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Preface

SUPPOSE you were asked if the so-called Fundamental Theorem of
Algebra is a result of Algebra or of Analysis. What would you

answer? And again, among the arguments proving that the complex field is
algebraically closed, which would you choose? A proof making use of the
concept of continuity? Or of analytic functions, even? Or of Galois theory,
instead?

The central topic of this book, the mathematical result named after the
mathematicians Henry Frederick Baker, John Edward Campbell, Eugene Boriso-
vich Dynkin and Felix Hausdorff, shares – together with the Fundamental
Theorem of Algebra – the remarkable property to cross, by its nature, the
realms of many mathematical disciplines: Algebra, Analysis, Geometry.

As for the proofs of this theorem (named henceforth CBHD, in chrono-
logical order of the contributions), it will be evident in due course of the
book that the intertwining of Algebra and Analysis is especially discernible:
We shall present arguments making use – all at the same time – of topo-
logical algebras, the theory of power series, ordinary differential equations
techniques, the theory of Lie algebras, metric spaces; and more.

If we glance at the fields of application of the CBHD Theorem, it is no
surprise that so many different areas are touched upon: the theory of Lie
groups and Lie algebras; linear partial differential equations; quantum and
statistical mechanics; numerical analysis; theoretical physics; control theory;
sub-Riemannian geometry; and more.

Curiously, the CBHD Theorem crosses our path already at an early stage
of our secondary school education (exey = ex+y, x, y ∈ R); then it reappears
as a nontrivial problem at the very beginning of our university studies,
yet in the simplest of non-Abelian contexts (is there a formula for eAeB

when A,B are square matrices?); then, as our mathematical background
progresses, we become acquainted with deeper and more natural settings
where this theorem plays a rôle (for example if we face the problem of
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viii Preface

writing Exp(X) · Exp(Y ) in logarithmic coordinates, when X,Y belong to
the Lie algebra of a Lie group); finally, when our undergraduate studies are
complete, we may happen – in all likelihood – to meet the CBHD Theorem
again if we are researchers into one of the mathematical fields mentioned a
few lines above.

Since the early 1897-98 studies by Campbell on this problem, more than
110 years have passed. Still, the problem of the “multiplication of two
exponentials” (whatever the context) has not ceased to provide sources
for new questions. Take, for instance, the problem of finding the optimal
domain of convergence for the series naturally attached to log(exey) (when
x, y belong to an arbitrary non-Abelian Banach algebra), a problem which is
still not solved in complete generality. Or consider the question of finding
more natural and more fitting proofs of the CBHD Theorem, a question
which has been renewed – at repeated intervals – in the literature. Indeed,
mathematicians have gone on feeling the need for new and simpler proofs of
the CBHD Theorem throughout the last century: See for example the papers
[183, 1937], [33, 1956], [59, 1968], [48, 1975], [174, 1980], [169, 2004]; and many
books may be cited: [99, 1962], [159, 1964], [85, 1965], [79, 1968], [27, 1972],
[151, 1973], [171, 1974], [70, 1982], [84, 1991], [144, 1993], [72, 1997], [91, 1998],
[52, 2000], [149, 2002], [77, 2003], [1, 2007], [158, 2007] – and this is just a small
sample; an exhaustive list would be very much longer.

The interest in the CBHD Theorem straddling the decades, the very nature of
this result ranging over Algebra, Analysis and Geometry, its fields of application
stretching across so many branches of Mathematics and Physics, the proofs so
variegated and rich in ideas, the engrossing history of the early contributions: all
these facts have seemed to us a sufficient incentive and stimulus in devoting this
monograph to such a fascinating Theorem.

This book is intended to present in a unified and self-contained way the
natural context in which the CBHD Theorem can be formulated and proved.
This context is purely algebraic, but the proofs – as mentioned – are very
rich and diversified. Also, in order to understand and appreciate the varied
arguments attacking the proof of the CBHD Theorem, a historical overview
of its early proofs is also needed, without forgetting – in due course later in
the monograph – to catch a glimpse of more modern studies related to it, the
current state-of-the-art and some open problems.

Most importantly, our aim is to look ahead to applications of the CBHD
Theorem. In order to arrive at these applications, it is first necessary to deal
with the statements and proofs of the CBHD Theorem in the domain of
Algebra. Then the applications in Geometry and in Analysis will eventually
branch off from this algebraic setting.

Since this book may be used by a non-specialist in Algebra (as he may
be, for example, a researcher in PDEs or a quantum physicist who has
felt the need for a deeper understanding of a theorem which has been a
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cornerstone for some part of his studies), our biggest effort here is to furnish
an exposition complete with all details and prerequisites. Any Reader, more
or less acquainted with the algebraic background, will be free to skip those
details he feels fully conversant with.

Now, before revealing the detailed contents of this book (and to avoid
singing further praises of the CBHD Theorem), we shall pass on to some
brief historical notes about this theorem.

§1. A Brief Historical Résumé. A more exhaustive historical overview
is provided in Chapter 1. Here we confine ourselves to disclosing some
forgotten facts about the history of the theorem we are concerned with.

Though the exponential nature of the composition of two ‘exponential
transformations’ is somehow implicit in Lie’s original theory of finite
continuous groups (tracing back to the late nineteenth century), the need
for an autonomous study of the symbolic identity “exey = ez” becomes
prominent at the very beginning of the twentieth century.

In this direction, F.H. Schur’s papers [154]–[157] present some explicit
formulas containing – in a very “quantitative” fashion – the core of the
Second and Third Fundamental Theorems of Lie: given a Lie algebra,
he exhibits suitable multivariate series expansions, only depending on
the structure constants of the algebra and on some universal numbers
(Bernoulli’s), reconstructing a (local) Lie group with prescribed structure.
This is a precursor of the CBHD Theorem.

Meanwhile, in 1897 [28] – motivated by group theory – Campbell takes up
the study of the existence of an element z such that the composition of two
finite transformations ex, ey of a continuous transformation group satisfies
the identity ex ◦ ey = ez . By means of a not completely transparent series
expansion [30], Campbell solves this problem with little reference (if any) to
group theory, showing that z can be expressed as a Lie series in x, y.

Using arguments not so far from those of Schur, and inspired by the same
search for direct proofs of the Fundamental Theorems of Lie, J.H. Poincaré
and E. Pascal attack “Campbell’s problem” by the use of suitable algebraic
manipulations of polynomials (around 1900-1903).

For instance, in studying the identity exey = ez from a more symbolic
point of view [142], Poincaré brilliantly shapes a tool (he invents the
universal enveloping algebra!) allowing him to manage both algebraic and
analytic aspects of the problem. Aiming to give full analytical meaning to
his formulas, Poincaré introduces a successful ODE technique: he derives
an ordinary differential equation for z(t) equivalent to the identity ez(t) =
exety , whose solution (at t = 1) solves Campbell’s problem and, at the same
time, the Second and Third Fundamental Theorems of Lie. In fact, z(t) can
be expressed, by means of the residue calculus, in a suitable (integral) form
exhibiting its Lie-series nature. Although Poincaré’s contribution is decisive
for the late history of the CBHD Theorem, his latent appeal to group theory
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and the lack of a formula expressing z as a universal Lie series in the symbols
x, y probably allowed this contribution to die out amid the twists and turns
of mathematical history.

Much in the spirit of Poincaré, but with the use of more direct – and more
onerous – computations, Pascal pushes forward Poincaré’s “symmetriza-
tion” of polynomials, in such a way that he is able to rebuild the formal

power series
∑

m,n≥0
xm yn

m!n! as a pure exponential
∑

k≥0
z(x,y)k

k! , where z(x, y)
is a Lie series in x, y involving the Bernoulli numbers. Furthermore, Pascal
sketches the way the commutator series for z(x, y) can be produced: after
the in-embryo formula by Campbell, Pascal’s fully fledged results point out
(for the first time) the universal Lie series expansibility of z in terms of x, y,
a fact which had escaped Poincaré’s notice. Though Pascal’s papers [135]–
[140] will leave Hausdorff and Bourbaki unsatisfied (mostly for the failure
to treat the convergence issue and for the massive computations), the fact
that in modern times Pascal’s contribution to the CBHD Theorem has been
almost completely forgotten seems to us to be highly unwarranted.

The final impulse towards a completely symbolical version of the Expo-
nential Theorem exey = ez is given by Baker [8] and by Hausdorff [78].
The two papers (reasonably independent of each other, for Hausdorff’s 1906
paper does not mention Baker’s of 1905) use the same technique of ‘polar
differentiation’ to derive for z(x, y) suitable recursion formulas, exhibiting
its Lie-series nature. Both authors obtain the same expansion z = exp(δ)(y)
in terms of a “PDE operator” δ = ω(x, y) ∂

∂y , where

ω(x, y) = x+
ad y

ead y − 1
(x).

The Lie series ω(x, y), besides containing the Bernoulli numbers1 (reap-
pearing, after Schur, in every proof mentioned above), is nothing but the
subseries obtained by collecting – from the expansion of log(exey) – the
summands containing x precisely once. The same series appeared clearly
in Pascal, implicitly in Campbell and in an integral form in Poincaré: it can
be rightly considered as the fil rouge joining all the early proofs cited so far.

In proving the representation z = exp(δ)(y), Baker makes use of quite a
puzzling formalism on Lie polynomials, but he is able to draw out of his
machinery such abundance of formulas, that it is evident that this is much
more than a pure formalism.

However, Hausdorff’s approach in proving the formula z = exp(δ)(y)
is so efficacious and authoritative that it became the main source for future
work on the exponential formula, to such an extent that Baker’s contribution
went partly – but undeservedly – forgotten. (As a proof of this fact we must

1Indeed, z
ez−1

=
∑∞

n=0
Bn
n!

zn.
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recall that, in a significant part of the related literature, the Exponential
Theorem is named just “Campbell-Hausdorff”.) This is particularly true of
the commentary of Bourbaki on the early history of this formula, citing
Hausdorff as the only “perfectly precise” and reliable source. Admittedly,
Hausdorff must be indeed credited (together with fruitful recursion for-
mulas for the coefficients of z) for providing the long awaited convergence
argument in the set of Lie’s transformation groups.

After Hausdorff’s 1906 paper, about 40 years elapsed before Dynkin [54]
proved another long awaited result: an explicit presentation for the commutator
series of log(exey). Dynkin’s paper indeed contains much more: thanks to
the explicitness of his representation, Dynkin provides a direct estimate –
the first in the history of the CBHD Theorem – for the convergence domain,
more general than Hausdorff’s. Moreover, the results can be generalized to
the infinite-dimensional case of the so-called Banach-Lie algebras (to which
Dynkin extensively returns in [56]). Finally, Dynkin’s series allows us to
prove Lie’s Third Theorem (a concern for Schur, Poincaré, Pascal and
Hausdorff) in an incredibly simple way.

Two years later [55], Dynkin will give another proof of the Lie-series
nature of log(exey), independently of all his predecessors, a proof disclosing
all the combinatorial aspects behind the exponential formula. As for the
history of the CBHD Theorem, Dynkin’s papers [54]–[56] paved the way,
by happenstance, for the study of other possible presentations of log(exey)
and consequently for the problem of further improved domains of convergence,
dominating the “modern era” of the CBHD Theorem (from 1950 to present
days).

This modern age of the Exponential Theorem begins with the first appli-
cations to Physics (dating back to the 1960-70s) and especially to Quantum
and Statistical Mechanics (see e.g., [51, 64, 65, 104, 119, 128, 178, 180, 181]).

In parallel, a rigorous mathematical formalization of the CBHD Theorem
became possible thanks to the Bourbakist refoundation of Mathematics, in
particular of Algebra. Consequently, the new proofs of the CBHD Theorem
(rather than exploiting ad hoc arguments as in all the contributions we cited
so far) are based on very general algebraic tools. For example, they can
be based on characterizations of Lie elements (as given e.g. by Friedrichs’s
criterion for primitive elements) as in Bourbaki [27], Hochschild [85],
Jacobson [99], Serre [159]. As a consequence, the CBHD Theorem should be
regarded (mathematically and historically) as a result from noncommutative
algebra, rather than a result of Lie group theory, as it is often popularized in
undergraduate university courses.

As a matter of fact, this popularization is caused by the remarkable
application of the Exponential Theorem to the structure theory of Lie
groups. Indeed, as is well known, in this context the CBHD Theorem allows
us to prove a great variety of results: the effective analytic regularity of all
smooth Lie groups (an old result of Schur’s!), the local “reconstruction” of
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the group law via the bracket in the Lie algebra, many interesting results on
the duality group/algebra homomorphisms, the classifying of the simply
connected Lie groups by their Lie algebras, the local version of Lie’s Third
Theorem, and many others.

For this reason, all major books in Lie group theory starting from the
1960s comprise the CBHD Theorem (mainly named after Campbell, Haus-
dorff or Baker, Campbell, Hausdorff): See e.g., the classical books (ranging
over the years sixties–eighties) Bourbaki [27], Godement [70], Hausner,
Schwartz [79], Hochschild [85], Jacobson [99], Sagle, Walde [151], Serre [159],
Varadarajan [171]; or the more recent books Abbaspour, Moskowitz [1],
Duistermaat, Kolk [52], Gorbatsevich, Onishchik, Vinberg [72], Hall [77],
Hilgert, Neeb [84], Hofmann, Morris [91], Rossmann [149], Sepanski [158].
(Exceptions are Chevalley [38], which is dated 1946, and Helgason [81],
where only expansions up to the second order are used.)

A remarkable turning point in the history of the CBHD Theorem is
provided by Magnus’s 1954 paper [112]. In studying the exponential form
exp(Ω(t)) under which the solution Y (t) to the nonautonomous linear ODE
system Y ′(t) = A(t)Y (t) can be represented, Magnus introduced a formula –
destined for a great success – for expanding Ω(t), later referred to also as the
continuous Campbell-Baker-Hausdorff Formula. (See also [10, 37, 119, 160, 175].)
In fact, in proper contexts and when A(t) has a suitable form, a certain eval-
uation of the expanded Ω gives back the CBHD series. For a comprehensive
treatise on the Magnus expansion, the Reader is referred to Blanes, Casas,
Oteo, Ros, 2009 [16] (and to the detailed list of references therein).

Here we confine ourselves to pointing out that the modern literature
(mainly starting from the 1980s) regarding the CBHD Theorem has mostly
concentrated on the problem of improved domains of convergence for the
possible different presentations of log(exey), both in commutator or non-
commutator series expansions (for the latter, see the pioneering paper by
Goldberg [71]). Also, the problem of efficient algorithms for computing
the terms of this series (in suitable bases for free Lie algebras and with
minimal numbers of commutators) has played a major rôle. For this and the
above topics, see [9, 14–16, 23, 35, 36, 46, 53, 61, 103, 106, 107, 109, 118, 122, 123,
131, 134, 145, 146, 166, 177].

In the study of convergence domains, the use of the Magnus expansion
has proved to be a very useful tool. However, the problem of the best
domain of convergence of the CBHD series in the setting of general Banach
algebras and of general Banach-Lie algebras is still open, though many optimal
results exist for matrix algebras and in the setting of Hilbert spaces (see the
references in Section 5.7 on page 359).

In parallel, starting from the mid seventies, the CBHD Theorem has
been crucially employed in the study of wide classes of PDEs, especially
of subelliptic type, for example those involving the so-called Hörmander
operators (see Folland [62], Folland, Stein [63], Hörmander [94], Rothschild,
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Stein [150], Nagel, Stein, Wainger [129], Varopoulos, Saloff-Coste, Coulhon
[172]).

The rôle of the CBHD Theorem is not only prominent for usual (finite-
dimensional) Lie groups, but also within the context of infinite dimensional
Lie groups (for a detailed survey, see Neeb [130]). For example, among infi-
nite dimensional Lie groups, the so-called BCH-groups (Baker-Campbell-
Hausdorff groups) are particularly significant. For some related topics
(a comprehensive list of references on infinite-dimensional Lie groups being
out of our scope), see e.g., [12, 13, 24, 42, 43, 56, 66–69, 73, 83, 86, 87, 92, 93, 130,
133, 147, 148, 152, 170, 173, 182].

Finally, the early years of the twenty-first century have seen a renewed
interest in CBHD-type theorems (both continuous and discrete) within the
field of numerical analysis (specifically, in geometric integration) see e.g. [76,
97, 98, 101, 114].

§ 2. The Main Contents of This book. We furnish a very brief digest
of the contents of this book. After a historical preamble given in Chapter 1
(also containing reference to modern applications of the CBHD Theorem),
the book is divided into two parts.

Part I (Chapters 2–6) begins with an introduction of the background alge-
bra (comprehensive of all the involved notations) which is a prerequisite to
the rest of the book. Immediately after such preliminaries, we jump into the
heart of the subject. Indeed, Part I treats widely all the qualitative properties
and the problems arising from the statement of the CBHD Theorem and
from its various proofs, such as the well-posedness of the ‘CBHD operation’,
its associativity and convergence, or the relationship between the CBHD
Theorem, the Theorem of Poincaré, Birkhoff and Witt and the existence of
free Lie algebras. The results given in Chapter 2, although essential to the
stream of the book, would take us a long distance away if accompanied by
their proofs. For this reason they are simply stated in Part I, while all the
missing proofs can be found in Part II (Chapters 7-10).

Let us now have a closer look at the contents of each chapter.

Chapter 2 is entirely devoted to recalling algebraic prerequisites and to
introduce the required notations. Many essential objects are introduced,
such as tensor algebras, completions of graded algebras, formal power
series, free Lie algebras, universal enveloping algebras. Some of the results
are demonstrated in Chapter 2 itself, but most of the proofs are deferred
to Chapter 7. Chapter 2 is meant to provide the necessary algebraic back-
ground to non-specialist Readers and may be skipped by those trained in
Algebra. Section 2.3 also contains some needed results (on metric spaces)
from Analysis.

Chapter 3 illustrates a complete proof of the CBHD Theorem, mainly
relying on the book by Hochschild [85, Chapter X]. The proof is obtained
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from general results of Algebra, such as Friedrichs’s characterization of
Lie elements and the use of the Hausdorff group. Afterwards, Dynkin’s
Formula is produced. This result is conceptually subordinate to the so
called Campbell-Baker-Hausdorff Theorem, and it is based, as usual, on the
application of the Dynkin-Specht-Wever Lemma.

Our inquiry into the meaningful reasons why the CBHD Theorem holds
widens in Chapter 4, where several shorter (but more specialized) proofs of
the Theorem, differing from each other and from the one given in Chapter 3,
are presented. We deal here with the works by M. Eichler [59], D. Ž. Djoković
[48], V. S. Varadarajan [171], C. Reutenauer [144], P. Cartier [33].

Eichler’s argument is the one most devoid of prerequisites, though
crucially ad hoc and tricky; Djoković’s proof (based on an “ODE technique”,
partially tracing back to Hausdorff) has the merit to rediscover early argu-
ments in a very concise way; Varadarajan’s proof (originally conceived for
a Lie group context) completes, in a very effective fashion, Djoković’s proof
and allows us to obtain recursion formulas perfectly suited for convergence
questions; Reutenauer’s argument fully formalizes the early approach by
Baker and Hausdorff (based on so-called polar differentiation); Cartier’s
proof, instead, differs from the preceding ones, based as it is on a suitable
characterization of Lie elements, in line with the approach of Chapter 3.
Each of the strategies presented in Chapter 4 has its advantages, so that the
Reader has the occasion to compare them thoroughly and to go into the
details for every different approach (and, possibly, to choose the one more
suited for his taste or requirements).

In Chapter 5 the convergence of the Dynkin series is studied, in the
context of finite-dimensional Lie algebras first, and then in the more gen-
eral setting of normed Banach-Lie algebras. Besides, the “associativity” of
the operation defined by the Dynkin series is afforded. Throughout this
chapter, we shall be exploiting identities implicitly contained (and hidden)
in the CBHD Theorem. As a very first taste of the possible (geometrical)
applications of the results presented here, we shall have the chance to
prove – in a direct and natural fashion – the Third Fundamental Theorem
of Lie for finite-dimensional nilpotent Lie algebras (and more). Finally, the
chapter closes with a long list (briefly commented, item by item) of modern
bibliography on the convergence problem and on related matters.

Chapter 6 clarifies the deep and – in some ways – surprising intertwine-
ment occurring between the CBHD and PBW Theorems (PBW is short for
Poincaré-Birkhoff-Witt). As it arises from Chapter 3, CBHD is classically
derived by PBW, although other strategies are possible. In Chapter 6 we
will show how the opposite path may be followed, thus proving the PBW
Theorem by means of CBHD. This less usual approach was first provided
by Cartier, whose work [33] is at the basis of the chapter. An essential tool is
represented by free Lie algebras, whose rôle – in proving CBHD and PBW –
is completely clarified here.



Preface xv

Chapter 7 consists of a collection of the missing proofs from Chapter 2.
Chapter 8 is intended to complete those results of Chapter 2 which deal

with the existence of the free Lie algebra Lie(X) related to a set X . The
characterization of Lie(X) as the Lie subalgebra (contained in the algebra
of the polynomials in the elements of X) consisting of Lie-polynomials
is also given in detail (without requiring the PBW Theorem or any of its
corollaries). Furthermore, some results about free nilpotent Lie algebras are
presented here, helpful e.g., in constructing free Carnot groups (as in [21,
Chapters 14, 17]).

An algebraic approach to formal power series can be found in Chapter 9.
Finally, Chapter 10 contains all the machinery about symmetric algebras

which is needed in Chapter 6.

§ 3. How to Read This Book. Since this book is intended for a readership
potentially not acquainted with graduate level Algebra, the main effort is to
make the presentation completely self-contained. The only prerequisites are a
basic knowledge of Linear Algebra and undergraduate courses in Analysis
and in Algebra. The book opens with a historical overview, Chapter 1, of
the early proofs of the CBHD Theorem and a glimpse into more modern
results: it is designed not only for historical scholars, but also for the Reader
who asked himself the question “Campbell, Baker, Hausdorff, Dynkin: who
proved what?”.

The algebraic prerequisites are collected in Chapter 2, where the notations
used throughout are also collected. The Reader interested in the correspond-
ing proofs will find them in Part II (Chapters from 7 to 10). Chapter 2 and
Part II can be skipped by the Reader fully conversant with the algebraic
prerequisites. In any case, Chapter 2 must be used as a complete reference
for the notations. The Reader interested in the proofs of the CBHD Theorem
can directly refer to Chapter 3 (for a more elaborate proof, making use
of general algebraic results, in the spirit of the Bourbaki exposition of the
subject) or to Chapter 4 (where shorter proofs are presented, but with
more ad hoc arguments). These chapters require the background results of
Chapter 2.

Once the main CBHD Theorem has been established, Chapter 5 presents
a primer on the convergence question. The Reader will also find an extended
list of references on related topics. Chapter 5 can also be read independently
of the preceding chapters, once any proof of the CBHD Theorem is taken
for granted. Analogously, Chapter 6 can be read on its own, only requiring
some theory of free Lie algebras and of symmetric algebras (coming from
Chapters 8 and 10, respectively). A synopsis of the book structure together
with the interdependence of the different chapters is given in Figure 1 below.
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Chapter 1
Historical Overview

The period since the CBHD Theorem first came to life, about 120 years ago,
can be divided into two distinct phases. The range 1890–1950, beginning
with Schur’s paper [154] and ending with Dynkin’s [56], and the remaining
60-year range, up to the present day. The first range comprises, besides
the contributions by the authors whose names are recalled in our acronym
CBHD, other significant papers (often left unmentioned) by Ernesto Pascal,
Jules Henri Poincaré, Friedrich Heinrich Schur.

The second range covers what we will call the “modern era” of the CBHD
Theorem: this includes a rigorous formalization of the theorem, along with
several new proofs and plenty of applications – from Mathematics and
Physics – in the fields we already mentioned in the Preface. The beginning
of this renewed age for the CBHD Theorem begins – not surprisingly – with
the Bourbakist school in the middle fifties, whose rigorous and selfcontained
refoundation of all Mathematics involved also the CBHD Theorem and
emblazoned it in a well-established algebraic context.

The aim of the next few paragraphs is to give the essential coordinates to
orient oneself in the history of this theorem. An exhaustive treatise concerned
with the early proofs of the CBHD Theorem (during the years 1897–1950) can be
found in [3] and in [18].

1.1 The Early Proofs of the CBHD Theorem

To begin with, we hope that a chronological prospect of the early original
contributions (range 1890–1950) to the CBHD Theorem may be illuminating:
this is furnished in Table 1.1. We split our exposition into three subpara-
graphs:

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 1,
© Springer-Verlag Berlin Heidelberg 2012
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2 1 Historical Overview

– The origin of the problem (we describe how the problem came about of
finding an intrinsic formula for the composition of two exponentials
generated by Lie’s theory of finite continuous groups of transformations).

– Schur, Poincaré and Pascal (we outline the – long forgotten – contributions
of these three precursors of the CBHD formula, showing that their papers
contain – in fact – much more than forerunning results).

– Campbell, Baker, Hausdorff, Dynkin (we describe and compare the results of
the mathematicians whose names we have chosen for the acronym of the
theorem to which this whole book is devoted).

Table 1.1 Comprehensive references for the early proofs of the CBHD Theorem. Dark-
gray lines refer to the main references in the acronym CBHD; light-gray lines refer to very
significant papers on the subject which – in our opinion – cannot be ignored to picture the
full history of the theorem

Year Author Paper

1890 Schur [154, 155]
1891 Schur [156]
1893 Schur [157]
1897 Campbell [28, 29]
1898 Campbell [30]
1899 Poincaré [141]
1900 Poincaré [142]
1901 Baker [5]
1901 Pascal [135, 136]
1901 Poincaré [143]
1902 Baker [6]
1902 Pascal [137–139]
1903 Baker [7]
1903 Campbell [31]
1903 Pascal [140]
1905 Baker [8]
1906 Hausdorff [78]
1937 Yosida [183]
1947 Dynkin [54]
1949 Dynkin [55]
1950 Dynkin [56]

1.1.1 The Origin of the Problem

The main theorem we are concerned with in this book finds its roots in
Sophus Lie’s theory of the finite continuous groups of transformations. What
we now know as “Lie groups” are quite different from what Lie himself had
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occasion to call “his groups” and which he studied during the second half of
the 19th century. Since we shall have no occasion to insist elsewhere on Lie’s
original theory, we confine ourselves to recalling a simplified definition of a
group of transformations.1

A finite continuous group of transformations is a family of maps x′ = f(x, a),
indexed with a (belonging to some open neighborhood of 0 in the Euclidean
r-dimensional space), where x, x′ vary on some domain of the Euclidean
n-dimensional space, and such that the following properties hold:

(1) The maps (x, a) �→ f(x, a) are analytic (real or complex) and to different
a, a′ there correspond different functions f(·, a) and f(·, a′).

(2) f(x, 0) = x for every x; moreover for every parameter a there exists a′

such that f(·, a) and f(·, a′) are inverse to each other.
(3) (The main axiom) for every pair of parameters a, b (sufficiently close to 0)

there exists ϕ(a, b) in the domain of the parameters – which is unique by
(i) – such that

f(f(x, a), b) = f(x, ϕ(a, b)), for every x. (1.1)

Throughout this chapter, we shall also, for short, use the terminology
transformation group, with the above meaning. We warn the Reader that here
the adjective “finite” and the substantive “group” are not meant in their
(modern) algebraic sense2: in modern words, one should rather speak of
a local group, or a group chunk. Indeed, it is not difficult to see that the
above map (a, b) �→ ϕ(a, b) defines a local analytic group. For example,
the “associativity”3 of the local group law follows from the associativity of
the composition of functions:

f
(
x, ϕ(ϕ(a, b), c)

)
= f
(
f(x, ϕ(a, b)), c

)
= f
(
f(f(x, a), b), c

)

= f
(
f(x, a), ϕ(b, c)

)
= f
(
x, ϕ(a, ϕ(b, c))

)
,

so that (see the second part of (i) above) ϕ(ϕ(a, b), c) = ϕ(a, ϕ(b, c)). Despite
this underlying (local) group, as a matter of fact the abstract group structure
never played such a central rôle in the original theory of Lie.

1For instance, point (2) below was not present in the first definitions of transformation
groups given by Lie. More details can be found e.g., in [126, 171]. Books on ODE’s from
the first decades of 1900 are also of interest: see e.g., [31, 41, 60, 96].
2Finiteness is not referred here to the cardinality of the group, but it is used in contrast
with the so-called infinitesimal transformations.
3Note that the existence of ϕ(a, b) is not assumed to hold throughout, but only for a, b in
some neighborhood, say U, of the origin; more precisely, the word “associativity” should
not be even allowed, since it is not required that ϕ(a, b) belongs to U, for every a, b ∈ U.
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What, instead, played a key rôle from the beginning were the so-called
infinitesimal transformations of the transformation group (roughly speaking,
the vector fields related to the columns of the Jacobian matrix of u �→ f(x, u)
at the origin): something very similar to what we would now call the
associated Lie algebra. Let us see how these were thought of at the time of
Lie. Let a be fixed in the domain of the parameters and let ε be a small scalar.
The point x is transformed into x′ by the “infinitesimal” transformation
x′ = f(x, ε a). If F is any function sufficiently regular around x, its increment
F (x′)−F (x) can be approximated by the Maclaurin expansion with respect
to ε in the following obvious way (recall that f(x, 0) = x by axiom (2)):

F (x′)− F (x) = F (f(x, ε a))− F (f(x, 0)) = ε ·
r∑

j=1

aj XjF (x) + O(ε2),

as ε→ 0, where for every j = 1, . . . , r we have set

XjF (x) =

n∑

i=1

∂

∂uj

∣
∣
∣
u=0

fi(x, u) · ∂F (x)

∂xi
. (1.2)

The differential operator
∑r

j=1 aj Xj (whose action on F gives, as shown
above, the limit of the incremental ratio (F (x′) − F (x))/ε) is then the
appropriate “weight” of the infinitesimal transformation in the “direction”
of the parameter a.

The Second Fundamental Theorem of Lie ensures that the span of the
operators X1, . . . , Xr is closed under the bracket operation, that is, there
exist constants cijs (called the structure constants of the transformation
group) such that

[Xi, Xj ] =

r∑

s=1

cijs Xs, for every i, j = 1, . . . , r. (1.3)

The verification of this fact is a simple exercise of Calculus: by differentiating
the identity (1.1) with respect to ai, bj at (a, b) = (0, 0) one gets (setting f =
f(x, u) and ϕ = ϕ(u, v))

n∑

h=1

∂2fk(x, 0)

∂xh ∂uj
· ∂fh(x, 0)

∂ui
=
∂2fk(x, 0)

∂ui ∂uj
+

r∑

s=1

∂fk(x, 0)

∂us
· ∂

2ϕs(0, 0)

∂ui ∂vj
.

If Xj is as in (1.2), the above identity gives at once (1.3) with the choice

cijs =
∂2ϕs(0, 0)

∂ui ∂vj
− ∂2ϕs(0, 0)

∂uj ∂vi
. (1.4)
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The converse of this fact (part of the Second Fundamental Theorem too) is
less straightforward, and it states that if a set of independent analytic vector
fields {X1, . . . , Xr} on some domain Ω ⊆ Rn spans a finite-dimensional
Lie algebra, then these vector fields are the infinitesimal transformations of
some transformation group. The arguments to prove this fact make use of
the “one parameter groups” generated by the family of vector fields, namely
the solutions to the ODE system

{
γ̇(t) = (a ·X)(γ(t))

γ(0) = x
where a ·X := a1X1 + · · ·+ arXr, (1.5)

a1, . . . , ar being scalars and x ∈ Ω. If the scalars ai are small enough, the
formula

f(x, a) := γ(1) (1.6)

makes sense and it defines the desired transformation group. The proof of
the existence of the corresponding local-group law ϕ(a, b) is not so direct:
ϕ is the solution of a suitable system of (first order) PDE problems whose
integrability derives from the existence of constants cijs satisfying (1.3) (see
e.g. [60, 154]).

Despite the concealed nature of ϕ, the above facts contain the core of the
CBHD Theorem. Indeed, as can be trivially shown, the Maclaurin expansion
of the above γ is (setting A := a ·X for short)

γ(t) =

∞∑

k=0

tkAk(x)

k!
=: etA(x), (1.7)

justifying the exponential notation for γ(t). From (1.6) and from the group
property (1.1), it follows that the composition of two exponentials must obey
the following law (here ◦ is the composition of functions)

ea·X ◦ eb·X = eϕ(a,b)·X , (1.8)

that is, eA ◦ eB = eC , where A = a ·X , B = b ·X , C = c ·X with c = ϕ(a, b).
Moreover, given two vector fields A,B in the span of {X1, . . . , Xr}, another
Calculus exercise shows that the Taylor expansion of the composition of two
exponentials (α, β) �→ (eαA ◦ eβB)(x) at the point (0, 0) is equal to

∑

i,j≥0

BiAj(x)

i!j!
βiαj . (1.9)

Note the reversed order for A,B. As a consequence, (1.8) can also be
suggestively rewritten as follows (here a, b are sufficiently small so that we
can take α = β = 1 in (1.9))
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∑

i,j≥0

BiAj

i!j!
=
∑

k≥0

Ck

k!
, (1.10)

for some C belonging to span{X1, . . . , Xr}. Once again this naturally led to
an “exponential formula” of the type eXeY = eZ , where this time eX , eY , eZ

are formal power series.

Followed by Baker, it was Campbell who first proposed to investigate the
quantity eAeB from a purely symbolic point of view. Later, this was to be
named (by Poincaré and by Hausdorff) Campbell’s problem.

It then became clear that the study of the “product” of two exponen-
tials, originating from Lie’s theory of transformation groups, deserved
autonomous attention and to be studied in its more general form. Lie had
not paid much attention to the problem, for the equation eAeB = eC was
more or less contained in the axiomatic identity (1.1) of his theory. What
Lie failed to prove is that the rule describing the form of C as a series of
commutators of A and B is in fact “universal”

C = A+B + 1
2 [A,B] + 1

12 [A[A,B]]− 1
12 [B[A,B]] + 1

24 [A[B[B,A]]] + · · · ,

and that the structure constants cijs of the specific group intervene only if
one wants to write C in some particular basis {X1, . . . , Xr}. The universal
symbolic nature of C is the subject to which Campbell, Baker, Hausdorff
and Dynkin in due course addressed, thus untying the exponential formula
from the original group context and lending it an interest in its own right.

Before closing this digression on the foundations of Lie’s theory, we
should not neglect to recall the Third Fundamental Theorem of Lie (in its
original form), which is even more closely related to the CBHD Formula
than the Second Theorem. Originally, Lie’s Third Theorem was stated as
follows:

Lie’s Third Theorem, original version. Given r3 real constants {cijk}i,j,k≤r

satisfying the conditions

cijk = −cjik,
∑r

s=1(cijscskh + cjkscsih + ckiscsjh) = 0, (1.11)

for every i, j, h, k = 1, . . . , r, there exists a transformation group whose structure
constants are cijk , that is, such that the infinitesimal transformations X1, . . . , Xr

of this transformation group satisfy

[Xi, Xj ] =
∑r

k=1 cijkXk. (1.12)

Throughout this chapter, when we speak of the Third Theorem (of Lie), we
mean this original version of the theorem, which is very different from the
modern (more profound) formulation of this result, which we now recall.
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Indeed, it is nowadays commonly understood that “the Third (Funda-
mental) Theorem of Lie” is the following result:

A. Lie’s Third Theorem, global version. Given a finite-dimensional (real or
complex) Lie algebra g, there exists a Lie group whose Lie algebra is isomorphic to g.

Along with this global result, the following statements are also invoked as
local versions of Lie’s Third Theorem:

B. Lie’s Third Theorem, local version (for finite-dimensional Lie algebras).
Given a finite-dimensional (real or complex) Lie algebra g, there exists a local Lie
group whose Lie algebra is isomorphic to g.

C. Lie’s Third Theorem, local version (for Banach-Lie algebras). Given a
real or complex Banach-Lie algebra g (see Definition 5.22, page 292), there exists a
local Lie group whose Lie algebra is isomorphic to g.

Obviously, Theorem B is a particular case of Theorem C, whilst Theorem
A implies Theorem B. It is also easily seen that the original version of
the theorem proves – in particular – the local version in the (real) finite-
dimensional case (indeed, recall that a transformation group is a special
class of local Lie group). It is also of some interest to observe that, as a
consequence of the original version of Lie’s Third Theorem, one obtains that
every finite-dimensional (real) Lie algebra is isomorphic to one in a special
class of Lie algebras, namely the Lie algebras spanned by analytic vector
fields on some open domain of Rn.

In this book, we shall sketch some proofs of the original version of
Lie’s Third Theorem, by recalling the arguments of its original contribu-
tors (Schur, Poincaré, Campbell, Pascal, . . . ), whereas Theorem C (hence
Theorem B) easily derives from the results in Chap. 5 (see Theorem 5.52). We
shall not attempt to prove (the very profound) Theorem A in this book, apart
from a (very!) particular case: that of the real nilpotent finite-dimensional
Lie algebras (see Sect. 5.4.2, page 328). The different caliber distinguishing
global and local forms is also evident from the corresponding proofs, the
global form requiring highly nontrivial results, such as, e.g., Ado’s Theorem
or a large amount of structure theory of Lie groups (see e.g., Varadarajan
[171, Section 3.15]; see also Serre’s proof in [159]). Instead, we shall see
that Theorems B and C are simple corollaries of the convergence and
associativity of the CBHD operation on a Banach-Lie algebra, a fundamental
result for this type of noncommutative algebras.

In this book, as a convention, when we speak of Lie’s Third Theorem we mean
the original version, whereas we shall have no occasion – in general – to
invoke the statements of Theorems A, B, C. However, due to the significant
distinction between global and local results, we shall occasionally add the
adjective local when speaking of the original version. Roughly speaking, the
conflict “global vs local” depends on the fact that, according to its modern
definition, a Lie group is a “global” object (a smooth manifold equipped
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with a smooth group law. . . ), whereas a transformation group – in its
original meaning – has to be seen as a local object, as we remarked at the
beginning of Sect. 1.1.1.

For a modern functorial version of Lie’s Third Theorem, see Hofmann
and Morris [90]. For the different meanings attached to it, see also the
headword “Lie’s Theorem” in [80].

We now return to the historical background. Besides precursory studies
by Schur, the link between the Third Theorem and the exponential formula
was first understood by Poincaré.

With modern words, we would like to anticipate how the identity
eAeB=eC intervenes in the proof of the Third Theorem. Indeed, suppose
the constants cijk are as in (1.11) and let X1, . . . , Xr be r independent letters.
Formula (1.12) then uniquely defines (by bilinearity) a structure on

g := span{X1, . . . , Xr}

of a real Lie algebra (obviously conditions (1.11) are equivalent to skew-
symmetry and the Jacobi identity). Suppose we have proved the formal
power series identity eAeB = eC , where ψ(A,B) := C is a uniquely
determined formal Lie series in A,B. The associativity of the product of
formal power series ensures that

ψ(A,ψ(B,C)) = ψ(ψ(A,B), C). (1.13)

Suppose further that, for U = u1X1 + · · · + urXr, V = v1X1 + · · · + vrXr,
the g-valued series ψ(U, V ) converges in the finite dimensional vector space
g, provided that u = (u1, . . . , ur) and v = (v1, . . . , vr) belong to a sufficiently
small neighborhood of the origin, say Ω.

Let us set ϕ(u, v) = (ϕ1(u, v), . . . , ϕr(u, v)) where

ψ(U, V ) = ϕ1(u, v)X1 + · · ·+ ϕr(u, v)Xr. (1.14)

and U, V are as above. Then (1.13) implies that u′ := ϕ(u, v) defines a finite
transformation group (parametrized by v inΩ) on the open domainΩ ⊆ Rr.
Note that the formal identity eAeB = eψ(A,B) forces the condition

ψ(A,B) = A+B + 1
2 [A,B] + {higher orders in A,B}.

Consequently, (1.12) and (1.14) produce the Maclaurin expansion

ϕs(u, v) = us + vs +
1
2

r∑

i,j=1

cijs uivj + {higher orders in u, v}. (1.15)
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Now, since the structure constants of a transformation group are given by
formula (1.4), we recognize by a direct differentiation of (1.15) that these
constants are precisely cijk . The (local) Third Theorem then follows.

This is more or less Poincaré’s argument in [142], dated 1900. Despite its
being over 100 years old, this argument hits the mark for its intertwinement
of algebraic objects, group theory and calculus and it exemplifies how the
CBHD Theorem can be used for algebraic and geometric purposes alike.

1.1.2 Schur, Poincaré and Pascal

Along with the fact that there is still no conventional agreement for the
“parenthood” of the CBHD Theorem,4 the most surprising fact concerning
the early investigations is that the contributions of Schur, Poincaré and
Pascal have nowadays almost become forgotten.5 In our opinion, there are
three good (or perhaps bad?) reasons for this:

1. Firstly, they focussed on Lie’s setting of the theory of groups of transfor-
mations, instead of taking up a purely symbolical approach.

2. Secondly, the very cold judgements towards the contributions of Schur,
Poincaré and Pascal given by Hausdorff himself and then also by Bour-
baki have certainly played a rôle.

3. Thirdly, the fact that none of their original papers on the subject was writ-
ten in English has contributed to their becoming obsolete. (Hausdorff’s
paper though, written in German, did not share this lot.)

To be more specific, we recall a few of the comments of Hausdorff and
Bourbaki on the works by Schur, Poincaré and Pascal.

• In Hausdorff’s paper [78, page 20] it is stated that Poincaré had not
proved the exponential-theorem in its general and symbolic form, but
only in the form of the group theory. Moreover, according to Hausdorff,
the massive computations in Pascal’s papers make it hard to check the
validity of the arguments and Pascal is faulted for omitting the conver-
gence matter. Finally, a comment on Schur’s contribution is missing, apart
for an acknowledgement (see [78, page 34]) concerning some expansions
involving Bernoulli numbers.

• In the book of Bourbaki [27, Chapter III, Historical Note, V] Poincaré is
faulted (together with Campbell and Baker) for a lack of clarity about the

4Baker’s name is frequently unfairly omitted and Dynkin, unfairly as well, is acknow-
ledged only for his explicit series, but not for his proof.
5To the best of our knowledge, the only modern sources quoting Schur, Poincaré or Pascal
regarding the CBHD Theorem are: Czyż [43] (who quotes Pascal [139] and Poincaré [142])
and Duistermaat, Kolk (who quote Poincaré [141] and Schur [156, 157]).
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question of whether the brackets in his exponential formulas are symbolic
expressions or elements of some fixed Lie algebra. Pascal is named with
those who returned to the question of eAeB = eC , but nothing is said
about his results and his papers are not mentioned in the list of references.
Hausdorff – instead – is acknowledged as the only reliable source. Finally,
Schur’s results on the product of exponentials are not mentioned.6

We would like to express some opinions on the above comments.
Hausdorff insists on reasserting over and over again that his own

theorem implies Poincaré’s and not vice versa, but eventually his words
become more prudent7: this legitimately leads us to suppose that Hausdorff
recognized that Poincaré proved more in his paper [142] than it seems on the
surface.8 Obviously, it is not possible to fail to recognize Hausdorff’s merits
in shifting all the attention on purely symbolic arguments. Nonetheless, our
opinion is that Poincaré’s ingenious approach (take a finite dimensional Lie
algebra g, obtain the exponential theorem on U (g), then go back to g and
prove the convergence with the residue calculus) is definitely more modern
than a typical publication from 1900.

Moreover, Hausdorff’s complaint on the over-abundance of computa-
tions in Pascal’s papers is not enough to doubt the correctness of Pascal’s
proof. Indeed, one may praise a large part of Pascal’s arguments in the series
of papers [135]–[139] for being more transparent than part of the symbolic
computations by Campbell or Baker.

Also, even though the historical notes in Bourbaki do not pay attention
to their contributions, Pascal and Schur should be regarded as noteworthy
precursors of what later came to be known only as the Campbell-Hausdorff
formula (or Campbell-Baker-Hausdorff formula). Following Schmid [153,
page 177], this formula is already contained “in disguise” in Schur’s papers;
and the same should be said for Pascal’s works, as we shall see below.

In order to let the Reader form his own opinions, we describe more
closely the contributions by Schur, Poincaré and Pascal.

6Schur is recalled only for his proof of the fact that C2 assumptions on transformation
groups are (up to isomorphism) sufficient to get analytic regularity.
7After repeated reassertions that his theorem implies Poincaré’s and not vice versa,
Hausdorff finally recognizes that Poincaré’s theorem seems not to be without relevance
for his own result.
8In [142] Poincaré introduced for the very first time the universal enveloping algebra of a
Lie group, but the relevance of this invention was not caught for several decades (see
Ton-That, Tran [168] and Grivel [74] for related topics). More importantly, as Schmid
neatly points out (see [153, page 184]), Poincaré’s identity eU .eV = eT makes no reference
at all to the Lie algebra of the infinitesimal transformations of a group.
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1.1.2.1 Schur

Schur’s9 papers [154]–[157] are mainly devoted to providing new deriva-
tions of Lie’s Theorems by means of a shrewd way of rewriting the group
condition (1.1) via systems of PDEs. Actually, in dealing with a new proof
of Lie’s Third Theorem (see [156, §1] and [154, §3]), he constructs a (local)
transformation group only by means of suitable power series depending
on the structure constants and on the Bernoulli numbers. [Almost all of his
successors will attribute to Schur the discovery of the rôle of these numbers
in the exponential formula.] This is clearly a forerunner of the Campbell-
Hausdorff series.

Like Lie, Schur did not capture the universal law of bracket-formation
which underlies the analytic expression of ϕ(a, b). However, he perfectly
captured the idea that an explicit formula for ϕ depending only on the
constants cijk was the right tool to prove Lie’s Third Fundamental Theorem,
a theorem which is – as we now understand it – deeply related to the CBHD
Theorem.

As an example of Schur’s notable computations with power series, we
would like to recall a remarkable formula [155, eq.(2) page 2], which catches
one’s eyes for its explicitness: If ω = (ωi,j(u))i,j is the Jacobian matrix of
v �→ ϕ(u, v) at v = 0, then

ωi,j(u) = δi,j +

∞∑

m=1

λm U
(m)
i,j (u), (1.16)

where δi,j is Kronecker’s symbol, the constants λm are a variant of the
Bernoulli numbers,10 and the functions U are explicitly defined by

U
(m)
i,j (u) =

∑

1�h1,...,hm�r
1�k1,...,km−1�r

ck1

j,h1
ck2

k1,h2
· · · ckm−1

km−2,hm−1
cikm−1,hm uh1uh2 · · ·uhm .

(1.17)

9Friedrich Heinrich Schur; Maciejewo, near Krotoschin, Prussia (now Krotoszyn, Poland),
1856 – Breslau, Prussia (now Wrocław, Poland), 1932. Friedrich Heinrich Schur should not
be confused with the (presumably more famous and more influential) coeval mathemati-
cian Issai Schur (Mogilev, 1875; Tel Aviv, 1941). Whereas the former was a follower of the
school of Sophus Lie, the latter was a student of Frobenius and Fuchs, Berlin. For a source
on Berlin mathematicians of that time, see [11].
10Schur uses the following definition for the Bernoulli numbers Bn:

x

ex − 1
= 1− x

2
+

∞∑

q=1

(−1)q−1 B2q−1

(2q)!
x2q.

Then λm is defined by λ1 = − 1
2

, λ2q+1 = 0, λ2q = (−1)q+1 B2q−1

(2q)!
.
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Here u = (u1, . . . , ur) is a point of some neighborhood of the origin of Rr

and csi,j are the structure constants of the group. Conversely (see [156, Satz 2,
page 271]), Schur uses this formula as an Ansatz to give a very explicit proof
of Lie’s (local) Third Theorem.

Later, Schur proves in [157] the remarkable result that C2 assumptions
on the functions f and ϕ in (1.1) actually guarantee that they can be
transformed (by a change of variables) into analytic functions. This notable
result (closely related to Hilbert’s Fifth Problem) has become a central topic
of modern Lie group theory: The fact that this result is usually proved –
by sheer chance – by means of the CBHD formula highlights the deep link
between Schur’s studies and the theorem we are concerned with in this
book.

1.1.2.2 Poincaré

It was Poincaré11 who first realized the link between Schur’s proof of the
Third Theorem and what he defined “le problème de Campbell”.

Indeed, given a transformation group and its infinitesimal transforma-
tions {X1, . . . , Xr} as in (1.2), the one-parameter subgroups (see (1.7))

t �→ etX , (X ∈ g := span{X1, . . . , Xr})

generate the transformation group. Hence, if Campbell’s identity eV eT =
eW has a precise analytical meaning, it follows that the whole group can
be reconstructed by g. Poincaré anticipated the modern way of thinking about the
CBHD Formula as the tool permitting the reconstruction of the group law by means
of the Lie algebra.

We refer the Reader to Schmid [153] and to Ton-That, Tran [168] for,
respectively, a treatise on Poincaré’s contribution to the theory of contin-
uous groups and for Poincaré’s contribution to the Poincaré-Birkhoff-Witt
Theorem (see also Grivel [74] for this last topic); here we confine ourselves
in pointing out his contribution to the development of the CBHD Theorem.

The most impressive fact about Poincaré’s contribution is that, in solving
an important problem, he creates an even more important device: the
universal enveloping algebra of a Lie algebra. Indeed, suppose there is given a
Lie algebra12 (over a field of characteristic zero) g := span{X1, . . . , Xr} (the
Xi are called generators), equipped with the bracket defined by

[Xi, Xj ] =
∑r

s=1 cijsXs. (1.18)

11Jules Henri Poicaré; Nancy (France), 1854 – Paris (France), 1912.
12Lacking, as he did, the general definition of Lie algebra – not introduced until the 1930s –
Poincaré pictured his Lie algebras as spanned, typically, by analytic vector fields.
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Then Poincaré introduces an equivalence relation on the set of formal
polynomials in the generators, by calling equivalent any two polynomials
whose difference is a linear combination of two-sided products of

XiXj −XjXi − [Xi, Xj ] (i, j ≤ r). (1.19)

As claimed by Hausdorff-Bourbaki, Poincaré’s construction is not devoid
of some ambiguity.13 Subsequently, Poincaré shows that any homogeneous
polynomial of degree p is equivalent to a uniquely determined span of
polynomials (called regular) of the form14

(α1X1 + α2X2 + · · · )p.

Then, if V, T ∈ g, Poincaré considers a formal product of the type

eV eT =
∑

m,n≥0

V mT n

m!n!
,

motivated by the theory of transformation groups. He aims to prove – by
direct methods – the existence of W such that eV eT = eW (a fact implicitly
ensured by the Second Fundamental Theorem).

Poincaré’s insightful idea is to use the universal enveloping algebra to do
that. Indeed, the monomial V mT n can be made equivalent to sums of regular
polynomials, say

V mT n

m!n!
=

m+n∑

p=0

W (p,m, n), (1.20)

where W (p,m, n) is symmetric and homogeneous of degree p. Conse-
quently,

eV eT =
∑

m,n≥0

V mT n

m!n!
=

∞∑

p=0

( ∑

m+n≥p

W (p,m, n)
)
=:

∞∑

p=0

Wp. (1.21)

Poincaré observes that, if we seek W – homogeneous of degree 1 – such that
eV eT =

∑∞
p=0W

p, thenW p is regular and homogeneous of degree p. Hence,
by the uniqueness of the regularization process, we must have

13For example, identity (1) on page 224 in [142] writes XY −Y X = [X,Y ] and identity (2)
contains XY − Y X − [X, Y ], claiming that it is not null, since XY − Y X is of 2nd degree
whereas [X, Y ] is of 1st degree. Actual identities and congruences repeatedly overlap with
no clear distinctions. See [3] for an explanation of this fact.
14As a matter of fact, this is what we now call the (linear) isomorphism of U (g) with the
symmetric algebra of the vector space g.
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Wp =
(W1)

p

p!
, p ≥ 0. (1.22)

As a matter of fact, W1 must be exactly the CBHD series associated to V, T .
Let us check how W1 can be computed by repeated applications of the

following identity (here the “=” sign can be interpreted as a congruence or
as a true equality, if V, T are smooth vector fields)

V T = TV + [V, T ]. (1.23)

For example, consider the following computation:

V T = 1
2 V T + 1

2 V T = 1
2 (V T + TV ) + 1

2 [V, T ]

= 1
2 (V + T )2 − 1

2 V
2 − 1

2 T
2 + 1

2 [V, T ].

With the notation in (1.20), this gives

W (0, 1, 1) = 0, W (1, 1, 1) = 1
2 [V, T ], W (2, 1, 1) = 1

2

(
(V +T )2−V 2−T 2

)
.

Again, consider the identity (which we derived by means of (1.23) only)

V T 2

2
=

1

6
(V TT + TV T + TTV ) +

1

4
([V, T ]T + T [V, T ]) +

1

12
[T, [T, V ]],

so that W (1, 1, 2) = 1
12 [T, [T, V ]]. An analogous computation ensures that

we have W (1, 2, 1) = 1
12 [V, [V, T ]], whence

W1 = W (1, 1, 0) +W (1, 0, 1) +W (1, 1, 1) +W (1, 2, 1) +W (1, 1, 2) + · · ·
= V + T + 1

2 [V, T ] +
1
12 [V, [V, T ]] +

1
12 [T, [T, V ]] + · · ·

We recognize the first few terms of the CBHD series, and the original contribu-
tion by Poincaré to the CBHD Theorem is crystal clear.

As anticipated, Poincaré derives from (1.22) a new proof of the (local)
Third Fundamental Theorem, with an argument similar to that given at
the end of §1. It is also of interest to exhibit some of Poincaré’s formulas
(returning in the subsequent literature devoted to the CBHD Formula),
aimed at giving a precise analytical meaning to (1.22).

Once more Poincaré’s intuitions will leave their mark: He is the first to
characterize the solution W of eW = eV eT as solving a suitable ODE. For
instance, he proves that eV eβT = eW (β) if and only if W (β) solves

{
dW (β)

dβ = φ(adW (β))(T )

W (0) = V
where φ(z) =

z

1− e−z
. (1.24)
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If V, T are sufficiently near the origin in g, then W := W (1) is the solution to
eW = eV eT , an identity in the enveloping algebra of g. This identity can be
transformed into an identity between the operators eV , eT , eW , which solves
Campbell’s problem and the Second and Third Theorems of Lie.

Instead of using formal power series to define φ(adW ), Poincaré invokes
the residue calculus: thus the solution W (β) of (1.24) can be found in the
form
∑r

i=1 wi(β)Xi ∈ g, where

dwi(β)

dβ
=

1

2πι

∫ ∑r
j=1 tj Pi,j(β, ξ)

det
(
ad (W (β)) − ξ

)
ξ

1− e−ξ
dξ. (1.25)

The crucial fact is that these ODEs can be integrated.15

Poincaré obtains the ODE (1.24) by combining his algebraic symmetriza-
tion process, differential calculus, explicit computations of noncommutative
algebra, etc. As we shall repeatedly observe, the compound of Algebra and
Analysis is typical of the arguments needed to prove the CBHD Theorem.
For example, a key rôle is played by the symbolic identity

eαV+βW = eαV eβY , where Y =
1− e−ad (αV )

ad (αV )
(W ).

It is interesting to observe that this identity is derived both with algebraic
arguments, and with a direct approach based on an expansion modulo
O(β2):

eαV+βW =

∞∑

n=0

(αV + βW )n

n!

= eαV + β

∞∑

n=1

αn−1

n!

( n−1∑

k=0

V n−1−kWV k
)
+ O(β2)

= eαV + β

∞∑

n=1

αn−1

n!

( n−1∑

k=0

(−1)k( n
k+1

)
V n−1−k(adV )k(W )

)
+ O(β2)

= eαV + β
∞∑

k=0

∞∑

j=0

(αV )j

j!

(−αadV )k

(k + 1)!
(W )
)
+ O(β2)

= eαV

(

1 + β
1− e−ad (αV )

ad (αV )
(W )

)

+ O(β2).

(1.26)

15Here ι is the imaginary unit, the coefficients tj are the coefficients of T with respect
to {X1, . . . ,Xr}, whilst (Pi,j) is the adjugate (i.e., transpose of the cofactor) matrix of
ad (W (β)) − ξ. Also, the integral is taken over a contour around 0 ∈ C which does not
contain the poles of φ(z), for example a circle about 0 of radius R < 2π.
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As we shall see, similar computations will reappear in Pascal, Baker,
Hausdorff and in various modern proofs of the CBHD Theorem (see
Chap. 4).

1.1.2.3 Pascal

In a series of five papers dated 1901–1902, Pascal16 undertook the study of
the composition of two exponentials. He also collected an abridged version
of these papers, together with a didactic exposition of the main results of
those years about groups of transformations, in the book [140], 1903. We
here give a brief overview of these papers.17

In [135], Pascal announces a new – as direct as possible – proof of
the Second Theorem of Lie, the crucial part being played by a formula
for the product of two finite transformations, each presented in canonical
exponential form x �→ etX(x). To this aim, he provides suitable identities
valid in any associative, noncommutative algebra: for example

k X2X
k−1
1 =

k−1∑

j=0

j!

(
k

j

)

γ(j)
( k−j∑

i=1

X i−1
1 (adX1)

j(X2)X
k−j−2
1

)

, (1.27)

where k ∈ N and the constants γ(j) are variants of Bernoulli numbers:

γ(0) = 1, γ(j) = −
(

1
2! γ

(j−1) + 1
3! γ

(j−2) + · · ·+ 1
j! γ

(1) + 1
(j+1)! γ

(0)
)
.

(1.28)

A certain analogy with Campbell’s algebraic computations, with Poincaré’s
symmetrized polynomials, and with the use of Bernoulli numbers as in
Schur are evident; but Pascal’s methods are quite different from those of
his predecessors.

As an application, in [136] Pascal furnishes a new proof of the Second
Fundamental Theorem. He claims that the explicit formula eX2◦eX1 = eX3 is
“a uniquely comprehensive source” for many Lie group results. The analogy
with Poincaré’s point of view (recognizing the exponential formula as a
unifying tool) is evident, but there’s no way of knowing if Pascal knew, at
the time, Poincaré’s paper [142] (which is not mentioned in [136]).

In order to obtain the Second Theorem, Pascal generalizes (1.27) by
decomposing the product (obviously coming from eX2eX1 )

16Ernesto Pascal; Naples (Italy), 1865–1940.
17We plan to return to this subject (with more mathematical contents) in a forthcoming
study [18].
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Xr
2

r!

Xk−r
1

(k − r)!
(0 ≤ r ≤ k, k ∈ N) (1.29)

as a linear combination of symmetric sums (called elementary) based on
X1, X2 and nested commutators of the form

[Xi1Xi2 · · ·XisX1X2] := [Xi1 , [Xi2 · · · [Xis , [X1, X2]] · · · ]], (1.30)

where i1, . . . , is ∈ {1, 2}. The law of composition of the coefficient of such
an elementary sum is described very closely, though an explicit formula is
not given. With a delicate – yet very direct – analysis of the coefficients of the
monomials decomposing (1.29), he obtains the following representation

et
′X2etX1 =

∑

k≥0

( k∑

r=0

t′r tk−r X
r
2

r!

Xk−r
1

(k − r)!

)

(1.31)

=

∞∑

k=0

1

k!

{

tX1 + t′X2 + γ(1)tt′ [X1, X2] + γ(2)t2t′ [X1X1X2]

+−γ(2)tt′2 [X2X1X2]− γ(2)γ(1)t2t′2 [X1X2X1X2] + · · ·
}k

.

Note the similarity with Poincaré’s decomposition in (1.21) and (1.22).
Nonetheless, whereas Poincaré uses an a posteriori argument to prove

eV eT =
∑∞

p=0
(W1)

p

p! (by showing that W1 satisfies a suitable system of
ODEs), Pascal’s construction is much more direct: as he announced, “at the
cost of longer computations” (which will unfortunately provoke a complaint
from Hausdorff) he provides a way to reconstruct the expansion of et

′X2etX1

as a pure exponential eX3 , this reconstruction being uniquely based on a
direct unraveling of

∑
i,j

(t′X2)
j

j!
(tX1)

i

i! .
Besides the partial expansion in (1.31), Pascal proves that the series in

curly braces is a series of terms as in (1.30). As we have remarked, Poincaré
did not succeed to prove this result explicitly. Though Pascal’s derivation of
(1.31) is computationally onerous (and lacking in some arguments – espe-
cially in inductive proofs – which Pascal probably considered redundant),
this is clearly an argument towards a symbolic version of the later-to-be-
known-as Campbell-Baker-Hausdorff Theorem, second to the one proposed
a few years before by Campbell [30].

Unfortunately, what is really missing in Pascal’s papers [135]–[138] is the
study of the convergence of the series in the far right-hand side of (1.31).18

18In his review of [136], Engel faults Pascal for this omission with hard words, but he also
acknowledges Pascal’s formula (1.31) for being very remarkable.
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The convergence matter is missing also in the proof of the Third Theorem
which he gives in his last paper [139], which must be considered the summa
of Pascal’s work on group theory, for the following reasons:

– He only uses his original algebraic identities in [135] (in neat dissimilarity
with Schur’s methods for proving the Third Theorem).

– With these identities he provides a series of explicit coefficients in the
expansion (1.31) (those being really crucial, as Baker and Hausdorff will
later rediscover with different techniques, but leaving Pascal un-acknow-
ledged), thus improving the results in [136].

– He constructs, with a more natural method, if compared to his previous
paper [138], the infinitesimal transformations of the parameter group
(this time using some prerequisites from group theory).

Let us briefly run over the key results in [139]. Pascal shows that, in the
expansion (1.31), all the summands containing t′ with degree 1 or those
containing t with degree 1 are respectively given by

∑∞
n=1 γ

(n)t′tn (adX1)
n(X2),

∑∞
n=2 γ

(n)t′nt (adX2)
n(X1), (1.32)

where the constants γ(n) are as in (1.28).
Let now Z1, . . . , Zr be the infinitesimal transformations generating a

group with r parameters. Let us set

X1 = v1Z1 + · · ·+ vrZr, X2 = u1Z1 + · · ·+ urZr.

Then, by general group theory, it is known that the composition eX1 ◦ eX2

is given by eX3 , where X3 is a linear combination of the transformations
Zi, say

X3 = u′1Z1 + · · ·+ u′rZr.

The ui are functions of u and v (and of the structure constants), say

u′h = ϕh(u, v), h = 1, . . . , r. (1.33)

Again from the group theory, it is known that (1.33) defines a transformation
group (the parameter group).

Pascal’s crucial remark is that, if we know that (1.33) defines a group,
it is sufficient to consider only the terms containing v with first degree (which
de facto furnish the infinitesimal transformations): these correspond to the
summands in (1.31) with t of degree one. By formula (1.32), we thus get

X3 =
∑

i viZi +
∑

i uiZi + γ(1)
[∑

i viZi,
∑

j ujZj

]

+

∞∑

n=2

γ(n)
(
ad
∑

i

uiZi

)n(∑

j

vjZj

)
+ O(|v|2).
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By Lie’s Second Theorem (viz. [Zi, Zj ] =
∑

k cijkZk) we derive

ϕh(u, v) = uh + vh +
1

2

∑

jk

cjkh ujvk +

∞∑

n=1

∑

t1,...,t2n

∑

s1,...,s2n−1

∑

k

× γ(2n) ct1ks1 · · · ct2ns2n−1h ut1 · · ·ut2nvk + O(|v|2).

Differentiating this with respect to the coordinates v, Pascal derives at once

Uk =

r∑

h=1

∂ϕh

∂vk
(u, 0)

∂

∂uh
=

r∑

h=1

(

δhk +
1

2

∑

j

cjkhuj+

+
∞∑

n=1

γ(2n)
∑

t1,t2,...

∑

s1,s2,...

ct1ks1 · · · ct2ns2n−1h ut1 · · ·ut2n

)
∂

∂uh
.

Finally, ϕ can be recovered by exponentiation:

ϕ(u, v) = e
∑
k vkUk(u) = u+

(∑

k

vkUk

)
(u) +

1

2!

(∑

k

vkUk

)2
(u) + · · ·

In view of the above explicit formula for the vector fields Uk, this identity
(already appearing in Schur’s studies) contains a “quantitative” version of
the Third Theorem: it shows that an explicit local group can be constructed
by the use of the Bernoulli numbers γ(2n) and by a set of constants cijk
satisfying the structure relations (1.11).

Finally, it is not a rash judgement to say that Pascal’s contribution to
the CBHD Theorem is of prime importance: he was the first to construct
explicitly a local group by using the commutator series X � Y for log(eXeY ),
or more precisely, by using the subseries derived fromX �Y of the summands
of degree one in one of the indeterminates X,Y . Analogous results were to be
reobtained by Baker and, mostly, by Hausdorff, and reappear in more mod-
ern proofs of the CBHD Theorem (see e.g., Reutenauer [144, Section 3.4]).

1.1.3 Campbell, Baker, Hausdorff, Dynkin

In this section we take up a brief overview of the results, concerning the
exponential formula, by those authors whose names are recalled in our
acronym “CBHD”. Since the parentage of the formula is not well estab-
lished – neither nowadays, nor immediately after the original papers were
published – we hope that a résumé and a comparison of the contributions
by each of the four authors might help.
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1.1.3.1 Campbell

Campbell’s19 1897 paper [28] is the very first in the history of the exponential
formula. In a very readable and concise style, it contains plenty of formulas
which will reappear in subsequent papers on the composition of exponen-
tials. To begin, he establishes the following purely algebraic identity20

y xr

r!
=

r∑

j=0

(−1)j aj
(r + 1− j)!

r−j∑

i=0

xi (adx)j(y)xr−j−i, r ≥ 0, (1.34)

where the constants aj are defined by the recursion formula
{

a0 = 1, a1 = 1/2

aj =
1

j+1

(
aj−1 −

∑j−1
i=1 ai aj−i

)
, j ≥ 2.

(1.35)

He acknowledges Schur for the discovery of the constants aj (which are
indeed related to the Bernoulli numbers).

Though Campbell will eventually be faulted by Bourbaki for a lack of
clarity on the context of his calculations (what do x, y mean? formal series,
infinitesimal transformations of a group, non-associative indeterminates?),
his results on the exponential formula are undoubtedly important. For
example, we exhibit one of his most fruitful computations. Let us set

z = z(x, y) :=
∞∑

j=0

(−1)jaj (adx)j(y). (1.36)

(This will turn out to be the subseries of Log(Exp y Expx) containing y
precisely once, a crucial series in the CBHD Formula!) Then one has

y ex =

∞∑

r=0

y xr

r!

(
use (1.34) and interchange sums

)

=

∞∑

j=0

∞∑

r=j

(−1)j aj
(r + 1− j)!

r−j∑

i=0

xi (adx)j(y)xr−j−i (rename s = r − j)

=

∞∑

j=0

∞∑

s=0

(−1)j aj
(s+ 1)!

s∑

i=0

xi (adx)j(y)xs−i (sums can be interchanged!)

=

∞∑

s=0

1

(s+ 1)!

s∑

i=0

xi z xs−i. (1.37)

19John Edward Campbell; Lisburn (Ireland), 1862 – Oxford (England), 1924.
20Here and in what follows, we use different notations with respect to Cambell’s.
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The above computation (to be considered as holding true in the algebra of
formal power series in x, y) easily gives

{
(1 + μ y) ex = ex+μz + O(μ2),

eμy ex = ex+μz + O(μ2),
(1.38)

where z = z(x, y) is as in (1.36), and the coefficients aj are explicitly given
by (1.35).21

Campbell’s main aim is to give a direct proof of Lie’s Second Theorem. He
considers a set X1, . . . , Xr of operators,22 such that [Xi, Xj ] =

∑r
k=1 cijk Xk.

The goal is to show that, ifX,Y belong to V := span{X1, . . . , Xr}, then there
exists Z ∈ V such that eZ = eY ◦ eX (the notation in (1.7) is followed).

A crucial tool is provided by the following interesting fact. In the change
of coordinates defined by x′ = etX(x), we have23

et adX(Y ) = Y ′, where

⎧
⎨

⎩

Y =
∑n

j=1 ηj(x)
∂

∂xj
and

Y ′ =
∑n

j=1 ηj(x
′(x)) ∂

∂x′
j
.

(1.39)

From this point onwards, Campbell’s arguments in proving the Second
Theorem become quite unclear, and they take on rather the form of a
sketch than of a rigorous proof. Nonetheless they contain “in a nutshell”
the forthcoming ideas by Baker and Hausdorff on iteration of the operator
x �→ z(x, y):

1. In determining eY ◦ eX , eY can be replaced by iterated applications of
1 + μY , where μ is so small that O(μ2) can be ignored, indeed

eY = limn→∞(1 + Y/n)n. (1.40)

2. Now, by taking care of the proper substitutions, we have

(1 + μY ) ◦ eX(x) = (1 + μY ′)(x′),

21As we have already showed, Poincaré will use similar formulas as a starting point for
his ODEs techniques in attacking the exponential formula.
22That is, linear first order differential operators of class Cω on some domain of Rn.
23Here ∂/∂x′

j must be properly interpreted as

∂

∂x′
j

=

n∑

i=1

∂xi

∂x′
j

(x′(x))
∂

∂xi
,

where x(x′) = e−tX(x′) and x′(x) = etX(x).
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where Y ′ has the same meaning as in (1.39). By the identity in the left-
hand side of (1.39), it clearly appears that Y ′ is a Lie series inX,Y . Hence,
Y ′ belongs to V = span{X1, . . . , Xr}, since X,Y ∈ V and V is a Lie
algebra. Thus the Second Theorem follows if we can write (1 + μY ′)(x′)
as eZ(x).

3. Given any X,Y in V , the first identity in (1.38) ensures that

(1 + μY ) eX = eX+μZ1 + O(μ2),

where Z1 = z(X,Y ) is a series of brackets in X,Y , in view of (1.36). From
the same reasoning as above, we deduce that Z1 ∈ V . Set X1 := X+μZ1,
we have X1 ∈ V too, and the above identity is rewritten as

(1 + μY ) eX = eX1 + O(μ2).

4. By the same argument as in the previous step, we have

(1 + μY )2 eX = (1 + μY ) eX1 + O(μ2)
(1.36)
= eX2 + 2O(μ2),

where X2 := X1 + μZ2 and Z2 = z(X1, Y ).

The above argument continues in [30], where the problems of the “conver-
gence” of Xn to some X∞ and the vanishing of n · O(μ2) as n → ∞ are
studied. An overview of [30] is given in [3]. Here we confine ourselves
to saying that (after several elaborate computations) Campbell derives a
formula for x∞ of the following form

eyex = ex∞ where

x∞ = x+ y +
1

2
[y, x] +

∞∑

j=1

a2j (adx)
2j(y)

+
1

2!

∞∑

p,q=0

bp,q

[
(adx)p(y), (adx)q(y)

]

+
1

3!

∞∑

p,q,r=0

bp,q,r

[[
(adx)p(y), (adx)q(y)

]
, (adx)r(y)

]
+ · · ·

(1.41)

where the constants bp,q, bp,q,r, . . . can be deduced by a universal recursion
formula, based on the aj in (1.35). For example,

bp,q = (−1)p+q

p+q+1∑

r=p+1

ar ap+q+1−r

(
r

p

)

.
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This can be considered by rights (even despite Campbell’s not completely
cogent derivation) the first form of the CBHD Theorem in the literature.

Here we make the point that, whereas in the first paper [28] Campbell
focussed on an exponential theorem within the setting of Lie groups of
transformations, the second paper [30] does not mention any underlying
group structure: a remarkable break with respect to [28]. It is in this abstract
direction that Baker and Hausdorff will concentrate their attention, whereas
Poincaré and Pascal never really separated the abstract and the group
contexts.

1.1.3.2 Baker

Preceded by a series of papers [5–7] on exponential-type theorems in the
context of matrix groups, Baker24 devoted a single important paper [8] to
the “exponential theorem” (incidentally, he is the first to use this expression)
eA

′
eA = eA

′′
for arbitrary noncommutative indeterminates.

The first section of [8] is devoted to describing (rather than introducing
rigorously) a certain formalism concerned with bracketing. At a first reading
this formalism looks decidedly mystifying. For Baker’s purposes however,
it “furnishes a compendious way of expressing the relations among alter-
nants” [i.e., brackets]. Let us take a look at this formalism.

To each capitalA,B,C, . . . (basis of some associative but noncommutative
algebra) a lower-case a, b, c, . . . is associated in such a way that:

– a is called the base of A, and A is called the derivative of a.
– The map a �→ εa := A is linear and injective.
– It is possible to extend this map to the whole Lie algebra generated by capitals:

the base of [A,B] is denoted by Ab and, more generally

A1A2 . . . Anb denotes the base of [A1, [A2 · · · [An, B] · · · ]];

– The pairing base–derivative can be extended to formal power series.

Baker provides some delicate identities concerning bases and derivatives,
proving that his symbols obey some natural associative and distributive
laws. This is done with the aim to get an analogous formalism for non-
nested commutators: roughly speaking, skew-symmetry and Jacobi iden-
tities must be “encoded” in this formalism, e.g.,

Aa = 0, Ab+Ba = 0, ABc+BCa+ CAb = 0. (1.42)

24Henry Frederick Baker; Cambridge (England), 1866–1956.
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This allows Baker to make computations25 with his “disguised brackets” in
a very fluent fashion.

A more delicate topic is the so-called “substitutional operation” treated
in §2. This same operation will return in Hausdorff’s paper (but with no
mention of Baker’s precursory study). Let us summarize it.

Given bases A,B with derivatives a, b, the symbol b ∂
∂a defines the

operation replacing a and A by b and B (respectively) one at a time. For
example

(
b
∂

∂a

)
A2Ca = BACa+ABCa+A2Cb.

In practice, Baker is defining a sort of mixed algebra-derivation, operating
both on bases and derivatives. As a first main result on substitutions, Baker
gives the following remarkable fact (the μj are arbitrary scalars)

∞∑

i=0

ti

i!

(
b
∂

∂a

)i( ∞∑

j=0

μj A
j
)
=

∞∑

j=0

μj

{ ∞∑

i=0

ti

i!

(
b
∂

∂a

)i
A

}j

, (1.43)

where b is any base of the form b =
(∑∞

i=0 λiA
i
)
c where the λi are any

scalars. Identity (1.43) can be interpreted as follows: since δ = b ∂
∂a is

a derivation, exp(tδ) :=
∑

i≥0 t
iδi/i! is an algebra morphism, and (1.43)

follows by “continuity”. Another momentous identity is the following one:26

(
b
∂

∂a

)
eA = f(adA)(B) eA, (1.44)

where f denotes the following formal power series

f(z) :=
∑∞

j=1 z
j−1/j! = (ez − 1)/z.

With this same f , Baker now makes the choice

b :=

(

1− A

2
+

∞∑

j=1

�j

(2j)!
A2j

)

a′ =
(
1

f
(A)

)

a′, (1.45)

25For example from the first identity in (1.42) with A = [B,C] one gets [B,C]Bc = 0, the
associative and distributive laws then give BCBc − CB2c = 0, and by applying the map
ε we derive a (not obvious) identity between nested commutators

[B, [C, [B,C]]]− [C, [B, [B,C]]] = 0.

26We explicitly remark that Baker proves (1.44) when b = Ac, and then he asserts – without
proof – that the same holds for an arbitrary b.
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where a′ is any base and the �j are the Bernoulli numbers, according
to Baker’s notation.27 This implies a′ = f(A)b so that, by passing to the
associated derivatives one obtains

A′ = f(adA)(B). (1.46)

Gathering (1.44) and (1.46), we infer
(
b ∂

∂a

)
eA = A′ eA, and inductively

(
b
∂

∂a

)i
eA = (A′)i eA, ∀ i ≥ 0. (1.47)

Next he puts (be careful: this will turn out to be the CBHD series!)

A′′ :=
∞∑

i=0

1

i!

(
b
∂

∂a

)i
A. (1.48)

If we now apply (1.43) with t = 1 and μj = 1/j!, we immediately get (by
exploiting the latter representation of A′′)

eA
′′
=

∞∑

i=0

1

i!

(
b
∂

∂a

)i
eA

(1.47)
= eA

′
eA, whence eA

′′
= eA

′
eA, (1.49)

and the exponential theorem is proved: it suffices to remark that A′′ in (1.48) is
a Lie series in A,A′. But this is true since A′′ is the derivative of an infinite
sum of bases,28 and the relation “base↔derivative” has been defined only
between Lie elements. Gathering together (1.45), (1.48) and (1.49), Baker has
proved the following remarkable formula

eA
′
eA = eA

′′
, where A′′ =

∞∑

i=0

1

i!

(
B

∂

∂a

)i
A,

with B = A′ − 1

2
[A,A′] +

∞∑

j=1

�j

(2j)!
(adA)2j(A′),

where the �j are defined by
z

ez − 1
= 1− z

2
+

∞∑

j=1

�j

(2j)!
z2j .

(1.50)

27Baker’s definition of the Bernoulli numbers �j is the following one

z

ez − 1
= 1− z

2
+

∞∑

j=1

�j

(2j)!
z2j .

28Indeed A′′ is the derivative of a′′ :=
∑∞

i=0
1
i!

(
b ∂

∂a

)i
a.
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Finally, the last two sections of the paper are devoted to an application of
the exponential theorem to transformation groups, and in particular to a
proof of the Second Theorem. Actually, Baker does not add too much to
what Pascal (and Campbell) had already proved, nor does he consider in
any case the problem of the convergence of the series he obtained.

1.1.3.3 Hausdorff

Hausdorff29 devoted one single paper [78] to what he called “the symbolic
exponential formula in the group theory”, i.e., the study of the function
z = z(x, y) defined by the identity exey = ez, a problem of “symbolic anal-
ysis”, as he defines it.

In the foreword of his paper, Hausdorff provides a brief review of the
work of his predecessors. Besides Hausdorff’s comments on Schur, Poincaré
and Pascal (which we already mentioned), he turns to Campbell and Baker.

Campbell is acknowledged as the first who “attempted” to give a proof of
the Second Theorem of Lie with the aid of a symbolic exponential formula.
Hausdorff’s opinion is that Campbell’s prolongation of the expansion of z
“is based on a passage to the limit, neither completely clear nor simple”.

Now, surprisingly, Hausdorff does not mention at all Baker’s 1905 paper
[8] (the only citation is to Baker’s 1901 paper [5]), even though more than one
year had elapsed between Baker’s [8] and Hausdorff’s [78] publications. It
seems beyond doubt (which we cannot know, however) that if Hausdorff
had known [8] he would have considered his own (independent) proof
of the symbolic exponential formula as overlapping to a great extent with
Baker’s.30

In the first sections, the necessary algebraic objects are described. In
modern words, Hausdorff introduces the following structures:

L0: This is the associative algebra (over R or C) of the polynomials P in a
finite set of non-commuting symbols x, y, z, u, . . .; the “dimension” of P
is the smallest of the degrees of its monomials.

L: This is the associative algebra of the formal power series related to L0;
any infinite sum is allowed, provided it involves summands with different
(hence increasing) dimensions.

K0: This is the Lie subalgebra of L0 consisting of the Lie polynomials in
the basis symbols x, y, z, u, . . .

K : This is the Lie subalgebra of L consisting of the Lie series associated to
K0.

29Felix Hausdorff; Breslau, 1868 (at that time, Silesia – Prussia; now Wrocław – Poland) –
Bonn (Germany), 1942.
30A detailed analysis of the similarities between the papers [8] and [78] can be found in [3].



1.1 The Early Proofs of the CBHD Theorem 27

Then Hausdorff considers the same substitutional operation as Baker had
introduced earlier, but in a more “differential sense”: If F ∈ L is momentar-
ily thought of as a function of the basis symbol x, and u is a new symbol, we
have the “Taylor expansion”

F (x+ u) = F (x) +
(
u
∂

∂x

)
F (x) +

1

2!

(
u
∂

∂x

)2
F (x) +

1

3!

(
u
∂

∂x

)3
F (x) + · · · ,

(1.51)
where u ∂

∂x is the derivation of L mapping x to u and leaving unchanged all
the other basis symbols.31 For example, if F = F x

0 + F x
1 + F x

2 + · · · , where
F x
n contains x precisely n times, one has

(
x ∂

∂x

)
F (x) = F x

1 + 2F x
2 + · · ·+ nF x

n + · · · (1.52)

From (1.51) and the commutativity of u ∂
∂x and v ∂

∂y , one also obtains

F (x + u, y + v) = F (x, y) +

∞∑

n=1

1

n!

(
u
∂

∂x
+ v

∂

∂y

)n
F (x, y). (1.53)

In order to preserve many of Hausdorff’s elegant formulas, we shall use the
notation [P ] to denote left-nested iterated brackets: for example

[xy] = [x, y], [xyz] = [[x, y], z], [xyzu] = [[[x, y], z], u], . . . (1.54)

With only these few prerequisites, §3 is devoted to the proof of Hausdorff’s
main result, Proposition B [78, page 29], which is the announced symbolical
exponential formula: The function z of x, y defined by exey = ez can be
represented as an infinite series whose summands are obtained from x, y by
bracketing operations, times a numerical factor. Let us analyze Hausdorff’s
argument and compare it to the proofs of his predecessors.

We are in a position to say that z = z(x, y) is a true function of x, y for in
L the logarithm makes sense, so that

z = (exey − 1)− 1

2
(exey − 1)2 +

1

3
(exey − 1)3 + · · ·

We aim to prove that the above z actually belongs to K , not only to L.
Since

(
u ∂

∂x

)
ex =

∑∞
n=1

1
n!

∑n−1
i=0 x

iuxn−1−i, the substitution u = [w, x]
generates a telescopic sum, so that

(
[w, x]

∂

∂x

)
ex = wex − exw. (1.55)

31Equivalently,
(
u ∂

∂x

)n
F (x) is the sum of all the summands of F (x + u) containing u

precisely n times.
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Furthermore Hausdorff provides two other, now well known, formulas of
noncommutative algebra32 (see also the notation in (1.54)):

[wxn] =

n∑

i=0

(−1)i(ni
)
xiwxn−i, (1.56)

e−xwex =
∞∑

n=0

1

n!
[wxn], (1.57)

where (1.57) follows easily from (1.56) by a computation similar to Camp-
bell’s (1.37). As a consequence we obtain

(
[w, x]

∂

∂x

)
ex

(1.55)
= ex(e−xwex − w)

(1.57)
= ex

∞∑

n=1

1

n!
[wxn].

An analogous formula with ex as a right factor holds. This gives the
following results: If u is of the form [w, x] for some w ∈ L, we have33

(
u ∂

∂x

)
ex = ex ϕ(u, x) where ϕ(u, x) =

∞∑

n=1

1

n!
[uxn−1], (1.58)

(
u ∂

∂x

)
ex = ψ(u, x) ex where ψ(u, x) =

∞∑

n=1

(−1)n−1

n!
[uxn−1]. (1.59)

We remark that identity (1.59) was already discovered by Baker, see (1.44).
If we introduce the functions

h(z) =
1− e−z

z
, g(z) =

1

h(z)
,

then ϕ and ψ can be rewritten as

ϕ(u, x) = h(adx)(u), ψ(u, x) = h(−adx)(u), (1.60)

Furthermore, from (1.60) we get the inversion formulas

p = ϕ(u, x) ⇔ u = χ(p, x),

q = ψ(u, x) ⇔ u = ω(q, x),
(1.61)

32Formula (1.56) also appears in Campbell [28, page 387] and in Baker [8, page 34],
whereas formula (1.57) also appears in Campbell [28, page 386] and in Baker [8, page 38].
33Analogous identities hold when u = x or when u is a series of summands of the form
[·, x], and the restriction u = [w, x] will be systematically omitted by Hausdorff.



1.1 The Early Proofs of the CBHD Theorem 29

where

χ(p, x) := p− 1

2
[p x] +

∞∑

n=1

(−1)n−1Bn

(2n)!
[p x2n], ω(q, x) := χ(q,−x),

(1.62)
and we see how the Bernoulli numbers step in.34 We thus get the following
important formulas (note that ϕ(·, x) and ψ(·, x) are linear)

ex+αu = ex
(
1 + αϕ(u, x) + O(α2)

)
, (1.63)

ex+αu =
(
1 + αψ(u, x) + O(α2)

)
ex, (1.64)

valid for every scalar α. We remark that a proof of (1.63) is contained in
Poincaré [142, page 244, 245] (see indeed the computation in (1.26)), but
Hausdorff does not mention it.

At this point, Hausdorff’s argument becomes somewhat opaque: he
states that it is possible to leave z unchanged in exey = ez by adding αu to x
and by accordingly adding to y a certain quantity −αv + O(α2), so that the
identity ex+αuey−αv+O(α2) = ez also holds. We prefer to modify Hausdorff’s
argument in the following way (similarly to Yosida, [183]): Let u, v be any
pair of elements of L satisfying

ϕ(u, x) = ψ(v, y), (1.65)

and let z(α) be defined by

ez(α) := ex+αuey−αv, α ∈ R.

For example, thanks to the inversion formulas (1.61), the choices
{
u = x, v = ω(x, y)

}
or
{
v = y, u = χ(y, x)

}
(1.66)

do satisfy (1.65). We thus have the following computation:

ez(α) = ex
(
1 + αϕ(u, x) + O(α2)

)(
1− αψ(v, y) + O(α2)

)
ey

= ex
(
1 + α(ϕ(u, x) − ψ(v, y)) + O(α2)

)
ey

(1.65)
= ex(1 + O(α2))ey = exey(1 + O(α2)).

34Indeed we have

g(z) =
z

1− e−z
= 1 +

z

2
+

∞∑

n=1

(−1)n−1Bn

(2n)!
z2n,

where, according to Hausdorff’s notation, the following definition of Bernoulli numbers

Bn holds: z
ez−1

= 1− z
2
+

∑∞
n=1

(−1)n−1Bn
(2n)!

z2n.
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From the above expansion it is easily derived that ż(0) = 0. On the other
hand, by applying the expansion (1.53) to F (x, y) := log(exey), we get

z(α) = F (x+ αu, y − αv) = z(x, y) + α
(
u
∂

∂x
− v

∂

∂y

)
z(x, y) + O(α2).

Hence, ż(0) = 0 ensures that z(x, y) = exey satisfies the following PDE

(
u
∂

∂x

)
z =
(
v
∂

∂x

)
z, (1.67)

for any u, v satisfying (1.65). We are thus allowed to make, e.g., the choices
in (1.66), which respectively give

(
x ∂

∂x

)
z =
(
ω(x, y) ∂

∂y

)
z, (1.68)

(
y ∂

∂y

)
z =
(
χ(y, x) ∂

∂x

)
z, (1.69)

and each of these suffices to determine z. Indeed, by writing z = zx0+z
x
1+· · ·

(where z has been ordered with respect to increasing powers of x) and
by using (1.52), Hausdorff derives from (1.68) the following remarkable
formula

zxn =
1

n!

(
ω(x, y)

∂

∂y

)n
y, n ≥ 0. (1.70)

Here we have used the fact that an application of the operator ω(x, y) ∂
∂y

increases the degree in x by one unit. Analogously, from (1.69) one gets

zyn =
1

n!

(
χ(y, x)

∂

∂x

)n
x, n ≥ 0. (1.71)

Since x, y and ω(x, y), χ(y, x) are all Lie series (see (1.62)), this proves that
any zxn, zyn is a Lie polynomial and the exponential formula is proved.

From (1.70) and the definition of ω(x, y), it follows that Hausdorff has
proved the following result (note that [x y2n] = (ad y)2n(x))

exey = ez, where z =

∞∑

n=0

1

n!

(
ω(x, y)

∂

∂y

)n
y,

with ω(x, y) = x+
1

2
[x, y] +

∞∑

n=1

(−1)n−1Bn

(2n)!
(ad y)2n(x),

where the Bn are defined by
z

ez − 1
= 1− z

2
+

∞∑

n=1

(−1)n−1Bn

(2n)!
z2n.

(1.72)
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We observe that this is exactly Baker’s formula (1.50), proved one year
earlier.35

Furthermore, Hausdorff provides a new recursion formula, allowing us
to obtain the homogeneous summands of z, ordered with respect to the joint
degree in x, y. His argument is based on his previous techniques, more
specifically, by deriving an ODE for z(α) defined by ez(α) = ex+αxey .
Hausdorff thus obtains the remarkable formula (see [78, eq. (29), page 31])

(
x
∂

∂x

)
z +
(
y
∂

∂y

)
z = [x, z] + χ(x+ y, z). (1.73)

Inserting in (1.73) the expansion z = zx,y1 + zx,y2 + · · · , where zx,yn has joint
degree n in x, y we obtain a recursion formula for the summands zx,yn which
exhibits in a very limpid form their Lie-polynomial nature. This formula
will return in modern proofs of the Campbell-Baker-Hausdorff Theorem,
see Djoković [48] and Varadarajan [171] (see also Chap. 4 of this book)
and – as shown in [171] – it can be profitably used to settle convergence
questions.

From Sect. 4 onwards, Hausdorff turns his attention to the applications
to groups of transformations. After having criticized his predecessors for
this omission, Hausdorff’s main concern is to solve the convergence problem.
Of all his series expansions of z, he studies the one obtained by ordering
according to increasing powers of y in (1.71).

To this end, let t1, . . . , tr be a basis of a set of infinitesimal transformations,
with structure constants given by [tρ, tσ] =

∑r
λ=1 cρσλtλ. Let x =

∑
ρ ξρtρ,

y =
∑

ρ ηρtρ and suppose that the series z(x, y) =
∑∞

n=0 z
y
n defined by

(1.71) converges to z =
∑

ρ ζρtρ. Set zy1 = χ(y, x), and suppose that this
converges to u =

∑
ρ ϑρtρ. From the definition of u = χ(y, x), we see that

u depends linearly on y and vice versa. Passing to coordinates with respect
to {t1, . . . , tr}, we infer the existence of a matrix A(ξ) =

(
αρσ(ξ)

)
, such that

ϑσ =
∑

ρ αρσ(ξ) ηρ. Thus, the identity u = χ(y, x) is rewritten compactly as

∑

σ

αρσ(ξ) tσ = χ
(
tρ,
∑

λ ξλtλ
)
, ρ = 1, . . . , r. (1.74)

35This might lead us to suppose that Hausdorff did not ignore Baker’s results in [8].
Nonetheless, it is beyond doubt that Hausdorff’s argument, devoid of the intricate
formalism of Baker, is the first totally perspicuous proof of the exponential formula,
with the merit to join together – in the most effective way – the right contributions from
his predecessors: some algebraic computations from Pascal and Campbell; Poincaré’s
technique of deriving ODEs for z(α); the use of Baker’s substitutional operator.
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This will allow Hausdorff to obtain an explicit series for each of the functions
αρσ(ξ) and, consequently, for each of the functions ϑρ. To this aim, let us
introduce the structure matrix36

Ξ(ξ) :=
(
ξρσ
)
ρσ
, where ξρσ :=

∑r
λ=1 cρλσξλ.

With the aid of the matrix Ξ , Hausdorff recognizes that (1.74) can be
elegantly rewritten as (Hausdorff cites Schur for a less compact version of
this identity)

A = 1− 1

2
Ξ +

B1

2!
Ξ2 − B2

4!
Ξ4 + · · · ,

that is, A(ξ) = f(Ξ(ξ)), where f(z) =
z

ez − 1
.

(1.75)

It is now very simple to deduce from (1.75) a domain of convergence for the
series expressing the functions αρσ(ξ): If M is an upper bound for all of the
quantities |ξρσ |, it suffices to have rM < 2π, since the complex function f(z)
is holomorphic in the disc about 0 of radius 2π. This produces a domain of
convergence for each ϑσ =

∑
ρ αρσ(ξ) ηρ and hence for u =

∑
ρ ϑρtρ, which

is the first summand χ(y, x) in the expansion for z(x, y).
As for the other summands in the expansion

z = x+ χ(y, x) +
1

2!

(
χ(y, x)

∂

∂x

)
χ(y, x) +

1

3!

(
χ(y, x)

∂

∂x

)2
χ(y, x) + · · · ,

(1.76)
it suffices to discover what the operator u ∂

∂x looks like in coordinates.
Setting F (x) =

∑
ρ fρ(ξ) tρ, we have the usual Taylor expansion

F (x+ u) =
∑

ρ

fρ(ξ + ϑ) tρ =
∑

ρ

(
fρ(ξ) +

∑

σ

ϑσ
∂fρ
∂ξσ

(ξ) + O(|ϑ|2)
)
tρ,

which, compared to the expansion F (x + u) = F (x) + u ∂
∂xF (x) + O(u2)

in (1.51), shows that the operator u ∂
∂x has the same meaning as the

infinitesimal transformation Λ =
∑r

σ=1 ϑσ(ξ, η)
∂

∂ξσ
, that is,

Λ =

r∑

ρ,σ=1

ηρ αρσ(ξ)
∂

∂ξσ
. (1.77)

This proves that the expansion (1.76) becomes, in coordinates z =
∑

ρ ζρ tρ,

ζρ = ξρ + Λξρ +
1

2!
Λ2ξρ +

1

3!
Λ3ξρ + · · · =: eΛ(ξρ). (1.78)

36This is nothing but the transpose of the matrix representing the right-adjoint map Y �→
[Y,

∑
λ ξλtλ].
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Now, the crucial device is to observe that this is precisely the expansion of the
solution t �→ ζ(t) to the following ODE system

{
ζ̇σ(t) =

∑
ρ ηρ αρσ(ζ(t))

ζσ(0) = ξσ
σ = 1, . . . , r.

Hence, since it has already been proved that the functions αρσ are analytic
in a neighborhood of the origin, the convergence of ζρ in (1.78) is a consequence
of the general theory of ODEs. Note the similarity with Poincaré’s convergence
argument, see (1.25).

This all leads to the proof of the group exponential theorem, Proposition C
[78, page 39]: Given the structure equations [tρ, tσ] =

∑
λ cρσλtλ, by means of the

exponential formula

e
∑

ξρ tρ e
∑

ηρ tρ = e
∑

ζρ tρ ,

the functions ζρ = ζρ(ξ, η) are well defined and analytic in a suitable neighborhood
of ξ = η = 0.

Section 7 is devoted to the derivation of the Second and Third Theorem
of Lie by means of the above Proposition C. As a fact, Hausdorff’s argument
does not add too much to what his predecessors, from Poincaré to Baker, had
said about the same topic. There is no better way to end this brief review of
Hausdorff’s proof of the Exponentialformel than quoting his words (see [78,
page 44]): the symbolic exponential theorem “Proposition B is the nervus
probandi of the fundamental theorems of group theory”.37

1.1.3.4 Dynkin

After Hausdorff’s 1906 paper [78], forty years elapsed before the problem of
providing a truly explicit representation of the series log(exey) was solved.
This question was first answered by Dynkin38 in his 1947 paper [54].39

Starting from what Dynkin calls “the theorem of Campbell and
Hausdorff”, i.e., the result stating that log(exey) is a series of Lie polynomials

37The – not so current – Latin expression “nervus probandi” (occurring frequently e.g.,
in Immanuel Kant’s philosophic treatises) means, literally, “the sinews of what has to be
proved”, that is, the crucial argument of the proof. This Latin expression describes very well
the paramount rôle played by the exponential theorem in Hausdorff’s arguments, as the
real cornerstone in the proof of many results of group theory.
38Eugene Borisovich Dynkin; Leningrad (Russia), 1924.
39In what follows, we will quote the 2000 English translation of the Russian paper [54],
contained in [57, pages 31–34].
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in x, y, formula (12) of [57] provides the following explicit representation,
later known as Dynkin’s Formula (for the Campbell-Baker-Hausdorff series)

log(exey) =
∑ (−1)k−1

k

1

p1!q1!p2!q2! · · · pk!qk!
(
xp1yq1xp2yq2 · · ·xpkyqk)0,

(1.79)
where the sum runs over k ∈ N and all non-vanishing couples (pi, qi), with
i = 1, . . . , k. Most importantly, the map P �→ P 0 – which we now describe –
is introduced, where P is any polynomial in a finite set of non-commuting
indeterminates.

Let R denote the algebra of the polynomials in the non-commuting
indeterminates x1, . . . , xn over a field of characteristic zero. For P,Q ∈ R, let
[P,Q] = PQ−QP denote the usual commutator,40 and let R0 be the smallest
Lie subalgebra of R containing x1, . . . , xn. Finally, consider the unique linear
map from R to R0 mapping P = xi1xi2 · · ·xik to P 0, where

P 0 =
1

k
[· · · [[xi1 , xi2 ], xi3 ] · · ·xik ].

Then (see [57, Theorem at page 32]) Dynkin proves that

P ∈ R0 if and only if P = P 0. (1.80)

This theorem, later referred to as the Dynkin-Specht-Wever Theorem (see
also Specht, 1948 [161], and Wever, 1949 [179]), is one of the main character-
izations of Lie polynomials.

With this result at hands, the derivation of the representation (1.79) is
almost trivial. Indeed, the very definitions of log, exp give

log(exey) =
∑ (−1)k−1

k

1

p1!q1!p2!q2! · · · pk!qk! x
p1yq1xp2yq2 · · ·xpkyqk ,

where the sum is as in (1.79). If we assume that the exponential-theorem holds
(that is, that the above series is indeed a Lie series in x, y), an application of
the map P �→ P 0 (naturally extended to series) leaves unchanged log(exey)
so that (1.79) holds.

Three other fundamental results are contained in Dynkin’s paper [54]:

1. If K is R or C and R is any finite dimensional Lie algebra over K, then the
series in the right-hand side of (1.79), sayΦ0(x, y), converges for every x, y

40Dynkin used the notation P ◦ Q := PQ − QP ; also xi1 ◦ xi2 ◦ · · · ◦ xik denotes the
left-nested commutator (· · · ((xi1 ◦ xi2 ) ◦ xi3) ◦ · · · ◦ xik ). We allowed ourselves to use the
bracketing notation, as in the rest of the book.
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in a neighborhood of 0 ∈ R. Indeed, thanks to the very explicit expression of
Dynkin’s series, the following direct computation holds: if ‖ ·‖ is any norm
on R compatible with the Lie bracket,41 then

∥
∥
∥
(
xp1yq1xp2yq2 · · ·xpkyqk)0

∥
∥
∥ ≤ ‖x‖p1+···+pk · ‖y‖q1+···+qk .

Consequently, as for the study of the total convergence of the series
Φ0(x, y), an upper bound is given by

∑

k

(−1)k−1

k

(
e‖x‖e‖y‖ − 1

)k
= log(e‖x‖e‖y‖) = ‖x‖+ ‖y‖ <∞,

provided that ‖x‖ + ‖y‖ < log 2. As a matter of fact, this is the first
argument – in the history of the CBHD Theorem – for a direct proof of the con-
vergence problem, an argument much more natural and direct than those
given by Poincaré, by Pascal, and even by Hausdorff. Also, Dynkin’s
proof works for any finite dimensional Lie algebra, hence in particular for
the algebra of the infinitesimal transformations of a Lie group, thus
comprising all the related results by his predecessors.

2. The same arguments as above can be straightforwardly generalized to
the so-called Banach-Lie algebras,42 thus anticipating a new research field.
Dynkin will extensively return to this generalization in [56].

3. Dynkin’s series (1.79), together with the obvious (local) associativity of
the operation x ∗ y := Φ0(x, y), allows us to prove Lie’s Third Theorem
in its local version (a concern for Schur, Poincaré, Pascal and Hausdorff)
in a very simple way: indeed ∗ defines a local group on a neighborhood of
the origin of every finite dimensional (real or complex) Lie algebra, with
prescribed structure constants.

As observed above, Dynkin provides a commutator-formula for log(exey),
yet his proof assumes its commutator-nature in advance. Two years later
in [55], Dynkin will give another proof of the fact that log(exey) is a Lie
series, completely independent of the arguments of his predecessors, and
mainly based on his theorem (1.80) and on combinatorial algebra. Following

41This means that ‖[x, y]‖ ≤ ‖x‖ · ‖y‖ for every x, y ∈ R. Note that such a norm always
exists, thanks to the continuity and bilinearity of the map (x, y) �→ [x, y] and the finite
dimensionality of R.
42A Banach-Lie algebra is a Banach space (over R or C) endowed with a Lie algebra
structure such that A × A 	 (x, y) �→ [x, y] ∈ A is continuous. In this case, if ‖ · ‖ is
the norm of A, there exists a positive constant M such that ‖[x, y]‖ ≤ M ‖x‖ ·‖y‖ for every
x, y ∈ A, so that the norm M‖ · ‖ is compatible with the Lie bracket of A and Dynkin’s
arguments – this time also appealing to the completeness of A – generalize directly.
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Bose [23, page 2035], with respect to the recursive formulas for log(exey)
proved by Baker and Hausdorff, “Dynkin radically simplified the problem”,
by deriving “an effective procedure” for determining the BCH series.

Dynkin’s original proof provides a major contribution to the under-
standing of the combinatorial aspects hidden behind the composition of
exponentials. Crucial ideas contained in [55] will return over the subsequent
60 years of life of the CBHD Theorem, e.g. in the study of (numerical)
algorithms for obtaining efficiently simplified expansions of the series
representation of log(exey). For this reason (and for the fact that Dynkin
provided a completely new and self contained proof of the theorem of
Campbell, Baker, Hausdorff), we considered the acronym CBHD as the
appropriate title for our book.

An overview of Dynkin’s proof in [55] can be found in [3]. We here
confine ourselves to writing the new representation found in [55]. First some
notation: in the (n + 1)-tuple I = (i0, . . . , in) of pairwise distinct integers, a
couple of consecutive indices iβ, iβ+1 is called regular (nowadays also known
as a rise) if iβ < iβ+1 and irregular (a fall) otherwise; denote by sI the number
of regular couples of I and by tI the number of irregular ones. Then it holds

log(exey) =
∞∑

p,q=0

1

p! q!
P
(
x, . . . , x
︸ ︷︷ ︸
p times

; y, . . . , y
︸ ︷︷ ︸
q times

)
, where (1.81)

P (x0, . . . , xn) =
1

(n+ 1)!

∑

J

(−1)t0J s0J ! t0J ! [[x0, xj1 ] · · ·xjn ],

where 0J means (0, j1, . . . , jn) and J = (j1, . . . , in) runs over the permuta-
tions of {1, . . . , n} (the meaning of t0J , s0J is explained above).

Finally, in [56] Dynkin studies in great detail the applications of his
representation formula for log(exey) to normed Lie algebras and to analytic
groups. The starting points are not transformation groups, but Lie algebras.
The main result is thus the construction of a local topological group attached
to every Banach-Lie algebra by means of the explicit series of log(exey). The
theory of groups and algebras was meanwhile advanced sufficiently to
make it possible to use more general notions and provide broader gen-
eralizations (non-Archimedean fields are considered, normed spaces and
normed algebras are involved, together with local topological or analytic
groups).

As for the history of the CBHD Theorem, this paper paved the way, by
happenstance, for the study of other possible representations of log(exey)
and therefore for the problem of improved domains of convergence for the
representations of log(exey). It is therefore to be considered as opening the
“modern era” of the CBHD Theorem, the subject of the next section.
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1.2 The “Modern Era” of the CBHD Theorem

The second span of life of the CBHD Theorem (1950-today), which we
decided to name its “modern era”, can be thought of as starting with the
re-formalization of Algebra operated by the Bourbakist school. Indeed, in
Bourbaki [27] (see in particular II, §6–§8) the well-behaved properties of the
“Hausdorff series” and of the “Hausdorff group” are derived as byproducts
of general results of Lie algebra theory. In particular, the main tool to prove
that log(exey) is a Lie series in x, y is the following characterization of Lie
elements L(X) within the free associative algebra A(X) of the polynomials
in the letters of a set X :

L(X) =
{
t ∈ A(X) : δ(t) = t⊗ 1 + 1⊗ t

}
.

Here δ : A(X) → A(X) ⊗ A(X) is the unique algebra-morphism such
that δ(x) = x ⊗ 1 + 1 ⊗ x, for all x ∈ X . This result (frequently named
after Friedrichs43 [64]) or equivalent versions of it are employed also by
other coeval books [85, 99, 159], framing the CBHD Theorem within a vast
algebraic theory. The ad hoc techniques of the early proofs from the previous
period 1890–1950 do not play any rôle in this new approach and any
reference to the theory of Sophus Lie’s groups of transformations becomes
immaterial.

A compelling justification of the interest in the study of product of
exponentials (possibly, of more general objects too, such as operators on
Hilbert spaces or on Banach algebras) comes from modern (actually 1960–
1970s) Physics, especially from Quantum and Statistical Mechanics. The
applications of this algebraic result – mainly named after Baker, Campbell,
Hausdorff – cover many Physical disciplines: mathematical physics, theo-
retical physics (perturbation theory, transformation theory), quantum and
statistical Mechanics (the study of quantum mechanical systems with time-
dependent Hamiltonians, linear stochastic motions) and many references
can be provided (see [51, 64, 65, 104, 119, 128, 178, 180, 181] and the references
therein). It is therefore not surprising that a great part of the results available
on the CBHD formula have been published in journals of Physics.

Along with applications in Physics, the CBHD Theorem produces,
unquestionably, the most remarkable results in the structure theory of Lie
groups, which is the reason why it is often popularized – in undergraduate
and graduate courses – as a result of Lie group theory. Indeed, as is well
known, in this context it allows us to prove a great variety of results: the
universal expressibility of the composition law in logarithmic coordinates

43See Reutenauer [144, Notes 1.7 on Theorem 1.4] for a comprehensive list of references
for this theorem.
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around the unit element; the effective analytic regularity of all smooth Lie
groups (an old result of Schur!) and of all continuous homomorphisms; the
local “reconstruction” of the group law via the bracket in the Lie algebra,
the existence of a local group homomorphism with prescribed differential,
the local isomorphism of two Lie groups with isomorphic Lie algebras;
the possibility to fully classify the simply connected Lie groups by their
Lie algebras, together with the possibility of “explicitly” writing the group
law in nilpotent Lie groups; the local version of Lie’s Third Theorem (the
existence of a local Lie group attached to every finite dimensional Lie
algebra), and many others.

For this reason, all44 major books in Lie group theory starting from
the sixties contain the CBHD Theorem (mainly named after Campbell,
Hausdorff or Baker, Campbell, Hausdorff), see Table 1.2.

Table 1.2 Some books on Lie group/Lie algebra theories comprising CBHD

Year Author book

1962 Jacobson [99]
1965 Hochschild [85]
1965 Serre [159]
1968 Hausner, Schwartz [79]
1972 Bourbaki [27]
1973 Sagle, Walde [151]
1974 Varadarajan [171]
1982 Godement [70]
1991 Hilgert, Neeb [84]
1993 Reutenauer [144]
1997 Gorbatsevich, Onishchik, Vinberg [72]
1998 Hofmann, Morris [91]
2000 Duistermaat, Kolk [52]
2002 Rossmann [149]
2003 Hall [77]
2007 Abbaspour, Moskowitz [1]
2007 Sepanski [158]

It is interesting to observe that the proofs of the CBHD Theorem in
these books are often quite different from one other and ideas from the
early period often reappear. For example, the ODE technique (going back
to Poincaré and Hausdorff) is exploited – and carried forward – in [1, 52,
70, 79, 171]; the old ideas of Baker, Hausdorff on polar differentiation are
formalized in [144]; Eichler’s [59] algebraic approach is followed in [151].

44Exceptions are the very influential book by Chevalley [38], which is actually older than
the other books cited (1946), and Helgason [81], where only expansions up to the second
order are used.



1.2 The “Modern Era” of the CBHD Theorem 39

Indeed, even if in the setting of a Lie group (G, ·) the (local) operation

X ∗ Y := LogG((ExpGX) · (ExpGY )), X, Y ∈ Lie(G)

and its universal Lie series representation may be studied from a purely
algebraic point of view, it turns out that, by fully exploiting differential (and
integral) calculus on G and on Lie(G), more fitting arguments can be given.
For instance, arguments exploiting ODE technique have a genuine meaning
in this context and many formal series identities (especially those involving
adjoint maps) acquire a full consistency and new significance (see e.g., [77,
158] where matrix groups are involved).

As for journal papers containing new algebraic proofs of the exponential
theorem, the new era of the CBHD Theorem enumerates plenty of them, see
e.g., Cartier [33, 1956], Eichler [59, 1968], Djoković [48, 1975], Veldkamp [174,
1980], Tu [169, 2004]. Furthermore, in the group setting (possibly, infinite-
dimensional), other interesting results of extendibility and non-extendibility
of the above local operation ∗ have been considered (see [47,49,50,58,69,88,
89, 93, 170, 182]).

A remarkable turning point for the history of the CBHD Theorem is
provided by Magnus’s 1954 paper [112], whose applications to the applied
sciences were soon revealed to be paramount. For a comprehensive treatise
on the Magnus expansion, the Reader is referred to Blanes, Casas, Oteo,
Ros, 2009 [16] (and to the detailed list of references therein). We here
confine ourselves to a short description of its interlacement with the CBHD
Formula. In studying the exponential form exp(Ω(t)) under which the
solution Y (t) to the nonautonomous linear ODE system Y ′(t) = A(t)Y (t)
can be represented, Magnus introduced a formula for expanding Ω(t), later
also referred to as the continuous Campbell-Baker-Hausdorff Formula. (See also
Chen [37], 1957.) Indeed, the Ansatz Y (t) = exp(Ω(t)) turns the linear
equation Y ′(t) = A(t)Y (t) into the nonlinear equation for Ω(t)

Ω′(t) = f(adΩ(t))(A(t)), where f(z) =
z

ez − 1
.

The above right-hand side is to be interpreted as the usual Lie series

∑∞
k=0

Bk
k! (adΩ(t))k(A(t)),

where the Bk are the Bernoulli numbers. This procedure makes sense in
various contexts, from the simplest of matrix algebras to the more general,
mutatis mutandis, of Hilbert spaces or Banach algebras. If we add the initial
value condition Y (0) = I (I is the identity, depending on the context), then
Ω(0) = 0 and the well-know Picard’s Iteration Theorem for ODE’s gives
Ω(t) =

∑∞
n=1Ωn(t), where Ω1(t) =

∫ t
0 A(s) ds, and inductively for n ≥ 1
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Ωn+1(t) =

n∑

j=1

Bj

j!

∑

k1+···+kj=n

∫ t

0

[Ωk1(s), [Ωk2 (s) · · · [Ωkj (s), A(s)] · · · ]] ds.

As a matter of fact, in suitable settings t �→ A(t) is also allowed to be
discontinuous (in which case the above differential equations must be
replaced by the corresponding Volterra integral forms). Namely, one may
consider

[0, 2] � t �→ A(t) =

{
x, if t ∈ [0, 1],
y, if t ∈ (1, 2].

In this case the unique continuous solution Y to Y (t) = I+
∫ t
0
A(s)Y (s) ds is

Y (t) =

{
etx, if t ∈ [0, 1],
e(t−1)yex, if t ∈ (1, 2],

so that Y (2) = eyex. If, on the other hand, the exponential representation
Y (t) = exp(Ω(t)) holds and the above expansion (the Magnus Expansion) is
convergent, then z := Ω(2) =

∑∞
n=1Ωn(2) satisfies ez = Y (2) = eyex. Note

that, when A is the above step function, the inductive representation of Ωn

ensures that Ωn(2) is a Lie polynomial in x, y of length n.
The above sketch shows the intertwinement between the Magnus expan-

sion and the CBHD Theorem, whence convergence results for the former
provide analogous results for the latter. De facto, in the study of convergence
domains for the CBHD series (to which more recent literature – mainly from
the 1980s – has paid great attention), the use of the Magnus expansion has
proved to be momentous. Despite this fact, the problem of the best domain
of convergence for the CBHD series in the setting of arbitrary Banach algebras
and – more generally – in Banach-Lie algebras is still open, though many
optimal results exist for matrix algebras and in the setting of Hilbert spaces,
see the references in Sect. 5.7 on page 359.

The problem is obviously enriched by the fact that many presentations
of the series for log(exey) (in commutator or non-commutator forms) exist,
further complicated by the fact that absolute and conditional convergence
provide very different results. Also, the problem of finding efficient algo-
rithms for computing the terms of this series (in suitable bases for free Lie
algebras and/or under minimal numbers of commutators) has played a
major rôle during the modern age of the CBHD Formula. For related topics,
see e.g., [14–16, 23, 35, 36, 46, 61, 103, 109, 118, 122, 123, 131, 134, 145, 146, 166,
166, 167, 177].

In parallel with the applications in Physics and Geometry, starting from
the mid seventies, the CBHD Theorem has been crucially employed also in
Analysis within the study of wide classes of PDE’s, mostly of subelliptic type,
especially those involving so-called Hörmander systems of vector fields. See, for
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example, the use of the CBHD Theorem in the following papers: Christ,
Nagel, Stein, Wainger [39], Folland [62], Folland, Stein [63], Hörmander
[94], Rothschild, Stein [150], Nagel, Stein, Wainger [129], Varopoulos, Saloff-
Coste, Coulhon [172].

Due to our own interest in these kinds of applications,45 we would like
to make explicit, for the convenience of the interested Reader, the kind of
statements used in the analysis of the mentioned PDE’s. First we recall some
notation. LetX be a smooth vector field on an open setΩ ⊆ RN , that is, X is
a linear first order partial differential operator of the form X =

∑N
j=1 aj ∂j ,

where aj is a smooth real valued function on Ω. Fixing x ∈ Ω and a smooth
vector field X on Ω, we denote by t �→ exp(tX)(x) the integral curve of X
starting at x, that is, the (unique maximal) solution t �→ γ(t) to the ODE
system

γ̇(t) =
(
a1(γ(t)), . . . , aN (γ(t))

)
, γ(0) = x.

The very well-known equivalent notations etX(x), exp(tX)(x) are motivated
by the fact that, given any smooth real or vector valued function f on Ω, the
Taylor expansion of f(γ(t)) at t = 0 is obviously given by

∞∑

k=0

tk

k!
(Xkf)(x).

This kind of exponential-type maps play a central rôle in sub-Riemannian
geometries. For example, when {X1, . . . , Xm} is a system of smooth vector
fields on RN satisfying the so-called Hörmander’s rank condition46 the so-
called Carathéodory-Chow-Rashevsky Connectivity Theorem (see Gromov [75];
see also [21, Chapter 19]) ensures that any two points of RN can be joined
by a finite number of pieces of paths, each of the form x �→ e±Xj (x). The
relevance of this kind of map is also motivated by the fact that, for two
smooth vector fields X,Y on Ω, it holds that

lim
t→0

e−tY ◦ e−tX ◦ etY ◦ etX(x) − x

t2
= [X,Y ](x), x ∈ Ω,

a remarkable geometric interpretation of the commutator.
We are ready for the statement of the “ODE version” of the CBHD

Theorem used in [129, Proposition 4.3, page 146]: Let Ω ⊆ RN be an open

45See [21, Chapters 15, 19], and [17, 20, 22].
46That is, the dimension of the vector space

span{X(x) : X ∈ Lie({X1, . . . ,Xm})}

equals N , for every x ∈ RN .
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set. Let Y = {Y1, . . . , Ym} be a family of smooth vector fields on Ω. Then,
for every compact subset K of Ω and every M ∈ N, there exist positive
constants C, ε depending on M,K, Y,Ω such that

∣
∣
∣
∣ exp
( m∑

j=1

sjYj

)
◦ exp
( m∑

j=1

tjYj

)
(x)− exp

(
ZM (s, t)

)
(x)

∣
∣
∣
∣ ≤ C (|s|M + |t|M ),

for every x ∈ K and for every s, t ∈ Rm such that |s|, |t| ≤ ε. Here | · | is the
Euclidean norm on RN and ZM (s, t) = ηM

(∑m
j=1 sjYj ,

∑m
j=1 tjYj

)
, where

ηM (A,B) =

M∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
h1+k1+···+hn+kn≤M

1

h! k! (
∑n

i=1(hi + ki))

× [A · · · [A
︸ ︷︷ ︸
h1 times

[B · · · [B
︸ ︷︷ ︸
k1 times

· · · [A · · · [A
︸ ︷︷ ︸
hn times

[B · · · [B,B
︸ ︷︷ ︸

kn times

]]]]]]]].

We recognize that ηM (A,B) is the M -th partial sum of the usual CBHD
formal series for log(eAeB). Other delicate estimates involving smooth
vector fields and their flows are obtained by Hörmander by making use of
the CHBD formula (in fact, the degree-two expansion x + y + 1

2 [x, y] + · · ·
suffices), used to derived Zassenhaus-type decompositions (see e.g., [162]).
Indeed, in [94, pages 160-161], it is proved that, for every k ≥ 2, the following
decomposition holds (in the Q-algebra of the formal power series in x, y)

ex+y = exeyez2ez3 · · · ezkerk+1 ,

where (for every n = 2, . . . , k) zn is a Lie polynomial in x, y of length
n, whilst rk+1 is a formal power series of Lie polynomials in x, y of
lengths ≥ k+1. Analogously, starting from the cited degree-two expansion,
Hörmander derives a remarkable result – corollary of the CBHD Formula –
which is the key tool for the cited Carathéodory-Chow-Rashevsky Connec-
tivity Theorem: this is based on an iteration of the important identity for the
“group-like commutator” e−xe−yexey as in

e−xe−yexey = exp
(
[x, y] + {brackets of heights ≥ 3}),

the iteration being aimed to obtain a decomposition of

exp
(
[[[x1, x2], x3] · · ·xn]

)

as a suitable universally expressible product of elementary exponentials
e±xj , j = 1, . . . , n (plus a remainder). We refer the Reader directly to
[94, page 162] for details (or to Lemma 5.45 on page 326 of this book).
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Analogous decompositions are frequently used in PDEs, see e.g., Folland
[62, §5, page 193] and Varopoulos, Saloff-Coste, Coulhon [172, §III.3, pages
34-39] (see also the recent papers [22, 40, 110, 127]).

Another application of the CBHD Formula occurs in the seminal paper
by Rothschild and Stein [150] on the so-called Lifting Theorem. For example,
the following formula is used, see [150, §10, page 279]: Given smooth vector
fields W1, . . . ,Wm on an open subset Ω of RN and set u ·W :=

∑m
j=1 uj Wj ,

it holds that (for any integer l ≥ 2)

exp
(
u ·W ) ◦ exp(τ W1)(ξ)

= exp
(
u ·W + τ W1 + τ

∑

1≤p<l

cp (ad (u ·W ))p(W1)
)
(ξ) + O(|u|l, τ2),

for ξ ∈ Ω and small τ, u. (From the early papers on the exponential formula,
we also know the actual value of the constant cp, viz cp =

Bp
p! , where the Bp

are the Bernoulli numbers: z
ez−1 =

∑∞
p=0

Bp
p! z

p.)
The CBHD Formula has not ceased to provide a useful tool in Analysis.

For example, we cite the recent paper by Christ, Nagel, Stein, Wainger [39],
where the following version for smooth vector fields is used: LetX1, . . . , Xp,
Y1, . . . , Yp be smooth vector fields on an open subset of Rn; for u, v ∈ Rp and
m ∈ N define

P (u,X) =
∑

0<|α|≤m

uα1

1 · · ·uαp
p [Xα1 · · · [Xαp−1 , Xαp ]],

and analogously for Q(v, Y ) (the v, Y s replacing the u,Xs in P (u,X)); then,
for each N ≥ 1 the following equality of local diffeomorphisms holds

exp(Q(v, Y )) ◦ exp(P (u,X))

= exp
( N∑

k=1

ck(P (u,X), Q(v, Y ))
)
+ O((|u|+ |v|)N+1), as |u|+ |v| → 0,

where the ck = ck(a, b) are the Lie polynomials (homogeneous of bi-
degree k) defined by the usual CBHD series etaetb = exp(

∑∞
k=1 ck(a, b)t

k).

All the above results can be proved without difficulty starting from the general
results on the CBHD Theorem contained in this book, as it is shown in detail e.g.,
in [21, Section 15.4].

The rôle of the CBHD Theorem is not only prominent for usual Lie
groups, but also for infinite dimensional Lie groups. For a detailed survey
and references (a comprehensive bibliography is unfortunately out of our
scope here), see Neeb [130]. As for the topics of this book, the notion of
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BCH-group (Baker-Campbell-Hausdorff group) is particularly significant.
For some related topics, see, e.g., [12, 13, 24, 42, 43, 56, 66–68, 73, 83, 86, 87, 92,
130, 133, 147, 148, 152, 173].

Finally, to put to an end our excursus on the modern applications of the
CBHD Theorem, we point out that the years 2000 plus have seen a renewed
interest in CBHD-type theorems (both continuous and discrete) within yet
another field of application: that of so-called geometric integration, a recent
branch of Numerical Analysis (see e.g. [76, 97, 98, 101, 114]).

1.3 The “Name of the Game”

We reserve a few lines to discuss our choice of the acronym “CBHD” and to
recall the other choices from the existing literature.

As it appears from Table 1.3 (which collects the different titles used for
the “exponential theorem” in the about 180 or so related references quoted in
this book), there is definitely no agreement on the provenance of the theorem
to which this book is entirely devoted. Certainly, custom and tradition
have consolidated the usage of some set-expressions (such as “Campbell-
Hausdorff Formula”), which cannot now be uprooted, even if they do not
seem adequate after a brief historical investigation.

For example, Baker’s contribution matches with Hausdorff’s to such an
extent that, if we had to choose between “Baker-Hausdorff” or “Campbell-
Hausdorff”, we would choose the former expression. Furthermore, what is
this “Formula” after all? If the term “formula” refers – as seems plausible –
to identities like

exey = exp
(
x+ y + 1

2 [x, y] +
1
12 [x[x, y]] +

1
12 [y[y, x]] + · · · ),

then it would be more appropriate to speak of “Dynkin’s Formula”.
As it emerges from the historical overview of the present chapter, the

possible phraseologies may be even richer; we propose some of them:

1. “Campbell’s problem” has been solved (almost completely) by the “Poin-
caré-Pascal Theorem” and (completely) by the “Baker-Hausdorff Theorem”.

2. The same recursion formula for a series expressing z in the identity exey =
ez has been given by Baker and by Hausdorff (see (1.50) and (1.72):
the “Baker-Hausdorff series” of “Baker-Hausdorff Formula”); Hausdorff gave
another recursion formula for z (see (1.71)) and – implicitly – yet another
one (contained in (1.73) and destined for a great success). Thus, the
naming of “the Hausdorff series” (also widely used) may be misleading.

3. A result providing an explicit series expansion for z is first given by
“Dynkin’s series” (also called “Dynkin’s Formula”), see (1.79).
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If one further considers that – among Dynkin’s results – we can also
enumerate a new solution to Campbell’s problem (see [55]), and two other
explicit series expansions (see (1.81) and [55, eq. (19)’, page 162]), then our
choice “CBHD Theorem” seems justified.

[As a matter of fact, as can be seen from Table 1.3, the four-name
choice is not commonly accepted and the reference to Dynkin is often
limited to the cases when the actual Dynkin series (1.79) is involved. This
fact, though neglecting the original contributions to the Campbell-Baker-
Hausdorff Theorem given by Dynkin in [54–56], is so deeply entrenched
that we cannot propose the acronym “CBHD” as final, but as our personal
point of view, instead. The spotlight on Dynkin’s series in the present book
is so evident that we found it more appropriate for the title of our book to
commemorate the contributions of all four Mathematicians.]

Finally, a couple of remarks on the history of the name. The expres-
sion “Campbell-Hausdorff Formula” is the one commonly employed by
analysts, whereas geometers and physicists widely use the three names
(differently combined) of Baker, Campbell, Hausdorff. Apparently, the first
book to use the two-name expression is Jacobson’s [99], whereas the first
book using the three-name one seems to be Hausner and Schwartz’s [79].

Table 1.3 A cross-section of the naming used for the Theorem of Campbell (C), Baker (B),
Hausdorff (H) and Dynkin (D), according to the literature cited in the List of References
of this book

CH
BCH
CBH

H
BH

CBHD
BDCH
BCDH
BCHD
others
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and Dynkin



Chapter 2
Background Algebra

THE aim of this chapter is to recall the main algebraic prerequisites and
all the notation and definitions used throughout the Book. All main

proofs are deferred to Chap. 7. This chapter (and its counterpart Chap. 7)
is intended for a Reader having only a basic undergraduate knowledge in
Algebra; a Reader acquainted with a more advanced knowledge of Algebra
may pass directly to Chap. 3.

Our main objects of interest for this chapter are:

– Free vector spaces, unital associative algebras, tensor products
– Free objects over a set X : the free magma, the free monoid, the free

(associative and non-associative) algebra over X
– Free Lie algebras
– Completions of metric spaces and of graded algebras; formal power series
– The universal enveloping algebra of a Lie algebra

2.1 Free Vector Spaces, Algebras and Tensor Products

2.1.1 Vector Spaces and Free Vector Spaces

Throughout this section, K will denote a field, while V will denote a
vector space over K. Moreover, when referring to linear maps, spans, basis,
generators, linear independence, etc., we shall tacitly mean1 “with respect
to K”.

1For instance, “let U, V be vector spaces” means that both U and V are vector spaces over
the same field K.

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 2,
© Springer-Verlag Berlin Heidelberg 2012
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We recall the well known fact that any vector space possesses a basis.
More generally, we shall have occasion to apply the following result, which
can be easily proved by means of Zorn’s Lemma (as in [108, Theorem 5.1]):

Let V �= {0} be a vector space. Let I,G be subsets of V such that I ⊆ G, I
is linearly independent and G generates V . Then there exists a basis B of V with
I ⊆ B ⊆ G.

Bases of vector spaces will always assumed to be indexed. Let B = {vi}i∈I

be a basis of V (indexed over the nonempty set I). Then for every v ∈ V
there exists a unique family {ci(v)}i∈I ⊂ K such that ci(v) �= 0 for all but
finitely many indices i in I and such that v =

∑
i∈I ci(v) vi (the sum being

well posed since it runs over a finite set). Occasionally, the subset I′ ⊆ I

such that ci(v) �= 0 for every i ∈ I′ will be denoted by I(v). When v = 0,
or equivalently I(v) = ∅, the notation

∑
i∈∅ ci vi := 0 applies. Note that, for

every fixed v ∈ V , the following formula

c : I→ K, i �→ ci(v)

defines a well posed function, uniquely depending on v.
We obviously have the following result.

Proposition 2.1. Let V be a vector space and let B be a basis of V . Then for every
vector space X and every function L : B → X , there exists a unique linear map
L : V → X prolonging L.

If B = {vi}i∈I, it suffices to set

L(v) :=
∑

i∈I(v) ci(v)L(vi).

The above proposition asserts that there always exists a unique linear
map L making the following diagram commute:

B
L

��
� �

ι

��

X

V

L

�������������

Here and in the sequel, when the context is understood, ι will always
denote the inclusion map of a set A ⊆ B into a set B.

The following are well known standard facts from Linear Algebra and
are stated without proofs for the sake of future reference.

Proposition 2.2. (i). Let V,X be vector spaces and let W be a vector subspace
of V . Suppose also that L : V → X is a linear map such that W ⊆ ker(L)
and let π : V → V/W denote the natural projection map.
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Then there exists a unique linear map L̃ : V/W → X such that

L̃(π(v)) = L(v) for every v ∈ V , (2.1)

thus making the following a commutative diagram:

V
L

��

π

��

X

V/W

L̃

�������������

(ii). Let V,X be vector spaces and let L : V → X be a linear map. Then the map

L̃ : V/ker(L)→ L(V ), [v]ker(L) �→ L(v)

is an isomorphism of vector spaces.

Actually, (2.1) also defines L̃ uniquely, the definition being well posed
thanks to the hypothesis W ⊆ ker(L) (indeed, π(v) = π(v′) iff v− v′ ∈W , so
that π(v) = π(v − v′) + π(v′) = π(v′)).

Definition 2.3 (Free Vector Space). Let S be any nonempty set. We denote
by K〈S〉 the vector space of the K-valued functions on S non-vanishing only
on a finite (possibly empty) subset of S. The set K〈S〉 is called the free vector
space over S.

Occasionally, a function f : S → K non-vanishing only on a finite subset of
S will be said to have “compact support”.

Remark 2.4. Let v ∈ S be fixed. We denote by

χ(v) : S → K, χ(v)(s) :=

{
1, if s = v

0, if s �= v
(2.2)

the characteristic function of {v} on S. With this notation at hand, it is easily
seen that one has

K〈S〉 = span
{
χ(v) | v ∈ S

}
, (2.3)

so that the generic element of K〈S〉 is of the form

n∑

j=1

λj χ(vj), where n ∈ N, λ1, . . . , λn ∈ K, v1, . . . , vn ∈ S.
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In the sequel, when there is no possibility of confusion, we shall identify
v ∈ S with χ(v) ∈ K〈S〉, so that the generic element of K〈S〉 is of the form∑n

j=1 λj vj (with n, λj and vj as above), that is, K〈S〉 can be thought of as
the set of the “formal linear combinations” of elements of S. Thus S can be
viewed as a subset (actually, a basis) of K〈S〉. Occasionally, we shall also
write an element f of K〈S〉 as

f =
∑

s∈S

f(s)χ(s)
(

or f =
∑

s∈S

fs χ(s)
)
, (2.4)

the sum being finite, for f : S → K has compact support.

Remark 2.5. With the above notation, the set χ(S) := {χ(v) | v ∈ S} is a
linear basis of K〈S〉. Indeed, let λ1, . . . , λn ∈ K and let v1, . . . , vn be pairwise
distinct elements of S and suppose

∑n
j=1 λj χ(vj) = 0 in K〈S〉. For any fixed

i ∈ {1, . . . , n} we then have2

0 =
(∑n

j=1 λj χ(vj)
)
(vi) =

∑n
j=1 λj χ(vj) δi,j = λi 1,

whence χ(v1), . . . , χ(vn) are linearly independent. Moreover (2.3) proves
that χ(S) generates K〈S〉.

We remark that the linear independence of the set χ(S) implies in
particular that χ : S → K〈S〉 is an injective map.

As a consequence, K〈S〉 is finite dimensional iff S is finite. In this case, if
S = {v1, . . . , vN}, we also use the brief notation K〈v1, . . . , vN 〉 := K〈S〉.

In the rest of this Book, the following result will be used many times.
This is the first of a series of universal properties of algebraic objects, which
we shall encounter frequently.

Theorem 2.6 (Universal Property of the Free Vector Space).

(i) Let S be any set. Then for every vector space X and every map F : S → X
there exists a unique linear map Fχ : K〈S〉 → X such that

Fχ(χ(v)) = F (v) for every v ∈ S, (2.5)

thus making the following a commutative diagram:

S
F

��

χ

��

X

K〈S〉
Fχ

�������������

2Here and throughout, δi,j represents as usual the Kronecker symbol, i.e., δi,i = 1, δi,j = 0

if i 
= j.
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(ii) Vice versa, suppose V, ϕ are respectively a vector space and a map ϕ : S → V
with the following property: For every vector space X and every map F :S→X
there exists a unique linear map Fϕ : V → X such that

Fϕ(ϕ(v)) = F (v) for every v ∈ S, (2.6)

thus making the following a commutative diagram:

S
F

��

ϕ

��

X

V

Fϕ

�������������

Then V is canonically isomorphic to K〈S〉, the isomorphism being ϕχ :
K〈S〉 → V and its inverse being χϕ : V → K〈S〉. Furthermore ϕ is injective
and the set ϕ(S) is a basis of V . Actually, it holds that ϕ = ϕχ ◦ χ.

When the identification S � v ≡ χ(v) ∈ K〈S〉 applies, the above map χ
is the associated inclusion ι : S ↪→ K〈S〉, so that we may think of Fχ as a
“prolongation” of F .

Proof. See page 393 in Chap. 7. ��
We recall the definitions of (external) direct sum and of product of a family
of vector spaces. Let {Vi}i∈I be a family of vector spaces (indexed over a set
I, finite, denumerable or not). We set

∏

i∈I

Vi :=
{
(vi)i∈I

∣
∣
∣vi ∈ Vi for every i ∈ I

}
,

⊕

i∈I

Vi :=
{
(vi)i∈I

∣
∣
∣vi ∈ Vi for every i ∈ I and vi �= 0 for finitely many i

}
.

The former is called the product space of the vector spaces Vi, the latter
is called the (external) direct sum of the spaces Vi. More precisely, we use
a “sequence-style” notation (vi)i∈I to mean a function v : I → ⋃i∈I Vi,
v(i) =: vi with vi ∈ Vi for every i ∈ I. In other words

(vi)i∈I = (v′i)i∈I ⇐⇒
(

for all i ∈ I, vi, v′i ∈ Vi and vi = v′i
)
. (2.7)

Occasionally, when I is at most denumerable we may also use the notation∑
i∈I vi instead of (vi)i∈I. For example, according to this notation when
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I = N, the generic element of
⊕

n∈N Vn is of the form v1 + . . . + vp where
p ∈ N and vn ∈ Vn for every n = 1, . . . , p.

This notation is justified by the fact that the product space and the exter-
nal direct sum of the spaces Vi are naturally endowed with a vector space
structure (simply by defining the vector space operations componentwise).
Obviously

⊕
i∈I Vi is a subspace of

∏
i∈I Vi.

Remark 2.7. With the above notation, for any fixed j ∈ I let

Ṽj :=
∏

i∈I

V ′
i where

{
V ′
i := Vj , for i = j,

V ′
i := {0}, for i �= j.

Note that, for every j ∈ I, Ṽj is a vector subspace of
⊕

i∈I Vi (hence of∏
i∈I Vi). We now leave to the Reader the simple verification that the spaces

Ṽj have the following property: Any v ∈⊕i∈I Vi can be written in a unique
way as a (finite) sum

∑
i∈I vi with vi ∈ Ṽi for every i ∈ I. Consequently,

⊕
i∈I Vi is the (usual) direct sum of its subspaces {Ṽi}i∈I (and the name

“external direct sum” is thus well justified).
If, for every fixed j ∈ I, we consider the linear map

ιj : Vj →
⊕

i∈I

Vi, Vj � v
ιj�→ (v′i)i∈I where

{
v′i := v, for i = j,

v′i := 0, for i �= j,

it is easily seen that ιj(Vj) = Ṽj . Moreover, ιj is an isomorphism of Vj onto
its image Ṽj , so that Ṽj � Vj for every j ∈ I. As claimed above, using also
(2.7), for any v = (vi)i∈I ∈

⊕
i∈I Vi we have the decomposition

v =
∑

i∈I ιi(vi)
(

with ιi(vi) ∈ Ṽi for all i ∈ I
)
. (2.8)

Hence, throughout the sequel we shall always identify any Vj as a subspace of
⊕

i∈I Vi (or of
∏

i∈I Vi) by the canonical identification Vj � Ṽj via ιj .

The following simple fact holds:

Theorem 2.8 (Universal Property of the External Direct Sum).

(i) Let {Vi}i∈I be an indexed family of vector spaces. Then, for every vector space
X , and every family of linear maps {Fi}i∈I (also indexed over I) with Fi :
Vi → X (for every i ∈ I) there exists a unique linear map FΣ :

⊕
i∈I Vi → X

prolonging Fi, for every i ∈ I. More precisely it holds that

FΣ(ιi(v)) = Fi(v) for every i ∈ I and every v ∈ Vi, (2.9)
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thus making the following a family (over i ∈ I) of commutative diagrams:

Vi

Fi
��

ιi

��

X

⊕
i∈I Vi

FΣ

��������������

(The notation ⊕i∈IFi for FΣ will also be allowed.)
(ii) Conversely, suppose V, {ϕi}i∈I are respectively a vector space and a family of

linear maps ϕi : Vi → V with the following property: For every vector space
X and every family of linear maps {Fi}i∈I with Fi : Vi → X (for every i ∈ I)
there exists a unique linear map Fϕ : V → X such that

Fϕ(ϕi(v)) = Fi(v) for every i ∈ I and every v ∈ Vi, (2.10)

thus making the following a family (over i ∈ I) of commutative diagrams:

Vi

Fi
��

ϕi

��

X

V

Fϕ

�������������

(The notation Φi∈IFi for Fϕ will also be allowed.) Then V is canonically
isomorphic to

⊕
i∈I Vi, the isomorphism being ⊕i∈Iϕi :

⊕
i∈I Vi → V and

its inverse being Φi∈Iιi : V → ⊕i∈I Vi. Furthermore any ϕi is injective
and V =

⊕
i∈I ϕi(Vi) (direct sum of subspaces of V ). Actually, it holds that

ϕi ≡ (⊕i∈Iϕi) ◦ ιi.
Proof. (i) follows from (2.8), by setting (here vi ∈ Vi for all i)

FΣ :
⊕

i∈I Vi → X, FΣ

(∑
i∈I ιi(vi)

)
:=
∑

i∈I Fi(vi).

A simple verification shows that this map is linear and obviously it is the
unique linear map satisfying (2.9).

(ii) follows by arguing as in the proof of Theorem 2.6 (see page 393). The
fact that V =

⊕
i∈I ϕi(Vi) derives from the following ingredients:

– The decomposition of
⊕

i∈I

Vi into the direct sum of its subspaces

Ṽi = ιi(Vi).
– The isomorphism ⊕i∈Iϕi :

⊕
i∈I Vi → V .

– The set equality
(⊕i∈I ϕi

)
(ιi(Vi)) = ϕi(Vi). ��

The following is easily seen to hold.
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Proposition 2.9. Let {Vi}i∈I be a family of vector spaces. For every i ∈ I, let Bi

be a basis of Vi. Then the following is a basis for the external direct sum
⊕

i∈I Vi:
{
(wi)i∈I

∣
∣
∣wi ∈ Bi for every i ∈ I and ∃ ! i0 ∈ I such that wi0 �= 0

}
.

2.1.2 Magmas, Algebras and (Unital) Associative Algebras

2.1.2.1 Some Structures and Their Morphisms

Since there are no universal agreements for names, we make explicit our
convention to say that a set A is:

1. A magma, if on A there is given a binary operation A × A → A, (a, a′) �→
a ∗ a′.

2. A monoid, if (A, ∗) is a magma, ∗ is associative and endowed with a unit
element.

3. An algebra, if (A, ∗) is a magma, A is a vector space and ∗ is bilinear.
4. An associative algebra, if (A, ∗) is an algebra and ∗ is associative.
5. A unital associative algebra (UA algebra, for brevity), if (A, ∗) is an associa-

tive algebra and ∗ is endowed with a unit element.
6. A Lie algebra, if (A, ∗) is an algebra, ∗ is skew-symmetric and the following

Jacobi identity holds

a ∗ (b ∗ c) + b ∗ (c ∗ a) + c ∗ (a ∗ b) = 0, for all a, b, c ∈ A.

As usual, in the context of Lie algebras, the associated operation will be
denoted by (a, a′) �→ [a, a′] (occasionally, [a, a′]A) and it will be called the Lie
bracket (or simply, bracket or, sometimes, commutator3) of A.

Other structures (which we shall use less frequently) are recalled in the
following (self-explanatory) table:

(A, ∗) ∗ Binary ∗ Associative ∗ Has a unit
∗ Bilinear

(A vector space)

Magma
√

Unital magma
√ √

Semigroup
√ √

Monoid
√ √ √

Algebra
√ √

Associative algebra
√ √ √

UA algebra
√ √ √ √

3In the literature, the term “commutator” is commonly used as a synonym of “bracket”.
In this Book we shall use the term commutator only for a special kind of bracket: that
obtained from an underlying associative algebra structure.
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If (A,�), (B,�) are two magmas (respectively, two monoids, two alge-
bras, two unital associative algebras, two Lie algebras), we say that a given
map ϕ : A→ B is:

1. A magma morphism, if ϕ(a� a′) = ϕ(a)� ϕ(a′), for every a, a′ ∈ A.
2. A monoid morphism, if ϕ is a magma morphism mapping the unit of A into

the unit of B.
3. An algebra morphism, if ϕ is a linear magma morphism.
4. A morphism of unital associative algebras (UAA morphism, in short), if ϕ is

a linear monoid morphism, or equivalently, if ϕ is an algebra morphism
mapping the unit of A into the unit of B.

5. A Lie algebra morphism (LA morphism, in short), if ϕ is an algebra
morphism, i.e. (with the alternative notation for the algebra operation)

ϕ([a, a′]A) = [ϕ(a), ϕ(a′)]B, for every a, a′ ∈ A.

The prefix “iso” applies to any of the above notions of morphism ϕ, when ϕ
is also a bijection. Plenty of examples of the above algebraic structures will
be given in the next sections. The following definitions will also be used in
the sequel:

1. Let (M, ∗) be a magma (possibly, a monoid) and let U ⊆ M ; we say that
U is a set of magma-generators for M (or that U generates M as a magma)
if every element of M can be written as an iterated ∗-product (with any
coherent insertion of parentheses) of finitely many elements of U . In the
presence of associativity, this amounts to saying that every element of M
can be written in the form u1 ∗ · · ·∗uk, for some k ∈ N and u1, . . . , uk ∈ U .
When M is a monoid, the locution U generates M as a monoid will also
apply.

2. Let (A, ∗) be an algebra (associative or not, unital or not) and let U ⊆ A;
we say that U is a set of algebra-generators for A (or that U generates A as an
algebra) if every element of A can be written as a finite linear combination
of iterated ∗-products (with coherent insertions of parentheses) of finitely
many elements of U .

3. When (A, [·, ·]) is a Lie algebra, in case (2) we say that U is a set of Lie-
generators for A (or that U Lie-generates A). In this case (see Theorem 2.15
at the end of the section), this is equivalent to saying that every element
of A can be written as a finite linear combination of nested elements of the
form [u1 · · · [uk−1, uk] · · · ], for k ∈ N and u1, . . . , uk ∈ U .

Definition 2.10 (Derivation of an Algebra). If (A, ∗) is an algebra, we say
that a map D : A→ A is a derivation of A if D is linear and it holds that

D(a ∗ b) = (Da) ∗ b+ a ∗ (Db), for every a, b ∈ A.
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When A is a Lie algebra, this can be rewritten

D[a, b] = [Da, b] + [a,Db], for every a, b ∈ A.

Here is another definition that will play a central rôle.

Definition 2.11 (Graded and Filtered Algebras).

Graded Algebra: We say that an algebra (A, ∗) is a graded algebra if it
admits a decomposition of the form A =

⊕∞
j=1 Aj , where the Aj are

vector subspaces of A such that Ai ∗ Aj ⊆ Ai+j for every i, j ≥ 1. In
this case, the family {Aj}j≥1 will be called a grading of A.

Filtered Algebra: We say that an algebra (A, ∗) is a filtered algebra if A =⋃∞
j=1 Fj , where the sets Fj are vector subspaces of A such that Fi ∗ Fj ⊆

Fi+j for every i, j ≥ 1 and

Fj ⊆ Fj+1, for every j ∈ N.

In this case, the family {Fj}j≥1 will be called a filtration of A.

For example, in the case of Lie algebras, a graded Lie algebra A =
⊕∞

j=1 Aj

fulfils [Ai, Aj ] ⊆ Ai+j , for every i, j ≥ 1. Note that if {Aj}j≥1 is a grading of
A then A admits the filtration {Fj}j≥1, where Fj :=

⊕j
i=1 Aj .

The following simple result will be applied frequently in this Book.

Proposition 2.12 (Quotient Algebra). Let (A, ∗) be an algebra and let I ⊆ A
be a two-sided ideal4 of A. Then the quotient vector space A/I is an algebra (called
quotient algebra of A modulo I), when equipped with the operation

� : A/I ×A/I → A/I, [a]I � [b]I := [a ∗ b]I , ∀ a, b ∈ A.

Moreover, the associated projection π : A → A/I (i.e., π(a) := [a]I for every
a ∈ A) is an algebra morphism. Finally, if (A, ∗) is associative (respectively, unital),
then the same is true of (A/I,�) (and respectively, its unit is [1A]I ).

The proof is simple and we only remark that the well-posedness of � follows
by this argument: if [a]I = [a′]I and [b]I = [b′]I then a′ = a+x and b′ = b+ y
with x, y ∈ I so that

a′ ∗ b′ = a ∗ b+ a ∗ y + x ∗ b+ x ∗ y
︸ ︷︷ ︸

∈I

, whence [a′ ∗ b′]I = [a ∗ b]I .

4We recall that this means that I is a vector subspace of A and that a ∗ i, i ∗ a ∈ I for every
i ∈ I and every a ∈ A.
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2.1.2.2 Some Notation on Lie Algebras

In this section, (A, [·, ·]) denotes a Lie algebra. If U, V ⊆ A we set

[U, V ] := span{[u, v] |u ∈ U, v ∈ V }.

Note that (unlike some customary notation) [U, V ] is not the set of brackets
[u, v] with u ∈ U , v ∈ V , but the span of these.

Let U ⊆ A. We say that the elements of U are brackets of length 1 of U .
Inductively, once brackets of length 1, . . . , k − 1 have been defined, we say
that [u, v] is a bracket of length k of U , if u, v are, respectively, brackets of
lengths i, j of U and i + j = k. As synonyms for “length”, we shall also use
height or order. For example, if u1, . . . , u7 ∈ U , then

[[u1, u2], [[[u3, [u4, u5]], u6], u7]], [[[u1, [[u2, u3], u4]], u5], [u6, u7]]

are brackets of length 7 of U . Note that an element of a Lie algebra may have
more than one length (or even infinitely many!). For example, if A is the Lie
algebra of the smooth vector fields on R1 and X = ∂x, Y = x∂x, then

X = [· · · [X,Y ] · · ·Y
︸ ︷︷ ︸
k times

], ∀ k ∈ N,

so that X is a bracket of length k of U = {X,Y }, for every k ∈ N.
When u1, . . . , uk ∈ U , brackets of the form

[u1, [u2 · · · [uk−1, uk] · · · ]], [[· · · [u1, u2] · · ·uk−1], uk]

are called nested (respectively, right-nested and left-nested). The following
result shows that the right-nested brackets span the brackets of any order.
First we give a definition.

Definition 2.13 (Lie Subalgebra Generated by a Set). Let A be a Lie
algebra and let U ⊆ A. We denote by Lie{U} the smallest Lie subalgebra
of A containing U and we call it the Lie algebra generated by U in A. More
precisely, Lie{U} =

⋂
h, where the spaces h run over the set of subalgebras

of A containing U .

Remark 2.14. With the above notation, it is easily seen that Lie{U} coincides
with the span of the brackets of U of any order. More precisely, ifWk denotes
the span of the brackets of U of order k, it holds that Lie{U} =

⊎
k∈NWk,

where
⊎

denotes the sum of vector subspaces of A. Equivalently,

Lie{U} = span{Wk | k ∈ N}
= span{w|w is a bracket of order k of U , with k ∈ N}.
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Theorem 2.15 (Nested Brackets). Let A be a Lie algebra and U ⊆ A. Set

U1 := span{U}, Un := [U,Un−1], n ≥ 2.

Then we have Lie{U} = span{Un |n ∈ N}. Moreover, it holds that

[Ui, Uj ] ⊆ Ui+j , for every i, j ∈ N. (2.11)

We remark that, from the definition of Un, the elements of Un are linear
combination of right-nested brackets of length n of U . The above theorem
states that every element of Lie{U} is in fact a linear combination of right-nested
brackets (an analogous statement holding for the left case).

To show the idea behind the proof (which is a consequence of the
Jacobi identity and the skew-symmetry of the bracket), let us take u1, u2,
v1, v2 ∈ U and prove that [[u1, u2], [v1, v2]] is a linear combination of right-
nested brackets of length 4. By the Jacobi identity [X, [Y, Z]] = −[Y, [Z,X ]]−
[Z, [X,Y ]] one has

[[u1, u2]
︸ ︷︷ ︸

X

, [ v1︸︷︷︸
Y

, v2︸︷︷︸
Z

]] = −[v1, [v2, [u1, u2]]]− [v2, [[u1, u2], v1]]

= −[v1, [v2, [u1, u2]]] + [v2, [v1, [u1, u2]]] ∈ U4.

Proof (of Theorem 2.15). We set U∗ := span{Un |n ∈ N}. Obviously, U∗

contains U and is contained in any Lie subalgebra of A which contains U .
Hence, we are left to prove that U∗ is closed under the bracket operation.
Obviously, it is enough to show that, for any i, j ∈ N and for any u1, . . . , ui,
v1, . . . , vj ∈ U we have

[
[u1[u2[· · · [ui−1, ui] · · · ]]]; [v1[v2[· · · [vj−1, vj ] · · · ]]]

]
∈ Ui+j .

We argue by induction on k := i + j ≥ 2. For k = 2 and 3 the assertion is
obvious whilst for k = 4 we proved it after the statement of this theorem.
Let us now suppose that the result holds for every i + j ≤ k, with k ≥ 4,
and prove it then holds when i + j = k + 1. We can assume, by skew-
symmetry, that j ≥ 3. Exploiting repeatedly the induction hypothesis, the
Jacobi identity and skew-symmetry, we have

[
u; [v1[v2[· · · [vj−1, vj ] · · · ]]]

]

= −[v1, [[v2, [v3, · · · ]], u]
︸ ︷︷ ︸

length k

]− [[v2, [v3, · · · ]], [u, v1]]

= {element of Uk+1} − [[v1, u], [v2, [v3, · · · ]]]
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= {element of Uk+1}+ [v2, [[v3, · · · ], [v1, u]]
︸ ︷︷ ︸

length k

] + [[v3, · · · ], [[v1, u]v2]]

= {element of Uk+1}+ [[v2, [v1, u]], [v3, · · · ]]
(after finitely many steps)

= {element of Uk+1}+ (−1)j−1[[vj−i, [vj−2, · · · [v1, u]]], vj ]
= {element of Uk+1}+ (−1)j[vj , [vj−i, [vj−2, · · · [v1, u]]]]
∈ Uk+1.

This ends the proof. ��
The previous proof shows something more: An arbitrary bracket u of length
k of {u1, . . . , uk} (the minimal set of elements appearing in u) is a linear
combination (with coefficients in {−1, 1}) of right-nested brackets of length
k of the same set {u1, . . . , uk} and in any such summand there appear all the
ui for i = 1, . . . , k. (An analogous result also holds for left-nested brackets.)

Definition 2.16. Let (A, ∗) be an associative algebra. Let us set

[a, b]∗ := a ∗ b− b ∗ a, for every a, b ∈ A. (2.12)

Then (A, [·, ·]∗) is a Lie algebra, called the Lie algebra related to A.
The Lie bracket defined in (2.12) will be referred to as the commutator

related to A (or the ∗-commutator) and the Lie algebra (A, [·, ·]∗) will also be
called the commutator-algebra related toA. The notation [·, ·]A will occasionally
apply instead of [·, ·]∗ when confusion may not arise.

Even if authors often use the term “commutator” as a synonym for
“bracket”, we shall reserve it for brackets obtained from an associative
multiplication as in (2.12).

Due to the massive use of commutators throughout the Book, we exhibit
here the proof of the Jacobi identity (anti-symmetry and bilinearity being
trivial):

[a, [b, c]∗]∗ + [b, [c, a]∗]∗ + [c, [a, b]∗]∗

= a ∗ b ∗ c− a ∗ c ∗ b− b ∗ c ∗ a+ c ∗ b ∗ a+ b ∗ c ∗ a− b ∗ a ∗ c+

− c ∗ a ∗ b+ a ∗ c ∗ b+ c ∗ a ∗ b− c ∗ b ∗ a− a ∗ b ∗ c+ b ∗ a ∗ c
= 0 (summands canceling as over-/under-lined.)

It will be via the Poincaré-Birkhoff-Witt Theorem (a highly nontrivial result)
that we shall be able to prove that (roughly speaking) every Lie bracket can
be realized as a suitable commutator (see Sect. 2.4).
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Convention. Let (A, ∗) be an associative algebra. When a Lie algebra structure
on A is invoked, unless otherwise stated, we refer to the Lie algebra on A which is
induced by the associated ∗-commutator. So, for example, if (g, [·, ·]g) is a Lie
algebra, (A, ∗) is an associative algebra and ϕ : g → A is a map, when we
say that “ϕ is a Lie algebra morphism”, we mean that ϕ is linear and that it
satisfies ϕ([a, b]g) = ϕ(a) ∗ ϕ(b)− ϕ(b) ∗ ϕ(a), for every a, b ∈ g.

Remark 2.17. Let (A,�), (B,�) be associative algebras and let ϕ : A → B be an
algebra morphism. Then ϕ is also a Lie algebra morphism of the associated commu-
tator-algebras. Indeed, for every a, a′ ∈ A one has

ϕ([a, a′]�) = ϕ(a� a′ − a′ � a) = ϕ(a)� ϕ(a′)− ϕ(a′)� ϕ(a)

= [ϕ(a), ϕ(a′)]�.

Remark 2.18. Let (A, ∗) be an associative algebra and let D : A → A be a
derivation of A. Then D is also a derivation of the commutator-algebra related to A.
Indeed, for every a, a′ ∈ A one has

D([a, a′]∗) = D(a ∗ a′ − a′ ∗ a)
= D(a) ∗ a′ + a ∗D(a′)−D(a′) ∗ a− a′ ∗D(a)

=
(
D(a) ∗ a′ − a′ ∗D(a)

)
+
(
a ∗D(a′)−D(a′) ∗ a)

= [D(a), a′]∗ + [a,D(a′)]∗.

2.1.2.3 Free Magma and Free Monoid

The remainder of this section is devoted to the construction of the free
magma, the free monoid and the free algebra (associative or not) generated
by a set. These structures will turn out to be of fundamental importance
when we shall be dealing with the construction of free Lie algebras, without
the use of the Poincaré-Birkhoff-Witt Theorem (see Sect. 2.2).

We begin with the construction of a free magma generated by a set.
We follow the construction in [26, I, §7, n.1]. Henceforth, X will denote a
fixed set.

To begin with, we inductively set M1(X) := X , and (if
∐

denotes disjoint
union5 of sets)

5We recall the relevant definition: let {Ai}i∈I be an indexed family of sets (I may be finite,
denumerable or not). By

∐
i∈I

Ai we mean the set of the ordered couples (i, a) where i ∈ I

and a ∈ Ai, and we call it the disjoint union of (the indexed family of) sets {Ai}i∈I. As a
common habit, the first entry of the couple is dropped, but care must be paid since the
same element a possibly belonging to Ai and Aj with i 
= j gives rise to distinct elements
in

∐
i Ai.
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M2(X) := X ×X, M3(X) :=
(
M2(X)×M1(X)

)∐(
M1(X)×M2(X)

)
,

Mn(X) :=
∐

p∈{1,...,n−1}
Mn−p(X)×Mp(X), for every n ≥ 2; (2.13)

M(X) :=
∐

n∈N

Mn(X). (2.14)

Equivalently, we can drop the sign of disjoint union and replace it with
standard set-union, provided we consider as distinct the Cartesian products

(
X × · · · ×X

)

︸ ︷︷ ︸
n times

× (X × · · · ×X
)

︸ ︷︷ ︸
m times

�= X × · · · ×X
︸ ︷︷ ︸

n + m times

.

Hence, we have

M1(X) = X, M2(X) = X ×X,

M3(X) = ((X ×X)×X) ∪ (X × (X ×X)),

M4(X) = (((X ×X)×X)×X) ∪ ((X × (X ×X))×X)∪
∪ ((X ×X)× (X ×X)) ∪ (X × ((X ×X)×X)) ∪ (X × (X × (X ×X))),

...

Mn(X) :=
⋃

p∈{1,...,n−1}
Mn−p(X)×Mp(X), for every n ≥ 2,

and M(X) :=
⋃

n∈NMn(X).
Roughly, M(X) is the set of non-commutative and non-associative words

on the letters of X , where parentheses are inserted in any coherent way
(different parentheses defining different words). For brevity, we set Mn :=
Mn(X). For example, if x ∈ X , the following are distinct elements of M7:

(

(x, x),

(((
x, (x, x)

)
, x
)
, x

))

,

(((
x, ((x, x), x)

)
, x
)
, (x, x)

)

Via the natural injection X ≡ M1 ⊂ M(X), we consider X as a subset of
M(X) (and the same is done for everyMn). For everyw ∈M(X) there exists
a unique n ∈ N such that w ∈ Mn, which is denoted by n = �(w) and called
the length of w. Note that any w ∈ M(X) with �(w) ≥ 2 is of the form w =
(w′, w′′) for unique w′, w′′ ∈ M(X) satisfying �(w′) + �(w′′) = �(w). For any
w,w′ ∈ M(X) with w ∈ Mn and w′ ∈ Mn′ , we denote by w.w′ the (unique)
element of Mn+n′ corresponding to (w,w′) in the canonical injections Mn ×
Mn′ ⊂Mn+n′ ⊂M(X). The binary operation (w,w′) �→ w.w′ endowsM(X)
with the structure of a magma, called the free magma over X .
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Remark 2.19. Obviously, X is a set of magma-generators for M(X). More-
over, we have a sort of “grading” onM(X) (M(X) has no vector space struc-
ture though), for it holds that M(X) =

⋃
n∈NMn(X) and Mi(X).Mj(X) ⊆

Mi+j(X), for every i, j ≥ 1.

Lemma 2.20 (Universal Property of the Free Magma). Let X be any set.

(i) For every magma M and every function f : X → M , there exists a unique
magma morphism f : M(X) → M prolonging f , thus making the following
a commutative diagram:

X
f

��
� �

ι

��

M

M(X)

f

�������������

(ii) Vice versa, suppose N,ϕ are respectively a magma and a function ϕ : X → N
with the following property: For every magma M and every function f : X →
M , there exists a unique magma morphism fϕ : N →M such that

fϕ(ϕ(x)) = f(x), for every x ∈ X ,

thus making the following a commutative diagram:

X
f

��

ϕ

��

M

N

fϕ

�������������

Then N is canonically magma-isomorphic to M(X), the magma isomorphism
being (see the notation in part (i) above) ϕ :M(X)→ N and its inverse being
ιϕ : N →M(X). Furthermore ϕ is injective and N is generated, as a magma,
by ϕ(X). Actually, it holds that ϕ = ϕ ◦ ι. Finally, we have N �M(ϕ(X)).

Proof. (i) The map f is defined as follows: Let ∗ be the operation on M and
let us consider the maps fn defined by

f1 :M1 →M, f1(x) := f(x), ∀x ∈ X,

f2 :M2 →M, f2(x1.x2) := f(x1) ∗ f(x2), ∀x1, x2 ∈ X,

f3 :M3 →M,

{
f3((x1.x2).x3) := (f(x1) ∗ f(x2)) ∗ f(x3)
f3(x1.(x2.x3)) := f(x1) ∗ (f(x2) ∗ f(x3)) ∀x1, x2, x3 ∈ X,
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and, inductively, fn : Mn → M is defined by setting fn(w.w
′) := fn−p(w) ∗

fp(w
′), for every p ∈ {1, . . . , n− 1} and every (w,w′) ∈Mn−p ×Mp. Finally,

let f : M(X) → M be the unique map such that f |Mn coincides with fn. It
is easily seen that f is a magma morphism and that it is the only morphism
fulfilling (i).

(ii) follows by arguing as in the proof of Theorem 2.6 (see page 393). We
recall the scheme of the proof. We have the commutative diagrams

X
ϕ

��
� �

ι

��

N

M(X)

ϕ

��������������

X
ι

��

ϕ

��

M(X)

N

ιϕ

��������������

Obviously, the following are commutative diagrams too

X
� � ι

��
� �

ι

��

M(X)

M(X)

idM(X)

�������������

X
ϕ

��

ϕ

��

N

N

idN

�������������

The maps ιϕ ◦ ϕ : M(X) → M(X), ϕ ◦ ιϕ : N → N are magma morphisms
such that

(ιϕ ◦ ϕ)(ι(x)) = ι(x) ∀x ∈ X, (ϕ ◦ ιϕ)(ϕ(x)) = ϕ(x) ∀x ∈ X.

Hence, by the uniqueness of the morphisms represented by the “diagonal”
arrows in the last couples of commutative diagrams above, we have

ιϕ ◦ ϕ ≡ idM(X), ϕ ◦ ιϕ ≡ idN .

The rest of the proof is straightforward. ��
We next construct the free monoid over X . We could realize it as a quotient
of the free magma M(X) by identifying any two elements in Mn which are
obtained by inserting parentheses to the same ordered n-tuple of elements
of X . Alternatively, we proceed as follows (which allows us to introduce in
a rigorous way the important notion of a word over a set).

Let X be any fixed set. Any ordered n-tuple w = (x1, . . . , xn) of elements
of X is called a word on X and n =: �(w) is called its length. By convention,
the empty set is called the empty word, it is denoted by e and its length is
taken to be 0. The set of all words of length n is denoted by Wn and we set

Mo(X) :=
⋃

n≥0Wn.
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Obviously, X is identified with the set of words in Mo(X) whose length is
1. If w = (x1, . . . , xn) and w′ = (x′1, . . . , x

′
n′) are two words on X , we define

a new word w′′ = (x′′1 , . . . , x
′′
n+n′) (by juxtaposition of w and w′) by setting

x′′j :=

{
xj , for j = 1, . . . , n,
x′j−n, for j = n+ 1, . . . , n+ n′.

With the above definition, we set w.w′ := w′′. It then holds �(w.w′) =
�(w) + �(w′) so that Wn.Wn′ = Wn+n′ for every n, n′ ≥ 0. Any word
w = (x1, . . . , xn) (with x1, . . . , xn ∈ X) is written in a unique way as
w = x1.x2. · · · .xn, so that

W0 = {e}, Wn =
{
x1.x2. · · · .xn

∣
∣x1, . . . , xn ∈ X

}
, n ∈ N. (2.15)

Obviously, one has e.w = w.e = w for every w ∈ Mo(X).
If w,w′, w′′ ∈ Mo(X), then (w.w′).w′′ and w.(w′.w′′) are both equal to the

word w′′′ = (x′′′1 , . . . , x
′′′
h ) where h = �(w) + �(w′) + �(w′′) and

x′′′j :=

⎧
⎪⎨

⎪⎩

xj , j = 1, . . . , �(w),
x′j−�(w), j = �(w) + 1, . . . , �(w) + �(w′),
x′′j−�(w)−�(w′), j = �(w) + �(w′) + 1, . . . , �(w) + �(w′) + �(w′′).

As a result, (Mo(X), .) is a monoid, called the free monoid over X .

Remark 2.21. Obviously, {e} ∪ X is a set of generators for Mo(X) as a
monoid. Note that Mo(X) \ {e} is a semigroup, i.e., an associative magma
(which is not unital, though) and that X is a set of magma-generators for
Mo(X) \ {e} (i.e., every element of Mo(X) \ {e} can be written as a finite –
nonempty – product of elements of X).

Moreover, we have a sort of “grading” on Mo(X) (though Mo(X) is not
a vector space), for it holds that Mo(X) =

⋃
n≥0Wn and Wi.Wj ⊆ Wi+j , for

every i, j ≥ 0.

The adjective “free” is justified by the following universal property, whose
proof is completely analogous to that of Lemma 2.20.

Lemma 2.22 (Universal Property of the Free Monoid). Let X be any set.

(i) For every monoid M and every function f : X → M , there exists a unique
monoid morphism f : Mo(X)→M prolonging f , thus making the following
a commutative diagram:

X
f

��
� �

ι

��

M

Mo(X)

f

��������������
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(ii) Conversely, supposeN,ϕ are respectively a monoid and a functionϕ : X → N
with the following property: For every monoid M and every function f : X →
M , there exists a unique monoid morphism fϕ : N →M such that

fϕ(ϕ(x)) = f(x), for every x ∈ X ,

thus making the following a commutative diagram:

X
f

��

ϕ

��

M

N

fϕ

�������������

ThenN is canonically monoid-isomorphic to Mo(X), the monoid isomorphism
being (see the notation in part (i) above)ϕ : Mo(X)→ N and its inverse being
ιϕ : N → Mo(X). Furthermoreϕ is injective andN is generated, as a monoid,
by ϕ(X). Actually, it holds that ϕ = ϕ ◦ ι. Finally, we have N � Mo(ϕ(X)).

2.1.2.4 Free Associative and Non-associative Algebras

We now associate to each of M(X),Mo(X) of the previous section an
algebra (over K). Let, in general, (M, .) be a magma. Let Malg be the free
vector space over M (see Definition 2.3), i.e.,

Malg := K〈M〉.

With reference to the map χ in Remark 2.4, we know from Remark 2.5 that
{χ(m)|m ∈ M} is a basis for Malg. We now define on Malg an algebra
structure, compatible with the underlying structure (M, .). With this aim
we set

( p∑

i=1

λi χ(mi)
)
∗
( p′
∑

i′=1

λ′i′ χ(m
′
i′)
)
:=

∑

1≤i≤p, 1≤i′≤p′
λiλ

′
i′ χ(mi.m

′
i′),

for any arbitrary p, p′ ∈ N, λ1, . . . , λp ∈ K, λ′1, . . . , λ
′
p′ ∈ K, m1, . . . ,mp ∈M ,

m′
1, . . . ,m

′
p′ ∈ M . Following the notation in (2.4), the ∗ operation can be

rewritten (w.r.t. the basis χ(M)) as

f ∗ f ′ =
∑

m∈M

( ∑

a,a′∈M : a.a′=m

f(a)f ′(a′)
)
χ(m), ∀ f, f ′ ∈Malg

(having set f =
∑

a∈M f(a)χ(a), f ′ =
∑

a′∈M f ′(a′)χ(a′)).
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It is easy to prove that (Malg, ∗) is an algebra (when M is a magma), an
associative algebra (when M is a semigroup) and a UA algebra (when M
is a monoid) with unit χ(e) (e being the unit of M ), called the algebra of M .
Clearlym∗m′ = m.m′ for everym,m′ ∈M (by identifying m ≡ χ(m), m′ ≡
χ(m′)) so that ∗ can be viewed as a prolongation of the former . operation.

Remark 2.23. If (M, .) is a magma (resp., a monoid), then the injective map

χ : (M, .)→ (Malg, ∗)

is a magma morphism (resp., a monoid morphism). Indeed, one has χ(m) ∗
χ(m′) = χ(m.m′), for every m,m′ ∈ M by the definition of ∗ (together with
the fact that χ(e) is the unit of Malg when e is the unit of the monoid M ).

The passage from M to the corresponding Malg has a universal property:

Lemma 2.24 (Universal Property of the Algebra of a Magma, of a Monoid).
Let M be a magma.

(i) For every algebra A and every magma morphism f : M → A (here A
is equipped only with its magma structure), there exists a unique algebra
morphism fχ : Malg → A with the following property

fχ(χ(m)) = f(m), for every m ∈M, (2.16)

thus making the following a commutative diagram:

M
f

��

χ

��

A

Malg

fχ

�������������

(ii) Vice versa, suppose N,ϕ are respectively an algebra and a magma morphism
ϕ : M → N with the following property: For every algebra A and every
magma morphism f : M → A, there exists a unique algebra morphism fϕ :
N → A such that

fϕ(ϕ(m)) = f(m), for every m ∈M ,

thus making the following a commutative diagram:

M
f

��

ϕ

��

A

N

fϕ

�������������
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Then N is canonically algebra-isomorphic to Malg, the algebra isomorphism
being (see the notation in part (i) above) ϕχ :Malg → N and its inverse being
χϕ : N →Malg. Furthermore ϕ is injective and ϕ(M) is a linear basis for N .
Actually, it holds that ϕ = ϕχ ◦ χ. Finally, it also holds N � (ϕ(M))alg =
K〈ϕ(M)〉, the algebra of the magma ϕ(M) or, equivalently, the free vector
space over the set ϕ(M).

(iii) Statements analogous to (i) and (ii) hold when M is a monoid, by replacing,
respectively, the above algebrasA,N , the magma morphisms f, ϕ and the alge-
bra morphisms fχ, fϕ by, respectively, UA algebrasA,N , monoid morphisms
f, ϕ and UA algebra morphisms fχ, fϕ.

Proof. See page 396 in Chap. 7. ��
In the particular case when M = M(X) is the free magma over the set X ,
we set Lib(X) := (M(X))alg and we call it the free (non-associative) algebra
over X . Moreover, when M = Mo(X) is the free monoid over X , we set
Libas(X) := (Mo(X))alg and we call it the free UA algebra over X .

More explicitly, we have

Lib(X) := K〈M(X)〉, Libas(X) := K〈Mo(X)〉, (2.17)

i.e., the free (non-associative) algebra over X is the free vector space related to the
free magma over X and the free UA algebra over X is the free vector space related
to the free monoid overX , both endowed with the associated algebra structure
introduced at the beginning of this section.

It is customary to identify M(X) (resp., Mo(X)) with a subset of Lib(X)
(resp., of Libas(X)) via the associated map χ, and we shall do this when
confusion does not arise. Hence, it is customary to consider X as a subset
of Lib(X) and of Libas(X). (But within special commutative diagrams we
shall often preserve the map χ.)

Remark 2.25. By an abuse of notation, we shall use the same symbol χ|X in
the following statements, whose proof is straightforward:

1. The map χ|X : X → Lib(X) obtained by composing the maps X ↪→
M(X)

χ−→ K〈M(X)〉 = Lib(X) is injective and χ(X) generates Lib(X) as
an algebra (in the non-associative case).

2. The map χ|X : X → Libas(X) obtained by composing the maps
X ↪→ Mo(X)

χ−→ K〈Mo(X)〉 = Libas(X) is injective and {χ(e)} ∪ χ(X)
generates Libas(X) as an algebra (in the associative case).

Remark 2.26. 1. The set χ(X) is a set of generators for Lib(X), as an algebra (this
follows from Remark 2.19). Identifying M(X) with χ(M(X)), we shall
also say that X is a set of generators for Lib(X), as an algebra. If we set
(Mn being defined in (2.13))

Libn(X) := span{χ(Mn(X))}, n ∈ N, (2.18)
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then Lib(X) is a graded algebra, for it holds that

Lib(X) =
⊕

n≥1

Libn(X), Libi(X) ∗ Libj(X) ⊆ Libi+j(X), i, j ≥ 1,

(2.19)

where ∗ here denotes the algebra structure on Lib(X) induced by the
magma (M(X), .).

2. Let e denote the empty word, i.e., the unit of Mo(X). Then the set {χ(e)}∪
χ(X) is a set of generators for Libas(X), as an algebra (this follows from
Remark 2.21). With the identification of Mo(X) with χ(Mo(X)), we shall
also say that {e} ∪X is a set of generators for Libas(X), as an algebra.
If we set (Wn being defined in (2.15))

Libasn(X) := span{χ(Wn)}, n ≥ 0, (2.20)

then Libas(X) is a graded algebra, for it holds that

Libas(X) =
⊕

n≥0 Libasn(X),

Libasi(X) ∗ Libasj(X) ⊆ Libasi+j(X), i, j ≥ 0,
(2.21)

where ∗ here denotes the algebra structure on Libas(X) induced by the
monoid (Mo(X), .).

The above Lemma 2.24 produces the following results, which we explicitly
state for the sake of future reference.

Theorem 2.27 (Universal Property of the Free Algebra). Let X be a set.

(i) For every algebra A and every functionf : X → A, there exists a unique
algebra morphism fχ : Lib(X)→ A with the following property

fχ(χ(x)) = f(x), for every x ∈ X, (2.22)

thus making the following a commutative diagram:

X
f

��

χ|X
��

A

Lib(X)

fχ

��������������

(Here χ|X : X → Lib(X) is the composition of maps X ↪→ M(X)
χ−→

K〈M(X)〉 = Lib(X).)
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(ii) Conversely, suppose N,ϕ are respectively an algebra and a map ϕ : X → N
with the following property: For every algebra A and every function f : X →
A, there exists a unique algebra morphism fϕ : N → A such that

fϕ(ϕ(x)) = f(x), for every x ∈M ,

thus making the following a commutative diagram:

X
f

��

ϕ

��

A

N

fϕ

�������������

Then N is canonically algebra-isomorphic to Lib(X), the algebra isomorphism
being (see the notation in part (i) above) ϕχ : Lib(X) → N and its inverse
being (χ|X)ϕ : N → Lib(X). Furthermore ϕ is injective and ϕ(X) generates
N as an algebra. Actually, it holds that ϕ = ϕχ ◦ (χ|X). Finally, it also holds
N � Lib(ϕ(X)), the free non-associative algebra over the set ϕ(X).

Proof. (i): From Lemma 2.20-(i), there exists a magma morphism f :
M(X) → A prolonging f . From Lemma 2.24-(i), there exists an algebra
morphism

f
χ
: (M(X))alg = Lib(X)→ A

such that f
χ
(χ(m)) = f(m) for every m ∈M(X). The choice fχ := f

χ
does

the job. The uniqueness part of the thesis derives from the fact that χ(X)
generates Lib(X) as an algebra.

Part (ii) is standard (it makes use of Remark 2.25-1). ��
Theorem 2.28 (Universal Property of the Free UA Algebra). Let X
be a set.

(i) For every UA algebra A and every functionf : X → A, there exists a unique
UAA morphism fχ : Libas(X)→ A with the following property

fχ(χ(x)) = f(x), for every x ∈ X, (2.23)

thus making the following a commutative diagram:

X
f

��

χ|X
��

A

Libas(X)

fχ

���������������
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(Here χ|X : X → Libas(X) is the composition of maps X ↪→ Mo(X)
χ−→

K〈Mo(X)〉 = Libas(X).)
(ii) Vice versa, suppose N,ϕ are respectively a UA algebra and a map ϕ : X → N

with the following property: For every UA algebra A and every function f :
X → A, there exists a unique UAA morphism fϕ : N → A such that

fϕ(ϕ(x)) = f(x), for every x ∈ X ,

thus making the following a commutative diagram:

X
f

��

ϕ

��

A

N

fϕ

�������������

Then N is canonically isomorphic to Libas(X) as UA algebras, the UAA
isomorphism being (see the notation in part (i) above) ϕχ : Libas(X) → N
and its inverse being (χ|X)ϕ : N → Libas(X). Furthermore ϕ is injective and
{eN}∪ϕ(X) generatesN as an algebra (eN denoting the unit ofN ). Actually,
it holds that ϕ = ϕχ ◦ (χ|X). Finally, it holds thatN � Libas(ϕ(X)), the free
UA algebra over ϕ(X).

Proof. The proof is analogous to that of Theorem 2.27, making use of Lemma
2.22-(i), Lemma 2.24-(iii) and Remark 2.25-2. ��

2.1.3 Tensor Product and Tensor Algebra

Let n ∈ N, n ≥ 2 and V1, . . . , Vn be vector spaces. Let us consider the
Cartesian product V1 × · · · × Vn (which we do not endow with a vector
space structure!) and the corresponding free vector space K〈V1 × · · · × Vn〉
(see Definition 2.3). The notation χ(v1, . . . , vn) agrees with the one given in
Remark 2.4.

Let us consider the subspace of K〈V1 × · · · × Vn〉, say W , spanned by the
elements of the following form

χ(v1, . . . , a vi, . . . , vn)− aχ(v1, . . . , vi, . . . , vn),

χ(v1, . . . , vi + v′i, . . . , vn)− χ(v1, . . . , vi, . . . , vn)− χ(v1, . . . , v
′
i, . . . , vn),

(2.24)
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where a ∈ K, i ∈ {1, . . . , n}, vj , v′j ∈ Vj for every j ∈ {1, . . . , n}. The main
definition of this section is the following one:

V1 ⊗ · · · ⊗ Vn := K〈V1 × · · · × Vn〉/W.

We say that V1 ⊗ · · · ⊗ Vn is the tensor product of the (ordered) vector spaces
V1, . . . , Vn (orderly). Moreover, if π : K〈V1 × · · · × Vn〉 → V1 ⊗ · · · ⊗ Vn is the
associated projection, we also set

v1 ⊗ · · · ⊗ vn := π(χ(v1, . . . , vn)), ∀ v1 ∈ V1, . . . , ∀ vn ∈ Vn.

The element v1 ⊗ · · · ⊗ vn of the tensor product V1 ⊗ · · · ⊗ Vn is called an
elementary tensor of V1 ⊗ · · · ⊗ Vn. Not every element of V1 ⊗ · · · ⊗ Vn is
elementary, but every element of V1 ⊗ · · · ⊗ Vn is a linear combination of
elementary tensors. Finally we introduce the notation

ψ : V1 × · · · × Vn → V1 ⊗ · · · ⊗ Vn, ψ(v1, . . . , vn) := v1 ⊗ · · · ⊗ vn.

In other words ψ = π ◦ χ.

Remark 2.29. With the above notation, ψ is n-linear and ψ(V1 × · · · × Vn)
generates V1⊗· · ·⊗Vn. The last statement is obvious, whilst the former follows
from the computation:

ψ(v1, . . . , a vi + a′ v′i, . . . , vn) =
[
χ(v1, . . . , a vi + a′ v′i, . . . , vn)

]
W

=
[
χ(v1, . . . , a vi + a′ v′i, . . . , vn)

− χ(v1, . . . , a vi, . . . , vn)− χ(v1, . . . , a
′ v′i, . . . , vn)

]

W

+
[
χ(v1, . . . , a vi, . . . , vn) + χ(v1, . . . , a

′ v′i, . . . , vn)
]
W

= 0 +
[
χ(v1, . . . , a vi, . . . , vn)− aχ(v1, . . . , vi, . . . , vn)

]
W

+
[
χ(v1, . . . , a

′ v′i, . . . , vn)− a′ χ(v1, . . . , v′i, . . . , vn)
]
W

+ a [χ(v1, . . . , vi, . . . , vn)]W + a′ [χ(v1, . . . , v′i, . . . , vn)]W

= 0 + 0 + 0 + aψ(v1, . . . , vi, . . . , vn) + a′ ψ(v1, . . . , v′i, . . . , vn).

Using the “⊗” notation instead of ψ, the previous remark takes the form

v1 ⊗ · · · ⊗ (a vi + a′ v′i)⊗ · · · ⊗ vn = a
(
v1 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vn

)

+ a′
(
v1 ⊗ · · · ⊗ v′i ⊗ · · · ⊗ vn

)
,

for every a, a′ ∈ K, every i ∈ {1, . . . , n} and every vj , v′j ∈ Vj for j = 1, . . . , n.

We are ready for another universal-property theorem of major importance.
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Theorem 2.30 (Universal Property of the Tensor Product).

(i) Let n ∈ N, n ≥ 2 and let V1, . . . , Vn be vector spaces. Then, for every vector
space X and every n-linear map F : V1× · · ·×Vn → X , there exists a unique
linear map Fψ : V1 ⊗ · · · ⊗ Vn → X such that

Fψ(ψ(v)) = F (v) for every v ∈ V1 × · · · × Vn, (2.25)

thus making the following a commutative diagram:

V1 × · · · × Vn

F
��

ψ

��

X

V1 ⊗ · · · ⊗ Vn

Fψ

����������������

(ii) Conversely, suppose that V, ϕ are respectively a vector space and an n-linear
map ϕ : V1×· · ·×Vn → V with the following property: for every vector space
X and every n-linear map F : V1×· · ·×Vn → X , there exists a unique linear
map Fϕ : V → X such that

Fϕ(ϕ(v)) = F (v) for every v ∈ V1 × · · · × Vn, (2.26)

thus making the following a commutative diagram:

V1 × · · · × Vn

F
��

ϕ

��

X

V

Fϕ

������������������

Then V is canonically isomorphic to V1 ⊗ · · · ⊗ Vn, the isomorphism in one
direction being ϕψ : V1 ⊗ · · · ⊗ Vn → V with its inverse being ψϕ : V →
V1 ⊗ · · · ⊗ Vn. Furthermore the set ϕ(S) is a set of generators for V .

Proof. See page 396 in Chap. 7. ��
Some natural properties of tensor products are now in order.

Theorem 2.31 (Basis of the Tensor Product). Let V,W be vector spaces with
bases {vi}i∈I and {wk}k∈K respectively. Then

{
vi ⊗ wk

}
(i,k)∈I×K

is a basis of V ⊗W .
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Proof. The proof of this expected result is unexpectedly delicate: See page
399 in Chap. 7. ��
Proposition 2.32 (“Associativity” of ⊗). Let n,m ∈ N, n,m ≥ 2 and let
V1, . . . , Vn,W1, . . . ,Wm be vector spaces. Then we have the isomorphism (of vector
spaces)

(V1 ⊗ · · · ⊗ Vn)⊗ (W1 ⊗ · · · ⊗Wm) � V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm.

To this end, we can consider the canonical isomorphism mapping

(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wm)

into v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm.

Proof. See page 403 in Chap. 7. ��
If V is a vector space and k ∈ N, we set

Tk(V ) := V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k times

.

Thus, the generic element of Tk(V ) is a finite linear combination of tensors
of the form v1 ⊗ · · · ⊗ vk, with v1, . . . , vk ∈ V . We also set T0(V ) := K.
The elements of Tk(V ) are referred to as being tensors of degree (or order, or
length) k on V . We are in a position to introduce a fundamental definition.

Definition 2.33 (Tensor Algebra of a Vector Space). Let V be a vector
space. We set T (V ) :=

⊕

k∈N∪{0}
Tk(V ) (in the sense of external direct sums).

On T (V ) we consider the operation defined by

(vi)i≥0 · (wj)j≥0 :=
( k∑

j=0

vk−j ⊗ wj

)

k≥0
, (2.27)

where vi, wi ∈ Ti(V ) for every i ≥ 0. Here, we identify any tensor product

Tk−j(V )⊗Tj(V )

with Tk(V ), for every k ∈ N ∪ {0} and every j = 0, . . . , k (thanks to
Proposition 2.32). We call T (V ) (equipped with this operation) the tensor
algebra of V .

Throughout the Book, we consider any Tk(V ) as a subset of T (V ) as
described in Remark 2.7. Moreover, we make the identification V ≡ T1(V )
so that V is considered as a subset of its tensor algebra. When there is no
possibility of confusion, we denote Tk(V ) and T (V ) simply by Tk and T .
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If v = (vi)i≥0 ∈ T (V ) (being vi ∈ Ti(V ) for every i ≥ 0), we say that vi is
the homogeneous component of v of degree (or order, or length) i. Moreover, in
writing v = (vi)i≥0 for an element v ∈ T (V ) we tacitly mean that vi ∈ Ti(V )
for every i ∈ N∪{0}. The notation

∑
i≥0 vi for (vi)i≥0 will sometimes apply.

Remark 2.34. We have the following remarks.

1. The operation · on T (V ) is the only bilinear operation on T (V ) whose
restriction to Tk−j ×Tj coincides with the map

Tk−j(V )×Tj(V ) � (vk−j , wj) �→ vk−j ⊗ wj ∈ Tk(V ),

for every k ∈ N ∪ {0} and every j = 0, . . . , k. Equivalently, it holds that
v ·w = v⊗w, whenever v ∈ Ti(V ) and Tj(V ) for some i, j ≥ 0. Note that
T (V ) is generated, as an algebra, by the elements of V (or of a basis of V )
through iterated ⊗ operations (or equivalently, iterated · operations).

2. The name “tensor algebra” is motivated by the fact that (T (V ), ·) is a
unital associative algebra. The unit is 1K ∈ T0(V ). As for the other axioms of
UA algebra, we leave them all to the Reader, apart from the associativity
of ·, which we prove explicitly as follows:

(ui)i≥0 ·
(
(vi)i≥0 · (wi)i≥0

)
= (ui)i≥0 ·

( i∑

j=0

vi−j ⊗ wj

)

i≥0

=

(
i∑

h=0

ui−h ⊗
( h∑

j=0

vh−j ⊗ wj

)
)

i≥0

=

(
i∑

h=0

h∑

j=0

ui−h ⊗ vh−j ⊗ wj

)

i≥0

(we interchange the sums and then rename the dummy index h− j =: k)

=

(
i∑

j=0

i∑

h=j

· · ·
)

i≥0

=

(
i∑

j=0

i−j∑

k=0

ui−j−k ⊗ vk ⊗ wj

)

i≥0

=

( i∑

j=0

(
(ui)i≥0 · (vi)i≥0

)
i−j

⊗ wj

)

i≥0

=
(
(ui)i≥0 · (vi)i≥0

)
· (wi)i≥0.

3. By the very definition of T (V ), we have

T (V ) =
⊕

i≥0

Ti(V ), and Ti(V ) · Tj(V ) ⊆ Ti+j(V ) for every i, j ≥ 0.

(2.28)

In particular, T (V ) is a graded algebra. We next introduce a notation which
will be used repeatedly in the sequel: for k ∈ N ∪ {0} we set

Uk(V ) :=
⊕

i≥k

Ti(V ), T+(V ) := U1(V ) =
⊕

i≥1

Ti(V ). (2.29)
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The notation Uk,T+ will also apply. We have the following properties:

a. Every Uk is an ideal in T (V ) containing Tk(V ).
b. T (V ) = U0(V ) ⊃ U1(V ) ⊃ · · ·Uk(V ) ⊃ Uk+1(V ) ⊃ · · · .
c. Ui(V ) · Uj(V ) ⊆ Ui+j(V ), for every i, j ≥ 0.
d.
⋂

i≥0 Ui(V ) = {0} and, more generally,
⋂

i≥k Ui(V ) = {0} for every k ∈
N ∪ {0}.

Note that T+(V ) (also, any Uk(V ) with k ≥ 1) is an associative algebra
with the operation ·, but it is not a unital associative algebra.

Proposition 2.35 (Basis of the Tensor Algebra). Let V be a vector space and
let B = {ei}i∈I be a basis of V . Then the following facts hold:

1. For every fixed k ∈ N, the system Bk :=
{
ei1 ⊗ · · · ⊗ eik

∣
∣ i1, . . . , ik ∈ I

}
is a

basis of Tk(V ) (which we call induced by B).
2. The system

{1K} ∪
⋃

k∈N
Bk =

{
1K , ei1 ⊗ · · · ⊗ eik

∣
∣
∣ k ∈ N, i1, . . . , ik ∈ I

}

is a basis of T (V ) (which we call induced by B).

Proof. (1) follows from Theorem 2.31, whilst (2) follows from (1) together
with Proposition 2.9. ��
Remark 2.36. Also, the following are systems of generators for T (V ):

{1K} ∪
{
vn1 ⊗ · · · ⊗ vnn where n ∈ N, vni ∈ V for i ≤ n

}
;

and
{(

1K, v
1
1 , v

2
1 ⊗ v22 , v

3
1 ⊗ v32 ⊗ v33 , . . . , v

n
1 ⊗ · · · ⊗ vnn , 0, . . .

)
,

where n ∈ N, vji ∈ V for every j ≤ n and i ≤ j

}

.

Remark 2.37. The previous remark shows that V generates T+(V ) as an
algebra and that the set {1K} ∪ V generates T (V ) as an algebra. (Indeed, if
v1, . . . , vn ∈ V we have v1 · . . . · vn = v1 ⊗ · · · ⊗ vn.)

Together with the fact that χ(X) generates K〈X〉 as a vector space, we
get that {1K}∪χ(X) generates T (K〈X〉) as an algebra (and χ(X) generates
T+(K〈X〉)). By identifying X and χ(X), this last fact amounts simply to
saying that the letters of X and the unit 1K generate T (K〈X〉), the free UA
algebra of the words on X .

The following result will be used again and again in this Book.

Theorem 2.38 (Universal Property of the Tensor Algebra).
Let V be a vector space.
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(i) For every associative algebra A and every linear map f : V → A, there exists
a unique algebra morphism f : T+(V ) → A prolonging f , thus making the
following a commutative diagram:

V
f

��
� �

ι

��

A

T+(V )

f

��������������

(ii) For every unital associative algebra A and every linear map f : V → A, there
exists a unique UAA morphism f : T (V ) → A prolonging f , thus making
the following a commutative diagram:

V
f

��
� �

ι

��

A

T (V )

f

��������������

(iii) Vice versa, suppose W,ϕ are respectively a UA algebra and a linear map ϕ :
V →W with the following property: For every UA algebra A and every linear
map f : V → A, there exists a unique UAA morphism fϕ : W → A such
that

fϕ(ϕ(v)) = f(v) for every v ∈ V , (2.30)

thus making the following a commutative diagram:

V
f

��

ϕ

��

A

W

fϕ

�������������

Then W is canonically isomorphic, as UA algebra, to T (V ), the isomorphism
being (see the notation in (ii) above) ϕ : T (V ) → W and its inverse being
ιϕ : W → T (V ). Furthermore, ϕ is injective and W is generated, as an
algebra, by the set {1W } ∪ ϕ(V ). Actually it holds that ϕ = ϕ ◦ ι. Finally we
have W � T (ϕ(V )), canonically.
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Proof. Explicitly, if � is the operation on A, f in (i) is the unique linear map
such that

f(v1 ⊗ · · · ⊗ vk) = f(v1) � · · · � f(vk), (2.31)

for every k ∈ N and every v1, . . . , vk ∈ V . Also, if eA is the unit of the UA
algebra A, the map f in (ii) is the unique linear map such that

f(1K) = eA, f(v1 ⊗ · · · ⊗ vk) = f(v1) � · · · � f(vk), (2.32)

for every k ∈ N and every v1, . . . , vk ∈ V . For the proof of this theorem, see
page 404 in Chap. 7. ��
Remark 2.39. Let V,W be two isomorphic vector spaces with isomorphism
Ψ : V → W . Then T (V ) and T (W ) are isomorphic as UA algebras, via the
UAA isomorphism Ψ̃ : T (V ) → T (W ) such that Ψ̃(v) = Ψ(v) for every
v ∈ V and

Ψ̃(v1 ⊗ · · · ⊗ vk) = Ψ(v1)⊗ · · · ⊗ Ψ(vk), (2.33)

for every k ∈ N and every v1, . . . , vk ∈ V . [Indeed, the above map Ψ̃ is the

unique UAA morphism prolonging the linear map V Ψ−→W ↪→ T (W ); Ψ̃ is
an isomorphism, for its inverse is the unique UAA morphism from T (W )

to T (V ) prolonging the linear map W
Ψ−1−→ V ↪→ T (V ).]

The following theorem describes one of the distinguished properties of
T (V ) as the “container” of several of our universal objects (we shall see
later that it contains the free Lie algebra of V and the symmetric algebra of
V , too).

Theorem 2.40 (T (K〈X〉) is isomorphic to Libas(X)). Let X be any set and
K a field.

(1). The tensor algebra T (K〈X〉) of the free vector space K〈X〉 is isomorphic,
as UA algebra, to Libas(X), the free unital associative algebra over X . As a
(canonical) UAA isomorphism, we can consider the linear map Ψ : T (K〈X〉) →
Libas(X) such that6

Ψ(x1 ⊗ · · · ⊗ xk) = x1. · · · .xk, for every k ∈ N and every x1, . . . , xk ∈ X,

and such that Ψ(1K) = e, e being the unit of Libas(X).
(2). More precisely, the couple (T (K〈X〉), ϕ) satisfies the universal property

of the free UA algebra over X , where ϕ : X → T (K〈X〉) denotes the canonical
injection

X
χ−→ K〈X〉 ι

↪→ T (K〈X〉).

6Here we are thinking of X (respectively, Mo(X)) as a subset of K〈X〉 ↪→ T (K〈X〉) (of
K〈Mo(X)〉 = Libas(X), respectively).
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This means that, for every UA algebra A and every function f : X → A, there
exists a unique UAA morphism fϕ : T (K〈X〉)→ A with the following property

fϕ(ϕ(x)) = f(x), for every x ∈ X, (2.34)

thus making the following a commutative diagram:

X
f

��

ϕ

��

A

T (K〈X〉)
fϕ

���������������

Proof. In view of Theorem 2.28-(ii), it is enough to show that the above
couple (T (K〈X〉), ϕ) satisfies the universal property of the free UA algebra
over X . With this aim, let A be a UA algebra and let f : X → A be any
map. By Theorem 2.6-(i), there exists a linear map fχ : K〈X〉 → A such that
fχ(χ(x)) = f(x) for every x ∈ X . Then, by Theorem 2.38-(ii), there exists a
UAA morphism fχ : T (K〈X〉) → A such that fχ(ι(v)) = fχ(v), for every
v ∈ K〈X〉. Setting fϕ := fχ, one obviously has

fϕ(ϕ(x)) = fχ((ι ◦ χ)(x)) = fχ(χ(x)) = f(x), ∀ x ∈ X.

Moreover fϕ is the unique UAA morphism such that fϕ(ϕ(x)) = f(x), for
every x ∈ X , since ϕ(X) = χ(X) and {1} ∪ χ(X) generates T (K〈X〉), as an
algebra.

By Theorem 2.28-(ii), we thus have T (K〈X〉) � Libas(X) via the (unique)
UAA isomorphism Ψ : T (K〈X〉) → Libas(X) mapping x ≡ χ(x) ∈ K〈X〉
into x ≡ χ(x) ∈ K〈Mo(X)〉. The theorem is proved. ��

2.1.3.1 Tensor Product of Algebras

Let (A,�) and (B,�) be two UA algebras (over K). We describe a natural
way to equip A ⊗ B with a UA algebra structure. Consider the Cartesian
product A×B ×A×B and the map

F : A×B ×A×B → A⊗B, (a1, b1, a2, b2) �→ (a1 � a2)⊗ (b1 � b2).

We fix (a2, b2) ∈ A × B and we consider the restriction of F defined by
A × B � (a1, b1) �→ F (a1, b1, a2, b2). This map is clearly bilinear. Hence, by
the universal property of the tensor product in Theorem 2.30, there exists a
unique linear map Ga2,b2 : A⊗ B → A⊗B such that

Ga2,b2(a⊗b)=F (a, b, a2, b2)=(a�a2)⊗(b�b2), ∀ (a, b) ∈ A×B. (2.35)
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Then we fix c1 ∈ A⊗B and we consider the map

αc1 : A×B → A⊗B, (a2, b2) �→ Ga2,b2(c1).

It is not difficult to prove that this map is bilinear. Hence, again by Theorem
2.30, there exists a unique linear map βc1 : A⊗B → A⊗B such that

βc1(a⊗ b) = αc1(a, b) = Ga,b(c1), ∀ (a, b) ∈ A×B. (2.36)

Furthermore, we set

H : (A⊗B)× (A⊗B)→ A⊗B, H(c1, c2) := βc1(c2).

By (2.35) and (2.36), we have H(a1 ⊗ b1, a2 ⊗ b2) = (a1 � a2) ⊗ (b1 � b2).
Finally, we define a composition • on A⊗B as follows:

c1 • c2 := H(c1, c2), ∀ c1, c2 ∈ A⊗B.

With the above definitions, we have the following fact:

(A⊗B, •) is a unital associative algebra.
The (tedious) proof of this fact is omitted: the Reader will certainly have no
problem in deriving it. Hence, the following result follows:

Proposition 2.41. Let (A,�) and (B,�) be two UA algebras (over K). Then
A ⊗ B can be equipped with a UA algebra structure by an operation • which is
characterized (in a unique way) by its action on elementary tensors as follows:

(a1⊗b1)•(a2⊗b2) = (a1�a2)⊗(b1�b2), ∀ (a1⊗b1), (a2⊗b2) ∈ A⊗B. (2.37)

2.1.3.2 The Algebra T (V ) ⊗ T (V )

Let V be a vector space. Following the above section, the tensor product
T (V )⊗T (V ) can be equipped with a UA algebra structure by means of the
operation • such that

(a⊗b)• (a′⊗b′) = (a ·a′)⊗ (b ·b′), (a, b), (a′, b′) ∈ T (V )⊗T (V ), (2.38)

where · is as in (2.27). Obviously, extended by bilinearity to T (V ) ⊗ T (V ),
(2.38) characterizes •. For any i, j ∈ N ∪ {0}, we set7

Ti,j(V ) := Ti(V )⊗Tj(V ) (as a subset of T (V )⊗T (V )). (2.39)

7The Reader will have care, this time, not to identify

Ti(V )⊗ Tj(V ) = V ⊗ · · · ⊗ V
︸ ︷︷ ︸

i times

⊗V ⊗ · · · ⊗ V
︸ ︷︷ ︸

j times

with V ⊗ · · · ⊗ V
︸ ︷︷ ︸

i + j times

,

as we had to do in Definition 2.33.
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Given T =
⊕

i≥0 Ti, one obviously has

T (V )⊗T (V ) =
⊕

i,j≥0

Ti,j(V ). (2.40)

Thanks to the definition of • in (2.38), it holds that

Ti,j(V ) •Ti′,j′(V ) ⊆ Ti+i′,j+j′ (V ), ∀ i, j, i′, j′ ≥ 0. (2.41)

Occasionally, we will also invoke the following direct-sum decomposition:

T (V )⊗T (V ) =
⊕

k≥0

Kk(V ), where Kk(V ) :=
⊕

i+j=k

Ti,j(V ). (2.42)

More explicitly,

T (V )⊗T (V ) =

= T0 ⊗T0︸ ︷︷ ︸
T0,0

⊕T1 ⊗T0︸ ︷︷ ︸
T1,0

⊕T0 ⊗T1︸ ︷︷ ︸
T0,1

⊕T2 ⊗T0︸ ︷︷ ︸
T2,0

⊕T1 ⊗T1︸ ︷︷ ︸
T1,1

⊕T0 ⊗T2︸ ︷︷ ︸
T0,2

⊕ · · ·

= T0 ⊗T0︸ ︷︷ ︸
K0

⊕ (T1 ⊗T0 ⊕T0 ⊗T1)
︸ ︷︷ ︸

K1

⊕ (T2 ⊗T0 ⊕T1 ⊗T1 ⊕T0 ⊗T2)
︸ ︷︷ ︸

K2

⊕ · · ·

In particular, with the decomposition (2.42), T (V )⊗T (V ) is a graded algebra:
Indeed, (2.41) proves that

Kk(V ) •Kk′(V ) ⊆ Kk+k′ (V ) for every k, k′ ≥ 0. (2.43)

We next introduce a notation analogous to (2.29), which will be used
repeatedly in the sequel: for k ∈ N ∪ {0} we set

Wk(V ) :=
⊕

i+j≥k

Ti,j(V ), (T ⊗T )+(V ) := W1(V ) =
⊕

i+j≥1

Ti,j(V ). (2.44)

Note that, with reference to Kk in (2.42), we have Wk(V ) =
⊕

i≥k Ki(V ), for
every k ≥ 0. The notation Wk, (T ⊗T )+ will also apply.

Remark 2.42. The following facts are easily seen to hold true:

1. Every Wk is an ideal in T (V )⊗T (V ) containing Ti,j(V ) for i+ j = k.
2. T ⊗T = W0(V ) ⊃W1(V ) ⊃ · · ·Wk(V ) ⊃Wk+1(V ) ⊃ · · · .
3. Wi(V ) •Wj(V ) ⊆Wi+j(V ), for every i, j ≥ 0.
4.
⋂

i≥0Wi(V ) = {0} and, more generally,
⋂

i≥k Wi(V ) = {0} for every k ∈
N ∪ {0}.
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To avoid confusion in the notation (as it appears from the note at page 81),
we decided to apply the following conventional notation:

Convention. When the tensor products in the sets Ti(V ) = V ⊗ · · · ⊗ V
(i times) and the tensor product of T (V ) ⊗ T (V ) simultaneously arise, with the
consequent risk of confusion, we use the larger symbol “

⊗
” for the latter.

For example, if u, v, w ∈ V then

(u⊗ v)
⊗

w ∈ T2,1(V ), whereas u
⊗

(v ⊗ w) ∈ T1,2(V ),

and the above tensors are distinct in T (V )⊗T (V ). Instead, (u⊗ v)⊗w and
u⊗ (v ⊗ w) denote the same element u⊗ v ⊗ w ∈ T3(V ) in T (V ).

Proposition 2.43 (Basis of T (V ) ⊗ T (V )). Let V be a vector space and let
B = {eh}h∈I be a basis of V . Then the following facts hold8:

1. For every fixed i, j ≥ 0, the system

Bi,j :=
{(
eh1 ⊗ · · · ⊗ ehi

)⊗(
ek1 ⊗ · · · ⊗ ekj

) ∣∣
∣ h1, . . . , hi, k1, . . . , kj ∈ I

}

is a basis of Ti,j(V ) (which we call induced by B).
2. The system

⋃
i,j≥0 Bi,j , i.e.,

{(
eh1 ⊗ · · · ⊗ ehi

)⊗(
ek1 ⊗ · · · ⊗ ekj

) ∣∣
∣ i, j ≥ 0, h1, . . . , hi, k1, . . . , kj ∈ I

}

is a basis of T (V )⊗T (V ) (which we call induced by B).

Proof. It follows from Theorem 2.31, and Propositions 2.9 and 2.35. ��
Remark 2.44. Thanks to Remark 2.36, the following is a system of generators
for T (V )⊗T (V ):

{(
u1 ⊗ · · · ⊗ ui

)⊗(
v1 ⊗ · · · ⊗ vj

) ∣∣
∣ i, j ≥ 0, u1, . . . , ui, v1, . . . , vj ∈ V

}
,

where the convention u1⊗· · ·⊗ui = 1K = v1⊗· · ·⊗vj applies when i, j = 0.

Following the decomposition in (2.40) (and the notation we used in direct
sums), an element of T ⊗ T will be also denoted with a double-sequence
styled notation:

(ti,j)i,j≥0, where ti,j ∈ Ti,j(V ) for every i, j ≥ 0.

8When i = 0, the term eh1
⊗ · · · ⊗ ehi has to be read as 1K.
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The notation (ti,j)i,j will equally apply (and there will be no need to specify
that ti,j ∈ Ti,j(V )). Then the • operation in (2.38) is recast in Cauchy form
as follows (thanks to (2.41)):

(ti,j)i,j • (t̃i,j)i,j =
( ∑

r+r̃=i, s+s̃=j

tr,s • t̃r̃,s̃
)

i,j≥0
. (2.45)

We now introduce a selected subspace of T ⊗ T , which will play a central
rôle in Chap. 3: we set

K :=
{
v ⊗ 1 + 1⊗ w

∣
∣ v, w ∈ V

} ⊂ T (V )⊗T (V ). (2.46)

Here and henceforth, 1 will denote the unit in K, which is also the identity
element of the algebra T (V ). By the bilinearity of ⊗, we have

K = T1,0(V )⊕T0,1(V ) = K1(V ). (2.47)

The following computations are simple consequences of (2.38):

(u1 ⊗ 1) • · · · • (ui ⊗ 1) = (u1 ⊗ · · · ⊗ ui)
⊗

1,

(1 ⊗ v1) • · · · • (1⊗ vj) = 1
⊗

(v1 ⊗ · · · ⊗ vj),
(2.48a)

(u1 ⊗ 1) • · · · • (ui ⊗ 1) • (1⊗ v1) • · · · • (1⊗ vj)

= (u1 ⊗ · · · ⊗ ui)
⊗

(v1 ⊗ · · · ⊗ vj),
(2.48b)

for every i, j ∈ N, and every u1, . . . , ui, v1, . . . , vj ∈ V . From (2.48b) and
Remark 2.44, we derive the next proposition:

Proposition 2.45. The following is a system of generators for T (V )⊗T (V ):

{
(u1⊗1)•· · ·•(ui⊗1)•(1⊗v1)•· · ·•(1⊗vj)

∣
∣
∣i, j ≥ 0, u1, . . . , ui, v1, . . . , vj ∈ V

}
,

where the convention u1 ⊗ · · · ⊗ ui = 1K = v1 ⊗ · · · ⊗ vj applies, when i, j = 0.
Moreover, if B = {eh}h∈I is a basis of V , the following is a basis of T (V )⊗T (V ):

{
1⊗ 1, (eh1 ⊗ 1) • · · · • (ehi ⊗ 1), (1 ⊗ ek1) • · · · • (1⊗ ekj ),

(eα1 ⊗ 1) • · · · • (eαa ⊗ 1) • (1⊗ eβ1) • · · · • (1⊗ eβb),

where i, j, a, b ∈ N and h1, . . . , hi, k1, . . . , kj , α1, . . . , αa, β1, . . . , βb ∈ I
}
.
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2.1.3.3 The Lie Algebra L(V )

The aim of this section is to describe another distinguished subset of T (V )
having important features in Lie Algebra Theory.

First the relevant definition.

Definition 2.46 (Free Lie Algebra Generated by a Vector Space). Let V be
a vector space and consider its tensor algebra (T (V ), ·). We equip T (V )
with the Lie algebra structure related to the corresponding commutator (see
Definition 2.16).

We denote by L(V ) the Lie algebra generated by the set V in T (V )
(according to Definition 2.13) and we call it the free Lie algebra generated
by V . Namely, L(V ) is the smallest Lie subalgebra of the (commutator-) Lie
algebra T (V ) containing V .

The above adjective “free” will be soon justified in Theorem 2.49 below
(though its proof requires a lot of work and will be deferred to Sect. 2.2). We
straightaway remark that we are not using the phrasing “free Lie algebra
over V ” (which, according to previous similar expressions in this Book,
would – and will – mean a free object over the set V ). All will be clarified
in Sect. 2.2.

Convention. To avoid the (proper) odd notation [u, v]· for the commu-
tator related to (T (V ), ·), we shall occasionally make use of the abuse of
notation [u, v]⊗ for u · v − v · u (when u, v ∈ T (V )). This notation becomes
particularly suggestive when applied to elementary tensors u, v of the form
w1 ⊗ · · · ⊗ wn, for in this case the · product coincides with ⊗.

Proposition 2.47. Let V be a vector space and let the notation in Definition 2.46
apply. We set L1(V ) := V and, for every n ∈ N, n ≥ 2,

Ln(V ) := [V · · · [V, V ] · · · ]
︸ ︷︷ ︸

n times

= span
{
[v1 · · · [vn−1, vn] · · · ]

∣
∣
∣ v1, . . . , vn ∈ V

}
.

(2.49)
Then Ln(V ) ⊆ Tn(V ) for every n ∈ N, and we have the direct sum decomposition

L(V ) =
⊕

n≥1 Ln(V ). (2.50)

In particular, the set V Lie generates L(V ). Moreover, L(V ) is a graded Lie algebra,
for it holds that

[Li(V ),Lj(V )] ⊆ Li+j(V ), for every i, j ≥ 1. (2.51)

Proof. From Theorem 2.15, we deduce that
⋃

n Ln(V ) spans L(V ) and that
(2.51) holds (see (2.11)). Finally, (2.50) follows from Ln(V ) ⊆ Tn(V ), which
can be proved by an inductive argument, starting from:
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[v1, v2] = v1 · v2 − v2 · v1 = v1 ⊗ v2 − v2 ⊗ v1 ∈ T2(V ),

holding for every v1, v2 ∈ V , and using (2.28). This ends the proof. ��
Remark 2.48. Let V,W be isomorphic vector spaces and let Ψ : V →W be an
isomorphism. Let Ψ̃ : T (V )→ T (W ) be the UAA isomorphism constructed
in Remark 2.39. We claim that

Ψ̃L := Ψ̃ |L(V ) : L(V )→ L(W ) is a Lie algebra isomorphism.

Indeed, since Ψ̃ is a UAA isomorphism, it is also a Lie algebra isomorphism,
when T (V ) and T (W ) are equipped with the associated commutator-alge-
bra structures (see Remark 2.17). As a consequence, the restriction of Ψ̃ to
L(V ) is a Lie algebra isomorphism onto Ψ̃(L(V )) (recall that L(V ) is a Lie
subalgebra of the commutator-algebra of T (V )). To complete the claim, we
have to show that Ψ̃(L(V )) = L(W ). To prove this, we begin by noticing
that (in view of (2.33) in Remark 2.39) Ψ̃L(v) = Ψ(v) for every v ∈ V and

Ψ̃L

(
[v1 · · · [vk−1, vk] · · · ]T (V )

)
= [Ψ(v1) · · · [Ψ(vk−1), Ψ(vk)] · · · ]T (W ),

(2.52)
for every k ∈ K and every v1, . . . , vk ∈ V . Here we have denoted by [·, ·]T (V )

the commutator related to the associative algebra T (V ) (and analogously
for [·, ·]T (W )). Now, (2.52) shows that Ψ̃(L(V )) ⊆ L(W ) (recall Proposition
2.47). To prove that “=” holds instead of “⊆”, it suffices to recognize that
the arbitrary element [w1 · · · [wk−1, wk] · · · ]T (W ) of L(W ) (where k ∈ K and
w1, . . . , wk ∈ V ) is the image via Ψ̃ of

[Ψ−1(w1) · · · [Ψ−1(wk−1), Ψ
−1(wk)] · · · ]T (V ).

Theorem 2.49 (Universal Property of L(V )). Let V be a vector space.

(i) For every Lie algebra g and every linear map f : V → g, there exists a unique
Lie algebra morphism f : L(V )→ g prolonging f , thus making the following
a commutative diagram:

V
f

��
� �

ι

��

g

L(V )

f

��������������

(ii) Conversely, suppose L,ϕ are respectively a Lie algebra and a linear map ϕ :
V → L with the following property: For every Lie algebra g and every linear
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map f : V → g, there exists a unique Lie algebra morphism fϕ : L→ g such
that

fϕ(ϕ(v)) = f(v) for every v ∈ V , (2.53)

thus making the following a commutative diagram:

V
f

��

ϕ

��

g

L

fϕ

��											

Then L is canonically isomorphic, as a Lie algebra, to L(V ), the isomorphism
being (see the notation in (i) above) ϕ : L(V ) → L and its inverse being
ιϕ : L → L(V ). Furthermore, ϕ is injective and L is Lie-generated by the
set ϕ(V ). Actually it holds that ϕ = ϕ ◦ ι. Finally we have L � L(ϕ(V )),
canonically.

Proof. Explicitly, if [·, ·]g is the Lie bracket of g, f in (i) is the unique linear
map such that

f
(
[v1 · · · [vk−1, vk]⊗ · · · ]⊗

)
= [f(v1) · · · [f(vk−1), f(vk)]g · · · ]g,

for every k ∈ N and every v1, . . . , vk ∈ V .
Unfortunately, the proof of this theorem requires the results of Sect. 2.2, on

the existence of Lie(X), the free Lie algebra related to a set X (together with
the characterization Lie(X) � L(K〈X〉)). Alternatively, it can be proved
by means of the fact that every Lie algebra g can be embedded in its
universal enveloping algebra U (g) (a corollary of the Poincaré-Birkhoff-
Witt Theorem, see Sect. 2.4). Hence, we shall furnish two proofs of Theorem
2.49, see pages 92 and 112. ��

2.2 Free Lie Algebras

The aim of this section is to prove the existence of the so-called free Lie
algebra Lie(X) related to a set X . Classically, the existence of Lie(X) follows
as a trivial corollary of a highly nontrivial theorem, the Poincaré-Birkhoff-
Witt Theorem. For a reason that will become apparent in later chapters
concerning with the CBHD Theorem, our aim here is to prove the existence
of Lie(X) without the aid of the Poincaré-Birkhoff-Witt Theorem.

Moreover, for the aims of this Book, it is also a central fact to obtain the
isomorphism of Lie(X) with L(K〈X〉), the smallest Lie subalgebra of the
tensor algebra over the free vector space K〈X〉.
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The main reference for the topics of this section is Bourbaki [27, Chapitre
II, §2 n.2 and §3 n.1]. Unfortunately, there is a feature in [27] which does not
allow us to simply rerun Bourbaki’s arguments: Indeed, the isomorphism
Lie(X) � L(K〈X〉) is proved in [27, Chapitre II, §3 n.1] as a consequence9

of the Poincaré-Birkhoff-Witt Theorem. So we are forced to present a new
argument, which bypasses this inconvenience.

To avoid confusion between the notion of free Lie algebra generated by a
vector space (see Definition 2.46) and the new notion – we are giving here –
of free Lie algebra related to a set, we introduce dedicated notations.

Definition 2.50 (Free Lie Algebra Related to a Set). Let X be any set. We
say that the couple (L,ϕ) is a free Lie algebra related to X , if the following
facts hold: L is a Lie algebra and ϕ : X → L is a map such that, for every
Lie algebra g and every map f : X → g, there exists a unique Lie algebra
morphism fϕ : L→ g, such that the following fact holds

fϕ(ϕ(x)) = f(x) for every x ∈ X , (2.54)

thus making the following a commutative diagram:

X
f

��

ϕ

��

g

L

fϕ

��												

If, in the above definition, X ⊂ L (set-theoretically) and ϕ = ι is the set
inclusion, we say that (L, ι) is a free Lie algebra over X .

By abuse, if (L,ϕ) (respectively, (L, ι)) is as above, we shall also say that
L itself is a free Lie algebra related to X (respectively, a free Lie algebra
over X). It is easily seen that any two free Lie algebras related to X are
canonically isomorphic. More precisely, the following facts hold.

Proposition 2.51. Let X be a nonempty set.

1. If (L1, ϕ1), (L2, ϕ2) are two free Lie algebras related to the same set X , then
L1, L2 are isomorphic Lie algebras via the isomorphisms (inverse to each other)
ϕϕ1

2 : L1 → L2, ϕϕ2

1 : L2 → L1 and ϕ2 ≡ ϕϕ1

2 ◦ ϕ1 (analogously, ϕ1 ≡
ϕϕ2

1 ◦ ϕ2).

9See [27, Chapitre II, §3, n.1, Théorème 1] where it is employed [25, Chapitre I, §2, n.7,
Corollaire 3 du Théorème 1] which is the Poincaré-Birkhoff-Witt Theorem.
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2. If (L1, ϕ1) is a free Lie algebra related to X , if L2 is a Lie algebra isomorphic to
L1 and ψ : L1 → L2 is a Lie algebra isomorphism, then (L2, ϕ2) is another free
Lie algebra related to X , where ϕ2 := ψ ◦ ϕ1.

Proof. (1). As usual, it suffices to consider the commutative diagrams

X
ϕ2

��

ϕ1

��

L2

L1

ϕ
ϕ1
2

�������������

X
ϕ1

��

ϕ2

��

L1

L2

ϕ
ϕ2
1

�������������

and to show that the diagonal arrows in the following commutative dia-
grams are respectively “closed” by the maps ϕϕ2

1 ◦ ϕϕ1

2 and ϕϕ1

2 ◦ ϕϕ2

1 :

X
ϕ1

��

ϕ1

��

L1

L1

idL1

�������������

X
ϕ2

��

ϕ2

��

L2

L2

idL2

�������������

We conclude by the uniqueness of the “closing” morphism, as stated in the
definition of free Lie algebra related to X . Part (2) of the proposition is a
simple verification. ��
We next turn to the actual construction of a free Lie algebra related to the
set X . First we need some preliminary results.

Whereas ideals are usually defined in an associative setting, we need the
following (non-standard) definition.

Definition 2.52 (Magma Ideal). Let (M, ∗) be an algebra (not necessarily
associative).

1. We say that S ⊆ M is a magma ideal in M , if S is a subspace of the vector
spaceM such that s∗m andm∗s belong to S, for every s ∈ S andm ∈M .

2. Let A be any subset of M . The smallest magma ideal in M containing A
is called the magma ideal generated by A.

With the above definition, it is evident that the magma ideal generated by A
coincides with

⋂
S, where the intersection runs over the magma ideals S in

M containing A.

Up to the end of this section, X will denote a fixed set. Let us now
consider Lib(X), i.e., the free non-associative algebra over X , introduced in
Sect. 2.1.2 (see (2.17)). We shall denote its operation by ∗, recalling that this
is the bilinear map extending the operation of the free magma (M(X), .)
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(and that Lib(X) is the free vector space of the formal linear combinations
of elements of M(X)). Let us introduce the subset of Lib(X) defined as

A :=
{
Q(a), J(a, b, c)

∣
∣ a, b, c ∈ Lib(X)

}
, where

Q(a) := a ∗ a, J(a, b, c) := a ∗ (b ∗ c) + b ∗ (c ∗ a) + c ∗ (a ∗ b). (2.55)

We henceforth denote by a the magma ideal in Lib(X) generated by A,
according to Definition 2.52. We next consider the quotient vector space

Lie(X) := Lib(X)/a, (2.56)

and the associated natural projection

π : Lib(X)→ Lie(X), π(t) := [t]a. (2.57)

Then the following fact holds:

Proposition 2.53. With all the above notation, the map [·, ·] : Lie(X) → Lie(X)
defined by

[π(a), π(b)] := π(a ∗ b) for every a, b ∈ Lib(X), (2.58)

is well posed and it endows Lie(X) with a Lie algebra structure. Moreover, the
map π in (2.57) is an algebra morphism (when we consider Lie(X) as an algebra
with the binary bilinear operation Lie(X)× Lie(X) � (�, �′) �→ [�, �′] ∈ Lie(X)).

Proof. The well posedness of [·, ·] follows from a being a magma ideal10,
while the fact that it endows Lie(X) with a Lie algebra structure is a simple
consequence11 of the definition of A. Finally, π is an algebra morphism
because it is obviously linear (Lie(X) is a quotient vector space and π is
the associated projection!) and it satisfies (2.58). ��
The Reader will take care not to confuse Lie(X) with Lie{X} (the latter being
the smallest Lie subalgebra – of some Lie algebra g – containing X , in case
X is a subset of a pre-existing Lie algebra g). Obviously, there is an expected
meaning for the similarity of the notation, which will soon be clarified (see
Remark 2.55 below). We are ready to state the important fact that Lie(X) is
a free Lie algebra related to X .

10Indeed, if π(a) = π(a′) and π(b) = π(b′) there exist α, β ∈ a such that a′ = a + α,
b′ = b+β. Hence a′ ∗ b′ = a ∗ b+a ∗β+α ∗ b+α ∗β ∈ a ∗ b+a ∗a+ a ∗ b+ a ∗ a ⊆ a∗ b+ a,
so that π(a′ ∗ b′) = π(a ∗ b).
11For example, the Jacobi identity follows from [π(a), [π(b), π(c)]] = π(a ∗ (b ∗ c)) so that
[π(a), [π(b), π(c)]] + [π(b), [π(c), π(a)]] + [π(c), [π(a), π(b)]] = π(J(a, b, c)) = 0.
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Theorem 2.54 (Lie(X) is a Free Lie Algebra Related to X). Let X be any set
and, with the notation in (2.56) and (2.57), let us consider the map

ϕ : X → Lie(X), x �→ π(x), (2.59)

i.e.,12, ϕ ≡ π|X . Then the following facts hold:

1. The couple (Lie(X), ϕ) is a free Lie algebra related to X (see Definition 2.50).
2. The set {ϕ(x)}x∈X is independent in Lie(X), whence ϕ is injective.
3. The set ϕ(X) Lie-generates Lie(X), that is, the smallest Lie subalgebra of

Lie(X) containing ϕ(X) coincides with Lie(X).

Proof. See Sect. 8.1 (page 459) in Chap. 8. ��
Remark 2.55. Part 3 of the statement of Theorem 2.54 says that Lie{ϕ(X)} =
Lie(X), the former being meant as the smallest subalgebra – of the latter –
containing X (see Definition 2.13). This fact, together with the identification
X ≡ ϕ(X) (this is possible due to part 2 of Theorem 2.54) says that

Lie{X} ≡ Lie(X)

(which is extremely convenient given the abundance of notation for free Lie
algebras generated by a set!).

Here is another (very!) desirable result concerning free Lie algebras.

Theorem 2.56 (The Isomorphism L(K〈X〉) � Lie(X)). Let X be any set and
consider the free vector space K〈X〉 over X . Consider also L(K〈X〉), the smallest
Lie subalgebra of T (K〈X〉) containing X .

Then L(K〈X〉) and Lie(X) are isomorphic, as Lie algebras. More precisely, the
pair (L(K〈X〉), χ) is a free Lie algebra related to X .

When, occasionally, we shall allow ourselves to identify X with the subset
χ(X) of K〈X〉 (via the injective map χ), the map χ : X → L(K〈X〉) becomes
the map of set inclusion, whence Theorem 2.56 will permit us to say that
L(K〈X〉) is a free Lie algebra over X .

Proof. If ϕ is as in (2.59), we know from Theorem 2.54 that (Lie(X), ϕ) is a
free Lie algebra related to X . Hence, considering the map X � x �→ χ(x) ∈
L(K〈X〉), there exists a unique Lie algebra morphism (see the notation in
Definition 2.50) χϕ, say f for short, such that

f : Lie(X)→ L(K〈X〉) and f(ϕ(x)) = χ(x), for every x ∈ X . (2.60)

We claim that f is a Lie algebra isomorphism. This claim is proved in Sect. 8.1 in
Chap. 8 (precisely in Corollary 8.6, page 469). Hence, by Proposition 2.51-2,

12More precisely, the map ϕ is the composition

X
ι−→ M(X)

χ−→ Lib(X)
π−→ Lie(X).

Via the identification X ≡ χ(X)
ι−→ Lib(X) we can write ϕ ≡ π|X .
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(L(K〈X〉), ϕ2) is a free Lie algebra related to X , with ϕ2 = f ◦ ϕ ≡ χ on X
(where we also used (2.60)). ��
Collecting together Theorems 2.54 and 2.56 (and Definition 2.50), we can
deduce that, if X is any set, g any Lie algebra and f : X → g any map, there
exist Lie algebra morphisms

fϕ : Lie(X)→ g, fχ : L(K〈X〉)→ g

such that

fϕ(ϕ(x)) = f(x) = fχ(χ(x)), ∀ x ∈ X

and, more explicitly, these morphisms act – on typical elements of their
respective domains – as follows:

fϕ
(
[ϕ(x1) · · · [ϕ(xk−1), ϕ(xk)]Lie(X) · · · ]Lie(X)

)

= fχ
(
[χ(x1) · · · [χ(xk−1), χ(xk)]⊗ · · · ]⊗

)

= [f(x1) · · · [f(xk−1), f(xk)]g · · · ]g,
for every x1, . . . , xk ∈ X and every k ∈ N. Here

[·, ·]Lie(X), [·, ·]⊗, [·, ·]g
are, respectively, the Lie brackets of Lie(X), of L(K〈X〉) (with Lie bracket
inherited from the commutator on T (K〈X〉)) and of g.

With Theorem 2.56 at hand, we are ready to provide the following:

Proof (of Theorem 2.49, page 86). Since (ii) is standard, we restrict our attention
to the proof of (i). Let g be a Lie algebra and let f : V → g be any linear
map. We have to prove that there exists a unique Lie algebra morphism
f : L(V ) → g prolonging f . Since L(V ) is Lie-generated by V (see e.g.,
Proposition 2.47) the uniqueness of f will follow from its existence. To prove
this latter fact, we make use of a basis of V (the “non-canonical” nature of
this argument being completely immaterial). See also the diagram below:

V
f

��
� �

��

g

L(V )

f












		













Ψ̃L

��

L(K〈B〉)

(f |B)χ

������������������������������
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With this aim, let B = {bi}i∈I be a basis of V . Then V is isomorphic (as
a vector space) to the free vector space K〈B〉, via the (unique) linear map
Ψ : V → K〈B〉 mapping bi ∈ V into χ(bi) ∈ K〈B〉 for every i ∈ I (recall the
notation in (2.2)): more explicitly

Ψ
(∑

i∈I′ λi bi
)
=
∑

i∈I′ λi χ(bi), (2.61)

where I′ is any finite subset of I and the coefficients λi are arbitrary scalars.
Since Ψ : V → K〈B〉 is an isomorphism, by Remark 2.48 we can deduce that
L(V ) and L(K〈B〉) are isomorphic via the unique LA isomorphism Ψ̃L :
L(V )→ L(K〈B〉) such that

Ψ̃L(v) = Ψ(v), for every v ∈ V . (2.62)

Since the pair (L(K〈B〉), χ) is a free Lie algebra related to B (see Theorem
2.56), considering the map f |B : B → g, there exists an LA morphism
(f |B)χ : L(K〈B〉) → g such that

(f |B)χ(χ(bi)) = f(bi), ∀ i ∈ I. (2.63)

We claim that f := (f |B)χ ◦ Ψ̃L : L(V ) → g prolongs f (see the diagram
above). Indeed, if v ∈ V , say v =

∑
i∈I′ λi bi, we have

f(v) = (f |B)χ(Ψ̃L(v))
(2.62)
= (f |B)χ(Ψ(v)) (2.61)

= (f |B)χ
(∑

i∈I′ λi χ(bi)
)

(2.63)
=
∑

i∈I′ λi f(bi) = f
(∑

i∈I′ λi bi
)
= f(v).

This ends the proof. ��

2.3 Completions of Graded Topological Algebras

The aim of this section is to equip a certain class of algebras A with a
topology endowing A with the structure of a topological algebra. It will
turn out that a structure of metric space will also be available in this setting.
Then we shall describe the general process of completion of a metric space.
Finally, we shall focus on graded algebras and the concept of formal power
series will be closely investigated. All these topics will be of relevance when
we shall deal with the CBHD Formula (and convergence aspects concerned
with it).
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2.3.1 Topology on Some Classes of Algebras

Definition 2.57. Let (A, ∗) be an associative algebra. We say that {Ωk}k∈N is
a topologically admissible family in A if the sets Ωk are subsets of A satisfying
the properties:

(H1.) Ωk is an ideal of A, for every k ∈ N.
(H2.) Ω1 = A and Ωk ⊇ Ωk+1, for every k ∈ N.
(H3.) Ωh ∗Ωk ⊆ Ωh+k, for every h, k ∈ N.
(H4.)

⋂
k∈NΩk = {0}.

The main aim of this section is to prove the following theorem.

Theorem 2.58. Let (A, ∗) be an associative algebra and suppose that {Ωk}k∈N is
a topologically admissible family of subsets of A. Then the family

∅ ∪
{
a+Ωk

}

a∈A, k∈N
(2.64)

is a basis for a topology Ω on A endowing A with the structure of a topological
algebra.13 Even more, the topology Ω is induced by the metric d : A×A→ [0,∞)
defined as follows (exp(−∞) := 0 applies)

d(x, y) := exp(−ν(x− y)), for all x, y ∈ A, (2.65)

where ν : A → N ∪ {0,∞} is defined by ν(z) := sup
{
n ≥ 1

∣
∣ z ∈ Ωn

}
, or more

precisely

ν(z) :=

{
if z �= 0, max

{
n ≥ 1

∣
∣ z ∈ Ωn

}

if z = 0, ∞.
(2.66)

The triangle inequality for d holds in the stronger form14:

d(x, y) ≤ max{d(x, z), d(z, y)}, for every x, y, z ∈ A. (2.67)

Proof. See page 407 in Chap. 7. ��

13We recall that a topological algebra is a pair (A,Ω) where (A,+, ∗) is an algebra and Ω
is a topology on A such that the maps

A×A 	 (a, b) �→ a+ b, a ∗ b ∈ A, K×A 	 (k, a) �→ k a ∈ A

are continuous (with the associated product topologies, K being equipped with the
discrete topology) and such that (A,Ω) is a Hausdorff topological space.
14A metric space (A, d) whose distance satisfies (2.67) (called the strong triangle inequality
or ultrametric inequality) is usually referred to as an ultrametric space. Hence, a topologically
admissible family of subsets of an algebra A endows A with the structure of an ultrametric
space.



2.3 Completions of Graded Topological Algebras 95

Remark 2.59. In the notation of the previous theorem, (2.67) easily implies
the following peculiar fact: A sequence {an}n in A is a Cauchy sequence in
(A, d) if and only if limn→∞ d(an, an+1) = 0.

Indeed, given a sequence {an}n in A, as a consequence of (2.67) the
following telescopic estimate applies, for every n, p ∈ N:

d(an, an+p) ≤ max{d(an, an+1), d(an+1, an+p)}
≤ max

{
d(an, an+1),max{d(an+1, an+2), d(an+2, an+p)}

}

= max
{
d(an, an+1), d(an+1, an+2), d(an+2, an+p)

}

(after finitely many steps)

≤ max
{
d(an, an+1), d(an+1, an+2), . . . , d(an+p−1, an+p)

}
.

This shows that {an}n is a Cauchy sequence in (A, d) if and only if

lim
n→∞ d(an, an+1) = 0.

Definition 2.60. If A is an associative algebra and if {Ωk}k∈N is a topolog-
ically admissible family of subsets of A, the topology Ω (respectively, the
metric d) in Theorem 2.58 will be called the topology on A induced by {Ωk}k∈N

(respectively, the metric on A induced by {Ωk}k∈N).

Remark 2.61. When A is an associative algebra and d is the metric on
A induced by a topologically admissible family {Ωk}k∈N, we have the
following algebraic properties of the metric d in (2.65) (proved in due course
within Chap. 7, see page 415):

1. d(x, y) = d(x+ z, y + z), for every x, y, z ∈ A.
2. d(k x, k y) = d(x, y), for every k ∈ K \ {0} and every x, y ∈ A.
3. d(x ∗ y, ξ ∗ η) ≤ max{d(x, ξ), d(y, η)}, for every x, y, ξ, η ∈ A.

Remark 2.62. In the notation of Theorem 2.58, we have the following fact:
A sequence {an}n in A is a Cauchy sequence in the metric space (A, d) sequence if
and only if limn→∞(an+1 − an) = 0.

Consequently, a series
∑∞

n=1 an consisting of elements in A is a Cauchy
sequence in (A, d) if and only if limn→∞ an = 0 in (A, d).

Indeed, by Remark 2.59 {an}n is Cauchy in (A, d) iff limn→∞d(an, an+1) = 0.
In its turn, by (1) in Remark 2.61, we see that this latter fact coincides with
limn→∞ d(0, an+1 − an) = 0. Finally, this is the definition of limn→∞(an+1 −
an) = 0 in (A, d).

The above remark shows how different are the metrics in Theorem 2.58
(indeed, all ultrametrics), if they are compared to the usual Euclidean metric
in Rn, where the above facts are false (as shown by the trivial example∑∞

n=1 1/n =∞ in the usual Euclidean space R).
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Remark 2.63. With the notation of Theorem 2.58, by unraveling the
definition of d we have that, for two points x, y ∈ A and a positive real
number ε, the condition d(x, y) < ε is equivalent to sup

{
n ≥ 1

∣
∣ z ∈ Ωn

}
>

ln(1/ε), that is,

(
x, y ∈ A d(x, y) < ε

) ⇐⇒
(

there exists n ∈ N, with n > ln(1/ε)

such that x− y ∈ Ωn

)

.

(2.68)

Example 2.64. Before proceeding, we make explicit some examples of topo-
logically admissible families, useful for the sequel.

1. Let (A, ∗) be an associative algebra and let I ⊆ A be an ideal. Let us set
Ω0 := A and, for k ∈ N, let

Ωk := ideal generated by {I ∗ · · · ∗ I (k times)}

=

{
set of the finite sums of elements of the form r ∗ i1 ∗ · · · ∗ ik ∗ ρ

where r, ρ ∈ A and i1, . . . , ik ∈ I

}

.

Then it is easily seen that the family {Ωk}k≥0 fulfils hypotheses (H1),
(H2) and (H3) in Definition 2.57. Hence, whenever {Ωk}k≥0 fulfils also
hypothesis (H4), it is a topologically admissible family in A.

2. Suppose (A, ∗) is an associative algebra which is also graded (see Defini-
tion 2.11). We set A+ :=

⊕∞
j=1 Aj . Also, let Ω0 := A and, for k ∈ N,

Ωk := span
{
a1 ∗ · · · ∗ ak

∣
∣ a1, . . . , ak ∈ A+

}
.

It is not difficult to show that {Ωk}k≥0 is a topologically admissible family
in A. For example, we prove (H4): First note that Ωk ⊆

⊕∞
j=k Aj for any

k ∈ N ∪ {0} (indeed equality holds); hence we have

{0} ⊆ ⋂k≥0Ωk ⊆
⋂

k≥0

⊕∞
j=k Aj = {0}.

The last equality is proved as follows: if a ∈ A and a �= 0, then we can
write a =

∑N
i=1 ai with ai ∈ Ai and aN �= 0; in this case a /∈⊕∞

j=N+1Aj

and the assertion follows. Note that also

Ωk =
⊕

j≥k Aj , ∀ k ∈ N ∪ {0}. (2.69)

As for hypotheses (H1)-(H2)-(H3), they follow by the previous Example 1,
since it can be easily seen that, for all k ∈ N,

Ωk = ideal generated by {A+ ∗ · · · ∗A+ (k times)}. (2.70)

3. Let V be a vector space and let A = T (V ). We can construct the family
{Ωk}k∈N according to the previous example, with respect to the usual
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grading T =
⊕∞

j=0 Tj . By (2.69), we have Ωk = Uk for every k ∈ N,
where Uk has been defined in (2.29). Hence {Uk}k∈N is a topologically
admissible family in T (V ), thus equipping T (V ) with both a metric space and
a topological algebra structure. (This same fact also follows from the results
in Remark 2.34-(3).) As stated in Example 2, we can view this example as
a particular case of Example 1 above, since Uk coincides with the ideal
generated by the k-products of I = T+(V ) (or equivalently, of I = V ).

4. Let V be a vector space, and on the tensor product T (V ) ⊗ T (V ) let
us consider the family of subsets {Wk}k∈N introduced in (2.44). Then,
by the results in Remark 2.42, {Wk}k∈N is a topologically admissible family
in T (V ) ⊗ T (V ), thus equipping T (V ) ⊗ T (V ) with both a metric space
and a topological algebra structure. Analogously, the fact that {Wk}k∈N is a
topologically admissible family can be proved by Example 2 above, by
considering the grading T ⊗ T =

⊕
k≥0Kk as in (2.42). Indeed, Wk =

span{a1 • · · · • ak | a1, . . . , ak ∈ ⊕j≥1Kj = (T ⊗ T )+}. As stated in
Example 2, we can also view this example as a particular case of Example
1 above, since Wk coincides with the ideal generated by the k-products of
I = (T ⊗T )+ (or equivalently, of I := K introduced in (2.46)).

Since we are mainly interested in graded algebras, for the sake of future
reference, we collect many of the aforementioned results in the following
proposition, and we take the opportunity to prove some further facts.

Proposition 2.65 (Metric Related to a Graded Algebra). Let (A, ∗) be an
associative graded algebra with grading {Aj}j≥0. For every k ∈ N ∪ {0}, set
Ωk :=

⊕
j≥k Aj .

(a) Then {Ωk}k≥0 is a topologically admissible family of A, thus endowing Awith
both a metric space and a topological algebra structure (both structures are
referred to as “related to the grading {Aj}j≥0”).

(b) The induced metric d has the algebraic (and ultrametric) properties

d(x, y) = d(x+ z, y + z), d(k x, k y) = d(x, y)

d(x ∗ y, ξ ∗ η) ≤ max{d(x, ξ), d(y, η)},
(2.71)

for every x, y, z, ξ, η ∈ A and every k ∈ K \ {0}.
(c) A sequence {an}n of elements of A is a Cauchy sequence in (A, d) if and only

if limn→∞(an+1 − an) = 0 in (A, d). Moreover a series
∑∞

n=1 an of elements
of A is a Cauchy sequence in (A, d) if and only if limn→∞ an = 0 in (A, d).

(d) For every z = (zj)j≥0 ∈ A, we have

d(z) =

{
exp
(−min{j ≥ 0 : zj �= 0}), if z �= 0,

0, if z = 0

=

{
max{e−j : zj �= 0}, if z �= 0,
0, if z = 0.

(2.72)
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(e) Let {bn}n∈N be a sequence of elements in A and let β ∈ A; let us write

bn = (a
(n)
j )j≥0 and β = (aj)j≥0,

with a(n)j , aj ∈ Aj for every j ≥ 0 and every n ∈ N.
Then we have limn→∞ bn = β in (A, d) if and only if

∀ J ≥ 0 ∃ NJ ∈ N : n ≥ NJ implies a(n)j = aj for 0 ≤ j ≤ J. (2.73)

Proof. See page 416 in Chap. 7. ��

2.3.2 Completions of Graded Topological Algebras

We begin by recalling some classical results of Analysis concerning metric
spaces. As usual, the associated proofs are postponed to Chap. 7.

Definition 2.66. Let (X, d) be a metric space. We say that (Y, δ) is an
isometric completion of (X, d), if the following facts hold:

1. (Y, δ) is a complete metric space.
2. There exists a metric subspace X0 of Y which is dense in Y and such that

(X0, δ) is isometric (in the sense of metric spaces15) to (X, d).

The following simple fact holds, highlighting the fact that the notion of
isometric completion is unique, up to isomorphism.

Proposition 2.67. Let (X, d) be a metric space. If (Y1, δ1) and (Y2, δ2) are
isometric completions of (X, d), then they are (canonically) isomorphic.

Proof. See page 417 in Chap. 7. ��
The following remarkable result states that every metric space always
admits an isometric completion.

Theorem 2.68 (Completion of a Metric Space). Let (X, d) be a metric space.
Then there exists an isometric completion (X̃, d̃) of (X, d), which can be constructed
as follows. We first consider the set C of all the Cauchy sequences x̃ = (xn)n in
(X, d). We introduce in C an equivalence relation by setting

(xn)n ∼ (x′n)n iff lim
n→∞ d(xn, x

′
n) = 0. (2.74)

15We recall that, given two metric spaces (Y1, d1), (Y2, d2), a map Φ : Y1 → Y2 is called
an isomorphism of metric spaces if Φ is bijective and such that d2(Φ(y), Φ(y′)) = d1(y, y′)
for every y, y′ ∈ Y1 (note that this last condition implicitly contains the injectivity of Φ
together with the fact that Φ is a homeomorphism of the associated topological spaces).
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We take as X̃ the quotient set C/∼, with the metric defined by

d̃
([

(xn)n
]
∼,
[
(yn)n
]
∼

)
:= lim

n→∞ d(xn, yn). (2.75)

Furthermore (according to the notation in Definition 2.66), we take as X0 (say, the
isometric copy of X inside X̃) the quotient set of the constant sequences (x)n with
x ∈ X and the associated isometry is the map

α : X → X0, x �→ [(xn)n]∼ with xn = x for every n ∈ N. (2.76)

Proof. See page 418 in Chap. 7. ��
In the sequel, when dealing with isometric completions of a given metric
space X , we shall reserve the notation X̃ for the metric space introduced in
Theorem 2.68. The following result states that the passage to the isometric
completion preserves many of the underlying algebraic structures, in a very
natural way.

Theorem 2.69 (Algebraic Structure on the Isometric Completion of a
UAA). Let (A,+, ∗) be a UA algebra. Suppose {Ωk}k∈N is a topologically
admissible family in A and let d be the metric on A induced by {Ωk}k∈N. Finally,
consider the isometric completion Ã of (A, d) as in Theorem 2.68 and let A0 ⊆ Ã
be the set containing the equivalence classes of the constant sequences.

Then Ã can be equipped with a structure of a UA algebra (Ã, +̃, ∗̃), which is
also a topological algebra containing A0 as a (dense) subalgebra isomorphic to A.
More precisely, the map α in (2.76) is an isomorphism of metric spaces and of UA
algebras. The relevant operations on Ã are defined as follows:

[
(xn)n
]
∼+̃
[
(yn)n
]
∼ :=
[
(xn + yn)n

]
∼,

[
(xn)n
]
∼∗̃
[
(yn)n
]
∼ :=
[
(xn ∗ yn)n

]
∼,

k
[
(xn)n
]
∼ :=
[
(k xn)n

]
∼, k ∈ K,

1Ã := [(1A)n]∼.

(2.77)

Proof. See page 422 in Chap. 7. ��
Remark 2.70. Let (A, ∗), {Ωk}k, d, Ã be as in Theorem 2.69. Suppose B is
equipped with a UAA structure by the operation �, that it is equipped with
a metric space structure by the metric δ and that the following properties
hold:

1. A is a subset of B.
2. � coincides with ∗ on A×A.
3. δ coincides with d on A×A.
4. A is dense in B.
5. B is a complete metric space.
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Then B and Ã are not only isomorphic as metric spaces (according to
Proposition 2.67) but also as UA algebras (via the same isomorphism). (See
the proof in Chap. 7, page 425.)

By collecting together some results obtained so far (and derived within
the proofs of some of the previous results), we obtain the following further
characterization of the isometric completion Ã of A.

Theorem 2.71 (Characterizations of the Isometric Completion of a UAA).
Let (A,+, ∗) be a UA algebra. Suppose {Ωk}k∈N is a topologically admissible
family in A and let d be the metric on A induced by {Ωk}k∈N. Finally, consider
the isometric completion Ã of (A, d) as in Theorem 2.68.

If α ∈ Ã is represented by the (Cauchy) sequence (an)n in A (that is, α =
[(an)n]∼), we have

α = lim
n→∞ an in (Ã, d̃),

where each an ∈ A is identified with an element of Ã via the map α in (2.76). Hence,
roughly, Ã can be thought of as the set of the “limits” of the Cauchy sequences in
A, more precisely

Ã =
{

lim
j→∞
[
(aj , aj , · · · )

]
∼

∣
∣
∣(an)n is a Cauchy sequence in A

}
. (2.78a)

Equivalently (see also Proposition 2.65-(c)), Ã can also be thought of as the set of
the A-valued series associated to a vanishing sequence, more precisely

Ã =
{ ∞∑

j=1

[
(bj , bj, · · · )

]
∼

∣
∣
∣(bn)n is a sequence converging to zero in (A, d)

}
.

(2.78b)
Here is a very natural result on the relation A �→ Ã.

Lemma 2.72. Let A,B be two isomorphic UA algebras. Suppose ϕ : A → B is a
UAA isomorphism and suppose that {Ωk}k∈N is a topologically admissible family
in A. Set Ω̃k := ϕ(Ωk), for every k ∈ N.

Then the family {Ω̃k}k∈N is a topologically admissible family in B. Moreover
the metric spaces induced on A and on B respectively by the families {Ωk}k∈N

and {Ω̃k}k∈N are isomorphic metric spaces and ϕ can be uniquely prolonged to
a continuous map ϕ̃ : Ã → B̃ which is both a metric isomorphism and a UAA
isomorphism.

Proof. As claimed, as an isomorphism of metric spaces we can take the map

ϕ̃ : Ã→ B̃ such that ϕ̃([(an)n]∼) := [(ϕ(an))n]∼. (2.79)
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Here, we used the following notation: Let (A, d) denote the metric induced
on A by the family {Ωk}k∈N, and let (B, δ) denote the metric induced on B

by the family {Ω̃k}k∈N; in (2.79), (an)n is a Cauchy sequence in (A, d) while
the two classes [·]∼ from left to right in (2.79) are the equivalence classes
as in (2.74) related respectively to the equivalence relations induced by the
metrics d and δ. See page 426 in Chap. 7 for the complete proof. ��

2.3.3 Formal Power Series

Throughout this section, (A, ∗) is a UA graded algebra with a fixed grading
{Aj}j≥0. Following the notation in the previous section, for k ≥ 0 we set

Ωk :=
⊕

j≥k Aj . (2.80)

We know from Proposition 2.65 that {Ωk}k∈N is a topologically admissible
family of A, thus endowing A with both a metric space and a topological
algebra structure. We aim to give a very explicit realization of an isometric
completion of (A, d), as the set of the so-called formal power series on A
(w.r.t. the grading {Aj}j). We begin with the relevant definitions.

Definition 2.73 (Formal Power Series on A). Let A =
⊕

j≥0 Aj be a UA
graded algebra. We set

Â :=
∏

j≥0 Aj , (2.81)

and we call Â the space of formal power series on A (w.r.t. the grading {Aj}j).
On Â we consider the operation ∗̂ defined by

(aj)j ∗̂ (bj)j :=
( j∑

k=0

aj−k ∗ bk
)

j≥0
(aj , bj ∈ Aj , ∀ j ≥ 0). (2.82)

Then (Â, ∗̂) is a UA algebra, called the algebra of the formal power series on A.

Remark 2.74. Note that (2.82) is well posed thanks to the fact that aj−k ∗ bk ∈
Aj−k ∗ Ak ⊆ Aj for every j ≥ 0 and every k = 0, . . . , j. Obviously, A is a
subset of Â and it is trivially seen that

a, b ∈ A =⇒ a ∗̂ b = a ∗ b. (2.83)

We now introduce on Â a distinguished topology, by introducing a suitable
topologically admissible family. To this aim, we set

Ω̂k :=
∏

j≥k Aj , k ∈ N ∪ {0}, (2.84)
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naturally considered as subspaces of Â. The following facts hold:

1. Every Ω̂k is an ideal in Â.
2. Â = Ω̂0 ⊇ Ω̂1 ⊇ · · · Ω̂k ⊇ Ω̂k+1 ⊇ · · · .
3. Ω̂i ∗̂ Ω̂j ⊆ Ω̂i+j , for every i, j ≥ 0.
4.
⋂

i≥0 Ω̂i = {0}.

As a consequence, {Ω̂k}k≥0 is a topologically admissible family of Â. By
means of Theorem 2.58 we can deduce that {Ω̂k}k≥0 endows Â with a
topology Ω̂ (more, with the structures of a topological algebra and of a
metric space) and we call (Â, Ω̂) the topological space of the formal power series
(related to the given grading). Note that

Ωk = A ∩ Ω̂k, ∀ k ∈ N ∪ {0}, (2.85)

whence the inclusionA ↪→ Â is continuous (hereA has the topology induced
by {Ωk}k and Â has the topology induced by {Ω̂k}k). We have the following
important result.

Theorem 2.75 (The Isometry Â � Ã). Let (A, ∗) be a UA graded algebra with
grading {Aj}j≥0. Let Ωk and Ω̂k be defined, respectively, as in (2.80) and (2.84).

Then the space Â (with the metric induced by {Ω̂k}k≥0) is a complete metric
space and it is an isometric completion of A (with the metric induced by {Ωk}k≥0).
The natural inclusion A ↪→ Â is both an isometry and a UAA isomorphism, and A
is dense in Â.

In particular, denoting by d (resp. by d̂) the metric on A (resp. on Â) induced by
the family {Ωk}k≥0 (resp. by the family {Ω̂k}k≥0) we have that the restriction of d̂
to A×A coincides with d.

Proof. See page 428 in Chap. 7. ��
Remark 2.76. We have the following results.

1. By Proposition 2.65-(d), we get:
A sequence wk = (uk

0 , u
k
1 , . . .) in Â converges to w = (u0, u1, . . .) in Â if and

only if for every N ∈ N there exists k(N) ∈ N such that, for all k ≥ k(N), it
holds that

wk =
(
u0, u1, u2, u3, . . . , uN , u

k
N+1, u

k
N+2, u

k
N+3, . . .

)
.

2. With all the above notation, if a = (aj)j ∈ Â =
∏

j≥0 Aj (with aj ∈ Aj for
every j ≥ 0) then we have the limit

A �
N∑

j=0

aj ≡ (a0, a1, . . . , aN , 0, 0, . . .) −−−−→
N→∞

a, (2.86)
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the limit being taken in the metric space Â. We can thus represent the
elements of Â as series

∑∞
j=0 aj (with aj ∈ Aj for every j ≥ 0).

3. Furthermore, any series
∑∞

n=1 bn of elements of A converges in Â if
and only if it is Cauchy (completeness of Â), which is equivalent to
limn→∞ bn = 0 in Â (see Remark 2.62), which, in its turn, is equivalent
to limn→∞ bn = 0 in A (see (2.85)). For example, if an ∈ An for every
n ≥ 0, the series

∑∞
n=1 an is convergent in Â.

Analogously, any series
∑∞

n=1 bn of elements of Â converges in Â if and
only if limn→∞ bn = 0 in Â (again by an application of Remark 2.62).

4. Any set Ω̂k (k ∈ N∪{0}) is both open and closed in Â. Thus, by (2.85), the
same is true of any Ωk in A. More generally, see Proposition 2.77 below.

Proposition 2.77. Let J be any fixed subset of N ∪ {0}. Then the set

H :=
{
(uj)j ∈ Â

∣
∣ uj ∈ Aj for every j ≥ 0 and uj = 0 for every j ∈ J

}

is closed in the topological space Â.

Proof. Suppose {wk}k is a sequence in H converging to w in Â. We use for
wk and w the notation in Remark 2.76-(1). Let j0 ∈ J be fixed. By the cited
remark, there exists k(j0) ∈ N such that, for all k ≥ k(j0),

wk =
(
u0, u1, u2, . . . , uj0 , u

k
j0+1, u

k
j0+2, . . .

)
. (2.87)

Since wk ∈ H for every k, its j0-component is null. By (2.87), this j0-
component equals the j0-component of w. Since j0 is arbitrary in H , this
proves that w ∈ H . ��
Remark 2.78. For example, we can apply Proposition 2.77 in the cases when
J = {0, 1, . . . , k − 1}, or J = {0} or J = (N ∪ {0}) \ {k}, in which cases we
obtain respectively the closed sets Ω̂k, Â+ :=

∏
j≥1 Aj , and Ak.

The following lemma will be used frequently in the sequel.

Lemma 2.79 (Prolongation Lemma). Suppose A =
⊕

j≥0 Aj and B =
⊕

j≥0 Bj are graded UA algebras and let Â, B̂ be the corresponding topological
spaces of their formal power series.

Following (2.80), we use the notation ΩA
k :=
⊕

j≥k Aj and ΩB
k :=
⊕

j≥k Bj .
Suppose ϕ : A→ B is a linear map with the following property:

There exists a sequence {kn}n in N such that lim
n→∞ kn =∞ and

ϕ
(
ΩA

n

) ⊆ ΩB
kn for every n ∈ N.

(2.88)
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Then ϕ is uniformly continuous (considering A,B as subspaces of the metric spaces
Â, B̂, respectively16). Hence, ϕ can be extended in a unique way to a continuous
linear map ϕ̂ : Â→ B̂. Moreover, if ϕ is a UAA morphism, the same is true of ϕ̂.

Proof. See page 430 in Chap. 7. ��
Remark 2.80. Theorem 2.75 can be applied to the graded algebras

T (V ) =
⊕

j≥0

Tj(V ) and T (V )⊗T (V ) =
⊕

j≥0

Kj(V )

(see (2.28) and (2.42), respectively). Thus, on the algebras T and T ⊗T we
are given metric space structures induced respectively by the topologically
admissible families {Uk}k and {Wk}k, where

Uk =
⊕

j≥k

Tj(V ), Wk =
⊕

i+j≥k

Ti,j(V ).

The formal power series related to the graded algebras T and T ⊗ T ,
denoted henceforth by T̂ (V ) and ̂T⊗T (V ) (or, shortly, by T̂ and ̂T⊗T ),
are the algebras

T̂ (V ) =
∏

j≥0

Tj(V ), ̂T⊗T (V ) =
∏

i+j≥0

Ti,j(V ), (2.89)

with operations as in (2.82) (respectively inherited from the operations on
(T , ·) and on (T ⊗ T , •)), respectively equipped with the metric space
structures induced by the topologically admissible families {Ûk}k and
{Ŵk}k, where

Ûk :=
∏

j≥k

Tj(V ), Ŵk :=
∏

i+j≥k

Ti,j(V ). (2.90)

Convention. In order to avoid heavy notation, the operations ·̂ and •̂
(see the notation in (2.82)) will usually appear without the “ ̂ ” sign. This
slight abuse of notation is in accordance with (2.83).

16Which is the same as considering A,B as metric spaces with metrics induced by the
families {ΩA

k }k and {ΩB
k }k, respectively (see (2.85)).
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As a consequence, we have

· : T̂ × T̂ → T̂ , (aj)j · (bj)j =
(

j∑

k=0

aj−k · bk
)

j≥0

where aj , bj ∈ Tj(V ) for all j ≥ 0;

(2.91)

• : ̂T⊗T × ̂T⊗T → ̂T⊗T , (aj)j • (bj)j =
(

j∑

k=0

aj−k • bk
)

j≥0

where aj , bj ∈
⊕

h+k=j Th,k(V ) for all j ≥ 0.

(2.92)

The operation • on ̂T⊗T can also be rewritten by using the double-
sequenced notation (ui,j)i,j for the elements of ̂T⊗T (this means that
ui,j ∈ Ti,j(V ) = Ti(V )⊗ Tj(V ) for every i, j ≥ 0): indeed, following (2.45),
we have

• : ̂T⊗T × ̂T⊗T → ̂T⊗T

(ti,j)i,j • (t̃i,j)i,j =
( ∑

r+r̃=i, s+s̃=j

tr,s • t̃r̃,s̃
)

i,j≥0
,

where ti,j , t̃i,j ∈ Ti(V )⊗Tj(V ) for all i, j ≥ 0.

(2.93)

Remark 2.81. When expressed in coordinate form on the product space T̂ =∏
j≥0 Tj , the Lie bracket operation takes a particularly easy form: Indeed, if

u, v ∈ T̂ and u = (uj)j and v = (vj)j , with uj, vj ∈ Tj(V ) (for every j ∈ N),
we have

[u, v] =
[
(uj)j , (vj)j

]
=
(∑

h+k=j [uh, vk]
)

j≥0
. (2.94)

Indeed, the following computation holds

[
(uj)j , (vj)j

]
= (uj)j · (vj)j − (vj)j · (uj)j

(2.91)
=

( j∑

k=0

uj−k · vk
)

j≥0

−
( j∑

k=0

vj−k · uk

)

j≥0

(change the dummy index in the second sum)

=

( j∑

k=0

(
uj−k · vk − vk · uj−k

)
)

j≥0

=

( j∑

k=0

[uj−k, vk]

)

j≥0

.

Now note that the last term in the above chain of equalities is indeed the
coordinate expression of [u, v], since (as uj−k ∈ Tj−k, vk ∈ Tk) one has
[uj−k, vk] ∈ [Tj−k,Tk] ⊆ Tj−k ⊗Tk = Tj . ��
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In Chap. 3, we will have occasion to apply the following result.

Proposition 2.82 (T̂ ⊗ T̂ as a Subalgebra of ̂T⊗T ). Let V be a vector space.
With the notation of this section, the tensor product T̂ (V )⊗T̂ (V ) can be identified
with a subalgebra of ̂T⊗T (V ).

Indeed, we can identify the element (ui)i⊗(vj)j of T̂ ⊗T̂ (where ui, vi ∈ Ti(V )

for every i ≥ 0) with the element (ui ⊗ vj)i,j of ̂T⊗T , this identification being a
UAA morphism. Here, T̂ (V ) ⊗ T̂ (V ) is equipped with the UA algebra structure
obtained, as in Proposition 2.41, from the UAA structure of (T̂ (V ), ·). Hereafter,
when writing T̂ (V ) ⊗ T̂ (V ) ↪→ ̂T⊗T (V ), we shall understand the previously
mentioned immersion:

T̂ (V )⊗ T̂ (V ) � (ui)i ⊗ (vj)j �→
(
ui ⊗ vj

)
i,j
∈ ̂T⊗T (V ). (2.95)

Proof. See page 433 in Chap. 7. ��
Remark 2.83. Let {αk}k and {βk}k be two sequences of elements in T̂ (V ) such
that limk→∞ αk = α and limk→∞ βk = β in T̂ (V ). Then

lim
k→∞

αk ⊗ βk = α⊗ β in ̂T⊗T (V ),

where we consider α ⊗ β and any αk ⊗ βk as elements of ̂T⊗T (V ) (according to
(2.95) in Proposition 2.82). For the proof, see page 434 in Chap. 7.

Remark 2.84. Following the notation in (2.91) and (2.92) and by using the
immersion T̂ (V ) ⊗ T̂ (V ) ↪→ ̂T⊗T (V ) in (2.95), it is not difficult to prove
that

(a⊗ b) • (α⊗ β) = (a · b)⊗ (b · β), for every a, b, α, β ∈ T̂ (V ), (2.96)

where this is meant as an equality of elements of ̂T⊗T (V ).

2.3.4 Some More Notation on Formal Power Series

Let n ∈ N and let S = {x1, . . . , xn} be a set of cardinality n. The free vector
space K〈S〉 will be denoted by

K〈x1, . . . , xn〉.

The algebras T (K〈x1, . . . , xn〉) and T̂ (K〈x1, . . . , xn〉) can be thought of as,
respectively, the algebra of polynomials in the n non-commuting indeterminates
x1, . . . , xn and the algebra of formal power series in the n non-commuting
indeterminates x1, . . . , xn.
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Recall that T (K〈x1, . . . , xn〉) is isomorphic to Libas({x1, . . . , xn}), the
free UAA over {x1, . . . , xn} (see Theorem 2.40). Analogously, the Lie algebra
L(K〈x1, . . . , xn〉) can be thought of as the Lie algebra of the Lie-polynomials in
the n non-commuting indeterminates x1, . . . , xn. Recall that L(K〈x1, . . . , xn〉)
is a free Lie algebra related to the set {x1, . . . , xn}, being isomorphic to
Lie({x1, . . . , xn}) (see Theorem 2.56).

When n = 1, it is customary to write

K[x] := T (K〈x〉) and K[[x]] := T̂ (K〈x〉).

(Note that T (K〈x〉) and T̂ (K〈x〉) are commutative algebras!) Some very
important features of K[[x]] will be stated in Sect. 4.3 of Chap. 4 (and proved
in Chap. 9).

Finally, when writing expressions like

T (K〈x, y〉), T̂ (K〈x, y〉), T (K〈x, y, z〉), T̂ (K〈x, y, z〉),

we shall always mean (possibly without the need to say it explicitly) that the
sets {x, y} and {x, y, z} have cardinality, respectively, two and three.

For the sake of future reference, we explicitly state the contents of
Theorem 2.40 and 2.56 in the cases of two {x, y} and three {x, y, z} non-
commuting indeterminates. We also seize the opportunity to introduce a
new notation Φa,b. In what follows, by an abuse of notation, we identify the
canonical injection ϕ : X → T (K〈X〉) defined by

X
χ−→ K〈X〉 ι

↪→ T (K〈X〉),

with the set inclusion X ↪→ T (K〈X〉).
Theorem 2.85. The following universal properties are satisfied.

(1a). For every UA algebra A and every pair of elements a, b ∈ A, there exists a
unique UAA morphism Φa,b : T (K〈x, y〉) → A such that

Φa,b(x) = a and Φa,b(y) = b. (2.97)

(1b). For every Lie algebra g and every pair of elements a, b ∈ g, there exists a
unique LA morphism Φa,b : L(K〈x, y〉) → g such that (2.97) holds.

(2a). For every UA algebra A and every triple of elements a, b, c ∈ A, there exists
a unique UAA morphism Φa,b,c : T (K〈x, y, z〉)→ A such that

Φa,b,c(x) = a, Φa,b,c(y) = b, and Φa,b,c(z) = c. (2.98)

(2b). For every Lie algebra g and every triple of elements a, b, c ∈ g, there exists a
unique LA morphism Φa,b,c : L(K〈x, y, z〉)→ g such that (2.98) holds.
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2.4 The Universal Enveloping Algebra

The aim of this section is to introduce the so-called universal enveloping
algebra U (g) of a Lie algebra g and to collect some useful related results. In
particular, we will present the remarkable Poincaré-Birkhoff-Witt Theorem.

Throughout this section, g will denote a fixed Lie algebra and its Lie
bracket is denoted by [·, ·]g (or simply by [·, ·]). As usual, (T (g), ·) is the
tensor algebra of (the vector space of) g. We denote by J (g) (sometimes J
for short) the two-sided ideal in T (g) generated by the set

{x⊗ y − y ⊗ x− [x, y]g : x, y ∈ g}.

More explicitly, we have

J (g) = span
{
t · (x⊗ y− y⊗ x− [x, y]g

) · t′
∣
∣
∣ x, y ∈ g, t, t′ ∈ T (g)

}
. (2.99)

Remark 2.86. We remark that the ideal J (g) is not homogeneous (in the natural
grading of T (g)). Indeed, in the sequence-style notation (tk)k≥0 for the
elements of T (g) =

⊕
k≥0 Tk(g), the element x ⊗ y − y ⊗ x − [x, y]g is

rewritten as
(
0,−[x, y]g, x⊗ y − y ⊗ x, 0, 0 · · · ) ∈ T1 ⊕T2. (2.100)

Definition 2.87 (Universal Enveloping Algebra). With all the above nota-
tion, we consider the quotient space

U (g) := T (g)/J (g)

and we call it the universal enveloping algebra of g. We denote by

π : T (g)→ U (g), π(t) := [t]J (g), t ∈ T (g) (2.101)

the associated projection. The natural operation17 on U (g)

U (g)×U (g) � (π(t), π(t′)) �→ π(t · t′), (t, t′ ∈ T (g)),

which equips U (g) with the structure of a UA algebra (see Proposition 2.12
on page 58), will be simply denoted by juxtaposition.

The natural injection g ↪→ T (g) induces a linear map

μ : g→ U (g), μ(x) := [x]g (x ∈ g), (2.102)

17This operation is well-posed because J (g) is an ideal of T (g).
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that is, μ = π|g. The following important proposition proves that the Lie
bracket of g is turned by μ into the commutator of U (g). As soon as we will
know that μ is injective (a corollary of the Poincaré-Birkhoff-Witt Theorem),
this will prove that (up to an identification) every Lie bracket is a commutator
(in the very meaning used in this Book).

As usual, if U (g) is involved as a Lie algebra, it is understood to be
equipped with the associated commutator, which we denote by [·, ·]U .

Remark 2.88. By its very definition, the map π : T (g) → U (g) is a UAA
morphism, whence it is a Lie algebra morphism, when T (g) and U (g) are
equipped with their appropriate commutators (see Remark 2.17). Note that
this does not prove (yet) that μ is a Lie algebra morphism, since g (equipped
with its intrinsic Lie bracket) is not a Lie subalgebra of T (g) (equipped with
its commutator).

Remark 2.89. The set {π(1)} ∪ μ(g) generates U (g) as an algebra. (This
follows from the fact that {1} ∪ g generates T (g) as an algebra, together
with the fact that π is a UAA morphism.)

Proposition 2.90. With the above notation, the map μ in (2.102) is a Lie algebra
morphism, i.e.,

μ([x, y]g) = μ(x)μ(y)− μ(y)μ(x), for every x, y ∈ g. (2.103)

In particular, μ(g) is a Lie subalgebra of U (g), equipped with the associated
commutator-algebra structure.

Note that (2.103) can be rewritten as

μ([x, y]g) = [μ(x), μ(y)]U , for every x, y ∈ g. (2.104)

Proof. First we remark that (2.103) is equivalent to π([x, y]g) = π(x⊗y−y⊗x),
which in its turn is equivalent to x⊗ y − y ⊗ x− [x, y]g ∈ J (g). This is true
(for any x, y ∈ g) by the definition of J (g). ��
Remark 2.91. Via the map π, the grading T (g) =

⊕
k≥0 Tk(g) turns into

U (g) =
⊎

k≥0 π(Tk(g)) (in the sense of sum of vector subspaces) but
the family of vector spaces {π(Tk(g))}k≥0 does not furnish a direct sum
decomposition of U (g). Indeed, if x, y ∈ g we have

π([x, y]g)
︸ ︷︷ ︸
∈π(T1(g))

= π(x ⊗ y − y ⊗ x)
︸ ︷︷ ︸

∈π(T2(g))

(and we shall see explicit examples where this does not vanish). This is
obviously due to the non-homogeneity of J (g).



110 2 Background Algebra

As expected, U (g) has a universal property:

Theorem 2.92 (Universal Property of the Universal Enveloping Algebra).
Let g be a Lie algebra and let U (g) be its universal enveloping algebra.

(i) For every UA algebra (A, ∗) and for every Lie algebra morphism f : g → A,
there exists a unique UAA morphism fμ : U (g)→ A such that

fμ(μ(x)) = f(x) for every x ∈ g, (2.105)

thus making the following a commutative diagram:

g
f

��

μ

��

A

U (g)

fμ

��������������

(ii) Vice versa, suppose U,ϕ are respectively a UA algebra and a Lie algebra
morphism ϕ : g → U with the following property: For every UA algebra
(A, ∗) and for every Lie algebra morphism f : g → A, there exists a unique
UAA morphism fϕ : U → A such that

fϕ(ϕ(x)) = f(x) for every x ∈ g, (2.106)

thus making the following a commutative diagram:

g
f

��

ϕ

��

A

U

fϕ

��											

Then U is canonically isomorphic to U (g), the isomorphism being ϕμ :
U (g) → U and its inverse being μϕ : U → U (g). Moreover, ϕ = ϕμ ◦ μ.
Furthermore (if 1U denotes the unit of U ) the set {1U}∪ϕ(g) is a set of algebra
generators for U and U � U (ϕ(g)), canonically as UA algebras.

Proof. Explicitly, the map fμ is defined by

fμ : U (g)→ A, π(t) �→ f(t) (t ∈ T (g)), (2.107)

where f : T (g)→ A is the unique UAA morphism extending f : g→ A.
For the rest of the proof, see page 435 in Chap. 7. ��
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We are in a position to prove a useful result on the enveloping algebra of the
free Lie algebra generated by a vector space.

Proposition 2.93. Let X be any set. Let V := K〈X〉 denote the free vector space
over X . Let L(V ) be the free Lie algebra generated by the vector space V (i.e., L(V )
is the smallest Lie subalgebra of T (V ) containing V ).

Then U (L(V )) and T (V ) are isomorphic (as unital associative algebras).

Proof. More explicitly, we can take as isomorphism j : U (L(V )) → T (V )
the only UAA morphism such that

j(π(t)) = ι(t), for every t ∈ L(V ). (2.108)

See page 437 in Chap. 7 for the proof. We remark that in that proof we will
not use explicitly the fact that L(K〈X〉) is a free Lie algebra related to X
(proved in Theorem 2.56). ��
Here we have the fundamental result on the universal enveloping algebra.

Theorem 2.94 (Poincaré-Birkhoff-Witt). Let g be a Lie algebra and let U (g)
be its universal enveloping algebra. Let 1 denote the unit of U (g) and let μ be the
map in (2.102). Suppose g is endowed with an indexed (linear) basis {xi}i∈I, where
I is totally ordered by the relation �. Set Xi := μ(xi), for i ∈ I.

Then the following elements form a linear basis of U (g):

1, Xi1 · · ·Xin , where n ∈ N, i1, . . . , in ∈ I, i1 � . . . � in. (2.109)

Proof. The (laborious) proof of this key result is given in Chap. 7 (starting
from page 438). For other proofs, the Reader is referred for example to [25,
85, 95, 99, 159, 171]. ��
In the sequel, the Poincaré-Birkhoff-Witt Theorem will be referred to as PBW
for short. Apparently until 1956, the theorem was only referred to as the
“Birkhoff-Witt Theorem”: see Schmid [153], Grivel [74], Ton-That, Tran [168]
for a historical overview on this topic and for a description of (the long
forgotten) contribution of Poincaré to this theorem, dated back to 1900.

Corollary 2.95. Let g be a Lie algebra and let U (g) be its universal enveloping
algebra. Then the map μ in (2.102) is injective, so that μ : g→ μ(g) is a Lie algebra
isomorphism.

As a consequence, every Lie algebra can be identified with a Lie subalgebra of a
UA algebra (endowed with the commutator), in the following way:

(g, [·, ·]g) ≡ (μ(g), [·, ·]U ) ↪→ U (g)

(
both a UA algebra

and a commutator-algebra

)

.
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Proof. Let x ∈ g be such that μ(x) = 0. With the notation of Theorem 2.94,
we have x =

∑
i∈I′ λi xi, where I′ ⊆ I is finite and the λi are scalars. Thus

0 = μ(
∑

i∈I′ λi xi) =
∑

i∈I′ λiXi, which is possible iff λi = 0 for every i ∈ I′,
since the vectors Xi appear in the basis (2.109) of U (g), i.e., x = 0.

Hence, the map μ : g → μ(g) is a bijection and it is also a Lie algebra
morphism, in view of Proposition 2.90, when μ(g) is equipped with the com-
mutator from the UA algebra U (g). ��
By means of the PBW Theorem, we are able to give a short proof of the
existence of free Lie algebras generated by a vector space.

Proof (of Theorem 2.49, page 86). Let V be a vector space and let f : V → g
be a linear map, g being a Lie algebra. We need to prove that there exists a
unique LA morphism f : L(V )→ g prolonging f . The uniqueness is trivial,
once existence is proved. To this end, let us consider the LA morphism μ :
g→ U (g) in (2.102). Since the map μ ◦ f : V → U (g) is linear and U (g) is a
UA algebra, by Theorem 2.38 there exists a UAA morphism μ ◦ f : T (V )→
U (g) prolonging μ◦f . Now we restrict μ ◦ f both in domain and codomain,
by considering the map

f̂ : L(V )→ μ(g), f̂(t) := μ ◦ f(t) (t ∈ L(V )).

To prove that f̂ is well posed, we need to show that

μ ◦ f(t) ∈ μ(g) for every t ∈ L(V ). (2.110)

Since L(V ) is Lie-generated by V (see Proposition 2.47) it suffices to prove
(2.110) when t = [v1 · · · [vn−1, vn] · · · ], for any n ∈ N and v1, . . . , vn ∈ V . To
this end (denoting by [·, ·]U the commutator of U (g)), we argue as follows:

μ ◦ f(t) = [μ ◦ f(v1) · · · [μ ◦ f(vn−1), μ ◦ f(vn)]U · · · ]U
= [μ(f(v1)) · · · [μ(f(vn−1)), μ(f(vn))]U · · · ]U

In the first equality we applied the fact that μ ◦ f is a UAA morphism and
in the second equality the fact that μ ◦ f coincides with μ ◦ f on V . Now
the above right-hand side is an element of μ(g) since f(vi) ∈ g for every
i = 1, . . . , n and μ(g) is a Lie subalgebra of U (g) (see Proposition 2.90). This
proves (2.110). We now remark that f̂ is an LA morphism (of the associated
commutator-algebras) since it is the restriction of μ ◦ f , which is an LA
morphism (being a UAA morphism).

Since μ : g → μ(g) is a Lie algebra isomorphism (thanks to Corollary
2.95), the map

μ−1 ◦ f̂ : L(V )
f̂−→ μ(g)

μ−1

−→ g
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is an LA morphism, since both μ−1 and f̂ are. We set f := μ−1 ◦ f̂ . It remains
to show that f prolongs f . This follows immediately from

f(v) = μ−1(μ ◦ f(v)) = (μ−1 ◦ μ ◦ f)(v) = f(v), ∀ v ∈ V.

This ends the proof. ��
The following diagram describes the maps in the above argument:

V
f

��
� �

��

g
μ

�� μ(g)
μ−1




� � �� U (g)

L(V )
� �

��

f

����������������

f̂�����������

��������������

T (V )

μ ◦ f

��

We end the section with an example of how the injective map μ : g → U (g)
can be used to perform computations involving the Lie bracket of a Lie
algebra (without “explicit knowledge” of the Lie bracket on g).

Example 2.96. We prove that, for every Lie algebra g, one has

[a, [b, [a, b]]]g = −[b, [a, [b, a]]]g, for every a, b ∈ g. (2.111)

Obviously, this computation can be a consequence only of the skew-symme-
try and the Jacobi identity, but it may not at first be obvious how to perform
the computation.18

Let us use, instead, the injection μ : g → U (g). Given arbitrary a, b ∈ g,
we set A := μ(a) and B := μ(b). We begin by showing that

[A, [B, [A,B]]]U = −[B, [A, [B,A]]]U , in U (g). (2.112)

18Indeed, (2.111) follows from the following argument: Set x := [a, b], y := a, z := b
and write the Jacobi identity [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0; the first summand is
[[a, b], [a, b]] which is null by skew-symmetry. Hence we get [a, [b, [a, b]]] + [b, [[a, b], a]] = 0
which leads directly to (2.111), again by skew-symmetry.
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Indeed, unraveling the commutators (and dropping the subscript U )

[A, [B, [A,B]]] = [A, [B,AB −BA]] = [A,BAB −B2A−AB2 +BAB]

= ABAB −AB2A−A2B2 +ABAB+

−BABA+B2A2 +AB2A−BABA

= 2ABAB − 2BABA+B2A2 −A2B2.

Hence, by interchanging A and B we get

[B, [A, [B,A]]] = 2BABA− 2ABAB +A2B2 −B2A2,

which proves (2.112). By exploiting (2.104), we thus get

μ([a, [b, [a, b]]]g)
(2.104)
= [μ(a), [μ(b), [μ(a), μ(b)]]]U = [A, [B, [A,B]]]U

(2.112)
= −[B, [A, [B,A]]]U = −[μ(b), [μ(a), [μ(b), μ(a)]]]U

(2.104)
= −μ([b, [a, [b, a]]]g).

This yields the identity

μ([a, [b, [a, b]]]g) = μ(−[b, [a, [b, a]]]g).

The injectivity of μ now gives the claimed formula in (2.111). ��



Chapter 3
The Main Proof of the CBHD Theorem

THE aim of this chapter is to present the main proof of the Campbell-
Baker-Hausdorff-Dynkin Theorem (CBHD for short), the topic of this

Book. The proof is split into two very separate parts. On the one hand, we
have the Theorem of Campbell-Baker-Hausdorff, stating that (in a context
which will be clarified in due course)

x�y := Log(Exp(x) · Exp(y))

belongs to the closure of the Lie algebra generated by {x, y}, that is, it is a
series of Lie polynomials in x, y. Roughly speaking, this is a “qualitative”
result, disclosing an unexpected property of x�y. On the other hand, we
have the contribution of Dynkin, which exhibits an explicit “quantitative”
formula for Log(Exp(x) · Exp(y)), once it is known that this is a series of Lie
polynomials.

Whereas in proving the Dynkin representation of the aforementioned
series, we follow quite closely1 the original ideas by Dynkin in his 1947
paper [54], in proving the Theorem of Campbell-Baker-Hausdorff we do not
follow the original proofs by any of the mathematicians whose names come
with the Theorem.2

Instead, the arguments presented in this chapter (precisely, in Sect. 3.2)
are inspired by those in Hochschild [85, Chapter X] and in Bourbaki [27,
Chapitre II, §6] (both dating back to the late sixties, early seventies). This

1As a matter of fact, the proof of the so-called Dynkin-Specht-Wever Lemma that we
present in this chapter is not the original one given by Dynkin in [54]. Instead, in the
derivation of the explicit Dynkin series starting from the Theorem of Campbell-Baker-
Hausdorff, we exploit the technique in [54].
2A critical exposition of the original proofs of Campbell, Baker, Hausdorff – along with
those of other mathematicians mostly coeval with these three authors – can be found in
[3]; for a résumé of these topics, see Chap. 1 of this Book.

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 3,
© Springer-Verlag Berlin Heidelberg 2012
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approach can undoubtedly be considered as the most modern one and it
has the further advantage of inscribing the CBHD Theorem within wider
contexts. For instance, within this proof we shall have occasion to see in
action all the algebraic background from Chap. 2 (tensor algebras, formal
power series over graded algebras, free Lie algebras, the Poincaré-Birkhoff-
Witt Theorem) and to introduce some useful results (well established in
literature):

– Friedrichs’s characterization of Lie elements (see Sect. 3.2.1).
– The Lemma of Dynkin, Specht, Wever (see Sect. 3.3.1).

A rough summary of the contents of this chapter is finally in order:

1. We introduce the Exp and Log maps related to the completion of any
graded algebra. In particular we are mainly concerned with the cases of
the formal power series over T (V ) and over T (V )⊗T (V ).

2. We introduce the operation u�v := Log(Exp(u) · Exp(v)) on T̂+(V ).
3. By means of Friedrichs’s characterization of Lie elements, we characterize

L(V ) as the set of primitive elements of T (V ):

L(V ) = {t ∈ T (V )
∣
∣ δ(t) = t⊗ 1 + 1⊗ t},

where δ : T (V )→ T (V )⊗T (V ) is the UAA morphism such that δ(v) =
v ⊗ 1 + 1 ⊗ v, for all v ∈ V . To do this, we use the Poincaré-Birkhoff-Witt
Theorem.

4. With this crucial result at hand (plus some machinery established in due
course) we are able to prove that u�v belongs to the closure of L(V ) in
T̂ (V ). This is the Theorem of Campbell, Baker, Hausdorff.

5. We next consider the following series of Lie polynomials (u, v ∈ T̂+(V )):

u � v :=

∞∑

j=1

( j∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
h1+k1+···+hn+kn=j

× (adu)h1(ad v)k1 · · · (adu)hn(ad v)kn−1(v)

h1! · · ·hn! k1! · · · kn! (
∑n

i=1(hi + ki))

)

.

6. By means of the Lemma of Dynkin, Specht and Wever, we can construct
the projection P of T (V ) onto L(V ) such that

P (v1 ⊗ · · · ⊗ vk) = k−1 [v1, . . . [vk−1, vk] . . .],

for any v, v1, . . . , vk ∈ V and any k ∈ N. This this gives another
characterization of the Lie elements in T (V ):

L(V ) = {t ∈ T (V )
∣
∣ P (t) = t}.
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7. By means of this projection, we are finally able to prove that

x�y = x � y,

an identity in the topological space of the formal power series related
to the algebra T (Q〈x, y〉) of the polynomials in two non-commuting
indeterminates x, y and coefficients in Q.

8. By the universal property of T (Q〈x, y〉), this easily gives the CBHD
Theorem, namely

u�v = u � v, for every u, v ∈ T̂+(V ),

where V is any vector space over a field of characteristic zero. This
identity has the well known explicit and suggestive form:

Exp(u) · Exp(v) = Exp

( ∞∑

j=1

( j∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
h1+k1+···+hn+kn=j

× (adu)h1(ad v)k1 · · · (adu)hn(ad v)kn−1(v)

h1! · · ·hn! k1! · · · kn! (
∑n

i=1(hi + ki))

))

,

valid for all u, v ∈ T̂+(V ) and every vector space V over a field of
characteristic zero.

3.1 Exponential and Logarithm

From now on throughout this Book, K will be a field subject to the following
convention.

Convention. K will always denote a field of characteristic zero.

This is justified by the need for a well-posed definition of the soon-to-
come exponential and logarithmic series. To define these series, we consider
a graded UA algebraA, with grading {Aj}j≥0. We also assume that A0 = K.
[This will not be a restrictive assumption since we shall be soon interested
only in the cases when A is T (V ) or T (V ) ⊗ T (V ).] As usual, Â denotes
the topological algebra of the formal power series on A. We also set

Ωk :=
⊕

j≥k Aj , Ω̂k :=
∏

j≥k Aj Â+ := Ω̂1 =
∏

j≥1 Aj . (3.1)
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Moreover, 1A+Â+ denotes the subset of Â consisting of formal power series
whose zero-degree term is 1A, the unit of A. More explicitly:

1A + Â+ :=
{
(an)n ∈ Â

∣
∣ a0 = 1A, an ∈ An for all n ∈ N

}
. (3.2)

As usual, if ∗ denotes the multiplication on A, then ∗̂ denotes the associated
operation on Â (see (2.82), page 101).

Lemma 3.1. With the above notation, 1A + Â+ is a subgroup (called the Magnus
group) of the multiplicative group of Â. For instance, given a ∈ 1A+ Â+, we have

a−1 =

∞∑

n=0

(1A − a)∗̂n, (3.3)

the series on the right-hand side converging in Â to an element of 1A + Â+.

Proof. We set for brevity Γ := 1A + Â+. We divided the proof into four
steps.

I. Given a = (an)n and b = (bn)n in Γ we have

a ∗̂ b = (a0 ∗ b0, a1 ∗ b0 + a0 ∗ b1, · · ·
)
=
(
1A, a1 ∗ b0 + a0 ∗ b1, · · ·

) ∈ Γ.

II. Let a ∈ Γ . Then 1A−a ∈ Â+ = Ω̂1 so that3 (1A−a)∗̂n ∈ Ω̂n for every n ∈
N. This gives limn→∞(1A − a)∗̂n = 0 in the usual topology of Â and, by
well-known properties of this topology,4 the series ã :=

∑∞
n=0(1A−a)∗̂n

converges in Â.
III. With the above notation, we have ã ∈ Γ for every a ∈ Γ . Indeed,

ã = 1A +

∞∑

n=1

(1A − a)∗̂n

︸ ︷︷ ︸
∈Ω̂n

∈ 1A + Ω̂1 = Γ.

IV. We are left to prove that a ∗̂ ã = ã ∗̂ a = 1A, that is, ã = a−1 (the
inversion is intended to be seen as applying within the multiplicative
subgroup of Â). Recalling that (Â, ∗̂ ) is a topological algebra, we have:

3Recall that Ω̂i ∗̂ Ω̂j ⊆ Ω̂i+j , for every i, j ≥ 0.
4See Remark 2.76-3 on page 102.
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a ∗̂ ã = −((−a) ∗̂ ã) = −((−1A + 1A − a) ∗̂ ã) = ã− ((1A − a) ∗̂ ã)

= ã−
∞∑

n=0

(1A − a) ∗̂ (1A − a)∗̂n = ã−
∞∑

n=0

(1A − a)∗̂n+1

= ã−
( ∞∑

m=0
(1A − a)∗̂m − 1A

)
= ã− ã+ 1A = 1A.

The computation leading to ã ∗̂ a = 1A is completely analogous and the
proof is complete. ��

Occasionally, when there is no possibility of confusion, if (A,�) is a UA
algebra and n ≥ 0, we shall denote the n-th power a�n of a ∈ A simply
by an. Moreover, 1 will denote the unit 1A in any UA algebra A. So, for
example, (3.3) can be rewritten in the more concise (von Neumann) form
a−1 =

∑∞
n=0(1 − a)n.

3.1.1 Exponentials and Logarithms

Definition 3.2 (Exponential and Logarithm). If A is a graded UA algebra
and Â+ is as in (3.2), we set

Exp : Â+ −→ 1A + Â+, Exp(u) :=
∞∑

k=0

1

k!
u∗̂ k,

Log : 1A + Â+ −→ Â+, Log(1A + u) =

∞∑

k=1

(−1)k+1

k
u∗̂ k.

The fact that the above defined Exp and Log are well posed maps follows
from the following simple facts (which we shall frequently use without
mention) together with an application of Remark 2.76-(2,3) on page 102:

(
u ∈ Â+, n ∈ N

)
=⇒ u∗̂n ∈ ∏

j≥n

Aj = Ω̂n,

u ∈ Â+ =⇒ limn→∞ u∗̂n = 0,
(
u ∈ Â+, cn ∈ K for all n ∈ N

)
=⇒

∞∑

n=1
cn u

∗̂n converges in Â+.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(3.4)

The notation Exp∗ and Log∗ will also occur (here ∗ denotes the algebra
operation on A), when there is some possibility of misunderstanding. In
forthcoming sections, when A is given by some very special graded UA
algebra (for example the tensor algebra related to a free vector space over
two or three non-commuting indeterminates), we shall also admit other
more common notation:
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eu, log(1 + u), exp(u), log(1 + u), . . .

We now collect some remarkable (and expected) results on the Exp and
Log maps. Throughout, A =

⊕
j≥0Aj is a graded UA algebra.

Lemma 3.3. With the hypothesis and the notation in Definition 3.2, the functions
Exp,Log are continuous on their corresponding domains.

Proof. This follows from the fact that the series defining these functions are
uniformly convergent series (on the corresponding domains, subsets of the
metric space Â) of continuous functions, hence they are continuous (from
well-known general results on metric spaces). Indeed:

1. Any polynomial function Â � u �→ c0 + c1 u+ · · ·+ cN u∗̂N is continuous
on Â for (Â, ∗̂ ) is a topological algebra.

2. The series for Exp and Log converge uniformly on Â+ and 1 + Â+

respectively. We prove the former fact, the latter being analogous. We
denote by d̂ the metric on Â induced by the family {Ω̂k}k. For every
N,P ∈ N we have

sup
u∈Â+

d̂
(N+P∑

k=N

1
k! u

∗̂k, 0
)

= sup
u∈Â+

exp
(
−max

{
n ≥ 1
∣
∣
∣
N+P∑

k=N

1
k! u

∗̂ k ∈ Ω̂k

})

(use (3.4) and recall that Ω̂N ⊇ · · · ⊇ Ω̂N+P to estimate the inner max)

≤ sup
u∈Â+

exp(−N) = exp(−N) −−−−→
N→∞

0, uniformly in P ≥ 1.

This proves that the sequence
{∑N

k=0
1
k! u

∗̂ k
}
N

converges uniformly (on
Â+) to its limit, namely Exp(u). ��
Proposition 3.4. The functions Exp and Log introduced in Definition 3.2 are
inverse to each other, so that

Exp(Log(1 + u)) = 1 + u, Log(Exp(u)) = u, for every u ∈ Â+. (3.5)

Proof. Let us set, for brevity,

b0 := 1, bn :=
1

n!
, cn :=

(−1)n+1

n
∀ n ∈ N,

so that Exp(w) =
∑∞

n=0 bn w
∗̂n and Log(1 + w) =

∑∞
n=1 cn w

∗̂n for every
w ∈ Â+. Let u ∈ Â+ be fixed. Then we have:
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Exp(Log(1 + u)) =

∞∑

n=0

bn

( ∞∑

k=1

ck w
∗̂ k
)∗̂n

(recall that (Â, ∗̂ ) is a topological algebra)

= 1 +

∞∑

n=1

bn
∑

k1,...,kn≥1

ck1 · · · ckn w∗̂ k1+···+kn

(a simple reordering argument)

= 1 +

∞∑

j=1

( j∑

n=1

bn
∑

k1,...,kn≥1
k1+···+kn=j

ck1 · · · ckn
)

w∗̂ j = 1 + w.

Indeed, in the last equality we used the identities

b1 c1 = 1,

j∑

n=1

bn
∑

k1,...,kn≥1
k1+···+kn=j

ck1 · · · ckn = 0 j ≥ 2,

proved in (9.26), page 491 of Chap. 9, devoted to the formal power series
in one indeterminate. The second equality in (3.5) follows analogously, by
means of the dual identities

c1 b1 = 1,

j∑

n=1

cn
∑

k1,...,kn≥1
k1+···+kn=j

bk1 · · · bkn = 0, j ≥ 2,

also proved in (9.26). This ends the proof. ��
The following is a trivial version of our CBHD Theorem: the CBHD Theorem
in a commutative setting.

Proposition 3.5 (Commutative CBHD Theorem). If u, v ∈ Â+ and u∗̂ v =
v∗̂u, then we have the identity

Exp(u) ∗̂ Exp(v) = Exp(u + v). (3.6)

Proof. The proof is completely analogous to that of Lemma 4.8, page 190, to
which the Reader is directly referred. ��
Theorem 3.6. Let (A,�) and (B,�) be two graded UA algebras and let ϕ : Â→
B̂ be a continuous UAA morphism, of the associated algebras of formal power series
(Â, �̂), (B̂, �̂), with the additional property

ϕ(Â+) ⊆ B̂+. (3.7)
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Then we have

ϕ ◦ Exp� = Exp� ◦ ϕ on Â+,

ϕ ◦ Log� = Log� ◦ ϕ on 1A + Â+.
(3.8)

Proof. The hypothesis ϕ(Â+) ⊆ B̂+ ensures that ϕ(1A + Â+) ⊆ 1B + B̂+, so
that the identities in (3.8) are well posed. We will only prove the first identity
in (3.8), as the second may be done in an analogous fashion. The following
argument (explained below) completes the proof: For any u ∈ Â+, we have

(ϕ ◦ Exp�)(u)
(1)
=

∞∑

n=0

ϕ
( 1

n!
u�̂ n
)

(2)
=

∞∑

n=0

1

n!
(ϕ(u))

�̂ n (3)
= (Exp� ◦ ϕ)(u).

Here we used the following:

(1): Definition of Exp� and continuity of ϕ.
(2): ϕ is a UAA morphism (in particular, linear).
(3): Definition of Exp�. ��
Particularly important for our purposes are the cases when the graded
algebra A is, respectively, (T (V ), ·) and (T (V ) ⊗ T (V ), •). In these cases,
instead of the somewhat awe-inspiring notation

Exp ·̂ Log ·̂

we shall use (admittedly with some abuse) the notation

Exp⊗ Log⊗

for the exponential/logarithmic maps related to T (V ). Analogously,

Exp •̂ Log •̂

will be replaced by
Exp• Log•,

denoting the exponential/logarithmic maps related to T (V )⊗T (V ). More
explicitly, we have

Exp⊗ : T̂+ −→ 1 + T̂+ Log⊗ : 1 + T̂+ −→ T̂+

u �→
∞∑

k=0

1
k! u

·̂ k 1 + w �→
∞∑

k=1

(−1)k+1

k w·̂ k.
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Analogously,

Exp• : ̂T⊗T + −→ 1 + ̂T⊗T + Log• : 1 + ̂T⊗T + −→ ̂T⊗T +

u �→
∞∑

k=0

1
k! u

•̂ k 1 + w �→
∞∑

k=1

(−1)k+1

k w•̂ k.

Here we have a lemma concerning the relationship between these maps in
the cases of T and T ⊗ T . Henceforth, V is a fixed vector space and 1
will denote the identity of T (V ). The Reader is also invited to review the
identification of T̂ ⊗ T̂ as a subalgebra of ̂T⊗T in Proposition 2.82 on
page 106, performed by the natural map

T̂ (V )⊗ T̂ (V ) � (ui)i ⊗ (vj)j �→
(
ui ⊗ vj

)
i,j
∈ ̂T⊗T (V ). (3.9)

We shall always tacitly assume this identification to be made. Note that this
gives5

(a⊗ b) •̂ (α⊗ β) = (a ·̂ b)⊗ (b ·̂ β), for every a, b, α, β ∈ T̂ (V ). (3.10)

Lemma 3.7. With the above notation, we have

Exp•(z ⊗ 1) = Exp⊗z ⊗ 1, Exp•(1⊗ z) = 1⊗ Exp⊗z, (3.11a)

Exp•(z ⊗ 1 + 1⊗ z) = Exp⊗z ⊗ Exp⊗z, (3.11b)

for every z ∈ T̂+(V ). Dually, we have

Log•(w ⊗ 1) = Log⊗w ⊗ 1, Log•(1 ⊗ w) = 1⊗ Log⊗w, (3.12a)

Log•(w ⊗ w) = Log⊗w ⊗ 1 + 1⊗ Log⊗w, (3.12b)

for every w ∈ 1 + T̂+(V ).

Proof. It suffices to prove (3.11a)–(3.11b), for (3.12a)–(3.12b) follow from
these, together with Proposition 3.4.

(3.11a): We prove the first identity in (3.11a), the proof of the other one
being analogous. First note that

z ⊗ 1, 1⊗ z ∈ ̂T⊗T +, for every z ∈ T̂+.

5As we proved in (2.96), page 106, with a concise notation dropping the hat ̂.
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Indeed, one has z = (zn)n with z0 = 0 and zn ∈ Tn for every n ∈ N, so
that (setting 1 = (δ0,n)n with δ0,0 = 1 and δ0,n = 0 for every n ≥ 1)

z ⊗ 1
(3.9)≡ (zi ⊗ δ0,j)i,j

=
(

0︸︷︷︸
entry (0, 0)

, z1 ⊗ 1
︸ ︷︷ ︸

entry (1, 0)

, 0︸︷︷︸
entry (0, 1)

, z2 ⊗ 1
︸ ︷︷ ︸

entry (2, 0)

, 0︸︷︷︸
entry (1, 1)

, 0︸︷︷︸
entry (0, 2)

, · · ·
)
.

This is clearly an element of ̂T⊗T +. Let now z ∈ T̂+(V ). The following
computation applies:

Exp•(z ⊗ 1) =

∞∑

k=0

1

k!
(z ⊗ 1)•̂ k (3.10)

=

∞∑

k=0

1

k!
z ·̂ k ⊗ 1

=
( ∞∑

k=0

1

k!
z ·̂ k
)
⊗ 1 = Exp⊗z ⊗ 1.

(3.11b): Let x, y ∈ T̂+(V ). By the above remarks we have x ⊗ 1, 1 ⊗ y ∈
̂T⊗T + and the same is true of x ⊗ 1 + 1 ⊗ y. Note that x ⊗ 1 and 1 ⊗ y
commute w.r.t. •̂, for one has, thanks to (3.10),

(x⊗ 1) •̂ (1⊗ y) = x⊗ y = (1⊗ y) •̂ (x⊗ 1).

Hence we are entitled to apply Proposition 3.5 when A = (T ⊗T , •)
(which is a graded algebra!). We then have

Exp•(x⊗ 1 + 1⊗ y) = Exp•(x⊗ 1) •̂ Exp•(1 ⊗ y)

(3.11a)
= (Exp⊗x⊗ 1) •̂ (1⊗ Exp⊗y)

(3.10)
= (Exp⊗x ·̂ 1)⊗ (1 ·̂ Exp⊗y) = Exp⊗x⊗ Exp⊗y.

Finally (3.11b) follows by taking x = y = z. ��
Note that the derivation of (3.11b) needs the trivial version of the CBHD
Theorem, proved in Proposition 3.5.

3.1.2 The Statement of Our Main CBHD Theorem

From now on, V will denote a fixed vector space over a field K (of charac-
teristic zero). We denote by T (V ) the tensor algebra of V and by T̂ (V ) the
corresponding topological algebra of formal power series. Moreover, T̂+(V )
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denotes the ideal of T̂ (V ) whose elements have vanishing component of
degree 0 component. Finally, L(V ) is the smallest Lie sub-algebra of T (V )
containing V (i.e., L(V ) is the free Lie algebra generated by V ) and

L(V )

is the closure of L(V ) in the topological (and metric) space T̂ (V ). Note that
L(V ) ⊂ T̂+(V ).

We are ready to state the central result of this Book, the Campbell, Baker,
Hausdorff, Dynkin Theorem. To this end, a last bit of new notation is required.
As usual, in any Lie algebra g, we set adx (y) := [x, y]g. We introduce the
following convenient (but not conventional) notation:

If u, v ∈ g, if h1, k1, . . . , hn, kn ∈ N ∪ {0} (with (h1, k1, . . . , hn, kn) non-
identically null), we set

[uh1vk1 · · ·uhnvkn
]
g
:= (adu)h1◦(ad v)k1◦· · ·◦(adu)hn◦(ad v)kn−1(v) (3.13)

(when kn = 0, this has the obvious meaning “· · · ◦ (adu)hn−1(u)” and so
on). The expression in (3.13) will be called a right-nested bracket of u and v.
Indeed, we have

[uh1vk1 · · ·uhnvkn
]
g
= [u · · · [u
︸ ︷︷ ︸
h1 times

[v · · · [v
︸ ︷︷ ︸
k1 times

· · · [u · · · [u
︸ ︷︷ ︸
hh times

[v[· · · v
︸ ︷︷ ︸
kn times

] ]] ] ] ]] ]g.

On the occasion, when it is understood, the subscript “g” may be omitted
(as we did above in the majority of the “]” signs).

Convention. When equipped with their commutator-algebra structure,
for both T (V ) and T̂ (V ) we shall use the notation [·, ·]⊗ for the associated
commutator and also for the right-nested brackets [uh1vk1 · · ·uhnvkn

]
⊗.

We are ready to state the main theorem of this Book.

Theorem 3.8 (Campbell, Baker, Hausdorff, Dynkin). Let V be a vector space
over the field K (of characteristic zero). Let T̂ (V ) =

∏∞
k=0 Tk(V ) be the (usual)

completion of the tensor algebra T (V ) (i.e., T̂ (V ) is the algebra of the formal power
series of the tensor algebra of V ).

For u ∈ T̂+(V ) =
∞∏

k=1

Tk(V ), we set Exp⊗(u) =
∞∑

k=0

1
k! u

k.

Then we have the Campbell-Baker-Hausdorff-Dynkin Formula

Exp⊗(u) · Exp⊗(v) = Exp⊗(Z(u, v)), ∀ u, v ∈ T̂+(V ), (3.14)
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where Z(u, v) =
∑∞

j=1 Zj(u, v), and Zj(u, v) is an element of Lie{u, v}, i.e., the
smallest Lie subalgebra of T (V ) containing u, v (Campbell-Baker-Hausdorff
Theorem). Moreover Zj(u, v) is homogeneous of degree j in u, v jointly, with the
“universal” expression (Dynkin’s Theorem)

Zj(u, v)

=

j∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
h1+k1+···+hn+kn=j

[
uh1vk1 · · ·uhnvkn

]
⊗

h1! · · ·hn! k1! · · · kn! (
∑n

i=1(hi + ki))
.

(3.15)

Here [uh1 · · · vkn ]⊗ is a right-nested bracket in the Lie algebra associated to T̂ (V ).

[We recall that, to unburden ourselves of heavy notation, the dot · replaces
·̂ for the operation on T̂ (V ).]

Throughout this Book, the above theorem is denoted the CBHD Theorem
for short, or simply by CBHD. Also, in distinguishing the more “qualitative”
part of the theorem (that is, the fact that Z(u, v) belongs to the closure of
Lie{u, v}) from the “quantitative” actual series representation of Z(u, v), the
former will also be abbreviated as the CBH Theorem (and the latter will be
referred to as the Dynkin series).

3.1.3 The Operation � on T̂+(V )

Via the Exp/Log maps, we can define an important composition law on
T̂+(V ), namely:

u�v := Log⊗
(
Exp⊗(u) · Exp⊗(v)

)
, u, v ∈ T̂+(V ). (3.16)

Note that � is well posed since

Exp⊗(T̂+) · Exp⊗(T̂+) = (1 + T̂+) · (1 + T̂+) = 1 + T̂+.

Moreover u�v ∈ T̂+ for every u, v ∈ T̂+, since Log⊗ w ∈ T̂+ whenever
w ∈ 1 + T̂+. As a consequence � defines a binary operation on T̂+(V ).

Remark 3.9. It is immediately seen from its very definition that the � operation
is associative (since the operation · is).

The � composition can be explicitly written as:

u�v =

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)

uh1 · vk1 · · ·uhn · vkn
h1! · · ·hn! k1! · · · kn! . (3.17)
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Indeed, by taking into account the explicit definitions of Exp and Log, for
every u, v ∈ T̂+(V ), we have

u�v = Log⊗

( ∞∑

h=0

uh

h!
·

∞∑

k=0

vk

k!

)

= Log⊗

(

1 +
∑

(h,k) �=(0,0)

uh · vk
h! k!

)

=

∞∑

n=1

(−1)n+1

n

( ∑

(h,k) �=(0,0)

uh · vk
h! k!

)n

=

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)

uh1 · vk1 · · ·uhn · vkn
h1! · · ·hn! k1! · · · kn! .

(3.18)

The following important facts hold:

Proposition 3.10. If � is as in (3.16), then (T̂+(V ), �) is a group. Moreover,

Exp⊗(u�v) = Exp⊗(u) · Exp⊗(v), for every u, v ∈ T̂+(V ). (3.19)

Proof. The fact that (T̂+(V ), �) is a group follows from the fact that (1 +

T̂+(V ), ·) is a multiplicative subgroup of T̂+(V ) (see Lemma 3.1) together
with the fact that

Exp⊗ : T̂+ → 1 + T̂+, Log⊗ : 1 + T̂+ → T̂+

are inverse to each other. Finally, (3.19) follows from the definition of �. ��
When dealing with the CBHD formula (3.15), it is convenient to fix some
notation. We shall use the multi-index notation

|h| =∑n
i=1 hi, h! = h1! · · ·hn!

if h = (h1, . . . , hn) with h1, · · · , hn ∈ N ∪ {0}. Moreover, we make the
following useful abbreviations: for any n ∈ N we set

Nn :=
{
(h, k)
∣
∣ h, k ∈ (N ∪ {0})n, (h1, k1), . . . , (hn, kn) �= (0, 0)

}
,

cn :=
(−1)n+1

n
, c(h, k) :=

1

h! k! (|h|+ |k|) .
(3.20)

With this notation and with the definition of � as in (3.16), the CBHD
formula in (3.15) takes the form



128 3 The Main Proof of the CBHD Theorem

u�v CBHD
=

∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

)

.

(3.21)
(For other different ways to write the series on the right-hand side of (3.21),
see the end of Sect. 3.1.4.1.) Also, by using the same notation we can rewrite
the � composition as follows:

u�v =
∞∑

n=1

cn
∑

(h,k)∈Nn

uh1 · vk1 · · ·uhn · vkn
h! k!

, (3.22)

or, by grouping together terms with “similar homogeneity”, we can rewrite:

u�v =

∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

uh1 · vk1 · · ·uhn · vkn
h! k!

)

. (3.23)

One of the most important features of the � operation will be proved in
Corollary 3.21, by making use of the Campbell, Baker, Hausdorff Theorem
3.20. Namely, restriction of the � operation to L(V ) × L(V ) defines a binary
operation on L(V ).

3.1.4 The Operation � on T̂+(V )

Let us consider, for every u, v ∈ T̂+(V ), the series
∑∞

j=1 Zj(u, v) appearing
in our CBHD Theorem 3.8, namely the following series

u � v :=

∞∑

j=1

(
j∑

n=1

(−1)n+1

n

×
∑

(h1,k1),...,(hn,kn) �=(0,0)
h1+k1+···+hn+kn=j

[
uh1vk1 · · ·uhnvkn

]
⊗

h1! · · ·hn! k1! · · · kn! (
∑n

i=1(hi + ki))

)

.

(3.24)

With the notation in the previous section, this takes the shorter form

u � v =

∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

)

,
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We remark that for every u, v ∈ T̂+(V ) this series is convergent to an element
of T̂+(V ), whence � defines a binary operation on T̂+(V ). Indeed, if u, v ∈
T̂+(V ) = Û1, then,

[
uh1vk1 · · ·uhnvkn

]
⊗ ∈ Û|h|+|k|.

As a consequence, the summand in parentheses in (3.24) – which is Zj(u, v)

– belongs to Ûj . Thus, the series converges in T̂ (V ), for Ûj � Zj(u, v)→ 0 as
j → ∞ (hence, we can apply Remark 2.76-3, page 102, on the convergence
of series). Clearly � is binary on T̂+ since we have, for every u, v ∈ T̂+,

u � v =

∞∑

j=1

Zj(u, v)
︸ ︷︷ ︸
∈Ûj⊆Û1

∈ Û1 = T̂+(V )

(recall that the spaces Ûk are closed, by Remark 2.78).

Remark 3.11. The � operation has the following important feature: The
restriction of the � operation to L(V )× L(V ) defines a binary operation on L(V ).
Indeed, since L(V ) is a Lie subalgebra of T̂+(V ) (see Remark 3.17), we have

[
uh1vk1 · · ·uhnvkn

]
⊗ ∈ L(V ), for every u, v ∈ L(V ).

Hence, if u, v ∈ L(V ), then u � v is expressed by a converging sequence of
elements of L(V ) and it is therefore an element of L(V ) (which is obviously
closed in T̂ (V )!).

The other fundamental property of �, which will be proved only after
Dynkin’s Theorem 3.30, is that it satisfies

Exp⊗(u � v) = Exp⊗(u) · Exp⊗(v), for every u, v ∈ T̂+(V ).

With the operations � and � at hands, we can restate the CBHD Theorem as
follows.

Theorem 3.12 (Campbell, Baker, Hausdorff, Dynkin). Let V be a vector
space over field K (of characteristic zero). Let � and � be the operations on T̂+(V )
introduced in (3.16) and (3.24), respectively. Then these operations coincide on
T̂+(V ), i.e., we have the Campbell-Baker-Hausdorff-Dynkin Formula

u�v = u � v, for every u, v ∈ T̂+(V ). (3.25)
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3.1.4.1 Other Ways to Write the Dynkin Series

There are other ways of rewriting the series expressing the operation � in
(3.77), that is,

u � v =
∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

)

, (3.26)

a series which is convergent, as we already know, for every u, v ∈ T̂+(V ).
Interchanging the summations over n and j, we get at once:

u � v =
∞∑

n=1

(

cn
∑

(h,k)∈Nn: |h|+|k|≥n

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

)

,

or, shorter (since it is always true that |h|+ |k| ≥ n for every (h, k) ∈ Nn),

u � v =

∞∑

n=1

(

cn
∑

(h,k)∈Nn

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

)

=:

∞∑

n=1

Hn(u, v).

(3.27)

Note that, unlike for the expression in (3.26), each term in parentheses in
(3.27) (denoted Hn(u, v)) is an infinite sum for every fixed n ∈ N, and it has to
be interpreted as the following limit (in the complete metric space T̂ (V ))

Hn(u, v) := lim
N→∞

cn
∑

(h,k)∈Nn: |h|+|k|≤N

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗. (3.28)

Here as usual we have fixed u, v ∈ T̂+(V ). This limit exists, for Hn(u, v) can
obviously be rewritten as a convergent series

Hn(u, v) = lim
N→∞

N∑

j=n

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

=

∞∑

j=n

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗.

(3.29)

The series on the far right-hand side of (3.29) is convergent in T̂ (V ) (in view
of, e.g., Remark 2.62, page 95), since one has, for all u, v ∈ T̂+(V ):
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cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗ ∈
∏

k≥j

Tk(V ).

Another useful representation of u � v can be obtained as follows: For every
N ∈ N and every fixed u, v ∈ T̂+(V ), let us set

ηN (u, v) :=

N∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|≤N

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗. (3.30)

Then we have

u � v = lim
N→∞

ηN (u, v). (3.31)

This is an easy consequence of the following reordering of the sum defining
ηN (u, v):

ηN (u, v) =

N∑

n=1

cn

N∑

j=n

∑

(h,k)∈Nn:
|h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

=

N∑

j=1

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

=

N∑

j=1

Zj(u, v) (see (3.15)),

(3.32)

which gives (by definition of the sum of a series)

lim
N→∞

ηN (u, v) =
∞∑

j=1

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

=

∞∑

j=1

Zj(u, v) = u � v.

Another way to write u � v is:

u � v =
∑

r,s�0
(r,s) �=(0,0)

Zr,s(u, v) =
∑

r,s�0
(r,s) �=(0,0)

(
Z ′

r,s(u, v) + Z ′′
r,s(u, v)

)
, (3.33)
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where, for every nonnegative integers r, s with (r, s) �= (0, 0) we have set
Zr,s(u, v) = Z ′

r,s(u, v) + Z ′′
r,s(u, v) with

Z ′
r,s(u, v) =

1

r + s

r+s∑

n=1

(−1)n+1

n

∑

h1+···+hn−1+hn=r
k1+···+kn−1=s−1

(h1,k1),...,(hn−1,kn−1) �=(0,0)

× (adu)h1(ad v)k1 · · · (adu)hn−1(ad v)kn−1(adu)hn(v)

h1!k1! · · ·hn−1!kn−1!hn!

and

Z ′′
r,s(u, v) =

1

r + s

r+s∑

n=1

(−1)n+1

n

∑

h1+···+hn−1=r−1
k1+···+kn−1=s

(h1,k1),...,(hn−1,kn−1) �=(0,0)

× (adu)h1(ad v)k1 · · · (adu)hn−1(ad v)kn−1(u)

h1!k1! · · ·hn−1!kn−1!
.

Note that

Zj(u, v) =
∑

r,s�0
r+s=j

Zr,s(u, v) =
∑

r,s�0
r+s=j

Z ′
r,s(u, v) +

∑

r,s�0
r+s=j

Z ′′
r,s(u, v), (3.34)

for every j ∈ N. Roughly, Zr,s(u, v) collects the summands of u�v which are
homogeneous of degree r in u and homogeneous of degree s in v. Also,
Z ′

r,s(u, v) collects the summands of Zr,s(u, v) which “start” with a v (in
the innermost position), whereas Z ′′

r,s(u, v) collects those starting with a u.
Another possible presentation is

u � v = Z ′(u, v) + Z ′′(u, v), (3.35)

where Z ′(u, v) =
∑∞

j=1 Z
′
j(u, v) and Z ′′(u, v) =

∑∞
j=1 Z

′′
j (u, v), with

Z ′
j(u, v) =

∑

r,s�0
r+s=j

Z ′
r,s(u, v), Z ′′

j (u, v) =
∑

r,s�0
r+s=j

Z ′′
r,s(u, v).

Note that (3.34) implies that Zj(u, v) = Z ′
j(u, v) + Z ′′

j (u, v).

3.2 The Campbell, Baker, Hausdorff Theorem

The goal of this section is the proof of Theorem 3.20. To this end we need a
characterization (first due to Friedrichs) of L(V ).
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3.2.1 Friedrichs’s Characterization of Lie Elements

A key rôle is played by Theorem 3.13 below, first due to Friedrichs,6 [64].
It states that L(V ) coincides with the primitive elements of T (V ). It is in the
proof of this result that we invoke the PBW Theorem.

Theorem 3.13 (Friedrichs’s Characterization of L(V )). Let V be any vector
space. Let δ : T (V ) → T (V ) ⊗ T (V ) be the unique UAA morphism such that
δ(v) = v ⊗ 1 + 1⊗ v, for all v ∈ V . Then

L(V ) =
{
t ∈ T (V )

∣
∣ δ(t) = t⊗ 1 + 1⊗ t

}
. (3.36)

Proof. Let us denote by L the set on the right-hand side of (3.36). The
bilinearity of ⊗ proves at once that L is a vector subspace of T . Moreover
V ⊆ L trivially. By using the definition of δ and of the • operation on
T (V ) ⊗ T (V ), it is easily checked that L is a Lie subalgebra of T (V )
containing V : indeed, given t1, t2 ∈ L we have

δ([t1, t2]⊗) = δ(t1 · t2 − t2 · t1) = δ(t1) • δ(t2)− δ(t2) • δ(t1)
= (t1 ⊗ 1 + 1⊗ t1) • (t2 ⊗ 1 + 1⊗ t2)+

− (t2 ⊗ 1 + 1⊗ t2) • (t1 ⊗ 1 + 1⊗ t1)

(2.38)
= (t1 · t2)⊗ 1 + t1 ⊗ t2 + t2 ⊗ t1 + 1⊗ (t1 · t2)+
− (t2 · t1)⊗ 1− t2 ⊗ t1 − t1 ⊗ t2 − 1⊗ (t2 · t1)

= [t1, t2]⊗ ⊗ 1 + 1⊗ [t1, t2]⊗.

This proves that [t1, t2]⊗ ∈ L so that L is closed w.r.t. the bracket operation.
By the definition of L(V ), which is the smallest Lie algebra containing V , we
derive L(V ) ⊆ L.

Vice versa, let us denote by {tα}α∈A a basis for L(V ), and we assume A

to be totally ordered by the relation � (we write a ≺ b if a � b and a �= b). If
π is as in (2.101) on page 108, we set Tα := π(tα), for every α ∈ A. In view of
the PBW Theorem 2.94, the set

B =

{

π(1), T k1
α1
· · ·T kn

αn

∣
∣
∣

n ∈ N, α1, . . . , αn ∈ A,
α1 ≺ · · · ≺ αn, k1, . . . , kn ∈ N

}

is a linear basis for U (L(V )). As a consequence, by Proposition 2.93, which
asserts that the map

6See Reutenauer [144, Notes 1.7 on Theorem 1.4] for a comprehensive list of references for
this theorem.
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j : U (L(V ))→ T (V ), j(π(t)) = t, for every t ∈ L(V )

is a UAA morphism, we deduce that

j(B) =

{

1K, t
k1
α1
· · · tknαn

∣
∣
∣

n ∈ N, α1, . . . , αn ∈ A,
α1 ≺ · · · ≺ αn, k1, . . . , kn ∈ N

}

is a linear basis for T (V ). Thanks to Theorem 2.31 on page 74, this proves
that j(B)⊗ j(B) is a basis for T (V )⊗T (V ).

Since δ(tα) = tα ⊗ 1 + 1⊗ tα (as L(V ) ⊆ L), we claim that

δ(tk1
α1
· · · tknαn) = (tα1 ⊗ 1 + 1⊗ tα1)

• k1 • · · · • (tαn ⊗ 1 + 1⊗ tαn)
• kn

= tk1
α1
· · · tknαn ⊗ 1 + 1⊗ tk1

α1
· · · tknαn+ (3.37)

+
∑

hi

c
(k1,...,kn)
h1,...,hn

th1
α1
· · · thnαn ⊗ tk1−h1

α1
· · · tkn−hn

αn ,

where the sum runs over the integers hi such that 0 ≤ hi ≤ ki for i = 1, . . . , n
and such that 0 < h1+ · · ·+hn < k1+ · · ·+kn, and the constants c are positive
integers (resulting from sums of binomial coefficients: note that tα1 ⊗ 1 and
1 ⊗ tα1 commute w.r.t. •). Note also that the sum on the far right-hand side
of (3.37) is empty iff k1 + · · ·+ kn = 1.

We prove the claimed (3.37):

δ(tk1
α1
· · · tknαn) = (tα1 ⊗ 1 + 1⊗ tα1)

• k1 • · · · • (tαn ⊗ 1 + 1⊗ tαn)
• kn

(by Newton’s binomial formula, since tαi ⊗ 1, 1⊗ tαi •-commute)

=
∑

0≤j1≤k1,··· ,0≤jn≤kn

(
k1
j1

)

· · ·
(
kn
jn

)

× (tα1 ⊗ 1)• j1 • (1⊗ tα1)
• k1−j1 • · · · • (tαn ⊗ 1)• jn • (1⊗ tαn)

• kn−jn

(2.38)
=

∑

0≤j1≤k1,··· ,0≤jn≤kn

(
k1
j1

)

· · ·
(
kn
jn

)

× (tj1α1
⊗ 1) • (1⊗ tk1−j1

α1
) • · · · • (tjnαn ⊗ 1) • (1⊗ tkn−jn

αn )

(any tjiαi ⊗ 1 commutes with any 1⊗ tkh−jh
αh )

=
∑

0≤j1≤k1,··· ,0≤jn≤kn

(
k1
j1

)

· · ·
(
kn
jn

)

× (tj1α1
⊗ 1) • · · · • (tjnαn ⊗ 1) • (1⊗ tk1−j1

α1
) • · · · • (1⊗ tkn−jn

αn )
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(2.38)
=

∑

0≤j1≤k1,··· ,0≤jn≤kn

(
k1
j1

)

· · ·
(
kn
jn

)

× ((tj1α1
· · · tjnαn)⊗ 1

) • (1⊗ (tk1−j1
α1

· · · tkn−jn
αn )

)

(2.38)
=

∑

0≤j1≤k1,··· ,0≤jn≤kn

(
k1

j1

) · · · (knjn
)
(tj1α1

· · · tjnαn)⊗ (tk1−j1
α1

· · · tkn−jn
αn )

(we isolate the summands with (j1, . . . , jn) = (0, . . . , 0); (k1, . . . , kn))

= tk1
α1
· · · tknαn ⊗ 1 + 1⊗ tk1

α1
· · · tknαn

+
∑

0≤j1≤k1,··· ,0≤jn≤kn
(0,...,0) �=(j1,...,jn) �=(k1,...,kn)

(
k1

j1

) · · · (knjn
)
(tj1α1

· · · tjnαn)⊗ (tk1−j1
α1

· · · tkn−jn
αn ).

We now decompose an arbitrary t ∈ L w.r.t. the above basis j(B):

t =
∑

n, αi, ki

C
(α1,...,αn)
k1,...,kn

tk1
α1
· · · tknαn (the sum is finite and the C are all scalars).

By applying δ to this identity and by (3.37), we get (as t ∈ L)

t⊗ 1 + 1⊗ t = δ(t) =
∑

n, αi, ki

C
(α1,...,αn)
k1,...,kn

(
tk1
α1
· · · tknαn ⊗ 1 + 1⊗ tk1

α1
· · · tknαn

)
+

+
∑

n, αi, ki

∑

hi

{
C

(α1,...,αn)
k1,...,kn

c
(k1,...,kn)
h1,...,hn

th1
α1
· · · thnαn ⊗ tk1−h1

α1
· · · tkn−hn

αn

}

= t⊗ 1 + 1⊗ t+
∑

n, αi, ki

∑
hi
{· · · }.

After canceling out t⊗1+1⊗t, we infer that the double sum on the far right-
hand side above is null. Using the linear independence of different elements
in the basis j(B)⊗j(B) of T (V )⊗T (V ), we derive that every single product
of type C c is actually zero. Hence, as all the c are non-vanishing, one gets
that the constants C(α1,...,αn)

k1,...,kn
are zero whenever k1 + · · · + kn > 1. As a

consequence

t =
∑

k1+···+kn=1

C
(α1,...,αn)
k1,...,kn

tk1
α1
· · · tknαn

= C
(α1,0,...,0)
1,0,...,0 tα1 + · · ·+ C

(0,...,0,αn)
0,...,0,1 tαn ∈ L(V ).

This demonstrates that L ⊆ L(V ) and the proof is complete. ��
We explicitly observe that the map δ in Theorem 3.13 is a UAA morphism
acting on v ∈ V as v �→ v ⊗ 1 + 1 ⊗ v; thus it may also be characterized as
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being the unique linear map such that

δ : T (V )→ T (V )⊗T (V )

1 �→ 1⊗ 1 and, for every k ∈ N,

v1 ⊗ · · · ⊗ vk �→ (v1 ⊗ 1 + 1⊗ v1) • · · · • (vk ⊗ 1 + 1⊗ vk).

(3.38)

As a consequence the following inclusion holds (see also the notation in
(2.42), page 82 and the grading condition (2.43))

δ(Tk(V )) ⊆ Kk(V ) =
⊕

i+j=k

Ti,j(V ). (3.39)

In particular, if u = (uk)k≥0 ∈ T (V ) (here uk ∈ Tk for every k ≥ 0), then

δ(u) =
∑

k≥0 δ(uk) (3.40)

gives the expression of δ(u) in the grading
⊕

k≥0Kk(V ) for T ⊗T (the sum
in (3.40) being finite, for T =

⊕
k≥0 Tk).

As a consequence of (3.39), it follows that (considering T (V ) and T (V )⊗
T (V ) as subspaces of the metric spaces T̂ and ̂T⊗T , respectively) δ is
uniformly continuous. Indeed, (3.39) implies

δ
(⊕

k≥n

Tk(V )
)
⊆
⊕

k≥n

Kk(V ) =
⊕

i+j≥n

Ti,j(V ),

so that we are in a position to apply Lemma 2.79, page 103 (it suffices to take
kn = n in (2.88)). Hence, δ extends uniquely to a continuous map

δ̂ : T̂ (V )→ ̂T⊗T (V ), which is also a UAA morphism.

The map δ̂ has the property

δ̂
( ∏

k≥n

Tk(V )
)
⊆
∏

i+j≥n

Ti,j(V ). (3.41)

These facts give the following representation for δ̂(u), when u ∈ T̂ =∏
k≥0 Tk is expressed in its coordinate form u = (uk)k (where uk ∈ Tk for

every k ≥ 0):
δ̂(u) =

∑
k≥0 δ(uk). (3.42)

(Recall that δ̂(uk) = δ(uk), since uk ∈ Tk and δ̂ prolongs δ.) Note that the
right-hand side of (3.42) is a convergent series in ̂T⊗T , since δ(uk) → 0
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as k → ∞ thanks to (3.39) (and use Remark 2.76-(3)). Also, (3.42) can be
viewed as the decomposition of δ̂(u) in the grading

⊕
k≥0Kk(V ) of ̂T⊗T

(see (2.42)).
Moreover, the particular case of (3.41) when n = 1 gives

δ̂(T̂+(V )) ⊆ ̂T⊗T +(V ). (3.43)

Note that this ensures that Exp•(δ̂(u)) makes sense for every u ∈ T̂+. Also
this ensures that δ̂(1 + T̂+) ⊆ 1 + ̂T⊗T +, so that Log•(δ̂(w)) makes sense
for every w ∈ 1 + T̂+.

If V is a vector space, we consider L(V ), the free Lie algebra generated
by V , as a subspace of the metric space T̂ (V ). Then we denote by L(V )

the closure of L(V ) in T̂ (V ). The following is the representation of L(V )
analogous to that for L(V ) in the notable Theorem 3.13.

Theorem 3.14 (Friedrichs’s Characterization of L(V )). Let V be any vector
space. Let δ̂ : T̂ (V ) → ̂T⊗T (V ) be the unique continuous UAA morphism
prolonging the map δ : T → T ⊗T in (3.38). Then we have

L(V ) =
{
t ∈ T̂ (V )

∣
∣ δ̂(t) = t⊗ 1 + 1⊗ t

}
. (3.44)

We remark that the equality “δ̂(t) = t ⊗ 1 + 1 ⊗ t” has to be understood as
follows: we note that its right-hand side is an element of T̂ ⊗T̂ , whereas the
left-hand side is an element of ̂T⊗T ; hence we are here identifying T̂ ⊗ T̂

as a subset of ̂T⊗T , as in Proposition 2.82 on page 106.

Proof. We denote by L̂ the set on the right-hand side of (3.44). We split the
proof in two parts:

L(V ) ⊆ L̂: By Theorem 3.13, any element t of L(V ) is the limit in T̂ of a
sequence tk ∈ T (V ) such that

δ(tk) = tk ⊗ 1 + 1⊗ tk, for every k ∈ N.

Passing to the limit k → ∞ and invoking Remark 2.83 on page 106 and
the continuity of δ̂ : T̂ → ̂T⊗T (the prolongation of δ), we get

δ̂(t) = t⊗ 1 + 1⊗ t, that is, t ∈ L̂.

L̂ ⊆ L(V ): Let t ∈ L̂. As an element of T̂ , we have t =
∑∞

k=0 tk, with
tk ∈ Tk(V ) for every k ≥ 0. The following identities then hold true:
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(�)

∞∑

k=0

δ(tk)
(3.40)
= δ̂(t) = t⊗ 1 + 1⊗ t =

∞∑

k=0

(tk ⊗ 1 + 1⊗ tk).

Since, for every k ≥ 0 we have (see (3.39))

δ(tk), tk ⊗ 1 + 1⊗ tk ∈ Kk(V ) =
⊕

i+j=k Ti,j(V ),

and since ̂T⊗T =
∏

k≥0Kk(V ), we are able to derive from (�) that
δ(tk) = tk ⊗ 1 + 1 ⊗ tk for every k ≥ 0, whence any tk belongs to L(V )
(thanks to Theorem 3.13). This gives

t =

∞∑

k=0

tk︸︷︷︸
∈L(V )

∈ L(V ),

and the proof is complete. ��
For the sake of completeness, we provide another characterization of L(V ).

Proposition 3.15. Let V be a vector space. Consider L(V ), the free Lie algebra
generated by V , as a subspace of the metric space T̂ (V ) =

∏∞
n=0 Tn(V ). Then, for

the closure L(V ) of L(V ) in T̂ (V ), we have the equality

L(V ) =
∏∞

n=1 Ln(V ), (3.45)

where Ln(V ) is as in Proposition 2.47 on page 85.

Proof. The inclusion
∏∞

n=1 Ln(V ) ⊆ L(V ) is an easy consequence of L(V ) =⊕
n≥1 Ln(V ) (see (2.50), page 85 and (2.86), page 102): Indeed, if (�n)n ∈
∏∞

n=1 Ln(V ) (with �n ∈ Ln(V ) for every n ∈ N) we have

(�n)n
(2.86)
= lim

n→∞ (0, �1, �2, . . . , �n, 0, 0, · · · )
︸ ︷︷ ︸

∈L(V ) by (2.50)

∈ L(V ).

Conversely, if � ∈ L(V ), there exists a sequence {ω(k)}k∈N of elements in
L(V ) such that � = limk→∞ ω(k) in T̂ (V ). For every fixed k ∈ N, ω(k) admits
a decomposition (as an element of L(V ) =

∏∞
n=1 Ln(V )) of the form

ω(k) =
(
ω(k)
n

)
n

with ω(k)
n ∈ Ln(V ) for every n ∈ N.

Analogously, as an element of L(V ) ⊂ T̂ (V ) =
∏∞

n=0 Tn(V ), � admits a
decomposition of the form

� =
(
�n
)
n

with �n ∈ Tn(V ) for every n ∈ N ∪ {0}.
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By Remark 2.76-(1), the fact that � = limk→∞ ω(k), means that for everyN∈N
there exists k(N) ∈ N such that, for all k ≥ k(N),

ω(k) =
(
�0, �1, �2, . . . , �N , ω

(k)
N+1, ω

(k)
N+2, . . .

)
.

But since the N -th component of any ω(k) belongs to LN (V ), this proves (by
the arbitrariness of N ) that �N ∈ LN (V ) for every N ∈ N. Thus � =

(
�n
)
n
∈

∏∞
n=0 Ln(V ). The arbitrariness of � ∈ L(V ) thus gives L(V ) ⊆∏∞

n=1 Ln(V ).
This completes the proof. ��
The same proof shows the following fact: Suppose that for every n ∈ N ∪ {0}
there be assigned a subspace Bn of Tn(V ). Then we have

⊕∞
n=0 Bn =

∏∞
n=0Bn,

the closure being taken in T̂ (V ).
The following corollary is a restatement of Proposition 3.15.

Corollary 3.16. Suppose that γj ∈ Tj(V ) for every j ∈ N and that
∑∞

j=1 γj ∈
L(V ). Then γj ∈ Lj(V ) for every j ∈ N (whence, in particular,

∑N
j=1 γj ∈ L(V )

for every N ∈ N).

Proof. This follows straightforwardly from Proposition 3.15, by recalling
that (see Remark 2.76-3) the series

∑∞
j=1 γj is convergent in T̂ (V ), since

γj ∈ Tj(V ) for every j ∈ N. ��
Remark 3.17. The set L(V ) is a Lie subalgebra of the commutator-algebra of
T̂ (V ). Indeed, we first note that L(V ) is a vector subspace of T̂ as it is
the closure (in a topological vector space) of a vector subspace. Hence we
are left to show that [u, v] ∈ L(V ) whenever u, v ∈ L(V ). To this end, by
(3.45) we have u = (uj)j and v = (vj)j , with uj, vj ∈ Lj(V ) for every j ∈ N.
Hence (see Remark 2.81)

[u, v] =
[
(uj)j , (vj)j

]
=
(∑

h+k=j [uh, vk]
)
j≥2

.

The above far right-hand side is an element of L(V ), again by (3.45). Indeed,
we have (see (2.51) at page 85) [uh, vk] ∈ [Lh(V ),Lk(V )] ⊆ Lh+k(V ). ��

3.2.2 The Campbell, Baker, Hausdorff Theorem

In this section, as usual, V will denote a fixed vector space on a field of
characteristic zero and the map δ̂ : T̂ (V ) → ̂T⊗T (V ) is the continuous
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UAA morphism introduced in the previous section. Note that we have

L(V ) ⊂ T̂+(V ). (3.46)

This follows from

L(V ) ⊂ T+(V ) =
⊕

n≥1 Tn(V ) ⊂∏n≥1 Tn(V ) = T̂+(V )

(for the first inclusion see (2.50), the other inclusions being trivial) and the
fact that T̂+(V ) = Û1 is closed in T̂ (see (2.78)). From (3.46) it follows that
the set Exp⊗(L(V )) is well defined and that we have

Exp⊗
(
L(V )
) ⊆ 1 + T̂+(V ). (3.47)

As a corollary of Theorem 3.6, we have the following result, exhibiting the
relationship between the map δ̂ and the maps Exp⊗,Exp• and Log⊗,Log•.

Corollary 3.18. With the above notation, we have

δ̂ ◦ Exp⊗ = Exp• ◦ δ̂ on T̂+,

δ̂ ◦ Log⊗ = Log• ◦ δ̂ on 1 + T̂+.
(3.48)

Proof. It suffices to apply Theorem 3.6 when A = T (V ), B = T (V )⊗T (V )

and ϕ = δ̂. Indeed, note that (3.7) is implied by (3.43). ��
Corollary 3.18 says that the following diagrams are commutative:

T̂+

Exp⊗
��

δ̂|
T̂+

��

1 + T̂+

δ̂|
1+T̂+

��

̂T⊗T +
Exp•

�� 1⊗ 1 + ̂T⊗T +

T̂+

δ̂|
T̂+

��

1 + T̂+

Log⊗




δ̂|
1+T̂+

��

̂T⊗T + 1⊗ 1 + ̂T⊗T +
Log•







3.2 The Campbell, Baker, Hausdorff Theorem 141

The following is another very important relationship between the maps
δ̂ and Exp. We emphasize that in the following proof we make use of
Friedrichs’s Characterization of L(V ), Theorem 3.14.

Theorem 3.19. The following formulas hold (Exp⊗ is here shortened to Exp):

δ̂(Expu) = Expu⊗ Expu, (3.49)

δ̂(Expu · Exp v) = (Expu · Exp v)⊗ (Expu · Exp v). (3.50)

for every u, v ∈ L(V ).

Proof. Let u ∈ L(V ). The following computation applies:

δ̂(Exp⊗u) = δ̂
( ∞∑

k=0

1

k!
u·̂ k
)

(1)
=

∞∑

k=0

1

k!

(
δ̂(u)
)•̂ k (2)

= Exp•(δ̂(u))

(3)
= Exp•(u⊗ 1 + 1⊗ u) = Exp⊗u⊗ Exp⊗u.

Here we have used:

1. The map δ̂ : T̂ → ̂T⊗T is continuous and it is a UAA morphism;
2. from (3.43), Exp• ◦ δ̂ makes sense on T̂+, hence in particular on L(V );
3. by (3.44), Friedrichs’s Characterization of L(V ), as u ∈ L(V ), we have δ̂(u) =
u⊗ 1 + 1⊗ u;

4. as u ∈ L(V ) ⊂ T̂+, we can apply (3.11b), according to which

Exp•(u⊗ 1 + 1⊗ u) = Exp⊗u⊗ Exp⊗u.

This proves (3.49). As for (3.50), given u, v ∈ L(V ) we have

δ̂(Exp⊗u · Exp⊗v) = δ̂(Exp⊗u) •̂ δ̂(Exp⊗v)

(3.49)
=
(
Exp⊗u⊗ Exp⊗u

) •̂ (Exp⊗v ⊗ Exp⊗v
)

(3.10)
= (Exp⊗u ·̂ Exp⊗v)⊗ (Exp⊗u ·̂ Exp⊗v).

This completes the proof. ��
With the characterization (3.44) at hand (and making use also of Theorem
3.19), we are now able to show that the following key result holds.

Theorem 3.20 (Campbell, Baker, Hausdorff). Let V be a vector space. Then

Log(Expu · Exp v) ∈ L(V ), for every u, v ∈ L(V ). (3.51)
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Corollary 3.21. The restriction of the � operation defined in (3.16) to L(V )×L(V )

defines a binary operation on L(V ).

Proof. Using (3.50) and (3.11b), we claim that

δ̂(u�v) = (u�v)⊗ 1 + 1⊗ (u�v), for every u, v ∈ L(V ). (3.52)

This shows that u�v ∈ L(V ), thanks to Friedrichs’s characterization of L(V )
in (3.44). We prove the claimed (3.52):

δ̂(u�v) =

(by definition of �) = δ̂
(
Log⊗(Exp⊗ u · Exp⊗ v)

)

(by (3.48)) = Log•
(
δ̂(Expu · Exp v))

(by (3.50)) = Log•
(
(Expu · Exp v)⊗ (Expu · Exp v))

(by definition of �) = Log•
(
Exp(u�v)⊗ Exp(u�v)

)

(by (3.12b)) = Log⊗(Exp⊗(u�v))⊗ 1 + 1⊗ Log⊗(Exp⊗(u�v))

= (u�v)⊗ 1 + 1⊗ (u�v).

This ends the proof. ��
Remark 3.22. As a consequence of the above theorem and thanks to the
decompositions T̂ (V ) =

∏∞
j=0 Tj(V ) and L(V ) =

∏∞
j=1 Lj(V ), we deduce

that, for every u, v ∈ L(V ), if we write

Log(Expu · Exp v) =
∞∑

j=0

zj(u, v), with zj(u, v) ∈ Tj(V ) for every j ≥ 0,

we have z0(u, v) = 0 and zj(u, v) ∈ Lj(V ) for every j ∈ N.

3.2.3 The Hausdorff Group

The Reader has certainly realized that in the previous section we have
implicitly handled the following set (and its well-behaved properties):

Γ (V ) :=
{
x ∈ 1 + T̂+(V )

∣
∣ δ̂(x) = x⊗ x

}
. (3.53)

(As usual, x ⊗ x ∈ T̂ ⊗ T̂ has to be viewed as an element of ̂T⊗T , see
Proposition 2.82.) We shall refer to the above Γ (V ) as the Hausdorff group
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(related to V ). The most significant property of Γ (V ) is that it is a subgroup
of the multiplicative group of T̂ (V ):

Theorem 3.23 (Γ (V ) is a Group). Let V be a vector space and consider its
Hausdorff group Γ (V ) as in (3.53). Then Γ (V ) is a subgroup of the multiplicative
group of T̂ (V ).

Proof. We split the proof into two steps:

I. We first prove that the multiplication operation on T̂ (which we simply
denote by · instead of ·̂ as usual) restricts to a binary operation on Γ (V ).
Let x, y ∈ Γ (V ). Then we have x · y ∈ 1 + T̂+ (see Lemma 3.1) and

δ̂(x · y) = (δ̂ is a UAA morphism) δ̂(x) •̂ δ̂(y)
= (by x, y ∈ Γ (V )) (x⊗ x) •̂ (y ⊗ y)

(3.10)
= (x · y)⊗ (x · y),

which proves that x · y ∈ Γ (V ).
II. From Γ (V ) ⊆ 1 + T̂+, we know by Lemma 3.1 that every x ∈ Γ (V ) is

endowed with an inverse element x−1, belonging to 1+ T̂+. All we have
to prove is that x−1 ∈ Γ (V ). To this end, we are left to show that

δ̂(x−1) = x−1 ⊗ x−1, for every x ∈ Γ (V ). (3.54)

First, we claim that

(x⊗ x)•̂ (−1) = x−1 ⊗ x−1, for every x ∈ 1 + T̂+(V ). (3.55)

This immediately follows from (3.10):

(x⊗ x) •̂ (x−1 ⊗ x−1)
(3.10)
= (x · x−1) •̂ (x · x−1) = 1 • 1 = 1

̂T ⊗T
.

Finally, we are able to prove (3.54): given x ∈ Γ (V ), one has

δ̂(x−1) = (δ̂ is a UAA morphism) (δ̂(x))•̂ (−1)

(recall that x ∈ Γ (V ), whence δ̂(x) = x⊗ x)

= (x⊗ x)•̂ (−1) (3.55)
= x−1 ⊗ x−1.

This demonstrates (3.54), thus completing the proof. ��
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From (3.47) and (3.49) (and the very definition of Γ (V )) it follows that

Exp⊗(L(V )) ⊆ Γ (V ). (3.56)

Note that, in invoking (3.49), we are implicitly applying Friedrichs’s Charac-
terization Theorem 3.14. Actually, the reverse inclusion holds too. To prove
this, we first observe that

δ̂(Log⊗ x) = Log⊗ x⊗ 1 + 1⊗ Log⊗ x, for every x ∈ Γ (V ). (3.57)

Indeed, if x ∈ Γ (V ), we have

δ̂(Log⊗ x)
(1)
= Log•(δ̂(x))

(2)
= Log•(x ⊗ x)

(3)
= Log⊗x⊗ 1 + 1⊗ Log⊗x.

Here we have applied the following results:

1. The second identity of (3.48) together with Γ (V ) ⊆ 1 + T̂+(V ).
2. The definition of Γ (V ).
3. Identity (3.12b) and again Γ (V ) ⊆ 1 + T̂+(V ).

Now, once again thanks to Friedrichs’s characterization of L(V ) (see (3.44) of
Theorem 3.14), (3.57) proves that Log⊗x ∈ L(V ).

The arbitrariness of x ∈ Γ (V ) hence shows that

Log⊗(Γ (V )) ⊆ L(V ). (3.58)

As a consequence, gathering (3.56) and (3.58), from the fact that the maps

T̂+(V )

Exp⊗
�� 1 + T̂+(V )

Log⊗





are inverse to each other, together with L(V ) ⊆ T̂+(V ) and Γ (V ) ⊆ 1 +

T̂+(V ), we infer the following result.

Theorem 3.24. Let V be a vector space and let Γ (V ) be its Hausdorff group,
according to the definition in (3.53). Then we have

Exp(L(V )) = Γ (V ) and Log(Γ (V )) = L(V ),
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so that the maps

L(V )

Exp|
L(V )

�� Γ (V )

Log|Γ (V )





are inverse to each other. As a consequence, since (Γ (V ), ·) is a group (see Theorem
3.23), the operation

u�v = Log
(
Expu · Exp v), u, v ∈ L(V )

defines on L(V ) a group isomorphic to (Γ (V ), ·) via Exp|
L(V ).

In particular, this proves that the map � is a binary operation on L(V ), whence
the Campbell, Baker, Hausdorff Formula (3.51) holds.

Remark 3.25. We warn the Reader that the above derivation of the CBHD
Theorem is not simpler than the one in Sect. 3.2.2. Indeed, the main ingre-
dients are the very same in both proofs, since the proof that Exp(L(V )) =
Γ (V ) requires Friedrichs’s characterization of L(V ).

3.3 Dynkin’s Formula

Let us now turn to the derivation of an explicit formula for u�v. We first
need a crucial result, referred to as the Lemma of Dynkin, Specht and Wever,
which is the topic of the next section.

3.3.1 The Lemma of Dynkin, Specht, Wever

As usual, K is a field of characteristic 0 and linearity properties are always
meant to be understood with respect to K. In the results below we agree to
denote by [·, ·] the commutator related to the tensor algebra T (V ) of a vector
space V .

Lemma 3.26 (Dynkin, Specht, Wever). Let V be a vector space. Consider the
(unique) linear map P : T (V )→ L(V ) such that

P (1) = 0,

P (v) = v,

P (v1 ⊗ · · · ⊗ vk) = k−1 [v1, . . . [vk−1, vk] . . .], ∀ k ≥ 2

(3.59)

for any v, v1, . . . , vk ∈ V . Then P is surjective and it is the identity on L(V ).
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Fig. 3.1 Figure of the proof of the Campbell-Baker-Hausdorff Theorem 3.20

Hence P 2 = P and P is a projection onto L(V ) and this gives another
characterization of the Lie elements in T (V ), as follows:

Corollary 3.27. Let V and P be as in Lemma 3.26 above. Then we have

L(V ) =
{
t ∈ T (V )

∣
∣ P (t) = t

}
. (3.60)

Proof. If t ∈ L(V ) then P (t) = t, since P is the identity on L(V ), by Lemma
3.26. Vice versa, if t = P (t) then t ∈ L(V ), since P (T (V )) = L(V ). ��
For the original proofs of Lemma 3.26, see [54, 161, 179].

This is a key result, and it is proved also in Hochschild [85, Proposition
2.2], Jacobson [99, Chapter V, §4, Theorem 8], Reutenauer [144, Theorem 1.4],
Serre [159, Chapter IV, §8, LA 4.15].

Proof (of Lemma 3.26). The proof in split into several steps.

STEP I. Well Posedness. Let k ≥ 2 be fixed. The map

V × · · · × V
︸ ︷︷ ︸

k times

−→ L(V ), (v1, . . . , vk) �→ k−1 [v1, . . . [vk−1, vk] . . .]
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is well-posed (recall that K has characteristic zero) and is obviously k-linear.
Hence, by Theorem 2.30-i (page 74), there exists a unique linear map

Pk : Tk(V ) −→ L(V ), Pk(v1 ⊗ · · · ⊗ vk) = k−1 [v1, . . . [vk−1, vk] . . .].

Set also P0 : T0(V )→ L(V ), P0(k) := 0 and P1 : T1(V )→ L(V ), P1(v) := v,
we can apply Theorem 2.8-i (page 54) to the family of linear maps {Pk}k≥0

to obtain the unique linear map P :
⊕

k≥0 Tk(V ) = T (V ) → L(V ) that
prolongs all the maps Pk . This is exactly the map P in (3.59).

STEP II. Surjectivity. The surjectivity of P immediately follows from (2.49)
and (2.50) in Proposition 2.47 on page 85.

STEP III. P projects onto L(V ). To end the proof, we must demonstrate that
P |L(V ) is the identity map of L(V ), i.e.,

P (�) = �, for every � ∈ L(V ). (3.61)

This is the main task of the proof and it requires some work.
STEP III.i If we consider T (V ) equipped with its commutator, it becomes

a Lie algebra so that, for every fixed t ∈ T (V ), the map

ad (t) : T (V )→ T (V ), ad (t)(t′) := [t, t′], for every t′ ∈ T (V )

is an endomorphism of T (V ). In the sequel, we denote by End(T (V )) the
vector space of the endomorphisms of T (V ); we recall that End(T (V ))
is equipped with the structure of UA algebra with the operation ◦ of
composition of maps. Obviously, T (V ) and End(T (V )) are also equipped
with Lie algebra structures by the associated commutators. With these
structures at hand, we know from Lemma 3.28 below that

ad : T (V )→ End(T (V )) is a Lie algebra morphism.

[Note that ad is not in general a UAA morphism though.] Let us now
consider the map

V → End(T (V )), v �→ ad (v).

This map is obviously linear. Then by Theorem 2.38-ii (page 78) there exists
a unique UAA morphism

# : T (V )→ End(T (V ))

prolonging the above map. Taking into account (2.32) on page 79, this map
is the unique linear map such that

#(1K) = IdT (V ), #(v1 ⊗ · · · ⊗ vk) = ad (v1) ◦ · · · ◦ ad (vk), (3.62)
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for every k ∈ N and every v1, . . . , vk ∈ V . Since # is a UAA morphism,
it is also a Lie algebra morphism of the associated commutator-algebra
structures (see Remark 2.17 on page 62).

With the above notation, we claim that the Lie algebra morphisms # and ad
do coincide on the Lie subalgebra L(V ), i.e.:

#(�) = ad (�), for every � ∈ L(V ). (3.63)

Since L(V ) is the Lie subalgebra of T (V ) Lie-generated by V , (3.63) follows
from the fact that # and ad actually coincide on V (and the fact that #, ad are
both LA morphisms).

STEP III.ii Arguing exactly as in STEP I of this proof, we can prove the
existence of a unique linear map P ∗ : T (V )→ T (V ) such that

P ∗(1) = 0,

P ∗(v) = v,

P ∗(v1 ⊗ · · · ⊗ vk) = [v1, . . . [vk−1, vk] . . .], ∀ k ≥ 2

(3.64)

for any v, v1, . . . , vk ∈ V . We obviously have

P ∗(t) = k P (t) for every t ∈ Tk(V ) and every k ∈ N ∪ {0}. (3.65)

The link between P ∗ and the map # of STEP III.i is the following:

P ∗(t · t′) = #(t)(P ∗(t′)), for every t ∈ T (V ) and t′ ∈ T+(V ), (3.66)

where as usual T+(V ) =
⊕

k≥1 Tk(V ). If t = k ∈ T0(V ), (3.66) is trivially
true: indeed we have P ∗(k · t′) = P ∗(k t′) = k P ∗(t′) (since P ∗ is linear) and

#(k)(P ∗(t′))
(3.62)
= k IdT (V )(P

∗(t′)) = k P ∗(t′).

Thus we are left to prove (3.66) when both t, t′ belong to T+; moreover, by
linearity, we can assume without loss of generality that t = v1⊗ · · ·⊗ vk and
t′ = w1 ⊗ · · · ⊗ wh with h, k ≥ 1. We have

P ∗(t · t′) = P ∗(v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wh

)

(3.64)
= [v1, . . . [vk, [w1, . . . [wh−1, wh] . . .]] . . .]

= ad (v1) ◦ · · · ◦ ad (vk)
(
[w1, . . . [wh−1, wh] . . .]

)

(by (3.62) and (3.64), the cases h = 1 and h > 1 being analogous)

= #(t)(P ∗(t′)).
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STEP III.iii With the notation of the previous step, note that the restriction
P ∗|L(V ) is an endomorphism of L(V ) (since P ∗(T (V )) ⊆ L(V )). We claim
that the restriction of P ∗ to L(V ) is a derivation of the Lie algebra L(V ), i.e.:

P ∗([�, �′]) =
[
P ∗(�), �′

]
+
[
�, P ∗(�′)

]
, for every �, �′ ∈ L(V ). (3.67)

Indeed, when �, �′ ∈ L(V ) we have

P ∗([�, �′]) = P ∗(� · �′ − �′ · �)

(P ∗ is linear, (3.66) holds and L(V ) ⊂ T+(V ))

= #(�)(P ∗(�′))− #(�′)(P ∗(�))

(3.63)
= ad (�)(P ∗(�′))− ad (�′)(P ∗(�)) = [�, P ∗(�′)]− [�′, P ∗(�)]

=
[
�, P ∗(�′)

]
+
[
P ∗(�), �′

]
,

and (3.67) follows.

STEP III.iv We claim that the following fact holds:

P ∗(�) = k �, for every � ∈ Lk(V ) and every k ≥ 1. (3.68)

Since Lk(V ) is spanned by right-nested brackets of length k of elements of V ,
we can restrict to prove (3.68) when

� =

⎧
⎨

⎩

v1, when k = 1,

[v1, v2], when k = 2,

[v1, [v2 . . . [vk−1, vk] . . .]], when k ≥ 3,

where v1, . . . , vk ∈ V . We argue by induction on k ∈ N. Trivially, (3.68) holds
for k = 1 (see (3.64) and recall that L1(V ) = V ). When k = 2 we have

P ∗([v1, v2])
(3.67)
= [P ∗(v1), v2] + [v1, P

∗(v2)]
(3.64)
= [v1, v2] + [v1, v2] = 2 [v1, v2].

We now suppose that (3.68) holds for a fixed k and we prove it for k + 1:

P ∗([v1, [v2 . . . [vk, vk+1] . . .]]
)

(3.67)
= [P ∗(v1), [v2 . . . [vk, vk+1] . . .]] + [v1, P

∗([v2 . . . [vk, vk+1] . . .])]

(use the inductive hypothesis)

= [v1, [v2 . . . [vk, vk+1] . . .]] + [v1, k [v2 . . . [vk, vk+1] . . .]]

= (k + 1) [v1, [v2 . . . [vk, vk+1] . . .]].
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STEP III.v We are finally ready to prove (3.61). Due to L =
⊕

k≥1 Lk(V ),
it is not restrictive to suppose that � ∈ Lk for some k ∈ N. We then have

P (�)
(3.65)
= k−1 P ∗(�)

(3.68)
= k−1 k � = �

This completes the proof. ��
Here we employed the following simple result.

Lemma 3.28. Let g be a Lie algebra. Let End(g) (the vector space of the endomor-
phisms of g) be equipped with its commutator-algebra structure, related to its UAA
structure coming from the composition ◦ of maps.

Then ad : g→ End(g) is a Lie algebra morphism.

Proof. Let us fix a, b ∈ g. We have to prove that

ad ([a, b]g) = [ad (a), ad (b)]◦.

Since the bracket on End(g) is given by

[A,B]◦ := A ◦B −B ◦A, for every A,B ∈ End(g),

all we have to prove is that

[[a, b]g, c]g = (ad (a) ◦ ad (b))(c) − (ad (b) ◦ ad (a))(c), ∀ c ∈ g.

In its turn this is equivalent to [[a, b], c] = [a, [b, c]] − [b, [a, c]], which is a
consequence of antisymmetry and the Jacoby identity for [·, ·]g. ��
Remark 3.29. Consider the unique linear map S : T (V )→ T (V ) such that

S(1) = 0,

S(v) = v,

S(v1 ⊗ · · · ⊗ vk) = k v1 ⊗ · · · ⊗ vk, ∀ k ≥ 2

(3.69)

for any v, v1, . . . , vk ∈ V . Then S is a derivation of the UA algebra T (V ).
Indeed, by linearity, it is obvious that

S(t) = k t, for every t ∈ Tk(V ) and every k ≥ 0. (3.70)

Next, we prove that

S(t · t′) = S(t) · t′ + t · S(t′), ∀ t, t′ ∈ T (V ). (3.71)

It holds t = (tn)n and t′ = (t′n)n with tn, t
′
n ∈ Tn(V ) for every n ≥ 0, and

tn, t
′
n are 0 for n large enough. Then we have
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S(t · t′) = S
(( ∑

i+j=n

ti · t′j
)

n≥0

)
=
(
n
∑

i+j=n

ti · t′j
)

n≥0

=
( ∑

i+j=n

(i+ j) ti · t′j
)

n≥0
=
( ∑

i+j=n

(i ti) · t′j
)

n
+
( ∑

i+j=n

ti · (j t′j)
)

n

= S(t) · t′ + t · S(t′).

Thanks to Remark 2.18 on page 62, S is also a derivation of the commutator-
algebra related to T (V ). Furthermore, in view of (3.70), the restriction of S
to Lk(V ) coincides with k IdLk(V ). Hence the restriction of S to L(V ) is
an endomorphism of L(V ). Actually, S|L(V ) is the unique linear map from
L(V ) to L(V ) such that

S(v) = v,

S
(
[v1, . . . [vk−1, vk] . . .]

)
= k [v1, . . . [vk−1, vk] . . .], ∀ k ≥ 2.

(3.72)

As a consequence of the above remarks the restriction of S to L(V ) is a
derivation of the Lie algebra L(V ).

Now, in STEP III.iii of the proof of Lemma 3.26 we constructed a deriva-
tion of the Lie algebra L(V ) whose restriction to V is the identity of V :
namely this derivation is the map P ∗|L(V ), where P ∗ is as in (3.64).

Since the above S|L(V ) is also a derivation of L(V ) whose restriction to V
is IdV , since V Lie-generates L(V ) and since two derivations coinciding on
a set of Lie-generators coincide throughout L(V ), this proves that

P ∗|L(V ) ≡ S|L(V ). (3.73)

Incidentally, via (3.70), this gives another proof of (3.68).

3.3.2 Dynkin’s Formula

Thanks to the Lemma of Dynkin, Specht and Wever in Sect. 3.3.1, we now
easily get the following important characterization of the operation �.

Theorem 3.30 (Dynkin). Let V be a vector space and let P : T (V ) → L(V ) be
the linear map of Lemma 3.26. Then for every u, v ∈ L(V ),

Log (Expu · Exp v) =
∞∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn

P
(
uh1 · vk1 · · ·uhn · vkn)

h1! · · ·hn! k1! · · · kn! .

Proof. If P is as in Lemma 3.26, then P (Tk(V )) = Lk(V ) ⊂ Tk(V ), for every
k ∈ N. As a consequence,
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P
(⊕

k≥n Tk(V )
)
⊆⊕k≥n Tk(V ), ∀ n ≥ 0.

Hence we are entitled to apply Lemma 2.79 (see page 103; take kn := n
in (2.88)). As a consequence, considering T (V ) and L(V ) as subsets of the
metric space T̂ (V ), P is uniformly continuous, so that it admits a unique
linear continuous prolongation P̂ : T̂ (V ) → T̂ (V ). Actually we have
P̂ (T̂ (V )) ⊆ L(V ), since P (T (V )) = L(V ) (recall that P̂ is the continuous
prolongation of P and that T (V ) is dense in T̂ (V )).

It is easily seen that P̂ is the identity on L(V ), since P is the identity on
L(V ). Hence, as u�v ∈ L(V ) for u, v ∈ L(V ) (by Theorem 3.20), we obtain
(see (3.17))

u�v = P̂ (u�v) = P̂

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)

uh1 · vk1 · · ·uhn · vkn
h1! · · ·hn! k1! · · · kn! .

The thesis of the theorem now follows from the continuity – and the linearity
– of P̂ (we can thus interchange P̂ with the summation operations in both
series) and the fact that P̂ ≡ P on T (V ). (Finally recall the notation for Nn

in (3.20)). This ends the proof. ��
In particular, if u, v ∈ V , then uh1 · vk1 · · ·uhn · vkn is an elementary
tensor, homogeneous of degree

∑n
i=1(hi + ki), so that Theorem 3.30 and

the definition of P give

u�v =

∞∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn

[uh1vk1 · · ·uhnvkn ]⊗
h1! · · ·hn! k1! · · · kn!(

∑n
i=1(hi + ki))

=

∞∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
⊗

h! k! (|h|+ |k|) .

Thus we have proved that

u�v =

∞∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
⊗

h! k! (|h|+ |k|) , u, v ∈ V.

(3.74)

[This is a partial version of our CBHD Theorem! What remains for us to do
is to pass from u, v ∈ V to u, v ∈ T̂+(V ).]
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Remark 3.31. Another way to derive (3.74) (which plays – as we shall see
below – the key rôle in deriving the general form of the BCHD Theorem) is
described here. Let u, v ∈ V be fixed. Let us reorder the series in (3.17) as
follows:

u�v =

∞∑

n=1

(−1)n+1

n

∞∑

j=1

∑

(h,k)∈Nn
|h|+|k|=j

uh1 · vk1 · · ·uhn · vkn
h1! · · ·hn! k1! · · · kn!

(
interchange the sums recalling that, in the j-sum, n ≤ |h|+ |k| = j

)

∞∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

uh1 · vk1 · · ·uhn · vkn
h1! · · ·hn! k1! · · · kn!

︸ ︷︷ ︸
=:γj

.

Note that γj ∈ Tj(V ) for every j ∈ N, since u, v ∈ T1(V ). Moreover, by
Theorem 3.20, we have

∑∞
j=1 γj = u�v ∈ L(V ) (since V ⊂ L(V )). Thus we

are in a position to apply Corollary 3.16 and infer that γj ∈ Lj(V ) for every
j ∈ N. Consequently, by Lemma 3.26, we have γj = P (γj) for every j ∈ N.
Hence we get

u�v =

∞∑

j=1

P (γj) (by the linearity of P )

=
∞∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

P
(
uh1 · vk1 · · ·uhn · vkn)

h1! · · ·hn! k1! · · · kn!

=
∞∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
⊗

h! k! (|h|+ |k|) .

In the last equality, we invoked the very definition of P in (3.59), noticing
that uh1 · vk1 · · ·uhn · vkn = u⊗h1 ⊗ v⊗k1 ⊗ · · ·⊗u⊗hn ⊗ v⊗kn is an elementary
tensor of degree |h|+ |k|. So, we re-derived (3.74). ��
By using the map P̂ introduced in the proof of Theorem 3.30, we have
another characterization of L(V ):

Theorem 3.32. Let V be a vector space. Let P̂ : T̂ (V ) → T̂ (V ) be the (unique)
continuous prolongation of the map P in (3.59), that is,
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P̂ : T̂ (V )→ T̂ (V ) is such that

P (1) = 0, P (v) = v, and

P (v1 ⊗ · · · ⊗ vk) = k−1 [v1, . . . [vk−1, vk] . . .], ∀ k ≥ 2,

(3.75)

for any v, v1, . . . , vk ∈ V . Then we have

L(V ) =
{
t ∈ T̂ (V )

∣
∣ P̂ (t) = t

}
. (3.76)

Proof. Since T̂ (V ) =
∏∞

k=0 Tk(V ) and L(V ) =
∏∞

k=1 Lk(V ) and since
P̂ (Tk(V )) = Lk(V ), it is immediately seen that P̂ (T̂ (V )) = L(V ). Hence, if
t ∈ T̂ is such that t = P̂ (t), then t ∈ L(V ). Conversely, if t ∈ L(V ), we have
t =
∑∞

k=1 �k, with �k ∈ Lk(V ) for every k ≥ 1. Then by the continuity of P̂
and by (3.60) we deduce

P̂ (t) = P̂
(∑∞

k=1 �k

)
=
∑∞

k=1 P (�k) =
∑∞

k=1 �k = t.

This ends the proof. ��

3.3.3 The Final Proof of the CBHD Theorem

Let us now turn to the derivation of an explicit formula for u�v for general
u, v ∈ T̂+(V ). Let us recall that, for every u, v ∈ T̂+(V ), we introduced the
notation

u � v =
∑∞

j=1 Zj(u, v), (3.77)

where Zj(u, v) is as in (3.15), i.e., with the now shorter notation:

Zj(u, v) :=

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
⊗

h! k! (|h|+ |k|) . (3.78)

By collecting together (3.74), the definition of Zj in (3.78) and the definition
of the � operation in (3.77), we get

u�v = u � v, for every u, v ∈ V . (3.79)

To derive the CBHD Theorem 3.8, which is nothing but the identity

u�v = u � v, for every u, v ∈ T̂+(V ), (3.80)
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we only have to write down (3.79) when V = K〈x, y〉, u = x, v = y, as
K〈x, y〉 is the free vector space on two (non-commuting) indeterminates x, y.
Then we shall go back (via a substitution argument) to any pair of u, v ∈
T̂+(V ), where V is an arbitrary vector space. A continuity argument is also
needed. This is the essence of the following proof.

Proof. (of the CBHD Theorem.) Let V be any vector space over K and let us fix
arbitrary u, v ∈ T̂+(V ). Equation (3.14) is then uniquely solved by Z(u, v) =
Log(Expu · Expv) = u�v. By the universal property of the free vector space
K〈x, y〉 (where x �= y), there exists a unique linear map ϕ : K〈x, y〉 → T̂ (V )
such that ϕ(x) = u, ϕ(y) = v. Furthermore, by the universal property of
the tensor algebra, there exists a unique UAA morphism Φ : T (K〈x, y〉) →
T̂ (V ) extending ϕ. We claim that Φ is also uniformly continuous. (As usual
the tensor algebra T is considered as a subspace of the associated metric
space T̂ .) Indeed, it is easily seen that the following property holds:

Φ
(⊕

k≥N
Tk(K〈x, y〉)

)
⊆
∏

k≥N
Tk(V ). (3.81)

By arguing as in the proof of Lemma 2.79 (see page 430 in Chap. 7), this
proves our claim. Hence there exists a unique continuous prolongation of Φ,
say Φ̂ : T̂ (K〈x, y〉) → T̂ (V ), which is also a UAA morphism (see again the
proof of the cited Lemma 2.79).

Now, identity (3.79) holds when V is replaced by K〈x, y〉, thus providing
an identity in T̂ (K〈x, y〉), holding true for any two elements in K〈x, y〉. As
a particular case, we can apply it to the pair x, y ∈ K〈x, y〉, thus obtaining
x�y = x�y. We next apply Φ̂ to this identity, thus obtaining Φ̂(x�y) = Φ̂(x�y).
Our final task is to show that this is precisely u�v = u�v, thus proving (3.80)
(for the arbitrariness of u, v ∈ T̂+(V )). Indeed, the precise argument is the
following one:

u�v
(a)
= Φ̂(x�y) = Φ̂(x � y) (b)

= u � v.

This is a consequence of the following two facts:

a. Φ̂(x�y) = u�v; here we used the fact that Φ̂ is a continuous UAA
morphism, together with an application of (3.8) in Theorem 3.6 (note that
(3.7) is fulfilled, as can easily be proved starting from (3.81)).

b. Φ̂(x � y) = u � v; here we exploited again the cited properties of Φ̂, the
universal definition of the functionsZj both on T̂ (K〈x, y〉) and on T̂ (V ),
and the fact that, Φ̂ being a prolongation of Φ, one has
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Φ̂

(
[
xh1yk1 · · ·xhnykn]

T̂ (K〈x,y〉)

)

= [

h1 times
︷ ︸︸ ︷
u · · · [u [

k1 times
︷ ︸︸ ︷
v · · · [v · · · [

hn times
︷ ︸︸ ︷
u · · · [u [

kn times
︷ ︸︸ ︷
v[· · · v ] ]] ] ] ]] ]

T̂ (V )

= [uh1vk1 · · ·uhnvkn
]
⊗.

This ends the proof of the CBHD Theorem. ��
Note that (3.80) is an improvement of (3.79), which cannot be deduced
immediately from Theorem 3.30 (not even by replacing P with P̂ ), because

P̂ (uh1vk1 · · ·uhnvkn)

cannot be explicitly written, for general u, v ∈ T̂+(V ).
As a consequence of the CBHD Theorem 3.8, we get the following result.

Corollary 3.33. Let V be a vector space over the field K (of characteristic zero). Let
� be the operation on T̂+(V ) defined by the series introduced in (3.24). Then � is
associative and moreover (T̂+(V ), �) is a group. Furthermore, we have the identity

Exp⊗(u � v) = Exp⊗(u) · Exp⊗(v), for every u, v ∈ T̂+(V ). (3.82)

Proof. By the CBHD Theorem 3.8, we know that � coincides with � on
T̂+(V ). Hence the corollary is proved by invoking the fact that (T̂+(V ), �) is
a group (see Proposition 3.10) and by (3.19) (which gives (3.33)). ��

3.3.4 Some “Finite” Identities Arising from the Equality
Between � and �

Let (A, ∗) be any UA algebra. For every (h, k) ∈ Nn we set

D∗
(h,k) : A×A→ A, where D∗

(h,k)(a, b)

=

h1 times
︷ ︸︸ ︷
[a, · · · [a ,

k1 times
︷ ︸︸ ︷
[b, · · · [b , · · ·

hn times
︷ ︸︸ ︷
[a, · · · [a ,

kn times
︷ ︸︸ ︷
[b, [· · · , b ]∗]∗]∗ · · · ]∗ · · · ]∗ · · · ]∗]∗ · · · ]∗.

Here as usual [·, ·]∗ denotes the commutator [a, b]∗ = a ∗ b− b ∗ a.
The fundamental identity (3.25) in the CBHD Theorem asserting the

equality of the operations � and � on T̂+(V ), holds in the particular case

V = K〈x, y〉, with x �= y.
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In this case (3.25) becomes explicitly

∞∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn

xh1 · yk1 · · ·xhn · ykn
h! k!

=

∞∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn

D·
(h,k)(x, y)

h! k! (|h|+ |k|) . (3.83)

By projecting this identity on Tr(K〈x, y〉), we get the family of identities

r∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=r

xh1 · yk1 · · ·xhn · ykn
h! k!

=

r∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=r

D·
(h,k)(x, y)

h! k! (|h|+ |k|) , for every r ∈ N. (3.84)

Alternatively, if we set, for any fixed i, j ∈ N ∪ {0},

Hi,j := span
{
xh1 · yk1 · · ·xhn · ykn : |h| = i, |k| = j

}
,

then it obviously holds that T̂ (K〈x, y〉) = ∏i,j≥0Hi,j . Hence, starting from
(3.83) we also obtain the identities

i+j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|=i, |k|=j

xh1 · yk1 · · ·xhn · ykn
h! k!

=

i+j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|=i, |k|=j

D·
(h,k)(x, y)

h! k! (|h|+ |k|) , for every r ∈ N. (3.85)

valid for every fixed i, j ≥ 0.
Since the above are all identities in the free associative algebra

T (K〈x, y〉), by Theorem 2.85 on page 107 they specialize to every UA
algebra. This proves the following result.

Theorem 3.34. Let (A, ∗) be any UA algebra over a field of characteristic zero. For
every r ∈ N and every a, b ∈ A, we have



158 3 The Main Proof of the CBHD Theorem

r∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=r

a∗ h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

h! k!

=

r∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=r

D∗
(h,k)(a, b)

h! k! (|h|+ |k|) . (3.86)

Summing up for r = 1, . . . , N (where N ∈ N is arbitrarily given) and
interchanging the sums we also obtain the identity

N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|≤N

a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗ hn ∗ b∗ kn

h! k!

=
N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|≤N

D∗
(h,k)(a, b)

h! k! (|h|+ |k|) . (3.87)

Analogously, for every fixed i, j ∈ N ∪ {0}, (i, j) �= (0, 0) and every a, b ∈ A

i+j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|=i, |k|=j

a∗ h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

h! k!

=

i+j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|=i, |k|=j

D∗
(h,k)(a, b)

h! k! (|h|+ |k|) . (3.88)

We shall return to look more closely at such type of identities in Sect. 4.1.

3.4 Résumé: The “Spine” of the Proof of the CBHD
Theorem

To close the sections devoted to the first proof of the CBHD presented in this
Book, we summarize the “backbone” of the arguments used throughout:

1. We introduce the unique UAA morphism δ : T → T ⊗ T such that
δ(v) = v ⊗ 1 + 1 ⊗ v, for all v ∈ V ; we denote by δ̂ : T̂ → ̂T⊗T its
continuous prolongation.

2. Having introduced the set Γ (V ) =
{
x ∈ 1 + T̂+ : δ̂(x) = x ⊗ x

}
, one

easily proves that it is a group, the Hausdorff group.
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3. By means of the crucial characterization of Lie elements, due to Friedri-
chs, L(V ) =

{
t ∈ T̂ : δ̂(t) = t⊗ 1 + 1⊗ t

}
, one shows that

Exp(L(V )) = Γ (V ).

4. This proves the Campbell-Baker-Hausdorff Theorem

Log(Expu · Exp v) ∈ L(V ), for every u, v ∈ L(V ).

Indeed, if u, v ∈ L, then Expu,Exp v ∈ Γ , so that (as Γ is a group) Expu ·
Exp v ∈ Γ ; as a consequence, the logarithm of this product belongs to L,
as Exp(L) = Γ .

5. We introduce the unique linear map P : T → T such that P (1) = 0, and
P (v1 ⊗ · · · ⊗ vk) = k−1 [v1, . . . [vk−1, vk] . . .], for k ≥ 1; also, P̂ : T̂ → T̂
denotes the continuous prolongation of P .

6. The crucial Lemma of Dynkin-Specht-Wever holds, yielding another
characterization of Lie elements as L(V ) =

{
t ∈ T̂ : P̂ (t) = t

}
.

7. For every u, v ∈ L, we know from the Campbell-Baker-Hausdorff
Theorem that the element Log(Expu · Exp v) belongs to L(V ); hence P̂
leaves it unchanged and the Dynkin Theorem follows.

8. By applying Dynkin’s Theorem for the special case V=K〈x, y〉 and u = x,
v = y one derives that

Log(Expx · Exp y) =
∞∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
xh1yk1 · · ·xhnykn]

h! k! (|h|+ |k|) .

A substitution argument finally provides Dynkin’s representation for
Log(Expu · Exp v) for arbitrary u, v ∈ T̂ (V ) and any vector space V ,
over the field of null characteristic K.
The CBHD Theorem is completely proved.

3.5 A Few Summands of the Dynkin Series

In this section we furnish a few summands of the Dynkin series. They could
be computed directly from Dynkin’s formula, but with a sizeable amount of
computations, since this formula obviously does not take into account that
the same commutator may stem from different choices of the summation
indices, nor does it take into account possible cancellations resulting from
skew-symmetry or the Jacobi identity. For example, in the explicit Dynkin
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representation (3.78) for the Zj(u, v), the summands for j = 2 are 7, of which
3 are non-vanishing:

n = 1 (h1, k1)

⎧
⎨

⎩

(2, 0) : 1
4 [x, x] = 0

(1, 1) : 1
2 [x, y]

(0, 2) : 1
4 [y, y] = 0

n = 2 (h1, k1), (h2, k2)

⎧
⎪⎪⎨

⎪⎪⎩

(1, 0), (1, 0) : − 1
4 [x, x] = 0

(1, 0), (0, 1) : − 1
4 [x, y]

(0, 1), (1, 0) : − 1
4 [y, x]

(0, 1), (0, 1) : − 1
4 [y, y] = 0

summing up to produce the well known 1
2 [x, y], resulting from

1
2 [x, y]− 1

4 [x, y]− 1
4 [y, x].

For j = 3 we have 24 summands, of which 10 are non-vanishing and (using
skew symmetry) they sum up to produce

1
12 [x[x, y]] +

1
12 [y[y, x]].

For j = 4 we have 82 summands (!!), of which 34 are non-vanishing
and (after many cancellations and using skew symmetry) they sum up to
produce

1
48 [y[x[y, x]]]− 1

48 [x[y[x, y]]],

which, this time in view of the Jacobi identity, is indeed equal to− 1
24 [x[y[x, y]]].

As it appears from these computations, it is not easy to handle the Dynkin
series for explicit calculations by hand. Other recursion formulas may be
of use for this purpose. For instance, by exploiting his formulas (1.70) and
(1.71) (see page 30 of our Chap. 1), Hausdorff succeeded in a two-page
calculation to write the expansion up to j = 5.

We here exhibit the expansion up to j = 8. We follow J. A. Oteo [134,
Table III], who has provided a simplified explicit formula up to order 8 with
the minimal number of commutators required. [In the formula below, the
first four homogeneous summands are grouped in the first line, whereas the
homogeneous summands of orders 5, 6, 7, 8 are separated by a blank line]:

x � y = x+ y +
1

2
[x, y] +

1

12

(
[x[x, y]] + [y[y, x]]

)− 1

24
[x[y[x, y]]]

+
1

120

(
[x[y[x[x, y]]]] + [y[x[y[y, x]]]]

)

− 1

360

(
[y[x[x[x, y]]]] + [x[y[y[y, x]]]]

)
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− 1

720

(
[x[x[x[x, y]]]] + [y[y[y[y, x]]]]

)

+
1

1440
[x[y[y[y[x, y]]]]]− 1

720
[x[x[y[y[x, y]]]]]

+
1

240
[x[y[y[x[x, y]]]]] +

1

1440
[y[x[x[x[x, y]]]]]

+
1

30240

(
[x[x[x[x[x[x, y]]]]]] + [y[y[y[y[y[y, x]]]]]]

)

− 1

10080

(
[y[x[x[x[x[x, y]]]]]] + [x[y[y[y[y[y, x]]]]]]

)

+
1

2520

(
[x[x[y[x[x[x, y]]]]]] + [y[y[x[y[y[y, x]]]]]]

)

+
1

10080

(
[y[y[y[y[x[x, y]]]]]] + [x[x[x[x[y[y, x]]]]]]

)

− 1

1680

(
[y[x[y[y[x[x, y]]]]]] + [x[y[y[y[y[y, x]]]]]]

)

− 1

3360

(
[y[y[x[y[x[x, y]]]]]] + [x[x[y[x[y[y, x]]]]]]

)

+
1

7560

(
[y[y[y[x[x[x, y]]]]]] + [x[x[x[y[y[y, x]]]]]]

)

− 1

1260

(
[y[x[y[x[x[x, y]]]]]] + [x[y[x[y[y[y, x]]]]]]

)

+
1

3360

(
[y[y[x[x[x[x, y]]]]]] + [x[x[y[y[y[y, x]]]]]]

)

− 1

60480
[x[y[y[y[y[y[x, y]]]]]]]

+
1

20160
[x[x[y[y[y[y[x, y]]]]]]]− 1

5040
[x[y[y[x[y[y[x, y]]]]]]]

+
1

20160
[x[y[y[y[y[x[x, y]]]]]]]− 1

60480
[y[x[x[x[x[x[x, y]]]]]]]

− 1

20160
[y[y[x[x[x[x[x, y]]]]]]] +

1

5040
[y[x[x[y[x[x[x, y]]]]]]]

− 1

20160
[y[x[x[x[y[x[x, y]]]]]]] +

1

15120
[x[y[y[y[x[x[x, y]]]]]]]

− 1

6720
[x[y[y[x[y[x[x, y]]]]]]] − 1

3360
[x[y[x[y[y[x[x, y]]]]]]]

+
1

120960
[x[x[x[y[y[y[x, y]]]]]]] − 1

5040
[x[x[y[y[y[x[x, y]]]]]]]

+
{

brackets of heights ≥ 9
}
+ · · ·



162 3 The Main Proof of the CBHD Theorem

3.6 Further Reading: Hopf Algebras

The objective of this section is to give the definition of a Hopf algebra
and to overview some very basic related facts, with the aim only to show
that some results presented in this chapter can be properly restated (and
proved) within the setting of Hopf algebras. A comprehensive exposition
on Hopf algebras is definitely beyond our scope and the interested Reader
is referred to introductory treatises (see e.g., [2, 34, 45, 120, 125, 165]). Here,
we shall content ourselves with highlighting the fact that a great part of
the formalism behind the proof of the CBHD Theorem presented in the
foregoing sections has a deep connection with Hopf algebra theory.

First we introduce a new notation: for i = 1, 2, let Vi,Wi be vector spaces
(over a field K) and ϕi : Vi →Wi a linear map. Since the map

V1 × V2 � (v1, v2) �→ ϕ1(v1)⊗ ϕ2(v2) ∈W1 ⊗W2

is bilinear, there exists a unique linear map ϕ1 ⊗ ϕ2 such that

(ϕ1 ⊗ ϕ2) : V1 ⊗ V2 →W1 ⊗W2, ϕ1 ⊗ ϕ2(v1 ⊗ v2) = ϕ1(v1)⊗ ϕ2(v2).

In what follows, as usual, the map idV denotes the identity map on the set
V . If V is a K-vector space, we recall that we have natural isomorphisms
K ⊗ V � V and V ⊗ K � V given by the unique linear maps7 acting on
elementary tensors as follows

K⊗ V −→ V

k ⊗ v �→ k v,

V ⊗K −→ V

v ⊗ k �→ k v,

where k ∈ K and v ∈ V are arbitrary.

Remark 3.35. An equivalent way, useful for the topic of this section, of giving
the axioms defining a unital associative algebra is the following one: A
unital associative algebra (over a field K) is a triple (A,M, u), where A is
a vector space, M : A⊗A→ A and u : K→ A are linear maps, such that the
following diagrams are commutative:

7These linear maps do exist since the functions

K× V 	 (k, v) �→ k v ∈ V, V ×K 	 (v, k) �→ k v ∈ V

are bilinear (then we use the universal property of the tensor product). We leave it to the
Reader to prove that the associated linear maps are isomorphisms of vector spaces.
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associativity: A⊗A⊗A
idA⊗M

��

M⊗idA

��

A⊗A

M

��

A⊗A
M

�� A

unitary property: A⊗A

M

��

K⊗A

u⊗idA
��

�
��

���
���

���
���

A⊗K

idA⊗u
��������������

�
��







A

The commutativity of the first diagram is equivalent to

M(a⊗M(a′ ⊗ a′′)) = M(M(a⊗ a′)⊗ a′′), ∀ a, a′, a′′ ∈ A.

The commutativity of the second diagram is equivalent to

M(u(k)⊗ a) = k a = M(a⊗ u(k)), ∀ k ∈ K, a ∈ A.

Hence, if (A,M, u) is as above, the map

∗ : A×A→ A, a ∗ a′ := M(a⊗ a′), a, a′ ∈ A

endowsAwith the structure of an associative algebra, and the element u(1K)
of A is a unit element for ∗. Vice versa, let (A, ∗) be a UA algebra, according
to the definition used so far in this Book. Then, since A × A � (a, a′) �→
a ∗ a′ ∈ A is bilinear, there exists a unique linear map M : A ⊗ A → A
such that M(a ⊗ a′) = a ∗ a′ for every a, a′ ∈ A. If we further consider the
map u : K→ A defined by u(k) := k 1A (where 1A is the unit of A), then it is
easily seen that the triple (A,M, u) satisfies the requirements in Remark 3.35.

Following Sweedler’s words in his treatise on Hopf algebras [165, page
4], “dualizing” the above diagrams, that is, “turning all the arrows around”,
one obtains in a natural way the definition of coalgebra.

A counital and coassociative coalgebra (over the field K) is a triple (C,Δ, ε),
where C is a vector space, Δ : C → C ⊗ C and ε : C → K are linear maps,
such that the following diagrams are commutative:
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coassociativity: C ⊗ C ⊗ C C ⊗ C
idC⊗Δ





C ⊗ C

Δ⊗idC

��

C
Δ





Δ

��

counitary property: C ⊗ C

ε⊗idC

��



 idC⊗ε

��
���

���
���

�

K⊗ C C ⊗K

C

Δ

��

�

����������������
�

����������������

The map Δ is called coproduct and ε is called counit. In the sequel, by co-UA
coalgebra we mean a counital and coassociative coalgebra.

Remark 3.36. While we derived the definition of co-UA coalgebra in a purely
formal fashion, the structure of co-UA coalgebra carries along a significant
property, which we now recall. All the details can be found in [26, III §11.2].

Let (C,Δ, ε) be a co-UA coalgebra over K. Let (A, ∗) be any UA algebra
over K. Note that, by the universal property of the tensor product, there
exists a unique linear map

m∗ : A⊗A −→ A such that m∗(a⊗ a′) = a ∗ a′, (3.89)

for every a, a′ ∈ A. We now aim to equip Hom(C,A) (the vector space of the
K-linear maps from C to A) with a composition law

μ : Hom(C,A)× Hom(C,A) −→ Hom(C,A).

Let u, v ∈ Hom(C,A). Then, collecting all the notations given in this
section, we can define a linear map μ(u, v) ∈ Hom(C,A) by considering
the following composition of maps:

μ(u, v) : C
Δ

�� C ⊗ C
u⊗v

�� A⊗A
m∗

�� A.
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Then one can prove without difficulty that (Hom(C,A), μ) is a unital
associative algebra if (and only if) C is a co-UA algebra. The unit element of
(Hom(C,A), μ) is the linear mapping defined by

c �→ ε(c) 1A, ∀ c ∈ C,

where 1A is the unit element of A.
For example, notice that, for u, v, w ∈ Hom(C,A), μ(μ(u, v), w) and

μ(u, μ(v, w)) are respectively given by the maps in the following diagrams:

C
Δ

�� C ⊗ C
Δ⊗idC

�� C ⊗ C ⊗ C
u⊗v⊗w

�� A⊗A⊗A �� A

C
Δ

�� C ⊗ C
idC⊗Δ

�� C ⊗ C ⊗ C
u⊗v⊗w

�� A⊗A⊗A �� A,

where the last arrow in each diagram describes the unique linear function
mapping a⊗a′⊗a′′ into a∗a′ ∗a′′, for a, a′, a′′ ∈ A. Hence, if coassociativity
holds, one gets μ(μ(u, v), w) = μ(u, μ(v, w)).

In order to define Hopf algebras, we need another definition.
A bialgebra (over the field K) is a 5-tuple (A, ∗, 1A, Δ, ε) where (A, ∗, 1A)

is a unital associative algebra (with unit 1A) and (A,Δ, ε) is a counital
coassociative coalgebra (both structures are over K) such that the following
compatibility assumptions hold:

1. the coproduct Δ : A→ A⊗A is a UAA morphism,8

2. the counit ε : K→ A is a UAA morphism.9

Let us introduce the following notation10

Δ(a) =
∑

i

fi,1(a)⊗ fi,2(a) (for some fi,1(a), fi,2(a) in A), (3.90)

8We recall that, according to Proposition 2.41, page 81, A ⊗ A can be naturally equipped
with the structure of UA algebra (A⊗ A, •) where

(a ⊗ b) • (a′ ⊗ b′) = (a ∗ a′)⊗ (b ∗ b′), ∀ a, b, a′, b′ ∈ A.

9Here, K is endowed with the trivial UA algebra structure given by multiplication.
10The fi,j in (3.90) do not refer to any function on A. The meaning of (3.90) is the following:
For every a ∈ A there exists a finite set F(a) ⊂ N and some there exist elements fi,j(a) of
A (for j = 1, 2 and i ∈ F(a)) such that

Δ(a) =
∑

i∈F(a)

fi,1(a) ⊗ fi,2(a).

The fi,j(a) are not uniquely defined, possibly.
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the sum being finite. Using this notation, the compatibility condition (1) is
equivalent to

⎧
⎨

⎩

Δ(1A) = 1A ⊗ 1A,

Δ(a ∗ a′) =
∑

i,i′

(
fi,1(a) ∗ fi′,1(a′)

)⊗ (fi,2(a) ∗ fi′,2(a′)
)
,

for all a, a′ ∈ A, whilst the compatibility condition (2) is equivalent to

ε(1A) = 1K, ε(a ∗ a′) = ε(a) ε(a′),

for every a, a′ ∈ A. Alternatively, the compatibility condition (1) is equiva-
lent to commutativity of the following two diagrams:

A⊗ A
m∗

��

Δ⊗Δ

��

A
Δ

�� A⊗A

A⊗A⊗ A⊗A
idA⊗σ⊗idA

�� A⊗A⊗A⊗A

m∗⊗m∗

��

K⊗K

u⊗u

��

�
�� K

u

��

A⊗A A
Δ





Here, m∗ is as in (3.89), u : K → A is the linear map defined by u(k) = k 1A
(for k ∈ K), whilst σ : A ⊗ A → A ⊗ A is the unique linear map such that
σ(a⊗ a′) = a′ ⊗ a, for every a, a′ ∈ A.

With the same notation, the compatibility condition (2) is equivalent to
the commutativity of the following two diagrams:

A⊗A

ε⊗ε

��

m∗
�� A

ε

��

K⊗K
�

�� K
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K

u
���

���
���

���
��

�

idK

�� K

A

ε

���������������

If (A, ∗, 1A, Δ, ε) is a bialgebra, an element a ∈ A is called:

– primitive (in A) if Δ(a) = a⊗ 1A + 1A ⊗ a.
– grouplike (in A) if a �= 0 and Δ(a) = a⊗ a.

The set G(A) ⊂ A of the grouplike elements contains, for example, 1A.
Also, if a ∈ G(A), then ε(a) = 1K (as follows easily by using the counitary
property). Moreover, G(A) is closed under ∗-multiplication. This follows
from the fact that Δ is a UAA morphism: indeed, if x, y ∈ G(A) one has

Δ(x ∗ y) = Δ(x) •Δ(y) = (x ⊗ x) • (y ⊗ y) = (x ∗ y)⊗ (x ∗ y).

Note that a similar computation appeared in Part I of the proof of Theorem 3.23
(page 143), when showing that Γ (V ) is a group.

The set P (A) ⊆ A of the primitive elements in A is a Lie subalgebra of
the commutator algebra of A, as the following computation shows: given
p1, p2 ∈ P (A), one has

Δ([p1, p2]∗) = Δ(p1 ∗ p2 − p2 ∗ p1) = Δ(p1) •Δ(p2)−Δ(p2) •Δ(p1)

= (p1 ⊗ 1A + 1A ⊗ p1) • (p2 ⊗ 1A + 1A ⊗ p2)

− (p2 ⊗ 1A + 1A ⊗ p2) • (p1 ⊗ 1A + 1A ⊗ p1)

= (p1 ∗ p2)⊗ 1A + p1 ⊗ p2 + p2 ⊗ p1 + 1A ⊗ (p1 ∗ p2)+
− (p2 ∗ p1)⊗ 1A − p2 ⊗ p1 − p1 ⊗ p2 − 1A ⊗ (p2 ∗ p1)

= (p1 ∗ p2 − p2 ∗ p1)⊗ 1A + 1A ⊗ (p1 ∗ p2 − p2 ∗ p1)
= ([p1, p2]∗)⊗ 1A + 1A ⊗ ([p1, p2]∗).

(3.91)

In the second equality we used the fact that the coproduct Δ is a UAA
morphism of (A, ∗) into (A⊗A, •).

We remark that an analogous computation, with T (V ) replacing A, arose in
Friedrichs’s Theorem 3.13, page 133.

A bialgebra A is said to be primitively generated if it is generated, as an
algebra (that is, with respect to ∗), by the set of its primitive elements P (A)
(together with 1A). A primitively generated bialgebra A is cocommutative,
that is, the following diagram commutes:
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A

Δ

����
��
��
��
�

Δ

��
��

��
��

��
�

A⊗A
σ

�� A⊗A

Here, as before, σ is the unique linear map such that σ(a ⊗ a′) = a′ ⊗ a,
for every a, a′ ∈ A (note that σ is actually a UAA morphism). To prove
the commutativity of this diagram for primitively generated bialgebras, it
suffices to recall thatΔ and σ are UAA morphisms, thatA is generated, as an
algebra, by {1A}∪P (A), and to notice that, on this set of generators, we have

σ(Δ(1A)) = σ(1A ⊗ 1A) = 1A ⊗ 1A = Δ(1A),

σ(Δ(p)) = σ
(
p⊗ 1A + 1A ⊗ p

)
= 1A ⊗ p+ p⊗ 1A = Δ(p),

for every p ∈ P (A).

At last, we are ready for the main definition of this section.

Definition 3.37 (Hopf Algebra). A Hopf algebra (over the field K) is a 6-
tuple (A, ∗, 1A, Δ, ε, S), where (A, ∗, 1A, Δ, ε) is a bialgebra, and S : A → A
is a linear map (called the antipode) such that the following is a commutative
diagram:

A⊗A
S⊗idA

�� A⊗A

m∗

��
��

��
��

��
��

��
�

A
ε

��

Δ

���������������

Δ

��
��

��
��

��
��

��
�

K
u

�� A

A⊗A
idA⊗S

�� A⊗A

m∗

���������������

Following the notation in (3.90), this is equivalent to the requirement

∑

i
S
(
fi,1(a)

) ∗ fi,2(a) =
∑

i
fi,1(a) ∗ S

(
fi,2(a)

)
= ε(a) 1A, (3.92)

for every a ∈ A.
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In a Hopf algebra, the set G(A) of the grouplike elements is indeed a
group with respect to the multiplication of A, as we show below.

Remark 3.38. Let (A, ∗, 1A, Δ, ε, S) be a Hopf algebra. The set of the group-
like elements G(A) is a multiplicative subgroup of (A, ∗). More precisely,

S(x) ∈ G(A) and S(x) ∗ x = x ∗ S(x) = 1A, for every x ∈ G(A).

Indeed, if x ∈ G(A), we know that ε(x) = 1K, so that (as a direct application
of the axioms of a Hopf algebra) we have

1A = 1K 1A = ε(x) 1A = u(ε(x)) (by definition of Hopf algebra)

= (m∗ ◦ (S ⊗ idA) ◦Δ)(x) = m∗ ◦ (S ⊗ idA)(x ⊗ x)

= m∗(S(x) ⊗ x) = S(x) ∗ x.

The other identity x ∗ S(x) = 1A is proved similarly. Finally, we obtain that
S(x) ∈ G(A) from the following arguments: First note that

(x⊗ x) • (S(x) ⊗ S(x)) = 1A ⊗ 1A, (3.93)

since (x ⊗ x) • (S(x) ⊗ S(x)) = (x ∗ S(x)) ⊗ (x ∗ S(x)) = 1A ⊗ 1A. We also
have

1A ⊗ 1A = Δ(1A) = Δ(S(x) ⊗ x) = Δ(S(x)) •Δ(x) = Δ(S(x)) • (x⊗ x),

whence
1A ⊗ 1A = Δ(S(x)) • (x ⊗ x). (3.94)

If we multiply (w.r.t. •) both sides of (3.93) by Δ(S(x)), we get

Δ(S(x)) = Δ(S(x)) • (1A ⊗ 1A)
(3.93)
= Δ(S(x)) • (x⊗ x) • (S(x) ⊗ S(x))

(3.94)
= 1A ⊗ 1A • (S(x)⊗ S(x)) = S(x)⊗ S(x).

This gives Δ(S(x)) = S(x)⊗ S(x), that is, S(x) ∈ G(A).
We remark that a similar argument applied in Part II of the proof of Theorem

3.23 (page 143), when showing that the Hausdorff group is closed under inversion.

As our main example of a Hopf algebra, we give the following one.

Example 3.39. Let g be a Lie algebra over K and let U (g) be its universal
enveloping algebra. We begin by claiming that the map

δ : g→ U (g)⊗U (g), δ(x) := μ(x) ⊗ 1 + 1⊗ μ(x), x ∈ g, (3.95)
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is a Lie algebra morphism, where U (g)⊗U (g) is equipped with the Lie algebra
structure resulting from the UAA structure given by the multiplication

(a⊗ b) • (a′ ⊗ b′) = (a a′)⊗ (b b′), ∀ a, b, a′, b′ ∈ U (g).

As usual, simple juxtaposition denotes the multiplication in U (g).
Indeed, to prove the above claim, we use the following computation:

δ
(
[x, y]g

)
= μ
(
[x, y]g

)⊗ 1 + 1⊗ μ
(
[x, y]g

)
(see (2.104))

= [μ(x), μ(y)]U ⊗ 1 + 1⊗ [μ(x), μ(y)]U

=
(
μ(x)μ(y)− μ(y)μ(x)

) ⊗ 1 + 1⊗ (μ(x)μ(y) − μ(y)μ(x)
)
.

On the other hand, by arguing exactly as in (3.91), one proves that

[δ(x), δ(y)]• =
(
μ(x)μ(y)− μ(y)μ(x)

) ⊗ 1 + 1⊗ (μ(x)μ(y) − μ(y)μ(x)
)
.

This proves that δ is an LA morphism.
Let A := U (g)op denote the opposite algebra of U (g), that is, A has the

same vector space structure as U (g), whilst the multiplication in U (g)op,
denoted by ·op, is defined by

a ·op b := b a, ∀ a, b ∈ U (g).

Clearly, (A, ·op) is a UA algebra, with the same unit element as that of U (g).
Consider the map

f : g→ A, f(x) := −μ(x) ∈ U (g) = A.

We claim that f is a Lie algebra morphism of g in the commutator Lie algebra
of A. Indeed, for every x, y ∈ g, we have

[f(x), f(y)]A = f(x) ·op f(y)− f(y) ·op f(x) = f(y)f(x)− f(x)f(y)

= (−μ(y))(−μ(x)) − (−μ(x))(−μ(y)) = μ(y)μ(x)− μ(x)μ(y)

= [μ(y), μ(x)]U = −[μ(x), μ(y)]U (2.104)
= −μ([x, y]g) = f([x, y]g).

Hence, by the universal property in Theorem 2.92-(i), there exists a unique
UAA morphism fμ : U (g) → A such that fμ(μ(x)) = f(x), for every x ∈ g.
Since the underlying vector space structure of A is precisely that of U (g),
this defines a linear map

S : U (g) −→ U (g), S(t) := fμ(t) (t ∈ U (g)). (3.96)
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Obviously, S is not, in general, a UAA morphism, but it satisfies

S(t t′) = S(t′)S(t), for every t, t′ ∈ U (g),

that is, S is an algebra antihomomorphism of U (g).
Next, we consider the following maps:

(1) Δ : U (g) → U (g) ⊗ U (g) is the unique UAA morphism associated to
the LA morphism δ in (3.95). In other words, following the notation in
Theorem 2.92-(i), Δ = δμ, that is, Δ : U (g)→ U (g)⊗U (g) is the unique
UAA morphism such that Δ(μ(x)) = μ(x) ⊗ 1 + 1⊗ μ(x), for every x ∈ g.

(2) ε : U (g) → K is the unique UAA morphism such that ε(μ(x)) = 0 for
every x ∈ g.

(3) S : U (g)→ U (g) is the linear map defined in (3.96).

It can be proved that, with the above coproduct Δ, counit ε and antipode S,
U (g) (together with its UAA algebra structure) is a Hopf algebra. Furthermore,
U (g) is primitively generated (hence cocommutative), since {1} ∪ μ(g) is a
set of algebra-generators for U (g) (note that μ(g) ⊆ P (U (g)), by the very
definition of Δ).

Remark 3.40. With the structures considered in Example 3.39, we claim that,
if K has characteristic zero, the set P (U (g)) of the primitive elements of the
bialgebra U (g) coincides with μ(g) � g.

This can be proved by rerunning the arguments in the proof of Friedrichs’s
Theorem 3.13 (see Cartier [34, Theorem 3.6.1]); note that Poincaré-Birkhoff-
Witt’s Theorem 2.94 is also needed. Indeed it suffices to replace, in the
arguments on pages 134–135, T (V ) with U (g) and δ with the coproduct
Δ.

So far we have pointed out many circumstances where the material
presented in this chapter may be properly restated in terms of Hopf algebra
theory: for instance, this happens in Friedrichs’s Theorems 3.13 and 3.14 (the
characterizations of L(V ) and L(V ) as the set of primitive elements w.r.t. δ
and δ̂, respectively), or when dealing with the Hausdorff group Γ (V ) (the
set of grouplike elements w.r.t. δ̂, see Theorem 3.23).

As we have already highlighted, the core of the proof of the CBH
Theorem furnished here relies on establishing the bijection between L(V )
and Γ (V ) via Exp (see Theorem 3.24), which is well pictured in Fig. 3.1
(page 146), where δ̂-primitive elements and δ̂-grouplike elements are
involved. This definitely exhibits the likely existence of a deep connection
between the formalism behind the CBHD Theorem and Hopf algebra theory.

For an in-depth analysis of the Hopf algebra structure of U (g), the
Reader is referred to the pioneering work by Milnor and Moore [120]. For
example, Theorem 5.18 in [120, page 244] characterizes (in terms of suitable
functors) the universal enveloping algebras U (g) of the Lie algebras g (over
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a field of characteristic zero) as the primitively generated Hopf algebras. For
further characterizations, see Cartier [34, Section 3.8]. We also remark that,
within the Hopf algebra theory presented in [120], the Poincaré-Birkhoff-
Witt Theorem also assumes a natural place (see [120, Theorem 5.15, page
243]). Since this theorem plays a crucial rôle in the proof of the CBHD
Theorem (as we will show with full particulars in Chap. 6), we have another
piece of evidence for a connection between Hopf algebra theory and the
topics of this Book.



Chapter 4
Some “Short” Proofs of the CBHD Theorem

THE aim of this chapter is to give all the details of five other proofs
(besides the one given in Chap. 3) of the Campbell, Baker, Hausdorff

Theorem, stating that x�y := Log(Exp(x) · Exp(y)) is a series of Lie
polynomials in x, y. As we showed in Chap. 3, this is the “qualitative” part
of the CBHD Theorem, and the actual formula expressing x�y as an explicit
series (that is, Dynkin’s Formula) can be quite easily derived from this
qualitative counterpart as exhibited in Sect. 3.3.

These proofs are – in the order presented here – respectively, by
M. Eichler [59], D.Ž. Djoković [48], V. S. Varadarajan [171], C. Reutenauer
[144], P. Cartier [33]. They are not presented in the chronological order
in which they appeared in the literature, but rather we have followed
a criterion adapted to our exposition: Eichler’s proof requires the least
prerequisites; Djoković’s proof allows us to introduce all the machinery
needed to make precise the manipulation of formal power series (and of
series of endomorphisms) also used in the subsequent proofs; Varadarajan’s
proof may be viewed as the correct and most natural continuation of
Djoković’s; Reutenauer’s proof has in common with Djoković’s some
core computations; Cartier’s proof makes use of slightly more algebraic
prerequisites and it leads us back to the ideas of Chap. 3.

The actual chronological order is:

Author Paper, Book Date

Cartier [33] 1956
Eichler [59] 1968
Varadarajan [171] (book, 1st edition) 1974
Djoković [48] 1975
Reutenauer [144] (book) 1993

We decided to term the proofs presented here as “short” proofs of the
CBHD Theorem (actually – we should have said – of the Campbell, Baker,

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 4,
© Springer-Verlag Berlin Heidelberg 2012
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Hausdorff Theorem). Indeed, an undoubted quality of compendiousness (if
compared to the approach of the Bourbakist proof in Chap. 3) is evident for
all these proofs; nonetheless we mitigated the adjective short by putting it in
quotes, since these five proofs necessitate a certain amount of background
prerequisites, not completely perspicuous from the original proofs. In fact,
this Book should have convinced the Reader that a three-page proof (as in
Eichler [59] or in Djoković [48]) of the Campbell-Baker-Hausdorff Theorem
would be asking too much!

Before presenting the proofs, we would like to underline a few of their
characteristic features, tracing some parallels and differences.

The first due remark is devoted to Varadarajan’s argument. Indeed,
whereas the other four proofs are in a purely algebraic setting, Varadarajan’s
original investigation of the Baker, Campbell, Hausdorff Formula in [171,
Section 2.15] is concerned with the version of this theorem related to the Lie
group setting. Notwithstanding this, the argument in [171] is so fitting with
Djoković’s, that we felt forced to think that Djoković’s proof was somewhat
incomplete without the remarkable recursion formula given by Varadarajan
(this formula having been implicit in Hausdorff, see [78, eq. (29), page 31]).
Moreover, the argument in [171] is so easily generalized to the abstract
algebraic setting, that we also felt free to adapt it to our purpose, even
though its original exposition is another one.

As we said, among the five proofs, Eichler’s is undoubtedly the most
devoid of prerequisites, apart from the existence of free Lie algebras (over
two or three indeterminates). Even if this is a clear advantage (why did we
not present Eichler’s proof of the CBHD Theorem in the first Chapter of this
Book, without the need of a foregoing – long – chapter of backgrounds?),
it must be said that this ingenious tricky proof has the disadvantage of
concealing the nature of the CBHD Theorem as being a result crossing the
realms of Algebra, Analysis and Geometry. Moreover, Eichler’s argument
says nothing about possible recursive relations between the coefficients of
the CBHD series, a crucial fact which is instead close at hand in Djoković’s
and in Reutenauer’s proofs and completely transparent in Varadarajan’s.

The contribution of Djoković’s proof to the understanding of the CBHD
Theorem is a palpable use of formal power series, in such a way that the
rôle of some core computations (tracing back to Baker and Hausdorff) is
made clearer than it appears from the Bourbakist approach. For instance,
Djoković’s computations recover – in a direct fashion – the milestone result
that (roughly)

Z(t) := Log
(
Exp(t x) · Exp(t y))

satisfies an “ordinary differential equation”: solving this formal ODE (by the
power series Ansatz method) allows us to discover that the coefficients of
the CBHD series satisfy recursive relations, revealing their Lie-polynomial
nature. The reverse side of the medal when it comes to formal handling of
power series is that some arguments are not set into their proper algebraic
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context: For instance, what is the rôle of t in Z(t)? Is it a real parameter?
Is it a free indeterminate? And then, what are the rôles of x, y? And what
about convergence? [For example, these rôles are all clear in Varadarajan’s
original context: x, y are vector fields in the Lie algebra of a Lie group, t is
a real parameter, and Z(t) satisfies a genuine ODE on the Lie algebra.] To
set things straight, we preferred to add to Djoković’s original arguments
(at the risk of straining the Reader’s patience) all the needed algebraic
background about power series of endomorphisms and formal power series
in one indeterminate t, with coefficients in T (Q〈x, y〉) (the free associative
Q-algebra of the polynomials in two non-commuting indeterminates).

As already remarked, Varadarajan’s explicit computations on the cited
recursive relations furnish a sort of “prolongation” of Djoković’s proof, both
giving a manifest demonstration of the Lie-nature of x�y and providing a
recursion formula extremely powerful for handling convergence matters
(a contribution which is not given by any of the other proofs of the
Campbell, Baker, Hausdorff Theorem presented in this Book).

Next, Reutenauer’s proof has in common with Djoković’s a core compu-
tation, proving that (whenever D is a derivation) we have

D(Expx) ∗ Exp(−x) =
∞∑

n=1

1

n!

(
adx
)n−1

(D(x)).

This is the crucial part where brackets step in and (if properly generalized
and if used for other suitable derivations as in Reutenauer’s catchy argu-
ment) it allows us to recover and formalize the original ideas by Baker and
Hausdorff themselves.

Finally, Cartier’s proof – if compared to the others – is certainly the
nearest to the approach given in Chap. 3, hence preserving the natural multi-
faceted algebraic/analytic/geometric flavor of the CBHD Theorem. This
proof furnishes a balanced summa of some explicit computations (such as
those cited in Djoković’s argument) together with the idea of obtaining
suitable characterizations of Lie-elements (as in Friedrichs’s Theorem from
Chap. 3), having an interest in their own. Moreover, some remarkable
algebraic arguments (such as those involved in the Lemma of Dynkin,
Specht, Wever) are further exploited and clarified.

To end this introduction, we provide an overview of the chapter.
Warning: First, a general warning is due. In this chapter, we shall

encounter some specific graded algebras (A, ∗), with the associated metric
space of the formal power series (Â, ∗̂ ), the relevant exponential and
logarithmic maps Exp∗, Log∗, and the relevant � operation:

u�v = Log∗(Exp∗(u) ∗̂ Exp∗(v)).
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At the risk of appearing tedious, we shall safeguard different notations
according to the different algebras we shall encounter: this is intended
to preserve the specificity of the contexts and of each CBHD Formula
associated to each of these contexts. Indeed, if the use of a unified notation
Log(Exp(u) · Exp(v)) has the clear advantage of avoiding a proliferation of
symbols, the reverse of the medal is to induce the Reader to believe that
there exists a single CBHD Theorem. Instead, we trust it is an interesting
fact to establish what kind of CBHD formulas allow us to recover the CBHD
Theorem 3.8 for the general algebra T̂ (V ), where V is any vector space over
a field of null characteristic. This will be an item of investigation too.

Here is the plan of the chapter:

• To begin with, we furnish the precise statement of the CBHD Theorem in
the context of formal power series in two free indeterminates over Q, that
is, the algebra T̂ (Q〈x, y〉), and we show how to derive the general CBHD
Theorem 3.8 from this (Sect. 4.1).

• Section 4.2 contains, without drawing breath, Eichler’s proof of the
Campbell, Baker, Hausdorff Theorem. This is formulated in the above
context of T̂ (Q〈x, y〉) and it says that, written

log
(
ex ·̂ ey) =∑∞

j=1 Fj(x, y),

where Fj(x, y) is a homogeneous polynomial in x, y of degree j, then
Fj(x, y) is in fact a Lie-polynomial in x, y. The proof rests on an ingenious
use of the identity

(
eA ·̂ eB) ·̂ eC = eA ·̂ (eB ·̂ eC),

whereA,B,C are three free non-commuting indeterminates. This fact has
an independent interest for it illuminates the fact that the CBH Theorem
is somewhat implicit in the associativity of the composition law, a fact that
has many echoes in Lie group theory.

• Section 4.3 contains a detailed version of Djokovic’s proof of the Camp-
bell, Baker, Hausdorff Theorem. First, we need to introduce the relevant
setting (see Sect. 4.3.1): Given a UA algebra A, we consider the algebra
A[t] of polynomials in the indeterminate t with coefficients in A; this is a
graded algebra whose completion is A[[t]], the algebra of formal power
series in t and coefficients in A. We introduce in A[[t]] the operator ∂t
(the formal derivative with respect to t), and we establish several of its
remarkable properties. Then, through Sect. 4.3.2 we get closer and closer
to Djokovic’s original argument by making the choice of A: we take
A = T (Q〈x, y〉) and we consider the element of A[[t]] defined by

Z := log(exp(x t) ∗ exp(y t)).
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We then discover that the actual expression of Z as a series in t is

Z =
∑∞

j=1 Fj(x, y) t
j ,

where the Fj(x, y) are the same as in Eichler’s proof. We further give all
the details for making a precise use of formal series of endomorphisms
of A[[t]]. We are thus ready for Djokovic’s proof (Sect. 4.3.3): with all the
former machinery at hands, we discover that Z satisfies a formal ODE,
roughly writable as

∂tZ =
adZ

eadZ − 1

(
x+ eadZ(y)

)
.

By unraveling this identity with respect to the coefficients Fj(x, y) of
Z , we obtain a (qualitative) argument ensuring that Fj+1(x, y) is a Lie-
polynomial, once this is true of F1(x, y), . . . ,Fj(x, y). Since F1(x, y) =
x+ y, we are done.

• Once Djokovic’s differential equation for Z is established, in Sect. 4.5 we
present an adaptation of Varadarajan’s argument in [171, Section 2.15]
to write this equation in the following more symmetric form (note the
presence of x± y instead of x and y)

∂tZ =
1
2 adZ

tanh
(
1
2 adZ

) (x+ y)− 1
2 (adZ)(x− y).

By substituting the formal power series for Z , this gives an explicit
recursion formula for the coefficients Fj , also involving the remarkable
Bernoulli numbers. Besides its usefulness in deriving the Lie-polynomial
nature of the Fj , this formula will appear as a rewarding tool for the
study of convergence matters (this will be done in Sect. 5.2.3). In Sect. 4.5.2,
we exhibit another compact form of writing the “ODE” for Z , following
G. Czichowski [44]:

∂tZ =
adZ

eadZ − 1
(x) +

−adZ
e−adZ − 1

(y).

This will allow us to write another (more compact) recursion formula for
the coefficients Fj .

• If we replace the above operator ∂t with some “partial differential
operators” (actually, derivations of the algebra T̂ (Q〈x, y〉)) of the form

Dx = Hy
1

∂

∂ x
or Dy = Hx

1

∂

∂ y
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(all will be clarified in Sect. 4.6), we discover that

H(x, y) := Log(Expx · Exp y)

satisfies some sort of PDE identities looking like

H(x, y) = exp(Dx)(x) or H(x, y) = exp(Dy)(y).

This is, roughly, the leading idea in Reutenauer’s proof, presented in
Sect. 4.6. The rôle of the series Hx

1 and Hy
1 (which are obtained by

gathering the summands in the series of H(x, y) containing, respectively,
x and y with degree 1) is paramount in Reutenauer’s approach. Since
this is true also of the early proofs by Pascal, Baker and Hausdorff, it
follows that Reutenauer’s argument gives us the chance of understanding
these early approaches, getting to the core of the CBHD Theorem both
mathematically and historically.

• Finally, Sect. 4.7 contains the details of Cartier’s proof of the Campbell,
Baker, Hausdorff Theorem. This rests on a new ad hoc characterization of
L(V ) playing a rôle similar to that played by Friedrichs’s characterization
in the proof from Chap. 3. First, it is necessary to establish the well-
behaved properties of some remarkable maps (Sect. 4.7.1), similar to
those involved in the proof of the Lemma of Dynkin, Specht, Wever
(see Sect. 3.3.1). By means of these maps, Cartier gives a characterization
of Exp(L(V )) (see Sect. 4.7.2), that is, of the so called Hausdorff group
related to V (see Sect. 3.2.3). We remark that Cartier’s proof directly
applies to the general case of T̂ (V ), without the need to pass through
the formal power series in two indeterminates, as in the other proofs
presented in this chapter.

4.1 Statement of the CBHD Theorem for Formal Power
Series in Two Indeterminates

Let us begin by collecting the due notation and definitions. The well known
notation in (3.20), i.e.,

Nn :=
{
(h, k)
∣
∣ h, k ∈ (N ∪ {0})n, (h1, k1), . . . , (hn, kn) �= (0, 0)

}
,

cn :=
(−1)n+1

n
, c(h, k) :=

1

h! k! (|h|+ |k|) ,

will apply throughout. We also give the following useful definition.
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Definition 4.1. Let (A, ∗) be an associative algebra (over a field of charac-
teristic zero). Let j ∈ N be fixed. We set1

FA
j : A×A −→ A

FA
j (u, v) :=

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

u∗h1 ∗ v∗ k1 ∗ · · · ∗ u∗hn ∗ v∗ kn

h1! · · ·hn! k1! · · · kn! . (4.1)

When there is no possibility of confusion, we shall also use the shorter
notation

F∗
j := FA

j . (4.2)

The Reader has certainly recognized the similarity between FA
j (u, v) and

the term in parentheses in (3.23) on page 128, the latter intervening in the
definition of the important � operation. Indeed, if V is any vector space over
a field of characteristic zero, if A is T̂ (V ), i.e., the algebra of the formal
power series equipped with the usual Cauchy operation in (2.91) (page 105),
and if finally � is the operation introduced in (3.16) (page 126), then we have

∞∑

j=1

F
T̂ (V )
j (u, v) = u�v, ∀ u, v ∈ T̂+(V ).

The maps Fj in Definition 4.1 have a sort of “universal” property, stated in
the following:

Proposition 4.2. Let A,B be two associative algebras and suppose ϕ : A→ B is
an algebra morphism. Then

ϕ(FA
j (u, v)) = FB

j (ϕ(u), ϕ(v)), for every u, v ∈ A and every j ∈ N. (4.3)

In particular, if A is a subalgebra of B, we have

FA
j (u, v) = FB

j (u, v), for every u, v ∈ A and every j ∈ N. (4.4)

Proof. It follows immediately from the very definition (4.1) of the maps Fj

and the fact that ϕ is an algebra morphism. ��
A direct computation gives:

FA
1 (u, v) = u+ v, (4.5a)

1Since A may not contain an identity element, we need to clarify what we mean for u∗h if
h = 0: When some of the hi or ki in (4.1) are null, we understand that the relevant factors
u∗hi and v∗ ki simply do not appear in the formula.
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FA
2 (u, v) =

1

2
[u, v]∗. (4.5b)

Indeed, (4.5a) is trivial, whereas for (4.5b) we have

FA
2 (u, v) =

∑

(h1,k1): |h1|+|k1|=2

u∗h1 ∗ v∗k1

h1! k1!
+

− 1

2

∑

(h1,k1), (h2,k2) �=(0,0)
h1+h2+k1+k2=2

u∗h1 ∗ v∗k1 ∗ u∗h2 ∗ v∗k2

h1!h2! k1!k2!

=
u∗2

2
+ u ∗ v + v∗2

2
− 1

2

(
u∗2 + u ∗ v + v ∗ u+ v∗2

)

=
u ∗ v
2

− v ∗ u
2

=
1

2
[u, v]∗.

This simple computation offers a glimpse of a fundamental fact concerning
the maps Fj (a fact which we have already familiarized with in Chap. 3),
that is, FA

j (u, v) is in fact a homogeneous Lie-polynomial of degree j in u, v, in the
commutator-algebra associated to (A, ∗). We shall soon prove this fact explicitly.

We introduce the algebra we shall be primarily dealing with in this chapter.
Let {x, y} be a set of cardinality 2. Let Q denote the field of rational

numbers.2 As usual,
T (Q〈x, y〉)

denotes the tensor algebra of the free vector space Q〈x, y〉. [We know
from Theorem 2.40 on page 79 that T (Q〈x, y〉) is isomorphic to the free
associative algebra over the set {x, y} and can be thus thought of as the
associative algebra of words in x, y.] Then we consider the algebra over Q of
the formal power series in the two non-commuting indeterminates x, y, namely
(recalling the notation in Sect. 2.3.4, page 106)

T̂ (Q〈x, y〉).

As usual, following the general exposition in Sect. 3.1.1 (page 119) about
exponentials and logarithms, since T̂ (Q〈x, y〉) is the algebra of formal
power series related to the graded algebra

2Without the possibility of confusion, if K is any field of characteristic zero, we shall
also denote by Q the field of the rational numbers in K, i.e., the least subfield of K

containing 1K.
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T (Q〈x, y〉) =
⊕

j≥0

Tj(Q〈x, y〉),

we are entitled to consider the relevant exponential function Exp.
To underline the specificity of the present setting, we shall resume the older

notation ·̂ for the Cauchy operation on T̂ (Q〈x, y〉) (see (2.82) in Definition
2.73, page 101) and we shall use the notation z �→ ez for the relevant
exponential function z �→ Exp(z), i.e.,

ez :=

∞∑

k=0

z ·̂k

k!
, ∀ z ∈ T̂+(Q〈x, y〉).

The inverse of

T̂+(Q〈x, y〉) � z �→ ez ∈ 1 + T̂+(Q〈x, y〉)

is denoted by log. Finally, any element in

L(Q〈x, y〉)

(that is, the free Lie algebra generated by the vector space Q〈x, y〉) will be
called a Lie polynomial in x, y. In particular, any element of Lj(Q〈x, y〉) will be
called a homogeneous Lie polynomial in x, y of (joint) degree j. (See Definition
2.46, page 85, for the relevant definitions and see (2.49) for an explanation of
the Lj notation.)

The closure of L(Q〈x, y〉) in the topological space T̂ (Q〈x, y〉) is denoted

L(Q〈x, y〉).

With all the above notations at hand, the aim of this chapter is to provide
short proofs of the following theorem, which we shall refer to as the CBHD
Theorem for formal power series in two non-commuting indeterminates.

Theorem 4.3 (CBHD for T̂ (Q〈x, y〉)). Using the above notation, we have:

F
T (Q〈x,y〉)
j (x, y) ∈ Lj(Q〈x, y〉), for every j ∈ N; (4.6)

F(x, y) :=

∞∑

j=1

F
T (Q〈x,y〉)
j (x, y) belongs to L(Q〈x, y〉); (4.7)

F(x, y) = log
(
ex ·̂ ey); (4.8)

eF(x,y) = ex ·̂ ey. (4.9)
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Remark 4.4. We show that it is easy to prove the following implications:

(4.6) =⇒ (4.7) =⇒ (4.8) =⇒ (4.9).

Obviously, (4.9) follows from (4.8). Moreover, (4.7) is a consequence of (4.6)
jointly with (see (3.45) at page 138)

L(Q〈x, y〉) =∏∞
j=1 Lj(Q〈x, y〉).

Furthermore, (4.8) is a consequence of the definition of F in (4.7) (and the
very definition of Fj in (4.1)). Indeed, we derive (4.8) by a straightforward
computation (see e.g., (3.18) page 127):

log
(
ex ·̂ ey) =

∞∑

n=1

(−1)n+1

n

( ∑

(h,k) �=(0,0)

x·̂h ·̂ y ·̂ k
h! k!

)n

=
∞∑

n=1

cn
∑

(h,k)∈Nn

x·̂h1 ·̂ y ·̂ k1 ·̂ · · · ·̂ x·̂ hn ·̂ y ·̂ kn
h1! · · ·hn! k1! · · · kn!

(by reordering the sum) (4.10)

=

∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

x·̂h1 ·̂ y ·̂ k1 ·̂ · · · ·̂ x·̂ hn ·̂ y ·̂ kn
h1! · · ·hn! k1! · · · kn!

)

=

∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

x·h1 · y· k1 · · · · · x· hn · y· kn
h1! · · ·hn! k1! · · · kn!

)

(4.1)
=

∞∑

j=1

F
T (Q〈x,y〉)
j (x, y) = F(x, y), by the definition of F(x, y)

in (4.7).

Hence, the main task in Theorem 4.3 is to prove (4.6).

The proof of (4.6) is the topic of Sects. 4.2, 4.3, 4.5, 4.7 below. But
before proceeding, we would like to show that Theorem 4.3 – though it is
formulated in the very special setting of T̂ (Q〈x, y〉) – gives the Campbell,
Baker, Hausdorff Theorem 3.20, in the following even stronger form.

Corollary 4.5. Let V be a vector space (over a field K of characteristic zero).
Consider the usual Exponential/Logarithm maps

T̂+(V )
Exp

�� 1 + T̂+(V ).
Log



 (4.11)
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Then, for every u, v ∈ T̂+(V ), the unique solution Z(u, v) of

Exp(Z(u, v)) = Expu · Exp v (4.12)

is given by (see also Definition 4.1)

Z(u, v) = Log(Expu · Exp v) =
∞∑

j=1

F
T̂ (V )
j (u, v). (4.13)

Moreover, thanks to (4.6) we infer that, for every j ∈ N, the general summand

F
T̂ (V )
j (u, v) of the above series belongs to Lie{u, v} (the least Lie subalgebra

of the commutator-algebra of T̂ (V ) containing u, v) and can be expressed by a
“universal” linear combination (with rational coefficients) of iterated Lie brackets
of length j in u, v (jointly). Consequently,

Log(Expu · Exp v) ∈ Lie{u, v}, (4.14)

the closure being taken in T̂ (V ) with the usual topology so that, as a particular
case, (3.51) in the Campbell, Baker, Hausdorff Theorem 3.20 holds true.

Proof. Let u, v ∈ T̂+(V ). Since the maps in (4.11) are inverse to each other
and Expu · Exp v belongs to 1 + T̂+, then (4.12) has the unique solution
Z(u, v) := Log(Expu · Exp v). By Theorem 2.85-(1a), there exists a unique
UAA morphism Φu,v : T (K〈x, y〉)→ T̂ (V ) such that

(�1) Φu,v(x) = u and Φu,v(y) = v.

It is easily seen that, for every k ∈ N, one has

(�2) Φu,v

(⊕
j≥k Tj(K〈x, y〉)

)
⊆∏j≥k Tj(V ).

Hence, arguing as in the proof of Theorem 2.79 (page 103), we derive
from (�2) that Φu,v is uniformly continuous and can be prolonged to a
continuous UAA morphism

Φ̂u,v : T̂ (K〈x, y〉) → T̂ (V ).

We next consider the identity

(�3) log
(
ex ·̂ ey) =∑∞

j=1 F
T (Q〈x,y〉)
j (x, y),
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deriving from (4.7) and (4.8) in Theorem 4.3. We can apply Φ̂u,v to both
sides of (�3) since T̂ (Q〈x, y〉) can be viewed as a subspace of T̂ (K〈x, y〉).
The fact that Φ̂u,v is a continuous UAA morphism satisfying (�1) (and an
application of Proposition 4.2) ensures that, by applying Φ̂u,v , we produce
the identity

(�4) Log
(
Exp(u) · Exp(v)) =∑∞

j=1 F
T̂ (V )
j (u, v),

and (4.13) is completely proved.
If we consider (4.6) and the fact that Φu,v is a Lie algebra morphism of the

commutator-algebras of T (K〈x, y〉) and T̂ (V ), we get

F
T̂ (V )
j (u, v)

(4.3)
= Φu,v

(
F

T̂ (Q〈x,y〉)
j (x, y)

)
= Φu,v

(
F

T (Q〈x,y〉)
j (x, y)

)

∈ Φu,v

(
L(Q〈x, y〉)) ⊆ Lie{u, v},

for every j ∈ N. Summing up for j ∈ N, we get

Log
(
Exp(u) · Exp(v)) (�4)

=
∑∞

j=1 F
T̂ (V )
j (u, v) ∈ Lie{u, v},

and (4.14) follows.
Since, for every j ∈ N, (4.6) states that F

T (Q〈x,y〉)
j (x, y) ∈ Lj(Q〈x, y〉),

then the identity (proved above)

F
T̂ (V )
j (u, v) = Φu,v

(
F

T (Q〈x,y〉)
j (x, y)

)
(4.15)

guarantees that FT̂ (V )
j (u, v) can be expressed by a “universal” linear com-

bination – with rational coefficients – of iterated Lie brackets of length j in
u, v (jointly), this universal linear combination being the one related to the
Lie element FT (Q〈x,y〉)

j (x, y) (recall (4.6)!).
Finally, we derive (3.51) in the Campbell, Baker, Hausdorff Theorem 3.20.

Indeed, if we take u, v ∈ L(V ), we obtain

Log(Expu · Exp v) ∈ Lie{u, v} ∈ Lie{L(V )} = L(V ).

Here we applied the fact that Lie{L(V )} = L(V ), since L(V ) is a Lie
subalgebra of T̂ (V ) (see Remark 3.17). The proof is thus complete. ��
Another remarkable consequence of Theorem 4.3 (and of the Dynkin,
Specht, Wever Lemma 3.26) is the following:



4.1 Statement of the CBHD Theorem for Formal Power Series 185

Corollary 4.6. Let (A, ∗) be an arbitrary associative algebra (over a field K of null
characteristic). Then

FA
j (u, v) ∈ Lie{u, v}, for every u, v ∈ A and every j ∈ N. (4.16)

Here, Lie{u, v} denotes the least Lie subalgebra of the commutator-algebra of A
containing u, v. More precisely, FA

j (u, v) is a linear combination (with rational
coefficients) of iterated ∗-brackets of u, v with joint degree j.

Finally, FA
j (u, v) can be expressed by a “universal” expression in the following

precise sense: If Φu,v:T+(K〈x, y〉) → A is the (unique) algebra morphism mapping
x into u and y into v, then

FA
j (u, v) = Φu,v

(
F

T (K〈x,y〉)
j (x, y)

)
. (4.17)

Hence, thanks to the Dynkin, Specht, Wever Lemma 3.26 (and by (4.6)), we have
the explicit Dynkin expression

FA
j (u, v) =

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
∗

h! k! (|h|+ |k|) . (4.18)

Recall that
[
uh1vk1 · · ·uhnvkn

]
∗ denotes the following nested iterated bracket (in

the commutator-algebra of A):

h1 times
︷ ︸︸ ︷
[u, · · · [u,

k1 times
︷ ︸︸ ︷
[v, · · · [v, · · ·

hn times
︷ ︸︸ ︷
[u, · · · [u,

kn times
︷ ︸︸ ︷
[v, [· · · , v ]∗]∗]∗ · · · ]∗ · · · ]∗ · · · ]∗]∗ · · · ]∗.

More explicitly, this gives the “associative-to-Lie” identity

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

u∗h1 ∗ v∗ k1 ∗ · · · ∗ u∗hn ∗ v∗ kn

h! k!
=

=

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
∗

h! k! (|h|+ |k|) ,

(4.19)

valid for every j ∈ N and every u, v ∈ A.

Proof. By arguing as in the comments preceding Remark 5.6 (page 273), we
can consider a unital associative algebraA1 containingA as a subalgebra. Let
us fix u, v ∈ A. By Theorem 2.85-(1a), there exists a unique UAA morphism
Φu,v : T (K〈x, y〉)→ A1 such that
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Φu,v(x) = u and Φu,v(y) = v. (4.20)

It is immediately seen that the restriction of Φu,v to T+(K〈x, y〉) maps this
latter set to A. For the sake of brevity, we denote this restriction again by
Φu,v . Hence,

Φu,v : T+(K〈x, y〉)→ A

is an algebra morphism satisfying (4.20) (and it is the unique morphism with
this property).

With the morphism Φu,v at hand, we are able to prove (4.17) via the
following direct computation:

Φu,v

(
F

T (K〈x,y〉)
j (x, y)

)

(4.1)
= Φu,v

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

x⊗h1 ⊗ y⊗k1 ⊗ · · · ⊗ x⊗hn ⊗ y⊗kn

h1! · · ·hn! k1! · · · kn!
)

(Φu,v is an algebra morphism satisfying (4.20))

=

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

u∗h1 ∗ v∗k1 ∗ · · · ∗ u∗hn ∗ v∗kn
h1! · · ·hn! k1! · · · kn!

(4.1)
= FA

j (u, v).

To complete the proof, we first remark that it suffices to prove (4.18), for it
implies (4.16) a fortiori. To this aim, let us take V = K〈x, y〉 in the Dynkin,
Specht, Wever Lemma 3.26 (page 145). We thus obtain the (unique) linear
map P :T (K〈x, y〉) → L(K〈x, y〉) such that

P (1) = 0,

P (x) = x, P (y) = y,

P (z1 ⊗ · · · ⊗ zk) =
1
k [z1, . . . [zk−1, zk]⊗]⊗, ∀ k ≥ 2,

(4.21)

for any choice of z1, . . . , zk in {x, y}. By the cited Lemma 3.26, we know that
P is the identity map on L(K〈x, y〉). By (4.6) in Theorem 4.3, we have

F
T (Q〈x,y〉)
j (x, y) ∈ Lj(Q〈x, y〉), for every j ∈ N.

Obviously, we can replace F
T (Q〈x,y〉)
j (x, y) by F

T (K〈x,y〉)
j (x, y), since

T (Q〈x, y〉) ⊆ T (K〈x, y〉).
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Hence we have, in particular,

F
T (K〈x,y〉)
j (x, y) ∈ L(K〈x, y〉), for every j ∈ N. (4.22)

As a consequence, P leaves FT (K〈x,y〉)
j (x, y) unchanged, so that

F
T (K〈x,y〉)
j (x, y) = P

(
F

T (K〈x,y〉)
j (x, y)

)

(4.1)
= P

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

x⊗h1 ⊗ y⊗k1 ⊗ · · · ⊗ x⊗hn ⊗ y⊗kn

h1! · · ·hn! k1! · · · kn!
)

(4.21)
=

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

[
xh1yk1 · · ·xhnykn]⊗
h! k! (|h|+ |k|) .

This gives the explicit formula

F
T (K〈x,y〉)
j (x, y) =

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

[
xh1yk1 · · ·xhnykn]⊗
h! k! (|h|+ |k|) . (4.23)

Finally, we get

FA
j (u, v)

(4.17)
= Φu,v

(
F

T (K〈x,y〉)
j (x, y)

)

(4.23)
= Φu,v

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

[
xh1yk1 · · ·xhnykn]⊗
h! k! (|h|+ |k|)

)

(Φu,v is also a commutator-algebra morphism satisfying (4.20))

=

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
∗

h! k! (|h|+ |k|) .

This proves (4.18) and the proof is complete. ��

4.2 Eichler’s Proof

In this section, we provide the proof of the CBHD Theorem 4.3 for formal
power series in two indeterminates, as given by M. Eichler in [59]. If
compared to Eichler’s arguments in [59], the following exposition aims to
present all the details behind the original proof. In particular, we shall use
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the universal properties of the UA algebras of the polynomials in two and
three indeterminates. The notations of Sect. 4.1 will be used.

Let us consider the algebra
(
T̂ (Q〈x, y〉), ·̂ ) of the formal power series in

two non-commuting indeterminates x, y. As we discussed in Sect. 4.1, there
is only one element F(x, y) of T̂ (Q〈x, y〉) satisfying the identity

ex ·̂ ey = eF(x,y),

and this element is F(x, y) = log
(
ex ·̂ ey). As an element of

T̂ (Q〈x, y〉) =∏n≥0 Tn(Q〈x, y〉),

F(x, y) can be decomposed in a unique way as a power series
∑∞

n=0 Fn(x, y),
with Fn(x, y) ∈ Tn(Q〈x, y〉) for every n ≥ 0.

On the other hand, by the computation in (4.10) we discover that,
if the individual maps F

T (Q〈x,y〉)
n are defined as in (4.1), then

∑∞
n=1

F
T (Q〈x,y〉)
n (x, y) equals log

(
ex ·̂ ey). Hence F0(x, y) = 0 and Fn(x, y) =

F
T (Q〈x,y〉)
n (x, y), for every n ≥ 1. Hence, in facing the proof of Theorem 4.3,

we are left to demonstrate the following result:

Theorem 4.7 (Eichler). With the above notation, we have that

FT (Q〈x,y〉)
n (x, y) is a Lie element, for every n ∈ N. (4.24)

Note that (4.24) will give (4.6), since F
T (Q〈x,y〉)
n (x, y) is clearly a homoge-

neous polynomial of degree n in x, y jointly.

We next turn to prove Theorem 4.7. To this aim, by exploiting the explicit
expression of Fn, we have proved in (4.5a), (4.5b) that one has

F
T (Q〈x,y〉)
1 (x, y) = x+ y,

F
T (Q〈x,y〉)
2 (x, y) =

1

2
[x, y].

Hence, the claimed (4.24) is proved for n = 1 and n = 2. We now aim to
argue by induction on n. To this end, we make the relevant

Inductive Hypothesis:

We suppose that FT (Q〈x,y〉)
1 (x, y), . . . ,F

T (Q〈x,y〉)
n−1 (x, y) are Lie-polynomials.

We can suppose that n ≥ 3. To complete the induction argument, we
aim to prove that FT (Q〈x,y〉)

n (x, y) is a Lie polynomial too. To this end, the
crucial device is to perform a “jump” in the context, passing from two
indeterminates x, y to three indeterminates A,B,C: we shall perform a
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certain amount of (tricky) computations in this last context and we shall
eventually go back to the x, y-context. This is performed below, splitting the
proof in several steps.

4.2.1 Eichler’s Inductive Argument

Step I. A general consequence of the inductive hypothesis. First of all, as a
consequence of the inductive hypothesis, we claim that the following fact
holds:

for every UA algebra A and every u, v ∈ A, then

FA
j (u, v) (j = 1, 2, . . . , n− 1) (4.25)

belongs to Lie{u, v},

where Lie{u, v} is the least Lie subalgebra of the commutator-algebra of A
which contains u, v.

Indeed, by the universal property of T (Q〈x, y〉) in Theorem 2.85-(1a), for
every UA algebra A and every pair of elements u, v ∈ A, there exists a UAA
morphism Φu,v : T (K〈x, y〉) → A such that Φu,v(x) = u and Φu,v(y) = v.
Then (see Proposition 4.2)

Φu,v

(
F

T (Q〈x,y〉)
j (x, y)

) (4.4)
= Φu,v

(
F

T (K〈x,y〉)
j (x, y)

)

(4.3)
= FA

j (Φu,v(x), Φu,v(y)) = FA
j (u, v).

(4.26)

If F
T (Q〈x,y〉)
j (x, y) is a Lie polynomial, then it can be expressed by a

linear combination of higher order brackets involving x and y. Hence, as
a consequence of (4.26) (and the fact that any UAA morphism is also a
commutator-LA morphism), we can express the far right-hand side of (4.26)
by a linear combination of higher order brackets involving u and v. This
proves (4.25).

Step II. The “Abelian” version of the CBHD Formula. Since the cited compu-
tation in (4.10) rests on the sole definitions of the Exponential and Logarithm
maps, it can be immediately generalized to the following general context. If
V is a vector space (over a field of characteristic zero K), and if for every
n ∈ N we consider the functions

FT̂ (V )
n : T̂ (V )× T̂ (V )→ T̂ (V )
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defined in (4.1) for the algebra (T̂ (V ), ·), then one has

Exp(u) · Exp(v) = Exp

( ∞∑

n=1

FT̂ (V )
n (u, v)

)

, for every u, v ∈ T̂+(V ).

(4.27)

We now prove the following lemma, which is an “Abelian” version of the
CBHD Formula.

Lemma 4.8. If u, v ∈ T̂+(V ) commute (i.e., u · v − v · u = 0), then

Exp(u) · Exp(v) = Exp(u+ v). (4.28)

Proof. Let u, v ∈ T̂+(V ) be such that u · v − v · u = 0. We expand both sides
of (4.28), showing that they are indeed equal. On the one hand we have

Exp(u + v) =
∞∑

n=0

(u+ v)n

n!
(by Newton’s binomial formula)

=

∞∑

n=0

1

n!

n∑

k=0

(
n

k

)

uk · vn−k =

∞∑

n=0

n∑

k=0

uk · vn−k

(n− k)! k!
.

On the other hand, we have

Exp(u) · Exp(v) =
(

lim
I→∞

I∑

i=0

ui

i!

)

·
(

lim
J→∞

J∑

j=0

vj

j!

)

(by the continuity of the · operation)

= lim
I,J→∞

∑

0≤i≤I, 0≤j≤J

ui · vj
i! j!

(since the double limit exists, then the same holds for the limit

“along the squares” and the two limits coincide)

= lim
N→∞

∑

0≤i,j≤N

ui · vj
i! j!

= lim
N→∞

( ∑

0≤i+j≤N

ui · vj
i! j!

+
∑

0≤i,j≤N
i+j≥N+1

ui · vj
i! j!

)

(
the second sum vanishes as N →∞ for it belongs to

∏
n≥N+1 Tn(V )

)

= lim
N→∞

∑

0≤i+j≤N

ui·vj
i! j! = lim

N→∞

N∑

n=0

∑

i+j=n

ui·vj
i! j! = lim

N→∞

N∑

n=0

n∑

k=0

uk·vn−k
(n−k)! k!
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(we applied the associative and commutative laws of +)

=

∞∑

n=0

n∑

k=0

uk · vn−k

(n− k)! k!
.

Consequently (4.28) is proved. ��
As a consequence of (4.27) and (4.28), by the injectivity of Exp, by

FT (V )
n (u, v) = FT̂ (V )

n (u, v) ∈ Tn(V ), for every u, v ∈ V and every n ∈ N,

we get, for any pair of commuting elements u, v ∈ V :

FT (V )
n (u, v) =

{
u+ v, if n = 1,
0, if n ≥ 2.

In particular, this gives

FT (V )
n (αu, β u) = 0,

for every n ≥ 2, every α, β ∈ K,
every K-vector space V and every u ∈ V .

(4.29)

Step III. An identity involving the coefficients of the CBHD Formula in three
indeterminates. The crucial device is to consider the algebra of the formal
power series related to the vector space

W := Q〈A,B,C〉,

where A,B,C are three non-commuting indeterminates. By the associativity
of the relevant ·̂ operation, we get

(
eA ·̂ eB) ·̂ eC = eA ·̂ (eB ·̂ eC), (4.30)

which is an equality in T̂ (W ).
By using (4.27) twice (with the vector space V replaced by the above W ),

the left-hand side of (4.30) becomes

Exp

( ∞∑

j=1

F
T̂ (W )
j (A,B)

)

·̂ Exp(C)

= Exp

( ∞∑

i=1

F
T̂ (W )
i

( ∞∑

j=1

F
T̂ (W )
j (A,B), C

))

.

Analogously, the right-hand side of (4.30) is
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Exp(A) ·̂ Exp
( ∞∑

j=1

F
T̂ (W )
j (B,C)

)

= Exp

( ∞∑

i=1

F
T̂ (W )
i

(

A,

∞∑

j=1

F
T̂ (W )
j (B,C)

))

.

Hence, by taking into account the injectivity of Exp, (4.30) is equivalent to
the following equality in T̂ (Q〈A,B,C〉):

∞∑

i=1

F
T̂ (W )
i

(∑∞
j=1F

T̂ (W )
j (A,B), C

)

=

∞∑

i=1

F
T̂ (W )
i

(
A,
∑∞

j=1F
T̂ (W )
j (B,C)

)
. (4.31)

For the sake of brevity, we shall drop the superscript T̂ (W ) in the compu-
tations below. For any fixed n ∈ N ∪ {0}, we denote by

pn : T̂ (W )→ Tn(W )

the projection of T̂ (W ) =
∏

n≥0 Tn(W ) onto the n-th factor Tn(W ). We now
apply pn to both sides of (4.31). Since

∑∞
j=1Fj(A,B), C, A,

∑∞
j=1Fj(B,C)

all belong to
∏

n≥1 Tn(W ), by applying pn to (4.31) we can bound the sums
over i to i ≤ n, and so we get

pn

( n∑

i=1

Fi

( ∞∑

j=1

Fj(A,B), C
))

= pn

( n∑

i=1

Fi

(
A,

∞∑

j=1

Fj(B,C)
))

. (4.32)

We now prove that the sums over j can also be truncated to length n. Indeed,
consider the following computation

Fi

(∑∞
j=1Fj(A,B), C

)

=

i∑

r=1

cr
∑

(0,k)∈Nr
|k|=i, h �=0

Ci

k!
+

i∑

r=1

cr
∑

(h,k)∈Nr
|h|+|k|=i, h �=0

1

h! k!

×
( ∞∑

j=1

Fj(A,B)
)h1 ·̂ Ck1 · · ·

( ∞∑

j=1

Fj(A,B)
)hr ·̂ Ckr =: (�).
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Now take any nonzero exponent, say hi, among the above h1, . . . , hr: Note
that, if in

(∑∞
j=1 · · ·

)hi at least one of the summands over j has index j > n,
then the contribution for the whole (�) turns out to be an element in Tα(W )
with α > n+ |h| − 1 + |k| ≥ n (as hi ≥ 1). This means that (�) is congruent,
modulo

∏
α>n Tα(W ), to

i∑

r=1

cr
∑

(0,k)∈Nr
|k|=i, h �=0

Ci

k!
+

i∑

r=1

cr
∑

(h,k)∈Nr
|h|+|k|=i, h �=0

1

h! k!

×
( n∑

j=1

Fj(A,B)
)h1 ·̂ Ck1 · · ·

( n∑

j=1

Fj(A,B)
)hr ·̂ Ckr

= Fi

( n∑

j=1

Fj(A,B), C
)
.

(4.33)

By the definition of pn, this is equivalent to

pn

( n∑

i=1

Fi

( ∞∑

j=1

Fj(A,B), C
))

= pn

( n∑

i=1

Fi

( n∑

j=1

Fj(A,B), C
))

.

We can argue analogously for the right-hand side of (4.32), so that (4.32)
gives

pn

( n∑

i=1

F
T̂ (W )
i

( n∑

j=1

F
T̂ (W )
j (A,B), C

))

= pn

( n∑

i=1

F
T̂ (W )
i

(
A,

n∑

j=1

F
T̂ (W )
j (B,C)

))

. (4.34)

Note that this is de facto an equality in T (Q〈A,B,C〉) and (4.34) holds
replacing everywhere T̂ (W ) with T (W ). Thus, the (tacit!) superscript
T̂ (W ) will be meant henceforth as a (tacit) superscript T (W ).

We now investigate (4.34) yet further, starting with its left-hand side (the
right-hand being analogous). For any n ≥ 2, we have

pn

( n∑

i=1

Fi

( n∑

j=1

Fj(A,B), C
))

= pn

(
F1

( n∑

j=1

Fj(A,B), C
))

+ pn

(
Fn

( n∑

j=1

Fj(A,B), C
))

+

+ pn

( ∑

1�i�n

Fi

( n∑

j=1

Fj(A,B), C
))

=: I+II+III.
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Thanks to (4.5a), we have (recalling that here, in the inductive step, n > 1)

I = pn

( n∑

j=1

Fj(A,B) + C
)
= pn
(
Fn(A,B) + C

)
= Fn(A,B);

II = pn
(
Fn(F1(A,B), C)

)
= pn
(
Fn(A+B,C)

)
= Fn(A+B,C).

(4.35)

[Indeed, note that – by the explicit definition of Fj in (4.1) – Fn(A,B) and
Fn(A+B,C) belong to Tn(W ), since A,B,C ∈ T1(W ).] We now claim that

III = pn

( ∑

1�i�n

Fi

( ∑

1≤j�n

Fj(A,B), C
))

(4.36)

Indeed, taking into account (4.33) and the notation therein, if i > 1, we can
express Fi(

∑n
j=1Fj(A,B), C) as a linear combination of tensors in Tα(W ),

with (here r ∈ {1, . . . , i}, (h, k) ∈ Nr and |h|+ |k| = i)

α = j11 + · · ·+ j1h1
+ k1 + · · ·+ jr1 + · · ·+ jrhr + kr

= j11 + · · ·+ j1h1
− h1 + · · ·+ jr1 + · · ·+ jrhr − hr + i,

where the indices j are in {1, . . . , n}. If one of the indices j equals n (say, for
simplicity, j11 ) then the relevant α is equal to

n+ j12 + · · ·+ j1h1︸ ︷︷ ︸
≥h1−1

−h1 + j21 + · · ·+ j2h2
− h2

︸ ︷︷ ︸
≥0

+ · · ·+ jr1 + · · ·+ jrhr − hr
︸ ︷︷ ︸

≥0

+i

≥ n+ h1 − 1− h1 + i = n+ i − 1 > n.

This then proves that the sum

∑

1�i�n

Fi

( n∑

j=1

Fj(A,B), C
)

is congruent, modulo
∏

α>n Tα(W ), to an analogous sum omitting the
contribution, from the inner sum, from j = n. This proves the claimed (4.36).
Summing up, and gathering (4.35)–(4.36), we get

pn

( n∑

i=1

Fi

( n∑

j=1

Fj(A,B), C
))

= Fn(A,B) + Fn(A+B,C) + pn

{ ∑

1�i�n

Fi

( ∑

1≤j�n

Fj(A,B), C
)}

.

(4.37)
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We get an analogous identity for the right-hand side of (4.34):

pn

( n∑

i=1

Fi

(
A,

n∑

j=1

Fj(B,C)
))

= Fn(B,C) + Fn(A,B + C) + pn

{ ∑

1�i�n

Fi

(
A,
∑

1≤j�n

Fj(B,C)
)}

.

(4.38)

Gathering together (4.37) and (4.38), (4.34) becomes

Fn(A,B) + Fn(A+B,C) + pn

{ ∑

1�i�n

Fi

( ∑

1≤j�n

Fj(A,B), C
)}

= Fn(B,C) + Fn(A,B + C) + pn

{ ∑

1�i�n

Fi

(
A,
∑

1≤j�n

Fj(B,C)
)}

.

(4.39)

We recall that this is an identity in T (Q〈A,B,C〉).
Step IV. The identity (4.39) revisited, modulo Lie polynomials. We next prove

that, as a consequence of the inductive hypothesis, the summands pn{· · · } in
(4.39) are Lie polynomials. Indeed, we can take A = T (W ) and u, v ∈ L(W )
in (4.25). Now, since Lie{u, v} ⊆ L(W ) whenever u, v ∈ L(W ), then (4.25)
also proves that

F
T (W )
j (u, v) ∈ L(W ), ∀ u, v ∈ L(W ), ∀ j = 1, . . . , n− 1. (4.40)

We now introduce the equivalence relation ∼ on T (W ) modulo the vector
subspace L(W ), i.e., p1 ∼ p2 whenever p1 − p2 is a Lie-polynomial. We are
then ready to make a crucial remark: Since the indices i and j in (4.39) are
strictly less than n, then (4.40) ensures that the sums in curly braces on both
lines of (4.39) do belong to L(W ) (since A,B,C ∈ L(W )). Consequently
(since the components in each individual Tn of an element of L(W ) also
belong to L(W )), by means of the ∼ relation, (4.39) yields

Fn(A,B) + Fn(A+B,C) ∼ Fn(B,C) + Fn(A,B + C). (4.41)

Step V. Tricky computations. Now, we show that (4.41) and (4.29) suffice to
prove that Fn(A,B) ∼ 0, which will turn out to be the main goal to complete
the induction. First, as a particular case of (4.29) when V = Q〈A,B,C〉, we
get
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Fn(αu, β u) = 0,
for every α, β ∈ Q

and every u ∈ {A,B,C}.
(4.42)

Second, we need to show rigorously how we can replace A,B,C, in (4.41),
with any of their linear combinations. This is accomplished in the following:

Lemma 4.9. Let �1, �2, �3 be Q-linear combinations of A,B,C. Suppose

N∑

h=1

FT (W )
n

(
αh,1A+ αh,2B + αh,3C, βh,1A+ βh,2B + βh,3C

) ∼ 0,

where N ∈ N and the coefficients α and β are in Q. Then it also holds

N∑

h=1

FT (W )
n

(
αh,1�1 + αh,2�2 + αh,3�3, βh,1�1 + βh,2�2 + βh,3�3

) ∼ 0.

Proof. Let Φ : T (W ) → T (W ) be the unique UAA morphism mapping
A,B,C respectively to �1, �2, �3 (see Theorem 2.85-(2a)). Since Φ is also
a (commutator-) LA morphism, we have Φ(L(W )) ⊆ L(W ). Then the
assertion of the lemma is a direct consequence of (4.3). ��
The above lemma guarantees that we can replace, coherently on both sides
of (4.41), A,B,C with any Q-linear combinations of A,B,C themselves. In
the following computations, we are going to apply this result repeatedly,
and we shall refer to it as a “change of variable” or a “substitution”.

To begin with, the substitution C := −B in (4.41) yields

Fn(A,B) ∼ −Fn(A+ B,−B) + Fn(A, 0) + Fn(B,−B)

= −Fn(A+ B,−B)

(here we have also applied (4.42) twice) i.e.,

Fn(A,B) ∼ −Fn(A+ B,−B). (4.43)

Analogously, the substitution A := −B in (4.41) yields

Fn(B,C) ∼ Fn(−B,B) + Fn(0, C)− Fn(−B,B + C)

(4.42)
= −Fn(−B,B + C),

and, via the change of variables B �→ A, C �→ B:

Fn(A,B) ∼ −Fn(−A,A+B). (4.44)
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Applying (4.44), (4.43) (with the substitutions A �→ −A, B �→ A + B) and
again (4.44) (with the substitutions A �→ B, B �→ −A−B), we get

Fn(A,B) ∼ −Fn(−A,A+B) ∼ −(− Fn(−A+A+B,−A−B)
)

= Fn(B,−A−B) ∼ −Fn(−B,B −A−B) = −Fn(−B,−A)
= −(−1)nFn(B,A).

The last equality is a consequence of the fact that Fn is a homogeneous
polynomial of degree n. This gives

Fn(A,B) ∼ (−1)n+1Fn(B,A). (4.45)

Now, we substitute C = − 1
2 B in (4.41). This gives

Fn(A,B) ∼ −Fn(A+B,− 1
2 B) + Fn(A,B − 1

2 B) + Fn(B,− 1
2 B)

(4.42)
= −Fn(A+B,− 1

2 B) + Fn(A,
1
2 B),

that is,

Fn(A,B) ∼ Fn(A,
1
2 B)− Fn(A+B,− 1

2 B). (4.46)

Analogously, by substituting A := − 1
2 B in (4.41), we derive

0 ∼ Fn(− 1
2 B,B) + Fn(− 1

2 B +B,C)− Fn(− 1
2 B,B + C)− Fn(B,C)

(4.42)
= Fn(

1
2 B,C)− Fn(− 1

2 B,B + C)− Fn(B,C);

in its turn, by the change of variables B �→ A, C �→ B, this gives

Fn(A,B) ∼ Fn(
1
2 A,B)− Fn(− 1

2 A,A+B). (4.47)

Starting from (4.47) and by applying (4.46) to both of its right-hand sum-
mands yields

Fn(A,B) ∼ Fn(
1
2 A,

1
2 B)− Fn(

1
2 A+B,− 1

2 B)+

−
(
Fn(− 1

2 A,
1
2 A+ 1

2 B)− Fn(− 1
2 A+ A+B,− 1

2 A− 1
2 B)
)

= Fn(
1
2 A,

1
2 B)− Fn(

1
2 A+B,− 1

2 B)+

− Fn(− 1
2 A,

1
2 A+ 1

2 B) + Fn(
1
2 A+B,− 1

2 A− 1
2 B).
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Now, we apply (4.44) to the third summand in the far right-hand of the
above expression and (4.43) to the second and fourth summands. We thus
get

Fn(A,B) ∼ Fn(
1
2 A,

1
2 B) + Fn(

1
2 A+ 1

2 B,
1
2 B)+

+ Fn(
1
2 A,

1
2 B)− Fn(

1
2 B,

1
2 A+ 1

2 B)

(recall that Fn is homogeneous of degree n)

= 21−nFn(A,B) + 2−nFn(A+B,B)− 2−n Fn(B,A+B)

(4.45)∼ 21−nFn(A,B) + 2−n(1 + (−1)n)Fn(A+B,B).

This gives

(1− 21−n)Fn(A,B) ∼ 2−n(1 + (−1)n)Fn(A+B,B), (4.48)

which proves that Fn(A,B) ∼ 0 whenever n �= 1 is odd. As for the case
when n is even, we argue as follows. We substitute A − B in place of A in
(4.48):

(1− 21−n)Fn(A−B,B) ∼ 2−n(1 + (−1)n)Fn(A,B),

and we use (4.43) in the above left-hand side, getting (after multiplication
by −(1− 21−n)−1)

Fn(A,−B) ∼ −(1− 21−n)−1 2−n(1 + (−1)n)Fn(A,B). (4.49)

We substitute −B instead of B in (4.49):

Fn(A,B) ∼ −(1− 21−n)−1 2−n(1 + (−1)n)Fn(A,−B),

and we finally apply (4.49) once again, obtaining

Fn(A,B) ∼ (1 − 21−n)−2 2−2n(1 + (−1)n)2 Fn(A,B). (4.50)

When n is even and n �= 2 (say, n = 2 k, k ≥ 2), the scalar coefficient in the
right-hand side of (4.50) equals

4

(4k − 2)2
,

which is different from 1 since k �= 1. Consequently, (4.50) can hold only if

Fn(A,B) ∼ 0. (4.51)
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Step VI. From three indeterminates to two. We claim that (4.51) ends the
proof. Indeed, (4.51) rewrites as

FT (Q〈A,B,C〉)
n (A,B) ∈ L(Q〈A,B,C〉). (4.52)

Let ϕ : T (Q〈A,B,C〉)→ T (Q〈x, y〉) be the UAA morphism such that

ϕ(A) = x, ϕ(B) = y, ϕ(C) = 0.

The existence of ϕ follows from Theorem 2.85-(2a), page 107. Since a UAA
morphism is also a (commutator-) LA morphism, it is immediately seen that

ϕ(L(Q〈A,B,C〉)) = L(Q〈x, y〉),

so that, by applying ϕ to (4.52) and by exploiting (4.3), we finally obtain

FT (Q〈x,y〉)
n (x, y) ∈ L(Q〈x, y〉).

This proves (4.24) by induction, and the proof is complete. ��

4.3 Djokovic’s Proof

The aim of this section is to present the arguments by D. Ž. Djoković in
[48] (provided with more details) for another “short” proof of the CBHD
theorem for formal power series in two non-commuting indeterminates.
As we shall see, the arguments are very different from those presented in
Sect. 4.2 and the present proof can be considered (if only from the point
of view of the length) somewhat “longer” than Eichler’s. Nonetheless,
Djoković’s proof is undoubtedly more transparent and probably more
natural, lacking any tricky steps such as those in Eichler’s. More important,
many of the ideas in [48] go back to some of the original computations
made on the CBHD Theorem, by Baker and Hausdorff themselves, selecting
only the very core calculations. Thus we consider the following proof as a
significant milestone.

First, we need to make precise the algebraic structures we shall be
dealing with. (This part is missing in [48].) We shall also provide suitable
prerequisite lemmas. This is accomplished in the following section.

4.3.1 Polynomials and Series in t over a UA Algebra

Let (A, �) be a UA algebra over the field K. We now define A[t], namely the
A-module of the polynomials in one indeterminate t with coefficients in A. The
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rigorous definition is the following one. We set

A[t] :=
⊕

k∈N∪{0}
Ak, where Ak := A for every k ≥ 0. (4.53)

Obviously, A[t] is a vector space which becomes an associative algebra, if
equipped with the usual Cauchy product:

(aj)j≥0 ∗ (bj)j≥0 :=
( j∑

i=0

ai � bj−i

)

j≥0
. (4.54)

Also, A[t] is a unital algebra whose unit is (1A, 0, 0, . . .). Furthermore, A[t] is
a graded algebra, since the direct sum decomposition (4.53) also furnishes a
grading, since if we set (for every k ≥ 0)

Ak[t] := {0} ⊕ · · · ⊕ {0}
︸ ︷︷ ︸

k times

⊕A⊕ {0} ⊕ {0} ⊕ · · · ⊂ A[t], (4.55)

then we have

A[t] =
⊕

k∈N∪{0}
Ak[t], and Ai[t] ∗Aj [t] ⊆ Ai+j [t] ∀ i, j ≥ 0. (4.56)

We now turn to writing the elements of A[t] as polynomials in one indeter-
minate, say t, with coefficients in A: to this end we set

t := (0, 1A, 0, . . .),

tn := t∗n =
(
0, . . . , 0
︸ ︷︷ ︸
n times

, 1A, 0, . . .)

(the last equality can be directly proved by induction). We agree to identify
any element a ∈ A with (a, 0, 0, . . .) ∈ A[t], thus embedding A in A[t]. Note
that, via this identification, for every a, b ∈ A, we have

a ∗ b ≡ (a, 0, 0, . . .) ∗ (b, 0, 0, . . .) = (a � b, 0, 0, . . .) ≡ a � b, (4.57)

i.e., the inclusion A ↪→ A[t] is indeed a UAA isomorphism of A onto
its “copy” in A[t]. With this notation at hand, we can rewrite the generic
element (aj)j≥0 of A[t] as

(aj)j≥0 = a0 + a1 ∗ t1 + a2 ∗ t2 + · · · =
∑

j≥0

aj ∗ tj
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(the sum being finite), since one can directly prove by induction that

an ∗ tn = (a, 0, . . .) ∗ ( 0, . . . , 0
︸ ︷︷ ︸
n times

, 1A, 0, . . .) =
(
0, . . . , 0
︸ ︷︷ ︸
n times

, an, 0, . . .).

To lighten the notation, we shall mainly drop the ∗ sign in front of the tj and
use the equivalent notation

(aj)j≥0 = a0 + a1 t
1 + a2 t

2 + · · · =
∑

j≥0

aj t
j (4.58)

for the generic element of A[t]. The representation of an element of A[t] as in the
right-hand side of (4.58) is obviously unique.

As we know very well from Sect. 2.3.3 (page 101), we can consider the
topological algebra Â[t] of the formal power series related to the graded
algebra A[t]. We shall set

A[[t]] := Â[t]
(
=
∏

k≥0 Ak[t]
)
,

and following the above convention (4.58), the elements of A[[t]] will be
denoted exactly as in (4.58), this time the sum possibly being infinite. As usual,
for N ∈ N ∪ {0}, we set

ÛN :=
∏

k≥N

Ak[t] =

{∑

j≥N

aj t
j ∈ A[[t]]

∣
∣
∣ aj ∈ A ∀ j ≥ N

}

. (4.59)

We recall that, from the results of Sect. 2.3, we know the following facts:

1. A[[t]] is an algebra, when equipped with a Cauchy operation as in (4.54)
(which we still denote by ∗); this operation is written as

(∑

j≥0

aj t
j
)
∗
(∑

j≥0

bj t
j
)
=
∑

j≥0

( j∑

i=0

ai � bj−i

)
tj . (4.60)

2. A[[t]] is a topological algebra which is also a metric space with distance

d
(∑

j≥0

aj t
j ,
∑

j≥0

bj t
j
)
:=

{
0, if aj = bj for every j ≥ 0,

exp
(
−min{j ≥ 0 : aj �= bj}

)
, otherwise.

3. A[t] is dense inA[[t]] and (A[[t]], d) is an isometric completion ofA[t] (with
the induced metric).

4. The commutator in A[[t]] has a particularly well-behaved form:



202 4 Some “Short” Proofs of the CBHD Theorem

[∑

j≥0

aj t
j ,
∑

j≥0

bj t
j

]

∗
=
∑

j≥0

( j∑

i=0

[ai, bj−i]�

)
tj , (4.61)

as follows easily from (4.60).

Following the general investigation of Exponentials/Logarithms on a
graded algebra as in Sect. 3.1.1 (page 119), we know that the following
maps are well posed and are inverse to each other (see also Û1 in (4.59)):

exp : Û1 −→ 1 + Û1, exp(p) :=

∞∑

k=0

1

k!
p∗ k,

log : 1 + Û1 −→ Û1, log(1 + p) =

∞∑

k=1

(−1)k+1

k
p∗ k.

Beware: Here, we decided to denote by exp and log the Exp and Log
maps related to the completion of the graded algebra A[t]. With this choice
(hoping not to ...drive the Reader crazy with the proliferation of the exp/log
notations), we intend to separate the more specific context of the series in
one indeterminate over A to the more general context of the series related to
the tensor algebra of a vector space V . Soon we shall state and prove a CBHD
Theorem (with its own exp and log maps) in the former more restrictive
context of A[[t]] (with A = T (Q〈x, y〉)) and we will show how to derive
from it the general CBHD Theorem (with its Exp and Log maps) for T̂ (V ):
then we have preferred to use different notations in order to distinguish the
two cases.

Remark 4.10. (1) The following equation holds:

exp(a t) =
∞∑

k=0

a� k

k!
tk for every a ∈ A. (4.62)

This follows immediately from the definition of exp and by the follow-
ing obvious computation

(a t)∗ k (4.58)
=
(
0, a, 0, . . .

)∗ k
=
(
0, . . . , 0
︸ ︷︷ ︸
k times

, a� k, 0, . . .
)

(4.58)
= a� k tk. (4.63)

(2) For every p ∈ Û1, it holds that

(exp p) ∗ (exp(−p)) = 1. (4.64)
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This follows from the trivial “Abelian” version of the CBHD Theorem
as in Proposition 3.5, page 121 (indeed, we can apply (3.6) since p and
−p commute w.r.t. ∗).

(3). Any power tk (with k ∈ N ∪ {0}) belongs to the center of A[[t]]. Indeed,
for every p = (aj)j ∈ A[[t]] and every k ≥ 0, we have

tk ∗ p = (0, . . . , 0
︸ ︷︷ ︸
k times

, 1A, 0, . . .) ∗ (a0, a1, . . .) = (0, . . . , 0
︸ ︷︷ ︸
k times

, a0, a1, . . .)

= (a0, a1, . . .) ∗ (0, . . . , 0︸ ︷︷ ︸
k times

, 1A, 0, . . .) = p ∗ tk.

We now introduce a crucial definition for Djoković’s proof:

Definition 4.11 (∂t in A[[t]]). Following the above notation, we introduce
the map

∂t : A[[t]] −→ A[[t]]
∑

j≥0

aj t
j �→
∑

j≥0

(j + 1) aj+1 t
j . (4.65)

We recognize the usual derivative operator

∂t
(∑

j≥0 aj t
j
)
=
∑

j≥1 j aj t
j−1.

In the proof presented in Sect. 4.3.3, we shall make use of the following
results concerning the operator ∂t.

Proposition 4.12. Following Definition 4.11, we have the following facts:

(i) ∂t is a derivation of the algebra (A[[t]], ∗).
(ii) For every p ∈ A[[t]] and every m ∈ N, we have

∂t(p
∗m) =

m−1∑

k=0

p∗ k ∗ (∂tp) ∗ p∗m−k−1. (4.66)

(iii) ∂t is a continuous map.
(iv) For every a ∈ A, we have

∂t
(
exp(a t)

)
= a ∗ exp(a t) = exp(a t) ∗ a. (4.67)

Proof. See page 445 for the proof. ��
Remark 4.13. Obviously, A[[t]] is a noncommutative algebra (if A is not);
hence the so-called “evaluation maps” (which we introduce below) are not
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necessarily algebra morphisms. Such is the case, however, when we evaluate
at an element in the center of A.

Indeed, let (A, �) be a UA algebra and let a belong to the center of A (i.e.,
a � b = b � a for every b ∈ A). We consider the map

eva : A[t] −→ A
∑

j≥0

bj t
j �→
∑

j≥0

bj � a
� j .

This map is obviously well posed since any element of A[t] can be written
in a unique way in the form

∑
j≥0 bj ∗ tj , where the sum is finite and any bj

belongs to A. We claim that:

If a belongs to the center of A, then eva is a UAA morphism.

Indeed, first we recognize that eva is linear (by the bilinearity of �). Second,

eva(1A[t]) = eva(1A) = eva(1A ∗ t0) = 1A � a0 = 1A.

Finally, for every p, q ∈ A[t], represented respectively by p =
∑

j≥0 aj t
j ,

q =
∑

j≥0 bj t
j , we have (here we agree that the coefficients aj and bj are

defined for every j ∈ N, possibly by setting them to be 0, for sufficiently
large j)

eva(p ∗ q) =
∑

j≥0

(∑j
i=0 ai � bj−i

)
� a� j

(since a belongs to the center of A then any power of a does, too)

=
∑

j≥0

j∑

i=0

ai � a
� i � bj−i � a

� j−i.

On the other hand,

eva(p) � eva(q) =
(∑

h≥0 ah � a
� h
)
�
(∑

k≥0 bk � a
� k
)

(by the bilinearity and the associativity of �)

=
∑

h,k≥0 ah � a
� h � bk � a

� k

(by the commutativity and the associativity of the sum of A)

=
∑

r≥0

∑
h+k=r ah � a

� h � bk � a
� k

(by renaming r := j, h := i so that k = j − i)
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=
∑

j≥0

∑j
i=0(ai � a

� i) � (bj−i � a
� j−i).

This ends the proof that eva is a UAA morphism. ��

4.3.2 Background of Djoković’s Proof

We begin by proving a preliminary result which will play a paramount
rôle in the computations concerning the CBHD Formula. It can be stated
in many different contexts and it roughly states that conjugation composed
with exponentiation is a Lie series of ad operators. The most general of such
contexts which is at our disposal in this Book (amply sufficing for our
purposes) is the following one. Let A be a graded algebra and let (Â, ∗) be
the relevant algebra of formal power series (see Sect. 2.3.3, page 101). Let also
Exp : Â+ → 1A + Â+ be the relevant Exponential function (see Sect. 3.1.1,
page 119).

Theorem 4.14. With the above notation, for every u ∈ Â+ and z ∈ Â, we have

Exp(u) ∗ z ∗ Exp(−u) =
∞∑

h=0

1

h!
[u · · · [u
︸ ︷︷ ︸
h times

, z]∗ · · · ]∗.

In compact form, by using the usual adjoint map

adu : Â→ Â, (adu)(v) := [u, v]∗

(related to the commutator-algebra of Â), this rewrites as:

Exp(u)∗z∗Exp(−u) =
∞∑

h=0

1

h!
(adu)◦h(z), for every u ∈ Â+, z ∈ Â. (4.68)

Here, (adu)◦h denotes the h-fold iteration of the endomorphism adu.

Note that (4.68) can be suggestively rewritten as follows, anticipating a
notation (to come very soon) on formal series of endomorphisms:

Exp(u) ∗ z ∗ Exp(−u) = exp(adu)(z).

Proof. For any a, b ∈ Â, we set

La : Â −→ Â Rb : Â −→ Â

La(x) := a ∗ x Rb(x) := x ∗ b.
(4.69)
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In other words, La is the left multiplication on (A, ∗) related to a and Rb is
the right multiplication on (A, ∗) related to b. We obviously have:

Since ∗ is associative, La and Rb commute, for every a, b ∈ A. (4.70)

Let now u ∈ Â+ and z ∈ Â be fixed. The following computation applies
(each equality is explained below):

Exp(u) ∗ z ∗ Exp(−u) =
(∑

i≥0

u∗ i

i!

)
∗ z ∗
(∑

j≥0

(−u)∗ j

j!

)

(1)
=
∑

i,j≥0

1

i! j!
u∗ i ∗ z ∗ (−u)∗ j (2)

=

∞∑

h=0

∑

i+j=h

1

i! j!
u∗ i ∗ z ∗ (−u)∗ j

(3)
=

∞∑

h=0

h∑

j=0

u∗h−j ∗ z ∗ (−u)∗ j

(h− j)! j!
=

∞∑

h=0

1

h!

h∑

j=0

(
h

j

)

u∗h−j ∗ z ∗ (−u)∗ j

=

∞∑

h=0

1

h!

( h∑

j=0

(
h

j

)

(Lu)
◦ h−j ◦ (R−u)

◦ j

)

(z)

(4)
=

∞∑

h=0

1

h!

(
Lu +R−u

)◦h

(z)
(5)
=

∞∑

h=0

1

h!

(
Lu −Ru

)◦h

(z)

(6)
=

∞∑

h=0

1

h!
(adu)◦h(z).

Here we used the following results:

(1): (Â, ∗) is a topological algebra.
(2): The sum has been rearranged, by an argument similar to that applied

within the proof of Proposition 3.5, page 121.
(3): By the commutativity of the sum.
(4): An application of Newton’s binomial formula jointly with (4.70).
(5): By the bilinearity of �, we obviously have R−u ≡ −Ru.
(6): Lu −Ru = adu, indeed

(Lu −Ru)(v) = u ∗ v − v ∗ u = [u, v]∗ = (adu)(v).

This completes the proof of (4.68). ��
We denote by

A := T (Q〈x, y〉)
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the tensor algebra related to the free Q-vector space over the set {x, y},
x �= y. The elements of A will also be referred to as polynomials (over Q)
in two non-commuting indeterminates x, y. The elements of L(Q〈x, y〉) ⊂ A
will be referred to as Lie polynomials in A (the elements of Lj(Q〈x, y〉),
j ≥ 0, being called homogeneous of degree j). The operation on A is
denoted by the · symbol or simply by juxtaposition, whereas the operation
on Â = T̂ (Q〈x, y〉) is denoted by the ·̂ symbol.

We then consider, following Sect. 4.3.1, the algebras

A[t] and A[[t]]

of polynomials (respectively, series) in the indeterminate t with coefficients
in A. Both operations on these algebras will be denoted by ∗. The other
definitions of ÛN , exp, log, ∂t from Sect. 4.3.1 will apply as well.

We consider the elements of A[t] defined by

X := x t, Y := y t. (4.71)

Since both X and Y belong to Û1,

Z(t) := log
(
exp(X) ∗ exp(Y )

)
(4.72)

is well posed. Obviously, this is an element of A[[t]] and the notation “Z(t)”
does not refer to a function of t. We have, in fact, Z(t) ∈ Û1.

By the very definitions of exp and log, we get

Z(t) =

∞∑

n=1

(−1)n+1

n

( ∑

(h,k) �=(0,0)

X∗h ∗ Y ∗ k

h! k!

)n

(3.20)
=

∞∑

n=1

cn
∑

(h,k)∈Nn

X∗h1 ∗ Y ∗k1 ∗ · · · ∗X∗hn ∗ Y ∗kn

h1! · · ·hn! k1! · · · kn!

(�)
=

∞∑

n=1

cn
∑

(h,k)∈Nn

x·h1 · y·k1 · · ·x·hn · y·kn
h1! · · ·hn! k1! · · · kn! t|h|+|k|

(reorder)
=

∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

x·h1 · y·k1 · · ·x·hn · y·kn
h1! · · ·hn! k1! · · · kn!

)

tj

In the starred equality we used the definitions of X,Y in (4.71), the fact
that (see (4.63)) X∗h = x·hth and Y ∗k = y·ktk and, finally, the fact that (see
Remark 4.10-(3)) the powers of t are in the center of A[[t]]. As a consequence
(dropping the “·” notation for simplicity), if we set
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Zj(x, y) :=

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn! , (4.73)

we have provided the equality

Z(t) =

∞∑

j=1

Zj(x, y) t
j , (4.74)

which is also the decomposition of Z(t) in A[[t]] =
⊕

j≥0 Aj [t] (see also
(4.55)) since Zj(x, y) ∈ A. With the notation of Definition 4.1, we recognize
that

Zj(x, y) = FA
j (x, y), ∀ j ≥ 1. (4.75)

As a consequence of the above computations, we have proved that

exp
( ∞∑

j=1

Zj(x, y) t
j
)
= exp(x t) ∗ exp(y t) in A[[t]]. (4.76)

Our aim is to prove the following result, whose complete proof will be
provided in the next section, after we have completed the due preliminary
work:

Theorem 4.15 (Djoković). With the above notation, we have

Zj(x, y) ∈ L(Q〈x, y〉), for every j ≥ 1. (4.77)

Before passing to Djoković’s argument, we would like to show that Theorem
4.15 furnishes the CBHD Theorem for formal power series in two indeter-
minates as stated in Theorem 4.3.

Indeed, once we have proved (4.77), the identity in (4.75) will yield

F
T (Q〈x,y〉)
j (x, y) ∈ L(Q〈x, y〉), ∀ j ≥ 1.

Since Zj(x, y) clearly belongs to Tj(Q〈x, y〉) (de visu, from (4.73)), this proves
(4.6), which – as we already discussed in Remark 4.4 – is the key statement
in Theorem 4.3.

Remark 4.16. On the other hand, it is possible to derive (4.9) by an “evalua-
tion argument” (roughly speaking, by the “substitution t = 1”) from (4.76);
an argument which has some interest in its own right. This is given in the
appendix, see page 447.

The last prerequisite that we need before proceeding with the proof of
Theorem 4.15 is the following one.
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Definition 4.17. Let E be an endomorphism of A[[t]] with the following
property:

E(ÛN ) ⊆ ÛN+1, for all N ≥ 0. (4.78)

The set of all the endomorphisms of A[[t]] satisfying (4.78) will be denoted
by H. Let f =

∑
k≥0 ak z

k be an element of K[[z]], i.e., a formal power series
in one indeterminate z over the field K.

Then, the formal expression

fE :=
∑

k≥0 ak E
k (4.79)

defines unambiguously an endomorphism of A[[t]], in the following precise
sense:

fE : A[[t]] −→ A[[t]]

p �→ fE(p) :=

∞∑

k=0

ak E
◦ k(p). (4.80)

Here, E◦ k denotes the k-fold composition of the endomorphism E with
itself.

The well posedness of fE follows from the fact that condition (4.78)
ensures that E◦ k(p) ∈ Ûk, for every k ≥ 0 and every p ∈ A[[t]]: thus,
limk→∞ ak E

◦ k(p) = 0 in A[[t]] so that the series in (4.80) converges (recall
e.g., Remark 2.76-3). Moreover, the linearity of fE follows from the linearity
of E. In the sequel we shall write Ek instead of E◦ k.

Obviously, for fixed E ∈ H, the map sending f to fE is linear, from K[[z]]
to the vector space of the endomorphisms of A[[t]], i.e., we have

(α f + β g)E ≡ αfE + β gE , (4.81)

for every α, β ∈ K, every f, g ∈ K[[z]] and every E ∈ H. Moreover, if 1
denotes the formal power series 1 + 0 z + 0 z2 + · · · , then

1E is the identity map of A[[t]], for every E ∈ H. (4.82)

In the next section, we shall make a crucial use of the following result.

Lemma 4.18. Let the notation in Definition (4.17) hold. For every f, g ∈ K[[z]]
and every E ∈ H, we have

fE ◦ gE ≡ (f · g)E . (4.83)

Here, the ◦ on the above left-hand side is the composition of endomorphisms ofA[[t]],
whereas the · on the right-hand side is the usual Cauchy product of formal power
series in one indeterminate over K.
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In particular, if f =
∑

k≥0 ak z
k ∈ K[[z]] is such that a0 �= 0 and if g ∈ K[[z]]

is the reciprocal of f then, for every E ∈ H, the endomorphisms fE and gE are
inverse to each other.

Proof. The last part of the assertion is obviously a consequence of the former.
Indeed, if f =

∑
k≥0 ak z

k ∈ K[[z]] is such that a0 �= 0, then (see Chap. 9)
there exists a (unique) formal power series g such that f · g = 1K = g · f ;
hence, by (4.83) we have (for every E ∈ H)

fE ◦ gE ≡ (f · g)E ≡ (1K)E ≡ IdA[[t]] ≡ (1K)E ≡ (g · f)E ≡ gE ◦ fE .

We then turn to prove the first part of the assertion. Let f, g ∈ K[[z]] and
E ∈ H be fixed. If f =

∑
k≥0 ak z

k, g =
∑

k≥0 bk z
k and p ∈ A[[t]], we have

(fE ◦ gE)(p) (1)
=

∞∑

k=0

ak E
k
( ∞∑

h=0

bhE
h(p)
)

(2)
=

∞∑

k,h=0

ak bhE
k+h(p)

(3)
=

∞∑

j=0

( ∑

k+h=j

ak bh

)
Ej(p)

(4)
=

∞∑

j=0

(f · g)jEj(p)
(5)
= (f · g)E(p).

Here we have used the following facts:

1. We applied definition (4.80) twice.
2. Ek is (uniformly) continuous since one has Ek(ÛN ) ⊆ ÛN+k for every
N, k ≥ 0, in view of E ∈ H.

3. A reordering argument.
4. The definition of Cauchy product in K[[z]].
5. Again definition (4.80).

This ends the proof. ��

4.3.3 Djoković’s Argument

We are ready to give all the details of Djoković’s proof in [48]. We follow all
the notations introduced in Sect. 4.3.2.

As in (4.71) and (4.72), we consider

X := x t, Y := y t, Z(t) := log
(
exp(X) ∗ exp(Y )

)
. (4.84)

By the definition of Z(t) it holds that

exp(Z(t)) = exp(x t) ∗ exp(y t) in A[[t]]. (4.85)
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For the sake of brevity, we shall also write Z instead of Z(t). We apply the
derivation ∂t introduced in Definition 4.11 to both sides of (4.85), getting

∂t(exp(Z))
(4.85)
= ∂t
(
exp(x t) ∗ exp(y t))

= ∂t(exp(x t)) ∗ exp(y t) + exp(x t) ∗ ∂t(exp(y t))
(4.67)
= x ∗ exp(x t) ∗ exp(y t) + exp(x t) ∗ exp(y t) ∗ y

(4.85)
= x ∗ exp(Z) + exp(Z) ∗ y.

This yields
∂t
(
exp(Z)

)
= x ∗ exp(Z) + exp(Z) ∗ y.

Multiplying on the right by exp(−Z) (and using (4.64)) we infer

∂t
(
exp(Z)

) ∗ exp(−Z) = x+ exp(Z) ∗ y ∗ exp(−Z).

An application of Theorem 4.14 to the second summand on the above right-
hand side (recalling also that Z has no zero-degree term in t) thus produces
the identity:

∂t
(
exp(Z)

) ∗ exp(−Z) = x+

∞∑

h=0

1

h!
(adZ)◦h(y). (4.86)

On the other hand, a direct computation on the left-hand side of (4.86) yields
(recall that ∂t is continuous by Proposition 4.12-(iii))

∂t
(
exp(Z)

) ∗ exp(−Z) = ∂t

( ∞∑

m=0

1

m!
Zm
)
∗
( ∞∑

k=0

1

k!
(−Z)k

)

=
( ∞∑

m=1

1

m!
∂t(Z

m)
)
∗
( ∞∑

k=0

(−1)k
k!

Zk
)

(reordering)

=

∞∑

n=1

1

n!

n∑

m=1

(−1)n−m

(
n

m

)

∂t(Z
m) ∗ Zn−m

(4.66)
=

∞∑

n=1

1

n!

n∑

m=1

m−1∑

k=0

(−1)n−m

(
n

m

)

Zk ∗ (∂t Z) ∗ Zm−k−1 ∗ Zn−m

(
interchanging the inner sums:

∑n
m=1

∑m−1
k=0 =

∑n−1
k=0

∑n
m=k+1

)

=

∞∑

n=1

1

n!

n−1∑

k=0

(
n∑

m=k+1

(−1)n−m

(
n

m

))

Zk ∗ (∂t Z) ∗ Zn−k−1
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(

we set r := n−m and we use
(

n

n− r

)

=

(
n

r

))

=

∞∑

n=1

1

n!

n−1∑

k=0

(
n−k−1∑

r=0

(−1)r
(
n

r

))

Zk ∗ (∂t Z) ∗ Zn−k−1

(

see Lemma 4.19 below and use
(

n− 1

n− k − 1

)

=

(
n− 1

k

))

=

∞∑

n=1

1

n!

n−1∑

k=0

(−1)n−k−1

(
n− 1

k

)

Zk ∗ (∂t Z) ∗ Zn−k−1

=

∞∑

n=1

1

n!

n−1∑

k=0

(
n− 1

k

)

Zk ∗ (∂t Z) ∗ (−Z)n−k−1

(4.69)
=

∞∑

n=1

1

n!

(
n−1∑

k=0

(
n− 1

k

)

(LZ)
◦ k ◦ (R−Z)

◦n−k−1

)

︸ ︷︷ ︸

= (LZ +R−Z)
◦n−1 = (adZ)◦n−1

(∂t Z)

=

∞∑

n=1

1

n!
(adZ)◦n−1(∂t Z).

Note that the above computation holds for every Z ∈ A[[t]]. So we have
provided the remarkable formula for the derivative of an exponential:

∂t(exp(a)) = exp(a) ∗
∞∑

n=1

1

n!
(ada)◦n−1(∂t a), ∀ a ∈ A[[t]]+. (4.87)

Summing up, going back to (4.86) (whose left-hand side we have just made
explicit) we have proved the identity

∞∑

n=1

1

n!
(adZ)◦n−1(∂t Z) = x+

∞∑

h=0

1

h!
(adZ)◦h(y), (4.88)

having also used the following lemma, which we turn to prove:

Lemma 4.19. For every n ∈ N it holds that

m∑

r=0

(−1)r
(
n

r

)

= (−1)m
(
n− 1

m

)

, 0 ≤ m ≤ n− 1. (4.89)

Proof. The proof (though boiling down to a calculation on binomials) is more
delicate than it seems. We argue fixing an arbitrary n ∈ N and proving (4.89)
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by induction on m. For m = 0, (4.89) is trivial. We next fix k ≥ 0 such that
k + 1 ≤ n− 1 and we show that, supposing the truth of

∑k
r=0(−1)r

(
n
r

)
= (−1)k(n−1

k

)
, (4.90)

we obtain the validity of

∑k+1
r=0(−1)r

(
n
r

)
= (−1)k+1

(
n−1
k+1

)
. (4.91)

Indeed, we have

∑k+1
r=0(−1)r

(
n
r

) (4.90)
= (−1)k(n−1

k

)
+ (−1)k+1

(
n

k+1

)

= (−1)k
(

(n−1)!
k! (n−1−k)! − n!

(k+1)! (n−k−1)!

)

= (−1)k (n−1)!(k+1−n)
(k+1)! (n−k−1)! = (−1)k+1 (n−1)!

(k+1)! (n−k−2)! = (−1)k+1
(
n−1
k+1

)

This proves (4.91). ��
The rest of the proof consists in deriving from (4.88) a sort of “differential
equation” on Z(t), which – solved by the method of power series – produces
inductive relations on the coefficients of Z(t) disclosing the fact that these
are Lie elements.

To this aim, let us first fix some notation: we set

h, f ∈ Q[[z]], h :=

∞∑

j=0

zj

j!
, f :=

∞∑

j=0

zj

(j + 1)!
. (4.92)

[Note that h, f furnish, respectively, the Maclaurin series of ez and of
ϕ1(z) := (ez − 1)/z, which are both entire functions on C.]

Moreover, since the zero-degree term of f is non-vanishing, there exists a
reciprocal series of f , say g :=

∑∞
j=0 bj z

j , characterized by the identity

1 =
(∑∞

j=0 bj z
j
) · (∑∞

j=0
zj

(j+1)!

)
in Q[[z]]. (4.93)

Obviously, all the numbers bj in (4.93) are in Q. [Note that g furnishes the
Maclaurin series of ψ1(z) := z/(ez − 1), which – when z ∈ R – is a real
analytic function whose Maclaurin series converges only on the real interval
(−2π, 2π); indeed – when z ∈ C – the poles of ψ1(z) nearest to the origin are
±2π i. The function ψ1(−z) is sometimes referred to as Todd function. The
coefficients bj in (4.93) can be expressed by means of the Bernoulli numbers,
see Sect. 4.5.]
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We now make a crucial remark:

ad (Z) belongs to the set of endomorphisms H introduced in Definition 4.17.

To this aim, we have to prove that (4.78) holds forE = adZ : this is obviously
true since Z ∈ Û1, so that

(adZ)(u) = Z ∗ u− u ∗ Z ∈ ÛN+1,

for every u ∈ ÛN and every N ≥ 0.
As a consequence, we are entitled to consider the endomorphisms of

A[[t]] defined by hadZ , fadZ and gadZ , according to the cited Definition
4.17. With these endomorphisms at hand, we recognize that (4.88) can be
compactly rewritten as:

fadZ(∂tZ) = x+ hadZ(y). (4.94)

We now aim to “release” ∂tZ in the above equation: this is possible since
fadZ is an invertible endomorphism. Indeed, as g · f = 1, (4.83) in Lemma
4.18 ensures that fadZ and gadZ are inverse maps, so that (by applying gadZ

to both sides of (4.94)) we get

∂tZ(t) = gadZ

(
x+ hadZ(y)

)
. (4.95)

We finally show that this identity (obtained by Djoković in [48, eq. (8) page
210]) can be used to obtain some inductive relations on the coefficients of

Z =
∑∞

j=1 Zj(x, y) t
j ,

ensuring that the coefficients Zj are Lie elements (once we know that the
first of them is a Lie element, which is true de visu, for Z1(x, y) = x+ y).

To this aim, we shall apply a very “qualitative” argument. Instead, in
the next Sect. 4.5, by exploiting some ideas by Varadarajan [171, §2.15], we
shall ameliorate identity (4.95) (rewriting it in an even more compact and
more “symmetric” form) thus obtaining a quantitative recursion formula on
the coefficients Zj . This recursion formula will undoubtedly reveal the Lie-
polynomial nature of any Zj(x, y).

Let us rerun Djoković’s original argument. By the definition (4.65) of ∂t,
the left-hand side of (4.95) equals

∂tZ(t)
(4.74)
=

∞∑

r=0

(r + 1)Zr+1(x, y) t
r . (4.96)

On the other hand, the right-hand side of (4.95) can be expanded as follows.
We write Z =

∑∞
m=1 Zm tm and we notice that, for every p ∈ A[[t]], one has
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adZ(p) =
[∑∞

m=1 Zm tm, p
]
=
∑∞

m=1[Zm tm, p]

=

∞∑

m=1

(Zm tm ∗ p− p ∗ Zm tm) =

∞∑

m=1

(Zm ∗ p− p ∗ Zm) tm

=

∞∑

m=1

(adZm)(p) tm (this last adjoint being performed in A).

Here, we applied the fact that the bracket operation is continuous on both
of its arguments (recall that A[[t]] is a topological algebra!) and the fact that
any tm is in the center of A[[t]] (see Remark 4.10-(3)). We then have

gad z

{
x+ hadZ(y)

}
=
(

Id +

∞∑

j=1

bj (adZ)
j
){

x+
(

Id +

∞∑

n=1

(adZ)n

n!

)
(y)
}

= x+ y +

∞∑

r=1

( ∞∑

n=1

1

n!

∑

m1+···+mn=r

adZm1 ◦ · · · ◦ adZmn(y)

)

tr

+

∞∑

k=1

{ ∞∑

j=1

bj
∑

m1+···+mj=k

adZm1 ◦ · · · ◦ adZmj

(

x+ y

+

∞∑

l=1

∞∑

n=1

1

n!

∑

h1+···+hn=l

adZh1 ◦ · · · ◦ adZhn(y) t
l

)}

tk

= x+ y +

∞∑

r=1

( ∞∑

n=1

1

n!

∑

m1+···+mn=r

adZm1 ◦ · · · ◦ adZmn(y)

)

tr

+
∞∑

r=1

( ∞∑

j=1

bj
∑

m1+···+mj=r

adZm1 ◦ · · · ◦ adZmj (x+ y)

)

tr

+
∞∑

r=1

∑

k,l≥1:
k+l=r

∞∑

j,n=1

bj
n!

∑

m1+···+mj=k
h1+···+hn=l

× adZm1 ◦ · · · ◦ adZmj ◦ adZh1 ◦ · · · ◦ adZhn(y) t
r.

It has to be noticed that the coefficient of tr in this last expression is a Q-
linear combination of terms of the following type:

adZα1 ◦ · · · ◦ ad Zαn(x) and adZα1 ◦ · · · ◦ adZαn(y)

with α1 + · · ·+ αn = r.
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In particular, by equating the coefficients of tr from both sides of (4.95)
(also taking into account (4.96)), one has:

– First of all, Z1(x, y) = x+ y;
– Then Z2(x, y) is a Q-linear combination of commutators of height 2 of
Z1(x, y) with x and with y;

– Moreover Z3(x, y) is a Q-linear combination of commutators of height 3
of Z2(x, y) (or of Z1(x, y)) and x or y, and so on...

An inductive argument now proves that Zr(x, y) is a Q-linear combination
of commutators of height r of x and y. In particular, Zr(x, y) ∈ Lie{x, y} for
every r ∈ N. This actually demonstrates (4.77) and the proof of Theorem
4.15 is complete. ��

4.4 The “Spine” of the Proof

A deeper insight into Djoković’s proof shows that the crucial steps are
played by Theorem 4.14, providing the formula

Exp(u) ∗ z ∗ Exp(−u) =
∞∑

n=0

1

n!
(adu)n(z), u ∈ Â+, z ∈ Â, (4.97)

and by the computations which led to the formula (4.87) for the derivative
of an exponential. In compact notation, the above formula rewrites as

eu ∗ z ∗ e−u = eadu(z), u ∈ Â+, z ∈ Â.

Formula (4.97) will play a central rôle also in the proofs by Varadarajan, by
Reutenauer and by Cartier; hence this must be considered by full right the
keystone in the proof of the Campbell-Baker-Hausdorff Theorem. The aim
of this section is to furnish a general formula for the action of a derivation
on an exponential in the more general setting of graded algebras.

To begin with, we start with two lemmas having a (computational)
interest in their own right.

Lemma 4.20. Let (A, ∗) be a UA algebra. Then

(ad b)n(a) =
n∑

i=0

(−1)i
(
n

i

)

bn−i ∗ a ∗ bi, (4.98)

for every n ∈ N ∪ {0} and every a, b ∈ A.
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Proof. The proof can be easily performed by induction on n, or by the
following direct argument. If Lc, Rc denote left and right multiplication on
A by c, we have (recall that right and left multiplications commute thanks
to associativity!)

∑n
i=0(−1)i

(
n
i

)
bn−i ∗ a ∗ bi =∑n

i=0

(
n
i

)
bn−i ∗ a ∗ (−b)i

=
∑n

i=0

(
n
i

)
(Lb)

◦n−i ◦ (R−b)
i(a) = (Lb +R−b)

◦n(a) = (ad b)◦n(a).

This ends the proof. ��
Lemma 4.21. Let (A, ∗) be a UA algebra and let D be a derivation of A. Then

D(un) =

n−1∑

k=0

(
n

k+1

)
un−1−k ∗ (−adu)k(Du) (4.99)

=

n−1∑

k=0

(
n

k+1

)
(adu)k(Du) ∗ un−1−k, (4.100)

for every n ∈ N and every u ∈ A.

Proof. By induction on n. For n = 1 the thesis is trivial. We next suppose that
(4.99) holds and we prove it when n is replaced by n+1. First, we notice that
(by the identity a ∗ b = b ∗ a− [b, a]∗) we obtain

(−adu)k(Du) ∗ u = u ∗ (−adu)k(Du)− [u, (−adu)k(Du)]∗
= u ∗ (−adu)k(Du) + (−adu)k+1(Du).

For the sake of brevity, we set U := −adu. Note that the above equality gives

Uk(Du) ∗ u = u ∗ Uk(Du) + Uk+1(Du). (4.101)

As a consequence, the following computation applies

D(un+1) = D(un ∗ u) = D(un) ∗ u+ un ∗ (Du) (inductive hypothesis)

= un ∗ (Du) +
n−1∑

k=0

(
n

k+1

)
un−1−k ∗ Uk(Du) ∗ u

(4.101)
= un ∗Du+

n−1∑

k=0

(
n

k+1

)
un−k ∗ Uk(Du) +

n−1∑

k=0

(
n

k+1

)
un−1−k ∗ Uk+1(Du)

(rename the index in the second sum: k + 1 = j)

= un ∗Du+

n−1∑

k=0

(
n

k+1

)
un−k ∗ Uk(Du) +

n∑

j=1

(
n
j

)
un−j ∗ U j(Du)
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(we isolate the summands k = 0 and j = n from the two sums)

= un ∗Du+ nun ∗Du+ Un(Du) +

n−1∑

j=1

((
n
j

)
+
(

n
j+1

))
un−j ∗ U j(Du)

=
n∑

j=0

(
n+1
j+1

)
un−j ∗ U j(Du).

In the last equality we used the simple fact
(
n
j

)
+
(

n
j+1

)
=
(
n+1
j+1

)
. This proves

the first identity in (4.99) and the second can be proved analogously. ��
In the sequel, A =

⊕
j≥0 Aj is a graded algebra, Â =

∏
j≥0 Aj denotes

its completion (thought of as the algebra of the formal power series on A)
and, as usual, Â+ =

∏
j≥1Aj . Finally, Exp : Â+ → 1 + Â+ is the relevant

exponential function. We denote by ∗ the operation both on A and on Â.
We are ready for the following central result.

Theorem 4.22 (Differential of the Exponential). Let Â be as above and let D
be a continuous derivation of Â. Then

D(Exp(u)) = Exp(u) ∗
∞∑

k=1

1

k!
(−adu)k−1(Du) (4.102)

=

∞∑

k=1

1

k!
(adu)k−1(Du) ∗ Exp(u), (4.103)

for every u ∈ Â+, or, with compact notation,

D(eu) = eu ∗ 1− e−adu

adu
(Du), D(eu) =

eadu − 1

adu
(Du) ∗ eu.

Proof. Since u is in Â+, Exp(u) is well-posed. D being continuous, we can
pass D under the summation symbol, getting (note that D(1) = 0 since D is
a derivation)

D(Exp(u)) =

∞∑

n=1

1

n!
D(un)

(4.99)
=

∞∑

n=1

1

n!

n−1∑

k=0

(
n

k+1

)
un−1−k ∗ (−adu)k(Du)

(
use 1

n!

(
n

k+1

)
= 1

(k+1)!(n−1−k)! , interchange sums:
∞∑

n=1

n−1∑

k=0

=
∞∑

k=0

∞∑

n=k+1

and rename the dummy index: m := n− 1− k
)
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=

∞∑

k=0

∞∑

m=0

um ∗ (−adu)k(Du)
(k + 1)!m!

(the iterated series split into a product)

= Exp(u) ∗
( ∞∑

k=0

(−adu)k(Du)
(k + 1)!

)

= Exp(u) ∗
∞∑

k=1

1

k!
(−adu)k−1(Du).

This ends the proof of the first identity in (4.102), whereas the second can
be proved by an analogous computation (this time making use of (4.100)
instead of (4.99)). ��
If Â is as above, note that Lemma 4.20 gives back in a two-line-proof the
above identity (4.97): for every u ∈ Â+ and every z ∈ Â we have

∞∑

n=0

1

n!
(adu)n(z)

(4.98)
=

∞∑

n=0

1

n!

n∑

i=0

(−1)i (ni
)
un−i ∗ z ∗ ui

(interchange sums and rename the inner index m := n− i)

=
∞∑

i=0

∞∑

m=0

1

i!m!
um ∗ z ∗ (−u)i = Exp(u) ∗ z ∗ Exp(−u).

Collecting together (4.97) and (4.102) we obtain the crucial “ODE” for
Exp(Z), when Z solves Exp(Z) = Exp(X) ∗ Exp(Y ).

Indeed, if X,Y, Z ∈ Â+ are such that

Exp(Z) = Exp(X) ∗ Exp(Y ), (4.104)

and if D is any continuous derivation of Â satisfying

D(Exp(X)) = x ∗ Exp(X), D(Exp(Y )) = Exp(Y ) ∗ y, (4.105)

for some x, y ∈ Â, we immediately get

∞∑

k=1

1

k!
(−adZ)k−1(DZ)

(4.102)
= Exp(−Z) ∗D(Exp(Z))

(4.104)
= Exp(−Z) ∗D(Exp(X) ∗ Exp(Y )

)

= Exp(−Z) ∗D(Exp(X)) ∗ Exp(Y )

+ Exp(−Z) ∗ Exp(X) ∗D(Exp(Y ))

(4.105)
= Exp(−Z) ∗ x ∗ Exp(X) ∗ Exp(Y )

+ Exp(−Z) ∗ Exp(X) ∗ Exp(Y ) ∗ y
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(4.104)
= Exp(−Z) ∗ x ∗ Exp(Z) + y

(4.97)
=

∞∑

n=0

1

n!
(−adZ)n(x) + y.

If we introduce the usual formalism for power series of endomorphisms,
this rewrites as

1− e−adZ

adZ
(DZ) = e−adZ(x) + y,

which, as we have seen, is the starting point for the proof of Djoković, based
on the “differential equation”

DZ =
adZ

eadZ − 1

(
x+ eadZ(y)

)
.

Note that the above formal ODE can be rewritten as follows (as in [44])

DZ =
adZ

eadZ − 1
(x) +

−adZ
e−adZ − 1

(y). (4.106)

4.4.1 Yet Another Proof with Formal Power Series

In this short section, we describe an argument which allows us to prove the
Campbell, Baker, Hausdorff Theorem and to derive an analogue of Dynkin’s
Formula without the use of the Dynkin, Specht, Wever Lemma 3.26. This is an
adaptation of the argument used by Duistermaat and Kolk in the setting
of Lie groups (see [52, Section 1.7]). We only give a formal sketch of the
proof, leaving the details to the Reader (a rigorous argument needing the
machinery on formal power series used in the previous sections).

As usual, we consider the algebra A[[t]] of the formal power series in t
over A = T (Q〈x, y〉). SetZ(t) = log(exp(x t)∗exp(y t)), the obvious identity
exp(Z(t)) = exp(x t) ∗ exp(y t) gives (by applying Theorem 4.14 three times)

eadZ(t)(z) = exp(Z(t)) ∗ z ∗ exp(−Z(t))
= exp(x t) ∗ exp(y t) ∗ z ∗ exp(−y t) ∗ exp(−x t)
= exp(x t) ∗ et ad y(z) ∗ exp(−x t) = et ad x

(
et ad y(z)

)
,

holding true for every z ∈ A[[t]]. This means precisely

eadZ(t) = et ad x ◦ et ad y, or e−adZ(t) = e−t ad y ◦ e−t ad x. (4.107)
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We now exploit a useful identity on power series in one indeterminate z.
From log(1 + w)/w =

∑∞
n=1

(−1)n+1

k wn we get (via the substitution w =
ez − 1)

z

ez − 1
=

log(1 + (ez − 1))

ez − 1
=

∞∑

n=1

(−1)n+1

n
(ez − 1)n−1.

The crucial trick here is to write z/(ez − 1) as a function of ez − 1 itself.
Thus, we derive the analogous expansion (valid for every w ∈ A[[t]]+)

adw

eadw − 1
=

∞∑

n=1

(−1)n+1

n
(eadw − 1)n−1. (4.108)

Inserting this in the ODE-like identity (4.106) (whenw = ±Z(t)), one obtains
(recall our notation cn = (−1)n+1

n )

Z ′ (4.106)
=

adZ

eadZ − 1
(x) +

−adZ
e−adZ − 1

(y)

(4.108)
=

∞∑

n=1

cn (eadZ − 1)n−1(x) +

∞∑

n=1

cn (e−adZ − 1)n−1(y)

(4.107)
=

∞∑

n=1

cn (et ad xet ad y − 1)n−1(x) +

∞∑

n=1

cn (e−t ad ye−t ad x − 1)n−1(y).

Now, by the explicit expansion

et ad xet ad y − 1 =
∑

(h,k) �=(0,0)

th+k

h! k!
(adx)h(ad y)k,

and after some computations, we easily derive

Z ′(t) = x+ y +
∑

n�2
(h,k)∈Nn−1

cn t
|h|+|k|

h! k!

×
{

(adx)h1(ad y)k1 · · · (adx)hn−1(ad y)kn−1(x)

+ (−1)|h|+|k| (ad y)h1(adx)k1 · · · (ad y)hn−1(adx)kn−1(y)

}

.
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By the following identity (with the obvious algebraic meaning of the
“integral” and of Z(0))

Z(1) = Z(0) +

∫ 1

0

Z ′(t) dt,

and by the above expansion of Z ′(t), an “integration by series” gives at once

log(exp(x) ∗ exp(y)) = x+ y +
∑

n�1
(h,k)∈Nn

(−1)n
n+ 1

1

h! k! (|h|+ |k|+ 1)

×
{

(adx)h1 (ad y)k1 · · · (adx)hn(ad y)kn(x)

+ (−1)|h|+|k| (ad y)h1(adx)k1 · · · (ad y)hn(adx)kn(y)
}

.

Note that this is an alternative form of Dynkin’s Formula:

log(exp(x) ∗ exp(y)) = x+ y

+
∑

n�2
(r,s)∈Nn

(−1)n+1

n r! s! (|r| + |s|) (adx)
r1(ad y)s1 · · · (adx)rn(ad y)sn−1(y).

[Here, when sn = 0 the term “(ad y)sn−1(y)” is suppressed and substituted
by (adx)rn−1(x).] Another representation of log(ex ∗ ey) can be obtained by
rerunning the above arguments with W (t) := log(ex ∗ et y). This time one
has the “Cauchy problem”

W ′ =
−adW

e−adW − 1
(y), W (0) = x,

so that the relevant “integral” representation gives

log(exp(x) ∗ exp(y)) = x+ y +
∑

n�1
(h,k)∈Nn

(−1)n (−1)|h|
(n+ 1)h! k! (|h|+ 1)

×

× (ad y)h1(adx)k1 · · · (ad y)hn(adx)kn(y).

Yet another formula can be derived with the choice U(t) := log(et xey). This
time one has

U ′ =
adU

eadU − 1
(x), U(0) = y,
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so that the corresponding “integral” representation gives

log(exp(x) ∗ exp(y)) = x+ y +
∑

n�1
(h,k)∈Nn

(−1)n
(n+ 1)h! k! (|h|+ 1)

× (adx)h1(ad y)k1 · · · (adx)hn(ad y)kn(x).

4.5 Varadarajan’s Proof

The aim of this section is to furnish a very explicit argument which provides,
starting from equation (4.95), recursive relations on the coefficients Zj(x, y)
(introduced in (4.73)), revealing the Lie-polynomial nature of any Zj . These
recursion formulas (see Theorem 4.23 below) have an interest in their own
right, besides providing a proof of the CBH Theorem.

We shall follow the exposition of Varadarajan, [171, §2.15]. It has to
be noticed that the setting of [171] is different from ours, in that it is
concerned with Lie groups: actually, (4.95) is – in that setting – a “true”
differential equation, t being a real parameter and x, y being vector fields (in
a neighborhood of the origin) in the Lie algebra of a Lie group. Nonetheless,
the arguments in [171, §2.15] perfectly adapt to our context of the formal
power series in one indeterminate t over the algebra of the polynomials
in two non-commuting indeterminates x, y. We follow all the notation
introduced in the previous sections.

Let us consider the following formal power series in Q[[z]]:

i = z,

f =
∞∑

j=0

1

(j + 1)!
zj,

g =

∞∑

j=0

Kj z
j, Kj :=

Bj

j!
,

h =

∞∑

j=0

1

j!
zj,

k =

∞∑

j=0

K2j z
2j,

(4.109)

where the coefficients Bj are the so called Bernoulli numbers, defined e.g., by
the recursion formulas:
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B0 := 1, Bn := −n!
n−1∑

k=0

Bk

k! (n+ 1− k)!
(n ≥ 1). (4.110)

In Chap. 9, we shall prove that the following identities hold in Q[[z]]:

g + 1
2 i = k, (4.111a)

f · g = 1, (4.111b)

g · (h− 1) = i. (4.111c)

We remark that the above formal power series respectively furnish the
expansions of the following complex functions (with a small abuse of
notation, we denote the function related to the series f by f(z) and so on):

i(z) = z, z ∈ C,

f(z) =
ez − 1

z
, z ∈ C,

g(z) =
z

ez − 1
, z ∈ C : |z| < 2π,

h(z) = ez, z ∈ C,

k(z) =
z/2

sinh(z/2)
cosh(z/2), z ∈ C : |z| < 2π.

(4.112)

[Once (4.112) is known, it is immediate3 to prove (4.111a)–(4.111c).] We now
proceed with a chain of equalities starting from (4.95) (note that the notation
in Definition 4.17 is also used):

∂tZ(t)
(4.95)
= gadZ

(
x+ hadZ(y)

)
= gadZ(x + y) + gadZ

(− y + hadZ(y)
)

(here we use (4.81) and (4.82))

= (g + 1
2 i)adZ(x+ y)− 1

2 iadZ(x+ y) + gadZ

(− 1adZ + hadZ

)
(y)

(4.111a)
= kadZ(x+ y)− 1

2 adZ(x + y) + gadZ ◦ (−1 + h)adZ(y)

3Indeed, (4.111b) and (4.111c) are obvious; as for (4.111a) we have:

g(z) +
1

2
z =

z

ez − 1
+

1

2
z =

ez + 1

ez − 1

z

2
=

ez/2 + e−z/2

ez/2 − e−z/2

z

2
=

cosh(z/2)

sinh(z/2)

z

2
= k(z).

Once these identities hold – as they do! – in a neighborhood of the origin, analogous
identities between the relevant Maclaurin series hold by elementary Calculus.
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(4.83)
= kadZ(x+ y)− 1

2 [Z, x+ y] +
(
g · (h− 1)

)
adZ

(y)

(4.111c)
= kadZ(x+ y)− 1

2 [Z, x+ y] + iadZ(y)

= kadZ(x+ y)− 1
2 [Z, x+ y] + adZ(y)

= kadZ(x+ y) + 1
2 [Z, y − x] = kadZ(x+ y) + 1

2 [x− y, Z].

Summing up, we have proved

∂tZ = kadZ(x+ y) + 1
2 [x− y, Z], (4.113)

where the bracket in the right-hand side is the commutator of A[[t]]. [Com-
pare to [171, eq. (2.15.11)], where this identity is derived as a differential
equation in the Lie algebra of a Lie group.]

We now aim to substitute for Z its expansion as a series in t over the
algebra A = T (Q〈x, y〉) and then to equate, from both sides, the coefficients
of tn, thus deriving a family of identities in A.

To this aim, we recall that (see (4.74))

Z =

∞∑

j=1

Zj(x, y) t
j , (4.114)

where the coefficients Zj(x, y) are as in (4.73), that is,

Zj(x, y) =

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn: |h|+|k|=j

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn! .

Consequently, the left-hand side of (4.113) is given by (recalling the defini-
tion of ∂t in (4.74))

∂tZ =

∞∑

j=0

(j + 1)Zj+1(x, y) t
j . (4.115)

We now turn to the two summands in the right-hand side of (4.113). First of
all, by (4.114) and (4.61), the second summand is equal to

1
2 [x− y, Z]A[[t]] =

∞∑

j=1

1
2

[
x− y, Zj(x, y)

]
A
tj . (4.116)

Moreover, for any p ∈ N, we have the following computation (we denote
Zj(x, y) simply by Zj):
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(adZ)◦2p(x+ y) = [Z · · · [Z
︸ ︷︷ ︸

2p

, x+ y]]A[[t]]

=

[ ∞∑

j1=1

Zj1 t
j1 · · ·
[ ∞∑

j2p=1

Zj2p t
j2p , x+ y

]]

A[[t]]

(4.61)
=

∑

j1,...,j2p≥1

[Zj1 · · · [Zj2p , x+ y]]A t
j1+···+j2p

=
∑

j≥2p

( ∑

k1,...,k2p≥1
k1+···+k2p=j

[Zk1 · · · [Zk2p , x+ y]]A

)

tj .

Hence, by (4.80) and by the explicit expression of k in (4.109), we have

kadZ(x+ y) = x+ y +
∞∑

p=1

K2p (adZ)
◦2p(x+ y)

(see the computations above)

= x+ y +

∞∑

p=1

K2p

∑

j≥2p

( ∑

k1,...,k2p≥1
k1+···+k2p=j

[Zk1 · · · [Zk2p , x+ y]]A

)

tj

= x+ y +

∞∑

j=2

( [h/2]∑

p=1

K2p

∑

k1,...,k2p≥1
k1+···+k2p=j

[Zk1 · · · [Zk2p , x+ y]]A

)

tj .

Here [h/2] denotes the integer part of h/2, i.e., the largest integer ≤ h/2.
Consequently, the first summand in the right-hand side of (4.113) is equal to

kadZ(x + y) = x+ y +

∞∑

j=2

( ∑

p≥1, 2p≤j
k1,...,k2p≥1

k1+···+k2p=j

K2p [Zk1 · · · [Zk2p , x+ y]]A

)

tj .

(4.117)

Finally, summing up (4.115), (4.116) and (4.117), identity (4.113) rewrites as:

∞∑

j=0

(j + 1)Zj+1(x, y)t
j = x+ y +

∞∑

j=1

1
2

[
x− y, Zj(x, y)

]
A
tj

+
∞∑

j=2

( ∑

p≥1, 2p≤j
k1,...,k2p≥1

k1+···+k2p=j

K2p [Zk1(x, y) · · · [Zk2p(x, y), x + y]]A

)

tj .



4.5 Varadarajan’s Proof 227

4.5.1 A Recursion Formula for the CBHD Series

AsA[[t]] is the product of all the spacesAk[t] (whereAk[t] = {a∗tk : a ∈ A}),
by equating the coefficients of tj from the above identity, we derive the proof
of the recursion formula in the following remarkable result (compare to [171,
eq. (2.15.15)]), where we also seize the opportunity to summarize the results
obtained so far.

Theorem 4.23 (Varadarajan). Let the above notation be fixed. Then the following
recursion formula holds true:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1(x, y) = x+ y,

Z2(x, y) =
1
4 [x− y, Z1(x, y)] and, for j ≥ 2,

Zj+1(x, y) =
1

2(j+1) [x− y, Zj(x, y)]+

+
∑

p≥1, 2p�j
k1,...,k2p�1

k1+···+k2p=j

K2p

j + 1
[Zk1(x, y) · · · [Zk2p(x, y), x + y] · · · ].

(4.118)

We explicitly summarize the direct implications of the above theorem.

Corollary 4.24. As a consequence of Theorem 4.23, the following facts hold.
Formula (4.118) provides identities in T (Q〈x, y〉), the algebra over Q of the

polynomials in two (non-commuting) indeterminates x, y. Indeed, Zj(x, y) is the
polynomial defined by

Zj(x, y) :=

j∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
|h|+|k|=j

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn! ,

so that Z(x, y) =
∑∞

j=1 Zj(x, y) is the (unique) element of (T̂ (Q〈x, y〉), ·̂ ) (the
algebra over Q of the formal power series in x, y) such that

exp(Z(x, y)) = exp(x) ·̂ exp(y).

Consequently, formula (4.118) shows that Z(x, y) = log
(
exp(x) ·̂ exp(y)) is

actually an element of the closure of L(Q〈x, y〉), the latter being the free Lie algebra
generated by {x, y}.

Equivalently, (4.118) proves that Zj(x, y) is a Lie polynomial (homogeneous of
degree j) in x, y over Q, that is, an element of Lj(Q〈x, y〉). As a final consequence,
the CBHD Theorem 4.3 follows.
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Proof. Since Z1(x, y) = x+ y ∈ L1(Q〈x, y〉) it follows that

Z2(x, y) =
1
4 [x− y, Z1(x, y)] ∈ L2(Q〈x, y〉).

Let j ∈ N, j ≥ 2, suppose that Z1(x, y), . . . , Zj(x, y) are Lie polynomials,
homogeneous of degrees 1, . . . , j respectively. With the notation of (4.118),
since k1, . . . , k2p in the right-hand side of the third identity in (4.118) are all
< j, a simple inductive argument shows that Zj+1(x, y) ∈ Lj+1(Q〈x, y〉).
This ends the proof. ��
Here we have a ready-to-use consequence of the above results. This can be
stated on general Lie/associative algebras over a field of characteristic zero.

Corollary 4.25. For every j ∈ N∪{0}, we setKj := Bj/j!, where the coefficients
Bj are the Bernoulli numbers in (4.110).

1. Let (g, [·, ·]g) be any Lie algebra over a field of null characteristic. For every
j ∈ N and every u, v ∈ g we set

Zg
j (u, v) =

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

[
uh1vk1 · · ·uhnvkn

]
g

h! k! (|h|+ |k|) . (4.119)

Then the following recursion formula holds:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zg
1 (u, v) = u+ v,

Zg
2 (u, v) =

1
4 [u− v, Zg

1 (u, v)]g

Zg
j+1(u, v) =

1
2(j+1) [u− v, Zg

j (u, v)]g+

+
∑

p≥1, 2p�j
k1,...,k2p�1

k1+···+k2p=j

K2p

j + 1
[Zg

k1
(u, v) · · · [Zg

k2p
(u, v), u+ v]g · · · ]g,

for every j ∈ N and every u, v ∈ g.
2. Let (A, ∗) be any associative algebra over a field of null characteristic. For every
j ∈ N and every u, v ∈ A, we set

FA
j (u, v) =

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

u∗h1 ∗ y∗ k1 ∗ · · · ∗ x∗ hn ∗ y∗ kn

h1! · · ·hn! k1! · · · kn! .

Then, if Z∗
j is as in (4.119) relatively to the commutator-algebra g := (A, [·, ·]∗)

(that is, [u, v]∗ = u ∗ v − v ∗ u) then we have
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FA
j (u, v) = Z∗

j (u, v), for every j ∈ N and every u, v ∈ A,

so that the following recursion formula holds:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FA
1 (u, v) = u+ v,

FA
2 (u, v) = 1

4 [u− v, FA
1 (u, v)]∗

FA
j+1(u, v) =

1
2(j+1) [u− v, FA

j (u, v)]∗+

+
∑

p≥1, 2p�j
k1,...,k2p�1

k1+···+k2p=j

K2p

j + 1
[FA

k1
(u, v) · · · [FA

k2p
(u, v), u+ v]∗ · · · ]∗,

for every j ∈ N and every u, v ∈ A.

Proof. This follows by collecting together Theorem 4.23, (4.17), (4.18) and by
simple substitution arguments, based on Theorem 2.85 on page 107. ��

Besides giving a proof of the CBHD Theorem, formula (4.118) also
provides a tool for studying the convergence of the so-called CBHD series.
Indeed, by rerunning the remarkable arguments by Varadarajan on the
CBHD formula for Lie groups, it is possible to derive from (4.118) an
extremely accurate estimate of the coefficients Zj (see the proof of Theorem
2.15.4 in [171]), in the setting of finite dimensional Lie algebras or of
normed Banach algebras. This will be done in details in Chap. 5 (precisely
in Sect. 5.2.3).

4.5.2 Another Recursion Formula

Yet another more compact way of writing the “differential equation” solved
by Z =

∑∞
j=1 Zj(x, y) t

j is given by G. Czichowski in [44]. It is then possible
to obtain another recursion formula for Zj(x, y). We follow the exposition in
[44, page 88, 89].

Indeed, as a continuation of Djoković’s computation, from formula (4.95)
on page 214 we get

∂tZ
(4.95)
= gadZ

(
x+ hadZ(y)

)

= gadZ(x) +
(
gadZ ◦ hadZ

)
(y).

By Lemma 4.18 on page 209 we have
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gadZ ◦ hadZ = (g · h)adZ = g−adZ . (4.120)

Indeed, in the last equality we used a simple equality involving the com-
plex functions g(z) and h(z) associated to the formal power series g =∑∞

j=0Kj z
j and h =

∑∞
j=0 z

j/j!, namely

g(z)h(z) =
z

ez − 1
ez =

z

1− e−z
=

−z
e−z − 1

= g(−z).

Since this equality holds true for |z| < 2 π, we derive an analogous identity
for the related formal power series:

( ∞∑

j=0

Kj z
j
)
·
( ∞∑

j=0

zj

j!

)
=

∞∑

j=0

(−1)j Kj z
j,

so that we are entitled to to derive the last equality in (4.120). Thus we obtain
the more symmetric-looking equation for ∂tZ :

∂tZ = gadZ(x) + g−adZ(y). (4.121)

By inserting in (4.121) the actual expression of the formal power series for g,
this is equivalent to

∂tZ =
∞∑

j=0

Kj (adZ)
◦ j
(
x+ (−1)j y). (4.122)

Incidentally, by the identity (4.111a), which is equivalent to

K1 = − 1
2 , K2p+1 = 0 ∀ p ≥ 1,

formula (4.122) gives back the identity (4.113), indeed

∂tZ
(4.122)
= K1 (adZ)(x − y) +

∑∞
p=0K2p (adZ)

◦ 2p
(
x+ (−1)2p y)

= − 1
2 [Z, x− y] +

∑∞
p=0K2p (adZ)

◦ 2p(x + y)

= 1
2 [x− y, Z] + kadZ(x+ y).

By inserting in (4.122) the power series expression for Z and by equating the
coefficients of tj from both sides, we obtain the following recursion formula
(which is obviously equivalent to that obtained in Corollary 4.25):
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Z1(x, y) = x+ y,

Z2(x, y) =
K1

2
[Z1(x, y), x− y] =

1

2
[x, y]

Zn+1(x, y) =
1

n+ 1

∑

1�j�n
i1,...,ij�1

i1+···+ij=n

Kj [Zi1(x, y) · · · [Zij (x, y), x+ (−1)jy] · · · ],

holding true for every n ∈ N.

Remark 4.26. Exactly as in the statement of Corollary 4.25, from the above
recursive relations on the Lie polynomials Zj(x, y) we can obtain recursion
formulas for Zg

j (u, v) on any Lie algebra g and for the FA
j (u, v) on any

associative algebra A. We leave it to Reader.

4.6 Reutenauer’s Proof

The aim of this section is to provide all the details of the proof by Reutenauer
of the Campbell-Baker-Hausdorff Theorem. We mainly follow [144, Section
3.4], adding to the exposition therein a discussion of all convergence
conditions (always within the setting of the completion of graded algebras).
To this aim, we will be forced to introduce some lemmas which are not given
in [144] (see Lemma 4.34 and Corollary 4.35 below).

One of the most evident contributions of Reutenauer’s proof is its focus-
ing on some crucial computations about the CBHD Theorem – tracing back
to Pascal, Campbell, Baker and Hausdorff – in a clear and concise way. In
particular, the rôles of Hx

1 and Hy
1 (respectively, the series of the summands

coming from Log(Expx · Exp y) containing x and y precisely once) will be
clarified. The crucial part played by these series (evident in many of the
original early arguments about the Campbell-Baker-Hausdorff Theorem)
does not appear in the other proofs we presented so far. Finally, some
analogies with the computations in Djoković’s proof will be highlighted in
due course.

Reutenauer’s proof is based on a catchy argument involving derivation
and exponentiation. Before looking at it, we first need a new definition.

Definition 4.27 (ϕ-Derivation). Let (A, ∗) be an associative algebra. Let ϕ :
A → A be an algebra morphism. We say that a map D : A → A is a ϕ-
derivation if D is linear and the following condition holds

D(a ∗ b) = D(a) ∗ ϕ(b) + ϕ(a) ∗D(b), for every a, b ∈ A. (4.123)
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The notation Dϕ will also be used for ϕ-derivations.

It can be proved that ϕ-derivations have a particularly nice property when
they are applied to formal power series (see Theorem 3.22 in [144]). All
we need here is to consider the case of the exponential power series, as in
the following lemma. The Reader will recognize the similarities with the
computations in Djoković’s proof (see Sect. 4.3.3).

Lemma 4.28. Let K be a field of characteristic zero. Let A =
⊕∞

j=0 Aj be a graded

UA algebra (with A0 = K) and let Â =
∏∞

j=0 Aj denote, as usual, the topological
UA algebra of the formal power series on A (see Sect. 2.3.3). Let ∗ denote both
the operation on A and on Â. Finally, let Exp : Â+ → 1 + Â+ be the relevant
exponential function (as in Definition 3.2), where Â+ =

∏∞
j=1 Aj .

Suppose that ϕ : Â → Â is a UAA morphism and that Dϕ : Â → Â is a
continuous ϕ-derivation (according to Definition 4.27). Then, we have

Dϕ(Expx) ∗ Exp(−ϕ(x)) =
∞∑

n=1

1

n!

(
adϕ(x)

)n−1
(Dϕ(x)), (4.124)

for every x ∈ Â+ such that ϕ(x) ∈ Â+.

[Here, given a ∈ Â, we denote by ad (a) : Â→ Â the usual adjoint map with
respect to the commutator of Â, that is, ad (a)(b) = a ∗ b− b ∗ a.]

Note that (4.124) can be rewritten as

Dϕ(Expx) ∗ Exp(−ϕ(x)) = f(adϕ(x))(Dϕ(x)), (4.125)

where f(z) =
∑∞

n=1 z
n−1/n! is the Maclaurin expansion of the entire

function f(z) := (ez − 1)/z.

Proof. Let x ∈ Â+ be fixed. By hypothesis, x, ϕ(x) ∈ Â+ so that Exp(x) and
Exp(−ϕ(x)) are both well posed. The fact that ϕ(x) ∈ Â+ also ensures that

ak :=
(
ad (ϕ(x))

)k−1
(Dϕ(x)) ∈

∏∞
j=k−1 Aj .

This yields limk→∞ ak = 0 in Â, whence the series in the right-hand side
of (4.124) converges (making use, for example, of part 3 of Remark 2.76 on
page 102).

We now prove a useful fact: given x ∈ Â and m ∈ N, we have

Dϕ(x
m) =

m−1∑

k=0

(ϕ(x))k ∗ (Dϕx) ∗ (ϕ(x))m−k−1 . (4.126)
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We prove (4.126) by induction on m. The case m = 1 is trivial. Assuming
(4.126) to hold for 1, 2, . . . ,m, we prove it for m+ 1:

Dϕ(x
m+1) = Dϕ(x

m ∗ x) (4.123)
= Dϕ(x

m) ∗ ϕ(x) + ϕ(xm) ∗Dϕx
(
by the inductive hypothesis, by the bilinearity and associativity of ∗

and the fact that ϕ is a UAA morphism so that ϕ(xm) = (ϕ(x))m
)

=
∑m−1

k=0 (ϕ(x))k ∗ (Dϕx) ∗ (ϕ(x))m−k + (ϕ(x))m ∗Dϕx

=
∑m

k=0(ϕ(x))
k ∗ (Dϕx) ∗ (ϕ(x))m−k .

We are now in a position to complete the proof. Indeed, the following
computation applies:

Dϕ(Expx) ∗ Exp(−ϕ(x)) = Dϕ

( ∞∑

m=0

xm

m!

)

∗
( ∞∑

k=0

(−ϕ(x))k
k!

)

(Dϕ is continuous by hypothesis)

=
( ∞∑

m=1

1

m!
Dϕ(x

m)
)
∗
( ∞∑

k=0

(−1)k
k!

(ϕ(x))k
)

(reordering)

=

∞∑

n=1

1

n!

n∑

m=1

(−1)n−m

(
n

m

)

Dϕ(x
m) ∗ (ϕ(x))n−m

(4.126)
=

∞∑

n=1

1

n!

n∑

m=1

m−1∑

k=0

(−1)n−m

(
n

m

)

(ϕ(x))k ∗ (Dϕx) ∗ (ϕ(x))n−k−1

(
interchanging the inner sums:

∑n
m=1

∑m−1
k=0 =

∑n−1
k=0

∑n
m=k+1

)

=

∞∑

n=1

1

n!

n−1∑

k=0

(
n∑

m=k+1

(−1)n−m

(
n

m

))

(ϕ(x))k ∗ (Dϕx) ∗ (ϕ(x))n−k−1

(

we rename r := n−m and we use
(

n

n− r

)

=

(
n

r

))

=

∞∑

n=1

1

n!

n−1∑

k=0

(
n−k−1∑

r=0

(−1)r
(
n

r

))

(ϕ(x))k ∗ (Dϕx) ∗ (ϕ(x))n−k−1

(

see Lemma 4.19 on page 212 and use
(

n− 1

n− k − 1

)

=

(
n− 1

k

))

=

∞∑

n=1

1

n!

n−1∑

k=0

(−1)n−k−1

(
n− 1

k

)

(ϕ(x))k ∗ (Dϕx) ∗ (ϕ(x))n−k−1
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=
∞∑

n=1

1

n!

n−1∑

k=0

(
n− 1

k

)

(ϕ(x))k ∗ (Dϕ x) ∗ (−ϕ(x))n−k−1

(
we denote by La, Ra respectively the right and the left

multiplications by a ∈ Â on the UA algebra (Â, ∗))

=

∞∑

n=1

1

n!

(
n−1∑

k=0

(
n− 1

k

)

(Lϕ(x))
k ◦ (R−ϕ(x))

n−1−k

)

︸ ︷︷ ︸

= (Lϕ(x) +R−ϕ(x))
n−1 = (adϕ(x))n−1

(Dϕx)

=

∞∑

n=1

1

n!
(adϕ(x))n−1(Dϕx).

This completes the proof of the lemma. ��
From now on, we take a set {x, y}, with x �= y, and we consider the tensor
algebra T (Q〈x, y〉) of the free vector space Q〈x, y〉 over the rationals, which
we denote briefly by T . We know that T is nothing but the free unital
associative Q-algebra over the set {x, y} (see Theorem 2.40 on page 79). We
also know that T is graded, with grading

T =
⊕∞

j=0 Tj(Q〈x, y〉),

and its completion is

T̂ (Q〈x, y〉) =∏∞
j=0 Tj(Q〈x, y〉),

which is simply the topological unital associative algebra of the formal
power series in two non-commuting indeterminates x, y. We use the short
notations Tj and T̂ with clear meanings. We set

H(x, y) := Log(Expx · Exp y).

By its very definition,

Exp(H(x, y)) = Expx · Exp y. (4.127)

In our former notation, H(x, y) is precisely x�y (see Sect. 3.1.3 on page 126).
As is well known, this can be written as

H(x, y) =

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn! .
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We now reorder this series with respect to the increasing number of times
the indeterminate x appears. More precisely, we set

H(x, y) =

∞∑

j=0

Hx
j , where, for any j ∈ N ∪ {0},

Hx
j =

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
h1+···+hn=j

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn! .

(4.128)

In other words, Hx
j is the series of summands (chosen from the summands

of H(x, y)) which contain x precisely j times. With our usual notation in this
Book (see e.g., page 127) Hx

j may be written as

Hx
j =

∞∑

n=1

cn
∑

(h,k)∈Nn: |h|=j

xh1yk1 · · ·xhnykn
h! k!

, j ≥ 0.

For example, we have

Hx
0 = y. (4.129)

Indeed the following computation applies

Hx
0 =

∞∑

n=1

(−1)n+1

n

∑

k1,...,kn �=0

yk1+···+kn

k1! · · · kn!

=

∞∑

n=1

(−1)n+1

n

(∑

k �=0

yk

k!

)n
=

∞∑

n=1

(−1)n+1

n

(
Exp(y)− 1)n

= Log(1 + (Exp(y)− 1)) = Log(Exp y) = y.

By means of Lemma 4.28, we can prove the following fundamental result
(see [144, Corollary 3.24]).

Theorem 4.29. With the above notation, we have

Hx
1 = x+ 1

2 [x, y] +

∞∑

p=1

B2p

(2 p)!
(ad y)2 p(x), (4.130)

where the coefficients Bn are the Bernoulli numbers (see e.g., (4.110)).

We recall that, although in the cited formula (4.110) we gave an explicit
recursive definition of Bn, it is more convenient to anticipate a fact (proved
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in Chap. 9) about the Bernoulli numbers, namely that they are defined by
the following generating function (see (9.39) on page 496):

x

ex − 1
=

∞∑

n=0

Bn

n!
xn if |x| < 2 π. (4.131)

This immediately shows that B0 = 1, B1 = −1/2 and B2k+1 = 0 for every
k ≥ 1 (since (ex − 1)/x+ x/2 is an even function). As a consequence, (4.130)
compactly rewrites as

Hx
1 =

∞∑

n=0

Bn

n!
(ad y)n(x). (4.132)

Proof (of Theorem 4.29). Let ϕ : T → T be the UAA morphism such that

ϕ(x) = 0 and ϕ(y) = y.

[This exists thanks to part 2 of Theorem 2.40 on page 79.] By the very
definition of ϕ, we infer

ϕ
(
xh1yk1 · · ·xhnykn) =

{
(if |h| = 0) xh1yk1 · · ·xhnykn = y|k|,
(if |h| �= 0) 0,

(4.133)

for all nonnegative h and k. This immediately yields

ϕ
(⊕

j≥k Tj

) ⊆⊕j≥k Tj , for every k ≥ 0. (4.134)

By means of Lemma 2.79 on page 103, (4.134) ensures that there exists a
unique continuous prolongation of ϕ, say ϕ̂ : T̂ → T̂ which is also a UAA
morphism.

Let now D : T → T be the unique linear map such that

D(1) = 0, D(x) = x, D(y) = 0,

and such that

D
(
xh1yk1 · · ·xhnykn) =

{
(if |h| = 1) xh1yk1 · · ·xhnykn ,
(if |h| �= 1) 0,

(4.135)

for all nonnegative h and k. The existence of D is simply verified: it suffices
to define it according to (4.135) on the basis of T given by

{1} ∪
{
xh1yk1 · · ·xhnykn

∣
∣
∣ n ∈ N, (h1, k1), . . . , (hn, kn) ∈ {(1, 0), (0, 1)}

}
,
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and then to check that it fulfils (4.135) throughout. Note that D is the linear
map which kills all the elementary monomials containing more than one x
and preserving those containing x precisely once.

It is easily seen that D fulfills the same property as ϕ in (4.134). Hence, by
the above cited lemma on continuous prolongations, there exists a unique
linear continuous prolongation of D, say

Dϕ̂ : T̂ → T̂ .

We claim that Dϕ̂ is a ϕ̂-derivation of T̂ , according to Definition 4.27. As Dϕ̂

is linear, all we have to prove is that

Dϕ̂(a · b) = Dϕ̂(a) · ϕ̂(b) + ϕ̂(a) ·Dϕ̂(b), (4.136)

when a, b are elementary monomials, say

a = xh1yk1 · · ·xhnykn , b = xr1ys1 · · ·xrmysm .

The following computation holds:

Dϕ̂(a · b) = Dϕ̂

(
xh1yk1 · · ·xhnykn xr1ys1 · · ·xrmysm)

=

{
a · b, if |h|+ |r| = 1,

0, otherwise.

On the other hand we have

Dϕ̂(a) · ϕ̂(b) + ϕ̂(a) ·Dϕ̂(b)

=

⎧
⎨

⎩

if |h| = 1 a ·
{
b, if |r| = 0,

0, if |r| �= 0

if |h| �= 1 0

+

⎧
⎨

⎩

if |h| = 0 a ·
{
b, if |r| = 1,

0, if |r| �= 1

if |h| �= 0 0

=

{
a · b, if |h| = 1 and |r| = 0

0 otherwise
+

{
a · b, if |h| = 0 and |r| = 1

0 otherwise

=

{
a · b, if |h|+ |r| = 1

0 otherwise.

De visu, this proves (4.136). We next remark that

Dϕ̂(H(x, y)) = Hx
1 . (4.137)

Indeed, by the continuity of Dϕ̂, the fact that Dϕ̂ prolongs D and that D
fulfills (4.135), we have



238 4 Some “Short” Proofs of the CBHD Theorem

Dϕ̂(H(x, y)) =
∑∞

n=1 cn
∑

(h,k)∈Nn
D
(
xh1yk1 · · ·xhnykn)/(h! k!)

=
∑∞

n=1 cn
∑

(h,k)∈Nn: |h|=1 x
h1yk1 · · ·xhnykn/(h! k!) = Hx

1 .

Moreover, we claim that

Dϕ̂

(
Expx · Exp y) = x · Exp y. (4.138)

Indeed, by the same arguments as above, one has

Dϕ̂

(
Expx · Exp y) = Dϕ̂

∑
h,k≥0 x

hyk/(h! k!)

=
∑

h,k≥0D(xhyk)/(h! k!) =
∑

k≥0 x y
k/k! = xExp y.

Furthermore, we claim that

ϕ̂(H(x, y)) = y. (4.139)

Indeed, the following computation applies:

ϕ̂(H(x, y)) = ϕ̂

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn!

(ϕ̂ is continuous and prolongs ϕ)

=

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)

ϕ
(
xh1yk1 · · ·xhnykn)

h1! · · ·hn! k1! · · · kn!

(4.133)
=

∞∑

n=1

(−1)n+1

n

∑

k1,...,kn �=0

yk1+···+kn

k1! · · · kn! = Hx
0

(4.129)
= y.

Finally, we are in a position to apply Lemma 4.28: Indeed, A := T has all
the properties needed in that lemma, ϕ̂ is a UAA morphism of T̂ and Dϕ̂

is a continuous ϕ̂-derivation of T̂ . Hence (notice that H(x, y) ∈ T̂+ and
ϕ̂(H(x, y)) = y ∈ T̂+) (4.124) gives the key step of the following chain of
equalities:

x · Exp(y) (4.138)
= Dϕ̂

(
Expx · Exp y) (4.127)

= Dϕ̂

(
Exp(H(x, y))

)

(4.124)
=

∞∑

n=1

1

n!

(
ad ϕ̂(H(x, y))

)n−1
(Dϕ̂(H(x, y))) · Exp(ϕ̂(H(x, y)))
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(
we now use the identities ϕ̂(H(x, y))

(4.139)
= y and Dϕ̂(H(x, y))

(4.137)
= Hx

1

)

=

∞∑

n=1

1

n!
(ad y)n−1(Hx

1 ) · Exp(y).

By canceling Exp(y) from both the far sides, we get

x =

∞∑

n=1

1

n!
(ad y)n−1(Hx

1 ). (4.140)

Now, we notice that ad (y) maps
∏

j≥N Tj into
∏

j≥N+1 Tj , for every
N ≥ 0. Hence, arguing as in Lemma 4.18 on page 209, we infer that the
endomorphism of T̂ defined by

f(ad y) :=
∑∞

n=1
1
n! (ad y)

n−1

is well posed and that it is invertible, with inverse given by

g(ad y) :=
∑∞

n=0
Bn
n! (ad y)

n.

Indeed, this follows from the fact that the formal power series in Q[[z]]

f(z) :=
∑∞

n=1
zn−1

n! and g(z) :=
∑∞

n=0
Bn
n! z

n

are reciprocal to one another, for they are the Maclaurin series respectively of

ez − 1

z
and

z

ez − 1
(by recalling (4.131)).

Hence (4.140) rewrites as

x = f(ad y)(Hx
1 ).

By applying g(ad y) to both sides of this identity we get

g(ad y)(x) = Hx
1 .

Thanks to the definition of g, this is precisely (4.132), which (as we already
remarked) is equivalent to (4.130). This ends the proof. ��
To proceed with our details behind Reutenauer’s proof of the Campbell-
Baker-Hausdorff Theorem, we need a preparatory lemma.
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Lemma 4.30. Let X be any nonempty set. Let {Sx}x∈X be some given family of
elements of T̂ (K〈X〉). Then there exists a unique continuous derivation D of the
algebra T̂ (K〈X〉) such that

D(x) = Sx, for every x ∈ X . (4.141)

Proof. See page 449. ��
The previous lemma proves that the following definition is well posed.

Definition 4.31 (The Operator S (∂/∂ y)). Let S ∈ T̂ (Q〈x, y〉) be given. We
denote by S ∂

∂ y the unique continuous derivation of T̂ (Q〈x, y〉) mapping x
into 0 and y into S (see Lemma 4.30).

Let us note that the use of operators like S (∂/∂ y) just introduced goes back
to the original papers by Baker [8] and by Hausdorff [78].

Hereafter, we set for brevity

T̂ := T̂ (Q〈x, y〉), Tj := Tj(Q〈x, y〉) (j ≥ 0),

and we resume from Sect. 2.3.3 the notation

Ûn :=
∏

j≥n Tj(Q〈x, y〉) (n ≥ 0).

Remark 4.32. At this point, we are forced to add some extra results to Reu-
tenauer’s arguments.4 Within a few lines, we will meet a sort of exponential
operator “exp(D)”, where D is a derivation of an associative algebra A
over Q. Unfortunately, it is not possible to define exp(D) unambiguously
for general topological (or graded) algebras. For instance, as in Djoković’s
proof, we had to requireD to satisfy a stronger hypothesis5 in order to define
a formal power series in D.

For example, consider A = Q[[t]] (the algebra of formal power series in
one indeterminate t over Q) and the derivation D = ∂t (see Definition 4.11).
Then, if x is the element of Q[[t]] given by x =

∑∞
k=0 t

k/k!, the series

∞∑

n=0

1

n!
Dn(x)

does not converge in the topology of (the usual metric space) Q[[t]]. Indeed
(see e.g., Remark 2.76 on page 102), since Q[[t]] is an ultrametric space, a
series

∑
n an converges if and only if an tends to zero as n→∞. Now, in the

above example we have

4See [144], page 78, when exp(D) is introduced.
5See the class H of endomorphisms in Definition 4.17 on page 209.
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∂tx = x, so that (∂t)
nx = x for every n ≥ 0.

Consequently, Dn(x)/n! = x/n! does not converge to zero as n → ∞ (recall
that the usual Euclidean topology is by no means involved here!) so that∑∞

n=0D
n(x)/n! does not make sense at all in Q[[t]].

Another example of non-convergence can be given in the very context we
are interested in. Indeed, take for instance

D : T̂ → T̂ , D := y
∂

∂ y
.

Then, trivially, Dn(y) = y for every n ≥ 0. This proves that
∑

n≥0D
n(y)/n!

does not converge, for y/n! does not vanish, as n→∞.

In the rest of Reutenauer’s proof, the derivation D = Hx
1

∂
∂ y of T̂ is

concerned. Even in this case, D does not belong a priori to the class H of
endomorphisms introduced in Definition 4.17. Indeed, for example, y ∈ Û1

but
D(y) = Hx

1

∂

∂ y
(y) = Hx

1 /∈ Û2.

Nonetheless, due to certain very special properties of Hx
1 , we claim that that the

series

exp(D)(z) :=
∞∑

n=0

1

n!

(
Hx

1

∂

∂ y

)n
(z)

converges in T̂ for every z ∈ T̂ . We hope that our proof of the above claim
will be welcomed. Indeed, without this convergence result the last part of
Reutenauer’s proof is only formal, whereas (once it is known that exp(D)
defines a genuine map) the proof is completely justified. Also, this highlights
how the properties of Hx

1 intervene in making exp(D) a well-defined map.

Remark 4.33. Before proceeding we show that, onceD fulfills a well-behaved
convergence assumption, then exp(D) turns out to be a well-defined UAA
morphism. Indeed, let A, Â be as in Lemma 4.28 and suppose that D:Â→ Â

is a derivation of Â satisfying the following hypothesis

Dn(Â) ⊆ Ûn, for every n ≥ 0, (4.142)

where we have set Ûn :=
∏

j≥n Aj (for every n ≥ 0). As a consequence of

(4.142), for every a ∈ Â, Dn(a)/n! −→ 0 as n→∞ in Â, so that (by part 3 of
Remark 2.76 on page 102) the series

∑∞
n=0D

n(a)/n! converges in Â and the
formula

exp(D) : Â→ Â, a �→
∞∑

n=0

Dn(a)

n!
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defines an endomorphism of Â. We claim that exp(D) is a UAA morphism.
Indeed, to begin with, it is easily seen by induction that the following

Leibnitz formula is valid (see Proposition 4.40):

Dn(a ∗ b) =
n∑

i=0

(
n
i

)
Di(a) ∗Dn−i(b), for every a, b ∈ Â, n ≥ 0. (4.143)

As a consequence, if a, b ∈ Â, we have

exp(D)(a ∗ b) =
∞∑

n=0

Dn(a ∗ b)
n!

=

∞∑

n=0

1

n!

( n∑

i=0

(
n
i

)
Di(a) ∗Dn−i(b)

)

=

∞∑

n=0

( ∑

i+j=n

Di(a) ∗Dj(b)

i! j!

)
=
( ∞∑

i=0

Di(a)

i!

)
∗
( ∞∑

j=0

Dj(b)

j!

)

= exp(D)(a) ∗ exp(D)(b).

Observe that in the fourth equality we used again hypothesis (4.142), which
allows us to reorder the series. The above computation shows that exp(D) is
an algebra morphism. Finally, note that exp(D) is unital, for exp(D)(1K) =
1K (since Dn(1K) = 0 for every n ≥ 1, D being a derivation). ��
We aim to prove the following preparatory lemmas, which will allow us to
formalize Reutenauer’s final argument for the proof of the CBH Theorem.

Lemma 4.34. Let Hx
1 be as in (4.128). Let Hx

1
∂
∂ y be the continuous derivation of

the algebra T̂ (Q〈x, y〉), as in Definition 4.31. Then we have

Dn(y) ∈ Ûn, for every n ≥ 0. (4.144)

Proof. Let D := Hx
1

∂
∂ y . Note that

D(y) = Hx
1 . (4.145)

We are entitled to apply Lemma 4.28 with ϕ = Id
T̂

since D is a continuous
derivation of T̂ . Then (4.124) gives (note that y ∈ T̂+)

D(Exp y) ∗ Exp(−y) =
∞∑

n=1

1

n!

(
ad y
)n−1

(D(y))

(4.145)
=

∞∑

n=1

1

n!

(
ad y
)n−1

(Hx
1 )

(4.140)
= x.

This gives
D(Exp y) = x · Exp y. (4.146)
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By applying D to both sides (and recalling that D is a derivation and that
D(x) = 0) we get

D2(Exp y) = D(x · Exp y) = x ·D(Exp y)
(4.146)
= x2 · Exp y.

Arguing inductively (and using D(xn) = 0 for every n ≥ 1), we obtain

Dn(Exp y) = xn · Exp y, for every n ≥ 0. (4.147)

In particular this gives

Dn(Exp y) ∈ Ûn, for every n ≥ 0. (4.148)

We now claim that, by means of a delicate inductive estimate, (4.148) will
allow us to prove the claimed (4.144).

First we notice that we have

D(Ûk) ⊆ Ûk, for every k ≥ 0. (4.149)

In order to prove (4.149), it is sufficient to prove that, for every k ≥ 0, D
maps Tk into Ûk. Indeed, we have

D(1) = 0, D(x) = 0, D(y) = Hx
1 ∈ Û1,

so that, for every k ≥ 2 and any fixed z1, . . . , zk ∈ {x, y}

D(z1 · · · zk) = D(z1) z2 · · · zk + · · ·+ z1 · · · zk−1D(zk)

∈ Û1 · Tk−1 + T1 · Û1 · Tk−2 + · · ·+ Tk−1 · Û1 ⊆ Ûk.

From (4.149) we get at once

Dn(Ûk) ⊆ Ûk, for every n, k ≥ 0. (4.150)

We are now ready to prove (4.144) by induction on n. Before embarking
with the proof, we show explicitly the steps up to n = 2, 3 in order to make
transparent the ideas involved. First of all, let us recall a general formula
(holding true for any derivation of an associative algebra) which can be
proved by a simple inductive argument (see Proposition 4.40 at the end of
the section):

Dn(a1 · · ·ak) =
∑

0≤i1,...,ik≤n
i1+···+ik=n

n!

i1! · · · ik! D
i1a1 · · ·Dikak. (4.151)
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The validity of (4.144) for n = 0, 1 is obvious since

D0(y) = y ∈ Û1 ⊂ Û0, D(y) = Hx
1 ∈ Û1.

We now consider the case n = 2: From (4.148), from the continuity of D and
from (4.150), we infer

Û2 � D2(Exp y) = D2
( ∞∑

k=1

yk

k!

)
= D2(1) +D2(y) +D2

( ∞∑

k=2

yk

k!

)

(4.150)
= D2(y) + {an element of Û2}.

This proves that D2(y) ∈ Û2. We next consider the case n = 3 (thus showing
that the inductive argument becomes more complicated): Arguing as above,
and this time using the acquired information D2(y) ∈ Û2, we infer

Û3 � D3(Exp y) = D3(1) +D3(y) + 1
2 D

3(y2) +D3
( ∞∑

k=3

yk

k!

)

(4.150)
= D3(y) + 1

2 D
3(y2) + {an element of Û3}.

Thus, by the aid of this fact and by (4.151), we get

Û3 � D3(y) + 1
2 D

3(y2)

= D3(y) + 1
2

(
D3(y) y + 3D2(y)D(y) + 3D(y)D2(y) + yD3(y)

)

∈ D3(y) + 1
2 D

3(y) y + 1
2 yD

3(y) + Û2 · Û1 + Û1 · Û2︸ ︷︷ ︸
⊆Û3

.

This gives
D3(y) + 1

2 D
3(y) y + 1

2 y D
3(y) ∈ Û3.

By writing D3(y) =
∑∞

j=0 aj with aj ∈ Tj , this yields

∞∑

j=0

aj +
1
2

∞∑

j=0

aj y +
1
2

∞∑

j=0

y aj ∈ Û3 =
∏

j≥3 Tj .

Since aj y and y aj belong to Tj+1, this is equivalent to

a0︸︷︷︸
∈T0

+(a1 +
1
2 a0 y +

1
2 y a0)︸ ︷︷ ︸

∈T1

+(a2 +
1
2 a1 y +

1
2 y a1)︸ ︷︷ ︸

∈T2

= 0
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This is possible if and only if

⎧
⎨

⎩

a0 = 0

a1 +
1
2 a0 y +

1
2 y a0 = 0

a2 +
1
2 a1 y +

1
2 y a1 = 0.

Solving this system from top to bottom, we derive a0 = a1 = a2 = 0, whence
D3(y) =

∑∞
j=3 aj . This proves that D3(y) ∈ Û3, as aj ∈ Tj for every j.

We are now ready for the inductive step: we suppose we already know
that Dj(y) ∈ Ûj for j = 0, 1, . . . , n − 1 and we prove Dn(y) ∈ Ûn. From
(4.148) we know that Dn(Exp y) ∈ Ûn, whence

Dn
( n−1∑

k=0

yk

k!

)
= Dn(Exp y)−Dn

( ∞∑

k=n

yk

k!
︸ ︷︷ ︸
∈Ûn

)
∈ Ûn +Dn(Ûn) ⊆ Ûn,

where we have also applied (4.149). This proves (since Dn(1) = 0)

Dn
( n−1∑

k=1

yk

k!

)
∈ Ûn.

This gives, by the aid of identity (4.151) (applied for a1, . . . , ak = y),

Ûn �
n−1∑

k=1

Dn(yk)

k!
=

n−1∑

k=1

1

k!

∑

0≤i1,...,ik≤n
i1+···+ik=n

n!

i1! · · · ik! D
i1y · · ·Diky

=
n−1∑

k=1

1

k!

(
Dn(y) yk−1 + y Dn(y) yk−2 + · · ·+ yk−1Dn(y)

)
+

+

{ n−1∑

k=1

n!

k!

∑

0≤i1,...,ik<n
i1+···+ik=n

Di1y · · ·Diky

i1! · · · ik!
}

.

(4.152)

Note that in the sum in curly braces there appear powers ofD with exponent
strictly less than n. We are then allowed to apply the inductive hypothesis
and derive that each of its summands belongs to

Ûi1 · · · Ûik ⊆ Ûi1+···+ik , with i1 + · · ·+ ik = n.

Hence the sum in braces belongs to Ûn, so that (4.152) gives
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n−1∑

k=1

1

k!

(
Dn(y) yk−1 + yDn(y) yk−2 + · · ·+ yk−1Dn(y)

) ∈ Ûn. (4.153)

We decompose Dn(y) ∈ T̂ =
∏

j≥0 Tj into its components:

Dn(y) =
∑∞

j=0 ay, with aj ∈ Tj for every j ≥ 0. (4.154)

Thus (4.153) rewrites as

∞∑

j=0

n−1∑

k=1

1

k!

(
aj y

k−1 + y aj y
k−2 + · · ·+ yk−1 aj

) ∈ Ûn.

By reordering the above double-sum, we get

∞∑

s=1

∑

1≤k≤n−1, j≥0: j+k=s

1

k!

(
aj y

k−1 + · · ·+ yk−1 aj
) ∈ Ûn. (4.155)

Note that the sum in parentheses belongs to

Tj · Tk−1 + T1 ·Tj ·Tk−2 + · · ·+ Tk−1 · Tj ⊆ Tj+k−1 = Ts−1.

As a consequence, (4.155) can hold if and only if

∑

1≤k≤n−1, j≥0
j+k=s

1

k!

(
aj y

k−1 + · · ·+ yk−1 aj
)
= 0, for every s = 1, . . . , n.

(4.156)
When s = 1, (4.156) gives (notice that k ≥ 1 in the sum) aj = 0. Thus we can
delete from (4.156) the index j = 0. In particular, when s = 2, (4.156) gives

0 =
∑

1≤k≤n−1, j≥1
j+k=2

1

k!

(
aj y

k−1 + · · ·+ yk−1 aj
)
= a1.

Again, this proves that we can erase from (4.156) the indices j = 0, 1. After
finitely many steps we are then able to prove that a0 = a1 = · · · = an−1 = 0.
As a consequence, (4.154) gives

Dn(y) =
∑∞

j=n ay ∈ Ûn,

which is the desired equation (4.144). This completes the proof. ��
With Lemma 4.34 at hand, we are able to prove the following result.
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Corollary 4.35. Let the notation in Lemma 4.34 hold. Then we have

Dn(z) ∈ Ûn, for every n ≥ 0 and every z ∈ T̂ . (4.157)

As a consequence, for every z ∈ T̂ , the series
∑

n≥0D
n(z)/n! converges in T̂

and, by posing

exp(D) : T̂ → T̂ , exp(D)(z) :=

∞∑

n=0

1

n!

(
Hx

1

∂

∂ y

)n
(z), (4.158)

we define an endomorphism of T̂ . Actually, exp(D) is a continuous UAA
morphism of the algebra T̂ (Q〈x, y〉).
Proof. D being continuous (whence Dn also), in order to prove (4.157) it
suffices to show that

Dn(Tk) ⊆ Ûmax{n,k}, for every n, k ≥ 0. (4.159)

When n or k is 0 this is trivial, so we can assume n, k ≥ 1. Moreover, the
inclusion

Dn(Tk) ⊆ Ûk, for every n, k ≥ 0, (4.160)

follows from (4.150). So (4.159) will follow if we demonstrate

Dn(Tk) ⊆ Ûn, for every n, k ≥ 0. (4.161)

To prove this, first note that (4.144) together with Dn(x) = 0 gives

Dn(z) ∈ Ûn, for every n ≥ 0 and every z ∈ {x, y}. (4.162)

Let now z = z1 · · · zk with z1, . . . , zk ∈ {x, y}. From (4.151) we get

Dn(z1 · · · zk) =
∑

0≤i1,...,ik≤n
i1+···+ik=n

n!

i1! · · · ik! D
i1z1 · · ·Dikzk

(4.162)∈
∑

0≤i1,...,ik≤n
i1+···+ik=n

Ûi1 · · · Ûik ⊆ Ûn.

This proves (4.161), which – together with (4.160) – gives at once (4.159)
(recall that {ÛN}N is a decreasing sequence of sets).

For every z ∈ T̂ , (4.157) ensures that limn→∞Dn(z)/n! = 0 so that (see
Remark 2.76-3) the map exp(D) in (4.158) is well posed and it is clearly
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an endomorphism of T̂ . Furthermore, (4.157) gives Dn(T̂ ) ⊆ Ûn, so that
Remark 4.33 ensures that exp(D) is a UAA morphism. Finally, the continuity
of exp(D) is a consequence of

exp(D)(Ûk) ⊆ Ûk, ∀ k ≥ 0, (4.163)

which follows at once from (4.150) and the convergence of the series
expressing exp(D): indeed, if z ∈ Ûk, then

exp(D)(z) =

∞∑

n=0

1

n!
Dn(z)
︸ ︷︷ ︸

∈Dn(Ûk)⊆Ûk

∈ Ûk = Ûk.

This completes the proof. ��
We are ready to complete the proof of the following result. This is the
rigorous formalization by Reutenauer of a celebrated result due separately
to Baker and to Hausdorff (see also Chap. 1 for historical references).

Theorem 4.36 (Reutenauer). LetHx
1 be as in (4.128). LetHx

1
∂
∂ y be the continu-

ous derivation of the algebra T̂ (Q〈x, y〉) as in Definition 4.31. Then, the following
equality holds

H(x, y) =

∞∑

n=0

1

n!

(
Hx

1

∂

∂ y

)n
(y), (4.164)

where H(x, y) = Log(Expx ·Exp y). Furthermore, if Hx
n is as in (4.128), we have

Hx
n =

1

n!

(
Hx

1

∂

∂ y

)n
(y), for every n ≥ 0. (4.165)

Proof. Set D := Hx
1

∂
∂ y . By means of Corollary 4.35, the series in the right-

hand side of (4.164) converges in T̂ . In the course of the proof of Lemma
4.34, we also proved that the following explicit equality holds (see (4.147)):

Dn(Exp y) = xn · Exp y, for every n ≥ 0. (4.166)

Hence we have

∞∑

n=0

Dn(Exp y)

n!

(4.166)
=

∞∑

n=0

xn · Exp y
n!

= Exp(x) · Exp(y) (4.127)
= Exp(H(x, y)).

By definition of exp(D) in (4.158), this yields

exp(D)(Exp y) = Exp(H(x, y)). (4.167)
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On the other hand, since exp(D) is a continuous UAA morphism of T̂ (recall
Corollary 4.35), we also have

exp(D)(Exp y) =

∞∑

k=0

1

k!
exp(D)(yk) =

∞∑

k=0

1

k!

(
exp(D)(y)

)k

= Exp
(
exp(D)(y)

)
,

that is,
exp(D)(Exp y) = Exp

(
exp(D)(y)

)
. (4.168)

Note that the above right-hand side is well defined, since we have

exp(D)(y) ∈ exp(D)
(
Û1

) (4.163)∈ Û1.

Collecting together (4.167) and (4.168), we infer

Exp(H(x, y)) = Exp
(
exp(D)(y)

)
,

and the injectivity of Exp finally givesH(x, y) = exp(D)(y). This is precisely
(4.164). In order to complete the proof, we need only to show (4.165), that is,

Hx
n =

Dn(y)

n!
, ∀ n ≥ 0. (4.169)

Recalling the very definition of Hx
n in (4.128), Hn

x collects the summands,
out of the series for H(x, y), containing x precisely n times. Since we have
proved (4.164), which is nothing but

H(x, y) =

∞∑

n=0

Dn(y)

n!
,

(4.169) will follow if we show that Dn(y)/n! is a sum of words containing x
precisely n times.

This is true of D0(y) = y and D1(y) = Hx
1 . We now argue by induction

supposing that, for j = 0, . . . , n−1,Dj(y) can be expressed as a (convergent)
series of words containing x precisely j times: we then prove this for j = n.
To this aim, using Dn(y) = D(Dn−1(y)), the inductive hypothesis (and the
continuity ofD) shows that it is sufficient to prove that, ifw is an elementary
word in x, y containing x exactly n−1 times, thenD(w) is a series containing
x exactly n times. Any such word w can be written as follows (unless it does
not contain y, in which case it is killed by D and the thesis holds)

w = xh1 y xh2 y · · ·xhi y xhi+1 ,
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with hi, . . . , hi+1 ≥ 0 and h1 + · · · + hi+1 = n − 1. Since D is a derivation
which kills any power of x, we have

D(w) = xh1 D(y)xh2 y · · ·xhi y xhi+1 + xh1 y xh2 D(y) · · ·xhi y xhi+1+

· · ·+ xh1 y xh2 y · · ·xhi D(y)xhi+1

= xh1 Hx
1 x

h2 y · · ·xhi y xhi+1 + · · ·+ xh1 y xh2 y · · ·xhi Hx
1 x

hi+1 .

Since Hx
1 is a series of summands containing x exactly once, it is evident by

the above computation that the number of times x occurs in the summands
expressing D(w) is incremented by 1 with respect to w, as we aimed to
prove. This ends the proof of the theorem. ��
By means of Reutenauer’s Theorem 4.36, we are able to give the fourth proof
of the Campbell, Baker, Hausdorff Theorem for this chapter.

Corollary 4.37 (Campbell, Baker, Hausdorff). Let Hx
j be as in (4.128). Then

Hx
j ∈ L(Q〈x, y〉), for every j ≥ 0. (4.170)

As a consequence Log(Expx·Exp y) belongs to L(Q〈x, y〉) too, that is, it is a series
of Lie polynomials in x, y.

Proof. Clearly, it suffices to prove (4.170), for the rest of the proof will follow
from (4.170), since

Log(Expx · Exp y) = H(x, y) =
∑∞

j=0H
x
j .

We prove (4.170) by induction on j. First we have Hx
0 = y (see (4.129)) and

Hx
1 ∈ L(Q〈x, y〉) (in view of (4.130)). We now suppose that Hx

j−1 is a Lie
series and we prove it for Hx

j . To this aim, set D = Hx
1 (∂/∂ y), it holds that

Hx
j

(4.165)
=

Dj(y)

j!
=

1

j
D
(Dj−1(y)

(j − 1)!

)
(4.165)
=

1

j
D(Hx

j−1).

Hence, we are done if we show that D maps Lie series into Lie series. Since
D is a derivation of the associative algebra T̂ , it is a derivation of the com-
mutator-algebra associated to T̂ (see Remark 2.18 on page 62). In particular,
D maps L := L(Q〈x, y〉) into L := L(Q〈x, y〉). This fact, together with the
continuity of D, with (4.149) and the fact that any element of L is a series of
elements of L, proves that D(L) ⊆ L. This completes the proof. ��
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Remark 4.38. Obviously, we can also rewrite the series of H(x, y) as

Log(Expx · Exp y) =
∞∑

j=0

Hy
j ,

whereHy
j groups together the summands containing y precisely j times. All

the results of this section then have a dual version:

– Lemma 4.28 has the following analogue (the hypotheses and notation are
the same): Suppose that ϕ : Â→ Â is a UAA morphism and that Dϕ : Â→ Â
is a continuous ϕ-derivation. Then, we have

Exp(−ϕ(x)) ∗Dϕ(Expx) =

∞∑

n=1

1

n!

(− adϕ(x)
)n−1

(Dϕ(x)), (4.171)

for every x ∈ Â+ such that ϕ(x) ∈ Â+. This means that

Exp(−ϕ(x)) ∗Dϕ(Expx) = f(−adϕ(x))(Dϕ(x))

= f̃(adϕ(x))(Dϕ(x)),
(4.172)

where f(z) =
∑∞

n=1 z
n−1/n! is the Maclaurin expansion of the entire

function f(z) := (ez − 1)/z, and f̃(z) =
∑∞

n=1(−1)n zn−1/n! is the
Maclaurin expansion of the entire function f̃(z) := (1− e−z)/z.

– The analogue of Theorem 4.29 states that

Hy
1 = y + 1

2 [x, y] +

∞∑

p=1

B2p

(2 p)!
(adx)2 p(y)

=
∞∑

n=0

(−1)nBn

n!
(adx)n(y)

= g(−adx)(y) = g̃(adx)(y),

(4.173)

where the Bn are the Bernoulli numbers, whereas g(z) =
∑∞

n=0Bn z
n/n!

is the Maclaurin expansion of the function

g(z) :=
z

ez − 1
= 1/f(z),

and g̃(z) =
∑∞

n=0(−1)nBn z
n/n! is the Maclaurin expansion of

g̃(z) :=
z

1− e−z
= 1/f̃(z).
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– Let D = Hy
1

∂
∂ x be the unique continuous derivation of T̂ (Q〈x, y〉) such

that D(x) = Hy
1 and D(y) = 0. Then, an analogue of Corollary 4.35

ensures that: Dn(z) ∈ Ûn for every n ≥ 0 and every z ∈ T̂ . As a consequence,
the series

∑
n≥0D

n(z)/n! converges in T̂ and the formula

exp(D) : T̂ → T̂ , exp(D)(z) :=
∞∑

n=0

1

n!

(
Hy

1

∂

∂ x

)n
(z)

defines an endomorphism of T̂ . Actually, exp(D) is a continuous UAA
morphism of the algebra T̂ .

– Finally, the analogue of Reutenauer’s Theorem 4.36 ensures that

H(x, y) = exp(D)(x) =

∞∑

n=0

1

n!

(
Hy

1

∂

∂ x

)n
(x) = exp

(
Hy

1

∂

∂ x

)
(x),

(4.174)
where H(x, y) = Log(Expx · Exp y), and furthermore

Hy
n =

1

n!

(
Hy

1

∂

∂ x

)n
(x), for every n ≥ 0. (4.175)

Here, we have set (as stated above)

H(x, y) =
∞∑

j=0

Hy
j , where, for any j ∈ N ∪ {0},

Hy
j =

∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
k1+···+kn=j

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn! .

(4.176)

Remark 4.39. As a consequence of the above reasonings, the CBHD opera-
tion � can be written as follows

x � y =

∞∑

n=0

1

n!

(
Hy

1

∂

∂ x

)n
(x). (4.177)

In a certain quantitative sense, this states that Hy
1 (i.e., the series of the

summands in x � y containing y precisely once) completely determines x � y.
We think that it is not inappropriate to draw a parallel between this fact

and what happens in Lie groups. To explain the analogy we have in mind,
we make a simple example supposing that RN is endowed with a Lie group
structure by a map (x, y) �→ x∗y (everything works the same in any abstract
Lie group). If e is the identity of G = (RN , ∗), it is known that the Jacobian
matrix at y = e of the map τx(y) := x ∗ y has the following remarkable
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property: its N columns determine N vector fields which constitute a basis
for the Lie algebra of the Lie group G. Note that the cited Jacobian matrix
Jτx(e) is completely determined by the terms in the Maclaurin expansion of
y �→ x ∗ y containing y with degree 1. Hence Jτx(e) plays the same rôle as Hy

1 .
Now, by general results of Lie group theory, it is well known that the

Lie algebra of a (simply connected) Lie group completely determines (up to
isomorphism) the group itself. Even more explicitly, it can be proved that
the integral curves of the left-invariant vector fields allow us to reconstruct
the operation x∗ y of the group, at least for (x, y) in a neighborhood of (e, e).

The stated parallel is now evident: asHy
1 determines x�y by formula (4.177),

the Jacobian matrix Jτx(e) determines the operation x ∗ y via the integral curves of
its column vector fields. Even more closely, paralleling the identity

x � y = exp(D)(x), (4.178)

the cited integral curves are, by sheer chance, of “exponential type”: indeed,
if X is a left-invariant vector field, the integral curve γ(t) of X starting at x
has the Maclaurin expansion

γ(t) ∼∑∞
k=0

Xk(x)
k! tk =: exp(tX)(x).

If we further recall the formula (see e.g., [21, Proposition 1.2.29])

x ∗ y = exp(Log y)(x) (for x, y in a neighborhood of e),

then the analogy with (4.178) becomes completely palpable. ��
In this section we made use of the following result.

Proposition 4.40. Let (A, ∗) be an associative algebra and let D be a derivation
of A. Then

Dn(a1 ∗ · · · ∗ ak) =
∑

0≤i1,...,ik≤n
i1+···+ik=n

n!

i1! · · · ik! D
i1a1 ∗ · · · ∗Dikak, (4.179)

for every n, k ≥ 1 and every a1, . . . , ak ∈ A.
Proof. See page 451. ��

4.7 Cartier’s Proof

The aim of this section is to give a detailed exposition of Cartier’s proof of
the CBHD Theorem, as given in the paper [33]. We shall adapt the notations
of the cited paper to those of the present Book.
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For instance, with some slight modifications6 if compared to [33], we
suppose we are given a set X and a field K of characteristic zero, and we
consider the free vector space

V := K〈X〉,

its tensor algebra T (V ) and, as a subset of the latter, the free Lie algebra
L(V ). We further consider the subspace of T (V ) whose elements have
vanishing component of degree zero: this is the usual T+(V ). Furthermore,
we consider the algebra of the formal power series related to T (V ), that is,
the algebra T̂ (V ), endowed with the usual structure of metric space. The
closure of L(V ) in T̂ (V ) is denoted by L(V ) and T̂+(V ) is the ideal of all
formal power series having vanishing degree-zero term.

4.7.1 Some Important Maps

Next we have to introduce some important maps. We consider the unique
linear map (it is easy to verify that this is well defined)

g : T (V ) −→ T (V ) such that
{
g(1) = 0, g(v1) = v1,

g(v1 ⊗ · · · ⊗ vk) = [v1 · · · [vk−1, vk] · · · ],
(4.180)

for every v1, . . . , vk ∈ V and every k ≥ 2. Furthermore, we consider the
unique endomorphism D of T (V ) =

⊕∞
k=0 Tk(V ) whose restriction to

Tk(V ) is k times the identity map of Tk(V ). More explicitly, D is the unique
linear map

D : T (V ) −→ T (V ) such that
{
D(1) = 0, D(v1) = v1,

D(v1 ⊗ · · · ⊗ vk) = k v1 ⊗ · · · ⊗ vk,

(4.181)

for every v1, . . . , vk ∈ V and every k ≥ 2. It is immediately seen that D is a
derivation of T (V ):

6Actually, in [33], instead of the arbitrary set X, finite sets {x1, . . . , xn} are considered and
the Lie algebra L(V ) is substituted by Lie(X), the free Lie algebra over Q generated by X,
as we defined it in (2.56) on page 90, but eventually (see [33, page 243]) this Lie algebra
becomes identified with L

(
Q〈x1, . . . , xn〉

)
. Since we have previously proved that these

algebras are isomorphic (see Theorem 2.56 on page 91) we fix this identification from the
beginning.
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D(u · w) = D
(∑∞

k=0(
∑

i+j=k ui ⊗ wj)
)
=
∑∞

k=0 k(
∑

i+j=k ui ⊗ wj)

=
∑∞

k=0(
∑

i+j=k(i+ j)ui ⊗ wj)

=
∑∞

k=0(
∑

i+j=k(i ui)⊗ wj) +
∑∞

k=0(
∑

i+j=k ui ⊗ (j wj))

= (Du) · w + u · (Dw).
(4.182)

Here u =
∑∞

k=0 uk, w =
∑∞

k=0 wk and uk, wk ∈ Tk(V ) for every k ≥ 0 (and
uk, wk are different to 0 only for finitely many k).

We remark that both g andD map Tk(V ) to itself. This is enough to prove
that g,D are uniformly continuous linear maps, when T (V ) is considered
as a subspace of the usual metric space T̂ (V ) (see Lemma 2.79 on page 103:
take kn := n in hypothesis (2.88)). As a consequence, g and D can be
uniquely prolonged to continuous maps ĝ, D̂ respectively, which are also
endomorphisms of T̂ (V ). Taking into account the fact that

T̂ (V ) =
∏∞

k=0 Tk(V ),

the explicit actions of ĝ and D̂ on elementary elements v1⊗ · · ·⊗ vk of T̂ (V )
are exactly as in (4.180) and (4.181) respectively:

ĝ, D̂ : T̂ (V ) −→ T̂ (V ) are such that
{
ĝ(1) = 0, ĝ(v1) = v1,

ĝ(v1 ⊗ · · · ⊗ vk) = [v1 · · · [vk−1, vk] · · · ],
(4.183)

and

{
D̂(1) = 0, D̂(v1) = v1,

D̂(v1 ⊗ · · · ⊗ vk) = k v1 ⊗ · · · ⊗ vk,

for every v1, . . . , vk ∈ V and every k ≥ 2. Moreover, the same computation
as in (4.182) proves that D̂ is a derivation of T̂ (V ).

Remark 4.41. We observe that the restrictions of ĝ and D̂ to T̂+ are endomor-
phisms of T̂+. Moreover

D̂|
T̂+

: T̂+(V )→ T̂+(V )

is bijective and its inverse, say d̂, is the unique linear map

d̂ : T̂+(V ) −→ T̂+(V ) such that
{
d̂(v1) = v1,

d̂(v1 ⊗ · · · ⊗ vk) =
1
k v1 ⊗ · · · ⊗ vk,

(4.184)
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for every v1, . . . , vk ∈ V and every k ≥ 2. As a consequence, it is
immediately seen that the composition ĝ ◦ d̂ coincides with the restriction
to T̂+ of the map P̂ in Theorem 3.32 on page 153. Now, since any iterated
bracket [v1 · · · [vk−1, vk] · · · ] is a linear combination of elementary tensors of
order k on V , it is straightforwardly shown that

ĝ ◦ d̂ = d̂ ◦ ĝ on T̂+(V ). (4.185)

Thus, recalling that d̂ = (D̂)−1 on T̂+, by the chain of equivalences

P̂ (t) = t ⇔ ĝ(d̂(t)) = t ⇔ d̂(ĝ(t)) = t ⇔ (D̂)−1(ĝ(t)) = t ⇔ ĝ(t) = D̂(t),

and by (3.76) on page 154, we get the further characterization of L(V )

L(V ) =
{
t ∈ T̂+(V )

∣
∣ ĝ(t) = D̂(t)

}
. (4.186)

This can be viewed as a restatement of the Dynkin, Specht, Wever Lemma,
in terms of the maps ĝ, D̂.

Finally, we need to construct a further map, whose existence is more
delicate. We claim that there exists a morphism of UA algebras θ̂

θ̂ : T̂ (V ) −→ End(T̂+(V )) such that
{
θ̂(1) = Id

T̂+(V )
, θ̂(v1) = ad (v1),

θ̂(v1 ⊗ · · · ⊗ vk) = ad (v1) ◦ · · · ◦ ad (vk),
(4.187)

for every v1, . . . , vk ∈ V and every k ≥ 2. In (4.187), given v ∈ V , we are
considering the usual adjoint map ad (v) as an endomorphism of T̂+(V ):

ad (v) : T̂+(V )→ T̂+(V ), w �→ ad (v)(w) = v · w − w · v;

note that this is actually an endomorphism of T̂+(V ), since T · T̂+ ⊆ T̂ ·
T̂+ ⊆ T̂+ and analogously T̂+ · T ⊆ T̂+. We next prove our claim for θ̂ in
the following lemma.

Lemma 4.42. There exists a UAA morphism θ̂ as in (4.187). Also, θ̂(t) is a
continuous endomorphism of T̂+(V ), for every t ∈ T̂ (V ). Furthermore, if {γk}k
is any sequence in T̂ (V ) such that t :=

∑∞
k=0 γk is convergent in T̂ (V ), then we

have

θ̂(t)(τ) =
∞∑

k=0

θ̂(γk)(τ), ∀ τ ∈ T̂+(V ), (4.188)
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the series on the right-hand side being convergent in the metric space T̂+(V ).
Finally,

θ̂(�) = ad (�), for every � ∈ L(V ), (4.189)

both sides being meant as endomorphisms of T̂+(V ).

Proof. The proof is simple – though tedious. For completeness, we give it in
the appendix, page 452. ��
The maps ĝ and θ̂ are related by the following result.

Lemma 4.43. With the above notation, we have

ĝ(x · y) = θ̂(x)(ĝ(y)), for every x ∈ T̂ (V ) and every y ∈ T̂+(V ). (4.190)

Proof. First note that ĝ(y) is in T̂+, thanks to (4.183) and the fact that y ∈
T̂+(V ).

To begin with (4.190), we imitate the proof of Lemma 8.5, on page 466, in
proving that

g(x · y) = θ(x)(g(y)), for every x ∈ T (V ), y ∈ T+(V ), (4.191)

where g is as in (4.180) and θ is as in (7.65).
Proof of (4.191): If x = k ∈ T0(V ), (4.191) is trivially true, indeed we have

g(k · y) = g(k y) = k g(y) (since g is linear) and (recalling that θ is a UAA
morphism, hence unital)

θ(k)(g(y)) = k IdT+(g(y)) = k g(y).

Thus we are left to prove (4.191) when both x, y belong to T+(V ); moreover,
by linearity, we can assume without loss of generality that

x = v1 ⊗ · · · ⊗ vk and y = w1 ⊗ · · · ⊗ wh,

with h, k ≥ 1 and the vectors v and w are elements of V :

g(x · y) = g
(
v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wh

)

(4.180)
= [v1, . . . [vk, [w1, . . . [wh−1, wh] . . .]] . . .]

= ad (v1) ◦ · · · ◦ ad (vk)
(
[w1, . . . [wh−1, wh] . . .]

)

(by (7.65) and (4.180), the cases h = 1 and h > 1 being analogous)

= θ(v1 ⊗ · · · ⊗ vk)(g(w1 ⊗ · · · ⊗ wh)) = θ(x)(g(y)).
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We finally prove (4.190). Let x = (xk)k ∈ T̂ and y = (yk)k ∈ T̂+. We have
(recall that ĝ is the continuous prolongation of g)

ĝ(y) =
∑∞

k=0 g(yk), and g(yk) ∈ Tk(V ) for every k ≥ 1.

As a consequence, the definition (7.66) of θ̂ gives

θ̂(x)(ĝ(y)) =
∑∞

h,k=0 θ(xh)(g(yk)) (we can apply (4.191) for y0 = 0)

=
∑∞

h,k=0 g(xh · yk) (reordering)

=
∑∞

j=0

∑
h+k=jg(xh · yk) =

∑∞
j=0 g
(∑

h+k=jxh · yk
)

=
∑∞

j=0 g
(
(x · y)j

)
= ĝ(x · y).

This completes the proof of (4.190). ��

4.7.2 A New Characterization of Lie Elements

With the results in Sect. 4.7.1 at hand, it is possible to give a new characteri-
zation of the elements of L(V ).

It is easily seen that the formula

x�y := Log(Exp(x) · Exp(y)), x, y ∈ T̂+(V ) (4.192)

defines on T̂+(V ) a group structure. Indeed, we proved this in Proposition
3.10 (page 127) as a consequence of the fact that 1+T̂+(V ) is a multiplicative
subgroup of T̂ (V ) (see Lemma 3.1 on page 118) together with the fact that
Exp and Log are inverse to each other.

We next make the following definition

H :=
{
u ∈ 1 + T̂+(V )

∣
∣ Log(u) ∈ L(V )

}
= Exp(L(V )). (4.193)

Note that u−1 is well posed for every u ∈ H, since H is a subset of 1+T̂+(V ),
which is – as we recalled above – a multiplicative subgroup of T̂ (V ).

Following Cartier’s [33, Lemme 2], we prove the following result.

Theorem 4.44 (Cartier). Let H be the set in (4.193). Let also ĝ, D̂ be the linear
maps in (4.183) and let θ̂ be the UAA morphism constructed in Lemma 4.42.

Then, an element u ∈ 1 + T̂+(V ) belongs to H if and only if the following two
conditions hold:
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ĝ(u − 1) = D̂(u) · u−1, (4.194)

θ̂(u)(x) = u · x · u−1, for every x ∈ T̂+(V ). (4.195)

Proof. Let u ∈ 1 + T̂+(V ) and set z := Log(u), that is, u = Exp(z). Note that
z ∈ T̂+(V ). Let us denote by Lz and Rz , respectively, the endomorphisms of
T̂+(V ) given by

Lz(x) := z · x, Rz(x) := x · z, ∀ x ∈ T̂+(V ).

For every x ∈ T̂+(V ), thanks to Theorem 4.14 on page 205, it holds that

u · x · u−1 = Exp(z) · x · Exp(−z) =
∞∑

h=0

1

h!
(ad z)◦h(x).

Noting that ad (z) = Lz − Rz and using the same formalism as in Defini-
tion 4.17 on page 209, this can be rewritten as

u · x · u−1 = eLz−Rz (x). (4.196)

We are indeed entitled to apply the cited formalism, for ad (z) is an
endomorphism of T̂+(V ) mapping ÛN :=

∏∞
k=N Tk(V ) into ÛN+1 =

∏∞
k=N+1 Tk(V ), for every N ≥ 0 (this follows from the fact that z ∈ T̂+(V )).

We claim that, with the same formalism,

θ̂(u) = eθ̂(z). (4.197)

To begin with, we note that θ̂(z) maps ÛN into ÛN+1 for every N ≥ 0, so
that the right-hand side of (4.197) makes sense. Indeed, if τ ∈ ÛN , we have
τ = (τk)k with τk = 0 for every k = 0, . . . , N − 1. Then, it holds that

θ̂(z)(τ)
(7.66)
=

∞∑

h,k=0

θ(zh)(τk) =
∑

h≥1, k≥N

θ(zh)(τk) ∈
∏∞

k=N+1 Tk(V ),

since z0 = 0 being z ∈ T̂+(V ). Next, we prove (4.197). First we remark that,
if z = (zk)k ∈ T̂+ (with zk ∈ Tk(V ) for every k ≥ 0 and z0 = 0), then

Exp(z) = 1 +

∞∑

j=1

( j∑

k=1

1

k!

∑

α1+···+αk=j

zα1 · · · zα1

)
.

Note that the last sum in parentheses belongs to Tj(V ). Hence, by applying
the definition of θ̂ in (7.66), we get
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θ̂(u) = θ̂(Exp(z)) = Id +
∞∑

j=1

θ
( j∑

k=1

1

k!

∑

α1+···+αk=j

zα1 · · · zα1

)

(recall that θ is a UAA morphism)

= Id +

∞∑

j=1

( j∑

k=1

1

k!

∑

α1+···+αk=j

θ(zα1) ◦ · · · ◦ θ(zα1)
)

=
∞∑

k=0

1

k!

( ∞∑

h=1

θ(zh)
)◦ k (4.188)

=
∞∑

k=0

1

k!

(
θ̂(z)
)◦ k

= eθ̂(z).

This proves (4.197). Collecting together (4.196) and (4.197), we see that

(4.195) holds if and only if eθ̂(z) ≡ eLz−Rz . (4.198)

We claim that the condition eθ̂(z) ≡ eLz−Rz is equivalent to θ̂(z) = Lz − Rz .
We have to prove a sort of injectivity condition, the argument being not
obvious since it is known that the exp maps are not injective in any context
where they have sense. A possible way to formulate this is the following
one: Let us consider the class of endomorphisms

H :=
{
E ∈ End(T̂+(V ))

∣
∣
∣ E
( ∞∏

k=N

Tk(V )
)
⊆

∞∏

k=N+1

Tk(V ), ∀ N ≥ 0
}
.

Given a formal power series
∑∞

k=0 ak z
k ∈ K[[z]], we have already discussed

that
∑∞

k=0 ak E
k is well defined as an endomorphism of T̂+, provided that

E ∈ H. We next remark that

∑∞
k=0 ak E

k is an element of H, whenever E ∈ H and if a0 = 0.

Indeed, if a0 = 0 and E ∈ H we have

∞∑

k=1

ak Ek(τ)
︸ ︷︷ ︸

∈∏∞
k=N+k Tk(V )

∈∏∞
k=N+1 Tk(V ),

for every τ ∈ ∏∞
k=N Tk(V ). For example, considering the formal power

series of ez − 1, that is,
∑∞

k=1 z
k/k!, the following map E is well defined

H � E
E�→ eE − Id :=

∑∞
k=1

1
k! E

k ∈ H.

Now, by simple arguments, it is easily seen that the above map is invertible
and its inverse is precisely
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H � E
L�→ log(E + Id) :=

∑∞
k=1

(−1)k+1

k E k ∈ H.

As a consequence, if A,B ∈ H are such that eA = eB then eA− Id = eB − Id
(which belong to H), that is, E(A) = E(B) so that, by applying the above
map L to this identity we get A = B.

All these arguments can be applied to the identity on the far right-hand
of (4.198), since θ̂(z) and Lz − Rz = ad (z) belong to the above class H (as
z ∈ T̂+). We have thus proved that

(4.195) holds if and only if θ̂(z) ≡ ad (z). (4.199)

Now, by rerunning a computation as in Djoković’s proof and also in Reute-
nauer’s (see page 211 for the details which we omit here), the fact that D̂ is a
derivation of T̂ (V ) (plus some properties of the binomial coefficients) gives

D̂(u) · u−1 =

∞∑

n=1

1

n!
(ad z)◦n−1(D̂(z)).

Note that, by (4.183), the restriction of D̂ to T̂+ is a derivation of T̂+, so that
D̂(z) ∈ T̂+(V ). If we introduce the formal power series

ϕ(z) :=
ez − 1

z
∼

∞∑

n=1

zn−1

n!
,

then the above computation can be rewritten as

D̂(u) · u−1 = ϕ(ad (z))(D̂(z)). (4.200)

We next consider the left-hand side of (4.194). For this, we have the
following chain of equalities:

ĝ(u− 1) = ĝ(Exp(z)− 1) = ĝ

( ∞∑

n=1

zn

n!

)

= ĝ

(( ∞∑

n=1

zn−1

n!

)
· z
)

(4.190)
= θ̂
( ∞∑

n=1

zn−1

n!

)
(ĝ(z))

(4.188)
=

∞∑

n=1

θ̂(zn−1)

n!
(ĝ(z))

(θ̂ is a UAA morphism)

=
∞∑

n=1

1

n!

(
θ̂(z)
)◦n−1

(ĝ(z)) = ϕ
(
θ̂(z)
)
(ĝ(z)).
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We have thus proved that

ĝ(u − 1) = ϕ
(
θ̂(z)
)
(ĝ(z)). (4.201)

Thus, collecting together (4.200) and (4.201), we see that

(4.194) holds if and only if ϕ
(
θ̂(z)
)
(ĝ(z)) = ϕ(ad (z))(D̂(z)). (4.202)

From a result analogous to the one stated in the last part of Lemma 4.18
(page 209), we recognize that ϕ(E) is invertible, for every E ∈ H (since
the formal power series for ϕ admits a reciprocal). Then, if (4.195) holds,
we see from (4.199) that θ̂(z) ≡ ad (z) so that the far right-hand of (4.202)
becomes ϕ(ad (z))(ĝ(z)) = ϕ(ad (z))(D̂(z)), that is (by the above remarks),
ĝ(z) = D̂(z).

By all the above results, we easily see that

Conditions (4.194) and (4.195) hold if and only if the following conditions hold:

θ̂(z) ≡ ad (z), (4.203)

ĝ(z) = D̂(z). (4.204)

Indeed, the following implications hold:

(4.195)
see (4.199)⇐⇒ (4.203);

(4.194) & (4.195)
see (4.199)
=⇒ (4.204);

(4.203) & (4.204)
see (4.202)
=⇒ (4.194);

so that (4.194) & (4.195) ⇐⇒ (4.203) & (4.204).

The final step is to prove that (4.203) is actually contained in (4.204). This
will prove that

(4.194) & (4.195) hold if and only if (4.204) holds.

This will end the proof, for, in view of (4.186), condition (4.204), that is,

ĝ(Log(u)) = D̂(Log(u)),

is equivalent to Log(u) ∈ L(V ), that is, u ∈ H.
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We are thus left to prove the implication

(4.204) =⇒ (4.203).

If z ∈ T̂+ is such that ĝ(z) = D̂(z), then by (4.186) it holds that z ∈ L(V ). As
a consequence we are entitled to apply (4.189), thus getting θ̂(z) = ad (z).
This is precisely (4.203). This completes the proof. ��
The above theorem gives at once the following result:

Corollary 4.45. Let H be the set introduced in (4.193). Then H is a multiplicative
subgroup of 1 + T̂+(V ).

Proof. We already know that 1 + T̂+(V ) is a multiplicative subgroup of
T̂ (V ). Clearly H is closed under multiplicative inversion: indeed if u ∈ H,
there exists � ∈ L(V ) such that u = Exp(�) so that

u−1 = (Exp(�))−1 = Exp(−�) ∈ Exp(L(V )) = H.

Hence, we have to prove that

u · v ∈ H, for every u, v ∈ H.

Set w := u · v. By means of Theorem 4.44, all we have to prove is that w
satisfies conditions (4.194) and (4.195), knowing that u, v satisfy them as
well. We start with (4.195): let x ∈ T̂+(V ), then we have

θ̂(w)(x) = θ̂(u · v)(x) (θ̂ is a UAA morphism)

= θ̂(u) ◦ θ̂(v)(x) (v satisfies (4.195))

= θ̂(u)(v · x · v−1) (u satisfies (4.195))

= u · v · x · v−1 · u−1 = w · x · w−1.

We next prove (4.194):

D̂(w) · w−1 = D̂(u · v) · v−1 · u−1 (D̂ is a derivation)

= D̂(u) · v · v−1 · u−1 + u · D̂(v) · v−1 · u−1

= D̂(u) · u−1 + u · D̂(v) · v−1 · u−1

(u and v satisfy (4.194))

= ĝ(u − 1) + u · ĝ(v − 1) · u−1 (u satisfies (4.195))
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= ĝ(u − 1) + θ̂(u)(ĝ(v − 1))
(4.190)
= ĝ(u − 1) + ĝ(u · (v − 1))

= ĝ(u − 1 + u · v − u) = ĝ(u · v − 1) = ĝ(w − 1).

(Here we also applied the fact that v − 1 ∈ T̂+ for v ∈ H ⊆ 1 + T̂+.) This
completes the proof of the corollary. ��
As a consequence of the above corollary, we can prove the following:

Corollary 4.46 (Campbell, Baker, Hausdorff). If V is a vector space over a
field of characteristic zero, then (L(V ), �) is a group, where � is as in (4.192).

In particular we have

Log(Exp(x) · Exp(y)) ∈ L(V ), for every x, y ∈ L(V ). (4.205)

Proof. Being H = Exp(L(V )), the map Exp|
L(V ) : L(V ) → H is clearly

a bijection, with inverse Log|H : H → L(V ). Hence, in view of the very
definition of � in (4.192), the fact that (L(V ), �) is a group follows from the
fact that (H, ·) is a group (see Corollary 4.45). This ends the proof. ��
Starting from the above Corollary 4.46, we can further derive the CBHD
Theorem itself, proceeding as in Sects. 3.3.2 and 3.3.3.



Chapter 5
Convergence of the CBHD Series
and Associativity of the CBHD Operation

THE aim of this chapter is twofold. On the one hand, we aim to study the
convergence of the Dynkin series

u � v :=

∞∑

j=1

( j∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)
h1+k1+···+hn+kn=j

× (adu)h1(ad v)k1 · · · (adu)hn(ad v)kn−1(v)

h1! · · ·hn! k1! · · · kn! (
∑n

i=1(hi + ki))

)

,

in various contexts. For instance, this series can be investigated in any
nilpotent Lie algebra (over a field of characteristic zero) where it is actually
a finite sum, or in any finite dimensional real or complex Lie algebra and,
more generally, its convergence can be studied in any normed Banach-Lie
algebra (over R or C). For example, the case of the normed Banach algebras
(becoming normed Banach-Lie algebras if equipped with the associated
commutator) will be extensively considered here.

On the other hand, once the well-posedness of the “operation” � has been
established (at least in a neighborhood of the origin), the problem of its
“associativity” can be considered. For instance, we shall obtain a local result,
providing the identity

a � (b � c) = (a � b) � c,
at least when a, b, c belong to a neighborhood of the origin of any normed
Banach-Lie algebra. Also, this identity turns out to be global when we are
dealing with nilpotent Lie algebras, a fact which is frequently considered as
a folklore consequence of the CBHD Theorem, but which deserves – in our
opinion – a rigorous derivation.

What is more, in the context of finite-dimensional nilpotent Lie algebras n,
we are able to solve the problem of finding a (connected and simply

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 5,
© Springer-Verlag Berlin Heidelberg 2012
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connected) Lie group whose Lie algebra is isomorphic to n: namely, (n, �)
solves this problem. By invoking only very basic facts on Lie groups, we
are thus in a position to prove the so-called Third Fundamental Theorem of
Lie, in its global form, for n. This gives a very significant application of the
CBHD operation for Lie group theory (actually, the original context where
the CBHD Theorem was born).

In dealing with these topics, we shall make use of as much information as
possible deriving from the identities implicit in the general CBHD Theorem:
these identities are the following ones (the relevant notation has been
introduced in Chap. 3):

x � y = x�y, Exp(u � v) = Exp(u) · Exp(v), a � (b � c) = (a � b) � c.

As a matter of fact, these are identities between formal power series of the
tensor algebra of a vector space (over a field of characteristic zero), so that
their applicability to different settings cannot be forced and, if we want
to use them in other contexts, some work must be accomplished. But this
work is worthwhile, since it yields useful identities on any associative or
Lie algebra.

Whereas the first identity has been already investigated in this Book
(see e.g., Theorem 3.34 on page 157 or identity (4.19) on page 185), it
is within the scope of the present chapter to study the other two. For
example, when suitably “truncated”, we can obtain from the second identity
a family of equalities valid in any associative algebra and serving, for
example, as a starting point for plenty of applications in Analysis (e.g. of
some partial differential operators) or in Differential Geometry (e.g. of Lie
groups). Obviously, by “truncating” the third of the above identities, we are
able to provide the starting point for the associativity investigations of this
chapter.

An alternative approach to the above topics may be obtained by a
systematical use of analytic functions on a domain in a Banach space: once
it is known how to deal with functions (locally) admitting power series
expansions, many results (including the associativity of �, since the map
(a, b) �→ a � b turns out to be analytical!) can be derived at once by identities
between formal power series. For this alternative approach, we refer the
Reader to the very effective exposition given by Hofmann and Morris
[91, Chapter 5], allowing ourselves to furnish only a brief sketch (see
Sect. 5.5.1). By making use of a “unique continuation” result proved in the
setting of analytic functions between Banach spaces, we will be able to
exhibit in full details an example of non-convergence of the CBHD series in
a Banach algebra (namely, that of the real 2 × 2 matrices). This is done in
Sect. 5.6.

As the problem of finding the largest domain of convergence of the CBHD
series is still an open question, it is beyond the scope of this chapter to
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provide final results. We shall instead furnish an overview of references at
the end of the chapter (see Sect. 5.7).

The exposition is organized as follows:

– Section 5.1 provides identities -for a general associative algebra- resulting
from the CBHD identity Exp(u � v) = Exp(u) · Exp(v).

– Section 5.2 collects results on the convergence of the Dynkin series u�v in
various contexts: first (as an introductory section) on finite dimensional
Lie algebras, then – more generally – on Banach-Lie algebras. In the
former setting, a result concerning the real analyticity of � will also be
given; in the latter context, a result on the rate of convergence of the
Dynkin series is provided (see Theorem 5.31). Finally, Sect. 5.2.3 furnishes
an adaptation of a remarkable argument by Varadarajan on an improved
domain of convergence for the cited series, this argument gathering
together the algebraic recursion formula found in the previous chapter
(see Sect. 4.5.1) plus an interesting technique from the Theory of ODEs.

– In Sect. 5.3 we study the associativity property of the CBHD operation
(x, y) �→ x � y. As considered in the previous sections, the right context in
which this infinite sum makes sense is that of Banach-Lie algebras, where
� is a priori defined only in a neighborhood of the origin. We shall then
prove (in Sect. 5.3.2) that � defines a local group, so that in particular it is
associative (in a suitable neighborhood of the origin).

– Another case of interest is that of the nilpotent Lie algebras, which
we take up in Sect. 5.4: in this case � is globally defined (since the
associated series becomes in fact a finite sum) and it defines a group
on the whole algebra (see Sect. 5.4.1). Furthermore, we shall prove that
once n is finite-dimensional – besides being nilpotent – then (n, �) is a
Lie group, whose Lie algebra is isomorphic to n itself. This solves the
Third Fundamental Theorem of Lie, in global form, for finite-dimensional
nilpotent Lie algebras, thus furnishing a remarkable application of the
CBHD operation (see Sect. 5.4.2 for the details).

– Section 5.5 is devoted to the CBHD formula for normed Banach algebras
(A, ∗, ‖ · ‖). Indeed, in this context it is possible to define the exponential
function Exp (think, for instance, of the algebra of square matrices) and to
consider a further problem, besides that of the convergence of the series
expressing u � v: namely, we are interested in deriving the identity

Exp(u � v) = Exp(u) ∗ Exp(v).

This is done in Theorem 5.56. In Sect. 5.5.1, we define analytic functions
between Banach spaces and we prove some basic facts, including a
Unique Continuation Theorem.

– Section 5.6 is devoted to exhibiting an example of failure of convergence for
the CBHD series. We use the results on analytic functions from Sect. 5.5.1.
We also establish a result of independent interest (see Theorem 5.67):
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If the CBHD series expressing a� b is convergent for some a, b in a Banach
algebra (A, ∗), then the equality Exp(a) ∗ Exp(b) = Exp(a � b) necessarily
holds.

– Section 5.7 collects some references on the literature on convergence of
the CBHD series and on related topics.

5.1 “Finite” Identities Obtained from the CBHD Theorem

One of the most useful applications of the CBHD Formula is that it provides,
as a byproduct, identities in any associative algebra (without the require-
ment of any topology) simply by taking the projections onto the respective
subspaces Tk w.r.t. T =

⊕
k Tk. We describe in this section how this can be

accomplished.

Throughout, V will denote a fixed vector space over a field K of characteristic
zero. (A hypothesis which will not be recalled in the sequel.)

Let N ∈ N be fixed. We set

HN :=
{
(u0, u1, . . . , uN , 0, 0, . . .) ∈ T (V )

∣
∣ uj ∈ Tj(V ), ∀ j ∈ N ∪ {0}

}
.

(5.1)
We shall consider HN both as a subspace of T (V ) or of T̂ (V ), depending
on the occasion. We obviously have (see the notation in Remark 2.80, page
104)

HN � T (V )/UN+1 � T̂ (V )/ÛN+1. (5.2)

We shall denote by πN the endomorphism of T̂ (V ) acting as follows:

πN : T̂ (V )→ T̂ (V ), (u0, u1, . . .) �→ (u0, u1, . . . , uN , 0, 0, . . .).

In practice (see (5.2)) πN is the natural projection of T̂ (V ) onto the quotient
HN � T̂ (V )/ÛN+1.

Remark 5.1. The following simple facts are obvious from the definition
of πN :

1. πN (T (V )) = πN (T̂ (V )) = HN .
2. one has πN (T+(V )) ⊂ T+(V ), and πN (T̂+(V )) ⊂ T̂+(V ), or equivalently,
πN (U1) ⊂ U1, and πN (Û1) ⊂ Û1.

3. πN (u) = πN (v) if and only if the homogeneous components of degrees
0, 1, . . . , N of u and of v coincide.

4. ker(πN ) = ÛN+1.
5. πN is the identity on HN , whence on T0(V ),T1(V ), . . . ,TN (V ) too.
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Unfortunately πN is not an algebra morphism,1 though it possesses the
following “quasi-morphism” property:

πN (u · v) = πN
(
πN (u) · πN (v)

)
, for every u, v ∈ T̂ (V ). (5.3)

Indeed, for every u = (uj)j , v = (vj)j in T̂ (V ) we have

πN (u · v) = πN

((∑j
k=0 uj−k ⊗ vk

)
j≥0

)

=
(
u0 ⊗ v0, u1 ⊗ v0 + u0 ⊗ v1, . . . ,

∑N
k=0 uN−k ⊗ vk, 0, . . .

)
.

On the other hand, we also have

πN (u) · πN (v) = (u0, u1, . . . , uN , 0, . . .) · (v0, v1, . . . , vN , 0, . . .)
=
(∑j

k=0 uj−k ⊗ vk
)
j≥0

,

where we have set

uj :=

{
uj, if 0 ≤ j ≤ N,

0, if j ≥ N + 1,
and, analogously, vj :=

{
vj , if 0 ≤ j ≤ N,

0, if j ≥ N + 1.

Now, if 0 ≤ j ≤ N , we obviously have

∑j
k=0 uj−k ⊗ vk =

∑j
k=0 uj−k ⊗ vk,

and (5.3) follows from Remark 5.1-3. ��
The following result will help us in applying the πN map on both sides of

the “exponential” identity Exp(u � v) = Exp(u) · Exp(v) (resulting from the
CBHD Theorem, see Corollary 3.33, page 156).

Lemma 5.2. Let Exp : T̂+(V )→ T̂ (V ) be the usual exponential function. Then

πN (Exp(u)) = πN (Exp(πN (u))), (5.4)

for every u ∈ T̂+(V ) and every N ∈ N. In other words, Exp(u) and Exp(πN (u))

have the same components in T̂ (V ) =
∏∞

j=0 Tj(V ) up to degree N .

1Indeed, for example we have

π1(u · v) = (
u0 ⊗ v0, u0 ⊗ v1 + u1 ⊗ v0, 0, 0, . . .

)


= π1(u) · π1(v) = (u0, u1, 0, . . .) · (v0, v1, 0, . . .)
=

(
u0 ⊗ v0, u0 ⊗ v1 + u1 ⊗ v0, u1 ⊗ v1, 0, . . .

)
.



270 5 Convergence and Associativity for the CBHD Theorem

Proof. First of all we have (recall that πN is linear)

πN (Exp(u)) = πN
(∑N

n=0 u
n/n!
)
+ πN
(∑∞

n=N+1 u
n/n!

︸ ︷︷ ︸
∈ ÛN+1 for u ∈ Û1

)

(the second summand vanishes, for πN ≡ 0 on ÛN+1)

=

N∑

n=0

πN (un)

n!
(use (5.3) and induction)

=

N∑

n=0

πN
(
(πN (u))n

)

n!
= πN

( N∑

n=0

(πN (u))n

n!

)

(argue as above, recalling that πN (Û1) = Û1)

= πN

( N∑

n=0

(πN (u))n

n!
+

∞∑

n=N+1

(πN (u))n

n!

)

= πN (Exp(πN (u))).

Here we have used twice the following fact: if v ∈ Û1 then vn ∈ Ûn, so that
vn ∈ ÛN+1 for every n ≥ N + 1, whence

∞∑

n=N+1

vn

n!
∈ ÛN+1 = ÛN+1.

The proof of (5.4) is complete. ��
From the proof of Lemma 5.2 we immediately derive the following result.

Lemma 5.3. With the notation of Lemma 5.2, we have

πN (Exp(u)) =

N∑

n=0

un

n!
for every u ∈ V and N ∈ N. (5.5)

Proof. From the computations in Lemma (5.2), we have

πN (Exp(u)) =
∑N

n=0 πN (un)/n!.

Then we immediately get (5.5) by noticing that, if u ∈ V then

un = u⊗n ∈ TN (V ),

so that πN (un) = un for every n = 0, 1, . . . , N . ��
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From Lemma 5.3, we get:

Lemma 5.4. With the notation of Lemma 5.2, we have

πN
(
Exp(u) · Exp(v)) =

∑

0≤i+j≤N

ui · vj
i! j!

, (5.6)

for every u, v ∈ V and N ∈ N.

Proof. Let u, v ∈ V . The following computation applies:

πN
(
Exp(u) · Exp(v)) (5.3)

= πN

(
πN (Expu) · πN (Exp v)

)

(5.5)
= πN

( N∑

i,j=0

ui · vj
i! j!

)

=
∑

0≤i+j≤N

ui · vj
i! j!

.

In the last equality we used the fact that u, v ∈ V = T1(V ) implies ui ·
vj ∈ Ti+j(V ), and we further exploited the fact that πN is the identity on
T0, . . . ,TN , whereas it vanishes on TN+1,TN+2, . . . ��
We now aim to apply the map πN to the identity

Exp(u � v) = Exp(u) · Exp(v), ∀ u, v ∈ V,

resulting from (3.82) at page 156. We get

πN
(
Exp(u � v)) = πN

(
Exp(u) · Exp(v)), ∀ u, v ∈ V, N ∈ N. (5.7)

The right-hand side of (5.7) has been computed in (5.6), whilst the left-hand
side equals

πN

(
Exp
(
πN (u � v))

)
,

thanks to (5.4) (recall that u�v ∈ T̂+(V ) whenever u, v ∈ T̂+(V )). In its turn,
πN (u � v) can be easily computed as follows (see (3.27), page 130):

πN (u � v) = πN

( ∞∑

n=1

(

cn
∑

(h,k)∈Nn

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

))

(
notice that

[
uh1vk1 · · ·uhnvkn

]
⊗ ∈ T|h|+|k| since u, v ∈ V ,

and recall that |h|+ |k| ≥ n for every (h, k) ∈ Nn

)
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=

N∑

n=1

(

cn
∑

(h,k)∈Nn: |h|+|k|≤N

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

)

= ηN (u, v),

where ηN (u, v) was introduced in (3.30), page 131. Hence we have proved
the following equality

πN (u � v) = ηN (u, v), ∀ u, v ∈ V, N ∈ N. (5.8)

Collecting together all the above facts, we have derived the identity

πN

(
Exp
(
ηN (u, v)

))
=
∑

0≤i+j≤N

ui · vj
i! j!

, (5.9)

valid for every u, v ∈ V and every N ∈ N. By the definition of πN , this
means that

Exp
(
ηN (u, v)

) ≡
∑

0≤i+j≤N

ui · vj
i! j!

modulo ÛN+1, (5.10)

again for every u, v ∈ V and every N ∈ N.
We now aim to expand Exp

(
ηN (u, v)

)
, to derive further information from

(5.9) and (5.10). To this end, we have

Exp
(
ηN (u, v)

)
=

N∑

s=0

(ηN (u, v))s

s!
+

∞∑

s=N+1

(ηN (u, v))s

s!
.

Now notice that the second sum in the above right-hand side belongs to
ÛN+1. Indeed, by the very definition of ηN (u, v), for every u, v ∈ V we have

ηN (u, v) ∈ T1(V )⊕ · · · ⊕TN (V ) ⊂ Û1,

so that (ηN (u, v))s ∈ ÛN+1 for every s ≥ N + 1. Consequently

Exp
(
ηN (u, v)

) ≡
N∑

s=0

(ηN (u, v))s

s!
modulo ÛN+1, (5.11)

for every u, v ∈ V and every N ∈ N. From (5.10) and (5.11), we get an
important “finite” identity:

N∑

s=0

(ηN (u, v))s

s!
≡
∑

0≤i+j≤N

ui · vj
i! j!

modulo ÛN+1, (5.12)
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for every u, v ∈ V and every N ∈ N. Notice that “modulo ÛN+1” in the
above (5.12) can be replaced by

“modulo TN+1 ⊕TN+2 ⊕ · · · ⊕TN2”

since the left-hand side of (5.12) belongs to T0⊕T1⊕ · · ·⊕TN2 . We are thus
in a position to derive our main result for this section, a theorem giving a
“finite” version of the CBHD Formula Exp(u � v) = Exp(u) · Exp(v) (which
is an identity in the space of formal power series T̂ (V )).

Theorem 5.5. Let V be a vector space over a field of characteristic zero. LetN ∈ N.
Then there exists a function

RN+1 : V × V →
N2
⊕

n=N+1

Tn(V )

such that the following identity in T (V ) holds for any choice of u, v ∈ V :

N∑

s=0

1

s!

(
N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|≤N

[
uh1vk1 · · ·uhnvkn

]
⊗

h! k! (|h|+ |k|)

)s

=
∑

0≤i+j≤N

u⊗i ⊗ v⊗j

i! j!
+ RN+1(u, v). (5.13)

Obviously, the “remainder” function RN+1 in the above statement is
expressed by the “universal” expression

RN+1(u, v) :=
N∑

s=0

1

s!

(
N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|≤N

[
uh1vk1 · · ·uhnvkn

]
⊗

h! k! (|h|+ |k|)

)s

−
∑

0≤i+j≤N

u⊗i ⊗ v⊗j

i! j!
. (5.14)

The important (and nontrivial!) fact about RN+1 is that the right-hand side
of (5.14) belongs to TN+1(V )⊕TN+2(V )⊕ · · · ⊕TN2(V ).

Since Theorem 5.5 establishes an identity in the tensor algebra of an arbi-
trary vector space (on a field of 0 characteristic K), we can derive an analo-
gous result on an arbitrary associative algebra (over K), as described below.

Remark 5.6. Let (A, ∗) be an associative algebra (over the field K). In case A
is not unital (or even if it is), we can “add” an element toA so thatA becomes
(isomorphic to) a subalgebra of a UAA algebra A1, in the following way. Let
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us equip the vector space A1 := K×A with the operation

(k1, a1) � (k2, a2) :=
(
k1k2, k1 a2 + k2 a1 + a1 ∗ a2

)
, (5.15)

for every k1, k2 ∈ K and every a1, a2 ∈ A. Then it is easily seen that (A1, �)
is a UA algebra with unit (1K, 0A) and A is isomorphic (as an associative
algebra) to {0} ×A, via the algebra isomorphism

A � a
Ψ�→ (0, a) ∈ {0} ×A ⊂ A1.

By identifying A with Ψ(A), we may say that any associative algebra is the
subalgebra of a unital associative algebra. ��
Now let a, b ∈ A and let {x, y} be a set of cardinality 2. Since a, b are elements
of A1 too, and since A1 is a UA algebra, by Theorem 2.85-(1a) there exists a
unique UAA morphism Φa,b : T (K〈x, y〉)→ A1 such that

Φa,b(x) = a and Φa,b(y) = b. (5.16)

We can apply Theorem 5.5 when V = K〈x, y〉 and u = x, v = y, so that we
get the following identity in T (K〈x, y〉):

N∑

s=0

1

s!

(
N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|≤N

[
xh1yk1 · · ·xhnykn]⊗
h! k! (|h|+ |k|)

)s

−
∑

0≤i+j≤N

x⊗i ⊗ y⊗j

i! j!
= RN+1(x, y). (5.17)

Here the symbol “⊗” (and the s-power) obviously refers to the algebraic
structure on the tensor algebra T (K〈x, y〉). We are certainly entitled to apply
the UAA morphism Φa,b to the identity (5.17). Since we have Φa,b

(
x⊗i ⊗

y⊗j
)
= a∗i ∗ b∗j and

Φa,b

([
xh1yk1 · · ·xhnykn]⊗

)
=
[
ah1bk1 · · ·ahnbkn]∗

(indeed, recall that any morphism of associative algebras is also a Lie algebra
morphism of the associated commutator-algebras), we get

N∑

s=0

1

s!

(
N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|≤N

[
ah1bk1 · · · ahnbkn]∗
h! k! (|h|+ |k|)

)∗s
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=
∑

0≤i+j≤N

a∗i ∗ b∗j
i! j!

+ R∗
N+1(a, b).

Here, R∗
N+1(a, b) denotes the element of A obtained by formally substituting

u with a and v with b in (5.14) and the ⊗ operation by ∗. What is remarkable
here is to observe that R∗

N+1(a, b) is a sum of ∗-products where a, b jointly
appear at least N + 1 times (and at most N2 times). By means of (5.14), we
could also provide a bound for the number of such summands in R∗

N+1(a, b).
All the above arguments lead to the following remarkable (and “ready-

to-use”) result, a consequence of the CBHD Formula for an arbitrary
associative algebra. In stating this result, we use the following notation: If
A is an associative algebra and n ∈ N, we set

An := span
{
a1 ∗ · · · ∗ an

∣
∣ a1, . . . , an ∈ A

}
. (5.18)

Note that A = A1 ⊇ A2 ⊇ A3 ⊇ · · · .
Theorem 5.7. Let (A, ∗) be an associative algebra over a field of characteristic
zero K. Let N ∈ N. Then there exists a function

R∗
N+1 : A×A→ AN+1

such that the following identity in A holds for any choice of a, b ∈ A:

N∑

s=0

1

s!

(
N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|≤N

[
ah1bk1 · · · ahnbkn]∗
h! k! (|h|+ |k|)

)∗s

=
∑

0≤i+j≤N

a∗i ∗ b∗j
i! j!

+ R∗
N+1(a, b). (5.19)

More precisely, R∗
N+1(a, b) is obtained by substituting x, y with a, b respectively,

in (5.17) and by replacing the ⊗ operation of T (K〈x, y〉) by ∗. In particular
R∗

N+1(a, b) is a sum of elements of AN+1, AN+2, . . . , AN2

, since RN+1(x, y) is

expressed by a “universal” polynomial in
⊕N2

n=N+1 Tn(K〈x, y〉) (see Theorem 5.5).
In (5.19) we exploited our usual notation

[
ah1bk1 · · · ahnbkn]∗

=

h1 times
︷ ︸︸ ︷
[a, · · · [a,

k1 times
︷ ︸︸ ︷
[b, · · · [b , · · ·

hn times
︷ ︸︸ ︷
[a, · · · [a ,

kn times
︷ ︸︸ ︷
[b, [· · · , b ]∗]∗]∗ · · · ]∗ · · · ]∗ · · · ]∗]∗ · · · ]∗

(5.20)

where [α, β]∗ = α ∗ β − β ∗ α, for every α, β ∈ A.
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Just to give an idea of the scope of our applications of the above theorem,
in the forthcoming Part II of this Book we will apply (5.19) when (A, ∗) is,
for example, the algebra of linear partial differential operators with smooth
real coefficients on RN (equipped with the operation ◦ of composition of
operators) and a, b are tX, tY , where X,Y are vector fields (i.e., linear
PDO’s of order 1) and t is a real parameter. Our precise knowledge of
the remainder term will allow us to estimate R∗

N+1(tX, tY ), simply by
factoring tN+1 throughout. The identity resulting from (5.19) in this context
has a remarkable meaning in the theory of ODEs as well as in Lie group
theory.

We can obtain a further “closed” identity deriving from the main CBHD
identity

Exp(x) · Exp(y) = Exp
(∑∞

n=1 Zn(x, y)
)
, in T̂ (K〈x, y〉).

Indeed, by expanding both sides we immediately get

∑

h,k≥0

xh yk

h! k!
= 1 +

∞∑

j=1

1

j!

∑

α1,...,αj∈N

Zα1(x, y) · · ·Zαj (x, y).

This last identity can be easily projected on TN (K〈x, y〉), recalling that (for
every α ∈ N)

x, y ∈ T1(K〈{x, y}), Zα(x, y) ∈ Tα(K〈x, y〉).

We derive, for every N ∈ N,

∑

h,k∈N∪{0}
h+k=N

xh yk

h! k!
=

N∑

j=1

1

j!

∑

α1,...,αj∈N
α1+···+αj=N

Zα1(x, y) · · ·Zαj (x, y).

Letting N vary in N, we have a family of identities in the tensor algebra
T (K〈x, y〉). By the universal property of the latter, we can then obtain an
analogous family of identities in any associative algebra:

Theorem 5.8. Let (A, ∗) be an associative algebra over a field of characteristic zero.
Then the following identity holds for every N ∈ N and all choices of a, b ∈ A:

∑

h,k∈N∪{0}
h+k=N

a∗ h ∗ b∗ k

h! k!
=

N∑

j=1

1

j!

∑

α1,...,αj∈N
α1+···+αj=N

Z∗
α1
(a, b) ∗ · · · ∗ Z∗

αj (a, b), (5.21)
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where Z∗
α(a, b) =

α∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=α

[
ah1bk1 · · ·ahnbkn]∗
h! k! (|h|+ |k|) .

Here, we exploited our usual notation (5.20) for [ah1 · · · bkn ]∗.
Moreover, by summing up for 1 ≤ N ≤ R, we obtain the following identity

∑

h,k∈N∪{0}
h+k≤R

a∗h ∗ b∗ k

h! k!
= 1 +

R∑

j=1

1

j!

∑

α1,...,αj∈N
α1+···+αj≤R

Z∗
α1
(a, b) ∗ · · · ∗ Z∗

αj (a, b),

(5.22)

valid for every R ∈ N and every a, b ∈ A.

For example, (5.21) becomes, for N = 2 and N = 3 (we temporarily drop the
∗ notation):

N = 2 :
a2

2
+ ab+

b2

2
= 1

2 [a, b] +
1
2 (a+ b)(a+ b)

N = 3 :
a3

6
+
a2b

2
+
ab2

2
+
b3

6
= 1

12 [a, [a, b]] +
1
12 [b, [b, a]]

+ 1
6 (a+ b) (a+ b) (a+ b) + 1

2

(
(a+ b) 1

2 [a, b] +
1
2 [a, b] (a+ b)

)
.

5.2 Convergence of the CBHD Series

The main topic of the CBHD Theorem is that it expresses Log(Exp(u) ·
Exp(v)) (an object which can be defined only in a UA algebra, for it involves
powers and multiplications) as a formal power series, say u � v, in the Lie
algebra generated by {u, v}. But u � v makes sense (being a series of Lie
polynomials), mutatis mutandis, even in an abstract Lie algebra equipped
with a topology: for example in any finite dimensional Lie algebra or in
any so-called Banach-Lie algebra. The aim of this section is to study the
convergence of the series u � v in these contexts.

For the sake of simplicity, we first consider finite dimensional Lie algebras
and then, in Sect. 5.2.2, we generalize our results to the case of Banach-
Lie algebras. It is beyond our scope here to embark on an investigation of
the best domain of convergence (a topic of very recent study in literature):
the interested Reader will be referred to appropriate sources at the end of the
chapter (see Sect. 5.7).

Throughout this chapter, we use the following definition.
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Definition 5.9 (Normally Convergent Series of Functions). Let A be any
set and let (X, ‖·‖) be a normed space (over R or C). Let fn : A→ X (n ∈ N)
be a sequence of functions. We say that the series of functions

∑∞
n=1 fn

converges normally on A if the real-valued series
∑∞

n=1 supa∈A ‖fn(a)‖ is
convergent.

Moreover, with the same notation as above, we say that
∑∞

n=1 fn is absolutely
convergent at a if a is an element of A and if it holds that

∑∞
n=1 ‖fn(a)‖<∞.

Obviously, if
∑∞

n=1 fn converges normally on A, then it converges abso-
lutely at every a ∈ A. Also, it is trivially seen that, if X is a Banach space and
if
∑∞

n=1 fn is absolutely convergent at a ∈ A, then the X-valued sequence
{∑N

n=1 fn(a)
}
N∈N

converges in X (a simple consequence of the triangle
inequality and of the completeness of X); in this case we obviously set
∑∞

n=1 fn(a) := limN→∞
∑N

n=1 fn(a).
Finally, as usual, we say that the series of functions

∑∞
n=1 fn converges

uniformly on A to the function f : A → X , if the following fact holds: For
every ε > 0, there exists Nε ∈ N such that

∥
∥f(a) −∑N

n=1 fn(a)
∥
∥ < ε, for

every a ∈ A and every N ≥ Nε.
Following the above notation, we recall the well-known result of Analysis

stating that, if X is a Banach space, any series of functions
∑∞

n=1 fn which
is normally convergent on A is also uniformly convergent on A, to the (well
defined) function A � a �→ f(a) :=

∑∞
n=1 fn(a) ∈ X .

5.2.1 The Case of Finite Dimensional Lie Algebras

Let g be a Lie algebra over a field of characteristic zero K. We recall some
definitions and notation coming from several parts of this Book. If [·, ·]g (or
simply [·, ·]) denotes the Lie bracket on g, we set as usual

[
ah1bk1 · · · ahnbkn]

g

:=

h1 times
︷ ︸︸ ︷
[a, · · · [a ,

k1 times
︷ ︸︸ ︷
[b, · · · [b , · · ·

hn times
︷ ︸︸ ︷
[a, · · · [a ,

kn times
︷ ︸︸ ︷
[b, [· · · , b ]g]g]g · · · ]g · · · ]g · · · ]g]g · · · ]g

(5.23)

for any choices of h1, . . . , hn, k1, . . . , kn in N ∪ {0} (not all vanishing simul-
taneously). The Reader will take care not to confuse the power-like notation
“ah1” (and similar) as an effective power coming from some associative
algebra: this is just a notation to mean the right-hand side of (5.23).

If h = (h1, . . . , hn) and k = (k1, . . . , kn) are multi-indices from (N∪{0})n,
with (h, k) �= (0, 0), we also set, briefly,

Dg
(h,k)(a, b) :=

[
ah1bk1 · · · ahnbkn]

g
, a, b ∈ g. (5.24)
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The notation D(h,k)(a, b) will sometimes apply as well and we shall also
write

(h, k) =
(
h1, . . . , hn, k1, . . . , kn

)
,

suppressing redundant parentheses. For example, we have (note the “inter-
twining” of the coordinates of h and k)

D(0,3,2,4)(a, b) = [b[b[a[a[a[b[b[b, b]]]]]]]] = 0,

D(2,0,0,1)(a, b) = [a[a, b]] = D(1,1,0,1)(a, b).

We also recall that we introduced the useful notation

Nn :=
{
(h, k)
∣
∣ h, k ∈ (N ∪ {0})n, (h1, k1), . . . , (hn, kn) �= (0, 0)

}
. (5.25)

Moreover, given n ∈ N and (h, k) ∈ Nn, we also set

cn :=
(−1)n+1

n
, c(h, k) :=

1

h! k! (|h|+ |k|) , (5.26)

with |h| = |(h1, . . . , hn)| := h1 + . . . + hn, and |k| analogously. The
rational numbers in (5.26) have a precise sense in K too (for instance,
cn = (−1)n+1 (n · 1K)−1 and so on).

We are thus now in a position to define a sequence of functions {ηgN}N on
g as follows: given N ∈ N, we set

ηgN : g× g −→ g

ηgN (a, b) :=

N∑

n=1

cn
∑

(h,k)∈Nn : |h|+|k|≤N

c(h, k)Dg
(h,k)(a, b).

(5.27)

By reordering the summands expressing ηgN as in (3.32) on page 131, we
have

ηgN (a, b) =

N∑

j=1

Zg
j (a, b) for every a, b ∈ g,

where Zg
j (a, b) :=

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)Dg
(h,k)(a, b)

(5.28)

(where terms have been grouped in “homogeneous-like” summands Zj).
In other words, ηgN (a, b) is the N -th partial sum of the series related to
the summands Zg

j (a, b). We thus recognize that the series appearing in the
CBHD Theorem is nothing but limN→∞ ηgN (a, b). The problem here is to give
sufficient conditions on g and on a, b ∈ g ensuring that that this limit exists in g.
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To this end, for the rest of this introductory section, g will denote a
fixed finite dimensional Lie algebra over R. [Essentially, all the results can be
extended to the complex case. Furthermore, in the next sections, we shall
largely generalize the finite dimensional case, in considering Banach-Lie
algebras.]

We denote by m ∈ N the dimension of g. Given a (linear) basis E =
{e1, . . . , em} for g, we set

‖a‖E :=
√
(a1)2 + · · ·+ (am)2,

where a1, . . . , am ∈ R are such

that a = a1 e1 + · · ·+ am em.
(5.29)

[That is, ‖ · ‖E is the standard Euclidean norm on g when this is identified
with Rm via coordinates w.r.t.E.] We have the following:

Lemma 5.10. With the above notation, there exists a basis E for g such that

∥
∥[a, b]g

∥
∥
E
≤ ‖a‖E · ‖b‖E, ∀ a, b ∈ g. (5.30)

More precisely, given an arbitrary basis M = {μ1, . . . , μm} for g, the basis E =
{e1, . . . , em} can be chosen in the following way:

ek := ε μk, k = 1, . . . ,m, (5.31)

where ε > 0 is a structural constant only depending on g and M.

Proof. [Roughly, this follows from the continuity of (a, b) �→ [a, b]g (as a
bilinear map on a finite dimensional vector space!), together with a “magni-
fication” argument. We provide a more constructive proof as follows.]

Let M = {μ1, . . . , μm} be any basis for g. There exist structural scalars cki,j
such that

[μi, μj ]g =
∑m

k=1 c
k
i,j μk, ∀ i, j ∈ {1, . . . ,m}.

Introducing the (skew-symmetric) matrices Ck := (cki,j)i,j≤m, and denoting
by | · |Eu the standard Euclidean norm on Rm, let us denote by

‖|Ck‖| := max
{∣
∣Ck x
∣
∣
Eu : x ∈ Rm, |x|Eu = 1

}
,

which is the usual operator norm of the matrix Ck. Then we have

∥
∥[a, b]g

∥
∥
M

=

∥
∥
∥
∥

m∑

i,j,k=1

ai bj c
k
i,j μk

∥
∥
∥
∥
M

=
( m∑

k=1

(∑m
i,j=1 ai bj c

k
i,j

)2
)1/2

=

( m∑

k=1

∣
∣
∣(a1, . . . , am) · Ck · (b1, . . . , bm)T

∣
∣
∣
2
)1/2
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≤
( m∑

k=1

∣
∣(a1, . . . , am)

∣
∣2
Eu · ‖|Ck‖|2 · ∣∣(b1, . . . , bm)

∣
∣2
Eu

)1/2

= K ‖a‖E ‖b‖E, where K :=
(∑m

k=1 ‖|Ck‖|2)1/2,

where we have also set a =
∑m

i=1 ai μi, b =
∑m

j=1 aj μj .
We have thus proved the existence of K ≥ 0 such that

∥
∥[a, b]g

∥
∥
M
≤ K ‖a‖M ‖b‖M, ∀ a, b ∈ g. (5.32)

[We can suppose that K > 0 since the case K = 0 occurs iff g is Abelian,
in which case the assertion of the present lemma is obvious.] Let E =
{e1, . . . , em} be the basis of g as in (5.31), with the choice ε = 1/K . We
obviously have

‖a‖E =
1

ε
‖a‖M, ∀ a ∈ g. (5.33)

Hence, by (5.32), we get

∥
∥[a, b]g

∥
∥
E

(5.33)
=

1

ε

∥
∥[a, b]g

∥
∥
M

(5.32)
≤ 1

ε
K ‖a‖E ‖b‖E (recall that K = 1/ε)

=
1

ε
‖a‖M · 1

ε
‖b‖M (5.33)

= ‖a‖E · ‖b‖E,

and (5.30) follows. ��
We henceforth fix any basis E for g such that (5.30) holds. The existence of at
least one basis with this property follows from the above lemma. We denote
the associated norm ‖ · ‖E simply by ‖ · ‖. We thus have

∥
∥[a, b]g

∥
∥ ≤ ‖a‖ · ‖b‖, for every a, b ∈ g. (5.34)

By the definition of Dg in (5.23)–(5.24), an inductive argument based only on
(5.34) proves that

∥
∥Dg

(h,k)(a, b)
∥
∥ ≤ ‖a‖|h| · ‖b‖|k|, for every a, b ∈ g

and every (h, k) ∈ Nn.
(5.35)

We are thus in a position to prove a fundamental estimate concerning the
CBHD series.

Theorem 5.11 (Fundamental Estimate). Let g be a real Lie algebra of finite
dimension. Let ‖ · ‖ be a norm on g satisfying (5.34).
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Then, for every N ∈ N and every a, b ∈ g, we have the estimate

N∑

n=1

|cn|
∑

(h,k)∈Nn : |h|+|k|≤N

c(h, k) ‖Dg
(h,k)(a, b)‖

≤
N∑

n=1

1

n

(
e‖a‖ e‖b‖ − 1

)n
. (5.36)

In view of the definitions of ηgN and of Zg
j in (5.27) and (5.28) respectively,

the above theorem immediately implies the following corollary.

Corollary 5.12. Let g be a real Lie algebra of finite dimension. Let ‖ · ‖ be a norm
on g satisfying (5.34). Finally, let ηgN (a, b) and Zg

j (a, b) be as in (5.27) and (5.28).
Then, for every N ∈ N and every a, b ∈ g, we have the estimates

‖ηgN(a, b)‖
N∑

j=1

‖Zg
j (a, b)‖

⎫
⎪⎬

⎪⎭
≤

N∑

n=1

1

n

(
e‖a‖ e‖b‖ − 1

)n
. (5.37)

Remark 5.13. The hypothesis of finite dimensionality of g in the above
Theorem 5.11 and Corollary 5.12 are only temporary: they will be dropped
in the next Sect. 5.2.2, provided a norm as in (5.34) exists.

Remark 5.14. For future repeated references, we prove the following iden-
tity:

∑

(h,k)∈Nn

A|h|B|k|

h! k!
= (eA+B − 1)n,

for every n ∈ N and every A,B ∈ R.

(5.38)

Indeed, it holds that

∑

(h,k)∈Nn

A|h|B|k|

h! k!
=

( ∑

i,j∈N∪{0} : (i,j) �=(0,0)

AiBj

i! j!

)n

=

(∑

i≥0

Ai

i!
·
∑

j≥0

Bj

j!
− 1

)n
=
(
eA eB − 1

)n
.

Proof (of Theorem 5.11). In view of (5.35), the left-hand side of (5.36) is boun-
ded above by the sum

N∑

n=1

|cn|
∑

(h,k)∈Nn : |h|+|k|≤N

c(h, k) ‖a‖|h| · ‖b‖|k|
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(5.26)
=

N∑

n=1

1

n

∑

(h,k)∈Nn : |h|+|k|≤N

‖a‖|h| · ‖b‖|k|
h! k! (|h|+ |k|)

(
we obtain an upper estimate, by erasing the denominator |h|+ |k| ≥ 1

and by dropping the condition “|h|+ |k| ≤ N” in the inner sum
)

≤
N∑

n=1

1

n

∑

(h,k)∈Nn

‖a‖|h| · ‖b‖|k|
h! k!

(5.38)
=

N∑

n=1

1

n

(
e‖a‖ e‖b‖ − 1

)n
.

This completes the proof. ��
Remark 5.15. Let g be a finite dimensional real Lie algebra. Let ‖ · ‖∗ be any
norm on g. Let ‖ · ‖ be a norm on g such that (5.34) holds. Since all norms on
a finite dimensional real vector space are equivalent,2 it follows from (5.34)
that there exists M > 0 such that

∥
∥[a, b]g

∥
∥
∗ ≤M ‖a‖∗ · ‖b‖∗, for every a, b ∈ g. (5.39)

(Equivalently, (5.39) follows from the continuity of the bilinear map (a, b) �→
[a, b]g). Then, by multiplying both sides of (5.39) times M , we see that the
norm

‖a‖� :=M ‖a‖∗, a ∈ g

2To prove the equivalence of all norms on a finite-dimensional real vector space, it suffices
to prove that, given a norm ‖ · ‖∗ on g, there exist constants α, β > 0 such that

α ‖a‖E ≤ ‖a‖∗ ≤ β ‖a‖E, for every a, b ∈ g,

where ‖ · ‖E is the norm in (5.29), related to some fixed basis E = {e1, . . . , em} for g. In
turn, since a norm is homogeneous, the above inequalities are equivalent to

α ≤ ‖ξ‖∗ ≤ β , for every ξ ∈ g such that ‖ξ‖E = 1.

Let T be the topology on g induced by ‖ · ‖E. Since K := {ξ ∈ g : ‖ξ‖E = 1} is
obviously a compact subset of g w.r.t.T (indeed g � Rm via E, and T is the Euclidean
norm related to E), and 0 /∈ K , the last inequalities follow from an application of the
Weierstrass Theorem to the T-continuous function ‖ · ‖∗ which is strictly positive away
from the origin. The cited T-continuity of ‖ · ‖∗ derives from the following computation:

‖xn − x0‖∗ =
∥
∥
∥(xn

1 − x0
1) e1 + · · ·+ (xn

m − x0
m) em

∥
∥
∥
∗

≤ |xn
1 − x0

1| · ‖e1‖∗ + · · ·+ |xn
m − x0

m| · ‖em‖∗ n→∞−−−−→ 0,

whenever xn → x0 with respect to ‖ ·‖E (which means in fact |xn
i −x0

i |
n→∞−−−−→ 0 for every

i = 1, . . . ,m). ��
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satisfies (5.34) too. Hence, Theorem 5.11 and Corollary 5.12 hold by replacing
‖ · ‖ with ‖ · ‖�. This results in:

Corollary 5.16. Let g be a real Lie algebra of finite dimension. Let ‖ · ‖∗ be any
norm on g and letM be a positive constant satisfying (5.39). Then, for everyN ∈ N

and every a, b ∈ g, the quantities

‖ηgN(a, b)‖∗,
∑N

j=1 ‖Zg
j (a, b)‖∗,

N∑

n=1

|cn|
∑

(h,k)∈Nn : |h|+|k|≤N

c(h, k) ‖Dg
(h,k)(a, b)‖∗

(5.40)

are all bounded above by

M−1
N∑

n=1

1

n

(
eM (‖a‖∗+‖b‖∗) − 1

)n
.

Here, as usual, ηgN (a, b), Zg
j (a, b) and Dg

(h,k)(a, b) are as in (5.27), (5.28) and
(5.24).

We can now derive from Theorem 5.11 a result on the convergence of the
CBHD series

∑∞
j=1 Z

g
j (a, b).

This is based on either of the following simple estimates3

N∑

n=1

1

n

(
eA eB − 1

)n ≤

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∞∑

n=1

1

n

(
eA eB − 1

)n
= − log(2− eA+B)

∞∑

n=1

(
eA eB − 1

)n
=
eA+B − 1

2− eA+B

(5.41)

holding true for real numbers A,B such that |eA+B − 1| < 1, that is, when
A + B < log 2. Obviously, the former estimate gives a sharper bound, for
log(1/(1− x)) ≤ x/(1 − x) for every x ∈ [−1, 1].

To derive the cited result on the convergence of the CBHD series, suppose
that a, b ∈ g are such that

‖a‖+ ‖b‖ < log 2,

where ‖ · ‖ is any norm on g satisfying (5.34). Then, by (5.41), the series

3Here, we used the following well-known Maclaurin expansions:
∑∞

n=1
xn

n
= − log(1−x)

(valid for −1 ≤ x < 1), and
∑∞

n=1 x
n = x

1−x
(valid for −1 < x < 1).
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∞∑

n=1

1

n

(
e‖a‖ e‖b‖ − 1

)n

converges, and in fact it equals − log(2 − e‖a‖+‖b‖). Hence, by (5.37) in
Corollary 5.12, we are easily able to show that the sequence

∑N
j=1 Z

g
j (a, b) =

ηgN (a, b) is Cauchy. Since g equipped with the norm ‖ ·‖ is a Banach space, i.e.,
a complete metric space (recall that g is a finite dimensional real vector space
and all norms are equivalent on g), this condition ensures the convergence
in (g, ‖ · ‖) of the series

∑∞
j=1 Z

g
j (a, b).

Indeed, we demonstrate that {ηgN (a, b)}N is a Cauchy sequence: we have

∥
∥ηgn+p(a, b)− ηgn(a, b)

∥
∥ =
∥
∥
∥

n+p∑

j=1

Zg
j (a, b)−

n∑

j=1

Zg
j (a, b)

∥
∥
∥

=
∥
∥∑n+p

j=n+1 Z
g
j (a, b)

∥
∥ ≤∑n+p

j=n+1 ‖Zg
j (a, b)‖ ≤

∑∞
j=n+1 ‖Zg

j (a, b)‖,
(5.42)

and the far right-hand side vanishes as n→∞, since it is the n-th remainder
of a convergent series.

This proves that for every a, b ∈ g with ‖a‖+ ‖b‖ < log 2, there exists

a � b := lim
N→∞

ηgN (a, b) =
∞∑

j=1

Zg
j (a, b).

Moreover, we have the estimate

‖a � b‖ = ∥∥∑∞
j=1 Z

g
j (a, b)

∥
∥ ≤∑∞

j=1

∥
∥Zg

j (a, b)
∥
∥

(thanks to (5.37) and (5.41))

≤ log

(
1

2− e‖a‖+‖b‖

)

.

Collecting all the above facts, we have proved the following result.

Theorem 5.17. (Convergence of the CBHD series for finite dimensional
Lie algebras). Let g be a finite dimensional real Lie algebra. Let ‖ · ‖ be a norm on
g satisfying (5.34). If Zg

j (a, b) is as in (5.28), let us set

a � b :=
∞∑

j=1

Zg
j (a, b), whenever this series converges in g, (5.43)

g being equipped with the Banach space structure related to the norm ‖ ·‖ (or to any
other norm on g, since all norms on g are equivalent).
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Then a sufficient condition for the existence of a � b is that the couple (a, b)
belongs to the “diagonal square”

D :=
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ < log 2

}
. (5.44)

For example, this is the case if a, b belong to the “disc” centred at the origin

Q :=
{
a ∈ g : ‖a‖ < 1

2 log 2
}
, (5.45)

since Q×Q ⊂ D. Moreover, the following inequality holds

‖a � b‖ ≤ log

(
1

2− e‖a‖+‖b‖

)

, for every (a, b) ∈ D. (5.46)

Finally, the series
∑∞

j=1 Z
g
j (a, b) converges normally4 on every set of the type

{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ ≤ δ

}
, with δ < log 2.

Note that, modulo the “compatibility” of the norm ‖ · ‖ with the Lie algebra
structure of g (this just means that (5.34) holds), the disc Q with centre 0 (on
which we have been able to prove that the CBHD series converges) has the
“universal” radius

1
2 log 2 ≈ 0.3465735902 . . .

Remark 5.18. Obviously, the condition (a, b) ∈ D is by no means necessary
for the convergence of the series expressing a � b. Indeed, if a ∈ g is
arbitrary and b = 0 we have Zg

1 (a, 0) = a + 0 and Zg
j (a, 0) = 0 for every

j ≥ 2, so that
∑∞

j=1 Z
g
j (a, 0) = a converges. Analogously, if b = −a we

have Zg
1 (a,−a) = a − a and Zg

j (a,−a) = 0 for every j ≥ 2, so that
∑∞

j=1 Z
g
j (a,−a) = 0 converges too, whatever the choice of a ∈ g.

Remark 5.19. As argued in Remark 5.15, if g is as in the above theorem and
if ‖ · ‖∗ is any norm on g, the above results hold true by replacing D and Q
respectively by the sets

D∗ =
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ < log 2

M

}
,

Q∗ =
{
a ∈ g : ‖a‖∗ < log 2

2M

}
,

where M > 0 is a constant satisfying (5.39). Moreover, the estimate (5.46)
holds in the following form

4Recall Definition 5.9, page 278.
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‖a � b‖∗ ≤ 1

M
log

(
1

2− exp
(
M‖a‖∗ +M‖b‖∗

)

)

, for every (a, b) ∈ D∗.

Remark 5.20. The estimate (5.46) has two important consequences:

1. The function D � (a, b) �→ a � b ∈ g is continuous at (0, 0). Indeed, we have

‖a � b− 0 � 0‖ = ‖a � b‖ ≤ log

(
1

2− e‖a‖+‖b‖

)

(a,b)→(0,0)−−−−−−−→ log
( 1

2− 1

)
= 0.

Obviously, more is true: the above function is continuous on the whole
of D, since it is the sum of a series (of continuous functions) which
converges normally (hence uniformly) on every set of the type

{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ ≤ δ

}
,

where δ < log 2. Note that the partial sums ηgN (a, b) =
∑N

j=1 Z
g
j (a, b) are

continuous functions on g× g, for the Zg
j are Lie polynomials.

As we shall see in the next theorem, � is much more than continuous:
it is indeed real analytic in a neighborhood of (0, 0).

2. By shrinking Q, � can be iterated. More precisely, if a, b belong to

Q̃ :=
{
a ∈ g : ‖a‖ < 1

2 log
(
2− 1/

√
2
)}
,

then a � b ∈ Q. Indeed, if a, b ∈ Q̃, we have (notice that Q̃ ⊂ Q ⊂ D)

‖a � b‖
(5.46)
≤ log

(
1

2− e‖a‖+‖b‖

)

≤ log

(
1

2− exp log
(
2− 1/

√
2
)

)

=
log 2

2
,

that is, by definition of Q, a � b ∈ Q. As a consequence we deduce that
(a � b) � c and a � (b � c) make sense, whenever a, b, c ∈ Q̃. The comparison
of these latter two elements of g, i.e., the study of the associativity of the
“local operation” � will be considered in Sect. 5.3.
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Note that, just as for Q, the disc Q̃ has the “universal” radius

1
2 log
(
2− 1√

2

)
≈ 0.1284412561 . . .

We have the following remarkable result. Actually, the hypothesis of finite
dimensionality of g is not necessary, as we will show in Sect. 5.5.1.

Theorem 5.21 (Real Analyticity of the � Function). Suppose that the hypo-
theses of Theorem 5.17 hold true. Let Q be as in (5.45). Then there exists an open
neighborhood Q of 0 ∈ g contained in Q such that the map

Q× Q � (a, b) �→ a � b ∈ g

is real analytic.
Here in referring to real-analyticity, by the aid of any basis for g (recall that

m := dim g < ∞), we are identifying g × g with R2m and g with Rm and the
term “real-analytic” inherits the obvious meaning.

Before embarking on the proof of the theorem, we need to recall what is
meant by an analytic function on an open set U ⊆ R2m: This is a function
f(x, y) in C∞(U,R) (x, y denote coordinates in Rm) such that for every
(a0, b0) ∈ U there exists r0 > 0 such that the sum of the series

∞∑

N=0

∑

α,β∈(N∪{0})m
α1+···+αm+β1+···+βm=N

∣
∣
∣
∣

∂Nf(a0, b0)

∂xα1
1 · · ·∂xαmm ∂yβ1

1 · · · ∂yβmm

∣
∣
∣
∣

× |a1 − a01|α1 · · · |am − a0m|αm · |b1 − b01|β1 · · · |bm − b0m|βm

is finite (the way summands are arranged is immaterial, since the sum-
mands are nonnegative) and it holds that

f(a, b) =

∞∑

N=0

∑

α,β∈(N∪{0})m
α1+···+αm+β1+···+βm=N

∂Nf(a0, b0)

∂xα1
1 · · · ∂xαmm ∂yβ1

1 · · · ∂yβmm

× (a1 − a01)
α1 · · · (am − a0m)αm · (b1 − b01)

β1 · · · (bm − b0m)βm ,

for every (a, b) ∈ U satisfying
∑m

j=1(|aj − a0j |+ |bj − b0j |) < r0.
A sufficient condition for real analyticity is the following one: there exists

ε > 0 such that, if I is the real interval (−ε, ε), we have

f(a, b) =

∞∑

N=0

∑

α,β∈(N∪{0})m
α1+···+αm+β1+···+βm=N

Cα,β a
α1
1 · · · aαmm bβ1

1 · · · bβmm ,
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for every a, b ∈ Im (the m-fold Cartesian product of I with itself), where the
Cα,β are real constants such that

∞∑

N=0

∑

α,β∈(N∪{0})m
α1+···+αm+β1+···+βm=N

|Cα,β | εN <∞.

In this case f is real analytic on I2m (the 2m-fold Cartesian product of I with
itself). This is the case for example if f is defined as the series related to a
sequence of functions {zj(a, b)}j≥1 which are polynomials in a, b ∈ Rm of
common degree j, with

zj(a, b) =
∑

(α,β)∈(N∪{0})2m
α1+···+αm+β1+···+βm=j

Cα,β a
α1
1 · · · aαmm bβ1

1 · · · bβmm (5.47)

and the constants Cα,β satisfy

∞∑

j=1

∑

α,β∈(N∪{0})m
α1+···+αm+β1+···+βm=j

|Cα,β | εj <∞. (5.48)

Proof (of Theorem 5.21). Let us fix a basis E = {e1, . . . , em} as in Lemma 5.10.
We denote ‖·‖E simply by ‖·‖ and, for every fixed i = 1, . . . ,m, we introduce
the projection (onto the i-th component w.r.t.E)

Πi : g −→ R, Πi(a1 e1 + · · ·+ am em) := ai (a1, . . . , am ∈ R).

We also identify g with Rm via the map

Π : g −→ Rm, Π(g) :=
(
Π1(g), . . . , Πm(g)

)
,

and g× g with R2m, accordingly.
We have to find an open neighborhood Q of 0 ∈ g such that for � =

1, . . . ,m all the functions

R2m � (a, b) �→ P�(a, b) := Π�

(
(Π−1(a)) � (Π−1(b))

) ∈ R

are real analytic on Π(Q)×Π(Q) ⊂ R2m.
Since g is a real Lie algebra, there exist real numbers cki,j such that

[ei, ej ]g =
∑m

k=1 c
k
i,j ek, ∀ i, j ∈ {1, . . . ,m}.
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We denote by c the positive constant

c := 1 + max
{|cki,j | : i, j, k = 1, . . . ,m

}
. (5.49)

[Note that c depends on g and E.] An inductive argument shows that one
has

[vN , [vN−1 · · · [v2, v1] · · · ]]g =

m∑

�=1

e�

×
( m∑

s1,...,sN−2=1

m∑

i1,...,iN=1

vNiN · · · v1i1c�iN ,sN−2
c
sN−2

iN−1,sN−3
· · · cs2i3,s1 cs1i2,i1

)

(5.50)

for every choice of v1, . . . , vN in g; here we have set vk = vk1 e1+ . . .+ vkm em.
If a, b ∈ Rm and a := Π−1(a), b := Π−1(b), we have (for every (h, k) ∈ Nn)

Dg
(h,k)(a, b) =

[
a · · · a︸ ︷︷ ︸

h1

b · · · b︸ ︷︷ ︸
k1

· · · a · · · a︸ ︷︷ ︸
hn

b · · · b︸ ︷︷ ︸
kn

]

g

=

m∑

�=1

e�
∑

1≤is, js≤m

ai11 · · ·ai1h1 bj11 · · · bj1k1 · · ·ain1 · · · ainhn bjn1 · · · bjnkn

×
∑

1≤s1,...,s|h|+|k|−2≤m

⎧
⎨

⎩

a certain product
(indexed over � and over the i, j, s)

of |h|+ |k| − 1 structure constants of type c

⎫
⎬

⎭
.

This gives a representation of Π�

(
Zg

j (a, b)
)

of the following type:

j∑

n=1

cn
∑

(h,k)∈Nn : |h|+|k|=j

c(h, k)
∑

1≤ i11,...,i
1
h1

,··· ,in1 ,...,inhn
j11 ,...,j

1
k1

,··· ,jn1 ,...,jnkn
≤m

× ai11 · · · ai1h1 bj11 · · · bj1k1 · · · ain1 · · ·ainhn bjn1 · · · bjnkn×

×
∑

1≤s1,...,s|h|+|k|−2≤m

⎧
⎨

⎩

a certain product
(indexed over � and over the i, j, s)

of |h|+ |k| − 1 structure constants of type c

⎫
⎬

⎭
.

This is actually a decomposition of zj(a, b) := Π�

(
Zg

j (a, b)
)

in sums of
monomials in the (a, b)-coordinates where the same monomial may appear
several times. We group monomials together to produce a representation of
zj(a, b) as in (5.47). Hence, in view of the triangle inequality for the absolute
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value in R, we certainly provide an upper bound for the series in (5.48), if
we estimate the following series of nonnegative summands

∞∑

j=1

j∑

n=1

|cn|
∑

(h,k)∈Nn : |h|+|k|=j

c(h, k)
∑

1≤ i11,...,i
1
h1

,··· ,in1 ,...,inhn
j11 ,...,j

1
k1

,··· ,jn1 ,...,jnkn
≤m

εj

×
∑

1≤s1,...,s|h|+|k|−2≤m

∣
∣
∣
∣
∣
∣

a certain product
(indexed over � and over the i, j, s)

of |h|+ |k| − 1 structure constants of type c

∣
∣
∣
∣
∣
∣
.

Taking into account the constant c in (5.49), the above series is bounded
above by

∞∑

j=1

j∑

n=1

1

n

∑

(h,k)∈Nn : |h|+|k|=j

1

h! k!

×
∑

1≤ i11,...,i
1
h1

,··· ,in1 ,...,inhn
j11 ,...,j

1
k1

,··· ,jn1 ,...,jnkn
≤m

εj
∑

1≤s1,...,s|h|+|k|−2≤m

c|h|+|k|−1

≤
∞∑

j=1

j∑

n=1

1

n

∑

(h,k)∈Nn : |h|+|k|=j

1

h! k!
m|h|+|k| εj m|h|+|k|−2 c|h|+|k|−1

=
1

cm2

∞∑

j=1

j∑

n=1

1

n

∑

(h,k)∈Nn : |h|+|k|=j

1

h! k!
(m2 ε c)|h|+|k|

(interchange the j and n sums and recall that |h|+ |k| ≥ n for (h, k)∈Nn)

=
1

cm2

∞∑

n=1

1

n

∑

(h,k)∈Nn

1

h! k!
(m2 ε c)|h|+|k|

(5.38)
=

1

cm2

∞∑

n=1

1

n

(
exp(2m2 ε c)− 1

)n
.

The far right-hand series converges provided | exp(2m2 ε c)− 1| < 1, that is,
by choosing

ε <
log 2

2 cm2
.

With this choice of ε, by the remarks on real analyticity preceding this proof,
we infer that P�(a, b) is real analytic on the 2m-fold Cartesian product of the
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interval (−ε, ε). As a consequence, the assertion of Theorem 5.21 follows by
choosing

Q =
{
g ∈ g
∣
∣
∣ g = a1 e1 + · · ·+ am em : |a1|, . . . , |am| < ε

}
.

This ends the proof. ��

5.2.2 The Case of Banach-Lie Algebras

In this section we generalize the results of Sect. 5.2.1 (except for those on real
analyticity) to the wider setting of so-called Banach-Lie algebras. To this end
we need some definitions which will be used also in the next sections. We
declare the following convention:

Convention: Throughout this section, K denotes the field of real numbers R or
of complex numbers C.

Definition 5.22. The following definitions are given:

Normed algebra: A triple (A, ∗, ‖ · ‖) is a normed algebra if (A, ∗) is a unital
associative algebra over K and if (A, ‖ · ‖) is a normed vector space over
K with the following property: there exists M > 0 such that

‖x ∗ y‖ ≤M ‖x‖ · ‖y‖, for every x, y ∈ A. (5.51a)

If the constant in (5.51a) can be chosen equal to 1, that is, if

‖x ∗ y‖ ≤ ‖x‖ · ‖y‖, for every x, y ∈ A, (5.51b)

then ‖ · ‖ is said to be compatible with the multiplication ∗ of A (or just ‖ · ‖
is compatible with A).

Banach algebra: A normed algebra (A, ∗, ‖ · ‖) is called a Banach algebra, if
the normed space (A, ‖ · ‖) is complete.

Normed Lie algebra: A triple (g, [·, ·]g, ‖ · ‖) is a normed Lie algebra if
(g, [·, ·]g) is a Lie algebra over K and if (g, ‖ · ‖) is a normed vector space
over K with the following property: there exists M > 0 such that

∥
∥[x, y]g

∥
∥ ≤M ‖x‖ · ‖y‖, for every x, y ∈ g. (5.51c)

If the constant in (5.51c) can be chosen equal to 1, that is, if

∥
∥[x, y]g

∥
∥ ≤ ‖x‖ · ‖y‖, for every x, y ∈ g, (5.51d)
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then ‖ · ‖ is said to be compatible with the Lie bracket of g (or just ‖ · ‖ is
compatible with g).

Banach-Lie algebra: A normed Lie algebra (g, [·, ·]g, ‖·‖) is called a Banach-
Lie algebra, if (g, ‖ · ‖) is a complete normed space.

It is possible to give equivalent definitions of normed (Lie) algebras, by
making use of the following remarks. Throughout, if (V, ‖ · ‖) is a real or
complex normed vector space, we equip V with the topology induced by its
norm ‖ · ‖ and we denote by B(x, r) the ‖ · ‖-ball about x ∈ V of radius r > 0
(so that a basis for the topology is the family {B(x, r) |x ∈ V, r > 0}).

Remark 5.23. Let (V, ‖ · ‖) be a real or complex normed vector space. Let
k ∈ N be fixed and let also

F : V × · · · × V
︸ ︷︷ ︸

k times

−→ V

be a k-linear map. Then F is continuous if and only if there exists a positive
constant M such that

‖F (x1, . . . , xk)‖ ≤M ‖x1‖ · · · ‖xk‖, ∀ x1, . . . , xk ∈ V. (5.52)

Indeed, if (5.52) holds, then F is continuous since we have

‖F (x1, . . . , xk)− F (ξ1, . . . , ξk)‖ =
∥
∥
∥
∑

i

F (ξ1, . . . , ξi−1, xi − ξi, xi+1, . . . , xk)
∥
∥
∥

≤M
∑

i

‖ξ1‖ · · · ‖ξi−1‖ · ‖xi − ξi‖ · ‖xi+1‖ · · · ‖xk‖ −→ 0,

as xi → ξi (for every i = 1, . . . , k).
Conversely, suppose that F is continuous. In particular, given the open

neighborhood B(0, 1) of F (0, . . . , 0) = 0 ∈ V , due to the continuity of F at
(0, . . . , 0), there exists ε > 0 such that

F
(
B(0, ε)× · · · ×B(0, ε)
︸ ︷︷ ︸

k times

)
⊆ B(0, 1). (5.53)

Then for every x1, . . . , xk ∈ V \ {0}we have (thanks to the multi-linearity of
F and the homogeneity property of the norm)

‖F (x1, . . . , xk)‖ =
(2

ε

)k
‖x1‖ · · · ‖xk‖ ·

∥
∥
∥F
(

ε
2

x1
‖x1‖ , . . . ,

ε
2

xk
‖xk‖
)∥
∥
∥

≤
(2

ε

)k
‖x1‖ · · · ‖xk‖ · 1.
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In deriving the above “≤” sign we used (5.53), by noticing that

ε

2
· xi
‖xi‖ ∈ B(0, ε), for every i = 1, . . . , k.

Hence (5.52) holds with the choice M = 2k/εk, when all the xi are different
from 0. Since (5.52) trivially holds when at least one of the xi equals 0, (5.52)
is completely proved. ��
Remark 5.24. Let (A, ∗) be a UA algebra and suppose ‖ · ‖ is a norm on A.
Since A × A � (x, y) �→ x ∗ y ∈ A is a bilinear map, then (thanks to Remark
5.23) condition (5.51a) is equivalent to the continuity of ∗.

Analogously, let g be a Lie algebra and suppose ‖ · ‖ is a norm on g. Since
g × g � (x, y) �→ [x, y] ∈ g is a bilinear map, then (thanks to Remark 5.23)
condition (5.51c) is equivalent to the continuity of the Lie bracket operation.

Remark 5.25. Let V be a real or complex vector space and suppose ‖ · ‖ is a
norm on V . Then the maps

V × V → V, (x, y) �→ x+ y, K× V → V, (k, y) �→ k y

are continuous (with respect to the associated topologies, V being endowed
with the topology induced by the norm and K = R,C of the standard
Euclidean topology).

As a consequence, by taking into account Remark 5.24, we see that the
following definitions are equivalent:

• (A, ∗, ‖ · ‖) is a normed algebra iff – with its operations of vector space and of
UA algebra – A is a topological algebra w.r.t. the topology induced by ‖ · ‖.

• (g, [·, ·]g, ‖·‖) is a normed Lie algebra iff – with its operations of vector space and
of Lie algebra – g is a topological Lie algebra w.r.t. the topology induced by ‖ · ‖.

Remark 5.26. Any normed algebra (A, ∗, ‖ · ‖) is a normed Lie algebra, with the
commutator Lie-bracket [x, y]∗ = x ∗ y − y ∗ x. Indeed, if M is as in (5.51a),
one has

∥
∥[x, y]∗

∥
∥ = ‖x ∗ y − y ∗ x‖ ≤ ‖x ∗ y‖+ ‖y ∗ x‖ ≤ 2M ‖x‖ · ‖y‖,

for every x, y ∈ A, so that inequality (5.51c) holds by replacing M with 2M .

Remark 5.27. Let (A, ∗, ‖ · ‖) be a normed algebra. Then, by a “magnification”
process, we can obtain from ‖ · ‖ a compatible norm. Indeed, let M be a positive
constant as in (5.51a) related to ‖ · ‖. Then the norm

∥
∥x
∥
∥
�
:= M ‖x‖, x ∈ A, (5.54)
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is compatible with ∗. Indeed, we have

‖x ∗ y‖� = M ‖x ∗ y‖
(5.51a)
≤ MM ‖x‖ · ‖y‖ = M ‖x‖ ·M ‖y‖ = ‖x‖� · ‖y‖�,

for every x, y ∈ A, so that (5.51b) holds.
The same reasoning works for a normed Lie algebra g: if M is a positive

constant as in (5.51c), then the norm in ‖ · ‖� = M ‖ · ‖ is compatible with g.

Remark 5.28. Some authors do not include in the definition of normed alge-
bra the condition that A be unital. Our definition is by no means restrictive,
for the following reason: Let (A, ∗) be a real or complex associative algebra
not necessarily unital, and suppose that ‖ · ‖ is a norm on A such that ∗
is continuous (that is, (5.51a) holds). Let (A1, �) be as in Remark 5.6 on
page 273. We define a norm ‖ · ‖� on A1 as follows:

‖(k, a)‖� := |k|+ ‖a‖, k ∈ K, a ∈ A. (5.55)

(Here | · | denotes the usual absolute value in K = R,C.) It is easily seen that
‖ · ‖� is actually a norm on A1 which coincides with ‖ · ‖ on A (thought of as
a subalgebra of A1): hence the map

A � a
Ψ�→ (0, a) ∈ {0} ×A ⊂ A1

is not only a UAA isomorphism, but also an isomorphism of the normed
spaces (A, ‖ · ‖) and (Ψ(A), ‖ · ‖�). We claim that (A1, �, ‖ · ‖�) is a normed
algebra and that ‖·‖� is compatible with � if ‖·‖ is compatible with ∗. Indeed,
one has (recall (5.15) on page 274)

∥
∥(k1, a1) � (k2, a2)

∥
∥
�
=
∥
∥
(
k1k2, k1 a2 + k2 a1 + a1 ∗ a2

)∥
∥
�

(5.55)
= |k1 k2|+

∥
∥k1 a2 + k2 a1 + a1 ∗ a2

∥
∥

(by the triangle inequality and the homogeneity of ‖ · ‖)

≤ |k1| · |k2|+ |k1| · ‖a2‖+ |k2| · ‖a1‖+ ‖a1 ∗ a2‖
(5.51a)
≤ |k1| · |k2|+ |k1| · ‖a2‖+ |k2| · ‖a1‖+M ‖a1‖ · ‖a2‖

≤ max{1,M} ·
(
|k1| · |k2|+ |k1| · ‖a2‖+ |k2| · ‖a1‖+ ‖a1‖ · ‖a2‖

)

= max{1,M} · ‖(k1, a1)‖� · ‖(k2, a2)‖�.

As a consequence, (5.51a) holds for ‖ · ‖� too, with the constant M replaced
by max{1,M} and the claimed facts are proved. ��
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We are now ready to state several results, whose proofs follow verbatim by
rerunning the related proofs in Sect. 5.2.1.

Theorem 5.29 (Fundamental Estimate). Let g be a real or complex normed Lie
algebra and let ‖ · ‖ be a norm on g compatible with the Lie bracket. Finally let
ηgN (a, b), Zg

j (a, b) and Dg
(h,k)(a, b) be as in (5.27), (5.28), (5.24) respectively.

Then, for every N ∈ N and every a, b ∈ g, the sum

N∑

n=1

1

n

(
e‖a‖+‖b‖ − 1

)n

furnishes an upper bound for any of the following:

‖ηgN (a, b)‖, ∑N
j=1 ‖Zg

j (a, b)‖,
N∑

n=1

|cn|
∑

(h,k)∈Nn : |h|+|k|≤N

c(h, k) ‖Dg
(h,k)(a, b)‖.

Proof. Verbatim as in the proofs of Theorem 5.11 and Corollary 5.12. A key
rôle is played by the estimate

∥
∥Dg

(h,k)(a, b)
∥
∥ ≤ ‖a‖|h| · ‖b‖|k|, for every a, b ∈ g

and every (h, k) ∈ Nn,

which immediately follows by compatibility of the norm ‖ · ‖ with the Lie
bracket of g. ��
Theorem 5.30 (Convergence of the CBHD series for Banach-Lie algebras).
Let g be a Banach-Lie algebra. Let ‖ · ‖ be a norm on g compatible with the Lie

bracket. If Zg
j (a, b) is as in (5.28), let us set

a � b :=
∞∑

j=1

Zg
j (a, b), whenever this series converges in g, (5.56)

g being equipped with its given Banach space structure.
Then a sufficient condition for the existence of a � b is that the couple (a, b)

belongs to the set

D :=
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ < log 2

}
. (5.57)

For example, this is the case if a and b belong to the ‖ · ‖-disc centred at the origin

Q :=
{
a ∈ g : ‖a‖ < 1

2 log 2
}
, (5.58)
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since Q×Q ⊂ D. Moreover, the following inequality holds

‖a � b‖ ≤ log

(
1

2− e‖a‖+‖b‖

)

, for every (a, b) ∈ D. (5.59)

Finally, the series of functions
∑∞

j=1 Z
g
j (a, b) converges normally5 (hence uni-

formly) on every set of the type

Dδ :=
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ ≤ δ

}
, with δ < log 2. (5.60)

Actually, the above result of normal convergence and the bound (5.59) are also valid
for the “majorizing” series

∞∑

j=1

j∑

n=1

|cn|
∑

(h,k)∈Nn
|h|+|k|=j

c(h, k)
∥
∥Dg

(h,k)(a, b)
∥
∥.

Proof. Verbatim as in the proof of Theorem 5.17. We reproduce the main
element of the computation. Let 0 < δ < log 2 be fixed arbitrarily. Suppose
that a, b ∈ g are such that ‖a‖+‖b‖ < δ. We claim that in this case {ηgN (a, b)}N
is a Cauchy sequence in g: Indeed, we have

∥
∥ηgn+p(a, b)− ηgn(a, b)

∥
∥ =
∥
∥
∥

n+p∑

j=1

Zg
j (a, b)−

n∑

j=1

Zg
j (a, b)

∥
∥
∥

=
∥
∥∑n+p

j=n+1 Z
g
j (a, b)

∥
∥ ≤∑n+p

j=n+1 ‖Zg
j (a, b)‖ ≤

∑∞
j=n+1 ‖Zg

j (a, b)‖.

Now, by the estimate in Theorem 5.29, the above far right-hand side
vanishes as n→∞, since it is the n-th remainder of the convergent series:

∞∑

j=1

‖Zg
j (a, b)‖ ≤

∞∑

j=1

j∑

n=1

|cn|
∑

(h,k)∈Nn
|h|+|k|=j

c(h, k)
∥
∥Dg

(h,k)(a, b)
∥
∥

≤
∞∑

n=1

1

n

(
e‖a‖+‖b‖ − 1

)n ≤
∞∑

n=1

1

n

(
eδ − 1

)n
= − log(2− eδ).

Since (g, ‖ · ‖) is a Banach space, this proves that the series
∑N

j=1 Z
g
j (a, b) =

ηgN (a, b) converges in g, normally on the set {‖a‖ + ‖b‖ ≤ δ}. By the

5Recall Definition 5.9, page 278.
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arbitrariness of δ < log 2, we infer the existence of a � b =
∑∞

j=1 Z
g
j (a, b),

for every (a, b) ∈ D. Moreover, the above computations also yield (5.59).
Finally, the claimed total convergence on the set Dδ in (5.60) follows from

the estimate (proved above)

∞∑

j=1

sup
(a,b)∈Dδ

‖Zg
j (a, b)‖

≤
∞∑

j=1

j∑

n=1

|cn|
∑

(h,k)∈Nn
|h|+|k|=j

c(h, k) sup
(a,b)∈Dδ

∥
∥Dg

(h,k)(a, b)
∥
∥

≤
∞∑

n=1

1

n

(
eδ − 1

)n
= − log(2− eδ) <∞,

the equality holding true for δ < log 2. ��
With some additional work, we are able to provide an estimate of the rate of
convergence of

∑N
j=1 Z

g
j (a, b) to a � b:

Theorem 5.31 (Rate of Convergence of the CBHD series). Let g be a Banach-
Lie algebra. Let ‖ · ‖ be a norm on g compatible with the Lie bracket. Let Zg

j (a, b) be
as in (5.28) and let � be as in (5.56).

Then, for every a, b ∈ g such that ‖a‖+ ‖b‖ < log 2, we have

∥
∥
∥a � b−

N∑

j=1

Zg
j (a, b)

∥
∥
∥ ≤ (e‖a‖+‖b‖ − 1)N+1

(N + 1)
(
2− e‖a‖+‖b‖)+

+

N∑

n=1

(e‖a‖+‖b‖ − 1)n−1

( ∑

i≥N+1
n

(‖a‖+ ‖b‖)i
i!

)

.

(5.61)

[An application of the Lebesgue dominated convergence Theorem will
prove that the right-hand side of (5.61) vanishes as N → ∞, see Remark
5.32 below.]

Proof. Let us fix a, b ∈ g such that ‖a‖+ ‖b‖ < log 2. Then by (5.56), we have
a � b =∑∞

j=1 Z
g
j (a, b), the series being convergent. Hence

∥
∥
∥a � b−

N∑

j=1

Zg
j (a, b)

∥
∥
∥ =
∥
∥
∥

∞∑

j=N+1

Zg
j (a, b)

∥
∥
∥

=

∥
∥
∥
∥
∥

∞∑

j=N+1

j∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|=j

c(h, k)Dg
(h,k)(a, b)

∥
∥
∥
∥
∥
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(5.35)
≤

∞∑

j=N+1

j∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|=j

‖a‖|h| ‖b‖|k|
h! k!

(we interchange the sums in n and in j)

=

N∑

n=1

∞∑

j=N+1

∑

(h,k)∈Nn
|h|+|k|=j

{· · · }+
∞∑

n=N+1

∞∑

j=n

∑

(h,k)∈Nn
|h|+|k|=j

{· · · } =: I + II.

We estimate I and II separately:

II =
∞∑

n=N+1

∞∑

j=n

∑

(h,k)∈Nn
|h|+|k|=j

‖a‖|h| ‖b‖|k|
nh! k!

=

∞∑

n=N+1

∑

(h,k)∈Nn
|h|+|k|≥n

‖a‖|h| ‖b‖|k|
nh! k!

(
recall that it is always true that |h|+ |k| ≥ n for every (h, k) ∈ Nn

)

=

∞∑

n=N+1

1

n

∑

(h,k)∈Nn

‖a‖|h| ‖b‖|k|
h! k!

(5.38)
=

∞∑

n=N+1

1

n

(
e‖a‖ e‖b‖ − 1

)n

≤ 1

N + 1

∞∑

n=N+1

(
e‖a‖ e‖b‖ − 1

)n
=

(e‖a‖+‖b‖ − 1)N+1

(N + 1)
(
2− e‖a‖+‖b‖) ,

where in the last equality we used the fact that |e‖a‖+‖b‖ − 1| < 1 together
with the well-known formula

∑∞
n=N+1 q

n = qN+1/(1 − q) if |q| < 1. This
gives the first summand of (5.61). Moreover

I =
N∑

n=1

∞∑

j=N+1

∑

(h,k)∈Nn
|h|+|k|=j

‖a‖|h| ‖b‖|k|
nh! k!

=

N∑

n=1

∑

(h,k)∈Nn
|h|+|k|≥N+1

‖a‖|h| ‖b‖|k|
nh! k!

=: (�).

Now note that if (h, k) ∈ Nn is such that |h| + |k| ≥ N + 1 then one at least
among h1 + k1, . . . , hn + kn is greater than (N + 1)/n. This gives

(�) ≤
N∑

n=1

1

n

{ ∑

h1+k1≥N+1
n

(h2,k2),...,(hn,kn) �=(0,0)

+ · · ·+
∑

hn+kn≥N+1
n

(h1,k1),...,(hn−1,kn−1) �=(0,0)

}

×

× ‖a‖|h| ‖b‖|k|
h! k!

=

N∑

n=1

1

n
· n

∑

i+j≥N+1
n

‖a‖i ‖b‖j
i! j!

·
∑

(h,k)∈Nn−1

‖a‖|h| ‖b‖|k|
h! k!

=
N∑

n=1

( ∑

i≥N+1
n

(‖a‖+ ‖b‖)i
i!

)

· (e‖a‖+‖b‖ − 1)n−1.
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This gives the second summand of (5.61). To produce the last equality above
we used (5.38) and the following computation: for every H ∈ N and every
A,B ∈ R,

∑

i≥H

(A+B)i

i!
=
∑

i≥H

1

i!

i∑

j=0

(
i

j

)

Aj Bi−j =
∑

i≥H

i∑

j=0

Aj Bi−j

j! (i− j)!

=
∑

i≥H

∑

r+s=i

Ar Bs

r! s!
=
∑

r+s≥H

Ar Bs

r! s!
.

This completes the proof. ��
Remark 5.32. Let a, b ∈ g be such that ‖a‖ + ‖b‖ < log 2. We prove that
the right-hand side of (5.61) vanishes as N → ∞. For brevity, we set
σ := ‖a‖+ ‖b‖. As 0 ≤ σ < log 2, the first summand of (5.61) vanishes as
N →∞ (since |eσ − 1| < 1). The second summand is bounded above by

γN :=
∞∑

n=1

(eσ − 1)n−1
( ∑

i≥N+1
n

σi

i!

)
.

We claim that limN→∞ γN = 0. Let us set, for every n,N ∈ N,

αn := (eσ − 1)n−1, βn,N :=
∑

i≥N+1
n

σi

i!
,

so that γN =
∑∞

n=1 αn βn,N . The proof will be complete if we show that we
can pass the limit across the series sign:

lim
N→∞

∞∑

n=1

αn βn,N =

∞∑

n=1

αn lim
N→∞

βn,N = 0,

since, for every fixed n ∈ N, limN→∞ βn,N = 0 because
∑

i≥0
σi

i! is a
convergent series. We then have to show that we can interchange the
limit and the series signs. This follows for example by an application of
the Lebesgue dominated convergence theorem (think of the series as an
integral with respect to the counting measure!): all we have to provide is
a nonnegative sequence gn (independent of N ) such that

|αn βn,N | ≤ gn and such that
∑∞

n=1 gn <∞.
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The choice gn := eσ αn does the job:

– We have
∞∑

n=1
gn =

∞∑

n=1
eσ αn = eσ

∞∑

n=1
(eσ − 1)n−1 <∞ for |eσ − 1| < 1.

– For every n,N ≥ 1,

|αn βn,N | ≤ (eσ − 1)n−1
∑

i≥0

σi

i!
= (eσ − 1)n−1 eσ = gn.

This ends the argument. ��

5.2.3 An Improved Domain of Convergence

In Theorem 5.30, as a byproduct of a domain of convergence of

∞∑

j=1

j∑

n=1

|cn|
∑

(h,k)∈Nn
|h|+|k|=j

c(h, k)
∥
∥Dg

(h,k)(a, b)
∥
∥, (5.62)

we furnished a domain of convergence

D =
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ < log 2

}
(5.63)

for the series
∑∞

j=1 ‖Zg
j (a, b)‖, the latter being bounded by the series in

(5.62). However, there may exist larger domains of convergence for
∑∞

j=1

‖Zg
j (a, b)‖, not necessarily working for (5.62). Roughly speaking, this is due

to the fact that “cancellations” may occur in ‖Zg
j (a, b)‖ before the bounding

series (5.62) is produced. It is then not unexpected that there exists an
improved domain for the total convergence of

∑∞
j=1 Z

g
j (a, b), and this we

shall provide in the following theorem.
We closely follow the ideas in the remarkable proof by Varadarajan in

[171, Section 2.15, p.118–120] (which immediately adapt from the case of the
Lie algebra of a Lie group to our context of Banach-Lie algebras). To this
end, we shall make use of the recursion formula for Zj proved in Sect. 4.5
on page 223, and a catchy argument from the theory of ODEs.

Theorem 5.33 (Improved Convergence of the CBHD Series). Let g be a
Banach-Lie algebra. Let ‖ · ‖ be a norm on g compatible with the Lie bracket.
If Zg

j (a, b) is as in (5.28), the series
∑∞

j=1 Z
g
j (a, b) converges normally (hence

uniformly) on every set of the type

D̂ρ :=
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ ≤ ρ

}
, (5.64)
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where ρ > 0 is strictly less than the absolute constant

δ =

∫ 2π

0

d s

2 + 1
2 s− 1

2 s cot
(
1
2 s
) ≈ 2.173 . . . (5.65)

In particular,
∑∞

j=1 Z
g
j (a, b) converges (absolutely) for every fixed (a, b) on the

whole set
D̂ :=
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ < δ

}
. (5.66)

Note that the set D in (5.63) is properly contained in D̂, for log 2 < δ.

Proof. Let the constants K2p be as in (4.109) on page 223, that is (see also
(9.43) on page 496), the following complex Maclaurin expansion holds

z

ez − 1
= −z

2
+ 1 +

∞∑

p=1

K2p z
2p, |z| < 2 π. (5.67)

As z
ez−1 + z

2 is an even function, we also have

z

1− e−z
=
z

2
+ 1 +

∞∑

p=1

K2p z
2p, |z| < 2 π. (5.68)

We set (z still denoting a complex variable)

F (z) := 1 +

∞∑

p=1

|K2p| z2p, whenever |z| < 2 π. (5.69)

Obviously, the radius of convergence of this last series is the same as that of
the series in (5.67), i.e., 2 π, whence (5.69) is well posed. Actually, taking into
account the alternating signs of the numbers K2p, it is easily proved that6

(see Newman, So, Thompson [131, page 305])

F (z) = 2− z

2

cos(z/2)

sin(z/2)
. (5.70)

6Indeed, one has

F (z) = 1 +

∞∑

p=1

|K2p| z2p = 1 +

∞∑

p=1

(−1)p−1K2p z2p = 2−
(

1 +

∞∑

p=1

K2p (i z)2p
)

(5.67)
= 2−

(
i z

ei z − 1
+

i z

2

)

= 2− z

2

cos(z/2)

sin(z/2)
.
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Let us consider the complex ODE (see also [171, eq. (2.15.20)])

y′ = 1
2 y + F (y), y(0) = 0, (5.71)

that is, equivalently (see the above (5.70))

y′ = 2 + 1
2 y − 1

2 y cot
(
1
2 y
)
, y(0) = 0. (5.72)

By the general theory of ordinary Cauchy problems, there exists δ > 0 and a
solution y(z) to (5.71) which is holomorphic in the disc centered at the origin
with radius δ. A remarkable result by Newman, So, Thompson [131] proves
that the actual value of δ is the following one

δ =

∫ 2π

0

d s

2 + 1
2 s− 1

2 s cot
(
1
2 s
) ≈ 2.173 . . .

[For this result, see [131, Section 5]. We will not have occasion to invoke the
actual value of δ, but – rather – the fact that it is larger than log 2 so that the
present proof in fact furnishes an improvement of our previous Theorem
5.30]. If we set (recall that y(0) = 0)

y(z) =

∞∑

n=1

γn z
n, |z| < δ, (5.73)

then a recursion formula for γn can be straightforwardly derived by exploit-
ing (5.69) and (5.71). Indeed, by inserting the expansions of y and of F in
(5.71), we have

∞∑

n=0

(n+ 1) γn+1 z
n =

∞∑

n=1

γn
2
zn + 1 +

∞∑

p=1

|K2p|
( ∞∑

n=1

γn z
n
)2p

= 1 +

∞∑

n=1

γn
2
zn +

∞∑

p=1

|K2p|
∑

k1,...,k2p≥1

γk1 · · · γk2p z
k1+···+k2p .

Then by equating the coefficients of zn (for n ≥ 0) from the above far
right/left-hand sides, we get the following recursion formula:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ1 = 1, 2 γ2 = 1
2 γ1, and, for n ≥ 2,

γn+1 = 1
2 (n+1) γn +

∑

p≥1, 2p≤n
k1,...,k2p≥1, k1+···+k2p=n

|K2p|
n+ 1

γk1 · · · γk2p .
(5.74)
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We observe that, by (5.74),

γn > 0 for every n ∈ N. (5.75)

Now, since the complex power series
∑∞

n=1 γn z
n is convergent for |z| < δ,

we have (by invoking classical results on the absolute convergence of power
series)

∞∑

n=1

γn |z|n (5.75)
=

∞∑

n=1

|γn zn| <∞, whenever |z| < δ,

so that ∞∑

n=1

γn ρ
n <∞, for every ρ ∈ (−δ, δ). (5.76)

Let us now go back to the recursion formula forZg
j , derived in Corollary 4.25

on page 228, which we here rewrite, for convenience of reading:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Zg
1 (u, v) = u+ v,

Zg
2 (u, v) =

1
4 [u − v, Zg

1 (u, v)]g

Zg
n+1(u, v) =

1
2(n+1) [u− v, Zg

n(u, v)]g+

+
∑

p≥1, 2p�n
k1,...,k2p�1

k1+···+k2p=n

K2p

n+ 1
[Zg

k1
(u, v) · · · [Zg

k2p
(u, v), u + v]g · · · ]g,

(5.77)

valid for every j ∈ N and every u, v ∈ g. Let us consider the norm ‖ · ‖
compatible with g and let us derive some estimates starting from the above
recursion formula. We take any two elements u, v ∈ g and we set

d := ‖u‖+ ‖v‖.

Note that ‖u±v‖ ≤ ‖u‖+‖v‖ = d. Let the numbers γn be as in (5.74). Starting
from the first two identities in (5.77), we have

‖Zg
1 (u, v)‖ ≤ ‖u‖+ ‖v‖ = d = d γ1

‖Zg
2 (u, v)‖ ≤ 1

4

∥
∥[u− v, Zg

1 (u, v)]g
∥
∥ ≤ 1

4 d ‖Zg
1 (u, v)‖ ≤ 1

4 d
2 γ1 = d2 γ2.

We claim that
‖Zg

n(u, v)‖ ≤ dn γn, ∀ n ∈ N. (5.78)

We prove this by induction on n, noting that the cases n = 1, 2 have just
been checked. Supposing (5.78) to hold up to a fixed n ∈ N, we prove it for
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n+ 1. Indeed, by applying (5.77), we have

∥
∥Zg

n+1(u, v)
∥
∥ ≤ 1

2(n+1) ‖u− v‖ · ‖Zg
n(u, v)‖

+
∑

p≥1, 2p�n
k1,...,k2p�1

k1+···+k2p=n

|K2p|
n+ 1

‖Zg
k1
(u, v)‖ · · · ‖Zg

k2p
(u, v)‖ · ‖u+ v‖

(use the induction hypothesis together with ‖u± v‖ ≤ d)

≤ 1
2(n+1) d · dn γn +

∑

p≥1, 2p�n
k1,...,k2p�1

k1+···+k2p=n

|K2p|
n+ 1

dk1 γk1 · · · dk2p γk2p · d

= dn+1 ·
(

1
2(n+1) γn +

∑

p≥1, 2p�n
k1,...,k2p�1

k1+···+k2p=n

|K2p|
n+ 1

γk1 · · · γk2p

)

= dn+1 γn+1 in view of (5.74).

So (5.78) is proved by induction. Note that it can be rewritten as the
interesting estimate

‖Zg
n(u, v)‖ ≤ (‖u‖+ ‖v‖)n γn, ∀ n ∈ N, ∀ u, v ∈ g. (5.79)

Let now ρ > 0 be such that ρ < δ, where δ is as in (5.65) and let us consider
the set D̂ρ in (5.64). Then we have (as ρ < δ)

∞∑

n=1

sup
(u,v)∈D̂ρ

‖Zg
n(u, v)‖

(5.79)
≤

∞∑

n=1

γn ρ
n

(5.76)
< ∞.

This proves that the series
∑∞

n=1 Z
g
n(u, v) converges normally, hence uni-

formly, for (u, v) ∈ D̂ρ. This ends the proof. ��

5.3 Associativity of the CBHD Operation

The aim of this section is to study the associativity property of the CBHD
operation obtained by considering the map (x, y) �→ x � y =

∑∞
j=1 Zj(x, y).

The first task is to discover the right setting where this infinite sum makes
sense. This happens for instance, as we saw in Sects. 5.2.1 and 5.2.2, when
we are dealing with a finite dimensional Lie algebra or, more generally,
with a Banach-Lie algebra: in these cases, � is a priori defined only in a
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neighborhood of the origin. We shall then prove (in Sect. 5.3.2) that � defines
a local group, so that in particular � is associative (in a suitable neighborhood
of the origin). The other case of interest is that of the nilpotent Lie algebras n:
in this case � is globally defined (since the associated series becomes in fact
a finite sum) and it defines a group on the whole of n (see Sect. 5.4.1).

5.3.1 “Finite” Identities from the Associativity of �

We first need to provide ready-to-use identities (for general associative
algebras) encoded in the associativity of the CBHD operations � and � on
the completion T̂ (V ) of the tensor algebra of a vector space V .

To this end, we fix henceforth a vector space V over a field K of
characteristic zero. The notation of Sect. 5.1 is also used:

HN , πN , ÛN , (T̂ (V ), ·), . . .

along with other well-known notations (used throughout the Book)

[· · · ]⊗, Nn, cn, c(h, k), Zj , . . .

We recall that we introduced an operation � on Û1 = T̂+(V ) as follows

u � v =

∞∑

n=1

(

cn
∑

(h,k)∈Nn

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

)

, u, v ∈ Û1.

We have the following lemma:

Lemma 5.34. 1. For every u, v ∈ T̂ (V ) and every N ∈ N

πN ([u, v]⊗) = πN
(
[πN (u), πN (v)]⊗

)
. (5.80a)

2. For every k ≥ 2, every t1, . . . , tk ∈ T̂ (V ) and every N ∈ N

πN

(
[t1, [t2, [· · · , tk] · · · ]]⊗

)
= πN

(
[πN t1, [πN t2, [· · · , πN tk] · · · ]]⊗

)
.

(5.80b)
For every u, v ∈ T̂ (V ) and every N ∈ N

πN (u � v) = πN
(
(πNu) � (πNv)

)
. (5.81)

3. Proof. (1). This follows from (5.3) together with our former definition of [u, v]⊗
as u · v − v · u.
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(2). This follows from an induction argument based on (5.80a) (recall also that
πN ◦ πN = πN ). For example, the case k = 3 reads

πN ([t1, [t2, t3]]) = πN ([πN t1, πN [t2, t3]]) = πN ([πN t1, πN [πN t2, πN t3]])

= πN ([πN (πN t1), πN [πN t2, πN t3]])

= πN ([πN t1, [πN t2, πN t3]]),

where in the last equality we used (5.80a) (read from right to left!).
(3). Let u, v ∈ Û1. Then we have

πN (u � v) = πN

(
N∑

n=1

(

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗

+

∞∑

n=N+1

cn
∑

|h|+|k|≤N

{· · · }+
∞∑

n=1

cn
∑

|h|+|k|≥N+1

{· · · }
︸ ︷︷ ︸

∈ÛN+1

)

=

N∑

n=1

(

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)πN
[
uh1vk1 · · ·uhnvkn

]
⊗

)

(5.80b)
=

N∑

n=1

(

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)πN
[
(πNu)

h1(πNv)
k1 · · · ]⊗

)

(argue exactly as above, by using πN (Û1) ⊆ Û1)

= πN ((πNu) � (πNv)).

This ends the proof. ��
Incidentally, in the above computations we have also proved that

πN (u�v) = πN

N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)
[
uh1vk1 · · ·uhnvkn

]
⊗, ∀ u, v ∈ T̂+(V ).

(5.82)
Let now V = K〈x, y, z〉, where {x, y, z} is a set of cardinality three. We know
from Corollary 3.33 on page 156 that � is associative on T̂+(V ), so that in
particular we have (recalling that x, y, z ∈ V = T1 ⊂ T̂+)

x � (y � z) = (x � y) � z.
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We fix N ∈ N. By applying πN to both sides of the above equality (and
noticing that x, y, z are left unchanged by πN for they belong to T1),
we get

πN (x � πN (y � z)) = πN (πN (x � y) � z). (5.83)

Now, from (5.8) on page 272, we have

πN (x � y) = ηN (x, y) =

N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)
[
xh1yk1 · · ·xhnykn]⊗,

and an analogous formula holds for πN (y � z). As a consequence, (5.83) can
be rewritten as follows:

πN

(

x �
( N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)D⊗
(h,k)(y, z)

))

= πN

(( N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)D⊗
(h,k)(x, y)

)

� z
)

, (5.84)

where we have invoked the usual notation

D⊗
(h,k)(y, z) :=

[
xh1yk1 · · ·xhnykn]⊗, (h, k) ∈ Nn.

If we now make use of (5.82), we can take the identity (5.84) even further:
indeed, recalling that two elements of T̂ (V ) have the same πN -image if and
only if their difference belongs to ÛN+1, (5.84) becomes

N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)D⊗
(h,k)

(

x,

N∑

m=1

cm
∑

(α,β)∈Nm
|α|+|β|≤N

c(α, β)D⊗
(α,β)(y, z)

)

−
N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)D⊗
(h,k)

( N∑

m=1

cm
∑

(α,β)∈Nm
|α|+|β|≤N

c(α, β)D⊗
(α,β)(x, y), z

)

=: RN (x, y, z) ∈ T̂N+1(V ). (5.85)
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Actually, much more is true:

1. Since D⊗
(h,k)(a, b) is a Lie polynomial in a, b, we immediately recognize

that RN (x, y, z) in (5.85) is a Lie polynomial in x, y, z, that is, an element
of the free Lie algebra L(K〈x, y, z〉).

2. Moreover, the fact that (see (5.85)), RN (x, y, z) belongs to T̂N+1(V ), also
ensures that RN (x, y, z) belongs to

⊕
j≥N+1 Lj(K〈x, y, z〉).

3. Furthermore, by analyzing closely the expression of RN (x, y, z) in (5.85),
we recognize that the maximal height of its summands (iterated brackets
in x, y, z) does not exceed N2, whence

RN (x, y, z) ∈
N2
⊕

j=N+1

Lj(K〈x, y, z〉).

4. Finally, (5.85) can be seen as an identity in the free associative algebra
over three indeterminates T (K〈x, y, z〉) or as an identity in the free Lie
algebra over three indeterminates L(K〈x, y, z〉).

5. An explicit (though awesome!) expression of RN (x, y, z) is given by the
following formula: recalling that

N∑

m=1

cm
∑

(α,β)∈Nm
|α|+|β|≤N

c(α, β)D⊗
(α,β)(y, z) =

N∑

j=1

Z⊗
j (y, z),

and that Z⊗
j (y, z) ∈ Tj(K〈x, y, z〉),

one has:

RN (x, y, z) (5.86)

=

N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)

∑
1≤j11 ,...,j

1
k1

,··· ,jn1 ,...,jnkn≤N

h1+···+hn+j11+···+j1k1+···+jn1 +···+jnkn≥N+1

×
[

x · · ·x︸ ︷︷ ︸
h1

Z⊗
j11
(y, z) · · ·Z⊗

j1
k1

(y, z) · · · x · · ·x︸ ︷︷ ︸
hn

Z⊗
jn1
(y, z) · · ·Z⊗

jnkn
(y, z)

]

⊗

−
N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)

∑
1≤j11 ,...,j

1
h1

,··· ,jn1 ,...,jnhn≤N

k1+···+kn+j11+···+j1h1+···+jn1 +···+jnhn≥N+1

×
[

Z⊗
j11
(x, y) · · ·Z⊗

j1h1
(x, y) z · · · z︸ ︷︷ ︸

k1

· · · Z⊗
jn1
(x, y) · · ·Z⊗

jn
hn

(x, y) z · · · z︸ ︷︷ ︸
kn

]

⊗
.
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By all the above remarks and by the universal property of the free asso-
ciative algebra and of the free Lie algebra over three indeterminates (see
Theorem 2.85 on page 107), identity (5.85) proves the following two theo-
rems. These theorems can be seen as “finite” versions of the associativity
information encoded in the � operation.

Theorem 5.35 (Finite Associativity of � on an Associative Algebra). Let N
∈ N. Let (A, ∗) be an associative algebra over a field of characteristic zero. Then
there exists a function

R∗
N : A×A×A −→ A ∗ · · · ∗A︸ ︷︷ ︸

N + 1 times

such that the following identity holds for every choice of a, b, c ∈ A:

N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)D∗
(h,k)

(

a,

N∑

m=1

cm
∑

(α,β)∈Nm
|α|+|β|≤N

c(α, β)D∗
(α,β)(b, c)

)

−
N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)D∗
(h,k)

( N∑

m=1

cm
∑

(α,β)∈Nm
|α|+|β|≤N

c(α, β)D∗
(α,β)(a, b), c

)

= R∗
N (a, b, c). (5.87)

More precisely, R∗
N (a, b, c) can be obtained by the replacements

x �→ a, y �→ b, z �→ c, ⊗ �→ ∗

in RN (x, y, z) introduced in (5.85) – and explicitly written in (5.86) – which is a
“universal” polynomial in three indeterminates belonging to

N2
⊕

j=N+1

Lj(K〈x, y, z〉) ⊂
N2
⊕

j=N+1

Tj(K〈x, y, z〉).

In particular, R∗
N (a, b, c) can be expressed as a linear combination of ∗-commutator

Lie brackets (and of ∗-products) where a, b, c appear at least (N + 1)-times (and no
more than N2 times).

Here, along with the usual notation in (5.25) and (5.26) for Nn, cn, c(h, k), we
have used the notations [a, b]∗ = a ∗ b− b ∗ a and

D∗
(h,k)(a, b)

=

h1 times
︷ ︸︸ ︷
[a, · · · [a,

k1 times
︷ ︸︸ ︷
[b, · · · [b , · · ·

hn times
︷ ︸︸ ︷
[a, · · · [a ,

kn times
︷ ︸︸ ︷
[b, [· · · , b ]∗]∗]∗ · · · ]∗ · · · ]∗ · · · ]∗]∗ · · · ]∗.
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Theorem 5.36 (Finite Associativity of � on a Lie Algebra). Let N ∈ N. Let
g be a Lie algebra over a field of characteristic zero. Then there exists a function

R
g
N : g× g× g −→ [g, [· · · , g]

︸ ︷︷ ︸
N + 1 times

· · · ]

such that the following identity holds for every choice of a, b, c ∈ g:

N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)Dg
(h,k)

(

a,
N∑

m=1

cm
∑

(α,β)∈Nm
|α|+|β|≤N

c(α, β)Dg
(α,β)(b, c)

)

−
N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)Dg
(h,k)

( N∑

m=1

cm
∑

(α,β)∈Nm
|α|+|β|≤N

c(α, β)Dg
(α,β)(a, b), c

)

= R
g
N (a, b, c). (5.88)

More precisely, Rg
N (a, b, c) can be obtained by the replacements

x �→ a, y �→ b, z �→ c, [·, ·]⊗⊗ �→ [·, ·]g

in RN (x, y, z) introduced in (5.85) – and explicitly written in (5.86) – which is a
“universal” Lie polynomial in three indeterminates belonging to

N2
⊕

j=N+1

Lj(K〈x, y, z〉).

In particular, R
g
N (a, b, c) can be expressed as a linear combination of iterated

g-brackets in a, b, c of heights at least (N + 1) (and at most N2 times).
Here, along with the usual notation in (5.25) and (5.26) for Nn, cn, c(h, k), we

have used the notation

Dg
(h,k)(a, b)

=

h1 times
︷ ︸︸ ︷
[a, · · · [a,

k1 times
︷ ︸︸ ︷
[b, · · · [b , · · ·

hn times
︷ ︸︸ ︷
[a, · · · [a ,

kn times
︷ ︸︸ ︷
[b, [· · · , b ]g]g]g · · · ]g · · · ]g · · · ]g]g · · · ]g.

Remark 5.37. Let g be a Lie algebra. If Zg
j denotes as usual the map

Zg
j : g× g→ g, Zg

j (a, b) :=

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)Dg
(h,k)(a, b),
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there is an explicit (although awesome!) way of writing (5.88) in a closed
form (which amounts in projecting the identity x � (y � z) = (x � y) � z on
LN (K〈x, y, z〉)): For every N ∈ N it holds that

N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)
∑

1≤r1
1,...,r

1
k1

,··· ,rn1 ,...,rnkn≤N

h1+···+hn+r1
1+···+r1

k1
+···+rn1 +...+rnkn=N

×
[

x · · ·x︸ ︷︷ ︸
h1 times

Zg
r1
1
(y, z) · · ·Zg

r1
k1

(y, z) · · · x · · ·x︸ ︷︷ ︸
hn times

Zg
rn1
(y, z) · · ·Zg

rn
kn
(y, z)

]

g

=
N∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|≤N

c(h, k)
∑

1≤r1
1,...,r

1
h1

,··· ,rn1 ,...,rnhn≤N

k1+···+kn+r1
1+···+r1

h1
+···+rn1 +...+rnhn=N

×
[

Zg
r1
1
(x, y) · · ·Zg

r1
h1

(x, y) z · · · z︸ ︷︷ ︸
k1 times

· · ·Zg
rn1
(x, y) · · ·Zg

rn
hn
(x, y) z · · · z︸ ︷︷ ︸

kn times

]

g

.

5.3.2 Associativity for Banach-Lie Algebras

Suppose K = R or K = C and (g, [·, ·]g, ‖ · ‖) is a Banach-Lie algebra over K
and that ‖ · ‖ is compatible with the Lie bracket of g (see Definition 5.22). We
use the notations introduced at the beginning of Sect. 5.2.1:

Dg
(h,k), Nn, cn, c(h, k), ηgN , Zg

j , . . .

For the sake of brevity, the superscript “g” will be frequently omitted;
analogously we shall denote the Lie bracket on g simply by [·, ·].

Thanks to Theorem 5.30, we know that the map (a, b) �→ a � b defined by

a � b :=∑∞
j=1 Z

g
j (a, b)

is well posed for every a, b belonging to the ‖ · ‖-disc centred at the origin

Q :=
{
a ∈ g : ‖a‖ < 1

2 log 2
}
.

Making use of the estimate in (5.59) and arguing as in Remark 5.20-2, if
furthermore a, b belong to the disc

Q̃ :=
{
a ∈ g : ‖a‖ < 1

2 log
(
2− 1/

√
2
)}
, (5.89)
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then a � b ∈ Q and the series of functions
∑∞

j=1 Z
g
j (a, b) converges normally,

hence uniformly, on every set of the form

Dδ :=
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ ≤ δ

}
, with δ < log 2,

hence, for example, on Q̃× Q̃, for

Q̃× Q̃ ⊆
{
(a, b) ∈ g× g : ‖a‖+ ‖b‖ ≤ log(2− 1/

√
2)
}
,

and log(2 − 1/
√
2) < log 2. As a consequence

a � b, b � c, (a � b) � c, a � (b � c)

are well-posed for every a, b, c ∈ Q̃. The aim of this section is to prove the
next result.

Theorem 5.38. (Local Associativity of the CBHD Operation for Banach-
Lie Algebras). Let (g, [·, ·]g, ‖ ·‖) be a real or complex Banach-Lie algebra. Let ‖ ·‖
be compatible with the Lie bracket of g. Let also Q̃ be as in (5.89). Then we have

(a � b) � c = a � (b � c), for every a, b, c ∈ Q̃. (5.90)

Proof. By the remarks preceding this theorem we have

a � b ∈ Q, for every a, b ∈ Q̃. (5.91)

Moreover, by the results in Theorem 5.30, we know that

ηN (x, y)
N→∞−−−−→ x � y, for every x, y ∈ Q, (5.92)

and the sequence of functions {ηN (x, y)}N converges uniformly to x � y on

Dδ :=
{
(x, y) ∈ g× g : ‖x‖+ ‖y‖ ≤ δ

}
, with δ < log 2.

Remember that this means precisely:

lim
N→∞

sup
(x,y)∈Dδ

∥
∥ηN (x, y)− x � y∥∥ = 0 (with δ < log 2). (5.93)

Let us fix henceforth a, b, c ∈ Q̃. Then there exists σ such that

max{‖a‖, ‖b‖, ‖c‖} < σ < 1
2 log
(
2− 1/

√
2
)
. (5.94)
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The claimed (5.90) will follow if we are able to prove the following facts

lim
N→∞

ηN (ηN (a, b), c) = (a � b) � c, (5.95a)

lim
N→∞

ηN (a, ηN (b, c)) = a � (b � c), (5.95b)

lim
N→∞

ηN (ηN (a, b), c) = lim
N→∞

ηN (a, ηN (b, c)). (5.95c)

We split the proof in two steps.

Proof of (5.95a) and (5.95b). It suffices to demonstrate the former, the latter
being analogous. We shall prove much more than (5.95a), in proving that

lim
N,M→∞

ηN (ηM (a, b), c) = (a � b) � c, a, b, c ∈ Q̃, (5.96)

in the sense of double limits.7 In facing (5.96) we make use of a theorem
on (interchanging) double limits in a complete metric space, Theorem 5.39
below. Indeed, we claim that

lim
N→∞

ηN (ηM (a, b), c) = ηM (a, b) � c, uniformly w.r.t.M , (5.97a)

lim
M→∞

ηN (ηM (a, b), c) = ηN (a � b, c), for every fixed N ∈ N. (5.97b)

Then a direct application of Theorem 5.39 to the double sequence �MN :=
ηN (ηM (a, b), c) in the complete metric space g (recall that (g, ‖ · ‖) is a Banach
space by hypothesis!) proves the existence and the equality of the following
three limits

lim
N→∞

(
lim

M→∞
ηN (ηM (a, b), c)

)
= lim

M→∞

(
lim

N→∞
ηN (ηM (a, b), c)

)

= lim
N,M→∞

ηN (ηM (a, b), c). (5.98)

7We recall that, given a double sequence {�N,M : N,M ∈ N} valued in a metric space
(X, d) and given � ∈ X, we write

lim
N,M→∞

�N,M = � in X,

iff for every ε > 0 there exists Nε ∈ N such that

d(�N,M , �) < ε, for every N,M ≥ Nε.

If this holds, obviously the “diagonal” sequence {�N,N}N∈N has limit in X and this limit
equals �.
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Then the following argument applies in showing (5.96):

lim
N,M→∞

ηN (ηM (a, b), c)
(5.98)
= lim

N→∞

(
lim

M→∞
ηN (ηM (a, b), c)

)

(5.97b)
= lim

N→∞
ηN (a � b, c) (5.92)

= (a � b) � c.

In the last equality, we are indeed entitled to invoke (5.92) (applied to x :=

a � b and y := c), for Q̃ ⊆ Q and since a � b ∈ Q by (5.91).

We are thus left to prove the claimed (5.97a) and (5.97b):

(5.97a): Let us choose δ := log
√
4−√

2. Note that 0 < δ < log 2. Hence
{ηN (x, y)}N converges uniformly on Dδ to x � y, that is (see (5.93)), for
every ε > 0 there exists Nε ∈ N such that

∥
∥ηN (x, y)− x � y∥∥ < ε

(
for every N ≥ Nε

and every (x, y) ∈ Dδ

)

. (5.99)

We claim that in (5.99) we can take y := c and x := ηM (a, b): this follows
if we are able to prove that ‖ηM (a, b)‖ + ‖c‖ ≤ δ, which, in turn, derives
from the computation:

‖ηM (a, b)‖+ ‖c‖ ≤ (by Theorem 5.29)
M∑

n=1

(
e‖a‖+‖b‖ − 1

)n

n
+ ‖c‖

(5.94)
≤

∞∑

n=1

1

n

(
e2σ − 1

)n
+ σ

(5.41)
= log

( 1

2− e2σ

)
+ σ

(5.94)
< log

(
1

2− exp log
(
2− 1/

√
2
)

)

+ 1
2 log
(
2− 1√

2

)

= log
√
2 + log

√

2− 1√
2
= log

√

4−
√
2 = δ.

Taking y = c and x = ηM (a, b) in (5.99) gives

∥
∥ηN (ηM (a, b), c)− ηM (a, b) � c∥∥ < ε

(
for every N ≥ Nε

and every M ∈ N

)

.

This is precisely (5.97a).

(5.97b): Let N ∈ N be fixed. The map

g× g � (x, y) �→ ηN (x, y) ∈ g
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is continuous, for this is a Lie polynomial (recall that g is a Banach-Lie
algebra, whence the map [·, ·]g is continuous on g × g by Remark 5.24 on
page 294). Then we have

lim
M→∞

ηN (ηM (a, b), c) = ηN

(
lim

M→∞
ηM (a, b), c

)
.

On the other hand, the above right-hand side equals ηN (a � b, c), thanks
to (5.92) (since a, b ∈ Q̃ ⊆ Q).

Proof of (5.95c). Let a, b, c ∈ Q̃ be fixed. We have to prove that

ηN (ηN (a, b), c)− ηN (a, ηN (b, c))

vanishes, as N → ∞. [Note that (5.88) on its own is not enough to end
the proof: we need the more “quantitative” information given by formula
(5.86).]

By Theorem 5.36, the difference ηN (ηN (a, b), c) − ηN (a, ηN (b, c)) equals
RN (a, b, c), where this is given by formula (5.86), replacing x, y, z with a, b, c
respectively, and turning everywhere [·, ·]⊗ and Z⊗

j into [·, ·]g and Zg
j .

We thus have (recall that ‖[ξ, η]g‖ ≤ ‖ξ‖ · ‖η‖ for every ξ, η ∈ g)

‖RN (a, b, c)‖

≤
N∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≤N

1

h! k!

∑
1≤j11 ,...,j

1
k1

,··· ,jn1 ,...,jnkn≤N

h1+···+hn+j11+···+j1k1+···+jn1 +···+jnkn≥N+1

× ‖a‖|h| · ∥∥Zg
j11
(b, c)‖ · · ·∥∥Zg

j1k1
(b, c)
∥
∥ · · · ∥∥Zg

jn1
(b, c)
∥
∥ · · · ∥∥Zg

jnkn
(b, c)
∥
∥

+

N∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≤N

1

h! k!

∑
1≤j11 ,...,j

1
h1

,··· ,jn1 ,...,jnhn≤N

k1+···+kn+j11+···+j1h1+···+jn1 +···+jnhn≥N+1

× ‖c‖|k|∥∥Zg
j11
(a, b)
∥
∥ · · · ∥∥Zg

j1h1
(a, b)
∥
∥ · · · ∥∥Zg

jn1
(a, b)
∥
∥ · · · ∥∥Zg

jnhn
(a, b)
∥
∥.

Now note that for every j ∈ N and every ξ, η ∈ g

‖Zg
j (ξ, η)‖ ≤

j∑

n=1

1

n

∑

(h,k)∈Nn: |h|+|k|=j

1

h! k!
‖Dg

(h,k)(ξ, η)‖

≤
j∑

n=1

1

n

∑

(h,k)∈Nn: |h|+|k|=j

‖ξ‖|h| ‖η‖|k|
h! k!



5.3 Associativity of the CBHD Operation 317

(by (5.94)) ≤
j∑

n=1

1

n

∑

(h,k)∈Nn: |h|+|k|=j

σ|h|+|k|

h! k!
.

As a consequence ‖RN(a, b, c)‖ is bounded above by two sums analogous to
the following one:

N∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≤N

1

h! k!

∑
1≤j11 ,...,j

1
k1

,··· ,jn1 ,...,jnkn≤N

|h|+j11+···+j1k1+···+jn1 +···+jnkn≥N+1

· σ|h|

×
j11∑

m1
1=1

1

m1
1

∑

(α1
1,β

1
1)∈N

m1
1

|α1
1|+|β1

1|=j11

σ|α1
1|+|β1

1 |

α1
1!β

1
1 !

· · ·
j1k1∑

m1
k1

=1

1

m1
k1

∑

(α1
k1

,β1
k1

)∈N
m1
k1

|α1
k1

|+|β1
k1

|=j1k1

σ|α1
k1

|+|β1
k1

|

α1
k1
!β1

k1
!
· · ·

×
jn1∑

mn
1 =1

1

mn
1

∑

(αn1 ,βn1 )∈Nmn1
|αn1 |+|βn1 |=jn1

σ|αn1 |+|βn1 |

αn
1 !β

n
1 !

· · ·
jnkn∑

mn
kn

=1

1

mn
kn

∑

(αnkn ,βnkn )∈Nmn
kn

|αnkn |+|βnkn |=jnkn

σ|αnkn |+|βnkn |

αn
kn
!βn

kn
!
.

This series is obtained by preserving only the powers of σ with exponent
≥ N + 1 from the following series:

N∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≤N

1

h! k!

∑

1≤j11 ,...,j
1
k1

,··· ,jn1 ,...,jnkn≤N
· σ|h| × {as above . . .}.

In its turn this last series can be majorized by dropping the requirement that
the indices j are ≤ N and then by using the identity

∞∑

j=1

j∑

m=1

1

m

∑

(α,β)∈Nm
|α|+|β|=j

σ|α|+|β|

α!β!
=

∞∑

m=1

1

m

∞∑

j=m

∑

(α,β)∈Nm
|α|+|β|=j

σ|α|+|β|

α!β!

=

∞∑

m=1

1

m

∑

(α,β)∈Nm
|α|+|β|≥m

σ|α|+|β|

α!β!
=

∞∑

m=1

1

m

∑

(α,β)∈Nm

σ|α|+|β|

α!β!

(5.38)
=

∞∑

m=1

1

m
(e2σ − 1)m

(5.41)
= log

( 1

2− e2σ

)
.

Thus ‖RN(a, b, c)‖ is bounded above by the series obtained by preserving
the summands σj with j ≥ N + 1 from expansion of the following series:
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2

N∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≤N

1

h! k!
σ|h| ·
(

log
( 1

2− e2σ

))|k|

≤ 2

∞∑

n=1

1

n

∑

(h,k)∈Nn

1

h! k!
σ|h| ·
(

log
( 1

2− e2σ

))|k|

(5.38)
= 2

∞∑

n=1

1

n

(

eσ (2 − e2σ)−1 − 1

)n
(5.41)
= 2 log

(2(2− e2σ)

eσ

)
=: F (σ).

[We are indeed entitled to apply (5.41) since σ + log((2 − e2σ)−1) < log 2 in
view of (5.94).] Now note that t �→ F (t) from the above far right-hand side
is the function

(−∞, log 2
2 ) � t �→ F (t) := log 4− 2 t+ 2 log

(
1 + (1− e2 t)

)
,

which is real analytic and which coincides with its Maclaurin expansion in
its domain, since |1− e2 t| < 1 whenever t < log 2

2 . We have thus proved

‖RN (a, b, c)‖ ≤
∞∑

j=N+1

F (j)(0)

j!
σj ,

and the right-hand side vanishes as N →∞, since the Maclaurin series of F
converges at σ, and σ < log 2

2 in view of (5.94). This ends the proof. ��
In the previous proof we made use of the following result from Analysis.

Theorem 5.39 (Interchanging Double Limits). Let (X, d) be a complete met-
ric space. Let {�kn}k,n∈N be a double sequence in X . Suppose that the following
hypotheses hold:

(i) the limit limn→∞ �kn exists, uniformly with respect to k;
(ii) for every fixed n ∈ N, the limit limk→∞ �kn exists.

Then all the following limits exist and all are equal

lim
k→∞

( lim
n→∞ �kn) = lim

n→∞( lim
k→∞

�kn) = lim
n,k→∞

�kn. (5.100)

Proof. Let us set, for every k, n ∈ N

�k := lim
n→∞ �kn, �n := lim

k→∞
�kn,

these limits existing in view of hypotheses (i) and (ii), which have the
following precise meanings, respectively:
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∀ ε > 0 ∃ N(ε) ∈ N : d(�k, �kn) < ε ∀n ≥ N(ε), ∀ k ∈ N;
(5.101a)

∀n ∈ N, ∀ ε > 0 ∃ K(n, ε) ∈ N : d(�n, �
k
n) < ε ∀ k ≥ K(n, ε).

(5.101b)

We claim that the sequence {�k}k∈N is Cauchy in X . Indeed, given ε > 0 let
us choose an N(ε) as in (5.101a) and then let us choose a K(N(ε), ε) as in
(5.101b). Then for every h, k ≥ K(N(ε), ε) we have

d(�h, �k) ≤ d(�h, �hN(ε)) + d(�hN(ε), �N(ε)) + d(�N(ε), �
k
N(ε)) + d(�kN(ε), �

k) ≤ 4 ε.

Since (X, d) is complete, the limit � := limk→∞ �k exists in X . This proves
the existence of the first limit in (5.100).

We next claim that � = limn→∞ �n (thus proving the existence of the
second limit in (5.100) and its equality with the former). Let ε > 0 be given.
As � = limk→∞ �k, there exists k(ε) ∈ N such that d(�, �k) < ε for every
k ≥ k(ε). Moreover, if N(ε) is as in (5.101a), for every n ≥ N(ε) there exists
K(n, ε) such that (5.101b) holds. Let us set ν(n, ε) := k(ε) + K(n, ε). Then
for every n ≥ N(ε) we have

d(�, �n) ≤ d(�, �ν(n,ε)) + d(�ν(n,ε), �ν(n,ε)n ) + d(�ν(n,ε)n , �n) < 3 ε.

This proves the second claim. Finally, as for the third limit in (5.100) and its
equality with the others, we argue as follows. Let ε > 0 be given and let k(ε)
be as above and N(ε) be as in (5.101a): then, for every k, n ≥ k(ε) +N(ε),

d(�, �kn) ≤ d(�, �k) + d(�k, �kn) < 2 ε.

This completes the proof. ��
Remark 5.40. The hypothesis of completeness of X in Theorem 5.39 can be
removed – it being understood that (i) and (ii) are still assumed – provided
it is replaced by one of the following conditions:

(iii) The limit limk→∞
(
limn→∞ �kn

)
exists and is in X .

(iii)’ The limit limn→∞
(
limk→∞ �kn

)
exists and is in X .

Remark 5.41. Another possible (very compact) way of rewriting the CBHD
operation on a Banach-Lie algebra g is the following one:

x+

∫ 1

0

Ψ(ead x ◦ et ad y)(y) dt,

where Ψ(z) = z log(z)/(z − 1) (which is analytic in the complex open disc
about 1 ∈ C of radius 1) and x, y are sufficiently close to 0 ∈ g.
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5.4 Nilpotent Lie Algebras and the Third Theorem of Lie

The aim of this section is to consider the CBHD operation � on a nilpotent
Lie algebras n: We shall prove that, in this context, (n, �) is a group, so
that � is in particular (globally) associative (Sect. 5.4.1). Furthermore, we
prove that, as long as n is also finite-dimensional – besides being nilpotent
– then (n, �) is a Lie group, whose Lie algebra is isomorphic to n itself. This
solves the so-called Third Fundamental Theorem of Lie (in its global form),
for finite-dimensional nilpotent Lie algebras, thus furnishing a remarkable
application of the CBHD operation (Sect. 5.4.2).

5.4.1 Associativity for Nilpotent Lie Algebras

Suppose K is a field of characteristic zero and that n is a nilpotent Lie algebra
over K, with step of nilpotency r ∈ N. We recall that this has the following
meaning: Introducing the descending central series of n

n1 := n, nn+1 := [n, nn] = span{[g, gn] : g ∈ n, gn ∈ nn} (n ∈ N),
(5.102)

then n is nilpotent of step r iff nr �= {0} and nr+1 = {0}.
We use the notations introduced at the beginning of Sect. 5.2.1:

Dn
(h,k), Nn, cn, c(h, k), ηnN , Zn

j , . . .

For the sake of brevity, the superscript “n” will frequently be omitted;
analogously we shall denote the Lie bracket on n simply by [·, ·].

Since n is nilpotent of step r, the formal series which defines the operation
� on n reduces to a finite sum. We thus set

�n : n× n −→ n

ξ �n η :=
r∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn : |h|+|k|≤r

Dn
(h,k)(ξ, η)

h! k! (|h|+ |k|) .
(5.103)

Our main result for this section is the following theorem (which is usually
treated in the literature as a folklore fact; it is our firm opinion that it
actually deserves a respectful proof). Note that we make no hypothesis of finite-
dimensionality for n.

Theorem 5.42 (The CBHD Operation on a Nilpotent Lie Algebra). Let n be
a nilpotent Lie algebra over a field of null characteristic. Let r ∈ N denote the step
of nilpotency of n. Let also �n be the operation on n defined in (5.103).
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Then (n, �n) is a group with identity 0 and inversion given by ξ �→ −ξ. In
particular, �n is associative on n.

Proof. Obviously, a �n 0 = 0 �n a = a for every a ∈ n. Moreover,

Dn
(h,k)(λa, μ a) = 0, for every

(
λ, μ ∈ K, a ∈ n

(h, k) ∈ Nn : |h|+ |k| ≥ 2

)

.

Consequently, this gives

(λa) �n (μa) = Dn
(1,0)(λa, μ a) +Dn

(0,1)(λa, μ a) = λa+ μa,

so that a �n (−a) = (−a) �n a = 0, for all a ∈ n.
So we are left to prove the associativity of �n. We provide two proofs of

this fact. The first one makes use of the identities concerning the associativity
of � on a Lie algebra obtained in Theorem 5.36 (which actually required some
hard work on “truncating” the � operation). The second proof, independent
of this latter machinery, goes back directly to the associativity of the �
operation on T̂ (V ), which is our original CBHD Theorem (and it also
makes use of some general results on nilpotent Lie algebras of independent
interest).

First Proof. Let a, b, c ∈ n be given. We apply Theorem 5.36 when g is our
nilpotent Lie algebra n and N is its step of nilpotency r. Note that the far
left-hand side of (5.88) is exactly a �n (b �n c)− (a �n b) �n c. The statement of
that theorem ensures that this difference belongs to

[n, [· · · , n
︸ ︷︷ ︸
r + 1 times

] · · · ] = nr+1 = {0}.

Thus, associativity is proved.

Second Proof. Let a, b, c ∈ n be given. Let {x, y, z} be a set of cardinality 3.
By the universal property of W := L(K〈x, y, z〉) in Theorem 2.85-(2b), there
exists a unique LA morphism Φa,b,c :W → n such that

Φa,b,c(x) = a, Φa,b,c(y) = b, and Φa,b,c(z) = c. (5.104)

By Lemma 5.43 below, there exists an LA morphism Φ :W −→ n prolonging
Φa,b,c and with the property:

Φ(�) = 0, for all � ∈∏∞
k=r+1 Lk(K〈x, y, z〉). (5.105)

Here W is the closure of W as a subset of the usual topological space
T̂ (K〈x, y, z〉) and Lk is defined in the usual way. We claim that
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Φ(t � t′) = Φ(t) �n Φ(t′), ∀ t, t′ ∈ W. (5.106)

To prove this, first note that t � t′ ∈W for every t, t′ ∈W . Indeed, we have

t � t′ =
∞∑

n=1

cn
∑

(h,k)∈Nn

c(h, k) D⊗
(h,k)(t, t

′)
︸ ︷︷ ︸

∈W

,

since W is a Lie subalgebra of T̂ (K〈x, y, z〉) (see Remark 3.17 on page 139);
hence t�t′ itself belongs toW , since it is the sum of a convergent series in W .
To prove (5.106), we argue as follows:

Φ(t � t′) = Φ

( r∑

n=1

cn
∑

(h,k)∈Nn : |h|+|k|≤r

c(h, k)D⊗
(h,k)(t, t

′)+

+
∞∑

n=r+1

cn
∑

(h,k)∈Nn

{· · · }+
r∑

n=1

cn
∑

(h,k)∈Nn : |h|+|k|≥r+1

{· · · }
︸ ︷︷ ︸

∈∏∞
k=r+1 Lk(K〈x,y,z〉)

)

(5.105)
=

r∑

n=1

cn
∑

(h,k)∈Nn : |h|+|k|≤r

c(h, k)Φ
(
D⊗

(h,k)(t, t
′)
)

(Φ is a Lie algebra morphism)

=

r∑

n=1

cn
∑

(h,k)∈Nn : |h|+|k|≤r

c(h, k)D⊗
(h,k)

(
Φ(t), Φ(t′)

)
= Φ(t) �n Φ(t′).

Since � is associative on W , we have

(�) x � (y � z) = (x � y) � z.

Observing that

x, y, z, y � z, x � y, x � (y � z), (x � y) � z

all belong to W , we can apply Φ to both sides of (�) and we are entitled to
make use of (5.106) twice on both sides, getting

Φ(x) �n (Φ(y) �n Φ(z)) = (Φ(x) �n Φ(y)) �n Φ(z).

Recalling that Φ prolongs Φa,b,c and that (5.104) holds, this is equivalent to
a �n (b �n c) = (a �n b) �n c and the proof is complete. ��
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Here we used the following result.

Lemma 5.43. Let n be a nilpotent Lie algebra over the (arbitrary) field K. Let V
be a K-vector space and let f : V → n be any linear map. If L(V ) is the free
Lie algebra generated by V , we denote by f : L(V ) → n the unique Lie algebra
morphism prolonging f (this exists by Theorem 2.49-(i), on page 86).

Then there exists a Lie algebra morphism f : L(V ) → n prolonging f , with the
additional property

f(�) = 0, for all � ∈∏∞
k=r+1 Lk(V ), (5.107)

where r is the step of nilpotency of n. Finally, f is the unique Lie algebra morphism
from L(V ) to n prolonging f and satisfying (5.107).

Proof. First we prove uniqueness. Let r ∈ N denote the step of nilpotency
of n. Let F : L(V ) → n be an LA morphism prolonging f and null on∏∞

k=r+1 Lk(V ). We first claim that F also prolongs f : L(V ) → n. This
is equivalent to F |L(V ) ≡ f , which follows by the fact that F |L(V ) is an
LA morphism from L(V ) to n prolonging f , a property which uniquely
characterizes f (by the cited Theorem 2.49-(i)). Moreover, for every � =
(�k)k≥1 ∈

∏∞
k=1 Lk(V ), the following computation applies:

F (�) = F (�1, �2, . . . , �r, 0, 0, . . .) + F (0, 0, . . . , 0, �r+1, �r+2, . . .)

= F (�1, �2, . . . , �r, 0, 0, . . .) =
r∑

k=1

F (�k) =
r∑

k=1

f(�k).

In the last equality we used the fact that �k ∈ Lk(V ) ⊆ L(V ), for every
k ∈ N together with the fact that F prolongs f . The above argument proves
that (since f is uniquely determined by f ) F is uniquely determined by f .

We now prove the existence part. With the above notation, we set

F : L(V )→ n, F
(
(�k)k≥1

)
:=
∑r

k=1 f(�k),

where �k ∈ Lk(V ) for every k ∈ N. We show that f := F has the properties
claimed in the assertion of the lemma.

To begin with, F is obviously well-posed and linear. Moreover, it clearly
prolongs f on L(V ), for any element of L(V ) has the form (�k)k≥1, where the
�k are null for k large enough. Furthermore, property (5.107) immediately
follows from the fact that any element of

∏∞
k=r+1 Lk(V ) has the form (�k)k≥1

with �k ∈ Lk(V ) for every k ∈ N and with �1 = �2 = · · · = �r = 0.
We are left to show that F is an LA morphism. This follows from the

computation below: let a = (ak)k and b = (bk)k be arbitrary elements of
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L(V ) (that is, ak, bk ∈ Lk(V ) for every k ∈ N); then we have

F ([a, b]⊗) = F
((∑

i+j=k[ai, bj]⊗
)
k∈N

)
(1)
=

r∑

k=1

f(
∑

i+j=k[ai, bj]⊗)

(2)
=

r∑

k=1

∑

i+j=k

[
f(ai), f(bj)

]
n

(3)
=
[∑r

i=1 f(ai),
∑r

j=1 f(bj)
]

n

(4)
= [F (a), F (b)]n.

Here we used the following facts:

1.
∑

i+j=k[ai, bj]⊗ ∈ Lk(V ) for every k ∈ N, together with the definition
of F .

2. f is an LA morphism.
3. We used the r-step nilpotency of n together with the following argument.

Since ai ∈ Li(V ) then ai is a linear combination of ⊗-brackets of length i
of elements of V , so that – by the LA morphism property of f – we deduce
that f(ai) is a linear combination of n-brackets of length i of elements of
n, that is, an element of ni (see the notation in (5.102)). Thus, whenever
i+ j ≥ r + 1 we have – by (2.11) on page 60 –

[
f(ai), f(bj)

]
n
∈ [ni, nj ]n ⊆ ni+j = {0}.

4. The very definition of F .

This ends the proof. ��
Here is another remarkable property of the group (n, �n) in Theorem 5.42.

Lemma 5.44. Let n be a nilpotent Lie algebra over a field of null characteristic. Let
r ∈ N denote the step of nilpotency of n. Let also �n be the operation on n defined in
(5.103). Then the group (n, �n) is nilpotent of step r.

Proof. We drop the notation �n and replace it with �. If we set

α : n× n→ n, α(X,Y ) := X � Y � (−X) � (−Y ), (5.108)

we need to show that

α(Xr+1, · · ·α(X3, α(X2, X1)) · · · ) = 0, for every X1, . . . , Xr+1 ∈ n,
(5.109)

and that there exist X1, . . . , Xr ∈ n such that

α(Xr , · · ·α(X3, α(X2, X1)) · · · ) �= 0. (5.110)

We know that, as for the CBHD operation �, we can write
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X � Y = X + Y +H2(X,Y )

= X + Y + 1
2 [X,Y ] +H3(X,Y ) ∀ X,Y ∈ n,

(5.111)

where H2 (respectively,H3) is a Lie polynomial in n, sums of Lie monomials
of heights in {2, . . . , r} (respectively, in {3, . . . , r}). We know very well that
these polynomials can be written in a “universal” way, suitable for all
nilpotent Lie algebras of step r. So, more correctly, we can think of H2 and
H3 as functions defined on n × n and taking values in n such that H2(X,Y )
and H3(X,Y ) are obtained by substituting X for x and Y for y in two well
determined Lie polynomials belonging to the free Lie algebra L(Q〈x, y〉)
(here Q〈x, y〉 denotes the free vector space over Q on two non-commuting
indeterminates x, y): more precisely, we have

H2(x, y) ∈
⊕r

k=2 Lk(Q〈x, y〉), H3(x, y) ∈
⊕r

k=3 Lk(Q〈x, y〉).

We begin with some enlightening computations which will explain the
general background ideas.
• We claim that there exists R3(x, y) ∈

⊕r
k=3 Lk(Q〈x, y〉) such that

Y �X � (−Y ) � (−X) = [Y,X ] +R3(X,Y ), ∀ X,Y ∈ n. (5.112)

(Recall that � is associative!) Indeed (5.111) gives

(Y �X) � ((−Y ) � (−X))

= Y �X + (−Y ) � (−X) + 1
2 [Y �X, (−Y ) � (−X)]

+H3(Y �X, (−Y ) � (−X))

= (Y +X + 1
2 [Y,X ] +H3(Y,X)) + (−Y −X + 1

2 [Y,X ] +H3(−Y,−X))

+ 1
2 [Y +X +H2(Y,X),−(Y +X) +H2(−Y,−X)] + P3(X,Y )

= [Y,X ] +H3(Y,X) +H3(−Y,−X)

+ 1
2 ([Y +X,−(Y +X)] + P ′

3(X,Y )) + P3(X,Y )

= [Y,X ] +R3(X,Y ),

for some P3, P
′
3, R3 ∈

⊕r
k=3 Lk(Q〈x, y〉). Hence (5.112) follows.

• We claim that there exists R4(x, y, z) ∈
⊕r

k=4 Lk(Q〈x, y, z〉) such that

Z � Y �X � (−Y ) � (−X) � (−Z) �X � Y � (−X) � (−Y )

= [Z, [Y,X ]] +R4(X,Y, Z), for every X,Y, Z ∈ n.
(5.113)

In order to prove (5.113), we start by recalling that −W is the �-inverse of W
(for any W ∈ n). As a consequence we immediately get
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X � Y � (−X) � (−Y ) = −(Y �X � (−Y ) � (−X)). (5.114)

Recalling the notation in (5.108) note that (5.112) reads as

α(Y,X) = [Y,X ] +R3(X,Y ), for every X,Y ∈ n. (5.115)

From (5.114) and (5.115) it follows that

Z � (Y �X � (−Y ) � (−X)) � (−Z) � (X � Y � (−X) � (−Y ))

= Z � α(Y,X) � (−Z) � (−α(Y,X))

= α(Z, α(Y,X))

(5.115)
= [Z, α(Y,X)] +R3(α(Y,X), Z)

(5.115)
=
[
Z, [Y,X ] +R3(X,Y )

]
+R3([Y,X ] +R3(X,Y ), Z)

= [Z, [Y,X ]] +R4(X,Y, Z),

for some R4(x, y) ∈
⊕r

k=4 Lk(Q〈x, y〉). This proves (5.113). Note that the
latter can be rewritten (again recalling the notation in (5.108)) as

α(Z, α(Y,X)) = [Z, [Y,X ]] +R4(X,Y, Z), for every X,Y, Z ∈ n. (5.116)

To go on with the proof of the present Lemma 5.44, we take the opportunity
to state and prove a result which has importance in its own right.

Lemma 5.45. Let q ∈ N, q ≥ 2. Let {x1, . . . , xq} denote a set of cardinality q.
Then there exists a Lie polynomial

Rq+1(x1, . . . , xq) ∈
⊕∞

k=q+1 Lk(Q〈x1, . . . , xq〉)

such that, for every nilpotent Lie algebra n (over a field of characteristic zero) and
every choice of X1, . . . , Xq ∈ n

α(Xq, · · ·α(X3, α(X2, X1)) · · · )
= [Xq, · · · [X3, [X2, X1]] · · · ] +Rq+1(X1, . . . , Xq),

(5.117)

where α(X,Y ) = X�Y �(−X)�(−Y ) and � is the CBHD operation �n introduced
in (5.103).

Proof. We argue by induction on q ≥ 2. The case q = 2 follows from (5.112).
Let us now prove the statement for q + 1, assuming it to be true for q.
The following computation applies:
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α(Xq+1, α(Xq, · · ·α(X3, α(X2, X1)) · · · ))
(5.115)
=
[
Xq+1, α(Xq, · · ·α(X3, α(X2, X1)) · · · )

]

+R3(α(Xq , · · ·α(X3, α(X2, X1)) · · · ), Xq+1)

(by the inductive hypothesis)

=
[
Xq+1, [Xq, · · · [X3, [X2, X1]] · · · ] +Rq+1(X1, . . . , Xq)

]

+R3

(
[Xq, · · · [X3, [X2, X1]] · · · ] +Rq+1(X1, . . . , Xq), Xq+1

)

= [Xq+1, [Xq, · · · [X3, [X2, X1]] · · · ]]+

+
{[
Xq+1, Rq+1(X1, . . . , Xq)

]

+R3

(
[Xq, · · · [X3, [X2, X1]] · · · ] +Rq+1(X1, . . . , Xq), Xq+1

)}

= [Xq+1, [Xq, · · · [X3, [X2, X1]] · · · ]] + {Rq+2(X1, . . . , Xq, Xq+1)},

for some Rq+2(x1, . . . , xq, xq+1) ∈
⊕∞

k=q+2 Lk(Q〈x1, . . . , xq, xq+1〉). ��
We are now able to end the proof of Lemma 5.44. To begin with, (5.109)
immediately follows from (5.117), choosing q = r + 1. Indeed, in this case
both

[Xr+1, · · · [X2, X1] · · · ] and Rr+2(X1, . . . , Xr+1)

vanish identically, since n is nilpotent of step r, the latter vanishing in view
of the fact that

Rr+2 ∈
⊕∞

k=r+2 Lk(Q〈x1, . . . , xq〉).

The proof of (5.110) is even simpler: If we take q = r in (5.117), we have the
very precise identity

α(Xr, · · ·α(X2, X1) · · · ) = [Xr, · · · [X2, X1] · · · ], (5.118)

holding true due to the fact that Rr+1(X1, . . . , Xr) = 0, since Rr+1 is a sum
of Lie monomials with length ≥ r + 1 (recall that n is nilpotent of step r).
Now, there exists at least one r-tuple X1, . . . , Xr in n for which the right-
hand side of (5.118) is non-vanishing, because n has step of nilpotency equal
to r. Thus the same is true of the left-hand side of (5.118). This ends the
proof. ��
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5.4.2 The Global Third Theorem of Lie for Nilpotent Lie
Algebras

We are now ready to prove a central result, a significant application of
the CBHD operation in the context of Lie groups. In the proofs below, we
suppose that the Reader is familiar with basic notions of Lie groups.

Throughout this section, n will denote a fixed real nilpotent Lie algebra.
We denote by r its step of nilpotency. As usual, we denote by

�n : n× n −→ n

ξ �n η :=
r∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn : |h|+|k|=j

1

h! k! (|h|+ |k|)

× (ad ξ)h1(ad η)k1 · · · (ad ξ)hn(ad η)kn−1(η)

(5.119)

the CBHD operation on n. We have the following remarkable result.

Theorem 5.46. Let n be a finite-dimensional real nilpotent Lie algebra. Let r be its
step of nilpotency. Let �n be as in (5.119).

Then (n, �n) is a Lie group whose Lie algebra is isomorphic to n.
More specifically, (n, �n) is nilpotent of step r and the underlying manifold is

analytic, connected and simply connected. Indeed, via a global chart, we can identify
n with RN , where N = dimR(n), and �n can be expressed, in this global chart, as
a polynomial function of the associated coordinates.

The proof of this theorem is postponed to page 334.

We recall that, given a finite-dimensional Lie algebra g, the existence of a
Lie group whose Lie algebra is isomorphic to g is known as the global version
of the Third Fundamental Theorem of Lie8 (see, e.g., [171, Theorem 3.15.1,
page 230]). Thanks to Theorem 5.46, we are able to prove the global version
of Lie’s Third Theorem for finite dimensional real nilpotent Lie algebras, in
a very direct and simple way: by making use of the CBHD operation.

Theorem 5.47 (Global Third Theorem of Lie for Nilpotent Lie Algebras).
Suppose n is a finite-dimensional real nilpotent Lie algebra.

Then there exists a simply connected analytic Lie group whose Lie algebra is
isomorphic to n.

Proof. It suffices to take the group (n, �n) as in Theorem 5.46 above. ��
Remark 5.48. Actually, by analyzing our arguments below, we will prove
much more. Even in absence of the hypothesis of nilpotency, it will turn

8Many authors simply call it “the Third Fundamental Theorem of Lie”.
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out that the “local group” defined by the CBHD series on a neighborhood of
the identity of any finite-dimensional real Lie algebra g (see Theorem 5.17)
is such that, roughly speaking, the associated “locally left-invariant” vector
fields form a Lie algebra isomorphic to g itself. More precisely, by our proofs
below we are able to prove the following fact:

Let g be a finite-dimensional real Lie algebra which is endowed with
a (globally defined) operation turning it into a Lie group and such that
this operation coincides with the CBHD series � on a neighborhood of the
identity 0. Then the Lie algebra of g is isomorphic to g itself.

In order to give the proof of Theorem 5.46 (see page 334), we first need to
recall some simple facts about Lie groups (we shall assume the Reader to be
sufficiently familiar with the basic definitions).

Let (G, ·) be a (real, smooth) Lie group with Lie algebra g (thought of
as the set of smooth left-invariant vector fields on G). We denote by N the
dimension of G (as a smooth manifold) and by e the identity of G. We know
that g is N -dimensional and can be identified with the tangent space to G at
e, denoted henceforth by Te(G). The associated natural identification (which
is an isomorphism of vector spaces) is

α : g→ Te(G), α(X) := Xe. (5.120)

The inverse of α is the function which maps a given v ∈ Te(G) into the
(smooth and left-invariant) vector field X such that

Xx = deτx(v), for all x ∈ G.

Here τx is the left-translation by x on G and deτx denotes the differential of
τx at the identity.

The natural Lie bracket [·, ·]g on g (the Lie bracket of vector fields on
the manifold G, which is nothing but the commutator resulting from the
enveloping algebra of G, i.e., the algebra of the smooth linear differential
operators – of any order – on G, equipped with the usual operation of
composition) is “pushed-forward” by α to an operation on Te(G), obviously
endowing Te(G) with the structure of a Lie algebra isomorphic to g and such
that α is a Lie algebra isomorphism. We denote this operation by [·, ·]e:
explicitly

[u,v]e := α
([
α−1(u), α−1(v)

]
g

)
, for every u,v ∈ Te(G). (5.121)

Let us fix a local chart (U,ϕ) centered at the identity e of G (this means that
U is an open neighborhood of e in G and that ϕ is a homeomorphism of
U onto an open subset ϕ(U) of RN ; the adjective centered means that we
assume ϕ(e) to equal 0 ∈ RN ). It is well-known that a basis of Te(G) is given
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by the following derivations at e (depending on the chart!)

∂

∂ x1

∣
∣
∣
e
, . . . ,

∂

∂ xN

∣
∣
∣
e
, (5.122)

defined by (for any i = 1, . . . , N )

∂

∂ xi

∣
∣
∣
e
f :=

∂

∂ yi

∣
∣
∣
0

{
(f ◦ ϕ−1)(y1, . . . , yN)

}
,

for every smooth function f : G → R (the yi in the above right-hand side
denote the standard coordinates on RN ). As a consequence, any element u
of Te(G) has the form

u = u1
∂

∂ x1

∣
∣
∣
e
+ · · ·+ uN

∂

∂ xN

∣
∣
∣
e
, (5.123)

for a uniquely determined N -tuple of real numbers (u1, . . . , uN ). Fixing a
chart (U,ϕ) as above, for any smooth function f : G → R we denote by f̂
the expression of f in the corresponding local coordinates, that is,

f̂ := f ◦ ϕ−1 : ϕ(U)→ R.

By an abuse of notation, we denote by m̂ the coordinate expression of the
multiplication of G around e (by shrinking U if necessary, we here suppose
that U is so small that, for every x, y ∈ U , x ·y belongs to the domain of some
chart onG centered at e on which the coordinate function ϕ is defined): more
precisely we set

m̂ : ϕ(U)× ϕ(U)→ RN ,
m̂(α, β) := ϕ

(
ϕ−1(α) · ϕ−1(β)

)

for every α, β ∈ ϕ(U).
(5.124)

Obviously, m̂ is a smooth map on an open neighborhood of (0, 0) ∈ RN ×
RN . We also let m̂ = (m̂1, . . . , m̂N ) denote the component functions of m̂.

We are ready to prove a useful lemma, showing that the mixed partial
derivatives in the Hessian matrix of m̂ at (0, 0) suffice to determine (in a
very precise way) the Lie algebra structure of g.

Lemma 5.49. With all the above notation, we have

[ N∑

i=1

ui
∂

∂ xi

∣
∣
∣
e
,

N∑

j=1

vj
∂

∂ xj

∣
∣
∣
e

]

e

=

N∑

h=1

( N∑

i,j=1

(ui vj−uj vi)
∂2m̂h(0, 0)

∂αi ∂βj

)
∂

∂ xh

∣
∣
∣
e
,

(5.125)
for every ui, vi ∈ R (i = 1, . . . , N ).
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Equivalently, the structure constants of the Lie algebra (Te(G), [·, ·]e) with
respect to the basis in (5.122) are given by the formula:

[
∂

∂ xi

∣
∣
∣
e
,
∂

∂ xj

∣
∣
∣
e

]

e

=

N∑

h=1

(
∂2m̂h(0, 0)

∂αi ∂βj
− ∂2m̂h(0, 0)

∂αj ∂βi

)
∂

∂ xh

∣
∣
∣
e
, (5.126)

for any i, j ∈ {1, . . . , N}.

Proof. Let the notation preceding the statement of the lemma be fixed. We
have the following computation (u is as in (5.123) and for v we follow
analogous notation; moreover f : G→ R is any smooth function):

[u,v]e(f)
(5.121)
=
[
α−1(u), α−1(v)

]
g
(f)(e)

= (α−1(u))
∣
∣
e

(
α−1(v)(f)

) − {analogous, interchange u,v}
= u
(
x �→ v(f ◦ τx)

)− {analogous, interchange u,v}

=
( N∑

i=1

ui
∂

∂ xi

∣
∣
∣
e

){( N∑

j=1

vj
∂

∂ yj

∣
∣
∣
e

)
f(x · y)

}

− {analogous . . . }

=
N∑

i,j=1

ui vj
∂

∂ xi

∣
∣
∣
e

∂

∂ yj

∣
∣
∣
e
{f(x · y)} −

{ analogous,
interchange us with vs

}
.

We have, by definition of ∂/∂ xi and of f̂ , m̂,

∂

∂ xi

∣
∣
∣
e

∂

∂ yj

∣
∣
∣
e
{f(x · y)} = ∂

∂ αi

∣
∣
∣
0

∂

∂ βj

∣
∣
∣
0
{f(ϕ−1(α) · ϕ−1(β)

)}

=
∂

∂ αi

∣
∣
∣
0

∂

∂ βj

∣
∣
∣
0
{f̂(m̂(α, β))} = (by the chain rule)

=
∂

∂ αi

∣
∣
∣
0

N∑

h=1

∂ f̂

∂ xh
(m̂(α, 0))

∂ m̂h

∂ βj
(α, 0)

(again by the chain rule, together with m̂(α, 0) = α)

=
N∑

h=1

∂2 f̂

∂xi ∂xh
(0)

∂ m̂h

∂ βj
(0, 0) +

N∑

h=1

∂ f̂

∂ xh
(0)

∂2 m̂h

∂αi ∂βj
(0, 0).

Now note that one has (as m̂h(0, β) = β)

∂ m̂h

∂ βj
(0, 0) =

∂

∂ βj
{m̂h(0, β)} = ∂

∂ βj
βh = δj,h,
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where δj,h is the usual Kronecker symbol. As a consequence we have the
following formula

∂

∂ xi

∣
∣
∣
e

∂

∂ yj

∣
∣
∣
e
{f(x · y)} = ∂2 f̂

∂xi ∂xj
(0) +

N∑

h=1

∂ f̂

∂ xh
(0)

∂2 m̂h

∂αi ∂βj
(0, 0).

Going back to the computation for [u,v]e(f), we obtain

[u,v]e(f) =

N∑

i,j=1

ui vj
∂2 f̂(0)

∂xi ∂xj
+

N∑

i,j,h=1

ui vj
∂ f̂(0)

∂ xh

∂2 m̂h(0, 0)

∂αi ∂βj

− {analogous, interchange us with vs}

=
N∑

i,j=1

ui vj
∂2 f̂(0)

∂xi ∂xj
−

N∑

i,j=1

vi uj
∂2 f̂(0)

∂xi ∂xj

+

N∑

i,j,h=1

ui vj
∂ f̂(0)

∂ xh

∂2 m̂h(0, 0)

∂αi ∂βj
−

N∑

i,j,h=1

vi uj
∂ f̂(0)

∂ xh

∂2 m̂h(0, 0)

∂αi ∂βj

(the first two sums cancel each other, by Schwarz’s Theorem!)

=
N∑

h=1

( N∑

i,j=1

(ui vj − uj vi)
∂2 m̂h(0, 0)

∂αi ∂βj

)
∂ f̂(0)

∂ xh
.

This gives the desired (5.125), by the very definition of (∂/∂ xh)|e. Obviously,
(5.126) is a particular case of (5.125). ��
In the next result, Proposition 5.50, we make use of the following definition.

Let g be a Lie algebra. Let B = {ei}i∈I be a basis for g. Then there exist
uniquely defined scalars cki,j such that

[ei, ej]g =
∑

k∈I

cki,j ek, for every i, j ∈ I. (5.127)

Obviously, the above sum is unambiguous, for it is finite for every i, j ∈ I (by
definition of a – linear – basis for a vector space). We say that the coefficients
cki,j are the structure constants of the Lie algebra g with respect to the basis B.

Note that, by the skew-symmetry of the Lie bracket one has

cki,j = −ckj,i, for every i, j, k ∈ I. (5.128)
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Moreover, by the the Jacobi identity, we also obtain that

∑

r∈I

(cri,j c
s
r,k + crj,k c

s
r,i + crk,i c

s
r,j) = 0, for every i, j, k, s ∈ I. (5.129)

Actually, if g is a vector space over K with a basis B = {ei}i∈I and
{cki,j}i,j,k∈I is a family of scalars satisfying (5.128) and (5.129) (and such that,
for every i, j ∈ I, the cki,js are non-vanishing only for a finite – possibly
empty – set of indices k in I), then the unique bilinear operation [·, ·]g on g
defined by (5.127) endows g with the structure of a Lie algebra. We will have
no occasion to apply this fact, though. Instead, we shall make use of the
following well-known fact, stating that the structure constants completely
determine the Lie algebra, up to isomorphism.

Proposition 5.50. Let g, h be two Lie algebras (over the same field). Then g and h
are isomorphic as Lie algebras if and only if there exist a basis G = {gi}i∈I for g
and a basis H = {hi}i∈I for h (indexed over the same set I) such that the associated
structure constants coincide.

More precisely, this last condition means that

cki,j = γk
i,j for every i, j, k ∈ I, where

[gi, gj]g =
∑

k∈I c
k
i,j gk,

[hi, hj ]h =
∑

k∈I γ
k
i,j hk,

for every i, j ∈ I.
(5.130)

Proof. We split the proof in two parts.

I. Suppose G = {gi}i∈I is a basis for g andH = {hi}i∈I is a basis for h such
that (5.130) holds. We need to prove that g, h are isomorphic Lie algebras.
Let Ψ : g → h be the unique linear map mapping gi into hi, for every i ∈ I.
Obviously, Ψ is a vector space isomorphism (for its inverse is the unique
linear map from h to g mapping hi into gi, for every i ∈ I). We claim that
Ψ is a Lie algebra isomorphism. Indeed, given u, v ∈ g there exist scalars
αi(u), αi(v) (for every i ∈ I) such that αi(u) �= 0 and αi(v) �= 0 for only a
finite set (possibly empty) of indices i in I and such that

u =
∑

i∈I αi(u) gi, v =
∑

i∈I αi(v) gi.

Then we have

Ψ([u, v]g) = Ψ
( ∑

i,j∈I

αi(u)αj(v) [gi, gj ]g

)

= Ψ
( ∑

i,j,k∈I

αi(u)αj(v) c
k
i,j gk

)
=
∑

i,j,k∈I

αi(u)αj(v) c
k
i,j Ψ(gk)
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=
∑

i,j,k∈I

αi(u)αj(v) c
k
i,j hk

(5.130)
=
∑

i,j,k∈I

αi(u)αj(v) γ
k
i,j hk

=
∑

i,j∈I

αi(u)αj(v) [hi, hj ]h =
∑

i,j∈I

αi(u)αj(v) [Ψ(gi), Ψ(gj)]h

=

[

Ψ
(∑

i∈I

αi(u) gi

)
, Ψ
(∑

j∈I

αj(v) gi

)]

h

= [Ψ(u), Ψ(v)]h.

II. Vice versa, suppose that g, h are isomorphic Lie algebras. Let Ψ : g → h
be an isomorphism of Lie algebras. Let us fix any indexed basis G = {gi}i∈I

for g. Since an LA morphism is in particular a vector space isomorphism,
then the system H := {Ψ(gi)}i∈I is a basis for h. We set hi := Ψ(gi) for every
i ∈ I. With obvious notation, we denote by cki,j the structure constants of g
w.r.t.G and by γk

i,j the structure constants of h w.r.t.H. We aim to prove that
cki,j = γk

i,j for every i, j, k ∈ I. This derives from the following computation:
Fixing any i, j ∈ I, we have:

∑

k∈I

γk
i,j hk = [hi, hj ]h = [Ψ(gi), Ψ(gj)]h = Ψ([gi, gj ]g)

= Ψ
(∑

k∈I

cki,j gk

)
=
∑

k∈I

cki,j Ψ(gk) =
∑

k∈I

cki,j hk.

By equating left-hand side and right-hand side, we have

∑
k∈I(γ

k
i,j − cki,j)hk,

so that, by the linear independence of the vectors hk we deduce that γk
i,j −

cki,j = 0 for every k ∈ I. The arbitrariness of i, j proves the claimed equality
of the structure constants. This ends the proof. ��
With the above lemmas at hand, we are ready to give the:

Proof (of Theorem 5.46.). Let n be a finite-dimensional real nilpotent Lie
algebra. Let r be its step of nilpotency. Let also �n be as in (5.119). As n is
nilpotent, we know from Theorem 5.42 that (n, �n) is a group with identity
0 and inversion given by n � ξ �→ −ξ ∈ n. Since n is nilpotent of step r, we
know from Lemma 5.44 that the group (n, �n) is nilpotent of step r.

Let us set N := dim(n). By hypothesis N is finite. Let us fix any basis E =
{E1, . . . , EN} for the underlying vector space of n. We denote by ϕ : n→ RN

the linear map defined by

ϕ(x1 E1 + · · ·+ xN EN ) := (x1, . . . , xN ), ∀ x1, . . . , xN ∈ R.
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Trivially, this is an isomorphism of vector spaces and it also plays the rôle
of a coordinate map for a global chart on n, when n is endowed with the
usual smooth structure of a finite-dimensional vector space (obviously, this
smooth structure is independent of the basis E). With respect to this fixed
set of coordinates, the operation �n in (5.119) has polynomial component
functions and (by recalling the facts above) the group inversion map is
simply RN � x �→ −x ∈ RN .

This proves that (n, �n) is also a Lie group of dimension N . In the rest of
the proof, we denote this Lie group by G.

The main task is now to show that the Lie algebra of the Lie group
G (denoted by g) is isomorphic (as a Lie algebra) to n itself. Here, g is
endowed with the usual bracket of vector fields (denoted by [·, ·]g) whereas
n is endowed with its primordial Lie bracket [·, ·]n. From the facts recalled
before Lemma 5.49, we know that the Lie algebra (g, [·, ·]g) is isomorphic
to the Lie algebra (T0(G), [·, ·]0), where T0(G) is the tangent space to G at 0
(recall that 0 is the identity of G) and [·, ·]0 is the Lie bracket in (5.121) (see
also (5.120)).

Hence, to complete the proof it suffices to show that the Lie algebras
(T0(G), [·, ·]0) and (n, [·, ·]n) are isomorphic. Since they are both N -dimensio-
nal as vector spaces (recall that T0(G) has the same dimension as G, i.e., N ),
to prove the claimed LA isomorphism it suffices, in view of Proposition 5.50,
to exhibit bases for T0(G) and for n having the same structure constants. We
denote the structure constants of n with respect to the above basis E by cki,j ,
which means that

[Ei, Ej ]n =
∑N

k=1 c
k
i,j Ek, for every i, j = 1, . . . , N . (5.131)

We know that T0(G) admits the basis

B :=
{ ∂

∂ x1

∣
∣
∣
0
, . . . ,

∂

∂ xN

∣
∣
∣
0

}
,

where these partial derivatives are meant in the usual sense (of smooth man-
ifolds) with respect to the given coordinate map ϕ as above. Now, identity
(5.126) in Lemma 5.49 proves that the structure constants of (T0(G), [·, ·]0)
with respect to the basis B are given by the numbers (indexed in the obvious
way)

∂2m̂k(0, 0)

∂αi ∂βj
− ∂2m̂k(0, 0)

∂αj ∂βi
, i, j, k ∈ {1, . . . , N}.

Here, according to (5.124), m̂ is the following function of (α, β) ∈ RN ×RN

m̂(α, β) = ϕ
(
ϕ−1(α) �n ϕ−1(β)

)

= ϕ
(
(α1E1 + · · ·+ αN EN ) �n (β1E1 + · · ·+ βN EN )

)
.
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Equivalently, the component functions m̂k of m̂ are given by

( N∑

i=1

αiEi

)
�n
( N∑

j=1

βj Ej

)
=

N∑

k=1

m̂k(α, β)Ek. (5.132)

We claim that the structure constants of (T0(G), [·, ·]0) with respect to B coincide
with those of (n, [·, ·]n) with respect to E. So, all we have to prove is that

cki,j =
∂2m̂k(0, 0)

∂αi ∂βj
− ∂2m̂k(0, 0)

∂αj ∂βi
, (5.133)

for every i, j, k ∈ {1, . . . , N}, where the constants cki,j are as in (5.131) and m̂
is as in (5.132), that is, m̂ is the coordinate expression of the CBHD operation
with respect to the basis E. Let us explicitly remark that:

In the case of finite-dimensional nilpotent Lie algebras, we have reduced the
(global version of) Lie’s Third Theorem to an explicit computation on the Campbell,
Baker, Hausdorff, Dynkin operation.

Now, the proof of (5.133) is a simple computation. Indeed, since we are
interested only in the second derivatives of the components of m̂ at (0, 0),
in view of (5.132) we can focuss on the summands expressing �n which are
brackets of height not exceeding 2. Recalling that we have

ξ �n η = ξ + η + 1
2 [ξ, η]n + {brackets of heights ≥ 3 in ξ, η},

we infer

N∑

k=1

m̂k(α, β)Ek =
( N∑

i=1

αiEi

)
�n
( N∑

j=1

βj Ej

)

=

N∑

i=1

αiEi +

N∑

j=1

βj Ej +
1

2

N∑

i,j=1

αi βj [Ei, Ej ]n+

+
{

brackets of heights ≥ 3 in
∑

i αiEi,
∑

j βj Ej

}

(5.131)
=

N∑

k=1

(
αk + βk +

1

2

N∑

i,j=1

αi βj c
k
i,j

)
Ek + {· · · }.

By comparing the far left/right-hand sides, we derive (for k = 1, . . . , N )

m̂k(α, β) = αk + βk +
1

2

N∑

i,j=1

αi βj c
k
i,j + O(‖(α, β)‖3), (5.134)
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as (α, β) → (0, 0). This gives

∂2m̂k(0, 0)

∂αi ∂βj
− ∂2m̂k(0, 0)

∂αj ∂βi
=

1

2
cki,j −

1

2
ckj,i

(5.128)
= cki,j ,

and (5.133) follows. This ends the proof. ��
Remark 5.51. By analyzing the proofs of Proposition 5.50 and of Theorem
5.46, we have proved the following fact.

Given a finite-dimensional real nilpotent Lie algebra n, denoted by G
the Lie group (n, �n) and by Lie(G) the Lie algebra of G, a Lie algebra
isomorphism Ψ : n → Lie(G) can be obtained as follows: Fixed any linear
basis E1, . . . , EN of n, Ψ is the unique linear function mapping Ei (for any
i = 1, . . . , N ) into the left-invariant vector field Xi such that

Xi(f)(x) =
d

d t

∣
∣
∣
t=0

f(x �n (t Ei)),

for every x ∈ G and every smooth f : G→ R.
In a certain sense this shows that, in order to determine the Lie algebra

Lie(G), it suffices to consider, from the CBHD operation x�y, the summands
where y appears only with order 1. [A simpler formula can be provided for
such summands. This formula has a long history, tracing back to Campbell,
Baker and Pascal, as we showed in Chap. 1.]

5.5 The CBHD Operation and Series in Banach Algebras

Let (A, ∗, ‖·‖) be a (real or complex) Banach algebra where ‖·‖ is compatible
with ∗, according to Definition 5.22. We denote by [·, ·]∗ (or simply by [·, ·])
the commutator related to the algebra (A, ∗). Hence (A, [·, ·]∗, ‖ · ‖) becomes
a Banach Lie algebra (see Remark 5.26) and we have

∥
∥[x, y]∗

∥
∥ ≤ 2 ‖x‖ · ‖y‖, for every x, y ∈ A.

By Remark 5.27, we know that the norm ‖ ·‖� = 2 ‖ ·‖ is compatible with the
Banach Lie algebra A. As a consequence, the results of Theorems 5.30 and
5.38 hold in the present context too, replacing ‖ · ‖ in their statements with
the present norm ‖ · ‖�. We thus get (rewriting everything in terms of the
present norm ‖ · ‖ = 1

2 ‖ · ‖�) the following theorem.
This theorem gives us information on the convergence of the CBHD series

relative to A and the local associativity of the CBHD operation on A.

Theorem 5.52. Suppose (A, ∗, ‖ · ‖) is a Banach algebra, ‖ · ‖ being a compatible
norm on A. Let Z∗

j (a, b) be as in (5.28), relative to the commutator-algebra of A,
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that is (see also (5.23)–(5.26) for the relevant notation),

Z∗
j (a, b) =

j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)D∗
(h,k)(a, b), a, b ∈ A.

Let us set

a � b :=
∞∑

j=1

Z∗
j (a, b), whenever this series converges in A, (5.135)

A being equipped with its given Banach space structure.
Then a sufficient condition for the existence of a � b is that the couple (a, b)

belongs to the set

D =
{
(a, b) ∈ A×A : ‖a‖+ ‖b‖ < 1

2 log 2
}
.

This is the case, e.g., if a, b belong to the disc
{
a ∈ A : ‖a‖ < 1

4 log 2
}

. Moreover,

‖a � b‖ ≤ 1
2 log

(
1

2− e2(‖a‖+‖b‖)

)

, for every (a, b) ∈ D.

Finally, the series of functions
∑∞

j=1 Z
∗
j (a, b) converges normally (hence uni-

formly) on every set of the type

{
(a, b) ∈ A×A : ‖a‖+ ‖b‖ ≤ δ

}
, with δ < 1

2 log 2.

Let Q =
{
a ∈ A : ‖a‖ < 1

4 log
(
2− 1/

√
2
)}

, then we have

(a � b) � c = a � (b � c), for every a, b, c ∈ Q.

Unlike Banach Lie algebras, on a Banach algebra other interesting problems
arise – also directly linked to the original CBHD Theorem – which we now
describe. The exponential function

Exp : A→ A, Exp(a) :=
∞∑

k=0

a∗ k

k!
, a ∈ A

is well defined on the whole of A, for we have

∥
∥
∥

n+p∑

k=n

a∗ k

k!

∥
∥
∥ ≤

n+p∑

k=n

‖a‖k
k!

≤
∞∑

k=n

‖a‖k
k!

n→∞−−−−→ 0,
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so that {∑n
k=0

a∗ k
k! }n∈N is a Cauchy sequence on A, hence it is convergent

(for A is complete). The problem which we aim to address is the following:

Determine a set E ⊆ A such that a � b converges for every a, b ∈ E and

Exp(a � b) = Exp(a) ∗ Exp(b), for every a, b ∈ E. (5.136)

This may be referred to as the CBHD Theorem for Banach algebras.

Incidentally, not only the � operation has a meaning on a Banach algebra,
but so also does the analogue of the � operation from Sect. 3.1.3 (page 126),
that is,

a�b :=
∞∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn

a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗ hn ∗ b∗ kn

h1! · · ·hn! k1! · · · kn! . (5.137)

Some additional attention must be paid in the context of Banach algebras (if
compared to the setting of T̂ (V )), for the above sum over Nn is infinite and
it has to be properly interpreted.

Yet another couple of problems which we aim to address are the follow-
ing ones: Determine sets Ei ⊆ A (with i = 1, 2) such that a�b converges for every
a, b ∈ Ei and for which it holds that

Exp(a�b) = Exp(a) ∗ Exp(b), for every a, b ∈ E1; (5.138)

a � b = a�b, for every a, b ∈ E2. (5.139)

The solutions to these last two questions will give, as a byproduct, the above
CBHD Theorem for Banach algebras.

We now face to solve all of these problems.

Lemma 5.53. Let all the above notation apply. Let a, b ∈ A. Then, for every n ∈ N,
the infinite sum

Ξn(a, b) :=
∑

(h,k)∈Nn

a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗ hn ∗ b∗ kn

h1! · · ·hn! k1! · · · kn! (5.140)

makes sense in A as the limit of (“polynomial”) functions

Ξn(a, b) = lim
N→∞

∑

(h,k)∈Nn
|h|+|k|≤N

1

h! k!
a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn , (5.141)
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or as the sum of the series of (“homogeneous” polynomial) functions

∞∑

j=n

(
∑

(h,k)∈Nn
|h|+|k|=j

1

h! k!
a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗kn

)

. (5.142)

Furthermore, these limits/series of functions converge uniformly on every disc
centred at the origin {a ∈ A : ‖a‖ ≤ R}, for any finite R > 0.

Actually, we have (if 1A denotes the identity element of (A, ∗))

Ξn(a, b) =
(
Exp(a) ∗ Exp(b)− 1A

)∗n
, for every a, b ∈ A. (5.143)

Finally, for every n ∈ N and every a, b ∈ A, we have the estimate

∥
∥Ξn(a, b)

∥
∥ ≤

∑

(h,k)∈Nn

1

h! k!
‖a‖|h| ‖b‖|k| = (e‖a‖+‖b‖ − 1)n. (5.144)

Proof. We fix henceforth a, b ∈ A, n ∈ N. Given N ≥ n, we denote
by ΨN (a, b) the sequence of functions whose limit appears in (5.141). The
following computation applies (here N ≥ n and P ∈ N):

‖ΨN+P (a, b)− ΨN (a, b)‖

=

∥
∥
∥
∥

∑

(h,k)∈Nn
N+1≤|h|+|k|≤N+P

1

h! k!
a∗ h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

∥
∥
∥
∥

≤
∑

(h,k)∈Nn
N+1≤|h|+|k|≤N+P

1

h! k!
‖a‖|h| ‖b‖|k| (we set R := max{‖a‖, ‖b‖})

≤
∑

(h,k)∈Nn
N+1≤|h|+|k|

1

h! k!
R|h|+|k| =: IN .

Now, in view of identity (5.38), the above far right-hand side IN is equal to
the sum of the powers with exponent ≥ N + 1 in the Maclaurin expansion
of the function

R � R �→ (e2R − 1)n
(5.38)
=
∑

(h,k)∈Nn

R|h|R|k|

h! k!
.

Since the above function is real analytic and it coincides throughout with its
Maclaurin expansion, IN vanishes as N →∞. This proves that {ΨN(a, b)}N
is Cauchy in A, hence that it converges. The uniform convergence claimed
in the statement of this lemma is a consequence of the above computations.
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Furthermore, given N ∈ N, N ≥ n we have (by reordering)

ΨN (a, b) =
∑

(h,k)∈Nn
|h|+|k|≤N

1

h! k!
a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

=

N∑

j=n

(
∑

(h,k)∈Nn
|h|+|k|=j

1

h! k!
a∗ h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

)

,

so that ΨN(a, b) is actually equal to the N -th partial sum of the series of
functions in (5.142). Finally, by (5.38) we infer

∥
∥Ξn(a, b)

∥
∥ ≤

∑

(h,k)∈Nn

1

h! k!
‖a‖|h| ‖b‖|k| = (e‖a‖+‖b‖ − 1)n.

Actually, as (A, ∗) is a topological algebra, we have

(
Exp(a) ∗ Exp(b)− 1A

)∗n
=

( ∑

(h,k) �=(0,0)

a∗h ∗ b∗ k

h! k!

)∗n

=
∑

(h1,k1),...,(hn,kn) �=(0,0)

a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

h1! · · ·hn! k1! · · · kn! = Ξn(a, b).

This proves (5.143), thus ending the proof. ��
Theorem 5.54 (Well Posedness of � on a Banach Algebra). Suppose (A, ∗,
‖ · ‖) is a Banach algebra, ‖ · ‖ being a compatible norm on A.

For every (a, b) belonging to the set

E0 :=
{
(a, b) ∈ A×A : ‖a‖+ ‖b‖ < log 2

}
, (5.145)

the series of functions

a�b :=
∞∑

n=1

(−1)n+1

n

( ∑

(h,k)∈Nn

a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

h1! · · ·hn! k1! · · · kn!
)

(5.146)

is (absolutely) convergent in A. For example, this holds for a, b in the disc

E1 :=
{
a ∈ A : ‖a‖ < 1

2 log 2
}
, (5.147)

since E1 ×E1 ⊂ E0.
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The convergence of the above series is total (hence uniform) on any set of the type
{(a, b) ∈ A × A : ‖a‖ + ‖b‖ ≤ δ }, with 0 < δ < log 2. Furthermore, the same
results of convergence apply for the majorizing series

∞∑

n=1

∣
∣
∣
(−1)n+1

n

∣
∣
∣

( ∑

(h,k)∈Nn

∥
∥a∗ h1 ∗ b∗k1 ∗ · · · ∗ a∗hn ∗ b∗ kn

∥
∥

h1! · · ·hn! k1! · · · kn!
)

.

Finally, formula (5.138) holds, that is,

Exp(a�b) = Exp(a) ∗ Exp(b), for every (a, b) ∈ E0, (5.148)

hence in particular for every (a, b) ∈ E1.

Proof. Let a, b ∈ A. By Lemma (5.53) (see also the notation in (5.140)),
Ξn(a, b) makes sense for every n ∈ N. By exploiting (5.144), we have, if
(a, b) ∈ E0:

∞∑

n=1

∥
∥
∥
∥
(−1)n+1

n
Ξn(a, b)

∥
∥
∥
∥

≤
∞∑

n=1

∣
∣
∣
(−1)n+1

n

∣
∣
∣

( ∑

(h,k)∈Nn

∥
∥a∗h1 ∗ b∗ k1 ∗ · · · ∗ a∗ hn ∗ b∗ kn

∥
∥

h1! · · ·hn! k1! · · · kn!
)

≤
∞∑

n=1

1

n

∑

(h,k)∈Nn

‖a‖|h| ∗ ‖b‖|k|
h! k!

=

∞∑

n=1

(e‖a‖+‖b‖ − 1)n

n

(5.41)
= log

( 1

2− exp(‖a‖+ ‖b‖)
)
<∞.

So, if (a, b) ∈ E0 the series is convergent (thanks to the completeness of A).
The same estimate as above proves the total convergence of the series (5.146)
on any set of the type {(a, b) ∈ A×A : ‖a‖+ ‖b‖ ≤ δ }, with 0 < δ < log 2.

As a last task, we aim to prove (5.148). Given (a, b) ∈ E0, we have

Exp(a�b) =
∞∑

k=0

1

k!

( ∞∑

n=1

cn
(
Exp(a) ∗ Exp(b)− 1A

)∗n
)∗ k

= 1A +
∞∑

k=1

1

k!

∑

n1,...,nk≥1

cn1 · · · cnk
(
Exp(a) ∗ Exp(b)− 1A

)∗n1+···+nk

= 1A +

∞∑

j=1

(
Exp(a) ∗ Exp(b)− 1A

)∗ j
( j∑

k=1

1

k!

∑

n1,...,nk≥1
n1+···+nk=j

cn1 · · · cnk
)

= 1A + Exp(a) ∗ Exp(b)− 1A = Exp(a) ∗ Exp(b).



5.5 The CBHD Operation and Series in Banach Algebras 343

In the second to last equality we applied (9.26) on page 491, ensuring that

j∑

k=1

1

k!

∑

n1,...,nk≥1
n1+···+nk=j

cn1 · · · cnk = 0, for every j ≥ 2.

This ends the proof. ��
Theorem 5.55 (The Identity of � and � on a Banach Algebra). Let (A, ∗,
‖ · ‖) be a Banach algebra, ‖ · ‖ being a compatible norm on A.

For every (a, b) belonging to the set

D :=
{
(a, b) ∈ A×A : ‖a‖+ ‖b‖ < 1

2 log 2
}
, (5.149)

the series of functions

a � b :=
∞∑

j=1

( j∑

n=1

cn
∑

(h,k)∈Nn: |h|+|k|=j

c(h, k)D∗
(h,k)(a, b)

)

(5.150)

is (absolutely) convergent in A. For example, this holds for a, b in the disc

E2 =
{
a ∈ A : ‖a‖ < 1

4 log 2
}
, (5.151)

since E2 ×E2 ⊂ D.
The convergence of the above series is total (hence uniform) on any set of the type

{(a, b) ∈ A×A : ‖a‖+ ‖b‖ ≤ δ }, with 0 < δ < 1
2 log 2.

Finally, formula (5.139) holds, that is, if � is as in (5.146),

a � b = a�b, for every (a, b) ∈ D, (5.152)

hence in particular for every a, b ∈ E2.

Proof. The first part of the statement is already contained in Theorem 5.52,
so we are left to prove (5.152).

Let D be as in (5.149). Let also Ξn(a, b) be as in (5.140). Note that D ⊂ E0,
where the latter is the set introduced in (5.145). Then, in view of Theorem
5.54, we know that

N∑

n=1

(−1)n+1

n
Ξn(a, b)

N→∞−−−−→ a�b, (5.153)

uniformly for (a, b) ∈ D (actually, the series is normally convergent).
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Let us fix any positive δ with δ < 1
2 log 2. We claim that

N∑

n=1

(−1)n+1

n
Ξn(a, b)

N→∞−−−−→ a � b,

uniformly on the set Aδ := {(a, b) ∈ A×A : ‖a‖+ ‖b‖ ≤ δ }.

(5.154)

Once this claim is proved, thanks to (5.153) the proof of the theorem is
complete (note that we shall derive (5.152) by the arbitrariness of δ <
1
2 log 2).

For every N ∈ N the following computation holds (we drop the ∗
notation in the exponents):

N∑

n=1

(−1)n+1

n
Ξn(a, b)

(5.142)
=

N∑

n=1

(−1)n+1

n

∞∑

j=n

(
∑

(h,k)∈Nn
|h|+|k|=j

ah1 ∗ bk1 ∗ · · · ∗ ahn ∗ bkn
h! k!

)

(interchanging the sums over j and over n)

=
{ N∑

j=1

j∑

n=1

+

∞∑

j=N+1

N∑

n=1

} (−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

ah1 ∗ · · · ∗ bkn
h! k!

=: {LN(a, b) +RN (a, b)}.

Here we have set

LN (a, b) :=

N∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

ah1 ∗ bk1 ∗ · · · ∗ ahn ∗ bkn
h! k!

,

RN (a, b) :=

∞∑

j=N+1

N∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

ah1 ∗ bk1 ∗ · · · ∗ ahn ∗ bkn
h! k!

.

From identity (4.18) in Corollary 4.6, we know that for every j ∈ N and
every a, b ∈ A it holds that

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

ah1 ∗ bk1 ∗ · · · ∗ ahn ∗ bkn
h1! · · ·hn! k1! · · · kn!
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=

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn
|h|+|k|=j

D∗
(h,k)(a, b)

h! k! (|h|+ |k|) . (5.155)

As a consequence (see also Theorem 5.52)

LN (a, b)
(5.155)
=

N∑

j=1

Z∗
j (a, b)

N→∞−−−−→
∞∑

j=1

Z∗
j (a, b) = a � b,

uniformly for (a, b) ∈ Aδ . We are thus left to prove that the “remainder”
term RN (a, b) vanishes as N → ∞, uniformly for (a, b) ∈ Aδ . Indeed, we
have

‖RN(a, b)‖ ≤
∞∑

j=N+1

N∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|=j

1

h! k!
‖a‖|h| ‖b‖|k|

≤
∞∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≥N+1

1

h! k!
‖a‖|h| ‖b‖|k|

(
note that max{‖a‖, ‖b‖} ≤ ‖a‖+ ‖b‖ ≤ δ

)

≤
∞∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≥N+1

1

h! k!
δ|h|+|k|.

We claim that

lim
N→∞

∞∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≥N+1

δ|h|+|k|

h! k!
= 0, whenever |δ| < 1

2 log 2. (5.156)

This follows by an application of Lebesgue’s dominated convergence Theo-
rem. Indeed, suppose we can pass the limit N →∞ under the sign of

∑∞
n=1.

Then we have

lim
N→∞

∞∑

n=1

1

n

∑

(h,k)∈Nn
|h|+|k|≥N+1

δ|h|+|k|

h! k!
=

∞∑

n=1

1

n

(

lim
N→∞

∑

(h,k)∈Nn
|h|+|k|≥N+1

δ|h|+|k|

h! k!

)

= 0.

Indeed, the limit in parentheses is zero for every fixed n, since the infinite
sum
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∑

(h,k)∈Nn

δ|h|+|k|

h! k!

(5.38)
= (e2δ − 1)n (5.157)

is finite. To ensure that we can apply Lebesgue’s theorem, it suffices to collect
together the following facts:

1. We have the estimate (uniform w.r.t.N )

∣
∣
∣
∣
∣

1

n

∑

(h,k)∈Nn
|h|+|k|≥N+1

δ|h|+|k|

h! k!

∣
∣
∣
∣
∣
≤ 1

n

∑

(h,k)∈Nn

|δ||h|+|k|

h! k!

(5.38)
=

1

n
(e2 |δ| − 1)n;

2. The above uniform bounding sequence is “summable” in n, that is,

∞∑

n=1

1

n
(e2 |δ| − 1)n

(5.41)
= − log(2 − e2 |δ|) ∈ R,

this fact holding true because 2 |δ| < log 2.

From (5.156) and the above estimate of ‖RN(a, b)‖, we get limN→∞RN (a, b)
= 0, uniformly for (a, b) ∈ Aδ . Summing up,

N∑

n=1

(−1)n+1

n
Ξn(a, b) = LN (a, b) +RN (a, b)

N→∞−−−−→ a � b+ 0 = a � b,

uniformly for (a, b) ∈ Aδ , so that (5.154) is proved. ��
Gathering together the results so far, we obtain the following

Theorem 5.56 (The CBHD Theorem for Banach Algebras). Let (A, ∗, ‖ · ‖)
be a Banach algebra, ‖ · ‖ being a compatible norm on A.

The following formula holds

Exp(a � b) = Exp(a) ∗ Exp(b),
for every a, b ∈ A such that ‖a‖+ ‖b‖ < 1

2 log 2.
(5.158)

In particular, (5.136) holds by choosing E = E2, the latter set being as in (5.151).

Proof. Let D and E0 be as in (5.149) and (5.145), respectively. Note that
D ⊂ E0. Then for every (a, b) ∈ D we have

Exp(a � b) (5.152)
= Exp(a�b)

(5.148)
= Exp(a) ∗ Exp(b).

This completes the proof. ��
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5.5.1 An Alternative Approach Using Analytic Functions

In this section, we furnish the sketch of a possible alternative approach for
attacking some of the topics of the previous sections. This approach uses the
theory of analytic functions on a Banach space. For example, this approach is
the one followed, very effectively, by Hofmann and Morris in [91, Chapter 5]
for the study of the operation log(expx exp y) on a Banach algebra.

Here we confine ourselves to giving the basic definitions and sketching
some ideas. For an exhaustive exposition on how to prove, via analytic func-
tions, the well-behaved properties of the operation � and other interesting
results, we refer the Reader to the cited reference [91, pages 111–130].

Analytic function theory provides a very powerful tool, despite some
(slightly tedious) preliminary machinery. Nonetheless, we hope that our
former exposition on how to attack associativity and convergence topics has
some advantages too. For example, it can be adapted to any setting where
analytic theory is not available (or is much more onerous), such as in the
context of “exponential-like” formulas for smooth (and non-smooth) vector
fields (see e.g., the context of the paper [124]).

Our exposition in this section is a bit more informal (and less detailed)
than in the rest of the Book. We begin with the relevant definition.

Let E, F be Banach spaces (over the same field K, where K = R or
K = C). Given k ∈ N, we denote by Lk(E

×k, F ) the set of the continuous k-
linear maps ϕ : E×k → F (where E×k denotes the k-fold Cartesian product
of E). To say that ϕ ∈ Lk(E

×k, F ) is continuous means that the real number

‖|ϕ‖| := sup
‖h1‖E ,...,‖hk‖E≤1

∥
∥ϕ(h1, . . . , hk)

∥
∥
F

(5.159)

is finite. If h ∈ E, we denote by h×k the k-tuple of E×k with all entries equal
to h. For u ∈ E and r > 0 we let

Br(u) = {x ∈ E : ‖x− u‖E < r}.

In the sequel, we denote by ‖ · ‖ the norm on any given Banach space
(dropping subscripts like those in ‖ · ‖E and ‖ · ‖F ).

Definition 5.57 (Analytic Function). Let f : Ω → F , where Ω ⊆ E is an
open set. We say that f is analytic in Ω if, for every u ∈ Ω, there exist r > 0
and a family {ϕk}k∈N∪{0} such that:

1. ϕ0 ∈ F and ϕk ∈ Lk(E
×k, F ) for every k ∈ N;

2. The series of nonnegative real numbers
∑∞

k=1 ‖|ϕk‖| rk is convergent;
3. Br(u) ⊆ Ω and f(x) = ϕ0 +

∑∞
k=1 ϕk((x − u)×k), for every x ∈ Br(u).
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The expansion in point 3 above is called the power series expansion of f at u and
the ϕk are called the coefficients of this expansion. Note that, under condition
(2), the series

∑∞
k=1 ϕk((x− u)×k) is a convergent series in the Banach space

F , and the series is normally convergent on Br(u) (recall Definition 5.9).
Indeed, one has

∑

k≥1

sup
‖x−u‖≤r

∥
∥ϕk((x− u)×k)

∥
∥ ≤
∑

k≥1

‖|ϕk‖| rk <∞.

Remark 5.58. If we have two power series expansions of f at u, with
coefficients {ϕk}k and {ϕ′

k}k respectively, we cannot derive that ϕk ≡ ϕ′
k

for every k; instead, the coefficients ϕk and ϕ′
k coincide on the diagonal of E×k,

i.e.,
⎧
⎨

⎩

ϕ0 = ϕ′
0,

ϕ1 ≡ ϕ′
1 on E,

ϕk(ω
×k) = ϕ′

k(ω
×k), for every ω ∈ E.

(5.160)

Indeed, given ω ∈ Br(0) and t ∈ K with |t| < 1, we have

ϕ0 +

∞∑

k=1

tk ϕk(ω
×k) = f(u+ t ω) = ϕ′

0 +

∞∑

k=1

tk ϕ′
k(ω

×k).

Taking t = 0 we get ϕ0 = ϕ′
0 = f(u). Canceling out f(u), we obtain

t

∞∑

k=1

tk−1 ϕk(ω
×k) = f(u+ t ω)− f(u) = t

∞∑

k=1

tk−1 ϕ′
k(ω

×k).

Dividing by t and letting t→ 0, we obtain

ϕ1(ω) = ϕ′
1(ω) = Duf(ω) := lim

t→0

f(u+ t ω)− f(u)

t
.

Analogously (canceling f(u) + tDuf(ω) and dividing by t2) we get

ϕ2(ω, ω) = ϕ′
2(ω, ω) = D2

uf(ω) := lim
t→0

f(u+ t ω)− f(u)− tDuf(ω)

t2
,

and so on. This proves (5.160) for small ω. The assertion for all values of ω
then follows by the k-linearity of ϕk, ϕ

′
k.

Remark 5.59 (Analyticity of Power Series). Let conditions (1) and (2) in Defini-
tion 5.57 hold, for some r > 0. Then the function f(x) :=

∑∞
k=1 ϕk(x

×k) is
analytic on Br(0). More precisely, given u ∈ Br(0), we are able to provide a



5.5 An Alternative Approach Using Analytic Functions 349

power series expansion for f at u on the whole ball Br−‖u‖(u), which is the
largest ball centered at u contained in Br(0).

Let us set ρ := r−‖u‖. We begin with the following central computation,
holding true for any ω ∈ E such that ‖ω‖ < ρ:

f(u+ ω) =
∑

n≥1

ϕn((u + ω)×n) (by the n-linearity of ϕn)

=
∑

n≥1

∑

z∈{u,ω}×n
ϕn(z) =

∑

n≥1

n∑

k=0

∑

z∈Hn
k

ϕn(z) =
∑

k≥0

∑

n≥k

∑

z∈Hn
k

ϕn(z).

Here we have partitioned the Cartesian product {u, ω}×n into the disjoint
union

⋃n
k=0 H

n
k , where Hn

k is the set of n-tuples containing ω precisely k
times (whence u appears n− k times). Note that the cardinality of Hn

k is equal
to the binomial coefficient

(
n
k

)
. The above computation leads us to seek for the

coefficients of the expansion of f at u, say {ψk}k, in such a way that

ψk(ω
×k) =

∑

n≥k

∑

z∈Hn
k

ϕn(z), ∀ k ∈ N.

Note that any element z of Hn
k has the form

z =
(
u, . . . , u, ω, u, . . . , u, ω, . . . , u, . . . , u, ω, u, . . . , u

)
,

where ω occurs exactly k times and u occurs n− k times (some of the above
strings u, . . . , u may not appear). This leads us to define ψk (as element of
Lk(E

×k, F )) as follows:

ψk(ω1, . . . , ωk) :=
∑

n≥k

∑

z(ω1,...,ωk)

ϕn

(
z(ω1, . . . , ωk)

)
, ω1, . . . , ωk ∈ E,

where the inner sum runs over the elements of E×n of the following form
(with the obvious meaning)

z(ω1, . . . , ωk) =
(
u, . . . , u, ω1, u, . . . , u, ω2, . . . , u, . . . , u, ωk, u, . . . , u

)
.

It is then not difficult to prove that one has

∥
∥ψk(ω1, . . . , ωk)

∥
∥ ≤
∑

n≥k

(
n

k

)

‖|ϕn‖| ‖u‖n−k

︸ ︷︷ ︸
=:Jk(u)

·‖ω1‖ · · · ‖ωk‖.
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Note that Jk(u) is a finite real number since one has (for ρ := r − ‖u‖)

∑

k≥0

Jk(u) ρ
k =
∑

n≥0

‖|ϕn‖|
n∑

k=0

(
n

k

)

‖u‖n−k ρk =
∑

n≥0

‖|ϕn‖| rn <∞,

in view of the convergence condition (2). This proves, all at once, that ψk ∈
Lk(E

×k, F ) and that
∑

k≥0 ‖|ψk‖| ρk <∞. This is what we desired to prove.
��

Example 5.60. Let (A, ∗, ‖ · ‖) be a Banach algebra with a norm compatible
with the product. Suppose {ak}k≥0 is a sequence in A for which there exists
r > 0 satisfying

∞∑

k=0

‖ak‖ rk <∞.

Then the function f : Br(0)→ A, defined by

f(x) :=

∞∑

k=0

ak ∗ x∗k (5.161)

is analytic inBr(0). Indeed, by Remark 5.59, it suffices to show that f admits
a power series expansion (in the sense of Definition 5.57) at 0. To this end, it
is immediately seen that the definitions ϕ0 := a0 and

ϕk : A×k → A, ϕk(ω1, . . . , ωk) := ak ∗ ω1 ∗ · · · ∗ ωk

fulfil the axioms (1)–(3) in the cited definition, since ‖|ϕk‖| ≤ ‖ak‖.
We remark that, for an arbitrary Banach algebra A, not all analytic

functions (converging on some ball centered at 0) have the form (5.161). For
example, if (A, ∗) is the algebra of 2× 2 real matrices (with the usual matrix
product) the map

f

(
x1,1 x1,2
x2,1 x2,2

)

=

(
x2,2 0

0 0

)

is analytic on A but it does not take the form (5.161) on any ball centered at
the origin. Also, the functions of the type (5.161) do not even form an algebra
(with the multiplication of functions derived from the multiplication of A).
Instead, let us consider the set A of the functions f of the form

f(x) =

∞∑

k=0

ak x
∗k, (5.162)

where ak ∈ K for every k ∈ N ∪ {0}, and such that there exists r > 0
(depending on f ) satisfying

∑∞
k=0 |ak| rk < ∞. Then A is an algebra, with
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respect to the product of functions inherited from the ∗ product. Indeed, one
has (∑∞

k=0 ak x
∗k) ∗ (∑∞

k=0 bk x
∗k) =

∑∞
k=0 ck x

∗k,

with ck =
∑k

i=0 ai bk−i and, if
∑∞

k=0 |ak| rk1 <∞ and
∑∞

k=0 |bk| rk2 <∞, then∑∞
k=0 |ck| rk <∞ with r = min{r1, r2}.

Remark 5.61. Next, it is not difficult to prove that the composition of analytic
functions is analytic. Indeed, let E,F,G be Banach spaces over K. Let
g : V →W and f : W → G be analytic functions, where V ⊆ E and W ⊆ F
are open sets. Let v ∈ V be fixed. Let ε > 0 be so small that the following
conditions hold:

(a) g has a power series expansion g(x) =
∑

n≥0Gn(x− v)×n on Bε(v) ⊆ V ;
(b) g(Bε(v)) is contained in an open ball centered at g(v), sayBR(g(v)) ⊆W ,

where f has a power series expansion f(y) =
∑

i≥0 Fi(y − g(v))×i;
(c) The sum of the real valued series

∑
n≥1 ‖|Gn‖| εn is less than the

above R.

It is then not difficult to prove that, for every x ∈ Bε(v), one has

f(g(x)) =
∑

i≥0

Fi

(∑

n≥1

Gn(x − v)×n
)×i

= f(g(v)) +
∑

j≥1

∑

i,n1,...,ni�1
n1+···+ni=j

Fi

(
Gn1(x− v)×n1 , . . . , Gni(x− v)×ni

)
.

Hence, we can define Hj : E
×j → G by declaring that Hj(ω1, . . . , ωj) equals

∑

i,n1,...,ni�1
n1+···+ni=j

Fi

(
Gn1(ω1, . . . , ωn1), Gn2(ωn1+1, . . . , ωn1+n2), . . .

)
,

for every ω1, . . . , ωj ∈ E. This clearly defines an element of Lj(E
×j , G), since

the above sum is finite. Also, one has

∑

j≥1

‖|Hj‖| εj ≤
∑

j≥1

∑

i,n1,...,ni�1
n1+···+ni=j

‖|Fi‖| · ‖|Gn1‖| · · · ‖|Gni‖| εn1 · · · εni

=
∑

i≥1

‖|Fi‖|
(∑

n≥1

‖|Gn‖| εn
)i
≤
∑

i≥1

‖|Fi‖|Ri <∞.

Here we also used condition (c) on ε. The finiteness of the far right-hand
series is a consequence of condition (b) above (together with axiom (2)
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in Definition 5.57). Finally, our choice of Hj also fulfils the requirement
(f ◦ g)(x) = f(g(v)) +

∑
j≥1Hj(x− v)×j on Bε(v), and we are done. ��

Arguing as above, one proves the following fact.

Remark 5.62. Let (A, ∗, ‖ · ‖) be a Banach algebra with a norm compatible
with the product. Let A be the algebra of functions considered at the end
of Example 5.60. Let f be as in (5.162) and let g ∈ A be of the form g(x) =∑∞

k=1 bk x
∗k. Then h(x) := f(g(x)) is well posed for x ∈ Bε(0) for a small

ε > 0 and h belongs to A (the ball where h has an expansion as in (5.162)
being possibly smaller than Bε(0)).

The following result is probably one of the most important in the theory of
analytic functions. We shall prove it as a simple consequence of the estimate
of the radius of convergence contained in Remark 5.59.

Theorem 5.63 (Unique Analytic Continuation). Suppose E,F are Banach
spaces, Ω is an open and connected subset of E, and f, g : Ω → F are analytic
functions. If f and g coincide on an open (nonempty) subset of Ω, then f and g
coincide throughout Ω.

Proof. Let A denote the set of the points u ∈ Ω possessing an open
neighborhood where f and g coincide. By the hypothesis that f and g
coincide on a nonempty open subset of Ω, we deduce that A is not empty.
The proof will be complete if we show that A is both open (which is trivial)
and closed relatively to Ω.

To this end, let {xk}k be a sequence in A and suppose that xk → x0 as
k → ∞, with x0 ∈ Ω. We have to prove that x0 ∈ A. Let ε > 0 be such that
f, g admit convergent power series expansions on Bε(x0). Since xk → x0,
there exists k ∈ N sufficiently large that xk ∈ Bε/2(x0). This ensures that the
ball Bk := Bε−‖xk−x0‖(xk) “captures” x0. By the results in Remark 5.59, f and
g do admit power series expansions at xk, converging on the whole ball Bk, say

(�)

{
f(x) =

∑
n≥0 Fn(x− uk)

×n,

g(x) =
∑

n≥0Gn(x− uk)
×n,

for every x ∈ Bk.

On the other hand, from xk ∈ A we deduce that f, g coincide on a
neighborhood of xk (not necessarily containing x0). Hence, by (5.160), we
obtain that (for every n ≥ 0) Fn and Gn coincide on the diagonal of E×n. By
(�) above, this yields f ≡ g onBk. Since x0 ∈ Bk, we derive that x0 ∈ A. ��
To test the power of Theorem 5.63 let us look at the following example (see
the proof of [91, Proposition 5.3]).

Let (A, ∗, ‖ · ‖) be a Banach algebra (the norm being compatible with

the product). Let f(x) :=
∑∞

k=0
1
k! x

∗k and g(x) :=
∑∞

k=1
(−1)k+1

k x∗k (in
other words, f(x) = Exp(x), g(x) = Log(1A + x)). Using Example 5.60,
as
∑

k≥0 r
k/k! = er <∞ for every r > 0, and

∑
k≥1 r

k/k = − log(1−r) <∞
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for every r ∈ (0, 1), it follows that f is analytic on A and g is analytic on
B1(0). We prove that f(g(x)) = 1 + x on B1(0).

Let us set h := f ◦ g. By Remarks 5.59 and 5.61, h is analytic on B1(0).
By Remark 5.62, h has a power series expansion of the special form h(x) =∑∞

n=0 cn x
∗n (with cn ∈ K) on some ball Bε(0). Let us choose x = λ 1A, with

λ ∈ K (recall that K is R or C). Then obviously h(λ 1A) =
(∑∞

n=0 cn λ
n
)
1A

whenever |λ| < ε/‖1A‖. On the other hand, directly from the definitions,

h(λ 1A) = f(g(λ 1A)) = f(ln(1 + λ) 1A) = eln(1+λ) 1A = (1 + λ) 1A,

whenever |λ| < 1/‖1A‖. Hence we have
∑∞

n=0 cn λ
n = 1 + λ, for λ near the

origin. This gives c0 = c1 = 1 and cn = 0 for every n ≥ 2. Thus h(x) = 1A+x
for x ∈ Bε(0). By Theorem 5.63, this identity is valid on the largest connected
neighborhood of 0 where h is analytic, hence on B1(0).

Example 5.64. As for the topics of this Book, remarkable examples of ana-
lytic functions are provided by the CBHD series in a Banach algebra, or more
generally, on a Banach-Lie algebra.

Indeed, let (g, [·, ·], ‖ · ‖g) be a Banach-Lie algebra (here the norm is
assumed to be compatible with the bracket). For j ∈ N, let Zg

j (a, b) be as
in (5.28). Consider the usual function defined by the CBHD series

Ω � (a, b) �→ f(a, b) := a � b =∑∞
j=1 Z

g
j (a, b),

where Ω = {(a, b) ∈ g× g : ‖a‖g + ‖b‖g < 1
2 log 2}. We claim that f : Ω → g

is an analytic function on the open set Ω of the Banach space g× g. To prove this,
let us consider E := g× g with its Banach space structure resulting from the
norm

‖(a, b)‖E := ‖a‖g + ‖b‖g, a, b ∈ g.

Note that Ω is the ball in E centred at (0, 0) with radius 1
2 log 2. In view of

Remark 5.59, it is enough to show that f admits a power series expansion at
(0, 0) ∈ g × g, converging on every set of the form {‖a‖g + ‖b‖g ≤ r} with
r < 1

2 log 2. We define the coefficients in this expansion as follows:

ϕ0 := 0;

ϕ1 : E → g, ϕ1(ω) := a+ b, where ω = (a, b);
{
ϕ2 : E × E → g,

ϕ2(ω1, ω2) :=
1
2 [a1, b2],

where
ω1 = (a1, b1),

ω2 = (a2, b2);
{
ϕ3 : E×3 → g,

ϕ3(ω1, ω2, ω3) :=
1
12

(
[a1, [a2, b3]] + [b1, [b2, a3]]

)
,

where
ωi = (ai, bi),

i = 1, 2, 3;
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{
ϕ4 : E×4 → g,

ϕ3(ω1, ω2, ω3, ω4) := − 1
24 [a1, [b2, [a3, b4]]],

where
ωi = (ai, bi),

i = 1, 2, 3, 4;

and so on... Then, following the above idea, it is not difficult (although very
tedious) to define ϕj in Lj(E

×j , g) in such a way that

ϕj((a, b)
×j) = Zg

j (a, b), for every j ∈ N and (a, b) ∈ E.

Also, by means of the fundamental estimate in Theorem 5.29, one proves
that

‖|ϕj‖| ≤
j∑

n=1

|cn|
∑

(h,k)∈Nn : |h|+|k|=j

c(h, k),

so that (provided that 2 r < log 2)

∞∑

j=1

‖|ϕj‖| rj ≤
∞∑

j=1

j∑

n=1

|cn|
∑

(h,k)∈Nn : |h|+|k|=j

c(h, k) r|h|+|k|

≤
∞∑

n=1

1

n

∑

(h,k)∈Nn

r|h| r|k|

h! k!

(5.38)
=

∞∑

n=1

1

n

(
e2r − 1

)n
= − log(2− e2r) <∞.

Remark 5.65. Roughly speaking, the computations involving analytic func-
tions can be performed at the level of the underlying formal power series
setting, where – as we have seen – arguments are generally much easier,
since all convergence matters are valid “for free”. For example, one of the
most significant applications of the theory of analytic functions to our area
of interest is that, for example, one can prove associativity for � directly from
the formal power series setting, that is, from the identities established in
Sect. 5.3.1 (see Theorems 5.35 and 5.36 or the closed identity in Remark 5.37).
We leave the details to the Reader.

5.6 An Example of Non-convergence of the CBHD Series

After having investigated extensively the topic of the convergence of the
CBHD series, it is compulsory to provide an example of non-convergence. We
exhibit such an example in one of the simplest contexts of non-commutative
algebras: that of real square matrices with the usual matrix product.
Throughout this section, (M, ·) denotes the UA algebra of 2 × 2 matrices
with real entries. This is a Banach algebra, with the so-called Frobenius norm

‖A‖F :=
√

trace(AT ·A) =
√∑2

i,j=1(ai,j)
2, A = (ai,j)i,j≤2 ∈M.
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This norm is compatible with the product of M, as an application of the
Cauchy-Schwarz inequality shows at once. We begin with the following
example.

Example 5.66. This counterexample is due to Wei, [177].9 Consider the
matrices

A :=

(
0 −5π/4

5π/4 0

)

, B :=

(
0 1

0 0

)

, (5.163)

we claim that there does not exist any C ∈ M such that exp(A) · exp(B) =
exp(C).

To prove this, we first observe that, after simple calculations10 one has

exp(A) =

(−1/√2 1/
√
2

−1/√2 −1/√2

)

, exp(B) =

(
1 1

0 1

)

,

so that

exp(A) · exp(B) =

(−1/√2 0

−1/√2 −√2

)

=: D.

We now argue by contradiction: we suppose there exists C ∈ M such
that exp(C) = D. Then exp(C/2) is a square root of D in M. We reach a
contradiction if we show that there does not exist any matrix in M whose
square equals D. Indeed, if this were the case, one would have

(−1/√2 0

−1/√2 −√2

)

=

(
a b

c d

)2

=

(
a2 + bc b(a+ d)

c(a+ d) d2 + bc

)

,

for some real numbers a, b, c, d. Now, by equating the entries of place (1, 2)
of the far sides of the above equality, it must hold that b = 0 or a + d = 0;
but b = 0 is in contradiction with the equalities of the entries of place (1, 1)
(there does not exist any real a such that a2 = −1/√2), whilst a+ d = 0 is in

9We take this opportunity to correct a misprint in the example by Wei, who declares the
intention to use the matrix 2B, but then makes the computation with B.
10Indeed, B is nilpotent of degree 2 and A can be easily diagonalized. Alternatively, we
have the formula

exp

(
α −β

β α

)

=

(
eα cos β −eα sinβ

eα sinβ eα cos β

)

, α, β ∈ R,

which can be straightforwardly obtained by observing that the matrix
(
α −β

β α

)

is the

matrix of the endomorphism of R2 ≡ C obtained by multiplication times α+ i β ∈ C.
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contradiction with the equalities of the entries of place (2, 1). This ends the
argument.11

In Example 5.66, we showed that there does not exist any matrixC ∈M such
that exp(A)·exp(B) = exp(C). Does this prove that the CBHD series forA,B
is not convergent? The answer to this (non-trivial) question is positive: this
is a consequence of Theorem 5.67 below, applied to the case of the Banach
algebra (M, ·, ‖ · ‖F ). Note that, in order to answer the above question, we
make implicit use of the theory of analytic functions, since Theorem 5.67 will
be proved by the theorem of unique continuation, Theorem 5.63.

The above arguments allow us to discover that, if A andB are as in (5.163),
the CBHD series

∑∞
j=1 Zj(A,B) is not convergent in the algebra of real 2 × 2

matrices. Here, the Lie bracket defining Zj is the commutator related to
the usual associative algebra structure of M. Note also that A,B belong
to sl2(R) = {A ∈ M : trace(A) = 0}, which is a Lie subalgebra of M

(indeed, for every A,B ∈ M, [A,B] = A · B − B · A is in sl2(R), since
trace(A ·B) = trace(B ·A)). The algebra sl2(R) can be equipped with a norm
compatible with the bracket, turning it into a Banach-Lie algebra (see [118]):

‖A‖ :=
√
2 ‖A‖F , A ∈ sl2(R).

As a consequence, the above counterexample also shows that the CBHD
series

∑∞
j=1 Zj(A,B) is not convergent in the Banach-Lie algebra sl2(R).

For other counterexamples, see e.g., [14, 35, 36, 122, 175, 177].

The following result, of independent interest, is a consequence of the
theorem of unique continuation, and it is the main goal of this section.

Theorem 5.67. Let (A, ∗, ‖ · ‖) be a Banach algebra, the norm being compatible
with the product. Let a, b ∈ A. If the CBHD series a�b =∑∞

j=1 Z
∗
j (a, b) converges

in A, then Exp(a) ∗ Exp(b) = Exp(a � b).
We begin with another remarkable result.

Lemma 5.68 (Abel). Let (E, ‖ · ‖) be a (real or complex) Banach space. Suppose
{en}n≥0 is a sequence in E such that the series

∑∞
n=0 en converges in E. Let

fn : [0, 1]→ E, fn(t) := en t
n (n ∈ N ∪ {0}).

Then the series of functions
∑∞

n=0 fn(t) is uniformly convergent on [0, 1].

Proof. To begin with, we observe that the series of functions
∑∞

n=0 fn(t) is
normally convergent on [−r, r], for every r ∈ (0, 1). Indeed, since

∑∞
n=0 en

is convergent, the sequence {en}n vanishes as n → ∞, hence it is bounded.

11Note that here the underlying field plays a major rôle. Indeed, as can be seen by using
the Jordan normal form of a square matrix, in the complex case the map exp is onto the set
of invertible matrices.
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Let M > 0 be such that ‖en‖ ≤M for every n ≥ 0. Then we have

∑

n≥0

sup
t∈[−r,r]

‖fn(t)‖ ≤
∑

n≥0

M rn <∞, since r ∈ (0, 1).

It follows that
∑

n≥1 fn(t) is convergent for every t ∈ (−1, 1].
In order to demonstrate the uniform convergence on [0, 1], it is enough to

show that the uniform Cauchy condition holds for the sequence of functions
sn(t) :=

∑n
k=0 fk(t) (recall that E is Banach). That is, we must prove that for

every ε > 0 there exists nε ∈ N such that, if n ≥ nε, we have

‖sn+p(t)− sn(t)‖ ≤ ε, for every t ∈ [0, 1] and every p ∈ N.

To this end, let ε > 0 be fixed. The hypothesis that
∑

n≥0 en is convergent is
equivalent to the fact that the sequence

Rn :=
∑∞

k=n ek (n ∈ N ∪ {0})

vanishes as n→∞. Hence, there exists nε ∈ N such that

‖Rn‖ ≤ ε, for every n ≥ nε. (5.164)

We now perform a “summation by parts”: noticing that ek = Rk −Rk+1,

sn+p(t)− sn(t) =

n+p∑

k=n+1

ek t
k =

n+p∑

k=n+1

(Rk −Rk+1) t
k

=

n+p∑

k=n+1

Rk t
k −

n+p+1∑

k=n+2

Rk t
k−1

= Rn+1 t
n+1 −Rn+p+1 t

n+p +

n+p∑

k=n+2

Rk (t
k − tk−1).

If n ≥ nε, taking into account (5.164), the triangle inequality thus gives

‖sn+p(t)− sn(t)‖

≤ ‖Rn+1‖ |tn+1|+ ‖Rn+p+1‖ |tn+p|+
n+p∑

k=n+2

‖Rk‖ |tk − tk−1|

≤ 2 ε+ ε

n+p∑

k=n+2

|tk − tk−1| ≤ 2 ε+ ε (tn+1 − tn+p) ≤ 4 ε

(recall that t ∈ [0, 1] so that |tk − tk−1| = tk−1 − tk).
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Summing up, ‖sn+p(t)− sn(t)‖ ≤ 4 ε, whenever n ≥ nε. Since this is true for
every t ∈ [0, 1] and every p ∈ N, the proof is complete. ��
Proof (of Theorem 5.67). Let a, b, Zj(a, b) be as in the statement of the theorem.
We begin by observing that the function

F : (−1, 1) −→ A, F (t) :=
∑∞

n=1 Zn(a, b) t
n

is analytic, in the sense of Definition 5.57 (here (−1, 1) is a subset of the usual
Banach space R). For n ≥ 1 we set

ϕn : R×n → A, ϕn(ω1, . . . , ωn) := Zn(a, b)ω1 · · ·ωn,

for every ω1, . . . , ωn ∈ R. Obviously, ϕn ∈ Ln(R
×n, A) and ‖|ϕn‖| =

‖Zn(a, b)‖. Thus, for every fixed r ∈ ]0, 1[ we have
∑

n≥1 ‖|ϕn‖| rn <∞. This
follows by arguing as in the proof of Lemma 5.68, taking into account the
hypothesis that

∑
n≥1 Zn(a, b) converges in A. By Remark 5.59, this proves

that the restriction of F to (−r, r) is analytic. Since r ∈ (0, 1) is arbitrary, this
proves that F is analytic on (−1, 1). By Abel’s Lemma 5.68, we obtain that
F (t) is continuous up to t = 1, since

∑∞
n=1 Zn(a, b) t

n is the sum of a uniformly
convergent series of continuous functions on [0, 1].

Since Exp : A → A is analytic (see Example 5.60) and since the
composition of analytic functions is analytic (see Remark 5.61), all the above
facts prove that the function Exp◦F is analytic on (−1, 1) and it is continuous
up to t = 1. On the other hand, the function

G : R→ A, G(t) := Exp(t a) ∗ Exp(t b)

is obviously analytic, again in the sense of Definition 5.57. This follows from
the analyticity of Exp and the (evident!) analyticity of the function A× A �
(a, b) �→ a ∗ b ∈ A; thus G is analytic, thanks to the results in Remark 5.61.

We claim that Exp(F (t)) and G(t) coincide on a neighborhood of t = 0.
Once this claim is proved, by the Unique Continuation Theorem 5.63, we will
be able to infer that

Exp(F (t)) = G(t), for every t ∈ (−1, 1).

Letting t → 1− in the above identity (and recalling that Exp ◦ F and G
are continuous up to t = 1), we get Exp(F (1)) = G(1). This identity is
equivalent to Exp(

∑∞
n=1 Fn(a, b)) = Exp(a) ∗ Exp(b), the thesis of Theorem

5.67.
Hence we are left to prove the above claim. First notice that, as a

consequence of the homogeneity of Zn, one has

F (t) =
∑∞

n=1 Zn(a, b) t
n =
∑∞

n=1 Zn(t a, t b) = (t a) � (t b). (5.165)
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By Theorem 5.56, we are thus able to derive that

Exp
(
(t a) � (t b)) = Exp(t a) ∗ Exp(t b), (5.166)

provided that ‖t a‖+ ‖t b‖ < 1
2 log 2. By (5.165), identity (5.166) means that

Exp(F (t)) = G(t) for every t ∈ (−ε, ε),

where ε is sufficiently small that ε (‖a‖ + ‖b‖) < 1
2 log 2. This proves that

Exp ◦ F and G coincide on a neighborhood of 0. The proof is complete. ��

5.7 Further References

First, we would like to point out that the rôle of the CBHD Theorem
is prominent not only for usual (finite-dimensional) Lie groups, but also
within the context of infinite dimensional Lie groups (see Neeb [130] for a
comprehensive survey on these groups). As for the topics of this Book,
the notion of BCH-group (Baker-Campbell-Hausdorff group) is particularly
significant.12 See e.g., Birkhoff [12, 13]; Boseck, Czichowski and Rudolph
[24]; Czyż [42] and [43, Chapter IV]; Djoković and Hofmann [49,88]; Dynkin
[56]; Glöckner [66–68]; Glöckner and Neeb [69]; Gordina [73]; Hilgert, Hof-
mann [83]; Hofmann [86, 87]; Hofmann and Morris [92] (see also references
therein); Hofmann and Neeb [93]; Neeb [130]; Omori [133]; Robart [147,148];
Schmid [152]; Van Est and Korthagen [170]; Vasilescu [173]; Wojtyński [182].

For example, an important class of (possibly) infinite dimensional Lie
groups is that of the locally exponential Lie groups (see Section IV in Neeb’s
treatise [130]): this vast class comprises the so called BCH-Lie groups (those
for which the CBHD series defines an analytic local multiplication on a
neighborhood of the origin of the appropriate Lie algebra) and, in particular,
it contains the Banach-Lie groups. In the setting of locally exponential Lie
groups, many of the classical Lie theoretic results possess a proper analogue
(see e.g., [130, Theorems IV.1.8, IV.1.18, IV.1.19, IV.2.8, IV.3.3, Proposition
IV.2.7]; we explicitly remark that Theorem IV.2.8 in [130] contains a notable
“universal property” of the CBHD series).

We now proceed to give references on the problems of convergence and
“optimization” of the CBHD series. Let us begin with a quick descriptive
overview of the related topics.

12The theory of infinite-dimensional Lie groups has grown rapidly in the last decade.
A comprehensive list of references about infinite-dimensional Lie groups is beyond our
scope here. We restrict ourselves to just citing a few references, having some intersection
with the CBHD Theorem or with the BCH-groups.
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It is not uncommon to meet in the literature unprecise statements con-
cerning the CBHD series, asserting that this is given by

x+ y + 1
2 [x, y] +

1
12 [x, [x, y]] +

1
12 [y, [y, x]] + · · ·

(
but what does
“· · · ” mean?

)

We can accept this as some shorthand due to typographical reasons, but
besides concealing the genuine formula for higher order terms, this formula
lacks precision for more serious reasons: Are the summands grouped together?
IF they are, how are they grouped together? And also: How are summands
ordered?

These are not far-fetched questions, for it is well-known from elemen-
tary Analysis that sometimes by associating the summands from a non-
convergent series we may turn it into a convergent one and, even if a series
converges, the permutation law may fail as well (this is always the case for
conditionally convergent series). The fact that the CBHD series arises from
a logarithmic series (recall in particular the alternating factor (−1)n+1/n)
highlights that possible cancellations may play a prominent rôle (as we saw,
e.g., in Theorem 5.33 on page 301).

A more subtle problem is the way the CBHD series itself is presented: For
instance, is the “fourth order” term

− 1
24 [x, [y, [x, y]]] or is it − 1

48 [x, [y, [x, y]]] + 1
48 [y, [x, [y, x]]] ?

Actually (thanks to the Jacobi identity or – equivalently – as a direct
calculation in the enveloping algebra shows, see Example 2.96 on page 113)
these coincide in any Lie algebra, but the problem of a “minimal presenta-
tion” becomes paramount when we consider e.g., the absolute convergence
problem.

For example, in the general context of formal power series over Q in two
free indeterminates x, y, we know that Log(Exp(x) · Exp(y)) equals

x�y :=
∞∑

n=1

(−1)n+1

n

∑

(h1,k1),...,(hn,kn) �=(0,0)

xh1yk1 · · ·xhnykn
h1! · · ·hn! k1! · · · kn! ,

but the formal power series in the above right-hand side, as it is presented
here, is far from being written in terms of some basis for T (Q〈x, y〉). That
is, the same monomial may stem from different choices of (h, k) in the inner
summation. For example, x2y may come from

n = 1 : (h1, k1) = (2, 1) or n = 2 : (h1, k1) = (1, 0), (h2, k2) = (1, 1).

The so-called Goldberg presentation of Log(Exp(x) · Exp(y)) is actually a
rewriting of the above series with respect to the basis for the associative
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algebra T (Q〈x, y〉) given by the elementary words

1, x, y, x2, xy, yx, y2,

x3, x2y, xyx, xy2, yx2, yxy, y2x, y3,

x4, x3y, x2yx, x2y2, xyx2, xyxy, xy2x, xy3,

yx3, yx2y, yxyx, yxy2, y2x2, y2xy, y3x, y4, . . .

(5.167)

and so on. But now another interesting problem arises: we know very well
from the CBHD Theorem that the above x�y is equal to the series

x � y :=

∞∑

j=1

j∑

n=1

(−1)n+1

n

∑

(h,k)∈Nn : |h|+|k|=j

1

h! k! (|h|+ |k|)

× (adx)h1(ad y)k1 · · · (adx)hn(ad y)kn−1(y),

which is a formal Lie-series in the closure of L(Q〈x, y〉), called the Dynkin
presentation of Log(Exp(x) · Exp(y)). The same problem of non-minimality
of the presentation is now even more evident, in that infinite summands of
this presentation are vanishing (take for instance kn ≥ 2) and since skew-
symmetry and the Jacobi identity make possible cancellations even more
thoroughly concealed. But Dynkin’s is not the unique Lie presentation: for
example, by using Goldberg presentation and the map P in the Dynkin,
Specht, Wever Lemma, we can obtain another Lie presentation by dividing
each word times its length and by substituting for each word its related
right-nested Lie monomial. For instance, the independent words in (5.167)
become (omitting all vanishing ones):

1, x, y, 1
2 [x, y],

1
2 [y, x],

1
3 [x, [x, y]],

1
3 [x, [y, x]],

1
3 [y, [x, y]],

1
3 [y, [y, x]],

1
4 [x, [x, [x, y]]],

1
4 [x, [x, [y, x]]],

1
4 [x, [y, [x, y]]],

1
4 [x, [y, [y, x]]],

1
4 [y, [x, [x, y]]],

1
4 [y, [x, [y, x]]],

1
4 [y, [y, [x, y]]],

1
4 [y, [y, [y, x]]], . . .

Unfortunately, this is not a basis for L(Q〈x, y〉), so the obtained Lie presenta-
tion is subject to further simplifications.

For each of the above different presentations, we may study the related
problem of the convergence (when we are dealing with a normed Banach-
Lie or Banach algebra) and further problems for the absolute convergence.
For example, let us denote by

∑∞
j=1Wj(x, y), with Wj(x, y) =

∑
w∈Wj

g(w)w, (5.168)
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the cited Goldberg’s presentation, where

Wj :=
{
xh1yk1 · · ·xhjykj

∣
∣
∣ (h1, k1), . . . , (hj , kj) ∈ {(1, 0), (0, 1)}

}
.

Then, as far as absolute convergence of Goldberg’s presentation is con-
cerned, i.e., the convergence of

∑∞
j=1

∥
∥Wj(x, y)

∥
∥, (5.169)

there are at least two interesting nonnegative series providing upper bounds
for the series in (5.169).13 On the one hand we have the majorizing series

∞∑

j=1

∑

w∈Wj

|g(w)| ‖w‖, (5.170)

and, on the other hand, we may consider the majorizing series

∞∑

j=1

j∑

n=1

∣
∣
∣
(−1)n+1

n

∣
∣
∣
∑

(h,k)∈Nn
|h|+|k|=j

∥
∥xh1yk1 · · ·xhnykn∥∥
h1! · · ·hn! k1! · · · kn! . (5.171)

Obviously, the convergence of (5.170) ensures the convergence of (5.169); in
turn, it is easily seen that the convergence of (5.171) ensures that of (5.170).
To visualize these facts more closely, let us notice that the terms resulting
from j = 2 in the series in (5.169), (5.170) and (5.171) are respectively

(5.169) :
∥
∥1
2 xy − 1

2 yx
∥
∥,

(5.170) : 1
2

∥
∥xy‖+ 1

2

∥
∥yx‖,

(5.171) : 1
2‖x2‖+ ‖xy‖+ 1

2‖y2‖+ 1
2 (‖x2‖+ ‖xy‖+ ‖yx‖+ ‖y2‖).

Indeed, in (5.170) we have the further cancellations (if compared to (5.171)):

‖x2‖
∣
∣
∣12 − 1

2

∣
∣
∣+ ‖xy‖

∣
∣
∣1− 1

2

∣
∣
∣+ ‖yx‖

∣
∣
∣− 1

2

∣
∣
∣+ ‖y2‖

∣
∣
∣12 − 1

2

∣
∣
∣.

13Note that, by uniqueness of the expansion of log(exey) in the free associative algebra
over x and y, Wj(x, y) coincides with the usual Lie polynomial Zj(x, y) from the CBHD
series (see e.g., (5.28)). We temporarily used different notations, because Wj(x, y) does not
make sense in an arbitrary Lie algebra, whereas Zj(x, y) does.
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By these remarks, it is then not unexpected that the domain of convergence
of (5.171) may be smaller than that of (5.170), which – in its turn – may be
smaller than that of (5.169).

Furthermore, knowing that Wj(x, y) is a Lie polynomial, if we apply the
Dynkin-Specht-Wever Lemma, we get from (5.168) yet another presentation:

log(exey) =

∞∑

j=1

( ∑

w∈Wj

g(w)

j
[w]

)

, (5.172)

called the Goldberg commutator presentation. Here, as usual, [w] denotes the
right-nested iterated commutator based on the word w. To take us even
further, we mention that each Lie presentation has related convergence/ab-
solute-convergence problems and that the use of norms compatible with the
Lie-bracket is more suitable in this context; but this brings us to yet further
problems, since a norm compatible with the Lie bracket does not come
necessarily from a norm (or twice a norm) compatible with some underlying
associative structure (even if the Lie algebra is obtained as the commutator-
algebra of an associative algebra).

At this point, we believe we have convinced the Reader that the problem
of convergence for the many forms of the BCHD series is quite rich and
complicated. It is beyond the scope of this Book to collect all the known
results so far about these problems (some being very recent). We confine
ourselves to providing some references on related problems. (The references
are listed in chronological order and we limit ourselves to mentioning some
results – from each paper – only involving the CBHD Theorem.)

Magnus, 1950 [111]: Magnus solves a problem of group theory (a
restricted version of Burnside’s problem, see also Magnus, Karrass, Solitar
[113] and Michel [117]) with the aid of the results of Baker [8] and
Hausdorff [78], in particular by what is referred to (in this article) as
Baker-Hausdorff differentiation.

Magnus, 1954 [112]: Magnus introduces his pioneering formula for Ω(t)
(for the notation, see Sect. 1.2 of our Chap. 1), which he calls the continuous
analogue of the Baker-Hausdorff formula. He also provides a proof of
the Campbell-Baker-Hausdorff Theorem, making use of an equivalent
“additive” formulation of Friedrichs’s criterion for Lie polynomials: by
means of [112, Theorem I, page 653], the proof of the CBH Theorem boils
down to

log(ex+x′
ey+y′

) = log(exey) + log(ex
′
ey

′
),

where x, y commute with x′, y′. Still, the CBH formula is considered as
a tool in the investigation of Ω(t), and – possibly – for a proof of an
explicit formula for the expansion of Ω(t). The proof of the existence
and Lie-algebraic nature of Ω(t) is very elegant and it relies only on the
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computations by Baker and Hausdorff and their polarization operators (the
above mentioned Baker-Hausdorff differentiation).

Chen, 1957 [37]: The Campbell-Baker-Hausdorff Theorem is derived as
a corollary of what is called by Chen the generalized Baker-Hausdorff
formula, which is in close connection with Magnus’s continuous analogue
(roughly speaking, Chen’s formula proves the existence of a Magnus-
type expansion, without producing it in explicit form). The main tool is a
suitable iterated integration of paths (and the early computations by Baker
and Hausdorff are also used).

Goldberg, 1956 [71]: Goldberg discovers his (soon famous) recursive for-
mula for the coefficients of the presentation of log(exey) in the basis
consisting of monomials of the associative algebra of words in x, y:
the so-called Goldberg presentation. Goldberg’s procedure is effective for
computer implementation, as suggested early on by the author himself.

Wei, 1963 [177]: Global validity of “the theorems of Baker-Hausdorff and
of Magnus” is discussed and a list of several examples of convergence
failure is also provided (see Sect. 5.6): the number π appears for the
first time in relation to the seize of the domain of convergence for
the CBHD series. The two cited theorems (say, the discrete and the
continuous versions) are treated in a unified way and their joint relevance
in mathematical physics is first neatly pointed out (quantum mechanical
systems with a time-dependent Hamiltonian; linear stochastic motions).
Together with the coeval [128, 178, 180], this is the first of a long series of
papers concerning the CBHD (and the Magnus) Theorem in the Journal of
Mathematical Physics.

Richtmyer, Greenspan, 1965 [146]: The very first computer implementa-
tion of the CBHD formula in its integral form

log(exey) = x+

∫ 1

0

Ψ
(
exp(adx) ◦ exp(tad y)

)
(y) dt, (5.173)

where Ψ(z) = (z log z)/(z − 1).
Eriksen, 1968 [61]: Various forms of the (therein called) “Baker-Hausdorff

expansion” for log(exey) are obtained. Recurrence relations for the coef-
ficients are also provided. In particular, the results of Goldberg [71] are
exploited in order to get new Lie polynomial representations, anticipating
an analogue of the Goldberg commutator representation, and giving new
ones.

Mielnik, Plebański, 1970 [119]: With the advent of quantum theories, the
CBHD formula steps down in favor of Magnus’s continuous analogue.
The passage “from the discrete to the continuous” is clear in this paper.
The first part (pages 218–230) presents a comprehensive state-of-the-art
(up to 1970) of the CBHD Theorem, whilst the rest of the paper is devoted
to the Magnus expansion, including some new number-theoretical and
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combinatorial aspects (see also Bialynicki-Birula, Mielnik, Plebański [10]).
There is furnished in [119, eq. (7.18), page 240] a new compact integral
representation for Ω(t), in close connection with Dynkin’s combinatorial
proof of the CBH Theorem in [55].

Michel, 1974 [118]: For real Banach-Lie algebras (with a norm satisfying
the condition ‖[a, b]‖ ≤ ‖a‖ ‖b‖), it is announced that the series z(x, y) =
log(exey) =

∑
n zn(x, y) (where zn(x, y) is homogeneous of degree n in

x, y jointly) converges for

‖x‖ <
∫ 2π

‖y‖

1

2 + t
2 (1− cot t

2 )
dt,

and in the symmetric domain obtained by interchanging x and y. Michel
credits M. Mérigot [115] for this result, as a consequence of the study of a
suitable ODE satisfied by z(x, y). Furthermore, it is also announced that,
by considering the generating function given by Goldberg in [71] for the
coefficient of xnym, absolute non-convergence results hold in the domain
‖x‖ + ‖y‖ ≥ 2π. Finally, by considering the special example of sl2(R),
and the norm ‖X‖ =

√
2 trace(XT X), the boundary of the convergence

domain is explicitly parametrized and it is shown that the divergence
domain can be larger than ‖x‖ + ‖y‖ ≥ 2π. Expressibility of the CBHD
series in terms of the Širšov basis is studied and the explicit expansion up
to joint degree 10 is provided (see also [116] and [117]).

Suzuki, 1977 [162]: the domain of convergence ‖x‖ + ‖y‖ < log 2 of the
CBHD series is established in the general setting of Banach algebras, as
a consequence of convergence estimates for the Zassenhaus formula.14 See
also Steinberg [164].

Macdonald, 1981 [109]: the coefficients of the expansion of log(exey) with
respect to a Hall basis for the free Lie algebra L(Q〈x, y〉) are furnished.

Thompson, 1982 [166]: Fully rediscovering Goldberg’s presentation after
about 25 years of “silence” (apart from [61, 119]), Thompson remarks

14The Zassenhaus formula reads as follows: given non-commuting indeterminates A,B
one has

eλ(A+B) = eλAeλBeλ
2C2eλ

3C3 · · · ,
where

C2 =
1

2!

∂2

∂λ2

∣
∣
∣
λ=0

(
e−λBe−λAeλ(A+B)

)
=

1

2
[B,A],

C3 =
1

3!

∂3

∂λ3

∣
∣
∣
λ=0

(
e−λ2C2e−λBe−λAeλ(A+B)

)
=

1

3
[C2, A+ 2B],

Cn =
1

n!

∂n

∂λn

∣
∣
∣
λ=0

(
e−λn−1Cn−1 · · · e−λ2C2e−λBe−λAeλ(A+B)

)
.

It can be proved that Cn is a Lie polynomial in A,B homogeneous of degree n.
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that a Lie presentation of exp(exey), based on Goldberg’s, is immediately
derived, say

∑∞
n=1

∑
|w|=n gw w

Dynkin, Specht, Wever
�� ∑∞

n=1

∑
|w|=n

gw
n [w].

This is indeed what we formerly referred to as the Goldberg commutator
presentation.

Newman, Thompson, 1987 [132]: explicit computations of the Goldberg
coefficients are given (up to length 20), by implementing Goldberg’s
algorithm.

Strichartz, 1987 [160]: Strichartz reobtains Magnus’s expansion (but [112]
is not referenced), calling it the generalized CBHD Formula, as an explicit
formulation of the results by Chen [37]. Applications to problems of sub-
Riemannian geometry are given (Carnot-Carathéodory metrics), as well
as improvements for the convergence of the CBHD series in the context
of Banach algebras (say, ‖x‖+ ‖y‖ < 1/2). A simple yet evocative parallel
is suggested:

“The Magnus expansion is to the classical u(t) = exp
( ∫ t

0 A(s) ds
)
,

as the CBHD Formula is to the classical ex+y = exey”.

It is interesting to notice that Strichartz’s derivation of his explicit formula
for Ω(t) makes use of Friedrichs’s criterion δ(x) = x ⊗ 1 + 1 ⊗ x for Lie
elements, plus ODE techniques.

Bose, 1989 [23]: An algorithm providing the coefficients in Dynkin’s series
is furnished: Bose’s procedure is not recursive, but it computes directly
the coefficient of any bracket in Dynkin’s presentation.

Thompson, 1989 [167]: In a Banach (resp., a Banach-Lie) algebra, and with
respect to a norm compatible with the associative (resp., Lie) multiplica-
tion, it is proved that the Goldberg presentations (the associative and the
commutator ones, respectively) converge for max{‖x‖, ‖y‖} < 1.

Newman, So, Thompson, 1989 [131]: The absolute convergence for dif-
ferent presentations of log(exey) is studied. Earlier results by Strichartz
[160] and coeval ones by Thompson [167] are improved. For example,
the actual value of δ/2 ≈ 1.08686 in Varadarajan’s convergence estimate
max{‖x‖, ‖y‖} < δ/2 is provided; also, it is proved that the majorizing
series in (5.170) diverges on the boundary of {‖x‖ = 1}.

Day, So, Thompson, 1991 [46]: Instead of the usual decomposition in joint
homogeneous components in x, y, the decomposition

log(exey) =
∑

n≥0 z
y
n(x, y)

is used, ordered with respect to increasing powers of y. Accordingly, a
recursion formula for zyn is used; one which had appeared in the early
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paper by Hausdorff [78].15 The same ODE technique as in Varadarajan
[171] and Newman, So, Thompson [131] is followed: it turns out that
the y-expansion yields has a slightly improved domain of convergence
max{‖x‖, ‖y‖} < 1.23575. Also, Sect. 2 of [46] makes use of some crucial
computations on the differentiation of exponentials, which we met in the
proofs by Djoković and by Varadarajan.

Oteo, 1991 [134]: An expansion of log(exey) up to joint degree 8 in x
and y with a minimal number of brackets is given (whereas in some
common bases – such as Lyndon’s – the brackets required are more
numerous). A comparison with the method of polar derivatives is also
discussed. Richtmyer and Greenspan’s formula (5.173) is proved by the
well-established ODE technique, which can be traced back to Hausdorff:
new Lie series representations for z = log(exey) are derived.

Vinokurov, 1991 [175]: In the context of Banach algebras, an an equivalent
version of Magnus’s formula is reobtained (but [160] is quoted, instead
of [112]), in analogy with the results in [10, 119]). As a consequence, the
“Hausdorff formula” for any Banach algebra and for any compatible
norm is derived, with convergence ‖x‖ + ‖y‖ < 1. Vinokurov gives an
example of non-convergence

x =

(
0 ε

0 0

)

, y = (1 + ε)

(
0 −π
π 0

)

, ε > 0,

so that the upper bound π reappears.
Kolsrud, 1993 [103]: An expansion is given up to (joint) degree 9 in x

and y of the series log(exey) with a maximal reduction of the number
of different multiple brackets (see also [134]) .

Blanes, Casas, Oteo, Ros, 1998 [15]: The attention is by now drowned by
the continuous CBHD theorem. Starting from recursion formulas for
the Magnus expansion (see Klarsfeld, Oteo [102]), a larger domain of
convergence for the series of Ω(t) is provided (in the matrix context). As
a byproduct, this gives the absolute convergence of

∑
j Zj(x, y), for

‖x‖+ ‖y‖ < δ/2 ≈ 1.08686.

(Independently, this result was also obtained by Moan, 1998 [121].)
Reinsch, 2000 [145]: An extraordinarily simple formula for zn in the

expansion log(exey) =
∑∞

n=1 zn(x, y) in joint homogeneous components
is given: it involves only a finite number of matrix multiplications and
is easily implemented. No sums over multi-indices or partitions appear,
and no noncommutative computations are required.

15Indeed, [46, Theorem I, pag 209] is Hausdorff’s formula
(
y ∂

∂y

)
z = χ(y, z), see equation

(28) on page 31 of [78].



368 5 Convergence and Associativity for the CBHD Theorem

Moan, Oteo, 2001 [123]: Renouncing the use of the Lie representation of
the Magnus expansion (“mainly due to the rather intricate nature of the
Lie algebra bases”, see [123, page 503]), another domain of convergence is
obtained in the context of Banach algebras. Former results by Bialynicki-
Birula, Mielnik, Plebański [10] and by Mielnik, Plebański [119] are used.
When applied to obtain convergence of the log(exey) series, the domain
of convergence gives back max{‖x‖, ‖y‖} < 1, see [131, 167, 175].

Blanes, Casas, 2004 [14]: A significant improvement of the convergence of
the series expansion for log(exey) is given. For example, in a Banach-Lie
algebra with a norm satisfying ‖[a, b]‖ ≤ μ ‖a‖ ‖b‖, the new domain of
convergence is expressed as

{

(x, y) : ‖x‖ < 1

μ

∫ 2π

μ ‖y‖
h(t) dt

}

∪
{

(x, y) : ‖y‖ < 1

μ

∫ 2π

μ ‖x‖
h(t) dt

}

,

where h(t) = 1/
(
2 + t

2 − t
2 cot t

2

)
. Note that this is the same domain

announced by Michel [118] when μ = 1 (the case of a general μ > 0
followed by magnification). The above result is obtained by deriving an
ODE for the function t �→ log(exp(εt x) exp(ε y)) and by expanding the
solution as a power series in ε. Numerous examples of non-convergence
are also given. For instance, examples are shown of matrices x, y outside
the set defined by {‖x‖ + ‖y‖ ≤ π}, and arbitrarily approaching the
boundary ‖x‖+ ‖y‖ = π, for which the usual CBHD series diverges (here
‖[a, b]‖ ≤ 2 ‖a‖ ‖b‖). By replacing ‖ · ‖ with 2‖ · ‖, this also furnishes
an example of a norm satisfying ‖[a, b]‖ ≤ ‖a‖ ‖b‖ and elements x, y
approaching from outside the boundary of {‖x‖ + ‖y‖ < 2π}, for which
the CBHD series diverges (in agreement with the results announced
in [118]).
Theorem 4.1 of [14] recalls an (unpublished) article by B.S. Mityagin
(announced in 1990), which contains the following result: In a Hilbert
space of finite dimension > 2, the operator function (x, y) �→ log(exey)
is analytic (hence well-posed) in {‖x‖ + ‖y‖ < π}. This must hold
in particular for the space of square matrices of order ≥ 2 with the
Euclidean norm ‖(aij)‖E = (

∑
i,j |aij |2)1/2. Note that this norm satisfies

‖[A,B]‖E ≤ 2 ‖A‖E ‖B‖E, so that Blanes and Casas’s examples of non-
convergence show the “optimality” of the result announced by Mityagin.

Casas, 2007 [35]: The convergence of the Magnus expansion is considered.
It is shown that improved results can be given in the setting of Hilbert
spaces (see [35, Theorem 3.1, page 15006] for the precise statement); this
is done by the use of some spectral estimates and properties of the unit
sphere in a Hilbert space. In the finite dimensional case, this gives a proof
of Mityagin’s result; in the special case of square matrices, convergence
is ensured in {‖X‖ + ‖Y ‖ < π} (where ‖ · ‖ is the norm induced by the
inner product: for example the above ‖·‖E is allowed). For complex square
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matrices, a suitable delicate spectral analysis gives further improvements,
see [35, §4]. (For example, the matrix norm ‖ · ‖ := 2 ‖ · ‖E satisfies
‖[A,B]‖ ≤ ‖A‖ ‖B‖, so that we have convergence in the set {‖X‖ +
‖Y ‖ < 2π}.)

Kurlin, 2007 [105]: If L is the free Lie algebra generated by two indetermi-
nates x, y, a closed formula for log(exey) is given with respect to a basis
for (the completion of) the free metabelian Lie algebra L/[[L,L], [L,L]].
Applications to exponential equations in Lie algebras are also given. See
the rôle of the CBH Theorem in Kashiwara, Vergne [100] and in Alekseev,
Meinrenken [4].

Moan, Niesen, 2008 [122]: For real square matrices, the convergence of
the Magnus expansion is considered and the following domain of con-
vergence is given (by using spectral properties):

∫ t

0

‖A(s)‖2 ds < π.

Here ‖A‖2 = max|x|≤1 |Ax| and |·| is the usual Euclidean norm. This result
was already obtained by Casas [35] in the general case of Hilbert spaces.
As a byproduct, if t = 2 and A(s) = χ[0,1)(s)X + χ[1,2](s)Y , we get a
convergence result for the CBHD series, provided that ‖X‖2 + ‖Y ‖2 < π.
[Note that ‖·‖2 satisfies ‖[A,B]‖2 ≤ 2 ‖A‖2 ‖B‖2, so that by magnification
times 2, we obtain a particular case of a Lie-submultiplicative norm ‖ ·
‖ := 2 ‖ · ‖2 with convergence in the recurrent set {‖X‖ + ‖Y ‖ < 2π}.]
Optimality of the bound π is ensured by providing explicit examples.

Blanes, Casas, Oteo, Ros, 2009 [16]: This is a complete and exhaustive
report on the Magnus expansion and on the great variety of its appli-
cations (including the CBHD formula), with a comprehensive list of
references on the subject, which we definitely recommend to the inter-
ested Reader. Historical and mathematical up-to-date results are exposed
and a detailed comparison with earlier literature is given.

Casas, Murua, 2009 [36]: A new and efficient algorithm is given for gen-
erating the CBHD series in a Hall-Viennot basis for the free Lie algebra on
two generators (see [144] for the relevant definitions). Improved results
on convergence, in the matrix case, are also given (following the spectral
techniques in [35]).



Chapter 6
Relationship Between the CBHD Theorem,
the PBW Theorem and the Free Lie Algebras

THE aim of this chapter is to unravel the close relationship existing
between the Theorems of CBHD and of Poincaré-Birkhoff-Witt (“PBW”

for short) and to show how the existence of free Lie algebras intervenes. We
have analyzed, in Chap. 3, how the PBW Theorem intervenes in the classical
approach to the proof of CBHD, in that PBW can be used to prove in a simple
way Friedrichs’s characterization of L(V ) (see Theorem 3.13 on page 133).
Also, as for the proofs of CBHD in Chap. 4, the rôle of the free Lie algebras
was broadly manifest.

Yet, we have not mentioned so far a quite surprising fact: the opposite
path can be followed too, i.e. the PBW Theorem can be proved by means of
CBHD.

To this end, in this chapter we shall investigate a result by Cartier [33]:
Indeed in the cited paper, as an application of the CBHD Theorem, Cartier
gives a proof of a result, referred to as “Théorème de Birkhoff-Witt” (see [33,
Paragraph 6, page 247]), which in fact implies the classical PBW. We will
here illustrate Cartier’s argument, thus providing a self-contained proof of
PBW involving CBHD.

Furthermore, the paramount rôle of free Lie algebras will be clarified and
their intertwining with PBW and CBHD will be shown in details. Indeed,
the proof of PBW involving CBHD also requires (see Theorem 6.5 below)
two important results:

• The existence of the free Lie algebra Lie(X) related to a set X .
• The isomorphism Lie(X) � L(K〈X〉), the latter being the smallest Lie

subalgebra – containing X – of the tensor algebra of the free vector space
K〈X〉.

The fact that the proof of PBW – via CBHD – requires these two results turns
out to be a rather delicate circumstance, because both results are classically

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 6,
© Springer-Verlag Berlin Heidelberg 2012
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derived from PBW itself.1 As our goal is to give an alternative proof of PBW,
it is evident that we cannot make use of any of its corollaries. Consequently,
the necessity of a proof of the existence of free Lie algebras independent of
PBW becomes clear.

By sheer chance, an exposition which is independent of PBW of the
existence of the free Lie algebra related to a set can be found in Chap. 2.2

As for the proof of the isomorphism Lie(X) � L(K〈X〉), it is provided in
Sect. 8.1, from page 463. This isomorphism leads to the existence of a free Lie
algebra related to a given set X containing (set-theoretically) X itself. This is
furnished in Corollary 8.6.

The relationship of the present chapter with the rest of the Book can be
visualized in the following diagram. The arrows suggest the path to be
followed, but should not be considered as actual implications. Thus, the
diagram must be read in the sequence I–II–III.

CBHD
II

�� PBW

III
�� 


















Free Lie Algebras

I

�� �����������������

�����������������

Path I corresponds to Eichler’s argument (see Chap. 4, Sect. 4.2). Path II is
the one this chapter is entirely devoted to. Path III, finally, has been given in
that proof of Theorem 2.49 furnished on page 112.

At this point, it is clear that a profound intertwining between all three of
PBW, CBHD and FLA (short for “free Lie algebras”) occurs. We summarize it
with the following result, which is a byproduct of the results in this chapter,
plus some other results in this Book. The Reader is referred to Definition 2.50
on page 88 to recall the distinction between a free Lie algebra related to a set
and over a set.

Theorem 6.1. Let us consider the following statements (see also the notation in
the PBW Theorem 2.94 on page 111 for statement (a); here {a, b, c} is a set of
cardinality three and all linear structures are understood to be defined over a field
of characteristic zero):

(a) The set {Xi}i∈I is independent in U (g).
(b) Any Lie algebra g can be embedded in its enveloping algebra U (g).

1See e.g. our proof at page 112. For a proof of the isomorphism Lie(X) � L(K〈X〉) which
uses PBW, see also Reutenauer [144, Theorem 0.5] or Bourbaki [27, Chapitre II, §3, n.1].
2See Theorem 2.54, page 91, whose proof is at page 459.
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(c) For every set X �= ∅, there exists a free Lie algebra over X .
(d) FLA: For every set X �= ∅, the free Lie algebra Lie(X) related to X exists.
(e) The free Lie algebra over {a, b, c} exists, and Theorem CBHD holds.
(f) Theorem PBW holds.

Then these results can be proved each by another in the following circular sequence:

(a) ⇒ (b) ⇒ (c) ⇒ (d) ⇒ (e) ⇒ (f) ⇒ (a).

We observe that statement (c) is proved in Chap. 8, without any prerequisite and
without the aid of any of the other statements. Also, the isomorphism of the free Lie
algebra related to X with the Lie algebra of the Lie polynomials in the letters of X
can be proved independently of (b) and of (f).

Proof. The following arguments apply.

(a) ⇒ (b): this is obvious by the definition Xi = π(xi);
(b) ⇒ (c): this is the modern approach to the proof of the existence of
free Lie algebras, the one we followed in the proof of Theorem 2.49 given
on page 1123;
(c) ⇒ (d): this is obvious from the relevant definitions;
(d) ⇒ (e): FLA trivially implies the existence of Lie{a, b, c} which – in
its turn – implies the existence of a free Lie algebra over {a, b, c} as in
Sect. 8.1.1 of this Book; also, the fact that FLA implies CBHD is contained
in Eichler’s proof, investigated in Sect. 4.2;
(e) ⇒ (f): following Cartier’s paper [33], this is accomplished in the
present chapter;
(f) ⇒ (a): this is obvious. ��

Remark 6.2. Some remarks are in order:

– We note that the implications (d)⇒(e) and (e)⇒(f) actually require a lot of
work. Though, the “circularity” of the above statements (see also Fig. 6.1)
seems to have some theoretical interest in its own right, especially the
“long” implication (a)=⇒(f), proving that PBW can be derived by what is
usually its very special corollary (a).

– We remark that the existence of free Lie algebras is not only a consequence of
the PBW Theorem (as it is commonly understood), but the converse is also
true, this time by making use of the CBHD Theorem: this is the “long”
implication (c)=⇒(f).

– Curiously, as highlighted by the “very long” implication (e)=⇒(d), we
remark that just the existence of Lie{a, b, c} is in principle sufficient to

3Indeed, given a nonempty set X, we can construct the free vector space V = K〈X〉 and
proceed as in the proof of Theorem 2.49 given at page 112. This gives a free Lie algebra
over X since L(V ) contains V which canonically contains X.
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Intertwinement of
CBHD, PBW

and FLA 

(a)

(b)

(d)

(c)(e)

(f)

{Xi}i is
independent

embeds in 

Existence
of  FLA

over a set  

Existence of  FLA
related to a set 

CBHD
plus the
existence of  
{a,b,c}

PBW

Fig. 6.1 Figure of Theorem 6.1

prove the existence of all free Lie algebras (but this time we require both
CBHD and PBW to round off the implication.)

Bibliographical Note. The interdependence of the CBHD and PBW Theo-
rems is neatly suggested by Cartier’s investigations. More precisely:

(a) In [32, Exposé n. 1], it is announced that the Campbell-Hausdorff
formula can be deduced by some special lemmas concerning the PBW
Theorem (see part (2) of the Remarque on page 9 in [32]).

(b) In [32, Exposé n. 22], the Campbell-Hausdorff formula is proved by the
aid of Friedrichs’s characterization of Lie elements. The PBW Theorem
is required here.

(c) In [33], as mentioned above, the implication CBHD ⇒ PBW is studied;
moreover, the CBHD formula is proved, by means of the existence of free
Lie algebras, together with a new characterization of Lie polynomials
(see Sect. 4.7 in Chap. 4).

As already remarked, the existence of free Lie algebras is usually proved
as a consequence of the imbedding of g in U (g): See e.g. Hochschild [85,
Chapter X, Section 2], Humphreys [95, Chapter V, Section 17.5], Jacobson
[99, Chapter V, Section 4], Varadarajan [171, Section 3.2].

A proof of the existence of free Lie algebras independent of this cited
fact seems to appear only in Reutenauer [144, Section 0.2] and in Bourbaki
[27, Chapitre II, §2, n.2]. In these books Lie(X) is constructed as a quotient of
the non-associative free magma generated byX . A proof of the isomorphism
Lie(X) � L(K〈X〉) also appears in [27, Chapitre II, §3, n. 1] and in
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[144, Theorem 0.5], but – respectively – the PBW Theorem4 and the imbed-
ding g ↪→ U (g) are used.

Some of the results contained in this chapter have been announced in [19].

6.1 Proving PBW by Means of CBHD

We briefly outline the track we will follow in this chapter, mainly based on
Cartier’s arguments in [33].

Let g be a Lie algebra and consider the set S (g) ⊂ T (g) of its symmetric
tensors (see Definition 10.18 on page 511).

• A bilinear map F : S (g) × S (g) → T (g) is constructed, by making
use of a sort of CBHD operation (u, v) �→ Zg(u, v), where (roughly) the
⊗-brackets

[
uh1vk1 · · ·uhnvkn

]
⊗ (see (3.15), page 126) are replaced by the

Lie brackets in g.
• It is shown that u � v := F (u, v) defines a binary and associative operation

on S (g).
• With the operation � at hand, a projection Π : T (g) → S (g) is

constructed, by setting Π(a1 ⊗ · · · ⊗ an) = a1 � · · · � an. It turns out that
Π is the identity on S (g) and that its kernel is J (g) (the two-sided ideal
introduced in (2.99), page 108).

• Finally, one infers T (g) = S (g) ⊕J (g) (“Théorème de Birkhoff-Witt”)
which in fact implies PBW (see the proof on page 387).

To accomplish the proof, we first present some preliminary work (Sect. 6.1.1)
and then rerun Cartier’s original argument towards the derivation of PBW
via CBHD (Sect. 6.1.2). In the former section, our approach is certainly much
less elegant than Cartier’s [33]; we hope it might be welcomed nonetheless
for some explicit computations using Dynkin’s series, in the spirit of the
previous chapters.

6.1.1 Some Preliminaries

Let us now begin with the actual proof. The first goal is to introduce a
suitable composition law, somehow inspired by the well-known identity

Exp⊗(u) · Exp⊗(v) = Exp⊗(Z(u, v))

4See [27, Chapitre II, §3, n.1, Théorème 1] where it is employed [25, Chapitre I, §2, n.7,
Corollaire 3 du Théorème 1] which is the PBW Theorem.
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from the CBHD Theorem 3.8. Let g be a fixed Lie algebra. As usual, for every
j ∈ N, we define Lie polynomial functions on g by setting5

Zg
j : g× g→ g, Zg

j (a, b) :=

j∑

n=1

cn
∑

(h,k)∈Nn
|h|+|k|=j

c(h, k)
[
ah1bk1 · · · ahnbkn]

g
.

(6.1)
For brevity, we also let – on occasion –

Dg
(a,b)(h, k) :=

[
ah1bk1 · · · ahnbkn]

g
, (6.2)

for every (h, k) ∈ Nn and every a, b ∈ g. Note that

Zg
j (a, b), D

g
(a,b)(h, k) ∈ g for every a, b ∈ g and every (h, k) ∈ Nn.

Then – roughly speaking – for a, b ∈ g, we consider the formal objects

Zg(a, b) :=
∑

j≥1

Zg
j (a, b), exp(Zg(a, b)) :=

∑

k≥0

1

k!
(Zg(a, b))·k,

where · denotes as usual the natural (Cauchy product) operation in the
tensor algebra T (g). Finally, we let fi,j(a, b) be the sum of terms in the
expansion of exp(Zg(a, b)) where a and b appear, respectively, i and j times.
Rigorously, as in [33], one can introduce the algebra of the formal power
series in two commuting indeterminates S, T and coefficients in T (g) and
define the maps fi,j to be those functions resulting from the following
identity

∑
i,j≥0 fi,j(a, b)S

iT j = exp(Z(aS, bT )).

(This has also the advantage to make it unnecessary to use Dynkin’s series.)
Alternatively, one can introduce the following family of explicit functions:
f0,0(a, b) := 1 and, for i, j ∈ N ∪ {0} with (i, j) �= (0, 0),

fi,j : g× g→ T (g), (6.3)

fi,j(a, b) :=
∑

Ai,j

1

s!
cn1 · · · cns c(h(1), k(1)) · · · c(h(s), k(s))

×Dg
(a,b)(h

(1), k(1))⊗ · · · ⊗Dg
(a,b)(h

(s), k(s)),

5Following our customary notation, [·, ·]g denotes the Lie bracket in g and

[ah1bk1 · · · ahnbkn]
g
:= (ad a)h1 ◦ (ad b)k1 ◦ · · · ◦ (ad a)hn ◦ (ad b)kn−1(v).

Also, cn and c(h, k) are as in (3.20) on page 127.
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where the summation is over the set Ai,j defined by

s ≥ 1, n1, . . . , ns ≥ 1, (h(1), k(1)) ∈ Nn1 , . . . , (h
(s), k(s)) ∈ Nns

|h(1)|+ · · ·+ |h(s)| = i, |k(1)|+ · · ·+ |k(s)| = j.
(6.4)

We observe that Ai,j is finite, since i+ j ≥ n(1) + · · ·+ n(s) ≥ s. Thus,

fi,j(a, b) ∈ T1(g)⊕ · · · ⊕Ti+j(g).

For example, an explicit calculation gives

f2,1(a, b) =
1
12 [a, [a, b]] +

1
4 (a⊗ [a, b] + [a, b]⊗ a)

+ 1
6

(
a⊗2 ⊗ b+ a⊗ b⊗ a+ b ⊗ a⊗2

)
;

f3,1(a, b) =
1
24 a⊗ [a, [a, b]] + 1

24 [a, [a, b]]⊗ a+ 1
12 a

⊗2 ⊗ [a, b]

+ 1
12 a⊗ [a, b]⊗ a+ 1

12 [a, b]⊗ a⊗2 + 1
24 a

⊗3 ⊗ b

+ 1
24 a

⊗2 ⊗ b ⊗ a+ 1
24 a⊗ b⊗ a⊗2 + 1

24 b⊗ a⊗3.

This also shows that the functions fi,j are not homogeneous. We claim that,
for every i, j ∈ N ∪ {0} there exists a bilinear map Fi,j such that

Fi,j : Si(g)×Sj(g)→ T (g),

Fi,j(
a⊗i
i! ,

b⊗j
j! ) = fi,j(a, b), ∀ a, b ∈ g. (6.5)

First we set F0,0 : K ×K → T (g), F0,0(k1, k2) := k1 k2 for every k1, k2 ∈ K,
which clearly satisfies (6.5), since f0,0 ≡ 1.

To prove (6.5) for (i, j) �= (0, 0), we argue as follows. If i ∈ N, let gi be
the i-fold Cartesian product g× · · · × g and set g0 := K. Let us consider the
function Ξi,j : g

i × gj → T (g) defined by

Ξi,j(z, w) :=
∑

Ai,j

1

s!
cn1 · · · cns c(h(1), k(1)) · · · c(h(s), k(s))

×
[
z1 . . . zh(1)

1
, w1 . . . wk

(1)
1
· · ·

· · · z
h
(1)
1 +···+h

(1)
n1−1+1

. . . z|h(1)|, wk
(1)
1 +···+k

(1)
n1−1+1

. . . w|k(1)|
]

g

⊗
[
z|h(1)|+1 . . . z|h(1)|+h

(2)
1
, w|k(1)|+1 . . . w|k(1)|+k

(2)
1
· · ·

· · · z|h(1)|+h
(2)
1 +···+h

(2)
n2−1+1

. . . z|h(1)|+|h(2)|,

w|k(1)|+k
(2)
1 +···+k

(2)
n2−1+1

. . . w|k(1)|+|k(2)|
]

g
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⊗ · · · ⊗
[

z|h(1)|+···+|h(s−1)|+1 . . . z|h(1)|+···+|h(s−1)|+h
(s)
1
,

w|k(1)|+···+|k(s−1)|+1 . . . w|k(1)|+···+|k(s−1)|+k
(s)
1
, · · ·

z|h(1)|+···+|h(s−1)|+h
(s)
1 +···+h

(s)
ns−1+1

. . . z|h(1)|+···+|h(s−1)|+|h(s)|,

w|k(1)|+···+|k(s−1)|+k
(s)
1 +···+k

(s)
ns−1+1

. . . w|k(1)|+···+|k(s−1)|+|k(s)|

]

g

.

A direct look at Ξi,j shows that it is a multilinear map on gi × gj . Hence,
it defines a bilinear map from Ti(g) × Tj(g) to T (g), whose restriction to
Si(g)×Sj(g) we denote by F̃i,j . Finally, we set

Fi,j(a, b) := F̃i,j(i! a, j! b).

Obviously, Fi,j : Si(g)×Sj(g) → T (g) is bilinear. Also, the identity in the
far right-hand side of (6.5) is a direct consequence of the definitions of Ξi,j

and Fi,j , as it results from the following computation:

Fi,j(
a⊗i
i! ,

b⊗j
j! ) = F̃i,j(a

⊗i, b⊗j) = Ξi,j(a, . . . , a︸ ︷︷ ︸
i times

, b, . . . , b
︸ ︷︷ ︸
j times

) = fi,j(a, b).

We are now ready for the following definition.

Definition 6.3. With the above notation, we set

� : S (g)×S (g)→ T (g), u � v :=
∑

i,j≥0

Fi,j(ui, vj), ∀ u, v ∈ S (g),

where u =
∑

i ui, v =
∑

i vi (the sums being finite), with ui, vi ∈ Si(g) for
every i ≥ 0 (see e.g. the notation in (10.27), page 509).

For example, if a, b ∈ g ↪→ S (g), one has

a � b = F1,1(a, b) =
1
2 [a, b]g +

1
2 (a⊗ b+ b⊗ a). (6.6)

Since the maps Fi,j are bilinear on their domains, it follows that the same is
true of �. We are now in a position to prove the following fact.

Lemma 6.4. Following Definition 6.3, we have

u � v ∈ S (g), for every u, v ∈ S (g). (6.7)

Hence, (S (g), �) is an algebra.
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Proof. It is enough to prove the assertion when u ∈ Si, v ∈ Sj , for fixed
i, j ∈ N ∪ {0}. Furthermore, in view of (10.28), it is also not restrictive to
assume that u = a⊗i/i!, v = b⊗j/j!, for some a, b ∈ g. In this case we have
u � v = Fi,j(u, v) = Fi,j(a

⊗i/i!, b⊗j/j!) = fi,j(a, b) (see (6.5)). Thus, (6.7) will
follow if we prove

fi,j(a, b) ∈ S (g), for every a, b ∈ g and every i, j ∈ N ∪ {0}. (6.8)

By a direct glimpse to the explicit formula (6.3), one can prove directly
that, by permuting the indices of summation in Dg

(a,b)(h
(i), k(i)), the corre-

sponding coefficients are left unchanged. Thus (6.8) follows from general
characterizations of symmetric tensors. (Another direct proof of this fact
is furnished on page 456 with the collateral aim to exhibit the single
homogeneous components in fi,j). ��
We next turn to prove that the algebra (S (g), �) is indeed a UA algebra.
Clearly 1 ∈ K ≡ S0(g) is a unit element for �. Indeed, to begin with, we
show that 1�v = v for every v ∈ S (g). It suffices to prove it when v = b⊗j/j!
for j ≥ 1 (the case j = 0 being trivial). The following computation holds

1 �
b⊗j

j!
= F0,j(1, b

⊗j/j!)
(6.5)
= f0,j(1, b)

(6.3)
=

1

j!
cj1 c

j(0, 1) b⊗ · · · ⊗ b
︸ ︷︷ ︸

j times

=
b⊗j

j!
.

One analogously proves that u � 1 = u for every u ∈ S (g). To prove
that (S (g), �) is a UA algebra, we are left to prove the associativity of �,
demonstrated in the following theorem. To this end, we make use of the
associativity of the CBHD operation in the free Lie algebra on three non-
commuting indeterminates, together with a substitution argument which
permits us to obtain analogous identities in g.

Theorem 6.5. Following Definition 6.3, � is an associative operation. Hence, the
algebra (S (g), �) is a unital associative algebra.

Our proof is quite technical and the Reader interested in the proof of PBW
can pass directly to Sect. 6.1.2.

Proof. The proof is divided into several steps.

STEP I. Since the powers {v⊗n : n ≥ 0, v ∈ g} span S (g) (see
Proposition 10.16 on page 510), it suffices to prove

(
u⊗i
i! � v⊗j

j!

)
� w⊗k

k! = u⊗i
i! �
(
v⊗j
j! � w⊗k

k!

)
, (6.9)

for every u, v, w ∈ g and every i, j, k ∈ N ∪ {0}.
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The case when ijk = 0 is trivial (since 1 is the unit of �), so we can assume
i, j, k ≥ 1. By the definition of � (together with (6.5)), (6.9) amounts to prove

fi,j(u, v) �
w⊗k

k!
=
u⊗i

i!
� fj,k(v, w). (6.10)

In order to prove (6.10), we need some work on the CBHD formula in the
free tensor algebra generated by two and three distinct noncommutative
indeterminates, which is done in the next two steps.

STEP II. Let us set h := L(K〈x, y, z〉), the free Lie algebra generated by
the set S := {x, y, z} of cardinality three (see Definition 2.46 on page 85). Let
ϕ1 : K〈S〉 → g be the unique linear function mapping x, y, z respectively
into u, v, w. Hence, being h a free Lie algebra over S (see Definition 2.50,
and Theorem 2.56), there exists a unique Lie algebra morphism ϕ2 : h → g
extending ϕ1. From the inclusion g ↪→ T (g), there exists a unique UAA
morphism Φ : T (h)→ T (g) extending ϕ2.

Next, the definitions of fi,j , Fi,j , � apply replacing g with h: on this
occasion, we denote the associated maps by fh

i,j , F
h
i,j , �

h. The notation
fg
i,j , F

g
i,j , �

g has the obvious analogous meaning. It is not difficult to prove
that, thanks to the “universal” expression of fi,j , the following facts hold:

Φ
(
fh
i,j(a, b)

)
= fg

i,j

(
Φ(a), Φ(b)

)
, ∀ a, b ∈ h;

Φ
(
U �h V

)
= (Φ(U)) �g (Φ(V )), ∀ U, V ∈ S (h).

(6.11)

Thus, in order to obtain (6.10), it is enough to prove

fh
i,j(x, y) �

h z
⊗k

k!
=
x⊗i

i!
�h fh

j,k(y, z). (6.12)

Indeed, by applying Φ to both sides of (6.12) and by exploiting (6.11), one
gets (6.10) precisely. Roughly speaking, we have fixed a particular algebraic
context where to perform our computations, that of the free Lie algebra h :=
L(K〈x, y, z〉).

STEP III. If S = {x, y, z} is as in Step II, let us set V := K〈S〉 and consider
the completion T̂ (V ) of the tensor algebra of V . Let the notation in (3.14),
(3.15) of the CBHD Theorem apply (see page 125). In particular, Z denotes
the associated Dynkin series.

Since Z defines on T̂+(V ) an operation coinciding with the associative
operation u�v := Log(Expu · Exp v), we have Z(Z(x, y), z) = Z(x, Z(y, z)).
Recalling that Z =

∑
α≥1 Zα, this is equivalent to

∑

α≥1

Zα

(∑
β≥1 Zβ(x, y), z

)
=
∑

α≥1

Zα

(
x,
∑

β≥1Zβ(y, z)
)
.
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This is an equality of two elements in T̂+(V ). So we are allowed to take
exponentials (relative to T̂+(V )) of both sides, getting

∑

s≥0

1

s!

(∑

α≥1

Zα

( ∑

β≥1

Zβ(x, y), z
))⊗s

=
∑

s≥0

1

s!

(∑

α≥1

Zα

(
x,
∑

β≥1

Zβ(y, z)
))⊗s

.

(6.13)
Let W = K〈X,Y 〉, where X �= Y . In T̂ (W ), the computation below holds:

exp
(∑

α≥1
Zα(X,Y )

)
=

∞∑

s=0

1

s!

(∑

n≥1

∑

(h,k)∈Nn

cn c(h, k)D⊗
(X,Y )(h, k)

)⊗s

=

∞∑

s=0

1

s!

∑

n1≥1

∑

(h(1),k(1))∈Nn1

cn1 c(h
(1), k(1))D⊗

(X,Y )(h
(1), k(1)) · · ·

· · ·
∑

ns≥1

∑

(h(s),k(s))∈Nns

cns c(h
(s), k(s))D⊗

(X,Y )(h
(s), k(s))

=
∑

i,j≥0
f⊗
i,j(X,Y ).

Here, we have applied (6.3), (6.4) together with the introduction of functions
f⊗
i,j : T̂ (W )× T̂ (W ) → T̂ (W ) completely analogous to the function fi,j in

(6.3), where ⊗ is now the algebra operation in T̂ (W ) and D⊗ replaces Dg

when we are considering the Lie algebra structure of T̂ (W ).
We have thus derived

∑

i,j≥0

f⊗
i,j(X,Y ) =

∞∑

s=0

1

s!

(∑

α≥1

Zα(X,Y )

)⊗s

, in T̂ (K〈X,Y 〉). (6.14)

From the universal property of the tensor algebra of the free vector space
K〈X,Y 〉 (plus an obvious argument of continuity), we are allowed to make
substitutions of X,Y in (6.14). More precisely, the following equalities hold:

∑

i,j≥0

f⊗
i,j

(∑
β≥1Zβ(x, y), z

)
=
∑

s≥0

1

s!

(∑

α≥1

Zα

(∑
β≥1 Zβ(x, y), z

))⊗s

(6.13)
=
∑

s≥0

1

s!

(∑

α≥1

Zα

(
x,
∑

β≥1 Zβ(y, z)
))⊗s

=
∑

i,j≥0

f⊗
i,j

(
x,
∑

β≥1 Zβ(y, z)
)
.



382 6 CBHD, PBW and the Free Lie Algebras

Indeed, the first and third equalities follow from (6.14) by the choices:

first equality: X =
∑

β≥1 Zβ(x, y), Y = z,

second equality: X = x, Y =
∑

β≥1 Zβ(y, z).

As a consequence, we have proved the identity in T̂ (K〈x, y, z〉):
∑

i,j≥0

f⊗
i,j

( ∑

β≥1

Zβ(x, y), z
)
=
∑

i,j≥0

f⊗
i,j

(
x,
∑

β≥1

Zβ(y, z)
)
. (6.15)

Here, obviously, the maps f⊗
i,j are now functions related to the algebra

T̂ (V ). Let us next consider the following subspace of T̂ (V ):

Wi,j,k := span
{
xa1yb1zc1 · · ·xanybnzcn

∣
∣
∣n ∈ N, a1, b1, c1, . . . , an, bn, cn ≥ 0, a1

+ · · ·+ an = i, b1 + · · ·+ bn = j, c1 + · · ·+ cn = k
}
.

We have Wi,j,k ⊂ T (V ), T (V ) =
⊕

i,j,k≥0

Wi,j,k and T̂ (V ) =
∏

i,j,k≥0

Wi,j,k.

Thus the natural projection Li,j,k : T̂ (V ) → Wi,j,k is well defined and we
are entitled to apply Li,j,k to both sides of (6.15).

By the definition of fi,j (see (6.3), (6.4) and note that b “occurs” j times in
fi,j(a, b)), this gives

Li,j,k

(∑

s≥0

f⊗
s,k

( ∑

β≥1

Zβ(x, y), z
))

= Li,j,k

(∑

s≥0

f⊗
i,s

(
x,
∑

β≥1

Zβ(y, z)
))
. (6.16)

Moreover, in (6.16) all sums over s and β can be taken to be finite (say, 0 ≤
s ≤ i + j + k, 1 ≤ β ≤ i + j + k), and, for brevity, we shall do this without
explicitly writing it.

STEP IV. We now make a crucial remark: Equality (6.16) straightforwardly
specializes to an equality of elements in the tensor algebra T (h). This follows
from the fact that h is a free Lie algebra over {x, y, z} and by observing that
Zβ(x, y) and Zβ(y, z) belong to h for every β ≥ 1. Hence, (6.16) yields an
analogous identity in T (h), replacing ⊗ with h (see the notation introduced
in Step II). This identity can be rewritten as follows:

Li,j,k

∑

s≥0

F h
s,k

(
1
s!

(∑

β

Zβ(x, y)
)s
, z

k

k!

)
= Li,j,k

∑

s≥0

F h
i,s

(
xi

i! ,
1
s!

(∑

β

Zβ(y, z)
)s
)
.
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By the definition of �h, this can be further rewritten as

Li,j,k

((∑

s≥0

1
s!

(∑

β

Zβ(x, y)
)s
)
�h zk

k!

)

=Li,j,k

(
xi

i! �
h
(∑

s≥0

1
s!

(∑

β

Zβ(y, z)
)s
))

.

Finally, a simple calculation based on the definition of F h
i,j shows that the

above is equivalent to (6.12) and the proof is complete. ��

6.1.2 Cartier’s Proof of PBW via CBHD

With the UA algebra (S (g), �) at hand, we are ready to complete the proof
of “CBHD⇒PBW”, by recalling Cartier’s argument (with all details) in the
remainder of this chapter.

We begin with three lemmas. The first one is the key tool and the actual
link between the “mixed” exponential exp(Zg(a, b)) and the exponential
in the CBHD Theorem Exp(Z(a, b)) = Exp(a) · Exp(b), as an identity in
T̂ (g).

Lemma 6.6. Let J (g) be the two-sided ideal in T (g) generated by the set

{x⊗ y − y ⊗ x− [x, y]g : x, y ∈ g}.

Then for every a, b ∈ g, (h, k) ∈ Nn and every n ∈ N,

Dg
(a,b)(h, k) ≡ D⊗

(a,b)(h, k) (modulo J (g)). (6.17)

Here, following (6.2), D⊗
(a,b)(h, k) denotes the usual nested commutator in

T (g), where the latter is equipped with the Lie bracket [·, ·]⊗ naturally
related to its associative algebra structure.

Proof. This result follows by an inductive argument. Indeed, one has
[a, b]⊗ = a⊗ b− b⊗ a ≡ [a, b]g modulo J (g), and, arguing by induction, we
find

[a1[a2 . . . ak+1]⊗]⊗ ≡ [a1[a2 . . . ak+1]g]⊗ ≡ [a1[a2 . . . ak+1]g]g = [a1 . . . ak+1]g,

which completes the proof. ��
With (6.17) at hand, we next prove our second lemma, which at last gives
us a justification for the definitions of fi,j , Fi,j , and �.

Lemma 6.7. For every a1, . . . , an ∈ S (g) and every n ∈ N, we have

a1 � · · · � an ≡ a1 · . . . · an (modulo J (g)), (6.18)
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Proof. Let us argue by induction. The case n = 1 is trivial. Let us turn to the
case n = 2: we claim that

u � v ≡ u · v (modulo J (g)), for every u, v ∈ S (g). (6.19)

By bilinearity, it suffices to prove (6.19) when u = a⊗i/i! and v = b⊗j/j! for
a, b ∈ g and i, j ∈ N. The following argument then applies

u � v = Fi,j(
a⊗i
i! ,

b⊗j
j! )

(6.5)
= fi,j(a, b)

(6.3)
=
∑

Ai,j

1

s!

( s∏

i=1

cni c(h
(i), k(i))

)
Dg

(a,b)(h
(1), k(1))⊗ · · · ⊗Dg

(a,b)(h
(s), k(s))

(by (6.17), modulo J (g))

≡
∑

Ai,j

1

s!

( s∏

i=1

cni c(h
(i), k(i))

)
D⊗

(a,b)(h
(1), k(1))⊗ · · · ⊗D⊗

(a,b)(h
(s), k(s))

(6.4)
=
{

the summand in Exp(Z(a, b)) containing i-times a, and j-times b
}

(by the CBHD Theorem itself!)

=
{

the summand in Exp(a) · Exp(b) containing i-times a, and j-times b
}

=
a⊗i

i!
· b

⊗j

j!
= u · v.

We can now argue by induction

a1 � a2 � · · · � an = a1 � (a2 � · · · � an)
≡ a1 � (a2 · . . . · an) ≡ a1 · a2 · . . . · an.

Note that we are using the fact that (S (g), �) is an associative algebra. ��
We next take up another step towards PBW, the third lemma:

Lemma 6.8. For every a ∈ g and every i, j ∈ N ∪ {0},

Fi,j

(a⊗i

i!
,
a⊗j

j!

)
=
a⊗(i+j)

i! j!
. (6.20)

Proof. This follows by collecting together (6.3), (6.5) and the identity
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Dg
(a,a)(h, k) =

{
0, if |h|+ |k| ≥ 2,
a, if |h|+ |k| = 1.

This gives the following computation

Fi,j(
a⊗i
i! ,

a⊗j
j! ) = fi,j(a, a)

=
a⊗(i+j)

(i+ j)!

∑

(h(1),k(1)),...,(h(i+j),k(i+j))∈{(1,0),(0,1)}
h(1)+···+h(i+j)=i, k(1)+···+k(i+j)=j

1 =
a⊗(i+j)

i! j!
.

In the second identity, we used the following argument: the sum in (6.3)
extends over (h(r), k(r)) ∈ N1 with |h(r)| + |k(r)| = 1 and

∑s
r=1 |h(r)| = i,∑s

r=1 |k(r)| = j whence i + j =
∑s

r=1(|h(r)|+ |k(r)|), which forces s = i + j
and cnr = c(h(r), k(r)) = 1. The last equality holds since the above sum
equals, by an easy combinatorial argument, the binomial

(
i+j
i

)
. ��

Before stating the proposition which will decisively lead to PBW (see
Theorem 6.10 below), we state a last remark:

Remark 6.9. For every a ∈ g and every n ∈ N,

a � · · · � a︸ ︷︷ ︸
n times

= a⊗n. (6.21)

Proof. The proof is by induction. The case n = 1 is obvious. Supposing (6.21)
to hold for n, we derive the (n+ 1)-case from the following computation:

a � · · · � a︸ ︷︷ ︸
n + 1 times

= a⊗n � a = n!
(a⊗n

n!
� a
)
= n!Fn,1

(a⊗n

n!
, a
)

(6.20)
= n!

a⊗(n+1)

n! 1!
= a⊗(n+1),

and the proof is complete. ��
Let us now consider the unique linear map Π : T (g) → S (g) such that
Π(1) = 1 and

Π(a1 ⊗ · · · ⊗ an) = a1 � · · · � an,
(

for every a1, . . . , an ∈ g

and every n ∈ N

)

. (6.22)

Obviously, Π : (T (g), ·) → (S (g), �) is the unique UAA morphism
extending the inclusion g ≡ S1(g) ↪→ S (g).
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Theorem 6.10 (Cartier). With the above notation, the following facts hold:

Π(t) ≡ t (modulo J (g)), for every t ∈ T (g); (6.23a)

Π(v) = v, for every v ∈ S (g); (6.23b)

Π(h) = 0, for every h ∈ J (g); (6.23c)

ker(Π) = J (g). (6.23d)

Proof. By linearity, we can prove (6.23a) by checking it when t = a1⊗· · ·⊗an,
since a1, . . . , an ∈ g and n ∈ N are arbitrary:

Π(a1 ⊗ · · · ⊗ an) = a1 � · · · � an (by (6.18), modulo J (g))

≡ a1 · . . . · an = a1 ⊗ · · · ⊗ an.

Moreover, by linearity, we can prove (6.23b) by checking it when v = a⊗n,
for a ∈ g and n ∈ N:

Π(a⊗n)
(6.22)
= a�n

(6.21)
= a⊗n.

Next, we turn to prove (6.23c): since the typical element of J (g) is spanned
by elements of the form

t · (x⊗ y − y ⊗ x− [x, y]g) · t′, for x, y ∈ g and t, t′ ∈ T (g),

the fact thatΠ is a UAA morphism shows that (6.23c) will follow if we prove
that Π(x ⊗ y − y ⊗ x − [x, y]g) = 0, for every x, y ∈ g. This latter fact is a
consequence of the computation below:

Π(x⊗ y − y ⊗ x− [x, y]g)
(6.22)
= x � y − y � x−Π([x, y]g)

= x � y − y � x− [x, y]g
(6.6)
= 1

2 [x, y]g +
1
2 (x⊗ y + y ⊗ x)

− (12 [y, x]g + 1
2 (y ⊗ x+ x⊗ y)

)− [x, y]g = 0.

The second equality comes from (6.23b) and the fact that [x, y]g belongs to
g ⊂ S (g).

Finally, from (6.23a) and (6.23c), we obtain (6.23d). Indeed, (6.23c) proves
ker(Π) ⊇ J (g); conversely, if t ∈ ker(Π), we have 0 = Π(t) = t + h with
h ∈ J (g) (exploiting (6.23a)), so that t = −h ∈ J (g), whence the reverse
inclusion ker(Π) ⊆ J (g) follows. ��
Summing up, we infer that Π : T (g) → S (g) is surjective, its restriction to
S (g) is the identity, i.e., Π is a projection onto S (g); moreover its kernel is
J (g). As a consequence,

T (g) = J (g)⊕S (g). (6.24)
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We are finally ready to present a proof of the PBW Theorem 2.94 – which
is different from the one given in Chap. 8 – and which involves the CBHD
Theorem 3.8.

Remark 6.11. By standard arguments, which we here recall, the decomposition
(6.24) implies PBW.

For the sake of brevity, we omit g in the notation. By (6.24), for every
t ∈ T there exists a unique s(t) ∈ S such that t − s(t) ∈ J . Hence, the
following map is an isomorphism of vector spaces

s : U → S , s(π(t)) := s(t) ∀ t ∈ T . (6.25)

(Recall that π : T → U is the canonical projection onto the quotient
U = T /J .) The inverse map s−1 is obviously given by s−1 = π|S .
Hence, a basis for U can be obtained, via the linear isomorphism s−1, from
the following well known basis B for S (see the notation in Chap. 10, in
particular (10.35) on page 511 for the map Q):

B := {1} ∪ {Q(ei1 ⊗ · · · ⊗ ein)
∣
∣ n ∈ N, i1, . . . , in ∈ I, i1 � . . . � in

}
.

Here (as in the statement of PBW), {ei}i∈I denotes an indexed (linear) basis
for g, where I is totally ordered by the relation �. Consequently, C := s−1(B)
is a basis for U , which we denote in the following way:

C =
⋃

n∈N∪{0} Cn, where C0 := {π(1)} and

Cn :=
{
π
(
Q(ei1 ⊗ · · · ⊗ ein)

) ∣
∣ i1, . . . , in ∈ I, i1 � . . . � in

}
, n ∈ N.

(6.26)

We also set

W =
⋃

n∈N∪{0} Wn, where W0 := {π(1)} and

Wn :=
{
π(ei1 ⊗ · · · ⊗ ein)

∣
∣ i1, . . . , in ∈ I, i1 � . . . � in

}
, n ∈ N.

The statement of PBW is precisely equivalent to the fact that W is a basis
for U . This latter fact is a consequence of the following claims:

π(Tn(g)) is spanned by W1, . . . ,Wn, for every n ∈ N; (6.27a)

π
(
Q(ei1 ⊗ · · · ⊗ ein)

)
= π(ei1 ⊗ · · · ⊗ ein) +

{ linear combination in
W1 ∪ · · · ∪Wn−1

}
;

(6.27b)

Wn is spanned by C1 ∪ · · · ∪ Cn, for every n ∈ N; (6.27c)



388 6 CBHD, PBW and the Free Lie Algebras

π(ei1 ⊗ · · · ⊗ ein) = π
(
Q(ei1 ⊗ · · · ⊗ ein)

)
+
{ linear combination in

C1 ∪ · · · ∪ Cn−1

}
.

(6.27d)

Here n ∈ N and i1, . . . , in ∈ I are arbitrary. The claimed (6.27a) is a
consequence of the fact that {ei1⊗· · ·⊗ein | i1, . . . , in ∈ I} is a basis for Tn(g)
together with an inductive argument based on the standard computation:

vi ⊗ · · · (vi ⊗ vi+1) · · · ⊗ vn = vi ⊗ · · · (vi+1 ⊗ vi

+ {vi ⊗ vi+1 − vi+1 ⊗ vi − [vi, vi+1]}
+ [vi, vi+1]

) · · · ⊗ vn=vi ⊗ · · · vi+1 ⊗ vi · · · ⊗ vn

+
{ element in

J (g)

}
+
[ element in

Tn−1(g)

]
.

(6.27b) follows from the above computation, which gives:

π
(
Q(ei1 ⊗ · · · ⊗ ein)

)
=

1

n!

∑

σ∈Sn

π
(
eiσ(1) ⊗ · · · ⊗ eiσ(n)

)

=
1

n!

(
n!π(ei1 ⊗ · · · ⊗ ein) + π(jn) + π(rn)

)
,

where jn ∈ J and rn ∈ T1 ⊕ · · · ⊕ Tn−1. If we apply π(J ) = {0} and
(6.27a), the above identities then give

π
(
Q(ei1 ⊗ · · · ⊗ ein)

)
= π(ei1 ⊗ · · · ⊗ ein)

+
{

linear combination in W1 ∪ · · · ∪Wn−1

}
.

(6.27c) is proved by induction on n ∈ N, by using (6.27b) and the fact that
π
(
Q(ei1 ⊗· · ·⊗ ein)

) ∈ Cn. Moreover, (6.27d) comes from (6.27b) and (6.27c).

We are now in a position to prove that W is a basis for U :

• W generates U : This follows from (6.27a).
• W is independent: Let H be a finite set of pairwise distinct n-tuples of

ordered elements (w.r.t.�) of I (with arbitrary n) and let λ(i) ∈ K for
every i ∈ H . Then (6.27d) immediately gives

∑

i=(i1,...,in)∈H

λ(i)π(ei1 ⊗ · · · ⊗ ein)

=
∑

i∈H

λ(i)π
(
Q(ei1 ⊗ · · · ⊗ ein)

)
+
{ linear combination in

C1 ∪ · · · ∪ Cn−1

}
.
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Since the sum
∑

i∈H(· · · ) in the above far right-hand term is an element
of Cn and since C =

⋃
n Cn is independent, the above left-hand term

vanishes if and only if
∑

i∈H λ(i)π
(
Q(ei1 ⊗· · ·⊗ein)

)
= 0. In its turn, this

is possible if and only if λ(i) = 0 for every i ∈ H (see (6.26) and exploit
the independence of the elements in Cn). This proves the independence
of W and the proof of PBW is complete. ��



Part II
Proofs of the Algebraic Prerequisites



Chapter 7
Proofs of the Algebraic Prerequisites

THE aim of this chapter is to collect all the missing proofs of the results in
Chap. 2. The chapter is divided into several sections, corresponding to

those of Chap. 2. Finally, Sect. 7.8 collects some proofs from Chaps. 4 and 6
too, considered as less crucial in favor of economy of presentation in the
chapters they originally belonged to.

7.1 Proofs of Sect. 2.1.1

Proof (of Theorem 2.6, page 52). (i) It suffices to gather Proposition 2.1 and
Remark 2.5. The actual definition of Fχ is

Fχ
(∑n

j=1 λj χ(vj)
)
:=
∑n

j=1 λj F (vj),

for n ∈ N, λ1, . . . , λn ∈ K and any pairwise distinct v1, . . . , vn ∈ S.

(ii) Let V, ϕ be as in the statement, i.e., for every vector space X and every
map F : S → X there exists a unique linear map making the following a
commutative diagram:

S
F

��

ϕ

��

X

V

Fϕ

�������������

Let us choose X := K〈S〉 and F := χ. We denote by χϕ the linear map
closing the following diagram

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 7,
© Springer-Verlag Berlin Heidelberg 2012

393
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S
χ

��

ϕ

��

K〈S〉

V

χϕ

�������������

On the other hand, from what was shown in (1), there exists one and only
one linear map ϕχ making the following diagram commute:

S
ϕ

��

χ

��

V

K〈S〉
ϕχ

�������������

It suffices to prove that the two linear maps ϕχ and χϕ are inverse to each
other, thus giving the isomorphism desired between V and K〈S〉. First,

χϕ ◦ ϕχ = IdK〈S〉

can be easily verified: as

χϕ(ϕχ(χ(s)) = χϕ(ϕ(s)) = χ(s) ∀ s ∈ S,

the linear map χϕ ◦ ϕχ plays the rle of χχ in the diagram

S
χ

��

χ

��

K〈S〉

K〈S〉
χχ

�������������

But the same diagram obviously admits IdK〈S〉 as a “closing” map, and, as
such a closing map is unique, χϕ ◦ ϕχ = IdK〈S〉.

The second identity

ϕχ(χϕ(v)) = v, ∀ v ∈ V

can be proved analogously: We consider the diagram

S
ϕ

��

ϕ

��

V

V

ϕϕ

�������������
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together with the chain of equalities

ϕχ(χϕ(ϕ(s)) = ϕχ(χ(s)) = ϕ(s) ∀ s ∈ S.

Hence, the two maps IdV and χϕ◦ϕχ both close the last diagram (that which
is closed by ϕϕ), so that they necessarily coincide. The maps χϕ and ϕχ are
thus inverse to each other and K〈S〉 � V canonically.

We prove the injectivity of ϕ. Let us assume ϕ(s) = ϕ(t). Then

χ(s) = χϕ(ϕ(s)) = χϕ(ϕ(t)) = χ(t),

but χ is injective, so s = t.
We prove that the set {ϕ(s)| s ∈ S} is a basis for V . We begin to show the

linear independence. Let s1, ..., sn ∈ S be pairwise distinct and λj ∈ K with∑
j λjϕ(sj) = 0. Applying the linear map χϕ, we get

∑
j λjχ(sj) = 0 and

so λ1 = · · · = λn = 0 (see Remark 2.5). Finally, we prove that the vectors
{ϕ(s)| s ∈ S} span V . To this aim, consider the trivial map

F : S → K, s �→ 0

and the “open” diagram

S
F

��

ϕ

��

K

V

(7.1)

This diagram is obviously closed by the map V → K which is identically 0.
If {ϕ(s) : s ∈ S} did not span V , we could fix an element

w ∈ V \ span{ϕ(s) : s ∈ S}

and complete the set {ϕ(s) : s ∈ S} ∪ {w} to a basis for V , say D. We may
then define a (unique) linear map ϑ : V → K such that:

ϑ(v) :=

{
1, if v = w

0, if v ∈ D \ {w}.

It is immediately seen that ϑ closes the diagram (7.1), thus contradicting the
uniqueness of the closing map. ��
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7.2 Proofs of Sect. 2.1.2

Proof (of Lemma 2.24, page 68). (i) Since Malg coincides with K〈M〉, we can
apply Theorem 2.6 (from which we also inherit the notation) to produce the
(unique!) linear map fχ : K〈M〉 =Malg → A with property (2.16). The proof
of (i) is accomplished if we show that fχ is also a magma morphism (when
f is). Denoted by (M, .), (Malg, ∗), (A, �) the associated operations, we have1

fχ
(
(
∑p

i=1 λi χ(mi)) ∗ (
∑q

j=1 μj χ(nj))
)

= fχ
( ∑

1≤i≤p, 1≤j≤q

λiμj χ(mi.nj)
)
=

∑

1≤i≤p, 1≤j≤q

λiμj f
χ(χ(mi.nj))

=
∑

1≤i≤p, 1≤j≤q

λiμj f(mi.nj) =
∑

1≤i≤p, 1≤j≤q

λiμj f(mi) � f(nj)

=
∑

1≤i≤p, 1≤j≤q

λiμj f
χ(χ(mi)) � f

χ(χ(nj))

= fχ(
∑p

i=1 λi χ(mi)) � f
χ(
∑q

j=1 μj χ(nj)),

for any arbitrary p, q ∈ N, λ1, . . . , λp ∈ K, μ1, . . . , μq ∈ K, m1, . . . ,mp ∈ M ,
n1, . . . , nq ∈M . This completes the proof of (i).

(ii) Argue as in the proof of Theorem 2.6, by also using the fact that χ is
injective and that χ(M) is a basis of Malg.

(iii) This follows from (i) and (ii) above, together with fχ(χ(e)) = f(e)
(here e denotes the unit of the monoid M ) and the fact that f(e) is the unit
of A since f :M → A is a monoid morphism. ��

7.3 Proofs of Sect. 2.1.3

Proof (of Theorem 2.30, page 74).
(i) Uniqueness. Any candidate linear map φ closing the diagram

V1 × · · · × Vn

F
��

ψ

��

X

V1 ⊗ · · · ⊗ Vn

φ

����������������

1The first equality comes from the definition of ∗, the second and sixth from the linearity
of fχ, the third and fifth from (2.16), the fourth from the fact that f is a magma morphism.
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satisfies also

φ(v1 ⊗ · · · ⊗ vn) = φ(ψ(v1, . . . , vn)) = F (v1, . . . , vn).

Now, as the set {v1 ⊗ · · · ⊗ vn | vi ∈ Vi} spans V1 ⊗ · · · ⊗ Vn, φ is uniquely
determined so φ = Fψ .

Existence. The map ψ : V1× · · · ×Vn → V1⊗ · · · ⊗Vn is the composition of
χ and π, as follows:

V1 × · · · × Vn

χ

��

K〈V1 × · · · × Vn〉

π

��

V1 ⊗ · · · ⊗ Vn

First, thanks to the characteristic property of the free vector space, there
exists a unique linear map Fχ such that the diagram

V1 × · · · × Vn

F
��

χ

��

X

K〈V1 × · · · × Vn〉
Fχ

�����������������

commutes. Furthermore, we claim that ker(Fχ) ⊇ W , where we have
denoted by W (as done in Sect. 2.1.3) the subspace of K〈V1 × · · · × Vn〉
generated by the elements of the form

χ(v1, . . . , a vi, . . . , vn)− aχ(v1, . . . , vi, . . . , vn),

χ(v1, . . . , vi + v′i, . . . , vn)− χ(v1, . . . , vi, . . . , vn)− χ(v1, . . . , v
′
i, . . . , vn),

where vi, v
′
i ∈ Vi, and a ∈ K. The claim follows from a straightforward

computation:

Fχ(χ(v1, . . . , a vi, . . . , vn)− aχ(v1, . . . , vi, . . . , vn))

= Fχ(χ(v1, . . . , a vi, . . . , vn))− aFχ(χ(v1, . . . , vi, . . . , vn))

= F (v1, . . . , a vi, . . . , vn)− aF (v1, . . . , vn) = 0.



398 7 Proofs of the Algebraic Prerequisites

The fact that

χ(v1, . . . , vi + v′i, . . . , vn)− χ(v1, . . . , vi, . . . , vn)− χ(v1, . . . , v
′
i, . . . , vn)

belongs to ker(Fχ) is analogous and its proof is left to the Reader. It is then
possible to apply Proposition 2.2-(i) to derive the existence of a (unique)
linear map F̃χ : V1⊗· · ·⊗Vn → X making the following diagram commute:

K〈V1 × · · · × Vn〉
Fχ

��

π

��

X

V1 ⊗ · · · ⊗ Vn

F̃χ

�����������������

In particular,

F̃χ(v1⊗· · ·⊗vn)= F̃χ(π(χ(v1, . . . , vn)))=Fχ(χ(v1, . . . vn)))=F (v1, . . . , vn),

so that the map F̃χ is precisely the map Fψ we were looking for.
(ii) As ψ : V1×· · ·×Vn → V1⊗· · ·⊗Vn is an n-linear map, the assumptions

of the hypothesis allow us to choose X := V1⊗· · ·⊗Vn and F := ψ and infer
the existence of a unique ψϕ making the following diagram commute:

V1 × · · · × Vn

ψ
��

ϕ

��

V1 ⊗ · · · ⊗ Vn

V

ψϕ

��������������������

Analogously, for what was proved in (i), there exists one and only one linear
map ϕψ making the following diagram commute:

V1 × · · · × Vn

ϕ
��

ψ

��

V

V1 ⊗ · · · ⊗ Vn

ϕψ

����������������

Now, as in the proof of Theorem 2.6, it suffices to show that ψϕ and ϕψ are
inverse to each other. Indeed, on the one hand, we have
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ψϕ(ϕψ(v1 ⊗ · · · ⊗ vn)) = ψϕ(ϕψ(ψ(v1, . . . , vn)))

= ψϕ(ϕ(v1, . . . , vn)) = ψ(v1, . . . , vn) = v1 ⊗ · · · ⊗ vn,

i.e., ψϕ ◦ ϕψ = IdV1⊗···⊗Vn on a system of generators and consequently on
V1 ⊗ · · · ⊗ Vn. On the other hand, it holds that

ϕψ(πϕ(ϕ(v1, . . . , vn))) = ϕψ(ψ(v1, . . . , vn)) = ϕ(v1, . . . , vn).

So, in order to complete the proof, we need to show that V is generated by
{ϕ(v1, . . . , vn)| vi ∈ Vi}. Consider again the diagram

V1 × · · · × Vn

ψ
��

ϕ

��

V1 ⊗ · · · ⊗ Vn

V

which, as we have just seen, admits uniquely one linear closing map ψϕ. If
{ϕ(v1, . . . , vn)| vi ∈ Vi} did not span V , it would be possible to find another
linear closing map, simply by arbitrarily extending ψϕ to a linear function
defined on the whole of V . ��
Proof (of Theorem 2.31, page 74). It is trivial2 to show that the set

{
vi ⊗ wk

}
(i,k)∈I×K

generates V ⊗W . To prove the linear independence, we need the following
three lemmas.

Lemma 7.1. Let V,W be vector spaces and let E ⊆ V , F ⊆ W be vector
subspaces. Then the (abstract) tensor product E ⊗ F is isomorphic to the following
subset of V ⊗W :

span
{
e⊗ f : e ∈ E, f ∈ F

}
,

via the canonical map E ⊗ F � e⊗ f �→ e⊗ f ∈ V ⊗W .

Proof. Let us denote by V the subset of V ⊗W given by

span
{
e⊗ f : e ∈ E, f ∈ F

}
.

2This is a consequence of the facts that {vi}i∈I generates V , {wk}k∈K generates W and
that ⊗ is bilinear.
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We will show that V with the map

ψ : E × F → V, (e, f) �→ e⊗ f

has the universal property of the tensor productE⊗F . To this end, letX be a
vector space with a bilinear map g : E×F → X. We need to show that there
exists a unique linear map gψ making the following diagram commute:

E × F
g

��

ψ

��

X

V

gψ

���������������

Let us consider any bilinear prolongation γ of g defined on the whole V ×W
(see Lemma 7.2 below). Given the map

ψ : V ×W → V ⊗W

(v, w) → v ⊗ w,

there exists a unique γψ making the following a commutative diagram:

V ×W
γ

��

ψ

��

X

V ⊗W

γψ

��������������

Actually, the restriction γψ|V of γ to V verifies

γψ|V(e ⊗ f) = γψ(e⊗ f) = γ(e, f) = g(e, f),

thus it is the map gψ we aimed to exhibit. ��
Lemma 7.2. Let V,W be vector spaces and let E ⊆ V , F ⊆ W be vector
subspaces. Let X be a vector space and let g : E × F → X be a bilinear map.
Then there exists g̃ : V ×W → X bilinear, prolonging g.

Proof. Let E := {ei}i∈I and F := {fj}j∈J be bases for E and F respectively.
Let us extend them to bases E∗ := {ei}i∈I∗ , F∗ := {fj}j∈J∗ of V and W
(where I∗ ⊇ I and J∗ ⊇ J). We define the function g̃ : V × W → X as
follows:

g̃
(∑

i∈I∗ ciei,
∑

j∈J∗ djfj
)
:= g
(∑

i∈I ciei,
∑

j∈J djfj
)
.
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Then g̃|E×F = g from the very definition of g; furthermore, g̃ is bilinear:

g̃
(
αv + βv′, w

)
= g̃
(
α
∑

i∈I∗ ciei + β
∑

i∈I∗ c
′
iei,
∑

j∈J∗ djfj
)

= g
(
α
∑

i∈I ciei + β
∑

i∈I c
′
iei,
∑

j∈J djfj
)

= αg
(∑

i∈I ciei,
∑

j∈J djfj
)
+ βg
(∑

i∈I c
′
iei,
∑

j∈J djfj
)

= αg̃
(
v, w
)
+ βg̃
(
v′, w
)
,

and analogously for the second variable. ��
Lemma 7.3. Let V , W be finite-dimensional vector spaces with bases respectively
{v1, . . . , vp} and {w1, . . . , wq}. Then {vi ⊗ wj : i = 1 . . . , p, j = 1, . . . , q} is a
basis for V ⊗W.

Proof. Step 1. Let us begin with the construction of a suitable bilinear map

Φ : V ×W → Bil(V,W ),

where Bil(V,W ) is the vector space of the bilinear functions from V × W
to K. The map Φ is defined as follows. Given

x =
∑p

i=1 xivi ∈ V, y =
∑q

j=1 yiwj ∈W,

we define two linear maps dx : V → K, dy :W → K as follows

dx
(∑p

i=1 ai vi
)
:= x1 a1 + · · ·+xp ap, dy(

∑p
j=1 bj wj) := y1 b1 + · · ·+ yq bq.

As dx, dy are linear, the map

dx× dy : V ×W → K, (a, b) �→ dx(a) · dy(b)

is bilinear. We let

Φ : V ×W → Bil(V,W ), (x, y) �→ dx× dy.

It is immediately seen that Φ is (well posed and) bilinear in its turn.
Hence there exists a unique Φψ : V ⊗W → Bil(V,W ) such that

Φψ(x⊗ y) = dx× dy, ∀ x ∈ V, y ∈W.

Step 2. We prove that the map Φψ in Step 1 is a vector space isomorphism.
Obviously, as i, j vary respectively in {1, . . . , p}, {1, . . . , q}, the elements of
the form dvi × dwj generate Bil(V,W ). On the other hand Φψ(vi ⊗ wj) =
dvi × dwj , whence Φψ is surjective. Furthermore, we claim that Φψ admits
an inverse, namely the following function



402 7 Proofs of the Algebraic Prerequisites

Υ : Bil(V,W ) −→ V ⊗W

f �→
p∑

i=1

q∑

j=1

f(vi, wj) vi ⊗ wj .

Indeed, given τ ∈ V ⊗W, there exist scalars τi,j ∈ K (whose possible non-
uniqueness is presently immaterial) such that

τ =

p∑

i=1

q∑

j=1

τi,j vi ⊗ wj .

As a consequence,

(Υ ◦ Φψ)(τ) = Υ
(∑

i,j τi,j dvi × dwj

)

=

p∑

i=1

q∑

j=1

∑

h,k

τh,k (dvh × dwk)(vi, wj) vi ⊗ wj

=
∑

i,j

τi,j vi ⊗ wj = τ.

On the other hand, for every f ∈ Bil(V,W ) we have

(Φψ ◦ Υ )(f) = Φψ

(∑

i,j

f(vi, wj)vi ⊗ wj

)

=
∑

i,j

f(vi, wj) dvi × dwj ,

and the right-hand side coincides with f , as a direct computation shows (by
expressing f as a linear combination of the generating elements dvi × dwj).
Finally, we deduce from the above facts that Φψ is actually an isomorphism,
with inverse Υ .

Step 3. From what we have already proved of Theorem 2.31, the set {vi ⊗
wj}1≤i≤p,1≤j≤q spans V ⊗W . Now, in view of Step 2,

dim(V ⊗W ) = dim(Bil(V,W )) = p q (from basic Linear Algebra),

and the latter coincides with the cardinality of

{vi ⊗ wj : i = 1 . . . , p, j = 1, . . . , q}.

So these vectors are necessarily linear independent and thus give a basis for
V ⊗W . ��
We now proceed with the proof of Theorem 2.31. We are left to prove that
the vectors

{
vi ⊗ wk

}
(i,k)∈I×K

are linearly independent. This will be the
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case iff, for every finite set H ⊆ I × K, the vectors
{
vi ⊗ wk

}
(i,k)∈H

are
linearly independent. We can assume, without loss of generality by simply
“enlarging” H if necessary, that H has the following “rectangular” form:

H := Ip ×Kq,

where Ip := {i1, . . . , ip} ⊆ I and Kq := {k1, . . . , kq} ⊆ K. Let

Ep := span{vi | i ∈ Ip}; Fq := span{wk | k ∈ Kq}

By Lemma 7.1, we have

Ep ⊗ Fq
∼= span

{
e⊗ f
∣
∣ e ∈ Ep, f ∈ Fq

}
=: Vp,q.

By Lemma 7.3, the set {vi⊗wk}(i,k)∈Ip×Kq
is a basis for Ep⊗Fq. This means

that, via the canonical map

Ep ⊗ Fq ←→ Vp,q ⊆ V ⊗W

e⊗ f ↔ e⊗ f

the vectors {vi ⊗ wk}(i,k)∈Ip×Kq
form a basis for Vp,q and are thus linearly

independent. This argument holds for every choice of finite Ip ⊆ I and finite
Kq ⊆ K, so the theorem is completely proved. ��
Proof (of Theorem 2.32, page 75). Let

Bk := {vki }i∈Ik , Ck := {wk
j }j∈Jk

be bases, respectively, for Vk (with k = 1, . . . , n) and for Wk (with k =
1, . . . ,m). When ik varies in Ik (for any k = 1, . . . , n) and when jk
varies in Jk (for any k = 1, . . . ,m), by Theorem 2.31, we deduce that the
vectors

(v1i1 ⊗ · · · ⊗ vnin)⊗ (w1
j1 ⊗ · · · ⊗ wm

jm)

constitute a basis for (V1 ⊗ · · · ⊗ Vn) ⊗ (W1 ⊗ · · · ⊗Wm). Hence there is a
unique linear map

L : (V1 ⊗ · · · ⊗ Vn)⊗ (W1 ⊗ · · · ⊗Wm)→ V1 ⊗ · · · ⊗ Vn ⊗W1 ⊗ · · · ⊗Wm

verifying (for every indices i and j)

L
(
(v1i1 ⊗ · · · ⊗ vnin)⊗ (w1

j1 ⊗ · · · ⊗wm
jm)
)
= v1i1 ⊗ · · · ⊗ vnin ⊗w1

j1 ⊗ · · · ⊗wm
jm .
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This is clearly a vector space isomorphism, because another application of
Theorem 2.31 ensures that the vectors

v1i1 ⊗ · · · ⊗ vnin ⊗ w1
j1 ⊗ · · · ⊗ wm

jm

(when the indices i and j vary as above) constitute a basis for V1 ⊗ · · · ⊗
Vn ⊗ W1 ⊗ · · · ⊗ Wm. Moreover, the inverse L−1 of L is clearly defined
by

v1i1 ⊗ · · · ⊗ vnin ⊗ w1
j1 ⊗ · · · ⊗ wm

jm �→ (v1i1 ⊗ · · · ⊗ vnin)⊗ (w1
j1 ⊗ · · · ⊗ wm

jm ).

Using the linearity of L and the linearity of ⊗, it is easy to show that L acts
on every elementary tensor of its domain as it acts on the elements of the
basis:

L
(
(v1 ⊗ · · · ⊗ vn)⊗ (w1 ⊗ · · · ⊗ wm)

)
= v1 ⊗ · · · ⊗ vn ⊗ w1 ⊗ · · · ⊗ wm,

for every vi ∈ Vi, wj ∈ Wj . This ends the proof. ��
Proof (of Theorem 2.38, page 77). (i) Clearly, there exists at most one map f as
in Theorem 2.38-(i), namely the map f as in (2.31).

To prove existence, we argue as follows. For every k ∈ N, let us consider
the map

fk : V × · · · × V
︸ ︷︷ ︸

k times

→ A

defined by fk(v1, . . . , vk) := f(v1) � · · · � f(vk), where � is the algebra
operation of A. As f is linear, fk is multilinear, and hence (see Theorem
2.30-(i)) there is a unique linear map

fψ
k : V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k times

→ A

such that fψ
k (v1 ⊗ · · · ⊗ vk) = fk(v1, . . . , vk) = f(v1) � · · · � f(vk). As a

consequence of Theorem 2.8, there exists a unique linear map

fΣ :
⊕

k≥1

V ⊗ · · · ⊗ V︸ ︷︷ ︸
k times

= T+(V )→ A

such that, for every k ∈ N,

fΣ(v1 ⊗ · · · ⊗ vk) = fψ
k (v1 ⊗ · · · ⊗ vk) = f(v1) � · · · � f(vk).
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This immediately proves that fΣ is an algebra morphism and that (taking
k = 1) fΣ|V prolongs f . Finally, the choice f := fΣ furnishes a map as
desired.

(ii) If A is endowed with a unit element 1A, besides the maps fk
introduced in point (i), we must consider the linear map

f0 : K → A

α �→ α · 1A

and we derive – as above – the existence of a (unique) linear map

fΣ :
⊕

k≥0

V ⊗ · · · ⊗ V
︸ ︷︷ ︸

k times

= T (V )→ A

verifying fΣ(v1⊗· · ·⊗ vk) = f(v1)� · · · � f(vk) (for k ∈ N) and fΣ(1K) = 1A.
The choice f := fΣ again ends the proof (furnishing this time a UAA
morphism).

(iii) Let us consider the inclusion map

ι : V ↪→ T (V ).

From our hypothesis, there exists one and only one UAA morphism ιϕ such
that the diagram

V
ι

��

ϕ

��

T (V )

W

ιϕ

�������������

commutes. On the other hand, part (ii) of the theorem ensures that there
exists a unique ϕ : T (V )→W such that the diagram

V
ϕ

��

ι

��

W

T (V )

ϕ

�������������

commutes. As usual, we will show that ιϕ and ϕ are inverse to each other.
This is easily seen by checking that ιϕ ◦ ϕ and ϕ ◦ ιϕ close the following two
trivial diagrams:
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V
ι

��

ι

��

T (V ) V
ϕ

��

ϕ

��

W

T (V ) W

which uniquely admit IdT (V ) and IdW , respectively, as closing linear maps.
Let us now prove that ϕ is injective. Given v, w ∈ V such that ϕ(v) =

ϕ(w), we have

ϕ(v) = ϕ(ι(v)) = ϕ(v) = ϕ(w) = ϕ(ι(w)) = ϕ(w),

and the result follows from the injectivity of ϕ.
Furthermore, let us prove that W is generated as an algebra by the set

{1K} ∪ ϕ(V ). Indeed, let us first remark that ϕ ◦ ιϕ is the identity element of
W , so that, for every w ∈ W , we have

w = ϕ(ιϕ(w)). (7.2)

Since ιϕ(w) ∈ T (V ), we have

ιϕ(w) = c · 1K +
∑N

k=1 v
k
1 ⊗ · · · ⊗ vkk ,

where c ∈ K and all the vki are in V . Hence, recalling that ϕ is a UAA
morphism prolonging ϕ, we deduce from (7.2) (denoting by � the algebra
operation on W )

w = ϕ
(
c · 1K +

∑N
k=1 v

k
1 ⊗ · · · ⊗ vkk

)

= c · ϕ(1K) +
N∑

k=1

ϕ(vk1 )� · · ·� ϕ(vkk)

= c · 1W +
N∑

k=1

ϕ(vk1 )� · · ·� ϕ(vkk ).

Clearly the above far right-hand side is an element of the algebra generated
by {1W} ∪ ϕ(V ). The arbitrariness of w ∈ W completes the argument.

Finally, in order to prove the canonical isomorphism W � T (ϕ(V )), it
suffices to show that, if ι : ϕ(V ) → W is the set inclusion, the couple (W, ι)
has the universal property of the tensor algebra T (ϕ(V )). To this aim, let
A be any UA algebra and let f : ϕ(V ) → A be any linear map. We need
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to show the existence of a unique UAA morphism f ι : W → A such that
f ι ◦ ι ≡ f on ϕ(V ), i.e.,

(�) (f ι ◦ ι)(ϕ(v)) = f(ϕ(v)), ∀ v ∈ V.

The uniqueness of such a UAA morphism f ι follows from the fact that
{1W} ∪ ϕ(V ) generates W , as an algebra. Let us turn to its existence: We
consider the linear map f ◦ϕ : V → A. By the first part of (iii), we know that
(f ◦ ϕ)ϕ :W → A is a UAA morphism such that (f ◦ ϕ)ϕ(ϕ(v)) = (f ◦ ϕ)(v)
for every v ∈ V . If we set f ι := (f ◦ ϕ)ϕ then we are done with (�). ��

7.4 Proofs of Sect. 2.3.1

Proof (of Theorem 2.58, page 94). In order to stress the contribution of each of
the hypotheses (H1), (H2), (H3), (H4) on page 94, we will split the statement
2.58 into two new statements (Theorems 7.5 and 7.7 below). The proof of
Theorem 2.58 follows from these results.

We need first of all the following (not standard) definition:

Definition 7.4. The couple (A,Ω) is a semi topological algebra if (A,+, ∗) is an
associative algebra and Ω is a topology on A such that the maps

A×A � (a, b) �→ a+ b, a ∗ b ∈ A, K×A � (k, a) �→ k a ∈ A

are continuous in the associated product topologies, K being equipped
with the discrete topology. We remark that a semi topological algebra is a
topological algebra (see footnote on page 94) iff it is Hausdorff.

Theorem 7.5. Let (A, ∗) be an associative algebra and let {Ωk}k∈N be a family of
subsets of A verifying conditions (H1), (H2), (H3) on page 94. Then the family

B := ∅ ∪
{
a+Ωk

}

a∈A, k∈N
(7.3)

is a basis for a topologyΩ on A endowing A with the structure of a semi topological
algebra. Even more, the topology Ω is induced by the semimetric3 d : A × A →
[0,∞) defined as follows (posing exp(−∞) := 0)

d(x, y) := exp(−ν(x− y)), for all x, y ∈ A, (7.4)

3A semimetric d is defined in the same way as a metric, except that the proprty “x = y ⇔
d(x, y) = 0” is replaced by “x = y ⇒ d(x, y) = 0”.
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where ν : A→ N ∪ {0,∞} is defined by ν(z) := sup
{
n ≥ 1

∣
∣ z ∈ Ωn

}
, i.e.,

ν(z) :=

{
if z �= 0, max

{
n ≥ 1

∣
∣ z ∈ Ωn

}

if z = 0, ∞.
(7.5)

The triangle inequality for d holds in the stronger form:

d(x, y) ≤ max{d(x, z), d(z, y)}, for every x, y, z ∈ A. (7.6)

Finally, we have

d(x, y) = 0 ⇐⇒ x− y ∈
⋂

n∈N

Ωn = {0}Ω. (7.7)

Proof. This proof is a little laborious, so, for the Reader’s convenience, we
will spilt it into several steps.

Step 1. Let us check that the family B has the properties of a basis for a
topology Ω. It is clear that the union of the sets in B covers A. So it suffices
to prove that, given a, b ∈ A, and h, k ∈ N, the following fact holds:

for every x ∈ (a+Ωk) ∩ (b +Ωh) there exists B ∈ B

such that
x ∈ B ⊆ (a+Ωk) ∩ (b+Ωh).

Now, x can be written in this two ways:

x = a+ ωk = b+ ωh,

where ωk ∈ Ωk and ωh ∈ Ωh. Let us define j := max{h, k}, and let us choose
B := x+Ωj . Then B contains x. Also, for every ωj ∈ Ωj , we have

x+ ωj = a+ ωk + ωj ∈ a+Ωk,

thanks to properties (H2), (H3). Analogously, we have x ∈ b + Ωh, and this
concludes the proof that B is a basis for a topology (which is necessarily
unique: its open sets are the unions of the subfamilies of B).

Step 2. We will now show that (A,Ω) is a semi topological algebra, i.e.,
the operations

A×A→ A K×A→ A A×A→ A

(a, b) �→ a+ b, (k, a) �→ k · a, (a, b) �→ a ∗ b,
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are continuous in the associated topologies (we fix the topology Ω on A, the
discrete topology on K, and the product topology on each of the Cartesian
products involved above).

Let us start with the sum. We need to check that, given an open set ϑ of
A, its inverse image via the operation + is an open set too. Let us define

Δ := {(x, y) ∈ A |x+ y ∈ ϑ}.

If (x0, y0) ∈ Δ, then there certainly exist a ∈ A, h ∈ N such that

x0 + y0 ∈ a+Ωh ⊆ ϑ.

If we set

ϑ1 := x0 +Ωh, ϑ2 := y0 +Ωh,

we have, by property (H1),

ϑ1 + ϑ2 = x0 + y0 +Ωh ⊆ a+Ωh ⊆ ϑ.

In this way we have found an open set ϑ1 × ϑ2 such that

(x0, y0) ∈ ϑ1 × ϑ2 ⊆ Δ,

so we have proved that Δ is open in the topology Ω.

As for multiplication by a scalar element, let ϑ be an open set of A. Given
(k0, x0) ∈ Δ := {(k, a) ∈ K×A | k · a ∈ ϑ}, we look for an open subset of Δ
containing (k0, x0). As above, there certainly exist a ∈ A, h ∈ N such that

k0 · x0 ∈ a+Ωh ⊆ ϑ.

So it suffices to choose ϑ1 × ϑ2, where

ϑ1 := {k0}, ϑ2 := x0 +Ωh.

Indeed, with this choice we have (Ωk being an ideal)

ϑ1 · ϑ2 = k0 · (x0 +Ωh) = k0 · x0 +Ωh ⊆ a+Ωh ⊆ ϑ.

Finally, the continuity of the algebra operation ∗ can be proved as in the
case of the sum, and this verification is left to the Reader.

Step 3. Let us now check that the function d defined in the statement is a
semimetric, i.e., it satisfies:
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(SM.1) For every x, y ∈ A, d(x, y) ≥ 0 and d(x, x) = 0.
(SM.2) For every x, y ∈ A, d(x, y) = d(y, x).
(SM.3) For every x, y, z ∈ A, d(x, y) ≤ d(x, z) + d(z, y).

(SM.1): The equality d(x, x) = 0 for every x ∈ A follows immediately
from ν(0) = +∞.

(SM.2): Let z ∈ A. Then thanks to property (H1)

z ∈ Ωn ⇐⇒ −z ∈ Ωn.

From the definition of ν, we thus have

ν(z) = ν(−z) ∀ z ∈ A,

which immediately leads to d(x, y) = d(y, x), for every x, y ∈ A.
(SM.3): As for the triangle inequality, an even stronger property holds for

d: For every x, y, z ∈ A, we have

d(x, y) ≤ max{d(x, z), d(z, y)} ( ≤ d(x, z) + d(z, y)
)
.

In other words, (A, d) is an ultrametric space. To prove this, let us assume
that, for example, max{d(x, z), d(z, y)} = d(x, z). This means that

(�) ν(x − z) ≤ ν(z − y).

Let us write x− y as

x− y = (x− z) + (z − y).

Observing that x − z ∈ Ων(x−z), while z − y ∈ Ων(z−y) ⊆ Ων(x−z), the
property (�) implies that x − y belongs to Ων(x−z), whence ν(x − y) ≥
ν(x− z). We can thus conclude

d(x, y) ≤ d(x, z) = max{d(x, z), d(z, y)}.

Step 4. For the sake of completeness (the fact being well-known for metric
spaces), let us now see why a semimetric d induces a topology by means of its
open balls (and the empty set). For every x ∈ A, and for every positive r ∈ R,
let us define

Bd(x, r) := {y ∈ A | d(x, r) < r}.
We claim that the family

Bd := ∅ ∪ {Bd(x, r)}x∈A,r>0
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is a basis for a topology, say Ωd. It is trivial that, for every a ∈ A, there exists
a set in Bd containing a. Let us consider the intersection of two generic sets
in Bd. Let a ∈ Bd(x, r) ∩Bd(y, s), and let us define

ρ := min{r − d(x, a), s − d(y, a)} > 0.

We claim that
Bd(a, ρ) ⊆ Bd(x, r) ∩Bd(y, s).

Indeed, for every b ∈ Bd(a, ρ), we have

d(b, x) ≤ d(b, a) + d(a, x) < ρ+ d(a, x)

≤ r − d(x, a) + d(a, x) = r,

so Bd(a, ρ) ⊆ Bd(x, r). The inclusion Bd(a, ρ) ⊆ Bd(y, s) can be shown
analogously, and the proof is complete.

Step 5. We now check that the two couples (A,Ω) and (A,Ωd) coincide as
topological spaces. This requires the following

Lemma 7.6. The function ν defined in (7.5) verifies

ν(a+ b) ≥ min{ν(a), ν(b)}.

Proof. Of course a ∈ Ων(a), b ∈ Ων(b), so that

a+ b ∈ Ων(a) +Ων(b) ⊆ Ωmin{ν(a),ν(b)}.

By the definition of ν, this means that ν(a+ b) ≥ min{ν(a), ν(b)}. ��
Let us now compare Ω and Ωd. First, let us show that every element of the
basis Bd of the topology Ωd is an open set in the topology Ω.

With the notation introduced in Step 4, let y ∈ Bd(x, r). We have to prove:

∃ h ∈ N : y +Ωh ⊆ Bd(x, r). (7.8)

We consider two different cases:

• If d(x, y) = 0, then ν(x− y) =∞, i.e.,

x− y ∈
⋂

h∈N

Ωh.

So, for every h ∈ N and every ωh ∈ Ωh, we have

y + ωh = x+ (y − x)
︸ ︷︷ ︸

∈Ωh

+ ωh︸︷︷︸
∈Ωh

∈ x+Ωh.
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We can thus write, for some ω̃h ∈ Ωh,

y + ωh = x+ ω̃h,

so we can obtain

d(y + ωh, x) = d(x+ ω̃h, x) = exp(−ν(x + ω̃h − x))

= exp(−ν(ω̃h)) ≤ exp(−h).

Finally, it suffices to choose h large enough to have e−h < r and (7.8)
follows.

• If d(x, y) �= 0, let us argue by contradiction and suppose that (7.8) does
not hold, i.e.,

∀h ∈ N ∃ωh ∈ Ωh such that y + ωh /∈ Bd(x, r).

Then the following chain of equivalences holds:

d(y + ωh, x) ≥ r⇐⇒ exp(−ν(y + ωh − x)) ≥ r ⇐⇒
− ν(y + ωh − x) ≥ ln(r)⇐⇒ ν(ωh + y − x) ≤ − ln(r).

(7.9)

By Lemma 7.6,

ν(ωh + y − x) ≥ min{ν(ωh), ν(y − x)} ≥ min{h, ν(y − x)},

so that (by exploiting the far right-hand side of (7.9))

min{h, ν(y − x)} ≤ ln(r).

Allowing h tend to ∞, this shows that

d(x, y) = exp(ν(x− y)) ≥ r,

which contradicts our assumption.

The last part of Step 5 consists of showing the reverse inclusion: every
element of the basis B of the topology Ω is an open set of the topology Ωd.
To this end, let us consider the set a+Ωh. It suffices to prove:

∀ωh ∈ Ωh, ∃ r > 0 such that Bd(a+ ωh, r) ⊆ a+Ωh. (7.10)

We argue by contradiction, supposing that there exists ωh ∈ Ωh such that,
for all r > 0 it holds that Bd(a + ωh, r) � a + Ωh. This is equivalent to the
existence of ωh ∈ Ωh such that
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∀ r > 0 ∃ z ∈ Bd(a+ ωh, r) such that z /∈ a+Ωh.

So we have d(z, a+ ωh) < r, but z − a /∈ Ωh. Since

z − a = z − (a+ ωh) + ωh,

and ωh ∈ Ωh, then z − (a + ωh) /∈ Ωh (otherwise z − a would belong to Ωh

too, which is not true). We have thus derived z − (a+ ωh) /∈ Ωh. This yields

ν(z − (a+ ωh)) < h. (7.11)

Indeed, if we had ν(z − (a+ ωh)) ≥ h, the definition of ν would produce

z − (a+ ωh) ∈ Ων(z−(a+ωh)) ⊆ Ωh.

Now, we have already remarked that d(z, a + ωh) < r, which is equivalent
to

exp(−ν(z − (a+ ωh)) < r,

and this is equivalent, in its turn, to

ν((z − (a+ ωh)) > − ln(r). (7.12)

Summing up:

h
(7.11)
> ν(z − (a+ ωh))

(7.12)
> − ln(r).

Hence h > − ln(r). Thanks to the arbitrariness of r > 0, letting r → 0+, we
get h =∞, which is absurd.

Step 6. We are left to prove that (7.7) holds. First of all, unraveling the
definitions of d and ν, we recognize that

d(x, y) = 0 ⇔ ν(x− y) =∞ ⇔ x− y ∈
⋂

h∈N

Ωh.

This gives the first part of (7.7). Finally, we have to prove

⋂

n∈N

Ωn = {0}Ω.

• Let us prove the inclusion
⋂

n∈NΩn ⊆ {0}Ω .

Given ω ∈ ⋂n∈NΩn, let us assume, by contradiction, that ω /∈ {0}Ω . Let

F := {F is a closed subset of A w.r.t. Ω such that 0 ∈ F}.
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As {0}Ω =
⋂

F∈F F , there must exist a closed set F containing the origin
but not ω:

(�) ω ∈ A \ F, 0 /∈ A \ F.
Since A\F is open, there exists h ∈ N such that ω+Ωh ⊆ A\F . We claim
that ω /∈ Ωh: this contradicts our assumption and completes the proof.
Indeed, if ω were in Ωh, we would have

0 ∈ Ωh = ω +Ωh ⊆ A \ F,

which is not possible, in view of (�).

• Let us now turn to check the second inclusion
⋂

n∈NΩn ⊇ {0}Ω . Again,

we will argue by contradiction: given ω ∈ {0}Ω , let us assume that ω /∈⋂
n∈NΩn. Let us choose

h ∈ N such that ω /∈ Ωh.

Let us define
F̃ := A \ (ω +Ωh) .

We have 0 ∈ F̃ , otherwise ω ∈ Ωh would hold. Thus F̃ is a closed
set containing the origin. We now show that ω /∈ F̃ . This will give a

contradiction with ω ∈ {0}Ω =
⋂

F∈F F . But ω /∈ F̃ is immediately
proved: if ω were in F̃ ,

F̃ � ω = ω + 0 ∈ ω +Ωh = A \ F̃ ,

which is clearly a contradiction.

The proof is now complete. ��
Theorem 7.7. Let (A, ∗) be an associative algebra and let {Ωk}k∈N be a family of
subsets of A verifying conditions (H1), (H2), (H3), (H4) on page 94.

Then, following the notation of Theorem 7.5, (A,Ω) is a topological algebra.
Furthermore, the semimetric d in (7.4) is a metric inducing the topology Ω and it
endows A with the structure of an ultrametric space (see (7.6)).

Proof. In view of Theorem 7.5, all we have to do is to show that, as long as
property (H4) holds, A is a Hausdorff space.

We remark that, in view of (7.7), the semimetric d introduced in (7.4) is a
metric if and only if

⋂
n∈NΩn = {0}, which is precisely condition (H4). So it

suffices to prove that a semimetric space is Hausdorff if and only if it is a metric
space. This is proved as follows.



7.4 Proofs of Sect. 2.3.1 415

Let (A, d) be a metric space. Let us consider a, b ∈ A with a �= b. Their
distance d(a, b) must then be positive. Let us define

r := 1
3 d(a, b).

We claim that
Bd(a, r) ∩Bd(b, r) = ∅.

Indeed, if ξ ∈ Bd(a, r) ∩Bd(b, r), we would have

d(a, b) ≤ d(a, ξ) + d(ξ, b) < 2r = 2
3 d(a, b),

which is a contradiction. Thus we have found two disjoint neighborhoods
of a and b, whence (A, d) is Hausdorff.

Suppose now that (A, d) is a Hausdorff semimetric space. Let us assume
on the contrary that there exist a, b ∈ A such that a �= b and d(a, b) = 0. By
the Hausdorff condition, there exist two disjoint d-ballsBd(a, ε) andBd(b, ε).
Given ξ ∈ Bd(a, ε), the following fact holds:

d(ξ, b) ≤ d(ξ, a) + d(a, b) = d(ξ, a) < ε⇒ ξ ∈ Bd(b, ε).

This contradicts the fact that the intersection Bd(a, ε) ∩Bd(b, ε) is empty. ��
Proof (of Remark 2.61, page 95). We let x, y, z, ξ, η ∈ A, k ∈ K \ {0}.

(1) By the definition of d, we have

d(x + z, y + z) = exp
(− sup{n ≥ 0 | (x+ z)− (y + z) ∈ Ωn}

)

= exp
(− sup{n ≥ 0 |x− y ∈ Ωn}

)
= d(x, y).

(2) Again, by the definition of d, we have

d(k x, k y) = exp
(− sup{n ≥ 0 | k x− k y ∈ Ωn}

)

= exp
(− sup{n ≥ 0 |x− y ∈ Ωn}

)
= d(x, y).

Indeed, in the second equality we used the fact that the sets Ωn are
vector spaces (being ideals) and the fact that k �= 0.

(3) Let us recall that

ν(x ∗ y, ξ ∗ η) = sup{n ∈ N |x ∗ y − ξ ∗ η ∈ Ωn}.

The proof is an easy computation:

x ∗ y − ξ ∗ η = x ∗ y − ξ ∗ η + ξ ∗ y − ξ ∗ y = (x− ξ) ∗ y + ξ ∗ (y − η).
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The definition of ν ensures that the far right-hand side belongs to

Ων(x−ξ) ∗ y + ξ ∗Ων(y−η)
(H1)
= Ων(x−ξ) +Ων(y−η)

(H2)
⊆ Ωmin{ν(ξ−x),ν(η−y)}.

Summing up, we have proved that x ∗ y − ξ ∗ η ∈ Ωmin{ν(ξ−x),ν(η−y)}:
this means that ν(x ∗ y, ξ ∗ η) ≥ min{ν(x− ξ), ν(y − η)}. So we have

d(x ∗ y, ξ ∗ η) = exp(−ν(x ∗ y, ξ ∗ η))
≤ exp

(−min{ν(x− ξ), ν(y − η)})

= exp
(
max{−ν(x− ξ),−ν(y − η)})

= max
{
exp(−ν(x − ξ)), exp(−ν(y − η))

}

= max{d(x, ξ), d(y, η)},

as we claimed. ��
Proof (of Proposition 2.65, page 97). (a) follows from Theorem 2.58; (b) follows
from Remark 2.61; (c) follows from Remark 2.62. We are left to prove (d), (e).

(d) Let z = (zj)j≥0 ∈ A. Since z ∈ Ωj iff z0 = · · · = zj−1 = 0, it is easily
seen that

ν(z) =

{
max
{
j ≥ 0
∣
∣ z0 = · · · = zj−1 = 0

}
, if z �= 0,

∞, if z = 0

=

{
min
{
j ≥ 0
∣
∣ zj �= 0

}
, if z �= 0,

∞, if z = 0.

(7.13)

Then (2.72) follows from d(z) = exp(−ν(z)) (with the usual convention
exp(−∞) := 0).

(e) With the notation of the assertion, it is obviously not restrictive to
suppose that β = 0. We have limn→∞ bn = 0 iff limn→∞ d(bn) = 0, that
is, (by d(z) = exp(−ν(z))) limn→∞ ν(bn) =∞, or equivalently (by definition
of limit!):

(�) ∀ J ≥ 0 ∃ NJ ∈ N : n ≥ NJ implies ν(bn) ≥ J + 1.

Now, by the first equality in (7.13) and the notation bn = (a
(n)
j )j≥0, we see

that (�) is equivalent to

(2�) ∀ J ≥ 0 ∃ NJ ∈ N : n ≥ NJ implies a(n)j = 0 for j = 0, . . . , J.

This is (2.73) under our non-restrictive assumption β = (aj)j≥0 = 0. ��
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7.5 Proofs of Sect. 2.3.2

Proof (of Theorem 2.67, page 98). If (Y1, δ1) and (Y2, δ2) are isometric com-
pletions of (X, d), there exist two metric spaces Y1,0 and Y2,0, respectively
subspaces of Y1 and Y2, which are dense in the corresponding spaces and
such that (Y1,0, δ1) and (Y2,0, δ2) are both isometric (in the sense of metric
spaces) to (X, d). Let us call α and β the two isometries:

α : X → Y1,0 and β : X → Y2,0.

Notice that, for every η, η′ ∈ Y1,0 it holds that

δ2
(
(β ◦ α−1)(η), (β ◦ α−1)(η′)

)
= d
(
α−1(η), α−1(η′)

)
= δ1(η, η

′). (7.14)

Given y ∈ Y1, there exists a sequence {ηn}n in Y1,0 which tends to y in the
metric δ1. We claim that the following actually defines a function:

γ : Y1 −→ Y2

y �→ γ(y) = limn→∞(β ◦ α−1)(ηn).

Let us show that γ is well defined. First, we show that the sequence

{(β ◦ α−1)(ηn)}n

admits a limit in Y2. To this end, (Y2, δ2) being complete, it suffices to show
that this sequence is Cauchy. In fact, given n,m ∈ N,

δ2
(
(β ◦ α−1)(ηn), (β ◦ α−1)(ηm)

) (7.14)
= δ1(ηn, ηm).

Now, for every ε > 0, there exists nε ∈ N such that the last term is smaller
than ε as long as n,m > nε, so the same is true of the first term.

Secondly, we claim that the limit defining γ does not depend on the choice
of {ηn}n. Given another sequence {η′n}n in Y1,0 which tends to y, we have

δ2
(
(β ◦ α−1)(ηn), (β ◦ α−1)(η′n)

) (7.14)
= δ1(ηn, η

′
n).

Now, the above right-hand side vanishes (as ηn, η′n → y), so the same is true
of the left-hand side: this shows that (β ◦α−1)(ηn) and (β ◦α−1)(η′n) (which
are indeed both convergent as already argued) tend to the same limit.

Finally, γ is an isometry. If y, y′ ∈ Y1, let us consider two sequences ηn, η′n
in Y1,0 converging respectively to y, y′. By the definition of γ (and by the
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continuity properties of any distance of a metric space), we have:

δ2 (γ(y), γ(y
′)) = δ2

(
lim

n→∞(β ◦ α−1)(ηn), lim
n→∞(β ◦ α−1)(η′n)

)

= lim
n→∞ δ2

(
(β ◦ α−1)(ηn), (β ◦ α−1)(η′n)

)

(7.14)
= lim

n→∞ δ1(ηn, η
′
n) = δ1(y, y

′).

This concludes the proof.
We remark that

γ|Y1,0 ≡ β ◦ α−1,

and, roughly speaking, γ is the prolongation by continuity of β◦α−1. Indeed,
if y ∈ Y1,0, the constant sequence ηn := y does the job for defining γ(y). ��
Proof (of Theorem 2.68, page 98). The proof is split in many steps.

I. First of all, ∼ is obviously an equivalence relation on C (by the axioms
of a metric for d) and the function d̃ introduced in the statement of the
theorem is well defined. That is, the limit in (2.75) exists and does not
depend on the choice of the representative sequence.

I.i. We claim that the limit in (2.75) actually exists. To this aim (R being
complete!) it suffices to show that the sequence {d(xn, yn)}n is Cauchy, for
every (xn)n, (yn)n in C. Indeed, let (xn)n and (yn)n be two Cauchy sequences
in X , whence

∀ ε > 0 ∃ nε ∈ N : d(xn, xm), d(yn, ym) < ε ∀ n,m ≥ nε.

We thus have (by a repeated application of the triangle inequality)

|d(xm, ym)− d(xn, yn)| ≤ |d(xm, ym)− d(xn, ym)|+ |d(xn, ym)− d(xn, yn)|
≤ d(xm, xn) + d(ym, yn) < 2 ε,

provided that n,m ≥ nε. The first claim is proved.
I.ii. We then claim that the limit in (2.75) does not depend on the choices

of the representative sequences. Indeed, let (xn)n ∼ (x′n)n and (yn)n ∼
(y′n)n. By definition of ∼ we have

∀ ε > 0 ∃ nε ∈ N : d(xn, x
′
n), d(yn, y

′
n) < ε ∀ n ≥ nε.

We thus deduce that, for n ≥ nε,

|d(xn, yn)− d(x′n, y
′
n)| ≤ |d(xn, yn)− d(x′n, yn)|+ |d(x′n, yn)− d(x′n, y

′
n)|

≤ d(xn, x
′
n) + d(yn, y

′
n) < 2 ε.
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This proves that limn→∞(d(xn, yn)− d(x′n, y
′
n)) = 0, so that (since the limits

of d(xn, yn) and d(x′n, y
′
n), as n→∞, do exist thanks to part I.i)

lim
n→∞ d(xn, yn) = lim

n→∞ d(x′n, y
′
n),

and the second claim is proved.

If we consider the map α in (2.76), the well posed definition of d̃ now
gives, for every x, y ∈ X ,

d̃(α(x), α(y)) = lim
n→∞ d(x, y) = d(x, y). (7.15)

II. We now prove that d̃ is actually a metric on X̃. If (xn)n is an element of
C, we agree to denote by x̃ the associated element on the quotient X̃ = C/∼,
namely x̃ = [(xn)n]∼ (analogously for ỹ, z̃ and so on).

Let x̃, ỹ ∈ X̃ . We obviously have d̃(x̃, ỹ) ≥ 0 and d̃(x̃, x̃) = 0. On the other
hand, if d̃(x̃, ỹ) = 0, this means that limn→∞ d(xn, yn) = 0 so that (xn)n ∼
(yn)n, by the definition of ∼, whence x̃ = ỹ. Finally, the symmetry and the
triangle inequality for d̃ are obvious consequences of the same properties of
d: for example the triangle inequality follows from this simple argument (all
limits exist by part I.i):

d̃(x̃, ỹ) = lim
n→∞ d(xn, yn) ≤ lim

n→∞ (d(xn, zn) + d(zn, yn))

= lim
n→∞ d(xn, zn) + lim

n→∞ d(zn, yn) = d̃(x̃, z̃) + d̃(z̃, ỹ).

Hence we now know that (X̃, d̃) is a metric space and identity (7.15) then
means that α is an isometry of metric spaces, from X onto X0 := α(X) (as a
subspace of X̃).

III. Let us now show that (X̃, d̃) is an isometric completion of (X, d), that
is, the two conditions of Definition 2.66 on page 98 are verified.

III.i. We first claim that X0 is dense in (X̃, d̃). Let x̃ = [(xn)n]∼ be an
arbitrary element of X̃. We prove that

x̃ = lim
N→∞

α(xN ) in (X̃, d̃), (7.16)

which justifies our claim, since α(xN ) ∈ X0 for every N ∈ N. Obviously,
(7.16) is equivalent to

lim
N→∞

d̃
(
x̃, α(xN )

)
= 0.
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Note that this is a double-limit problem, for (by definition of d̃ and of α)

lim
N→∞

d̃
(
x̃, α(xN )

)
= lim

N→∞
(
lim

n→∞ d(xn, xN )
)
.

In view of this last fact, (7.16) turns out to be a straightforward consequence
of the fact that (xn)n is a Cauchy sequence.

III.ii. Furthermore, we claim that the metric space (X̃, d̃) is complete. This
is indeed the main task of the proof. To this end, let {x̃p}p∈N be a Cauchy
sequence in (X̃, d̃). This means that

∀ ε > 0 ∃ μ(ε) ∈ N : d̃(x̃p, x̃q) < ε ∀ p, q ≥ μ(ε). (7.17)

We can choose a representative sequence for any x̃p, that is, there exists a
double sequence xp,n ∈ X such that

x̃p = [(xp,n)n]∼, for every p ∈ N.

By definition of X̃ = C/∼, for every fixed p ∈ N, the sequence (xp,n)n is
Cauchy in X , hence

∀ p ∈ N, ∀ ε > 0 ∃ n(p, ε) ∈ N : d(xp,n, xp,m) < ε ∀ n,m ≥ n(p, ε).
(7.18)

We set
ν(p) := n(p, 1/p), for every p ∈ N. (7.19)

We aim to prove that, setting

ξp := xp,ν(p) for any p ∈ N,

the “diagonal” sequence (ξp)p is in C, that is, it is Cauchy in (X, d). This
requires some work.

Unraveling (7.18), the definition of ν(p) gives:

∀ p ∈ N ∃ ν(p) ∈ N : d(xp,n, xp,m) < 1
p ∀ n,m ≥ ν(p). (7.20)

Let ε > 0 be fixed henceforth. Let p, q ∈ N be arbitrarily fixed and such that
(see also (7.17) for the choice of μ)

p, q > max{3/ε, μ(ε/3), μ(ε)}. (7.21)

Having
d̃(x̃p, x̃q) = lim

n→∞ d(xp,n, xq,n),
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the fact that p, q are greater than μ(ε/3) ensures that, by (7.17),

∃ n = n(ε, p, q) ∈ N : d(xp,n, xq,n) < ε/3 ∀ n ≥ n. (7.22)

We then fix n∗ ∈ N (depending on ε, p, q) such that

n∗ ≥ max{n, ν(p), ν(q)}. (7.23)

With all the above choices, we have the following chain of inequalities:

d(ξp, ξq) = d(xp,ν(p), xq,ν(q))

≤ d(xp,ν(p), xp,n∗) + d(xp,n∗ , xq,n∗) + d(xq,n∗ , xq,ν(q))

(7.21)
≤ 1

p + ε/3 + 1
q < ε.

To derive the first inequality, we used the following facts:

– For the first and third summands we used (7.20), as n∗ > ν(p), ν(q) in
view of (7.23).

– For the second summand we used (7.22), as n∗ ≥ n again by (7.23).

This estimate, together with the arbitrariness of p, q as in (7.21), proves that
(ξp)p is a Cauchy sequence.

We are thus entitled to consider ξ̃ := [(ξp)p]∼ in X̃. We aim to show that

lim
n→∞ x̃n = ξ̃ in (X̃, d̃).

We actually prove that limn→∞ d̃(x̃n, ξ̃) = 0, which is a double limit
problem, for this means that

lim
n→∞
(
lim
p→∞ d(xn,p, xp,ν(p))

)
= 0. (7.24)

Let ε > 0 be fixed. Since, as we proved above, (xp,ν(p))p is Cauchy, we infer

∃ j(ε) ∈ N : d(xn,ν(n), xm,ν(m)) < ε/2 ∀ n,m ≥ j(ε). (7.25)

Let us set, with this choice of j(ε),

σ(ε) := max{2/ε, j(ε)}, σ(ε, n) := max{j(ε), ν(n)}. (7.26)

We now take any p, n ∈ N such that

n ≥ σ(ε) and p ≥ σ(ε, n). (7.27)
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Then one has

d(xn,p, xp,ν(p)) ≤ d(xn,p, xn,ν(n)) + d(xn,ν(n), xp,ν(p))
(
here we use (7.25), as n, p ≥ j(ε) thanks to (7.27) and

the fact that σ(ε), σ(ε, n) ≥ j(ε), see (7.26)
)

≤ d(xn,p, xn,ν(n)) + ε/2 ≤ 1/n+ ε/2
(
here we used (7.20), as p, ν(n) ≥ ν(n)

since p ≥ σ(ε, n) ≥ ν(n), again in view of (7.26)
)

≤ ε (as n ≥ σ(ε) ≥ 2/ε, by (7.27) and (7.26)).

Let us finally fix n ∈ N such that n ≥ σ(ε). Then for every p ≥ σ(ε, n) we
have proved that

d(xn,p, xp,ν(p)) ≤ ε.

Letting p→∞, we get

lim
p→∞ d(xn,p, xp,ν(p)) ≤ ε.

Since this holds for every n ≥ σ(ε), then (7.24) follows. The proof is now
complete. ��
Lemma 7.8. Let X1, X2 be topological spaces, and let us assume that X1 satisfies
the first axiom of countability. A map f : X1 → X2 is continuous at a point τ ∈ X1

iff it is sequence-continuous4 in τ .

Proof. The standard proof is left to the Reader. ��
Proof (of Theorem 2.69, page 99). Let (Ã, d̃) be the isometric completion of
(A, d) as in Theorem 2.68. We will show that Ã has a natural structure
of topological UA algebra. First of all, the structure of vector space is
preserved, via the operations

[
(xn)n
]
∼+̃
[
(yn)n
]
∼ :=
[
(xn + yn)n

]
∼,

k
[
(xn)n
]
∼ :=
[
(k xn)n

]
∼, k ∈ K.

(7.28)

Their well-posedness is a simple verification, as we now show. Given two
Cauchy sequences (xn)n, (x̄n)n in A representing via ∼ the same element of
Ã, and given two Cauchy sequences (yn)n, (ȳn)n in A representing via∼ the

4We say that f is sequence-continuous in τ if, for every sequence {τn}n in X1 converging to
τ , it holds that limn→∞ f(τn) = f(τ) in X2.
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same element of Ã, we have (by applying twice Remark 2.61-1)

d(x̄n + ȳn, xn + yn) = d(x̄n − xn, yn − ȳn)

≤ d(x̄n − xn, 0) + d(0, yn − ȳn).
(7.29)

Now, as (xn)n ∼ (x̄n)n, that is

0 = lim
n→∞ d(x̄n, xn) = lim

n→∞ d(x̄n − xn, 0),

there certainly exists for every p ∈ N a μ(p) ∈ N such that

x̄n − xn ∈ Ωp,

as long as n > μ(p). The same holds for ȳn − yn, so that (by the estimate in
(7.29)) the distance d(x̄n + ȳn, xn + yn) tends to 0 as n→∞.

An analogous argument holds for multiplication by an element of K.
Let us now turn to consider the algebra operation

[
(xn)n
]
∼ ∗̃
[
(yn)n
]
∼ :=
[
(xn ∗ yn)n

]
∼.

We claim that the operation ∗̃ is well-posed, that is, for every pair of
A-valued Cauchy sequences (xn)n and (yn)n, the sequence (xn ∗ yn)n is
Cauchy too; secondly, we shall see that the definition of ∗̃ does not depend
on the choice of the representatives.

Indeed, to begin with, we show that d(xn ∗ yn, xm ∗ ym) tends to zero as
n,m→∞. This follows immediately from Remark (2.61)-3 which yields

d(xn ∗ yn, xm ∗ ym) ≤ max
{
d(xn, xm), d(yn, ym)

}
.

The above right-hand side vanishes as n,m → ∞ since (xn)n and (yn)n are
Cauchy and we are done.

Let us now turn to check why the operation ∗̃ is well posed on equiva-
lence classes. As above, let us consider two Cauchy sequences (xn)n, (x̄n)n
in A representing via ∼ the same element of Ã, and two Cauchy sequences
(yn)n, (ȳn)n in A representing via ∼ the same element of Ã. We then have
(again by Remark (2.61)-3)

d(xn ∗ yn, xn ∗ yn) ≤ max
{
d(xn, xn), d(yn, yn)

} −−−−→
n→∞ 0,

for (xn)n ∼ (x̄n)n and (yn)n ∼ (ȳn)n.
Furthermore, ∗̃ is bilinear and associative. These properties follow imme-

diately from the definition of ∗̃ and, respectively, the bilinearity and the
associativity of ∗.
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As for the existence of a unit in Ã, it is clear that the element

1Ã := [(1A)n]∼

is such an element.
Finally, Ã is a topological algebra, that is, the maps

Ã× Ã→ Ã K× Ã→ Ã Ã× Ã→ Ã

(a, b) �→ a+̃b, (k, a) �→ k a, (a, b) �→ a∗̃b,

are continuous with respect to the associated topologies. To show this, we
shall make use of Lemma 7.8. In fact, as a metric space, Ã satisfies the
first axiom of countability,5 so it will suffice to prove that each of the three
maps is sequence continuous. Let us start with the sum. Given the Ã-valued
sequences {x̃n}n, {ỹn}n with limits respectively x̃ and ỹ, we need to prove
that

lim
n→∞(x̃n +̃ ỹn) = x̃ +̃ ỹ.

Recalling that every element in Ã is represented by a Cauchy sequence in A,
let us set the following notation:

x̃n = [(xn,p)p]∼ x̃ = [(xp)p]∼ ỹn = [(yn,p)p]∼ ỹ = [(yp)p]∼.

Let us evaluate d̃(x̃n +̃ ỹn, x̃ +̃ ỹ): unraveling the definitions, we have

d̃(x̃n +̃ ỹn, x̃ +̃ ỹ) = lim
p→∞ d(xn,p + yn,p, xp + yp)

= lim
p→∞ d(xn,p + yn,p − xp, yp)

= lim
p→∞ d(xn,p − xp, yp − yn,p)

≤ lim
p→∞ (d(xn,p − xp, 0) + d(0, yp − yn,p))

= lim
p→∞ (d(xn,p, xp) + d(yp, yn,p))

= d̃(x̃n, x̃)+̃d̃(ỹn, ỹ).

Now, the last term of this chain of equalities and inequalities tends to zero
as n tends to ∞ by construction.

5The family {B
d̃
(t, 1

n
)}n∈N is a basis of neighborhoods of t ∈ Ã.
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Let us now look at the case of the multiplication by an element of the
field. The case k = 0 is trivial, so we can assume k �= 0. With the above
notation, we have (see Remark 2.61-2)

d̃(k x̃n, k x̃) = lim
p→∞ d(k xp,n, k xp) = lim

p→∞ d(xp,n, xp) = d̃(x̃n, x̃),

and the continuity of the multiplication by a scalar follows.
Finally, let us check that the algebra operation ∗̃ is sequence continuous

as well. Using the same notations as above, we have

d̃(x̃n ∗̃ ỹn, x̃ ∗̃ ỹ) = lim
p→∞ d(xn,p ∗ yn,p, xp ∗ yp)

≤ lim
p→∞max{d(xn,p, xp), d(yn,p, yp)}

= max{d̃(x̃n, x̃), d̃(ỹn, ỹ)},

where the inequality is a consequence of Remark 2.61-3. The last term tends
to zero as n tends to ∞, so the operation ∗̃ is actually sequence continuous.

The last step of this proof is to show that the isometry defined in (2.76),

α : A→ A0 ⊆ Ã, a �→ [(an)n]∼ with an = a for every n ∈ N

is, in this setting, an isomorphism of UA algebras, but this is easily
checked:

• α is linear: for every k, j ∈K, a, b ∈ A,

α(k a+ j b) = [(k a+ j b)n]∼ = k [(a)n]∼ + j [(b)n]∼ = k α(a) + j α(b);

• α is an algebra morphism:

α(a ∗ b) = [(a ∗ b)n]∼ = [(a)n]∼ ∗̃ [(b)n]∼ = α(a) ∗̃α(b).

This concludes the proof. ��
Proof (of Remark 2.70, page 99). Let the notation in Remark 2.70 hold. By our
assumptions onA andB it follows directly thatB is an isometric completion
of A and that the inclusion ι : A ↪→ B is both an isomorphism of metric
spaces onto ι(A) and a UAA isomorphism onto ι(A).

By the “uniqueness” of metric completions in Proposition 2.67, we have
an isometry of metric spaces γ : (B, δ)→ (Ã, d) (see the proof of Proposition
2.67, page 417) as follows:
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γ : B −→ Ã

y �→ lim
n→∞(α ◦ ι−1)(ηn),

where, given y ∈ B, {ηn}n is any sequence in A tending to y. We simply
need to check that γ is not only an isometry of metric spaces, but also a UAA
isomorphism. Given a, b ∈ B, let us consider two A-valued sequences {an}n,
{bn}n, tending respectively to a and b. Thanks to the continuity of � we have
A � an � bn → a � b, so that (by the definition of γ) we infer

γ(a � b) = lim
n→∞(α ◦ ι−1)(an � bn)

= lim
n→∞α

(
ι−1(an) ∗ ι−1(bn)

)

= lim
n→∞
(
α ◦ ι−1(an)

) ∗̃ (α ◦ ι−1(an)
)

= γ(a) ∗̃ γ(b).

As for the linearity of γ, it is a consequence of the linearity of ι and α. Given
j, k ∈ K (and an, bn as above), we have

γ(k a+ j b) = lim
n→∞α ◦ ι−1(k an + j bn)

= lim
n→∞
(
k(α ◦ ι−1)(an) + j(α ◦ ι−1)(bn)

)

= k γ(a) + j γ(b).

This ends the proof. ��
Proof (of Theorem 2.72, page 100). To begin with, we prove that {Ω̃k}k is a
topologically admissible family in (B, �):

(H1.) Ω̃k = ϕ(Ωk) is an ideal of B, since Ωk is an ideal of A (and ϕ is a
UAA morphism).

(H2.) Ω̃1 = ϕ(Ω1) = B, for Ω1 = A and ϕ is onto; Ω̃k ⊇ Ω̃k+1, for the same
property holds for the sets Ωk.

(H3.) We have, for every h, k ∈ N,

Ω̃h � Ω̃k = ϕ(Ωh ∗Ωk) ⊆ ϕ(Ωh+k) = Ω̃h+k.

(H4.)
⋂

k∈N Ω̃k =
⋂

k∈N ϕ(Ωk) = ϕ
(⋂

k∈NΩk

)
= ϕ({0}) = 0. Here the

injectivity of ϕ has been exploited.
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Let us consider the function ϕ̃ mentioned on page 100:

ϕ̃ : Ã→ B̃ defined by ϕ̃([(an)n]∼) := [(ϕ(an))n]∼. (7.30)

We have the following facts:

• ϕ̃ is well posed. Let (an)n be a Cauchy sequence in A. For every p ∈ N,
there exists n(p) ∈ N such that an − am ∈ Ωp as long as n,m ≥ n(p).
Thus

ϕ(an)− ϕ(am) = ϕ(an − am) ∈ ϕ(Ωp) = Ω̃p,

as long as n,m ≥ n(p). So (ϕ(an))n is a Cauchy sequence in B.
• ϕ̃ “prolongs” ϕ. Let a ∈ A, and let αA and αB be functions constructed as

in (2.76) respectively for A and B. Then we have

ϕ̃(αA(a)) = ϕ̃[(a)n]∼ = [(ϕ(a))n]∼ = αB(ϕ(a)).

• ϕ̃ is obviously a linear map.
• ϕ̃ is a UAA morphism. Let us first check that ϕ̃ is unital:

ϕ̃(1Ã) = ϕ̃[(1A)n]∼ = [(ϕ(1A))n]∼ = [1B]∼ = 1B̃.

Secondly, ϕ̃ preserves the algebra operation:

ϕ̃([(xn)n]∼ ∗̃ [(yn)]∼)
(2.77)
= ϕ̃[(xn ∗ yn)n]∼ (2.79)

= [(ϕ(xn ∗ yn))n]∼
= [(ϕ(xn) � ϕ(yn))n]∼

(2.77)
= [(ϕ(xn))n]∼ �̃ [(ϕ(yn))n]∼

(2.79)
= ϕ̃([(xn)n]∼) �̃ ϕ̃([(yn)n]∼).

• ϕ̃ preserves the associated metrics. Applying (2.75) and (2.79), we
have

δ̃
(
ϕ̃([(xn)n]∼), ϕ̃([(yn)n]∼)

)
= lim

n→∞ δ(ϕ(xn), ϕ(yn))

(�)
= lim

n→∞ d(xn, yn) = d̃
(
[(xn)n]∼, [(yn)n]∼

)
.

The equality (�) is derived as follows: thanks to (2.65) and (2.66),

δ(ϕ(xn), ϕ(yn)) = exp
(− sup{n ≥ 1 |ϕ(xn − yn) ∈ Ω̃n}

)

= exp
(− sup{n ≥ 1 |xn − yn ∈ Ωn}

)
= d(xn, yn).

• ϕ̃ is clearly surjective. Indeed, let (yn)n be a Cauchy sequence in B.
Then, as ϕ−1 is a UAA isomorphism with ϕ−1(Ω̃n) = Ωn, the sequence
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(ϕ−1(yn))n is Cauchy in A, and we have

[(yn)n]∼ = ϕ̃
(
[(ϕ−1(yn))n]∼

)
.

As for its injectivity, let us assume that (an)n and (a′n)n are two A-valued
Cauchy sequences satisfying

ϕ̃([(an)n]∼) = ϕ̃([(a′n)n]∼).

Then we have

[(ϕ(an))n]∼ = [(ϕ(a′n))n]∼ ⇔
ϕ(an) = ϕ(a′n) + εn, with εn → 0 in B.

From the injectivity and linearity of ϕ, we have

an = a′n + ϕ−1(εn). (7.31)

Now, by definition of the metric on B we have

∀ p ∃ n(p) ∈ N : εn ∈ Ω̃p ∀ n ≥ n(p).

By applying ϕ−1, we obtain

∀ p ∃ n(p) ∈ N : ϕ−1(εn) ∈ Ωp ∀ n ≥ n(p).

This means that ϕ−1(εn) → 0 in A, and so, by exploiting (7.31), we
derive

[(an)n]∼ = [(a′n)n]∼.

So the two metric spaces are isomorphic and the proof is complete. ��

7.6 Proofs of Sect. 2.3.3

Proof (of Theorem 2.75, page 102). First of all, we observe that the topology
induced by {Ωk}k≥0 on A coincides with the topology induced on A by the
topology of Â, which in its turn is induced by the family {Ω̂k}k≥0: this is an
immediate consequence of (2.85).

More is true: we claim that the metric d̂ coincides with d on A×A. Indeed,
if a, b ∈ A, we have

d̂(a, b) = exp
(− sup

{
n ≥ 0

∣
∣ a− b ∈ Ω̂

})

(2.85)
= exp

(− sup
{
n ≥ 0

∣
∣ a− b ∈ Ω

})
= d(a, b).
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So, as a consequence of Remark 2.70 on page 99, all that we have to
show is:

(i) The metric space Â, with the metric induced by {Ω̂k}k, is complete.
(ii) A is dense in Â with the topology induced by {Ω̂k}k.

Here are the proofs:
(i) Let {wk}k∈N be a Cauchy sequence in Â denoted by

wk := (uk
0 , u

k
1 , . . .), k ∈ N.

As {wk}k is Cauchy, we have

∀ h ∈ N ∪ {0}, ∃ k(h) ∈ N : wn − wm ∈ Ω̂h+1, ∀ n,m ≥ k(h),

that is, (un
0 − um

0 , u
n
1 − um

1 , . . .) ∈ Ω̂h+1, ∀ n,m ≥ k(h),

that is, un
j − um

j = 0 ∀ j = 0, . . . , h, ∀ n,m ≥ k(h).

It is not restrictive to suppose that

k(h+ 1) ≥ k(h), for every h ∈ N ∪ {0}.

Let us define
w := (u

k(0)
0 , u

k(1)
1 , . . . u

k(h)
h , . . .) ∈ Â.

We claim that wk tends to w in Â.
To this end, let us see what happens as h ranges over N:

• If h = 0, we have

∀ n ≥ k(0), un
0 = u

k(0)
0 and wn = (u

k(0)
0 , un

1 , u
n
2 , . . .).

• If h = 1,

∀ n ≥ k(1),
un
0 = u

k(1)
0 = u

k(0)
0 , un

1 = u
k(1)
1 ,

wn = (u
k(0)
0 , u

k(1)
1 , un

2 , . . .).

• For h > 1,

∀ n ≥ k(h), wn = (u
k(0)
0 , u

k(1)
1 , . . . u

k(h)
h , un

h+1, . . .).

So, for every h ≥ 0, we have

wn − w = (0, 0, . . . , 0
︸ ︷︷ ︸
h + 1 times

, ∗, ∗, . . .) ∈ Ω̂h+1,

that is, wk tends to w in the {Ω̂p}p topology, as claimed.
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(ii) Let u = (u0, u1, u2, . . .) ∈ Â. We claim that the A-valued sequence
{wk}k defined by

wk := (u0, u1, . . . , uk, 0, 0, . . .) ∀ k ∈ N ∪ {0}

tends to u in the {Ω̂p}p topology, whence the desired density of A in Â will
follow. We have that

u− wk = (0, . . . , 0, uk+1, uk+2, . . .) ∈ Ω̂k+1.

Then the following holds:

∀ h ∈ N, u− wk ∈ Ω̂k+1 ⊆ Ω̂h as long as k ≥ h− 1.

This means that

∀ h ∈ N, ∃k(h) := h− 1 : u− wk ∈ Ω̂h, ∀ k ≥ k(h),

which is precisely limk→∞ wk = w in the given topology. ��
Proof (of Lemma 2.79, page 103). We have to prove that ϕ is uniformly
continuous. Since (by Theorem 2.75) the restriction to A × A of the metric
induced on Â by the sets Ω̂A

k coincides with the the metric induced on A by
the sets ΩA

k , we have to prove that

∀ ε > 0 ∃ δε > 0 :
(
x, y ∈ A, dA(x, y) < δε

) ⇒ dB(ϕ(x), ϕ(y)) < ε.
(7.32)

Here we have denoted by dA and by dB the metrics induced respectively on
A and on B by the sets ΩA

k and ΩB
k .

Let ε > 0 be fixed. If the sequence {kn}n is as in the hypothesis (2.88), we
have limn→∞ kn =∞. Hence there exists n(ε) ∈ N such that

kn > ln(1/ε) for every n ≥ n(ε). (7.33)

We set δε := exp(−n(ε)). We claim that this choice of δε gives (7.32). Indeed,
if x, y ∈ A are such that dA(x, y) < δε, by (2.68) we infer the existence of
n0 > ln(1/δε) = n(ε) such that x − y ∈ ΩA

n0
. This latter fact, together with

the second part of (2.88) and the linearity of ϕ, yields

ϕ(x) − ϕ(y) = ϕ(x − y) ∈ ϕ(ΩA
n0
) ⊆ ΩB

kn0
.

As a consequence, by also exploiting the very definition (2.65)–(2.66) of dB ,
we infer (recall that n0 > n(ε))
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dB(ϕ(x), ϕ(y)) ≤ exp(−kn0)
(7.33)
< exp(− ln(1/ε)) = ε.

This proves (7.32) with the claimed choice of δε.
Since ϕ is uniformly continuous, a general result on metric spaces (see

Lemma 7.9 below) ensures that there exists a continuous function ϕ̂ : Â→ B̂
prolonging ϕ. Obviously, ϕ̂ is linear since ϕ is.

Finally, the theorem is completely proved if we show that ϕ is a UAA
morphism, provided ϕ is. First we have ϕ̂(1A) = ϕ(1A) = 1B . Moreover,
suppose a, b ∈ Â and choose sequences {ak}k, {bk}k in A such that
limk→∞ ak = a and limk→∞ bk = b w.r.t. the metric of Â (such sequences
do exist since A is dense in Â). Then for every a, b ∈ A we have (using the
same symbol ∗ for the operations on A,B and the same symbol ∗̂ for the
corresponding operations on Â, B̂):

ϕ̂(a ∗̂ b) (1)
= ϕ̂
(

lim
k→∞

ak ∗̂ bk
)

(2)
= lim

k→∞
ϕ̂(ak ∗̂ bk) (3)

= lim
k→∞

ϕ(ak ∗ bk)
(4)
= lim

k→∞
ϕ(ak) ∗ ϕ(bk) (5)

= lim
k→∞

ϕ̂(ak) ∗̂ ϕ̂(bk)
(6)
= ϕ̂
(

lim
k→∞

ak

)
∗̂ ϕ̂
(

lim
k→∞

bk

)
(7)
= ϕ̂(a) ∗̂ ϕ̂(b).

Here we used the following facts:

1. (Â, ∗̂) is a topological algebra (and ak → a, bk → b as k →∞).
2. ϕ̂ in continuous.
3. We invoked (2.83) (being ak, bk ∈ A) and ϕ̂ ≡ ϕ on A.
4. ϕ is a UAA morphism.
5. An analogue of (2.83) relatively to B (being ϕ(ak), ϕ(bk) ∈ B) and again
ϕ̂ ≡ ϕ on A.

6. (B̂, ∗̂) is a topological algebra and ϕ̂ is continuous.
7. limk→∞ ak = a and limk→∞ bk = b in Â.

This completes the proof. ��
Here we used the following result of Analysis.

Lemma 7.9. Let (X, dX) and (Y, dY ) be metric spaces. Suppose also that Y is
complete. Let A ⊆ X , B ⊆ Y and let f : A→ B be uniformly continuous.

Then there exists a unique continuous function f : A → B prolonging f .
Moreover, f is uniformly continuous.

Proof. The uniform continuity of f means that

∀ ε > 0 ∃ δε > 0 : (a, a′ ∈ A, dX(a, a′) < δε)⇒ dY (f(a), f(a
′)) < ε.

(7.34)



432 7 Proofs of the Algebraic Prerequisites

If f is as in the assertion and A � an −−−−→
n→∞ a ∈ A, then one must have

f(a) = f
(
lim

n→∞ an
)
= lim

n→∞ f(an) = lim
n→∞ f(an),

which proves the uniqueness of f . It also suggests how to define f : A→ B.
Indeed, if α ∈ A, we choose any sequence {an}n in A such that an −−−−→

n→∞ α

in X and we set
f(α) := lim

n→∞ f(an).

First of all, we have to show that this limit exists in Y and that the definition
of f(α) does not depend on the particular sequence {an}n as above:

Existence of the limit: Since Y is complete, it suffices to show that {f(an)}n
is a Cauchy sequence in Y . Since {an}n is convergent, it is also a Cauchy
sequence, hence

∀ σ > 0 ∃ nσ ∈ N : (n,m ∈ N, n,m ≥ nσ)⇒ dX(an, am) < σ.
(7.35)

Now let ε > 0 be fixed and let δε be as in (7.34). By invoking (7.35) with
σ := δε we infer the existence of nδε =: Nε such that dX(an, am) < δε
whenever n,m ≥ Nε. Hence, thanks to (7.34) we get

dY (f(an), f(am)) < ε ∀ n,m ≥ Nε.

The arbitrariness of ε proves that {f(an)}n is a Cauchy sequence in Y ,
hence it is convergent.

Independence of the sequence: Let {an}n and {a′n}n be sequences in A both
converging to α ∈ A. We have to show that

limn→∞ f(an) = limn→∞ f(a′n),

i.e., that the dY -distance of these two limits is null. By the continuity of
the dY -distance on its arguments, this is equivalent to proving

lim
n→∞ dY (f(a

′
n), f(an)) = 0. (7.36)

(Indeed, recall that we already know that the limits of f(an), f(a′n), as
n → ∞, do exist in Y .) Let ε > 0 be fixed and let δε be as in (7.34). As
limn→∞ dX(a′n, an) = 0, there exists nε ∈ N such that dX(a′n, an) < δε if
n ≥ nε. As a consequence, by (7.34) we get

dY (f(a
′
n), f(an)) < ε ∀ n ≥ nε.

This, together with the arbitrariness of ε > 0, proves (7.36).
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With the above definition of f , it is obvious that f prolongs f and that
f(A) ⊆ B. To end the proof, we are left to show that f is uniformly
continuous. Let α, α′ ∈ A and choose sequences {an}n and {a′n}n in A
converging to α and α′ respectively. We thus have

∀ ε1 > 0 ∃n1(ε1) ∈ N : n ≥ n1(ε1) ⇒ dX(an, α), dX(a′n, α
′) < ε1. (7.37)

By the definition of f , we have that f(an) and f(a′n) converge in Y to f(α)
and f(α′), respectively. Hence, this yields

∀ ε2 > 0 ∃n2(ε2) ∈ N : n ≥ n2(ε2) ⇒
(
dY (f(an), f(α)) < ε2
dY (f(a

′
n), f(α

′)) < ε2.

)

(7.38)

Now, let ε > 0 be fixed and let δε be as in (7.34). Let α, α′ ∈ A be such that
dX(α, α′) < 1

3 δe. We claim that this implies dY (f(α), f(α′)) < 3ε, which
proves that f is uniformly continuous, ending the proof.

Indeed, let us fix any n ∈ N such that

n ≥ max{n2(ε), n1(δε/3)} (7.39)

(where n1 and n2 are as in (7.37) and (7.38)). Then, if dX(α, α′) < 1
3 δe, we

get

dX(an, a
′
n) ≤ dX(an, α) + dX(α, α′) + dX(α′, a′n) ≤= 1

3 δe +
1
3 δe +

1
3 δe = δε,

since the first and the third summands do not exceed 1
3 δε, thanks to (7.37)

(and the choice of n in (7.39)). Thus, from (7.34) we get dY (f(an), f(a′n)) < ε,
so that we finally infer

dY (f(α), f (α
′)) ≤ dY (f(α), f(an)) + dY (f(an), f(a

′
n)) + dY (f(a

′
n), f(α

′))

< ε+ ε+ ε = 3ε.

Indeed, note that the first and the third summands are less than ε in view of
(7.38), due to n ≥ n2(ε) (see (7.39)). This completes the proof. ��
Proof (of Theorem 2.82, page 106). We shall prove that the function

T̂ (V )⊗ T̂ (V ) � (ui)i ⊗ (vj)j �→
(
ui ⊗ vj

)
i,j
∈ ̂T⊗T (V ) (7.40)

is indeed a UAA morphism. First of all, it is well-posed, because, for every
pair i, j ∈ N, ui ⊗ vj ∈ Ti,j(V ) and it clearly maps the identity 1 ⊗ 1 of
T̂ ⊗ T̂ to (1⊗1, 0, 0, . . .) ∈ ̂T⊗T . Secondly, let us check that it preserves the
algebra operations. In T̂ (V )⊗T̂ (V ), we have the operation, say �, obtained
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as described in Proposition 2.41 on page 81, starting from the · operation of
T̂ : explicitly, this amounts to

(
(ui)i ⊗ (vj)j

)
�
(
(ũi)i ⊗ (ṽj)j

)
=
(
(ui)i·(ũi)i

)⊗ ((vj)j·(ṽj)j)

=
( ∑

a+b=i

ua ⊗ ũb

)

i

⊗( ∑

α+β=j

vα ⊗ ṽβ

)

j
.

Via the identification in (7.40), the above far right-hand side is mapped to

(( ∑

a+b=i

ua ⊗ ũb

)⊗( ∑

α+β=j

vα ⊗ ṽβ

))

i,j

=

( ∑

a+b=i
α+β=j

(ua ⊗ ũb)
⊗

(vα ⊗ ṽβ)

)

i,j

.

On the other hand, again via the identification in (7.40), (ui)i ⊗ (vj)j and
(ũi)i ⊗ (ṽj)j are mapped respectively to

(
ui ⊗ vj

)
i,j

and
(
ũi ⊗ ṽj

)
i,j
,

and the composition of these two elements in ̂T⊗T is given by (see (2.93)
on page 105, which immediately extends from T ⊗T to ̂T⊗T )

(
ui ⊗ vj

)
i,j
• (ũi ⊗ ṽj

)
i,j

=
( ∑

a+α=i
b+β=j

(ua ⊗ vb) • (ũα ⊗ ṽβ)
)

i,j≥0

=
( ∑

a+α=i
b+β=j

(ua · ũα)⊗ (vb · ṽβ)
)

i,j

=
( ∑

a+α=i
b+β=j

(ua ⊗ ũα)
⊗

(vb ⊗ ṽβ)
)

i,j
,

and this is exactly (with a different yet equivalent notation) what we got
above. This proves that the given identification is in fact a UAA morphism.
��
Proof (of Remark 2.83, page 106). As {αk}k and {βk}k are such that

lim
k→∞

αk = α and lim
k→∞

βk = β

in T̂ (V ), we know that
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∀ n ∈ N, ∃ k(n) ∈ N : αk − α, βk − β ∈∏i≥n Ti(V ), ∀ k ≥ k(n).

Furthermore, it holds that

αk ⊗ βk − α⊗ β = αk ⊗ βk − α⊗ βk + α⊗ βk − α⊗ β

= (αk − α)⊗ βk + α⊗ (βk − β).

Now, the result follows from the fact that

x ∈∏i≥n Ti(V ), y ∈ T̂ (V ) =⇒ x⊗ y, y ⊗ x ∈ ∏i+j≥n Ti,j(V ).

Let us prove this last claim: with the above meaning of x, y we have

x⊗ y = (0, . . . , 0, xn+1, xn+2, . . .)⊗ (y0, y1, . . .)

≡ (0, 0, . . . , 0
︸ ︷︷ ︸
n + 1 times

, ∗, ∗, . . .) ∈∏i+j≥n Ti,j(V ),

where the identification in (2.82) has been used. ��

7.7 Proofs of Sect. 2.4

Proof (of Theorem 2.92, page 110). (i). We split the proof in different steps.

(i.1) Existence. As f is linear and A is a UA algebra, recalling Theorem
2.38-(ii), we know that there exists one and only one UAA morphism

f : T (g)→ A

extending f . So let us define

fμ : U (g)→ A

[t]J �→ f(t).

In order to prove our statement, we will check that the so defined fμ has all
the required properties:

• fμ is well posed. This is equivalent to prove that J ⊆ ker(f). The generic
element of J can be written as a linear combination of elements of this
form: t · (x⊗ y− y⊗x− [x, y]) · t′, where t, t′ belong to T (g), and x, y to g.
As f is linear, let us just evaluate the images of such elements via f :
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f
(
t · (x ⊗ y − y ⊗ x− [x, y]) · t′)

= f(t) ∗
(
f(x) ∗ f(y)− f(y) ∗ f(x)− f([x, y])

)
∗ f(t′)

= f(t) ∗ (f(x) ∗ f(y)− f(y) ∗ f(x)− f([x, y])
)

︸ ︷︷ ︸
= 0 for f is a Lie algebra morphism

∗f(t′) = 0.

• fμ is linear:

fμ(a[t]J + b[t′]J ) = fμ([at+ bt′]J ) = f(at+ bt′)

= af(t) + bf(t′) = afμ([t]J ) + bfμ([t′]J ).

• fμ is an algebra morphism:

fμ([t]J [t′]J ) = fμ([t · t′]J ) = f(t · t′)
= f(t) ∗ f(t′) = fμ([t]J ) ∗ fμ([t′]J ).

• fμ is unital:
fμ(1U (g)) = fμ([1K]J ) = f(1K) = 1A.

• fμ ◦ μ = f : for every x ∈ g we have

(fμ ◦ μ)(x) = fμ([x]J ) = f(x) = f(x).

(i.2) Uniqueness.
Suppose that gμ verifies all the properties required in the statement. Let

us define

g : T (g)→ A

t �→ gμ([t]J ).

For every x ∈ g, we have g(x) = gμ([x]J ) = f(x), so g extends f . Moreover
g is clearly linear. Furthermore, g is an associative algebra morphism:

g(v1 ⊗ . . .⊗ vk) = gμ([v1 ⊗ . . .⊗ vk]J ) = gμ([v1]J · · · [vk]J )

= gμ([v1]J ) ∗ · · · ∗ gμ([vk]J ) = g(v1) ∗ · · · ∗ g(vk).

Thanks to Theorem 2.38-(ii), we can conclude that g ≡ f , where f is the
unique UAA morphism closing the diagram
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g
f

��
� �

ι

��

A

T (g)

f

��������������

so that
gμ([t]J ) = g(t) = f(t) = fμ([t]J ), ∀ t ∈ T (g),

i.e., gμ = fμ, and the proof is complete.

(ii) The proof of the first part of (ii) is standard. The second part is
deduced as follows. Remark 2.89 implies that the set {1U} ∪ ϕ(g) is a set
of algebra generators for U . Indeed, since ϕμ : U (g) → U is a UAA
isomorphism (by the first part) and since {π(1)} ∪ μ(g) is a set of algebra
generators for U (g) then

ϕμ
({π(1)} ∪ μ(g)) = {ϕμ(1U (g))} ∪ ϕμ(μ(g)) = {1U} ∪ ϕ(g)

is a set of algebra generators for U .
To prove that U � U (ϕ(g)), it suffices to show that U has the universal

property of U (ϕ(g)): this can be done arguing exactly as in the proof (on
page 404) of Theorem 2.38 as we show in what follows.

Let A be any UA algebra and let f : ϕ(g) → A be any Lie algebra
morphism. Let ι : ϕ(g) ↪→ U be the inclusion map. We need to show the
existence of a unique UAA morphism f ι : U → A such that f ι ◦ ι ≡ f on
ϕ(g), i.e.,

(�) (f ι ◦ ι)(ϕ(x)) = f(ϕ(x)), ∀x ∈ g.

The uniqueness of such a UAA morphism f ι follows from the fact that
{1U} ∪ ϕ(g) generates U , as an algebra. Let us turn to its existence: We
consider the linear map f ◦ ϕ : g → A. We know that (f ◦ ϕ)ϕ : U → A
is a UAA morphism such that (f ◦ ϕ)ϕ(ϕ(x)) = (f ◦ ϕ)(x) for every x ∈ g.
If we set f ι := (f ◦ ϕ)ϕ then we are trivially done with (�). ��
Proof (of Proposition 2.93, page 111). Let ι : L(V ) → T (V ) be the inclusion.
It is enough to show that the pair (T (V ), ι) has the universal property
characterizing (up to canonical isomorphism) the enveloping algebra of
L(V ) (and then to apply Theorem 2.92-(ii)). To this end, we have to prove
that, for every UA algebraA and every Lie algebra morphism α : L(V )→ A,
there exists a unique UAA morphism αι : T (V )→ A such that

(αι ◦ ι)(t) = α(t) for every t ∈ L(V ). (7.41)
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To this aim, let us consider the linear map α|V : V → A. From Theorem
2.38-(ii), there exists a UAA morphism α|V : T (V )→ A prolonging α|V . We
set αι := α|V , and we prove (7.41). Let us denote by [·, ·]⊗ and [·, ·]A the com-
mutators on T (V ) andA respectively. Since L(V ) is Lie-generated by V (see
Proposition 2.47) it suffices to prove (7.41) when t = [v1 · · · [vn−1, vn]⊗ · · · ]⊗,
for any n ∈ N and v1, . . . , vn ∈ V . We have

(αι ◦ ι)(t) = (αι ◦ ι)([v1 · · · [vn−1, vn]⊗ · · · ]⊗
)

=
(
[αι(v1) · · · [αι(vn−1), α

ι(vn)]A · · · ]A
)

= [α(v1) · · · [α(vn−1), α(vn)]A · · · ]A = α
(
[v1 · · · [vn−1, vn]⊗ · · · ]⊗

)
= α(t).

In the first equality we used the fact that, αι being a UAA morphism, it is
also a Lie algebra morphism of the associated commutator-algebras; in the
second equality we used αι = α|V and the latter map coincides with α on
V ; in the third equality we used the fact that α : L(V ) → A is a Lie algebra
morphism and the fact that the Lie algebra structure on L(V ) is the one
induced by the commutator of T (V ). The uniqueness of a UAA morphism
αι : T (V ) → A satisfying (7.41) is granted by the fact that (7.41) defines
αι on V uniquely, so that αι is uniquely defined throughout, since T (V ) is
generated by {1K} ∪ V , as an algebra.

Proof (of Theorem 2.94, page 111). Recall the projection map

φ : T (g)→ Sym(g), t �→ [t]H

introduced in (10.2) on page 501 and consider its restriction to g. Let X :=
{xi}i∈I be a fixed basis of g, such that I is totally ordered by �, as in the
statement of the PBW Theorem. For the sake of notational convenience, we
set henceforth

xi0 := 1K (where i0 /∈ I).

Thanks to Theorem 10.20 on page 512 (and the fact that φ(xi0 ) = φ(1K) is
the unit of Sym(g)), the set

A :=
{
φ(xi0 ) ∗ φ(xi1 ) ∗ · · · ∗ φ(xip )

∣
∣ p ≥ 0, i1, . . . , ip ∈ I, i1 � . . . � ip

}

is a linear basis for the symmetric algebra Sym(g). For any given p ∈ N∪{0},
let us denote by Sp(g) the subspace of Sym(g) spanned by the symmetric
powers of degree ≤ p, that is,

Sp(g) :=
⊕p

n=0 Symn(g).

Let us remark that, for every p ≥ 0, the subsystem of A given by
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Ap :=
{
φ(xi0 ) ∗ φ(xi1 ) ∗ · · · ∗ φ(xip)

∣
∣ i1, . . . , ip ∈ I, i1 � . . . � ip

}

is a basis of Symp(g) (thanks to the same cited theorem).
We now have to introduce a notation “≤”, useful for the proof which

follows.

Definition 7.10. Let x be an element of the basis X = {xi}i∈I of g and let s
be an element of the basis A of Sym(g). We allow the writing

φ(x) ≤ s

if and only if one of the following conditions is satisfied:

• s = φ(xi0 ).
• x = xi and s = φ(xi0 ) ∗ φ(xi1 ) ∗ · · · ∗ φ(xin ) with i � i1.

With the above definition at hands, we are able to prove the next result.6

Lemma 7.11. With the above notation, there exists a Lie algebra morphism

ρ : g −→ End(Sym(g))

such that, for every s ∈ A and for every x ∈ X one has the following properties:

(1) s ∈ Ap implies ρ(x)(s) − φ(x) ∗ s ∈ Sp(g).
(2) φ(x) ≤ s implies ρ(x)(s) = φ(x) ∗ s.

Proof. I. We define ρ(x)(s) for every x ∈ g and then, one step at a time, for
s ∈ Sym0(g), s ∈ Sym1(g), and so on.

(I.0). Let s ∈ A0, that is, s = φ(1K). We set

ρ(x)(φ(1K)) := φ(x), when x ∈ X. (7.42)

By extending this definition linearly both in x and in s, we can unambigu-
ously define ρ(x)(s) for every x ∈ g and s ∈ Sym0(g). Note that, by (7.42),

ρ(x)(s) ∈ S1(g), for every x ∈ g and every s ∈ Sym0(g). (7.43)

Moreover, when s = φ(1K), (7.42) ensures the validity of statement (2) –
and consequently of statement (1) – of the lemma.

(I.1). Let s ∈ A1, s = φ(xi) for a fixed i ∈ I. We begin by defining ρ(x)(s)
for x = xj ∈ X for some j ∈ I. We set

6As usual, if V is a vector space, we denote by End(V ) the vector space of the
endomorphisms of V , which is a UA algebra with the composition of maps, and is –
in its turn – a Lie algebra with the associated commutator. Moreover, if V,W are vector
spaces (on the same field), we denote by Hom(V,W ) the vector space of the linear maps
ϕ : V → W .
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ρ(xj)(φ(xi)) :=

{
(j � i) φ(xj) ∗ φ(xi)
(i � j) φ(xi) ∗ φ(xj) + ρ([xj , xi])(φ(1K)).

(7.44)

Note that this defines ρ(xj)(φ(xi)) as an element of S2(g) (recall indeed
(7.43)). As a consequence, we can use bi-linearity to define ρ(x)(s) for any
x ∈ g and any s ∈ Sym1(g); furthermore, by means of the above step (I.0)
and by gluing together Sym0(g) and Sym1(g), we unambiguously define
ρ(x)(s) for every x ∈ g and every s ∈ S1(g) in such a way that

ρ(x)(s) ∈ S2(g), for every x ∈ g and every s ∈ S1(g). (7.45)

We now show that this choice of ρ fulfills (1) and (2) of the lemma (plus a
morphism-like property). Indeed, as for (1) we have:

ρ(xj)(φ(xi))− φ(xj) ∗ φ(xi) =
{
(j � i) 0,

(i � j) ρ([xj , xi])(φ(1K)),

and the far right-hand belongs to S1(g), in view of (7.43). Next, as for (2) we
have φ(x) ≤ s if and only if (recall that x = xj and s = φ(xi)) j � i so that
(2) is trivially verified by the very (7.44).

We have an extra property of ρ, namely:

ρ(y)(ρ(z)(t))− ρ(z)(ρ(y)(t)) = ρ([y, z])(t)

(
for all y, z ∈ g

for all t ∈ S0(g)

)

. (7.46)

To prove (7.46), we note that (by linearity on all the arguments), we can
restrict to prove it when y, z ∈ X and t ∈ A0. So we can suppose that y = xj ,
z = xi and (by the skew-symmetric rôles of y, z in (7.46)) we can additionally
suppose that j � i. So we have (recall that ∗ is Abelian!)

ρ(xj)
(
ρ(xi)(φ(1K))

)− ρ(xi)
(
ρ(xj)(φ(1K))

)

(7.42)
= ρ(xj)(φ(xi))− ρ(xi)(φ(xj))

(7.44)
= φ(xj) ∗ φ(xi)−

(
φ(xj) ∗ φ(xi) + ρ([xi, xj ])(φ(1K))

)

= −ρ([xi, xj ])(φ(1K)) = ρ([xj , xi])(φ(1K)).

(I.p). Inductively we suppose that, for a given p ≥ 1, we have defined
ρ(x)(s) for x ∈ g and s ∈ Sp(g), in such a way that it depends linearly on x
and on s and that the following properties hold:

ρ(x)(s) ∈ Sj+1(g),

(
for every x ∈ g, s ∈ Sj(g)

and every j = 0, 1, . . . , p

)

; (7.47)
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ρ(x)(s) − φ(x) ∗ s ∈ Sj(g),

(
for every x ∈ g, s ∈ Aj

and every j = 0, 1, . . . , p

)

; (7.48)

φ(x) ≤ s implies ρ(x)(s) = φ(x) ∗ s,
(

for every x ∈ X, s ∈ Aj(g)

and every j = 0, 1, . . . , p

)

;

(7.49)

ρ(y)(ρ(z)(t))− ρ(z)(ρ(y)(t)) = ρ([y, z])(t)

(
for every y, z ∈ g

and every t ∈ Sp−1(g)

)

.

(7.50)

(I.p + 1). We now show how to define ρ(x)(s) for x ∈ g and s ∈ Sp+1(g)
satisfying all the above properties up to the step p + 1, with the sole
hypothesis that the statements in (I.p) above do hold.

It suffices to define ρ(x)(s) for x ∈ g and s ∈ Symp+1(g); in turns, by
eventually defining ρ(x)(s) with a linearity argument, it suffices to take x ∈
X and s ∈ Ap+1. Hence, let x = xi ∈ X and s = φ(xi1 ) ∗ · · · ∗ φ(xip+1) be
fixed, for i, i1, . . . , ip+1 ∈ I with i1 � · · · � ip+1. We distinguish two cases,
depending on whether φ(x) is greater than or less than s.

– If φ(x) ≤ φ(xi1 ) ∗ · · · ∗ φ(xip+1 ), condition (7.49) for the (p + 1)-th case
immediately forces us to set

ρ(x)(φ(xi1 ) ∗ · · · ∗ φ(xip )) := φ(x) ∗ φ(xi1 ) ∗ · · · ∗ φ(xip+1 ). (7.51)

Condition (7.49) (up to p+1) is completely fulfilled. Moreover, in the present
case φ(x) ≤ s, (7.48) and (7.47) are verified as well (all up to the case p+ 1).

– Let us now consider the case φ(x) � φ(xi1 ) ∗ · · · ∗φ(xip+1 ), that is, i1 � i
and i1 �= i. We have s = s′ ∗ s̄, where

s′ := φ(xi1 ), s̄ := φ(xi2 ) ∗ · · · ∗ φ(xip+1 ) ∈ Ap.

Thanks to the inductive hypothesis (7.48), we have that ρ(x)(s̄) − φ(x) ∗ s̄
belongs to Sp(g), and its image via ρ(xi1) makes sense. We can thus define
for general x and s

ρ(x)(s) := ρ([x, xi1 ])(s̄) + ρ(xi1 )(ρ(x)(s̄)− φ(x) ∗ s̄) + φ(x) ∗ s. (7.52)

This formula for ρ satisfies (7.47) (indeed, the first two summands belong
to Sp+1 ⊆ Sp+2, whilst the last belongs to Sp+2). As a consequence, (7.47) is
completely fulfilled. Furthermore (for the same reasons) we have

ρ(x)(s)− φ(x) ∗ s (7.52)
= ρ([x, xi1 ])(s̄) + ρ(xi1 )(ρ(x)(s̄)− φ(x) ∗ s̄) ∈ Sp+1(g),

so condition (7.48) is completely verified.
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We are left to verify (7.50) when p − 1 is replaced by p. To begin with,
notice that s′ ≤ φ(x) ∗ s̄ (recalling that s′ = φ(xi1 ), φ(x) = φ(xi) and i1 � i),
so that we have

ρ(xi1 )(φ(x) ∗ s̄) (7.51)
= φ(xi1 ) ∗ φ(x) ∗ s̄ = s′ ∗ φ(x) ∗ s̄
= φ(x) ∗ s′ ∗ s̄ = φ(x) ∗ s.

Hence equation 7.52 may now be rewritten as7

ρ(x)(φ(xi1 ) ∗ s̄) = ρ([x, xi1 ])(s̄) + ρ(xi1 )(ρ(x)(s̄)). (7.53)

In its turn, noticing that φ(xi1 ) ≤ s̄ (indeed s̄ = φ(xi2 ) ∗ · · · , with i1 � i2)
and hence applying (7.51), the identity (7.53) can be rewritten as

ρ(x)(ρ(xi1 )(s̄))− ρ(xi1 )(ρ(x)(s̄)) = ρ([x, xi1 ])(s̄).

The last equation ensures that the morphism condition (7.50) is verified for
all t ∈ Ap and all y, z ∈ X, as long as the following is satisfied:

φ(z) ≤ t & φ(z) < φ(y).

So all we have to do in order to complete the proof is to check that (7.50) is
verified in all the other cases.

First of all, we remark that, if (7.50) holds for some y, z ∈ g, then it also
holds when y and z are interchanged. So we obtain automatically that (7.50)
is also verified in the case

φ(y) ≤ t & φ(y) < φ(z).

Secondly, the case y = z is trivial. Consequently, all the cases when φ(z) ≤ t
as well as the cases when φ(y) ≤ t hold true. [Indeed, notice that when
xi, xj ∈ X, condition φ(xi) ≤ φ(xj) is equivalent to i � j so that – via φ – the
symbol ≤ defines a total ordering on the elements of X.]

As a consequence, the very last case to consider is

φ(y) � t & φ(z) � t.

As above, let us set t := t′ ∗ t̄, with

t′ := φ(xi1 ) t̄ := φ(xi2 ) ∗ · · · ∗ φ(xip ).

7We observe that ρ(x)(s) cannot be defined straightaway as in (7.53), because the
summand ρ(xi1 )(ρ(x)(s̄)) is not, a priori, well-defined.
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Then necessarily t′ ≤ φ(y), t′ ≤ φ(z), and we have

ρ(z)(t)
(7.51)
= ρ(z)(ρ(xi1 )(t̄))

(7.50)
= ρ(xi1 )(ρ(z)(t̄)) + ρ([z, xi1 ])(t̄)

(we add and subtract ρ(xi1)(φ(z) ∗ t̄))
= ρ(xi1)(φ(z) ∗ t̄) + ρ(xi1 )(ρ(z)(t̄)− φ(z) ∗ t̄) + ρ([z, xi1 ])(t̄).

Applying the map ρ(y) to both sides, we obtain

ρ(y)(ρ(z)(t)) = ρ(y)(ρ(xi1 )(φ(z) ∗ t̄))
+ ρ(y)

(
ρ(xi1 )(ρ(z)(t̄)− φ(z) ∗ t̄))+ ρ(y)(ρ([z, xi1 ])(t̄)).

As t′ ≤ φ(z) ∗ t̄ and t′ ≤ φ(y), the morphism condition is verified for the
first term on the right side. Thanks to the inductive hypothesis (7.50), the
morphism condition can be applied to the last two terms as well. We get

ρ(y)(ρ(z)(t)) = ρ(xi1 )(ρ(y)(φ(z) ∗ t̄)) + ρ([y, xi1 ])(φ(z) ∗ t̄)

+ ρ(xi1)
(
ρ(y)
(
ρ(z)(t̄)− φ(z) ∗ t̄)

)

+ ρ([y, xi1 ])(ρ(z)(t̄)− φ(z) ∗ t̄)
+ ρ([z, xi1 ])(ρ(y)(t̄)) + ρ([y, [z, xi1 ]])(t̄)

= ρ(xi1 )(ρ(y)(ρ(z)(t̄))) + ρ([y, xi1 ])(ρ(z)(t̄))

+ ρ([z, xi1 ])(ρ(y)(t̄)) + ρ([y, [z, xi1 ]])(t̄). (7.54)

An analogous result is found upon exchange of y and z:

ρ(z)(ρ(y)(t)) = ρ(xi1 )(ρ(z)(ρ(y)(t̄))) + ρ([z, xi1 ])(ρ(y)(t̄))

+ ρ([y, xi1 ])(ρ(z)(t̄)) + ρ([z, [y, xi1 ]])(t̄).
(7.55)

Let us subtract equation (7.55) from equation (7.54). We obtain

ρ(y)(ρ(z)(t)) − ρ(z)(ρ(y)(t)) = ρ(xi1)
(
ρ(y)(ρ(z)(t̄))− ρ(z)(ρ(y)(t̄))

)

+ ρ([y, [z, xi1 ]])(t̄)− ρ([z, [y, xi1 ]])(t̄).
(7.56)

Now, using the Jacobi identity to rewrite the last two terms, and applying
the inductive hypothesis twice, (7.56) reduces to

ρ(y)(ρ(z)(t))− ρ(z)(ρ(y)(t)) = ρ(xi1 )
(
ρ([y, z])(t̄)

)− ρ([xi1 , [z, z]])(t̄)

= ρ([y, z])(ρ(xi1)(t̄))
(7.51)
= ρ([y, z])(t),

which is precisely the morphism condition we set out to prove.
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(II). End of the Lemma. We notice that we have defined ρ(x)(·) on every
Sp in such a way that the definition on Sp+1 agrees with that on Sp.
This defines ρ(x)(·) unambiguously – as a linear map – on the whole of
Sym(g). Moreover, this also defines ρ as a linear map on g with values
in End(Sym(g)). Finally, condition (7.48) gives (1) in the assertion of the
Lemma, condition (7.49) gives (2), and condition (7.50) ensures that ρ
is actually a Lie algebra morphism. This ends the proof of the lemma.
��
Let us turn back to the proof of Theorem 2.94.

First of all we aim to show that the set

1, Xi1 · · ·Xin , where n ∈ N, i1, . . . , in ∈ I, i1 � . . . � in. (7.57)

spans U (g) as a vector space. We already know from Remark 2.89 that the
set {1K} ∪ μ(g) generates U (g) as an algebra. This means that any element
g ∈ U (g) may be written as a linear combination of products of the form
μ(g1) · · ·μ(gk), for some k ∈ N and for some gi in g. In order to prove that
the cited system spans U (g), it is not restrictive to consider the case when
the above gi are elements of the basis {xi}i∈I of g, and that g is of the form
g = μ(xi1 ) · · ·μ(xik).

Let us proceed by induction on k. When k = 2, if i1 ( i2, we are done. If
not, we have

g = μ(xi1 )μ(xi2 ) = μ([xi1 , xi2 ]) + μ(xi2 )μ(xi1 ),

and, as [xi1 , xi2 ] belongs to g, again we are done.
Let us now prove the inductive step. For k generic, we have

g = μ(xi1 ) · · ·μ(xik) = Xi1 · · ·Xik .

The same argument as for the case k = 2 shows how to interchange two
consecutive Xi, modulo an element which is the product of k − 1 factors (to
which we are entitled to apply the inductive hypothesis). This shows at once
how to reduce g to a linear combination of elements as in (7.57).

We are only left to prove the linear independence of the elements of the
form (7.57), which is the hard task in the proof of the PBW Theorem. This
motivates the use of the above Lemma 7.11, from where we inherit the
notations.

By this lemma, we know the existence of a Lie algebra morphism ρ :
g → End(Sym(g)), so that we can apply the characteristic property of the
Universal Enveloping Algebra (see Theorem 2.92, page 110) and infer the
existence of a unique UAA morphism ρμ closing the following diagram:
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g
ρ

��

μ

��

End(Sym(g))

U (g)

ρμ

������������������������

To prove the linear independence of the system in (7.57) it will suffice to
show that the image via ρμ of any formally non-trivial linear combination
of the elements in (7.57) is different from 0. But this is easily done: thanks to
condition (2) of Lemma 7.11, we have

ρμ(Xi1 · · ·Xin)(φ(1K)) = ρμ(μ(xi1 ) · · ·μ(xin))(φ(1K))

=
(
ρμ(μ(xi1 )) ◦ · · · ◦ ρμ(μ(xin ))

)
(φ(1K)) =

(
ρ(xi1) ◦ · · · ◦ ρ(xin)

)
(φ(1K))

= φ(xi1 ) ∗ · · · ∗ φ(xin).

So the image of a linear combination of several terms, each of the form
Xi1 · · ·Xin , evaluated in φ(1K), is a linear combination of elements of the
given basis of Sym(g) and thus is different from 0 unless its coefficients are
all 0.

[We explicitly remark that the fact that ρ verifies condition (1) of Lemma
7.11 is apparently not used in the proof of Theorem 2.94. Nevertheless, it has
been essential in the construction of the morphism ρ.] ��

7.8 Miscellanea of Proofs

Proof (of Proposition 4.12, page 203).

(i) The linearity of ∂t is obvious. Moreover, if p = (aj)j and q = (bj)j are
arbitrary elements of A[[t]], we have

∂t(p ∗ q) = ∂t

(∑

j≥0

(∑j
i=0 ai � bj−i

)
tj
)

=
∑

j≥0

(j + 1)
(∑j+1

i=0 ai � bj+1−i

)
tj .
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On the other hand,

(∂tp) ∗ q + p ∗ ∂t(q) =
(∑

j≥0

(j + 1) aj+1 t
j
)
∗
(∑

j≥0

bj t
j
)

+
(∑

j≥0

aj t
j
)
∗
(∑

j≥0

(j + 1) bj+1 t
j
)

=
∑

j≥0

{ j∑

i=0

(
(i+ 1)ai+1 � bj−i

+ ai � (j − i+ 1)bj−i+1

)}

tj .

The above sum over i in curly braces is equal to

∑j+1
h=1 h ah � bj−h+1 +

∑j
i=0 ai � (j − i+ 1)bj−i+1

= (j + 1) aj+1 � b0 +
∑j

h=1 h ah � bj−h+1

+ (j + 1) a0 � bj+1 +
∑j

i=1 ai � (j − i+ 1)bj−i+1

= (j + 1) aj+1 � b0 + (j + 1) a0 � bj+1 +
∑j

i=1(j + 1) ai � bj−i+1

= (j + 1)
∑j+1

i=0 ai � bj−i+1.

Hence ∂t(p ∗ q) = (∂tp) ∗ q + p ∗ ∂t(q).
(ii) Now that we know that ∂t is a derivation of A[[t]], (4.66) follows from

the following general fact: LetD be a derivation of the unital associative
algebra (B,�). Then for every b ∈ B and m ∈ N we have

D(b�m) =

m−1∑

k=0

b� k � (Db)� b�m−k−1. (7.58)

We prove (7.58) by induction on m. The case m = 1 is trivial. Assuming
(7.58) to hold for 1, 2, . . . ,m, we prove it for m+ 1:

D(b�m+1) = D(b�m � b) = D(b�m)� b+ b�m �Db

(by the inductive hypothesis, using bilinearity and associativity of �)

=
∑m−1

k=0 b� k � (Db)� b�m−k + b�m �Db

=
∑m

k=0 b
� k � (Db)� b�m−k.
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(iii) By the very Definition 4.11 of ∂t, it follows that ∂t(ÛN+1) ⊆ ÛN , for
every N ∈ N (where ÛN is as in (4.59)). Since the sets ÛN form a
neighborhood of 0 and ∂t0 = 0, this proves that ∂t is continuous at 0. By
the linearity of ∂t this is enough to prove (iii) (also recalling that A[[t]]
is a topological algebra).

(iv) For every a ∈ A, we have

∂t exp(a t)
(4.62)
= ∂t

( ∞∑

k=0

a� k

k!
tk
)

(4.65)
=

∞∑

k=0

(k + 1)
a� k+1

(k + 1)!
tk =

∞∑

k=0

a� k+1

k!
tk

(
(4.57) ensures that a� k+1 equals a ∗ a� k and a� k ∗ a,

and Remark 4.10-(3) can be used to derive that a tk = tk ∗ a)

=

{∑∞
k=0(a ∗ a� k ∗ tk)/k!
∑∞

k=0(a
� k ∗ tk ∗ a)/k!

= (by the continuity of ∗)
{
a ∗ exp(a t)
exp(a t) ∗ a.

This ends the proof. ��
Proof (of Remark 4.16, page 208). With the notation in Remark 4.13, we
consider the map ev1 : A[t] → A. It may seem natural, in view of a possible
application of this map to (4.76), to try to prolong ev1 to a continuous map
from A[[t]] to Â. Unfortunately, this is not possible.8 Hence, we must first
restrict ev1 to a narrower domain. To this end, let

W :=
{
p ∈ A[t]

∣
∣
∣ p =
∑

k≥0

ak t
k with ak ∈ Tk(Q〈x, y〉) for k ≥ 0

}
;

Ŵ :=
{
p ∈ A[[t]]

∣
∣
∣ p =
∑

k≥0

ak t
k with ak ∈ Tk(Q〈x, y〉) for k ≥ 0

}
.

(7.59)

We remark that W, Ŵ are subalgebras of A[t], A[[t]] respectively. Indeed, if
p =
∑

k≥0 ak t
k, q =

∑
k≥0 bk t

k with ak, bk ∈ Tk(Q〈x, y〉), then

8For example, the sequence t∗N vanishes, as N → ∞, in A[t], but the sequence ev1(t∗N ) =
1 does not.
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p ∗ q =
∑

k≥0

( ∑

i+j=k

ai · bj
︸ ︷︷ ︸
∈Ti+j

)

︸ ︷︷ ︸
∈Tk

∗ tk.

Moreover we have

p ∈ Ŵ ∩ Û1 ⇒ exp(p) ∈ Ŵ . (7.60)

Indeed, if p is as above, an explicit calculation furnishes

exp(p) =

∞∑

h=0

1

h!

(∑

k≥0

ak t
k
)∗ h

=

∞∑

j=0

( j∑

h=0

1

h!

∑

α∈Nh: |α|=j

aα1 · · · aαh
)

tj ,

and the sum in parentheses belongs to Tj(Q〈x, y〉), since aα1 · · · aαh ∈ T|α|.
We claim that the map

Θ := ev1|Ŵ : Ŵ −→ T̂ (Q〈x, y〉),
∑

k≥0

ak t
k �→
∑

k≥0

ak

has the following properties:

• It is well posed. This follows immediately from the definition of Ŵ in (7.59).
• It is a UAA morphism. Θ is obviously linear. Moreover, one has

Θ
((∑

k≥0 ak t
k
) ∗ (∑k≥0 bk t

k
))

=
∑

k≥0

(∑
i+j=k ai · bj)

=
(∑

k≥0 ak
) ·̂ (∑k≥0 bk

)
= Θ
(∑

k≥0 ak t
k
) ·̂ Θ(∑k≥0 bk t

k
)
.

• It is continuous. This follows immediately from the linearity of Θ, together
with the following fact (see also (4.59)):

Θ(ÛN ) ⊆∏k≥N Tk(Q〈x, y〉).

• It commutes with the exponential map, i.e., it has the property:

Θ(exp(p)) = Exp(Θ(p)), ∀ p ∈ Ŵ ∩ Û1. (7.61)

Here Exp on the right-hand side is the corresponding exponential map in
T̂ (Q〈x, y〉). The proof of this fact comes from the following identities:
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Θ(exp(p)) = Θ
(

lim
N→∞

N∑

n=0

p∗n

n!

)
(by the continuity and linearity of Θ)

= lim
N→∞

N∑

n=0

Θ
(
p∗n
)
/n! (as Θ is a UAA morphism)

= lim
N→∞

N∑

n=0

(
Θ(p)
)̂· n

/n! = Exp(Θ(p)).

Now take the identity in (4.76) and note that we are entitled to apply Θ to
both sides, thanks to (7.60), thanks to the fact that

x t, y t,
∑∞

j=1 Zj(x, y) t
j all belong to Ŵ ∩ Û1.

We thus get the identity in T̂ (Q〈x, y〉):

Θ
(
exp
( ∞∑

j=1

Zj(x, y) t
j
))

= Θ
(
exp(x t) ∗ exp(y t)

)
. (7.62)

We finally recognize that this gives (4.9). Indeed, on the one hand we have

Θ
(
exp
( ∞∑

j=1

Zj(x, y) t
j
))

(7.61)
= Exp

(
Θ
( ∞∑

j=1

Zj(x, y) t
j
))

(by definition of Θ and Zj(x, y) ∈ Tj(Q〈x, y〉))

= Exp
( ∞∑

j=1

Zj(x, y)
)

(4.75)
= e

∑∞
j=1 F

T (Q〈x,y〉)
j (x,y) = eF(x,y).

On the other hand, since Θ is a UAA morphism, we have

Θ
(
exp(x t) ∗ exp(y t)) = Θ(exp(x t)) ·̂ Θ(exp(y t))

(7.61)
= Exp(Θ(x t)) ·̂ Exp(Θ(y t)) = ex ·̂ ey.

This gives (4.9), as we claimed. ��
Proof (of Theorem 4.30, page 240). [This lemma may be proved by invoking
very general properties of derivations of free UA algebras. Since we had no
purposes in developing this general theory elsewhere in this Book, it is our
concern in the present context to prove this lemma by explicit arguments
only.] We set Tk := Tk(K〈X〉) for every k ≥ 0. Analogously for the notations
T and T̂ . We begin by defining D inductively on the spaces Tk. For k = 0,
we define D ≡ 0 on T0 = K. For k = 1 we define D on T1 = K〈X〉 as
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the unique linear map satisfying (4.141). This is well defined as X is a linear
basis of K〈X〉. To define D on Tk, we first recall that, by Proposition 2.35 on
page 77, the system {

x1 · · ·xk
∣
∣ x1, . . . , xk ∈ X

}

is a linear basis of Tk. Inductively, once D has been defined on T0, . . . ,Tk

we define D on Tk+1 as the unique linear map such that

D(x1 · · ·xk+1) = D(x1)x2 · · ·xk+1 + x1D(x2 · · ·xk+1),

for any choice of x1, . . . , xk+1 in X . This defines unambiguously D : T →
T̂ . Note that the definition of D also gives

D
(⊕

k≥N Tk

) ⊆∏k≥N−1 Tk.

Hence, by arguing as in Lemma 2.79 on page 103, D can be extended by
continuity in a unique way to a linear map, still denoted by D, defined on
T̂ . All that is left to prove is that D is a derivation of T̂ .

As D is linear and continuous, it suffices to prove that

D(u · v) = D(u) · v + u ·D(v)

when u, v are elementary products of elements of X . Equivalently, all we
need to prove is that

D(x1 · · ·xn) = D(x1 · · ·xi)xi+1 · · ·xn + x1 · · ·xiD(xi+1 · · ·xn), (7.63)

for every x1, . . . , xn ∈ X , every n ≥ 2 and every i such that 1 ≤ i < n. We
prove this by induction on n. The case n = 2 comes from the very definition
of D. We now prove the assertion in the n-th step, supposing it to hold for
the previous steps. Let 1 ≤ i < n. If i = 1, (7.63) is trivially true from the
definition of D. We can suppose then that 1 < i < n. Then we have

D(x1 · · ·xn) = D(x1)x2 · · ·xn + x1D(x2 · · ·xn)
(by the induction hypothesis)

= D(x1)x2 · · ·xn + x1
(
D(x2 · · ·xi)xi+1 · · ·xn + x2 · · ·xiD(xi+1 · · ·xn)

)
.

On the other hand,

D(x1 · · ·xi)xi+1 · · ·xn + x1 · · ·xiD(xi+1 · · ·xn)
=
(
D(x1)x2 · · ·xi + x1D(x2 · · ·xi)

)
xi+1 · · ·xn

+ x1 · · ·xiD(xi+1 · · ·xn)
= D(x1)x2 · · ·xn + x1D(x2 · · ·xi)xi+1 · · ·xn + x1 · · ·xiD(xi+1 · · ·xn).
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This is precisely what we got from the former computation, and the proof is
complete. ��

Proof (of Theorem 4.40, page 253). The assertion is trivial when k = 1. We
then fix k ≥ 2, a1, . . . , ak ∈ A and we prove (4.179) by induction on n ≥ 1.
The case n = 1 is equivalent to

D(a1 ∗ · · · ∗ ak) = D(a1) ∗ a2 ∗ · · · ∗ ak + a1 ∗D(a2) ∗ · · · ∗ ak+
+ · · ·+ a1 ∗ a2 · · · ∗ ak−1 ∗D(ak),

(7.64)

which easily follows (this time by induction on k) from the very definition
of a derivation. We next prove (4.179) in the (n+1)-th case, supposing it has
been verified at the first and n-th steps:

Dn+1(a1 ∗ · · · ∗ ak) = D
(
Dn(a1 ∗ · · · ∗ ak)

)

(by the inductive hypothesis)

= D
( ∑

0≤i1,...,ik≤n
i1+···+ik=n

n!

i1! · · · ik! D
i1a1 ∗ · · · ∗Dikak

)

(using linearity of D and (4.179) in the case n = 1)

=
∑

0≤i1,...,ik≤n
i1+···+ik=n

n!

i1! · · · ik! D
i1+1a1 ∗Di2a2 ∗ · · · ∗Dikak + · · ·

· · ·+
∑

0≤i1,...,ik≤n
i1+···+ik=n

n!

i1! · · · ik! D
i1a1 ∗ · · · ∗Dik−1ak−1 ∗Dik+1ak

=
∑

j1≥1, j2,...,jk≥0
j1+···+jk=n+1

n!Dj1a1 ∗Dj2a2 ∗ · · · ∗Djkak
(j1 − 1)! j2! · · · jk! + · · ·

· · ·+
∑

j1,...,jk−1≥0, jk≥1
j1+···+jk=n+1

n!Dj1a1 ∗ · · · ∗Djk−1ak−1 ∗Djkak
j1! · · · jk−1! (jk − 1)!

.

We now apply the obvious equality

j

j!
=

{
0, if j = 0,

1
(j−1)! , if j ≥ 1

to each of the k summands (for j = ji in the i-th summand, i = 1, . . . , k). As
a consequence, we get (with respect to the previous sum we are here adding
k summands which are all vanishing, so that we have equality)
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Dn+1(a1 ∗ · · · ∗ ak) =
∑

j1,j2,...,jk≥0
j1+···+jk=n+1

n! j1
j1! · · · jk! D

j1a1 ∗ · · · ∗Djkak + · · ·

· · ·+
∑

j1,...,jk−1,jk≥0
j1+···+jk=n+1

n! jk
j1! · · · jk! D

j1a1 ∗ · · · ∗Djkak

=
∑

j1,...,jk≥0
j1+···+jk=n+1

n!(n+ 1)

j1! · · · jk! D
j1a1 ∗ · · · ∗Djkak,

which proves (4.179) in the case n+ 1. ��
Proof (of Theorem 4.42, page 256). Let us consider the unique UAA morphism

θ : T (V ) −→ End(T+(V )) such that
{
θ(1) = IdT+(V ), θ(v1) = ad (v1),

θ(v1 ⊗ · · · ⊗ vk) = ad (v1) ◦ · · · ◦ ad (vk),
(7.65)

for every v1, . . . , vk ∈ V and every k ≥ 2. The existence of θ is a consequence
of the universal property of T (V ) in Theorem 2.38-(ii). Here, given v ∈ V ,
we are considering the usual adjoint map ad (v) as an endomorphism of
T+(V ):

ad (v) : T+(V )→ T+(V ), w �→ ad (v)(w) = v · w − w · v;

note that this really is an endomorphism of T+(V ), since T · T+ ⊆ T+ and
T+ · T ⊆ T+.

For every t = (tk)k ∈ T̂ (V ), where tk ∈ Tk(V ) for every k ≥ 0, we claim
that the following formula defines an endomorphism of T̂+(V ), which we
denote θ̂(t):

T̂+(V ) � τ = (τk)k �→ θ̂(t)(τ) :=
∑∞

h,k=0 θ(th)(τk), (7.66)

where τk ∈ Tk(V ) for every k ≥ 0 and τ0 = 0.

Well posedness of θ̂(t): We need to show that the double series in the far
right-hand side of (7.66) is convergent in T̂+(V ). This derives from the
following computation: for every H,K,P,Q ∈ N we have

H+P∑

h=H

K+Q∑

k=K

θ(th)(τk) ∈
∞⊕

j=K+H

Tj(V ),
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so that
H+P∑

h=H

K+Q∑

k=K

θ(th)(τk)
H,K→∞−−−−−−→ 0 in T̂ (V ),

uniformly in P,Q ≥ 0. Furthermore the cited double series converges to
an element of T̂+ since τ0 = 0 and θ(th)(τk) ∈ Th+k(V ).

θ̂(t) belongs to End(T̂+(V )): The linearity of τ �→ θ̂(t)(τ) is a simple
consequence of the linearity of any map θ(th) (and of the convergence
of the double series in (7.66)).

We have so far defined a well posed map

θ̂ : T̂ (V ) −→ End(T+(V )), t �→ θ̂(t).

We further need to prove that this map has the following properties:

θ̂ is linear: This is a consequence of the linearity of the map t �→ θ(t) (and
again of the convergence of the double series in (7.66)).

θ̂ is unital: We have 1
T̂

= (th)h with t0 = 1K and th = 0 for every h ≥ 1.
As a consequence (recalling that θ(1K) is the identity of T̂+) the definition
of θ̂ gives

θ̂(1
T̂
)(τ) =

∑∞
h,k=0 θ(th)(τk) =

∑∞
k=0 θ(t0)(τk) =

∑∞
k=0 τk = τ.

θ̂ is an algebra morphism: Let us take t = (tk)k and t′ = (t′k)k in T̂ (where
tk, t

′
k ∈ Tk for every k ≥ 0). We need to show that

θ̂(t · t′) = θ̂(t) ◦ θ̂(t′).

To this aim, we prove the equality of these maps on an arbitrary element
τ = (τk)k of T̂+ (where τ0 = 0 and τk ∈ Tk for every k ≥ 0):

θ̂(t · t′)(τ) = θ̂
(
(
∑

i+j=h ti · t′j)h
)
(τ)

(7.66)
=
∑∞

h,k=0 θ
(∑

i+j=h ti · t′j
)
(τk)

(recall that θ is a UAA morphism)

=

∞∑

h,k=0

( ∑

i+j=h

θ(ti) ◦ θ(t′j)
)
(τk) =

∞∑

h,k=0

∑

i+j=h

θ(ti)
(
θ(t′j)(τk)

)

=
∞∑

k=0

∞∑

h=0

∑

i+j=h

θ(ti)
(
θ(t′j)(τk)

)
=

∞∑

a,b,c=0

θ(ta)
(
θ(t′b)(τc)

)
.
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On the other hand we have

θ̂(t) ◦ θ̂(t′)(τ) = θ̂(t)
(
θ̂(t′)(τ)

) (7.66)
= θ̂(t)

(∑∞
h,k=0 θ(t

′
h)(τk)

)

= θ̂(t)
(∑∞

r=0

∑
h+k=r θ(t

′
h)(τk)

)

(note that θ(t′h)(τk) ∈ Th+k(V ))

(7.66)
=

∞∑

s,r=0

θ(ts)
(∑

h+k=rθ(t
′
h)(τk)

)
=

∞∑

s,r=0

∑

h+k=r

θ(ts)
(
θ(t′h)(τk)

)

=

∞∑

s=0

∞∑

r=0

∑

h+k=r

θ(ts)
(
θ(t′h)(τk)

)
=

∞∑

a,b,c=0

θ(ta)
(
θ(t′b)(τc)

)
.

θ̂ satisfies (4.187): We already know that θ̂ is unital. Let now v1 ∈ V =

T1(V ). For any τ = (τk)k ∈ T̂+ we have

θ̂(v1)(τ) =
∑∞

k=0 θ(v1)(τk) =
∑∞

k=0 ad (v1)(τk)

= ad (v1)
(∑∞

k=0 τk
)
= ad (v1)(τ).

The verification that θ̂(v1 ⊗ · · · ⊗ vk) = ad (v1) ◦ · · · ◦ ad (vk) follows
analogously, by using the fact that v1 ⊗ · · · ⊗ vk ∈ Tk(V ) and the fact
that θ(v1 ⊗ · · · ⊗ vk) = ad (v1) ◦ · · · ◦ ad (vk).

θ̂(t) is continuous, for every t: This follows immediately from the fact that,
for every N ∈ N ∪ {0} and every t ∈ T̂ we have:

τ ∈∏k≥N Tk(V ) ⇒ θ̂(t)(τ) ∈∏k≥N Tk(V ), (7.67)

which is a simple consequence of (7.66).
θ̂ satisfies (4.188): First we prove that the series in the right-hand side of

(4.188) converges in T̂+, provided that
∑

k γk converges in T̂ . This is a
consequence of the following fact: for every fixed τ ∈ T̂+, we have

lim
k→∞

γk = 0 in T̂ ⇒ lim
k→∞

θ̂(γk)(τ) = 0 in T̂+.

This follows directly from the fact that, for every N ∈ N ∪ {0} and every
τ ∈ T̂+ we have:

t ∈∏k≥N Tk(V ) ⇒ θ̂(t)(τ) ∈∏k≥N+1 Tk(V ), (7.68)

which is a simple consequence of (7.66). For every fixed k ≥ 0, we have
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γk = (γk,i)i with γk,i ∈ Ti(V ) for every i ≥ 0.

This obviously gives

t :=
∑∞

k=0 γk =
(∑∞

k=0 γk,i
)
i
,

with
∑∞

k=0 γk,i ∈ Ti(V ) for every i ≥ 0, each of these sums being
convergent (in view of limk γk = 0). Let also τ = (τk)k ∈ T̂+, with τk ∈ Tk

for every k ≥ 0 and τ0 = 0. Then we have the following computation

∞∑

k=0

θ̂(γk)(τ) =
∞∑

k=0

( ∑

i,j≥0

θ̂(γk,i)(τj)

)

=
∞∑

k=0

( ∞∑

i=0

θ̂(γk,i)
( ∞∑

j=0

τj

))

=
∞∑

k=0

( ∞∑

i=0

θ̂(γk,i)(τ)

)

=
∞∑

i=0

( ∞∑

k=0

θ̂(γk,i)(τ)

)

=
∞∑

i=0

θ̂
( ∞∑

k=0

γk,i

)
(τ)

=

∞∑

i=0

θ̂(ti)(τ) = θ̂(t)(τ).

In the second equality we used the fact that the double series over i, j
equals the iterated series

∑
i

∑
j (as was discovered early in the proof),

together with the continuity of θ̂(γk,i); in the fourth equality we used an
analogous argument on convergent double series, based on the fact that

θ̂(γk,i)(τ) ∈
∏

j≥i+1 Tj(V ).

In the fifth equality we used the fact that, for every fixed i, the sum
∑∞

k=0 θ̂(γk,i)(τ) is finite and θ̂ is linear.
θ̂ satisfies (4.189): First we prove that

θ(�)(τ) = ad (�)(τ), for every � ∈ L(V ) and τ ∈ T+(V ). (7.69)

Let � ∈ L(V ). Then (7.69) follows if we show that θ(�) and ad (�) coincide
as endomorphisms of T+(V ). In its turn, this is equivalent to the identity
of θ̃ := θ|L(V ) and the map

Ã := ad |L(V ) : L(V )→ End(T+(V )), ξ �→ ad (ξ).

It is easily seen that Ã is a Lie algebra morphism (use the Jacobi identity!).
Also θ̃ is an LA morphism, since θ is a UAA morphism and L(V ) is a Lie
algebra. Hence, the equality of Ã and θ̃ follows if we prove that they are
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equal on a system of Lie generators for L(V ), namely on V : for every
v ∈ V we have in fact θ̃(v) = θ(v) = ad (v), by (7.65).
Now, we turn to prove (4.189). Given � ∈ L(V ), we have � =

∑∞
k=1 �k,

with �k ∈ Lk(V ), for every k ≥ 1. Then we obtain

θ̂(�)(τ) =

∞∑

h,k=1

θ(�h)(τk)
(7.69)
=

∞∑

h,k=1

ad (�h)(τk) =

∞∑

h,k=1

[�h, τk]

=
[ ∞∑

h=1

�h,
∞∑

k=1

τk

]
= [�, τ ] = ad (�)(τ).

This ends the proof of the lemma. ��
Proof (of Lemma 6.4, page 378). We furnish a more explicit proof of (6.8), with
the collateral aim to exhibit the single homogeneous components in fi,j (see
(7.71) below). We fix a, b, i, j as in (6.8) and we set I := {1, 2, . . . , i + j}. Ik

denotes the k-fold Cartesian product of I with itself (k ∈ N) and its elements
are denoted by r = (r1, . . . , rk). We have the formal expansion

exp(Zg(a, b)) =
∑

k≥0

1

k!

(∑
r≥1 Z

g
r (a, b)

)⊗k

=

i+j∑

k=0

1

k!

∑

r∈Ik

Zg
r1 ⊗ · · · ⊗ Zg

rk

+

{
summands not occurring
in the definition of fi,j(a, b)

}

=: A+ {B}.

We define in Ik the equivalence relation ∼ by setting r ∼ ρ iff there exists
a permutation σ ∈ Sk such that (ρ1, . . . , ρk) = (rσ(1), . . . , rσ(k)). Thus, we
have

A =

i+j∑

k=0

1

k!

∑

r∈Ik+

(∑

ρ∼r

Zg
ρ1
⊗ · · · ⊗ Zg

ρk

)
where Ik+ = {r ∈ Ik : r1 ≤ · · · ≤ rk}.

Now, a combinatorial argument proves that, for every r ∈ Ik+ there exists
α(r) ∈ N such that

∑

σ∈Sk

Zg
rσ(1)

⊗ · · · ⊗ Zg
rσ(k)

= α(r)
∑

ρ∼r

Zg
ρ1
⊗ · · · ⊗ Zg

ρk . (7.70)

By inserting (7.70) in the expression of A, we get
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A =

i+j∑

k=0

∑

r∈Ik+

α(r, k)
( ∑

σ∈Sk

Zg
rσ(1)

⊗ · · · ⊗ Zg
rσ(k)

)
, α(r, k) := (k!α(r))−1 .

Next, we reorder Zg
r in (6.1) as Zg

r =
∑r

s=0 q
(r)
s (a, b), where

q(r)s (a, b) :=
r∑

n=1

cn
∑

(h,k)∈Nn,
|k|=r−s, |h|=s

c(h, k)
[
ah1bk1 · · · ahnbkn]

g
.

Hence, using different notations for the dummy index s, according to the
fixed σ ∈ Sk, we get

A =

i+j∑

k=0

∑

r∈Ik+

α(r, k)
∑

σ∈Sk

( rσ(1)∑

sσ(1)=0

q
(rσ(1))
sσ(1) (a, b)

)
⊗ · · · ⊗

( rσ(k)∑

sσ(k)=0

q
(rσ(k))
sσ(k) (a, b)

)
.

By the definition of fi,j(a, b), we thus derive

fi,j(a, b) =

i+j∑

k=0

∑

r∈Ik+

α(r, k)
∑

σ∈Sk

×
∑

1≤sσ(1)≤rσ(1),...,1≤sσ(k)≤rσ(k)
sσ(1)+···+sσ(k)=i, rσ(1)+···+rσ(k)=i+j

q
(rσ(1))
sσ(1) (a, b)⊗ · · · ⊗ q

(rσ(k))
sσ(k) (a, b).

Since any σ in the inner sum is a permutation of {1, 2, . . . , k}, this sum is
over

|s| = s1 + · · ·+ sk = i,

|r| = r1 + · · ·+ rk = i+ j,
1 ≤ s1 ≤ r1, . . . , 1 ≤ sk ≤ rk.

As a consequence

fi,j(a, b) =

i+j∑

k=0

∑

r∈Ik+
|r|=i+j

α(r, k)
∑

1≤s1≤r1,...,1≤sk≤rk
|s|=i

×
{ ∑

σ∈Sk

q
(rσ(1))
sσ(1) (a, b)⊗ · · · ⊗ q

(rσ(k))
sσ(k) (a, b)

}
. (7.71)

Evidently, this proves that fi,j(a, b) is thus the sum of elements in TS (g)
(those in curly braces) and the proof is complete. ��



Chapter 8
Construction of Free Lie Algebras

THE aim of this chapter is twofold. On the one hand (Sect. 8.1), we
complete the missing proof from Chap. 2 concerning the existence of

a free Lie algebra Lie(X) related to a set X . This proof relies on the direct
construction of Lie(X) as a quotient of the free non-associative algebra
Lib(X). Furthermore, we prove that Lie(X) is isomorphic to L(K〈X〉), and
the latter provides a free Lie algebra over X .

On the other hand (Sect. 8.2), we turn to construct a very important
class of Lie algebras, the free nilpotent Lie algebras generated by a set.
Applications of this class of algebras to Lie group theory and to Analysis
can be found in [62, 63, 150, 163, 172] (see also [21]).

8.1 Construction of Free Lie Algebras Continued

Let the notation of Sect. 2.2 on page 87 apply. Our main aim is to prove
Theorem 2.54 on page 91, whose statement we reproduce here, for conve-
nience of reading.

Theorem 8.1. Let X be any set and, with the notation in (2.56) and (2.57), let us
consider the map

ϕ : X → Lie(X), x �→ π(x), (8.1)

that is,1 ϕ ≡ π|X . Then:

1. The couple (Lie(X), ϕ) is a free Lie algebra related to X (see Definition 2.50 on
page 88).

1More precisely, the map ϕ is the composition

X
ι−→ M(X)

χ−→ Lib(X)
π−→ Lie(X).

Via the identification X ≡ χ(X)
ι−→ Lib(X) we can write ϕ ≡ π|X .

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 8,
© Springer-Verlag Berlin Heidelberg 2012

459
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2. The set {ϕ(x)}x∈X is independent in Lie(X), whence ϕ is injective.
3. The set ϕ(X) Lie-generates Lie(X), that is, the smallest Lie subalgebra of

Lie(X) containing ϕ(X) coincides with Lie(X).

The proof of this theorem may be derived by collecting together various
results in Bourbaki [27, Chapitre II, §2], the only source (to the best of our
knowledge) defining free Lie algebras as “explicit” quotients of the algebra
of the free magma. Unfortunately, in the proofs of the above statements,
Bourbaki makes use of some prerequisites (from another Bourbaki book
[25]) concerned with quotients and ideals in the associative setting (whereas
a and Lib(X) are not associative). Hence, we have felt the need to produce
all the details of Theorem 8.1, by providing also the relevant non-associative
prerequisites (see Lemma 8.2 below).

Proof. We split the proof of the statement into its three parts.

(1). According to Definition 2.50 on page 88, we have to prove that, for
every Lie algebra g and every map f : X → g, there exists a unique Lie
algebra morphism fϕ : Lie(X)→ g, such that the following fact holds

fϕ(ϕ(x)) = f(x) for every x ∈ X , (8.2)

thus making the following a commutative diagram:

X
f

��

ϕ

��

g

Lie(X)

fϕ

��������������

–Existence. Let g and f be as above. We temporarily equip g only with its
algebra structure, i.e., of a magma endowed with the bilinear operation

g× g � (a, b) �→ [a, b]g.

By part (i) of Theorem 2.27 on page 70, there exists a unique algebra
morphism fχ : Lib(X)→ g with the following property

fχ(χ(x)) = f(x), for every x ∈ X , (8.3)

where χ|X : X → Lib(X) is the composition of maps

X
ι
↪→M(X)

χ−→ K〈M(X)〉 = Lib(X).

For brevity, we set h := fχ. Note that the fact that h is a magma morphism
ensures that

h(u ∗ v) = [h(u), h(v)]g, for every u, v ∈ Lib(X). (8.4)
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As g is a Lie algebra, one has (see the notation in (2.55))

h(Q(a)) = h(J(a, b, c)) = 0, for every a, b, c ∈ Lib(X). (8.5)

Indeed, for a, b, c ∈ Lib(X), we have

h(Q(a)) = h(a ∗ a) (8.4)
= [h(a), h(a)]g = 0,

h(J(a, b, c)) = h(a ∗ (b ∗ c) + b ∗ (c ∗ a) + c ∗ (a ∗ b))
(8.4)
= [h(a), [h(b), h(c)]g]g + [h(b), [h(c), h(a)]g]g

+ [h(c), [h(a), h(b)]g]g = 0.

Let a denote, as usual, the magma ideal generated by the set

A := {Q(a), J(a, b, c) | a, b, c ∈ Lib(X)}.

We claim that

a ⊆ ker(h). (8.6)

Thanks to Lemma 8.2 below (see also the notation therein: we let Pn

denote the corresponding sets related to A) and the fact that h is a magma
morphism, (8.5) yields h(Pn) = {0} for every n ≥ 0, whence h(a) = {0}.
This proves (8.6).

Furthermore, recalling that Lie(X) = Lib(X)/a, this ensures the well-
posedness of the map (also recall that π(t) = [t]a)

fϕ : Lie(X)→ g, fϕ(π(t)) := h(t), for every t ∈ Lib(X).

Obviously fϕ is linear. We claim that fϕ is a Lie algebra morphism satisfying
(8.2). Indeed, to begin with, we have for every t, t′ ∈ Lib(X),

fϕ
(
[π(t), π(t′)]

)(2.58)
= fϕ

(
π(t ∗ t′)) = h(t ∗ t′) (8.4)

= [h(t), h(t′)]g

=
[
fϕ(π(t)), fϕ(π(t′))

]
g
, whence fϕ is an LA morphism.

As for (8.2), for every x ∈ X we have

fϕ(ϕ(x))
(8.1)
= fϕ
(
π(χ(x))

)
= h(χ(x)) = fχ(χ(x))

(8.3)
= f(x).

–Uniqueness. Let α : Lie(X) → g be another LA morphism such that
α(ϕ(x)) = f(x), for every x ∈ X . The map

α ◦ π : Lib(X)→ g, t �→ α(π(t))
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is an algebra morphism, because π : Lib(X) → Lie(X) is an algebra
morphism (see Proposition 2.53 on page 90) and the same is true of α :
Lie(X) → g (recall that an LA morphism is nothing but an algebra mor-
phism, when the Lie algebras are thought of simply as algebras with their
bracket operations!). The same argument ensures that fϕ ◦ π : Lib(X) → g
is an algebra morphism. Furthermore, α ◦ π coincides with fϕ ◦ π on X , for
it holds that

α(π(x))
(8.1)
= α(ϕ(x)) = f(x)

(8.2)
= fϕ(ϕ(x))

(8.1)
= fϕ(π(x)),

for every x ∈ X . These identities may be rewritten as

(α ◦ π)(χ(x)) = (fϕ ◦ π)(χ(x)) = f(x), ∀ x ∈ X.

By the universal property of the free algebra Lib(X) (see Theorem 2.27 on
page 70) the morphisms α ◦ π and fϕ ◦ π coincide throughout Lib(X). Since
π : Lib(X)→ Lie(X) is surjective, this proves that α and fϕ coincide on the
whole of Lie(X). This ends the proof of (1) of Theorem 8.1.

(2). Let x1, . . . , xp be p different elements in X and let λ1, . . . , λp ∈ K be
such that

λ1 ϕ(x1) + · · ·+ λp ϕ(xp) = 0. (8.7)

Fix any i ∈ {1, . . . , p}. Finally, let us take g = K and f : X → g defined by
f(xi) = 1 and 0 otherwise. By part (1) of the proof, there exists a Lie algebra
morphism fϕ : Lie(X) → g such that fϕ(ϕ(x)) = f(x), for every x ∈ X . By
applying fϕ to (8.7), we get λi = 0 and the arbitrariness of i proves (2).

(3). Let L be the smallest Lie subalgebra of Lie(X) containing ϕ(X). The
map ϕL : X → L defined by ϕL(x) := ϕ(x), for all x ∈ X is well-defined.
It is easily seen that the couple (L,ϕL) has the same universal property
of (Lie(X), ϕ) as in Definition 2.50. By the “uniqueness” property of free
Lie algebras as in Proposition 2.51-(1), it follows that L and Lie(X) are
isomorphic Lie algebras and the isomorphism is the inclusion L ↪→ Lie(X).
Indeed, the inclusion ι : L ↪→ Lie(X) is the only LA morphism that closes
the following diagram:

X
ϕ

��

ϕL

��

Lie(X)

L

ι=ϕϕL

��������������

Hence (by the surjectivity of any isomorphism!) L = Lie(X). ��
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Lemma 8.2. Let (M, ·) be an algebra (not necessarily associative) and let
B ⊆M be any subset. Denote by b the magma ideal in M generated by B (see
Definition 2.52 on page 89). Define inductively P0 := B and, for any n ∈ N,
n ≥ 1,

Pn := {p ·m | p ∈ Pn−1, m ∈M} ∪ {m · p | p ∈ Pn−1, m ∈M}. (8.8)

Then we have (denoting by
⊎

the sum of vector subspaces of M )

b =
⊎

n≥0 span(Pn). (8.9)

Proof. Let us denote by b the set on the right-hand side of (8.9). One has
b =
⋂
S, where the sets S run over the magma ideals in M containing B.

Obviously (by our definition of magma ideal), any such S contains b, so that
b =
⋂
S ⊇ b. Vice versa, b ⊆ b will follow if we show that b is one of the sets

S intervening in
⋂
S = b. Since B = P0 ⊆ b, we are left to prove that b is

a magma ideal. Any element of b is of the form v =
∑

n kn pn, with kn ∈ K

and pn ∈ Pn (the sum being finite). This gives

m · v =
∑

n knm · pn, and v ·m =
∑

n kn pn ·m,

and both of these elements belong to b, as m · pn, pn ·m ∈ Pn+1, in view of
the very definition of Pn+1. ��

8.1.1 Free Lie Algebras over a Set

The rest of this section is devoted to constructing a free Lie algebra over X .
The arguments presented here are inspired by those of Cartier in [33].

We denote by L(K〈X〉) the smallest Lie subalgebra of T (K〈X〉) contain-
ing X . As Lie(X) is a free Lie algebra generated by X , there exists a unique
Lie algebra morphism

f : Lie(X)→ L(K〈X〉) such that f(ϕ(x)) = x, for every x ∈ X . (8.10)

Our main task here is to show that f is an isomorphism, without using PBW.

Lemma 8.3. We have the grading Lie(X) =
⊕∞

n=1Bn, where B1 =
span(ϕ(X)), and, for any n ≥ 2,

Bn = [B1, Bn−1] = span
{
[ϕ(x), y] : x ∈ X, y ∈ Bn−1

}
.
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Proof. It is easy to prove that Lib(X) =
⊕

n∈N Libn(X) defines a grading,
where Libn(X) is the span of the non-associative words in M(X) with n
“letters” (see (2.18) on page 69 for the precise definition of Libn(X)).

On the other hand, a simple argument shows that the magma ideal a
(introduced in the proof of Theorem 8.1) is also the magma ideal generated
by the following elements

w.w, (w + w′).(w + w′)− w.w − w′.w′,

w.(w′.w′′) + w′.(w′′.w) + w′′.(w.w′),
(8.11)

with w,w′, w′′ ∈ M(X). Indeed, let us set B(w,w′) := w.w′ + w′.w for any
w,w′ ∈M(X). It holds

Q(w + w′)−Q(w)−Q(w′) = (w + w′) ∗ (w + w′)− w.w − w′.w′

= w.w + w.w′ + w′.w + w′.w′ − w.w − w′.w′ = w.w′ + w′.w = B(w,w′).

Moreover, for every w1, . . . , wn ∈M(X) and every λ1, . . . , λn ∈ K

Q(λ1 w1 + · · ·+ λn wn) = (λ1 w1 + · · ·+ λn wn) ∗ (λ1 w1 + · · ·+ λn wn)

=

n∑

i=1

λ2i wi.wi +
∑

1≤i<j≤n

λi λj (wi.wj + wj .wi)

=

n∑

i=1

λ2i Q(wi, wi) +
∑

1≤i<j≤n

λi λj B(wi, wj).

All these identities prove that

span{Q(a) | a ∈ Lib(X) } = span
{
Q(w), B(w,w′)

∣
∣ w,w′ ∈M(X)

}
. (8.12)

Moreover, if a =
∑

i λi wi, b =
∑

j λ
′
j w

′
j c =

∑
k λ

′′
k w

′′
k (where λi, λ

′
j , λ

′′
k are

scalars, wi, w
′
j , w

′′
k are in M(X) and the sums are all finite) then

J(a, b, c) =
∑

i,j,k

λi λ
′
j λ

′′
k J(wi, w

′
j , w

′′
k ).

This proves that

span{J(a, b, c) | a, b, c ∈ Lib(X) } = span
{
J(w,w′, w′′)

∣
∣ w,w′, w′′ ∈M(X)

}
.

(8.13)

Gathering (8.12) and (8.13) together, we deduce that a equals the magma
ideal generated by the elements in (8.11).
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As a consequence of the form of the elements of Lib(X) in (8.11), it is
easily seen that one has a grading a =

⊕
n∈N an, with an ⊆ Libn(X), for

every n ∈ N. This gives (use Lemma 8.4 below)

Lie(X) = Lib(X)/a =
(⊕

n∈N Libn(X)
)
/
(⊕

n∈N an
)

=
⊕

n∈N

(
Libn(X)/a

) (
also isomorphic to

⊕

n∈N

(Libn(X)/an)
)
.

As a consequence, we have Lie(X) =
⊕∞

n=1 Cn, where Cn = Libn(X)/a is
nothing but the span of the higher-order brackets of degreen of the elements
of ϕ(X) (where the bracketing is taken in any arbitrary order). In turns,
thanks to Theorem 2.15 on page 60, we have Cn = Bn, where Bn is the
span of the degree n right-nested brackets of the elements of ϕ(X), namely
[ϕ(x1) · · · [ϕ(xn−1), ϕ(xn)] · · · ], for x1, . . . , xn ∈ X . It is a simple proof to
check that [Bn, Bm] ⊆ Bn+m, for every n,m ∈ N (it suffices to argue as
in the derivation of (2.11), page 60). ��
Here we have used the following result:

Lemma 8.4. Let V, Vi,Wi (for i ∈ I) be vector spaces such that Wi ⊆ Vi ⊆ V for
every i ∈ I and such that V =

⊕
i∈I Vi. Set W :=

⊕
i∈IWi (the sum being direct

in view of the other hypotheses). Then we have

V/W =
⊕

i∈I

Vi/W.

Proof. For the sake of brevity, we prove the assertion for I = {1, 2}. We then
have V = V1 ⊕ V2, W = W1 ⊕ W2 and W1 ⊆ V1, W2 ⊆ V2. Any v ∈ V
uniquely determines v1, v2 such that v = v1 + v2 with vi ∈ Vi (i = 1, 2). The
linear structure of V/W gives

[v]W = [v1]W + [v2]W .

This proves V/W = V1/W + V2/W . We claim that the sum is direct. If

[v1]W + [v2]W = [v′1]W + [v′2]W (with vi, v
′
i ∈ Vi, i = 1, 2),

we have v1 + v2 − (v′1 + v′2) ∈ W so that there exist w1 ∈ W1, w2 ∈ W2 such
that v1 + v2 − (v′1 + v′2) = w1 + w2 or equivalently

(v1 − v′1)︸ ︷︷ ︸
∈V1

+(v2 − v′2)︸ ︷︷ ︸
∈V2

= w1︸︷︷︸
∈W1⊆V1

+ w2︸︷︷︸
∈W2⊆V2

.
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By uniqueness of the decomposition in the direct sum V1 ⊕ V2, this gives
vi − v′i = wi (i = 1, 2) whence, since wi ∈W ,

[v1]W = [v′1]W , [v2]W = [v′2]W .

This proves that the sum V1/W + V2/W is direct. ��
We recall that f is the unique Lie algebra morphism

f : Lie(X)→ L(K〈X〉) such that

f(ϕ(x)) = x for every x ∈ X .
(8.14)

Thanks to Lemma 8.3, the following map is well-posed:

δ : Lie(X)→ Lie(X),

δ(
∑

n bn) :=
∑

n n bn (where bn ∈ Bn for every n ∈ N).
(8.15)

In the remainder of the section, for any vector space V we denote by End(V )
the set of the endomorphisms of V . Clearly, End(V ) is a UA algebra, when
equipped with the usual composition of maps. By part (2) of Theorem 2.40
on page 79, there exists a unique UAA morphism

θ : T (K〈X〉)→ End(Lie(X)), such that

θ(x) = ad (ϕ(x)), for every x ∈ X .
(8.16)

(As usual, ϕ(x) = π(χ(x)) = [χ(x)]a for every x ∈ X .) Finally, it is
straightforwardly proved that there exists a unique linear map

g : T (K〈X〉)→ Lie(X) with
{
g(1K) = 0, g(x1) = ϕ(x1),

g(x1 ⊗ · · · ⊗ xk) = [ϕ(x1) · · · [ϕ(xk−1), ϕ(xk)] · · · ],
(8.17)

for every x1, . . . , xk ∈ X and every k ≥ 2.
All the above maps are related by the following result, proved by Cartier

in [33] (only when X is finite, but the argument generalizes straightaway):
the proof is closely related to that of the Dynkin, Specht, Wever Lemma 3.26
on page 145.

Lemma 8.5. With all the above notation, we have:

1. δ is a derivation of the Lie algebra Lie(X) and δ ◦ ϕ ≡ ϕ on X .
2. g(x · y) = θ(x)(g(y)), for every x ∈ T (K〈X〉), y ∈ T+(K〈X〉).
3. θ ◦ f ≡ ad on Lie(X), that is, θ(f(ξ))(η) = [ξ, η], for every ξ, η ∈ Lie(X).
4. g ◦ f ≡ δ on Lie(X).
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See the diagram below:

End(Lie(X))

X
ϕ

�� Lie(X) f ��

δ

�����
����

����
����

����
����

���

ad

��������������������������
L(K〈X〉) � � ι

�� T (K〈X〉)

g

��

θ

��

Lie(X)

Proof. We split the proof in four steps.

(1): A simple verification: Take elements t, t′ ∈ Lie(X) =
⊕

n≥1 Bn (see
the notation in Lemma 8.3), with tn, t

′
n ∈ Bn for every n ≥ 1 (and tn, t

′
n are

equal to 0 for n large enough). Then we have

δ([t, t′]) = δ
(( ∑

i+j=n

[ti, t
′
j ]
)

n≥1

)
=
(
n
∑

i+j=n

[ti, t
′
j ]
)

n≥1

=
( ∑

i+j=n

(i+ j) [ti, t
′
j ]
)

n≥1
=
( ∑

i+j=n

[i ti, t
′
j ]
)

n
+
( ∑

i+j=n

[ti, j t
′
j ]
)

n

= [δ(t), t′] + [t, δ(t′)].

Next we prove that

δ(ϕ(x)) = ϕ(x), for every x ∈ X . (8.18)

Indeed, from the definition of Bn in Lemma 8.3, we have ϕ(X) ⊂ B1 so that
δ(ϕ(x)) = 1 · ϕ(x) (in view of (8.15)) and (8.18) holds.

(2): If x = k ∈ T0(V ), (2) is trivially true, indeed we have g(k · y) =
g(k y) = k g(y) (since g is linear) and (recalling that θ is a UAA morphism,
hence unital)

θ(k)(g(y)) = k IdLie(X)(g(y)) = k g(y).

Thus we are left to prove (2) when both x, y belong to T+(K〈X〉); moreover,
by linearity, we can assume without loss of generality that x = v1 ⊗ · · · ⊗ vk
and y = w1 ⊗ · · · ⊗ wh with h, k ≥ 1 and where the vs and ws are elements
of X :
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g(x · y) = g
(
v1 ⊗ · · · ⊗ vk ⊗ w1 ⊗ · · · ⊗ wh

)

(8.17)
= [ϕ(v1), . . . [ϕ(vk), [ϕ(w1), . . . [ϕ(wh−1), ϕ(wh)] . . .]] . . .]

= ad (ϕ(v1)) ◦ · · · ◦ ad (ϕ(vk))
(
[ϕ(w1), . . . [ϕ(wh−1), ϕ(wh)] . . .]

)

(by (8.16) and (8.17), the cases h = 1 and h > 1 being analogous)

= θ(v1 ⊗ · · · ⊗ vk)(g(w1 ⊗ · · · ⊗ wh)) = θ(x)(g(y)).

(3): Let ξ ∈ Lie(X). Then (4) follows if we show that θ(f(ξ)) and ad (ξ)
coincide (note that they are both endomorphisms of Lie(X)). In its turn, this
is equivalent to equality between θ ◦ f and the map

ad : Lie(X)→ End(Lie(X)), ξ �→ ad (ξ).

Now recall that ad is a Lie algebra morphism (see Lemma 3.28 on page 150:
this is essentially the meaning of the Jacobi identity!). Also θ ◦ f = θ ◦ ι ◦ f
is an LA morphism: indeed f is an LA morphism by construction, ι is an
LA morphism trivially, θ is a (commutator-) LA morphism since it is a UAA
morphism. Hence, equality of ad and θ ◦ f follows if we prove that they are
equal on a system of Lie generators for Lie(X), for example on ϕ(X) (recall
Theorem 8.1-3): for every x ∈ X we in fact have

(θ ◦ f )(ϕ(x)) (8.14)
= θ(x)

(8.16)
= ad (ϕ(x)).

(4): We claim that g ◦ f is a derivation of Lie(X): for ξ, η ∈ Lie(X) one has

(g ◦ f)[ξ, η] (i)
= g([f(ξ), f(η)])

(ii)
= g
(
f(ξ) · f(η)− f(η) · f(ξ))

(iii)
= θ(f(ξ))

(
g(f(η))

)− θ(f(η))
(
g(f(ξ))

)

(iv)
= [ξ, g(f(η))]− [η, g(f(ξ))] = [ξ, g(f(η))] + [g(f(ξ)), η].

Here we applied the following:

(i): f is a Lie algebra morphism.
(ii): The bracket of L(K〈X〉) is the commutator of (T (K〈X〉), ·).

(iii): We invoke part (2) of the proof together with L(K〈X〉) ⊂ T+(K〈X〉).
(iv): We invoke part (3) of the proof.

Moreover, for every x ∈ X one has

(g ◦ f)(ϕ(x)) (8.14)
= g(x)

(8.17)
= ϕ(x)

(8.18)
= δ(ϕ(x)).
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Since g ◦ f and δ are derivations of Lie(X) coinciding on ϕ(X) (which is a
system of Lie generators for Lie(X) by Theorem 8.1-3), (4) follows. ��
Corollary 8.6. Let K be a field of characteristic zero, as usual. If f is as in (8.14),
f is an isomorphism of Lie algebras and L(K〈X〉) is a free Lie algebra over X .

Proof. From (4) in Lemma 8.5 and the injectivity of δ, we derive the
injectivity of f : Indeed, if �, �′ ∈ Lie(X) are such that f(�) = f(�′) then

δ(�) = (g ◦ f)(�) = g(f(�)) = g(f(�′)) = (g ◦ f)(�′) = δ(�′).

Writing �, �′ as (�n)n and (�′n)n respectively (with �n, �
′
n ∈ Bn for every

n ∈ N), the identity δ(�) = δ(�′) is equivalent to

n �n = n �′n for every n ∈ N.

Since K has characteristic zero, this is possible iff �n = �′n for every n, that is,
� = �′. This proves the injectivity of f .

As for the surjectivity of f , it suffices to show that the set of (linear)
generators for L(K〈X〉)

x, [xn, · · · [x2, x1] · · · ] (n ≥ 2, x, x1, . . . , xn ∈ X)

belongs to the image of f . This is a consequence of (8.14) and of the fact that
f is an LA morphism, gathered together to produce the following identity:

f
(
[ϕ(xn), · · · [ϕ(x2), ϕ(x1)] · · · ]

)
= [f(ϕ(xn)), · · · [f(ϕ(x2)), f(ϕ(x1))] · · · ]

= [xn, · · · [x2, x1] · · · ].

This ends the proof. ��

8.2 Free Nilpotent Lie Algebra Generated by a Set

The aim of this section is to introduce the definition of the free nilpotent Lie
algebra generated by a set. We begin with the relevant definition. We recall
that, given a set X and a field K, we denote by K〈X〉 the free vector space
over X (see Definition 2.3 on page 51). We also recall that, given a vector
space V , we denote by L(V ) the free Lie algebra generated by V , according
to Definition 2.46 on page 85.

Definition 8.7 (Free Nilpotent Lie Algebra Generated by a Set). Let X be
a nonempty set, let r ≥ 1 be a fixed integer and let K be any field. We denote
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by Nr(X) the vector space (over K) obtained as the quotient of L(K〈X〉) by
its subspace Rr+1(X) :=

⊕
k≥r+1 Lk(K〈X〉), that is,

Nr(X) := L(K〈X〉)/Rr+1(X), where

Rr+1(X) = span
{
[x1 · · · [xk−1, xk] · · · ]

∣
∣
∣x1, . . . , xk ∈ X, k ≥ r + 1

}
.

(8.19)

We call Nr(X) the free Lie algebra generated by X nilpotent of step r.

In the sequel, retaining X , r and K fixed as above, we write for short

V := K〈X〉, R := Rr+1(X),

and we also denote by

π : L(K〈X〉)→ Nr(X), � �→ [�]R (8.20)

the associated projection. Note that the restriction of π to X (thought of as a
subset of K〈X〉 = L1(K〈X〉) ⊂ L(V )) is injective: indeed if x, x′ ∈ X and if
one has π(x) = π(x′), that is, x− x′ ∈ R, then we have

L1(V ) � x− x′ ∈ R =
⊕

k≥r+1 Lk(V ),

and this is possible if and only if x − x′ = 0 (as r + 1 ≥ 2). So, on occasion,
by identifying X with π(X), we shall think of X as a subset of Nr(X). Here
we have some properties of Nr(X).

Proposition 8.8. Nr(X) is a Lie algebra, nilpotent of step ≤ r. Furthermore,
Nr(X) is isomorphic (as a Lie algebra) to

⊕r
k=1 Lk(K〈X〉),

equipped with the Lie bracket
[∑r

i=1 �i,
∑r

j=1 �
′
j

]

r
:=
∑

i+j≤r

[�i, �
′
j],

�k, �
′
k ∈ Lk(K〈X〉) ∀ k = 1, . . . , r.

(8.21)

Proof. By means of (2.51), stating that [Li(V ),Lj(V )] ⊆ Li+j(V ) (for every
i, j ≥ 1), we have

[�, r] ∈ R, for every � ∈ L(V ) and every r ∈ R.

In other words R is an ideal of L(V ). Then it is immediately seen that Nr(X)
is a Lie algebra, when equipped with the Lie bracket

[π(�), π(�′)] := π([�, �′]), �, �′ ∈ L(V ), (8.22)
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the bracket in the above right-hand side denoting the usual Lie bracket of
L(V ) (inherited from the commutator of the tensor algebra T (V )). This also
proves that π is a Lie algebra morphism.

We next have to prove that Nr(X) is nilpotent of step ≤ r. Indeed, for
every k ≥ r and every �, . . . , �k+1 ∈ L(V ) we have

[π(�1) . . . [π(�k), π(�k+1)]] = π
(
[�1 . . . [�k, �k+1]]

)
= 0,

since [�1 . . . [�k, �k+1]] ∈ R.
Finally we note that, as L(V ) =

⊕∞
k=1 Lk(V ), the restriction of π to⊕r

k=1 Lk(V ) is an isomorphism of vector spaces. More explicitly, this map
(call it α say) is given by

α :
r⊕

k=1

Lk(V ) −→ Nr(X),
∑r

k=1 �k �→ π
(∑r

k=1 �k

)

(where �k ∈ Lk(V ) for all k = 1, . . . , r).

(8.23)

This map becomes a Lie algebra morphism when
⊕r

k=1 Lk(V ) is endowed
with the following operation (here �k, �′k ∈ Lk(V ) for all k = 1, . . . , r):

α−1
([
α
(∑r

i=1 �i

)
, α
(∑r

j=1 �
′
j

)])

= α−1
(
π
(∑

i+j≤r [�i, �
′
j] +
∑

i+j≥r [�i, �
′
j]
))

= α−1
(
π
(∑

i+j≤r [�i, �
′
j]
))

= α−1
(
α
(∑

i+j≤r [�i, �
′
j ]
))

=
∑

i+j≤r [�i, �
′
j ],

which is precisely the operation in (8.21). This ends the proof. ��
Remark 8.9. The last statement of Proposition 8.8 says roughly that Nr(X)
can be obtained from the Lie algebra L(K〈X〉) simply by setting to zero all
the brackets of height ≥ r + 1.

Moreover, by looking at the proof of Proposition 8.8, we deduce that any
element of Nr(X) is a linear combination of elements of the form

[π(x1) · · · [π(xk−1), π(xk)] · · · ] with x1, . . . , xk ∈ X, k ≤ r.

In particular (see also (8.22)) this proves that π(X) generates Nr(X) as a Lie
algebra (actually, brackets of height ≤ r suffice!).

The most important property of Nr(X) is the following one, according to
which we shall call Nr(X) – by full right – the free nilpotent Lie algebra of
step r generated by X .
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Theorem 8.10 (Universal Property of Nr(X)). Let X be a set, let r ∈ N and
suppose K is a field. Let also Nr(X) be as in (8.19). Then we have the following
properties:

(i) For every Lie algebra n (over K), nilpotent of step less than or equal to r, and
for every map f : X → n, there exists a unique Lie algebra morphism fπ :
Nr(X)→ n prolonging f , or – more precisely – with the following property

fπ(π(x)) = f(x) for every x ∈ X , (8.24)

thus making the following a commutative diagram:

X
f

��

π

��

n

Nr(X)

fπ

��������������

(ii) Conversely, suppose N,ϕ are respectively a Lie algebra nilpotent of step ≤ r
and a map ϕ : X → N with the following property: For every Lie algebra n
nilpotent of step ≤ r and every map f : X → n, there exists a unique Lie
algebra morphism fϕ : N → n such that

fϕ(ϕ(x)) = f(x) for every x ∈ X , (8.25)

thus making the following a commutative diagram:

X
f

��

ϕ

��

n

N

fϕ

�������������

ThenN is canonically isomorphic, as a Lie algebra, to Nr(X), the isomorphism
being ϕπ : Nr(X) → N (see the notation in (i) above) and its inverse being
πϕ : N → Nr(X). Furthermore, ϕ is injective. Actually it holds that
ϕ = ϕπ ◦ (π|X). Finally we have N � Nr(ϕ(X)), canonically.

Proof. (i). By Theorem 2.56 on page 91, there exists a Lie algebra morphism
F : L(K〈X〉)→ n prolonging f . We set

fπ : Nr(X)→ n, fπ(π(�)) := F (�) (� ∈ L(V )). (8.26)

We claim that the definition is well posed, that is, R ⊆ ker(F ). Indeed,
any element of R is a linear combination of right-nested brackets of X with
heights ≥ r + 1, that is, of elements of the form:
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� = [x1 · · · [xk−1, xk] · · · ], with x1, . . . , xk ∈ X, k ≥ r + 1.

Then we have (recall that F is an LA morphism)

F (�) = [F (x1) · · · [F (xk−1), F (xk)]n · · · ]n = 0,

the last equality following from the fact that n is nilpotent of step ≤ r and
k ≥ r + 1. We next prove that fπ is an LA morphism satisfying (8.24). This
latter fact is obvious, for we have (for every x ∈ X)

fπ(π(x))
(8.26)
= F (x) = f(x),

the last equality following from the fact that F prolongs f . As for fπ being
an LA morphism, we have (for every �, �′ ∈ L(V ))

fπ([π(�), π(�′)])
(8.22)
= fπ

(
π([�, �′])

) (8.26)
= F ([�, �′])

= [F (�), F (�′)]n
(8.26)
=
[
fπ(π(�)), fπ(π(�′))

]
n
.

Finally, we have to focuss on the uniqueness part. By Remark 8.9, we know
that any element of Nr(X) is a linear combination of elements of the form

n = [π(x1) · · · [π(xk−1), π(xk)] · · · ], with x1, . . . , xk ∈ X, k ≤ r.

An LA morphism from Nr(X) to X satisfying (8.24) necessarily maps the
above n into [f(x1) · · · [f(xk−1), f(xk)]n · · · ]n. This proves the uniqueness of
such an LA morphism.

(ii). Part (ii) of the theorem follows by arguing as in the proof of
Theorem 2.6 (see page 393). We recall the scheme of the proof. We have
the commutative diagrams (recalling that Nr(X) and N are nilpotent Lie
algebras of step not exceeding r; see also Proposition 8.8)

X
ϕ

��

π

��

N

Nr(X)

ϕπ

��������������

X
π

��

ϕ

��

Nr(X)

N

πϕ

��������������

Obviously, the following are commutative diagrams too

X
π

��

π

��

Nr(X)

Nr(X)

idNr(X)

��

X
ϕ

��

ϕ

��

N

N

idN

�������������
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Now, the maps πϕ ◦ ϕπ : Nr(X) → Nr(X), ϕπ ◦ πϕ : N → N are LA
morphisms such that (thanks to the first couple of commutative diagrams)

(πϕ ◦ ϕπ)(π(x)) = π(x) ∀x ∈ X, (ϕπ ◦ πϕ)(ϕ(x)) = ϕ(x) ∀x ∈ X.

Hence, by the uniqueness of the LA morphisms in the “diagonal” arrows in
the last couple of commutative diagrams above, we have

πϕ ◦ ϕπ ≡ idNr(X), ϕπ ◦ πϕ ≡ idN .

From the first commutative diagram in the first couple of diagrams, we infer
that ϕ ≡ ϕπ ◦ (π|X), whence (since π|X is injective and ϕπ is bijective) ϕ is
injective. Finally, in order to prove that N � Nr(ϕ(X)), due to what we
have alre ady proved of part (ii), it suffices to show that N and the map
ι : ϕ(X) ↪→ N have the following property: For every Lie algebra n nilpotent
of step ≤ r and every map f : ϕ(X) → n, there exists a unique Lie algebra
morphism f ι : N → n such that

f ι(ι(t)) = f(t) for every t ∈ ϕ(X).

Now, this follows by taking f ι := (f ◦ ϕ)ϕ. ��
Example 8.11. Let s ∈ N ∪ {0} be fixed. Consider the following polynomial
vector fields in R2 (here vector fields are thought of as linear differential
operators of order 1)

X = ∂x, Ys =
xs

s!
∂y.

If s = 0 we have [X,Ys] = 0. If s ≥ 1, it is immediately seen that (with the
usual bracket of vector fields) one has

[X . . . [X
︸ ︷︷ ︸
k times

, Ys]] =

⎧
⎨

⎩

xs−k

(s− k)!
∂y, if 1 ≤ k ≤ s,

0, if k ≥ s+ 1,

whereas all right-nested brackets with more than one Ys vanish identically.
This proves that the Lie algebra generated by {X,Ys}

ns := Lie{X,Ys}

(thought of as a subalgebra of the algebra of the smooth vector fields in
R2) is nilpotent of step s + 1. The arbitrariness of s ∈ N ∪ {0} proves the
existence of nilpotent Lie algebras (Lie-generated by two elements) of any
step of nilpotency.

Corollary 8.12. Let X be a set with at least two distinct elements. Then the step
of nilpotency of Nr(X) is precisely r.
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Proof. Let r ∈ N. We know from Proposition 8.8 that Nr(X) is nilpotent of
step less than or equal to r. Suppose now that X has two distinct elements,
say x1, x2. We have to prove that there exists at least a Lie bracket of elements
of Nr(X) of height r which is not vanishing.

To this end, consider the Lie algebra nr−1 = Lie{X,Yr−1} resulting by
taking s := r − 1 in the above Example 8.11. We know that nr−1 is nilpotent
of step s+ 1 = r and we have

[X . . . [X
︸ ︷︷ ︸
r − 1 times

, Yr−1]] = ∂y �= 0. (8.27)

Consider the map

f : X → nr−1, f(x) :=

⎧
⎨

⎩

X, if x = x1,
Yr−1, if x = x2,
0, otherwise.

(8.28)

Then by Theorem 8.10-(i) there exists a unique Lie algebra morphism fπ :
Nr(X)→ nr−1 satisfying

fπ(π(x)) = f(x) for every x ∈ X . (8.29)

Now let us consider the element of Nr(X) defined by

n := [π(x1) . . . [π(x1)
︸ ︷︷ ︸

r − 1 times

, π(x2)]].

Then, exploiting the fact that fπ is an LA morphism, we have

fπ(n) = fπ
(
[π(x1) . . . [π(x1), π(x2)]]

)

= [fπ(π(x1)) . . . [f
π(π(x1)), f

π(π(x2))]]

(8.29)
= [f(x1) . . . [f(x1), f(x2)]]

(8.28)
= [X . . . [X,Yr−1]]

(8.27)
�= 0.

This proves that fπ(n) �= 0, whence n �= 0. But now we note that n is a
Lie bracket of height r of elements of Nr(X). This proves that the step of
nilpotency of Nr(X) is precisely r. ��
Theorem 8.13 (Stratification of Free Nilpotent Lie Algebras). Let r ∈ N,
r ≥ 2 and let X be a nonempty set. Then Nr(X) admits a stratification, that is, a
direct sum decomposition

Nr(X) =

r⊕

k=1

Vk, where [V1, Vk] =

{
Vk+1, for every k = 1, . . . , r − 1,
{0}, for k = r.

(8.30)
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Proof. Arguing up to the isomorphism α in (8.23) of the proof of Proposition
8.8, we can suppose that

Nr(X) =

r⊕

k=1

Lk(K〈X〉),

and that the Lie bracket of Nr(X) is given by [·, ·]r, introduced in (8.21). We
claim that the collection of vector spaces defined by

Vk := Lk(K〈X〉), for every k = 1, . . . , r, (8.31)

satisfies (8.30). To begin with, let k ∈ {1, . . . , r − 1} and let us set, for short,
V = K〈X〉. We have

[V1, Vk]r = [L1(V ),Lk(V )]r = [L1(V ),Lk(V )] ⊆ L1+k(V ) = Vk+1.

Indeed, the first and last equalities follow from the definition of Vk ; the
second equality is a direct consequence of the definition of [·, ·]r in (8.21)
(and the fact that 1 + k ≤ r); the “⊆” sign follows from (2.51) on page 85. In
order to prove that the equality [V1, Vk]r = Vk+1 actually holds, we note that
(in view of (2.49) on page 85) an element of Vk+1 = Lk+1(K〈X〉) is a linear
combination of nested brackets of the form

[ x1︸︷︷︸
∈X⊆V1

, [x2 . . . [xk, xk+1] . . .]
︸ ︷︷ ︸

∈Lk+1(K〈X〉)=Vk

], x1, . . . , xk+1 ∈ X,

which is de visu an element of [V1, Vk] = [V1, Vk]r.
Finally, we are left to prove that [V1, Vr]r = {0}. This is a simple

consequence of the definition of [·, ·]r in (8.21): indeed, an arbitrary element
of V1 = L1(V ) can be written as

∑r
i=1 �i, with �1 ∈ L1(V ) and �2 = · · · = �r = 0,

whilst an arbitrary element of Vr = Lr(V ) can be written as

∑r
j=1 �

′
j , with �′r ∈ Lr(V ) and �′1 = · · · = �′r−1 = 0,

so that the generic element of [V1, Vr]r turns out to be

[∑r
i=1 �i,

∑r
j=1 �

′
j

]

r

(8.21)
=
∑

i+j≤r

[�i, �
′
j] =
∑

1+j≤r

[�1, �
′
j ] = 0.

This completes the proof. ��
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It is convenient, for future reference, to introduce a separate notation for
Nr(X) when X = {x1, . . . , xm} is finite. (As usual, all linear structures are
referred to the same fixed field K.)

Definition 8.14. Let m ∈ N, m ≥ 2 and let r ∈ N be fixed. We say that fm,r

is the free Lie algebra with m generators x1, . . . , xm and nilpotent of step r if:

(i) fm,r is a Lie algebra generated by its m distinct elements x1, . . . , xm i.e.,

x1, . . . , xm ∈ fm,r

card
({x1, . . . , xm}

)
= m

and fm,r = Lie{x1, . . . , xm};

(ii) fm,r is nilpotent of step r;
(iii) For every Lie algebra n nilpotent of step not exceeding r and for every

map f : {x1, . . . , xm} → n, there exists a unique LA morphism f from
fm,r to n which extends f .

Taking into account Definition 8.7, we simply have

fm,r = Nr({x1, . . . , xm})

(where any xi has been identified to π(xi)). The existence of fm,r follows
from Theorem 8.10 and Corollary 8.12 (indeed, note that {x1, . . . , xm}
contains at least two elements, as m ≥ 2).

Remark 8.15. Note that fm,r is finite dimensional, for every m ≥ 2 and every
r ≥ 1. Indeed, we have

fm,r =

r⊕

k=1

Lk(K〈x1, . . . , xm〉),

and Lk(K〈x1, . . . , xm〉) is spanned by right-nested brackets of the form

[xi1 . . . [xik−1
, xik ] . . .], where i1, . . . , ik ∈ {1, . . . ,m},

and there are only finitely many of these right-nested brackets. Hence

H(m, r) := dim(fm,r), m, r ∈ N, m ≥ 2 (8.32)

defines a finite positive integer. For example, it is easily seen that

H(m, 2) =
m(m+ 1)

2
.



Chapter 9
Formal Power Series in One Indeterminate

THE aim of this chapter is to collect some prerequisites on formal power
series in one indeterminate, needed in this Book. One of the main aims

is to furnish a purely algebraic proof of the fact that, by substituting into each
other – in any order – the two series

∞∑

n=1

xn

n!
and

∞∑

n=1

(−1)n+1 xn

n
,

one obtains the result x.
As far as Calculus is concerned, this may appear as a trivial fact, since the

above are the Maclaurin series of ex−1 and ln(1+x), respectively, which are
de facto inverse functions to each other. But if we pause a moment to think of
how many results of differential calculus (though basic) we would invoke in
formalizing this reasoning (and in making it as self-contained as possible),
we should agree that a more algebraic proof must be hidden behind the fact
that the coefficients 1/n! and (−1)n+1/n actually combine together in such a
well-behaved way.

The main aim of this chapter is to give such an algebraic approach to the
study of these series and to the fact that they are inverse to one another.
We explicitly remark how very stimulating is it to observe that the study
of the composition of the above series can be faced both with arguments of
Analysis and with arguments of Algebra. This is undoubtedly a common
link with the possible multiplex approaches to the CBHD formula, as we
presented them in the first Part of this Book.

In reaching our goal, we shall need some basic facts concerning formal
power series in one indeterminate. The interested Reader is referred to, e.g.,
Henrinci [82], for a comprehensive treatise on the subject.

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 9,
© Springer-Verlag Berlin Heidelberg 2012
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9.1 Operations on Formal Power Series
in One Indeterminate

In the sequel, K will denote a fixed field of characteristic zero. We denote by K[t]
and K[[t]] respectively, the algebra of the polynomials in the indeterminate
t over K and the algebra of the formal power series in the indeterminate t
over K (see e.g., Sect. 4.3.1 page 199).

For the elements of K[t] and K[[t]], we shall indifferently use the
sequence-type notation

(an)n (where an ∈ K for every n ∈ N ∪ {0}),

or the series-type notation (identified with the former)

∞∑

n=0

an t
n (where an ∈ K for every n ∈ N ∪ {0})

The following notation will apply as well

(a0, a1, . . . , an, . . .).

Thus, the only difference between K[t] and K[[t]] is that, for an element of
the former, the elements an are null for n large enough. Obviously, K[t] is a
subspace of K[[t]].

Note that, according to the results of Sect. 2.3, K[[t]] is not only an alge-
braic object, but it has topological and metric properties too, being the (isometric)
completion of K[t]: A basis of neighborhoods of the origin of K[[t]] is given
by the well-known sets ÛN =

{∑∞
n=N kn t

n
∣
∣ kn ∈ K, ∀ n ≥ N

}
, whilst the

metric of K[[t]] is given by

d
( ∞∑

n=0
an t

n,
∞∑

n=0
bn t

n
)
=

{
e−min{n : an �=bn}, if (an)n �= (bn)n,
0, if (an)n = (bn)n.

9.1.1 The Cauchy Product of Formal Power Series

We recall that the algebraic operation of multiplication on K[[t]] is given by
the product

(an)n · (bn)n =
( n∑

i=0

ai bn−i

)

n
,

that is, equivalently, it is given by the usual Cauchy product of series

∞∑

n=0

an t
n ·

∞∑

n=0

bn t
n =

∞∑

n=0

( n∑

i=0

ai bn−i

)
tn. (9.1)
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Obviously, K[t] is a subalgebra of K[[t]]. Note also that K[[t]] (whence K[t])
is a commutative algebra, for · is evidently Abelian. The identity of (K[[t]], ·) is

1 = (1, 0, 0, · · · ).

Proposition 9.1. An element (an)n of K[[t]] admits an inverse with respect to · if
and only if a0 �= 0. In this case, its inverse is

(bn)n where bn =

⎧
⎨

⎩

a−1
0 , if n = 0,

−a−1
0

n−1∑

i=0

bi an−i, if n ≥ 1.
(9.2)

Proof. Let a := (an)n ∈ K[[t]] be fixed. Since (K[[t]], ·) is Abelian, we can
restrict to study the left-invertibility of a. We have (bn)n · (an)n = 1 iff

(�)

{
b0 a0 = 1,

bn a0 +
∑n−1

i=0 bi an−i = 0, if n ≥ 1.

Thus the condition a0 �= 0 is necessary for the left-invertibility of a; and it is
sufficient, for if a0 �= 0, then (�) is uniquely satisfied by (bn)n as in (9.2). ��
When f is invertible in K[[t]] with respect to ·, we denote its inverse by 1

f

(preserving the notation f−1 for something else, see (9.11) below).

9.1.2 Substitution of Formal Power Series

An important “operation” on formal power series is the following one. We
recall that we denote by K[[t]]+ the following subspace of K[[t]]:

K[[t]]+ :=
{
(bn)n ∈ K[[t]] : b0 = 0

}
. (9.3)

We recognize that

K[[t]]+ = Û1 =
{∑∞

n=1 bn t
n
∣
∣ bn ∈ K, ∀ n ≥ 1

}
.

Definition 9.2 (Substitution of Formal Power Series). Given f = (an)n ∈
K[[t]] and g = (bn)n ∈ K[[t]]+, we set

f ◦ g :=

(

a0, a1 b1, a1 b2 + a2 b
2
1, . . . ,

n∑

k=1

ak
∑

i1+···+ik=n

bi1 · · · bik , . . .
)

. (9.4)
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[There are other possible equivalent ways of writing the coefficients of f ◦ g,
which – in Calculus – are related to the iterated derivatives of a composition
of functions; one such a way is given by the so-called Faà di Bruno formula.1]

We thus get a function

◦ : K[[t]]×K[[t]]+ → K[[t]], (f, g) �→ f ◦ g.

Note that if f, g ∈ K[[t]]+, then f ◦ g ∈ K[[t]]+. In other words, ◦ is a binary
operation on K[[t]]+ (we shall soon prove that (K[[t]]+, ◦) is indeed a monoid,
see Theorem 9.4 below).

Since the elements of K[[t]] are not functions, the ◦ operation must not
be confused with the ordinary composition of functions. Nonetheless, the
notation is motivated by the following important result.

Theorem 9.3. Let ◦ be the map in Definition 9.2. Then for every f ∈ K[[t]] with
f =
∑∞

k=0 ak t
k, and every g ∈ K[[t]]+, we have

f ◦ g =
∞∑

k=0

ak g
· k, (9.5)

the series on the right-hand side being interpreted as a series (hence, a limit) in the
metric space (K[[t]], d).

In other words, we have

∞∑

n=0
an t

n ◦
∞∑

n=1
bn t

n =

∞∑

k=0

ak

( ∞∑

i=1

bi t
i
)· k

= lim
K→∞

K∑

k=0

ak

( ∞∑

i=1

bi t
i
)· k

,

the limit being performed in the metric space (K[[t]], d).

Proof. First we prove that the series on the right-hand side of (9.5) is
convergent. To this aim, by Remark 2.76-3, page 102 (recall that K[[t]] = K̂[t]
and that K[t] is a graded algebra), it is sufficient to prove that

lim
k→∞

g· k = 0 in (K[[t]], d). (9.6)

This is easily seen: as g ∈ K[[t]]+ = Û1, we have g·k ∈ Ûk and (9.6) follows
from the fact that {Ûk}k∈N is a basis of neighborhoods of the origin.

1According to this formula, if f, g are smooth functions of x ∈ R (and f ◦ g is well posed)
it holds that

dn

dxn
(f(g(x))) =

∑

π∈P

f(|π|)(g(x)) ·
∏

B∈π

g(|B|)(x),

where P is the set of all the partitions of {1, . . . , n} and | · | denotes cardinality.
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We are left to show the equality in (9.5). We have, for any k ∈ N,

g· k =
(

lim
I→∞

I∑

i=1

bi t
i
)· k (

recall that (K[[t]], ·) is a topological algebra
)

= lim
I→∞

( I∑

i=1

bi t
i
)· k

= lim
I→∞

∑

1≤i1,...,ik≤I

bi1 · · · bik ti1+···+ik

= lim
I→∞

{( ∑

i1+···+ik�I

+
∑

1≤i1,...,ik�I
i1+···+ik�I+1

)
bi1 · · · bik ti1+···+ik

}

(�)
= lim

I→∞

I∑

n=1

∑

i1+···+ik=n

bi1 · · · bik tn =
∞∑

n=1

( ∑

i1+···+ik=n

bi1 · · · bik
)
tn.

As for the starred equality, we used the fact that
∑

1≤i1,...,ik�I
i1+···+ik�I+1

bi1 · · · bik ti1+···+ik

vanishes as I →∞ (indeed this is an element of ÛI+1).
We thus obtained the expected formula

( ∞∑

i=1

bi t
i

)· k
=

∞∑

n=1

( ∑

i1+···+ik=n

bi1 · · · bik
)
tn (k ∈ N). (9.7)

This gives, by a simple reordering argument,

∞∑

k=0

ak g
·k = a0 +

∞∑

k=1

ak

( ∞∑

n=1

∑

i1+···+ik=n

bi1 · · · bik tn
)

= a0 +

∞∑

n=1

( n∑

k=1

ak
∑

i1+···+ik=n

bi1 · · · bik
)

tn.

Hence, (9.5) follows by the definition of f ◦ g in (9.4). ��
Theorem 9.4. Let ◦ be the map in Definition 9.2. Then (K[[t]]+, ◦) is a monoid,
i.e., ◦ is an associative operation on K[[t]] endowed with the unit t = (0, 1, 0, 0, . . .).

Moreover, the set of the invertible elements of K[[t]]+ with respect to ◦ is

{
(an)n ∈ K[[t]]

∣
∣ a0 = 0 and a1 �= 0

}
.

An element of K[[t]]+ is invertible with respect to ◦ iff it has a right inverse or iff it
has a left inverse.
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Proof. We already know that ◦ is binary on K[[t]]+. To avoid confusion, we
temporarily set e := (0, 1, 0, . . .). The fact that

f ◦ e = f = e ◦ f for every f ∈ K[[t]]+

follows directly from (9.5). The main task is to prove the associativity of ◦.
To this end, let f, g, h ∈ K[[t]]+, with f =

∑∞
k=1 ak t

k and g =
∑∞

i=1 bi t
i. We

have

(f ◦ g) ◦ h (9.5)
=

∞∑

n=1

(f ◦ g)n h·n (9.4)
=

∞∑

n=1

( n∑

k=1

ak
∑

i1+···+ik=n

bi1 · · · bik
)
h·n.

On the other hand, it holds that

f ◦ (g ◦ h) (9.5)
=

∞∑

k=1

ak (g ◦ h)· k (9.5)
=

∞∑

k=1

ak

( ∞∑

i=1

bi h
· i
)· k

=
∞∑

k=1

ak
∑

i1,...,ik≥1

bi1 · · · bik h· i1+···+ik

(by a simple reordering argument)

=

∞∑

n=1

( n∑

k=1

ak
∑

i1+···+ik=n

bi1 · · · bik
)
h·n.

This proves that (f ◦ g) ◦ h = f ◦ (g ◦ h), and the associativity follows.
To end the proof, we have to characterize the elements of K[[t]] which are

invertible w.r.t. ◦. Let f, g ∈ K[[t]]+, with f =
∑∞

k=1 ak t
k and g =

∑∞
i=1 bi t

i.
Then f ◦ g = e if and only if (see (9.4))

{
a1 b1 = 1,
∑n

k=1 ak
∑

i1+···+ik=n bi1 · · · bik = 0, if n ≥ 2.
(9.8)

It is then clear that the condition a1 �= 0 is necessary for the right and the left
invertibility of f . We show that it is also sufficient.

Left invertibility. For fixed g as above, with b1 �= 0, (9.8) can be uniquely
solved for f = (an)n by the recursion formula

⎧
⎨

⎩

a1 = b−1
1 ,

an = −b−n
1

n−1∑

k=1

ak
∑

i1+···+ik=n

bi1 · · · bik , if n ≥ 2. (9.9)

[Note that on the right-hand side of (9.9) only a1, . . . , an−1 are involved.]
Hence the condition b1 �= 0 is equivalent to the left-invertibility of g = (bn)n.
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Right invertibility. Fixed f as above, with a1 �= 0, (9.8) can be uniquely
solved for g = (bn)n by the recursion formula

⎧
⎨

⎩

b1 = a−1
1 ,

bn = −a−1
1

n∑

k=2

ak
∑

i1+···+ik=n

bi1 · · · bik , if n ≥ 2. (9.10)

[Note that in the right-hand side of (9.10) only b1, . . . , bn−1 are involved.]
Hence the condition a1 �= 0 is equivalent to the right-invertibility of f = (an)n.

Summing up, since (K[[t]]+, ◦) is a monoid, the condition a1 �= 0 is
equivalent to the invertibility of f = (an)n (see Lemma 9.5 below). ��
Here we used the following simple lemma.

Lemma 9.5. Let (A, ∗) be a monoid (i.e., ∗ is an associative, binary operation on
the set A endowed with a unit). Then an element of A is invertible iff it is equipped
with a left and a right inverse; in this case the right and the left inverses coincide.

Proof. Let l and r be, respectively, a left and a right ∗-inverse for x ∈ A,
i.e., l ∗ x = 1 = x ∗ r. We are left to show that l = r. This is easily seen:
l = l ∗ 1 = l ∗ (x ∗ r) = (l ∗ x) ∗ r = 1 ∗ r = r. ��
Remark 9.6. Note that the above lemma ensures that, for fixed (an)n with
a0 = 0 and a1 �= 0, the sequence (bn)n inductively defined by

(�1)

⎧
⎨

⎩

b0 = 0, b1 = a−1
1 ,

bn = −a−1
1

n∑

k=2

ak
∑

i1+···+ik=n

bi1 · · · bik , if n ≥ 2,

coincides with the sequence inductively defined by

(�2)

⎧
⎨

⎩

b0 = 0, b1 = a−1
1 ,

bn = −a−n
1

n−1∑

k=1

bk
∑

i1+···+ik=n

ai1 · · · aik , if n ≥ 2.

Indeed, (bn)n in (�1) is the right inverse of (an)n in (K[[t]], ◦), whereas
(bn)n in (�2) is its left inverse (and these must necessarily coincide!). We
remark that a direct proof of the equivalence of (�1) and (�2) (without,
say, invoking Lemma 9.5) seems not so easy. ��
When f ∈ K[[t]]+ is invertible with respect to ◦, we denote its inverse by
f−1. Thus we have

f ◦ f−1 = t, f−1 ◦ f = t. (9.11)

An equivalent way to restate Theorem 9.4 is the following one:

Theorem 9.7. Let ◦ be the map in Definition 9.2. Let F(K[[t]]+) denote the set of
the functions defined on K[[t]]+ with values in K[[t]]+ itself.
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For every f ∈ K[[t]]+, we can define an element Λ(f) ∈ F(K[[t]]+) as follows:

Λ(f) : K[[t]]+ −→ K[[t]]+, Λ(f)(g) := f ◦ g. (9.12)

Then Λ defines a monoid-morphism of (K[[t]]+, ◦) to F(K[[t]]+) (the latter being
equipped with the operation of composition of functions). In other words, we have

Λ(t) = IdK[[t]]+ , Λ(f ◦ g) = Λ(f) ◦ Λ(g), ∀ f, g ∈ K[[t]]+. (9.13)

Here, the second ◦ symbol denotes the ordinary composition of functions, whereas
the first one is the operation defined in (9.4). Moreover, for every f = (an)n ∈
K[[t]]+ with a1 �= 0, we have

Λ(f−1) =
(
Λ(f)
)−1

. (9.14)

Here, (·)−1 in the left-hand side denotes the inversion on (K[[t]]+, ◦), whereas (·)−1

in the right-hand side denotes the inverse of a function.

Proof. Since t is the identity of (K[[t]]+, ◦), it holds that Λ(t)(g) = g ◦ t = g,
for every g ∈ K[[t]]+, that is, Λ(t) = IdK[[t]]+ . Moreover, the second identity
of (9.13) is clearly equivalent to

(f ◦ g) ◦ h = f ◦ (g ◦ h), ∀ f, g, h ∈ K[[t]]+,

which is the property of associativity of ◦ on K[[t]]+, proved in Theorem
9.4. This proves that Λ : K[[t]]+ → F(K[[t]]+) is a monoid morphism. In
particular, (9.14) follows.2 This ends the proof. ��

9.1.3 The Derivation Operator on Formal Power Series

Another important operation on formal power series is the following
one, resemblant to the well-known derivative of differentiable functions.
We set

2Indeed, if (A,�) and (B,�) are monoids and ϕ : A → B is a monoid morphism, for
every �-invertible element a ∈ A, it holds that

1B = ϕ(1A) = ϕ(a�−1 � a) = ϕ(a�−1)� ϕ(a).

This proves that ϕ(a) is �-invertible in B and

ϕ(a)�−1 = ϕ(a�−1).
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∂t : K[[t]] −→ K[[t]]

(an)n �→ (a1, 2 a2, 3 a3, . . . , (n+ 1) an+1, . . .). (9.15)

We recognize the usual operator of “derivation with respect to t”:

∂t
(∑∞

n=0 an ∗ tn
)
=
∑∞

n=1 n an ∗ tn−1 =
∑∞

k=0(k + 1) ak+1 ∗ tk.

This is exactly the operation introduced, in a more general setting, in
Definition 4.11, page 203. In the sequel, the notation

f ′ := ∂tf, f ∈ K[[t]]

will apply as well. The well-behaved properties of ∂t with respect to
the operations introduced so far on K[[t]] are summarized in the follow-
ing theorem (the Reader will recognize the analogues with results from
Calculus).

Theorem 9.8. Let ∂t be the operator on K[[t]] defined in (9.15). Then the following
results hold.

(a) ∂t is a derivation of the algebra (K[[t]], ·).
(b) ∂t is continuous, w.r.t. the usual topology on K[[t]].
(c) For every f ∈ K[[t]] and every g ∈ K[[t]]+, we have

(f ◦ g)′ = (f ′ ◦ g) · g′. (9.16)

(d) For every f ∈ K[[t]]+ invertible with respect to ◦, then f ′ has a reciprocal with
respect to · and we have

(f−1)′ ◦ f =
1

f ′ . (9.17)

Proof. (a) and (b). These follow, respectively, from Proposition 4.12 (page
203), parts (i) and (iii).

(c). If f ∈ K[[t]] and g ∈ K[[t]]+, we have

(f ◦ g)′ (9.5)
= ∂t

∞∑

k=0

ak g
· k (from the continuity of ∂t, see part (b)

)

=

∞∑

k=1

ak ∂t(g
·k)
(
∂t is a derivation, see part (a)

and (K[[t]], ·) is Abelian

)

=

∞∑

k=1

ak k g
· k−1 · g′ = (f ′ ◦ g) · g′.



488 9 Formal Power Series in One Indeterminate

(d). Set f = (an)n. Since f is invertible w.r.t. ◦, by Theorem 9.4 we have
a1 �= 0. Hence the zero-degree component of f ′ (i.e., a1) is non-vanishing,
whence, by Proposition 9.1, f ′ has a reciprocal. We have f−1 ◦f = t. We now
apply ∂t to this identity, getting (by part (b) of this theorem)

1 = ∂t(t) = ∂t(f
−1 ◦ f) (9.16)

=
(
(f−1)′ ◦ f) · f ′.

Then (9.17) follows by definition of reciprocal. ��

9.1.4 The Relation Between the exp and the log Series

The main result of this section is contained in the following Theorem 9.9.
First we fix some notation: we set

E :=
(
0, 1, . . . , 1

n! , . . .
)
=

∞∑

n=1

1
n! t

n;

L :=
(
0, 1, . . . , (−1)n+1

n , . . .
)
=

∞∑

n=1

(−1)n+1

n tn.

(9.18)

[Note that these are the Maclaurin series expansions of the functions ex − 1
and ln(1 + x), respectively.] We remark that E,L ∈ K[[t]]+ and both are
invertible w.r.t. ◦ for their degree-one coefficient is non-vanishing.

Theorem 9.9. With the notation in (9.18), E and L are inverse to each other with
respect to ◦, that is,

E ◦ L = t = L ◦ E. (9.19)

Proof. Roughly speaking, we shall steal an idea from ODE’s: we shall show
that L and E−1 solve the same “Cauchy problem”, whence they coincide.

The proof is split in several steps, some having an independent interest.

I. We have
L′ =

1

(1, 1, 0, 0, . . . , 0, . . .)
. (9.20)

[Roughly speaking, this is (ln(1 + x))′ = 1/(1 + x).] By definition of L, we
have

L′ =
(
1,− 1

2 2, . . . ,
(−1)n+2

n+1 (n+ 1), . . .
)
= (1,−1, 1, . . . , (−1)n, . . .).

We claim that the above right-hand side is precisely the reciprocal of
(bn)n := (1, 1, 0, 0, . . .). This follows from this computation:
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(1,−1, . . . , (−1)n, . . .) · (1, 1, 0, 0, . . .) =
(∑n

j=0(−1)n−j bj

)

n

(by construction, b0 = b1 = 1 and bj = 0 if j ≥ 2)

=
(
b0,−b0 + b1, . . . , (−1)nb0 + (−1)n−1b1, . . .

)
= (1, 0, 0, . . . , 0, . . .).

II. Let f, g ∈ K[[t]] have the same zero-degree components and suppose they
satisfy f ′ = g′. Then f = g.

[Roughly speaking, this is the uniqueness of the solution of a Cauchy
problem.] Let us set f = (an)n and g = (bn)n. By hypothesis, we have
a0 = b0. Also, by the hypothesis f ′ = g′, we have (n+ 1)an+1 = (n+ 1)bn+1

for every n ≥ 0. Since K has characteristic zero, this is equivalent to
an+1 = bn+1 for every n ≥ 0. Summing up, all the coefficients of f and g
coincide, that is, f = g.

III. Let h ∈ K[[t]]+. Then we have

(f · g) ◦ h = (f ◦ h) · (g ◦ h), ∀ f, g ∈ K[[t]]. (9.21)

Let us set f =
∑∞

i=0 ai t
i and g =

∑∞
j=0 bj t

j . We have

(f ◦ h) · (g ◦ h) (9.5)
=
(∑∞

i=0 ai h
· i) · (∑∞

j=0 bj h
· j)

(recall (K[[t]], ·) is a topological algebra and the above series converge)

=
∑

i,j≥0

ai bj h
·i+j =

∞∑

n=0

(∑
i+j=n ai bj

)
tn

(9.5)
= (f · g) ◦ h.

IV. Let f = (an)n and g = (bn)n with a0 �= 0 and b0 = 0. Then f ◦ g has a
reciprocal with respect to · and

1

f
◦ g =

1

f ◦ g . (9.22)

Since a0 �= 0, f has a reciprocal 1
f ; since the zero-degree coefficient of f ◦ g

coincides with that of f , then f ◦ g also has a reciprocal. We have 1
f · f = 1.

Due to g ∈ K[[t]], we can apply (9.21), thus getting

1 = 1 ◦ g =
(
1
f · f
) ◦ g =

(
1
f ◦ g
) · (f ◦ g),

which is precisely (9.22).

We are now in a position to complete the proof. We have

E′ = E + 1. (9.23)
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[Roughly speaking, this is (ex− 1)′ = ex = (ex − 1)+ 1.] Indeed this follows
from:

E′ =
(
1, 1, . . . , (n+ 1) 1

(n+1)! , . . .
)
= (1, 0, . . .) +

(
0, 1, . . . , 1

n! , . . .
)
= 1 + E.

Since the component of degree 1 ofE is non-vanishing,E admits a ◦-inverse.
We claim that

(E−1)′ =
1

(1, 1, 0, 0, 0, . . .)
. (9.24)

We show that this easily completes the proof. Indeed, we have

(E−1)′
(9.24)
=

1

(1, 1, 0, 0, 0, . . .)

(9.20)
= L′;

moreover the zero-degree components of E−1 and of L coincide (see e.g.,
(9.9) for computation of the zero-degree component of E−1); by part II of
the proof, these facts together imply that E−1 and L do coincide, that is, L is
the inverse of E, so that (9.19) follows.

We are thus left with the proof of the claimed (9.24). We have

(E−1)′ = (E−1)′ ◦ (0, 1, 0, 0, . . .) = (E−1)′ ◦ (E ◦ E−1)

=
(
(E−1)′ ◦ E) ◦ E−1 (9.16)

=
1

E′ ◦ E−1 (9.22)
=

1

E′ ◦E−1

(9.23)
=

1

(E + 1) ◦ E−1
=

1

E ◦ E−1 + 1 ◦ E−1

=
1

(0, 1, 0, . . .) + (1, 0, 0, . . .)
=

1

(1, 1, 0, 0, 0, . . .)
.

This proves (9.24) and the proof is complete. ��
Remark 9.10. From the identities in (9.19), we can obviously deduce a family
of relations among the coefficients of the series E and L. Namely, if we let
E = (bn)n and L = (cn)n, i.e.,

bn :=
1

n!
, cn :=

(−1)n+1

n
∀ n ∈ N, (9.25)

the identities in (9.19) (and the definition of the coefficients of the substitu-
tion, see (9.4)) are equivalent to the following ones
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⎧
⎪⎪⎨

⎪⎪⎩

b1 c1 = 1

n∑

k=1

bk
∑

i1+···+ik=n

ci1 · · · cik = 0, n ≥ 2;

and

⎧
⎪⎪⎨

⎪⎪⎩

c1 b1 = 1

n∑

k=1

ck
∑

i1+···+ik=n

bi1 · · · bik = 0, n ≥ 2.
(9.26)

In the following arguments, we show how to derive identities in any
associative algebra, starting from identities in K[[t]].

First, we observe that we have the isomorphism

K[[t]] � T̂ (K〈x〉), (9.27)

both as UA algebras and as topological spaces, via the same isomorphism.
Indeed, it is easily seen that the map

ϕ : K[[t]] −→ T̂ (K〈x〉)

∞∑

n=0

an t
n �→ (a0, a1 x, a2 x⊗ x, . . . , an x

⊗n, . . .
)

(9.28)

is both a UAA isomorphism and a homeomorphism (when domain and
codomain are endowed with the usual topologies). By restricting ϕ to K[t]
we obtain another remarkable isomorphism of UA algebras:

K[t] � T (K〈x〉). (9.29)

Lemma 9.11. Let {an}n≥1 and {bn}n≥1 be any pair of sequences in K. For every
M,N ≥ 1 there exists a formal power series

RM,N ∈ Ûmin{N+1,M+1}, (9.30)

such that the following identity holds in K[[t]]:

∞∑

m=1

am

( ∞∑

n=1

bn t
n

)m
=

M∑

m=1

am

( N∑

n=1

bn t
n

)m
+ RM,N . (9.31)
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Proof. With the above notation, Newton’s binomial formula gives

( ∞∑

n=1

bn t
n

)m
=

( N∑

n=1

· · ·+
∞∑

n=N+1

· · ·
)m

=: (A+B)m

=

( N∑

n=1

bn t
n

)m
+

m−1∑

h=0

(
m

h

)

Ah ·Bm−h

︸ ︷︷ ︸
=: Gm,N∈Ûm+N

.

Indeed (with clear meanings), A ∈ Û1, B ∈ ÛN+1, so that

Gm,N ∈
m−1∑

h=0

Ûh+(N+1)(m−h) ⊆ Ûminh∈[0,m−1] h+(N+1)(m−h) ⊆ Ûm+N .

This gives

∞∑

m=1

am

( ∞∑

n=1

bn t
n

)m
=

M∑

m=1

· · ·+
∞∑

m=M+1

· · · ∈
M∑

m=1

am

( N∑

n=1

bn t
n

)m

+
M∑

m=1

amGm,N

︸ ︷︷ ︸
∈ÛN+1

+ÛM+1,

and (9.30)–(9.31) follow from ÛN+1 + ÛM+1 ⊆ Ûmin{N+1,M+1}. ��
Proposition 9.12. Let {an}n≥1 and {bn}n≥1 be any pair of sequences in K. For
every n ∈ N, let

cn :=
n∑

k=1

ak
∑

i1+···+ik=n

bi1 · · · bik (n ≥ 1),

that is (according to Definition 9.2), cn is the n-th coefficient of the formal power
series obtained by substitution of

∑∞
n=1 bnt

n in
∑∞

n=1 ant
n.

Then for every M,N ≥ 1 there exists a polynomial RM,N ∈ K[t] of the form

RM,N =

N M∑

n=min{N,M}+1

rn t
n, (for suitable scalars rn), (9.32)

such that the following identity holds in K[t]:

M∑

m=1

am

( N∑

n=1

bn t
n

)m
=

min{N,M}∑

n=1

cn t
n + RM,N . (9.33)
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Proof. This follows by a straightforward expansion of the right-hand side of
(9.33) and by the definition of cn (or by the aid of Lemma 9.11). ��
Now consider the following two facts:

– any associative algebra can be embedded in a UA algebra (see Remark
5.6, page 273);

– K[t] is isomorphic to T (K〈x〉) (see (9.29)) whence it inherits the universal
property of the free associative algebra Libas({x}) � T (K〈x〉) (see
Theorems 2.28 and 2.40).

As a consequence, given an associative algebra (A, ∗) over K and an
element z ∈ A, we derive the existence of a unique associative algebra
homomorphism

Φz : K[t]+ → A, such that Φz(t) = z. (9.34)

[Recall that K[t]+ = {∑N
n=1 an t

n |N ∈ N, a1, . . . , aN ∈ K }.]
Then by a “substitution” argument, as a corollary of Proposition 9.12, we

straightforwardly obtain the following result.

Theorem 9.13. Let {an}n≥1, {bn}n≥1 and {cn}n≥1 be as in Proposition 9.12.
Then for every M,N ≥ 1 there exists a polynomial RM,N ∈ K[t] of the form

(9.32) such that, for every associative algebra (A, ∗) over K and every z ∈ A,

M∑

m=1

am

( N∑

n=1

bn z
∗n

)∗m

=

min{N,M}∑

n=1

cn z
∗n + Φz(RM,N). (9.35)

Here Φz is the associative algebra homomorphism in (9.34). In particular, the
“remainder term” Φz(RM,N ) is a K-linear combination in A of powers z∗n with
n ∈ {min{N,M}+ 1, . . . , N M}.

Remark 9.14. As a very particular case of Theorem 9.13, if an = 1
n! and bn =

(−1)n

n or if an = (−1)n

n and bn = 1
n! , we get the following identity (in view of

the relations (9.26) existing between the coefficients an and bn):

M∑

m=1

am

( N∑

n=1

bn z
∗n

)∗m

= z +

(
a Q-linear combination of powers z∗n

with n ∈ {min{N,M}+ 1, . . . , N M}
)

.

(9.36)
This holds true on every associative algebra (A, ∗) over a field of character-
istic zero, and for every z ∈ A. For example, A may be the algebra of smooth
vector fields on some open set Ω ⊆ RN with the operation of composition
(here, we are referring to a smooth vector field as a linear partial differential
operator of first order with smooth coefficients).
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9.2 Bernoulli Numbers

The aim of this section is to recall the definition of the so-called Bernoulli
numbersBn and to collect some useful identities involving them. These num-
bers intervene in many arguments concerning with the CBHD Theorem. For
example, we invoked the Bn in Sect. 4.5, when giving another “short” proof
of the CBHD Theorem.

Our approach in this section will be different from that in the preceding
section, in that we shall make use of elementary differential calculus (in R

or in C). This will allow us to streamline our arguments and to furnish a
useful tool in handling with formal power series identities, frequent in the
literature. We will take the opportunity to establish a result (see Lemma 9.17
below) allowing us to fill the link between Calculus and the algebraic aspects
of formal power series.

We begin with the central definition.

Definition 9.15 (Bernoulli Numbers). Let us define, inductively, a sequ-
ence of rational numbers {Bn}n by the following recursion formula:

B0 := 1, Bn := −n!
n−1∑

k=0

Bk

k! (n+ 1− k)!
(n ≥ 1). (9.37)

The Bn are referred to3 as the Bernoulli numbers.

For example, the first few Bn are:

n 0 1 2 4 6 8

Bn 1 − 1
2

1
6 − 1

30
1
42 − 1

30

n 10 12 14 16 18 20

Bn
5
66 − 691

2730
7
6 − 3617

510
43867
798 − 174611

330

while B2k+1 = 0

for every k ≥ 1.

[Note that the fact that B3, B5, . . . vanish is not obvious from the definition
(9.37): it will be proved below.]

3Some authors use alternative notations and definitions for the Bernoulli numbers, see
e.g. [176, §1.1].
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There are plenty of interesting relations involving the Bernoulli num-
bers Bn. We here confine ourselves in proving those occurred in this Book
(namely, (4.111a)–(4.111c) and (4.112) in Chap. 4). For a comprehensive study
of Bernoulli numbers (and the so-called Bernoulli polynomials) in the theory
of special functions, the interested Reader is referred to, e.g., Wang and Guo
[176, §1.1].

Let us consider the real function

g : R→ R, g(x) :=

{ x

ex − 1
, if x �= 0,

1, if x = 0.
(9.38)

We shall write g(x) = ex−1
x even when x = 0, with the obvious meaning.

It is easily seen that g is real analytic: however, the Maclaurin series of g
converges to g only on the interval (−2 π, 2 π). Obviously, this depends on
the fact that, among the non-removable singularities of the complex function

z
ez−1 , the ones closest to the origin are ±2π i. We set

ϕn :=
( d

dx

)n∣∣
∣
0
g(x), whence g(x) =

∞∑

n=0

ϕn

n!
xn if |x| < 2 π.

[We shall soon discover that the constants ϕn are the same as the Bernoulli
numbers!]

Thanks to Lemma 9.17 below, ensuring that Maclaurin series behave
under multiplication like formal power series, we have the following
identities (valid for |x| < 2 π):

1 =
ex − 1

x
g(x)

(9.39)
=

∞∑

j=0

tj

(j + 1)!
·

∞∑

k=0

ϕk

k!
xk

=

∞∑

n=0

xn
( n∑

k=0

ϕk

k! (n+ 1− k)!

)

.

By equating the coefficients of xn from the left-/right-hand sides, we obtain

⎧
⎪⎨

⎪⎩

1 = ϕ0,

0 =

n∑

k=0

ϕk

k! (n+ 1− k)!
=
ϕn

n!
+

n−1∑

k=0

ϕk

k! (n+ 1− k)!
, (n ≥ 1).

This recursion formula is precisely the recursion formula (9.37) defining the
Bernoulli numbers, so that

ϕn = Bn, for all n ∈ N ∪ {0}.
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We have thus derived the following facts on the Bernoulli numbers:

Bn :=
( d

dx

)n∣∣
∣
0

x

ex − 1
, and

x

ex − 1
=

∞∑

n=0

Bn

n!
xn if |x| < 2 π. (9.39)

Let now x ∈ R \ {0}. We have

g(x) +
1

2
x =

x

ex − 1
+

1

2
x =

ex + 1

ex − 1

x

2
=
ex/2 + e−x/2

ex/2 − e−x/2

x

2
=

cosh(x/2)

sinh(x/2)

x

2
.

If we set

k : R→ R, k(x) :=

⎧
⎨

⎩

cosh(x/2)
x/2

sinh(x/2)
, if x �= 0,

1, if x = 0,
(9.40)

we have proved that

g(x) +
x

2
= k(x), for all x ∈ R (9.41)

(the value x = 0 being recovered by passing to the limit x → 0 in the above
computations). Thanks to the second identity in (9.39), we derive from (9.41)
the Maclaurin expansion for k (recall that B1 = −1/2):

k(x) = 1 +

∞∑

n=2

Bn

n!
xn if |x| < 2 π.

Now, from its very definition (9.40), we recognize that k is an even function,
so that its derivatives at 0 of odd orders do vanish. The above expansion of
k thus ensures that

B2k+1 = 0 for every k ≥ 1, (9.42)

so that the Maclaurin expansions of g and k are actually

g(x) = −x
2
+

∞∑

n=0

B2n

(2n)!
x2n, k(x) =

∞∑

n=0

B2n

(2n)!
x2n if |x| < 2 π. (9.43)

Remark 9.16. In the above calculations, we have proved that g(x) = −x/2 +
k(x), where k is an even function. Thus, g(−x) = x/2 + k(x). This gives the
identity g(−x) = x+ k(x), that is,

−x
e−x − 1

= x+
x

ex − 1
, (9.44)
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which is, at the same time, an identity for x ∈ R, an identity for complex
x such that |x| < 2 π, and an identity between the corresponding formal
power series.

In the above computations, we used the following simple result.

Lemma 9.17. Let f be a real-valued C∞ function defined on an open real-interval
containing 0. We write

f ∼

∑∞
k=0 ak t

k

to mean that the above formal power series is the Maclaurin series expansion of f .
In other words, this means that

ak =
f (k)(0)

k!
for all k ≥ 0, where f (k)(0) :=

dkf

dxk
(0).

Let ε > 0 be fixed. Let f, g : (−ε, ε) → R be of class C∞ and let f ∼

∑
k=0 ak t

k

and g ∼

∑
k=0 bk t

k. Then

f · g ∼

(∑

k=0

ak t
k
)
·
(∑

k=0

bk t
k
)
. (9.45)

The · symbol in the left-hand side denotes the (point-wise) product of functions,
whereas the same symbol in the right-hand side is the (Cauchy) product in R[[t]]
in (9.1).

Another way to state the above result is the following: Given ε > 0, the map

C∞((−ε, ε),R) −→ R[[t]], f �→
∞∑

k=0

f (k)(0)

k!
tk

is a UAA morphism (when the usual corresponding products are considered).
[Obviously, analogous results hold replacing R with C, C∞ with Cω and
(−ε, ε) with the complex disc about 0 with radius ε.]

Proof. In view of the definition of ∼ and of the Cauchy product in K[[t]],
(9.45) is equivalent to

1

k!

dk(f g)

dxk
(0) =

k∑

n=0

f (n)(0)

n!

g(k−n)(0)

(k − n)!
,

but this immediately4 follows from the fact that f �→ f ′ is a derivation of
C∞((−ε, ε),R). ��

4Indeed, if D is a derivation of an associative algebra (A, ∗), we have
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For the sake of completeness, we furnish the analogue of Lemma 9.17 in the
case of composition of functions (and of formal power series). This result is
much more delicate than the case of the product, since the derivative ∂t is not
a derivation of the algebra (K[[t]]+, ◦).
Theorem 9.18. Let ∼ have the same meaning as in Lemma 9.17. Let ε > 0 be
fixed. Let f, g : (−ε, ε) → R be of class C∞ and let f ∼

∑
k=0 ak t

k and g ∼∑
k=0 bk t

k. Suppose that b0 = 0.
Then the composite of functions f ◦ g is well posed on a neighborhood of 0 and

f ◦ g ∼

(∑

k=0

ak t
k
)
◦
(∑

k=1

bk t
k
)
. (9.46)

Here, the ◦ symbol in the left-hand side denotes the ordinary composition of
functions, whereas that in the right-hand side is the operation of substitution of
formal power series as in Definition 9.2.

Note that (9.46) is equivalent to the following formula for the iterated derivative
of the composite of functions

dn(f ◦ g)
dxn

(0) = n!

n∑

k=1

f (k)(0)

k!

∑

i1+···+ik=n

g(i1)(0) · · · g(ik)(0)
i1! · · · ik! . (9.47)

Proof. Since g(0) = b0 = 0, by continuity there exists a small δε > 0 such that
δε < ε and g(x) ∈ (−ε, ε) whenever |x| < δε, so that f ◦ g is well posed (and
obviously C∞) on (−δε, δε). Let n ∈ N be fixed. By Taylor’s formula with
the Peano remainder, we have

f(y) =
n∑

k=0

f (k)(0)

k!
yk + O(yn+1), as y → 0,

g(x) =

n∑

i=1

g(i)(0)

i!
xi + O(xn+1), as x→ 0.

Since g(x) = O(x) as x → 0 (recall that g(0) = 0), from the substitution
y = g(x) in the above expansions, we easily get

f(g(x)) =

n∑

k=0

f (k)(0)

k!

( n∑

i=1

g(i)(0)

i!
xi
)k

+ O(xn+1), as x→ 0.

Dk(a ∗ b) =

k∑

n=0

(
k
n

)
(Dna) ∗ (Dk−nb), ∀ a, b ∈ A, ∀ k ∈ N,

as a simple inductive argument shows.
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Moreover, we notice that the polynomial in the above right-hand side equals

f(0) +

n∑

k=1

f (k)(0)

k!

∑

1≤i1,...,in≤n

g(i1)(0) · · · g(ik)(0)
i1! · · · ik! xi1+···+ik

= f(0) +
n∑

h=1

xh
( h∑

k=1

f (k)(0)

k!

∑

i1+···+ik=h

g(i1)(0) · · · g(ik)(0)
i1! · · · ik!

)

+ O(xn+1),

as x → 0. Since a smooth function which is a Ox→0(x
n+1) as x → 0 has

vanishing n-th order derivative at 0, collecting the above expansions we
have

dn(f ◦ g)
dxn

(0) =
dn

dxn

∣
∣
∣
0

{ n∑

h=1

xh
( h∑

k=1

f (k)(0)

k!

∑

i1+···+ik=h

g(i1)(0) · · · g(ik)(0)
i1! · · · ik!

)}

= n!

n∑

k=1

f (k)(0)

k!

∑

i1+···+ik=n

g(i1)(0) · · · g(ik)(0)
i1! · · · ik! .

This is (9.47), which is equivalent to (9.46), by definition of ∼ and of the
composite of formal power series. ��



Chapter 10
Symmetric Algebra

IN this chapter, we recall the basic facts we needed about the so-called
symmetric algebra (of a vector space), which we used in Chap. 6 in

exhibiting the relationship between the CBHD Theorem and the PBW
Theorem.

Throughout, V will denote a fixed vector space over the field K. More-
over, K is supposed to have characteristic zero. This hypothesis will be crucial
in Theorems 10.9, 10.17, 10.19 and in Proposition 10.16 below, whereas –
as the Reader will certainly realize – all other definitions and results hold
without this restriction.

To lighten the reading, the chapter is split in two parts: the main results
(Sect. 10.1) and the proofs of these results (Sect. 10.2).

10.1 The Symmetric Algebra and the Symmetric
Tensor Space

Definition 10.1 (Symmetric Algebra of a Vector Space). Let V be a vector
space and let T (V ) be its tensor algebra. We denote by H (V ) the two-sided
ideal of T (V ) generated by the elements of the form x ⊗ y − y ⊗ x, where
x, y ∈ V . Then the quotient algebra

Sym(V ) := T (V )/H (V ) (10.1)

is called the symmetric algebra of V . Throughout this section, the map

φ : T (V )→ Sym(V ), t �→ [t]H (10.2)

denotes the corresponding projection. Moreover, the induced algebra oper-
ation on Sym(V ) is denoted by ∗, namely

∗ : Sym(V )× Sym(V )→ Sym(V ), φ(t) ∗ φ(t′) = φ(t · t′) ∀ t, t′ ∈ T (V ).

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes
in Mathematics 2034, DOI 10.1007/978-3-642-22597-0 10,
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Remark 10.2. 1. The set {φ(1K)}∪φ(V ) is a set of algebra generators for Sym(V ).
This follows from the fact that {1K} ∪ V is a set of algebra generators for
T (V ) and the fact that φ : V → Sym(V ) is a UAA morphism.

2. The map φ|V : V → Sym(V ) is injective. Indeed, if v ∈ V is such that
φ(v) = 0, we have v ∈ H (V ), whence v = 0 since H (V ) ⊂⊕n≥2 Tn(V ).

Proposition 10.3. With the notation of Definition 10.1, the algebra (Sym(V ), ∗)
is an Abelian UA algebra.

Proof. We have to prove that s ∗ s′ = s′ ∗ s for every s, s′ ∈ Sym(V ). This is
equivalent to t · t′ − t′ · t ∈ H (V ), for every t, t′ ∈ T (V ). Obviously, we can
restrict the proof to the case when t, t′ are elementary tensors. In general,
given u1, . . . , uk ∈ V , we have

u1 ⊗ · · ·ui ⊗ ui+1 · · · ⊗ uk = u1 ⊗ · · · (ui ⊗ ui+1 − ui+1 ⊗ ui) · · · ⊗ uk+

+ u1 ⊗ · · ·ui+1 ⊗ ui · · · ⊗ uk

≡ u1 ⊗ · · ·ui+1 ⊗ ui · · · ⊗ uk mod H (V ).

This ensures that the φ-images of two elementary tensors with an inter-
changed pair of consecutive factors do coincide in Sym(V ). An inductive
argument then shows that

(v1⊗· · ·⊗vn)⊗(w1⊗· · ·⊗wm) ≡ (w1⊗· · ·⊗wm)⊗(v1⊗· · ·⊗vn) mod H (V ),

for any choice of vectors vi, wj in V and n,m in N. This ends the proof. ��
The ideal H (V ) will frequently be written simply as H . By the very
definition of H , the elements of H are linear combinations of tensors of
the form

t · (x ⊗ y − y ⊗ x) · t′, with t, t′ ∈ T (V ) and x, y ∈ V .

Hence H is spanned by tensors of the form

v1 ⊗ · · · ⊗ vn ⊗ (x ⊗ y − y ⊗ x)⊗ w1 ⊗ · · · ⊗ wm, (10.3)

where n,m ∈ N ∪ {0}, x, y ∈ V and the vectors vi and wj belong to V (we
set v1 ⊗ · · · ⊗ vn = 1 when n = 0 and analogously for w1 ⊗ · · · ⊗ wm).

Note that we have H ⊂⊕n≥2 Tn(V ). Since H is generated by homoge-
nous tensors, it is easily seen that H admits the grading

H (V ) =
⊕

n≥2 Hn(V ), where Hn(V ) := Tn(V ) ∩H (V ). (10.4)

Indeed, it holds that Hn · Hm ⊆ Hn+m, for every n,m ≥ 2 (the shorthand
Hn := Hn(V ) applies).
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Throughout this section, given n ∈ N, we denote by Sn the group of
permutations of the set {1, 2, . . . , n} (i.e., the set of the bijections of the set
{1, 2, . . . , n}). The group operation on Sn is the composition of functions.
With this notation at hand, we see that in the proof of Proposition 10.3 we
have shown that

v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n) ∈ H (V ),

for any choice of n ∈ N, σ ∈ Sn and v1, . . . , vn ∈ V .
(10.5)

Proposition 10.4. With the above notation, for every n ∈ N, n ≥ 2,

Hn(V ) = span
{
v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)

∣
∣
∣ σ ∈ Sn, v1, . . . , vn ∈ V

}
.

(10.6)

Proof. The inclusion Hn ⊇ span{· · · } in (10.6) follows from (10.5). The
reverse inclusion can be easily argued by exploiting the form (10.3) of a
system of generators for H (V ). Indeed, (10.3) shows that an element of Hn

is a linear combination of tensors like

v1 ⊗ · · · ⊗ vk ⊗ (vk+1 ⊗ vk+2 − vk+2 ⊗ vk+1)⊗ vk+3 ⊗ · · · ⊗ vn.

In its turn, the latter can be rewritten as v1⊗· · ·⊗vn−vσ(1)⊗· · ·⊗vσ(n) with

σ(i) =

⎧
⎨

⎩

i, if i ∈ {1, . . . , k − 2} ∪ {k + 3, . . . , n},
k + 2, if i = k + 1,
k + 1, if i = k + 2.

This ends the proof. Indeed, this proves something more, namely that in
(10.6) we can replace Sn by the set of transpositions of {1, . . . , n} or even by the
set of the transpositions that exchange two consecutive integers. ��
Gathering together the gradings T =

⊕
n≥0 Tn and H =

⊕
n≥0 Hn (here

we have set H0 := {0} =: H1) and the fact that Hn ⊂ Tn for every n ≥ 0,
we easily obtain the decomposition

Sym(V ) =
⊕

n≥0

Symn(V ), where Symn(V ) := Tn(V )/H (V ), (10.7)

which is also a grading, for it holds that

Symn(V ) ∗ Symm(V ) ⊆ Symn+m(V ), for all n,m ≥ 0. (10.8)

The linear set Symn(V ) is called the n-th symmetric power of V . We have
Sym0(V ) = φ(K) � K, Sym1(V ) = φ(V ) � V , and, more important,
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Symn(V ) = Tn(V )/H (V ) � Tn(V )/Hn(V ), for all n ≥ 0. (10.9)

Indeed, the map

Tn(V )/H (V ) � [t]H �→ [t]Hn ∈ Tn(V )/Hn(V )

(since t ∈ Tn) is well posed and it is an isomorphism of vector spaces.1

Remark 10.5. Since Tn is spanned by {v1 ⊗ · · · ⊗ vn |v1, . . . , vn ∈ V },
Symn(V ) = φ(Tn(V )) is spanned by {φ(v1) ∗ · · · ∗ φ(vn) |v1, . . . , vn ∈ V }
(recall that φ : T (V )→ Sym(V ) is a UAA morphism).

The linear set Symn(V ) has a characterizing property, which we state in
Proposition 10.6 below. First we recall that, given sets U, V and n ∈ N, a
map ϕ : V n → U (here V n is the n-fold Cartesian product of V with itself) is
called symmetric if

ϕ(vσ(1), . . . , vσ(n)) = ϕ(v1, . . . , vn), ∀ σ ∈ Sn, ∀ v1, . . . , vn ∈ V.

Proposition 10.6. Let V be a vector space. If φ is as in (10.2), we set

ϕ : V n → Symn(V ), ϕ(v1, . . . , vn) := φ(v1) ∗ · · · ∗ φ(vn).

Then ϕ is n-linear and symmetric. Moreover, for every vector space U and every
symmetric n-linear map β : V n → U , there exists a unique linear map βϕ :
Symn(V )→ U such that

βϕ(ϕ(v)) = β(v) for every v ∈ V n, (10.10)

thus making the following diagram commute:

V n
β

��

ϕ

��

U

Symn(V )

βϕ

���������������

Proof. Note that the above map ϕ equals

ϕ(v1, . . . , vn) = φ(v1 ⊗ · · · ⊗ vn) = [v1 ⊗ · · · ⊗ vn]H , ∀ v1, . . . , vn ∈ V.

1Indeed, if t, t′ ∈ Tn and [t]H = [t′]H then t− t′ ∈ Tn∩H = Hn so that [t]Hn = [t′]Hn .
Also, the map is injective for, if [t]Hn = [t′]Hn then t−t′ ∈ Hn ⊂ H , so that [t]H = [t′]H .
Finally, the map is obviously linear and onto.
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For the proof of this proposition, see page 514. ��
Also the symmetric algebra Sym(V ) has a universal property:

Theorem 10.7 (Universal Property of Sym(V )). Let V be a vector space and
let Sym(V ) and φ be as in Definition 10.1.

(i) For every Abelian UA algebra A and every linear map f : V → A, there exists
a unique UAA morphism fφ : Sym(V )→ A such that

fφ(φ(v)) = f(v) for every v ∈ V , (10.11)

thus making the following diagram commute:

V
f

��

φ|V
��

A

Sym(V )

fφ

��������������

(ii) Conversely, suppose W,ϕ are respectively an Abelian UA algebra and a linear
map ϕ : V → W with the following property: For every Abelian UA algebra
A and every linear map f : V → A, there exists a unique UAA morphism
fϕ :W → A such that

fϕ(ϕ(v)) = f(v) for every v ∈ V , (10.12)

thus making the following diagram commute:

V
f

��

ϕ

��

A

W

fϕ

�������������

Then W and Sym(V ) are canonically isomorphic, as UA algebras, the
isomorphism being (see the notation in (ii) above) ϕφ : Sym(V ) → W and
its inverse being φϕ : W → Sym(V ). Furthermore, ϕ is injective and W
is generated, as an algebra, by the set {1W } ∪ ϕ(V ). Actually it holds that
ϕ = ϕφ ◦ (φ|V ). Finally we have W � Sym(ϕ(V )), canonically.

Proof. See page 515. ��
Remark 10.8. More generally, the following fact holds: For every UA algebra
(A,�) (not necessarily Abelian) and every linear map f : V → A such that
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f(x)� f(y)− f(y)� f(x) = 0, ∀ x, y ∈ V,

there exists a unique UAA morphism fφ : Sym(V )→ A such that (10.11) holds.

We have already used the following result back in Chap. 6.

Theorem 10.9. Let n ∈ N. Suppose K is of characteristic zero. Then, with the
notation in Definition 10.1, the set Symn(V ) = Tn(V )/H (V ) is spanned by the
elements of the form (φ(v))∗n, with v ∈ V . More explicitly, we have

Symn(V ) = span
{
φ(v⊗n)

∣
∣ v ∈ V

}
= span

{
w∗n ∣∣w ∈ φ(V )

}
. (10.13)

More generally, this holds provided that n! · 1K is invertible in K.

Proof. We give two proofs of this fact: One is short but indirect; the other
“constructive”, but it involves Lemma 10.10 below (whose proof is a bit
tricky). See page 515. ��
The following lemma is useful:

Lemma 10.10. Let (A, ∗) be a ring. Then for every n ∈ N and x1, . . . , xn ∈ A,
we have (using “card” to denote set-cardinality)

∑

σ∈Sn

xσ(1) ∗ · · · ∗ xσ(n) = (−1)n
∑

H⊆{1,...,n}
(−1)card(H)

(∑
i∈H xi

)∗n
. (10.14)

(When H = ∅, we have set
∑

i∈H xi = 0.) In particular, if A is Abelian we get

n!x1 ∗ · · · ∗ xn = (−1)n
∑

H⊆{1,...,n}
(−1)card(H)

(∑
i∈H xi

)∗n
. (10.15)

Proof. See page 516. ��
We next turn to realizing Sym(V ) as a subset (which is not a subalgebra,
though) of T (V ). The fact that K has null characteristic allows us to carry
out the following construction. Let n ∈ N be fixed. We consider on V n (the
n-fold Cartesian product of V with itself) the map

β : V n → Tn(V ), β(v1, . . . , vn) :=
1

n!

∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n).

We claim that β is n-linear and symmetric. For instance, leaving the verifica-
tion of the n-linearity to the Reader, we show that β is symmetric: Indeed,
for every fixed σ ∈ Sn and every w1, . . . , wn ∈ V we have
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β(wσ(1), . . . , wσ(n)) = (set vi := wσ(i) for every i = 1, . . . , n)

=
1

n!

∑

τ∈Sn

vτ(1) ⊗ · · · ⊗ vτ(n) =
1

n!

∑

τ∈Sn

wσ(τ(1)) ⊗ · · · ⊗ wσ(τ(n))

(obviously τ ∈ Sn iff τ = σ−1 ◦ ρ with ρ ∈ Sn)

=
1

n!

∑

ρ∈Sn

wρ(1) ⊗ · · · ⊗ wρ(n) = β(w1, . . . , wn).

(10.16)

By Proposition 10.6, there exists a unique linear map

Sn : Symn(V )→ Tn(V ) (10.17)

such that Sn(φ(v1 ⊗ · · · ⊗ vn)) = β(v1, . . . , vn), i.e., such that

Sn([v1 ⊗ · · · ⊗ vn]H ) =
1

n!

∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n), ∀ v1, . . . , vn ∈ V.

(10.18)
Note that we have (see the computation in (10.16))

Sn([vσ(1) ⊗ · · · ⊗ vσ(n)]H ) = Sn([v1 ⊗ · · · ⊗ vn]H ),

for every σ ∈ Sn and every v1, . . . , vn ∈ V .
(10.19)

Let now σ ∈ Sn be fixed. We consider the function from V n to Tn(V )
mapping (v1, . . . , vn) ∈ V n to vσ(1) ⊗ · · · ⊗ vσ(n). Obviously, this map is
n-linear, so that (by the universal property of the tensor product) there exists
a unique linear map

Rσ : Tn(V )→ Tn(V )

such that

Rσ(v1 ⊗ · · · ⊗ vn) = vσ(1) ⊗ · · · ⊗ vσ(n), ∀ v1, . . . , vn ∈ V. (10.20)

Note that we have

Rσ ◦Rτ = Rσ◦τ , (Rσ)
−1 = Rσ−1 , for every σ, τ ∈ Sn, (10.21)

as can be seen by comparing the action of these functions on elementary
tensors (which span Tn). Since any Rσ is an endomorphism of Tn (actually,
an automorphism), the formula

Qn := 1
n!

∑
σ∈Sn

Rσ
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defines in its turn an endomorphism of Tn(V ). More explicitly

Qn : Tn(V )→ Tn(V )

is the (unique) linear map such that

Qn(v1 ⊗ · · · ⊗ vn) =
1

n!

∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n), ∀ v1, . . . , vn ∈ V. (10.22)

We call Qn the symmetrizing operator and we say that Qn(v) is the symmetriza-
tion of v ∈ Tn(V ). Note that we have

Qn(vσ(1) ⊗ · · · ⊗ vσ(n)) = Qn(v1 ⊗ · · · ⊗ vn),

for every σ ∈ Sn and every v1, . . . , vn ∈ V .
(10.23)

Remark 10.11. For every v ∈ Tn(V ), we have v − Qn(v) ∈ Hn(V ). Indeed, it
suffices to prove this for a set of generators of Tn, namely the elementary
tensors. To this aim, let v = v1 ⊗ · · · ⊗ vn, with v1, . . . , vn ∈ V . In view of
Proposition 10.4, we have

v1 ⊗ · · · ⊗ vn −Rσ(v1 ⊗ · · · ⊗ vn) ∈ Hn(V ), ∀ σ ∈ Sn.

Summing up over all σ in Sn we obtain (recall that card(Sn) = n!)

n! v1 ⊗ · · · ⊗ vn −
∑

σ∈Sn

Rσ(v1 ⊗ · · · ⊗ vn) ∈ Hn(V ),

which can be rewritten as n! (v − Qn(v)) ∈ Hn(V ). The fact that n! �= 0
(recall that K has characteristic zero) proves that v − Qn(v) ∈ Hn(V ), as
claimed. ��
The link between Qn in (10.22) and Sn in (10.18) is (see the proof of
Proposition 10.6, page 514):

Sn([v]H (V )) = Qn(v), for every v ∈ Tn(V ). (10.24)

This means that the following is a commutative diagram:
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Tn(V )
Qn

��

φ|Tn
��

Tn(V )

Symn(V )

Sn

��������������

We give the following definition:

Definition 10.12 (Symmetric Tensor Space of Order n). Let n ∈ N and
consider the notation in (10.20). We set

Sn(V ) :=
{
v ∈ Tn(V )

∣
∣ v = Qn(v)

}
, (10.25)

and we call it the space of the symmetric tensors of order n (on V ). We also set
S0(V ) := K.

Obviously, Sn(V ) (sometimes shortened to Sn) is a linear subspace of
Tn(V ).

Remark 10.13. With the notation of Definition 10.12, we have

Sn(V ) =
{
v ∈ Tn(V )

∣
∣ v = Rσ(v) ∀σ ∈ Sn

}
. (10.26)

Indeed, the inclusion Sn(V ) ⊇ {· · · } in (10.25) is obvious (for card(Sn)=n!).
Conversely, if v ∈ Sn(V ) we have, for any τ ∈ Sn,

Rτ (v) = Rτ (Qn(v)) =
1
n!

∑
σ∈Sn

Rτ (Rσ(v))

(10.21)
= 1

n!

∑
σ∈Sn

Rτ◦σ(v) = 1
n!

∑
ρ∈Sn

Rρ(v) = Qn(v) = v.

Here we used the fact that τ ◦Sn = Sn.

Remark 10.14. From the very definitions (10.25) of Symn(V ) and (10.22) of
Qn (together with the fact that elementary tensors span Tn), we infer

Sn(V ) = span

{ ∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n)

∣
∣
∣ v1, . . . , vn ∈ V

}

. (10.27)

Yet another characterization of Symn(V ):

Remark 10.15. By making use of (10.27) and of (10.14) in Lemma 10.10, we
obtain

Sn(V ) = span
{
v⊗n | v ∈ V

}
. (10.28)
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Indeed, it suffices to argue as in the proof of Theorem 10.9 (page 515), thus
obtaining an explicit representation of the symmetrization of v1⊗ · · ·⊗ vn in
terms of n-powers, as follows:

∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n) =
∑

H⊆{1,...,n}
(−1)n+card(H)

(∑
i∈H vi

)⊗n (10.29)

Qn(v1 ⊗ · · · ⊗ vn) =
∑

H⊆{1,...,n}

(−1)n+card(H)

n!

(∑
i∈H vi

)⊗n
. (10.30)

We summarize the characterizations of Sn(V ) found in Remarks 10.13, 10.14
and 10.15 in the following proposition.

Proposition 10.16 (Characterizations of Sn(V )). Let K be of characteristic
zero. Let n ∈ N and let Sn(V ) be as in Definition 10.12. Then we have:

Sn(V ) = span
{
v⊗n | v ∈ V

}
. (10.31a)

=
{
v ∈ Tn(V )

∣
∣ v = Qn(v)

}
(10.31b)

=
{
v ∈ Tn(V )

∣
∣ v = Rσ(v) ∀σ ∈ Sn

}
(10.31c)

= span

{ ∑

σ∈Sn

vσ(1) ⊗ · · · ⊗ vσ(n)

∣
∣
∣ v1, . . . , vn ∈ V

}

. (10.31d)

The following important theorem holds, providing a representation of the
space Symn(V ) as a subset (rather than a quotient) of Tn(V ).

Theorem 10.17 (The Isomorphism of Vector Spaces Sn(V ) � Symn(V )).
Let K be of characteristic zero. Let n ∈ N and let all the above notation apply. Then

Sn(V ) = Sn(Symn(V )),

and Sn : Symn(V ) → Sn(V ) is an isomorphism of vector spaces. The inverse
isomorphism S−1

n : Sn(V ) → Symn(V ) coincides with the restriction φ|Sn(V ) of
the natural projection, i.e.,

S−1
n (s) = φ(s) = [s]Hn(V ), for every s ∈ Sn(V ). (10.32)

Finally, the map Qn : Tn(V ) → Tn(V ) in (10.22) is a projector of Tn(V ) onto
Sn(V ) with kernel Hn(V ) so that Tn(V ) = Sn(V )⊕Hn(V ).

Proof. See page 518. ��
So, the linear map Qn : Tn(V )→ Tn(V ) has the following properties:

1. Qn(Tn(V )) = Sn(V ) so that Qn : Tn(V )→ Sn(V ) is onto.
2. Qn|Sn(V ) is the identity of Sn(V ) and Q2

n = Qn on Tn(V ).
3. ker(Qn) = Hn(V ) and Tn(V ) = Sn(V )⊕Hn(V ).
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By Theorem 10.17, the arrows in the following diagram are all isomorphisms
of vector spaces (and the diagram is commutative):

Sn(V )
Qn|Sn(V ) ≡ idSn(V )

��

φ|Sn(V )

��

Sn(V )

Symn(V )

Sn

�����������������������������

The following is a very natural definition.

Definition 10.18 (The Symmetric Tensor Space S (V )). Let V be a vector
space. For n ∈ N ∪ {0}, let Sn(V ) ⊆ Tn(V ) be as in Definition 10.12. Then
we set

S (V ) :=
⊕

n≥0

Sn(V ), (10.33)

and we call S (V ) the symmetric tensor space of V . Note that S (V ) is a vector
subspace of the tensor algebra T (V ) of V .

For the sake of convenience, we introduce the maps

S0 : Sym0(V )→ T0(V )

[k]H �→ k
and

Q0 : T0(V )→ T0(V )

k �→ k

(k being an arbitrary element of K). We “glue” together the maps {Sn}n≥0

to define the (unique) linear map

S : Sym(V )→ T (V ), such that S|Symn(V ) ≡ Sn, for every n ≥ 0. (10.34)

Analogously, we “glue” together the maps {Qn}n≥0 to define the (unique)
linear map

Q : T (V )→ T (V ), such that Q|Tn(V ) ≡ Qn, for every n ≥ 0. (10.35)

We call Q the symmetrizing operator of T (V ).

Theorem 10.19 (The Isomorphism of Vector Spaces S (V ) � Sym(V ).
Let K be of characteristic zero. Then the set S (V ) ⊂ T (V ) is isomorphic, as a
vector space, to Sym(V ) (the symmetric algebra of V ).

Indeed, the map S : Sym(V ) → S (V ) is an isomorphism of vector spaces and
its inverse is the restriction of the natural projection: S−1 = φ|S (V ).
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Finally, the map Q : T (V ) → T (V ) is a projector of T (V ) onto S (V ) with
kernel H (V ), so that T (V ) = S (V )⊕H (V ). More precisely, we have:

i. Q(T (V )) = S (V ) so that Q : T (V )→ S (V ) is onto;
ii. Q|S (V ) is the identity of S (V ) and Q2 = Q on T (V ).

iii. ker(Q) = H (V ) and T (V ) = S (V )⊕H (V ).

Proof. This immediately follows from Theorem 10.17 and the very defini-
tions of S and Q. ��
By Theorem 10.19, the arrows in the following diagram are all isomorphisms
of vector spaces (and the diagram is commutative):

S (V )
Q|S (V ) ≡ idS (V )

��

φ|S (V )

��

S (V )

Sym(V )

S

�����������������������������

10.1.1 Basis for the Symmetric Algebra

The rest of the section is devoted to construct bases for the symmetric
algebra Sym(V ) and the symmetric tensor space S (V ).

Throughout the section, V denotes a vector space and B = {bi}i∈I

denotes a fixed indexed basis for V ; moreover we assume that I (or,
equivalently, B) is ordered by the relation �. (Recall that any nonempty set
can be ordered.2) As usual, V is identified to T1(V ) ↪→ T (V ). Finally, recall
that we are assuming that the underlying field K has characteristic zero.

Our main aim here is to prove the following theorem.

Theorem 10.20 (Basis for the Symmetric Algebra Sym(V )). Let B={bi}i∈I

be a basis for V and let I be totally ordered by the relation �. As usual, let φ and ∗
be as in Definition 10.1. For brevity, we set

Bi := φ(bi), for every i ∈ I. (10.36)

2Actually, any nonempty set A can be well ordered, that is, A can be endowed with a total
ordering � (a relation on A which is reflexive, antisymmetric and transitive and such that,
for any pair a, b ∈ A, it holds that a � b or b � a) such that every nonempty subset B of A
possesses a smallest element (i.e., there exists b ∈ B such that b � x for every x ∈ B). See
[108, Theorem 4.1-Appendix 2, page 892], where Zorn’s Lemma is required. We shall not
make explicit use of the well ordering.
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Then we have the following results.

1. For every n ∈ N, the system

An :=
{
Bi1 ∗ · · · ∗Bin

∣
∣
∣ i1, . . . , in ∈ I, i1 � · · · � in

}

is a basis for Symn(V ).
2. The set A := {φ(1K)} ∪

⋃
n∈N An, i.e., the system

A = {φ(1K)} ∪
{
Bi1 ∗ · · · ∗Bin

∣
∣
∣ n ∈ N, i1, . . . , in ∈ I, i1 � · · · � in

}

is a basis for Sym(V ).

Proof. See page 519. ��
Equivalently, the set An can be rewritten as the set of vectors

φ
(
bi1 ⊗ · · · ⊗ bin

)
=
[
bi1 ⊗ · · · ⊗ bin

]
H (V )

=
[
bi1 ⊗ · · · ⊗ bin

]
Hn(V )

,

as i1, . . . , in run through I with i1 � · · · � in.

Theorem 10.21 (Basis for the Symmetric Tensor Space S (V )). Let B =
{bi}i∈I be a basis for V and let I be totally ordered by the relation �. Then we have
the following facts.

1. For every n ∈ N, the system

Cn :=
{
Qn

(
bi1 ⊗ · · · ⊗ bin

) ∣∣
∣ i1, . . . , in ∈ I, i1 � · · · � in

}

is a basis for Sn(V ).
2. The set C := {1K} ∪

⋃
n∈N Cn, i.e., the system

C = {1K} ∪
{
Qn

(
bi1 ⊗ · · · ⊗ bin

) ∣∣
∣ n ∈ N, i1, . . . , in ∈ I, i1 � · · · � in

}

is a basis for S (V ).

Proof. This is a straightforward corollary of Theorem 10.20, together with
the fact that (as stated in Theorem 10.17) Sn : Symn(V ) → Sn(V ) is an
isomorphism of vector spaces and it holds that

Sn(Bi1 ∗ · · · ∗Bin) = Sn

(
φ(bi1) ∗ · · · ∗ φ(bin)

)
= Sn

(
φ
(
bi1 ⊗ · · · ⊗ bin

))

= Sn

([
bi1 ⊗ · · · ⊗ bin

]
H

)
= Qn

(
bi1 ⊗ · · · ⊗ bin

)
,

thanks to (10.24). ��



514 10 Symmetric Algebra

Equivalently (see (10.22)), the set Cn can be rewritten as the set of the vectors

1

n!

∑

σ∈Sn

biσ(1) ⊗ · · · ⊗ biσ(n)
,

as i1, . . . , in run through I with i1 � · · · � in.

10.2 Proofs of Sect. 10.1

Proof (of Proposition 10.6, page 504). First we prove that ϕ(V n) ⊆ Symn(V ).
By the very definition of ∗, we have

ϕ(v1, . . . , vn) = φ(v1) ∗ · · · ∗ φ(vn) = φ(v1 ⊗ · · · ⊗ vn)

= [v1 ⊗ · · · ⊗ vn]H ∈ Symn(V ).

The n-linearity of ϕ is a consequence of the bilinearity of ∗ and the linearity
of φ. The symmetry of ϕ is a straightforward consequence of the fact that
Sym(V ) is Abelian or, equivalently, of identity (10.6).

Let now U be a vector space and let β : V n → U be a symmetric n-linear
map. By the universal property of the tensor product (see Theorem 2.30),
there exists a linear map β : Tn(V )→ U such that

β(v1 ⊗ · · · ⊗ vn) = β(v1, . . . , vn), for every v1, . . . , vn ∈ V . (10.37)

We set

βϕ : Symn(V )→ U, βϕ([t]H ) := β(t), for every t ∈ Tn.

This map has the following properties:

1. It is well-posed. This follows from β|Hn ≡ 0, which derives from the
computation

β
(
v1 ⊗ · · · ⊗ vn − vσ(1) ⊗ · · · ⊗ vσ(n)

)

= β(v1, . . . , vn)− β(vσ(1), . . . , vσ(n)) = 0,

for every σ ∈ Sn and every v1, . . . , vn ∈ V ,

where the linearity of β, (10.37) and the symmetry of β have been used.
2. It is linear. This follows from the linearity of β.
3. It satisfies (10.10). Indeed, one has

βϕ(ϕ(v1, . . . , vn)) = βϕ(φ(v1) ∗ · · · ∗ φ(vn))
= βϕ(φ(v1 ⊗ · · · ⊗ vn)) = βϕ([v1 ⊗ · · · ⊗ vn]H )

= β(v1 ⊗ · · · ⊗ vn) = β(v1, . . . , vn).
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Finally, suppose γ : Symn(V ) → V is linear and it satisfies (10.10). Since
this is equivalent to γ([v1 ⊗ · · · ⊗ vn]H ) = β(v1, . . . , vn), we see that γ is
pre-assigned on a set of generators for Tn/H = Symn(V ). Hence, βϕ is the
unique linear map satisfying (10.10). This ends the proof. ��
Proof (of Theorem 10.7 and Remark 10.8, page 505). Let (A,�) be an Abelian
UA algebra and f : V → A a linear map. By the universal property of
the tensor algebra, there exists a (unique) UAA morphism f : T (V ) → A
prolonging f . We set

fφ : Sym(V )→ A, fφ([t]H ) := f(t) for every t ∈ T (V ).

The map fφ has the following properties:

1. It is well-posed. This follows from β|H ≡ 0, which derives from this
computation (here x, y ∈ V and t, t′ ∈ T (V )):

f
(
t · (x⊗ y − y ⊗ x) · t′) = (f is a UAA morphism)

f(t)� (f(x)� f(y)− f(y)� f(x))� f(t′) = 0,

since f(x)� f(y)− f(y)� f(x) = 0, for (A,�) is Abelian.
2. It is linear. This follows from the linearity of f .
3. It satisfies (10.11). Indeed, for every v ∈ V , one has fφ(φ(v)) = fφ([v]H ) =
f(v) = f(v), for f prolongs f .

The computation in (1) above also proves that Remark 10.8 holds. The
uniqueness of a UAA morphism satisfying (10.11) is a consequence of
Remark 10.2-1. Part (ii) of the Theorem is standard. ��
Proof (of Theorem 10.9, page 506). Let us set Pn := span

{
φ(v⊗n)

∣
∣ v ∈ V

}
. The

inclusion Symn(V ) ⊇ Pn in (10.13) is obvious. We give two proofs of the
reverse inclusion:

First Proof. We argue by contradiction, supposing Pn � Symn(V ). Since
Symn(V ) = span{φ(v1 ⊗ · · · ⊗ vn) | v1, . . . , vn ∈ V }, this means that there
existsw ∈ Symn(V )\Pn, withw = φ(v1⊗· · ·⊗vn), for suitable v1, . . . , vn ∈ V .
Let Ξ : Symn(V )→ Q be a linear map such that Ξ(w) = 1 and Ξ ≡ 0 on Pn.
For every λ1, . . . , λn ∈ Q, we have

φ
(
(λ1v1 + · · ·+ λnvn)

⊗n
) (1)
=
(
λ1φ(v1) + · · ·+ λnφ(vn)

)∗n

(2)
=

∑

k1+···+kn=n

n!

k1! · · · kn! (φ(v1))
∗k1 ∗ · · · ∗ (φ(vn))∗kn λk1

1 · · ·λkn
n .

(10.38)

Here we applied the following facts:

(1) φ : T (V )→ Sym(V ) is a UAA morphism.
(2) (Sym(V ), ∗) is Abelian (together with the ordinary multinomial

theorem).
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The far left-hand side of (10.38) belongs to Pn; hence, applying Ξ to (10.38)
we get

0 =
∑

k1+···+kn=n

n!

k1! · · · kn! Ξ
(
(φ(v1))

∗k1 ∗ · · · ∗ (φ(vn))∗kn
)
λk1
1 · · ·λkn

n

= λ1 · · ·λn

∑

k1=···=kn=1

n!Ξ(φ(v1) ∗ · · · ∗ φ(vn)
︸ ︷︷ ︸
=φ(v1⊗···⊗vn)=w

) +
∑

k1+···+kn=n
(k1,...,kn) �=(1,...,1)

[· · · ]

= n!λ1 · · ·λn +
∑

k1+···+kn=n
(k1,...,kn) �=(1,...,1)

a(k1, . . . , kn)λ
k1
1 · · ·λkn

n

=: n!λ1 · · ·λn +H(λ1, . . . , λn),

for suitable a(k1, . . . , kn) ∈ Q. Since λ1, . . . , λn ∈ Q are arbitrary, by a
continuity argument we get the polynomial identity

0 = n!λ1 · · ·λn +H(λ1, . . . , λn), ∀ λ1, . . . , λn ∈ R.

Applying to this identity the differential operator ∂/(∂λ1 · · · ∂λn), then
setting (λ1, . . . , λn) = 0, and by observing that, in the sum defining H one
at least among k1, . . . , kn is ≥ 2, we get 0 = n!, in contradiction with the
invertibility of n!.

Second Proof. By Remark 10.5, we have

Symn(V ) = span{φ(v1) ∗ · · · ∗ φ(vn) |v1, . . . , vn ∈ V }.

Since (Sym(V ), ∗) is Abelian, part two of Theorem 10.10 (and the hypothesis
of n! being invertible in K) gives

φ(v1) ∗ · · · ∗ φ(vn) = (−1)n
n!

∑

H⊆{1,...,n}
(−1)card(H)

(∑
i∈H φ(vi)

)∗n

=
(−1)n
n!

∑

H⊆{1,...,n}
(−1)card(H) φ

((∑
i∈H vi

)⊗n
)
.

Since the above far right-hand side is evidently an element of Pn, we have
Symn(V ) ⊆ Pn and the proof is complete. ��
Proof (of Theorem 10.10, page 506). We prove (10.14), since (10.15) is a
consequence of it (as card(Sn) = n!).

Let I = {1, . . . , n} and let C = {0, 1}I, that is, C is the set of the mappings
of I into {0, 1}. If P(I) denotes the powerset of I, the mapping

P(I) � H �→ χH ∈ C
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is a bijection.3 Note that we have

card(H) = χH(1) + · · ·+ χH(n)∑

i∈H

xi =
∑

i∈{1,...,n}
χH(i)xi

⎫
⎬

⎭
for every H ∈ P(I).

Consequently, the sum on the right-hand side of (10.14) equals

∑

H⊆{1,...,n}
(−1)card(H)

(∑

i∈H

xi

)∗n

=
∑

a∈C

(−1)a(1)+···+a(n)

( ∑

i∈{1,...,n}
a(i)xi

)∗n

=
∑

a∈C

(−1)a(1)+···+a(n)
∑

i1,...,in∈{1,...,n}
a(i1) · · · a(in)xi1 ∗ · · · ∗ xin

(by interchanging the two sums)

=
∑

i1,...,in∈{1,...,n}
c(i1, . . . , in)xi1 ∗ · · · ∗ xin =: (�),

where

c(i1, . . . , in) :=
∑

a∈C(−1)a(1)+···+a(n)a(i1) · · · a(in). (10.39)

We split the Cartesian product In in two parts: the set (say A) of the
n-tuples (i1, . . . , in) which are a permutation of I = {1, . . . , n}, and its
complementary set In \A (say B). Hence

(�) =
∑

(i1,...,in)∈In

c(i1, . . . , in)xi1 ∗ · · · ∗ xin

=

{
∑

(i1,...,in)∈A

+
∑

(i1,...,in)∈B

}

c(i1, . . . , in)xi1 ∗ · · · ∗ xin .

We claim that
∑

(i1,...,in)∈A

c(i1, . . . , in)xi1 ∗ · · · ∗ xin = (−1)n
∑

σ∈Sn

xσ(1) ∗ · · · ∗ xσ(n),

(10.40)
∑

(i1,...,in)∈B

c(i1, . . . , in)xi1 ∗ · · · ∗ xin = 0. (10.41)

3As usual, χH denotes the characteristic function of H (on I), that is, χH(i) = 1 iff i ∈ H
and χH(i) = 0 iff i ∈ I \H; when H = ∅, this means χH ≡ 0.



518 10 Symmetric Algebra

Note that (10.40)–(10.41) complete the proof of the theorem. We now turn to
prove these claimed equalities:

(10.40): By the definition of A, (i1, . . . , in) ∈ A iff there exists σ ∈ Sn such
that i1 = σ(1), . . . , in = σ(n), so that

∑

(i1,...,in)∈A

c(i1, . . . , in)xi1 ∗ · · · ∗ xin

=
∑

σ∈Sn

c(σ(1), . . . , σ(n))xσ(1) ∗ · · · ∗ xσ(n)

= (−1)n
∑

σ∈Sn

xσ(1) ∗ · · · ∗ xσ(n).

Indeed, in the sum (10.39) for c(σ(1), . . . , σ(n)), the only non-vanishing con-
tribution is given by a ≡ 1 (this being the permutation {σ(1), . . . , σ(n)} =
{1, . . . , n}), so that c(σ(1), . . . , σ(n)) = (−1)n for every σ ∈ Sn.

(10.41): We prove something more, namely c(i1, . . . , in) = 0 for every
(i1, . . . , in) ∈ B. To this end, let us fix (i1, . . . , in) ∈ B and let us note that,
by the definition of B, (i1, . . . , in) is not a permutation of (1, . . . , n) so that
there exists at least one j ∈ {1, . . . , n} distinct from every i1, . . . , in. Next we
split C in two parts: the set, say C ′, of those a ∈ C such that a(j) = 0 and
the set, say C ′′, of those a ∈ C such that a(j) = 1. Now, the map

C′ � a �→ â := a+ χ{j} ∈ C ′′

is a bijection. Hence

c(i1, . . . , in) =
{ ∑

a∈C′
+
∑

a∈C′′

}
(−1)a(1)+···+a(n)a(i1) · · · a(in)

=
∑

a∈C′

{
(−1)a(1)+···+a(n)a(i1) · · · a(in) + (−1)â(1)+···+â(n)â(i1) · · · â(in)

}

(
note that â(1) + · · ·+ â(n) = a(1) + · · ·+ a(n) + 1 and â(i1) · · · â(in)

equals a(i1) · · · a(in) because j is distinct from every i1, . . . , in
)

=
∑

a∈C′
(−1)a(1)+···+a(n){1 + (−1)} a(i1) · · · a(in) = 0.

This completes the proof. ��
Proof (of Theorem 10.17, page 510). We claim that the following facts hold for
the map Qn : Tn(V )→ Tn(V ) in (10.22):

1. Qn(Tn(V )) = Sn(V ), whence Qn : Tn(V )→ Sn(V ) is onto.
2. Q2

n = Qn on Tn(V ).
3. ker(Qn) = Hn(V ).
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We argue as follows:

1. The first claim follows from (10.22) and from (10.27) (by recalling that
Tn(V ) is spanned by elementary tensors).

2. If v ∈ Tn, by (1) we have Qn(v) ∈ Sn(V ). By definition (10.25) of Sn(V ),
Qn leaves unchanged all elements of Sn(V ), whence Qn(Qn(v)) = Qn(v)
and this proves the second claim.

3. The inclusion Hn(V ) ⊆ ker(Qn) is a consequence of (10.6) together with
(10.23). Conversely, let v ∈ ker(Qn). By Remark 10.11, we have v−Qn(v) ∈
Hn(V ), whence v = v − 0 = v − Qn(v) belongs to Hn(V ). The inclusion
ker(Qn) ⊆ Hn(V ) is thus proved too.

As a consequence, for any v ∈ Tn(V ), we can write

v = v −Qn(v)
︸ ︷︷ ︸
∈Hn(V )

+ Qn(v)
︸ ︷︷ ︸
∈Sn(V )

, whence Tn(V ) = Hn(V ) + Sn(V ).

The fact that Tn(V ) = Hn(V )⊕Sn(V ) follows from Hn(V )∩Sn(V ) = {0}.
Indeed, if v ∈ Hn(V ) ∩Sn(V ) then

0 = Qn(v) = v.

The first equality is a consequence of v ∈ Hn(V ) = ker(Qn), the second
equality is a consequence of v ∈ S (V ) and the fact that Qn|S (V ) is the
identity (see (10.25)). By Proposition 2.2-(ii), the map

Tn(V )/ker(Qn)→ Qn(Tn(V )), [t]ker(Qn) �→ Qn(t) (for t ∈ Tn(V ))

is an isomorphism of vector spaces. Actually, this is precisely the map Sn :
Symn(V )→ Sn(V ) introduced in (10.17), for Hn(V ) = ker(Qn), Symn(V ) =
Tn(V )/Hn(V ) (see (10.9)), Qn(Tn(V )) = Sn(V ) and thanks to the fact that
Sn([t]Hn(V )) = Qn(t) for every t ∈ Tn(V ) (see (10.24)).

We are left to prove (10.32). Since we have proved that Sn : Symn(V ) →
Sn(V ) is invertible, in order to find its inverse it suffices to exhibit the right
inverse. Then (10.32) will follow if we show that Sn(φ(s)) = s for every
s ∈ Sn(V ): this is a consequence of the following equalities, valid for any
s ∈ Sn(V ),

Sn(φ(s)) = Sn([s]H )
(10.24)
= Qn(s)

(10.25)
= s.

The theorem is thus completely proved. ��
Proof (of Theorem 10.20, page 512). Part (2) of the assertion follows from part
(1), by recalling that (see (10.7)) Sym(V ) =

⊕∞
n=0 Symn(V ) (and Sym0 =

φ(K)). Hence, we turn to prove that, for every n ∈ N, An is a basis for
Symn(V ).
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• An generates Symn(V ). This follows from the following facts:

Symn(V )
(10.7)
= Tn(V )/H (V )

(10.2)
= φ(Tn(V )) = (by Proposition 2.35-1)

= φ
(
span
{
bi1 ⊗ · · · ⊗ bin

∣
∣ i1, . . . , in ∈ I

})

= span
{
φ
(
bi1 ⊗ · · · ⊗ bin

) ∣
∣ i1, . . . , in ∈ I

}

(10.36)
= span

{
Bi1 ∗ · · · ∗Bin

∣
∣ i1, . . . , in ∈ I

}
.

Now, since (Sym(V ), ∗) is an Abelian algebra, any product Bi1 ∗ · · · ∗ Bin is
equal to an analogous product with i1 � · · · � in, and this completes the
proof of the fact that An generates Symn(V ).
• An is linearly independent. Let p ∈ N, and, for every k ∈ {1, . . . , p}, let

λk ∈ K, ik1 , . . . , i
k
n ∈ I with ik1 � . . . � ikn and such that the n-tuples

(i11, . . . , i
1
n), . . . , (i

p
1, . . . , i

p
n)

are pairwise distinct. It is easily seen that this implies that

(�): no two of these n-tuples are related to one another
by a permutation of their entries.

Now we suppose that

0 =

p∑

k=1

λk Bik1
∗ · · · ∗Bikn

.

Applying to both sides of this equality the linear map Sn, we get

0 =

p∑

k=1

λk

( 1

n!

∑

σk∈Sn

bik
σk(1)

⊗ · · · ⊗ bik
σk(n)

)
,

by recalling that Bik1
∗ · · · ∗ Bikn

=
[
bik1 ⊗ · · · ⊗ bikn

]
H (V )

and by invoking
(10.24). Note that, thanks to the remark in (�), if h �= k, then the n-tuples

(
ihσh(1), . . . , i

h
σh(n)

)
,
(
ikσk(1), . . . , i

k
σk(n)

)

are necessarily distinct: Otherwise, since σh, σk ∈ Sn, the n-tuples (ih1 , . . . , i
h
n)

and (ik1 , . . . , i
k
n) would be permutations of the same n-tuple, contradicting

(�). By Proposition 2.35-(1) (applied to the basis {bi}i∈I) this implies that

(2�) :
λk

n!

∑

σ∈Sn

bik
σ(1)

⊗ · · · ⊗ bik
σ(n)

= 0, for every k = 1, . . . , p.
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Now we remark a crucial (combinatorial) fact: the summands in the above
sum over Sn can be grouped together in such a way that

∑

σ∈Sn

bik
σ(1)

⊗ · · · ⊗ bik
σ(n)

=

N∑

j=1

cj bαj1
⊗ · · · ⊗ bαjn ,

where the coefficients cj are positive integers and the n-tuples

(
α1
1, . . . , α

1
n

)
, . . . ,
(
αN
1 , . . . , α

N
n

)

are pairwise distinct. As a consequence, once again by invoking Proposition
2.35-(1), (2�) can hold if and only if λk = 0, for every k ∈ {1, . . . , p}. This
completes the proof of the fact that An is a linearly independent set. ��
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symmetric algebra, 501
symmetric tensor space, 509
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convergence, 285, 296
convergence (improved), 301
Djoković, 208
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Dynkin, 151
Dynkin, Specht, Wever, 145
Eichler, 188
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fundamental estimate, 281, 296
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