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Preface

UPPOSE you were asked if the so-called Fundamental Theorem of
Algebra is a result of Algebra or of Analysis. What would you
answer? And again, among the arguments proving that the complex field is
algebraically closed, which would you choose? A proof making use of the
concept of continuity? Or of analytic functions, even? Or of Galois theory,
instead?

The central topic of this book, the mathematical result named after the
mathematicians Henry Frederick Baker, John Edward Campbell, Eugene Boriso-
vich Dynkin and Felix Hausdorff, shares — together with the Fundamental
Theorem of Algebra — the remarkable property to cross, by its nature, the
realms of many mathematical disciplines: Algebra, Analysis, Geometry.

As for the proofs of this theorem (named henceforth CBHD, in chrono-
logical order of the contributions), it will be evident in due course of the
book that the intertwining of Algebra and Analysis is especially discernible:
We shall present arguments making use — all at the same time — of topo-
logical algebras, the theory of power series, ordinary differential equations
techniques, the theory of Lie algebras, metric spaces; and more.

If we glance at the fields of application of the CBHD Theorem, it is no
surprise that so many different areas are touched upon: the theory of Lie
groups and Lie algebras; linear partial differential equations; quantum and
statistical mechanics; numerical analysis; theoretical physics; control theory;
sub-Riemannian geometry; and more.

Curiously, the CBHD Theorem crosses our path already at an early stage
of our secondary school education (e”e¥ = 1Y, z,y € R); then it reappears
as a nontrivial problem at the very beginning of our university studies,
yet in the simplest of non-Abelian contexts (is there a formula for e?e?
when A, B are square matrices?); then, as our mathematical background
progresses, we become acquainted with deeper and more natural settings
where this theorem plays a role (for example if we face the problem of
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writing Exp(X) - Exp(Y) in logarithmic coordinates, when X, Y belong to
the Lie algebra of a Lie group); finally, when our undergraduate studies are
complete, we may happen — in all likelihood — to meet the CBHD Theorem
again if we are researchers into one of the mathematical fields mentioned a
few lines above.

Since the early 1897-98 studies by Campbell on this problem, more than
110 years have passed. Still, the problem of the “multiplication of two
exponentials” (whatever the context) has not ceased to provide sources
for new questions. Take, for instance, the problem of finding the optimal
domain of convergence for the series naturally attached to log(e“e¥) (when
x,y belong to an arbitrary non-Abelian Banach algebra), a problem which is
still not solved in complete generality. Or consider the question of finding
more natural and more fitting proofs of the CBHD Theorem, a question
which has been renewed — at repeated intervals — in the literature. Indeed,
mathematicians have gone on feeling the need for new and simpler proofs of
the CBHD Theorem throughout the last century: See for example the papers
[183,1937],[33,1956], [59, 1968], [48, 1975],[174, 1980], [169, 2004]; and many
books may be cited: [99, 1962], [159, 1964], [85, 1965], [79, 1968], [27, 1972],
[151,1973],[171,1974],[70,1982],[84, 1991], 144, 1993],[72, 1997],[91, 1998],
[52,2000], [149, 2002],[77,2003], [1, 2007],[158, 2007] — and this is just a small
sample; an exhaustive list would be very much longer.

The interest in the CBHD Theorem straddling the decades, the very nature of
this result ranging over Algebra, Analysis and Geometry, its fields of application
stretching across so many branches of Mathematics and Physics, the proofs so
variegated and rich in ideas, the engrossing history of the early contributions: all
these facts have seemed to us a sufficient incentive and stimulus in devoting this
monograph to such a fascinating Theorem.

This book is intended to present in a unified and self-contained way the
natural context in which the CBHD Theorem can be formulated and proved.
This context is purely algebraic, but the proofs — as mentioned — are very
rich and diversified. Also, in order to understand and appreciate the varied
arguments attacking the proof of the CBHD Theorem, a historical overview
of its early proofs is also needed, without forgetting — in due course later in
the monograph — to catch a glimpse of more modern studies related to it, the
current state-of-the-art and some open problems.

Most importantly, our aim is to look ahead to applications of the CBHD
Theorem. In order to arrive at these applications, it is first necessary to deal
with the statements and proofs of the CBHD Theorem in the domain of
Algebra. Then the applications in Geometry and in Analysis will eventually
branch off from this algebraic setting.

Since this book may be used by a non-specialist in Algebra (as he may
be, for example, a researcher in PDEs or a quantum physicist who has
felt the need for a deeper understanding of a theorem which has been a
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cornerstone for some part of his studies), our biggest effort here is to furnish
an exposition complete with all details and prerequisites. Any Reader, more
or less acquainted with the algebraic background, will be free to skip those
details he feels fully conversant with.

Now, before revealing the detailed contents of this book (and to avoid
singing further praises of the CBHD Theorem), we shall pass on to some
brief historical notes about this theorem.

§1. A Brief Historical Résumé. A more exhaustive historical overview
is provided in Chapter 1. Here we confine ourselves to disclosing some
forgotten facts about the history of the theorem we are concerned with.

Though the exponential nature of the composition of two ‘exponential
transformations’ is somehow implicit in Lie’s original theory of finite
continuous groups (tracing back to the late nineteenth century), the need
for an autonomous study of the symbolic identity “e”e¥ = e*” becomes
prominent at the very beginning of the twentieth century.

In this direction, EH.Schur’s papers [154]-[157] present some explicit
formulas containing — in a very “quantitative” fashion — the core of the
Second and Third Fundamental Theorems of Lie: given a Lie algebra,
he exhibits suitable multivariate series expansions, only depending on
the structure constants of the algebra and on some universal numbers
(Bernoulli’s), reconstructing a (local) Lie group with prescribed structure.
This is a precursor of the CBHD Theorem.

Meanwhile, in 1897 [28] — motivated by group theory — Campbell takes up
the study of the existence of an element z such that the composition of two
finite transformations e”, e¥ of a continuous transformation group satisfies
the identity e” o e¥ = e*. By means of a not completely transparent series
expansion [30], Campbell solves this problem with little reference (if any) to
group theory, showing that z can be expressed as a Lie series in x, y.

Using arguments not so far from those of Schur, and inspired by the same
search for direct proofs of the Fundamental Theorems of Lie, J.H. Poincaré
and E. Pascal attack “Campbell’s problem” by the use of suitable algebraic
manipulations of polynomials (around 1900-1903).

For instance, in studying the identity e*e¥ = e* from a more symbolic
point of view [142], Poincaré brilliantly shapes a tool (he invents the
universal enveloping algebra!) allowing him to manage both algebraic and
analytic aspects of the problem. Aiming to give full analytical meaning to
his formulas, Poincaré introduces a successful ODE technique: he derives
an ordinary differential equation for z(¢) equivalent to the identity e*(*) =
e”e'¥, whose solution (at ¢ = 1) solves Campbell’s problem and, at the same
time, the Second and Third Fundamental Theorems of Lie. In fact, z(t) can
be expressed, by means of the residue calculus, in a suitable (integral) form
exhibiting its Lie-series nature. Although Poincaré’s contribution is decisive
for the late history of the CBHD Theorem, his latent appeal to group theory
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and the lack of a formula expressing z as a universal Lie series in the symbols
x,y probably allowed this contribution to die out amid the twists and turns
of mathematical history.

Much in the spirit of Poincaré, but with the use of more direct — and more
onerous — computations, Pascal pushes forward Poincaré’s “symmetriza-
tion” of polynomials, in such a way that he is able to rebuild the formal
power series >~ 27 U7 asa pure exponential 3, - Z(Ik’!y)k , where z(z,y)
is a Lie series in z, y involving the Bernoulli numbers. Furthermore, Pascal
sketches the way the commutator series for z(x,y) can be produced: after
the in-embryo formula by Campbell, Pascal’s fully fledged results point out
(for the first time) the universal Lie series expansibility of z in terms of z,y,
a fact which had escaped Poincaré’s notice. Though Pascal’s papers [135]-
[140] will leave Hausdorff and Bourbaki unsatisfied (mostly for the failure
to treat the convergence issue and for the massive computations), the fact
that in modern times Pascal’s contribution to the CBHD Theorem has been
almost completely forgotten seems to us to be highly unwarranted.

The final impulse towards a completely symbolical version of the Expo-
nential Theorem e®e? = e* is given by Baker [8] and by Hausdorff [78].
The two papers (reasonably independent of each other, for Hausdorff’s 1906
paper does not mention Baker’s of 1905) use the same technique of ‘polar
differentiation’ to derive for z(z, y) suitable recursion formulas, exhibiting
its Lie-series nature. Both authors obtain the same expansion z = exp(4)(y)
in terms of a “PDE operator” ¢ = w(z,y) a%' where

ad
w(z,y) =a+ ﬁ(l’).

The Lie series w(z,y), besides containing the Bernoulli numbers! (reap-
pearing, after Schur, in every proof mentioned above), is nothing but the
subseries obtained by collecting — from the expansion of log(e®e?) — the
summands containing x precisely once. The same series appeared clearly
in Pascal, implicitly in Campbell and in an integral form in Poincaré: it can
be rightly considered as the fil rouge joining all the early proofs cited so far.

In proving the representation z = exp(¢)(y), Baker makes use of quite a
puzzling formalism on Lie polynomials, but he is able to draw out of his
machinery such abundance of formulas, that it is evident that this is much
more than a pure formalism.

However, Hausdorff’s approach in proving the formula z = exp(4)(y)
is so efficacious and authoritative that it became the main source for future
work on the exponential formula, to such an extent that Baker’s contribution
went partly — but undeservedly — forgotten. (As a proof of this fact we must

1 _ e} By
Indeed, 2 = > 07 78 2™
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recall that, in a significant part of the related literature, the Exponential
Theorem is named just “Campbell-Hausdorff”.) This is particularly true of
the commentary of Bourbaki on the early history of this formula, citing
Hausdorff as the only “perfectly precise” and reliable source. Admittedly,
Hausdorff must be indeed credited (together with fruitful recursion for-
mulas for the coefficients of z) for providing the long awaited convergence
argument in the set of Lie’s transformation groups.

After Hausdorft’s 1906 paper, about 40 years elapsed before Dynkin [54]
proved another long awaited result: an explicit presentation for the commutator
series of log(e®e?). Dynkin’s paper indeed contains much more: thanks to
the explicitness of his representation, Dynkin provides a direct estimate —
the first in the history of the CBHD Theorem — for the convergence domain,
more general than Hausdorft’s. Moreover, the results can be generalized to
the infinite-dimensional case of the so-called Banach-Lie algebras (to which
Dynkin extensively returns in [56]). Finally, Dynkin’s series allows us to
prove Lie’s Third Theorem (a concern for Schur, Poincaré, Pascal and
Hausdorff) in an incredibly simple way.

Two years later [55], Dynkin will give another proof of the Lie-series
nature of log(e”eY), independently of all his predecessors, a proof disclosing
all the combinatorial aspects behind the exponential formula. As for the
history of the CBHD Theorem, Dynkin’s papers [54]-[56] paved the way,
by happenstance, for the study of other possible presentations of log(e®e¥)
and consequently for the problem of further improved domains of convergence,
dominating the “modern era” of the CBHD Theorem (from 1950 to present
days).

This modern age of the Exponential Theorem begins with the first appli-
cations to Physics (dating back to the 1960-70s) and especially to Quantum
and Statistical Mechanics (see e.g., [51,64,65,104,119,128,178,180, 181]).

In parallel, a rigorous mathematical formalization of the CBHD Theorem
became possible thanks to the Bourbakist refoundation of Mathematics, in
particular of Algebra. Consequently, the new proofs of the CBHD Theorem
(rather than exploiting ad hoc arguments as in all the contributions we cited
so far) are based on very general algebraic tools. For example, they can
be based on characterizations of Lie elements (as given e.g.by Friedrichs’s
criterion for primitive elements) as in Bourbaki [27], Hochschild [85],
Jacobson [99], Serre [159]. As a consequence, the CBHD Theorem should be
regarded (mathematically and historically) as a result from noncommutative
algebra, rather than a result of Lie group theory, as it is often popularized in
undergraduate university courses.

As a matter of fact, this popularization is caused by the remarkable
application of the Exponential Theorem to the structure theory of Lie
groups. Indeed, as is well known, in this context the CBHD Theorem allows
us to prove a great variety of results: the effective analytic regularity of all
smooth Lie groups (an old result of Schur’s!), the local “reconstruction” of
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the group law via the bracket in the Lie algebra, many interesting results on
the duality group/algebra homomorphisms, the classifying of the simply
connected Lie groups by their Lie algebras, the local version of Lie’s Third
Theorem, and many others.

For this reason, all major books in Lie group theory starting from the
1960s comprise the CBHD Theorem (mainly named after Campbell, Haus-
dorff or Baker, Campbell, Hausdorff): See e.g., the classical books (ranging
over the years sixties—eighties) Bourbaki [27], Godement [70], Hausner,
Schwartz [79], Hochschild [85], Jacobson [99], Sagle, Walde [151], Serre [159],
Varadarajan [171]; or the more recent books Abbaspour, Moskowitz [1],
Duistermaat, Kolk [52], Gorbatsevich, Onishchik, Vinberg [72], Hall [77],
Hilgert, Neeb [84], Hofmann, Morris [91], Rossmann [149], Sepanski [158]
(Exceptions are Chevalley [38], which is dated 1946, and Helgason [81],
where only expansions up to the second order are used.)

A remarkable turning point in the history of the CBHD Theorem is
provided by Magnus’s 1954 paper [112]. In studying the exponential form
exp(£2(t)) under which the solution Y (¢) to the nonautonomous linear ODE
system Y’ (t) = A(t)Y (¢) can be represented, Magnus introduced a formula -
destined for a great success — for expanding (2(¢), later referred to also as the
continuous Campbell-Baker-Hausdorff Formula. (See also [10,37,119, 160, 175].)
In fact, in proper contexts and when A(t) has a suitable form, a certain eval-
uation of the expanded {2 gives back the CBHD series. For a comprehensive
treatise on the Magnus expansion, the Reader is referred to Blanes, Casas,
Oteo, Ros, 2009 [16] (and to the detailed list of references therein).

Here we confine ourselves to pointing out that the modern literature
(mainly starting from the 1980s) regarding the CBHD Theorem has mostly
concentrated on the problem of improved domains of convergence for the
possible different presentations of log(e*e¥), both in commutator or non-
commutator series expansions (for the latter, see the pioneering paper by
Goldberg [71]). Also, the problem of efficient algorithms for computing
the terms of this series (in suitable bases for free Lie algebras and with
minimal numbers of commutators) has played a major réle. For this and the
above topics, see [9,14-16,23,35,36,46,53,61,103,106,107,109, 118,122,123,
131,134,145,146,166,177].

In the study of convergence domains, the use of the Magnus expansion
has proved to be a very useful tool. However, the problem of the best
domain of convergence of the CBHD series in the setting of general Banach
algebras and of general Banach-Lie algebras is still open, though many optimal
results exist for matrix algebras and in the setting of Hilbert spaces (see the
references in Section 5.7 on page 359).

In parallel, starting from the mid seventies, the CBHD Theorem has
been crucially employed in the study of wide classes of PDEs, especially
of subelliptic type, for example those involving the so-called Hormander
operators (see Folland [62], Folland, Stein [63], Hormander [94], Rothschild,
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Stein [150], Nagel, Stein, Wainger [129], Varopoulos, Saloff-Coste, Coulhon
[172]).

The role of the CBHD Theorem is not only prominent for usual (finite-
dimensional) Lie groups, but also within the context of infinite dimensional
Lie groups (for a detailed survey, see Neeb [130]). For example, among infi-
nite dimensional Lie groups, the so-called BCH-groups (Baker-Campbell-
Hausdorff groups) are particularly significant. For some related topics
(a comprehensive list of references on infinite-dimensional Lie groups being
out of our scope), see e.g., [12,13,24,42,43,56,66—69,73,83,86,87,92,93,130,
133,147,148,152,170,173,182].

Finally, the early years of the twenty-first century have seen a renewed
interest in CBHD-type theorems (both continuous and discrete) within the
field of numerical analysis (specifically, in geometric integration) see e.g.[76,
97,98,101,114].

§ 2. The Main Contents of This book. We furnish a very brief digest
of the contents of this book. After a historical preamble given in Chapter 1
(also containing reference to modern applications of the CBHD Theorem),
the book is divided into two parts.

Part I (Chapters 2-6) begins with an introduction of the background alge-
bra (comprehensive of all the involved notations) which is a prerequisite to
the rest of the book. Immediately after such preliminaries, we jump into the
heart of the subject. Indeed, Part I treats widely all the qualitative properties
and the problems arising from the statement of the CBHD Theorem and
from its various proofs, such as the well-posedness of the “"CBHD operation’,
its associativity and convergence, or the relationship between the CBHD
Theorem, the Theorem of Poincaré, Birkhoff and Witt and the existence of
free Lie algebras. The results given in Chapter 2, although essential to the
stream of the book, would take us a long distance away if accompanied by
their proofs. For this reason they are simply stated in Part I, while all the
missing proofs can be found in Part IT (Chapters 7-10).

Let us now have a closer look at the contents of each chapter.

Chapter 2 is entirely devoted to recalling algebraic prerequisites and to
introduce the required notations. Many essential objects are introduced,
such as tensor algebras, completions of graded algebras, formal power
series, free Lie algebras, universal enveloping algebras. Some of the results
are demonstrated in Chapter 2 itself, but most of the proofs are deferred
to Chapter 7. Chapter 2 is meant to provide the necessary algebraic back-
ground to non-specialist Readers and may be skipped by those trained in
Algebra. Section 2.3 also contains some needed results (on metric spaces)
from Analysis.

Chapter 3 illustrates a complete proof of the CBHD Theorem, mainly
relying on the book by Hochschild [85, Chapter X]. The proof is obtained
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from general results of Algebra, such as Friedrichs’s characterization of
Lie elements and the use of the Hausdorff group. Afterwards, Dynkin’s
Formula is produced. This result is conceptually subordinate to the so
called Campbell-Baker-Hausdorff Theorem, and it is based, as usual, on the
application of the Dynkin-Specht-Wever Lemma.

Our inquiry into the meaningful reasons why the CBHD Theorem holds
widens in Chapter 4, where several shorter (but more specialized) proofs of
the Theorem, differing from each other and from the one given in Chapter 3,
are presented. We deal here with the works by M. Eichler [59], D. Z. Djokovi¢
[48], V.S. Varadarajan [171], C. Reutenauer [144], P. Cartier [33].

Eichler’s argument is the one most devoid of prerequisites, though
crucially ad hoc and tricky; Djokovi¢’s proof (based on an “ODE technique”,
partially tracing back to Hausdorff) has the merit to rediscover early argu-
ments in a very concise way; Varadarajan’s proof (originally conceived for
a Lie group context) completes, in a very effective fashion, Djokovi¢’s proof
and allows us to obtain recursion formulas perfectly suited for convergence
questions; Reutenauer’s argument fully formalizes the early approach by
Baker and Hausdorff (based on so-called polar differentiation); Cartier’s
proof, instead, differs from the preceding ones, based as it is on a suitable
characterization of Lie elements, in line with the approach of Chapter 3.
Each of the strategies presented in Chapter 4 has its advantages, so that the
Reader has the occasion to compare them thoroughly and to go into the
details for every different approach (and, possibly, to choose the one more
suited for his taste or requirements).

In Chapter 5 the convergence of the Dynkin series is studied, in the
context of finite-dimensional Lie algebras first, and then in the more gen-
eral setting of normed Banach-Lie algebras. Besides, the “associativity” of
the operation defined by the Dynkin series is afforded. Throughout this
chapter, we shall be exploiting identities implicitly contained (and hidden)
in the CBHD Theorem. As a very first taste of the possible (geometrical)
applications of the results presented here, we shall have the chance to
prove — in a direct and natural fashion — the Third Fundamental Theorem
of Lie for finite-dimensional nilpotent Lie algebras (and more). Finally, the
chapter closes with a long list (briefly commented, item by item) of modern
bibliography on the convergence problem and on related matters.

Chapter 6 clarifies the deep and — in some ways — surprising intertwine-
ment occurring between the CBHD and PBW Theorems (PBW is short for
Poincaré-Birkhoff-Witt). As it arises from Chapter 3, CBHD is classically
derived by PBW, although other strategies are possible. In Chapter 6 we
will show how the opposite path may be followed, thus proving the PBW
Theorem by means of CBHD. This less usual approach was first provided
by Cartier, whose work [33] is at the basis of the chapter. An essential tool is
represented by free Lie algebras, whose role — in proving CBHD and PBW —
is completely clarified here.
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Chapter 7 consists of a collection of the missing proofs from Chapter 2.

Chapter 8 is intended to complete those results of Chapter 2 which deal
with the existence of the free Lie algebra Lie(X) related to a set X. The
characterization of Lie(X) as the Lie subalgebra (contained in the algebra
of the polynomials in the elements of X) consisting of Lie-polynomials
is also given in detail (without requiring the PBW Theorem or any of its
corollaries). Furthermore, some results about free nilpotent Lie algebras are
presented here, helpful e.g., in constructing free Carnot groups (as in [21,
Chapters 14, 17]).

An algebraic approach to formal power series can be found in Chapter 9.

Finally, Chapter 10 contains all the machinery about symmetric algebras
which is needed in Chapter 6.

§ 3. How to Read This Book. Since this book is intended for a readership
potentially not acquainted with graduate level Algebra, the main effort is to
make the presentation completely self-contained. The only prerequisites are a
basic knowledge of Linear Algebra and undergraduate courses in Analysis
and in Algebra. The book opens with a historical overview, Chapter 1, of
the early proofs of the CBHD Theorem and a glimpse into more modern
results: it is designed not only for historical scholars, but also for the Reader
who asked himself the question “Campbell, Baker, Hausdorff, Dynkin: who
proved what?”.

The algebraic prerequisites are collected in Chapter 2, where the notations
used throughout are also collected. The Reader interested in the correspond-
ing proofs will find them in Part II (Chapters from 7 to 10). Chapter 2 and
Part II can be skipped by the Reader fully conversant with the algebraic
prerequisites. In any case, Chapter 2 must be used as a complete reference
for the notations. The Reader interested in the proofs of the CBHD Theorem
can directly refer to Chapter 3 (for a more elaborate proof, making use
of general algebraic results, in the spirit of the Bourbaki exposition of the
subject) or to Chapter 4 (where shorter proofs are presented, but with
more ad hoc arguments). These chapters require the background results of
Chapter 2.

Once the main CBHD Theorem has been established, Chapter 5 presents
a primer on the convergence question. The Reader will also find an extended
list of references on related topics. Chapter 5 can also be read independently
of the preceding chapters, once any proof of the CBHD Theorem is taken
for granted. Analogously, Chapter 6 can be read on its own, only requiring
some theory of free Lie algebras and of symmetric algebras (coming from
Chapters 8 and 10, respectively). A synopsis of the book structure together
with the interdependence of the different chapters is given in Figure 1 below.
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Chapter 1
Historical Overview

The period since the CBHD Theorem first came to life, about 120 years ago,
can be divided into two distinct phases. The range 1890-1950, beginning
with Schur’s paper [154] and ending with Dynkin’s [56], and the remaining
60-year range, up to the present day. The first range comprises, besides
the contributions by the authors whose names are recalled in our acronym
CBHD, other significant papers (often left unmentioned) by Ernesto Pascal,
Jules Henri Poincaré, Friedrich Heinrich Schur.

The second range covers what we will call the “modern era” of the CBHD
Theorem: this includes a rigorous formalization of the theorem, along with
several new proofs and plenty of applications — from Mathematics and
Physics — in the fields we already mentioned in the Preface. The beginning
of this renewed age for the CBHD Theorem begins — not surprisingly — with
the Bourbakist school in the middle fifties, whose rigorous and selfcontained
refoundation of all Mathematics involved also the CBHD Theorem and
emblazoned it in a well-established algebraic context.

The aim of the next few paragraphs is to give the essential coordinates to
orient oneself in the history of this theorem. An exhaustive treatise concerned
with the early proofs of the CBHD Theorem (during the years 1897-1950) can be
found in [3] and in [18].

1.1 The Early Proofs of the CBHD Theorem

To begin with, we hope that a chronological prospect of the early original
contributions (range 1890-1950) to the CBHD Theorem may be illuminating:
this is furnished in Table 1.1. We split our exposition into three subpara-
graphs:

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes 1
in Mathematics 2034, DOI 10.1007 /978-3-642-22597-0_1,
© Springer-Verlag Berlin Heidelberg 2012
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— The origin of the problem (we describe how the problem came about of
finding an intrinsic formula for the composition of two exponentials
generated by Lie’s theory of finite continuous groups of transformations).

— Schur, Poincaré and Pascal (we outline the — long forgotten — contributions
of these three precursors of the CBHD formula, showing that their papers
contain — in fact — much more than forerunning results).

— Campbell, Baker, Hausdorff, Dynkin (we describe and compare the results of
the mathematicians whose names we have chosen for the acronym of the
theorem to which this whole book is devoted).

Table 1.1 Comprehensive references for the early proofs of the CBHD Theorem. Dark-
gray lines refer to the main references in the acronym CBHD; light-gray lines refer to very
significant papers on the subject which — in our opinion — cannot be ignored to picture the
full history of the theorem

Year Author Paper
1890 Schur [154,155]
1891 Schur [156]
1893 Schur [157]
1897 Campbell [28,29]
1898 Campbell 130!
1899 Poincaré [141]
1900 Poincaré [142]
1901 Baker [5]
1901 Pascal [135,136]
1901 Poincaré [143]
1902 Baker [6]
1902 Pascal [137-139]
1903 Baker [7]
1903 Campbell [31]
1903 Pascal [140]
1905 Baker 18

1906 Hausdorff 1781
1937 Yosida [183]
1947 Dynkin [54]
1949 Dynkin 155]]
1950 Dynkin [56]

1.1.1 The Origin of the Problem

The main theorem we are concerned with in this book finds its roots in
Sophus Lie’s theory of the finite continuous groups of transformations. What
we now know as “Lie groups” are quite different from what Lie himself had
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occasion to call “his groups” and which he studied during the second half of
the 19th century. Since we shall have no occasion to insist elsewhere on Lie’s
original theory, we confine ourselves to recalling a simplified definition of a
group of transformations.!

A finite continuous group of transformations is a family of maps 2’ = f(z, a),
indexed with a (belonging to some open neighborhood of 0 in the Euclidean
r-dimensional space), where x, 2’ vary on some domain of the Euclidean
n-dimensional space, and such that the following properties hold:

(1) The maps (z,a) — f(z,a) are analytic (real or complex) and to different
a, a’ there correspond different functions f(-,a) and f(-,a’).

(2) f(x,0) = z for every x; moreover for every parameter a there exists a’
such that f(-,a) and f(-,a’) are inverse to each other.

(3) (The main axiom) for every pair of parameters a,b (sufficiently close to 0)
there exists ¢(a,b) in the domain of the parameters — which is unique by
(i) — such that

f(f(x,a),b) = f(x,(a,b)), forevery x. (1.1)

Throughout this chapter, we shall also, for short, use the terminology
transformation group, with the above meaning. We warn the Reader that here
the adjective “finite” and the substantive “group” are not meant in their
(modern) algebraic sense?: in modern words, one should rather speak of
a local group, or a group chunk. Indeed, it is not difficult to see that the
above map (a,b) — ¢(a,b) defines a local analytic group. For example,
the “associativity”? of the local group law follows from the associativity of
the composition of functions:

f(za 50(90(0‘7 b)v C)) = f(f(za @(a7 b))v C) = f(f(f(x,a), b),C)
= f(f(x’ a)7 @(bv C)) = f(:L‘, @(aa (p(b, C)))>
so that (see the second part of (i) above) p(p(a,b),c) = ¢(a, ¢(b, ¢)). Despite

this underlying (local) group, as a matter of fact the abstract group structure
never played such a central réle in the original theory of Lie.

For instance, point (2) below was not present in the first definitions of transformation
groups given by Lie. More details can be found e.g., in [126,171]. Books on ODE’s from
the first decades of 1900 are also of interest: see e.g., 31,41, 60, 96].

ZFiniteness is not referred here to the cardinality of the group, but it is used in contrast
with the so-called infinitesimal transformations.

3Note that the existence of ¢(a, b) is not assumed to hold throughout, but only for a, b in
some neighborhood, say U, of the origin; more precisely, the word “associativity” should
not be even allowed, since it is not required that ¢(a, b) belongs to U, for every a,b € U.
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What, instead, played a key role from the beginning were the so-called
infinitesimal transformations of the transformation group (roughly speaking,
the vector fields related to the columns of the Jacobian matrix of v — f(x,u)
at the origin): something very similar to what we would now call the
associated Lie algebra. Let us see how these were thought of at the time of
Lie. Let a be fixed in the domain of the parameters and let € be a small scalar.
The point z is transformed into z’ by the “infinitesimal” transformation
x' = f(z,ea).If Fis any function sufficiently regular around z, its increment
F(2') — F(z) can be approximated by the Maclaurin expansion with respect
to ¢ in the following obvious way (recall that f(x,0) = = by axiom (2)):

F(a') = F(z) = F(f(z,ea)) = F(f(2,0)) = ¢- Y a; X;F(x) + 0(e?),

j=1
as ¢ — 0, where for every j = 1,...,r we have set
"0 OF (x)
X,F(x) = — i(z,u) - . 1.2

The differential operator > 7_, a; X; (whose action on F' gives, as shown
above, the limit of the incremental ratio (F(z') — F(z))/e) is then the
appropriate “weight” of the infinitesimal transformation in the “direction”
of the parameter a.

The Second Fundamental Theorem of Lie ensures that the span of the
operators Xi,..., X, is closed under the bracket operation, that is, there
exist constants c;;s (called the structure constants of the transformation
group) such that

(X5, X;] = ZCUS X, foreveryi,j=1,...,r. (1.3)
s=1

The verification of this fact is a simple exercise of Calculus: by differentiating
the identity (1.1) with respect to a;, b; at (a,b) = (0,0) one gets (setting f =
f(,u) and ¢ = ¢(u,v))

Z 9’ fu(2,0) Ofn(z,0) _ 0°fu(x,0) N Z Ofx(x,0)  9%p4(0,0)
Oz, Ouj Ou; Ou; du;j Oug du; Ovj
If X; is as in (1.2), the above identity gives at once (1.3) with the choice

o 92¢,(0,0) B 92¢,(0,0)
Cijs = 8UZ a’Uj a’u,j 8vi '

(1.4)
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The converse of this fact (part of the Second Fundamental Theorem too) is
less straightforward, and it states that if a set of independent analytic vector
fields {X1,...,X,} on some domain 2 C R" spans a finite-dimensional
Lie algebra, then these vector fields are the infinitesimal transformations of
some transformation group. The arguments to prove this fact make use of
the “one parameter groups” generated by the family of vector fields, namely
the solutions to the ODE system

{’Y(t) = (a- X)(v(t)) where a-X :=a1 X1+ +a, X, (1.5)
7(0) ==
ai,...,a, being scalars and « € 2. If the scalars a; are small enough, the
formula

f(z,a):=~(1) (1.6)

makes sense and it defines the desired transformation group. The proof of
the existence of the corresponding local-group law ¢(a, b) is not so direct:
 is the solution of a suitable system of (first order) PDE problems whose
integrability derives from the existence of constants c;; satisfying (1.3) (see
e.g. [60,154]).

Despite the concealed nature of ¢, the above facts contain the core of the
CBHD Theorem. Indeed, as can be trivially shown, the Maclaurin expansion
of the above 7 is (setting A := a - X for short)

O Lk Ak T
2ty =S EAE@ _a gy, (1.7)

k!
k=0

justifying the exponential notation for (t). From (1.6) and from the group
property (1.1), it follows that the composition of two exponentials must obey
the following law (here o is the composition of functions)

X oehX = e“"(a’b)'x, (1.8)

thatis, e oef =e“, where A=a-X,B=0b-X,C =c- X with c = ¢(a,b).
Moreover, given two vector fields A, B in the span of { X7, ..., X, }, another
Calculus exercise shows that the Taylor expansion of the composition of two
exponentials (o, B) — (e®” o e#B)(z) at the point (0, 0) is equal to

> M Biad. (1.9)

Note the reversed order for A, B. As a consequence, (1.8) can also be
suggestively rewritten as follows (here a, b are sufficiently small so that we
can take a = § = 1in (1.9))
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Bi A c*
> il :Zﬂ’ (1.10)

4,520 k>0

for some C belonging to span{Xjy, ..., X, }. Once again this naturally led to
an “exponential formula” of the type eXe¥ = eZ, where this time e, ¢, eZ
are formal power series.

Followed by Baker, it was Campbell who first proposed to investigate the
quantity e“e? from a purely symbolic point of view. Later, this was to be
named (by Poincaré and by Hausdorff) Campbell’s problem.

It then became clear that the study of the “product” of two exponen-
tials, originating from Lie’s theory of transformation groups, deserved
autonomous attention and to be studied in its more general form. Lie had
not paid much attention to the problem, for the equation e“e? = e was
more or less contained in the axiomatic identity (1.1) of his theory. What
Lie failed to prove is that the rule describing the form of C' as a series of

commutators of A and B is in fact “universal”

and that the structure constants ¢;;, of the specific group intervene only if
one wants to write C' in some particular basis {X1,..., X, }. The universal
symbolic nature of C' is the subject to which Campbell, Baker, Hausdorff
and Dynkin in due course addressed, thus untying the exponential formula
from the original group context and lending it an interest in its own right.

Before closing this digression on the foundations of Lie’s theory, we
should not neglect to recall the Third Fundamental Theorem of Lie (in its
original form), which is even more closely related to the CBHD Formula
than the Second Theorem. Originally, Lie’s Third Theorem was stated as
follows:

Lie’s Third Theorem, original version. Given r* real constants {c;ji. }i j k<r
satisfying the conditions

Cijk = —Cjiks >t (CijsCokh + CiksCsin + ChisCsjn) = 0, (1.11)
forevery i,j,h,k = 1,...,r, there exists a transformation group whose structure
constants are c;jy, that is, such that the infinitesimal transformations X,..., X,

of this transformation group satisfy
[Xi,Xj] = 22:1 Ciijk- (112)
Throughout this chapter, when we speak of the Third Theorem (of Lie), we

mean this original version of the theorem, which is very different from the
modern (more profound) formulation of this result, which we now recall.
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Indeed, it is nowadays commonly understood that “the Third (Funda-
mental) Theorem of Lie” is the following result:

A. Lie’s Third Theorem, global version. Given a finite-dimensional (real or
complex) Lie algebra g, there exists a Lie group whose Lie algebra is isomorphic to g.

Along with this global result, the following statements are also invoked as
local versions of Lie’s Third Theorem:

B. Lie’s Third Theorem, local version (for finite-dimensional Lie algebras).
Given a finite-dimensional (real or complex) Lie algebra g, there exists a local Lie
group whose Lie algebra is isomorphic to g.

C. Lie’s Third Theorem, local version (for Banach-Lie algebras). Given a
real or complex Banach-Lie algebra g (see Definition 5.22, page 292), there exists a
local Lie group whose Lie algebra is isomorphic to g.

Obviously, Theorem B is a particular case of Theorem C, whilst Theorem
A implies Theorem B. It is also easily seen that the original version of
the theorem proves — in particular — the local version in the (real) finite-
dimensional case (indeed, recall that a transformation group is a special
class of local Lie group). It is also of some interest to observe that, as a
consequence of the original version of Lie’s Third Theorem, one obtains that
every finite-dimensional (real) Lie algebra is isomorphic to one in a special
class of Lie algebras, namely the Lie algebras spanned by analytic vector
fields on some open domain of R".

In this book, we shall sketch some proofs of the original version of
Lie’s Third Theorem, by recalling the arguments of its original contribu-
tors (Schur, Poincaré, Campbell, Pascal, ...), whereas Theorem C (hence
Theorem B) easily derives from the results in Chap. 5 (see Theorem 5.52). We
shall not attempt to prove (the very profound) Theorem A in this book, apart
from a (very!) particular case: that of the real nilpotent finite-dimensional
Lie algebras (see Sect.5.4.2, page 328). The different caliber distinguishing
global and local forms is also evident from the corresponding proofs, the
global form requiring highly nontrivial results, such as, e.g., Ado’s Theorem
or a large amount of structure theory of Lie groups (see e.g., Varadarajan
[171, Section 3.15]; see also Serre’s proof in [159]). Instead, we shall see
that Theorems B and C are simple corollaries of the convergence and
associativity of the CBHD operation on a Banach-Lie algebra, a fundamental
result for this type of noncommutative algebras.

In this book, as a convention, when we speak of Lie’s Third Theorem we mean
the original version, whereas we shall have no occasion — in general — to
invoke the statements of Theorems A, B, C. However, due to the significant
distinction between global and local results, we shall occasionally add the
adjective local when speaking of the original version. Roughly speaking, the
conflict “global vs local” depends on the fact that, according to its modern
definition, a Lie group is a “global” object (a smooth manifold equipped
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with a smooth group law...), whereas a transformation group — in its
original meaning — has to be seen as a local object, as we remarked at the
beginning of Sect.1.1.1.

For a modern functorial version of Lie’s Third Theorem, see Hofmann
and Morris [90]. For the different meanings attached to it, see also the
headword “Lie’s Theorem” in [80].

We now return to the historical background. Besides precursory studies
by Schur, the link between the Third Theorem and the exponential formula
was first understood by Poincaré.

With modern words, we would like to anticipate how the identity
eeB=e" intervenes in the proof of the Third Theorem. Indeed, suppose
the constants ¢;;, are as in (1.11) and let X1, ..., X, be r independent letters.
Formula (1.12) then uniquely defines (by bilinearity) a structure on

g :=span{Xy,..., X,}

of a real Lie algebra (obviously conditions (1.11) are equivalent to skew-
symmetry and the Jacobi identity). Suppose we have proved the formal
power series identity etef = e, where ¥(A,B) = C is a uniquely
determined formal Lie series in A, B. The associativity of the product of
formal power series ensures that

(A, 9(B,0)) = ¢(¥(4, B), C). (1.13)

Suppose further that, for U = w1 X1 + - + v, X, V= v X1 + - + v,.X,,
the g-valued series ¢ (U, V') converges in the finite dimensional vector space
g, provided that u = (u1,...,u,) and v = (v1, ..., v,) belong to a sufficiently
small neighborhood of the origin, say (2.

Let us set p(u,v) = (p1(u,v),..., ¢, (u,v)) where

YU, V) =p1(u,0) X1+ -+ or(u, v) X, (1.14)
and U,V are as above. Then (1.13) implies that v’ := ¢(u,v) defines a finite
transformation group (parametrized by v in {2) on the open domain 2 C R”".
Note that the formal identity e4e? = e¥(4-B) forces the condition

(A, B) = A+ B + 1 [A, B] + {higher orders in A, B}.

Consequently, (1.12) and (1.14) produce the Maclaurin expansion

©s(u,v) = us +vs + % Z cijs wiv; + {higher orders in u, v}. (1.15)
=1
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Now, since the structure constants of a transformation group are given by
formula (1.4), we recognize by a direct differentiation of (1.15) that these
constants are precisely ¢;;. The (local) Third Theorem then follows.

This is more or less Poincaré’s argument in [142], dated 1900. Despite its
being over 100 years old, this argument hits the mark for its intertwinement
of algebraic objects, group theory and calculus and it exemplifies how the
CBHD Theorem can be used for algebraic and geometric purposes alike.

1.1.2 Schur, Poincaré and Pascal

Along with the fact that there is still no conventional agreement for the
“parenthood” of the CBHD Theorem,* the most surprising fact concerning
the early investigations is that the contributions of Schur, Poincaré and
Pascal have nowadays almost become forgotten.” In our opinion, there are
three good (or perhaps bad?) reasons for this:

1. Firstly, they focussed on Lie’s setting of the theory of groups of transfor-
mations, instead of taking up a purely symbolical approach.

2. Secondly, the very cold judgements towards the contributions of Schur,
Poincaré and Pascal given by Hausdorff himself and then also by Bour-
baki have certainly played a role.

3. Thirdly, the fact that none of their original papers on the subject was writ-
ten in English has contributed to their becoming obsolete. (Hausdorff’s
paper though, written in German, did not share this lot.)

To be more specific, we recall a few of the comments of Hausdorff and
Bourbaki on the works by Schur, Poincaré and Pascal.

e In Hausdorff’s paper [78, page 20] it is stated that Poincaré had not
proved the exponential-theorem in its general and symbolic form, but
only in the form of the group theory. Moreover, according to Hausdorff,
the massive computations in Pascal’s papers make it hard to check the
validity of the arguments and Pascal is faulted for omitting the conver-
gence matter. Finally, a comment on Schur’s contribution is missing, apart
for an acknowledgement (see [78, page 34]) concerning some expansions
involving Bernoulli numbers.

e In the book of Bourbaki [27, Chapter III, Historical Note, V] Poincaré is
faulted (together with Campbell and Baker) for a lack of clarity about the

“Baker’s name is frequently unfairly omitted and Dynkin, unfairly as well, is acknow-
ledged only for his explicit series, but not for his proof.

5To the best of our knowledge, the only modern sources quoting Schur, Poincaré or Pascal
regarding the CBHD Theorem are: Czyz [43] (who quotes Pascal [139] and Poincaré [142])
and Duistermaat, Kolk (who quote Poincaré [141] and Schur [156, 157]).
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question of whether the brackets in his exponential formulas are symbolic
expressions or elements of some fixed Lie algebra. Pascal is named with
those who returned to the question of ee? = e, but nothing is said
about his results and his papers are not mentioned in the list of references.
Hausdorff — instead - is acknowledged as the only reliable source. Finally,
Schur’s results on the product of exponentials are not mentioned.®

We would like to express some opinions on the above comments.

Hausdorff insists on reasserting over and over again that his own
theorem implies Poincaré’s and not vice versa, but eventually his words
become more prudent’: this legitimately leads us to suppose that Hausdorff
recognized that Poincaré proved more in his paper [142] than it seems on the
surface.® Obviously, it is not possible to fail to recognize Hausdorff’s merits
in shifting all the attention on purely symbolic arguments. Nonetheless, our
opinion is that Poincaré’s ingenious approach (take a finite dimensional Lie
algebra g, obtain the exponential theorem on % (g), then go back to g and
prove the convergence with the residue calculus) is definitely more modern
than a typical publication from 1900.

Moreover, Hausdorff’s complaint on the over-abundance of computa-
tions in Pascal’s papers is not enough to doubt the correctness of Pascal’s
proof. Indeed, one may praise a large part of Pascal’s arguments in the series
of papers [135]-[139] for being more transparent than part of the symbolic
computations by Campbell or Baker.

Also, even though the historical notes in Bourbaki do not pay attention
to their contributions, Pascal and Schur should be regarded as noteworthy
precursors of what later came to be known only as the Campbell-Hausdorff
formula (or Campbell-Baker-Hausdorff formula). Following Schmid [153,
page 177], this formula is already contained “in disguise” in Schur’s papers;
and the same should be said for Pascal’s works, as we shall see below.

In order to let the Reader form his own opinions, we describe more
closely the contributions by Schur, Poincaré and Pascal.

6Schur is recalled only for his proof of the fact that C2? assumptions on transformation
groups are (up to isomorphism) sufficient to get analytic regularity.

7 After repeated reassertions that his theorem implies Poincaré’s and not vice versa,
Hausdorff finally recognizes that Poincaré’s theorem seems not to be without relevance
for his own result.

8In [142] Poincaré introduced for the very first time the universal enveloping algebra of a
Lie group, but the relevance of this invention was not caught for several decades (see
Ton-That, Tran [168] and Grivel [74] for related topics). More importantly, as Schmid
neatly points out (see [153, page 184]), Poincaré’s identity eV.e"" = e” makes no reference
at all to the Lie algebra of the infinitesimal transformations of a group.
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1.1.2.1 Schur

Schur’s’ papers [154]-[157] are mainly devoted to providing new deriva-
tions of Lie’s Theorems by means of a shrewd way of rewriting the group
condition (1.1) via systems of PDEs. Actually, in dealing with a new proof
of Lie’s Third Theorem (see [156, §1] and [154, §3]), he constructs a (local)
transformation group only by means of suitable power series depending
on the structure constants and on the Bernoulli numbers. [Almost all of his
successors will attribute to Schur the discovery of the role of these numbers
in the exponential formula.] This is clearly a forerunner of the Campbell-
Hausdorff series.

Like Lie, Schur did not capture the universal law of bracket-formation
which underlies the analytic expression of ¢(a,b). However, he perfectly
captured the idea that an explicit formula for ¢ depending only on the
constants c;;, was the right tool to prove Lie’s Third Fundamental Theorem,
a theorem which is — as we now understand it — deeply related to the CBHD
Theorem.

As an example of Schur’s notable computations with power series, we
would like to recall a remarkable formula [155, eq.(2) page 2], which catches
one’s eyes for its explicitness: If w = (w; j(u)); is the Jacobian matrix of
v — @(u,v) atv = 0, then

wij(u) =6 + Z A U (u (1.16)

where 0; ; is Kronecker’s symbol, the constants )\, are a variant of the
Bernoulli numbers,'” and the functions U are explicitly defined by

(m) _ k1 ko Km—1 3
Uy (u) = Z i Ch ks " Chon gl 1 Chm 1, Why Why =~ U,
1AL e o <
1<k kg1 <7

(1.17)

9Friedrich Heinrich Schur; Maciejewo, near Krotoschin, Prussia (now Krotoszyn, Poland),
1856 — Breslau, Prussia (now Wroctaw, Poland), 1932. Friedrich Heinrich Schur should not
be confused with the (presumably more famous and more influential) coeval mathemati-
cian Issai Schur (Mogilev, 1875; Tel Aviv, 1941). Whereas the former was a follower of the
school of Sophus Lie, the latter was a student of Frobenius and Fuchs, Berlin. For a source
on Berlin mathematicians of that time, see [11].

10Schur uses the following definition for the Bernoulli numbers B,:

- B
+ Z(—l)‘rlﬁ 224,

. . Bog_
Then A, is defined by A1 = —2, Xaqy1 = 0, Agg = (—1)7+1 ﬁ.
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Here u = (u1,...,u,) is a point of some neighborhood of the origin of R"
and ¢j ; are the structure constants of the group. Conversely (see [156, Satz 2,
page 271]), Schur uses this formula as an Ansatz to give a very explicit proof
of Lie’s (local) Third Theorem.

Later, Schur proves in [157] the remarkable result that C? assumptions
on the functions f and ¢ in (1.1) actually guarantee that they can be
transformed (by a change of variables) into analytic functions. This notable
result (closely related to Hilbert’s Fifth Problem) has become a central topic
of modern Lie group theory: The fact that this result is usually proved —
by sheer chance — by means of the CBHD formula highlights the deep link
between Schur’s studies and the theorem we are concerned with in this
book.

1.1.2.2 Poincaré

It was Poincaré!! who first realized the link between Schur’s proof of the
Third Theorem and what he defined “le probleme de Campbell”.

Indeed, given a transformation group and its infinitesimal transforma-
tions {X1,...,X,} asin (1.2), the one-parameter subgroups (see (1.7))

t et (X € g:=span{Xy,..., X, })
generate the transformation group. Hence, if Campbell’s identity ¢"e? =
e has a precise analytical meaning, it follows that the whole group can
be reconstructed by g. Poincaré anticipated the modern way of thinking about the
CBHD Formula as the tool permitting the reconstruction of the group law by means
of the Lie algebra.

We refer the Reader to Schmid [153] and to Ton-That, Tran [168] for,
respectively, a treatise on Poincaré’s contribution to the theory of contin-
uous groups and for Poincaré’s contribution to the Poincaré-Birkhoff-Witt
Theorem (see also Grivel [74] for this last topic); here we confine ourselves
in pointing out his contribution to the development of the CBHD Theorem.

The most impressive fact about Poincaré’s contribution is that, in solving
an important problem, he creates an even more important device: the
universal enveloping algebra of a Lie algebra. Indeed, suppose there is given a
Lie algebra!? (over a field of characteristic zero) g := span{ Xy, ..., X, } (the
X, are called generators), equipped with the bracket defined by

(X, X1 = >0 cijs Xs. (1.18)

Jules Henri Poicaré; Nancy (France), 1854 — Paris (France), 1912.

12Lacking, as he did, the general definition of Lie algebra — not introduced until the 1930s —
Poincaré pictured his Lie algebras as spanned, typically, by analytic vector fields.
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Then Poincaré introduces an equivalence relation on the set of formal
polynomials in the generators, by calling equivalent any two polynomials
whose difference is a linear combination of two-sided products of

XiX; - X; X — [ X, X5] (i,5<7). (1.19)

As claimed by Hausdorff-Bourbaki, Poincaré’s construction is not devoid
of some ambiguity.'®> Subsequently, Poincaré shows that any homogeneous
polynomial of degree p is equivalent to a uniquely determined span of
polynomials (called regular) of the form'*

(a1 X1 4+ agXo + -+ )P,

Then, if V, T € g, Poincaré considers a formal product of the type

vmrn
eVel = E _
m!n!
m,n>0

motivated by the theory of transformation groups. He aims to prove — by
direct methods — the existence of W such that e"e” = " (a fact implicitly
ensured by the Second Fundamental Theorem).

Poincaré’s insightful idea is to use the universal enveloping algebra to do
that. Indeed, the monomial V™1™ can be made equivalent to sums of regular
polynomials, say

Van m—+n
—— = > Wp,m,n), (1.20)
p=0

m!n!

where W (p,m,n) is symmetric and homogeneous of degree p. Conse-
quently,

eVel = Z % = Z ( Z W(pmz,n)) = ZWP‘ (1.21)
m,n>0 p=0 m+4n>p p=0

Poincaré observes that, if we seek W —homogeneous of degree 1 —such that
eVel =377 WP, then W is regular and homogeneous of degree p. Hence,
by the uniqueness of the regularization process, we must have

13For example, identity (1) on page 224 in [142] writes XY — Y X = [X, Y] and identity (2)
contains XY — Y X — [X, Y], claiming that it is not null, since XY — Y X is of 2nd degree
whereas [X, Y] is of 1st degree. Actual identities and congruences repeatedly overlap with
no clear distinctions. See [3] for an explanation of this fact.

14As a matter of fact, this is what we now call the (linear) isomorphism of % (g) with the
symmetric algebra of the vector space g.
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W, = . p>0. (1.22)

As a matter of fact, W, must be exactly the CBHD series associated to V,T.

Let us check how W; can be computed by repeated applications of the
following identity (here the “=" sign can be interpreted as a congruence or
as a true equality, if V, T are smooth vector fields)

VT =TV +[V,T]. (1.23)
For example, consider the following computation:
VI =iVT+ iV =1 (VT +TV)+ 3 [V,T]
=1+ -Livi-LiT? 4+ iV, T)
With the notation in (1.20), this gives
W(,1,1)=0, W(1,1,1)=3[V,7], W(2,1,1)=3((V+T)*-V2-T?).
Again, consider the identity (which we derived by means of (1.23) only)

VT2 1

X STV

12

g VIT+TVT +TTV) + ([v, T|T + T[V, T]) +

so that W(1,1,2) = i%[T, [T, V]]. An analogous computation ensures that
we have W (1,2,1) = 5[V, [V, T]], whence

Wy =W (1,1,0) + W(1,0,1) + W(1,1,1) + W(1,2,1) + W(1,1,2) + - --
=V 4T+ L[V, T+ 5V, [V, ] + S[T, [T, V] +

We recognize the first few terms of the CBHD series, and the original contribu-
tion by Poincaré to the CBHD Theorem is crystal clear.

As anticipated, Poincaré derives from (1.22) a new proof of the (local)
Third Fundamental Theorem, with an argument similar to that given at
the end of §1. It is also of interest to exhibit some of Poincaré’s formulas
(returning in the subsequent literature devoted to the CBHD Formula),
aimed at giving a precise analytical meaning to (1.22).

Once more Poincaré’s intuitions will leave their mark: He is the first to
characterize the solution W of eV = eVel as solving a suitable ODE. For
instance, he proves that " e/ = ¢ (%) if and only if W (f3) solves

{ WL = plad W(B))(T) __ 2 (1.24)

W(O) v where ¢(z) = o
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If V, T are sufficiently near the origin in g, then W := W(1) is the solution to
eV = eVel, an identity in the enveloping algebra of g. This identity can be
transformed into an identity between the operators e”', e, "V, which solves
Campbell’s problem and the Second and Third Theorems of L1e.

Instead of using formal power series to define ¢(ad W), Poincaré invokes
the residue calculus: thus the solution W(3) of (1.24) can be found in the

form Y7, w;(B) X; € g, where

dwi(B) 1 [ Xjati Piy(B,€) €
A8 2m ) det(ad (W(B)) —&) 1—e¢

de. (1.25)

The crucial fact is that these ODEs can be integrated. '

Poincaré obtains the ODE (1.24) by combining his algebraic symmetriza-
tion process, differential calculus, explicit computations of noncommutative
algebra, etc. As we shall repeatedly observe, the compound of Algebra and
Analysis is typical of the arguments needed to prove the CBHD Theorem.
For example, a key role is played by the symbolic identity

v I 1 — e—ad (aV)
e +BW =e” eﬁ s where Y = W(W)

It is interesting to observe that this identity is derived both with algebraic
arguments, and with a direct approach based on an expansion modulo

0(8?):

cOVABW _ i (aV + W)™

n!

n=0
vy py ot (ni: Vet wve) 4 o(s?)
n=1 ' k=0
_ °‘V+ﬂz — (Z SRV @A V)R ()) + 0(5)
k=0
= ety Y AP Corll gy o)
k=0 j=0 ’

- eaV 1 — e¢2d (aV) )
e (1t <W)) Fo(e2).

(1.26)

15Here ¢ is the imaginary unit, the coefficients ¢; are the coefficients of 7' with respect
to {X1,...,X,}, whilst (P; ;) is the adjugate (i.e., transpose of the cofactor) matrix of
ad (W(B)) — &. Also, the integral is taken over a contour around 0 € C which does not
contain the poles of ¢(z), for example a circle about 0 of radius R < 2.



16 1 Historical Overview

As we shall see, similar computations will reappear in Pascal, Baker,
Hausdorff and in various modern proofs of the CBHD Theorem (see
Chap.4).

1.1.2.3 Pascal

In a series of five papers dated 1901-1902, Pascal'® undertook the study of
the composition of two exponentials. He also collected an abridged version
of these papers, together with a didactic exposition of the main results of
those years about groups of transformations, in the book [140], 1903. We
here give a brief overview of these papers.'”

In [135], Pascal announces a new — as direct as possible — proof of
the Second Theorem of Lie, the crucial part being played by a formula
for the product of two finite transformations, each presented in canonical
exponential form z — e'X(z). To this aim, he provides suitable identities
valid in any associative, noncommutative algebra: for example

k—j

k—1
kXXt =" <’;> A <ZX;1 (ad Xl)j(Xg)ijQ), (1.27)
§=0

i=1
where k& € IN and the constants /) are variants of Bernoulli numbers:

SO — 1 40 = _(% YD 4 EA0D g L@y 7<o>)_
(1.28)

A certain analogy with Campbell’s algebraic computations, with Poincaré’s
symmetrized polynomials, and with the use of Bernoulli numbers as in
Schur are evident; but Pascal’s methods are quite different from those of
his predecessors.

As an application, in [136] Pascal furnishes a new proof of the Second
Fundamental Theorem. He claims that the explicit formula eX2oe*1 = X is
“auniquely comprehensive source” for many Lie group results. The analogy
with Poincaré’s point of view (recognizing the exponential formula as a
unifying tool) is evident, but there’s no way of knowing if Pascal knew, at
the time, Poincaré’s paper [142] (which is not mentioned in [136]).

In order to obtain the Second Theorem, Pascal generalizes (1.27) by
decomposing the product (obviously coming from eX2¢*1)

16Ernesto Pascal; Naples (Italy), 1865-1940.

17We plan to return to this subject (with more mathematical contents) in a forthcoming
study [18].
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X; xi
rl (k—r)!

0<r<k kelN) (1.29)

as a linear combination of symmetric sums (called elementary) based on
X1, X5 and nested commutators of the form

(X, Xy - Xo, Xa Xo] i= [ X, [ Xy, -+ [ X, [ X1, Xo] -], (1.30)

where i1, ...,i; € {1,2}. The law of composition of the coefficient of such
an elementary sum is described very closely, though an explicit formula is
not given. With a delicate — yet very direct — analysis of the coefficients of the
monomials decomposing (1.29), he obtains the following representation

k

et/X2€tX1 _ Z Zt/r tkfr ﬁ XfiT (1 31)
N rl (k—r)! '

k>0 \r=0

— 1
= Z %l {tXl +t'Xo + '7( ! [X1, Xo] + ’7(2)t2t/ (X1 X1 X5]

k
+ —W(Q)tta (X2 X1 X0 — 7(2)7(1)15215/2 (X1 X0 X1 X0 + - - } .

Note the similarity with Poincaré’s decomposition in (1.21) and (1.22).
Nonetheless whereas Poincaré uses an a posteriori argument to prove
= 2.2 p, (by showing that W, satisfies a suitable system of
ODEs) Pascal’s construction is much more direct: as he announced, “at the
cost of longer computations” (which will unfortunately provoke a complaint
from Hausdorff) he provides a way to reconstruct the expansion of ¢! X2 ¢!%1
as a pure exponential X3, this reconstruction being uniquely based on a

direct unraveling of 3, ; &L M

Besides the part1al expansmn m (1.31), Pascal proves that the series in
curly braces is a series of terms as in (1.30). As we have remarked, Poincaré
did not succeed to prove this result explicitly. Though Pascal’s derivation of
(1.31) is computationally onerous (and lacking in some arguments — espe-
cially in inductive proofs — which Pascal probably considered redundant),
this is clearly an argument towards a symbolic version of the later-to-be-
known-as Campbell-Baker-Hausdorff Theorem, second to the one proposed
a few years before by Campbell [30].

Unfortunately, what is really missing in Pascal’s papers [135]-[138] is the
study of the convergence of the series in the far right-hand side of (1.31).18

18n his review of [136], Engel faults Pascal for this omission with hard words, but he also
acknowledges Pascal’s formula (1.31) for being very remarkable.
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The convergence matter is missing also in the proof of the Third Theorem
which he gives in his last paper [139], which must be considered the summa
of Pascal’s work on group theory, for the following reasons:

— He only uses his original algebraic identities in [135] (in neat dissimilarity
with Schur’s methods for proving the Third Theorem).

— With these identities he provides a series of explicit coefficients in the
expansion (1.31) (those being really crucial, as Baker and Hausdorff will
later rediscover with different techniques, but leaving Pascal un-acknow-
ledged), thus improving the results in [136].

— He constructs, with a more natural method, if compared to his previous
paper [138], the infinitesimal transformations of the parameter group
(this time using some prerequisites from group theory).

Let us briefly run over the key results in [139]. Pascal shows that, in the
expansion (1.31), all the summands containing ¢’ with degree 1 or those
containing ¢ with degree 1 are respectively given by

S0 AP (ad X1)™(Xa), S Mt (ad Xo)™(Xy),  (1.32)

where the constants (") are as in (1.28).
Let now Zi,...,Z, be the infinitesimal transformations generating a
group with r parameters. Let us set

X1:U121+"'+1}TZT, X2:U1Z1+"'+UTZT.
Then, by general group theory, it is known that the composition e** o X2
is given by eX3, where X3 is a linear combination of the transformations
Z;, say
Xg = u’lZl + cee +’U,;Z»,‘

The u; are functions of v and v (and of the structure constants), say
uj, = on(u,v), h=1,...,r. (1.33)

Again from the group theory, it is known that (1.33) defines a transformation
group (the parameter group).

Pascal’s crucial remark is that, if we know that (1.33) defines a group,
it is sufficient to consider only the terms containing v with first degree (which
de facto furnish the infinitesimal transformations): these correspond to the
summands in (1.31) with ¢ of degree one. By formula (1.32), we thus get

Xy = viZi+ Y wiZi + W [, 012, 3 u; 2]

n i () (ad Zuizi)n(zvjzj) +0O(|v]?).
n=2 i ]

J
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By Lie’s Second Theorem (viz. [Z;, Z;] = )", ¢ijx Zi) we derive

on(u,v) = up +vp + = chkhungrz Z Z Z

n=11%1,...,t2n S1,...,92n-1 k

(2n)

Xy Ctiksy """ Clopson_1h Wiy~ Uty, Uk + O(|U|2)

Differentiating this with respect to the coordinates v, Pascal derives at once

T

9
Up = Z % 8uh hz::l <5hk +5 chkh%
N ;Ww ST kG i, ut) (%,

t1,t2,... $1,82,...

Finally, ¢ can be recovered by exponentiation:

p(u,v) = e Uk (y) = o + (kaUk) % (ZUkUk)2(u) e
k

In view of the above explicit formula for the vector fields Uy, this identity
(already appearing in Schur’s studies) contains a “quantitative” version of
the Third Theorem: it shows that an explicit local group can be constructed
by the use of the Bernoulli numbers v(2”) and by a set of constants c;jx
satisfying the structure relations (1.11).

Finally, it is not a rash judgement to say that Pascal’s contribution to
the CBHD Theorem is of prime importance: he was the first to construct
explicitly a local group by using the commutator series X Y for log(eXeY),
or more precisely, by using the subseries derived from X oY of the summands
of degree one in one of the indeterminates X, Y. Analogous results were to be
reobtained by Baker and, mostly, by Hausdorff, and reappear in more mod-

ern proofs of the CBHD Theorem (see e.g., Reutenauer [144, Section 3.4]).

1.1.3 Campbell, Baker, Hausdorff, Dynkin

In this section we take up a brief overview of the results, concerning the
exponential formula, by those authors whose names are recalled in our
acronym “CBHD”. Since the parentage of the formula is not well estab-
lished — neither nowadays, nor immediately after the original papers were
published — we hope that a résumé and a comparison of the contributions
by each of the four authors might help.
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1.1.3.1 Campbell

Campbell’s' 1897 paper [28] is the very first in the history of the exponential
formula. In a very readable and concise style, it contains plenty of formulas
which will reappear in subsequent papers on the composition of exponen-
tials. To begin, he establishes the following purely algebraic identity?’

T

%=Z<r+1f 'Zw (adaf (y)a’ = rz0, (134
: =0 _]

where the constants a; are defined by the recursion formula

a=1, a =1/2
{ o / j-1 . (1.35)

aj = m(ajfl —Dim1 aj,l-), j=2.

He acknowledges Schur for the discovery of the constants a; (which are
indeed related to the Bernoulli numbers).

Though Campbell will eventually be faulted by Bourbaki for a lack of
clarity on the context of his calculations (what do z, y mean? formal series,
infinitesimal transformations of a group, non-associative indeterminates?),
his results on the exponential formula are undoubtedly important. For
example, we exhibit one of his most fruitful computations. Let us set

oo

z=z(x,y) = Z(—l)jaj (ad )’ (y). (1.36)

=0

(This will turn out to be the subseries of Log(ExpyExpz) containing y
precisely once, a crucial series in the CBHD Formula!) Then one has

ye' = Z —y:; (use (1.34) and interchange sums)

r=0 ’
S J 4j P j—1 .

:ZZ r+1_]'2x (ad x)7 J (rename s = r — j)
7=0r=3

= + Gl Zx adx)’(y)x*~" (sums can be interchanged!)

S

7=0 s=0

= Z = (1.37)
s:O

¥John Edward Campbell; Lisburn (Ireland), 1862 — Oxford (England), 1924.
20Here and in what follows, we use different notations with respect to Cambell’s.
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The above computation (to be considered as holding true in the algebra of
formal power series in x, y) easily gives

(14 py)e” = ™% + 0(2),
(1.38)
{e,uy % — p¥tHz 4 O(M2)7
where z = z(z,y) is as in (1.36), and the coefficients a; are explicitly given
by (1.35).2!

Campbell’s main aim is to give a direct proof of Lie’s Second Theorem. He
considers a set X1,. .., X, of operators,? such that [X;, X;] = >, _, ¢ijk X.
The goal is to show that, if X, Y belong to V' := span{ Xy, ..., X, }, then there
exists Z € V such that eZ = ¥ o eX (the notation in (1.7) is followed).

A crucial tool is provided by the following interesting fact. In the change
of coordinates defined by 2’ = ¢'X (), we have®

Y = Z?:l n; (x) % and
etadX(yy =y, where R ) (1.39)
Y’ = Zj:l n; (' (x)) da, -
From this point onwards, Campbell’s arguments in proving the Second
Theorem become quite unclear, and they take on rather the form of a
sketch than of a rigorous proof. Nonetheless they contain “in a nutshell”
the forthcoming ideas by Baker and Hausdorff on iteration of the operator
x— z(z,y):

1. In determining e o ¥, ¢¥ can be replaced by iterated applications of

1+ uY, where p is so small that O(u?) can be ignored, indeed
e¥ =lim, o0 (1+Y/n)". (1.40)
2. Now, by taking care of the proper substitutions, we have

(14 u¥)o X (@) = (L+nY)) ('),

21 As we have already showed, Poincaré will use similar formulas as a starting point for
his ODEs techniques in attacking the exponential formula.

22That is, linear first order differential operators of class C* on some domain of R™.
ZHere §/dx’; must be properly interpreted as




22 1 Historical Overview

where Y’ has the same meaning as in (1.39). By the identity in the left-
hand side of (1.39), it clearly appears that Y” is a Lie series in X, Y. Hence,
Y’ belongs to V' = span{Xj,...,X,}, since X,Y € V and V is a Lie
algebra. Thus the Second Theorem follows if we can write (1 + pY”)(z')
as e?(x).

3. Given any X, Y in V, the first identity in (1.38) ensures that

(1+pY)eX =Xt 4 O(u?),

where Z; = z(X,Y) is a series of brackets in X, Y, in view of (1.36). From
the same reasoning as above, we deduce that Z; € V. Set X := X +pu 73,
we have X; € V too, and the above identity is rewritten as

(1+pY)eX =X 4 0(u?).
4. By the same argument as in the previous step, we have

A+pY)?eX = (1+pY)eX +0>u2) "2 X2 4 20(42),
where Xo := X1 + uZs and Zy = 2(X1,Y).

The above argument continues in [30], where the problems of the “conver-
gence” of X,, to some X, and the vanishing of n - O(u?) as n — oo are
studied. An overview of [30] is given in [3]. Here we confine ourselves
to saying that (after several elaborate computations) Campbell derives a
formula for z of the following form

e’e” = e where
1 i )
Too =2+ Y+ 5 [y, ] +;a2j (3d$)2j(y)

ll i bp.q [ (ad )P (y), (adx)q(y)} (1.41)

ll i bp.q.r H (adz)"(y), (adff)q(y)} , (ad :E)T(y)} T

p;

where the constants b, 4, bp ¢.r, - - . can be deduced by a universal recursion
formula, based on the a; in (1.35). For example,

ptq+1 r
bp,q = (=1)P*1 Z Gy Qpt-q+1—r (p)

r=p+1
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This can be considered by rights (even despite Campbell’s not completely
cogent derivation) the first form of the CBHD Theorem in the literature.

Here we make the point that, whereas in the first paper [28] Campbell
focussed on an exponential theorem within the setting of Lie groups of
transformations, the second paper [30] does not mention any underlying
group structure: a remarkable break with respect to [28]. It is in this abstract
direction that Baker and Hausdorff will concentrate their attention, whereas
Poincaré and Pascal never really separated the abstract and the group
contexts.

1.1.3.2 Baker

Preceded by a series of papers [5-7] on exponential-type theorems in the
context of matrix groups, Baker?* devoted a single important paper [8] to
the “exponential theorem” (incidentally, he is the first to use this expression)
eA'et = ¢4” for arbitrary noncommutative indeterminates.

The first section of [8] is devoted to describing (rather than introducing
rigorously) a certain formalism concerned with bracketing. At a first reading
this formalism looks decidedly mystifying. For Baker’s purposes however,
it “furnishes a compendious way of expressing the relations among alter-
nants” [i.e., brackets]. Let us take a look at this formalism.

To each capital A, B, C, . .. (basis of some associative but noncommutative
algebra) a lower-case a, b, c, . . . is associated in such a way that:

a is called the base of A, and A is called the derivative of a.

The map a + ea := A is linear and injective.

It is possible to extend this map to the whole Lie algebra generated by capitals:
the base of [A, B] is denoted by Ab and, more generally

A1As ... A,b  denotes the base of [A1,[As---[An, B]---]];

— The pairing base—-derivative can be extended to formal power series.

Baker provides some delicate identities concerning bases and derivatives,
proving that his symbols obey some natural associative and distributive
laws. This is done with the aim to get an analogous formalism for non-
nested commutators: roughly speaking, skew-symmetry and Jacobi iden-
tities must be “encoded” in this formalism, e.g.,

Aa=0, Ab+Ba=0, ABc+ BCa+ CAb=0. (1.42)

2Henry Frederick Baker; Cambridge (England), 1866-1956.
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This allows Baker to make computations® with his “disguised brackets” in
a very fluent fashion.

A more delicate topic is the so-called “substitutional operation” treated
in §2. This same operation will return in Hausdorff’s paper (but with no
mention of Baker’s precursory study). Let us summarize it.

Given bases A, B with derivatives a,b, the symbol b-Z defines the
operation replacmg a and A by b and B (respectively) one ‘at a time. For
example

(b aﬁ) A2Ca = BACa + ABCa + A2Cb.
a

In practice, Baker is defining a sort of mixed algebra-derivation, operating
both on bases and derivatives. As a first main result on substitutions, Baker
gives the following remarkable fact (the x1; are arbitrary scalars)

i?‘(b—) (ZW‘J) ZMJ{Z (aaa)iA}j, (1.43)

where b is any base of the form b = (372 \; A’)c where the \; are any

scalars. Identity (1.43) can be interpreted as follows: since § = b% is

a derivation, exp(t) := 3_,5,t'6"/i! is an algebra morphism, and (1.43)
follows by “continuity”. Another momentous identity is the following one:2®

O a_ A
(b %)e — f(ad A)(B) e, (1.44)
where f denotes the following formal power series

F(2) = Y2, 27/ = (¢ = 1)/,

With this same f, Baker now makes the choice

b= <1 +§; i A23> = G(A))a/, (1.45)

Z5For example from the first identity in (1.42) with A = [B, C] one gets [B, C]Bc = 0, the
associative and distributive laws then give BC Bc — CB2c = 0, and by applying the map
e we derive a (not obvious) identity between nested commutators

[B7 [07 [B7 C”] - [Cv [B7 [B7 C}” =

26We explicitly remark that Baker proves (1.44) when b = Ac, and then he asserts — without
proof — that the same holds for an arbitrary b.
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where o’ is any base and the w; are the Bernoulli numbers, according
to Baker’s notation.”” This implies a’ = f(A)b so that, by passing to the
associated derivatives one obtains

A = f(ad A)(B). (1.46)

Gathering (1.44) and (1.46), we infer (b2 )e? = A’ e, and inductively

9 iAi ni LA :
(b%)e = (A e, Vixo. (1.47)

Next he puts (be careful: this will turn out to be the CBHD series!)

"o v
A = Z (b 8&) A (1.48)
If we now apply (1.43) with ¢ = 1 and p; = 1/j!, we immediately get (by
exploiting the latter representation of A”)

" >0 1 a ¢ . ’ " !
A = Z i (b %) A U2 A e, whencee? =e?e?, (1.49)

i=

and the exponential theorem is proved: it suffices to remark that A” in (1.48) is
a Lie series in A, A’. But this is true since A” is the derivative of an infinite
sum of bases,?® and the relation “base<+derivative” has been defined only
between Lie elements. Gathering together (1.45), (1.48) and (1.49), Baker has
proved the following remarkable formula

eet =eA where A" = i% (B 2)iA,

pardl Oa
with B = A’——[A A +Z wﬂ), (ad A)% (A), (1.50)
j=

where the w; are defined by : 1= 1- % + Z (?2%)' 227,
e — 7)!

ZBaker’s definition of the Bernoulli numbers ; is the following one

ezz 7% Z

BIndeed A" is the derivative of a”’ := > 7% & (b %)ia.
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Finally, the last two sections of the paper are devoted to an application of
the exponential theorem to transformation groups, and in particular to a
proof of the Second Theorem. Actually, Baker does not add too much to
what Pascal (and Campbell) had already proved, nor does he consider in
any case the problem of the convergence of the series he obtained.

1.1.3.3 Hausdorff

Hausdorff?’ devoted one single paper [78] to what he called “the symbolic
exponential formula in the group theory”, i.e., the study of the function
z = z(x,y) defined by the identity e”e¥ =¢e*, a problem of “symbolic anal-
ysis”, as he defines it.

In the foreword of his paper, Hausdorff provides a brief review of the
work of his predecessors. Besides Hausdorff’s comments on Schur, Poincaré
and Pascal (which we already mentioned), he turns to Campbell and Baker.

Campbell is acknowledged as the first who “attempted” to give a proof of
the Second Theorem of Lie with the aid of a symbolic exponential formula.
Hausdorff’s opinion is that Campbell’s prolongation of the expansion of z
“is based on a passage to the limit, neither completely clear nor simple”.

Now, surprisingly, Hausdorff does not mention at all Baker’s 1905 paper
[8] (the only citation is to Baker’s 1901 paper [5]), even though more than one
year had elapsed between Baker’s [8] and Hausdorff’s [78] publications. It
seems beyond doubt (which we cannot know, however) that if Hausdorff
had known [8] he would have considered his own (independent) proof
of the symbolic exponential formula as overlapping to a great extent with
Baker’s.®

In the first sections, the necessary algebraic objects are described. In
modern words, Hausdorff introduces the following structures:

Lo:  This is the associative algebra (over R or C) of the polynomials P in a
finite set of non-commuting symbols x,y, z, u, .. .; the “dimension” of P
is the smallest of the degrees of its monomials.

L: This is the associative algebra of the formal power series related to Lo;
any infinite sum is allowed, provided it involves summands with different
(hence increasing) dimensions.

Ky: This is the Lie subalgebra of L consisting of the Lie polynomials in
the basis symbols z, y, 2, u, . . .

K: This is the Lie subalgebra of L consisting of the Lie series associated to
K.

29Felix Hausdorff; Breslau, 1868 (at that time, Silesia — Prussia; now Wroctaw — Poland) —
Bonn (Germany), 1942.

30 A detailed analysis of the similarities between the papers [8] and [78] can be found in [3].
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Then Hausdorff considers the same substitutional operation as Baker had
introduced earlier, but in a more “differential sense”: If F' € L is momentar-
ily thought of as a function of the basis symbol z, and u is a new symbol, we
have the “Taylor expansion”

2 3
F(z+u)=F(x) + (u%)F(z) + %(u%) F(z)+ ;' (u (,%) F(x)+---,
(1.51)
where u 2 is the derivation of L mapping « to u and leaving unchanged all
the other basis symbols.®! For example, if F = F§ + F¥ + F§ + -, where
FZ contains z precisely n times, one has

(x2)F(x)=FF+2Ff 4+ +nF+-- (1.52)

From (1.51) and the commutativity of u a% and v a%' one also obtains

Flx4+uy+v)= Z (—Jrv(%)nF(:c,y). (1.53)

In order to preserve many of Hausdorft’s elegant formulas, we shall use the
notation [P] to denote left-nested iterated brackets: for example

[wy] = [z,9],  [eyz] = [l2, 9] 2], [eyzu] = ([[2,9],2],0), .0 (1.54)

With only these few prerequisites, §3 is devoted to the proof of Hausdorft’s
main result, Proposition B [78, page 29], which is the announced symbolical
exponential formula: The function z of x,y defined by e*e¥ = e* can be
represented as an infinite series whose summands are obtained from x,y by
bracketing operations, times a numerical factor. Let us analyze Hausdorff’s
argument and compare it to the proofs of his predecessors.

We are in a position to say that z = z(x, y) is a true function of z, y for in
L the logarithm makes sense, so that

1 1
z=(e"e’ - 1) — 3 (e®e¥ —1)% + 3 (e¥e¥ —1)% +
We aim to prove that the above z actually belongs to K, not only to L.

Since (u %)em =y Ly ! iy =11, the substitution u = [w, z]
generates a telescopic sum, so that

([w, x] ;—x)ex = we” — e"w. (1.55)

SEquivalently, ( ) F(z) is the sum of all the summands of F(z + u) containing u
precisely n times.



28 1 Historical Overview

Furthermore Hausdorff provides two other, now well known, formulas of
noncommutative algebra®? (see also the notation in (1.54)):

n

[wa™] =3 (=1 (})a"wa""", (1.56)
i=0
e Twer = i % [wa™], (1.57)
n=0

where (1.57) follows easily from (1.56) by a computation similar to Camp-
bell’s (1.37). As a consequence we obtain

1
n!

0N 205 o a o 05 LN "
([w,x] 81:)6 = e(e T Pwe —w) ='e 7;1 T [wa”].

An analogous formula with e® as a right factor holds. This gives the
following results: If u is of the form [w, x] for some w € L, we have®®

(u a%)ew =e"p(u,x) where ¢(u,z)= i — [u:z:"_l], (1.58)
n=1
& _1\n—1

(u %)em = Y(u,x)e*  where Y(u,z) = Z % [uz™ 1. (1.59)
n=1 :

We remark that identity (1.59) was already discovered by Baker, see (1.44).
If we introduce the functions

then ¢ and v can be rewritten as
o(u,z) = h(ad x)(u), Y(u,x) = h(—adx)(u), (1.60)
Furthermore, from (1.60) we get the inversion formulas

p=p(u,z) & u=x(p ),

1.61
q:¢(u,x) A u:w(QaI)? ( )

$2Formula (1.56) also appears in Campbell [28, page 387] and in Baker [8, page 34],
whereas formula (1.57) also appears in Campbell [28, page 386] and in Baker [8, page 38].
33 Analogous identities hold when u = z or when w is a series of summands of the form
[-,z], and the restriction u = [w, ] will be systematically omitted by Hausdorff.
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where

n 1
X(.2) = p— 3 [p2] Z B pe*],  wlga) = x(g,—2),

- (1.62)
and we see how the Bernoulli numbers step in.>* We thus get the following
important formulas (note that (-, z) and ¢ (-, z) are linear)

Tt = e (1+ ap(u,z) + 0(a?)), (1.63)
et = (14 ap(u,z) + 0(a?))e”, (1.64)

valid for every scalar a. We remark that a proof of (1.63) is contained in
Poincaré [142, page 244, 245] (see indeed the computation in (1.26)), but
Hausdorff does not mention it.

At this point, Hausdorff’s argument becomes somewhat opaque: he
states that it is possible to leave z unchanged in e*e¥ = e* by adding au to =
and by accordingly adding to y a certain quantity —av + O(a?), so that the

identity e touey—ovtO(e®) — ¢ also holds. We prefer to modify Hausdorff’s
argument in the following way (similarly to Yosida, [183]): Let u, v be any
pair of elements of L satisfying

p(u,x) =1P(v,y), (1.65)
and let z(«) be defined by
(@) = grtaugy—av, a € R.
For example, thanks to the inversion formulas (1.61), the choices
{u=2, v=w,y)} or {v=y, u=x(yz)} (1.66)
do satisfy (1.65). We thus have the following computation:
e*@ = e"(1+ ap(u,z) +0(a?) (1 — av(v,y) + O(a?))e
=" (1+alp(u,2) = (v, y)) + 0(a?))e”

" er(1+0(a)e! = e (1+0(a?)).

34Indeed we have

z
z) = =
9(2) = — =

M\N

oo
£
— (2n ’

where, according to Hausdorff’s notation, the following definition of Bernoulli numbers

n"le,
Bn =l i 1( ()211)' 20
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From the above expansion it is easily derived that 2(0) = 0. On the other
hand, by applying the expansion (1.53) to F(z,y) := log(e¥e¥), we get

z(a) = F(x 4+ au,y — av) = z(z,y) +a(u% fv(,%)z(:c,y) + 0(a?).

Hence, 2(0) = 0 ensures that z(z,y) = e®e¥ satisfies the following PDE

(u %)z = (v %)z, (1.67)

for any u, v satisfying (1.65). We are thus allowed to make, e.g., the choices
in (1.66), which respectively give

(z£)z = (w(z,y) &)z, (1.68)
(y£)z = (x(y,2) &)=, (1.69)

and each of these suffices to determine z. Indeed, by writing z = 2§ +27 +- - -
(where z has been ordered with respect to increasing powers of x) and
by using (1.52), Hausdorff derives from (1.68) the following remarkable
formula

1 o\"
T = — — > 0. .
= () g0) v nz0 (1.70)

Here we have used the fact that an application of the operator w(z,y) a%
increases the degree in x by one unit. Analogously, from (1.69) one gets

1 0

(x(y7 )&C)nw, n > 0. (1.71)

z¥ =
Since z,y and w(x,y), x(y, z) are all Lie series (see (1.62)), this proves that

any zy, z¥ is a Lie polynomial and the exponential formula is proved.

From (1.70) and the definition of w(z,y), it follows that Hausdorff has
proved the following result (note that [z y*"] = (ad y)*"(z))

oo

1 o \"
T,y oz _ —
eve¥ =e®, where z = ngzo py (w(:c,y) 5y) 1,
, B 1 = (-1)"'B, o
with w(z,y) =z + 3 [z,y] + E: G (ady)™"(z), (1.72)

o0 n 1
where the By, are defined by ZZ = —g Z B 2",
% _
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We observe that this is exactly Baker’s formula (1.50), proved one year
earlier.

Furthermore, Hausdorff provides a new recursion formula, allowing us
to obtain the homogeneous summands of z, ordered with respect to the joint
degree in z,y. His argument is based on his previous techniques, more
specifically, by deriving an ODE for z(«) defined by e*(® = ertavey,
Hausdorff thus obtains the remarkable formula (see [78, eq. (29), page 31])

(:c %)er (y%)z: [z, 2] + x(x + y, 2). (1.73)

Inserting in (1.73) the expansion z = 21"¥ + z3°Y + - - -, where 22" has joint
degree n in x, y we obtain a recursion formula for the summands z%¥ which
exhibits in a very limpid form their Lie-polynomial nature. This formula
will return in modern proofs of the Campbell-Baker-Hausdorff Theorem,
see Djokovi¢ [48] and Varadarajan [171] (see also Chap.4 of this book)
and — as shown in [171] — it can be profitably used to settle convergence
questions.

From Sect.4 onwards, Hausdorff turns his attention to the applications
to groups of transformations. After having criticized his predecessors for
this omission, Hausdorff’s main concern is to solve the convergence problem.
Of all his series expansions of z, he studies the one obtained by ordering
according to increasing powers of y in (1.71).

To thisend, lett, ..., t,. be abasis of a set of infinitesimal transformations,
with structure constants given by [t,,t,] = >2\_; cporta. Let x = 30 &ty
y = >_,npt, and suppose that the series z(z,y) = Y77z defined by
(1.71) converges to =z = > (,t,. Set z{ = x(y, ), and suppose that this
converges to u = »  ,t,. From the definition of u = x(y, z), we see that
u depends linearly on y and vice versa. Passing to coordinates with respect
to {t1,...,t,}, we infer the existence of a matrix A(§) = (o, (£)), such that
Vo =3, apo(§) mp. Thus, the identity u = x(y, ) is rewritten compactly as

> (@t =Xt Xy iata), p=1,...,7. (1.74)

%This might lead us to suppose that Hausdorff did not ignore Baker’s results in [8].
Nonetheless, it is beyond doubt that Hausdorff’s argument, devoid of the intricate
formalism of Baker, is the first totally perspicuous proof of the exponential formula,
with the merit to join together — in the most effective way — the right contributions from
his predecessors: some algebraic computations from Pascal and Campbell; Poincaré’s
technique of deriving ODEs for z(«); the use of Baker’s substitutional operator.
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This will allow Hausdorff to obtain an explicit series for each of the functions
a,0(€) and, consequently, for each of the functions ©,. To this aim, let us
introduce the structure matrix®®

Z(¢) = (gpg)pa, where &,, := 22:1 Coraln.

With the aid of the matrix =, Hausdorff recognizes that (1.74) can be
elegantly rewritten as (Hausdorff cites Schur for a less compact version of
this identity)

. (1.75)

er —1°

thatis, A(¢) = f(£(¢)),  where f(z) =

It is now very simple to deduce from (1.75) a domain of convergence for the
series expressing the functions a,. (£): If M is an upper bound for all of the
quantities |¢,.|, it suffices to have rM < 27, since the complex function f(z)
is holomorphic in the disc about 0 of radius 27. This produces a domain of
convergence for each ¥, = 3 @, (£) 1, and hence for u = 3 J,t,, which
is the first summand x(y, z) in the expansion for z(z, y).

As for the other summands in the expansion

2= 2+ x(0) + o (X0 ) 5 Jxr2) + 3 (r2) ) Xlom) +o

(1.76)

it suffices to discover what the operator u - looks like in coordinates.
Setting F'(z) = >_  f,(§) t,, we have the usual Taylor expansion

F(z +u) pr§+0 Z( +Z19 afp +O(|19|)

which, compared to the expansion F(:z: +u) = F(z) +u5; 2 ~F(x) + O(u?)
in (1.51), shows that the operator u ;- has the same meamng as the

infinitesimal transformation A = "/ _ (§ n) =2 ¢, that is,
. 3}
A=Y %o (€) 3¢ (1.77)
p,o=1 7

This proves that the expansion (1.76) becomes, in coordinates z = >, (,t),

o =§p+A§p+%A2§p+%A3§p+--- = e(¢,). (1.78)

%This is nothing but the transpose of the matrix representing the right-adjoint map Y

[Yv ZA gktk]'
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Now, the crucial device is to observe that this is precisely the expansion of the
solution t — ((t) to the following ODE system

{ G =X, mamC®)
(0) =&
Hence, since it has already been proved that the functions «,, are analytic
in a neighborhood of the origin, the convergence of ¢, in (1.78) is a consequence
of the general theory of ODEs. Note the similarity with Poincaré’s convergence
argument, see (1.25).
This all leads to the proof of the group exponential theorem, Proposition C
[78, page 39]: Given the structure equations [t,,t,] = >, Coorty, by means of the
exponential formula

ezéptp eantp — ezgptp,

the functions ¢, = (,(&,n) are well defined and analytic in a suitable neighborhood
of ¢ =n=0.

Section 7 is devoted to the derivation of the Second and Third Theorem
of Lie by means of the above Proposition C. As a fact, Hausdorff’s argument
does not add too much to what his predecessors, from Poincaré to Baker, had
said about the same topic. There is no better way to end this brief review of
Hausdorff’s proof of the Exponentialformel than quoting his words (see [78,
page 44]): the symbolic exponential theorem “Proposition B is the nervus

probandi of the fundamental theorems of group theory”.%’

1.1.3.4 Dynkin

After Hausdorff’s 1906 paper [78], forty years elapsed before the problem of
providing a truly explicit representation of the series log(e”e?) was solved.
This question was first answered by Dynkin® in his 1947 paper [54].%
Starting from what Dynkin calls “the theorem of Campbell and
Hausdorff”, i.e., the result stating that log(e”e?) is a series of Lie polynomials

%The - not so current — Latin expression “nervus probandi” (occurring frequently e.g.,
in Immanuel Kant’s philosophic treatises) means, literally, “the sinews of what has to be
proved”, that is, the crucial argument of the proof. This Latin expression describes very well
the paramount ro6le played by the exponential theorem in Hausdorff’s arguments, as the
real cornerstone in the proof of many results of group theory.

38Eugene Borisovich Dynkin; Leningrad (Russia), 1924.

%In what follows, we will quote the 2000 English translation of the Russian paper [54],
contained in [57, pages 31-34].
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in z,y, formula (12) of [57] provides the following explicit representation,
later known as Dynkin’s Formula (for the Campbell-Baker-Hausdorff series)

10g(6$ey) _ Z (_1)k—1 1 (Z‘plyqlmeyqz . l‘pkqu)o
k- pilaipalge! - - prlar! ’
(1.79)

where the sum runs over k£ € IN and all non-vanishing couples (p;, ¢;), with
i =1,..., k. Most importantly, the map P — P" — which we now describe —
is introduced, where P is any polynomial in a finite set of non-commuting
indeterminates.

Let R denote the algebra of the polynomials in the non-commuting
indeterminates x4, . . ., z,, over a field of characteristic zero. For P,Q € R, let
[P, Q] = PQ— QP denote the usual commutator,*” and let R” be the smallest
Lie subalgebra of R containing 1, . . ., ;. Finally, consider the unique linear
map from R to R° mapping P = z;, z;, - - - z;, to P’, where

PO = — [ [y, @iy ], i) - 2, )

=

Then (see [57, Theorem at page 32]) Dynkin proves that
P e R%ifand only if P = P°. (1.80)

This theorem, later referred to as the Dynkin-Specht-Wever Theorem (see
also Specht, 1948 [161], and Wever, 1949 [179]), is one of the main character-
izations of Lie polynomials.

With this result at hands, the derivation of the representation (1.79) is
almost trivial. Indeed, the very definitions of log, exp give

(71)]€—1 1
LY\ — P1,,91 ,P2,,92 , ., Pk, 9k
log(e"e”) = Z ko oplalpelel - plgd T YT s

where the sum is as in (1.79). If we assume that the exponential-theorem holds
(that is, that the above series is indeed a Lie series in z, y), an application of
the map P — P° (naturally extended to series) leaves unchanged log(e”e)
so that (1.79) holds.

Three other fundamental results are contained in Dynkin’s paper [54]:

1. If Kis R or C and R is any finite dimensional Lie algebra over I, then the
series in the right-hand side of (1.79), say ¢°(z, y), converges for every z, y

“Dynkin used the notation P o Q := PQ — QP; also z;, o z;, o -+ o z;, denotes the
left-nested commutator (- - - ((zs; 0 24,) 0 @iy) 0 - - 0 x4, ). We allowed ourselves to use the
bracketing notation, as in the rest of the book.
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in a neighborhood of 0 € R. Indeed, thanks to the very explicit expression of
Dynkin’s series, the following direct computation holds: if || - || is any norm
on R compatible with the Lie bracket,*! then

H(wplyqlxmy‘h ,,,xmqu)OH < [Pty ot

Consequently, as for the study of the total convergence of the series
@Y(z,y), an upper bound is given by

—(_1)k_1 llzll ol k llzll Iyl
> (el lelvl = 1)" = tog(el*lellvl) = 2| + Jlyl| < oo,
k

provided that |lz| + |ly]] < log2. As a matter of fact, this is the first
arqument — in the history of the CBHD Theorem — for a direct proof of the con-
vergence problem, an argument much more natural and direct than those
given by Poincaré, by Pascal, and even by Hausdorff. Also, Dynkin’s
proof works for any finite dimensional Lie algebra, hence in particular for
the algebra of the infinitesimal transformations of a Lie group, thus
comprising all the related results by his predecessors.

2. The same arguments as above can be straightforwardly generalized to
the so-called Banach-Lie algebras,** thus anticipating a new research field.
Dynkin will extensively return to this generalization in [56].

3. Dynkin’s series (1.79), together with the obvious (local) associativity of
the operation x x y := @°(z,y), allows us to prove Lie’s Third Theorem
in its local version (a concern for Schur, Poincaré, Pascal and Hausdorff)
in a very simple way: indeed * defines a local group on a neighborhood of
the origin of every finite dimensional (real or complex) Lie algebra, with
prescribed structure constants.

As observed above, Dynkin provides a commutator-formula for log(e“e?),
yet his proof assumes its commutator-nature in advance. Two years later
in [55], Dynkin will give another proof of the fact that log(e¥e?) is a Lie
series, completely independent of the arguments of his predecessors, and
mainly based on his theorem (1.80) and on combinatorial algebra. Following

41This means that ||[z,y]|| < ||lz| - ||y|| for every z,y € R. Note that such a norm always
exists, thanks to the continuity and bilinearity of the map (z,y) — [z,y] and the finite
dimensionality of R.

#2A Banach-Lie algebra is a Banach space (over R or C) endowed with a Lie algebra
structure such that A x A 5 (z,y) — [z,y] € A is continuous. In this case, if || - || is
the norm of A, there exists a positive constant M such that ||[z, y]|| < M ||z| - ||y|| for every
x,y € A, so that the norm M]|| - || is compatible with the Lie bracket of A and Dynkin’s
arguments — this time also appealing to the completeness of A — generalize directly.
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Bose [23, page 2035], with respect to the recursive formulas for log(e*eV)
proved by Baker and Hausdorff, “Dynkin radically simplified the problem”,
by deriving “an effective procedure” for determining the BCH series.

Dynkin’s original proof provides a major contribution to the under-
standing of the combinatorial aspects hidden behind the composition of
exponentials. Crucial ideas contained in [55] will return over the subsequent
60 years of life of the CBHD Theorem, e.g.in the study of (numerical)
algorithms for obtaining efficiently simplified expansions of the series
representation of log(e®e?). For this reason (and for the fact that Dynkin
provided a completely new and self contained proof of the theorem of
Campbell, Baker, Hausdorff), we considered the acronym CBHD as the
appropriate title for our book.

An overview of Dynkin’s proof in [55] can be found in [3]. We here
confine ourselves to writing the new representation found in [55]. First some
notation: in the (n + 1)-tuple I = (io, ..., 4, ) of pairwise distinct integers, a
couple of consecutive indices ig, ig+1 is called regular (nowadays also known
asarise)if ig < igy1 and irregular (a fall) otherwise; denote by s; the number
of regular couples of I and by ¢; the number of irregular ones. Then it holds

oo

1
log(e®e¥) = Z ﬁP(w,...,x;y,...,y), where (1.81)
St =

p times q times

P(IZ?(), - ,In) = ﬁ Z(*l)to‘l SOJ! tOJ! [[CC(),:CJ-I] . Ijn],
J

where 0J means (0, j1,...,Jn) and J = (j1,...,4,) runs over the permuta-
tions of {1, ...,n} (the meaning of ¢, so is explained above).

Finally, in [56] Dynkin studies in great detail the applications of his
representation formula for log(e”e¥?) to normed Lie algebras and to analytic
groups. The starting points are not transformation groups, but Lie algebras.
The main result is thus the construction of a local topological group attached
to every Banach-Lie algebra by means of the explicit series of log(e”e?). The
theory of groups and algebras was meanwhile advanced sufficiently to
make it possible to use more general notions and provide broader gen-
eralizations (non-Archimedean fields are considered, normed spaces and
normed algebras are involved, together with local topological or analytic
groups).

As for the history of the CBHD Theorem, this paper paved the way, by
happenstance, for the study of other possible representations of log(e”e¥)
and therefore for the problem of improved domains of convergence for the
representations of log(e”e?). It is therefore to be considered as opening the
“modern era” of the CBHD Theorem, the subject of the next section.
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1.2 The “Modern Era” of the CBHD Theorem

The second span of life of the CBHD Theorem (1950-today), which we
decided to name its “modern era”, can be thought of as starting with the
re-formalization of Algebra operated by the Bourbakist school. Indeed, in
Bourbaki [27] (see in particular II, §6-§8) the well-behaved properties of the
“Hausdorff series” and of the “Hausdorff group” are derived as byproducts
of general results of Lie algebra theory. In particular, the main tool to prove
that log(e®e¥) is a Lie series in x,y is the following characterization of Lie
elements L(X) within the free associative algebra A(X) of the polynomials
in the letters of a set X:

LIX)={te A(X) : () =t®@1+1®t}.

Here § : A(X) — A(X) ® A(X) is the unique algebra-morphism such
that 6(z) = 2 ® 1 + 1 ® z, for all z € X. This result (frequently named
after Friedrichs® [64]) or equivalent versions of it are employed also by
other coeval books [85,99,159], framing the CBHD Theorem within a vast
algebraic theory. The ad hoc techniques of the early proofs from the previous
period 1890-1950 do not play any role in this new approach and any
reference to the theory of Sophus Lie’s groups of transformations becomes
immaterial.

A compelling justification of the interest in the study of product of
exponentials (possibly, of more general objects too, such as operators on
Hilbert spaces or on Banach algebras) comes from modern (actually 1960-
1970s) Physics, especially from Quantum and Statistical Mechanics. The
applications of this algebraic result — mainly named after Baker, Campbell,
Hausdorff — cover many Physical disciplines: mathematical physics, theo-
retical physics (perturbation theory, transformation theory), quantum and
statistical Mechanics (the study of quantum mechanical systems with time-
dependent Hamiltonians, linear stochastic motions) and many references
can be provided (see [51,64,65,104,119,128,178,180, 181] and the references
therein). It is therefore not surprising that a great part of the results available
on the CBHD formula have been published in journals of Physics.

Along with applications in Physics, the CBHD Theorem produces,
unquestionably, the most remarkable results in the structure theory of Lie
groups, which is the reason why it is often popularized — in undergraduate
and graduate courses — as a result of Lie group theory. Indeed, as is well
known, in this context it allows us to prove a great variety of results: the
universal expressibility of the composition law in logarithmic coordinates

#3Gee Reutenauer [144, Notes 1.7 on Theorem 1.4] for a comprehensive list of references
for this theorem.
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around the unit element; the effective analytic regularity of all smooth Lie
groups (an old result of Schur!) and of all continuous homomorphisms; the
local “reconstruction” of the group law via the bracket in the Lie algebra,
the existence of a local group homomorphism with prescribed differential,
the local isomorphism of two Lie groups with isomorphic Lie algebras;
the possibility to fully classify the simply connected Lie groups by their
Lie algebras, together with the possibility of “explicitly” writing the group
law in nilpotent Lie groups; the local version of Lie’s Third Theorem (the
existence of a local Lie group attached to every finite dimensional Lie
algebra), and many others.

For this reason, all* major books in Lie group theory starting from
the sixties contain the CBHD Theorem (mainly named after Campbell,
Hausdorff or Baker, Campbell, Hausdorff), see Table 1.2.

Table 1.2 Some books on Lie group/Lie algebra theories comprising CBHD

Year Author book
1962 Jacobson [99]
1965 Hochschild [85]
1965 Serre [159]
1968 Hausner, Schwartz [79]
1972 Bourbaki [27]
1973 Sagle, Walde [151]
1974 Varadarajan [171]
1982 Godement [70]
1991 Hilgert, Neeb [84]
1993 Reutenauer [144]
1997 Gorbatsevich, Onishchik, Vinberg [72]
1998 Hofmann, Morris [91]
2000 Duistermaat, Kolk [52]
2002 Rossmann [149]
2003 Hall [77]
2007 Abbaspour, Moskowitz [1]
2007 Sepanski [158]

It is interesting to observe that the proofs of the CBHD Theorem in
these books are often quite different from one other and ideas from the
early period often reappear. For example, the ODE technique (going back
to Poincaré and Hausdorff) is exploited — and carried forward — in [1, 52,
70,79,171]; the old ideas of Baker, Hausdorff on polar differentiation are
formalized in [144]; Eichler’s [59] algebraic approach is followed in [151].

#Exceptions are the very influential book by Chevalley [38], which is actually older than
the other books cited (1946), and Helgason [81], where only expansions up to the second
order are used.
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Indeed, even if in the setting of a Lie group (G, -) the (local) operation
X «Y :=Loga((ExpeX) - (ExpgY)), X,Y € Lie(G)

and its universal Lie series representation may be studied from a purely
algebraic point of view, it turns out that, by fully exploiting differential (and
integral) calculus on G and on Lie(G), more fitting arguments can be given.
For instance, arguments exploiting ODE technique have a genuine meaning
in this context and many formal series identities (especially those involving
adjoint maps) acquire a full consistency and new significance (see e.g., [77,
158] where matrix groups are involved).

As for journal papers containing new algebraic proofs of the exponential
theorem, the new era of the CBHD Theorem enumerates plenty of them, see
e.g., Cartier [33, 1956], Eichler [59, 1968], Djokovi¢ [48, 1975], Veldkamp [174,
1980], Tu [169, 2004]. Furthermore, in the group setting (possibly, infinite-
dimensional), other interesting results of extendibility and non-extendibility
of the above local operation * have been considered (see [47,49,50,58,69, 88,
89,93,170,182]).

A remarkable turning point for the history of the CBHD Theorem is
provided by Magnus’s 1954 paper [112], whose applications to the applied
sciences were soon revealed to be paramount. For a comprehensive treatise
on the Magnus expansion, the Reader is referred to Blanes, Casas, Oteo,
Ros, 2009 [16] (and to the detailed list of references therein). We here
confine ourselves to a short description of its interlacement with the CBHD
Formula. In studying the exponential form exp((2(¢)) under which the
solution Y'(¢) to the nonautonomous linear ODE system Y'(t) = A(¢)Y (t)
can be represented, Magnus introduced a formula for expanding (2(¢), later
also referred to as the continuous Campbell-Baker-Hausdorff Formula. (See also
Chen [37], 1957.) Indeed, the Ansatz Y (t) = exp(£2(t)) turns the linear
equation Y'(t) = A(t)Y (¢) into the nonlinear equation for 2(t)

z
er—1"

(1) = [(ad Q)(A1)), where f() =

The above right-hand side is to be interpreted as the usual Lie series

Soio i (ad 2(1)* (A1),

where the Bj, are the Bernoulli numbers. This procedure makes sense in
various contexts, from the simplest of matrix algebras to the more general,
mutatis mutandis, of Hilbert spaces or Banach algebras. If we add the initial
value condition Y'(0) = I (I is the identity, depending on the context), then
2(0) = 0 and the well-know Picard’s Iteration Theorem for ODE’s gives

Q) =307, 2,(t), where 24(t) = fot A(s)ds, and inductively for n > 1
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n

2n11(t) :ZBj > /0 (25, (8), [0 (5) - [0, (5), As)] - - - ]] ds.

— 41 -
J=1 7" kitetky=n

As a matter of fact, in suitable settings ¢ — A(t) is also allowed to be
discontinuous (in which case the above differential equations must be
replaced by the corresponding Volterra integral forms). Namely, one may
consider

z, iftel0,1],

0.2] 5 ¢ Alt) = {y ift e (1,2].

In this case the unique continuous solution Y to Y'(¢) = I + f(f A(s)Y (s)dsis

B etm’ ift € [0, 1]/
Y(t) - {e(t_l)yem’ lft S (17 2]/

so that Y (2) = e¥e”. If, on the other hand, the exponential representation
Y (t) = exp(£2(t)) holds and the above expansion (the Magnus Expansion) is
convergent, then z := 2(2) = 7 | 2,(2) satisfies e* = Y (2) = e¥e”. Note
that, when A is the above step function, the inductive representation of (2,
ensures that 2,,(2) is a Lie polynomial in z, y of length n.

The above sketch shows the intertwinement between the Magnus expan-
sion and the CBHD Theorem, whence convergence results for the former
provide analogous results for the latter. De facto, in the study of convergence
domains for the CBHD series (to which more recent literature — mainly from
the 1980s — has paid great attention), the use of the Magnus expansion has
proved to be momentous. Despite this fact, the problem of the best domain
of convergence for the CBHD series in the setting of arbitrary Banach algebras
and — more generally — in Banach-Lie algebras is still open, though many
optimal results exist for matrix algebras and in the setting of Hilbert spaces,
see the references in Sect. 5.7 on page 359.

The problem is obviously enriched by the fact that many presentations
of the series for log(e*e¥) (in commutator or non-commutator forms) exist,
further complicated by the fact that absolute and conditional convergence
provide very different results. Also, the problem of finding efficient algo-
rithms for computing the terms of this series (in suitable bases for free Lie
algebras and/or under minimal numbers of commutators) has played a
major role during the modern age of the CBHD Formula. For related topics,
see e.g., [14-16,23,35, 36,46, 61,103,109, 118,122,123, 131, 134, 145, 146, 166,
166,167,177].

In parallel with the applications in Physics and Geometry, starting from
the mid seventies, the CBHD Theorem has been crucially employed also in
Analysis within the study of wide classes of PDE’s, mostly of subelliptic type,
especially those involving so-called Hormander systems of vector fields. See, for



1.2 The “Modern Era” of the CBHD Theorem 41

example, the use of the CBHD Theorem in the following papers: Christ,
Nagel, Stein, Wainger [39], Folland [62], Folland, Stein [63], Hormander
[94], Rothschild, Stein [150], Nagel, Stein, Wainger [129], Varopoulos, Saloff-
Coste, Coulhon [172].

Due to our own interest in these kinds of applications,™ we would like
to make explicit, for the convenience of the interested Reader, the kind of
statements used in the analysis of the mentioned PDE’s. First we recall some
notation. Let X be a smooth vector field on an open set 2 C R”, thatis, X is
a linear first order partial differential operator of the form X = Z;VZI a; 0j,
where q¢; is a smooth real valued function on (2. Fixing = € {2 and a smooth
vector field X on 2, we denote by ¢ — exp(tX)(z) the integral curve of X
starting at z, that is, the (unique maximal) solution ¢ — ~(¢) to the ODE
system

45

Y1) = (a1 (y(®)), .- an(4(1))),  7(0) = .

The very well-known equivalent notations e!* (z), exp(t X )(x) are motivated
by the fact that, given any smooth real or vector valued function f on {2, the
Taylor expansion of f(y(t)) at ¢ = 0 is obviously given by

o0

th .
ZE (XPf)().

k=0

This kind of exponential-type maps play a central role in sub-Riemannian
geometries. For example, when {X7, ..., X,,} is a system of smooth vector
fields on RY satisfying the so-called Hormander’s rank condition*® the so-
called Carathéodory-Chow-Rashevsky Connectivity Theorem (see Gromov [75];
see also [21, Chapter 19]) ensures that any two points of R can be joined
by a finite number of pieces of paths, each of the form x + e*¥i(z). The
relevance of this kind of map is also motivated by the fact that, for two
smooth vector fields X,Y on {2, it holds that

) e o X ot oetX () g :
50 t2 -

X, Y](z), z€

a remarkable geometric interpretation of the commutator.
We are ready for the statement of the “ODE version” of the CBHD
Theorem used in [129, Proposition 4.3, page 146]: Let £2 C R” be an open

#Gee [21, Chapters 15, 19], and [17,20,22].
4That is, the dimension of the vector space

span{X(z) : X € Lie({X1,...,Xm})}

equals N, for every z € RV.
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set. Let Y = {Y7,...,Y,,} be a family of smooth vector fields on 2. Then,
for every compact subset K of {2 and every M € NN, there exist positive
constants C, e depending on M, K, Y, {2 such that

< C(Is|™ + 1™,

exp (i sij) o exp (i thj) (z) —exp (Zn(s,1)) ()

j=1

for every x € K and for every s,t € R™ such that |s|, [¢| < e. Here | - | is the
Euclidean norm on RY and Za(s, t) = nar (Y72, 5;Y;, > 12, 1Y), where

i (_1)n+1 Z 1
nM(Aa B) = 1 21 n ] ]
n=1 n (h1,k1) sy (B K ) #(0,0) htk! (i (ha + ki)

hit+ki+-+hn+k, <M
——— —— N—— ———

hi times k; times h.,, times k., times

We recognize that ny(A, B) is the M-th partial sum of the usual CBHD
formal series for log(e“ef). Other delicate estimates involving smooth
vector fields and their flows are obtained by Hérmander by making use of
the CHBD formula (in fact, the degree-two expansion = + y + % [x,y] + -
suffices), used to derived Zassenhaus-type decompositions (see e.g., [162]).
Indeed, in [94, pages 160-161], it is proved that, for every k > 2, the following
decomposition holds (in the Q-algebra of the formal power series in z, y)

etV = ePel¥e e ... g7k elht1

where (for every n = 2,...,k) 2, is a Lie polynomial in z,y of length
n, whilst 7,4, is a formal power series of Lie polynomials in z,y of
lengths > k + 1. Analogously, starting from the cited degree-two expansion,
Hormander derives a remarkable result — corollary of the CBHD Formula —
which is the key tool for the cited Carathéodory-Chow-Rashevsky Connec-
tivity Theorem: this is based on an iteration of the important identity for the
“group-like commutator” e *e"YeeY as in

e "e Yeve¥ = exp ([x,y] + {brackets of heights > 3}),
the iteration being aimed to obtain a decomposition of
exp ([[[w1, z2], 23] - @)
as a suitable universally expressible product of elementary exponentials

e*®i, j = 1,...,n (plus a remainder). We refer the Reader directly to
[94, page 162] for details (or to Lemma 5.45 on page 326 of this book).
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Analogous decompositions are frequently used in PDEs, see e.g., Folland
[62, §5, page 193] and Varopoulos, Saloff-Coste, Coulhon [172, §II1.3, pages
34-39] (see also the recent papers [22,40,110,127]).

Another application of the CBHD Formula occurs in the seminal paper
by Rothschild and Stein [150] on the so-called Lifting Theorem. For example,
the following formula is used, see [150, §10, page 279]: Given smooth vector
fields W7y, ..., W,, on an open subset 2 of R and set u - W := >y ui Wi
it holds that (for any integer [ > 2)

exp (u- W) o exp(r W1)(&)

= exp (u W H+TWy + lelcp (ad (u - W))p(Wl)) &) + O(|u|l,72),

for £ € (2 and small 7, u. (From the early papers on the exponential formula,
we also know the actual value of the constant ¢, viz ¢, = %, where the B,

are the Bernoulli numbers: =5 = Z;‘;O % 2P.)

The CBHD Formula has not ceased to provide a useful tool in Analysis.
For example, we cite the recent paper by Christ, Nagel, Stein, Wainger [39],
where the following version for smooth vector fields is used: Let X,..., X,
Yi,...,Y, be smooth vector fields on an open subset of R"; for u,v € R? and

m € IN define

Plu,X)= Y " up [Xay - [Xa, 0, Xl

0<|a|<m

and analogously for Q(v,Y") (the v, Y's replacing the u, Xs in P(u, X)); then,
for each N > 1 the following equality of local diffeomorphisms holds

exp(Q(v,Y)) o exp(P(u, X))

N
— exp (;ck(P(u,X), QoY) + O((ful + [o)N*1),  asul + [v] =0,

where the ¢, = c¢(a,b) are the Lie polynomials (homogeneous of bi-
degree k) defined by the usual CBHD series e'e’® = exp(>_,—; cx(a, b)t").

All the above results can be proved without difficulty starting from the general
results on the CBHD Theorem contained in this book, as it is shown in detail e.g.,
in [21, Section 15.4].

The réle of the CBHD Theorem is not only prominent for usual Lie
groups, but also for infinite dimensional Lie groups. For a detailed survey
and references (a comprehensive bibliography is unfortunately out of our
scope here), see Neeb [130]. As for the topics of this book, the notion of
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BCH-group (Baker-Campbell-Hausdorff group) is particularly significant.
For some related topics, see, e.g., [12,13,24,42,43,56,66-68,73,83,86,87,92,
130,133,147,148,152,173].

Finally, to put to an end our excursus on the modern applications of the
CBHD Theorem, we point out that the years 2000 plus have seen a renewed
interest in CBHD-type theorems (both continuous and discrete) within yet
another field of application: that of so-called geometric integration, a recent
branch of Numerical Analysis (see e.g.[76,97,98,101, 114]).

1.3 The “Name of the Game”

We reserve a few lines to discuss our choice of the acronym “CBHD” and to
recall the other choices from the existing literature.

As it appears from Table 1.3 (which collects the different titles used for
the “exponential theorem” in the about 180 or so related references quoted in
this book), there is definitely no agreement on the provenance of the theorem
to which this book is entirely devoted. Certainly, custom and tradition
have consolidated the usage of some set-expressions (such as “Campbell-
Hausdorff Formula”), which cannot now be uprooted, even if they do not
seem adequate after a brief historical investigation.

For example, Baker’s contribution matches with Hausdorff’s to such an
extent that, if we had to choose between “Baker-Hausdorft” or “Campbell-
Hausdorff”, we would choose the former expression. Furthermore, what is
this “Formula” after all? If the term “formula” refers — as seems plausible —
to identities like

ere? =exp (+y+ Slo gl + 35 folwyl] + & lolys @l + ),

then it would be more appropriate to speak of “Dynkin’s Formula”.
As it emerges from the historical overview of the present chapter, the
possible phraseologies may be even richer; we propose some of them:

1. “Campbell’s problem” has been solved (almost completely) by the “Poin-
caré-Pascal Theorem” and (completely) by the “Baker-Hausdorff Theorem”.

2. The same recursion formula for a series expressing z in the identity e*e¥ =
e” has been given by Baker and by Hausdorff (see (1.50) and (1.72):
the “Baker-Hausdorf{f series” of “Baker-Hausdorff Formula”); Hausdorff gave
another recursion formula for z (see (1.71)) and — implicitly — yet another
one (contained in (1.73) and destined for a great success). Thus, the
naming of “the Hausdorff series” (also widely used) may be misleading.

3. A result providing an explicit series expansion for z is first given by
“Dynkin’s series” (also called “Dynkin’s Formula”), see (1.79).
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If one further considers that — among Dynkin’s results — we can also
enumerate a new solution to Campbell’s problem (see [55]), and two other
explicit series expansions (see (1.81) and [55, eq. (19)’, page 162]), then our
choice “CBHD Theorem” seems justified.

[As a matter of fact, as can be seen from Table 1.3, the four-name
choice is not commonly accepted and the reference to Dynkin is often
limited to the cases when the actual Dynkin series (1.79) is involved. This
fact, though neglecting the original contributions to the Campbell-Baker-
Hausdorff Theorem given by Dynkin in [54-56], is so deeply entrenched
that we cannot propose the acronym “CBHD” as final, but as our personal
point of view, instead. The spotlight on Dynkin’s series in the present book
is so evident that we found it more appropriate for the title of our book to
commemorate the contributions of all four Mathematicians.]

Finally, a couple of remarks on the history of the name. The expres-
sion “Campbell-Hausdorff Formula” is the one commonly employed by
analysts, whereas geometers and physicists widely use the three names
(differently combined) of Baker, Campbell, Hausdorff. Apparently, the first
book to use the two-name expression is Jacobson’s [99], whereas the first
book using the three-name one seems to be Hausner and Schwartz’s [79].

Table 1.3 A cross-section of the naming used for the Theorem of Campbell (C), Baker (B),
Hausdorff (H) and Dynkin (D), according to the literature cited in the List of References
of this book

others
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Chapter 2
Background Algebra

THE aim of this chapter is to recall the main algebraic prerequisites and
all the notation and definitions used throughout the Book. All main
proofs are deferred to Chap.7. This chapter (and its counterpart Chap.7)
is intended for a Reader having only a basic undergraduate knowledge in
Algebra; a Reader acquainted with a more advanced knowledge of Algebra
may pass directly to Chap. 3.

Our main objects of interest for this chapter are:

— Free vector spaces, unital associative algebras, tensor products

— Free objects over a set X: the free magma, the free monoid, the free
(associative and non-associative) algebra over X

— Free Lie algebras

— Completions of metric spaces and of graded algebras; formal power series

— The universal enveloping algebra of a Lie algebra

2.1 Free Vector Spaces, Algebras and Tensor Products

2.1.1 Vector Spaces and Free Vector Spaces

Throughout this section, K will denote a field, while V' will denote a
vector space over IK. Moreover, when referring to linear maps, spans, basis,
generators, linear independence, etc., we shall tacitly mean' “with respect
to K”.

1For instance, “let U, V be vector spaces” means that both U and V' are vector spaces over
the same field K.

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes 49
in Mathematics 2034, DOI 10.1007 /978-3-642-22597-0_2,
© Springer-Verlag Berlin Heidelberg 2012
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We recall the well known fact that any vector space possesses a basis.
More generally, we shall have occasion to apply the following result, which
can be easily proved by means of Zorn’s Lemma (as in [108, Theorem 5.1]):

Let V' # {0} be a vector space. Let I, G be subsets of V' such that I C G, I
is linearly independent and G generates V. Then there exists a basis B of V with
ICBCG.

Bases of vector spaces will always assumed to be indexed. Let B = {v; };e9
be a basis of V' (indexed over the nonempty set J). Then for every v € V
there exists a unique family {c¢;(v)}ieg C K such that ¢;(v) # 0 for all but
finitely many indices 7 in J and such that v = ), ¢;(v) v; (the sum being
well posed since it runs over a finite set). Occasionally, the subset I’ C J
such that ¢;(v) # 0 for every i € I’ will be denoted by J(v). When v = 0,
or equivalently J(v) = (), the notation 3", _, ¢; v; := 0 applies. Note that, for
every fixed v € V, the following formula

c:I =K, i ¢(v)
defines a well posed function, uniquely depending on v.

We obviously have the following result.

Proposition 2.1. Let V' be a vector space and let B be a basis of V.. Then for every
vector space X and every function L : B — X, there exists a unique linear map
L :V — X prolonging L.

If B = {v;}ieg, it suffices to set

L(v) := Eiegw) €i(v) L(vi).

The above proposition asserts that there always exists a unique linear
map L making the following diagram commute:

v

Here and in the sequel, when the context is understood, ¢ will always
denote the inclusion map of a set A C B into a set B.

The following are well known standard facts from Linear Algebra and
are stated without proofs for the sake of future reference.

Proposition 2.2. (i). Let V, X be vector spaces and let W be a vector subspace
of V. Suppose also that L : V' — X is a linear map such that W C ker(L)
and let m: V' — V /W denote the natural projection map.
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Then there exists a unique linear map L:V/W — X such that
L(m(v)) = L(v) foreveryv eV, (2.1)

thus making the following a commutative diagram:

L
Vv — s X
|

(ii). Let V, X be vector spaces and let L : V' — X be a linear map. Then the map
L:V/ker(L) = L(V), [vlker(z) — L(v)

is an isomorphism of vector spaces.

Actually, (2.1) also defines L uniquely, the definition being well posed
thanks to the hypothesis W C ker(L) (indeed, 7(v) = 7(v') iff v —v" € W, so
that 7(v) = (v = v") + 7(v") = 7(v")).

Definition 2.3 (Free Vector Space). Let S be any nonempty set. We denote
by K(S) the vector space of the K-valued functions on S non-vanishing only

on a finite (possibly empty) subset of S. The set IK(S) is called the free vector
space over S.

Occasionally, a function f : § — K non-vanishing only on a finite subset of
S will be said to have “compact support”.

Remark 2.4. Let v € S be fixed. We denote by

1, ifs=w

0, ifs#w 22)

x(v): S =K, x(v)(s):= {

the characteristic function of {v} on S. With this notation at hand, it is easily
seen that one has

K(S) = span{x(v) |v € S}, (2.3)

so that the generic element of IKK(S) is of the form

Z)\jx(vj), wheren € IN, \q,...,\, €K, vq,...,v, €85.
j=1
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In the sequel, when there is no possibility of confusion, we shall identify
v € S with x(v) € K(S), so that the generic element of K(S) is of the form
> 5= Ajvj (with n, A; and v; as above), that is, IK(S) can be thought of as
the set of the “formal linear combinations” of elements of S. Thus S can be
viewed as a subset (actually, a basis) of KK(S). Occasionally, we shall also

write an element f of K(S) as

F=Yrexs)  (or f=3fix(s)), 24)

ses ses

the sum being finite, for f : S — K has compact support.

Remark 2.5. With the above notation, the set x(S) := {x(v)|v € S} isa
linear basis of IK(S). Indeed, let Ay, ..., A, € Kand letv,,...,v, be pairwise
distinct elements of S and suppose > 7, A; x(v;) = 0in K(S). For any fixed

i € {1,...,n} we then have?

0= (271 A x(y)) (vi) = 2274 Ay x(vy) 8y = A 1,

whence x(v1),...,x(v,) are linearly independent. Moreover (2.3) proves
that x(S) generates K(S).

We remark that the linear independence of the set x(S5) implies in
particular that y : S — K(S) is an injective map.

As a consequence, IK(S) is finite dimensional iff S is finite. In this case, if
S ={v1,...,un}, we also use the brief notation K(vy, ..., vy) := K(S).

In the rest of this Book, the following result will be used many times.
This is the first of a series of universal properties of algebraic objects, which
we shall encounter frequently.

Theorem 2.6 (Universal Property of the Free Vector Space).

(i) Let S be any set. Then for every vector space X and every map F : S — X
there exists a unique linear map FX : IK(S) — X such that

FX(x(v)) = F(v) foreveryv € S, (2.5)

thus making the following a commutative diagram:

F
S —— v X
X
|

K(S)

2Here and throughout, §; ; represents as usual the Kronecker symbol, i.e., é;; = 1,8; ; =0
ifi # j.
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(if) Vice versa, suppose V, o are respectively a vector space and a map ¢ : S — V
with the following property: For every vector space X and every map F:S—X
there exists a unique linear map F'¥ : V' — X such that

F?(p(v)) = F(v) foreveryv € S, (2.6)

thus making the following a commutative diagram:

F
S ——M—
o]
|
Vv

Then V is canonically isomorphic to IK(S), the isomorphism being X
K(S) — V and its inverse being x¥ : V- — IK(S). Furthermore ¢ is injective
and the set p(S) is a basis of V. Actually, it holds that ¢ = ©X o x.

X

When the identification S > v = x(v) € K(S) applies, the above map x
is the associated inclusion ¢ : S < K(S), so that we may think of FX as a
“prolongation” of F.

Proof. See page 393 in Chap.7. O

We recall the definitions of (external) direct sum and of product of a family
of vector spaces. Let {V; },c5 be a family of vector spaces (indexed over a set
J, finite, denumerable or not). We set

H Vi= {(vi)iej
i€J

@ Vi= {(Ui)iej

ie€d

v; € Vi forevery i € 3},

v; € V; for every i € Jand v; # 0 for finitely many z}

The former is called the product space of the vector spaces V;, the latter
is called the (external) direct sum of the spaces V;. More precisely, we use
a “sequence-style” notation (v;)ies to mean a function v : I — ;4 Vi,
v(i) =: v; with v; € V; for every ¢ € J. In other words

(0))ics = (V))ics == (for alli €9, v;, v € V; and v; = Ug). 2.7)

Occasionally, when J is at most denumerable we may also use the notation
Eiej v; instead of (v;);cy. For example, according to this notation when
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J =N, the generic element of &, . Vi, is of the form v; + ... + v, where
peNandwv, €V, foreveryn=1,...,p.

This notation is justified by the fact that the product space and the exter-
nal direct sum of the spaces V; are naturally endowed with a vector space
structure (simply by defining the vector space operations componentwise).
Obviously €,., Vi is a subspace of [],., V;.

Remark 2.7. With the above notation, for any fixed j € J let

icJ

~ V' =V, fori=j
Vi=1|V/ wh ! - ’
rim LV where {2 e o 2

Note that, for every j € J, V; is a vector subspace of P,cq Vi (hence of
[1;cq Vi). We now leave to the Reader the simple verification that the spaces

V; have the following property: Any v € ,_, Vi can be written in a unique

ied

way as a (finite) sum ), _;v; with v; € V; for every i € J. Consequently,

i€’
@,c, Vi is the (usual) direct sum of its subspaces {V;}icy (and the name
“external direct sum” is thus well justified).

If, for every fixed j € J, we consider the linear map

, .
4 vi:=wv, fori=j
L-:V»—>@V» Visved (vl), where H ’ R
T it v (vi)ies vl =0, fori # j,
(3

it is easily seen that ¢;(V;) = V;. Moreover, ¢; is an isomorphism of V; onto
its image Vj, so that V; ~ V; for every j € J. As claimed above, using also
(2.7), for any v = (v;)ieg € EBiej Vi we have the decomposition

V=g ti(vi) (with Li(v) € Vi foralli e I]). (2.8)

Hence, throughout the sequel we shall always identify any V; as a subspace of
D,cq Vi (or of [ 1,4 Vi) by the canonical identification V; ~ V; via ;.

The following simple fact holds:
Theorem 2.8 (Universal Property of the External Direct Sum).

(i) Let {V;}ieg be an indexed family of vector spaces. Then, for every vector space
X, and every family of linear maps {F;};cy (also indexed over J) with F; :
Vi — X (for every i € J) there exists a unique linear map Fs; : @, ., Vi — X
prolonging F;, for every i € J. More precisely it holds that

icd

Fx(1;(v)) = Fi(v) foreveryi € Jandeveryv €'V, (2.9)
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thus making the following a family (over i € J) of commutative diagrams:

F;
v, ————

|

Dics Vi

(The notation @;cqF; for Fs; will also be allowed.)

Conversely, suppose V., {; }icg are respectively a vector space and a family of
linear maps p; : V; — V with the following property: For every vector space
X and every family of linear maps { F;},cy with F; : V; — X (for every i € J)
there exists a unique linear map F, : V' — X such that

F,(pi(v)) = F;(v) forevery i € Jand every v € V;, (2.10)
thus making the following a family (over i € J) of commutative diagrams:

F;
v, ——

| A

Vv

(The notation ®;cqF; for F, will also be allowed.) Then V is canonically
isomorphic to @, ., V;, the isomorphism being ©icyp; : @,cq Vi — V and
its inverse being Picqgl; V. — @iej Vi. Furthermore any o, is injective
and V. = @, .4 pi(V;) (direct sum of subspaces of V). Actually, it holds that
i = (Bieapi) © L.

Proof. (i) follows from (2.8), by setting (here v; € V; for all ¢)

Fs : @, Vi = X, FE(ZieJ Li(’l)i)) = ieg Fi(vi).

A simple verification shows that this map is linear and obviously it is the
unique linear map satisfying (2.9).

(ii) follows by arguing as in the proof of Theorem 2.6 (see page 393). The

fact that V' = @, i (V;) derives from the following ingredients:

The decomposition of @V, into the direct sum of its subspaces

_ i€l
Vi =u(V3).

The isomorphism @;cy0; : P,eq Vi = V.

The set equality ( Dicg ;) (1i(Vi)) = @i(V7). O

The following is easily seen to hold.
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Proposition 2.9. Let {V;};cq be a family of vector spaces. For every i € J, let B;
be a basis of V;. Then the following is a basis for the external direct sum @, _, V;:

{(wi)ieg ‘wl € B, forevery i € Jand 3! iy € J such that w;, # 0}.

2.1.2 Magmas, Algebras and (Unital) Associative Algebras

2.1.2.1 Some Structures and Their Morphisms

Since there are no universal agreements for names, we make explicit our
convention to say that a set A is:

1. A magma, if on A there is given a binary operation A x A — A4, (a,a’) —
axa.

2. A monoid, if (A, *) is a magma, * is associative and endowed with a unit

element.

. An algebra, if (A, ) is a magma, A is a vector space and # is bilinear.

. An associative algebra, if (A, %) is an algebra and * is associative.

5. A unital associative algebra (UA algebra, for brevity), if (4, %) is an associa-
tive algebra and * is endowed with a unit element.

6. A Liealgebra, if (A, *) is an algebra, * is skew-symmetric and the following
Jacobi identity holds

H~ W

ax(bxc)+bx(cxa)+cx(axb)=0, foralla,b,ce A.

As usual, in the context of Lie algebras, the associated operation will be
denoted by (a, a’) — [a, a'] (occasionally, [a, a’] 1) and it will be called the Lie
bracket (or simply, bracket or, sometimes, commutator®) of A.

Other structures (which we shall use less frequently) are recalled in the
following (self-explanatory) table:

(A, %) * Binary | * Associative |+ Has a unit A je?:ig?es};lce)
Magma vV
Unital magma v v
Semigroup Vv V
Monoid Vv Vv v
Algebra v v
Associative algebra Vv Vv v
UA algebra Vv Vv N v

3In the literature, the term “commutator” is commonly used as a synonym of “bracket”.
In this Book we shall use the term commutator only for a special kind of bracket: that
obtained from an underlying associative algebra structure.
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If (A,®), (B,®) are two magmas (respectively, two monoids, two alge-
bras, two unital associative algebras, two Lie algebras), we say that a given
map ¢ : A = Bis:

1. A magma morphism, if p(a ® ') = p(a) © p(a’), for every a,a’ € A.

2. A monoid morphism, if ¢ is a magma morphism mapping the unit of A into
the unit of B.

3. An algebra morphism, if ¢ is a linear magma morphism.

4. A morphism of unital associative algebras (UAA morphism, in short), if ¢ is
a linear monoid morphism, or equivalently, if ¢ is an algebra morphism
mapping the unit of A into the unit of B.

5. A Lie algebra morphism (LA morphism, in short), if ¢ is an algebra
morphism, i.e. (with the alternative notation for the algebra operation)

o(la,a'|a) = [p(a),p(a’)]s, foreverya,a’ € A.

The prefix “iso” applies to any of the above notions of morphism ¢, when ¢
is also a bijection. Plenty of examples of the above algebraic structures will
be given in the next sections. The following definitions will also be used in
the sequel:

1. Let (M, x) be a magma (possibly, a monoid) and let U C M; we say that
U is a set of magma-generators for M (or that U generates M as a magma)
if every element of M can be written as an iterated *-product (with any
coherent insertion of parentheses) of finitely many elements of U. In the
presence of associativity, this amounts to saying that every element of A/
can be written in the form uq * - - - x uy, forsome &k € Nand uy,...,u; € U.
When M is a monoid, the locution U generates M as a monoid will also
apply.

2. Let (A, %) be an algebra (associative or not, unital or not) and let U C A4;
we say that U is a set of algebra-generators for A (or that U generates A as an
algebra) if every element of A can be written as a finite linear combination
of iterated *-products (with coherent insertions of parentheses) of finitely
many elements of U.

3. When (A4, [-,]) is a Lie algebra, in case (2) we say that U is a set of Lie-
generators for A (or that U Lie-generates A). In this case (see Theorem 2.15
at the end of the section), this is equivalent to saying that every element
of A can be written as a finite linear combination of nested elements of the
form [uq -« - [ug—1,u] -], for k € Nand uq,...,u; € U.

Definition 2.10 (Derivation of an Algebra). If (A, ) is an algebra, we say
thatamap D : A — Ais a derivation of Aif D is linear and it holds that

D(a+b) = (Da)*b+ax (Db), foreverya,be A.
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When A is a Lie algebra, this can be rewritten
Dia,b] = [Da,b] + [a, Db], foreverya,be A.

Here is another definition that will play a central rdle.
Definition 2.11 (Graded and Filtered Algebras).

Graded Algebra: We say that an algebra (A, ) is a graded algebra if it
admits a decomposition of the form A = 72, A;, where the A; are
vector subspaces of A such that 4, «x A; C A;y; for every i,5 > 1. In
this case, the family {4,},>1 will be called a grading of A.

Filtered Algebra: We say that an algebra (A, %) is a filtered algebra if A =
Uj=, F}j, where the sets F; are vector subspaces of A such that F; x Fj; C
Fi4; for every i,j > 1 and

F; C Fj41, foreveryje N

In this case, the family {F}; } ;>1 will be called a filtration of A.

For example, in the case of Lie algebras, a graded Lie algebra A = @72, A,
fulfils [A;, A;] C A;4;, for every 4, j > 1. Note that if {4;};>1 is a grading of
A then A admits the filtration {F;},;>1, where F; := @J_, A;.

The following simple result will be applied frequently in this Book.

Proposition 2.12 (Quotient Algebra). Let (A, ) be an algebra and let I C A
be a two-sided ideal* of A. Then the quotient vector space A/ is an algebra (called
quotient algebra of A modulo I), when equipped with the operation

®: A/T x AJT — AJI, [a); ® [b]; :==[axb];, VY a,be€ A.

Moreover, the associated projection 7 : A — A/I (ie., w(a) = [a]; for every
a € A) is an algebra morphism. Finally, if (A, %) is associative (respectively, unital),
then the same is true of (A/I, ®) (and respectively, its unit is [14]7).

The proof is simple and we only remark that the well-posedness of ® follows
by this argument: if [a]; = [a']; and [b]; = [V/]; thend’ = a+zand ¥ =b+y
with x,y € I so that

axb =axb+axy+axxb+azxy, whence|d xb];=[ax*b]s.

el

“We recall that this means that I is a vector subspace of A and that a* 4,4 * a € I for every
i€ Iand every a € A.
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2.1.2.2 Some Notation on Lie Algebras
In this section, (A4, [-,]) denotes a Lie algebra. If U,V C A we set
(U, V] = span{[u,v] |u € U, ve V},

Note that (unlike some customary notation) [U, V] is not the set of brackets
[u,v] with u € U, v € V, but the span of these.

Let U C A. We say that the elements of U are brackets of length 1 of U.
Inductively, once brackets of length 1, ...,k — 1 have been defined, we say
that [u,v] is a bracket of length & of U, if u, v are, respectively, brackets of
lengths ¢, j of U and i 4+ j = k. As synonyms for “length”, we shall also use
height or order. For example, if uy,...,u7 € U, then

[[u1, uzl, [[[us, [wa, us]], ue], urll, ([[wa, [[uz, us], wa]], us), [ue, ur]]

are brackets of length 7 of U. Note that an element of a Lie algebra may have
more than one length (or even infinitely many!). For example, if A is the Lie
algebra of the smooth vector fields on R' and X = 9,, Y = 2 9,, then

X=[-[X,Y]---Y], VkeN,
——

k times

so that X is a bracket of length k of U = {X, Y}, for every k € IN.
When uyq,...,u, € U, brackets of the form

[uh [UQ R [kalyuk] . ]], [[ .. [Ul,UQ] . "Uk—l],uk]

are called nested (respectively, right-nested and left-nested). The following
result shows that the right-nested brackets span the brackets of any order.
First we give a definition.

Definition 2.13 (Lie Subalgebra Generated by a Set). Let A be a Lie
algebra and let U C A. We denote by Lie{U} the smallest Lie subalgebra
of A containing U and we call it the Lie algebra generated by U in A. More
precisely, Lie{U} = (b, where the spaces h run over the set of subalgebras
of A containing U.

Remark 2.14. With the above notation, it is easily seen that Lie{U} coincides
with the span of the brackets of U of any order. More precisely, if W}, denotes
the span of the brackets of U of order £, it holds that Lie{U} = ), .y Wi,
where |4 denotes the sum of vector subspaces of A. Equivalently,

Lie{U} = span{W | k € IN}
= span{w| w is a bracket of order k of U, with k € IN}.
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Theorem 2.15 (Nested Brackets). Let A be a Lie algebra and U C A. Set
Uy :=span{U}, Un:=[U,U,-1], n>2.
Then we have Lie{U} = span{U,, | n € IN}. Moreover, it holds that
Ui, Uj] C Uiy, foreveryi,j € IN. (2.11)

We remark that, from the definition of U,,, the elements of U,, are linear
combination of right-nested brackets of length n of U. The above theorem
states that every element of Lie{U} is in fact a linear combination of right-nested
brackets (an analogous statement holding for the left case).

To show the idea behind the proof (which is a consequence of the
Jacobi identity and the skew-symmetry of the bracket), let us take u;, us,
v1,v2 € U and prove that [[ug, ug], [v1, v2]] is a linear combination of right-

nested brackets of length 4. By the Jacobi identity [X, [Y, Z]] = —[Y, [Z, X]] —
[Z,]X,Y]] one has
[[u1, ugl, @,\Uij] = —[v1, [v2, [ur, ua]]] — [v2, [[ur, ua], v1]]
X Yy z

= —[o1, [v2, [ur, uall] + [v2, [v1, [ur, us]]] € Ul

Proof (of Theorem 2.15). We set U* := span{U, |n € IN}. Obviously, U*
contains U and is contained in any Lie subalgebra of A which contains U.
Hence, we are left to prove that U* is closed under the bracket operation.

Obviously, it is enough to show that, for any 7, j € IN and for any u, ..., u,;,
v1,...,v; € U wehave
[wafua -~ [wi—1, ug] - 1]]s [va oo+ [vj—1,v5] -+ ]]]| € Uiy

We argue by induction on k := i + j > 2. For k = 2 and 3 the assertion is
obvious whilst for k& = 4 we proved it after the statement of this theorem.
Let us now suppose that the result holds for every i + j < k, with & > 4,
and prove it then holds when i + j = k + 1. We can assume, by skew-
symmetry, that j > 3. Exploiting repeatedly the induction hypothesis, the
Jacobi identity and skew-symmetry, we have

u; [vrfoa[- - [vj-1,05] -+ ]]]
= _[Ula [[U2’ [U3’ T ]]’ u]] - [[UQ’ [U3’ o ]]’ [ua Ul]]
—_—
length k

= {element of Uy+1} — [[v1,ul, [v2, [Us, - - -]]]
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= {element of Uk 41} + [va, [[vg, -~ -], [v1, l]] + [[v, - -], [[or, u]wo]]
—_——
length k
= {element of U1} + [[vz, [v1,u]], [v3,---]]
(after finitely many steps)

= {element of Uy 1} + (—1) " [vj—s, [vj_a,- - - [v1,u]]], ;]

= {element of Up11} + (—1)7[vj, [vj—i, [Vj—2, - - - [v1, u]]]]

€ Ug41.

This ends the proof. O

The previous proof shows something more: An arbitrary bracket u of length
k of {ui,...,ux} (the minimal set of elements appearing in u) is a linear
combination (with coefficients in {—1, 1}) of right-nested brackets of length
k of the same set {u1, ..., u;} and in any such summand there appear all the
u; fori =1,..., k. (An analogous result also holds for left-nested brackets.)

Definition 2.16. Let (A, ) be an associative algebra. Let us set
[a,b]. :=axb—bx*a, foreverya,be A. (2.12)

Then (4, [, ]+) is a Lie algebra, called the Lie algebra related to A.

The Lie bracket defined in (2.12) will be referred to as the commutator
related to A (or the x-commutator) and the Lie algebra (4, [+, -].) will also be
called the commutator-algebra related to A. The notation [-, -] 4 will occasionally
apply instead of [-, -]. when confusion may not arise.

Even if authors often use the term “commutator” as a synonym for
“bracket”, we shall reserve it for brackets obtained from an associative
multiplication as in (2.12).

Due to the massive use of commutators throughout the Book, we exhibit
here the proof of the Jacobi identity (anti-symmetry and bilinearity being
trivial):

[av [bv C]*]* + [bv [C, a’]*]* + [Ca [aﬂ b]*]*

—axbxc—axcxb—bxcxat+cxbxa+bxckxa—bxaxct

—cxaxb+axcxb+crxaxb—cxbxa—axbxc+bxaxc
=0 (summands canceling as over-/under-lined.)
It will be via the Poincaré-Birkhoff-Witt Theorem (a highly nontrivial result)

that we shall be able to prove that (roughly speaking) every Lie bracket can
be realized as a suitable commutator (see Sect.2.4).
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Convention. Let (A, %) be an associative algebra. When a Lie algebra structure
on A is invoked, unless otherwise stated, we refer to the Lie algebra on A which is
induced by the associated x-commutator. So, for example, if (g, [, ]4) is a Lie
algebra, (A, ) is an associative algebra and ¢ : g — A is a map, when we
say that “¢ is a Lie algebra morphism”, we mean that ¢ is linear and that it
satisfies ¢([a, b]g) = ¢(a) * p(b) — ¢(b) * ¢(a), for every a,b € g.

Remark 2.17. Let (A, ®), (B, ®) be associative algebras and let ¢ : A — B be an
algebra morphism. Then  is also a Lie algebra morphism of the associated commu-
tator-algebras. Indeed, for every a,a’ € A one has

¢(la,ale) = pla®a’ —d' ®a) = p(a) @ p(a’) — p(a’) @ ¢(a)
= [p(a),¢(a’)]e-
Remark 2.18. Let (A,x*) be an associative algebra and let D : A — A bea

derivation of A. Then D is also a derivation of the commutator-algebra related to A.
Indeed, for every a,a’ € A one has

D([a,a'ly) = D(a*ad' —a’ *a)
D(a)*a +axD(a') — D(a') xa—a’ * D(a)
(D(a) xa' —a’ * D(a)) + (ax D(a’) — D(a’) * a)

= [D(a),d]s + [a, D(a)].

2.1.2.3 Free Magma and Free Monoid

The remainder of this section is devoted to the construction of the free
magma, the free monoid and the free algebra (associative or not) generated
by a set. These structures will turn out to be of fundamental importance
when we shall be dealing with the construction of free Lie algebras, without
the use of the Poincaré-Birkhoff-Witt Theorem (see Sect.2.2).

We begin with the construction of a free magma generated by a set.
We follow the construction in [26, I, §7, n.1]. Henceforth, X will denote a
fixed set.

To begin with, we inductively set M7 (X) := X, and (if | | denotes disjoint
union® of sets)

SWe recall the relevant definition: let {A; };c 5 be an indexed family of sets (J may be finite,
denumerable or not). By [],.; A; we mean the set of the ordered couples (i, a) where i € J
and a € A;, and we call it the disjoint union of (the indexed family of) sets {A;}icq. As a
common habit, the first entry of the couple is dropped, but care must be paid since the
same element a possibly belonging to A; and A; with ¢ # j gives rise to distinct elements
in H i Ai.



2.1 Free Vector Spaces, Algebras and Tensor Products 63

MQ(X) =X x )(7 Mg(X) = (MQ(X) X Ml(X)) H (Ml(X) X MQ(X)),

My(X):= [ Map(X)x My(X), foreveryn >2; (2.13)
pe{l,...n—1}

M(X) =[] Ma(X). (2.14)
nelN

Equivalently, we can drop the sign of disjoint union and replace it with
standard set-union, provided we consider as distinct the Cartesian products

(X x xX)x (X x xX)#XxxX.

n times m times n + m times

Hence, we have

Mi(X) =X, M(X)=X x X,

M3(X)=((X xX)x X)U(X x (X x X)),

My X)=(X xX)x X)x X)U((X x (X x X)) x X)U

U(X XxX)Xx (X xX)HUX x (X xX)x X)) U (X x (X x (X x X)),
My(X):= |  Map(X)x My(X), foreveryn>2,

pe{l,...,n—1}

and M (X) = ,,epy Mn(X).

Roughly, M (X) is the set of non-commutative and non-associative words
on the letters of X, where parentheses are inserted in any coherent way
(different parentheses defining different words). For brevity, we set M,, :=
M, (X). For example, if € X, the following are distinct elements of My:

<(:I:,:I:),(((x,(m,x)),m),x)), (((w,((m,x),x)),x),(:E,:E))

Via the natural injection X = M; C M (X), we consider X as a subset of
M (X) (and the same is done for every M,,). For every w € M (X) there exists
a unique n € IN such that w € M,,, which is denoted by n = ¢(w) and called
the length of w. Note that any w € M (X) with ¢(w) > 2 is of the form w =
(w', w") for unique w’, w” € M(X) satisfying ¢(w’) 4+ ¢(w") = £(w). For any
w,w € M(X)withw € M, and w' € M,,, we denote by w.w’ the (unique)
element of M, 4, corresponding to (w, w’) in the canonical injections M,, x
M, C My1y C M(X). The binary operation (w, w') — w.w’ endows M (X)
with the structure of a magma, called the free magma over X.
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Remark 2.19. Obviously, X is a set of magma-generators for M (X). More-
over, we have a sort of “grading” on M (X) (M (X) has no vector space struc-
ture though), for it holds that M (X) = (J,,cn Mn(X) and M;(X).M;(X) C
M+, (X), for every i, j > 1.

Lemma 2.20 (Universal Property of the Free Magma). Let X be any set.

(i) For every magma M and every function f : X — M, there exists a unique
magma morphism f : M(X) — M prolonging f, thus making the following
a commutative diagram:

17

M(X)

M

(if) Vice versa, suppose N, ¢ are respectively a magma and a function p : X — N
with the following property: For every magma M and every function f : X —
M, there exists a unique magma morphism f% : N — M such that

fe(p(z)) = f(x), foreveryx € X,

thus making the following a commutative diagram:

f
X — M

| A7

N

Then N is canonically magma-isomorphic to M (X)), the magma isomorphism
being (see the notation in part (i) above) @ : M (X) — N and its inverse being
1? : N — M(X). Furthermore ¢ is injective and N is generated, as a magma,
by p(X). Actually, it holds that ¢ = B o 1. Finally, we have N ~ M (¢(X)).

Proof. (i) The map f is defined as follows: Let * be the operation on M and
let us consider the maps f, defined by

fl : Ml %Ma fl(‘r) = f('r)v Vo€ Xa

fa: My — M, fao(w1.22) = f(z1) * f(22), Vo, 22 € X,

. f3((@1.22).23) := (f(21) * f(22)) * f(23)
fa: Ms = M, {f3<z1.<z2.z3>> = @) * (f(2) * f(3))

V.”L‘l,xg,xg S X,
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and, inductively, f,, : M,, — M is defined by setting f,(w.w’) := fr—p(w) *
fp(w'), foreveryp € {1,...,n — 1} and every (w,w') € M,,_, x M,. Finally,
let f : M(X) — M be the unique map such that f|,;, coincides with f,,. It
is easily seen that f is a magma morphism and that it is the only morphism
fulfilling (i).

(ii) follows by arguing as in the proof of Theorem 2.6 (see page 393). We
recall the scheme of the proof. We have the commutative diagrams

» L
X — N X — M(X)
L [ / 14
® e
M(X) N
Obviously, the following are commutative diagrams too
. ®
XC—— M(X) X —— N
. [ / [ J{
idar(x) idy
M(X) o

The maps t¥ o : M(X) - M(X),$ot? : N - N are magma morphisms
such that

(Fop)(ur) =uz) VeeX,  (Por?)(p(r) =¢pr) VreX.

Hence, by the uniqueness of the morphisms represented by the “diagonal”
arrows in the last couples of commutative diagrams above, we have

LwanidM(X), Po? =idy.

The rest of the proof is straightforward. O

We next construct the free monoid over X. We could realize it as a quotient
of the free magma M (X)) by identifying any two elements in M,, which are
obtained by inserting parentheses to the same ordered n-tuple of elements
of X. Alternatively, we proceed as follows (which allows us to introduce in
a rigorous way the important notion of a word over a set).

Let X be any fixed set. Any ordered n-tuple w = (x1,...,x,) of elements
of X is called a word on X and n =: {(w) is called its length. By convention,
the empty set is called the empty word, it is denoted by e and its length is
taken to be 0. The set of all words of length n is denoted by W, and we set

Mo(X) = U, > Wa-
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Obviously, X is identified with the set of words in Mo(X) whose length is

1.Ifw= (x1,...,2,) and w’ = (24,...,2],) are two words on X, we define
anew word w” = (zf,...,z) ) (by juxtaposition of w and w’) by setting
" xj, forj=1,...,n,
R ) forj=n+1 n+n'
{7 e .

With the above definition, we set w.w’ := w”. It then holds {(w.w') =
L(w) + L(w') so that W, . W,, = W,4, for every n,n’ > 0. Any word
w = (z1,...,2,) (With z1,...,2, € X) is written in a unique way as
W= T1.T3. - .Tn, SO that

Wo = {e}, Wn:{xl.xg.---.xn‘xl,...,xneX}, nelN. (2.15)

Obviously, one has e.w = w.e = w for every w € Mo(X).
If w,w,w"” € Mo(X), then (w.w').w” and w.(w'.w") are both equal to the
word v’ = (zf’,...,z}") where h = {(w) + {(w’) + ¢(w") and

Zj, ]Zlavg(w)/
2! = z;_g(w), j=Llw)+1,... lw)+ L),
Ty ttrys § = L)+ £) + 1, Bw) + L) + ).

As a result, (Mo(X),.) is a monoid, called the free monoid over X .

Remark 2.21. Obviously, {e} U X is a set of generators for Mo(X) as a
monoid. Note that Mo(X) \ {e} is a semigroup, i.e., an associative magma
(which is not unital, though) and that X is a set of magma-generators for
Mo(X) \ {e} (i-e., every element of Mo(X) \ {e} can be written as a finite —
nonempty — product of elements of X).

Moreover, we have a sort of “grading” on Mo(X) (though Mo(X) is not
a vector space), for it holds that Mo(X) = (J,,~, W, and W;.W; € W, for
every¢,j > 0.

The adjective “free” is justified by the following universal property, whose
proof is completely analogous to that of Lemma 2.20.

Lemma 2.22 (Universal Property of the Free Monoid). Let X be any set.

(i) For every monoid M and every function f : X — M, there exists a unique
monoid morphism f : Mo(X) — M prolonging f, thus making the following
a commutative diagram:

3

Mo(X)

M
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(ii) Conwversely, suppose N, @ are respectively a monoid and a function ¢ : X — N
with the following property: For every monoid M and every function f : X —
M, there exists a unique monoid morphism f% : N — M such that

fe(p(z)) = f(x), foreveryx € X,

thus making the following a commutative diagram:

f
X — M

| A7

N

Then N is canonically monoid-isomorphic to Mo(X ), the monoid isomorphism
being (see the notation in part (i) above) @ : Mo(X ) — N and its inverse being
1? : N = Mo(X). Furthermore  is injective and N is generated, as a monoid,
by o(X). Actually, it holds that ¢ = P o v. Finally, we have N ~ Mo(p(X)).

2.1.2.4 Free Associative and Non-associative Algebras

We now associate to each of M(X),Mo(X) of the previous section an
algebra (over K). Let, in general, (M,.) be a magma. Let M, be the free
vector space over M (see Definition 2.3), i.e.,

My, =K (M).

Ig -
With reference to the map x in Remark 2.4, we know from Remark 2.5 that
{x(m)|m € M} is a basis for M,,. We now define on M, an algebra
structure, compatible with the underlying structure (//,.). With this aim
we set

(Shxm) « (X Xontmi) = 3 Aoxtmomi),
i=1

i'=1 1<i<p, 1<i/<p’

for any arbitrary p,p’ € IN, A1,..., Ay € K, A}, .., A, € K, om0 ,my € M,

my,...,my, € M. Following the notation in (2.4), the * operation can be

rewritten (w.r.t. the basis x(M)) as

=3 (X F@f@)xtm), Y ff € My

meM a,a’EM: a.a’=m

(having set f =3, f(a) x(a), f" = 3 0cp f'(a") x(a))-
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It is easy to prove that (Mg, *) is an algebra (when M is a magma), an
associative algebra (when M is a semigroup) and a UA algebra (when M
is a monoid) with unit x(e) (e being the unit of M), called the algebra of M.

Clearly m*m’ = m.m/ for every m,m’ € M (by identifying m = x(m), m' =
x(m’)) so that x can be viewed as a prolongation of the former . operation.

Remark 2.23. 1f (M, .) is a magma (resp., a monoid), then the injective map
X:(M,.)— (Malgv *)

is a magma morphism (resp., a monoid morphism). Indeed, one has x(m) *
x(m') = x(m.m'), for every m,m’ € M by the definition of  (together with
the fact that x(e) is the unit of M, when e is the unit of the monoid M).

The passage from M to the corresponding M, has a universal property:

Lemma 2.24 (Universal Property of the Algebra of a Magma, of a Monoid).
Let M be a magma.

(i) For every algebra A and every magma morphism f : M — A (here A
is equipped only with its magma structure), there exists a unique algebra
morphism fX : Myg — A with the following property

X(x(m)) = f(m), foreverym e M, (2.16)

thus making the following a commutative diagram:

f
M ——— A

| A

M, alg

(if) Vice versa, suppose N, @ are respectively an algebra and a magma morphism
w : M — N with the following property: For every algebra A and every
magma morphism f : M — A, there exists a unique algebra morphism f¢ :
N — A such that

fe(p(m)) = f(m), foreverym e M,
thus making the following a commutative diagram:
f

M —
SOJ/

fW
N

A
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Then N is canonically algebra-isomorphic to My, the algebra isomorphism
being (see the notation in part (i) above) X : My, — N and its inverse being
X% : N — Mayg. Furthermore o is injective and (M) is a linear basis for N.
Actually, it holds that ¢ = X o x. Finally, it also holds N ~ (¢(M))ag =
K(p(M)), the algebra of the magma (M) or, equivalently, the free vector
space over the set (M).

(iii) Statements analogous to (i) and (ii) hold when M is a monoid, by replacing,
respectively, the above algebras A, N, the magma morphisms f, o and the alge-
bra morphisms fX, f¢ by, respectively, UA algebras A, N, monoid morphisms
f, o and UA algebra morphisms X, f*.

Proof. See page 396 in Chap.7. O

In the particular case when M = M(X) is the free magma over the set X,
we set Lib(X) := (M (X))ag and we call it the free (non-associative) algebra
over X. Moreover, when M = Mo(X) is the free monoid over X, we set
Libas(X) := (Mo(X))az and we call it the free UA algebra over X.

More explicitly, we have

Lib(X) := K(M(X)),  Libas(X) := K(Mo(X)), (2.17)

i.e., the free (non-associative) algebra over X is the free vector space related to the
free magma over X and the free UA algebra over X is the free vector space related
to the free monoid over X, both endowed with the associated algebra structure
introduced at the beginning of this section.

It is customary to identify M (X) (resp., Mo(X)) with a subset of Lib(X)
(resp., of Libas(X)) via the associated map yx, and we shall do this when
confusion does not arise. Hence, it is customary to consider X as a subset
of Lib(X) and of Libas(X). (But within special commutative diagrams we
shall often preserve the map x.)

Remark 2.25. By an abuse of notation, we shall use the same symbol x|x in
the following statements, whose proof is straightforward:

1. The map x|x : X — Lib(X) obtained by composing the maps X —
M(X) 5 K(M(X)) = Lib(X) is injective and x (X ) generates Lib(X) as
an algebra (in the non-associative case).

2. The map x|x : X — Libas(X) obtained by composing the maps
X < Mo(X) 2 K(Mo(X)) = Libas(X) is injective and {x(e)} U x(X)
generates Libas(X) as an algebra (in the associative case).

Remark 2.26. 1. The set x(X) is a set of generators for Lib(X), as an algebra (this
follows from Remark 2.19). Identifying M (X) with x(M (X)), we shall

also say that X is a set of generators for Lib(X), as an algebra. If we set
(M, being defined in (2.13))

Lib,, (X) := span{x(M,,(X))}, n €N, (2.18)
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then Lib(X) is a graded algebra, for it holds that

Lib(X) = @ Lib,(X),  Libi(X)xLib,;(X) C Lib;y;(X), 4,5 >1,
n>1

(2.19)

where * here denotes the algebra structure on Lib(X) induced by the
magma (M (X),.).

2. Let e denote the empty word, i.e., the unit of Mo(X). Then the set {x(e)}U
X(X) is a set of generators for Libas(X), as an algebra (this follows from
Remark 2.21). With the identification of Mo(X) with x(Mo(X)), we shall
also say that {e} U X is a set of generators for Libas(X ), as an algebra.

If we set (W,, being defined in (2.15))

Libas, (X) := span{x(W,)}, n >0, (2.20)
then Libas(X) is a graded algebra, for it holds that

Libas(X) = P, Libas, (X)),

(2.21)
Libas;(X) = Libas;(X) C Libas;;;(X), 4,5 >0

3

where * here denotes the algebra structure on Libas(X) induced by the
monoid (Mo(X),.).

The above Lemma 2.24 produces the following results, which we explicitly
state for the sake of future reference.

Theorem 2.27 (Universal Property of the Free Algebra). Let X be a set.

(i) For every algebra A and every functionf : X — A, there exists a unique
algebra morphism fX : Lib(X) — A with the following property

X(x(x)) = f(x), foreveryz e X, (2.22)

thus making the following a commutative diagram:

!

X —
XIXJ /
fX

Lib(X)

A

(Here x|x : X — Lib(X) is the composition of maps X — M(X) -
K(M (X)) =Lib(X).)
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(if) Conwversely, suppose N,y are respectively an algebra and a map ¢ : X — N
with the following property: For every algebra A and every function f : X —
A, there exists a unique algebra morphism f% : N — A such that

fe(p(z)) = f(z), foreveryx € M,

thus making the following a commutative diagram:

!
X — A

| A

N

Then N is canonically algebra-isomorphic to Lib(X), the algebra isomorphism
being (see the notation in part (i) above) pX : Lib(X) — N and its inverse
being (x|x)¥ : N — Lib(X). Furthermore o is injective and (X ) generates
N as an algebra. Actually, it holds that ¢ = X o (x|x). Finally, it also holds
N ~ Lib(¢(X)), the free non-associative algebra over the set o(X).

Proof. (i): From Lemma 2.20-(i), there exists a magma morphism f
M(X) — A prolonging f. From Lemma 2.24-(i), there exists an algebra
morphism

7 (M(X))ag = Lib(X) — A

such that f*(x(m)) = f(m) for every m € M(X). The choice fX := f* does
the job. The uniqueness part of the thesis derives from the fact that x(X)
generates Lib(X) as an algebra.

Part (ii) is standard (it makes use of Remark 2.25-1). O

Theorem 2.28 (Universal Property of the Free UA Algebra). Let X
be a set.

(i) For every UA algebra A and every functionf : X — A, there exists a unique
UAA morphism fX : Libas(X) — A with the following property

X(x(x)) = f(x), foreveryz e X, (2.23)

thus making the following a commutative diagram:

!
X —— A

“| 7

Libas(X)
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(Here x|x : X — Libas(X) is the composition of maps X < Mo(X) =

K(Mo(X)) = Libas(X).)

(if) Vice versa, suppose N, ¢ are respectively a UA algebra and a map p : X — N
with the following property: For every UA algebra A and every function f :
X — A, there exists a unique UAA morphism f¥ : N — A such that

fe(p(z)) = f(x), foreveryx € X,

thus making the following a commutative diagram:

!
X —
: l /
f‘P
N
Then N is canonically isomorphic to Libas(X) as UA algebras, the UAA
isomorphism being (see the notation in part (i) above) X : Libas(X) — N
and its inverse being (x|x)? : N — Libas(X). Furthermore y is injective and
{en}U@(X) generates N as an algebra (e denoting the unit of N). Actually,

it holds that ¢ = @X o (x|x). Finally, it holds that N ~ Libas(y(X)), the free
UA algebra over p(X).

A

Proof. The proof is analogous to that of Theorem 2.27, making use of Lemma
2.22-(i), Lemma 2.24-(iii) and Remark 2.25-2. O

2.1.3 Tensor Product and Tensor Algebra

Letn € N, n > 2 and Vi,...,V, be vector spaces. Let us consider the
Cartesian product V; x --- x V;, (which we do not endow with a vector
space structure!) and the corresponding free vector space IK(V} x --- x V)
(see Definition 2.3). The notation x(v1, ..., v,) agrees with the one given in
Remark 2.4.

Let us consider the subspace of K(V; X --- x V,,), say W, spanned by the
elements of the following form

X(V1,. . a0, .., 0n) —ax(V1, .., Vi, Un),

X1, vV vn) = X (V1 Vi vn) = X (U1, U ),
(2.24)
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where a € K, i € {1,...,n}, v;,v; € V; for every j € {1,...,n}. The main
definition of this section is the following one:

M@ -V, =KWV, x---xV,)/W.

We say that V; @ - - - ® V), is the tensor product of the (ordered) vector spaces
Wi, ..., V, (orderly). Moreover, if 7 : K(V; x --- x V) 5> V1 ®---®V, is the
associated projection, we also set

V] Q- @up i=7(x(v1,...,0,)), Vv €W,....Vu, €V,

The element v; ® - - ® vy, of the tensor product V; ® --- ® V,, is called an
elementary tensor of Vi @ --- ® V,,. Not every element of Vi @ --- ® V,, is
elementary, but every element of V; ® --- ® V,, is a linear combination of
elementary tensors. Finally we introduce the notation

Y:Vix o xV,=>Vi® -V, ¥,...,vn) =018 - Qu,.

In other words 1) = 7o .

Remark 2.29. With the above notation, v is n-linear and (V4 x --- x V)
generates V1 ®@- - -®V,,. The last statement is obvious, whilst the former follows
from the computation:

(vi, .. av; +a vl v,) = [X(vl,...,avi+a/v£,...,vn)}w

!
= [X(vl,...,avi—i—a VhyoonyUp)

—x(vl,...,avi,...,vn)—X(vl,...,a'vg,...,vn)}

+ [X(vl,...,avi,...,vn)+X(vl,...,a'vi,...,vn)}w
=0+ [X(vl,...,avi,...,vn)—ax(vl,...,vi,...,vn)}w

+ [X(vl,...,alvé,...,vn)—a’x(vl,...,vg,...,vn)]w

+a[x(iy. vy on)]w +a [x(v1, .V o)W
=0+4+04+0+ap(vi,...,0iy..s0n) +a P(v1,... 0. 00).

Using the “®” notation instead of ¢, the previous remark takes the form
v1®...®(avi+a’v£)®...®vn:a(m@...@vi@...@vn)
—|—a/(U1®"'®Uz{®"'®Un)’

foreverya,a’ € K, everyi € {1,...,n}and everyv;,v; € V;forj =1,...,n.

We are ready for another universal-property theorem of major importance.
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Theorem 2.30 (Universal Property of the Tensor Product).

(i) Letn € N, n > 2and let Vi,...,V, be vector spaces. Then, for every vector
space X and every n-linear map F : Vi x - -- x V,, — X, there exists a unique
linear map F¥ : Vi ® - - ® V,, — X such that

FY(ih(v)) = F(v) foreveryv € Vi x --- x Vj,, (2.25)
thus making the following a commutative diagram:
F
Vix--xV, — X
. l /
FY
Ve -V,

(if) Conwversely, suppose that V, ¢ are respectively a vector space and an n-linear
map p : Vi x - - x V,, = V with the following property: for every vector space
X and every n-linear map F : Vi x - - - x V;, — X, there exists a unique linear
map F¥ .V — X such that

F?(p(v)) = F(v) foreveryv e Vi x ---x V,, (2.26)
thus making the following a commutative diagram:
F
Vix.---xV, — X
LP l
e
Vv
Then V is canonically isomorphic to Vi ® - -+ ® V,,, the isomorphism in one
direction being ¥ : V4 @ -+ ® V,, — V with its inverse being ¢ : V —
Vi ® - -- @ V,,. Furthermore the set p(S) is a set of generators for V.
Proof. See page 396 in Chap.7. 0

Some natural properties of tensor products are now in order.

Theorem 2.31 (Basis of the Tensor Product). Let V, W be vector spaces with
bases {v; }icg and {wy, }rex respectively. Then

{”i ® wk}(i,k)ejxx

is a basisof V@ W.
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Proof. The proof of this expected result is unexpectedly delicate: See page

399 in Chap.7. 0
Proposition 2.32 (“Associativity” of ®). Let n,m € N, n,m > 2 and let
Vi,..., Vo, Wh, ..., Wy, be vector spaces. Then we have the isomorphism (of vector
spaces)

N @V) oW @ W) 2@ -V, oW ® - @ W,
To this end, we can consider the canonical isomorphism mapping
(U1®"'®Un)®(w1®"'®wm)

movi - Quy QWi ® -« @ Wy
Proof. See page 403 in Chap.7. O

If V is a vector space and k € IN, we set

T(V):=V® --QV.

k times

Thus, the generic element of .7, (V) is a finite linear combination of tensors
of the form v; ® -+ ® v, with vy,..., v € V. We also set (V) := K.
The elements of 7, (V') are referred to as being tensors of degree (or order, or
length) k on V. We are in a position to introduce a fundamental definition.

Definition 2.33 (Tensor Algebra of a Vector Space). Let V be a vector

space. We set 7 (V) := @ T%(V) (in the sense of external direct sums).
keNU{0}
On .7 (V') we consider the operation defined by

k
(vi)iz0 - (wj)j>0 = ( > Uk ®wa‘)k20, (2.27)

J

where v;, w; € Z;(V) for every i > 0. Here, we identify any tensor product
Tiey(V)© Z(V)

with 73 (V), for every £ € IN U {0} and every j = 0,...,k (thanks to
Proposition 2.32). We call .7 (V') (equipped with this operation) the tensor
algebra of V.

Throughout the Book, we consider any .7;(V) as a subset of 7 (V) as
described in Remark 2.7. Moreover, we make the identification V = 7 (V)
so that V' is considered as a subset of its tensor algebra. When there is no
possibility of confusion, we denote .7, (V') and .7 (V') simply by .7}, and .7.
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If v = (v;)i>0 € Z(V) (being v; € Z;(V) for every i > 0), we say that v; is
the homogeneous component of v of degree (or order, or length) . Moreover, in
writing v = (v;);>0 for an element v € .7 (V') we tacitly mean that v; € Z;(V)
for every i € NU{0}. The notation } .., v; for (v;);>0 will sometimes apply.

Remark 2.34. We have the following remarks.
1. The operation - on .7 (V) is the only bilinear operation on .7 (V') whose
restriction to 73— ; x .7; coincides with the map

Te—i(V) x T3(V) 3 (vk—j, w5) = vp—j @ wj € T(V),

for every k € INU {0} and every j = 0,..., k. Equivalently, it holds that
v-w =v®w, whenever v € .7;(V) and .7; (V') for some ¢, j > 0. Note that
T (V') is generated, as an algebra, by the elements of V' (or of a basis of V)
through iterated ® operations (or equivalently, iterated - operations).

2. The name “tensor algebra” is motivated by the fact that (7 (V),) is a
unital associative algebra. The unitis 1x € 5(V). As for the other axioms of
UA algebra, we leave them all to the Reader, apart from the associativity
of -, which we prove explicitly as follows:

(ui)izo0 - ((Uz‘)izo : (wi)iZO) = (u)iz0 (é:ovi—j ®wj)i20

= <Z“1h ® (Jﬁ:o Vh—j ® wj))

(we interchange the sums and then rename the dummy index h — j =: k)

= X X = X X uijk®@u@u;
j=0h=j i>0 =0 k=0 >0

7 h
< > Z Ui—p @ Vp—j ® wj)

i>0 i>0

3. By the very definition of .7 (V'), we have

V)= Z(V), and Z(V)- Z;(V) C Fiy;(V) forevery i, j > 0.
i>0

(2.28)

In particular, 7 (V') is a graded algebra. We next introduce a notation which
will be used repeatedly in the sequel: for £ € INU {0} we set

=P 7V), Z(V)=U()=%V) (2.29)

i>k i>1
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The notation Uy, .7 will also apply. We have the following properties:

a. Every Uy, is anideal in .7 (V') containing 7 (V).

b. F(V)=Ug(V) D UL(V) D - Up(V) D Upsr (V) D -+

c. Uy(V)-Uj(V) C U4 (V), forevery i,j > 0.

d. ;5o Ui(V) = {0} and, more generally, (,~, Ui(V) = {0} for every k €
IN U {0} -

Note that .7, (V) (also, any U, (V') with & > 1) is an associative algebra
with the operation -, but it is not a unital associative algebra.

Proposition 2.35 (Basis of the Tensor Algebra). Let V' be a vector space and
let B = {e;}icg be a basis of V.. Then the following facts hold:

1. For every fixed k € WN, the system By, := {e;, @ --- @ ¢;, | i1,...,ir €I} isa
basis of 73, (V') (which we call induced by B).
2. The system

{1K}UUkeNBk:{1K’ e, @ Re; ke NN, il,...,ikej}

is a basis of 7 (V') (which we call induced by B).

Proof. (1) follows from Theorem 2.31, whilst (2) follows from (1) together
with Proposition 2.9. O

Remark 2.36. Also, the following are systems of generators for .7 (V):
(1)U {vm--@vg where n € IN, o € V fori < n};
and {(hK,v%,vf®v§,vf®v§’®v§’,..,,v?®...®vz,07”,),
where n € IN, vf € Vforeveryj <mandi < j}.

Remark 2.37. The previous remark shows that V' generates 7 (V') as an
algebra and that the set {1k} UV generates 7 (V') as an algebra. (Indeed, if
V1,...,0, € Vwehavewvy ... v, =01 ® - ® vy.)

Together with the fact that x(X) generates IK(X) as a vector space, we
get that {1k } U x(X) generates .7 (IK(X)) as an algebra (and x(X) generates
4 (K(X))). By identifying X and x(X), this last fact amounts simply to
saying that the letters of X and the unit 1k generate .7 (IK(X)), the free UA
algebra of the words on X.

The following result will be used again and again in this Book.

Theorem 2.38 (Universal Property of the Tensor Algebra).
Let V' be a vector space.
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(i) For every associative algebra A and every linear map f : V' — A, there exists
a unique algebra morphism f : (V) — A prolonging f, thus making the
following a commutative diagram:

f

\%4
[ i

T(V)

N

(ii) For every unital associative algebra A and every linear map f 'V — A, there
exists a unique UAA morphism f : (V) — A prolonging f, thus making
the following a commutative diagram:

7

7(V)

A

(iii) Vice versa, suppose W, ¢ are respectively a UA algebra and a linear map ¢ :
V' — W with the following property: For every UA algebra A and every linear
map f : V. — A, there exists a unique UAA morphism f¥ : W — A such
that

fep)) = f(v) foreveryveV, (2.30)

thus making the following a commutative diagram:

f
Vv—e— A

| A

w

Then W is canonically isomorphic, as UA algebra, to 7 (V'), the isomorphism
being (see the notation in (ii) above) @ : .7 (V) — W and its inverse being
¥« W — F(V). Furthermore, ¢ is injective and W is generated, as an
algebra, by the set {1y} U (V). Actually it holds that ¢ = @ o v. Finally we
have W ~ 7 (¢(V)), canonically.
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Proof. Explicitly, if x is the operation on 4, f in (i) is the unique linear map
such that

flor®@ - @up) = flor) x -+ f(on), (2.31)

for every k € IN an(i every vi,...,u; € V. Also, if e4 is the unit of the UA
algebra A, the map f in (ii) is the unique linear map such that

k) =ea, flor@---@uvg) = for) x-- % f(og), (2.32)
for every k € IN and every vy,...,v; € V. For the proof of this theorem, see
page 404 in Chap.7. O

Remark 2.39. Let V, W be two isomorphic vector spaces with isomorphism
U :V — W.Then .7 (V) and .7 (W) are isomorphic as UA algebras, via the
UAA isomorphism ¥ : 7(V) — Z(W) such that ¥ (v) = W¥(v) for every
veVand

Doy @ @u) =U(01) @ @ W(vg), (2.33)

for every k € IN and every v,..., v, € V. [Indeed, the above map ¥ is the
unique UAA morphism prolonging the linear map V' 2w T (W); W is
an isomorphism, for its inverse is the unique UAA morphism from .7 (W)

to 7 (V) prolonging the linear map W v g (V).]

The following theorem describes one of the distinguished properties of
Z (V) as the “container” of several of our universal objects (we shall see
later that it contains the free Lie algebra of V' and the symmetric algebra of
V, too).

Theorem 2.40 (7 (K(X)) is isomorphic to Libas(X)). Let X be any set and
K a field.

(1). The tensor algebra 7 (IK(X)) of the free vector space X(X) is isomorphic,
as UA algebra, to Libas(X), the free unital associative algebra over X. As a
(canonical) UAA isomorphism, we can consider the linear map ¥ : 7 (K(X)) —
Libas(X) such that®

V(1@ - Q) =x1.-++ Tk, forevery k € Nandevery xy,...,x € X,

and such that (1) = e, e being the unit of Libas(X).

(2). More precisely, the couple (7 (IK(X)), ) satisfies the universal property
of the free UA algebra over X, where p : X — 7 (K(X)) denotes the canonical
injection

X 5 KX) S TKX)).

®Here we are thinking of X (respectively, Mo(X)) as a subset of K(X) — 7 (K(X)) (of
K(Mo(X)) = Libas(X), respectively).
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This means that, for every UA algebra A and every function f : X — A, there
exists a unique UAA morphism ¢ : 7 (IK(X)) — A with the following property

fe(p(x)) = f(x), foreveryz e X, (2.34)
thus making the following a commutative diagram:

!
X —
wl /
f‘P

7 (K(X))

A

Proof. In view of Theorem 2.28-(ii), it is enough to show that the above
couple (7 (K(X)), ) satisfies the universal property of the free UA algebra
over X. With this aim, let A be a UA algebra and let f : X — A be any
map. By Theorem 2.6-(i), there exists a linear map fX : K(X) — A such that
fX(x(z)) = f(z) for every z € X. Then, by Theorem 2.38-(ii), there exists a
UAA morphism fx : 7(IK(X)) — A such that fX(:(v)) = fX(v), for every
v € IK(X). Setting f¥ := fX, one obviously has

F(p(@)) = PX((tox)(x) = fX(x(2)) = f(z), VzeX

Moreover f¥ is the unique UAA morphism such that f?(¢(z)) = f(x), for
every z € X, since p(X) = x(X) and {1} U x(X) generates .7 (K(X)), as an
algebra.

By Theorem 2.28-(ii), we thus have .7 (KK(X)) ~ Libas(X) via the (unique)
UAA isomorphism ¥ : 7 (K(X)) — Libas(X) mapping = = x(z) € K(X)
into z = x(x) € K(Mo(X)). The theorem is proved. O

2.1.3.1 Tensor Product of Algebras

Let (A, ®) and (B, ®) be two UA algebras (over K). We describe a natural
way to equip A ® B with a UA algebra structure. Consider the Cartesian
product A x B x A x B and the map

F:AXxBxAXxB— AQ B, (al,bl,ag,bg) — (a1 ®a2)® (bl @bg)
We fix (az,b2) € A x B and we consider the restriction of F' defined by
A X B 3 (a1,b1) — F(a1,b1,as,b2). This map is clearly bilinear. Hence, by

the universal property of the tensor product in Theorem 2.30, there exists a
unique linear map Gg,p, : A® B — A® B such that

Gy by (a®b)=F(a,b,a2,b2)=(a®az2)@(b©bs), Y (a,b) € AxB. (2.35)
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Then we fix ¢; € A ® B and we consider the map
ey :AX B = A® B, (az,b2) = Gayp,(c1).

It is not difficult to prove that this map is bilinear. Hence, again by Theorem
2.30, there exists a unique linear map 5., : A ® B — A ® B such that

Be (@ ®D) = a, (a,b) = Gy p(c1), V (a,b) € A x B. (2.36)
Furthermore, we set
H(A@B)X(A@B)—}A@)B, H(Cl,CQ) = 501(02).

By (235) and (236), we have H(al X bl; a2 bz) = (a1 ® (12) (24 (b1 © bg)
Finally, we define a composition e on A ® B as follows:

creco:=H(er,c2), Ve, € A®B.
With the above definitions, we have the following fact:
(A ® B,e) is aunital associative algebra.

The (tedious) proof of this fact is omitted: the Reader will certainly have no
problem in deriving it. Hence, the following result follows:

Proposition 2.41. Let (A, ®) and (B,®) be two UA algebras (over ). Then
A ® B can be equipped with a UA algebra structure by an operation e which is
characterized (in a unique way) by its action on elementary tensors as follows:

(a1®b1)e(az®by) = (a1®a2)@(b1@bs), VY (a1®by), (a2®bs) € ARB. (2.37)

2.1.3.2 The Algebra 7 (V) ® (V)

Let V be a vector space. Following the above section, the tensor product
T (V)® T (V) can be equipped with a UA algebra structure by means of the
operation e such that

(a@b)e(a' @V) = (a-a')(b-b), (a,b),(d',b) e Z(V)o T (V), (2.38)

where - is as in (2.27). Obviously, extended by bilinearity to .7 (V) @ .7 (V),
(2.38) characterizes e. For any i, j € INU {0}, we set’

T i(V)=Z(V)® F5(V) (as asubset of 7(V)® 7 (V)). (2.39)

7The Reader will have care, this time, not to identify

TR Z(V)=Ve - VeVe -V withVe---aV,
—_———
i times J times i + j times

as we had to do in Definition 2.33.
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Given 7 = @,., 7, one obviously has

TV T(V)= Zi;(V). (2.40)

i,5>0
Thanks to the definition of e in (2.38), it holds that

Zij(V) 8 T (V) € Tigir g V),V i4,4,5 = 0. (2.41)
Occasionally, we will also invoke the following direct-sum decomposition:

TWV)e Z(V)=EPKe(V), where Ki(V):= @@ Zi;(V). (242

k>0 i+j=k
More explicitly,
TV)®@ T (V)=
=P NRHENRTN BT NN RNANDTHRTd: -
N N N N N N —
y{),(] yl,(] y{),l y2,0 L%,l %,2
=R (NS DN P(ARRIDNRNS TR T)D: -
N——
Ko K K>

In particular, with the decomposition (2.42), 7 (V)® .7 (V) is a graded algebra:
Indeed, (2.41) proves that

Kip(V)e Ki(V) C Ky (V)  foreveryk, k' > 0. (2.43)

We next introduce a notation analogous to (2.29), which will be used
repeatedly in the sequel: for £ € INU {0} we set

Wi(V)i= @ Z;(V), (Z707)1(V):=Wi(V)= P Z;(V). (244)

i+i>k i+j>1

Note that, with reference to K} in (2.42), we have Wy, (V') = @, K;(V), for
every k > 0. The notation Wy, (7 ® 7) will also apply. -

Remark 2.42. The following facts are easily seen to hold true:

1. Every Wy is anidealin 7 (V) ® 7 (V) containing .7; ;(V') for i + j = k.

2.9 =Wo(V)DW(V)D - - Wi(V) D Wit (V) D---

3. Wl (V) L] Wj (V) - WiJrj (V), for every i,j > 0.

4. ;5o Wi(V) = {0} and, more generally, (-, Wi(V') = {0} for every k €
Nu{0}.
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To avoid confusion in the notation (as it appears from the note at page 81),
we decided to apply the following conventional notation:

Convention. When the tensor products in the sets Z;(V) = V@ -V
(i times) and the tensor product of 7 (V) @ 7 (V') simultaneously arise, with the
consequent risk of confusion, we use the larger symbol “@Q)” for the latter.

For example, if u,v,w € V then
(u@v)Qw e F1(V), whereas u@) (v ®@ w) € F2(V),

and the above tensors are distinct in (V) ® 7 (V). Instead, (v ® v) ® w and
u ® (v ® w) denote the same element u @ v @ w € F(V) in T (V).

Proposition 2.43 (Basis of .7 (V) ® .7(V)). Let V be a vector space and let
B = {en}ney be a basis of V. Then the following facts hold®:

1. For every fixed i, j > 0, the system
‘Bi,j = {(ehl ®"'®ehi)®(ek1 ®®€k]) ‘ hl,...,hi, kl,...,kj S j}

is a basis of 7; ;(V') (which we call induced by B).
2. The system Uz‘,jzo B, j, e,

{(ehl®"'®ehi)®(ekl®~-~®ekj) i,7 >0, hi,...,h, kl,...,kjej}

is a basis of 7 (V') @ 7 (V') (which we call induced by B).
Proof. It follows from Theorem 2.31, and Propositions 2.9 and 2.35. O

Remark 2.44. Thanks to Remark 2.36, the following is a system of generators
for 7(V)® 7 (V):

{(u1®®ul)®(v1®®v3) Z,jZO, ULy v ey Uiy V1ye-oy Uy EV})

where the convention 1 ® - - -®u; = lxk = v1 ®- - -®v; applies when 4, j = 0.

Following the decomposition in (2.40) (and the notation we used in direct
sums), an element of .7 ® 7 will be also denoted with a double-sequence
styled notation:

(tij)ij>0, wheret;; € .7 ;(V)foreveryi,j > 0.

SWhen i = 0, the terme;, ® -+ ® en, has to be read as 1x.
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The notation (¢; ;); ; will equally apply (and there will be no need to specify
that ¢; ; € 7 ;(V)). Then the e operation in (2.38) is recast in Cauchy form
as follows (thanks to (2.41)):

(tig)ig e (tig)iy = ( D tese ?;,g) : (2.45)

~ - - . 4,j20
r+r=t, s+s5=j

We now introduce a selected subspace of .7 ® .7, which will play a central
role in Chap. 3: we set

K={v®l+lew|v,weV}cIT(V)o I (V). (2.46)

Here and henceforth, 1 will denote the unit in I, which is also the identity
element of the algebra 7 (V). By the bilinearity of ®, we have

K=%,V)® %1(V)=Ki(V). (2.47)

The following computations are simple consequences of (2.38):

(ur®@1)e---o(u®l)=(u @ ®@u)Q1, (2.48a)
(1@v)e---o(l®v;) = 1®( e ®vy),
(@) e o(u@l)e(lov)e ol (2.48b)

=W Qu)QR( ®- - Qvj),

for every i,j € N, and every uq,...,u;,v1,...,v; € V. From (2.48b) and
Remark 2.44, we derive the next proposition:

Proposition 2.45. The following is a system of generators for 7 (V) @ F(V):
{(u1®1)o- —o(u;Q1)e(1®vy)e- - -0(1®v;)|i, 7 > 0,u1, ..., U, v1,...,0; € V},

where the convention uy ® --- @ u; = lx = v1 @ - - - @ v; applies, when i,j = 0.

Moreover, if B = {ey}, }neg is a basis of V, the following is a basis of 7 (V)@ 7 (V):
{1®]—a (6h1®1)."'.(ehi®1)7 (1®6k1>."'.(1®6kj)5
(eal ®1)."'.(eaa®1).(1®6ﬁ1)."'.(1®6ﬁb)7

wherei,j,a,bE]Nandhl,...,hi,kl,...,kj,al,...,oza,ﬂl,...,ﬂb63}.
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2.1.3.3 The Lie Algebra £(V)

The aim of this section is to describe another distinguished subset of .7 (V)
having important features in Lie Algebra Theory.
First the relevant definition.

Definition 2.46 (Free Lie Algebra Generated by a Vector Space). Let I/ be
a vector space and consider its tensor algebra (7 (V),-). We equip 7 (V)
with the Lie algebra structure related to the corresponding commutator (see
Definition 2.16).

We denote by L£(V) the Lie algebra generated by the set V in 7 (V)
(according to Definition 2.13) and we call it the free Lie algebra generated
by V. Namely, £(V) is the smallest Lie subalgebra of the (commutator-) Lie
algebra .7 (V) containing V.

The above adjective “free” will be soon justified in Theorem 2.49 below
(though its proof requires a lot of work and will be deferred to Sect.2.2). We
straightaway remark that we are not using the phrasing “free Lie algebra
over V” (which, according to previous similar expressions in this Book,
would — and will — mean a free object over the set V). All will be clarified
in Sect.2.2.

Convention. To avoid the (proper) odd notation [u, v]. for the commu-
tator related to (7 (V), ), we shall occasionally make use of the abuse of
notation [u, v]g for u - v — v - u (When u,v € 7 (V)). This notation becomes
particularly suggestive when applied to elementary tensors u, v of the form
w1 ® -+ - @ wy, for in this case the - product coincides with ®.

Proposition 2.47. Let V' be a vector space and let the notation in Definition 2.46
apply. We set L1 (V') :=V and, for everyn € N, n > 2,

L,(V):=[V---[V,V]--+] :span{[vl~-~[vn,1,vn]~-~] Viy.eonyUp € V}.
n times (249)

Then L,,(V') C Z,(V) for every n € IN, and we have the direct sum decomposition
LV) =D, Ln(V). (2.50)

In particular, the set V' Lie generates L(V'). Moreover, £L(V') is a graded Lie algebra,
for it holds that

[L:(V),L;(V)] C Lir;(V), foreveryi,j> 1. (2.51)
Proof. From Theorem 2.15, we deduce that | J,, £,(V) spans £(V') and that

(2.51) holds (see (2.11)). Finally, (2.50) follows from £,,(V) C .7,(V), which
can be proved by an inductive argument, starting from:
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[v1,v2) = V1 -V — V2 -V =V QUa —V2 QU1 € Ta(V),

holding for every vy, v2 € V, and using (2.28). This ends the proof. 0

Remark 2.48. Let V, W be isomorphic vector spaces and let ¥ : V' — W be an

isomorphism. Let U T (V) — T (W)bethe UAA isomorphism constructed
in Remark 2.39. We claim that

Uy = @|L(V) : L(V') — L(W) is a Lie algebra isomorphism.

Indeed, since ¥isa UAA isomorphism, it is also a Lie algebra isomorphism,
when .7 (V') and 7 (W) are equipped with the associated commutator-alge-
bra structures (see Remark 2.17). As a consequence, the restriction of ¥ to

L(V) is a Lie algebra isomorphism onto ¥(£(V)) (recall that £(V') is a Lie
subalgebra of the commutator-algebra of .7 (V)). To complete the claim, we

have to show that ¥ (L(V)) = L(W). To prove this, we begin by noticing
that (in view of (2.33) in Remark 2.39) ¥ (v) = ¥(v) for every v € V and

Fe([on onon, il )y ) = 0 - [P (o), 0] 1w,
(2.52)

forevery k € IK and every vy, ..., v € V. Here we have denoted by [+, -] 7 (v
the commutator related to the associative algebra .7 (V) (and analogously
for [-,-] 7(w))- Now, (2.52) shows that W(L(V)) C L(W) (recall Proposition
2.47). To prove that “=" holds instead of “C”, it suffices to recognize that
the arbitrary element [w - - - [wg—1,wi] - - -] 7wy of L(W) (Where k € K and

wi,...,w; € V)is the image via ¥ of
[ (wr) - [0 (wge—), O (wi)] - 17 (v

Theorem 2.49 (Universal Property of £(V')). Let V be a vector space.

(i) For every Lie algebra g and every linear map f : V' — g, there exists a unique
Lie algebra morphism f : L(V') — g prolonging f, thus making the following
a commutative diagram:

!

[

L(V)

g

(if) Comnwversely, suppose L,y are respectively a Lie algebra and a linear map ¢ :
V' — L with the following property: For every Lie algebra g and every linear
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map f 'V — g, there exists a unique Lie algebra morphism f¥ : L — g such
that

) = fv) foreveryveV, (2.53)

thus making the following a commutative diagram:
f
V ——
® l /
f‘P
L
Then L is canonically isomorphic, as a Lie algebra, to L(V'), the isomorphism
being (see the notation in (i) above) g : L(V) — L and its inverse being
? L — L(V). Furthermore, ¢ is injective and L is Lie-generated by the

set (V). Actually it holds that ¢ = P o . Finally we have L ~ L(p(V)),
canonically.

g

Proof. Explicitly, if [, -], is the Lie bracket of g, f in (i) is the unique linear
map such that

T([Ul s fog—1, vk]e - ]®) =[f(v1)--- [f(kal),f(vk)]g e ']gv

forevery k € INand every vy, ...,vp € V.

Unfortunately, the proof of this theorem requires the results of Sect.2.2, on
the existence of Lie(X), the free Lie algebra related to a set X (together with
the characterization Lie(X) ~ L(IK(X))). Alternatively, it can be proved
by means of the fact that every Lie algebra g can be embedded in its
universal enveloping algebra % (g) (a corollary of the Poincaré-Birkhoff-
Witt Theorem, see Sect. 2.4). Hence, we shall furnish two proofs of Theorem
2.49, see pages 92 and 112. o

2.2 Free Lie Algebras

The aim of this section is to prove the existence of the so-called free Lie
algebra Lie(X) related to a set X . Classically, the existence of Lie(X) follows
as a trivial corollary of a highly nontrivial theorem, the Poincaré-Birkhoff-
Witt Theorem. For a reason that will become apparent in later chapters
concerning with the CBHD Theorem, our aim here is to prove the existence
of Lie(X) without the aid of the Poincaré-Birkhoff-Witt Theorem.

Moreover, for the aims of this Book, it is also a central fact to obtain the
isomorphism of Lie(X) with £(IK(X)), the smallest Lie subalgebra of the
tensor algebra over the free vector space KK(X).
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The main reference for the topics of this section is Bourbaki [27, Chapitre
II, §2 n.2 and §3 n.1]. Unfortunately, there is a feature in [27] which does not
allow us to simply rerun Bourbaki’s arguments: Indeed, the isomorphism
Lie(X) ~ L(K(X)) is proved in [27, Chapitre II, §3 n.1] as a consequence’
of the Poincaré-Birkhoff-Witt Theorem. So we are forced to present a new
argument, which bypasses this inconvenience.

To avoid confusion between the notion of free Lie algebra generated by a
vector space (see Definition 2.46) and the new notion — we are giving here —
of free Lie algebra related to a set, we introduce dedicated notations.

Definition 2.50 (Free Lie Algebra Related to a Set). Let X be any set. We
say that the couple (L, ¢) is a free Lie algebra related to X, if the following
facts hold: L is a Lie algebra and ¢ : X — L is a map such that, for every
Lie algebra g and every map f : X — g, there exists a unique Lie algebra
morphism f¥ : L — g, such that the following fact holds

fe(p(x)) = f(x) foreveryz e X, (2.54)

thus making the following a commutative diagram:

X
Apl
L

If, in the above definition, X C L (set-theoretically) and ¢ = ¢ is the set
inclusion, we say that (L, ¢) is a free Lie algebra over X.

!
—>g
f‘P

By abuse, if (L, ) (respectively, (L,¢)) is as above, we shall also say that
L itself is a free Lie algebra related to X (respectively, a free Lie algebra
over X). It is easily seen that any two free Lie algebras related to X are
canonically isomorphic. More precisely, the following facts hold.

Proposition 2.51. Let X be a nonempty set.

1. If (L1, 1), (L2, p2) are two free Lie algebras related to the same set X, then
Ly, Ly are isomorphic Lie algebras via the isomorphisms (inverse to each other)
o5t t Ly — Lo, ¢f? : Ly — Ly and o = @F' o ¢ (analogously, o1 =

@7 0 p2).

9See [27, Chapitre 11, §3, n.1, Théoreéme 1] where it is employed [25, Chapitre I, §2, n.7,
Corollaire 3 du Théoreme 1] which is the Poincaré-Birkhoff-Witt Theorem.
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2. If (L1, 1) is a free Lie algebra related to X, if Lo is a Lie algebra isomorphic to
Ly and v : Ly — Lo is a Lie algebra isomorphism, then (L, p2) is another free
Lie algebra related to X, where oo 1= 1) 0 1.

Proof. (1). As usual, it suffices to consider the commutative diagrams

®2 P1
X — Lo X — I
®1 P2
| |
L1 L2

and to show that the diagonal arrows in the following commutative dia-

grams are respectively “closed” by the maps ¢7” o %' and ¢§' o ©7*:

®1 P2
X —— Iy X — Lo
P1 P2
idr, idr,
L1 L2

We conclude by the uniqueness of the “closing” morphism, as stated in the
definition of free Lie algebra related to X. Part (2) of the proposition is a
simple verification. O

We next turn to the actual construction of a free Lie algebra related to the
set X. First we need some preliminary results.

Whereas ideals are usually defined in an associative setting, we need the
following (non-standard) definition.

Definition 2.52 (Magma Ideal). Let (M, *) be an algebra (not necessarily
associative).

1. We say that S C M is a magma ideal in M, if S is a subspace of the vector
space M such that s*m and mx*s belong to S, for every s € Sand m € M.

2. Let A be any subset of M. The smallest magma ideal in M containing A
is called the magma ideal generated by A.

With the above definition, it is evident that the magma ideal generated by A
coincides with (.S, where the intersection runs over the magma ideals S in
M containing A.

Up to the end of this section, X will denote a fixed set. Let us now
consider Lib(X), i.e., the free non-associative algebra over X, introduced in
Sect.2.1.2 (see (2.17)). We shall denote its operation by , recalling that this
is the bilinear map extending the operation of the free magma (M (X),.)
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(and that Lib(X) is the free vector space of the formal linear combinations
of elements of M (X)). Let us introduce the subset of Lib(X) defined as

A :={Q(a), J(a,b,c)|a,b,c € Lib(X)}, where
Qa) :==axa, J(a,b,c) :==ax*(bxc)+bx(cxa)+cx*(axb). (2.55)

We henceforth denote by a the magma ideal in Lib(X) generated by A,
according to Definition 2.52. We next consider the quotient vector space

Lie(X) := Lib(X)/a, (2.56)
and the associated natural projection
7 Lib(X) — Lie(X), 7(t) = [t]a. (2.57)

Then the following fact holds:

Proposition 2.53. With all the above notation, the map [-,-] : Lie(X) — Lie(X)
defined by

[7(a), 7(b)] :=w(axb) foreverya,be Lib(X), (2.58)

is well posed and it endows Lie(X) with a Lie algebra structure. Moreover, the
map 7 in (2.57) is an algebra morphism (when we consider Lie(X) as an algebra
with the binary bilinear operation Lie(X) x Lie(X) > (£,£') — [¢,¢'] € Lie(X)).
Proof. The well posedness of [-,-] follows from a being a magma ideal',
while the fact that it endows Lie(X') with a Lie algebra structure is a simple
consequence!! of the definition of A. Finally, 7 is an algebra morphism
because it is obviously linear (Lie(X') is a quotient vector space and = is
the associated projection!) and it satisfies (2.58). O

The Reader will take care not to confuse Lie(X ) with Lie{ X } (the latter being
the smallest Lie subalgebra — of some Lie algebra g — containing X, in case
X is a subset of a pre-existing Lie algebra g). Obviously, there is an expected
meaning for the similarity of the notation, which will soon be clarified (see
Remark 2.55 below). We are ready to state the important fact that Lie(X) is
a free Lie algebra related to X.

WIndeed, if 7(a) = m(a’) and w(b) = =(¥’) there exist a, 3 € a such that ’ = a + a,
b =b+pB.Hencea *b/ =axb+axB+axbt+taxB caxbta*xataxbtaxaCaxb+a,
so that w(a’ * V') = w(a x b).

NFor example, the Jacobi identity follows from [r(a), [7(b), 7(c)]] = 7(a * (b * ¢)) so that
[m(a), [7(b), w(c)]] + [ (b), [ (c), w(a)]] + [w(c), [7(a), 7(b)]] = w(J(a,b,c)) = 0.
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Theorem 2.54 (Lie(X) is a Free Lie Algebra Related to X). Let X be any set
and, with the notation in (2.56) and (2.57), let us consider the map

v: X — Lie(X), xw— w(x), (2.59)

ie.,'?, o = | x. Then the following facts hold:

1. The couple (Lie(X), v) is a free Lie algebra related to X (see Definition 2.50).

2. The set {p(z)}zex is independent in Lie(X), whence ¢ is injective.

3. The set o(X) Lie-generates Lie(X), that is, the smallest Lie subalgebra of
Lie(X) containing ©(X) coincides with Lie(X).

Proof. See Sect. 8.1 (page 459) in Chap. 8. ]

Remark 2.55. Part 3 of the statement of Theorem 2.54 says that Lie{p(X)} =
Lie(X), the former being meant as the smallest subalgebra — of the latter —
containing X (see Definition 2.13). This fact, together with the identification
X = ¢(X) (this is possible due to part 2 of Theorem 2.54) says that

Lie{ X} = Lie(X)

(which is extremely convenient given the abundance of notation for free Lie
algebras generated by a set!).

Here is another (very!) desirable result concerning free Lie algebras.

Theorem 2.56 (The Isomorphism £(IK(X)) ~ Lie(X)). Let X be any set and
consider the free vector space IX(X') over X. Consider also L(IK(X)), the smallest
Lie subalgebra of 7 (IK(X)) containing X.

Then L(IK(X)) and Lie(X) are isomorphic, as Lie algebras. More precisely, the
pair (L(IK(X)), x) is a free Lie algebra related to X.

When, occasionally, we shall allow ourselves to identify X with the subset
X(X) of K(X) (via the injective map x), the map x : X — L(IK(X)) becomes
the map of set inclusion, whence Theorem 2.56 will permit us to say that
L(K(X)) is a free Lie algebra over X.

Proof. If ¢ is as in (2.59), we know from Theorem 2.54 that (Lie(X), ¢) is a
free Lie algebra related to X. Hence, considering the map X > = — x(x) €
L(K(X)), there exists a unique Lie algebra morphism (see the notation in
Definition 2.50) x¥, say f for short, such that

f:Lie(X) — L(K(X)) and f(p(x)) = x(z), foreveryx € X.  (2.60)

We claim that f is a Lie algebra isomorphism. This claim is proved in Sect. 8.1 in
Chap. 8 (precisely in Corollary 8.6, page 469). Hence, by Proposition 2.51-2,

12More precisely, the map ¢ is the composition
X - M(X) 25 Lib(X) — Lie(X).

Via the identification X = x(X) — Lib(X) we can write ¢ = 7| x.
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(L(K(X)), p2) is a free Lie algebra related to X, with oo = fop = xon X
(where we also used (2.60)). O

Collecting together Theorems 2.54 and 2.56 (and Definition 2.50), we can
deduce that, if X is any set, g any Lie algebra and f : X — g any map, there
exist Lie algebra morphisms

f?: Lie(X) — g, X L(K(X)) — g
such that
ffle(2) = flz) = X(x(z), VzeX

and, more explicitly, these morphisms act — on typical elements of their
respective domains — as follows:

s ([90(331) clp(mr-1), o(@k)|Lie(x) ']Lic(X))

= X (Ix(@) - x(@r-1), x(@0)]e o)
= [f(z1) - [f(x-1), f(mk)]g T ']g,

for every z1,...,x, € X and every k € IN. Here
['7']Lic(X)a ['7']@1 ['a']g

are, respectively, the Lie brackets of Lie(X), of £L(IK(X)) (with Lie bracket
inherited from the commutator on .7 (IK(X))) and of g.

With Theorem 2.56 at hand, we are ready to provide the following:

Proof (of Theorem 2.49, page 86). Since (ii) is standard, we restrict our attention
to the proof of (i). Let g be a Lie algebra and let f : V' — g be any linear
map. We have to prove that there exists a unique Lie algebra morphism
f: L(V) — g prolonging f. Since £(V) is Lie-generated by V (see e.g.,
Proposition 2.47) the uniqueness of f will follow from its existence. To prove
this latter fact, we make use of a basis of V' (the “non-canonical” nature of
this argument being completely immaterial). See also the diagram below:

f

>~
[s=1
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With this aim, let B = {b;};c5 be a basis of V. Then V is isomorphic (as
a vector space) to the free vector space IK(B), via the (unique) linear map
¥V — K(B) mapping b; € V into x(b;) € K(B) for every i € J (recall the
notation in (2.2)): more explicitly

W( Ziej’ Ai bi) = Ziej’ i x(bs), (2.61)

where J’ is any finite subset of J and the coefficients \; are arbitrary scalars.
Since ¥ : V' — K(B) is an isomorphism, by Remark 2.48 we can deduce that
L(V) and L(IK(B)) are isomorphic via the unique LA isomorphism ¥ :

L(V) — L(K(B)) such that

We(v) = ¥(v), foreverywve V. (2.62)
Since the pair (£(IK(B)), x) is a free Lie algebra related to B (see Theorem
2.56), considering the map f|z : B — g, there exists an LA morphism
(fls)X : L(K(B)) — g such that

(fl)X(x(bi)) = f(bi), Vi€ (2.63)

We claim that f := (f|s)X oW, : L(V) — g prolongs f (see the diagram
above). Indeed, if v € V,say v = ) \; b;, we have

ieJ’
T@) = (f18)X (@ (0) 2 (fla )@ () 27 (fl8)% (Cieq M x(51)
B S e M F(b0) = F(Lien Aibi) = f(0):
This ends the proof. O

2.3 Completions of Graded Topological Algebras

The aim of this section is to equip a certain class of algebras A with a
topology endowing A with the structure of a topological algebra. It will
turn out that a structure of metric space will also be available in this setting.
Then we shall describe the general process of completion of a metric space.
Finally, we shall focus on graded algebras and the concept of formal power
series will be closely investigated. All these topics will be of relevance when
we shall deal with the CBHD Formula (and convergence aspects concerned
with it).
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2.3.1 Topology on Some Classes of Algebras

Definition 2.57. Let (A4, %) be an associative algebra. We say that {{2; } xew is
a topologically admissible family in A if the sets (2, are subsets of A satisfying
the properties:

(H1.) {2 is anideal of A, for every k € IN.
(H2.) (1 =Aand 2, O 2444, for every k € IN.
(H3.) 02, % 82, C 241, for every h, k € IN.
(H4.) Npen 2 = {0}.

The main aim of this section is to prove the following theorem.

Theorem 2.58. Let (A, *) be an associative algebra and suppose that {2y, } ke is
a topologically admissible family of subsets of A. Then the family

0U{a+ nk} (2.64)

acA, kelN

is a basis for a topology 2 on A endowing A with the structure of a topological
algebra.'® Even more, the topology (2 is induced by the metricd : A x A — [0, 00)
defined as follows (exp(—o0) := 0 applies)

d(z,y) :==exp(—v(z —y)), forallz,ye A, (2.65)

where v : A — N U {0, oo} is defined by v(z) == sup{n > 1|z € £2,}, or more
precisely

_Jifz#0, max{nzl‘zeﬂn}
v(z) .—{le:O, o (2.66)

The triangle inequality for d holds in the stronger form'*:
d(z,y) <max{d(z,z),d(z,vy)}, foreveryz,y,z¢c A (2.67)

Proof. See page 407 in Chap.7. O

13We recall that a topological algebra is a pair (A, £2) where (A, +, *) is an algebra and 2
is a topology on A such that the maps

AxAS (a,b) »a+baxbe A, KxA>(k,a)—~kacA

are continuous (with the associated product topologies, K being equipped with the
discrete topology) and such that (A, 2) is a Hausdorff topological space.

14 A metric space (A, d) whose distance satisfies (2.67) (called the strong triangle inequality
or ultrametric inequality) is usually referred to as an ultrametric space. Hence, a topologically
admissible family of subsets of an algebra A endows A with the structure of an ultrametric
space.
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Remark 2.59. In the notation of the previous theorem, (2.67) easily implies
the following peculiar fact: A sequence {a,}, in A is a Cauchy sequence in
(A, d) if and only if lim,,_, oo d(ayp, apy1) = 0.

Indeed, given a sequence {a,}, in A, as a consequence of (2.67) the
following telescopic estimate applies, for every n,p € IN:

d(an, anyp) < max{d(an, ani1), d(ang1, anyp)}
< max {d(ana an+1)7 maX{d(an+1a an+2); d(an+2a an+p)}}

= max {d(an, an+1), d(ans1, ans2), d(ani2, angp) }

(after finitely many steps)
< max {d(an, an+1), d(ang1, ang2), - d(@ngp—1,anip) }-
This shows that {a,, },, is a Cauchy sequence in (A4, d) if and only if

lim d(an,ant1) =0.
n—oo

Definition 2.60. If A is an associative algebra and if {{2;}ren is a topolog-
ically admissible family of subsets of A, the topology (2 (respectively, the
metric d) in Theorem 2.58 will be called the topology on A induced by {2} kew
(respectively, the metric on A induced by {2} kew).

Remark 2.61. When A is an associative algebra and d is the metric on
A induced by a topologically admissible family {{2}ren, we have the
following algebraic properties of the metric d in (2.65) (proved in due course
within Chap.7, see page 415):

1. d(z,y) = d(z + z,y + 2), for every z,y, z € A.
2. d(kz,ky) =d(z,y), forevery k € K\ {0} and every x,y € A.
3. d(z xy,& *n) < max{d(x,€),d(y,n)}, for every z,y,&,n € A.

Remark 2.62. In the notation of Theorem 2.58, we have the following fact:
A sequence {ay }n, in A is a Cauchy sequence in the metric space (A, d) sequence if
and only if lim,, oo (@n4+1 — apn) = 0.

Consequently, a series Y | a, consisting of elements in A is a Cauchy
sequence in (A, d) if and only if lim,,_,oc an, = 0 in (4, d).

Indeed, by Remark 2.59 {a,, }», is Cauchy in (A, d) iff lim,,_, o d(an, an41) = 0.
In its turn, by (1) in Remark 2.61, we see that this latter fact coincides with
limy, 00 d(0, @nt1 — an) = 0. Finally, this is the definition of lim,oc (@n4+1 —
an) =0in (A, d).

The above remark shows how different are the metrics in Theorem 2.58
(indeed, all ultrametrics), if they are compared to the usual Euclidean metric
in R", where the above facts are false (as shown by the trivial example
>0, 1/n = oo in the usual Euclidean space R).
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Remark 2.63. With the notation of Theorem 2.58, by unraveling the
definition of d we have that, for two points z,y € A and a positive real
number ¢, the condition d(z,y) < ¢ is equivalent to sup {n >1 ‘ z € Qn} >
In(1/e), that is,

(@yecA day) <e) = (there exists n € IN, with n > ln(l/s)) -

such thatz — y € (2,
(2.68)

Example 2.64. Before proceeding, we make explicit some examples of topo-
logically admissible families, useful for the sequel.

1. Let (A, ) be an associative algebra and let I/ C A be an ideal. Let us set
29 := Aand, for k € IN, let
2, := ideal generated by {I * --- x I (k times)}

] set of the finite sums of elements of the form r % 41 * - - x i *x p
wherer,p € Aand iy,...,i, €1 '

Then it is easily seen that the family {{2;}>¢ fulfils hypotheses (H1),
(H2) and (H3) in Definition 2.57. Hence, whenever {2, };>o fulfils also
hypothesis (H4), it is a topologically admissible family in A.

2. Suppose (A4, %) is an associative algebra which is also graded (see Defini-
tion 2.11). We set A, := @;’il A;. Also, let £2) := Aand, for k € IN,

2 ::span{al*---*ak’ al,...,akEA_,_}.

It is not difficult to show that {2, } >0 is a topologically admissible family
in A. For example, we prove (H4): First note that 2, C ;2 A; for any
k € NU {0} (indeed equality holds); hence we have

{0} € Mizo 26 € Mizo B2k 45 = {0}

The last equality is proved as follows: if a € A and a # 0, then we can
write @ = Zfil a; with a; € A; and ay # 0; in this case a ¢ 69;1N+1 A,
and the assertion follows. Note that also

Qe =Djsr, 4 vV k€ NU{0}. (2.69)

As for hypotheses (H1)-(H2)-(H3), they follow by the previous Example 1,
since it can be easily seen that, for all k € IN,

(2, = ideal generated by {A; * --- x A, (k times)}. (2.70)

3. Let V be a vector space and let A = .7 (V). We can construct the family
{2 }ken according to the previous example, with respect to the usual
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grading 7 = @2, J;. By (2.69), we have 2, = Uy for every k € N,
where Uy, has been defined in (2.29). Hence {Uy}rew is a topologically
admissible family in 7 (V'), thus equipping 7 (V') with both a metric space and
a topological algebra structure. (This same fact also follows from the results
in Remark 2.34-(3).) As stated in Example 2, we can view this example as
a particular case of Example 1 above, since U, coincides with the ideal
generated by the k-products of I = 7, (V') (or equivalently, of I = V).

4. Let V be a vector space, and on the tensor product .7 (V) ® 7 (V) let
us consider the family of subsets {W, }ren introduced in (2.44). Then,
by the results in Remark 2.42, {W}, }rew is a topologically admissible family
in 7(V)® T(V), thus equipping 7 (V') ® 7 (V) with both a metric space
and a topological algebra structure. Analogously, the fact that {W, }rew is a
topologically admissible family can be proved by Example 2 above, by
considering the grading 7 ® 7 = @, ., K as in (2.42). Indeed, W), =
spanfa; e --- e ap | ar,...,ax € @;5, K; = (7 @ T)4}. As stated in
Example 2, we can also view this example as a particular case of Example
1 above, since W}, coincides with the ideal generated by the k-products of
I=(7 ®7)4 (or equivalently, of I := K introduced in (2.46)).

Since we are mainly interested in graded algebras, for the sake of future
reference, we collect many of the aforementioned results in the following
proposition, and we take the opportunity to prove some further facts.

Proposition 2.65 (Metric Related to a Graded Algebra). Let (A, x) be an
associative graded algebra with grading {A;};>o. For every k € IN U {0}, set

Qk = @jgk Aj.

(@) Then {2 }r>0 is a topologically admissible family of A, thus endowing A with
both a metric space and a topological algebra structure (both structures are
referred to as “related to the grading {A;};>0").

(b) The induced metric d has the algebraic (and ultrametric) properties

d(z,y) =d(x + z,y + 2), dlkz,ky) = d(z,vy)

(2.71)
d(z + y, &+ n) < max{d(z,£),d(y,n)},
for every x,y, z, {,m € Aand every k € K\ {0}.

(c) A sequence {ay}n of elements of A is a Cauchy sequence in (A, d) if and only
if limy, oo (@nt1 — an) = 0in (A, d). Moreover a series 220:1 ay, of elements
of A is a Cauchy sequence in (A, d) if and only if lim,, o a, = 01in (A, d).

(d) Forevery z = (z;)j>0 € A, we have

d(z):{gxp(—min{jZO:zjyé()}), szg/
| - 2.72)
[ max{e? : z; #0}, if 2 40,
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(e) Let {by}new be a sequence of elements in A and let § € A; let us write

bn = (aS")j20 and B = (a;);>0,

with agn) a; € A; for every j > 0and every n € IN.

Then we have lim,,_, oo by, = [ in (A, d) if and only if
VJ>03N;eN: n>Nyimpliesa =a; for0<j<J. (273)

Proof. See page 416 in Chap.7. O

2.3.2 Completions of Graded Topological Algebras

We begin by recalling some classical results of Analysis concerning metric
spaces. As usual, the associated proofs are postponed to Chap.7.

Definition 2.66. Let (X,d) be a metric space. We say that (Y,d) is an
isometric completion of (X, d), if the following facts hold:

1. (Y,0) is a complete metric space.
2. There exists a metric subspace X, of Y which is dense in ¥ and such that
(Xo, 6) is isometric (in the sense of metric spaces'®) to (X, d).

The following simple fact holds, highlighting the fact that the notion of
isometric completion is unique, up to isomorphism.

Proposition 2.67. Let (X,d) be a metric space. If (Y1,01) and (Y2,d2) are
isometric completions of (X, d), then they are (canonically) isomorphic.

Proof. See page 417 in Chap.7. O

The following remarkable result states that every metric space always
admits an isometric completion.

Theorem 2.68 (Completion of a Metric Space). Let (X, d) be a metric space.
Then there exists an isometric completion (X , d) of (X, d), which can be constructed
as follows. We first consider the set C of all the Cauchy sequences T = (xy,), in
(X, d). We introduce in C an equivalence relation by setting

(n)n ~ (z)n iff  lim d(z,,z)) =0. (2.74)

n—r00

15We recall that, given two metric spaces (Y1,d1), (Y2,d2), a map @ : Y1 — Y> is called
an isomorphism of metric spaces if @ is bijective and such that d2 (?(y), #(y’)) = d1(y,v’)
for every y,y’ € Y1 (note that this last condition implicitly contains the injectivity of ¢
together with the fact that @ is a homeomorphism of the associated topological spaces).
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We take as X the quotient set C/ ., with the metric defined by

d([(mn)n}w, [(yn)n}N) = lim d(zn, yn). (2.75)

n—oo

Furthermore (according to the notation in Definition 2.66), we take as X (say, the

isometric copy of X inside X) the quotient set of the constant sequences (x),, with
x € X and the associated isometry is the map

a: X — Xo, x—[(xn)n]~ withaz, =z foreveryn € IN. (2.76)

Proof. See page 418 in Chap.7. O

In the sequel, when dealing with isometric completions of a given metric
space X, we shall reserve the notation X for the metric space introduced in
Theorem 2.68. The following result states that the passage to the isometric
completion preserves many of the underlying algebraic structures, in a very
natural way.

Theorem 2.69 (Algebraic Structure on the Isometric Completion of a
UAA). Let (A,+,%) be a UA algebra. Suppose {{2;}rew is a topologically
admissible family in A and let d be the metric on A induced by {2} } rew. Finally,
consider the isometric completion A of (A, d) as in Theorem 2.68 and let Ay C A
be the set containing the equivalence classes of the constant sequences.

Then A can be equipped with a structure of a UA algebra (A, F,%), which is
also a topological algebra containing Ag as a (dense) subalgebra isomorphic to A.
More precisely, the map o in (2.76) is an isomorphism of metric spaces and of UA

algebras. The relevant operations on A are defined as follows:

[<$n J * [ nJ = [ (@0 * yn nJ 277
k(zn)n] = [(kzn)n] ., kEeEK,
1,4 = [(1A)n]~-
Proof. See page 422 in Chap.7. O

Remark 2.70. Let (A, %), {2 }x,d, A be as in Theorem 2.69. Suppose B is
equipped with a UAA structure by the operation x, that it is equipped with

a metric space structure by the metric ¢ and that the following properties
hold:

1. Ais asubset of B.

. % coincides with * on A x A.
. 0 coincides with d on A x A.
. Aisdensein B.

. Bis a complete metric space.

U1 = W N
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Then B and A are not only isomorphic as metric spaces (according to
Proposition 2.67) but also as UA algebras (via the same isomorphism). (See
the proof in Chap.7, page 425.)

By collecting together some results obtained so far (and derived within
the proofs of some of the previous results), we obtain the following further

characterization of the isometric completion Aof A.

Theorem 2.71 (Characterizations of the Isometric Completion of a UAA).
Let (A,+,%) be a UA algebra. Suppose {2 }rew is a topologically admissible
family in A and let d be the metric on A induced by {2 }ren. Finally, consider
the isometric completion A of (A, d) as in Theorem 2.68.

If « € Ais represented by the (Cauchy) sequence (ay), in A (that is, a =
[(an)n]~), we have

o= lim a, in(4, CT),
n—oo

where each a,, € A is identified with an element of A via the map o in (2.76). Hence,

roughly, A can be thought of as the set of the “limits” of the Cauchy sequences in
A, more precisely

A= { lim [(aj,a;,--+)] _ ’(an)n is a Cauchy sequence in A}. (2.78a)

j—o0

Equivalently (see also Proposition 2.65-(c)), A can also be thought of as the set of
the A-valued series associated to a vanishing sequence, more precisely

A= { Z [(bj,bj, )] _ ‘(bn)n is a sequence converging to zero in (A, d)}

(2.78b)
Here is a very natural result on the relation A — A.

Lemma 2.72. Let A, B be two isomorphic UA algebras. Suppose ¢ : A — Bisa
UAA isomorphism and suppose that {2} ke is a topologically admissible family
in A. Set 2y := o(£24,), for every k € IN.

Then the family {4 }xen is a topologically admissible family in B. Moreover
the metric spaces induced on A and on B respectively by the families {2k} ren
and {Qy}ren are isomorphic metric spaces and ¢ can be uniquely prolonged to

a continuous map @ : A — B which is both a metric isomorphism and a UAA
isomorphism.

Proof. As claimed, as an isomorphism of metric spaces we can take the map

@: A — Bsuchthat 3([(an)n]~) = [(¢(an))n]~- (2.79)
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Here, we used the following notation: Let (A4, d) denote the metric induced
on A by the family {2 }ren, and let (B, §) denote the metric induced on B
by the family {f)k} ren; in (2.79), (an)r is a Cauchy sequence in (A, d) while
the two classes [-]. from left to right in (2.79) are the equivalence classes
as in (2.74) related respectively to the equivalence relations induced by the
metrics d and J. See page 426 in Chap. 7 for the complete proof. O

2.3.3 Formal Power Series

Throughout this section, (A, x) is a UA graded algebra with a fixed grading
{A;};>0. Following the notation in the previous section, for & > 0 we set

Q= Doy, A (2.80)

We know from Proposition 2.65 that {2} rew is a topologically admissible
family of A, thus endowing A with both a metric space and a topological
algebra structure. We aim to give a very explicit realization of an isometric
completion of (A,d), as the set of the so-called formal power series on A
(w.r.t. the grading {4} ;). We begin with the relevant definitions.

Definition 2.73 (Formal Power Series on A). Let A = P, A; be a UA
graded algebra. We set B

A=T150 45 (2.81)

and we call A the space of formal power series on A (w.r.t. the grading {A;};).
On A we consider the operation * defined by

J

(a5); % (bj); = ( 2. aj—k *bk) _ (aj bj € Aj, Vj=0). (282
k=0 J20

Then (A, %) is a UA algebra, called the algebra of the formal power series on A.

Remark 2.74. Note that (2.82) is well posed thanks to the fact that a;_j xb;, €
Aj_ x A C Aj for every j > 0 and every k = 0,..., 5. Obviously, 4 is a
subset of A and it is trivially seen that

a,be A = a*b=axb. (2.83)

We now introduce on A a distinguished topology, by introducing a suitable
topologically admissible family. To this aim, we set

Qw =115 45, ke NU{0}, (2.84)
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naturally considered as subspaces of A. The following facts hold:

L. Every (), is an ideal in A.
= DQl QkDQk—HD
i:k\Q C 1+J,forevery2j>0

4. iz 2 = {0}

As a consequence, {ﬁk}kzo is a topologically admissible family of A, By
means of Theorem 2.58 we can deduce that {{2;}r>0 endows A with a
topology (2 (more, with the structures of a topological algebra and of a

metric space) and we call (A, 2) the topological space of the formal power series
(related to the given grading). Note that

Qe =ANy, YkeNU{0}, (2.85)

whence the inclusion A < A is continuous (here A has the topology induced
by {{2; }1 and A has the topology induced by {{2;}1). We have the following
important result.

Theorem 2.75 (The Isometry A~ A). Let (A,*) bea UA graded algebra with
grading {A;};>o. Let 2, and 2, be defined, respectzvely, as in (2.80) and (2.84).

Then the space A (with the metric induced by {Qk}k>0) is a complete metric
space and it is an isometric completion of A (with the metric induced by {2k} 1>0).
The natural inclusion A — A is both an isometry and a UAA isomorphism, and A
is dense in A.

In particular, denoting by d (resp. by d) the metric on A ( resp. on A) induced by

the family {2 } x>0 (resp. by the family {2} }r>0) we have that the restriction of d
to A x A coincides with d.

Proof. See page 428 in Chap.7. O
Remark 2.76. We have the following results.

1. By Proposition 2.65-(d), we get:
A sequence wy, = (uf,u¥,...) in A converges to w = (ug,uy,...) in Aif and
only if for every N € IN there exists k(N) € IN such that, for all k > k(N), it

holds that
_ k k k
Wk = | UQ, U1, U2, U3y -+ -, UN, UN{1, UNL2 UNJF35 - - |-

2. With all the above notation, if a = (a;); € A = [I;504; (witha; € A; for
every j > 0) then we have the limit a

N
Z = (ag,a1,...,an,0,0,...) —— a, (2.86)

N —o00
7=0
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the limit being taken in the metric space A. We can thus represent the
elements of A as series > 2o aj (witha; € A; for every j > 0).

3. Furthermore, any series 220:1 b, of elements of A converges in A if
and only if it is Cauchy (completeness of A), which is equivalent to
lim,, 00 by, = 0 in A (see Remark 2.62), which, in its turn, is equivalent
to limy, 00 b, = 0 in A (see (2.85)). For example, if a,, € A, for every
n > 0, the series Y~ | a,, is convergent in A

Analogously, any series >~ by, of elements of A converges in A if and
only if lim,, o by, = 0in A (again by an application of Remark 2.62).

4. Any set .(AZk (k € NU{0}) is both open and closed in A. Thus, by (2.85), the

same is true of any (2, in A. More generally, see Proposition 2.77 below.

Proposition 2.77. Let J be any fixed subset of N U {0}. Then the set
H:= {(uj)j € A‘ uj € Aj for every j > 0and u; = 0 for every j € J}

is closed in the topological space A

Proof. Suppose {wy} is a sequence in H converging to w in A. We use for
wy, and w the notation in Remark 2.76-(1). Let jo € J be fixed. By the cited
remark, there exists k(jo) € IN such that, for all k£ > k(jo),

k k
wE = (uo,ul,ug,...,ujo, uj0+1,ujo+2,...). (2.87)

Since wy, € H for every k, its jo-component is null. By (2.87), this jo-
component equals the jyo-component of w. Since jy is arbitrary in H, this
proves that w € H. O

Remark 2.78. For example, we can apply Proposition 2.77 in the cases when
J=A{0,1,...,k—1},or J = {0} or J = (INU {0}) \ {k}, in which cases we
obtain respectively the closed sets (2, A1 =[] i>1 Aj,and Ay.

The following lemma will be used frequently in the sequel.

Lemma 2.79 (Prolongation Lemma). Suppose A = P;,,A4; and B =

@D, Bj are graded UA algebras and let A, B be the corresponding topological
spaces of their formal power series.
Following (2.80), we use the notation ;! == @, Aj and 27 .= @, B;.
Suppose ¢ : A — B is a linear map with the following property:

There exists a sequence {ky}, in IN such that lim k,, = oo and
noee (2.88)
p(92:) € 2F foreveryn € IN.
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Then  is uniformly continuous (considering A, B as subspaces of the metric spaces
A, B, respectzvelylé) Hence, o can be extended in a unique way to a continuous
linear map & : A — B. Moreover, if v is a UAA morphism, the same is true of o.

Proof. See page 430 in Chap.7. O
Remark 2.80. Theorem 2.75 can be applied to the graded algebras

V) =@ Z(V) and F(V) =Pk

§>0 §>0

(see (2.28) and (2.42), respectively). Thus, on the algebras .7 and .7 ® 7 we
are given metric space structures induced respectively by the topologically
admissible families {U} }; and {W} }x, where

U=P 7). Wi= @ 7,0

i>k ik

The formal power series related to the graded algebras & and . ® .7,

denoted henceforth by T (V) and IR7 (V) (or, shortly, by 7 and 707 ),
are the algebras

V=[[7zv). Fe7v)=[] Z.V) (2.89)

Jj=0 i+5>0

with operations as in (2.82) (respectively inherited from the operations on
(Z,-) and on (7 ® T ,e)), respectively equipped with the metric space
structures induced by the topologically admissible families {Ur}r and
{/Wk} 1, Where

U =[] 7(vV),  Wi= ] Zs0). (2.90)

Jizk i+j=>k

Convention. In order to avoid heavy notation, the operations ~ and @
(see the notation in (2.82)) will usually appear without the “ ™" sign. This
slight abuse of notation is in accordance with (2.83).

16Which is the same as considering A, B as metric spaces with metrics induced by the
families {27!}, and {02F }, respectively (see (2.85)).
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As a consequence, we have

e~~~

J
T )T =T, (a);(by); = <Z%‘k'bk>
k=0 >0 (2.91)
where aj,b; € 7;(V) for all j > 0;
— — — J
: TRT X IRT — ITRT, (a;);e(bj); = ( > aj—k ’bk)
k=0 >0 (2.92)
where a;,b; € @), —; Thk(V) forall j > 0.

The operation e on F®7 can also be rewritten by using the double-

sequenced notation (u; ;);; for the elements of TR (this means that
ui; € 7,,;(V)=Z(V)® ;(V) for every i, j > 0): indeed, following (2.45),
we have

o: TRT x TRT — TRT
(ti)i e (big)ig = ( . Z+~ trs °;F=5)i,j20’ (2.93)
r+r=i, s+s=j

where t; ;,t;; € Z;(V) ® F;(V) foralli,j > 0.

Remark 2.81. When expressed in coordinate form on the product space T =
[1;50 7j, the Lie bracket operation takes a particularly easy form: Indeed, if

u,v € 7 and u = (uj); and v = (v;);, with uj,v; € (V) (for every j € IN),
we have
[u, 0] = [(u));, (v5);] = (Zthk:j [Uh,vk])jzo- (2.94)

Indeed, the following computation holds
[(us)s (v)5] = (ws)j - (v3);5 = (05); - (u5);
J J
@91 (Zuj—k'vk) _ (Zvj—k'uk)
k=0 k=0

(change the dummy index in the second sum)

B <zj: (5% - vk — vk .ujk)>j20 = (i:[uj'k,vk])jzo.

k=0 k=0

Jj=0 Jj=0

Now note that the last term in the above chain of equalities is indeed the
coordinate expression of [u,v], since (as uj_r € Jj_k, vx € J%) one has
[Wj—k,vk] € [Tk, k| € Tjk @ Th = Tj. O
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In Chap. 3, we will have occasion to apply the following result.

Proposition 2.82 (7® 7 asa Subalgebra of F@7). Let V be a vector space.
With the notation of this section, the tensor product T V)® T (V') can be identified
with a subalgebra of ToT (V).

Indeed, we can identify the element (u;);®(v;); of T&T (whereu;,v; € F; (V)
for every i > 0) with the element (u; ® vj); ; of TRT, this identification being a

— —~

UAA morphism. Here, 7 (V') @ 7 (V) is equipped with the UA algebra structure

obtained, as in Proposition 2.41, from the UAA structure of (7 (V'), ). Hereafter,

when writing f?\(V) ® f?\(V) < TRT (V'), we shall understand the previously
mentioned immersion:

cé\(V) & ?(V) E) (ul)z & (Uj)j — (ui & Uj) ; € @(V) (2.95)

Proof. See page 433 in Chap.7. O

o~

Remark 2.83. Let {au}i and {8y} be two sequences of elements in (V') such
that im0 o = avand limy_, o0 B, = B in T (V). Then

lim @ f=a®p in ToT(V),
—00

where we consider a ® 3 and any oy, @ Py, as elements of Y (V) (according to
(2.95) in Proposition 2.82). For the proof, see page 434 in Chap.7.

Remark 2.84. Following the notation in (2.91) and (2.92) and by using the
immersion :?\(V) ® ﬁV) — J®7 (V) in (2.95), it is not difficult to prove
that

o~

(a@b)e(a®B)=(a-b)®(b-B), for every a,b,a, 8 € T(V), (2.96)

where this is meant as an equality of elements of 707 (V).

2.3.4 Some More Notation on Formal Power Series

Letn € Nand let S = {x1,...,2,} be a set of cardinality n. The free vector
space K(S) will be denoted by

K(z1,...,zn).
The algebras .7 (K(x1,...,z,)) and 9\(]1((3:1, ..., Ty)) can be thought of as,
respectively, the algebra of polynomials in the n non-commuting indeterminates
Z1,...,%, and the algebra of formal power series in the n non-commuting
indeterminates x+, ..., Zn.



2.3 Completions of Graded Topological Algebras 107

Recall that .7 (K(x1,...,2,)) is isomorphic to Libas({z1,...,z,}), the
free UAA over {z1, ..., 2} (see Theorem 2.40). Analogously, the Lie algebra
L(XK(z1,...,z,)) can be thought of as the Lie algebra of the Lie-polynomials in
the n non-commuting indeterminates w1, . .., x,. Recall that L(K(z1,...,x,))
is a free Lie algebra related to the set {z1,...,x,}, being isomorphic to
Lie({z1,...,zn}) (see Theorem 2.56).

When n = 1, it is customary to write

Klz] := 7(K(z)) and K[z]] := 7 (K(z)).

(Note that 7 (K(z)) and </9\(1K<x>) are commutative algebras!) Some very
important features of K[[x]] will be stated in Sect. 4.3 of Chap. 4 (and proved
in Chap.9).

Finally, when writing expressions like

— —

TK(z,y), TEKzy), TEz,y.2), T(Kzy,z2)),
we shall always mean (possibly without the need to say it explicitly) that the
sets {z,y} and {z,y, 2} have cardinality, respectively, two and three.

For the sake of future reference, we explicitly state the contents of
Theorem 2.40 and 2.56 in the cases of two {xz,y} and three {z,y, 2} non-
commuting indeterminates. We also seize the opportunity to introduce a
new notation &, ;. In what follows, by an abuse of notation, we identify the
canonical injection ¢ : X — 7 (K(X)) defined by

X 5 KX) S 7KX)),

with the set inclusion X — 7 (K(X)).
Theorem 2.85. The following universal properties are satisfied.
(la). For every UA algebra A and every pair of elements a,b € A, there exists a
unique UAA morphism @4, - T (K(z,y)) — A such that
Pop(x)=a and Pgup(y) =0. (2.97)

(1b). For every Lie algebra g and every pair of elements a,b € g, there exists a
unique LA morphism @5, : L(K(x,y)) — g such that (2.97) holds.

(2a). For every UA algebra A and every triple of elements a, b, c € A, there exists
a unique UAA morphism @4 .« T (K(z,y, z)) — A such that

Pope(r) =a, Papc(y)=0, and Pgp.(2)=c. (2.98)

(2b). For every Lie algebra g and every triple of elements a, b, c € g, there exists a
unique LA morphism @y p, . : L(K(x,y, z)) — @ such that (2.98) holds.
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2.4 The Universal Enveloping Algebra

The aim of this section is to introduce the so-called universal enveloping
algebra % (g) of a Lie algebra g and to collect some useful related results. In
particular, we will present the remarkable Poincaré-Birkhoff-Witt Theorem.

Throughout this section, g will denote a fixed Lie algebra and its Lie
bracket is denoted by [-,:]g (or simply by [-,:]). As usual, (7 (g),) is the
tensor algebra of (the vector space of) g. We denote by ¢ (g) (sometimes _#
for short) the two-sided ideal in .7 (g) generated by the set

{z@y—yoz—|z,yly : =,y € g}

More explicitly, we have

J(9) :span{t~ (x®yfy®xf [x,y]g) tlxyecg tt e 9(9)} (2.99)

Remark 2.86. We remark that the ideal _# (g) is not homogeneous (in the natural
grading of 7 (g)). Indeed, in the sequence-style notation (¢;)r>o for the
elements of .7 (g) = @~ Zk(g), the element z ® y — y ® x — [z,y]4 is
rewritten as

Definition 2.87 (Universal Enveloping Algebra). With all the above nota-
tion, we consider the quotient space

%(9) = 7(0)/ 7 (9)
and we call it the universal enveloping algebra of g. We denote by
w:7(9) = % (g9), m(t) = [t] s(q), t € T(9) (2.101)
the associated projection. The natural operation'” on % (g)
(@) x %(9) > (n(t),n(t) = w(t-), (1" € T(a)),

which equips % (g) with the structure of a UA algebra (see Proposition 2.12
on page 58), will be simply denoted by juxtaposition.

The natural injection g < 7 (g) induces a linear map

peg— %), pw(z) = z]g (v €g), (2.102)

7This operation is well-posed because _# (g) is an ideal of 7 (g).
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that is, 1 = m|y. The following important proposition proves that the Lie
bracket of g is turned by 1 into the commutator of % (g). As soon as we will
know that 4 is injective (a corollary of the Poincaré-Birkhoff-Witt Theorem),
this will prove that (up to an identification) every Lie bracket is a commutator
(in the very meaning used in this Book).

As usual, if % (g) is involved as a Lie algebra, it is understood to be
equipped with the associated commutator, which we denote by [-, % .

Remark 2.88. By its very definition, the map © : T (g9) — % (g) is a UAA
morphism, whence it is a Lie algebra morphism, when 7 (g) and % (g) are
equipped with their appropriate commutators (see Remark 2.17). Note that
this does not prove (yet) that 1 is a Lie algebra morphism, since g (equipped
with its intrinsic Lie bracket) is not a Lie subalgebra of .7 (g) (equipped with
its commutator).

Remark 2.89. The set {w(1)} U u(g) generates % (g) as an algebra. (This
follows from the fact that {1} U g generates .7 (g) as an algebra, together
with the fact that 7 is a UAA morphism.)

Proposition 2.90. With the above notation, the map p in (2.102) is a Lie algebra
morphism, i.e.,

[z, ylg) = pw(@)py) — p(y)p(z),  forevery z,y € g. (2.103)

In particular, p(g) is a Lie subalgebra of % (g), equipped with the associated
commutator-algebra structure.

Note that (2.103) can be rewritten as

[z, ylg) = (@), u(y)la, foreveryz,y € g. (2.104)

Proof. First we remark that (2.103) is equivalent to 7 ([z, y4) = T(2Qy—y®z),
which in its turn is equivalent toz ® y —y ® © — [z, ylg € _Z (g). This is true
(for any z,y € g) by the definition of # (g). O

Remark 2.91. Via the map 7, the grading .7 (g9) = @,-, Zk(g) turns into
%(9) = Wisom(Jk(g)) (in the sense of sum of vector subspaces) but
the family of vector spaces {m(Z%(g))}r>0 does not furnish a direct sum
decomposition of % (g). Indeed, if z,y € g we have

m(lz,ylg) =z @y —y® )
—_— —

en(1(9)) en(Fa(9))

(and we shall see explicit examples where this does not vanish). This is
obviously due to the non-homogeneity of #(g).
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As expected, % (g) has a universal property:

Theorem 2.92 (Universal Property of the Universal Enveloping Algebra).
Let g be a Lie algebra and let % (g) be its universal enveloping algebra.

(i) For every UA algebra (A, x) and for every Lie algebra morphism f : g — A,
there exists a unique UAA morphism f* : % (g) — A such that

f*(u(x)) = f(z) foreveryx € g, (2.105)
thus making the following a commutative diagram:
!
g —
K l /
fﬂ
u(

g)

A

(if) Vice wversa, suppose U, are respectively a UA algebra and a Lie algebra
morphism ¢ : g — U with the following property: For every UA algebra
(A, ) and for every Lie algebra morphism f : g — A, there exists a unique
UAA morphism f¢ : U — A such that

fe(p(x)) = f(x) foreveryx € g, (2.106)

thus making the following a commutative diagram:
!
—
A
Then U is canonically isomorphic to % (g), the isomorphism being " :
U (g) — U and its inverse being u¥ : U — % (g). Moreover, o = ¢ o p.

Furthermore (if 1y, denotes the unit of U) the set {1y} Up(g) is a set of algebra
generators for U and U ~ 7 (p(g)), canonically as UA algebras.

A

@

I +— @

Proof. Explicitly, the map f* is defined by
fw@ - A w) T (e 7)), (2.107)

where f : 7 (g) — A is the unique UAA morphism extending f : g — A.
For the rest of the proof, see page 435 in Chap.7. O
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We are in a position to prove a useful result on the enveloping algebra of the
free Lie algebra generated by a vector space.

Proposition 2.93. Let X be any set. Let V := IK(X) denote the free vector space
over X. Let L(V') be the free Lie algebra generated by the vector space V' (i.e., L(V')
is the smallest Lie subalgebra of 7 (V') containing V).

Then % (L(V')) and 7 (V') are isomorphic (as unital associative algebras).

Proof. More explicitly, we can take as isomorphism j : Z (L(V)) — T (V)
the only UAA morphism such that

Jj(m(t)) = u(t), foreveryte L(V). (2.108)

See page 437 in Chap. 7 for the proof. We remark that in that proof we will
not use explicitly the fact that £(IK(X)) is a free Lie algebra related to X
(proved in Theorem 2.56). O

Here we have the fundamental result on the universal enveloping algebra.

Theorem 2.94 (Poincaré-Birkhoff-Witt). Let g be a Lie algebra and let % (g)
be its universal enveloping algebra. Let 1 denote the unit of % (g) and let 11 be the
map in (2.102). Suppose g is endowed with an indexed (linear) basis {x; };c3, where
J is totally ordered by the relation <. Set X; := p(x;), fori € J.

Then the following elements form a linear basis of % (g):

1, X“Xln, where REN, il,...,inG‘J, =< <Xy (2109)
Proof. The (laborious) proof of this key result is given in Chap.7 (starting
from page 438). For other proofs, the Reader is referred for example to [25,
85,95,99,159,171]. 0

In the sequel, the Poincaré-Birkhoff-Witt Theorem will be referred to as PBW
for short. Apparently until 1956, the theorem was only referred to as the
“Birkhoff-Witt Theorem”: see Schmid [153], Grivel [74], Ton-That, Tran [168]
for a historical overview on this topic and for a description of (the long
forgotten) contribution of Poincaré to this theorem, dated back to 1900.

Corollary 2.95. Let g be a Lie algebra and let % (g) be its universal enveloping
algebra. Then the map p in (2.102) is injective, so that p : g — p(g) is a Lie algebra
isomorphism.
As a consequence, every Lie algebra can be identified with a Lie subalgebra of a
UA algebra (endowed with the commutator), in the following way:
_ both a UA algebra
(0. Ja) = (ule), [ Jor) = # () (and a commutator—algebm) '
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Proof. Let x € g be such that p(z) = 0. With the notation of Theorem 2.94,
we have x = )7, 4, \; ;, where I’ C J is finite and the ); are scalars. Thus
0= (> ;c9 Aixi) = > ;cq i Xi, which is possible iff A\; = 0 foreveryi € 7',
since the vectors X; appear in the basis (2.109) of % (g), i.e., z = 0.

Hence, the map 1 : g — u(g) is a bijection and it is also a Lie algebra
morphism, in view of Proposition 2.90, when p(g) is equipped with the com-
mutator from the UA algebra % (g). O

By means of the PBW Theorem, we are able to give a short proof of the
existence of free Lie algebras generated by a vector space.

Proof (of Theorem 2.49, page 86). Let V be a vector space and let f : V' — g
be a linear map, g being a Lie algebra. We need to prove that there exists a
unique LA morphism f : £(V) — g prolonging f. The uniqueness is trivial,
once existence is proved. To this end, let us consider the LA morphism  :
g — % (g) in (2.102). Since the map po f : V — % (g) is linear and % (g) is a
UA algebra, by Theorem 2.38 there exists a UAA morphism po f : 7 (V) —
% (g) prolonging po f. Now we restrict p o f both in domain and codomain,
by considering the map

FiL(V)—pe),  Jt)=pof@t) (teL(v)).

To prove that fis well posed, we need to show that

po f(t) € u(g) foreveryte L(V). (2.110)

Since £(V') is Lie-generated by V' (see Proposition 2.47) it suffices to prove
(2.110) when t = [v1 - - [Up—1,0p] -+ -], for any n € N and v1,...,v, € V. To
this end (denoting by [-, -] the commutator of % (g)), we argue as follows:

po f(t) = [mwo f(vr)---[mo flvn—1),pmo f(vn)lw - lu
= [u(f(v1)) - [(f (vn=1)), p(f (vn)lo - o

In the first equality we applied the fact that y o f is a UAA morphism and
in the second equality the fact that o f coincides with po f on V. Now
the above right-hand side is an element of u(g) since f(v;) € g for every
i=1,...,nand u(g) is a Lie subalgebra of % (g) (see Proposition 2.90). This
proves (2.110). We now remark that J?is an LA morphism (of the associated
commutator-algebras) since it is the restriction of ;o f, which is an LA
morphism (being a UAA morphism).

Since i : g — p(g) is a Lie algebra isomorphism (thanks to Corollary
2.95), the map

pto Fra(v) L pe) L g
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is an LA morphism, since both p~tand fare. Weset f:=p o f It remains
to show that f prolongs f. This follows immediately from

F0) = (1o F(v) = (W o po f)(v) = f(v), VoveV.
This ends the proof. O

The following diagram describes the maps in the above argument:

f H
V ———— 0 —— o) —— %(9)

f

"

We end the section with an example of how the injective map i : g — % (g)
can be used to perform computations involving the Lie bracket of a Lie
algebra (without “explicit knowledge” of the Lie bracket on g).

Example 2.96. We prove that, for every Lie algebra g, one has
la,[b,[a,b]]]g = —[b, [a, [b,a]]lg, foreverya,be g. (2.111)

Obviously, this computation can be a consequence only of the skew-symme-
try and the Jacobi identity, but it may not at first be obvious how to perform
the computation.'8

Let us use, instead, the injection i : g — % (g). Given arbitrary a,b € g,
we set A := p(a) and B := u(b). We begin by showing that

[A,[B,[A, Blllow = —[B, A, B, Alllo, in%/ g). (2.112)
18Indeed, (2.111) follows from the following argument: Set = := [a,b], y = a, 2 := b
and write the Jacobi identity [z, [y, 2]] + [v, [2,z]] + [z, [z,y]] = 0; the first summand is

[[a, b], [a, b]] which is null by skew-symmetry. Hence we get [a, [b, [a, b]]] + [b, [[a, b], a]] =0
which leads directly to (2.111), again by skew-symmetry.
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Indeed, unraveling the commutators (and dropping the subscript %)
[A,[B,[A, B]]] = [A,[B, AB — BA]| = [A, BAB — B>A — AB? + BAB]
= ABAB — AB*A — A’B® + ABAB+
— BABA + B*A® + AB*A — BABA

=2ABAB —2BABA+ B*A* — A’B.

Hence, by interchanging A and B we get
[B,[A,[B,A]]] =2BABA — 2 ABAB + A*B* — B*A?,

which proves (2.112). By exploiting (2.104), we thus get

“2Y (), [u(0), [n(a), p®)lr = [A, [B.[A, Bl

2D (B, 14,18, Allly = ~[u(®), [n(a). ) @)l

_M([b’ [a’ [b’ a]]]g)

/L([av [bv [av b]]][l)

(2.104)

This yields the identity

M([av [b7 [a7 bmg) = M(_[ba [CL, [ba a]]]g)

The injectivity of u now gives the claimed formula in (2.111). O



Chapter 3
The Main Proof of the CBHD Theorem

THE aim of this chapter is to present the main proof of the Campbell-
Baker-Hausdorff-Dynkin Theorem (CBHD for short), the topic of this
Book. The proof is split into two very separate parts. On the one hand, we
have the Theorem of Campbell-Baker-Hausdorff, stating that (in a context
which will be clarified in due course)

zey = Log(Exp(z) - Exp(y))

belongs to the closure of the Lie algebra generated by {z,y}, thatis, itis a
series of Lie polynomials in x,y. Roughly speaking, this is a “qualitative”
result, disclosing an unexpected property of zey. On the other hand, we
have the contribution of Dynkin, which exhibits an explicit “quantitative”
formula for Log(Exp(z) - Exp(y)), once it is known that this is a series of Lie
polynomials.

Whereas in proving the Dynkin representation of the aforementioned
series, we follow quite closely! the original ideas by Dynkin in his 1947
paper [54], in proving the Theorem of Campbell-Baker-Hausdorff we do not
follow the original proofs by any of the mathematicians whose names come
with the Theorem.?

Instead, the arguments presented in this chapter (precisely, in Sect.3.2)
are inspired by those in Hochschild [85, Chapter X] and in Bourbaki [27,
Chapitre 1II, §6] (both dating back to the late sixties, early seventies). This

1As a matter of fact, the proof of the so-called Dynkin-Specht-Wever Lemma that we
present in this chapter is not the original one given by Dynkin in [54]. Instead, in the
derivation of the explicit Dynkin series starting from the Theorem of Campbell-Baker-
Hausdorff, we exploit the technique in [54].

2A critical exposition of the original proofs of Campbell, Baker, Hausdorff — along with
those of other mathematicians mostly coeval with these three authors — can be found in
[3]; for a résumé of these topics, see Chap. 1 of this Book.

A. Bonfiglioli and R. Fulci, Topics in Noncommutative Algebra, Lecture Notes 115
in Mathematics 2034, DOI 10.1007 /978-3-642-22597-0_3,
© Springer-Verlag Berlin Heidelberg 2012



116 3 The Main Proof of the CBHD Theorem

approach can undoubtedly be considered as the most modern one and it
has the further advantage of inscribing the CBHD Theorem within wider
contexts. For instance, within this proof we shall have occasion to see in
action all the algebraic background from Chap.2 (tensor algebras, formal
power series over graded algebras, free Lie algebras, the Poincaré-Birkhoff-
Witt Theorem) and to introduce some useful results (well established in
literature):

— Friedrichs’s characterization of Lie elements (see Sect. 3.2.1).
— The Lemma of Dynkin, Specht, Wever (see Sect.3.3.1).

A rough summary of the contents of this chapter is finally in order:

1. We introduce the Exp and Log maps related to the completion of any
graded algebra. In particular we are mainly concerned with the cases of
the formal power series over .7 (V) and over 7 (V) @ 7 (V).

. We introduce the operation uev := Log(Exp(u) - Exp(v)) on ﬁ(V)

3. By means of Friedrichs’s characterization of Lie elements, we characterize

L(V) as the set of primitive elements of .7 (V):

N

LV)={te T(V)|ét)=t®1+1xt},

where ¢ : 7(V) - J(V)® 7 (V) is the UAA morphism such that §(v) =
v®1+1®w,forall v € V. To do this, we use the Poincaré-Birkhoff-Witt
Theorem.

4. With this crucial result at hand (plus some machinery established in due
course) we are able to prove that uev belongs to the closure of £(V) in

7 (V). This is the Theorem of Campbell, Baker, Hausdorff.
5. We next consider the following series of Lie polynomials (u,v € 7, (V)):

n
n=1 (h1,k1),...,(hn,kn)#(0,0)
hitkit-+thntkn=j

, (adw" (adv)* - (ad ) (ad v)k"’_l(v))
Pl bl kel (21 (R o+ ki)

6. By means of the Lemma of Dynkin, Specht and Wever, we can construct
the projection P of .7 (V') onto £(V') such that

P(Ul ®"'®Uk) = kil [’Ul,...[kal,vk]...],

for any v,vi,...,vx € V and any k € IN. This this gives another
characterization of the Lie elements in .7 (V):

LV)={te T(V)| P(t)=t}.
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7. By means of this projection, we are finally able to prove that
Tey =20y,

an identity in the topological space of the formal power series related
to the algebra .7 (Q(z,y)) of the polynomials in two non-commuting
indeterminates x, y and coefficients in Q.

8. By the universal property of 7 (Q(z,y)), this easily gives the CBHD
Theorem, namely

uev =uov, foreveryu,ve IL(V),

where V is any vector space over a field of characteristic zero. This
identity has the well known explicit and suggestive form:

Exp(u) - Exp(v) = Exp < Z < % Z

j=1 *n=1 (h1,k1);..es(hn,kn)#(0,0)
hi+ki+-+hn+kn=j

" (adw)h (ad v)kr - (ad u) (ad v)*»—1(v) ))

valid for all u,v € :71(‘/) and every vector space V' over a field of
characteristic zero.

3.1 Exponential and Logarithm

From now on throughout this Book, K will be a field subject to the following
convention.

Convention. K will always denote a field of characteristic zero.

This is justified by the need for a well-posed definition of the soon-to-
come exponential and logarithmic series. To define these series, we consider
a graded UA algebra A, with grading { A} >0. We also assume that 4y = K.
[This will not be a restrictive assumption since we shall be soon interested
only in the cases when A is .7 (V) or (V) @ 7 (V).] As usual, A denotes
the topological algebra of the formal power series on A. We also set

2 = @jzk Aj, Qk = szk Aj A\-i- = ﬁl = HjZl A;. 3.1)
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Moreover, 14+ A, denotes the subset of A consisting of formal power series
whose zero-degree term is 1 4, the unit of A. More explicitly:

14 +A+ = {(an)n cA ] ap =14, a, € A, forall n € ]N}. (3.2)

As usual, if * denotes the multiplication on A, then * denotes the associated
operation on A (see (2.82), page 101).

Lemma 3.1. With the above notation, 14+ A, isa subgroup (called the Magnus
group) of the multiplicative group of A. For instance, givena € 14+ A, we have

o0

at=> (la—a)", (3.3)

n=0

the series on the right-hand side converging in A to an element of 1a+ A,

Proof. We set for brevity I' := 14 + A,. We divided the proof into four
steps.

I. Givena = (ay), and b = (by,),, in I we have
a:i:b: (ao*bo,(ll*b0+a0*b1,"') = (1A,a1*b0+a0*b1,"') cl.

II. Letac I'"'Thenly—a € EJr = Ql so that® (1A—a);” € fzn foreveryn €
IN. This gives lim,, (14 —a)*" = 0 in the usual topology of Aand, by
well-known properties of this topology,* the seriesa := Y >~ (14 —a)*"
converges in A,

III. With the above notation, we have a € I" for every a € I'. Indeed,

ZL'ZIA—FZ(lA—a)?nElA—Ff\Zl:
o~

€2,

IV. We are left to prove that a ¥ a = a*a = 14, thatis, @ = a~! (the
inversion is intended to be seen as applying within the multiplicative

subgroup of A). Recalling that (A, %)isa topological algebra, we have:

3Recall that 2; % 2; C 2,4, for every i, j > 0.
See Remark 2.76-3 on page 102.
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a?fd:f(( a)*a): (( 1A+1Afa)§fd):§ ((1A—a)>kﬁ)

= Z 1a—a)* (1a—a) —a—Z(lA—a);"Jrl
n=0 n=0
:Zi—( Z (1A—a);m—1A) =a—a+1y=14.

m=0

The computation leading to @ * a = 14 is completely analogous and the
proof is complete. O

Occasionally, when there is no possibility of confusion, if (A4,®) is a UA
algebra and n > 0, we shall denote the n-th power a®" of a € A simply
by a". Moreover, 1 will denote the unit 14 in any UA algebra A. So, for
example, (3.3) can be rewritten in the more concise (von Neumann) form

at =32 (1—a)™

3.1.1 Exponentials and Logarithms

Definition 3.2 (Exponential and Logarithm). If A is a graded UA algebra
and A, isasin (3.2), we set

~ —~ 1
Exp: Ay — 1a+ A, Exp(u Zk_
k=0
~ ~ > _1)k+1 R
Log:1la+ Ay — Ay, Log(lA—i-u):ZTu*k
k=1

The fact that the above defined Exp and Log are well posed maps follows
from the following simple facts (which we shall frequently use without
mention) together with an application of Remark 2.76-(2,3) on page 102:

(UG/ALF, nelN) = u"ellA4= D)

i>n
ve Ay = lim,0 uFn =0, (3.4)
(ue Ay, cn €K foralln e N) = 3 c,u*" convergesin A,

n=1

The notation Exp, and Log, will also occur (here = denotes the algebra
operation on A), when there is some possibility of misunderstanding. In
forthcoming sections, when A is given by some very special graded UA
algebra (for example the tensor algebra related to a free vector space over
two or three non-commuting indeterminates), we shall also admit other
more common notation:
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e, log(l+wu), exp(u), log(l+u),

We now collect some remarkable (and expected) results on the Exp and
Log maps. Throughout, A = P, 4; is a graded UA algebra.

Lemma 3.3. With the hypothesis and the notation in Definition 3.2, the functions
Exp, Log are continuous on their corresponding domains.

Proof. This follows from the fact that the series defining these functions are
uniformly convergent series (on the corresponding domains, subsets of the

metric space A) of continuous functions, hence they are continuous (from
well-known general results on metric spaces). Indeed:

1. Any polynomial function Asus cotcu+---+cen u* N is continuous
on A for (4, %) is a topological algebra.

2. The series for Exp and Log converge uniformly on A, and 1 + A,
respectively. We prove the former fact, the latter being analogous. We

denote by d the metric on A induced by the family {2 }x. For every
N, P € N we have

~~y N+P 1 %
sup d( > Hu*k,())
’IJ,GA\+ k=N

N+P N
= sup exp(—max{n > 1‘ > %u*k € Qk})
ueA, k=N

(use (3.4) and recall that 0 N DD 0 N p to estimate the inner max)

< sup exp(—N) =exp(—N) —— 0, uniformlyin P > 1.
uGA\+ N—00

This proves that the sequence { Y3 & «**}, converges uniformly (on

Ay) to its limit, namely Exp(u). O
Proposition 3.4. The functions Exp and Log introduced in Definition 3.2 are
inverse to each other, so that

Exp(Log(1+u)) =1+u, Log(Exp(u))=u, for every u € A,. (35)

Proof. Let us set, for brevity,

1 —1)n+
bO = :I_7 bn = — Cp ¢ L

9 VTLGIN,
n! n

so that Exp(w) = .02 b, w*" and Log(1 + w) = 37 ¢, w* " for every
w € Ay. Letu € A, be fixed. Then we have:
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Exp(Log(1l +u)) = Z bn (k§1 Ch wgk);n
n=0 =

(recall that (E, %) is a topological algebra)

o0
=1+ an Z Chy -+ Cpp, W F1E TR

n=1 kise.kn>1

(a simple reordering argument)
S J
=12 (o
j=1 “n=1
Indeed, in the last equality we used the identities

biep =1, zjzbn > ke, =0 j>2,

n=1 Eyyeokin>1
kit thn=j

proved in (9.26), page 491 of Chap.9, devoted to the formal power series
in one indeterminate. The second equality in (3.5) follows analogously, by
means of the dual identities

J
abi=1, > en Y. by by, =0, j>2

n=1  ki,..k,>1
key otk =j
also proved in (9.26). This ends the proof. O

The following is a trivial version of our CBHD Theorem: the CBHD Theorem
in a commutative setting.

Proposition 3.5 (Commutative CBHD Theorem). If u,v € A, and uFv =
vk u, then we have the identity

Exp(u)* Exp(v) = Exp(u + v). (3.6)

Proof. The proof is completely analogous to that of Lemma 4.8, page 190, to
which the Reader is directly referred. O

Theorem 3.6. Let (A, ®) and (B, ®) be two graded UA algebras and let o : A —
B be a continuous UAA morphism, of the associated algebras of formal power series
(A, ®), (B, ®), with the additional property

~

p(Ay) C B, (3.7)
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Then we have

@ o Expg = Expg o ¢ on /ALF,
R (3.8)
o Logg = Logg o ¢ on 1p+ A;.

Proof. The hypothesis cp(z&r) C B, ensures that o(la+ A,) Clp+ By, s0
that the identities in (3.8) are well posed. We will only prove the first identity
in (3.8), as the second may be done in an analogous fashion. The following

argument (explained below) completes the proof: For any v € A, we have

(0o Bxpe)) LYo (") 23 (o) L (Bxp 0 p)(w).

Here we used the following;:

(1): Definition of Expg and continuity of .
(2): ¢ is a UAA morphism (in particular, linear).
(3): Definition of Expg. O

Particularly important for our purposes are the cases when the graded
algebra A is, respectively, (7 (V),-) and (7 (V) ® J(V),e). In these cases,
instead of the somewhat awe-inspiring notation

Exp-~ Log~
we shall use (admittedly with some abuse) the notation

Exp, Log,,
for the exponential/logarithmic maps related to .7 (V). Analogously,

Exp ¢ Log 4

will be replaced by
EXp. Log. Y

denoting the exponential/logarithmic maps related to .7 (V) @ 7 (V). More
explicitly, we have

Exp®:ﬁ—>1+ﬁ Log®:1+ﬁ—>ﬁ

%) %) 1
U+ g %uk 1+w— g %w'k.
k=0 k=1
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Analogously,

EXp.Z@+—>1+¢@.+ LOg.Zl+@+—><@+
53k HWZ Gy e
k=0

Here we have a lemma concerning the relationship between these maps in
the cases of .7 and .7 ® 7. Henceforth, V is a fixed vector space and 1
will denote the identity of .7 (V). The Reader is also invited to review the
identification of .7 ® .7 as a subalgebra of Z®.7 in Proposition 2.82 on
page 106, performed by the natural map

?r'|,_.

—~

TWV)& TV) 3 (u)i @ (v)); = (s ©v;),, € T&T (V). (39)

We shall always tacitly assume this identification to be made. Note that this
vegd
gives

(a@b)e (a®p)=(a"b)® (b~ P), for every a,b, o, 3 € 7 (V). (3.10)
Lemma 3.7. With the above notation, we have

Exp,(z ® 1) =Exp,z®1, Exp,(1®2)=1® Exp,z, (3.11a)
Exp,(z ® 14+ 1® z) = Exp,z ® Exp, 2, (3.11b)

for every z € T (V). Dually, we have

Log,(w ® 1) = Log,w® 1, Log,(1®w)=1® Log,w, (3.12a)
Log,(w ® w) = Log,w ® 1 + 1 ® Log w, (3.12b)

foreveryw € 1 + ﬁ(V).

Proof. 1t suffices to prove (3.11a)-(3.11b), for (3.12a)-(3.12b) follow from
these, together with Proposition 3.4.

(3.11a):  We prove the first identity in (3.11a), the proof of the other one
being analogous. First note that

z®1,1®z€@+, foreveryzeﬁ.

5As we proved in (2.96), page 106, with a concise notation dropping the hat ™.
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Indeed, one has z = (z,), with zo = 0 and z,, € .7, for every n € N, so
that (setting 1 = (09, )r, With dp o = 1 and d¢,, = 0 for every n > 1)

39)
2®1 = (2 ®do,j)i,j

) ) )

1
Hel, 0 0,)

- ( 0 ,z®l, 0
~— o ~—
try (0, 1) entry (2,0) entry 1,1) entry (0, 2)

entry (0,0) entry (1,0) entr

This is clearly a