my, ;) for i =1,2.
Now amq + 71 = a and amsg + 7 = « imply
am—+7T =«
for (m,7):=c1+0(ca —c1). O
Exactly the lines
Bp(cr,e2) ={c1+o(ca—c1) | 0 €R}, e1 # e, l(c1,¢2) =0,

of Z = X ® R represent the parabolic pencils.

Proposition 47. Let ¢; # co be Laguerre cycles with ¢1 — co. The only spear s
touching c1 and co is given as subset of I' by N U Bp(c1, c2) with

N :={ceT| thereisnow € By(c1,c2) touching c}.
Proof. If ¢; = (my,7;), i = 1,2, then, by (3.83),
s=(a,1,mia+ 1)
with (72 — 71)a := my — mg. All z = (m,7) € T touching s are given by the

equation
am + T =amy + 71,

ie. by (m1 - mg)(m - ml) - (’7’1 - TQ)(T - 7'1) = 0, i.e. by
P:={z€eTl|(c1 —c2)(z—c1) =0} (3.96)
We have to show P = N U Bp(c1,c2) =: Q. Obviously,

L(z,e1+0(ca—c1)) =1(z,c1) +20(c1 —c2)(z — 1) (3.97)
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for all z € T, in view of [ (¢1,c2) = 0.

If z € P, then (3.97) implies | (z,¢1 + 0(c2 — ¢1)) = (2, ¢1) for all p € R.
Hence, if [ (z,¢1) = 0, so I (z,c2) = 0 (case o = 1), and we get ¢; — z — ¢o, i.e.
z € Bp(c1,c2) C Q. If I(z,¢1) # 0, we obtain l(z,cl + o0(cq — cl)) # 0 for all
0€R,ie. z€ N CQ. Also @ C P holds true. In fact! Obviously, By(c1,c2) C P.
If z€ N, then I (z,c1+0(co —c1)) # 0 for all o € R.If (¢1 — 2)(2 — ¢1) were # 0,
there would exist a real number gy such that the right-hand side of (3.97) were 0,
ie.l (z,cl + oo(c2 — cl)) = 0 would hold true. O

Let ¢1, co be distinct Laguerre cycles such that there exist at least two distinct
spears touching both ¢; and cs. Then

B.(ci,¢c2) :={c€Tl |c1—s—ca=s—cforall s € &}

is called an elliptic pencil.

Proposition 48. Ezactly the lines
Be(cr,c2) ={cr+o0(ca—c1) | 0 € R}, U(c1,¢2) >0,

of Z = X & R represent the elliptic pencils.

Proof. Let (m;,7;), i = 1,2, be the coordinates of ¢; € I'. We assume ¢; # ¢ and
that there are at least two distinct spears touching ¢; and co. Hence [ (¢1,¢z) > 0,
according to Proposition 43, and thus m; # mq. If b € X satisfies b> = 1 and
b- (m1 —msg) = 0, then, compare (3.81), (a,1,am; + 71) where

(m1 — m2)2 Q= b\/l (01, 02)(m1 — m2)2 — (m1 — mg)(Tl — Tz) (398)

touches ¢; and ¢y. This spear must also touch any ¢ € Be(cq,¢2). Put ¢ := (m, 7).
Hence a (m —my) = 7 — 7 and thus, by (3.98),

w?(ry — 1) = b(m —m1) V1 (c1,c0) w2 —w(m—my)(r — 1) (3.99)

where w := mj —msy. This equation which only depends on ¢1, c2 and on a suitable
chosen b must also hold true if we replace b by —b, whence b- (m —m;) = 0 for all
b € X satisfying b> = 1 and bw = 0. Since X = w' @ Rw, the element t := m —m;
of X must be of the form ¢ = aby + Sw with bg = 1 and bpw = 0 where by
is a suitable chosen element of w®. Applying this by for (3.98) we hence have
b() . (m — ml) = 0, i.e.

0= bot = «,

i.e. t = Bw. This together with (3.99) yields
w? (1) — 7) = —puw? (T — ),
ie. 7=7 + B (11 — 72). Hence ¢ = ¢1 + (—B)(ca — ¢1) with t = fw, by

(m,7) = (m1,71) + B (m1 —ma, 71 — T2).
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Let vice versa s = (d, 1,0) be a spear with ¢; — s — ¢o, i.e. with dm; +7; = §. This
implies

d(mi+o(me—my)) +71+o0(r2—71) =34,
i.e. ¢ € Be(c1,c2) for c=c1 4+ 0(ca — 1). O

Lemma 49. If s is a spear and ¢ a Laguerre cycle, there exists exactly one spear t
satisfying t — c and t || s.

Proof. If (a, 1, ) are the coordinates of s, and (m,7) those of ¢, all spears ¢ with
s || t and t — ¢ are given by am+7 = 3, since t || s must have coordinates (a, 1, 3),
by Proposition 42. Hence there is exactly one such spear ¢, namely

(a,1,am + 7). O

As a consequence of Lemma 49 we obtain that parallel spears s, touching
the same Laguerre cycle must coincide. However, this statement is already part of
the definition of parallelism of spears.

Suppose that ¢, co are Laguerre cycles such that there is no spear touching
c1 and cy. If A is a real number, we define the Laguerre cycle (¢, co, A) as follows.
If the spear s touches ¢, let A; be the point of contact of s and ¢;, and By be
the point of contact of ¢ and ¢, where the spear ¢t is defined by s || ¢ and ¢ — cs.
If ¢ (s, \) denotes the spear which is parallel to s and which touches the Laguerre
cycle with coordinates

(As + N (Bs — Ay),0),

then
(c1,c2,A) :=={t(s,A) | s—c1} (3.100)
is a Laguerre cycle concerning the interpretation of Lemma 41, and
By(er,e2) :i={(c1,c2,\) | A € R} (3.101)

is called a hyperbolic pencil.

In fact! If {t(s,A) | s — c1} is the set of all spears touching a Laguerre cycle
c¢c=(m,7),if ¢; =: (my, ;) for i = 1,2, and if (a, 1,ams + 71) is an arbitrary spear
s with s — ¢y, then ¢ = (a, 1,ams + 72) and

t(s,A) = (a,1,a[As + A (Bs — A,)]),
in view of s || t (s,A) and ¢ (s,\) — z, z = (As + A (Bs — A;),0). Since (see (3.79))
As = mq + ma, By = ma + ma,
we obtain from ¢ (s, \) — z,

a(m—ml—)\(mg—ml)):—(7—7'1—)\(72—7'1)). (3102)
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If we choose ag = a € X, a® = 1, such that the left-hand side of this equation is
0, then

T:T1+A(T2_Tl)- (3103)
Hence the left-hand side of (3.102) must be 0 for all a € X, a® = 1. This implies
m=mi + A (mg —mq). (3.104)

The cycle of ¢ is thus, if it exists, uniquely determined. We now would like to verify
that ¢ := (m, 7) with (3.103), (3.104) touches all (s, A), s—cq, but no other spear.
Of course, every

t(S,A) = (a,l,a[ml +)\(m2 77711)] —+ [7’1 +)\(T2 77’1)])

with arbitrary a € X, a? = 1, touches c. On the other hand, if the spear r touches c,
take s—cy parallel to r, whence r || s || t (s, A) and t (s, \)—c—r,ie.r =t (s,\). O

Formulas (3.103), (3.104) also prove
Proposition 50. FEzactly the lines

Bp(ci,c2) ={er +o(ca—c1) | 0 € R}, I(er,e2) <0,

of Z = X & R represent the hyperbolic pencils.

If By(c1,c2) is a parabolic pencil, we already know that there is exactly one
spear touching all ¢ in By, (c1,c2). We will call this spear the underlying spear of
the pencil. Two parabolic pencils B!, B? are said to be parallel, designated by
B! || B2, provided their underlying spears are parallel.

Let B!, B? be parabolic pencils having exactly one Laguerre cycle in common.
Then the union of all parabolic pencils B satisfying

BNB'#( and B || B? (3.105)

will be called a bundle, designated by B = B (B!, B?).

Proposition 51. («) Two parabolic pencils are parallel if, and only if, their asso-
ciated lines in Z = X ® R (see Proposition 46, (7)) are parallel.

(B) Let B = By(c,c1), B> = By(c,c2) be parabolic pencils having exactly c in
common. The union of all parabolic pencils B satisfying (3.105) is then given
by

B (B, B?)={c+a(c—c)+p(ca—c)|a,BER}, (3.106)

where the elements ¢c1 — ¢, co — ¢ of Z are linearly independent in Z.
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(v) If a,b,p are Laguerre cycles such that a,b € Z are linearly independent, then
B={p+aa+pb|apeR} (3.107)

s a bundle if, and only if,
(ab)? > a® - b?. (3.108)

(0) If By, is a hyperbolic pencil, then there exist bundles B!, B2 with
B, =B B2 (3.109)

Proof. (a) If By(c1,c2) with ¢; = (my,74), ¢ = 1,2, is a parabolic pencil, then, by
(3.83), s = (a, 1, mia+m7) is the underlying spear satisfying (7o —71) a := my —mo.
Observe 71 # Ty, since otherwise ¢; = cy. Suppose now that B, (c1,¢2), Bp(cs,ca)
are parabolic pencils. They are hence parallel, by Proposition 42, if, and only if,

my — M2 m3 — My

T2 —T1 T4 — T3 ’

i.e. if, and only if,
€1 —C2 €3 —C4

T2 —T1 T4 — T3
holds true.
(B) Since B = {c + pi(c; —¢) | 0; € R}, i = 1,2, have exactly ¢ in common,
c1 — ¢, ¢ — ¢ must be linearly independent. Hence B (B!, B?) is given by the
union of all lines

lpr={c+o(c1—c)+A(ca—c) | xR}, pER,

in view of ().
(7) Assume that (3.108) holds true. Put ¢ := p and

u=a?, v:="b% w:=ab.
Hence w? > uv. Define £ := vVw? — uv and
ci—c:=(E—w)at+ub,cg—c:=—(§+w)a+ ub

for u # 0, and
¢ —c:=a, cg—c:=va— 2wb

for u = 0. Then I (¢,¢;) = 0,4 = 1,2, and ¢; — ¢, ¢a — ¢ are linearly independent
in Z. Hence (3.107) has the form (3.106). Vice versa, we are now assuming that
(3.107) is a bundle, say the bundle (3.106). Since

p+2a,p+ac®B="2(B'B?),
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we get p+2a =c+ ai(c1 —¢) + Pi(ce — ), ie.
a=(p+2a) = (p+a)=ala-c)+p(ez—c),

and similarly,
b=7(c1—¢)+d(ca—c)

with ad — By # 0, since a, b are linearly independent. Hence
a® = a?(c; — ¢)* + 2ap0 + B%(co — ¢)* = 2080
with o := (¢1 — ¢)(c2 — ¢). Moreover,
b? = 2v60, ab = (ad + f7) 0.

Hence (ab)? — a?b? = (ad — 37)%02. We, finally, have to show that o # 0. But
o = 0 would imply

(1 —c2)? =[(c1 — )+ (c— )] = =20 = 0,

i.e. ¢; would touch ¢y, i.e. ¢; —co — ¢, ie. ¢y € B!, i.e. B! = B2, by Proposition
46, (a), a contradiction.

(0) Let By, = {p + aa | a € R} be a hyperbolic pencil. Hence [ (a,0) < 0, by
Proposition 50, i.e. a? < 0. Thus 7 # 0 for

a=:(m,7)eZ=XaR
If m # 0, take e € X with €2 =1 and e € m*, and put
b:=(e 1), c:=(e,—1).
Then a, b, ¢ are linearly independent, and, by (),
{p+aa+pBb|a,BeR}), {p+aa+vc|a,veR}
are bundles with By, as their intersection.— If m = 0, take e1,es € X with e% =

e3 =1, ejeg =0, and put b := (e1, 1), ¢ := (e, 1). Then proceed as above. O

3.12 Lie cycles, groups Lie (X), Lag (X)

A Lie cycle of X is a Laguerre cycle of X or a spear of X, or a new object which
will be designated by the symbol co. The set of all Lie cycles of X will be denoted
by A = A(X). Hence A = T'U X U {oo}. Another fundamental notion in the
context of Lie cycles is again the contact relation. This is defined to be a reflexive
and symmetric relation “~” on A satisfying

(i) oo touches every spear, but no Laguerre cycle,
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(ii) the spear s; touches the spear sq if, and only if, s1 || sa,

(iii) the spear or Laguerre cycle g touches the Laguerre cycle ¢ if, and only if,
g — ¢ holds true.

A Lie transformation of X is a bijection
AAX) = AX)

such that for all =,y € A the statements  —y and A (x) — A (y) are equivalent.

By Lie (X) we denote the group of all Lie transformations of X where the
multiplication is defined to be the usual product of bijections.
A Laguerre transformation of X is a Lie transformation X satisfying \ (oc0) =
oo. If A is such a Laguerre transformation, then A (X) C ¥ and A (I') C T, because
of (i) and
00— 8 & 00— A(s),

00 #£c & 00 #£A(c)

foralls€ X and ceT.
We shall identify Laguerre transformations with their restrictions on

YUT = A\{oo}.

The group of all Laguerre transformations of X, Lag (X), is a subgroup of Lie (X).
An important subgroup of Lag (X) is Lag,(X) consisting of all separation pre-
serving Laguerre transformations of X.

The geometry (A (X),Lie (X)) is called Lie sphere geometry over X, and
(E UT', Lag (X)) Laguerre sphere geometry over X. Since Lag (X) is the stabilizer
of Lie (X) in 0o, obviously, Laguerre geometry concerns Lie geometry with respect
to a fixed Lie cycle, namely the cycle co. The geometry (F,Lag* (X )) is called
proper Laguerre sphere geometry over X. Of course, ¥ defines an invariant notion
(2, p) of (F, Lag, (X)) as well as of the geometry (F, Lag (X)), by means of

@ (f,8) ={f(c) | c—s}.

Proposition 52. A bijection A : SUT - X UT with A(X) C X and A\(T) C T isa
Laguerre transformation of X if, and only if,

s—ce A(s)—A(e) (3.110)

holds true for all s € ¥ and c € T

Proof. Obviously, A (X) = X and A (') = T are satisfied, since A is a bijection. If
A is a Laguerre transformation, then (3.110) holds true. If, vice versa, A satisfies

“won

(3.110), we extend it by A (0c0) = oo, and, of course, we extend the relation “-” on
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A by (i), (ii), (ili) and in such a way that it is reflexive and symmetric. Now we
must prove

r—ye A(z)—A(y) (3.111)
for all 2,y € A. Instead of (3.111) we will show
r—y=XMx)—A(y) and = 4y = A(z) £\ (v) (3.112)

forall z,y € A. If oo € {x,y}, (3.112) holds true, because of A (X) =X, A(T") =T.
If one of the elements x,y of A is a spear and the other one a Laguerre cycle, we
know (3.112) from (3.110). So it remains to consider the two cases

D A{z,yt %, 2){z,y}cCT

where we even may assume x # y. In the first case, x — y implies that there is
no Laguerre cycle ¢ with x — ¢ — y, and x 4y yields that there is such a Laguerre
cycle having this property. Hence (3.112) follows from (3.110) in case 1). Also in
the second case (3.112) follows from (3.110). O

On the basis of Lemma 41, there exist two other possibilities to define a
Laguerre transformation.

Proposition 53. Identify s € ¥ with {c € I' | s — c¢}. A Laguerre transformation
can now be defined as a bijection \ of I' such that images and pre-images of spears
are spears.

Proof. We must extend A\:T' 5T to A : ZUT — Y UT with A (2) C ¥ and show
that (3.110) holds true. The image of the spear s = {¢ € I' | s — ¢} must be a
spear,

A(s):={A(c)|ceTl and s — ¢},

since images of spears are supposed to be spears. Observe
s—c=>X(c) € A(s) = A(s) — A(o).
The pre-image of s = {c € I | s — ¢}, namely
A s) :={A" c) | ceT and s — ¢},
is also a spear. Observe A ()\_13)) = s. Hence
s—c= A1) e X s) = A s) — AT o),
ie. A(s) = A(c) = AHA(8)] = A A = s —c. O

Proposition 54. Identify ¢ € ' with {s € ¥ | c—s}. A Laguerre transformation can
also be defined as a bijection A of ¥ such that images and pre-images of Laguerre
cycles are Laguerre cycles.
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Proof. We now must extend A : ¥ - X toA: XU — X UT with A(T') C T and
show that (3.110) holds true. Mutatis mutandis, we may follow the procedure of
the proof of Proposition 53 in order to complete the present proof. O

Examples of Laguerre transformations of X are the (Laguerre) dilatations.
Let d be a real number and define

)\é(ma T) = (ma T+ 5)) )\5(0“; 1, Oz) = (av La+ 5)
for the Laguerre cycle with coordinates (m, ) and the spear (a, 1, ). Since
am+717=aand am+ (t1+96)=a+9

are equivalent, (3.110) is satisfied by Proposition 40.

If, for instance, § = 1, then the Laguerre cycle (0,0), which is actually the
point 0 € X, has as image under A; the Laguerre cycle (0,1) which is not a point
of X. So Laguerre transformations need not be induced by point transformations
of X. The set D (X) of dilatations of X is a subgroup of Lag (X).

If w € O (X), then, obviously,

Aw(m, 1) := (w (m),T), Aola, 1, @) := (w (a), l,a)

defines a Laguerre transformation. If d is a fixed element of X, and if 0 # 0 is a
fixed real number, then also

A(m,7):=(0c-m+d,o-7), Aa,1l,a) :=(a,l,0-a+a-d)

defines a Laguerre transformation designated by Ag,. If 21 = (m1,71), 22 =
(mq, 2) are Laguerre cycles, then, obviously,

)\7‘277'1 : )\mgfml,l (Zl) = 22)

so that Lag (X) operates transitively on I'. The same group acts transitively on
¥ as well. This will be shown as follows. If a,b € X satisfy a2 = 1 = b2, there
exists w € O (X) with w (a) = b (see step A of the proof of Theorem 7, chapter 1).
Suppose now that (a,1,«) and (b, 1, 8) are spears. Take w € O (X) with w (a) = b.
Then

)\5—04 Aw(a’ 1, a) = (ba L, ﬂ)

Reversing the orientation,
¥ (m7 T) = (m7 77—)’ ¥ (117 ]-7 O[) = ((I, 717 O[),
also represents a Laguerre transformation.

Proposition 55. Suppose that X is a Laguerre transformation. Then images and
pre-images of parabolic, elliptic, hyperbolic pencils are parabolic, elliptic, hyperbolic
pencils, respectively. Images and pre-images of bundles are bundles.
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Proof. This statement follows immediately from the definitions, with the exception
of the assertion that images and pre-images of hyperbolic pencils are hyperbolic
pencils. So let Bpbe a hyperbolic pencil. We are interested in

A(Bp) :={A(c) | ce Bp}.
Suppose that B!, B2 are bundles satisfying (3.109). Hence

M(By) = A (BYH) N A(B?)
isaline g of Z = X ®R, say the line ¢; +R(co—cq). Here I (¢1, c2) must be negative,
since otherwise g (and then also Bj, = A~!(g)) would represent a parabolic or an
elliptic pencil. O
3.13 Lie cycle coordinates, Lie quadric
Put R* := R\{0}. If ¢ = (m, 7) is in T, define

1+4+1(0,¢) 1-1(0,¢)
(m7 T? 2 ) 2

to be coordinates of the Lie cycle ¢. Moreover, coordinates of the spear (a, 1, «) are
(a,1,, —a), and those of co are (0,0,1,—1). We would like to have coordinates
of Lie cycles as homogenous coordinates. Therefore we say that every quadruple

contained in
* 1+1(0,¢) 1—1(0,c)
R (m, —T, — >

2 b

AAL(0,6) A—AL(0,c
= {Am, g, 20 A

AeR')
are coordinates of (m, 7). Similarly we consider
R*(a,1,a, —«) and R*(0,0,1,—1)

for spears, for oo, respectively. Observe that R*(v, &1, &2,&3) is a subset of V' :=
X ® R? and that

P&+ E=0 (3.113)
holds true for the coordinates of a Lie cycle. Given
R* (U7 glv 527 53) S V

with (3.113) and (v,&1,&2,£3) # 0, we distinguish the following cases.
Case: & + &3 # 0.
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Then R*(aw, a&y, a&s, as) with a - (§2 + &3) := 1 represents the Laguerre cycle
¢ = (aw, —a&;), by observing
2 1+a?(v?— f
M =Rt (14 @ - ) — ot

1—c? 142
Tczl—%:l—a@:a&,.

Here and in the remaining sections of chapter 3 we are still working with the vector
space Z of Laguerre cycles of X and with the product (3.88).

Case: & + &3 = 0.

Hence (3.113) implies v? = £7. If & = 0, we get coordinates of oo, and if & # 0,
we obtain the spear (v, &1, &s).

The set LQ (X) of all subsets R* (v, &1, &, &3) of X @ R3 such that (v, &y, &a,&3) #
(0,0,0,0) and (3.113) hold true is called the Lie quadric of the Lie geometry over
X.

What we proved before, is the

Proposition 56. Associate to every Lie cycle of X of coordinates (v,&1,&2,&3) the
element R*(v, &1, €2,&3) of LQ (X). This mapping

YA X) = LQ(X)
is a bijection between the set A (X) of all Lie cycles of X and LQ (X).
Also important in connection with Proposition 56 is the following
Proposition 57. Let x,y be Lie cycles and let
(7}, 517 627 53)a (U}, m,n2, 773)
be coordinates of x,y, respectively. Then x — y holds true if, and only if,
vw —&m — §am2 +&n3 =0 (3.114)

is satisfied.

Proof. Assume x—y. If x =y, (3.114) follows from ¢ (z) € LQ (X). If co € {x,y},
say © = 00 # y, (3.114) holds true for all spears y. In the case x = (a,1,a), y =
(b,1,5), we get a = b from = — y, i.e.

ab—1-1—a- -+ (—a)(—p)=0.
If x is a spear and y a Laguerre cycle, x — y implies

am—+T1T =«



156 Chapter 3. Sphere Geometries of Mobius and Lie

with z = (a,1,a), y = (m,7), i.e. am + 7 — « # -« % = 0. In the case that
x,y are both Laguerre cycles, (m, 1), (n, o), respectively, z —y yields 0 = I (x,y) =
(x — y)2. Hence

mn =70~ L (142 (1 y) 4§ (L= 21— 9?) = 3 (&~ y)* =0,

by mn — 1o = xy.
Vice versa, assume (3.114) for the Lie cycles z,y. If x = oo, then we get
12 + 13 = 0 from (3.114). Hence y must be a spear or co. If z = (a, 1, @), then

aw — 1 — anz — any = 0. (3.115)

Of course, y = oo solves this equation. If y = (b, 1, 8) is a solution, then ab—1 = 0,
i.e. a = b, in view of Lemma 1, chapter 1. Hence y || z, i.e. x — y. For y = (m, 1),

we obtain
«

2

from (3.115), i.e. am + 7 = a, i.e. ¢ — y. We, finally, consider the case z = (m, 7).
Hence, by (3.114),

am—!—r—%(l—i—yz) (1—-y*)=0

1 1
mw + T *5(1+I2)772+§(1*172)773:0- (3.116)

Since the contact relation is symmetric and also (3.114) in z,y, we only need to
check the case y = (n,0) in (3.116). Here we get

1 1
mn—TU—1(1+m2)(1+y2)+1(1—x2)(1—y2):0,

ie. (r—y)?=0,ie z—y. O
Proposition 58. If x,y are Lie cycles, then there exists A € Lie (X) with A (x) = y.

Proof. 1) We only need to show that to z € A there exists o € Lie (X) with
a (00) = z because a (o) = z and B (00) = y imply (Ba~1)(z) = y.
2) Define € : LQ (X) — LQ (X) by

€ (R* (Uv gla 525 53)) =R" (Uv gla 52; _53)~

Since ee (z) = « for all z € LQ (X), € must be a bijection of LQ (X) : € () is also
the inverse image of x, and ¢ (z) = € (y) implies x = ee (z) = ee (y) = y (compare
the consideration in section 7, chapter 1, before the definition of a translation
group). Identifying in the following a Lie cycle z with its image ¥ (2) on LQ (X),
we can say that ¢ is a Lie transformation, since (3.114) implies

vw — &1y — Eama + (—€3)(—n3) = 0.
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3) Note that € (c0) is the Laguerre cycle (0,0) with m = 0 and 7 = 0. Since Lag (X)
operates transitively on I" (see section 12), to z € " there exists o € Lie (X) with
a (0,0) = z. Hence (ae)(o0) = z.

4) Take a € X with a? = 1. Then R*(a,1,1,—1) is a spear s and ¢ (s) a Laguerre
cycle z. Since Lag (X)) operates transitively on ¥ (see section 12), to z € ¥ exists
a € Lie (X) with a(s) = z. If §(c0) = z for a suitable 8 € Lie (X) (see step 3)),
then aef (00) = z.

5) If z = oo, then id (00) = oo. O

Let P =P (X @ R?) be the set of all 1-dimensional subspaces of X & R3 and
define L = L (X @ R3) to be the set of all 2-dimensional subspaces of the vector
space X @ R3. The elements of P are called points and the elements of L lines. Let
p be a point and [ be a line. We say that p is on [ or that [ goes through p provided
p C [. In this case we also say that p is incident with [ or that [ is incident with
p. Lines may be considered as sets of points by identifying a line | with the set of
points on [,

{fpeP|[pci}

Projective transformations are defined as bijections of PP such that images and
pre-images of lines are lines. We thus may speak of the group G = G (X & R3) of
projective transformations. The geometry

(P, @)

is called the projective geometry I1 = 11 (X @ R3) over X ® R3 and G is called its
projective group.

If p1, po are distinct points, there is exactly one line [ through p1, p2. A subset
S of P is called collinear provided there exists a line containing all points of S.

It is important that the Lie quadric LQ (X) is a subset of the set of points of
the projective geometry IT over X @ R3.

Proposition 59. Again we do not distinguish between a Lie cycle of X and its
image on LQ (X) in I1 (X @ R3). Let 1, co be distinct Lie cycles of X. Then the
following properties are equivalent.

(o) 1 —ca,
(B) the line of 11 through c1,ca is contained in LQ (X),
() there exists c € LQ (X)\{c1,c2} such that c,c1,ca are collinear in II.

Moreover, the following holds true.

If ¢1,c9,c3 are pairwise distinct Lie cycles which are pairwise in contact, then
{c1,¢a,c3} is collinear in II.

Proof. Assume (o). Let ¢;, i = 1,2, be given by

R*(vs, &1, iz, €i3)-
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Then R*(av; + Bva, a&11 + BEa21,...) is the line through c;, co where («, 5) runs
over R2\{(0,0)}. That all these points are in LQ (X) follows immediately from

vf =L —Eh+Eh=0,i=1,2, (3.117)
v1v2 — 11821 — E12822 + §13823 = 0 (3.118)
via (avy 4 Bue)? — (i1 + BE21)? — (a1 + BE22)? + (s + Béas)? = -+ = 0.

That (8) implies () is trivial.
Assume (). There hence exists « # 0 and § # 0 such that ¢ is given by

R*(awvy + Bua, . ..).
Observing ¢1,c2,¢ € LQ (X) and a # 0 # 8, we get from

0= (av1 + fvz)? — (e + B1)* — - -
and (3.117), obviously, (3.118), i.e. ¢; — co. In order to prove the last part of
Proposition 59, we distinguish several cases.

Case 1: 0o € {c1,¢2,c3}. Hence {c1,c2,c3} = {00, x,y} where z # y are parallel
spears. Observe

R*(0,0,1,—1) = R* (1 (a,1,a,—a) + (=1)(a, 1, 8, —6))
with z =: (a,1,), y =: (a,1,8), a # .
For the remaining cases we assume oo & {cq, ca,c3}.
Case 2: ¢1, g, c3 are three spears. Hence ¢; = (a, 1, «;), i = 1,2,3, where a1, ag, a3
are pairwise distinct. Observe

(a,1, a3, —a3) = A(a,1,a1,—a1) + (1 — N)(a, 1, az, —a2)

with A (ag — a1) := as — as.
Case 3: ¢; = (a,1,@), ca = (a,1,8), cg = (m,T), a # 5. Hence, by the definition
of parallelism of spears, this case does not occur.
Case 4: ¢1 = (a,1,a), ca = (m,7) # (n,0) = c3. Hence
ma+7=a=na+o, (m—-n)*=(r—0)
Thus (m —n)a=o0—7,ie (6 —7)%2 =[(m—n)al®> < (m —n)? = (1 — o)?. This
implies, by Lemma 1, chapter 1,
m—n=:Aa, Lee. A\=(Aa)a=(m—-n)a=0c—1.
2

Now observe, by ¢2 =n2 — o
9 y 3 9

14m2—72 1 —m2+ 72
m,—T, 9 ) 9

1 2 1—¢c2
/\(a,l,a,a)+<n,a, 4;03’ 203>.
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Case 5: ¢1, ¢, c3 are all Laguerre cycles,
C1 = (Q,Oé)7 Co =! (bv/B)7 c3 = (C7 ’Y)
Hence (a —b)? = (a — B)%, (b—c)?> = (8 —7)?, (c—a)? = (y — a)?. Observe that

a = b implies « = 8, and that a = § yields a = b. Thus a, b, ¢ must be pairwise
distinct, and also «, 3,y. Note that

(=) =(a=b)+(b—e)’=(a—B>+2a—b)b—c)+ (8-

implies (a —b)(b—c) = (a BB =), e (a=B)2(B—7)?=[a=b)(b—c)? <
(@a—10)2(b—c)? = (a— B)%(B — )2 Hence

b—c=pla—b), peR,
by a # b. Together with (a — b)(b—¢) = (o — 8)(8 — 7), we obtain

B—
a—fB’

by noticing that «, 3,y are pairwise distinct. We now verify, by

/LL:

cd=a>—a% c5=0"—p% 3 =c"—~%
that 1+c3 1-¢3 1+c¢2 1-¢2
o 355) - (o359
+a (b-8. 52 152

holds true: an essential step for this purpose is to show
(@ = a®)(B =)+ (0* = B°)(y = a) + (¢ =7*)(a — B) = 0.
However, this equation follows from eleminating
c=(1+p)b—paandy=(1+p)p - pa,

and by applying a® — a? + b? — 32 = 2(ab — af). O

3.14 Lorentz boosts

Lemma 60. (a) Ifw € Z = X ®R, there exist reals a, B and linearly independent
a,b € Z satisfying

a?=0,b*=0, w=aa+ Bb. (3.119)
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(B) Let the linearly independent a,b € Z satisfy a®> = 0 = b>. Then ab # 0.
Moreover, (aa + 8b)? = 0 for a, B € R implies a =0 or 8 = 0.

Proof. (a) In the case w = (0,7) take e € X with e? = 1. Then

If w = (m,7), m # 0, note

1 T 1 T
w=|=+——=](m,Vm?2 +<> m, —vVm?).
(5+ 5oz ) (Vi) + (5 = s ) =)
(B) Put a =: (my,71), b =: (ma,72). Assume ab = 0. Now m? = 72, m3 = 75 and
mimse = T1To. Hence
(mim2)? = mims,

i.e. there exist (&,7) € R?\{(0,0)} such that &my +nma = 0, by Lemma 1, chapter
1. Thus
(§a +nb)? = &%a®+26nab+ n*b? =0,

0= (Ca+nb)*> = (&émy+nma)® — (Em1 +n72)?,

ie &m +nme = 0, by ém1 + nmsy = 0, whence £a + nb = 0. But a, b are linearly
independent.—

The last part of statement (/) follows from ab # 0. O

If x = (m, ) € Z, we shall write T := m and ¢ := 7. Hence x = (T, x¢) will
be the typical element of Z = X ® R.
Let p be an element of X with p? < 1 and let k¥ # —1 be a real number
satisfying k2 - (1 — p?) = 1. Define
Ap(x) := (zop, Tp)
for x € Z. Obviously, A, : Z — Z is a linear mapping of Z. Define
K2,
Bp7]€ = E + kAp + m Ap’

where E designates the identity mapping of Z. Moreover, put
By._1(x) == (T, —x0).
The mappings B, are linear and they are bijections of Z, since
Byy - B_pr=F (3.120)

holds true (compare the first Remark of section 7, chapter 1, and also the following
Remark). By is called a proper Lorentz boost for k > 0 and an improper one
otherwise.
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Remark. Obviously, By - B, = E holds true for K = —1. In the case k # —1,
we get

Ap(z) = —Ap(x), A2, (2) = Aj(x).
Hence

k— k4
B,y B ,.=E—k>—= A2+
L I<;+1 P T Er 1)

i.e., by q := kp, and ¢® = k? — 1 from k(1 — p?) = 1,

4
5 Ay

~ s k=1 k2—1
prk . pr,k(x) =x+ ((f(I) q,Toq ) _k+ 1 + (k + 1)2 =T

This proves (3.120). O
Theorem 61. Suppose that A\ : Z — Z is a mapping from Z = X & R into itself

satisfying
(z,y) =1(A(2), A(y))

for all x,y € Z where I (x,y) = (T —)? — (v0 — yo)? designates the separation
of x,y. Then there exist a uniquely determined Lorentz boost By, 1 and a uniquely
determined orthogonal mapping w of X such that

Ax) = Bppw (z) + A (0) (3.121)

holds true for all x € Z where we put w (Z,xo) := (w (T),x0) for allT € X, zo € R.
Proof. 1) Define A\ (z) := A(z) — A (0) for z € Z. Also A1 preserves separations,

ie.
holds true for all x,y € Z. Put 7 := A\{(t) with ¢ := (0,1) € Z. Hence
=1(0,8) =1 (M(0), M (1)) =7° - 75,

ie. 78 =1+72 > 0. Define p- 79 := 7, k := 79 and observe p € X and

=2
2 — = _— =
(1 —p*) =13 (1 702) 1.

This implies p = 0 in the case k = 79 = —1 and hence 7 = By,_1(¢). In the case
k =1y # —1 we get 7 = By, 1(t) on account of A,(t) = p and A2(t) = p°t. Define
X2 = B_p ;- A\1. Every Lorentz boost B satisfies (see step 2) below)

L(z,y) =1(B(z), B(y)) (3.122)

for all z,y € Z. Hence also Ay preserves separations.
2) Equation (3.122) is clear for By 1. So assume k # —1. Observe

(B (z), B(y)) = (B(x)~ B(y)" = [B(z —y)],
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since B is linear. So we have to prove L := (B (z))2 = 22 for all z € Z. With
q := kp we obtain

_ 2
L= (74 200+ ED4 T 20+ 7q + S0d”
Tk 0 k+1)

ie. L =22+ ((209)? — (2q)?) (1 - kiﬂ - ﬁ) = 22, in view of
¢® = k? — 1 from k?(1 — p?) = 1.

3) Observe A2(0) = 0 and A2(t) = ¢, because of (3.120). Suppose that z € X and
that Ag(z) =: y. Then

1(0,2) =1(0,y) and I (¢t,z) =1 (t,y)

imply 22 = 3% — 42 and 22 — 1 = 7% — (yo — 1)?, i.e. yo = 0. The restriction 7 of
A2 on X is hence a mapping of X into itself. Suppose that x, z are elements of X.
Then

(z,2) =1(A2(z), A2(2))

implies (z — 2)? = (n(z) — n (z))2 and 7 must hence be an orthogonal mapping
w:X — X of X. We now would like to show that

A2(T + zot) = w (T) + zot (3.123)

holds true for all x € Z. Put A2(Z + zot) =: ¥ + yot. Then [ (0,2) = 1(0,y) and
I(t,z) =1(t,y) imply z¢ = yo. Hence

A2(T + xot) = F + xot,
ie. (%, x) =1(w (%), ¥+ xot). Thus

—x% = (@— w (E))2 — x(zh

i.e. ¥ = w (). This proves (3.123). Finally, we obtain
A (T, .To) = M (T, .To) + A (O) = Bp)}g)q(f, .130) + A (O),

i.e., by (3.123),
A (T, z0) = By rw (T, o) + A (0)

for all (Z,z0) € Z =X & R.
4) Suppose now that
B, kw () + A (0) = By ' (z) + A (0)
holds true for all x € Z. In the case x =t = (0,1) we get
By k(t) = By w (1),

ie. kp+ kt = K'p' + k't, ie. Kk = K and p = p'. Hence, w(z) = w'(z), ie.
w(Z) =w'(T) for all T € X. Thus w = w'. O
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Theorem 62. All Laguerre transformations A of X are given as follows. Let o be a
positive real number and w be an element of O (X). Moreover, let By, 1, be a Lorentz
boost and d be an element of X ® R. Then

AT, x0) = 0 - By pw (T, x0) +d (3.124)

for all Laguerre cycles (T, xq).

Proof. 1) We already introduced the Laguerre transformations

As(z) = Boai(zx)+(0,9),

M) = Boiw (T, x0),

Ao(x) = o-Boi(z)+(d,0) for d € X,
o(e) = Boa).

In order to be sure that Ay, o <0, is also of the form (3.124), observe
Ao (2) = (—=0) - Bo,—1(w (T), z0) + (d,0)
with w (y) = —y for y € X. We also must show that
Az) = By i(z), (3.125)

k # —1, is a Laguerre transformation. We will do this via Proposition 53. The
mapping A : I' — I" is a bijection. Let (a,1,a) be a spear and observe ap # 1,
since otherwise

1= (ap)® <a?p® =p° <1,

by k?(1 — p?) = 1, would be the consequence. The image of (a,1, ) under \ is
(b,1,8) with

a 1 p
b= — 2 (g P 12
F(1—ap) <*1—ap>k+1’ (3.126)

B = = (3.127)

A simple calculation yields b = 1. Moreover, aT + Ty = « is equivalent with
by + yo = p for all x € X & R with

K (@p) p kxo + k‘xp) :

Yy = Bp,k(x) = <$+ kxop =+ ]{1‘7—‘[—1

this follows from the identity

ar + g — «

by +1yo — B = F—ap)
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The pre-image of the spear (b, 1, 8) is given by (a’,1,&') = B_, ,(b/, 1, 5’) with

v 1 P
/ —
“ T ka+up) +<k+1+b'p> k+1
/
o ::75 :
k(1 +0b'p)

this is a consequence of
Bp,k[B*P,k(b/’ 17 6/)] = (b/7 1a ﬂ/)

(see (3.120)) and of (3.126), (3.127) where we replace a,a,p by V', 8, —p, respec-
tively.

2) Suppose that A is an arbitrary Laguerre transformation of X. Hence A is a
bijection of X & R such that lines of X @& R are mapped onto lines, in view of
Proposition 55. Applying now step b) of Theorem 3 where we replace X by X @R,
and the euclidean lines of X by

{(B,po) + £ (v, 00) | € € RY,

(U,v9) # 0, there exists a bijective linear mapping p of the vector space Z = X @R
satisfying

Ax) =p(z)+ A (0) (3.128)
for all z € Z. Put d := —A(0). Then also
z—=p(x)=A(z)+d

must be a Laguerre transformation of X. What we would like to prove is that u
has a representation

p(x) =0 Bprw (T, xo)

with a suitable real o > 0, a suitable w € O(X) and suitable p € X, k € R
satisfying k?(1 — p?) = 1. We know that ¢; — ¢y is equivalent with u (c1) — p(c2)
for all ¢1,c0 € T = Z, since u € Lag (X). According to («), Proposition 43,
I(c1,c2) = 0 is hence the same as I (1 (c1), pt(c2)) = 0. If ¢* = 0 holds true for
¢ € Z, then, obviously, also I (¢,0) =0, i.e. I (u(c), 1 (0)) =0, ie. (p (c))2 =0.
3) Suppose that a,b € Z are linearly independent and that they satisfy a? =
0,2 =0. If w = aa + Bb with o, 3 € R and « - 3 # 0, then ab # 0 and

(1 (w))? = 22 (al: ©) 2 2 (3.129)

hold true.
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In fact! Because of Lemma 60, (3), we get ab # 0. Now a? = 0, b* = 0 imply, by
step 2), (u (a))2 =0, (u (b))2 = 0. Since p : Z — Z is linear,

p(w) = ap(a) + Bu(b),

ie (p (w))2 = 2a8u (a) p (b). Now w? = 2aBab and af # 0 imply (3.129), by
noticing that p(a), p(b) are linearly independent, since p is a linear bijection,
and that hence p (a) p (b) # 0, by (8), Lemma 60.

4) If a,b € Z are linearly independent satisfying a®> = 0 and b = 0, we will say
that a, b are strongly independent. The elements (e, 1), (—e, —1) of Z with €% = 1,
for instance, are strongly independent. If a,b € Z are strongly independent, we

define (@) 1 (b)
_ pla)p
’y(a,b) = T

Observe 7 (b,a) = 7y (a,b) = v (pa, b) for every real g # 0.

If a,b are strongly independent, and also b, c, then 7 (a,b) =~ (b, ).

In fact! We may assume that the second components of a,b,c € Z are all equal to
1, since, for instance, a # 0 = a® and a =: (m, ) yield 7 # 0, whence a may be
replaced by 1 a leading to v (a,b) =7 (L a,b).

Case 1: a, b, c are linearly dependent. Then ¢ = aa+ b with suitable real «, 5. The
second part of (8), Lemma 60, implies o8 = 0, i.e. § = 0, since b, ¢ are linearly
independent. Hence a # 0 and « (a,b) = 7 (¢, b).

Case 2: a, b, c are linearly independent. Take the two distinct elements p,q € Z on
the line through

a+b b+c
wy = , Wo =
2 2

(3.130)

satisfying p? = 0 = ¢?: writing a =: (A,1), b =: (B, 1), ¢ =: (c1) we have to solve
in o € R,
2
(w1 + 0 (w2 —w1))” =0,

ie.

2
<A—|2_B+QC;A) =1. (3.131)

a’?=0>=c?=0imply A2 = B2 =C? =1. We get B # A # C, because A = B,
for instance, would lead to

ab=AB—-1=A4%>—-1=0,

contradicting ab # 0, in view of Lemma 60, (). Hence A # B are points of
B(0,1) of X with 422 € B~(0,1). There are thus exactly two solutions ¢ of
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(3.131), because a euclidean line of X through a point of B~(0,1) cuts B (0,1) in
exactly two points.

Having the distinct elements p,q € Z on the line of Z through wi,ws of
(3.130), we would like to verify that p,q are linearly independent, so strongly
independent, since p? = 0 = ¢?: but since w;, wy are linearly independent, so must
be

p=wi + o1(wz —w1), ¢ = w1 + ga(w2 — wy).

We now obtain from (3.12),

v(a,b)w? = [p(w)?* =v(p,q) wi,
y(,c)wi = [p(w2)* =7 (p,q) w3,

Le. v (a,b) =7 (p,q) =7 (b,0).

5) If a,b are strongly independent, and also ¢,d, then v (a,b) =~ (c,d).

If b, ¢ are linearly dependent, we get b = B¢, 8 # 0, i.e. v(c,d) = 7 (b,d). Hence
v (e, d) = (b,d) = (a,b),

from 4). If b, ¢ are linearly independent, then

v (a,b) =7 (b,c) and 7 (b, c) = 7 (¢, d),

also from 4).
6) There exists a real constant ¢ > 0 with [p (w)]? = ¢ w? for allw € Z.

Take strongly independent a,b € Z, for instance, (e, 1), (e, —1) with e? = 1. Put
0:=7(a,b). If w? = 0, then [ (w)]?> = 0, i.e. [u (w)]?> = pw? holds true. If w? # 0,
then, by (), Lemma 60, there exist strongly independent ¢, d satisfying

w = ac + Ad.
w? # 0 implies a3 # 0. Hence, by (3.129) and 5),
[ (W)]* =7 (¢,d) w® = g w?,

ie. l (,u (w),O) = ol (w,0), i.e. o > 0, in view of Proposition 43 and Proposition
55.
7) If v,w € Z, then

in view of 6). Hence
Lo (), 6 p(w)) =1 (v,w)

for all v,w € Z for the Laguerre transformation

d(x):=+/o-x.
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The Laguerre transformation §~!y is hence of the form, by Theorem 61,
57 (z) = Bypw () + 0714 (0),
i.e., we obtain
p(r) = /e Bppw(r)
forall x € Z. g

Remark. Lorentz boosts were discovered in 1911 by G. Herglotz [1] and in 1912
by A. von Brill [1] in the form of special matrices, the so-called Herglotz—Brill
matrices (see W. Benz [2]).

3.15 M (X) as part of Lie (X)

Every M-transformation p of X leads in a natural way to a Lie transformation
A. We will show this for similitudes and for the inversion ¢ in order to be sure, by
Theorem 3, that it holds true for all M-transformations. In both cases, similitude
or ¢, we define A (¢) := p (c) for the Lie cycle ¢ € X U{oo}. If i is a similitude, put

A (H (a,0), H (a,)) == (u(H), p(H)), (3.132)
by observing Proposition 31, for H* € {H*, H™} (see section 9), and, for ¢ > 0,

A(B(m,e), BY) = (u(B), [ (B)]") (3.133)

(see section 9 for the definition of BT and B~). We must notice here that, because
of p(00) = o0,

w(B) =: B (n,o) implies p (B*) = B*(n,0)
for * € {+, —}. In fact! Because of Proposition 31 we know that

{1 (BT U{o0}), u(B7)} = {B(n,0) U {00}, B~ (n,0)}.

If now pu (BT U{oc} = B~ (n,0) and u(B~) = BT (n,0) U {oo} would hold true,
p{oo} could not be equal to co.

It is not difficult to verify that the induced mapping A must be a Lie trans-
formation, by noticing that if a side X7 is a subset of another side X5, of course,
w1 (21) € p(X2) must be the consequence.

If 11 is the inversion ¢, we put, by applying the cases (1), (2), (3), (4) (between
formulas (3.7) and (3.8)) of section 1,

A(B(c,0),B*) = (¢(B),[t(B)]*) for |c| > o,
A(B(c,0),B*) = (¢(B),[t(B)]°) for |c| < o,
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with

for x € {+,—} and {*,0} = {+,—}.
Moreover, we put A2 = id and
A(B(c,0),B*) = (H(2c1),H°) for |c| = o,
A(H (a,0),H*) := (H(a,0),H"),
again for x € {4+, -} and {x,0} = {+, —}.
Also here it is easy to verify that the induced mapping A must be a Lie

transformation. In step 2) of the proof of Proposition 58 we defined the Lie trans-
formation

£ LQ(X) — LQ(X)

by means of

€ [R*(U,§1,€2,£3)] = R*(U7€17§2, _63)-

The mapping ¢ is exactly the Lie transformation induced by the inversion .
There exist infinitely many Lie transformations which are not induced by
M-transformations, for instance all Laguerre dilatations

)‘f(ma’r) = (mﬂT+§)7 /\E(aalaa) = (aalaa+£)

with 0 # £ € R, since the image of the Laguerre cycle (m, —£), £ # 0, is the point
m, and since there is no M-transformation transforming an M-ball (m,|—£|) into
the point m. So the question arises how to characterize the Mdbius group M (X)
within Lie (X).

In section 12 we defined a Laguerre transformation,

(m,7) = (m,—7) and (a,1,a) = (a,—1, @),

which reverses the orientation of every Laguerre cycle (m,7), 7 # 0, and of every
spear. This Lie transformation can be written in coordinates as

6+ [R*(v,£1,82,63)] = R (v, =1, €2, €3)-
We are also interested in the centralizer of 6,
C (9) :={X € Lie (X) | 0A = A6},
within Lie (X).
Theorem 63. M (X) = C (§)/{id, ¢}.
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Proof. M-transformations are Lie transformations which are permutations on the
set X U{oo} of points, and which transform balls or hyperplanes apart from their
chosen side. We would like to show that a Lie transformation A has these properties
if, and only if, Ad = d\ holds true. So assume Ad = 6\ and that c¢ is a Lie cycle
which is a point. Hence § (¢) = ¢, i.e.

A(e) =Xd(¢) =X (o).

If A (¢) were not a point, then it would be equal to the Lie cycle based on the same
ball or hyperplane as A (¢), but with the opposite orientation, a contradiction. Let
now d be a ball or a hyperplane and s1, s its sides. Put

A(d, 81) =: (e,01), (3.134)
by observing that A (d, s1) cannot be a point ¢, since otherwise
(d,51) = A2(e) = A28 (c) = A7 () = 6 (d, s1) = (d, 52)
would hold true. Hence
A(d,s2) = A0 (d,s1) =0A(d,s1) = (e,00),

i.e. A transforms d into e apart from its chosen side.

Assume now that A is a Lie transformation which is a permutation on XU{co}
and which satisfies A (d, s2) = (e, 02), whenever A(d, s1) = (e,01). For every Lie
cycle ¢ which is a point we get

since A (c) is also a point. For any other cycle (d, s1) we get, by (3.134),
A (d,s1) = A(d, s2) = (e,02) =6 (e,01) =0 (d, s1).

Hence Ad = 6.

Our result is that exactly the Lie transformations A in the centralizer C (§) of
0 lead to M-transformations. Obviously, this correspondence is a homomorphism
of C (4) onto M (X). In order to determine the kernel of this homomorphism, we
ask for all A € C (§) inducing the identity of M (X). If A # id in C (§) induces
the identity, then A\ (c0) = oo, i.e. A must be a Laguerre transformation, i.e., by
Theorem 62,

M(T,20) = 0By i (w (T), o) + d. (3.135)
Because of A (%,0) = (%,0) for all 7 € X, and because of

A(0,1) € {(0,1), (0,-1)}, (3.136)
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we obtain
d =0 from X (0,0) = (0,0),
(p,k) € {(0,1), (0,—1)} and o =1 from (3.135), (3.136),
w =id from A (%,0) = (%,0) for all T = X.

The only mapping A # id in C (6) which induces id € M (X), is hence A (T, zg) =
Boﬁfl(f7 LL‘()) = (f, —l‘o), ie. A=94. O

3.16 A characterization of Lag (X)

The following result characterizes the elements of Lag (X ) under mild hypotheses.

Theorem 64. Let A be a bijection of the set ' of all Laguerre cycles of X such that
Vey,eaer €1 — 2 = A(c1) — A(ez) (3.137)

holds true. Then there exists a uniquely determined Laguerre transformation A of
X with A |T = X and, moreover, \ has the form (3.124).

Proof. 1) Let A be a bijection of I' = Z = X @ R satisfying (3.137). Instead of
A(x), x € Z, we will write 2’. Assume that there exist a,b € Z with a’ — b’ and
a #b. Then a # b and hence @’ # b'. Designate the parabolic pencil B,(a’,b") by
B. Also now it will be important to distinguish between subtraction ¢; — ¢o and
contactness ¢; — ¢y of two elements ¢1,co € Z. In view of («), Lemma 60, there
exist linearly independent v, w in X ® R and «a, 5 € R with

b—a=av+ pw, (3.138)

v? =0 = w?. Since (b —a)? # 0 by (), Proposition 43, we get af8 - vw # 0 from
(3.138). Hence
x:=at+av=b+ (-f)w & {a,b}

and y :=a+ pw=>b+ (—a)v & {a,b}. Thus a —x — b and a — y — b. This implies
z',y" € B by (3.137) and hence

(a+&v), (y+&v) € B
for every real ¢ since [ (a,a +&v) =0 =1(a + &v,z) and
Ly, y+&v) =0=1(y+ &v,b).
Thus 2z’ € B for all z = a + &v + nw with reals £, because of

la+&v,z)=0=1(y+ &v,z).
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Finally, we would like to show ¢’ € B also for those ¢ € I which do not belong to
the bundle
B = {a+&v+nuw|&neR}
Observe here (), Proposition 51, and vw # 0. There exist g1 # ¢a,
qi = a"’fi”"’ﬁi“% 1= 1a2a

in B with (¢ — ¢)? =0, i = 1,2, since this latter equation has the form

(EP+A)(nP+B)=C, i=1,2, (3.139)
with P:=ovw #0, A:=(a —c)w, B :=(a —c)v and

CZ:AB—%P-(CL—C)QZ

take reals £ # &, both unequal to —P~'A, and calculate n;, i = 1,2, according
to (3.139). Now I (c¢,q;) =0 and ¢} € B for i = 1,2 imply ¢’ € B.

Hence A (T') C B which contradicts the fact that A : ' — T is a bijection. We
thus proved that o’ — o' and a +#b for a,b € T is not possible. This implies

Ver,cer Ale1) — A(e2) = c1 — ca. (3.140)

2) A Laguerre transformation of X can be defined, by Proposition 53, as a bijection
of I" such that images and pre-images of spears are spears by identifying a spear
s € ¥ with {¢c € T' | s — c¢}. Let now s be an arbitrary spear and let ¢1,co be
elements of I satisfying

1 # Cy, €] —Ca, €] — S — Ca.
Then, in view of Proposition 47, s is given by N U By (c1, ¢2) with
N = {c € T'| there is no w € Bp(c1, c2) touching c}.

If we look to A (N U Bp(61762)) for a mapping as considered in Theorem 64, we
obtain by (3.137), (3.140) and 2’ := A\ (2), z € T,

A(Bp(cr,e2)) ={d €T |cr—c—c}={d €T | - -} = By(c}, ).
Since N = N (e1,¢2) can be written as
{ceT |w+#cforall w € By(ey,c2)},
we get by (3.137), (3.140),
AN)={d el |w 4 for all W' € B,(c},c)},
and hence A (N) = N (¢}, c). In view of Proposition 47, the set
N (c1,¢5) U By(ci, ¢5)

is the spear touching ¢}, ¢5. The image of a spear under A must hence be a spear.
The same holds true for the pre-image since also A~! satisfies (3.137), (3.140). If
we now apply Theorem 62, then Theorem 64 is proved. O
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3.17 Characterization of the Lorentz group

The basic structure of Lorentz—Minkowski geometry is Z = X & R. The Lorentz—
Minkowski distance of (T, xo), (,yo) € Z is defined by

L(z,y) == (T —7)* = (z0 — y0)*. (3.141)

In section 10 this expression was called the separation of the two Laguerre cycles
x,y € Z. A connection between classical Lorentz—Minkowski geometry and clas-
sical Laguerre geometry was dicovered in its first steps by H. Bateman [1] (1910)
and H.E. Timerding [1] (1912). W. Blaschke [2] (1929) then realized that this con-
nection was indeed very close. A mapping A : X ® R — X ® R is called a Lorentz
transformation of Z = X @ R provided

L) =1 (M(x), A(v)) (3.142)

holds true for all z,y € Z. The Lorentz group L (Z) of Z is the set of all bijective
Lorentz transformations of Z equipped with the usual product of permutations.
The geometry (Z, L(Z )) is called Lorentz—Minkowski geometry over Z. The case

(Z=R*@&R, L(2))
is called classical Lorentz—Minkowski geometry, as well as classical proper Laguerre
geometry in the earlier context (see section 3.12).

Theorem 61 then determines all Lorentz transformations A : Z — Z in the
context of Laguerre geometry.

Here we would like to present an important and immediate consequence of
Theorems 64 and 62.

Theorem 65. If the bijection A : X R — X & R satisfies
Ver,coexar L(c1,c2) =0=1(X(c1), A(e2)) =0, (3.143)
then
A (@, x0) =0 Bpi(w(T), m0) +d (3.144)
holds true for all x = (T,x0) in Z where d € Z, p € X, k € R with k*(1 — p?) =

1,0 € R,w e O(X) are suitable elements.

Proof. Because of («), Proposition 43, the properties (3.137), (3.143) coincide.
Moreover, the mapping (3.144) is bijective if, and only if, w : X — X is bijective,
i.e. w € O (X); this follows from the fact that Lorentz boosts are bijective. 0

Remark. Concerning generalizations of Lorentz transformations see also J. Lester
[2], [9], W.F. Pfeffer [1], H. Schaeffer [1], E.M. Schréder [3], [6]. Configurations in
Lorentz—Minkowski structures were studied by H.J. Samaga [1].
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3.18 Another fundamental theorem
Theorem 66. («) A bijection A : A(X) — A (X) satisfying
Vewea —y = A(z) — A(y) (3.145)

1s already a Lie transformation of X.

(8) Lie (X) consists exactly of all finite products of elements of Lag X U {e}.
More precisely, every A € Lie (X) is of the form

« or B1efy or y1€72673

with a751a627’71)’y27’y3 mn La’g (X)

Proof. 1) Let the bijection A : A — A satisfy (3.145). By Proposition 58 there
exists p € Lie (X) with g (A (00)) = oo. The bijection X := pX of A also satisfies
(3.145). If s is a spear, then s — oo implies N (s) — oo, i.e. M (s) € . Hence
N(Z) C X, X(c0) = 0o. We also would like to show X' (I') CT". Assume that c €T
satisfies ¢ := N (c) C . If s € ¥ is given arbitrarily, by Lemma 49, there exists
s1 € ¥ with ¢ — s; and s1 || s. Hence ¢ — s} and s || §', i.e. ¢ || ¢, since ¢ is a
spear: all spears in \'(X) are thus parallel to the spear ¢’. Take now a spear s | ¢
The pre-image c¢; of s must hence be in I'. So we get, as before, that every spear
in )’ (X) must be parallel to ¢}. This implies

s=dlltld

where ¢ is taken arbitrarily from N (X), i.e. s || ¢, contradicting s |J ¢’. Hence our
assumption that there exists ¢ € T with ¢/ € ¥ was wrong. This implies M (") C T
Since X' : A — A is bijective,

N(o0) =00, N(Z)C X, N(T)CT

leads to \'(X) = ¥ and A'(I") =T'. From Theorem 64 we then get () by observing
A=p LN,
2) Let A be a Lie transformation. If A (c0) = oo, then A\ € Lag (X). If A (c0) =: 2
is in T', then, with ae (00) = z (see step 3 of the proof of Proposition 58), « €
Lag (X), we get

A lae (00) = oo,

i.e. \"lae € Lag (X). In the case A (o) =: z € 3, we refer to the spear s and the
Laguerre cycle x = ¢ (s) as defined in step 4 of the proof of Proposition 58. Take
a, f in Lag (X) with a(0) = 2 and 8 (s) = z. Since oo remains unaltered under
A"1Beae, we get that A\~ Beac is in Lag (X). d

With Proposition 59, part («) of Theorem 66 can be presented equivalently
in the following form.
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Theorem 67. A bijection A of LQ (X) is a Lie transformation of X if A(l) is
collinear for every line | of I1(X @ R3) contained in LQ (X).

This theorem already appears in U. Pinkall (Math. Ann. 270 (1985) 427-440)
under the additional assumptions that dim X < co and that A is a line preserving
diffeomorphism.

Remark. Concerning finite-dimensional sphere geometries of Mobius, Laguerre
and Lie see, for instance, R. Artzy [1], W. Benz [2], W. Blaschke [2], H. Schaeffer
[2], E.]M. Schréder [2], H. Schwerdtfeger [1], concerning generalizations in this
context A. Blunck [1], H. Havlicek [1], [2], A. Herzer [1]. The arbitrary-dimensional
case was developed by W. Benz [9], [12].



Chapter 4

Lorentz Transformations

As in the chapters before, X denotes a real inner product space of arbitrary (finite
or infinite) dimension > 2.

4.1 Two characterization theorems

Define the so-called Lorentz—Minkowski spacetime Z := X & R with the product

(@, o) - (¥, 90) == TY — Toyo (4.1)

as in (3.88) where Z,7 € X and g, yo € R, or, in other words where (Z, zo), (7, yo)
are elements of Z. In the present context, the elements of Z are called events, and

R(0,1) ={(0,§) e Z| £ e R}

is said to be the time azis of Z. Instead of events we also will speak of the points
of Z. The Lorentz—Minkowski distance of x = (T, z9), ¥y = (¥,y0) € Z is defined
by (3.141),

a,y) = (T = 7)° = (w0 —50)* = (z —y)*. (4.2)

Recall that this expression was defined to be the separation of the two Laguerre
cycles x,y (see section 10 of chapter 3). A mapping )\ : Z — Z is said to be a
Lorentz transformation of Z (see section 17, chapter 3) provided

Hz,y) =1(A (@), A(y)) (4.3)
holds true for all z,y € Z.

Theorem 61 of chapter 3 immediately yields
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Theorem 1. Let A : Z — Z be a Lorentz transformation of Z. Then there exist
a uniquely determined Lorentz boost By, and a uniquely determined orthogonal
mapping w of X such that

Az) =Bprw(z)+ A(0) (4.4)
holds true for all x € Z where we put w (Z,xo) := (w (Z), xo) for allT € X, o € R.

On the other hand, all mappings (4.4) must be Lorentz transformations pro-
vided B, \ is a boost and w an orthogonal mapping of X. Moreover, all mappings
(4.4) are injective, since w must be injective (see section 5 of chapter 1) and B,
bijective (see (3.120)). There exist real inner product spaces X and orthogonal
mappings w : X — X which are not bijective (see section 5 of chapter 1). How-
ever, if X is finite-dimensional, every orthogonal mapping w of X must be bijective.
In fact, if aq,...,a, is a basis of X, then w(ay),..., w(a,) is a basis as well.

Since By, in (4.4) is bijective and w injective, a mapping

A(z) = Bppw(x)+ A (0)

must be bijective if, and only if, w is bijective, i.e. w € O (X). The Lorentz group
L (Z) of Z is the set of all bijective Lorentz transformations with the permutation
product as multiplication. Hence, the Lorentz group of Z consists of all mappings
(4.4) satisfying w € O (X). The geometry (Z, L(Z)) in the sense of section 9,
chapter 1, is called Lorentz—Minkowski geometry over Z = X & R. The elements
of L(Z) are also called motions of this geometry.

The following structure theorem was already proved in the context of La-
guerre geometry (Theorem 65, chapter 3).

Theorem 2. If the bijection X\ : X &R — X ® R satisfies

Voyexer (z—y)° =0= (A(z) - A(y)” =0, (4.5)
then
AMz)=0-Bprw(zr)+d (4.6)

holds true for all x € Z where d € Z,p € X, k € R with k*(1 —p?) =1,0# 0 €
R, w € O(X) are suitable elements and where w (x) is defined by (w (T), zg) for
all z = (T, z0) € Z.

Remark. Observe dim(X @ R) > 3, because of dim X > 2. Theorem 2 was proved
for dim(X @® R) < oo and under the stronger assumption

2

Voyexer (z—y)? =04 (A(z) —A(y)” =0, (4.7)

by A.D. Alexandrov [1, 2, 3], however not precisely in the form (4.6), but in the
form A = o)\ with

Voyexar (@ — 1) = V(@) = N ()" (4.8)
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June Lester [1] and E.M. Schroder [5] solved the general field case, E.M. Schroder
even in the infinite-dimensional case. The first mathematician who weakened (4.7)
into (4.5) was F. Cacciafesta [1], however, under the assumption dim X @R < oo.
The general form was proved by W. Benz [9].

4.2 Causal automorphisms

Let © = (T, x0), ¥y = (U, yo) be elements of Z. We put
r<y
if, and only if,
I(z,y) = (z —y)? <0 and z¢ < yo
hold true. A bijection o : Z — Z is called a causal automorphism of Z if, and only
§ 1<y e o(@)<oy)
for all z,y € Z.

Of course, x < y stands for x <y and x £y, x >y for y < x, and & > y for
y <.

Proposition 3. Let x,y,z be elements of Z and let k be a real number. Then the
following statements hold true.

(1) z<uz,
2
3

<y andy <z implyxr=y,

r<yandy <z imply x < z,

5
6

(2)

3)

(4) x <y impliesx+ 2z <y+z,

(5) = <vy implies kx < ky for k >0,
(6)

x <y implies kx > ky for k < 0.
Proof. (1) follows from (z — x)? = 0 < 0 and zo < xg. Obviously, z < y < z
implies

0> (z—y)* =T ~-7)° ~ (0 — )
and xg < yo < T, i.e. 19 = yo and hence 0 > (Z — )% > 0. From z < y < z we
obtain

(Z-7)° < (w0 —10)*, T—2)" < (yo— 20)%, w0 < 5o < 20.

Hence, by the triangle inequality,

[z =2l < [lZ =l + 7 = 2]l < (%0 — o) + (20 = %0),

ie. (T —72)? < (zo — 20)%. Together with 2 < 2y we get (3). The proof of (4), (5),
(6) is trivial. O
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If z,y € Z satisfy z < y,
[z,y] ={ze X |z <z<y}

is called ordered if, and only if, u < v or v < u holds true for all u,v € [z, y].

Proposition 4. If x,y € Z satisfy x < y, then [x,y] is ordered if, and only if,
(z—y)*=0.

Proof. a) Assume [ (z,y) = (x —y)? =0 and u € [z,y], i.e.
zo < uo < Yo, U —Z| < uo — zo, [[¥— 1l < yo — uo.
I (x,y) = 0 implies |7 — Z|| = yo — xo. Hence
o~ 0 = 7~ 7 < Iy — all + i — 7 < yo o, (@9)

and thus ||y —Z|| = ||y — u|| + ||u — Z||. Because of Lemma 2, chapter 2,y —u, u—7T
must be linearly dependent. Hence there exists @ € R with

u=T+a(y—TI), (4.10)

in view of T # ¥, since T = 7 and |7 — Z|| = yo — xo would lead to z = y. Now
(4.9), (4.10) yield

[y ==l =g —ull + lw-=l = 1 - al [ = Z|| + |allly — =],
ie. 1=1]1—a|+]al,ie 0<a<1. Hence, with £ := yo — xo,
{=(1-a)+al=y—ul+[a—7z[] < (yo —uo) + (uo — o) =&,
ie. ||y -l = yo — uo, [T —T| = uo — o, i-e., by (4.10),
u=z+a(y—x).
Similarly, v € [z, y] implies
v=xr+py—=z),0<F<1

Hence u < v for a < 3, and v < u for 8 < a.

b) Assume that [z,y] is ordered and that [ (z,y) # 0. Hence, by « < y, we obtain
I(z,y) <0 and z¢ < yp, i.e.

M —7)% < (yo — x0)* and xo < Yo.
Choose e = (€,¢e9) € Z with &2 =1, eg = 0, and € € R with

0<2 < (yo—z0) — T —7|, (4.11)
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and put
= a:—;y’ V= a:—2|—y + ce.
Observe ug = vy and [ (u,v) = &2 > 0, i.e.
u £ vand v £ u. (4.12)
Moreover,
u,v € [z,y]. (4.13)

In order to prove (4.13), we observe
zo < up < yo and zg < v < Yo,

by ug = vy = % (zo + yo), and, moreover,

1
l($7u) = 1[(.’1),?]) =1 (uvy)7
ie. Il (z,u) =1(u,y) <0. The triangle inequality yields
1Y —7) £ 2ee|| <[y — 7| + 22,

ie., by (4.11),
(T — ) £ 2ee|| < yo — xo-

Hence [(§ — T) £ 2ee]? < (yo — w0)?, i.e. [ (z,v) and [ (v,y) are negative. Because
of (4.12), (4.13), [z, y] is not ordered, a contradiction. Hence ! (z,y) = 0. O

A Lorentz transformation of Z is called orthochronous if, and only if, it is
also a causal automorphism.

Theorem 5. The orthochronous Lorentz transformations A of Z are exactly given
by all mappings

Mz)=Bprw(z)+d (4.14)

withwe O(X),de X,1<keR,pe X, k(1-p*) =1

Proof. a) Let X\ be an arbitrary orthochronous Lorentz transformation, say (4.4).
Since A is bijective, so must be w : X — X. Moreover, 0 < ¢ := (0,1) implies
A(0) < A (%), i.e., by (4) of Proposition 3,

0<Byrw (t,tg) = B,k (t) = kp + kt.

Hence (0,0) < (kp, k), i.e. 0 <k, ie. 1 <k, in view of k2 > 1.
b) Let A be a mapping (4.14) with proper B, and w € O (X). We have to prove

a<be ) < A(b)
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for all a,b € Z. This is clear for A (x) = x + d, by (4), Proposition 3. It is also
clear for A () = w () because of

[(a,b) = 1(A(a), A())

and \ (z) = w (Z,20) = (w (T),20), i.e. [A(2)]o = 20, and because of w™! € O (X).
Finally, we consider the case A(x) = B, (x) with £k > 1. Since we have
Bp_,,i = B_,  (see (3.120)), we only need to prove

a<b=A(a) < \(b)
foralla,be Z,ie. 0 <b—a=0<A(b)—A(a). But this will be a consequence of
0<z=0<A(2), (4.15)

because of the linearity of By, as soon as (4.15) is proved. Since {(0,z) =
L(X(0), A(z)) =1(0,A(x)), it remains to show

0< 29 = [Bp’k(l‘ﬂo >0

under the assumption [ (0,2) < 0. Obviously, [B, r(x)lo = kZTp + kzo =: R. If
zp > 0, then R > 0, since g > 0 and k£ > 1. If Tp < 0, then
(Tp)* < xfp® < a3,

by 2 — 22 < 0 and p? < 1. Hence —Zp = |Zp| < 0. O
Theorem 6. All causal automorphisms of Z are exactly given by all mappings

Aaz)=7v-Bprw(x)+d (4.16)
where v > 0 is a real number, B, a proper Lorentz boost, d € Z, w € O (X) with
w (T, 20) = (w (T),20) for z = (T,20) € Z.
Proof. Observe that p(z) := vz for € Z defines a causal automorphism for a

real constant v > 0. Hence, by Theorem 5, (4.16) must be a causal automorphism.

Suppose now that A : Z — Z is an arbitrary causal automorphism. If x # y
are elements of Z with [ (z,y) = 0, we may assume xg < yo, because otherwise,
Zo > Yo, we would interchange x and y. Hence = < y. Thus, by Proposition 4, [z, y]
is ordered. Since A is a causal automorphism, also [A (z), A (y)] must be ordered
and A(z) < A(y) holds true. Hence, by Proposition 4, I (A (z), A(y)) = 0. Now
Theorem 2 implies that

A(z) =m - A (x) (4.17)

for all z € Z where A1 is a Lorentz transformation and m # 0 a real constant. We
may assume m > 0 without loss of generality, since otherwise we would work with

Az) = (=m) - (=Mi(2)),
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by considering that also x — —A;(z) is a Lorentz transformation. Hence
1
= — Az
—A(@)

is a causal automorphism, and thus, by (4.17), Ay must be an orthochronous
Lorentz transformation. In view of Theorem 5, we hence obtain for A the form
(4.16) with the properties described in Theorem 6. O

Remark. If X is finite-dimensional, Theorem 6 is a well-known theorem of Alex-
androv—Ovchinnikova [1], Zeeman [1]. In the general form it is contained in W.
Benz [11].

4.3 Relativistic addition

If \;: Z — Z,i=1,2, are Lorentz transformations, then, of course, also A\ As is
such a transformation, because of

Lz, y) =1 (A2(2), A2(y)) =L (Ma(2)], Mira(y)])
for all x,y € Z. From Theorem 1 we get, say,

)\1(1‘) = Ba,a w1 (x) + dl,
Ao (.’L‘) Bb}g wo (ac) + do,

i.e., by the linearity of w; and By q,
MA2(xz) = BgoawiBygwa(x)+ ds, (4.18)
d3 = Ba,a w1 (dg) + dl.

The problem now is to find a boost B, and an orthogonal mapping w : X — X
satisfying
Bcvﬂ/ w = Ba,a wle’g w2.

Theorem 1 guarantees that these objects B., and w exist and that they are
uniquely determined. It is easy to verify

WBIJJC = Bw(p),kw- (419)

Hence from (4.19),
Ba,anl(b),B = Bc,'\/w/

with the orthogonal mapping w’ := ww;lwfl.
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Theorem 7. If a,b € X and a, 8 € R are given with
?(1-a®) =1, B2(1-b%) =1,

then 0 := 14ab > 0 holds true, and By o By,g = Be~yw has the uniquely determined
solution w = B_. B, oDy 3 and

1) c:m—i—% and vy =afd  for —1¢ {a, B},
2) c¢=-b andy=—08 fora=—-1#0,
3) c=a and v = —a fora#—-1=p,
4) ¢=0 and v =1 fora=-1=254.

Proof. Observe 1 —a? >0,1—5% >0, i.e.
—ab < |ab| < Va2 Vb2 < 1,

i.e. § > 0. Obviously, @ # 0 and 8 # 0. In all four cases we will examine the
equation

L:=B,aByp(t) = Beyw(t) = Be4(1). (4.20)

Notice here t = (0,1) and w (z) = w (T, 7o) := (w(T),x0). In the case that o, 3
are both unequal to —1, we obtain

L = By.o(Bb+ Bt) = BBg.a(b) + 8 (a + at) = y101 + 7t
with Ba (1 )
apa (1 + «
71 1= B, mer = b+ AT
+a
We verify v7(1 — ¢?) = 1. Hence B, -, is a boost and
L =vyic1 +mt = Bey 4, (1)
holds true. Let now B, 4 be a boost also satisfying L = B, (), i.e.
e + 7t =ye+at for v # -1,

and yic; +y1t = —t for v = —1 (and hence ¢ = 0 from ?(1 — c¢?) = 1). In the first
case we get, by ¢1,c € X, i.e. by ¢ = (¢1,0) € X ®R, ¢ = (¢,0) and t = (0,1),

¥ = and ¢ = ¢,

in the second v; = —1 =y and ¢; = 0 = ¢ with 4?(1 — ¢?) = 1.
If « = =1 # 8, (4.20) implies

L = By,—1(Bb+ pt) = b — Bt = yc + vt for v # —1,
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and L =p0b—p0t=—tfory=—-1,ie.y=—-0,c=—-bforv# —1,and =1, i.e.
b=0=cfor vy=-1.

If « # -1 = (3, (4.20) implies
L = By o(—t) = —aa — at = yc+ vt for v # —1,

and L = —aa —at = —t for v = -1, ie. v = —a,¢c = a for v # —1, and
a=1=—v,ie.c=0=aq, for y=—1.

If o = —1 =74, (4.20) implies
L=t=~c+~tfor v # -1,

and L =t = —t for v+ = —1. Since the second case does not occur, we obtain
vy=1,¢=0. O

We are now interested in the case
Ba,aByp = Beyw

where the factors on the left-hand side of this equation are proper boosts, hence
where o > 1 and § > 1. This implies

1 1
= = ——
l1—a

V1-0?
by a?(1 — a?) =1 = 3?(1 — b?). Thus Theorem 7, case 1), yields

o =

v =afd >0,

i.e. B. 5 is also a proper boost. Moreover, by Theorem 7, case 1), we obtain

c_gl-i—aé b _al+a(l+ab) b
TS 14+a  ad S 1+« ad’
i.e.
e= (1 2w+ 2 (4.21)
S 1+« ad’ '
i.e., by
o 70471
l1+a  «@a?

from a?(1 — a?) = 1, we get with § = 1 + ab,

1 bJrafl(b) n
c= —+ —(ab)a+a]l.
1+ab |« aa?
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This is in the case X = R? the relativistic sum ¢ =: a ® b of the velocities a,b € X
(see, for instance, R.U. Sex] and H.K. Urbantke, Relativitdt, Gruppen, Teilchen.
Springer-Verlag. Wien—New York, 1976, page 34).

By observing o > 1 and o?(1 — a?) = 1, we get

1 1+« ?(1—a®)+a aa?

a a(l+a)  a(l+a) 1+«

i.e., by (4.21),

_a o) b a
¢ =5 <1—|—1+aab>—|—5 <1 1+aa>

a+b+ 1 (ab)a—a?b
5 1+ 2 5 '

[e3

Hence, by o?(1 —a?) =1, a > 0,

a—|—b+ 1 (ab) a — a?b
1+ab  14+1-—a2 1+ab

Remark. Let g (x,y) (see (2.40) in section 12, chapter 2) denote the hyperbolic
distance of 2,y € P := {z € X | 22 < 1} in the Cayley—Klein model. Then

a®b:=c=

(4.22)

g(a,b) =g (r@a, rSb)
holds true for all a,b,z € P. On the basis of this functional equation we charac-
terized the function f (z,y) =z @y in W. Benz [10].
4.4 Lightlike, timelike, spacelike lines

Already in connection with pencils of Laguerre geometry we discussed the notion
of a line of Z. The sets

I={®@,po) + A([T,v) |\ € R} =p+Ro (4.23)

where p = (P, po), v = (T,vp) # 0 are elements of Z, are called the lines of Z. Let
us denote for a moment the set of lines of Z by N. Then

0:L(Z)x N = N
with f (1) := {f (p) + ABg,aw (v) | A € R} for
f(z) =Bgaw(zr)+d, weO(X), (4.24)

defines an action. Hence (IV, ¢) is an invariant notion of (Z,L (Z2)).



4.4. Lightlike, timelike, spacelike lines 185

An element z in Z is called timelike provided 2% < 0 holds true. z # 0 is said
to be lightlike, spacelike if, and only if, 22 = 0, 22 > 0, respectively, is satisfied.
The line (4.23) is defined to be timelike, lightlike, spacelike provided v has the
corresponding property. Observe that

p+Rv=qg+Ruw
implies ¢ = p + aw for a suitable real «, i.e.
p+ Rv =p+ Rw.

Hence w = pv for a p # 0 in R. Thus the character of [ to be timelike,. .., does
not depend on the special chosen v.

Remark. If 2,y € R? @R are classical events, i.e. points Z,% of R3 at certain fixed
moments xg, Yo, the event x has the chance to influence the event y provided there
exists a signal from z to y travelling from T to 7 along a line of R® with a constant
velocity p > 0 less than or equal to the speed (which we designate as 1) of light,
starting at time zg and ending at time yg > xg. This means

Vi —21)2 + (y2 — 22)2 + (y3 — 23)2 = - (Yo — 20) < Yo — Zo

on the basis of
distance travelled = velocity p- time taken,
ie. l(z,y) < 0 and 29 < yo, i.e. ¢ < y, where we applied the classical inner
product of R3. Timelike or lightlike lines # + R(y — 2), x # vy, (y — 2)? < 0,
represent possible signals and lightlike lines signals with speed 1, i.e. the speed of
light. In fact! A motion
(z1(7), 2(7), 3(7)),

7 the time, T € [a, §], leads to the set of events
{(@1(7), 22(7), @3(7), 7) | 7 € [0, B]}
of R?® ® R, called the world-line of the motion. The world-line
{(p1 + prar, pa + praz, ps + praz, po+ 7| 7 € o, B},

a? + a2 + a2 = 1, of a signal travelling with constant velocity p € [0,1] along a
line of R3 can be written in R @ R as

{p+7v|7€la,pb]}
with p := (p1,p2,P3,P0), v := (ua1, pag, pas, 1) such that
vi=p?-1<0.

In this sense possible signals are represented by timelike or lightlike lines of R*@®R.
Spacelike lines do not occur as signals.
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The image line f (1) of (4.23) under (4.24) is

f(P)+R-Baaw(v),
as we already know. Because of
1(v,0) =1 (Bg,aw (v), Baaw(0)),
ie.
v? = [Bo,aw (v)],

f () has the same character, namely to be timelike,. .., as . We hence get the
invariant notions of timelike lines,. . ..

From Propositions 46 and 43, chapter 3, we know that the parabolic pencils
correspond to the lightlike lines, the elliptic pencils to the spacelike lines (see
Proposition 48), the hyperbolic pencils to the timelike lines (see Proposition 50).

Ifi:=p+4+Rv=(p,po) +R(T,vp) is a line of Z, we will call

7m():=p+Ru

its projection into X. This projection is a point if, and only if, v € Rt. We define
the angle measure

(1, m (1)
to be 90° provided 7 (I) is a point, and otherwise by ¢ € [0°,90°[ satistying
co?pm T
TR

For 0 = v? = 72 — v2 (of course, with v # 0) we get ¢ = 45°. This angle
characterizes the lightlike lines of Z. Moreover, [ is

timelike < 45° < ¢ < 90°,

and spacelike < 0 < ¢ < 45°: this follows from

=2

1 v
O>’U2:@2—Ug <:>*>ﬁ207

2 T4

1 v?
O<’U2:§2—’l}g <:>*<ﬁ§1

2 T4

4.5 Light cones, lightlike hyperplanes

IfpeZ,
C(p):={zeZ|l(p,x)=0}
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is called the light cone with vertex p. This leads also to an invariant notion of
(Z, L(Z)) with
F(C)=C(fp)

for all f € L(Z). The future of p € Z is defined by

F(p):={xe€Z|p<a},
the past by

P(p):={zeZ|x<p}
Take A € L (Z) with A (z) =2p — z for all x € Z. Then

A (F(p)) = P (p).

Hence N := {F (p) | p € Z} with

o (f, F(p) == f(F(p) (4.25)

for f € L(Z) does not lead to an invariant notion. Here we consider the group
Lt (Z) of all orthochronous Lorentz transformations of Z. Observe that the index
of LT(Z) in L(Z) is 2. Of course, (4.25) yields an invariant notion for (Z, L*(Z))
under the assumption that the mappings f of (4.25) are in L*(Z).

Proposition 8. a) A line [ is lightlike if, and only if, there exists a light cone
containing [.

b) A linel is timelike or lightlike if, and only if, there exist x,y € | with < y.

¢) The light cone C (p) is the union of all lightlike lines through p.

d) Let S be the set of all timelike or lightlike lines through p. Then
Fip)=Jr"®). Pp) =1 )

les leS
where It (p) :={z €l|p<z} andl (p):={zel|xz<p}
Proof. a) If p + Ru is lightlike, it is contained in C (p), since
L(p,p+ M) = ((p+ W) —p)° = A2 = 0.
If the line p + Ro is contained in C' (r), then
((p+ v) —r)2 =(p—r)2+2X(p—7r)v+\20?

must be 0 for all real A. Hence v? = 0.

b) Let | = p + Rv be timelike or lightlike, i.e. assume v?> < 0. Then p < p + v
for vg > 0, and p < p — v for vg < 0. Vice versa, let [ be a line containing z,y
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with < y. Hence © — y = pv with a suitable real o # 0. Now [ (z,y) < 0 implies
(r —y)? <0, ie v?<0.

c)If x # pisin C(p), then Il (p,x) =0, i.e.
rE€p+R(z—p)
with (z — p)? = 0 holds true. If p + Ruv is a lightlike line, then v? = 0 implies
I(p,p+I)=0
for all A € R.
d) If © # p is in F (p), then p < z holds true. Hence
rel:=p+R(z—p), (z—p)?<0,
and even z € [T since p < x. Vice versa, if [ is a line in S and z a point in [, then
rel=p+Ru, v> <0, p<a,
ie. x € F(p). O

Another important invariant notion of (Z,L (z )) is based on what we call a
lightlike hyperplane of Z. First of all, however, we would like to define the notion
of a hyperplane of Z. If a # 0 is an element of Z and « a real number, the set of
points,

{reZ|ax=0a}
will be called a hyperplane of Z. This set can also be written in the form {z € Z |
aT — apxro = a}.

Remark. Of course, the hyperplanes of the real inner product space ¥ = X ® R
equipped with the inner product (3.54) (see the last Remark of section 10, chapter
3) coincide as sets of points with the hyperplanes of Z, since az in Z is (@, —ag) =
inY.

A special type of hyperplanes now will be of interest for the final discussions
of this section 5.

If v € Z satisfies v # 0 = v?, and if o € R, then
{reZ|ve=a} (4.26)

is said to be a lightlike hyperplane of Z.
For A € L(Z) define the image of (4.26) under X\ by

{A2) |z € Z and vz = a}.
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We will prove that this image is also a lightlike hyperplane. This is clear for
A (x) = x + d, since then the image is given by
{y € Z | vy =vd+ a}.
If A (z) = Bppw (x), we observe [ (0,a) =1(0,A(a)) for all a € Z, i.e.
a® = [\ (a)]?. (4.27)
Moreover, [ (a,b) =1 (A (a), A (b)) for all a,b € Z, i.e.
(a=1b)*=[A(a) = A(D),
i.e., by (4.27),
ab = X (a) A (D) (4.28)
for all a,b € Z. We would like to emphasize that (4.28) holds true for all Lorentz
transformations A of Z satisfying A (0) = 0.
Applying (4.28) on (4.26), we obtain with
y=Byrw (@) = A (o),
obviously,
AM{rzeZ|lve=a})={yeZ|a=ve=A(v)A(z)=A(v)y}
with [A (v)]?2 =v? = 0 and A (v) # X (0) = 0, since A is injective.
Hence we proved

Proposition 9. Define LH (Z) to be the set of all lightlike hyperplanes of Z and
A(E) for \€ L(Z) and E € LH (Z) to be {\ (z) | € E}, then (LH (Z), ¢) with
¢ (X, E) := A(E) is an invariant notion of (Z,1L(Z)).

Remark. Let H (Z) be the set of all hyperplanes of Z and define
AME)={A(z) |z € E}

for X €e L(Z) and E € H (Z), then, with almost the same arguments, we obtain
that (H (Z), ¢1) with ¢1(\, E) := A (E) is an invariant notion of (Z, L (Z)).

If a # p is a point of the light cone C (p),
{zeZ|(z-p)a—p)=0}
will be called the tangential hyperplane of C (p) in a.
Proposition 10. If a # p is in C (p), then

Cip)n{reZ|(xz—-p)la—p)=0}=p+R(a—p).
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Proof. a € C (p) implies [ (p,a) = 0, i.e. (a — p)? = 0. Hence we get for all a € R,
ptafa—p)eCp)nfzeZ|(x—p)la-p) =0}

Vice versa, assume b € C (p)\{p} and (b — p)(a — p) = 0. From

(@a=p)?=0,(b-p)?*=0(a—p)(b—p) =0
and Lemma 60, (3), chapter 3, we obtain that a — p, b — p are linearly dependent.
Hence

b—p=a(a—p),
ie.bep+R(a—p). O
Proposition 11.  a) Fuvery tangential hyperplane to a light cone is a lightlike hy-
perplane.

b) Ifa € E € LH(Z) and if l is a (in fact existing) lightlike line contained in
E, and passing through a, then E is a tangential hyperplane of C (p) in a
where p € I\{a}.

c) All lightlike lines contained in E = {x € Z | vz = a}, v # 0 = v?, are given
by a + R, a € E. All other lines contained in E are spacelike.

Proof. a) Follows from (a — p)? = 0.
b) Assume E = {z € Z | vz = a}, v2 =0 #v. If a € E, then

a+Rv>a

is a lightlike line contained in E. Let a + Rw, w # 0 = w?, be any lightlike line !
contained in F, and take p = a + pw, B # 0. Hence

2 2
v°=0,w"=0,vw=0,

in view of & = vp = v(a + fw) = o + Sfvw. Lemma 60, (), chapter 3, yields
w = v with a suitable real v which must be unequal to 0, since w # 0. Hence

Il =a+Ruo.
Observe p = a + Bvyv, By # 0. Thus
0=(z—p)la—p=(z—a=pyw)-(=Byv),
ie. vx =va = a.
c) We already realized in step b) that there is one and only one lightlike line

contained in F and passing through a € E. Assume now there would exist a
timelike line a + Rw, w? < 0, contained in E. Hence

v2:O,w2<O,vw:0,

ie. 92 = v3, w? < wd, VW = vowp. This implies, by ¥ # 0, since v # 0, the

contradiction
2

(vowp)? = (vW)? < v*W* < viwg. O
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4.6 Characterization of some classes of hyperplanes

A hyperplane E = {z € Z | ax = a}, a # 0, of Z will be called timelike, spacelike
provided a? > 0, a? < 0, respectively, holds true. As in Proposition 9 concerning
the lightlike hyperplanes, we also get here invariant notions of (Z,LL(Z)) with
respect to timelike, spacelike hyperplanes.

Theorem 12. A hyperplane Z is lightlike if, and only if, it contains a lightlike line,
but no timelike lines.

Proof. If E is a lightlike hyperplane, it contains a lightlike line, but otherwise only
lightlike or spacelike lines (see Proposition 11, ¢)). Assume, vice versa, that the
hyperplane

E={zxe€Z|ax=a},a#0,

of Z contains at least one lightlike line,
l=p+Ru, v?=0+#0v,

but otherwise only lightlike or spacelike lines. Hence ap = o and av = 0. We will
prove that a and v are linearly dependent. This then implies that E is lightlike.
Observe a # 0, since otherwise

0=av = agvgy

from av = 0, contradicting agvg # 0, by a # 0 # v and v* = v3.

Case 1. a® = 0.

a’? =0, v?2 = 0, va = 0 imply, by Lemma 60, (3), chapter 3, that a,v are linearly
dependent. Thus a = vwv.

Case 2.1. a® # 0 and ag = 0.

Hence at = 0 with ¢ = (0,1). Observe v + St # 0 for all 5 € R, since otherwise
v+ B-0=0,ie v=0 from v> = v3. Hence the line

Vo
®(0-3)
p+ v 5

must be contained in F, and must thus be lightlike or spacelike, i.e., by vy # 0,
v \2 v, 3 4
0< <v+5t) = vgut + 2 #7 = — 20 < 0.

Hence, Case 2.1 does not occur.
Case 2.2. a® # 0 and ag # 0.

Observe b := (E, % 62) # 0, because of @ # 0. Obviously,

a(b+av)=0
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for all a € R. Moreover, by av = agvy,
vb=Ta—vy —=——a’#0.

We also have b+ av # 0 for all € R, since b + agv = 0 would imply
0=(b+ aw)v=b #0.

Hence the line
p+R(b+aqv)
with ay - 2vb := —1 — b?, must be contained in F, and must thus be lightlike or
spacelike, i.e.
0 < (b+av)? =b* + 2a,bv = —1,

a contradiction. Thus, Case 2.2 also does not occur. O

Remark. The hyperplane {z € Z | tx = 0} contains only spacelike lines p +
Rb, tp =0, th =0, b # 0, since b = (b,0), i.e. b* > 0.

If a = (e,0) with 0 # e € X, then E = {z € Z | ax = 0} contains lightlike,
timelike and spacelike lines. Take j € X with j2 = 1 and ej = 0. Then the line
R (j, @) is contained in E and timelike for a? > 1, lightlike for a? = 1, spacelike
for a? < 1.

Theorem 13. a) E = {x € Z | ax = a}, a # 0, contains only spacelike lines if,
and only if, a® < 0.

b) E contains timelike, lightlike and spacelike lines if, and only if, a®> > 0.

Proof. a) Assume a27< 0 and p+Rb C E, b # 0. Hence ab = 0. Observe ag # 0,
since @2 < a2. Also b # 0 holds true, because otherwise b = 0 from @b = agbo.
Hence

(aobo)? = (@h)? < @b’ < alb,

ie. b3 < 52, i.e. b> > 0. Thus p + Rb is spacelike. Assume, vice versa, that E
contains only spacelike lines. We hence get b> > 0 for all b # 0 in Z which satisfy
ab = 0. If ag were 0, then with b :=1¢ = (0,1),

b£0,ab=0, b <0

would be the consequence. Hence ag # 0. Put

1
b= (a, a2>
ao

for @ # 0. This implies b # 0, ab = 0, whence

0<bt?=a°— = (@)? = — (a2 — @),
aj ap 0
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i.e. a? < 0. If, finally, a = (0,a9), we get a? < 0.
b) Assume a? > 0. Hence a®> — a2 > 0, i.e. @ # 0. Take j € X with 52 = 1 and
ja=0.If ag = 0, then

aa )

=2 TREGYCE

for all v € R. This line is lightlike for v = 1, timelike for v = 2 and spacelike for
v=1/2.If a # 0, then

1
Q—ZHR (a+7j, a2> CE
a Qg
for all v € R. Since
_o\ 2 _92
(a’+’yj)2_(a> :72_%a2::72_k7k>07
ap ag

there are values v with 42 — k > 0,= 0, < 0. Assume, vice versa, that E contains
timelike, lightlike and spacelike lines. This implies a® > 0, because E does not
contain timelike lines for a® < 0. O

4.7 L (Z) as subgroup of Lie (X)

Surjective Lorentz transformations ((4.4), here w € O (X)) are special Laguerre
transformations, (3.124), namely those preserving tangential distances. They are
hence Lie transformations (section 12, chapter 3). Let, vice versa, A be a Lie
transformation. If it fixes the Lie cycle 0o, it can be described in terms of Lorentz—
Minkowski geometry as a bijection of the set Z of events with

Voyez L(z,y) =0=1(A(z), A(y)) =0

(see Theorem 2). In the classical case this means exactly that A, A(c0) = oo,
as a bijection of R® @ R transforms light signals into light signals. The further
assumption then that A\ preserves tangential distances leads, as mentioned before,
to the Lorentz transformations.

We will collect some other correspondences between Lorentz—Minkowski
geometry and Laguerre geometry.

An event as an element of Z = X @ R = T (see section 10, chapter 3)
corresponds to a Laguerre cycle. If x,y are events, then I (z,y) > 0 (see (3.85))
is the square of the tangential distance of the Laguerre cycles x,y. The Laguerre
cycle = touches y if, and only if, I (z,y) = 0. In Lorentz—Minkowski geometry
this equation means that there is a lightlike line containing the events x and y.
The situation that for the Laguerre cycles z,y there is no spear touching both, is
characterized by [ (z,y) < 0: this means in Lorentz—Minkowski geometry that the
line through x,y is timelike. In section 4 we already mentioned correspondences
between the pencils of Laguerre geometry and specific lines of Z.
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Of course, we would like to know what the meaning of spears is in Lorentz—
Minkowski geometry. This is answered by

Proposition 14. The spears s as sets {c € I' | ¢ — s} of Laguerre cycles are exactly
the ligthlike hyperplanes.

Proof. Let (a,&, ) be coordinates of s, then (see (3.77))
{ceT|c—s} ={(m,7)eZ|am+{r=a}
={@,z0) € Z|(a,=¢) -z = o}

holds true with (a, —£)? = a? — (=£)? = 0. If, on the other hand, v € Z is given
with v # 0 = v?, then
{(Z,z0) € Z | vz = a}

is the spear with coordinates (T, —vy, ). O

4.8 A characterization of LM-distances

A function d : Z x Z — R will be called a general Lorentz—Minkowski distance
(LM-distance) of Z provided

d(z,y) = d(X(z), A(y)) (4.29)
holds true for all z,y € Z and for all bijective Lorentz transformations \ of Z.

Theorem 15. All general Lorentz—Minkowski distances d of Z are given as follows.
Let o be a fized real number and let g : R — R be an arbitrary function. Then

d(z,y) =g (l(z,y)) (4.30)
for all elements x #y of Z, and d (z,x) = o for all x € Z.

Proof. Obviously, every such d defines a general Lorentz—Minkowski distance. As-
sume now that d: Z x Z — R is a general Lorentz—Minkowski distance.

a) d(z,y) =d(z —y,0) holds true for all z,y € Z.
Let x,y € Z be fixed elements. Then

Az)i=z—y
is a bijective Lorentz transformation of Z. Hence, by (4.29),

Define ¢ := d (0,0). Hence, by a), d (z,z) =d(0,0) = p for all z € Z.
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b) To x,y € Z\{0} there exists a bijective Lorentz transformation X with A (0) = 0
and X (x) =y if, and only if,

[(@,0) =7 — a3 = 7 — g = 1 (4,0). (4.31)

If there exists such a A, of course, (4.31) holds true. So assume, vice versa, that
(4.31) is satisfied.

Case 1. [ (x,0) <0, i.e. 23 > 7> > 0.

Put p-xp := —T and observe p> < 1 and p € X. With sgn k := sgn xy and
k2(1 — p?) := 1, we obtain

By (x) = /2?2 — 7t
Similarly, with suitable g, k, we get

By (y) =\ v3 =7t

Hence, by (4.31), y = B_4x Bpx (z). Also B_, .. By (0) = 0.
Case 2. 1 (2,0) =0, but  # 0 and y # 0.
Obviously, T # 0 and g # 0. Hence (T/x()? = 1. Suppose z¢ # —1. With

= 75— 1 =z sgn k :=sgn x
p~—1%_|_1 . g 1= 8gn o,
k(1 — p?) := 1, we obtain
By (;1> = . (4.32)

Similarly, if yg # —1,
B, . (y, 1) =y.
Yo

b:zi—i—izo
To Yo

define w (%, z9) = (=%, 29) for z € Z, and in the case b # 0,

In the case

w(z,20) = (2(za) a — Z, 2)
with a - ||b]| := b. Since w : X — X is in both cases an involution, w € O (X). Now
y=BgrwB_,(x) (4.33)

holds true.
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In one of the cases xop = —1 or yg = —1, for instance in the case xg = —1, we

replace (4.32) by
T
— 1 = (7
A (mov ) (Z‘,$0)

with A (z) := —z for z € Z. Then B_, ; in (4.33) needs to be replaced by A.
Case 3. [ (2,0) > 0, i.e. 7% > 22 > 0.

Observe _
_ X .
B,k (T,z0) = m \/ 72— x?

for 2 - p:= —wg - T and k > 0. Take as in Case 2 an w € O (X) such that
(1)=&
Wl 7= = 7=
[ /]l

yz_y[Q)v

With

‘@\

By (y) =

lyl

72 q:= —yo -7 and £ > 0, we obtain
y=DB_,,wBp (z).
c) Suppose that e € X satisfies €2 = 1 and that ¢ is a real number. Define
z=+/E-efor{>0,z=(e1l) for £ =0 and z = (0,/[¢]) for £ < 0. Then z # 0
and [ (x,0) = &£ hold true. Define
g(&) = d(x70)

for all £ € R. If also £ = I (y,0) is satisfied for y # 0, then, by b), there exists
A €L (Z) with A(0) =0 and A (x) = y. Hence d (z,0) = d(y,0). Thus d(z,0) =
g (1(2,0)) holds true for every z # 0 in Z. For v # w in Z we hence obtain, by a),

d(v,w)=d(v—w,0)=g(l(v—w),0) =g ((,w)). O
Define D (z,y) = /|d (z,y)| for z,y € Z. We will call a general Lorentz—
Minkowski distance d additive provided there exists e € X with e = 1 and
(1) d(@,t) = d(e,()) +d(03t) =0,t= (031>a
(2) d(ae,0) >0 and d(at,0) <0 for all real o > 0,

(3) D(0,84) = D(0,c5) + D (af, Bj) for j € {e,t} and all @, € R with 0 <
a < g.

Theorem 16. Let d be a general Lorentz—Minkowski distance of Z. Then d is ad-
ditive if, and only if, there exists a fized non-negative number ~ with

d(z,y) =~-1(z,y) (4.34)
forallx,y € Z.
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Proof. Of course, d of (4.34) is additive. Let now d be an additive general Lorentz—
Minkowski distance. (3) implies D (0,0) = 0 for a = 8 = 0. Hence
d(z,z) =d(0,0) =0
for all € Z. Thus (4.34) holds true for = y. Because of
D (aj, Bj) = D (0,(8 = ) j)

and of (3) there exist constants v and o with

D (0,¢&e) =v1& and D (0,&t) = o€

for all £ > 0: put ¢ (&) := D (0,£&j) for £ > 0, observe ¢ (£) > 0 for non-negative &
and, moreover,

¢(B—a) =D(0,(8—a)j)=D(aj,B7)
:D(O,B])—D(0,0éj) :(P(ﬂ)_@(a)

for 0 < a < B, whence ¢ (£ 4+ 1) = ¢ (&) + ¢ (n) for £ > 0,7 > 0, by defining
a = ¢, B := £ + n and noticing 0 < a < . Now applying the Remark between
steps C and D of the proof of Theorem 7 of chapter 1, we obtain ¢ () = ~v&, v > 0,
i.e.

d(0,&e) = ~7€” and d(0,t) = —73€%,
in view of (2) and of d (z,y) = d (y, ) from (4.30). The second part of (1) implies
7?2 = ~43. By step c) of the proof of Theorem 15, we obtain

g(€) = d(V€e,0) =3¢ for £ >0,
g(§) = d(mt,0)27%§f0r§<0.

Moreover,
g(0) =d(e+t,0) zd(Bo7_1 (e+t),0) =d(e—1t,0)=d(e,t) =0.
Hence g (¢) = v¢ for all £ € R with v =7 > 0. O

4.9 Einstein’s cylindrical world

Define C (Z) := {z € Z | 22 = 1} to be the set of points of Einstein’s cylindrical
world (Einstein’s cylinder universe) over Z = X ® R, and call

e(x,y) := [arccos(TY)])* — (xo — yo)? (4.35)

with arc cos(Zgy) € [0,7] the Einstein distance of x,y € C(Z), by observing

-1 <7y <1, in view of
(zy)? <7y =1

(see section 4, chapter 1).
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Theorem 17. All f : C(Z) — C (Z) satisfying
e(z,y) =e(f (), f () (4.36)
for all z,y € C(Z) are injective and they are given by
fx)=w @)+ (exg+a)t, v € C(2),

with t :== (0,1) € Z where w : X — X is orthogonal and where €,a are real
numbers such that €2 = 1.

Proof. For a solution of (4.36) put
f @+ wot) = ¢ (T,20) + ¢ (T, 0)t, T =1,

with ¢ € X, ¢? = 1, and ¢ € R. Of course, we identify h € X with the element
(h,0) of Z.
a) f (=T 4 xot) = —¢ (T, x0) + ¢ (T, o) t for all z € C (2).
In order to prove this equation, apply (4.36) for y := —Z + xot. Then
_ _ 2 _ _ 2
7% = (arccos[p (T, z0) ¢ (—T,20)])” — (¥ (T, z0) — ¥ (—T,20)) . (4.37)

This implies arc coslp (T, x0) ¢ (=T, z0)] = 7 and ¥ (T, z9) = ¥ (—T,xp), since
otherwise the right-hand side of (4.37) would be smaller than 72. Hence

® (57 $0) ' (_57 330) = _1a
ie. o (—T,x0) = —¢ (T, x0)-
b) ZY = ¢ (T, z0) ¢ (U, yo) for all z,y € C (Z).
Apply (4.36) for z,y and for —T + xot, y. Then, by step a),
_ _ 2
e(z,y) = (arccos[p (7, 20) ¢ (,50)])” — A,
e(~T +aot,y) = (arccos[—¢ (Z,20) ¢ (F,90)])" — A

with A := (z/J (T, z0) — ¥ (7, yo))2. Subtracting the second equation from the first
one, and putting

atccos(77) =: a, arccosl (7, 20) (7, vo)] = B,
we obtain a? — (7 — a)? = 2 — (7 — )2, i.e. a = 3. Hence
Ty =cos a=cos B =¢(T,z) ¢ (Y,y0).

c) o (h,&) =@ (h,n) for all £,n € R and h € X with h2 = 1.
Apply step b) for x = h + &t and y = h + nt. Then

L=h-h=¢(hE)e(hmn),
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ie. o (h,&) =@ (h,n), in view of Lemma 1, chapter 1, and of ¢? = 1.
Putting ¢ (T) := ¢ (T, 0), we may write, by step c)

d) Define K := {h € X | h? = 1}. We would like to extend ¢ : K — K to an
orthogonal mapping w : X — X. Put w (0) := 0 and

o) = lrl- (5

for all » # 0 in X. Obviously,
rs=w(r)w(s) (4.39)

for r,s € X and 0 € {r,s}. For r # 0 # s we obtain

w)we) = - Isl-¢ (7)o () =

in view of steps b) and ¢). So (4.39) holds true for all 7, s € X. Hence
lw(r) —w I = [w )] = 2w (r)w(s) + [w(s)]* = Ir = sl

for all v, s € X. Thus, by Proposition 3, chapter 1, w : X — X must be orthogonal.
e) There exist fixed ¢,a € R with ¢ = 1 and

Y (T, 20) = €20 +a (4.40)

for all 7 + a0t € C (Z).

Apply (4.36) for & = r + &,y = s+ &t with € € R and r,s € K. Hence, by
f(2) =w(Z)+1(Z,20)t and (4.39),

(€—82 = (¥ (&) — v (5,0)

holds true, i.e. ¥ (r,€) = ¥ (s,&) =: 9 (£). Applying (4.36) for x = r+£&t, y = r+nt
with £,7 € R and r € K yields

2

(E=m?*= (W (E)—vm)"
Put a := ¢ (0). Hence &2 = (¢ (&) — a)2, ie.

P(E)=e()-¢+a
for £ # 0 with [¢ (€)]? = 1. In the case £ - ) # 0 now (4.41) implies

En=c¢e(&)enén,

(4.41)
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ie (&) =¢e(n) =:e. Hence ¢ () = €€ + a holds true for all £ € R.
f) Because of f (T + zot) = w (T) + ¢ (T, x0) t we hence get
f(@+zot) =w(T) + (exo+a)t, T+ xot € C(Z). (4.42)

Since w is injective, so must be f. O

A motion of C(Z) is a surjective solution f : C(Z) — C(Z) of (4.36).
Motions are hence bijections of C (Z). Their group will be designated by MC (Z),
and the geometry (C’ (2), MC (Z)) is called geometry of Einstein’s cylindrical
world. Observe that MC (Z) is a subgroup of the Lorentz group L (Z).

Proposition 18. The mapping (4.42) is a motion if, and only if, w is surjective.

Proof. Since f: C(Z) — C(Z) of (4.42) is injective, we must show that w: X —
X is surjective if, and only if, f is surjective. If w is surjective, then

f@+zot) =Y+ yot
has a solution T + zot in C (Z) for given 7 + yot in C' (Z), namely
W (H) +e(yo —a)t.

If f is surjective, then w (r) = s has for given s € X the solution r = 0 for s = 0,
and r = ||s|| - T for s # 0 and T+ vot € C (Z) satisfying

f(@—kvot):ﬁ—f—at. O
s

4.10 Lines, null-lines, subspaces

Ifae K={he X |h?=1}, define L(a) = a+Rt. For a,b € K and k,\ € R
with ab = 0 put

L(a,b,k,\) :={acosp+bsinp+ (ko +N)t|peR}.

The sets L (a), L (a,b, k, X) of points of C (Z) are called the lines of C (Z). A null-
line of C (Z) is a line L (a,b, k, \) with k? = 1. The lines L (a) are euclidean lines,
L (a,b,0,)) are euclidean circles and every L (a,b, k,A) with k # 0 is a circular
helix on the circular cylinder

{acosp+bsing + At | p, A € R}.

Proposition 19. The line L of C(Z) is a null-line if, and only if, there exist to
every p € L and to every real € > 0 a point q # p on L satisfying e (p,q) =0 and

P—9)°+ (po—q0)* <e.
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Proof. a) For two distinct points a + at, a + St of L (a), we obtain
ela+at, a+pt) = —(a—B)? <0,
and for two distinct points
v:i=acosa+bsina+ A, w:=acos+bsinf + At
of L(a,b,0,)), 0 < a < f < 2w, obviously,
e(v,w) = (F—a)? for f—a <,
e(v,w) =[27—(B—-a)? forB—a>m,

ie. e(v,w) > 0.
b) Let now L be the line L (a,b, k, \) with k # 0. Assume p € L with

p=acosp+bsinp+ (kp+ A)t. (4.43)
If k2 = 1 and if ¢ > 0 is given, choose ¢ €]0,1[ with 2¢2 < e. Put
g=acos(p+&) +bsin(p+&) + (klp+& +N)t (4.44)
and observe p # g € L, e(p,q) = 0 and
(P —0)%+ (po — 0)* = 2(1 — cos§) + £ <,

since 2(1 — cos€) < &2 for 0 < € < 1, and since 2¢2 < e.
IfO#K2#1, pute = (ﬁ)z. We are interested in all points (4.44) such that

10
B 2
P—D*+ (po — q0)* = 2(1 — cos§) + k*¢* < (10> (4.45)
holds true. (4.45) implies [£| < 5, since 2(1 — cos§) > 0. But for p,q of (4.43),
(4.44) with |£| < {5, we obtain

e (p,0) = [arc cos(cos€))? — k262,
and we must choose arc cos(cos &) in [0, 7]. Since
arc cos(cos §) = arc cos(cos|¢|)

and [£| < 11—0, we get e (p,q) = €2 — k262 # 0 for ¢ # 0. Hence L can not be a

null-line. O

Points and lines are called subspaces of C (Z), also (). The other subspaces
are defined by
C(V)={v+M|veV,v>=1, AR}

where V is any subspace of dimension > 2 of the vector space X.
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Theorem 20. If p is a point and L > p a line of C (Z) which is not a null-line,

then ()
. e\x,p

A(p,L):= 1 =1

(p, L) L3asp I (z,p) ’

where | (x,p) designates the Lorentz—Minkowski distance of x, p.
Proof. Observe d (z,p) = (z —p)* — (zo — po)? = 2(1 = TP) — (w0 — po)*.
Case 1. L = a + Rt.

p € Limplies L = p+Rt. For x = p+£t we define  — p by € — 0. More generally,
x — p is defined by

(T —p)* + (20 — po)* = 0. (4.46)

Observe )

6(1',]7) — €(p+§t,p) :izl
Case 2. L = {acosp + bsing + [k + N[t | ¢ € R}, k* # 1. Put p = acosy +
bsinp + [ke + A]t and

z=uacos(p+&) +bsin(p+&) +[k(p+&)+ At
Because of  — p we obtain, by (4.46),
2(1 — cos &) + k2¢% — 0,
i.e. &€ = 0. Assume that |£] # 0 is small enough. Then

e(z,p) & - k*¢

= 4.47
[a.p) 21— cosE) — K€ (47
is well-defined by observing
lim 2(1 — cos&) _1
£—0 £2
i.e. 2(1 — cos€) # k22 since k? # 1 and since || is small enough. Hence
el(x, 1—k2
( p) = 2(1—cos &) - L L
[ap) T8

4.11 2-point invariants of (C'(2), MC (Z))

Suppose that W # @ is a set. We would like to determine all 2-point invariants of
Einstein’s cylinder universe, i.e. all

d:C(Z)x C(Z) > W (4.48)
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such that
d(z,y) =d(f (), f(y)) (4.49)
holds true for all z,y € C'(Z) and all f € MC (Z). Define the cartesian product
Wy :=[-1,1] x R>g
with R>g = {r € R | r > 0}.
Theorem 21. Let g be a mapping from Wy into W. Then
d(z,y) = g(TY,|ro — yol) (4.50)

is a solution of the functional equation (4.49). If, on the other hand, (4.48) is a
solution of (4.49), there exists a function g : Wo — W such that (4.50) holds true.

Proof. a) Suppose that f (z) = w (Z) + (exo +a)t is in MC (Z) and put
v=f(x), w=f(y)
for given z,y € C (Z). We obtain
v =w (@) () =77

and |vg — wo| = |(exo + a) — (eyo + a)| = |zo — yo|- This implies that (4.50) is a
2-point invariant of MC (Z).
b) Assume that (4.48) solves (4.49). If (v, ) € Wy, define

a:=1, b:=~i++/1—~2j+t,

where i,j € X satisfy ij = 0 and i> = 1 = j2. Then put g (v,6) := d(a,b). We
then have to show

d(z,y) =g (7,9) (4.51)

for all z,y € C (Z) with Tg = 7 and |z¢ — yo| = 0. If we are able to find a mapping
f € MC(Z) for such a special pair x,y with x = f (a) and y = f (), then

d((&y) = d(f (a)7 f(b)) = d(a7b) :g(’y,é),

and (4.51) is proved for that special pair.
If w € O (X) satisfies

w()=Tand w(yi++1—92%j) =7, (4.52)

then
f(z2)=w @)+ (ez0 +x0)t
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with € = 1 for g = yo and Je := yo — xo for xg # yo (observe § = |zg — yol) is
such a mapping, i.e. satisfies © = f (a) and y = f ().

¢) So what we actually have to find is an w € O (X) such that (4.52) holds true
for a pair z,y € C (Z) satisfying Ty = v and |rg — yo| = §. Observe i? = 1 and
72 = 1. Because of step A of the proof of Theorem 7 of chapter 1 there exists
w1 € O (X) with wy (i) = T. Define § =: w; (v) and observe
w=w (i) wi(v) =T7 = 1. (4.53)

d) If we are able to find « € O (X) such that

a(@)=iand a(yi++/1—1727)=v (4.54)
holds true, w := wja solves (4.52). Define

Xo:={he X |hi=0}

and note Xy 3 j, v — i, because of (4.53). Since X is a real inner product space

of dimension at least 2, Xy must be a real inner product space with dim Xy > 1.
Observe

(v — i) = v? — 2yvi + 422 =1 — 72, (4.55)

in view of (4.53), 2 =1 and 1 = 7% = w1 (v) w1 (v) = v-v with y € C (Z).
e) There exists 5 € O (Xy) satisfying

V1I=72B8(j)=v—i.

In the case 42 = 1 put 8 = id, in view of (4.55). If 42 < 1 and dim X, > 2, apply
again step A of the proof of Theorem 7, chapter 1, by observing

N2
v\
V1—72
If v2 < 1 and dim Xy = 1, then j,v — ~i are linearly dependent, and the existence
of 3 is trivial.

Define now « (h + &) := S (h) + &i for all h € X and note a € O (X), since
B € O(Xp), and since (4.54) holds true. O

Remark. A characterization theorem for Einstein’s distance function e (z,y) is
proved in W. Benz [5].



4.13. 2-point invariants of (X (Z), M (Z)) 205

4.12 De Sitter’s world

Define X (Z) := {# € Z | 22 = 1} to be the set of points of de Sitter’s world
over Z = X @R, and call every restriction A | ¥ (Z) a motion of ¥ (Z) where A
is a surjective Lorentz transformation of Z satisfying A (0) = 0. We thus get the
group MY (Z) of motions of de Sitter’s world X (Z), by observing A (z) € ¥ (Z)
for z € ¥ (Z) for a Lorentz transformation A of Z with A (0) = 0:

1=2"=1(2,0)=1(A(2), A(0)) = [A(2)]*.

The geometry (E (2), M% (Z)) is called geometry of de Sitter’s world. The points
a,b € ¥ (Z) are called separated provided a # b # —a. Such a pair must be linearly
independent. Otherwise aa = b would hold true with reals «, 8 which are not
both 0. But (aa)? = (8b)?, i.e. B € {a, —a} is impossible.

If a,b € ¥ (Z) are separated, every ellipse, every euclidean line, every branch
of a hyperbola in

{la+nb|&neRNE(2) (4.56)
is called a line of ¥ (Z). All £a + nb in (4.56) are characterized by the equation
L= (ga+mb)* = (€+s(a,b)m)” + (1= [s(a,)]2) ? (4.57)
with
s(a,b) := ab. (4.58)

We will call s(a,b) = ab the de Sitter distance of a,b € ¥ (Z), also in the cases
b=a or b= —a. Observe that (4.58) is a 2-point invariant: for A € MY (Z),

I(a,b) =1 (A(a), A (b))

implies (a—b)% = [A (a)—\ (b))%, i.e. ab = A (a) A (b). In the cases (ab)? < 1, (ab)? =
1, (ab)? > 1, respectively, we obtain in (4.57) an ellipse (a closed line), two eu-
clidean lines (two null-lines), two branches of a hyperbola (two open lines), re-
spectively, of X (Z). The lines of 3 (Z) are also called its geodesics.

4.13 2-point invariants of (X (Z), MY (2))

Theorem 22. MY (Z) acts transitively on X2 (Z). If dim X > 3 and if a,b and ¢, e
are pairs of separated points, there exists § € MY (Z) with § (a) = c and § (b) = e
if, and only if, ab = ce holds true.

Proof. a) In step b) of the proof of Theorem 15 we showed that to =,y € Z\{0}
there exists a bijective Lorentz transformation A with A (0) = 0 and A (z) = y if,
and only if, [ (x,0) =1 (y,0). Suppose that x,y are points of 3 (Z). Then

1(z,0)=1=1(y,0)



206 Chapter 4. Lorentz Transformations

holds true. There hence exists a motion § with ¢ (z) = y.

b) If a, b and ¢, e are pairs of separated points, and if § € M3 (Z) satisfies 6 (a) = ¢
and d (b) = e, then ab = § (a) 0 (b) = ce, as we already know.

¢) Let a,b and ¢, e be pairs of separated points with ab = ce. Because of Theorem
1, Lorentz transformations of Z fixing 0, must be linear. Separated points x,y
must hence be transformed into separated points under motions. In view of step
a) we thus may assume a = ¢ without loss of generality. If h € X satisfies h? = 1,
which especially implies h € 3 (Z), we even may assume a = h, in view of step a).
Then ab = ae reads hb = he or hb = he, since

h=h+hot=h+0-t.

Put Zy := {z € Z | zh = 0}. Obviously, t € Z. Again, we would like to apply step
b) of the proof of Theorem 15, but this time for Zj instead of Z for the points

&:=b— (bh)h and n := e — (eh) h,
which both belong to Zy. This can be done, since
dim Xy > 2 with X :={z € Zy | 2t = 0},
because of dim X > 3. Observe
1(£,0) =& =b* — (bh)?> =1 — (bh)* =1 — (eh)* =1 (n,0).
There hence exists a bijective Lorentz transformation Ay of Z; satisfying
Ao(0) = 0 and Ag(b— (bh) h) = e — (eh) h. (4.59)

The problem now is to extend Ay to a bijective Lorentz transformation A\ of Z.
This will be accomplished by putting

A(z) := Xo(x — (zh) h) + (zh) h (4.60)
for all x € Z. That X is an extension of \g follows from
xzh =0 for all z € Zj.
With zp, := x — (zh) h for © € Z, we obtain
L@ A®) = (A (@) = A0)% = (Mol@n) — Ao(wn)] + [wh — yh] h)?,
i.e., because of x, - h =0, A\g : Zg = Zp and of zh = 0 for z € Z,

LA (@), X)) =1 (Ao(zn), Ao(yn)) + (zh — yh)>.

2

Similarly,
L(w,y) = (¢ —)® = ([tn — yn] + [wh — yh] h)®,
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ie. l(z,y) =1 (xn,yn) + (xh — yh)?. Hence
L(A (), AM(y)) =1 (2.y),

since A\g is a Lorentz transformation of Zj, i.e. satisfies

L(Ao(zn), Ao(yn)) =1 (xh, yn)-
We finally show A (k) = h and X (b) = e. In fact, by (4.60),

A(R) = Xo(h — h* - h) + h*h = \o(0) + h = h,
and, by (4.59) and bh = eh,
A(b) = Ao(b— (bh) k) + (bh) h = [e — (eh) h] + (bh) h = e. O

Theorem 23. Let W be a set and g : R — W be a function, and let wg, wy be fixed
elements of W. Then

g(xy) for x,y separated
d(z,y)=q wo  for z=y (4.61)

w1 for xr=—y
with x,y € £ (Z) is a solution
d:S(Z)x%(Z2)->W (4.62)
of the functional equation
Vo yes (2) Viems z) d(@,y) = d(f (), f (y)). (4.63)

If, on the other hand, (4.62) solves (4.63), then there exists a function g : R — W
and elements wo, w1 € W such that (4.61) holds true.

Proof. a) Obviously, (4.61) solves (4.63) for all motions f and all z,y € £ (Z) as
was shown almost at the end of section 12 by means of the formula

ab = X(a) A (b)

for a,b € ¥ (Z) and A € X (Z). (Here we only need this formula for a, b separated.)

b) Assume now that d: ¥ (Z) x £ (Z) — W is a solution of (4.63). Take elements
i,j € X with i2 =1 = j2 and ij = 0. For k € R define g (k) by means of

g (k) :=d (i, ki + j + kt). (4.64)
Observe here i € X (Z), ki +j+ kt € ¥ (Z) and

k=i (ki+ j+ kt). (4.65)
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Moreover, put wgy := d(i,4) and wy = d(i,—3). If x € £ (Z), there exists f €
MS (Z) with f (i) = « on account of Theorem 22. Hence

d(z,z) =d(f (i), f (i) = d(i,i) = wp.

Since f is linear, we also get
d($7 _x) =d (f (2)7 f (_Z)) = d(lv _Z) = Wq.

Suppose now that x,y € X (Z) are separated. If zy =: k, then, according to (4.65),
there exists f € MY (Z) satisfying

f@)=zand f(ki+j+kt)=y.

Hence d (z,y) = d (f (i), f (ki +j + kt)) = d (i, ki + j + kt) = g (k), because of
(4.64). Thus

d(z,y) =g (k) = g (xy). 0
Remark. Concerning the spacetimes of Einstein, de Sitter and others see also
W.-L. Huang [1], [2], J. Lester [3]-[8] where finite-dimensional cases are treated.

4.14 Elliptic and spherical distances

The basis of the remaining part of this book is again a real inner product space X
of dimension at least 2. As in the sections before we do not exclude the case that
the dimension of X is infinite.

We define the elliptic distance € (x,y) of z,y € Xy := X\{0} by means of
e(z,y) € [0,%] and
|y

cose (.9) = ol

(4.66)

with ||z|| = V&2. The spherical distance o (x,y) of z,y € X is given by o (x,y) €
[0, 7] and
Yy

ERC (4.67)

coso (x,y) =

In view of the inequality of Cauchy—Schwarz (see section 4 of chapter 1), the
right-hand side of (4.66) must be in [0, 1], and that of (4.67) in [—1, 1]. Observe
that

e(Az, py) = e (z,y) (4.68)
holds true for all =,y € X and all A, u € R\{0}. Moreover,

o (Az, py) = o (z,y) (4.69)
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is satisfied for all z,y € Xo and all real A\, p with A- > 0. If w : X — X is an
orthogonal mapping, obviously, by (4.66),

cose (z,y) = cose (w (x), w (y))

holds true, and hence € (z,y) = ¢ (w (z), w (y)) for z,y € X, since

e(z,y), e (w(z), w(y)) € [0, g} )

Similarly, o (z,y) = o (oJ (), w (y)) This implies that orthogonal mappings of
X preserve elliptic and spherical distances. Notice that the orthogonal mappings
w: X — X of X are Lorentz transformations of Z = X & R of the form (z, 0) —
(w(2), o) for (z,0) € Z (see Theorem 1 of chapter 4 and the discussion following
this theorem).

Proposition 24. Suppose x,y,z € Xg. Then the following statements hold true.
(a) e(z,y) =0 if, and only if, x,y are linearly dependent.
(b) e(z,y) =e(y,x) and
e(z,2) <e(z,y)+e(y,2). (4.70)

Proof. Observe that ¢ (z,y) + € (y,2) < 7 holds true for all z,y,z € Xy. The
inequality (4.70) must hence be equivalent with

cose (x,z) > cosle (z,y) + € (y, 2)].

2

In view of (4.68) we may assume x? = y? = 22 = 1. So we have to show

181> - lal = V1 =42 V1-a? (4.71)
where we put « :=yz, 8 := zz, v := xy. With

pi=T =y, ¢i= 2y

we get

V9I=22V1-a?=p*V¢ > |pq| = B — ar| > [ay| = [BI,
ie. (4.71). O

Proposition 25. Suppose that x,y, z are in Xo. Then the following statements hold
true.

(a) o (z,y) =0 if, and only if, y = Az with A\ > 0.
(b) o (x,y) =0 (y,2) and
o(z,2) <o(x,y)+o(y,2). (4.72)
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Proof. o (z,y) = 0 implies
zy = [[z]| - [lyll,

i.e., by Lemma 1, chapter 1, y = Az, i.e. Ax? = ||A||z%. Hence A > 0. On the other
hand, we get from y = Az, obviously, o (z,y) = 0.
In order to prove (4.72), we may assume

o(z,y)+oly2) <m,
without loss of generality since o (x,2) € [0,7]. In this case, (4.72) is equivalent

with
coso (z,2) > cos (o (z,y) + 0 (y,2)).

Applying the notations «, 3, , p, ¢ of the proof of Proposition 24, we have to show

that
Bzrya—1=79*V1-a?
holds true, again assuming 22 = y? = 22 = 1. But here
V1= V1-a2=VpV/@ > Ipg| = [B—an| > ay = B,

since g, —p < |g| for all p € R. O

4.15 Points

Suppose that Q # 0 is a set and that d is a mapping from Q x @ into R. We
assume that the structure (Q, d) satisfies

(i) d(z,z) =0foralzeq,
(i) d(z,y) =d(y,z) and
d(z,2) <d(z,y)+d(y,2)

for all x,y,z € Q.
We will call such a structure (@, d) an ES-space, since only the cases (X, €),
(Xo, o) will be of interest for us. Since

0=d(z,x) <d(z,y)+d(y,z) =2d(z,y)

holds true, distances d (x,y) are always non-negative. We will call z,y € @ equiv-
alent, x ~ y, provided d (z,y) = 0. Because of (ii),

T~Y=SYy~T
holds true, and, moreover,

x~yand y~ zimply z ~ z.
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The last statement follows from
0<d(z,2) <d(z,y)+d(y,z) =0.
We shall call the equivalence classes

[2]:={yeQly~z}

points. If p, q are points, then we define

d(p,q) ==d(z,y) (4.73)

in the case that z € p and y € ¢. In order to prove that d (p, q) is well-defined, we
must show

d(z,y)=d(,y')
for all z,y,z’,y’ € Q with x ~ 2’ and y ~ 3. But

d(z,y) <d(z,2")+d@,y)+d,y) =d(,y),

and, of course, also d (z/,y") < d(z,y). It is now trivial to check that the set of
points of (@, d) is a metric space with respect to the distance notion (4.73).

The points of (Xo, ) are called the elliptic points of X, the points of (Xy, o)
the spherical points of X. By E (X), S (X) we designate the set of elliptic points, of
spherical points of X, respectively. In view of our considerations before, (E (X),¢e)
and (S (X),0) are metric spaces.

We would like to describe other representations of the equivalence classes of
(Xo,¢€), and of those of (Xo, o).

If x € Xy, then, obviously, [z] = Rz\{0} in the case (Xg,¢). It is hence
possible to identify the points of (E (X ),6) with the euclidean lines Rz of X
through the origin 0. The distance € (x, y) then measures the smaller angle between
the lines Rz and Ry. The class [z],  # 0, of (E (X),¢) can also be identified with

the following pair of points,
x T
—_— 5, (4.74)
{ [E3 (g }

which are on the euclidean ball B (0,1) = {y € X | y?> = 1}. Of course, they are
the points of intersection of the line Rz and the ball B (0, 1).
For x € X we obtain [z] = Rsgz := {Ax | 0 < A € R} in the case (Xo,0).

We hence may identify [z] with the half-line R>oz, but also with the point

o

]
of B(0,1). The distance o (x,y) measures the angle € [0, 7] between the half-lines
R>oz and R>oy. In the case z? = 1 = y? and = # y # —x take the circle through

x and y with center 0. Then o (z,y) measures the smaller distance along the circle
from z to y. Of course o (v,z) =0 and o (z, —z) = 7.
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4.16 Isometries

Suppose that (@, d) is an ES-space. An isometry of (Q,d) is a mapping
[:Q—=Q

satisfying d (z,y) = d (f (z), f (y)) for all z,y € Q. Denote by II(Q) the set of all
points of (Q, d).

Proposition 26. If f : Q — Q is an isometry, then
F(lz]) =[f (@), z€Q, (4.75)
s an isometry of the metric space (H(Q), d).
Proof. F is well-defined. In fact,  ~ 2’ implies d (z,2") = 0 and hence
d(f (), f(2')) =d(z,2") =0,
ie. f(x) ~ f(2') and hence [f (z)] = [f (z')]. Moreover,

d([f (@), [f W)]) =d (f (2), f (v) = d(z,y) = d([z], [y])- L

Proposition 27. All isometries f of an ES-space (Q,d) are given as follows. If F
is any isometry of the metric space (H(Q), d),

FI(Q) = 1H(Q),

then define f : Q — @ arbitrarily up to the restriction that
f(x) € F([z]) (4.76)

is satisfied for all x € Q.
Proof. Since d ([z], [y]) = d (F[z], F[y]) holds true, and, moreover,

d([z], [y]) = d(2,y)
and d (F(z], Fy]) = d (f (z), f (y)), by (4.76), we obtain

d(z,y) =d(f(2), f(y)) 0

We already know (see before Proposition 24) that orthogonal mappings of
X preserve elliptic and spherical distances. We now prove a theorem which even
holds in suitable non-real situations as was shown, based on other methods, by A.
Alpers and E.M. Schroder [1].

Theorem 28. All isometries of E(X) or S(X) are given as follows. Take arbi-
trarily an orthogonal mapping of X, then its restriction f on Xo, and, finally, the
corresponding mapping (4.75) of f.
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Proof. a) Suppose that F' is an isometry of E (X) or S (X), respectively. This
mapping must be injective since F ([z]) = F ([y]) implies

d([z], [y]) = d (Flz]), F([y])) =0,

i.e. [z] = [y]. Here d designates the distance notion e or o, respectively.
b) If dim X < oo, Theorem 28 is a consequence of the more general Theorems
A.8.2 and A.9.2 of [2] (W. Benz), chapter 2.

¢) Assume now dim X > 3. In view of step a), F' induces an injective mapping
~v: X — X of the set X of all 1-dimensional subspaces

(z) =[] U [-2] U{0}, = € Xo, (4.77)

of the vector space X. In the case of F (X), of course, [z] = [—z] holds true. In
the case of S (X), the image of (4.77) must also be a 1-dimensional subspace of X
since
o (F([z]), F([-2)) = o ([z], [-2]) = 7,
i.e. since F ([z]) =: [¢] implies F ([—z]) = [—&]. We would like to show that v maps
2-dimensional subspaces of X, considered as sets of 1-dimensional subspaces, onto
2-dimensional subspaces. Let ¢ be such a 2-dimensional subspace of the vector
space X and let z,a,b be elements of ¢ satisfying a L b and z? = a? = b? = 1.
Define
F([2]) =: [2], F ([a]) =: [a], F([o]) = [V'].

2=a"? =17 = 1. Now we get

Without loss of generality we may assume '
r =: «aa+ Bb

with suitable a, 8 € R and

za =¢e12'a, xb =22’V , ab =3a’b' =0
with 2 = 1, i = 1,2, 3, since equations like d ([z], [a]) = d ([2'], [a’]) hold true. If
2’ were not an element of

span {a’,b'} := {61a’ + &3’ | 61,0 € R},
then we would have

2= Ma' + pb +Te, T #0,
with a suitable ¢ € span {a’,b, 2’} satisfying ¢ L a/,b' and ¢*> = 1. But this
contradicts
CY:E]_)\, 6:‘52/117 1 :Oé2+ﬁ2, 1 :)\24‘/124‘7'27

since A2 +p? = a?+ 32 =1 = A2+ 2 + 72. Hence () C span {a’,b'}. In order
to show that span {a’,b’} is also a subset of (), we consider any y = Aa’ + ub’
with Ay # 0 and A\? + 2 = 1, and we define

z1 = Aa + pb and 29 := Aa — ub.
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The 1-dimensional subspace (y) must be the image of (z1) or (z9) under ~, since

{7 ((22)), v ((22))} € {{Ad + pb'), (Na” — ')}

and (z1) # (z2) hold true.

d) We now define Y to be the set of all elements = of X such that there exists
¢ € Xo with z € ([¢]). This implies that Y is a subspace of X and that v is an
isomorphism between the projective spaces over X and Y. The proof of Theorem
31 of [3], W. Benz, 219 ff, with obvious modifications, implies that there exists an
injective linear mapping 0 of X into itself satisfying

7 (span {z}) = span {5 (x)} (4.78)

for all x € Xj. Since
(zy)* _ [0(x)d(y)?
z?y? [0 (@)]P[0 (y)]?
holds true for all 2,y € X, we obtain that « L y implies § () L § (y). Moreover,
2? = y? implies (x — y)(x +y) =0, i.e. [§ ()] = [0 (v)]2.
e) Let j be a fixed element of X with j2 = 1. Define § (j) =: k. For z € X, we

hence have )
(x) =1= j2,
B4l

()] -

ie. |0 ()| = |k]l - ||=||- If we replace ¢ in (4.78) by the orthogonal mapping A,

and thus

A (z) ::”—;:Hé(x),xeX,

then (4.78) remains true. F' is hence induced by A in the form of (4.75) with

[ (@) :=Al(z)
for all z € Xj. O

The surjective isometries of E' (X)), S (X) are called motions of E (X), S (X),
respectively. Their groups M E (X), MS (X) are called elliptic, spherical group of
X, the geometries

(B (X), ME (X)), (S (X), MS (X))

elliptic, spherical geometry over X, respectively. Observe that all these motions
are induced (see Theorem 28) by orthogonal mappings, i.e. by Lorentz transfor-
mations.
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4.17 Distance functions of X

A function d : X¢ x Xo =+ R>¢ will be called a distance function of Xy. Observe
that the distance functions we were interested in in sections 10 and 11 of chapter
1 were functions from X x X into R>g. This time the element 0 of X will be
excluded. Therefore step B of the proof of Theorem 7 of chapter 1 can not be
applied for our present purposes without modifications:

Proposition 29. Define

L:={(&,&,8) € R’ [ &1,6 € Ryg and & < &6}
with Rso = R>o\{0}. Take f: L — R>¢ arbitrarily. Then
d(z,y) = f(2*,y% ay) (4.79)
is a distance function of Xo satisfying
() d(z,y) =d(w(z), w(y)) for allw € O (X) and all z,y € Xj.

If, vice versa, d is a distance function of Xo such that (x) holds true, then there
exists f 1 L — Rsq with (4.79) for all x,y € Xo.

Proof. Obviously, (4.79) satisfies (%). So assume that d is a distance function of
Xo with (*). Suppose that (£1,&2,€3) is in L and that j, k are fixed elements of X
with j2 =1 = k? and jk = 0. Put

zo == j /& and yo\/& = j&; +k/61& — &3,

and observe zg # 0 # yg. Define

[ (&1, &2,8) = d(x0, yo)-

The function f: L — R>q is hence defined for all elements of L. We now have to
prove that (4.79) holds true. Let x,y be elements of X, and put

51 = 125 62 = y27 53 =Y.

x,y € Xy implies & > 0, & > 0. Moreover, (€1, &2, &3) must be in L, in view of the
Cauchy—Schwarz inequality. If we are able to prove the existence of an w € O (X)
with

w(zg) =z and w (yo) = v,

where zg, yo are the already defined elements with respect to (&1, &2,&3), then, by
(%),
d ({I?, y) =d (an yO) = f (517 527 gd) = f ((E2, y27 .’Ey)
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holds true and (4.79) is established. Without loss of generality we may assume
x = X0, in view of the fact that 2% = 22 (see step A of the proof of Theorem 7 of
chapter 1). Suppose that z := y — yo is unequal to 0 and define

M:={meX|mdLl =z}
Then M is a maximal subspace of X because p € X\ M implies
p2® — (p2)z €M
and hence p € Rz & M. Since x = g, we get x € M from zy = xgyo. Define
w(az+m)=—-az+m
for all « € R and m € M. Notice w € O (X), w? = id, and w () = =, in view of

2 € M. Finally observe w (yo) = y because of

1 1
y0:—§z+§(y+yo),y+yoLz. O

Theorem 30. Let d be a distance function of Xo satisfying (x) and
(S) d(z,y) =d Az, py) for all A\, p € Ry and all z,y € Xj.

Then there exists a function
g: [0, 7T] — RZO

with d (z,y) = g (o (x,y)) for all z,y € X,.
Proof. Because of Proposition 29 there exists f : L — Rx¢ with (4.79). Define
g9(&) = [f(1,1,cos¢)
for ¢ € [0, 7]. Hence, by (S) and (4.79),
F@? 2 ay) = f (N2 1y?, Aay)
for A-vz2 :=1 ::,u\/yﬁ, ie.

d(z,y) = f ( ) = f (1,1 coslo (,y)]) = g (o (z,))

1.1, "
=N
for all z,y € Xj. g
Theorem 31. Let d be a distance function of Xy satisfying (x), (S) and
(E) d(z,y) =d(—z,y) for all z,y € X.
Then there exists a function
n: o, g} — Rso

with d (z,y) = h (¢ (z,y)) for all z,y € Xo.
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Proof. As already in the proof of Theorem 30, we obtain

dzy)=f (1,1, —2 .
(z,y) f( \/?\/37>

Hence, by (E),

H2m) - ()

and thus
|zy|
d(x,y) = 1,1, ————| .
(z,y) f( N

d (J:, y) = f(1,1,cosle (a:,y)}) =h (5 (x,y))
in view of h (£) := f (1,1,cos§) for & € [0, T]. O

This implies

4.18 Subspaces, balls

If V is a subspace of dimension r > 1 of the vector space X, then the set {[z] | 0 #
x € V} is called a subspace of E (X), or also of S (X), depending on the definition
of points. If V' is of dimension 2, then the corresponding subspace is called a line.
Obviously, isometries transform subspaces onto subspaces of the same dimension.
Balls (hyperspheres) are defined by

B ([m], 0) == {[z] | # € Xo and d ([m], [z]) = o}

for

T
1. d—gandge{O,g}
or
2. d=oc and p € [0, 7

where m € Xj.
In the elliptic case the following Proposition holds true.

Proposition 32. If m?> =1 and o € [07 g] , then
B([m],0) ={[p-sing+m-cosg| | p€m* and p* =1}

where m— =% € xT my.
here m* = {z € X |z L m}
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Proof. [p-sin o+ m - cos o] belongs to B ([m], ¢) for p € m* and p? = 1, since
cose ([m], [psin o + mcos g]) = |m - (psin p + m cos g)| = cos p.

If, on the other hand,

holds true for z € Xy, then, since there exists p € m* with p?> = 1 and
T =ap+ pm (4.80)

with suitable o, 8 € R,

|8l = v/ a2+ 5% cosp (4.81)

holds true, i.e. |B|sinp = |a|cos o. We may assume 5 > 0, because otherwise we
would work with —z instead of x in (4.80). We also may assume a > 0, since
otherwise we would replace p by —p in (4.80). Hence there exists k € R with

(o, B) = k - (sin g, cos 9). (4.82)

Now z # 0 in (4.80) implies k # 0. O

In the spherical case we again assume m? = 1, without loss of generality. We
obtain

Proposition 33. If o € [0, 7], then
B([m],0) = {[p-sino+m-cosg| | p € m* and p* = 1}.

In this situation (4.81) reads as 8 = \/a? + (52 cos g, so that cos ¢ and 8 have
the same sign. Hence
Bsin o = |a] cos o.

We may assume « > 0, because otherwise we would replace p by —p in (4.80).
Notice, moreover, that in the new situation, k£ > 0 must hold true in (4.82).
In the spherical case

holds true.

4.19 Periodic lines

Suppose that g is a positive real number and that

x:[0,0[— M (4.83)
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with [0, 0= {£ € R| 0 < £ < o}, is a mapping into the set M of a metric space
(M, d) satisfying
€ —nl if [€—nl<

* d(z (&), x =
" (@&, =) {9—|€—n| it el >

N N

for all &1 € [0, o[. Then

{z(©10<E<0} (4.84)

is called (W. Benz [15]) a g-periodic line of (M,d). The mapping (4.83) of a o-
periodic line (4.84) must be injective. Assume z (§) = z (n) for £&,n € [0, o[ If
|£ - 77| S gv then

0=d(z(¢), z(n) =l

implies £ = 7, and if |{ — n| > £, then
0=d(z (&), z(n)=0c—1¢—n

is impossible, since &,n € [0, o[ yields [ — n| < o. According to the beginning of
section 18, a line [ of S (X) can be defined as follows: take V' = span {p, ¢} with
p? =1 = ¢? and pqg = 0, and define

L= {lap+Bql| o® + 5 = 1}.
Identifying the set of points of (Xo, o) with {z € X | 22 = 1}, we may write
I ={pcos&+¢sinf |0 <& < 2rm}. (4.85)

We will call these lines the classical lines of S (X).

Theorem 34. The 2w-periodic lines of the metric space (S (X), a) are exactly the
classical lines of S (X).

Proof. a) Define z (§) := pcos€ + ¢sin& on the basis of (4.85) and observe, by
definition of o,

coso (z(8), = (1)) =z (§) x (n) = cos|§ — . (4.86)

Hence o (z (£),  (n)) = |£ —n| for |¢ —n| < 7, since o (x (£), z (n)) € [0,7]. In the
case [€ —n| > m with &, n € [0, 27[ we obtain

coso (z (€), z (n)) = cos(2m — [€ — 1))

from (4.86), and hence o (z (£), = (n)) = 2m — | — n|. Thus (4.85) is a 2m-periodic
line.
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b) Suppose that z : [0,27[— {z € X | 22 = 1} satisfies the functional equation
(%) in the case o = 27 for all £, n € [0, 27[. Hence

a (&) z (n) = coso (z(€), = (1)) = cos(§ —n). (4.87)
Thus p,q € S (X), pg =0, for p:=z(0), ¢ =: x (§). Observe, by (4.87),
z(&)-p =z(§z(0) =cosg,
z(§)q i

for £ € [0, 27[. Hence

2 (€)(peos + gsing) = 1, (4.88)

ie. [z (&) (pcosé+qsiné))? = [z (€)]? [pcos&+gsin€]?. Thus, by Lemma 1, chapter
1

)

2 (£) = A(§) - (peos& + gsing),
with A (€) € {1,—1}. But A (§) = —1 is not possible, because otherwise, by (4.88),

1=x2(&)(pcosé +gsiné) = —(pcosé + gsin€)? = —1.
Hence z (§) = pcos& + gsing, € € [0, 2x], is a classical line. O
Now we will work with the metric space (E (X), €) by identifying E (X), as

already described earlier, with

{{x,—x} CX|z?= 1}

7r
o (e, =2} {y—v) € [0.5].
coso ({z, =z}, {y,~y}) = oy
for all {z, -z}, {y, -y} € E(X).
We shall write R = {1, —1} and {«, —2} = R-x = Rx. Observe Rz = R-(—x).

Again, according to the beginning of section 18, a line I of E(X) can be
defined by

and by writing

m

L= {lap+Bq) | o® +5* =1}
with p,q € X such that p?> = ¢?> =1, pg = 0, i.e. by
I={R(pcos&+gsing) | £ € [0,n[}. (4.89)
These lines will be called the classical lines of E (X).

Theorem 35. The mw-periodic lines of the metric space (E (X), 5) are ezactly the
classical lines of E (X).
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Proof. a) For p,q € X with p? = ¢®> = 1, pg = 0, define
z(§) :=pcos{ +gsing, & € [0, 7[.
We are now interested in the mapping
§— Rx(§), £ € [0,7],
from [0, 7 into E (X). Observe
cose (R (€), Rz (1)) = |z (&) 2 (n)| = |cos|§ — n|.

If |€ = n| < %, then cos|{ — | > 0, and hence

e (Rz (€), Rw () = 1€ —l.
In the other case, § < | —n| < m, we obtain

O<m—|§—n < g

and cose (Rz (€), Rz (n)) = |cos|¢ — ]| = [cos(m — € — )|, i.e.

d(Rx (¢), Rz (n)) =7 — € —1l.

Hence (4.89) is a m-periodic line.

b) Suppose the mapping ¢ : [0,7[— E (X) solves the functional equation (x), =
there replaced by ¢ now, in the case o = « for all £, € [0, 7[. We shall write

¢ (§) =: Rz (¢)
with a suitable function x : [0, 7[— {z € X | 22 = 1}. Hence
cos|¢ — if & —nl <3,
- R R —
(2 (€)= ()] = cose (Rz (&), Ra (1) { e i o
for all &, 10,7, i.e.
|z (&) x (n)] = [cos(§ —n)l. (4.90)
Put p:= 2z (0), ¢ := z (%). Hence p* = ¢*> = 1, pg = 0. Equation (4.90) yields
|2 () p| = |cos €], |z (£) q| = sing (4.91)
for £ € [0, 7. Put D :=[0,7[\ {0,%} and
alg) = TR gy 28 (1.92)

cosé sin &
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for £ € D. Hence, by (4.91), [« (£)]> = 1 = [B(£)]?. Observe, by (4.92), for all
£eD,
z (§)(pa (§) cos§ + gB (§) sin§) = 1.
Thus, for all £ € D,
[ () (pax (§) cos & + 3 () sin &)]* = [w ()] [pex (€) cos & + ¢ (&) sin .
Hence, by Lemma 1, chapter 1, for all £ € D,

Re (€) = R (peos€ + gy () sin€), 7 (€) = QE’S;

with [y (§)]* = 1.
Case 1. v(§) = 1 for all £ € D. Then Rz (§) = R(pcos{ + gsin€), which also
holds true for § = 0 or § = 5. We hence get a classical line.

Case 2. v (£) = —1 for all £ € D. Put ¢’ = —q and observe p* = (¢/)? = 1, p¢’ = 0.
Thus
Rz (§) = R(pcos + ¢'sing),

which also holds true for £ = 0 or £ = 7. We again get a classical line.
Case 3. There exists &1,&2 € D with v (&) =1 = —v (&2). Here (4.90) implies

|cos(&1 — &2)| = |z (&) z (&2)]
= |(pcos& + gsin&;)(pcosés — gsinés)| = |cos(&1 + &2)|,
i.e. [cos(& — £2)]? = [cos(&; + £2)]%. Hence
cos &y coséysinéy sinéy = 0.
This is a contradiction, since &1,&s € D. Hence Case 3 does not occur. O

Concerning metric (periodic) lines in Lorentz—Minkowski geometry see R. Hofer

[, [2].

4.20 Hyperbolic geometry revisited

Let X be a real inner product space containing two linearly independent elements.
As in earlier sections define Z = X @ R. Put

H(Z):={2=(%z,20) € Z|2*> = —1 and 2z > 0}
where 27 - 2o, so especially 22 = z - z, designates the product (3.88). The mapping
p:X = H(Z) (4.93)
with u (z) := (z,v/1+ 22) for z € X turns out to be a bijection. In fact, if
z=(%Z,20) € H(Z)

is given, 72 — 28 = —1 and 2z > 0 hold true, i.e. zo = /1 + %2, Hence p (%) = 2.
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Theorem 36. Let [ be a hyperbolic motion of (X, hyp). Then there exists a bijective
Lorentz transformation X : Z — Z with A(0) = 0 and X\ (H (Z)) = H (Z) such
that

u (f (@) = M () (4.94)

holds true for all x € X. We will call A an induced Lorentz transformation of the
hyperbolic motion f.

Proof. Because of step I of the proof of Theorem 7 of chapter 1, it is sufficient to
prove Theorem 36 for f € O (X) and for f = T; where T} is a translation with
axis e € X, e? = 1.

Case 1. f:=w € O(X).
If z = (%,20) € Z, define A (z) := (w (%), 20). This is a Lorentz transformation of
Z (see section 4.1) with A (0) =0 and A (H (Z)) = H (Z), since
(w(z), 1+ [w(@)]?) = (w(z), V1+2?) (4.95)
implies A (H (Z)) € H (Z), and w™! € O (X), obviously,
AN H (2)) C H(2).

In order to prove (4.94), observe

() = Xz, V14 22) = (w(x), V1+2?) = p(w(2)),

by (4.95).
Case 2. f =1T;.
Put ¢ := cosht and s := sinh t. Because of (1.8), we obtain for z € X,

2

1+ [T (2)] = (V1 + 22 + (ze) s)”. (4.96)

If (ze) s > 0, then A := cv1+ 22 + (ze) s > 0, since ¢ > 0. In the case (ze)s < 0

we get, by (ze)? < x2%e? = 22,

(1+2?)c? — (ve)?s® > (1 + 2 ? —a?s* =c? + 22 >0,
i.e. cv/1+ 22 > |(we) s| = —(ze) s, i.e. again A > 0. Hence, by (4.96),
V14 [T(2)]2 = eV/1+ 22 + (ze) s. (4.97)
Still applying the abbreviations ¢ := cosht, s := sinh ¢, we define

M(2) =z + (ze)((c— 1) e, s) + zo(se,c — 1) (4.98)
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for z = (Z,20) € Z. Hence \; is a linear mapping from Z into Z. Observe
cosh(—t) = ¢ and sinh(—¢) = —s and thus
At(z) =2+ (ze)((c— 1) e, —s) + zo(—se, c — 1).
This implies for all z € Z,
Ao de(2) = 2 = M (2).

Hence, by applying the first Remark of section 1.7, \; : Z — Z must be bijective.
In order to prove that \; is a Lorentz transformation, we will show (compare
(3.141))

1(21,2’2) = l ()\t(zl), )\t(ZQ))

for all 21,22 € Z. Since A is linear, the last equation is equivalent with
(21— 22)* = [\e(z1 — 22)]%,
i.e. with 2% = [M\(2)]? for all z € Z. Put
a:=((c—1)e, s), b:=(se,c—1)

and observe, by (4.98),
Ae(2) = 2+ (Ze) a + zob.

In view of a? = 2(1 —¢), ab= 0, b*> = 2(c — 1) = —a?, we obtain
A= [\(2)]? = 22 = ((Ze)? — 25) @® + 2(Ze)(2a) + 220(2b),

i.e. A =0, because of za = (¢ — 1)(Ze) — szg, 2b = s (Ze) — (¢ — 1) z9. So we know
that A; is a bijective and linear Lorentz transformation of Z. Obviously, A;(0) = 0.
That A (H (Z)) C H (Z) holds true, follows from (4.98), (1.8), (4.97) by

Mz, V1+22) = (z+[(ze)(c— 1)+ V1+a2s]e, (ze) s + V1 + a2c)
= (Ty(z), 1+ [T(2)]?)

for all € X. Replacing ¢ by —t, we also get A\, ' (H (Z)) C H (Z). We finally
must prove (4.94), i.e.

1 (Ti(z)) = A () = Az, V1 +22).
But this is already clear, since p (Ty(z)) = (Ty(z), /1 + [Ty (2)]?). O

More precisely, we will denote the Lorentz transformation \; : Z — Z of
(4.98) also by L. Observe

Le,t = Lfeyft (499)

for all t € R and all e € X satisfying e? = 1.
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Proposition 37. A Lorentz transformation o of Z with
o(H(2)) =H(2)
satisfies o (0) = 0.

Proof. Put o (0) =: d = (d,dy). Suppose that j € X satisfies j2 = 1 and dj = 0.
Let p be an arbitrary real number and define z, € X by

U(‘Tgv \/1+SL’§):(Q]7 1+92)7

by applying o (H (Z)) = H (Z). Hence, by (4.3),

1 =1(0, (x4, /1 +22)) =1 (d. (0, V1 + 02)),

ie. 0=d?—2d-(0j,\/1+02),ie., bydj=0,

& —d2+2do\/T+ 02 =0 (4.100)
for all p € R. Hence dy = 0 and @ = 0, i.e. d = 0, by applying (4.100) for o = 0
and o = 1. O

Proposition 38. A Lorentz transformation ¢ of Z satisfies
o (H(2)) = H(2) (4.101)

if, and only if, ¢ is linear and orthochronous.

Proof. Assume that ¢ is linear and orthochronous. If z € H (Z), we obtain

-1= l(O,Z) =1 (90(0)7 QD(Z)) =1 (0790(2))7

i.e. [p(2)]? = —1. Moreover, 0 < z implies 0 < ¢ (2), i.e. ¢ (2) € H (Z). Hence
the left-hand side of (4.101) is contained in H (Z). Since ¢~ ! is linear and or-
thochronous as well, we obtain (4.101).— Assume now that ¢ € L (Z) satisfies the
equation (4.101). From Proposition 37 we get ¢ (0) = 0 and from Theorem 1 that
@ is of the form

@ (2) = Bpaw (2).

Since (0,1) is in H (Z), so must be ¢ (0,1). Hence 0 < ¢ (0,1) and
%2 (O, 1) = prkw (0, 1) = Bp,k(O, 1).
Here k must be unequal to —1, since otherwise ¢ (0,1) = (0,—1), i.e. 0 £ ¢ (0,1).
Hence (see section 3.14)
2

£ (0.1) = Bpa(0.1) = (0.1) + k(3.0 + 7 (0.5%)
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ie. ¢ (0,1) = (0,1) + (kp,k — 1) with k2(1 — p?) = 1. Now 0 < ¢ (0, 1) implies, by
definition, that the last component of ¢ (0,1), namely k, must be non-negative.
Hence the Lorentz boost B, ; must be proper, i.e. B, jw is orthochronous (see
Theorem 5 and observe that k > 0 and k?(1 — p?) = 1 imply k > 1). O

Proposition 39. Let 1, w2 be linear and orthochronous Lorentz transformations
of Z with ©1(z) = a(z) for all z € H (Z). Then p1 = 3.

Proof. Since also ¢ := ¢35 Y, is linear and orthochronous, it is sufficient to con-
sider only the case o = id. Put ¢ =: p and

¢ (2) = Bprw (2) (4.102)
with & > 0. From ¢ (z) = z for all z € H (Z) and (3.120) we get
B_p (%, 20) = (w (%), 20)

for all z = (Z,20) € H (Z). Applying this for z = (0, 1), we obtain (see section 3.14
and observe k%p? = k% — 1 from k%(1 — p?) = 1),

(0,1) + (—kp,k — 1) = B_,1(0,1) = (w (0),1) = (0,1),

ie.p =0,k =1,1e B,y = id. Hence z = ¢ (2) = w(z) from (4.102) for all
z € H(Z),ie.

(z,V14+7%) = (w(z), V1+7?)
for all Z € X, i.e. w =id. Thus ¢ is the identity mapping of Z. 0

From Theorem 36 and Propositions 38 and 39 we know that there exists
exactly one induced Lorentz transformation 7 (f) of a given hyperbolic motion
f and, moreover, that 7 (f) is linear and orthochronous. We will designate by
Lortn(Z) the group of all orthochronous Lorentz transformations of (Z) leaving
fixed 0 € Z. After a while we will see that every element of Loy, (Z) is an in-
duced Lorentz transformation of a certain hyperbolic motion and, moreover, that
hyperbolic geometry over X and

(H (Z)v Lorth(Z)) (4103)

are isomorphic, where Lo, though acting on Z, is considered here as acting on
H (Z) only, namely via the restrictions of all ¢ € Lown(Z) on H (Z).

The induced Lorentz transformation 7 (w) of the hyperbolic motion = —
w(z), w € O(X), is given by (see Case 1 of the proof of Theorem 36)

(z,20) = (w(2), 20), (4.104)
and that one of x — Ti(x) by

Lei(2) =2+ (ze)((c— 1) e,s) + zo(se,c — 1), (4.105)
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in view of (4.98), where e is the axis of T; and where we put ¢ := cosht, s := sinht.

A geometrical interpretation for proper Lorentz boosts yields the following
statement.

Theorem 40. Suppose thatp € X and k € R satisfy 0 < p? < 1 and k*(1—p?) =
1. Then

Bk = Les (4.106)
holds true with
k = cosht, t > 0, and p =: etanht. (4.107)

Remark. Exactly one proper Lorentz boost is missing in (4.106), namely that
one with p = 0 and, consequently, with k¥ = 1, because of k(1 — p?) = 1 and
k > 0.— On the other hand, to T; with ¢ > 0 and axis e there belongs, by (4.106),
the induced transformation B, j with (4.107). If ¢ < 0, we may apply that the
translations T; with axis e, and T_; with axis (—e) coincide.

Proof of Theorem 40. Since k > 0, we obtain, by section (3.14) and by z =
(5, ZQ) € Z,

kQ

By k(2) = 2+ k (20p, Zp) + ]

((zp) p, 20p%). (4.108)

k?(1 — p?) =1 implies k > 1 and, by cosht :=k, t > 0,
lp|| = tanh .
Define e € X by p =: e - tanht and put ¢ := cosht, s := sinh¢. Hence, by (4.108),
Byi(z) =z + ((ze)(c — 1) e + szpe, s(ze) + zo(c — 1)) = Le (). O

Proposition 41. Suppose thatt is a real number and that e € X satisfies e? = 1. Ife
is the axis of the hyperbolic translation Ty, then the induced Lorentz transformation
of Ty is given by

T (Tt) = Betanht,cosht~ (4109)

Proof. This follows for ¢ > 0 from (4.106) and (4.107), since L. = 7 (T}). In the
case t = 0 we get 7 (T}) = id and also Betanht, cosht = Bo1 = id. Assume, finally,
t <0, and put 7 := —t > 0. If T is a translation with axis —e, we obtain

T, = T/_t = Trlv
i.e., by the first part of this proof, since r > 0,

T (,Tt) =T (T;) = B(—e)tamhr7 coshr = Betanht,cosht- 0
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We now would like to show that every ¢ € Ly, is induced by a motion.
Assume

¢ (2) = Bprw(z) = Bp i (w (2), zo)

with & > 1. There is nothing to prove for £ = 1, since then ¢ (z) = w(z). We
hence may assume k£ > 1 and p # 0. Put k = cosht, t > 0, and p =: etanht. The
translation 7} with axis e then induces By, j,, by Theorem 40. So we would like to
verify that the motion

z — Tiw (x)

induces . If A is induced by x — w (z) (see Case 1 of the proof of Theorem 36),
we obtain, by (4.94),

w(x) = p~ A ()
and Ty (z) = p=' By g (2), ie.
Tw (x) = p~ ' By pp (w(x)) = w By A (2) = p top (z).
Hence ¢ is induced by Tiw.
Proposition 42. (X, M (X, hyp)) = (H (Z),Lorn(2)).
Proof. Observe that p : X — H(Z) with pu(z) = (x,v/1+ 22) is a bijection.

Moreover, associate to the hyperbolic motion f the restriction on H (Z),
T(f)(z) = pfut(2), z € H(Z),
of the induced Lorentz transformation 7 (f) of f. Hence
7: M (X, hyp) = Lorn(Z)
is an isomorphism satisfying

w(f (@) =pfu " (p(@) =7(f) (),
i.e. we obtain (1.15). O

Remark. If £ € R and p € X satisfy k > 1 and k?(1—p?) = 1, Theorem 7 (chapter
4), case 2, implies
Bo,1Bp,1(Z, 20) = B—p,—1(w (%), 20)
with -
— _ pz 1=
w@ =z-"5p=w (2,
p
ie. with w € O (X). Hence B_,, _, = By 1By yw represents a geometrical inter-
pretation for improper Lorentz boosts B_, _; # By,—1, since, on the one hand,
By, i is induced by a hyperbolic translation and since, on the other hand, By _;
and w are simple geometrical mappings of Z (compare 3.6).
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Expressing the hyperbolic distance in terms of (H (2), LOTth(Z)) yields

1
cosh hyp (z1,22) = —z1- 22 = 1 + 5(21 — 2)?

for z1 =: (z,V1+ a2?), 22 =: (y, /1 + y?). Because of (4.2) we also may write
1
2sinh (2 hyp (zl,z'g)) =+/1(z1, 22), (4.110)

since V1 + a2 4/1 + y? —zy > 1 (see section 1.10).

Remark. (z,+/1+ 2?) is said to be the Weierstrass coordinates of the hyperbolic
point « € X. Generally speaking, let

v:X SR

be an arbitrary function, for instance ¢ (z) =0, ¥ (x) = V1 + 22 or ¥ (x) = ||z
Define
Hy(Z)={(z,¢(z)) € Z |z € X}

and the trivial bijection m : X — Hy(Z) by m (z) = (z, ¢ (2)). Furthermore, let
T'y be the group

Ly = {7 (f):=mfm~" | f € M (X, hyp)}
which, of course, is a subgroup of Perm Hy(Z). Obviously, the geometries
(X, M (X, hyp)), (Hy(Z), Typ)

are isomorphic, since 7 : M (X, hyp) — T'y is a group isomorphism satisfying

7(f)(m(z)) =m(f (z)) for all z € X.



Chapter 5

0—Projective Mappings,
Isomorphism Theorems

Let (X,d) and (V,e) be arbitrary real inner product spaces each containing at
least two linearly independent elements. However, as in the earlier chapters we do
not exclude the case that there exist infinite linearly independent subsets of X or
V. One of the important results of this chapter is that the hyperbolic geometries
(X7 M(X)), (V, M(V)) over X = (X,9), V = (V,¢), respectively, M the group of
hyperbolic motions, are isomorphic (see p. 16f) if, and only if, (X,0) and (V,¢)
are isomorphic (see p. 1f).

Another result which we would like to mention here is the fact that the
Cayley—Klein model of hyperbolic geometry as developed dimension—free in section
2.12, can also be established dimension—free by an isomorphic geometry via d—
projective mappings.

5.1 J-linearity

Instead of §(z,y) for z,y € X = (X, ) we will write again zy or = - y.
A mapping A : X — X of (X,0) will be called -linear if, and only if, X is
surjective, linear and there exists a surjective mapping A : X — X such that

z-My) =Az) -y (5.1)

holds true for all z,y € X. Observe that —linear mappings must be bijective. Of
course, in the case that X is finite-dimensional, the notions é—linear and bijective
linear coincide: in fact, if zy is the product z! My of matrices

Y1 mir ... Min
t . . .
= (r1...2n), Y= : , M = : ; ,
Yn Mnp1 ... Mnn
W. Benz, Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces 231
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x! the transposed matrix of x, dim X = n € {2,3,4,...}, M regular because of
(iv), p. 1, then

' M(Ly) = (Kz)' My,
K' := MLM™', implies (5.1) where y — Ly and  — Kz represent A and )\,
respectively.

However, there are real inner product spaces (X, §) and bijective linear map-
pings A : X — X such that (5.1) has no surjective solution A. Take the example
(X, 9) of section 2.6 and the quasi-hyperplane V as described there being not a
Euclidean hyperplane. For a fixed a # 0 in X define H to be the Euclidean hyper-
plane H(a,0). Let By be a basis of the Euclidean subspace H of X and Bs one of
V. Since By, By are of the same cardinality, there exists a bijection Ay : By — Bo.
This Ao can be extended to a bijective linear mapping A : X — X. If there existed
for this A a surjective solution A of (5.1), we would obtain b- A(y) = a -y for
a=A(b), be X, from (5.1), i.e.

V=XMH)={\My) e X |0=ay=b-Ny)} ={x € X |bx =0} =H(b,0),

a contradiction, since V is not a Euclidean hyperplane.

Lemma 1. If the mapping A : X — X of (X,0) is 5*linear,7x of (5.1) must be

uniquely determined and, moreover, it must be 6—linear with X = \.

Proof. Assume (\)1(x) -y =z - A(y) = (N)a(x) -y for all x,y € X. Hence y% = 0,
ie. y=0, for ~ B
y = Mi(x) = (V)2(2).

A is thus uniquely determined. It is injective as well: A(z1) = A(x2) and (5.1) lead
to

0=XA1) y—Ax2) -y = (1 — 22) - My),
i.e. to (z1 — 22)? =0 for y := A~!(z1 — x2). For a € R we obtain

Maz) -y = (ax) - My) = a - A(z)y,
ie y>=0,ie. y=0 for y:= Aaz) — aX(z). Moreover,
AMa+b) -y = (a+b)Ay) = aA(y) + bA(y) = Ma)y + A(D)y,

ie y?=0,ie y=0fory:=Aa+b)—\a) :X(b). Thus ) is bijective and linear.
(5.1) then shows that X is §-linear and that A = . O

Remark. From our example above we know that not every linear and bijective
mapping A of X must be ¢-linear. The identity mapping id(z) := z of X is, of
course, 6-linear with id = id. If A : X — X is §-linear, so must be A\~! with

A= (5:2)
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since we get B

N7 Hz)y=2- A7 (y)
from (5.1): put = = A(a), y = A(b) in a\(b) = Aa)b. If \; : X — X, i=1,2, are
d-linear, so must be A1 - Ay with

A2 = Ay - Ap. (5.3)
In fact, we obtain from (5.1)

- (MA2)(y) =z - MAa(y)] = A(@) - Ae(y) = X[ (2)] -y = N2 A) (2) - -

The set of all 6-linear mappings of (X, ) thus forms a group.

5.2 All j—affine mappings of (X, J)

Bijections of X such that images and inverse images of Euclidean hyperplanes are
Euclidean hyperplanes will be called é—affine mappings of (X, 9).

Theorem 2. The bijection A : X — X with A(0) = 0 is a d—affine mapping of
(X, ) if, and only if, X is d-linear.

Proof. Let A be §-linear. The image of the Euclidean hyperplane H (a, ) is given,
in view of (5.1) with  := (A\)~!(a), by

MH) = {My) eX |a=ay=Nz) y=2-My) =(N)""(a) Ay)}
= H((A\) a),a).
Moreover, of course, by (5.2),
MY H) = H((A 1) Ya),a) = H(X(a), @).
Vice versa, suppose now that the bijection A\ : X — X, A(0) = 0, is a d—affine
mapping. In Theorem 3, section 3.3, we determine all M—transformations of (X, ¢).
Steps a) and b) of the proof of this theorem imply that our present mapping

A: X — X must be linear. So it remains to show that A is d—linear. Let a # 0 be
an element of X and put, by observing A=1(0) = 0,

A'[H(a,0)] =: H(t,0). (5.4)
Without loss of generality we may assume > = 1. From (5.4) we know
ty = 0 if, and only if, aA(y) =0 (5.5)
for all y € X. Hence 1 =t -t # 0 implies a\(t) # 0. Thus

Aa) :=t-a\(t) #0 (5.6)
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on account of aA(t) € R\{0}. We now would like to show

Aa) -y =a-Ay)
for all y € X. Observe X = H(t,0) & Rt (see p. 10f). For

Yy =Y+ yot
with 7 € H(t,0) and yo € R we obtain aA(y) = 0 from (5.5) and hence, by (5.6),
Ma)-y = tg-aA(t) +yo-al(t) = yo-a(t),
a-Ay) = aA(y) +yo - aA(t) = Yo - aA(t),
ie. we get A(a) -y =a- A(y) for all y € X and all a # 0 of X. Defining A(0) = 0,
we obtain (5.1). Finally we must prove that the mapping A : X — X is surjective.
So given v # 0, v € X, does there exist u € X with A\(u) = v? Define ¢ - ||v|| = v

and put (see (5.4))
A(H(t,0)) =: H(a,0).

Observe a\(v) # 0, since otherwise, by (5.5), tv = 0, i.e. v? = vt|jv| = 0.
With v
u- [a)\ (—2)} =a
v

and (5.6) we obtain

3 v [l
Nu) = Na) = teal(t) =
(1) = 37 M) = oy e aAD =
in view of the fact that (5.6) implies A(ca) = aX(a) for a € R. O

Remark. All é—affine mappings v: X — X of (X, ) are of the form
v(z) = Az) +d (5.7)

for x € X, where d is a fixed element of X and where A is é-linear. This is an
immediate consequence of Theorem 2 since

A(z) = y(z) —~(0)
satisfies A(0) = 0. Note also that translations are é—affine mappings.

If w: X — X is orthogonal and surjective, it must be §—affine as well: For

Wl (@) oy = wlwT (@) wly) = 2 w(y)

holds true, i.e. (5.1) as well with @ = w™!. Examples of §—affine mappings are thus
given by
v(z) = aw(z) +d, z€X,

with real o # 0 and with d € X, where w : X — X is orthogonal and surjective.
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5.3 J-projective hyperplanes

As already defined in section 3.7 we now would like to apply again the real inner
product space Y =Y (X) = X @& R with

(a, CL()) . (B, bo) =ab+ aobo

for the elements a = (@,ag), b = (b,by) of Y. 1
element of Y,

) # (0,0) =: 0 is an

[
<
I
—~
<
<
=)

Ry :={ay | a € R}

is called, as usual, a projective point of Y. At the same time Ry will also be called
a d0—projective hyperplane of Y. We identify such a hyperplane Ra, 0 # a € Y,
with the set of projective points

[Ra] :={Ry |0#y €Y and a-y = 0}. (5.8)

Of course, to projective points Ra there can also be associated, by (5.8), sets [Ra]
of d—projective hyperplanes.

Lemma 3. If a,b € Y\{0}, then [Ra] = [Rb] holds true if, and only if, Ra = Rb.

Proof. Assume [Ra] = [Rb]. For a = (0,a9), i.e. @ = 0 and ag # 0, we get Ra =
R(0,1). If b were # 0, then, by (5.8),

R(b,0) € [Ra] = [Rb],

e b = 0, contradicting b # 0. Hence b = 0 and thus Ra = Rb. Similarly,
b= (0,by) implies a = (0,ap). So assume @ # 0 and b # 0. For ¢ € Y with ¢ # 0
we obtain

Re] = {R(t,1) |t € X, ct+co =0} U{R(L0)|0£te X |et=0}. (5.9)

Hence [Ra] = [Rb] implies H (@, —ag) = H(b, —by), i.e. Ra = Rb, in view of Propo-
sition 12, chapter 2. O

We now define §—projective mappings of Y (X) in two different ways. First
of all let us say that the projective point Ry is incident with the §—projective
hyperplane Ra (written in the form Ry I Ra) if, and only if, a -y = 0.

A. A bijection o of the set II(Y) of all projective points of Y will be called a 6—
projective mapping of Y if, and only if, images and inverse images of —projective
hyperplanes [Ra] of Y are d—projective hyperplanes of Y.

B. Let o be a bijection of TI(Y') and 7 be a bijection of the set A(Y) of all §—
projective hyperplanes of Y. The pair (o, 7) is said to be a d—projective mapping
of Y(X) if, and only if, Ry is incident with Ra, if, and only if, o(Ry) is incident
with 7(Ra) for all Ry € II(Y') and all Ra € A(Y).
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The bijection 7 : A(Y) — A(Y") of definition B is uniquely determined by the
bijection o : II(Y) — II(Y") of definition A. In fact, put 7(Ra) =: Rb and observe

Ry I Ra < Ry € [Ral,

ie. o(Ry) IRD if, and only if, o(Ry) € [Rb]. Therefore, [Rb] must be the 6
projective hyperplane of all points o(Ry) such that Ry € [Ra], i.e. [Rb] must
be, according to definition A, the o—image of [Ra].

5.4 [Extensions of )—affine mappings

Definition B is useful for finding examples of J—projective mappings: suppose that
w is a surjective orthogonal mapping of the real inner product space Y = Y (X),
then

Ry —» w(Ry) = Rw(y), Ra — w(Ra) = Rw(a) (5.10)

for all Ry € TI(Y), Ra € A(Y), is a d—projective mapping. In fact, y - a = 0 is the
same as

wy)w(a) =y-a=0.
Proposition 4. If Ry, Rz are projective points, there exists a d—projective mapping
o with 0(Ry) = Rz, and if Ra,Rb are §—projective hyperplanes, there exists a
d—projective mapping o satisfying o([Ra]) = [R(b)].

Proof. Take w as in (5.10) with, say w <L> = ﬁ (apply statement A, section

llall

1.11, for Y instead of X). Hence w([Ra]) = [RY]. O

Lemma 5. Let ¢, T be elements of X\{0} such that xt = 0 implies T = 0 for all
x € X; then t,T must be linearly dependent.

Proof. Because of xt = 0 for z := (T't)t—t>T, we obtain 2T = 0, i.e. (tT)? = t2T2.
This implies (see Lemma 1, section 1.4) that ¢,T" are linearly dependent. O

We will identify ¢ € X with the projective point R(t, 1). The projective points
in
I(Y)\X

are then given by
{R(1,0) | 0 £t € X},

i.e. by [R(0,1)] (the so—called improper d—projective hyperplane), in view of (5.8).

A d—projective mapping o of Y (X) is said to be a (§—projective) extension of
the d—affine mapping v of (X, ¢) if, and only if, U(R(t, 1)) = 'y(]R(t, 1)) holds true
for all t € X. Note that 0! is an extension of y~! under the assumption that o
extends ~: in fact, for ¢ € X take 7 € X satisfying R(7,1) = v~ (R(¢, 1)) with the
consequence

o(R(r,1)) =~(R(7,1)) = R(t, 1),



5.4. Extensions of d—affine mappings 237

ie. o7 (R(t,1)) =R(r,1) =y 1(R(¢,1)).

If o is an extension of ~, then o([R(0,1)]) € [R(0,1)] holds true (i.e.
o 1 ([R(0,1)]) € [R(0,1)] as well, since =" extends v~ 1): if o(R(¢,0)), t # 0,
were equal to R(7, 1), the contradiction

R(t,0) = o~ (R(r,1)) = v (R(r, 1)) ¢ [R(0,1)]

would be the consequence.

Theorem 6. Every d—affine mapping v(t) = A(t) +d, t € X, (see Remark, section
5.2) can uniquely be extended to a d—projective mapping o of Y, and the restriction
on

X = (Y )\[R(0, 1) (5.11)
of every d—projective mapping o of Y leaving fixed the improper d—projective hy-
perplane R(0, 1) must be J—affine.

Proof. 1. To y(t) = () + d define o : II(Y)) — II(Y) by
o(R(t,1)) = R(A(t)+d,1) fort € X, (5.12)
oc(R(t,0)) = R(A®),0) for 0#t € X. (5.13)
Since ¢ # 0 implies A(t) # 0, also (5.13) is well-defined. Observe o([R(0,1)]) =

[R(0,1)]. From (5.9), 3& 0, we obtain
[Re] = H(e, —co) U{R(t,0) |0 #t € X, ¢ =0}. (5.14)
From (5.12), (5.13) we hence get
o([Re]) =v(H(e, —co)) U{R(A(£),0) |0 #t € X, ¢ = 0}. (5.15)
Now v(H (2, —co)) = {R(A(t) + d,1) | & + co = 0}. Putting
At)+d=:p, ie. t =" (p) —A"1(d),
we obtain, by applying (A\)~!(z) -y = - A™1(y) from (5.1), (5.2),
V(H(E, o)) = {R(p,1) | ) 7(@) - p=2A"'(d) — co}, (5.16)
i.e. v(H (¢, —co)) must be the Euclidean hyperplane
H(N) ' (@),eA " (d) — ).
Observe that, with A(t) =: g,
{R(A®),0) [0#£te X |t =0} ={R(g,0) | 0£q€ X, eA"'(q) =0}
={R(q,0) [0# g€ X, (\)7!(c)-¢=0}.
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We hence get, by (5.15), (5.14),

o([Re]) = [R((X)"1(@), co —eA(d))]. (5.17)
Since y~1(t) = A71(t) — A71(d) is of the same type as v, we need not look at
o Y([Re]), € # 0.

2. Let o be a d—projective mapping fixing [R(0, 1)] and satisfying (5.12),
o(R(t,1)) =R(y(t) = A(t) +4d,1),
for all t € X where A : X — X is supposed to be d—linear. Put
H(F,—r) = H,

and {R(s,0) | 0# s € X, 7s =0} =: L, for r € Y, ¥ # 0. Equations (5.14), (5.12)
imply for ¢ # 0,
o([Re]) = y(He) Uo(Le).

From (5.16) we obtain
A(Ho) = H((N) 1@, 00 () — o) = Hy,
ie. 7= (\)"!(¢) and
o([Re]) = H-Uo(Le).

(5.14) implies [Rr] = H, U L., i.e. H, determines [Rr]. Since both d—projective
hyperplanes o([Rc]) and [Rr] are based on the same Euclidean hyperplane H,., we
obtain that they must coincide and that, moreover,

o(Le) = L. (5.18)

Because of o ([R(0,1)]) = [R(0,1)] we may choose a function g : X\{0} — X\{0}
satisfying

o(R(t,0)) =R(g(t),0)
for all t # 0 in X. For such a ¢ # 0 define T' # 0 in X by ¢(t) = A(T"). Hence,
whenever ¢t = 0 for any ¢ # 0 in X, we must obtain, by (5.18), FA(T) =0, i.e.

0= (N)'(0) - NT) =¢-T,

by applying (A\)~!(z) -y = - A7 1(y) from (5.1), (5.2). Thus, by Lemma 5 and by
o(R(t,0)) =R(NT),0),

we obtain
o(R(t,0)) =R(A(¢),0),

as in (5.13).

3. Suppose that o is a —projective mapping satisfying

#([RO.1)]) = [R(0.1)]

This together with (5.14) implies that Euclidean hyperplanes are mapped onto
Euclidean hyperplanes by ¢ and by o~ !. O
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5.5 All )—projective mappings
Theorem 7. All 6—projective mappings of Y = Y (X) are given as a product of a
mapping (5.10) and an extended d—affine mapping (5.12), (5.13).
Proof. Let o be a —projective mapping of Y. If c € Y, € # 0, and
o([R(0,1)]) = [Rq],

take, by Proposition 4 (and its proof), a mapping w as in (5.10) such that [R(0, 1)]
is transformed onto [Re]. Hence w~!o fixes [R(0,1)] and must, by Theorem 6, be
an extended d—affine mapping «. This implies 0 = wa. O

Of course, if wy,wy are mappings (5.10) with
wi ([R(0,1)]) = [Re], i=1,2,

then ws, 'w; fixes [R(0,1)] and must hence be an extended §-affine mapping. So
we will present special bijective orthogonal mappings w of Y mapping [Re] onto
the improper d—projective hyperplane.

Applying statement A (p. 21) for Y instead of X, we define for
c=(¢1), €¢#0, and C = (C,Cy) := (¢,1 + V1 +7¢?),

yC
w(y) =~y + o
(W) =—y ColCo=T1)
Proposition 8. (5.19) is an involutorial (and thus bijective) orthogonal mapping of
Y transforming [R(0,1)] onto [Re], and this also in the case € = 0.

C. (5.19)

Proof. Tt is not difficult to verify w(w(y)) =y for all y € Y. Hence w is bijective
(apply the first Remark of section 1.7 for Y instead of X and a = 8 = w) and
involutorial. Obviously, w : Y — Y is linear and it satisfies
2
(w(y)” =y
for all y € Y. It is thus orthogonal (see p. 6). Finally, by (5.19),

w(c) =w(@ 1) = (—¢,—1) +C =+v1+¢%0,1),
i.e. w([Rc]) = [R(0, 1)]. O
Corollary. All §—projective mappings of Y are given as product of a mapping (5.19)
(¢ = 0 included) and an extended d—affine mapping.

The group G = G(Y) of all §—projective mappings of Y will be called the
d—projective group of Y = Y (X). Designate by A the d—affine group of (X,J), i.e.
the group of all §—affine mappings of X. We will identify v € A with its extension
(5.12), (5.13), so that A is a subgroup of G.

Remark. (X, A), (II(Y),G(Y)) will respectively be called the d—affine geometry
and the d—projective geometry over (X,0).
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5.6 J—dualities
A bijection
d:T(Y)UA(Y) = TI(Y)UA(Y)
will be called a d—duality of Y = Y (X) if, and only if,
d((Y)) = A(Y), d(A(Y)) = TI(Y) (5.20)
hold true and, moreover,

P 1D if, and only if, d(P) I d(D) for all P € Il and D € A. (5.21)

A -duality d will be called a é—polarity if, and only if, d~' = d. In this case
d(P) is called the polar of P € II, and d(D) the pole of D € A.If d is a J—polarity
of Y,

{Pell| P1d(P)} (5.22)

is called a regular quadric of Y.

Define w(P) for the projective point P = Ry to be the d—projective hyper-
plane Ry and 7 (D) for the é—projective hyperplane D = Ra by the projective point
Ra. This is a é—polarity. The underlying regular quadric (5.22) of this d—polarity
is, of course, the empty set.

If we define the d—projective hyperplane (the projective point) R(7, —yo)
to be the image of the projective point (the d—projective hyperplane) Ry, y #
0, respectively, we obtain a d—polarity of Y which we will designate by x. The
underlying regular quadric (5.22) of k is given by

S={Rycll|0#yecY, §°—y; =0} (5.23)
Proposition 9. All §—dualities of Y = Y (X) are given as product of m and a 06—
projective mapping of Y.

Proof. The product of two é—dualities of Y must be a é—projective mapping of
Y. If now d is an arbitrary d—duality, 7d must be a J—projective mapping p, i.e.
d = mp, in view of 77! = 7. O

We will call a subset M # () of Y linearly §—independent if, and only if,
(i) there exists y # 0 in'Y such that ym =0 for allm € M,
and
(ii) every finite subset T # () of M is linearly independent
hold true.

Remark. If Y is finite-dimensional, then the subset M # @ of Y is linearly §—
independent if, and only if, M is linearly independent and dimY > #M where
#M designates the cardinality of M.
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For every linearly d—independent subset M # () of Y we define
1. the H-subspace M = {Rx € 11 | Vpperrom = 0}, (5.24)
and
2. the A-subspace M® = {Rx € A | Y,peprzm = 0}. (5.25)

We will call M2 the dual subspace of M and, vice versa, M the dual subspace
of MA.

A projective point Rp will be called incident with MY, M* if, and only if,
Rp € M Rp is incident with every d—projective hyperplane in M*, respectively,
moreover, a d-projective hyperplane Rh will be called incident with M*>, MU
if, and only if, Rh € M®*,Rh is incident with every projective point in M,
respectively.

If M consists of one single element my, then my # 0, since {0} is linearly
dependent. In this case {m1}T must be equal to [Rm;], and {m;}* is the set of
all —projective hyperplanes incident with Rm;.

Remark. If M = {my,...,m,} # 0 is a linearly independent finite subset of ¥’
and if there exists a € Y\M such that also M U {a} is linearly independent, then
M must be linearly d—independent. The proof of this statement is not difficult:
take an orthogonal basis B = {by,...,b,} of the vector space generated by M in
Y, extend this B to an orthogonal basis B U {y} of the vector space generated by
M U{a}, and observe ym; =0 for i =1,...,n.

If M = {my,ma} with Rm; # Rmsg, then
{my,mo}t = {Ra € I | 2m; = 0 and zmy = 0} = [Rmy] N [Rmy)

and
{mi,mo}> = {Rz € A| zm; = 0 and zmy = 0},

ie. {ml,mg}A is the set of all §—projective hyperplanes incident with the pro-
jective points Rm; and Rmg. Of course, {my,mo}! is the set of all projective
points incident with both é—projective hyperplanes [Rm;] and [Rms]. The sub-
space {m1, mo}* will be identified with the projective line incident with Rm; and
Rma, and {m;,ma, m3}> for dimY # 3 with the projective plane incident with
the projective points Rm;, i = 1,2, 3, in the case, however, that {mj, ma, ms} is
linearly independent. {m1}2, {m;}'", respectively, represents a projective point,
a d—projective hyperplane. As defined, a projective point Rp is incident with the
projective line {m,mo}? provided Rp is incident with all 6projective hyper-
planes in {my,my}?. Similarly, a 6-projective hyperplane RF is incident with the
dual projective line {my, mo}!! provided Rh is incident with all projective points
in {my, mo .

From the two statements, for instance,
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ere is exactly one projective line incident wi wo distinct projective
1) th i tl jective li incident with t distinct jecti
points,

(2) there is exactly one dual projective line incident with two distinct d—pro-
jective hyperplanes,

one needs to prove only one in order to be sure that also the other one holds true:
the involved equations (5.24), (5.25) are in both cases exactly the same. Similarly,
only one of the following statements must be proved. Assume dimY = 3.

(a) Given three distinct projective points Rm;, i = 1,2,3, such that there does
not exist a projective line incident with these three projective points, there
is exactly one projective plane incident with Rmy, Rmo, Rmsg.

(b) Given three distinct d—projective hyperplanes [Rm;], ¢ = 1,2,3, which are
not all incident with the same dual projective line, there is exactly one dual
projective plane incident with all [Rm,], i = 1,2, 3.

The possibility, that in this way, i.e. by starting from a statement based solely,
say on A-subspaces and on incidences, we get another one on IT-subspaces by
replacing the involved subspaces by their dual spaces is called principle of duality.

5.7 The )—projective Cayley—Klein model
We are interested in the quadric (5.23), based on the d—polarity x,
S={Ryell|0£y€cY, 7=y}

of TI(Y"). Since the intersection of S with the improper d—projective hyperplane is
empty, (5.23) can be written as

S={teX|t*=1}

by observing 0 # 3% = y2 for R(7,y0) € S. Let Gy be the subgroup of the §—
projective group G satisfying

Go:={9€G|g(5) =5}

By A we designate the d—affine group of (X, d), however, considered as a subgroup
of G.

Proposition 10. The mapping v € A with y(z) = Ax) + d for © € X belongs to
Go, if, and only if, d =0 and X is an orthogonal mapping of X.

T
[E3]

()\ (HzH) + d)2 ~1, (5.26)

Proof. In fact, since 0 # x € X and ’

‘ =1 imply
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2
and, of course, also ()\ (i) + d) = 1, we obtain A(x)d =0 for all z # 0 in X.

[
For x = A71(d) we hence get d?> = 0, i.e. d = 0. Thus (5.26) implies A\(z)A\(z) = z-z
for all x # 0, i.e. A must be orthogonal. O

For 7 € R and e € X satisfying e? = 1, define dre:Y =Y by
drely) = (74 [FO)e — 1) + yosle. (Fo)s + voc) (5.27)
with ¢ := cosh7 and s :=sinh 7. Observe dg .(y) = y for y € Y, moreover
d'r,e . da,e = d‘rJrU,e (528)

for all 7,0 € R. Hence d,. - d_,. = id, so that the mappings d, . are bijective
and, of course, linear. For 0 £ y € Y, i.e. for Ry € TI(Y), define

Dr,e(Ry> = R(d'r,e(y))' (529)
Hence
DT+U,6(Ry) = R(dTJra,e(y)) = R(dﬂed”’e(y))
= Dr,e(Rdme(y)) = Dr.eDse(Ry),

Drioe=Dre D (5.30)
Thus D, - D_;. = Dy =1d|II(Y) and D, . must be bijective.
Proposition 11. For all a € Y\{0},
Dr.e([Ra]) € [Rd—7 c(a)] (5.31)
holds true.

Proof. We will show that @-5+ agyo = 0 for y # 0 implies that R(dﬁe(y)) belongs
to [Rd_,(a)]. In fact, @ - + agyo = 0 yields the equation bz + byzg = 0 with
bi=d_;e(a), z:=dre(y). O

Proposition 12. D, . : II[(Y) — II(Y) is a d—projective mapping of Y.
Proof. Replacing 7 in (5.31) by —7 and a by [ yields
D_7([Rl]) C [Rdr(1)].
Applying this equation for I = d_, .(a) leads to
D_; . ([Rd_rc(a)]) C [Ral,
i.e. to [Rd_;c(a)] C D;.([Ra)), i.e. together with (5.31),
D; .([Ra]) = [Rd_+ ¢(a)]. (5.32)

D, . is hence a é—projective mapping, since the mapping itself and its inverse,
D_, ., map é—projective hyperplanes onto d—projective hyperplanes. O
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Proposition 13. Given e € X with €2 = 1, the group
D(e):={D.. | TR}

of d—projective mappings is a subgroup of Gy.

Proof. We must show D, (S) = S for all 7 € R, i.e. D, (S) C S. For y = (¢,1),
t? = 1, we obtain, by (5.29),

D;o(R(t,1)) =R(t + [te(c — 1) + sle, tes + ¢)

with (¢ + [te(c — 1) + 5]6)2 = (tes +¢)?, c=coshT, s = sinh 7. O

A §-projective hyperplane [Ra] will be called a tangent hyperplane (of S)
provided [Ra] NS consists of exactly one point, the so—called point of contact of
[Ra] and S.

Proposition 14. 7% < y2 holds true for Ry € I(Y) ezactly in the case that there
is no tangent hyperplane through Ry.

Proof. 1. [R(0,1)] cannot be a tangent hyperplane, since otherwise there would
exist R(¢,1), t* = 1, with 0-¢+1-1 = 0. Also [R(@,0)] cannot be a tangent
hyperplane, since otherwise we would take ¢ € X with ¢t = 1 and at = 0 implying
that the two distinct points R(¢,1), R(—t,1) were on S and on [R(@, 0)]. We hence
may assume that a tangent hyperplane [R(@, ag)] satisfies ag = —1 and @ # 0. Let
R(t,1) be the point of contact of [R(@, —1)] and S. Then @ = 1. Otherwise

-
R(t,1),R <‘2L —t, 1)
a

would be distinct points in [R(a@, —1)] NS, since 2t = ;—g and t? = 1 imply a2 = 1.
Hence [R(@, —1)] with @ = 1 are exactly the tangent hyperplanes: if there
would exist R(t,1) with t? = 1, at — 1 = 0, t # @, we would obtain from Lemma
1, section 1.4,
1=(at)? <a*’® =1,

i.e. the contradiction ¢ € {@, —a}. Obviously, R(a, 1) is the point of contact of S
and [R(@, —1)], a> = 1.

2. If Ry € TI(Y) is on the tangent hyperplane [R(@, —1)], @* = 1, then @y —
Yo = 0, ie.

by section 1.4.
3. If y2 <? for Ry € TI(Y), then 3 # 0. Because of

_ Y

V7
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we may assume 72 = 1, i.e. 1 = 5% > y2 holds true. Take j € X with j2 = 1 and
jg = 0. The tangent hyperplane [R(a, —1)] with

a=yo-y+j-\/1-9}

then contains Ry. O

We now will call exactly the elements of
P={zcX|2*<1} (5.33)

the hyperbolic points of the Cayley—Klein model of Y. We still remember that we
did not ask for the finite-dimensionality of X. Writing the points of P as projective
points we obtain

P:={Ry cTI(Y) | 5 < y3}. (5.34)
Proposition 15. g € Gy implies g(P) = P.
Proof. Let g be an element of Gy, i.e. a §—projective mapping satisfying g(5) = S.
Since g and g~ map J-projective hyperplanes onto §—projective hyperplanes and
S onto S, they must map tangent hyperplanes onto tangent hyperplanes. In view

of Proposition 14 they hence must map points of P in points of P, i.e. g(P) C P
and g~ (P) C P hold true, i.e. g(P) = P. O

Theorem 16. Gy = O(X) - D(e) - O(X) where e is a fized but arbitrary element of
X satisfying e = 1 and where O(X) designates the orthogonal group of X.

Proof. From Proposition 10 and 13 we obtain O(X) C Gg and D(e) C Gy, i.e.
O(X) - D(e) - O(X) € Gp. Now let g be an arbitrary element of Gy. Assume

Case 1. Rb = R(0,1).
Hence, by Theorem 6, g must be d—affine and hence, by Proposition 10, an element
of O(X). This implies

g=g-id-id € O(X) - D(e) - O(X).

Case 2. Rb = R(b,0).

This case does not occur, since [R(0,1)] NS is empty, but not [Rb] N g(S), in view
of g(S) = S (see part 1 of the proof of Proposition 14).

Case 3. b # 0 and by # 0.

Here we may assume 52 =1 and by > 0.

Case 3.1. Rb = R(b, by) with b~ = 1 and by > 1.
Take 7 € R, 7 #£ 0, with

bp—1 . cosh(—7)
, L. 0 = ——F—F—,
bo +1 sinh(—7)

1
7—:511'1
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and observe d__5(0,1) = (—=bsinh T, cosh 7), by (5.27). Hence, by (5.32),

D, 5([R(0,1)]) = [R(b, bo)]-

Thus hy :=D__ - g preserves [R(0,1)]. Because of g € Gy and proposition 13, hq
is in Gy, and hence in O(X), by Proposition 10. This implies

g= Dng “hi=w"t. (wDﬂgw_l) ~why

for an existing w € O(X) satisfying w(b) = e (see statement A of the proof
of Theorem 7 in section 1.11). Obviously, w™! and why are elements of O(X).
Moreover, by (5.29),

wDT’gw*1 =D, for w € O(X), w(b)=e.
This implies g = w™' D, . - why € O(X) - D(e) - O(X).

Case 32.5°=1,0 < by < 1.
This case does not occur, since [R(0,1)]NS = 0, but not [Rb]NS: take j € X with

j2 =1 and bj =0, put
ti=—bob+/1—b3-j
and observe R(t,1) € Sand b-t + by -1 = 0. O

Because of Proposition 15 the elements of Gy are also permutations of P. If
g=w € O(X), then g(R(t,1)) = R(w(t), 1), so that ¢ in P goes over in w(t),

t — w(t) for t € P.
For g = D, . we obtain, by (5.29), (5.27), for R(¥, yo) = R(t, 1), t* < 1, obviously,

t+ [te(c—1) + sle 1)

D, (R(t,1)) =R
( ( )) ( tes + ¢

ie.

t + [te(coshT — 1) + sinh 7]e

t—
tesinh 7 + cosh 7

(see formula (2.43), section 2.12). Designate by Go|P the group
{g restricted on P | g € Go}.
The Cayley—Klein model over Y is the geometry
(P, Go|P)

(see section 1.9).
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The Weierstrass map w: X — P,

xT

V14 2?

(formula (2.39), section 2.12) now proves

w(z) =

(P, Go|P) = (X,ZM(X7 hyp))

(for M (X, hyp) see formula (2.60), section 2.16), so that the Cayley—Klein model
over Y is isomorphic to the Weierstrass model over X of hyperbolic geometry.

5.8 M-transformations from X’ onto V'’

Two real inner product spaces (X, d), (V,e) are called isomorphic (see section 1.1),
(X,0) = (V,e), if, and only if, there exists a bijection ¢ : X — V such that

ez +y) = o) +e(y), eAz)=Xp(x), §(z,y) =e(p(z), o(y))

hold true for all z,y € X and A € R. We will write 6(z,y) =: 2y, e(v,w) =:vow
for z,y € X and v,w € V and, moreover, X’ := X U {c0}, V' := V U {o0}. By
M(X,d),M(V,e) we designate the Mobius group of (X, ), (V, ), respectively.

Theorem 17. The following statements are equivalent.
(i) (X,8) =(V,e).

(ii) There exists a bijection ¢ : X' — V' such that images of M-balls of
(X’,M(X, 5)) are M —-balls of (V’,M(V, 5)) and that inverse images of M—
balls of (V’,M(V, E)) are M —balls of (X’,M(X, 5))

Proof. 1. If (i) holds true, there exists a linear bijection ¢ : X — V with
zy = o(x) o p(y) (5.35)
for all 2,y € X. Define ¢(00) := oo. The image of
H'(a,a) ={z € X | az = a} U {oo} (5.36)
with 0 # a € X and a € R under the mapping ¢ is then given by
o (H'(a,0)) = {¢(2) € V | a = az = p(a) o p(2)} U oo},

ie. o(H'(a,)) is the M-ball {v € V | p(a) ov = a} U{oo} of (V/,M(V,¢)). The
image of

B(c,0)={z e X ||lx—¢| =0} withce X and0 < p€eR
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is

{o(@) eV o= V(-2 =V]p() - p(c)] o [p(z) — p(c)]},
ie.
¢(B(c,0)) = B(¢(c), 0)-
Since ¢~ : V — X is a linear bijection with vow = ¢~ 1(v)p 1 (w) we get at
once that images under ¢! with ¢'(c0) = oo of M-balls of (V/,M(V,¢)) are
M-balls of (X, M(X,0)).

1

2. Let A : X’ — V' be a bijection such that images and inverse images of
M-balls are M—balls. Take p € M(V,¢) with
#(A0)) =0,  pu(A(o0)) = oo,

and define ¢ := pA. Then also ¢ : X' — V' with ¥(0) = 0, ¥(c0) = o0 is a
bijection such that images and inverse images of M—balls are M—balls. Applying,
mutatis mutantis, steps a and b of the proof of Theorem 3, section 3.3, we obtain
that v restricted on X, i.e. ¥|X, is a linear bijection. Because of 1)(c0) = co and
oo & B(0,1) the M-ball ¥(B(0,1)) does not contain co. Hence 9 (B(0,1)) =:
B(c, p) with suitable ¢ € V' and real g > 0. This implies, by HOCTH € B(0,1),

(v () =)= (v () =) = o)

for all x € X with « # 0. Applying (5.37) also for —x instead of = yields

(o (5) o) (v (1) o) -
i.e. together with (5.37)

Y(z)oc=0.
This also holds true for x = 0. Thus coc¢ = w(wfl(c)) oc =0,ie ¢c=0.
Accordingly we obtain
V(@) o () = o*a? (5.38)

for all x € X from (5.37). Define ¢(z) := %w(x). Hence, by (5.38),

a? = p(z) 0 () (5.39)

for all z € X. Since ¢|X is linear bijective, so must be ¢|X. Equation (5.39)
implies

(+y)?=p@+y) op(x+y) = (@) + ) o (plx) + oy)),

ie. xy = p(x) o p(y) together with (5.39). Since ¢|X is linear bijective satisfying
(5.35), we obtain (i). O
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5.9 Isomorphic Mobius sphere geometries

A geometry (S,G) is a set S # () together with a subgroup G of the permutation
group of S (see section 1.9). Geometries (S, G) and (S, G') are called isomorphic
if, and only if, there exist bijections

p:S—=Sand7:G— G
such that the following equations hold true:

T(g192) = T(91)7(92),  #(9(s)) = 7(9) (o))
for all s € S and g1, 92,9 € G (see section 1.9).
For the following lemma assume that (S, G) and (S, G’) are geometries.

Lemma 18. Let ¢ : S — S’ be a bijection. Then the following statements are
equivalent.

(1) G = pGp1L.

(2) There exists an isomorphism 7 : G — G’ satisfying ¢(g(s)) = 7(g)((s)) for
alls € S and g € G.

Proof. 1. Suppose that (1) holds true. Put 7(g) := ¢g¢~! for g € G and observe
7(g) € G', since ¢, g are bijective and g € G. Obviously, 7 is an isomorphism
between the groups G and G’. Finally, we obtain with v := ¢(s) for s € S,

0(9(9) = w99~ (v) = 7(9)(v) = 7(9) (¢(s))-
2. Suppose now that (2) holds true. Put v := ¢(s) for s € S. Then we get for
g € G, by (2),
w9 (v) = g(s) = 7(9) (¢(s)) = 7(9)(v),
ie. pGo~t C G'. Given ¢’ € G', put ¢’ =: 7(g). Then, by (2),
g'e(s) = 7(g)e(s) = @g(s),
ie. p g =g€ G, ie o 1G'p CG. O
Theorem 19. The following statements are equivalent.
(i) (X,8) =(V,e).
(ii) The geometries (X’,M(X, 5)), (V’,M(V, E)) are isomorphic: there exist bi-
jections p: X' = V' and 7 : M(X,0) — M(V,¢) satisfying
7(g192) = 7(91)7(92), wg(x) =T(g9)p(x)

for allz € X' and ¢1, 92,9 € M(X,0).
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Proof. 1. Assume that (i) holds true. Then there exists a linear bijection ¢ : X —
V satisfying (5.35). Define ¢(00) = co. The first part of the proof of Theorem 17
implies that ¢ : X’ — V' and its inverse ¢! transform M-balls onto M -balls.
But this leads to

M(V,2) = oM(X, ),

i.e. to property (1) of Lemma 18. Hence (2) of this Lemma holds true, i.e. (ii) as
well.

2. Suppose now that the geometries (X’, M(X, 5)), (V’, M(V, s)) are isomor-
phic,
(X', M(X,6)) = (V',M(V,¢)). (5.40)

From (ii) we obtain property (2) of Lemma 18, i.e. property (1). Hence
M(V, &)y = vM(X,6), (5.41)
where ¢ : X’ — V' is a bijection; we wrote ¢ instead of ¢. Take fixed elements
ecX,reVwithe?=1andror=1 (5.42)

and, by Proposition 13, section 3.6, p in M(V,e) satisfying p(¢(c0)) = oo,
1(¥(0)) =0, u(v(e)) =r. Put ¢ := iy and we obtain that
o: X' =V

is a bijection with

p(o0) =00, ¢(0)=0, ¢(e)=r (5.43)
and, by (5.41) and M(V,e)u~1 = M(V,¢) = uM(V, ), that

M(V,e)p = ¢M(X, ) (5.44)
holds true.
Applying (5.44) for the inversion f € M(X,d) in the M-ball B(0,1) C X,

flx) = Hfor0#xe€lX,
f(0) = ooand f(oo0) =0,

yields \ := pfp~! € M(V,¢), i.e. we obtain

afB=@fp L, (5.45)

by applying Theorem 3, section 3.3, for M(V, ¢) instead of M ,0). The mappings
o, 8 are similitudes of (V’, (v, 6)) and ¢ is the inversion in B(0,1) C V. Since
ofe(o0) = 0 and pfe~1(0) = oo, we obtain a(0) = 0 = 3(0) from (5.45).

Putting (see (3.1))
a() =ywi(v), Bv) = yawa(v) (5.46)
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with reals ;1 # 0,72 # 0 and orthogonal mappings wy,ws in the orthogonal group
O(V,e), we get from (5.45), (5.46) for € X\{0},

o wiwa(p(x))

@ (%) = atfp(r) = 3 (@) 0 ()’ (5.47)

by observing Sy(x) € {0,000} for z € X\{0}, and, by observing (see section 1.5)

w2 ((x)) o w2(p(@)) = p(x) o p(w)
and
_ wap ()
Y2p(x) © ()
Also v := % # 0 and also 7 := wywy is in O(V, €). Hence from (5.47)

Bep(z) = t[y2w2p ()]

4 (%) - ’ygazrx()@ofo)()x) (5:48)
for all z € X\{0}. Applying (5.48) in the case 22 = 1 we obtain
. m(p(z))
) = o) pia)

i.e. the functional equation for ,

2 p(z) o p(z)
[p(2) 0 p(x)]?

p(x)op(z) =7
because of 7(v) o w(v) = vowv for v € V, i.e. we get for 2% = 1,
() 0 p()]* =~ (5.49)
Since, by (5.42), (5.43), 2 =1, ¢(e) =r, ror = 1, equation (5.49) implies
7 =lp(e)op(e)]® = (ror)” =1.
Hence [p(z)op(z)]? = 1 from (5.49), i.e. we get the conditional functional equation
o(x) o p(x) =1 for 22 =1
because of ¢(z) o p(x) > 0, by = # 0, i.e. by p(x) # ©(0) = 0. Thus
p({z € X |2* =1}) C {p(z) € V | p(z) o p(z) = 1}.

Working with M(X,§)p~! = ¢~ !M(V,¢) instead of (5.44) leads, mutatis mutan-
dis, to

¢ {veVivov=1}) C{p ' (v) € X | o (V)9 ! (v) =1}
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Hence
¢(B) =C, (5.50)

where B is the M-ball B(0,1) C X and C the M-ball B(0,1) C V. Our strategy
is now to prove (ii) of Theorem 17 in order to be sure, by this theorem, that
(i) holds true. Take an arbitrary M-ball D of (X', M, (X,d)). By Proposition 1,
section 3.1, there exists g € M(X, §) with g(D) = B. Hence

7(g9) = w9t € M(V,¢), (5.51)

and we get
¢(D) =[r(9)] e(B) = [r(9)] (O,
by (5.50), i.e. that (D) is an M-ball of (V/,M(V,¢)). If T is an arbitrary M-
ball of (V’,M(V, 5)), take, by Proposition 1, section 3.1, 7(g1) € M(V,¢e) with
7(g1)(C) = T. Hence, by 7(g1) = pg1p~! and (5.50),
T =019~ (C) = pg1(B).

The inverse image of 7' under ¢ is thus the M-ball g;(B) of (X', M(X,d)). We

obtain, in fact that (ii) holds true, and, by Theorem 17, that also (i) holds true.

This, finally, proves Theorem 19. g

5.10 Isomorphic Euclidean geometries

The euclidean distance eucl(z,y) of z,y € (X, 0) is defined by (see section 1.10)
eucl(z,y) = |z —yll = Vo(z —y,z —y), (5.52)

and the hyperbolic distance hyp(z,y) > 0 of z,y € (X, 9) by

cosh hyp(z,y) = /14 6(x,x)\/1+0(y,y) — 6(z, y). (5.53)

Let e be a fixed element of X with d(e,e) = 1 and d be either the euclidean or the
hyperbolic distance function. The group of motions (see (2.60)) of X with respect
to d, i.e. the group of all surjective mappings p : X — X such that

d(z,y) = d(p(z), u(y)) for all z,y € X
holds true, is then (step I of the proof of Theorem 7, chapter 1)
{oTi8 | o, p € O(X), t €R} (5.54)

where O(X) is the orthogonal group of (X,0) (p. 5, p. 7) and {7} | ¢ € R} the
group of translations with respect to d and with axis e, i.e.

Ti(x) =x+te (5.55)
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in the euclidean and (see (1.8))

Ti(x) = x + [(ze)(cosht — 1) + /1 4 x2 sinh t]e (5.56)

in the hyperbolic case for all z € X, where we wrote §(z, e) = ze and §(x,z) = 22

Let (X,6) and (V,¢) be real inner product spaces. Our only restriction concerning
finite— or infinite-dimensionality is that X as well as V' are supposed to contain
at least two linearly independent elements. We again write

§(z,y) =2y, e(v,w)=1vow

for ,y € X and v,w € V. Moreover, X will be identified with (X,¢) and, for a
while, V' with (V,¢). The group (5.54) is denoted by

M(X,d)={aTif | o, € O(X), t € R} (5.57)
Four of such groups will be of interest in sections 5.10, 5.11, namely
M(X,eucl), M(X,hyp), M(V,eucl), M(V, hyp).
Theorem 20. The following statements are equivalent.
(i) (X,0) = (Vie).
(ii) The geometries (X, M(X, eucl)), (V, M(V, eucl)) are isomorphic.

Proof. Since, later on, we would like to prove the corresponding theorem for hy-
perbolic geometry, we will replace (ii) in our proof by

(ii)” (X, M(X,d)) = (V,M(V,d)) (5.58)

with d = eucl or d = hyp, and we will combine both cases in our proof whenever
we are able to do so.

a) Assume that (i) holds true. Then there exists a bijection ¢ : X — V
satisfying

plx+y)=e@) +ely), eAz)=rp(x), zy=0(x)op(y) (5.59)

for all z,y € X and A € R. According to Lemma 18, (5.58) holds true in the case
that we are able to prove

M(V,d) = pM(X,d)p . (5.60)

Now (5.59) implies d(z,y) = d(¢(z), ¢(y)) for all z,y € X for d = eucl or d = hyp,
in view of

(33 —y)? =@ —y)oplx—y) = (p(z) — o)) ° (¢(=) — ¢y),

2 = () op(z), ¥ =(y)op(y), zy=¢(x)op(y).
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Hence, u € M(X,d) yields, for all v,w € V,

d(epe= ' (v), ope (w)) = d(pe="(v), e~ (w))
=d(p(v), ¢~ Hw)) = d(ep  (v), 007 (w)) = d(v,w),

i.e. that the bijection pu@=!:V — V is a motion of V. Starting, vice versa, with
v € M(V,d), we obtain, mutatis mutandis, ¢ vy € M(X,d). We thus get (5.60),
Le. (i)

b) Assume along the steps b), c), d), e), f) of the present proof that (ii)”
holds true. From Lemma 18 we obtain (5.60) with a bijection ¢ : X — V. Let the
translation group T;(t € R) of X be based on the axis e € X, €2 = 1, and take
v € M(V,d) (see step D.a on page 25) with v(¢(0)) = 0. Also vp : X — V is a
bijection, and we get

M(V,d) = (vp)M(X,d)(vp) ",

from (5.60) and v =M (V,d)v = M(V,d), in view of v € M (V,d). Observe 1)(0) = 0
for ¢ = vy, moreover,
M(V,d) =y M(X,d)y~" (5.61)

and that ¢ : X — V is a bijection. Put j := ¥(e) and observe j # 0 because
of ¥(0) # ¢(e). Define k := y/j o7 > 0 and a real inner product space (V) by
means of

for v,w € V. Hence
(Vie) = (V,%) (5.62)

under the bijection which maps v € V in kv. If we are able to prove (X, ) = (V,2),
we hence obtain (X, ) = (V,¢), because of (5.62). Observe (4, j) = 1. Instead of
g(v,w) we will write vw, so the same way we shortened the expression §(z,y) by
zy in the case of X. Observe

¥(0) =0, ¥(e) =j with e* =1 = 52 (5.63)

From now on (V,€) and no longer (V,¢) will be identified with V.
c¢) The following statement will now be proved.

Let x1,x9,23,24 be elements of X. Then d(z1,2z2) = d(zs,z4) if, and only if,
d((z1), ¥ (x2)) = d(¢(xs), ¥ (x4)).

If d(x1,22) = d(xs3,24) holds true, there exists p € M(X,d) with u(x,) = z3,
w(xa) = x4: in the case 1 # x2 also x3 # x4 holds true and hence, by Lemma 36,
section 2.22, u exists. In view of (5.61) there is v € M(V,d) with

v = pp.



5.10. Isomorphic Euclidean geometries 255
Hence d(vi)(z1), v (z2)) = d(vp(21), vp(zs)) = d(v(z3),¥(x4)). Finally observe
that v is a motion of V, i.e. that

d(v(v),v(w)) = d(v,w) for v,w €V,

i.e. that d(ve(z1), vib(z2)) = d(v (1), ¥ (x2)). Starting, vice versa, with V instead
of X, we obtain that

d(¥(x1),¥(x2)) = d(¥(x3), ¥ (x4))
implies d(x1, z2) = d(x3,z4).

d) The ball B(c,d(c,a)) with midpoint c € X and passing through a € X is
defined by
B(c,d(c,a)) = {z € X | d(c,z) = d(c,a)}.

In view of c) we get that w(B (e, d(c, a))) is given by

{v(@) € V| d(d(c),¥(2)) = d(v(c), ¥(a)) },
ie. by {veV|d(¥(c),v) =d(¥(c),¥(a))}. Hence

1/1<B(c, d(c, a))) - B(¢(C),d(¢(c),¢(a))), (5.64)

i.e. balls are mapped onto balls under v : X — V as well as under = : V — X.

e) Lines are mapped onto lines under v : X — V as well as under ¢p=1 :
V — X. The proof of this statement will be based on section 2.4. The line g(a,b)
through the elements a # b of X is the set of all x € X such that

d(a,z) = d(a,y) and d(b,xz) = d(b,y) for y € X (5.65)

imply = y. This, by c), can be carried over to V' (and vice versa): the line
g(v(a), (b)) of V is the set of all v € V such that

d(¥(a),v) = d(¢(a),w) and d((b),v) = d(¢(b),w) for w e V

imply v = w. Write here v =: ¢¥(x), w =: ¥(y). Then ¢) and (5.65) yield = y,
i.e. v = w. Hence

¥(g9(a,0)) = g(v(a), ¥(b)). (5.66)
f) (5.63) and (5.64) imply

¢(B((0,d(0,€)) ) = B(0,d(0, ). (5.67)

Observe
B(0,d(0,e)) = {z € X | d(0,z) = d(0,e)}
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and that d(0,z) = d(0, e) in the euclidean case, i.e.
10—l = o el
is equivalent with 22 = e? = 1, and that in the hyperbolic case
cosh d(0, ) = cosh d(0, e)

is also equivalent, by (5.53), with 22 = ¢? = 1. We hence get from (5.67) that
22 =1 for x € X holds true if, and only if, [¢(x))> = 1 is satisfied.

g) Suppose now d = eucl. Because of step b) of the proof of Theorem 3,
section 3.3, we obtain from our present e) that ¢ : X — V must be linear. From
our last statement of f) we hence get z? = [¢(x)]? for all z € X. Thus

(@ +y)* = [z +y) = () + @)

ie. zy = Y(x)Y(y) for all z,y € X, ie. (X,0) = (V,E) = (V,e). O

5.11 Isomorphic hyperbolic geometries

Theorem 21. The following statements are equivalent.

(i) (X,8) =(V,e).

(ii) The geometries (X, M(X, hyp))7 (V,M(V, hyp)) are isomorphic.
Proof. Steps a), b), ¢), d), e), f) of the proof of Theorem 20 were based on (ii)"
with d = eucl or d = hyp. We will apply now the involved statements of these steps

for d = hyp. From a) we already know that (i) implies statement (ii) of Theorem
21. So we will assume, up to the end of the proof, that

(X, M (X, hyp)) = (V, M(V, hyp))

is satisfied. We would like to stress the fact that we have properties b), c), d), and
also e), f) for d = hyp at our disposal.

h) If h is a hyperbolic line of X and E C X a 2—dimensional euclidean plane
with h C E, then 0 € E. In the case that h is also a euclidean line, hence of the
form h = {gsinh& | £ € R} with ¢ = 1, ¢ € X, then, obviously, 0 € h C E holds
true. If not, then

h={pC¢ +qS¢ [ § € R}

see Theorem 3, section 2.2) with p,q € X, pg =0, ¢* = 1, := cosh¢, =
Th 3 ion 2.2) with X 0,¢* =1, Ce hé, Se
sinh & and p # 0, in view of 0 € h. The points

a=pC_1+qS_1, b=pCy+qSo=p, c=pCi+q5
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of h are not on a common euclidean line. Hence the Euclidean plane E with
h C E satisfies a,b,c € E and thus is uniquely determined. Now observe that the
euclidean line through % (a + ¢),b € E contains 0, since

a—+c

O:
4y

+ (1 —a)b

for a(1 - C4) :=1.

i) Let 2,y be elements of X and P C X be a 2-dimensional euclidean plane
passing through 0, z,y. Take fixed elements p,q € P with p> =1, pg =0, ¢*> = 1
and denote by g the hyperbolic line

9:=A{r(&) =pC¢ + q5¢ | £ € R}. (5.68)

Since 0 ¢ g, i.e. since g is not part of a euclidean line, P is the only 2—dimensional
euclidean plane containing g on account of h). Moreover, A N g = {p} where

A={zeX|2?=1},

because of
1=(ng+qS’5)2:>1:C§2—|-S§2:CQ€:>§:0.

The last statement of step f) implies
P(A)={veV]|v?=1}=T.
So p € A implies 1(p) € T'. Assume, by e),
W(g) = {vCy +wS, | n € R) (5.69)

with v, w € V such that vw = 0 and w? = 1. Because of AN g = {p} we get

I'ny(g) = {¢(p)} (5.70)

If vC; +wSy is in 'NY(g), then also vC_; +wS_; must be an element of I'N1(g),
since
(vCy +wS;)? =1, ie. v*CF + 57 =1,

implies

(vC_t + wS_4)* = (vC; —wSy)* = v*C} + SF = 1.
Hence t = —t because of #(I' N4 (g)) =1 from (5.70). Thus ¢ =0, i.e.

¥(p) = vCoy + wSy = v. (5.71)
This implies, by (5.69),

¥(g) = {¢(P)Cy +wSy [ n € R}
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with [¢¥(p)]? = 1 (from ¥(p) € T), w? = 1 and ¥(p)w = 0. Since 0 & ¥(g),
there exists, by step h), exactly one 2—-dimensional plane @Q C V containing (g).

Observe 0 € @, also by h).

j) We now would like to prove
¥(P) C Q. (5.72)

The euclidean line [ C P through 0 € X and (&) (see (5.68)) which is also the
hyperbolic line through 0 € X and (), goes over (see step e)) onto the (hyperbolic
= euclidean) line through 0 € V and ¢ (r(£)) € @, so that ¢ (l¢) C Q. Hence

U vte) c Q.

£ER

Define

S:=JlkcP
£ER

If now a point d € P\S is given, join it with a point s of the open set S\{0} by a
hyperbolic line I. This [ satisfies | C P, since #(I N P) > 2, moreover, since 0 € P
holds true. Then take a point ¢ # s of [N S and, since the hyperbolic line through
s,t, namely [, goes over onto the hyperbolic line (1) through 1 (s), ¥ (t) € Q, we
obtain ¥ (l) C Q by observing 0 € Q. Hence ¥(d) € ¥(I) C Q.

k) Obviously, ¢ € ANP (see (5.68)). Hence ¢(¢q) € I'NQ, by step j). Because
of pg = 0, we obtain hyp(p, ¢) = hyp(p, —q), i.e., by step ¢) and (5.71),

hyp(v,1(q)) = hyp (v, (—q)). (5.73)

Since —¢q is in A N P and on the hyperbolic line through 0, ¢, the point (—gq)
must be an element of I'N @ and of the hyperbolic line through 0, (q). This and

(5.73) yield, by observing ¢(q) # ¥(—q) from ¢ # —q,
¥(=q) = —¢(g) and vy (g) = 0,

ie. ¥(q) € {w, —w}.
If ¥(q) = —w, we replace w by —w in (5.69), so that

¥(g) = w (5.74)
holds true, without loss of generality.

1) The restriction ¥ : P — Q of ¢ : X — V on P can be written as

Y(&1p + 2q) =: (mv + naw) (5.75)
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with (&1,&2), (m1,12) € R? and, moreover, with

¥(0) =0, ¥(p) =v, ¥(q) =w,

p2:q2:1’ v2:w2:1,

pqg =0, vw=0.

—p is on the hyperbolic line through 0,p, hence ¥ (—p) must be, by e), on the
hyperbolic line I through (0) = 0, ¥(p) = v. Furthermore, (—p)? = 1 holds true,
i.e.

v(—p) el Nl ={v,—v}.

Hence ¥(—p) = —v from —p # p, i.e. from ¥(—p) # ¥(p), since ¢ : X — V is
bijective.

m) The equation
hyp (—p,p) = 2hyp(0, p) (5.76)

holds true. This follows immediately from (compare (5.53))

cosh hyp (—p,p) =3, cosh hyp (0,p) = V2

and 1 + cosh(2¢) = 2cosh? ¢ for ¢ € R.

As a consequence of ¢) we obtain that for all 1,22 € P,
hyp (21, x2) = hyp (0, p) implies hyp (1/)($1),¢($2)) = hyp (0,v)
and that for all y;,y, € P
hyp (y1,y2) = hyp (—p,p) implies hyp (v(y1),%(y2)) = hyp (—v,v).
Put ¢ :=hyp (0,p), i.e. 0 =In (1++/2) >0, and N := 2, i.e.
hyp (—p,p) =In (3+V8) = No.

Writing ¢ : R? — R2, i.e. ¥(&1,8) = (m1,72), instead of (5.75), and applying
Theorem 35, section 2.20, for X := R? and d = hyp, we obtain that 1) : R? — R?
is an isometry, i.e. of form (5.54). Because of ¢(0,0) = (0,0) this isometry must
be an orthogonal mapping, i.e. ¥(&1,&2) = (£1,&2) because of ¥(1,0) = (1,0) and
(0,1) = (0,1). The equation ¥(&1,&2) = (£1,&2) stands, of course, for

P(&p + &2q) = §1v + Sw = §19(p) + &v(q). (5.77)

We hence get for the arbitrarily chosen elements x,y € P at the beginning
of step 1),

Y +y) =) +¥(y), ¢YAz)=M(z), zy=1(x)Y(y)
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from (5.77), especially for
r==8&p+&q, Y =mp+ng,
obviously,

Y(@)h(y) = (&iv+ Sw)(mv + nw)
S + &ene = (&p + Leq)(mp + 12q) = .

Hence (X, ) = (V,€) = (V,e). This, finally, finishes the proof of Theorem 21. O

Remark. In analogy to Theorem 17 concerning dimension—free M&bius geometry,
also the following statement for dimension—free hyperbolic geometry can be proved.

Let (X,0),(Ve) be arbitrary real inner product spaces each containing at least two
linearly independent elements. Then (X,0) = (V,€) holds true if, and only if, there
exists a bijection ¢ : X — V such that images of lines of (X7 M(X, hyp)) are lines
of (V, M(V, hyp)). [Then also inverse images of lines of (V, M(V, hyp)) must be
lines of (X,M(X7 hyp)): if L is a hyperbolic line of V', take two distinct points
©(p),¢(q) of L (p,q € X). The image line (1) of the hyperbolic line [ of X through
p,q must then be L, since through two distinct points, here ¢(p), ¢(q), there is
exactly one hyperbolic line, i.e. p(l) = L.].

In fact, if (X,d) = (V,e) is satisfied, the underlying ¢ of this isomorphism maps
lines onto lines in both directions, since ¢ and ¢! preserve distances, and, more-
over, since lines can be defined by (2.1), section 2.2, with d = hyp. Assume now that
¢ maps lines onto lines in both directions. Without loss of generality we only con-
sider the case ¢(0) = 0. We now would like to prove hyp(z,y) = hyp(¢(z), ¢(y))
for all z,y € X. So take arbitrarily elements z,y of X, and to these elements a
fixed euclidean plane P through 0,z,y. Furthermore, take linearly independent
p,q € P. Then also ¢(p) =: r, ¢(q) =: s are linearly independent, since otherwise
0,7, s would be on a euclidean (= hyperbolic) line, and hence also 0, p, g. Let R be
the euclidean plane through 0,7, s. Since the line I, through 0,p goes over in the
line I, through 0,7 and [, in I, moreover every hyperbolic line intersecting {, U,
twice into R as well, we conclude that ¢ maps P into R and, mutatis mutandis,
@1 the plane R into P, i.e. the restriction |P of the bijection ¢ : X — V is a
bijection of P onto R. This restriction ¢|P, written as

o(&1p + &2q) =: (m7r + n258),

together with its inverse ¢~ !|R map hyperbolic lines onto hyperbolic lines. It
is hence a motion from P onto R (see, for instance, R. Hofer, Invarianten und
invariante Begriffe von Friedmann-Lemaitre-Raumen, Dissertation, Fachber.
Math. Univ. Hamburg, 1997, Hilfssatz 5, p. 20). We thus obtain hyp(z,y)
= hyp (gp(m), cp(y)) for the elements x,y introduced before. This implies that the
bijection ¢ : X — V preserves hyperbolic distances. ¢ : X — V must thus be
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(Proposition 30, section 2.16) a motion, this time not from X onto X, but from
X onto V. Now ¢ge~! preserves distances in V for g € M(X,hyp), and ¢~ 1g'¢
distances in X for ¢’ € M(V,hyp). Hence

M (V,hyp) = @M (X, hyp)p ™",

and thus (X,M(X, hyp)) = (V, M(V, hyp)), ie. (X,9) = (V,e) by Theorem 21.

Remark. Take a real vector space X with mappings d, : X x X — R, v = 1,2,

satisfying rules (i), (ii), (iii), (iv) of section 1.1, such that (X, d1), (X, d2) are not

isomorphic (see the Remark in section 1.3). Define the bijection ¢ : X — X
p(r) =z,

and observe that ¢ and ¢! as well, map lines of (X , M(X, eucl)) onto lines of
(X, M(X,eucl)). So the theorem for dimension—free hyperbolic geometry, men-
tioned in the previous Remark, does not hold true generally in the dimension—free
euclidean case.

5.12 A mixed case

Proposition 22. Let (X,06) and (V,e) be arbitrary real inner product spaces each
containing at least two linearly independent elements. Then the geometries
(X,M(X, eucl)) and (V7 M(V, hyp)) are not isomorphic.

Proof. 1. Assume that there exist described spaces (X, d), (V, ) satisfying
(X, M(X,eucl)) = (V, M(V,hyp)). (5.78)
Lemma 18 and (5.78) imply the existence of a bijection ¢ : X — V such that
M(V,hyp) = oM (X, eucl)p! (5.79)

holds true. Let e € X be a fixed element with e? = 1. As in the proof of step b) of
the proof of Theorem 20 take v € M(V, hyp) satisfying v(4(0)) = 0. Obviously,
Y :=wvyp: X — V is a bijection with ¢(0) = 0 and

M(V,hyp) = M (X, eucl)yp . (5.80)

Put j := ¢(e), observe j # 0 from 1 (0) # (e), define k := \/e(j,7) > 0 and the
real inner product space
V= (V,e) = (V,e) (5.81)

based on £(v,w) := 75&(v,w) and the bijection v — kv from (V,e) onto (V,2).
Now (5.81) and Theorem 21 imply

(V,M(V,hyp)) = (V', M(V', hyp)),
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i.e., by (5.78),
(X,M(X, eucl)) = (V’,M(V’,hyp)).

Instead of g(v, w) for v,w € V' we will write only vw, and instead of V’ only V.
So we have (5.78), (5.80) and furthermore

P(0) =0, w(e)=7, e*=1=;j>% (5.82)

The proofs of steps ¢), d), e) of the proof of Theorem 20 lead mutatis mutandis
to the following statements 2 and 3.

2. Let 1,29, 3, x4 be elements of X. Then
eucl(zy, z2) = eucl(xs, x4) (5.83)

if, and only if,
hyp (v (z1), ¥ (x2)) = hyp (¥ (23), ¥(z4)). (5.84)

3. Lines are mapped onto lines under 1 : X — V as well as under ! : V —
X.

4. Since —e, 0, e are collinear, i.e. on a common line, so must be ¢ (—e), ¢ (0) =
0, ¥(e) = j. Hence ¥(—e) = uj, u € R. Applying that (5.84) is a consequence of
(5.83), we obtain [¢)(—e)]?> =1 for z1 =0, 22 = ¢, 23 = 0, x4 = —e. Hence

Y(—e)=—j (5.85)

from t(e) # ¥(—e) and () = .

5. Take a fixed r € X with r2 = 1 and re = 0. Hence eucl(r, e) = eucl(r, —e),
ie., by (5.84) and s := (r),

V14 s2V2 —sj = V14 522 + sj.

Thus
sj =0. (5.86)

Moreover,
s =1, (5.87)

from (5.83) = (5.84) for 1 =7, x9s =23 =0, x4 = €.
6. Define ¢ := ¢(r 4+ €) and apply (5.83) = (5.84) twice, namely for
Ty =1, To=r—+e x3=0 x4=c¢€

and for
Y1 =€, y2:7"+€7 y3:07 Yg =T
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Hence v2v1 + 2 — st = v/2 = v/2v/1 + t2 — jt. Thus

1
st=jt, VIt —1=——st (5.88)
V2
From eucl(0,r + e) = eucl(e, r) and (5.84) we obtain
VI =2—js=2

in view of (5.86). Hence t> = 3 and thus, by (5.88),
st =2 = jt. (5.89)

7.m:= (r+e) € {r,e} is on the euclidean line through r, e. Hence 1(m) ¢
{Y(r),y(e)} = {s,7} is, by step 3, on the hyperbolic line through s, j, i.e. 1)(m) is
in the euclidean plane through 0, s, 7. Now r + e is on the euclidean line through
0, m. Thus t = ¥(r + ¢) is on the hyperbolic (= euclidean) line through 0, (m),
ie. t = ¢¥(r + e) is in the euclidean plane through 0, s, . This implies that ¢ can
be written as t = aj + 8s with real numbers «, 3.

8. Hence from (5.82), (5.86), (5.87), (5.89),

?=a’+ 8% a=Vv2=08. (5.90)
Since (5.90) yields 3 = t? = 4, our assumption (5.78) was not correct. This finishes
the proof of Proposition 22. O

Several times in this chapter the notion of isomorphic real inner product
spaces (X, 0), (V,e) played a fundamental role: see Theorems 17, 19, 20, 21 and
the Remark on page 260. In characterizing such isomorphisms the following known
statement might be helpful in concrete situations.

Remark. Let (X,9), (V,e) be arbitrary real inner product spaces each containing
at least two linearly independent elements, and let ¢ : X — V be a surjective
mapping satisfying

d(z,y) = e(p(2), 0(y))
for all z,y € X. Then (X,9), (V,e) are isomorphic.

Proof. 1. We write again d(z,y) = zy = z - y and

e(p(x), 0(y) = e(x)e(y) = ¢(x) - ¢(y)

for z,y € X. Observe
Oy = (04 0)y = Oy + Oy,

ie. 0y =0 for all y € X. Hence 0 = 0y = ¢(0)¢p(y), i.e., especially, 0 = ©(0)¢(0).
Thus ¢(0) = 0 by (iv), page 1. Now, for a,b,y € X we obtain
pla+b)e(y) = (a+bly = ay + by
= p(a)p(y) + o (b)e(y) = (p(a) + (b)) p(y).
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Hence
(pla+b) —¢la) = p(b))p(y) =0 (5.91)

for all a,b,y € X. Since ¢ is surjective, there exists to given a,b € X an element
yo € X satisfying p(a + b) — p(a) — @(b) = ¢(yo). Putting y = yo in (5.91) we
obtain ¢(yo)e(yo) =0, i.e. ©(yo) =0, i.e. p(a+b) = p(a) + ¢(b) for all a,b € X.

2. a,y € X and A € R imply
e(Aa)p(y) = (Aa)y = A~ (ay) = X- p(a)p(y),

i.e.

(p(Aa) = Ap(a))e(y) = 0. (5.92)
Since ¢ is surjective, there exists to given a € X and A € R an element yy € X
satisfying ¢(yo) = ¢(Aa) — Ap(a). Hence o(yo)e(yo) = 0 by (5.92) for y = yo, i.e.

0 =¢(yo0) = p(Aa) — Ap(a)

for all a € X and A € R.

3. p is injective. Assume p(a) = @(b) for the elements a,b € X. Hence, by
steps 1,2,

pla—b) = p(a+ (=1)b) = ¢(a) + ¢ ((=1)b) = ¢(a) + (=1)p(b) = 0.

Thus
0=0-0=¢p(a—b)pla—"b)=(a—0b)(a—0b),

ie.a—b=0, by (iv), p. 1. O



Chapter 6

Planes of Leibniz, Lines of
Weierstrass, Varia

Take two distinct points p,q of R3, i.e. p,g € R3, p # ¢, and collect all s € R3
such that the euclidean distance of p,s and that of ¢, s coincide. The result will
be a plane of R3. This simple and great idea of Gottfried Wilhelm Leibniz (1646
1716) allows us to characterize hyperplanes of euclidean, of hyperbolic geometry,
of spherical geometry, the geometries of Lorentz—Minkowski and de Sitter through
the (finite or infinite) dimensions > 2 of X as will be shown in the present chapter.

6.1 L—hyperplanes of metric spaces

Let (S, d) be a metric space (see section 2.1). If p, ¢ are distinct points, i.e. elements
of S, we will call

Hpq:={s€ S |dp,s)=d(qs)} (6.1)

an L—hyperplane of (S,d). (L stands for G.W. Leibniz, 1646-1716, who character-
ized, as already mentioned, planes by (6.1) in the case S = R?, d(z,y) := eucl (z,y)
for z,y € S; see also H. Busemann, On Leibniz’s definition of planes. Amer. J. of
Math. 63 (1941) 101-111.)

We will apply definition (6.1) of Leibniz for several metric spaces, however,
also in the case of special real distance spaces (S,d) which are not metric spaces.
A real distance space (5,d) is a set S # () together with a mapping

d:SxS—R.

If Hy,, # 0 is an L-hyperplane of the real distance space (S,d), (Hpq,d)
(where d restricts d : S x S — R on H,, x Hp,) is a real distance space as

W. Benz, Classical Geometries in Modern Contexts: Geometry of Real Inner Product Spaces 265
Third Edition, DOI 10.1007/978-3-0348-0420-2_6, © Springer Basel 2012
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well. Assuming that m,n are distinct elements of H,, 4, we could ask for the L—
hyperplane

{s € Hpq|d(m,s)=d(n,s)}
of H, 4, and so on. (For an example see the Remark at the end of this section.)

Let X = (X,4) be a real inner product space of arbitrary (finite or infinite)
dimension greater than 1. Instead of §(x,y) we will write again zy or = - y (see p.
1). In section 2.5 euclidean hyperplanes were defined by

H(a,a) :={r e X |ax=a} (6.2)
for0 #a € X and a € R.

Since

2 2
b —q
Hp,q_H(p_qa 5 >

and
H(a,a) = Hyq (9—1)a

hold true where 2a2p := 2a + a?, (6.1) characterizes euclidean hyperplanes of X
as L-hyperplanes of the metric space (X, eucl) with

eucl(z,y) = [z —yll = v(z — y)*.

Remark. Observe that, as already mentioned, the construction of Leibniz could
be applied in order to obtain more subspaces, say of (X, eucl), depending on its
dimension, according to the following procedure. For distinct

P0):4(0) € X = Hg)
define
H(1y = {z € Hp | eucl (p(), z) = eucl (g(0),z)}
and for distinct
Py, 4 € Hey
define
Hy) = {z € H( | eucl (p(1), ) = eucl (q1), 2)},

and so on. So starting with X = R3, for example, we get a plane Hyy, aline H(y),
a point Hs).
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6.2 Hyperbolic hyperplanes as L—hyperplanes

Hyperbolic hyperplanes of X = (X,J) are defined by all euclidean hyperplanes
through 0 € X and their images under hyperbolic translations of X as well (see
p. 49, where we replace wiTiws(e®) by

wthwl_l . (w1w2)(eL),

hence by a hyperbolic translation of the euclidean hyperplane wyws(e*) through
0).

Theorem 1. The L-hyperplanes of the metric space (X, hyp) are exactly the hy-
perbolic hyperplanes of (X, hyp).

Proof. Let a,b be distinct elements of X. Because of H,, = Hp , we may assume
a? > b? for given

H,p ={x € X | hyp(a,z) = hyp(b,z)},

without loss of generality. Observe, by

coshhyp (z,y) = V1+22y/1+ 4% — zy,

that

Hab—{m€X|g V1i+22=(a—b) } (6.3)
with g := v1+ a2 —+/1 4 b2 > 0 holds true. In view of a # b we obtain hyp(a, b) >

0 and hence
V1+a?y/1+b?—ab=coshhyp (a,b) > 1

i.e. (a —b)? > ¢?. Thus
0

£ >0
(a—b)* —¢?
Putting y/(a — b)? - p := a — b, we would like to prove, in two steps, that

=

H,p, =1(p,7) == {ypcosh + ysinh{ [{ € R, y € pt with 3? = 1}. (6.4)
Step 1. Assume «x € II(p,y). Here we obtain
A=ovV1+22—(a—bx
= gcoshé- /1472 —/(a —b)2pypcosht.

Because of p?2 =1, 0 > 0, v > 0 and the identity

- (1+79%) =7"(a—0b)?

we get 0y/1+792 =74/ (a—b)%, ie. A=0,ie z € Hyp.
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Step 2. Assume z € Hgp. If v =0, then p = 0 and (e —b)xz = 0, by (6.3), i.e
x € p. Hence

=~pcosh& + — blnhf for  # 0 and ||z|| =: sinh¢,

and, moreover,
x = ypcosh0+ ysinh0

for x = 0 and arbitrarily chosen y € p* with y? = 1. Thus x € II(p,7).
If v #0, then v > 0, 0 > 0, ovV1+ 22 = (a — b)z, by (6.3), i.e

(a —b)?pz = (a—b)x = o1+ 22 >0.

This equation yields zp > 0, and, together with

the equation
2 _ (px)Q

T T e — (o)

Hence (pz)? < p?x? = 2% implies 42 < (pr)?, i.e. ¥ < px. Define now & > 0 by
~vcosh & := zp.
Case £ = 0. Hence v = zp. Thus

oV1+a?2=(a—b)x=+/(a—b)2px=vy(a—Db)2

This implies, via the definition of ~,

2 2 2 2
v (a—b v (o
w2:(2)_1:2<2+92>_1:v27
0 0% \Y

i.e., by v = ap, (zp)? = 4% = 2% = 2?p?. Hence, by Lemma 1, chapter 1, z = Ap
with a suitable A € R, and thus, by v = xp, obviously v = A, i.e. x = 7p, i.e.
x — (zp)p = 0. Now

x = (zp)p = ypcosh0 + ysinh 0
for arbitrary y € p*,y% = 1.
Case ¢ > 0. Put ysinh¢ := 2 — (xp)p and observe that y € pt. Now, by
~vcosh& = xp and (6.3),

2 2.552_(9529)2:72_(“_17)37_9(1"’552)
(zp)? =~ *(1+2%) —*(a—b)*
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The definition of v yields (a — b)2y% = ¢?(1 + ~?), i.e. we obtain

2 222 (1+72) —72(1 + 2?) .
T e SR

Hence z = (zp)p + (z — (zp)p) = ypcosh{ + ysinh & with y € p* and y* = 1.

We hence obtain z € II(p, ). Thus H, ; is a hyperbolic hyperplane by Propo-
sition 17 of chapter 2.

Given, on the other hand, the arbitrary hyperbolic hyperplane II(g, ¢), ¢ € X,
q*> = 1,0 < e € R (see Proposition 17 of chapter 2), we will present elements a # b
of X with H,;, =1II(g,¢). In the case € > 0 put @ = 7¢ and b = 0 with

™ =(1+2%%-1,7>0.
Hence, by (6.4), H,, = II(p,~) with
(a’_b)Q'p:a_ba

i.e. p=gq and v =e. In the case ¢ = 0 we get from (6.3)
Hy_¢={re€X|2qzx=0}=H(q,0).
Now observe
II(q,0) = {ysinh¢ | £ € R,y € ¢~ with y* = 1},

ie. II(q,0) = ¢~ = H(q,0). Hence I1(q,0) = H, _,. O

Remark. Corresponding to the Remark of section 6.1 we would like to consider the
classical case (R?, hyp) with the classical inner product (see p. 3) as the underlying
product. Take the distinct points

Py = (0,0,1), g = (0,0,-1) € R* = Hg,
and verify, by (6.3),

Hy = {z = (21,22,73) € H(o) | hyp (p(0), ) = hyp (q(0), )},
ie.
H(l) = {1'1,.%'273;‘3) S H(o) | 2x3 = 0}
which can be identified with H(;) = R®. Hence, by Theorem 1, R* must be a

hyperbolic hyperplane of (R?, hyp) and therefore as well all images of R? under
hyperbolic motions of (R3, hyp), since these motions are exactly the hyperbolic
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distance preserving bijections of R3. This coincides with the definition to take as
hyperbolic hyperplanes all w;Tyws(e*) with e = (0,0,1). Now we proceed with
(R% hyp). Take

pay = (0,1), qu) = (0,—1) € R* = Hyy,

and verify by (6.3),

Hy :={x = (21,72) € Hyy | hyp (p1), ) = hyp(q1), x)},

i.e.

H(Q) = {((El,xg) S H(l) | 21’2 = 0}
which can be identified with R' = H ).

6.3 Elliptic and spherical hyperplanes

Here we refer to sections 4.14 (Elliptic and spherical distances) and 4.15 (Points)
of this book. If X = (X,0) denotes again a real inner product space of (finite
or infinite) dimension greater than 1, the elliptic distance e(x,y) of z,y € Xg :=
X\{0} is defined by

|2y

T
e(z,y) € [07 5} and cose(z,y) = =l 1wl

with ||a|| := va? for a € X. The spherical distance o(x,y) of z,y € Xy is given by

ry
o(z,y) € [0,7] and coso(z,y) = Tl ol
We will call z,y € Xy e—equivalent (c—equivalent) provided e(z,y) = O(U(x, y) =
O). The corresponding equivalence classes [z]. or [z], are the elliptic points (spher-

ical points) of X (see loc. cit.). By E(X),S(X) we denote the set of all elliptic
points, of all spherical points of X, respectively. The structures

(E(X),2). (5(X),0) (6.5)

with e([z]: [y]e) == e(z,y), o([z]s[y]ls) = o(x,y) for x,y € X, are metric spaces
(see loc. cit.). We are now interested in the L-hyperplanes of the metric spaces
(6.5). Observe that

[z]. = Rz\{0} = {Az | 0 # A e R} =R*z  with R* := R\{0},
(2], =Rsp-z={)\z |0 <X eR}

for € Xy. We shall write elliptic points [z]. occasionally in the form of the set

{ﬁ, ”_TT‘}, or even shorter in the form i\l%\l’ and spherical points [z], as H\%\I
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Observe that

[z]e =Rso - = UR>o - i,
[l (|||

The following statements A, B are easily verified.
A. If +a,+b with a®> = 1 = b* are distinct elliptic points, i.e. {a,—a} # {b, —b},
then

Higip={R'z € E(X) | (a—b)x = 0}U{R*z € E(X) | (a+b)z =0}. (6.6)

B. Ifa,b € X with a® =1 = b? are distinct spherical points, i.e. a # b, then

Hyp={Rso-z € S(X) | (a—b)z=0}. (6.7)

What about the notions elliptic hyperplane, spherical hyperplane? If t € X\{0},
the set
E;:={R*z € E(X) |tz =0} (6.8)

will be called an elliptic hyperplane, and
S :i={Rsoz € S(X) | te = 0} (6.9)

a spherical hyperplane.
Observe, by (6.6), (6.8),

Hiq+b=FqpUFEqp, (a—Db)(a+b)=0.

Theorem 2. The L-hyperplanes of E(X) are given exactly by the unions Ey U E;
with t,s € Xy and ts=0.
The L-hyperplanes of S(X) are exactly the spherical hyperplanes of S(X).
The intersection of all L-hyperplanes of E(X) containing the elliptic hyperplane
Et 18 Et U {[t]s}
Proof. Given E;UE, with t,s € X and ts = 0. Define a-||t]| := v/2, B-|s]| := V/2,
moreover,

2a := at + fBs, 2b:= —at+ fBs.
Hence, by ts = 0,

a2 =1= b27 {a7 70’} 7é {bv 7b}a
and thus, by (6.6),

H:I:a,:l:b = Eafb U Ea+b = Eat U EBS = Et U Es~
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In order to prove the second part of the theorem, assume that the spherical hy-
perplane (6.9) with 2 = 1 is given. With an element j of X satisfying j2 = 1 and
jt =0, define a, b by

Then a? =1 =102 a # b and
Ha,b = Sa—b = St
hold true.

Now the proof of the remaining part. Assume that = ¢ E; belongs to all
L-hyperplanes Hy, 1, of E(X) which contain E;. Since E; U E; with s € XoNt+
are these L-hyperplanes, we obtain

xs =0 forall s € XoNtt. (6.10)
Since X = t*+ @ R¢t, we obtain z = y + «at for suitable y € t+ and o € R, i.e.
Ty = y2 + aty = yz.

For y # 0, i.e. y € Xo Ntt, we get, by (6.10), 0 = 2y = y? ie. y = 0, a
contradiction. Hence y = 0, i.e. z = at. But R*z belongs indeed to all (E;UE;)\E;
with s € XoNntt. O

6.4 Hyperplanes of Lorentz—Minkowski geometry

X designates again a real inner product space of (finite or infinite) dimension > 2.
We are now interested in the real distance space (see section 6.1) (Z,1) where Z
denotes the real vector space Z = X @& R with

(@, 20) - (¥, 40) :==TY — Zoyo
as product for (T, zo), (¥, y0) € Z (see p. 141) and where
l(z,y) = (T —9)* — (20 — y0)?

is the Lorentz—Minkowski distance (see section 3.17) of © = (T,z0) € Z, y =
(ya yO) €Z.

For the real distance space (Z,[) which, of course, is not a metric space,
Hpaq = {Z € Z | l(pv Z) = l(Qaz)}a (611)

p # q, defines its L-hyperplanes. If a # 0 is an element of Z and « a real number,
the set
H={z€Z|az=a} (6.12)

is called a hyperplane of Z (see p. 188), i.e. a hyperplane of Lorentz—Minkowski
geometry over Z (see p. 172).
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Proposition 3. The L-hyperplanes of the real distance space (Z,1) are exactly the
hyperplanes of Lorentz—Minkowski geometry over Z.

Proof. Of course, H, , of (6.11) with p # ¢, is the hyperplane
{zeZ20-qz=p"-¢*}

of Z. Suppose, on the other hand, that the hyperplane (6.12) of Z is given. In the
case a # 0 and a? # 0 define a?p := 2aa and ¢ := 0. Since

2aa 40
Hp’q{Z€Z|2<a20)za2}’

we obtain H,, = {z € Z | az = a}. In the case a # 0 and a®> =0 # a take r € Z
such that r is not on the lightlike hyperplane {z € Z | az = 0}. Put

ar

q:=—, pi=atgq.
ar

Hence H, , ={z € Z | 2az = (a+ ¢)* — ¢*} = {z € Z | az = a}. If, finally, a = 0,
put p := a and q := —a. Here we obtain

H,,={z¢€Z|4az=0}. O

6.5 De Sitter’s world as substructure of (Z,L(Z))

We are interested here in the following type of substructure of a geometry (5, G).
(Concerning other types of substructures consult our book [3], section 1.3.) Let a
geometry (S, G) (see section 1.9) be given and let Sy # 0) be a subset of S. Put

Go:={9€G|g(So) =50}, No:={g€G]|g(s)=sforall se Sp}.

We will assume that Ny consists exactly of one element, namely the identity j of
G. We are then interested in the geometry (Sp, Go) by observing that different
g, h € Gy represent different bijections of Sy. In fact, g,h € Go and g | So = h | So
imply h=1g € Ny = {j}.

In the case of de Sitter’s world we start with the geometry of Lorentz—
Minkowski,
(5.G) = (2.L(2)). (6.13)

L(Z) the Lorentz group of Z (see p. 172), and with
So:=%(2)={2€2Z|*=1} (6.14)

(compare section 4.12). We now will prove Ny = {j}.
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Take an arbitrary A € L(Z), i.e., by section 4.1, a mapping
A(z) = By pw(z) + A(0),

where By, ;, is a Lorentz boost and w a surjective orthogonal transformation. As-
sume that A(z) = z holds true for all z € X(Z). We would like to show that
A = j = id. What we have to prove is that also z € Z\¥X(Z) implies A(z) = z. For
such a point z take two distinct lines Iy, ls through z such that there exist points

p1.p2 € X(Z)Nl, p1 # pa,
q,q2 € X(Z) N2y, @1 # g2

Since each of the points p1, p2, g1, g2 remains fixed under A, we obtain
Hence A(z) = z, i.e. A =id. Compare the Remark at the end of this section.

We now will prove that Gy consists exactly of all elements p of L(Z) with
1(0) = 0. Observe, first of all, that

IUJ(Z) = Bp,kw(z)7 z € Z,
is in Gy, since we obtain with 1 (0) = 0 the equivalence of the following statements:

z €80, 22 =1, U(2,0) =1, I(u(z), n(0)) =1, (u(z))

Assume now that

’ = 1, u(z) € So.
A(z) = By pw(z) + d, (6.15)
for a fixed d € X, belongs to Gg. Define
w(2) := By w(z) and v(2) := z + d,d =: (d, dp),
for z € Z. Since A, u belong to G, we obtain
v=Xu"1€Gqy.
Take a fixed element e € X satisfying e? = 1. Hence

2y = (ve, /72 — 1)

belongs to X(Z) for all real v with |y| > 1. Thus [v(z,)]? = 1, i.e.

1 -2 _
5(d —d2) =dov/y2 — 1 — ved. (6.16)

Applying (6.16) for v = 1 and v = —1 yields de = 0 and d*> =
do/72 —1 = 0, i.e. dg = 0 and therefore 0 = d? = T - d% ie. d =0, ie.
d=0.
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Hence Gy is exactly the set of all A € L(Z) with A(0) = 0. The result is
indeed that the set of all surjective (and hence bijective) Lorentz transformations

g(z) = Bppw(x),x € Z (6.17)

constitutes the group Gy which is the group M¥(Z) of motions of de Sitter’s world
(see the beginning of section 4.12).

Remark. Take a point z € Z\X(Z), i.e. a point satisfying 22 # 1, and look for
lines of (Z,1),
{z+71v|T€R}, v=(T,v) € Z,

such that v? =% — 92 > 0 holds true for 22 < 1 and
v? =% — i <0 for 2% > 1.
Hence v # 0,92 # 0 and
N(z,v) = (2v)? +v2(1 — 2?)
must be a positive real number because of zv € R, i.e. (2v)? > 0. Thus

2 € 35(2),z4+ n2v € X(2)

with v? - 7 2 := —zv £ /N (2,v) are three distinct points on a common line of
(Z,1).

6.6 Hyperplanes of de Sitter’s world

In section 4.12 the expression
s(z,y) == zy (6.18)

was defined to be the de Sitter distance of x,y € 3(Z). Of course, with the expres-
sion (6.18) essentially the Lorentz Minkowski distance [(x,y) is meant stemming
from Lorentz Minkowski geometry of which

(S0, Go) = (2(2), M%(2)) (6.19)
is a substructure: in fact, the two statements
l(a,b) =1(c,d)

and

s(a,b) = s(c,d)

are equivalent for a, b, c,d € 3(Z), since

lz,y) =2 = 2s(z,y)
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holds true for z,y € ¥(Z).

How to define now the notion of a hyperplane of de Sitter’s world? The
following definition is based on the fact that (3(Z), M¥(Z)) is a substructure of

Definition. If H is a hyperplane of (Z,L(Z)), then H N $(Z) will be called a
hyperplane of (E(Z ), M E(Z)) provided that for every pair
a,be HNX(Z) with a #b # —a
the statement
Tap:={Sa+nb|{&neRNE(Z) CH
holds true.

Remark. Observe that via the sets I', ; the lines, i.e. geodesics, of (6.19) are defined
(see section 4.12).

By the real distance space of (6.19) we understand
(2(2),5). (6.20)
The L-hyperplanes of de Sitter’s world (6.19) are hence given by
Hpq ={z € 2(2) | pz = ¢z} (6.21)
for p,q € X(Z) with p # ¢. Thus
H,,={2€Z|(p—q)z=0and 2* = 1}

for p,q € £(Z) with p # q.

Lemma 4. If (6.12), H = {z € Z | az = «a}, is a hyperplane H of (Z,]L(Z)), there
exist p,q € HNX(Z) such that p # q # —p holds true.

Proof. If a = (0,1),
—Zo0 = (0, ].)(E, Zo) =«
leads to H = {z € Z | az = a} = {(z,—a) | Z € X}. Take v,w € X with

v2 =1=w? and vw = 0, in view of dim X > 2. Then

p:=wV1+a? —a), q:=wV1+a? —a)
satisfy
p,q € HNX(Z) and p # q # —p. (6.22)

Assume now @ # 0 for a = (@, ag) of (6.12) and, without loss of generality, a* = 1.
Take v € X with v2 = 1 and va = 0.

Case ag =0 and o # 0.
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Here p := (aa + v, ), q := (a@ — v, a) lead to (6.22).

Case ag =0 and o = 0.
pi=(vV2,1),q := (—vv2,1) yield (6.22).

Case ag # 0 and o # 0.

Define ao7 := —a and p := (vV/1+72,7),q := (—ov/1+ 72, 7).
Case ag # 0 and a = 0.

— (7 v 1 — (7 v 1
p.—(a—l—%,%), .—(@—a,%). O
Theorem 5. The L-hyperplanes (6.21) of de Sitter’s world are given ezxactly by all
{z€X(Z)|dz=0} (6.23)

withd € Z, d # 0.

Proof. Obviously, (6.21) with p,q € X(Z), p # ¢, is of the form (6.23). Given now
(6.23), we have to find distinct p,q in X(Z) with

{z€X(Z)|dz=0} ={z€3(Z) | pz = gz}
Case d*> = 0.

Choose a = (@,a9) € Z with ad=0,a’>=1,ay=0. Hence a®> = 1. Now dz = 0
and (d + a)z = az are equivalent. Moreover d + a # a and (d + a)? = 1 = a?.

Case d*> # 0 and d = 0.
Hence dy # 0 because of d # 0. Choose e € X with e? = 1 and put

a = d(Q) e, dO .

Observe a2 = 1, the equivalence of dz = 0 and
2
(d%d + a> zZ=az,

2
2
d+a # a and (d%d—i-a) =1=ad

moreover,
2
dg

Case d*> # 0 and d # 0.

Put a- Vd := (d,0). Hence a® = 1 and da = Vd # 0. Observe the equivalence
of dz =0 and
(ad+a)z = az

with ad? := —2\/87, i.e. a # 0. Moreover, notice that
ad+a#aand (ad+a)? =1 =ad O
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Theorem 6. The L-hyperplanes (6.21) of (E(Z), s) are exactly the hyperplanes of
de Sitter’s world.

Proof. Given H = {z € Z | pz = gz} with p # ¢ and p,q € 3(Z), we must prove
that H NX(Z) is a hyperplane of de Sitter’s world, i.e. we have to prove that for
all

a,be HNX(Z) with a #b # —a

the statement I', ;, € H holds true. We obtain
pa = qa and pb = gb,
ie. p(€a+ nb) = q(€a + nb) for all &, n € R. Hence
Ea+nbe H
for all £, € R, i.e.
Lop={Ea+nb|&neRNE(Z) C H.

Thus H NX(Z) is a hyperplane of de Sitter’s world.

Assume now that H N 3(Z) is a hyperplane of de Sitter’s world where H is
of the form
H={ze€Z]|az=a}

with a € Z, a # 0, @ € R. In view of Lemma 4 there exist p,q € H N X(Z) such
that p # ¢ # —p holds true. Hence, by definition, H N ¥(Z), contains also Iy, ,.
Since (—p)? = 1, we obtain

—p=(=1)-p+0-qeTy,

ie.—p € HNX(Z). But ap = o = a-(—p) implies « = 0,1.e. H = {z € Z | az = 0}.
Hence, by Theorem 5, H is an L-hyperplane (6.21). O

Remark. Observe that there is a structural similarity between Spherical Geome-
try (S(X),MS(X)), and the Geometry of de Sitter’s world, (X(Z), MX(Z)). In
Spherical Geometry the basic set S(X) of points is given by the euclidean ball

B(0,1) = {z € X [ =[]l = 1},

and its hyperplanes by the intersections of B(0, 1) with the euclidean hyperplanes
of X passing through the origin 0. In the Geometry of de Sitter’s world B(0,1) is
replaced by the Lorentz—Minkowski ball

{z € Z]1(0,2) =1} = 2(Z)

and the euclidean hyperplanes through 0 by the Lorentz—Minkowski hyperplanes
passing through the origin as well.
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6.7 Hyperbolic lines as defined by K. Weierstrass

We will characterize hyperplanes of hyperbolic geometry over the real inner prod-
uct space X of arbitrary (finite or infinite) dimension greater than 1 by euclidean
hyperplanes of X @ R passing through 0 € X & R and intersecting the surface

{(z,V1+22) |z e X} (6.24)

of X ®R as well. (Compare section 4.20.) More precisely, the hyperbolic points are
this time given by the elements of (6.24), and the hyperplanes by the intersections

{(z,V1+22) |z e X}NH (6.25)

where H is a euclidean hyperplane 3 0 of X ®R such that (6.25) is not the empty
set. This is for X = R? (with the classical inner product) a well-known result of the
classical theory, since the Weierstrass model of plane hyperbolic geometry defines
hyperbolic lines via the intersections (6.25) (X = R?), if # (), with euclidean planes
H>00ofR3=RZ2pR.

Remember that (z,v/1+ z2) are the Weierstrass coordinates of the hyper-
bolic point x € X (see the Remark on p. 229).

We designated by Y the real vector space X @& R equipped with the inner
product (3.54),

(a,a) - (b,B) :=ab+ af

for (a,a), (b,8) €Y (see p. 120). Y is based on the real inner product space X of
dimension > 2. (Observe that in our notation, Z = X ® R is based on X as well,
but on the product (3.88).) The euclidean hyperplanes of (Y, eucl) are given by
the sets (see section 3.7)

H((a,a),B) :=={(z,&) €Y | ax + af = B}

with f € R and 0 # (a,a) €Y.
Proposition 7. All euclidean hyperplanes H((a, ), 6) of Y through O which inter-

sect the surface
A={(z,V1+2?2) |z e X}
of Y are given by

- 2
H||[p——],0|,peX, po=1, v>0. (6.26)
(( v1+v2> )

Proof. 1. Assume H ((a,a), ) 2 0 and H N A # (). Hence 8 = 0 and there exists

t € X such that
at+ a1+t =0. (6.27)
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Thus a # 0, since otherwise a = 0, i.e. (a,a) = 0. This implies

a a pt > )
H=H ) 70 =H )y T 70
((r r) ) ((” Vite
by p:= & and (6.27). Observe that

7l = | pt |<\/p2\/t72 Vi2 1
T = =
Vit~ Vit Vi+#?
for 7 := \/%, from the inequality of Cauchy—Schwarz, i.e. observe that
_ =
V142

R _ — Ce

for v := Nie=h Hence H = H ((p, W) ,0). This implies (6.26) for v > 0.

In the case v < 0 put I' := —y and P := —p and observe that

Vi 7))
H ,—— |, 0| =H|((P,— ) ,0
(( 1+72> ) (( 147172
together with " > 0.

2. Obviously, the euclidean hyperplane (6.26) passes through 0 € Y and it
contains (¢,v1+t2) € A with ¢ := p. O

Theorem 8. Take an arbitrary euclidean hyperplane H of Y through O which in-
tersects A. Then

F={zeX|(z,V1+22) e H} (6.28)

is a hyperbolic hyperplane of X. Moreover, every hyperbolic hyperplane of X can
be written in form (6.28), i.e. as

g px v
re€X|pr=——=V1+a?2;=S2€X = ,
{ » V1472 } { |\/1—|—m2 \/1+72}
p?=1, v>0.

Proof. Assume that the euclidean hyperplane H of Y passes through 0 and in-
tersects A. Then, by Proposition 7, H must be of form (6.26) with v > 0. With
suitable p € X, p? = 1, v > 0 we hence obtain

I‘:{xeX|(x,\/1+x2)€H}:{x€X|px:\/117724/14-:102}.
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We now would like to prove that this is the hyperbolic hyperplane
(p,7) = {wCe +ySec |E€R, y€ X, yp=0, y* = 1}

of X with C¢ := cosh¢&, S¢ := sinh¢ and the already given p € X, p2 =1, v >0
(see section 2.8).

A. TI(p,v) CT. Observe that

o~
p(ypCe + yS 77\/1+ pCe + ySe)2 = 0,
(7vpCe + ySe) e (7vpCe + ySe)
in view of p> =1, py = 0 and
1+ (vC¢ +ySe)? = CZ(1 + 7).
B. I' C II(p,y). For a given x € I" write x =: T + xop with T € X,zp € R and
Z,

p = 0 (see the beginning of section 1.7). Take y € X, y?> = 1 such that
T = Ay, A € R. Put T = yS;¢ for a suitable £ € R. Since x € I', we obtain

= ——V 1422
pT - 5 x

i.e.
Zo

_
VItZ +ay  J1+92

Hence xg > 0 because of v > 0, and by squaring (6.29),

(6.29)

v =7 (14+7%) =~+*(1 + 552) = ’YQC’E.
Thus xog = vC¢, because of £y > 0 and v > 0. Together,
x =T+ zop = 1pCe +ySe € 1l(p,7)
holds true.

Hence I' = II(p, 7).

Finally we have to prove that every hyperbolic hyperplane of X can be writ-
ten in form (6.28). So let II(p,~) be given (see (2.27)),

(p,v) = {ypCe + ySe | € € R, y € p* with y? =1},

with p € X, p?2 =1, v > 0. But as shown under A and B,

{$€X\P$:\/%772\/1+$2}:H(P77)
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holds true. Finally, with

(==E

we obtain
{x€X|(x,\/1+x2)6H}:{xeX|pa:=\/1772\/1—1—%}. O
+7
Remark. Instead of (6.26), of course, it is possible to write, by ¢ := —p and
v =: sinh p,
H((—¢,—tanhp),0), ¢€ X, ¢* =1, u >0,
i.e.

H((q,tanh p),0), g€ X, ¢ =1, p > 0.

If we look to the classical case X = R2, we obtain that the line
{pCe +aSc | E€R}, pg€ X, pg=0, ¢ =1,
of (R% hyp) (see p. 39), or as we would like to write (compare with (2.27))
{wCe +qSc [€€R}, pge X, p? =1=¢% pg=0, 7 >0,
coincides with {z € X | (x,+/1+ x2) € H} such that

—
6.8 Orthogonal lines in metric spaces

Let (S,d) be a metric space and suppose that lines of (S,d) are defined as in
section 2.4.

Definition I. Let [, ¢ be lines of (.5, d) having exactly one element s € S in common.
We will say that [ is orthogonal to t and write I L t if, and only if, there exists
p € I\t such that d(p, s) < d(p,q) holds true for all g € t\l.

We now would like to compare Definition I with Definition II of orthogonality
in (X, eucl), (X, hyp), respectively, as given in section 2.7. The latter notion of
orthogonality will be designated by x—orthogonality up to the moment that we
realize that both notions of orthogonality coincide.

Definition II. Let X be a real inner product space of finite or infinite dimension
> 1 and let [, ¢ be lines of (Xeucl), or lines of(X, hyp), through s € X. We will
say that [ is x—orthogonal to ¢ and write [ L * ¢ if, and only if, there exist

a € \{s}, bet\{s} (6.30)
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such that

la =b]* = [la — s||* + ||s = b]|*, (6.31)
cosh hyp (a.b) = cosh hyp (a, s) - cosh hyp (s,b) (6.32)
hold true for (X, eucl), (X, hyp), respectively.
Proposition 9. Definitions I, 11 coincide for (S,d) = (X, eucl).

Proof. Assume [ L* ¢, moreover s € [Nt, (6.30) and (6.31).

From (6.31) follows
(a—s)(s—b)=0 (6.33)
by observing |ja —b||* = ((a —s) + (s — b))2. Hence | # t, i.e. INt = {s}. Now put

p := a and observe that

[eucl(p, s)]* < [eucl(p, q)]?

forall g € {b+&(s—b) | 1# € € R}, in view of

(g—a)=(s—a)+ (- 1)(s—b).

Thus [ L ¢.

Vice versa, assume [ L t, i.e. {s} = 1Nt and that there exists p € I\t with
eucl(p, s) < eucl(p, q) for all ¢ € t\l. Take v € X, v?> = 1, such that ¢t = s + Ru.
Hence

(p—8)2 < (p—s—v)?forall 0#\cR,

in view of eucl(p, s) < eucl(p, q) for all ¢ € ¢t\l. Thus
2 v(p — s) < A? for all A # 0,

ie. v(p —s) = 0. But this implies (6.31) for a :=p and b:=s+wv,ie. [ L*¢. O

Definition II has the advantage that it is a common geometrical definition
for (X, eucl), (X, hyp), since (6.31), (6.32) represent Pythagoras’ Theorem for eu-
clidean, hyperbolic geometry, respectively.

However, also Definition I is definitely attractive from the point of view of
geometrical intuition.

Theorem 10. Definitions I, 11 coincide for (S,d) = (X, hyp) as well.

Proof. Assume [ 1* t, s € [Nt, (6.30) and (6.32). Take a hyperbolic motion
w: X — X with p(a) = 0 and write pu(z) = 2’ for x € X. Since u preserves
hyperbolic distances, we get from (6.32) and

cosh hyp(z,y) = V1+22y/1+y? —zy
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the equation
V142 (s'V) =57 /14 2. (6.34)

[ is the line through a and s. Hence p(l) = R - s’. Moreover, by C¢ := coshé,
S¢ :=sinh¢,
u(t) = {UCg + wSe | € e R} (6.35)

with suitable v,w € X such that vw = 0, w?> = 1. Observe 0 = a’ ¢ u(t), i.e.
v # 0, since otherwise a € t N1, i.e. t = from a # s (see (6.30)). But ! £* [ holds
true for every hyperbolic line. Put, by (6.35),

s =vC, + wS,, b =vCs+ wSp. (6.36)
Hence (6.34) implies
Se - So—p =0,
ie.o=0o0roc =0 ie. s =vors =1, by (6.36). Since s = b contradicts
b € t\{s}, we obtain s’ = v.

In order now to prove [ L ¢ put p := a and s := p~!(v) in Definition I.
Observe that
Ygery hyp (p,s) < hyp (p,q) (6.37)

is equivalent with
Vgrervr hyp (0, s") < hyp (0, d),

i.e. with
hyp (0,v) < hyp (0,¢")
for all ¢’ = vC¢ +wSe, £ # 0, i.e. with

cosh hyp (0,v) < cosh hyp (0,q")

for all mentioned ¢’. But this last inequality is given by the obvious statement

V1t o2 <V1+02-Ce=/1+¢2

for all £ # 0. Hence (6.37) holds true, i.e. [ L ¢.

Vice versa, assume [ L ¢, i.e. {s} := 1Nt and that there exists p € I\t with
hyp (p,s) < hyp (p,q) for all ¢ € t\I. Take a hyperbolic motion - X — X with
w(p) = 0 and write u(x) =: 2’ for x € X. Because of p’ = 0 and p € | we obtain
u(l) = Rs’. Hence v # 0 in

u(t) = {vC¢ + wSe = 2(£) | € € R}

with suitable v,w € X such that vw = 0,w? = 1, because v = 0 would imply
p’ =0 € p(t) contradicting p & t. Since I L ¢ implies u(l) L p(t) and since

{s'} = u(l) N u(t),
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we get from hyp(p, s) < hyp(p, ¢) for q € t\l,

hyp (p',s') < hyp (p/,z(£)) for all z(&) # 5. (6.38)
Obviously, by p’ =0,
hyp (p',v) < hyp (p',z(£)) for all z(§) # v. (6.39)
We would like to prove s’ = v. So assume s’ # v. In a first step we observe
hyp (p',v) < hyp (p/, s') (6.40)

from (6.39), since v # s’ =: (&y). Now s’ # v and I’ L ¢’ lead to
hyp (p',s") < hyp (', 2(0) = v),

in view of (6.38). But this latter inequality contradicts (6.40). Thus s’ = v holds
true.

Observe that
cosh hyp (a,b) = cosh hyp (a,s) - cosh hyp (s,b)
for a:=p, s = v, bt :=vC; + wS1 because of the identity
cosh hyp (a’,vCy +wS1) = cosh hyp (a’,v) - cosh hyp (v,vCy + wSy).
Hence [ 1L* t. O

Thus [ L ¢t or I L* t define indeed the same notion of orthogonality for
(X,eucl), and also for (X,hyp). Notice that in Definition II we only need the
existence of a € I\{s}, b € t\{s} such that (6.31) holds true, or (6.32) in the
hyperbolic case. On page 52, however, we realized that (2.25), (2.26) are valid for
arbitrary a € [\{s} and b € t\{s}. With respect to Definition I we have a similar
situation in (X, eucl) or (X, hyp).

Proposition 11. Assume l L t, {s} =1Nt. Then
d(p,s) < d(p,q),d € {eucl, hyp}, (6.41)

holds true for all p € I\t and all q € t\l.

Proof. We only need to prove this for s = 0. Since [ L ¢ implies that there exists
po € I\t with

po-q=0
for all g € t\l, we obtain (Apg) - ¢ = 0 for all real A # 0, i.e. we get

p-q=0

for all p € I\t and all ¢ € t\l. This proves (6.41) in the euclidean as well as in the
hyperbolic case. O
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6.9 Lines orthogonal to hyperplanes

Dealing here only with the hyperbolic case, we would like to prove

Theorem 12. Let H be a hyperplane of (X, hyp) and a ¢ H a point. Then there
exists exactly one point s € H with

hyp(a, s) < hyp(a,b) for all b € H\{s}

and the line through a and s is the uniquely determined line through a orthogonal
to H.

Proof. Let H be given by (see section 2.8)
H={ypCe +ySe | € €R, yept, y* =1}

with p € X, p*> = 1, v € R>o. Without loss of generality we may assume a = 0.
Hence v > 0 because of a ¢ H. Now observe that

cosh hyp(0,vpCe +nS¢) = Cgm
for ypC¢ + ySe € H. This implies
cosh hyp(0,ypCo + y150) < cosh hyp(0, vpCe + y2.5¢) (6.42)
for all £ #0, y1 € p*, yo € pt, y? =1 =y3. Thus
s = ypCo + Y15 = 7P
All lines contained in H and passing through s are given by
{1pCe +qS¢ | € € R}
with g € p*, ¢*> = 1. They are all orthogonal to the line through a and s,
{Mp | A eR}, (6.43)

since hyp(0, s) < hyp(0,vpC¢ + ¢S¢) holds true, by (6.42), for all £ # 0, ¢ € p*,
q> = 1. Hence (6.43) is the line (see page 53) through s orthogonal to H. O

6.10 A fundamental representation of motions

Let X be a real inner product space of (finite or infinite) dimension > 2, let O(X)
be its group of all surjective (hence bijective) orthogonal transformations of X,
and T'(X) be the set of all hyperbolic translations of X.

Moreover, let M (X, hyp) be the group of all hyperbolic motions of X. The
following theorem will be proved in this section. Every u € M (X, hyp) has a repre-
sentation p = T - w with uniquely determined T € T'(X) and uniquely determined
w e O(X).
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All hyperbolic translations # id of X are given as those hyperbolic motions
w of X with the existence of an element a # 0 in X such that

0# p(x) —x €Ra (6.44)

holds true for all z € X (Theorem 33, section 2.18). We will assume a? = 1 in
(6.44). The identical translation together with all hyperbolic motions satisfying
(6.44) with a? = 1 are given with a real parameter a by

T (x) =2+ [(ax)(Co — 1) + V14 22S,]a (6.45)

for z € X with Cy, := cosha and S, := sinh a.. Of course, T2 = T35 holds true.
That T2 is a bijection of X follows from T2 - T?,, = id. Notice that T(X) is not
a subgroup of M (X, hyp) as in the euclidean case. Take, for instance, o € R with
So = % and i,j € X with 2 = 1 = 52 and ij = 0. Assume that T:T7 is again
a hyperbolic translation, say T, a? = 1, with 7 > 0, without loss of generality,
since T? =T_”. Now

T3 T3(0) = T7(0)

implies, by (6.45),

20 4
ST =—1 o 'a
a 9 1+ 3]
ie. S, = % 34 and a = \/%(Bi +35), in view of a? = 1 and 7 > 0. This, however,
contradicts

L:=T!Ti(i) = T*(i) =: R,

since Rj — Lj = %.

Theorem 13. Let X be a real inner product space of (finite or infinite) dimension
> 2. Fvery hyperbolic motion u of X has a representation p =T -w with uniquely
determined T € T(X) and uniquely determined w € O(X).

Proof. 1. If e is a fixed element of X with e? = 1, then all hyperbolic motions of
X are given (p. 76) by

{wlfo|w,0 € O(X), a € R}.
This implies that the arbitrarily given hyperbolic motion of M (X, hyp),
w=uwlio,
can be written in the form
p=wlw ! (wo) =T (wo)

with a := w(e), since
T4 (z) = wTw ™ (z)
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holds true for all z € X. Hence p can be written in the form
p=T5-%
with T2 € T(X), k € O(X).
2. Let v, B be real numbers and a,b be elements of X such that a®> =1 = b2,

Then the following statements must be equivalent

(i) T2(0) = T4(0),

(i) a=0=p or (b,8) € {(a,),(—a,—a)} and a- 5 # 0,

(iil) T2 = Tg.
Proof of statement 2. Assume that (i) holds true. (i) implies S,a = Sgb, by (6.45).
Hence, if one of the numbers «, 8 is 0, then the other one is as well. In the case

a #£0#£ B we get
Sa = (Saa)® = (Sb)* = S,

ie.a=pand a=bor o« = —f and a = —b. Thus (ii) holds true.
(ii) implies (iii): if &« = 0 = B, then
T¢ =id =T,
and in the case (b, 8) € {(a, ), (—a, —a)} with @ # 0 # 8 notice that T2 = T_2.
Trivially, (iii) implies (i).

3. Assume now Tw = Do with T, D € T(X) and w,0 € O(X). Then T = D
and w = o hold true.

Let a,b be elements of X and «, B be real numbers with a? = 1 = b and
_ ma _ b
T=T,D=T;s.

Hence T2w(0) = Tga(O) is satisfied and thus T'¢(0) = Tg(O), since w(0) = 0 = o(0).
We already know that (iii) of statement 2 is a consequence of (i). We hence get
TS = Tg, i.e. T'= D. This, furthermore, leads to w = o, by Tw = Do.

The following theorem is a corollary of Theorem 13.

Theorem 14. Let X be a real inner product space of (finite or infinite) dimension
> 2. Every hyperbolic motion u of X has a representation p = w T with uniquely
determined T € T(X) and uniquely determined w € O(X).

Proof. Assume wT = oD with T, D € T(X) and w,0 € O(X). Hence
(Wlw™)-w=(eDo™ 1) -0 (6.46)

with wTw™, cDo~! € T(X) and w,0 € O(X). Because of Theorem 13 we obtain,
by (6.46),
wlw™ ' =0Do™ !, w=o0,

ie.w=cand T = D. O
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6.11 Dimension—free hyperbolic geometry under mild
hypotheses

Let X be a real inner product space of arbitrary (finite or infinite) dimension > 1.
Define

P={zeX||z| <1}

and G to be the group of all bijections of P such that the images and pre-images
of the following sets, called P—lines or segments,

(a,0) = {z € X\{a,b} | [la — b]| = [la — 2| + [l — b||}, (6.47)
a,be X, a#b, ||la]] =1=|b|, are again P-lines.
Lemma 15. (a,b) of (6.47) is given by the segment
(a,b) ={a+o0(b—a)|0< o<1}, (6.48)
a,b distinct elements of the ball B(0,1) := {z € X | 2® = 1}.
Proof. In fact, take x of (6.47). Hence, with A :=a — z, B := x — b, we obtain
A+ Bl = [[All +[IB], (6.49)

i.e., by squaring, AB = ||A|| - || B||. Thus (AB)? = A2B2. This implies that A, B
are linearly dependent because of Lemma 1, chapter 1. Hence, by A # 0, we get
B=XAwith Ae R, A # —1, i.e.

z=a+o(b—a) (6.50)

with ¢ := 5. Now observe A > 0 from (6.49), (6.50), i.e. from [1 4+ X[ =1+ |A].

It is finally trivial to check that
z:=a+p(b—a)with0<p<1
belongs to (6.47). O

Remark. The definition of (P, G) can be weakened as follows. Define P as before
and G to be the set of all bijections of P such that the images of P-lines are
again P-lines. Then pre-images of P-lines with respect to 7 € G must also be
P-lines, i.e. G must be a group. In fact, if [ is a P-line and v an element in
G, we take p,q € [ with p # ¢q. Then v~ 1(p),7 1(¢) are distinct elements of a
uniquely determined P-line g. Now v € G implies that v(g) is a P-line through
'y(’y’l(p)) = p and V(V*I(q)) = ¢. Since there is exactly one P-line through p, g
we obtain [ = y(g).
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We will call (P,G) the geometry of segments. The question, of course, will
be whether there are connections between the geometry (P,G) of segments as
defined with respect to X, and the Cayley—Klein model of hyperbolic geometry
(X, M(X,hyp)). In the latter case of Cayley—Klein’s model, say (3,T') (see section
1.9), T’ was defined explicitly by going over from M (X, hyp) to I" via the Weier-
strass map (see section 2.12), or, explicitly as well, by applying a special subgroup
T of the é—projective group of Y = Y (X) (see section 5.7, especially p.247). In
order to describe just the last construction for X = R? with respect to projective
mappings we will take

¥ = {x1,x2) € R? | x§+x§ <1}, S:={(z1,z2) € R? | x%thg =1}

and I as the group of restrictions on ¥ of those projective mappings -y of the real
projective plane satisfying v(S) = S.

So the impression might come up that the geometry of segments is something
more general than the Cayley—Klein model of hyperbolic geometry. But this does
not hold true as we will show for arbitrary X of (finite or infinite) dimension > 1.

Theorem 16. Let the geometry (P, G) of segments be based on the real inner product
space X of finite or infinite dimension > 1. Then

(P,G) = (X, M(X,hyp))

holds true.

Proof. 1. Two geometries (S,T') and (S’,T”) are isomorphic if, and only if, there
exists a bijection ¢ : § — S’ such that

I =lp™! (6.51)
holds true (see p. 249, Lemma 18).

2. Define ¢ : P — X by
p

v(p) = \/17_7

and observe that ¢ : P — X is a bijection (see p. 66). Equation (6.52) implies

1=p)(1+[e(@)) =1

,p € P, (6.52)

and hence
5 ¢(p)

1+ ()]’

i.e.

(1) = — (6.53)
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for x € X. If a # b are on the ball B(0,1) = {z € X | 2% = 1}, then the image of
(a,b) under ¢ is the hyperbolic line (see p. 68)

{ucosh& +vsinh& | € € R} (6.54)
with
u-vV2—2ab:=b+a, v-vV2—2ab:=b—a. (6.55)

Observe uv = 0, v2 = 1 and that ab < 1 holds true since ab > 1 would imply
1 < (ab)? < a®h? = 1, i.e. that a,b would be linearly dependent, which is a
contradiction. (6.54) follows from

¢(a+ o(b—a)) =ucoshé + vsinh¢

with
0

1-9o’
On the other hand, given a hyperbolic line of (X, M (X, hyp)), say

€% = exp(26) = 0<o<l1.

{ucosh¢ +vsinh¢ | € € R}, uv =0, v? =1, (6.56)

its pre-image must be the P-line

(,0):= (x/1+u2\/1+u2’\/1+u2+x/1+u2>' (6.57)

In fact, writing unew, Unew for u,v in (6.56), we get from (6.55) and (6.57) unew =
u and vpew = v, i.e. (6.56) as p-image of (a,b).

3. Let E be a euclidean plane of X through 0 and assume that the hyperbolic
line
L= {ucosh¢ +wsinhé | € € R}, uv =0, v? =1,

intersects E in at least two distinct points. Then L is contained in E.

In fact! Let m # n be both in LNE. If 0 € L, then obviously L is a euclidean
line and therefore part of E. If 0 ¢ L, then m,n must be linearly independent and
there exist real £ # n such that

ucoshé +vsinhé = m,
wcoshn+wvsinhy = n

holds true and u # 0 as well. Hence u,v are in E and L is contained in FE.

4. If p is a bijection of X such that images and pre-images of hyperbolic lines
of X are hyperbolic lines, then p € M (X, hyp). This follows in the case of finite
dimension > 1 of X from results of several mathematicians (for more details see
R. Hofer, Kennzeichnungen hyperbolischer Bewegungen durch Lineationen, Journ.
Geom. 61 (1998) 56-61). So let us proceed to the general case of an arbitrary real
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inner product space X of (finite or infinite) dimension > 1. Assume p(0) = 0,
without loss of generality. We would like to prove hyp(z,y) = hyp(u(z), u(y)) for
all z,y € X. So take arbitrary elements x, y of X, and to these elements add a fixed
2—-dimensional euclidean plane E through 0, x,y. Moreover, take linearly indepen-
dent elements a,b € E. Then also u(a) =: r, u(b) =: s are linearly independent,
since otherwise 0,7, s would be on a euclidean (in this case = hyperbolic) line,
and hence also 0, a, b by observing that ¢~ maps hyperbolic lines onto hyperbolic
lines. Since the line [, through 0,a goes over onto the line [, through 0,7 and [,
onto ls, we obtain that ;4 maps FE into the euclidean plane F' through 0,r,s, be-
cause £ 5 0, F > 0 are also 2-dimensional hyperbolic subspaces of X: connecting
namely two points # 0, one in Ra, the other one in Rb, by a hyperbolic line h, we
obtain h C E, by step 3, and hence p(h) C F since p(h) connects a point # 0 in Rr
with a point # 0 in Rs. Mutatis mutandis we get 4~ 1(F) C E, i.e. the restriction
w | E of the bijection p: X — X is a bijection of F onto F. This restriction p | E
together with its inverse =1 (F) map hyperbolic lines onto hyperbolic lines. It is
hence a motion from E onto F. (Here we apply Hilfssatz 5, p. 20, of the paper of
R. Hoéfer mentioned on p. 260.) We thus obtain hyp(z,y) = hyp(ﬂ(m),,u(y)) for
x,y € X introduced before. This implies that u : X — X preserves hyperbolic
distances. Hence u € M (X, hyp) by Proposition 30, p. 76.

5. From step 2 we know that ¢ : P — X is a bijection such that images of
P-lines are hyperbolic lines of X, and that pre-images of hyperbolic lines of X
are P-lines. We now would like to prove

pGo~! C M (X, hyp) (6.58)

for the geometry (P,G) of segments. Obviously, u := @ge ="' is for g € G a bi-
jection of X. Moreover, u € M (X, hyp) holds true, as we will show now. Given a
hyperbolic line h of X, p~1(h) must be a P-line and gp~1(h) again a P-line, i.e.
w(h) must be a hyperbolic line of X. If, on the other hand, [ is a hyperbolic line of
X, put k := g~ Lo ~1(1), which is a hyperbolic line of X as well. Since u=1(1) = k,
we obtain that
w:X =X
is a bijection of X such that images and pre—images of hyperbolic lines of X are

hyperbolic lines. This implies, according to step 4, that u € M (X, hyp). Hence
(6.58) holds true.

6. We finally prove
@ *M(X, hyp)p C G. (6.59)

If s is a P-line, then p~tmep(s) for m € M(X, hyp) as well. n := ¢~ lmep is a

bijection of P. Moreover, n~!(¢) must be a P-line provided ¢ is such a line. Hence
n € G. Now (6.58), (6.59) imply

(P,G) = (X, M(X,hyp)), (6.60)

in view of step 1. O
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Remark. Theorem 16 shows that in order to introduce the “dimension—free Cay-
ley—Klein model” it is sufficient to define G by just collecting the bijections of P
transforming P-lines onto P-lines (implying easily that it collects precisely the
bijections of P transforming P-lines in both directions onto P-lines). This leads
by the theorem in question to the result that the group G is already given by the
group
9~ M(X, hyp)e,

thus having already metric properties despite the mild hypotheses which defined
G. So, for instance, we do not need to speak about projective processes constituting
G. Dimension—free we may say, that G is, up to isomorphism, the hyperbolic group
of motions of X.

6.12 All 2—point invariants of (P, G)

In Theorem 17 we will solve the functional equation of 2—point invariants for the
geometry of segments, showing that the notion of hyperbolic distance for (P,G)
stemming from the isomorphism of Theorem 16 must be a basis for all its 2—point
invariants. Another reason to solve the functional equation of 2—point invariants
for a certain geometry is that this procedure leads to the only possible notions
of distances for that geometry, should they properly exist: they need not to be
defined without reasonable motivations.

Let (S,T") be a geometry. The functional equation of 2-point invariants for
(S,T) is now defined as follows.

Given a set W # (). Find all mappings d : S x S — W such that

d(z,y) = d(y(2),7(1)) (6.61)
holds true for all x,y € S and v € T
We now would like to solve (6.61) for (P, G).

Theorem 17. All solutions of (6.61) for the geometry (P,G) are given as follows.
Take an arbitrary mapping f : R>g — W, where R>( designates the set of all
non—negative real numbers. Then put

d(p,q) = f(9(p,9)) (6.62)
for p,q € P, where g(p,q) > 0 is defined by

coshg(p,q) = Lo pd
’ V1—pZy/1—¢2

Proof. 1. All solutions of (6.61) for the geometry (X, M (X, hyp)) are given by

d(z,y) = f(hyp(z,y)) (6.64)

(6.63)
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for z,y € X, where f : R>o — W is an arbitrary mapping. That (6.64) is a
solution of (6.61) follows from

d(z,y) = f(hyp(z,y)) = f(hYP(W(fU)»W(Z/))) =d(v(2),7(y))
for all z,y € X and v € M (X, hyp). Let now
d:XxX W (6.65)

be a given solution of (6.61). Take a fixed e € X with 2 = 1 and define for
AE Rzo,
f(A) :=d(0,esinh \). (6.66)

We then will prove that with this mapping f : R>g — W, the given solution (6.65)
is determined by (6.64). By step D. a) (see p. 25) for x,y € X there exist a real
A>0andap e M(X, hyp) with u(z) = 0 and p(y) = esinh A. Hence, by (6.61),
(6.66),

d(z,y) = d(p(z), p(y)) = d(0,e-sinh A) = f())
f(hyp(0,e-sinh X)) = f(hyp(u(fv),u(y)))
= f(hyp(%y))

2. Starting with an arbitrary solution d(p, ¢) of (6.61) for (P, G),

d(p,q) = d(v(p),v(q)) for all p,q € P, v € G, (6.67)
we define, by applying ¢! of (6.53),
§(z,y) =d(¢  (z), ¢ (y)) for all z,y € X. (6.68)

Observe that d(z,y) = d(eye ' (z), o7~ (y)), by (6.67), for all z,y € X and
v E€GQ@G,ie.
8(z,y) = d(u(x), uly))
for all z,y € X and p € M (X, hyp) by (6.58), (6.59). Step 1 implies
d(z,y) = f(hyp(z,y)) for all z,y € X,
hence, by (6.68) and p := ¢~ (), ¢ := ¢~ (y),
d(p,q) = d(z,y) = f(hyp(w(p), @(q)))- (6.69)

Noticing that

1—
coshhyp((p), 9(9)) = V1 +22\/1+y? —ay = T pq1 —

and (6.63), we obtain hyp(¢(p), ©(q)) = g(p,q), i-e.
d(p,q) = f(9(p,q)) for all p,q € P. O
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Corollary. ¢(p,q) = hyp(cp(p),cp(q)) for all p,q € P with ¢ : P — X defined by
(6.52).

Remark. Theorem 17 and the following Corollary indicate the importance of ex-
pression (2.40) of section 2.12. At the beginning of 2.12 we just defined ¢(p, q),
however, depending on hyp: X x X — R>q. The fundamental importance of the
function hyp for arbitrary (finite or infinite) dimension > 1 of X follows from
Theorem 7 of section 1.11.



Appendix A

Notation and symbols

Theorems, propositions, and lemmata are numbered consecutively in each chap-
ter, so that Lemma 1 may be followed by Proposition 2 and that by Theorem 3.
Chapters are subdivided into sections but numbering of formulas is within chap-
ters, not sections. The end of a proof is indicated by 0. The symbols := or =:
mean that the side of the equation, where the colon is, is defined by the other side.
Sometimes provided is used as an abbreviation for if and only if.

A= B means A implies B,
A< B isdefined by (A= B)and (B = A),
v abbreviates  forall.

Moreover,

Vees A(x) = B(z) means A (z) implies B (z) for all x € S,
3, there exist(s)

and
f:A— B that f is a mapping from A into B.

If f is a mapping from B into C' and g a mapping from A into B, then fg: A — C
is defined by (fg)(z) := f[g (2)] for all x € A.

If f is a mapping from A into B and if H is a subset of A, then f | H (the so—called
restriction of f on H) denotes the mapping ¢ : H — B with ¢ (z) := f (z) for all
reH.

If S is a set, then id : S — S designates the mapping defined by id (z) = z for all
xesS.

If S is a set, then {x € S | P(x)} denotes the set of all z in S which satisfy
property P.
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If A, B are sets, then A\B:={z € A|z ¢ B}.
R denotes the set of all real numbers, furthermore,

R>o ={ze€R|z >0},
R>0 = Rzo\{O}

If Aq,..., A, are sets, their cartesian product is

A1><A2><--~><An ::{(ml,...,xn)|xi€Ai fOTiZl,...

If M is a set, #M designates its cardinality.

,n}.

If a is a non-negative real number, v/a denotes the real number b > 0 satisfying

b2 = q.
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action of a group, 16

angle, 60

angle measure, 60, 61

angles of parallelism, 61
axiom of coincidence, 38

axis of a translation group, 11

ball, 45, 46, 217
Blumenthal line, 38
bundle, 148

cartesian coordinates, 74
Cauchy’s functional equations, 25
Cauchy—Schwarz inequality, 4
causal automorphism, 177, 180
Cayley—Klein model, 66-70, 242
characterization of translations, 78
circular helix, 200
closed line, 205
conditional functional equation, 251
contact, 135
contact relation of Lie sphere geom-
etry, 150, 151

cosine theorem, 60

of hyperbolic geometry, 60
cross ratio, 66, 118-120
cycle coordinates

of Laguerre cycles, 135

of Lie cycles, 154
cyclographic projection, 141
cylinder model, 142, 143

d—affine
geometry, 239
group, 239, 242

mapping, 233, 234
d6—duality, 240
d—independent, 240
d—linear mapping, 231
d—polarity, 240
d—projective
Cayley—Klein model, 242, 247
extension, 236
geometry, 239
group, 239
hyperplane, 235
improper, 236
mapping, 235
A—subspace, 241
diffeomorphism (line preserving), 174
dilatation, 153
dimension-free, ix, xi, xii
direction of a translation group, 11
distance between a point and a hy-
perplane, 54
distance function
elliptic, 208, 216
euclidean, 20
hyperbolic, 20, 126, 127
Lorentz—Minkowskian, 172, 175,
194, 196
of Xo:= X\ {0}, 215
spherical, 208, 216
dual subspace, 241

Einstein distance, 197
Einstein’s
cylinder universe, 197
cylindrical world, 197
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elliptic
geometry, 214
group, 214
hyperplane, 271
motion, 214
points, 211
end
of a line, 56, 57
of a ray, 59
equidistant surface, 54
ES-space, 210
euclidean
distance, 20
geometry, 20
hyperplane, 49
line, 39
metric space, 38
motion, 32, 76
subspace, 49, 50
event, 175
example of a quasi—hyperplane which
is not a hyperplane, 50, 51
examples of real inner product
spaces, 2, 3, 50
extended d—affine mapping, 237, 239

Fourty-five degree hyperplane, 142
functional equation

of Blumenthal lines, 38

conditional, 251

of 2-point invariants, 203, 207,
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of Cauchy, 25

of hyperbolic sine, 30

of Jensen, 6

of translations, 11
fundamental theorem

of Lie sphere geometry, 173

of Mébius sphere geometry, 98
future of an event, 187

generator, 142
geometrical subspace, 63

Index

geometry

d—affine, 239

d—projective, 239

elliptic, 214

euclidean, 20

hyperbolic, 20

invariant, 16

invariant notion, 16

Lorentz—Minkowski, 172

of a group of permutations, 16

of de Sitter’s world, 205

of Einstein’s cylindrical world,
200

of segments, 290

(P,G), 289

projective, 157

(S,G), 16

spherical, 214

group

action, 16
d—affine, 239, 242
d—projective, 239
elliptic, 214
Lorentz, 172
of permutations, 10
of translations, 11
axis, 11
direction, 11
kernel, 12
orthogonal, 7
projective, 157
spherical, 214

homogeneous coordinates, 136, 154
horocycle, 62, 63

as paraboloid, 62, 63

hyperbolic

coordinates, 74
distance, 20, 126, 127
geometry, 20
hyperplane, 49

line, 39

metric space, 38
midpoint, 81
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motion, 32, 76

subspace, 49, 50
hypercycle, 54
hyperellipsoid, 47
hyperplane

cut, 142

euclidean, 49

hyperbolic, 51, 283

of de Sitter’s world, 276

of Lorentz—Minkowsky

geometry, 188, 272

improper
d—projective hyperplane, 236
Lorentz boost, 160
incidence, 235, 241
inequality of Cauchy—Schwarz, 4
integral equation, 96-98
invariant, 16, 17
invariant notion, 16
inversion, 94, 95
involution, 95, 102
isometries
of (X, eucl), 75, 76, 80
of (X, hyp), 75, 76, 80
of C(Z), 198
of B(X), 212
of S(X), 212
of a metric space, 75
of an ES-space, 212
isomorphic
euclidean geometries, 252, 253
geometries, 17, 249
hyperbolic geometries, 256
Mobius sphere geometries, 249
real inner product spaces, 1, 2,
263

Jensen’s functional equation, 6

kernel of a translation group, 12
Klein’s Erlangen programme, ix, x

Lag (X), 151, 170
Lag.(X), 151
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Laguerre
cycle, 134
sphere geometry, 151
transformation, 151, 152, 163
L-hyperplane, 265
Lie
cycle, 150
quadric, 155
sphere geometry, 151
transformation, 151
Lie (X), 151
light cone, 186, 187
lightlike
hyperplane, 188, 189, 191, 194
lines, 185-187
line
Blumenthal, 38
closed, 205
euclidean, 39
hyperbolic, 39
Menger, 43
open, 205
lines
of de Sitter’s world, 205
of Einstein’s universe, 200
Lorentz
boost, 160, 161, 163, 164, 167,
172, 176, 179-183, 227
group, 172
transformation, 172, 175
transformations as Lie transfor-
mations, 193
Lorentz—Minkowski geometry, 172

maximal subspace, 50
measure of an angle, 60, 61
Menger
interval, 43
line, 43
metric space, 37, 38
mid—cycle, 141
midpoint, 81
mild-hypotheses characterizations,
7, 80, 170, 172-174
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M,,—sphere, 112
M"—sphere, 115
Mobius
ball, 93
circle, 111
group, 93
sphere geometry, 93
transformation, 93
as Lie transformation, 167169
motion
a fundamental representation,
287
elliptic, 214
euclidean, 32, 76
hyperbolic, 32, 76
of a metric space, 76
of de Sitter’s world, 205
of Einstein’s cylinder universe,
200
of Lorentz—Minkowski geometry,
176
spherical, 214

norm, 5
n—plane, 112
null-line, 200, 205

open line, 205
orthochronous Lorentz transfor-
mation, 179
orthogonal
group, 7
lines in metric spaces, 282
mapping, 5
orthogonality, 51, 107, 116

Parallelity, 54, 59, 138, 142
parametric representation, 54-56, 97
past of an event, 187
pencil

elliptic, 146

hyperbolic, 147

parabolic, 144
periodic lines, 218-220

Index

Perm X, 10

permutation

group, 10
product, 10

P-line, 289

II-subspace, 241
Poincaré’s model, 126, 131
point of contact, 135
power, 139

principle of duality, 242
projective

geometry, 157
group, 157
transformation, 157

proper

Laguerre sphere geometry, 151
Lorentz boost, 160

quasi—hyperplane, 50, 51

ray, 59

through an end, 59

real distance space, 265, 272
real inner product space, 1

examples, 2, 3, 50

reflection, 94
regular quadric, 240
relativistic addition, 181

segment, 289

separable translation group, 14, 15
separated points, 205

separation, 139

sides

of a ball, 123
of a hyperplane, 123
of an M-ball, 123

similitude, 93

de Sitter distance, 205
de Sitter’s world, 205
spacelike lines, 185—-187
spear, 133

coordinates, 135
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spherical

geometry, 214

group, 214

hyperplane, 271

motion, 214

points, 211

subspace, 50
spherically independent, 114
stabilizer, 35
stereographic projection, 121
strongly independent, 165, 166
structured similarity, 278
subspace, 49, 50, 217
substructure of a geometry (S, G),

273

suitable hyperplane, 121, 122
symmetry axiom, 38

tangential
distance, 140
hyperplane, 110, 134, 189
theorem of Pythagoras
euclidean, 51, 283
hyperbolic, 51
time axis, 175
timelike lines, 185-187
transformation formulas, 70, 73
translation
equation, 11
group, 11
axis, 11
direction, 11
kernel, 12
triangle inequality, 5, 38

two-point invariants, 202, 203, 205,

207

Uniform characterization of euclidean
and hyperbolic geometry, 21

unit ball, 95
universe (cylinder universe), 197

velocity of signals, 185
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Weierstrass
coordinates, 229, 279
map, 66
model, 131, 279
world-line, 185

X, occasionally also (X,0), as stan-
dard notation for a real in-
ner product space contain-
ing two linearly independent
elements, 1, 5

Y as standard notation for Y =X ®R
with product (3.54), 120,
142, 143

7 as standard notation for Z=X®R
with product (3.88), 141,
144, 175
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