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Preface

The CIME-EMS Summer School in applied mathematics on “Multiscale and
Adaptivity: Modeling, Numerics and Applications” was held in Cetraro (Italy) from
July 6 to 11, 2009. This course has focused on mathematical methods for systems
that involve multiple length/time scales and multiple physics. The complexity of
the structure of these systems requires suitable mathematical and computational
tools. In addition, mathematics provides an effective approach toward devising
computational strategies for handling multiple scales and multiple physics. This
course brought together researchers and students from different areas such as partial
differential equations (PDEs), analysis, mathematical physics, numerical analysis,
and scientific computing to address the challenges present in these issues. Physical,
chemical, and biological processes for many problems in computational physics,
biology, and material science span length and time scales of many orders of
magnitude. Traditionally, scientists and research groups have focused on methods
that are particularly applicable in only one regime, and knowledge of the system at
one scale has been transferred to another scale only indirectly. Microscopic models,
for example, have been often used to find the effective parameters of macroscopic
models, but for obvious computational reasons, microscopic and macroscopic scales
have been treated separately.

The enormous increase in computational power available (due to the improve-
ment both in computer speed and in efficiency of the numerical methods) allows
in some cases the treatment of systems involving scales of different orders of
magnitude, arising, for example, when effective parameters in a macroscopic model
depend on a microscopic model, or when the presence of a singularity in the solution
produces a continuum of length scales. However, the numerical solution of such
problems by classical methods often leads to an inefficient use of the computational
resources, even up to the point that the problem cannot be solved by direct numerical
simulation. The main reasons for this are that the necessary resolution of a fine scale
entails an over-resolution of coarser scales, the position of the singularity is not
known beforehand, the gap between the scales is too big for a treatment in the same
framework. In other cases, the structure of the mathematical models that treat the
system at the different scales varies a lot, and therefore new mathematical techniques
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are required to treat systems described by different mathematical models. Finally, in
many cases one is interested in the accurate treatment of a small portion of a large
system, and it is too expensive to treat the whole system at the required accuracy. In
such cases, the region of interest is modeled and discretized with great accuracy,
while the remaining parts of the system are described by some reduced model,
which enormously simplifies the calculation, still providing reasonable boundary
conditions for the region of interest, allowing the required level of detail in such
region.

The outstanding and internationally renowned lecturers have themselves con-
tributed in an essential way to the development of the theory and techniques that
constituted the subjects of the courses. The selection of the five topics of the
CIME-EMS Course was not an easy task because of the wide spectrum of recent
developments in multiscale methods and models. The six world leading experts
illustrated several aspects of the multiscale approach.

Silvia Bertoluzza, from IMATI-CNR Pavia, described the concept of nonlinear
sparse wavelet approximation of a given (known) function. Next she showed how
the tools just introduced can be applied in order to write down efficient adaptive
schemes for the solution of PDEs.

Bjorn Engquist, from ICES University of Texas at Austin, gradually guided the
audience toward the realm of “Multiscale Modeling,” by providing mathematical
ground for state-of-the-art analytical and numerical multiscale problems.

Alfio Quarteroni, from EPFL, Lausanne, and Politecnico di Milano, considered
adaptivity in mathematical modeling for the description and simulation of complex
physical phenomena. He showed that the combination of hierarchical mathematical
models can be set up with the aim of reducing the computational complexity in the
real life problems.

Ricardo H. Nochetto, from University of Maryland, and Andreas Veeser, from
Università di Milano, in their joint course started with an overview of the a posteriori
error estimation for finite element methods, and then they exposed recent results
about the convergence and complexity of adaptive finite element methods.

Kunibert G. Siebert, from Universität Duisburg-Essen, described the implemen-
tation of adaptive finite element methods using toolbox ALBERTA (created by
Alfred Schmidt and Kunibert G. Siebert, which is freely available).

The main “senior” lecturers were complemented by four young speakers, who
gave account of detailed examples or applications during an afternoon session
dedicated to them. Matteo Semplice, Università dell’Insubria, has spoken about
“Numerical entropy production and adaptive schemes for conservation laws,”
Tiziano Passerini, from Emory University, about “A 3D/1D geometrical multiscale
model of cerebral vasculature,” Loredana Gaudio, MOX Politecnico di Milano,
about “Spectral element discretization of optimal control problems,” and Carina
Geldhauser, Universität Tuebingen, described “A discrete-in-space scheme converg-
ing to an unperturbed Cahn–Hilliard equation.” Both the lectures and the active
interactions with and within the audience contributed to the scientific success of the
course, which was attended by about 60 people of various nationality (14 different
countries), ranging from first year PhD students to full professors. The present
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volume collects the expanded version of the lecture notes by Silvia Bertoluzza, Alfio
Quarteroni (with Marco Discacciati and Paola Gervasio as coauthors), Ricardo H.
Nochetto, Andreas Veeser, and Kunibert G. Siebert. We are grateful to them for such
high quality scientific material.

As editors of these Lecture Notes and as scientific directors of the course, we
would like to thank the many persons and Institutions that contributed to the success
of the school. It is our pleasure to thank the members of the Scientific Committee
of CIME for their invitation to organize the School; the Director, Prof. Pietro
Zecca, and the Secretary, Prof. Elvira Mascolo, for their efficient support during the
organization and their generous help during the school. We were particularly pleased
by the fact that the European Mathematical Society (EMS) chose to cosponsor this
CIME course as one of its Summer School in applied mathematics for 2009. Our
special thanks go to the lecturers for their early preparation of the material to be dis-
tributed to the participants, for their excellent performance in teaching the courses
and their stimulating scientific contributions. All the participants contributed to
the creation of an exceptionally friendly atmosphere in the beautiful environment
around the School. We also wish to thank Dipartimento di Matematica of the
Università degli Studi di Milano, and Dipartimento di Matematica ed Informatica
of the Università degli Studi di Catania for their financial support.

Catania Giovanni Naldi
Milano Giovanni Russo
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Adaptive Wavelet Methods

Silvia Bertoluzza

Abstract Wavelet bases, initially introduced as a tool for signal and image process-
ing, have rapidly obtained recognition in many different application fields. In this
lecture notes we will describe some of the interesting properties that such functions
display and we will illustrate how such properties (and in particular the simultaneous
good localization of the basis functions in both space and frequency) allow to devise
several adaptive solution strategies for partial differential equations. While some of
such strategies are based mostly on heuristic arguments, for some other a complete
rigorous justification and analysis of convergence and computational complexity is
available.

1 Introduction

Wavelet bases were introduced in the late 1980s as a tool for signal and image pro-
cessing. Among the applications considered at the beginning we recall applications
in the analysis of seismic signals, the numerous applications in image processing
– image compression, edge-detection, denoising, applications in statistics, as well
as in physics. Their effectiveness in many of the mentioned fields is nowadays
well established: as an example, wavelets are actually used by the US Federal
Bureau of Investigation (or FBI) in their fingerprint database, and they are one
of the ingredient of the new MPEG media compression standard. Quite soon it
became clear that such bases allowed to represent objects (signals, images, turbulent
fields) with singularities of complex structure with a low number of degrees of
freedom, a property that is particularly promising when thinking of an application
to the numerical solution of partial differential equations: many PDEs have in fact
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2 S. Bertoluzza

solutions which present singularities, and the ability to represent such solution
with as little as possible degrees of freedom is essential in order to be able to
implement effective solvers for such problems. The first attempts to use such bases
in this framework go back to the late 1980s and early 1990s, when the first simple
adaptive wavelet methods [38] appeared. In those years the problems to be faced
were basic ones. The computation of integrals of products of derivative of wavelets –
object which are naturally encountered in the variational approach to the numerical
solution of PDEs – was an open problem (solved later by Dahmen and Micchelli
in [24]). Moreover, wavelets were defined on R and on Rn. Already solving a simple
boundary value problem on .0; 1/ (the first construction of wavelets on the interval
[19] was published in 1993) posed a challenge.

Many steps forward have been made since those pioneering works. In particular
thinking in terms of wavelets gave birth to some new approaches in the numerical
solution of PDEs. The aim of this course is to show some of these new ideas. In
particular we want to show how one key property of wavelets (the possibility of
writing equivalent norms for the scale of Besov spaces) allows to write down some
new adaptive methods for solving PDE’s.

2 Multiresolution Approximation and Wavelets

2.1 Riesz Bases

Before starting with defining wavelets, let us recall the definition and some prop-
erties of Riesz bases [14], which will play a relevant role in the following. Let H
denote an Hilbert space and let V � H denote a subspace. A basis B D f'k; k 2 I g
(I � N index set) of V is a Riesz basis if and only if the following norm equivalence
holds:

k
X

k

ckekk2H '
X

k

jckj2:

Here and in the following we use the notation A ' B to signify that there exist
positive constants c and C , independent of any relevant parameter, such that cB �
A � CB. Analogously we will use the notation A �< B (resp. A �> B), meaning that
A � CB (resp. A � cB).

Letting P W H ! V be any projection operator (P2 D P ), it is not difficult to
realize that there exist a sequence G D fgk; k 2 I g such that for all f 2 H we
have the identity

Pf D
X

k2I
hf; gki'k:

The sequence gk is biorthogonal to the basis B, that is we have that

hgk; 'ii D ıi;k:



Adaptive Wavelet Methods 3

Moreover the sequence G is a Riesz basis for the subspace P �H (P � denoting the
adjoint operator to P ), and P � takes the form

P �f D
X

k2I
hf; 'kigk:

2.2 Multiresolution Analysis

We start by introducing the general concept of multiresolution analysis in the
univariate case [39].

Definition 1. A Multiresolution Analysis (MRA) of L2.R/ is a sequence fVj gj2Z

of closed subspaces of L2.R/ verifying:

(i) The subspaces are nested: Vj � VjC1 for all j 2 Z.
(ii) The union of the spaces is dense in L2.R/ and the intersection is null:

[j2ZVj D L2.R/; \j2ZVj D f0g: (1)

(iii) There exists a scaling function ' 2 V0 such that f'.� 	 k/; k 2 Zg is a Riesz
basis for V0.

(iv) f 2 V0 implies f .2j �/ 2 Vj .

Several properties descend directly from this definition. First of all it is not
difficult to check that the above properties imply that for all j the set f'j;k k 2 Zg,
with

'j;k D 2j=2'.2j � 	k/ (2)

is Riesz basis for Vj , yielding, uniformly in j , a norm equivalence between the L2

norm of a function in Vj and the `2 norm of the sequence of its coefficients.
Moreover, the inclusion V0 � V1 implies that the scaling function ' can be

expanded in terms of the basis of V1 through the following refinement equation:

'.x/ D
X

k2Z

hk'.2x 	 k/; (3)

with .hk/k 2 `2.Z/. The function ' is then said to be a refinable function and the
coefficients hk are called refinement coefficients.

Let now f 2 L2.R/. We can consider approximations fj 2 Vj to f at different
levels j . Since Vj � VjC1 it is not difficult to realize that the approximation fjC1
of a given function f at level j C1 must “contain” more information on f than fj .
The idea underlying the construction of wavelets is the one of somehow encoding
the “loss of information” that we have when we go from fjC1 to fj . Let us for
instance consider fj D Pj f , where Pj W L2.R/ ! Vj denotes the L2.R/-
orthogonal projection onto Vj . Remark that PjC1Pj D Pj (a direct consequence of
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the nestedness of the spaces Vj ). Moreover, we have that PjPjC1 D Pj : fjC1
contains in this case all information needed to retrieve fj . We can in this case
introduce the orthogonal complementWj � VjC1 (Wj ? Vj and VjC1 D Vj˚Wj ).

A similar construction can be actually carried out in a more general framework,
in which Pj is not necessarily the orthogonal projection. To be more general, let
us start by choosing a sequence of uniformly bounded (not necessarily orthogonal)
projectors Pj W L2.R/! Vj verifying the following properties:

PjPjC1 D Pj ; (4)

Pj .f .� 	 k2�j //.x/ D Pj f .x 	 k2�j /; (5)

PjC1f ..2�//.x/ D Pj f .2x/: (6)

Remark again that the inclusion Vj � VjC1 guarantees that PjC1Pj D Pj . On
the contrary, property (4) is not verified by general non-orthogonal projectors and
expresses the fact that the approximation Pj f can be derived from PjC1f without
any further information on f . Equations (5) and (6) require that the projector Pj
respects the translation and dilation invariance properties (iii) and (iv) of the MRA.

Since f'0;kg is a Riesz basis for V0 there exists a biorthogonal sequence f Q'0;kg of
L2.R/ functions such that

P0f D
X

k

hf; Q'0;ki'0;k:

Property (5) implies that the biorthogonal basis has itself a translation invariant
structure, as stated by the following proposition.

Proposition 1. Letting Q' D Q'0;0 we have that

Q'0;k.x/ D Q'.x 	 k/: (7)

Proof. We observe that

P0.f .� C n//.x/ D
X

k

hf .� C n/; Q'0;ki'.x 	 k/ D
X

k

hf .�/; Q'0;k.� 	 n/i'.x 	 k/;

P0f .x C n/ D
X

k

hf .�/; Q'0;ki'.x 	 k C n/:

Thanks to (5) we have that

X

k

hf .�/; Q'0;k.� 	 n/i'.x 	 k/ D
X

k

hf .�/; Q'0;ki'.x 	 k C n/;

and, since f'0;kg is a Riesz basis for V0, implying that the coefficients (and in
particular the coefficient of '0;0 D '.x/) are uniquely determined, this implies,
for all f 2 L2.R/,
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hf; Q'0;0.� 	 n/i D hf; Q'0;ni;
that is, by the arbitrariness of f , Q'0;n D Q'0;0.� 	 n/. ut

In an analogous way, thanks to property (6) it is not difficult to prove the
following Proposition.

Proposition 2. We have

Pj f D
X

k

h Q'j;k; f i'j;k with Q'j;k.x/ D 2j=2 Q'.2j x 	 k/: (8)

Moreover the set f Q'j;k; k 2 Zg forms a Riesz basis for the subspace QVj D
P �j .L2.R// (where P �j denotes the adjoint of Pj ).

Finally, property (4) implies that the sequence QVj is nested.

Proposition 3. The sequence f QVj g satisfies QVj � QVjC1.
Proof. Property (4) implies that P �jC1P �j f D P �j f . Now we have f 2 QVj implies

f D P �j f D P �jC1P �j f 2 QVjC1. ut

Corollary 1. The function Q' D Q'0;0 is refinable.

The above construction derives from the a priori choice of a sequence Pj , j 2 Z,
of (oblique) projectors onto the subspaces Vj . A trivial choice is to define Pj as the
L2.R/ orthogonal projector. It is easy to see that all the required properties are
satisfied by such a choice. In this case, since the L2.R/ orthogonal projector is self
adjoint, we have QVj D Vj , and the biorthogonal function Q' belongs itself to V0.
Clearly, in the case that f'0;k; k 2 Zg is an orthonormal basis for V0 (as in the
Haar basis case of the forthcoming Example I, or as for Daubechies MRA’s) we
have that Q' D '. Another possibility would be to choose Pj to be the Lagrangian
interpolation operator. This choice, which we will describe later on, does however
fall outside of the framework considered here, since interpolation is not an L2.R/
bounded operator.

Infinitely many other choices are possible in theory but quite difficult to construct
in practice. The solution is then to go the other way round, constructing the function
Q' directly and defining the projectors Pj by (8) [18]. We then introduce the
following definition:

Definition 2. A refinable function

Q' D
X

k

Qhk Q'.2 � 	k/ 2 L2.R/ (9)

is dual to ' if
h'.� 	 k/; Q'.� 	 l/i D ık;l k; l 2 Z:

It is possible to prove that the translates of the dual refinable function are a Riesz
basis for the subspace that they span.



6 S. Bertoluzza

Assuming then that we have a refinable function Q' dual to ', we can define the
projector Pj using (8).

Pj f D
X

k2Z

hf; Q'j;ki'j;k:

The operator Pj is bounded and it is indeed a projector: it is not difficult to check
that f 2 Vj ) Pj f D f .

Remark 1. As it happened for the projector Pj , the dual refinable function Q' is not
uniquely determined, once ' is given. Different projectors correspond to different
dual functions. It is worth noting that P.G. Lemarié [37] proved that if ' is compactly
supported then there exists a dual function Q' 2 L2.R/ which is itself compactly
supported.

The dual of Pj
P �j f D

X

k2Z

hf; 'j;ki Q'j;k

is also an oblique projector onto the space Im.P �j / D QVj , where

QVj D span < Q'j;k; k 2 Z > :

It is not difficult to see that since Q' is refinable then the QVj ’s are nested.

Remark 2. The two different ways of defining the dual MRA are equivalent. A third
approach yields also an equivalent structure. In fact, assume that we have a sequence
QVj of spaces such that the following inf-sup conditions hold uniformly in j :

inf
vj2Vj

sup
wj2 QVj

hvj ;wj i
kvj kL2.R/kwj kL2.R/ �

> 1; inf
wj2 QVj

sup
vj2Vj

hvj ;wj i
kvj kL2.R/kwj kL2.R/ �

> 1:

(10)
Then it is possible to define a bounded projector Pj W L2.R/ ! Vj as Pj v D vj ,
vj being the unique element of Vj such that

hvj ;wj i D hv;wj i 8wj 2 QVj :

It is not difficult to see that if the sequence QVj is a multiresolution analysis (that is, if
it satisfies the requirements of Definition 1) then the projectorPj satisfies properties
(4)–(6). Conversely the uniform boundedness of the projector Pj and of its adjoint
QPj actually implies the validity of the two inf-sup conditions (10).

2.2.1 Wavelets

Whatever the way chosen to introduce the dual multiresolution analysis, we have
now a natural way to define a space Wj which complements Vj in VjC1. More
precisely we set
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VjC1 D Vj ˚Wj ; Wj D Qj .VjC1/; Qj D PjC1 	 Pj : (11)

Remark that Q2
j D Qj , that is Qj is indeed a projector on Wj . Wj can also be

defined as the kernel of Pj in VjC1. Iterating for j decreasing the splitting (11) we
obtain a multiscale decomposition of VjC1 as

VjC1 D V0 ˚W0 ˚ � � � ˚Wj :

By construction we also have, for all f 2 L2.R/, the decomposition

PjC1f D P0f C
jX

mD0
Qmf:

In other words the approximationPjC1f is decomposed as a coarse approximation
at scale 0 plus a sequence of fluctuations at intermediate scales 2�m; m D 0; : : : ; j .

If we are to express the above identity in terms of a Fourier expansion, we need
bases for the spaces Wj . Depending on the nature of the spaces considered such
bases might be readily available (see for instance the construction of interpolating
wavelets). However this is not, in general, the case. A general procedure to construct
a suitable basis for Wj is the following [30]: define two sets of coefficients:

gk D .	1/k Qh1�k; Qgk D .	1/kh1�k; k 2 Z

and introduce a pair of dual wavelets  2 V1 and Q 2 QV1

 .x/ D
X

k

gk'.2x 	 k/ Q .x/ D
X

k

Qgk Q'.2x 	 k/: (12)

The following theorem holds [18]:

Theorem 1. The integer translates of the wavelet functions  and Q are orthog-
onal to Q' and ', respectively, and they form a couple of biorthogonal sequences.
More precisely, they satisfy

h ; Q .� 	 k/i D ı0;k h .� 	 k/; Q'i D h Q .� 	 k/; 'i D 0: (13)

The projection operatorQj can be expanded as

Qjf D
X

k

hf; Q j;ki j;k

and the functions  j;k constitute a Riesz basis of Wj .
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For any function f 2 L2.R/, Pj f in Vj can be expressed as

Pj f D
X

k

cj;k'j;k D
X

k

c0;k'0;k C
j�1X

mD0

X

k

dm;k m;k; (14)

with dm;k D hf; Q m;ki and cm;k D hf; Q'm;ki.
Both f'j;k; k 2 Zg and f'0;k; k 2 Zg [0�m<j�1 f m;k; k 2 Zg are bases for Vj and
(14) expresses a change of basis. Thanks to the density property (1) for j ! C1
Pj f converges to f in L2.R/. Then, taking the limit for j ! C1 in (14), we
obtain

f D
X

k

c0;k'0;k C
C1X

mD0

X

k

dm;k m;k:

We will see in the following that, under quite mild assumptions, the convergence is
unconditional.

2.2.2 The Fast Wavelet Transform

The idea is now to design an algorithm allowing to compute efficiently the
coefficients cj�1;k.f / and dj�1;k.f / directly from the coefficients cj;k.f /, which
uniquely identify Pj f . The key is the refinement equation (9), which gives us a
“fine to coarse” discrete projection algorithm:

cj�1;k D hf; Q'j�1;ki D 2.j�1/=2hf; Q'.2j�1 � 	k/i

D 2.j�1/=2hf;
X

n

Qhn Q'.2j � 	2k 	 n/i D 1p
2

X

n

Qhncj;2kCn:

An analogous relation holds for dj�1;k. On the other hand, thanks to (3), given the
projection Pj�1f D P

k cj�1;k'j�1;k we are able to express it in terms of basis
functions at the finer scale

Pj�1f D 2.j�1/=2
X

k

cj�1;k'.2j�1 � 	k/

D 2.j�1/=2
X

k

cj�1;k
X

n

hn'.2
j � 	2k 	 n/

D 1p
2

X

k

hX

n

hk�2ncj�1;n
i
'j;k:
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Analogously we have

Qj�1f D 1p
2

X

k

hX

n

gk�2ndj�1;n
i
'j;k:

Since Pj f D Pj�1f CQj�1f we immediately get

Pj f D
X

k

1p
2

"
X

n

hk�2ncj�1;n C
X

n

gk�2ndj�1;n

#
'j;k:

In summary, the one level decomposition algorithm reads

cj;n D 1p
2

X

k

Qhk�2ncjC1;k dj;n D 1p
2

X

k

Qgk�2ncjC1;k

while its inverse, the one level reconstruction algorithm can be written as

cjC1;k D 1p
2

hX

n

hk�2ncj;n C
X

n

gk�2ndj;n
i
:

Once the one level decomposition algorithm is given, giving the coefficient vectors
.cj;k/k and .dj;k/k in terms of the coefficient vector .cjC1;k/k , we can iterate it to
obtain .cj�1;k/k and .dj�1;k/k and so on until we get all the coefficients for the
decomposition (14).

2.3 Examples

2.3.1 Example I: Daubechies Wavelets

The Haar basis: The first, simplest, example of a wavelet basis is the Haar basis,
which was introduced in 1909 by Alfred Haar as an example of a countable
orthonormal system for L2.R/. In the Haar wavelet case Vj is defined to be the
space of piecewise constant functions with uniform mesh size h D 2�j :

Vj D fw 2 L2.R/ such that wjIj;k is constantg;

where we denote by Ij;k the dyadic interval Ij;k WD .k2�j ; .k C 1/2�j /. It is not
difficult to see that the sequence fVj ; j 2 Zg is indeed a multiresolution analysis.
In particular an orthonormal basis for Vj is given by the family

'j;k WD 2j=2'.2j � 	k/ with ' D �j.0;1/: (15)
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Letting Pj W L2.R/ ! Vj be the L2.R/-orthogonal projection onto Vj , clearly
we have

Pj f D
X

k

cj;k.f /'j;k; cj;k.f / D hf; 'j;ki;

and the dual multiresolution analysis f QVj g coincides with fVj g. The space Wj is
then the orthogonal complement of Vj in VjC1:

VjC1 D Wj ˚ Vj ; Wj?Vj ;

and the L2.R/-orthogonal projectionQj WD PjC1 	 Pj onto Wj verifies

Qjf jIjC1;2k
D PjC1f jIjC1;2k

	 .PjC1f jIjC1;2k
C PjC1f jIjC1;2kC1

/=2

D PjC1f jIjC1;2k
=2 	 PjC1f jIjC1;2kC1

=2; (16)

Qjf jIjC1;2kC1
D PjC1f jIjC1;2kC1

	 .PjC1f jIjC1;2k
C PjC1f jIjC1;2kC1

/=2

D 	PjC1f jIjC1;2k
=2C PjC1f jIjC1;2kC1

=2: (17)

It is then not difficult to realize that we can expandQjf as

Qjf D
X

k

dj;k.f / j;k with  j;k D 2j=2 .2j � 	k/;

where
 WD �.0;1=2/ 	 �.1=2;1/:

Since the functions j;k at fixed j are an orthonormal system, they do constitute
an orthonormal basis for Wj . We have then

dj;k.f / D hf; j;ki:

Daubechies’ compactly supported orthonormal wavelets: In her 1988 ground-
breaking paper [29] Ingrid Daubechies managed to generalize the Haar basis and
construct a class of MRA’s such that both ' and have arbitrarily high regularityR,
are supported in .0; L/ and they generate by translations and dilations orthonormal
bases for the spaces Vj and Wj . The projectors Pj are, as in the Haar case, L2

orthogonal projectors. Also in this case the scaling function and the dual function
coincide and we have QVj D Vj , QWj D Wj , Q' D ' and Q D  (see Fig. 1 for an
example of scaling and wavelet functions in this framework).

A characteristic of Daubechies’ wavelets is that, unlike the Haar basis, the spaces
Vj and the function ' are not given directly. By giving an algorithm to construct
them, Daubechies characterizes all the sequences h D .hk/k for which a unique
solution ' to the refinement equation (3) exists and is orthogonal to its integer
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translates and smooth. Once .hk/k is built, the spaces Vj are then defined as the
span of f'j;k; k 2 Zg with 'j;k defined by (2). The function ' is, by construction,
refinable, and the sequence fVj ; j 2 Zg is a multiresolution analysis. The algorithm
to construct the refinement coefficients and the proof that for a given sequence .hk/k
satisfying suitable conditions (3) has indeed a solution with the required properties
is quite technical and it is beyond our scope here to give more details about such
a construction. We refer the interested reader to [30]. The coefficient sequences
themselves are available, already computed, in table form at different resource sites
over the web (see www.wavelet.org).

It is worth noting that the refinement equation is quite powerful and that it is
possible to derive from it a lot of information on the function '. For instance, if we
need to plot the function ' we will need access to point values of such a function.
Since the ' is supported in .0; L/ we have that '.n/ D 0 for all n 2 Z, n 62 .0; L/.
For the remaining integers we can write

'.n/ D
X

k

hk'.2n 	 k/ D
X

`

h2n�`'.`/:

If we consider the L 	 1 
 L 	 1 matrixH D .hn;`/ with hn;` D h2n�`, clearly the
vector .'.1/; : : : ; '.L	1// is an eigenvector ofH for the eigenvalue 1, which turns
out to be unique. Once the values in the integers are computed by any eigenvector
computation algorithm, the values in dyadic points are computed recursively thanks
again to the refinement equation, which gives us

'
� n
2j

�
D
X

k

hk'

�
n 	 2j�1k
2j�1

�
:

Analogous algorithms are available for computing many quantities which are
needed for the application in the numerical solution of PDEs, like for instance point
values of derivatives, integrals and integrals of product of derivatives.

2.3.2 Example II: B-Splines

Many applications of wavelets to PDEs are based on the multiresolution analysis
generated by the spaces Vj :

Vj D ff 2 L2 \ CN�1 W f jIj;k 2 PN g:

A basis for Vj whose elements are compactly supported can be constructed by
defining the B-spline BN of degree N recursively by

B0 WD �Œ0;1�; BN WD B0 � BN�1 D .�/NC1�Œ0;1�;
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Fig. 1 The scaling and wavelet functions ' and  generating a Daubechies’ orthonormal wavelet
basis

where � denotes the convolution product. The function BN is supported in
Œ0; N C 1�, it is refinable and the corresponding scaling coefficients are defined by

hk D

8
ˆ̂<

ˆ̂:

2�N
 
N C 1
k

!
; 0 � k � N C 1;

0 otherwise:

The integer translates of the function ' D BN form a Riesz basis for Vj . For N
given it is possible to construct an infinite class of compactly supported refinable
functions dual to BN . More precisely, analogously to what is done for Daubechies’
wavelets, it is possible [18] to characterize and construct a family of sequences
. Qhk/k for which the solution to the refinement equation (9) exists, is dual to the
B-spline BN , has compact support and arbitrarily high smoothness QR. Figures 2
and 3 show the functions ', Q',  and Q for N D 1, QR D 0 and N D 1, QR D 1,
respectively.
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Fig. 2 Scaling and wavelet functions ' and  for decomposition (top) and the duals Q' and Q for
reconstruction (bottom) corresponding to the biorthogonal basis B2.2

2.3.3 Interpolating Wavelets

It is also interesting to consider an example where Lj is a Lagrangian interpolation
operator (see [5, 33]). Clearly, Lagrangian interpolation is not an L2 bounded
operator, consequently interpolating wavelets do not entirely fall in the framework
described up to here. However they have some quite useful characteristics that make
them particularly well suited for an application to the numerical solution of PDE’s.

The Schauder piecewise linear basis: As a first example let us consider the
multiresolution analysis generated by the spaces Vj of continuous piecewise linear
functions on a uniform mesh with meshsize 2�j

Vj D fw 2 C0.R/ W w is linear on Ij;k; k 2 Zg:

We can easily construct a basis for Vj out of the dilated and translated of the “hat
function”:

Vj D spanf#j;k; k 2 Zg with #j;k WD 2j=2#.2j � 	k/;
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Fig. 3 Example of biorthogonal wavelet basis. Scaling and wavelet functions ' and  for
decomposition (top) and the duals Q' and Q for reconstruction (bottom) corresponding to the basis
B2.4. Remark that the scaling function for decomposition is the same as for the basis B2.2. In both
cases Vj is the space of piecewise linears

#.x/ D maxf0; 1	 jxjg: (18)

This basis is a Riesz basis. Remark that the hat function # is the B-spline of order
one. The multiresolution analysis Vj itself falls then in the framework described
in Sect. 2.3.2 and there exist a whole family of dual multiresolution analyses and
of associated wavelets (in Fig. 2 we see one of the possible dual functions). We
consider here instead a more straightforward approach. We observe that fj 2 Vj is
uniquely determined by its point values at the mesh points k2�j . Assuming that f
is sufficiently regular we can consider the interpolant fj D Ljf , with Lj denoting
the Lagrange interpolation operator: Lj W C0.R/! Vj is defined by

Ljf .k2
�j / D f .k2�j /:

It is not difficult to realize that

Ljf D
X

k

cj;k.f /'j;k; cj;k.f / D 2�j=2f .2�j k/:
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Remark that Lj is a “projector” (f 2 Vj implies Ljf D f ) but not an L2.R/
bounded projector (it is not even well defined in L2). Clearly we cannot find an L2

function Q' allowing to write Lj in the form (8). However, if we allow ourselves to
take Q' to be the Dirac’s delta in the origin ( Q' D ıxD0, see [5]) we see that the basic
structure of the whole construction is preserved. Once again Vj � VjC1 and Ljf
can be derived from LjC1f by interpolation

2j=2cj;k.f / D f .k2�j / D f .2k2�.jC1// D 2.jC1/=2cjC1;2k.f /:

Also in this case we can compute the details that we loose in projectingLjC1f onto
Vj by introducing the difference operatorQj D LjC1 	Lj :

We observe that the details Qjf at level j vanish at the mesh points at level j .
In fact Ljf .k2�j / D f .k2�j / D LjC1f .k2�j / implies

Qjf .k2
�j / D 0:

We can then expandQjf as

Qjf D
X

dj;k.f / j;k with  j;k D 2j=2 .2j � 	k/;

where
 .x/ D #.2x 	 1/:

This time, the “wavelets”  j;k are then simply those nodal functions at level
j C 1 associated to nodes that belong to the fine but not to the coarse grid.

Remark that for j going to infinity,Ljf converges uniformly to f provided f is
uniformly continuous. Then, if f uniformly continuous and compactly supported,
it can be expressed as the uniform (but not unconditional) limit

f D
X

k

c0;k.f /'0;k C
X

0�j

X

k

dj;k.f / j;k:

Donoho’s interpolating wavelets: The Donoho’s Interpolating wavelets generalize
the example of the Schauder piecewise linear basis. The observation that the hat
function (18) can be obtained as autocorrelation of the box function ' D �.0;1/
(# D '.�/�'.	�/) and that the interpolation property #.n/ D ı0;n is a consequence
of the orthogonality of the box functions to its integer translates,

#.n/ D
Z

R
'.x/'.n 	 x/ D ı0;n;

suggests to define, in general, an interpolating scaling function # as the autocorre-
lation of a Daubechies’ function ' [5]. Let in fact ' be a CR normalized compactly
supported refinable function, orthogonal to its integer translates. Its autocorrelation

# D '.�/ � '.	�/
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satisfies (as it is easily verified) the following properties:

(a) # is compactly supported (if supp ' � Œ0; N � then supp # � Œ	N;N �)
(b) # 2 C2R

(c) # is refinable: this is quite easily seen by observing that the refinement
equation (3) rewrites, in the Fourier domain, as O'.�/ D m0.�=2/ O'.�=2/ with
m0 DPk hke

�ik� being a trigonometric polynomial (since for the Daubechies
function the refinement coefficients sequence h has finite length); observing that
b# D jb'j2; we immediately see that

b#.�/ D jm0.�=2/j2b#.�=2/

(d) # satisfies the following interpolation property:

#.n/ D
Z

R
'.y/'.y 	 n/ dy D ın;0

Remark 3. If we take ' to be one of the so called minimal phase Daubechies scaling
function, the corresponding function # turns out to be, as pointed out by Beylkin
and Saito [40], a Deslaurier–Dubuc interpolating function, which was originally
introduced by Deslaurier and Dubuc [31] as the limit function of an interpolatory
subdivision scheme.

Let us now introduce the functions #j;k.x/ D 2j=2#.2j x 	 k/ and the spaces

Vj D spanf#j;k; k 2 Zg:
The refinability of # implies that the sequence fVj g is nested. Moreover it is

possible to prove that for all j the functions #j;k constitute a Riesz basis for Vj
[5], and that the union of the Vj ’s is dense in L2. The sequence Vj is then a
multiresolution analysis. In order to form complement spaces we follow the same
approach as for the Schauder basis, that is we define Lj to be the interpolation
operator, that, thanks to the interpolation property of # takes the form

Ljf D
X

k

2�j=2f .k=2�j /#j;k:

We can then define Qj as Qj D LjC1 	 Lj and Wj as Wj D QjVjC1. As in
the piecewise linear Schauder basis case, it is not difficult to see that, setting

 .x/ D #.2x 	 1/;  j;k D 2j=2 .2j x 	 k/ D 2j=2#.2jC1x 	 .2k C 1//; (19)

the set f j;k; k 2 Zg is a Riesz basis for Wj and that uniformly continuous
and compactly supported functions f can be expressed as the uniform (but not
unconditional) limit

f D
X

k

c0;k.f /'0;k C
X

0�j

X

k

dj;k.f / j;k:
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2.4 Beyond L2.R/

What we built in Sect. 2.2 for the space L2.R/ is a complex structure consisting
in:

(a) Two coupled multiresolution analyses Vj and QVj (possibly coinciding, in the
orthogonal case)

(b) Two sequences of adjoint projectors Pj W L2.R/ ! Vj and QPj D P �j W
L2.R/! QVj , both verifying a commutativity property of the form (4)

(c) Two dual refinable functions ' and Q' (the scaling functions) which, by
translation and dilation generate biorthogonal bases for the Vj ’s and the QVj ’s,
respectively, and that allow to write the two projectors Pj and QPj in the form
(8)

(d) A sequence of complement spacesWj (and it is easy to build a second sequence
QWj of spaces complementing QVj in QVjC1)

(e) Two functions  and Q which, by contraction and dilation generate biorthogo-
nal bases for the Wj ’s and the QWj ’s

(f) A fast change of basis algorithm, allowing to go back and forth from the
coefficients of a given function in Vj with respect to the nodal basis f'j;k; k 2
Zg to the coefficients of the same function with respect to the hierarchical
wavelet basis f'0;k; k 2 Zg [j�1mD0 f m;k; k 2 Zg

In view of the use of wavelets for the solution of PDE’s, we would like to have
a similar structure for more general domains, also in dimension greater than one.
Actually, wavelets for L2.Rd / are quite easily built by tensor product and we have
basically the same structure as in dimension one (see e.g. [15]). If, on the other hand,
we want to build wavelets defined on general, possibly bounded, domains, it is clear
that we have to somehow loosen the definition of what a wavelet is. In particular
it is clear that for bounded domains we cannot ask for the translation and dilation
invariance properties of the spaces Vj and the bases cannot possibly be constructed
by contracting and translating a single function '.

Let us then see which elements and properties of the above structure it is possible
to maintain when replacing the domain R with a general domain ˝ � Rd . As we
did for R, we will start with a nested sequence fVj gj�0, Vj � VjC1, of closed
subspaces of L2.˝/, corresponding to discretizations with mesh-size 2�j . We will
still assume that the union of the Vj ’s is dense in L2.˝/:

L2.˝/ D [j Vj : (20)

We will also assume that we have a Riesz basis for Vj of the form f'�; � 2 Kj g
such that

Vj D span < '�; � 2 Kj >;

where Kj � f.j; k/; k 2 Zd g will denote a suitable set of multi-indexes (for
˝ D R Kj D f.j; k/; k 2 Zg). Clearly, as already observed, it will not be
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possible to assume the existence of a single function' such that all the basis function
'� are obtained by dilating and translating '. However remark that a great number
of MRA’s in bounded domains are built starting from an MRA for L2.Rd / with
scaling function ' compactly supported [19]. In such case, all the basis functions of
the original MRA for L2.Rd / whose support is strictly embedded in˝ are retained
as basis functions for the Vj on ˝ .

We now want to build a wavelet basis. To this aim we will need to introduce either
a sequence of bounded projectorsPj W L2.˝/! Vj satisfyingPjPjC1 D Pj (note
that Vj D Pj .L2.˝// and that Vj � VjC1 implies PjC1Pj D Pj ) or, equivalently,
a nested sequence of dual spaces QVj satisfying the two inf-sup conditions of the
form (10). Remark that, as it happens in the L2.R/ case, choosing Pj is equivalent
to choosing QVj . The existence of a biorthogonal Riesz basis f Q'�; � 2 Kj g such that

QVj D P �j .L2.˝// D span < Q'�; � 2 Kj >;

and such that

Pj f D
X

�2Kj
hf; Q'�i'�; P �j f D

X

�2Kj
hf; '�i Q'�

is easily deduced as in the L2.R/ case. Again, it will not generally be possible to
obtain the basis functions Q'� by dilation and translation of a single function Q'.

As we did for R we can then introduce the difference spaces

Wj D Qj .L
2.˝//; Qj D PjC1 	 Pj :

We next need to construct a basis for Wj . This is in general a quite technical task,
heavily depending on the particular characteristics of the spaces Vj and QVj . It’s
worth mentioning that, once again, if the MRA for ˝ is built starting from an
MRA for L2.Rd / with compactly supported scaling function ' and if the wavelets
themselves are compactly supported, then the basis for Wj will include all those
wavelet functions on Rd whose support, as well as the support of the corresponding
dual, are included in˝ . It is well beyond the scope of this paper to go into the details
of one or another construction of the basis forWj . In any case, independently of the
particular approach used, we will end up with a Riesz basis for Wj of the form
f �; � 2 rj g:

Wj D span <  �; � 2 rj >;
where rj is again a suitable multi-index set with, in the case of bounded domains,

#.rj /C #.Kj / D #.KjC1/:

At the same time we will end up with a Riesz basis for the dual space QWj D .P �jC1	
P �j /.L2.˝//:
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QWj D spanf Q �; � 2 rj g:
The two bases can be chosen in such a way that they satisfy a biorthogonality
relation

h �; Q �0i D ı�;�0 ; �; �0 2 rj ;
so that the projection operatorQj can be expanded as

Qjf D
X

�2rj
hf; Q �i �:

Moreover it is not difficult to check that we have an orthogonality relation across
scales:

� 2 rj ; �0 2 rj 0 ; j 6D j 0 ) h �; Q �0i D 0; � 2 Kj 0 ; j 0 � j ) h �; '�i D 0:

In summary we have a multiscale decomposition of Vj as

Vj D V0 ˚W0 ˚ � � � ˚Wj�1;

and for any f 2 L2.˝/ we can then write

Pj f D
X

�2Kj
c�'� D

X

�2K0
c�'� C

j�1X

mD0

X

�2rm
d� �

with d� D hf; Q �i and c� D hf; Q'�i. Since the density property (20) implies that

lim
j!C1 kf 	 Pjf kL2.˝/ D 0;

taking the limit as j goes to C1 allows us to write

f D
X

�2K0
c�'� C

X

j�0

X

�2rj
hf; Q �i �: (21)

Remark 4. A general strategy to build bases with the required characteristics for
�0; 1Œd out of the bases for Rd has been proposed in several papers [19, 35]. To
actually build wavelet bases for general bounded domains, several strategies have
been considered. Following the same strategy as for the construction of wavelet
bases for cubes, wavelet frames [14] for L2.˝/ (˝ Lipschitz domain) can be
constructed according to [20]. The most popular approach nowadays is domain
decomposition: the domain ˝ is split as the disjoint union of tensorial subdomains
˝` and a wavelet basis for˝ is constructed by suitably assembling wavelet bases for
the˝`’s [12,16,26]. The construction is quite technical, since it is not trivial to retain
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in the assembling procedure all the relevant properties of the wavelets. Alternatively
we can think of building wavelets for general domains directly, without starting
from a construction on R. This is for instance the case of finite element wavelets
(see e.g. [27]).

2.4.1 Interpolating Wavelets on Cubes

In view of an application in the framework of an adaptive collocation method let
us consider in some more detail the construction of interpolating wavelets on the
unit square. We start by constructing an interpolating MRA on the unit interval.
Let a Deslaurier–Dubuc interpolating scaling function # be given (see Remark 3).
Following Donoho [33], we introduce the Lagrange interpolation polynomials

l[k D
NY

iD0;i 6Dk

x 	 k2�j
2�j .i 	 k/ ; l

]

k D
2jY

iD2j�N;i 6Dk

x 	 k2�j
2�j .i 	 k/ ;

and for k D 0; : : : ; 2j we define

#
Œ�

j;k D #j;k C
�1X

`D�N
l[k.2

�j `/#j;`; k D 0; : : : ; N;

#
Œ�

j;k D #j;k; k D N C 1; : : : ; 2j 	 .N C 1/;

#
Œ�

j;k D #j;k C
2jCNX

`D2jC1
l
]

k.2
�j `/#j;`; k D 2j 	N; : : : ; 2j :

We set V Œ�
j D span < #

Œ�

j;k; k D 0; : : : ; 2j > : The sequence V Œ�
j forms indeed a

MRA for .0; 1/ and the basis functions are, by construction, interpolatory.
By tensor product we then easily define a multiresolution on the square: intro-

ducing the two dimensional scaling functions �j;k; k D .k1; k2/ 2 f0; : : : ; 2j g2
defined as

�j;k D #Œ�j;k1 ˝ #
Œ�

j;k2
;

we set
Vj D span < ��; � 2 Kj >

with Kj D f.j;k/; k 2 f0; : : : ; 2j g2g. It is immediate to define an interpolation
operator Lj W C0.Œ0; 1�2/! Vj

Ljf D
X

�D.j;k/2Kj
2�j f .��/��; �j;k D k=2j :
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The wavelet basis functions for the complement space

Wj D .LjC1 	 Lj /VjC1
are the functions

	
.1;0/
j;k D #Œ�jC1;2k1�1 ˝ #

Œ�

j;k2
; (22)

	
.0;1/
j;k D #Œ�j;k1 ˝ #

Œ�

jC1;2k2�1; (23)

	
.1;1/
j;k D #Œ�jC1;k1�1 ˝ #

Œ�

jC1;2k2�1: (24)

In the following we will need to handle the grid points corresponding to the
basis functions. To this aim the following notation will be handy: the grid-points
corresponding to the wavelets will be indicated as

�
.1;0/
j;k D ..2k1 	 1/2�.jC1/; k22�j /;
�
.0;1/
j;k D .k12�j ; .2k2 	 1/2�.jC1//;

�
.1;1/
j;k D ..2k1 	 1/2�.jC1/; .2k2 	 1/2�.jC1//:

Letting

rj D f.
; j;k/; 
 2 f0; 1g2nf0; 0g;k 2 Z2 such that �
j;k 2 Œ0; 1�2g

and � D [j�j0rj , the same arguments as for the interpolating wavelets on R will
allow us to expand any function f 2 C0.Œ0; 1�2/ as

f D
X

�2Kj0
ˇ��� C

X

�2�
˛�	�:

3 The Fundamental Property of Wavelets

In the previous section we saw in some detail what a couple of biorthogonal
multiresolution analyses is, and how this structure allows to build a wavelet basis.
However we have yet to introduce the one property that makes of wavelets the
powerful tool that they are and that is probably their fundamental characteristics:
the simultaneous good localization in both space and frequency.

We put ourselves in the framework described in Sect. 2.4. Let us start by writing
the wavelet expansion in an even more compact form, by introducing the notation

r�1 D K0; and for � 2 r�1;  � WD '�; Q � WD Q'�;
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which allows us to rewrite the expansion (21) as

f D
C1X

jD�1

X

�2rj
hf; Q �i �:

We will see in the next section that, under quite mild assumptions on ', Q',  and Q ,
the convergence in the expansion (21) turns out to be unconditional. This will allow
us to introduce a global index set � D [C1jD�1rj and to write

f D
X

�2�
hf; Q �i � D

X

�2�
hf; �i Q �: (25)

Such formalism will also be valid for the case ˝ D R, where, for j � 0, rj D
Kj D f.j; k/; k 2 Zg. In this case for � D .j; k/ we will have

'� D 'j;k D 2j=2'.2j x 	 k/; Q'� D Q'j;k D 2j=2 Q'.2j x 	 k/;

 � D  j;k D 2j=2 .2j x 	 k/; Q � D Q j;k D 2j=2 Q .2j x 	 k/:

3.1 The Case˝ D R: The Frequency Domain Point of View vs.
the Space Domain Point of View

As we saw in the previous section, in the classical construction of wavelet bases for
L2.R/ [39], all basis functions '�; � 2 Kj and  �, � 2 rj with j � 0, as well as
their duals Q'� and Q �, are constructed by translation and dilation of a single scaling
function ' and a single mother wavelet  (resp. Q' and Q ). Clearly, the properties
of the function  will transfer to the functions  � and will imply properties of the
corresponding wavelet basis.

To start with, we will then restrict our framework by making some additional
assumptions on ' and  as well as on their duals Q' and Q . The first assumption
deals with space localization. In view of an application to the numerical solution of
PDE’s we make such an assumption in quite a strong form: we ask that there exists
an L > 0 and an QL > 0 such that (with � D .j; k/)

supp' � Œ	L;L� H) supp'� � Œ.k 	L/=2j ; .k C L/=2j �; (26)

supp Q' � Œ	 QL; QL� H) supp Q'� � Œ.k 	 QL/=2j ; .k C QL/=2j �; (27)

supp � Œ	L;L� H) supp � � Œ.k 	 L/=2j ; .k C L/=2j �; (28)

supp Q � Œ	 QL; QL� H) supp Q � � Œ.k 	 QL/=2j ; .k C QL/=2j �; (29)
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that is, both the wavelet  � (� D .j; k/) and its dual Q � will be supported around
the point x� D k=2j , and the size of their support will be of the order of 2�j .

Now let us consider the Fourier transform O .�/ of  .x/. Since  is compactly
supported, by the Heisenberg indetermination principle, O cannot be itself com-
pactly supported. However we assume that it is localized in some weaker sense
around the frequency 1. More precisely we assume that there exist an integerM > 0

and an integer R > 0, with M > R, such that for n D 0; : : : ;M and for s such that
0 � s � R one has

(a)
dn O 
d�n

.0/ D 0 and (b)
Z

R
.1C j�j2/sj O .�/j2 d� �< 1: (30)

Analogously, for Q we assume that there exist integers QM > QR > 0 such that for
n D 0; : : : ; QM and for s such that 0 � s � QR one has

(a)
dn OQ 
d�n

.0/ D 0 and (b)
Z

R
.1C j�j2/sj OQ .�/j2 d� �< 1: (31)

The frequency localisation property (30) can be rephrased directly in terms of
the function , rather than in terms of its Fourier transform: in fact (30) is equivalent
to

Z

R
xn .x/ dx D 0; n D 0; : : : ;M and k kHs.R/ �< 1; 0 � s � R; (32)

which, by a simple scaling argument implies for � 2 rj
Z

R
xn �.x/ dx D 0; n D 0; : : : ;M and k �kHs.R/ �< 2js; 0 � s � R: (33)

Analogously, we can write for Q �
Z

R
xn Q �.x/ dx D 0; n D 0; : : : ; QM and k Q �kHs.R/ �< 2js; 0 � s � QR: (34)

In the following we will require that also the functions ' and Q' have some
frequency localization property or, equivalently, some smoothness. More precisely
we will ask that for all s and Qs such that, respectively, 0 � s � R and 0 � Qs � QR
we have that

(a)
Z

R
.1C j�j2/sj O'.�/j2 d� �< 1 and (b)

Z

R
.1C j�j2/Qsj OQ'.�/j2 d� �< 1; (35)

or, equivalently, that

(a) ' 2 HR.R/ and (b) Q' 2 H QR.R/: (36)
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Remark 5. Heisenberg’s indetermination principle states that a function cannot be
arbitrarily well localized both in space and frequency. More precisely, introducing
the position uncertainty�x� and the momentum uncertainty��� defined by

�x� WD
�Z

.x 	 x�/2j �.x/j2 dx
�1=2

;

��� WD
�Z

.� 	 ��/2j O �.�/j2 d�
�1=2

;

with x� D xj;k D k=2j and �� D �j;k � 2j defined by �� D
R

R �j O �.�/j2 d�,
one necessarily has �x� ���� � 1. In our case �x� ���� �< 1, that is wavelets are
simultaneously localized in space and frequency nearly as well as possible.

The frequency localization property of wavelets (30) and (32) can be rephrased
in yet a third way as a local polynomial reproduction property [15].

Lemma 1. Let (26)–(29) hold. Then (31) holds if and only if for all polynomial p
of degree d � QM we have

p D
X

k

hp; Q'j;ki'j;k: (37)

Analogously (30) holds if and only if for all polynomials p of degree d � M we
have

p D
X

k

hp; 'j;ki Q'j;k: (38)

Remark that the expressions on the right hand side of both (37) and (38) are well
defined pointwise thanks the support compactness property of ' and Q'.

Before going on in seeing what the space-frequency localisation properties of
the basis function  (and consequently of the wavelets  �’s) imply, let us consider
functions with a stronger frequency localisation. Let us then for a moment drop the
assumption that  and ' are compactly supported and assume instead that their
Fourier transform verify

supp. O / � Œ	2;	1� [ Œ1; 2�; supp. Of / � Œ	1; 1� 8f 2 V0:

Since for � 2 rj one can then easily check that supp. O �/ � Œ	2jC1;	2j � [
Œ2j ; 2jC1�, one immediately obtains the following equivalence: letting f DP

� f� �

kf k2Hs.R/ D
Z

R
.1C j�j2/s j Of .�/j2 d� '

X

j

22jsk
X

�2rj
f� O �k2L2.R/: (39)
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By taking the inverse Fourier transform on the right hand side we immediately see
that

kf k2Hs.R/ '
X

j

22jsk
X

�2rj
f� �k2L2.R/:

If f �; � 2 rj g is a Riesz basis forWj , (39) implies then

kf k2Hs.R/ D k
X

�2�
f� �k2Hs.R/ '

X

j��1
22js

X

�2rj
jf�j2: (40)

If we only consider partial sums, we easily derive direct and inverse inequalities,
namely:

k
JX

jD�1

X

�2rj
f� �kHs.R/ �< 2Jsk

JX

jD�1

X

�2rj
f� �kL2.R/ (41)

and

k
1X

jDJC1

X

�2rj
f� �kL2.R/ �< 2�Jsk

1X

jDJC1

X

�2rj
f� �kHs.R/: (42)

Properties (41) and (42), which, as we saw, are easily proven if O is compactly
supported, go on holding, though their proof is less evident, in the case of  com-
pactly supported, provided (30) and (32) hold. The same is true for property (40).
More precisely, by exploiting the polynomial reproduction properties (37) and (38)
it is possible to prove the following inequalities [15].

Theorem 2. For s with 0 � s � QM C 1, f 2 Hs.R/ implies

kf 	 Pj f kL2.R/ �< 2�sj jf jHs.R/: (43)

Analogously, for 0 � s �M C 1, f 2 Hs.R/ implies

kf 	 QPj f kL2.R/ �< 2�sj jf jHs.R/: (44)

Applying the above theorem to g D f 	 Pj f and observing that g 	 Pjg D g
we immediately obtain the bound

k.I 	 Pj /f kL2.R/ �< 2�jsk.I 	 Pj /f kHs.R/: (45)

The following theorem also holds under the assumptions made at the beginning
of this section.

Theorem 3 (Inverse inequality). For all f 2 Vj and for all r with 0 � r � R it
holds that

kf kHr.R/ �< 2jrkf kL2.R/: (46)

Analogously for all f 2 QVj and for all r with 0 � r � QR we have
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kf kHr.R/ �< 2jrkf kL2.R/: (47)

Remark that all functions in Wj and QWj verify both direct and inverse inequality

f 2 Wj ) kf kHr .R/ ' 2jrkf kL2.R/; r 2 Œ0; R�;

f 2 QWj ) kf kHr .R/ ' 2jrkf kL2.R/; r 2 Œ0; QR�:
By a duality argument it is not difficult to prove that, for f 2 Wj and f 2
QWj similar inequalities hold for negative values of s. More precisely, for f 2 Wj

and s 2 Œ0; QR� we have, using the identity QQj D QPjC1.I 	 QPj / and the direct
inequality (44)

kf kH�s .R/ D sup
g2Hs.R/

hf; gi
kgkHs.R/

D sup
g2Hs.R/

hf; QQjgi
kgkHs.R/

�< sup
g2Hs.R/

kf kL2.R/k.I 	 QPj /gkL2.R/
kgkHs.R/

�< 2�jskf kL2.R/:

Conversely we can write

kf kL2.R/ D sup
g2L2.R/

hf; QQjgi
kgkL2.R/ �

<
kf kH�s .R/k QQjgkHs.R/

kgkL2.R/ �< 2jskf kH�s .R/:

In summary we have

Corollary 2.

f 2 Wj ) kf kHs.R/ ' 2jskf kL2.R/; s 2 Œ	 QR;R�; (48)

f 2 QWj ) kf kHs.R/ ' 2jskf kL2.R/; s 2 Œ	R; QR�: (49)

Remark 6. Note that an inequality of the form (46) is satisfied by all functions
whose Fourier transform is supported in the interval Œ	2J ; 2J �, while an inequality
of the form (45) is verified by all functions whose Fourier transform is supported
in .	1;	2J � [ Œ2J ;1/. Such inequalities are inherently bound to the frequency
localisation of the functions considered, or, to put it in a different way, to their
more or less oscillatory behavior. Saying that a function is “low frequency” means
that such function does not oscillate too much. This translates in an inverse type
inequality. On the other hand, saying that a function is “high frequency” means
that it is purely oscillating, that is it is locally orthogonal to polynomials (where
the meaning of “locally” is related to the frequency); this translates in a direct
inequality. In many applications the two relations (45) and (46) can actually replace
the information on the localisation of the Fourier transform. In particular this will
be the case when we deal with functions defined on a bounded set ˝ , for which the
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concept of Fourier transform does not make sense. Many of the things that can be
proven for the case ˝ D R by using Fourier transform techniques, can be proven
in an analogous way for bounded˝ by suitably using inequalities of the form (45)
and (46).

The most important consequence of the validity of properties (48) and (49) is
the possibility of characterizing the regularity of a function through its wavelet
coefficients. Since all the functions Q � have a certain regularity, namely Q � 2
H
QR.R/, the Fourier development (25) makes sense (at least formally), provided

f has enough regularity for hf; Q �i to make sense, at least as a duality product, that
is provided f 2 H� QR.R/. Moreover it is not difficult to prove that Qj and QQj can

be extended to operators acting on H� QR and H�R, respectively.
The properties of wavelets imply that, given any function f 2 H� QR.R/, by

looking at behavior of the L2.R/ norm of Qjf as j goes to infinity and, more
in detail, by looking at the absolute values of the wavelet coefficients hf; Q �i, it is
possible to establish whether or not a function belongs to certain function spaces,
and it is possible to write an equivalent norm for such function spaces in terms of the
wavelet coefficients. More precisely we have the following theorem (see [23, 39]).

Theorem 4. Let assumptions (26)– (31), and (35) hold. Let f 2 H� QR.R/ and let
s 2� 	 QR;RŒ. Then f 2 Hs.R/ if and only if

kf k2s D
X

�2K0
jhf; Q'�ij2 C

X

j

X

�2rj
22jsjhf; Q �ij2 < C1: (50)

Moreover k � ks is an equivalent norm forHs.R/.

Proof. Thanks to the fact that the functions '�, � 2 K0 and  �, � 2 rj constitute
Riesz bases for V0 and Wj , respectively, (50) is equivalent to

kP0f k2L2.R/ C
X

j�0
22jskQjf k2L2.R/ < C1: (51)

We will at first show that if (51) holds then
P

j Qjf 2 Hs.R/. We start by

observing that the bilinear form h.1 	 �/s=2�; .1 	 �/s=2�i D h.1 	 �/s=2C"�;
.1 	 �/s=2�"�i is a scalar product for Hs.R/ (this is for instance easily seen in
the Fourier domain). We can write

k
X

j

Qjf k2Hs.R/ � 2
X

j

X

k>j

kQjf kHsC2".R/kQkf kHs�2".R/C
X

j

kQjf k2Hs.R/:

Thanks to the inverse inequalities we can then bound

kX
j

Qj f k2Hs .R/� 2
X

j

X

k>j

2jskQjf kL2.R/2
kskQkf kL2.R/2

�2"jj�kjCX
j

22jskQjf k2L2.R/
:
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The second sum is finite by assumption and the first sum can be bound by recalling
that the convolution product is a bounded operator from `1 
 `2 to `2.

Let now f 2 Hs.R/. We have, for N arbitrary

h
kP0f k2L2.R/

C
NX

jD1

22jskQjf k2L2.R/

i2 D hf; QP0P0f C
NX

jD1

22sj QQjQjf i2

�< kf k2Hs.R/k QP0P0f C
NX

jD1

22sj QQjQjf k2H�s .R/:

(52)

Using the first part of the theorem we get

k QP0P0f C
NX

jD1
22sj QQjQj f k2H�s .R/ �< k QP0P0f k2L2.R/ C

NX

jD1
2�2sj 24sj k QQjQjf k2L2.R/

�< kP0f k2L2.R/ C
NX

jD1
22sj kQj f k2L2.R/:

Dividing both sides of (52) by kP0f k2L2.R/ C
PN

jD1 22sj kQjf k2L2.R/ we obtain

kP0f k2L2.R/ C
NX

jD1
22sj kQjf k2L2.R/ �< kf k2Hs.R/:

The arbitrariness of N yields the thesis. ut
For s D 0 we immediately obtain the following Corollary.

Corollary 3. If the assumptions of Theorem 4 hold then f �; � 2 �g is a Riesz
basis for L2.R/.

A more general result actually holds. In fact, letting Bs;p
q .R/ WD Bs

q.L
p.R//

denote the Besov space of smoothness order s with summability in Lp , q being a
fine tuning index (see e.g. [41]), we have the following theorem [23, 39].

Theorem 5. Let (26)–(31) and (35) hold. Let f 2H� QR and let s 2�	 QR;RŒ; 0<p;
q < C1. Then, setting

kf kqs;p;q D .
X

�2K0
jhf; Q'�ijp/

q
p C

X

j

.
X

�2rj
2pjs2

p. 12� 1
p /j jhf; Q �ijp/

q
p ; (53)

f 2 Bs;p
q .R/ if and only if kf ks;p;q < C1. Moreover k�ks;p;q is an equivalent norm

for Bs;p
q .R/. An analogous result, in which the `p (resp. `q) norms are replaced by

the `1 norm, holds for either p D C1 or q D C1 or both.
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3.1.1 The General Case:˝ Domain of Rd

Let us now consider the general case of ˝ being a (possibly bounded) Lipschitz
domain of Rd . The property of space localization is almost immediately stated also
for wavelet bases on ˝ .
Localisation in space: For each � 2 rj we have that

diam.supp'�/ �< 2�j and diam.supp Q'�/ �< 2�j ; (54)

diam.supp �/ �< 2�j and diam.supp Q �/ �< 2�j ; (55)

and for all k D .k1; k2; : : : ; kd / 2 Zd there are at most K (resp. QK) values of
� 2 rj such that

supp � \�j;k 6D ; (resp. supp Q � \�j;k 6D ; ); (56)

where �j;k denotes the cube of center k=2j and side 2�j .

Remark 7. The last requirement is equivalent to asking that the basis functions at j
fixed are uniformly distributed over the domain of definition. It avoids, for instance,
that they accumulate somewhere.

Clearly, when working on bounded domains we do not have at our disposal tools
like the Fourier transform. Still, we can ask that the basis functions for L2.˝/ have
the same property as the ones forL2.R/ in term of oscillations. We will then assume
that they satisfy an analogous relation to (33). More precisely, using for x 2 ˝ and
˛ 2 Nd the notation x˛ D .x1; � � � ; xd /.˛1;��� ;˛d / D x

˛1
1 x

˛2
2 � � �x˛dd , we assume that

the basis functions  � verify for all s, 0 � s � R and all ˛ 2 Nd with
P

i ˛i �M

k �kHs.˝/ �< 2js and
Z

˝

x˛ �.x/ dx D 0: (57)

A similar relation is assumed to hold for the dual basis: for all s, 0 � s � QR and all
˛ 2 N with

P
i ˛i � QM

k Q �kHs.˝/ �< 2js and
Z

˝

x˛ Q �.x/ dx D 0: (58)

Also in this case it is possible to prove that (57) and (58) together with the
property of space localization imply that for all polynomials p of degree less or
equal than QM (resp. less or equal that M ) we have

p D
X

�2Kj
hp; Q'�i'� .resp. p D

X

�2Kj
hp; '�i Q'�/: (59)

Exactly as in the case ˝ D R this property allows us to prove a direct type
inequality.
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Theorem 6 (Direct inequality). Assume that (54)–(58) hold. Then for all s, 0 <
s � QM C 1, f 2 Hs.˝/ implies

kf 	 Pj f kL2.˝/ �< 2�jskf kHs.˝/: (60)

Analogously for all s, 0 < s �M C 1, f 2 Hs.˝/ implies

kf 	 QPj f kL2.˝/ �< 2�jskf kHs.˝/: (61)

With a proof which is not much different from the one used for proving the
analogous result on R it is also not difficult to prove that an inverse inequality holds.
More precisely we have the following theorem.

Theorem 7 (Inverse inequality). Assume that (54)–(58) hold. Then for r with 0 <
r � R it holds that for all f 2 Vj

kf kHr .˝/ �< 2jrkf kL2.˝/: (62)

Analogously, for r with 0 < r � QR it holds that for all f 2 QVj
kf kHr .˝/ �< 2jrkf kL2.˝/: (63)

Analogously to what happens for R Theorems 6 and 7 allow us to prove a norm
equivalence for Hs.˝/ in term of a suitable weighted `2 norm of the sequence
of wavelet coefficients. More precisely the following theorem, which is proven
similarly to Theorem 5, holds [23].

Theorem 8. Assume that (54)–(58), hold. Let f 2 .H QR.˝//0 and let	 QR < s < R.
Let

kf k2s D
X

�2K0
jhf; Q'�ij2 C

X

j

X

�2rj
22jsjhf; Q �ij2: (64)

Then, for s � 0, kf ks is an equivalent norm for the spaceHs.˝/ and f 2 Hs.˝/

if and only if kf ks is finite; for negative s, kf ks is an equivalent norm for the space
.H�s.˝//0 and f 2 .H�s.˝//0 if and only if kf ks is finite.

An analogous result holds for the dual multiresolution analysis, which allows to
characterize Hs.˝/, s � 0 and .H�s.˝//0, s < 0, for 	R < s < QR. Also for ˝
a characterization result for Besov spaces holds, as stated by the following theorem
(see once again [23]).

Theorem 9. Let all the assumption of Theorem 8 hold. Let f 2 .H QR.˝//0 and let
s 2� 	 QR;RŒ, 0 < p; q < C1. Then, setting

kf kqs;p;q D .
X

�2K0
jhf; Q'�ijp/

q
p C

X

j

.
X

�2rj
2pjs2

p. d2� dp /j jhf; Q �ijp/
q
p ; (65)
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f 2 Bs;p
q .˝/ if and only if kf ks;p;q < C1. Moreover k � ks;p;q is an equivalent

norm for Bs;p
q .˝/. An analogous result, in which the `p (resp. `q) norms are

replaced by the `1 norm, holds for either p D C1 or q D C1 or both.

Thanks to these norm equivalences we can then evaluate the Sobolev norms for
spaces with negative and/or fractionary indexes by using simple operations, namely
the evaluation of L2.˝/ scalar products and the evaluation of an (infinite) sum.

Remark 8. All the wavelets mentioned until now (with the exception of interpolat-
ing wavelet bases) satisfy the assumptions of Theorem 8 for suitable values of M ,
QM , R, QR. A result similar to (65) holds, however, also for interpolating wavelet,

which allow to characterize those Sobolev and Besov spaces that are embedded in
C0. N̋ /.

3.1.2 Nonlinear vs. Linear Wavelet Approximation

Let us now consider the problem of approximating a given function f 2 L2.˝/,
˝ � Rd domain in Rd , with N degrees of freedom (that is with a function which
we can identify withN scalar coefficients). We distinguish between two approaches:

The first approach is the usual linear approximation: a space Vh of dimension
N is fixed a priori and the approximation fh is the L2.˝/ projection of f on Vh
(example: finite elements on an uniform grid with mesh size h related to N , in
which case in dimension d the mesh size and the number of degrees of freedom
verify h � N�1=d ).

It is well known that the behavior of the linear approximation error is generally
linked to the Sobolev regularity of f . In particular we cannot hope for a high rate
of convergence if f has poor smoothness. Several remedies are available in this
last case, like for instance adaptive approximation by performing a mesh refinement
around the singularities of f . We have then the non linear approximation approach:
a class of spacesX is chosen a priori. We then choose a space VN .f / of dimension
N in X well suited to f . The approximation fh is finally computed as an L2

projection of f onto VN .f / (example: finite elements with N free nodes). In other
words we look for an approximation to f in the non linear space

˙N D [VN2XVN :

Three questions are of interest [32]:

• Which is the relation between the performance of non linear approximation and
some kind of smoothness of the function to be approximated.

• How do we compute the non linear approximation of a given function f .
• How do we compute the non linear approximation of an unknown function u

(solution of a PDE).

In the following we will give some idea on how these questions are answered in
the wavelet framework.
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3.1.3 Non Linear Wavelet Approximation

We want to approximate f with an element of the non linear space

˙N D fu D
X

�

u� � W #f� W u� 6D 0g � N g:

In order to construct an approximation to f in˙N define a non linear projection
[32].

Definition 3. Let f D P
� f� �. The non linear projector PN W L2 ! ˙N is

defined as

PNf WD
NX

nD1
f�n �n ;

where
jf�1 j � jf�2 j � jf�3 j � : : : jf�n j � jf�nC1

j � : : :
is a decreasing reordering of the wavelet coefficients of f .

Remark 9. If the wavelet basis is orthonormal kf kL2.˝/ D k.f�/�k`2 and then
PNf is the best N -term approximation (the norm of the error is the `2 norm of the
sequence of discarded coefficients, which is minimized by the projection PN ). In
any case, since kf kL2.˝/ ' k.f�/�k`2 , we have that PNf is the best approximation
in an L2 equivalent norm.

We have the following theorem [32], see also [15].

Theorem 10. f 2 Bs;q
q .˝/ with 0 < s < R and q W d=q D d=2C s implies

kf 	 PNf kL2.˝/ �< kf kBs;qq .˝/N
�s=d :

Proof. With the choice q such that d=q D d=2 C s, the characterization of the
Besov norm in terms of the wavelet coefficients yields

k
X

�

f� �kBs;qq .˝/ ' k.f�/�k`q :

Let us consider the decreasing reordering of the coefficients:

jf�1 j � jf�2 j � jf�3 j � : : : jf�n j � jf�nC1
j � : : : :

We can easily see that

njf�n jq �
X

k�n
jf�k jq �

X

�

jf�jq � kf kqBs;qq .˝/
;
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that is
jf�n j � n�1=qkf kBs;qq .˝/:

Now we can write

kf 	 PNf kL2.˝/ D k
X

n>N

f�n �nkL2.˝/ '
 
X

n>N

jf�n j2
!1=2

�< kf kBs;qq .˝/

 
X

n>N

n�2=q
!1=2

�< kf kBs;qq .˝/N
�1=qC1=2:

ut
Remark 10. Remark that, for q < 2 the space Bs;q

q .˝/ � Hs.˝/. In particular
there exist a wide class of functions which are not in Hs.˝/ but that belong to
B
s;q
q .˝/. For such functions, the non linear approximation will be of higher order

than linear approximation.

Remark 11. Theorem 10 still holds under the weaker assumption that f D .f�/�
verifies kfk`qw D supn njf�n jq < C1.

3.1.4 Nonlinear Approximation inHs

If we want to approximate f in Hs.˝/, rather than in L2.˝/, we simply rescale
the basis functions by setting, for � 2 rj , L � D 2�js �, so that f DP Lf� L � with

kf kHs.˝/ D k. Lf�/�k`2 . In this case for q W d=q D d=2C r we have that

kf k
B
sCr;q
q .˝/

' k. Lf�/�k`q :

We then apply the same procedure to the sequence . Lf�/�. In particular we define
this time the non linear projector as

Definition 4. Let f DP
�
Lf� L �. The non linear projector PN W Hs.˝/! ˙N is

defined as

PNf WD
NX

nD1
Lf�n L �n; (66)

where
j Lf�1 j � j Lf�2 j � j Lf�3 j � : : : j Lf�n j � j Lf�nC1

j � : : :
is a decreasing reordering of the rescaled wavelet coefficients.

We have the following theorem, whose proof is identical to the proof of
Theorem 10.
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Theorem 11. f 2 BsCr;q
q .˝/ with 0 < r < R	 s and q W d=q D d=2C r , implies

kf 	 PNf kHs.˝/ �< kf kBsCr;q
q .˝/

N�r=d :

Remark 12. By abuse of notation we will also indicate by PN W `2 ! `2 the
operator mapping the coefficient vector f D .f�/ of the function f to the coefficient
vector of its nonlinear projection PNf .

3.1.5 The Issue of Boundary Conditions

When aiming at using wavelet bases for the numerical solution of PDE’s, one has,
of course, to take into account the issue of boundary conditions. If, for instance, in
the equation considered, essential boundary conditions (for example u D 0) need to
be imposed on a portion e of the boundary, we will want the basis functions  �,
� 2 �, to satisfy themselves the corresponding homogeneous boundary conditions
on e . Depending on the projectors Pj , the dual wavelets Q � will not however
need to satisfy themselves the same homogeneous boundary conditions (see [25]),
though this might be the case (if for instance the projector Pj is chosen to be the
L2.˝/ orthogonal projector). Depending on whether the  � and the Q � satisfy or
not some homogeneous boundary conditions, the same boundary conditions will
be incorporated in the spaces that we will be able to characterize through such
functions. It is not the aim of this paper to go into details. Let us just give an idea on
the kind of results that hold. To fix the ideas let us consider for example the case of
homogeneous Dirichlet boundary condition u D 0 on @˝ and let us concentrate
on the characterization of Sobolev spaces. If, for all � 2 �,  � D 0 on  ,
then (64) will hold provided f belongs to the Hs.˝/ closure of Hs.˝/\H1

0 .˝/,
that we will denote H s

0 .˝/. If in turn the Q �’s satisfy Q � D 0 on  , we clearly
will not be able to characterize (through scalar products with such functions) the
space .Hs.˝//0, but only the space .H s

0 .˝//
0. Moreover it is clear that, if for all

� 2 � the  �’s satisfy an homogeneous boundary condition, we can expect a direct
inequality of the form (60) to hold only if we assume that the function f to approx-
imate satisfy itself the same homogeneous boundary conditions. For more details
see [15].

4 Adaptive Wavelet Methods for PDE’s: The First Generation

As we saw in the previous section the wavelet decomposition of a function provides
a quite straightforward smoothness analysis tool, that has been successfully applied,
for example in edge detection algorithms. It is then quite natural to think of using
such a tool also in the framework of adaptive wavelet methods for PDE’s. The
first heuristic idea was to design an adaptive method where, in order to drive the
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refining/coarsening strategy, wavelet coefficients are used instead of error indicators.
The heuristic underlying such a strategy is that big wavelet coefficients are
indicators of a potential lack of smoothness, which requires refinement, while small
wavelet coefficients indicate that an unnecessary refinement has been performed and
the corresponding basis function are superfluous. This idea led Maday et al. [38], to
propose a simple adaptive wavelet algorithm for the solution of Burger’s equation
in dimension one:

ut 	 �uxx C uux D f; u.x; 0/ D u0.x/:

The algorithm proposed, based on an implicit/explicit Euler time discretization
scheme (adapting the idea to more effective time discretization methods is straight-
forward), has the following form:

• initialize: expand u0 as u0 DP�2� u0� �
• un � u.n�t/! unC1 � u..nC 1/�t/:
? �nC1 D [�Wjun�j>"N .�/, where for � D .j; k/

N .�/ D f.j; k C 1/; .j; k/; .j; k 	 1/; .j C 1; 2k 	 1/; .j C 1; 2k/g

? V nC1
h D span <  �; � 2 �nC1 >

? solve, by a Galerkin projection on V nC1
h

unC1 	 ��tunC1xx D un C�tf ..nC 1/�t/	�tununx:

At each iteration the set �nC1 contains all the immediate neighbors (at the same
level and at the next finer level) of those indexes � corresponding to coefficients
u� sufficiently big. The strength of this algorithm lies in its extreme simplicity.
The decision on whether to refine/derefine or not is taken by simply looking at the
(already available) wavelet coefficients of the solution at the previous time step, so
that no auxiliary computation of an error indicator is needed. Moreover the refining
and the derefining procedures are themselves much simpler than in the finite element
case: adding or removing one basis function results (at the linear system level) in
adding or removing the corresponding line and column from the mass and stiffness
matrices.

The algorithm has however some drawbacks and some serious limitations. First
of all, it is not difficult to realize that the proposed refining strategy, which for
each relevant wavelet coefficient only adds two neighbors at only two subsequent
levels, implicitly assumes that the time step is small enough. And even with such an
assumption there is little rigorous theoretical analysis guaranteeing convergence of
such a method (see [9]), as it happens for more refined wavelet methods, which we
will describe and partially analyze in Sect. 5. Moreover, while implementing both
refining and coarsening operation is extremely simple, the implementation of the
wavelet Galerkin method is far from being straightforward. Just to give an example
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of the kind of difficulties that have to be faced, let us for instance consider the task
of computing the entries of a stiffness matrix R D .r�;�/

r�;� D
Z
 0� 0�:

Unfortunately, we generally do not have a close expression for  : we only know
that it is defined in terms of the scaling function ' by a relation of the form (12). We
can then reduce the computation of r�;� to

r�;� D 4
X

`;`0

g`g`0

Z
23.jCm/=2' 0.2jC1x 	 .2kC `//' 0.2mC1x 	 .2nC `0//: (67)

If j D m, a simple change of variable allows us to write

Z
' 0.2jC1x 	 a/' 0.2jC1x 	 b/ D 2�.jC1/

Z
' 0.x/' 0.x 	 .b 	 a//:

For a 	 b integer, the integral on the right hand side can be computed by observing
that, thanks to the refinement equation (3), for all integers n we have that

Z
' 0.x/' 0.x 	 n/ D 4

X

`;`0

h`h`0

Z
' 0.2x 	 `/' 0.2x 	 .2nC `0//

D 2
X

`;`0

h`h`0

Z
' 0.x/' 0.x 	 .2nC `0 	 `//:

Analogously to what we did for the point values of Daubechies’ scaling
functions, the values of the integrals of the form

R
' 0.x/' 0.x 	 n/ can then be

computed, up to a multiplicative constant (whose value can also be computed
(see [24])), by solving, once and for all, an eigenvalue/eigenvector problem. If
m 6D j the only way of computing the integrals on the righthand side of (67)
is to reduce them to a linear combination of integrals of products of functions at
the same level, by taking advantage of the injection Vj � Vm (if m > j ) or
Vm � Vj (if (j > m). Clearly in this case the computation of the integral can
turn out to be quite expensive and/or quite cumbersome (see [10] for the efficient
computation of stiffness matrix entries in the adaptive wavelet framework). Clearly
the implementation of the wavelet Galerkin method is even more difficult if variable
coefficients or nonlinear expressions are considered. In particular as far as nonlinear
problems are concerned, if the expression considered is multilinear one can resort to
the same kind of approach as the one used for the elements of the stiffness matrix.
Otherwise one has to resort to quite expensive quadrature formulae, drastically
reducing the gain obtained by using an adaptive method.
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4.1 The Adaptive Wavelet Collocation Method

A possible way of overcoming the difficulties inherently presented by the wavelet
Galerkin method is to avoid on the one hand the computation of integrals by
resorting to a collocation method [6], and on the other hand to use interpolating
wavelets, where coefficients and point values are related by a simple relation which
allows to efficiently treat nonlinearities.

4.1.1 Wavelet Collocation on Uniform Grids

To fix the ideas let us consider a partial differential equation of the form

A u D f in ˝; u D g on @˝

with ˝ D .0; 1/2 and with

A D
X

j˛j�2
c˛
@j˛j

@x˛
CF .x; u.x/;ru.x//: (68)

We want to compute an approximate solution to (68) by resorting to the
interpolating wavelet basis described in Sect. 2.4.1 in the framework of an adaptive
scheme. In order to deal with the non linearity in the simplest way, we choose a
collocation approach, imposing the equation at a suitable set of collocation points
rather than testing the equation against test functions, thus avoiding the necessity of
computing integrals.

Let us first describe how the approximate solution is computed for a given
nonuniform grid. We start by observing that given any subset�h of� we can define
a nonuniform grid Gh

Gh D f��; � 2 Kj0g [ f��; � 2 �hg;
and a corresponding nonuniform approximation space Vh

Vh D Vj0 [ span < 	�; � 2 �h >;

respectively, including by default the coarse grid f��; � 2 Kj0g and the correspond-
ing coarse space Vj0 .

Given the index set �h 2 � we can then compute an approximation to the
solution u of (68) by looking, by any solution method suitable for the nonlinear
equation considered, for uh 2 Vh such that

A uh.�/ D f .�/; 8� 2 Gh: (69)

The choice of the collocation approach, in the framework of wavelet methods,
has numerous advantages over other approaches, like Galerkin or Petrov–Galerkin.
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The main advantage is that no integral evaluation is needed and therefore the
computational load of both the evaluation of nonlinear terms and of the assembling
of the linear system can be kept to the minimum.

Let us consider more in detail how such a scheme can be implemented as
opposed to wavelet Galerkin schemes. Typically, four different phases need to be
implemented.

Pre-processing: After fixing a finest level jmax compute the values of the derivatives
of # at the dyadic points:

t sk D #.s/
�

k

2jmax�j0

�
: (70)

This is done recursively by taking advantage of the refinement equation (3). Such
a task requires O.2jmax�j0/ operations, independently of the dimension d of the
domain of the problem. Moreover such values can be computed once and for all and
then stored (the storage needed is also proportional to 2jmax�j0 , since the function #
is compactly supported).

Assembling the collocation matrix: The entries of the collocation matrix relative to
the linear part of the operator take the form

r�;� D
X

j˛j�2
c˛.�/

@j˛j	�
@x˛

.�/

with possibly �� in the place of 	�. Computing each entry of the matrix involves
then the evaluation of derivatives of a basis function at a dyadic point, which, in
view of (19), is performed in O.1/ operations once the fundamental quantities (70)
are known.

Evaluating the nonlinear terms: The advantage of using a collocation approach
in the context of non uniform wavelet discretization is particularly evident when
dealing with nonlinear operators, especially those which are not of multilinear type.
In fact, in a straightforward implementation of the Galerkin approach, in order to
evaluate

R
F .x; uh;ruh/	� for uh 2 V�h one would need to: (1) evaluate uh and

ruh at the nodes of a (fine) quadrature grid, (2) evaluate F .x; u;ru/ at such nodes,
and (3) apply a quadrature formula. Resorting to a collocation scheme reduces such
a computation to the evaluation of uh, ruh and F at the single mesh point �.

Fast interpolating wavelet transform: This is needed to go back and forth from point
values to wavelet coefficients, the former needed for handling nonlinearities, as well
as in post-processing, the latter being the actual unknowns of the discrete problem.

4.1.2 The Adaptive Collocation Scheme

We can now present the adaptive version of the collocation scheme. The idea,
proposed in [3,42], is to iteratively compute increasingly good approximations to the
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solution u of our problem, and use the wavelet coefficients of the actual approximate
solution at each iteration in order to design a better grid to be used for computing
the next approximate solution.

We select the first grid G0
h by simply looking at the behavior of the data of the

equation. Assume for simplicity that the coefficients and the boundary data are
smooth. Letting, for any dyadic grid Gh (Vh denoting the corresponding discrete
space) Lhf denote the unique function verifying

Lhf 2 Vh; Lhf .�/ D f .�/ 8� 2 Gh;

we chose �0
h is such a way that

kf 	L0hf k � ":

Once the first gridG0
h has been selected, we compute a first approximate solution

u0
h by applying the collocation method in the corresponding space V 0

h ; according to
the formulation (69).

Following [3], we then analyze the computed solution in order to design a new
(better) grid. More precisely, at the n-th step, given a grid Gn

h ; and the relative
approximate solution

unh D
X

�2Kj0
u��� C

X

�2�nh
dn�	�;

we compute the next grid GnC1
h by removing the useless points and refining where

the approximation is bad. More precisely, for each point ��, � D .
; j;k/ 2 �,
define a set U� of neighboring points

U� D Œ0; 1�2 \ f�jC1k ; k D .2k1 C 
1; : : : ; 2kd C 
d /; 
i D 	1; 0; 1g:

Remark now that if a dyadic point p D .n/=2m 2 Œ0; 1�2 verifies p 62 f�j0;k;
k 2 Kj0g, then there exists a unique �.p/ 2 � such that p D ��.p/. Then we
can define a neighboring index set U� corresponding to the set U� of neighboring
points as

U� D f�.p/; p 2 U�g � �:
As in [38], the new index set is constructed by looking at the size of the coefficients
of the current approximate solution unh. In order to make the procedure more robust
[3] proposes however the use of two different tolerances ır and ıc for refining and
coarsening.

Define then a set �n;ref
h of indexes marked for refinement as

�
n;ref
h D f� 2 �h W jdn� j > ır=2j g:
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We then introduce an updated index set

�nC1
h D f� W jdn� j > ıc=.2j j 2/g [�2�n;ref

h
U�;

and we denote byGnC1
h and V nC1

h the corresponding grid and approximation space.
The .n C 1/-th approximate solution is then computed by solving the collocation
Problem (69) on the space V nC1

h , with collocation grid GnC1
h .

Clearly, by adopting an approach similar to the one underlying the Maday,
Perrier, Ravel heuristic algorithm for Burger’s equation described at the beginning of
this section, the present adaptive wavelet collocation method can be also applied to
evolution equations: the coefficients of the approximate solution at time step tn can
be used in order to design the grid for the numerical solution at time step tnC1 [2].

Though such method lacks the rigorous theoretical justification that is available
for the new generation of adaptive wavelet methods that we will describe in the
next section, the adaptive wavelet collocation method, which has a strong analogy
to the finite difference method with incremental unknowns [13], presents several
advantages in terms of simplicity of implementation and of applicability to problems
of different nature (in particular, non linear ones). It has been successfully tested
on a wide class of problems, both linear and non-linear and both steady-state and
evolutionary. In particular we recall applications in the fields of elasticity [4], fluid
structure interaction[36], semiconductors [7], geophysical flows [43].

5 The New Generation of Adaptive Wavelet Methods

Before going into details on how more sophisticated adaptive wavelet schemes are
defined and before giving at least some idea on how such methods can be rigorously
analyzed, let us present an equivalent formulation for the problems which we are
going to consider in this section. Such formulation will not only greatly simplify
the presentation but it will be at the basis of some of the adaptive wavelet methods
that we are going to consider. Throughout this section let us, for s > 0, employ the
notation H�s.˝/ WD .Hs.˝//0. For the sake of simplicity let us focus on a simple
linear model problem of the following form: find u 2 Ht.˝/, t � 0, such that

Au D f; (71)

with A W Ht.˝/ ! H�t .˝/ a linear symmetric operator verifying the classical
assumptions:

hAu; ui �> kuk2Ht .˝/; hAu; vi �< kukHt .˝/kvkHt .˝/: (72)

Assume also that for positive s the operator A is bounded from HtCs.˝/ to
H�tCs.˝/. Moreover assume that A is local: supp.Au/ � supp.u/.

Let us re-write the problem as an infinite dimensional “discrete” problem as
follows. Select a couple of biorthogonal wavelet bases f �; � 2 �g and f Q �; � 2 �g
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for L2.˝/ in such a way that the assumptions of Theorem 8 hold for R D t C s�
with s� > d=2; for � 2 rj let L � D 2�jt � so that for v DP

�2� v� L � 2 L2.˝/
we have the following simple form for the norm equivalences (64) and (65):

kvkHt .˝/ ' kvk`2 ; kvkBtCs;�
� .˝/

' kvk`� .� D .s=d C 1=2/�1/; (73)

with v D .v�/� denoting the renormalized wavelet coefficient vector. If we expand
the unknown solution of our problem as u D P

� u� L �, and we test the equation
against the infinite set of test functions v D L � we obtain the following equivalent
form of equation (72):

Ru D f; (74)

where R D .r�;�/�;� is the bi-infinite stiffness matrix and f D .f�/� the bi-infinite
right hand side vector, with

r�;� D hA L �; L �i; f� D hf; L �i:

Clearly the properties of the operator A translate into properties of the bi-infinite
matrix R. More precisely we have that both kRk`2!`2 and kR�1k`2!`2 are finite
(they depend on the constants appearing in the norm equivalence (73) as well as on
the continuity and coercivity constants of the operator A); we have continuity

kRvk`2 � kRk`2!`2kvk`2 (75)

and coercivity
vTRv � kR�1k�1

`2!`2kvk2`2 (76)

of the discrete operator R.

Remark 13. It is not difficult to realize that we have (with w DP� w� L �)

kfk`2 ' kf kH�t .˝/; kRwk`2 ' kAwkH�t .˝/:

5.1 A Posteriori Error Estimates

The first class of methods that we are going to consider is based on the use of
suitable a posteriori error indicators. Clearly the classical error estimators used for
instance in the finite element method cannot be used directly on wavelet solutions.
On the other hand norm equivalences for the Sobolev spaces with negative index of
the form (64) can be exploited for designing rigorous a posteriori error estimators
[1, 22].

Assume that we have computed an approximation wh D P
�2�h w� L �, to the

solution u of (72), with �h � � finite index set. It is well known that under
our assumptions the operator A is an isomorphism between Ht.˝/ and its dual
H�t .˝/. Then we can bound
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ku 	 whkHt .˝/ ' kA.u 	 wh/kH�t .˝/ D kf 	AwhkH�t .˝/;

a bound which is the starting point of many error indicators for problems of the type
considered here. The norm equivalence in terms of wavelet coefficients provides us
a practical way of computing the (equivalent)H�t .˝/ norm on the right hand side.
More precisely, the norm equivalence (64) imply the validity of the bound

ku 	 whk2Ht .˝/ '
X

�2�
jhf 	 Auh;  �ij2 D kf 	Rwk`2 : (77)

Letting e D .e�/� D f 	Rw, the term je�j D jf� 	P� R�;�w�j plays then, for
� 2 rj , the role of an ideal error indicator, that gives an information on the local
error on supp. �/ at frequency�2j .

We will assume from now on that the vectors f and w have a finite number
of nonzero entries (we will say then that they are finitely supported). Even so
applying the bound (77) requires unfortunately the evaluation of a matrix vector
multiplication involving a bi-infinite matrix and the computation of the resulting
infinite vector. If we want the above a posteriori error estimate to be applicable
in practice we will need to find a way of truncating it to a finite sum while still
keeping the validity of an estimate of the form (77). In Sect. 5.4 we will give
an idea on how this can be achieved. Let us now see instead how it is possible
to use such an error estimate in the design of a convergent adaptive wavelet
scheme.

Following [22] we consider, in the framework of an adaptive wavelet Galerkin
method, a refinement strategy based on the error indicators. Let u 2 Vh D span <
L �; � 2 �h > be the Galerkin projection of the solution u to (71), that is the unique

element of Vh satisfying

hAuh; vhi D hf; vhi 8vh 2 Vh:

Letting #� 2 .0; 1/ be given, define the refined index set Q�h � � in such a way that

�h � Q�h;
X

�2 Q�h
je�j2 � #�kek2`2 : (78)

In other words the index set Q�h must capture at least a fixed fraction of the error (as
estimated by (77)). This refinement strategy turns out to be error reducing, provided
the error is measured in the norm induced by the operator A. In order to show this
let Quh 2 QVh D span < L �; � 2 Q�h > denote the Galerkin projection of u in the
refined space QVh. We observe that, if � 2 Q�h we can write

e� D hf 	Auh; L �i D hA.Quh 	 uh/; L �i:
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Then we have

X

�2 Q�h
je�j2 D

X

�2 Q�h
jhA.Quh 	 uh/; L �ij2

�<
X

�2�
jhA.Quh 	 uh/; L �ij2 �< kA.Quh 	 uh/k2H�t .˝/;

from which, thanks to the continuity of A, we obtain

X

�2 Q�h
je�j2 �< kQuh 	 uhk2Ht .˝/:

In view of the refinement strategy adopted this implies that

kQuh 	 uhk2Ht .˝/ �>
X

�2 Q�h
je�j2 � #�kek2`2 �> ku 	 uhk2Ht .˝/:

If we now introduce the scalar product .�; �/A D hA�; �i and the corresponding norm
k � kA we can on the one hand observe that k � kA ' k � kHt .˝/; it is then easy to see
that there exists a positive constant Q� that, without loss of generality, we can assume
to satisfy Q� < 1, such that

kQuh 	 uhk2A � Q�ku 	 uhk2A:

On the other hand, with respect to the scalar product .�; �/A, Galerkin orthogonality
implies that Quh 	 uh 2 QVh is orthogonal to u 	 Quh. Then we can write

ku 	 uhk2A D k.u 	 Quh/C .Quh 	 uh/k2A D ku 	 Quhk2A C kQuh 	 uhk2A;

whence, for � D 1 	 Q�

ku 	 Quhk2A D ku 	 uhk2A 	 kuh 	 Quhk2A � �ku 	 uhk2A: (79)

Remark 14. We will need the norm k � kA also later on and, by abuse of notation,
we will also denote by k � kA the equivalent `2 norm defined by

kwk2A D wTRw

(the abuse of notation is justified since for w DP� w� L � we have kwkA D kwkA).

Thanks to (79), the refinement strategy (78) guarantees then convergence of an
adaptive procedure of the following form.
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• initial index set �0 D ;; initial guess u0 D 0;
• �i ;ui ! �iC1;uiC1

? compute ei D f 	Rui

? compute �.iC1/ WD smallest index set such that
(78) holds

? compute u.iC1/ W coefficients of the Galerkin solution
in span < L �; � 2 �.iC1/ >

• iterate until keik`2 � "
The bound (79) guarantees convergence of the algorithm. Moreover, provided #�

is small enough, it is possible to estimate a priori the cardinality of the output index
set at convergence [34]. The key ingredient is the following lemma.

Lemma 2. Let w 2 span <  �; � 2 �h > and let Q�h � �h be the smallest
possible index set such that (78) holds. Then, if #� < �.R/�1=2, for 0 < s < s� and
� D .s=d C 1=2/�1 we have that

#. Q�h n�h/ �< kf 	Awk�d=sH�t .˝/kukd=sB
s;�
�

(�.R/ D kRk`2!`2kR�1k`2!`2 denoting the condition number of the infinite
matrix R).

Proof. Let � > 0 be a constant such that

#� � �.R/�1=2.1 	 �.R/�2/1=2:

Let N be the smallest integer such that ku 	 PNuk`2 � �ku 	 wkA, PN denoting
the nonlinear projection operator introduced in Sect. 3.1.4. By applying Theorem 11,
and the equivalence ku 	wkA ' ku 	 wk`2 ' kR.u 	w/k`2 we can bound [34]

N �< kf 	Rwk�d=s
`2
kukd=s`� :

The definition of the k � kA norm and of the constant � yield

ku 	 PNukA � kRk1=2`2!`2ku 	 PNuk`2 � �kRk1=2`2!`2ku 	 wkA:

Let now O� D �h [ supp.PN .u// denote the set of indexes � for which the �-th
coefficient of either w or PN .u/ does not vanish, and let Ouh D P

�2 O� Ou� L � denote
the Galerkin projection of u in span < L �; � 2 O� >, Ou 2 `2.�/ denoting the
corresponding wavelet coefficient vector (whose component vanish outside O�). The
optimality of the Galerkin projection in the k � kA norm implies

ku 	 OukA � ku 	 PNukA � �kRk1=2`2!`2ku 	 wkA:
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By Galerkin orthogonality we then have

kw 	 Ouk2A � .1 	 kRk`2!`2�2/ku	 wk2A;

using which together with Ou� D w� D 0 for � 62 O� we can write

#�kf 	Rwk2
`2
� �.R/�1.1 	 �.R/�2/kf 	Rwk2

`2

D �.R/�1.1 	 �.R/�2/kRu	Rwk2
`2

� kR�1k�1
`2!`2.1 	 �.R/�2/ku 	wk2A � kR�1k�1`2!`2kOu 	 wk2A;

where we used the bound kRxk`2 � kRk1=2`2!`2kxkA. Finally the matrix R being
symmetric positive definite allows us to write [34]

kR�1k�1
`2!`2kOu 	 wk2A �

X

�2 O�
je�j2:

Since �h � O�, by definition of Q�h we conclude

#. Q�h n�h/ � #. O�h n�h/ � N �< kf 	Rwk�d=s
`2
kukd=s`� :

The thesis follows thanks to Remark 13. ut
Provided the solution u belongs to BtCs;�

� .˝/ with � D .1=2 C s=d/�1, we
can then use Lemma 2 to estimate the cardinality of the index set that the adaptive
procedure selects upon convergence [34]. Let in fact K be such that krKk`2 > " �
krKC1k`2 . We have that

#.�KC1/ D
KX

iD0
#.�iC1 n�i/:

Now, by Lemma 2 we have that

#.�iC1 n�i/ �< kf 	 Auik�d=s
H�t .˝/

kukd=s
B
tCs;�
� .˝/ �< ku 	 uik�d=sA kukd=s

B
tCs;�
� .˝/

which, combined with

ku 	 uKkA � �K�iku 	 uikA
yields

#.�KC1/ �< kukd=sku 	 uKk�d=sA

KX

iD0
�d.K�i /=s �< kuk

d=s

B
tCs;�
� .˝/

ku 	 uKk�d=sA :
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Since, by the definition of K we have that ku 	 uKkA �> " we immediately obtain

#.�KC1/ �< "�d=skuk
d=s

B
tCs;�
� .˝/

:

5.2 Nonlinear Wavelet Methods for the Solution of PDE’s

The adaptive procedure presented in the previous section exploits the properties of
wavelets to design an adaptive wavelet algorithm of a classical type:

• Given an approximation space it computes an approximation to the solution of
the problem within the given space.

• It looks at the computed approximation in order to design a new approximation
space using the a posteriori error estimate (77).

• It iterates until the computed solution is satisfactory.

In view of (75) and (76) the discrete form (74) suggests a different approach.
The fact that kRk`2!`2 and kR�1k`2!`2 are both finite easily implies the following
Proposition:

Proposition 4. There exist a constant #0, such that 8# with 0 < # < #0 it holds
that

kI 	 #Rk`2!`2 � � < 1: (80)

This suggests us to formally write down an iterative solution scheme for the bi-
infinite linear system (74). To fix the ideas let us consider a simple Richardson
scheme:

5.2.1 The Richardson Scheme for the Continuous Problem

• initial guess u0 D 0
• un 	! unC1

? compute rn D f 	Run

? unC1 D un C #rn

• iterate until error � tolerance.

Thanks to Proposition 4 it is not difficult to prove that this algorithm converges to
the solution u of (74), provided # < #0. This formal (since it acts on infinite matrix
and vectors) converging scheme is the basis of two nonlinear algorithms which we
will consider in the following sections. Before presenting the nonlinear algorithm
let us recall that we have the following lemma [21], which improves Proposition 4.

Lemma 3. There exist two constants �� < 2 and #0, such that8# with 0 < # < #0
and 8�; with �� < � � 2,
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kI 	 #Rk`�!`� � � < 1: (81)

Let us start by considering a very simple scheme. We aim at computing an
approximation to u in the nonlinear space ˙N . The idea [11] is to modify the
Richardson scheme for the (74) by forcing un DP� un� L � to belong to the nonlinear
space˙N . This reduces to forcing the iterates un to have at mostN non zero entries.
The simplest way of doing this is to project un onto ˙N by the nonlinear projector
PN defined by (66). The result is the following scheme:

• initial guess u0 D 0
• un ! unC1

? compute rn D f 	Run

? unC1 D PN .un C #rn/ .unC1 DP� unC1�  � 2 ˙N /

• iterate until error � tolerance.

The above procedure is once again not practically computable (since it involves
the exact computation of the residual, which is obtained by multiplying a finite
vector times an infinite matrix). Nevertheless it is interesting to analyze it and prove
stability and some form of convergence. This is the object of the following theorem:

Theorem 12. 9#0 s.t. if u 2 BtCs;�
� .˝/ with 0 < s < minfs�; d=�� 	 d=2g and

� D .s=d C 1=2/�1 then for 0 < # < #0 it holds:

• Stability: we have kunk`2 �< kfk`2 C ku0k`2 ; 8n 2 N
• Convergence: for en D un 	 u it holds:

kenk`2 � �nke0k`2 C
C

1 	 �N
�s=d ;

where C is a constant depending only on the initial data

Proof. Stability. We have, using the `2 boundedness of PN as well as (81)

kunk`2 D kPN .un�1 C #.f 	Run�1//k`2 � k.1 	 #R/un�1 C #fk`2

� k#fk`2 C �kun�1k`2 :

Iterating this bound for n decreasing to 0 we obtain

kunk`2 �
 
n�1X

iD0
�i

!
k#fk`2 C �nku0k`2 ;

which gives us the stability bound. In the same way we can prove that

kunk`� �< kfk`� C ku0k`� ; 8n 2 N: (82)
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Convergence. We write down an error equation

enC1 D en 	 #Ren C "n;

with
"n D PN .un C #.f 	Run// 	 .un C #.f 	Run//:

We take the `2 norm, and, using (81) once again we obtain

kenC1k`2 � �kenk`2 C k"nk`2 �
nX

iD0
�n�ik"ik`2 C �nC1ke0k`2

�
�

max
0�k�n

k"kk`2
� nX

kD1
�k C �nC1ke0k`2 :

Let us bound "k. Using (82) we have

"k � N�s=dkuk C #.f 	Ruk/k`� � N�s=dk.I 	 #R/uk C #fk`� �< N�s=d :
ut

The above scheme shows the idea underlying the new generation of nonlinear
wavelet schemes. It has however several limitations. First of all, as already observed
it is not computable. The iterates are indeed (by construction) finitely supported
vectors but the algorithm involves the computation of the residual which requires
once again the multiplication of a finite dimensional vector with the infinite
matrix R. This limitation can be overcome by replacing the residual r by an
approximate residual (see Sect. 5.4). In order for the algorithm to converge correctly
it is moreover necessary to choose the tolerance for the stopping criterion in a
suitable way. In fact, it is not difficult to realize, even without a rigorous analysis,
that if the tolerance is to big, the algorithm will stop too soon, and will not produce
a satisfactory solution. If the tolerance is too small, the algorithm will not converge,
since the error generated by the nonlinear projection step at each iteration may be
such that the stopping criterion is never met. Moreover we would like our adaptive
algorithm to be optimal not only in terms of convergence rate but also in terms of
the workload that we need to face in order to obtain the approximate solution.

5.3 The CDD2 Algorithm

In [17] Cohen et al. presented a class of non linear wavelet algorithms based on the
Richardson scheme for the full discrete system (74), for which they were able to
provide a full analysis including stability, convergence with optimal rate, as well as
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an a priori estimate on the total number of operations required to converge within a
tolerance ".

Their approach started from the following consideration: if we want a feasible
nonlinear algorithm we need to be able to approximate the computation of the
residual by procedures involving a finite number of operations. We need, in
particular, to be able to approximate the right hand side f with a finite dimensional
vector and to compute, for any finite dimensional vector v an approximation w to
Rv. Moreover, we want to be able to control the effect that the error resulting from
such approximate computations has on the overall algorithm. Finally we want to
control the number of operations needed to converge within a given tolerance of the
solution.

For simplicity let us assume that the righthand side f is finitely supported and
computed exactly, and assume only that a procedure is available performing the
following task:

applyR given a finitely supported vector v and a tolerance 
 returns a finitely
supported vector w (the support of w not necessarily coinciding with the one of
the input vector v) satisfying

kRv 	wk`2 � 
:

As in the nonlinear Richardson algorithm described in Sect. 5.2, in order to avoid
that the dimension of the vectors involved in the computation becomes too big, we
need a nonlinear projection procedure. The CDD2 algorithm assumes in particular
the availability of a procedure coarsen allowing to meet a certain tolerance with
a finite vector of the smallest possible support:

coarsen given a vector v and a tolerance 
 returns the vector w with smallest
support such that

kw	 vk`2 � 
: (83)

If such operations are available we can implement a solution algorithm with the
following form.

5.3.1 The CDD2 Algorithm

• fix tolerance "

• initial tolerance "0 D kR�1k`2!`2kfk`2
• initial index set �0 D ;; initial guess u0 D 0
• .�j ;uj ; "j /! .�jC1;ujC1; "jC1/

? initialize inner loop: v0 D uj

? for k D 1; : : : ; K vk�1 ! vk

- set 
k D �k"j
- applyRŒvk�1; 
k�! wk

- vkC1 D vk C #.fk 	 wk/
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? projection: coarsenŒvK; 0:4 "j �! ujC1
? update tolerance: "jC1 D "j =2

• iterate until "j � ".
Lemma 4. If we choose

K D minfk W �k�1.#k C �/ � 0:1g;

then the iterates of the above algorithm satisfy

ku 	 uj k`2 �< "j D 2�j "0: (84)

Proof. We prove (84) by induction on j . For j D 0 we have

ku 	 u0k`2 � kuk`2 � kR�1k`2!`2kfk`2 D "0:

Let us now assume that (84) holds for the .j 	 1/-th iterate. Let Qvk , k D 1; : : : ; K ,
denote the sequence obtained by applying a Richardson scheme with the exact
multiplication by the infinite matrix R:

Qv0 D uj�1; QvkC1 D Qvk C #.f 	Rvk/:

We have
vk 	 Qvk D .1 	 #R/.vk�1 	 Qvk�1/C #.wk 	Rvk/;

whence

kvk 	 Qvkk`2 � k1 	 #Rk`2!`2kvk�1 	 Qvk�1k`2 C 
k � �kvk�1 	 Qvk�1k`2 C 
k

� �.�kvk�2 	 Qvk�2k C 
k�1/C 
k � � � � � �j kv0 	 Qv0k`2 C
k�1X

nD0

�k
k�n

from which, since v0 D Qv0 and 
k D �k"j�1
kvK 	 QvKk`2 � #K�K�1"j�1:

On the other hand, standard estimates for Richardson iterations together with the
induction assumption yield

kQvK 	 uk`2 � �Kkuj�1 	 uk`2 � �K"j�1:

Then, by using a triangular inequality we can write

kvK 	 uk`2 � kvK 	 QvKk`2 C kQvK 	 uk`2 � �K�1.#K C �/"j�1 � 0:1 "j�1:
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Finally, recall that uj is obtained by applying coarsen to vK . Using (83) we can
then write

kuj 	 uk � kuj 	 vKk`2 C kvK 	 uk`2 � .0:4C 0:1/"j�1 D "j :
ut

The algorithm is then guaranteed to converge. Clearly if we want to have control
on the number of operations (for which we need to be able to control the size of
the support of the iterates) we need on the one hand to exploit some smoothness
information on the solution of the continuous equation, and on the other hand to
assume that we are able to optimally estimate the dependence on the input data
(tolerance and support of the input vector) of the number of operations needed by
the two procedures applyR and coarsen.

Following [17], we will then assume that there exists an Os such that, given any
tolerance 
 and any finitely supported vector v, the output w of applyR verifies for
any 0 < s < Os, with � D .s=d C 1=2/�1,

#.suppw/ D #f� W w� 6D 0g �< kvk
d=s

`� 

�d=s; kwk`� �< kvk`� :

Moreover we assume that the number of arithmetic operations and of sorts needed
to compute w are, respectively, bounded by C.
�d=skvk`� C #.supp v// and by
C#.supp v/ log.#.supp v//. Under such an assumption it is possible to improve the
convergence result by proving that if u 2 `� then the output Nu of the nonlinear
algorithm with target accuracy " verifies

#.supp Nu/ �< kuk
d=s

`� "
�d=s; kNuk`� �< kuk`� :

Moreover the total number of operations behaves asymptotically for "! 0 as "�d=s
arithmetic operations and "�d=sj log."/j sorts.

5.4 Operations on Infinite Matrices and Vectors

As already observed several times all the algorithms presented above are only
theoretical if we do not provide a way of handling approximately the infinite
matrices and vectors involved as well as the operations on such objects, in particular
the matrix-vector multiplication w D Rv

w� D
X

�

R�;�v� D
X

�

hA L �; L �iv�: (85)

The idea is to replace w� by an approximation obtained by neglecting, in the
sum on the right hand side of (85), the contribution of those indexes � which are
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sufficiently “far” (either in space or in frequency) from �. In fact, we observe that
for � 2 rj and � 2 rm we have

jhA L �; L �ij �< 2�.
LRCt /jj�mji.�; �/; (86)

with LR < minfR	2t; QRg and i.�; �/ D 1 if supp L �\ supp L � 6D ; and vanishing
otherwise. If j � m this is easily proven by observing that we have

jhA L �; L �ij �< kA L �kH LR.˝/
k L �kH� LR.˝/

; (87)

�< k L �kH LRC2t .˝/
k L �kH� LR.˝/ �< 2�jt2j.

LRC2t/2�mt2�m LR (88)

(recall that L � and L � are normalized in such a ay that k L �kHt .˝/'k L �kHt .˝/' 1,
which results in the two factors 2�jt and 2�mt on the righthand side of (88)). If
j > m we observe that hA L �; L �i D h L �;A L �i and proceed analogously.

The bound (86) suggests to introduce a function v W � 
�! R defined by

For � 2 rm; � 2 rj ; v.�; �/ D 2�� jj�mji.�; �/;

where 0 < � � LRCt is a parameter to be chosen, and to construct an approximation
to w by only considering the contribution of those basis functions  � with v.�; �/
sufficiently big. More precisely, given a tolerance " we can define

Lw� D
X

�2�Wv.�;�/>"
hA L �; L �iv�: (89)

The key in proving that Lw is a good approximation to Rv is based on the
observation that for a D .a�/� 2 `2.�/ letting b D .b�/� be defined, for � 2 rj by

b� D
X

m

2�.˛Cd=2/jj�mj
X

�2rm
i.�; �/a�;

with ˛ > 0, then it holds that b D .b�/� 2 `2.�/ and

kbk`2 �< kak`2 : (90)

This is not difficult to see: in fact, due to the particular structure of the index set �,
we have that, for � 2 rj ,

b� D
X

m

2�.˛Cd=2/jj�mjbm� ; bm� D
X

�2rm
i.�; �/a�;
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whence
kbk`2 �<

X

m

2�.˛Cd=2/jj�mjkbmk`2 :

Observing that #.f� 2 rm W i.�; �/ 6D 0g/ �< maxf1; 2d.m�j /g �< 2d jm�j j the result
follows easily thanks to the `2 boundedness of the discrete convolution product with
a `1 function.

In view of (90) it is now not difficult to prove the following Lemma [1, 22].

Lemma 5. If � < LRC t 	 d=2 then we have

kw 	 Lwk`2 �< "kwk`2 :

Proof. Let ˛ D LRC t 	 d=2	 � and for � 2 rj and � 2 rm let

Qv.�; �/ D i.�; �/2�˛jj�mj:

It is not difficult to verify that

jw� 	 Lw�j D j
X

�2�Wv.�;�/�"
u�hA L �; L �ij �< "

X

�2�Wv.�;�/�"
Qv.�; �/ju�j:

Applying (90) yields the thesis. ut
This kind of approximated matrix vector multiplication algorithms can replace

the exact matrix vector multiplication algorithm in the adaptive schemes presented
in this section. For instance, they allow to design a feasible refinement strategy
analogous to (78) which results in an adaptive scheme converging to a neighborhood
of the solution of the problem. In fact, the following corollary is not difficult to
prove.

Corollary 4. Setting Le D . Le�/�

Le� D f� 	
X

�2�hWv.�;�/>"
LR�;�u�;

we have
ku 	 uhk2Ht .˝/ �< kLek`2 C "kf k2H�t .˝/

and
kLek`2 �< ku 	 uhk2Ht .˝/ C "kf k2H�t .˝/:

Then, given #� 2 .0; 1/ and any tolerance "0 > 0, it is possible to prove that
there exists a constant � such that, provided " � �"0 if we define Q�h to be the
smallest index set such that

X

�2 Q�h
j Le�j2 � #�

X

�2 Q�
2�2j j Le�j2; (91)
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and we let Quh 2 QVh D span <  �; � 2 Q�h > denote the Galerkin projection of u,
then either

ku 	 QuhkA � �ku 	 uhkA
with � < 1 or X

�2 Q�
j Le�j2 � "0

(see [22] for a proof).

Remark 15. In all the algorithms presented in this section we assumed that we
always treat the vector f exactly, so that algorithms, in the form described here,
are only feasible if such a vector is finite. We remark that suitable approximations
for f are possible and their effect can be incorporated in all the algorithm proposed,
without substantially changing the kind of results that can be obtained [17].

Remark 16. The simple approximate matrix vector multiplication (89) can be
improved to a more sophisticated algorithm where instead of only taking advantage
of the decrease properties of the matrix R (see (86)) one also exploits the decreasing
properties (if any) of the vector itself. More in detail it is possible to prove [17] that
the decreasing properties of R imply the existence of a positive summable sequence
.˛j /j�0 and of matrices Rj such that Rj has at most 2j ˛j nonzero entries per row
and per column and

kR 	Rjk`2!`2 � ˛j 2�j :
Given the a vector v 2 ˙N we can compute an approximation to Rv as follows:

Rv � wj D RjP1vCRj�1ŒP2v 	 P1v�C � � � CR0ŒP2j v 	 P2j�1v�:

It is not difficult to prove that here exists �� such that for �� < � � 2 the following
bound holds with s D d=� 	 d=2:

kRv 	wj k`2 �< 2�
s
d jkvk`� :
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Heterogeneous Mathematical Models in Fluid
Dynamics and Associated Solution Algorithms

Marco Discacciati, Paola Gervasio, and Alfio Quarteroni

Abstract Mathematical models of complex physical problems can be based on
heterogeneous differential equations, i.e. on boundary-value problems of different
kind in different subregions of the computational domain. In this presentation we
will introduce a few representative examples, we will illustrate the way the coupling
conditions between the different models can be devised, then we will address several
solution algorithms and discuss their properties of convergence as well as their
robustness with respect to the variation of the physical parameters that characterize
the submodels.

1 Introduction and Motivation

For the description and simulation of complex physical phenomena, combination
of hierarchical mathematical models can be set up with the aim of reducing the
computational complexity. This gives rise to a system of heterogeneous problems,
where different kind of differential problems are set up in subdomains (either
disjoint or overlapping) of the original computational domain. When facing this
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kind of coupled problems, two natural issues arise. The former is concerned with the
way interface coupling conditions can be devised, the latter with the construction
of suitable solution algorithms that can take advantage of the intrinsic splitting
nature of the problem at hand. This work will focus on both issues, in the context
of heterogeneous boundary-value problems that can be used for fluid dynamics
applications.

The outline of this presentation is as follows. After giving the motivation for
this investigation, we will present two different approaches for the derivation and
analysis of the interface coupling conditions: the one based on the variational
formulation, the other on virtual controls. For the former we will consider at first
advection–diffusion problems. After carrying out their variational analysis we pro-
pose domain decomposition algorithms for their solution, in particular those based
on Dirichlet–Neumann, adaptive Robin–Neumann, or Steklov–Poincaré iterations.
Then, we will focus on Navier–Stokes/Darcy or Stokes/potential coupled problem
presenting their asymptotic analysis together with possible solution techniques.

For the virtual control approach, we will study the case of non-overlapping
subdomains for advection–diffusion problems considering in particular possible
techniques to solve the optimality system and we will present some numerical
results. Then, we will consider the case of domain decomposition with overlap,
namely Schwarz methods with Dirichlet/Robin interface conditions. We will investi-
gate the virtual control approach with overlap for the advection–diffusion equations
including the case of three virtual controls and we will present some numerical
results. Finally, we will illustrate this framework for the case of the Stokes–Darcy
coupled problem, and for the coupling of incompressible flows.

In order to motivate our investigation, we begin to analyze the advection–
diffusion problem.

Let us consider a bounded domain ˝ � Rd (d D 1; 2; 3) with Lipschitz
boundary and the advection–diffusion equation

�
Au  div.	�ruC bu/C b0u D f in ˝
u D g on @˝;

(1)

where � > 0 is a characteristic parameter of the problem, b D b.x/ a d -dimensional
vector valued function, b0 D b0.x/ and f D f .x/ scalar functions, all assigned
in ˝ , while g D g.x/ is assigned on @˝ .

The characteristic parameter � can either represent the thermal diffusivity in heat
transfer problems, or the inverse of the Reynolds number in incompressible fluid-
dynamics, or another suitable parameter.

Denoting by

Peg.x/ D jb.x/j
2�

(2)

the global Péclet number, we call (1) an advection-dominated problem when
Peg.x/� 1.
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Ω

Au = div(−ν∇u + bu) + b0u = f

layer

Fig. 1 A simple
computational domain and
the localization of the
boundary layer

We are interested in treating advection dominated problems with boundary layers
(see, e.g., Fig. 1), that arise when boundary data are incompatible with the limit
(as � ! 0) of the advection–diffusion equation. As an example, let us consider the
one-dimensional advection–diffusion equation

( 	�u00.x/C bu0.x/ D 0; 0 < x < 1;
u.0/ D 0; u.1/ D 1;

(3)

with � > 0 and b > 0. Problem (3) can be solved exactly and its solution reads

u.x/ D ebx=� 	 1
eb=� 	 1 :

Such solution exhibits a boundary layer of width O.�=b/ near to x D 1 when the
ratio �=b is small enough, that is when

Peg.x/� 1: (4)

In Fig. 2 we show the one-dimensional solution u.x/ of (3) for two different
values of the Péclet number: Peg.x/ D 0:5 at left and Peg.x/ D 100 at right. Only
in the latter case a boundary layer occurs.

When (4) holds, the diffusive term is relevant only in a small part of the domain
near to the boundary layer, while it can formally be neglected in the rest of the
domain, where the advection phenomenon prevails.

The idea is then: to split the domain in two non-overlapping subdomains˝1 and
˝2 where we denote by  D @˝1 \ @˝2 the interface between subdomains, and
then to solve a reduced problem as follows (see Fig. 3):

8
<

:

A1u1  div.bu1/C b0u1 D f in ˝1

A2u2  div.	�ru2 C bu2/C b0u2 D f in ˝2

Boundary conditions on @˝:
(5)

The main question that follows is: how to couple the subproblems?
To answer this question one should:
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Fig. 2 The exact solution of problem (3). The solution at right exhibits a boundary layer in x D 1
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(∂W1\G)in

div (bu1) + b0u1 = f

div(−ν∇u2 + bu2) + b0u2 = f

layerW1

W2

G in

Fig. 3 The reduced problem on the computational domain ˝ 	 R2

1. Find interface conditions on  so that the new reduced problem is well posed
and its solution is “close to” the original one; then

2. Set up efficient solution algorithms to solve the reduced problem.

By a singular perturbation analysis, Gastaldi et al. [30] proposed the following
set of interface conditions:

8
<̂

:̂

u1 D u2 on  in

b � n u1 C � @u2
@n
	 b � n u2 D 0 on ;

(6)

where n is the normal versor to  oriented from ˝1 to ˝2 and  in D fx 2  W
b.x/ � n .x/ < 0g is the inflow interface for˝1.

The coupled formulation (5) and (6) allows the independent solution of a
sequence of hyperbolic problems in ˝1 and elliptic problems in ˝2, in the
framework of iterative processes between subdomains. The different possible
treatments of the interface relations is what distinguishes one iterative method from
another. In this respect, a very natural approach is defined as follows. Given a
suitable initial guess �.0/ on in and a suitable relaxation parameter# > 0, it iterates
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between˝1 and˝2 until convergence as follows: for k � 0 do

Solve

8
ˆ̂<

ˆ̂:

A1u
.kC1/
1 D f in ˝1

u.kC1/1 D g on .@˝1 n  /in
u.kC1/1 D �.k/ on  in;

Solve

8
ˆ̂̂
<̂

ˆ̂̂
:̂

A2u
.kC1/
2 D f in ˝2

u.kC1/2 D g on @˝2 n 

	� @u.kC1/2

@n
C b � n u.kC1/2 D b � n u.kC1/1 on ;

Compute �.kC1/ D .1 	 #/�.k/ C #u.kC1/2 j in :

(7)

The coupled advection/advection–diffusion problem has been studied in [30]
and alternative interface conditions have been proposed in [21, 23, 24]. In [26] the
problem has been solved in the context of virtual control approach. We refer to
Sects. 2.2, 2.3, 3.1 for a more detailed analysis and solution of this problem.

Another problem which deserves our attention is the generalized Stokes equation
(see [51, Sect. 8.2.1]).

Let us refer to an idealised geometrical situation as depicted in Fig. 4, left.
The bounded domain ˝ � Rd , d D 2; 3, is external to a body whose boundary

is b and we set 1 WD @˝ n b. The problem we are considering reads: find the
vector field u and the scalar field p such that

8
ˆ̂<

ˆ̂:

˛u 	 ��uCrp D f; divu D 0 in ˝

u D 0 on b

Bu D '1 on 1;
(8)

where f and '1 are given functions,B denotes the boundary operator on 1, while
˛ � 0 is a given parameter. To take ˛ D 0 corresponds to solve the Stokes problem.
Nevertheless, this problem may arise in the process of solving the full Navier–Stokes

Ω

Γ

G∞ G∞

Gb Gb

W1 W2

Fig. 4 The geometrical configuration for an external problem (left) and a possible non overlapping
decomposition of the computational domain (right)
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equations, when the discretisation of the time derivative is performed by means of a
scheme that is explicit in the non-linear convective term. In this case, the parameter
˛ > 0 represents the inverse of the time-step and the function f, in fact, depends on
the solution at the previous step, i.e. f D f.u.n//.

The boundary conditions on 1 have to be prescribed in a suitable way for
assuring well-posedness. In this respect, on a portion  in1 of 1 an onset flow
u D uin1 is given. However, assigning conditions on the outflow section  out1 may
not be simple. It is also clear that all interesting flow features occur in the vicinity
of the body due to the role of viscosity in this area.

For this reason, Schenk and Hebeker [56] have proposed the replacement of
problem (8) with a reduced one far from the obstacle.

The computational domain ˝ is partitioned into a subdomain ˝2, next to the
body, and a far field subdomain ˝1; the interface between ˝1 and ˝2 is denoted
by  , n is the unit normal vector on  directed from ˝1 to ˝2, and n the unit
outward normal vector on @˝ . The global Stokes equation (8) is replaced with the
following coupled problem, where the viscosity � is set to 0 in ˝1:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

˛u1 Crp1 D f; divu1 D 0 in ˝1

u1 D uin1 on  in1
p1 D 0 on  out1

˛u2 	 ��u2 Crp2 D f; divu2 D 0 in ˝2

u2 D 0 on b;

(9)

or equivalently, by applying the divergence operator to (9)1:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�p1 D divf in ˝1

@p1

@n
D .f 	 ˛uin1/ � n on  in1

p1 D 0 on  out1

˛u2 	 ��u2 Crp2 D f; divu2 D 0 in ˝2

u2 D 0 on b:

(10)

Either problem (9) and (10) are incomplete, because the matching conditions that
have to be fulfilled on  are missing.

In [56] these conditions are recovered through a singular perturbation analysis
similar to that carried out for the advection–diffusion problem in [30] and they read:

8
<

:

@p1

@n
D .f 	 ˛u2/ � n on 

p1n D 	�.n � r/u2 C p2n on :
(11)
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Fig. 5 The domain
decomposition configuration
for an internal problem

The coupled problem (10) and (11) can be used also for the simulation of the fluid
motion inside a bounded domain, as depicted in Fig. 5. In this case the domain ˝1,
in which the reduced problem is solved, is non-connected and separates the interior
domain from both inflow and outflow interfaces.

We observe that the system (10) and (11) models two possible different coupled
problems. The first one, when ˛ D 0, is a Stokes/potential coupling, the vector field
f is independent of the velocity u and the pressure p1 is indipendent of the solution
.u2; p2/. Such coupling can be used to model external flows.

The second one, when ˛ > 0, corresponds to the single step of a time-
dependent Navier–Stokes/potential coupling where, as said above, the vector field
f depends on the solution at the previous step. This is the case of the simulation
of either the flow inside a channel (or the blood flow in the carotid) or a far field
condition.

As in the case of the advection–diffusion problem, the interface conditions (11)
could be used to set-up an iterative algorithm by subdomains as follows.

Assume thatb�.0/ is given and satisfies
Z



b�.0/ � n D 0; for any k � 0 solve

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

�p
.kC1/
1 D divf in ˝1

@p
.kC1/
1

@n
D .f 	 ˛uin1/ � n on  in1

p
.kC1/
1 D 0 on  out1
@p

.kC1/
1

@n
D .f 	 ˛b�.k// � n on ;

(12)

then solve
8
ˆ̂̂
<

ˆ̂̂
:

˛u.kC1/2 	 ��u.kC1/2 Crp.kC1/2 D f; divu.kC1/2 D 0 in ˝2

u.kC1/2 D 0 on b

�.n � r/u.kC1/2 	 p.kC1/2 n D 	p.kC1/1 n on 

(13)



64 M. Discacciati et al.

and finally set

b�.kC1/ D .1 	 #/b�.k/ C #u.kC1/
2j ; (14)

where # > 0 is a relaxation parameter.
Since divu.kC1/2 D 0 in ˝2, the trace u.kC1/

2j satisfies

Z



u.kC1/
2j � n D 0;

whence
Z



b�.k/ � n D 0 for each k � 0.

The analysis of the coupled problem (10) and (11) and the proof of convergence
of the above iterative process (12)–(14) are reported in [56]. The analysis can be
performed also by writing the problem in terms of the associated Steklov–Poincaré
operators, and then proving convergence by applying an abstract result (see [51,
Thm 4.2.2]).

Finally, we introduce a coupled free/porous-media flow problem.
The computational domain is a region naturally split into two parts: one occupied

by the fluid, the other by the porous media. More precisely, let ˝ � Rd (d D 2; 3)
be a bounded domain, partitioned into two non intersecting subdomains˝f and˝p

separated by an interface  , i.e. N̋ D N̋ f [ N̋p ,˝f \˝p D ; and N̋ f \ N̋p D 
(Fig. 6). We suppose the boundaries @˝f and @˝p to be Lipschitz continuous. From
the physical point of view,  is a surface separating the domain˝f filled by a fluid,
from a domain ˝p formed by a porous medium. We assume that ˝f has a fixed
surface, i.e., we neglect here the case of free-surface flows. The fluid in ˝f can
filtrate through the adjacent porous medium.

The Navier–Stokes equations describe the motion of the fluid in ˝f : 8t > 0,

�
@tuf 	 div T.uf ; pf /C .uf � r/uf D f in ˝f

div uf D 0 in ˝f ;
(15)

nf

np

Γ

W f

Wp
Gp

Gf
in

Gp
b

Gp

Gf

Gf

Fig. 6 Representation of a
2D section of a possible
computational domain for the
Stokes/Darcy coupling
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where T.uf ; pf / D �.ruf CrT uf /	 pf I is the Cauchy stress tensor, I being the
identity tensor. � > 0 is the kinematic viscosity of the fluid, f a given volumetric
force, while uf and pf are the fluid velocity and pressure, respectively.

The filtration of an incompressible fluid through porous media is often described
by Darcy’s law. The latter provides the simplest linear relation between velocity
and pressure in porous media under the physically reasonable assumption that fluid
flows are usually very slow and all the inertial (non-linear) terms may be neglected.
Darcy’s law introduces a fictitious flow velocity, the Darcy velocity or specific
discharge q through a given cross section of the porous medium, rather than the
true velocity up with respect to the porous matrix:

up D q
n
; (16)

with n being the volumetric porosity, defined as the ratio between the volume of
void space and the total volume of the porous medium.

To introduce Darcy’s law, we define a scalar quantity ' called piezometric head
which essentially represents the fluid pressure in ˝p:

' D zC pp

g
; (17)

where z is the elevation from a reference level, accounting for the potential energy
per unit weight of fluid, pp is the ratio between the fluid pressure in ˝p and its
viscosity �f , and g is the gravity acceleration.

Then, Darcy’s law can be written as

q D 	Kr'; (18)

whereK is a symmetric positive definite diagonal tensorK D .Kij /i;jD1;:::;d ,Kij 2
L1.˝p/,Kij > 0,Kij D Kji , called hydraulic conductivity tensor, which depends
on the properties of the fluid as well as on the characteristics of the porous medium.
Let us denote K D K=n.

In conclusion, the motion of an incompressible fluid through a saturated porous
medium is described by the following equations:

�
up D 	Kr' in ˝p

div up D 0 in ˝p:
(19)

Finally, to represent the filtration of the free fluid through the porous medium,
we have to introduce suitable coupling conditions between the Navier–Stokes and
Darcy equations across the common interface  . In particular we consider the
following three conditions.

1. Continuity of the normal component of the velocity:

uf � n D up � n; (20)
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where we have indicated n D nf D 	np on  . This condition is a consequence
of the incompressibility of the fluid.

2. Continuity of the normal stresses across  (see, e.g., [36]):

	 n � T.uf ; pf / � n D g': (21)

Remark that pressures may be discontinuous across the interface.
3. Finally, in order to have a completely determined flow in the free-fluid region,

we have to specify a further condition on the tangential component of the fluid
velocity at the interface. An experimental condition was obtained by Beavers
and Joseph stating that the slip velocity at the interface differs from the seepage
velocity in the porous domain and it is proportional to the shear rate on  [5]:

�˛BJp
K
.uf 	 up/� 	 .T.uf ; pf / � n/� D 0: (22)

By .v/� we indicate the tangential component to the interface of v:

.v/� D v 	 .v � n/n: (23)

Since the seepage velocity up is far smaller than the fluid slip velocity uf at
the interface, Saffman proposed to use the following simplified condition (the
so-called Beavers–Joseph–Saffman condition) [53]:

�˛BJp
K
.uf /� 	 .T.uf ; pf / � n/� D 0: (24)

This condition was later derived mathematically by means of homogenization by
Jäger and Mikelić [36–38].

The three coupling conditions described in this section have been extensively
studied and analysed also in [17, 19, 46, 49, 52].

In conclusion, the coupled Navier–Stokes/Darcy model reads

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

@tuf 	 div T.uf ; pf /C .uf � r/uf D f in ˝f

div uf D 0 in ˝f

up D 	Kr' in ˝p

div up D 0 in ˝p

uf � n D up � n on 

	n � T.uf ; pf / � n D g' on 
�˛BJp

K
.uf /� 	 .T.uf ; pf / � n/� D 0 on :

(25)

Using Darcy’s law we can rewrite the system (19) as an elliptic equation for the
scalar unknown ':
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	 r � .Kr'/ D 0 in ˝p: (26)

In this case, the differential formulation of the coupled Navier–Stokes/Darcy
problem becomes

8
<̂

:̂

@tuf 	 div T.uf ; pf /C .uf � r/uf D f in ˝f

div uf D 0 in ˝f

	div .Kr'/ D 0 in ˝p;

(27)

with the interface conditions on  :
8
ˆ̂̂
<̂

ˆ̂̂
:̂

uf � n D 	K
@'

@n

	n � T.uf ; pf / � n D g'
�˛BJp

K
.uf /� 	 .T.uf ; pf / � n/� D 0:

(28)

We refer to Sects. 2.6, 2.7, 3.4 for a more exhaustive analysis of the Stokes/Darcy
coupling.

2 Variational Formulation Approach

The reduced problems presented above will be analysed in this Section in a
variational setting, in order to deduce suitable interface conditions which can be
rigorously justified. Moreover, different iterative algorithms to solve the reduced
problems will be presented.

2.1 The Advection–Diffusion Problem

We consider an open bounded domain˝ � Rd (d D 2; 3) with Lipschitz boundary
@˝ , and we split it into two open subsets˝1 and˝2 such that

˝ D ˝1 [˝2; ˝1 \˝2 D ;: (29)

Then, we denote by

 D @˝1 \ @˝2 (30)

the interface between the subdomains (see Fig. 3) and we assume that  is of class

C1;1;
ı
 will denote the interior of  .

Given two scalar functions f and b0 defined in ˝ , a positive function � defined

in ˝2 [
ı
 , a d -dimensional vector valued function b defined in ˝ satisfying the
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following inequalities:

9�0 2 R W �.x/ � �0 > 0 8x 2 ˝2 [
ı
 ;

9�0 2 R W b0.x/C 1

2
divb.x/ � �0 > 0 8x 2 ˝;

(31)

we are interested in finding two functions u1 and u2 (defined in ˝1 and ˝2,
respectively) such that u1 statisfies the advection–reaction equation

A1u1  div.bu1/C b0u1 D f in ˝1; (32)

while u2 satisfies the advection–diffusion–reaction equation

A2u2  	div.�ru2/C div.bu2/C b0u2 D f in ˝2: (33)

For each subdomain, we distinguish between the external (or physical) boundary
@˝ \ @˝k D @˝k n  (for k D 1; 2) and the internal one, i.e. the interface  .

Moreover, for any non-empty subset S � @˝1, we define

The inflow part of S W S in D fx 2 S W b.x/ � n.x/ < 0g; (34)

where n.x/ is the outward unit normal vector on S ,

The outflow part of S W Sout D fx 2 S W b.x/ � n.x/ � 0g: (35)

Boundary conditions for problem (32) must be assigned on @˝ in
1 .

For a given suitable function g defined on @˝ , we denote by g1 and g2 the
restriction of g to .@˝1 n  /in and @˝2 n  , respectively, and we set the following
Dirichlet boundary conditions on the external boundaries:

u1 D g1 on .@˝1 n  /in;
u2 D g2 on @˝2 n :

(36)

Finally, let us denote by n the normal versor to  oriented from˝1 to ˝2, so that
n .x/ D n1.x/ D 	n2.x/, 8x 2  .

2.2 Variational Analysis for the Advection–Diffusion Equation

The basic steps of the analysis carried out in [30] are summarized here.

1. Given a positive function � in ˝ , we denote by P˝.�/ the advection–diffusion
problem (1) in ˝ . For any " > 0, we introduce a smooth function �" defined in
˝2, which is a regularization of � according with continuity to " on  . Then, ��"
is the globally defined viscosity defined as (see Fig. 7)
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Fig. 7 The viscosity ��
" for the regularized problem. �"j˝2 ! � when ."! 0/

��" D
�
" in ˝1

�" in ˝2 :

We denote by P˝.�
�
" /  ŒP˝1."/=P˝2.�"/� the following advection–

diffusion problem:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

	"�u1;" C div.bu1;"/C b0u1;" D f in ˝1

div.	�"ru2;" C bu2;"/C b0u2;" D f in ˝2

"
@u1;"
@n

	 b � n u1;" D �" @u2;"
@n

	 b � n u2;" on 

u1;" D u2;" on 

u D g on @˝:

(37)

2. For any " > 0, let V˝."/ be the variational formulation associated to P˝."/.
Solving V˝."/ means to look for the solution u" 2 V of

a".u";w"/ D F.w"/; 8w" 2 V: (38)

If we take g  0, this means to set V D H1
0 .˝/ and to solve

a".u";w"/ D
Z

˝

Œ."ru" 	 bu"/ � rw" C b0u"w"� dx; F .w"/ D
Z

˝

f w"dx

(39)

for any w" 2 V .
Otherwise, if g ¤ 0 the formulation is the same, however the right hand side

has to be modified as follows:

Fg.w"/ D F.w"/	 a".Rg;w"/;

where Rg is a suitable lifting of the boundary data g, so that the final solution
reads u" CRg (see [50]).
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3. By asymptotic analysis on V˝1."/, recover the reduced problem P˝1.0/, so that

P˝.�
�
" /! ŒP˝1.0/=P˝2.�/� when "! 0 :

The new coupled problem ŒP˝1.0/=P˝2.�/� inherits from the limit process a
proper set of interface conditions.

According to the analysis performed in [30], u1;" converges weakly in L2.˝1/

and u2;" converges weakly in H1.˝2/ when " ! 0, moreover the limit .u1; u2/ 2
L2.˝1/ 
H1.˝2/ satisfies the following reduced coupled problem:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

div.bu1/C b0u1 D f in ˝1

div.	�ru2 C bu2/C b0u2 D f in ˝2

	b � n u1 D � @u2
@n
	 b � n u2 on 

u1 D u2 on  in

u1 D g1 on .@˝1 n  /in
u2 D g2 on @˝2 n :

(40)

The interface conditions (40)3;4 express the continuity of the flux across the
whole interface  and the continuity of the solution across the inflow interface  in,
respectively. No continuity condition is imposed on  out, as a matter of fact, u1 and
u2 exhibit a jump across  out which is proportional to �j .

Note that the interface conditions (40)3;4 can be equivalently expressed as

u1 D u2 on  in;

b � n u1 C � @u2
@n
	 b � n u2 D 0 on  out

�
@u2
@n

D 0 on  in:

(41)

In order to proceed with the analysis of the coupled problem, we introduce
the following notations. Let A be an open bounded subset in Rd , with Lipschitz
continuous boundary. For any open subset  � @A, we define the weightedL2-space

L2b. / D f' W  ! R W
p
jb � n j' 2 L2. /g; (42)

and the trace space

H
1=2
00 . / D f' 2 L2. / W 9 Q' 2 H1=2.@A/ W Q'j D '; Q'j@An D 0g: (43)
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The space L2b. / endowed with the norm

k'kL2b. / D
�Z



jb � n j'2d
�1=2

is a Hilbert space.
The following result has been proved in [30]:

Theorem 1. Assume the following regularity properties on the data: @˝1 and @˝2

are Lipschitz continuous, piecewise C1;1;  is of class C1;1;

� 2 L1.˝2/; b 2 �W 1;1.˝/
�2
; b0 2 L1.˝/; f 2 L2.˝/;

g 2 H�1=2.@˝/ W g1 2 L2b..@˝1 n  /in/; g2 2 H1=2.@˝2 n  /: (44)

Finally assume (31).
Then there is a unique pair .u1; u2/ 2 L2.˝1/ 
 H1.˝2/ which solves (40),

where: (40)1 and (40)2 hold in the sense of distributions in˝1 and˝2, respectively;
interface condition (41)1 holds a.e. on  in, interface condition (41)2 holds in
.H

1=2
00 .

out//0; interface condition (41)3 holds in .H1=2
00 .

in//0. Finally, problem
(40) is limit of a family of globally elliptic variational problems.

From now on, the solution .u1; u2/ of the heterogeneous problem (40) will be
named heterogeneous solution.

Other interface conditions have been proposed in the literature to close system
(32), (33), (36). For instance, the conditions

	b � n u1 D � @u2
@n
	 b � n u2 on  out

u1 D u2;
@u1
@n

D @u2
@n

on  in;

(45)

have been proposed in [21] and are based on absorbing boundary condition theory.
The following set (see [23, 24]):

u1 D u2 on 

@u1
@n

D @u2
@n

on  in
(46)

takes into account the requirement of glueing the solutions across the interface with
high regularity.

However, the coupled problem with either one of these set of conditions (45) and
(46) cannot be regarded as a limit of the original complete variational problem as
the viscosity " tends to zero in ˝1.

Another possible approach to set suitable interface conditions was proposed
in [25] for the one-dimensional case with constant coefficients and it is based
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on the factorization of the differential operator. To briefly explain it, let us take
˝ D .x1; x2/ and let x0 2 ˝ denote the position of the interface between ˝1 and
˝2, i.e. ˝1 D .x1; x0/ and ˝2 D .x0; x2/. The method consists in the following
steps:

– Factorize the differential operator A2� D 	�@2x � Cb@x � Cb0� as

A2 D .b@x 	 b�C/
�
	�
b
@x C �

b
��
�
;

where �˙ D .b ˙pb2 C 4�b0/=.2�/, with �C > 0 and �� < 0.
– Compute the function Qu1.x/ D Qu1.x1/e�C.x�x1/C 1

b

R x
x1
f .t/e�

C.x�t /dt , which is

the solution of the modified advection–reaction equation QA1 Qu1 D b Qu01	b�C Qu01 D
f in ˝1 with a suitable boundary condition at x D x1.

– Solve the advection diffusion problem A2u2 D f in ˝2 with the following
interface condition at x D x0:

	�
b

u02.x0/C
�

b
��u2.x0/D

�
	�
b

u01.x1/C
�

b
��u1.x1/	 Qu1.x1/

�
e��Cx1C Qu1.x0/:

– Solve the advection reaction problem A1u1 D bu01C b0u1 D f in˝1 with either
u1.x0/ D u2.x0/ if b < 0, or a suitable boundary condition at x D x1 if b > 0.

It is shown in [25] that the L2	norm error between the heterogeneous solution
and the global elliptic one behaves like � (for � ! 0) in the domain˝1, while in˝2

it exponentially decreases with � when b < 0 and it behaves like �m (m D 1; 2; : : :)
when b > 0. The integer m depends on the accuarcy of the boundary condition
imposed at x D x1.

2.3 Domain Decomposition Algorithms for the Solution
of the Reduced Advection–Diffusion Problem

In this Section we will present two iterative domain decomposition methods to solve
the coupled problem (40), starting from the interface conditions (40)3;4. Moreover
we will reformulate the heterogeneous problem in terms of the Steklov–Poincaré
equation at the interface.

2.3.1 Dirichlet–Neumann algorithm

The interface conditions (40)3 and (40)4 provide, respectively, Dirichlet or Neumann
data at the interface  . Then we can use the condition (40)3 as an inflow (Dirichlet)
condition for the advection problem in ˝1 and the condition (40)4 as a Neumann
condition for the elliptic problem in ˝2. The algorithm, named Dirichlet–Neumann
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(DN) method, produces two sequences of functions fu.k/1 g and fu.k/2 g converging to
the solutions u1 and u2, respectively, of the heterogeneous problem as follows.

Given �.0/ 2 L2b. in/, for k � 0 do:

Solve

8
ˆ̂<

ˆ̂:

A1u
.kC1/
1 D f in ˝1

u.kC1/1 D g on .@˝1 n  /in
u.kC1/1 D �.k/ on  in;

Solve

8
ˆ̂̂
<̂

ˆ̂̂
:̂

A2u
.kC1/
2 D f in ˝2

u.kC1/2 D g on @˝2 n 

	� @u.kC1/2

@n
C b � n u.kC1/2 D b � n u.kC1/1 on ;

Compute �.kC1/ D .1 	 #/�.k/ C #u.kC1/2 j in ;

(47)

where # > 0 is a suitable relaxation parameter.

The convergence properties of this method are analysed in [30], while several
numerical results can be found in [22]. The convergence of DN method is
guaranteed by the following theorem [30].

Theorem 2. Let us consider the assumptions of Theorem 1. There exists ı > 0 such
that, if �.0/ 2 L2b. in/ and # 2 .0; 1C ı/, then the sequence .u.k/1 ; u

.k/
2 / converges

to a limit pair .u1; u2/ in the following sense:

u.k/1 ! u1 in L2.˝1/; u.k/2 ! u2 in H1.˝2/:

The limit pair provides the unique solution to the coupled problem (40).

Other research papers connected with this approach are [2, 9, 29, 55].
We note that, when  out D  , the DN algorithm (47) converges in one iteration,

since the solution in ˝1 is independent of the solution in ˝2 and, once u1 is known,
the solution in ˝2 is obtained by a single “Neumann step”.

On the contrary, when  in D  , the coupled problem (40) can be solved without
iterations. As a matter of fact, by re-writing the interface condition (47)6 as in
(41), we note that the solution in ˝2 is uniquely determined, independently of a
trace function � on  . Consequently, the solution in ˝1 is uniquely defined by the
interface condition (41)1.

2.3.2 Adaptive Robin Neumann Algorithm

Another iterative algorithm, that can be invoked to solve the reduced advection–
diffusion problem (40) reads as follows. Given the functions �.0/ 2 L2b. in/, �.0/ 2
L2b.

out/ and u.0/2 2 H1.˝2/, for k � 0 do:
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Solve

8
ˆ̂̂
<̂

ˆ̂̂
:̂

div.bu.kC1/1 /C b0u.kC1/1 D f in ˝1

u.kC1/1 D g on .@˝1 n  /in

	b � n u.kC1/1 D � @u.k/2
@n

	 b � n �.k/ on  in;

Solve

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

div.	�ru.kC1/2 C bu.kC1/2 /C b0u.kC1/2 D f in ˝2

u.kC1/2 D g on @˝2 n 

�
@u.kC1/2

@n
	 b � n u.kC1/2 D 	b � n �.k/ on  out

�
@u.kC1/2

@n
D 0 on  in;

Compute

(
�.kC1/ D .1 	 #/�.k/ C #u.kC1/2 on  in

�.kC1/ D .1 	 #/�.k/ C #u.kC1/1 on  out:

(48)

The algorithm (48) is obtained as the limit, when " ! 0, of the Adaptive-Robin–
Neumann (ARN) method proposed in [10] for the homogeneous global elliptic
problem (37). In its original form, ARN method reads given �.0/, �.0/ and u.0/2 ,
for k � 0 do

Solve

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

	"�u.kC1/1;" C div.bu.kC1/1;" /C b0u.kC1/1;" D f in ˝1

u.kC1/1;" D g on .@˝1 n  /in

"
@u.kC1/1;"

@n
	 b � n u.kC1/1;" D �"

@u.k/2;"
@n

	 b � n �.k/ on  in
1 D  in

"
@u.kC1/1;"

@n
D �"

@u.k/2;"
@n

on  out
1 D  out;

Solve

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

div.	�"ru.kC1/2;" C bu.kC1/2;" /C b0u.kC1/2;" D f in ˝2

u.kC1/2;" D g on @˝2 n 

�"
@u.kC1/2;"

@n
	 b � n u.kC1/2;" D "@u.kC1/1;"

@n
	 b � n �.k/ on  in

2 D  out

�"
@u.kC1/2;"

@n
D "@u.kC1/1;"

@n
on  out

2 D  in;

Compute

(
�.kC1/ D .1 	 #/�.k/ C #u.kC1/2;" on  in

�.kC1/ D .1 	 #/�.k/ C #u.kC1/1;" on  out:

(49)

The idea of this method is to impose a Robin interface condition on the local (i.e.
referred to that subdomain) inflow interface  in

i (i D 1; 2) and a Neumann interface
condition on the local outflow interface  out

i (i D 1; 2).
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Coming back to the heterogeneous coupling, it is straightforward to prove that,
if the choice of # guarantees the convergence of ARN method, then the limit
solution of ARN (48) coincides with the solution of the heterogeneous problem
(40). Moreover, if u.0/2 is chosen with null normal derivative on the interface  and
# D 1, then ARN (48) and DN (47) methods coincide.

When either  in D  or  out D  we can conclude that no iterations are need
for ARN method, as for DN.

Remark 1. We want to remark here that in the Dirichlet/Neumann method, the Neu-
mann condition (47)6 is in fact a conormal derivative associated to the differential
operatorA2. On the contrary, in the ARN method the Neumann condition (as (48)7)
is a pure normal derivative on the interface, while the conormal derivative (48)6 is
called Robin condition, in agreement with the classical definition of Robin boundary
condition. Following the latter notation, actually the Dirichlet/Neumann method
should be a Dirichlet/Robin method.

2.3.3 Steklov–Poincaré Based Solution Algorithms

Let us consider the heterogeneous problem (40) with homogeneous Dirichlet
conditions on @˝ , i.e., g  0. Let � 2 H

1=2
00 . / denote the unknown trace of

the solution u2 on  . Thanks to the interface condition (40)4, the solution .u1; u2/
of (40) can be written as

u1 D u�1 C w1; u2 D u�2 C w2;

where w1 and w2 depend on the assigned function f and are the solution of

�
A1w1 D f in ˝1

w1 D 0 on @˝ in
1 ;

�
A2w2 D f in ˝2

w2 D 0 on @˝2;
(50)

while u�1 and u�2 are the solutions of

8
<

:

A1u�1 D 0 in ˝1

u�1 D 0 on .@˝1 n  /in
u�1 D �j in on  in;

8
<

:

A2u�2 D 0 in ˝2

u2 D 0 on @˝2 n 
u�2 D � on :

(51)

Given � 2 H1=2
00 . /, we define the Steklov–Poincaré operators S1 and S2 such

that

S1� D
(

b � n u�1 on  out

0 on  in
(52)
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and

S2� D

8
ˆ̂<

ˆ̂:

�
@u�2
@n
	 b � n u�2 on  out

�
@u�2
@n

on  in:

(53)

Actually, S1� depends only on the values of � on  in.
Then the interface conditions (40)3 can be equivalently expressed in terms of

Steklov–Poincaré operators as

S�  S1�C S2� D �; (54)

where

� D

8
<̂

:̂

	b � n w1 	 � @w2
@n
C b � n w2 on  out

	� @w2
@n

on  in:

(55)

The operator S W H1=2
00 . /! .H

1=2
00 . //

0 is the so-called Steklov–Poincaré opera-
tor and the (54) is the Steklov–Poincaré equation associated to the heterogeneous
problem (40). The solution of (40) can be reached by sequentially solving the
problems (50), (54) and (51).

Several methods may be invoked to solve the Steklov–Poincaré equation (54). To
start, let us consider the preconditioned Richardson method

�
�.0/ given
P.�.kC1/ 	 �.k// D #.� 	 S�.k//; for k � 0; (56)

where P is the preconditioner and # > 0 an acceleration parameter.
Thanks to the well-posedness of the ellitpic problem in ˝2, the operator S2 is
invertible and we can use it as preconditioner, so that (56) becomes

(
�.0/ given
�.kC1/ D .1 	 #/�.k/ C #S�12 .� 	 S1�.k//; for k � 0: (57)

By comparing (57) with (47), we recognize that the Dirichlet–Neumann method
is equivalent to the Richardson iterative method applied to the Steklov–Poincaré
equation (54) with preconditionerS2, since the identity u.kC1/2 j D S�12 .�	S1�.k//
holds.

After a discretization of the heterogeneous problem (by, e.g., finite elements or
spectral methods) it is possible to write the discrete counterpart of both the Steklov–
Poincaré equation (54) and the Dirichlet–Neumann algorithm (47).

It can be be proven that the Dirichlet–Neumann algorithm converges, for suitable
choices of the relaxation parameter # , independently of the discretization parameter
h for finite elements or N for spectral methods (see, e.g., [30] for a proof in the
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spectral method context). This because the local Steklov–Poincaré operator S2 is
spectrally equivalent to the global Steklov–Poincaré operator S .

Krylov methods are valid alternatives to Richardson iterations to solve the
preconditioned Steklov–Poincaré equation

S�12 S� D S�12 �: (58)

In the next section we will provide numerical results about the numerical solution of
the coupled problem (40) by using either Dirichlet–Neumann method (47), Adaptive
Robin-Neumann method (48) and the preconditioned Bi-CGStab [57] on (58).

2.4 Numerical Results for the Advection–Diffusion Problem

In this Section we will provide the numerical solution of a test case in two-
dimensional computational domains. The discretization of the differential equation
inside each subdomain is performed by quadrilateral conformal Spectral Element
Methods (SEM). We refer to [8] for a detailed description of these methods, while
here we recall in brief their basic features.

Let T D fTmgMmD1 be a partition of the computational domain ˝ � Rd , where
each element Tm is obtained by a bijective and differentiable transformation Fm
from the reference (or parent) element Ő d D .	1; 1/d . On the reference element we
define the finite dimensional space OQN D spanf Oxj11 � � � Oxjdd W 0 � j1; : : : ; jd � N g
and, for any Tm 2 T : Tm D Fm. Ő d /, set hm D diam.Tm/ and

VNm.Tm/ D fv W v D Ov ı F�1m for some Ov 2 OQNmg:

The SEM multidimensional space is

Xı D fv 2 C0.˝/ W vjTm 2 VNm.Tm/; 8Tm 2 T g;

where ı is an abridged notation for “discrete”, that accounts for the local
geometric sizes fhmg and the local polynomial degrees fNmg, for m D 1; : : : ;M .

Let us consider the variational formulation (38) and, for simplicity, impose
the homogeneous Dirichlet condition on the boundary (i.e. g  0). The SEM
approximation of the solution of (38) is the function uı 2 Vı D Xı \ H1

0 .˝/,
such that

X

m

aTm.uı; vı/ D
X

m

.f; vı/Tm 8vı 2 Vı (59)

holds, where aTm and .f; v/Tm denote the restrictions to Tm of the bilinear form and
the L2-inner product (respectively) defined in (39).

Since the high computational cost in evaluating integrals in (59), the bilinear form
aTm and the L2-inner product .f; v/Tm are often approximated by a discrete bilinear
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form aNm;Tm and a discrete inner product .f; v/Nm;Tm , respectively, in which exact
integrals are replaced by Numerical Integration (NI) based on Legendre–Gauss–
Lobatto formulas.
The SEM-NI approximation of the solution of (38) will be the function uı 2 Vı such
that X

m

aNm;Tm.uı; vı/ D
X

m

.f; vı/Nm;Tm 8vı 2 Vı: (60)

We consider now a test case and we compare the convergence rate of the
iterative methods explained in Sect. 2.3. We will denote by DN the Dirichlet
Neumann method (47), by ARN the Adaptive Robin–Neumann method (48) and by
BiCGStab-SP the preconditioned BiCGstab method applied to the preconditioned
Steklov–Poincaré equation (58). Our aim is twofold. From one hand we will
represent the numerical solution of the heterogeneous problem (40), on the other
hand we want to investigate and compare the convergence rate of the iterative
methods versus the magnitude of the viscosity � and the discretization size (i.e.
the local geometric sizes hm and the local polynomial degreesNm).

Test case #1: Let us consider problem (40). The computational domain ˝ D
.	1; 1/2 is split in ˝1 D .	1; 0:8/ 
 .	1; 1/ and ˝2 D .0:8; 1/ 
 .	1; 1/. The
interface is  D f0:8g 
 .	1; 1/. The data of the problem are: b D Œy; 0�t , b0 D
1, f D 1 and the inflow interface is  in D f0:8g 
 .	1; 0/. Dirichlet boundary
conditions are imposed on the vertical sides of˝ , precisely g D 1 on f	1g
 .0; 1/,
g D 0 on f1g 
 .	1; 1/, while homogeneous Neumann conditions are imposed on
the horizontal sides of ˝2. The viscosity will be specified below.

In Fig. 8 the SEM-NI solutions for � D 10�2 and � D 10�3 are shown. A non-
uniform partition in 3 
 6 (4 
 6, resp.) quadrilaterals has been considered in
˝1 (˝2, resp.). The same polynomial degree N D 8 has been fixed inside each
spectral element. The jump of the solution across  out is evident for � D 0:01,
in particular we have obtained ku1 	 u2kL1. out/ ' 0:237 when � D 0:01 and
ku1 	 u2kL1. out/ ' 0:020 when � D 0:001.

Now we want to compare DN, ARN and BiCGStab-SP methods for what
concerns the convergence rate and the computational efficiency.

layer
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1.000×100

x

−1
0

1 y−1
0

1
5.787×10–7

1.000×100

x

−1
0

1 y−1
0

1

W1

W2

Fig. 8 Test case #1. The data of the test case (left) and the heterogeneous solution for � D 0:01

(center) and � D 0:001 (right)
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The convergence of both DN and ARN is measured by the stopping test on the
difference between two iterates, i.e.

k�.kC1/ 	 �.k/k � " for DN

maxfk�.kC1/ 	 �.k/k; k�.kC1/ 	 �.k/kg � " for ARN,
(61)

while the convergence of BiCGStab-SP is measured by the stopping test on the
residual r.kC1/ D � 	 S�.kC1/, i.e.

kr.kC1/k
kr.0/k � ": (62)

The convergence of both DN and ARN methods depends on the choice of
the relaxation parameter # , on the contrary, the BiCGStab-SP algorithm does not
require to set any acceleration parameter.

In Fig. 9 we report the number of iterations of both DN and ARN methods in
order to converge up to a tolerance of 10�6 for � D 0:01 and we conclude that, for
this test case, the optimal value of # is #opt D 1. Analogous results are obtained for
smaller values of the viscosity.

In Table 1 we report the number of iterations needed by every iterative scheme
(DN, ARN, BiCGstab-SP) to converge up to a tolerance of 10�6, versus the
polynomial degreeN . For both DN and ARN method we set # D 1. The partition of
˝ is not uniform and it coincides with that used to represent the numerical solutions
in Fig. 8. The discretization we have used is fine enough to guarantee the absence of
spurious oscillations due to large Péclet number.

As we can see, the convergence rate of all methods is independent of both
polynomial degreeN and viscosity �.

The BiCGStab-SP method requires the smallest number of iterations, neverthe-
less each Bi-CGStab iteration costs about two and a half iterations of either DN
or ARN. As a matter of fact, each iteration of DN (or equivalenlty ARN) requires
the solution of an advection problem in ˝1 plus the solution of an elliptic problem
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Fig. 9 Test case #1 with
� D 0:01. DN and ARN
iterations to satisfy the
stopping test (61) versus the
relaxation parameter #
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Table 1 Test case #1. Number of iterations to satisfy stopping test with "D 10�6

N � D 0:1 � D 0:01 � D 0:001

DN ARN SP DN ARN SP DN ARN SP

4 2 3 1 2 3 1 2 3 1
6 2 3 1 2 3 1 2 3 1
8 2 3 1 2 3 1 2 3 1
10 2 3 1 2 3 1 2 3 1
12 2 3 1 2 3 1 2 3 1
14 2 3 1 2 3 1 2 3 1
16 2 3 1 2 3 1 2 3 1

The relaxation parameter is # D 1 in both DN and ARN. SP is an abridged
notation for BiCGStab-SP method.

in ˝2. On the contrary, each iteration of BiCGstab-SP requires two matrix vector
products to compute the residual r.k/ D � 	 S�.k/ plus the solution of two linear
systems on the preconditioner S2z.k/ D r.k/, meaning that we have to solve two
advection problems in ˝1 plus three elliptic problems in ˝2 at each iteration.

For this test case, we conclude that all three methods are very efficient and
their computational costs are comparable. Nevertheless, both DN and ARN methods
require a priori knowledge of the optimal relaxation parameter # .

2.5 Navier–Stokes/Potential Coupled Problem

Models similar to the (Navier–)Stokes/Darcy problem introduced in Sect. 1 can be
used in external aerodynamics to describe the motion of an incompressible fluid
around a body such as, for example, a ship, a boat or a submerged body in a water
basin. In fact, such problems can be studied by decomposing the computational
domain into two parts: a region ˝2 close to the body where, due to the viscosity
effects, all the interesting features of the flow occur, and an outer region ˝1 far
away from the body where one can neglect the viscosity effects. See, e.g., Fig. 10.

Therefore, suitable heterogeneous differential models comprising Navier–Stokes
equations, Euler equations, potential flows and other models from fluid dynamics
could be envisaged (see, e.g., [3, 35]).

Here, we present a simple model where in˝2 we consider the full Navier–Stokes
equations, while in ˝1 we adopt a Laplace equation for the velocity potential.

A coupled heterogeneous model of this kind has been studied in [56] considering
a computational domain as in Fig. 11 and the following generalized Stokes problem:

8
ˆ̂<

ˆ̂:

˛u" 	 �"�u" Crp" D f in ˝

r � u" D 0 in ˝

u" D 0 on b;

(63)
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Γ

Potential

Navier-Stokes

W1

W2

Fig. 10 Flow around a
cylinder computed using a
Navier–Stokes/potential
coupled problem
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inflow
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Fig. 11 Representation of the computational domain for an external aerodynamics problem

with suitable boundary conditions on the outer boundary 1. The viscosity is
�" D � in ˝2, while �" D " in ˝1.

In [56] a vanishing viscosity argument is used letting "! 0 in ˝1 in order to set
up a suitable global model and to define the correct interface conditions across  .
Precisely, the following limit coupled problem was characterized:

8
ˆ̂<

ˆ̂:

˛u 	 ��uCrp D f in ˝2

r � u D 0 in ˝2

�q D r � f in ˝1

(64)

with suitable boundary conditions and the coupling conditions across the inter-
face 

@q

@n
D .f 	 ˛u/ � n on 

	� @u
@n
C pn D qn on :

(65)
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n denotes the unit normal vector on  directed from ˝2 to ˝1. We remark that,
apart from the physical meaning of the variables, the coupling conditions (65) are
similar in their structure to those used for the Navier–Stokes/Darcy coupling (28). In
fact, (65)1 corresponds to (28)1, and in (65)2 the pressure is still discontinuous across
the interface, even if there is no distinction between the normal and the tangential
components of the stress tensor as in (28)2 and (28)3.

Because of these similarities, the analysis that we shall develop in Sect. 2.6 for
the Navier–Stokes/Darcy problem could be accommodated to account also for the
heterogenous coupling (64) and (65).

However, one has to keep in mind that the physical meaning of the two coupled
problems is very different. In the Navier–Stokes/Darcy case we have two viscous
models where Darcy equation and the coupling conditions can be obtained by
homogenization in the limit "! 0 in˝p, where " represents the size of the pores in
the porous medium. On the other hand, the Navier–Stokes/potential model couples
viscous and inviscid equations, the latter being obtained in the limit � ! 0 like also
the corresponding coupling conditions.

2.6 Asymptotic Analysis of the Coupled
Navier–Stokes/Darcy Problem

We focus now on the coupled Navier–Stokes/Darcy problem (27) and (28), however
we confine ourselves to the steady problem by dropping the time-derivative in the
momentum equation (27)1:

	div T.uf ; pf /C .uf � r/uf D f in ˝f : (66)

Even when considering the time-dependent problem, a similar kind of “steady”
problem can be found when using an implicit finite difference time-advancing
scheme. In that case, however, an extra reaction term ˛uf would show up on the
left-hand side of (66), where the positive coefficient ˛ plays the role of inverse of
the time-step. This reaction term would not affect our forthcoming analysis, though.

To discuss possible boundary conditions on the external boundary of ˝f and
˝p, let us split the boundaries @˝f and @˝p as @˝f D  [  in

f and @˝p D
 [ p [  b

p , as shown in Fig. 6, left.
For the Darcy equation we assign the piezometric head ' D 'p on p; moreover,

we require that the normal component of the velocity vanishes on the bottom
surface, that is, up � np D 0 on  b

p .
For the Navier–Stokes problem, several combinations of boundary conditions

are possible, representing different kinds of flow problems. Here, we assign a non-
null inflow uf D uin on  in

f and a no-slip condition uf D 0 on the remaining
boundary f .

To summarize, the coupled problem (66)–(28) is supplemented with the bound-
ary conditions:
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uf D uin on  in
f ; uf D 0 on f ;

' D 'p on p; K
@'

@n
D 0 on  b

p :
(67)

We introduce the following functional spaces:

Hf D fv 2 .H1.˝f //
d W v D 0 on f [  in

f g;
eHf D fv 2 .H1.˝f //

d W v D 0 on f [  g;
Q D L2.˝f /; Hp D f 2 H1.˝p/ W  D 0 on pg:

(68)

We denote by j � j1 and k � k1 the H1-seminorm and norm, respectively, and by
k � k0 the L2-norm; it will always be clear form the context whether we are referring
to spaces on˝f or ˝p .

The space W D Hf 
Hp is a Hilbert space with norm

kwkW D
	kwk21 C k k21


1=2 8w D .w;  / 2 W:

Finally, we consider on  the trace space � D H
1=2
00 . / and denote its norm by

k � k� (see [42]).
We introduce a continuous extension operator

Ef W .H1=2. in
f //

d ! eHf : (69)

Then 8uin 2 .H1=2
00 .

in
f //

d we can construct a vector function Ef uin 2 eHf such
that Ef uinj inf D uin.

We introduce another continuous extension operator:

EpWH1=2. b
p /! H1.˝p/ such that Ep'p D 0 on : (70)

Then, for all ' 2 H1.˝p/ we define the function '0 D ' 	 Ep'p .
Finally, we define the following bilinear forms:

af .v;w/ D
Z

˝f

�

2
.rvCrT v/ � .rwCrT w/ 8v;w 2 .H1.˝f //

d ;

bf .v; q/ D 	
Z

˝f

q div v 8v 2 .H1.˝f //
d ; 8q 2 Q;

ap.';  / D
Z

˝p

r � Kr' 8'; 2 H1.˝p/ ;

(71)

and, for all v;w; z 2 .H1.˝f //
d , the trilinear form

cf .wI z; v/ D
Z

˝f

Œ.w � r/z� � v D
dX

i;jD1

Z

˝f

wj
@zi
@xj

vi : (72)
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Now, if we multiply (66) by v 2 Hf and integrate by parts we obtain

af .uf ; v/C cf .uf Iuf ; v/C bf .v; pf /	
Z



n � T.uf ; pf / v D
Z

˝f

f � v :

Notice that we can write

	
Z



n � T.uf ; pf / v D 	
Z



Œn � T.uf ; pf / � n�v � n	
Z



.T.uf ; pf / � n/� � .v/� ;

so that we can incorporate in weak form the interface conditions (28)2 and (28)3 as
follows:

	
Z



n � T.uf ; pf / v D
Z



g'.v � n/C
Z



�˛BJp
K
.uf /� � .v/� :

Finally, we consider the lifting Ef uin of the boundary datum and we split uf D
u0f C Ef uin with u0f 2 Hf ; we recall that Ef uin D 0 on  and we get

af .u0f ; v/C cf .u0f C Ef uinIu0f C Ef uin; v/C bf .v; pf /

C
Z



g'.v � n/C
Z



�˛BJp
K
.uf /� � .v/� D

Z

˝f

f � v 	 af .Ef uin; v/: (73)

From (27)2 we find

bf .u0f ; q/ D 	bf .Ef uin; q/ 8q 2 Q: (74)

On the other hand, if we multiply (27)3 by  2 Hp and integrate by parts we get

ap.';  /C
Z



K
@'

@n
 D 0 :

Now we incorporate the interface condition (28)1 in weak form as

ap.';  / 	
Z



.uf � n/ D 0;

and, considering the splitting ' D '0 C Ep'p we obtain

ap.'0;  / 	
Z



.uf � n/ D 	ap.Ep'p;  /: (75)

We multiply (75) by g and sum to (73) and (74); then, we define

A .v;w/ D af .v;w/C g ap.';  /C
Z



g '.w � n/ 	
Z



g  .v � n/

C
Z



�˛BJp
K
.w/� � .v/� ; (76)



Heterogeneous Mathematical Models in Fluid Dynamics 85

C .vIw; u/ D cf .vIw;u/;
B.w; q/ D bf .w; q/;

for all v D .v; '/, w D .w;  /, u D .u; �/ 2 W , q 2 Q. Finally, we define the
following linear functionals:

hF ;wi D
Z

˝f

f � w	 af .Ef uin;w/	 g ap.Ep'p;  /;
hG ; qi D 	bf .Ef uin; q/;

(77)

for all w D .w;  / 2 W , q 2 Q.
Adopting these notations, the weak formulation of the coupled Navier–

Stokes/Darcy problem reads
find u D .u0f ; '0/ 2 W , pf 2 Q such that

�
A .u; v/C C .uC u�I uC u�; v/CB.v; pf / D hF ; vi 8v D .v;  / 2 W
B.u; q/ D hG ; qi 8q 2 Q;

(78)
with u� D .Ef uin; 0/ 2 eHf 
H1.˝p/.

Remark that the interface conditions (28) have been incorporated in the weak
formulation as natural conditions on  : in particular, (28)2 and (28)3 are natural
conditions for the Navier–Stokes problem, while (28)1 becomes a natural condition
for Darcy’s problem.

The well-posedness of (78) can be proved quite easily in the case of the
Stokes/Darcy coupling, i.e. when we neglect the trilinear form C .�I �; �/. Indeed, in
this case the existence and uniqueness of the solution follows from the classical
theory of Brezzi for saddle-point problems after proving the continuity of A .�; �/,
its coerciveness on the kernel of B.�; �/ and that an inf-sup condition holds between
the spacesW and Q. For details of this analysis we refer to [18].

The case of the Navier–Stokes/Darcy problem is more involved. In particular,
in this case we could prove the well-posedness only under some hypotheses on
the data similar to those required for the sole Navier–Stokes equations. Moreover,
uniqueness is guaranteed only in the case of small enough filtration velocities uf �n
across  . The analysis that we have carried out is based on classical results for
nonlinear saddle-point problems (see, e.g., [31]). We refer the reader to [4, 19].
Similar results have been proved using a different approach in [32].

2.7 Solution Techniques for the Navier–Stokes/Darcy Coupling

A possible approach to solve the Navier–Stokes/Darcy problem is to exploit its
naturally decoupled structure keeping separated the fluid and the porous media parts
and exchanging information between surface and groundwater flows only through
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boundary conditions at the interface. From the computational point of view, this
strategy is useful at the stage of setting up effective methods to solve the problem
numerically.

Therefore, we apply a domain decomposition technique at the differential level to
study the Navier–Stokes/Darcy coupled problem. Our aim will be to introduce and
analyze a generalized Steklov–Poincaré interface equation (see [51]) associated to
our problem, in order to reformulate it solely in terms of interface unknowns. This
re-interpretation is crucial to set up iterative procedures between the subdomains
˝f and˝p , that can be used at the discrete level.

Here we illustrate the main ideas behind this approach, and refer to [19] for a
complete analysis.

We choose a suitable governing variable on the interface  . Considering the
interface conditions (28)1 and (28)2, we can foresee two different strategies to select
the interface variable:

1. We can set the interface variable � as the trace of the normal velocity on the
interface:

� D uf � n D 	K
@'

@n
: (79)

2. We can define the interface variable � as the trace of the piezometric head on  :

� D ' D 	 1
g

n � T.uf ; pf / � n: (80)

Both choices are suitable from the mathematical viewpoint since they guarantee
well-posed subproblems in the fluid and the porous medium part.

We discuss here the approach in the case of the Stokes/Darcy coupling consider-
ing the choice of the interface variable � as in (79). We refer the reader to [15] for
the second case (80).

For simplicity, from now on we consider the following condition on the interface:

.uf /� D 0 on  (81)

instead of (28)3.
Consider the auxiliary problems:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

	div T.u�; p�/ D f in ˝f

div u� D 0 in ˝f

u� D uin on  in
f

.u�/� D 0 on 
u� � n D 0 on ;

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

	div .Kr'�/ D 0 in ˝p

'� D 'p on p

K
@'�

@n
D 0 on  b

p

K
@'�

@n
D 0 on :

(82)

Then, assuming to know the value of � 2 �0, with

�0 D f� 2 H1=2
00 . / W

R

� D 0g;
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we consider the problems:

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

	div T.u�; p�/ D 0 in ˝f

div u� D 0 in ˝f

u� D 0 on  in
f

.u�/� D 0 on 
u� � n D � on ;

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

	div .Kr'�/ D 0 in ˝p

'� D 0 on p

K
@'�

@n
D 0 on  b

p

K
@'�

@n
D � on :

(83)

We can prove that the solution of the Stokes–Darcy problem can be expressed as:
uf D u� C u�, pf D p� C p�, ' D '� C '�, where � 2 �0 is the solution of the
Steklov–Poincaré equation

.Sf C Sp/� D � on : (84)

Sf and Sp are the local Steklov–Poincaré operators formally defined as

Sf W �0 ! �00 such that Sf � D n � T.u�; p�/ � n on ;

while

Sp W �0 ! �00 such that Sp� D g'� on :

Finally,

� D 	n � T.u�; p�/ � n 	 g'� on :

The analysis of the operators Sf and Sp as well as the study of the well-posedness
of the interface equation (84) have been carried out in [18]. In particular, we have
proved that the operator Sf is invertible on the trace space �0 and it is spectrally
equivalent to Sf CSp , i.e., there exist two positive constants k1 and k2 (independent
of 
) such that

k1hSf 
; 
i � hS
; 
i � k2hSf 
; 
i 8
 2 �0:

The same property holds at the discrete level considering conforming finite element
approximations of Sf and Sp with constants k1 and k2 that do not depend on the
grid size h. This property makes the operator Sf an attractive preconditioner to
solve the interface problem (84) via an iterative method like, e.g., Richardson or the
Conjugate Gradient, yielding a convergence rate independent of h.

For example, we can consider the following Richardson iterations: given �.0/ 2
�0, for k � 0,

�.kC1/ D �.k/ C #S�1f .� 	 .Sf C Sp/�.k// on ; (85)

where 0 < # < 1 is a suitable relaxation parameter.
This method requires at each step to apply Sp and S�1f , i.e., recalling the

definitions of these operators, to solve a Darcy problem in˝p with given flux across
 and a Stokes problem in ˝f with assigned normal stress on  . More precisely,
we can rewrite (85) as: let �.0/ 2 � be an initial guess; for k � 0,
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Solve

8
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
:

	div .Kr'.kC1// D 0 in ˝p

'.kC1/ D 'p on p

K
@'.kC1/

@n
D 0 on  b

p

K
@'.kC1/

@n
D �.k/ on ;

Solve

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

	div T.u.kC1/; p.kC1// D f in ˝f

div u.kC1/ D 0 in ˝f

u.kC1/ D uin on  in
f

.u.kC1//� D 0 on 
	n � T.u.kC1/; p.kC1// � n D g'.kC1/ on ;

Compute �.kC1/ D .1 	 #/�.k/ C #u.kC1/ � n on :

(86)

Remark that this algorithm has the same structure as the Dirichlet–Neumann
method in the domain decomposition framework.

Another possible algorithm that we have studied in [20] is a sequential Robin-
Robin method which at each iteration requires to solve a Darcy problem in ˝p

followed by a Stokes problem in ˝f , both with Robin conditions on  . Precisely,
the algorithm reads as follows.

Having assigned a trace function 
0 2 L2. /, and two acceleration parameters
�f � 0 and �p > 0, for each k � 0:

Solve

8
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
:̂

	div .Kr'.kC1// D 0 in ˝p

'.kC1/ D 'p on p

K
@'.kC1/

@n
D 0 on  b

p

	�pK
@'.kC1/

@n
C g'.kC1/j D 
.k/ on ;

Solve

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

	div T.u.kC1/; p.kC1// D f in ˝f

div u.kC1/ D 0 in ˝f

u.kC1/ D uin on  in
f

.u.kC1//� D 0 on 

n � T.ukC1f ; pkC1f / � nC �f u.kC1/f � n
D 	g'.kC1/j 	 �f K

@'.kC1/

@n
on ;

Compute 
.kC1/ D 	n � T.u.kC1/f ; p
.kC1/
f / � nC �pu.kC1/f � n on :

(87)
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Both the Stokes problem in ˝f and the Darcy problem in ˝p are well-posed
and, at convergence, we recover the solution .uf ; pf / 2 Hf 
Q and ' 2 Hp of
the coupled Stokes/Darcy problem. Indeed, denoting by '� the limit of the sequence
'k in H1.˝p/ and by .u�f ; p�f / that of .ukf ; p

k
f / in .H1.˝f //

d 
Q, we obtain

	 �pK
@'�

@n
C g'�j D 	n � T.u�f ; p�f / � nC �pu�f � n on  ; (88)

so that we have

.�f C �p/u�f � n D 	.�f C �p/K
@'�

@n
on  ;

yielding, since �f C �p ¤ 0, u�f � n D 	K @'�

@n
on  , and also, from (88), that

n �T.u�f ; p�f / � n D 	g'�j on  . Thus, the two interface conditions (28)1 and (28)2
are satisfied, and we can conclude that the limit functions '� 2 Hp and .u�f ; p�f / 2
Hf 
Q are the solutions of the coupled Stokes/Darcy problem.

A proof of convergence is presented in [20] and it follows the guidelines of the
theory by Lions [41] for the Robin–Robin method (see also [51, Sect. 4.5]).

A crucial point in the algorithm is the choice of the acceleration parameters �f
and �p. A general strategy is not available, but thanks to a reinterpretation of the
Robin–Robin method as an alternating direction scheme à la Peaceman–Rachford
(see [48]), we were able to give some hints on how to choose them. We refer to [20].

We will illustrate the numerical behavior of the Dirichlet–Neumann and of the
Robin–Robin algorithms in Sect. 2.8.

Finally, we address the case of the Navier–Stokes/Darcy coupling. Also to this
nonlinear problem we can asociate an interface equation similar to (84) still involv-
ing the operator Sp but a nonlinear operator QSf analogous to Sf . Formally, we can
represent QSf W �0 ! �00 as the operator associated to the Navier–Stokes problem:

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

	div T.u�; p�/C .u� � r/u� D 0 in ˝f

div u� D 0 in ˝f

u� D 0 on  in
f

.u�/� D 0 on 

u� � n D � on ;

(89)

such that QSf � D n � T.u�; p�/ � n on  .
Then, we can write the interface problem:

find � 2 �0 W QSf .�/C Sp� D �p on ; (90)

with �p D, and prove its equivalence to the global coupled problem.
A rigorous presentation of this approach can be found in [4].
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The set-up of effective iterative methods for the interface problem (90) is not
straightforward. In particular, no results are available yet on the characterization of
suitable operators spectrally equivalent to QSf C Sp . In [4, 19] we have proposed
and analyzed two classical schemes, fixed-point or Newton, for (90) showing their
equivalence to the following algorithms, respectively.

Fixed-point iterations: Given u0f 2 Hf , for k � 1, find u.k/f 2 Hf , p.k/f 2 Q,

'.k/ 2 Hp such that, for all v 2 Hf , q 2 Q,  2 Hp ,

8
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂:

af .u
.k/

f ; v/C cf .u.k�1/f Iu.k/f ; v/C bf .v; p.k/f /

C
Z



g '.k/.v � n/C
Z



�˛BJp
K
.u.k/f /� � .v/� D

Z

˝f

f � v
bf .u

.k/

f ; q/ D 0

ap.'
.k/;  / D

Z



 .u.k/f � n/:

(91)

Newton-like methods: Let u0f 2 Hf be given; then, for k � 1, find u.k/f 2 Hf ,

p
.k/

f 2 Q, '.k/ 2 Hp such that, for all v 2 Hf , q 2 Q,  2 Hp ,

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

af .u
.k/

f ; v/C cf .u.k/f Iu.k�1/f ; v/C cf .u.k�1/f Iu.k/f ; v/C bf .v; p.k/f /

C
Z



g'n.v � n/C
Z



�˛BJp
K
.u.k/f /� � .v/�

D cf .u.k�1/f Iu.k�1/f ; v/C
Z

˝f

f � v
bf .u

.k/

f ; q/ D 0

ap.'
.k/;  / D

Z



 .u.k/f � n/:

(92)

Some numerical results will be presented in Sect. 2.8.

2.8 Numerical Results for the Navier–Stokes/Darcy Problem

We consider a regular triangulation Th of the domain ˝f [ ˝p , depending on a
positive parameter h > 0, made up of triangles T . We assume that the triangulations
Tf h and Tph induced on the subdomains ˝f and ˝p are compatible on  , that is
they share the same edges therein. Finally, we suppose the triangulation induced on
 to be quasi-uniform (see, e.g., [50]).

Several choices of finite element spaces can be made. If we indicate by Wh and
Qh the finite element spaces which approximate the velocity and pressure fields,
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respectively, for the Navier–Stokes problem, there must exist a positive constant
ˇ� > 0, independent of h, such that the classical inf-sup condition is satisfied, i.e.,
8qh 2 Qh, 9vh 2Wh, vh 6D 0, such that

Z

˝f

qh div vh � ˇ�kvhkH1.˝f /kqhkL2.˝f /:

No additional compatibility condition is required when coupling with the Darcy
equations. Thus, for our tests we use the P2 	 P1 Taylor–Hood finite elements for
Stokes or Navier–Stokes and P2 elements for Darcy equation.

We investigate the convergence properties of algorithm (86) (or, equivalently,
(85)) and the PCG algorithm for (84) with preconditioner S�1f . For the moment we
set the physical parameters �, K, g to 1. We consider the computational domain
˝ � R2 with ˝f D .0; 1/ 
 .1; 2/, ˝p D .0; 1/ 
 .0; 1/ and the interface  D
.0; 1/ 
 f1g. The boundary conditions and the forcing terms are chosen in such a
way that the exact solution of the coupled Stokes/Darcy problem is

.uf /1 D 	 cos
��
2
y
�

sin
��
2
x
�
; .uf /2 D sin

��
2
y
�

cos
��
2
x
�
	 1C x;

pf D 1 	 x; ' D 2

�
cos

��
2
x
�

cos
��
2
y
�
	 y.x 	 1/;

where .uf /1 and .uf /2 are the components of the velocity field uf (see [19]).
Four different regular conforming meshes have been considered whose number

of elements in ˝ and of nodes on  are reported in Table 2, together with the
number of iterations to convergence. A tolerance 10�10 has been prescribed for
the convergence tests based on the relative residues. In the Dirichlet–Neumann-like
algorithm (86) we set the relaxation parameter # D 0:7.

Figure 12 shows the computed residues for the adopted iterative methods when
using the finest mesh (logarithmic scale on the y-axis).

These numerical tests show that the discrete preconditioner Sf is optimal with
respect to the grid parameter h since the corresponding preconditioned methods
yield convergence in a number of iterations independent of h.

We consider now the influence of the physical parameters, which govern the
coupled problem, on the convergence rate. We use the PCG method as it embeds the
choice of dynamic optimal acceleration parameters. We take the same computational

Table 2 Number of iterations obtained on different grids

Number of mesh Number of nodes Algorithm (86) PCG for (84) (preconditioner
elements on  (# D 0:7) S�1

f )

172 13 18 5
688 27 18 5
2,752 55 18 5
11,008 111 18 5
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Fig. 12 Computed relative
residues for the interface
variable �

Table 3 Iterations using the PCG method (preconditioner S�1
f ) with respect to several values of

� and K
� K h D 1=7 h D 1=14 h D 1=28 hD 1=56

1 1 5 5 5 5
10�1 10�1 11 11 10 10
10�2 10�1 15 19 18 17
10�3 10�2 20 54 73 56
10�4 10�3 20 59 # #
10�6 10�4 20 59 148 #

domain, but here the boundary data and the forcing terms are chosen in such a way
that the exact solution of the coupled problem is (see [19]):

.uf /1 D y2 	 2y C 1; .uf /2 D x2 	 x; pf D 2�.x C y 	 1/C g

3K
;

' D 1

K

�
x.1 	 x/.y 	 1/C y3

3
	 y2 C y

�
C 2�

g
x:

The most relevant physical quantities for the coupling are the fluid viscosity �
and the hydraulic conductivity K. Therefore, we test our algorithms with respect to
different values of � and K, and set the other physical parameters to 1. We consider
a convergence test based on the relative residue with tolerance 10�10.

In Table 3 we report the number of iterations necessary for several choices of
� and K. The symbol # indicates that the method did not converge within 150
iterations.

We can see that the convergence of the algorithm is troublesome when the values
of � and K decrease. In fact, in that case the method converges in a large number
of iterations which increases when h decreases, losing its optimality properties.
The subdomain iterative method that we have proposed is then effective only when
the product �K is sufficiently large, while dealing with small values causes severe
difficulties.
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Table 4 Number of iterations to solve problem the modified Stokes/Darcy problem using (93) for
different values of �, K and �

� K � Iterations on the mesh with grid size

h D 1=7 h D 1=14 h D 1=28 h D 1=56

10 15 24 28 28
10�3 10�2 102 12 14 16 14

103 8 9 9 8

103 15 23 28 33
10�6 10�4 104 13 14 17 18

105 8 9 9 9

Table 5 Number of iterations using the Robin–Robin method with respect to �, K and four
different grid sizes h; the acceleration parameters are �f D 0:3 and �p D 0:1

� K h D 1=7 h D 1=14 h D 1=28 hD 1=56

10�4 10�3 19 19 19 19
10�6 10�4 20 20 20 20
10�6 10�7 20 20 20 20

However, the algorithm still performs well if, instead of the steady Stokes
problem, one considers the generalized Stokes momentum equation:

�uf 	 div T.uf ; pf / D Qf in ˝f ; (93)

where � can represent the inverse of a time step within a time discretization using,
e.g., the implicit Euler method. Some numerical results are reported in Table 4 (see
also [16]).

On the other hand, the Robin–Robin method (87) performs quite well in presence
of small values of � and K. We present hereafter a test considering the same setting
as for Table 3. The analogy with the Peaceman–Rachford method has suggested us
to set �f D 0:3 and �p D 0:1 (see [15] for more details). In Table 5 we report the
number of iterations obtained using the Robin–Robin method for some small values
of � and K and for four different computational grids. A convergence test based on
the relative increment of the trace of the discrete normal velocity on the interface
ukf h � nj has been considered with tolerance 10�9. (See [20].)

Finally, we present some numerical tests for the Navier–Stokes/Darcy coupling
using the fixed-point and Newton algorithms of Sect. 2.7. The computational domain
and the finite element discretization are the same as in the previous tests. (See
also [4].)

In a first test, we set the boundary conditions in such a way that the analytical
solution for the coupled problem is uf D .exCy C y;	exCy 	 x/, pf D
cos.�x/ cos.�y/ C x, ' D exCy 	 cos.�x/ C xy. In order to check the behavior
of the iterative methods with respect to the grid parameter h, we set the physical
parameters (�, K, g) all equal to 1.
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Table 6 Number of iterations for the iterative methods with respect to h

h Fixed-point Newton

h D 1=7 9 5
h D 1=14 9 5
h D 1=28 9 5

Table 7 Number of iterations of the fixed-point (FP) and Newton (N) methods with respect to the
parameters � and K

� K h D 1=7 h D 1=14 hD 1=28

FP N FP N FP N

1 1 7 5 7 5 7 5
1 10�4 5 4 5 4 5 4
10�1 10�1 10 5 10 5 10 5
10�2 10�1 17 6 17 6 17 6
10�2 10�3 14 5 14 5 14 5

The algorithms are stopped as soon as kxn	 xn�1k2=kxnk2 � 10�10, where k � k2
is the Euclidean norm and xn is the vector of the nodal values of .unf ; p

n
f ; '

n/. Our

initial guess is u0f D 0.
The number of iterations obtained using the fixed-point algorithm (91), and the

Newton method (92) are displayed in Table 6. Both methods converge in a number
of iterations which does not depend on h.

A second test is carried out in order to assess the influence of the physical
parameters on the convergence rate of the algorithms. In this case, the analytical
solution is uf D ..y 	 1/2C .y 	 1/C

p
K=˛BJ ; x.x 	 1//, pf D 2�.xC y 	 1/,

and ' D K�1.x.1	 x/.y 	 1/C .y 	 1/3=3/C 2�x. We choose several values for
the physical parameters � and K as indicated in Table 7.

3 Virtual Control Approach

The virtual control approach represents an alternative approach to the variational
asymptotic one, to solve heterogeneous problems.

It is based on the optimal control theory that has been introduced in domain
decomposition method with overlapping subdomains to treat both heterogeneous
couplings, involving Navier–Stokes and full potential operators [13, 28], and
homogeneous problems, either elliptic and parabolic (see [12, 27, 43–45]). In the
pioneering papers of Glowinski et al. [12,27], this method was referred to as a Least
Square formulation of the multi domain problem.

The basic idea of this approach consists in introducing two “virtual” controls
which play the role of unknown Dirichlet data on the interfaces of the decomposition
and in minimizing the L2-norm of the difference between the hyperbolic and the
elliptic solutions (defined inside the two subdomains) on the overlap.
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The virtual control approach for heterogeneous advection–diffusion operators
was introduced and analysed in [26] and there it has been extended to non-over-
lapping subdomain decompositions (with sharp interfaces). In the latter situation,
the virtual controls are defined on the unique interface and the cost functional to be
minimized has to be chosen accurately in order to guarantee the well posedness of
the optimal control problem.

Finally, in [1] two different formulations of the heterogeneous advection–
diffusion problem with either two and three virtual controls have been analysed
for overlapping decompositions.

In the following subsection we will give a detailed description of virtual control
approach with either overlapping and non-overlapping decompositions for the
heterogeneous problems introduced in Sect. 1.

Here we only note that the virtual control approach without overlap is more
efficient than the overlapping version, however the former requires a more definite
a priori knowledge on structure of interface conditions. On the contrary, the virtual
control approach with overlap is more general and it can be regarded as a rigorous
translation of a common practice in engineering community based on solving both
problems in a common region and using simple “Dirichlet” type conditions at
subdomain boundaries.

3.1 Virtual Control Approach Without Overlap for AD Problems

The idea of this approach consists in formulating an optimal control problem [39]
featuring both control and observation on the interface  . We introduce two func-
tions �1 and �2 defined on the interface  and called virtual controls (Fig. 13), such
that they represent the unknown Dirichlet data on  for u1 and u2, respectively, i.e.

u1 D �1 on  in; u2 D �2 on : (94)

By collecting differential equations (32) and (33), the external boundary condi-
tions (36) and the interface condition (94), we consider the following problem: given
�1; �2, find u1 D u1.�1/ and u2 D u2.�2/ such that

Γ Γ

λ1 λ2

G in

W1

W1

W2

W2

Fig. 13 Virtual control without overlap
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8
<

:

A1u1 D div.bu1/C b0u1 D f in ˝1

u1 D g1 on .@˝1 n  /in
u1 D �1 on  in

(95)

and

8
<

:

A2u2 D 	div.�ru2/C div.bu2/C b0u2 D f in ˝2

u2 D g2 on @˝2 n 
u2 D �2 on :

(96)

In the case where  in D ;, no �1 is needed since there is no need to prescribe
any boundary data on  in for problem (95).

The virtual controls �1 and �2 are determined in such a way that the solutions
u1 and u2 of (95) and (96) adjust in the best possible way on  . More precisely, we
look for the solution of the minimization problem

inf
�1; �2

J.�1; �2/; (97)

where J.�1; �2/ is a suitably chosen cost functional.
Various instances have been proposed and analyzed in [26]. Consider, for

example,

J.�1; �2/ D 1

2
ku1.�1/ 	 u2.�2/k2L2b. in/

C 1

2
k'1.�1/C '2.�2/k2H�1=2. / ; (98)

where

'1.�1/ D 	b � n u1.�1/; '2.�2/ D 	� @u2.�2/

@n
C b � n u2.�2/ (99)

are the fluxes on  associated to the differential operators A1 and A2 (respectively)
and H�1=2. / is the dual space of H1=2

00 . /. Denoting by 	� the Laplace
Beltrami operator on  , for any  ; ' 2 H�1=2. / we define the following inner
product (see, e.g., [39]):

. ; '/H�1=2. / D
Z



.	� /
�1=4 .	� /

�1=4'd D
Z



.	� /
�1=2 'd

(100)

and the related norm k kH�1=2. / D . ; /1=2H�1=2. /
.

We note that the observation is performed on the whole interface  for what
concerns the gap on the fluxes, whereas it is restricted to the inflow interface  in for
that on the velocities.
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From now on, by solution of the virtual control approach we will mean the
solution of the minimization problem (97), with J defined in (98) and with ui .�i /
(for i D 1; 2) the solutions of problems (95) and (96), respectively.

Problems (95) and (96) are well posed. As a matter of fact, the following result
holds (see, e.g., [30]):

Theorem 3. Under assumptions (44), if g1 2 L2b..@˝1 n  /in/ and �1 2 L2b. in/,
then the first-order problem (95) admits a unique solution u1 D u1.�1/ 2 L2.˝1/.
Moreover u1 2 L2b.@˝1/ and div.bu1/ 2 L2.˝1/.

As of problem (96), if g2 2 H1=2.@˝2 n  / and �2 2 H1=2. /, and moreover
there exists a function � 2 H1=2.@˝2/ with g2 D �j.@˝2n / and �2 D �j , then
there exists a unique solution u2.�2/ of (96) belonging to H1.˝2/. (See, e.g., [30].)

We introduce the following spaces:

V1 D fw 2 L2.˝1/ W div.bw/ 2 L2.˝1/; wj 2 L2b. /g; ƒ1 D L2b. in/;

V2 D H1.˝2/;

ƒ2 D
˚
�2 2 H1=2. / W 9� 2 H1=2.@˝2/ s.t. �2 D �j and g2 D �j@˝2n

�
;

V D V1 
 V2; ƒ D ƒ1 
ƒ2:

(101)

In order to prove the existence of solution of the minimization problem (97), we
define two pairs of auxiliary problems:
find .wf1 ;w

f
2 / 2 V such that

8
ˆ̂<

ˆ̂:

A1w
f
1 D f in ˝1

wf1 D g1 on .@˝1 n  /in
wf1 D 0 on  in;

8
ˆ̂<

ˆ̂:

A2w
f
2 D f in ˝2

wf2 D g2 on @˝2 n 
wf2 D 0 on ;

(102)

and find .u�11 ; u
�2
2 / 2 V such that

8
ˆ̂<

ˆ̂:

A1u
�1
1 D 0 in ˝1

u�11 D 0 on .@˝1 n  /in
u�11 D �1 on  in;

8
ˆ̂<

ˆ̂:

A2u
�2
2 D 0 in ˝2

u�22 D 0 on @˝2 n 
u�22 D �2 on :

(103)

Moreover we define the fluxes on the interface  associated to the solutions u�11

and u�22 as

'
�1
1 D 	b � n u�11 ; '

�2
2 D 	�

@u�22
@n
C b � n u�22 ; (104)
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while those associated to the solutions wf1 and wf2 are

�1 D 	b � n wf1 ; �2 D 	� @wf2
@n
C b � n wf2 : (105)

The cost functional J can be split as

J.�1; �2/ D J 0.�1; �2/CA .�1; �2/; (106)

where

J 0.�1; �2/ D 1

2
k�1 	 �2k2L2b. in/

C 1

2

���'�11 C '�22
���
2

H�1=2. /
;

while A is an affine functional which reads

A .�1; �2/ D 1

2
k�1 C �2k2H�1=2. / C

�
�1 C �2; '�11 C '�22

�

H�1=2. /
:

If all data are smooth enough, the existence of � D .�1; �2/ achieving
infJ.�1; �2/ in a possibly very large abstract space ƒ, follows from the property
of .J 0.�1; �2//1=2 to be a norm (see [26, Sect. 5]).

3.1.1 The Optimality System

By following standard arguments of optimal control theory for elliptic problems
(see [39]), we derive now the optimality system corresponding to the minimization
problem (97).
Let us write the minimization problem (97) in a variational setting, i.e., we look for
the solution � D .�1; �2/ 2 ƒ such that

hrJ.�/;�i D 0 8� 2 ƒ: (107)

The partial derivative of J are


@J

@�1
; �1

�
D .�1 	 �2; �1/L2b. in/C

	
'1.�1/C'1.�2/; '�11



H�1=2. /

8�12ƒ1;


@J

@�2
; �2

�
D 	 .�1 	 �2; �2/L2b. in/C

	
'1.�1/C'1.�2/; '�22



H�1=2. /

8�22ƒ2;

(108)

where, for any .�1; �2/ 2 ƒ, '�11 and '�22 follow the definition of the fluxes as
in (104), while u�11 ; u�22 are defined as in (103).

From the definition (100), for i D 1; 2 we obtain

	
'1.�1/C '1.�2/; '�ii



H�1=2. /

D
Z



.	� /
�1=2.'1.�1/C'1.�2// '�ii d (109)
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and, in particular for the flux '�11 , it holds

Z



.	� /
�1=2.'1.�1/C '2.�2// '�11 d

D
Z

 in
.	� /

�1=2.'1.�1/C '2.�2// .	b � n /�1d

C
Z

 out
.	� /

�1=2.'1.�1/C '1.�2// .	b � n /u�11 d: (110)

By defining the adjoint problems

8
<

:

A�1p1  	b � rp1 C b0p1 D 0 in ˝1

p1 D 0 on .@˝1 n  /out

p1 D .	� /
�1=2.'1.�1/C '2.�2// on  out

(111)

and

8
<

:

A�2p2  	div.�rp2/ 	 b � rp2 C b0p2 D 0 in ˝2

p2 D 0 on @˝2 n 
p2 D .	� /

�1=2.'1.�1/C '2.�2// on 
(112)

and, by making use of Green’s formula, we have

Z

 out
.	� /

�1=2.'1.�1/C '1.�2// .	b � n /u�11 d D
Z

 out
p1 .	b � n /u�11 d

D
Z

 in
.b � n /p1�1d

while

Z



.	� /
�1=2.'1.�1/C '1.�2// '�22 d D

Z



p2

�
	� @u�22

@n
C b � n u�22

�
d

D 	
Z



�
@p2

@n
�2;

whence

@J

@�1
; �1

�
D
Z

 in
.	b � n / Œ.�1 	 �2/C .p2 	 p1/� �1d;


@J

@�2
; �2

�
D
Z

 in
.b � n /.�1 	 �2/�2d 	

Z



�
@p2

@n
�2d

(113)

for any �1 2 ƒ1 and �2 2 ƒ2. In conclusion, the solution of the minimization
problem (97) satisfies the following optimality system (in distributional sense):
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.OS/

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

- state equations (95) and (96);

- adjoint equations (111) and (112);

- Euler equations:

.�1 	 �2/C p2 	 p1 D 0 on  in

b � n .�1 	 �2/ 	 � @p2
@n

D 0 on  in

	� @p2
@n
D 0 on  out:

3.1.2 Computation of the Laplace–Beltrami Operator

The computation of the discrete counterpart of .	� /
�1=2.'1.�1/C '2.�2// when

˝ � R2 can be made as follows.
Given a differentiable function u in an open neighbourhood of  , the tangential

gradient of u is defined by (see, e.g., [11])

r u.x/ D ru.x/	 .ru.x/ � n .x//n .x/; 8x 2 ; (114)

where r denotes the usual gradient in R2. The Laplace–Beltrami operator can be
defined through the weak relation:

Z



	� u wd D
Z



r u � r wd; (115)

for any function w differentiable in an open neighbourhood of  vanishing at the
end-points of  . In particular, if  is a segment parallel to the y-axis, it reduces to

Z



	� u wd D
Z



@u

@y

@w

@y
d: (116)

In a finite dimensional context, if A;h denotes the symmetric positive definite
matrix associated to the discretization of (116), we approximate .	� /

1=2 by the
square root of A;h, that is the s.p.d. matrix A1=2;h defined by

A
1=2

;h D Pƒ1=2P T ; (117)

whereƒ and P are the eigenvalues and eigenvectors matrices, respectively, of A;h.
Alternatively, the fractional Laplace–Beltrami operator .	� /

�1=2 can be
defined through a Neumann to Dirichlet map defined from H�1=2. / to H1=2. /.
Precisely, for any ' 2 H�1=2. / we solve the problem
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8
ˆ̂̂
<̂

ˆ̂̂
:̂

	�uC u D 0 in ˝1

@u

@n
D 0 on @˝1 n 

@u

@n
D ' on 

(118)

and we set .	� /
�1=2' D uj . The differential problem (118) may be solved in

˝2 instead of ˝1.

3.1.3 Recovering the Interface Conditions

In order to recover the interface conditions we are imposing on the interface  , we
eliminate the adjoint state variables p1 and p2 from the optimality system (OS).

Let us setbb D 	b, b0 D b0 	 divbb and

 in
b D  out;  out

b D  in; .@˝1 n  /inb D .@˝1 n  /out:

Thanks to (111), (112) and Euler equations in (OS), the functions p1 and p2 satisfy
the following coupled problem in ˝:

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

div.bbp1/C b0p1 D 0 in ˝1

	div.�rp2/C div.bbp2/C b0p2 D 0 in ˝2

p1 D 0 on .@˝1 n  /inb
p2 D 0 on @˝2 n 

	� @p2
@n
C .bb � n /p2 D .bb � n /p1 on  out

b

p1 D p2 on  in
b

�
@p2

@n
D 0 on  in

b :

(119)

By noting that b0 C 1
2
divbb D b0 C 1

2
divb � �0 > 0 (see (31)) and by applying

Theorem 1, problem (119) admits the unique solution p1 D 0 in ˝1, p2 D 0 in ˝2.
Therefore, (112)3 implies '1.�1/C '2.�2/ D 0 on  , while the first Euler equation
in .OS/ implies that �1 	 �2 D 0 on  in, i.e. the following conditions hold on the
interface:

'1.�1/C '2.�2/ D 0 on 

�1 D �2 on  in:
(120)

In conclusion the following result holds:
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Theorem 4. If � is the solution of the minimization problem (97) with J defined
in (98), then the state solutions u1 and u2 of (95) and (96) satisfy the interface
conditions (120). Moreover the pair .u1.�1/; u2.�2//, obtained by the virtual control
approach coincides with the solution of the heterogeneous problem (40).

Thanks to the interface condition (120)2, the virtual control problem may be
reformulated in terms of a unique control function � defined on  and coinciding
with �2. The control �1, previously introduced, will coincide now with the
restriction of � to  in.

By this reduction, the virtual control problem (97) becomes:
look for the solution of the minimization problem

inf
�2ƒ2

J1.�/ with J1.�/ D 1

2
k'1.�/C '2.�/k2H�1=2. /

; (121)

with

'1.�/ D 	b � n u1.�/; '2.�/ D 	� @u2.�/

@n
C b � n u2.�/ (122)

and u1 D u1.�/, u2 D u2.�/ solutions of (95) and (96) with �2 D �, �1 D �j in .
By working as done for the two-controls formulation, the derivative of the cost
functional J1 reads

hJ 01.�/; �i D
Z

 in
.	b � n /.p2 	 p1/�d

	
Z



�
@p2

@n
�d

(123)

for any � 2 ƒ2.
The corresponding optimality system .OS1/ reads

.OS1/

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

- state equations (95) and (96) with �2 D �, �1 D �j in

- adjoint equations (111) and (112) with 'i.�/ instead of

'i.�i /, for i D 1; 2;

- Euler equations:

.b � n /.p2 	 p1/C � @p2
@n
D 0 on  in

�
@p2

@n
D 0 on  out:

Remark 2. Another cost functional proposed in [26] is

QJ .�1; �2/ D 1

2
ku1.�1/ 	 u2.�2/k2L2b. / C

1

2
k'1.�1/C '2.�2/k2H�1=2. / : (124)
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In this case the observation is performed on the whole interface for both fluxes and
velocities. The minimization problem (97), in which the functional J is replaced
by QJ , admits a unique solution too (see [26]), however it is not guaranteed that
inf QJ .�1; �2/ D 0, so that no interface conditions are explicitely associated to this
minimization problem.

Remark 3. We finally remark that the cost functional to be minimized is set up
starting from known interface conditions, it is problem dependent and it requires
a priori knowledge of the coupled problem. When the latter are not available, it is
more suitable to consider the virtual control approach with overlap, that we will
introduce in Sect. 3.3.

3.1.4 How to Solve the Optimality System

A first intuitive way to solve the optimality system .OS1/ consists in invoking a
Krylov method to seek the solution � of the Euler equation of .OS1/. Let us write
the Euler equation, in distributional sense, as

J 01.�/ D 0: (125)

When we solve it by a Krylov method, like either GMRES or Bi-CGStab, we have
to evaluate the action of the functional J 01 on the iterate �.k/ at each iteration k � 0
and this means to perform the steps summarized in the following algorithm.

Algorithm 1

1. solve the primal problems (95) and (96) with �.k/ instead of �i , for i D 1; 2;
2. compute the fluxes '1.�.k//, '2.�.k// and the function
s.k/ D .	� /

�1=2.'1.�.k//C '2.�.k///
3. solve the dual problems (111), (112) with s.k/ instead of .	� /

�1=2.'1.�1/ C
'2.�2//

4. compute J 01.�.k// by (123), which reads (in distributional sense):

J 01.�/ D

8
<̂

:̂

.	b � n /.p2 	 p1/ 	 � @p2
@n

on  in

	� @p2
@n

on  out:

(126)

The solution of the Euler equation J 01.�/ D 0, by a Krylov method with the use
of Algorithm 1, is an alternative to the solution of the Steklov–Poincaré equation
(54).

By properly replacing the definition of both state and adjoint equations and by
correctly writing the derivatives of the cost functional, Algorithm 1 can be adapted
to solve the optimality system associated to the minimization of QJ .

Solving J 0.�/ D 0 is equivalent to solve the Schur complement with respect to
the control variable � derived from the optimal system .OS1/.
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Table 8 Test case #1. Comparison between the cost functionals (121) and (124)

� J1.�/ QJ .�1; �2/
ku1 � u2kL1. out/ infJ1 #it ku1 � u2kL1. out/ inf QJ #it

0.1 2.330e�1 1.242e�12 18 1.367e�1 5.239e�6 44
0.05 1.221e�1 3.137e�12 27 5.275e�2 3.286e�7 61
0.01 1.346e�2 6.989e�11 60 7.146e�4 6.234e�10 134
0.005 1.075e�2 2.294e�11 82 5.049e�4 8.749e�10 177
#it stands for the number of Bi-CGStab-VC iterations.

3.1.5 Numerical Results for Decompositions Without Overlap

Let us consider the Test case #1 introduced in Sect. 2.4. First of all we compare the
numerical solutions obtained by the virtual control approach by minimizing either
the cost functional J1.�/ defined in (121) (or, equivalently J.�1; �2/ defined in
(98)) and QJ .�1; �2/ defined in (124). We have solved both the optimality system
.OS1/ and that associated to the minimization of QJ by Bi-CGStab iterations and
by following the steps summarized in Algorithm 1 (see Sect. 3.1.4). We will name
Bi-CGStab-VC this approach.

In Table 8 we report for both the functionals (121) and (124):
� TheL1-norm on  out of the jump of the solution, i.e., Œu� out D ku1	u2kL1. out/

� The infimum of the minimized cost functional
� The number of Bi-CGStab-VC iterations to converge up a tolerance " D 10�8
versus the viscosity �

A non-uniform spectral element discretization has been considered to solve the
boundary-value problems in both ˝1 and ˝2. The domain ˝1 (˝2, resp.) has been
split in 3 
 6 (4 
 6, resp.) quadrilaterals with the same polynomial degreeN D 16
in each spatial direction and in each element.

First of all we note that not only the solution .u1; u2/, obtained by minimizing the
cost functional J1, features a jump on  out (in fact we know that it is discontinuous
on  out), but also the solution obtained by minimizing the cost functional QJ is
discontinuous on  out. Moreover, as pointed out in Remark 2, we observe that the
value inf QJ is not null for any considered viscosity, however inf QJ ! 0 as � ! 0.
We have observed that the reached value infJ1 is independent of the viscosity and
it is very close to the machine accuracy.

About the number of Bi-CGStab iterations needed to solve the variational
equation J 01.�/D 0, we observe that the convergence rate linearly depends on
the reciprocal of the viscosity, that the minimimiziation of QJ requires twice the
iterations to minimize J1 and that the computational cost of each Bi-CGStab-VC
iteration is the same for both the minimization problems. Then we conclude that the
minimization of the cost functional QJ costs twice that of J1.

In Table 9 we report the number of BiCGStab-VC iterations needed to solve the
optimality system (OS1) up to a tolerance " D 10�6, versus the polynomial degree
N , for two different values of the viscosity: � D 0:01 and 0:005. It emerges that the
convergence rate of Bi-CGStab-VC is independent of the polynomial degree.
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Table 9 Number of Bi-CGStab-VC iterations for the minimization of J1.�/ on the test case #1

N � D 0:01

LB (1) LB (SP�1)

4 19 18
6 16 17
8 15 16
10 17 18
12 18 18
14 19 18
16 21 20

N � D 0:005

LB (1) LB (SP�1)

4 23 24
6 26 23
8 27 26
10 33 27
12 27 27
14 26 28
16 26 28

The acronym LB(1) stands for the implementation based on the
computation of the square root of the discrete Laplace–Beltrami
operator, while LB(SP�1) stands for the implementation based on
the inversion of the Steklov–Poincaré (or Dirichlet to Neumann)
operator (see Remark 3.1.2).

3.2 Domain Decomposition with Overlap

Let us consider now a decomposition of ˝ with overlap. Precisely, we introduce
two subdomains˝1 and ˝2, such that

˝ D ˝1 [˝2; ˝12 D ˝1 \˝2 ¤ ;; i D @˝i n .@˝i \ @˝/; i D 1; 2
(127)

and we denote by ni (for i D 1; 2) the outward normal vector on i with respect
to ˝i .

In view of the considerations given at the beginning of this section, our aim is to
investigate domain decomposition approaches alternative to the sharp-interface one
which do not require a priori knowledge of interface conditions.

3.2.1 An Engineering Practice on Overlapping Subdomains

The simpler and, very likely, most largely used approach consists in extending the
classical Schwarz method [40, 54] to the heterogeneous coupling, then iterating on
the Dirichlet data on the interfaces 1 and 2.

For example, if A1 and A2 are the differential operators defined in (32) and (33),
respectively, the additive (or sequential) version of the Schwarz method reads:
given u.0/1 and u.0/2 , for k � 0 do

8
<̂

:̂

A1u
.kC1/
1 D f in ˝1

u.kC1/1 D g1 on .@˝1 n 1/in
u.kC1/1 D u.k/2 on  in

1 ;

8
<̂

:̂

A2u
.kC1/
2 D f in ˝2

u.kC1/2 D g2 on @˝2 n 2
u.kC1/2 D u.kC1/1 on 2:

If we replace the interface condition u.kC1/2 D u.kC1/1 with u.kC1/2 D u.k/1 on 2,
we obtain the so-called multiplicative (or parallel) version of the Schwarz method.
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The convergence of the Schwarz method applied to the global advection–
diffusion equation has been largely studied, see, e.g. [6, 7, 33, 47].

In [47], the analysis of the Schwarz alternating method is made for homogeneous
singular perturbation problems in which the advection dominates. Precisely, the
author proves that if the subdomains can be chosen to follow the flow, i.e., if the
boundary interface of one of the subdomains corresponds to an outflow boundary for
the streamlines of the flow, then the Schwarz iterates converge in the maximum norm
with an error reduction factor per iteration that exponentially decays with increasing
overlap or decreasing diffusion. On the contrary, if the flow is recirculating and the
subdomains are not suitably chosen, numerical evidence shows that there can be
some deterioration in the convergence factor of the Schwarz method. No theoretical
results however are available in literature about the convergence of Schwarz method
for heterogeneous decompositions.

3.2.2 Schwarz Method with Dirichlet/Robin Interface Conditions

In [34] a variant of the classical Schwarz method is proposed, always for homo-
geneous advection–diffusion problems, and it consists in replacing Dirichlet with
Robin conditions only on one interface of the decomposition with the aim of
accelerating the convergence.

Let us consider again the overlapping decomposition shown in Fig. 14. In [34],
Houzeaux and Codina consider the homogenous problem (1) and propose to solve
it by a two-domain approach as follows: find the pair .u1; u2/ such that

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<̂

ˆ̂̂
ˆ̂̂
ˆ̂̂
:̂

A2u1 D f in ˝1

u1 D g on @˝1 n 1
u1 D u2 on 1

A2u2 D f in ˝2

u2 D g on @˝2 n 2
�
@u1
@n2

	 1
2
.b � n2/u1 D �

@u2
@n2

	 1
2
.b � n2 /u2 on 2:

(128)

G2
G1

W1

W12 W2

Fig. 14 The computational
domain split in two
overlapping subdomains
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By introducing Steklov–Poincaré operators on the interfaces, they prove that
problem (128) admits a unique solution .u1; u2/ such that u1D u2 on˝12. Moreover,
the function

u D
�

u1 in .˝1 n˝12/

u2 in ˝2

coincides with the solution of (1).
However, in [34] an overlapping Dirichlet/Robin method is proposed for the

solution of the two advection–diffusion problems, with the purpose of inheriting
the robustness properties of the classical Schwarz method, yet allowing the limit
case of zero (or extremely small) overlapping, for which Dirichlet/Dirichlet method
fails. Note that the interface condition (128)6 arises from writing the convective term
in skew-symmetric form.

Problem (128) can be solved iterating by subdomains. The resulting method is
called Dirichlet–Robin method and it reads: given u.0/1 and u.0/2 , for k � 0 do

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

A2u
.kC1/
1 D f in ˝1

u.kC1/1 D g on @˝1 n 1
u.kC1/1 D #u.k/2 C .1 	 #/u.k/1 on 1

A2u
.kC1/
2 D f in ˝2

u.kC1/2 D g on @˝2 n 2

�
@u.kC1/2

@n2
	 1
2
.b � n2/u.kC1/2 D � @u.kC1/1

@n2
	 1
2
.b � n2/u.kC1/1 on 2;

(129)

where # > 0 is a suitable relaxation parameter. As alternative to the relaxation of
Dirichlet data (129)3, the authors propose to relax the Robin data (129)6. Under
suitable choices of the relaxation parameter the Dirichlet–Robin algorithm (129)
converges to the solution of the advection–diffusion problem (128).

When the heterogeneous coupling is considered, the Robin interface condition
(128)6 could be replaced by the following one:

	 1
2
.b � n2/u1 D �

@u2
@n2

	 1
2
.b � n2/u2 on 2; (130)

so that the iterative Dirichlet–Robin algorithm for the coupled advection/advection–
diffusion problem should read:
given u.0/1 and u.0/2 , for k � 0 do
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
:

A1u
.kC1/
1 D f in ˝1

u.kC1/1 D g on .@˝1 n 1/in
u.kC1/1 D #u.k/2 C .1 	 #/u.k/1 on  in

1

A2u
.kC1/
2 D f in ˝2

u.kC1/2 D g on @˝2 n 2
�
@u.kC1/2

@n2
	 1
2
.b � n2/u.kC1/2 D 	1

2
.b � n2/u.kC1/1 on 2:

(131)

We note that algorithm (131) coincides with the Dirichlet–Neumann algorithm
(47) when the overlap reduces to the empty set. We refer to Remark 1 in Sect. 3.3.2
about the classification of Neumann and Robin interface conditions.

3.3 Virtual Control Approach with Overlap
for the Advection–Diffusion Equation

Let us consider an overlapping decomposition of ˝ as in (127). As done for the
non-overlapping situation presented in Sect. 3.1, we introduce the Dirichlet virtual
controls �1 2 L2b. in

1 / and �2 2 H1=2.2/ (Fig. 15) and we look for the solution of
the following minimization problem:

inf
�1;�2

OJ .�1; �2/; (132)

with

OJ .�1; �2/ D
Z

˝12

.u1.�1/	 u2.�2//
2d˝; (133)

and u1 D u1.�1/; u2 D u2.�2/ solutions of

8
<

:

A1u1 D f in ˝1

u1 D g1 on .@˝1 n 1/in
u1 D �1 on  in

1 ;

8
<

:

A2u2 D f in ˝2

u2 D g2 on @˝2 n 2
u2 D �2 on 2:

(134)

G2

G1
in

G1
l1

l2

G2

W1

W1

W2

W2

Fig. 15 Virtual control with overlap
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The minimization problem (132) has been studied in [1, 26].
Along this section we set

ƒ1 D L2b. in
1 /;

ƒ2 D
˚
�22H1=2.2/ W 9� 2 H1=2.@˝2/ s.t. �2D�j2 and g2 D �j@˝2n2

�
;

(135)

The following result is stated in [26].

Proposition 1. If the cost functional OJ can be written as the sum of a quadratic
functional OJ 0.�1; �2/ and an affine functional OA .�1; �2/ (as done in Sect. 3.1), and
if the seminorm

k.�1; �2/k D
� OJ 0.�1; �2/

�1=2
(136)

is indeed a norm, then problem (132) admits a unique solution in the space obtained
by completion ofƒ1 
ƒ2 with respect to the norm (136).

The property of (136) being a norm, depends on problem data, i.e. on the convection
field b and on the domain.

In [1], sufficient conditions which guarantee uniqueness of solution of the
minimization problem (132) are furnished.
For simplicity, let us consider the decomposition of ˝ in two subdomains, as
described in (15) and we refer to [1] for more general situations where either the
overlapping set ˝12 D ˝1 \ ˝2 is not connected or @˝12 \ @˝ D ;. We denote
by n12 the outward unit normal to ˝12. The sufficient conditions (alternative one to
each other) which guarantee uniqueness of solution for (132) are:

I: b � n12 ¤ 0 on @˝12 \ @˝;

II.

8
<̂

:̂

� D b0 C divb � 0 on @˝12; � 6 0 on @˝12;

the direction b at any point of @˝12 forms with the outward normal

to @˝12 an acute angle;

III.

8
ˆ̂̂
<̂

ˆ̂̂
:̂

b � n12 ¤ 0 on @˝12;
�

bn
	 1
2

@

@�

 
b�

bn

!
> 0 on @˝12;

where
@

@�
is the derivative along @˝12; while bn and b� are the normal

and tangential components, respectively, of b on @˝12.

The previous proposition guarantees, under suitable assumptions, the uniqueness
of the virtual controls and then that of the solution u1 in ˝1 and u2 in ˝2. However
in general, u1 ¤ u2 on the overlap˝12. A natural question is: how do we recover in
˝12 a solution of the heterogeneous problem.
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The following result ensures that the difference between u1 and u2 in theL2.˝12/

norm annihilates when the viscosity vanishes (see [26]).

Theorem 5. If we set

'.�/ D inf
�1;�2

OJ .�1; �2/ (137)

and if we let � ! 0, all other data being fixed, then

'.�/! 0 as � ! 0: (138)

The optimality system associated to the minimization problem (132) can be
derived by proceeding as in Sect. 3.1.

For any �1 2 ƒ1, �2 2 ƒ2, we introduce the auxiliary problems as follows:

8
<

:

A1u
�1
1 D 0 in ˝1

u�11 D 0 on .@˝1 n 1/in
u�11 D �1 on  in

1 ;

8
<

:

A2u
�2
2 D 0 in ˝2

u�22 D 0 on @˝2 n 2
u�22 D �2 on 2;

(139)

and we differentiate the functional OJ :
*
@ OJ
@�1

; �1

+
D 	

u1.�1/ 	 u2.�2/; u
�1
1



L2.˝12/

8�1 2 ƒ1;

*
@ OJ
@�2

; �2

+
D 	 	u1.�1/ 	 u2.�2/; u

�2
2



L2.˝12/

8�2 2 ƒ2:

(140)

We define the adjoint problems:

�
A�1p1 D �12.u1.�1/ 	 u2.�2// in ˝1

p1 D 0 on @˝out
1

(141)

and

�
A�2p2 D 	�12.u1.�1/ 	 u2.�2// in ˝2

p2 D 0 on @˝2;
(142)

(where �12 denotes the characteristic function of the overlapping set ˝12) and,
by Green’s formulas and the boundary conditions set in (139), (141) and (142),
the optimality system associated to the minimization problem (132) reads (in
distributional sense):
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.OS2/

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

- State equations (134);

- Adjoint equations (141) and (142);

- Euler equations:

.	b � n1/p1 D 0 on  in
1

�
@p2

@n2
D 0 on 2:

The optimality system .OS2/ can be solved as described in Sect. 3.1.4 by a Bi-
CGStab method.

3.3.1 Using Three Virtual Controls

In order to force the solutions u1 and u2 to coincide in˝12, a virtual control problem
with three controls has been proposed and studied in [1]. Precisely, in addition to the
Dirichlet controls �1 and �2, a distributed control �3 2 L2.˝12/ is used as forcing
term in the hyperbolic equation in ˝1.

Let ƒ1 and ƒ2 the spaces defined in (135), then we set

ƒ3 D L2.˝12/: (143)

The three virtual controls problem is defined as follows. We seek� D .�1; �2; �3/ 2
ƒ1 
ƒ2 
ƒ3 solution of the regularized minimization problem

inf
�1;�2;�3

OOJ˛.�1; �2; �3/; (144)

where

OOJ˛.�1; �2; �3/ D 1

2

Z

˝12

.u1.�1; �3/	 u2.�2//
2d˝

C˛
2

	k�1k2ƒ1 C k�2k2ƒ2 C k!�3k2ƒ3


;

(145)

u1 D u1.�1; �3/ and u2 D u2.�2/ are the solutions of the state equations

8
<

:

A1u1 D f C !�3 in ˝1

u1 D g on .@˝1 n 1/in
u1 D �1 on  in

1

8
<

:

A2u2 D f in ˝2

u2 D g on @˝2 n 2
u2 D �2 on 2;

(146)

˛ � 0 is a penalization coefficient and, finally, ! is a smooth function in ˝ such
that

0 � !.x/ � 1 in ˝; ! D 0 in ˝n˝12; ! > 0 in ˝12:
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The optimality system associated to (145) reads (in variational form)

.OS3/

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

- State equations (146);

- Adjoint equations (141) and (142);

- Euler–Lagrange equations:

.	b � n1 /.p1 C ˛�1/ D 0 on  in
1

�
@p2

@n2
C ˛�2 D 0 on 2

˛!�3 C !p1 D 0 in ˝12:

The following Theorem is proved in [1]:

Theorem 6. For any ˛ > 0, the minimization problem (144) has a unique solution
depending on ˛, say .�1; �2; �3/ D .�1.˛/; �2.˛/; �3.˛//, such that

ku1.�1.˛/; �3.˛// 	 u2.�2.˛//kL2.˝12/ ! 0 as ˛ ! 0: (147)

Moreover, if there exists a solution .�01; �
0
2; �

0
3/ of the problem (146) such that the

corresponding state functions coincide in˝12, i.e. u01.�
0
1; �

0
3/ D u02.�

0
2/ in˝12, then

the solution .�01; �
0
2; �

0
3/ is unique and �k.˛/! �0k as ˛ ! 0, for k D 1; 2; 3.

Remark 4. The third control has been introduced to dump the difference between
the hyperbolic and elliptic solutions on the overlap. It is important to highlight that
it is added to the right hand side of the hyperbolic equation and not to the right hand
side of the elliptic problem. This choice guarantees the uniqueness of solution of the
minimization problem (144) when ˛ D 0, through the application of the uniqueness
continuation theorem.

3.3.2 Numerical Results on Virtual Control Approaches

In this section we present some numerical results obtained by solving the cou-
pled advection/advection–diffusion problem by two- and three-virtual controls
approaches. First of all, we consider the one-dimensional problem

� 	�u00.x/C u0.x/ D 1 0 < x < 1

u.0/ D u.1/ D 0; (148)

and we set ˝1 D .0; 0:6/, ˝2 D .0:3; 1/. In Fig. 16 we show the numerical
solution obtained with both two-controls (dashed line) and three-controls (solid

line), for � D 1, at left and � D 10�2 at right. The regularization parameter in OOJ˛
is ˛ D 0. The discretization is performed by spectral elements, precisely, we have
decomposed both ˝1 and ˝2 in two spectral elements and the common element
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Fig. 16 Numerical solutions of (148) obtained with two controls (dashed line) and three controls
(solid line) for � D 1 at left and for � D 10�2 at right. ˝1 D .0; 0:6/, ˝2 D .0:3; 1/

Table 10 Test case #1. The number of Bi-CGStab iterations to solve the optimality systems (OS2)

and (OS3) and the infimum of the cost functionals OJ and OOJ0 versus the viscosity �

� Two-controls Three-controls

#it inf OJ .�1; �2/ #it inf OOJ0.�1; �2; �3/
0:1 18 8:71
 10�4 319 2:83 
 10�11

0:01 15 5:85 
 10�5 276 1:97 
 10�11

0:001 18 4:92 
 10�7 220 5:81 
 10�11

0:0001 18 9:79
 10�9 190 2:45 
 10�11

discretizes the overlap˝12. The polynomial degree used isN D 16 in each element
of both ˝1 and ˝2 when � D 1, while it is N D 16 in each element of ˝1 and
N D 24 in ˝2 n ˝12 when � D 10�2. As we can see the solution obtained with
three-controls matches on the overlap˝12 also with large viscosity � D 1.

Note that the interface 1 is an outflow boundary for the hyperbolic problem,
so that the control �1 is not needed. The number of degrees of freedom (i.e. the
dimension of the system solved by Bi-CGStab) is one for the two controls approach,
while it is of the same order of the number of discretization nodes on the overlap
(aboutN ) for the three controls approach.

Let us consider now the 2D problem described in the Test case # 1 and let OOJ0
denotes the cost functional OOJ˛ with ˛ D 0 (i.e. without regularization). In the

following table the infimum reached by both the cost functionals OJ and OOJ0 is shown
for different values of the viscosity �. It is evident that the minimization of the
cost functional with three controls provides a better solution with respect to the
two virtual controls approach. Nevertheless, the cost of the three virtual controls
approach (in terms of BiCG-Stab iterations needed to solve the optimality system)
is very large, as shown in Table 10.
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Fig. 17 Test case #1. � D 0:01. Left: the solution obtained by minimizing OJ .�1; �2/. Right: the

solution obtained by minimizing OOJ˛.�1; �2; �3/ with ˛ D 0

The stopping test for Bi-CGStab iterations is performed on the norm of the rel-
ative residual with tolerance " D 10�6. We observe that the number of iterations is
small and is independent of the viscosity in the case of two virtual controls, while it
is very large for the three virtual controls approach, even if it decreases when � ! 0.

In Fig. 17 we can appreciate the difference between the hyperbolic solution
u1 and the elliptic one u2 inside the overlapping region ˝12 for the two-virtual
controls approach (left), and the goodness of the solution of the three virtual controls
approach (right) when the viscosity is � D 0:01.

Remark 5. We conclude this Section by highlighting some features of the virtual
control approach with overlap.

The analysis carried out on the virtual control approach with overlap represents
a formal mathematical justification to engineering practice, that is to the Schwarz
method applied to heterogeneous problems.

The virtual control approach with overlap is more “indifferent” with respect to
interface conditions (no a priori information are required, contrary to the virtual
control approach without overlap (see Remark 3).)

However, some open questions remain about the setting of the cost functional.
In particular it is interesting to know if a “best” functional exists, if it is problem
dependent or, again, if it depends on the characteristic parameters of the problem
itself.

3.4 Virtual Control with Overlap for the Stokes–Darcy Coupling

In this section we apply the virtual control approach with overlap introduced in
Sect. 3.3 to the coupled Stokes–Darcy problem that we have considered in Sect. 2.6.
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Fig. 18 Schematic representation of the computational domain

Figure 18 shows our computational domain. In the subdomain ˝1 we consider
the following Stokes problem: find .u; p/ 2 ŒH1.˝1/�

2 
 L2.˝1/ such that

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

	��uCrp D f in ˝1

div u D 0 in ˝1

�ru � n1 	 pn1 D g on  t
1

u D u� on  w
1

u D �1 on 1;

(149)

where f, g and u� are suitably chosen enough regular data.
On the other hand, in the subdomain ˝2, we consider the Darcy problem: find

the piezometric head ' 2 H1.˝2/ such that

8
ˆ̂<

ˆ̂:

	div .Kr'/ D 0 in ˝2

Kr' � n2 D  N on  w
2

' D  D on  b
2

' D �2 on 2;

(150)

where  N and  D are suitable boundary data.
We refer to Fig. 18 for the notation of the boundaries.
�1 and �2 are the controls variables which have to be seeked in the following

spaces, respectively:

�1 D
˚
� 2 ŒH1=2.1/�

2 : 9v 2 ŒH1.˝1/�
2; v D � on 1; v D 0 on  w

1

�
; (151)

�2 D
˚
� 2 H1=2.2/ : 9 2 H1.˝2/;  D � on 2; r' � n2 D 0 on  w

2 ;

 D 0 on  b
2

�
: (152)



116 M. Discacciati et al.

�1 and �2 are the solutions of the following minimization problem:

inf
�1;�2

J.�1; �2/ with J.�1; �2/ D 1

2

Z

˝12

.uCKr'/2 : (153)

Remark 6. Other functionals may be considered for the minimization problem
(153) instead of J . For example, we may minimize the jump of pressures in the
overlapping region, thus considering

inf
�1;�2

J .�1; �2/ with J .�1; �2/ D 1

2

Z

˝12

.p 	 g'/2 : (154)

Moreover, we could take into account some continuity condition (i.e., the continuity
of the normal velocities) on the physical interface  � ˝12 between the fluid and
the porous-media regions. In this case we consider the functional

QJ .�1; �2/ D 1

2

Z



.u � nCKr' � n/2 C 1

2

Z

˝12

.p 	 g'/2 ; (155)

where n is the normal unit vector on  directed outwards of the fluid domain.

We introduce now the following auxiliary problems:
find .uf ; pf / 2 ŒH1.˝1/�

2 
L2.˝1/ such that
8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

	��uf Crpf D f in ˝1

div uf D 0 in ˝1

�ruf � n1 	 pf n1 D g on  t
1

uf D u� on  w
1

uf D 0 on 1;

(156)

and find '� 2 H1.˝2/ such that

8
ˆ̂<

ˆ̂:

	div .Kr'�/ D 0 in ˝2

Kr'� � n2 D  N on  w
2

'� D  D on  b
2

'� D 0 on 2:

(157)

Moreover, we consider the following problems depending only on the control
variables:

find .u�1 ; p�1 / 2 ŒH1.˝1/�
2 
L2.˝1/ such that

8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

	��u�1 Crp�1 D 0 in ˝1

div u�1 D 0 in ˝1

�ru�1 � n1 	 p�1n1 D 0 on  t
1

u�1 D 0 on  w
1

u�1 D �1 on 1;

(158)
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and find '�2 2 H1.˝2/ such that

8
ˆ̂<

ˆ̂:

	div .Kr'�2/ D 0 in ˝2

Kr'�2 � n2 D 0 on  w
2

'�2 D 0 on  b
2

'�2 D �2 on 2:

(159)

Then, we can split

u D uf C u�1 ; p D pf C p�1; ' D '� C '�2 : (160)

In this way we can rewrite the functional J.�1; �2/ in (153) as

J.�1; �2/ D J 0.�1; �2/CA .�1; �2/; (161)

where J 0.�1; �2/ is the quadratic functional

J 0.�1; �2/ D 1

2

Z

˝12

.u�1 CKr'�2/2 (162)

while A .�1; �2/ is the affine functional

A .�1; �2/ D 1

2

Z

˝12

.uf CKr'�/2C
Z

˝12

.u�1CKr'�2/ � .uf CKr'�/: (163)

We compute now rJ D rJ 0 CrA .
We have

h@J
0

@�1
;�1i D

Z

˝12

u�1 � .u�1 CKr'�2/: (164)

Considering the dual problem
8
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂:

	��vCrq D .u�1 CKr'�2/�˝12 in ˝1

div v D 0 in ˝1

�rv � n1 	 qn1 D 0 on  t
1

v D 0 on  w
1

v D 0 on 1;

(165)

we can characterize the operator (164) as


@J 0

@�1
;�1

�
D 	

Z

1

.�rv � n1 	 qn1/ � � 8� 2 �1: (166)

On the other hand, we have

@J 0

@�2
; �2

�
D
Z

˝12

	div.K.u�1 CKr'�2/�˝12/'�2 ; (167)
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and, using the dual problem:

8
ˆ̂<

ˆ̂:

	div .Kr / D 	div.K.u�1 Cr'�2/�˝12 / in ˝2

Kr � n2 D 0 on  w
2

 D 0 on  b
2

 D 0 on 2;

(168)

we obtain

@J 0

@�2
; �2

�
D 	

Z

2

Kr � n2 �2 8�2 2 �2: (169)

We proceed in a similar way to characterize the affine functional A . In this case,
we have


@A

@�1
;�1

�
D 	

Z

1

.�rQv � n1 	 Qqn1/ � � 8� 2 �1; (170)


@A

@�2
; �2

�
D 	

Z

2

Kr Q � n2 �2 8�2 2 �2: (171)

.Qv; Qq/ 2 ŒH1.˝1/�
2 
L2.˝1/ is the solution of the dual problem (165) with forcing

term .uf C Kr'�/�˝12 , while Q 2 H1.˝2/ is the solution of the dual problem
(168) with forcing term 	div.K.uf CKr'�/�˝12 /.

To solve the minimization problem (153) we use the following algorithm:

1. Solve (156) and (157) to get uf , pf and '�.
2. Compute rA :

• solve (165) with forcing term .uf CKr'�/�˝12 and compute (170);
• solve (168) with forcing term	div.K.uf CKr'�/�˝12 / and compute (171).

3. Find .�1; �2/ 2 �1
�2 such that rJ 0 D 	rA . To this aim we use an iterative
method like Bi-CGStab. At each iteration, to compute rJ 0.�1; �2/ we do

• solve (158) and (159);
• compute u�1 CKr'�2 in ˝12;
• solve (165) to get (166);
• solve (168) to get (169).

4. Finally, solve (158) and (159) using the functions �1 and �2 computed at step 3
and use (160) to obtain the desired solutions.

3.4.1 Stokes/Darcy Coupling with Three Virtual Controls

A three virtual controls approach for the Stokes/Darcy coupling with overlap can be
formulated as follows:
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8
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂<

ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂̂
ˆ̂:

˛u 	 ��uC .u � r/uCrp D 0 in ˝1

divu D 0 in ˝1

�ru � n1 	 pn1 D g on  t
1

u D u� on  w
1

u D �1 on 1

	div.Kr'/ D �˝12�3 in ˝2

Kr' � n2 D  N on  w
2

' D  D on  b
2

' D �2 on 2;

where �3 is the third control, while other notations are those introduced in the
previous section. It turns out that the virtual controls �1; �2; and �3 are solutions of
the minimization problem

inf
�1;�2;�3

J.�1; �2; �3/:

Several possible choices can be made for the cost functional J , e.g.,

J.�1; �2; �3/ D
Z

˝12

.Kr' C u/2d˝:

A discussion about this approach (and related ones) is given in [14].

3.5 Coupling for Incompressible Flows

The Navier–Stokes/potential coupling introduced in Sect. 2.5 has been considered
by Glowinski et al. [12, 13] in the framework of virtual controls with overlapping
decomposition.

We denote by ˝1 the extended subdomains where we consider the potential
model, while let ˝2 be the extended subregion where we consider the full Navier–
Stokes equations. Finally, ˝12 D ˝1 \ ˝2 is the overlapping region, and i D
@˝i n .@˝i \ @˝/, for i D 1; 2. See Fig. 19.

Gb

G1

G2

G∞

W2
W1Fig. 19 Splitting of the

computational domain in two
overlapping regions for the
Navier–Stokes/potential
coupling
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We consider two control variables �1 and �2 in the following spaces, respec-
tively:

�1 D
n
� 2 H1=2.1/ W 9 2 H1.˝1/;  D � on 1;

@ 

@n1
D 0 on 1

o
;

�2 D f� 2 ŒH1=2.2/�
d W 9v 2 ŒH1.˝2/�

d ; v D � on 2;
v D 0 on b [ .1 \ @˝2/; d D 2; 3g:

�1 and �2 represent Dirichlet interface conditions for the two subproblems. Indeed,
we consider: 8

ˆ̂̂
<

ˆ̂̂
:

�' D 0 in ˝1

@'

@n1
D u1 � n1 on 1 \ @˝1

' D �1 on 1

(172)

and
8
ˆ̂<

ˆ̂:

˛u 	 ��uC .u � r/uCrp D f in ˝2

div u D 0 in ˝2

u D 0 on b [ .1 \ @˝2/

u D �2 on 2:

(173)

The unknown Dirichlet data �1 and �2 are the solutions of the minimization
problem:

inf
�1;�2

J.�1;�2/ with J.�1;�2/ D 1

2

Z

˝12

.r' 	 u/2d˝ (174)

and satisfying the condition

Z

2

�2 � n2d C
Z

1\@˝2
u1 � n1d D 0:

We refer the interested reader to [12, 13]. A similar approach for the case of
compressible flows is presented in [28].
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37. W. Jäger, A. Mikelić, On the interface boundary condition of Beavers, Joseph and Saffman.
SIAM J. Appl. Math., 60(4):1111–1127 (2000)
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Primer of Adaptive Finite Element Methods

Ricardo H. Nochetto and Andreas Veeser

Abstract Adaptive finite element methods (AFEM) are a fundamental numerical
instrument in science and engineering to approximate partial differential equations.
In the 1980s and 1990s a great deal of effort was devoted to the design of a posteriori
error estimators, following the pioneering work of Babuška. These are computable
quantities, depending on the discrete solution(s) and data, that can be used to assess
the approximation quality and improve it adaptively. Despite their practical success,
adaptive processes have been shown to converge, and to exhibit optimal cardinality,
only recently for dimension d > 1 and for linear elliptic PDE. These series of
lectures presents an up-to-date discussion of AFEM encompassing the derivation
of upper and lower a posteriori error bounds for residual-type estimators, including
a critical look at the role of oscillation, the design of AFEM and its basic properties,
as well as a complete discussion of convergence, contraction property and quasi-
optimal cardinality of AFEM.

1 Piecewise Polynomial Approximation

We start with a discussion of piecewise polynomial approximation in W k
p Sobolev

spaces and graded meshes in any dimension d . We first compare pointwise approx-
imation over uniform and graded meshes for d D 1 in Sect. 1.1, which reveals the
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advantages of the latter over the former and sets the tone for the rest of the paper.
We continue with the concept of Sobolev number in Sect. 1.2.

We explore the geometric aspects of mesh refinement for conforming meshes
in Sect. 1.3 and nonconforming meshes in Sect. 1.7, but postpone a full discussion
until Sect. 6. We include a statement about complexity of the refinement procedure,
which turns out to be instrumental later.

We briefly discuss the construction of finite element spaces in Sect. 1.4, along
with polynomial interpolation of functions in Sobolev spaces in Sect. 1.5. This
provides local estimates adequate for comparison of quasi-uniform and graded
meshes for d > 1. We exploit them in developing the so-called error equidistribution
principle and the construction of suitably graded meshes via thresholding in
Sect. 1.6. We conclude that graded meshes can deliver optimal interpolation rates for
certain classes of singular functions, and thus supersede quasi-uniform refinement.

1.1 Classical vs Adaptive Pointwise Approximation

We start with a simple motivation in 1d for the use of adaptive procedures, due to
DeVore [22]. Given ˝ D .0; 1/, a partition TN D fxngNnD0 of ˝

0 D x0 < x1 < � � � < xn < � � � < xN D 1

and a continuous function u W ˝ ! R, we consider the problem of interpolating
u by a piecewise constant function UN over TN . To quantify the difference between
u and UN we resort to the maximum norm and study two cases depending on the
regularity of u.

Case 1: W 11-regularity. Suppose that u is Lipschitz in Œ0; 1�. We consider the
approximation

UN .x/ WD u.xn�1/ for all xn�1 � x < xn:
Since

ju.x/	 UN .x/j D ju.x/ 	 u.xn�1/j D
ˇ̌
ˇ
Z x

xn�1

u0.t/dt
ˇ̌
ˇ � hnku0kL1.xn�1;xn/;

we conclude that

ku 	 UN kL1.˝/ � 1

N
ku0kL1.˝/; (1)

provided the local mesh-size hn is about constant (quasi-uniform mesh), and so
proportional to N�1 (the reciprocal of the number of degrees of freedom). Note
that the same integrability is used on both sides of (1). A natural question arises:
Is it possible to achieve the same asymptotic decay rate N�1 with weaker regularity
demands?
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Case 2: W 1
1

-regularity. To answer this question, we suppose ku0kL1.˝/ D 1 and
consider the non-decreasing function

'.x/ WD
Z x

0

ju0.t/jdt;

which satisfies '.0/ D 0 and '.1/ D 1. Let TN D fxngNnD0 be the partition given by

Z xn

xn�1

ju0.t/jdt D '.xn/	 '.xn�1/ D 1

N
:

Then, for x 2 Œxn�1; xn�,

ju.x/	 u.xn�1/j D
ˇ̌
ˇ
Z x

xn�1

u0.t/dt
ˇ̌
ˇ �

Z x

xn�1

ju0.t/jdt �
Z xn

xn�1

ju0.t/jdt D 1

N
;

whence

ku 	 UN kL1.˝/ � 1

N
ku0kL1.˝/: (2)

We thus conclude that we could achieve the same rate of convergence N�1 for
rougher functions with just ku0kL1.˝/ < 1. The following comments are in order
for Case 2.

Remark 1 (Equidistribution). The optimal mesh TN equidistributes the max-error.
This mesh is graded instead of uniform but, in contrast to a uniform mesh, such a
partition may not be adequate for another function with the same basic regularity
as u. It is instructive to consider the singular function u.x/ D x� with � D 0:1

and error tolerance 10�2 to quantify the above computations: if N1 and N2 are
the number of degrees of freedom with uniform and graded partitions, we obtain
N1=N2 D 1018.
Remark 2 (Nonlinear approximation). The regularity of u in (2) is measured in
W 1
1 .˝/ instead of W 11.˝/ and, consequently, the fractional � regularity measured

in L1.˝/ increases to one full derivative when expressed in L1.˝/. This exchange
of integrability between left and right-hand side of (2), and gain of differentiability,
is at the heart of the matter and the very reason why suitably graded meshes achieve
optimal asymptotic error decay for singular functions. By those we mean functions
which are not in the usual linear Sobolev scale, say W 11.˝/ in this example, but
rather in a nonlinear scale [22]. We will get back to this issue in Sect. 7.

1.2 The Sobolev Number: Scaling and Embedding

In order to make Remark 2 more precise, we introduce the Sobolev number.
Let ˝ � Rd with d > 1 be a Lipschitz and bounded domain, and let k 2 N ,
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1 � p � 1. The Sobolev space W k
p .˝/ is defined by

W k
p .˝/ WD fv W ˝ ! RjD˛v 2 Lp.˝/ 8j˛j � kg:

If p D 2we setHk.˝/ D W k
2 .˝/ and note that this is a Hilbert space. The Sobolev

number of W k
p .˝/ is given by

sob.W k
p / WD k 	

d

p
: (3)

This number governs the scaling properties of the semi-norm

jvjW k
p .˝/
WD
0

@
X

j˛jDk
kD˛vkpLp.˝/

1

A
1=p

;

because rescaling variables Ox D 1
h
x for all x 2 ˝ , transforms ˝ into Ő and v

into Ov, while the corresponding norms scale as

jOvjW k
p . Ő / D h

sob.W k
p /jvjW k

p .˝/
:

In addition, we have the following compact embedding: if m > k and
sob.W m

q / > sob.W k
p /, then

W m
q .˝/ � W k

p .˝/:

We say that two Sobolev spaces are in the same nonlinear Sobolev scale if they
have the same Sobolev number. We note that for compactness the space W m

q .˝/

must be above the Sobolev scale of W k
p .˝/. A relevant example for d D 2 are the

pair H1.˝/ and L1.˝/ which have the same Sobolev number, in fact sob.H1/ D
sob.L1/ D 0, but the former is not even contained in the latter: in fact

v.x/ D log log
jxj
2
2 H1.˝/nL1.˝/

in the unit ball. This is a source of difficulties for polynomial interpolation theory
and the need for quasi-interpolation operators. This is discussed in Sect. 1.5.

We conclude with a comment about Remark 2. We see that d D 1 and
sob.W 1

1 / D sob.L1/ D 0 but W 1
1 .˝/ is compactly embedded in L1.˝/ in

this case. This shows that these two spaces are in the same nonlinear Sobolev scale
and that the above inequality between Sobolev numbers for a compact embedding
is only sufficient.
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E(T2)

T2

v(T1) = v(T2)

v(T)
T

T1E(T)
E(T1)

Fig. 1 Triangle T 2 T with vertex v.T / and opposite refinement edge E.T /. The bisection rule
for d D 2 consists of connecting v.T / with the midpoint of E.T /, thereby giving rise to children
T1; T2 with common vertex v.T1/ D v.T2/, the newly created vertex, and opposite refinement
edges E.T1/; E.T2/

1.3 Conforming Meshes: The Bisection Method

In order to approximate functions in W k
p .˝/ by piecewise polynomials, we decom-

pose˝ into simplices. We briefly discuss the bisection method, the most elegant and
successful technique for subdividing ˝ in any dimension into a conforming mesh.
We also discuss briefly nonconforming meshes in Sect. 1.7. We present complete
proofs, especially of the complexity of bisection, later in Sect. 6.

We focus on d D 2 and follow Binev et al. [7], but the results carry over to any
dimension d > 1 (see Stevenson [53]). We refer to Nochetto et al. [45] for a rather
complete discussion for d > 1.

Let T denote a mesh (triangulation or grid) made of simplices T , and let T be
conforming (edge-to-edge). Each element is labeled, namely it has an edge E.T /
assigned for refinement (and an opposite vertex v.T / for d D 2); see Fig. 1.

The bisection method consists of a suitable labeling of the initial mesh T0 and
a rule to assign the refinement edge to the two children. For d D 2 we consider
the newest vertex bisection as depicted in Fig. 1. For d > 2 the situation is more
complicated and one needs the concepts of type and vertex order [45, 53].

Bisection creates a unique master forest F of binary trees with infinite depth,
where each node is a simplex (triangle in 2d), its two successors are the two children
created by bisection, and the roots of the binary trees are the elements of the initial
conforming partition T0. It is important to realize that, no matter how an element
arises in the subdivision process, its associated newest vertex is unique and only
depends on the labeling of T0: so v.T / andE.T / are independent of the order of the
subdivision process for all T 2 F ; see Lemma 16 in Sect. 6. Therefore, F is unique.

A finite subset F � F is called a forest if T0 �F and the nodes of F satisfy:

� All nodes of F n T0 have a predecessor.
� All nodes in F have either two successors or none.

Any node T 2 F is thus uniquely connected with a node T0 of the initial
triangulation T0, i.e. T belongs to the infinite tree F.T0/ emanating from T0.
Furthermore, any forest may have interior nodes, i.e. nodes with successors, as well
as leaf nodes, i.e. nodes without successors. The set of leaves corresponds to a mesh
(or triangulation, grid, partition) T D T .F / of T0 which may not be conforming
or edge-to-edge.
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T11 T9

T10

T1

T2

T3

T4

T2

T3

T8

T7

T6T5

T2

T3

T8

T5

T12

Fig. 2 Sequence of bisection meshes fTkg2kD0 starting from the initial mesh T0 D fTig4iD1 with
longest edges labeled for bisection. Mesh T1 is created from T0 upon bisecting T1 and T4, whereas
mesh T2 arises from T1 upon refining T6 and T7. The bisection rule is described in Fig. 1

T1
T2 T3

T11 T12

T5

T4

T6
T7 T8

T10
T9

Fig. 3 Forest F2 corresponding to the grid sequence fTkg2kD0 of Fig. 2. The roots of F2 form the
initial mesh T0 and the leaves of F2 constitute the conforming bisection mesh T2. Moreover, each
level of F2 corresponds to all elements with generation equal to the level

We thus introduce the set T of all conforming refinements of T0:

T WD fT D T .F / jF � F is finite and T .F / is conformingg:

If T� D T .F�/ 2 T is a conforming refinement of T D T .F / 2 T , we write
T� � T and understand this inequality in the sense of trees, namely F � F�.

Example. Consider T0 D fTig4iD1 and the longest edge to be the refinement edge.
Figure 2 displays a sequence of conforming meshes Tk 2 T created by bisection.

Each element Ti of T0 is a root of a finite tree emanating from Ti , which together
form the forest F2 corresponding to mesh T2 D T .F2/. Figure 3 displays F2,
whose leaf nodes are the elements of T2.

Properties of bisection: We now discuss several crucial geometric properties of
bisection. We start with the concept of shape regularity. For any T 2 T , we define

hT

hT

hT D diam.T /

hT D jT j1=d
hT D 2 supfr > 0 jB.x; r/ � T for x 2 T g:
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Fig. 4 Bisection produces at most four similarity classes for any triangle

Then

hT � hT � hT � �hT 8T 2 T ;

where � > 1 is the shape regularity constant. We say that a sequence of meshes is
shape regular if � is uniformly bounded, or in other words that the element shape
does not degenerate with refinement. The next lemma guarantees that bisection
keeps � bounded.

Lemma 1 (Shape regularity). The partitions T generated by newest vertex
bisection satisfy a uniform minimal angle condition, or equivalently � is uniformly
bounded, only depending on the initial partition T0.

Proof. Each T 2 T0 gives rise to a fixed number of similarity classes, namely 4 for
d D 2 according to Fig. 4. This, combined with the fact that #T0 is finite, yields the
assertion. ut

We define the generation (or level) g.T / of an element T 2 T as the number of
bisections needed to create T from its ancestor T0 2 T0. Since bisection splits an
element into two children with equal measure, we realize that

hT D 2�g.T /=2hT0 8T 2 T : (4)

Referring to Fig. 3 we observe that the leaf nodes T9; T10; T11; T12 have generation
2, whereas T5; T8 have generation 1 and T2; T3 have generation 0.
The following geometric property is a simple consequence of (4).

Lemma 2 (Element size vs generation). There exist constants 0 < D1 < D2, only
depending on T0, such that

D12
�g.T /=2 � hT < hT � D22

�g.T /=2 8T 2 T : (5)

Labeling and bisection rule: Whether the recursive application of bisection does
not lead to inconsistencies depends on a suitable initial labeling of edges and a
bisection rule. For d D 2 they are simple to state [7], but for d > 2 we refer to
Condition (b) of Sect. 4 of [53]. Given T 2 T with generation g.T / D i , we assign
the label .i C 1; i C 1; i/ to T with i corresponding to the refinement edge E.T /.
The following rule dictates how the labeling changes with refinement: the side i is
bisected and both new sides as well as the bisector are labeled i C 2 whereas the
remaining labels do not change. To guarantee that the label of an edge is independent
of the elements sharing this edge, we need a special labeling for T0 [7]:
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0 00
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Fig. 5 Initial labeling and its evolution for the sequence of conforming refinements T0 � T1 �
T2 of Fig. 2

1

1

1
1

1
1

1

0

0

Fig. 6 Bisecting each triangle of T0 twice and labeling edges in such a way that all boundary
edges have label 1 yields an initial mesh satisfying (6)

Edges of T0 have labels 0 or 1 and all elements T 2 T0 have
exactly two edges with label 1 and one with label 0.

(6)

It is not obvious that such a labeling exists, but if it does then all elements of T0 can
be split into pairs of compatibly divisible elements. We refer to Fig. 5 for an example
of initial labeling of T0 satisfying (6) and the way it evolves for two successive
refinements T2 � T1 � T0 corresponding to Fig. 2.

To guarantee (6) we can proceed as follows: given a coarse mesh of elements T
we can bisect twice each T and label the four grandchildren, as indicated in Fig. 6 for
the resulting mesh T0 to satisfy the initial labeling [7]. A similar, but much trickier,
construction can be made in any dimension d > 2 (see Stevenson [53]). For d D 3
the number of elements increases by an order of magnitude, which indicates that
(6) is a severe restriction in practice. Finding alternative, more practical, conditions
is an open and important problem.

The procedure REFINE: Given T 2 T and a subset M � T of marked elements,
the procedure

T� D REFINE.T ;M /

creates a new conforming refinement T� of T by bisecting all elements of M at
least once and perhaps additional elements to keep conformity.

Conformity is a constraint in the refinement procedure that prevents it from being
completely local. The propagation of refinement beyond the set of marked elements
M is a rather delicate matter, which we discuss later in Sect. 6. For instance, we
show that a naive estimate of the form
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#T� 	 #T � �0 #M

is not valid with an absolute constant �0 independent of the refinement level. This
can be repaired upon considering the cumulative effect for a sequence of conforming
bisection meshes fTkg1kD0. This is expressed in the following crucial complexity
result due to Binev et al. [7] for d D 2 and Stevenson [53] for d > 2. We present a
complete proof later in Sect. 6.

Theorem 1 (Complexity of REFINE). If T0 satisfies the initial labeling (6) for
d D 2, or that in [53, Sect. 4] for d > 2, then there exists a constant �0 > 0 only
depending on T0 and d such that for all k � 1

#Tk 	 #T0 � �0

k�1X

jD0
#Mj :

If elements T 2M are to be bisected b � 1 times, then the procedure REFINE can
be applied recursively, and Theorem 1 remains valid with �0 also depending on b.

1.4 Finite Element Spaces

Given a conforming mesh T 2 T we define the finite element space of continuous
piecewise polynomials of degree n � 1

Sn;0.T / WD fv 2 C0.˝/j vjT 2 Pn.T / 8T 2 T gI
note that Sn;0.T / � H1.˝/. We refer to Braess [10], Brenner–Scott [11], Ciarlet
[19] and Siebert [50] for a discussion on the local construction of this space along
with its properties.

We focus on the piecewise linear case n D 1 (Courant elements). Global
continuity can be simply enforced by imposing continuity at the vertices z of T ,
the so-called nodal values. We denote by N the set of vertices z of T .

However, the following local construction leads to global continuity. If T is a
generic simplex of T , namely the convex hull of fzi gdiD0, then we associate to each
vertex zi a barycentric coordinate �Ti , which is the linear function in T with nodal
value 1 at zi and 0 at the other vertices of T . Upon pasting together the barycentric
coordinates �Tz of all simplices T containing vertex z 2 N , we obtain a continuous
piecewise linear function 'z 2 S1;0.T / as depicted in Fig. 7 for d D 2: The set
f'zgz2N of all such functions is the nodal basis of S1;0.T /, or Courant basis. We
denote by !z WD supp.'z/ the support of 'z, from now on called star associated to
z, and by �z the scheleton of !z, namely all the sides containing z.

We denote functions in Sn;0.T / with capital letters. In view of the definition of
'z, we have the following unique representation of any function V 2 Sn;0.T /:

V.x/ D
X

z2N
V.z/'z.x/:
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φz

z

ωz

z

Fig. 7 Piecewise linear basis
function 'z corresponding to
interior node z, support !z of
'z and scheleton �z, the latter
being composed of all sides
within the interior of !z

If we further impose V.z/ D 0 for all z 2 @˝\N , then V 2 H1
0 .˝/. We denote by

V .T / WD Sn;0.T /\H1
0 .˝/;

the subspace of finite element functions which vanish on @˝ . Note that we do not
explicitly refer to the polynomial degree, which will be clear in each context.

For each simplex T 2 T , generated by vertices fzi gdiD0, the dual functions
f��i gdiD0 � P1.T / to the barycentric coordinates f�igdiD0 satisfy the bi-orthogonality
relation

R
T
��i �j D ıij , and are given by

��i D
.1C d/2
jT j �i 	 1C djT j

X

j¤i
�j 8 0 � i � d:

The Courant dual basis '�z 2 Sn;�1.T / are the discontinuous piecewise linear func-
tions over T given by

'�z D
1

�z

X

T3z

.�Tz /
��T 8 z 2 N ;

where �z 2 N is the valence of z (number of elements of T containing z) and �T
is the characteristic function of T . These functions have the same support !z as the
nodal basis 'z and satisfy the global bi-orthogonality relation

Z

˝

'�z 'y D ızy 8 z; y 2 N :

1.5 Polynomial Interpolation in Sobolev Spaces

If v 2 C0.˝/ we define the Lagrange interpolant IT v of v as follows:

IT v.x/ D
X

z2N
v.z/'z.x/:
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For functions without point values, such as functions in H1.˝/ for d > 1, we need
to determine nodal values by averaging. For any conforming refinement T � T0

of T0, the averaging process extends beyond nodes and so gives rise to the discrete
neighborhood

NT .T / WD fT 0 2 T j T 0 \ T ¤ ;g
for each element T 2 T along with the local quasi-uniformity properties

max
T2T #NT .T / � C.T0/; max

T 02NT .T /

jT j
jT 0j � C.T0/;

where C.T0/ depends only on the shape coefficient of T0 given by

�.T0/ WD max
T2T0

hT

hT
:

We introduce now one such operator IT due to Scott–Zhang [11, 48], from now
on called quasi-interpolation operator. We focus on polynomial degree n D 1, but
the construction is valid for any n; see [11, 48] for details. We recall that f'zgz2N
is the global Lagrange basis of S1;0.T /, f'�z gz2N is the global dual basis, and
supp'�z D supp'z for all z 2 N . We thus define IT W L1.˝/! S1;0.T / to be

IT v D
X

z2N
hv; '�z i'z:

If 0 � s � 2 is a regularity index and 1 � p � 1 is an integrability index, then we
would like to prove the quasi-local error estimate

kDt.v 	 IT v/kLq.T / . h
sob.W s

p /�sob.W t
q /

T kDsvkLp.NT .T // (7)

for all T 2 T , provided 0 � t � s, 1 � q � 1 are such that sob.W s
p / > sob.W t

q /.
We first observe that by construction IT is invariant in S1;0.T /, namely,

IT P D P for all P 2 S1;0.T /:

Since the averaging process giving rise to the values of IT v for each element T 2 T
takes place in the neighborhoodNT .T /, we also deduce the local invariance

IT P jT D P for all P 2 P1.NT .T //

as well as the local stability estimate for any 1 � q � 1

kIT vkLq.T / . kvkLq.NT .T //:



136 R.H. Nochetto and A. Veeser

We thus may write

v 	 IT vjT D .v 	 P/ 	 IT .v 	 P/jT for all T 2 T ;

where P 2 Ps�1 is arbitrary (P D 0 if s D 0). It suffices now to prove (7) in the
reference element bT and scale back and forth to T ; the definition (3) of Sobolev
number accounts precisely for this scaling. We keep the notation T for bT , apply the
inverse estimate for linear polynomials kDt.IT v/kLq.T / . kIT vkLq.T / to v 	 P
instead of v, and use the above local stability estimate, to infer that

kDt.v 	 IT v/kLq.T / . kv 	 P kW t
q .NT .T // . kv 	 P kW s

p .NT .T //:

The last inequality is a consequence W s
p .NT .T // � W t

q .NT .T // because sob
.W s

p / > sob.W t
q / and t � s. Estimate (7) now follows from the Bramble–Hilbert

lemma [11, Lemma 4.3.8], [19, Theorem 3.1.1]

inf
P2Ps�1.NT .T //

kv 	 P kW s
p .NT .T // . kDsvkLp.NT .T //: (8)

This proves (7) for n D 1. The construction of IT and ensuing estimate (7) are still
valid for any n > 1 [11, 48].

Proposition 1 (Quasi-interpolant without boundary values). Let s; t be regular-
ity indices with 0 � t � s � nC 1, and 1 � p; q � 1 be integrability indices so
that sob.W s

p / > sob.W t
q /.

There exists a quasi-interpolation operator IT W L1.˝/ ! Sn;0.T /, which is
invariant in Sn;0.T / and satisfies

kDt.v 	 IT v/kLq.T / . h
sob.W s

p /�sob.W t
q /

T kDsvkLp.NT .T // 8T 2 T : (9)

The hidden constant in (9) depends on the shape coefficient of T0 and d .

To impose a vanishing trace on IT v we may suitably modify the averaging
process for boundary nodes. We thus define a set of dual functions with respect to
anL2-scalar product over .d 	 1/-subsimplices contained on @˝; see again [11,48]
for details. This retains the invariance property of IT on Sn;0.T / and guarantees
that IT v has a zero trace if v 2 W 1

1 .˝/ does. Hence, the above argument applies
and (9) follows provided s � 1.

Proposition 2 (Quasi-interpolant with boundary values). Let s; t; p; q be as in
Proposition 1. There exists a quasi-interpolation operator IT W W 1

1 .˝/! Sn;0.T /

invariant in Sn;0.T /which satisfies (9) for s � 1 and preserves the boundary values
of v provided they are piecewise polynomial of degree � n. In particular, if v 2
W 1
1 .˝/ has a vanishing trace on @˝ , then so does IT v.

Remark 3 (Fractional regularity). We observe that (7) does not require the regular-
ity indices t and s to be integer. The proof follows the same lines but replaces the
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polynomial degree s 	 1 by the greatest integer smaller that s; the generalization of
(8) can be taken from [26].

Remark 4 (Local error estimate for lagrange Interpolant). Let the regularity index
s and integrability index 1 � p � 1 satisfy s 	 d=p > 0. This implies that
sob.W s

p / > sob.L1/, whence W s
p .˝/ � C.˝/ and the Lagrange interpolation

operator IT W W s
p .˝/ ! Sn;0.T / is well defined and satisfies the local error

estimate
kDt.v 	 IT v/kLq.T / . h

sob.W s
p /�sob.W t

q /

T kDsvkLp.T /; (10)

provided 0 � t � s, 1 � q � 1 are such that sob.W s
p / > sob.W t

q /. We point
out that NT .T / in (7) is now replaced by T in (10). We also remark that if v
vanishes on @˝ so does IT v. The proof of (10) proceeds along the same lines as
that of Proposition 1 except that the nodal evaluation does not extend beyond the
element T 2 T and the inverse and stability estimates over the reference element
are replaced by

kDtIT vk
Lq.bT / . kIT vk

Lq.bT / . kvk
L1.bT / . kvk

W s
p .bT /:

We are now in a position to derive a global interpolation error estimate. To this
end, it is convenient to introduce the mesh-size function h 2 L1.˝/ given by

hjT D hT for all T 2 T : (11)

Notice that the following estimate encompasses the linear as well as the nonlinear
Sobolev scales.

Theorem 2 (Global interpolation error estimate). Let 1 � s � n C 1 and 1 �
p � 2 satisfy r WD sob.W s

p /	 sob.H1/ > 0. If v 2 W s
p .˝/, then

kr.v 	 IT v/kL2.˝/ . khrDsvkLp.˝/: (12)

Proof. Use Proposition 1 along with the elementary property of series
P

n an �
.
P

n a
q
n/
1=q for 0 < q WD p=2 � 1. ut

Quasi-uniform meshes: We now apply Theorem 2 to quasi-uniform meshes, namely
meshes T 2 T for which all its elements are of comparable size h regardless of the
refinement level. In this case, we have

h � .#T /�1=d :

Corollary 1 (Quasi-uniform meshes). Let 1 � s � n C 1 and u 2 Hs.˝/.
If T 2 T is quasi-uniform, then

kr.v 	 IT v/kL2.˝/ . jvjHs.˝/.#T /�.s�1/=d : (13)
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Fig. 8 Sequence of consecutive uniform meshes for L-shaped domain˝ created by two bisections

Table 1 The asymptotic rate of convergence in term of mesh-size h is about h2=3, or equiv-
alently .#T /�1=3, irrespective of the polynomial degree n. This provides a lower bound for
kv� IT vkL2.˝/ and thus shows that (13) is sharp

h Linear .n D 1/ Quadratic .n D 2/ Cubic .n D 3/

1/4 1.14 9.64 9.89
1/8 0.74 0.67 0.67
1/16 0.68 0.67 0.67
1/32 0.66 0.67 0.67
1/64 0.66 0.67 0.67
1/128 0.66 0.67 0.67

Remark 5 (Optimal Rate). If s D n C 1, and so v has the maximal regularity v 2
HnC1.˝/, then we obtain the optimal convergence rate in a linear Sobolev scale

kr.v 	 IT v/kL2.˝/ . jvjHnC1.˝/.#T /�n=d : (14)

The order	n=d is just dictated by the polynomial degree n and cannot be improved
upon assuming either higher regularity thatHnC1.˝/ or a graded mesh T .

Example (Corner singularity in 2d ). To explore the effect of a geometric singularity
on (13), we let ˝ be the L-shaped domain of Fig. 8 and v 2 H1.˝/ be

u.r; #/ D r 23 sin.2#=3/	 r2=4:
This function v 2 H1.˝/ exhibits the typical corner singularity of the solution of
	�v D f with suitable Dirichlet boundary condition: v 2 Hs.˝/ for s < 5=3.
Table 1 displays the best approximation error for polynomial degree n D 1; 2; 3 and
the sequence of uniform refinements depicted in Fig. 8 in the seminorm j � jH1.˝/.
This gives a lower bound for the interpolation error in (13).
Even though s is fractional, the error estimate (13) is still valid as stated in
Remark 3. In fact, for uniform refinement, (13) can be derived by space interpolation
between H1.˝/ and HnC1.˝/. The asymptotic rate .#T /�1=3 reported in Table 1
is consistent with (13) and independent of the polynomial degree n; this shows that
(13) is sharp. It is also suboptimal as compared with the optimal rate .#T /�n=2 of
Remark 5.

The question arises whether the rate .#T /�1=3 in Table 1 is just a consequence
of uniform refinement or unavoidable. It is important to realize that v 62 Hs.˝/ for
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s � 5=3 and thus (13) is not applicable. However, the problem is not that second
order derivatives of v do not exist but rather that they are not square-integrable.
In particular, it is true that v 2 W 2

p .˝/ if 1 � p < 3=2. We therefore may apply
Theorem 2 with, e.g., n D 1, s D 2, and p 2 Œ1; 3=2/ and then ask whether the
structure of (12) can be exploited, e.g., by compensating the local behavior of Dsu
with the local mesh-size h. This enterprise naturally leads to graded meshes adapted
to v.

1.6 Adaptive Approximation

Principle of error equidistribution: We investigate the relation between local mesh-
size and regularity for the design of graded meshes adapted to v 2 H1.˝/ for
d D 2. We formulate this as an optimization problem:

Given a function v 2 C2.˝/ \ W 2
p .˝/ and an integer N > 0

find conditions for a shape regular mesh T to minimize the error
jv 	 IT vjH1.˝/ subject to the constraint that the number of degrees
of freedom #T � N .

We first convert this discrete optimization problem into a continuous model,
following Babuška and Rheinboldt [5]. Let

#T D
Z

˝

dx

h.x/2

be the number of elements of T and let the Lagrange interpolation error

kr.v 	 IT v/kp
L2.˝/

D
Z

˝

h.x/2.p�1/jD2v.x/jpdx

be dictated by (12) with s D 2 and 1 < p � 2; note that r D sob.W 2
p /	sob.H1/ D

2 	 2=p whence rp D 2.p 	 1/ is the exponent of h.x/. We next propose the
Lagrangian

L Œh; �� D
Z

˝

�
h.x/2.p�1/jD2v.x/jp 	 �

h.x/2

�
dx

with Lagrange multiplier � 2 R. The optimality condition reads (Problem 4)

h.x/2.p�1/C2jD2v.x/jp D �; (15)

where � > 0 is a constant. In order to interpret this expression, we compute the
interpolation error ET incurred in element T 2 T . According to (10), ET is given
by
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E
p
T � h2.p�1/T

Z

T

jD2v.x/jp � �

provided D2v.x/ is about constant in T . Therefore we reach the heuristic, but
insightful, conclusion that ET is about constant, or equivalently

A graded mesh is quasi-optimal if the local error is equidistributed. (16)

Corner singularities: Meshes satisfying (16) have been constructed by Babuška
et al. [3] for corner singularities and d D 2; see also [30]. If the function v possess
the typical behavior

v.x/ � r.x/� ; 0 < � < 1;

where r.x/ is the distance from x 2 ˝ to a reentrant corner of˝ , then (15) implies
the mesh grading

h.x/ D � 1
2p r.x/�

1
2 .��2/;

whence

#T D
Z

˝

h.x/�2dx D �� 1
p

Z diam.˝/

0

r��1dr � �� 1
p :

This crucial relation is valid for any � > 0 and p > 1; in fact the only condition on
p is that r D 2 	 2=p > 0, or equivalently sob.W 2

p / > sob.H1/. Therefore,

kr.v 	 IT v/k2
L2.˝/

D
X

T2T
E2
T D �

2
p .#T / D .#T /�1 (17)

gives the optimal decay rate for d D 2; n D 1, according to Remark 5. We explore
the case d � 2 and n � 1 in Problem 6. What this argument does not address is
whether such meshes T exist in general and, more importantly, whether they can
actually be constructed upon bisecting the initial mesh T0 so that T 2 T .

Thresholding: We now construct graded bisection meshes T for n D 1; d D 2 that
achieve the optimal decay rate .#T /�1=2 of (14) and (17) under the global regularity
assumption

v 2 W 2
p .˝/; p > 1: (18)

Following the work of Binev et al. [8], we use a thresholding algorithm that is based
on the knowledge of the element errors and on bisection. The algorithm hinges
on (16): if ı > 0 is a given tolerance, the element error is equidistributed, that is
ET � ı2, and the global error decays with maximum rate .#T /�1=2, then

ı4#T �
X

T2T
E2
T D jv 	 IT vj2

H1.˝/
. .#T /�1
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that is #T . ı�2. With this in mind, we impose ET � ı2 as a common threshold
to stop refining and expect #T . ı�2. The following algorithm implements this
idea.

Thresholding algorithm: Given a tolerance ı > 0 and a conforming mesh T0,
THRESHOLD finds a conforming refinement T � T0 of T0 by bisection such
that ET � ı2 for all T 2 T : let T D T0 and

THRESHOLD.T ; ı/

while M WD fT 2 T jET > ı2g ¤ ;
T WD REFINE.T ;M /

end while
return(T )

We get W 2
p .˝/ � C0.˝/, because p > 1, and can use the Lagrange interpolant

and local estimate (10) with r D sob.W 2
p / 	 sob.H1/ D 2 	 2=p > 0. We deduce

that
ET . hrT kD2vkLp.T /; (19)

and that THRESHOLD terminates because hT decreases monotonically to 0 with
bisection. The quality of the resulting mesh is assessed next.

Theorem 3 (Thresholding). If v 2 H1
0 .˝/ verifies (18), then the output T 2 T

of THRESHOLD satisfies

jv 	 IT vjH1.˝/ � ı2.#T /1=2; #T 	 #T0 . ı�2 j˝j1�1=pkD2vkLp.˝/:

Proof. Let k � 1 be the number of iterations of THRESHOLD before termination.
Let M DM0[� � �[Mk�1 be the set of marked elements. We organize the elements
in M by size in such a way that allows for a counting argument. Let Pj be the set
of elements T of M with size

2�.jC1/ � jT j < 2�j ) 2�.jC1/=2 � hT < 2�j=2:

We proceed in several steps.
1 We first observe that all T ’s in Pj are disjoint. This is because if T1; T2 2 Pj

and VT1\ VT2 ¤ ;, then one of them is contained in the other, say T1 � T2, due to the
bisection procedure. Thus

jT1j � 1

2
jT2j

contradicting the definition of Pj . This implies

2�.jC1/ #Pj � j˝j ) #Pj � j˝j 2jC1: (20)

2 In light of (19), we have for T 2Pj

ı2 � ET . 2�.j=2/rkD2vkLp.T /:
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Therefore

ı2p #Pj . 2�.j=2/rp
X

T2Pj

kD2vkpLp.T / � 2�.j=2/rp kD2vkpLp.˝/;

whence
#Pj . ı�2p 2�.j=2/rp kD2vkpLp.˝/: (21)

3 The two bounds for #P in (20) and (21) are complementary. The first is good for
j small whereas the second is suitable for j large (think of ı � 1). The crossover
takes place for j0 such that

2j0C1j˝j D ı�2p 2�j0.rp=2/kD2vkpLp.˝/ ) 2j0 � ı�2 kD
2vkLp.˝/
j˝j1=p :

4 We now compute

#M D
X

j

#Pj .
X

j�j0
2j j˝j C ı�2p kD2vkpLp.˝/

X

j>j0

.2�rp=2/j :

Since X

j�j0
2j � 2j0 ;

X

j>j0

.2�rp=2/j . 2�.rp=2/j0 D 2�.p�1/j0 ;

we can write

#M .
	
ı�2 C ı�2pı2.p�1/
 j˝j1�1=p kD2vkLp.˝/ � ı�2 j˝j1�1=p kD2vkLp.˝/:

We finally apply Theorem 1 to arrive at

#T 	 #T0 . #M . ı�2 j˝j1�1=p kD2vkLp.˝/:

5 It remains to estimate the energy error. We have, upon termination of THRESH-
OLD, that ET � ı2 for all T 2 T . Then

jv 	 IT vj2
H1.˝/

D
X

T2T
E2
T � ı4 #T :

This concludes the Theorem. ut
By relating the threshold value ı and the number of refinements N , we obtain a

result about the convergence rate.

Corollary 2 (Convergence rate). Let v 2 H1
0 .˝/ satisfy (18). Then for N > #T0

integer there exists T 2 T such that
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jv 	 IT vjH1.˝/ . j˝j1�1=p kD2vkLp.˝/N�1=2; #T 	 #T0 . N:

Proof. Choose ı2 D j˝j1�1=p kD2vkLp.˝/N�1 in Theorem 3. Then, there exists
T 2 T such that #T 	 #T0 . N and

jv 	 IT vjH1.˝/ . j˝j1�1=p kD2vkLp.˝/N�1
	
N C #T0


1=2

. j˝j1�1=p kD2vkLp.˝/N�1=2

because N > #T0. This finishes the Corollary. ut
Remark 6 (Piecewise smoothness). The global regularity (18) can be weakened to
piecewise W 2

p regularity over the initial mesh T0, namely W 2
p .˝IT0/, and global

H1
0 .˝/. This is becauseW 2

p .T / ,! C0.T / for all T 2 T0, whence IT can be taken
to be the Lagrange interpolation operator.

Remark 7 (Case p < 1). We consider now polynomial degree n � 1. The inte-
grability p corresponding to differentiability n C 1 results from equating Sobolev
numbers:

nC 1 	 d
p
D sob.H1/ D 1 	 d

2
) p D 2d

2nC d :

Depending on d � 2 and n � 1, this may lead to 0 < p < 1, in which case
W nC1
p .˝/ is to be replaced by the Besov space BnC1

p;p .˝/ [22]; see Problem 6. The
argument of Theorem 3 works provided we replace (19) by a modulus of regularity;
in fact,DnC1v would not be locally integrable and so would fail to be a distribution.

Remark 8 (Isotropic vs anisotropic elements). Theorem 3 and Problem 5 show that
isotropic graded meshes can always deal with geometric singularities for d D 2.
This is no longer the case for d > 2 and is explored in Problem 6.

1.7 Nonconforming Meshes

More general subdivisions of ˝ than those in Sect. 1.3 are used in practice. If the
elements of T0 are quadrilaterals for d D 2, or their multidimensional variant for
d > 2, then it is natural to allow for improper or hanging nodes for the resulting
refinements T to be graded; see Fig. 9a. On the other hand, if T0 is made of
triangles for d D 2, or simplices for d > 2, then red refinement without green
completion also gives rise to graded meshes with hanging nodes; see Fig. 9b. In both
cases, the presence of hanging nodes is inevitable to enforce mesh grading. Finally,
bisection may produce meshes with hanging nodes, as depicted in Fig. 9c, if the
completion process is incomplete. All three refinements maintain shape regularity,
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P

P

P

Fig. 9 Nonconforming meshes made of quadrilaterals (a), triangles with red refinement (b), and
triangles with bisection (c). The shaded regions depict the domain of influence of a proper or
conforming node P

but for both practice and theory, they cannot be arbitrary: we need to restrict the
level of incompatibility; see Problem 10. We discuss this next.

We start with the notion of domain of influence of a proper node, introduced
by Babuška and Miller in the context of K-meshes [4]; see Fig. 9. For simplicity,
we restrict ourselves to polynomial degree n D 1. We say that a node P of T
is a proper (or conforming) node if it is a vertex of all elements containing P ;
otherwise, we say that P is an improper (nonconforming or hanging) node. Since
we only prescribe degrees of freedom at the proper nodes, it is natural to describe
the canonical continuous piecewise linear basis functions 'P associated with each
proper node P .

We do this recursively. As in Sect. 1.3, the generation g.T / of an element T 2 T
is the number of subdivisions needed to create T from its ancestor in the initial
mesh T0, hereafter assumed to be conforming. We first rearrange the elements in
T D fTig#T

iD1 by generation: g.Ti / � g.TiC1/ for all i � 0. Suppose that 'P has
been already defined for each T 2 T with g.T / < i . We proceed as follows to
define 'P at each vertex z of T 2 T with g.T / D i :
� If z is a proper node, then we set 'P .z/ D 1 if z D P and 'P .z/ D 0 otherwise
� If z is a hanging node, then z belongs to an edge of another element T 0 2 T with
g.T 0/ < i and set 'P .z/jT D 'P .z/jT 0

This definition is independent of the choice of T 0 since, by construction, 'P is
continuous across interelements of lower level. We also observe that f'P gP2N is
a basis of the finite element space V .T / of continuous piecewise linear functions,
thus

V D
X

P2N
V.P /'P 8 V 2 V .T /:

The domain of influence of a proper node P is the support of 'P :

!T .T / D supp.'P /:

We say that a sequence of nonconforming meshes fT g is admissible if there is a
universal constant�� � 1, independent of the refinement level and T , such that
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diam.!T .T // � ��hT 8 T 2 T : (22)

An important example is quadrilaterals with one hanging node per edge. We
observe, however, that (22) can neither be guaranteed with more than one hanging
node per edge for quadrilaterals, nor for triangles with one hanging node per edge
(see Problem 10).

Given an admissible grid T , a subset M of elements marked for refinement, and
a desired number � � 1 of subdivisions to be performed in each marked element,
the procedure

T� D REFINE.T ;M /

creates a minimal admissible mesh T� � T such that all the elements of M are
subdivided at least � times. In order for T� to be admissible, perhaps other elements
not in M must be partitioned. Despite the fact that admissibility is a constraint on
the refinement procedure weaker than conformity, it cannot avoid the propagation
of refinements beyond M . The complexity of REFINE is again an issue which we
discuss in Sect. 6.4: we show that Theorem 1 extends to this case.

Lemma 3 (REFINE for nonconforming meshes). Let T0 be an arbitrary con-
forming partition of ˝ , except for bisection in which case T0 satisfies the labeling
(6) for d D 2 or its higher dimensional counterpart [53]. Then the estimate

#Tk 	 #T0 � �0

k�1X

jD0
#Mj 8k � 1

holds with a constant�0 depending on T0; d and �.

We conclude by emphasizing that the polynomial interpolation and adaptive
approximation theories of Sects. 1.5 and 1.6 extend to nonconforming meshes with
fixed level of incompatibility as well.

1.8 Notes

The use of Sobolev numbers is not so common in the finite element literature, but
allows as to write compact error estimates and speak about nonlinear Sobolev scale.
The latter concept is quite natural in nonlinear approximation theory [22].

The discussion of bisection for d D 2 follows Binev et al. [7]. Stevenson
extended the theory to d > 2 [53]. We refer to the survey by Nochetto et al. [45] for
a rather complete discussion for d > 1, and to Sect. 6 for a proof of Theorem 1 for
d D 2, which easily extends to d > 2.

The discussion of finite element spaces [10,11,19] and polynomial interpolation
[11, 26, 48] is rather classical. In contrast, the material of adaptive approximation is
much less documented. The principle of equidistribution goes back to Babuška and
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Rheimboldt [5] and the a priori design of optimal meshes for corner singularities for
d D 2 is due to Babuška et al. [3]. The construction of optimal meshes via bisection
using thresholding is extracted from Binev et al. [8].

Finally the discussion of nonconforming meshes follows Bonito and Nochetto
[9], and continues in Sect. 6 with the proof of Lemma 3.

1.9 Problems

Problem 1 (Nonconforming element). Given a d -simplex T in Rd with vertices
z0; : : : ; zd , construct a basis N�0; : : : ; N�d of P1.T / such that N�i.Nzj / D ıij for all i; j 2
f1; : : : ; d g, where Nzj denotes the barycenter of the face opposite to the vertex zj .
Does this local basis also lead to a global one in S1;0.T /?

Problem 2 (Quadratic basis functions). Express the nodal basis of P2.T / in
terms of barycentric coordinates of T 2 T .

Problem 3 (Quadratic dual functions). Derive expressions for the dual functions
of the quadratic local Lagrange basis of P2.T / for each element T 2 T . Construct
a global discontinuous dual basis '�z 2 S2;�1.T / of the global Lagrange basis
'z 2 S2;0.T / for all z 2 N2.T /.

Problem 4 (Lagrangian). Let h.x/ be a smooth function locally equivalent to the
mesh-size and v 2 C2.˝/\W 2

p .˝/. Prove that a stationary point of the Lagrangian

L Œh; �� D
Z

˝

�
h.x/2.p�1/ jD2v.x/jp 	 �

h.x/2

�
dx

satisfies the optimality condition

h.x/2.p�1/C2 jD2v.x/jp D constant:

Problem 5 (W 2
p -regularity). Consider the function v.r; #/ D r� '.#/ in polar

coordinates .r; #/ for d D 2 with '.#/ smooth. Show that v 2 W 2
p .˝/ n H2.˝/

for 1 � p < 2=.2	 �/.
Problem 6 (Edge singularities). This problem explores formally the effect of edge
singularities for dimension d > 2 and polynomial degree n � 1. Since edge
(or line) singularities are two dimensional locally, away from corners, we assume
the behavior v.x/ � r.x/� where r.x/ is the distance of x 2 ˝ to an edge of ˝
and � > 0.

(a) Use the Principle of Equidistribution with p D 2 to determine the mesh grading

h.x/ � � 1
2nCd r.x/2d

��.nC1/
2nCd :
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(b) Show the following relation between � and number of elements #T DR
˝
h.x/�d

� >
.d 	 2/n

d
) #T � �� d

2nCd :

(c) If � > .d�2/n
d

, then deduce the optimal interpolation error decay

kr.v 	 IT v/kL2.˝/ . .#T /�
n
d :

(d) Prove that � >
.d�2/n
d

is equivalent to the regularity
R
˝
jDnC1vjp < 1 for

p > 2d
2nCd . If � WD 2d

2nCd � 1, then this would mean v 2 W nC1
p .˝/. However,

it is easy to find examples d > 2 or n > 1 for which � < 1, in which case the
Sobolev space W nC1

p .˝/ must be replaced by the Besov space BnC1
p;p .˝/ [22].

Note that p > � is precisely what yields the crucial relation between Sobolev
numbers

sob.BnC1
p;p / D nC 1 	

d

p
> sob.H1/ D 1 	 d

2
:

We observe that for d D 2 all singular exponents � > 0 lead to optimal meshes,
but this is not true for d D 3: n D 1 requires � > 1

3
whereas n D 2 needs

� > 2
3
. The latter corresponds to a dihedral angle ! > 3�

2
and can be easily

checked computationally. We thus conclude that isotropic graded meshes are
sufficient to deal with geometric singularities for d D 2 but not for d > 2,
for which anisotropic graded meshes are the only ones which exhibit optimal
behavior. Their adaptive construction is open.

Problem 7 (Local H2-regularity). Consider the function v.x/ � r.x/� where
r.x/ is the distance to the origin and d D 2.

(a) Examine the construction of a graded mesh via the thresholding algorithm.
(b) Repeat the proof of Theorem 3 replacing the W 2

p regularity by the correspond-
ing local H2-regularity of v depending on the distance to the origin.

Problem 8 (Thresholding for d > 2). Let d > 2, n D 1, and v 2 W 2
p .˝/ with

p > 2d
2Cd . This implies that v 2 H1.˝/ but not necessarily inC0.˝/. Use the quasi-

interpolant IT of Proposition 1 to define the local H1-error ET for each element
T 2 T and use the thresholding algorithm to show Theorem 3 and Corollary 2.

Problem 9 (Reduced rate). Let d � 2, n D 1, and v 2 W s
p .˝/ with 1 < s < 2

and sob.W s
p / > sob.H1/, namely s 	 d

p
> 1 	 d

2
. Use the quasi-interpolant IT of

Proposition 1 to define the local H1-error ET for each element T 2 T and use the
thresholding algorithm to show Corollary 2: given N > #T0 there exists T 2 T
with #T 	 #T0 . N such that

kv 	 IT vkH1.˝/ . kDsvkLp.˝/N� s�1d :
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Problem 10 (Level of incompatibility). This problem shows that keeping the
number of hanging nodes per side bounded does not guarantee a bounded level
of incompatibility for d D 2. The situation is similar for d > 2.

(a) Square elements: construct a selfsimilar quad-refinement of the unit square with
only two hanging nodes per side and unbounded level of incompatibility.

(b) Triangular elements: construct selfsimilar red-refinements and bisection refine-
ments of the unit reference triangle with one hanging node per side and
unbounded level of incompatibility.

Problem 11 (Quasi-interpolation of discontinuous functions). Let T be an
admissible nonconforming mesh. Let V .T / denote the space of discontinuous
piecewise polynomials of degree � n over T , and V 0.T / be the subspace of
continuous functions. Construct a local quasi-interpolation operator IT W V .T /!
V 0.T /with the following approximation property for all V 2 V .T / and j˛j D 0; 1

kD˛.V 	 IT V /kL2.T / . h
1�j˛j
2

T k ŒŒV �� kL2.˙T .T // 8T 2 T ;

where ˙T .T / stands for all sides within NT .T / and ŒŒV �� denotes the jump of V
across sides.

2 Error Bounds for Finite Element Solutions

In Sect. 1 we have seen that approximating a given known function with meshes
which are adapted to that function can impressively outperform the approximation
with quasi-uniform meshes. In view of the fact that the solution of a boundary value
problem is given only implicitly, it is not all clear if this is also true for its adaptive
numerical solution. Considering a simple model problem and discretization, we now
derive two upper bounds for the error of the finite element solution: an a priori one
and an a posteriori one. The a priori bound reveals that an adaptive variant of the
finite element method has the potential of a similar performance. The a posteriori
bound is a first step to design such a variant, which has to face the complication that
the target function is given only implicitly.

2.1 Model Boundary Value Problem

In order to minimize technicalities in the presentation, let us consider the following
simple boundary value problem as a model problem: find a scalar function u D u.x/
such that

	 div.Aru/ D f in ˝;

u D 0 on @˝;
(23)
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where ˝ � Rd is a bounded domain with Lipschitz boundary @˝ , A D A.x/ a
map into the positive definite d 
 d matrices, and f D f .x/ a scalar load term.
Introducing the Hilbert space

V WD H1
0 .˝/ WD fv 2 H1.˝/ j vj@˝ D 0g; kvkV WD

�Z

˝

jrvj2
�1=2

;

and the bilinear form

BŒv; w� WD
Z

˝

Arv � rw; v;w 2 V ;

the weak solution of (23) is characterized by

u 2 V W BŒu; v� D hf; vi for all v 2 V : (24)

Hereafter h�; �i stands for the L2.˝/-scalar product and also for a duality paring.
We assume that f 2 V � D H�1.˝/ WD H1

0 .˝/
� and that there exist constants

0 < ˛1 � ˛2 with

8x 2 ˝; � 2 Rd ˛1j�j2 � A.x/� � � and jA.x/�j � ˛2j�j: (25)

The latter implies that the operator 	 div.Ar�/ is uniformly elliptic. Moreover, the
bilinear form B is coercive and continuous with constants ˛1 and ˛2, respectively.
Lax–Milgram Theorem and Poincaré–Friedrichs Inequality

kvk˝ � diam.˝/krvk˝ for all v 2 V D H1
0 .˝/ (26)

thus ensure existence and uniqueness of the weak solution (24).
Note that A is not assumed to be symmetric and so the bilinear form B may be

nonsymmetric. For the a posteriori upper bound, we will require some additional
regularity on the data f and A in Sect. 2.4.

2.2 Galerkin Solutions

Since V has infinite dimension, problem (24) cannot be implemented on a computer
and solved numerically. Given a subspace S � V , the corresponding Galerkin
solution or approximation of (24) is given by

U 2 S W BŒU; V � D hf; V i for all V 2 S: (27)

We simply replaced each occurrence of V in (24) by S. If S is finite-dimensional, we
can choose a basis of S and the coefficients of the expansion of U can be determined
by solving a square linear system.



150 R.H. Nochetto and A. Veeser

Residual: Associate the functional R 2 V � given by

hR; vi WD hf; vi 	BŒU; v�;

to U 2 S. The functional R is called the residual and depends only on the approxi-
mate solution U and dataA and f . Moreover, it has the following properties:

� It relates to the typically unknown error function u 	 U in the following manner:

hR; vi D BŒu 	 U; v� for all v 2 V : (28)

This is a direct consequence of the characterization (24) of the exact solution.
� It vanishes for discrete test functions, which in the case of symmetric A corre-

sponds to the so-called Galerkin orthogonality:

BŒu 	 U; V � D hR; V i D 0 for all V 2 S: (29)

This immediately follows from (28) and the definition (27) of the Galerkin
solution.

Quasi-best approximation: Property (25) of A, Galerkin orthogonality (29) and
Cauchy–Schwarz Inequality in L2.˝/ imply

˛1ku 	 U k2V �BŒu 	 U; u 	 U � D BŒu 	 U; u 	 V �
� ˛2ku 	 U kVku 	 V kV

for arbitrary V 2 S. This proves the famous

Theorem 4 (Céa Lemma). The Galerkin solution is a quasi-best approximation
from S with respect to the V -norm:

ku 	 U kV � ˛2

˛1
inf
V2S ku 	 V kV : (30)

If the bilinear B is also symmetric and one considers the error with respect
to the so-called energy norm BŒ�; ��1=2, the Galerkin solution is even the best
approximation from S; see Problem 12.

2.3 Finite Element Solutions and A Priori Bound

Problem (27) can be solved numerically on a computer, if we dispose of an
implementable basis of S. As an example of such space, let T be a conforming
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triangulation of ˝ into d -simplices (this imposes further conditions on ˝) and
consider

S D V .T / WD fV 2 Sn;0.T / j Vj@˝ D 0g; (31)

where, as in Sect. 1.4, Sn;0.T / the space of continuous functions that are piecewise
polynomial up to degree n. This is in fact a subspace of V D H1

0 .˝/ thanks
to the continuity requirement and boundary condition for the functions in V .T /.
Moreover, the basis f'zgz2N \˝ from Sect. 1.4 can be easily constructed in the
computer; see for example Siebert [50].

The space V .T / is a popular choice for S in (27) and their combination may be
viewed as a model finite element discretization.

In Sect. 1.5 we studied the approximation properties of Sn;0.T / with the help of
(quasi-)interpolation operators IT . Since the right-hand side of (30) is bounded
in terms of ku 	 IT ukV D kr.u 	 IT u/kL2.˝/ with IT as in Proposition 2,
the discussion of Sect. 1.5 applies also to the error of the Galerkin solution UT

in V .T /. In particular, the combination of the Céa Lemma and Theorem 2 yields
the following upper bound. Since it does not involve the discrete solution, it is also
comes with the adjective “a priori”.

Theorem 5 (A priori upper bound). Assume that the exact solution u of (24)
satisfies u 2 W s

p .˝/ with 1 � s � nC 1, 1 � p � 2, and set

r WD sob.W s
p .˝//	 sob.H1.˝// > 0:

Then the error of the finite element solution UT 2 S D V .T / of (27) satisfies the
global a priori upper bound

ku 	 UT kV . khrDsukLp.˝/: (32)

The discussion in Sect. 1.6 about adaptively graded meshes only partially carries
over to the error of the finite element solution UT , from now on denoted U . In view
of the Céa Lemma, Sect. 1.6 shows that there are sequences of meshes such that
the error of U decays as #T �1=2 if, for example, d D 2 and u 2 W 2;p.˝/ with
p > 1. Notice however that the thresholding algorithm utilizes the local errors
ET D kr.u	 IT u/kL2.T /, which are typically not computable. The construction of
appropriate meshes when the target function is given only implicitly by a boundary
value problem is much more subtle. A first step towards this goal is developed in the
next section.

2.4 A Posteriori Upper Bound

The a priori upper bound (32) is not computable and essentially provides only
asymptotic information, namely the asymptotic convergence rate. The goal of
this section is to derive an alternative bound, so-called a posteriori bound, that
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provides information beyond asymptotics and is computable in terms of data and
the approximate solution. It is worth noting that such bounds are useful not only for
adaptivity but also for the quality assessment of the approximate solution.

Since in this section the grid T is (arbitrary but) fixed, we simplify the notation
by suppressing the subscript indicating the dependence on the grid in case of the
approximate solution and similar quantities.

Error and residual: Our starting point is the algebraic relationship (28) between the
residual R and the error function u 	 U . It implies (Problem 13)

ku 	 U kV � 1

˛1
kRkV � � ˛2

˛1
ku 	 U kV ; (33)

which means that the dual norm

k`kV � WD sup
˚h`; vi j v 2 V ; kvkV � 1

�
(34)

is a good measure for the residual R if we are interested in the error ku 	 U kV D
kr.u 	 U /kL2.˝/. However the evaluation of kRkV � D kRkH�1.˝/ is impractical
and, moreover, does not provide local information for guiding an adaptive mesh
refinement. We therefore aim at a sharp upper bound of kRkH�1.˝/ in terms of
locally computable quantities.

Assumptions and structure of residual: For the derivation of a computable upper
bound of the dual norm of the residual, we require that

f 2 L2.˝/ and A 2 W 1;1.˝IT /; (35)

where the latter means that A is Lipschitz in each element of T . Under these
assumptions, we can write hR; vi as integrals over elements T 2 T and
elementwise integration by parts yields the representation:

hR; vi D
Z

˝

f v 	ArU � rv D
X

T2T

Z

T

f v 	ArU � rv

D
X

T2T

Z

T

rvC
X

S2S

Z

S

j v;

(36)

where

r D f C div.ArU / in any simplex T 2 T ;

j D ŒŒArU �� � n D nC �ArUjTC C n� �ArUjT� on any internal side S 2 S
(37)

and nC, n� are unit normals pointing towards TC, T � 2 T . We see that the
distribution R consists of a regular part r , called interior or element residual, and a
singular part j , called jump or interelement residual. The regular part is absolutely



Primer of Adaptive Finite Element Methods 153

continuous w.r.t. the d -dimensional Lebesgue measure and is related to the strong
form of the PDE. The singular part is supported on the skeleton  D S

S2S S of
T and is absolutely continuous w.r.t. the .d 	 1/-dimensional Hausdorff measure.

We point out that this structure of the residual is not special to the model problem
and its discretization but rather arises from the weak formulation of the PDE and the
piecewise construction of finite element spaces.

Scaled integral norms: In view of the structure of the residual R, we make our
goal precise as follows: we aim at a sharp upper bound for kRkH�1.˝/ in terms of
local Lebesgue norms of the element and interelement residuals r and j , which
are considered to be computable because they can be easily approximated with
numerical integration. This approach is usually called standard a posteriori error
estimation.

The sharpness of these bounds crucially hinges on appropriate local scaling
constants for the aforementioned Lebesgue norms, which depend on the local
geometry of the mesh. For simplicity, we will explicitly trace only the dependence
on the local mesh-size and write “.” instead of “� C ”, where the constant C
is bounded in terms of the shape coefficient �.T / D maxT2T hT =hT of the
triangulation T and the dimension d .

Localization: As a first step, we decompose the residual R into local contributions
with the help of the Courant basis f'zgz2V from Sect. 1.4. Hereafter V stands for
the set of vertices of T , which coincide with the nodes of S1;0.T /. The Courant
basis has the following properties:

� It provides a partition of unity:

X

z2V
'z D 1 in ˝: (38)

� For each interior vertex z, the corresponding basis function 'z is contained in
V .T / and so the residual is orthogonal to the interior contributions of the
partition of unity:

hR; 'zi D 0 for all z 2 V \˝: (39)

The second property corresponds to the Galerkin orthogonality. Notice that the first
property involves all vertices, while in the second one the boundary vertices are
excluded.

Given any v 2 H1
0 .˝/, we apply (38) and then (39) to write

hR; vi D
X

z2V
hR; v'zi D

X

z2V
hR; .v 	 cz/'zi; (40)

where cz 2 R and cz D 0 whenever z 2 @˝ . Exploiting representation (36), 0 �
'z � 1, and the fact that the 'z are locally supported, we can bound each local
contribution hR; .v 	 cz/'zi in the following manner:
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jhR; .v 	 cz/'zij �
ˇ̌
ˇ̌
Z

!z

r.v 	 cz/'z

ˇ̌
ˇ̌C

ˇ̌
ˇ̌
Z

�z

j.v 	 cz/'z

ˇ̌
ˇ̌ ; (41)

where !z WD [T3zT is the star (or patch) around a vertex z 2 V in T and �z is
the skeleton of !z, i.e. the union of all sides emanating from z; note that r in (41) is
computed elementwise. We examine the two terms on the right-hand side separately.

Bounding the element residual: We first consider the terms associated with the
element residual r . The key tool for a sharp bound is the following local Poincaré-
type inequality. Let

hz WD j!zj1=d
and notice that this quantity is, up to the shape coefficient �.T /, equivalent to the
diameter of !z, to hT D jT j1=d if T is a d -simplex of !z and to hS WD jS j1=.d�1/ if
S is a side of �z.

Lemma 4 (Local Poincaré-type inequality). For any v 2 H1
0 .˝/ and z 2 V there

exists cz 2 R such that

kv 	 czkL2.!z/ . hzkrvkL2.!z/: (42)

If z 2 @˝ is a boundary vertex, then we can take cz D 0.

We postpone the proof of Lemma 4. Combining the Cauchy–Schwarz inequality
in L2.!z/ and Lemma 4 readily yields

ˇ̌
ˇ̌
Z

!z

r.v 	 cz/'z

ˇ̌
ˇ̌ � kr '1=2z kL2.!z/kv 	 czkL2.!z/ . hzkr '1=2z kL2.!z/krvkL2.!z/:

(43)
Notice that the right-hand side consists of two factors: a computable one in the
desired form and one that involves the test function in a local variant of the norm of
the test space.

Bounding the jump residual: Next, we consider the terms associated to the jump
residual j . Recall that j is supported on sides and so proceeding similarly as for
the element residual will bring up traces of the test function. The following trace
inequality exactly meets our needs.

Lemma 5 (Scaled trace inequality). For any side S of a d -simplex T the follow-
ing inequality holds:

kwkL2.S/ . h
�1=2
S kwkL2.T / C h1=2S krwkL2.T / for all w 2 H1.T /: (44)

We again postpone the proof, now of Lemma 5. We apply first the Cauchy–
Schwarz inequality in L2.�z/, then Lemma 5 and finally Lemma 4 to obtain
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ˇ̌
ˇ̌
Z

�z

j.v 	 cz/'z

ˇ̌
ˇ̌ � kj '1=2z kL2.�z/kv 	 czkL2.�z/ . h1=2z kj '1=2z kL2.�z/krvkL2.!z/;

(45)
where the right-hand side has the same structure as that of the element residual.

Upper bound for residual norm: We collect the local estimates and sum them up in
order to arrive at the desired bound for the dual norm of the residual. Inserting the
estimates (43) and (45) for element and jump residuals into (41) gives

jhR; v 'zij .
�
hzkr '1=2z kL2.!z/ C h1=2z kj '1=2z kL2.�z/

�
krvkL2.!z/:

Recalling the decomposition (40), we sum over z 2 V and use Cauchy–Schwarz
in R#T to arrive at

jhR; vij .
�X

z2V
h2zkr '1=2z k2L2.!z/

C hzkj '1=2z k2L2.�z/

�1=2�X

z2V
krvk2

L2.!z/

�1=2
:

For bounding the second factor, we resort to the finite overlapping property of stars,
namely X

z2V
�!z.x/ � d C 1;

and infer that X

z2V
krvk2

L2.!z/
. krvk2

L2.˝/
:

Since mesh refinement is typically based upon element subdivision, we regroup the
terms within the first factor. To this end, denote by hW˝ ! RC the mesh-size
function given by h.x/ WD jS j1=k if x belongs to the interior of the k-subsimplex
S of T with k 2 f1; : : : ; d g. Then for all x 2 !z we have hz . h.x/. Therefore
employing (38) once more and recalling that  is the union of all interior sides
of T , we deduce

X

z2V
h2zkr '1=2z k2L2.!z/

C hzkj '1=2z k2L2.�z/
.
X

z2V
kh r '1=2z k2L2.˝/ C kh1=2 j '1=2z k2L2. /

Dkh rk2
L2.˝/

C kh1=2 jk2
L2. /

:

Thus, introducing the element indicators

E 2
T .U; T / WD h2T krk2L2.T / C hT kjk2L2.@T n@˝/ (46)

and the error estimator
E 2

T .U / D
X

T2T
E 2

T .U; T /; (47)

we arrive at the following upper bound for the dual norm of the residual:
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kRkH�1.˝/ . ET .U /: (48)

Hereafter, we write ET .U;M / to indicate that the estimator is computed over M �
T , whereas ET .U;T / D ET .U / if no confusion arises.

Proofs of Poincaré-type and trace inequalities: We now prove Lemmas 4 and 5. We
start with a formula for the mean value of a trace, which follows from the Divergence
Theorem.

Lemma 6 (Trace identity). Let T be a d -simplex, S a side of T , and z the vertex
opposite to S . Defining the vector field qS by

qS.x/ WD x 	 z

the following equality holds:

1

jS j
Z

S

w D 1

jT j
Z

T

wC 1

d jT j
Z

T

qS � rw for all w 2 W 1
1 .T /:

Proof. We start with properties of the vector field qS . Let S 0 be an arbitrary side of
T and fix some y 2 S 0. We then see qS .x/ � nT D qS.y/ � nT C .x 	 y/ � nT D
qS .y/ � nT for any x 2 S 0 since x 	 y is a tangent vector to S 0. Therefore, on
each side of T , the associated normal flux qS � nT is constant. In particular, we see
qS �nT vanishes on @T nS by choosing y D z for sides emanating from z. Moreover,
div qS D d . Thus, if w 2 C1.T /, the Divergence Theorem yields

Z

T

qS � rw D 	d
Z

T

wC .qS � nT /jS
Z

S

w:

Take w D 1 to show .qS � nT /jS D d jT j=jS j and extend the result to w 2 W 1
1 .T /

by density. ut
Proof of Lemma 5. Apply Lemma 6 to jwj2; for the details see Problem 17. ut
Proof of Lemma 4. 1 For any z 2 V the value

Ncz D 1

j!zj
Z

!z

v

is an optimal choice and (42) follows from (8) with cz D Ncz.
2 If z 2 @˝ , then we observe that there exists a side S � @!z\@˝ such that v D 0

on S . We therefore can write

v D v 	 1

jS j
Z

S

v D .v 	 Ncz/ 	 1

jS j
Z

S

.v 	 Ncz/

whence, using Lemma 5 and Step 1 for the second term,
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kvkL2.!z/ . kv 	 NczkL2.!z/ C hzkrvkL2.!z/ . hzkrvkL2.!z/;

which establishes the supplement for boundary vertices. ut
Upper bound for error: Inserting the bound (48) for the dual norm of the residual in
the first bound of (33), we obtain the main result of this section.

Theorem 6 (A posteriori upper bound). Let u be the exact solution of the model
problem (24) satisfying (25) and (35). The error of the finite element solution U 2
S D V .T / of (27) is bounded in terms of the estimator (47) as follows:

ku 	 U kV . 1

˛1
ET .U /; (49)

where the hidden constant depends only on the shape coefficient �.T / of the
triangulation T and on the dimension d .

Notice that the a posteriori bound in Theorem 6 does not require additional
regularity on the exact solution u as the a priori one in Theorem 5. On the other
hand, the dependence of the estimator on the approximate solution prevents us
from directly extracting information such as asymptotic decay rate of the error. The
question thus arises how sharp the a posteriori bound in Theorem 6 is.

In this context it is worth noticing that if we did not exploit orthogonality and
used a global Poincaré-type inequality instead of the local ones, the resulting scal-
ings of the element and jump residuals would be, respectively, 1 and h�1=2T and the
corresponding upper bound would have a lower asymptotic decay rate. We will show
in the next Sect. 3 that the upper bound in Theorem 6 is sharp in an asymptotic sense.

2.5 Notes

The discussion of the quasi-best approximation and the a priori upper bound of
the error of the finite element solution are classical; see Braess [10], Brenner and
Scott [11], and Ciarlet [19]. The core of the a posteriori upper bound is a bound of
the dual norm of the residual in terms of scaled Lebesgue norms. This approach is
usually called standard a posteriori error estimation and has been successfully used
for a variety of problems and discretizations. For alternative approaches we refer to
the monographs of Ainsworth and Oden [2] and Verfürth [58] on a posteriori error
estimation.

Typically standard a posteriori error estimation is carried out with the help of
error estimates for quasi-interpolation as in Sect. 1.5, which in turn rely on local
Bramble-Hilbert lemmas. The above presentation invokes only the special case of
Poincaré-type inequalities. It is a simplified version of derivation in Veeser and
Verfürth [56], which has been influenced by Babuška and Rheinboldt [5], Carstensen
and Funken [12], and Morin et al. [42], and provides in particular constants that are
explicit in terms of local Poincaré constants. It is worth mentioning that the ensuing
constants are found in [56] for sample meshes and have values close to 1.
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The setting and assumption of the model problem and discretization in this
section avoids the following complications: numerical integration, approximation of
boundary values, approximation of the domain, and inexact solution of the discrete
system. While all these issues have been analyzed in an a priori context, only
some of them have been considered in a posteriori error estimation; see Ainsworth
and Kelly [1], Dörfler and Rumpf [25], Morin et al. [42], Nochetto et al. [46], and
Sacchi and Veeser [47].

2.6 Problems

Problem 12 (Best approximation for symmetric problems). Consider the model
problem (24), assume in addition to (25) that A is symmetric and denote the energy
norm associated with the differential operator 	 div.Ar�/ by

jjjvjjj˝ WD
�Z

˝

Arv � rv

�1=2
:

Prove that the Galerkin solution is the best approximation from S D V .T / with
respect to the energy norm:

jjju 	 U jjj˝ D min
V 2S
jjju 	 V jjj˝ : (50)

Derive from this that in this case (30) improves to

ku 	 U kV �
r
˛2

˛1
inf
V 2S
ku 	 V kV :

Problem 13 (Equivalence of error and residual norm). Prove the equivalence
(33) between error and dual norm of the residual. Consider the model problem also
with a symmetricA and derive a similar relationship for the energy norm error.

Problem 14 (Dominance of jump residual). Considering the model problem (24)
and its discretization (27) with (31) and n D 1, show that, up to higher order terms,
the jump residual


T .U / D
 
X

S2S
kh1=2jk2

L2.S/

!1=2

bounds kRkH�1.˝/, which entails that the estimator ET .U / is dominated by

T .U /. To this end, revise the proof of the upper bound for kRkH�1.˝/, use

cz D 1R
!z
'z

Z

!z

f 'z

and rewrite
R
!z
f .v 	 cz/ 'z by exploiting this weighted L2-orthogonality.



Primer of Adaptive Finite Element Methods 159

Problem 15 (A posteriori upper bound with quasi-interpolation). Consider the
model problem (24) and its discretization (27) with space S D V .T /, and derive
the upper a posteriori error bound without using the discrete partition of unity.
To this end, use (36) and combine the scaled trace inequality (44) with the local
interpolation error estimate (7). Show as an intermediate step the upper bound

jhR; vij .
X

T2T
ET .U; T /krvkL2.NT .T // (51)

with NT .T / from Sect. 1.5. This bound will be useful in Sect. 4.

Problem 16 (Upper bound for certain singular loads). Revising the proof of
Theorem 6, derive an a posteriori upper bound in the case of right-hand sides of
the form

hf; vi D
Z

˝

g0vC
Z



g1v; v 2 V D H1
0 .˝/;

where g0 2 L2.˝/, g1 2 L2. /, and  stands for the skeleton of the mesh T .

Problem 17 (Scaled trace inequality). Work out the details of the proof of
Lemma 5, taking into account that hT � jT j = jS j � hS .

Problem 18 (A posteriori upper bound for L2-error). Assuming that ˝ is
convex and applying a duality argument, establish a variant of (33) between the
L2-error ku 	 U kL2.˝/ and a suitable dual norm of the residual. Use this to derive
the a posteriori upper bound

ku 	 U kL2.˝/ .
 
X

T2T
h2T ET .U; T /

2

!1=2
;

where the hidden constant depends in addition on the domain˝ .

3 Lower A Posteriori Bounds

The goal of this section is to assess the sharpness of the a posteriori upper bound
for the model problem and discretization. We show not only that it is sharp in an
asymptotic sense like the a priori bound but also in a local sense and, for certain
data, in a non-asymptotic sense. Moreover, we verify that the latter cannot be
true for all data and argue that this is the price to pay for the upper bound to be
computable.

As in Sect. 2.4, “.” stands for “� C ”, where the constant C is bounded in terms
of the shape coefficient �.T / of the triangulation T and the dimension d and,
often, we do not indicate the dependence on the arbitrary but fixed triangulation.
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3.1 Local Lower Bounds

The first step in the derivation of the upper bound (49) is that the error is bounded in
terms of an appropriate dual norm of the residual. In the case of the model problem
(24) this relies on the continuity of Œ	 div.Ar�/��1 W H�1.˝/ ! H1

0 .˝/. Notice
that the inverse is a global operator, while 	 div.Ar�/ in the classical sense is a
local one. One thus may suspect that an appropriate local dual norm of the residual
is bounded in terms of the local error. Let us verify this for the model problem (24).

Local dual norms: Let ! be a subdomain of ˝ and notice that H�1.!/ is a good
candidate for the local counterpart ofH�1.˝/. Given v 2 H1

0 .!/ (and extending it
by zero on ˝ n !), the algebraic relationship (28), the Cauchy–Schwarz inequality
in L2.!/, and (25) readily yield

hR; vi DBŒu 	 U; v� D
Z

!

Ar.u 	 U / � rv � ˛2kr.u 	 U /kL2.!/krvkL2.!/:

Consequently,
kRkH�1.!/ � ˛2kr.u 	 U /kL2.!/; (52)

entailing that lower bounds for the local error kr.u 	 U /kL2.!/ may be shown by
bounding the local dual norm kRkH�1.!/ from below.

Local dual and scaled integral norms: As for the a posteriori upper bound,
we assume (35). If we take ! D T 2 T in the preceding paragraph, then there
holds

kRkH�1.T / D sup
krvkL2.T /�1

hR; vi D sup
krvkL2.T /�1

Z

T

rv D krkH�1.T / (53)

thanks to the representation (36). Recall that the corresponding indicator ET .U; T /

contains the term hT krkL2.T / and therefore we wonder about the relationship
of krkH�1.T / and hT krkL2.T /. Mimicking the local part in the derivation of the
a posteriori upper bound in Sect. 2.4, we obtain

Z

T

rv � krkL2.T /kvkL2.T / . hT krkL2.T /krvkL2.T /

with the help of the Poincaré–Friedrichs inequality (26). Hence there holds

krkH�1.T / . hT krkL2.T /: (54)

Since L2.˝/ is a proper subspace of H�1.˝/, the inverse inequality cannot hold
for arbitrary r . Consequently, hT krkL2.T / may overestimate krkH�1.T /. On the other
hand, if r 2 R is constant and 
 D 
T denotes a non-negative function with
properties
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jT j .
Z

T


; supp 
 D T; kr
kL1.T / . h�1T (55)

(postpone the question of existence until (59) below), we deduce

krk2
L2.T /

.
Z

T

r.r
/ � krkH�1.T /kr.r
/kL2.T /
� krkH�1.T /krkL2.T /kr
kL1.T / . h�1T krkH�1.T /krkL2.T /;

whence
hT krkL2.T / . krkH�1.T /: (56)

This shows that overestimation in (54) is caused by oscillation of r at a scale finer
than the mesh-size. Notice that (56) is a so-called inverse estimate, where one norm
is a dual norm. It is also valid for r 2 Pn.T /, but the constant deteriorates with the
degree n; see Problem 22.

Local lower bound with element residual: Motivated by the observations of the
preceding paragraph, we expect that hT krkL2.T / bounds asymptotically kRkH�1.T /

from below and introduce the oscillation of the interior residual in T defined by

hT kr 	 rT kL2.T /;

where rT denotes the mean value of r in T . Replacing r by rT in (56) and by r	rT
in (54), as well as recalling (53), we derive

hT krkL2.T / � hT krT kL2.T / C hT kr 	 rT kL2.T /
. krT kH�1.T / C hT kr 	 rT kL2.T /
. krkH�1.T / C kr 	 rT kH�1.T / C hT kr 	 rT kL2.T /
. kRkH�1.T / C hT kr 	 rT kL2.T /:

(57)

This is the desired statement because the oscillation hT kr 	 rT kL2.T / is expected to
convergence faster than hT krkL2.T / under refinement. In particular, if n D 1, then
r D f and the oscillation of the interior residual becomes data oscillation:

oscT .f; T / WD kh.f 	 NfT /kL2.T / for all T 2 T : (58)

Note that in this case there is one additional order of convergence if f 2 H1.˝/.
The inequality (57) holds also with rT chosen from Pn1.T /, with n1 � 1, at the

price of a larger constant hidden in .. We postpone the discussion of the higher
order nature of the oscillation in this case after Theorem 7 below.

We conclude this paragraph by commenting on the choice of the cut-off function

T 2 W 11.T / with (55). For example, we may take
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supp η

z

T
Fig. 10 Virtual refinement of
a triangle for the Dörfler
cut-off function


T D .d C 1/dC1
Y

z2V \T
�z; (59)

where �z, z 2 V \ T , are the barycentric coordinates of T from Sect. 1.4. This
choice is due to Verfürth [57, 58]. Another choice, due to Dörfler [24], can be
defined as follows: refine T such that there appears an interior node and take the
corresponding Courant basis function on the virtual triangulation of T ; see Fig. 10
for the 2-dimensional case.

The Dörfler cut-off function has the additional property that it is an element of
a refined finite element space. This is not important here but useful when proving
lower bounds for the differences of two discrete solutions; see e.g. Problem 23. Such
estimates are therefore called discrete lower bound whereas the bound for the true
error is called continuous lower bound.

Local lower bound with jump residual: We next strive for a local lower bound for
the error in terms of the jump residual h1=2S kjkL2.S/, S 2 S , and use the local lower
bound in terms of the element residual as guideline.

We first notice that j D ŒŒArU �� may not be constant on an interior side S 2 S
due to the presence ofA. We therefore introduce the oscillation of the jump residual
in S ,

h
1=2
S kj 	 j SkL2.S/;

where j S stands for the mean value of j on S , and write

h
1=2
S kjkL2.S/ � h1=2S kj SkL2.S/ C h1=2S kj 	 j SkL2.S/: (60)

Notice that here the important question about the order of this oscillation is not
obvious because, in contrast to the oscillation of the element residual in the case
n D 1, the approximate solution U is involved. We postpone the corresponding
discussion until after Theorem 7 below.

To choose a counterpart of 
T , let !S denote the patch composed of the two
elements of T sharing S ; see Fig. 11, left for the 2-dimensional case. Obviously !S
has a nonempty interior. Let 
S 2 W 11.!S/ be a cut-off function with the properties

jS j .
Z

S


S ; supp
S D !S ; k
SkL1.!S / D 1; kr
SkL1.!S / . h�1S : (61)
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Fig. 11 Patch !S of triangles
associated to interior side
(left) and its refinement for
Dörfler cut-off function
(right)

Following Verfürth [57, 58] we may take 
S given by


S jT D dd
Y

z2V \S
�Tz ; (62)

where T � !S and �Tz , z 2 V \ T , are the barycentric coordinates of T . Also here
Dörfler [24] proposed the following alternative: refine !S such that there appears an
interior node of S and take the corresponding Courant basis function on the virtual
triangulation of !S ; see Fig. 11, right for the 2-dimensional case.

After these preparations we are ready to derive a counterpart of (57). In view of
the properties of 
S , we have

kj Sk2L2.S/ .
Z

S

j S.j S
S / D
Z

S

j vS C
Z

S

.j S 	 j /vS (63)

with vS D j S
S . We rewrite the first term on the right-hand side with the represen-
tation formula (36) as follows:

Z

S

j vS D 	
Z

!S

r vS C hR; vS iI

in contrast to (53), the jump residual couples with the element residual. Hence

ˇ̌
ˇ̌
Z

S

j vS

ˇ̌
ˇ̌ � krkL2.!S/kvSkL2.!S/ C kRkH�1.!S /krvSkL2.!S /:

In view of the Poincaré–Friedrichs inequality (26), j!S j . hS jS j and (61), we have

kvSkL2.!S / . hSkrvSkL2.!S / � hSkj SkL2.!S /kr
SkL1.!S / . h
1=2
S kj SkL2.S/:

We thus infer that
ˇ̌
ˇ̌
Z

S

j vS

ˇ̌
ˇ̌ .

�
h
1=2
S krkL2.!S/ C h�1=2S kRkH�1.!S /

�
kj SkL2.S/

and, using (61)

ˇ̌
ˇ̌
Z

S

.j S 	 j /vS
ˇ̌
ˇ̌ � kj S 	 jkL2.S/kvSkL2.S/ . kj S 	 jkL2.S/kj SkL2.S/:
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ωT

T

Fig. 12 Patch associated to a
triangle in the local lower
bound

Inserting these estimates into (63) yields

kj Sk2L2.S/ .
�
h
1=2
S krkL2.!S / C h�1=2S kRkH�1.!S / C kj S 	 jkL2.S/

�
kj SkL2.S/

whence, recalling (60),

h
1=2
S kjkL2.S/ . kRkH�1.!S / C hSkrkL2.!S/ C h1=2S kj S 	 jkL2.S/: (64)

This estimate also holds if j S 2 Pn2.S/ is a polynomial of degree � n2 (Problem
27).

Local lower bound with indicator: We combine the two results on interior and jump
residual and exploit also the local relationship between residual and error in order
to obtain a local lower bound in terms of a single indicator.

To this end, we introduce the following notation for the oscillations. Recall the
mesh-size function h from Sect. 1.5 and let

r D P2n�2r; j D P2n�1j;

where P2n�2rjT and P2n�1jjS are the L2-orthogonal projections of r and j onto
P2n�2.T / and P2n�1.S/, respectively. The choice of the polynomial degrees arise
from the desire that the oscillations are of higher order. Details are discussed after
Theorem 7. Moreover, we associate with each simplex T 2 T the patch

!T WD
[

S	@T n@˝
!S

(see Fig. 12 for the 2-dimensional case), and define the oscillation in !T by

oscT .U; !T / D kh.r 	 r/kL2.!T / C kh1=2.j 	 j /kL2.@T n@˝/: (65)

In general, as indicated by the notation, the oscillation depends on the approxima-
tion U . However, in certain situations, it may be independent of the approximation
U and then becomes data oscillation (58); see also Problem 19.

Theorem 7 (Local lower bound). Let u be the exact solution of the model problem
(24) satisfying (25) and (35). Each element indicator of (46) bounds, up to
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oscillation, the local error of an approximation U 2 V .T / from below:

ET .U; T / . ˛2 kr.u 	 U /kL2.!T / C oscT .U; !T / for all T 2 T ; (66)

where the hidden constant depends only on the shape coefficients of the simplices in
!T , the dimension d and the polynomial degree n.

Proof. We combine (57) and (64), where r and j are piecewise polynomial of
degree 2n 	 2 and 2n 	 1, respectively. Noting hS � hT for all interior sides
S 2 S with S � @T and kRkH�1.T 0/ � kRkH�1.!T / for T 0 � T , we thus derive

ET .U; T / . kRkH�1.!T / C kh.r 	 r/kL2.!T / C kh1=2.j 	 j /kL2.@T n@˝/:
Thus, the special case

kRkH�1.!T / � ˛2 kr.u 	 U /kL2.!T /
of (52) finishes the proof. ut

A discussion of the significance of local lower bound in Theorem 7 is in order.
To this end, we first consider the decay properties of the oscillation terms, which
are crucial for the relevance of the aforementioned bound. Then we remark about
the importance of the fact that the bound in Theorem 7 is local. Finally, in the next
section, we provide a global lower bound as corollary and discuss its relationship
with the upper bound in Theorem 6.

Higher order nature of oscillation: In some sense the oscillation pollutes the local
lower bound in Theorem 7. It is therefore important that the oscillation is or gets
small relative to the local error. We therefore compare the convergence order of the
oscillation (65) with that of the local error.

To this end, let us first observe that the choices of the polynomial degrees in
the oscillation allow us to derive the following upper bound of the oscillation (see
Problem 29):

oscT .U; !T / . kh.f 	 P2n�2f /kL2.!T /
C
�
kh.divA 	 Pn�1.divA//kL1.!T / C kA 	 PnAkL1.!T /

�


 krU kL2.!T /:
(67)

If f andA are smooth, one expects that the local error vanishes like

kr.u 	 U /kL2.T / D O.h
d=2Cn
T /

and, in view of (67), oscillation like

oscT .U; !T / D O.h
d=2CnC1
T /:

See also Problem 30 for a stronger result for the jump residual.
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The oscillation oscT .U; !T / is therefore expected to be of higher order as
hT # 0. However, as Problem 32 below illustrates, it may be relevant on relatively
coarse triangulations T .

Local lower bound and marking: In contrast to the upper bound in Theorem 6, the
lower bound in Theorem 7 is local. This is very welcome in a context of adaptivity.
In fact, if oscT .U; !T / � kr.u 	 U /kL2.!T /, as we expect asymptotically, then
(66) translates into

ET .U; T / . ˛2 kr.u 	 U /kL2.!T /: (68)

This means that an element T with relatively large error indicator contains a large
portion of the error. To improve the solution U effectively, such T must be split
giving rise to a procedure that tries to equidistribute errors. This is consistent with
the discussion of adaptive approximation of Sect. 1.1 for d D 1 and of Sect. 1.6 for
d > 1.

3.2 Global Lower Bound

We derive a global lower bound from the local one in Theorem 7 and discuss its
relationship with the global upper bound in Theorem 6.

The global counterpart of oscT .U; !T / from (65) is given by

oscT .U / D kh.r 	 r/kL2.˝/ C kh1=2.j 	 j /kL2. /; (69)

where r is computed elementwise over T and  is the interior skeleton of T .

Corollary 3 (Global lower bound). Let u be the exact solution of the model
problem (24) satisfying (25) and (35). The estimator (47) bounds, up to oscillation,
the error of an approximation U 2 V .T / from below:

ET .U / . ˛2ku 	 U kV C oscT .U /; (70)

where the hidden constant depends on the shape coefficient of T , the dimension d ,
and the polynomial degree n.

Proof. Sum (66) over all T 2 T and take into account that each element is con-
tained in at most by d C 2 patches !T . ut

Supposing that the approximation U is the Galerkin solution (27) with (31), the
upper and lower a posteriori bounds in Theorem 6 and Corollary 3 imply

ku 	 U kV . 1

˛1
ET .U / . ˛2

˛1
ku 	 U kV C 1

˛1
oscT .U /: (71)

In other words, the error and estimator are equivalent up to oscillation.
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In Problem 32 we present an example for which the ratio ku 	 U kV=ET .U /

can be made arbitrarily small. Consequently, a lower bound without pollution and a
perfect equivalence of error and estimator cannot be true in general. Moreover, for
that example there holds ET .U / D oscT .U /, indicating that oscT .U / is a good
measure to account for the discrepancy.

We see that oscT .U / intervenes in the relationship of error and estimator
and, therefore, cannot be ignored in an analysis of an adaptive algorithm using
the estimator ET .U /; we will come back to this in Sect. 7. The case of data
oscillation will be simpler than the general case in which oscT .U / depends on
the approximation U ; the latter dependence creates a nonlinear interaction in the
adaptive algorithm.

The presence of oscillation is also consistent with our previous comparison of
local dual norms and scaled integral norms. Since we invoked scaled integral norm
in order to have an (almost) computable upper bound, this suggests that, at least for
standard a posteriori error estimation, oscillation is a price that we have to pay for
computability.

Fortunately, as we have illustrated in Sect. 3.1, oscillation is typically of higher
order and then the a posteriori upper bound in Theorem 6 is asymptotically sharp
in that its decay rate coincides with the one of the error, as the a priori bound of
Theorem 5. Notice however the lower bound in Corollary 3 provides information
beyond asymptotics: for example, if we consider the linear finite element method,
that is n D 1, then oscT .U / vanishes for all triangulations on which f and A
are piecewise constant and in this class of meshes error and estimator are thus
equivalent:

kr.u 	 U /kL2.˝/ � ET .U /:

In summary: the estimator ET .U / from (47) is computable, it may be used to
quantify the error and, in view of the local properties in Sect. 3.1, its indicators may
be employed to provide the problem-specific information for local refinement.

3.3 Notes

Local lower bounds first appear in the work of Babuška and Miller [4]. Their
derivation with continuous bubble functions is due to Verfürth [57], while the
discrete lower bounds are due to Dörfler [24].

The discussion of the relationship between local dual norms and scaled integral
norms as the reason for oscillation is an elaborated version of Sacchi–Veeser’s one
[47, Remark 3.1]. It is worth mentioning that there the indicators associated with
the approximation of the Dirichlet boundary values do not need to invoke scaled
Lebesgue norms and are overestimation-free. Binev et al. [7] and Stevenson [52]
arrange the a posteriori analysis such that oscillation is measured in H�1.˝/. This
avoids overestimation but brings back the question how to (approximately) evaluate
the H�1.˝/-norm at acceptable cost. This question is open.
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One may think that the issue of oscillation is specific to standard a posteriori
error estimation. However all estimators we are aware of suffer from oscillations of
the data that are finer than the mesh-size. For example, in the case of hierarchical
estimators 
T .U / [2, 55, 58], as well as those based upon local discrete problems
[2, 12, 42] or on gradient recovery [2, 27], the oscillation arises in the upper but not
in the lower bounds and so creates a similar gap as that discussed here, namely


T .U / . kr.u 	 U /kL2.˝/ . 
T .U /C oscT .U /: (72)

3.4 Problems

Problem 19 (Data oscillation). Check that oscT .U; !T / in (65) does not depend
on the approximationU if U is piecewise affine andA is piecewise constant, and is
given by

osc.f; !T / D kh.f 	 Nf /kL2.!T /;
which corresponds to element data oscillation in (58).

Problem 20 (Energy norm case). Consider model problem (24) and discretization
(27) with S D V .T / and A symmetric. Derive the counterparts of (66) and (71)
for the energy norm and discuss the difference to the case presented here.

Problem 21 (Cut-off functions for simplices). Verify that a suitable multiple of
the Verfürth cut-off function (59) satisfies the properties (55). To this end, exploit
affine equivalence of T to a fixed reference simplex and shape regularity. Repeat for
the corresponding Dörfler cut-off function.

Problem 22 (Inverse estimate for general polynomials). (Try this problem after
Problem 21.) Show that the choice (59) for 
T verifies, for all p 2 Pn.T /,

Z

T

p2 .
Z

T

p2
T ; kr.p
T /kL2.T / . h�1T kpkL2.T /

with constants depending on n and the shape coefficient of T . To this end, recall the
equivalence of norms in finite-dimensional spaces. Derive the estimate

hT krkL2.T / . krkH�1.T /

for r 2 Pn.T /.

Problem 23 (Lower bound for correction). Consider the model problem and its
discretization for d D 2 and n D 1. Let U1 be the solution over a triangulation T1

and U2 the solution over T2, where T2 has been obtained by applying at least three
bisections to every triangle of T1. Moreover, suppose that f is piecewise constant
over T1. Show
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kr.U2 	 U1/kL2.˝/ � kh1f kL2.˝/;
where h1 is the mesh-size function of T1.

Problem 24 (Cut-off functions for sides). Verify that a suitable multiple of the
Verfürth cut-off function (62) satisfies the properties (61). Repeat for the corre-
sponding Dörfler cut-off function.

Problem 25 (Polynomial extension). Let S be a side of a simplex T . Show that
for each q 2 Pn.S/ there exists a p 2 Pn.T / such that

p D q on S and kpkL2.T / . h
1=2
T kqkL2.S/:

Problem 26 (Norm equivalences with cut-off functions of sides). Let S be a side
of a simplex T . Show that the choice (62) for 
S verifies, for all q 2 Pn.S/ and all
p 2 Pm.T /,

Z

S

q2 .
Z

S

q2
S ; kr.p
S/kL2.T / . h�1T kpkL2.T /

with constants depending onm; n; and the shape coefficient of T .

Problem 27 (Lower bound with jump residual and general oscillation). Exploit
the claims in Problems 25 and 26, to rederive the estimate (64) but this time with
r and j piecewise polynomials of degree � n1 and n2.

Problem 28 (Best approximation of a product). LetK be either a d or a .d 	1/-
simplex. For ` 2 N denote by Pp

m WLp.K;R`/ ! Pm.K;R`/ the operator of best
Lp-approximation in K . Prove that, for all v 2 L1.K;R`/, V 2 Pn.K;R`/ and
m � n,

kvV 	 P2
m.vV /kL2.K/ � kv 	 P1m�nvkL1.K/kV kL2.K/:

Problem 29 (Upper bound for oscillation). Verify the upper bound (67) for the
oscillation by exploiting Problem 28.

Problem 30 (Superconvergence of jump residual oscillation). Show that if A is
smooth across interelement boundaries, then the oscillation of the jump residual is
superconvergent in that

kj 	 j SkL2.S/ D O.hnS /kjkL2.S/ as hS & 0:

Problem 31 (Simplified bound of oscillation). Using (67), show that (35) implies

oscT .U; !T / . hT

�
kf kL2.!T / C krU kL2.!T /

�
; (73)

where the hidden constant depends also onA.
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Fig. 13 A strongly
oscillating forcing function

Problem 32 (Necessity of oscillation). Let � D 2�K for K integer and extend the
function 1

2
x.� 	 jxj/ defined on .	�; �/ to a 2�-periodic C1 function u� on ˝ D

.	1; 1/. Moreover, let the forcing function be f� D 	u00, which is 2�-periodic and
piecewise constant with values˙1 that change at multiples of �; see Fig. 13. Let T"

be a uniform mesh with mesh-size h D 2�k, with k � K . We consider piecewise
linear finite elements V .T"/ and corresponding Galerkin solution U" 2 V .T"/.
Observing that f" is L2.˝/-orthogonal to both the space of piecewise constants and
linears over T", show that

ku0" 	 U 0"kL2.˝/ D ku0"kL2.˝/ D
�p
6
D 2�Kp

6

� 2�k D h D khf"kL2.˝/ D oscT" .U"/ D ET".U"/:

Extend this 1d example via a checkerboard pattern to any dimension.

4 Convergence of AFEM

The purpose of this section is to formulate an adaptive finite element method
(AFEM) and to prove that it generates a sequence of approximate solutions con-
verging to the exact one. The method consists in the following main steps:

SOLVE! ESTIMATE! MARK! REFINE:

By their nature, adaptive algorithms define the sequence of approximate solutions
as well as associated meshes and spaces only implicitly. This fact requires an
approach that differs from “classical” convergence proofs. In particular, a proof of
convergence will hinge on results of an a posteriori analysis as in Sects. 2.4 and 3.

The approach presented in this section covers wide classes of problems, discrete
spaces, estimators and marking strategies. Here we do not strive for such generality
but instead, in order to minimize technicalities, illustrate the main arguments only
in a model case and then hint on possible generalizations.

It is worth noticing that, conceptually, the following convergence proof does not
suppose any additional regularity of the exact solution. Consequently, it does not
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(and cannot) provide any information about the convergence speed. This important
issue will be the concern of Sect. 7 for smaller classes of problems and algorithms.

4.1 A Model Adaptive Algorithm

We first present an AFEM for the model problem (24), which is an example of a
standard iterative process that is often used in practice. In Sect. 4.2 we then prove its
convergence and, finally, in Sect. 4.3 we comment on generalizations still covered
by the given approach.

AFEM: The main structure of the adaptive finite element method is as follows: given
an initial grid T0, set k D 0 and iterate

1. Uk D SOLVE.Tk/;
2. fEk.Uk; T /gT2Tk

D ESTIMATE.Uk;Tk/;
3. Mk D MARK

	fEk.Uk; T /gT2Tk
;Tk



;

4. TkC1 D REFINE.Mk;Tk/; k  k C 1.

Thus, the algorithm produces sequences .Tk/
1
kD0 of meshes, .Uk/1kD0 of approx-

imate solutions, and, implicitly, .Vk/1kD0 of discrete spaces.
We next state our main assumptions and define the aforementioned modules for

the problem at hand in detail.

Assumptions on continuous problem: We assume that the model problem (24)
satisfies (25) and (35) so that the a posteriori error bounds of Sects. 2 and 3 are
available.

Initial grid: Assume that T0 is some initial triangulation of ˝ such that A is
piecewise Lipschitz over T0.

Solve: Let
Vk WD V .Tk/ WD

˚
V 2 Sn;0.Tk/ j Vj@˝ D 0

�

be the space of continuous functions that are piecewise polynomial of degree � n
over Tk , and compute the Galerkin solution Uk in Vk given by

Uk 2 Vk W
Z

˝

ArUk � rV D
Z

˝

f V for all V 2 Vk:

Estimate: Compute the error estimator fEk.Uk; T /gT2Tk
given by

Ek.Uk; T / WD
�
h2T krk2L2.T / C hT kjk2L2.@T n@˝/

�1=2
;

where hT D jT j1=d , r and j are the element and jump residuals from (37) associated
to the approximate solution Uk .
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Mark: Collect a subset Mk � Tk of marked elements with the following property:

8T 2 Tk Ek.Uk; T / D Ek;max > 0 H) T 2Mk (74)

with Ek;max WD maxT2Tk
Ek.Uk; T /.

Refine: Refine Tk into TkC1 using bisection, as explained in Sect. 1.3, in such a way
that each element in Mk is bisected at least once and, finally, increment k.

Classical convergence proofs consider the case of uniform, or “non-adaptive”,
refinement, which is included in the above class of algorithms by choosing
Mk D Tk , thereby ignoring the information provided by the estimator. These
convergence proofs rely on the fact that the maximum mesh-size decreases to 0 and
therefore [1kD0Vk D H1

0 .˝/. The above algorithm does not require this property,
neither explicitly nor implicitly in general. In fact this property is not desirable in
an adaptive context, since (30) reveals that it is sufficient to approximate only one
function of H1

0 .˝/, namely the exact solution u of (24). In the next section we see
that the above algorithm ensures just convergence to u by a subtle combination of
properties of estimator and marking strategy.

4.2 Convergence

The goal of this section is to prove the convergence of the AFEM in Sect. 4.1. More
precisely, we show that the sequence .Uk/1kD0 of approximate solutions converges
to the exact solution u of the model problem (24).

Throughout this section “.” stands for “� C ”, where the constant is independent
of the iteration number k in the adaptive algorithm.

Convergence to some function: We expect the Galerkin solutions .Uk/1kD0 to
approximate the exact solution u in V D H1

0 .˝/. In any event, we may regard
them as approximations to the Galerkin solution U1 in the limit

V1 WD
1[

kD0
Vk

of the discrete spaces. Notice that V1 is a subspace of V , which may not coincide
with V (see below). In the next lemma we adopt this viewpoint and show that
.Uk/

1
kD0 converges to U1.

Lemma 7 (Limit of approximate solutions). The finite element solutions .Uk/1kD0
converge in V to the Galerkin solution U1 2 V1 given by

Z

˝

ArU1 � rV D
Z

˝

f V for all V 2 V1:
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Proof. Since the sequence of .Vk/1kD0 is nested (see Problem 33), the set V1 is a
closed linear subspace of V . Hence V1 is a Hilbert space and the bilinear form B
is coercive and continuous on V1. The Lax–Milgram Theorem therefore ensures
existence and uniqueness of U1.

Let k 2 N0 and note that Vk � V1. We can therefore replace V by V1 in
Theorem 4 and obtain

kU1 	 UkkV � ˛2

˛1
inf
V 2Vk

kU1 	 V kV :

Sending k !1 then finishes the proof, because the right-hand side decreases to 0
by the very definition of V1. ut

Lemma 7 reduces our task to showing that U1 D u. Notice that this is equivalent
to the condition u 2 V1, illustrating that in general there is no need for V1 D V .

The identityU1 D u hinges on the design of the adaptive algorithm. To illustrate
this point, let us consider two extreme examples:

� It may happen that all indicators vanish in iteration k�. Then Ek�;max D 0 and (74)
is compatible with Mk D ; and V1 D Vk for all k � k�. In this case,U1 D Uk�

and convergence is only ensured if a vanishing estimator implies a vanishing error.
The latter is given in particular if the estimator bounds the error from above.
� It may happen that only the simplices containing a fixed point are bisected in each

iteration, but the exact solution u has a more complex structure so that u 62 V1.
Since u ¤ U1, and uniform refinement is not enforced, the adaptive procedure
must depend on the unknown function u.

Convergence therefore will require that the module ESTIMATE extracts enough
relevant information about the error, the module MARK uses this information
correctly, and the module REFINE reduces the mesh-size where requested.

Mesh-size before bisection: The module REFINE bisects elements and so halves
their volume. This implies the following useful property of elements to be bisected,
which include the marked elements.

Lemma 8 (Sequences of elements to be bisected). For any sequence .Tk/1kD0 of
elements with Tk 2 Tk n TkC1 there holds

lim
k!1 jTkj D 0:

Proof. Suppose that lim supk!1 jTkj � c > 0, that is there exists a infinite
subsequence .Tk`/` such that lim`!1 jTk` j � c. Recall that the children of a
bisection have half the volume of the parent. Consequently, only a finite number
of children of any generation of each Tk` can appear in the sequence .Tk`/`.
Eliminating inductively these children, we obtain an infinite sequence of simplices
with disjoint interiors and volume greater than c > 0. This however contradicts
the boundedness of ˝ , whence lim supk!1 jTkj � 0, which is equivalent to the
assertion. ut
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It is instructive and convenient to reformulate Lemma 8 in terms of mesh-size
functions.

Lemma 9 (Mesh-size of elements to be bisected). If �k denotes the characteristic
function of the union [T2TknTkC1

T of elements to be bisected and hk is the mesh-
size function of Tk , then

lim
k!1 khk�kkL1.˝/ D 0:

Proof. We may assume that TknTkC1 ¤ ; for all k 2 N0 without loss of generality.
Choose .Tk/1kD0 such that Tk 2 Tk n TkC1 and hTk D maxT2TknTkC1

hT and,

recalling that hT D jT j1=d , use Lemma 8 to deduce the assertion. ut
Lemma 9 may be viewed as a generalization of limk!1 khkkL1.˝/ D 0 in

the case of uniform refinement. It may be proven also by invoking the limiting
mesh-size h1; see Problems 34 and 35. The limiting mesh-size describes the local
structure of V1 and may differ from the zero function.

Convergence to exact solution: In order to achieve U1 D u, we may investigate the
residual of U1, which is related to the residuals of the finite element solutions Uk .
The latter are in turn controlled by the element indicators Ek.Uk; T /, T 2 Tk , which
are employed in the step MARK. The fact that indicators with maximum value are
marked yields the following property of the largest element indicator Ek;max.

Lemma 10 (Convergence of maximum indicator). There holds

lim
k!1Ek;max D 0:

Proof. We may assume that Mk ¤ ; for all k 2 N0 without loss of generality.
Choose a sequence .Tk/1kD0 of elements such that Tk 2 Tk and Ek.Uk; Tk/ D Ek;max.
Thanks to (74), we have Tk 2 Mk and so Lemma 8 and module REFINE yield
limk!1 jTkj D 0. Exploiting the local lower bound in Theorem 7 and the simplified
upper bound for the local oscillation (73), we derive the following estimate for any
indicator for T 2 Tk :

Ek.Uk; T / . kr.Uk 	 U1/kL2.!T / C kr.U1 	 u/kL2.!T /
C hT

�
kf kL2.!T / C krUkkL2.!T /

�
:

(75)

Taking T D Tk, we obtain

Ek;max D Ek.Uk; Tk/ . kUk 	 U1kV C kr.U1 	 u/kL2.!k/
C jTkj1=d

�
kf kL2.!k/ C kUkkV

�
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with !k WD !Tk . Consequently, Lemma 7 and limk!1 jTkj D 0, which also entails
limk!1 j!kj D 0, prove the assertion. ut

With these preparations we are ready for the first main result of this section.

Theorem 8 (Convergence of approximate solutions). Let u be the exact solution
of the model problem (24) satisfying (25) and (35). The finite element solutions
.Uk/

1
kD0 of the AFEM of Sect. 4.1 converge to the exact one in V :

Uk ! u in V as k !1:

Proof. 1 In view of Lemma 7, it remains to show that U1 D u. This is equivalent
to

0 D hR1; vi WD
Z

˝

f v 	
Z

˝

ArU1 � rv for all v 2 V D H1
0 .˝/: (76)

Here we can take the test functions fromC10 .˝/, becauseC10 .˝/ is a dense subset
of the Hilbert space H1

0 .˝/. Lemma 7 therefore ensures that (76) follows from

0 D lim
k!1hRk; 'i 8' 2 C10 .˝/; (77)

where Rk 2 V � is the residual of Uk given by

hRk; vi WD
Z

˝

f v 	
Z

˝

ArUk � rv:

2 In order to show (77), let ' 2 C10 .˝/ and introduce the set

T �` WD
\

m�`
Tm

of elements in T` that will no longer be bisected; note that if T �` ¤ ;, then V ¤
V1. Given ` � k, V` � Vk and (51) imply

hRk; 'i D hRk; ' 	 I`'i . S`;k C S �̀;k ; (78)

where we expect that

S`;k WD
X

T2TknT �
`

Ek.Uk; T /kr.' 	 I`'/kL2.Nk.T //

gets small because of decreasing mesh-size, whereas
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S �̀;k WD
X

T2T �
`

Ek.Uk; T /kr.' 	 I`'/kL2.Nk.T //

gets small because of properties of the adaptive algorithm.
3 We first deal with S`;k . The Cauchy–Schwarz inequality in some RN yields

S`;k � Ek.Uk;Tk n T �` /
� X

T2TknT �
`

kr.' 	 I`'/k2L2.Nk.T //
�1=2

;

where the first factor

Ek.Uk;Tk n T �` / . kUk 	 U1kV C kU1 	 ukV
C khk�`kL1.˝/

	kf kL2.˝/ C kUkkV



. 1
(79)

is uniformly bounded thanks to (75) and the second factor satisfies

� X

T2TknT �
`

kr.' 	 I`'/k2L2.Nk.T //
�1=2

.
� X

T2T`nT �
`

kr.' 	 I`'/k2L2.Nl .T //
�1=2

. kh`�`knL1.˝/kDnC1'kL2.˝/
because of Tk � T` and Proposition 2. Hence Lemma 9 implies

S`;k ! 0 as `!1 uniformly in k: (80)

4 Next, we deal with S �̀;k . Here the Cauchy–Schwarz inequality yields

S �̀;k � Ek.Uk;T
�
` /
� X

T2T �
`

kr.' 	 I`'/k2L2.Nk.T //
�1=2

;

where the first factor satisfies

Ek.Uk;T
�
` / � #T` Ek;max (81)

and the second factor

� X

T2T �
`

kr.' 	 I`'/k2L2.Nk.T //
�1=2

. kh`knL1.˝/kDnC1'kL2.˝/ . 1

is uniformly bounded. Lemma 10 therefore implies

S �̀;k ! 0 as k !1 for any fixed `: (82)
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5 Given " > 0, we exploit (80) and (82) by first choosing ` so that S`;k � "=2 and
next k � ` so that S �̀;k � "=2. Inserting this into (78) yields the desired convergence
(77) and finishes the proof. ut

Convergence of estimator: Theorem 8 ensures convergence of the finite element
solutions Uk but says nothing about the behavior of the estimators

Ek.Uk/ D
� X

T2Tk

Ek.Uk; T /
2
�1=2

;

which enables one to monitor that convergence. The convergence of the estimators
is ensured by the following theorem. Notice that this is not a simple consequence of
Theorem 8 and Corollary 3 because of the presence of the oscillation osck.Uk/ in
the global lower bound; see also Problem 36.

Corollary 4 (Estimator convergence). Assume again that the model problem (24)
satisfies (25) and (35). The estimators .Ek.Uk//1kD0 of AFEM in Sect. 4.1 converge
to 0:

lim
k!1Ek.Uk/ D 0:

Proof. Theorem 8 implies U1 D u. Using this and hk � h` for ` � k, along with
kUk 	 U1kV . kU` 	 U1kV , after the first inequality of (79) yields

Ek.Uk;Tk n T �` /! 0 as `!1 uniformly in k (83)

with the help of Lemmas 7 and 9. In view of

E 2
k .Uk/ D E 2

k .Uk;Tk nT �` /C E 2
k .Uk;T

�
` /;

we realize that (81), (83), and Lemma 10 complete the proof. ut
We conclude this section with a few remarks about variants of Theorem 8 and

Corollary 4 for general estimators. Theorem 8 holds for any estimator that provides
an upper bound of the form

jhRk; vij .
X

T2Tk

Ek.Uk; T /krvkL2.Nk.T // for all v 2 V ; (84)

which is locally stable in the sense

Ek.Uk; T / . hT kf kL2.!T / C krUkkL2.!T / for all T 2 Tk I (85)

see Problem 37. While the first assumption (84) appears natural, and is in fact
crucial in view of the first example after Lemma 7, the second assumption (85)
may appear artificial. However, Problem 38 reveals that is also crucial and, thus, the
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suggested variant of Theorem 8 is “sharp”. Problem 39 proposes the construction of
an estimator verifying the two assumptions (84) and (85) which, however, does not
decrease to 0. On the other hand, Corollary 4 hinges on the local lower bound (75),
which is a sort of minimal requirement of efficiency if the finite element solutions
Uk converge. Roughly speaking, convergence of Uk relies on reliability and stability
of the estimator, while the convergence of the estimator depends on the efficiency of
the estimator. This shows that the assumptions on the estimator for Theorem 8 and
Corollary 4 are of different nature. In particular, we see that convergence of Uk can
be achieved even with estimators that are too poor to quantify the error.

4.3 Notes

The convergence proof in Sect. 4.2 is a simplified version of Siebert [49], which
unifies the work of Morin et al. [44] with the standard a priori convergence theory
based on (global) density. In order to further discuss the underlying assumptions of
the approach in Sect. 4.2, we now compare these two works in more detail.

Solve: Both works [44] and [49] consider well-posed linear problems and invoke
a generalization of Lemma 7 that follows from a discrete inf-sup condition on
the discretization. The latter assumption appears natural since it is necessary for
convergence in the particular case of uniform refinement; see [10, Problem 3.9].
In the case of a problem with potential or “energy”, the explicit construction of
U1 can be replaced by a convergent sequence of approximate energy minima.
Examples are the convergence analyses for the p-Laplacian by Veeser [55] and for
the obstacle problem by Siebert and Veeser [51], which are the first steps in the
terrain of nonlinear and nonsmooth problems and are predecessors of [44, 49].

Estimate and mark: Paper [44] differs from [49] on the assumptions on estimators
and marking strategy. More precisely, [44] assumes that the estimator provides a
discrete local lower bound and that the marking strategy essentially ensures

Ek.Uk; T / �
� X

T 02Mk

Ek.Uk; T
0/2
�1=2

for all T 2 Tk nMk; (86)

whereas [49] essentially assumes (84), (85), and (74). Thus, the assumptions on the
estimator are weaker in [49], while those on the marking strategy are weaker in [44];
see also Problem 40. Since both works verify that their assumptions on the marking
strategy are necessary, this shows that (minimal) assumptions on the estimator and
marking strategy are coupled.

Refine: Both [44,49] consider the same framework for REFINE. This does not only
include bisection for conforming meshes (see Sect. 1.3), but also nonconforming
meshes (see Sect. 1.7) and other manners of subdividing elements. Moreover,
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[44, 49] assume the minimal requirement of subdividing the marked elements, as
in Sect. 4.1.

Further variants and generalizations: These approaches can be further developed in
several directions:

� Morin et al. [43] give a proof of convergence of a variant of the AFEM in Sect. 4.1
when the estimator provides upper and local lower bounds for the error in “weak”
norms, e.g. similar to the L2-norm in Problem 18.
� Demlow [20] proves convergence of a variant of the AFEM in Sect. 4.1 with

estimators for local energy norm errors.
� Garau et al. [28] show convergence of a variant of the AFEM in Sect. 4.1 for

symmetric eigenvalue problems.
� Holst et al. [31] extend [44] to nonlinear partial differential equations, the

linearization of which are well-posed.

4.4 Problems

Problem 33 (Nesting of spaces). Let T1 and T2 be triangulations such that T1 �
T2, that is T2 is a refinement by bisection of T1. Show that the corresponding
Lagrange finite element spaces from (31) are nested, i.e., V .T1/ � V .T2/:

Problem 34 (Limiting mesh-size function). Prove that there exists a limiting
mesh-size function h1 2 L1.˝/ such that

khk 	 h1kL1.˝/ ! 0 as k !1:

Can you construct an example with h1 ¤ 0?

Problem 35 (Alternative proof of Lemma 9). For any iteration k, let �k be the
characteristic function of the union[T2TknTkC1

T of elements to be bisected and hk
the mesh-size function of Tk . Show

lim
k!1 khk�kkL1.˝/ D 0

by means of Problem 34 and the fact that bisection reduces the mesh-size.

Problem 36 (Persistence of oscillation). Choosing appropriately the data of the
model problem (24), provide an example where the exact solution is (locally)
piecewise affine and the (local) oscillation does not vanish.

Problem 37 (Convergence for general estimators). Check that Lemma 10 and
Theorem 8 hold for any estimator fEk.Uk; T /gT2Tk

that is reliable in the sense of
(84) and locally stable in the sense of (85).



180 R.H. Nochetto and A. Veeser

Problem 38 (“Necessity” of local estimator stability). Construct an estimator
that satisfies (84) and its indicators are always largest around a fixed point, entailing
that (74) is compatible with refinement only around that fixed point, irrespective of
the exact solution u.

Problem 39 (No estimator convergence). Assuming that the exact solution u of
the model problem (24) does not vanish, construct an estimator satisfying (84) and
(85) which does not decrease to 0.

Problem 40 (Assumptions for marking strategies). Check that (86) is weaker
that (74) by considering the bulk-chasing strategy (90).

5 Contraction Property of AFEM

This section discusses the contraction property for a special AFEM for the model
problem (23), which we rewrite for convenience:

	 div.A.x/ru/ D f in ˝; (87)

u D 0 on @˝;

with piecewise smooth coefficient matrix A on T0. The matrix A is assumed to be
(uniformly) SPD so that the problem is coercive and symmetric. We consider a loop
of the form

SOLVE! ESTIMATE! MARK! REFINE

that produces a sequence .Tk;Vk; Uk/1kD0 of conforming meshes Tk , spaces of
conforming elements Vk (typically C0 piecewise linears n D 1), and Galerkin
solutions Uk 2 Vk .

The desired contraction property hinges on error monotonicity. Since this is
closely related to a minimization principle, it is natural to consider the coercive
problem (87). We cannot expect a similar theory for problems governed by an
inf-sup condition; this is an important open problem.

We next follow Cascón et al. [14]. We refer to [7, 9, 16, 17, 23, 24, 37, 40–42] for
other approaches and to Sect. 5.6 for a discussion.

5.1 Modules of AFEM for the Model Problem

We present further properties of the four basic modules of AFEM for (87). The main
additional restrictions with respect to Sect. 4 are symmetry and coercivity of the
bilinear form and the marking strategy.

Module SOLVE : If T 2 T is a conforming refinement of T0 and V D V .T / is
the finite element space of C0 piecewise polynomials of degree � n, then
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U D SOLVE.T /

determines the Galerkin solution exactly, namely,

U 2 V W
Z

˝

ArU � rV D
Z

˝

f V for all V 2 V : (88)

Module ESTIMATE : Given a conforming mesh T 2 T and the Galerkin solution
U 2 V .T /, the output of

fET .U; T /gT2T D ESTIMATE.U;T /:

are the element indicators defined in (46). For convenience, we recall the definitions
(37) of interior and jump residuals

r.V /jT D f C div.ArV / for all T 2 T ;

j.V /jS D ŒŒArV �� � n jS for all S 2 S (internal sides of T );

and j.V /jS D 0 for boundary sides S 2 S , as well as the element indicator

E 2
T .V; T / D h2T kr.V /k2L2.T / C hT kj.V /k2L2.@T / for all T 2 T : (89)

We observe that we now write explicitly the argument V in both r and j because
this dependence is relevant for the present discussion.

Module MARK: Given T 2 T , the Galerkin solution U 2 V .T /, and element
indicators fET .U; T /gT2T , the module MARK selects elements for refinement
using Dörfler Marking (or bulk chasing), i.e., using a fixed parameter # 2 .0; 1�
the output

M D MARK
	fET .U; T /gT2T ;T




satisfies
ET .U;M / � # ET .U;T /: (90)

This marking guarantees that M contains a substantial part of the total (or bulk),
thus its name. This is a crucial property in our arguments. The choice of M does
not have to be minimal at this stage, that is, the marked elements T 2 M do not
necessarily must be those with largest indicators. However, minimality of M will
be crucial to derive rates of convergence in Sect. 7.

Module REFINE: Let b 2 N be the number of desired bisections per marked
element. Given T 2 T and a subset M of marked elements, the output T� 2 T of

T� D REFINE
	
T ; M
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is the smallest refinement T� of T so that all elements of M are at least bisected b
times. Therefore, we have hT�

� hT and the strict reduction property

hT�
jT � 2�b=dhT jT for all T 2M : (91)

We finally let RT!T�
be the subset of refined elements of T and note that

M � RT!T�
:

AFEM: The following procedure is identical to that of Sect. 4.1 except for the
module MARK, which uses Dörfler marking with parameter 0 < # � 1: given
an initial grid T0, set k D 0 and iterate

1. Uk D SOLVE.Tk/;
2. fEk.Uk; T /gT2Tk

D ESTIMATE.Uk;Tk/;
3. Mk D MARK

	fEk.Uk; T /gT2Tk
;Tk



;

4. TkC1 D REFINE.Tk;Mk/; k  k C 1.

5.2 Basic Properties of AFEM

We next summarize some basic properties of AFEM that emanate from the
symmetry of the differential operator (i.e. of A) and features of the modules. In
doing this, any explicit constant or hidden constant in . will only depend on the
uniform shape-regularity of T , the dimension d , the polynomial degree n, and the
(global) eigenvalues of A, but not on a specific grid T 2 T , except if explicitly
stated. Furthermore, u will always be the weak solution of (24).

The following property relies on the fact that the bilinear form B is coercive
and symmetric, and so induces a scalar product in V equivalent to the H1

0 -scalar
product.

Lemma 11 (Pythagoras). Let T ;T� 2 T such that T � T�. The corresponding
Galerkin solutionsU 2 V .T / and U� 2 V .T�/ satisfy the following orthogonality
property in the energy norm jjj�jjj˝

jjju 	 U jjj2˝ D jjju 	 U�jjj2˝ C jjjU� 	 U jjj2˝ : (92)

Proof. See Problem 41. ut
Property (92) is valid for (87) for the energy norm exclusively. This restricts the
subsequent analysis to the energy norm, or equivalent norms, but does not extend
to other, perhaps more practical, norms such as the maximum norm. This is an
important open problem and a serious limitation of this theory.

We now recall the concept of oscillation from Sect. 3.1. In view of (65), we
denote by oscT .V; T / the element oscillation for any V 2 V
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oscT .V; T / D kh.r.V / 	 r.V //kL2.T / C kh1=2.j.V / 	 j.V //kL2.@T\˝/; (93)

where r.V / D P2n�2r.V / and j.V / D P2n�1j.V / stand for L2-projections of the
residuals r.V / and j.V / onto the polynomials P2n�2.T / and P2n�1.S/ defined on
the element T or side S � @T , respectively. For variable A, oscT .V; T / depends
on the discrete function V 2 V , and its study is more involved than for piecewise
constant A. In the latter case, oscT .V; T / is given by (58) and is called data
oscillation; see also Problem 19.

We now rewrite the a posteriori error estimates of Theorems 6 and 7 in the energy
norm.

Lemma 12 (A posteriori error estimates). There exist constants 0 < C2 � C1,
such that for any T 2 T and the corresponding Galerkin solutionU 2 V .T / there
holds

jjju 	 U jjj2˝ � C1 E 2
T .U /; (94a)

C2 E 2
T .U / � jjju 	 U jjj2˝ C osc2T .U /: (94b)

The constantsC1 andC2 depend on the smallest and largest global eigenvalues ofA.
This dependence can be improved if the a posteriori analysis is carried out directly
in the energy norm instead of theH1

0 -norm; see Problem 20. The definitions of r.V /
and j.V /, as well as the lower bound (94b), are immaterial for deriving a contraction
property. However, they will be important for proving convergence rates in Sect. 7.

One serious difficulty in dealing with AFEM is that one has access to the energy
error jjju 	 U jjj˝ only through the estimator ET .U /. The latter, however, fails to be
monotone because it depends on the discrete solution U 2 V .T / that changes with
the mesh. We first show that ET .V / decreases strictly provided V does not change
(Lemma 13) and next we account for the effect of changing V but keeping the mesh
(Lemma 14). Combining these two lemmas we get Proposition 3. In formulating
these results we rely on the following notation: given T 2 T let M � T denote a
set of elements that are bisected b � 1 times at least, let T� � T be a conforming
refinement of T that contains the bisected elements of M , and let

� D 1	 2�b=d :

Lemma 13 (Reduction of ET .V / wrt T ). For any V 2 V .T /, we have

E 2
T�
.V;T�/ � E 2

T .V;T / 	 �E 2
T .V;M /: (95)

Proof. We decompose E 2
T�
.V;T�/ over elements T 2 T , and distinguish whether

or not T 2 M . If T 2 M , then T is bisected at least b times and so T can be
written as the union of elements T 0 2 T� We denote this set of elements T�.T / and
observe that, according with (91), hT 0 � 2�b=d hT for all T 0 2 T�.T /. Therefore
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X

T 02T�.T /

h2T 0kr.V /k2L2.T 0/
� 2�2b=d h2T kr.V /k2L2.T /

and X

T 02T�.T /

hT 0 kj.V /k2
L2.@T 0\˝/ � 2�b=d hT kj.V /k2L2.@T\˝/;

because V 2 V .T / only jumps across the boundary of T . This implies

E 2
T�
.V; T / � 2�b=d E 2

T .V; T / for all T 2M :

For the remaining elements T 2 T nM we only know that mesh-size does not
increase because T � T�, whence

E 2
T�
.V; T / � E 2

T .V; T / for all T 2 T nM :

Combining the two estimates we see that

E 2
T�
.V;T�/ � 2�b=d E 2

T .V;M /C E 2
T .V;T nM /

D E 2
T .V;T / 	 	1 	 2�b=d 
E 2

T .V;M /;

which, in light of the definition of �, is the desired estimate. ut
Lemma 14 (Lipschitz property of ET .V; T / wrt V ). For all T 2 T , let !T
denote the union of elements sharing a side with T , divA 2 L1.˝IRd / be the
divergence ofA computed by rows, and


T .A; T / WD hT k divAkL1.T / C kAkL1.!T /:

Then the following estimate is valid

jET .V; T / 	 ET .W; T /j . 
T .A; T /kr.V 	W /kL2.!T / for all V;W 2 V .T /:

Proof. Recalling the definition of the indicators, the triangle inequality yields

jET .V; T / 	 ET .W; T /j � hT kr.V / 	 r.W /kL2.T / C h1=2T kj.V / 	 j.W /kL2.@T /:

We set E WD V 	W 2 V .T /, and observe that

r.V / 	 r.W / D div.ArE/ D divA � rE CA W D2E;

where D2E is the Hessian of E. Since E is a polynomial of degree � n in T ,
applying the inverse estimate kD2EkL2.T / . h�1T krEkL2.T /, we deduce

hT kr.V / 	 r.W /kL2.T / . 
T .A; T /krEkL2.T /:
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On the other hand, for any S � @T applying the inverse estimate of Problem 43
gives

kj.V / 	 j.W /kL2.S/ D kj.E/kL2.S/ D k ŒŒArE�� kL2.S/ . h
�1=2
T krEkL2.!T /;

where the hidden constant is proportional to 
T .A; T /. This finishes the proof. ut
Proposition 3 (Estimator reduction). Given T 2 T and a subset M � T of
marked elements, let T� D REFINE

	
T ;M



. Then there exists a constant � > 0,

such that for all V 2 V .T /, V� 2 V�.T�/ and any ı > 0 we have

E 2
T�
.V�;T�/ � .1C ı/

	
E 2

T .V;T / 	 � E 2
T .V;M /




C .1C ı�1/� 
2T .A;T / jjjV� 	 V jjj2˝ :

Proof. Apply Lemma 14 to V; V� 2 V .T�/ in conjunction with Lemma 13 for V
(see Problem 44). ut

5.3 Contraction Property of AFEM

A key question to ask is what is (are) the quantity(ies) that AFEM may contract. In
light of (92), an obvious candidate is the energy error jjju 	 Ukjjj˝ . We first show, in
the simplest scenario of piecewise constant dataA and f , that this is in fact the case
provided an interior node property holds; see Lemma 15. However, the energy error
may not contract in general unless REFINE enforces several levels of refinement;
see Example 1. We then present a more general approach that eliminates the interior
node property at the expense of a more complicated contractive quantity, the quasi
error; see Theorem 9.

Piecewise constant data: We now assume that both f andA are piecewise constant
in the initial mesh T0, so that osck.Uk/ D 0 for all k � 0. The following property
was introduced by Morin et al. [40].

Definition 1 (Interior node property). The refinement TkC1 � Tk satisfies an
interior node property with respect to Tk if each element T 2Mk contains at least
one node of TkC1 in the interiors of T and of each side of T .

This property is valid upon enforcing a fixed number b� of bisections (b� D 3; 6

for d D 2; 3). An immediate consequence of this property, proved in [40,41], is the
following discrete lower a posteriori bound:

C2E
2
k .Uk;Mk/ � jjjUk 	 UkC1jjj2˝ C osc2k.Uk/I (96)

see also Problem 23 for a related result.
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Fig. 14 Grids T0, T1, and T2 of Example 1. The mesh T1 has nodes in the middle of sides of
T0, but only T2 has nodes in the interior of elements of T0. Hence, T2 satisfies the interior node
property of Definition 1 with respect to T0

Lemma 15 (Contraction property for piecewise constant data). Let A; f be
piecewise constant in the initial mesh T0. If TkC1 satisfies an interior node property
with respect to Tk , then for ˛ WD .1 	 #2 C2

C1
/1=2 < 1 there holds

jjju 	 UkC1jjj˝ � ˛ jjju 	 Ukjjj˝ ; (97)

where 0 < # < 1 is the parameter in (90) and C1 � C2 are the constants in (94).

Proof. For convenience, we use the notation

ek D jjju	Ukjjj˝ ;Ek D jjjUkC1	Ukjjj˝ ;Ek D Ek.Uk;Tk/;Ek.Mk/ D Ek.Uk;Mk/:

The key idea is to use the Pythagoras equality (92)

e2kC1 D e2k 	E2
k;

and show thatEk is a significant portion of ek. Since (96) with osck.Uk/ D 0 implies

C2E
2
k .Mk/ � E2

k; (98)

applying Dörfler marking (90) and the upper bound (94a), we deduce

E2
k � C2#2E 2

k �
C2

C1
#2e2k:

This is the desired property of Ek and leads to (97). ut
Example 1 (Strict monotoniticity). Let ˝ D .0; 1/2, A D I ; f D 1 (constant
data), and consider the following sequences of meshes depicted in Fig. 14. If '0
denotes the basis function associated with the only interior node of the initial mesh
T0, then

U0 D U1 D 1

12
'0; U2 ¤ U1:
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The mesh T1 � T0 is produced by a standard 2-step bisection .b D 2/ in 2d . Since
U0 D U1 we conclude that the energy error may not change

jjju 	 U0jjj˝ D jjju 	 U1jjj˝
between two consecutive steps of AFEM for b D d D 2. This is no longer true
provided an interior node in each marked element is created, as in Definition 1,
because then Lemma 15 holds. This example appeared first in [40, 41], and was
used to justify the interior node property.

General data: If osck.Uk/ ¤ 0, then the contraction property of AFEM becomes
trickier because the energy error and estimator are no longer equivalent regardless
of the interior node property. The first question to ask is what quantity replaces
the energy error in the analysis. We explore this next and remove the interior node
property.

Heuristics: According to (92), the energy error is monotone

jjju 	 UkC1jjj˝ � jjju 	 Ukjjj˝ ;

but the previous example shows that strict inequality may fail. However, if UkC1 D
Uk, estimate (95) reveals a strict estimator reduction EkC1.Uk/ < Ek.Uk/. We thus
expect that, for a suitable scaling factor � > 0, the so-called quasi error

jjju 	 Ukjjj2˝ C � E 2
k .Uk/ (99)

may be contractive. This heuristics illustrates a distinct aspect of AFEM theory,
the interplay between continuous quantities such the energy error jjju 	 Ukjjj˝ and
discrete ones such as the estimator Ek.Uk/: no one alone has the requisite properties
to yield a contraction between consecutive adaptive steps.

Theorem 9 (Contraction property). Let # 2 .0; 1� be the Dörfler Marking
parameter, and fTk;Vk; Ukg1kD0 be a sequence of conforming meshes, finite element
spaces and discrete solutions created by AFEM for the model problem (87).

Then there exist constants � > 0 and 0 < ˛ < 1, additionally depending on the
number b � 1 of bisections and # , such that for all k � 0

jjju 	 UkC1jjj2˝ C � E 2
kC1.UkC1/ � ˛2

�
jjju 	 Ukjjj2˝ C � E 2

k .Uk/
�
: (100)

Proof. We split the proof into four steps and use the notation in Lemma 15.
1 The error orthogonality (92) reads

e2kC1 D e2k 	 E2
k: (101)

Employing Proposition 3 with T D Tk , T� D TkC1, V D Uk and V� D UkC1
gives

E 2
kC1 � .1C ı/

	
E 2
k 	 � E 2

k .Mk/

C .1C ı�1/�0 E

2
k; (102)
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where �0 D �
2T0
.A;T0/ � �
2Tk

.A;Tk/. After multiplying (102) by � > 0, to
be determined later, we add (101) and (102) to obtain

e2kC1 C � E 2
kC1 � e2k C

	
� .1C ı�1/�0 	 1



E2
k C � .1C ı/

	
E 2
k 	 � E 2

k .Mk/


:

2 We now choose the parameters ı; � , the former so that

.1C ı/	1 	 �#2
 D 1 	 �#
2

2
;

and the latter to verify
� .1C ı�1/�0 D 1:

Note that this choice of � yields

e2kC1 C � E 2
kC1 � e2k C � .1C ı/

	
E 2
k 	 � E 2

k .Mk/


:

3 We next employ Dörfler Marking, namely Ek.Mk/ � #Ek, to deduce

e2kC1 C � E 2
kC1 � e2k C �.1C ı/.1 	 �#2/E 2

k

which, in conjunction with the choice of ı, gives

e2kC1 C � E 2
kC1 � e2k C �

�
1 	 �#

2

2

�
E 2
k D e2k 	

��#2

4
E 2
k C �

�
1 	 �#

2

4

�
E 2
k :

4 Finally, the upper bound (94a), namely e2k � C1 E 2
k ; implies that

e2kC1 C � E 2
kC1 �

�
1 	 ��#

2

4C1

�
e2k C �

�
1 	 �#

2

4

�
E 2
k :

This in turn leads to
e2kC1 C � E 2

kC1 � ˛2
	
e2k C � E 2

k




with

˛2 WD max

�
1 	 ��#

2

4C1
; 1 	 �#

2

4

�
;

and proves the theorem because ˛2 < 1. ut
Remark 9 (Ingredients). The basic ingredients of this proof are: Dörfler marking;
coercivity and symmetry of B and nesting of spaces, which imply the Pythagoras
identity (Lemma 11); the a posteriori upper bound (Lemma 12); and the estimator
reduction property (Proposition 3). It does not use the lower bound (94b) and does
not require marking by oscillation, as previous proofs do [17, 37, 40–42].
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Fig. 15 Discontinuous
coefficients in checkerboard
pattern: Graph of the discrete
solution, which is u � r0:1,
and underlying strongly
graded grid. Notice the
singularity of u at the origin

Remark 10 (Separate marking). MARK is driven by Ek exclusively, as it happens
in all practical AFEM. Previous proofs in [17, 37, 40–42] require separate marking
by estimator and oscillation. It is shown in [14] that separate marking may lead to
suboptimal convergence rates. On the other hand, we will prove in Sect. 7 that the
present AFEM yields quasi-optimal convergence rates.

5.4 Example: Discontinuous Coefficients

We invoke the formulas derived by Kellogg [34] to construct an exact solution of an
elliptic problem with piecewise constant coefficients and vanishing right-hand side
f ; data oscillation is thus immaterial. We now write these formulas in the particular
case ˝ D .	1; 1/2, A D a1I in the first and third quadrants, and A D a2I in the
second and fourth quadrants. An exact weak solution u of the model problem (87)
for f  0 is given in polar coordinates by u.r; #/ D r��.#/ (see Fig. 15), where

�.#/ D

8
ˆ̂̂
<̂

ˆ̂̂
:̂

cos..�=2 	 �/�/ � cos..# 	 �=2C �/�/ if 0 � # � �=2;
cos.��/ � cos..# 	 � C �/�/ if �=2 � # � �;
cos.��/ � cos..# 	 � 	 �/�/ if � � # < 3�=2;
cos..�=2 	 �/�/ � cos..# 	 3�=2	 �/�/ if 3�=2 � # � 2�;

and the numbers � , �, � satisfy the nonlinear relations
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Fig. 16 Quasi-optimality of AFEM for discontinuous coefficients: estimate and true error.
The optimal decay for piecewise linear elements in 2d is indicated by the line with slope �1=2

8
ˆ̂̂
ˆ̂̂
ˆ̂̂
<

ˆ̂̂
ˆ̂̂
ˆ̂̂
:

R WD a1=a2 D 	 tan..�=2 	 �/�/ � cot.��/;

1=R D 	 tan.��/ � cot.��/;

R D 	 tan.��/ � cot..�=2	 �/�/;
0 < � < 2;

maxf0; �� 	 �g < 2�� < minf��; �g;
maxf0; � 	 ��g < 	2�� < minf�; 2� 	 ��g:

(103)

Since we want to test the algorithm AFEM in a worst case scenario, we choose
� D 0:1, which produces a very singular solution u that is barely in H1; in fact
u 2 Hs.˝/ for s < 1:1 and piecewise in W 2

p .˝/ for p > 1. We then solve (103)
for R, �, and � using Newton’s method to obtain

R D a1=a2 Š 161:4476387975881; � D �=4; � Š 	14:92256510455152;

and finally choose a1 D R and a2 D 1. A smaller � would lead to a larger ratio R,
but in principle � may be as close to 0 as desired.

We realize from Fig. 16 that AFEM attains optimal decay rate for the energy
norm. This is consistent with adaptive approximation for functions piecewise in
W 2
p .˝/ (see Sect. 1.6), but nonobvious for AFEM which does not have direct access

to u; this is the topic of Sect. 7. We also notice from Fig. 17 that a graded mesh with
mesh-size of order 10�10 at the origin is achieved with about 2 
 103 elements.
To reach a similar resolution with a uniform mesh we would need N � 1020

elements! This example clearly reveals the advantages and potentials of adaptivity
for the FEM even with modest computational resources.

What is missing is an explanation of the recovery of optimal error decay N�1=2
through mesh grading. This is the subject of Sect. 7, where we have to deal with
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Fig. 17 Discontinuous coefficients in checkerboard pattern: Final grid (full grid with < 2;000

nodes) (top left), zooms to .�10�3; 10�3/2 (top right), .�10�6; 10�6/2 (bottom left), and
.�10�9; 10�9/2 (bottom right). The grid is highly graded towards the origin. For a similar
resolution, a uniform grid would require N � 1020 elements

the interplay between continuous and discrete quantities as already alluded to in the
heuristics.

5.5 Extensions and Restrictions

It is important to take a critical look at the theory just developed and wonder about
its applicability. Below we list a few extensions of the theory and acknowledge some
restrictions.

Nonconforming meshes: Theorem 9 easily extends to non-conforming meshes since
conformity plays no role. This is reported in Bonito and Nochetto [9].

Non-residual estimators: The contraction property (100) has been derived for
residual estimators Ek.Uk/. This is because the estimator reduction property (95)
is not known to hold for other estimators, such as hierarchical, Zienkiewicz–Zhu,
and Braess–Schoerbel estimators, as well as those based on the solution of local
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problems. A common feature of these estimators 
T .U / is the lack of reliability in
the preasymptotic regime, in which oscillation oscT .U / may dominate. In fact, we
recall the upper a posteriori bound from (72)

jjju 	 U jjj2˝ � C1
�

2T .U /C osc2T .U /

�
DW E 2

T .U /;

which gives rise to Dörfler marking for the total estimator ET .U /. Cascón and
Nochetto [15] have recently extended Theorem 9 for n D 1 upon allowing an
interior node property after a fixed number of adaptive loops and combining Lemma
15 with Theorem 9; this is easy to implement within ALBERTA [50]. At the same
time, using the local equivalence of the above estimators with the residual one,
Kreuzer and Siebert have proved an error reduction property after several adaptive
loops [35].

Elliptic PDE on manifolds: Meckhay, Morin and Nochetto extended this theory to
the Laplace–Beltrami operator [38]. In this case, an additional geometric error due
to piecewise polynomial approximation of the surface must be accounted for.

Discontinuous Galerkin methods (dG): The convergence results available in the
literature are for the interior penalty method [9, 32, 33]. The simplest contraction
property (97) for a right-hand side f in the finite element space and the Laplace
operator was first derived by Karakashian and Pascal [33], and later improved by
Hoppe et al. [32] for f 2 L2 and just one bisection per marked element. In both
cases, the theory is developed for d D 2. The most general result, valid for d � 2,
operators with discontinuous variable coefficients, and L2 data, has been developed
by Bonito and Nochetto [9]. The theory in [9] deals with nonconforming meshes
made of quadrilaterals or triangles, or their multidimensional generalizations, which
are natural in the dG context. A key theoretical issue is the control of the jump term,
which is not monotone with refinement [9, 33].

Saddle point problems: The contraction properties (97) and (100) rely crucially on
the Pythagoras orthogonality property (92) and does not extend to saddle point
problems. However, a modified AFEM based on an inexact Uzawa iteration and
separate marking was shown to converge by Bänsch, Morin, and Nochetto for the
Stokes equation [6]. The situation is somewhat simpler for mixed FEM for scalar
second order elliptic PDE, and has been tackled directly for d D 2 by Carstensen
and Hoppe for the lowest order Raviart–Thomas element [13], and by Chen et al.
for any order [18]. They exploit the underlying special structure: the flux error is
L2-orthogonal to the discrete divergence free subspace, whereas the nonvanishing
divergence component of the flux error can be bounded by data oscillation. This is
not valid for the Stokes system, which remains open.

Beyond the energy framework: The contraction properties (97) and (100) may fail
also for other norms of practical interest. An example is the maximum norm,
for which there is no convergence result known yet of AFEM. Demlow proved a
contraction property for local energy errors [20], and Demlow and Stevenson [21]
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showed a contraction property for the L2 norm provided that the mesh grading is
sufficiently mild.

5.6 Notes

The theory for conforming meshes in dimension d > 1 started with Dörfler [24],
who introduced the crucial marking (90), the so-called Dörfler marking, and proved
strict energy error reduction for the Laplacian provided the initial mesh T0 satisfies a
fineness assumption. This marking plays an essential role in the present discussion,
which does not seem to extend to other marking strategies such as those in Sect. 4.
Morin et al. [40, 41] showed that such strict energy error reduction does not hold in
general even for the Laplacian. They introduced the concept of data oscillation and
the interior node property, and proved convergence of the AFEM without restrictions
on T0. The latter result, however, is valid only for A in (23) piecewise constant on
T0. Inspired by the work of Chen and Feng [17], Mekchay and Nochetto [37] proved
a contraction property for the total error, namely the sum of the energy error plus
oscillation for A piecewise smooth. The total error will reappear in the study of
convergence rates in Sect. 7.

Diening and Kreuzer proved a similar contraction property for the p-Laplacian
replacing the energy norm by a so-called quasi-norm [23]. They were able to
avoid marking for oscillation by using the fact that oscillation is dominated by the
estimator. Most results for nonlinear problems utilize the equivalence of the energy
error and error in the associated (nonlinear) energy; compare with Problem 42. This
equivalence was first used by Veeser in a convergence analysis for the p-Laplacian
[55] and later on by Siebert and Veeser for the obstacle problem [51].

The result of Diening and Kreuzer inspired the work by Cascón et al. [14].
This approach hinges solely on a strict reduction of the mesh-size within refined
elements, the upper a posteriori error bound, an orthogonality property natural for
(87) in nested approximation spaces, and Dörfler marking. This appears to be the
simplest approach currently available.

5.7 Problems

Problem 41 (Pythagoras). Let V1 � V2 � V D H1
0 .˝/ be nested, conforming

and closed subspaces. Let u 2 V be the weak solution to (87), U1 2 V1 and U2 2 V2
the respective Ritz–Galerkin approximations to u. Prove the orthogonality property

jjju 	 U1jjj2˝ D jjju 	 U2jjj2˝ C jjjU2 	 U1jjj2˝ : (104)

Problem 42 (Error in energy). Let V1 � V2 � V and U1; U2; u be as in
Problem 41. Recall that u; U1; U2 are the unique minimizers of the quadratic energy
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I Œv� WD 1
2
BŒv; v� 	 hf; vi

in V ;V1;V2 respectively. Show that (104) is equivalent to the identity

I ŒU1� 	 I Œu� D .I ŒU2� 	 I Œu�/C .I ŒU1� 	 I ŒU2�/:

To this end prove

I ŒUi � 	 I Œu� D 1
2
jjjUi 	 ujjj2˝ and I ŒU1� 	 I ŒU2� D 1

2
jjjU1 	 U2jjj2˝ :

Problem 43 (Inverse estimate). Let S 2 S be an interior side of T 2 T , and let
A 2 L1.S/. Make use of a scaling argument to the reference element to show

kArV kS . h
�1=2
S krV kT for all V 2 V .T /;

where the hidden constant depends on the shape coefficient of T , the dimension d ,
and kAkL1.S/.

Problem 44 (Proposition 3). Complete the proof of Proposition 3 upon using
Young inequality

.aC b/2 � .1C ı/a2 C .1C ı�1/b2 for all a; b 2 R:

Problem 45 (Quasi-local Lipschitz property). Let A 2 W 11.T / for all T 2 T .
Prove

j oscT .V; T / 	 oscT .W; T /j . oscT .A; T / kV 	W kH1.!T / for all V;W 2 V ;

where oscT .A; T / D hT k divA 	 P1n�1.divA/kL1.T / C kA 	 P1n AkL1.!T /:

Proceed as in the proof of Lemma 14 and use Problem 28.

Problem 46 (Perturbation). Let T ;T� 2 T , with T � T�. Use Problem 45 to
prove that, for all V 2 V .T / and V� 2 V .T�/, there is a constant�1 > 0 such that

osc2T .V;T \T�/ � 2 osc2T�
.V�;T \T�/C�1 oscT0 .A;T0/

2 jjjV 	 V�jjj2˝ :

6 Complexity of Refinement

This section is devoted to proving Theorem 1 for conforming meshes and Lemma
3 for nonconforming meshes. The results of Sects. 6.1 and 6.2 are valid for d D 2

but the proofs of Theorem 1 in Sect. 6.3 and Lemma 3 in Sect. 6.4 extend easily to
d > 2. We refer to the survey [45] for a full discussion for d � 2.
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T’

T0 = T

T5

T2

T3

T4

T1

Ti

Fig. 18 Typical chain C .T;T / D fTj gijD0 emanating from T D T0 2 T with Tj D F.Tj�1/,
j � 1

6.1 Chains and Labeling for d D 2

In order to study nonlocal effects of bisection for d D 2 we introduce now the
concept of chain [7]; this concept is not adequate for d > 2 [45, 53]. Recall that
E.T / denotes the edge of T assigned for refinement. To each T 2 T we associate
the element F.T / 2 T sharing the edge E.T / if E.T / is interior and F.T / D ;
if E.T / is on @˝ . A chain C .T;T /, with starting element T 2 T , is a sequence
fT; F.T /; : : : ; F m.T /g with no repetitions of elements and with

FmC1.T / D F k.T / for k 2 f0; : : : ; m 	 1g or FmC1.T / D ;I

see Fig. 18. We observe that if an element T belongs to two different grids, then
the corresponding chains may be different as well. Two adjacent elements T; T 0 D
F.T / are compatibly divisible (or equivalently T; T 0 form a compatible bisection
patch) if F.T 0/ D T . Hence, C .T;T / D fT; T 0g and a bisection of either T or T 0
does not propagate outside the patch.

Example (Chains): Let F D fTig12iD1 be the forest of Fig. 3. Then C .T6;T / D
fT6; T7g;C .T9;T / D fT9g, and C .T10;T / D fT10; T8; T2g are chains, but only
C .T6;T / is a compatible bisection patch.

To study the structure of chains we rely on the initial labeling (6) and the bisec-
tion rule of Sect. 1.3 (see Fig. 5):

Every triangle T 2 T with generation g.T / D i receives the label
.i C 1; i C 1; i/ with i corresponding to the refinement edge E.T /,
its side i is bisected and both new sides as well as the bisector are
labeled i C 2 whereas the remaining labels do not change.

(105)

We first show that once the initial labeling and bisection rule are set, the resulting
master forest F is uniquely determined: the label of an edge is independent of the
elements sharing this edge and no ambiguity arises in the recursion process.

Lemma 16 (Labeling). Let the initial labeling (6) for T0 and above bisection rule
be enforced. If T0 � T1 � � � � � Tn are generated according to (105), then each
side in Tk has a unique label independent of the two triangles sharing this edge.
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Proof. We argue by induction over Tk . For k D 0 the assertion is valid due to the
initial labeling. Suppose the statement is true for Tk . An edge S in TkC1 can be
obtained in two ways. The first is that S is a bisector, and so a new edge, in which
case there is nothing to prove about its label being unique. The second possibility is
that S was obtained by bisecting an edge S 0 2 Sk . Let T; T 0 2 Tk be the elements
sharing S 0, and let us assume that E.T 0/ D S 0. Let .i C 1; i C 1; i/ be the label of
T 0, which means that S is assigned the label i C 2. By induction assumption over
Tk , the label of S 0 as an edge of T is also i . There are two possible cases for the
label of T :

� Label .i C 1; i C 1; i/: this situation is symmetric, E.T / D S 0, and S 0 is bisected
with both halves getting label i C 2. This is depicted in the figure below.

i+1

i+1

i+1

i+1

i+1

i+1

i+1

i+1

i+2

i+2

i+2

i+2

T

T ’

i

S’= E(T’) = E(T)

� Label .i; i; i 	 1/: a bisection of side E.T / with label i 	 1 creates a children T 00
with label .i C 1; i C 1; i/ that is compatibly divisible with T 0. Joining the new
node of T with the midpoint of S 0 creates a conforming partition with level i C 2
assigned to S . This is depicted in the figure below.

i+1

i+1

i+1

i+1i+1
T ’ T ’

i+1

T ’’

i+1

i+1
i+1 i+1

i+1

i+2

i+2

i+2

i+2 i+1T

i i
i

i−1

i i

Therefore, in both cases the label i C 2 assigned to S is the same from both sides,
as asserted. ut

The two possible configurations displayed in the two figures above lead readily
to the following statement about generations.

Corollary 5 (Generation of consecutive elements). For any T 2 T and T ,
T 0 D F.T / 2 T we either have:
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(a) g.T / D g.T 0/ and T , T 0 are compatibly divisible, or
(b) g.T 0/ D g.T / 	 1 and T is compatibly divisible with a child of T 0.

Corollary 6 (Generations within a chain). For all T 2 T and T 2 T , its chain
C .T;T / D fTkgmkD0 with Tk D F k.T / have the property

g.Tk/ D g.T / 	 k 0 � k � m 	 1;

and Tm D Fm.T / has generation g.Tm/ D g.Tm�1/ or it is a boundary element
with lowest labeled edge on @˝ . In the first case, Tm�1 and Tm are compatibly
divisible.

Proof. Apply Corollary 5 repeatedly to consecutive elements of C .T;T /. ut

6.2 Recursive Bisection

Given an element T 2M to be refined, the routine REFINE RECURSIVE .T ; T /

recursively refines the chain C .T;T / of T , from the end back to T , and creates a
minimal conforming partition T� � T such that T is bisected once. This procedure
reads as follows:

REFINE RECURSIVE .T ; T /

if g.F.T // < g.T /
T WD REFINE RECURSIVE .T ; F .T //;

else
bisect the compatible bisection patch C .T;T /;
update T ;

end if
return (T )

We denote by C�.T;T / � T� the recursive refinement of C .T;T / (or completion
of C .T;T /) caused by bisection of T . Since REFINE RECURSIVE refines solely
compatible bisection patches, intermediate meshes are always conforming.

We refer to Fig. 19 for an example of recursive bisection C�.T10;T / of
C .T10;T / D fT10; T8; T2g in Fig. 2: REFINE RECURSIVE starts bisecting from
the end of C .T10;T /, namely T2, which is a boundary element, and goes back the
chain bisecting elements twice until it gets to T10.

We now establish a fundamental property of REFINE RECURSIVE .T ; T /

relating the generation of elements within C�.T;T /.

Lemma 17 (Recursive refinement). Let T0 satisfy the labeling (6), and let T 2 T
be a conforming refinement of T0. A call to REFINE RECURSIVE .T ; T /

terminates, for all T 2 M , and outputs the smallest conforming refinement T�
of T such that T is bisected. In addition, all newly created T 0 2 C�.T;T / satisfy

g.T 0/ � g.T /C 1: (106)
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Fig. 19 Recursive refinement of T10 2 T in Fig. 2 by REFINE RECURSIVE. This entails
refining the chain C .T10;T / D fT10; T8; T2g, starting from the last element T2 2 T , which form
alone a compatible bisection patch because its refinement edge is on the boundary, and continuing
with T8 2 T and finally T10 2 T . Note that the successive meshes are always conforming and
that REFINE RECURSIVE bisects elements in C .T10;T / twice before getting back to T10

Proof. We first observe that T has maximal generation within C .T;T /. So
recursion is applied to elements with generation � g.T /, whence the recursion
terminates. We also note that this procedure creates children of T and either children
or grandchildren of triangles Tk 2 C .T;T / D fTigmiD0 with k � 1. If T 0 is a child
of T there is nothing to prove. If not, we consider first m D 1, in which case
T 0 is a child of T1 because T0 and T1 are compatibly divisible and so have the
same generation; thus g.T 0/ D g.T1/ C 1 D g.T0/ C 1. Finally, if m > 1, then
g.Tk/ < g.T / and we apply Corollary 6 to deduce

g.T 0/ � g.Tk/C 2 � g.T /C 1;

as asserted. ut
The following crucial lemma links generation and distance between T and T 0 2

C�.T;T /, the latter being defined as

dist.T 0; T / WD inf
x02T 0;x2T jx

0 	 xj:

Lemma 18 (Distance and generation). Let T 2 M . Any newly created T 0 2
C�.T;T / by REFINE RECURSIVE .T ; T / satisfies

dist.T 0; T / � D2

2p
2 	 1 2

�g.T 0/=2; (107)

where D2 > 0 is the constant in (5).

Proof. Suppose T 0 � Ti 2 C .T;T / have been created by subdividing Ti (see
Fig. 18). If i � 1 then dist.T 0; T / D 0 and there is nothing to prove. If i > 1, then
we observe that dist.T 0; Ti�1/ D 0, whence
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dist.T 0; T / � dist.Ti�1; T /C diam.Ti�1/ �
i�1X

kD1
diam.Tk/

� D2

i�1X

kD1
2�g.Tk/=2 < D2

1

1 	 2�1=2 2
�g.Ti�1/=2;

because the generations decrease exactly by 1 along the chain C .T / according to
Corollary 5(b). Since T 0 is a child or grandchild of Ti , we deduce

g.T 0/ � g.Ti /C 2 D g.Ti�1/C 1;

whence

dist.T 0; T / < D2

21=2

1 	 2�1=2 2
�g.T 0/=2:

This is the desired estimate. ut
The recursive procedure REFINE RECURSIVE is the core of the routine

REFINE of Sect. 1.3: given a conforming mesh T 2 T and a subset M � T
of marked elements, REFINE creates a conforming refinement T� � T of T such
that all elements of M are bisected at least once:

REFINE .T ;M /

for all T 2M \ T do
T WD REFINE RECURSIVE .T ; T /;

end
return (T )

It may happen that an element T 0 2M is scheduled prior to T for refinement and
T 2 C .T 0;T /. Since the call REFINE RECURSIVE .T ; T 0/ bisects T , its two
children replace T in T . This implies that T … M \ T , which prevents further
refinement of T .

In practice, one often likes to bisect selected elements several times, for instance
each marked element is scheduled for b � 1 bisections. This can be done by
assigning the number b.T / D b of bisections that have to be executed for each
marked element T . If T is bisected then we assign b.T / 	 1 as the number of
pending bisections to its children and the set of marked elements is M WD fT 2
T j b.T / > 0g.

6.3 Conforming Meshes: Proof of Theorem 1

Figure 19 reveals that the issue of propagation of mesh refinement to keep
conformity is rather delicate. In particular, an estimate of the form

#Tk 	 #Tk�1 � �#Mk�1
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is not valid with a constant � independent of k; in fact the constant can be
proportional to k according to Fig. 19.

Binev et al. [7] for d D 2 and Stevenson [53] for d > 2 show that control of the
propagation of refinement by bisection is possible when considering the collective
effect:

#Tk 	 #T0 � �0

k�1X

jD0
#Mj :

This can be heuristically motivated as follows. Consider the set M WD Sk�1
jD0Mj

used to generate the sequence T0 � T1 � � � � � Tk DW T . Suppose that each
element T� 2 M is assigned a fixed amount C1 of money to spend on refined
elements in T , i.e., on T 2 T n T0. Assume further that �.T; T�/ is the portion of
money spent by T� on T . Then it must hold

X

T2T nT0

�.T; T�/ � C1 for all T� 2M : (108a)

In addition, we suppose that the investment of all elements in M is fair in the sense
that each T 2 T n T0 gets at least a fixed amount C2, whence

X

T�2M
�.T; T�/ � C2 for all T 2 T n T0: (108b)

Therefore, summing up (108b) and using the upper bound (108a) we readily obtain

C2.#T 	 #T0/ �
X

T2T nT0

X

T�2M
�.T; T�/ D

X

T�2M

X

T2T nT0

�.T; T�/ � C1 #M ;

which proves Theorem 1 for T and M . In the remainder of this section we design
such an allocation function �WT 
 M ! RC in several steps and prove that
recurrent refinement by bisection yields (108) provided T0 satisfies (6).

Construction of the allocation function: The function �.T; T�/ is defined with the
help of two sequences

	
a.`/


1
`D�1,

	
b.`/


1
`D0 � RC of positive numbers satisfying

X

`��1
a.`/ D A <1;

X

`�0
2�`=2 b.`/ D B <1; inf

`�1 b.`/ a.`/ D c� > 0;

and b.0/ � 1. Valid instances are a.`/ D .`C 2/�2 and b.`/ D 2`=3.
With these settings we are prepared to define �WT 
M ! RC by

�.T; T�/ WD

8
ˆ̂<

ˆ̂:

a.g.T�/	 g.T // dist.T; T�/ < D3 B 2
�g.T /=d and

g.T / � g.T�/C 1
0 else;
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where D3 WD D2

	
1 C 2.

p
2 	 1/�1
: Therefore, the investment of money by

T� 2 M is restricted to cells T that are sufficiently close and are of generation
g.T / � g.T�/ C 1. Only elements of such generation can be created during
refinement of T� according to Lemma 17. We stress that except for the definition
of B , this construction is mutidimensional and we refer to [45, 53] for details.

The following lemma shows that the total amount of money spend by the
allocation function �.T; T�/ per marked element T� is bounded.

Lemma 19 (Upper bound). There exists a constant C1 > 0 only depending on T0

such that � satisfies (108a), i.e.,

X

T2T nT0

�.T; T�/ � C1 for all T� 2M :

Proof. 1 Given T� 2 M we set g� D g.T�/ and we let 0 � g � g� C 1 be a
generation of interest in the definition of �. We claim that for such g the cardinality
of the set

T .T�; g/ D fT 2 T j dist.T; T�/ < D3 B 2
�g=2 and g.T / D gg

is uniformly bounded, i.e., #T .T�; g/ � C with C solely depending on D1;D2,
D3;B .

From (5) we learn that diam.T�/ � D22
�g�=2 � 2D22

�.g�C1/=2 � 2D22
�g=2

as well as diam.T / � D22
�g=2 for any T 2 T .T�; g/. Hence, all elements of the

set T .T�; g/ lie inside a ball centered at the barycenter of T� with radius .D3B C
3D2/2

�g=2. Again relying on (5) we thus conclude

#T .T�; g/D12
�g �

X

T2T .T�;g/

jT j � c.D3B C 3D2/
22�g;

whence #T .T�; g/ � c D�11 .D3B C 3D2/
2 DW C .

2 Accounting only for non-zero contributions �.T; T�/ we deduce

X

T2T nT0

�.T; T�/ D
g�C1X

gD0

X

T2T .T�;g/

a.g� 	 g/ � C
1X

`D�1
a.`/ D CA DW C1;

which is the desired upper bound. ut
The definition of � also implies that each refined element receives a fixed amount

of money. We show this next.

Lemma 20 (Lower bound). There exists a constant C2 > 0 only depending on T0

such that � satisfies (108b), i.e.,
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X

T�2M
�.T; T�/ � C2 for all T 2 T n T0:

Proof. 1 Fix an arbitrary T0 2 T nT0. Then there is an iteration count 1 � k0 � k
such that T0 2 Tk0 and T0 … Tk0�1. Therefore there exists a T1 2 Mk0�1 �
M such that T0 is generated during REFINE RECURSIVE .Tk0�1; T1/. Iterating
this process we construct a sequence fTj gJjD1 � M with corresponding iteration
counts fkj gJjD1 such that Tj is created by REFINE RECURSIVE .Tkj�1; TjC1/.
The sequence is finite since the iteration counts are strictly decreasing and thus
kJ D 0 for some J > 0, or equivalently TJ 2 T0.

Since Tj is created during refinement of TjC1 we infer from (106) that

g.TjC1/ � g.Tj /	 1:

Accordingly, g.TjC1/ can decrease the previous value of g.Tj / at most by 1. Since
g.TJ / D 0 there exists a smallest value s such that g.Ts/ D g.T0/ 	 1. Note that
for j D 1; : : : ; s we have �.T0; Tj / > 0 if dist.T0; Tj / � D3Bg

�g.T0/=d .
2 We next estimate the distance dist.T0; Tj /. For 1 � j � s and ` � 0 we define

the set
T .T0; `; j / WD fT 2 fT0; : : : ; Tj�1g j g.T / D g.T0/C `g

and denote by m.`; j / its cardinality. The triangle inequality combined with an
induction argument yields

dist.T0; Tj / � dist.T0; T1/C diam.T1/C dist.T1; Tj /

�
jX

iD1
dist.Ti�1; Ti /C

j�1X

iD1
diam.Ti /:

We apply (107) for the terms of the first sum and (5) for the terms of the second sum
to obtain

dist.T0; Tj / < D2

2p
2 	 1

jX

iD1
2�g.Ti�1/=2 CD2

j�1X

iD1
2�g.Ti /=2

� D2

�
1C 2p

2 	 1
� j�1X

iD0
2�g.Ti /=2

D D3

1X

`D0
m.`; j / 2�.g.T0/C`/=2

D D32
�g.T0/=2

1X

`D0
m.`; j / 2�`=2:
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For establishing the lower bound we distinguish two cases depending on the size of
m.`; s/. This is done next.
3 Case 1: m.`; s/ � b.`/ for all ` � 0. From this we conclude

dist.T0; Ts/ < D32
�g.T0/=2

1X

`D0
b.`/ 2�`=2 D D3B 2

�g.T0/=2

and the definition of � then readily implies

X

T�2M
�.T0; T�/ � �.T0; Ts/ D a.g.Ts/ 	 g.T0// D a.	1/ > 0:

4 Case 2: There exists ` � 0 such that m.`; s/ > b.`/. For each of these `’s there
exists a smallest j D j.`/ such that m.`; j.`// > b.`/. We let `� be the index `
that gives rise to the smallest j.`/, and set j � D j.`�/. Consequently

m.`; j � 	 1/ � b.`/ for all ` � 0 and m.`�; j �/ > b.`�/:

As in Case 1 we see dist.T0; Ti / < D3B 2
�g.T0/=2 for all i � j �	1, or equivalently

dist.T0; Ti / < D3B 2
�g.T0/=2 for all Ti 2 T .T0; `; j

�/:

We next show that the elements in T .T0; `
�; j �/ spend enough money on T0. We

first consider `� D 0 and note that T0 2 T .T0; 0; j
�/. Since m.0; j �/ > b.0/ � 1

we discover j � � 2. Hence, there is an Ti 2 T .T0; 0; j
�/ \M , which yields the

estimate

X

T�2M
�.T0; T�/ � �.T0; Ti / D a.g.Ti /	 g.T0// D a.0/ > 0:

For `� > 0 we see that T0 62 T .T0; `
�; j �/, whence T .T0; `

�; j �/ � M .
In addition, �.T0; Ti / D a.`�/ for all Ti 2 T .T0; `

�; j �/. From this we conclude

X

T�2M
�.T0; T�/ �

X

T�2T .T0;`�;j�/

�.T0; T�/ D m.`�; j �/ a.`�/

> b.`�/ a.`�/ � inf
`�1 b.`/ a.`/ D c� > 0:

5 In summary we have proved the assertion since for any T0 2 T nT0

X

T�2M
�.T0; T�/ � minfa.	1/; a.0/; c�g DW C2 > 0: ut
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Remark 11 (Complexity with b > 1 bisections). To show the complexity estimate
when REFINE performs b > 1 bisections, the set Mk is to be understood as
a sequence of single bisections recorded in sets fMk.j /gbjD1, which belong to
intermediate triangulations between Tk and TkC1 with #Mk.j / � 2j�1#Mk,
j D 1; : : : ; b. Then we also obtain Theorem 1 because

bX

jD1
#Mk.j / �

bX

jD1
2j�1#Mk D .2b 	 1/#Mk:

In practice, it is customary to take b D d [50].

6.4 Nonconforming Meshes: Proof of Lemma 3

We now examine briefly the refinement process for quadrilaterals with one hanging
node per edge, which gives rise to the so-called 1-meshes. The refinement of T 2 T
might affect four elements of T for d D 2 (or 2d elements for any dimension
d � 2), all contained in the refinement patch R.T;T / of T in T . The latter is
defined as

R.T;T / WD fT 0 2 T j T 0 and T share an edge and g.T 0/ � g.T /g;
and is called compatible provided g.T 0/ D g.T / for all T 0 2 R.T;T /. The genera-
tion gap between elements sharing an edge, in particular those inR.T;T /, is always
� 1 for 1-meshes, and is 0 if R.T;T / is compatible. The element size satisfies

hT D 2�g.T /hT0 8T 2 T ;

where T0 2 T0 is the ancestor of T in the initial mesh T0. Lemma 2 is thus valid

hT < NhT � D22
�g.T / 8T 2 T : (109)

Given an element T 2M to be refined, the routine REFINE RECURSIVE .T ; T /

refines recursively R.T;T / in such a way that the intermediate meshes are always
1-meshes, and reads as follows:

REFINE RECURSIVE .T ; T /

if g D minfg.T 00/ W T 00 2 R.T;T g < g.T /
let T 0 2 R.T;T / satisfy g.T 0/ D g
T WD REFINE RECURSIVE .T ; T 0/;

else
subdivide T ;
update T upon replacing T by its children;

end if
return (T )
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The conditional prevents the generation gap within R.T;T / from getting larger
than 1. If it fails, then the refinement patch R.T;T / is compatible and refining T
increases the generation gap from 0 to 1without violating the 1-mesh structure. This
implies Lemma 17: for all newly created elements T 0 2 T�

g.T 0/ � g.T /C 1: (110)

In addition, REFINE RECURSIVE .T ; T / creates a minimal 1-mesh T� � T
refinement of T so that T is subdivided only once. This yields Lemma 18: there
exist a geometric constantD > 0 such that for all newly created elements T 0 2 T�

dist.T; T 0/ � D2g.T 0/: (111)

The procedure REFINE RECURSIVE is the core of REFINE, which is
conceptually identical to that in Sect. 6.2. Suppose that each marked element
T 2M is to be subdivided � � 1 times. We assign a flag q.T / to each element T
which is initialized q.T / D � if T 2M and q.T / D 0 otherwise. The marked set
M is then the set of elements T with q.T / > 0, and every time T is subdivided it
is removed from T and replaced by its children, which inherit the flag q.T / 	 1.
This avoids the conflict of subdividing again an element that has been previously
refined by REFINE RECURSIVE. The procedure REFINE .T ;M / reads

REFINE .T ;M /

for all T 2M \ T do
T WD REFINE RECURSIVE .T ; T /;

end
return (T )

and its output is a minimal 1-mesh T� � T , refinement of T , so that all marked
elements of M are refined at least � times. Since T� has one hanging node per side
it is thus admissible in the sense (22). However, the refinement may spread outside
M and the issue of complexity of REFINE again becomes non-trivial.

With the above ingredients in place, the proof of Lemma 3 follows along the lines
of Sect. 6.3; see Problem 50.

6.5 Notes

The complexity theory for bisection hinges on the initial labeling (6) for d D 2.
That such a labeling exists is due to Mitchell [39, Theorem 2.9] and Binev et al.
[7, Lemma 2.1], but the proofs are not constructive. A couple of global bisections
of T0, as depicted in Fig. 6, guarantee (6) over the ensuing mesh. For d > 2 the
corresponding initial labeling is due to Stevenson [53, Sect. 4 – Condition (b)], who
in turn improves upon Maubach [36] and Traxler [54] and shows how to impose it
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upon further refining each element of T0. We refer to the survey [45] for a discussion
of this condition: a key consequence is that every uniform refinement of T0 gives a
conforming bisection mesh.

The fundamental properties of chains, especially Lemmas 17 and 18, along with
the clever ideas of Sect. 6.3 are due to Binev et al. [7] for d D 2, and Stevenson for
d > 2; see [45]. Bonito and Nochetto [9] observed, in the context of dG methods,
that such properties extend to admissible nonconforming meshes.

6.6 Problems

Problem 47 (Largest number of bisections). Show that REFINE RECURSIVE
.T ; T / for d D 2 bisects T exactly once and all the elements in the chain C .T;T /

at most twice. This property extends to d > 2 provided the initial labeling of
Stevenson [53, Sect. 4 – Condition (b)] is enforced.

Problem 48 (Properties of generation for quad-refinement). Prove (110) and
(111).

Problem 49 (Largest number of subdivisions for quads). Show that the pro-
cedure REFINE RECURSIVE .T ; T / subdivides T exactly once and never
subdivides any other quadrilateral of T more than once.

Problem 50 (Lemma 3). Combine (110) and (111) to prove Lemma 3 for any
� � 1.

7 Convergence Rates

We have already realized in Sect. 1.6 that we can a priori accommodate the degrees
of freedom in such a way that the finite element approximation retains optimal
energy error decay for a class of singular functions. This presumes knowledge of
the exact solution u. At the same time, we have seen numerical evidence in Sect. 5.4
that the standard AFEM of Sect. 5.1, achieves such a performance without direct
access to the exact solution u. Practical experience strongly suggests that this is
even true for a much larger class of problems and adaptive methods. The challenge
ahead is to reconcile these two distinct aspects of AFEM.

A crucial insight in such a connection for the simplest scenario, the Laplacian
and piecewise constant forcing f , is due to Stevenson [52]:

Any marking strategy that reduces the energy error relative to the
current value must contain a substantial portion of ET .U /, and so it
can be related to Dörfler Marking.

(112)
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This allows one to compare meshes produced by AFEM with optimal ones and to
conclude a quasi-optimal error decay. We discuss this issue in Sect. 7.3. However,
this is not enough to handle the model problem (87) with variableA and f .

The objective of this section is to study (87) for general dataA and f . This study
hinges on the total error and its relation with the quasi error, which is contracted by
AFEM. This approach allows us to improve upon and extend Stevenson [52] to
variable data. In doing so, we follow closely Cascón et al. [14]. The present theory,
however, does not extend to noncoercive problems and marking strategies other than
Dörfler’s. These remain important open questions.

As in Sect. 5, u will always be the weak solution of (87) and, except when stated
otherwise, any explicit constant or hidden constant in . may depend on the uniform
shape-regularity of T , the dimension d , the polynomial degree n, the (global)
eigenvalues of A, and the oscillation oscT0 .A/ of A on the initial mesh T0, but
not on a specific grid T 2 T .

7.1 The Total Error

We first introduce the concept of total error for the Galerkin function U 2 V .T /

jjju 	 U jjj2˝ C osc2T .U / (113)

(see Mekchay and Nochetto [37]), and next assert its equivalence to the quasi error
(99). In fact, in view of the upper and lower a posteriori error bounds (94), and

osc2T .U / � E 2
T .U /;

we have

C2 E 2
T .U / � jjju 	 U jjj2˝ C osc2T .U /

� jjju 	 U jjj2˝ C E 2
T .U / � .1C C1/ E 2

T .U /;

whence
E 2

T .U / � jjju 	 U jjj2˝ C osc2T .U /: (114)

Since AFEM selects elements for refinement based on information extracted
exclusively from the error indicators fET .U; T /gT2T , we realize that the decay
rate of AFEM must be characterized by the total error. Moreover, on invoking the
upper bound (94a) again, we also see that the total error is equivalent to the quasi
error

jjju 	 U jjj2˝ C osc2T .U / � jjju 	 U jjj2˝ C E 2
T .U /:

The latter is the quantity being strictly reduced by AFEM (Theorem 9). Finally,
the total error satisfies the following Cea’s type-lemma, or equivalently AFEM is
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quasi-optimal regarding the total error. In fact, if the oscillation vanishes, then this
is Cea’s Lemma stated in Theorem 4; see also Problem 12.

Lemma 21 (Quasi-optimality of total error). There exists an explicit constant
�2, which depends on A T0, n and d , such that for any T 2 T and the corre-
sponding Galerkin solution U 2 V .T / there holds

jjju	 U jjj2˝ C osc2T .U / � �2 inf
V 2V .T /

�
jjju	 V jjj2˝ C osc2T .V /

�
:

Proof. For � > 0 choose V� 2 V .T /, with

jjju 	 V�jjj2˝ C osc2T .V�/ � .1C �/ inf
V 2V .T /

�
jjju 	 V jjj2˝ C osc2T .V /

�
:

Applying Problem 46 with T� D T , V D U , and V� D V� yields

osc2T .U / � 2 osc2T .V�/C C3 jjjU 	 V�jjj2˝ ;

with
C3 WD �1 oscT0 .A/

2:

Since U 2 V .T / is the Galerkin solution, U 	 V� 2 V .T / is orthogonal to u	 U
in the energy norm, whence jjju 	 U jjj2˝ C jjjU 	 V�jjj2˝ D jjju 	 V�jjj2˝ and

jjju 	 U jjj2˝ C osc2T .U / �
	
1C C3


 jjju	 V�jjj2˝ C 2 osc2T .V�/

� .1C �/�2 inf
V 2V .T /

�
jjju 	 U jjj2˝ C osc2T .V /

�
;

with �2 D max
˚
2; 1C C3

�
. The assertion follows upon taking � ! 0. ut

7.2 Approximation Classes

In view of (114) and Lemma 21, the definition of approximation class As hinges on
the concept of best total error:

inf
V 2V .T /

�
jjju 	 V jjj2˝ C osc2T .V /

�
:

We first let TN � T be the set of all possible conforming refinements of T0 with at
most N elements more than T0, i.e.,

TN D fT 2 T j #T 	 #T0 � N g:
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The quality of the best approximation in TN with respect to the total error is
characterized by

�.N I u; f;A/ WD inf
T 2TN

inf
V 2V .T /

	 jjju 	 V jjj2˝ C osc2T .V /

1=2

;

and the approximation class As for s > 0 is defined by

As WD
n
.v; f;A/ j jv; f;Ajs WD sup

N>0

	
Ns �.N I v; f;A/
 <1

o
:

Therefore, if .v; f;A/ 2 As , then �.N I v; f;A/ . N�s decays with rate N�s .
We point out the upper bound s � n=d for polynomial degree n � 1; this can be
seen with full regularity and uniform refinement (see (14)). Note that if .v; f;A/ 2
As then for all " > 0 there exist T" � T0 conforming and V" 2 V .T"/ such that
(see Problem 51)

jjjv 	 V"jjj2˝ C osc2T"
.V"/ � "2 and #T" 	 #T0 � jv; f;Aj1=ss "�1=s: (115)

In addition, thanks to Lemma 21, the solution u with data .f;A/ satisfies

�.N I u; f;A/ � inf
T 2TN

˚
ET .U;T / j U D SOLVE.V .T //

�
: (116)

This establishes a direct connection between As and AFEM.

Mesh overlay: For the subsequent discussion it will be convenient to merge two
conforming meshes T1;T2 2 T . Given the corresponding forests F1;F2 2 F we
consider the set F1 [F2 2 F , which satisfies T0 � F1 [F2. Then F1 [F2 is a
forest and its leaves are called the overlay of F1 and F2:

T1 ˚T2 D T .F1 [F2/:

We next bound the cardinality of T1˚T2 in terms of that of T1 and T2; see [14,52].

Lemma 22 (Overlay). The overlay T D T1 ˚T2 is conforming and

#T � #T1 C #T2 	 #T0: (117)

Proof. See Problem 52. ut

Discussion of As: We now would like to show a few examples of membership in As

and highlight some important open questions. We first investigate the class As for
piecewise polynomial coefficient matrixA of degree� n over T0. In this simplified
scenario, the oscillation oscT .U / reduces to data oscillation (see (58) and (93)):

oscT .U / D oscT .f / WD kh.f 	 P2n�2 f /kL2.˝/:
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We then have the following characterization of As in terms of the standard approxi-
mation classes [7, 8, 52]:

As WD
n
v 2 V j jvjAs

WD sup
N>0

	
Ns inf

T 2TN

inf
V 2V .T /

jjjv 	 V jjj˝


<1

o
;

NAs WD
n
g 2 L2.˝/ j jgj NAs

WD sup
N>0

	
Ns inf

T 2TN

oscT .g/


<1

o
:

Lemma 23 (Equivalence of classes). LetA be piecewise polynomial of degree�n
over T0. Then .u; f;A/ 2 As if and only if .u; f / 2 As 
 NAs and

ju; f;Ajs � jujAs
C jf j NAs

: (118)

Proof. It is obvious that .u; f;A/ 2 As implies .u; f / 2 As 
 NAs as well as the
bound jujAs

C jf j NAs
. ju; f;Ajs:

In order to prove the reverse inequality, let .u; f / 2 As 
 NAs . Then there exist
T1;T2 2 TN so that jjju 	 UT1 jjj˝ � jujAs

N�s where UT1 2 V .T1/ is the best
approximation and oscT2 .f;T2/ � jf j NAs

N�s:
The overlay T D T1 ˚T2 2 T2N according to (117), and

jjju 	 UT jjj˝CoscT .f / � jjju 	 UT1 jjj˝CoscT2 .f / � 2s
	 jujAs

Cjf j NAs



.2N /�s:

This yields .u; f;A/ 2 As together with the bound ju; f;Ajs . jujAs
C jf j NAs

. ut

Corollary 7 (Membership in A1=2 with piecewise linear A). Let d D 2, n D 1,
and u 2 H1

0 .˝/ be the solution of the model problem with piecewise linear A and
f 2 L2.˝/. If u 2 W 2

p .˝IT0/ is piecewise W 2
p over the initial grid T0 and p > 1,

then .u; f;A/ 2 A1=2 and

ju; f;Aj1=2 . kD2ukLp.˝IT0/ C kf kL2.˝/: (119)

Proof. Since f 2 L2.˝/, we realize that for all uniform refinements T 2 T we
have

oscT .f / D kh.f 	 P0f /kL2.˝/ � hmax.T /kf kL2.˝/ . .#T /�1=2kf kL2.˝/:

This implies f 2 NA1=2 with jf j NA1=2
. kf kL2.˝/. Moreover, for u 2 W 2

p .˝IT0/

we learn from Corollary 2 and Remark 6 of Sect. 1.6 that u 2 A1=2 and jujA1=2
.

kD2ukL2.˝IT0/. The assertion then follows from Lemma 23. ut
Corollary 8 (Membership in A1=2 with variable A). Let d D 2, n D 1, p > 1,
f 2 L2.˝/. Let A 2 W 11.˝;T0/ be piecewise Lipschitz and u 2 W 2

p .˝IT0/ \
H1
0 .˝/ be piecewise W 2

p over the initial mesh T0. Then .u; f;A/ 2 A1=2 and

ju; f;Aj1=2 . kD2ukLp.˝IT0/ C kf kL2.˝/ C kAkW 1
1.˝IT0/

: (120)
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Proof. Combine Problem 55 with Corollary 2. ut
Corollary 9 (Membership in As with s < 1=d ). Let d � 2, n D 1, 1 < t < 2,
p > 1, and f 2 L2.˝/. Let A 2 W 11.˝;T0/ be piecewise Lipschitz and u 2
W t
p.˝IT0/\H1

0 .˝/ be piecewiseW t
p over the initial mesh T0 with t 	 d

p
> 1	 d

2
.

Then .u; f;A/ 2 A.t�1/=d and

ju; f;Aj.t�1/=d . kDtukLp.˝IT0/ C kf kL2.˝/ C kAkW 1
1.˝IT0/

: (121)

Proof. Combine Problem 9 with Problem 55. ut
Example 2 (Pre-asymptotics). Corollary 7 shows that oscillation decays with rate
1=2 for f 2 L2.˝/. Since the decay rate of the total error is s � 1=2, oscillation can
be ignored asymptotically; this is verified in Problems 56–58. However, oscillation
may dominate the total error, or equivalently the class As may fail to describe the
behavior of jjju 	 Ukjjj˝ , in the early stages of adaptivity. In fact, we recall from
Problem 32 that the discrete solution Uk D 0, and jjju 	 Ukjjj˝ � 2�K is constant
for as many steps k � K as desired. In contrast, Ek.Uk/ D osck.Uk/ D kh.f 	Nf /kL2.˝/ D khf kL2.˝/ reduces strictly for k � K but overestimates jjju 	 Ukjjj˝ .
The fact that the preasymptotic regime k � K for the energy error could be made
arbitrarily long would be problematic if we were to focus exclusively on jjju 	 Ukjjj˝ .

In practice, this effect is typically less dramatic because f is not orthogonal to
V .Tk/. Figure 20 displays the behavior of the AFEM for the smooth solution uS

uS.x; y/ D 10�2a�1i .x2 C y2/ sin2.��x/ sin2.��y/; 1 � i � 4 (122)

of the model problem (87) with discontinuous coefficients fai g4iD1 in checkerboard
pattern as in Sect. 5.4 and frequencies � D 5; 10, and 15. We can see that the error
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Fig. 20 Decay of the energy error (left) and the estimator (right) for the smooth solution uS of
(122) with frequencies � D 5; 10, and 15. The energy error exhibits a frequency-dependent plateau
in the preasymptotic regime and later an optimal decay. This behavior is allowed by As
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exhibits a frequency-dependent plateau in the preasymptotic regime and later an
optimal decay. In contrast, the estimator decays always with the optimal rate. Since
all decisions of the AFEM are based on the estimator, this behavior has to be
expected and is consistent with our notion of approximation class As , which can
be characterized just by the estimator according to (116).

7.3 Quasi-Optimal Cardinality: Vanishing Oscillation

In this section we follow the ideas of Stevenson [52] for the simplest scenario with
vanishing oscillation oscT .U / D 0, and thereby explore the insight (112). We recall
that in this case the a posteriori error estimates (94) become

C2 E 2
T .U / � jjju 	 U jjj2˝ � C1 E 2

T .U /: (123)

It is then evident that the ratio C2=C1 � 1, between the reliability constant C1
and the efficiency constant C2, is a quality measure of the estimator ET .U /: the
closer to 1 the better! This ratio is usually closer to 1 for non-residual estimators,
such as those discussed in Sect. 5.5, but their theory is a bit more cumbersome.

Assumptions for optimal decay rate: The following are further restrictions on AFEM
to achieve optimal error decay, as predicted by the approximation class As .

Assumption 1 (Marking parameter: vanishing oscillation). The parameter # of
Dörfler marking satisfies # 2 .0; #�/ with

#� WD
s
C2

C1
: (124)

Assumption 2 (Cardinality of M ). MARK selects a set M with minimal cardi-
nality.

Assumption 3 (Initial labeling). The labeling of the initial mesh T0 satisfies (6)
for d D 2 or its multidimensional counterpart for d > 2 [45, 52].

A few comments about these assumptions are now in order.

Remark 12 (Threshold #� < 1). It is reasonable to be cautious in making marking
decisions if the constants C1 and C2 are very disparate, and thus the ratio C2=C1 is
far from 1. This justifies the upper bound #� � 1 in Assumption 1.

Remark 13 (Minimal M ). According to the equidistribution principle (16) and the
local lower bound (68) without oscillation, it is natural to mark elements with largest
error indicators. This leads to a minimal set M , as stated in Assumption 2, and turns
out to be crucial to link AFEM with optimal meshes and approximation classes.
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Remark 14 (Initial triangulation). Assumption 3 guarantees the complexity esti-
mate of module REFINE stated in Theorem 1 and proved in Sect. 6.3:

#Tk 	 #T0 � �0

k�1X

jD0
#Mj :

Assumption 3 is rather restrictive for dimension d > 2. Any other refinement giving
the same complexity estimate can replace REFINE together with Assumption 3.

Even though we cannot expect local upper bounds between the continuous and
discrete solution, the following crucial result shows that this is not the case between
discrete solutions on nested meshes T� � T : what matters is the set of elements of
T which are no longer in T�.

Lemma 24 (Localized upper bound). Let T ;T� 2 T satisfy T� � T and let
R WD RT!T�

be the refined set. If U 2 V , U� 2 V� are the corresponding
Galerkin solutions, then

jjjU� 	 U jjj2˝ � C1 E 2
T .U;R/: (125)

Proof. See Problem 53. ut
We are now ready to explore Stevenson’s insight (112) for the simplest scenario.

Lemma 25 (Dörfler marking: vanishing oscillation). Let # satisfy Assumption 1
and set � WD 1	#2=#2� > 0. Let T� � T and the corresponding Galerkin solution
U� 2 V .T�/ satisfy

jjju 	 U�jjj2˝ � � jjju 	 U jjj2˝ : (126)

Then the refined set R D RT!T�
satisfies the Dörfler property

ET .U;R/ � # ET .U;T /: (127)

Proof. Since � < 1 we use the lower bound in (123), in conjunction with (126)
and Pythagoras equality (92), to derive

.1	 �/C2E 2
T .U;T / � .1 	 �/ jjju 	 U jjj2˝

� jjju 	 U jjj2˝ 	 jjju 	 U�jjj2˝ D jjjU 	 U�jjj2˝ :

In view of Lemma 24, we thus deduce

.1 	 �/C2E 2
T .U;T / � C1E 2

T .U;R/;

which is the assertion in disguise. ut



214 R.H. Nochetto and A. Veeser

To examine the cardinality of Mk in terms of jjju 	 Ukjjj˝ we must relate AFEM
with the approximation class As . Even though this might appear like an undoable
task, the key to unravel this connection is given by Lemma 25. We show this now.

Lemma 26 (Cardinality of Mk). Let Assumptions 1 and 2 hold. If u 2 As then

#Mk . juj1=ss jjju 	 Ukjjj�1=s˝ 8k � 0: (128)

Proof. We invoke that u 2 As , together with Problem 51 with "2 D � jjju 	 Ukjjj2˝ ,
to find a mesh T" 2 T and the Galerkin solution U" 2 V .T"/ so that

jjju 	 U"jjj2˝ � "2; #T" 	 #T0 . juj 1ss "� 1s :

Since T" may be totally unrelated to Tk , we introduce the overlay T� D T" ˚ Tk .
We exploit the property T� � T" to conclude that the Galerkin solution U� 2
V .T�/ satisfies (127):

jjju 	 U�jjj2˝ � jjju 	 U"jjj2˝ � "2 D � jjju 	 U jjj2˝ :

Therefore, Lemma 25 implies that the refined set R D RT!T�
satisfies a Dörfler

marking with parameter # < #�. But MARK delivers a minimal set Mk with this
property, according to Assumption 2, whence

#Mk � #R � #T� 	 #Tk � #T" 	 #T0 . juj 1ss "� 1s ;

where we use Lemma 22 to account for the overlay. The proof is complete. ut
Proposition 4 (Quasi-optimality: vanishing oscillation). Let Assumptions 1–3
hold. If u 2 As , then AFEM gives rise to a sequence .Tk;Vk; Uk/1kD0 such that

jjju 	 Ukjjj˝ . jujs .#Tk 	 #T0/
�s 8k � 1:

Proof. We make use of Assumption 3, along with Theorem 1, to infer that

#Tk 	 #T0 � �0

k�1X

jD0
#Mj . juj 1ss

k�1X

jD0

ˇ̌̌̌ˇ̌
u 	 Uj

ˇ̌̌̌ˇ̌� 1s
˝
:

We now use the contraction property (97) of Lemma 15

jjju 	 Ukjjj˝ � ˛k�j
ˇ̌̌̌ˇ̌

u 	 Uj
ˇ̌̌̌ˇ̌
˝

to replace the sum above by
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k�1X

jD0

ˇ̌̌̌ˇ̌
u 	 Uj

ˇ̌̌̌ˇ̌� 1s
˝
� jjju 	 Ukjjj�

1
s

˝

k�1X

jD0
˛
k�j
s <

˛
1
s

1 	 ˛ 1
s

jjju 	 Ukjjj�
1
s

˝ ;

because ˛ < 1 and the series is summable. This completes the proof. ut

7.4 Quasi-Optimal Cardinality: General Data

In this section we remove the restriction oscT .U / D 0, and thereby make use of the
basic ingredients developed in Sects. 7.1 and 7.2. Therefore, we replace the energy
error by the total error and the linear approximation class As for u by the nonlinear
class As for the triple .u; f;A/. To account for the presence of general f andA, we
need to make an even more stringent assumption on the threshold #�.

Assumption 4 (Marking parameter: general data). Let C3 D �1 osc2T0
.A/ be

the constant in Problem 46 and Lemma 21. The marking parameter # satisfies # 2
.0; #�/ with

#� D
s

C2

1C C1.1C C3/ : (129)

We now proceed along the same lines as those of Sect. 7.3.

Lemma 27 (Dörfler marking: general data). Let Assumption 4 hold and set� WD
1
2
.1 	 #2

#2�
/ > 0. If T� � T and the corresponding Galerkin solution U� 2 V .T�/

satisfy
jjju 	 U�jjj2˝ C osc2T�

.U�/ � �
	 jjju 	 U jjj2˝ C osc2T .U /



; (130)

then the refined set R D RT!T�
satisfies the Dörfler property

ET .U;R/ � # ET .U;T /: (131)

Proof. We split the proof into four steps.
1 In view of the global lower bound (94b)

C2 E 2
T .U / � jjju 	 U jjj2˝ C osc2T .U /

and (130), we can write

.1 	 2�/C2 E 2
T .U /� .1 	 2�/

	 jjju 	 U jjj2˝ C osc2T .U /



� 	 jjju 	 U jjj2˝ 	 2 jjju 	 U�jjj2˝

C 	 osc2T .U /	 2 osc2T�

.U�/


:

2 Combining the Pythagoras orthogonality relation (92)

jjju 	 U jjj2˝ 	 jjju 	 U�jjj2˝ D jjjU 	 U�jjj2˝
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with the localized upper bound Lemma 24 yields

jjju 	 U jjj2˝ 	 2 jjju 	 U�jjj2˝ � jjjU 	 U�jjj2˝ � C1 E 2
T .U;R/:

3 To deal with oscillation we decompose the elements of T into two disjoint sets:
R and T nR. In the former case, we have

osc2T .U;R/	 2 osc2T�
.U�;R/ � osc2T .U;R/ � E 2

T .U;R/;

because oscT .U; T / � ET .U; T / for all T 2 T . On the other hand, we use that
T nR D T \T� and apply Problem 46 in conjunction with Lemma 24 to arrive at

osc2T .U;T nR/	 2 osc2T�
.U�;T nR/ � C3 jjjU 	 U�jjj2˝ � C1C3E 2

T .U;R/:

Adding these two estimates gives

osc2T .U /	 2 osc2T�
.U�/ � .1C C1C3/E 2

T .U;R/:

4 Returning to 1 we realize that

.1 	 2�/C2 E 2
T .U;T / � 	1C C1.1C C3/



E 2

T .U;R/;

which is the asserted estimate (131) in disguise. ut
Lemma 28 (Cardinality of Mk: general data). Let Assumptions 2 and 4 hold.
If .u; f;A/ 2 As , then

#Mk . ju; f;Aj1=ss
	 jjju 	 Ukjjj˝ C osck.Uk/


�1=s 8k � 0: (132)

Proof. We split the proof into three steps.
1 We set "2 WD ���12

	 jjju 	 Ukjjj2˝ C osc2k.Uk/



with � D 1
2

	
1 	 #2

#2�



> 0 as in

Lemma 27 and �2 given Lemma 21. Since .u; f;A/ 2 As , in view of Problem 51
there exists T" 2 T and U" 2 V .T"/ such that

jjju 	 U"jjj2˝ C osc2".U"/ � "2 and #T" 	 #T0 . ju; f;Aj1=2s "�1=s:

Since T" may be totally unrelated to Tk we introduce the overlay T� D Tk ˚T":

2 We claim that the total error over T� reduces by a factor � relative to that one
over Tk . In fact, since T� � T" and so V .T�/ � V .T"/, we use Lemma 21 to
obtain

jjju 	 U�jjj2˝ C osc2T�
.U�/ � �2

�
jjju 	 U"jjj2˝ C osc2".U"/

�

� �2"
2 D � 	 jjju 	 Ukjjj2˝ C osc2k.Uk/



:
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Upon applying Lemma 27 we conclude that the set R D RTk!T�
of refined

elements satisfies a Dörfler marking (131) with parameter # < #�.
3 According to Assumption 2, MARK selects a minimal set Mk satisfying this

property. Therefore, we deduce

#Mk � #R � #T� 	 #Tk � #T" 	 #T0 . ju; f;Aj1=ss "�1=s;

where we have employed Lemma 22 to account for the cardinality of the overlay.
Finally, recalling the definition of " we end up with the asserted estimate (132). ut
Remark 15 (Blow-up of constant). The constant hidden in (132) blows up as # "#�
because � # 0; see Problem 54.

We are ready to prove the main result of this section, which combines Theorem
9 and Lemma 28.

Theorem 10 (Quasi-optimality: general data). Let Assumptions 2–4 hold.
If .u; f;A/ 2 As , then AFEM gives rise to a sequence .Tk;Vk; Uk/1kD0 such
that

jjju 	 Ukjjj˝ C osck.Uk/ . ju; f;Ajs .#Tk 	 #T0/
�s 8k � 1:

Proof. 1 Since no confusion arises, we use the notation oscj D oscj .Uj / and
Ej D Ej .Uj /. In light of Assumption 3, which yields Theorem 1, and (132) we
have

#Tk 	 #T0 .
k�1X

jD0
#Mj . ju; f;Aj1=ss

k�1X

jD0

	 ˇ̌̌̌ˇ̌
u 	 Uj

ˇ̌̌̌ˇ̌2
˝
C osc2j


�1=.2s/
:

2 Let � > 0 be the scaling factor in the (contraction) Theorem 9. The lower bound
(94b) along with oscj � Ej implies

ˇ̌̌̌ˇ̌
u 	 Uj

ˇ̌̌̌ˇ̌2
˝
C � osc2j �

ˇ̌̌̌ˇ̌
u 	 Uj

ˇ̌̌̌ˇ̌2
˝
C � E 2

j �
�
1C �

C2

�	 ˇ̌̌̌ˇ̌
u 	 Uj

ˇ̌̌̌ˇ̌2
˝
C osc2j



:

3 Theorem 9 yields for 0 � j < k

jjju 	 Ukjjj2˝ C � E 2
k � ˛2.k�j /

	 ˇ̌̌̌ˇ̌
u 	 Uj

ˇ̌̌̌ˇ̌2
˝
C � E 2

j



;

whence

#Tk 	 #T0 . ju; f;Aj1=ss
	 jjju 	 Ukjjj2˝ C � E 2

k


�1=.2s/ k�1X

jD0
˛.k�j /=s:
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Since
Pk�1

jD0 ˛.k�j /=s D
Pk

jD1 ˛j=s <
P1

jD1 ˛j=s < 1 because ˛ < 1, the
assertion follows immediately. ut

We conclude this section with several applications of Theorem 10.

Corollary 10 (Estimator decay). Let Assumptions 2–4 be satisfied. If .u; f;A/ 2
As then the estimator Ek.Uk/ satisfies

Ek.Uk/ . ju; f;Aj1=ss .#Tk 	 #T0/
�s 8k � 1:

Proof. Use (114) and Theorem 10. ut
Corollary 11 (W 2

p -regularity with piecewise linearA). Let d D 2, the polynomial
degree n D 1, f 2 L2.˝/, and let A be piecewise linear over T0. If u 2
W 2
p .˝IT0/ for p > 1, then AFEM gives rise to a sequence fTk;Vk; Ukg1kD0

satisfying osck.Uk/ D khk.f 	 P0 f /kL2.˝/ and for all k � 1

jjju 	 Ukjjj˝ C osck.Uk/ .
�
kD2ukLp.˝IT0/ C kf kL2.˝/

�
.#Tk 	 #T0/

�1=2:

Proof. Combine Corollary 7 with Theorem 10. ut
Corollary 12 (W 2

p -regularity with variable A). Assume the setting of
Corollary 11, but let A be piecewise Lipschitz over the initial grid T0. Then AFEM
gives rise to a sequence fTk;Vk; Ukg1kD0 satisfying for all k � 1

jjju 	 Ukjjj˝ C osck.Uk/

.
�
kD2ukLp.˝IT0/ C kf kL2.˝/ C kAkW 1

1.˝IT0/

�
.#Tk 	 #T0/

�1=2:

Proof. Combine Corollary 8 with Theorem 10. ut
Corollary 13 (W s

p -regularity with s < 1=d ). Let d � 2, n D 1, 1 < t < 2, p>1,
f 2 L2.˝/, and A 2 W 11.˝;T0/ be piecewise Lipschitz. If u 2 W t

p.˝IT0/ \
H1
0 .˝/ is piecewise W t

p over the initial mesh T0 with t 	 d
p
> 1 	 d

2
, then AFEM

gives rise to a sequence fTk;Vk; Ukg1kD0 satisfying for all k � 1

jjju 	 Ukjjj˝ C osck.Uk/

.
�
kDtukLp.˝IT0/ C kf kL2.˝/ C kAkW 1

1.˝IT0/

�
.#Tk 	 #T0/

�.t�1/=d :

Proof. Combine Corollary 9 with Theorem 10. ut

7.5 Extensions and Restrictions

We conclude with a brief discussion of extensions of the theory and some of its
restrictions.
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Optimal complexity: inexact solvers, quadrature, and storage: We point out that we
have never mentioned the notion of complexity so far. This is because complexity
estimates entail crucial issues that we have ignored: inexact solvers to approximate
the Galerkin solution; quadrature; and optimal storage. We comment on them now.

Multilevel solvers are known to deliver an approximate solution with cost
proportional to the number of degrees of freedom. Even though the theory is
well developed for uniform refinement, it is much less understood for adaptive
refinement. This is due to the fact that the adaptive bisection meshes do not satisfy
the so-called nested refinement assumption. Recently, Xu et al. [60] have bridged
the gap between graded and quasi-uniform grids exploiting the geometric structure
of bisection grids and a resulting new space decomposition. They designed and
analyzed optimal additive and multiplicative multilevel methods for any dimension
d � 2 and polynomial degree n � 1, thereby improving upon Wu and Chen
[59]. The theories of Sects. 5 and 7 can be suitably modified to account for optimal
iterative solvers; we refer to Stevenson [52].

Quadrature is a very delicate issue in a purely a posteriori context, that is without
a priori knowledge of the functions involved. Even if we were to replace both data f
andA by piecewise polynomials so that quadrature would be simple, we would need
to account for the discrepancy in adequate norms between exact and approximate
data, again a rather delicate matter. This issue is to a large extend open.

Optimal storage is an essential, but often disregarded, aspect of a complexity
analysis. For instance, ALBERTA is an excellent library for AFEM but does not
have optimal storage capabilities [50].

Non-residual estimators: The cardinality analysis of this section extends to
estimators other than the residual; we refer to Cascón and Nochetto [15] and Kreuzer
and Siebert [35]. They include the hierarchical, Zienkiewicz–Zhu [2, 27, 55, 58],
and Braess–Schoerbel estimators, as well as those based on the solution of local
problems [12, 42]. Even though the contraction property of Theorem 9 is no longer
valid between consecutive iterates, it is true after a fixed number of iterations, which
is enough for the arguments in Proposition 4 and Theorem 10 to apply. The resulting
error estimates possess constants proportional to this gap.

Nonconforming meshes: Since REFINE exhibits optimal complexity for admissible
nonconforming meshes, according to Sect. 6.4, and this is the only ingredient where
nonconformity might play a role, the theory of this section extends. We refer to
Bonito and Nochetto [9].

Discontinuous Galerkin methods (dG): The study of cardinality for adaptive dG
methods is rather technical. This is in part due to the fact that key Lemmas 26
and 28 hinge on mesh overlay, which in turn does not provide control of the level of
refinement. This makes it difficult to compare broken energy norms

jjjvjjj2T D kA1=2rvk2
L2.˝IT /

C kh�1=2 ŒŒv�� k2
L2.˙/

;
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which contain jump terms with negative powers of the mesh-size over the scheleton
˙ of T . Consequently, the monotonicity of energy norms used in Lemmas 26
and 28 is no longer true!

To circumvent this difficulty, Bonito and Nochetto [9] resorted to continuous
finite elements V 0.T / over the (admissible nonconforming) mesh T , which have
the same degree as their discontinuous counterpart V .T /. This leads to a cardinality
theory very much in the spirit of this section. However, it raises the question
whether discontinuous elements deliver a better asymptotic rate over admissible
nonconforming meshes. Since this result is of intrinsic interest, we report it now.

Lemma 29 (Equivalence of classes). Let As be the approximation class using
discontinuous elements of degree � n and A0

s be the continuous counterpart. Then,
for 0 < s � n=d , total errors are equivalent on the same mesh, whence As D A0

s .

Proof. We use the notation of Problem 11. Since V 0.T / � V .T /, the inclusion
A0
s � As is obvious. To prove the converse, we let .u; f;A/ 2 As and, forN > #T0,

let T� 2 TN be an admissible nonconforming grid and U� 2 V .T�/ be so that

jjju 	 U�jjjT�
C oscT�

.U�/ D inf
T 2TN

inf
V 2V .T /

�
jjju	 V jjjT C oscT .V /

�
. N�s:

Let IT W V .T / ! V 0.T / be the interpolation operator of Problem 11. Since
IT�

U� 2 V 0.T�/, if we were able to prove

jjju 	 IT�
U�jjjT�

C oscT�
.IT�

U�/ . N�s;

then .u; f;A/ 2 A0
s . Using the triangle inequality, we get

jjju 	 IT�
U�jjjT�

� kA1=2r.u 	 U�/kL2.˝IT�/ C kA1=2r.U� 	 IT�
U �/kL2.˝IT�/;

because ŒŒu 	 IT�
U��� vanish on ˙ . Problem 11 implies the estimate

kA1=2r.U� 	 IT�
U �/kL2.˝IT�/ . kh�1=2 ŒŒU��� kL2.˙�/ � jjju 	 U�jjjT�

;

whence
jjju 	 IT�

U�jjjT�
. jjju 	 U�jjjT�

:

Since kA1=2r.U�	IT�
U�/kL2.˝IT�/ . jjjU� 	 IT�

U�jjjT�
, the oscillation term can

be treated similarly. In fact, Problem 46 adapted to discontinuous functions yields

oscT�
.IT�

U�/ . oscT�
.U�/C jjju 	 U�jjjT�

:

Coupling the two estimates above, we end up with

jjju 	 IT�
U�jjjT�

C oscT�
.IT�

U�/ . jjju 	 U�jjjT�
C oscT�

.U�/ . N�s:

Therefore, .u; f;A/ 2 A0
s as desired. ut
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7.6 Notes

The theory presented in this section is rather recent. It started with the breakthrough
(112) by Stevenson [52] for vanishing oscillation. If f is variable andA is piecewise
constant, then Stevenson extended this idea upon adding an inner loop to handle data
oscillation to the usual AFEM. This idea does not extend to the model problem (87)
with variableA, because the oscillation then depends on the Galerkin solution.

The next crucial step was made by Cascón et al. [14], who dealt with the notion
of total error of Sect. 7.1, as previously done by Mekchay and Nochetto [37], and
introduced the nonlinear approximation class As of Sect. 7.2. They derived the
convergence rates of Sect. 7.4.

The analysis for nonconforming meshes is due to Bonito and Nochetto [9], who
developed this theory in the context of dG methods for which they also derived
convergence rates. The study of non-residual estimators is due to Kreuzer and
Siebert [35] and Cascón and Nochetto [15].

The theory is almost exclusively devoted to the energy norm, except for the L2-
analysis of Demlow and Stevenson [21], who proved an optimal convergence rate
for mildly varying graded meshes. Convergence rates have been proved for Raviart–
Thomas mixed FEM by Chen et al. [18].

7.7 Problems

Problem 51 (Alternative definition of As). Show that .v; f;A/ 2 As if and only
there exists a constant� > 0 such that for all " > 0 there exist T" � T0 conforming
and V" 2 V .T"/ such that

jjjv 	 V"jjj2˝ C osc2T"
.V"/ � "2 and #T" 	 #T0 � �1=s "�1=sI

in this case jv; f;Ajs � �. Hint: Let T" be minimal for jjjv 	 V"jjj2˝ C osc2T"
.V"/ �

"2. This means that for all T 2 T such that #T D #T" 	 1 we have jjjv 	 V"jjj2˝ C
osc2T"

.V"/ > ".

Problem 52 (Lemma 22). Prove that the overlay T D T1˚T2 is conforming and

#T � #T1 C #T2 	 #T0:

Hint: for each T 2 T0, consider two cases T1.T / \ T2.T / ¤ ; and T1.T / \
T2.T / D ;, where Ti .T / is the portion of the mesh Ti contained in T .

Problem 53 (Lemma 24). Prove that if T ;T� 2 T satisfy T� � T , R WD
RT!T�

is the refined set to go from T to T�, and U 2 V , U� 2 V� are the
corresponding Galerkin solutions, then

jjjU� 	 U jjj2˝ � C1 E 2
T .U;R/:
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To this end, write the equation fulfilled by U� 	 U 2 V� and use as a test function
the local quasi-interpolant IT .U� 	 U / of U� 	 U introduced in Proposition 2.

Problem 54 (Explicit dependence on # and s). Trace the dependence on # and
s, as # ! #� and s ! 0, in the hidden constants in Lemma 28 and Theorem 10.

Problem 55 (Asymptotic decay of oscillation). Let A 2 W 11.˝IT0/ be piece-
wise Lipschitz over the initial grid T0 and f 2 L2.˝/. Show that

inf
T 2TN

oscT .U / .
�
kf kL2.˝/ C kAkW 1

1.˝IT0/

�
N�1=d

is attained with uniform meshes.

Problem 56 (Faster decay of data oscillation). Let d D 2 and n D 1. Let f be
piecewise W 1

1 over the initial mesh T0, namely f 2 W 1
1 .˝IT0/. Show that

inf
T 2TN

khT .f 	 P0 f /kL2.˝/ . kf kW 1
1 .˝IT0/

N�1;

using the thresholding algorithm of Sect. 1.6. Therefore, data oscillation decays
twice as fast as the energy error asymptotically on suitably graded meshes.

Problem 57 (Faster decay of coefficient oscillation). Consider the coefficient
oscillation weighted locally by the energy of the discrete solution U :


2T .A; U / D
X

T2T
osc2T .A; T /krU k2L2.!T /;

where oscT .A; T / is defined in Problem 45. Let d D 2; n D 1; p > 2, and
A 2 W 2

p .˝IT0/ be piecewise in W 2
p over the initial grid T0. Use the thresholding

algorithm of Sect. 1.6 to show that 
T .A; U / decays with a rate twice as fast as the
energy error:

inf
T 2TN


T .A; U / . kAkW 2
p .˝IT0/krU kL2.˝/N�1:

Problem 58 (Faster decay of oscillation). Combine Problems 29, 56 and 57 for
d D 2; n D 1 and p > 2 to prove that if f 2 W 1

1 .˝IT0/ and A 2 W 2
p .˝IT0/,

then the oscillation oscT .U;T / decays with a rate twice as fast as the energy error:

inf
T 2TN

oscT .U / .
�
kf kW 1

1 .˝IT0/
C kAkW 2

p .˝IT0/

�
N�1:
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Mathematically Founded Design of Adaptive
Finite Element Software

Kunibert G. Siebert

Abstract In these lecture notes we derive from the mathematical concepts of
adaptive finite element methods basic design principles of adaptive finite element
software. We introduce finite element spaces, discuss local refinement of simplical
grids, the assemblage and structure of the discrete linear system, the computation of
the error estimator, and common adaptive strategies. The mathematical discussion
naturally leads to appropriate data structures and efficient algorithms for the imple-
mentation. The theoretical part is complemented by exercises giving an introduction
to the implementation of solvers for linear and nonlinear problems in the adaptive
finite element toolbox ALBERTA.

1 Introduction

In these lecture notes we discuss the design of data structures and algorithms of
adaptive finite element software for the efficient approximation of solutions to
partial differential equations given by a variational problem. It builds on several
courses devoted to the implementation of adaptive finite elements, in particular

• Graduate Course “Implementation of Adaptive Finite Elements”, Dipartimento
di Matematica “Federigo Enriques”, Università degli Studi di Milano, Italy;

• Sussex Summer School on Scientific Computation S4C 07: “ALBERTA Finite
Elements”, University of Sussex at Brighton, England;

• Winter School “Implementation of Adaptive Finite Elments” at the Institut für
Mathematik, Universität Augsburg, Germany;
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• C.I.M.E Summer School Summer School in Applied Mathematics “Multiscale
and Adaptivity: Modeling, Numerics and Applications” in Cetraro, Italy.

Nowadays, there exists a great variety of numerical software. On one hand there
are commercial packages, on the other hand there is a huge number of public domain
software that is often even open source. When looking specifically for adaptive finite
element packages one realizes that most software is developed at universities or
academic research centers and is usually public domain.

Experience strongly suggests that the design and implementation of numerical
methods enormously profits from a precise mathematical definition and description
of basic data structures and algorithms. In fact, designing data structures and
algorithms without a clear mathematical structure usually turns out to result in
knotty implementations with many adhoc solutions that do not reflect the real
structure of the underlying problem.

To this end, the basic philosophy of this course is to first give a precise mathemat-
ical definition and description of adaptive finite elements. These principles should
be met by any adaptive finite element software. In this respect, the course should
be helpful for getting started to work with any available adaptive finite element
package. In particular we discuss how these mathematical principles have entered
the design of the adaptive finite element toolbox ALBERTA, which is open source
software and can be downloaded from

http://www.alberta-fem.de/.

ALBERTA is a C library for the implementation of adaptive finite element solvers.
Additional course material like some start-up files for using ALBERTA can be
downloaded from

http://www.ians.uni-stuttgart.de/nmh/downloads/iafem/.

Literature. There exists a vast variety of books about finite elements. Here, we only
want to mention the books by Ciarlet [16], and Brenner and Scott [11] as the most
prominent ones. There are only few books about adaptive finite elements available.
We refer to the books of Verfürth [42], and Ainsworth and Oden [1] for basic
ingredients of adaptive methods such as error estimators and adaptive strategies.
Recent results in the analysis of adaptive finite elements including convergence and
optimal error decay in terms of degrees of freedom are subject of the lectures by
Nochetto and Veeser in this summer school; compare with the chapter “Primer of
adaptive finite element methods” in this volume [31]. More details can be found in
the overview article by Nochetto, Siebert, and Veeser [30]. Finally, when it comes to
aspects of the implementation one is usually restricted to documentations of existing
software. In this course we follow the ideas of Schmidt and Siebert in the design of
the finite element toolbox ALBERTA [33, 34]. We also refer to [22, 35] for recent
developments of ALBERTA.
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1.1 The Variational Problem

We introduce the foundation of finite elements, the variational formulation of
partial differential equations (PDEs), where we restrict ourselves to linear problems.
We state the variational problem, characterize well-posedness, and give two basic
examples.

Problem 1 (Variational Problem). Let .V ; k�kV / be an Hilbert space, V � its dual
with norm

kf kV � D sup
kvkVD1

hf; vi:

Let BWV 
 V ! R be a continuous bilinear form. For f 2 V � we are looking for
a solution of the variational problem

u 2 V W BŒu; v� D hf; vi for all v 2 V : (1)

Theorem 2 (Existence and Uniqueness). Problem 1 is well-posed, that means
that for any f 2 V � there exists a unique solution u 2 V if and only if the bilinear
form B satisfies the inf-sup condition:

9˛ > 0 W inf
v2V

kvkV D1

sup
w2V

kwkV D1

BŒv; w� � ˛; inf
w2V

kwkV D1

sup
v2V

kvkV D1

BŒv; w� � ˛: (2)

In addition, the solution u satisfies the stability bound kukV � ˛�1kf kV � :

This characterization is due to Nečas [29, Theorem 3.1], compare also the contribu-
tions of Babuška [3, Theorem 2.1] and Brezzi [12, Corollary 0.1]. We also refer to
[30] for a more detailed discussion.

Example 3 (2nd Order Elliptic Equation). Given f 2 L2.˝/ solve the 2nd order
elliptic PDE

	 div.A.x/ru/C b.x/ � ruC c.x/u D f in ˝; u D 0 on @˝:

For the variational formulation we let V D H1
0 .˝/ and set

BŒw; v� WD
Z

˝

rv �A.x/rwC vb � rwC c v wdx; hf; vi D
Z

˝

f wdx:

Assuming that A 2 L1.˝IRd / is strictly symmetric positive definite (spd), i. e.,
A.x/ D A.x/> and � � A.x/� � c� j�j22 for all � 2 Rd and almost all x 2 ˝ ,
and b 2 L1.˝IRd /, c 2 L1.˝/ with c 	 1

2
divb � 0 in ˝ one can prove in

combination with Friedrich’s inequality that B is continuous and coercive on V ,
i. e., BŒv; v� � ˛kvkV for all v 2 V . Coercivity implies the inf-sup condition (2).
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Therefore, there exists for any right hand side f 2L2.˝/�H�1.˝/D 	H1.˝/

�

a unique weak solution u 2 H1
0 .˝/; compare for instance with [30, Sect. 2.5.2].

Example 4 (Stokes Problem). Given an external force f D �
f1; : : : ; fd

�> 2
L2.˝IRd / and the viscosity � > 0 of a stationary, viscous, and incompressible

fluid find its velocity field u D �u1; : : : ; ud
�>

and pressure p such that

	��uCrp D f in ˝; div u D 0 in ˝; u D 0 on @˝;

where �u D �
�u1; : : : ; �ud

�>
. The variational problem looks for a weak solution

u D .u; p/ in the space V D H1
0 .˝IRd / 
 fq 2 L2.˝/ j R

˝
q dx D 0g with the

bilinear form

BŒw; v� WD �
Z

˝

rv W rw dx 	
Z

˝

div w q dx 	
Z

˝

div v r dx

for all w D .w; r/; v D .v; q/ 2 V , and the right hand side hf; vi WD R
˝
f � v dx.

The Stokes problem has the structure of a saddle point problem and existence
and uniqueness follows from an inf-sup condition of B on V derived by Nečas
[14]; compare also with [19, Theorem III.3.1] and [30, Sect. 2.5.2].

1.2 The Basic Adaptive Algorithm

We next discuss the basic adaptive iteration. From the discussion we derive the basic
objectives to be tackled when implementing adaptive finite elements. We close with
an overview of the organization of the lecture.

The adaptive approximation of the solution u to (1) is an iteration of the form

SOLVE 	! ESTIMATE 	! ENLARGE

with the following modules.

• SOLVE computes an approximation to u in a finite dimensional subspace Vk �
V , for instance the (Ritz-)Galerkin approximation

Uk 2 Vk W BŒUk; V � D hf; V i 8V 2 Vk :

• ESTIMATE computes an error bound for a suitable error notion kUk	uk, usually
kUk 	 ukV .

• ENLARGE enlarges the space Vk into VkC1 to achieve a better approximation
in the next iteration.

The step ENLARGE obviously needs structure of the discrete spaces for including
new directions in VkC1. Additionally, the module ESTIMATE has to provide
information about new directions that should be included.
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A suitable choice for the discrete spaces are finite element discretizations. Finite
element spaces are defined over a decomposition of ˝ into (closed) elements T of
a grid T such that

N̋ D
[

T2T
T and j˝j D

X

T2T
jT j :

On each single element T 2 T a finite element function belongs to a local function
space P .T / � V .T /. Each finite element function V fulfills some global continuity
condition such that V 2 V . We are going to focus on:

• a triangulation of ˝ for a decomposition, i. e., elements T are simplices
(intervals in 1d, triangles in 2d, and tetrahedra in 3d);

• the space of all polynomials of degree p � 1 as local function space;
• globally continuous functions to deal with H1 conforming approximations.

We restrict ourselves to so-called h-adaptive finite elements, i. e., new directions
are included by local refinement of selected grid elements. Starting with an initial
triangulation T0, the adaptive h approximation of the solution u to (1) is an iteration
of the form

SOLVE 	! ESTIMATE 	! MARK 	! REFINE,

where SOLVE and ESTIMATE are as above, and

• MARK: Selects a subset Mk � Tk subject for refinement.
• REFINE: Refines at least all elements in Mk and outputs a new triangulation

TkC1.

Aspects for the Implementation

For an implementation of the adaptive algorithm we have to address the
following issues:

1. SOLVE: For a given triangulation T and finite element space V .T /

efficiently solve for the discrete solution U 2 V .T /.
2. ESTIMATE: For a given triangulation T and discrete solution U 2 V .T /

compute an error estimator of the form

E 2
T .U;T / WD

X

T2T
E 2

T .U; T /:

3. MARK: For a given triangulation T and error indicators fET .U; T /gT2T
select elements in M � T for refinement.

4. REFINE: Given a given triangulation T and a set of marked elements M
refine at least all elements in M .
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SOLVE, ESTIMATE, MARK work an a given fixed grid like any finite
element code. The design of the basic data structures is inspired by the math-
ematical definition of finite element spaces. Main work in the implementation
has to be done for SOLVE and REFINE. ESTIMATE and especially MARK
are then easy to realize.

This introduction puts us into the position to give an overview of the organisation
of the lectures held at the C.I.M.E summer school. We start with the definition of
triangulations and finite element spaces. In the second part we review algorithms
for local mesh refinement and coarsening of simplicial grids with main focus on
refinement by bisection. The third part treats the assemblage of the discrete linear
system. We conclude the course in the last part with the adaptive algorithm and final
remarks. In addition to the C.I.M.E lectures we have added a supplement dealing
with a nonlinear problem and a saddlepoint problem. We demonstrate hereby that
the principles introduced for a model problem in the lectures are easily applicable
to more complex problems.

2 Triangulations and Finite Element Spaces

We define triangulations and finite element spaces, and state basic properties
important for the implementation.

2.1 Triangulations

The use of triangulations for the decomposition of the domain has several advan-
tages. In context of adaptive refinement the most important one is that simplicial
grids easily allow for global and local refinement while this is not that easy for other
types of grids; compare with Figs. 1 and 2 with an example of rectangular grids.
Furthermore, simplicial grids allow for a good approximation of curved geometries.

Fig. 1 Global and local refinement of a triangular grid
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Fig. 2 Local refinement of a rectangular grid: local refinement results either in having hanging
nodes (left), global effects (middle), or mixed type of elements (right)

We start with the definition of the basic object, the simplex.

Definition 5 (Simplex). Let z0; : : : ; zd 2 Rd be given such that z1 	 z0; : : : ; zd 	 z0
are linearly independent.

1. A (non-degenerate) d -simplex in Rd is the convex set

T D conv hullfz0; : : : ; zd g:

2. For 0 � n < d let z00; : : : ; z0n 2 fz0; : : : ; zd g. The set

T 0 D conv hullfz00; : : : ; z0ng � @T

is called n-sub-simplex of T .
3. The diameter and inball-diameter of T is

hT WD diam.T /; hT WD supf2r j Br � T is a ball of radius rg:

A measure of the element’s “quality” is the shape coefficient

�T WD hT =hT :

In what follows we call a .d 	 1/-sub-simplex of a d -simplex side. Other special
sup-simplices are: vertex (0-sub-simplex), edge (1-sub-simplex for d � 2), and face
(2-sub-simplex for d � 3).

Definition 6 (Triangulation, Conformity). Let ˝ � Rd be a domain with a
polygonal boundary.

1. A triangulation of ˝ is a set T of d -simplices, such that

˝ D interior
[

T2T
T and j˝j D

X

T2T
jT j

2. T is a conforming triangulation, iff for two simplices T1; T2 2 T with T1 ¤ T2
the intersection T1 \ T2 is either empty or a complete n-sub-simplex of both T1
and T2 for some 0 � n < d .
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Remark 7. Condition (1) ensures that the closure N̋ of˝ is covered by the elements
of the triangulation. Condition (2) is in particular important for defining continuous
finite elements. It excludes the existence of so-called irregular nodes. An irregular
node is a vertex of T that belongs to some element T but is not a vertex of T .

Aspects for the Implementation

The mathematical definition of a simplex and triangulation already gives some
indication on implementation issues:

1. We need a data structure holding information about a triangulation, this is
a list/vector/. . . of elements. In case of adaptive methods elements have to
be added or deleted (refinement/coarsening) efficiently.

2. We need a data structure for storing element information:

• Vertex coordinates describing the geometrical shape;
• Neighbor information;
• . . .

Neighbor information is needed to check for conformity.

Definition 8 (Shape Regularity). A sequence of triangulations fTkgk�0 is called
shape regular if and only if

sup
k�0

max
T2Tk

�T D sup
k�0

max
T2Tk

hT

hT
<1:

Shape regularity plays an essential role when analyzing finite elements. In
particular, interpolation constants strongly depend on the shape coefficients of
elements. Uniform estimates for a sequence of triangulations thus strongly rely on
shape regularity as stated in Definition 8; compare with [16, Sect. 3]. The question
of shape regularity will be a crucial aspect in deriving refinement algorithms in
Sect. 3.

2.2 Finite Element Spaces

We next define finite element spaces, which are constructed from local function
spaces and glued together by a global continuity condition. In doing this we follow
the fundamental concept of finite elements:

Everything is done from local to global.

We first introduce two special simplices that are important in the subsequent
discussion.
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Definition 9 (Standard and Reference Simplex). Denoting by fe1; : : : ; edg the
unit vectors in Rd , the standard simplex in Rd is

OT WD conv hull fOz0 D 0; Oz1 D e1; : : : ; Ozd D ed g :

We next let f Ne0; : : : ; Ned g be the unit vectors in RdC1. The reference simplex NT is the
so-called Gibbs simplex in RdC1, namely

NT WD conv hull fNz0 D Ne0; : : : ; Nzd D Nedg :

Any simplex T is affine equivalent to the standard element OT . This simplex plays
a relevant role in the analysis of finite elements as well as in practice when dealing
with numerical integration; compare with Sect. 4.3.

Lemma 10 (Affine Equivalence). A simplex T with vertices fz0; : : : ; zd g is affine
equivalent to OT , i. e., the affine linear mapping FT W OT ! T given by

FT . Ox/ D AT Ox C bT WD
2

4
j j

z1 	 z0 � � � zd 	 z0
j j

3

5 Ox C z0

is one to one and it holds FT .Ozi / D zi , i D 0; : : : ; d .

The reference simplex NT is the domain of the barycentric coordinates, which
are used as the natural coordinate system on a simplex T for defining local
functions (Fig. 3).

Definition 11 (Barycentric Coordinates). Let T be an arbitrary d -simplex with
vertices fz0; : : : ; zd g. For x 2 Rd the barycentric coordinates � D �T .x/ 2 RdC1
on T are the unique solution to

dX

kD0
�k zk D x and

dX

kD0
�k.x/ D 1: (3)

The definition (3) of the barycentric coordinates is equivalent to the linear system

2

664

j j
z0 � � � zd
j j
1 � � � 1

3

775

2
6664

�0
�1
:::

�d

3
7775 D

2
6664

x1
x2
:::

1

3
7775 : (4)

Fig. 3 Affine equivalence of
simplices given by the affine
mapping FT W OT ! T



236 K.G. Siebert

Linear independence of z1 	 z0; : : : ; zd 	 z0 implies

ˇ̌
ˇ̌
ˇ̌
ˇ̌

j j
z0 � � � zd
j j
1 � � � 1

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D

ˇ̌
ˇ̌
ˇ̌
ˇ̌

j j j
z0 z1 	 z0 � � � zd 	 z0
j j j
1 0 � � � 0

ˇ̌
ˇ̌
ˇ̌
ˇ̌
D
ˇ̌
ˇ̌
ˇ̌
j j

z1 	 z0 � � � zd 	 z0
j j

ˇ̌
ˇ̌
ˇ̌ ¤ 0:

Therefore, for any x 2 Rd its barycentric coordinates �T .x/ are uniquely
determined.

Recalling the definition of the reference simplex NT we see that NT lies in the
hypersurface

H D
n
� 2 RdC1 j

dX

kD0
�k D 1

o
:

The definition of NT also implies that any component �k is non-negative, whence

NT D
�
Œ�0; : : : ; �d �

T 2 RdC1 j �k � 0;
dX

kD0
�k D 1

�
:

Given a simplex T , a point x 2 Rd and its barycentric coordinates � D �T .x/ 2
RdC1 we conclude � 2 H , and furthermore, x 2 T if and only if � 2 NT .
In summary, the mapping �T WT ! NT defined as x 7! �T .x/ is an affine bijection.
Denoting by xT W NT ! T its inverse, we see

xT .�/ D
dX

kD0
�k zk :

Aspects for the Implementation

We call Œ�0; : : : ; �d �> local coordinates on T and x D Œx1; : : : ; xd �
> world

coordinates. Calculating world coordinates x from local coordinates � only
requires the computation of a convex combination of the element’s vertices.
The computation of the local coordinates � from given world coordinates x
requires the solution of the .d C 1/ 
 .d C 1/ linear system (4), which is
computationally more expensive.

We next discuss the relation of the mappings FT W OT ! T , �T WT ! NT , and its
inverse xT W NT ! T . As depicted in Fig. 4 we can compute the local coordinates
�T .x/ by first mapping x to Ox D F �1T .x/ 2 OT and then computing the local

coordinates of Ox with respect to OT , i. e., �T D �
OT ı F�1T . In the same vein, we
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T

T̂

FT
−1 FTλT= λT̂◦ FT

−1

λT̂

T

T̂

xT = FT ◦ xT̂

xT̂
T
−

T
−

Fig. 4 Mappings on T , NT ,
and OT

can calculate the world coordinates xT .�/ by first computing the world coordinates
Ox D x OT .�/ on OT and then mapping Ox to T by FT , i. e., xT D FT ı x OT .

Therefore, every function �WT ! R uniquely defines

N�W NT ! R

� 7! �.xT .�//
and

O�W OT ! R

Ox 7! �.FT . Ox//

and, accordingly,

• O�W OT ! R uniquely defines � D O� ı F�1T WT ! R and N� D O� ı x OT W NT ! R,

• N�W NT ! R uniquely defines � D N� ı �T WT ! R and O� D N� ı � OT W OT ! R.

This brings us in the position to define a V -conforming finite element over a
triangulating T via a function space on NT . Consider a given function space NP �
V . NT /. This uniquely defines the function spaces

P .T / WD ˚ N� ı �T 2 V .T / j N� 2 NP� and OP WD
n N� ı � OT 2 V . OT / j N� 2 NP

o

A conforming finite element space is then defined as follows.

Definition 12 (Conforming Finite Element Space). For given function space V ,
conforming triangulation T , and local function space NP � V . NT / on NT we define

V .T / D FES.T ; NP ;V / WD ˚V 2 V j VjT ı xT 2 NP ; T 2 T
�
:

Once the local function space is fixed, we keep in V .T / the dependence of the finite
element space on T and V . The dependence of the discrete space on T is essential
in the discussion of adaptive methods.

The following characterization is useful forH1 conforming finite elements.

Lemma 13 (H1 Conforming Finite Elements). For NP � C1. NT / we have

FES.T ; NP ;H1.˝// D FES.T ; NP ; C 0. N̋ //;

i. e., H1 conforming finite elements are globally continuous.

Proof. Follows from piecewise integration by parts and the trace theorem. ut
In case NP D Pp , the local functions on T are polynomials of degree p.
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Lemma 14 (Polynomial Finite Elements). For p � 0 let Pp be the space of all
polynomial of degree � p and set NP D Pp . Then holds P .T / D Pp for all T 2 T ,
i. e.,

FES.T ;Pp;V / D
˚
V 2 V j VjT 2 Pp 8T 2 T

�
:

Proof. Follows from the fact, that �T WT ! NT is affine, and thus ˚ D N� ı �T is
again a polynomial of degree� p. ut
Polynomials and Barycentric Coordinates. Any polynomial P of degree � p in
Rd can be written as

P.x/ D
pX

j˛jD0
c˛ x

˛ D
pX

j˛jD0
c˛

dY

iD1
x
˛i
i

with c˛ 2 R using multi-index notation.
Utilizing the barycentric coordinates � of x.�/ D Pd

jD0 zj �j on a simplex T
yields

NP .�/ D P.x.�// D
pX

j˛jD0
c˛

dY

iD1

2

4
dX

jD0
zj i�j

3

5
˛i

D
pX

jˇjD0
Qcˇ�ˇ:

The barycentric coordinates sum up to 1, i. e.,
Pd

jD0 �j D 1, and thus

NP.�/ D c0 C
pX

jˇjD1
Qcˇ�ˇ D

pX

jˇjD1
Ncˇ�ˇ;

i. e., we can write NP without constant term.
We next state two important examples of H1-conforming finite element spaces.

Theorem 15 (Linear Finite Elements). (1) On a simplex T with vertices
z0; : : : ; zd any P 2 P1.T / is uniquely determined by the values at the vertices
of T :

P.x/ D NP .�/ D
dX

jD0
P.zj / �j :

The dimension of P1.T / is d C 1.

(2) Let T be a conforming triangulation of ˝ with vertices z1; : : : ; zN . Then, any
function V 2 FES.T ;P1; C 0. N̋ // is uniquely determined by the values at the
vertices of T , i. e., by V.zj /, j D 0; : : : ; N .

(3) A basis of FES.T ;P1; C 0. N̋ // is given by the so-called hat functions

˚i 2 FES.T ;P1; C
0. N̋ //; ˚i .zj / D ıij for i; j D 1; : : : ; N:
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Fig. 5 A typical piecewise linear basis function in 2d, the so-called hat-function (left) and typical
piecewise quadratic basis functions in 2d (middle and right)

This basis is called Lagrange basis or nodal basis. A typical basis function in 2d is
shown in Fig. 5 (left).

Theorem 16 (Quadratic Finite Elements). (1) Let T be a simplex with vertices
z0; : : : ; zd and edge midpoints zij D 1

2
.zi C zj / (0 � i < j � d ). Any P 2 P2.T /

is uniquely determined by the values of P at the vertices and edge midpoints of T :

P.x/ D NP.�/ D
dX

jD0
P.zj / .2 �

2
j 	 �j /C

X

0�i<j�d
P.zij / 4 �i �j :

The dimension of P2.T / is 1
2
.d C 1/.d C 2/.

(2) Let T be a conforming triangulation of ˝ with vertices z1; : : : ; zN and edge
midpoints zNC1; : : : ; z NN . Then, any function V 2 FES.T ;P2; C 0. N̋ // is uniquely
determined by the values at the vertices and edge midpoints of T , i. e., by V.zj /,
j D 1; : : : ; NN .

(3) The nodal or Lagrange basis of FES.T ;P2; C 0. N̋ // is given by the functions

˚i 2 FES.T ;P2; C
0. N̋ //; ˚i .zj / D ıij for i; j D 1; : : : ; NN:

Typical basis functions in 2d are depicted in Fig. 5 (middle and right).

Aspects for the Implementation

(1) On simplices, polynomials can be easily expressed in terms of barycentric
coordinates, i. e., on the reference simplex NT � RdC1. They are the
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“natural coordinate system” on T and make an implementation of NP easy.
The standard element OT � Rd is the “natural element” for integration.

(2) A linear finite element function is uniquely determined by the values at
the vertices of T . These values are the associated degrees of freedom
(DOFs). Global continuity can be realized as follows: Using the local
Lagrange basis, DOFs at a vertex are shared by all elements meeting at
that vertex, i. e., they all access the same value.

(3) The DOFs for quadratic finite elements are the values at the vertices and
edge midpoints. These DOFs are shared with all adjacent elements, which
in turn implies global continuity by using the local Lagrange basis.

2.3 Basis Functions and Evaluation of Finite Element Functions

We next generalize the ideas that we have seen for linear and quadratic finite
elements to higher order, i. e., we use NP D Pp for p 2 N .

Lemma 17 (Lagrange Basis on NT ). Define the Lagrange grid on NT as

L . NT / D
�
Œ�0; : : : ; �d �

> 2 NT j �i 2
n
0; 1

p
; : : : ;

p�1
p
; 1
o
; i D 0; : : : ; d

�

DW f�1; : : : ; � Nng

and set NP D Pp . Then it holds Nn D #L . NT / D dim NP D 	
dCp
p



. Furthermore,

L . NT / is uni-solvent on NP , this means, each N� 2 NP is uniquely determined by the
values N�.�n/, n D 1; : : : ; Nn. The function set f N�1; : : : ; N� Nng given by

N�n.�m/ D ınm n;m D 1; : : : ; Nn
is the Lagrange basis of NP .

Proof. Compare with [16, Theorem 2.2.1]. ut
For a given simplex T the local basis is given by the mapping �T WT ! NT .

Lemma 18 (Lagrange Basis on T ). Let T be an affine simplex, �T WT ! NT the
barycentric coordinates, and xT W NT ! T its inverse. The Lagrange grid on T given
by

L .T / D xT 	L . NT /
 D fxT1 ; : : : ; xTNn g � T
is uni-solvent on Pp.T /. Consequently, the function set f˚T

1 ; : : : ; ˚
T
Nn g defined as

˚T
n WT ! R ˚T

n WD N�n ı �T n D 1; : : : ; Nn
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Fig. 6 Lagrange grids for polynomial degree p D 1 to p D 4 in 2d

Fig. 7 Typical piecewise quartic basis functions in 2d

is the Lagrange basis of P .T / D Pp .

Sketch of the Proof. By construction, the Lagrange basis functions satisfy

˚T
n .x

T
m/ D ınm n;m D 1; : : : ; Nn:

In addition, ˚T
n belongs to Pp since N�n 2 Pp and �T is affine. ut

Examples of Lagrange grids in 2d are shown in Fig. 6 and examples of piecewise
quartic basis functions in 2d are depicted in Fig. 7.

Next we construct the global basis from the local ones. Here it becomes important
that conformity of T implies

L .T1/ \ T2 D L .T2/\ T1 8T1; T2 2 T ;

i. e., the Lagrange nodes of two elements coincide on the intersection.

Theorem 19 (Lagrange Basis of V .T /). For a conforming triangulation T
define the Lagrange grid

L .T / WD
[

T2T
L .T / DW fx1; : : : ; xN g:

The Lagrange grid is uni-solvent in V .T / WD FES.T ;Pp;H1.˝//, and therefore,
the function set f˚1; : : : ; ˚N g given by

˚i.xj / D ıij i; j D 1; : : : ; N
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is the Lagrange basis of V .T /. Furthermore if xi 2 T then there is xTn 2 L .T /

such that xi D xTn and
˚i jT D ˚T

n D N�n ı �T :
A basis of V̊ .T / D V .T /\H1

0 .˝/ is given by

f˚i j xi 2 ˝g � f˚1; : : : ; ˚N g;

i. e., the basis functions related to L .T /\˝ .

Idea of the Proof. The fact that Lagrange nodes coincide on the intersection of two
elements in combination with the property that the DOF at a Lagrange node is shared
by all elements meeting at that node yields continuity of any global finite element
function. For the details compare with [16, Theorem 2.2.3]. ut

Aspects for the Implementation

Generalizing the construction of Lagrange finite elements to other finite
element spaces we have the following rule to define global basis functions
from suitable local ones:

(1) DOFs on the boundary of an element are shared with other elements, i. e.,
the value(s) at such a node is/are the same for all adjacent elements.

(2) DOFs in the interior of an element are not shared with other elements
and are related to locally supported finite element functions (including
discontinuous finite element functions).

Evaluation of Finite Element Functions. Let f˚1; : : : ; ˚N g be a basis of a finite
element space V .T / as constructed above. By Theorem 19 any finite element
function V 2 V .T / is uniquely determined by its global coefficient vector v D
Œv1; : : : ; vN �>, i. e.,

V D
NX

iD1
vi˚i :

Basis functions, and consequently V , are defined element-wise. This means, we
only have a local rather than a global representation. Therefore, any access to a
finite element function is only possible element-wise. The access of V on T 2 T
needs the representation in the local basis

VjT D
NnX

nD1
vTn ˚

T
n D

NnX

nD1
vTn N�n ı �T ;

with the local coefficient vector vjT D
�
vT1 ; : : : ; v

T
Nn
�>
: For extracting the local

coefficient vector from the global one, we need access of local DOFs from global
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DOFs. By construction of the global basis, there exists a unique mapping

I W f1; : : : ; Nng 
 T ! f1; : : : ; N g

such that
xI.n;T / D xTn 8n D 1; : : : ; Nn and T 2 T :

Therefore, the local coefficient vector vjT can be extracted form the global one v by

vTn D vI.n;T / n D 1; : : : ; Nn:

Example 20. For piecewise linear elements L .T / is the set of all vertices of T
and L .T / the set of vertices of T . For a vertex zn of T with zn D xi there holds

˚i.x/ D �n.x/ x 2 T:

Aspects for the Implementation

For the implementation we need for any finite element space a function that
realizes the index mapping

I W f1; : : : ; Nng 
T ! f1; : : : ; N g;

i. e., we have to store for any local basis function ˚T
n on T 2 T the index

of the global basis function ˚i . Hereby, we strictly follow the fundamental
concept: everything is done from local to global.

Any evaluation of a finite element function V 2 V .T / in x 2 T is a two-step
procedure.

1. Access the local coefficient vector vjT on T from the global vector v.
2. Evaluate V.x/ or D˛V.x/ via the local basis representation

V.x/ D
NnX

nD1
vTn ˚

T
n .x/ D

NnX

nD1
vTn N�n.�.x//;

Using the chain rule we obtain for x 2 T

rV.x/ D
NnX

nD1
vTnr N�n.�.x// D �>

NnX

nD1
vTnr� N�n.�.x//;

where
r� N�.�/ D

� N�;�0 .�/; : : : N�;�d .�/
� 2 RdC1
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and

� D

2

64
�0;x1 � � � �0;xd
:::

:::

�d;x1 � � � �d;xd

3

75 D

2

64
— r�0 —

:::

— r�d —

3

75 2 R.dC1/
d

is the Jacobian of the barycentric coordinates. For affine elements � is constant
on T . Consequently, we can express derivatives of any finite element function in
terms of � and derivatives of the basis f N�1; : : : N� Nng. Obviously, this procedure can
be generalized to higher order derivatives.

Finite element functions are usually evaluated in barycentric coordinates on T
rather than in world coordinates x 2 T :

V.x.�// D
NnX

nD1
vTn N�n.�/; � 2 NT ;

and

rV.x.�// D �>
 NnX

nD1
vTnr� N�n.�/

!
; � 2 NT :

The computation of � 7! x.�/ is cheap:

x.�/ D
dX

jD0
�j zj ;

whereas the inverse mapping x 7! �.x/ requires the solution of a small linear
system. For the computation of the Jacobian � a small d 
 d linear system has to
be inverted.

2.4 ALBERTA Realization of Finite Element Spaces

In ALBERTA all information of a finite element space is collected in the following
data structure FE SPACE reflecting the discussion above.

struct fe_space
{

const DOF_ADMIN *admin;
const BAS_FCTS *bas_fcts;
MESH *mesh;

};

Description:

• MESH realizes the triangulation T :

– geometrical information;
– refinement and coarsening routines;
– adding or removing DOFs together with DOF ADMIN.
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• BAS FCTS realizes the local basis functions of NP :

– definition of basis functions in barycentric coordinates;
– derivatives of basis functions with respect to barycentric coordinates;
– access of DOFs on elements together with DOF ADMIN.

• DOF ADMIN realizes the continuity constraint V :

– gives connection between local and global DOFs;
– administrates all vectors and matrices: enlargement or compression.

Initialization of DOFs. All DOFs used by finite element spaces have to be defined
in an ALBERTA program directly in the beginning via a call to GET MESH().
Initialization is done in an application dependent function, like for instance the
following function for initializing Lagrange elements:

static FE_SPACE *fe_space;

void init_dof_admin(MESH *mesh)
{

FUNCNAME("init_dof_admin");
int degree = 1;
const BAS_FCTS *lagrange;

GET_PARAMETER(1, "polynomial degree", "%d", &degree);
lagrange = get_lagrange(degree);
TEST_EXIT(lagrange)("no lagrange BAS_FCTS\n");
fe_space = get_fe_space(mesh, lagrange->name, nil, lagrange);
return;

}

and in the main program

...
mesh = GET_MESH("\ALBERTA mesh", init_dof_admin, nil);
...

In init dof admin() the used finite element spaces are accessed via the
function get fe space(). Information about number and position of DOFs is
then passed to MESH and DOF ADMIN in GET MESH(). Several finite element
spaces can be used on the same grid. Each single finite element space has to
be accessed via get fe space(). For a detailed description compare with [34,
Sect. 3.6].

Structure of ALBERTA Projects. ALBERTA aims at dimension independent
programming, i. e., there is one source code for dimension 1, 2, and 3. The definition
of the main data structures does depend on the dimension but only via parameters
defined in the ALBERTA header as macros, for instance



246 K.G. Siebert

DIM
DIM_OF_WORLD
N_VERTICES
N_EDGES
...

Many modules strongly depend on the dimension but are hidden in the
ALBERTA library. Applications can be implemented independent of the dimension
by using these macro definitions. However, object files and executables strongly
depend on the dimension!

For getting started, you can download a start-up archive alberta.tgz which
creates after unpacking the directory alberta with the standard structure of
ALBERTA projects:

1d/ 2d/ 3d/ Common/ Makefile

All source files are located in the sub-directory Common:

iafem.c graphics.c stokes-estimator.c
ellipt.c pmc-estimator.c

The ?d are used for producing the dimension dependent object files and
executables. They contain the dimension dependent Makefile and data for the
initialization (parameters and macro triangulation files):

Macro/ Makefile iafem.dat ellipt.dat

Basic Rule: Edit or add source files only in the Common sub-directory. Com-
pilation and linking to the ALBERTA library in the ?d sub-directory using the
corresponding Makefile.

3 Refinement By Bisection

In this chapter we address the question about local refinement of a given triangula-
tion with the following properties.

Problem 21 (Local Refinement). Given a conforming triangulation T and a
subset M � T of marked elements construct a refinement T� of T such that

(1) all elements in M are refined, i. e., decomposed into sub-simplices;
(2) T� is again conforming and as small as possible;
(3) recurrent refinement of some given initial grid T0 produces a shape regular

sequence fTkgk�0 of conforming triangulations.

3.1 Basic Thoughts About Local Refinement

A natural decomposition of a simplex is the regular refinement or red refinement,
this means a simplex T is decomposed into 2d smaller simplices; compare with
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Fig. 8 Regular refinement: Decomposition of a triangle into four congruent triangles in 2d (left).
Decomposition of a tetrahedron into four congruent tetrahedra and four additional ones in 3d
(right). With a specific choice of the interior diagonal, the number of similarity classes can be
minimized

Fig. 9 Removing hanging nodes: green closure for removing one irregular node (left) and regular
refinement for removing two irregular nodes and creating a new one (right)

Fig. 10 Recurrently applying the green closure may lead to flat elements (left). Replacing the
green closure by regular refinement prior to an additional green closure (right)

Fig. 8. All descendants of some initial element produced by recurrent regular
refinement belong to one similarity class in 2d. In 3d recurrent refinement produces
several similarity classes but the number is bounded; compare with [6,7]. In respect
thereof, regular refinement complies very well with objective (3) of Problem 21.
Then again, only allowing for regular refinement and asking for conformity always
results in global refinement, i. e., all elements of T are refined irrespective of
the number of elements in M . Therefore, only using regular refinement does not
comply with (2) of Problem 21.

Alternatively one first only regularly refines the marked elements and thereby
allowing for irregular nodes. These node are then removed using additional refine-
ment rules to create a conforming triangulation; compare with Fig. 9. In 2d some
triangles have to be bisected and in 3d several types of additional refinement rules
are needed. Such rules are called green closure. This creates more similarity classes,
even in two dimensions. Additionally, these green closure elements have to be
removed before a further refinement of the mesh, in order to keep the triangulations
shape regular as depicted in Fig. 10. This is a very elaborate procedure, in particular
in higher space dimensions.
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On the one hand, local refinement without bisecting elements is impossible. On
the other hand, a naive bisection of elements easily leads to flat elements. Therefore
the following question arises: Is it possible to design a bisection rule that allows for
local refinement and such that recurrent refinement produces shape regular grids?

In the remainder we describe such a bisection rule. Its roots in 2d go back to
Sewell in 1972 [36]. Rivara introduced 1984 the longest edge bisection [32] and
Mitchell came up in 1988 with the newest vertex bisection and a recursive refinement
algorithm [26]. The newest vertex bisection was generalized by Bänsch to 3d in
1991 in an iterative fashion [5]. A similar approach was published by Liu and
Joe [24] and later on by Arnold et al. [2]. A recursive variant of the algorithm by
Bänsch was derived by Kossaczký [21]. This algorithm was generalized to any space
dimension independently by Maubach [25] and Traxler [39]. A complexity estimate
for refinement by bisection was given by Binev, Dahmen, and DeVore for 2d in 2004
[8] and by Stevenson for any dimension in 2008 [38].

3.2 Bisection Rule: Bisection of One Single Simplex

The objective of this section is to design a module fT1; T2g D BISECT.T / based
on one fixed rule such that

(1) T is divided into two children T1 and T2 of same size;
(2) recurrent bisection creates shape regular descendants.

Hereafter, recurrent bisection means: BISECT can be applied to some initial
element T0, and any simplex created by a prior application of BISECT.

For stating the refinement rule we use the idea of Kossaczký that relies on vertex
ordering and element type, which we define next.

Definition 22 (Vertex Ordering and Element Type). We identify a simplex with
its set of ordered vertices and type t 2 f0; : : : ; d 	 1g:

T D Œz0; : : : ; zd �t
A few remarks about the vertex ordering are in order.

(1) Let � ¤ I be a permutation of the indices f0; : : : ; d g. Then T D Œz0; : : : ; zd �t
and T 0 D Œz�.0/; : : : ; z�.d/�t have the same shape but are different elements. The
same applies to T D Œz0; : : : ; zd �t and T 0 D Œz0; : : : ; zd �t 0 if t ¤ t 0.

(2) The ordering is very natural for the implementation: vertices are stored as
vectors z0; : : : ; zd in an ordered fashion. For instance in the implementation
Œz0; : : : ; zd �t could be a .d C 1/ 
 d matrix and an integer.

(3) The element type is only used for d � 3. It is needed to formulate the bisection
rule as one fixed rule. The dependence of this rule on the type is essential for
shape regularity.

We next turn to the precise definition of the bisection rule.
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Definition 23 (Refinement Edge and New Vertex). The refinement edge of an
element T D Œz0; : : : ; zd �t is z0zd and in the bisection step the midpoint Nz D
1
2
.z0 C zd / is the new vertex.

This rule already uniquely defines the shape of the two children

T1 D conv hullfz0; Nz; z1; : : : ; zd�1g; T2 D conv hullfzd ; Nz; z1; : : : ; zd�1g:

It remains to prescribe an ordering of the children’s vertices.

Definition 24 (Bisection Rule). BISECT.Œz0; : : : ; zd �t / outputs the two children

T1 WD Œz0; Nz; z1; : : : ; zt„ ƒ‚ …
!

; ztC1; : : : ; zd�1„ ƒ‚ …
!

�.tC1/mod d ;

T2 WD Œzd ; Nz; z1; : : : ; zt„ ƒ‚ …
!

; zd�1; : : : ; ztC1„ ƒ‚ …
 

�.tC1/mod d ;

where arrows point in the direction of increasing indices.

Note that BISECT determines the children’s refinement edges by the local
ordering of their vertices. This bisection rule thereby determines the refinement
edge of any descendant produced by recurrent bisection of a given initial element
T0 from the local ordering of vertices and the type of T0. We also observe that only
the labeling of the second child’s vertices depends on the element type.

Example 25 (Bisection Rule in 2d and 3d). In two space dimensions the bisection
rule can be implemented as follows:

function BISECT.Œz0; z1; z2�t /

compute new vertex Nz D 1
2
.z0 C z2/;

T1 D Œz0; Nz; z1�.tC1/mod 2;
T2 D Œz2; Nz; z1�.tC1/mod 2;

return.fT1; T2g/;
We see that the refinement edge of both children is opposite the new vertex Nz,
whence this is the newest vertex bisection. The 3d version reads

function BISECT.Œz0; z1; z2; z3�t /

compute new vertex Nz D 1
2
.z0 C z3/;

T1 D Œz0; Nz; z1; z3�.tC1/mod 3;
if t D 0 then
T2 D Œz3; Nz; z2; z1�1;

else
T2 D Œz3; Nz; z1; z2�.tC1/mod 3;

end if

return.fT1; T2g/;
Compare with Fig. 11.
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Fig. 11 Vertex ordering on parent and children in 2d (left) and 3d (right). In 3d the vertex ordering
of the second child depends on the parent’s type

Fig. 12 Refinement of a triangle T and its reflected element TR

Exchanging the vertices z0 and zd of a simplex T results in the same geometric
shape of the two children. Adjusting the other vertices of T properly results in the
same descendants.

Lemma 26 (Reflected Element). Given an element T D Œz0; � � � ; zd �t we denote
by

TR WD Œzd ; z1; : : : ; zt„ ƒ‚ …
!

; zd�1; : : : ; ztC1„ ƒ‚ …
 

; z0�t

the reflected element. If fT1; T2g D BISECT.T / then

fT2; T1g D BISECT.TR/;

i. e., the refinement of T and TR creates the same set of children; see Fig. 12 for 2d.

Binary Tree. Given an initial simplex T0 D Œz0; : : : ; zd �t recurrent bisection induces
the structure of an infinite binary tree F.T0/ (compare with Fig. 13):

(1) any node T inside the tree is an element generated by recurrent application of
BISECT;

(2) the two successors of a node T are the children T1; T2 created by BISECT.T /.

Remark 27 (The Initial Element and the Binary Tree). The ordering of the vertices
on T0 and its type in combination with the bisection rule completely determine
F.T0/, especially the shape of any descendant of T0. For any T0 there exists
d.d C 1/Š different binary trees that can be associated with T0 and BISECT.
Recalling the property of the reflected element there are only d.dC1/Š

2
binary trees

that are essentially different.
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Fig. 13 Infinite binary tree associated with recurrent bisection of some initial element

Definition 28 (Generation). The generation g.T / 2 N0 of an element T 2 F.T0/
is the distance of T to T0 within F.T0/, i. e., the minimal number of calls to BISECT
needed to create T from T0.

Some information about T can uniquely be deduced from g.T / in F.T0/, for
instance

(1) the type of T is .g.T /C t0/modd ;
(2) the local mesh size hT WD jT j1=d D 2�g.T /=dhT0 :

Shape Regularity. We turn to the question of shape regularity. In doing this we first
consider a special simplex, the so-called Kuhn-simplex and then treat the general
case.

Definition 29 (Kuhn-Simplex). Let � be any permutation of f1; : : : ; d g. The
simplex with ordered vertices

z�i WD
iX

jD1
e�.j / 8i D 0; : : : ; d;

is a Kuhn-Simplex.

It holds z�0 D 0 and z�d D Œ1; : : : ; 1�T , whence the refinement edge of a Kuhn-
simplex is the main diagonal of the unit cube in Rd . There exist dŠ different Kuhn-
simplices.

Theorem 30 (Shape Regularity for a Kuhn-Simplex). All 2g descendants of
generation g of a Kuhn-simplex T� D fz�0 ; : : : ; z�d g0 are mutually congruent with at
most d different shapes. Moreover, the descendants of generation d are congruent
to T0 up to a scaling with factor 1

2
.
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Fig. 14 Similarity classes for a Kuhn-triangle (top) and a generic triangle (bottom). Note that there
is one class for a Kuhn-triangle and there are four classes for a generic triangle

Main Idea of the Proof. For any descendant of Kuhn-simplex of type 0 the
refinement edge is the longest edge; compare with [25, 39]. ut
Corollary 31 (Shape Regularity). Let T0 D Œz0; : : : ; zd �t be an arbitrary d -
simplex of type t 2 f0; : : : ; d 	1g. Then all descendants of T generated by bisection
are shape regular, i. e.,

sup
T2F.T0/

�T D sup
T2F.T0/

hT

hT
� C.T0/ <1:

Idea of the Proof. Let F0 be an affine mapping from a Kuhn-simplex T� to T0. Then
any descendant of T0 is the image of a corresponding descendant of T� under F0.

ut
It is worth noticing that the number of similarity classes for a Kuhn-simplex and

a generic simplex differ in general; compare with Fig. 14.

3.3 Triangulations and Refinements

We next turn to the refinement of a given conforming triangulation by bisection. In
what follows T0 is a conforming triangulation of ˝ .

Definition 32 (Master Forest and Forest). The union

F D F.T0/ WD
[

T02T0

F.T0/:

is the associated master forest of binary trees. Any subset F � F is called forest
iff

(1) T0 �F ;
(2) all nodes of F nT0 have a predecessor;
(3) all nodes of F have either two successors or none.



Mathematically Founded Design of Adaptive Finite Element Software 253

A forest F is called finite, if maxT2F g.T / < 1. The nodes with no successors
are called leaves of F .

Given an initial grid T0 as a set of elements with ordered vertices and types,
the master forest F holds full information of any refinement that can be produced
by bisection. The concept of master forest and forest is very useful for theoretical
results.

Lemma 33 (Forest and Triangulation). Let F � F be any finite forest. Then the
set of leaves of F is a refinement of T0 giving a triangulation T .F / of ˝ . In
general, the triangulation T .F / is non-conforming.

In view of this lemma, a triangulation T� is a refinement of T iff the
corresponding forests satisfy F .T / � F .T�/ and we denote this by T � T�.

Aspects for the Implementation

The forest F of a triangulation T is useful for the implementation. The forest
F can be used for a compact storage of T including its refinement history:

• Hierarchical information can be generated from F : coordinates, genera-
tion, type, neighbors, . . .

• Only few information has to be stored explicitly on elements: information
for the index mapping I , marker for refinement, . . .

Hierarchical information from F is very beneficial for implementing multi-
grid solvers.

Shape regularity of recurrent bisection of a single element proven in Corollary 31
directly implies the following result.

Corollary 34 (Shape Regularity). The shape coefficients of all elements in F are
uniformly bounded, i. e.,

sup
T2F

�T D sup
T2F

hT

hT
D max

T02T0

sup
T2F.T0/

hT

hT
� max

T02T0

C.T0/ DW C.T0/ <1:

On Conforming Refinements. The master forest F provides an infinite number
of finite forests F such that T .F / is a triangulation of ˝ . In general these
triangulations are not conforming and it is a priori not clear that conforming
refinements of a given conforming grid T exist.

So let T be a conforming triangulation. Considering the case d D 2 we realize
that any refinement of T where all elements in T are bisected exactly twice is
conforming. The situation changes completely when looking at d > 2. Here, a
necessary condition for the existence of a conforming refinement is:
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Fig. 15 Non-compatible
distribution of refinement
edges on neighboring
elements

Fig. 16 Matching neighbors in 2d and their grandchildren. The elements in the left and middle
picture are reflected neighbors. The elements in the rightmost picture are not reflected neighbors,
but the pair of their neighboring children are

Whenever the refinement edges of two neighboring elements
are both on the common side they have to coincide.

Compare with Fig. 15 for an illustration in 3d. We next have to state a condition
on T0 that allows us to (locally) refine any conforming refinement of T0 into a
conforming triangulation. This condition relies on the notion of reflected neighbors.

Definition 35 (Reflected Neighbors). Two neighboring elements T D Œz0; : : : ; zd �t
and T 0 D Œz00; : : : ; z0d �t are called reflected neighbors iff the ordered vertices of T or
TR coincide exactly with those of T 0 at all but one position.

If T; T 0 2 T are reflected neighbors then either the refinement edge of both
elements coincides or both refinement edges are not on the common side.

Assumption 36 (Admissibility of the Initial Triangulation). Let T0 satisfy

(1) all elements are of the same type t 2 f0; : : : ; d 	 1g;
(2) all neighboring elements T and T 0 with common side S are matching neighbors

in the following sense:
if z0zd � S or z00z0d � S then T and T 0 are reflected neighbors; otherwise

the pair of neighboring children of T and T 0 are reflected neighbors.

For instance, the set of the dŠ Kuhn-simplices of type 0 is a conforming
triangulation of the unit cube in Rd satisfying Assumption 36. In Fig. 16 we have
given an example of matching neighbors in 2d.

Theorem 37 (Uniform Refinement). For g 2 N0 denote by

Tg WD fT 2 F j g.T / D gg

the uniform refinement of T0 with all elements in F of generation exactly g.

(1) If T0 satisfies Assumption 36 then Tg is conforming for any g 2 N0.
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(2) If all elements in T0 are of the same type, then condition (2) of Assumption 36
is necessary for Tg to be conforming for all g.

The proof is a combination of [39, Sect. 4] and [38, Theorem 4.3]. Some remarks
are in order.

(1) Theorem 37, and thus Assumption 36, plays a key role in the subsequent
discussion. It states that two elements T; T 0 2 F of the same generation
sharing a common edge are either compatibly divisible, i. e., z0zd D z00z0d , or
the refinement of T does not affect T 0 and vice versa. In the latter case any
common edge is neither the refinement edge z0zd of T nor z00z0d , of T 0.

(2) In 2d it is known that Assumption 36 can be satisfied for arbitrary T0 [26,
Theorem 2.9]. Finding the right labeling of the elements’ vertices in T0 is the
so-called perfect matching problem, which is NP-complete. For d � 3 it is only
known that the elements of any given coarse grid can be decomposed, such that
the resulting triangulation satisfies Assumption 36 [38, Appendix A].

(3) There exist conforming refinements under weaker assumptions on T0 that can
be satisfied for any conforming triangulation; compare with Bänsch [5], Liu
and Jo [24], and Arnold et al. [2]. In this case only uniform refinements Tg

with gmodd D 0 can be shown to be conforming.

3.4 Refinement Algorithms

Denoting by T the set of all conforming refinements of T0, Assumption 36
guarantees that

(1) #T D1, i. e., there are infinitely many conforming refinements of T0;
(2) given a conforming triangulation T 2 T and a subset M � T of marked

elements there exists the smallest conforming refinement T� 2 T of T such
that all elements in M are refined, i. e., T� \M D ;.

To show (2) let T 0 be the (non-conforming) triangulation after bisecting all
elements in M and set g D maxfg.T / j T 2 T 0g. Then Tg 2 T is a conforming
refinement of T with Tg \M D ;. Therefore T� � Tg and we hope that T�
is much smaller that Tg . We want to remark, that the assumptions of Bänsch, Liu
and Jo, Arnold et al. on T0 have the same consequences. This can be seen by using
T 0 � Tg with g sufficiently large and gmodd D 0.

We next derive refinement algorithms REFINE.T ;M / that output the smallest
conforming refinement T� of T with T� \M D ;.

Iterative Refinement. This variant first only bisects all marked elements and
thereby producing irregular nodes. In the so-called completion step these irregular
nodes are removed by bisecting additional elements. This step has to be iterated.
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Algorithm 38 (Iterative Refinement). Let T 2 T and let M � T be a subset of
elements subject to refinement.

subroutine REFINE.T ;M /

while M ¤ ; do
for all T 2M do

T WD 	T [ BISECT.T /

nfT g;

end for

M WD ;; // Completion Step
for all T 2 T do

if T contains an irregular node
M WDM [ fT g

end if
end for

end while

Lemma 39. The iterative refinement algorithm terminates and outputs the smallest
conforming refinement T� of T such that T� \M D ;.

Idea of the Proof. After the first step the above algorithm only resolves non-
conforming situations and therefore holds T� � Tg for a suitable uniform
refinement Tg. The proof does not need Assumption 36. ut

The refinement procedure produces irregular nodes which leads to not one-to-
one neighbor relations. One-to-one neighbor relation has to be re-established later
on when removing an irregular node; compare with Fig. 17 for a 2d example. This
is a very knotty procedure, especially in 3d. In addition, the algorithm as stated
above is not efficient since there are too many iterations in the completion step. It
can be tuned by directly marking all elements at the refinement edge when creating
an irregular node.

Recursive Refinement. Irregular nodes can completely be avoided if the shared
edge of neighboring elements is a common refinement edge; compare with Fig. 18.
In this situation all elements at the common refinement edge can be bisected simul-
taneously. Such an atomic refinement is very convenient for the implementation.

Fig. 17 The not one-to-one neighbor relation causes problems when refining the neighbor

Fig. 18 Atomic refinement operation in 2d (left) and 3d (right). The common edge is the
refinement edge of all elements
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Fig. 19 Recursive refinement of a neighbor. After that the common edge is the refinement edge
for both elements

In general, neighboring elements will not share a common refinement edge.
However we observe the following in 2d. If the neighbor at an element’s refinement
edge does not share the same refinement edge, refine recursively first the neighbor.
After that the refinement edge is shared with the neighboring child as illustrated in
Fig. 19. This idea also works for d > 2 but involves all elements at the common
edge and may need several recursive refinements of neighbors. Avoiding irregular
nodes in higher dimensions is even more convenient than in 2d.

The following lemma is useful for the formulation and the analysis of the
recursive refinement algorithm. It uses the notion of refinement patch of an element
T D Œz0; : : : ; zd �t 2 T defined as R.T;T / WD fT 0 2 T j z0zd � T 0g:
Lemma 40 (Generation in the Refinement Patch). Any T 2 T is of locally
highest generation in R.T IT /, this means

g.T / D maxfg.T 0/ j T 0 2 R.T;T /g;

and T 0 2 R.T;T / is compatible divisible with T iff g.T 0/ D g.T /. Moreover,
minfg.T 0/ j T 0 2 R.T /;T g � g.T / 	 d C 1:
The proof can for instance be found in [30, Sect. 4]. It utilizes that any uniform
refinement of T0 is conforming. In respect thereof Assumption 36 is essential. We
learn that only elements T 0 2 R.T;T / with g.T 0/ < g.T / have to be refined
recursively. Consequently, the maximal depth of recursion is g.T / and recursion
terminates. In addition, any element T 0 2 R.T;T / is compatibly divisible after at
most .d 	 1/ recurrent bisections.

Algorithm 41 (Recursive Refinement of a Single Element). Let T 2 T and T 2
T to be bisected.

function REFINE RECURSIVE.T;T /

do forever
get refinement patch R.T;T /;
access T 0 2 R.T;T / with g.T 0/ D minfg.T 00/ j T 00 2 R.T;T /g;
if g.T 0/ < g.T / then

T WD REFINE RECURSIVE.T ; T 0/;
else

break;
end if

end do
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// Atomic Refinement Operation

get refinement patch R.T;T /;
for all T 0 2 R.T;T / do

T WD 	T [ BISECT.T 0/

 n fT 0g;

end for

return(T );

The recursive refinement of a single element terminates since recursion depth
is bounded by g.T / and #R.T;T / � C with a constant solely depending on T0.
Elements are only bisected to avoid non-conforming situations. Therefore, a call of
REFINE RECURSIVE.T;T / outputs the smallest conforming refinement of T
such that T is bisected.

Algorithm 42 (Recursive Refinement of a Triangulation). Let T 2 T be a
conforming refinement of T0 and let M � T be a subset of elements subject
to refinement.

function REFINE.T ;M /

for all T 2M do
T D REFINE RECURSIVE.T;T /;

end for

return(T );

Properties of REFINE RECURSIVE directly imply the following lemma.

Lemma 43. The recursive refinement algorithm terminates and outputs the small-
est conforming refinement T� of T such that T� \M D ;.

Aspects for the Implementation

The implementation of REFINE as stated above seems to be easy. It gets
knotty because we have to collect the refinement patch from neighbor
information. Furthermore, we have to take care of shared objects. During
refinement, shared objects have to be identified and new shared objects have
to be created (but only once!). Recall that elements of T share objects like

• Coordinates of vertices
• Nodes for storing DOFs of finite element functions located at

– Vertices
– Edges
– Faces (3d)

We want to close with the following remarks:
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(1) Iterative and recursive refinement output the same grid T� whenever both
terminate.

(2) Usually, a marked element is bisected more than once, where the natural choice
are d bisections.

Coarsening. The standard time-discretization of instationary problems leads to a
sequence of single time-steps, where one has to solve a stationary problem. The
most common strategy for adapting the grid in the new time-step is to start with
the final grid from the last time-step. Since local phenomena may move in time,
besides refinement also coarsening of elements is needed; compare with Fig. 20 for
an example that is taken from [9, 10].

Coarsening of a grid T is mainly the inverse operation to refinement with the
following restriction: Collect all children in F .T / that were created in one atomic
refinement operation. If all these children are leaves of F .T / and if all children
are marked for coarsening, undo the atomic refinement operation (Fig. 21).

Aspects for the Implementation

When implementing the coarsening operation, hierarchical information given
by the associated forest F .T / dramatically simplifies the collection of all
children created by a prior atomic refinement operation.

Fig. 20 Graphs of the enthalpy, modulus of the velocity above adaptive grids from a simulation of
industrial crystal growth by the vertical Bridgman method for three different time instances

Fig. 21 Atomic coarsening operation in 2d and 3d
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3.5 Complexity of Refinement By Bisection

Both variants of REFINE.T ;M / output the smallest conforming refinement T�
of T such that T� \M D ;. Besides elements in M other elements are bisected
in order to ensure conformity of T�. This raises the important question:

How large is T� compared to T and M ?

The only thing we know is T� � Tg , for suitable g. This does not even imply that
local refinement stays local! A first guess would be an estimate of the form

#T� 	 #T � C #M

with a constant C only dependent on T0.
Unfortunately, such an estimate is not true for refinement by bisection. To see

this, let for evenK

Mk WD fT 2 Tk j 0 2 T g for k D 0; : : : ; K 	 1
MK WD fT 2 TK j g.T / D K and 0 62 T g:

Examples for K D 2; 4; 6 are displayed in Fig. 22. There holds #MK D 2 and

#TKC1 	 #TK D 4K C 2:

This means that in a single step the number of additionally refined elements may be
proportional to the maximal level of TK . Then again for any even K it holds

#TKC1 	 #T0 D
KX

kD0

	
#TkC1 	 #Tk


 � 3
KX

kD0
#Mk;

i. e., there is a chance to estimate the total number of all created elements by the
total number of all marked elements. The following result due to Binev, Dahmen,
and DeVore in 2d [8] and Stevenson in any dimension [38] confirms this.

Theorem 44 (Complexity of Refinement by Bisection). Let T0 satisfy Assump-
tion 36 and consider the set

M WD
K[

kD0
Mk

Fig. 22 Macro triangulations
and triangulations TK for
K D 2; 4; 6. Elements of MK

are indicated by a bullet
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used to generate the sequence

T0 � T1 � � � � � TKC1 DW T :

There exists a constant C solely depending on T0 and d , such that for any K � 0
holds

#T 	 #T0 � C
KX

kD0
#Mk D C #M :

The proof of the theorem is based on the following heuristics:

(1) Assign to each element T� 2M fixed amount C1 of Euros to spend on refined
elements, where �.T; T�/ is the portion spent by T� on T :

X

T2T nT0

�.T; T�/ � C1 8T� 2M :

(2) The investment of elements in M is fair in the sense that each refined element
gets at least a fixed amount C2 of Euros:

X

T�2M
�.T; T�/ � C2 8T 2 T nT0:

These assumptions obviously imply

C2.#T 	 #T0/ �
X

T2T nT0

X

T�2M
�.T; T�/ D

X

T�2M

X

T2T nT0

�.T; T�/ � C1 #M ;

which directly yields #T 	 #T0 � C1=C2 #M .
The actual construction of the allocation function �WT 
 M ! RC for

conforming refinement by bisection is based on the following properties of the
recursive algorithm relying on Assumption 36.

Lemma 45 (Basic Properties of Recursive Bisection). Let T 2 T and let T 0 be
generated by REFINE RECURSIVE(T ,T ). Then there holds

g.T 0/ � g.T /C 1

and

dist.T; T 0/ � D 21=d
g.T /X

gDg.T 0/

2�g=d < D
21=d

1 	 2�1=d 2
�g.T 0/=d :

Idea of the Proof. The first claim follows from the fact that T is of locally highest
generation inside the refinement patch R.T;T /. The second claim follows by an
induction argument. ut
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Although the proof of the complexity results utilizes properties of the recursive
refinement algorithm, the result holds true for any refinement algorithm outputting
the smallest conforming refinement such that marked elements are refined.

3.6 ALBERTA Refinement

ALBERTA utilizes the recursive bisectioning algorithm discussed in Sect. 3.4. There
is one important difference to the routine BISECT described in Sect. 3.2:

The ALBERTA refinement edge is the edge between local vertices z0 and z1.

Nevertheless, the ALBERTA bisection creates the same descendants by an appro-
priate labeling of the children’s vertices that is consistent with the labeling of the
routine BISECT. In fact, ALBERTA bisectioning is equivalent to exchanging the
vertices z1 and zd of the input element and output elements of BISECT.

The notion of ALBERTA refinement edge gets important when implement-
ing interpolation and restriction routines for coefficient vectors of finite element
functions; compare with Sect. 4.4. It is also vital when describing data of the
macro triangulation T0 since the local numbering of the elements’ vertices on T0

determines the shape of any descendant.

Example 46 (ALBERTA Data for a Macro Triangulation). Consider the unit square
˝ D .0; 1/2 � Rd and the macro triangulation T0 built from the two Kuhn-
triangles, where the main diagonal is the refinement edge for both triangles.
Recalling that the ALBERTA refinement edge is the edge between local vertices
z0 and z1, data of T0 is given as follows.

DIM: 2
DIM_OF_WORLD: 2

number of elements: 2
number of vertices: 4

element vertices:
2 0 1
0 2 3

vertex coordinates:
0.0 0.0
1.0 0.0
1.0 1.0
0.0 1.0

See [34, Sect. 3.2.16] for a detailed documentation of macro triangulations.
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Fig. 23 Local refinement and associated binary trees as used in ALBERTA

3.7 Mesh Traversal Routines

As already discussed, refinement by bisection naturally induces the structure of a
binary forest; compare Fig. 23 for an example. This binary forest can be used in
the implementation for a compact storage of a refinement T of some initial grid
T0 including its refinement history. Element information is split into hierarchical
information, i. e., information that can be produced from F .T /, and element
specific information, i. e., information that can not be produced from the hierarchy.
Only the latter one has to be stored explicitly for each single element of T .
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Aspects for the Implementation

Storing a triangulation in data structures reflecting the tree structure has the
following advantages:

(1) Most part of element information must not be stored explicitly but can be
produced from the hierarchy:

• Coordinate information
• Neighbor information
• . . .

(2) The full tree provides information of the hierarchical structure of the
sequence of triangulations needed for multigrid methods, e. g.,

(3) Coarsening is “easy” to implement. Just collect all leaf elements in the
coarsening patch and remove them from the trees.

This way of storing triangulations has the disadvantage that there is no
direct access to elements. Access to elements is only possible through the
hierarchy by mesh traversal routines.

Mesh traversal routines loop over elements of the binary forest and perform a
specified operation. Mesh traversal routines need following information:

(1) elements to be visited: All, leaf elements, ordering.
(2) operation to be executed on the selected elements.
(3) information from the hierarchy required for the operation on the elements.

A natural implementation of such traversal routines uses recursion, but some
operations, like refinement, need a non-recursive implementation.

We look at an example in ALBERTA, where all leaf elements are marked
for n refinements in a recursive and non-recursive implementation. The marker
for refinement/coarsening is stored explicitly for all elements. No hierarchical
information is needed. For a detailed description of the mesh and element data
structures, and the traversal routines we refer to [34, Sects. 3.2.1–3.2.14 and 3.2.19].

Example 47 (Recursive Traversal Routine).

static int refine_global_mark;

static void refine_global_fct(const EL_INFO *el_info)
{

el_info->el->mark = refine_global_mark;
}

static void refine_global(MESH *mesh, int mark)
{

refine_global_mark = mark;
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mesh_traverse(mesh, -1, CALL_LEAF_EL, refine_global_fct);

/*--- now display mesh with element markers ---------------*/
graphics(mesh, 1);
refine(mesh);

/*--- now display refined mesh ----------------------------*/
graphics(mesh, 1);
return;

}

Example 48 (Non-Recursive Traversal Routine).

static void refine_global(MESH *mesh, int mark)
{

TRAVERSE_STACK *stack = get_traverse_stack();
const EL_INFO *el_info;

el_info = traverse_first(stack, mesh, -1, CALL_LEAF_EL);
while (el_info)
{

el_info->el->mark = mark;
el_info = traverse_next(stack, el_info);

}
free_traverse_stack(stack);

/*--- now display mesh with element markers ---------------*/
graphics(mesh, 1);
refine(mesh);

/*--- now display refined mesh ----------------------------*/
graphics(mesh, 1);
return;

}

In order to use these routines we have to initialize data of some macro triangulation
and parameters like the number of global refinements. This is done in the main
program.

Example 49 (The Main Program).

int main(int argc, char **argv)
{

FUNCNAME("main");
MESH *mesh;
int n_refine = 2;
char line[256];

/*--- first of all, init parameters of the init file ------*/
init_parameters(0, "alberta.dat");

/*----------------------------------------------------------*/
/* get a mesh, and read the macro triangulation from file */
/* name of the macro triangulation defined in alberta.dat */
/*----------------------------------------------------------*/

mesh = GET_MESH("my first mesh", nil, nil);
GET_PARAMETER(1, "macro trianulation", "%s", line);
read_macro(mesh, line, nil);
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GET_PARAMETER(1, "global refinements", "%d", &n_refine);
refine_global(mesh, n_refine*DIM);
WAIT;
return(0);

}

The main program initializes some parameters from a parameter file. See [34,
Sect. 3.1.4] for a detailed description of parameter files, reading parameters and
initializing parameters.

Example 50 (The Parameter File).

% Format is key: value
%
macro trianulation: Macro/macro.amc
global refinements: 3

The aim of the next exercises is to get familiar with

(1) Data structures related to mesh and elements, for instance MESH, EL INFO,
EL, and MACRO EL;

(2) The mesh traversal routines, in particular the access of elements, information
needed on elements, operations performed on elements;

(3) Data of macro triangulations.

Exercise 51 (Meshes in 2d and 3d). Implement the following problems as an
ALBERTA program. For a description of the MESH, EL and EL INFO data
structures see [34, Sects. 3.2.1–3.2.14] and for the mesh traversal routines [34,
Sect. 3.2.19].

(1) Write a function random refine(MESH *mesh, int k) which marks
“randomly” chosen elements of mesh for refinement. After marking the mesh
is refined by a call of refine(mesh). Perform this k times.

Implement a function random coarsen(MESH *mesh, int k)
which marks “randomly” chosen elements of mesh for coarsening. After
marking the mesh is coarsened by a call of coarsen(mesh). Do this also k
times.

Finally, write a function coarse to macro(MESH *mesh) which
coarsen a mesh back to the macro triangulation. A triangulation is a macro
triangulation, iff for all macro elements macro el

macro_el->el->child[0] == nil

holds. Macro elements are stored as a linked list with anchor

mesh->first_macro_el.

Perform repeatedly a random refinement, followed by random coarsening
and a final coarsening back to the macro triangulation. Print in each step the
numbers of elements, edges, and vertices.
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(2) Implement refine_at_origin(MESH *mesh, REAL dist) that
refines all elements where the distance between the element’s barycenter and
the origin is at most dist.

Hint: Coordinate information must be available on the elements for the
calculation of the barycenter. Hence, the traversal routine must be called with
CALL LEAF EL|FILL COORDS as FILL FLAG. Call this function several
times with a decreasing distance dist (bisect dist in each step, e.g.).

(3) Write a function measure omega(MESH *mesh) that computes the mea-
sure of the triangulated domain. This is done by calculating the measure of each
element and adding this value to some global variable.

Exercise 52 (Macro Triangulations). For a description of ALBERTA macro tri-
angulations and the BOUNDARY data structure compare with [34, Sects. 3.2.16 and
3.2.5].

(1) Produce an ALBERTA macro triangulation file for the L-shaped domain
depicted in Fig. 24 (left).

(2) Produce an ALBERTA macro triangulation for the disc depicted in Fig. 24
(right). In order to treat the curved boundaries, the functions

void ball_1_proj(REAL_D p);
void ball_2_proj(REAL_D p);
const BOUNDARY *ibdry(MESH *mesh, int bound);

have to be implemented. Description:

• ball_1_proj(p): Projects point p onto the curved boundary of type 1
(1) by modifying the coordinate stored in p.

Fig. 24 Shapes of the domains for the macro triangulations: (1) L-shaped domain and (2) disc
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• ball_2_proj(p): Projects point p onto the curved boundary of type 2
(2) by modifying the coordinate stored in p.

• ibdry(mesh, bound): Initializes the corresponding BOUNDARY data
structures. A pointer to this function is an argument to the read_macro()
function.

(3) Produce an ALBERTA macro triangulation file for the unit cube .0; 1/3 built
from the 6 Kuhn-simplices in R3.

Read the newly created macro triangulations with the read_macro() function
and perform all the refinements and coarsenings implemented in Exercise 51.

How to Get Started. Prior to the installation of ALBERTA the gltools (version
2–4) should be installed. The gltools can be downloaded from

http://www.wias-berlin.de/software/gltools/.

Follow the installation instruction. Then download the ALBERTA library from

http://www.alberta-fem.de/

and create the ALBERTA library with the configure tools. Examples of typical
configure commands for Linux and Mac OS X (with Snow Leopard) can be
found at

http://www.ians.uni-stuttgart.de/nmh/downloads/iafem/.

This site also provides start-up files packed in alberta.tgz. Unpacking this
archive creates a directory alberta with several sub-directories in the actual
directory. The sub-directories src/?d (with ? = 1, 2, or 3) contain

Macro/ Makefile iafem.dat ellipt.dat

The files iafem.dat and ellipt.dat are used for parameter declaration of the
programs iafem and ellipt. ellipt will be subject of the next exercise. The
sub-directories Macro contain data for several macro triangulations.

The source files iafem.c and ellipt.c (and some files for error estimators
of the problems in Sect. 6) are stored in the directory Common. These source files
are used for 1d, 2d, and 3d. Compilation and linking for ?d executables has to
be done in the corresponding ?d directory using the respective Makefile in the
?d directory. Inside Makefile adjust the variable ALBERTA LIB PATH to the
path where the ALBERTA library is installed on your system. The command make
will then produce the executable iafem. Modify the file iafem.c in the Common
directory for these exercises.

4 Assemblage of the Linear System

In this section we discuss the basic principles how to assemble and solve the linear
system for computing the Ritz-Galerkin solution.
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4.1 The Variational Problem and the Linear System

In general, one has to deal with non-homogeneous boundary data, for instance a
given temperature on the boundary.

Example 51 (Elliptic PDE with Non-Homogeneous Boundary Data). The varia-
tional formulation of the elliptic PDE

	�u D f in ˝; u D g on @˝

reads: Find u 2 H1.˝/ such that

uj@˝ D g and hrv; rui D hf; vi 8v 2 H1
0 .˝/:

A solution belongs to the set
˚
w 2 H1.˝/ j w D g on @˝

�
and this set is non-

empty, iff there exists a Ng 2 H1.˝/ such that Ngj@˝ D g. If so, we have the identity

˚
w 2 H1.˝/ j w D g on @˝

� D Ng CH1
0 .˝/ WD

˚
w D Ng C v j v 2 H1

0 .˝/
�

and the affine space NgCH1
0 .˝/ does not depend on the particular extension Ng of g.

Without loss of generality we denote the extension Ng of boundary data g by g.

We generalize the variational problem including non-homogeneous boundary
data.

Problem 54 (Variational Problem for Non-Homogeneous Boundary Data). Let
.V ; k � kV / be a Hilbert space, V̊ � V a closed and non-empty subspace with dual
V̊ �, BWV
V ! R a continuous bilinear form, satisfying the inf-sup condition on V̊

9˛ > 0 W inf
v2V̊

kvkV D1

sup
w2V̊

kwkV D1

BŒv; w� � ˛; inf
w2V̊

kwkV D1

sup
v2V̊

kvkV D1

BŒv; w� � ˛:

For g 2 V and f 2 V̊ � we look for a solution

u 2 g C V̊ W BŒu; v� D hf; vi 8 v 2 V̊ ; (5)

where g C V̊ WD fw D gC v 2 V j v 2 V̊ g:
Lemma 55 (Existence and Uniqueness). For any pair .f; g/ 2 V̊ � 
 V the
variational problem (5) admits a unique solution u 2 V .

Proof. We claim that for given .f; g/ 2 V̊ � 
 V there exists a unique solution
uI 2 V̊ of the variational problem

uI 2 V̊ W BŒuI ; v� D hf; vi 	BŒg; v� DW hF; vi 8 v 2 V̊ :
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To see this, we observe that B satisfies an inf-sup condition on V̊ . Furthermore, the
mapping F is linear and since B is continuous on V we can estimate for any v 2 V̊

jhF; vij � kf kV �kvkV C kBkkgkV kvkV � .kf kV � C kBkkgkV / kvkV ;

which implies F 2 V̊ �. Hence, Theorem 2 implies that uI uniquely exists. Setting
u WD uI C g we see that u is the unique solution of (5). ut
Problem 56 (Discrete Problem for Non-Homogeneous Boundary Data). Let
VN � V be a subspace of dimension N < 1 such that V̊N WD VN \ V̊ is non-
empty and such that B satisfies the discrete inf-sup condition on V̊N

9˛N > 0 W inf
V2V̊N

kV kV D1

sup
W2V̊N

kW kV D1

BŒV; W � � ˛N :

Let G 2 VN be an approximation to g 2 V and f 2 V̊ �. Then we look for the
discrete solution

U 2 G C V̊N W BŒU; V � D hf; V i 8V 2 V̊N : (6)

Some remarks about the discrete problem are in order.

(1) There is the typical mismatch that boundary data is dicretized whereas we
assume that we can evaluate the right hand side for discrete functions exactly.
In practice the latter one is not possible and one has to rely on numerical
quadrature; compare with Sect. 4.3.

(2) The single inf-sup condition in Problem 56 in combination with dim V̊N < 1
implies the second discrete inf-sup condition

inf
W2V̊N

kW kV D1

sup
V2V̊N

kV kV D1

BŒV; W � � ˛N :

(3) The constant ˛�1N enters in estimates for the condition number of the discrete
linear system as well as in a priori error estimates. Consequently, stable
discretizations with ˛N � ˛ > 0 are important. In the course of this the constant
˛ is independent of the dimensionN .

(4) Coercivity of the bilinear form B on V̊ is inherited to any subspace V̊N � V̊ .
Coercivity therefore implies the continuous and discrete inf-sup condition (with
a uniform constant). In general, the continuous inf-sup condition on V̊ for non-
coercive B does not imply the discrete inf-sup condition on V̊N .

Lemma 57 (Existence and Uniqueness). For any .f;G/ 2 V̊ � 
 VN the discrete
problem (6) admits a unique solution U 2 VN .

Proof. Follows exactly the lines of the proof to Lemma 55. ut
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Structure of the Discrete Linear System. Let f˚1; : : : ; ˚N g be a basis of VN such
that f˚1; : : : ; ˚N̊ g is a basis of V̊N . We use this ordering of basis function related
to V̊N just for notational convenience. For unstructured grids it is advantageous that
such an ordering is not mandatory. Write

U D
NX

jD1
uj˚j and G D

NX

jD1
gj˚j

with the global coefficient vectors

u WD �u1; : : : ; uN
�>

and g WD �g1; : : : ; gN
�>
:

Then (6) is equivalent to the N linear equations

NX

jD1
BŒ˚j ; ˚i � uj D hf; ˚i i i D 1; : : : ; N̊

ui D gi i D N̊ C 1; : : : ; N:

Defining the N 
N system matrix

S WD

2
666666666664

BŒ˚1; ˚1� : : : BŒ˚N̊ ; ˚1� BŒ˚N̊C1; ˚1� : : : BŒ˚N ; ˚1�
:::

: : :
:::

:::
: : :

:::

BŒ˚1; ˚N̊ �; : : : BŒ˚N̊ ; ˚N̊ � BŒ˚N̊C1; ˚N̊ � : : : BŒ˚N ; ˚N̊ �;
0 : : : 0 1 0 : : : 0

0 : : : 0 0 1 : : : 0
:::

: : : 0 0 0
: : :

:::

0 : : : 0 0 0 : : : 1

3
777777777775

and the right hand side vector

f WD �hf; ˚1i; : : : ; hf; ˚N̊ i; gN̊C1; : : : ; gN
�> 2 RN

the discrete variational problem (6) is equivalent to solving the linear system

Su D f in RN
N ; (7)

where U D
NP
jD1

uj˚j 2 VN is the solution to (6).

Lemma 58. The system matrix S is invertible, thus (7) admits a unique solution u.
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Proof. Equation (7) is equivalent to (6) which has for any .f;G/ a unique solution.
ut

Aspects for the Implementation

Let VN be a piecewise polynomial FE space, f˚i g the Lagrange basis, and let
g 2 C0.@˝/. The most convenient choice for boundary data gi is gi D g.zi /
with zi 2 @˝ for i D N̊ C 1; : : : ; N . Therefore, we only use boundary data
g on @˝ and do not rely on any extension Ng 2 H1.˝/. This is a highly
important aspect for applications.

4.2 Assemblage: The Outer Loop

We next discuss basic principles of assembling the system matrix S and the load
vector f . We derive these principle from the 2nd order elliptic PDE

	 div.A.x/ru/C b.x/ � ruC c.x/ u D f in ˝; u D g on @˝:

We pose standard assumption on data:

• a bounded domain˝ � Rd triangulated by some conforming triangulation T ;
• bounded coefficient functions A 2 L1.˝IRd /, b 2 L1.˝IRd /, and c 2
L1.˝/;

• a load function f 2 L2.˝/;
• boundary values g 2 C0.@˝/ \H1.˝/.

For the variational formulation we set V D H1.˝/ and V̊ D H1
0 .˝/ and we

assume structural assumption on the coefficients that imply coercivity of the bilinear
form B on V̊ , where BWV 
 V ! R is defined as

BŒw; v� WD
Z

˝

rv �ArwC vb � rwC v c wdx 8v;w 2 V I

compare with Example 3. Finally, we set

hf; vi D
Z

˝

f v dx 8v 2 V :

Aspects for the Implementation

Note, that the first argument w of the bilinear form always appears as the
last factor of the addends inside the integral in the definition of B. For non-
symmetric B a typical mistake is to assemble S> instead of S !
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Assemblage of the System Matrix. Assume that v or w has local support in ! �
˝ . Then

BŒw; v� D
Z

!

rv �ArwC vb � rwC v c wdx DW B!Œw; v�:

Therefore, for i D 1; : : : ; N̊ the j th entry in S is

Sij D BŒ˚j ; ˚i � DB!ij Œ˚j ; ˚i � j D 1; : : : ; N;

where !ij D supp.˚i /\ supp.˚j /. In addition,

!ij D ; H) Sij D 0:

By construction, finite element basis functions are locally supported and the
support of finite element basis functions is restricted to only few elements of T .
Hence,

Ci WD #f˚j j supp.˚i /\ supp.˚j / ¤ ;g � C;
where C only depends on shape regularity of T . This implies

max
iD1;:::;N̊

#fSij ¤ 0 j j D 1; : : : ; N g � C;

i. e., the system matrix S is sparse.

Aspects for the Implementation

(1) The system matrix S is sparse and has to be assembled and stored with a
complexity proportional to N :

#fSij ¤ 0 j i D 1; : : : ; N̊ ; j D 1; : : : ; N g � C N:

(2) The number of entries per row strongly depends on NP , T and the
dimension. The values Ci may vary strongly!

For a refinement of the standard initial triangulation in 2d typical
values are

• NP D P1: Ci D 9
• NP D P2: Ci D 25 for a basis function ˚i at a vertex, Ci D 9 for a

basis function ˚i at an edge.

These variations get more pronounced for higher polynomial degree and
higher space dimensions.
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Consequently, sparse matrices need special data structures for efficient storage
and access.

We next turn to the element-wise assemblage of the system matrix. Additivity of
integrals allows us to write

Sij D BŒ˚j ; ˚i � D
X

T2T
T�supp.˚i /\supp.˚j /

BT Œ˚j ; ˚i �

For the computation of Sij we initialize Sij D 0, loop over T 2 T with T �
supp.˚i /\ supp.˚j /, compute

Sij jT DBT Œ˚j ; ˚i �;

and add Sij jT to Sij . The drawback of this approach is that a loop over T for all Sij
destroys the linear complexity since this is a “from global to local approach” and
for given .i; j / there is no information about T � supp.˚i /\ supp.˚j / available.

The “from local to global alternative” is the following approach: Set S WD 0,
loop over T 2 T ,

8i; j with T � supp.˚i /\ supp.˚j / add Sij D Sij CBT Œ˚j ; ˚i �:

Linear complexity can be preserved since global basis functions are built from local
basis functions. This means, on T we have precise information about .i; j / with
T � supp.˚i /\ supp.˚j / given by the index mapping

I W f1; : : : ; Nng 
 T ! f1; : : : ; N g:

To be more precise: Let f N�ngnD1;:::; Nn be a basis of NP and f˚T
n D N�i ı �T gnD1;:::; Nn the

transformed basis of P .T /. For any global basis function ˚i with T � supp.˚i /
there exists a unique local index n such that ˚i jT D ˚T

n , where ˚T
n is a local basis

function on T . The relation between i and n is given by i D I.n; T /.
Summarizing these ideas, we first compute on T 2 T the element system matrix

S .T / WD
h
S
.T /
nm

i

n;mD1;:::; Nn WD
h
BT Œ N�m ı �T ; N�n ı �T �

i

n;mD1;:::; Nn :

Then we access for each local index pair .n;m/ 2 f1; : : : ; Nng2 the global index pair
.I.n; T /; I.m; T // 2 f1; : : : ; N g2 and add S.T /nm to SI.n;T /;I.m;T /.

In addition, we have to include entries related to boundary nodes, i. e., basis
functions ˚i with i 2 N̊ C 1; : : : ; N . This gives the algorithm for assembling the
system matrix.
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Algorithm 59 (Assemblage of the System Matrix).

set S WD 0;

for all T 2 T do
for all n 2 f1; : : : ; Nng do

get global index i D I.n; T /
if ˚i 2 V̊ .T / then

for all m 2 f1; : : : ; Nng do
compute S.T /nm and get global index j D I.m; T /;
Sij WD Sij C S.T /nm ;

end for
else
Sii WD 1; //Boundary node

end if
end for

end for

Aspects for the Implementation

Recall that the number of entries per row in S is small, not constant, and
strongly depends on the used finite element space V .T /. Therefore, S has
to be stored as a sparse matrix. There are basically two ways to dynamically
handle sparse matrices.

(1) Before assembling S compute the length of all rows and allocate
corresponding memory.

• Pro: Allows a realization as vector yielding efficient memory access.
• Con: Not easy to implement for general finite element spaces.

(2) The operation S WD 0 removes all entries from an existing matrix.
Elements are dynamically allocated when needed, i. e., when adding S.T /nm

to a non-existing entry Sij .

• Pro: Easy to implement for general finite element spaces.
• Con: Realization does not yield the most efficient memory access.

Assemblage of the Load Vector. Recall the load vector f

f WD �hf; ˚1i; : : : ; hf; ˚N̊ i; gN̊C1; : : : ; gN
�> 2 RN :

For i D 1; : : : ; N̊ , the values
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fi D hf; ˚i i D
Z

˝

f ˚i dx D
X

T2T
T�supp.˚i /

Z

T

f ˚i dx

are also computed element-wise with the local basis functions by

f .T /
n WD

Z

T

f ˚I.n;T / dx D
Z

T

f
	 N�n ı �T



dx

As values gi , i D N̊ C 1; : : : ; N , we take the coefficients of the Lagrange
interpolant IT g. These coefficients are easy to compute and just need the evaluation
of boundary data g at the corresponding Lagrange node.

Algorithm 60 (Assemblage of the Load Vector).

set f WD 0;

for all T 2 T do
for all n 2 f1; : : : ; Nng do

get global index i D I.n; T /
if ˚i 2 V̊ .T / then

compute f .T /
n ;

fi WD fi C f .T /
n ;

else
compute coefficient gn of Lagrange interpolant;
fi WD gn;

end if
end for

end for

4.3 Assemblage: Element Integrals

In Algorithms 59 and 60 we have assumed that we can compute the element
contributionsS.T /nm and f .T /

N . We next elaborate on the issue how to actually compute
element integrals. We restrict ourselves to the model problem and recall its bilinear
form

BŒw; v� D
Z

˝

rv �ArwC vb � rwC v c wdx 8v;w 2 V :

Assuming that dataA, b and c is piecewise constant over T the computation of the
element system matrix

S.T /nm D BT Œ˚
T
n ; ˚

T
m� D

Z

T

r˚T
m �Ar˚T

n C ˚T
m b � r˚T

n C ˚T
m c ˚

T
n dx
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involves only a polynomial of degree � 2p. The following lemma states that any
element integral involving only a polynomial can be computed exactly.

Lemma 61 (Integrals of Polynomials). Let T be a simplex and � D �T the
barycentric coordinates on T . Then for any multi-index ˛ 2 NdC1

0 there holds

Z

T

�˛.x/ dx D ˛Š

.j˛j C d/Š jdetDFT j D ˛Š d Š

.j˛j C d/Š jT j ;

where �˛ D �˛00 � � � � � �˛dd , j˛j D ˛0 C � � � C ˛d , ˛Š D ˛0Š � � � � � ˛d Š.
Unfortunately, the result is more useful for symbolic computations rather then

for numerical ones. Nevertheless we learn that, up to scaling by jT j, integrals of
basis functions do not depend on T . This easily follows from the construction of
basis functions in terms of barycentric coordinates. In general, element integrals
involve general functions, like A, b, c, and f . Such integrals cannot be computed
exactly without additional knowledge. For such functions we have to use numerical
integration.

Definition 62 (Quadrature Formula). A numerical quadrature formula OQ on OT
is a set

f.w`; �`/ 2 R 
RdC1 j ` D 1; : : : ; Lg
of weights w` and quadrature points �` 2 NT such that

Z

OT
g. Ox/ d Ox � OQ.g/ WD

LX

`D1
w`f . Ox.�`//:

It is called exact of degree p for some p 2 N if

Z

OT
P. Ox/ d Ox D OQ.P/ for all P 2 Pp:

It is called stable if w` > 0 for all ` D 1; : : : ; L.

In view of the notion of exactness, Lemma 61 may be useful to derive numerical
quadrature formulas of any order. In general, such formulas are not stable. Defini-
tion 62 defines a quadrature formula on OT . Using the affine mappingFT W OT ! T we
can derive a quadrature rule for an arbitrary simplex T . Assume a given simplex T
and a given function gWT ! R, for which we want to compute an approximation to

Z

T

g.x/ dx:

Utilizing the transformation rule we deduce from a given quadrature rule OQ on OT
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Z

T

g.x/ dx D jdetDFT j
Z

OT

	
g ı FT



. Ox/ d Ox � jdetDFT j OQ

	
g ı FT




D jdetDFT j
LX

`D1

w`g.FT . Ox.�`/// D jdetDFT j
LX

`D1

w`g.x
T .�`// DW QT .g/:

Therefore, given a quadrature rule OQ on OT we can construct a quadrature rule QT

on T . If OQ is exact on Pp then QT is also exact on Pp . Furthermore, if �` 2 NT for
all 1 � ` � L only values of g on T are involved. Finally, continuity of g on T is
required in order to use numerical integration. Consequently, we assume from now
on that data is piecewise continuous over T .

Approximating the Load Vector. Given a fixed quadrature formula OQ we compute
on T 2 T :

f .T /
n WD QT

	
f . N�n ı �T /


 D jdetDFT j
LX

`D1

w`f .x
T .�`// N�n.�`/ �

Z

T

f
	 N�n ı �T



dx:

Note, that assuming that we can evaluate f at any given point x 2 Rd the quantity
QT

	
f . N�n ı �T /



is fully computable and leads to a practical algorithm for the

approximation of the load vector.

Aspects for the Implementation

(1) The values N�.�`/ do not depend on T . They only have to be computed
once for each pair of quadrature formula OQ and local basis f N�ngnD1;:::Nn.

(2) The evaluation f .xT .�`// requires to convert local coordinates �` into
world coordinates xT .�`/ on T (this is fast!).

(3) The values f .xT .�`// should be computed first for all quadrature nodes.
These computed values can then be used in combination with the
precomputed values of the basis functions N�n.

We next formulate the algorithm for assembling the load vector, where element
integrals are computed using numerical quadrature.

Algorithm 63 (Assemblage of the Load Vector With Quadrature). Let OQ be a
numerical quadrature on OT and f N�ngnD1;:::Nn a basis of NP .

compute N�n.�`/ for n D 1; : : : ; Nn, ` D 1; : : : ; L;
set f WD 0;

for all T 2 T do
compute f .xT .�`// for ` D 1; : : : ; L;
for all n 2 f1; : : : ; Nng do
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get global index i D I.n; T /
if ˚i 2 V̊ .T / then

compute f .T /
n D QT

	
f . N�n ı �T /



;

fi WD fi C f .T /
n ;

else
compute coefficient gn of Lagrange interpolant;
fi WD gn;

end if
end for

end for

Approximating the System Matrix. Following the ideas developed for approxi-
mating the load vector we use numerical quadrature for the approximation of the
element system matrix

S.T /nm D
Z

T

r˚T
m �Ar˚T

n dx C
Z

T

˚T
m b � r˚T

n dx C
Z

T

˚T
m c ˚

T
n dx

� Q2
T

	r˚T
m �Ar˚T

n


CQ1
T

	
˚T
m b � r˚T

n


CQ0
T

	
˚T
m c ˚

T
n



;

where OQ2, OQ1, OQ0 are given quadrature formulas on OT that may differ. We want
to remark that the last line is fully computable provided that we can evaluate the
coefficient functions at given world coordinates x 2 Rd .

Aspects for the Implementation

(1) The choice OQ2 D OQ1 D OQ0 in general minimizes computational work.
Nevertheless, it is beneficial to have the potential to use different
formulas.

(2) Let A, b, and c be constant on T , NP D Pp, and assume that OQ` is exact
on P2p�`. Then the element integrals are computed exactly.

For an efficient use of numerical quadrature in the approximation of the system
matrix we have to identify those values that depend on the actual simplex T

and those values that are independent of T . Concerning this matter we recall the
computation of derivatives

r˚T
n .x/ D �>r� N�n.�.x//

with the Jacobian� of the barycentric coordinates. Defining the element coefficient
functions
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AT WD jdetDFT j�AjT �>WT ! R.dC1/
.dC1/;

bT WD jdetDFT j�bjT WT ! RdC1;

cT WD jdetDFT j cjT WT ! R

we deduce for a given be a quadrature formula OQ on OT

QT

	r˚T
m �Ar˚T

n


 D
LX

`D1
w`
�
r� N�m.�`/ �AT .x

T .�`/r� N�n.�`/
�

QT

	
˚T
m b � r˚T

n


 D
LX

`D1
w`
� N�m.�`/bT

	
xT .�`/


 � r� N�n.�`/
�

QT

	
˚T
m c ˚

T
n


 D
LX

`D1
w`
� N�m.�`/ cT

	
xT .�`/


 N�n.�`/
�
:

Thereby all dependence on data and T is shifted into the element coefficient
functions AT , bT , and cT . These functions have to be evaluated at all quadrature
nodes on T . All other values such as N�m.�`/, r� N�m.�`/, etc. do not depend on T
and they only have to be computed once.

If the coefficient functions A, b and c are piecewise constant over T we can
make the computation of the element system matrix even more efficient. In this case
we obtain

QT

	
˚T
m c ˚

T
n


 D cT
	
xT .�1/


 LX

`D1
w`
� N�m.�`/ N�n.�`/

�
D cT

	
xT .�1/


 OQ	 N�m N�n


;

QT

	
˚T
m b � r˚T

n


 D bT
	
xT .�1/


 �
LX

`D1
w`
� N�m.�`/r� N�n.�`/

�

D bT
	
xT .�1/


 � OQ	 N�m r� N�n


;

and
QT

	r˚T
m �Ar˚T

n


 D AT

	
xT .�1/


˝ � OQ	 N�m;�i N�n;�j

�
i;jD0;:::;d

with an appropriate notion of the symbol ˝. The values OQ	 N�m N�n


, OQ	 N�m N�n;�j



,

and OQ	 N�m;�i N�n;�j



do not depend on T . They only have to be computed once

for each pair of quadrature formula OQ and local basis f N�ngnD1;:::Nn. Using suitable
quadrature formulas the corresponding integrals can be computed exactly.

Collecting the above ideas for computing in Algorithm 59 the element contri-
butions S.T /nm with numerical quadrature we obtain a fully practical algorithm as
Algorithm 63 for the load vector.
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Aspects for the Implementation

The system matrix can be computed fully automatically for a general type of
PDE and for different kind of finite element spaces by collecting all element
dependence in the element functions like

AT WD jdetDFT j�AjT �>; bT WD� jdetDFT jbjT ; cT WD jdetDFT j cjT :

The element system matrix can be computed efficiently using the following
rules:

(1) The values N�n.�`/ and N�m;�j .�`/ do not depend on T . They only have to

be computed once for each pair of quadrature formula OQ and local basis
f N�ngnD1;:::Nn.

(2) Values of variable coefficients should be stored for all quadrature nodes.
The stored values can then be used in combination with the precomputed
values of all local basis functions.

(3) IfA, b, and c are piecewise constant the values OQ	 N�m N�n


, OQ	 N�n N�m;�j



,

and OQ	 N�n;�i N�m;�j


, do not depend on T . They can be computed once and

the computation of the element system matrix becomes very efficient. In
addition, one can choose a quadrature formula such that these integrals
are evaluated exactly.

On the Choice of the Quadrature. The starting point for the a priori error analysis
including variational crimes like numerical integration is the first Strang Lemma. A
detailed analysis can be found for instance in [16, Sect. 4].

We shortly summarize the most important results for the model problem. From
the first Strang Lemma we obtain optimal order a priori error estimates provided

(1) The consistency error induced by numerical quadrature is of the same order as
the approximation error;

(2) The discrete bilinear form is coercive with a constant independent of T .

Using a quadrature formula OQ that is exact on P2p�2 for the element system matrix
and element load vector results in optimal order a priori error estimates of the
consistency error for both the system matrix and the load vector.

For the model problem with � � A.x/� � ˛ j�j22 for all � 2 Rd and x 2 ˝ ,
b D 0, and c � 0 in ˝ coercivity of B on V̊ is derived by

BŒv; v� D
Z

˝

rv �ArvC c v2 dx �
Z

˝

˛ jrvj22 C c v2 dx � ˛krvk2
L2.˝/
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in combination with Friedrich’s inequality. The same procedure works for the
discrete bilinear form provided OQ is exact on P2p�2 and all weights are non-
negative, i. e., OQ is stable. The key point is that we use point-wise properties of
A and c in combination with the fact that for V 2 V .T / we have rVjT 2 P2p�2
and thereforeQT .jrV j2/ D krV k2L2.T /.

The proof of coercivity of B for b 6 0 with divb  0 utilizes in a first step
integration by parts to show

Z

˝

vb � rwdx D 1

2

Z

˝

vb � rwdx 	 1
2

Z

˝

wb � rv dx

Therefore, we see that the first order term is skew symmetric. In particular this
implies BŒv; v� D R

˝
rv �ArvC c v2 dx and we can proceed as above.

Including effects of numerical integration we realize that skew symmetry of the
first order term in B is a consequence of a global argument in combination with the
point-wise property divb  0. Integration by parts does not transfer to numerical
integration and coercivity of the discrete bilinear form is not clear. To overcome this
problem we use integration by parts to derive the equivalent representation of B,
namely

BŒw; v� D
Z

˝

rv �ArwC 1
2
vb � rw	 1

2
wb � rvC v c wdx:

We then apply numerical integration to this representation which features a build-in
skew symmetry of the first order term. Now the same rules as in the case b  0

apply.

Aspects for the Implementation

(1) If b 6 0 use integration by parts to derive a representation of the
continuous bilinear form featuring a build-in skew symmetry of the first
order term.

(2) Use a stable quadrature formula OQ that is at least exact on P2p�2 for
computing element integrals.

(3) Rule of Thump: Integrals that can be computed exactly, should be
computed exactly.

Remark 64 (ALBERTA Realization). In ALBERTA the above idea is implemented
for assembling the system matrix for 2nd elliptic equations automatically. The
problem dependent function

• LALt(T ,�`) that is a realization ofAT .�`/ D jdetDFT j�A.x.�`//�> on T ,
• Lb0(T ,�`) that is a realizations of bT .�`/ D jdetDFT j�b.x.�`// on T , and
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• c(T ,�`) that is a realization of cT .�`/ D jdetDFT j c.x.�`// on T

have to be supplied. In addition, the assemblage tool needs information about data
being piecewise constant. With such information the linear system is assembled
automatically in an efficient way; compare with [34, Sect. 3.12].

4.4 Remarks on Iterative Solvers

We finish this section by analyzing the structure of the discrete linear system with
main focus on the structure of the residual. The structure of the residual has impact
on the choice of the appropriate iterative solver.

Recall the N 
N system matrix

S WD

2

666666666664

BŒ˚1; ˚1� : : : BŒ˚N̊ ; ˚1� BŒ˚N̊C1; ˚1� : : : BŒ˚N ; ˚1�
:::

: : :
:::

:::
: : :

:::

BŒ˚1; ˚N̊ �; : : : BŒ˚N̊ ; ˚N̊ � BŒ˚N̊C1; ˚N̊ � : : : BŒ˚N ; ˚N̊ �;
0 : : : 0 1 0 : : : 0

0 : : : 0 0 1 : : : 0
:::

: : : 0 0 0
: : :

:::

0 : : : 0 0 0 : : : 1

3

777777777775

and the load vector

f WD �hf; ˚1i; : : : ; hf; ˚N̊ i; gN̊C1; : : : ; gN
�> 2 RN :

Note that even in the case of symmetric B the system matrix is always non-
symmetric. We decompose the system matrix S and vectors v 2 RN according
to interior and boundary nodes:

S D
�
S II S ID

0 id

�
; v D

�
vI

vD

�
2 RN̊ 
RN�N̊ :

The matrix S II 2 RN̊
N̊ couples interior nodes and the matrix S ID 2 RN̊
.N�N̊ /
couples interior with Dirichlet boundary nodes. We need to solve

Su D f ”
�
S II S ID

0 id

� �
uI

uD

�
D
�
f I

f D

�
:

As we have seen, the system matrix S is a sparse matrix. Direct solvers for
sparse matrices need a special sparsity pattern of S in order to perform efficiently.
Such a sparsity pattern can be constructed by an appropriate renumbering of basis
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functions. For d � 2 there exist nowadays efficient tools for obtaining a suitable
sparsity pattern of S .

Another class of efficient solvers for a linear system with a sparse matrix
are preconditioned Krylov space solvers. These are iterative solvers that compute
corrections based on the residual

r.v/ WD f 	 S v D
�
f I 	 S IIvI 	 S IDvD

f D 	 vD

�
D
�
f I 	 S IIvI 	 S IDvD

gD 	 vD:

�

Assume an initial guess u.0/ with u.0/D D gD. Then holds for all ` � 0

r .`/ D r.u.`// D
"
f I 	 S IIu

.`/
I

0

#
	
�
S IDgD

0

�
;

i. e., there are only corrections for interior nodes that only involve S II. With such an
initial guess any iterative solver utilizes solely properties of S II. These attributes are
completely determined by properties of B on V̊ .T /.

For given v D ŒvI; 0�
> the corresponding finite element function V belongs to

V̊ .T /. For coercive B on V̊ we thus conclude for such v

v � S v D vI � S IIvI DBŒV; V � � ˛kV k2V � Q̨ jvj22 ;

using equivalence of norms. The constant Q̨ depends on N . Moreover, symmetry of
B implies

S II D
�
BŒ˚i ; ˚j �

�
i;jD1;:::;N̊ D

�
BŒ˚j ; ˚i �

�
i;jD1;:::;N̊ D S>II ;

i. e., S II is symmetric and in combination with coercivity of B the matrix S II is spd.

Aspects for the Implementation

(1) For symmetric and coercive B we can use a preconditioned CG method.
(2) For general B one has to use GMRes, or BiCGStab, . . .

Remark 65 (Decomposition of Discrete and Continuous Solution). The decompo-
sition of the residual implies for the coefficient vector u D uI C gD of the discrete
solution

S IIuI D f I 	 S IDgD:

This perfectly mimics the construction of the true solution u D uI C g:

uI 2 V̊ W BŒuI ; v� D hv; f i 	BŒg; v� 8v 2 V̊ :
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Remark 66 (Initial Guess for an Iterative Solver). Assume the following iteration

SOLVE 	! ESTIMATE 	! MARK 	! REFINE/COARSEN.

A good choice as initial guess u.0/I for any iterative solver are the coefficients of the
old discrete solution at interior nodes with boundary values from the actual grid.
This needs interpolation resp. restriction of the coefficient vector of the discrete
solution during refinement resp. coarsening.

Such interpolation and restriction routines strongly depend on the finite element
space and the refinement rule. From the interpolation and restriction of basis
functions of NP during refinement of NT interpolation and restriction routines for
general finite element functions can be derived. ALBERTA supplies such routines
for Lagrange elements; compare with [34, Sect. 1.4.4].

Exercise 67 (2nd Order Elliptic Equation). Write an ALBERTA program for the
adaptive solution of the elliptic equation

	r � .Aru/C b � ruC c u D f in ˝ D .0; 1/d ; u D g on @˝

for d D 2; 3 with coefficientsA D " idRd (" > 0), b D �1; : : : ; 1�>, and c D d .
Verify the program with the exact solution

u.x/ D
dY

iD1
xi .1 	 e.xi�1/="/

using different values " > 0 and a corresponding right hand side f .x/ and boundary
values g.x/. Use Lagrange elements of order 1–4 and different marking strategies.

As a starting point, an ALBERTA program for the solution of the Poisson
problem

	�u D f in ˝; u D g on @˝

is available (the file ellipt.c in the Common directory). Adjust this code to the
above problem by modifying routines for the calculation of element matrices, the
routine r() for evaluation the lower order term for the estimator ellipt est()
(compare with Sect. 5), and exact solution and data.

For the solution of the non symmetric linear system use GMRes (solver no. 3
for oem solve()) with restart 10 – 20. The model implementation of Poisson’s
equation in the source file ellipt.c is described in detail in [34, Sect. 2.1].

5 The Adaptive Algorithm and Concluding Remarks

In this part we discuss the remaining modules of the adaptive algorithm and
comment on solver evaluation and choice of an adequate finite element package.
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5.1 The Adaptive Algorithm

Let u 2 V be a solution of Problem 54 and let U be its Galerkin approximation in
V .T /. Typical a priori error estimates are of the form: If u 2 V s then

kU 	 uk2V .
X

T2T
h2sT kuk2V s .T /;

where the subspace V s � V describes regularity properties of u. This already
indicates that one can profit from local refinement of T by compensating for a large
local norm kukV s.T / by a small local mesh size hT . In practice, the true solution u
is unknown, and therefore information about kukV s .T / is not accessible.

As eluded in the introduction the h-adaptive finite element algorithm is an
iteration of the form

SOLVE 	! ESTIMATE 	! MARK 	! REFINE.

We have already discussed the modules SOLVE in Sect. 4 and REFINE in Sect. 3. It
remains to address the modules ESTIMATE and MARK. The latter one is in general
problem independent whereas ESTIMATE strongly depends on the problem under
consideration.

Aspects for the Implementation

(1) ESTIMATE has to compute an error bound for the true error that only
depends on the discrete solution and given data of the PDE:

kU 	 ukV . ET .U;T /:

(2) This bound should be computed from local quantities that allow in
MARK for decisions about local refinement. This means, the estimator
should be given as

E 2
T .U;T / D

X

T2T
E 2

T .U; T /

with error indicators ET .U; T / that are computed from local values.
(3) In practice a stopping test is included in-between the steps ESTIMATE

and MARK. This means, given a tolerance TOL > 0 for the estimator
ET , the iteration is terminated if ET .U;T / � TOL.
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5.1.1 Error Estimation

In this section we comment on the implementation of an error estimator for the
model problem

	 div.A.x/ru/C b.x/ � ruC c.x/ u D f in ˝; u D 0 on @˝:

We recall its weak formulation in V D H1
0 .˝/

u 2 V W BŒu; v� WD
Z

˝

rvTAruCvb�ruCv c u dx D
Z

˝

f v dx 8 v 2 V :

We suppose that the coefficient satisfy the assumptions of Example 3 that guarantee
coercivity of B. In addition, we assume exact integration and exact linear algebra for
the computation of the Galerkin approximationU in a finite element space V .T / D
FES.T ;Pp;V / over a conforming triangulation T of ˝ .

Starting point for the a posteriori error analysis is the equivalence

˛kU 	 ukV � kR.U /kV � � kBkkU 	 ukV
with the residual R.U / 2 V � defined as

hR.U /; vi WD BŒU; v� 	 hf; vi D BŒU 	 u; v� 8v 2 V :

The residual is an a posteriori quantity in that it can be computed from the discrete
solution and given data of the PDE. Nevertheless, the dual norm k � kV � is non-
computable. Most error estimators provide a computable bound for kR.U /kV � .

We consider here the residual estimator. We additionally ask that A is piecewise
Lipschitz over T , this meansA 2 W 11.T IRd
d /. This allows us to define element-
wise the element residual as

RjT WD .	 div.ArU /C b � rU C c U 	 f /jT
for all T 2 T . For any interior side S D T1 \ T2 of T we define the jump residual
by

JjS WD 1
2
ŒŒArU �� � nS WD 1

2

	
.ArU /jT1 	 .ArU /jT2


 � nS :
Hereafter, nS is the unit normal of S pointing from T1 to T2. For a boundary side S
we set J WD 0. The indicators ET .U; T / of the residual estimator are given by

E 2
T .U; T / WD h2T kRk2L2.T / C hT kJ k2L2.@T /:
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Theorem 68 (Global Upper and Local Lower Bound). There holds

kU 	 uk2V � C1E 2
T .U;T / WD C1

X

T2T
E 2

T .U; T /:

and
C2E

2
T .U; T / � kU 	 uk2V .NT .T // C

X

T 02NT .T /

osc2T .U; T
0/:

with the oscillation term

osc2T .U; T / WD h2T k NR 	Rk2L2.T / C hT k NJ 	 J k2L2.@T / 8T 2 T :

Hereafter, NR and NJ are piecewise polynomial approximations to R and J .

Proof. See the books by Verfürth [42] and Ainsworth and Oden [1]. ut
Some remarks are appropriate.

(1) Assuming that we can compute L2 norms, the indicators ET .U; T / are
computable quantities. The computation of ET .U; T / only involves T and its
direct neighbors.

(2) Generically, the oscillation term oscT .U; T / is of higher order, this means that
kU 	 ukV .NT .T // is dominant in the lower bound.

(3) The typical choice for the approximations NR and NJ are the element-wise or
side-wise L2 projection onto polynomials of degree p 	 1.

(4) Assume that T� is a refinement of T such that T 2 T and its neighbor are
“sufficiently” refined. Then there holds a discrete analogue to the continuous
lower bound, namely the discrete lower bound

QC2E 2
T .U; T / � kU 	 U�k2V .NT .T // C

X

T 02NT .T /

osc2T .U; T
0/;

where U� 2 V .T�/ is the Galerkin approximation to u in V .T�/; compare for
instance with [27, 28].

Computation of the Error Estimator. The estimator can be computed by looping
over all grid elements and computing the indicators element-wise from local values.
For general data A, b, c, and f the L2-norms cannot be computed exactly.
Therefore, exact integration on T is replaced by numerical quadrature on T and each
side S � @T ; compare with Sect. 4.3. Note, that in case of piecewise polynomial
data an appropriate choice of the quadrature formula results in an exact computation
of the L2-norms.

The element residual for x 2 T is

R.x/ D 	A WD2U.x/ 	 divA.x/ � rU.x/C b.x/ � rU.x/C c.x/U.x/ 	 f .x/;
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where we have used the product rule for the second order term. Therefore, we can
compute an approximation to khT Rk2L2.T / by a quadrature formula having access
to functions for the evaluation of data

A.x/; divA.x/; b.x/; c.x/; f .x/

at given quadrature points x 2 T . The Galerkin approximationU and its derivatives
are evaluated on each element T 2 T by first extracting the local coefficient vector
from the global one and then using the local basis representation; compare with
Sect. 2.3. Note, that for the evaluation of U , rU , and D2U all derivatives up to
2nd order of the basis functions f N�1; : : : ; N� Nng on NT have to be accessible. The
computation of derivatives of U again involves the Jacobian � of the barycentric
coordinates on T .

The computation of the jump residual is much more involved since the evaluation
of

JjS WD 1
2
ŒŒArU �� � nS WD 1

2

	
.ArU /jT1 	 .ArU /jT2


 � nS
needs values of ArU from both adjacent elements T1 and T2 on the common side
S D T1\T2. We thereby have to use a quadrature rule for the .d 	1/ simplex S . In
defining a quadrature formula on a side S we can follow the same ideas explained
in Sect. 4.3. This means, we fix a given quadrature rule on a side of the standard
element and then use the transformation rule to obtain a quadrature formula for a
generic side S .

The barycentric coordinates � with respect to the common side S have d
components. For the evaluation of .ArU /jTi , i D 1; 2, they have to be converted
into barycentric coordinates �T1 and �T2 with respect to T1 and T2 having .d C 1/
components. In doing this one has to fix a unique ordering of the common side’s
vertices, for instance the ordering given by T1. Note, that in general the ordering of
the vertices of S induced by T2 differs. Using a different ordering of the vertices of
S on T1 and T2 results in different world coordinates of the same quadrature points;
compare with Fig. 25. After a proper conversion of the quadrature nodes � on S into
barycentric coordinates �Ti on Ti the evaluation of .ArU /jTi is standard. This in

turn allows then for an approximation of the jump residual kh1=2T J k2S by means of
numerical quadrature.

Fig. 25 Quadrature nodes on
a common side S D T1 \ T2.
Different ordering of the
vertices of S on T1 and T2
(left), consistent ordering of
vertices of S on T1 and T2
(right)
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Remark 69 (ALBERTA Realization). ALBERTA efficiently computes for constant
A the residual estimator when having access to a user defined function evaluating
the lower order terms

b.x/ � rU.x/C c.x/U.x/ 	 f .x/:

Compare the description of the function ellipt_est() in [34, Sect. 3.14.1].
The implementation of this function can serve as a reference when implementing
residual type estimators for other problems.

5.1.2 Marking Procedures

Let us motivate marking procedures by recalling the aim of adaptive methods. Given
a tolerance TOL for the error kU 	 ukV and an initial grid T0 we want to construct
a refinement T of T0 such that

(1) kU 	 ukV D TOL,
(2) The number of DOFs in T is as small as possible.

This is a discrete, constrained minimization problem. We are looking for the
optimal (minimal) refinement T of T0 such that kU 	 ukV D TOL. In general,
the task to find a solution to this minimization problem is more costly than the
actual computation of a discrete solution. Therefore, we need some heuristics for
constructing a good but in general non-optimal grid T . Using techniques from
continuous optimization Babuška and Rheinboldt have heuristically characterized
optimal meshes [4].

Characterization 70 (Optimal Mesh). Let T be a minimal refinement of T0 such
that kU 	 ukV D TOL. Then holds for all T 2 T

kU 	 ukT � TOL

s
#DOFs.T /

#DOFs.T /
D TOL const;

i. e., the error is equidistributed over the mesh elements.

Marking strategies therefore aim at the equidistribution of the true error. In
practice, the local error is unknown. Hence, marking strategies try to equidistribute
the local error indicators ET .U; T /. Obviously, large error indicators disturb
equidistribution. Therefore, elements with large error indicator are selected for
refinement. Small indicators also disturb equidistribution. Elements with small
indicators can be selected for coarsening, if wanted.

Some remarks about replacing the local error by the error indicator are appropri-
ate. In general oscillation is dominated by the estimator, this means

oscT .U; T / � ET .U; T /:
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Assume first the generic situation oscT .U; T /� ET .U; T /.

(1) The continuous local lower bound then implies: If ET .U; T / is large then the
local error kU 	 ukV .NT .T // is large.

(2) The discrete lower bound for the differences of two finite element solutions
implies: If ET .U; T / is large we can expect a large local error reduction.

Consider next that oscillation oscT .U; T / is proportional to ET .U; T /. In this case
the oscillation term spoils the continuous and discrete lower bound. Oscillation is
related to local resolution of data on T . Consequently, if oscillation is large we
have to improve local resolution of data. A selection of T with large indicator
ET .U; T / � oscT .U; T / for refinement therefore results in an improvement of
local data resolution.

General Marking Strategy. Given the estimator ET .U;T / and the indicators
fET .U; T /gT2T , the most commonly used marking strategies are based on com-
puting first a threshold Elimit and then marking all elements for refinement, where
the indicator is above this threshold, i. e., ET .U; T / � Elimit. The computation of
the threshold Elimit usually needs additional parameters. This gives the following
marking strategy.

Algorithm 71 (General Marking Routine).

function mark
	
T ; fET .U; T /gT2T ; : : :




compute threshold Elimit;
M WD ;;

for all T 2 T do
if ET .U; T / � Elimit then

M WDM [ fT g;
end if

end for

return.M /;

It remains to define the threshold in the general marking strategy. Each adaptive
iteration requires to solve for the discrete solution, i. e., we have to solve a high
dimensional linear or nonlinear system, which in general is costly. Therefore, we
have to find a good balance of:

(1) Selecting only few elements in order to construct “very good” meshes by picking
up frequently improved information about the error.

• Disadvantage: Needs many iterations, which implies that we also have to
solve frequently for the discrete solution.

(2) Selecting many elements in order to reduce the number of iterations.

• Disadvantage: The resulting grids may not be optimal, i. e., we are creating
too many elements, in particular in early stages of the adaptive iterations.
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We next give an overview of the most popular marking strategies.

Equidistribution Strategies. Consider a given grid T where the estimator meets
the tolerance TOL > 0, i. e., ET .U;T / D TOL, and the indicators fET .U; T /gT2T
are equidistributed over T , i. e., ET .U; T / D const: for all T 2 T . Then holds

X

T2T
E 2

T .U; T / D #T const.2 D TOL2 H) ET .U; T / D TOLp
#T

:

This motivates to mark all elements with an indicator above this value.

Given a tolerance TOL > 0 and parameter � 2 Œ0; 1� define the threshold as

Elimit WD � TOLp
#T

:

A typical value for the parameter � is � � 0:9.

The drawback of this marking is the following observation. Using a tolerance for
the absolute error the threshold is not invariant under scaling of the problem. If TOL
is chosen too small, nearly all elements are marked on coarse grids.

Modified Equidistribution Strategy. This disadvantage of the Equidistribution
Strategy can be avoided by using the average of the indicators as limit value.

Given parameter � 2 Œ0; 1� define the threshold as

Elimit WD � ET .U;T /p
#T

:

A typical value for the parameter � is � � 0:9.

Maximum Strategy. This strategy directly aims at marking only elements with
indicators close to the maximal indicator.

Given parameter � 2 Œ0; 1� define the threshold as

Elimit WD � max
T2T ET .U;T /:

A typical value for the parameter � is � � 0:5.

Dörfler Marking. In the first convergence proof for adaptive finite elements [17]
Dörfler introduced the idea to control the total estimator by the estimator on the set
of marked elements.
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Given � 2 .0; 1� select M � T such that

� ET .U;T / � ET .U;M /:

A typical value for � is � D 0:5.

Obviously, Dörfler Marking does not fit into the general marking strategy
Algorithm 71. In principle, the size of the indicators of single elements in M does
not matter, i. e., M can contain elements with small error indicator. But then #M
will be large. For a “good” adaptive method M should only contain elements with
large indicator, such that #M is minimal. In fact, for linear, symmetric, and elliptic
PDEs it has been proved that minimality of M implies an optimal error decay in
terms of DOFs [15, 23] and [8, 37].

Choosing the minimal subset M requires a sorting of elements. In practice, this
sorting is often avoided by a simple “drawer” algorithm. This results in a threshold
Elimit for the general marking strategy Algorithm 71 and can be interpreted as an
adaptive Maximum Strategy for selecting elements into M .

Algorithm 72 (Sorting into Drawers).

function Dörfler threshold
	
T ; fET .U; T /gT2T ; �; �




Emax WD max
T2T ET .U; T /, ET .U;M / WD 0, � WD 1

while ET .U;M / < �ET .U;T / do
ET .U;M / WD 0, � WD � 	 �
for all T 2 T do

if ET .U; T / > � Emax

E 2
T .U;M / WD E 2

T .U;M /C E 2
T .U; T /

end if
end for

end while

return Elimit WD �Emax.

Typical values for the parameters � and � are � � 0:5 and � � 0:1.

Strategies with Coarsening. Adaptive methods allowing for coarsening of ele-
ments select elements with small error indicator for coarsening.

(1) Coarsening is necessary for instationary problems with a time-stepping proce-
dure when starting with the grid from the old time step as initial grid of the
current time step.

(2) Adaptive methods simultaneously selecting elements for refinement and coars-
ening strongly benefit from a element coarsening indicator that gives informa-
tion about a possible error increase after coarsening. Without any coarsening
indicator, one has to carefully select parameters in order to avoid cycles of

refine ! coarsen ! refine ! coarsen ! . . .
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Let fET .U; T /gT2T be element error indicators and let fCT .U; T /gS2T be
element coarsening indicators. Based on suitable thresholds Elimit for refinement and
Climit for coarsening, the following algorithm outputs the set MC;M� of elements
marked for refinement respectively coarsening.

Algorithm 73 (Marking Including Coarsening).

function mark
	
T ; fET .U; T /gT2T ; fCT .U; T /gT2T ; : : :




compute thresholds Elimit and Climit;
MC WDM� WD ;;

for all T 2 T do
if ET .U; T / � Elimit then

MC WDMC [ fT g;
else if

q
E 2.U; T /C C 2

T .U; T / � Climit then

M� WDM� [ fT g;
end if

end for

return.MC;M�/;

For instance, the Maximum Strategy could select the thresholds Elimit and Climit

as follows.

Given parameters � 2 Œ0; 1� and �c 2 Œ0; �/ define the thresholds as

Elimit WD � max
T2T ET .U;T / and Climit WD �c max

T2T ET .U;T /:

Typical values are � � 0:5 and �c � 0:1 if coarsening indicators are provided.
Otherwise choose �c � 0:1.

5.2 Concluding Remarks

We conclude by remarks on the ALBERTA philosophy for the implementation of a
new solver and some general remarks about selecting the adequate software.

5.2.1 Solver Development in ALBERTA

The basic steps for the implementation of a new adaptive solver in ALBERTA are
the following.

(1) Implement an efficient solver for the problem under consideration for a given
fixed grid T .
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• Relies on the assemblage tools discussed in Sect. 4.
• Needs efficient solvers for the resulting linear system, for instance precondi-

tioned Krylov space methods.

(2) Validate your solver by rigorous EOC tests on a sequence of uniform refine-
ments for data of your problem computed from a smooth “solution”. This
means, pick up a suitable smooth function u, apply the differential operator
to u to compute the right hand side f of your PDE. Dirichlet boundary data g
is directly given by u. We comment on EOC tests below.

(3) Add an a posteriori error estimator built from local indicators. Unfortunately
there is no black-box solution for estimators up to now. Evaluate the estimator
by comparing it with the true error.

(4) Standard marking routines are problem independent. Such routines as well as
refinement and coarsening tools are available in ALBERTA.

Main work has to be done in Step (1), the implementation of the solver. This step
enormously profits from a program development in 1d and 2d with rather short run
times for tests and very good visualization tools that strongly support debugging. In
combination with an estimator this results in an adaptive code also working in 3d.

Experimental Order of Convergence. Let fTkgk�0 be a sequence of uniformly
refined meshes, where we have used d bisections for all elements. This yields
hmax.TkC1/ D 1

2
hmax.Tk/ with hmax.T / WD maxT2T jT j1=d .

We next assume, that we have an a priori error estimate of the form

kUk 	 ukV � C hsmax.Tk/kukV s

for the sequence of Galerkin approximationsUk 2 V .Tk/. This in turn implies

kUk 	 ukV
kUkC1 	 ukV �

hsmax.Tk/

hsmax.TkC1/
D 2s

and allows us to extract the experimental order of convergence (EOC) s by

s � EOCk WD log

� kUk 	 ukV
kUkC1 	 ukV

�
= log.2/:

For a “known” solution u, the true error can be computed by means of numerical
integration. In this vein, the EOC is a computable quantity that can be calculated
on a sequence of uniformly refined grids. If EOCk does not come close to s after
some iterations, then this is a strong indication that the solver is not implemented
properly. Possible error sources are bugs in the implementation, improper choice of
numerical quadrature formulas and tolerances for iterative solvers, etc. In case of
2nd order elliptic problems we have s D p for u 2 HpC1.˝/.

For adaptively generated grids fTkgk�0 one expects the following error estimate
in terms of DOFs
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Ek.Uk;Tk/ � kUk 	 ukV � C #DOFs�sk kukV s

including singular solutions u that have some additional regularity V s beyond V .
For instance, such an estimate is known with s D p=d for the best approximation
of u in case d D 2 and p D 1 if u 2 V s WD W 2

q .˝/ for some q > 1. For
linear, symmetric, and elliptic PDEs it has been shown that the standard adaptive
algorithm with minimal Dörfler marking using a sufficiently small parameter �
yields an optimal error decay for the Galerkin solution in terms of DOFs [15, 23]
and [8, 37].

Following the ideas for computing the experimental order of convergence for
uniform refinement we can compute the EOC in case of adaptive refinement by

s � EOCk WD 	 log

�
Ek.Uk;Tk/

EkC1.UkC1;TkC1/

�
= log

�
DOFsk

DOFskC1

�
:

For a singular solution, i. e., u 62 HpC1.˝/, that still exhibits some additional
regularity we expect EOCk � p=d .

5.2.2 Concluding Remarks

The design of mathematical software significantly profits from specifying the math-
ematical properties of the problem under consideration. The mathematical language
has been developed to precisely describe problems and solutions to problems.
The design of the basic data structure should reflect mathematical definitions of
important objects. The design of algorithms is based on a mathematical description
how a specific operation is executed.

Practical experience strongly suggests that employing mathematical properties
simplifies implementation drastically. Nevertheless, the practical implementation is
usually much more involved than the mathematical description. But in general even
more problems show up without the right mathematical basis.

What is the Right Software? Nowadays there are many free packages on the market
to solve PDEs. The design of such packages should follow ideas presented in this
course. There are some basic rules for selecting a software package for a specific
application.

(1) Do not start to implement any kind of solver from scratch. There are may
solutions around!

(2) Check the web for an existing solver for the application at hand:

a. The solver is documented: Accept
b. The solver is not documented: Decline

(3) There is no solver available: Check for available general purpose finite element
packages like ALBERTA, DEAL, DUNE, PMTLG, . . . Choose the best one for
your application:
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a. The package is documented: Accept
b. The package is not documented: Decline

In this course we have focused on the finite element toolbox ALBERTA. It
comprises several advantages: it is fully documented, small but powerful, open
source, etc. With advantages come disadvantages. ALBERTA is based on a sequen-
tial code, it only allows for simplicial elements, etc. Nevertheless, ALBERTA has
been applied successfully to many different kinds of problems at several research
institutes distributed all over the world.

6 Supplement: A Nonlinear and a Saddlepoint Problem

In this section we shortly introduce a nonlinear problem and a saddle point problem
and describe how to implement solvers for such problems. As we shall see, in both
cases we need to solve a sequence of linear elliptic problems as discussed in the
previous chapters.

6.1 The Prescribed Mean Curvature Problem in Graph
Formulation

HypersurfacesM in RdC1 with mean curvatureH=d that are described as the graph
of a function uW˝ ! R, i. e., M D f.x; u.x// j x 2 ˝g, satisfy the quasi-linear
PDE

	 div

 
rup

1C jruj2

!
D H in ˝ u D g on @˝:

The problem is non-uniformly elliptic; obviously there are problems with large
gradients jruj. Furthermore, the problem may not be solvable if the prescribed
curvatureH is too large; compare with Fig. 26 for constantH .

As for the linear elliptic PDE, we use integration by parts to obtain the variational
formulation.

Problem 74 (Prescribed Mean Curvature). Set V D H1.˝/ and V̊ D H1
0 .˝/

and solve

u 2 gC V̊ W
Z

˝

rv � ru
	
1C jruj2 
1=2

dx D
Z

˝

vH dx 8v 2 V̊ :

Fig. 26 If H is too large, the
prescribed mean curvature
problem is not solvable (left),
whereas it admits a solution
for smaller H
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Problem 74 are the Euler-Lagrange Equations corresponding to the minimization
of the energy

E.w/ WD
Z

˝

	
1C jrwj2 
1=2 	Hwdx for w 2 g C V̊ :

Problem 74 has at most one solution. A necessary condition for existence of a
solution is

9" > 0 W
Z

˝

vH dx � .1 	 "/krvkL1.˝/ 8v 2 V̊ :

See [20, Theorem 16.10] also for sufficient conditions.

Problem 75 (Discrete Prescribed Mean Curvature Problem). For a conforming
triangulation T and given NP � C1. NT / set

V .T / D FES.T ; NP ;H1.˝// and V̊ .T / D V .T / \H1
0 .˝/:

Solve

U 2 G C V̊ .T / W
Z

˝

rV � rU
	
1C jrU j2 
1=2

dx D
Z

˝

VH dx 8V 2 V̊ .T /;

where G 2 V .T / is an approximation to boundary data g.

A necessary and sufficient condition for existence of a unique discrete solution is

9" > 0 W
Z

˝

VH dx � .1 	 "/krV kL1.˝/ 8V 2 V̊ .T /:

See [18, Proposition 2.1].
Defining the nonlinear function F WV .T /! V̊ .T /� as

hF.W /; V i WD
Z

˝

rV � rW
	
1C jrW j2 
1=2

	 V H dx 8W;V 2 V .T /

Problem 75 is equivalent to finding a root of F , i. e.,

U 2 G C V̊ .T / W F.U / D 0 in V̊ .T /�:

Using a basis f˚1; : : : ; ˚ng of V .T / this leads to a nonlinear system of equations
in RN , which can for instance be solved by a Newton method.
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Algorithm 76 (Newton Method). Start with an initial guess U .0/ 2 G C V̊ .T /.
For ` 2 N0 solve the linear equation

D.`/ 2 V̊ .T / W hDF 	U .`/


D.`/; V i D 	hF.U .`//; V i 8V 2 V̊ .T /

and set U .`C1/ WD U .`/ CD.`/. For given U 2 V .T / the JacobianDF.U / is

hDF 	U 
W; V i D
Z

˝

rV � rW
	
1C jrU j2
1=2

	 rV.rU ˝rU /rW	
1C jrU j2
3=2

dx

for all V;W 2 V̊ .T / with the notation rU ˝rU WD �U;xi U;xj
�
i;jD1;:::;d :

Alternatively a Newton Method with inexact Jacobian can be used.

Algorithm 77 (Inexact Newton Method). Start with an initial guess U .0/ 2 G C
V̊ .T /. For ` 2 N0 solve the linear equation

D.`/ 2 V̊ .T / W h QDF 	U .`/


D.`/; V i D 	hF.U .`//; V i 8V 2 V̊ .T /

and set U .`C1/ WD U .`/ C D.`/. For U 2 V .T / the inexact Jacobian QDF.U / is
given by

h QDF 	U 
W; V i D
Z

˝

rV � rW
	
1C jrU j2
1=2

dx:

for all V;W 2 V̊ .T /.

Some remarks about the (inexact) Newton method are in order.

(1) Starting with the correct discrete boundary values G, the residual of the
nonlinear equation is zero at boundary nodes. Therefore, all corrections D.`/

of the exact and inexact Newton method belong to V̊ .T /.
(2) The linear sub-problems are a discretization of the linear elliptic PDE

	 div
	
A.U /rw


 D f .U / in ˝; w D 0 on @˝:

The coefficient matrix A.U / D A.x/ is given by

A.U / D id
	
1C jrU j2
1=2

	 ı rU ˝rU	
1C jrU j2
3=2

;

where ı D 1 for the exact and ı D 0 for the inexact Newton method. Note, that
in general f .U / 62 L2.˝/ but f .U / 2 H�1.˝/ D 	H1

0 .˝/

�

.
(3) Newton’s method is converging locally with a quadratic rate, whereas the

inexact iteration is converging at most with linear rate. But the system matrix
of the linearized equation in the simplified iteration has better properties.
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Error Estimator. Verfürth has shown that the indicators

E 2.U; T / WD C2
0 h

2
T

���	 div
		
1C jrU j2 
�1=2rU 


���
2

L2.S/

C C2
1 hT

���
hh	
1C jrU j2 
�1=2rU

ii ���
2

L2.@S\˝/

built up an estimator E 2.U;T / WD
X

T2T
E 2.U; T / for the prescribed mean cur-

vature problem with homogeneous boundary data g D 0 [41]. This estimator is
implemented in the file Common/pmc-estimator.c.

We want to remark that this estimator is not robust since the problem is not
uniformly elliptic. A robust estimator with local conditioning has been derived by
Fierro and Veeser [18].

Exercise 68. Implement an ALBERTA program for the solution of the prescribed
mean curvature problem. For the solution of the nonlinear discrete system use the
Newton solver nls_newton(), or the Newton solver nls_newton_fs()with
step size control:

int nls_newton(NLS_DATA *ninfo, int dim, REAL *x);
int nls_newton_fs(NLS_DATA *ninfo, int dim, REAL *x);

The detailed description of the NLS_DATA data structure and Newton solvers
can be found in [34, Sect. 3.15.6]. A model implementation of a nonlinear equation
is described in detail in [34, Sect. 2.2].

For the initialization of the data structure NLS_DATA, which is the first argument
to the Newton solvers, the following functions have to be implemented:

• update() assembles for givenU 2 V .T / the exact or inexact Jacobian and/or
the residual F.U /.

This means, for all basis functions ˚i ; ˚j 2 V̊ .T / compute the system
matrix of the linearized problem

�Z

˝

r˚ir˚j
.1C jrU j2/1=2 	 ı

r˚i.rU ˝rU /r˚j
.1C jrU j2/3=2 dx

�

i;jD1;:::N̊
;

where ı D 1 is the exact and ı D 0 is the inexact Newton method. The residual
is given as �Z

˝

rUr˚i
.1C jrU j2/1=2 dx 	

Z

˝

H˚i dx

�

iD1;:::;N̊
:

Furthermore, set the corresponding values of homogeneous boundary values of
the corrections.

• solve() solves the resulting linear system by a preconditioned CG-method.
• norm() computes the H1-semi-norm jDjH1.˝/ for givenD 2 V .T /.

Stop the iteration if kF 	U .`C1/
k is sufficiently small in some suitable norm.
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As an initial guess for Newton’s method use an arbitrary chosen function U .0/ 2
GC V̊ .T / on the coarsest grid. Interpolate the coefficient vector of the old solution
during refinement and adjust the correct boundary valuesG on the new grid.

• Test the program with the exact solution

u.x/ D
p
R2 	 jxj2 x 2 ˝ D Br.0/ � Rd :

for different r < R and d D 2; 3.
• Compute the minimal surface which is given by

u.x/ D 	 ln
�
jxj 	

p
jxj2 	 1

�
x 2 ˝ D .a; aC 5/2;

where a is chosen to by greater than 1p
2
.

• Compute the minimal surface M for boundary data g given in polar coordinates

g.r; '/ D sin k'

on B1.0/ � R2 for different k.

Compare the exact and inexact Newton methods for the above problems.

6.2 The Generalized Stokes Problem

We next slightly generalize the Stokes system describing a stationary, incompress-
ible, viscous flow from Example 4. Assuming that the flow is no longer stationary
the corresponding model reads: Find .u; p/ satisfying the parabolic PDE

@tu 	 ��uCrp D f in ˝; t > 0; div u D 0 in ˝; t > 0

together with boundary and initial values. After applying a time discretization with
an implicit Euler discretization and time step size � > 0 we obtain a sequence of
saddle point problems: For n 2 N solve

1

�
un 	 ��un Crpn D f n C

1

�
un�1 in ˝; div un D 0 in ˝; un D gn on @˝:

This means, that we have to solve in each time step a generalized Stokes problem:
For given parameters � > 0 and � � 0, forcing term f , and boundary data g solve

�u 	 ��uCrp D f in ˝; div u D 0 in ˝; u D g on @˝:
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Looking at this system we see that a solution .u; p/ is never unique, since then
.u; pC c/ is again a solution for all c 2 R. We can rewrite the problem formally as

�
�id 	 �� r
	 div 0

� �
u
p

�
D
�
f

0

�
:

This also indicates that the generalized Stokes problem might be singular. Again
formally, 	 div is the adjoint operator to r since by Gauß’ Divergence Theorem

hv; rqi D
Z

˝

vrq dx D
Z

˝

div.v q/ dx 	
Z

˝

div v q dx

D
Z

@˝

v � n q do 	
Z

˝

div v q dx D
Z

˝

	 div v q dx D h	 div v; qi

holds for all v 2 H1
0 .˝IRd / and q 2 H1.˝/. Consequently, the generalized Stokes

problem is symmetric. Using Gauß’ Divergence Theorem once more we realize that
a necessary condition for the existence of a solution is the following compatibility
condition of boundary data g:

0 D
Z

˝

div u dx D
Z

@˝

u � ndo D
Z

@˝

g � ndo:

Variational Formulation. We next turn to a weak formulation, which differs on
a first glance from the formulation used in Example 4. Set V WD H1.˝IRd / and
V̊ WD H1

0 .˝IRd /, Q WD L2.˝/ and

Q̊ WD
n
q 2 L2.˝/ j

Z

˝

q dx D 0:
o
:

The weak formulation is based on integration by parts for 	� and r defining the
bilinear forms aWV 
 V ! R

aŒw; v� WD �
Z

˝

v � w dx C �
Z

˝

rv W rwdx 8v; w 2 V

and bWV 
Q! R

bŒv; q� WD 	
Z

˝

div v q dx 8v;2 V ; q 2 Q:

Problem 79 (Generalized Stokes Problem). Let f 2 V � and g 2 V be given
and assume that

R
@˝
g � ndo D 0 holds. Find .u; p/ 2 .g C V̊ / 
 Q̊ such that
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aŒv;u�C bŒv; p� D hv; f i 8v 2 V̊ ;

bŒu; q� D 0 8q 2 Q̊:

Set W D V̊ 
 Q̊, f D .f ; 0/, g D .g; 0/, and for v D .v; q/;w D .w; r/ 2W
define

BŒw; v� D aŒw; v�C bŒv; r�C bŒw; q�:
Then Problem 79 is equivalent to the problem

u D .u; p/ 2 g CW W BŒw; v� D hf; vi 8v 2W :

Such a variational formulation we have used in Example 4 for the Stokes problem.
From Lemma 55 we know that Problem 79 admits a unique solution .u; p/ 2 W
if B satisfies an inf-sup condition on W . The bilinear form aWV 
 V ! R is
continuous on V and coercive on V̊ . Therefore, the inf-sup condition of B is a
consequence of the Ladyshenskaja–Babuška–Brezzi condition

inf
q2Q̊

sup
v2V̊

bŒv; q�
kvkV kqkQ D inf

q2Q̊

sup
v2V̊

h	 div v; qi
kvkV kqkQ � ˇ > 0: (8)

Condition (8) is equivalent to the solvability of the divergence equation, i. e., for all
q 2 Q̊ exists vq 2 V̊ such that

	 div vq D q in ˝ and kvqkH1.˝IRd / � ˇ�1kqkL2.˝/I

compare with [14] or [19, Theorem III.3.1].

Remark 80 (Saddle Point Structure). Consider g  0. For the generalized Stokes
problem we can define

EŒw; q� WD 1
2
aŒw;w�C bŒw; q� 	 hw; f i 8w 2 V̊ ; q 2 Q̊:

This functional is neither bounded from above nor below. The pair .u; p/ 2W is a
solution of Problem 79 iff

EŒu; q� � EŒu; p� � EŒw; p� 8w 2 V̊ ; q 2 Q̊:

This is equivalent to the

EŒu; p� D min
w2V̊

EŒw; p� D min
w2V̊

max
q2Q̊

EŒw; q�;

i. e., .u; p/ is a saddle point of the functional E. Furthermore, the velocity is a
minimizer, i. e.,
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u D arg minfEŒw; 0� j w 2 V̊ ; div w D 0g:

Therefore, p can be interpreted as a Lagrange multiplier from constrained
optimization.

Problem 81 (Discrete Generalized Stokes Problem). Let V .T / � V , Q.T / �
Q be finite element spaces. Define V̊ .T / WD V .T /\V̊ and Q̊.T / WD Q.T /\Q̊.
The discrete problem reads: Find .U ; P / 2 .G C V̊ .T // 
 Q̊.T / such that

aŒU ;V �C bŒV ; P � D hV ; f i 8V 2 V̊ .T /;

b.U ;Q/ D 0 8Q 2 Q̊.T /:

Hereafter,G 2 V .T / is an approximation to g satisfying
R
@˝
G � ndo D 0:

Note, that in general for interpolated boundary values G D IT g we have

Z

˝

divU dx D
Z

@˝

.IT g/ � n do ¤ 0:

Such interpolation operators have to be modified such that
R
˝

divU dx D 0;
compare with [13].

The discrete problem has a unique solution, provided the discrete LBB condition

inf
Q2Q̊.T /

sup
V 2V̊ .T /

bŒV ;Q�

kV kV kQkQ � ˇ.T / > 0

holds. A sequence of discrete spaces fV .Tk/;Q.Tk/gk�0 is called stable, iff

inf
k�0 ˇ.Tk/ D ˇ > 0:

The Schur-Complement Operator. Denote by A the system matrix related to
the bilinear form a and by B the system matrix related to b. Then Problem 81 is
equivalent to the linear system

�
A B

BT 0

� �
u
p

�
D
�
F

0

�
; (9)

where u is the coefficient vector of the discrete velocity U and p the coefficient
vector of the discrete pressure P .

Coercivity of a implies invertibility of the matrix A. Hence a block-Gauß
elimination yields the following equivalent formulation of (9):

Sp WD 	BTA�1B
p D 	BTA�1


F and Au D F 	Bp:
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The matrix S is the Schur-complement operator. The discrete LBB condition
implies invertibility of S . Hence, we can solve Problem 81 by invertingS , obtaining
the discrete pressure P and then invertingA to obtain the discrete velocity U .

Remark 82 (Schur-Complement Operator). The condition number of S depends on
ˇ�1.T /. Consequently, stable discretizations are important for having a uniform
bound on the condition number of S .

The system matrixA is block diagonal, this means

A D
�
A 0

0 A

�
in 2d, respectively A D

2

4
A 0 0

0 A 0

0 0 A

3

5 in 3d;

where A is the system matrix corresponding to the scalar differential operator

Lu WD �u 	 ��u:

Although A and B are sparse matrices S is not a sparse matrix and should
not be computed. An alternative is to use the damped Richardson iteration for
solving SP D 	

BTA�1


F . The Richardson iteration is an iterative solver that

only requires a matrix-vector multiplication with the system matrix S . Any such
multiplication in turn then requires the solution of a linear system with system
matrixA. In summary, this gives the Uzawa algorithm.

Algorithm 83 (Uzawa Algorithm). Let ! > 0 be a sufficiently small damping
parameter, TOL > 0 a tolerance for the residual. Starting with an initial guess
P .0/ 2 Q̊.T / for the pressure iterate form 2 N:

(1) Solve the elliptic equation

U .m/ 2 GCV̊ .T / W aŒU .m/;V � D hf ; V i	bŒV ; P .m�1/� 8V 2 V̊ .Tk/:

(2) If div V .T / 6� Q.T /, compute the L2 projection of 	 divU .m/, i. e.,

R.m/ 2 Q.T / W hR.m/; QiL2.˝/ D bŒU .m/;Q� 8Q 2 Q.T /I

otherwise define R.m/ WD 	 div u.m/.
(3) Update the pressure by

P .m/ WD P .m�1/ C !
�
R.m/ 	 j˝j�1

Z

˝

R.m/ dx

�
:

(4) Stop if R.m/ is sufficiently small, i. e., kR.m/kL2.˝/ � TOL.

Some remarks on the Uzawa Algorithm are in order.
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(1) The choice of the parameter ! depends on the eigenvalues of S . The optimal
choice would be

!opt D 2

�max.S /C �min.S /
:

Note, that the eigenvalues �min;max.S / depend on ˇ.T /, �, and �. The constant
ˇ.T / is not known explicitly.

(2) The Taylor-Hood element of order ` � 2, i. e.,

V .T / D FES.T ;P`;V / and Q.T / D FES.T ;P`�1; C 0. N̋ //

is stable: ˇ.T / � ˇ > 0. Since functions in the pressure space are globally
continuous there holds div V .T / 6� Q.T /.

(3) The compatibility property
R
@˝
G � ndo D 0 of the discrete boundary

data is essential for convergence of the Uzawa algorithm. Obviously,R
˝

divU .m/ dx ¤ 0 implies kR.m/kL2.˝/ D k divU .m/kL2.˝/ > 0 and the
algorithm cannot converge.

(4) In the Uzawa algorithm we have avoided to solve for R.m/ 2 Q̊.T /. The
constraint hq; 1i D 0 for functions in Q̊.T / is global, which does not allow for
an easy construction of a local basis. All problems to be solved are well posed
and any discrete pressure fulfills P .m/ 2 Q̊.T /.

Error Estimator. Starting with the work by Verfürth [40], several authors have
shown that the indicators

E 2
T .U ; P IT / WD C2

0 h
2
T k�U 	 ��U CrP 	 f k2L2.T /

C C2
1 hT k ŒŒrU �� k2L2.@T\˝/ C C2

2 k divU k2
L2.T /

built up an estimator E 2
T .U ; P IT / WD

X

T2T
E 2

T .U ; P IT / for the generalized

Stokes problem with g D 0. This estimator is robust and efficient. It is implemented
in the file Common/stokes-estimator.c.

Exercise 84 (Saddle Point Problem). Implement an ALBERTA program for
the solution of the generalized Stokes problem. For the solution of the discrete
problem use the Uzawa Algorithm 83. The Uzawa algorithm requires the following
routines:

• build() for the assembling of the (scalar) matrix

Z

˝

r˚ir˚j

for all scalar basis functions of the velocity space (+ Dirichlet boundary values!),
the assembling of the mass matrix
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Z

˝

'i'j

for all basis functions in the pressure space and the vector valued load vector

Z

˝

f �˚i dx

for all basis functions in the velocity space (+ Dirichlet boundary values!). The
object for storing vector valued DOF vectors, like the discrete velocity U or the
discrete load vector is DOF_REAL_D_VEC. For the assembling of this vector
the functions L2scp_fct_bas_d() and dirichlet_bound_d() can be
used; compare with [34, Sect. 3.12].

• add_B_p(P) adds for given P 2 Q.T /

	
Z

˝

P div˚i

to the vector valued load vector for all interior basis functions in the velocity
space.

• add_B_star_v(U) assembles for given U 2 V .T / the scalar vector

	
Z

˝

'i divU

for all basis functions in the pressure space.
• uzawa() which solves the discrete saddle point problem for an initial guess
P .0/ 2 Q̊.T /. The decoupled system in the velocity space can be solved by the
function oem_solve_d(); compare with [34, Sect. 3.15].

Apply the program to the following problems

(1) ˝ D .0; 1/2 with the exact solution

u.x/ D
�
.x21 	 2 x31 C x41/ .2 x2 	 6 x22 C 4 x32/
	.2 x1 	 6 x12 C 4 x31/ .x22 	 2 x32 C x42/

�
;

p.x/ D x21 C x22 :

(2) ˝ D .0; 2 �/2 with the exact solution

u.x/ D sin.x1/ sin.x2/

�	 sin.x1/ cos.x2/
cos.x1/ sin.x2/

�
;

p.x/ D cos.x1/C cos.x2/C cos.x1/ cos.x2/:
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(3) The driven cavity problem on .0; 1/d with boundary data

g.x/ D
(
Œ1; 0; : : : �T ; on .0; 1/d�1 
 f1g;
0; else:

Note, that with this definition of g the Lagrange interpolant IT g is well
defined. It is easy to see that discrete boundary data G D IT g satisfies the
compatibility condition

R
@˝
G � ndo D 0.
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