




(New Series) 

Founded in 1932 by 
S. Banach, B. Knaster, K. Kuratowski, 

S. Mazurkiewicz, W. Sierpinski, H. Steinhaus 

Managing Editor: 
Przemysław Wojtaszczyk, IMPAN and Warsaw University 

Editorial Board: 
Jean Bourgain (IAS, Princeton, USA) 

Tadeusz Iwaniec (Syracuse University, USA) 

Krystyna Kuperberg (Auburn University, USA) 
Tomasz Łuczak (Poznán University, Poland) 

Ludomir Newelski (Wrocław University, Poland) 
Gilles Pisier (Université Paris 6, France) 

Piotr Pragacz (Institute of Mathematics, Polish Academy of Sciences) 
Grzegorz Świątek (Pennsylvania State University, USA) 

Jerzy Zabczyk (Institute of Mathematics, Polish Academy of Sciences) 

Volumes 31–62 of the series 
Monografie Matematyczne were published by 
PWN – Polish Scientific Publishers, Warsaw 

M o n o g r a f i e  M a t e m a t y c z n e

Tom Körner (Cambridge, UK) 

Instytut Matematyczny Polskiej Akademii Nauk (IMPAN)

Volume 71 



Lev Bukovský

The Structure of the Real Line



 
 

 

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, 
reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of 
the copyright owner must be obtained.  
 
Cover design: deblik, Berlin 
 
Printed on acid-free paper 
 
Springer Basel AG is part of Springer Science+Business Media 
 
www.birkhauser-science.com

Lev Bukovský
Institute of Mathematics

040 01 Košice
Slovakia

© Springer Basel AG 2011 

University of P.J. Šafárik
Jesenná 5

lev.bukovsky@upjs.sk 

 

 
 
 

26A21, 28A05, 28A99, 54D99, 54G15, 54H05

ISBN 978-3-0348-0005-1            e-ISBN 978-3-0348-0006-8 
DOI 10.1007/978-3-0348-0006-8 

2010 Mathematics Subject Classification: 03E15, 03E17, 03E25, 03E35, 03E50, 03E60, 03E65, 

Library of Congress Control Number: 2011923518

mailto:lev.bukovsky@upjs.sk
http://www.birkhauser-science.com


To Zuzana





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction

1.1 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Topological Preliminaries . . . . . . . . . . . . . . . . . . . . . . 21
Historical and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . 36

2 The Real Line

2.1 The Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 Topology of the Real Line . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . 55
2.4 Expressing a Real by Natural Numbers . . . . . . . . . . . . . . . 62
Historical and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . 70

3 Metric Spaces and Real Functions

3.1 Metric and Euclidean Spaces . . . . . . . . . . . . . . . . . . . . 74
3.2 Polish Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3 Borel Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.4 Convergence of Functions . . . . . . . . . . . . . . . . . . . . . . 105
3.5 Baire Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Historical and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . 124

4 Measure Theory

4.1 Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.2 Lebesgue Measure . . . . . . . . . . . . . . . . . . . . . . . . . . 139
4.3 Elementary Integration . . . . . . . . . . . . . . . . . . . . . . . . 145
4.4 Product of Measures, Ergodic Theorem . . . . . . . . . . . . . . . 154
Historical and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . 159



viii Contents

5 Useful Tools and Technologies

5.1 Souslin Schemes and Sieves . . . . . . . . . . . . . . . . . . . . . 162
5.2 Pointclasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
5.3 Boolean Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
5.4 Infinite Combinatorics . . . . . . . . . . . . . . . . . . . . . . . . 194
5.5 Games Played by Infinitely Patient Players . . . . . . . . . . . . 207
Historical and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . 213

6 Descriptive Set Theory

6.1 Borel Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
6.2 Analytic Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
6.3 Projective Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 230
6.4 Co-analytic and Σ1

2 Sets . . . . . . . . . . . . . . . . . . . . . . . 238
Historical and Bibliographical Notes . . . . . . . . . . . . . . . . . . . . 246

7 Decline and Fall of the Duality

7.1 Duality of Measure and Category . . . . . . . . . . . . . . . . . . 250
7.2 Duality Continued . . . . . . . . . . . . . . . . . . . . . . . . . . 258
7.3 Similar not Dual . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
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Preface

V názvu té knihy muśı být slovo struktura.
Petr Vopěnka, 1975.

The title of this book must contain the word structure.

We must distinguish at least four periods – sometimes overlapping – in the history
of investigation of the real numbers.

The first period, devoted to understanding the real numbers system, be-
gan as early as about 2 000 B.C. in Mesopotamia, then in Egypt, India, China,
Greece (Pythagorians showed that

√
2 is an irrational), through Eudoxus, Eu-

clid, Archimedes, Fibonacci, Euler, Bolzano and many others, and continued till
the second half of the nineteenth century. Moris Kline [1972], p. 979 says that
“one of the most surprising facts in the history of mathematics is that the logical
foundation of the real numbers system was not erected until the late nineteenth
century”.

The rigorization of analysis forced the beginning of the second period, con-
centrated in the second half of the nineteenth century, and primarily devoted to
an exact definition of the real numbers system. The investigations showed that
mathematicians needed, as a framework for such a definition, a rigorous theory of
infinity. The Zermelo – Fraenkel set theory ZFC was accepted as the best solu-
tion. Several independent definitions of reals in the framework of set theory turned
out to be equivalent and, as usual in mathematics, that was a strong argument
showing that the exact definition of an intuitive notion was established correctly.

Establishing an exact notion of the real numbers system, mathematicians
began in the third period to intensively study the system. Essentially there were
three possibilities: to study the algebraic structure of the field of reals, to study
the subsets of the reals related to the topological and measure theoretic properties
of reals induced by the order – in this case I speak about the real line instead of
the system of real numbers – and finally, taking into account both the algebraic
and topological (or measure theoretical) properties.

The fourth period started by arousing many open unanswered questions of
the later one. It turned out that they are closely connected to set theoretical
questions which were unanswered in set theory. By the invention of forcing as a
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method for showing the non-provability of a statement in ZFC, mathematicians
obtained a strong tool to show that many questions concerning the topological and
the measure theoretical structure of the real line are undecidable, or at least non-
provable, in the considered set theory. The forcing method concerns essentially
questions connected with infinite sets. Since the algebraic structure (to be an
algebraic number, to be linearly independent over rationals, to be a prime number,
etc.) is usually connected with the properties of finite sets, forcing hardly can
contribute to a solution of an algebraic problem.

Focusing on this historical point of view, in 1975, I began to work on the
Slovak version of a book collecting the main results of the above mentioned second,
third and mainly the fourth period. I had previously presented the design of the
book to participants in the Prague Set Theory Seminar. After my presentation
Petr Vopěnka spontaneously stated the sentence quoted above. And I immediately
accepted this proposal that provided an appropriate emphasis in the title on the
book’s content.

When the book appeared, in 1979, I was pleasantly surprised by the interest it
generated in countries where students understood Slovak (which included the for-
mer Czechoslovakia, Poland, and some other particular locations, e.g., Hungary).
At the end of 1987 I was further surprised to receive permission1 to publish an
English edition abroad. Immediately I began to work on an English version of my
book. After the political events in Czechoslovakia in 1989, I could not refuse the
(at least moral) responsibility to contribute to academic politics and my work on
the English language version of the book was interrupted. When the monograph
by T. Bartoszyński and H. Judah [1995] appeared, I thought my rôle in writing
about the structure of the real line was finished. However, at the beginning of
the 21st Century, several colleagues, mainly Polish, urged me to prepare a new
edition of the Slovak version of “The Structure of the Real Line”. In March 2003,
I was invited to participate in the Boise Extravaganza in Set Theory at Boise
State University in Idaho. After the conference I visited Tomek Bartoszyński in
his office and was surprised to find my Slovak book open on his desk. This started
my reflection, finishing with the conclusion that a book with the intention of my
Slovak edition is not a rival book to Bartoszyński and Judah’s book but rather a
complementary, maybe, useful monograph. This presented a final – convincing –
reason for my decision to prepare a new – significantly revised – edition of “The
Structure of the Real Line”.

I tried to follow the spirit of the Slovak edition. I shall not discuss the his-
tory of the real system. Since I present the main consequences of the Axiom of
Determinacy AD, that contradicts the Axiom of Choice AC, in the basic parts of
the book I try to avoid any use of AC, if possible, or, at least to replace it by the
Weak Axiom of Choice wAC, that is a consequence of AD. Moreover, for some
readers this may be interesting. In Chapter 1, I briefly describe the framework

1Let me remind the reader, that I lived in a country where everything was strongly controlled
by a political party.
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for the mathematical treatment of infinity – the Zermelo-Fraenkel set theory ZF.
Then I sketch the main topological results in the above mentioned way. A precise
definition of the real line is given in Chapter 2. It is shown that the definition leads
to a unique object (up to a mathematical identification) and the set theoretical
framework implies its existence. Chapters 3 to 8 contain mainly the rather classi-
cal theory of the structure of the real line – the study of properties of subsets of
reals, which is important from the point of view of topology and measure theory.
Chapter 7 is devoted to the phenomena of the measure – category duality. Finally,
with overlapping topics, Chapters 7 to 10 deal with reductions of many important
problems of the structure of the real line to the sentences of set theory, which
the forcing method already proved are undecidable, or at least non-provable in set
theory. To make the book self-contained, I wrote an Appendix containing miscella-
neous, in my opinion, necessary material. I here recall all notions and basic facts of
set theory and algebra that I use in the book. Then I present a short introduction
to the metamathematics of set theory. Finally, I present the main results obtained
(mainly) by the forcing method in the last fifty years, which I needed to answer
important questions about the structure of the real line. I tried to attribute each
result to its author. Any new notion or denotation can be found in the very large
Index or Index of notations.

In the introduction of each chapter I try to explain its content and mainly,
whether a reader should read a particular section immediately or before reading
another sections. Especially, I suppose that a reader should start with reading
Section 1.1 and then, she/he can begin to read any chapter and then go to the
results needed for understanding of the presented material with the help of the
indexes. Each section is supplemented by a series of exercises that contains a great
deal of supplementary information concerning the topics of the section.

I am deeply satisfied that the book is being published in the series Monografie
Matematyczne. For many years in Czechoslovakia we had found it difficult to
obtain scientific information. The main source were the (often illegal) translations
of English language books and articles in Russian and, in the topics of interest to
me, Polish books that were mainly published as Monografie Matematyczne. So I
consider it a great honor to contribute to this most prestigious series.

I would like to thank those who contributed to the preparation of the manu-
script. Mirko Repický advised me as a TEX specialist. Peter Eliaš helped me with
presentation of results related to the thin sets of harmonic analysis. My postgrad-
uate students, former or current, Jozef Haleš, Michal Staš and Jaroslav Šupina,
read the manuscript, discovering and correcting many errors, both typographical
and factual. They contributed significantly to the correctness of the exercises.

I wish to express my gratitude to the Institute of Mathematics of Pavol
Jozef Šafárik University at Košice that created good conditions for me while I was
writing the book. My work was supported by grants 1/3002/06 and 1/0032/09 of
the Slovak Grant Agency VEGA.



xiv Preface

My intention for the book was to survey progress in the study of the real line
over the period encompassing the highly productive end of one century and the
beginning of another. I hope that this effort will prove to be a source of useful and
stimulating information for a wide variety of mathematicians.

Košice, October 1, 2010 Lev Bukovský



Chapter 1

Introduction

Również problematem o dużej donios�lości jest tego rodzaju uj ↪ecie teorii
mnogości, które – odpowiednio zacieśniaj ↪ac poj ↪ecie zbioru – elimino-
wa�loby istnienie zbiorów patologicznych (które jest konsekwencj ↪a – jak
wspomnielísmy – przede wszystkim aksjomatu wyboru), a nie uszczu-
pli�loby przy tym istotnie wartościowych osi ↪agni ↪eć teorii mnogości.

Kazimierz Kuratowski and Andrzej Mostowski [1952].

Equally, there is a problem with strong consequences in establishing a
set theory of the kind that – making adequately precise the notion of
a set – should eliminate the existence of pathological sets (which is a
consequence – as we have already said – mainly of the axiom of choice)
and does not weaken the surely worthy results of set theory.

In spite of the belief that the word around us is essentially finite, mathematics,
physics and some other natural sciences cannot exist without a concept of infinity.
Investigating the notion of a number, mathematicians almost always met an in-
finity. Starting with the Pythagoreans, continuing with Newton and Leibniz, then
Bolzano and Cauchy, finishing with Dedekind and Cantor. As a consequence a ne-
cessity to build an appropriate mathematical theory of infinity and to investigate
the numbers in a framework of such a theory arose. It was B. Bolzano who began
the study of infinity. Then G. Cantor developed an adequate theory, fruitful with
important results. All known attempts to build a theory of infinity convenient for
a study of numbers essentially converge to the set theory as initiated by G. Cantor.
So we have chosen as a framework for investigating numbers the most common
set theory called the Zermelo-Fraenkel axiomatic set theory.

In this chapter we summarize necessary terminology and facts of set theory
and of topology that we shall need later. In presenting our set theory we emphasize
its axiomatization showing the rôle of some of its axioms in our investigations. The
axiom of choice and its weak forms will play an important rôle in our next investi-
gations. For this reason we present some well-known results of the set topology. In
particular, we must identify the results which depend on some form of the axiom
of choice.

1
DOI 10.1007/978-3-0348-0006-8_1, © Springer Basel AG 2011
L. Bukovský, The Structure of the Real Line, Monografie Matematyczne 71,



2 Chapter 1. Introduction

1.1 Set Theory

We assume that the reader is familiar with elementary set theory, say to the extent
of a basic graduate course. Usually a set theory is developed in the framework
of the Zermelo-Fraenkel axiom system, including the axiom of choice. Working
mathematicians often do not notice when they have used the axiom of choice, even
in an essential way. We shall always make it clear. Moreover, we shall try to indicate
that a weaker form of an axiom of choice is sufficient for proving a statement.
“Theorem” is a statement provable in ZF. “Theorem [ϕ]” is a statement provable
in ZF + ϕ, where ϕ is an additional axiom to ZF. Especially, “ Theorem [AC]”
is a statement provable in ZFC and “Theorem [wAC]” is a statement provable in
ZFW. Similarly for Corollaries, Lemmas, and Exercises.

In this section we present necessary facts of set theory. We shall present only
proofs of those which we consider as not standard and/or which are not usually
included in basic courses.

The basic notions of set theory are that of a set, denoted usually by let-
ters a, b, . . . , x, y, z, A,B, . . . , X, Y, Z and others, and that of the membership re-
lation ∈. x ∈ A is read as x is an element of A, or x belongs to A, or x is a member
of A. Actually we assume that any object we shall deal with is a set. When all
members of a considered set are subsets of a given set, we use the word family
instead of set. Another notion is that of the inclusion relation X ⊆ Y , which is
a short denotation for the formula (∀x) (x ∈ X → x ∈ Y ) meaning that X is
a subset of Y . Similarly, ∅ is a constant which denotes the unique set satisfying
(∀x)x /∈ ∅.

An atomic formula of set theory is a formula of the form x = y or x ∈ y,
where x, y are variables (or constants, generally terms). The formulas of set theory
are built from atomic formulas in an obvious way by logical connectives ¬, ∧, ∨,
→, ≡, and quantifiers ∀ and ∃.

Zermelo-Fraenkel set theory ZF consists of the following axioms.

1. Axiom of Extensionality. If X and Y have the same elements, then X = Y .

2. Axiom of Pairing. For any x, y there exists a set X that contains exactly the
elements x and y.

3. Axiom of Union. For any set X there exists a set Y such that x ∈ Y if and only
if x ∈ u for some u ∈ X .

4. Axiom of Power Set. For any set X there exists a set Y that contains all subsets
of X .

5. Axiom Scheme of Separation. For any formula ϕ(x, x1, . . . , xk) of set theory the
following statement is an axiom: for given sets X and x1, . . . , xk there exists a
set Y such that Y contains exactly those elements x ∈ X that have the property
ϕ(x, x1, . . . , xk).
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6. Axiom Scheme of Replacement. For any formula ϕ(x, y, x1, . . . , xk) of set theory
such that

(∀x, y, z, x1, . . . , xk) ((ϕ(x, y, x1, . . . , xk) ∧ ϕ(x, z, x1, . . . , xk)) → y = z)

holds true, the following statement is an axiom: for given sets X and x1, . . . , xk
there exists a set Y such that Y contains all those elements y for which there
exists an x ∈ X such that ϕ(x, y, x1, . . . , xk) holds true.

7. Axiom of Infinity. There exists an infinite set.

8. Axiom of Regularity. Every non-empty set X has an ∈-minimal element, i.e.,
there exists an x ∈ X such that x and X have no common element.

One of the main technical consequences of the Axiom of Regularity is that
there exists no set x such that x ∈ x.

According to the Axiom of Extensionality the sets whose existence is guaran-
teed by axioms 2.–6. are unique. So we can introduce a notation for them. The set
X of the Pairing Axiom will be denoted by {x, y}. The set Y of the Axiom of Union
will be denoted by

⋃
X . Especially, if X = {x, y}, then we write x ∪ y =

⋃
X .

The set Y of the Axiom of Power Set will be denoted by P(X). The set Y of the
Axiom Scheme of Separation will be denoted by

{x ∈ X : ϕ(x, x1, . . . , xk)}.

Finally, the set Y of the Axiom Scheme of Replacement will be denoted by

{y : x ∈ X ∧ ϕ(x, y, x1, . . . , xk)}.

We need to make precise the meaning of the notion of “an infinite set”. The
simplest way is to find a property of a set which implies that it is “an infinite set”.
We can consider a set X as infinite if X is non-empty and for each of its elements
contains a new element different in some sense from all “previous” ones. It turns
out that the following property of a set X is enough1 for being infinite:

(∃x) (x ∈ X) ∧ (∀z ∈ X) (z ∪ {z} ∈ X).

If there exists at least one set, then there exists the empty set ∅. We can specify
that an infinite set contains the empty set, i.e.,

∅ ∈ X ∧ (∀z ∈ X) (z ∪ {z} ∈ X). (1.1)

It is well known that using the Axiom of Replacement the existence of an infinite
set implies the existence of a set with property (1.1). Moreover, the existence of a

1By the Axiom of Regularity z /∈ z and therefore z �= z ∪ {z}.
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set with property (1.1) implies the existence of a “minimal” set with this property,
i.e., the existence of a set with both properties (1.1) and

(∀Y )((∅ ∈ Y ∧ (∀z ∈ Y ) (z ∪ {z} ∈ Y )) → X ⊆ Y ). (1.2)

The set with properties (1.1) and (1.2) is uniquely determined and will be denoted
by ω. By definition, ∅ ∈ ω. We shall write 0 = ∅. If n ∈ ω we write n+1 = n∪{n}.
An element of ω is called a natural number. Note that 1 = {0}, 2 = {0, 1}, . . . , n+
1 = {0, . . . , n}. For our convenience we formulate the Axiom of Infinity as

There exists the set ω.

However if we replace the former Axiom of Infinity by the later formulation, then
we need to assume that there exists the empty set.

The definition of the set ω immediately yields a useful method of proof of
sentences about elements of ω – mathematical induction. Actually we can show
a metatheorem, or for any particular formula ϕ of set theory we have a particular
theorem. So, let ϕ(x, x1, . . . , xk) be a formula of set theory. Then
Theorem 1.1 (Theorem on Mathematical Induction). Let x1, . . . , xk be given. If

(IS1) ϕ(0, x1, . . . , xk),
(IS2) (∀n ∈ ω) (ϕ(n, x1, . . . , xk) → ϕ(n + 1, x1, . . . , xk)), then ϕ(x, x1, . . . , xk)

holds true for any x ∈ ω.

Proof. Set
Y = {x ∈ ω : ϕ(x, x1, . . . , xk)}.

By (IS1) and (IS2) the set Y ⊆ ω satisfies the premise of the implication (1.2).
Thus Y = ω. �

We assume that the reader is familiar with the theory of ordinals. Let us recall
that X is a transitive set if (∀x) (x ∈ X → x ⊆ X). An ordinal is a transitive
set well-ordered by the relation η ∈ ζ ∨ η = ζ. Thus an ordinal is the set of all
smaller ordinals. If ξ, η are different ordinals, then either ξ ∈ η or η ∈ ξ. If ξ is an
ordinal, then ξ + 1 = ξ ∪ {ξ} is the least ordinal greater than ξ – the immediate
successor of ξ. If an ordinal ξ �= ∅ is not an immediate successor of any ordinal,
then ξ = sup{η : η < ξ} =

⋃
ξ is called a limit ordinal. ω is the least limit ordinal.

The ordinal sum ξ + η is defined by transfinite induction. Any ordinal α can be
expressed as α = λ+n, where λ is 0 or a limit ordinal and n ∈ ω. The fundamental
property of ordinals is expressed by
Theorem 1.2. Every well-ordered set 〈X,≤〉 is isomorphic to a unique ordinal.

The unique ordinal ξ is called the order type of the well-ordered set X and
we write ξ = ot(X) = ot(X,≤).

The method of mathematical induction can be extended for well-ordered sets.
So, let ϕ(x, x1, . . . , xk) be a formula of set theory. Then
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Theorem 1.3 (Theorem on Transfinite Induction). Assume that 〈X,≤〉 is a well-
ordered set. Let x1, . . . , xk be given. If for any x ∈ X,

(∀y < x)ϕ(y, x1, . . . , xk) → ϕ(x, x1, . . . , xk)

holds true, then ϕ(x, x1, . . . , xk) holds true for any x ∈ X.

We shall use without any commentary the following result or its adequate
modification:
Theorem 1.4 (Definition by Transfinite Induction). Let ξ be an ordinal, X being
a non-empty set. Let a ∈ X, f : X −→ X and g :

⋃
η<ξ

ηX −→ X. Then there
exists unique function F : ξ −→ X such that

a) F (0) = a,
b) F (η + 1) = f(F (η)) for any η < ξ,
c) F (η) = g(F |η) for any limit η < ξ.

Sometimes we shall speak about a class of sets. By a class of sets we under-
stand “a collection” of sets satisfying a given formula, for which we do not have
any argument for being a set. E.g., by V we denote the class of all sets. It is easy
to see that V is not a set. The expression x ∈ V simply means “x is a set”. Simi-
larly, we can define the class On of all ordinals. The class On is not a set and the
formula x ∈ On simply means that x is an ordinal. Actually, a class is an object of
metamathematics (a formula of the language of ZF). We shall often speak about
the class of all topological spaces or about the class of all Polish spaces, see Section
5.2. However, we must deal with the notion of a class very carefully, e.g., saying
“for all classes . . . holds true” is not a formula of set theory.

We say that two sets A, B have the same cardinality, written |A| = |B|, if
there exists a one-to-one mapping of A onto B. The relation |A| = |B| is reflexive,
symmetric and transitive. We customarily say that |A| is the cardinality of the
set A. However, we do not know what it is. A cardinality has sense only in an
interrelation with some other cardinality. The set A has cardinality not greater
than the set B, written |A| ≤ |B|, if there exists a one-to-one mapping of A into B.
Finally, the set A has cardinality smaller than the set B, written |A| < |B|, if
|A| ≤ |B| and not |A| = |B|. The relation |A| ≤ |B| is reflexive and transitive. In
ZF one can prove that it is antisymmetric:
Theorem 1.5 (G. Cantor – F. Bernstein). For any sets A, B, if |A| ≤ |B| and
|B| ≤ |A|, then |A| = |B|.

We define another relation between cardinalities of sets as

|X | � |Y | ≡ (∃f) (f : Y onto−→ X). (1.3)

The relation � is reflexive and transitive. Evidently |X | ≤ |Y | implies |X | � |Y |,
provided X �= ∅. As we shall see in Section 9.4 we have no chance to prove in ZF
that the relation � is antisymmetric. One can easily see that

|A| � |B| → |P(A)| ≤ |P(B)|. (1.4)
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Generally the relation |A| ≤ |B| is not dichotomous, i.e., one cannot prove
in ZF that

|A| ≤ |B| ∨ |B| ≤ |A|

for any sets A, B.
The arithmetic operations on cardinalities are defined as follows:

|A|+ |B| = |A ∪B| provided that A ∩B = ∅,
|A| · |B| = |A×B| for any sets A, B,

|A||B| = |BA| for any sets A, B,

where BA denotes the set of all mappings from B into A. The operations satisfy
the obvious laws of arithmetics.

Theorem 1.6 (G. Cantor). There exists no mapping of X onto P(X). Therefore
|X | < |P(X)|. Moreover, if A,X are sets such that |A| � |X |, then ¬(2|X| � |A|)
and |A| < 2|X|.

Proof. The former statement follows from the later one.

So assume that f : X onto−→ A. Since the mapping F (x) = f−1({x}) is an
injection F : A 1−1−→ P(X), we obtain |A| ≤ 2|X|.

To obtain a contradiction, we shall suppose that there exists a mapping
h : A onto−→ P(X). Set g = f ◦ h : X onto−→ P(X). Let E = {x ∈ X : x /∈ g(x)}. Then
there exists an e ∈ X such that g(e) = E. Thus

e ∈ E ≡ e /∈ g(e) = E,

which is a contradiction. �

A set A is called finite if |A| < |ω|. A set A is called countable if |A| ≤ |ω|.
A set that is not finite is infinite and a set that is not countable is uncountable. If
n ∈ ω and |A| = |n| we write |A| = n. We shall use without reference the following
result.

Theorem 1.7. A set A is finite if and only if |A| = n for some n ∈ ω. Thus ω is
the set of all finite ordinals.

An ordinal α is called a cardinal number or simply cardinal if |α| �= |ξ| for
every ξ < α. Thus every finite ordinal is a cardinal, ω is a cardinal. The infinite
cardinal numbers can be enumerated by ordinals

ω = ℵ0 < ℵ1 < · · · < ℵξ < · · · .

That is why an infinite cardinal number is also called an aleph. Sometimes we
write ωξ instead ℵξ, i.e., ωξ = ℵξ. A cardinal ℵξ is a limit cardinal or a successor
cardinal if ξ is a limit or successor ordinal, respectively.
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ℵ1 is the least uncountable cardinal and also the least uncountable ordinal.
Instead of |A| = |ℵξ| we write simply |A| = ℵξ and in such a case ℵξ is called
the cardinality of the set A. Similarly for inequalities. Generally we shall denote
a cardinality by Fraktur letters a, b, m, n etc.2 When we want to emphasize that
the considered cardinality is the cardinality of a well-ordered set, we shall use
Greek letters κ, λ, µ etc. The smallest cardinality greater than m (if it does exist!)
we denote by m+.

A set A can be well ordered if there exists a well-ordering with the field A. If
an infinite set A can be well ordered, then its cardinality is an aleph. Thus instead
of saying that A can be well ordered we shall say also that |A| is an aleph.

For addition and multiplication of alephs the simple Hessenberg Theorem
holds true:

ℵξ + ℵη = ℵξ · ℵη = ℵmax{ξ,η}. (1.5)

Let η < ξ be two ordinals. The ordinal ξ is said to be cofinal with η if there
exists an increasing function f : η −→ ξ such that sup{f(ζ) : ζ < η} = ξ, i.e.,
if the set {f(ζ) : ζ < η} is cofinal in ξ. By cf(ξ) we denote the least ordinal η
such that ξ is cofinal with η. An infinite ordinal ξ is called regular if cf(ξ) = ξ.
Otherwise ξ is singular. The ordinal cf(ξ) is always regular. A regular limit ordinal
is always a cardinal. Not vice versa. There exist singular cardinals, e.g., ℵω for
which cf(ℵω) = ω.

We shall use the following result.

Theorem 1.8 (A. Tarski). If |X | ≥ ℵ0, then 2|X| + |X | = 2|X| and for any set Y
such that |Y |+ |X | = 2|X| we have |Y | = 2|X|.

The statement of this theorem may be expressed as follows: if m ≥ ℵ0 is
a cardinality, then 2m + m = 2m and for any cardinality n such that n + m = 2m

we have n = 2m. A proof may be found in Exercise 1.6.
Let us recall that if an axiom of ZF assures the existence of a set, then the

set is uniquely determined (and we have usually denoted it by some symbol). We
shall sometimes need such an axiom, which assures the existence of a set with a
property that does not determine the set uniquely.

If F is a family of non-empty sets, then a function f : F −→
⋃
F is called

a choice function or a selector for F if f(A) ∈ A for every A ∈ F . The Axiom
of Choice AC says that, for every family of non-empty sets, there exists a choice
function. Evidently AC is equivalent to the statement: a Cartesian product of
a family of non-empty sets is a non-empty set. The theory ZF+AC will be denoted
by ZFC. By results of K. Gödel (11.11) and P.J. Cohen (11.17), the axiom AC is
undecidable in ZF.

Using Theorem 1.7 one can easily prove by mathematical induction that, for
every finite family of non-empty sets, there exists a selector. As a consequence we
obtain
2Note that in Sections 5.3, 5.4 and later on, the letters a, b, d, m, pdenote particular cardinalities.
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Theorem 1.9 (Dirichlet Pigeonhole Principle). Let m be a cardinality (i.e., m = |B|
for some set B). Let f : X −→ Y , Y being finite. If |Y | ·m < |X |, then there exists
a y ∈ Y such that the cardinality of the inverse image f−1({y}) is not smaller than
or equal to m. Equivalently: if A is a finite partition of the set X and m · |A| < |X |,
then there exists a set A ∈ A such that ¬|A| ≤ m.

The following theorem is a basic result.
Theorem 1.10 (E. Zermelo – M. Zorn). The following are equivalent:

a) Axiom of Choice AC.
b) Zermelo’s Theorem: Every set can be well ordered.
c) Zorn’s Lemma: If every chain in a poset 〈X,≤〉 is bounded from above, then

for any x ∈ X there exists a maximal element a ≥ x.3

Corollary 1.11. If AC holds true, then any set A is either finite or there exists
an ordinal ξ such that |A| = ℵξ. In other words, AC implies that any cardinality
is a cardinal number.

Thus if AC holds true, then the class of cardinalities is equal to the class of
all cardinal numbers and therefore is well ordered, i.e., there exists the smallest
cardinality (=cardinal number) with given property (if there exists any such). In
what follows we shall use this fact without any commentary.
Theorem 1.12. If AC holds true, then any ℵξ+1 is a regular cardinal.

However, as we shall see later, the Axiom of Choice must be essentially used
in a proof of Theorem 1.12.

By Theorem 1.6 and Corollary 1.11, assuming AC, for any infinite set X the
cardinality of the power set P(X) is an aleph greater than |X |. The assumption
that this cardinality is the smallest possible is called the Generalized Continuum
Hypothesis and is denoted as GCH. Thus GCH says that (∀ξ) 2ℵξ = ℵξ+1. The
Continuum Hypothesis CH says that 2ℵ0 = ℵ1. Thus CH follows from GCH.
By results of K. Gödel (11.11) and P.J. Cohen (11.17), both CH and GCH are
undecidable in ZFC.

A limit regular cardinal κ is called a weakly inaccessible cardinal. If moreover,
for any λ < κ we have 2λ < κ, then κ is called strongly inaccessible. Note that
if ℵξ is weakly inaccessible, then ℵξ = ξ. By Metatheorem 11.3 the existence of
a strongly inaccessible cardinal cannot be proved in ZF. Neither is the existence
of a weakly inaccessible cardinal provable in ZFC.

For sake of brevity we denote by IC the statement “there exists a strongly
inaccessible cardinal”.

In our reasoning we do not always need the full AC. We formulate some
weak forms of the axiom of choice. The Countable Axiom of Choice ACω says
that for every countable family of non-empty sets there exists a choice function.
In several investigations we shall need even weaker forms. The Weak Axiom of
Choice wAC says that for any countable family of non-empty subsets of a given set
3For the notions used in the formulation of Zorn’s Lemma, see Section 11.1.
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of cardinality 2ℵ0 there exists a choice function. Finally, the Axiom of Dependent
Choice DC says that for any binary relation R on a non-empty set A such that
for every a ∈ A there exists a b ∈ A such that aRb, for every a ∈ A there exists a
function f : ω −→ A satisfying f(n)Rf(n+ 1) for any n ∈ ω and f(0) = a. One
can easily show that

AC → DC, DC → ACω, ACω → wAC.

It is well known that no implication can be reversed. We denote by ZFW the
theory ZF+wAC.

We shall often need the following simple result.
Theorem 1.13. The following are equivalent:

a) The Weak Axiom of Choice wAC.
b) For any countable family of non-empty subsets of ω2 there exists a choice

function.
c) For every X such that |X | � 2ℵ0 and every sequence {An}∞n=0 of non-empty

subsets of X there exists a selector for {An}∞n=0.
d) For every sequence 〈An : n ∈ ω〉 of non-empty subsets ω2 there exists an

infinite E ⊆ ω and a function f : E −→ ω2 such that f(n) ∈ An for every
n ∈ E.

The proof is easy. The implication a) → b), b) → d), and c) → a) are trivial.
Assume b). We show that c) holds true. If |X | � 2ℵ0 , then there exists

a surjection f : ω2 onto−→ X . Hence {f−1(An)}∞n=0 is a sequence of non-empty
subsets of ω2. By b), there exists a selector 〈an ∈ f−1(An) : n ∈ ω〉 for this
sequence. Then {f(an)}∞n=0 is a selector for {An}∞n=0.

Assume d). To show b), consider the sequence 〈Bn = Πk≤nAk : n ∈ ω〉. If
E ⊆ ω is infinite and g : E −→

⋃
n
n+1(ω2) is such that g(n) ∈ Bn for every

n ∈ E, we define

f(n) = g(m)(n), where m = min{k ∈ E : n ≤ k}. �

The Axiom of Choice implies that the relation |A| ≤ |B| is dichotomous, i.e.,
for any sets A, B, we have |A| ≤ |B| ∨ |B| ≤ |A|. As we have already remarked,
one cannot prove this statement if ZF. See, e.g., Theorem 9.28. However, wAC
implies a similar statement at least in the most important case.
Theorem [wAC] 1.14. If A ⊂ X, |X | � 2ℵ0 , then either A is countable or |A| > ℵ0.

Proof. If A is not finite, then using Theorem 1.7 one can easily show by mathe-
matical induction that the sets 〈Ψn = {f ∈ nA : f is an injection} : n ∈ ω〉 are
non-empty. Let 〈fn : n ∈ ω〉 be a choice function. We define

f(n) =

{
f1(0) if n = 0,
fn+1(k) where k = min{l ∈ ω : (∀i < n) fn+1(l) �= f(i)} otherwise.
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Evidently f : ω 1−1−→ A and therefore ℵ0 ≤ |A|. Thus if A is not countable, then
ℵ0 < |A|. �

A set I ⊆ P(X) is called an ideal on X if

1) ∅ ∈ I, X /∈ I,
2) if A ∈ I, B ⊆ A, then B ∈ I,
3) if A,B ∈ I, then A ∪B ∈ I.

For simplicity we usually assume that

4) {x} ∈ I for every x ∈ X .

Let κ be an uncountable regular cardinal. An ideal I is said to be κ-additive
if
⋃
A ∈ I for any set A ⊆ I, |A| < κ. An ℵ1-additive ideal is simply called

σ-additive. A set I0 ⊆ I is a base of the ideal I if every element A of I is a subset
of some B ∈ I0.

The dual notion to the notion of an ideal is the notion of a filter. A set
F ⊆ P(X) is called a filteron X if

1) ∅ /∈ F , X ∈ F ,
2) if A ∈ F , A ⊆ B, then B ∈ F ,
3) if A,B ∈ F , then A ∩B ∈ F .

Similarly as above, we usually assume that

4) X \ {x} ∈ F for every x ∈ X .

F is a filter if and only if the family {X \ A : A ∈ F} is an ideal. A filter F is
called an ultrafilter if for every A ⊆ X , either A ∈ F or X \ A ∈ F . It is easy
to see that a filter F is an ultrafilter if and only if F is maximal with respect to
ordering by inclusion. A set F0 ⊆ F is a base of the filter F if for every A ∈ F
there exists a B ∈ F0 such that B ⊆ A.

For any x ∈ X the set {A ⊆ X : x ∈ A} is an ultrafilter on X . An ultrafilter
of this form is called trivial. A filter F on X is called a free filter if F does not
contain any finite set. Thus, an ultrafilter is free if and only if it is not a trivial
ultrafilter. The Boolean Prime Ideal Theorem BPI says that every filter on any set
can be extended to an ultrafilter. Equivalently, any ideal is contained in a maximal
ideal. Similarly as in the case of an ultrafilter, one can show that a maximal ideal
I on a set X is a prime ideal, i.e., for any subset A ⊆ X we have either A ∈ I or
X \A ∈ I.
Theorem 1.15. AC implies BPI.

The proof is based on an application of the Zermelo Theorem. It is known
that the converse implication is not true, see J.D. Halpern and A. Lévy [1971].

An ultrafilter G on an infinite set X is called uniform provided that every
element of G has cardinality |X |.

Assume AC. Then for any infinite set X , the set

F = {A ⊆ X : |X \A| < |X |}
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is a filter4. If G is an ultrafilter extending F , then every element of G has cardinality
|X |. Thus, (assuming AC) there exists a uniform ultrafilter on any infinite set5.

If A ⊆ ω is infinite, then there is a unique increasing enumeration eA of A.
The nth element of A is eA(n). Thus the enumeration eA is uniquely determined
by

eA(0) < eA(1) < · · · < eA(n) < eA(n+ 1) < · · · (1.6)

and
A = {eA(n) : n ∈ ω}. (1.7)

A bijection π from ω×ω onto ω is called a pairing function. It is well known
that there exists a pairing function, e.g.,

π(n,m) =
1
2

(n+m)(n+m+ 1) +m. (1.8)

Note that π(n,m) ≥ n,m for any n,m. We denote by λ and ρ the left inverse and
right inverse functions of π, respectively, i.e.,

π(λ(n), ρ(n)) = n, λ(π(n,m)) = n, ρ(π(n,m)) = m (1.9)

for any n,m ∈ ω. Note also that λ(n) ≤ n and ρ(n) < n for any n > 0.
Using a pairing function we can “identify” the sets ωX and ω(ωX). Actually,

to a ϕ ∈ ω(ωX) we assign a ψ ∈ ωX by setting ψ(n) = ϕ(λ(n))(ρ(n)). A projection
of ωX onto ωX considered as the nth factor of the product ω(ωX) is defined by

Projn(ϕ) = ψ, where ψ(m) = ϕ(π(n,m)). (1.10)

Similarly we can identify ωX with ωX × ωX using the mapping ΠX defined as
ΠX(α, β) = γ, where

γ(n) =
{
α(n/2) if n is even,
β((n − 1)/2) if n is odd. (1.11)

The left inverse ΛX and right inverse RX of ΠX from ωX into ωX are defined as

ΛX(α) = {α(2n)}∞n=0, RX(α) = {α(2n+ 1)}∞n=0. (1.12)

Thus, for any α, β, γ ∈ ωX we have

ΛX(ΠX(α, β)) = α, RX(ΠX(α, β)) = β, ΠX(ΛX(γ), RX(γ)) = γ. (1.13)

If the set X is understood we simply write Π, Λ, R.
We shall use many natural modifications of pairing functions.

Theorem 1.16. There exists a function f : P(ω) onto−→ ω1, i.e., ℵ1 � 2ℵ0 .
4Actually, this statement is equivalent to AC. See Exercise 1.4.
5Again, this assertion is equivalent to AC, see Exercise 1.4.
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Proof. Let π be a pairing function. If A ⊆ ω, then π−1(A) ⊆ ω × ω, i.e., π−1(A)
is a binary relation. We define a function f as

f(A) =






ξ if π−1(A) is a well-ordering of ω in the ordinal type ξ,
n if |π−1(A)| = n,
0 otherwise.

Since for every infinite ordinal ξ < ω1 there exists a well-ordering of ω in the
ordinal type ξ, the function f is a surjection of P(ω) onto ω1. �

Corollary 1.17. There exists a decomposition of P(ω) in ω1 non-empty pairwise
disjoint sets

P(ω) =
⋃

ξ<ω1

f−1({ξ}), (1.14)

where |f−1({ξ})| = c for every ξ ≥ ω.

Proof. If 〈ω,R〉 is a well-ordered set of an infinite type ξ and g : ω 1−1−→
onto

ω, then

〈ω, {〈n,m〉 : 〈g(n), g(m)〉 ∈ R}〉 is a well-ordered set of the type ξ as well. For
different g’s the sets {〈n,m〉 : 〈g(n), g(m)〉 ∈ R} are different. Hence for any ξ ≥ ω
we have |f−1({ξ})| = c. �

The decomposition of (1.14) is called the Lebesgue decomposition. In Section
6.4 we describe a related decomposition of the set of dyadic numbers.

The famous fact, that a union of countably many countable sets is a countable
set, is usually proved by using some weak form of the axiom of choice.
Theorem 1.18. Assuming ACω, a countable union of countable sets is a count-
able set. Assuming wAC, a countable union of countable subsets of a given set of
cardinality � 2ℵ0 is a countable set.

The theorem cannot be proved in ZF, since S. Feferman and A. Lévy (11.19)
have constructed a model of ZF, in which the following holds true:

P(ω) is a countable union of countable sets. (1.15)

We show that in a proof of Theorem 1.12 we need a form of the axiom of
choice even in the case of ω1.
Theorem 1.19. If (1.15) holds true, then cf(ω1) = ω.

Proof. Assume that

P(ω) =
⋃

n∈ω
An, An is countable for any n. (1.16)

Let f : P(ω) onto−→ ω1 be the function constructed in the proof of Theorem 1.16.
Set ηn = sup{f(A) : A ∈ An}. If some ηn = ω1, then we are ready. If not, then
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every ηn is a countable ordinal. If ξ < ω1, then there exists a set A ∈ P(ω) such
that f(A) = ξ. By (1.16) there exists an n such that A ∈ An. Then ξ ≤ ηn. Thus
sup{ηn : n ∈ ω} = ω1. �

Theorem 1.20. The Weak Axiom of Choice wAC implies that ω1 is a regular
cardinal.

Proof. Let A ⊆ ω1 be countable, i.e., A = {ξn : n ∈ ω}. We can assume that
ξn > ω for each n. We have to show that A is bounded in ω1.

Let f be the function of Theorem 1.16. We denote Φn = {A ⊆ ω : f(A) = ξn}.
Then by wAC there exists a choice function 〈Bn ∈ Φn : n ∈ ω〉. Thus 〈ω, π−1(Bn)〉
is a well-ordered set of order type ξn. We define a well-ordering R on ω × ω of
order type equal to ξ0 + · · ·+ ξn + · · · as follows:

〈n1,m1〉R〈n2,m2〉 ≡ (n1 < n2 ∨ (n1 = n2 ∧ 〈m1,m2〉 ∈ π−1(Bn1))).

Let η be the order type of 〈ω × ω,R〉. Since |ω × ω| = ℵ0, we obtain η < ω1. On
the other hand every 〈ω, π−1(Bn)〉 can be naturally embedded into 〈ω × ω,R〉,
therefore ξn ≤ η. Thus η is an upper bound of A. �

We close with a technical result that will be useful in some investigation. Let
us consider the following property COF(ξ) of an ordinal ξ ≤ ω1:

there exists a function F : ξ −→ ωω1 such that for any limit η < ξ, F (η)
is an increasing sequence of ordinals {ηn}∞n=0 and η = sup{ηn : n ∈ ω}.

Of course, the Axiom of Choice implies that COF(ξ) holds true for any ξ ≤ ω1.
However, we want to avoid a use of AC.

Theorem 1.21. COF(ξ) holds true for any ξ < ω1.

Proof. If ξ < ω1, then there is a well-ordering R (we suppose that R is antire-
flexive) on ω such that ot(ω,R) = ξ. If η < ξ is a limit ordinal, then there exists
a natural number k such that η is the order type of the set {n ∈ ω : nRk}. We set
by induction

ηn = max{η0, . . . , ηn−1, ot({m ∈ ω : mRn ∧mRk})}+ 1.

If ζ < η, then there exists an l ∈ ω such that lRk and ζ is the order type of the
set {n ∈ ω : nRl}. Then ηl > ζ. Set F (η) = {ηn}∞n=0. �

Exercises

1.1 The Cumulative Hierarchy

The smallest transitive set containing a given set x as a subset is called the transitive
closure of x.
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a) Set x0 = x, xn+1 =
⋃
xn for any n. Show that TC(x) =

⋃
n xn is the transitive

closure of x.

Hint: If y ∈ xn, then y ⊆ xn+1.

b) We define the Cumulative Hierarchy 〈Vξ, ξ ∈ On〉 by transfinite induction:

V0 = ∅,

Vξ =
⋃

η<ξ

Vη, if ξ is a limit ordinal,

Vξ+1 = P(Vξ).

Show that every Vξ is a transitive set.

c) Show that x ∈ Vξ if and only if TC(x) ∈ Vξ.

d) For every set x there exists an ordinal ξ such that x ∈ Vξ, i.e., V =
⋃

ξ∈On Vξ.

Hint: Assume that there exists a transitive set x which does not belong to any Vξ. By
the Axiom of Regularity there exists ∈-minimal element y ∈ x which does not belong
to any Vξ. Thus every z ∈ y belongs to some Vη. By suitable use of an instance of
the Scheme of Replacement we obtain y ⊆ Vζ for some ζ, a contradiction.

e) The rank of a set x is rank(x) = min{ξ : x ∈ Vξ+1}. Show that x ∈ y → rank(x) <
rank(y).

f) rank(x) = sup{rank(y) : y ∈ x}+ 1.

g) An uncountable regular cardinal κ is a strongly inaccessible cardinal if and only if
|Vκ| = κ.

1.2 Cardinal Arithmetics without AC

a) ℵ0 ≤ |X| if and only if there exists a set Y ⊆ X, |X| = |Y |, Y 	= X.

Hint: If f : X
1−1−→
onto

Y , a ∈ X \ Y , then |{f−n(a) : n ∈ ω}| = ℵ0.

b) If a set X is non-empty and |X|+ |X| = |X|, then ℵ0 ≤ |X|.
c) If |X| > 1 and |X| · |X| = |X|, then ℵ0 ≤ |X|.
d) If the cardinalities |X| and |Y | are incomparable (i.e., neither |X| ≤ |Y | nor |Y | ≤
|X|), then |X| < |X|+ |Y | and |X| < |X| · |Y |.

e) If ℵ1 and 2ℵ0 are incomparable, then 2ℵ0 < 2ℵ1 .

f) If ℵ0 ≤ |X|, then ℵ0 + |X| = |X|.
g) Show that for any set X the following are equivalent:

1) |X| ≥ ℵ0;

2) |X|+ 1 = |X|;
3) |X|+ ℵ0 = |X|.

1.3 Hartogs’ Function

Hartogs’ function ℵ is defined as follows: for any set X the value ℵ(X) is the first ordinal

ξ such that there is no injection f : ξ
1−1−→ X.

a) For every set X there exists an ordinal ξ such that |ξ| ≤ |P(X×X)| and |ξ| � |X|.
Hint: Consider the set W of all well-orderings of subsets of X. To each element
R ∈ W assign its ordinal type h(R). Show that ξ = {h(R) : R ∈ W} is the desired
ordinal.
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b) Hartogs’ function ℵ(X) is well defined.

c) ℵ(X) � |X| for any infinite set X.

d) If the set X is infinite, then ℵ(X) is an aleph.

e) A set X can be well ordered if and only if ℵ(X) > |X|.
f) ℵ1 and 2ℵ0 are incomparable if and only if ℵ(P(ω)) = ℵ1.

Hint: ℵ(P(ω)) ≥ ℵ(ω) = ℵ1, since every infinite ξ < ω1 is the order type of a well-
ordering of ω.

1.4 Addition of cardinals and AC

a) If |X|+ ℵ(X) = |X| · ℵ(X), then X can be well ordered.

Hint: Let |Y | = ℵ(X), X ∩ Y = ∅. Assume that X × Y = A ∪ B, where |A| = |X|
and |B| = ℵ(X). Since ℵ(X) � |X|, for every a ∈ X there exists a b ∈ Y such that
〈a, b〉 ∈ B. Since Y can be well ordered, one define an injection of X into Y .

b) |X|+ |Y | ≤ |X| · |Y | for any infinite X,Y .

c) The following are equivalent:

(1) (∀m, n infinite) (m + n = m ∨m + n = n).

(2) (∀m, n infinite) (m ≤ n ∨ n ≤ m).

(3) (∀m, n infinite) (m · n = m ∨ m · n = n).

(4) (∀m infinite) (m2 = m).

(5) (∀m, n infinite) (m2 = n2 → m = n).

(6) AC.

Hint: AC → (1) → (2), AC → (3) → (4) → (5). (2) implies AC, since |X| ≤ ℵ(X)
for any infinite X.

Assume (5). If X is infinite, set p = |X|ℵ0 , m = p + ℵ(p), n = p · ℵ(p). Evidently
p = p +1 = 2 · p = p2. Similarly one has ℵ(p) = ℵ(p)+1 = 2 · ℵ(p) = (ℵ(p))2. Then
by simple calculation one obtains m2 = n2. Thus m = n and by part a) any set of
cardinality p can be well ordered. Note that |X| ≤ p.

d) If for any infinite X the family {A ⊆ X : |A| < |X|} is an ideal, then AC holds
true.

Hint: If AC fails, then there exist disjoint infinite sets X, Y such that |X| < |X|+|Y |
and |Y | < |X|+ |Y |.

e) If on every infinite set there exists a uniform ultrafilter, then AC holds true.

Hint: Let X, Y be as in d). If F were a uniform ultrafilter on X ∪ Y , then either
X ∈ F or Y ∈ F.

1.5 Tarski’s Lemma

Assume that M, P, Q are pairwise disjoint sets, A = M∪P , B = M∪Q and f : A
1−1−→
onto

B.

We set P1 = {x ∈ P : (∀n > 0) fn(x) ∈ M}, Q1 = {x ∈ Q : (∀n > 0) f−n(x) ∈ M},
P2 = P \ P1, Q2 = Q \Q1.

a) Show that |P2| = |Q2|.
Hint: Set

Cn = {x ∈ P : (∀k < n, k > 0) fk(x) ∈M ∧ fn(x) /∈M},
Dn = {x ∈ Q : (∀k < n, k > 0) f−k(x) ∈M ∧ f−n(x) /∈M}.
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Show that fn : Cn
1−1−→
onto

Dn, P2 =
⋃

n>0 Cn and Q2 =
⋃

n>0Dn.

b) Show that |P1|+ |M | = |M |.
Hint: For x ∈ P1 ∪ M set g(x) = x if x ∈ M \

⋃
n>0 f

n(P1) and g(x) = f(x)
otherwise.

c) Show that |Q1|+ |M | = |M |.
d) Prove Tarski’s Lemma: If m, p, q are cardinalities such that m + p = m + q, then

there are cardinalities n, p1, q1 such that

p = p1 + n, q = q1 + n,m + p1 = m = m + q1.

Hint: Set n = |P2| = |Q2|.
e) Prove Bernstein’s Theorem: If m + m = m + q, then m ≥ q.

Hint: Use Tarski’s Lemma.

1.6 Tarski’s Theorem

Let m be a cardinality such that ℵ0 ≤ m.

a) 2m + m = 2m .

Hint: If ℵ0 ≤ m, then m + 1 = m.

b) If 2m = m + p and m = m + s, then p ≥ 2s .

Hint: Let |M | = m, P(M) = M1∪P , M1∩P = ∅, |M1| = m, |P | = p, M = M2∪S,

M2 ∩ S = ∅, |M2| = m, |S| = s, f : M
1−1−→
onto

M1, g : M2
1−1−→
onto

M . For A ⊆ S set

h(A) = A ∪ {x ∈M2 : x /∈ f(g(x))}.

If h(A) ∈M1, then h(A) = f(g(x)) for some x ∈M2 and we obtain a contradiction

x ∈ h(A) ≡ x /∈ f(g(x)).

Thus h : P(S)
1−1−→ P .

c) Assume that m + p = 2m . Then p ≥ 2m .

Hint: If m+p = m+2m , then by Tarski’s Lemma 1.5 d) there are n, p1, q1 such that
p = n + p1, 2m = n + q1 and m + p1 = m + q1 = m. By b) we obtain p ≥ 2q1 > q1.
Hence p + p ≥ n + q1 = 2m = 2m + p ≥ p + p.

d) Prove Tarski’s Theorem 1.8.

1.7 [AC] Cardinal Arithmetics in ZFC

We assume AC. κ, λ denotes infinite cardinals. κ+ denotes the smallest cardinal greater

than κ, i.e., if κ = ℵξ, then κ+ = ℵξ+1. The gimel function is defined as (κ)ג = κcf(κ). If
κs is a cardinal for each s ∈ S, we can define the sum

∑
s∈S κs and the product Πs∈Sκs

in an obvious way, e.g., Πs∈Sκs = |Πs∈SAs|, where |As| = κs. Actually, you can set
As = κs.

a) Prove König’s Inequality: if κs < λs for any s ∈ S, then
∑

s∈S κs < Πs∈Sλs.

Hint: Let |As| = κs, |Bs| = λs, As ⊆ Bs, As, s ∈ S being pairwise disjoint. Choose
a g ∈ Πs∈S(Bs \ As) and for a ∈ As set ψ(a) = f , where f(t) = g(t) for t 	= s and

f(s) = a. Then ψ :
⋃

s∈S As
1−1−→ Πs∈SBs.
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Vice versa ϕ :
⋃

s∈S As
1−1−→ Πs∈SBs is an injection, then |ϕ(As)| = κs. Set

Cs = {f(s) : f ∈ ϕ(As)}. Then Bs \ Cs 	= ∅ and Πs∈S(Bs \ Cs) ∩ rng(ϕ) = ∅.
Thus ϕ is not a surjection.

b) Show that cf(κ) = λ if and only if there exists an increasing sequence of cardinals
〈κξ : ξ < λ〉 such that κ =

∑
ξ<λ κξ.

c) Show that cf(κλ) > λ.

Hint: If κλ =
∑

ξ<µ νξ, then by König’s Inequality we obtain

∑

ξ<µ

νξ < Πξ<µνξ ≤ (κλ)µ.

d) (κ)ג ≥ cf(ג(κ)) > cf(κ) for any infinite κ.

e) If κ ≤ λ, then κλ = 2λ.

f) Prove the Hausdorff formula: (κ+)λ = κλ · κ+.

Hint: λ(κ+) =
⋃

ξ<κ+
λξ.

g) Prove the Bukovský-Hechler formula: if cf(κ) < κ, λ < κ and 2µ = 2λ for every
λ ≤ µ < κ, then 2κ = 2λ.

Hint: If κ =
∑

ξ<cf(κ)
κξ, λ ≤ κξ < κ, then 2

∑

ξ<cf(κ)
κξ

= Π
ξ<cf(κ)

2λ = 2λ.

h) Assume cf(κ) < κ. If for each λ < κ there exists a µ < κ such that 2µ > 2λ, then
2κ = )ג

∑
λ<κ 2λ).

Hint: Note that cf(
∑

λ<κ 2λ) = cf(κ) and

ג

(
∑

λ<κ

2λ

)

≤ 2κ = Π
ξ<cf(κ)

κξ ≤
(
∑

λ<κ

2λ

)cf(
∑

λ<κ 2λ)

= ג

(
∑

λ<κ

2λ

)

.

i) Prove the Tarski formula: κλ =
∑

γ<κ γ
λ provided that κ is limit and λ < cf(κ).

Hint: Note that λκ =
⋃

γ<κ
λγ.

j) Show that the value ℵℵη

ξ is determined by the function .ג
Hint: By transfinite induction over ξ using the results of d)–i).

1.8 Axiom of Choice

For a non-empty set X we introduce the following statements:

AC(X) ≡ for every family of non-empty subsets of X there exists a selector,

ACn(X) ≡ for every family of n elements subsets of X there exists a selector,

AC<ω(X) ≡ for every family of finite non-empty subsets of X there exists a selector,

ACω(X) ≡ for every countable family of non-empty subsets of X there

exists a selector.

a) Show that:

1) AC is equivalent to “AC(X) holds true for any set X”.

2) ACω is equivalent to “ACω(X) holds true for any set X”.

3) wAC is equivalent to “ACω(P(ω)) holds true”.
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b) If the set X can be well ordered, then AC(X) holds true.

c) If the set X can be linearly ordered, then ACn(X), 1 < n < ω and AC<ω(X) hold
true.

d) If AC<ω(X) holds true for any set, then a countable union of finite sets is a count-
able set.

Hint: If A =
⋃

nAn, An finite, then there exists a selector {fn}∞n=0 of the family
{An |An|}∞n=0. Using the selector one can easily construct an injection of A into
ω × ω.

1.9 Binomial Coefficients

If m is a cardinality and X is a set, we write

[X]m = {A ⊆ X : |A| = m}, [X]<m = {A ⊆ X : |A| < m}.

Moreover we set n! = 1 · · · · · n.

a) If |X| = |Y |, then |[X]m | = |[Y ]m | and |[X]<m | = |[Y ]<m |.
If |X| = n, k, n ∈ ω, we define the binomial coefficient as

(
n

k

)

= |[X]k |.

b) Show that
(

n+1
k+1

)
=
(

n
k

)
+
(

n
k+1

)
for any k, n ∈ ω.

Hint: Fix an a ∈ X. Then

[X]k+1 = [X \ {a}]k+1 ∪ {A ⊆ X : |A| = k + 1 ∧ a ∈ A}.

c) Using b) show that
(

n
k

)
= n!

k!(n−k)!
.

d) If |X| = n, then 2n =
∑n

i=0

(
n
i

)
.

Hint: 2n = |P(X)|.
e) For n > 0 show that

n∑

i=0

(−1)i

(
n

i

)

= 0.

Hint: If |X| = n, a ∈ X, then F : P(X) −→ P(X) defined as F (A) = A ∪ {a} if
a /∈ A and F (A) = A \ {a} if a ∈ A, is a bijection.

f) Show the Binomial Theorem: If R is a ring, then

(x+ y)n =

n∑

i=0

(
n

i

)

xi · yn−i

for any x, y ∈ R.

1.10 Pigeonhole Principle

a) IfA is a finite partition of a setX, and |A| ≤ |B| for each A ∈ A, then |X| ≤ |A|·|B|.
Hint: By induction over |A|.

b) Prove Theorem 1.9.
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c) Assuming the Axiom of Choice prove the Pigeonhole Principle for infinite sets: Let
m be a cardinality, i.e., m = |B| for some set B. Let f : X −→ Y . If |Y | ·m < |X|,
then there exists a y ∈ Y such that the cardinality of the inverse image f−1({y})
is greater than m.

1.11 Choice from Finite Sets

We denote by ACn the statement “ACn(X) holds true for any set X”.

a) Show (in ZF) that ACkn → ACn for any n, k > 1.

b) Assume p|n, p is a prime and ACp holds true. Then for any set X there exists a
function g : [X]n −→ P(X) such that g(A) is a non-empty proper subset of A for
any A ∈ [X]n.

Hint: Note that
(

n
p

)
is not divisible by n. Let h : [X]p −→ X be a selector. If

A ∈ [X]n, a ∈ A, denote by n(a) the number of subsets B ⊆ A of cardinality p for
which h(B) = a. Since

∑
a∈A n(a) =

(
n
p

)
, the numbers n(a), a ∈ A cannot be equal.

Take g(A) to be the set of those a ∈ A for which n(a) is maximal.

c) Show that AC2 ≡ AC4.

Hint: Let g be the function of b) for n = 4, f being a selector for [X]2. For A ∈ [X]4

set

h(A) =






the only element of g(A), if |g(A)| = 1,
the only element of A \ g(A), if |g(A)| = 3,
f(g(A)), if |g(A)| = 2.

d) Show that

AC6 ≡ (AC2 ∧ AC3), (AC2 ∧ AC5)→ AC8, AC10 → AC8,
(AC2 ∧AC3)→ AC8, (AC2 ∧ AC3)→ AC9, AC6 → AC8.

Hint: Similarly as in c) and use results of a) and b).

1.12 Definitions of Finiteness

Define:

F1(X) ≡ every non-empty subset of 〈P(X),⊆〉 has a maximal element,

F2(X) ≡ every proper subset of P(X) has smaller cardinality than P(X),

F3(X) ≡ every proper subset of X has smaller cardinality than X,

F4(X) ≡ X is empty or |X| < |X|+ |X|,
F5(X) ≡ |X| ≤ 1 or |X| < |X| · |X|,
F6(X) ≡ |X| = ℵξ for no ξ.

Show that

a) X is finite if and only if F1(X) holds true.

Hint: Consider the set {A ⊆ X : (∃n) |A| = n}.
b) Fi(X)→ Fi+1(X) for i = 1, . . . , 5.

c) If AC holds true, then F6(X) → F1(X) for any set X.

d) ¬F3(X) ≡ |X| ≥ ℵ0.
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1.13 Alternatives

Alonzo Church considered three mutually exclusive Church alternatives:

CHA(A) There exists a selector for the Lebesgue decomposition (1.14).

CHA(B) There exists no selector for the Lebesgue decomposition (1.14) and ω1 is
regular.

CHA(C) ω1 is cofinal with ω.

a) If the alternative CHA(A) holds true, then ω1 is regular.

b) The alternative CHA(A) holds true in ZFC.

c) The alternative CHA(C) is consistent with ZF.

Hint: See Theorem 1.19.

d) The following are equivalent in ZF:

(i) COF(ω1) holds true.

(ii) Church’s alternative CHA(A) holds true.

(iii) There exists a function G : ω1 −→ ωω1 such that G(ξ) : ω
1−1−→
onto

ξ for each

ξ < ω1, ξ ≥ ω.

Hint: To show (ii)→ (i) construct the desired function F : ω1 −→ ωω1 from a choice
function for the Lebesgue decomposition similarly as in the proof of Theorem 1.21.
(iii) → (ii) is trivial. (i)→ (iii) can be proved by a transfinite inductive construction.

1.14 Partition Relation

Let κ, λ denote cardinalities, n, k being natural numbers. The partition relation κ→ (λ)k
n

is defined as follows: for any set X of cardinality κ and for any mapping F : [X]k −→ n
there exists a set Y ⊆ X and an i < n such that |Y | = λ and F (x) = i for any x ∈ [Y ]k.
The function F is called a coloring, i < n are colors. The set Y is called a homogeneous
set. The negation of the partition relation will be denoted by κ � (λ)k

n.

a) Show that 6→ (3)22, 17 → (3)23, 5 � (3)22.

Hint: Let F : [6]2 −→ 2. Fix i ∈ 6. Then there exists a set A ⊆ 6, |A| = 3 and
k ∈ 2 such that F ({i, j}) = k for j ∈ A. If F ({x, y}) = 1 − k for all x, y ∈ A we
are ready. Otherwise there are x, y ∈ A such that F ({x, y}) = k. Then {i, x, y} is
the desired homogeneous set.

b) If κ→ (λ)k
n holds true and κ′ ≥ κ, λ′ ≤ λ, k′ ≤ k and n′ ≤ n, then also κ′ → (λ′)k′

n′ .

c) Show that 22m−1 → (m)22.

Hint: Let |X| = 22m−1. Let F : [X]2 −→ 2 be a coloring. For i = 0, . . . , 2m − 1
choose a set Ai ⊆ X, a point xi ∈ Ai and for i < 2m − 1 also a color ki ∈ 2
such that: A0 = X, |Ai| ≥ 22m−i−1 for any i ≤ 2m − 1, F ({xi, a}) = ki for any
a ∈ Ai+1, i < 2m−1. There exists a set C ⊆ 2m−1 such that |C| = m and ki = kj

for any i, j ∈ C. The set {xi : i ∈ C} is homogeneous.

d) If m→ (n)2k and n→ (p)2l , then m→ (p)2k·l.

Hint: Join colors to obtain k colors each of l elements.

e) Prove the Ramsey Theorem: For any natural numbers m, k there exists a natural
number p such that p→ (m)2k.

Hint: By induction over k – join two colors.

f) Show that in e) you can replace number 2 by any natural number n > 1.
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1.2 Topological Preliminaries

We assume that the reader is familiar with basic notions of topology and their
properties. However, since, as in other branches of infinite mathematics, mathe-
maticians freely use the axiom of choice, we must carefully check classical results
of topology to determine if they really need AC for their proof.

Let X be a non-empty set. A family O ⊆ P(X) is called a topology on X if

1) ∅, X ∈ O,

2) if A,B ∈ O, then A ∩B ∈ O,

3) if A ⊆ O, then
⋃
A ∈ O.

The couple 〈X,O〉 is called a topological space. A subset of X belonging to O is
called an open set. An element of a topological space is usually called a point.

If O is a topology on X and Y ⊆ X is a non-empty subset, then the family
O|Y = {A ∩ Y : Y ∈ O} is a topology on Y . The topological space 〈Y,O|Y 〉 is
called a topological subspace of 〈X,O〉 and O|Y is the subspace topology on Y .

For any set A ⊆ X there exists the largest open subset of A,

Int(A) =
⋃
{U ∈ O : U ⊆ A}.

The set Int(A) is called the interior of A. A set A is open if and only if A = Int(A).
A set A ⊆ X is called closed if X \ A is open. The closure A of a set A is the
smallest closed set containing A as a subset, i.e., A = X\Int(X\A). The boundary
of a set A is the set Bd(A) = A∩X \A. A set A is called clopen if A is both open
and closed. Thus A is clopen if and only if Bd(A) = ∅. Evidently

Int(Int(A)) = Int(A), Int(A ∩B) = Int(A) ∩ Int(B), A = A, A∪B = A ∪B.

A set A ⊆ B ⊆ X is topologically dense or simply dense in B if B ⊆ A. A set
dense in X is called dense. A set A is called regular open if A = Int(A). For any
set A, the set Int(A) is regular open. If moreover A is open, then A ⊆ Int(A).

A topological space 〈X,O〉 is called Hausdorff if for any pair of distinct points
x, y ∈ X there exist open sets U, V such that x ∈ U , y ∈ V and U ∩ V = ∅.

A Hausdorff space is called regular if for any closed set A ⊆ X and any
x ∈ X \ A there exist open sets U, V such that A ⊆ U , x ∈ V and U ∩ V = ∅.
Finally, a Hausdorff space is called normal if for any disjoint closed sets A,B there
exist open sets U, V such that A ⊆ U , B ⊆ V and U ∩ V = ∅.
Theorem 1.22. Let 〈X,O〉 be a topological space, Y ⊆ X being endowed with the
subspace topology.

a) If 〈X,O〉 is Hausdorff, then 〈Y,O|Y 〉 is Hausdorff as well.
b) If 〈X,O〉 is regular, then 〈Y,O|Y 〉 is regular as well.
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A similar assertion is not true for normal spaces. There exists a normal space
such that by omitting a point one obtains a subspace that is not normal – see
Exercise 1.22.

A family B ⊆ O is called a base of the topology O if for any A ∈ O there
exists a set A ⊆ B such that A =

⋃
A. We shall assume that the empty set is not

a member of a base. A topological space X is separable if there exists a countable
subset dense in X .

Theorem 1.23. If B is a base of the topology O of a Hausdorff space X, then
|O| ≤ 2|B| and |X | ≤ 2|B| as well. Consequently, if X is a Hausdorff space with
a countable base, then |X | ≤ c. Hence, wAC implies that a Hausdorff space with
a countable base is separable.

Proof. Set F (x) = {U ∈ B : x ∈ U} ∈ P(B). If X is Hausdorff, then F is
an injection.

A selector of a countable base B of X is a countable dense subset of X . �

A set U ⊆ X is called a neighborhood of a point x ∈ X if x ∈ Int(U), i.e., if
x ∈ V ⊆ U for some open set V . One can easily show that

x ∈ A ≡ A ∩ U �= ∅ for any neighborhood U of x. (1.17)

Let V be a family of non-empty subsets of X , x ∈ X . V is called a neighborhood
base at the point x if a set V is a neighborhood of x if and only if there exists
a set U ∈ V such that U ⊆ V .

A point x ∈ X is called an accumulation point of A if for every neighborhood
U of x the intersection U ∩ A has at least two points. If x ∈ A and x is not an
accumulation point of A, then the point x is called an isolated point of the set
A. Thus x is an isolated point of A if there exists a neighborhood U of x such
that U ∩ A = {x}. A non-empty closed set A ⊆ X is called perfect if A does not
contain any isolated point.

Theorem [wAC] 1.24 (G. Cantor – I. Bendixson). In any Hausdorff topological
space 〈X,O〉 with a countable base, there exist a perfect set P and a countable set
R such that X = P ∪R.

Proof. Let B be a countable base of topology O. We set

P = {x ∈ X : (∀U) (U neighborhood of x→ |U | > ℵ0)}.

One can easily check that P is closed and without isolated points. Using Theorem
1.14 we obtain

X \ P ⊆
⋃
{U ∈ B : U countable}.

By Theorem 1.18 we have that R = X \ P is countable. �
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We define a similar notion for a sequence of points. If {an}∞n=0 is a sequence
of points of X , then a point a is called a cluster point of the sequence {an}∞n=0 if
for every neighborhood U of a and every natural number n there exists an m > n
such that am ∈ U . Evidently, every accumulation point of the set {an : n ∈ ω}
is a cluster point of the sequence {an}∞n=0. If an = a for all n, then a is a cluster
point of the sequence but not an accumulation point of the set. A point x is a limit
of the sequence {an}∞n=0, written x = limn→∞ an, if for any neighborhood U of x
there exists an n0 such that an ∈ U for any n ≥ n0. A sequence {an}∞n=0 is said
to be convergent, if there exists an x = limn→∞ an.

Note the following:

if f : ω 1−1−→
onto

ω, lim
n→∞xn = x, then lim

n→∞xf(n) = x. (1.18)

Thus for any infinite countable A ⊆ X we can write limA, since the result does
not depend on the enumeration of A.

If a point x ∈ X has a countable neighborhood base V = {Un : n ∈ ω}, then
{
⋂n
i=0 Ui : n ∈ ω} is a decreasing neighborhood base. So in such a case we can

always assume that the neighborhood base is decreasing.
A set G is called a Gδ set if G =

⋂
nGn, where Gn are open. A complement

of a Gδ set is called an Fσ set. Thus F is an Fσ set if F =
⋃
n Fn, where Fn are

closed. We can assume that Gn ⊇ Gn+1 and Fn ⊆ Fn+1 for each n. The family of
all Gδ subsets of X and all Fσ subsets of X will be denoted as Gδ(X) and Fσ(X),
respectively.

Note the following important fact. If 〈X,O〉 has a countable base, then by
Theorem 1.23 we have

|Gδ(X)| � c, |Fσ(X)| � c. (1.19)

Hence, we can apply wAC to sequences of families of Gδ and Fσ sets.
Let 〈X1,O1〉 and 〈X2,O2〉 be topological spaces. A mapping f : X1 −→ X2

is called continuous if f−1(U) ∈ O1 (is open) for any open set U ∈ O2. A mapping
f : X1

1−1−→
onto

X2 is called a homeomorphism if both f and f−1 are continuous. If

f is a homeomorphism, then also the inverse mapping f−1 is a homeomorphism.
Topological spaces 〈X1,O1〉 and 〈X2,O2〉 are said to be homeomorphic if there
exists a homeomorphism f : X1 −→ X2. Two homeomorphic spaces possess equal
topological properties and therefore from the topological point of view they are
usually identified. A continuous injection f : X1

1−1−→ X2 is called an embedding if
f−1 : f(X1) −→ X1 is continuous, i.e., if f : X1 −→ f(X1) is a homeomorphism.
Thus if f : X1

1−1−→ X2 is an embedding, then X1 and the subset f(X1) of the space
X2 are homeomorphic. Of course we suppose that f(X1) is endowed with the
subspace topology O2|f(X1).

A function f : X1 −→ X2 is called continuous at a point a ∈ X1 if f−1(V ) is
a neighborhood of a for any neighborhood V ⊆ X2 of f(a).
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Theorem 1.25.

a) f : X1 −→ X2 is continuous if and only if f is continuous at each point
a ∈ X1.

b) Let V1, V2 be neighborhood bases of 〈X1,O1〉 at point a and that of 〈X2,O2〉
at point f(a), respectively. Then f is continuous at a if and only if for any
V ∈ V2 there exists a U ∈ V1 such that f(U) ⊆ V .

A subset A ⊆ X of a topological space X is called a retract of X if there
exists a continuous mapping r : X −→ A such that r(x) = x for any x ∈ A. We
have a simple

Theorem 1.26. If A is a retract of X and f : A −→ Y is continuous, then there
exists a continuous F : X −→ Y such that f = F |A.

Let A be a subset of a topological space 〈X,O〉. A ⊆ P(X) is a cover of
A if A ⊆

⋃
A. We usually ask that ∅ /∈ A and X /∈ A. A cover A of a set A is

called an open cover of A if A ⊆ O, i.e., if every member of A is an open set. An
open cover of the set X is simply called an open cover. Similarly for closed covers,
clopen covers etc.

A Hausdorff space 〈X,O〉 is compact if for every open cover A of X there
exists a finite subcoverA0 ⊆ A of X . A non-empty subset A ⊆ X is called compact
if the topological space 〈A,O|A〉 is compact. It is easy to see that a subset A of
a Hausdorff topological space X is compact if and only if for every open cover
A of A there exists a finite subcover A0 ⊆ A of A. In the standard proof you
must use the axiom of choice for finite families. However, this is provable in ZF –
compare the proof of Theorem 1.30. Now one can easily see that a closed subset of
a compact topological space is a compact set. The family of all compact subsets
of a topological space 〈X,O〉 will be denoted by K(X,O) or simply K(X).

Theorem 1.27.

a) If 〈X,O〉 is a Hausdorff space and A ⊆ X is a compact subset, then A is
closed.

b) A compact space is normal.

Proof. Define a function r : O −→ O as r(U) = Int(X \U). Then U ∩ r(U) = ∅ for
any U ∈ O. Moreover, r(U1 ∪ U2) = r(U1) ∩ r(U2).

Let A ⊆ X be compact. We show that A ⊆ A, i.e., that A is closed. So, let
x /∈ A. We want to show that x /∈ A. Set

W = {U ∈ O : x ∈ r(U)}.

If y ∈ A, then x �= y and therefore there are open sets U, V such that y ∈ U ,
x ∈ V and U ∩ V = ∅. Then V ⊆ r(U) and therefore U ∈ W . Thus W is an open
cover of A. Since A is a compact set, there exist finitely many U0, . . . , Un ∈ W
such that A ⊆ U0 ∪ · · · ∪ Un. Then r(U0) ∩ · · · ∩ r(Un) is a neighborhood of x
disjoint with the set A, consequently x /∈ A.
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Now assume that X is a compact space and A is a closed subset of X , x /∈ A.
Then A is compact and as above we can find open sets U0, . . . , Un such that

A ⊆ U = U0 ∪ · · · ∪ Un and x ∈ r(U0) ∩ · · · ∩ r(Un) = r(U).

Since U, r(U) are disjoint, we have shown that the space X is regular.
Assume now that A, B are closed disjoint sets. If W = {U ∈ O : B ⊆ r(U)},

then by regularity W is an open cover of A. Since A is compact, there exist open
sets U0, . . . , Un ∈ W such that

A ⊆ U = U0 ∪ · · · ∪ Un and B ⊆ r(U0) ∩ · · · ∩ r(Un) = r(U). �

Theorem 1.28.

a) Let 〈X,O〉 be a Hausdorff space. Then 〈X,O〉 is compact if and only if ev-
ery family F of closed subsets of X such that for any finite F0 ⊆ F the
intersection

⋂
F0 is non-empty, has non-empty intersection

⋂
F .

b) If 〈X,O〉 is a compact space and {An}∞n=0 is a decreasing sequence of non-
empty closed subsets of X, then

⋂
nAn �= ∅.

The theorem follows by the de Morgan laws.
Corollary 1.29. Every sequence of points of a compact space has a cluster point.

Proof. The set
⋂
n {ak : k ≥ n} is non-empty and any of its elements is a cluster

point of {an}∞n=0. �
Theorem 1.30. Assume that 〈X1,O1〉 and 〈X2,O2〉 are topological spaces, 〈X2,O2〉
is Hausdorff and f : X1 −→ X2 is continuous. If A is a compact subset of X1,
then the subset f(A) of X2 is compact as well.

Proof. Let A be an open cover of f(A). Then B = {f−1(U) : U ∈ A} is an open
cover of the set A and therefore there exists a finite subcover B0 ⊆ B. Then

{{U ∈ A : f−1(U) = V } : V ∈ B0}

is a finite family of non-empty sets. Thus there exists a choice function for this
family. The range of this choice function is a finite subcover of A. �
Corollary 1.31. If f is a one-to-one continuous mapping of a compact topological
space 〈X1,O1〉 onto a Hausdorff topological space 〈X2,O2〉, then f is a homeo-
morphism.

A Hausdorff topological space 〈X,O〉 is locally compact if for every point
x ∈ X and every neighborhood U of x there exists a compact neighborhood V of
x such that V ⊆ U . It is easy to see that a Hausdorff space is locally compact if
and only if for any x ∈ X there exists a compact neighborhood of x. A Hausdorff
topological space 〈X,O〉 is σ-compact if there are compact sets 〈Xn ⊆ X : n ∈ ω〉
such that X =

⋃
nXn. Similarly, a set A ⊆ X is σ-compact if there are compact

sets 〈An ⊆ A : n ∈ ω〉 such that A =
⋃
nAn.
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Theorem 1.32. A locally compact space with a countable base of topology is σ-com-
pact.

The proof is easy. Let B = {Un : n ∈ ω} be a countable base of topology. We set

Xn =
⋃
{Uk : k < n ∧ Uk is compact}.

Evidently every Xn is compact and
⋃
nXn = X . �

A set A ⊆ X is called disconnected if there exist open sets U, V such that
U ∩A �= ∅, V ∩ A �= ∅, U ∩ V ∩A = ∅ and A ⊆ U ∪ V . If A is not disconnected,
then A is called connected.
Theorem 1.33. If f : X1 −→ X2 is continuous, A ⊆ X1 is a connected set, then
also the set f(A) is connected.

A topological space X is zero-dimensional, written ind(X) = 0, if there
exists a base of topology consisting of clopen sets, i.e., if for any x ∈ X and
any neighborhood U of x there exists a clopen set V such that x ∈ V ⊆ U .
A subspace of a zero-dimensional space is zero-dimensional as well. A topological
space X has the large inductive dimension zero, written Ind(X) = 0, if for any
disjoint closed sets A,B ⊆ X there exists a clopen set U such that A ⊆ U and
U ∩B = ∅. Note that such a space is normal.
Theorem 1.34. A compact zero-dimensional topological space has large inductive
dimension zero.

Proof. Let A,B be closed disjoint subsets of X . We set

U = {U ⊆ X : U clopen ∧ U ∩A �= ∅ ∧ U ∩B = ∅}.

Since X is zero-dimensional, U is a clopen cover of A. If {U0, . . . , Un} ⊆ U is
a finite subcover of A, then U = U0 ∪ · · · ∪ Un is the desired set containing the
set A and disjoint with B. �

A set A ⊆ X is nowhere dense if Int(A) = ∅. Note that the closure of a
nowhere dense set is nowhere dense. A set A is meager if there exists a sequence
{An}∞n=0 of nowhere dense sets such that A ⊆

⋃
nAn. Evidently a meager set is

a subset of a meager Fσ set. A meager set is also called a set of the first Baire
category. A set A ⊆ X is called comeager if X \A is meager.
Theorem 1.35. For any topological space 〈X,O〉 the following are equivalent:

a) No non-empty open set is meager.
b)
⋂
nAn is dense in X for any sequence {An}∞n=0 of open dense subsets.

c) X \A is dense in X for every meager A ⊆ X.

A topological space 〈X,O〉 is said to satisfy the Baire Category Theorem if
any of the conditions a)–c) of Theorem 1.35 holds true, e.g., if no non-empty open
subset is of the first Baire category.

Note the following simple fact: if 〈X,O〉 satisfies the Baire Category Theorem,
then an Fσ-subset A ⊆ X is meager if and only if Int(A) = ∅.
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Theorem 1.36 (E. Čech). A locally compact space with a countable base of topology
satisfies the Baire Category Theorem.

Proof. Let B be a countable base of a locally compact space 〈X,O〉. Let {An}∞n=0

be a sequence of open sets dense in X . We show that U ∩
⋂
nAn �= ∅ for any

non-empty open set U .
Fix an enumeration of the base B. Let U0 be the first element of B such that

U0 ⊆ U ∩ A0 and U0 is compact. By induction, if Un is defined, let Un+1 be the
first element of B such that Un+1 ⊆ Un ∩An+1. Then

∅ �=
⋂

n

Un ⊆ U ∩
⋂

n

An.

Hence
⋂
nAn is dense. �

Assuming the Axiom of Choice, the theorem holds true for any locally com-
pact space, see Exercise 1.23.

The family of all topologies on a non-empty set is ordered by the inclusion.
A topology O1 on X is called weaker than the topology O2 on X if O1 ⊆ O2. We
say also that O2 is coarser than O1. The weakest topology on a set X is {∅, X}.
The coarsest topology on X is the discrete topology P(X). Very often if there
exists a topology with a given property, then there exists the weakest topology
with this property. Especially, if 〈〈Xs,Os〉 : s ∈ S〉 are topological spaces and
〈fs : X −→ Xs : s ∈ S〉 are mappings, then there exists the weakest topology on
X such that all 〈fs : s ∈ S〉 are continuous.

Let 〈〈Xs,Os〉 : s ∈ S〉 be topological spaces. The weakest topology on the
Cartesian product Πs∈SXs such that all projections 〈projs : s ∈ S〉 are continuous
is called the product topology and denoted by Πs∈SOs. The family of all sets
Πs∈SUs, where the sets Us ⊆ Xs are open and {s ∈ S : Us �= Xs} is finite, is
a base of the product topology. Thus, if 〈X1,O1〉 and 〈X2,O2〉 are topological
spaces, then the family {A1 × A2 : A1 ∈ O1, A2 ∈ O2} is a base for the product
topology O1 ×O2 on X1 ×X2.
Theorem [AC] 1.37 (A. Tychonoff). Let 〈〈Xs,Os〉 : s ∈ S〉 be Hausdorff topological
spaces. Then the product space 〈Πs∈SXs,Πs∈SOs〉 is compact if and only if every
space 〈〈Xs,Os〉 : s ∈ S〉 is compact.

The use of AC in the proof is essential. Actually, AC is equivalent to the
assertion “if 〈Xs : s ∈ S〉 are non-empty sets, then the product Πs∈SXs is non-
empty”.

If f : X1 −→ X2, then f ⊆ X1 ×X2 can be considered as the graph of f .
Theorem 1.38. Assume that 〈X1,O1〉, 〈X2,O2〉 are Hausdorff topological spaces
and f : X1 −→ X2 is continuous. Then f is a closed subset of X1 ×X2.

A convergence structure on a set X is a mapping lim : X −→ X from a set
X ⊆ ωX . A sequence {xn}∞n=0 belonging to X is called convergent and the value
lim({xn}∞n=0) is called the limit of it and denoted limn→∞ xn. A set X endowed
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with a convergence structure lim is called an L∗-space if the following conditions
are satisfied:

(L1) if xn = x for every n, then limn→∞ xn = x;
(L2) if limn→∞ xn = x and {nk}∞k=0 is increasing, then limk→∞ xnk

= x;
(L3) if x �= limn→∞ xn, then there exists a subsequence {xnk

}∞k=0 such that no
subsequence of {xnk

}∞k=0 has limit x.

One can easily show that an L∗-space has property (1.18).
Assume that X is an L∗-space. For any subset A ⊆ X we define the sequential

closureof A by
scl (A) = { lim

n→∞xn : xn ∈ A for every n}.

The sequential closure sclξ (A) of order ξ is defined by transfinite induction:

scl0 (A) = A, sclξ (A) = scl




⋃

η<ξ

sclη (A)



 for ξ > 0. (1.20)

If ω1 is regular, then
sclω1 (A) =

⋃

ξ<ω1

sclξ (A) ,

and therefore sclω1 (A) = sclξ (A) for any ξ ≥ ω1.
Every topological space 〈X,O〉may be endowed with a convergence structure

– the topological limit operation limn→∞ xn. The set X with this convergence
structure is an L∗-space. Moreover, if X is a topological space, then scl (A) ⊆ A
for any A ⊆ X . The inverse inclusion need not be true. A topological space 〈X,O〉
is a Fréchet space if A = scl (A) for every set A ⊆ X , i.e., if for every A ⊆ X and
for every x ∈ A there exists a sequence {xn}∞n=0 of points of the set A such that
limn→∞ xn = x. Then sclξ (A) = scl (A) for any ξ > 0.

By Theorem 1.23 we can easily show that
Theorem [wAC] 1.39. A Hausdorff topological space with a countable base is a
Fréchet space.

We shall need the following result.
Theorem [wAC] 1.40. Assume that X is an L∗-space, |X | � 2ℵ0 . Then the fol-
lowing conditions are equivalent:

a) If limn→∞ xn = x, limm→∞ xn,m = xn for every n, then there exist sequences
{nk}∞k=0 and {mk}∞k=0 such that limk→∞ xnk,mk

= x.
b) If limn→∞ xn = x, limm→∞ xn,m = xn �= x for every n, then there ex-

ist sequences {nk}∞k=0 and {mk}∞k=0 such that {nk}∞k=0 is increasing and
limk→∞ xnk,mk

= x.
c) If limn→∞ xn = x, limm→∞ xn,m = xn �= x for every n, then there exist

increasing sequences {nk}∞k=0 and {mk}∞k=0 such that limk→∞ xnk,mk
= x.

d) scl1 (A) = scl2 (A) for any A ⊆ X.
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The proof is easy. One can show that a) → b) → c) → d) → a). The implication
c) → a) is trivial. So the equivalences a) ≡ b) ≡ c) can be proved in ZF. For
a proof of c) → d) one needs wAC. �

The condition a), therefore any of its equivalent conditions b), c) and d), is
called the sequence selection property, shortly SSP.

Corollary [wAC] 1.41. The convergence structure of a Fréchet topological space of
cardinality � c possesses the sequence selection property.

If X is a topological group, then X possesses SSP if and only if the following
condition e) is satisfied:

e) If limm→∞xn,m=e for every n, then there exist increasing sequences {nk}∞k=0

and {mk}∞k=0 such that limk→∞ xnk,mk
= e.

Indeed, if limn→∞ xn = x, limm→∞ xn,m = xn for every n, set yn,m = xn,m ◦ x−1
n .

If limk→∞ ynk,mk
= e, then limk→∞ xnk,mk

= x.
In what follows we shall use this fact without any commentary.
By a property of a subset A of a topological space 〈X,O〉 we understand a for-

mula ϕ such that for a given set A the sentence ϕ(A,X,O) is true or false. A prop-
erty ϕ is called topological if for any topological spaces 〈Xi,Oi〉, i = 1, 2 and any
homeomorphism f : X1 −→ X2, the sentences ϕ(A,X1,O1) and ϕ(f(A), X2,O2)
are equivalent for any A ⊆ X1. Evidently properties “to be open”, “to be closed”,
“to be nowhere dense”, “to be compact” are topological. Actually, all properties
introduced in this section are topological.

Similarly, a property ψ(X,O) of a topological space 〈X,O〉 is topological
if the sentences ψ(X1,O1) and ψ(X2,O2) are equivalent for any homeomorphic
spaces 〈X1,O1〉 and 〈X2,O2〉. We can also consider the property ψ of a subset A
of a topological space 〈X,O〉 by considering the property ψ(A,O|A). That was
our definition of the notion “a compact set”.

It may happen that a property of a subset of a topological space is actually
a property of a topological space. E.g., we could define that a subset A of a Haus-
dorff topological space 〈X,O〉 is compact if from any open cover of A one can
choose a finite subcover of A. That is a property of the subset A of a topologi-
cal space 〈X,O〉. However, it is well known that this definition is equivalent with
our definition as a property of a topological space. Also, we can define a notion
of a connected topological space and then show that a subset A of a topological
space 〈X,O〉 is connected according to our definition if and only if the topological
space 〈A,O|A〉 is connected.

In the rest of this section we assume that the reader is familiar with some
elementary logic, see Sections 11.4 and 11.5. Topological properties essentially fall
into two disjoint classes – internal and external properties. It may happen that a
set A does have a property when considered as a subset of a topological space X1

and A (or its homeomorphic copy) does not have the property when considered as
a subset of another – not homeomorphic – topological space X2. We begin with
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an exact definition. Let us consider a class S of topological spaces. We want to
say that a topological property ϕ is internal6 in a class S, if for any topological
spaces 〈Xi,Oi〉 in S and any subsets Ai ⊆ Xi, i = 1, 2 such that 〈A1,O1|A1〉 is
homeomorphic to 〈A2,O2|A2〉, the set A1 possesses the property ϕ if and only if
A2 possesses the property ϕ, i.e., if ϕ(A1, X1,O1) is equivalent to ϕ(A2, X2,O2).
A careful reader must remark that this is actually a metamathematical notion
and we should be precise in which theory the equivalence of ϕ(A1, X1,O1) and
ϕ(A2, X2,O2) is provable. Thus the definition must be as follows. Let T be an
extension of the set theory ZF. A property ϕ is internal for a class S in a theory
T if7

T � (∀〈Xi,Oi〉 ∈ S, i = 1, 2)(∀Ai ⊆ Xi, i = 1, 2) ((A1 homeomorphic to A2)
→ (ϕ(A1, X1,O1) ≡ ϕ(A2, X2,O2))). (1.21)

A topological property that is not internal should be external. However that is
confusing, since we do not know how to understand it: the equivalence in (1.21) is
not provable or the negation is provable? We prefer to define that a property ϕ is
external for a class S in a theory T if

T � ¬(∀〈Xi,Oi〉 ∈ S, i = 1, 2)(∀Ai ⊆ Xi, i = 1, 2) ((A1 homeomorphic to A2)
→ (ϕ(A1, X1,O1) ≡ ϕ(A2, X2,O2))). (1.22)

It is easy to see that properties “to be open”, “to be closed”, “to be nowhere
dense” are external topological properties. They were intended as properties of
sets.

Assume that S2 ⊆ S1 and the theory T2 is an extension of T1. Then any
property internal for the class S1 in the theory T1 is an internal property for
the class S2 in the theory T2 as well. Similarly, any property external for the class
S2 in the theory T1 is an external property for the class S1 in the theory T2.

One can easily find a property that is neither internal nor external for a
suitable class and the set theory ZFC. E.g., let ϕ(A,X,O) denote the formula –
see Section 11.5

(A is an open subset of X) ∨V = L.

Evidently ϕ is a topological property. If S denotes the class of all topological spaces,
then the sentence of (1.21) is undecidable in ZFC. Thus ϕ is neither internal nor
external for the class of all topological spaces in ZFC.

Assume now that for any topological space 〈X,O〉 from a class S and any
A ⊆ X the topological property ϕ satisfies (in some extension T of ZF) the
following condition:

ϕ(A,X,O) holds true if and only if ϕ(A,A,O|A) holds true. (1.23)
6An internal property is different from the notion of an internal definition considered by topol-
ogists, see, e.g., R. Engelking [1977].
7Note that all objects of the definition ϕ, S and T are objects of metamathematics. Thus the
notion of an internal property is a notion of metamathematics!
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In other words, the property ϕ is formulated in the terms of the subspace topology
on the set A as a property of a topological space. Evidently in such a case ϕ is
an internal property for the class S in the theory T.

Vice versa, if ϕ is an internal property for the class S of all topological spaces
in T, then (1.23) holds true. However the condition that S is the class of all topo-
logical spaces is essential. We show it. Let S denote the class of all topological
spaces, ϕ being the property

(A ⊆ X is infinite) ∧ (〈X,O〉 is compact).

Then ϕ is internal for S in any extension T of ZF, however (1.23) fails. Even
so, sometimes we prefer to define an internal property as a property of a set and
then prove that (1.23) holds true. In such a case we emphasize the fact that an
introduced property of a set is internal for a class S in a theory T.

The topologists usually distinguish between internal and external property
by speaking about a property of a topological space and a property of a set,
respectively8. Sometimes trying to stress that a property is external, we say that
a set possesses a property relative to a space. We present a typical example: a set
A ⊆ X is said to be relatively compact if the closure A is compact. This property
is external, since it essentially depends on the space X in any extension of ZF.

Important internal and external properties will be investigated in Chapter 8.

Exercises

1.15 Closure Operator

Assume that, for any set A ⊆ X, there is defined a closure A such that for any A,B ⊆ X
the following hold true:

∅ = ∅, A ⊆ A = A, A ∪ B = A ∪ B.

a) Show that A ⊆ B for any A ⊆ B ⊆ X.

b) The family O = {A ⊆ X : X \A = X \ A} is a topology on X.

c) For any A ⊆ X, the set A is the closure of A in the sense of the topology O.

1.16 Limit of a Filter

Let 〈X,O〉 be a topological space. For a point a ∈ X we denote by N (a) the filter of all
neighborhoods of a. Let F be a filter of subsets of X. A point a ∈ X is a limit of the
filter F , written a = limF , if N (a) ⊆ F . The point a is a cluster point of the filter F if
a ∈ A for any A ∈ F .

a) 〈X,O〉 is Hausdorff if and only if any filter on X has at most one limit.

b) A limit of a filter is a cluster point of it.

c) A cluster point of an ultrafilter is a limit of it.

8Check the careful distinctions made by K. Kuratowski [1958a].
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d) Let A ⊆ X. Then a ∈ A if and only if there exists a filter F such that A ∈ F and
limF = a.

Hint: Take the filter generated by N (a) and the set A.

e) Assuming BPI, a point a is a cluster point of a filter F if and only if there exists
an ultrafilter F ′ ⊇ F such that a is a limit of F ′.

f) A Hausdorff space 〈X,O〉 is compact if and only if every filter on X has a cluster
point.

g) Assume BPI. Then a Hausdorff space 〈X,O〉 is compact if and only if every ultra-
filter on X has a limit.

1.17 Net

Let 〈X,O〉 be a topological space, A ⊆ X. A triple 〈E,≤, f〉 is called a net in A if 〈E,≤〉
is a directed poset and f : E −→ A. If F ⊆ E is a cofinal subset of E, then 〈F,≤, f |F 〉 is
a subnet of the net 〈E,≤, f〉. If E = ω, then a net is simply a sequence. A point a ∈ X
is a limit of the net 〈E,≤, f〉, written limx∈E,≤ f(x) = a, (simply limx∈E f(x) = a when
the ordering ≤ is understood) if for any neighborhood U of a there exists an x0 ∈ E such
that f(x) ∈ U for any x ≥ x0. The point a is a cluster point of the net 〈E,≤, f〉 if for
any neighborhood U of a and for any x0 ∈ E there exists an x ≥ x0 such that f(x) ∈ U .

The net 〈E1,≤1, f1〉 is finer than the net 〈E2,≤2, f2〉 if there exists a function
ϕ : E1 −→ E2 such that f1 = ϕ ◦ f2 and for every x0 ∈ E2 there exists a y0 ∈ E1 such
that ϕ(y) ≥2 x0 whenever y ≥1 y0.

a) Let g : X −→ Y . If 〈E,≤, f〉 is a net in X, then 〈E,≤, f ◦ g〉 is a net in Y .

b) If the mapping g : X −→ Y is continuous at a point a ∈ X and limx∈E f(x) = a,
then limx∈E g(f(x)) = g(a).

c) If F ⊆ E is cofinal in E, then the subnet 〈F,≤, f |F 〉 is finer than the net 〈E,≤, f〉.
d) Assume that the net 〈E1,≤1, f1〉 is finer than a net 〈E2,≤2, f2〉. Show that:

(i) if a = limx∈E1 f1(x), then a is a cluster point of the net 〈E2,≤2, f2〉;
(ii) if a is a cluster point of the net 〈E1,≤1, f1〉, then a is a cluster point of the net

〈E2,≤2, f2〉;
(iii) if b = limx∈E2 f2(x), then a = limx∈E1 f1(x).

e) Assuming AC show that if a is a cluster point of a net 〈E2,≤2, f2〉, then there is a
finer net 〈E1,≤1, f1〉 such that a = limx∈E1 f1(x).

Hint: Set

E1 = {〈x,U〉 : x ∈ E2 ∧ f2(x) ∈ U ∧ U neighborhood of a}

ordered as
〈x1, U1〉 ≤1 〈x2, U2〉 ≡ x1 ≤2 x2 ∧ U2 ⊆ U1.

Let ϕ(〈x,U〉) = x.

f) Assuming AC show that a ∈ A if and only if there exists a net 〈E,≤, f〉 in A such
that a = limx∈E f(x).

Hint: Take E = N (a).

g) Assuming AC prove the Heine Criterion: a mapping g : X −→ Y is continuous at
a point a ∈ X if and only if, for any net 〈E,≤, f〉 in X such that limx∈E,≤ f(x) = a,
also limx∈E,≤ g(f(x)) = g(a).
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If F is a filter on a set X and f : X −→ Y , then we write f [F ] = {A ⊆ Y : f−1(A) ∈ F}.
h) A point a ∈ X is a limit of the net 〈E,≤, f〉 if and only if a is the limit of the filter

f [F(E)] (Fréchet filter F(E) is defined in Exercise 11.2).

i) Assuming AC show that a Hausdorff space 〈X,O〉 is compact if and only if every
net in X has a cluster point.

Hint: Use Exercise 1.16, f).

1.18 Tychonoff’s Theorem

a) Assuming AC prove Tychonoff’s Theorem 1.37.

Hint: If F is an ultrafilter on Πs∈SXs, xs is a limit of projs[F ] for s ∈ S, then
limF = x ∈ Πs∈SXs, where x(s) = xs for s ∈ S.

Let 〈Xi,Oi〉, i = 1, 2 be compact topological spaces. Let X = X1 ×X2, O = O1 × O2.
Let U be an open cover of X consisting of sets of the form U1 × U2, where Ui ∈ Oi,
i = 1, 2.

b) For any x ∈ X1 there exist an open set V � x and a finite set U0 ⊆ U such that
V ×X2 ⊆

⋃
U0.

c) Prove that there exists a finite subcover of U covering X.

Hint: For any non-empty open V ⊆ X1 set

A(V ) = {U0 ⊆ U : V ×X2 ⊆
⋃
U0 ∧ U0 is finite}.

Show that {V ∈ O1 : A(V ) 	= ∅} is a cover of X1. If {V0, . . . , Vn} is a finite
subcover, one can choose from the finite set {A(V0), . . . ,A(Vn)} a finite subcover
of U.

d) Prove in ZF that a topological product of finitely many compact spaces is a compact
space.

1.19 Countability Axioms

If for any x ∈ X, the neighborhood filter N (x) has a countable base, then we say
that 〈X,O〉 satisfies the first axiom of countability or is first countable. If there exists a
countable base of the topology O, then we say that the space 〈X,O〉 satisfies the second
axiom of countability or is second countable. X is Lindelöf if any open cover of X contains
a countable subcover.

a) The first axiom of countability follows from the second one and not vice versa.

Hint: Take a suitable discrete space.

b) Let X satisfy the first axiom of countability and assume ACω. Then A = scl (A)
for any A ⊆ X, i.e., X is Fréchet.

c) If |X| � 2ℵ0 , then in b), ACω can be replaced by wAC.

d) Assume ACω. If a Hausdorff space 〈X,O〉 satisfies the second axiom of countability,
then X is compact if and only if every sequence in X has an accumulation point.

Hint: Use Exercise 1.16, g).

e) The second axiom of countability cannot be replaced by the first one in d).

Hint: Consider ω1 with interval topology.

f) If AC holds true, then a second countable topological space is Lindelöf.
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g) A zero-dimensional Lindelöf space X has large inductive dimension zero. If more-
over X is Hausdorff, then X is normal.

Hint: If A,B ⊆ X are disjoint closed, take for any x ∈ X a clopen set Wx � x
such that Wx ∩ A = ∅ or Wx ∩ B = ∅. Take {xn}∞n=0 such that

⋃
nWxn = X. Set

Un = Wxn \
⋃

i<n Wxi . Then the set
⋃
{Un : Un ∩ A 	= ∅} is clopen containing A

and disjoint with B.

1.20 Compactification

Let 〈X,O〉 and 〈Y,Q〉 be topological spaces, f : X
1−1−→ Y be a homeomorphism of

〈X,O〉 onto 〈f(X),Q|f(X)〉. The triple 〈Y,Q, f〉 is called a compactification of 〈X,O〉
if Y is compact and f(X) = Y . A compactification 〈Y1,Q1, f1〉 is weaker than the

compactification 〈Y2,Q2, f2〉 if there exists a continuous mapping g : Y2
onto−→ Y1 such

that f1 = f2 ◦ g. Then compactification 〈Y2,Q2, f2〉 is stronger than 〈Y1,Q1, f1〉.
a) Let 〈X,O〉 be locally compact and not compact. Set Y = X ∪ {∞} (we assume

that ∞ /∈ X). A set A ⊆ Y belongs to Q if either A ∈ O or ∞ ∈ A and X \ A is
compact. Show that 〈Y,Q, idX〉 is a compactification of 〈X,O〉.

b) Show that the compactification constructed in part a) is the weakest one.

c) If 〈Y,Q〉 is compact, X ⊆ Y , then 〈X,Q|X, idX〉 is a compactification of 〈X,Q|X〉.
d) If 〈Yi,Qi, fi〉, i = 1, 2 are compactifications of a topological space 〈X,O〉, then

there exists a compactification 〈Y,Q〉 stronger than both 〈Yi,Qi, fi〉, i = 1, 2.

Hint: Define h : X −→ Y1 × Y2 by h(x) = 〈f1(x), f2(x)〉. Take Y = h(X).

1.21 [AC] The Strongest Compactification

a) Show that for any system 〈〈Ys,Qs, fs〉, s ∈ S〉 of compactifications of 〈X,O〉 there
exists a compactification stronger than any of them.

Hint: Embed X in the Tychonoff product of 〈〈Ys,Qs, fs〉, s ∈ S〉 and take the closure
of the image by the embedding.

b) The class of all compactifications of a topological space X is a set.

Hint: If Y is a compactification of X, then by Exercise (1.16) every point of Y is

a limit of a filter on X. Hence |Y | ≤ 22|X|
. Therefore the class of all compactifica-

tions has cardinality at most 222|X|
.

c) Conclude that if there exists a compactification of a topological space 〈X,O〉, then
there exists the strongest one.

Hint: By b) The class of all compactifications of a topological space X is a set.
Apply the result of a).

1.22 Normal Space with a Non-normal Subspace

If X is an infinite set endowed with the discrete topology, ∞ /∈ X, we denote by OX the
topology on X ∪ {∞} defined in Exercise 1.20, a).

a) If X, Y are infinite sets, then 〈(X ∪ {∞}) × (Y ∪ {∞}),OX ×OY 〉 is normal.

b) X × {∞} and {∞} × Y are disjoint closed subsets of the space

Z = (X ∪ {∞})× (Y ∪ {∞}) \ {〈∞,∞〉}

endowed with the subspace topology.



1.2. Topological Preliminaries 35

c) If |X| = ℵ0, |Y | = c and E ⊆ X × Y is such that |{y ∈ Y : 〈x, y〉 ∈ E}| < ℵ0 for
every x ∈ X, then |{y ∈ Y : (∃x ∈ X) 〈x, y〉 ∈ E}| ≤ ℵ0 < c.

Hint: We can assume that X = ω and Y = R. Let En = {y ∈ R : 〈n, y〉 ∈ E} be the
vertical section. All En being finite are well ordered by the usual ordering ≤ of R.
Therefore there exists a unique order preserving mapping fn from En onto a natural
number. Use a pairing function to show that the set {y ∈ Y : (∃x ∈ X) 〈x, y〉 ∈ E}
is countable.

d) Assume ℵ0 ≤ |X| < |Y | = c. If U ⊆ Z is open and such that X × {∞} ⊆ U , then
there exists a y0 ∈ Y such that 〈x, y0〉 ∈ U for every x ∈ X.

Hint: For every x ∈ X the set {y ∈ Y : 〈x, y〉 /∈ U} is finite.

e) If |X| = ℵ0 and |Y | = c, then the subspace Z of (X ∪ {∞}) × (Y ∪ {∞}) is not
normal.

Hint: Use the result of d).

f) Assume AC. If ℵ0 ≤ |X| < cf(|Y |), then the subspace Z of (X ∪{∞})× (Y ∪{∞})
is not normal.

Hint: There exist no open disjoint subsets of the space Z separating the sets X×{∞}
and {∞} × Y .

1.23 [AC] Topologically Complete Space

A topological space 〈X,O〉 is said to be topologically complete if there exists a compact-
ification 〈Y,Q, f〉 such that f(X) is a Gδ subset of Y .

a) If 〈X,O〉 is locally compact, then X is topologically complete.

Hint: Consider the compactification of 1.20, a).

b) Any Gδ-subset of a topologically complete space endowed with the subspace topol-
ogy is topologically complete.

c) Prove the Čech Theorem: If 〈X,O〉 is topologically complete, then 〈X,O〉 satisfies
the Baire Category Theorem.

Hint: Follow the proof of Theorem 1.36.

d) A locally compact topological space satisfies the Baire Category Theorem.

1.24 [AC] Baire Category Theorem

A topological space 〈X,O〉 is called κ-Baire if no non-empty open subset of X is a union
of κ meager sets. A family of non-empty sets A is called κ-closed if for any decreasing
chain 〈Aξ : ξ ∈ κ〉 of elements of A there exists an element A ∈ A such that A ⊆ Aξ for
every ξ ∈ κ.

a) A topological space is κ-Baire if and only if the intersection of κ many open dense
sets is a dense set.

b) If a topological space 〈X,O〉 has a κ-closed base (not containing the empty set),
then X is κ-Baire.

c) Let X = ω12. For g ∈ A2, A ⊆ ω1 we set [g] = {f ∈ X : g ⊆ f}. Let O be the
weakest topology on X containing all sets [g], where g ∈ A2, A countable. 〈X,O〉
does not satisfy the first axiom of countability.

d) Show that 〈X,O〉 defined in c) has an ω-closed base, therefore satisfies the Baire
Category Theorem, and is not locally compact.
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1.25 [AC] Convergence Structure

Let 〈X, lim〉 be an L∗-space.

a) A = sclω1 (A) is a closure operator on X.

b) limn→∞ xn in the sense of L∗-space is the limit in the sense of the topology defined
from the closure operator sclω1 (A) as well.

c) If 〈X, lim〉 satisfies any of the conditions of Theorem 1.40, then the family

O = {A ⊆ X : X \ A = scl1 (X \ A)}

is a topology on X and such that lim, in the sense of this topology, is the limit in
the sense of L∗-space as well.

Historical and Bibliographical Notes

There are many excellent textbooks on set theory. We mention just some of them.
One of the first monographs on set theory was F. Hausdorff [1904] published in
several editions. However, some set-theoretic results were already presented by
E. Borel [1898]. The monograph K. Kuratowski and A. Mostowski [1952] is a very
classical source and still relevant. The book by T. Jech [2006] contains also a
systematic introduction to forcing and models of set theory with related applica-
tions. A. Lévy [1979] is really a basic set theory containing all important basic
results (including an exposition on how to deal with classes). We can recommend
– according to the authors’ preface – “the text that takes on the form of a dia-
logue between the authors and the reader” W. Just and M. Weese books [1996]
and [1997]. B. Balcar and P. Štěpánek [2000], written in Czech, contains many
results concerning infinite combinatorics. An exposition of cardinal arithmetic at
an advanced level is presented by S. Shelah [1994].

The notion of a set – die Menge – was introduced by Bernard Bolzano [1950].
George Cantor [1870] investigated uniqueness of a trigonometric series. Trying to
generalize his result, he needed to describe an infinite collection of points and
therefore in [1872] introduced again a notion of a set (he speaks about a “Punkt-
menge”) and that of a countable set. G. Cantor [1874] shows that the set of alge-
braic reals is countable and the set of all reals is uncountable. Then he started to
study systematically sets of reals and mainly, cardinalities of such sets, see [1878].
Note that G. Cantor sometimes preferred the word “Mannigfaltigkeit” instead of
“Menge”. The story of paradoxes that appeared in the development of naive set
theory is presented in many sources, see, e.g., S.C. Kleene [1952] or A.A. Fraenkel
and Y. Bar-Hillel [1958]. The book [2000] by D.A. Aczel is devoted to G. Cantor’s
life from the point of view of his contribution to mathematics.

The first system of axioms of set theory was introduced by E. Zermelo [1908].
The axiom scheme of replacement was invented and added to the Zermelo system
by A. Fraenkel [1921]. For history see A.A. Fraenkel and Y. Bar-Hillel [1958]. The
proof by transfinite induction – Theorem 1.3 – was implicitly used by G. Can-
tor [1895] and explicitly formulated by G. Hessenberg [1906]. The definition by



1.2. Topological Preliminaries 37

transfinite induction – Theorem 1.4 – was formulated and proved by J. von Neu-
mann [1923] and [1928]. The notion of sets of the same cardinality was introduced
by B. Bolzano [1950] and G. Cantor [1878]. Theorem 1.5 was conjectured and used
by G. Cantor [1895], proved by R. Dedekind in 1887, however the first published
proof given by F. Bernstein has appeared in E. Borel [1898]. Cantor’s Theorem 1.6
was proved in [1892]. The equalities (1.5) were proved by G. Hessenberg [1906].
The equality for multiplication was proved also independently by P.E.B. Jour-
dain [1908]. Theorem 1.8 was announced in A. Lindenbaum and A. Tarski [1926]
as a result of A. Tarski without a proof. A proof was given by W. Sierpiński [1947],
see also W. Sierpiński [1965]. Exercises 1.5 and 1.6 follow W. Sierpiński [1965]. The
Pigeonhole Principle Theorem 1.9 (for finite sets) was formulated as “Schubfach-
prinzip” by P.G. Lejeune Dirichlet in 1834.

The implication a)→ b) of Theorem 1.10 was proved by E. Zermelo [1904].
The statement c) was formulated and proved by M. Zorn [1935]. A related state-
ment was formulated and proved earlier by K. Kuratowski [1922].

G. Cantor [1878] raised the question whether is there any set of reals whose
size is strictly between that of the set of all integers and that of the set of all reals.
He tried to prove a negative answer to this question and actually in [1878], p. 257
he announced that he can do it by some induction.

The axiom of dependent choice was formulated by P. Bernays [1942]. The
Weak Axiom of Choice wAC probably appeared for the first time in J. My-
cielski [1964b]. Theorem 1.15 was essentially proved by A. Tarski [1930] and by
M.H. Stone [1936]. The notions of a filter and an ultrafilter as a tool for a study
of convergence was explicitly introduced by H. Cartan [1937a] and investigated in
[1937b]. Theorem 1.16 is essentially due to H. Lebesgue [1905]. The consistency of
(1.15) was shown by S. Feferman and A. Lévy [1963].

Hartogs’ function of Exercise 1.3 is defined in F. Hartogs [1915]. König’s
Theorem, Exercise 1.7, a) was published by J. König [1905] and independently
by E. Zermelo [1908]. F. Hausdorff [1904] proved the formula of Exercise 1.7 f).
The formula g) was proved by L. Bukovský [1965] and later independently by
S.H. Hechler [1973]. The paper L. Bukovský [1965] is devoted to a proof of the
result of Exercise 1.7, j). Tarski’s recurrence formula is proved in A. Tarski [1925].

A systematic study of the various forms of the axiom of choice introduced in
Exercise 1.8 is presented in T. Jech [1967]. The axiom ACn was introduced and
studied by A. Mostowski [1945]. W. Sierpiński [1965] contains a systematic pre-
sentation of the topics. A. Lévy [1902] investigated the various definitions of finite-
ness. F3(X) means that X is Dedekind finite as introduced by R. Dedekind [1888].
F1(X) is the definition of finiteness by A. Tarski [1924]. The Church alternatives
were investigated by A. Church [1927]. P. Hájek [1966] showed that all three of
the Church alternatives considered in Exercise 1.13 may occur.

Exercises 1.14 are devoted to the finite version of F.P. Ramsey’s results [1930].
For a systematic explanation we recommend the monograph by P. Erdős, A Hajnal,
A. Máté and R. Rado [1984].
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The basic source of information on topological spaces may be R. Engelk-
ing [1977]. However the common proofs of many topological results usually exploit
the axiom of choice in spite of the fact that one can prove them in ZF or in ZFW.
That is the reason why in Section 1.2 we have presented some (maybe not obvious)
proofs. One of the first textbooks on topology (containing also the first definition
of a topology using a neighborhood system) is F. Hausdorff [1914]. The classi-
cal monograph by K. Kuratowski [1958a] is a great source of information, both
mathematical and historical. The Bourbaki exposition of general topology [1940]
is based on filters.

A proof of part c) of Theorem 1.22, presented in Exercise 1.22, can be found,
e.g., in R. Engelking [1977]. Theorem 1.24 was proved independently by G. Can-
tor [1883] and I. Bendixson [1883]. Theorem 1.36 and results of Exercise 1.23 are
due to E. Čech [1937]. Theorem 1.37 was proved by A. Tychonoff [1930].

A limit of a filter was defined and studied by H. Cartan [1937a], [1937b]
and then systematically developed in N. Bourbaki [1940]. The notion of a net
was introduced by E.H. Moore and H.L. Smith [1922] and then systematically
presented by J.L. Kelley [1955]. Problems of compactification were studied by
A.N. Tychonoff [1930], E. Čech [1937] and M.H. Stone [1937].

M. Fréchet [1906] introduced a notion of an L∗-space. For more information
see M. Fréchet [1928], K. Kuratowski [1958a] and R. Engelking [1977].
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The Real Line

L e h r s a t z. Wenn eine Eigenschaft M nicht allen Werthen einer veränder−
lichen Größe x, wohl aber allen, die kleiner sind, als ein gewisser u, zukommt:
so gibt es allemahl eine Größe U, welche die größte derjenigen ist, von denen
behauptet werden kann, daß alle kleineren x die Eigenschaft M besitzen.

Bernard Bolzano [1817], p. 41.

Theorem. If a property M does not apply to all values of a variable quantity
x, but to all those that are smaller than a certain u, there is always
a quantity U which is the largest of those of which it can be asserted that
all smaller x possess the property M.

Translation M. Kline [1972], p. 953.

We describe the real line and its fundamental properties. We try to avoid any form
of the axiom of choice when it is possible. When we use any form of the axiom of
choice we shall stay it explicitly.

2.1 The Definition

A real line is a linearly ordered field R = 〈R, =, ≤, +, ·, 0, 1〉 satisfying the
Bolzano Principle:

every non-empty subset of R bounded from above has a supremum. (2.1)

More precisely, if a set M ⊆ R is such that M �= ∅ and M is bounded from above,
then there exists a real s such that s = supM , i.e., s is an upper bound of M and
for any other upper bound t of M one has s ≤ t. An element of R is called a real
number or simply a real. Note that by the Bolzano Principle every non-empty set
of reals bounded from below has an infimum.

In the next section we show that in ZF one can prove that there exists a
real line and, up to isomorphism, the real line is unique. Now, we assume that

DOI 10.1007/978-3-0348-0006-8_2, © Springer Basel AG 2011
39L. Bukovský, The Structure of the Real Line, Monografie Matematyczne 71,
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there exists a real line R = 〈R, =, ≤, +, ·, 0, 1〉 and we start to investigate its
properties.

In spite of the fact that we have already defined a set of natural numbers we
present now another definition. Then we show that these notions are in a certain
sense isomorphic. We define the set N of natural numbers as the smallest subset
of R containing 0 and with any element x containing also x+ 1. Thus the set N of
natural numbers is defined as the set satisfying the following conditions:

1) 0 ∈ N,
2) (∀n) (n ∈ N → n+ 1 ∈ N),
3) if X ⊆ R is any set such that 0 ∈ X and (∀x) (x ∈ X → x+ 1 ∈ X),

then N ⊆ X .

The definition can be equivalently formulated as

N = {x ∈ R : (∀X ⊆ R) ((0 ∈ X ∧ (∀y) (y ∈ X → y + 1 ∈ X)) → x ∈ X)}.

Usually we denote natural numbers by letters i, j, k, l,m, n or with indexes k1, n1

etc.
The definition of N is similar to that of ω. Therefore we can obtain a similar

theorem on mathematical induction. For any particular formula ϕ of set theory
we have a particular theorem. So, let ϕ(x, x1, . . . , xk) be a formula of set theory.
Then
Theorem 2.1 (The First Theorem on Mathematical Induction).
Let x1, . . . , xk be given. If

(IS1) ϕ(0, x1, . . . , xk),
(IS2) (∀n ∈ N) (ϕ(n, x1, . . . , xk) → ϕ(n+ 1, x1, . . . , xk)),

then ϕ(x, x1, . . . , xk) holds true for any x ∈ N.

The proof is almost the same as that of Theorem 1.1. �

Using the First Theorem on Mathematical Induction one can prove basic
properties of natural numbers.
Theorem 2.2.

a) 0 is the smallest natural number, i.e., 0 ≤ n for any n ∈ N.
b) If n is a natural number, n �= 0, then there exists a natural number m such

that n = m+ 1.
c) If m < n, then m+ 1 ≤ n.
d) If n, m are natural numbers such that |n−m| < 1, then n = m.
e) If m ≤ n, then there exists a natural number k such that n = m+ k.
f) If n, m are natural numbers, then also n+m, n ·m are natural numbers.

Proof. To prove a) set X = {n ∈ N : n ≥ 0} and show by mathematical induction
that X = N.
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Similarly, to prove b), set X = {n ∈ N : n = 0 ∨ (∃m)m+ 1 = n} and show
by induction that X = N.

Set Xn = {m ∈ N : m ≥ n ∨m+ 1 ≤ n}. By a) we have X0 = N. If Xn = N,
then it is easy to show (by induction) that Xn+1 = N. Thus, by induction we
obtain that Xn = N for any n and therefore c) holds true.

d) follows easily from c) (by contradiction).
To obtain e) set Xn = {m ∈ N : m < n ∨ (∃k)m = n + k} and show by

induction that Xn = N for every n (using b)).
Since R is a field, from the definition you obtain immediately that the fol-

lowing four Peano axioms1 hold true:

n+ 0 = n, (2.2)
n+ (m+ 1) = (n+m) + 1, (2.3)

n · 0 = 0, (2.4)
n · (m+ 1) = (n ·m) + n (2.5)

for any n, m ∈ N.
Using those axioms one can easily prove by induction the statement f). �

The similarity of definitions of N and ω (note that a finite ordinal n ∈ ω is
the set {k : k < n}) leads to

Theorem 2.3. There exists a unique bijection F : N
1−1−→
onto

ω such that F (0) = ∅ and

for any n ∈ N, F (n+ 1) = F (n) ∪ {F (n)}.
Moreover, for any n, m ∈ N we have

|F (n+m)| = |F (n)|+ |F (m)|, |F (n ·m)| = |F (n)| · |F (m)|,

where the signs +, · on the left-hand side denote the operations on the field R
and on the right-hand side they denote the operations on cardinals as defined in
Section 1.1.

Proof. We write Nn = {k ∈ N : k < n}. Let

F =
⋃

n∈N

{f ∈ Nnω : f(0) = ∅ ∧ (∀k) (k + 1 < n→ f(k + 1) = f(k) ∪ {f(k)})}.

One can easily check that f ⊆ g or g ⊆ f for any f, g ∈ F . Moreover, for any
n ∈ N there exists an f ∈ F such that n ∈ dom(f). Set F =

⋃
F .

Since both the operations on the field R and the operations on cardinals
satisfy Peano axioms (2.2)–(2.5), the statement follows easily by induction. �

Using this bijection we shall identify the set N and ω. Thus N = ω and
consequently n = {k ∈ N : k < n} = Nn for any n ∈ N. Especially, 0 = ∅ and
n+ 1 = n ∪ {n} = {0, 1, . . . , n} for any n ∈ N.
1The list of all Peano axioms is given in Section 11.4.
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Theorem 2.4. Every non-empty set of natural numbers contains the smallest ele-
ment.

Proof. Let A ⊆ N be a non-empty set. Since A is bounded from below, there exists
a real s = inf A. Since s + 1 > s, there exists an n ∈ A such that s ≤ n < s + 1.
If s < n, then again there exists an m ∈ A such that s < m < n, a contradiction,
since |n−m| < 1. Thus s = n ∈ A. �

This theorem yields another method of proof by mathematical induction.
Assume that ϕ(x, x1, . . . , xk) is a formula of set theory. Then
Theorem 2.5 (The Second Theorem on Mathematical Induction).
Let x1, . . . , xk be given. If for any n ∈ N we have

(IS) (∀k < n)ϕ(k, x1, . . . , xk) → ϕ(n, x1, . . . , xk),

then ϕ(n, x1, . . . , xk) holds true for any n ∈ N.

Proof. We set
X = {n ∈ N : ¬ϕ(n, x1, . . . , xk)}.

If X �= ∅, then, by Theorem 2.4, there exists the smallest element n of the set X .
Then ¬ϕ(n, x1, . . . , xk) and ϕ(k, x1, . . . , xk) for k < n, a contradiction with (IS).

�
Theorem 2.6 (Archimedes Principle). The set N is unbounded in R. Hence for any
positive reals x, ε there is a natural number n such that n · ε > x.

Proof. If N were bounded, then there exists a supremum s = sup N. Then there is
an n ∈ N, n > s− 1. Hence n+ 1 > s, a contradiction. �

An integer number or simply an integer is any element of the set

Z = {x ∈ R : x ∈ N ∨ −x ∈ N}

and a rational number or simply a rational is any element of the set

Q = {x ∈ R : (∃z ∈ Z)(∃n ∈ N) (n �= 0 ∧ x = z/n)}.

A real that is not rational is called an irrational number or simply an irrational.
Z is an integral domain and Q is the field of fractions of Z. The set Z being

a union of two countable sets is a countable set. The set Q is the image of the
countable set N× Z by the mapping f(n, z) = z/(n+ 1), therefore

Q is countable. (2.6)

Consequently the set R \Q of irrationals has cardinality c.
Theorem 2.7. For any reals a < b there exists a rational r such that a < r < b.

Proof. We can assume that 0 ≤ a < b (the other cases can be easily reduced to
that one). By Archimedes’ Principle there exists a natural number n such that
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1/n < b − a. Using again Archimedes’ Principle there exists a natural number
m such that m · 1/n > a. Taking the smallest m with this property we obtain
a < m/n < b. �
Corollary 2.8. 〈Q,≤〉 is densely ordered.

Thus, by Theorem 11.4, a) we obtain
Corollary 2.9. Every linearly ordered countable set can be embedded in 〈Q,≤〉.

About 500 B.C. the Pythagoreans already knew that

there is no r ∈ Q such that r2 = 2. (2.7)

Actually, let us suppose that there exists an r = m/n ∈ Q such that r2 = 2. We
can assume that n is the smallest possible. Then m2 = 2n2 and therefore m = 2k
for some k < m. Hence 2k2 = n2 and again n = 2l for some l < n. Then r = k/l,
a contradiction.

One can easily show that

there exists a positive real s such that s2 = 2. (2.8)

Let M = {x ∈ R : x2 < 2}. We show that s = supM ∈ R is such that s2 = 2.
Assume s2 > 2. Then s1 = (s2+2)/(2s) < s and s21 = 2+((s2−2)/(2s))2 > 2.

Evidently s1 is an upper bound of M , a contradiction.
Assume now that s2 < 2. Set

s2 = s

(

1 +
2− s2

3s2

)

> s.

Since (2 − s2)/3s2 < 1, we obtain

s22 = s2

(

1 + 2
2− s2

3s2
+
(

2− s2
3s2

)2
)

< s2
(

1 + 3
2− s2

3s2

)

= 2.

Thus s2 ∈ M – again a contradiction. Hence s2 = 2 and by (2.7) s /∈ Q. Conse-
quently

Q �= R, i.e., there exists an irrational real.

From Theorem 2.7 we immediately obtain
Corollary 2.10. For any reals a < b there exists an irrational x such that a < x < b.

Generally the existence of the real
√
x for x > 0 follows by Corollary 2.17

below.
For every real x there exists the greatest integer z such that z ≤ x. The

integer z is called the integer part of the real x and will be denoted by �x�. Hence

�x� ≤ x < �x�+ 1.
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Thus a real x can be written as

x = �x�+ (x− �x�), (2.9)

where {x} = x− �x� ∈ 〈0, 1) is the fractional part of the real x.
If a is a real we set

a+ =

{
a if a ≥ 0,
0 if a < 0.

a− =

{
0 if a ≥ 0,
−a if a < 0.

Then
a = a+ − a−, |a| = a+ + a−. (2.10)

Sometimes we shall use the denotation

R+ = {x ∈ R : x ≥ 0}.

Exercises

2.1 Divisibility

Recall that an integer u divides an integer v, or u is a divisor of v, or v is a multiple of
u, written u|v, if there exists an integer z such that v = u · z.

a) The relation | is a partial ordering on N.

b) For any natural numbers n, q, q 	= 0 there are unique natural numbers k, r such
that n = kq + r and 0 ≤ r < q.

c) Show that for any non-zero natural numbers n and m there exists the greatest
common divisor. We denote it by (n,m). Moreover, there exist integers x, y such
that (n,m) = xn+ ym.

Hint: Consider the integer k = min{xn+ ym > 0 : x, y ∈ Z}.
d) Show that the greatest common divisor k of natural numbers n,m,p is k=((n,m),p).

e) The least common multiple of naturals n,m is nm/(n,m).

f) The poset 〈N, |〉 is a lattice.

g) If (k, n) = 1 and k|n ·m, then k|m.

Hint: If m = kq + r, 0 ≤ r < k, then nm = nkq + nr and therefore k|nr. On the
other hand 1 = xk + yn, thus r = xrk + yrn and therefore k|r.

2.2 Prime Numbers

A natural number n > 1 is called a prime if the only positive divisors of n are 1 and n.

a) Every natural number greater than 1 is divisible by a prime.

Hint: Use the Second Theorem on Mathematical Induction.

b) An integer is irreducible in Z if and only if z or −z is a prime.

c) For any prime p there exists a prime q such that p < q ≤ p! + 1.

d) Prove the Euclid Theorem: There exists infinitely many primes.
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e) Let p be a prime. If p|n ·m, then p|n or p|m.

d) Prove Fundamental Theorem of Arithmetic: Any natural number n > 1 can be
expressed as pk0

0 · · · · · pkm
m , where p0, . . . , pm are mutually different primes and

k0, . . . , km are positive natural numbers. Moreover, this expression is unique up to
order.

Hint: Existence is easy by a). The uniqueness follows by e).

2.3 Chinese Remainder Theorem

Let us recall that integers m,n are coprime, if no prime divides both of them. Assume
that m1, . . . ,mk are pairwise coprime integers greater than 1. Let M = m1 · · ·mk.

a) If ¬x ≡ y mod M , then ¬x ≡ y mod mi for some i.

b) Let x1, . . . , xk be the remainders of x, when divided bymi, i = 1, . . . , k, respectively.
If x varies from given integer c to c+M − 1, then x1, . . . , xk take different values.

c) Prove the Chinese Remainder Theorem: For any integers a1, . . . , ak there exists
arbitrarily large x such that

x ≡ a1 mod m1, . . . , x ≡ ak mod mk. (2.11)

d) If x, y are solutions of the equations (2.11), then x ≡ y mod M .

e) Assuming that ai ≡ aj mod mimj for any i, j ≤ k, one can omit the condition
that m1, . . . ,mk are pairwise coprime.

2.4 Algebraic Numbers

A real α is algebraic if there are n > 0, integers z0, . . . , zn, zn 	= 0 such that
∑n

i=0 ziα
i = 0,

i.e., if α is a root of a non-trivial polynomial with integer coefficients. A real that is not
algebraic is called transcendental. An irrational real α is called a Liouville number if for
any natural n there are integers p, q, q > 1 such that

∣
∣
∣
∣α−

p

q

∣
∣
∣
∣ <

1

qn
. (2.12)

a) A real α is algebraic if and only if α is algebraic over Q in the sense of Exercise
11.13.

b) Every rational is algebraic.

c) The set of algebraic numbers is countable. Thus, the cardinality of the set of all
transcendental reals is c.

Hint: The set of all non-trivial polynomials with integer coefficients is countable.

d) Let α be an algebraic irrational number. Assume that P (x) =
∑n

i=0 znx
n is the

polynomial with integer coefficients of the smallest degree such that P (α) = 0.
Then P (x) has no rational root.

e) Let P (x) be a polynomial with integer coefficients of degree n > 1. Assume that
P (α) = 0. Then there exists a positive integer k such that |P (x)| ≤ k|α − x| for
any |x− α| ≤ 1.

Hint: |
∑n

i=0 aix
i −
∑n

i=0 aiα
i| ≤ |x− α|

∑n
i=0 |ai|n(|α| + 1)n−1.
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f) Let α be an algebraic real, P (x) being a polynomial with integer coefficients of the
smallest degree such that P (α) = 0, α /∈ Q. Then there exists a positive integer k
such that ∣

∣
∣
∣α−

p

q

∣
∣
∣
∣ ≥

1

kqn

for any integers p, q, q > 0.

Hint: By e) we have |qnP (p/q)| ≤ kqn|α − p/q|. Since qnP (p/q) is an integer, by
d) we obtain |qnP (p/q)| ≥ 1.

g) Prove the Liouville Theorem: No algebraic number is a Liouville number.

Hint: Assume that α is an irrational algebraic real. Then |α− p/q| > 1/kqn. Take
m such that 2m ≥ k2n. If α is a Liouville number, then |α− p/q| < 1/qm for some
p, q. Then k > qm−n ≥ 2n−m ≥ k.

i) The real
∑∞

n=0 p
−n! is transcendental for any integer p > 1.

Hint: It is a Liouville number.

2.5 Sierpiński’s Theorem

a) Let A ⊆ R, M a positive real. If |
∑n

i=0 ai| ≤ M for any finite set {a0, . . . , an} ⊆ A,
then A is countable.

Hint: For any positive integer n the set {a ∈ A : |a| ≥ 1/n} is finite.

b) By Corollary 2.9 for any countable ordinal ξ there exists a subset of R order iso-
morphic to ξ. Show the opposite statement: if A ⊆ R is well ordered by ordering of
reals, then A is countable.

Hint: Use Theorem 2.7.

c) Prove Sierpiński’s Theorem: If the set R can be well ordered, then 2ℵ0 � (ℵ1)
2
2 (for

the definition of the partition relation see Exercise 1.14).

Hint: A couple {a, b} is colored by the color 0 if the well-ordering on {a, b} agrees
with the ordering of reals. Otherwise the couple has color 1.

2.2 Topology of the Real Line

A set A ⊆ R is open if for every x ∈ A there exists an ε > 0 with (x−ε, x+ε) ⊆ A.
One can easily see that the family E of so-defined open subsets of R is a topology
on R. Every open interval is an open set. Every closed interval is a closed set.
Moreover, the closure of an open interval (a, b) is the closed interval [a, b]. Similarly
for unbounded intervals.

Every open set is a union of a set of open intervals. Using Theorem 2.7 one
can easily check that the countable set

{(a, b) : a, b ∈ Q ∧ a < b}

is a base of the topology E . The set Q is a topologically dense subset of R.
We begin with proving some basic properties of the topological space 〈R, E〉.

Theorem 2.11. A non-empty closed bounded set has a greatest element.

The proof is easy. If A �= ∅ is closed and bounded, then there exists a = supA.
Since A ∩ (a− ε, a+ ε) �= ∅ for every ε > 0, we obtain a ∈ A = A. �
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Theorem 2.12. Every closed interval [a, b] is a compact set. Hence, the topological
space 〈R, E〉 is locally compact.

Proof. We present a proof due to H. Lebesgue, which does not use any form of
the axiom of choice.

Let {As : s ∈ S} be an open cover of the interval [a, b], i.e., As ∈ E for each
s ∈ S and [a, b] ⊆

⋃
s∈S As. Set

M =

{

x ∈ (a, b] : (∃S0 ⊆ S)

(

S0 finite ∧ [a, x] ⊆
⋃

s∈S0

As

)}

.

We claim that b ∈ M . We show successively that M �= ∅, supM ∈ M and
supM = b.

Since a ∈
⋃
s∈S As, there exists an s0 ∈ S such that a ∈ As0 . By assumption

the set As0 is open, therefore there is a positive ε such that (a− ε, a+ ε) ⊆ As0 .
Since [a, a+ ε/2] ⊆ As0 , we have a+ ε/2 ∈M . Hence M �= ∅.

The set M is bounded by the real b. So, there exists the supremum c = supM .
Evidently a < c ≤ b. Thus, there exists an s1 ∈ S such that c ∈ As1 . Again, there
is a positive real ε such that (c− ε, c+ ε) ⊆ As1 . Since c−ε < c, there is an x ∈M
such that x ≥ c− ε. By the definition of the set M there exists a finite set S0 such
that [a, x] ⊆

⋃
s∈S0

As. Set S1 = S0 ∪ {s1}. Then S1 is finite and

[a, c] = [a, x] ∪ (c− ε, c] ⊆
⋃

s∈S1

As.

Therefore c ∈M .
If c < b, then

[a, c+ ε/2] ⊆ [a, x] ∪ (c− ε, c+ ε/2] ⊆
⋃

s∈S1

As,

consequently c+ ε/2 ∈M – a contradiction with c = supM . Therefore c = b.
If U is a neighborhood of x ∈ R, then (x− ε, x+ ε) ⊆ U for some positive ε.

The closed interval [x− ε/2, x+ ε/2] ⊆ U is a compact neighborhood of x. �

One can easily see that any compact subset of A ⊆ R is bounded, i.e., there
exists a real c such that |x| < c for any x ∈ A. Therefore using Theorem 1.30 we
obtain
Corollary 2.13 (The First Weierstrass Theorem). Any continuous function from
a closed interval into R is bounded.
Corollary 2.14 (The Second Weierstrass Theorem). If f : [a, b] −→ R is continu-
ous, then there exists a real c ∈ [a, b] such that f(x) ≤ f(c) for any x ∈ [a, b].

Proof. The non-empty set A = {f(x) : x ∈ [a, b]}, being compact, is closed and
bounded. By Theorem 2.11 there exists a maximal element of A. �
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We present another fundamental property of the real line.
Theorem 2.15 (The Bolzano Theorem). If f : [a, b] −→ R is a continuous function,
f(a) �= f(b), and c is a real between f(a) and f(b), i.e., f(a) < c < f(b) or
f(b) < c < f(a), then there exists a real x0 ∈ (a, b) such that f(x0) = c.

Proof. We present a slight modification of the original proof by B. Bolzano, which
does not use any form of the axiom of choice.

We assume that f(a) < c < f(b). Set

M = {x ∈ [a, b] : f(x) < c}.

Evidently M is a non-empty bounded set of reals. Therefore there exists the supre-
mum x0 = supM . We show that f(x0) = c.

If f(x0) < c, then there exists a real δ > 0 such that |f(x)−f(x0)| < c−f(x0)
for every x ∈ (x0 − δ, x0 + δ). Then x0 + δ/2 ∈M , a contradiction.

If f(x0) > c, then there exists a real δ > 0 such that |f(x)−f(x0)| < f(x0)−c
for every x ∈ (x0 − δ, x0 + δ). Since x0 − δ < x0 = supM , there exists x ∈ M
such that x > x0 − δ. Then f(x) > c, which is a contradiction with the definition
of the set M .

Hence f(x0) = c. �
Theorem 2.16. Any interval in R is a connected set.

Proof. Assume that an interval I is not connected. Then there are open sets U ,
V such that

I ⊆ U ∪ V, U ∩ V ∩ I = ∅, U ∩ I �= ∅, V ∩ I �= ∅.

Choose a ∈ I ∩ U , b ∈ I ∩ V . We can assume that a < b. Then [a, b] ⊆ U ∪ V . Set

f(x) =
{
−1 if x ∈ [a, b] ∩ U,

1 if x ∈ [a, b] ∩ V.

For any set W ⊆ R, the set f−1(W ) is one of the sets [a, b], ∅, [a, b] ∩ U or
[a, b] ∩ V , i.e., always a set open in [a, b]. Therefore f is continuous. Since 0 is
between f(a) = −1 and f(b) = 1, by the Bolzano Theorem there exists a real
x0 ∈ [a, b] such that f(x0) = 0, a contradiction with the definition of f . �
Corollary 2.17. Let n be a positive natural number, x a real. If n is odd, then there
exists a real y such that yn = x, i.e., there exists the root n

√
x. If n is even and

x ≥ 0, then there exists a non-negative real y such that yn = x, i.e., there exists
the root n

√
x.

Proof. One can easily see that the function f(x) = xn is continuous. Let, e.g., n
be even. If x = 0 take y = 0. If x > 0, then

f(0) = 0 < x < (1 + x)n = f(1 + x).

By Bolzano’s Theorem there exists a real y ∈ (0, 1 + x) such that f(y) = x. �
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Any two bounded closed intervals are homeomorphic. Similarly for bounded
open intervals. One can easily construct a homeomorphism of (0, 1) and (0,+∞)
and that of (0, 1) and R.

We recall a well-known notion of elementary calculus. A sequence {xn}∞n=0

of reals is said to be Bolzano-Cauchy, shortly B-C, if

(∀ε > 0)(∃n0)(∀n,m ≥ n0) |xn − xm| < ε.

Evidently a convergent sequence is a Bolzano-Cauchy sequence. One can easily see
that a Bolzano-Cauchy sequence is bounded, i.e., there exists a real K such that
|xn| ≤ K for every n ∈ ω.

By Theorems 2.12 and 1.29 we obtain

Theorem 2.18 (B. Bolzano – K. Weierstrass). Every bounded sequence of reals has
a cluster point.

One can easily check that if a is a cluster point of a Bolzano-Cauchy sequence
{xn}∞n=0, then a = limn→∞ xn. Thus

Theorem 2.19 (B. Bolzano – A.L. Cauchy). A Bolzano-Cauchy sequence of reals
is convergent.

As an immediate consequence of the Bolzano Principle we obtain

Theorem 2.20. A monotone bounded sequence of reals is convergent.

Let {an}∞n=0 be a sequence of reals. A pair of sequences {an}∞n=0, {sn}∞n=0 is
called a series if sn =

∑n
i=0 ai for every n ∈ ω. The real an is a term of the series

and sn is a partial sum. If there exists a real s = limn→∞ sn, we call it the sum of
the series and we write

s =
∞∑

n=0

an, i.e.,
∞∑

n=0

an = lim
n→∞

n∑

i=0

ai.

For the sake of brevity we shall sometimes denote a series simply as
∑∞

n=0 an
independently of the existence of the sum. A series is convergent if there exists
a real that is the sum of the series, otherwise the series is divergent. If every
term an is non-negative, then we express that the series

∑∞
n=0 an is convergent by

writing
∑∞
n=0 an <∞.

∑∞
n=0 an = ∞ means in this case that the series

∑∞
n=0 an

is divergent.
As an easy consequence of Theorem 2.20, we obtain an important result.

Theorem 2.21 (The Comparison Test). Let {an}∞n=0, {bn}∞n=0 be sequences of reals,
0 ≤ |an| ≤ bn for each n ∈ ω. If the series

∑∞
n=0 bn is convergent, then also the

series
∑∞

n=0 an is convergent and

∣
∣
∣
∣

∞∑

n=0

an

∣
∣
∣
∣ ≤

∞∑

n=0

bn.
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If an+1 = an · q, q being a real, the series
∑∞

n=0 an is called a geometric
series. One can easily check that

an = a0q
n, sn = a0

qn+1 − 1
q − 1

for every n ∈ ω.

Theorem 2.22.

a) If |q| < 1, then the geometric series is convergent and

∞∑

n=0

a0q
n =

a0

1− q .

b) If a0 �= 0 and |q| ≥ 1, then the geometric series is divergent.

The exponential function exp : R −→ (0,∞) is defined as

exp(x) =
∞∑

n=0

xn

n!
.

From elementary analysis we know that exp is a continuous isomorphism of the
additive group 〈R,+, 0〉 and the multiplicative group 〈(0,∞), ·, 1〉 such that

exp(1) = e =
∞∑

n=0

1
n!
.

The inverse function to exp is the natural logarithm ln : (0,∞) −→ R. By Corol-
lary 1.31 the function ln is continuous.

For a positive real a and any real x we set

ax = exp(x ln(a)). (2.13)

Thus exp(x) = ex. The function f(x) = ax is a continuous isomorphism of the
additive group 〈R,+〉 and the multiplicative group 〈(0,∞), ·〉 such that f(1) = a.
For a positive natural number n the value an is the nth power of a as defined
above.

We shall need the following elementary result of calculus.
Theorem 2.23. Assume that {an}∞n=0 is a bounded sequence of non-negative reals,
a0 > 0. Set sn =

∑n
k=0 ak. If the series

∑∞
n=0 an is divergent, then the series∑∞

n=0 ans
−1−ε
n is divergent for ε = 0 and convergent for any ε > 0.

A pair of sequences {an}∞n=0, {pn}∞n=0 of reals is called an infinite product
if pn =

∏n
i=0 ai for every n ∈ ω. The real an is a term of the product and pn is

a partial product. If there exists a real p = limn→∞ pn, we call it the value of the
product and we write

p =
∞∏

n=0

an, i.e.,
∞∏

n=0

an = lim
n→∞

n∏

i=0

ai.
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For the sake of brevity we shall sometimes denote an infinite product simply
as
∏∞
n=0 an independently of the existence of the value. An infinite product is

convergent if there exists a non-zero real that is the value of the product. Otherwise
the product is divergent.

A proof of the next theorem can be found in standard textbooks of analysis.

Theorem 2.24. Let 〈an : n ∈ ω〉, 〈bn : n ∈ ω〉 be positive reals.

a) The product
∏∞
n=0 an converges if and only if the series

∑∞
n=0 ln(an) con-

verges.
b) If an < 1 for each n, then the infinite product

∏∞
n=0(1 − an)bn converges if

and only if the series
∑∞

n=0 anbn converges.

We shall also consider the extended real line R∗ = R ∪ {−∞,+∞}. The set
R∗ is ordered by

−∞ < a < b < +∞

for any a, b ∈ R, a < b. The ordering induces a topology on R∗ such that the
subspace topology on R coincides with the topology of the real line. Moreover,
a typical neighborhood of −∞ is the set {x ∈ R∗ : x < a}, where a is a real.
Similarly for +∞. It is easy to see that R∗ endowed with the above-described
topology is homeomorphic to [0, 1] and therefore compact.

Any monotone sequence of elements of R∗ has a limit in R∗. Thus, a divergent
series with non-negative terms has the sum +∞. Any non-empty subset of R∗ has
an infimum and a supremum. If we want to emphasize that a subset of R has a
supremum in R we say that the supremum is a real. Similarly in the case of an
infimum, a limit or a sum of a series.

We describe arithmetic of R∗. Let a, b, c ∈ R, b > 0, c < 0. We set

a± (+∞) = ±∞, a± (−∞) = ∓∞, ±∞+ (±∞) = ±∞,
b · (±∞) = ±∞, c · (±∞) = ∓∞, (+∞) · (+∞) = +∞,
(−∞) · (−∞) = +∞, (−∞) · (+∞) = −∞, 0 · (±∞) = 0.

Note that +∞− (+∞), +∞+ (−∞) and −∞− (−∞) are not defined.

Exercises

2.6 Fixed Point and the Bolzano Theorem

If f : X −→ X is a mapping, then a point x0 ∈ X is called a fixed point of f if f(x0) = x0.

a) Let f : [a, b] −→ [a, b]. x0 ∈ [a, b] is a fixed point of f if and only if g(x0) = 0, where
g(x) = f(x)− x.

b) Every continuous function f : [0, 1] −→ [0, 1] has a fixed point.

c) If p(x) =
∑n

i=0 aix
i, n odd and an 	= 0, then there exists a real x0 such that

p(x0) = 0.
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2.7 Derivative

Let f : (a, b) −→ R. A real d is called the derivative of f at a point x if

d = lim
h→0

f(x+ h)− f(x)

h
.

If the function f has a derivative at every point of (a, b), we denote by f ′ the function
which assigns to every x ∈ (a, b) the derivative of f at x. We say that f has a local
maximum (local minimum) at x0 ∈ (a, b) if there exists a δ > 0 such that f(x) ≤ f(x0)
(f(x) ≥ f(x0)) for every x ∈ (x0 − δ, x0 + δ) ⊆ (a, b).

a) If f has a derivative at a point x ∈ (a, b), then f is continuous at x.

b) Assume that f has a derivative at each point of (a, b). If f is non-decreasing (non-
increasing), then f ′(x) ≥ 0 (f ′(x) ≤ 0) for every x ∈ (a, b).

c) If f has a local maximum or local minimum at x0 ∈ (a, b) and has a derivative at
x0, then f ′(x0) = 0.

d) Prove the Rolle Theorem: Let f : [a, b] −→ R, f(a) = f(b). If f has a derivative in
(a, b), then there exists a point x0 ∈ (a, b) such that f ′(x0) = 0.

e) Prove the Lagrange Theorem: Let f : [a, b] −→ R. If f has a derivative in (a, b),
then there exists a point x0 ∈ (a, b) such that

f ′(x0) =
f(b)− f(a)

b− a .

f) Assume that f has a derivative at every point of (a, b). If f ′(x) > 0 (f ′(x) < 0) for
every x ∈ (a, b), then f is increasing (decreasing) in (a, b).

2.8 Convex Function

Let I ⊆ R be an interval. A function f : I −→ R is called convex if for any a, b ∈ I , a < b
and any t ∈ [0, 1] we have f(ta+ (1− t)b) ≤ tf(a) + (1− t)f(b).

a) If f ′′(x) > 0 for every x ∈ Int(I), then f is convex.

b) exp is convex on R.

c) f(x) = xp is convex on 〈0,∞) if and only if p ≥ 1.

d) A convex function is continuous.

e) A continuous function f is convex if and only if f( a+b
2

) ≤ f(a)+f(b)
2

for any a, b ∈ I ,
a < b.

2.9 Exponentiation

If a is a positive real and r = m/n is a positive rational, then we define the exponentiation
by an/m = m

√
xn and a−r = 1/ar.

a) Show that exp(x+ y) = exp(x) · exp(y) for any reals x, y.

Hint: You will need the Binomial Theorem.

b) Show that exp(x) = ex for x rational.

Hint: Start with a natural number x, then a positive rational.

c) Note that a = exp(ln(a)).
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d) The above-introduced exponentiation ar and a−r, r rational, coincides with that
defined by (2.13).

e) Show that there exists a unique continuous function f : R −→ (0,∞) such that
f(1) = a > 0 and f(x+ y) = f(x) · f(y) for any x, y ∈ R.

f) Conclude that the definition of exponentiation (2.13) agrees with the common un-
derstanding of an exponentiation.

2.10 Elementary Inequalities

Let a1, . . . , an, b1, . . . , bn be reals.

a) Prove the Cauchy Inequality

(
n∑

k=1

akbk

)2

≤
(

n∑

k=1

a2
k

)(
n∑

k=1

b2k

)

.

Moreover the equality holds true if and only if

(∃α, β) (α2 + β2 > 0 ∧ (∀k = 1, . . . , n) (αak = βbk)). (2.14)

Hint: Consider the discriminant of the quadratic equation
∑n

k=1(akx+ bk)2 = 0.

b) If p, q > 1, 1
p

+ 1
q

= 1, a, b are non-negative reals, then the Young Inequality

ap

p
+
bq

q
≥ ab

holds true. The equality holds true if and only if ap = bq .

Hint: ab = e
1
p

ln(ap)
e

1
q

ln(bq)
and exp is convex.

c) If p, q > 1, 1
p

+ 1
q

= 1, then Hölder’s Inequality

n∑

k=1

|akbk| ≤
(

n∑

k=1

|ak|p
)1/p( n∑

k=1

|bk|q
)1/q

holds true. Moreover the equality holds true if and only if

(∃α, β) (α2 + β2 > 0 ∧ (∀k = 1, . . . , n) (α|ak|p = β|bk|q)).

Hint: In the inequality of b) take

a =
|ai|

(∑n
k=1 |ak|p

)1/p
, b =

|bi|
(∑n

k=1 |bk|q
)1/q

and sum over i = 1, . . . , n.

d) For a real p > 1 prove the Minkowski Inequality

(
n∑

k=1

(ak + bk)p

)1/p

≤
(

n∑

k=1

ap
k

)1/p

+

(
n∑

k=1

bpk

)1/p

,

where ak, bk are non-negative reals. Moreover the equality holds true if and only if
(2.14) holds true.
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Hint: In the trivial inequality

n∑

k=1

|ak + bk|p ≤
n∑

k=1

|ak||ak + bk|p−1 +
n∑

k=1

|bk||ak + bk|p−1

apply Hölder’s Inequality to both terms on the right side.

2.11 Absolute Convergence

A series
∑∞

n=0 an is called absolutely convergent if the series
∑∞

n=0 |an| is convergent.

a) If 0 ≤ an ≤ bn for every n ∈ ω and the series
∑∞

n=0 bn is convergent, then also the
series

∑∞
n=0 an is convergent.

b) An absolutely convergent series is convergent.

Hint: 0 ≤ a+
n ≤ |an| and 0 ≤ a−n ≤ |an|.

c) Prove Theorem 2.21.

2.12 A Convergence Test

Let f : (0,∞) −→ (0,∞) be a non-increasing function with limx→∞ f(x) = 0. Let
{ak}∞k=0 be a sequence of positive reals bounded from above by a real M and such that∑∞

k=0 ak =∞. Set sn =
∑n

i=0 ai.

a) If
∑∞

n=0 f(n) <∞, then
∑∞

n=0 anf(sn) <∞.

Hint: Consider the points [sn, f(sn)] on the graph of the function f and compare the
areas expressed by the considered series. Show that

∑k
n=0 anf(sn) ≤

∑m
n=0 f(n),

provided sk ≤ m+ 1.

b) If
∑∞

n=0 f(n) =∞, then
∑∞

n=1 anf(sn−1) =∞.

Hint: Consider the area on the graph as above. If a0 ≤ l < k + 1 ≤ sm, then∑k
n=l f(n) ≤

∑m
n=1 anf(sn−1).

c) The series
∑∞

n=0 an(f(sn−1)− f(sn)) is convergent.

Hint:
∑n

k=m ak(f(sk−1)− f(sk)) ≤M(f(sm−1)− f(sn)) for any m < n.

d) Conclude that
∞∑

n=0

f(n) <∞ ≡
∞∑

n=0

anf(sn) <∞.

e) Theorem 2.23 is a special case of d) with f(x) = x−1−ε, ε ≥ 0.

2.13 Partitions of an Interval

Let a < b be reals. A finite subset of [a, b] containing the end points a, b is a partition of the
interval [a, b]. If {a0, . . . , an} is a partition, we assume that a = a0 < a1 < · · · < an = b.
Let Part(a, b) be the set of all partitions of [a, b].

a) The partially ordered set 〈Part(a, b),⊆〉 is directed.

b) No countable subset of Part(a, b) is cofinal in Part(a, b).

Hint: Find a real c ∈ (a, b) such that c does not belong to any element of the
countable set. Take the partition {a, c, b}.

c) Every infinite subset of Part(a, b) is unbounded in Part(a, b).
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2.14 Variation of a Function

Let f : [a, b] −→ R be a function. Let us denote

Var(f ; a, b) = sup

{
n∑

i=1

|f(ai)− f(ai−1)| : {a0, . . . , an} ∈ Part(a, b)

}

,

Var+(f ; a, b) = sup

{
n∑

i=1

(f(ai)− f(ai−1))
+ : {a0, . . . , an} ∈ Part(a, b)

}

,

Var−(f ; a, b) = sup

{
n∑

i=1

(f(ai)− f(ai−1))
− : {a0, . . . , an} ∈ Part(a, b)

}

.

Var(f ; a, b), Var+(f ; a, b), Var−(f ; a, b) are called the total variation, the positive vari-
ation and the negative variation of f , respectively. If Var(f ; a, b) < +∞ we say that f is
of bounded variation in [a, b]. Finally, f is of bounded variation in R if Var(f ; a, b) < +∞
for any a < b.

a) Show that Var(f ; a, b) = Var+(f ; a, b) + Var−(f ; a, b).

b) If a < b < c, then Var(f ; a, c) = Var(f ; a, b) + Var(f ; b, c).
Similarly for Var+(f ; a, c) and Var−(f ; a, c).

c) If f is monotone in [a, b], then Var(f ; a, b) = |f(a)− f(b)|. Find Var+(f ; a, b) and
Var−(f ; a, b).

d) Functions g(x) = Var+(f ; a, x) and h(x) = Var−(f ; a, x) are non-decreasing in
[a, b].

e) If f is of bounded variation in [a, b], then f(x) = g(x)− h(x) for any x ∈ [a, b].

f) f is of bounded variation in [a, b] if and only if f = g − h, where g, h are non-
decreasing on [a, b].

g) f is of bounded variation in R if and only if f = g−h, where g, h are non-decreasing.

h) If f is of bounded variation in [a, b], then limx→c+ f(x) exists for any c ∈ [a, b) and
limx→c− f(x) exists for any c ∈ (a, b].

2.3 Existence and Uniqueness

The real line R contains well-defined subsets N, Z, Q. The relationships between
them have algebraic character: Z is the set of all differences of elements of N, Q is
the set of all fractions of elements of Z. We need to describe a relationship between
Q and R that is not more purely algebraic.

A set A ⊆ Q is called a Dedekind cut if

1) A is non-empty and A �= Q,

2) for any rationals x, y, if x ∈ A and y < x, then also y ∈ A,

3) the set A does not have a greatest element.

For any real x ∈ R we write Dx = {r ∈ Q : r < x}. One can easily see that Dx is
a Dedekind cut. Moreover, if x �= y, say x < y, then by Theorem 2.7 there exists
a rational x < r < y. Thus r ∈ Dy and r /∈ Dx. Hence Dx �= Dy.
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Lemma 2.25. If A ⊆ Q is a Dedekind cut, then there exists unique real x ∈ R such
that A = Dx.

Proof. Since A �= Q, there exists a rational s /∈ A. One can easily check that s is an
upper bound of A. Thus, being non-empty, the set A has a supremum x = supA.
Since x is an upper bound of A and A does not have a greatest element, we obtain
A ⊆ Dx. Let r ∈ Dx, i.e., r < x. Since x is a supremum of A, there exists an s ∈ A
such that r < s. Then by 2) we have r ∈ A. Thus A = Dx. �

We start with the uniqueness of the set of reals.
Theorem 2.26. If Ri = 〈Ri, =, ≤i, +i, ·i, 0i, 1i〉, i = 1, 2 are linearly ordered fields
satisfying the Bolzano Principle, then there exists a mapping H : R1

1−1−→
onto

R2 which

is an order-preserving isomorphism of the ordered fields R1 and R2.

Proof. Denote by Ni, Zi, Qi the sets of natural, integer and rational reals con-
structed in Ri, i = 1, 2.

By Theorem 2.3 there exists a unique bijection H : N1
1−1−→
onto

N2 such that

H(n+1 m) = H(n) +2 H(m), H(n ·1 m) = H(n) ·2 H(m) for n, m ∈ N1.

One can easily extend H to an order-preserving isomorphism of Q1 and Q2 by
setting H(−1n) = −2H(n) for n ∈ N1 and then H(z/1n) = H(z)/2H(n) for z ∈ Z1

and n ∈ N1, n �= 01.
It is easy to see that if x ∈ R1, then H(Dx) is a Dedekind cut in Q2. By

Lemma 2.25 there is a unique y ∈ R2 such that H(Dx) = Dy. Set H(x) = y. It is
rather trivial to show that H is the desired order-preserving isomorphism. �
Theorem 2.27. There exists a real line. More precisely: in ZF one can show that
there exists a linearly ordered field satisfying the Bolzano Principle.

Proof. We set N = ω. Since ω is a set of cardinals, the addition and multiplication
of elements of ω is defined. Moreover, four Peano axioms (2.2)–(2.5) hold true.

Define an equivalence relation ∼ on ω × ω as

〈n,m〉 ∼ 〈p, q〉 ≡ (n+ q = p+m).

Let Z be the quotient set (ω × ω)/ ∼. A natural number n will be identified with
the equivalence class {〈n, 0〉}∼. For n,m, p, q ∈ N we define

{〈n,m〉}∼ ≤ {〈p, q〉}∼ ≡ (n+ q ≤ p+m),
{〈n,m〉}∼ + {〈p, q〉}∼ = {〈n+ p,m+ q〉}∼,
{〈n,m〉}∼ · {〈p, q〉}∼ = {〈np+mq,mp+ nq〉}∼.

One can easily check that Z endowed with those operations is an ordered integrity
domain. Moreover, for any z ∈ Z, z �= 0, there exists an n ∈ N such that either
z = n = {〈n, 0〉}∼ or z = −n = {〈0, n〉}∼.
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By a standard algebraic construction – see Theorem 11.8 – there exists up
to isomorphism a unique field Q that is the field of fractions of Z, i.e., there is an
isomorphism of Z onto a subring of Q and every element of Q can be expressed as
x/y with x, y ∈ Z, y �= 0. The ordering on Q is defined by saying which element
of Q is positive.

Denote by R the set of all Dedekind cuts on Q. An element r ∈ Q will be
identified with Dr ∈ R. For any Dedekind cuts A, B ∈ R we define

A ≤ B ≡ A ⊆ B.

Immediately we obtain the trichotomy

A < B ∨A = B ∨B < A.

It is easy to show that the Bolzano Principle holds true. Indeed, let M ⊆ R be
a non-empty bounded from above set, i.e., M is a non-empty set of Dedekind
cuts and there exists a Dedekind cut K such that A ⊆ K for any A ∈ M. Let
C =

⋃
M. Evidently C ⊆ K. Since K �= Q and M �= ∅, we have ∅ �= C �= Q. If

s < r and r ∈ C, then r ∈ A for some A ∈ M and therefore also s ∈ A ⊆ C. If
r ∈ C were a maximal element, then r would be maximal in some A ∈M, which
is impossible. Thus C is a Dedekind cut and C is an upper bound of M. If D is
any other upper bound of M, then evidently C ⊆ D. Thus C is the supremum
of M.

We define the addition of Dedekind cuts:

A+B = {r ∈ Q : (∃s, t) (s ∈ A ∧ t ∈ B ∧ r = s+ t)}.

For any Dedekind cut A we set

−A = {r ∈ Q : (∃s ∈ Q) (r < −s ∧ s /∈ A)}.

Evidently A+ (−A) = 0 (= D0).
To define the multiplication we must distinguish several cases. We start with

setting A ·D0 = D0 = 0. If 0 = D0 < A and 0 = D0 < B we set

A · B = {r ∈ Q : (∃s, t > 0) (s ∈ A ∧ t ∈ B ∧ r ≤ s · t)}.

Now, if A < 0, B > 0 we set A ·B = −(−A ·B). Similarly, if A < 0, B < 0 we set
A · B = (−A) · (−B).

We recommend to the reader as an exercise to show that R endowed with
that structure is a real line, i.e., a linearly ordered field satisfying the Bolzano
Principle. �

Checking carefully the proof of Theorem 2.27 we observe that on the base of
the first four axioms of ZF and the axiom scheme of separation, from the existence
of the set ω we have deduced the existence of a real line. Vice versa, in Section
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2.1 on the base of the same axioms we have shown that there exists the set N.
However for constructing the set ω, even using N, we need a particular case of
the axiom scheme of replacement. Anyway, on the base of the first four axioms
and axiom schemes of separation and replacement, the existence of the set ω is
equivalent to the existence of a real line.

Now we go back to the question of uniqueness of the real line. Actually we
have shown that a linearly ordered field with properties known from an elementary
course of analysis is isomorphic to the real line. Let

T = 〈T, =, ≤T , +T , ·T , 0T , 1T 〉

be a linearly ordered field. The mapping defined by e(n) = n×1T is an embedding
of N into T . For simplicity, we shall identify N with the set {e(n) : n ∈ N} ⊆ T .
We define a topology O on T by taking the set {(a, b) : a, b ∈ T, a <T b} of all
open intervals as a base. We present several properties of a linearly ordered field
that are characteristic for the real line, i.e., an ordered field with such a property
is already order isomorphic to the real line.

Theorem 2.28. Let T be a linearly ordered field. Then the following properties of
T are equivalent.

a) The Bolzano Principle holds true in T , and therefore T is order isomorphic
to the real line.

b) The Bolzano Theorem holds true: if f : T −→ T is continuous and 0T is
between f(a) and f(b), then there exists a c between a and b such that f(c) =
0T .

c) The topological space 〈T,O〉 is connected.
d) The Archimedes Principle holds true and every Bolzano-Cauchy sequence of

elements of T is convergent.
e) The topological space 〈T,O〉 is locally compact.
f) Every non-decreasing bounded sequence of elements of T is convergent.
g) The Archimedes Principle and the First Weierstrass Theorem hold true: if f

is a continuous function from 〈0T , 1T 〉 ⊆ T into T , then f is bounded.

Proof. We already know that a) implies any of b)–g), see Theorems 2.15, 2.16,
2.6, 2.19, 2.12, 2.21, and 1.30 (a compact subset of R is evidently bounded).

By the proof of Theorem 2.16 we obtain that b) implies c).
Proof that c) → a): Assume that M ⊆ T is a non-empty bounded set without

a supremum. Let U be the set of all upper bounds of M and V = T \U . Evidently
both sets U, V are non-empty. We show that both are open, contradicting the
connectedness of T . If x ∈ U , then there exists an upper bound y <T x of M .
Then (y, x+T 1T ) ⊆ U is a neighborhood of x. Thus U is open. Similarly, if x ∈ V ,
then there exists a z ∈M , x <T z. Then (x−T 1T , z) ⊆ V is a neighborhood of x
and therefore V is open, a contradiction.
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Proof2 that d)→ a): Let M ⊆ T be a non-empty bounded from above set.
Let a ∈ M , b >T a being an upper bound of M . For any natural number n we
consider the elements cin = a +T i · 2−n × (b −T a), i = 0, . . . , 2n of T . Evidently
a = c0n <T cin <T c2

n

n = b for 0 < i < 2n, therefore some of cin are upper bounds
of M and some are not. Let kn be the least i such that cin is an upper bound of
M . Note that kn > 0. We set xn = ckn

n and claim that {xn}∞n=0 is a Bolzano-
Cauchy sequence. Note that {xn}∞n=0 is non-increasing and every xn is an upper
bound of M .

Let ε ∈ T , ε >T 0T . Since the Archimedes Principle holds true in T , there
exists a natural number n0 such that 2−n0 × (b−T a) <T ε/2. Since

xn0 −T 2−n0 × (b−T a) ≤ xn ≤ xn0

for any n > n0, we obtain that |xn −T xm| <T ε for any n,m ≥ n0.
Therefore the sequence {xn}∞n=0 is convergent. Let x be its limit. Since

a ≤ ckn−1
n ≤ xn ≤ ckn

n ≤ b,

we have a ≤T x ≤T b. We show that x = supM . If y ∈ M , then y ≤T xn for any
n. Thus also y ≤T x = limn→∞ xn and x is an upper bound of M . Assume now
that z ≤T x is an upper bound of M . By the definition of kn we obtain that ckn−1

n

is not an upper bound of M and therefore

ckn−1
n = xn −T 2−n × (b−T a) < z

for any n. Then also x = limn→∞ xn ≤T z (we use again the Archimedes Principle).
Proof that e) → f): If 〈T,O〉 is locally compact, then it is easy to see that

every closed interval is compact. If {xn}∞n=0 is a non-decreasing sequence bounded
from above by a ∈ T , then all elements of {xn}∞n=0 lie in the compact set 〈x0, a〉.
By Corollary 1.29 there exists a cluster point x of this sequence. It is easy to see
that limn→∞ xn = x.

Proof that f) → d): Let a, ε ∈ T , ε >T 0T . Since the increasing sequence
{n×ε}∞n=0 cannot be convergent (it is not B-C!), by f) it is not bounded from above.
Therefore a is not an upper bound of {n× ε}∞n=0 and we obtain the Archimedes
Principle.

Assume that {xn}∞n=0 is a Bolzano-Cauchy sequence. Let kl be the least
natural number k such that |xn −T xm| <T 2−l for n,m ≥ k. We set

a0 = xk0 −T 1T , al+1 = max{al, xkl+1 −T 2−l−1 × 1T}.

One can easily see that {an}∞n=0 is non-decreasing, bounded from above. Thus
there exists an a = limn→∞ an. One can easily check that also a = limn→∞ xn.
2We essentially follow the original proof by B. Bolzano [1817] of the statement in the quotation
that introduces this chapter. B. Bolzano did not note that he had used the Archimedes Principle.
Moreover, we do it for supremum and Bolzano did it for infimum.
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Proof that g) → f): Assume that {xn}∞n=0 is a non-decreasing bounded se-
quence of elements of T and the limit limn→∞ xn does not exist. Then for every
upper bound b of the sequence {xn}∞n=0 there exists a smaller upper bound c < b.
Fix an upper bound a of the sequence. One can easily show that the sets

U = {x ∈ [x0, a] : (∀n)x >T xn}, [x0, a] \ U = {x ∈ [x0, a] : (∃n)x ≤T xn}

are disjoint and open in [x0, a]. Then the piecewise linear function f : [x0, a] −→ T
such that f(xn) = n× 1T for any n and f(x) = 0T for x ∈ U is continuous. Since
the Archimedes Principle holds true, the function f is unbounded. �

Even the linear ordering of the real line can be uniquely characterized. We
present a simple
Theorem 2.29. A linearly ordered set 〈X,≤〉 is order isomorphic to 〈R,≤〉 if and
only if 〈X,≤〉 possesses the following properties:

〈X,≤〉 has no least neither greatest element, (2.15)
〈X,≤〉 is densely ordered, (2.16)
there exists a countable dense subset of 〈X,≤〉, (2.17)
〈X,≤〉 satisfies the Bolzano Principle. (2.18)

Proof. Let 〈X,≤〉 be a linearly ordered set satisfying (2.15)–(2.17). By (2.17) there
is a countable dense subset S ⊆ X . Evidently S is densely ordered and has no least
neither greatest element. Therefore by Theorem 11.4, b), 〈S,≤〉 is order isomorphic
to 〈Q,≤〉. The isomorphism can be extended as in the proof of Theorem 2.26. �

One can also find topological properties of a topological space 〈X,O〉 such
that 〈X,O〉 satisfies them if and only if 〈X,O〉 is homeomorphic to the real line.
We present such results in exercises.

Exercises

2.15 [AC] A Non-Archimedian Field

Let j ⊆ P(ω) be an ultrafilter. On the set ωR we define relations

f =∗ g ≡ {n ∈ ω : f(n) = g(n)} ∈ j, f ≤∗ g ≡ {n ∈ ω : f(n) ≤ g(n)} ∈ j.

The operations are defined “by coordinates”, i.e.,

f +∗ g = h, where h(n) = f(n) + g(n), f ·∗ g = h, where h(n) = f(n) · g(n).

Finally, â is the function â(n) = a for any a ∈ R.

a) Show that =∗ is an equivalence relation and ≤∗ is a linear ordering of the quotient
set ωR/ =∗.

b) Show that R∗ = 〈ωR/ =∗, =, +∗, ·∗, 0̂, 1̂〉 is a field.

c) R∗ = 〈ωR/ =∗, =, ≤∗, +∗, ·∗, 0̂, 1̂〉 is a linearly ordered field.
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d) The mapping F defined as f(a) = â for any a ∈ R is an embedding of R into R∗.

e) Archimedes’ Principle does not hold true in R∗.

Hint: Take ε = 1̂ and d(n) = n. For any m natural m× 1̂ =∗ m∗ <∗ d.

2.16 More Uniqueness

Let T = 〈T, =, ≤T , +T , ·T , 0T , 1T 〉 be a linearly ordered field satisfying the Archimedes
Principle. Then the following properties of T are equivalent.

a) T is order isomorphic to the real line.

b) The Rolle Theorem holds true: If f : [0T , 1T ] −→ T is continuous, f(0T ) = f(1T ),
and f has a derivative in every point of (0T , 1T ), then there exists an x0 ∈ (0T , 1T )
such that f ′(x0) = 0T .

c) [0T , 1T ] ⊆ T is sequentially compact.

d) Every non-empty countable subset of T bounded from above has a supremum.

e) Any non-decreasing sequence bounded from above is convergent.

f) The comparison test holds true.

Hint: Evidently d) ≡ e) ≡ f). Show b) → e): If {an}∞n=0 is a non-decreasing sequence of
positive elements bounded from above by b without a limit, we set f(x) = x2 for every
x such that a0 ≤ x and x ≤ an for some n. For x ≤ b and such that x > an for all n
we set f(x) = (x − b)2 + a2

0. f satisfies conditions of the Rolle Theorem in the interval
[a0, b] and f ′(x) 	= 0 for all x. Finally from d) deduce the Archimedes Principle and the
Bolzano Principle.

2.17 [AC] Continuum

A connected compact topological space X with at least two points is called a continuum.
A point x of a continuum is called a cut point if X \ {x} is not connected. A point which
is not a cut point is called a noncut point. In the next we suppose that X is a continuum.

a) X is infinite.

b) If x ∈ X is a cut point, X \ {x} = A ∪ B, A,B are disjoint non-empty open sets,
then A = A ∪ {x} is connected and therefore a continuum.

c) For any x ∈ X there exists y ∈ X, y 	= x such that y is not a cut point.

Hint: Let C be the family of all proper subcontinua of X containing the point x.
Order C by C1 ⊆ Int(C2). Take a maximal linearly ordered C0 ⊆ C. Show that⋂
{X \ C : C ∈ C0} 	= ∅ and take y from the intersection. Let X \ {y} = A ∪ B,

A,B being open disjoint. Assume x ∈ A. Then A = A ∪ {y} /∈ C0 is a continuum.
By the maximality, A is not comparable with some C ∈ C0, i.e., A ∩ C 	= ∅ and
B ∩ C 	= ∅, a contradiction.

d) There exist a, b ∈ X, a 	= b such that a, b are noncut points.

e) Assume that x ∈ X is a cut point and a 	= b are the only noncut points. Then the
sets A,B of b) are (up to order) uniquely determined.

f) Assume that x ∈ X is a cut point and a 	= b are the only noncut points. If
X \ {x} = A ∪ B with non-empty disjoint open A,B, then either a ∈ A, b ∈ B or
a ∈ B, b ∈ A.

Hint: Assume a, b ∈ A. Then B being a continuum has two noncut points c, d.
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g) Assume that xi ∈ X, i = 1, 2 are cut points and a 	= b are the only noncut points.
If X \ {xi} = Ai ∪Bi with non-empty disjoint Ai, Bi, a ∈ Ai, then either A1 ⊆ A2

or A2 ⊆ A1.

Hint: If A1 � A2, then x2 ∈ A1 and X = (A1 ∩A2) ∪ ((B1 ∩A2) ∪B2) ∪ {x2}. By
e) we obtain A1 ∩A2 = A2.

h) A separable continuum X is homeomorphic to the unit interval [0, 1] if and only if
X has exactly two noncut points.

Hint: If x1, x2 are cut points, order the continuum by the relation A1 ⊆ A2.

i) A separable continuumX is homeomorphic to T if and only ifX\A is not connected
for any A ⊆ X, |A| > 1 and connected for |A| = 1.

2.4 Expressing a Real by Natural Numbers

For a practical reason the decomposition (2.9) of a real into integer and fractional
parts is used for non-negative reals only. If x < 0, it is more convenient to use the
decomposition

x = −(�−x�+ (−x− �−x�)). (2.19)

We shall fix a given natural number p > 1 and describe both integer and fractional
part of a non-negative real by a sequence of natural numbers smaller than p. We
introduce independently such a description for a natural number and a real from
the interval [0, 1].

So, let p be a natural number greater than 1. A p-adic expansion of a natural
number x is a sequence {xi}ki=0 of natural numbers such that

0 ≤ xi < p for i = 0, . . . , k, (2.20)
if k > 0, then xk �= 0, (2.21)

x =
k∑

i=0

xi · pi. (2.22)

We shall simply write
x = xkxk−1 . . . x0|p.

If p = 2 we speak about binary expansion.
If xi are natural numbers such that (2.20) holds true, then

k∑

i=0

xi · pi ≤ (p− 1)
k∑

i=0

pi = pk+1 − 1 < pk+1. (2.23)

Theorem 2.30. Every natural number has exactly one p-adic expansion.

Proof. If x is a given natural number we can obtain its p-adic expansion as follows.
Take the smallest k such that pk+1 > x – the existence follows by the Archimedes
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Principle, since pn ≥ n · p. Then set xk = �x/pk�. If you have already defined
xk, . . . , xl, 0 < l ≤ k, set

xl−1 =

⌊
x−
∑k
i=l xi · pi
pl−1

⌋

.

Since p0 = 1, we obtain (2.22).
Using the inequality (2.23) one can easily show that the obtained p-adic

expansion is unique. �

Now, let x ∈ [0, 1]. A sequence {xi}∞i=1 of natural numbers is called a p-adic
expansion of the real x if

0 ≤ xi < p for i = 1, . . . , k, . . . , (2.24)

x =
∞∑

i=1

xi · p−i. (2.25)

We shall simply write
x = 0, x1x2 . . . xk . . . |p.

An expansion is finite if there exists an i0 such that xi = 0 for each i ≥ i0.
Let us note that by Theorems 2.21 and 2.22, a) the series (2.25) is convergent.

Moreover, if a sequence {xi}∞i=1 satisfies (2.24), then

∞∑

i=k

xi · p−i ≤ p1−k and (2.26)

∞∑

i=k

xi · p−i = p1−k if and only if xi = p− 1 for every i ≥ k. (2.27)

Similarly as above, if p = 2 we speak about binary expansion.
Theorem 2.31.

i) For every real x ∈ [0, 1] there exists a p-adic expansion.
ii) The p-adic expansion of a real x ∈ [0, 1] is unique up to the following ex-

ception: x =
∑∞

i=1 xi · p−i =
∑∞

i=1 yi · p−i and there exists a k > 0 such
that

xi = yi for i < k, yk = xk + 1, (2.28)
xi = p− 1 for i > k, yi = 0 for i > k. (2.29)

Proof. The existence can be proved as in Theorem 2.30. Let x ∈ [0, 1]. Since

1 = 0, (p− 1) . . . (p− 1) . . . |p,
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we can assume x < 1. Then px < p and we write x1 = �px�. Evidently

x1 ∈ {0, . . . , p− 1}.

If xi are already defined for i < k we set

xk =

⌊

pk · x−
k−1∑

i=0

xip
k−i
⌋

. (2.30)

Then
∑k

i=0 xip
−i ≤ x for every k and therefore

s =
∞∑

i=0

xip
−i ≤ x.

If s < x, then there is a k such that p−k < x− s ≤ x−
∑k
i=0 xip

−i and therefore

xk + 1 < pk · x−
k−1∑

i=0

xi · pk−i,

which is a contradiction with the definition of xk. Thus (2.25) holds true.
If a real x has two different p-adic expansions, then using (2.26) and (2.27)

one can easily show that (2.28) and (2.29) hold true. �

Using the binary expansion we define the set D of dyadic numbers as

D = {r ∈ (0, 1) : r has a finite binary expansion}. (2.31)

Thus r ∈ D if and only if there exist positive integers n,m such that r = m
2n and

m < 2n. By Theorem 11.4 the set D ordered by ≤ or the opposite relation ≥ is
order isomorphic to the set Q of rationals.

Using 3-adic expansion we can define a set of reals, which is a very useful
tool in our investigation. The Cantor middle-third set C is the set of those reals
from the interval [0, 1], which have a 3-adic expansion without the number 1. One
can easily see that the set of all those reals x = 0, x1 . . . xn . . . |3 for which xn = 1
(in both expansions eventually) is the union

3n−3⋃

k=1

(
1 + 3(k − 1)

3n
,

2 + 3(k − 1)
3n

)

.

Thus

C = [0, 1] \
∞⋃

n=1

3n−3⋃

k=1

(
1 + 3(k − 1)

3n
,

2 + 3(k − 1)
3n

)

(2.32)

is a closed set. Being a closed subset of the compact set [0, 1], C is compact.
The cardinality of the uniquely determined real line R is called cardinality

of the continuum and is denoted by c = |R|.
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Theorem 2.32. c = |R| = |C| = 2ℵ0 .

Proof. Evidently distinct reals determine distinct Dedekind cuts – subsets of Q.
Thus c ≤ |P(Q)| = 2ℵ0 .

By Theorem 2.31, the mapping h : ω2 −→ C defined by

h({xi}∞i=0) =
∞∑

i=0

2xi
3i+1

is one-to-one (and C = rng(h)). Therefore 2ℵ0 ≤ |C| ≤ c. The theorem follows by
the Cantor-Bernstein Theorem 1.5. �

By Cantor’s Theorem 1.6 we obtain

Corollary 2.33. ℵ0 < c.

So we obtain again the inequality Q �= R. Moreover, we know that there exist
many more irrational numbers than rational ones.

If R can be well ordered, then the cardinality of R is an aleph. Thus there
exists an ordinal ξ > 0 such that c = 2ℵ0 = ℵξ. The continuum hypothesis CH is
equivalent to the statement c = ℵ1.

There is another description of reals from [0, 1] by a sequence of positive
natural numbers – a continued fraction.

Let {an}∞n=0 be a sequence of positive natural numbers. The expression

1
a0+

1
a1+

· · · 1
an

=
1

a0 +
1

a1 +
1

.. . +
1
an

is called a finite continued fraction. Its value is uniquely determined. Actually, the
value of a finite continued fraction is a rational number defined by induction as

1
a0+

1
a1+

· · · 1
an+

1
an+1

=
1
a0+

1
a1+

· · · 1

an + 1
an+1

.

The expression

1
a0+

1
a1+

· · · 1
an
· · · =

1

a0 +
1

a1 +
1

.. . +
1

an + · · ·
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is called a continued fraction. Its value is

a =
1
a0+

1
a1+

· · · 1
an
· · · = lim

n→∞
1
a0+

1
a1+

· · · 1
an
, (2.33)

if the limit exists. Actually we show that the limit always exists and is an irrational
number.

We define three sequences {Pn}∞n=0, {Qn}∞n=0, {Rn}∞n=0 by induction as fol-
lows.

P0 = 1, P1 = a1, Q0 = a0, Q1 = a0 · a1 + 1, (2.34)
Pn = an · Pn−1 + Pn−2 for n ≥ 2, (2.35)
Qn = an ·Qn−1 +Qn−2 for n ≥ 2, (2.36)
Rn = Pn/Qn. (2.37)

Evidently, Pn and Qn are positive integers, Rn is a positive rational. Moreover,
by (2.34) and (2.36) we obtain

Qn ≥ n+ 1. (2.38)

By induction one can prove that

Rn =
1
a0+

1
a1+

· · · 1
an
. (2.39)

From (2.34)–(2.36) one can easily obtain by induction

Pn ·Qn−1 −Qn · Pn−1 = (−1)n. (2.40)

Then

Rn −Rn−1 =
(−1)n

Qn ·Qn−1
for n ≥ 1. (2.41)

Thus we have

0 < R1 < R3 < · · · < R2n+1 < · · · < R2n < · · · < R2 < R0 ≤ 1. (2.42)

Using (2.41) we obtain

the sequence {Rn}∞n=0 converges. (2.43)

By (2.40) we have

the only positive common divisor of Qn, Qn+1 is 1. (2.44)

Similarly for Pn and Pn+1.
Now we are ready to prove the main result concerning continued fractions.
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Theorem 2.34.

a) If {an}∞n=0 is a sequence of positive integers, then there exists the limit (2.33)
and a is a positive irrational less than 1.

b) If a is a positive irrational less than 1, then there exists a unique sequence
{an}∞n=0 of positive integers such that (2.33) holds true.

Proof. The existence of the value a was already proved. By (2.42) for any n we
have R2n+1 < a < R2n, especially 0 < a < 1.

Assume that a = p/q is rational, p, q have no common divisor and q > p.
Since R2k+1 < a < R2k, by (2.41) we have |Rn−a| < 1/Qn ·Qn−1. By (2.37) there
exists n0 such that |Rn − a| ·Qn < 1/q for any n ≥ n0. Then |Pn · q −Qn · p| < 1.
Since all considered numbers are integers, we obtain Pn · q = Qn · p for n ≥ n0.
Thus every such Qn is divisible by q, contradicting (2.44).

Now let a ∈ (0, 1) be irrational. We define two sequences {an}∞n=0, {rn}∞n=0

such that an is a positive integer, rn ∈ (0, 1) is irrational. We set a0 = �1/a�,
r0 = 1/a − a0. If an, rn are defined we set an+1 = �1/rn�, rn+1 = 1/rn − an+1.
From the definitions we immediately obtain

a =
1

a0 + r0
=

1
a0+

1
a1 + r1

= · · · =
1
a0+

1
a1+

· · · 1
an + rn

.

By (2.35), (2.36) and the definition of rn+1 we have

Pn(an+1 + rn+1) + Pn−1

Qn(an+1 + rn+1) +Qn−1
=

Pn−1(an + rn) + Pn−2

Qn−1(an + rn) +Qn−2
.

Since

a =
1
a0+

1
a1+

1
a2 + r2

=
P1(a2 + r2) + P0

Q1(a2 + r2) +Q0
=

P2 + r2 · P1

Q2 + r2 ·Q1
,

we obtain by induction that

a =
Pn + Pn−1 · rn
Qn +Qn−1 · rn

for every n ≥ 2. By a simple computation we have
∣
∣
∣
∣a−

Pn
Qn

∣
∣
∣
∣ =
∣
∣
∣
∣
Pn + Pn−1 · rn
Qn +Qn−1 · rn

− Pn
Qn

∣
∣
∣
∣ ≤

rn
Q2
n

<
1
n2
. (2.45)

Thus limn→∞ Pn/Qn = a.
Assume now that

a =
1
b0+

1
b1+

· · · 1
bn
· · · ,

where bn are positive integers. From the above definition of naturals an from
a given real a one obtains that bn = an for all n. �
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Exercises

2.18 Omitted Proofs

a) Show that the p-adic expansion of a natural number is unique.

Hint: Let x =
∑k

i=0 xi · pi =
∑l

j=0 yj · pj. By (2.23) and (2.21) we obtain k = l. If
xj 	= yj for some j, take the greatest one and use (2.21).

b) Show the part (ii) of Theorem 2.31.

Hint: By induction. Assume x =
∑∞

i=1 xi · p−i =
∑∞

i=1 yi · p−i and xk 	= yk for
some k. Take the smallest one and suppose xk < yk. Use (2.27).

c) Prove (2.39).

Hint: Set a′k = ak+1 and consider the corresponding sequences {P ′
n}∞n=0, {Q′

n}∞n=0,
{R′

n}∞n=0. Show that Pk+1 = Q′
k and Qk+1 = a0 ·Q′

k + P ′
k. Show by induction that

Rn+1 = 1
a0+R′

n
.

2.19 Periodic Expansion

A p-adic expansion {xi}∞i=1 of a real is called periodic if there are natural numbers k, l
such that xi+l = xi for every i > k. Let us notice that if a real has two distinct p-adic
expansions, i.e., those with properties (2.28) and (2.29), then they both are periodic.

a) If a real x ∈ [0, 1] has a periodic p-adic expansion, then x is rational.

Hint: The tail of a periodic p-adic expansion is a geometric series.

b) We use denotation of the proof of Theorem 2.31. Assume that x = n/m, 0 < n < m.
Show that there is a natural number 0 ≤ rk < m such that

xk = pk n

m
−

k−1∑

i=0

xip
i +

rk

m
.

c) Let x, rk be as in b). Show that there are natural numbers 0 ≤ k, 0 < l such that
rk = rk+l.

Hint: Use the Dirichlet Pigeonhole Principle.

d) Conclude that a real x ∈ [0, 1] has a periodic p-adic expansion if and only if x is
rational.

2.20 Continued Fractions

a) Let r = n/m, n < m being mutually prime positive natural numbers. Assume that

m = q0n+ r1, 0 < r1 < n,
n = q1r1 + r2, 0 < r2 < r1,
r1 = q2r2 + r3, 0 < r3 < r2,
...

...
...

rk−2 = qk−1rk−1 + rk 0 < rk < rk−1,
rk−1 = qkrk.

Then

r =
1

q0+

1

q1+
· · · 1

qk
.

b) Every rational real from (0, 1) can be expressed as a finite continued fraction in
two ways: one with last term 1 and another with last term greater than 1.
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c) Fibonacci numbers are defined by induction as F0 = F1 = 1 and Fn+1 = Fn +Fn−1.

Show that limn→∞
Fn+1

Fn
= 1+

√
5

2
.

Hint: Consider the continued fraction

1

1+

1

1+
· · · 1

1+
· · · .

d) Show that

Fn =
1√
5

((
1 +

√
5

2

)n+1

−
(

1−
√

5

2

)n+1
)

, Fn+2 =

n∑

i=0

Fi + 1

for every n.

e) Assume that (2.33) holds true. If there exists a positive integer k > 0 such that
an = an+k for every n, then there are integers p, q, r, p2 + q2 + r2 	= 0 such that
pa2 + qa+ r = 0.

f) Let a, Pn, Qn be such as in the proof of Theorem 2.34. If

∣
∣
∣
∣a−

p

q

∣
∣
∣
∣ <

∣
∣
∣
∣a−

Pn

Qn

∣
∣
∣
∣ ,

p, q being integers, then q > Qn.

2.21 Cantor Expansion

Let {pk}∞k=0 be a sequence of natural numbers such that p0 = 1 and pk > 1 for k > 0.

a) For any positive natural number m there are natural numbers k,m0, . . . ,mk such
that mi < pi+1, i = 0, . . . , k and m =

∑k
i=0mi · (p0 · · · pi).

Hint: Let k be the first for which p0 · · · pk+1 > m. Take mk to be the greatest for
which mk · (p0 · · · pk) ≤ m. Continue by induction.

b) Show that the natural numbers in a) are uniquely determined.

c) For any real x ∈ (0, 1] there exist natural numbers 〈xk : k = 1, . . . , n, . . .〉 such that
xk < pk, for infinitely many k also xk < pk − 1 and

x =
∞∑

k=1

xk

p1 · · · · · pk
. (2.46)

Hint: Define by induction: y1 = x, xk = [ykpk], yk+1 = ykpk − xk.

d) Show that the expansion of (2.46) is unique.

e) Assume that for any prime p there exists infinitely many k such that p|pk. Then
the real x expressed by (2.46) is irrational if and only if xk 	= 0 for infinitely many
k.

Hint: If x = n/m, then there exists a k such that (n/m) · p1 · · · · · pk is integer.

f) The real e =
∑∞

k=0 1/k! is irrational.
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Historical and Bibliographical Notes

As we have already said Pythagoras (or better said Pythagoreans, since that was a
group) about 500 B.C. knew that

√
2 is not a rational number. Actually the proof

of (2.7) follows the Pythagorean’s proof by reductio ad absurdum. Later on, about
340–50 B.C., Eudoxus developed a theory of proportion trying to avoid the diffi-
culties with incommensurable ratios (essentially with irrational numbers). He also
knew what we call Archimedes’ Principle 2.6. Actually Archimedes (second half of
the 3rd century B.C.) repeatedly used this principle in his method of exhaustion.
Eudoxus’ theory is well explained by Euclid in his Elements (Στoιχει̃α) about 300
B.C. In Book X of Elements, Euclid classifies types of incommensurables, in our
terminology, types of irrationals. He investigates only reals of the form

√√
r ±

√
s,

where r, s are rationals. For more details see, e.g., Morris Kline [1972].
The results of Exercises 2.1 and 2.2 are essentially stated in Euclid’s Ele-

ments, Book IX. The Chinese Remainder Theorem was known already in the third
century A.D. in China. The problem whether there exists a transcendental real
was for a long time open. Liouville’s Theorem of Exercise 2.4, g), affirmatively
answering the problem, was proved by J. Liouville [1844].

At the turn of the 18th and 19th centuries the mathematicians recognized
that their creations had not been formulated in a style of the deductive method of
Euclid. Neither were the basic properties of reals sufficiently explained. Even the
methods of infinitesimal calculus (analysis), in spite of bringing important results,
became inaccurate or uncertain. A call for installation of rigor in mathematics had
appeared. It was A.L. Cauchy [1821] who began to introduce such rigor in analysis,
i.e., in the infinitesimal calculus. He defined a notion of B-C sequence, tried to
explain the notion of a continuous function and to prove basic results of analysis.
Proving Theorem 2.15 in “a pure analytic way”, B. Bolzano [1817] independently
started a similar job. He states the Bolzano Principle 2.1 as a theorem. As a
starting point of the proof he used the evident fact (in contemporary terminology):
every B-C sequence of reals has a limit. His proof contains a gap. Actually he
uses implicitly the Archimedes Principle – and by Theorem 2.28 d) he must do so.
Anyway his Lehrsatz of 1817 was historically the first formulation of the supremum
(infimum) principle and that is the reason why I propose to call it the Bolzano
Principle.

Theorem 2.12 (for cover by open intervals) was originally proved by
E. Heine [1870] as a tool for showing that a continuous function on a closed inter-
val is uniformly continuous. Later on, E. Borel [1895] proved it for countable open
interval covers as an important result which he used in investigations in function
theory. The presented proof is essentially H. Lebesgue’s modification of Borel’s
proof for any open interval cover.

B. Bolzano has wrote (about 1830–33?) a manuscript [1831] which was not
published until 1930. The manuscript contains several important results. The pre-
sentation is based on the Bolzano Principle as proved in B. Bolzano [1817] and
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Theorem 2.18, which was called the Bolzano-Weierstrass Theorem (in spite of the
fact that Bolzano’s paper [1831] was not published). Theorems 2.13 and 2.14 are
commonly attributed to K. Weierstrass who presented them in his Berlin lectures
in the 1960s century. However both theorems are presented in B. Bolzano [1831].

N.K. Bary [1961] attributes the result of Exercise 2.12 to Ch. J. de la Vallée-
Poussin and A. Denjoy.

The theory of reals was developed in the 19th century by several mathe-
maticians, ending with R. Dedekind [1888]. For details see, e.g., M. Kline[1972].
However the main principle of this theory is still the Bolzano Principle.

The positional decimal numeral system as presented in Section 2.4 was de-
veloped by Hindus in the 7th century. About 825, an Arabic scholar of Baghdad,
Mohammed ibn Musa al-Khowârizmı̂ wrote a book on calculation in Hindu style3

that become known in Europe in several Latin translations and taught Europe
on the use of decimal positional notation and calculation based on it. The Latin
version of the author’s name was translated as Algorithmi. That is the origin of
the word “algorithm” expressing the main property of calculation in Hindu style:
an exact description of the procedure of a calculation.

Leonardo of Pisa, called Fibonacci (son of Bonacci), in his Practica Geome-
tria (1220) showed that the roots of the equation x3 + 2x2 + 10x = 20 are not
included in Euclid’s classification. Mathematicians of the 17th and 18th centuries
used freely the notion of a rational, an irrational, even implicitly those of alge-
braic and transcendental numbers. They did so often without any exact definition.
Nevertheless L. Euler [1737] and more systematically in [1748] laid the foundation
of a theory of continued fractions. Using an expansion by a continued fraction he
shows that e is irrational. We recommend the reader to a basic source, A.Ya. Kch-
intchin [1949].

3He wrote another important book Al’jabr w’al muqâbala. . . devoted to the solution of linear
equations. The word Al’jabr was later translated as algebra.



Chapter 3

Metric Spaces and Real Functions

The general theory of topological spaces had its origin at the beginning
of the 20th century. Previously topological problems had usually been
investigated for only those individual spaces and their subsets for which
the concepts of a limit, a cluster point, the closure of a set, etc., had
a clear intuitive meaning.

Zdeněk Froĺık in E. Čech [1966], p. 233

If a set is endowed with a distance measure between any two points, then one
can define the weakest topology on the set in which the distance is continuous. In
Section 3.1 we begin with a study of properties of such topologies. Section 3.2 is
devoted to the study of an important class of topological spaces – Polish spaces.

Mathematicians tried to understand the structure of some specific subsets of
the real line. As a consequence, they began – mainly at the beginning of the 20th
century, when set theory was intensively developed – to study those subsets of the
real line which are well definable in some way. It turned out that so well-definable
sets possess good properties. We present the basic properties of the simplest well-
definable sets of reals (more generally, subsets of a Polish space) – Borel sets
– in Section 3.3. Since we want, if possible, to avoid the axiom of choice, our
presentation is sometimes more complicated.

After the first study of phenomena connected with, in contemporary termi-
nology, the topology of the real line and related spaces, mainly the French math-
ematicians at the end of the 19th century realized that similar phenomena occur
in the sets of real-valued functions endowed with the structure of a convergence of
a sequence. Moreover, it turned out that the structure related to the convergence
of real functions is close to the structure of the simplest well-definable sets of reals.
Section 3.4 investigates topics related to a convergence of a sequence of real func-
tions, especially those related to measurability of functions. Finally, Section 3.5 is
devoted to the basic study of Baire Hierarchy of real functions.
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3.1 Metric and Euclidean Spaces

Let X be a non-empty set. A mapping ρ : X ×X −→ R is called a metric on X
if for any x, y, z ∈ X the following holds true:

ρ(x, y) ≥ 0, (3.1)
ρ(x, y) = 0 ≡ x = y, (3.2)

ρ(x, y) = ρ(y, x), (3.3)
ρ(x, z) ≤ ρ(x, y) + ρ(y, z). (3.4)

The couple 〈X, ρ〉 is called a metric space. When the metric is understood we shall
say that X is a metric space.

We begin with some examples of metrics. Set

Rk = Rk = {〈x1, . . . , xk〉 : x1, . . . , xk ∈ R}.

For x = 〈x1, . . . , xk〉, y = 〈y1, . . . , yk〉 ∈ Rk we define the Euclidean distance by

ρ(x, y) =
√

(x1 − y1)2 + · · ·+ (xk − yk)2. (3.5)

The Euclidean distance is a metric on Rk. The metric space 〈Rk, ρ〉 is called the
Euclidean space. Let us note that for k = 1 we obtain Rk = R and ρ(x, y) = |x−y|.

Let X be a non-empty set. On the set ωX of all infinite sequences of elements
of X we define the Baire metric as

ρ(α, β) =
{

1
n+1 if α �= β and n = min{k : α(k) �= β(k)},
0 otherwise.

Note that ρ is an ultrametric, i.e.,

ρ(α, β) ≤ max{ρ(α, γ), ρ(γ, β)}

for any α, β, γ ∈ ωX .
The metric space 〈ωω, ρ〉 is the Baire space and 〈ω2, ρ〉 is the Cantor space.

We can identify the sets ω2 and P(ω) in a natural way: a sequence {an}∞n=0 ∈ ω2
is identified with the set A = {n ∈ ω : an = 1}. We shall consider P(ω) with the
metric induced from a Cantor space.

Let 〈X, ρ〉 be a metric space. Let a ∈ X and r be a positive real. The set

Ballρ(a, r) = {x ∈ X : ρ(a, x) < r}

is an open ball with center a and radius r. If the metric ρ is clear from the context
we shall write simply Ball(a, r). Moreover, we shall often omit the word “open”.
The closed ball Ballρ(a, r) is defined as

Ballρ(a, r) = {x ∈ X : ρ(a, x) ≤ r}.
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A set A ⊆ X is bounded if A ⊆ Ball(a, r) for some a ∈ X and r > 0. If A is
non-empty and bounded, then the diameter of A is the real

diam(A) = sup{ρ(x, y) : x, y ∈ A}.

A metric ρ on a set X defines a topology which we shall denote by Oρ. Again,
the subscript ρ will be omitted when it can be understood from the context. A set A
is said to be open, i.e., A ∈ Oρ, if for every x ∈ A there exists a positive real r such
that Ballρ(x, r) ⊆ A. One can easily check that Oρ is a topology. The topology
Oρ will be called the topology induced by the metric ρ. Since every open ball
belongs to Oρ, the set of all open balls {Ballρ(x, r) : x ∈ X ∧ r > 0} is a base of
the topology Oρ. By (3.2) we obtain that the topology Oρ is Hausdorff. It is easy
to see that a closed ball Ballρ(a, r) is a closed set (not necessarily the topological
closure of the open ball Ballρ(a, r)).

If 〈X, ρ〉 is a metric space, we set ρ1(x, y) = min{1, ρ(x, y)}. Then ρ1 is a
metric on X and induces the same topology as the metric ρ. Thus, if we need we
can assume that the values of a metric are in the interval [0, 1].

The topology on Rk induced by the Euclidean distance (3.5) is denoted by
Ek and is called the Euclidean topology. It is easy to see that E1 = E . If we do not
say otherwise, we always consider Rk equipped with Euclidean topology.

If x = 〈x1, . . . , xk〉, y = 〈y1, . . . , yk〉 ∈ Rk, t ∈ R we set

x+ y = 〈x1 + y1, . . . , xk + yk〉, t · x = tx = 〈tx1, . . . , txk〉. (3.6)

If A,B ⊆ Rk, then the arithmetic sum of A and B is the set

A+B = {x+ y ∈ Rk : x ∈ A ∧ y ∈ B}.

Similarly, the arithmetic difference of A and B is the set

A−B = {x− y ∈ Rk : x ∈ A ∧ y ∈ B}.

If we work on the unit interval [0, 1], the sum x + y and the difference x − y are
always taken modulo 1. The set x +A = {x+ y : y ∈ A} is called a shift of A. If
ρ denotes Euclidean distance, then

ρ(x, y) = ρ(x+ z, y + z), Ballρ(x+ y, r) = x+ Ballρ(y, r).

Thus for any open set A also any shift x+A is open. Similarly for other topological
properties.

If ai, bi ∈ R, ai < bi, i = 1, . . . , k, then the set

(a1, b1)× · · · × (ak, bk) ⊆ Rk

is called an open interval in Rk. Similarly, the set

[a1, b1]× · · · × [ak, bk] ⊆ Rk
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is a closed interval in Rk. Any open interval is an open set and any closed interval
is a closed set in the Euclidean topology.

The quotient group T = R/Z is called a circle. We can identify the circle
T with the unit interval [0, 1], in which we have identified the points 0 and 1.
The topology of T is induced by metric ρ(x, y) = ‖x − y‖ (‖a‖ is the distance of
the real a to the nearest integer). T is compact. The addition on T is the addition
modulo 1, i.e., for x, y, z ∈ T we have x+y = z if and only if (x+y)−z ∈ Z. Thus
z is the fractional part {x+ y} of x+ y. A real x ∈ R is considered as the element
y ∈ T such that x − y ∈ Z. The shift, arithmetic sum and arithmetic difference
are taken modulo 1. A real-valued function f : T −→ R can be identified with
a periodic function f : R −→ R, i.e., with a function satisfying f(x + 1) = f(x)
for any x ∈ R.
Theorem 3.1. The Cantor middle-third set C is homeomorphic with the Cantor
space ω2. Thus the Cantor space ω2 is compact.

The proof is easy. If x ∈ C then there exists a unique 3-adic expansion

x = 0, x1 . . . xn . . . |3 with xn = 0, 2.

We set f(x) = {xn+1/2}∞n=0 ∈ ω2. If |x − y| < 3−k, then xi = yi for every i ≤ k
and therefore ρ(f(x), f(y)) < 1/k. Thus f is continuous. Since f is one-to-one and
C is compact, by Corollary 1.31 f is a homeomorphism. �

We shall continue with a simple result which allows us to test continuity of
mappings into Rk.
Theorem 3.2. Let f : X −→ Rk, f1 : X −→ R, . . . , fk : X −→ R be mappings
defined on a topological space 〈X,O〉 such that f(x) = 〈f1(x), . . . , fk(x)〉 for any
x ∈ X. Then f is continuous (at a point a ∈ X) if and only if each fi, i = 1, . . . , k
is continuous (continuous at a point a).

Now we show that Euclidean spaces Rk possess some important properties.
Theorem 3.3. Any closed interval is a compact set. Thus, Rk is locally compact.

Proof. For any k > 0 the mapping wk : C −→ Rk is defined as follows. If

x = 0, x1x2 . . . xn . . . |3

is the 3-adic expansion of a real x ∈ C not containing 1, we set

wk(x) = 〈y1, . . . , yk〉,

where

yi =
∞∑

j=0

xi+k·j
2j+1

, i = 1, . . . , k. (3.7)

Using Theorem 3.2 one can easily check that wk is a continuous mapping of C onto
[0, 1]k. Thus [0, 1]k is compact. Since any closed interval in Rk is a continuous image
of [0, 1]k, the theorem follows. �
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Now we can prove the basic result about compact subsets of Euclidean spaces.
Theorem 3.4 (E. Borel – E. Heine). A subset X ⊆ Rk is compact if and only if it
is closed and bounded.

Proof. If X is bounded, then X is a subset of a closed interval. Being closed, X is
compact.

Vice versa, if X is compact, then by Theorem 1.27, b) X is closed. Take
any point a ∈ X . Then {Ball(a, n) : n > 0} is an open cover of X . Since X
is compact, there exists a finite subcover and therefore an n0 > 0 such that
X ⊆ Ball(a, n0). �

Theorem 3.5. Any interval in Rk is connected.

Proof. Let I ⊆ Rk be an interval. Assume that I is not connected. Then there are
open sets U, V such that I ∩U �= ∅, I ∩ V �= ∅, U ∩ V ∩ I = ∅ and I ⊆ U ∪ V . Let
a = [a1, . . . , ak] ∈ I ∩U and b = 〈b1, . . . , bk〉 ∈ I ∩ V . The mapping f : [0, 1] −→ I
defined by

f(t) = 〈a1 + t(b1 − a1), . . . , ak + t(bk − ak)〉

is continuous. The sets U, V witness that the set rng(f) is not connected, a con-
tradiction with Theorem 1.33. �

Theorem 3.6 (H. Steinhaus).

C + C = [0, 2], C− C = [−1, 1],

or, when we consider C as a subset of T,

C + C = C− C = T.

Proof. Let

Cn = [0, 1] \
3n−3⋃

k=1

(
1 + 3(k − 1)

3n
,

2 + 3(k − 1)
3n

)

.

Then by (2.32) we have C =
⋂
n Cn and also C× C =

⋂
n Cn × Cn.

Let t ∈ [0, 2] and A = {〈x, y〉 : x, y ∈ [0, 1] ∧ x + y = t}. A is a compact
set. One can easily see that A ∩ (Cn × Cn) �= ∅ for any n. Thus A ∩ (C× C) �= ∅.
However, if 〈x, y〉 ∈ A ∩ (C× C) then t = x+ y ∈ C + C.

Note that C = 1− C. �

Let X be a non-empty set, ρ being the Baire metric on ωX . The set ωX
may be viewed as the set of all branches of the tree 〈<ωX,⊆〉. Moreover, if T is a
pruned subtree of <ωX then [T ] ⊆ ωX . In accordance with the notation introduced
in Section 11.1 for any s ∈ AX , A ⊆ ω we write

[s] = {α ∈ ωX : s ⊆ α}.



78 Chapter 3. Metric Spaces and Real Functions

Recall that if s ∈ <ωX , then [s] is the set of all branches containing the node s.
One can easily see that

Ballρ(α, 1/(n+ 1)) = Ballρ(α, 1/n+ 2) = [α|n].

Thus {[s] : s ∈ <ωX} is a base of the topology Oρ. Note that also

{[s] : dom(s) ∈ [ω]<ω ∧ rng(s) ⊆ X}

is a base of the topology Oρ.
We show

Theorem 3.7. A subset C ⊆ ωX is closed if and only if there exists a pruned
subtree T ⊆ <ωX such that C is the set [T ] of all branches of the tree T .
The proof is easy. If C = [T ] and α /∈ C, then there exists an n such that α|n /∈ T .
Then [α|n] ∩ [T ] = ∅. Thus [T ] is closed. Vice versa, if C ⊆ ωX is closed we set
T = {α|n : α ∈ C ∧ n ∈ ω}. One can easily see that T is a pruned tree and
C ⊆ [T ]. Let α ∈ [T ]. Then α|n ∈ T for any n. Thus for any n there exists a β ∈ C
such that α|n = β|n. In other words [α|n] ∩ C �= ∅. Since C is closed, we obtain
α ∈ C. �
Corollary 3.8. Assume that X is non-empty and can be well ordered. Then any
non-empty closed subset A ⊆ ωX is a retract of ωX.

Proof. Let A = [T ], T being a pruned subtree of <ωX . We start with a construction
of a “retraction” R : <ωX onto−→ T of trees. Set R(∅) = ∅. Assume that R(s) ∈ T
is already defined and x ∈ X . If R(s)�x ∈ T we set R(s�x) = s�x. If not, then
since T is a pruned tree there is (the first in the well-ordering) element y ∈ X
such that R(s)�y ∈ T . We set R(s�x) = s�y. Now we define r(α) =

⋃
nR(α|n)

for a branch α ∈ ωX . r is the desired retraction. �

The mapping ΠX : ωX× ωX
1−1−→
onto

ωX defined by (1.11) is a homeomorphism.

Also the mapping G : ωX 1−1−→
onto

(ωX)ω defined by G(α) = β, where

β(n)(k) = α(π(n, k)) for any n, k ∈ ω

is a homeomorphism. Thus
Theorem 3.9. ωX×ωX and (ωX)ω are homeomorphic to ωX. Especially ω2, (ω2)n

and (ω2)ω are mutually homeomorphic for any n > 0. Similarly for ωω, (ωω)n and
(ωω)ω.

We know already that the Cantor space ω2 is compact. That is not the case
of the Baire space ωω.
Lemma 3.10. Let F : ω −→ [ω]<ω. If C ⊆ ωω is a closed set such that

(∀α) (α ∈ C → (∀n)α(n) ∈ F (n)), (3.8)

then C is compact. Vice versa, if C ⊆ ωω is a compact set, then there exists
a function F : ω −→ [ω]<ω such that (3.8) holds true.
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Proof. Let C ⊆ ωω be compact. We set F (n) = {α(n) : α ∈ C} for every n ∈ ω.
We have to prove that F (n) is finite for each n. To do so, for a given n ∈ ω
we set Uk = {α ∈ ωω : α(n) = k}. Then Uk are open, pairwise disjoint sets and
{Uk : k ∈ F (n)} is an open cover of C. Thus F (n) must be finite.

Now assume that F satisfies (3.8). We show that the product ΠnF (n), each
F (n) equipped with a discrete topology, is compact.

Let {nk}∞k=0 be an increasing sequence of natural numbers such that n0 = 0
and |F (k)| ≤ 2nk+1−nk . Let gk : nk+1−nk 2 onto−→ F (k). We define a continuous
surjection h : ω2 −→ ΠnF (n) as follows:

h(α) = β, where β(k) = gk(α|(nk+1 − nk)) ∈ F (k) for any k ∈ ω.

Since ω2 is compact, also ΠnF (n) is compact. C is a closed subset of ΠnF (n),
therefore compact. �

Theorem 3.11. Let C be a closed subset of ωω. Then the following are equivalent:

a) C is compact.
b) If T is a subtree of <ωω such that C = [T ], then the degree of branching of

every node of T is finite.
c) There exists a function β ∈ ωω such that

C ⊆ {α ∈ ωω : (∀n)α(n) ≤ β(n)}.

Proof. Assume that C is compact. Then, being closed, C = [T ] for a subtree
T ⊆ <ωω. By Lemma 3.10 there exists a function F : ω −→ [ω]<ω such that (3.8)
holds true. Then the degree of branching of any node in T (n) is at most |F (n+1)|.

Assume that b) holds true. Thus C = [T ], where every node in T has a finite
degree of branching. If we set

β(n) =
{

max{k : ∅ � k ∈ T } for n = 0,
max{k : s � k ∈ T, s ∈ T ∩ nω} for n > 0,

we obtain c).
If c) holds true, then we set F (n) = {k : k ≤ β(n)}. Then (3.8) holds true

and therefore C is compact. �

If a metric space 〈X, ρ〉 is separable, then the topology Oρ has a countable
base. Actually, if A ⊆ X is a countable dense subset then

{Ballρ(a, r) : a ∈ A ∧ r > 0 ∧ r ∈ Q}

is a countable base.
As a consequence of Theorem 1.39 we have

Theorem [wAC] 3.12. A separable metric space is Fréchet.
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By Theorem 1.23 we obtain
Theorem 3.13.

a) If X is a metric separable space, then |X | ≤ c.
b) wAC implies that a metric space with a countable base is separable.

One can easily see that Qk is dense in the Euclidean space Rk. Thus every
Rk is separable.

Now let ρ be the Baire metric on the space ωX , where X is a non-empty
countable set. Then the set of eventually constant sequences

{{an}∞n=0 ∈ ωX : (∃n0)(∀n > n0) an = an0}

is a countable dense subset of ωX . Thus both Baire and Cantor spaces are sepa-
rable.

Now, let 〈X, ρ〉 be a metric space. If A ⊆ X is non-empty, we define

ρ(x,A) = inf{ρ(x, y) : y ∈ A}.

If A is closed then

f(x) = ρ(x,A) is a continuous function and A = f−1({0}). (3.9)

Theorem 3.14 (P.S. Urysohn). If A,B ⊆ X are disjoint non-empty closed subsets
of a metric space X, then there exists a continuous function f : X −→ [0, 1] such
that A = f−1({0}) and B = f−1({1}). Hence, a metric space is normal.

Proof. We set

f(x) =
ρ(x,A)

ρ(x,A) + ρ(x,B)
for x ∈ X.

The function f is continuous and possesses the desired properties.
The sets

U = {x ∈ X : f(x) < 1/2}, V = {x ∈ X : f(x) > 1/2},

are disjoint open and A ⊆ U and B ⊆ V . �

The established property of metric spaces can be extended for normal topo-
logical spaces.
Theorem [AC] 3.15 (P.S. Urysohn). If A,B are disjoint non-empty closed subsets
of a normal topological space X, then there exists a continuous function f from X
into [0, 1] such that f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B.

Proof. Let A,B ⊆ X be closed, non-empty and disjoint. We construct a family of
open sets {Ur : r ∈ D ∪ {0, 1}} such that A ⊆ U0, U1 = X \ B and Ur ⊆ Us for
any r < s.
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Let {rn : n ∈ ω} be an enumeration of the set D ∪ {0, 1}. We can assume
that r0 = 0 and r1 = 1. We shall proceed by induction. Assume that Urk

, k < n,
n > 1 are already constructed. Let

s1 = max{rk : k < n ∧ rk < rn}, s2 = min{rk : k < n ∧ rn < rk}.

Since X is a normal topological space, there exist disjoint open sets U, V ⊆ X
such that Us1 ⊆ U and X \ Us2 ⊆ V . We set Urn = U .

Now define

f(x) =
{

inf{r ∈ D : x ∈ Ur} if x /∈ B,
1 if x ∈ B.

One can easily show that

f(x) < a ≡ (∃r ∈ D) (r < a ∧ x ∈ Ur), f(x) > a ≡ (∃r ∈ D) (a < r ∧ x /∈ U r),

for any a ∈ (0, 1). Thus the set

f−1((a, b)) =
⋃
{Ur : r < b} ∩

⋃
{(X \ Ur) : r > a}

is open and therefore f is continuous.
By construction of the function f we obtain that f(x) = 0 for x ∈ A and

f(x) = 1 for x ∈ B. �

The property “to be a normal space” is not hereditary, i.e., there exists
a normal topological spaceX and a subset Y ⊆ X that, endowed with the subspace
topology, is not normal (see Theorem 1.22, c) and Exercise 1.22). There is a weaker
property of a topological space that is hereditary. A Hausdorff topological space X
is called completely regular if for any closed subset A ⊆ X and a point a ∈ X \A
there exists a continuous function f : X −→ [0, 1] such that f(a) = 0 and f(x) = 1
for x ∈ A. A subset of a completely regular topological space with the subspace
topology is completely regular. By Theorems 3.14 and 3.15 every metric and every
normal space is completely regular.

There is another important notion. If f : X −→ R we write

Z(f) = {x ∈ X : f(x) = 0}.

A set A ⊆ X is a zero set if there exists a continuous function f : X −→ [0, 1]
such that A = Z(f). Evidently a zero set is a Gδ set.

A normal topological space X is called perfectly normal if every closed subset
of X is a zero-set. By Urysohn’s Theorem 3.14 we obtain
Corollary 3.16. A metric space is perfectly normal.

If X is a topological Hausdorff space with a countable base, then X is separa-
ble. Since every continuous function from X into the reals is uniquely determined
by values in a dense subset, we obtain that there exist at most c real continuous
functions. Thus, we can apply wAC to find some sequence of functions. Especially
we can prove
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Theorem [wAC] 3.17. A normal topological space with a countable base is metriz-
able.

We shall not need that result. However we shall often need
Theorem [AC] 3.18. A normal topological space is perfectly normal if and only if
every closed subset is a Gδ set.

Proof. Since every zero set is a Gδ set, in a perfectly normal space every closed
set is a Gδ set.

Assume that X is normal and A ⊆ X is closed. Then A is a Gδ set. Therefore
A =

⋂
nGn, where every Gn is open. By Theorem 3.15 there exist continuous

functions fn : X −→ [0, 1] such that A ⊆ Z(fn) and fn(x) = 1 for every x ∈ X\Gn.
For x ∈ X we set

f(x) =
∞∑

n=0

2−n−1fn(x).

By elementary calculus the function f is continuous and Z(f) = A. �

Corollary [AC] 3.19. If A,B are closed disjoint subsets of a perfectly normal space
X, then there exists a continuous function f : X −→ [0, 1] such that A = Z(f)
and B = Z(1 − f).

Proof. Let g, h : X −→ [0, 1] be continuous functions such that A = Z(g) and
B = Z(h). The function f(x) = g(x)/(g(x) + h(x)) satisfies the conclusion. �

Theorem 3.20 (H. Tietze – P.S. Urysohn). If A ⊆ X is a closed subset of a metric
space X and f : A −→ [0, 1] is continuous, then there exists a continuous mapping
F : X −→ [0, 1] such that F (x) = f(x) for x ∈ A. Moreover, if we assume axiom
of choice AC, then the assertion holds true for any normal topological space X.

Proof. We define

F (x) =
{
f(x) if x ∈ A,
inf{f(a) + ρ(x, a)/ρ(x,A) − 1 : a ∈ A} otherwise.

One can easily check that the so-defined function F is a continuous extension of f .
If X is a normal topological space, you can find a proof (based on AC) in

any standard textbook of topology, e.g., R. Engelking [1977]. �

Using the theorem, the mapping wk of the proof of Theorem 3.3 can be
continuously extended to a surjection wk : [0, 1] −→ [0, 1]k. Such an extended
mapping is called a Peano curve. Note that wk for k > 1 is not an injection, since
[0, 1] and [0, 1]k are not homeomorphic.
Corollary [wAC] 3.21. Assume that A is a closed subset of a separable metric
space X. If 〈fn : A −→ [0, 1] : n ∈ ω〉 are continuous and fn → 0 on A, then there
are continuous functions 〈Fn : X −→ [0, 1] : n ∈ ω〉 such that Fn → 0 on X and
fn = Fn|A for every n. Moreover, the unit interval [0, 1] may be replaced by R or
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an open interval. If we assume AC, then the assertion holds true for any normal
topological space.

Proof. By the Tietze-Urysohn Theorem 3.20, for every n ∈ ω there exists a contin-
uous function Hn : X −→ [0, 1] such that Hn|A = fn. Since A is closed, there are
open sets 〈Un : n ∈ ω〉 such that A =

⋂
n Un. We can assume that Un+1 ⊆ Un. By

Urysohn’s Theorem 3.14 there are continuous functions hn : X −→ [0, 1] such that
hn(x) = 1 for x ∈ A and hn(x) = 0 for x ∈ X \Un. It suffices to set Fn = Hn · hn.

If fn : A −→ (0, 1) and we construct a continuous extension Fn : X −→ [0, 1],
then we improve it as follows. The set Bn = F−1

n ({0, 1}) is a closed set disjoint with
A. So there exists continuous gn : X −→ [0, 1] such that gn(x) = 0 for x ∈ Bn and
gn(x) = 1 for x ∈ A. Then Fn · gn : X −→ (0, 1) has the desired properties. �

Let 〈X1, ρ1〉 and 〈X2, ρ2〉 be metric spaces. Let a ∈ X1. According to Theo-
rem 1.25 a function f : X1 −→ X2 is continuous at the point a if and only if

(∀ε > 0)(∃δ > 0)(∀x) (x ∈ Ballρ1(a, δ) → f(x) ∈ Ballρ2(f(a), ε)).

In analysis, the so-called Heine Criterion of continuity is often used. We need a
form of the axiom of choice for its proof. Actually we show that the Heine Criterion
is equivalent to the weak Axiom of Choice.
Theorem [wAC] 3.22 (Heine Criterion). Assume that |X1| � c. The function f is
continuous at a point a ∈ X1 if and only if, for every sequence {an}∞n=0 of points
of X1 convergent to a, also limn→∞ f(an) = f(a).

Proof. Assume that f is not continuous at the point a. Then there exists an ε > 0
positive such that

Ballρ1(a, δ) � f−1(Ballρ2(f(a), ε))

for any δ > 0. Especially, the set

Φn = Ballρ1(a, 1/(n+ 1)) \ f−1(Ballρ2(f(a), ε))

is non-empty for any n ∈ ω. By wAC there exists a selector 〈an ∈ Φn : n ∈ ω〉.
Evidently limn→∞ an = a and limn→∞ f(an) �= f(a). �
Theorem 3.23. The following statements are equivalent:

a) The Weak Axiom of Choice wAC.
b) R is Fréchet.
c) A function f : R −→ R is continuous at 0 if and only if for every sequence
{xn}∞n=0 with limn→∞ xn = 0 we have limn→∞ f(xn) = f(0).

Proof. We already know that a) → c). We show that c) → b) and b) → a).
Assume c) and a ∈ A \ A. Set f(x) = 1 for x ∈ A and f(x) = 0 otherwise.

Then f is not continuous in a. Therefore by c) there exists a sequence {an}∞n=0

with limn→∞ an = a and limn→∞ f(an) �= f(a). Thus, for infinitely many n we
have f(an) = 1 and consequently an ∈ A.
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Assume b) and that 〈An : n ∈ ω〉 is a sequence of non-empty subsets of ω2.
Let fn be a bijection of ω2 onto interval (1/(n+ 2), 1/(n+ 1)). One can easily
show that 0 ∈

⋃
n fn(An). Thus by b) there exists a sequence {xn}∞n=0 of elements

of the set
⋃
n fn(An) with limn→∞ xn = 0. Set E = {n : (∃m)xm ∈ fn(An)} and

g(n) = min{m : xm ∈ fn(An)} for n ∈ E. Then f−1
n (xg(n)) ∈ An for n ∈ E. Now

assertion b) follows by Theorem 1.13. �

Exercises

3.1 [AC] Uniform Continuity

A mapping f : X1 −→ X2 is called uniformly continuous if

(∀ε > 0)(∃δ > 0)(∀x, y ∈ X1) (ρ1(x, y) < δ → ρ2(f(x), f(y)) < ε).

a) If X1 is compact, then every continuous function is uniformly continuous.

Hint: For x ∈ X1 take δx such that

(∀y) (ρ1(x, y) < δx → ρ2(f(x), f(y)) < ε/2).

Then there exists a finite set {x0, . . . , xn} such that 〈Ball(xi, δxi/2) : i = 0, . . . , n〉
covers X1. Take δ = min{δxi : i = 0, . . . , n}/2.

b) A mapping f : X1 −→ X2 is said to be Lipschitz if there exists a positive real C
such that

ρ2(f(x), f(y)) ≤ C · ρ1(x, y) for any x, y ∈ X1.

Show that a Lipschitz mapping is uniformly continuous.

c) Find a uniformly continuous mapping defined on a compact space that is not Lip-
schitz.

Hint: Consider the function f(x) = x sin 1/x on [0, 1] and its derivative in (0, 1).

3.2 [AC] Small Separable Metric Spaces

a) If f(x) =
∑∞

n=0 anx
n converges for every x ∈ R, not every an is 0, then the zero

set Z(f) is countable and has no accumulation point.

Hint: See any elementary textbook on analytic functions, e.g., W. Rudin [1966].

b) Let 〈X : ρ〉 be a separable metric space with a bounded metric. Let 〈an ∈ X : n ∈ ω〉
be a dense subset of X. For a ∈ X we define

ha(x) =
∞∑

n=0

ρ(a, an)

n!
xn.

If a 	= b, then ha(x) 	= hb(x) for all but countably many reals x.

c) If |X| < c, then there exists a real x such that ha(x) 	= hb(x) for any a 	= b.

d) If |X| < c, then there exists a Lipschitz injection f : X −→ R.

Hint: Take the x of c) and set f(a) = ha(x).
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3.3 [wAC] Small Inductive Dimension

The small inductive dimension ind(X) of a topological space X is defined as follows. We
set ind(∅) = −1. If ind(X) ≤ n− 1 is already defined we say that ind(X) ≤ n if for any
x ∈ X, and for any neighborhood U of x there exists an open set V ⊆ U , x ∈ V and
such that ind(Bd(V )) ≤ n− 1. Finally, ind(X) = n if ind(X) ≤ n and ind(X) ≤ n− 1 is
false.

a) Show by induction that ind(Rk) ≤ k.

b) Show that ind(R) = 1.

c) ind(Q) = ind(R \Q) = 0.

d) ind(ω2) = ind(ωω) = 0.

e) If X = A ∪B, then ind(X) ≤ ind(A) + ind(B) + 1.

f) If a Hausdorff space X has a countable base, ind(X) = 0, then for any disjoint
closed sets A,B there exists a clopen set U such that A ⊆ U and U ∩B = ∅.
Hint: Note that there exists a countable clopen base. For each x ∈ X choose a clopen
basic set Ux with x ∈ Ux and Ux ∩ A = ∅ or Ux ∩ B = ∅. Enumerate them as
〈Un : n ∈ ω〉 and set Vn = Un \

⋃
k<n Vk. Show that U =

⋃
{Vn : Vn ∩ B = ∅} is

the desired clopen set.

g) If a Hausdorff space X has a countable base, X =
⋃

nXn, where each Xn is closed
and ind(Xn) = 0, then ind(X) = 0.

Hint: Use f) and show that Ind(X) = 0.

h) If Xn are separable metric spaces with ind(Xn) = 0, then ind(ΠnXn) = 0.

i) Set Ak = {〈x1, . . . , xn〉 ∈ Rn : exactly k of x1, . . . , xn are rational}. Let r1, . . . , rk

be rational, 1 ≤ i1 < · · · < ik ≤ n. The set

{〈x1, . . . , xn〉 ∈ Rn : xij = rj for j = 1, . . . , k and xi irrational for the other i}

is closed in Ak and has small inductive dimension zero.

k) Show that ind(Ai) = 0 and Rn =
⋃n

k=0Ak.

3.4 Covering Dimension

The order of an open coverA of a subset A of a topological space X is the greatest natural
number n such that there are mutually different sets U0, . . . , Un ∈ A with U0∩· · ·∩Un 	= ∅.
If there is no such natural number, then the order of A is ∞. The covering dimension
dim(X) of a topological space X is defined as follows: dim(X) ≤ n if every open cover
of X has a refinement of order not greater than n.

a) dim(X) = 0 if and only if X has a clopen base of topology. Thus, dim(X) = 0 if
and only if ind(X) = 0.

b) dim(R) = 1.

Hint: Consider covers by open intervals.

c) If A ⊆ X is closed, then dim(A) ≤ dim(X).

3.5 Arcwise Connected Space

A continuous mapping ϕ : [0, 1] −→ X is called an arc. The arc ϕ connects the points
ϕ(0) and ϕ(1). A topological space X is called arcwise connected if any two points of X
can be connected by an arc.
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a) Arcwise connected space is connected.

b) The set

{〈x, y〉 ∈ R2 : (x = 0 ∧ −1 ≤ y ≤ 1) ∨ (0 < x ≤ 1 ∧ y = sin 1/x)}

is connected and not arcwise connected.

c) A topological space is locally arcwise connected if any open neighborhood U of any
point x ∈ X contains an open set x ∈ V ⊆ U such that V is arcwise connected.
Find an arcwise connected space which is not locally arcwise connected.

Hint: Take the dense comb

{〈x, y〉 ∈ [0, 1]2 : y = 0 ∨ (x rational and y ∈ [0, 1])}.

d) Every connected and locally arcwise connected space is arcwise connected.

Hint: Given a point x ∈ X, the set of those points which can be connected with x
by an arc is clopen.

3.6 Subgroups of T
We consider topological group 〈T,+〉.

a) A subgroup G ⊆ T is finite if and only if G contains the least positive element.

b) An infinite subgroup of T is topologically dense in T.

3.2 Polish Spaces

Let 〈X, ρ〉 be a metric space. A sequence {xn}∞n=0 is Bolzano-Cauchy, briefly
B-C, if

(∀ε > 0)(∃n0)(∀n,m > n0) ρ(xn, xm) < ε.

Every convergent sequence is a Bolzano-Cauchy sequence. The opposite need not
be true. A metric is said to be complete if every Bolzano-Cauchy sequence is
convergent. If there exists a complete metric that induces the topology O of a sep-
arable topological space 〈X,O〉, then X is called a Polish space and the topology
O is called Polish topology. A Polish space X is called perfect if X is a perfect set.

If X is a topological group with topology of a Polish space, then we say that
X is a Polish group.

Let 〈xn = 〈x1
n, . . . , x

k
n〉 : n ∈ ω〉 be a sequence of points of Rk. It is easy to see

that limn→∞ xn = x, where x = 〈x1, . . . , xk〉 ∈ Rk, if and only if limn→∞ xin = xi

for every i = 1, . . . , k. Similarly, the sequence {xn}∞n=0 is Bolzano-Cauchy if and
only if each sequence of reals {xin}∞n=0, i = 1, . . . , k, is Bolzano-Cauchy. Thus the
Euclidean space Rk is complete and also a Polish space. Moreover, Rk with the
addition defined by (3.6) is a Polish commutative group. The circle T with the
addition modulo 1 is a Polish group. The Euclidean distance on an open interval
is not a complete metric. However, there exists a complete metric that induces the
same topology.
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We show that any space ωX , X �= ∅ with the Baire metric is complete. Let
{αn}∞n=0 be a Bolzano-Cauchy sequence of points of ωX . We define a sequence α
as follows. Let k ∈ ω. Then there exists an n0 such that ρ(αn, αm) < 1/(k + 1)
for any n,m > n0. Then αn(k) = αm(k) for n,m > n0. Let α(k) be this common
value. One can easily see that limn→∞ αn = α.

We already know that the sets of eventually constant functions are countable
dense subsets of the Cantor space ω2 and the Baire space ωω, respectively. Hence
both ω2 and ωω are Polish spaces. The Cantor space ω2 is a Polish group. Similarly
we can consider ωω as a Polish group identifying it with ωZ.

We shall often need the following simple consequence of Theorem 3.1.

Theorem 3.24. If T ⊆ <ωω is a perfect tree, then [T ] ⊆ ωω contains a subset
homeomorphic to the Cantor middle-third set.

Proof. If T is a perfect tree, then by Theorem 11.5 T contains a subtree S similar
to the tree <ω2. Then [S] ⊆ [T ] and by Theorem 3.1 [S] is homeomorphic to the
Cantor middle-third set. �

Theorem 3.25. The Baire space ωω is homeomorphic to the set Ir = (0, 1) \ Q
equipped with the subspace Euclidean topology.

Proof. For a = {an}∞n=0 ∈ ωω we set

h(a) =
1
a0+

1
a1+

· · · 1
an+

· · · ,

and we denote by Rn(a) the real defined by (2.37). By Theorem 2.34 we obtain
that h : ωω

1−1−→
onto

Ir. If ρ(a, b) < 1/(n + 2), then ai = bi for i = 0, . . . , n. Thus

Rn(a) = Rn(b) and by (2.45) we have

|h(a)− h(b)| < 2
n2
.

Hence, h is continuous. We show that also h−1 is continuous.
We begin with an observation. Let a ∈ (0, 1) be an irrational number. Then

there exists an ε > 0 depending on a such that �1/a� = �1/x� for any irrational
x ∈ (0, 1) such that |a− x| < ε. Actually, if n = �1/a�, then 1/(n+ 1) < a < 1/n.
Take ε = min{1/n− a, a− 1/(n+ 1)}.

Assume that a, x ∈ (0, 1) are irrationals and

a =
1
a0+

1
a1+

· · · 1
an+

· · · , x =
1
x0+

1
x1+

· · · 1
xn+

· · · .

The sequence {an}∞n=0 is defined similarly as in the proof of Theorem 2.34:

a0 = �1/a�, r0 = 1/a− a0, an+1 = �1/rn�, rn+1 = 1/rn − an+1.
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Similarly are defined xn and sn. Moreover, we have

a =
Pn(a) + Pn−1(a) · rn
Qn(a) +Qn−1(a) · rn

, x =
Pn(x) + Pn−1(x) · sn
Qn(x) +Qn−1(x) · sn

.

To prove that h−1 is continuous in a it suffices to find a sequence {εn}∞n=0 of
positive reals such that

|a− x| < εn → a0 = x0, . . . , an = xn. (3.10)

Let ε0 > 0 be such that �1/a� = �1/x� for any |x − a| < ε0. Now assume
that εn satisfying (3.10) is already defined. Let δ > 0 be such that �1/rn� = �1/y�
whenever |rn − y| < δ. If |a− x| < εn then

Pn = Pn(a) = Pn(x), Qn = Qn(a) = Qn(x) and sn =
Pn −Qn · x

Qn−1 · x− Pn−1
.

Thus sn depends continuously on x. Let εn+1 < εn be such that |rn − sn| < δ for
|a−x| < εn+1. Then a0 = x0, . . . , an = xn, an+1 = xn+1 for any |x−a| < εn+1. �

One can easily see that both spaces ω2 and ωω are zero-dimensional. Moreover
Theorem 3.26. For a separable metric space X the following are equivalent:

a) X is zero-dimensional.
b) X is homeomorphic to a subset of ω2.
c) X is homeomorphic to a subset of ωω.

Proof. Since ωω is zero-dimensional and ω2 is homeomorphic to a subset of ωω, we
have only to prove that a zero-dimensional separable metric space is homeomorphic
to a subset of ω2.

Let 〈Un : n ∈ ω〉 be a clopen base of X . We define a mapping f : X −→ ω2
as follows: f(x) = α where α(n) = 1 if x ∈ Un and α(n) = 0 otherwise. One can
easily see that f is the desired embedding. �
Theorem 3.27 (R. Baire). Every Polish space satisfies the Baire Category Theorem.

We begin with a lemma which is interesting on its own.
Lemma 3.28 (G. Cantor). Let X be a Polish space. If

C0 ⊇ C1 ⊇ · · · ⊇ Cn ⊇ · · ·

are non-empty closed sets such that limn→∞ diam(Cn) = 0, then
⋂
n Cn �= ∅.

Proof. Let {rn : n ∈ ω} be a dense subset of X . Set εn = diam(Cn). For every
n let m be the smallest integer such that ρ(rm, Cn) < εn. Set xn = rm. Note
that ρ(xn, Ck) < εn for any n ≥ k. Since limn→0 εn = 0 the sequence {xn}∞n=0

is Bolzano-Cauchy and therefore there exists an x = limn→∞ xn. If x /∈ Cn,
then for a sufficiently large m ≥ n we would have ρ(xm, Cn) < ρ(x,Cn)/2 and
ρ(xm, x) < ρ(x,Cn), a contradiction. Thus x ∈

⋂
n Cn. �
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Proof of the theorem. Repeat the proof of Theorem 1.36 with Un = Ball(an, δn),
where an is the first rm ∈ Ball(an−1, δn−1) ∩ An and δn ≤ 2−n is such that
Ball(an, δn) ⊆ Un−1 ∩An. Then apply the lemma. �
Theorem [wAC] 3.29 (K. Kuratowski). Let X be a separable metric space, Y being
a Polish space. Assume that A ⊆ X and f : A −→ Y is continuous. Then there
exists a Gδ set G ⊇ A and a continuous function g : G −→ Y such that g(x) = f(x)
for x ∈ A.

Proof. Let us denote

C =
⋂

n

⋃
{U ⊆ X : U open ∧ U ∩A �= ∅ ∧ diam(f(A ∩ U)) < 1/(n+ 1)}.

Then C ⊇ A is a Gδ set. Let G = C ∩A. If x ∈ G\A, then there exists a sequence
〈xk ∈ A : k ∈ ω〉 with limk→∞ xk = x. By definition of the set C, the sequence
{f(xk)}∞k=0 is B-C. Let g(x) = limk→∞ f(xk). One can easily see that the definition
is correct, i.e., the resulting value g(x) does not depend on the choice of the
sequence {xk}∞k=0. Set g(x) = f(x) for x ∈ A. Then g is continuous. �
Theorem [wAC] 3.30. A subset A of a Polish space is a Polish space if and only
if A is a Gδ set.

Proof. Assume that A ⊆ X is a Polish space with the subspace topology. The
identity mapping idA : A 1−1−→ A is continuous. By Theorem 3.29 there exists a Gδ

set A ⊆ G ⊆ A and a continuous function g : G −→ A extending idA. Since
g(x) = x for any x ∈ A, this equality must hold true also for any x ∈ A. Thus
A = G.

Now, let A =
⋂
nGn be a Gδ-subset of X , 〈Gn : n ∈ ω〉 being open. Let ρ be

a complete metric on X . We define a metric σ on A as follows:

σ(x, y) = ρ(x, y) +
∞∑

k=0

min
{

2−k,
∣
∣
∣
∣

1
ρ(x,X \Gk)

− 1
ρ(y,X \Gk)

∣
∣
∣
∣

}

.

Let {xn}∞n=0 be a B-C sequence in the metric σ. By definition of σ, the sequence
{xn}∞n=0 is a B-C sequence in metric ρ as well. Thus there exists an x = limn→∞ xk.

We need to show that x ∈ A. One can easily see that for every fixed n the
sequence {1/ρ(xk, X \ Gn)}∞k=0 of reals is B-C and therefore there exists a real
a = limk→∞ 1/ρ(xk, X \Gn). Then ρ(x,X \Gn) = 1/a �= 0. Hence x ∈ Gn. Since
n was arbitrary, we obtain x ∈ A. �

Note that the second part of the proof did not use any choice.
Denote

M(X,O) = {A ⊆ X : A is meager}.
We shall write simply M(X), when the topology O is understood.
Theorem [wAC] 3.31. If 〈X,O〉 is a non-meager topological space with a countable
base of topology, then the family M(X,O) is a σ-ideal with an Fσ base.
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Proof. Since every meager set is a subset of an Fσ meager set, the ideal M(X)
has an Fσ base.

If An ∈M(X), then the family

Φn = {{Fm}∞m=0 : (∀m) (Fm is closed nowhere dense) ∧An ⊆
⋃

m

Fm}

is non-empty. By (1.19) we can apply wAC. Thus there exists a choice sequence
〈{Fn,m}∞m=0 ∈ Φn : n ∈ ω〉. Then

⋃

n

An ⊆
⋃

n

⋃

m

Fn,m. �

Let 〈X,O〉 be a topological space. A set A ⊆ X has the Baire Property if
there exists an open set U such that the sets A\U, U \A are meager. Equivalently,
there are an open set U and meager sets P,Q such that A = (U \P )∪Q. Immedi-
ately from the definition we obtain that A ⊆ X has the Baire Property if and only
if there are an open set U and meager Fσ sets P, Q such that U \Q ⊆ A ⊆ U ∪P .
Thus we have
Theorem 3.32. A subset A of a perfectly normal space X has the Baire Property
if and only if there are an Fσ set F and a Gδ set G such that G ⊆ A ⊆ F and
F \G is meager.

We denote by Baire(X,O) or simply Baire(X) the family of all subsets
of X with the Baire Property. Again when the topology O or the space X is
understood we write simply Baire(X) or Baire.
Theorem [wAC] 3.33. For any topological space 〈X,O〉 with a countable base the
family Baire(X,O) is closed under complement and countable unions. Hence,
Baire(X,O) is closed under countable intersections as well. Assuming AC one
can omit the condition of a countable base.

Proof. Since every open set has the Baire Property, we have ∅, X ∈ Baire(X). If
A = (U \ P ) ∪Q, U open, P, Q meager, then

X \A = (Int(X \ U) \Q) ∪ (((X \ U) \ Int(X \ U)) \Q) ∪ (P \Q)

and (X \ U) \ Int(X \ U) is nowhere dense. Thus X \A ∈ Baire(X).
Let 〈An ∈ Baire(X) : n ∈ ω〉. By wAC there exist open sets 〈Un : n ∈ ω〉

and meager Fσ sets 〈Pn : n ∈ ω〉, 〈Qn : n ∈ ω〉 such that

An \ Un ⊆ Pn, Un \An ⊆ Qn.

Since
⋃

n

An \
⋃

n

Un ⊆
⋃

n

(An \ Un) ⊆
⋃

n

Pn,
⋃

n

Un \
⋃

n

An ⊆
⋃

n

(Un \An) ⊆
⋃

n

Qn,

we obtain
⋃
nAn ∈ Baire(X).

The assertion about countable intersections follows by the de Morgan laws.
�
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We shall define below a notion of a σ-algebra. The theorem says that as-
suming wAC, Baire(X,O) is a σ-algebra provided that 〈X,O〉 has a countable
base.
Theorem 3.34. Let a topological space X satisfy the Baire Category Theorem. Then
for every set A ⊆ X with the Baire Property there exists a unique regular open set
V such that A \ V and V \A are meager.

Proof. Let A \ U and U \ A be meager, U being open. Since A \ Int(U) ⊆ A \ U ,
Int(U) \A ⊆ (U \U)∪ (U \A) and U \U are nowhere dense, the regular open set
V = Int(U) is the desired one.

Assume that U �= V are regular open sets such that A \ U , A \ V , U \ A
and V \ A are meager. If U � V , then since V is regular also U � V . Then
U \ V ⊇ U \ V �= ∅. By the Baire Category Theorem U \ V is not meager. On the
other side we have U \ V ⊆ (A \ V ) ∪ (U \ A). Since both sets A \ V , U \ A are
meager, we have reached a contradiction. �

Theorem [wAC] 3.35. Assume that X is a Hausdorff space with a countable base
and satisfies the Baire Category Theorem. For any A ⊆ X there exists an Fσ set
F such that

A ⊆ F ∧ (∀B ∈ Baire(X)) (A ⊆ B → F \B is meager). (3.11)

Proof. Let B be a countable base of the topology O. We set

U =
⋃
{V ∈ B : V ∩A is meager}.

Evidently A∩U is meager. Let W be an Fσ meager set such that A∩U ⊆W . Set
F = (X \ U) ∪W . Then F is an Fσ set and A ⊆ F .

Assume that A ⊆ B where B possesses the Baire Property. Then there exist
G open, P,Q meager such that B = (G \Q) ∪ P . Evidently F \B ⊆ (F \G) ∪Q.
If F \ G were not meager, then, being an Fσ set, there exists a non-empty open
set V ⊆ F \ G. Since A ⊆ G ∪ P , we obtain A ∩ V ⊆ P . By definition of U we
have V ⊆ U and, since V ⊆ F , we obtain V ⊆W , a contradiction. �

We introduce a property of a metric space which implies compactness of
a Polish space. A metric space X is totally bounded if for any ε > 0, the space X
can be covered by finitely many balls of radius ε.
Theorem [wAC] 3.36. A Polish space X is compact if and only if X is totally
bounded.

Proof. We may suppose diam(X) = 1. Let {Un : n ∈ ω} be an open cover of X .
To get a contradiction we assume that

⋃n
k=0 Uk �= X for every n. For every n we

construct finitely many closed sets Cn,0, . . . , Cn,kn , kn ∈ ω of diameter less than
2−n such that

⋃kn

i=0 Cn,i = X \
⋃n
k=0 Uk and every Cn+1,i is a subset of some

Cn,j . Set k0 = 0 and C0,0 = X \ U0. Assume that kn and Cn,0, . . . , Cn,kn are
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already constructed. Since X is totally bounded, there exist finitely many closed
balls B0, . . . , Bm of diameter less than ≤ 2−n+1 covering the set Cn,0∪· · ·∪Cn,kn .
Enumerate as 〈Cn+1,i : i ≤ kn+1〉 all non-empty sets Cn,l ∩ Bj ∩ (X \

⋃n+1
k=0 Uk),

where l ≤ kn and j ≤ m. The family {Cn,i : i ≤ kn, n ∈ ω} ordered by the inverse
inclusion is a countable tree and each node has finite branching degree. Thus by
König’s Lemma 11.7 there exists an infinite branch

C0,0 ⊇ C1,i1 ⊇ · · · ⊇ Cn,in ⊇ · · · .

By Cantor’s Lemma 3.28 the intersection
⋂
n Cn,in is non-empty, which contradicts⋃

n Un = X .
The opposite implication is trivial. �

Exercises

3.7 Distance of Two Sets

Let 〈X, ρ〉 be a metric space. If A,B ⊆ X we define the distance of sets A,B as

ρ(A,B) = inf{ρ(x, y) : x ∈ A ∧ y ∈ B}.

a) If ρ(A,B) > 0, then A ∩ B = ∅.
b) Suppose that A∩B = ∅. If X is a Polish space with a complete metric ρ, and A,B

are closed, then ρ(A,B) > 0.

c) Show that all conditions are necessary, i.e., if X is not a Polish space or ρ is
not complete, or A,B are not closed, then it may happen that A ∩ B = ∅ and
ρ(A,B) = 0.

3.8 [wAC] Compactness of Metric Spaces

We assume that 〈X, ρ〉 is a metric space. X is called sequentially compact if every sequence
of points of X has an accumulation point.

A positive real ε is a Lebesgue number of an open cover A if for every x ∈ X there
exists a U ∈ A such that Ball(x, ε) ⊆ U .

a) A compact separable metric space is sequentially compact. Assuming AC one can
omit the assumption of separability, i.e., AC implies that a compact metric space
is separable.

b) A compact separable metric space is complete. Assuming AC one can omit the
assumption of separability.

c) A separable sequentially compact space is totally bounded.

d) If X is separable sequentially compact, then every open cover has a Lebesgue
number.

e) If X is totally bounded and every open cover has a Lebesgue number, then X is
compact.

f) If X is totally bounded and complete, then X is sequentially compact.

g) If every open cover has a Lebesgue number, then the space is complete.
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h) Let X be separable. Then the following are equivalent:

1) X is compact.

2) X is sequentially compact.

3) X is totally bounded and complete.

3.9 [wAC] Product and Sum of Polish Spaces

Let 〈Xn : n ∈ ω〉 be Polish spaces, ρn being complete metric on Xn. We assume that
values of each ρn is in [0, 1]. Denote the product X = Πn∈ωXn. We define

ρ(x, y) =
∞∑

n=0

ρn(x(n), y(n)) · 2−n (3.12)

for x, y ∈ X.

a) ρ is a metric on X.

b) The metric ρ induces on X the product topology, i.e., the weakest topology in which
all projections on Xn, n ∈ ω are continuous.

c) 〈X, ρ〉 is a complete space.

d) 〈X, ρ〉 is a Polish space.

Hint: If An = {an,m : m ∈ ω} is a dense subset of Xn, then the set of all sequences
{an,kn}∞n=0, where kn = km for sufficiently large n,m is a countable dense subset
of X.

If 〈X1,O1〉, 〈X2,O2〉 are topological spaces, then the sum of them is the topological space
〈X1 ∪X2,O〉, where

U ∈ O ≡ (X1 ∩ U ∈ O1 ∧X2 ∩ U ∈ O2).

Similarly for more spaces.

e) Both X1 and X2 are clopen sets in the sum.

f) The sum of two Polish spaces is a Polish space.

3.10 Universal Polish Space

The metric space ω[0, 1] with the metric (3.12), where each ρn is the Euclidean distance
on [0, 1] is called the Hilbert cube. We emphasize that all results of this exercise may be
proved without using the axiom of choice.

a) A Hilbert cube is a compact Polish space.

Hint: Construct a continuous mapping of C onto ω[0, 1].

b) If X is a separable metric space, then there exists a homeomorphism f of X onto
a subset f(X) ⊆ ω[0, 1].

Hint: We can assume that diam(X) ≤ 1. If {an : n ∈ ω} is a dense subset of X
define f(x) = {ρ(x, an)}∞n=0.

c) X is a Polish space if and only if X is homeomorphic to a Gδ subset of the Hilbert
cube ω[0, 1].

d) A Polish space is a topologically complete space (see Exercise 1.23).

e) X is a compact Polish space if and only if X is homeomorphic to a closed subset
of the Hilbert cube ω[0, 1].
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f) Every Polish space has a compactification.

g) Every compact Polish space is a continuous image of C.

Hint: Use a) and Corollary 3.8.

3.11 ωR
Consider the topological space ωR with the product topology.

a) A closed subset A ⊆ ωR is compact if and only if there exist closed intervals
〈In : n ∈ ω〉 such that A ⊆ ΠnIn.

Hint: Each projection is continuous.

b) The topological space ωR is not locally compact.

c) ωR is homeomorphic to a Gδ subset of the Hilbert cube ω[0, 1].

3.12 Banach Space

Let B be a vector space over the field of reals R. A mapping p : B −→ 〈0,∞) is called
a seminorm if p(x+ y) ≤ p(x) + p(y), p(αx) = |α|p(x) for every x, y ∈ B and α ∈ R. If
moreover p(x) = 0 ≡ x = 0, then p is called a norm and we prefer to write p(x) = ‖x‖.
In this case we set ρ(x, y) = ‖x− y‖ and ρ is a metric. A vector space B with a norm ‖ ‖
is called a Banach space if 〈B, ρ〉 is a complete metric space. Sometimes a Banach space
is assumed to be separable, i.e., a Polish space. We do not assume the separability.

a) Show that ρ is a metric.

b) If for [α1, . . . , αk] ∈ Rk we set ‖[α1, . . . , αk]‖ =
√∑k

i=1 x
2
i , then we obtain a norm

on Rk. The corresponding metric is the Euclidean distance on Rk and Rk with the
operations defined by (3.6) is a separable Banach space.

c) Let �∞ be the set of all bounded sequences of reals and for an element {αn}∞n=0 of
�∞ we write ‖{αn}∞n=0‖∞ = sup{|αn| : n ∈ ω}. Show that �∞ with the norm ‖ ‖∞
is a separable Banach space.

d) Let p ≥ 1 be a real. For a sequence {αn}∞n=0 of reals we set

‖{αn}∞n=0‖p = p

√
√
√
√

∞∑

i=0

|αi|p

(‖{αn}∞n=0‖p = ∞ if the series diverges). Let �p = {{αn}∞n=0 : ‖{αn}∞n=0‖p < ∞}.
Show that �p with the norm ‖ ‖p is a separable Banach space.

Hint: Use the results of Exercise 2.10 to show that �p is a vector space and ‖ ‖p is
a norm. If {{αn,k}∞n=0}∞k=0 is a B-C sequence, then {αn,k}∞k=0 is a B-C sequence
for each n. Let αn = limk→∞ αn,k. For any ε > 0 there exists a k0 such that∑∞

n=0 |αn,k − αn,m|p < ε for any k,m ≥ k0. For arbitrary l > 0 there exists an

m0 ≥ k0 such that
∑l

n=0 |αn,m0 − αn|p < ε. Thus
∑l

n=0 |αn,k − αn|p < 2ε for any
k ≥ k0. Since l was arbitrary, we obtain

∑∞
n−0 |αn,k − αn|p ≤ 2ε.

e) The Hilbert cube ω[0, 1] is homeomorphic to a subset of �p.

Hint: Take A = {{αn}∞n=0 : (∀n) |αn|p ≤ 2−n}.
3.13 Linear Operator

Let Bi be Banach spaces with norms ‖ ‖i, i = 1, 2. A linear mapping (see Exercise 11.10)
T : B1 −→ B2 is called a linear operator. T is bounded if there exists a positive real K
such that ‖T (x)‖ ≤ K · ‖x‖ for every x ∈ B1.
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a) T is bounded if and only if the set {T (x) : x ∈ Ball(0, 1) ⊆ B1} is bounded.

b) T is bounded if and only if there exists a neighborhood U of 0 in B1 such that the
set {T (x) : x ∈ U} is bounded.

c) If T is bounded, then we define the norm of linear operator ‖T‖ as

‖T‖ = sup{‖T (x)‖2 : x ∈ Ball(0, 1) ⊆ B1}.

Show that

‖T‖ = inf{K ∈ R : (∀x ∈ B1) ‖T (x)‖2 ≤ K‖x‖1}.

d) If T is bounded, then T is continuous.

e) If T is continuous at 0, then T is bounded.

Hint: If ‖T (x) − T (0)‖ ≤ 1 for every ‖x‖ < δ then the diameter of the set
T (Ball(0, 1)) is not greater than 2/δ.

f) If T is continuous, then T is bounded.

g) If there exists a point x0 ∈ B1 such that T is continuous at x0, then T is continuous.

Hint: Show that T is continuous at 0 and use c).

3.14 Open Mapping Theorem

Assume that Bi, i = 1, 2 are Banach spaces, T : B1 −→ B2 is a continuous linear
operator. We set Un = Ball(0, 2−n) ⊆ B1.

a) If T (U0) has non-empty interior, then T (U0) is a neighborhood of 0.

Hint: T (U1) and T (U0) are homeomorphic. If V ⊆ T (U1) is non-empty open, then

0 ∈ V − V ⊆ T (U1)− T (U1) ⊆ T (U1)− T (U1) ⊆ T (U0).

b) If T (B1) is not meager, then T (U0) has non-empty interior.

Hint: T (U0) and nT (U0) are homeomorphic and T (B1) =
⋃∞

n=1 nT (U0).

c) Assume AC. If T (B1) is not meager, then T (U1) ⊆ T (U0).

Hint: Consider any y1 ∈ T (U1). By induction construct yn ∈ T (Un). By a) and b),
T (Un+1) is a neighborhood of 0, thus (yn − T (Un+1)) ∩ T (Un) 	= ∅. Take xn ∈ Un

such that T (xn) ∈ yn−T (Un+1) and set yn+1 = yn−T (xn). By completeness there
exists an x =

∑∞
n=1 xn. Show that y1 = T (x) ∈ T (U0).

d) Assuming AC prove the Open Mapping Theorem: If T (B1) is non-meager, then
T (B1) = B2 and T is an open mapping, i.e., T (U) ⊆ B2 is open for every open
U ⊆ B1.

Hint: If U ⊆ B1 is a neighborhood of 0, then by c) and a), T (U) is a neighborhood of
0 in B2. Conclude that T is open. Since T (B1) is open we have Ball(0, 1) ⊆ T (B1)
and therefore T (B1) = B2.

e) If B1, B2 are separable, then wAC is sufficient for a proof of the Open Mapping
Theorem.
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3.15 Convex Sets

B is a Banach space. A set A ⊆ B is convex if for any x, y ∈ A and any real t ∈ [0, 1]
also tx+ (1− t)y ∈ A.

a) If T : B1 −→ B2 is a linear operator and A ⊆ B1 is convex, then also T (A) is
convex.

b) If p : B −→ R is a seminorm, then the set U = {x ∈ B : p(x) < 1} is a convex set.
If moreover p is continuous, then U is a convex neighborhood of 0.

c) If U is a convex neighborhood of 0, then the Minkowski functional of U ,

p(x) = inf{α > 0 : α−1x ∈ U},

is a seminorm on B and {x ∈ B : p(x) < 1} ⊆ U ⊆ {x ∈ B : p(x) ≤ 1}.
3.16 Hahn-Banach Theorem

B is a Banach space, p is a seminorm. A linear operator f : B −→ R is called a linear
functional.

a) Let A be a vector subspace of B, a /∈ A. Assume that f : A −→ R is a linear
functional such that f(x) ≤ p(x) for every x ∈ A. Let C = {x+ ta : x ∈ A∧ t ∈ R}
be the vector subspace generated by A and a. Then there exists a linear functional
F : C −→ R such that F (x) = f(x) for x ∈ A and F (x) ≤ p(x) for every x ∈ C.

Hint: For any x, y ∈ A we have f(x) + f(y) ≤ p(x− a) + p(y + a). Show that

α = sup{f(x)− p(x− a) : x ∈ A} ≤ inf{p(x+ a)− f(x) : x ∈ A} = β

and take the value α ≤ F (a) ≤ β.

b) Assuming AC prove the Hahn-Banach Theorem: If f is a linear functional defined
on a vector subspace A of a Banach space B such that f(x) ≤ p(x) for every x ∈ A,
then there exists a linear functional F : B −→ R such that F (x) = f(x) for every
x ∈ A and F (x) ≤ p(x) for every x ∈ B.

Hint: Apply the Zorn Lemma 1.10 to the set of all couples [A,F ], where A ⊆ B is
a vector subspace, F is a linear functional extending f with F (x) ≤ p(x), partially
ordered by

[A1, F1] ≤ [A2, F2] ≡ (A1 subspace of A2 ∧ F1 = F2|A1).

c) Prove the following consequence of the Hahn-Banach Theorem: If A ⊆ B is convex,
0 /∈ A, then there exists a bounded linear functional F on B and an ε > 0 such
that F (x) > ε for every x ∈ A.

Hint: Let Ball(0, δ) ∩ A = ∅. Take a ∈ A and set U = Ball(0, δ) − A + a. U is a
convex neighborhood of 0 and a /∈ U . Let p be the Minkowski functional of U . Since
p(a) ≥ 1, the linear functional f(ta) = t defined on the vector subspace generated by
a is bounded by p. Let F be a linear functional extending f and bounded by p. Since
F (x) ≤ p(x) ≤ 1 for x ∈ U , by Exercise 3.13 b) F is continuous. F (Ball(0, δ)) and
F (A) are convex subsets of R, i.e., intervals. If x ∈ Ball(0, δ) and y ∈ A, then

F (x)− F (y) + 1 = F (x− y + a) ≤ (x− y + a) < 1.

Thus F (x) < F (y). Since 0 ∈ F (Ball(0, 1)) and by Exercise 3.14, d) F (Ball(0, δ))
is open, we are done.
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3.17 [AC] Dual Space

For a Banach space B we denote by B∗ the set of all bounded linear functionals on B. It is
natural to endow B∗ with the structure of a vector space setting (f+g)(x) = f(x)+g(x),
(αf)(x) = αf(x). B∗ with norm ‖ ‖ defined in Exercise 3.13, c) is called the dual space
of B.

a) Show that B∗ is complete, i.e., B∗ is a Banach space.

b) Let 1
p

+ 1
q

= 1, p > 1. Show that the dual space of �p is isomorphic to �q.

Hint: Use the Hölder Inequality 2.10, c).

c) Show that the unit closed ball Ball(0, 1) in the Banach space �p, p ≥ 1 is not
compact.

Hint: Consider the sequence {ei}∞i=0 of unit vectors ei = {δij}∞j=0, where δij = 1 if
i = j and δij = 0 otherwise.

d) For every x ∈ B we define a linear functional Fx on B∗ by Fx(f) = f(x) for any
f ∈ B∗. Show that Fx ∈ B∗∗ for any x ∈ B and ‖Fx‖ = ‖x‖. Moreover, the set
{Fx : x ∈ B} is closed in B∗∗.

e) The weak∗ topology on a dual space B∗ of a Banach space B is the weakest topology
in which every linear functional 〈Fx : x ∈ B〉 is continuous. Prove the Banach-
Alaoglou Theorem: The closed unit ball Ball(0, 1) in a Banach space B∗ is compact
in the weak∗ topology.

Hint: Consider the set X = Πx∈B[−‖x‖, ‖x‖] with the product topology. By the
Tychonoff Theorem 1.37 X is compact. An element f ∈ Ball(0, 1) is a function
from B with value f(x) ∈ [−‖x‖, ‖x‖]. Thus Ball(0, 1) ⊆ X. It suffices to show that
every continuous functional is continuous in the subspace topology of the product
and that Ball(0, 1) is closed in X.

3.3 Borel Sets

We begin by recalling some notions. An algebra of sets is a family S of subsets of
a given non-empty set X such that

1) ∅, X ∈ S,

2) if A, B ∈ S, then also A ∪B, A ∩B, A \B ∈ S.

To emphasize that an algebra contains subsets of the given set X we shall some-
times say that S is an algebra of subsets of X . P(X) and {∅, X} are trivial exam-
ples of algebras of sets.

Let κ be an uncountable cardinal. An algebra of sets S is κ-additive if for
every subset A ⊆ S, |A| < κ also

⋃
A ∈ S. Evidently then also

⋂
A ∈ S. An

ℵ1-additive algebra is called a σ-algebra. Thus, by Theorem 3.33, if X is a Polish
space, then wAC implies that the family Baire(X) is a σ-algebra.

Let us remark that if κ is a singular cardinal, then every κ-additive algebra
is also κ+-additive. So in this chapter we assume that κ is a regular cardinal.
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Theorem 3.37. Let X be a non-empty set, A being a family of subsets of X. Then
there exists a κ-additive algebra of sets S ⊆ P(X) such that A ⊆ S and S is
the least one with this property, i.e. if T is a κ-additive algebra of subsets of X
containing A as a subset, then also S ⊆ T .

Proof. It suffices to set

S = {A ∈ P(X) : (∀T ) ((A ⊆ T ∧ T is a κ-additive algebra ) → A ∈ T )}.

Since P(X) ⊇ A is a κ-additive algebra, the assertion follows. �

If A, S are such as in the theorem, we say that A κ-generates S or A is a set
of κ-generators of S.

If 〈X,O〉 is a topological space, then Borel(X,O) will denote the smallest
σ-algebra of subsets of X containing all open subsets of X . The existence of such
a family follows by Theorem 3.37. An element of Borel(X,O) is called a Borel
set. When the topology or the space is understood from the context, or when the
statement holds true for any topological space, we shall write simply Borel(X) or
even Borel instead of Borel(X,O). Every open and every closed set is a Borel
set. Both Gδ sets and Fσ sets are Borel sets. We could continue in definitions of
simple Borel sets: a set A is called a Gδσ set if A =

⋂
nAn, where 〈An : n ∈ ω〉 are

Fσ sets. Similarly we can define an Fσδ set. Going on we define Gδσδ, Fσδσ sets,
etc. All those sets are a part of a much larger hierarchy. For an ordinal ξ < ω1

we define by induction the families Σ0
ξ(X,O) and Π0

ξ(X,O) of subsets of a given
topological space 〈X,O〉 as follows:

Σ0
0(X,O) = Π0

0(X,O) = the set of all clopen subsets of 〈X,O〉,
Σ0

1(X,O) = O = the set of all open subsets of 〈X,O〉,
Π0

1(X,O) = the set of all closed subsets of 〈X,O〉,

Σ0
ξ(X,O) =

{⋃

n

An : An ∈
⋃

η<ξ

Π0
η(X,O), n ∈ ω

}

,

Π0
ξ(X,O) = {X \A : A ∈ Σ0

ξ(X,O)} =
{⋂

n

An : An ∈
⋃

η<ξ

Σ0
η(X,O), n ∈ ω

}

for 1 < ξ < ω1. Thus Σ0
2(X,O) is the family of Fσ subsets of X , Π0

2(X,O) is the
family of Gδ subsets of X , Σ0

3(X,O) is the family of Fσδ subsets of X , etc.
We introduce also the ambiguous family

∆0
ξ(X,O) = Σ0

ξ(X,O) ∩Π0
ξ(X,O).

When the topology is understood we simply write Σ0
ξ(X) or Π0

ξ(X); even
when no confusion can arise we shall write Σ0

ξ, Π0
ξ, ∆0

ξ instead of Σ0
ξ(X,O),

Π0
ξ(X,O), ∆0

ξ(X,O), respectively.
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Immediately from the definition one obtains

Π0
η ⊆ Σ0

ξ, Σ0
η ⊆ Π0

ξ, Π0
η ⊆∆0

ξ, Σ0
η ⊆∆0

ξ for any η < ξ < ω1. (3.13)

Thus, for ξ limit we have

Σ0
ξ(X,O) =

{⋃

n

An : An ∈
⋃

η<ξ

Σ0
η(X,O)

}

.

We shall use the following almost trivial results without any commentary.
Theorem 3.38. Let X1, X2 be topological spaces.

a) Let f : X1 −→ X2 be continuous. If A ⊆ X2 is Borel, then f−1(A) ⊆ X1 is
Borel. Moreover, if A ∈ Σ0

ξ(X2), then f−1(A) ∈ Σ0
ξ(X1). Similarly for Π0

ξ

and ∆0
ξ.

b) For any ξ < ω1, the families Σ0
ξ, Π0

ξ and ∆0
ξ are closed under finite unions

and finite intersections.
c) For any ξ < ω1, if B ∈ Σ0

ξ(X1), then

B ×X2 ∈ Σ0
ξ(X1 ×X2), X2 ×B ∈ Σ0

ξ(X2 ×X1).

Similarly for Π0
ξ and ∆0

ξ.

Note the following (see the notation (11.3)):

If A ⊆ X, then Borel(A,O|A) = Borel(X,O)|A. (3.14)

Similarly for the families Σ0
ξ, Π0

ξ, and ∆0
ξ for any ξ < ω1.

For a normal topological space 〈X,O〉, any of the inclusions Σ0
1 ⊆ Σ0

2 and
Π0

1 ⊆ Π0
2 is equivalent to the condition that 〈X,O〉 is perfectly normal. By a trans-

finite induction we obtain
Theorem 3.39. If 〈X,O〉 is perfectly normal space, then

Σ0
η(X,O) ⊆ Σ0

ξ(X,O), Π0
η(X,O) ⊆ Π0

ξ(X,O) (3.15)

for any η < ξ < ω1. Hence

Π0
η(X,O) ⊆∆0

ξ(X,O), Σ0
η(X,O) ⊆∆0

ξ(X,O) (3.16)

for any η < ξ < ω1.

Thus by Corollary 3.16 we obtain
Corollary 3.40. If 〈X, ρ〉 is a metric space, then (3.15) and (3.16) hold true.

From the definitions one obtains

Σ0
ξ, Π

0
ξ, ∆

0
ξ ⊆ Borel for every ξ < ω1.
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Actually
Theorem 3.41. If ω1 is a regular cardinal then

Borel(X,O) =
⋃

ξ<ω1

Σ0
ξ(X,O) =

⋃

ξ<ω1

Π0
ξ(X,O) =

⋃

ξ<ω1

∆0
ξ(X,O). (3.17)

Especially, the weak axiom of choice wAC implies that (3.17) holds true.

Proof. By (3.13) we have
⋃

ξ<ω1

Σ0
ξ(X,O) =

⋃

ξ<ω1

Π0
ξ(X,O).

We show that this family is a σ-algebra of sets containing all open sets.
Since Σ0

1 ⊆
⋃
ξ<ω1

Σ0
ξ , the family contains all open sets. If A ∈

⋃
ξ<ω1

Σ0
ξ

then A ∈ Σ0
ξ for some ξ < ω1 and X \A ∈ Π0

ξ ⊆ Σ0
ξ+1.

Now let An ∈
⋃
ξ<ω1

Π0
ξ for n ∈ ω. Then there exists ξn < ω1 such that

An ∈ Π0
ξn

. To avoid a use of any axiom of choice take ξn the least possible. By the
assumption that ω1 is regular there exists an η < ω1 such that ξn < η for any n.
Then

⋃
nAn ∈ Σ0

η. �

By Theorem 3.41 the family of Borel sets can be stratified by ω1 subfamilies.
If 〈X,O〉 is a perfectly normal space, then those subfamilies together with the
inclusions (3.13), (3.15) and (3.16) form the Borel Hierarchy:

∆0
1

�
Σ0

1

�
Π0

1

�
∆0

2

�

��

Σ0
2

�

Π0
2

�
∆0

3 ⊆ · · · ⊆∆0
η

�

�
Σ0
η

�

Π0
η

�
∆0
η+1⊆ · · · ⊆∆0

ξ

�

�
Σ0
ξ

�

Π0
ξ

�
∆0
ξ+1⊆ · · ·

Later on, in Theorem 6.12, we show that for an uncountable Polish space X
all inclusions are proper.

If X is a Hausdorff topological space with a countable base of open sets, then
assuming AC, one can prove by induction that |Σ0

ξ| ≤ 2ℵ0 for any ξ < ω1. Thus
Theorem [AC] 3.42. If X is a Hausdorff topological space with a countable base,
then |Borel(X)| ≤ 2ℵ0 . Thus, if |X | = 2ℵ0 , then there are non-Borel subsets
of X.

Proof. By AC we have

|Borel(X)| ≤

∣
∣
∣
∣
∣
∣

⋃

ξ<ω1

Σ0
ξ(X)

∣
∣
∣
∣
∣
∣
≤ ℵ1 · 2ℵ0 = 2ℵ0 .

Since |P(X)| > 2ℵ0 , there exist non-Borel subsets of X . �
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Without the axiom of choice we can prove a weaker result. We construct a
mapping from P(ω) onto

⋃
ξ<ω1

Σ0
ξ.

We begin with a modification of the proof of Theorem 1.16 by constructing
functions

h : P(ω) onto−→ ω1 × P(ω), hξ : P(ω) onto−→ ξ × P(ω) for any 0 < ξ < ω1. (3.18)

The idea is simple: for a set A ⊆ ω we consider two sets {k ∈ ω : 2k ∈ A} and
{k ∈ ω : 2k + 1 ∈ A}. The former set will code a countable ordinal and the later
one will be the desired subset of ω.

Let f be the function f : P(ω) onto−→ ω1 constructed in the proof of Theo-
rem 1.16. For a set A ⊆ ω we let

h(A) = 〈f({k ∈ ω : 2k ∈ A}), {k ∈ ω : 2k + 1 ∈ A}〉,

hξ(A) =
{
h(A) if f({k ∈ ω : 2k ∈ A}) < ξ,
〈0, {k ∈ ω : 2k + 1 ∈ A}〉 otherwise.

It is easy to see that h, hξ are desired mappings.
We use the function h for a coding of Borel sets by subsets of ω.

Theorem 3.43. Let 〈X,O〉 be a Hausdorff topological space with countable base B
of open sets. Then there exist mappings

H : P(ω) onto−→
⋃

η<ω1

Σ0
η(X), Hξ : P(ω) onto−→

⋃

η<ξ

Σ0
η(X).

Thus, if ω1 is a regular cardinal then

H : P(ω) onto−→ Borel(X),

i.e. |Borel(X)| � c.

Proof. We define a mapping

F : ω1 × P(ω) onto−→
⋃

ξ<ω1

Σ0
ξ(X)

such that F |ξ × P(ω) is a surjection onto
⋃
η<ξ Σ

0
η(X). Then it suffices to set

H = h ◦ F and Hξ = hξ ◦ F .
In the proof, we fix a pairing function π : ω × ω : 1−1−→

onto
ω.

Let B = {Un : n ∈ ω} be an enumeration of an open base. We are not
interested in values F (0, A), so we can set F (0, A) = ∅ for any A ⊆ ω.

For a set A ⊆ ω we set

F (1, A) =
⋃

n∈A
Un.

Then {F (1, A) : A ⊆ ω} = O = Σ0
1.
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Assume that F (η,A) is defined for any η < ξ and any A ⊆ ω. For a subset
A ⊆ ω we define F (ξ, A) =

⋃
nXn ∈ Σ0

ξ, where

Xn = X \ F (hξ({k ∈ ω : π(n, k) ∈ A})) ∈
⋃

η<ξ

Σ0
η.

Using wAC, one can easily prove by a transfinite induction that Σ0
ξ ⊆ rng(F )

for any ξ < ω1. �
Corollary [wAC] 3.44. If X is a separable metric space with |X | = 2ℵ0 , then
Borel �= P(X).

A family O ⊆ P(X) is called a σ-topology on X if

1) ∅, X ∈ O,

2) if A,B ∈ O, then A ∩B ∈ O,

3) if A ⊆ O is countable, then
⋃
A ∈ O.

Many results concerning topology can be proved also for a σ-topology. Evidently,
every topology is a σ-topology. Vice versa, a σ-topology with a countable base is
a topology. However we shall deal with many important σ-topologies that are not
topologies.
Corollary [wAC] 3.45. If X is a topological space with a countable base of open
sets, then every Σ0

ξ(X) is closed under countable unions and every Π0
ξ(X) is closed

under countable intersections. Thus Σ0
ξ(X) is a σ-topology.

Proof. Let 〈Xn ∈ Σξ(X) : n ∈ ω〉. We put

Φn = {A ∈ P(ω) : Hξ+1(A) = Xn}.

By wAC there exists a selector 〈An ∈ Φn : n ∈ ω〉. If A = {π(n, k) : k ∈ An}, then
F (ξ, A) =

⋃
nXn. �

If X is a topological space with a countable base and wAC holds true, then
by Theorem 3.33 the family Baire(X,O) is a σ-algebra containing all open sets.
Since Borel(X,O) is the smallest σ-algebra containing all open sets, we obtain
Theorem [wAC] 3.46. Every Borel subset of a topological space with a countable
base has Baire property.

We shall need a rather technical result concerning Borel sets.
Lemma [wAC] 3.47 (N. Luzin). Let 〈X,O〉 be a perfectly normal topological space
with a countable base. If A ∈ Σ0

ξ, ξ > 2, then there are pairwise disjoint sets
An ∈

⋃
η<ξ Π

0
η such that A =

⋃
nAn.

Proof. We begin with a remark: any C ∈ Σ0
ζ , ζ > 1, can be represented as

⋃
nBn,

where 〈Bn : n ∈ ω〉 are pairwise disjoint and Bn ∈ ∆0
ζ for every n. Actually, if

C =
⋃
n Cn, where Cn ∈

⋃
η<ζ Π0

η, we set B0 = C0, Bn+1 = Cn+1 \
⋃n
i=0 Ci.
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Let A =
⋃
n Cn, Cn ∈

⋃
η<ξ Π0

η, ξ > 2. Then for a given n, X\
⋃
i<n Ci ∈ Σ0

ηn

for some 1 < ηn < ξ. By Theorem 3.43 we can use wAC, therefore by the remark
we have X \

⋃
i<n Ci =

⋃
iBn,i, where the sets 〈Bn,i : i ∈ ω〉 are pairwise disjoint

and belong to ∆0
ηn

. Then the sets 〈Cn ∩ Bn,i : i, n ∈ ω〉 are pairwise disjoint,
belong to

⋃
η<ξ Π0

η, and

A =
⋃

n

(

Cn \
⋃

i<n

Ci

)

=
⋃

n

(

Cn ∩
⋃

i

Bn,i

)

=
⋃

n,i

(Cn ∩Bn,i). �

Theorem [wAC] 3.48. Let 〈X,O〉 be a perfectly normal topological space with
a countable base . Then Borel(X) is the smallest family F of subsets of X with
the following properties:

a) every open subset belongs to F ;
b) F is closed under countable intersections;
c) F is closed under countable unions of pairwise disjoint sets.

Proof. Let F be the smallest family satisfying conditions a)–c). By a), b) and
perfect normality we have Π0

2 ⊆ F . By Lemma 3.47 we obtain Σ0
2 ⊆ Σ0

3 ⊆ F .
Using Luzin’s Lemma again we can continue by induction to show that Σ0

ξ ⊆ F
for any ξ > 2.

Since Borel(X) satisfies the conditions a)–c), we have F ⊆ Borel(X). �

Exercises

3.18 Turning a Borel Set into a Clopen Set

Let 〈X,O〉 be a Polish space.

a) If A is a closed or an open subset of X, then there exists a topology O′ on X such
that 〈X,O′〉 is a Polish space, A is clopen inO′, and Borel(X,O′) = Borel(X,O).

Hint: Take the sum (see Exercise 3.9) of topologies O|A and O|(X \A).

b) If 〈On : n ∈ ω〉 are Polish topologies on X stronger than O, then the weakest
topology O′ stronger than any 〈On : n ∈ ω〉 is Polish.

Hint: Consider Xn = X with topology On and induced by a metric ρn. Take the

product Y = Πn∈ωXn with the product topology. The map f : X
1−1−→ Πn∈ωXn

defined as f(x) = {x}∞n=0 is a homeomorphism of 〈X,O′〉 onto f(X). Show that⋃
nOn is a base of the topology O′.

c) If in b) we assume that O ⊆ On ⊆ Borel(X,O), then

Borel(X,O) = Borel(X,O′).

d) Show that the family

{A⊆X : (∃O′⊇O Polish topology)(A,X \A∈O′∧Borel(X,O)=Borel(X,O′)}

is a σ-algebra containing O.
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e) For any Borel set A ⊆ X there exists a Polish topology O′ on X such that A is
clopen in O′ and Borel(X,O) = Borel(X,O′).

f) For countably many Borel sets 〈An ⊆ X : n ∈ ω〉 there exists a Polish topology O′

such that all An are clopen in O′ and Borel(X,O) = Borel(X,O′).

3.19 Alexandroff-Hausdorff Theorem

a) If A ⊆ X is a perfect subset of a Polish space X, then there exists a pruned tree
〈T,⊇〉 of open subsets of X of height ω, such that

i) if U 	= V ∈ T , U ⊆ V , then U ⊆ V ;

ii) 〈T,⊇〉 is isomorphic to ω2;

iii) if f ∈ [T ], then
⋂

n f(n) is a singleton.

Hint: Fix an enumeration of basic open sets. By induction: if U ∈ T (n), then
U ∩A has more than one point. Take V1, V2 disjoint open sets, the first in the given
enumeration with diameter less than 2−n, such that Vi ⊆ U .

b) If A ⊆ X is an uncountable closed subset of a Polish space X, then there exists

a continuous injection f : ω2
1−1−→ A.

c) Prove the Alexandroff-Hausdorff Theorem (see Theorem 6.7): If B ⊆ X is an un-
countable Borel subset of a Polish space X, then B contains a subset homeomorphic
to the Cantor middle-third set C.

Hint: Turn B into a closed subset of a Polish space.

3.20 [wAC] σ-reduction Theorem

In the next X is a Polish space.

a) If A ∈ Σ0
ξ(X), n ∈ ω, ξ > 0, then there exist pairwise disjoint sets An ∈ ∆0

ξ(X)
such that A =

⋃
n An. Note that for ξ > 2 the result follows from Luzin’s Lemma

3.47.

Hint: If A =
⋃

nBn, Bn ∈
⋃

η<ξ Π0
η(X), set An = Bn \

⋃
i<n Bi.

b) σ-reduction Theorem:1 If An ∈ Σ0
ξ(X), n ∈ ω, ξ > 1, then there exist pairwise

disjoint Bn ∈ Σ0
ξ(X) such that Bn ⊆ An for every n and

⋃
n An =

⋃
n Bn. If⋃

n An = X, then Bn ∈∆0
ξ(X).

Hint: If An =
⋃

i An,i with An,i ∈
⋃

η<ξ Σ0
η(X), set (π is a pairing function)

Bn,i = An,i \
⋃

π(m,j)<π(n,i)

Am,j , Bn =
⋃

i

Bn,i.

c) If A ⊆ B, A ∈ Π0
ξ, B ∈ Σ0

ξ, ξ > 1, then there exists a set C ∈ ∆0
ξ such that

A ⊆ C ⊆ B.2

Hint: Use the result of Exercise b) for the couple X \A, B.

d) If A ∈∆0
ξ+1(X), ξ > 1, then there exist An ∈∆0

ξ(X) such that

A =
⋃

n

∞⋂

i=n

Ai =
⋂

n

∞⋃

i=n

Ai. (3.19)

1See also Section 5.2 and Theorem 6.9.
2See Section 5.2.
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If ξ is limit, then we can assume that there are ξn < ξ such that An ∈∆0
ξn

(X).

Hint: Since A =
⋃

nBn, A =
⋂

n Cn with Bn ⊆ Bn+1 ∈ Π0
ξ, Cn ⊇ Cn+1 ∈ Σ0

ξ, by
d), there exist An ∈∆0

ξ such that Bn ⊆ An ⊆ Cn.

e) If A ∈ ∆0
ξ+1(X), ξ > 1, then there exist sets Bn ∈ ∆0

ξ(X), Bn ⊆ Bn+1 and
Cn ∈∆0

ξ(X), Cn ⊇ Cn+1 such that

A =
⋃

n

Bn =
⋂

n

Cn.

Hint: If (3.19) holds true, then by c) for every n there exist Bn, Cn ∈∆0
ξ such that⋂∞

i=n Ai ⊆ Bn ⊆ A and A ⊆ Cn ⊆
⋃∞

i=nAi.

3.21 Weak Reduction Property

Let A be a family of subsets of a set X. A has the weak reduction property if for any
sets Ai ∈ A, i = 1, 2, A1 ∪ A2 = X there exist disjoint sets Bi ∈ A, B1 ∪ B2 = X and
such that Bi ⊆ Ai, i = 1, 2.

a) If a family has the reduction property (see Section 5.2), then it has also the weak
reduction property.

b) Assume A has the weak reduction property and is closed under finite unions and
finite intersections. If A,B ∈ A, X \ A ⊆ B, then there exists a set C such that
C,X \ C ∈ A and X \A ⊆ C ⊆ B.

c) Assume A has the weak reduction property and is closed under finite unions and
finite intersections. If A1 ∪ A2 ∪ A3 = X with Ai ∈ A, then there exist pairwise
disjoint sets Bi ∈ A such that Bi ⊆ Ai and B1 ∪B2 ∪B3 = X.

Hint: Take C1, C2 for couple A1, A2 ∪A3, take D1, D2 for couple C1 ∪ (C2 ∩A2),
C2 ∩A3. Set B1 = D1 ∩ C1, B2 = D1 ∩ C2, B3 = D2.

d) If A has the weak reduction property and is closed under finite unions and finite
intersections, then for any n and any 〈Ai ∈ A : i ≤ n〉, A1 ∪ · · · ∪An = X there are
pairwise disjoint sets 〈Bi ∈ A : i ≤ n〉, Bi ⊆ Ai such that B1 ∪ · · · ∪ Bn = X.

e) Every family Σ0
ξ(X,O), ξ > 1 has the weak reduction property.

Hint: See Exercise 3.20, b).

3.4 Convergence of Functions

Assume that X , Y are topological spaces, A ⊆ X . Let us consider mappings
f : X −→ Y , 〈fn : X −→ Y : n ∈ ω〉. We shall say that the sequence {fn}∞n=0

converges pointwise to f on A if limn→∞ fn(x) = f(x) for any x ∈ A, written
“fn → f on A”, or simply “fn → f” when the set A is understood or A = X .
The limit limn→∞ fn(x) is of course understood in the topology of the space Y . If
Y = R, then the notation “fn ↗ f on A” means that fn → f on A and moreover,
fn(x) ≤ fn+1(x) for any n and any x ∈ A. Similarly, “fn ↘ f on A” means that
fn → f on A and fn(x) ≥ fn+1(x) for any n and any x ∈ A.

If 〈Y, ρ〉 is a metric space, we say that {fn}∞n=0 converges uniformly to f on A
if there exists a sequence of positive reals {εn}∞n=0, such that ρ(fn(x), f(x)) ≤ εn
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for any n and any x ∈ A, and limn→∞ εn = 0. We shall write “fn ⇒ f on A” or
“fn ⇒ f”. Let us note that we can take εn = sup{ρ(fn(x), f(x)) : x ∈ A}.

Moreover, from elementary calculus we know
Theorem 3.49. Assume that X is a topological space, Y is a metric space. Let
{fn}∞n=0 be a sequence of continuous functions from X into Y . If fn ⇒ f on a set
A ⊆ X, then f is continuous on A.
Theorem 3.50. Let X be a compact topological space. If fn, f : X −→ R are
continuous and fn ↗ f on X, then fn ⇒ f on X.

Proof. Set Un,m = {x ∈ X : f(x) − fm(x) < 2−n}. Since every Un,m is open,
Un,m ⊆ Un,m+1 and

⋃
i Un,i = X for every n, there exists a function ϕ ∈ ωω such

that Un,ϕ(n) = X . Thus f(x)− fm(x) < 2−n for m ≥ ϕ(n). �

If 〈Y, ρ〉 is a metric space, we say that {fn}∞n=0 converges quasi-normally to
f on A if there exists a sequence {εn}∞n=0 of positive reals converging to zero and
such that

(∀x ∈ A)(∃k)(∀n ≥ k)ρ(fn(x), f(x)) < εn. (3.20)

The sequence {εn}∞n=0 is called a control or we say that the sequence {εn}∞n=0

witnesses the quasi-normal convergence. We shall write “fn
QN−→ f on A”.

Let us recall that a series
∑∞
n=0 fn(x) converges normally on X if there is

a sequence {εn}∞n=0 such that
∑∞
n=0 εn < +∞ and |fn(x)| ≤ εn for every x ∈ X

and every n. Similarly, a series
∑∞

n=0 fn(x) converges pseudo-normally on X if
there is a sequence {εn}∞n=0 such that

∑∞
n=0 εn < +∞ and

(∀x ∈ X)(∃n0)(∀n ≥ n0) |fn(x)| ≤ εn.

Note that if a series converges pseudo-normally, then the sequence of partial sums
converges quasi-normally.

Note the following simple property of quasi-normal convergence.

Theorem 3.51. Let fn
QN−→ f on X. For any sequence εn → 0 of positive reals there

exists an increasing sequence {nk}∞k=0 such that fnk

QN−→ f on X with the control
{εk}∞k=0.

Of course quasi-normal convergence implies pointwise convergence and uni-
form convergence implies quasi-normal convergence. The simple relationship to
uniform convergence is described by
Theorem 3.52. Let {fn}∞n=0 and f be functions from X into a metric space Y .
Then the following conditions are equivalent:

a) fn
QN−→ f on X.

b) There exists a sequence {Xk}∞k=0 of sets such that X =
⋃
kXk and fn ⇒ f

on Xk for each k.
c) There exists a non-decreasing sequence {Xk}∞k=0 of sets such that X =

⋃
kXk

and fn ⇒ f on Xk for each k.
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Moreover, if X is a topological space and {fn}∞n=0 are continuous, then conditions
a)–c) are equivalent with

d) There exists a non-decreasing sequence {Xk}∞k=0 of closed subsets of X such
that X =

⋃
kXk and fn ⇒ f on Xk for each k.

Proof. Assume that fn
QN−→ f on X with a control {εn}∞n=0. We set

Xk = {x ∈ X : (∀n,m ≥ k) ρ(fn(x), fm(x)) ≤ εn + εm}.

Then X =
⋃
kXk holds true, fn ⇒ f on Xk and Xk ⊆ Xk+1 for every k. Moreover,

if {fn}∞n=0 are continuous, then Xk are closed subsets of X .
Conditions b) and c) are trivially equivalent since if a sequence converges

uniformly to f on sets A, B, then it converges so also on A ∪B.
Assume now that fn ⇒ f on every Xk, X =

⋃
kXk and Xk ⊆ Xk+1 for

every k. Let
εn,k = sup{ρ(fi(x), f(x)) : x ∈ Xk ∧ i ≤ n}.

Then εn,k → 0 for every k. Since Xk ⊆ Xk+1, we obtain εn,k ≤ εn,k+1 for any n
and k. Moreover, the sequence {εn,k}∞n=0 is non-increasing for every k.

We can easily construct an increasing sequence {mk}∞k=0 of natural numbers
such that

(∀n) (n ≥ mk → εn,k < 2−k).

We define δn = 2−k for mk ≤ n < mk+1. Thus limn→∞ δn = 0. If x ∈ X , then
x ∈ Xk for some k. Then x ∈ Xl for any l ≥ k . Hence for any l ≥ k and any
ml ≤ n < ml+1 we have ρ(fn(x), f(x)) ≤ εn,l < δn, i.e., ρ(fn(x), f(x)) < δn for
every n ≥ mk. �

Corollary [wAC] 3.53. If X =
⋃
kXk, fn

QN−→ f on every Xk, then fn
QN−→ f on X

as well.

Assume that X , Y are topological spaces. Let {fn}∞n=0 be a sequence of
functions from X into Y , f : X −→ Y . We say that {fn}∞n=0 converges discretely
to f on A ⊆ X if

(∀x ∈ A)(∃k)(∀n ≥ k) fn(x) = f(x).

We shall write fn
D−→ f on A.

If fn
D−→ f on X , then X =

⋃
kXk, Xk ⊆ Xk+1 and fk(x) = f(x) for any

x ∈ Xk. Moreover, if {fn}∞n=0 are continuous, then Xk are closed subsets of X .
Indeed, similarly as in the proof of Theorem 3.52, we set

Xk = {x ∈ A : (∀m,n ≥ k) fm(x) = fn(x)}.

Evidently, if fn
D−→ f on X , then fn

QN−→ f on X .
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Assume that A is a family of subsets of X and Y is a topological space.
A function f : X −→ Y is A-measurable if f−1(U) ∈ A for every open U ⊆ Y .
Often we shall deal with a σ-topology A is on X . Then A-measurable means con-
tinuous with respect to σ-topology A. If A = Borel(X) we say that function f is
Borel measurable. If A = Baire(X) we speak about Baire measurable functions.
Theorem 3.54. Assume that Y is a topological space with a countable base B of
topology. Let f : X −→ Y .

a) If A is a σ-topology on X, then a function f : X −→ Y is A-measurable if
and only if f−1(U) ∈ A for any U ∈ B.

b) If A is a σ-algebra and f is A-measurable, then f−1(B) ∈ A for any Borel
set B ⊆ Y .

Corollary 3.55. Let Yi be a Polish space, Ai being a family of subsets of Xi,
i = 1, 2. Let A be a σ-topology on X1 × X2 containing all A1 × A2, Ai ∈ Ai
for i = 1, 2. If fi : Xi −→ Yi is an Ai-measurable function, i = 1, 2, then the
function F : X1 ×X2 −→ Y1 × Y2 defined by

F (x1, x2) = 〈f1(x1), f2(x2)〉 for 〈x1, x2〉 ∈ X1 ×X2

is A-measurable.

Proof. Assume that B1, B2 comprise countable base of the topology on Y1, Y2,
respectively. Then {U1 × U2 : Ui ∈ Bi, i = 1, 2} is a countable base of the product
topology on Y1 × Y2. We are ready, since

F−1(U1 × U2) = f−1
1 (U1)× f−1

2 (U2) ∈ A. �

The corollary allows us to prove an important result.
Theorem 3.56. If a function f : X −→ Y is Borel measurable, then the graph
f ⊆ X × Y is a Borel set.

Proof. Assume that f is Borel measurable. By Corollary 3.55 the function

F (x, y) = 〈f(x), y〉 for 〈x, y〉 ∈ X × Y

is Borel measurable. The set D = {〈y, y〉 : y ∈ Y } ⊆ Y × Y is closed. Therefore
the set f = F−1(D) is Borel. �

Later, in Section 6.2, we show that the implication of the theorem can be
reversed.

We shall need a simple result concerning measurability of quasi-normal limits
of continuous functions.
Theorem [AC] 3.57. Assume that X is a normal topological space, {fn}∞n=0 is a

sequence of real functions on X, f : X −→ R. If fn
QN−→ f on X and all fn are

continuous, then there exist a sequence {gn}∞n=0 of continuous functions such that
gn

D−→ f on X. Consequently, the function f is ∆0
2-measurable. Moreover, if X

is a separable metric space, then we do not need any form of the axiom of choice.
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Proof. If {Un : n ∈ ω} is a countable base of the topology on R, then for any open
set U ⊆ R we have

f(x) ∈ U ≡ (∃n)(∃k) (Un ⊆ U ∧ (∀m ≥ k) fm(x) ∈ Un).

Thus, f is Fσ-measurable.
By Theorem 3.52 there exists a non-decreasing sequence of closed subsets

〈Xk : k ∈ ω〉 such that X =
⋃
kXk and fn ⇒ f on Xk for each k. Thus f |Xk

is continuous. By the Tietze-Urysohn Theorem 3.20 there exist real continuous
functions {gk}∞k=0 defined onX such that gk|Xk = f |Xk for every k. Then gn

D−→ f
on X .

Note that if X is a metric space, then the function gn is defined by a formula
from fn and we do not need any form of the axiom of choice.

Since for any open U we have

f(x) ∈ U ≡ (∀n)(∃m > n) gm(x) ∈ U,

the function f is Gδ-measurable. �

A function f : X −→ R is upper A-measurable if {x ∈ X : f(x) < a} ∈ A for
any real a. Similarly f is lower A-measurable if {x ∈ X : f(x) > a} ∈ A for any
real a. If A is a σ-topology, then f is A-measurable if and only if it is both upper
and lower A-measurable. If O is the topology of X , then an upper O-measurable
function is called upper semicontinuous. Similarly lower semicontinuous. Evidently
a function is continuous if and only if it is both upper and lower semicontinuous.
Let us note that a function f is upper A-measurable if and only if −f is lower
A-measurable.

We shall consider the set of all real functions XR defined on a set X . The set
XR is partially ordered by the relation

f ≤ g ≡ f(x) ≤ g(x) for every x ∈ X.

If f, g ∈ XR, then we set

max{f, g}(x) = max{f(x), g(x)} for any x ∈ X,
min{f, g}(x) = min{f(x), g(x)} for any x ∈ X.

The set Φ is called a lattice of functions if max{f, g},min{f, g} ∈ Φ for any
f, g ∈ Φ. One can easily see that a lattice of functions is a lattice in the partial
ordering ≤. The opposite is not true.

Let us remark that the set XR is a vector space over R with pointwise oper-
ations of addition and multiplication by a real

(f + g)(x) = f(x) + g(x), (αf)(x) = αf(x) for x ∈ X.
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Similarly we define the multiplication of elements XR as

(f · g)(x) = f(x) · g(x) for x ∈ X.

All defined operations are continuous in the product topology of XR. Moreover,
if hn = fn + gn for every n and {fn}∞n=0 and {gn}∞n=0 converge in any of the
considered ways to f and g, respectively, then {hn}∞n=0 converges to f+g. Similarly
for multiplication, the multiplication by a real, and the operations max and min.

If A is a family of subsets of a set X , then in accordance with terminology
introduced later in Section 5.2, we denote

¬A = {A ⊆ X : X \A ∈ A},

Σ0[A] =
{⋃

n

An : An ∈ A, n ∈ ω
}

,

Π0[A] =
{⋂

n

An : An ∈ A, n ∈ ω
}

.

Lemma 3.58. Let A be a σ-topology on X. Assume that f , g, h, dn, fn, gn, hn,
n ∈ ω are real functions defined on X. Moreover, assume that fn ↘ f , gn ↗ g,
and hn ⇒ h on X.

a) If d0, . . . , dm are upper (lower) A-measurable, then also max{d0, . . . , dm} and
min{d0, . . . , dm} are such.

b) If every fn is upper A-measurable, then f is upper A-measurable as well. If
every fn is lower A-measurable, then f is lower Σ0[Π0[A]]-measurable.

c) If every gn is lower A-measurable, then g is lower A-measurable as well. If
every gn is upper A-measurable, then g is upper Σ0[Π0[A]]-measurable.

d) If every real function hn is upper (lower) A-measurable, then h is upper
(lower) A-measurable as well.

Proof. Let d = max{d0, . . . , dm}. Then

d(x) > a ≡ di(x) > a for some i = 0, . . . ,m,
d(x) < a ≡ di(x) < a for all i = 0, . . . ,m.

Since A is a σ-topology, the statement a) follows. Similarly for minimum.
The statements b) and c) follow by the equivalences

f(x) < a ≡ (∃n) fn(x) < a,

f(x) > a ≡ (∃k > 0)(∀n) fn(x) > a+ 1/k,
g(x) < a ≡ (∃k > 0)(∀n) gn(x) < a− 1/k,
g(x) > a ≡ (∃n) gn(x) > a.
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Let εn = sup{|hn(x) − h(x)| : x ∈ X}. Then

max{h0 − ε0, . . . , hn − εn} ↘ h, min{h0 + ε0, . . . , hn + εn} ↗ h.

The statement d) follows by a)–c). �

If X and Y are topological spaces, we denote by C(X,Y ) the set of all continu-
ous functions fromX into Y . If Y is a metric space, then we denote by C∗(X,Y ) the
set of all bounded continuous functions from X into Y . Thus C∗(X,Y ) ⊆ C(X,Y ).
Evidently C(X,Y ) is a subset of the set XY of all functions from X into Y . The
set XY can be equipped with the product topology. In this topology a typical
neighborhood of a function f ∈ XY is the set

{g ∈ XY : g(x1) ∈ U1 ∧ · · · ∧ g(xn) ∈ Un}

for some x1, . . . , xn ∈ X and neighborhoods Ui of f(xi), i = 1, . . . , n in Y . The
subset C(X,Y ) equipped with the subspace topology of this product topology will
be usually denoted by Cp(X,Y ).

If Y = R we write simply C(X), C∗(X) and Cp(X). In what follows by a real
function on X we shall understand any function f : X −→ R. If f ∈ C(X) we
speak about a continuous real function.

Note the following. If A ⊆ X is a dense subset, then f |A �= g|A for any
distinct f, g ∈ C(X). Thus |C(X)| ≤ c|A|. Hence

if X is a separable topological space, then |C(X)| ≤ c. (3.21)

Theorem 3.59. A sequence {fn}∞n=0 of functions from XY converges to a function
f ∈ XY in the product topology if and only if fn → f on X. The same holds true
for the subspace Cp(X,Y ).

Proof. Assume that fn → f on X and U ⊆ XY is a neighborhood of f . Then

{h ∈ XY : h(x1) ∈ U1 ∧ · · · ∧ h(xk) ∈ Uk} ⊆ U

for some x1, . . . , xk ∈ X and some neighborhoods Ui of f(xi), i = 1, . . . , k. Since
fn → f on X , there exist natural numbers ni such that fn(xi) ∈ Ui for every
n ≥ ni, i = 1, . . . , k. If n0 = max{n1, . . . , nk}, then fn ∈ U for every n ≥ n0.

The opposite implication is evident. �

According to the theorem, the product topology on XY and the subspace
topology of Cp(X,Y ) is called the topology of pointwise convergence.

If 〈Y, ρ〉 is a metric space, then one can define a metric σ on C∗(X,Y ) by

σ(f, g) = sup{ρ(f(x), g(x)) : x ∈ X}. (3.22)

Evidently a sequence of functions {fn}∞n=0 belonging to C∗(X,Y ) converges to
a function f ∈ C∗(X,Y ) in the metric σ if and only if fn ⇒ f on X . C∗(X,Y ) is
usually understood with this metric.
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From an elementary course of mathematical analysis the reader knows

Theorem 3.60. If Y is a complete metric space, then C∗(X,Y ) with metric (3.22)
is a complete metric space.

According to the following simple result, we can usually replace in our con-
sideration a real function by a function with values in [0, 1].

Theorem 3.61. Let 〈fn : X −→ R : n ∈ ω〉 be a sequence of real functions. We set
gn(x) = min{|fn(x)|, 1} for any x ∈ X and any n. Then fn → 0 on X (fn ⇒ 0 on

X, fn
QN−→ 0 on X) if and only if gn → 0 on X (gn ⇒ 0 on X, gn

QN−→ 0 on X).
Moreover, if every fn, n ∈ ω is continuous, then every gn, n ∈ ω is continuous as
well.

Using the Tietze-Urysohn Theorem 3.20 we show a usefull result.

Lemma 3.62. Let A be a closed subset of a metric space X.

a) If Cp(X) is a Fréchet space, then Cp(A) is also Fréchet.
b) Assume that wAC holds true. If the convergence structure on Cp(X) possesses

the sequence selection property, then so does Cp(A).

Moreover, assuming AC, both statements hold true for any normal topological
space X.

Proof. Assume that Cp(X) is Fréchet, A ⊆ X is closed, Y ⊆ Cp(A) and f ∈ Y .
We write

Z = {g ∈ Cp(X) : g|A ∈ Y }.

By Theorem 3.20 there exists a function F ∈ Cp(X) such that F |A = f . We claim
that F ∈ Z.

Actually, any neighborhood of F contains a basic subset of the form

U = {g ∈ Cp(X) : |g(x1)− f(x1)| < ε ∧ · · · ∧ |g(xk)− f(xk)| < ε∧,
|g(y1)− F (y1)| < ε ∧ · · · ∧ |g(yl)− F (yl)| < ε},

where x1, . . . , xk ∈ A, y1, . . . , yl ∈ X \ A, ε > 0. Since f ∈ Y , there exists a
function h ∈ Y such that

|h(x1)− f(x1)| < ε ∧ · · · ∧ |h(xk)− f(xk)| < ε.

The finite set {y1, . . . , yl} is closed and disjoint with A, thus, using again Theorem
3.20, there exists a function H ∈ Z such that H(yi) = F (yi) for i = 1, . . . , l and
H |A = h. Hence H ∈ U∩Z. Therefore F ∈ Z. Since Cp(X) is Fréchet, there exists
a sequence 〈Fn ∈ Z : n ∈ ω〉 such that Fn → F on X . Then Fn|A→ f on Y and
by definition of the set Z we obtain Fn|A ∈ Y .

A proof of assertion b) goes in a similar way by using Corollary 3.21. �
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Theorem 3.63. There exists a sequence {hn}∞n=0 of continuous real functions de-
fined on the Cantor middle-third set C such that hn → 0 on C and for any in-
creasing sequence {nk}∞k=0 of natural numbers there exists a z ∈ C such that

∞∑

k=0

hnk
(z) = +∞. (3.23)

Proof. If x =
∑∞
k=0 xk3−k−1 ∈ C, xk ∈ {0, 2}, we define

hn(x) =
{

0 if xn = 0,
1/mn where mn = |{k < n : xk = 2}|+ 1, otherwise.

Every function hn is continuous and hn → 0 on C.
If {nk}∞k=0 is an increasing sequence, we set z =

∑∞
k=0 zk3−k, where znk

= 2
and zn = 0 otherwise. Then hnk

(z) = 1/(k + 1) and therefore the equality (3.23)
holds true. �

Corollary 3.64. The topological space Cp(C) does not possess the sequence selection
property, therefore it is not a Fréchet space. Moreover, if C can be embedded in
a topological space X, then Cp(X) neither possesses the sequence selection property
nor is a Fréchet space.

Proof. Let {hn}∞n=0 be the sequence of the theorem. We write fn,m = 2n · hm.
Then fn,m → 0 for every fixed n. Assume that Cp(C) possesses the sequence
selection property. Then there exist increasing sequences {nk}∞k=0 and {mk}∞k=0

such that fnk,mk
→ 0 on C. Evidently, for any x ∈ C there exists a k0 such that

fnk,mk
(x) < 1 for every k ≥ k0. Thus hmk

(x) < 2−nk for every k ≥ k0. Hence∑∞
k=0 hmk

(x) < +∞. Since x was arbitrary, we have a contradiction.
For X containing C, the statement follows by Lemma 3.62. �

Exercises

3.22 Discrete Convergence

a) If fn
D−→ f on A, then also fn

QN−→ f on A.

b) fn
D−→ f on A if and only if there exists an increasing sequence of sets {An}∞n=0

such that A =
⋃

nAn and (∀k ≥ n)(∀x ∈ An) fk(x) = f(x). Moreover, if all fn are
continuous, then we can assume that An are closed.

c) Find continuous functions 〈fn : [0, 1] −→ [0, 1] : n ∈ ω〉 such that fn
D−→ f on [0, 1]

and f is not continuous.

d) Find a sequence of functions 〈fn : [0, 1] −→ [0, 1] : n ∈ ω〉 such that fn
QN−→ f on

[0, 1] and not fn
D−→ f on [0, 1].
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3.23 Algebra of Functions

A vector subspace Φ ⊆ XR is called an algebra (of functions) if Φ is closed under the
product of functions.

a) An algebra of functions is a ring.

b) If X is a topological space, then C(X) and C∗(X) are algebras of functions.

c) If X is a completely regular topological space, |X| > 1, then neither C(X) nor
C∗(X) is an integrity domain.

d) The set of all polynomials defined on an interval [a, b] is a subalgebra of C([a, b]).

e) If Φi ⊆ XiR, i = 1, 2 are algebras of functions, then the set of all functions
∑n

k=0 fk ·
gk, where fk ∈ Φ1, gk ∈ Φ2, k ≤ n, n ∈ ω is an algebra of functions on X1 ×X2.

3.24 Algebra of Functions and Uniform Convergence

Let Φ ⊆ C∗(X). We say that Φ ⊆ XR separates points in X if for any x, y ∈ X, x 	= y
there is a function f ∈ Φ such that f(x) 	= f(y). Φ denotes the closure of Φ in the
topology of uniform convergence, i.e., in the topology induced by the metric (3.22). In
the next exercises, let Φ be a subalgebra of C∗(X).

a) Show that pn ⇒ √
x on [0, 1], where

p0(x) = 0, pn+1(x) = pn(x) +
1

2
(x− p2

n(x)) for x ∈ [0, 1].

Hint: Show that pn(x) ≤ pn+1(x) ≤
√
x. If pn(x) ≤

√
x − ε, then pn+1(x) ≥

pn(x) + ε2/2.

b) If f ∈ Φ, then |f | ∈ Φ.

Hint: If f is bounded by a real c > 0 we set fn(x) = c · pn( 1
c
f2(x)). Then fn ⇒ |f |.

c) If f, g ∈ Φ, then also max{f, g},min{f, g} ∈ Φ.

d) Assume that Φ contains all constant functions and separates points. Then for any
reals α, β and any points x, y ∈ X, x 	= y, there exists a function f ∈ Φ such that
f(x) = α and f(y) = β.

3.25 [AC] Stone-Weierstrass Theorem

Assume that X is a compact topological space. Φ is a subalgebra of C(X).

a) Assume that Φ contains all constant functions, separates points and is closed under
max. For any ε > 0, any p ∈ X and any f ∈ C(X) there exists a function h ∈ Φ and
a neighborhood U of p such that h(x) < f(x)+ε for any x ∈ X and h(x) > f(x)−ε
for any x ∈ U .

Hint: For q ∈ X take a function hq ∈ Φ such that hq(p) = f(p) and hq(q) = f(q).
By compactness there exists finitely many q0, . . . , qk such that for every x ∈ X,
there exists an i ≤ k with hqi(x) < f(x) + ε. Set h = max{hq0 , . . . , hqk}.

b) Assume that Φ contains all constant functions, separates points and is closed under
max. For any ε > 0 and any f ∈ C(X) there exists a function g ∈ Φ such that
σ(f, g) < ε.

c) Prove the Stone-Weierstrass Theorem: If an algebra Φ ⊆ C(X) contains all constant
functions and separates points, then Φ = C(X).

d) The set of all polynomials is dense in C([0, 1]).
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e) The metric space C([0, 1]) is separable and therefore Polish.

f) If Y1 and Y2 are compact topological spaces, then for any f ∈ C(Y1 × Y2) and any
ε > 0, there exist an n ∈ ω and functions g1, . . . , gn ∈ C(Y1), h1, . . . , hn ∈ C(Y2)
such that σ(

∑n
i=1 gi · hi, f) < ε (σ is the metric defined by (3.22)).

3.26 Separability of C∗(X)

Assume that X is a metric separable space, A being countable and dense in X.

a) For any a, b ∈ A, a 	= b construct a continuous function fa,b : X −→ [0, 1] such that
f(x) < 1/4 if ρ(a, x) < 1/4ρ(a, b) and f(x) > 3/4 if ρ(b, x) < 1/4ρ(a, b).

b) The set {fa,b : a, b ∈ A} separates points in X.

Hint: Let ε = ρ(x, y) > 0. Take a, b ∈ A such that ρ(a, x) < 1/8ε, ρ(b, y) < 1/8ε
and show that fa,b(x) 	= fa,b(y).

c) The set Φ = {α · fa,b + β · fc,d : a, b, c, d ∈ A,α, β ∈ Q} is countable. Let A be
the smallest subring of C∗(X) closed under max, min, scalar multiplication α · f
for rational α, containing all rational constants and containing Φ. Show that A is
countable.

d) Show that A = C∗(X).

Hint: Let D be the smallest subalgebra closed under max, min, containing all con-
stants and Φ. Show that D = C∗(X) and A ⊇ D.

e) If X is a separable metric space, then C∗(X) is a Polish space.

f) Show that in a)–e) X may be a normal separable topological space.

3.27 [AC] Banach Space and C∗(X)

X is a topological space. Note that if X is compact, then C∗(X) = C(X).

a) C∗(X) is a Banach space with the norm ‖f‖ = sup{|f(x)| : x ∈ X}.

b) Let B be a Banach space. Set X = Ball(0, 1) ⊆ B∗ with the weak∗ topology. Prove
the Kuratowski Theorem: The Banach space B is isomorphic with a closed subspace
of the Banach space C(X).

Hint: Follow the terminology and notation of Exercise 3.17. By the Banach-Alaoglou
Theorem, the topological space X is compact. For any x ∈ B the functional Fx is
continuous on X equipped with the weak∗ topology. Moreover ‖x‖ = ‖Fx‖.

3.28 Completion of Metric Space

Let 〈X, ρ〉 be a metric space, metric σ on C∗(X) is defined by (3.22).

a) Take a fixed p ∈ X. For any q ∈ X we define Fq ∈ XR as Fq(x) = ρ(x, q)− ρ(x, p).
Show that Fq is continuous and bounded.

b) σ(Fx, Fy) = ρ(x, y) for any x, y ∈ X.

c) For any metric space 〈X, ρ〉 there exists a complete metric space 〈X̃, ρ̃〉 such that
X ⊆ X̃, X is dense in X̃ and ρ and ρ̃ coincide on X.

Hint: Take X̃ = {Fq : q ∈ X} ⊆ C∗(X).
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3.5 Baire Hierarchy

We suppose that X is a separable metric space and Y is a perfect Polish space.
By Corollary 3.64 the topological space [0,1]R does not possess the sequence

selection property and the sequential closure scl1 (Cp([0, 1])) of the subset Cp([0, 1])
of [0,1]R is not equal to its topological closure Cp([0, 1]). Actually we obtain a
hierarchy (ξ < ω1):

scl0 (Cp([0, 1])) ⊆ scl1 (Cp([0, 1])) ⊆ · · · ⊆ sclξ (Cp([0, 1])) ⊆ · · · ⊆ Cp([0, 1]).

We show later that this hierarchy is proper. We start our study from another side.
It is obvious that any A1-measurable function is A2-measurable provided

that A1 ⊆ A2. Thus the Borel hierarchy (1 < η < ξ < ω1)

Σ0
1 ⊆ · · · ⊆ Σ0

η ⊆ · · · ⊆ Σ0
ξ ⊆ Σ0

ξ+1 ⊆ · · · ⊆ Borel

induces a corresponding hierarchy of measurable functions

Σ0
1-measurable ⊆ · · · ⊆ Σ0

η-measurable ⊆ · · · ⊆ Σ0
ξ-measurable ⊆

Σ0
ξ+1-measurable ⊆ · · · ⊆ Borel measurable. (3.24)

Since a characteristic function χA of a subset A ⊆ X is A-measurable if and only
if both sets A,X \A belongs to A, by Theorem 6.12, the hierarchy is proper.
Theorem 3.65. If ω1 is regular cardinal, then a function f : X −→ Y is Borel
measurable if and only if f is Σ0

ξ-measurable for some ξ < ω1.

Proof. The implication from right to left is trivial. Therefore we assume that
f : X −→ Y is Borel measurable. Let B be a countable base of the topology of Y .
For every U ∈ B the set f−1(U) is Borel. Since ω1 is regular, by Theorem 3.41 we
have Borel(X) =

⋃
ξ<ω1

Σ0
ξ(X). Let ηU be the smallest ordinal η < ω1 such that

f−1(U) ∈ Σ0
η(X). Since B is countable and ω1 is regular, there exists an ordinal

ξ < ω1 such that ηU < ξ for any U ∈ B. However Σ0
ξ(X) is closed under countable

unions, so we have that f−1(V ) ∈ Σ0
ξ(X) for any open set V . Thus the function

f is Σ0
ξ(X)-measurable. �

Let BP(X,Y ) be the smallest family of functions from X into Y containing
all continuous functions and closed under pointwise limits, i.e., if fn → f on X ,
fn ∈ BP(X,Y ), then also f ∈ BP(X,Y ). A function belonging to BP(X,Y ) is
called a Baire function or an analytically representable function.

We define a hierarchy of Baire functions. A continuous function f : X −→ Y
is said to be of Baire class 0. A function f is said to be of Baire class ξ if there
exists a sequence {fn}∞n=0 of functions of Baire classes smaller than ξ such that
fn → f on X . We define

BP0(X,Y ) = the set of all continuous functions from X into Y,

BPξ(X,Y ) = {f ∈ XY : (∃fn ∈
⋃

η<ξ

BPη(X,Y ), n ∈ ω) (fn → f on X)} for ξ > 0.
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Using notation introduced by (1.20), for any 0 < ξ < ω1 we have

BPξ(X,Y ) =
⋃

η<ξ+1

BPη(X,Y ) = scl




⋃

η<ξ

BPη(X,Y )



 = sclξ (Cp(X,Y )) .

Thus, a function f ∈ XY is of Baire class ξ if and only if f ∈ BPξ(X,Y ).
If Y = R we shall simply write BP(X), BPξ(X).

Theorem 3.66. Assume that ω1 is regular. Then

BP(X,Y ) =
⋃

ξ<ω1

BPξ(X,Y ).

The proof is easy. Evidently BPξ(X,Y ) ⊆ BP(X,Y ) for any ξ < ω1. On the other
hand, since ω1 is regular,

⋃
ξ<ω1

BPξ(X,Y ) contains all continuous functions and
is closed under pointwise limits. Thus

BP(X,Y ) ⊆
⋃

ξ<ω1

BPξ(X,Y ). �

Hence we obtain the Baire Hierarchy (η < ξ < ω1):

BP0(X,Y ) ⊆ · · · ⊆ BPη(X,Y ) ⊆ · · · ⊆ BPξ(X,Y ) ⊆
BPξ+1(X,Y ) ⊆ · · · ⊆ BP(X,Y ). (3.25)

We shall prove that hierarchies (3.24) and (3.25) are identical up to a shift of
indexes.

Note that by definition we have

Σ0[¬Σ0
ξ(X)] = Σ0

ξ+1(X) (3.26)

for any ξ < ω1 and
Σ0[¬Σ0[

⋃

η<ξ

Σ0
η(X)]] = Σ0

ξ+1(X) (3.27)

for any ξ < ω1 limit.
Lemma 3.67. Assume that A is a family of subsets of X. Let fn → f on X. If
every fn : X −→ Y , n ∈ ω is A-measurable, then f is Σ0[¬Σ0[A]]-measurable.
Moreover, if A is a σ-topology, then f is Σ0[¬A]-measurable.

Proof. Let B be a countable base of the topology on Y . For any open subset U ⊆ Y
we have

f(x) ∈ U ≡ (∃V ∈ B, V ⊆ U)(∃k)(∀n ≥ k) fn(x) ∈ V .
Thus

f−1(U) =
⋃

V ∈B,V⊆U

⋃

k

⋂

n≥k
(X \ f−1

n (Y \ V )) =
⋃

V ∈B,V⊆U

⋃

k

(X \
⋃

n≥k
f−1
n (Y \ V )).

So by definition f−1(U) ∈ Σ0[¬Σ0[A]]. If A is a σ-topology, then Σ0[A] = A. �
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Corollary 3.68. If S is a σ-algebra, fn → f , fn are S-measurable functions, then
f is S-measurable as well.

We can obtain a finer result.

Theorem 3.69. Every f ∈ BPξ(X,Y ) is Σ0
ξ+1(X)-measurable for any ξ < ω1.

Thus, every analytically representable function is Borel measurable.

Proof. For ξ = 0 the theorem follows from definition. For ξ > 0 the theorem
follows by Lemma 3.67, (3.26) and (3.27) by transfinite induction. �

The shift of indexes in the theorem is due to historically accepted terminology.
In the literature it is more than common that a pointwise limit of a continuous
function is a function of the first Baire class and the family of Fσ sets is Σ0

2.
There is a fundamental result on the first Baire class functions.

Theorem [wAC] 3.70 (R. Baire). If f : X −→ Y is Fσ-measurable, then the set

disc(f) = {x ∈ X : f is not continuous at x}

is an Fσ meager set.

Proof. Let B be a countable base of the topology on Y . We show that

disc(f) =
⋃

U∈B
(f−1(U) \ Int(f−1(U))). (3.28)

Actually, assume that f is not continuous at a point x. Thus there exists a set
U ∈ B such that x ∈ f−1(U) and f−1(U) is not a neighborhood of x. Hence
x /∈ Int(f−1(U)).

Vice versa, if x ∈ f−1(U) \ Int(f−1(U)) for some U ∈ B, then f(x) ∈ U and
f−1(U) is not a neighborhood of x. Thus, f is not continuous at x.

By assumption the set f−1(U) is an Fσ set. Thus also f−1(U) \ Int(f−1(U))
is a meager Fσ set. Hence the set disc(f) is Fσ and meager as well. �

If Φ ⊆ AR is a set of real functions on A we write

Φ↑ = {f ∈ AR : (∃fn ∈ Φ, n ∈ ω) fn ↗ f on A},
Φ↓ = {f ∈ AR : (∃fn ∈ Φ, n ∈ ω) fn ↘ f on A}.

Lemma [wAC] 3.71. Assume that |Φ| � c. Then

a) if Φ is a lattice of functions, then Φ↑,Φ↓, scl (Φ) are lattices of functions;
b) if Φ is a vector subspace of AR, then Φ↑,Φ↓, scl (Φ) are vector subspaces;
c) if Φ is a lattice of functions, then we have (Φ↑)↑ = Φ↑, (Φ↓)↓ = Φ↓ and

scl (Φ) = (Φ↓)↑ ∩ (Φ↑)↓.
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Proof. Let us note that |Φ↑| � c, |Φ↓| � c, |scl (Φ) | � c provided that |Φ| � c.
Thus we can use the weak axiom of choice wAC. Proofs of parts a) and b) are
immediate.

If f ∈ (Φ↑)↑, then f = limn→∞ fn for some 〈fn ∈ Φ↑ : n ∈ ω〉, and fn ≤ fn+1

for any n. Every fn = limm→∞ gn,m, gn,m ∈ Φ, gn,m ≤ gn,m+1 for any m. We set

hn = max{g0,n, . . . , gn,n}.

Then hn ≤ hn+1 and limn→∞ hn = f . Since Φ is a lattice of functions, we obtain
hn ∈ Φ and therefore f ∈ Φ↑. The opposite inclusion is trivial. We can proceed
similarly in the downward case.

If f ∈ scl (Φ), then there are fn ∈ Φ such that f = limn→∞ fn. We denote

gn,m = max{fn, fn+1, . . . , fn+m}, gn = lim
m→∞ gn,m.

Since gn,m ≤ gn,m+1 for every n,m, the functions gn are well defined (the limits do
exist!) and gn ∈ Φ↑. Since gn ≥ gn+1 and f = limn→∞ gn, we obtain f ∈ (Φ↑)↓.
Similarly one can show that f ∈ (Φ↓)↑.

Let f ∈ (Φ↓)↑ ∩ (Φ↑)↓. Then (using wAC) there exist gn,m, hn,m ∈ Φ such
that gn,m ↘ gn, hn,m ↗ hn, gn ↗ f and hn ↘ f on X . We set

fm = max{min{gk,m, h0,m, . . . , hk,m} : k = 0, . . . ,m}.

Evidently fm ∈ Φ. We show that f = limn→∞ fn. Let ε > 0, x ∈ X . We find
an m0 such that fm(x) > f(x) − ε for each m ≥ m0. Since gn ↗ f on X , there
exists an n0 such that gn(x) > f(x) − ε for every n ≥ n0. Since hn(x) ≥ f(x)
and hn,m ↗ hn on X , there exists an m0 ≥ n0 such that hi,m(x) > f(x) − ε for
i = 0, . . . , n0 and every m ≥ m0. Then for m ≥ m0 we obtain

fm(x) ≥ min{gn0,m(x), h0,m(x), . . . , hn0,m(x)} > f(x)− ε.

Similarly one can find an m0 such that fm(x) < f(x) + ε for each m ≥ m0. �
Theorem [wAC] 3.72.

BPξ(X) = BPξ(X)↑ ∩ BPξ(X)↓

Proof. If f ∈ BP0(X)↑ ∩ BP0(X)↓, then by Lemma 3.58, b), c) the function f is
both lower and upper semicontinuous and therefore continuous.

By Lemma 3.71, c) and d), if Φ = scl (Ψ), then Φ = Φ↑ ∩Φ↓. Thus, for ξ > 0
the statement follows by definition of BPξ(X). �
Corollary [wAC] 3.73. Every BPξ(X) is a vector subspace of XR and a lattice of
functions.

A function h : X −→ R+ is called simple if rng(h) is finite. It is easy to
see that a function h is simple if and only if there are mutually disjoint sets
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〈Ak ⊆ X : k = 0, . . . , n〉 and reals 0 < α0 < · · · < αn such that

f(x) =
n∑

k=0

αkχAk
(x). (3.29)

A simple function f is lower A-measurable if and only if X ∈ A and
⋃n
i=k Ai ∈ A

for every k = 0, . . . , n. Moreover, if f is lower A-measurable we obtain

f =
n∑

k=0

βkχBk
,

with Bk ∈ A. It suffices to set Bk =
⋃n
i=k Ai, β0 = α0 and βk = αk − αk−1

for k > 0. Thus a simple lower A-measurable function is a linear combination of
characteristic functions of sets from A.
Lemma 3.74. Let A be a σ-topology on X. If f : X −→ R+ is a lower A-measurable
function, then there exists a sequence {fn}∞n=0 of simple lower A-measurable func-
tions such that fn ↗ f .

Proof. Let f : X −→ R+ be lower A-measurable. For every n, every i ≤ n2n and
every x ∈ X we set

An,i =
{

x ∈ X : f(x) >
i

2n

}

, fn(x) =
n2n
∑

i=1

1
2n
χAn,i(x).

Evidently An,i ⊇ An,i+1 for any i < n2n. For a real a the set {x ∈ X : fn(x) > a}
is one of sets ∅, An,i, i = 0, . . . , n2n, X . Thus fn is lower A-measurable. One can
easily check that fn ↗ f . �
Lemma [wAC] 3.75. If f : X −→ R+ is lower semicontinuous, then there exist
continuous functions fn such that fn ↗ f .

Proof. By Lemma 3.74 there are simple lower semicontinuous functions hn such
that hn ↗ f . Since a simple lower semicontinuous function is a linear combination
of characteristic functions of open sets, by Lemma 3.71, b) we have to show that
χA ∈ Cp(X)↑ for any A open.

Let A ⊆ X be open. Then there are closed sets An such that A =
⋃
nAn.

Moreover, we can assume that An ⊆ An+1 for every n. By Theorem 3.14 there
exist continuous functions fn such that fn(x) = 1 for x ∈ An and fn(x) = 0 for
x ∈ X \A. We can assume that fn ≤ fn+1. One can easily see that fn ↗ χA. �
Lemma [wAC] 3.76. Let 0 < ξ < ω1. If f is a lower Σ0

ξ(X)-measurable function
with non-negative values, then f ∈ (

⋃
η<ξ BPη(X))↑.

Proof. For ξ = 1 the lemma follows by Lemma 3.75. For ξ > 1 we prove the
lemma by transfinite induction. So we suppose the statement holds true for any
η < ξ < ω1.
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By Lemmas 3.74, and 3.71, b) we have to show that χA ∈ (
⋃
η<ξ BPξ(X))↑

for any A ∈ Σ0
ξ(X). So let A ∈ Σ0

ξ(X). Then there are sets An ∈
⋃
η<ξ Π

0
ξ(X),

n ∈ ω, such that A =
⋃
nAn. We can assume that An ⊆ An+1 for every n ∈ ω.

We show that χAn ∈
⋃
η<ξ BPξ(X).

Let η < ξ be such that An ∈ Π0
η(X). By the inductive assumption we obtain

that χX\An
∈ (
⋃
ζ<η BPζ(X))↑. By definition



⋃

ζ<η

BPζ(X)





↑

⊆ scl




⋃

ζ<η

BPζ(X)



 = BPη(X).

Thus by Corollary 3.73 we have χAn = 1 − χX\An
∈ BPη(X). Since χAn ↗ χA,

we are ready. �

Note the following: all considered properties of a function f are preserved
by the multiplication a · f by a positive real a and by a shift f + b by a real b.
E.g., we can assume that the function is bounded from below instead of being
non-negative. Replacing the function f by −f we must replace the word “upper”
by “lower‘” and vice versa, “non-decreasing sequence” by “non-increasing one”.
Theorem [wAC] 3.77 (H. Lebesgue – F. Hausdorff). Assume that f : X −→ R. If
f is Σ0

ξ+1-measurable, then f ∈ BPξ(X). If f is Σ0
ξ-measurable and ξ is a limit

ordinal, then f ∈ (
⋃
η<ξ BPη(X))↓ ∩ (

⋃
η<ξ BPη(X))↑.

Proof. Assume that H : R −→ (0, 1) is an order-preserving homeomorphism and
G : (0, 1) −→ R is the inverse to H . In the proof we use essentially the fact that
all considered families of functions are lattices of functions.

Assume that f is Σ0
ξ+1-measurable with values in (0, 1). Then by Lemmas

3.75 and 3.76 we have f ∈ (BPξ(X))↑. Similarly, applying the lemmas to the
function 1−f we obtain that f ∈ (BPξ(X))↓. So, by Theorem 3.72 we obtain that
f ∈ BPξ(X).

Assume now that f : X −→ R is a Σ0
ξ+1-measurable function. Then the

function f ◦H is Σ0
ξ+1-measurable with values in (0, 1). Since f ◦H ∈ BPξ, there

are functions gn : X −→ R such that gn → f ◦H and gn ∈
⋃
η<ξ BPη(X). However

the range of gn need not be a subset of (0, 1). Thus, we denote

fn = min{max{gn, 1/(n+ 1)}, n/(n+ 1)}.

Then fn ◦G ∈ BPξ(X) and fn ◦G→ f .
For ξ limit the proof is almost the same. �

Corollary [wAC] 3.78. For any ξ < ω1, a real function f defined on a metric
separable space X is Σ0

ξ+1-measurable if and only if f ∈ BPξ(X).
As an easy consequence we obtain the main result of this section.

Theorem [wAC] 3.79. A function from a separable metric space into R is Borel
measurable if and only if it is a Baire function, i.e., analytically representable.
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Exercises

3.29 Examples of Baire Functions

The Dirichlet function χ : R −→ R is defined as follows: χ(x) = 1 for x ∈ Q and χ(x) = 0
for x ∈ R \ Q.

a) Show that χ(x) = limn→∞ limm→∞(cosn!πx)2m.

b) Find sequences 〈fn : n ∈ ω〉, 〈gn,m : n,m ∈ ω〉, gn,m continuous and such that
gn,m ↘ fn and fn ↗ χ.

c) The set disc(χ) is not meager, however there exists a meager set D ⊆ R such that
χ|(R \D) is continuous. Conclude that χ ∈ BP2(R) \ BP1(R).

d) Every monotonic function f : R −→ R is in the first Baire class.

Hint: Make corresponding simple functions continuous.

3.30 Non-negative and Non-positive Part of a Function

The non-negative part f+ and the non-positive part f− of a real function f are defined
as f+ = max{0, f} and f− = max{0,−f}.

a) Note that
f = f+ − f− and |f | = f+ + f−.

b) If A is a σ-topology on X, then f : X −→ R is A-measurable if and only if both
f+ and f− are A-measurable.

c) Find conditions for upper and lower measurability of f in terms of properties of
f+ and f−.

d) Show that f ∈ BPξ(X) if and only if f+, f− ∈ BPξ(X).

3.31 [wAC] Turning a Borel Function into a Continuous One

〈X,O〉 and 〈Y, T 〉 are Polish spaces.

a) If f : X −→ Y is Borel measurable, then there exists a Polish topology O′ on X
such that f is continuous in this topology and Borel(X,O′) = Borel(X,O).

Hint: Use Exercise 3.18, f).

b) If f : X −→ Y is a Borel isomorphism, then there exist Polish topologies O′ and
T ′ on X and Y , respectively, such that f is a homeomorphism in those topologies,
Borel(X,O′) = Borel(X,O) and Borel(Y,T ′) = Borel(Y, T ).

3.32 Baire Classes and Uniform Convergence

If Φ ⊆ XY is a family of functions we write

⇒
Φ= {f ∈ XY : (∃fn ∈ Φ, n ∈ ω) fn ⇒ f on X}.

a) If Φ ⊆ XR is a lattice, f + a ∈ Φ for any f ∈ Φ and any real a, then
⇒
Φ⊆ Φ↑ ∩Φ↓.

Hint: If fn ⇒ f and εn = sup{|fn(x)− f(x)| : x ∈ X}, set

gn = max{f0 − ε0, . . . , fn − εn}, hn = min{f0 + ε0, . . . , fn + εn}.

Then gn ↗ f and hn ↘ f .

b) Show that
⇒

BPξ(X) = BPξ(X) for any ξ < ω1 and any metric separable space X.
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3.33 [wAC] Separation of Sets

Let us recall that Z(f) = {x ∈ X : f(x) = 0}.
a) A ∈ Π0

ξ+1(X) if and only if there exists a function f ∈ BPξ(X) such that A = Z(f).

Hint: If A ∈ Π0
ξ+1(X), then 1− χA is lower Σ0

ξ+1-measurable. Using Lemma 3.76
find Σ0

ξ-measurable fn : X −→ [0, 1] such that fn ↗ 1− χA. Set f =
∑∞

n=0 2−nfn

and use the result of Example 3.32, b).

b) If A,B ∈ Π0
ξ+1(X), A ∩B = ∅, then there exists a function f ∈ BPξ(X) such that

A = Z(f) and B = Z(f − 1).

Hint: If Z(g) = A and Z(h) = B, take f = g · (2− h)/2 · (g + h).

3.34 [wAC] Quasi-normal Hierarchy

Let X be a Polish space. For any subset A ⊆ XR we define the quasi-normal closure of
A by

Qcl(A) = {f ∈ XR : (∃{fn} ∈ ωA) fn
QN−→ f on A}.

The Quasi-normal Hierarchy 〈BQξ(X) : ξ < ω1〉 is defined as: BQ0(X) = C(X) and

BQξ(X) = Qcl(
⋃

η<ξ

BQη(X)).

The discrete closure Dcl(A) and the Discrete Hierarchy 〈BDξ(X) : ξ < ω1〉 are defined
similarly.

a) A ⊆ Dcl(A) ⊆ Qcl(A) ⊆ scl (A) for any A ⊆ XR.

b) BDξ(X) ⊆ BQξ(X) ⊆ BPξ(X) for any ξ < ω1.

c) If fn
QN−→ f on X, fn are Σ0

ξ(X)-measurable, then there exist sets An ∈ Π0
ξ(X)

such that X =
⋃

nAn and fn ⇒ f on every An.

Hint: If εn is a control of the quasi-normal convergence, set

An = {x ∈ X : (∀k,m ≥ n) |fm(x)− fk(x)| ≤ εm + εk}.

d) If fn
D−→ f on X, fn are Σ0

ξ(X)-measurable, then there exist sets An ∈ Π0
ξ(X)

such that X =
⋃

nAn and fn|An = f |An for every n.

Hint: Set
An = {x ∈ X : (∀k,m ≥ n) fm(x) = fk(x)}.

e) If f ∈ BDξ(X), ξ > 0, then f is ∆0
ξ+1-measurable.

Hint: We proceed by transfinite induction. If fn
D−→ f , fn ∈

⋃
η<ξ BQη(X), then

fn are ∆0
ξ-measurable. Thus f is Σ0

ξ+1-measurable. If 〈An : n ∈ ω〉 are those of d),
then f−1(U) =

⋂
n(f−1

n (U) \An).

f) If f ∈ BDξ(X), then for every n ∈ ω there exist set An ∈∆0
ξ+1(X) and continuous

function gn such that X =
⋃

n An and f |An = gn|An.

Hint: By transfinite induction. If fn
D−→ f , fn ∈ BDξ(X), then f |Xn = f |Xn with

Xn ∈ Π0
ξ+1(X). By inductive assumption fn|An,m = gn,m|An,m, gn,m continuous.

Then f |(Xn ∩An,m) = gn,m|(Xn ∩An,m). For ξ limit similarly.
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g) If A ∈∆0
2(X), then χA ∈ BD1(X).

Hint: If A =
⋃

n Fn =
⋂

n Gn, Fn closed increasing, Gn open decreasing, then there
exist continuous functions fn such that fn(x) = 1 for x ∈ Fn and fn(x) = 0 for

x ∈ X \Gn. Then fn
D−→ χA on X.

h) If A ∈∆0
ξ+1(X), ξ ≥ 1, then χA ∈ BDξ(X).

Hint: Let ξ ≥ 2. By induction, assume that the statement is true for η < ξ. Take
the sets Bn ∈∆0

ξ(X) of Exercise 3.20, e). If ξ is non-limit, then χBn ∈ BDξ−1(X)

and χBn

D−→ χA. If ξ is limit, then Bn =
⋃

k C
k
n with Ck

n ∈ ∆0
ξk

(X), ξk < ξ for
every n.

i) Let A be a family of subsets of X with weak reduction property (see Exercise 3.21)
and closed under finite intersections and finite unions. Every A-measurable function
with non-negative real values is a quasi-normal limit of simple A∩¬A-measurable
functions.

Hint: Let f be A-measurable. Then fn
D−→ f on X and fn are A-measurable. For

i < 22n we set

An,i = {x ∈ X : (i− 1)2−n < f(x) < (i+ 1)2−n}.

Moreover, let An,22n = {x ∈ X : f(x) > 2n − 2−n}. Take Bn,i ∈ A ∩ ¬A pairwise
disjoint such that ⋃

i≤22n

Bn,i = X, Bn,i ⊆ An,i.

Set gn(x) = i2−n for x ∈ Bn,i, i ≤ 22n. Then gn
QN−→ f on X.

j) BPξ(X) ⊆ Qcl(BDξ(X)).

Hint: Use the result of i) and k).

k) BPξ(X) ⊆ BQξ+1(X).

l)
⋃

ξ<ω1
BQξ(X) = Baire(X).
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The Tietze-Urysohn Theorem was proved by H. Tietze [1915] for metric spaces
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cise 3.15, see, e.g., W. Rudin [1973].
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Á. Császár and M. Laczkovich [1975] studied quasi-normal convergence under
the name equal convergence. Then Z. Bukovská [1991] independently introduced
and studied the notion of a quasi-normal convergence. The discrete convergence of
Exercise 3.22 was studied by Á. Császár and M. Laczkovich [1975]. Exercises 3.23–
3.25 follow ideas of the generalization of the classical Weierstrass Theorem by
M.H. Stone [1947].

R. Baire [1898a] proved Theorem 3.70. Then he introduced the Baire Hierar-
chy (3.25). H. Lebesgue [1905] and F. Hausdorff [1914] proved Theorem 3.77 and
therefore also Theorem 3.79. There is a nice Russian presentation of the Baire Hi-
erarchy by I.P. Natanson [1957]. The hierarchies of Exercise 3.34 were introduced
and studied by Á. Császár and M. Laczkovich [1975], [1979] and [1990].



Chapter 4

Measure Theory

On notera d’autre part que, dans la pratique, on ne se soucie guère
de préciser quelles sont les portions d’espace que l’on considère comme
“mesurables”; bien entendu, il est indispensable de fixer ce point sans
ambigüıté dans toute théorie mathématique de la mesure; c’est ce qu’on
fait par exemple quand, en géométrie élémentaire, on définit l’aire des
polygones ou le volume des polyèdres; dans tous les cas, la famille des
ensembles “mesurables” doit naturellement être telle que la réunion de
deux quelconques d’entre eux sans point commun soit encore “mesur-
able”.

Nicolas Bourbaki [1952], p. 1

We suppose that the reader is acquainted with basic measure theory. However the
common presentation of measure theory uses the Axiom of Choice without any
comment. To replace the use of Axiom of Choice by a Weak Axiom of Choice
or to avoid it at all, we present some facts about measure on a topological space,
a brief construction of Lebesgue measure and we prove some of its basic properties.
In Section 4.3 we recall the definition of the Lebesgue integral and we prove the
basic results related to it. Finally, Section 4.4 is devoted to a brief presentation
of the results which we shall intensively use: the Fubini Theorem and the Ergodic
Theorem.

4.1 Measure

Let S be a σ-algebra of subsets of a non-empty set X . A function µ from S into
[0,∞] is called a measure if

µ(∅) = 0, µ(X) �= 0, (4.1)

µ(
⋃

n

An) =
∞∑

n=0

µ(An) for any pairwise disjoint 〈An ∈ S : n ∈ ω〉. (4.2)
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From the definition we immediately obtain that for any A,B ∈ S and for
any sequence 〈An ∈ S : n ∈ ω〉 the following holds true:

µ(A) ≤ µ(B), if A ⊆ B, (4.3)

µ(A) = lim
n→∞µ(An), if A =

⋃

n

An and An ⊆ An+1 for every n, (4.4)

µ(A) = lim
n→∞µ(An), if A =

⋂

n

An, An ⊇ An+1 for every n,

and µ(A0) <∞. (4.5)

The triple 〈X,S, µ〉 is called a measure space. If the σ-algebra S is understood
we speak about a measure on X . A measure µ is said to be complete if for any
A ⊆ B ⊆ X , B ∈ S, µ(B) = 0 also A ∈ S. If µ is a complete measure then
〈X,S, µ〉 is called a complete measure space. A measure µ is finite if µ(X) < ∞.
A measure µ is σ-finite if there are sets 〈Xn ∈ S : n ∈ ω〉 with µ(Xn) < ∞ for
every n and such that

⋃
nXn = X . Of course, we can suppose that Xn ⊆ Xn+1.

A formula V is true almost everywhere or is true for almost every x ∈ X if
µ({x ∈ X : ¬V(x)}) = 0. A measure µ is called diffused if {x} ∈ S and µ({x}) = 0
for any x ∈ X . Finally, µ is a probabilistic measure if µ(X) = 1.

One can easily check that there is no diffused measure on a countable set.
The construction of a non-trivial diffused measure on an uncountable set is not
simple. We describe a method of such a construction in a particular case.

Let X be a non-empty set. A function µ∗ : P(X) −→ [0,∞] is an outer
measure on X if

µ∗(∅) = 0, µ∗(X) �= 0, (4.6)
µ∗(A) ≤ µ∗(B), for any A ⊆ B ⊆ X, (4.7)

µ∗(
⋃

n

An) ≤
∞∑

n=0

µ∗(An), for any 〈An ⊆ X : n ∈ ω〉. (4.8)

Let µ∗ be an outer measure on X . A set A ⊆ X is Carathéodory measurable,
simply µ∗-measurable, if

µ∗(B) = µ∗(B ∩A) + µ∗(B \A) for any B ⊆ X. (4.9)

We denote by S(µ∗) the family of all µ∗-measurable subsets of X .
The following is a fundamental result:

Theorem 4.1. Let µ∗ be an outer measure on a set X. Then S(µ∗) is a σ-algebra
and µ∗|S(µ∗) is a complete measure. Moreover, if 〈An ∈ S(µ∗) : n ∈ ω〉 are
pairwise disjoint and B ⊆ X, then

µ∗(B ∩
⋃

n

An) =
∞∑

n=0

µ∗(B ∩An). (4.10)
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The proof is rather technical. We present all details mainly to ensure that no choice
has been used.

Evidently both ∅ and X are µ∗-measurable.
Let C,D ∈ S(µ∗) and let B ⊆ X . Using the measurability of sets C and D

we obtain

µ∗(B) = µ∗(B ∩C ∩D) + µ∗((B ∩C) \D) + µ∗((B \ C) ∩D) + µ∗((B \ C) \D).

Replacing B by B \ (C \D) we obtain

µ∗(B \ (C \D)) = µ∗(B ∩ C ∩D) + µ∗((B ∩D) \ C) + µ∗((B \ C) \D). (4.11)

Thus
µ∗(B) = µ∗(B ∩ (C \D)) + µ∗(B \ (C \D))

and therefore C \D ∈ S(µ∗).
If C,D ∈ S(µ∗), then C ∪D = X \ ((X \ C) \D) ∈ S(µ∗).
If C,D ∈ S(µ∗) are disjoint, then

µ∗(B ∩ (C ∪D)) = µ∗((B ∩ (C ∪D)) ∩ C) + µ∗((B ∩ (C ∪D)) \ C)
= µ∗(B ∩ C) + µ∗(B ∩D). (4.12)

Now let 〈An ∈ S(µ∗) : n ∈ ω〉 be pairwise disjoint. From (4.12) we obtain by
induction

µ∗(B ∩
n⋃

i=0

Ai) =
n∑

i=0

µ∗(B ∩Ai).

Hence
n∑

i=0

µ∗(B ∩Ai) ≤ µ∗
(

B ∩
∞⋃

i=0

Ai

)

and together with (4.8) we obtain (4.10). Since
⋃n
i=0Ai is µ∗-measurable, we have

µ∗(B) = µ∗
(

B ∩
n⋃

i=0

Ai

)

+ µ∗
(

B \
n⋃

i=0

Ai

)

≥
n∑

i=0

µ∗(B ∩Ai) + µ∗
(

B \
∞⋃

i=0

Ai

)

and therefore

µ∗(B) ≥
∞∑

i=0

µ∗(B ∩Ai) + µ∗
(

B \
∞⋃

i=0

Ai

)

. (4.13)

Using (4.8) and(4.10) we obtain

µ∗(B) = µ∗
(

B ∩
∞⋃

i=0

Ai

)

+ µ∗
(

B \
∞⋃

i=0

Ai

)

.

Thus
⋃∞
i=0 Ai ∈ S(µ∗). Taking B = X in (4.10) we obtain (4.2) for µ∗.

If A ⊆ C, µ∗(C) = 0, then for any B we have

µ∗(B) ≤ µ∗(B ∩A) + µ∗(B \A) = µ∗(B \A) ≤ µ∗(B)

and therefore A ∈ S(µ∗). Thus µ∗|S(µ∗) is a complete measure. �



130 Chapter 4. Measure Theory

Assume now that 〈X,O〉 is a topological space and 〈X,S, µ〉 is a measure
space. The measure µ is called a Borel measure on X if S = Borel(X) and µ
is locally finite, i.e., every point x ∈ X has a neighborhood U with µ(U) < ∞.1

If µ is locally finite, then µ(K) < +∞ for any compact set K. A measure µ
is moderated if there are open sets 〈Gn : n ∈ ω〉 such that X =

⋃
nGn and

µ(Gn) < +∞ for each n. A moderated measure is both locally finite and σ-finite.
If X has a countable base (or X is Lindelöf – see Exercise 8.20), then a locally
finite measure is moderated. Thus, every Borel measure on a metric separable
space is moderated.

The support of a Borel measure µ on X is the set

supp(µ) = {x ∈ X : (∀U) (U neighborhood of x→ µ(U) > 0)}.

The support is a closed set, and µ(U) > 0 for each open set U ∩ supp(µ) �= ∅. If
the topology O has a countable base, then µ(X \ supp(µ)) = 0.

If 〈X,S, µ〉 is a measure space and 〈X,O〉 is a topological group, then the
measure µ is shift invariant, if a + A ∈ S, µ(a + A) = µ(A), A + a ∈ S and
µ(A+ a) = µ(A) for any A ∈ S and any a ∈ X . If X is infinite, then a finite shift
invariant measure is diffused.

Let us suppose that 〈X,S, µ〉 is a measure space, where 〈X,O〉 is a topological
space, and Borel(X) ⊆ S. A set A ∈ S is said to be

a) outer regular if
µ(A) = inf{µ(U) : A ⊆ U, U open}, (4.14)

b) inner regular if

µ(A) = sup{µ(F ) : F ⊆ A, F closed}, (4.15)

c) Radon if
µ(A) = sup{µ(K) : K ⊆ A, K compact}. (4.16)

Note the following. Assume that X has a countable base and wAC holds true.
Then a set A ∈ S, µ(A) < ∞, is outer regular if and only if there exists a non-
increasing sequence of open sets 〈Un ⊇ A : n ∈ ω〉 such that µ(

⋂
n Un \ A) = 0.

If moreover µ is moderated, then the assumption µ(A) < ∞ may be omitted.
Similarly for inner regularity and Radon property – see Theorem 4.9.

The measure µ is outer regular, inner regular, if every set A ∈ S is outer
regular, inner regular, respectively. A measure, which is both inner and outer
regular, is regular. A regular measure is Radon, if every set A ∈ S is Radon.
Every diffused outer regular measure is locally finite. Every σ-finite outer regular
measure is moderated. A finite measure is inner regular if and only if it is outer
regular.
1Actually a Borel measure µ can be defined on a σ-algebra S ⊃ Borel(X). However speaking
about some properties of a Borel measure we are interested just in Borel sets, e.g., a Borel
measure µ : S −→ [0,∞] is inner regular if every Borel set is inner regular.
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Lemma [wAC] 4.2. Assume that X has a countable base of topology and µ is a Borel
measure on X. Let A =

⋃
nAn. If every An is outer regular, inner regular, Radon,

then A is also outer regular, inner regular, Radon, respectively.

Proof. We can assume that µ(An) < +∞ for every n, since otherwise all state-
ments are trivial.

For given ε > 0 take an open Gn ⊇ An such that µ(Gn \ An) < 2−n−1ε.
Then µ(

⋃
nGn \

⋃
nAn) < ε.

If a < µ(A), then there exists an m such that ε = µ(
⋃m
k=0 Ak)− a > 0. Take

a closed set Fk ⊆ Ak such that µ(Ak \Fk) < ε/(m+1), k ≤ m. Then F =
⋃m
k=0 Fk

is closed, F ⊆ A and µ(F ) > a.
The proof for the Radon case is equal – just replace “closed” by “compact”.

�

Lemma [wAC] 4.3. If µ is a Borel measure on a separable metric space X and
every open set A is inner regular, then µ is regular.

Proof. We start with a claim:

if G ⊆ X is open, µ(G) <∞, then a Borel set A ⊆ G
is inner regular if and only if G \A is outer regular.

Actually, assume that A is inner regular. Let ε > 0 be given. Since µ(A) < ∞,
there exists a closed set F ⊆ A such that µ(A\F ) < ε. Then G\A ⊆ G∩ (X \F ),
G ∩ (X \ F ) is open and

µ((G ∩ (X \ F )) \ (G \A)) = µ(A \ F ) < ε.

If A is outer regular, then there exists an open set U ⊇ A such that µ(U \A) < ε/2.
We can assume that U ⊆ G. Then G \ A = (G \ U) ∪ (U \ A). The set G \ U is
an Fσ set, therefore there exists an increasing sequence of closed sets 〈Fn : n ∈ ω〉
such that

⋃
n Fn = G \ U . Since G \ U has finite measure, there exists an m such

that µ((G \ U) \ Fm) < ε/2. Then µ((G \A) \ Fm) < ε.
If {Vn : n ∈ ω} is a countable base of topology, we set

Gn =
⋃
{Vk : k ≤ n ∧ µ(Vk) <∞}.

Since µ is locally finite, we obtain that
⋃
nGn = X and µ(Gn) < ∞, i.e., µ is

moderated. Let

T = {A ∈ Borel(X) : (∀n) (Gn ∩A is outer and inner regular)}.

By the claim, T is closed under complement.
By Lemma 4.2, T is closed under countable unions.
By the assumption, T contains every open set. Thus Borel(X) = T . �
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Lemma [wAC] 4.4. Every Borel measure on a separable metric space X is regular.
If moreover X is σ-compact, then every Borel measure on X is Radon.

Proof. Assume that X is a separable metric space, X =
⋃
nGn, µ(Gn) < +∞,

Gn ⊆ Gn+1, Gn are open for every n.
If U ⊆ X is open, then there exist closed sets F0,n ⊆ · · · ⊆ Fk,n . . . such that

U ∩Gn =
⋃
k Fk,n. Then U =

⋃
n(
⋃n
i=0

⋃n
k=0 Fk,i) and (4.15) follows by (4.4).

Thus, by Lemma 4.3 the measure µ is regular.
Assume now that X is σ-compact. To show that a regular measure µ is

Radon, it suffices to show that every closed set is Radon. So, let A ⊆ X be
closed. Since X is σ-compact, there exist compact sets 〈Kn : n ∈ ω〉 such that
X =

⋃
nKn. Then each Kn is covered by some Gm and therefore µ(Kn) < +∞.

Then A =
⋃
n

⋃
k≤n(A ∩Kk) and (4.16) follows by (4.4). �

Lemma [wAC] 4.5. A finite Borel measure µ on a Polish space X is Radon.

Proof. By Lemma 4.4 the measure µ is inner regular. Therefore we have to show
that (4.16) holds true for any closed set A. Since a closed set is again a Polish
space, it suffices to show that (4.16) holds true for A = X .

Let 〈Bn,k : k ∈ ω〉 be a sequence of closed sets such that X =
⋃
kBn,k and

diam(Bn,k) < 2−n for every n. Let ε > 0 be given. Since µ(X) < ∞, for each m

there exists a km such that µ(X\
⋃km

i=0 Bm,i) < ε·2−m−1. Then K =
⋂
m

⋃km

i=0 Bm,i
is a closed totally bounded set. By Theorem 3.36, the set K is compact. Since
µ(X \K) < ε, we are done. �
Lemma [wAC] 4.6. Let µ be a Borel measure on a topological space X with count-
able base. Then there exists a probabilistic Borel measure µP such that:

a) µ(A) = 0 ≡ µP (A) = 0 for any Borel set A ⊆ X.
b) µP is Radon if and only if µ is Radon.

Proof. If µ is a Borel measure on X , then there exist pairwise disjoint Borel sets
〈Xn : n ∈ ω〉 such that X =

⋃
nXn and 0 < µ(Xn) <∞. For any Borel set A we

put

µP (A) =
∞∑

n=0

µ(A ∩Xn)
µ(Xn)

2−n−1.

It is easy to verify that µP is a probabilistic Borel measure.
The statement a) follows immediately from the definition.
Assume that µP is Radon. If A is Borel, then there exists a non-decreasing

sequence of compact sets 〈Kn ⊆ A : n ∈ ω〉 with µP (A) = sup{µP (Kn) : n ∈ ω}.
Let K =

⋃
nKn. Then µP (A\K) = 0. By a) also µ(A\K) = 0. Hence µ is Radon.

Assume now that µ is Radon and a < µP (A). Then there exists an m such
that

ε =
m∑

n=0

µ(A ∩Xn)
µ(Xn)

2−n−1 − a > 0.
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Take compact sets Kn ⊆ A∩Xn such that µ(Kn) > µ(A ∩Xn)− ε · µ(Xn). Then⋃m
n=0Kn ⊆ A and µP (

⋃m
n=0Kn) > a. �

Theorem [wAC] 4.7. Any Borel measure on a Polish space is Radon.

Proof. The theorem follows immediately by Lemmas 4.6 and 4.5. �

Assume that wAC holds true. We show that for any diffused Borel measure
µ on a perfect Polish space X , there exist sets A,B ⊆ X such that B is Borel,
µ(B) = 0, A ⊆ B and A is not Borel. Actually, it is easy to see that for any
countable set Y ⊆ X and any ε > 0 there exists an open set U ⊇ Y such that
µ(U) < ε. Thus, if S ⊆ X is a countable dense subset of X , then there exists a Gδ

set B ⊇ S such that µ(B) = 0. Evidently B is uncountable. Since B with the
subspace topology is a Polish space, by Corollary 3.44 there exists a non-Borel set
A ⊆ B. Hence the measure µ is not complete.

We can easily improve this “defect” of a Borel measure. Assume that µ is
a Borel measure on a topological space X . For any set A ⊆ X we define

µ∗(A) = inf{µ(B) : A ⊆ B ∧B ∈ Borel(X)}. (4.17)

If X has a countable base, then assuming wAC one can show that µ∗ is an outer
measure. Moreover, for any A ⊆ X there exists a Borel set B ⊇ A such that
µ∗(A) = µ(B). Thus, µ∗(B) = µ(B) for a Borel set B. We obtain
Theorem [wAC] 4.8. Let µ be a Borel measure on a separable metric space. Then
µ∗ is an outer measure on X and the following hold true:

a) Borel(X) ⊆ S(µ∗) and µ∗|S(µ∗) is an extension of µ.
b) µ∗|S(µ∗) is a complete moderated measure.
c) If µ is regular, then µ∗|S(µ∗) is regular as well.
d) If µ is Radon, then µ∗|S(µ∗) is Radon as well.

If µ is regular, then µ∗|S(µ∗) is uniquely determined by the conditions a)–c).

In what follows we consider a Borel measure µ, we shall often deal automat-
ically with such a complete extension µ∗|S(µ∗).

If µ is a Borel measure on X , then

N (X,µ) = {A ⊆ X : µ∗(A) = 0} (4.18)

denotes the set of all subsets of µ∗-measure zero. We shall write simply N (µ) or
N (X) when the space or the measure is understood, respectively. If X is a topo-
logical space with countable base, then wAC implies that N (X,µ) is a σ-ideal.
Moreover, by Theorem 4.8 we obtain

N (X,µ) ⊆ S(µ∗).

We shall need a finer version of regularity or of being Radon for Borel mea-
sures.
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Theorem [wAC] 4.9. Assume that µ is a Borel measure on a separable metric space
〈X,O〉.

a) If A ⊆ X, then there exists a Gδ set G ⊇ A such that for any Borel B ⊇ A
we have µ(G \B) = 0.

b) If A ⊆ X, then there exists an Fσ set F ⊆ A such that for any Borel B ⊆ A
we have µ(B \ F ) = 0.

c) If A ∈ S(µ∗), then there are an Fσ set F ⊆ A and a Gδ set G ⊇ A such that
µ(A \ F ) = µ(G \A) = 0.

d) If X is Polish or σ-compact, then for every set A ∈ S(µ∗) there exist compact
sets 〈Kn ⊆ A : n ∈ ω〉 such that µ(A \

⋃
nKn) = 0.

Proof. Let A ⊆ X . Since µ is moderated, X =
⋃
nXn, where the sets Xn are

Borel pairwise disjoint and of finite measure. We show that for a given ε > 0 we
shall find an open set U ⊇ A such that for any Borel B ⊇ A we have µ(U \B) < ε.
Actually, since µ(A ∩Xn) <∞, there exist open sets Un such that A ∩Xn ⊆ Un
and µ(Un \ B) < ε · 2−n−1 for every Borel B ⊇ A and every n ∈ ω. The set
U =

⋃
n Un is the desired.

a) For each n take an open set Gn such that µ(Gn \B) < 2−n for any Borel
B ⊇ A and set G =

⋂
nGn. Then for any Borel B ⊇ A we have µ(G \B) = 0.

Assertion b) follows from a).
c) If A ∈ S(µ∗), then by Theorem 4.8, c), there are Fσ sets Fn ⊆ A∩Xn such

that µ(Fn) = µ(A∩Xn). Then the Fσ set F =
⋃
n Fn ⊆ A is such that µ(A\F ) = 0.

If E is an Fσ set such that µ((X \A) \E) = 0, then µ((X \E) \A) = 0 and X \E
is a Gδ set.

To show d), we use the fact that µ is Radon (see Theorem 4.7 and Lemma 4.4).
�

Sometimes we need to show that two measures are identical. We shall use
the fact that a regular Borel measure is uniquely determined by values on basic
open sets. More precisely

Theorem 4.10. Let B be a countable base of the topology on X closed under finite
intersections. If µi, i = 1, 2 are outer regular Borel measures on X such that
µ1(A) = µ2(A) for every A ∈ B, then µ1(A) = µ2(A) for every A ∈ Borel(X).

Proof. We can assume that both measures are finite. One can easily prove by
induction that µ1(A1 ∪ · · · ∪ An) = µ2(A1 ∪ · · · ∪ An) for any A1, . . . , An ∈ B.
Actually the inductive step follows from the equality

µi(A1 ∪ · · · ∪An) + µi(An+1) = µi((A1 ∪ · · · ∪An) ∪An+1)
+ µi((A1 ∩An+1) ∪ · · · ∪ (An ∩An+1)).

If A =
⋃∞
n=0An, An ∈ B, then µi(A) = limn→∞ µi(A0 ∪ · · · ∪An) for i = 1, 2 and

hence µ1(A) = µ2(A). Now the statement follows by outer regularity. �
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The next result shows that a measure on a subset can be extended to the
whole space and a measure can be restricted to a subset.
Theorem [wAC] 4.11. Assume that A ⊆ X is a subset of a separable metric
space X.

a) If µ is a Borel measure on X and µ∗(A) > 0, then µ∗|Borel(A) is a Borel
measure on 〈A,O|A〉 such that ν(E) = µ∗(E) for any E ∈ Borel(A). More-
over, ν is diffused if and only if µ({x}) = 0 for any x ∈ A.

b) If ν is a finite Borel measure on A, then there exists a Borel measure µ on
X such that ν(E) = µ∗(E) for any E ∈ Borel(A). Moreover, µ is diffused
if and only if ν is diffused.

Proof. Note that by (3.14) we have Borel(A) = {A ∩ E : E ∈ Borel(X)}. For
simplicity let us write ν∗(E) = µ∗(E) for any E ⊆ A. Evidently ν∗ is an outer
measure on A. We show that every E ∈ Borel(A) is ν∗-measurable.

So assume that E = A∩G, G ∈ Borel(X) and B ⊆ A. Since B \E = B \G,
B ∩ E = B ∩G and G is µ∗-measurable, we obtain

ν∗(B) = µ∗(B) = µ∗(B ∩G) + µ∗(B \G) = ν∗(B ∩ E) + ν∗(B \ E).

Assume now that ν is a finite Borel measure on A. We define a measure
µ on X setting µ(B) = ν(A ∩ B) for any Borel set B ⊆ X . Evidently µ is
locally finite and therefore Borel. Since X is perfectly normal, µ is regular. Let
E ∈ Borel(A). Then E = A ∩ B, where B ∈ Borel(X). Since the measure µ
is regular, there is a non-increasing sequence of open sets 〈Gn ⊇ B : n ∈ ω〉 such
that µ(B) = limn→∞ µ(Gn) = µ(

⋂
nGn). Since

µ∗(E) = inf{µ(G) : E ⊆ G ∧G is open} ≤ µ

(
⋂

n

Gn

)

= µ(B) = ν(E)

and µ(B) ≤ µ(C) for any C ∈ Borel(X), E ⊆ C, we are ready. �

We close the section with an important result about diffused Borel measures
on a Polish space. We begin with an auxiliary result interesting on its own.
Lemma [wAC] 4.12. If X is a separable metric space, µ is a diffused Borel measure
on X with supp(µ) = X, U ⊆ X is non-empty open, then there exists a nowhere
dense closed set F ⊆ U such that µ(U)/2 < µ(F ) < µ(U).

Proof. Let {rn : n ∈ ω} be a countable dense subset of U . Since we suppose that
supp(µ) = X , we have µ(U) > 0. Because µ is diffused, we obtain µ({rn}) = 0
and by outer regularity, there are open sets 〈Un ⊆ U : n ∈ ω〉 such that rn ∈ Un
and 0 < µ(Un) < 2−n−2µ(U) for any n ∈ ω. Then there exists a non-decreasing
sequence 〈Fn : n ∈ ω〉 of closed sets such that

⋃
n Fn = U \

⋃
n∈ω Un. By the choice

of sets Un we obtain µ(U)/2 < µ(U \
⋃
n Un) < µ(U). Thus there exists an m such

that µ(Fm) > µ(U)/2. Then F = Fm is as required. �
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Theorem [wAC] 4.13. If X is a separable metric space, µ is a diffused Borel mea-
sure on X, then there exists a meager Fσ set F ⊆ X such that µ(X \ F ) = 0.

Proof. Let C = supp(µ). We can assume that µ(C) < ∞. Using the lemma one
can easily construct by induction a sequence of mutually disjoint nowhere dense
closed sets 〈Fn ⊆ C : n ∈ ω〉 such that µ(F0) > µ(C)/2, Fn+1 ⊆ C \

⋃n
i=0 Fi,

µ(C \
⋃n
i=0 Fi)/2 < µ(Fn+1) < µ(C \

⋃n
i=0 Fi). Then F =

⋃
n Fn is meager and

µ(X \ F ) = µ(C \ F ) = µ

(
⋂

n

(X \ Fn)

)

= 0. �

Exercises

4.1 [AC] Completion of a Measure

Let S be a σ-algebra of subsets of X, I ⊆ S being a σ-ideal of S . We write

I∗ = {A ⊆ X : (∃B) (B ∈ I ∧A ⊆ B)}, S∗ = {(A \ B) ∪ C : A ∈ S ∧B,C ∈ I∗}.

a) I∗ is a σ-ideal of P(X).

b) S∗ is the smallest σ-algebra containing S ∪ I.

c) I∗ is a σ-ideal of S∗.

d) If 〈X,S , µ〉 is a measure space and I = {A ⊆ X : µ∗(A) = 0}, then 〈X,S∗, ν〉
is a complete measure space, where ν((A \ B) ∪ C) = µ(A) for any A ∈ S ,
B,C ∈ I.

4.2 Range of a Measure

Let 〈X,S , µ〉 be a measure space. A set A ∈ S is called an atom of the measure µ if
µ(A) > 0 and µ(B) = 0 or µ(B) = µ(A) for any B ⊆ A, B ∈ S . The measure µ is
atomless if there is no atom of the measure µ.

a) If µ is atomless, A,B ∈ S , B ⊆ A, µ(B) < µ(A), then there exists a set C ∈ S
such that B ⊆ C ⊆ A and µ(B) < µ(C) < µ(A).

Hint: Consider the subsets of A \ B.

b) If µ is atomless, A,B ∈ S , B ⊆ A, µ(B) < µ(A), then there exists a set C ∈ S
such that B ⊆ C ⊆ A and µ(B) < µ(C) < µ(B) + 1/2(µ(A) − µ(B)).

c) Assume wAC and |S| � c. If µ is atomless, then rng(µ) = [0, µ(X)]. Hence
c � |S|.

4.3 [AC] Non-Regular Measure

The notion of a Bernstein set and its existence is investigated in Section 7.2.

a) If S ⊆ P(X) is a σ-algebra, A ⊆ X, then

S [A] = {B ∩A : B ∈ S} ∪ {B \ A : B ∈ S}

is a σ-algebra, S ⊆ S [A], A ∈ S [A].

b) Show that S [A] is the smallest σ-algebra extending S and containing A.

c) Let 〈X,S , µ〉 be a probabilistic measure space, A /∈ S . If neither A nor X \A is
contained in a set B ∈ S of measure less than 1/2, then there exists a measure
ν defined on S [A], extending µ and such that ν(A) = 1/2.
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d) Let µ be a diffused probabilistic Borel measure on a perfect Polish space X.
Let A ⊆ X be a Bernstein set. Then there exists a measure ν defined on
Borel(X)[A] extending the measure µ and such that ν(A) = 1/2.

e) The measure ν of part c) is not regular.

Hint: Neither A nor X \A is inner or outer regular.

4.4 Weighted Counting Measure

Let xn ∈ X, an ≥ 0 being reals, n ∈ ω. For any A ⊆ X we set µ(A) =
∑∞

n=0 χA(xn) ·an.

a) 〈X,P(X), µ〉 is a non-diffused measure space.

b) If
∑∞

n=0 an = 1, then µ is a probabilistic measure.

c) If X is a Hausdorff topological space, then every subset of X is Radon.

d) If X is a non-empty set we define for any A ⊆ X,

ν(A) =

{
|A| if A is finite,

+∞ otherwise.

ν is a non-diffused measure defined on P(X).

4.5 Inner Measure

A function µ∗ : P(X) −→ [0,∞] is called an inner measure if conditions (4.6), (4.7) and
the condition

µ∗(
⋃

n

An) ≥
∞∑

n=0

µ∗(An) for any pairwise disjoint 〈An ⊆ X : n ∈ ω〉 (4.19)

are satisfied.

a) Let 〈X,S , µ〉 be a measure space. For any A ⊆ X we define

µ∗(A) = sup{µ(C) : C ⊆ A ∧ C ∈ S}.

Show that µ∗ is an inner measure, provided that an adequate version of the
axiom of choice holds true.

b) Assume wAC and |S| � c. For every subset A ⊆ X there exist sets B,C ∈ S
such that B ⊆ A ⊆ C, µ∗(A) = µ(C) and µ∗(A) = µ(B).

c) Assume wAC and |S| � c. If a measure µ is complete, then a set A belongs to
S if and only if µ∗(A) = µ∗(A).

d) Assume wAC. If µ is a regular Borel measure on a separable metric space, then

µ∗(A) = sup{µ(B) : B ⊆ A ∧B closed},
µ∗(A) = µ(F ) for some Fσ set F ⊆ A.

4.6 [wAC] Measure and Topology

Let 〈X,O〉 be a locally compact topological space with countable base, µ being a diffused
finite Borel measure on X.

a) Prove that if U is an open non-empty set of positive measure, then there exists
a closed set B ⊆ U such that µ(B) > 0 and Int(B) = ∅.
Hint: Note that a space with countable base is separable and follow the proof of
Theorem 4.13.
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b) Find a closed set A ⊆ X such that µ(A) = µ(X) and for any non-empty open
set U , µ(U) > 0 if and only if U ∩ A 	= ∅.
Hint: Take A = X \

⋃
{U : U basic open and µ(U) = 0}.

c) Show that in b) we can replace “finite” by “moderated”.

4.7 Signed Measure

Let S be a σ-algebra of subsets of a set X. A function µ : S −→ R is a signed measure if
µ(∅) = 0 and µ is σ-additive, i.e., (4.2) holds true.

a) If µ1 and µ2 are finite measures, α, β ∈ R, then α ·µ1 +β ·µ2 is a signed measure.

b) Let xn ∈ X, an ∈ R for n ∈ ω and
∑∞

n=0 |an| <∞. Then µ(A) =
∑∞

n=0 χA(xn) ·
an is a signed measure defined on P(X).

c) Any family of pairwise disjoint sets with non-zero signed measure is countable.

4.8 [AC] Hahn Decomposition

Let µ be a signed measure. A set A ∈ S is called positive if µ(A) > 0 and µ(B) ≥ 0 for
any B ⊆ A, B ∈ S . Similarly we define a negative set.

a) A subset B of a positive (negative) set with µ(B) 	= 0 is a positive (negative)
set.

b) If A ∈ S is not negative, µ(A) < 0, then there exists a negative set B ⊆ A,
B ∈ S .

Hint: Let k0 be the least natural number such that there exists a set E0 ⊆ E such
that µ(E0) ≥ 1/k0. By induction, if E \

⋃n
i=0Ei is negative, we are ready. If

not, let kn+1 be the least integer such that there exists a set En+1 ⊆ E \
⋃n

i=0Ei

with µ(En+1) ≥ 1/kn+1. If the construction does not stop, then E \
⋃

nEn is a
negative set.

c) There exists a positive set A such that for any positive set B we have µ(B\A)=0.

Hint: Consider the family F of pairwise disjoint positive sets. By Zorn’s Lemma,
Theorem 1.10, c) there exists a maximal element A ∈ F. By Exercise 4.7, A is
countable. Set A =

⋃
A.

d) There exists a Hahn decomposition: X = A ∪ B, A ∩ B = ∅, A is positive or
µ(A) = 0 and B is a negative set or µ(B) = 0.

Hint: If A is the set from c), then X \A is a negative set.

e) Every signed measure µ is of the form µ+−µ−, where µ+, µ− are finite measures.

Hint: Set µ+(E) = µ(A ∩E) and µ−(E) = −µ(B ∩E).

f) |µ| = µ+ + µ− is a measure called total variation of µ. For any set A ∈ S we
have |µ(A)| ≤ |µ|(A).

g) Show that everything stated in a)–f) holds true if we allow a signed measure to
admit either value +∞ or −∞ (not both!).

h) Find the Hahn decomposition of the signed measure constructed in Exercise
4.7, b).

i) Find µ+ and µ− for the measure of Exercise 4.7, b).
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4.2 Lebesgue Measure

We construct an outer measure λ∗k on Rk such that the corresponding measure of
an interval will be what we should call the volume of that interval.

For an open interval

I = (a1, b1)× · · · × (ak, bk), ai < bi for i = 1, . . . , k,

we set
Volk(I) = (b1 − a1) · · · (bk − ak).

The closure of the interval I is I = [a1, b1] × · · · × [ak, bk], the boundary of I is
the set Bd(I) = I \ I and the half-open interval �I is (a1, b1]× · · · × (ak, bk]. We set
Volk(I) = Volk(�I) = Volk(I).

If ai = ai,0 < ai,1 < · · · < ai,mi = bi, i = 1, . . . , k, then the set of half-open
intervals

{(a1,j1 , a1,j1+1]× · · · × (ak,jk , ak,jk+1] : ji < mi ∧ i = 1, . . . , k}

is called a full partition of the half-open interval �I. If {Ji : i ≤ m} is a full partition
of a half-open interval J , then

Volk(J) =
∑

i≤m
Volk(Ji). (4.20)

Let us note the following: if I1 and I2 are half-open intervals, then the in-
tersection I1 ∩ I2 (if non-empty) is a half-open interval, the union I1 ∪ I2 and the
difference I1 \ I2 (if non-empty) is a union of pairwise disjoint half-open intervals.

If {Ji : i ≤ m} is a partition of a half-open interval J into disjoint half-open
intervals, then there exists a full partition of J such that the set of those intervals
that are subsets of Ji forms a full partition of Ji for any i ≤ m. As a corollary we
obtain that the equality (4.20) holds true for any partition of a half-open interval
into half-open intervals.

By a similar argument we can show that

Volk(J) ≤
m∑

i=0

Volk(Ji) for any half-open intervals with J ⊆
m⋃

i=0

Ji. (4.21)

Actually, let {I0, . . . , In} be a full partition of a half-open interval J into half-
open intervals determined by all end points of intervals J0, . . . , Jm lying in J . We
can assume that every interval Jj meets the interval J . Then each of intervals
I0, . . . , In is a subset of Jj or is disjoint with Jj . If Di = {j ≤ n : Ij ⊆ Ji}, then
Volk(Ji) ≥

∑
j∈Di

Volk(Ij) and therefore

Volk(J) =
n∑

i=0

Volk(Ii) =
m∑

i=0

∑

j∈Di

Volk(Ij) ≤
m∑

i=0

Volk(Ji).
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Now, for any A ⊆ Rk we let

λ∗k(A) = inf{
∞∑

n=0

Volk(In) : 〈In : n ∈ ω〉 are open intervals ∧A ⊆
⋃

n

In}.

Evidently if we replace open intervals by half-open or closed intervals, we obtain
the same result.

If k = 1 we shall omit the index k and simply write λ∗, Vol and λ.
Let us remark that the set of all sequences {In}∞n=0 of open intervals has

cardinality c. Thus we can use the weak axiom of choice wAC.
Theorem [wAC] 4.14. λ∗k is an outer measure on Rk.

Proof. Conditions (4.6) and (4.7) are trivially satisfied. We show that

λ∗k

(
⋃

n

An

)

≤
∞∑

n=0

λ∗k(An) + ε

for any An ⊆ Rk, n ∈ ω and any ε > 0. Actually, for every n ∈ ω there exists
a sequence of open intervals {In,m}∞m=0 such that

∞∑

m=0

Volk(In,m) < λ∗k(An) + ε/2n+1, An ⊆
⋃

m

In,m.

Hence

λ∗k

(⋃

n

An

)

<

∞∑

n=0

∞∑

m=0

Volk(In,m) <
∞∑

n=0

(λ∗k(An) + ε/2n+1) =
∞∑

n=0

λ∗k(An) + ε. �

One can easily show that for any open interval I we have

λ∗k(Bd(I)) = 0 and λ∗k(I) = λ∗k(�I) = λ∗k(I). (4.22)

The corresponding measure λk is called Lebesgue measure. The σ-algebra
S(λ∗k) will be denoted simply by L(Rk). A set A ⊆ Rk is called Lebesgue measur-
able if A ∈ L(Rk). The family N (Rk, λk) of all subsets of Rk of Lebesgue measure 0
will be simply denoted as Nk. If the space Rk is understood from the context we
simply write L. Similarly for λ, λ∗ and N .

The basic result, which is usually considered as trivial, is the following asser-
tion.

Theorem [wAC] 4.15. If I = (a1, b1) × · · · × (ak, bk) is an open interval, then all
intervals I, I, �I are Lebesgue measurable and

λk(I) = λk(I) = λk(�I) = (b1 − a1) · · · (bk − ak). (4.23)
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Proof. By (4.22) it suffices to prove the statements of the theorem for one of the
intervals I, I, �I. We show it for a closed interval I. We begin by showing that

λ∗k(I) = Volk(I). (4.24)

The inequality λ∗k(I) ≤ Volk(I) follows from the definition. If λ∗k(I)<Volk(I),
then there exist open intervals 〈In : n ∈ ω〉 such that

∑
n Volk(In) < Volk(I) and

I ⊆
⋃
n In. Since I is a compact set, there exists a natural number m such that

I ⊆
⋃m
n=0 In. Then �I ⊆

⋃m
n=0

�In and by (4.21) we obtain

Volk(I) = Volk(�I) ≤
m∑

n=0

Volk(�In) =
m∑

n=0

Volk(In) < Volk(I),

which is a contradiction.
We have to show that the closed interval I is λ∗k-measurable, i.e., I satisfies

condition (4.9) for any set B. Now, suppose, to get a contradiction, that I is not
λ∗k-measurable. Then there exists a set B ⊆ Rk such that

λ∗k(B) < λ∗k(B ∩ I) + λ∗k(B \ I).

By definition of λ∗k there exists a sequence {In}∞n=0 of open intervals such that

B ⊆
⋃

n

In,

∞∑

n=0

Volk(In) < λ∗k(B ∩ I) + λ∗(B \ I). (4.25)

For every n the intersection �In ∩ �I is a half-open interval and the difference �In \ �I
is a finite union

⋃mn

i=0 Jn,i of half-open intervals. Thus by (4.20) we have

Volk(�In ∩ �I) + Volk

(
mn⋃

i=0

Jn,i

)

= Volk(In).

Since

B ∩ �I ⊆
⋃

n

(�In ∩ �I), B \ �I ⊆
⋃

n

mn⋃

i=0

Jn,i,

we obtain

λ∗k(B ∩ �I) + λ∗(B \ �I) ≤
∑

n

Volk(�In ∩ �I) +
∑

n

mn∑

i=0

Volk(Jn,i) =
∑

n

Volk(In),

which is a contradiction. �

We can summarize the obtained results concerning the Lebesgue measure as
Theorem [wAC] 4.16. Lebesgue measure is a complete moderated shift invariant
Radon measure.
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Proof. By Theorem 4.15 every open interval is Lebesgue measurable. By the def-
inition of Borel sets we obtain Borel ⊆ L. The outer regularity follows directly
from the definition of the outer measure λ∗k. Since the measure of a closed interval
is finite, Lebesgue measure is moderated. The shift invariance is immediate. The
theorem follows by Lemma 4.4 and Theorem 4.8. �

We shall need the following
Theorem 4.17. If A ⊆ Rk, λ∗k(A) > 0 and 1 > ε > 0, then there exists an open
interval I ⊆ Rk such that λk(I) < ε and λ∗k(A ∩ I) ≥ (1− ε)λk(I).

Proof. Let 〈In : n ∈ ω〉 be open intervals such that
∑

n λ(In) ≤ λ∗(A)/(1− ε) and
A ⊆
⋃
n In. We can assume that λ(In) < ε for each n. Since

(1 − ε)
∑

n

λ(In) ≤ λ∗(A) ≤
∑

n

λ∗(In ∩A),

at least for one n we have (1−ε)λ(In) ≤ λ∗(In∩A). Take I = In for such an n. �

The circle T is usually endowed with the Lebesgue measure λ restricted to
subsets of T. By (2.32) we have λ(C) = 0 and therefore we define another measure
on C. In Section 3.1 we have constructed a continuous surjection w1 : C

onto−→ [0, 1]
by (3.7). We denote by λC the Borel measure on C defined by

λC(A) = λ(w1(A)) for any A ∈ Borel(C). (4.26)

One can easily check that the definition is correct and λC is a Borel measure on
the Cantor middle-third set C. Using the natural homeomorphism f : C −→ ω2
constructed in the proof of Theorem 3.1 we can consider λC as a Borel measure
on ω2. One can easily see that λC([s]) = 2−n for any s ∈ n2 and for any A ⊆ ω2
we have

λ∗
C

(A) = inf

{
∑

s∈T
2−length(s) : T ⊆ <ω2 ∧A ⊆

⋃

s∈T
[s]

}

,

where length(s) = n if s ∈ n2.

Exercises

4.9 [wAC] Lebesgue Density Theorem

Let X be a locally compact metric space, µ being a Borel measure on X. Assume that
A,B ⊆ X are measurable. If x ∈ X, then

dens∗(x,A) = lim inf
r→0

µ(A ∩ Ball(x, r))

µ(Ball(x, r))
, dens∗(x,A) = lim sup

r→0

µ(A ∩ Ball(x, r))

µ(Ball(x, r))

is called the lower density of A at x and the upper density of A at x, respectively.

a) dens∗(x,A) + dens∗(x,X \A) = 1 for any A ⊆ X.

b) If µ(A \ B) = µ(B \A) = 0, then dens∗(x,A) = dens∗(x,B) for any x ∈ X.
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c) If A ⊆ B, then dens∗(x,A) ≤ dens∗(x,B).

d) dens∗(x,A) = dens∗(x,B) = 1 if and only if dens∗(x,A ∩B) = 1.

Hint: Show that

µ(Ball(x, r) ∩A)

µ(Ball(x, r))
+
µ(Ball(x, r) ∩B)

µ(Ball(x, r))
≤ µ(Ball(x, r) ∩A ∩B)

µ(Ball(x, r))
+ 1

for any r > 0.

e) If A ⊆ Rk is a Lebesgue measurable set, then for any positive ε < 1 we have
λk(Aε) = 0, where Aε = {x ∈ A : dens∗(x,A) < ε}.
Hint: Assume λ∗(Aε) > 0. Let A ⊆ U , U open and λ(U) < λ∗(Aε)/(1 − ε).
Write

A = {I ⊆ U : I closed interval ∧ λ(A ∩ I) ≤ (1− ε)Volk(I)}.

Note that for any sequence 〈In : n ∈ ω〉 of pairwise disjoint intervals from A we
have λ∗(Aε \

⋃
n In) > 0. Construct a sequence 〈In : n ∈ ω〉 of pairwise disjoint

intervals from A such that

Volk(In+1) > sup{Volk(I) : I ∈ A ∧ (∀i ≤ n) I ∩ Ii = ∅}.

The set B = Aε \
⋃

n In has positive outer measure. Take n0 sufficiently large
such that

∑∞
n=n0

Volk(In) < λ∗
k(B) · 3k. Let Jn be an interval with the same

center as that of In but three times larger sides. Still λ∗
k(Aε \

⋃∞
n=n0

Jn) > 0.
Take an x ∈ Aε \

⋃∞
n=n0

Jn, an interval x ∈ I ∈ A and find a contradiction.

f) Prove the Lebesgue Density Theorem: The set

Φ(A) = {x ∈ Rk : dens∗(x,A) = 1}

is measurable and λk((A \ Φ(A)) ∪ (Φ(A) \ A)) = 0.

Hint: Since Φ(A)\A ⊆ (Rk\A)\Φ(Rk\A), it suffices to show that λk(A\Φ(A)) =
0. Note that Φ(A) \A =

⋃
n{x ∈ X : dens∗(x,A) < n

n+1
}.

4.10 [wAC] Metric Outer Measure

Let X be a metric separable space, µ∗ being an outer measure on X. µ∗ is called a metric
outer measure on X if for any subsets A,B ⊆ X with ρ(A,B) > 0 we have

µ∗(A ∪B) = µ∗(A) + µ∗(B).

a) If µ is a Borel measure, then µ∗ is a metric outer measure.

b) Let A ∩ F = ∅, F being closed. Write

An =

{

x ∈ A : ρ(x,F ) ≥ 1

n+ 1

}

, Cn = An+1 \ An.

Then ρ(F,An) > 0 and

A = A2n ∪
( ∞⋃

k=n

C2k

)

∪
( ∞⋃

k=n

C2k+1

)

.
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c) If both series
∞∑

k=0

µ∗(C2k),

∞∑

k=0

µ∗(C2k+1) (4.27)

converge, then µ∗(A) = limn→∞ µ∗(An).

d) If one of the series (4.27) diverges, then

µ∗(A) = lim
n→∞

µ∗(An) =∞.

e) If µ∗ is a metric outer measure on X, then every closed set F is µ∗-measurable.

Hint: Let B ⊆ X. Take A = B \ F and use the inequalities

µ∗(B) ≥ µ∗((B ∩ F ) ∪An), ρ(B ∩ F,An) ≥ ρ(F,An) > 0.

f) If µ∗ is a metric outer measure on X, then every Borel set is µ∗-measurable.

4.11 Lebesgue-Stieltjes Measure

If f : R → R is non-decreasing, for a set A ⊆ R we define

λ∗
f (A) = inf

{ ∞∑

i=0

(f(yi)− f(xi)) : A ⊆
∞⋃

i=0

(xi, yi]

}

.

a) Show that λ∗
f is an outer measure on R.

b) Show that Borel(R) ⊆ S(λ∗
f).

c) Let f(x) = x for x < 0, f(x) = x + 1 for x ≥ 0, g(x) = x for x ≤ 0, and
g(x) = x + 1 for x > 0. What is the difference between outer measures λ∗

f and
λ∗

g?

d) λ∗
f is a metric outer measure.

e) Every Borel set is λ∗
f -measurable.

f) If f : R → R is of bounded variation on R (see Exercise 2.14), then f = g − h
with g, h non-decreasing. We define

λf (A) = λg(A)− λh(A)

for any A ∈ Borel(R). λf is a signed measure on Borel(R). Show that (see
Exercise 4.8, e)) λ+

f = λg, λ
−
f = λh and |λf | = λg + λh.

g) λf is diffused if and only if f is continuous.

h) Let f : R → R be a non-decreasing function. We set H(x) = limh→0+ f(x + h)
and G(x) = limh→0− f(x + h) for x ∈ R. Show that λf − λG and λH − λf are
weighted counting measures (see Exercise 4.4).

4.12 Hausdorff Measure

In this exercise we allow that a measure is equal identically to zero.

Let 〈X, ρ〉 be a metric space, s > 0 a real. We construct a function Hs defined
on Borel(X) called Hausdorff measure. We show that this measure is interesting for at
most one value of s. This value is called the Hausdorff dimension of X. We show that the
value of the Hausdorff dimension may be an irrational real.
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a) For any ε > 0, A ⊆ X we write

Hs∗
ε (A)=inf

{ ∞∑

n=0

(diam(Un))s :A⊆
⋃

n

Un∧(∀n)(Un open ∧diam(Un)<ε)

}

.

Show that Hs∗
ε1(A) ≥ Hs∗

ε2(A) for any ε1 < ε2.

b) Let Hs∗(A) = limε→0+ Hs∗
ε . Show that Hs∗ is an outer measure on X.

c) Hs∗ is a metric outer measure. Thus, the σ-algebra of all Hs∗-measurable sets
contains all Borel sets. The corresponding measure will be denoted by Hs.

d) If s1 < s2 and Hs1 (A) <∞, then Hs2(A) = 0.

e) There exists a non-negative real r such that

Hs(X) =

{
0 for every s > r,
+∞ for every s < r .

f) Let X = [0, 1]k be endowed with Euclidean distance. Show that there exist
positive reals ck such that Hk∗(A) = ck · λ∗

k(A) for any A ⊆ X.

g) The real r of e) is called the Hausdorff dimension of X. Show that the Hausdorff
dimension of Rk is k.

h) If s = log 2/log 3, then 0 < Hs(C) < ∞. Thus the Hausdorff dimension of the
Cantor middle-third set is log 2/log 3.

i) From equilateral closed triangle S0 ⊆ R2 of side 1 with vertexes [0, 0], [1, 0],
[1/2,

√
3/2] we remove the open triangle with vertexes [1/2, 0], [1/4,

√
3/4],

[3/4,
√

3/4]. We obtain a set S1 that is a union of three equilateral closed tri-
angles of side 1/2. From each of the triangles remove the central triangle in a
similar way and we will obtain the set S2. Continue by induction in constructing
Sn for each n. The intersection S =

⋂
n Sn is called the Sierpiński gasket. Show

that the Hausdorff dimension of the Sierpiński gasket is log 3/log 2.

4.3 Elementary Integration

Let 〈X,S, µ〉 be a measure space with a σ-finite measure. An S-measurable func-
tion f : X −→ R∗ will be simply called measurable. If f = f+ − f− is the
decomposition in non-negative and non-positive parts, then f is measurable if and
only if both f+ and f− are measurable. We define an integral of some measurable
functions in three steps: for a simple measurable function2, then for a non-negative
measurable function and finally we extend our definition to measurable functions
using the above-mentioned decomposition.

Let h =
∑n

i=0 aiχAi , ai > 0, Ai ∈ S, i = 0, . . . , n be a simple measurable
function. For any E ∈ S we define

∫

E

h(x) dµ(x) =
n∑

i=0

ai · µ(E ∩Ai).

2Note that a simple function is non-negative by definition.
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Usually we shall simply write
∫
E h dµ. One can easily see that the value

∫
E f dµ

does not depend on the particular representation of a simple function as a linear
combination of characteristic functions of measurable sets: any such representation
may be reduced to the unique representation with pairwise disjoint sets Ai.

By simple computation we obtain
∫

E

(f + g) dµ =
∫

E

f dµ+
∫

E

g dµ,

∫

E

(a · f) dµ = a ·
∫

E

f dµ (4.28)

for any simple measurable functions f, g and a non-negative real a.
Lemma 4.18. Let h be a simple measurable function. Then the function ν defined
as ν(E) =

∫
E
h(x) dµ(x) for E ∈ S is a measure on S.

The proof is immediate. Let E =
⋃
k Ek, 〈Ek : k ∈ ω〉 being pairwise disjoint

measurable sets. Then

ν(E) =
n∑

i=0

ai · µ(E ∩Ai) =
n∑

i=0

ai ·
∞∑

k=0

µ(Ek ∩Ai)

=
∞∑

k=0

n∑

i=0

ai · µ(Ek ∩Ai) =
∞∑

k=0

ν(Ek). �

By Lemma 3.74 for any non-negative measurable function f : X −→ R∗ there
are simple measurable functions 〈fn : n ∈ ω〉 such that fn ↗ f . Thus

f = sup{h : h ≤ f ∧ h measurable and simple}. (4.29)

We define the integral
∫
E
f dµ =

∫
E
f(x) dµ(x) of a measurable non-negative

function f over a measurable set E ∈ S as
∫

E

f dµ = sup{
∫

E

h dµ : h ≤ f ∧ h measurable and simple}.

From the definition we immediately obtain that for any measurable non-
negative functions f, g, we have

∫
E f dµ ≤

∫
E g dµ provided that f(x) ≤ g(x) for

any x ∈ E.
Lemma 4.19. If 〈fn : n ∈ ω〉 are measurable functions with non-negative values,
fn ↗ f on X, then ∫

E

f dµ = lim
n→∞

∫

E

fn dµ

for any measurable set E ∈ S.

Proof. By Theorem 3.68 function f is measurable. By Lemma 4.18 we can assume
that µ(E) <∞.

First let us assume that f(x) = ∞ for no x ∈ E.
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Since
∫
E fn dµ ≤

∫
E fn+1 dµ, there exists a limit a = limn→∞

∫
E fn dµ ≥ 0.

As fn ≤ f , we have
∫
E
fn dµ ≤

∫
E
f dµ and therefore a ≤

∫
E
f dµ.

Assume that a <
∫
E
f dµ. Then there exists a simple measurable function h

such that h ≤ f and a <
∫
E h dµ ≤

∫
E f dµ. For any given positive real b < 1 we

set
En = {x ∈ E : b · h(x) ≤ fn(x)}.

Evidently E0 ⊆ E1 ⊆ · · · ⊆ En ⊆ · · · and
⋃
nEn = E. Hence

∫

E

fn dµ ≥
∫

En

fn dµ ≥ b ·
∫

En

h dµ.

Since ν(C) =
∫
C h dµ is a measure, we obtain that limn→∞

∫
En
h dµ =

∫
E h dµ

and therefore
a = lim

n→∞

∫

E

fn dµ ≥ b ·
∫

E

h dµ.

Since b < 1 was arbitrary, we obtain

a = lim
n→∞

∫

E

fn dµ ≥
∫

E

h dµ,

which is a contradiction.
Now, let A = {x ∈ E : f(x) = ∞}. If µ(A) = 0, then

∫
E f dµ =

∫
E\A f dµ

and
∫
E fn dµ =

∫
E\A fn dµ for all n and hence we are done. So assume µ(A) > 0.

Then
∫
E
f dµ = ∞. Note that µ(A) ≤ µ(E) <∞. For n,m ∈ ω let

An,m = {x ∈ A : fm(x) > n}.

Since
⋃
k

⋃
m≥k An,m = A for every n, there exists a sequence 〈mn : n ∈ ω〉 such

that µ(An,mn) > µ(A)/2. Then
∫
E
fmn dµ > n · µ(A)/2 for every n and therefore

limn→∞
∫
E fn dµ = ∞. �

Lemma 4.20. Let f, g be non-negative measurable functions, a, b non-negative reals.
Then for any measurable set E ∈ S we have

∫

E

(a · f + b · g) dµ = a ·
∫

E

f dµ+ b ·
∫

E

g dµ.

Proof. Since f , g are measurable, by Lemma 3.74 there exist sequences of non-
negative simple functions 〈fn : n ∈ ω〉 and 〈gn : n ∈ ω〉 such that fn ↗ f , gn ↗ g.
By Lemma 4.19 we obtain limn→∞

∫
E fn dµ =

∫
E f dµ, limn→∞

∫
E gn dµ =

∫
E g dµ

and limn→∞
∫
E

(a · fn + b · gn) dµ =
∫
E

(a · f + b · g) dµ. By (4.28) we have
∫

E

(a · fn + b · gn) dµ = a ·
∫

E

fn dµ+ b ·
∫

E

gn dµ

and the assertion follows. �
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A measurable function f is integrable if
∫
X |f | dµ < +∞. Thus a measurable

function f is integrable if and only if
∫
X
f+ dµ < +∞ and

∫
X
f− dµ < +∞. Note

that then also
∫
E f

+ dµ < +∞ and
∫
E f

− dµ < +∞ for any measurable set E.
Hence we can define the integral

∫

E

f dµ =
∫

E

f+ dµ−
∫

E

f− dµ

for any E ∈ S.
Note that if f is integrable, then the set {x ∈ X : f(x) = +∞∨ f(x) = −∞}

has measure zero.
It is convenient to define an integral for some non-integrable functions. If∫

E f
+ dµ < +∞ or

∫
E f

− dµ < +∞, we set
∫
E f dµ =

∫
E f

+ dµ −
∫
E f

− dµ.
Thus, we allow that

∫
E f dµ is +∞ or −∞. We cannot define the value

∫
E f dµ if

both integrals
∫
E
f+ dµ and

∫
E
f− dµ are infinite. Note the following: if f, g are

measurable, f ≤ g and f is integrable, then
∫
X g

− dµ < ∞, thus we can define∫
E
g dµ.

We prove some elementary properties of the integral.
Theorem 4.21. Let f, g be integrable functions, a, b being reals. Then for any mea-
surable set E we have

a)
∫
E(a · f + b · g) dµ = a ·

∫
E f dµ+ b ·

∫
E g dµ;

b)
∫
E f dµ ≤

∫
E g dµ provided that f(x) ≤ g(x) for any x ∈ E;

c)
∣
∣
∫
E
f dµ
∣
∣ ≤
∫
E
|f | dµ.

Proof. Since
c · g = (c+ · g+ + c− · g−)− (c+ · g− + c− · g+)

for any real c and any function g, statement a) follows by Lemma 4.20.
If f ≤ g, then f+ ≤ g+ and f− ≥ g−. The statement b) follows by Lemma

4.20. Since f ≤ |f | and −f ≤ |f |, c) follows by b). �

Theorem 4.22 (Lebesgue Monotone Convergence Theorem). Assume that
〈fn : n ∈ ω〉 are measurable functions, fn ↗ f and f0 is integrable. Then

∫

X

f dµ = lim
n→∞

∫

X

fn dµ.

Proof. We can assume that all values of f0 are finite. Let gn = fn − f0. Then the
functions gn are measurable, non-negative and gn ↗ (f − f0). Thus by Lemma
4.19, ∫

X

(f − f0) dµ = lim
n→∞

∫

X

(fn − f0) dµ.

Since f0 is integrable, we have
∫
X

(f − f0) dµ =
∫
X
f dµ −

∫
X
f0 dµ and∫

X
(fn − f0) dµ =

∫
X
fn dµ−

∫
X
f0 dµ. The theorem follows. �
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Corollary 4.23. Assume that 〈fn : n ∈ ω〉 are non-negative measurable functions.
Let f =

∑∞
n=0 fn. Then

∫

E

f dµ =
∞∑

n=0

∫

E

fn dµ.

Corollary 4.24 (Fatou Lemma). If 〈fn : n ∈ ω〉 are non-negative measurable func-
tions, then ∫

X

(lim inf
n→∞ fn) dµ ≤ lim inf

n→∞

∫

X

fn dµ.

Proof. Let gn(x) = inf{fk(x) : k ≥ n}. Then

gn ≤ fn and gn ≤ gn+1.

Since

gn(x) < a ≡ (∃k ≥ n) fk(x) < a,

gn(x) > a ≡ (∃m > 0)(∀k ≥ n) fk(x) ≥ a+ 1/m,

the functions gn are measurable. One can easily check that gn ↗ lim infk→∞ fk
and therefore by Theorem 4.22 we obtain lim

∫
X gn dµ =

∫
X(lim infn→∞ fn) dµ.

If a < lim
∫
X
gn dµ, then there exists an n0 such that a <

∫
X
gn dµ for every

n ≥ n0 and therefore
∫
X fn dµ > a for every n ≥ n0. Since a < lim

∫
X gn dµ was

arbitrary, we obtain lim
∫
X gn dµ ≤ lim inf

∫
X fn dµ. �

Theorem 4.25 (Lebesgue Dominated Convergence Theorem). Let g, fn be inte-
grable functions such that |fn| ≤ g for any n ∈ ω. If f is such a function that
fn → f on X, then f is integrable and

∫

X

f dµ = lim
n→∞

∫

X

fn dµ.

Proof. We know that f is measurable. As |f | ≤ g, by Lemma 4.20 the function f
is integrable.

Evidently |fn − f | ≤ 2g. Thus 2g − |fn − f | ≥ 0 and we can apply the Fatou
Lemma, Corollary 4.24 to the sequence 〈2g − |fn − f | : n ∈ ω〉 and obtain

∫

X

2g dµ =
∫

X

lim
n→∞(2g − |fn − f |) dµ = lim inf

n→∞

∫

X

(2g − |fn − f |) dµ

= lim inf
n→∞

(∫

X

2g dµ−
∫

X

|fn − f | dµ
)

=
∫

X

2g dµ− lim sup
n→∞

∫

X

|fn − f | dµ.

Since g is integrable, the integral
∫
X 2g dµ is a real and we obtain

lim sup
n→∞

∫

X

|fn − f | dµ = 0.



150 Chapter 4. Measure Theory

By Theorem 4.21, a) and c) we have
∣
∣
∣
∣

∫

X

fn dµ−
∫

X

f dµ

∣
∣
∣
∣ ≤
∫

X

|fn − f | dµ

and we are ready. �

Exercises

4.13 Limit and Integral

Let 〈X,S , µ〉 be a measure space with a complete σ-finite measure.

a) If fn : X −→ [0,+∞] are measurable functions, then

∫

X

∞∑

n=0

fn dµ =
∞∑

n=0

∫

X

fn dµ ≥ 0.

Hint: Use the Lebesgue Monotone Convergence Theorem 4.22.

b) Assume that fn : X −→ R∗ are measurable and
∑∞

n=0

∫
X
|fn| dµ < +∞. Then the

series
∑∞

n=0 fn(x) converges for almost all x, f =
∑∞

n=0 fn is integrable and

∫

X

∞∑

n=0

fn dµ =
∞∑

n=0

∫

X

fn dµ.

Hint: The function h(x) =
∑∞

n=0 |fn(x)| is integrable by a). Show that
∑∞

n=0 f
+
n (x)

and
∑∞

n=0 f
−
n (x) converge for almost all x. Since |

∑k
n=0 fn(x)| ≤ h(x), the state-

ment follows by the Lebesgue Dominated Convergence Theorem 4.25.

c) Show that the assertion of the Lebesgue Monotone Convergence Theorem 4.22 is
false if the condition “f0 is integrable” is omitted.

d) Find a sequence 〈fn : n ∈ ω〉 of non-negative measurable functions such that
∫

X

(lim inf
n→∞

fn) dµ < lim inf
n→∞

∫

X

fn dµ.

e) Prove the Fatou-Lebesgue Theorem: If g is an integrable function, 〈fn : n ∈ ω〉 are
measurable functions, and |fn(x)| ≤ g(x) for all n and almost all x, then

−∞ <

∫

X

lim inf
n→∞

fn dµ ≤ lim inf
n→∞

∫

X

fn dµ

≤ lim sup
n→∞

∫

X

fn dµ ≤
∫

X

lim sup
n→∞

fn dµ < +∞.

4.14 Infinite Series and Integral

Let µ : P(ω) −→ [0,∞] be a measure defined as µ(A) = |A| if A is finite and µ(A) = ∞
otherwise.

a) A function f : ω −→ R is integrable if and only if the series
∑∞

n=0 f(n) converges
absolutely. Then

∫
ω
f dµ =

∑∞
n=0 f(n).

b) Formulate Theorems 4.22 and 4.25 and Corollaries 4.23 and 4.24 in the terminology
of infinite series in the case of the measure space 〈ω,P(ω), µ〉.
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4.15 Signed Measures

Suppose that 〈X,S , µ〉 is a measure space. Let f be an integrable function. We set
ν(E) =

∫
E
f dµ for any E ∈ S . For terminology see Exercises 4.7 and 4.8.

a) ν is a signed measure defined on S .

b) Show that {x ∈ X : f(x) ≥ 0}, {x ∈ X : f(x) < 0} is a Hahn decomposition of X.

c) Show that ν+(E) =
∫

E
f+ dµ, ν−(E) =

∫
E
f− dµ, |ν|(E) =

∫
E
|f | dµ for any E ∈ S .

d) Can we replace the condition of integrability of f by a weaker condition?

4.16 [AC] Absolutely Continuous Measures

Let µ be a non-negative measure, ν a signed measure, both defined on S . We say that ν
is absolutely continuous with respect to µ, write ν � µ, if ν(E) = 0 for each E ∈ S such
that µ(E) = 0.

a) Assume that ν is defined as in Exercise 4.15. Then ν is absolutely continuous with
respect to µ.

b) If ν is absolutely continuous with respect to µ, then also ν+, ν− and |ν| are such.

c) If ν1 and ν2 are absolutely continuous with respect to µ, then also α · ν1 + β · ν2,
α, β ∈ R is such.

d) Find a proof of the Radon-Nikodým Theorem in a standard textbook of measure
theory: If ν is absolutely continuous with respect to µ, then there exists a (unique
up to measure zero set) integrable function f such that ν(E) =

∫
E
f dµ for each

E ∈ S .

4.17 Riesz Theorem

Let X be a compact space. The space C(X) = C∗(X) of real continuous functions is
endowed with the supremum metric

σ(f, g) = sup{|f(x) − g(x)| : x ∈ X}.

A linear operator (see Exercise 3.13) from C(X) into R is called a linear functional. A
linear functional F is positive if F (f) ≥ 0 for any f ≥ 0.

a) A positive linear functional F is continuous.

Hint: Note that σ(f, g) < ε if and only if f − g + ε > 0 and g − f + ε > 0.

b) If µ is a Borel measure on X, then F (f) =
∫

X
f dµ is a positive linear functional.

c) Let F be a positive linear functional. We define

µ(U) = sup{F (f) : f ∈ C(X) ∧ 0 ≤ f ≤ χU}.

Show that µ(V ) = inf{µ(U) : V ⊆ U open} for any open set V .

d) For any E ⊆ X we set

µ∗(E) = inf{µ(U) : E ⊆ U open}.

Show that µ∗ is an outer measure.

e) Show that µ = µ∗|S(µ∗) is a finite measure and Borel(X) ⊆ S(µ∗).
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f) If F is a positive functional and µ is defined as above then

F (f) =

∫

X

f dµ

for any f ∈ C(X).

g) Any continuous linear functional F is of the form F = F+ − F−, where F+, F−

are positive linear functionals.

Hint: Set F+(f) = sup{F (h) : 0 ≤ h ≤ f, h ∈ C(X)} for any f ≥ 0.

h) Prove the Riesz Theorem: For any continuous linear functional F there exists a
signed measure ν of bounded variation such that

F (f) =

∫

X

f dν =

∫

X

f dν+ −
∫

X

f dν−.

i) Extend the Riesz Theorem for the space C0(X) of real continuous functions f on
a locally compact space X such that the support {x ∈ X : f(x) 	= 0} is compact.

4.18 Riemann Integral

Let f be a bounded real function defined on [a, b]. If c, d ∈ [a, b], c < d we define

UB(f ; c, d) = sup{f(x) : x ∈ [c, d]}, LB(f ; c, d) = inf{f(x) : x ∈ [c, d]}.

If A = {a0, . . . , an} ∈ Part(a, b) (see Exercise 2.13), a = a0 < a1 < · · · < an−1 < an = b,
we set

US(f ;A) =
n∑

i=1

UB(f ; ai−1, ai) ·(ai−ai−1), LS(f ;A) =
n∑

i=1

LB(f ; ai−1, ai) ·(ai−ai−1).

The notion of a limit of a net was defined in Exercise 1.17.

The limit of the net 〈Part(a, b),⊇,US(f ;A)〉 is the upper Riemann integral of f
on [a, b]. Similarly, the limit of the net 〈Part(a, b),⊇,LS(f ;A)〉 is the lower Riemann
integral of f on [a, b]. They are denoted as

∫ b

a

f(x) dx,

∫ b

a

f(x) dx,

respectively. Finally, if
∫ b

a
f(x) dx =

∫ b

a
f(x) dx, then f is said to be Riemann integrable

and the common value (R)
∫ b

a
f(x) dx is called a Riemann integral.

a) Show that the net 〈Part(a, b),⊇,US(f ;A)〉 is non-increasing, i.e.,

if A,B ∈ Part(a, b), A ⊇ B, then US(f ;A) ≤ US(f ;B).

Similarly, the net 〈Part(a, b),⊇,LS(f ;A)〉 is non-decreasing.

b) Show that (if f is bounded) both the nets in a) have limits.

Hint: Show that

lim
A∈Part(a,b)

US(f ;A) = sup

{
n∑

i=0

UB(f ; ai−1, ai) · (ai − ai−1) : A ∈ Part(a, b)

}

.

Similarly for limA∈Part(a,b) LS(f ;A).
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c) Consider the Dirichlet function χ = χ[0,1]∩Q. Show that

∫ 1

0

χ(x) dx = 1,

∫ 1

0

χ(x) dx = 0.

Thus, χ is not Riemann integrable.

d) f is Riemann integrable if and only if

lim
A∈Part(a,b)

(US(f ;A)− LS(f ;A)) = 0.

e) Assume that

(∀ε > 0)(∃{a0 < · · · < an} ∈ Part(a, b))

(∀i < n)(∀x, y ∈ [ai, ai+1]) |f(x)− f(y)| < ε.

Then f is Riemann integrable.

f) If f is continuous on [a, b], then f is Riemann integrable.

Hint: By Exercise 3.1 f is uniformly continuous.

g) Non-decreasing and non-increasing functions are Riemann integrable.

Hint: Let f be a non-decreasing function. Consider the finite set of those points
c ∈ [a, b] for which limx→c+ f(x)− limx→c− f(x) ≥ ε/2 · (b− a). Find a partition A
such that US(f ;A)− LS(f ;A) < ε.

h) A function of bounded variation is Riemann integrable (see Exercise 2.14).

4.19 Newton-Leibniz Formula

Let f be Riemann integrable on [a, b], F (x) = (R)
∫ x

a
f(t) dt for x ∈ [a, b].

a) F is continuous on [a, b].

b) If f is continuous, then F ′(x) = f(x) for any x ∈ (a, b).

c) If G is such that G′(x) = f(x) for any x ∈ [a, b], then the Newton–Leibniz formula
holds true:

(R)

∫ b

a

f(x) dx = G(b)−G(a).

4.20 Riemann and Lebesgue Integral

Let f : [a, b] −→ R be a Riemann integrable function, 〈An = {an,0, . . . , an,kn} : n ∈ ω〉
being a sequence of partitions of [a, b] such that

lim
n→∞

US(f ;An) = lim
n→∞

LS(f ;An) = (R)

∫ b

a

f(x) dx.

Moreover, we assume that each An+1 is a refinement of An. Let gn(x)=LB(f ;an,i−1,an,i),
hn(x) = UB(f ; an,i−1, an,i) for x ∈ [an,i−1, an,i), i = 1, . . . , kn, gn(b) = hn(b) = f(b).

a) gn and hn are simple Lebesgue measurable functions and LS(f ;An)=
∫
[a,b]

gn(x)dx,

US(f ;An) =
∫
[a,b]

hn(x) dx.

b) f is Lebesgue integrable and (R)
∫ b

a
f(x) dx =

∫
[a,b]

f(x) dx.

Hint: limn→∞ hn ≤ f ≤ limn→∞ gn and limn→∞
∫
[a,b]

hn dx = limn→∞
∫
[a,b]

gn dx.
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4.4 Product of Measures, Ergodic Theorem

Let us fix complete measure spaces with finite measures 〈Xi,Si, µi〉, i = 1, 2.
By the standard argument we can easily enlarge the obtained results for σ-finite
measures.

A complete measure space 〈X1 × X2,S, µ〉 is said to be a product of the
measure spaces 〈X1,S1, µ1〉 and 〈X2,S2, µ2〉 if S is the smallest σ-algebra of sub-
sets of X1 × X2 containing all sets A1 × A2, A1 ∈ S1, A2 ∈ S2 and satisfying
the completeness condition, and µ(A1 × A2) = µ1(A1) · µ2(A2) for any A1 ∈ S1,
A2 ∈ S2. The measure µ is said to be a product of the measures µ1 and µ2. We
shall write S = S1 × S2 and µ = µ1 × µ2.

The following basic result can be found in any textbook devoted to measure
theory.

Theorem 4.26. A product of finite measures always exists and is uniquely deter-
mined.

Proof. We briefly sketch an idea of a proof of the theorem. Let us recall that the
vertical and horizontal sections Ax and Ay were defined in Section 11.1.

Let T be the smallest σ-algebra of subsets of X1 × X2 containing all sets
A1×A2, Ai ∈ Si, i = 1, 2. One can easily show that Ax ∈ S2 and Ay ∈ S1 for any
A ∈ T and any x ∈ X1, y ∈ X2.

Thus, for a set A ∈ T we can define

fA(x1) = µ2(Ax1), x1 ∈ X1, gA(x2) = µ1(Ax2), x2 ∈ X2.

We show that fA and gA are non-negative integrable functions such that
∫

X1

fA dµ1 =
∫

X2

gA dµ2 (4.30)

for any A ∈ T .
We write

T ′ = {A ⊆ X : fA, gA are integrable and (4.30) holds true}.

We show that T ′ is a σ-algebra containing all sets A1 ×A2, A1 ∈ S1, A2 ∈ S2.
If A = A1 ×A2, A1 ∈ S1, A2 ∈ S2, then fA(x1) = µ2(A2) for x1 ∈ A1 and 0

otherwise. Similarly for gA. Thus fA and gA are integrable and (4.30) holds true.
Consequently A ∈ T ′.

If A ∈ T ′, then fX\A(x1) = µ2(X2) − fA(x1) and gX\A(x2) = µ1(X1) −
gA(x2). Thus also X \A ∈ T ′.

Similarly we can see that T ′ is closed under countable disjoint unions, since,
e.g., if A =

⋃
nAn, then fA =

∑
n fAn , gA =

∑
n gAn and we can use Corollary

4.23.
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Since T was the smallest σ-algebra containing all sets A1 × A2, Ai ∈ Si,
i = 1, 2, we have T ⊆ T ′.

Now we define
µ(A) =

∫

X1

fA dµ1 =
∫

X2

gA dµ2

for A ∈ T . The completion of the measure space 〈X, T , µ〉 is the unique product
of measure spaces 〈X1,S1, µ1〉 and 〈X2,S2, µ2〉. �

We are interested mainly in Lebesgue measures on Euclidean spaces. We can
identify Rn+m = Rn × Rm. Then it makes sense
Theorem [wAC] 4.27. λn+m is the product of measures λn and λm and

λn+m(A) =
∫

Rn

fA dλn =
∫

Rm

gA dλm (4.31)

for any A ∈ Ln+m, A ⊆ Rn × Rm, where fA(x) = λm(Ax) and g(y) = λn(Ay).

Proof. Borel(Rn+m) is the smallest σ-algebra containing sets U × V , where
U ⊆ Rn, V ⊆ Rm are open. Since a set A ⊆ Rn+m is measurable if and only
if A is equal to a Borel set up to a set of measure zero and λn+m is a complete
measure, we obtain Ln+m = Ln × Lm.

We have to show

λn+m(U × V ) = λn(U) · λm(V ) (4.32)

for any measurable sets U ⊆ Rn and V ⊆ Rm. Without loss of generality we can
assume that the sets U, V are bounded, i.e., subsets of bounded intervals Jn ⊆ Rn
and Jm ⊆ Rm.

Let I ⊆ Jn be a given interval. We show that the family

TI = {V ∈ Lm : V ⊆ Jm ∧ λn+m(I × V ) = λn(I) · λm(V )}

is equal to Lm. Actually, by (4.23) any interval J ⊆ Jm belongs to TI . Evidently
TI is closed under countable disjoint unions. Since I× (Jm \V ) = I×Jm \ (I×V ),
TI is closed under complements. Since all considered measures are complete, we
obtain the statement.

Similarly, we set

T = {U ∈ Ln : U ⊆ Jn ∧ (∀V ∈ Lm)λn+m(U × V ) = λn(U) · λm(V )}

and show that T = Ln.
The equality (4.31) follows by the proof of Theorem 4.26. �

Corollary [wAC] 4.28 (Fubini Theorem). A set A ⊆ Rn+m has Lebesgue measure
zero if and only if the set {x ∈ Rn : λ∗m(Ax) �= 0} has Lebesgue measure zero.
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Theorem [AC] 4.29 (Fubini-Tonelli Theorem). Assume that 〈X,S, µ〉 and 〈Y, T, ν〉
are measure spaces with complete finite measures. If f is an S × T -measurable
function on X × Y , then:

a) If f is integrable and

g(x) =
∫

Y

f(x, y) dµ(y), h(y) =
∫

X

f(x, y) dν(x) (4.33)

for x ∈ X and y ∈ Y , then g is µ-integrable, h is ν-integrable and
∫

X×Y
f dµ× ν =

∫

X

g dµ =
∫

Y

h dν. (4.34)

b) If f is non-negative, then the functions defined by (4.33) are S-measurable
and T -measurable, respectively, and (4.34) holds true.

The proof is similar to that of preceding theorems and can be found in any standard
textbook on measure theory. It is easy to see that the statement holds true for
characteristic functions of sets of the form A1 ×A2, A1 ∈ S1, A2 ∈ S2. Then one
shows that the family of those A ⊆ X1 ×X2 for which the characteristic function
satisfies (4.34) is a σ-algebra. Using Lemma 4.19 one obtains the statement for
non-negative integrable functions. The rest is standard. �

For k > 0 we define a bijection fk : ω2 1−1−→
onto

(ω2)k setting fk(α) = [β1, . . . , βk],

where βi(n) = α(k · n+ i− 1). If s1, . . . , sk ∈ n2, then f−1
k ([s1]× · · · × [sk]) = [s]

for suitable s ∈ k·n2. Thus, if λk
C

is the product measure on (ω2)k, then we obtain

λC([s]) = λC(f−1
k ([s1]× · · · × [sk])) = λk

C
([s1]× · · · × [sk]) = 2−k·n. (4.35)

Let U = {[s] : s ∈ k·n2 ∧ n ∈ ω} and U∗ be the family of all finite unions of
elements of U . Since every element of U∗ is a finite union of disjoint elements of U ,
by (4.35) we obtain that λk

C
and f−1

k ◦ λC coincide on U∗. Thus by Theorem 4.10
we obtain
Theorem [wAC] 4.30.

λC(f−1
k (A)) = λkC(A)

for any Borel A ⊆ (ω2)k.

One can in a similar way define a product of any system 〈〈Xs,Ss, µs〉 : s ∈ S〉
of measure spaces, provided that µs(Xs) ≤ 1 for every s ∈ S. Generally the Ax-
iom of Choice is needed. If µ is the measure on the set 2 = {0, 1} defined by
µ({0}) = µ({1}) = 1/2, then one can construct the product measure µω on ω2.
In this case we do not need any axiom of choice. If f : C

1−1−→
onto

ω2 is the home-

omorphism constructed in the proof of Theorem 3.1, then one can show that
µω(A) = λC(f−1(A)) for any Borel set A ⊆ ω2. Therefore we shall identify the
measure µω with λC.
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We present elementary facts from the ergodic theory. For more details see,
e.g., P. Billingsley [1965], H. Furstenberg [1981] or P. Halmos [1956]. Let 〈X,S, µ〉
be a measure space with a probability measure. We say that T : X −→ X is
a measure preserving mapping, if T−1(A) ∈ S and µ(T−1(A)) = µ(A) for every
A ∈ S. A set A ∈ S is invariant if T−1(A) = A. The mapping T is ergodic
if µ(A) = 0 or µ(X \ A) = 0 for every invariant A ∈ S. Similarly, a function
f : X −→ R is invariant if f(T (x)) = f(x) almost everywhere. T n is defined by
induction: T 0 is the identity mapping and, T n+1 = T ◦ T n.
Theorem 4.31 (Ergodic Theorem). Let T : X −→ X be a measure preserving
mapping, g : X −→ R being integrable. Then there exists an integrable invariant
function g∗ : X −→ R such that

lim
n→∞

1
n

n−1∑

i=0

g(T i(x)) = g∗(x) for all x and
∫

X

g dµ =
∫

X

g∗ dµ.

Moreover, if T is ergodic, then we can assume that g∗ is a constant function and

lim
n→∞

1
n

n−1∑

i=0

g(T i(x)) =
∫

X

g dµ for almost all x.

An idea of a proof of the theorem is sketched in Exercise 4.23 below.

Exercises

4.21 Ergodicity of a Shift

Let T : T −→ T be continuous. For a set A ⊆ T we write T ∗(A) =
⋃

n T
n(A). We shall

consider a special case T (x) = a+ x for a fixed a. Everything is understood modulo 1.

a) If a ∈ Q, then T ∗({x}) is finite for any x ∈ T.

b) If a is a positive irrational, 0 ≤ c < d ≤ 1, then there are a natural number n and
an integer z such that c+ z < na < d+ z.

Hint: By the Dirichlet Theorem 8.133 there exists an n such that ‖nx‖ < d− c.
c) If a is irrational, then the set T ∗({x}) is dense in T for any x. Note that this is a

simple consequence of the Kronecker Theorem 10.41.

d) If a is irrational, then T is ergodic.

Hint: Assume µ(A) > 0, ε > 0. Take an open interval I with properties of Theorem
4.17. Using c) find natural numbers n0, . . . , nk such that

∑k
i=0 µ(Tni(I)) > 1 − ε

and Tni(I), i = 0, . . . , k are mutually disjoint.

4.22 Shift on ω2

The shift T on ω2 is defined as

T ({xn}∞n=0) = {xn+1}∞n=0. (4.36)

a) If A ⊆ ω2 is T invariant, A ⊆
⋃

n[sn], where sn ∈ <ω2, then A ⊆
⋃

n,m[sn � sm].

b) If
∑

n µ([sn]) < ε, then
∑

n,m µ([sn � sm]) < ε2.

c) If A ⊆ ω2 is T invariant, µ∗(A) < 1, then µ(A) = 0.

d) The shift T is ergodic.
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4.23 Proof of the Ergodic Theorem

Let 〈X,S , µ〉 be a measure space, µ(X) = 1, T : X −→ X being a measure preserving
mapping. For an integrable function f : X −→ R we define

Sf,n(x) =

n−1∑

i=0

T i ◦ f(x),

Mf,n(x) = max{0, Sf,1(x), . . . , Sf,n(x)},
f(x) = lim sup

n→∞

1
n
Sf,n(x),

f(x) = lim inf
n→∞

1
n
Sf,n(x).

a) Show that
∫

T−1(E)
T ◦ f dµ =

∫
E
f dµ.

b) f + T ◦Mf,n ≥ Sf,i+1 for any i ≤ n and therefore f + T ◦Mf,n ≥ Mf,n+1 ≥ Mf,n.

c) Prove the Maximal Ergodic Theorem: If Xn = {x ∈ X : Mf,n(x) > 0}, then∫
Xn

f dµ ≥ 0.

Hint: By definition and a) we have
∫

X
T ◦Mf,n dµ =

∫
Xn

Mf,n dµ and by b) we
obtain
∫

Xn

(f + Mf,n) dµ =

∫

Xn

f dµ+

∫

X

Mf,n dµ ≥
∫

Xn

Mf,n dµ =

∫

X

Mf,n dµ.

d) Show that f and f are invariant.

Hint: Note that lim supn→∞
1
n
Sf,n(x) = lim supn→∞

1
n
(Sf,n+1(x)− f(x)) and that

T ◦ Sf,n = Sf,n+1 − f .
e) For a < b ∈ R we write Ba,b = {x ∈ X : f(x) < a < b < f(x)}. Show that Ba,b is

invariant.

f) Show that µ(Ba,b) = 0 for each a < b.

Hint: Set C = Ba,b and Cn = {x ∈ C : M(f−b),n(x) > 0}. As

lim sup
n→∞

1/nS(f−b),n(x) = f(x)− b,

we have C =
⋃

n Cn and therefore by c) we obtain
∫

C
(f(x) − b) dµ ≥ 0. Similarly∫

C
(a− f(x)) dµ ≥ 0. Since

∫
Ba,b

(a− b) dµ =
∫

Ba,b
(a− f) dµ+

∫
Ba,b

(f − b) dµ ≥ 0,

we obtain µ(Ba,b) = 0 for any a < b.

g) f(x) = f(x) almost µ-everywhere.

h) f is integrable.

Hint: Let fn(x) = inf{ 1
k
|Sf,k(x)| : k ≥ n}. Then fn ↗ f almost everywhere and

|
∫

X
fn dµ| ≤

∫
|f | dµ. Use the Lebesgue Monotone Convergence Theorem 4.22.

i) For any z ∈ Z, n > 0, write

Dn,z =

{

x ∈ X :
z

n
≤ f(x) <

z + 1

n

}

.

Show that for any ε > 0,
∫

Dn,z

(
z + 1

n
− f
)

dµ ≥ 0 and

∫

Dn,z

(
f − z

n
+ ε
)
dµ ≥ 0.

Hint: Apply the Maximal Ergodic Theorem to function z+1
n
− f .
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j)
∫

X
f(x) dµ =

∫
X
f(x) dµ.

Hint: Using i) show that |
∫

X
(f − f) dµ| ≤ 1/n.

k) If T is ergodic, then f(x) =
∫

X
f(y) dµ(y) almost everywhere.

Hint: The set D = {x ∈ X : f(x) =
∫

X
f(y) dµ(y)} is invariant. If µ(D) = 0, then

either the invariant set {x ∈ X : f(x) <
∫

X
f(y) dµ(y)− 1/n} or the invariant set

{x ∈ X : f(x) >
∫

X
f(y) dµ(y) + 1/n} has measure 1 for some positive integer n.

l) Prove the Ergodic Theorem 4.31.

Historical and Bibliographical Notes

E. Borel [1898] introduced a measure of a Borel subset of R starting from open sets
represented as a disjoint union of intervals. In his dissertation H. Lebesgue [1902]
worked out the idea of Borel and actually constructed the complete Lebesgue
measure on R. C. Carathéodory [1918] presents a systematic theory of measure
introducing the notion of a measurable set.

The basic source of information concerning measure theory is P. Halmos
[1950]. We follow the terminology connected with measures on topological spaces
as presented by R.J. Gardner and W.F. Pfeffer [1984].

Ergodic Theorem 4.31 is a result by G.D. Birkhoff [1931]. The proof sketched
in Exercise 4.23 follows essentially P. Halmos [1956], who attributes it to F. Riesz.



Chapter 5

Useful Tools and Technologies

A strategy is something such that you’ve got that you never have to
think.

Robert M. Solovay [1967].

This chapter contains material that will be needed in the next investigations.
A reader need not study all sections immediately. The topic is heterogeneous and
we indicate when the knowledge of a particular section is supposed.

In the first two sections of this chapter we present some tools and technolo-
gies that will be useful in studying descriptive set theoretical properties of subsets
of a Polish space. In Section 5.1 we present the technology introduced by F. Haus-
dorff (under the name of an A-operation) and then developed by N.N. Luzin and
M.J. Souslin, which contributes to the understanding of the fine structure of so-
called projective sets. The results will be used essentially in Chapter 6. In Section
5.2 we introduce the common framework for families of sets investigated in the
descriptive set theory that was mainly developed by Y.N. Moschovakis. The tech-
nology enables us, on the one hand, to formulate in a common language results
for different families of sets and, on the other hand, it often unifies proofs which
were historically found independently in distinct special cases.

In the third section we introduce basic facts concerning Boolean algebras,
which are essential for a study of topics related to the Martin Axiom. We shall
use them in Sections 7.1, 9.1 and 10.3.

In the fourth section we investigate cardinal invariants related to combinato-
rial properties of sets of natural number or functions from ω into ω. The notions
we introduce and their properties are important results of investigation in the set
theory of the real line over the last forty years. We shall need these results in
Chapter 7 and in all following chapters.

Finally, the fifth section is devoted to the basic facts about infinite games,
which were studied by S. Banach and S. Mazur, and later investigated by Morton
Davis, J. Mycielski and others. These facts are necessary for the understanding of
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Section 9.4, where we present the basic results of investigations into the descriptive
set theory under the so-called Axiom of Determinacy. Also Section 10.1 supposes
that the reader is familiar with this topic.

5.1 Souslin Schemes and Sieves

The terminology and notations concerning trees are summarized in Section 11.1.
Assume that T is a pruned subtree of the tree 〈<ωω,⊇〉 and 〈X,O〉 is a topological
space. If ϕ : T −→ P(X), then the couple 〈T, ϕ〉 is called a Souslin scheme on X .
The Souslin scheme 〈T, ϕ〉 is said to be closed (open, Borel etc.), if every value
ϕ(x), x ∈ T is a closed (open, Borel etc.) set. Let us recall that we may identify
any branch of T with a function α : ω −→ ω. We write

L(T, ϕ) =
⋃

α∈[T ]

⋂

n

ϕ(α|n).

We say that the set L(T, ϕ) is sifted by the Souslin scheme 〈T, ϕ〉.
A Souslin scheme 〈T, ϕ〉 is monotone if

t < s→ ϕ(s) ⊆ ϕ(t) (5.1)

for any t, s ∈ T .
If 〈T, ϕ〉 is a Souslin scheme on X , one can define a new Souslin scheme

setting ψ(s) =
⋂
t≤s ϕ(t) for s ∈ T . It is easy to see that L(T, ϕ) = L(T, ψ) and

the Souslin scheme 〈T, ψ〉 is monotone. Hence in what follows, we always assume
that a Souslin scheme is monotone.

If S is a pruned subtree of T and 〈T, ϕ〉 is a (monotone) Souslin scheme, then
the Souslin scheme 〈S, ϕ|S〉 will be simply denoted as 〈S, ϕ〉. Similarly, if s ∈ T
then the Souslin scheme 〈T s, ϕ|T s〉 will be simply denoted as 〈T s, ϕ〉. One can
easily see that L(S, ϕ) ⊆ L(T, ϕ) and

L(T, ϕ) = L(S, ϕ) ∪
⋃

v∈T\S
L(T v, ϕ). (5.2)

Moreover, we have
L(T s, ϕ) =

⋃

t∈IS(s,T )

L(T t, ϕ). (5.3)

A Souslin scheme 〈T, ϕ〉 is regular if ϕ(s) ∩ ϕ(t) = ∅ for any incomparable
s, t ∈ T . If 〈T, ϕ〉 is regular then

L(T, ϕ) =
⋂

n

⋃

t∈T (n)

ϕ(t). (5.4)



5.1. Souslin Schemes and Sieves 163

The kernel of a Souslin scheme is the set

Ker (T, ϕ) = {α ∈ [T ] :
⋂

n

ϕ(α|n) �= ∅}.

Assume that X is a metric space. We say that the Souslin scheme 〈T, ϕ〉 has
vanishing diameter if limn→∞ diam(ϕ(α|n)) = 0 for any branch α ∈ [T ]. Then the
intersection

⋂
n ϕ(α|n) has at most one element. Moreover, in this case we can

define the associated map F : Ker (T, ϕ) −→ X by setting

F (α) = the only element of
⋂

n

ϕ(α|n) for α ∈ Ker (T, ϕ).

Assume that X is a Polish space and 〈T, ϕ〉 is a closed Souslin scheme with van-
ishing diameter. By Cantor’s Lemma 3.28 we obtain

α ∈ Ker (T, ϕ) ≡ (∀n)ϕ(α|n) �= ∅. (5.5)

Especially, if ϕ(v) �= ∅ for each v ∈ T , then Ker (T, ϕ) = [T ].
If 〈T, ϕ〉 is a Souslin scheme, we can extend ϕ onto <ωω by setting ϕ(v) = ∅

for v ∈ <ωω \ T . Evidently

L(T, ϕ) = L(<ωω, ϕ).

The following rather technical result will be useful later.
Theorem 5.1. If a subset A ⊆ X of a Polish space X is sifted by a (monotone)
closed Souslin scheme with vanishing diameter, then A is sifted by a (monotone)
open Souslin scheme. If X has a clopen base of topology, then A is sifted by
a (monotone) clopen Souslin scheme.

Proof. Let 〈X, ρ〉 be a Polish space. Assume that A = L(T, ϕ), where 〈T, ϕ〉
is a monotone and closed Souslin scheme with vanishing diameter. We define
ψ(s) = {x ∈ X : ρ(x, ϕ(s)) < 1/(n + 1)} for s ∈ T (n). One can easily check
that L(T, ψ) = L(T, ϕ) and 〈T, ψ〉 is monotone and open. �

We shall study the relationship of Souslin schemes and continuous mappings
from the Baire space ωω.
Lemma 5.2. Let 〈X, ρ〉 be a metric space. If F : ωω −→ X is continuous, then
there exists a closed Souslin scheme 〈<ωω, ϕ〉 with vanishing diameter and with
non-empty values such that rng(F ) = L(<ωω, ϕ).

Proof. For v ∈ <ωω we set
ϕ(v) = F ([v]).

Evidently 〈<ωω, ϕ〉 is a closed monotone Souslin scheme. We need to show that it
has vanishing diameter.
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Let α ∈ ωω, ε > 0. Since F is continuous there exists a δ > 0 such that

(∀β ∈ ωω) (ρ(α, β) < δ → ρ(F (α), F (β)) < ε/2).

Note that on the left-hand side ρ denotes the Baire metric on ωω and on the
right-hand side ρ is the metric on X . If n0 ≥ 1/δ then diam(ϕ(α|n)) < ε for
any n ≥ n0.

Since
⋂
n ϕ(α|n) = {F (α)} we obtain L(<ωω, ϕ) = rng(F ). �

Theorem 5.3. Let 〈T, ϕ〉 be a Souslin scheme with vanishing diameter on a Polish
space X. Then:

a) The associated map F : Ker (T, ϕ) −→ X is continuous.
b) If the Souslin scheme 〈T, ϕ〉 is regular, then F is one-to-one.
c) If the Souslin scheme 〈T, ϕ〉 is closed, then Ker (T, ϕ) is a closed subset of

the Baire space ωω.

Proof. Assume that α ∈ Ker (T, ϕ) and ε > 0. Then there is an n ∈ ω such that
diam(ϕ(α|n)) < ε. If β ∈ [α|n] ∩ Ker (T, ϕ), then F (β) ∈ ϕ(α|n) and therefore F
is continuous.

If 〈T, ϕ〉 is regular and α, β ∈ [T ], α �= β, then α(n) �= β(n) for some n. Since
F (α) ∈ ϕ(α|(n + 1)), F (β) ∈ ϕ(β|(n + 1)), ϕ(α|(n + 1)) ∩ ϕ(β|(n + 1)) = ∅ we
obtain F (α) �= F (β).

Assume that α ∈ ωω \ Ker (T, ϕ). Then by (5.5) there exists an n ∈ ω such
that ϕ(α|n) = ∅. Then [α|n]∩Ker (T, ϕ) = ∅ and therefore Ker (T, ϕ) is closed. �
Theorem [wAC] 5.4. Assume that X is a Polish space and 〈T, ϕ〉 is a closed Souslin
scheme on X with vanishing diameter. Then L(T, ϕ) is either countable or contains
a subset homeomorphic to the Cantor middle-third set C.

Proof. We can assume that ϕ(v) �= ∅ for any v ∈ T .
Assume that L(T, ϕ) is uncountable. We set

E = {v ∈ T : L(T v, ϕ) is uncountable}.

Evidently E is a pruned subtree of T . Using the equality (5.3) for T v, v ∈ E, by
wAC we obtain

L(Ev, ϕ) is uncountable for any v ∈ E.
We show that

(∀v ∈ E)(∃u,w ∈ E) (u,w > v ∧ ϕ(u) ∩ ϕ(w) = ∅). (5.6)

Actually, if v ∈ E, then the set L(Ev, ϕ) is uncountable. Let x, y ∈ L(Ev, ϕ), x �= y.
Set ε = ρ(x, y) > 0. By definition there exist α, β ∈ [Ev] such that x ∈

⋂
n ϕ(α|n)

and y ∈
⋂
n ϕ(β|n). Since the Souslin scheme 〈T, ϕ〉 has vanishing diameter there

exists an n such that diam(ϕ(α|n)) < ε/2 and diam(ϕ(β|n)) < ε/2. Take u = α|n
and w = β|n.
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Now construct the subtree S ⊆ E similarly as in the proof of Theorem 11.5,
taking always two incomparable successors with disjoint values of ϕ. Then 〈S, ϕ〉
is a regular Souslin scheme and the theorem follows by Theorem 5.3. �
Theorem 5.5. Every Polish space is sifted by a closed Souslin scheme 〈<ωω, ϕ〉
with vanishing diameter and non-empty values.

Proof. Let {Un : n ∈ ω} be a countable open base of a Polish space X . We define
a function ϕ such that 〈<ωω, ϕ〉 will be a closed Souslin scheme with vanishing
diameter and L(<ωω, ϕ) = X .

We define by induction a function ψ from <ωω into non-empty open subsets
of X . We set ψ(∅) = X . Assume that the values ψ(s) are already defined for any
s ∈ nω. Enumerate with eventual repetition the set of all non-empty intersections
ψ(s) ∩ Um, diam(Um) < 2−n as {Bi : i ∈ ω}. Set ψ(s � i) = Bi.

Let ϕ(s) be the closure of ψ(s). Evidently 〈<ωω, ϕ〉 is a closed Souslin scheme
with vanishing diameter. We need to show that L(<ωω, ϕ) = X .

We assume that x ∈ X and we construct by induction a branch α ∈ ωω
such that x ∈

⋂
n ψ(α|n) ⊆

⋂
n ϕ(α|n). Set α(0) = ∅. Suppose that α|k is already

defined and x ∈ ψ(α|k). Then there exists an m such that x ∈ Um ∩ ψ(α|k) and
diam(Um) < 2−k. Thus

ψ(α|k � i) = ψ(α|k) ∩ Um

for some i. Set α(k) = i. Evidently x ∈
⋂
n ψ(α|n) ⊆

⋂
n ϕ(α|n). �

Corollary [wAC] 5.6. An uncountable Polish space contains a subset homeomorphic
to the Cantor middle-third set.
Corollary 5.7. Any Polish space X is a continuous image of ωω.

Proof. The assertion follows by Theorems 5.3, 5.5 and Corollary 3.8. �
Corollary 5.8. If a non-empty subset A of a Polish space X is sifted by a closed
Souslin scheme with vanishing diameter, then A is a continuous image of ωω. Vice
versa, if a set A ⊆ X is a continuous image of ωω, then A is sifted by a closed
Souslin scheme with vanishing diameter.

Proof. Assume that 〈T, ϕ〉 is a closed Souslin scheme with vanishing diameter
and such that A = L(T, ϕ). By Theorem 5.3 there exists a continuous surjection
F : Ker (T, ϕ) onto−→ A. However, Ker (T, ϕ) is a non-empty closed subset of ωω and
therefore a Polish space. Now, the assertion follows by Corollary 5.7.

The opposite implication follows by Lemma 5.2. �
Corollary 5.9. If a subset A of a Polish space X is sifted by a closed Souslin scheme
with vanishing diameter, then A is also sifted by a closed Souslin scheme of the
form 〈<ωω, ϕ〉 with vanishing diameter and non-empty values.

Proof. The assertion follows by Corollary 5.8 and Lemma 5.2. �
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Theorem 5.10. Every Polish space X with a clopen base is homeomorphic to a
closed subset of the Baire space ωω.

Proof. We slightly modify the proof of Theorem 5.5. Let {Un : n ∈ ω} be a clopen
base ofX . We construct a regular Souslin scheme 〈<ωω, ψ〉 with vanishing diameter
such that X = L(<ωω, ψ). We set ψ(∅) = X . Assume that ψ(s) is defined for all
s ∈ nω. Consider the family {ψ(s) ∩ (Ui \

⋃
j<i Uj) : diam(Ui) < 2−n ∧ i ∈ ω}. If

the family is infinite, we let 〈ψ(s�i) : i ∈ ω〉 enumerate this family in a one-to-one
manner. Otherwise enumerate the finite family in a one-to-one manner and let the
other values be the empty set.

By Theorem 5.3, Ker (<ωω, ψ) is a closed subset of ωω and one can check
that the associated map F : Ker (<ωω, ψ) −→ X is a homeomorphism. �

There is another tool equivalent to the Souslin scheme which is sometimes
more convenient for investigation. For some technical reasons we order the set
D of dyadic numbers (for a definition see Section 2.4) opposite to values of its
members, i.e.,

x  y ≡ y ≤ x. (5.7)

We set

Dk =

{

x =
k∑

i=0

2−ni : 0 < n0 < n1 < · · · < nk

}

.

Then D =
⋃
k Dk. For every k the set Dk is well ordered. Actually, if A ⊆ Dk is

non-empty we choose step by step the smallest positive integers n0, . . . , nk such
that a =

∑k
i=0 2−ni ∈ A. Then a is the smallest element of A according to the

order  .
If r =

∑l
i=0 2−ni , s =

∑k
i=0 2−mi are elements of D, we define

r ! s ≡ ((l ≤ k) ∧ (∀i ≤ l)ni = mi).

Then 〈D,!〉 is a poset. Evidently

(r ∈ Dn ∧ s ∈ Dm ∧ r ! s) → (n ≤ m ∧ r ≤ s).

For any s ∈ D the set {r ∈ D : r ! s} is finite.
A sieve on X is a mapping Φ : D −→ P(X). A set A ⊆ X is said to be sifted

by the sieve Φ if

x ∈ A ≡ the poset 〈{r ∈ D : x ∈ Φ(r)}, 〉 is not well ordered.

We shall write A = S(Φ). Since the poset 〈D, 〉 is linearly ordered, a set A is
sifted by the sieve Φ if and only if

x ∈ A ≡ there exists a strictly <-increasing sequence {rn}∞n=0

of elements of D such that x ∈ Φ(rn) for each n ∈ ω. (5.8)
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A sieve Φ is said to be closed if the values Φ(r), r ∈ D are closed subsets of
the topological space X . Similarly we shall speak about a Borel sieve, etc. A sieve
Φ is called monotone if Φ(x) ⊆ Φ(y) for any y ! x.
Lemma 5.11. Let Φ be a monotone sieve. Then x ∈ S(Φ) if and only if there exists
a strictly !-increasing sequence s0 � s1 � · · · � sn � · · · of elements of D such
that x ∈ Φ(sn) for every n ∈ ω.

Proof. Since r � s→ r < s the implication from right to left is trivial.
Assume that there exists a <-increasing sequence {rn}∞n=0 of elements of D

such that x ∈ Φ(rn) for every n ∈ ω. Set r = sup{rn : n ∈ ω} and consider the
infinite dyadic expansion1

r =
∞∑

i=0

2−mi , 0 < m0 < m1 < · · · < mn < · · · .

For every n ∈ ω we let sn =
∑n

i=0 2−mi . We show that sn ! rk for some k. Then
x ∈ Φ(sn).

Since sn < r there is a k such that sn < rk < r. Let rk =
∑l

i=0 2−ji ,
j0 < · · · < jl. We show that ji = mi for any i ≤ m = min{n, l}. Aiming to obtain
a contradiction, assume that there exists a p ≤ m such that jp �= mp. We assume
that p is the smallest with this property. If jp < mp, then

r =
∑

i<p

2−mi +
∞∑

i=p

2−mi ≤
∑

i<p

2−mi + 2−mp+1 ≤
∑

i<p

2−mi + 2−jp ≤ rk,

which is impossible. If jp > mp, then similarly

rk =
∑

i<p

2−mi +
l∑

i=p

2−ji ≤
∑

i<p

2−mi + 2−jp+1 ≤
∑

i<p

2−mi + 2−mp = sp ≤ sn,

again a contradiction. Thus ji = mi for all i ≤ m. Since sn < rk we obtain m = n
and l > n. �

If r =
∑k

i=0 2−ni , 0 < n0 < · · · < nk, we let b(r) = {ni − ni−1 − 1}ki=0,
where n−1 = 0. One can easily see that b is an order isomorphism of 〈D,!〉 onto
〈<ωω \ {∅},⊆〉. Especially,

r ! s ≡ b(r) ⊆ b(s). (5.9)

Theorem 5.12. A subset A ⊆ X of a Polish space X is sifted by a monotone closed
(open, clopen, Borel) Souslin scheme if and only if A is sifted by a monotone closed
(open, clopen, Borel) sieve.

1If r is a dyadic rational then mi+1 = mi + 1 for all but finitely many i’s.
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Proof. Let a set A ⊆ X be sifted by a monotone Souslin scheme 〈<ωω, ϕ〉. We set

Φ(r) = ϕ(b(r)) (5.10)

and show that
L(<ωω, ϕ) = S(Φ).

Assume that x ∈ L(<ωω, ϕ). Then there exists a branch {ni}∞i=0 ∈ [<ωω] such that
x ∈ ϕ({ni}ki=0) for every k. We let

rk =
1

2n0+1
+

1
2n0+n1+2

+ · · ·+ 1
2n0+···+nk+k+1

.

Then b(rk) = {ni}ki=0, Φ(rk) = ϕ({ni}ki=0). Since the sequence {rk}∞k=0 is strictly
<-increasing, we obtain x ∈ S(Φ).

Assume now that x ∈ S(Φ). Then by Lemma 5.11, there exists a �-increasing
sequence {sk}∞k=0 such that x ∈ Φ(sk) for every k ∈ ω.

By (5.9), {b(sk)}∞k=0 is a branch of ωω. Since x ∈ Φ(sk) = ϕ(b(sk)) for every
k we obtain x ∈ L(<ωω, ϕ).

If Φ is a sieve we set ϕ(v) = Φ(b−1(v)) for any v ∈ <ωω, v �= ∅, ϕ(∅) = X .
Then (5.10) holds true and therefore S(Φ) = L(<ωω, ϕ). �

Exercises

5.1 Topological Characterization of Cantor and Baire Space

a) ω2 is up to homeomorphism the unique perfect compact zero-dimensional Polish
space.

Hint: Construct a clopen regular Souslin scheme 〈<ω2, ϕ〉 with vanishing diameter
such that

⋃
s∈n2 ϕ(s) = X for each n.

b) If X is a zero-dimensional Polish space in which every compact subset has empty
interior, then for any open set U ⊆ X and any ε > 0 there are pairwise disjoint
clopen sets 〈Un : n ∈ ω〉 of diameter less than ε such that U =

⋃
n Un.

Hint: The closure of U is not totally bounded.

c) ωω is up to homeomorphism the unique zero-dimensional Polish space in which all
compact subsets have empty interior.

Hint: Construct a clopen regular Souslin scheme 〈<ωω,ϕ〉 with vanishing diameter.

d) The set ωω↑ ⊆ ωω of non-decreasing sequences of natural numbers is homeomorphic
to the Baire space ωω.

5.2 (A)-operation

The Souslin scheme was originally introduced as (A)-operation. For any finite sequence
s = 〈n0, . . . , nk〉 of natural numbers a set Fs is given. The result of (A)-operation is the set

AsFs =
⋃

α∈ωω

⋂

k∈ω

F〈α(0),...,α(k)〉.



5.1. Souslin Schemes and Sieves 169

a) For a given sequence 〈Bn : n ∈ ω〉 of subsets of X find sets 〈Fs : s ∈ <ωω〉 such
that AsFs =

⋃
nBn.

b) For a given sequence 〈Bn : n ∈ ω〉 of subsets of X find sets 〈Fs : s ∈ <ωω〉 such
that AsFs =

⋂
nBn.

c) If ϕ(s) = Fs for s ∈ <ωω then AsFs = L(<ωω,ϕ).

d) If F ⊆ P(X) is a family of subsets of a set X we write

A(F) = {AsFs : Fs ∈ F for every s ∈ <ωω}.

Show that A(A(F)) = A(F).

e) In terminology and notations introduced in Section 7.1, Theorem 7.10 says: If a Pol-
ish ideal space 〈X, I〉 possesses the hull property, then A(Borel(X)) ⊆ Borel(I).

5.3 κ-Souslin Scheme

Let T be a pruned subtree of <ωκ, where κ is a given regular cardinal. If ϕ : T −→ P(X)
then the couple 〈T, ϕ〉 is called a κ-Souslin scheme. Similarly we can define related notions
such as monotone, regular, vanishing diameter, L(T, ϕ), sifted, etc. The topology on ωκ
is induced by the Baire metric.

a) If f : ωκ
onto−→ X is continuous, then there exists a closed monotone κ-Souslin scheme

〈<ωκ, ϕ〉 such that X = L(<ωκ, ϕ).

b) If 〈T, ϕ〉 is a κ-Souslin scheme with vanishing diameter, then there exists a contin-

uous mapping F : Ker (T, ϕ)
onto−→ L(T, ϕ).

c) If in b) ϕ is closed, then Ker (T, ϕ) is a closed subset of ωκ.

5.4 κ-Souslin Sets

A set A ⊆ X is κ-Souslin if there exists a closed κ-Souslin scheme 〈T, ϕ〉 with vanishing
diameter such that A = L(T, ϕ).

a) If A is a κ-Souslin subset of a Polish space, |A| > κ then A contains a perfect
subset.

b) A subset A of a Polish space X is κ-Souslin if and only if it is a continuous image
of ωκ.

Hint: Use results of Exercises 5.3 and Corollary 3.8.

c) A continuous image of a κ-Souslin set is a κ-Souslin set.

d) A subset A of a Polish space X is κ-Souslin if and only if there exists a closed set
C ⊆ ωκ×X such that x ∈ A ≡ (∃y) 〈y, x〉 ∈ C.

Hint: Let f : ωκ −→ X be continuous and such that A = rng(f). Take C to be the
graph of f .

e) Let B be a non-empty set. A subset A ⊆ ωB is κ-Souslin if and only if there exists
a pruned tree T ⊆ <ω(κ×B) such that x ∈ A ≡ (∃y) 〈y, x〉 ∈ [T ].

Hint: Take C of d) and a tree T such that C = [T ].

5.5 Kleene-Brouwer ordering

The Kleene-Brouwer ordering ≤KB of <ωω is defined as

x≤KB y ≡ (y ⊆ x ∨ (∃k)(∀i < k) (x(i) = y(i) ∧ x(k) < y(k))).

See also Exercise 11.4. Let 〈<ωω,ϕ〉 be a Souslin scheme on a set X. Show that:
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a) The bijection b is an isomorphism of 〈D,�〉 onto 〈<ωω,≤KB〉.
b) If A = L(<ωω,ϕ) then

x ∈ X \A ≡ 〈{v ∈ <ωω : x ∈ ϕ(v)},≤KB〉 is well ordered.

c) Let 〈<ωω,ϕ〉 be a closed (or Borel) Souslin scheme on X. Set A = L(<ωω,ϕ). Using
the Kleene-Brouwer ordering, construct a decomposition of X\A into ω1 Borel sets.

d) Show that for suitable sieve Φ you obtain the same decomposition as in Theorem
6.46.

5.6 [wAC] Well-Founded Relation

Let ≺⊆ X × X be an antireflexive transitive relation on a Polish space X. We define
a set T ⊆ <ωX as follows:

〈x0, . . . , xn〉 ∈ T ≡ xn ≺ xn−1 ≺ · · · ≺ x0 for n > 0.

We assume that ∅ ∈ T and 〈x〉 ∈ T for any x ∈ X.

a) Relation ≺ is well founded if and only if relation ⊃ on T is well founded (see the
definition of a well-founded relation in Exercise 11.4).

Hint: Use results of Exercise 11.4.

b) Assume that ≺ is well founded. Let ρ be the rank function of ≺ and σ be the rank
function of ⊃ on T . Show that ρ(xn) = σ(〈x0, . . . , xn〉) for any xn ≺ · · · ≺ x0.

c) The rank of ≺ is the σ-rank of ∅ ∈ T .

Let κ be a cardinal. Assume that a well-founded relation ≺ on ωκ is a κ-Souslin subset
of ωκ× ωκ. Let S ⊆ <ω(κ× κ× κ) be a pruned tree such that

〈x, y〉 ∈≺≡ (∃z) 〈x, y, z〉 ∈ [S]. (5.11)

We define a subset W ⊆ <ωS and sets S(x, y) ⊆ <ωκ for x, y ∈ ωκ as follows:

〈〈s0, t0, u0〉, . . . , 〈sn, tn, un〉〉 ∈ W ≡ (〈si, ti, ui〉 ∈ S ∧ si = ti+1 for i < n),

u ∈ S(x, y) ≡ 〈x|n, y|n, u〉 ∈ S for u ∈ nκ.

d) S(x, y) is a subtree of <ωκ.

e) x ≺ y if and only if [S(x, y)] 	= ∅, i.e., if there exists an infinite branch of S(x, y).

f) We define a relation � on W . Let wi = 〈〈si
0, t

i
0, u

i
0〉, . . . , 〈si

ni
, tini

, ui
ni
〉〉 ∈ W for

i = 1, 2. We set w1 � w2 if n1 < n2 and 〈s1j , t1j , u1
j〉 ⊂ 〈s2j , t2j , u2

j 〉 for every j ≤ n1.
Show that � is well founded.

5.7 [wAC] Kunen-Martin Theorem

Let V be a subtree of <ωκ. A branch α ∈ [V ] is said to be the leftmost branch if
α(n) = min{β(n) : β ∈ V ∧ α|n ⊆ β} for each n.

Assume that ≺ is a well-founded relation on ωω and (5.11) holds true.

a) For x ≺ y denote by zx,y the leftmost branch of the tree S(x, y). For x ∈ X set
h([x]) = ∅ and for 〈x0, . . . , xn〉 ∈ T , n > 0 we denote by h(〈x0, . . . , xn〉) the n-tuple

〈〈x1|(n+1), x0|(n+1), zx1,x0 |(n+1)〉, . . . , 〈xn|(n+1), xn−1|(n+1), zxn,xn−1 |(n+1)〉〉.
Show that h is an increasing mapping from T \ {∅} into W .

b) Prove the Kunen-Martin Theorem: If ≺ is a κ-Souslin well-founded relation on ωκ
then the rank of ≺ is smaller than κ+.

Hint: Use the result of Exercise 5.6, c) and the fact that |W | ≤ κ.
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5.2 Pointclasses

We introduce the notion of a pointclass in a rather non-formal way. Thus the
definition is not sufficiently exact, however we hope that it is sufficient for all
applications. In this section by a space we shall always understand a Polish space.2

Recall that by Theorem 3.30, a subsetA ⊆ X of a Polish spaceX with the subspace
topology is a Polish space if and only if A is a Gδ subset of X .

The product X × Y is homeomorphic to Y × X , thus in what follows we
shall often not distinguish them without any commentary. However, sometimes
the order is important, namely, we recall that if A ⊆ X × Y and x ∈ X , y ∈ Y
then a horizontal section of A and a vertical section of A are the sets

Ay = {u ∈ X : 〈u, y〉 ∈ A}, Ax = {v ∈ Y : 〈x, v〉 ∈ A},

respectively.
Consider a topological property ϕ(A,X) of a subset A of a Polish space X .

Set
Γ (X) = {A ⊆ X : ϕ(A,X)}.

A pointclass Γ is a class of all sets from Γ (X), where X is a Polish space. We
assume that a pointclass satisfies the following conditions:

1) if f : X1 −→ X2 is continuous and A ∈ Γ (X2), then f−1(A) ∈ Γ (X1), for
any Polish spaces X1 and X2;

2) the family Γ (X) is closed under finite intersections and finite unions, i.e., for
any A0, . . . , Ak ∈ Γ (X) also A0∩· · ·∩Ak ∈ Γ (X) and A0∪· · ·∪Ak ∈ Γ (X);

3) X ∈ Γ (X).

Those conditions immediately imply the basic properties of a pointclass.

Lemma 5.13. Let Γ be a pointclass.

a) If f : X1
1−1−→
onto

X2 is a homeomorphism, then

A ∈ Γ (X2) ≡ f−1(A) ∈ Γ (X1) for any A ⊆ X2.

b) If a set A ⊆ X with the subspace topology is a Polish space (i.e., if A is a Gδ

subset of X), then
{A ∩B : B ∈ Γ (X)} ⊆ Γ (A).

c) If A ∈ Γ (X × Y ), then Ay ∈ Γ (X) and Ax ∈ Γ (Y ) for any x ∈ X and any
y ∈ Y .

2Actually we can consider any reasonable class of topological space. However Polish spaces are
more than enough for our purpose.



172 Chapter 5. Useful Tools and Technologies

A pointclass Γ is called hereditary if for any Polish space X and for any Gδ

subset A ⊆ X we have

Γ (A) = {A ∩B : B ∈ Γ (X)}.

Let us suppose that Gδ(X) ⊆ Γ (X) for any X . Then Γ is hereditary if and only
if Γ (A) ⊆ Γ (X) for any Polish X and any Gδ subset A ⊆ X .

We begin with some examples. If ϕ(A,X) means that “A is a Borel subset
of X” then Γ = Borel is the pointclass of all Borel subsets of Polish spaces. By
Theorem 3.38 Σ0

ξ, Π0
ξ and ∆0

ξ are pointclasses. They are hereditary for any ξ > 0.
The class K of all compact subsets (or the class of all connected subsets) of Polish
spaces is not a pointclass.

We define basic operations on pointclasses.
If Γ is a pointclass then the dual pointclass ¬Γ consists of those subsets A of

a Polish space X for which X \A ∈ Γ (X). Thus ¬Γ (X) = {X \A : A ∈ Γ (X)}.
The ambiguous part of Γ is the pointclass ∆[Γ ] = Γ ∩¬Γ . A pointclass Γ is

called self-dual if Γ = ¬Γ . Thus Γ is self-dual if and only if Γ = ∆[Γ ].
The pointclasses Σ0[Γ ] and Π0[Γ ] are defined as follows:

A ∈ Σ0[Γ ](X) ≡ (∃{An}∞n=0 ∈ ωΓ (X))
(
A =
⋃

n
An

)
,

A ∈ Π0[Γ ](X) ≡ (∃{An}∞n=0 ∈ ωΓ (X))
(
A =
⋂

n
An

)
.

We say that a pointclass Γ is closed under countable unions or closed under
countable intersections, if Σ0[Γ ] = Γ or Π0[Γ ] = Γ , respectively.

The pointclass Borel is self-dual. The pointclass of all open subsets of Polish
spaces is not self-dual. The ambiguous part of Σ0

ξ is the pointclass ∆0
ξ. One can

easily see that

Π0
ξ = ¬Σ0

ξ, Σ0
ξ+1 = Σ0[Π0

ξ], Σ0
ξ = Σ0[

⋃

η<ξ

Σ0
η] = Σ0[

⋃

η<ξ

Π0
η] for ξ limit.

Similarly

Σ0
ξ = ¬Π0

ξ, Π0
ξ+1 = Π0[Σ0

ξ], Π0
ξ = Π0[

⋃

η<ξ

Π0
η] = Π0[

⋃

η<ξ

Σ0
η] for ξ limit.

Let X, Y be Polish spaces. A set A ⊆ X is a projection along Y of a set
B ⊆ Y ×X , denoted by A = ∃Y B, if

A = {x ∈ X : (∃y ∈ Y ) 〈y, x〉 ∈ B} =
⋃

y∈Y
By = proj2(B).

We denote by ∃Y [Γ ](X) the set of all projections along Y of sets from Γ (Y ×X).
Similarly, we define the coprojection along Y of a set B ⊆ Y ×X as

∀Y B = {x ∈ X : (∀y ∈ Y ) 〈y, x〉 ∈ B} =
⋂

y∈Y
By.
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Thus, ∀Y [Γ ](X) is the set of all coprojections along Y of sets from Γ (Y × X).
Since we do not distinguish the homeomorphic products X×Y and Y ×X , we shall
often denote, e.g., ∃Y B = {x ∈ X : (∃y ∈ Y ) 〈x, y〉 ∈ B} for a set B ⊆ X × Y .

Note that neither ∃Y [Γ ] nor ∀Y [Γ ] must be a pointclass, since they need not
be closed under finite intersections or finite unions, respectively.

Using the de Morgan laws, one can easily see that

∀Y [Γ ] = ¬∃Y [¬Γ ].

Let F be a class of mappings from a Polish space to another one. A pointclass
Γ is said to be closed under inverse images of F if for any Polish spaces X, Y and
any mapping f : X −→ Y ∈ F , f−1(A) ∈ Γ (X) for every A ∈ Γ (Y ). Thus the
condition 1) of the definition of a pointclass just says that a pointclass is closed
under continuous inverse images. If F is the class of all Borel measurable mappings
then Γ is said to be closed under Borel inverse images. E.g., the pointclass Borel
is closed under Borel inverse images. The pointclass of all open sets in a Polish
space is not closed under Borel inverse images. Similarly, we say that a pointclass
Γ is closed under images of F if for any Polish spaces X, Y and any mapping
f : X −→ Y ∈ F , we have f(A) ∈ Γ (Y ) for any A ∈ Γ (X). By definition, the
pointclass of open sets is closed under inverse images of continuous mappings and
closed under images of open mappings.

A set U ⊆ Y ×X is said to be a Y -universal set for Γ (X) if U ∈ Γ (Y ×X)
and

A ∈ Γ (X) ≡ (∃y ∈ Y )A = Uy

for any subset A ⊆ X . A pointclass Γ is Y -parametrized if for any Polish space X
there exists a Y -universal set for Γ (X).
Lemma 5.14. Let Z be a Polish space such that Γ (Z) = ¬Γ (Z). Then there exists
no Z-universal set for Γ (Z).

Proof. Assume that U ∈ Γ (Z × Z) is a Z-universal set for Γ (Z). Set

A = {x ∈ Z : 〈x, x〉 /∈ U}.

Since Γ (Z) = ¬Γ (Z) and by the definition a pointclass is closed under inverse
images of continuous mapping, we obtain A ∈ Γ (Z). Thus there exists a z ∈ Z
such that A = Uz. Then

〈z, y〉 ∈ U ≡ y ∈ A ≡ 〈y, y〉 /∈ U,

for any y ∈ Z. For y = z we obtain a contradiction. �
Theorem 5.15. A self-dual pointclass cannot be parametrized by any Polish space.

Proof. Assume that Γ is self-dual and parametrized by a Polish space Z. Then
there exists a Z-universal set for Γ (Z), a contradiction with the lemma. �
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Theorem 5.16. Let Y , Z be Polish spaces.

a) Assume that there exists a continuous f : Z onto−→ Y . If Γ is Y -parametrized,
then Γ is Z-parametrized as well.

b) Assume that Γ is a hereditary pointclass and that there is an embedding
f : Z 1−1−→ Y (f is a homeomorphism of Z onto f(Z)). If the pointclass Γ is
Z-parametrized, then Γ is Y -parametrized as well.

Proof. Let X be a Polish space.
a) Let U ∈ Γ (Y ×X) be a Y -universal set for Γ (X). We set

V = {〈z, x〉 ∈ Z ×X : 〈f(z), x〉 ∈ Y ×X}.

Since the function F defined as F (z, x) = 〈f(z), x〉 is continuous, V = F−1(U),
we obtain V ∈ Γ (Z ×X). It is easy to see that Vz = Uf(z) for any z ∈ Z. Hence,
V is a Z-universal set for Γ (X).

b) Let U ∈ Γ (Z×X) be a Z-universal set for Γ (X). The function F defined
by F (z, x) = 〈f(z), x〉 is an embedding of Z × X into Y × X . It is easy to see
that the set F (U) ∈ Γ (f(Z) × X) is an f(Z)-universal set for Γ (X). Since Γ is
hereditary, there is a set V ∈ Γ (Y ×X) such that F (U) = V ∩ (f(Z) ×X). By
Lemma 5.13, c), V is Y -universal for Γ (X). �

Theorem [wAC] 5.17. Assume that Γ is a hereditary pointclass and X and Y are
Polish spaces, Y uncountable. Then the following are equivalent:

a) Γ (X) is ω2-parametrized.
b) Γ (X) is Y -parametrized.
c) Γ (X) is ωω-parametrized.
d) Γ (X) is [0, 1]-parametrized.

Proof. There exist continuous surjections ω2 onto−→ [0, 1] and ωω
onto−→ Y (see proof

of Theorem 3.3 and Corollary 5.7). Thus by Theorem 5.16 a) we have d)→a) and
b)→c). Since there are embeddings ω2 1−1−→ Y and ωω

1−1−→ [0, 1] by Theorem 5.16
b) we obtain a)→b) and c)→d). �

A starting point for a positive result is the basic result.
Theorem 5.18. The pointclass of all open subsets of Polish spaces is ω2-parame-
trized.

Proof. Let 〈X,O〉 be a Polish space. Fix an enumeration {Un : n ∈ ω} of a count-
able base of the topology O. We define set U ⊆ ω2×X as

〈α, x〉 ∈ U ≡ (∃n) (α(n) = 1 ∧ x ∈ Un).

One can easily see that the set U is open and the set {Uα : α ∈ ω2} is exactly the
set O of all open subsets of X . �
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Now we can go up in the hierarchies of pointclasses.

Theorem 5.19. Assume that Z is a Polish space.

a) If Γ is Z-parametrized then ¬Γ is also such.
b) Assume that the pointclass Γ is Z-parametrized. If Y is a Polish space then
∃Y [Γ ] is also Z-parametrized.

c) Let wAC hold true. Assume that Γ is ωA-parametrized, where A = {0, 1} or
A = ω. If |Γ (X)| � c for each Polish space X, then Σ0[Γ ] and Π0[Γ ] are
ωA-parametrized as well.

Proof. a) If U ∈ Γ (Z × X) is a Z-universal set for Γ (X), then (Z × X) \ U is
a Z-universal set for ¬Γ (X).

b) Assume that U ∈ Γ (Z× (Y ×X)) is a Z-universal set for Γ (Y ×X). Then

V = {〈z, x〉 ∈ Z ×X : (∃y ∈ Y ) 〈z, 〈y, x〉〉 ∈ U} ∈ ∃Y [Γ ](Z ×X)

is Z-universal for ∃Y [Γ ](X).
c) Assume that A is {0, 1} or ω (or any non-empty countable set). The

projection Projn : ωA −→ ωA was defined in (1.10) as Projn(α)(k) = α(π(n, k)).
We define Pn,X : ωA × X −→ ωA × X by Pn,X(α, x) = 〈Projn(α), x〉. Evidently
Pn,X is continuous and (P−1

n,X(U))α = UProjn(a) for α ∈ ωA.

Assume that the set U is an ωA-universal for Γ (X). Then the set

V =
⋃

n

P−1
n,X(U)

is ωA-universal for Σ0[Γ ](X). Actually, if α ∈ ωA then Vα =
⋃
n UProjn(α) belongs

to Σ0[Γ ](X). Vice versa, if B =
⋃
nBn and Bn = Uαn then B = Vα, where α is

such that an = Projn(a) (we have used wAC!). Then V ∈ Σ0[Γ ](ωA×X).
The assertion for Π0[Γ ] follows by a). �

A pointclass Γ has the separation property if for any Polish space X and for
any sets A1, A2 ∈ Γ (X), A1 ∩ A2 = ∅ there exists a set B ∈ ∆[Γ ](X) such that
A1 ⊆ B, and A2 ∩B = ∅. A pointclass Γ has the σ-separation property if for any
Polish space X and for any sequence {An}∞n=0 of pairwise disjoint sets from Γ (X)
there exists a sequence {Bn}∞n=0 of pairwise disjoint sets from ∆[Γ ](X) such that
An ⊆ Bn for each n.

A pointclass Γ has the reduction property if for any Polish space X and for
any sets A1, A2 ∈ Γ (X), there exist sets B1, B2 ∈ Γ (X) such that B1 ∩ B2 = ∅,
B1 ⊆ A1, B2 ⊆ A2 and A1 ∪ A2 = B1 ∪ B2. A pointclass Γ has the σ-reduction
property if for any Polish space X and for any sequence {An}∞n=0 of sets from
Γ (X) there exists a sequence {Bn}∞n=0 of pairwise disjoint sets from Γ (X) such
that Bn ⊆ An for each n and

⋃
nAn =

⋃
nBn.
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Theorem 5.20.

a) If a pointclass Γ has the reduction property, then the dual pointclass ¬Γ has
the separation property.

b) Let A be {0, 1} or ω. Assume that there exists an ωA-universal set for Γ (ωA).
Then Γ cannot have both the separation and reduction properties.

Assume wAC and |Γ (X)| � c for any Polish space X.

c) If the pointclass Γ is closed under countable unions and has the separation
property, then Γ has the σ-separation property.

d) If ¬Γ ⊆ Σ0[Γ ], then Σ0[Γ ] has the σ-reduction property.

Proof. a) Assume that A1, A2 ∈ ¬Γ (X), A1∩A2 = ∅. Then X \A1, X \A2 ∈ Γ (X)
and (X\A1)∪(X\A2) = X . Thus there are B1, B2 ∈ Γ (X) such that B1 ⊆ X\A1,
B2 ⊆ X \ A2, B1 ∩ B2 = ∅ and B1 ∪ B2 = (X \ A1) ∪ (X \ A2) = X . Hence
B2 ∈ ∆[Γ ](X), A1 ⊆ B2 and A2 ∩B2 = ∅.

b) Let U be an ωA-universal set for Γ (ωA). We define two continuous functions
Pi : ωA −→ ωA, i = 1, 2 as follows: if a ∈ ωA then Pi(a) = bi, where b1(n) = a(2n),
b2(n) = a(2n+ 1). Then the function P (a) = 〈P1(a), P2(a)〉 is a homeomorphism
from ωA onto ωA × ωA. Set Ui = {〈a, x〉 : 〈Pi(a), x〉 ∈ U}, i = 1, 2. Evidently
U1, U2 ∈ Γ (ωA× ωA).

Assume that Γ has both the reduction and separation properties. Then there
are disjoint sets B1, B2 ∈ Γ (ωA× ωA) such that

B1 ⊆ U1, B2 ⊆ U2, U1 ∪ U2 = B1 ∪B2. (5.12)

Let C ∈ ∆[Γ ](ωA× ωA) be such that

B1 ⊆ C and B2 ∩ C = ∅. (5.13)

We show that C is ωA-universal for ∆[Γ ](ωA), contradicting Lemma 5.14.
Actually, let D ∈ ∆[Γ ](ωA). Then there are a1, a2 ∈ ωA such that D = Ua1 and
ωA \D = Ua2 . Let a be such that P1(a) = a1, P2(a) = a2. Then D = (U1)a and
ωA \ D = (U2)a. Since (U1)a ∩ (U2)a = ∅, by (5.12) we obtain D = (B1)a and
ωA \D = (B2)a. By (5.13) we have D = Ca.

c) Let {An}∞n=0 be a sequence of pairwise disjoint sets belonging to Γ (X).
We set Fn =

⋃
i=nAi. Then Fn ∈ Γ (X). By the separation property for any n

there exists a set En ∈ ∆[Γ ](X) such that An ⊆ En and En ∩ Fn = ∅. We define
by induction B0 = E0 and Bn = En\

⋂
i<nBi for n > 0. Evidently Bn ∈ ∆[Γ ](X),

n ∈ ω are pairwise disjoint and An ⊆ Bn for any n.
d) Let An =

⋃
k An,k, where An,k ∈ Γ (X). We set (π is a pairing function):

Bn,k = An,k \
⋃

π(m,l)<π(n,k)

Am,l.

The sets Bn,k ∈ Σ0[Γ ](X) are pairwise disjoint. Then the sets Bn =
⋃
k Bn,k are

pairwise disjoint as well, Bn ∈ Σ0[Γ ](X), and
⋃
nBn =

⋃
nAn. �
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A mapping ρ : A −→ On is called a rank. A rank ρ is called regular if rng(ρ)
is an ordinal. Two ranks ρ1, ρ2 on a set A are equivalent if for any x, y ∈ A,

ρ1(x) ≤ ρ1(y) ≡ ρ2(x) ≤ ρ2(y).

If ρ is a rank on a set A, one can define a prewell-ordering ≤ρ on A by

x ≤ρ y ≡ ρ(x) ≤ ρ(y). (5.14)

The strict part <ρ of this prewell-ordering is defined as

x <ρ y ≡ ρ(x) < ρ(y). (5.15)

Note that if x ≤ρ y or x <ρ y then x, y ∈ A.
By definition two equivalent ranks define the same prewell-ordering. If R is

a prewell-ordering on a set A, one can define by induction a regular rank σ such
that R =≤σ. Especially, if ρ is a rank, then there exists a regular rank σ such that
≤ρ=≤σ, thus

for every rank there exists an equivalent regular rank.

Assume that A ⊆ X , where X is a given set, and ρ is a rank on A. We define
relations ≤∗

ρ, <
∗
ρ extending the prewell-ordering ≤ρ or <ρ as follows:

(∀x, y ∈ X) (x ≤∗
ρ y ≡(x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ x ≤ρ y)))), (5.16)

(∀x, y ∈ X) (x <∗
ρ y ≡(x ∈ A ∧ (y /∈ A ∨ (y ∈ A ∧ x <ρ y)))). (5.17)

Lemma 5.21. Let ρ be a rank on a set A ∈ Γ (X). Then the following are equivalent:

a) Both relations ≤∗
ρ and <∗

ρ are in Γ (X ×X).
b) There exist relations ≤+∈ Γ (X ×X) and ≤−∈ ¬Γ (X ×X) such that

(∀x ∈ X)(∀y ∈ A) (x ≤ρ y ≡x ≤+ y), (5.18)

(∀x ∈ X)(∀y ∈ A) (x ≤ρ y ≡x ≤− y). (5.19)

Proof. Assume that ρ is a rank and ≤∗
ρ, <

∗
ρ∈ Γ (X ×X). If we define

x ≤+ y ≡ x ≤∗
ρ y, x ≤− y ≡ ¬y <∗

ρ x, (5.20)

then ≤+∈ Γ (X ×X), ≤−∈ ¬Γ (X ×X), and (5.18) and (5.19) hold true.
Assume now that there are ≤+∈ Γ (X × X),≤−∈ ¬Γ (X × X) satisfying

(5.18) and (5.19). Then by (5.16), (5.17), (5.18), (5.19) we obtain

(∀x, y ∈ X) (x ≤∗
ρ y ≡(x ∈ A ∧ (¬y ≤− x ∨ x ≤+ y))),

(∀x, y ∈ X) (x <∗
ρ y ≡(x ∈ A ∧ ¬y ≤− x)).

Thus, ≤∗
ρ, <

∗
ρ∈ Γ (X ×X). �
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Let Γ be a pointclass, X being a Polish space. A regular rank ρ : A −→ On
on a subset A of X is called a Γ -rank if the relations ≤∗

ρ, <
∗
ρ are in Γ (X ×X). If

there exists a Γ -rank on A we say also that A admits a Γ -rank. The pointclass Γ
is ranked if every A ∈ Γ (X) admits a Γ -rank for each Polish space X .
Theorem 5.22. If Γ is a ranked pointclass, then Γ has the reduction property.

Proof. Let A1, A2 ∈ Γ (X). Set

A = A1 × {1} ∪A2 × {2} ⊆ X × {1, 2}.

One can easily see that A ∈ Γ (X×{1, 2}) and therefore A admits a Γ -rank ρ. Set

B1 = {x ∈ X : 〈x, 1〉 ≤∗
ρ 〈x, 2〉}, B2 = {x ∈ X : 〈x, 2〉 <∗

ρ 〈x, 1〉}.

Set f(x) = 〈〈x, 1〉, 〈x, 2〉〉 for x ∈ X . Then f is continuous and B1 = f−1(≤∗
ρ).

Since ≤∗
ρ∈ Γ (X ×X) we obtain that B1 ∈ Γ (X). Similarly for B2.

By (5.16) and (5.17) we have B1 ∩ B2 = ∅. Evidently B1 ∪ B2 ⊆ A1 ∪ A2.
If x ∈ A1 ∪ A2 then one can easily see that either 〈x, 1〉 ≤∗

ρ 〈x, 2〉 and x ∈ B1 or
〈x, 2〉 <∗

ρ 〈x, 1〉 and x ∈ B2. �

Together with Theorem 5.20 we obtain

Corollary 5.23. If there exists a ω2-universal set for Γ (ω2) or an ωω-universal set
for Γ (ωω), then pointclasses Γ and ¬Γ cannot be both ranked.
Theorem 5.24 (Y.N. Moschovakis). Let Y be a Polish space. If a ranked pointclass
Γ is closed under ∀Y , then ∃Y [Γ ] is ranked, provided that ∃Y [Γ ] is a pointclass
at all.3

Proof. Assume that X is a Polish space and A ∈ ∃Y [Γ ](X). Then there exists
a set B ∈ Γ (X × Y ) such that

A = {x ∈ X : (∃y ∈ Y ) 〈x, y〉 ∈ B}.

By assumption, there exists a Γ -rank ρ on B. We set

τ(x) = min{ρ(x, y) : 〈x, y〉 ∈ B}.

Evidently, τ is a rank on the set A. One can easily see that

x1 ≤∗
τ x2 ≡ (∃y ∈ Y )(∀z ∈ Y ) 〈x1, y〉 ≤∗

ρ 〈x2, z〉,
x1 <

∗
τ x2 ≡ (∃y ∈ Y )(∀z ∈ Y ) 〈x1, y〉 <∗

ρ 〈x2, z〉.

Thus ≤∗
τ , <

∗
τ∈ ∃Y [∀Y [Γ ]](X ×X). Since Γ is closed under ∀Y we obtain that τ

is an ∃Y [Γ ]-rank. �
3i.e., if it is closed under finite intersections.
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A sequence 〈ρn : n ∈ ω〉 of ranks on a subset A of a Polish space X is called
a scale on A if

for any convergent sequence {xk}∞k=0 of elements of A such
that (∀n)(∃m)(∀k1, k2 ≥ m) ρn(xk1 ) = ρn(xk2 ), the limit
limk→∞ xk ∈ A and (∀n)(∃m)(∀k ≥ m) ρn(limk→∞ xk) ≤ ρn(xk).

(5.21)

If, moreover, every rank ρn is a Γ -rank then 〈ρn : n ∈ ω〉 is said to be a Γ -scale.
If there exists a Γ -scale on A we say also that A admits a Γ -scale. The pointclass
Γ is scaled if for every Polish space X every A ∈ Γ (X) admits a Γ -scale.

Let A ⊆ X × Y . We say that a set B ⊆ A uniformizes the set A if

(∀x ∈ X) ((∃y ∈ Y ) 〈x, y〉 ∈ A ≡ (∃y ∈ Y ) 〈x, y〉 ∈ B), (5.22)
(∀x ∈ X)(∀y1, y2 ∈ Y ) ((〈x, y1〉 ∈ B ∧ 〈x, y2〉 ∈ B) → y1 = y2). (5.23)

Thus B is a function with domain dom(B) = dom(A) and with graph lying in A.
A pointclass Γ has the uniformization property, if for every Polish spaces X , Y
and every set A ∈ Γ (X × Y ) there exists a set B ∈ Γ (X × Y ) which uniformizes
the set A.

There is an important relationship between the notions we have introduced.
Lemma [wAC] 5.25 (The Uniformization Lemma). If a set A ∈ Γ (X×ωω) admits
a Γ -scale, then there exists a set B ∈ ∀ωω[Γ ](X × ωω) that uniformizes A.

Proof. Let A ∈ Γ (X × ωω), {ρn}∞n=0 being a Γ -scale on A. Let ≤∗
n, <∗

n denote
the relations defined from the ranks ρn by (5.16) and (5.17). We define Γ -ranks
〈!∗

n: n ∈ ω〉 on A as the lexicographic ordering of 2n-tuples

〈ρ0(〈x, y〉), y(0), ρ1(〈x, y〉), y(1), . . . , ρn−1(〈x, y〉), y(n − 1)〉.

Thus for any x, u ∈ X and y, v ∈ ωω we have

〈x, y〉 �∗
n 〈u, v〉 ≡ (∃i < n)(∀j < i) (〈x, y〉 ≤∗

j 〈u, v〉 ∧ 〈u, v〉 ≤∗
j 〈x, y〉

∧ y(j) = v(j) ∧ (〈x, y〉 <∗
i 〈u, v〉

∨ (〈x, y〉 ≤∗
i 〈u, v〉 ∧ 〈u, v〉 ≤∗

i 〈x, y〉 ∧ y(i) < v(i))))

and

〈x, y〉 !∗
n 〈u, v〉 ≡ (〈x, y〉 �∗

n 〈u, v〉
∨ (∀i < n) (〈x, y〉 ≤∗

i 〈u, v〉 ∧ 〈u, v〉 ≤∗
i 〈x, y〉 ∧ y(i) = v(i)).

If 〈x, y〉 ∈ A and 〈u, v〉 /∈ A, then 〈x, y〉 <∗
0 〈u, v〉. Hence 〈x, y〉 �∗

n 〈u, v〉 for any n
as well.

Let Bn denote the set defined as

〈x, y〉 ∈ Bn ≡ (∀z ∈ ωω) (〈x, y〉 !∗
n 〈x, z〉).
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Since !∗
n+1⊆!∗

n, we have Bn+1 ⊆ Bn ⊆ A. Since Bn ∈ ∀
ωω[Γ ](X×ωω) for each n,

then also B =
⋂
nBn belongs to ∀ωω[Γ ](X×ωω). We show that B uniformizes A.

Evidently B ⊆ A. By definition, if 〈x, y1〉, 〈x, y2〉 ∈ Bn then y1(i) = y2(i) for
each i ≤ n. Thus, if 〈x, y1〉, 〈x, y2〉 ∈ B then y1 = y2.

We have to show that dom(A) ⊆ dom(B). So assume that x ∈ dom(A). Then
there exists a y ∈ ωω such that 〈x, y〉 ∈ A. We define

Y0 = {y ∈ ωω : 〈x, y〉 ∈ A ∧ (∀z) (〈x, z〉 ∈ A→ 〈x, y〉 !∗
0 〈x, z〉)},

Yn+1 = {y ∈ Yn : 〈x, y〉 ∈ A ∧ (∀z) (〈x, z〉 ∈ Bn → 〈x, z〉 !∗
n+1 〈x, z〉}.

One can easily show by induction that Yn �= ∅ for every n. Moreover, if y ∈ Yn
then 〈x, y〉 ∈ Bn.

For any y1, y2 ∈ Yn we have 〈x, y1〉 !∗
n 〈x, y2〉 and 〈x, y2〉 !∗

n 〈x, y1〉, es-
pecially y1(i) = y2(i) for any i ≤ n. Let z(n) be the common value y(n) for
y ∈ Yn. By wAC there exists a sequence 〈zn ∈ Yn : n ∈ ω〉 such that zn|n = z|n.
Then limn→∞〈x, zn〉 = 〈x, z〉. Moreover, for m > n we have zm ∈ Yn and there-
fore ρn(〈x, zm〉 = ρn(〈x, zn〉), i.e., the assumption of (5.21) is fulfilled. Since
〈x, z〉 !∗

n 〈x, zn〉 and 〈x, zn〉 ∈ Bn we obtain 〈x, z〉 ∈ Bn. Then also 〈x, z〉 ∈ B. �
Lemma [wAC] 5.26. Assume that Γ is a hereditary pointclass closed under ∀ωω

and under injective continuous images. If for every Polish space X and for any
set A ∈ Γ (X × ωω) there exists a set B ∈ Γ (X × ωω) which uniformizes A, then
Γ has the uniformization property.

Proof. Let A ∈ Γ (X × Y ), X , Y being Polish spaces. By Theorem 6.1 there exist
a closed set C ⊆ ωω and a continuous bijection f : C 1−1−→

onto
Y . Then the function F

defined as F (x, y) = [x, f(y)] is a continuous bijection F : X × C
1−1−→
onto

X × Y .

Since Γ is hereditary we obtain A∗ = F−1(A) ∈ Γ (X × C) ⊆ Γ (X × ωω). By
the assumptions there exists a set B∗ ∈ Γ (X × ωω) uniformizing the set A∗.
Then B = F (B∗) uniformizes the set A. Since F is an injection, we have B ∈
Γ (X × Y ). �

From Lemmas 5.25 and 5.26 we immediately obtain:
Theorem [wAC] 5.27 (The Uniformization Theorem). Assume that Γ is a he-
reditary pointclass closed under ∀ωω and under injective continuous images. If Γ
admits a Γ -scale, then Γ has the uniformization property.
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Exercises

5.8 Γ -rank

Let Γ be a pointclass, ∆ = Γ ∩ ¬Γ .

a) ρ : A
onto−→ λ is a Γ -rank if and only if there exist relations ≤◦ and <◦ in ¬Γ (X×X)

satisfying

(∀x ∈ X)(∀y ∈ A) ((x ≤ρ y ≡ x ≤◦ y) ∧ (x <ρ y ≡ x <◦ y)).

b) If ρ : A
onto−→ λ is a Γ -rank, x ∈ A, then W = {〈y, z〉 ∈ A2 : ρ(y) < ρ(z) < ρ(x)} ∈ ∆

is a prewell-ordering.

c) If ρ : A
onto−→ λ is a Γ -rank, then A =

⋃
ξ<λ Aξ with Aξ ∈ ∆.

Hint: Let x ∈ A be such that ρ(x) = ξ. Set Aξ = {y ∈ A : ρ(y) < ρ(x)}.
5.9 Very Good Scale

A scale 〈ρn : n ∈ ω〉 on a set A is a very good scale if

1) ρn(x) ≤ ρn(y)→ ρm(x) ≤ ρm(y) for m < n,

2) if xn ∈ A and for any n there exists an m0 such that ρn(xm1) = ρn(xm2) for any
m1,m2 > m0, then there is an x ∈ A such that x = limn→∞ xn.

We assume that the pointclass Γ is closed under ∀ ωω and under Borel isomorphisms.

a) Assume that f : X −→ Y is continuous, f injective on A = f−1(B). If 〈ρn : n ∈ ω〉
is a very good scale on B, then 〈σn : n ∈ ω〉, where σn(x) = ρn(f(x)), is a very
good scale on A.

b) If A ∈ Γ (X × ωω) admits a Γ -scale, then A admits a very good Γ -scale.

Hint: The scale constructed in the proof of Lemma 5.25 is a very good Γ -scale.

c) Prove directly the Uniformization Theorem.

Hint: If 〈ρn : n ∈ ω〉 is a very good scale on A ⊆ X × Y , then

B = {〈x, y〉 ∈ A : (∀n)(∀z) (〈x, z〉 ∈ A→ 〈x, y〉 ≤∗
ρn
〈x, z〉}

uniformizes A.

5.10 Scale on ∃ ωω[Γ ]

Let B ∈ Γ (X × ωω), A = {x ∈ X : (∃y ∈ ωω) 〈x, y〉 ∈ B}. Let 〈σn : B −→ κ : n ∈ ω〉 be
a Γ -scale on B. Let D ⊆ B, D ∈ Γ uniformizes the set B.

a) Define τn(x) = σn(〈x, y〉) if x ∈ A and 〈x, y〉 ∈ D. Show that τn is a scale on A.

b) If Γ is closed under ∀ ωω, then every τn is a ∃ ωω[Γ ]-rank.

Hint: Note that

x1 ≤∗
τn
x2 ≡ (∃y1, y2 ∈ ωω) (〈x1, y1〉 ∈ D ∧ 〈x1, y1〉 ≤∗

σn
〈x2, y2〉)

≡ (∀y1, y2 ∈ ωω) (〈x1, y1〉 ∈ D ∧ 〈x1, y1〉 ≤∗
σn
〈x2, y2〉).

c) If Γ is closed under ∀ ωω, then 〈τn : n ∈ ω〉 is a ∃ ωω[Γ ]-scale.

d) If a scaled pointclass Γ is closed under ∀ ωω, then the pointclass ∃ ωω[Γ ] is also
scaled.
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5.11 Boundedness Theorem

Assume that Γ is closed under ∀X , A ⊆ X and ρ : A −→ λ is a Γ -rank. If B ⊆ A,
B ∈ ¬Γ , A /∈ ¬Γ , then there exists x0 ∈ A such that ρ(y) < ρ(x0) for each y ∈ B.

Hint: If not, then
x ∈ A ≡ (∃y) (y ∈ B ∧ x ≤∗

ρ y).

5.12 Moschovakis Number

Let Γ be a pointclass, ∆ = Γ ∩ ¬Γ . The ordinal

δ(Γ ) = sup{|W | : W is a strict prewell-ordering of a subset of ωω ∧W ∈ ∆}

is called the Moschovakis Number of Γ .

a) δ(Γ ) = δ(¬Γ ) = δ(∆).

b) If W ∈ ∆ is a prewell-ordering, then its strict part also belongs to ∆.

c) IfW ∈ ∆ is a prewell-ordering of a subset of ωω, then there exists a prewell-ordering
R ∈ ∆ of a subset of ωω such that ot(R) = ot(W ) + 1.

d) δ(Γ ) is a limit ordinal.

e) If X is a perfect Polish space and Γ is closed under ∃ ωω or ∀ ωω, then

δ(Γ ) = sup{|W | : W is a prewell-ordering ∧W ∈ ∆(X)}.

Hint: Use Corollary 5.7.

f) If ρ is a Γ -rank, then ot(ρ) ≤ δ(Γ ).

Hint: Use the result of Exercise 5.8, b).

g) If every set of Γ is κ-Souslin, then δ(Γ ) < κ+, provided that wAC holds true.

Hint: Use the Kunen-Martin Theorem of Exercise 5.7, b).

5.3 Boolean Algebras

In this section we assume the Axiom of Choice AC.
A Boolean algebra B = 〈B,∨,∧,−, 0, 1〉 is a set B equipped with two binary

operations ∨,∧, one unary operation −, and two special elements 0, 1 such that

1) ∨,∧ are associative and commutative,

2) ∨,∧ are mutually distributive, i.e., for any x, y, z ∈ B we have

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z), x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z), (5.24)

3) both operations ∨,∧ are idempotent, i.e., x ∨ x = x and x ∧ x = x,

4) x ∨ 0 = x, x ∧ 1 = x, x ∨ (−x) = 1 and x ∧ (−x) = 0 for any x ∈ B.

It is easy to show that x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x for any x, y ∈ B.
Moreover x ∨ y = y ≡ x ∧ y = x. For x, y ∈ B we write x− y = x ∧ (−y).

If we define
x ≤ y ≡ x ∨ y = y ≡ x ∧ y = x, (5.25)
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then 〈B,≤〉 is a poset, 0 is the least element, 1 is the greatest element, and for every
x, y ∈ B, there exist sup{x, y} = x∨ y, inf{x, y} = x∧ y and the complement −x.

A Boolean algebra can be equivalently defined as a partially ordered set
〈B,≤〉 with the least element 0, the greatest element 1 and such that every finite
subset has a supremum and an infimum, the distributive laws (5.24) hold true and
every element x has a complement.

A typical example of a Boolean algebra is an algebra S of subsets of a given
set X – see Section 3.3. Then ∨ = ∪, ∧ = ∩, 0 = ∅, 1 = X and −B = X \ B.
The algebra of sets CO(X,O) consisting of all clopen subsets of a topological
space 〈X,O〉 is an important example of such an algebra, since

Theorem [AC] 5.28 (M.H. Stone). For any Boolean algebra B there exists, up to
a homeomorphism, a unique compact topological space 〈X,O〉 such that CO(X,O)
is isomorphic to B and CO(X,O) is a base of the topology O.

Let B = 〈B,∨,∧,−, 0, 1〉 be a Boolean algebra. Let us recall that elements
x, y ∈ B are disjoint if x ∧ y = 0. Let A ⊆ B be an infinite set. If there exists
a supremum a = supA (in the ordering defined by (5.25)), then we shall denote
it by

∨
A. Especially, if A = {as : s ∈ S}, we shall write a =

∨
s∈S as. Similarly

for the infimum
∧
A = inf A and a =

∧
s∈S as.

Let κ be an uncountable regular cardinal. A Boolean algebra B is κ-complete
if supA and inf A exist for any A ⊆ B, |A| < κ. Especially, a Boolean algebra is
called σ-complete if it is ℵ1-complete. An algebra B is said to be complete if it
is κ-complete for every infinite κ. Evidently, a Boolean algebra B is complete if
and only if it is κ+-complete, where κ = |B|. A κ-additive algebra of sets S (for
definition see Section 3.3) is a κ-complete Boolean algebra in which

∨
A =

⋃
A

and
∧
A =

⋂
A for any A ⊆ S, |A| < κ.

If 〈X,O〉 is a topological space, then the set RO(X,O) of all regular open
subsets of X ordered by the inclusion is a complete Boolean algebra. RO(X,O)
need not be an algebra of sets. The Boolean operations are as follows:

−A = Int(X \A),
∨
A = Int(

⋃
A),

∧
A = Int(

⋂
A).

Let B1 = 〈B1,∨1,∧1,−1, 01, 11〉, B2 = 〈B2,∨2,∧2,−2, 02, 12〉 be Boolean
algebras. B1 is a subalgebra of B2 if B1 ⊆ B2, 01 = 02, 11 = 12, x ∨1 y = x ∨2 y,
x∧1y = x∧2y, −1x = −2x for any x, y ∈ B1. Moreover, B1 is said to be a complete
subalgebra of B2 if for every A ⊆ B1 we have x =

∨
2A, provided that x =

∨
1A.

A Boolean algebra B satisfies the κ-chain condition, or simply is κ-CC, if
for every subset A ⊆ B of pairwise disjoint elements we have |A| < κ. Instead
of ℵ1-CC we speak about a CCC Boolean algebra, i.e., an algebra satisfying the
countable chain condition. Let us notice the following: if A = {xξ : ξ < λ} is a set
of pairwise disjoint elements, then the set {

∨
η≤ξ xη : ξ < λ} is a strictly increasing

chain of length λ and conversely, if {yξ : ξ < λ} is a strictly increasing chain, then
{yξ+1 − yξ : ξ < λ} is a set of λ many pairwise disjoint elements.
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A subset I ⊆ B is called an ideal of B if

1) 0 ∈ I, 1 /∈ I,

2) if x ∈ I, y ≤ x, then y ∈ I,

3) if x, y ∈ I, then x ∨ y ∈ I.

If S is an algebra of subsets of a set X and I is an ideal on X , then I ∩ S is an
ideal of the Boolean algebra S.

If I is an ideal of the Boolean algebra B, we can construct the quotient
algebra B/I. We define an equivalence relation ∼I on B as

x ∼I y if and only if x− y ∈ I and y − x ∈ I.

The universe B/I is the set of equivalence classes B/ ∼I . The operations are
defined modulo the ideal I, e.g. (we abbreviate {x}I = {x}∼I )

{x}I ∨ {y}I = {z}I if and only if (x ∨ y) ∼I z.

Similarly for ∧ and −.
If a ∈ B, a �= 0B, then I = {x ∈ B : x ≤ −a} is an ideal and B/I is

isomorphic to the Boolean algebra {x ∈ B : x ≤ a}. We shall denote it as B|a.
A mapping h : B1 −→ B2 is called a homomorphism of the Boolean algebra

B1 into B2 if h(x ∨1 y) = h(x) ∨2 h(y) and h(−1x) = −2h(x) for any x, y ∈ B1.
Note that then also h(x∧1 y) = h(x)∧2 h(y), h(01) = 02 and h(11) = 12. We shall
write h : B1 −→ B2.

If h : B1 −→ B2 is a homomorphism, then the kernel

Ker (h) = {x ∈ B1 : h(x) = 0}

is an ideal. If q : B −→ B/I is the quotient map defined by q(x) = {x}I , then q is
a homomorphism with the kernel Ker (q) = I.

A subset F ⊆ B is called a filter of B if

1) 0 /∈ F , 1 ∈ F ,

2) if x ∈ F , y ≥ x, then y ∈ F ,

3) if x, y ∈ F , then x ∧ y ∈ F .

Evidently a set F is a filter if and only if the set I = {x ∈ B : −x ∈ F} is an ideal.
Sometimes we prefer to speak about filters instead of ideals. If S is an algebra of
subsets of a set X and F is a filter on X , then F ∩ S is a filter of the Boolean
algebra S. A filter F is maximal if and only if F is an ultrafilter, i.e., if

4) x ∈ F or −x ∈ F for every x ∈ B.

The axiom of choice implies that every filter can be extended to an ultrafilter.
The notions of a filter and an ultrafilter defined in Section 1.1 are special cases of
introduced notions in the case of Boolean algebra P(X).



5.3. Boolean Algebras 185

An ideal I of a κ-complete Boolean algebra is called κ-complete if for any
A ⊆ I of cardinality |A| < κ also

∨
A ∈ I. If I is a κ-complete ideal in a κ-complete

Boolean algebra B, then the quotient algebra B/I is κ-complete.
Again, if S is a κ-additive algebra of subsets of a set X and I is a κ-additive

ideal on X then I ∩ S is a κ-complete ideal of the κ-complete Boolean algebra S.
An ideal I of a Boolean algebra B is said to be κ-saturated if every subset

A ⊆ B \ I such that a ∧ b ∈ I for any a, b ∈ A, a �= b, has cardinality |A| < κ.
Note that a κ-saturated ideal is also λ-saturated for any λ > κ.

If a Boolean algebra B is κ-complete and κ-CC, then B is complete. However,
if an ideal I is κ-saturated, then the quotient algebra B/I is κ-CC. Thus
Theorem [AC] 5.29. If B is κ-complete, I is a κ-complete κ-saturated ideal, then
B/I is a complete Boolean algebra.

A partially ordered set 〈X,≤〉 is separative if for any x, y ∈ X , y � x there
exists an element z ≤ y, z �= 0X and disjoint with x. If B is a Boolean algebra,
then 〈B,≤〉 is separative (take z = y − x).
Theorem [AC] 5.30. Let 〈X,≤〉 be a separative partially ordered set. Then there
exists a complete Boolean algebra B = 〈B,∨,∧,−, 0, 1〉 such that

(i) X ⊆ B and ≤ agrees with the partial ordering of B,
(ii) if any of the least and greatest elements 0X , 1X of X does exist, then it is

identical with 0, 1 of B, respectively,
(iii) X is order dense in B,
(iv) if A ⊆ X and the supremum a = supA ∈ X exists, then a =

∨
A in B,

(v) if A ⊆ X and the infimum a = inf A ∈ X exists, then a =
∧
A in B.

The Boolean algebra B is unique up to isomorphism.
Thus, for any Boolean algebra there exists, up to isomorphism, a unique

complete Boolean algebra containing it as a complete dense subalgebra.

The Boolean algebra B is called a completion of 〈X,≤〉 and will be denoted
by r.o.(X,≤). If X = 〈X,≤〉 is a Boolean algebra, instead of r.o.(X,≤) we write
comp(X).

Note that a set A ⊆ B \ {0} is predense if
∨
A = 1. A Boolean algebra B

is said to be κ-distributive if the intersection of any set of cardinality κ of open
dense sets is a dense set. One can easily see that B is κ-distributive if and only
if for any system 〈Aξ ⊆ B : ξ ∈ κ〉 of predense sets there exists a predense set
A ⊆ B that is a common refinement of all Aξ, ξ ∈ κ.

A partially ordered set X is said to be κ-closed if for every λ ≤ κ, every
non-increasing sequence 〈xξ : ξ < λ〉 of elements of X \ {0X} is bounded from
below by a non-zero element.
Theorem [AC] 5.31. Assume that there exists a dense κ-closed subset D ⊆ B.
Then B is κ-distributive.

The proof is easy. Let D be a dense κ-closed subset of B. Assume that 〈Aξ, ξ < κ〉
are open dense subsets of B. Let A =

⋂
ξ<κAξ. We show that A is dense in B.
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Let a ∈ B, a �= 0. We define a non-increasing sequence 〈aξ : ξ ∈ κ〉 of
elements of D such that aξ ∈ Aξ and a0 ≤ a. Since A0 is open dense there exists
an a0 ∈ A0 ∩ D such that a0 ≤ a. Assume that aη are defined for η < ξ. Then
there exists an element aξ ∈ D ∩Aξ such that aξ ≤ aη for η < ξ.

Let b be a non-zero lower bound of the sequence {aξ}ξ<κ. Then b ∈ A and
b ≤ a. Thus A is dense. �

An element a ∈ B is called an atom if a �= 0 and there is no x ∈ B such that
0 < x < a. A Boolean algebra B is atomic if for every b ∈ B \ {0} there exists an
atom a ≤ b. It is easy to see a complete Boolean algebra B is atomic if and only
if B is isomorphic to an algebra of sets of the form P(X). A Boolean algebra B is
atomless if there is no atom in B.
Theorem 5.32. Let B be a complete Boolean algebra. Then the following are equiv-
alent:

(1) B is atomic and therefore isomorphic to an algebra of the form P(X).
(2) B is κ-distributive for any κ.
(3) B is |B|-distributive.

Proof. Evidently (1)→ (2) and (2) → (3). We show that (3) → (1). Actually take
the set {{a,−a} : a ∈ B} of dense subsets of B. By |B|-distributivity there exists
a common refinement A of all {a,−a}, a ∈ B \ {0, 1} such that

∨
A = 1. Every

element of A is an atom. �

Usually it is more handy to investigate the above notions on a poset. Let
〈X,≤〉 be a separative partially ordered set. Let D be a family of dense subsets of
X . A set G ⊆ X is called a D-generic filter of X if

(i) G �= X ;

(ii) if x ∈ G and x ≤ y, then y ∈ G;

(iii) if x, y ∈ G, then there exists a z ∈ G such that z ≤ x and z ≤ y;

(iv) if D ∈ D, then D ∩G �= ∅.
Thus G is a D-generic filter of a Boolean algebra B, if G is a filter and D ∩G �= ∅
for each D ∈ D. There is a classical result.
Theorem [AC] 5.33 (H. Rasiowa – R. Sikorski). Suppose that B is a Boolean alge-
bra, a ∈ B, a �= 0. If D is a countable set of dense subsets of B, then there exists
a D-generic filter of B containing the element a.

Proof. Let D = {Dn : n ∈ ω}. Since D0 is a dense subset, there exists an a0 �= 0,
a0 ∈ D0 such that a0∧a �= 0. By induction, if an ∈ Dn is defined, then there exists
an an+1 ∈ Dn+1 such that an+1 ∧ an ∧ · · · ∧ a0 ∧ a �= 0. The filter F defined as

x ∈ F ≡ (∃n) (an ∧ · · · ∧ a0 ∧ a) ≤ x

is the desired D-generic filter of B. �
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Note that the condition of countability in the Rasiowa-Sikorski Theorem 5.33
is essential. Actually, take the set X = <ωω1 ordered by the inverse inclusion ⊇.
Let B = r.o.(X,⊇). For any ξ < ω1 and any m ∈ ω we set

Dξ = {a ∈ X : (∃n ∈ dom(a)) a(n) = ξ}, D = {Dξ : ξ < ω1}.

Then Dξ is a dense subset of B for every ξ < ω1.
We claim that there is no D-generic filter. Actually, if F were a D-generic

filter of B, then the set

{〈n, ξ〉 : (∃a ∈ F ∩X) a(n) = ξ}

would be a surjection of a subset of ω onto ω1.
However it turned out that passing to CCC Boolean algebras we can replace

countable sets by larger ones.
We define the Martin number as

m = min{|D| : (∃B) ((B is a complete CCC Boolean algebra)
∧ (D is a set of dense subsets of B) ∧ (no filter of B is D-generic))}.

By the Rasiowa-Sikorski Theorem 5.33 we have ℵ0 < m.
The Martin number m can be characterized by many different tools. We need

just to recall some well-known notions.
A poset 〈X,≤〉 is CCC if any subset of pairwise disjoint elements is countable.

Similarly, a topological space 〈X,O〉 is CCC if any family of pairwise disjoint open
sets is countable, i.e., if the poset 〈O,⊆〉 is CCC.
Theorem [AC] 5.34. Let κ be an infinite cardinal. Then the following are equiva-
lent:

a) κ < m.
b) If B is a CCC complete Boolean algebra, a ∈ B, a �= 0, D is a set of dense

subsets of B, |D| ≤ κ then there exists a D-generic filter F of B such that
a ∈ F .

c) If 〈X,≤〉 is a CCC separative partially ordered set, D is a set of dense subsets
of X, |D| ≤ κ then there exists a D-generic filter F of X.

d) If 〈X,≤〉 is a CCC separative partially ordered set, a ∈ X, a �= 0X, D is a
set of dense subsets of X, |D| ≤ κ then there exists a D-generic filter F of
X such that a ∈ F .

e) If 〈X,O〉 is a CCC compact topological space, then X is not a union of ≤ κ
meager subsets.

f) If 〈X,O〉 is a CCC compact topological space, then intersection of κ open
dense sets is a dense subset of X.

Proof. The equivalence of a) and c) follows by Theorem 5.30. Similarly for b) and
d). e) and f) are trivially equivalent. Also the implications a) → b) and c) → d)
are trivial.
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Assume d). If 〈X,O〉 is a CCC compact topological space then RO(X,O)
is a CCC complete Boolean algebra. Assume that 〈Aξ : ξ < κ〉 are open dense
subsets of X . Let U be a non-empty open set. We show that U ∩

⋂
ξ<κAξ �= ∅.

Actually the family
Aξ = {A ∈ RO(X,O) : A ⊆ Aξ}

is dense in RO(X,O). There exists a non-empty V ∈ RO(X,O) such that V ⊆ U .
Let F be a {Aξ : ξ < κ}-generic filter containing the set V . Since any finite
intersection of closed sets from F is non-empty, by Theorem 1.28, a) there exists
a point p such that p ∈ B for any B ∈ F . It is easy to see that p ∈ U ∩

⋂
ξ<κAξ.

Suppose that f) holds true and B is a CCC complete Boolean algebra. By
Stone’s Theorem 5.28 there exists a compact topological space 〈X,O〉 such that
CO(X,O) is isomorphic to B and CO(X,O) is a base of the topology O. A dense
subset of B is represented by a dense subset of X and the point of X in the
intersection of corresponding dense sets determines a generic filter. �

Let us consider the family P(ω) of all subsets of ω. P(ω) is a Boolean algebra.
The set

Fin = {A ⊆ ω : |A| < ℵ0} = [ω]<ω (5.26)

of all finite subsets of ω is an ideal of algebra P(ω). So we can consider the quo-
tient algebra P(ω)/Fin. Every infinite subset of ω uniquely determines an element
of P(ω)/Fin. We describe some important properties of elements of P(ω)/Fin by
properties of corresponding subsets of ω. Actually, we can do it for any infinite set
X , i.e., we can describe some properties of elements of P(X)/[X ]<ω by properties
of corresponding infinite subsets of X .

So, let X be a fixed infinite set. For A,B ∈ [X ]≥ω, we say that A is almost
contained in B, denoted A ⊆∗B, provided that A\B is finite. A is almost equal to
B, written A =∗ B, if both A is almost contained in B and B is almost contained
in A, i.e., if the set (A \ B) ∪ (B \ A) is finite. If A ⊆∗B and ¬A =∗ B, we shall
write A ⊂∗ B. Similarly, we say that A and B are almost disjoint provided that
the intersection A∩B is finite. A family F ⊆ [X ]≥ω is said to be an almost disjoint
family if any two different elements of F are almost disjoint. A family F ⊆ [X ]≥ω

has the finite intersection property, shortly f.i.p., if every finite subset of F has
an infinite intersection. Finally, an infinite set A ⊆ X is a pseudointersection of
F , if A is almost contained in each F ∈ F . Note that a pseudointersection is not
unique at all.

In the case of X = ω (or more generally, if X is an infinite countable) one
can easily see that A ⊆∗B if and only if A ≤ B in the quotient Boolean algebra
P(ω)/Fin (or in the quotient algebra P(X)/[X ]<ω). Similarly “almost disjoint”
means disjoint in P(ω)/Fin (or in P(X)/[X ]<ω) and “finite intersection property”
means that intersection of any finite subset of F is non-zero in P(ω)/Fin, or
equivalently, that F is a base of a filter of P(ω)/Fin (similarly for X). It is easy to
see that a filter F on ω is induced by a filter of P(ω)/Fin if and only if F is free.
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Finally, a family F ⊆ [ω]ω has f.i.p. if and only if F is a base of a filter extending
the filter Fin.
Theorem 5.35. There exists a family of almost disjoint subsets of ω of cardinality c.

Proof. One can easily see that it is enough to construct such a family of subsets
of any infinite countable set. So, consider the set <ωω =

⋃∞
n=0

nω. Evidently
|<ωω| = ℵ0.

For any α ∈ ωω we set

F (α) = {s ∈ <ωω : s ⊆ α}. (5.27)

If α, β ∈ ωω, α �= β, then |F (α) ∩ F (β)| < ℵ0. Thus A = {F (α) : α ∈ ωω} is an
almost disjoint family of infinite subsets of <ωω and |A| = 2ℵ0 . �
Lemma 5.36. If {An}∞n=0 is a ⊆∗-decreasing sequence of infinite subsets of ω, then

a) there are infinite subsets Bn ⊆ An such that Bn+1 ⊆ Bn for every n,
b) there is an infinite set A ⊆ ω such that A ⊆∗ An for every n.

Proof. One can simply set Bn =
⋂n
i=0 Ai and obtain assertion a).

Since every Bn is infinite one can construct an increasing sequence {an}∞n=0

of natural numbers such that an ∈ Bn. Evidently A = {ai : i ∈ ω} ⊆∗ Bn ⊆ An
for every n. �

We denote by k the cardinality

k = |P(ω)/Fin|. (5.28)

Theorem 5.37. The inequalities 2ℵ0 ≤ k, k � 2ℵ0 hold true. Moreover, if the set
P(ω) can be well ordered, then k = 2ℵ0 .

Proof. The former inequality follows by Theorem 5.35 and the later one follows
by definitions. �

A family A of almost disjoint subsets of ω is called a maximal almost disjoint
family, shortly a MAD family, if for every infinite B ⊆ ω there is a set A ∈ A such
that A ∩ B is infinite, or equivalently, there is no larger almost disjoint family.
By the Zorn Lemma, Theorem 1.10 every almost disjoint family is contained in
a MAD family. A MAD family is a partition of Boolean algebra P(ω)/Fin. If A1,
A2 are MAD families, then A1 is a refinement of A2 if for every A1 ∈ A1 there
is an A2 ∈ A2 such that A1 ⊆∗ A2. Evidently, any two MAD’s A1, A2 have a
common refinement

{A1 ∩A2 : A1 ∈ A1 ∧A2 ∈ A2 ∧ (A1 ∩A2 is infinite)}.
Theorem [AC] 5.38.

a) Any countable family of dense subsets of P(ω)/Fin has a common refinement.
Hence, P(ω)/Fin is ℵ0-distributive.

b) Any countable family of MAD families has a common refinement which is a
MAD family.
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Proof. Assume that {An : n ∈ ω} is a countable family of dense subsets. We can
assume that every An+1 is a refinement of An. We define

A = {A ∈ [ω]ω : (∀n)(∃An ∈ An)A ⊆∗ An}.

It is easy to see that A is a common refinement of all An.
If every An is a MAD family, then A is an almost disjoint family. We need

to show that A is a MAD family.
Let B ∈ [ω]ω. Since every An is a MAD family, there are sets Bn ∈ An such

that B ∩ Bn is infinite. Moreover, Bn+1 ⊆∗ Bn for every n. By Lemma 5.36, b)
there exists an infinite set A such that A ⊆∗ B. Then A ∈ A. �

Let X be an infinite set, |X | = κ. If A ⊆ X , then we write (1)A = A and
(0)A = X \ A. A family F ⊆ P(X) is called an independent family on X if for
any finite A ⊆ F and any mapping f : A −→ {0, 1} we have

∣
∣
∣
∣

⋂

A∈A
(f(A))A

∣
∣
∣
∣ = κ.

Theorem [AC] 5.39. For every infinite set X there exists an independent family
on X of cardinality 2|X|.

Proof. Let κ = |X |. We write

Y = {〈A, f〉 : A ∈ [κ]<ω ∧ f : P(A) −→ {0, 1}}.

Since |Y | = κ it suffices to find an independent family on Y .
We set F = {CB : B ⊆ κ}, where CB = {〈A, f〉 ∈ Y : f(A ∩ B) = 1}. Since

CB1 �= CB2 for B1 �= B2, we obtain |F| = 2κ = 2|X|.
We show that F is an independent family. Assume that CB0 , . . . ,CBn ∈ F

are mutually different and g : {0, . . . , n} −→ 2. For a finite set A ⊆ κ satisfying

A ∩Bi �= A ∩Bj for every i, j ≤ n, i �= j, (5.29)

we define h : P(A) −→ {0, 1} as follows. For any D ⊆ A we set

h(D) =
{
g(i) if D = A ∩Bi,
0 otherwise.

Then 〈A, h〉 ∈
⋂n
i=0(g(i))CBi . Since there exists κ many sets A satisfying condition

(5.29) we obtain |
⋂n
i=0(g(i))CBi | = κ. �

Theorem [AC] 5.40 (B. Posṕı̌sil). For every infinite set X there exist 22|X|
many

ultrafilters on X.

Proof. Let F be an independent family on X of cardinality 2|X|. For any function
f : F −→ 2 there exists an ultrafilter containing the sets {(f(A))A, A ∈ F}. For
different f ’s the ultrafilters are different. �
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Exercises

5.13 [AC] Direct Sum

B = 〈B,∨,∧,−, 0, 1〉 is a Boolean algebra.

a) If a ∈ B, a 	= 0B , then the poset B|a = {x ∈ B : x ≤ a} is a Boolean algebra B|a
with operations ∨,∧,−x = a− x, 0B|a = 0B , 1B|a = a.

b) B|a is isomorphic to the quotient algebra B/I , where I = {x ∈ B : x ∧ a = 0}.
c) If B is complete, then B|a is complete.

A Boolean algebra B is a direct sum of Boolean algebras 〈Bs : s ∈ S〉 if there exists a
partition 〈as : s ∈ S〉 of B such that every Bs is isomorphic to B|as for each s ∈ S.

d) Any non-atomless complete Boolean algebra is a direct sum of a complete atomic
Boolean algebra and a complete atomless Boolean algebra.

5.14 [AC] Filter and Ultrafilter

B = 〈B,∨,∧,−, 0, 1〉 is a Boolean algebra.

a) An ultrafilter is a maximal filter.

b) For any filter F of B and any a ∈ B, −a /∈ F , there exists a maximal filter extending
F and containing a.

Hint: Apply the Zorn Lemma, Theorem 1.10.

c) A filter F is maximal if and only if F is an ultrafilter.

d) If F is an ultrafilter of a Boolean algebra B, then for any a, b ∈ B we have

a ∨ b ∈ F ≡ (a ∈ F ∨ b ∈ F ), a ∧ b ∈ F ≡ (a ∈ F ∧ b ∈ F ), −a ∈ F ≡ ¬(a ∈ F ).

5.15 [AC] Stone Representation

Let S(B) the set of all ultrafilters of a Boolean algebra B. Set s(a) = {F ∈ S(B) : a ∈ F}
for any a ∈ B.

a) {s(a) : a ∈ B} is an algebra of sets.

b) The mapping s is an isomorphism of the Boolean algebra B to the algebra of sets
{s(a) : a ∈ B}.

c) If O(B) is the topology on S(B) with the base {s(a) : a ∈ B}, then 〈S(B),O(B)〉
is a compact zero-dimensional topological space.

d) A set U ⊆ S(B) is clopen (in topology O(B)) if and only if there exists an element
a ∈ B such that U = s(a).

e) Let A ⊆ B, A 	= ∅, a ∈ B. Show that a =
∨
A if and only if

⋃
x∈A s(x) = s(a).

Similarly, a =
∧
A if and only if Int(

⋂
x∈A s(x)) = s(a).

f) Let Bi, i = 1, 2 be Boolean algebras, h : B1 −→ B2 being a homomorphism. We
set H(F ) = h−1(F ) for any ultrafilter F of B2. Show that H : S(B2) −→ S(B1) is
continuous.

g) H is one-to-one if and only if h is a surjection. H is a surjection if and only if h is
one-to-one.

h) Boolean algebra B is complete if and only if the space 〈S(B),O(B)〉 is extremally
disconnected4.

i) Show that RO(S(B),O(B)) is isomorphic to the completion comp(B) of B.

4A topological space is extremally disconnected if the closure of any open set is open.
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5.16 [AC] βω

The Stone space S(P(ω)) is denoted by βω. Thus βω is the set of all ultrafilters on ω
considered as a topological space with topology O(P(ω)).

a) For n ∈ ω denote by j(n) the ultrafilter of all subsets of ω containing the natural
number n. Show that 〈βω,O(P(ω)), j〉 is a compactification of ω endowed with the
discrete topology.

b) We shall identify n ∈ ω with j(n). Thus ω ⊆ βω. Show that βω \ ω is the Stone
space of the Boolean algebra P(ω)/Fin.

c) Show that |βω| = 2c .

Hint: Use Posṕıšil Theorem 5.40.

d) Formulate and prove similar results for any infinite cardinal κ.

5.17 [AC] The Martin Number

Consider the complete Boolean algebra C = r.o.(<ω2,⊇).

a) Show that C is CCC.

b) For any f ∈ ω2 the set Df = {a ∈ <ω2 : a � f} is dense in C.

c) Let F ⊆ ω2. If F is a {Df : f ∈ F}-generic filter of C then

g = {〈n,m〉 : (∃a ∈ F )a(n) = m} ∈ ω2

and g 	= f for any f ∈ F .

d) Conclude that m ≤ c.

5.18 [AC] Infinite Operations in a Boolean algebra

B = 〈B,∨,∧,−, 0, 1〉 is a complete Boolean algebra.

a) Let A ⊆ B. Prove the de Morgan Law:

a =
∨
A ≡ −a =

∧
{−x : x ∈ A}.

b) Let C,D ⊆ B. Prove the distributive law:

∨
C∧
∨
D =

∨
{c∧d : c ∈ C∧d ∈ D},

∧
C∨
∧
D =

∧
{c∨d : c ∈ C∧d ∈ D}.

c) A homomorphism h : B1 −→ B2 is said to be κ-complete if
∨
h(A) = h(

∨
A)

for any set |A| < κ, A ⊆ B1. Show that h is κ-complete if and only if the kernel
{x ∈ B1 : h(x) = 0} is a κ-complete ideal.

d) A set A ⊆ B \{0} is a partition of B if and only if
∨
A = 1 and for any two distinct

elements x, y ∈ A we have x ∧ y = 0.

e) Show that any two partitions have a common refinement.

f) A Boolean algebra is κ-distributive if and only if any set of partitions of cardinality
κ has a common refinement.

5.19 [AC] Distributive Laws

For simplicity we suppose that all Boolean algebras we shall deal with in this exercise
are complete.
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Let κ, λ be cardinals. A complete Boolean algebra B is said to be (κ, λ)-distributive
if for any system 〈aξ,η : ξ < κ, η < λ〉 of elements of B, if

∧

ξ<κ

∨

η<λ

aξ,η = 1,

then also ∨

ϕ∈κλ

∧

ξ<κ

aξ,ϕ(ξ) = 1.

a) If a Boolean algebra B is (κ, λ)-distributive and γ ≤ κ, δ ≤ λ, then B is also
(γ, δ)-distributive.

b) B is (κ, λ)-distributive if and only if any set {Aξ : ξ < κ} of partitions, |Aξ| ≤ λ,
has a common refinement.

c) The following are equivalent:

(1) B is κ-distributive.

(2) B is (κ, λ)-distributive for any λ.

(3) B is (κ, |B|)-distributive.

d) If a Boolean algebra B is (κ, 2)-distributive, then B is also (κ, 2κ)-distributive.

Hint: Let
∧

ξ∈κ

∨
s∈κ2 aξ,s = 1, aξ,s1 ∧ aξ,s2 = 0 for s1 	= s2. Set

bξ,η,i =
∨
{aξ,s : s(η) = i} for η ∈ κ.

If ϕ ∈ κ

(κ2), ϕ(ξ) 	= s ∈ κ2, then
∧

η bξ,η,ϕ(ξ)(η) ∧ aξ,s = 0. Thus

∧

ξ

∧

η

bξ,η,ϕ(ξ)(η) =
∧

ξ

aξ,ϕ(ξ).

f) For κ regular, construct a complete Boolean algebra that is (λ, γ)-distributive for
any γ and any λ < κ, and is not (κ, 2)-distributive.

Hint: Consider the complete Boolean algebra generated by the partial ordering by
inclusion of the set <κ2.

g) Let κ be a regular cardinal. If B is κ-distributive, then 〈S(B),O(B)〉 is κ-Baire.

Hint: See Exercises 1.24, a) and 5.15, e).

5.20 Lindenbaum algebra

We assume that the reader is familiar with basic mathematical logic as shortly summa-
rized in the Appendix. L denotes a language of predicate calculus, T a theory in this
language.

a) On the set of all formulas F(L) we define an equivalence relation ∼T (if T is
understood, simply ∼) by

ϕ ∼T ψ if and only if T ! (ϕ ≡ ψ).

In the quotient set F(L)/∼T we define operations as follows:

{ϕ}∼ ∨ {ψ}∼ = {ϕ ∨ ψ}∼, {ϕ}∼ ∧ {ψ}∼ = {ϕ ∧ ψ}∼, −{ϕ}∼ = {¬ϕ}∼.

Show that if T is consistent, then 〈F(L)/∼,∨,∧,−, 0, 1〉, where 0 is the set of all
refutable in T formulas and 1 is the set of all provable in T formulas, is a Boolean
algebra. We call it a Lindenbaum Algebra of the theory T and denote it by L(T).
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b) Denote by T the set of all terms of the language L. Then

∨

t∈T
{ϕ(t)}∼ = {(∃x)ϕ(x)}∼,

∧

t∈T
{ϕ(t)}∼ = {(∀x)ϕ(x)}∼.

c) The theory T is complete if and only if {{ϕ}∼ ∈ L(T) : ϕ is closed} = {0, 1}.
d) Assume that T1, T2 are consistent theories in same language. If T2 is stronger than

T1, then the map i({ϕ}∼1 ) = {ϕ}∼2 is a homomorphism of L(T1) onto L(T2).

e) If Θ is a syntactic model of T1 in T2 induced by a translation, then Θ induces a
homomorphism θ of L(T1) into L(T2) defined by θ({ϕ}∼1) = {Θ(ϕ)}∼2 .

5.21 [AC] Homogenity

A Boolean algebra B is called homogeneous if B|a is isomorphic to B for any a ∈ B,
a 	= 0.

a) The Boolean algebra P(ω)/Fin is homogeneous.

b) Assume that B is a homogenuous Boolean algebra. Then the following are equiva-
lent:

1) B is not κ-distributive.

2) There exist open dense sets 〈Aξ : ξ < κ〉 such that for any a ∈ B, a 	= 0,
there exists a ξ < κ such that a /∈ Aξ.

c) If P(ω)/Fin is not κ-distributive, then there exists a sequence 〈Gξ : ξ < κ〉 of open
dense subsets of [ω]ω such that for any infinite A ⊆ ω there exists a ξ < κ and there
exist distinct C,D ∈ Gξ such that both intersections A ∩ C, A ∩D are infinite.

5.22 [AC] Cardinal property

Let B be a complete Boolean algebra. A function µ defined on B with values cardinal
numbers is called a cardinal property if µ(a) ≤ µ(b) for any a ≤ b. B is µ-homogeneous
if µ is constant on B \ {0}.

a) Show that the following functions are cardinal properties:

µ(a) = min{κ : there is no partition of a ∈ B of cardinality κ},
µ(a) = |B|a | , µ(a) = min{κ : B is not κ-distributive}.

b) If µ is a cardinal property, then any Boolean algebra B is a direct sum of µ-ho-
mogeneous Boolean algebras.

Hint: For every a 	= 0 the set {µ(b) : 0 < b ≤ a} has the smallest element µ(c).

5.4 Infinite Combinatorics

In this section we shall work in ZFC, i.e., we assume that the Axiom of Choice
holds true. The reader can easily check that for some particular investigations
some weaker forms of the axiom of choice are sufficient.
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For a partially preordered set 〈X,≤〉 without maximal elements we define
two natural cardinal invariants:

b(X,≤) = min{|A| : A ⊆ X ∧A is unbounded from above in X},
d(X,≤) = min{|A| : A ⊆ X ∧A is cofinal in X}.

We shall simply say “bounded” instead of “bounded from above”. Similarly for
“unbounded”.

Theorem [AC] 5.41. For any partially preordered set 〈X,≤〉 without maximal ele-
ments, the cardinal b(X,≤) is regular and b(X,≤) ≤ cf(d(X,≤)) ≤ d(X,≤).

Proof. Let A ⊆ X be unbounded, |A| = b(X,≤). Assume that |A| is not regular,
i.e., that κ = cf(|A|) < |A|. Thus there are sets 〈Aξ : ξ ∈ κ〉 such that A =

⋃
ξ<κAξ

and |Aξ| < |A| for every ξ. Then each Aξ is bounded by some xξ ∈ X . The set
{xξ : ξ < κ} is unbounded, which is a contradiction.

Now assume that κ = cf(d(X,≤)) < b(X,≤), A is cofinal and |A| = d(X,≤).
Then there are sets Aξ, ξ < κ such that A =

⋃
ξ<κAξ and |Aξ| < d(X,≤) for

every ξ. Thus no set Aξ is cofinal. Therefore, for each ξ < κ there exists xξ ∈ X
such that xξ is not bounded by any element of Aξ. Since κ < b(X,≤), the set
{xξ : ξ < κ} must be bounded. Thus there exists an upper bound x ∈ X of this
set. Since A is a cofinal set, there exists an a ∈ A such that x ≤ a. However there
is a ξ such that a ∈ Aξ. Then xξ ≤ x ≤ a, which is a contradiction. �

We shall use without commentary the following simple result.

Theorem [AC] 5.42. If A ⊆ X is a cofinal subset, then

b(X,≤) = b(A,≤) and d(X,≤) = d(A,≤).

We describe a basic tool for comparing cardinal invariants of two preordered
sets. Let 〈X1,≤1〉 and 〈X2,≤2〉 be partially preordered sets. A pair of mappings
〈ϕ, ϕ∗〉 is called a Tukey connection from 〈X1,≤1〉 into 〈X2,≤2〉 if

ϕ : X1 −→ X2, ϕ∗ : X2 −→ X1,

if ϕ(x) ≤2 y, then x ≤1 ϕ
∗(y) for any x ∈ X1 and y ∈ X2.

We write 〈X1,≤1〉  T 〈X2,≤2〉 if there exists a Tukey connection from 〈X1,≤1〉
into 〈X2,≤2〉.

Let us note the following. Assume that there exists a mapping ϕ : X1 −→ X2

such that ϕ−1(A) is bounded in X1 for every bounded set A ⊆ X2. Then (using
the Axiom of Choice) we can define ϕ∗ : X2 −→ X1 by setting

ϕ∗(y) = an upper bound of ϕ−1({x ∈ X2 : x ≤2 y}).

Then the couple 〈ϕ, ϕ∗〉 is a Tukey connection from 〈X1,≤1〉 into 〈X2,≤2〉.
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Theorem [AC] 5.43. If 〈X1,≤1〉  T 〈X2,≤2〉, then

b(X2,≤2) ≤ b(X1,≤1) and d(X1,≤1) ≤ d(X2,≤2).

Proof. Let A ⊆ X1 and |A| < b(X2,≤2). We show that A is a bounded subset of
X1. Actually, we set B = {ϕ(x) : x ∈ A} ⊆ X2. Since |A| < b(X2,≤2) the set B
is bounded, i.e., there exists a y ∈ X2 such that ϕ(x) ≤2 y for every x ∈ A. Then
x ≤1 ϕ

∗(y) for every x ∈ A, i.e., A is bounded.
Let B ⊆ X2 be a cofinal subset. We show that A = {ϕ∗(y) : y ∈ B} is a

cofinal subset of X1. Actually, let x ∈ X1. Since B is cofinal, there exists a y ∈ B
such that ϕ(x) ≤2 y. Then x ≤1 ϕ

∗(y), i.e., A is cofinal in X1. �

The set ωω of all functions from ω into ω is preordered by

α ≤∗ β ≡ {n ∈ ω : ¬α(n) ≤ β(n)} is a finite set.

The preordering ≤∗ is called eventual domination and a cofinal subset of 〈ωω,≤∗〉
is called a dominating family. A bounded subset of 〈ωω,≤∗〉 is said to be eventually
bounded. The corresponding strict preordering will be denoted by <∗.

The bounding number b and the dominating number d are defined as

b = b(ωω,≤∗), d = d(ωω,≤∗).

Any countable subset of ωω is bounded. Actually, if A = {αn : n ∈ ω} is
a countable set, then the function β defined by β(n) = max{α0(n), . . . , αn(n)} is
an upper bound of A. Thus b > ℵ0. By Theorem 5.41 the cardinal b is regular and
we have

ℵ0 < b ≤ cf(d) ≤ d ≤ 2ℵ0 . (5.30)

We shall need often a subset of ωω of strictly increasing sequences

ωω↑ = {α ∈ ωω : α is increasing}. (5.31)

One can easily show that ωω↑ is cofinal in ωω. Moreover
Theorem [AC] 5.44. There exists an eventually increasing well-ordered unbounded
sequence of increasing functions {αξ}ξ<b.

The proof is easy. By transfinite induction one can construct the required sequence.
To obtain an increasing function replace at each step a function α by

∑n
i=0 α(i).

�

If κ is a regular cardinal, then a sequence S = 〈αξ ∈ ωω : ξ ∈ κ〉 is called a
κ-scale if αξ <∗ αη for any ξ < η < κ and the set S is dominating in ωω. If there
exists a κ-scale, then evidently ℵ0 < κ ≤ 2ℵ0 .
Theorem [AC] 5.45. Let κ be an uncountable cardinal not greater than 2ℵ0 . Then
there exists a κ-scale if and only if κ = b = d.
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Proof. If S is a κ-scale, then one easily see that κ = b = d.
Let κ = b = d. Then there exists a dominating family {αξ : ξ < κ}. By

transfinite induction we define βξ ∈ ωω as an upper bound of the bounded family
{βη : η < ξ} ∪ {αξ}. Evidently the sequence 〈βξ : ξ < κ〉 is a κ-scale. �

We introduce some combinatorial cardinal invariants of the preordered set
〈[ω]ω,⊆∗〉. We begin with some notions. If we need to emphasize that a family
A ⊆ [ω]ω is dense in the preordered set 〈[ω]ω ,⊆∗〉, or in accordance with Section
5.3, dense in the Boolean algebra P(ω)/Fin, we say that A is an almost dense
family. Similarly, if X is an infinite countable set and Xξ ⊆ X , ξ ∈ κ, then we
say that the sequence 〈Xξ : ξ < κ〉 is almost decreasing if Xη ⊆∗ Xξ for any
η < ξ < κ. An almost decreasing sequence T = 〈Aξ : ξ < κ〉 of subsets of ω is
called a tower if T has no pseudointersection, i.e., if

(∀A ∈ [ω]ω)(∃T ∈ T )¬A ⊆∗ T.

The tower number is defined as

t = min{|T | : T is a tower}. (5.32)

Evidently t is a regular cardinal. Lemma 5.36, b) may be formulated as t > ℵ0.
By definition the set [ω]ω is a t-closed subset of Boolean algebra P(ω)/Fin.
Theorem [AC] 5.46. If ℵ0 ≤ κ < t, then 2κ = c.

Proof. We shall construct a mapping F : ≤κ2 −→ [ω]ω such that the sets F (f)
and F (g) are almost disjoint for any distinct f, g ∈ κ2.

The construction is easy. Let F (∅) = ω. Assume that F (f) is already defined
for all f ∈ ζ2 and all ζ < ξ. Now, let f ∈ ξ2. If ξ = η + 1, we take two infinite
disjoint subsets A0, A1 ⊆ F (f |η) and set F (f) = Ai, where f(η) = i, i = 0, 1. If
ξ ≤ κ is a limit ordinal, then the sequence 〈F (f |η) : η < ξ〉 is almost decreasing.
Since ξ < t there exists a lower bound B of this family. Set F (f) = B.

If f, g ∈ κ2 are distinct, then there is the least ξ < κ for which f(ξ) �= g(ξ).
In this case we have taken F (f |(ξ+1)), F (g|(ξ+1)) disjoint subsets of F (f |ξ) and
F (f) ⊆∗ F (f |(ξ + 1)), F (g) ⊆∗ F (g|(ξ + 1)). �

Similarly as the tower number we define the pseudointersection number

p = min{|F| : (F ⊆ [ω]ω has f.i.p. ) ∧ (∀A ∈ [ω]ω)(∃F ∈ F)¬A ⊆∗ F}. (5.33)

Thus the family F has no pseudointersection.
Theorem [AC] 5.47. p ≤ t and ℵ0 < p ≤ 2ℵ0 .

Proof. Since a tower has f.i.p., we obtain the first inequality.
Let F = {An : n ∈ ω} be a countable family with finite intersection property.

Then
⋂
i<nAi, n ∈ ω is a ⊆∗-decreasing sequence and by Lemma 5.36, b) there is

a lower bound of it. Thus p > ℵ0.
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Let F be a free ultrafilter on ω. Then F has f.i.p. and |F| = 2ℵ0 . Since for any
A ⊆ ω we have A ∈ F or X \A ∈ F , F has no lower bound. Thus p ≤ 2ℵ0 . �

We do not need the following important result, therefore we present it without
a proof. A proof is given in Exercise 9.5.
Theorem [AC] 5.48. p is a regular cardinal.

However we shall need the following result.
Theorem [AC] 5.49. m ≤ p.

Proof. We show that every family F ⊆ P(ω) of cardinality κ < m with f.i.p. has
a lower bound in the ⊆∗ ordering.

Let F ⊆ P(ω) have f.i.p., |F| = κ < m. Without loss of generality we can
assume that F is closed under finite intersections. We denote

P = {〈I, A〉 : I ⊆ ω is finite, A ∈ F}.

We define a partial ordering on P as

〈J,B〉  〈I, A〉 ≡ (I ⊆ J ⊆ (I ∪A) ∧B ⊆ A).

If 〈I, A〉, 〈J,B〉 are incompatible, then I �= J (otherwise 〈I, A∩B〉 is smaller than
both of them). Thus 〈P, 〉 is CCC. For an n ∈ ω and a C ∈ F we set

Dn = {〈I, A〉 ∈ P : (∃m ≥ n)m ∈ I}, DC = {〈I, A〉 ∈ P : A ⊆ C}.

It is easy to check that any Dn and DC is a dense subset of P . Let

D = {Dn : n ∈ ω} ∪ {DC : C ∈ F}.

Since |D| ≤ κ there exists a D-generic filter F of P . Set

E =
⋃
{I : 〈I, A〉 ∈ F}.

Since F meets Dn there exists an m ≥ n in E. Thus E is infinite.
Let A ∈ F and 〈I1, B1〉 ∈ F ∩DA. We claim that E \A ⊆ I1, i.e., E ⊆∗ A.
Assume that there exists an n ∈ E \ A such that n /∈ I1. Since B1 ⊆ A,

we have n /∈ B1. Since n ∈ E there exists 〈I2, B2〉 ∈ F such that n ∈ I2. F is
a filter, therefore there exists 〈I0, B0〉 ∈ F such that 〈I0, B0〉  〈I1, B1〉 and
〈I0, B0〉  〈I2, B2〉. Then I0 ⊆ I1 ∪ B0, I2 ⊆ I0 and B0 ⊆ B1. Since n ∈ I2 and
n /∈ I1 we obtain n ∈ B1, a contradiction.

Thus E is a lower bound of F . Consequently κ < p. �

Lemma 5.38 suggests that we introduce a cardinal invariant. The cardinal

h = min{κ : P(ω)/Fin is not κ-distributive} (5.34)

is called the distributivity number. By Lemma 5.38 we have h > ℵ0 and one can
easily show that h is a regular cardinal.
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If A ∈ [ω]ω we have defined the increasing enumeration eA of A by (1.6) and
(1.7). One can easily see that

(∀f ∈ ωω)(∀A ∈ [ω]ω)(∃B ⊆ A) eB >∗ f. (5.35)

Actually, we take n0 ∈ A, n0 ≥ f(0) and by induction nk+1 ∈ A such that
nk+1 > nk and nk+1 ≥ f(k + 1). Then B = {nk : k ∈ ω} is desired.

If A ⊆∗ B, then eB ≤∗ eA + n for some natural number n. Therefore also
eB <∗ eA + idω. Using this fact we prove
Theorem [AC] 5.50 (B. Balcar – J. Pelant – P. Simon).

ℵ0 < t ≤ h ≤ b.

Proof. We already know that ℵ0 < t (Lemma 5.36). Since [ω]ω is a t-closed dense
subset of P(ω)/Fin the inequality t ≤ h follows by Theorem 5.31.

We want to show that κ < b for any κ < h. Consider a set {αξ ∈ ωω : ξ ∈ κ}.
We define by induction dense families 〈Gξ : ξ < κ〉. Let G0 = {A ⊆ ω : eA >∗ α0}.
By (5.35) the family G0 is open dense. Assume that Gη are defined for η < ξ. Since
ξ < h there is a common dense refinement Hξ of 〈Gη : η < ξ〉. We set

Gξ = {A ⊆ ω : (∃B ∈ Hξ)A ⊆∗ B ∧ eA >∗ αξ}.

Again by (5.35) the family Gξ is an open dense common refinement of 〈Gη : η < ξ〉.
Since κ < h, there exists a common refinement G of all Gξ, ξ < κ. Let B ∈ G. For
any ξ < κ there exists a set Aξ ∈ Gξ such that B ⊆∗ Aξ. Then we obtain that
eB + idω >∗ eAξ

>∗ αξ for any ξ < κ. Thus κ < b. �

Theorem [AC] 5.51. If κ = t = b, then there exists a tower T = 〈Aξ : ξ < κ〉 such
that the family of functions {eAξ

: ξ < κ} is unbounded in ωω. If κ = t = d we can
assume that 〈eAξ

: ξ < κ〉 is a κ-scale.

Proof. Let 〈Bξ : ξ < κ〉 be a tower and {αξ : ξ < κ} be an unbounded family.
By Theorem 5.44 we can assume that 〈αξ : ξ < κ〉 is increasing. We construct
the tower T by transfinite induction. We let A0 = B0. If Aη, η < ξ are already
constructed, we construct Aξ as follows. Since 〈Aη : η < ξ〉 is not a tower, there
exists a set A ∈ [ω]ω such that A ⊆∗ Aη for every η < ξ. By (5.35) there exists
a set Aξ ∈ [A]ω such that αξ ≤∗ eAξ

.
One can easily see that T = 〈Aξ : ξ < κ〉 is a tower and the family of

enumerations {eAξ
: ξ < κ} is unbounded.

If κ = t = d we begin with a scale 〈αξ : ξ < κ〉. �

Let A,B ⊆ ω. We say that the set B splits the set A if both sets A ∩B and
A\B are infinite. The splitting number s is the least size of a splitting family, i.e.,
the least size of a family S ⊆ [ω]ω such that every infinite subset A ⊆ ω is split by
some set from S. The reaping number r is the least size of a reaping family, i.e.,
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the least size of a family S ⊆ [ω]ω such that no infinite subset of ω splits every
member of S.

Note that all those introduced notions have a simple interpretation in the
Boolean algebra P(ω)/Fin.
Theorem [AC] 5.52. h ≤ s ≤ d and b ≤ r.

Proof. If S ⊆ [ω]ω, |S| < h, then S is not splitting, since any element of a common
refinement of the system of dense sets {{S, ω\S} : S ∈ S} is not split by an element
of S. Thus h ≤ s.

For any increasing α ∈ ωω↑ we define the function ᾱ by induction

ᾱ(0) = α(0), ᾱ(n+ 1) = α(ᾱ(n))

and set
Sα = {k ∈ ω : (∃n) ᾱ(2n) ≤ k < ᾱ(2n+ 1)}.

Then {k ∈ ω : (∃n) ᾱ(2n+1) ≤ k < ᾱ(2n+2)} ⊆ ω\Sα. If X ∈ [ω]ω and eX <∗ α,
then for all sufficiently large n we have

ᾱ(n) ≤ eX(ᾱ(n)) < α(ᾱ(n)) = ᾱ(n+ 1).

Hence the set Sα splits X .
Consider now a dominating family F ⊆ ωω consisting of increasing functions.

Then {Sα : α ∈ F} is a splitting family. Hence s ≤ d.
Assume that S ⊆ [ω]ω and |S| < b. Then the family {eX : X ∈ S} is

bounded. Thus there exists an increasing function α ∈ ωω such that eX <∗ α for
any X ∈ S. Then the set Sα splits any set X ∈ S. Hence S is not a reaping family
and therefore b ≤ r. �

If A,B are subsets [ω]ω, then the notation A ⊆∗ B means that A ⊆∗ B for
every element A,B of A,B, respectively. Instead of A ⊆∗ {B} we shall simply
write A ⊆∗ B.
Theorem [AC] 5.53 (F. Hausdorff). There exist two sequences 〈Aξ : ξ < ω1〉 and
〈Bξ : ξ < ω1〉 of infinite subsets of ω such that

a) 〈Aξ : ξ < ω1〉 is ⊂∗-increasing,
b) 〈Bξ : ξ < ω1〉 is ⊂∗-decreasing,
c) 〈Aξ : ξ < ω1〉 ⊂∗ 〈Bξ : ξ < ω1〉,
d) there exists no infinite C ⊆ ω such that 〈Aξ : ξ < ω1〉 ⊆∗ C ⊆∗ 〈Bξ : ξ < ω1〉.

Any couple of sequences with properties a)–d) is called a Hausdorff gap. We
begin with simple auxiliary results.
Lemma 5.54. Assume that An, Bn, A ∈ [ω]ω for every n.

a) If An ⊂∗ An+1 ⊂∗ A for every n ∈ ω, then there exists an infinite set B ⊆ ω
such that An ⊂∗ B ⊂∗ A for every n.
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b) If A ⊂∗ An+1 ⊂∗ An for every n ∈ ω, then there exists an infinite set B ⊆ ω
such that A ⊂∗ B ⊂∗ An for every n.

c) If An ⊂∗ An+1 ⊂∗ Bm+1 ⊂∗ Bm for every n,m ∈ ω, then there exists
an infinite set B ⊆ ω such that An ⊂∗ B ⊂∗ Bn for every n.

Proof. The assertion a) follows from assertion b) by the equivalence

E ⊆∗ F ≡ (ω \ F ) ⊆∗ (ω \ E).

So assume that A ⊂∗ An+1 ⊂∗ An for every n. Then also (An+1 \A) ⊂∗ (An \A)
for every n and by Lemma 5.36 there exists an infinite C ⊆∗ (An \A) for every n.
Set B = A ∪ C.

To show c), we set B =
⋃
n(An ∩B0 ∩ · · · ∩Bn). Since

B \Bn ⊆
⋃

k<n

(Ak \Bn), An \B ⊆
⋃

k≤n
(An \Bk),

we obtain An ⊂∗ B ⊂∗ Bn for every n. �

If A ⊆∗ B, then sf(A,B) is the least integer m such that n ∈ A → n ∈ B
for every n ≥ m. Note that if A ⊆∗ B, then B \ A ⊆ sf(A,B) and therefore
|B \A| ≤ sf(A,B). If A is a subset of [ω]ω, we say that B is close to A, if A ⊆∗ B
and for each n ∈ ω there are only finitely many elements A of A with sf(A,B) = n.
Evidently, the set A must be countable. Note the following. If A ⊆∗ C ⊆∗ B, B is
close to A, then C is close to A as well.

Lemma 5.55. If An ⊂∗ Am ⊂∗ A for any n < m, then there exists an infinite set
B ⊂∗ A close to {An}n∈ω.

Proof. Since
An \An−1 ⊆∗ An \ (A0 ∪ · · · ∪An−1)

and An \ An−1 is infinite, there exists a set En ⊂ An \ (A0 ∪ · · · ∪ An−1) with
|En| = n. Set B = A \

⋃
k Ek. Then

An \B = (An \A) ∪
⋃

k

(An ∩ Ek).

Since An ∩Ek = ∅ for k > n we obtain An ⊆∗ B for any n. Since An ⊂∗ An+1 we
have also An ⊂∗ B.

We show that B is close to {An}n<ω. By definition En ⊆ An\B and therefore
|An \B| ≥ n. In other words, if sf(An, B) = k, then n ≤ k. �

Lemma [AC] 5.56. Let γ < ω1 be a limit ordinal. If 〈Aξ : ξ < γ〉 is ⊂∗-increasing,
B is such that Aη ⊂∗ B and B is close to 〈Aξ : ξ < η〉, everything for each η < γ,
then there exists an infinite set C ⊂∗ B close to 〈Aξ : ξ < γ〉.
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Proof. Let us assume that 〈γn : n ∈ ω〉 is an increasing sequence of ordinals with
sup{γn : n ∈ ω} = γ. We consider two cases.

If B is close to 〈Aξ : ξ < γ〉, then by Lemma 5.54, a) there exists a set C
such that Aγn ⊂∗ C ⊂∗ B for every n. Then the set C is close to 〈Aξ : ξ < γ〉 as
well.

Assume now, that B is not close to 〈Aξ : ξ < γ〉. Set

Nk = {ξ < γ : sf(Aξ, B) ≤ k}.

Then there exists a k0 such that Nk is infinite for every k ≥ k0. We can assume
that k0 = 0; otherwise omit finitely many Aξ, ξ ∈

⋃
k<k0

Nk. Since for η < γ, the
set B is close to 〈Aξ : ξ < η〉, no Nk ⊆ η, i.e., every Nk is cofinal in γ. For the same
reason, for every ξ ∈ Nk the set ξ ∩Nk is finite. Thus every set Nk has the order
type ω. Using Lemma 5.55 we define by induction a sequence 〈Bn : n ∈ ω〉 such
that

{Aξ : ξ ∈ Nn} ⊂∗ Bn ⊂∗ Bn−1 ⊂∗ B

and Bn is close to {Aξ : ξ ∈ Nn} for every n. Since every Nn is cofinal in γ we
have

{Aξ : ξ < γ} ⊂∗ Bn

for every n. By part c) of Lemma 5.54 there exists a set C such that

Aγn ⊂∗ C ⊂∗ Bn

for every n.
We show that C is close to 〈Aξ : ξ < γ〉. Let n ∈ ω be given. We set

k = max{n, sf(C,B)}. Then {ξ < γ : sf(Aξ, C) ≤ k} ⊆ Nk. Since Bk is close to
〈Aξ : ξ ∈ Nk〉, C is close as well. Then the set

{ξ < γ : sf(Aξ, C) ≤ n} ⊆ {ξ < γ : sf(Aξ, C) ≤ k}

is finite. �

Proof of the theorem. We construct by transfinite induction a ⊆∗-increasing se-
quence 〈Aξ : ξ < ω1〉 and a ⊆∗-decreasing sequence 〈Bξ : ξ < ω1〉 of subsets of ω
such that 〈Aξ : ξ < ω1〉 ⊆∗ 〈Bξ : ξ < ω1〉 and Bζ is close to 〈Aη : η < ζ〉 for each
ζ < ω1.

Take any infinite A0 ⊂∗ B0 ⊆ ω. If Aξ, Bξ are constructed for any ξ ≤ γ,
take any Aγ ⊂∗ Aγ+1 ⊂∗ Bγ+1 ⊂∗ Bγ . Since Bγ is close to {Aξ : ξ ≤ γ}, the set
Bγ+1 will be close to {Aξ : ξ ≤ γ + 1}.

Assume now that γ is limit and Aξ, Bξ are constructed for any ξ < γ. Since
cf(γ) = ω, by Lemma 5.54 there exists a set C such that

{Aξ : ξ < γ} ⊂∗ C ⊂∗ {Bξ : ξ < γ}.
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Note that C is close to {Aξ : ξ < η} for every η < γ. By Lemma 5.56 there exists
a set Bγ ⊆∗ C∗ close to {Aξ : ξ < γ}. By Lemma 5.54, a) there exists a set Aγ
such that {Aξ : ξ < γ} ⊂∗ Aγ ⊂∗ Bγ .

We have to prove d). To get a contradiction assume that there exists a C with
Aξ ⊆∗ C ⊆∗ Bξ for each ξ < ω1. We write Nk = {ξ < ω1 : sf(Aξ, C) = k}. Then
there exists a k such that |Nk| = ℵ1. Take a ξ ∈ Nk such that ξ ∩ Nk is infinite.
Since Bξ is close to {Aη : η < ξ} and C ⊆∗ Bξ, we have a contradiction. �

Since F (A) = χA is an order-preserving mapping from the poset 〈[ω]ω,⊂∗〉
into the poset 〈ω2, <∗〉, there exists a Hausdorff gap 〈〈αξ : ξ < ω1〉, 〈βξ : ξ < ω1〉〉
consisting of reals from ω2.

The theorem has an important consequence.
Theorem [AC] 5.57. Any perfect Polish space X is a union X =

⋃
ξ<ω1

Xξ of
a strictly increasing sequence 〈Xξ : ξ < ω1〉 of Gδ subsets of X.

Proof. We start with the Cantor space ω2. Let 〈〈αξ : ξ < ω1〉, 〈βξ : ξ < ω1〉〉 be
a Hausdorff gap in ω2. We let

Aξ = {γ ∈ ω2 : αξ <∗ γ <∗ βξ}.

It is easy to see that Aξ is an Fσ set for each ξ < ω1. Moreover
⋂
ξ<ω1

Aξ = ∅.
If X is a perfect Polish space, then by Corollary 5.6 a homeomorphic copy of

ω2 is a closed subset of X . Then Xξ = X \Aξ is a Gδ set and X =
⋃
ξ<ω1

Xξ. �

Exercises

5.23 [AC] Rothberger Theorem

If p = ℵ1, then t = ℵ1.

Hint: If d = ℵ1 the assertion follows in a trivial way. Assume d > ℵ1. Let 〈Aξ : ξ < ω1〉
have f.i.p. and let no infinite set be almost contained in all Aξ. By induction construct a
tower 〈Bξ : ξ < ω1〉: Bξ+1 = Bξ ∩Aξ and for ξ limit apply the result of Exercise 5.24, e)
for a cofinal sequence 〈Aηn : n ∈ ω〉.
5.24 [AC] Equivalent Definition of b and d

An interval partition of ω is a partition of ω into finite intervals. We always assume that
an interval partition I = {In : n ∈ ω} is enumerated in such a way that In = [in, in+1),
0 = i0 < i1 < · · · < in < · · · . The interval partition I = {In : n ∈ ω} dominates the
interval partition J = {Jn : n ∈ ω} if for all but finitely many k there is an n such that
Jn ⊆ Ik. We shall write J ⊆∗ I. Let IP be the set of all interval partitions.

a) If an interval partition I = {In : n ∈ ω} does not dominate an interval partition
J = {Jn : n ∈ ω}, then there exist infinitely many intervals I ∈ I such that there
are two intervals J1, J2 ∈ J , I ⊆ J1 ∪ J2 and neither J1 nor J2 is a subset of I .

b) For an interval partition I = {In : n ∈ ω} set ϕ(I) = f ∈ ωω↑, where f(m) =
in+2 − 1 for m ∈ In. For an increasing function f ∈ ωω↑ set ϕ∗(f) = I, where
in = f̄(n) (see the proof of Theorem 5.52). Show that 〈ϕ,ϕ∗〉 is a Tukey connection
from 〈IP,⊆∗〉 into 〈ωω↑, <∗〉.
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Hint: Assume f = ϕ(I) <∗ g, I = {[in, in+1) : n ∈ ω}. Then f(ḡ(n)) < ḡ(n+ 1) for
sufficiently large n. If ḡ(n) ∈ [ik, ik+1), then f(ḡ(n)) = ik+2 − 1 < ḡ(n+ 1). Hence
[ik+1, ik+2) ⊆ [ḡ(n), ḡ(n+ 1)).

c) Show that 〈ϕ∗, ϕ〉 is a Tukey connection from 〈ωω↑, <∗〉 into 〈IP ,⊆∗〉.
Hint: Assume g ∈ ωω↑, ϕ∗(g) ⊆∗ I = {[in, in+1) : n ∈ ω} and f = ϕ(I). We have
to show g ≤∗ f . If m ∈ [ik, ik+1) and k is large, then there exists an n such that
[ik, ik+1) ⊆ [ḡ(n), ḡ(n+ 1)). Since m < ḡ(n) we obtain g(m) < ḡ(n1) ≤ f(m) + 1.

d) Conclude that b = b(IP ,⊆∗) and d = d(IP ,⊆∗).

e) Let 〈An : n ∈ ω〉 be a decreasing sequence of infinite subsets of ω. Let f ∈ ωω be
increasing. The set Bf = {m ∈ ω : (∃n) (m < f(n)∧m ∈ An)} is almost contained
in every An, n ∈ ω.

Hint: If f(n) ≤ m, m ∈ Bf , then m ∈ An.

f) Let An = (ω \ n) × ω for n ∈ ω, F ⊆ ωω being a dominating family. For f ∈ ωω
we set Cf = {〈n,m〉 ∈ ω × ω : f(n) ≤ m}. There is no infinite set D such that D
is almost contained in every 〈An : n ∈ ω〉 and D ∩ Cf is infinite for every f ∈ F .

Hint: Assume that there exists such a set D. The set Dn = {k : 〈n, k〉 ∈ D∨k = 0}
is finite, since Dn ⊆ D \ An. Let g(n) = maxDn. Show that g ≤∗ f for no f ∈ F.

g) Show that d is the smallest cardinal κ with the following property: if 〈An : n ∈ ω〉
is a decreasing sequence of infinite subsets of ω, D ⊆ [ω]ω is such that every An

intersects every element of D in an infinite set and |D| < κ, then there is an infinite
set D almost contained in every An and having infinite intersection with every
C ∈ D.

Hint: Let fC(n) = nth element of An∩C. Let f dominate the family {fC : C ∈ D}.
Using notation of part e), take D = Bf .

5.25 [AC] Base Matrix Tree

a) Let G be a MAD family of subsets of ω. For each A ∈ G, let HA be a MAD family
of subsets of A. Then

⋃
A∈G HA is a MAD family of subsets of ω.

b) If G is a MAD family of subsets of ω, then there exists a MAD family H such that
|{A ∈ H : A ⊆∗ B}| = c for every B ∈ G.

Hint: Use a), Theorem 5.35 and Zorn’s Lemma, Theorem 1.10.

c) If 〈Hξ : ξ < κ〉, κ < h are open dense subfamilies of 〈[ω]ω,⊆∗〉, then
⋂

ξ<κHξ is
an open dense family as well.

d) If G is a MAD family of subsets of ω, then {A ∈ [ω]ω : (∃B) (B ∈ G ∧ A ⊆∗ B} is
an open dense family.

e) If H is an open dense family, then there exists a MAD family G such that

{A ∈ [ω]ω : (∃B) (B ∈ G ∧ A ⊆∗ B} ⊆ H.

Hint: Use Zorn’s Lemma, Theorem 1.10, c).

f) Let A be a MAD. Then there exists a MAD B such that every A ∈ A contains c

many subsets in B and the following holds true: if an infinite X ⊆ ω meets c many
elements of A, then there exists a B ∈ B such that B ⊂∗ X.

Hint: Enumerate A and continue by transfinite induction.
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g) Show that there exists a family H of infinite subsets of ω such that 〈H,⊃∗〉 is a base
matrix tree, i.e.,

1) 〈H,⊃∗〉 is a tree of height h,

2) the αth level is a MAD family for every 0 < α < h,

3) the branching degree of each node is c,

4) H is dense in 〈[ω]ω,⊇∗〉.
Hint: Let 〈Dξ : ξ < h〉 be open dense families with no common refinement. At an
odd stage 2ξ+1 use the result of e) and take an open dense family H2ξ+1 included in
all Hη for η < 2ξ+1 and Dξ. At even stages use the result of f). Set H =

⋃
ξ<c Hξ.

We need to show that for every infinite X ⊆ ω there exists a ξ < h such that X
meets c many elements of Hξ. Construct a subtree G of H of height ω such that at
the nth level X meets at least 2n elements of G.

5.26 [AC] Other Small Cardinals

Let a = min{|A| : A ⊆ [ω]ω is a MAD family}.
a) Show that

a = min{|A| : A∪ {{n} × ω : n ∈ ω} is a MAD family on ω × ω}.

Hint: Take 〈An ∈ A : n ∈ ω〉 such that
⋃
A =

⋃
n An, make them (really) disjoint

and find a surjection h : ω −→ ω × ω such that h(An) = {n} × ω.

b) Show that b ≤ a.

Hint: Let A be the family of a). For any A ∈ A we can find an fA ∈ ωω such that
A is “under” the graph of fA. If g were a strict upper bound of {fA : A ∈ A},
then the set {〈n,m〉 : m ≤ g(n)} /∈ A, would be almost disjoint from any set
A ∈ A ∪ {{n} × ω : n ∈ ω}.

A family G ⊆ [ω]ω is groupwise dense if for every A ⊆∗ B ∈ G also A ∈ G and for every
interval partition I = {In : n ∈ ω} there exists a set K ⊆ ω such that

⋃
n∈K In ∈ G. The

groupwise density number is

g = min{κ : Gξ is groupwise dense for each ξ < κ and
⋂

ξ<κ

Gξ = ∅}.

c) A groupwise dense subset of [ω]ω is almost dense.

Hint: If A ⊆ ω is infinite, find an interval partition {In : n ∈ ω} such that In∩A 	= ∅
for every n.

d) Show that h ≤ g.

Hint: A groupwise dense family is a cover of ω.

e) Show that g ≤ d.

Hint: For any increasing f ∈ ωω↑ the set

Gf = {X ∈ [ω]ω : (∀m)(∃n > m)(∃k ≥ n) (k ∈ X ∧ k < f(n))}

is groupwise dense. If D ⊆ ωω↑ is a dominating family, then {Gf : f ∈ D} has
empty intersection.

The ultrafilter number is u = min{|B| : B is a base of a non-trivial ultrafilter on ω}.
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f) Show that r ≤ u.

Hint: A base of a non-trivial ultrafilter is a reaping family.

In Section 5.3, we defined the notion of an independent family and, for a set A ⊆ ω, we
wrote (1)A = A and (0)A = ω \ A.

g) Show that there exists a maximal independent family of subsets of ω.

Hint: Apply Zorn’s Lemma, Theorem 1.10, c).

The independence number i is the minimal size of a maximal independent family of
subsets of ω.

h) Show that r ≤ i.

Hint: Let A be a maximal independent family of size i. Show that

{
⋂

A∈A0

(f(A))A : A0 ∈ [A]<ω ∧ f : A0 −→ 2}

is a reaping family.

In the next A ⊆ [ω]ω is an independent family of cardinality smaller than d, and the sets
〈An ∈ A : n ∈ ω〉 are mutually distinct.

i) For every α ∈ ω2 there exists an infinite set Bα ⊆ ω such that

(1) Bα ⊆∗ ⋂
i<n(α(i))Ai for all n,

(2) Bα ∩
⋂

A∈A0
(f(A))A is infinite for any A0 ∈ [A \ {An : n ∈ ω}]<ω and any

f : A0 −→ 2.

Hint: Apply the result of Exercise 5.24, f).

j) If Z ⊆ ω2 is countable, then there exist pairwise disjoint infinite sets Cα ⊆ Bα for
every α ∈ Z.

k) If Z1, Z2 ⊆ ω2 are disjoint countable dense sets, then

⋃

α∈Zi

Cα ∩
⋂

A∈A0

(f(A))A

is infinite for any A0 ∈ [A]<ω , i = 1, 2.

l) Show that d ≤ i.

Hint: If A ⊆ [ω]ω is as above, then it cannot be a maximal independent fam-
ily, since both the set C =

⋃
α∈Z1

Bα and ω \ C ⊇
⋃

α∈Z2
Bα intersect every set

⋂
A∈A0

(f(A))A, A0 ∈ [A]<ω in an infinite set.

5.27 [AC] Gaps

κ, λ are infinite cardinals. A couple of sequences 〈{Aξ}ξ<κ, {Bξ}ξ<λ〉 of infinite subsets
of ω is called a (κ, λ∗)-gap if it satisfies the conditions a)–d) of Theorem 5.53, replacing
ω1 by κ, λ, respectively. Thus the Hausdorff gap is an (ω1, ω

∗
1)-gap.

a) If there exists an (ω, λ∗)-gap, then λ ≥ b.

Hint: Set fξ(n) = max(An \Bξ) + 1 (maximum of empty set is 0).
If λ < b there exists g ∈ ωω bounding all fξ. The set

⋃
n(An \ g(n)) witnesses that

〈{An}n<ω, {Bξ}ξ<λ〉 is not a gap.
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b) There exists an (ω, b∗)-gap.

Hint: Let {fξ}ξ<b be the unbounded sequence of Theorem 5.44, ω =
⋃

n Cn, Cn

being infinite and pairwise disjoint. Set An =
⋃

k≤n Ck and Bξ =
⋃

k(Ck \ fξ(k)).
If Cn ⊆∗ D ⊆ Bξ for any n, ξ, consider the function

f(n) = min{m ∈ Cn : (∀k ≥ m) (k ∈ Cn → k ∈ D)}.

5.28 [AC] Booth’s Lemma

If fn : X −→ [0, 1], n ∈ ω, r ∈ [0, 1] ∩Q, and x ∈ X, we let Lr,x = {n ∈ ω : fn(x) ≤ r}.

a) If an infinite set A ⊆ ω does not split any of sets Lr,x, r ∈ Q ∩ [0, 1] for a given
x ∈ X, then there exists the limit limn∈A fn(x) = inf{r ∈ Q ∩ [0, 1] : A ⊆∗ Lr,x}.

b) Assume that S ⊆ [ω]ω is a splitting family. For every A ∈ S we set fn(A) = 1 if
n ∈ A, fn(A) = 0 otherwise. Show that no subsequence of the sequence {fn}∞n=0 is
pointwise convergent.

c) Show Booth’s Lemma: The splitting number s is the least size of a set X such that
there exists a sequence {fn}∞n=0 of functions from X into [0, 1] without a pointwise
convergent subsequence.

5.5 Games Played by Infinitely Patient Players

Let X , |X | ≥ 2 be a set, P ⊆ ωX . The topology of ωX is that defined by the Baire
metric. We introduce an infinite game GameX(P ) played by two players I and II
as follows. In the nth move, player I chooses an element x2n ∈ X and player II
chooses an element x2n+1 ∈ X . We assume that each player knows all preceding
moves of both players. The result is a run {xn}∞n=0. Player I wins if {xn}∞n=0 ∈ P .
Otherwise player II wins.

The pairing function ΠX : ωX×ωX
1−1−→
onto

ωX and its inverse functions ΛX and

RX were defined by (1.11) and (1.13), respectively. If the sequence {xn}∞n=0 is a run
in GameX(P ), then the play of player I is the sequence {x2n}∞n=0 = Λ({xn}∞n=0)
and the play of player II is the sequence {x2n+1}∞n=0 = R({xn}∞n=0). Vice versa,
if the play of player I is the sequence α and the play of player II is the sequence
β, then the run is Π(α, β).

A strategy in game GameX(P ) is a function f : <ωX −→ X . We say that
player I (player II) follows the strategy f if he/she plays

x2n = f({xi}i<2n), (x2n+1 = f({xi}i<2n+1)) (5.36)

for every n ∈ ω, respectively. If player II plays {x2n+1}∞n=0 and player I follows
the strategy f , then the run is

f̄I({x2n+1}∞n=0) = Π({x2n}∞n=0, {x2n+1}∞n=0), (5.37)
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where x2n is determined by (5.36). Similarly if player II follows the strategy f ,
then the run is f̄II({x2n}∞n=0). One can easily see that f̄I : ωX

1−1−→ ωX and
f̄II : ωX 1−1−→ ωX are continuous injections.

A strategy f is winning for player I (player II) if for every run of the game
player I (player II) wins provided that he/she followed the strategy f . Finally, the
game GameX(P ) is determined if one of the players has a winning strategy, i.e., if
there exists a function f : <ωX −→ X which is either a winning strategy for player
I or a winning strategy for player II. The assertion that the game GameX(A) is
determined for any set A ∈ Γ (ωX) will be denoted as DetX(Γ ).

We shall need a modification of the introduced game GameX(P ). Let X,P
be as above. In the star-game Game∗

X(P ) in the nth move, player I plays a finite
sequence a2n∈<ωX (possibly empty) and player II plays an element x2n+1 ∈X .
As above we assume that each player knows all preceding moves. Player I wins
if the resulting run belongs to P . Otherwise player II wins. A strategy for player I
in game Game∗

X(P ) is a function f : <ωX −→ <ωX and the function f̄I is
defined similarly. One can easily see that f̄I : ωX

1−1−→ ωX is a continuous in-
jection. Det∗

X(Γ ) means that the star-game Game∗
X(P ) is determined for every

P ∈ Γ (ωX).

Finally we introduce the Banach-Mazur game Game∗∗
X (P ). The game is de-

fined as above with only one difference: both players play a non-empty finite
sequence of elements of X . All related notions are defined similarly and Det∗∗

X (Γ )
means that the Banach-Mazur game Game∗∗

X (P ) is determined for every set
P ∈ Γ (ωX).

Theorem 5.58. Let Γ be a pointclass.

a) If there are maps h : X −→ Y and g : Y −→ X such that g ◦ h = idY , then
DetX(Γ ) implies DetY (Γ ), Det∗

X(Γ ) implies Det∗
Y (Γ ), and Det∗∗

X (Γ )
implies Det∗∗

Y (Γ ).

b) Detω(Γ ) implies both Det∗
ω(Γ ) and Det∗∗

ω (Γ ).

Proof. a) The idea of the proof is simple. We shift the game from Y to X by g,
we use the winning strategy in corresponding runs of this game and then we shift
the run by h back to Y .

Define H({xn}∞n=0) = {h(xn)}∞n=0. Then H : ωX
onto−→ ωY is continuous.

Suppose that P ∈ Γ (ωY ) and set Q = H−1(P ) ∈ Γ (ωX). We shall play on
X . Assume that ϕ is a winning strategy for player I in GameX(Q). We define
a strategy ψ in GameY (P ) by setting ψ({yi}i<n) = h(ϕ({g(yi)}i<n)) for n ≥ 0.

Let {yn}∞n=0 be a run in GameY (P ) in which player I follows strategy ψ. We
want to show that {yn}∞n=0 ∈ P . Set xn = g(yn) for each n. Consider a run in
the game on X , in which player II plays x2n+1 for any n and player I follows the
strategy ϕ. By induction we show that x2n = ϕ({xi}i<2n) for each n and therefore
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{xn}∞n=0 ∈ Q. Actually, by definition of the strategy ψ we obtain

x2n = g(y2n) = g(ψ({yi}i<2n)) = g(h(ϕ({xi}i<2n))) = ϕ({xi}i<2n).

Thus {xn}∞n=0 ∈ Q = H−1(P ) and therefore {yn}∞n=0 = H({xn}∞n=0) ∈ P .
We can proceed similarly in the case when player II has a winning strategy

and also for games Game∗
X and Game∗∗

X .
b) We fix a bijection θ : ω 1−1−→

onto

<ωω. Define a continuous map Θ : ωω −→ ωω

by
Θ({xn}∞n=0) = θ(x0) � x1 � · · · � θ(x2n) � x2n+1 � · · · .

Consider game Game∗
ω(P ), P ∈ Γ (ωω). Let Q = Θ−1(P ). Assume that player

II has a winning strategy ϕ in Gameω(Q). We define a strategy ψ for player
II in Game∗

ω(P ) as follows. Let ai ∈ <ωω for i = 0, 2, . . . , 2n and ai ∈ ω for
i = 1, 3, . . . , 2n − 1. We write xi = θ−1(ai) for i = 0, 2, . . . , 2n and xi = ai for
i = 1, 3, . . . , 2n − 1. Set ψ({ai}i<2n+1) = ϕ({xi}i<2n+1). Similarly as above one
can easily see that ψ is a winning strategy for player II in Game∗

ω(P ).
If player I has a winning strategy the proof runs similarly. �

Especially, for any pointclass Γ we obtain

Detω(Γ ) → Det2(Γ ), Det∗
ω(Γ ) → Det∗

2(Γ ), Det∗∗
ω (Γ ) → Det∗∗

2 (Γ ).

Lemma 5.59. If P ⊆ ωX is countable, then player II has a winning strategy in
both games GameX(P ) and Game∗

X(P ).

The proof is a Cantor’s diagonal argument. Enumerate the set P . In the nth move
player II plays in such a way that the resulting run will avoid the nth element
of P . �
Lemma 5.60. If player I has a winning strategy in any of games GameX(P ) or
Game∗

X(P ), then the set P contains a perfect subset homeomorphic to the Cantor
middle-third set.

Proof. If f is a winning strategy for player I, then f̄I(ωX) ⊆ P . Since the Cantor
middle-third set is a compact subset of ωX , the assertion follows. �

Actually we can prove much more.
Theorem 5.61 (M. Davis). Player I has a winning strategy in Game∗

2(P ) if and
only if the set P contains a perfect subset. Player II has a winning strategy in
Game∗

2(P ) if and only if the set P is countable.

Proof. Assume that P ⊆ ω2 contains a perfect subset. We describe (informally)
a winning strategy for player I in game Game∗

2(P ). Let us recall that for a finite
sequence s ∈ <ω2 we write [s] = {α ∈ ω2 : s ⊆ α}. The family {[s] : s ∈ <ω2} is
an open base of the topology on ω2.
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Let {xi}i≤n be the result of the run after k moves and [{xi}i≤n] ∩ P �= ∅.
Since P is a perfect set there are two different elements α, β ∈ [{xi}i≤n]∩P . Take
the first m > n such that α(m) �= β(m). In the next step player I plays the finite
sequence

{xi}m−1
i=n+1 = {α(i)}m−1

i=n+1 = {β(i)}m−1
i=n+1

(if m = n+ 1, this sequence is empty). Player II can answer xm equal to 0 or 1. In
both cases we have [{xi}i≤m] ∩ P �= ∅. The resulting run will be an element of P .

Assume that there is a winning strategy f for player II in Game∗
2(P ). We

introduce some notation. Let R denote the set of all partial runs following the
strategy f . A typical element of R has the form s0 � f(s0) � · · · � sn � f(sn).

We claim that

(∀α ∈ P )(∃s ∈ R,α ∈ [s])(∀t ∈ R) ((s ⊆ t, s �= t) → α /∈ [t]). (5.38)

Actually, if not, then one can construct a strictly increasing sequence sn ∈ R,
sn ⊆ sn+1, α ∈ [sn]. Then α =

⋃
n sn ∈ P is the run following strategy f ,

contradicting the assumption that f is a winning strategy for player II.
Moreover, it is easy to see that the element s of (5.38) is unique. Since R is

countable also P is countable. �

Theorem 5.62 (S. Banach – S. Mazur). Player I (player II) has a winning strategy
in Game∗∗

ω (P ) if and only if there exists a non-empty open set U ⊆ ωω such that
U \ P is meager (the set P is meager).

Proof. Let P be meager. Then there exist open dense sets 〈Un : n ∈ ω〉 such that
P ∩
⋂
n Un = ∅. If the partial run is b, then in the nth move player II plays as

follows: since Un is open dense, the intersection [b] ∩ Un is non-empty and player
II plays a non-empty a ∈ <ωω such that [b � a] ⊆ [b] ∩ Un. The resulting run will
be in

⋂
n Un and player II wins.

If there exists a non-empty open set U such that U \P is meager, then player
I starts with a ∈ <ωω such that [a] ⊆ U . Since [a] \ P is meager too there are
open dense subsets 〈Un ⊆ [a] : n ∈ ω〉 such that [a] ∩

⋂
n Un ⊆ P . Now, if the

partial run in the nth move is b ⊇ a, then player I chooses such a sequence c that
[b � c] ⊆ Un. Then the resulting run will be in P .

Assume now that f is a winning strategy for player II in Game∗∗
ω (P ). We

denote by R the set of all partial runs in which player II follows the winning
strategy f . For any a ∈ R the set Ba = [a] \

⋃
{[b] : a ⊆ b, a �= b, b ∈ R} is closed

and nowhere dense. Note that Ba is the set of those runs extending a which do not
follow the strategy f . For any x ∈ ωω, if any partial run a ⊆ x can be extended
to a partial run b �= a, b ⊆ x following the strategy f , then x /∈ P . Thus

x ∈ P → (∃a ∈ R)x ∈ Ba.

Since R is countable the set P is meager.
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Let f be a winning strategy for player I in Game∗∗
ω (P ). Set a = f(∅), i.e.,

a is the first move of player I. Then f is a winning strategy for player II in
Game∗∗

ω ([a] \ P ). Thus [a] \ P is meager. �

One can easily prove that GameX(P ) is determined for P closed or open –
see Exercise 5.30. However, the basic result is
Theorem [AC] 5.63 (D.A. Martin). Let X be a non-empty set. If P ⊆ ωX is
a Borel set, then GameX(P ) is determined, i.e., DetX(Borel) holds true.

A proof can be found, e.g., in D.A. Martin [1975] or A.S. Kechris [1995].
For more complicated sets (analytic) the determinacy is not provable in ZFC, see
T. Jech [2006].

Exercises

5.29 Non-determined Game

a) If ω2 can be well ordered, then there exists a set P ⊆ ω2 such that the game
Game2(P ) is not determined.

Hint: Let {γξ : ξ < c}, {fξ : ξ < c}, {gξ : ξ < c} be enumerations of ω2, all strategies
of player I and all strategies of player II, respectively. By transfinite induction
find sequences {αξ : ξ < c}, {λξ : ξ < c} such that f̄ξI(αξ) /∈ {λη : η < ξ} and
ḡξII(λξ) /∈ {αη : η < ξ}. Take P = {λξ : ξ < c}.

b) Show similar results for the star-game and the Banach-Mazur game.

5.30 Gale-Steward Theorem

Let T ⊆ <ωω be a pruned tree. Elements of <ωω are partial runs in Gameω([T ]).

a) Assume that II has no winning strategy in the game Gameω([T ]). A partial run
s ∈ 2nω is not losing for I if II has no winning strategy in Gameω({α ∈ ωω : s ⊆ α}).
Show that if s is not losing for I, then there exists an m such that s � m ∈ T and
s � m � k is not losing for I for any k.

b) Assuming that II does not have a winning strategy in Gameω([T ]) define a winning
strategy for I.

Hint: Use the result of a).

c) Prove the Gale-Steward Theorem: If A ⊆ ωω is closed, then Gameω(A) is deter-
mined.

d) If A ⊆ ωω is open, then Gameω(A) is determined.

e) If A ⊆ ωω is closed or open, then Game∗
ω(A) and Game∗∗

ω (A) are determined.

5.31 Star-game

If X is a Polish space with a countable base B, for a set A ⊆ X we can define a star-game
GameG∗(X,A) as follows: at the nth step player I plays two basic open sets U0

n, U
1
n of

diameter less than 2−n with disjoint closure, and player II picks one of them in = 0, 1.
If x is the only point of

⋂
n U

in
n , then I wins if x ∈ A.

a) I has a winning strategy in GameG∗(X,A) if and only if A contains a perfect
subset.

b) II has a winning strategy in GameG∗(X,A) if and only if A is countable.
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c) If A is closed, then GameG∗(X,A) is determined.

d) Show that the star-game Game∗
2(A) is the game GameG∗(ω2, A).

5.32 Banach-Mazur Game

If X is a Polish space with a countable base B, for a set A ⊆ X we can define the Banach-
Mazur game GameG∗∗(X,A) as follows: in the n-th move player I plays an open basic
set Un ⊆ Vn−1 with diam(Un) < 2−n and player II plays an open basic set Vn ⊆ Un.
Player II wins if

⋂
n Un =

⋂
n Vn ⊆ A.

a) Player II has a winning strategy in GameG∗∗(X,A) if and only if A is comeager.

Hint: If A is not comeager, then there exist a non-empty open set U0 and open
dense sets 〈Gn : n ∈ ω〉 such that U0 ∩A ∩

⋃
n Gn = ∅. Player I starts with U0 and

for a move Vn by players II answers by a non-empty open Un+1 ⊆ Vn ∩Gn.
Conversely, if A is comeager,

⋂
nWn ⊆ A, Wn open dense, at n-th move, player II

plays a subset of Wn.

b) I has a winning strategy in GameG∗∗(X,A) if and only if A is meager in a non-
empty open set U .

Hint: Let f be a winning strategy for player I. Let U = f(∅) and

Gn =
⋃
{f({Vi}n

i=0) : (∀i ≤ n)Vi ∈ B}.

Then Gn is open dense and U ∩A ∩
⋂

n Gn = ∅.
c) If A is a Gδ set, then the Banach-Mazur game GameG∗∗(X,A) is determined.

5.33 [wAC] Unfolded Game

Let X be a perfect Polish space, C ⊆ X × ωω and

A = {x ∈ X : (∃α) [x, α] ∈ C}.

a) Let f : X −→ Y be continuous, A ⊆ Y . If player I (player II) has a winning strategy
in GameG∗∗(X, f−1(A)), then she/he has a winning strategy in GameG∗∗(Y,A)
as well.

b) If I has a winning strategy in GameG∗(X × ωω,C), then I has a winning strategy
in GameG∗(X,A).

c) If II has a winning strategy in GameG∗(X×ωω,C), then II has a winning strategy
in GameG∗(X,A).

d) If C is closed, then GameG∗(X,A) is determined.

e) If C is closed, then either A is countable or A contains a perfect subset.

f) If I has a winning strategy in GameG∗∗(X × ωω,C), then I has a winning strategy
in GameG∗∗(X,A).

g) If II has a winning strategy in GameG∗∗(X×ωω,C), then II has a winning strategy
in GameG∗∗(X,A).

h) If C is closed, then GameG∗∗(X,A) is determined.

i) If C is closed, then A possesses the Baire Property.
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Historical and Bibliographical Notes

A Souslin scheme as “an operation (A)” was introduced and investigated by
F. Hausdorff as a generalization of infinite countable union and intersection of
a series of sets. M. Souslin [1917] used a Souslin scheme to define and to investi-
gate an analytic set. N.N. Luzin [1927] investigated the Lebesgue decomposition
and introduces the notion of a sieve, in French “le crible”. Theorem 5.12 was
essentially proved by N.N. Luzin and W. Sierpiński [1923].

A notion of a pointclass was introduced by Y.N. Moschovakis [1980]. The
results of Section 5.2 were presented in several papers by Y.N. Moschovakis and
then in [1980]. Sometimes our presentation follows A. Kechris [1995]. However,
a close analogy between properties of projective sets and sets of integers related
to the recursive theory was investigated by A. Mostowski [1946].

A study of Boolean algebras started with the symbolization of language of
logic by G. Boole [1847]. Then several authors investigated Boolean algebras and
its properties. We mention the paper by A. Tarski [1939]. The Boolean algebra of
Exercise 5.20 was introduced by A. Lindenbaum (unpublished) and later on by
A. Tarski – compare footnotes in H. Rasiowa and R. Sikorski [1963], pp. 245–246.
Theorem 5.28 was proved by M.H. Stone [1936] and started a new era of study
of Boolean algebras. His main results are contained in Exercise 5.15. Basic litera-
ture on Boolean algebras is R. Sikorski [1964] and the handbook J.D. Monk and
R. Bonnet [1989]. Theorem 5.33 was proved by H. Rasiowa and R. Sikorski [1950].

Theorem 5.39 was proved by G. Fichtenholz and L. Kantorovitch [1934] for
a countable set, and then generalized for any infinite set by F. Hausdorff [1936b].
B. Posṕı̌sil [1937] discovered it independently as a tool for proving Theorem 5.40.

F. Rothberger [1939] and [1941] started to investigate the properties of the
bounding number b. He was courageous enough to assume that b < c. For ba-
sic properties of b and other cardinal invariants (small uncountable cardinals)
we recommend E.K. van Douven [1984], J.E. Vaughan [1990], A. Blass [1993] or
A. Blass [2010]. Note that A. Blass [1993], [2010] prefers to speak about cardi-
nal characteristic instead of cardinal invariant. A Tukey connection was implicitly
used by D. Fremlin [1984a]. That was P. Vojtáš [1993], who explicitly introduced
the notion of a Galois-Tukey connection and presented its basic properties. Theo-
rem 5.47 was proved by D.A. Martin and R.M. Solovay [1970]. B. Balcar, J. Pelant
and P. Simon [1980] introduced the number h and proved Theorem 5.50. See also
B. Balcar and P. Simon [1989]. Moreover they showed that there exists a base ma-
trix tree of Exercise 5.25. The presentation of Exercise 5.25 follows A. Blass [2010].
A Hausdorff gap was constructed by F. Hausdorff [1909]. Our presentation par-
tially follows A. B�laszczyk and S. Turek [2007].

Rothberger’s Theorem, Exercise 5.23 was proved in F. Rothberger [1948]. The
groupwise density number g was introduced and investigated by A. Blass [1989].
Booth’s Lemma, Exercise 5.28 was proved by D. Booth [1970].
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In spite of the fact that S. Banach and S. Mazur obtained the first important
results related to the infinite games in 1930s, the first published papers devoted to
infinite games appeared later, e.g., D. Gale and F.M. Stewart [1953], J. Mycielski
and A. Zieba [1955], M. Davis [1964], and J. Mycielski [1964a]. Actually D. Gale
and F.M. Stewart showed determinacy of Gameω(A) for A closed. We recommend
R. Telgársky [1987] for a detailed history of infinite games.

The most important result is Theorem 5.63 proved by D.A. Martin [1975].
However, H. Friedmann [1971] shows that the Axiom of Replacement is essentially
used in this proof. Actually, he shows that there exists a model of the Zermelo set
theory Z = ZF − “Replacement”, in which Martin’s Theorem 5.63 does not hold
true. In 1962 J. Mycielski and H. Steinhaus [1962] proposed the Axiom of Deter-
minacy AD as an alternative to the Axiom of Choice AC. The main consequences
of AD were published by J. Mycielski [1964b], [1966] and in a common paper with
S. Świerczkowski [1964].

The idea of an unfolded game goes back to R.M. Solovay and then to
D.A. Martin and A. Kechris, see, e.g., A. Kechris [1995].



Chapter 6

Descriptive Set Theory

L’étude de propriétés des ensembles projectifs est difficile; cependant
pour comprendre ce que sont les ensembles projectifs et quels sont les
problèmes qui s’y posent, on n’a pas besoin de connaissances spéciales.

Wac�law Sierpiński [1950].

The study of properties of the projective sets is difficult; nevertheless,
one needs no special knowledge to understand what the projective sets
are and what problems they pose.

In 1905 Henri Lebesgue [1905] published a large paper Sur les fonctions
représentables analytiquement, which strongly influenced the next investigations
in a domain of mathematics that we call today the descriptive set theory. The pa-
per was mainly devoted to the study of the Baire Hierarchy of real functions.
Moreover, a proof of one theorem was wrong (the theorem is actually true).
H. Lebesgue used the argument that a continuous image of a Borel set is a Borel
set. M.J. Souslin [1917] observed the error and found a counterexample: a Borel
set with a continuous image not being Borel. That was a beginning of the study
of a new important class of subsets of the real line and Polish spaces.

We assume that the reader is familiar with the topic of Sections 3.3, 5.1 and
5.2. Section 6.1 is devoted to the study of basic properties of Borel subsets of
a Polish space. In Section 6.2 we present fundamental properties of analytic sets.
In Section 6.3 we describe the Projective Hierarchy. Moreover, we show the classical
relationship of this hierarchy with logic, mainly with a form of a formula that
defines a projective set. Finally Section 6.4 contains deep fundamental properties
of Π1

1 and Σ1
2 sets.
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6.1 Borel Hierarchy

In Section 3.3 we introduced the Borel Hierarchy. Now we present some of its
properties. We apply the Souslin schemes to obtain fundamental results about
Borel sets.

By slight modification of the proof of Theorem 5.5 we obtain

Theorem [wAC] 6.1. For any Polish space X there exists a closed set C ⊆ ωω and
a continuous bijection f : C 1−1−→

onto
X.

For a proof we shall need an auxiliary result1

Lemma [wAC] 6.2. For every Fσ subset A of a Polish space X and for every ε > 0,
there exist pairwise disjoint Fσ sets 〈An : n ∈ ω〉 of diameter less than ε such that
A =
⋃
nAn and An ⊆ A for every n.

Proof. Since A is an Fσ set, there exists a sequence of closed sets 〈Bn : n ∈ ω〉
such that A =

⋃
nBn. We may suppose that diam(Bn) < ε (if not, cover the space

X by countably many closed sets of diameter < ε and take the intersections). We
set Fn =

⋃
n(Bn \

⋃
k<nBk). Then A =

⋃
n Fn. The sets Fn are pairwise disjoint.

Since every Fn is an Fσ set, there exist closed sets 〈Cnm : m ∈ ω〉 such that
Fn =

⋃
m C

n
m. We may suppose that Cnm ⊆ Cnm+1. Then Fn =

⋃
m(Cnm \ Cnm−1)

(where Cn−1 = ∅). The Fσ sets Cnm \ Cnm−1, n,m ∈ ω are pairwise disjoint and

Cnm \ Cnm−1 ⊆ Cnm ⊆ A.

If 〈Ak : k ∈ ω〉 is an enumeration of 〈Cnm \ Cnm−1 : n,m ∈ ω〉, we are done. �

Proof of Theorem 6.1. We construct a regular Fσ Souslin scheme 〈<ωω, ϕ〉 with
vanishing diameter such that L(<ωω, ϕ) = X and the kernel C = Ker (<ωω, ϕ) is
closed.

We set ϕ(∅) = X . Assume that the values ϕ(s), s ∈ kω are defined. By
Lemma 6.2 there are pairwise disjoint Fσ sets An, n ∈ ω with diameter less than
2−k−1 and such that ϕ(s) =

⋃
nAn and An ⊆ ϕ(s). Set ϕ(s � n) = An.

Now we construct a closed Souslin scheme by setting ψ(s � n) = ϕ(s � n).
Since ψ(s � n) ⊆ ϕ(s) ⊆ ψ(s) we obtain

⋂
n ψ(α|n) =

⋂
n ϕ(α|n) for any α ∈ ωω.

Hence Ker (<ωω, ψ) = C and the continuous associated map f : C −→ X for
〈<ωω, ϕ〉 is also the associated map for 〈<ωω, ψ〉. Since 〈<ωω, ϕ〉 is a regular Souslin
scheme, the associated map f is injective. �

Theorem [wAC] 6.3. If B is a Borel subset of a Polish space X, then there exist
a closed set C ⊆ ωω and a continuous bijection f : C 1−1−→

onto
B.

1Compare with Theorem 5.20, d).
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Proof. We define a family F of subsets of X as follows:

A ∈ F ≡ (A ⊆ X ∧ (∃f)(∃C) (C ⊆ ωω closed ∧ f : C 1−1−→
onto

A continuous)).

We show that the family F is closed under countable pairwise disjoint unions,
under countable intersections, and contains every open subset of X . Then by
Theorem 3.48 the family F contains every Borel subset of X and the theorem
follows.

Since every open subset of a Polish space is a Polish space, by Theorem 6.1
the family F contains every open subset of X .

Assume that An ∈ F , fn : Cn
1−1−→
onto

An, fn are continuous and Cn ⊆ ωω are

closed for every n ∈ ω.
The projections Projn : ωω

onto−→ ωω defined by (1.10) are continuous. We
denote Dn = Proj−1

n (Cn) and gn = Projn ◦fn. Then any of the mappings gk maps
the closed set

D = {x ∈
⋂

n

Dn : (∀n,m) gn(x) = gm(x)} (6.1)

one-to-one onto
⋂
nAn.

Assume now that 〈An ∈ F : n ∈ ω〉 are pairwise disjoint sets. We define
mappings Sn : ωω −→ ωω setting Sn(α) = β, where β(0) = n and β(k+ 1) = α(k)
for k ∈ ω. Then f :

⋃
n Sn(Cn) 1−1−→

onto

⋃
nAn, where f =

⋃
n(S−1

n ◦fn), is continuous.

Moreover
⋃
n Sn(Cn) is a closed subset of ωω. �

Theorem [wAC] 6.4. Let X be a Polish space. The family of subsets of X sifted
by a closed Souslin scheme 〈<ωω, ϕ〉 with vanishing diameter contains all non-
empty closed subsets of X and is closed under countable intersections and countable
unions.

Proof. A non-empty closed subset A of a Polish space X with the subspace topol-
ogy is a Polish space and therefore, by Theorem 5.5, is sifted by a closed Souslin
scheme.

Assume that An ⊆ X , n ∈ ω are sifted by Souslin schemes 〈<ωω, ϕn〉 with
vanishing diameter2. Define a mapping ϕ on <ωω as follows:

ϕ(∅) = X, ϕ(n � s) = ϕn(s) for s ∈ <ωω.

Then
L(<ωω, ϕ) =

⋃

n

L(<ωω, ϕn),

and therefore
⋃
nAn is sifted by a closed Souslin scheme with vanishing diameter.

By Corollary 5.8 there are continuous surjections fn : ωω onto−→ An for every
n ∈ ω. Similarly as in the proof of Theorem 6.3, the maps gn = Projn ◦ fn
2We have used the axiom wAC.
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are continuous and every gn maps the closed set D defined by (6.1) onto the
intersection

⋂
n An. �

By Theorem 3.48 we obtain
Corollary [wAC] 6.5. Every Borel subset of a Polish space is sifted by a closed
Souslin scheme with vanishing diameter.
Corollary [wAC] 6.6. Let X be a Polish space. The family of subsets of X which are
a continuous image of the Baire space ωω contains all non-empty closed subsets of
X and is closed for countable intersections and unions. Thus, every Borel subset
of X is a continuous image of the Baire space ωω.

By Theorem 5.4 we obtain
Corollary [wAC] 6.7 (Alexandroff-Hausdorff Theorem). Any Borel subset of a Pol-
ish space is either countable or contains a copy of the Cantor middle-third set and
therefore has the cardinality c.
Corollary [wAC] 6.8. Assume that X is a perfect Polish space. If A ⊆ X is a
non-meager set possessing the Baire Property, then there exists a Borel meager
set B ⊆ A such that |B| = c. If µ is a diffused Borel measure on X and A ⊆ X is
measurable of positive measure, then there exists a Borel measure zero set B ⊆ A
such that |B| = c.

Proof. If A ⊆ X has the Baire Property, then by Theorem 3.32 there exists a Gδ

set G ⊆ A such that A \ G is meager. Therefore G is uncountable and contains
a copy of the Cantor middle-third set. Any meager Borel subset of the Cantor
middle-third set is also a Borel meager subset of A.

Similarly, if A ⊆ X is measurable then by Theorem 4.4 there is an Fσ set
F ⊆ A of equal measure. Since µ is diffused, F cannot be countable, therefore
F contains a copy of the Cantor middle-third set C. If µ(C) = 0, we are done.
Otherwise apply Theorem 4.13. �

Now we exploit a general result about pointclasses for Borel Hierarchy.
Theorem [wAC] 6.9. If X is a Polish space, then Σ0

ξ(X) has the σ-reduction
property and Π0

ξ(X) has the separation property for every ξ > 1.

Proof. By definition we have Σ0
ξ(X) = Σ0(

⋃
η<ξ Π0

η(X)) for any ξ > 1. By Theo-
rem 3.39, ¬

⋃
η<ξ Π0

η(X) ⊆ Σ0
ξ(X). The theorem follows by Theorem 5.20. �

Theorem [wAC] 6.10. The pointclasses Σ0
ξ and Π0

ξ are ω2-parametrized for all
ξ > 0.

Proof. Fix a separable metric space X and a countable ordinal ξ > 0. We construct
by induction a family {Uη : 0 < η ≤ ξ} such that every Uη ⊆ ω2 ×X is Σ0

η(X)-
universal. Then ω2×X \ Uη is Π0

η(X)-universal.
Let Pn,X be the function defined in the proof of Theorem 5.19, c). Let f be

a function of Theorem 1.21, a).
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Take for U1 the universal set for open sets defined by (5.18). Uη+1 is con-
structed from Uη as

Uη+1 = {〈a, x〉 : (∃n) 〈Projn(a), x〉 ∈ (ω2×X \ Uη)} =
⋃

n

P−1
n,X(ω2×X \ Uη).

If η ≤ ξ is a limit ordinal then f(η) = {ηn : n ∈ ω} is a non-decreasing sequence
such that η = sup{ηn : n ∈ ω}. We set

Uη = {〈a, x〉 : (∃n) 〈Projn(a), x〉 ∈ (ω2×X \ Uηn)} =
⋃

n

P−1
n,X(ω2×X \ Uηn).

Then Uξ ∈ Σ0
ξ(
ω2×X) and it is easy to see that Uξ is a universal set for Σ0

ξ(X).
�

Corollary [wAC] 6.11. Let Y be an uncountable Polish space. The pointclasses Σ0
ξ

and Π0
ξ are Y -parametrized for all ξ > 0. However, there is no Y -universal set for

the family ∆0
ξ(Y ), 0 < ξ < ω1.

Proof. The former part follows from the theorem by Theorem 5.16, b) and Corol-
lary 6.7. The latter one follows by Lemma 5.14. �

Theorem [wAC] 6.12. If X is an uncountable Polish space X, then all inclusions
∆0
ξ(X) ⊆ Σ0

ξ(X), ∆0
ξ(X) ⊆ Π0

ξ(X), Σ0
ξ(X) ⊆ ∆0

ξ+1(X), Π0
ξ(X) ⊆∆0

ξ+1(X) are
proper for any 0 < ξ < ω1. Consequently, the Borel Hierarchy is proper for any
uncountable Polish space.

Proof. Since the pointclass ∆0
ξ is self-dual, for each Polish space X and each ξ > 0

any of the equations ∆0
ξ(X) = Σ0

ξ(X), ∆0
ξ(X) = Π0

ξ(X), Σ0
ξ(X) = ∆0

ξ+1(X),
Π0
ξ(X) = ∆0

ξ+1(X) implies the equation Σ0
ξ(X) = Π0

ξ(X). Thus we have to show
that Σ0

ξ(X) �= Π0
ξ(X).

Suppose, to get a contradiction, that Σ0
ξ(X) = Π0

ξ(X) for a ξ > 0. Let U
be an ω2-universal set for Σ0

ξ(X). By Corollary 5.6 there exists a set C ⊆ X and
a homeomorphism h : ω2 1−1−→

onto
C. We set

D = {x ∈ C : 〈h−1(x), x〉 /∈ U}.

Then D ∈ Π0
ξ = Σ0

ξ . Therefore there exists an a ∈ ω2 such that D = Ua. Then

〈a, h(a)〉 ∈ U ≡ h(a) ∈ D ≡ 〈a, h(a)〉 /∈ U,

which is a contradiction.
If wAC holds true, then by Corollary 6.7 there exists an embedding of ω2

into any uncountable Polish space. �
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Theorem [wAC] 6.13. If X, Y are uncountable Polish spaces, then there is no
Y -universal set for Borel(X).

Proof. The theorem follows from Theorems 5.17 and 5.15. �

We present the simplest consequences of game theory to the structure of
Borel sets. Let X, Y be topological spaces, A, B being their subsets, respectively.
We say that A is Wadge reducible to B if there exists a continuous mapping
f : X −→ Y such that A = f−1(B). We shall write 〈X,A〉 ≤W 〈Y,B〉, or simply
A ≤W B if the spaces X,Y are understood.
Theorem [AC] 6.14 (W. Wadge). If A,B ⊆ ωω are Borel sets, then either A ≤W B
or B ≤W (ωω \A).

Proof. Let

P = {{xn}∞n=0 ∈ ωω : ¬({x2n}∞n=0 ∈ A ≡ {x2n+1}∞n=0 ∈ B)}.

Then P is a Borel subset of ωω and by Theorem 5.63 the game Gameω(P ) is
determined. If there exists a winning strategy f for player II, then to each play of
player I we assign the play of player II which follows the winning strategy f , i.e.,
we set g({xn}∞n=0) = {yn}∞n=0, where

yn = f(〈x0, f(x0), . . . , xn−1, f(〈x0, f(x0), . . . , xn−1〉), xn〉).

Evidently g is continuous and g−1(B) = A. Thus A ≤W B.
If there exists a winning strategy f for player I, we define similarly as above

h({xn}∞n=0) = {yn}∞n=0, where

yn = f(〈f(∅), x0, . . . , f(〈f(∅), x0, f(x0) . . . , xn−1〉)〉).

Then h−1(ωω \A) = B. �

A subset A of a topological space X is Wadge Γ -hard if every B ∈ Γ (ωω) is
Wadge reducible to A. If moreover A ∈ Γ (X) we say that A is Wadge Γ -complete.
Theorem [AC] 6.15 (W. Wadge). A subset A ⊆ ωω is Wadge Σ0

ξ-complete if and
only if A ∈ Σ0

ξ \Π0
ξ. Similarly, a set A ⊆ ωω is Wadge Π0

ξ-complete if and only
if A ∈ Π0

ξ \Σ0
ξ.

Proof. If A is Wadge Σ0
ξ-complete then A ∈ Σ0

ξ \Π0
ξ by Theorem 6.12.

So assume that A ∈ Σ0
ξ \Π0

ξ. Let B ∈ Σ0
ξ(
ωω). Then by Theorem 6.14 either

A ≤W (ωω \B) or B ≤W A. The first alternative is impossible. �

By Theorem 5.10 we have
Theorem 6.16. If A ⊆ X is Wadge Γ -hard, then 〈Y,B〉 ≤W 〈X,A〉 for every
B ∈ Γ (Y ) and every Polish space Y with a clopen base.

Of course the assertion need not be true for arbitrary Polish space Y .
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Exercises

6.1 [wAC] Baire Hierarchy is Proper

a) The characteristic function χA is Γ -measurable if and only if A ∈ Γ ∩ ¬Γ .

b) If BPη(X) = BPξ(X) for some η < ξ < ω1, then BP(X) = BPη(X).

c) Assume that X is an uncountable Polish space and ξ > 0. Then there exists a
function f ∈ BPξ(X) such that f /∈

⋃
η<ξ BPη(X).

d) If X is an uncountable Polish space, then each inclusion in the hierarchy (3.24) is
proper.

e) Describe the Borel Hierarchy and the Baire Hierarchy for a countable Polish space.

Hint: Consider the set of accumulation points.

6.2 [wAC] Generalized Separation Property

A pointclass Γ has the generalized separation property if for any sequence {An}∞n=0 of
sets from Γ (X) with

⋂
n An = ∅ there exists a sequence {Bn}∞n=0 of sets from ∆[Γ ](X)

such that An ⊆ Bn for each n and
⋂

n Bn = ∅.
a) If Γ is closed under countable unions and has the σ-reduction property, then ¬Γ

has the generalized separation property.

Hint: If
⋂

nAn = ∅, An ∈ ¬Γ , then there exist pairwise disjoint sets Bn ∈ Γ such
that
⋃

n Bn = X and Bn ⊆ X \An. Evidently each Bn ∈ ∆[Γ ].

b) Π0
ξ has the generalized separation property for every ξ > 1.

c) If Γ is closed under countable intersections and has the generalized separation
property, then Γ has the separation property.

6.3 [wAC] Decomposition of Borel Sets

a) Any set A ∈ Σ0
ξ , ξ > 0 can be expressed as a countable union of pairwise disjoint

sets from ∆0
ξ.

Hint: If A =
⋃

n An, An ∈
⋃

η<ξ Π0
η, then An \

⋃
k<n Ak ∈∆0

ξ, n ∈ ω are pairwise
disjoint and A =

⋃
n(An \

⋃
k<nAk).

b) Any set A ∈ Σ0
ξ, ξ > 1 can be expressed as a union of pairwise disjoint sets from⋃

η<ξ Π0
η.

Hint: By a) A =
⋃

n An with An ∈∆0
ξ. Then X \

⋃
k<nAk =

⋃
i Bn,i with pairwise

disjoint Bn,i ∈∆0
η, η < ξ. Note that A =

⋃
n

⋃
i(An ∩Bn,i).

c) Any set A ∈∆0
ξ, ξ > 1 can be expressed as

A =
⋃

n

⋂

k≥n

Ak =
⋂

n

⋃

k≥n

Ak

with Ak ∈
⋃

η<ξ ∆0
η, k ∈ ω.

Hint: If A =
⋃

nBn and X \ A =
⋃

n Cn, Bn, Cn ∈
⋃

η<ξ Π0
η, take An ∈

⋃
η<ξ ∆0

η

such that Bn ⊆ An ⊆ X \ Cn.

6.4 Wadge Γ -hard Sets

a) If A ⊆ X is Wadge Γ -hard (Wadge Γ -complete), then X \ A is Wadge ¬Γ -hard
(Wadge ¬Γ -complete).

b) If A is Wadge Γ -hard (Wadge Γ -complete) and A ≤W B, then B is also Wadge
Γ -hard (Wadge Γ -complete).

c) If a Wadge Γ -hard set is in ¬Γ , then Γ is self-dual.
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6.5 Wadge Game

a) Assume that Q ⊆ ωω is a countable dense subset and B ⊆ ωω is an Fσ set. Find a
winning strategy for player II in Gameω(P ), where

P = {{xn}∞n=0 ∈ ωω : (∀n) ({x2n}∞n=0 ∈ B ≡ {x2n+1}∞n=0 ∈ Q)}.

Hint: Let Q = {γn : n ∈ ω}, B =
⋃

n Bn, Bn ⊆ Bn+1 being closed. Assume that the
partial run after n steps is x0, . . . , x2n−1. If player II plays x2n, then player I looks
for the first m such that γm|n = {x2i+1}n−1

i=0 . The existence of such m follows from
the density of Q. If [{xi}2n

i=0]∩Bn+1 = ∅, player I plays x2n+1 	= γm(n). Otherwise
player I plays x2n+1 = γm(n). Note that if in two successive steps player II plays
disjoint sets, then player I finds the same m.

b) Conclude that any countable dense subset of ω2 or ωω is Wadge Fσ-hard.

6.2 Analytic Sets

Let X be Polish space. A set A ⊆ X is called analytic if there exist a Polish
space Y , a Borel subset B ⊆ Y and a continuous mapping f : Y −→ X such that
A = f(B). The family of all analytic subsets of the space X is denoted by Σ1

1(X).
A subset A ⊆ X of a Polish space X is called co-analytic if X \A is analytic. The
family of all co-analytic subsets of the space X is denoted by Π1

1(X).
Theorem [wAC] 6.17. Let A be a subset of a Polish space X. Then the following
are equivalent:

a) A is analytic.
b) A is sifted by a closed Souslin scheme with vanishing diameter.
c) A is sifted by a closed Souslin scheme 〈<ωω, ϕ〉 with vanishing diameter.
d) A is sifted by a closed sieve.
e) There exists a continuous f : ωω −→ X such that A = f(ωω).
f) There exist a Polish space Y , a Borel subset B ⊆ Y and a continuous sur-

jection f : B onto−→ A.
g) There exist a Polish space Y and a Borel subset B ⊆ Y × X such that

A = proj2(B).
h) There exists a closed set B ⊆ ωω ×X such that proj2(B) = A. Thus

Σ1
1(X) = ∃ωω[Π0

1](ωω ×X). (6.2)

i) There exists a Borel measurable f : ωω −→ X such that A = f(ωω).

Proof. The following implications are trivial: c) → b), a) → f), g) → a), h) → g),
e) → i). By Theorem 5.12 we have c) ≡ d). By Theorem 5.3 we obtain that
b) → a). By Corollary 5.8 we have c) ≡ e). By Corollary 6.6 we have implication
f) → e). If f : ωω onto−→ A is continuous, then by Theorem 1.38 the set f ⊆ ωω ×X
is closed and proj2(f) = A. Thus e) → h). If f : ωω −→ X is Borel measurable,
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then by Theorem 3.56 the graph f ⊆ ωω × X is a Borel set and proj2(f) = A.
Thus i) implies g).

We have shown the following implications:

f) e) h) g) a) f)

i)

c) b)

� � � � �

�

���� ����

���� ����

Hence, the theorem follows. �

Corollary [wAC] 6.18. The families Σ1
1 and Π1

1 are closed under countable unions
and countable intersections. Hence, both Σ1

1 and Π1
1 are pointclasses.

Proof. The corollary follows from part c) of the theorem and Theorem 6.4. �

Corollary [wAC] 6.19 (M.J. Souslin). An uncountable analytic subset of a Polish
space contains a perfect subset homeomorphic copy to the Cantor middle-third set.
Thus every analytic set is either countable or of cardinality continuum.

Proof. The corollary follows from part b) of the theorem and Theorem 5.4. �

One can easily check that in the proof of the theorem all implications but
f) → e) (and therefore a) → d)) were proved without using wAC. We do not know
a proof of a) → d) without wAC. Therefore we shall assume sometimes that a set
is sifted by a closed sieve instead of being analytic.

Evidently

Borel(X) ⊆ Σ1
1(X), Borel(X) ⊆Π1

1(X).

The ambiguous family ∆1
1 is defined as

∆1
1 = Σ1

1 ∩Π1
1.

Let 0 < k < n. Then we can consider Rn as the product Rk × Rn−k. Thus
we can define the projection projn,k : Rn −→ Rk as

projn,k(x1, . . . , xn) = 〈x1, . . . , xk〉.

Corollary [wAC] 6.20. If A ⊆ Rk then for any n > k the following are equivalent:

a) A is analytic.
b) There exist a Gδ set B ⊆ Rn and a continuous mapping f : Rn −→ Rk such

that A = f(B).
c) There exists a Borel set B ⊆ Rn such that projn,k(B) = A.
d) There exist a Borel set B ⊆ Rn and a continuous mapping f : Rn −→ Rk

such that A = f(B).
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Proof. The implications b) → c), c) → d), and d) → a) are trivial.
If A ⊆ Rk is analytic then, by h) of the theorem, there exists a closed set

B ⊆ ωω × Rk such that proj2(B) = A. Since ωω is homeomorphic to a Gδ subset
of Rn−k, the corollary follows. �

We shall call two disjoint subsets A,B ⊆ X Borel separable if there exists
a Borel set C ⊆ X such that A ⊆ C and B ⊆ X \ C.
Theorem [wAC] 6.21 (Luzin Separation Theorem). Any two disjoint analytic sub-
sets of a Polish space are Borel separable.
Lemma [wAC] 6.22. If A =

⋃
nAn, B =

⋃
mBm are disjoint and such that An, Bm

are Borel separable for any n,m ∈ ω, then A,B are Borel separable.

Proof. Since |Borel| � c (by Theorem 1.13 using wAC) one can choose for any
n,m a Borel set Cn,m such that An ⊆ Cn,m, Bm ∩Cn,m = ∅. Let

D =
⋃

n

⋂

m

Cn,m.

Then D is a Borel set and it is easy to see that A ⊆ D and B ⊆ X \D. �

Proof of the theorem. Assume that A,B ⊆ X are disjoint analytic sets which
are not Borel separable. By Theorem 6.17, c) there exist closed Souslin schemes
〈<ωω, ϕ〉 and 〈<ωω, ψ〉 with vanishing diameters such that A = L(<ωω, ϕ) and
B = L(<ωω, ψ). By (5.3) and Lemma 6.22 we can construct by induction branches
α, β ∈ ωω such that L((<ωω)α|n, ϕ) ⊆ ϕ(α|n) and L((<ωω)β|n, ψ) ⊆ ψ(β|n) are not
Borel separable for any n ∈ ω. Let x ∈

⋂
n ϕ(α|n) and y ∈

⋂
n ψ(β|n). Then x ∈ A

and y ∈ B. Hence x �= y. Since both Souslin schemes have vanishing diameters
there exists an n ∈ ω such that ϕ(α|n) ⊆ Ball(x, ε/2) and ψ(β|n) ⊆ Ball(y, ε/2),
where ε = ρ(x, y). Then the open set Ball(x, ε/2) separates the sets L((<ωω)α|n, ϕ),
and L((<ωω)β|n, ψ), which is a contradiction. �
Corollary [wAC] 6.23 (M.J. Souslin). Let X be a Polish space. If A ⊆ X is both
analytic and co-analytic, then A is Borel. Thus

Borel = ∆1
1 = Σ1

1 ∩Π1
1. (6.3)

Proof. Since A and X \ A are disjoint analytic sets, there exists a Borel set B
separatingA andX\A. However if a setB separatesA andX\A, then A = B. �

Thus Luzin Theorem 6.21 together with Corollary 6.23 say that Σ1
1 has the

separation property. By Theorem 5.20, c) and Corollary 6.18 we obtain
Corollary [wAC] 6.24. The pointclass Σ1

1 possesses the σ-separation property.

We present some applications of obtained results.
Lemma [wAC] 6.25. Let X be a Polish space. If C ⊆ ωω is a closed subset and
f : ωω −→ X is continuous and injective on C, then f(C) is a Borel set.
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Proof. Let T ⊆ <ωω be a tree such that [T ] = C. We define a Souslin scheme
〈T, ϕ〉 as follows. We set ϕ(∅) = X . For n > 0 the sets f([s]), s ∈ T (n) = T ∩ nω
are pairwise disjoint analytic sets. Therefore by Corollary 6.24 there are pairwise
disjoint Borel sets Bs ⊇ f([s]), s ∈ T (n). We set ϕ(s) = Bs ∩ f([s]). Since

f([s]) ⊆ ϕ(s) ⊆ f([s])

and for any branch h ∈ [T ],
⋂

n∈ω
f([h|n]) =

⋂

n∈ω
f([h|n]) = {f(h)},

we obtain L(T, ϕ) = f([T ]). On the other hand the Souslin scheme ϕ is regular
and therefore the set

L(T, ϕ) =
⋂

n

⋃

s∈T (n)

ϕ(s)

is Borel. �

Theorem [wAC] 6.26 (N.N. Luzin). Assume that A ⊆ X is a Borel subset of
a Polish space X, f : X −→ Y is continuous and injective on A. Then f(A) is
a Borel set.

Proof. By Theorem 6.3 there is a closed subset C ⊆ ωω and a continuous injection
g : C −→ X such that g(C) = A. By Lemma 6.25 the set f(A) = f(g(C)) is
Borel. �

Now we prove that the result of Theorem 3.56 can be reversed.

Theorem [wAC] 6.27. If f : X −→ Y has a Borel graph, then f is Borel measur-
able.

Proof. If B ⊆ Y is a Borel set we obtain

x ∈ f−1(B) ≡ (∃y) (y ∈ B ∧ 〈x, y〉 ∈ f) ≡ (∀y) (〈x, y〉 ∈ f → y ∈ B).

Thus, by Corollary 6.23 the set f−1(B) is Borel. �

Theorem [wAC] 6.28. For any Polish space X there exists an ωω-universal set for
Σ1

1(X).

Proof. Let U ⊆ ωω × ωω × X be a closed set ωω-universal for the family of all
closed subsets of ωω×X . The existence follows from Theorem 6.10. We claim that
the analytic set

V = {〈a, x〉 ∈ ωω ×X : (∃b) 〈a, b, x〉 ∈ U}

is ωω-universal for Σ1
1(X).
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Evidently V is an analytic subset of ωω ×X . Let A ∈ Σ1
1(X). Then there is

a continuous function f : ωω onto−→ A. f is a closed subset of ωω×X therefore there
exists an a ∈ ωω such that f = Ua. Then

x ∈ A ≡ (∃b) 〈b, x〉 ∈ f ≡ (∃b) 〈a, b, x〉 ∈ U ≡ 〈a, x〉 ∈ V ≡ x ∈ Va. �

Thus, by Theorem 5.17 we have

Corollary [wAC] 6.29. If Y is an uncountable Polish space, then for any Polish
space X there exists an analytic Y -universal set for Σ1

1(X).

By Lemma 5.14 we obtain another important consequence.

Corollary [wAC] 6.30. Every uncountable Polish space X contains an analytic
set A ⊆ X, which is not co-analytic, therefore not Borel.

A mapping ψ : <ωω −→ X is called a Hurewicz scheme if the following
conditions are fulfilled:

(1) (∀v ∈ <ωω)(∀n,m) (n �= m→ ψ(v�n) �= ψ(v�m)),
(2) (∀v ∈ <ωω)ψ(v) = limn→∞ ψ(v�n),
(3) (∀v ∈ <ωω) limn→∞ diam({ψ(u) : u ≥ v�n}) = 0,
(4) (∀α ∈ ωω) limn→∞ diam({ψ(u) : u ≥ α|n}) = 0.

The basic property of a Hurewicz scheme is contained in the next result
actually saying that we have a good control over closure of the range of a Hurewicz
scheme.

Lemma 6.31. If ψ is a Hurewicz scheme and x ∈ rng(ψ)\ rng(ψ), then there exists
a branch α ∈ ωω such that x = limn→∞ ψ(α|n).

Proof. Let x = limn→∞ xn ∈ rng(ψ) \ rng(ψ), xn = ψ(un) for n ∈ ω. We write

T = {v ∈ <ωω : (∃n) v ≤ un}.

We show that every node of T has finite branching degree. Assume not. Then
there exists a node v ∈ T and there exist sequences {mk}∞k=0, {nk}∞k=0 such that
v�mk ∈ T and v�mk ≤ unk

. We can assume that {mk}∞k=0 is increasing. Since

ρ(ψ(v), ψ(unk
)) ≤ ρ(ψ(v), ψ(v�mk)) + diam({ψ(u) : u ≥ v�mk}),

we obtain x = limk→∞ ψ(v�mk) = limk→∞ ψ(unk
) = ψ(v), which is a contradic-

tion.
By König’s Lemma Theorem 11.7 there exists an infinite branch α ∈ ωω∩[T ].

Again, let nk be such that α|k ≤ unk
. By property (4) of a Hurewicz scheme we

have limk→∞ ρ(ψ(α|k), ψ(unk
)) = 0 and therefore

x = lim
k→∞

ψ(unk
) = lim

k→∞
ψ(α|k). �
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A Hurewicz scheme ψ : <ωω −→ X is said to be regular if there exists
a family 〈Vv : v ∈ <ωω〉 of open sets such that

ψ(v) ∈ Vv \
⋃

n

V(v�n), (6.4)

the sets 〈Vv�n : n ∈ ω〉 are pairwise disjoint subsets of Vv (6.5)

for each v ∈ <ωω. One can easily see that for distinct branches α, β ∈ ωω the
limits limn→∞ ψ(α|n) and limn→∞ ψ(β|n) are distinct provided that ψ is regular.

If A ⊆ B then it is natural to say that a set C is between sets A,B, if
A ⊆ C ⊆ B.
Lemma [wAC] 6.32. Let A,B ⊆ X, U being open. If A ∩ U ⊆ B and there exists
no Fσ set between sets A∩U,B, then there exist infinitely many points p ∈ U \B
such that

for every open p ∈ V ⊆ U , there exists no Fσ set between A ∩ V,B. (6.6)

Proof. Fix a countable open base {Un : n ∈ ω}. Assume that there is no such
point p. Set

K = {n ∈ ω : Un ⊆ U ∧ (there is an Fσ set between A ∩ Un, B)}.

For n ∈ K, let Fn be an Fσ set between A ∩ Un, B. If we set W =
⋃
n∈K Un and

F =
⋃
n∈K Fn, then the Fσ set (F ∩ U) ∪ (U \W ) is between A ∩ U,B, which is

a contradiction.
If there are only finitely many such points p in U \B, then apply the lemma

to the open set U with those points omitted. �
Theorem [wAC] 6.33 (A.S. Kechris – A. Louveau – W.H. Woodin). Let X be a per-
fect Polish space, A ⊆ B ⊆ X, A being analytic. If there exists no Fσ set between
A,B, then there exists a countable set L ⊆ X \B without isolated points such that
L \ L ⊆ A is homeomorphic to ωω.

Proof. Let 〈<ωω, ϕ〉 be a closed Souslin scheme with vanishing diameter such that
A = L(T, ϕ). For simplicity, for any v ∈ <ωω we write

Av = L((<ωω)v, ϕ) =
⋃

α⊇v

⋂

n

ϕ(α|n).

We construct functions ψ : <ωω −→ X \B, F : <ωω −→ <ωω and a family of open
sets 〈Vv : v ∈ <ωω〉 satisfying (6.4) and (6.5) such that

a) ψ is a regular Hurewicz scheme,
b) if α ∈ ωω, then

⋃
n F (α|n) is a branch as well,

c) ψ(v) ∈ ϕ(F (v)) \AF (v) for any v ∈ <ωω,
d) there exists no Fσ set between AF (v) ∩ U,B for any open U # ψ(v).
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Since A ⊆ ϕ(∅) taking U = X we have p ∈ ϕ(∅) \ A such that (6.6) holds
true. Set ψ(∅) = p, F (∅) = ∅, and V∅ = X . Assume that ψ(v), F (v), Vv are already
defined for a v ∈ kω. Note that AF (v) =

⋃
nAF (v)�n. Let n ∈ ω. Then there exists

an m such that there is no Fσ set between AF (v)�m ∩ Un, B, where

Un = Ball(ψ(v), 2−
∑

i<k(v(i)+1)−n) ∩ Vv.

By Lemma 6.32 there is a point p ∈ Un\B satisfying (6.6). We set ψ(v�n) = p and
F (v�n) = F (v)�m. Since there exist infinitely many such points p, we can assume
that ψ(v�n), n ∈ ω are mutually different. Evidently limn→∞ ψ(v�n) = ψ(v).
Since every ψ(v�n) ∈ Vv one can find by induction open sets 〈Vv�n : n ∈ ω〉
satisfying conditions (6.4) and (6.5).

By simple computation one can verify that conditions (1)–(4) are satisfied
and therefore ψ is a Hurewicz scheme.

Evidently limn→∞ ψ(α|n) ∈
⋂
n ϕ(F (α|n)) ⊆ A for any α ∈ ωω.

Define G : ωω −→ (L \ L) as G(α) = limn→∞ ψ(α|n). One can easily check
that G is a homeomorphism. �

Corollary [wAC] 6.34 (Hurewicz Theorem). Assume that D is an analytic subset
of a Polish space X such that D is not an Fσ set. Then there exists a closed subset
of D homeomorphic to ωω.

Proof. Take A = B = X \D in the theorem. The set L\L is homeomorphic to ωω.
�

Corollary [wAC] 6.35 (W. Hurewicz). A Polish space X is σ-compact if and only
if X does not contain a closed subset homeomorphic to ωω.

Proof. By Theorem 3.11 the space ωω is not σ-compact.
Assume that X is not σ-compact. Let Y ⊇ X be a compact Polish space

which is a compactification of X . Then X is not an Fσ subset of Y . Moreover,
being a Polish space, X is analytic. Therefore there exists a closed subset of X
homeomorphic to ωω. �

Exercises

6.6 The Borel Cantor-Bernstein Theorem

A map f : X
1−1−→
onto

Y is a Borel isomorphism if both f and f−1 are Borel measurable. X

and Y are Borel isomorphic if there exists a Borel isomorphism from X onto Y .

a) If f : X
1−1−→
onto

Y is Borel measurable, then f is a Borel isomorphism, provided that

wAC holds true.

Hint: Use Theorems 3.56 and 6.27 on Borel graphs.
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b) If f : X
1−1−→ Y and g : Y

1−1−→ X are Borel measurable, then there are Borel sets
A ⊆ X and B ⊆ Y such that f(A) = Y \B and g(B) = X \ A.

Hint: Follow any standard proof of the Cantor-Bernstein Theorem 1.5. Let Y0 =
Y \ f(X), Xn = g(Yn), Yn+1 = f(Xn). Denote A = X \

⋃
n Xn, B =

⋃
n Yn.

c) Prove the Borel Cantor-Bernstein Theorem: If f : X
1−1−→ Y and g : Y

1−1−→ X are
Borel measurable, then X, Y are Borel isomorphic.

d) Assuming wAC, show that any two uncountable Polish spaces are Borel isomorphic.

6.7 [AC] Capacity

Let X be a locally compact topological space. A mapping ν : P(X) −→ [0,∞] is called
a capacity on X if the following conditions are satisfied:

(C1) if A ⊆ B then ν(A) ≤ ν(B),

(C2) ν(
⋃

nAn) = sup{ν(An) : n ∈ ω} for any increasing sequence 〈An ⊆ X : n ∈ ω〉,
(C3) ν(K) <∞ for any compact K ⊆ X,

(C4) ν(
⋂

nKn) = inf{ν(Kn) : n ∈ ω} for any decreasing sequence {Kn}∞n=0 of compact
subsets of X.

a) If µ is a moderated regular Borel measure on a locally compact topological space
X, then the outer measure µ∗ is a capacity on X.

b) Let X, Y be locally compact, f : Y −→ X be a continuous mapping, ν being
a capacity on X. Set µ(A) = ν(f(A)) for any A ⊆ Y . Then µ is a capacity on Y

c) Let µ be a finite Borel measure on T. If we set ν(E) = µ∗(E − E) for any E ⊆ T,
then ν is a capacity.

6.8 [AC] Choquet’s Theorem

If ν is a capacity on X then a subset A ⊆ X is called capacitable if

ν(A) = sup{ν(K) : K ⊆ A ∧K is compact}. (6.7)

a) If µ is a finite Borel measure on a locally compact space X and µ∗ is the correspond-
ing outer measure, then A ⊆ X is µ∗-measurable if and only if A is capacitable.

b) Let f : X −→ Y be continuous, X,Y locally compact and µ, ν be capacities of
Exercise 6.7, b). Then f(A) is µ-capacitable for any ν-capacitable A ⊆ X.

c) Let ν be a capacity on a compact Polish space X. Then every Gδ-subset of a
compact set is capacitable.

Hint: Let G =
⋂

nGn, Gn =
⋃

m Fn,m, Gn open, Fn,m ⊆ fn,m+1 compact. For any
a < ν(G) construct by induction Kn = Kn−1 ∩

⋃mn
m=0 Fn,m such that ν(Kn) > a.

Then K =
⋂

nKn ⊆ G is compact and ν(K) ≥ a.

d) Prove Choquet’s Theorem: Any analytic subset of a compact Polish space is capac-
itable for any capacity.

Hint: Let f : ωω
onto−→ A. Let p : [0, 1] × X

onto−→ X be projection. If ν is a capacity
on X use p for constructing a capacity µ on [0, 1]×X. Note f ⊆ [0, 1]×X is a Gδ

set.
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6.9 [wAC] Unfolded Game Again

For terminology, notation and results see Exercise 5.33.

a) Find a proof of Corollary 6.19 based on an unfolded game.

Hint: If A = {x ∈ X : (∃y)〈x, y〉 ∈ X × ωω}, C closed, then GameG∗(X,A) is
determined.

b) Find a proof of the Luzin-Sierpiński Theorem 7.11, a), based on an unfolded game.

Hint: If A = {x ∈ X : (∃y)〈x, y〉 ∈ C × ωω}, C closed, then GameG∗∗(X,A) is
determined.

6.3 Projective Hierarchy

For any Polish space X , n ∈ ω the families of projective sets are defined as follows:

Π1
0(X) = Σ1

0(X) = Borel(X), (6.8)

Σ1
n+1(X) = ∃ωω[Π1

n](ωω ×X), (6.9)

Π1
n+1(X) = ¬Σ1

n+1(X), (6.10)

∆1
n+1(X) = Σ1

n+1(X) ∩Π1
n+1(X), (6.11)

for any 0 < n ∈ ω.
Thus A ⊆ X is a Σ1

n+1 set if A is a (continuous) projection of a Π1
n-subset

of ωω×X . A Π1
n set is a complement of a Σ1

n set and ∆1
n sets are the ambiguous

sets. A set A is called projective if A ∈ Σ1
n or A ∈ Π1

n for some n > 0.
One can easily show that

|Σ1
n| = |Π1

n| � c.

The classical notation of projective sets is as follows. A denotes the family
of analytic sets Σ1

1. CA is the family of co-analytic sets Π1
1, PCA is the family of

all projections of co-analytic sets, i.e., Σ1
2, CPCA is the family of complements of

PCA, i.e., Π1
2, etc.

Lemma 6.36. For any n ≥ 0 the inclusions

Σ1
n(X) ⊆ Σ1

n+1(X), Π1
n(X) ⊆ Π1

n+1(X), (6.12)

Π1
n(X) ⊆ Σ1

n+1(X), Σ1
n(X) ⊆ Π1

n+1(X) (6.13)

hold true. Therefore also

Π1
n(X) ⊆∆1

n+1(X), Σ1
n(X) ⊆∆1

n+1(X) (6.14)

hold true for any n ≥ 0.
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Proof. Since Borel ⊆ Π1
1 by (6.9) we obtain Σ1

1 ⊆ Σ1
2 and therefore by (6.10),

we have Π1
1 ⊆ Π1

2.
By induction, if Π1

n ⊆ Π1
n+1 then again by (6.9) we obtain Σ1

n+1 ⊆ Σ1
n+2

and by (6.10) also Π1
n+1 ⊆ Π1

n+2.
If A ∈ Π1

n(X) then A = proj2(
ωω ×A) and therefore A ∈ Σ1

n+1(X). �

The introduced families of projective sets with inclusions (6.12)–(6.14) form
the Projective Hierarchy

∆1
1

�

Σ1
1

�

Π1
1

�

∆1
2

�

�
�

Σ1
2

�

Π1
2

�

∆1
3 ⊆ . . . ⊆ ∆1

n

�

�

Σ1
n

�

Π1
n

�

∆1
n+1 ⊆ . . .

Let us remember that Borel = ∆1
1.

Theorem [wAC] 6.37.

a) The families Σ1
n(X), Π1

n(X) and ∆1
n(X) are closed under Borel measurable

inverse images, especially under continuous inverse images.
b) The Borel measurable image of a Σ1

n set is a Σ1
n set for any n > 0.

c) The families Σ1
n(X) and Π1

n(X) are closed under countable unions and
countable intersections. Thus the family ∆1

n(X) is a σ-field of subsets of X.
d) If f : X 1−1−→

onto
Y is a continuous bijection from a Polish space X into a Polish

space Y and A ⊆ X is a Σ1
n, Π1

n or ∆1
n(X) set, n > 0, then f(A) is a Σ1

n,
Π1
n or ∆1

n(X) set, respectively, as well.

Proof. a) The assertion follows by induction from identities

f−1(Y \A) = X \ f−1(A), f−1(proj2(B)) = proj2(F
−1(B))

for f : X −→ Y and F : ωω ×X −→ ωω × Y defined by F (a, x) = 〈a, f(x)〉.
b) Let f : X −→ Y be a Borel measurable mapping, X,Y being Polish

spaces. Assume that A ∈ Σ1
n(X). Then there exists a Π1

n−1 set B ⊆ ωω×X such
that A = proj2(B). Then f(A) = proj2(C) where

C = {〈〈z, x〉, y〉 ∈ (ωω ×X)× Y : 〈z, x〉] ∈ B ∧ 〈x, y〉 ∈ f} ∈ Π1
n−1.

c) It suffices to prove by induction that every family Σ1
n(X) is closed under

countable unions and countable intersections. By Corollary 6.18 it is true for n = 1.
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Assume that it is true for n. Then also Π1
n(X) is closed under countable unions

and countable intersections. One can easily see that

Σ0[∃
ωω[Γ ]] = ∃

ωω[Σ0[Γ ]]

and therefore Σ1
n+1(X) is closed under countable unions.

Let 〈Ak ∈ Σ1
n+1(X) : k ∈ ω〉 be given. Then there are sets Bk ∈ Π1

n(ωω×X)
such that Ak = proj2(Bk). If Pn,X : ωω×X −→ ωω×X is the function defined in
the proof of Theorem 5.19, c), we obtain (set α(π(n, k)) = αn(k))

x ∈
⋂

n

An ≡ (∀n)(∃αn) 〈αn, x〉 ∈ Bn

≡ (∃α)(∀n)Pn,X (α, x) ∈ Bn ≡ x ∈ proj2(
⋂

n

P−1
n,X(Bn)).

By inductive assumption
⋂
n P

−1
n,X(Bn) ∈ Π1

n(ωω ×X), hence
⋂
nAn ∈ Σ1

n+1(X).
The assertion d) follows by induction from Luzin’s Theorem 6.26. �

Corollary [wAC] 6.38. Each class Σ1
n, Π1

n, ∆1
n, n ≥ 0 is a pointclass.

Similarly as in Theorem 6.17 one can give equivalent descriptions of the
families of the Projective Hierarchy. We present the most important ones.

Theorem [wAC] 6.39. Let A be a subset of a Polish space X. Then the following
are equivalent:

a) A ∈ Σ1
n+1(X).

b) There exists a Polish space Y and there exists a set B ∈ Π1
n(Y ×X) such

that A = proj2(B).
c) There exist a Polish space Y , a continuous map f : Y −→ X and a set

B ∈ Π1
n(Y ) such that A = f(B).

Proof. One can easily see that a) → b) → c).
Assume that c) holds true, i.e., A = f(B), Y is a Polish space, B ∈ Π1

n(Y )
and f : Y −→ X is continuous. By Corollary 5.7 there exists a continuous mapping
g : ωω onto−→ Y . Using Theorem 6.37 one can easily check that the set

C = {〈a, x〉 ∈ ωω ×X : g(a) ∈ B ∧ 〈g(a), x〉 ∈ f}

is a Π1
n-set. Then A = proj2(C) ∈ Σ1

n+1(X), since for any x ∈ X we have

x ∈ A ≡ (∃y) (y ∈ B ∧ f(y) = x)
≡ (∃a) (a ∈ ωω ∧ g(a) ∈ B ∧ 〈g(a), x〉 ∈ f) ≡ (∃a) 〈a, x〉 ∈ C. �

Theorem [wAC] 6.40. For every Polish space X there exists a Σ1
n(ωω × X) set

ωω-universal for Σ1
n(X). Similarly for Π1

n.
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Proof. The theorem follows immediately from Theorems 6.28 and 5.19 by induc-
tion. �

By Theorem 5.17 we immediately obtain
Corollary [wAC] 6.41. Let Y be an uncountable Polish space. Then for every Polish
space X there exists a Σ1

n(Y ×X) set Y -universal for Σ1
n(X). Similarly for Π1

n.

Now we can show a fundamental result concerning the Projective Hierarchy.
Theorem [wAC] 6.42. The Projective Hierarchy is proper for any uncountable Pol-
ish space, i.e., if X is an uncountable Polish space, then each of the inclusions
∆1
n(X) ⊆ Σ1

n(X), ∆1
n(X) ⊆ Π1

n(X), Σ1
n(X) ⊆∆1

n+1(X), Π1
n(X) ⊆∆1

n+1(X) is
proper for any n > 0.

Proof. We can literally repeat the proof of Theorem 6.12. Since the pointclass
∆1
n is self-dual, for every Polish space X any of the equations ∆1

n(X) = Σ1
n(X),

∆1
n(X) = Π1

n(X), Σ1
n(X) = ∆1

n+1(X), Π1
n(X) = ∆1

n+1(X) implies the equa-
tion Σ1

n(X) = Π1
n(X). Thus we have to show that Σ1

n(X) �= Π1
n(X) for any

uncountable Polish space X and any n > 0.
However, if Σ1

n(X) = Π1
n(X) for some n > 0 and some uncountable Pol-

ish space X , then by Lemma 5.14 there exists no X-universal set for Σ1
n(X) –

a contradiction with Theorem 6.40. �

The results of descriptive set theory are closely related to some results of
mathematical logic, namely to those of recursion theory. The starting point of
that was an observation made by K. Kuratowski and A. Tarski that the logical
complexity of the formula describing a set of reals allows one to estimate the class
of descriptive hierarchy to which the set belongs. We describe a variant of such
method.

We shall deal with a language of logic which contains three kinds of variables:

0) The zero-order variables n,m, . . . , r1, . . . , rk, . . . denote elements of count-
able sets N, Z, Q, <ω2 or <ωω. One can always identify which of those sets
is actually dealt with.

1) The first-order variables x, y, z, . . . , denote elements of any (uncountable)
Polish space, especially reals as elements of R, [0, 1], T, the first-order vari-
ables α, β, γ, . . . denote elements ω2 or ωω.

2) The second-order variablesX,Y, Z, . . . , A,B,C, . . . denote subsets of a Polish
space, especially sets of reals.

We are not very precise since we often do not distinguish between a variable
and its value. However we hope that the explanation will be sufficiently clear.

A term is a numerical expression, i.e., an expression formed from variables
of zero and first order and individual constants 0, 1 (eventually others, e.g., 2, 3)
by using the operation +,−, · or taking a value r(n) for r ∈ <ωω and n ∈ ω. The
partial operation of division / must be used with appropriate care. We allow also
other operations, however we suppose that they are continuous (or at least Borel
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measurable). Especially we shall need the pairing functions π,Π , their inverses
λ, ρ, Λ,R and the projections projX,Y ,Projn. Of course, new operations introduced
by definitions are allowed too, e.g., the exponentiation xn etc. We suppose that it
is always clear whether a term denotes an object of zero order or an object of first
order. The notion of an atomic formula can be described as follows.The formula
t = s is atomic for any type of terms t, s. If the terms t, s denote elements of the
true real line R, then any formula of the form t < s, t ≤ s is an atomic formula.
If t is a term denoting a real from ω2 or ωω, then t(n) = m is an atomic formula.
Also a formula t ∈ X , where t is a term of first order and X is a second-order
variable, is an atomic formula.

Let ϕ(r1, . . . , rk, x1, . . . , xn, y1, . . . , ym, A1, . . . , Al) be a first-order formula
with variables x1, . . . , xn in Polish spaces X1, . . . , Xn, variables y1, . . . , ym denote
elements of some Polish spaces Y1, . . . , Yl, and A1, . . . , Al denote subsets of Polish
spaces Y1, . . . , Yl, respectively. We denote by

Vϕ(r1, . . . , rk, y1, . . . , ym, A1, . . . , Al) (6.15)
= {〈x1, . . . , xn〉 ∈ X1 × · · · ×Xn :

ϕ(r1, . . . , rk, x1, . . . , xn, y1, . . . , ym, A1, . . . , Al)}

the set defined by the formula ϕ and parameters r1, . . . , rk, y1, . . . , ym, A1, . . . , Al.3

Of course we allow introduction of other predicates, consequently other
atomic formulas. The main criterion for introducing new operations and new pred-
icates is the condition that, for any atomic first-order formula

ϕ(r1, . . . , rn, x1, . . . , xk, y1, . . . , yk, A1, . . . , Am)

with variables x1, . . . , xk in Polish spaces X1, . . . , Xk, with variables y1, . . . , ym
in Polish spaces Y1, . . . , Ym, for given values of zero-order variables r1, . . . , rn
and given values of variables A1, . . . , Am denoting Borel subsets of Polish spaces
Y1, . . . , Ym, the set

Vϕ(r1, . . . , rk, y1, . . . , ym, A1, . . . , Al) is a Borel set. (6.16)

A quantifier ∀�, ∃� is a zero-order quantifier or a first-order quantifier
depending on whether � denotes a zero-order variable or a first-order variable.

A formula formed from atomic formulas by using the logical connectives ¬,
∧, ∨, → and ≡ is said to be a Σ0

0 formula. A Σ1
0 formula is any formula obtained

from Σ0
0 formulas by logical connectives and quantifiers of zero order. A first

order formula is any formula obtained from Σ1
0 formulas by logical connectives

and quantifiers of zero order and/or quantifiers of first order.
Let us remark that we do not allow the quantifiers of the second order. The

variables of second order will always play a rôle of parameters.
3Actually, now we mix speaking in metamathematics and mathematics. A formula ϕ is an object
of metamathematics and parameters are mathematical objects.
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We present a general result on changing the order of some zero-order and
first-order quantifiers over variables α, β, . . . denoting elements of ω2 or ωω. Let us
note that we can eliminate variable x denoting elements of a Polish space X by
using, e.g., Corollary 5.7: we introduce a new continuous operation f : ωω onto−→ X
and replace each occurrence of x by term f(α). The reader can fill in all details.

Theorem 6.43. For any first-order formula ϕ the following hold true:

(∃n)(∃m)ϕ(n,m, . . . ) ≡ (∃k), ϕ(λ(k), ρ(k), . . . ), (6.17)
(∀n)(∀m)ϕ(n,m, . . . ) ≡ (∀k)ϕ(λ(k), ρ(k), . . . ), (6.18)
(∃α)(∃β)ϕ(α, β, . . . ) ≡ (∃γ), ϕ(Λ(γ), R(γ), . . . ), (6.19)
(∀α)(∀β)ϕ(α, β, . . . ) ≡ (∀γ)ϕ(Λ(γ), R(γ), . . . ), (6.20)
(∃n)(∃α)ϕ(n, α, . . . ) ≡ (∃α)(∃n)ϕ(n, α, . . . ), (6.21)
(∀n)(∀α)ϕ(n, α, . . . ) ≡ (∀α)(∀n)ϕ(n, α, . . . ), (6.22)
(∃n)(∀α)ϕ(n, α, . . . ) ≡ (∀α)(∃n)ϕ(n,Projn(α), . . . ), (6.23)
(∀n)(∃α)ϕ(n, α, . . . ) ≡ (∃α)(∀n)ϕ(n,Projn(α), . . . ). (6.24)

Proof. The proof of equivalence (6.17) is based on the fact that for any natural
numbers n,m there is a natural number k such that λ(k) = n and ρ(k) = m. The
equivalence (6.18) follows from (6.17) by de Morgan’s Law.

The proofs of equivalences (6.19) and (6.23) are based on the fact that for
any sequence {αn}∞n=0 of reals there is a real α such that αn = Projn(α) for any n.
(6.20) follows from (6.19) and (6.24) follows from (6.23) by de Morgan law.

The equivalences (6.21), (6.22) trivially hold true. �

Corollary 6.44. Any first-order formula is equivalent to a formula of one of the
following types:

1) Σ1
0 formula,

2) (∀α1)(∃α2)(∀α3) · · · (Qαn)ψ, where ψ is a Σ1
0 formula,

3) (∃α1)(∀α2)(∃α3) . . . (Qαn)ψ, where ψ is a Σ1
0 formula.

Proof. From logic it is well known that for any formula ϕ there exists an equivalent
formula of the form (Q1a1) . . . (Qnan)ϕ, where Qi is a quantifier (∃ or ∀) and ϕ
does not contain any quantifier. Using (6.21)–(6.24) one can order the quantifiers in
such a way that the zero-order quantifiers follow after all first-order quantifiers. If
the so-obtained formula does not contain any first-order quantifier, we are ready
– it is a Σ1

0 formula. Otherwise, using (6.19) and (6.20) one units two or more
neighboring equal quantifiers of first order. You obtain a formula, which begins
with a block of changing first-order quantifiers followed by a Σ1

0 formula. �

A formula equivalent to a formula of the type 2) is called a Π1
n formula.

Similarly, a formula equivalent to a formula of the type 3) is called a Σ1
n formula.

Finally, a formula is a ∆1
n formula if it is equivalent to both a Π1

n formula and
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a Σ1
n formula. A formula of the type 1) is both Σ1

0 and Π1
0 formulae. Thus, also

a ∆1
0 formula. The introduced notation is not an accident.

Immediately from the definitions (6.15) of the set Vϕ we obtain

Vϕ∨ψ = Vϕ ∪ Vψ , Vϕ∧ψ = Vϕ ∩ Vψ, V¬ϕ = X1 × · · · ×Xn \ Vϕ, (6.25)

V(∃r1)ϕ =
⋃

r1

Vϕ, V(∀r1)ϕ =
⋂

r1

Vϕ, (6.26)

V(∃x1)ϕ = proj2(Vϕ), V(∀x1)ϕ = X2 × · · · ×Xn \ proj2(V¬ϕ). (6.27)

Theorem 6.45 (K. Kuratowski – A. Tarski). Let X1, . . . , Xn, Y1, . . . , Yl be Polish
spaces, r1, . . . , rk, y1 ∈ Y1, . . . , ym ∈ Ym, A1, . . . , Al be given, A1, . . . , Al being
Borel subsets of Polish spaces Y1, . . . , Yl, respectively. Then:

a) If ϕ is a Σ1
0 formula, then the set Vϕ(r1, . . . , rk, y1, . . . , ym, A1, . . . , Al) is

a Borel subset of X1 × · · · ×Xn.
b) If ϕ is a Σ1

n formula, then the set Vϕ(r1, . . . , rk, y1, . . . , ym, A1, . . . , Al) is
a Σ1

n(X1 × · · · ×Xn) set.
c) If ϕ is a Π1

n formula, then the set Vϕ(r1, . . . , rk, y1, . . . , ym, A1, . . . , Al) is
a Π1

n(X1 × · · · ×Xn) set.
d) If ϕ is a ∆1

n formula, then the set Vϕ(r1, . . . , rk, y1, . . . , ym, A1, . . . , Al) is
a ∆1

n(X1 × · · · ×Xn) set.

Proof. The assertions b), c) and d) follow from a) by (6.27). Thus we have to
show a).

If ϕ is a Σ1
0 formula and the parameters A1, . . . , Al are Borel subsets of some

Polish spaces, then by (6.16), (6.25) and (6.26) the set Vϕ is Borel, since all the
unions and intersections in (6.26) are countable. �

Exercises

6.10 Injective Images of Projective Sets

a) If A ⊆ X is Borel, f : A
1−1−→ Y is Borel measurable, then f(A) is a Borel set.

Hint: Apply Theorems 3.56 and 6.26: f(A) is a continuous injective projection of
f and f is Borel in X × Y .

b) If f : X
1−1−→ Y is Borel measurable, A ∈ Π1

n(X), then f(A) ∈ Π1
n(Y ).

Hint: f(A) = f(X) \ f(X \ A), f(X) is Borel and f(X \ A) ∈ Σ1
n(Y ) by Theo-

rem 6.37.

6.11 Closure Properties of Projective Sets

a) Let X,Y be Polish spaces. For any f : X −→ Y the following are equivalent:

(1) The graph of f is a Σ1
n set.

(2) The graph of f is a ∆1
n set.

(3) f is Σ1
n-measurable.

(4) f is ∆1
n-measurable.
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Hint: (1) → (2) since 〈x, y〉 /∈ f ≡ (∃z) (z 	= y ∧ 〈x, z〉 ∈ f). Proof of (2) →
(4) is similar to that of Theorem 6.27. Proof of (3) → (1) is similar to that of
Theorem 3.56.

b) Every family Σ1
n, Π1

n, ∆1
n is closed under preimages by ∆1

n-measurable functions.

Hint: Note that x ∈ f−1(A) ≡ (∃y) (〈x, y〉 ∈ f∧y ∈ A) ≡ (∀y) (〈x, y〉 ∈ f → y ∈ A).

c) There exists a function with Π1
1 graph that is not a ∆1

1 set.

Hint: See Theorem 6.62 below.

d) Σ1
n is closed under a Souslin scheme operation.

Hint: Note that α ∈ L(T, ϕ) ≡ (∃β)(∀n)α ∈ ϕ(β|n).

6.12 Definition of Projective Sets by a Formula

We introduce a new predicate OB(n, x) with intended interpretation “x belongs to Un”,
where 〈Un : n ∈ ω〉 is a countable open base of X. So OB(n, x) is also a new atomic
formula. The condition (6.16) is satisfied.

a) Construct a Σ1
0 formula ϕ such that

i) for any open set A ⊆ X there exists an α ∈ ω2 such that

A = {x ∈ X : ϕ(α, x)} (6.28)

ii) for any α ∈ ω2 the set {x ∈ X : ϕ(α, x)} is open.

Hint: See the proof of Theorem 5.18.

b) Construct a Σ1
1 formula ϕ such that

i) for any analytic set A ⊆ X there exists an α ∈ ω2 such that (6.28) holds true;

ii) for any α ∈ ω2 the set {x ∈ X : ϕ(α, x)} is analytic.

Hint: Use Theorem 6.17, h).

c) Construct a Σ1
1 formula ϕ and a Π1

1 formula ψ such that for any Borel set A ⊆ X
there are α, β ∈ ω2 such that

A = {x ∈ X : ϕ(α, x)} = {x ∈ X : ψ(β, x)}.

Hint: Take ϕ from b) and let ψ to be ¬ϕ.

d) There is no ∆1
1 formula ϕ such that for any Borel set A ⊆ ω2 there exists an α ∈ ω2

such that

A = {x ∈ X : ϕ(α, x)}.

Hint: See the proof of Theorem 5.15.

e) Construct a Σ1
n formula ϕ such that

i) for any Σ1
n set A ⊆ X there exists an α ∈ ω2 such that A = {x ∈ X : ϕ(α, x)};

ii) for any α ∈ ω2 the set {x ∈ X : ϕ(α, x)} is a Σ1
n set.

f) A similar assertion holds true for Π1
n.
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6.4 Co-analytic and Σ1
2 Sets

Theorem 6.46 (N.N. Luzin – W. Sierpiński). If a subset A of a Polish space X is
sifted by a closed sieve, then there exists a sequence of pairwise disjoint Borel sets
〈Aξ : ξ ∈ ω1〉 such that X \A =

⋃
ξ∈ω1

Aξ. Moreover, we can assume that

a)
⋃
k<nAk is a Gδ set for n ∈ ω,

b)
⋃
η<ξ Aη is a Σ0

ξ set for ξ limit,
c) if ξ = λ+ n+ 1, where λ is limit and n ∈ ω, then

⋃
η<ξ Aη is a Π0

λ+1 set.

Proof. Assume that A is sifted by a closed sieve Φ. For any x ∈ X we write

Mx(Φ) = {r ∈ D : x ∈ Φ(r)}. (6.29)

By definition we obtain

x ∈ X \A ≡ 〈Mx(Φ), 〉 is well ordered. (6.30)

Let
Aξ(Φ) = {x ∈ X : 〈Mx(Φ), 〉 has order type ξ}. (6.31)

Since the set D is countable the order type of a well-ordered set Mx(Φ) is an
ordinal smaller than ω1. Therefore X \A =

⋃
ξ<ω1

Aξ(Φ).
We show by induction over ξ < ω1 that for any closed sieve Φ all sets

Bξ(Φ) =
⋃

η<ξ

Aη(Φ) = {x ∈ X : ot(〈Mx(Φ), 〉) < ξ}

satisfy conditions a)–c) of the theorem.
For n ∈ ω we can easily see that

x /∈ Bn(Φ) ≡ (∃r1, . . . , rn, mutually different)x ∈ Φ(r1) ∩ · · · ∩ Φ(rn). (6.32)

Thus X \Bn(Φ) is an Fσ set.
Assume now that ξ < ω1 is infinite and for every η < ξ and for every closed

sieve Φ the sets Bη(Φ) satisfy conditions a)–c).
If ξ is a limit ordinal, then the assertion follows by induction, since

Bξ(Φ) =
⋃

η<ξ

Bη(Φ).

Assume that ξ = λ+n+ 1, λ is limit. For any r ∈ D we define a closed sieve

Φr(s) =
{

Φ(s) if s ≺ r,
∅ otherwise. (6.33)
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Evidently
Mx(Φr) = {s ∈Mx(Φ) : s ≺ r}.

If Mx(Φ) is a well-ordered set, then the set Mx(Φr) is an initial segment of Mx(Φ)
for any r ∈ Mx(Φ). Vice versa, every initial segment of Mx(Φ) has the form
Mx(Φr) for suitable r ∈Mx(Φ). Thus

x ∈ Bξ(Φ) ≡ (∀r ∈Mx(Φ)) ot(Mx(Φr)) < λ+ n ≡ x ∈
⋂

r∈Mx(Φ)

Bλ+n(Φr).

Since by inductive assumption every Bλ+n(Φr) ∈ Π0
λ+1 (even to Σ0

λ set if n = 0)
we obtain Bξ(Φ) ∈ Π0

λ+1(X).
Since Aξ(Φ) = Bξ+1(Φ) \Bξ(Φ), every set Aξ(Φ) is Borel. �

Corollary [AC] 6.47. Any uncountable co-analytic set has cardinality ℵ1 or c.

If an analytic set A is sifted by a sieve Φ, then the sets 〈Aξ(Φ) : ξ < ω1〉 are
called constituents of the co-analytic set X \A.

We shall study properties of a decomposition of the power set of a countable
set into ℵ1 many families introduced in the proof of Theorem 1.16. To simplify
our investigation, we define a decomposition of P(D) based on the properties of
a subset A ⊆ D linearly ordered by the relation  defined by (5.7).

Let ξ be an ordinal. We define

WOξ = {A ⊆ D : ot(A, ) = ξ}, (6.34)
WO = {A ⊆ D : 〈A, 〉 is well ordered}. (6.35)

By Theorem 11.4 we obtain that WOξ �= ∅ for every countable ordinal ξ and

WO =
⋃

ξ<ω1

WOξ.

However one can easily show that

|WOξ| = c for any ξ ≥ ω and |P(D) \WO| = c. (6.36)

Let d : ω −→ D be a bijection. Any subset A ⊆ D can be coded by an element
t = d̄(A) ∈ ω2 by setting

t(n) = 1 ≡ d(n) ∈ A.

If the bijection d is given we do not distinguish between a set A ⊆ D and its
code d̄(A) ∈ ω2. Especially, we shall identify the sets WOξ, WO with the subsets
{d̄(A) : A ∈ WOξ}, {d̄(A) : A ∈ WO} of ω2, respectively. The family of sets

{{d̄(A) : A ∈ WOξ} : ξ < ω1} ∪ {ω2 \ {d̄(A) : A ∈ WO}} (6.37)

is called the Lebesgue decomposition of ω2.
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We define a sieve Φ by

Φ(r) = {t ∈ ω2 : t(d−1(r)) = 1} (6.38)

and show that
S(Φ) = ω2 \WO. (6.39)

Actually, we have
t ∈ Φ(d(n)) ≡ t(n) = 1.

On the other hand
t = d̄({d(n) : t(n) = 1}).

Thus
Mt(Φ) = {d(n) : t ∈ Φ(d(n))} = {d(n) : t(n) = 1}.

Hence t /∈ WO if and only if the set {d(n) : n ∈ ω ∧ t(n) = 1} is not well ordered,
therefore if and only if t ∈ S(Φ). Moreover, the set WOξ ⊆ ω2 is the constituent

Aξ(Φ) = {t ∈ ω2 : 〈{d(n) : t(n) = 1}, 〉 has order type ξ}

of the co-analytic set WO for every ξ < ω1.
Since the values of Φ are clopen sets, by (6.32), the sets

⋃
k<n WOk are closed

for any n ∈ ω.
Hence by Theorem 6.46 we obtain

Corollary [wAC] 6.48.

a) The sets WOn are both Fσ and Gδ sets for any n ∈ ω.
b) If ξ is a limit ordinal, then WOξ ∈ Π0

ξ+1(ω2).

c) If ξ = λ+n+1, where λ is a limit ordinal and n ∈ ω, then WOξ ∈∆0
λ+2(ω2).

d) ℵ1 ≤ |Borel|.
We generalize notions introduced in Section 6.1. A subset B of a Polish

space Y is called Borel Γ -hard if for any Polish space X and any set A ∈ Γ (X),
there exists a Borel measurable mapping f : X −→ Y such that A = f−1(B). If
moreover B ∈ Γ (Y ) then B is called Borel Γ -complete. Note the difference: in
case of Wadge Γ -hard or Wadge Γ -complete sets we dealt with subsets of Baire
spaces only and reduction was realized by a continuous mapping.

One can easily see that if a subset A of a Polish space is Borel Γ -hard
(complete) then X \A is Borel ¬Γ -hard (complete).

Theorem [wAC] 6.49. If A ∈ Σ1
1(X) then there exists a Borel measurable mapping

f : X −→ ω2 such that 〈f−1(WOξ) : ξ ∈ ω1〉 are the constituents of the set X \A.
If A is sifted by a clopen sieve, then f is continuous. Hence, the set WO is Borel
Π1

1-complete and therefore ω2 \WO is Borel Σ1
1-complete.
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Proof. Let A ⊆ X be a Σ1
1 set sifted by a closed sieve Φ. We define a mapping

f : X −→ ω2 as follows: for any x ∈ X let f(x) = t, where

t(n) = 1 ≡ x ∈ Φ(d(n)).

We claim that f is Borel measurable. Actually, if s ∈ <ω2 then

f−1([s]) =
⋂

k∈dom(s)

(s(k))Φ(d(k)),

where (0)B = X \B and (1)B = B (compare Section 5.4).
Note the following: if f(x) = t then

Mx(Φ) = {d(n) : t(n) = 1}.

Thus Aξ(Φ) = f−1(WOξ) for every ξ < ω1. �
Corollary [wAC] 6.50. The co-analytic set WO is not analytic.

Proof. By Theorem 6.30 there exists a co-analytic set A that is not Borel and
therefore is not analytic. Since A = f−1(WO) neither WO is analytic. �

Since every Polish space contains a closed subset homeomorphic to ω2 using
(6.36) we obtain another
Corollary [wAC] 6.51. If X is perfect, then there exists a Σ1

1-complete set A ⊆ X
such that |A| = |X \A| = c.

The notion of a Γ -rank has been introduced in Section 5.2. We have shown
that a ranked pointclass has some nice properties. We show that the pointclass
Π1

1 is ranked. We start with an auxiliary result.
Lemma 6.52. There exists a regular Π1

1-rank on WO with the range ω1.

Proof. We define a rank ρ on WO by ρ(x) = ξ if x ∈ WOξ. Evidently rng(ρ) = ω1.
By Lemma 5.21 it suffices to find relations≤+∈ Π1

1(ω2×ω2) and≤−∈ Σ1
1(ω2× ω2)

such that (5.18) and (5.19) hold true (for any y ∈ WO and any x ∈ ω2).
We can code a function F from a subset of D into D by an element α ∈ ω2

setting
α(π(n,m)) = 1 ≡ (d(n) ∈ dom(F ) ∧ F (d(n)) = d(m)).

The set C will be the set of all codes of an increasing function from its domain, a
subset of D, into D. Thus

C = {α ∈ ω2 : (∀n,m1,m2) (α(π(n,m1)) = α(π(n,m2)) = 1 → m1 = m2)
∧ (∀n1, n2,m1,m2) ((d(n1) < d(n2) ∧ α(π(n1,m1)) = α(π(n2,m2)) = 1)
→ d(m1) < d(m2))}.

By Theorem 6.45 the set C is Borel, actually a closed set.
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Now, it is easy to see that the relations defined by (x, y ∈ ω2)

x ≤+ y ≡ (x, y ∈ WO ∧ ¬y <ρ x) (6.40)
≡ (x, y ∈ WO ∧ ¬(∃α)(∃k) (α ∈ C ∧ y(k) = 1 ∧ (∀n) (x(n) = 1
→ (∃m) (d(m) < d(k) ∧ y(m) = 1 ∧ α(π(n,m)) = 1))).

x ≤− y ≡ (∃α) (α ∈ C ∧ (∀n) (x(n) = 1 (6.41)
→ (∃m) (y(m) = 1 ∧ α(π(n,m)) = 1))),

are Π1
1 and Σ1

1 sets satisfying (5.18) and (5.19), respectively. �
Theorem [wAC] 6.53. The pointclass Π1

1 is ranked.

Proof. Assume that A ∈ Π1
1(X). Then there exists a closed sieve Φ on X such

that X \ A = S(Φ). By Theorem 6.49 there exists a Borel measurable mapping
f : X −→ ω2 such that Aξ(Φ) = f−1(WOξ) for each ξ < ω1. Define a rank σ
on A by σ(x) = ξ for x ∈ Aξ(Φ). We define f × f : X × X −→ ω2 × ω2 by
f × f(x, y) = 〈f(x), f(y)〉. Let ρ be the rank of the proof of Lemma 6.52. One can
easily check that

≤∗
σ= (f × f)−1(≤∗

ρ), <∗
σ= (f × f)−1(<∗

ρ).

Since ≤∗
ρ and <∗

σ are Π1
1 sets, f × f is continuous, the rank σ is a Π1

1-rank. �
Theorem [wAC] 6.54 (Boundedness Theorem). Let A, B be analytic subsets of a
Polish space X. If B ⊆

⋃
ξ∈ω1

Aξ, where 〈Aξ : ξ ∈ ω1〉 are constituents of the set
X \A, then there exists a ξ0 < ω1 such that B ⊆

⋃
ξ<ξ0

Aξ.

We begin with
Lemma [wAC] 6.55. If D ⊆

⋃
ξ<ω1

WOξ is an analytic set, then there exists
a countable ordinal ξ0 such that D ⊆

⋃
ξ<ξ0

WOξ.

Proof. Assume that D is “unbounded”, i.e.,

(∀η < ω1)(∃ξ > η) (D ∩WOξ �= ∅).

Then x ∈ WO if and only if the order type of {d(n) : x(n) = 1} is not greater
than the order type of {d(n) : y(n) = 1} for some y ∈ D. Thus

x ∈ WO ≡ (∃y)(∃α) (y ∈ D ∧ α ∈ C ∧ (∀n) (x(n) = 1
→ (∃m) (y(m) = 1 ∧ α(π(n,m) = 1)))).

By Theorem 6.45 the set WO is analytic, a contradiction. �

Proof of Theorem 6.54. Assume that A, B are analytic subsets of a Polish space
X , A = S(Φ) for a closed sieve Φ on X . Moreover, let B ⊆

⋃
ξ∈ω1

Aξ(Φ). By
Theorem 6.49 there exists a Borel measurable mapping f : X −→ ω2 such that
Aξ(Φ) = f−1(WOξ) for each ξ < ω1. By Theorem 6.37, b), the set f(B) ⊆ WO is
analytic. Thus by Lemma 6.55, f(B) ⊆

⋃
ξ<ξ0

WOξ for a ξ0 < ω1. Then we have
B ⊆

⋃
ξ<ξ0

Aξ(Φ). �



6.4. Co-analytic and Σ1
2 Sets 243

We shall study another classical property of the pointclass Π1
1.

Theorem [wAC] 6.56 (P.S. Novikoff – M. Kondô – J.W. Addison). The pointclass
Π1

1 has the uniformization property.

The theorem follows by the Uniformization Theorem 5.27 from
Theorem [wAC] 6.57. The pointclass Π1

1 is scaled.

Proof. Let Θ = {〈ξ, η〉 ∈ ω1 × ω1 : η ≤ ξ} be ordered lexicographically

〈ξ, η〉 <lex 〈ζ, θ〉 ≡ (ξ < ζ ∨ (ξ = ζ ∧ η < θ)).

Then ot(Θ, <lex) = ω1. Let Υ be the (unique) isomorphism of Θ and ω1.
If A is a Π1

1-subset of a Polish space X , then by Theorems 5.1 and 5.12 there
exists an open sieve Φ such that X \A = S(Φ). By (6.30) we have

x ∈ A ≡ 〈Mx(Φ), 〉 is well ordered,

where Mx(Φ) is defined by (6.29).
The sieve Φr was defined by (6.33) and d : ω 1−1−→

onto
D was fixed above. For every

n ∈ ω define a rank ρn on A by

ρn(x) = Υ(β, γ), where β = ot(Mx(Φ), ) and γ = ot(Mx(Φd(n)), )).

The rank ρn induces a prewell-ordering on A,

x ≤n y ≡ ρn(x) ≤ ρn(y).

Similarly as in the proof of Lemma 6.52 we can construct ≤+
n∈ Π1

1 and ≤−
n∈ Σ1

1

such that (5.18) and (5.19) hold true. Thus every ρn is a Π1
1-rank.

Let limk→∞ xk = x, xk ∈ A. Assume that for every n there exists kn such
that ρn(xk) = αn for every k ≥ kn. We have to show that x ∈ A and ρn(x) ≤ αn.

By assumptions for any n and any k ≥ kn we have αn = Υ(βn, γn), where
βn = ot(Mxk

(Φ), ) and γn = ot(Mxk
(Φd(n)), ). Thus for k ≥ max{ki, kj} we

have βi = βj = ot(Mxk
(Φ), ). Therefore, there exists a common value β = βn

for all n.
We show that

d(i) ≺ d(j) → γi < γj for any d(i), d(j) ∈Mx(Φ). (6.42)

Thus, assume that d(i) ≺ d(j), d(i), d(j) ∈ Mx(Φ). Then x ∈ Φ(d(i)) ∩ Φ(d(j)).
Since the values of the sieve Φ are open sets there exists a k such that k ≥ ki,
k ≥ kj and xk ∈ Φ(d(i)) ∩ Φ(d(j)). Then d(i) ∈ Mxk

(Φd(j)) and therefore the set
Mxk

(Φd(i)) is a proper initial segment of Mxk
(Φd(j)). Thus γi = ot(Mxk

(Φd(i))) is
smaller than γj = ot(Mxk

(Φd(j))).
By (6.42) 〈Mx(Φ), 〉 is well ordered and therefore x ∈ A.
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If we set g(t) = γd−1(t) for t ∈ Mx(Φ), then by (6.42) g is an increasing
mapping from 〈Mx(Φ), 〉 into ordinals. Hence

ot(Mx(Φd(n)), ) = ot({t ∈Mx(Φ) : t < d(n)}, ) ≤ γn.

Then

ot(Mx(Φ), ) = sup{ot(Mx(Φd(n)), ) : d(n) ∈Mx(Φ)} ≤ sup{γn : n ∈ ω}.

However, for any n and k ≥ kn we have γn = ot(Mxk
(Φd(n)), ) ≤ β. Thus

ρn(x) = Υ(ot(Mx(Φ)), ot(Mx(Φd(n))) ≤ Υ(β, γn) = αn. �

Using Theorem 6.56 we can prove a classical result.
Theorem [wAC] 6.58. Every Σ1

2 set is a union of ℵ1 Borel sets.

Proof. Assume that A = proj(B) ⊆ X is a projection of Π1
1 set B ⊆ X × ωω.

By the Uniformization Theorem 6.56 we may assume that for every x ∈ A there
exists exactly one y such that 〈x, y〉 ∈ B. Then the projection proj is injective
on the set B. By Theorem 6.46 there are Borel sets 〈Bξ : ξ < ω1〉 such that
B =

⋃
ξ<ω1

Bξ. Then A =
⋃
ξ<ω1

proj(Bξ) and by Luzin’s Theorem 6.26 every
proj(Bξ) is Borel. �
Corollary [AC] 6.59. Every uncountable Σ1

2 set has cardinality ℵ1 or c.
From Theorems 6.53 and 5.24 we immediately obtain

Theorem [wAC] 6.60 (Y.N. Moschovakis). The pointclass Σ1
2 is ranked.

Thus, by Theorems 5.22 and 5.20, a) we have
Corollary [wAC] 6.61. The pointclass Σ1

2 possesses the reduction property and the
pointclass Π1

2 possesses the separation property.

We can also extend the uniformization property to Σ1
2.

Theorem [wAC] 6.62 (M. Kondô). The pointclass Σ1
2 has the uniformization prop-

erty.

Proof. Assume that A ∈ Σ1
2(X × Y ), where X,Y are Polish spaces. Then there

exists a set B ∈ Π1
1(ωω × (X × Y )) such that A = proj2(B). By Theorem 6.56

there exists a uniformization C ∈ Π1
1(ωω × (X × Y )) of B such that

(∃a, y) 〈a, 〈x, y〉〉 ∈ C ≡ (∃a, y) 〈a, 〈x, y〉〉 ∈ B,
(∀a1, a2, y1, y2) ((〈a1, 〈x, y1〉〉 ∈ C ∧ 〈a2, 〈x, y2〉〉 ∈ C) → (a1 = a2 ∧ y1 = y2)).

One can easily see that the set D = proj2(C) ∈ Σ1
2 and uniformizes the set A. �

Corollary [wAC] 6.63. There exists a Π1
1 set of cardinality ℵ1 if and only if there

exists a Σ1
2 set of cardinality ℵ1.

Proof. Assume that A ∈ Σ1
2(X) has cardinality ℵ1. Then A = proj(B) for a set

B ∈ Π1
1(X × ωω). By the Uniformization Theorem 6.56 there exists a set C ⊆ B,

C ∈ Π1
1 that uniformizes the set B. Evidently |C| = ℵ1. �
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Exercises

6.13 [wAC] Moschovakis Numbers δ1n
We set (compare Exercise 5.12):

δ1
n = δ(∆1

n(ωω)) = δ(Σ1
n(ωω)) = δ(Π1

n(ωω)).

a) δ1
1 ≤ ℵ1.

Hint: By Exercise 5.8, b) every segment is Borel, hence ℵ0-Souslin. By the Kunen-
Martin Theorem proved in Exercise 5.7 every segment is countable.

b) Every Π1
1-rank has order type less than or equal to ω1.

Hint: Use the result of Exercise 5.12, f).

c) δ1
1 ≥ ℵ1

Hint: There exists a Π1
1-rank of order type ω1. Use the result of Exercise 5.12, e).

d) δ1
1 = ℵ1.

6.14 [wAC] Shoenfield Theorem

a) Every Π1
1 set A ⊆ ωω is ℵ1-Souslin.

Hint: Let 〈ρn : n ∈ ω〉 be a very good scale on A. Set

ϕ(s) = {x ∈ A : (∀i < n) s(i) = ρi(x)}

for any s ∈ nω1 .

b) Every Π1
1-subset of a Polish space X is ℵ1-Souslin.

Hint: Standard reduction using a surjection f : ωω −→ X.

c) Every Σ1
2-subset of a Polish space X is ℵ1-Souslin.

Hint: Use Exercise 5.4, c).

d) Every Σ1
2 prewell-ordering has cardinality less than ℵ2.

Hint: See Kunen-Martin Theorem of Exercise 5.7, b).

e) δ1
2 ≤ ℵ2.

6.15 [wAC] Constituents

Let 〈Aξ : ξ < ω1〉 be constituents of the Π1
1(

ωω) set ωω × ωω \ U , where U is
an ωω-universal set for Σ1

1(
ωω).

a) For every η < ω1 there exists a ξ < ω1 such that Aξ /∈ Σ0
η.

Hint: Assume that for an η there is no ξ with the property. Let B ⊆ ωω be a Borel
set, B /∈ Σ0

η. Then ωω\B = Uα for some α ∈ ωω. Since {α}×B = {α}×ωω\U , by
Boundedness Theorem 6.54 there exists an ξ0 such that {α}×B ⊆

⋃
ξ<ξ0

Aξ. Then

{α}×B =
⋃

ξ<ξ0
Aξ ∩{α}×ωω. Since all Aξ are in Σ0

η, we obtain a contradiction.

b) For every η < ω1 there exists a ξ < ω1 such that WOξ /∈ Σ0
η.

Hint: See Theorem 6.49.

6.16 Cardinality of WOξ

a) For any x ∈ (0, 1) the poset 〈D,�〉 is isomorphic to 〈D ∩ (x, 1),�〉.
b) Conclude that |WOξ| = c for every ξ ≥ ω.

c) Show that |P(ω2) \WO| = c.
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6.17 [wAC] Analytic Set is a Union of ℵ1 Borel Sets

Let 〈<ωω,ϕ〉 be a Souslin scheme. By induction we define 〈ϕξ(s) : s ∈ <ωω〉 for any
ξ < ω1: ϕ

0(s) = ϕ(s), ϕξ(s) =
⋂

η<ξ ϕ
η(s) for ξ limit and ϕξ+1(s) = ϕξ(s)∩

⋃
n ϕ

ξ(s�n).
Set

Sξ =
⋃

n

ϕξ(n), T ξ =
⋃

s∈<ωω

(ϕξ(s) \ ϕξ+1(s)).

a) Show that Sξ \ T ξ ⊆ L(T, ϕ) and L(T, ϕ) ⊆ Sξ for any ξ < ω1.

b) Show that
⋂

ξ<ω1
T ξ = ∅.

c) Conclude that L(T, ϕ) =
⋂

ξ<ω1
Sξ =

⋃
ξ<ω1

(Sξ \ T ξ).

d) If 〈<ωω,ϕ〉 is closed, then every set Sξ, T ξ is Borel.

e) If A is an analytic set, then there exist Borel sets 〈Aξ : ξ < ω1〉 and 〈Bξ : ξ < ω1〉
such that A =

⋂
ξ<ω1

Aξ =
⋃

ξ<ω1
Bξ.

f) Any uncountable Polish space is a union of ℵ1 non-empty pairwise disjoint Borel
sets.

Hint: Let A ⊆ X be an analytic non-Borel set. Then X \ A =
⋃

ξ<ω1
Aξ, where

〈Aξ : ξ < ω1〉 are pairwise disjoint constituents of X \ A. Uncountably many of
them are non-empty. Take the differences Bξ \

⋃
η<ξ Bη of sets from e) to cover A.

6.18 [wAC] σ-Reduction

Let ρ be the Π1
1-rank on WO. If An ∈ Π1

1(X), then we can define a Π1
1-rank ρn on An

as in the proof of Theorem 6.53.

a) Show that the relation x ∈ An ∧ (y ∈ An → ρn(x) < ρm(y)) is Π1
1.

Hint: Let fn be a Borel measurable mapping fn : X −→ ω2 of Theorem 6.49 such
that An = f−1

n (WO). Then

(x ∈ An ∧ (y ∈ An → ρn(x) < ρm(y))) ≡ fn(x) <∗
ρ fm(y).

b) The pointclass Π1
1 has the σ-reduction property.

Hint: If ρn is the Π1
1-rank on An defined as above, n ∈ ω, we set

Bn = {x ∈ An : (∀k 	= n) (x ∈ Ak → ρk(x) > ρn(x)).

c) The pointclass Σ1
2 has the σ-reduction property.

Historical and Bibliographical Notes

In the introduction to this chapter we have already mentioned an error in H. Le-
besgue’s paper [1905]. M.J. Souslin [1917] introduced the notion of a set (A), later
called analytic, and announced Theorem 6.4 and Corollary 6.23. Then he showed
that every analytic set of reals is a projection of a Π0

3-subset of R2, i.e., the equiv-
alences of c) and g) of Theorem 6.17. Then N.N. Luzin [1917] essentially proved
Theorems 5.5, 6.3 and 6.26. N.N. Luzin also announced that M.J. Souslin can show
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Corollary 6.19. N.N. Luzin [1927] analyzing Souslin’s result Corollary 6.23 proved
Theorem 6.21. The paper contains detailed proofs of several announced results by
M.J. Souslin and N.N. Luzin: an analytic set is Lebesgue measurable and possesses
the Baire Property, Corollary 6.19 and Theorem 6.26. Some of those results were
already proved in a common paper by N.N. Luzin and W. Sierpiński [1918].

Theorem 6.7 was proved by P.S. Alexandroff [1916] and F. Hausdorff [1916].
Theorem 6.9 was essentially proved by K. Kuratowski [1936] (the σ-reduction
property) and W. Sierpiński [1924b] (the separation property). Theorems 6.10,
6.12 and the results of Exercise 6.1 are due to H. Lebesgue [1905]. The Wadge
reducibility follows A. Kechris [1995].

The notion of a Hurewicz scheme was introduced by M. Staš [2008] as a sim-
plification of the W. Hurewicz [1928] notion “Häufungssystem”. Lemma 6.31 is
proved in W. Hurewicz [1928]. Simple Lemma 6.32 is due to M. Staš [2008] as well
as the proof of Theorem 6.33, originally proved by A. Kechris, A. Louveau and
H. Woodin [1987] as a strengthening of W. Hurewicz [1928].

The notion of a capacity was defined by G. Choquet [1953]. He also proved
the Choquet Theorem of Exercise 6.8. We follow N. Bourbaki [1961].

H. Lebesgue [1905] says that Borel sets may be called analytic, since they can
be defined by analytic equalities and inequalities. However, M.J. Souslin [1917],
evidently influenced by his teacher N.N. Luzin, used for “an analytic set” a suc-
cinct name “a set (A)” and showed that this notion is larger than that of a Borel
set. Later N.N. Luzin preferred the name “analytic set”. H. Lebesgue [1918] wrote
about the importance of a projection as an operation over sets. After showing
in [1925a] that an analytic subset of Rk is a projection of a Borel subset of Rk+1,
N.N. Luzin [1925b] introduced the Projective Hierarchy and immediately in [1925c]
showed that the hierarchy is proper. Actually Theorems 6.40 and 6.42 were im-
plicitly announced. Complete proofs were published by N.N. Luzin [1930]. Theo-
rem 6.37 is contained in W. Sierpiński [1929].

Theorem 6.45 (it would be better to say “the employed method”) was essen-
tially shown by K. Kuratowski and A. Tarski [1931]. See also K. Kuratowski [1931].
Actually the contemporary definitions of projective sets are usually based on the
logical complexity of the used formulas.

The question concerning the cardinality of a complement of a co-analytic set
was raised by N.N. Luzin [1917], later in [1925c]. Actually N.N. Luzin [1925c], p.
1818–1819 says more: on ne sait pas et l’on ne saura jamais si la projection même
d’un complémentaire analytique à deux dimensions (supposée non dénombrable)
a la puissance du continu, si elle n’est pas des ensembles “qui ne sont pas Z”4,
ni même si elle est measurable. Theorem 6.46 was proved by N.N. Luzin and
W. Sierpiński [1918]. Corollary 6.59 gives a partial answer to Luzin’s question.
The result of Exercise 6.17 is due to N.N. Luzin and W. Sierpiński [1923], however
the presented proof is that by W. Sierpiński [1926]. A construction of a co-analytic

4Possessing the Baire Property.
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set with unbounded Borel complexity of constituents was presented in N.N. Luzin
and W. Sierpiński [1929].

P. Vopěnka and L. Bukovský [1964] noticed that the result of Corollary 6.59
is the best possible. Actually, in the Cohen model for ¬CH there exists an un-
countable ∆1

2 set of cardinality ℵ1.
Corollary 6.50 was proved by N.N. Luzin and W. Sierpiński [1923]. Bound-

edness Theorem 6.54 was proved by N.N. Luzin [1930]. Theorem 6.56 was proved
in a different setting independently by P.S. Novikoff [1935] and M. Kondô [1938].
M. Kondô [1938] remarked that also Theorem 6.62 holds true. Theorems 6.53 and
6.60 concerning the existence of a rank were obtained by Y.N. Moschovakis [1980].

S.C. Kleene [1943] introduced a hierarchy of subsets of ω related to the al-
gorithmic complexity. A. Mostowski [1946] introduced another hierarchy and re-
alized a similarity to the Projective Hierarchy. Then J.W. Addison [1958a], p. 127
wrote that “after long discussions here in Warszawa it has been decided to pro-
pose” to denote the Borel pointclasses by Σξ, etc. and projective pointclasses by
Σ1
n, etc. The common theory of both hierarchies has been mainly developed by

Y.N. Moschovakis and systematically explained in his [1980] monograph.



Chapter 7

Decline and Fall of the Duality

In mathematics, duality has numerous meanings. Generally speaking,
duality is a metamathematical involution. Some duality concepts are
closely related and there are explicit theorems governing their relation-
ships. Others are more intuitively related, with no precise correspon-
dence. . . . Generally speaking, a duality translates concepts, theorems
or mathematical structures into other concepts, theorems or structures,
in a one-to-one fashion, often (but not always) by means of an involution
operation: if the dual of A is B, then the dual of B is A.

[Wikipedia].

If R is a partial ordering on a set X , then the inverse relation R−1 is also a partial
ordering on X . Every notion of the partially ordered set 〈X,R−1〉 is actually a
notion of the partially ordered set 〈X,R〉. A minimal element of a set A ⊆ X in the
ordering R−1 is a maximal element of A in the ordering R, the greatest element in
R−1 is the least element in R, etc. We say that those notions are dual, i.e., minimal
is the dual notion of maximal. From every assertion about partially ordered sets
we obtain the dual assertion by replacing each notion by a corresponding dual
notion. A proof of an assertion can be translated to a “dual” proof of the dual
assertion. We speak about duality.

Considering properties of measure and topological properties connected with
the Baire Property and the first Baire category leads to a feeling that there exists
some kind of duality between measure and category: a notion of measure theory
has a dual notion in topology, for a statement about measure there is a dual
statement about category and vice versa. Actually, some results were obtained as
a result of looking for a dual statement. Namely, G. Vitali’s result Corollary 7.19
was originally stated for Lebesgue measure and then a similar result was easily
proved for the category case as well. Similarly, Kuratowski-Ulam Theorem 7.33
was proved as a dual statement to the Fubini Theorem, Corollary 4.28. A great
deal of dual results holds true and is presented in Section 7.2, and, of course, in

DOI 10.1007/978-3-0348-0006-8_7, © Springer Basel AG 2011
249L. Bukovský, The Structure of the Real Line, Monografie Matematyczne 71,
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Sections 7.1 and 7.3. Moreover, under some assumptions there exists a mapping
transforming properties of measure to the properties of category and vice versa.
However, it turns out that this phenomena is not generally true. There exists an
important asymmetry between properties of measure and category. We present
them in Section 7.4.

The results of S. Shelah (11.44) and (11.45) presented in Section 11.5 of
Appendix should be considered as a strong failure of the measure-category duality.

The majority of results that we present needs the axiom of choice AC. Ac-
tually, we need AC even to define the considered cardinal invariants.

The reader is supposed to be familiar with the terminology and results of
Sections 5.3 and 5.4.

7.1 Duality of Measure and Category

We introduce some general notions which will serve as a common framework for
obtaining fundamental results on measure and category considered as duals. We
begin with a presentation of proofs which are common for both cases.

Let I ⊆ P(X) be a family of subsets of a given set X . If

a) I is hereditary, i.e., if A ∈ I and B ⊆ A, then also B ∈ I,

b) I contains all singletons, i.e., {x} ∈ I for every x ∈ X ,

c) X /∈ I,

then we say that I is a family of thin sets. Note that an ideal on a set X is a family
of thin sets. When we consider subsets of a topological space X we automatically
include in the definition the additional condition:

d) no non-empty open set belongs to I.

The intended interpretation is that the family I is a family, in some sense,
of small subsets of the set X . A subfamily A ⊆ I is a base of the family of thin
sets I if for every B ∈ I there exists a set A ∈ A such that B ⊆ A. If I ⊆ P(X)
is an ideal, then I is a family of thin subsets of the set X , provided that in the
case when X is a topological space, I does not contain a non-empty open set. We
define four cardinal invariants of a family of thin sets I as follows:

add(I) = min{|A| : A ⊆ I ∧
⋃
A /∈ I},

cof(I) = min{|A| : A ⊆ I ∧A is a base of I},

cov(I) = min{|A| : A ⊆ I ∧
⋃
A = X},

non(I) = min{|A| : A /∈ I ∧A ∈ P(X)}.

If we consider the family I as a set ordered by inclusion, we obtain

add(I) = b(I,⊆), cof(I) = d(I,⊆). (7.1)
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Sometimes we shall use also the fifth cardinal invariant

size(I) = min{κ : (∀A ∈ I) |A| < κ}.

Theorem [AC] 7.1. Let I be a family of thin sets. Then

a) add(I) ≤ cov(I), add(I) ≤ cf(non(I)) ≤ non(I) ≤ |X |.
b) non(I) ≤ cof(I), add(I) ≤ cf(cof(I)), cov(I) ≤ cof(I).
c) I is an ideal if and only if add(I) ≥ ℵ0.
d) I is a κ-additive ideal if and only if add(I) ≥ κ.
e) add(I) is a regular cardinal.
f) If cov(I) < cf(|X |), then size(I) > |X |.

The proof is easy and follows immediately from definition. For example, we show
that add(I) ≤ cf(non(I)). Assume not, i.e., κ = cf(non(I)) < add(I). Let A /∈ I
be of cardinality non(I). Then A =

⋃
ξ<κAξ with |Aξ| < non(I) for each ξ < κ.

By definition of non(I) every set Aξ belongs to I and therefore A =
⋃
ξ<κAξ ∈ I,

a contradiction.
The second inequality of b) follows by Theorem 5.41 and (7.1). �

Theorem [AC] 7.2. Let Ii be an ideal on an infinite set Xi, Ci ∈ Ii, i = 1, 2. If
there exists a mapping f : X1 \ C1

1−1−→
onto

X2 \ C2 such that

B ∈ I1 ≡ f(B) ∈ I2 for any B ⊆ X1 \ C1, (7.2)

then ch(I1) = ch(I2) for ch = add, cof, cov, non.

Proof. Let us remark that the condition (7.2) is equivalent to the condition

f−1(B) ∈ I1 ≡ B ∈ I2 for any B ⊆ X2 \ C2.

Assume that A ⊆ I2, |A| < add(I1). Then {f−1(A) : A ∈ A} ⊆ I1 and
therefore

⋃
{f−1(A) : A ∈ A} ∈ I1. Since

⋃
A ⊆ f(

⋃
{f−1(A) : A ∈ A}) ∪ C2 ∈ I2,

we obtain add(I1) ≤ add(I2).
If A is a base of the ideal I2, then {f−1(A) ∪ C1 : A ∈ A} is a base of I1.

Thus cof(I1) ≤ cof(I2).
If A ⊆ I2 is such that

⋃
A = X2 and |A| = cov(I2) then

⋃
{f−1(A) : A ∈ A} ∪ C1 = X1.

Hence cov(I1) ≤ cov(I2).
Finally, let A /∈ I2, |A| = non(I2). Then A \ C2 /∈ I2 and |A \ C2| ≤ |A|.

Since f−1(A \ C2) /∈ I1 we obtain non(I1) ≤ non(I2). �
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In Section 3.2 we denoted the set of all meager subsets of a topological space
〈X,O〉 by M(X,O) or simply M(X). By Theorem 3.31 M(X) is a σ-ideal of
subsets of the corresponding space X , provided that X is not meager. Similarly,
for a given diffused Borel measure on X , the family N (X) of sets of outer measure
zero introduced in Section 4.1 by (4.18) is a σ-ideal of subsets of X . We shall be
interested in the cardinal invariants

add(M(X)), cov(M(X)), cof(M(X)), non(M(X))

and
add(N (X)), cov(N (X)), cof(N (X)), non(N (X))

of those σ-ideals. Evidently for any Polish space X and any diffused Borel measure
on X all those cardinal invariants are uncountable cardinals not greater than c.

From Theorem 7.2 we easily obtain a folklore result.
Theorem [AC] 7.3.

ch(M([0, 1])) = ch(M([0, 1]k)) = ch(M(R)) = ch(M(Rk))

= ch(M(ω2)) = ch(M((ω2)k)) = ch(M(ωω))

= ch(M((ωω)k)) = ch(M(T))
and

ch(N ([0, 1])) = ch(N ([0, 1]k)) = ch(N (R)) = ch(N (Rk))

= ch(N (ω2)) = ch(N ((ω2)k)) = ch(N (T))

for ch = add, cov, cof, non.

Proof. One can easily construct a homeomorphism g : (0, 1) 1−1−→
onto

R such that

λ(A) = 0 ≡ λ(g−1(A)) = 0 for any measurable A ⊆ R.

Similarly, the mapping gk defined as

gk(x1, . . . , xk) = 〈g(x1), . . . , g(xk)〉 for 〈x1, . . . , xk〉 ∈ (0, 1)k (7.3)

is a homeomorphism of (0, 1)k onto Rk such that

λk(A) = 0 ≡ λk(g−1
k (A)) = 0 for any measurable A ⊆ Rk.

Let h be the function defined in the proof of Theorem 3.25. Then the mapping

hk(α1, . . . , αk) = 〈h(α1), . . . , h(αk)〉

is a homeomorphism of (ωω)k onto (0, 1)k \ Ek, where

Ek = {〈x1, . . . , xk〉 ∈ (0, 1)k : xi ∈ Q for some i = 1, . . . , k}

is a meager subset of (0, 1)k.
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If for α ∈ ω2 we set f(α) =
∑∞
n=0 α(n)2−n−1, then f : ω2 onto−→ [0, 1] and

there exists a countable set A ⊆ ω2 such that f : ω2 \ A 1−1−→ [0, 1]. Moreover, by
Theorem 3.9 the space (ωω)n is homeomorphic to ωω and (ω2)n is homeomorphic
via a measure-preserving homeomorphism to ω2 for any n > 0. Since g, gk, h, hk
are homeomorphisms, the theorem follows by Theorems 3.9, 4.30 and 7.2. �

Thus, dealing with ideals M(Rk), M([0, 1]k), M(ωω), M(ω2) and M(T), we
shall write simply M. We make a similar convention for the measure case. Thus
N denotes any of the ideals N (Rk), N ([0, 1]k), N (ω2) and N (T) with Lebesgue
measure. The cardinal invariants are the common values for those ideals and will
be denoted simply as

add(M), cof(M), cov(M), non(M), add(N ), cof(N ), cov(N ), non(N ).

In a similar way, Baire and L denote one of σ-algebras Baire(Rk), Baire([0, 1]k),
Baire(ωω), Baire(ω2), Baire(T), and L(Rk), L([0, 1]k), L(ω2), L(T), respec-
tively. Usually it will be clear from the context which of the mentioned spaces we
actually deal with. If not, we say that explicitly.

We introduce a terminology, which allows us to study some problems concern-
ing a measure as well as related problems concerning the Baire category. A couple
〈X, I〉 is called a Polish ideal space if I is a σ-additive ideal of subsets of a perfect
Polish space X such that

⋃
I = X and I has a Borel base, i.e., every A ∈ I is

a subset of some B ∈ I ∩Borel(X). If X is a Polish group, then we speak about
a Polish ideal group. We write

Borel∗(I) = {(A \ P ) ∪Q : A ∈ Borel(X) ∧ P,Q ∈ I}.

Evidently Borel∗(I) is a σ-algebra and I ⊆ Borel∗(I). Since the ideal I has
a Borel base, for any A ∈ Borel∗(I) there exist Borel sets B,C such that A ⊆ B,
C ⊆ A and B \A,A \ C ∈ I. Moreover, if A /∈ I, then neither is C ∈ I. A Polish
ideal space 〈X, I〉 is said to be homogeneous if any uncountable Borel set A ⊆ X
contains an uncountable Borel subset B ∈ I.

If X is a perfect Polish space then the couple 〈X,M(X)〉 is a Polish ideal
space. By definition of the Baire Property we have Baire(X) = Borel∗(M).
If µ is a diffused Borel measure on X , then 〈X,N (µ)〉 is a Polish ideal space.
If S is the algebra of all µ∗-measurable subsets of X , then by Theorem 4.9 we
obtain S = Borel∗(N (µ)). Moreover, by Corollary 6.8 both Polish ideal spaces
are homogeneous.
Theorem [AC] 7.4. If 〈X, I〉 is a Polish ideal space with ℵ1-saturated ideal I, then
the algebra Borel∗(I) is add(I)-additive.

Proof. Denote by κ the additivity of Borel∗(I), i.e., the least cardinal for which
there exists a sequence 〈Aξ ∈ Borel∗(I) : ξ ∈ κ〉 with

⋃
ξ<κAξ /∈ Borel∗(I).

Then
⋃
ξ<η Aξ ∈ Borel∗(I) for any η < κ and we can assume that the sets

〈Aξ : ξ < κ〉 are pairwise disjoint. Since the ideal I is ℵ1-saturated, there exists
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a countable set T ⊆ κ such that Aξ ∈ I for ξ < κ, ξ /∈ T . Since T is countable
we have

⋃
ξ∈T Aξ ∈ Borel∗(I). If κ < add(I), then

⋃
ξ∈κ\T Aξ ∈ I and therefore

⋃
ξ∈κAξ ∈ Borel∗(I), which is a contradiction. �

Theorem [AC] 7.5. Both ideals M and N are ℵ1-saturated.

Proof. Let {As : s ∈ S} ⊆ Baire \M be such that As ∩At ∈M for any s, t ∈ S,
s �= t. By the definition of the Baire Property there are open sets Gs such that
As\Gs ∈M andGs\As ∈M. Since As /∈M we obtainGs �= ∅. Since As∩At ∈M
for s �= t we obtain that Gs ∩ Gt ∈ M as well. Then by Baire Theorem 3.27 we
have Gs ∩Gt = ∅ for s, t ∈ S, s �= t. Thus S must be countable.

By Lemma 4.6 we can assume that µ(X) = 1. Let {As : s ∈ S} ⊆ L \ N be
such that As ∩ At ∈ N for any s, t ∈ S, s �= t. Set Sn = {s ∈ S : µ(As) > 1/n}
for each n > 0. Since µ(As ∩ At) = 0 for s �= t, one can easily see that |Sn| < n.
Evidently S =

⋃∞
n=1 Sn and therefore S is countable. �

Corollary [AC] 7.6. The algebra Baire is add(M)-additive and the algebra L is
add(N )-additive.

Immediately from the definitions one can easily see the following result.
Theorem [AC] 7.7. If 〈X, I〉 is a Polish ideal space and I is ℵ1-saturated, then
the complete Boolean algebras Borel∗(I)/I and Borel(X)/I are isomorphic.

Similarly as in the proof of Theorem 7.3 we obtain that the quotient Boolean
algebras Baire(Rk)/M(Rk), Baire([0, 1]k)/M([0, 1]k), Baire(ω2)/M(ω2), and
Baire(ωω)/M(ωω) are isomorphic for any k > 0. Also the quotient Boolean
algebras L(Rk)/N (Rk), L([0, 1]k)/N ([0, 1]k) and L(ω2)/N (ω2) are isomorphic for
any k > 0.
Corollary [AC] 7.8. The Boolean algebras Baire/M and L/N are CCC and the-
refore complete. Moreover, Baire/M is isomorphic to Borel/M and L/N is
isomorphic to Borel/N .

We say that a Polish ideal space 〈X, I〉 possesses the hull property if for any
set A ⊆ X there exists a Borel set B such that

A ⊆ B ∧ (∀C ∈ Borel∗(I)) (A ⊆ C → B \ C ∈ I).

Thus, any subset of X can be approximated from above by a Borel set unique up
to I.

By Theorems 3.35 and 4.9 we obtain
Theorem [wAC] 7.9. Let X be a Polish space.

a) The Polish ideal space 〈X,M(X)〉 possesses the hull property.
b) If µ is a diffused Borel measure on X, then the Polish ideal space 〈X,N (µ)〉

possesses the hull property.
Theorem [wAC] 7.10. Assume that the Polish ideal space 〈X, I〉 possesses the hull
property. Then L(T, ϕ) ∈ Borel∗(I) for any Souslin scheme 〈T, ϕ〉 with Borel
values.
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Proof. We can assume that T = <ωω and ϕ is a monotone Souslin scheme. Let us
recall that for a node s ∈ T we denote by T s the tree {t ∈ T : s ≤ t}.

By the hull property for every s ∈ T there exists a Borel set Bs ⊇ L(T s, ϕ)
such that for any A ∈ Borel∗(I), the inclusion L(T s, ϕ) ⊆ A implies Bs \A ∈ I.
We can assume that Bs ⊆ ϕ(s) and Bs�n ⊆ Bs (if not, take Bs�n∩ϕ(s � n)∩Bs).
We write Ps = Bs \

⋃
nBs�n. Since L(T s, ϕ) ⊆

⋃
nBs�n, we obtain Ps ∈ I. We

set P =
⋃
s∈T Ps. Then P ∈ I.

Let
Bn =

⋃

s∈nω

Bs, B =
⋂

n

Bn.

Evidently L(T, ϕ) ⊆ B. We show that B \ L(T, ϕ) ⊆ P . So, let x ∈ B \ P . We
show that x ∈ L(T, ϕ). Since x /∈ P∅, there exists an n such that x ∈ B〈n〉.
We write f(0) = n. Assume that f(k) is defined and x ∈ B〈f(0),...,f(k)〉. Since
x /∈ P〈f(0),...,f(k)〉, there exists an m such that x ∈ B〈f(0),...,f(k),m〉. By assumption
Bf |n ⊆ ϕ(f |n) for every n, therefore x ∈

⋂
n ϕ(f |n) ⊆ L(T, ϕ).

Since L(T, ϕ) ⊆ B we obtain L(T, ϕ) ∈ Borel∗(I). �

As an immediate consequence of those two theorems we obtain
Theorem [wAC] 7.11 (N.N. Luzin). If X is a Polish space, and µ a Borel measure
on X, then every analytic and every co-analytic subset of X possesses the Baire
Property and is µ-measurable.

A set B ⊆ Borel∗(I) can be viewed as a subset of the quotient Boolean
algebra Borel∗(I)/I. Thus B is a predense subset of Borel∗(I)/I if for any
C ∈ Borel∗(I)\I there exists a B ∈ B such that B∩C /∈ I. Similarly, a predense
set C ⊆ Borel∗(I) is a refinement of a predense set B if for every C ∈ C there
exists an element B ∈ B such that C \ B ∈ I. Let us recall that Boolean algebra
Borel∗(I)/I is ℵ0-distributive if every countable family of predense sets has
a common refinement.
Theorem 7.12. Assume X = ω2, I contains all one-point sets and none of the sets
{f ∈ ω2 : f(n) = i}, n ∈ ω, i = 0, 1 is in I. Then the quotient Boolean algebra
Borel∗(I)/I is not ℵ0-distributive.

Proof. Let Cn = {C0
n, C

1
n}, where Cin = {f ∈ ω2 : f(n) = i}, i = 0, 1. We show

that the family of predense sets 〈Cn : n ∈ ω〉 does not have a common refinement.
Assume that C is a common refinement of all 〈Cn : n ∈ ω〉. Take any A ∈ C.

Then A /∈ I. For every n there exists an in ∈ {0, 1} such that A \ Cinn ∈ I. Then
also
⋃
n(A \ Cinn ) = A \

⋂
n C

in
n ∈ I. Since

⋂
n C

in
n is a one-point set we have

a contradiction. �

Corollary 7.13. Neither L/N nor Baire/M is ℵ0-distributive.

We close this section with two simple results.
Theorem 7.14. If X is a Polish space, then Boolean algebra Baire(X)/M(X) is
isomorphic to Boolean algebra RO(X) of regular open subsets of X.
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The proof is easy. By Theorem 3.34 any set A with the Baire Property may be
expressed as A = (G \ P ) ∪ Q, where G is regular open and P,Q are meager.
Moreover the set G with this property is uniquely determined. One can easily
show that assigning such a G to A is the desired isomorphism. �

If B is a complete Boolean algebra, then a function µ : B −→ [0, 1] is called
a positive measure on B if

a) µ(0B) = 0, µ(1B) = 1,

b) µ(a) > 0 for any a ∈ B, a �= 0B,

c) µ(
∨
n an) =

∑∞
n=0 µ(an) for pairwise disjoint system 〈an : n ∈ ω〉.

Since any two measurable sets that are equal modulo ideal N have equal
Lebesgue measure, we immediately obtain that
Theorem 7.15. There is a positive measure on Boolean algebra L/N .

Exercises

7.1 [AC] Sacks’ Algebra

a) Show that Boolean algebras

Borel([0, 1])/[[0, 1]]≤ℵ0 , Borel(R)/[R]≤ℵ0 ,

Borel(ω2)/[ω2]≤ℵ0 , Borel(ωω)/[ωω]≤ℵ0 ,

Borel([0, 1]k)/[[0, 1]k]≤ℵ0 , Borel(Rk)/[Rk]≤ℵ0 ,

Borel(ω2k)/[ω2k]≤ℵ0 , Borel(ωωk)/[ωωk]≤ℵ0 ,

k > 1, are isomorphic. The completion of any of them is called a Sacks’ algebra.

b) Show that the set of all perfect sets is a dense subset of Sacks’ algebra (modulo
countable sets).

c) Sacks’ algebra is c+-CC.

d) There exists a set of pairwise disjoint elements of Sacks’ algebra of cardinality c.

7.2 [AC] Homogeneous Boolean Algebras

a) Show that Boolean algebra Baire/M and L/N are homogeneous.

Hint: Any open and Gδ set are Borel isomorphic to [0, 1]. Borel isomorphism induces
an isomorphism of corresponding Boolean algebras.

b) Show that Sacks’ algebra is homogeneous.

Hint: Use the Alexandroff-Hausdorff Theorem, Corollary 6.7.

7.3 [AC] Hull Property

Let 〈X, I〉 be a Polish ideal space possessing the hull property.

a) For any A ∈ Borel∗(I) there are a Borel set G and sets P,Q ∈ I such that
A = (G \Q) ∪ P .

b) If A ∈ Borel∗(I) \ I is uncountable then A contains a perfect subset, i.e., |A| = c.

c) If A /∈ I, then there exists a set C ⊆ A such that C /∈ Borel∗(I).

Hint: Let B be a Bernstein set – see Section 7.2. Then A∩B or A \B is not in I.
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d) If A has not measure zero, then there exists a non-measurable subset of A.

e) If A is not meager, then there exists a subset of A that does not possess the Baire
Property.

7.4 [AC] Szpilrajn-Marczewski Theorem

Let S be a σ-algebra of subsets of X, S 	= P(X). Set

I = {A ∈ S : (∀B) (B ⊆ A→ B ∈ S)}. (7.4)

S has the weak hull property if

(∀A ⊆ X)(∃B ∈ S , A ⊆ B)(∀C ∈ S) (C ⊇ A→ B \ C ∈ I). (7.5)

a) Show that I is a σ-ideal in S .

b) Prove the Szpilrajn-Marczewski Theorem: If 〈T, ϕ〉 is a Souslin scheme with values
of ϕ in S having the weak hull property, then L(T, ϕ) ∈ S .

7.5 [AC] Decided Sets

For a given infinite set X we consider a family R ⊆ P(X). We assume that ∅ /∈ R and
define

Dec(R) ={A ⊆ X : (∀B ∈ R)(∃C ∈ R) (C ⊆ B ∧ (C ⊆ A ∨ C ∩A = ∅))},
Id(R) ={A ⊆ X : (∀B ∈ R)(∃C ∈ R) (C ⊆ B ∧ C ∩A = ∅)}.

a) Dec(R) is an algebra of subsets of X and Id(R) ⊆ Dec(R) is an ideal.

b) Dec(R) is an add(Id(R))-additive algebra.

Hint: Consider 〈Aξ ∈ Dec(R) : ξ < κ〉, κ < add(Id(R)) and a B ∈ R. If there
exists a ξ < κ such that C ⊆ Aξ for some set C ⊆ B, then we are done. Otherwise
B ∩ Aξ ∈ Id(R) for every ξ and therefore also B ∩

⋃
ξ<κ Aξ ∈ Id(R).

Assume that S is an algebra of subsets of X and I ⊆ S is an ideal. Let R ⊆ S \ I be
such that for any A ∈ S \ I there exists a B ∈ R, B ⊆ A.

c) Show that S ⊆ Dec(R) and I ⊆ Id(R).

d) If moreover 〈X, I〉 is a Polish ideal space possessing the hull property, and I is
ℵ1-saturated, then I = Id(R).

Hint: If A /∈ I, then by the hull property there exists a Borel set B ⊇ A such that
B \ C ∈ I for any Borel C ⊇ A and B /∈ I. If A ∈ Id(R), then there exists a set
E ⊆ B, E ∩ A = ∅. Taking C = B \ E we obtain a contradiction.

e) Show that N = Id(Fσ \ N ) and L = Dec(Fσ \ N ).

Hint: If A ∈ L \ N , then a maximal family A of pairwise disjoint subsets of A
consisting of elements of Fσ \ N is countable. Show that

⋃
A ∈ Dec(Fσ \ N ) and

A \
⋃
A ∈ N .

f) Show that M = Id(Gδ \M) and Baire = Dec(Gδ \M).

Hint: Every Gδ non-meager set contains a subset of the form U \ P , where U is
non-empty open and P is an Fσ meager set. Follow the proof of e), however use
sets U \ P in your proof.

g) Deduce Corollary 7.6 from the results of this exercise.
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7.2 Duality Continued

In this section we shall continue with results on measure and category which follow
from general results on a σ-additive ideal of a Polish ideal space. Again, our proofs
are common both for measure and category and therefore dual: any such a proof
for the measure case can be easily translated to a proof for the dual category result
and vice versa. The only exception is the Steinhaus Theorem. However, also in this
case the proofs for measure and category are very close.

At this time, we know examples of sets that are Lebesgue measurable, pos-
sess the Baire Property, and are either countable or contain a perfect subset: at
least Borel sets have those nice properties. By Luzin-Sierpiński Theorem 7.11 and
Corollary 6.19 also analytic sets possess those regularity properties. However we do
not know whether there exists a Lebesgue non-measurable set, a set not possessing
the Baire Property or an uncountable set without a perfect subset. It is not an
accident since, as we shall see later, the theory ZFC+wAC is not enough to decide
such questions. Assuming that the real line can be well ordered, we show that
there exist a Lebesgue non-measurable set, a set not possessing Baire Property
and an uncountable set without perfect subset.

Assume that X is an Abelian topological group, e.g., Rk, ω2 or T. We say
that a family D of subsets of X is shift invariant if for any A ∈ D also x+A ∈ D
for every x ∈ X . Evidently Baire, M, L and N , when considered on Rk, ω2 or
T, are shift invariant.

Assume now that I is shift invariant. The Polish ideal group 〈X, I〉 possesses
the Steinhaus Property if the interior of the set

A−A = {x ∈ X : (x+A) ∩A �= ∅}

is non-empty for any A ∈ Borel∗(I) \ I.

Theorem 7.16 (H. Steinhaus). The Polish ideal groups 〈T,M(T)〉, 〈T,N (T)〉,
〈R,M(R)〉, 〈R,N (R)〉, 〈ω2,M(ω2)〉, and 〈ω2,N (ω2)〉 possess the Steinhaus Prop-
erty.

Proof. a) Assume that A ⊆ T is Lebesgue measurable and λ(A) > 0. By The-
orem 4.17 there exists an open interval I such that λ(A ∩ I)) ≥ 3/4λ(I). Let
a = −1/2λ(I), b = 1/2λ(I).

If x ∈ (a, b) then (x+I)∪I is an interval of length smaller than 3/2λ(I). Since
λ(A ∩ I) = λ(x+ (A ∩ I)) ≥ 3/4λ(I) we obtain (A ∩ I) ∩ (x+ (A ∩ I)) �= ∅. Thus
there are y, z ∈ (A∩I) such that y = x+z. Then x ∈ A−A. Hence (a, b) ⊆ A−A.

b) Now assume that A possesses the Baire Property and A is not meager.
Then there are an open set U and a meager set P such that U \P ⊆ A. Let I ⊆ U
be a non-trivial open interval, δ = λ(I). Then for any x we have

(I ∩ (x + I)) \ (P ∪ (x+ P )) ⊆ A ∩ (x+A).
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If |x| < δ then (x+ I) ∩ I is a non-trivial interval and therefore the set

(I ∩ (x + I)) \ (P ∪ (x+ P ))

is non-empty. Then also (x+A) ∩A �= ∅ and therefore x ∈ A−A.
The other assertions can be easily reduced to the proved ones. �

Let 〈X,+, 0〉 be an Abelian Polish group. A set V ⊆ X is called a Vitali set
if there exists a countable dense subset S ⊆ X such that

(∀x, y) ((x, y ∈ V ∧ x �= y) → x− y /∈ S), (7.6)
(∀x ∈ X)(∃y ∈ V )x− y ∈ S. (7.7)

Thus, for every element x ∈ X there exists exactly one y ∈ V such that x− y ∈ S.

Theorem 7.17 (G. Vitali). If the real line can be well ordered, then there exists
a Vitali subset of T. Similarly for R and ω2.

Proof. We can take S = Q ∩ T or S = D. For x ∈ T we set

v(x) = {y ∈ T : x− y ∈ S}. (7.8)

Then for any x, y ∈ [0, 1] either v(x) = v(y) or v(x) ∩ v(y) = ∅. Thus the family

{v(x) : x ∈ T} (7.9)

is a decomposition of the set T. We call it the Vitali decomposition. If  is a well-
ordering of the real line we can define

V = {x ∈ T : (∀y) (y ∈ v(x) → x  y)}. (7.10)

The set V is a selector for the Vitali decomposition {v(x) : x ∈ T}, i.e., for any
x ∈ T we have |V ∩v(x)| = 1 . One can easily see that the set V is a Vitali set. �

Theorem 7.18. If a Polish ideal group 〈X, I〉 possesses the Steinhaus Property,
then Borel∗(I) does not contain a Vitali set.

Proof. Let V be a Vitali set, S being a countable dense subset of X satisfying (7.6)
and (7.7). By (7.7) we have

⋃
r∈S(r+V ) = X . Since S is countable we obtain that

V /∈ I.
Assume now that V ∈ Borel∗(I). By the Steinhaus Property the interior of

the set {x ∈ X : (x + V ) ∩ V �= 0} is non-empty and therefore contains a non-zero
element of S, a contradiction with (7.6). �

Corollary 7.19 (G. Vitali). A Vitali set is neither measurable for any Borel shift
invariant measure nor possesses the Baire Property.
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A subset B ⊆ X of a Polish space X is called a Bernstein set if

|B| = |X \B| = c, (7.11)
neither B nor X \B contain a perfect subset. (7.12)

Theorem 7.20 (F. Bernstein). If a Polish space X can be well ordered, then there
exists a Bernstein set B ⊆ X.

Proof. We can assume that X is perfect. By the assumption X can be enumerated
as X = {aξ : ξ < c}. We know that the set of all perfect subsets of X has
cardinality c. Then again we can enumerate all perfect subsets of X as {Pξ : ξ < c}.
Now we construct two sequences {xξ : ξ < c} and {yξ : ξ < c} of mutually distinct
elements of X and such that xξ, yξ ∈ Pξ for any ξ < c.

We set x0 = aη, where η is the first ordinal such that aη ∈ P0. Similarly we
set y0 = aζ , where ζ is the first ordinal such that aζ �= x0 and aζ ∈ P0.

If xη, yη are defined for every η < ξ, we set xξ = aζ , where ζ is the first
ordinal such that aζ �= xη, yη for any η < ξ and aζ ∈ Pξ. Similarly, yξ = aρ where
ρ is the first ordinal such that aρ �= xη, yη for any η < ξ, aρ �= xξ and aρ ∈ Pξ.

Let B = {xξ : ξ < c}. Evidently the condition (7.11) holds true. Let P be
a perfect set. Then P = Pξ for some ξ < c. Then xξ ∈ P , yξ ∈ P , xξ ∈ B and
yξ ∈ X \B. Thus, neither P ⊆ B nor P ⊆ X \B. �

Theorem [wAC] 7.21. If a Polish ideal space 〈X, I〉 possesses the hull property,
then a Bernstein set does not belong to Borel∗(I).

Proof. To get a contradiction, assume that A is a Bernstein subset of a Polish
space X and A ∈ Borel∗(I). Then there exist Borel sets B ⊆ A ⊆ C such that
C \ B ∈ I. Since A does not contain a perfect subset, neither does B contain
a perfect subset and therefore, by the Alexandroff-Hausdorff Theorem, Corollary
6.7, B is countable. Then C = (C \B) ∪B ∈ I. Thus also A ∈ I.

By the same argument we obtain X \A ∈ I, a contradiction. �

Corollary [wAC] 7.22. Let X be a Polish space. A Bernstein subset of X does not
possess the Baire Property. If µ is a diffused Borel measure on X, then a Bernstein
subset of X is not µ-measurable.

We show a stronger result.

Theorem [AC] 7.23. Let 〈X, I〉 be a Polish ideal space. If X =
⋃
s∈S As, every

As ∈ I, and the set {s ∈ S : x ∈ As} is finite for every x ∈ X, then there exists
a set S0 ⊆ S such that

⋃
s∈S0

As /∈ Borel∗(I).

Proof. Since |X | = c, also |S| ≤ c. So we can assume that S ⊆ R and that any
analytic subset of S is countable (take S as a subset of a Bernstein set).
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To get a contradiction, assume that
⋃
s∈S0

As ∈ Borel∗(I) for every S0 ⊆ S.
We show that there exists a Borel set P ∈ I such that

(∀U ⊆ R open)
⋃

s∈(U∩S)

(As \ P ) ∈ Borel. (7.13)

Let {Un : n ∈ ω} be an open base of R. By assumption, for every n there exists
a Borel set Bn such that

⋃
s∈(Un∩S)As ⊆ Bn and Bn \ (

⋃
s∈(Un∩S)As) ∈ I. Hence,

there exists a Borel Pn ∈ I such that Bn \ (
⋃
s∈(Un∩S)As) ⊆ Pn. Set P =

⋃
n Pn.

One can easily check that
⋃

s∈(Un∩S)

(As \ P ) = Bn \ P.

Since each Bn \ P is Borel, the assertion (7.13) follows.
Write

F = {〈s, x〉 ∈ R×X : s ∈ S ∧ x ∈ (As \ P )}.

Let {rn : n ∈ ω} be an enumeration of all rationals. We denote as E the set

⋂

n

⋃

m

(
(rm − 2−n, rm + 2−n)×

⋃
{As \ P : s ∈ S ∩ (rm − 2−n, rm + 2−n)}

)
.

By (7.13) the set E is Borel. Evidently F ⊆ E. On the other hand, if 〈s, x〉 ∈ E
then for every n there exist an mn ∈ ω and an sn ∈ S ∩ (rmn − 2−n, rmn + 2−n)
such that s ∈ (rmn − 2−n, rmn + 2−n) and x ∈ (Asn \ P ). Since limn→∞ sn = s
and x ∈ At for finitely many t, we obtain that s = sn for all but finitely many n.
Consequently 〈s, x〉 ∈ F . Thus E = F .

Hence the set S0 = {s ∈ R : (∃x) 〈s, x〉 ∈ F} is an analytic subset of S and
therefore countable. Moreover,

⋃

s∈S
(As \ P ) =

⋃

s∈S0

(As \ P ),

which is a contradiction with X /∈ I. �

Corollary [AC] 7.24. Let X be a metric separable space. Let µ be a Borel measure
on X. If X =

⋃
s∈S As and 〈As : s ∈ S〉 are µ-measure zero sets such that for

every x ∈ X the set {s ∈ S : x ∈ As} is finite, then there exists a set S0 ⊆ S such
that the set

⋃
s∈S0

As is not µ-measurable.

Corollary [AC] 7.25. Let X be a Polish space. If X =
⋃
s∈S As and 〈As : s ∈ S〉

are meager sets such that for every x ∈ X the set {s ∈ S : x ∈ As} is finite, then
there exists a set S0 ⊆ S such that the set

⋃
s∈S0

As does not possess the Baire
Property.
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Assume that 〈X, I〉 and 〈X,J 〉 are Polish ideal spaces with the same under-
lying space X . We say that I and J are orthogonal if there exist sets A ∈ I and
B ∈ J such that A ∩B = ∅ and A ∪B = X .

By Theorem 4.13 the ideals N (X) and M(X) are orthogonal for any Polish
space with a diffused Borel measure.

Theorem 7.26. If 〈X, I〉 and 〈X,J 〉 are Polish ideal groups with shift invariant
orthogonal σ-ideals, then1

cov(J ) ≤ non(I).

Proof. Let X be an Abelian Polish group. Since the ideals I and J are orthogonal,
there exist sets A ∈ I and B ∈ J such that A ∩B = ∅ and A ∪B = X .

If C ⊆ X is such that C + B =
⋃
x∈C(x + B) �= X , then C ∈ I. Actually,

there exists a y ∈ X such that y /∈ C + B. Then (y − C) ∩ B = ∅ and hence
(y − C) ⊆ A. Thus C ∈ I.

Let C ⊆ X be such that |C| = non(I) and C /∈ I. Then
⋃
x∈C(x + B) = X

and therefore cov(J ) ≤ non(I). �

Corollary 7.27 (Rothberger Theorem).

cov(M) ≤ non(N ), cov(N ) ≤ non(M).

The inequalities of Theorem 7.1 together with those of the Rothberger The-
orem can be summarized in a picture.

non(N )

add(N ) cof(N )

cov(N )

cov(M)

add(M) cof(M)

non(M)
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Diagram 1.

As usual, an arrow a −→ b means that a ≤ b.

We can rearrange the picture in the following more symmetric form:

1Note that without AC we must carefully interpret the following inequality.
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add(N ) cov(N ) non(M) cof(M)

add(M) cov(M) non(N ) cof(N )

� � �
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���������������

������������������������������

���������������

Diagram 2.

Now, we present a result that is “equal” for measure and category. The main
tools in a common proof are special sets of reals which are both meager and have
measure zero.
Theorem [AC] 7.28.

s ≤ non(N ), s ≤ non(M), cov(N ) ≤ r, cov(M) ≤ r.

Proof. Let us recall that for an element α ∈ ω2 of Cantor space we denoted the
zero-set of α as Z(α) = {n ∈ ω : α(n) = 0}.

For a set A ∈ [ω]ω we write

S(A) = {α ∈ ω2 : Z(α) does not split A}.

For a finite set s ⊆ A we set

N(A, s) = {α ∈ ω2 : Z(α) ∩A = s}.

Since
α ∈ N(A, s) ≡ (∀n ∈ A) (n ∈ s ≡ α(n) = 0),

one can see that the set N(A, s) is closed nowhere dense and has measure zero.
Evidently

S(A) =
⋃
{N(A, s) : s ∈ [A]<ω} ∪

⋃
{N(ω \A, s) : s ∈ [ω \A]<ω}

and therefore S(A) is meager and has measure zero.
Let D ⊆ ω2 be a non-meager set with |D| = non(M). Then D cannot be

a subset of any S(A). Thus

(∀A ∈ [ω]ω) (D ∩ (ω2 \ S(A)) �= ∅.

Therefore {Z(α) : α ∈ D} is a splitting family and s ≤ non(M) holds true.
By the same argument we obtain s ≤ non(N ).
Evidently

r = min{|D| : (∀α ∈ ω2, Z(α) infinite)(∃B ∈ D)α ∈ S(B)}.

Since the set {α ∈ ω2 : Z(α) finite} is countable we immediately obtain both
inequalities cov(N ) ≤ r and cov(M) ≤ r. �
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All results of this section have been obtained in a common framework for
measure and category – a Polish ideal space. Actually, we can give a result with
a proof for, say, the category case and then translate it by simple changing of
corresponding words in a result and a proof for measure. That is the content of the
duality phenomena. Therefore it seems obvious to look for some general transfer
principle. Under some circumstances (assuming the continuum hypothesis) such a
transform principle – a duality theorem – has been proved by W. Sierpiński [1934a]
and then strengthened by P. Erdős [1943]. We present a slight strengthening of
both results.

Theorem [AC] 7.29 (P. Erdős – W. Sierpiński). If

add(N ) = add(M) = cof(N ) = cof(M),

then there exists a bijection f : R
1−1−→
onto

R such that for any subset E ⊆ R,

f(E) has Lebesgue measure zero if and only if E is meager
and

E has Lebesgue measure zero if and only if f(E) is meager.

Proof. Let κ = add(N ) = add(M) = cof(N ) = cof(M). By Theorem 7.1, e) the
cardinal κ is regular.

Let {Nξ : ξ < κ} and {Mξ : ξ < κ} be a base of N and a base of M,
respectively. By Theorem 4.13 we can assume N0 ∪M0 = R and N0 ∩M0 = ∅.
Moreover, we can assume that Nη ⊆ Nξ and Mη ⊆ Mξ for any η < ξ < κ. If not
simply take

⋃
η≤ξ Nη and

⋃
η≤ξMη instead of Nξ and Mξ, respectively. Moreover

we have ⋃

ξ<κ

Nξ =
⋃

ξ<κ

Mξ = R.

We show that for any η < κ there exists a ξ > η such that |Nξ \
⋃
ζ<ηNζ | = c.

Actually, since
⋃
ζ<η Nζ ∈ N , by Corollary 6.8 there exists a set E ∈ N such that

|E| = c and E ∩
⋃
ζ<ηNζ = ∅. Then there exists a ξ > η such that E ⊆ Nξ. A

similar assertion holds true for the sets {Mξ : ξ < κ}. Hence, we can assume that
the sets

Xξ = Nξ \
⋃

η<ξ

Nη, Yξ = Mξ \
⋃

η<ξ

Mη

have cardinality c for every ξ < κ. Note that Xξ ∩Xη = ∅ and Yξ ∩ Yη = ∅ for any
ξ �= η.

Evidently

⋃

η<κ

Xη =
⋃

η<κ

Nη = R,
⋃

η<κ

Yη =
⋃

η<κ

Mη = R.
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By the choice of N0 and M0 we obtain X0 = N0 and Y0 = M0. Hence

M0 =
⋃

0<η<κ

Xη, N0 =
⋃

0<η<κ

Yη.

Since each Xξ and Yξ has cardinality c, for each 0 < ξ < κ there exists a bijection
fξ : Xξ

1−1−→
onto

Yξ. Set

f(x) =
{
fξ(x) if x ∈ Xξ, ξ > 0,
f−1
ξ (x) if x ∈ Yξ, ξ > 0.

If A ⊆ R has measure zero, then A ⊆ Nξ ⊆
⋃
ζ≤ξXζ for some ξ. Then f(A) is

meager sincef(A) ⊆
⋃
ζ≤ξ Yζ . Vice versa, if A is meager, then A ⊆Mξ ⊆

⋃
ζ≤ξ Yζ

for some ξ and therefore f(A) ⊆
⋃
ζ≤ξXζ . Thus f(A) has measure zero. �

Note that the conclusion of the theorem implies that in Diagram 2. any car-
dinal invariant of measure equals the corresponding cardinal invariant of category.
Thus the two lines of the Diagram coincide. The assumption of the theorem asks
more: all cardinal invariants of Diagram 2. have to be equal.

Exercises

7.6 [AC] Hamel Base

We assume that R can be well ordered. We can consider R as a vector space over Q.
A base of R is called a Hamel base. Note that we can always assume that if there exists
a Hamel base then it is a subset of [0, 1].

a) There exists a Hamel base.

b) If A ⊆ R is linearly independent over Q, then there exists a Hamel base X ⊇ A.

c) Construct a Hamel base subset of [0, 1] of positive outer Lebesgue measure.

Hint: Enumerate all Gδ sets of measure zero {Gξ : ξ < c} and pick an element of
Hamel base xξ /∈ Gξ.

d) There exists a non-measurable Hamel base.

Hint: If H is a Hamel base, then the sets {rH : r ∈ Q} are pairwise disjoint.

e) Show that there exists a Hamel base not possessing the Baire Property.

f) Construct meager sets A,B ⊆ T of Lebesgue measure zero such that A+B = T.

Hint: Set

A =
{
x =
∑∞

i=1
xi2

−2i ∈ T : xi = 0, 1
}
, B =

{∑∞

i=1
xi2

−2i+1 ∈ T : xi = 0, 1
}
.

g) There exists a meager Hamel base of measure zero.

Hint: Construct a Hamel base that is a subset of A ∪B.

7.7 Cauchy Equation

The equation (∀x, y) f(x+ y) = f(x) + f(y) is called a Cauchy equation. Every function
f(x) = ax, a real, is a solution of a Cauchy equation. A solution different from those is
called non-trivial.
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a) Every non-trivial solution of a Cauchy equation is discontinuous at every point.

Hint: From a Cauchy equation you obtain that f(r) = rf(1) for r rational. So if f
is continuous then f is a trivial solution.

b) If the real line can be well ordered, then there exists a non-trivial solution of a
Cauchy equation.

Hint: Use a Hamel base.

c) If f is a non-trivial solution of a Cauchy equation, then f−1((−n, n)) /∈ N for
some n.

Hint: Note that R =
⋃

n f
−1((−n, n)) and f−1((−n, n)) = nf−1((−1, 1)).

d) If a solution f of a Cauchy equation is bounded on a neighborhood of 0, then f is
continuous.

e) If f is a non-trivial solution of a Cauchy equation, then f−1((−n, n)) /∈ M for
some n.

f) Any non-trivial solution of a Cauchy equation is neither Lebesgue measurable nor
Baire measurable.

Hint: Use the Steinhaus Theorem 7.16 and the fact that U ⊆ f−1((−n, n)) −
f−1((−n, n)) implies the inclusion f(U) ⊆ (−2n, 2n).

g) Find all solutions of a Cauchy equation.

Hint: Use a Hamel base.

h) A graph of a non-trivial solution of a Cauchy equation is a dense subset of R2.

Hint: A non-trivial solution is discontinuous at 0.

7.3 Similar not Dual

Theorem [wAC] 7.30. Let X, Y be topological spaces with countable bases. A func-
tion f : X −→ Y is Baire measurable if and only if there exists a meager set D ⊆ X
such that f |(X \D) is continuous. Especially, for any Borel measurable, i.e., for
analytically representable function f , there exists a meager set D ⊆ X such that
f |(X \D) is continuous.

Proof. Assume that f is a Baire measurable function. Let {Un : n ∈ ω} be an open
base of the topology on Y . Since for any n ∈ ω the set f−1(Un) possesses the Baire
Property, there exist an open set Vn and meager Fσ sets Pn, Qn ⊆ X such that
Vn ⊆ X \Qn ⊆ f−1(Un) ⊆ Vn ∪ Pn. Let D =

⋃
n Pn ∪

⋃
nQn. Then D is meager

and since f−1(Un) ∩ (X \ D) = Vn ∩ (X \ D) for any n ∈ ω, the function f is
continuous on X \D.

Assume that there exists a meager set D such that f |(X \D) : X \D −→ Y
is continuous. Then for any open U ⊆ Y there exists an open set V ⊆ X such that

f−1(U) ∩ (X \D) = V ∩ (X \D).

Hence V \D ⊆ f−1(U) ⊆ V ∪D, i.e., the set f−1(U) possesses the Baire Property.
�
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For a Lebesgue measurable function we have a similar, however weaker result.

Theorem [wAC] 7.31 (N.N. Luzin). Let X, Y be Polish spaces, µ being a Borel
measure on X. A function f : X −→ Y is µ-measurable if and only if for any
positive ε there exists a µ-measurable set A ⊆ X such that µ(A) < ε and f |(X \A)
is continuous.

Proof. Assume that f is µ-measurable. Let {Un : n ∈ ω} be an open base of the
topology on Y . Since f−1(Un) is measurable, for any n ∈ ω there exists an open set
Vn ⊇ f−1(Un) such that µ(Vn \ f−1(Un)) < ε · 2−n−1. Let A =

⋃
n(Vn \ f−1(Un)).

Then µ(A) < ε and since

f−1(Un) ∩ (X \A) = (X \A) ∩ Vn

for any n ∈ ω, the function f |(X \A) is continuous.
Assume now that for any n ∈ ω there exists a set An such that µ(An) < 2−n

and f |(X \An) is continuous. Let U ⊆ Y be open. Then there exist open sets Vn
such that

f−1(U) ∩ (X \An) = Vn ∩ (X \An).

If we set A =
⋂
nAn we obtain f−1(U) = (f−1(U) ∩ A) ∪

⋃
n(Vn \ An). Since

µ(A) = 0 the set f−1(U) is µ-measurable. �

Luzin’s Theorem 7.31 is not dual to Theorem 7.30. Moreover, the dual asser-
tion to Theorem 7.30 is false.

Theorem [wAC] 7.32. Let X be a Polish space, µ being a diffused probabilistic Borel
measure on X with supp(µ) = X. Then there exists a Borel measurable function
f from X into [0, 1] such that for any measurable set A ⊆ X the following holds
true: if f |A is continuous, then µ(A) < 1.

Proof. Let {Un : n ∈ ω} be an open base. Since supp(µ) = X , every non-empty
open set has positive measure and is not nowhere dense. So by using Lemma 4.12
one can easily construct by induction a sequence of pairwise disjoint closed nowhere
dense sets 〈Fn : n ∈ ω〉 of positive measure such that F2n, F2n+1 ⊆ Un for every
n. The characteristic function f of the set F =

⋃
n∈ω F2n is Borel measurable.

Assume that A ⊆ X is a measurable set, f |A is continuous and µ(A) = 1.
Since µ(

⋃
n F2n+1) > 0 and

⋃
n F2n+1 ⊆ Z(f) ⊆ f−1((−1/2, 1/2)) we obtain

f−1((−1/2, 1/2))∩A �= ∅. Therefore Un ∩A ⊆ f−1((−1/2, 1/2)) for some n. Since
f(x) = 1 for each x ∈ F2n ⊆ Un we obtain A ∩ F2n = ∅, a contradiction. �

In Section 4.4 we proved Fubini Theorem 4.28. A similar, actually dual, result
holds true for category. However the proof is essentially different.

Theorem [wAC] 7.33 (K. Kuratowski – S. Ulam). Let X, Y be separable metric
spaces. Assume that A ⊆ X × Y possesses the Baire Property. Then A is meager
if and only if the set {x ∈ X : Ax is not meager} is meager.
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Proof. Since (
⋃
nAn)x =

⋃
n(An)x, to prove the implication from left to right we

have to show that the set B = {x ∈ X : Int(Ax) �= ∅} is meager provided that
A ⊆ X × Y is nowhere dense and closed.

Let {Un : n ∈ ω} be an open base on Y . Write

Gn = {x ∈ X : (∃y ∈ Un) y /∈ Ax}.

If 〈x, y〉 /∈ A, y ∈ Un then there are open sets G,H such that (G × H) ∩ A = ∅
and x ∈ G, y ∈ H ⊆ Un. Thus G ⊆ Gn. Consequently Gn is open. Moreover
Gn is dense. Actually, for any non-empty open set V we have (V × Un) \ A �= ∅
and therefore V ∩ Gn �= ∅. Now, if Int(Ax) �= ∅, then there exists an n such that
Un ⊆ Ax and therefore x /∈ Gn. Thus B is meager.

Assume now that A ⊆ X×Y possesses the Baire Property and is not meager.
Then there exists a non-empty open set G ⊆ X×Y and a meager set Q such that
G \Q ⊆ A. Set

C = {x ∈ X : Qx is not meager}.
We already know that C is meager. Let U ⊆ X , V ⊆ Y be non-empty open sets
such that U × V ⊆ G. Then

{x ∈ X : Ax is not meager} ⊇ {x ∈ U : V \Qx is not meager} ⊇ U \ C

is not meager. �
Corollary [wAC] 7.34. Let X, Y be metric separable spaces, A ⊆ X×Y possessing
the Baire Property. Then the set {x ∈ X : Ax is not meager} is meager if and
only if {y ∈ Y : Ay is not meager} is meager.
Theorem 7.35. Let X be a perfect Polish space. If W ⊆ X ×X is a well-ordering
of X of the ordinal type c, then W is not µ× µ-measurable for any diffused Borel
measure µ on X and W does not possess the Baire Property.

Proof. Assume that W ⊆ X ×X is a well-ordering of X of the ordinal type c.
Let µ be a diffused Borel measure on X . Assume that W is µ×µ-measurable.

The horizontal section Wy = {x ∈ X : xWy} has cardinality strictly smaller
than c for any y ∈ X . Since Wy is measurable, by Corollary 6.8 we obtain that
µ(Wy) = 0. If x ∈ X , then µ(W x) = µ(X) − µ(Wx) = µ(X) > 0. Thus, we have
obtained a contradiction with the Fubini Theorem 4.29.

Replacing corresponding words, one will obtain a proof for the Baire Property
case. �

Let 〈X,+, 0〉 be an Abelian Polish group. The arithmetic sum of two subsets
can be defined as in Section 3.1. A non-empty set A ⊆ X is called a tail-set if
there exists a countable dense set S ⊆ X such that S ⊆ {x ∈ X : x+A = A}.

We consider <ω2 as a subset of ω2 identifying a finite sequence s ∈ <ω2 with
α ∈ ω2 such that α(n) = s(n) for n ∈ dom(s) and α(n) = 0 otherwise. The set of
dyadic numbers D and <ω2 are dense subsets of the Abelian Polish groups T and
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ω2, respectively. The set P(ω) can be viewed as an Abelian Polish group with the
group operation the symmetric difference

A%B = (A \B) ∪ (B \A)

isomorphic to ω2 with a countable dense subset Fin.
Note the following. Let 〈X,+, 0〉 be an Abelian Polish group, S being a con-

table dense subgroup. If A ⊆ X is any non-empty set, then

S +A =
⋃

x∈S
x+A (7.14)

is a tail-set containing A as a subset. If A is meager, then S + A is meager as
well. Similarly, if µ is a shift invariant Borel measure on X and µ(A) = 0, then
also µ(S +A) = 0. Consequently, any meager or measure zero set is contained in
a meager or measure zero tail-set, respectively. We shall use this fact without any
commentary.

We begin with folklore results, the so-called “Zero-One Law”, which we prove
for the Polish group T. One can easily extend them for Polish groups R and ω2.
The proofs for the measure case and the category case can be considered as similar,
however, one can hardly transform one proof into another one.
Theorem 7.36 (Zero-One Law). If the set A ⊆ T is a tail-set, then λ∗(A) is either
0 or 1. A similar assertion holds true for ω2.

Proof. Let C ⊆ {x ∈ T : x+A = A} be countable dense. Assume that λ∗(A) > 0
and 0 < ε < 1 is a real. By Theorem 4.17 there exists an open interval I such that
λ(I) < ε and λ(A ∩ I) ≥ (1 − ε)λ(I).

Then there are reals x1, . . . , xk ∈ C such that λ(
⋃k
i=1(xi + I)) > 1 − ε and

the intervals xi + I are mutually disjoint. By (4.10) we obtain

λ∗(A) ≥ λ∗
(

A ∩
k⋃

i=1

(xi + I)

)

=
k∑

i=1

λ∗(A ∩ (xi + I))

≥ (1− ε)
k∑

i=1

λ(xi + I) ≥ (1− ε)2.

Since ε was arbitrary we obtain λ∗(A) = 1. �

Corollary [AC] 7.37. There exists a tail-set A ⊆ T of outer measure 1 of cardinality
non(N ).

Proof. Let |B| = non(N ) and λ∗(B) > 0. Then the set A = B + (D ∪ {0}) is
a tail-set containing B. �

We have a similar result for category.
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Theorem 7.38 (Zero-One Law). If a tail-set A possesses the Baire Property, then
A is either meager or comeager.

Proof. Let A ⊆ T possess the Baire Property. Then there are an open set G and
meager sets Q,P such that A = (G \Q)∪P . Assume that A is not meager. Then
G is non-empty. Since A is a tail-set, there exists a countable dense subset C of
{x ∈ T : x+A = A}.

The set R = T \
⋃
x∈C(x+G) is nowhere dense. We show that

T \A ⊆
⋃

x∈C
(x +Q) ∪R.

Actually, if y ∈ T \A and y /∈ R, then there exists an x ∈ C such that y ∈ x+G.
Since y /∈ A = x+A we obtain that y ∈ x+Q.

Since Q was meager we have shown that T \A is meager.
For a subset of ω2 the proof goes analogously. Or, by suitable continuous

surjection from ω2 onto T you can reduce the problem from a subset of ω2 to
a subset of T. �

Corollary 7.39. A free ultrafilter on ω is a Lebesgue non-measurable set and does
not possess the Baire Property.

Proof. If a free ultrafilter J is considered as a subset of ω2, then J is a tail-set,
since x + J = J for any finite x ⊆ ω. Evidently the complement ω2 \ J is also
a tail-set. J and ω2 \ J have equal outer measure and are homeomorphic. �

Exercises

7.8 [AC] Innerly Meager Sets

A set A ⊆ X is called innerly meager if for any meager set P ⊆ X one has Int(A∪P ) = ∅.
a) If A ⊆ X has the Baire Property and is innerly meager, then A is meager.

b) If a perfect Polish space X can be well ordered, then there exist innerly meager
sets A,B ⊆ X such that X = A ∪ B.

Hint: A Bernstein set is innerly meager.

c) If A ⊆ ω2 is a tail-set, then either A is innerly meager or ω2 \A is innerly meager.

Hint: Follow the proof of Theorem 7.38.

d) There exists a set A ⊆ R such that |A| = non(M) and R \A is innerly meager.

Hint: Let B /∈ M, |B| = non(M). Set A = B + Q.

7.9 Other Proofs of the Zero-One Law for Category

a) If A ⊆ T possesses the Baire Property and is not meager, then there exist an open
interval I and a meager set Q such that I \Q ⊆ A.

b) If C ⊆ T is dense and I ⊆ T is an open interval, then there exist finitely many
elements x1, . . . , xn ∈ C such that

⋃n
i=1(xi + I) = T.
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c) If A ⊆ T is a non-meager tail-set possessing the Baire Property, then T \ A is
meager.

Hint: If C = {x ∈ T : x+A = A}, I, Q are those of Exercise a) and x1, . . . , xn are
those of Exercise b), then

T \ A ⊆
n⋃

i=0

(xi +Q).

We identify sets of the form A×B, where A ⊆ n2 and B ⊆ (ω\n)2 with subsets of ω2 in
the natural way.

d) If A ⊆ ω2 is a tail-set, then for any n ∈ ω there exists a tail-set B such that
A = n2×B.

Hint: Take B = {α|(ω \ n) : α ∈ A}.
e) If a non-meager set A ⊆ ω2 possesses the Baire Property, then there are an open

set G and a meager set Q such that (G \Q) ⊆ A.

f) If A ⊆ ω2 is a non-meager tail-set possessing the Baire Property, then ω2 \ A is
meager.

Hint: If s ∈ n2 is such that [s] ⊆ G, and n2×B = A, then

ω2 \ A ⊆
⋃

t∈n2

(t+Q).

7.4 The Fall of Duality – Bartoszyński Theorem

We begin with a simple application of the results of Theorems 7.36 and 7.38 with
different impact to the properties of measure and category. Consider the set

A =
{

α ∈ ω2 : lim
n→∞

∑n
i=0 α(i)
n+ 1

=
1
2

}

.

The set A is a Π0
3 set. Evidently A is a tail-set. Therefore, by Theorem 7.36 either

the set A has measure zero or the set ω2 \ A has measure zero and by Theorem
7.38 either the set A is meager or the set ω2 \ A is meager. We show that A is
small in the sense of category and large in the sense of measure.
Theorem 7.40. A is meager and λ(A) = 1.

Proof. One can easily check that the set

Bk =
{

α ∈ ω2 : (∃n > k)
∑n
i=0 α(i)
n+ 1

>
3
4

}

is open and dense in ω2. Thus the set

B =
{

α ∈ ω2 : (∀k)(∃n > k)
∑n

i=0 α(i)
n+ 1

>
3
4

}

=
⋂

k

Bk

is a Gδ dense set. Since A ∩B = ∅, the set A is meager.
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Set g(α) = α(0). Then g is a continuous and therefore integrable function
on ω2. The shift T of ω2 was defined in Exercise 4.22 by (4.36). Evidently
g(T k(α)) = α(k). By Exercise 4.22, c) the shift T is ergodic and therefore by
Ergodic Theorem 4.31 we obtain

lim
n→∞

∑n
i=0 α(i)
n+ 1

=
∫

ω2

g(x) dx =
1
2

for almost all α, i.e., λ(A) = 1. �

We can conclude more: there is no hope to prove an ergodic theorem for
category, otherwise A is comeager.

In Exercise 7.10 we present an elementary proof of λ(A) = 1.
There is an important result on measure that does not have a category ana-

logue.
Theorem [wAC] 7.41 (Egoroff Theorem). Let 〈X,S, µ〉 be a measure space, µ being
finite measure and |S| � c. If a sequence {fn}∞n=0 of µ-measurable real-valued
functions converges to 0 on a subset A ⊆ X, then for every ε > 0 there exists
a µ-measurable set C ⊆ X, such that µ∗(A \ C) < ε and fn ⇒ 0 on C.

Proof. We set

B = {x ∈ X : (∀m)(∃n)(∀i) (i ≥ n→ |fi(x)| < 1/(m+ 1))},
Bm,n = {x ∈ B : (∀i) (i ≥ n→ |fi(x)| < 1/(m+ 1))}.

Then B is a measurable set, A ⊆ B, and for every m we have
⋃
nBm,n = B.

Since the sets Bm,n ⊆ Bm,n+1 are measurable, for any m there exists an in-
teger nm such that µ(B \Bm,nm) < ε/2m+1. Set C =

⋂
mBm,nm . �

Corollary [wAC] 7.42. If a sequence {fn}∞n=0 of measurable real-valued functions
converges to 0 on a subset A ⊆ X, then there exists a measurable set C, such that
µ∗(A \ C) = 0 and fn

QN−→ 0 on C.

The proof is easy. Let Cn ⊂ A be such that µ∗(A \Cn) < 2−n and fn ⇒ 0 on Cn.
Set C =

⋃
n Cn. �

An analogue of Corollary 7.42 for meager sets does not hold true.
Theorem [wAC] 7.43. Let X be a perfect separable metric space. Then there exists
a sequence {fn}∞n=0 of continuous real-valued functions defined on X such that

i) fn → 0 on X;
ii) if A ⊆ X, {nk}∞k=0 is an increasing sequence such that fnk

⇒ 0 on A, then
A is nowhere dense.

Proof. Let Q = {ri : i ∈ ω} be a countable dense subset of X . Since no point ri is
isolated there exists a sequence xi,n −→ ri, such that xi,n /∈ Q for each n ∈ ω. Let
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hi,n : X −→ [0, 2−i] be continuous and such that hi,n(xi,n) = 2−i and hi,n(x) = 0
if ρ(x, xi,n) ≥ 1/2ρ(ri, xi,n). Set

fn(x) =
∞∑

i=0

hi,n(x) for x ∈ X, n ∈ ω.

Each fn is a continuous function from X into [0, 2]. Evidently hi,n → 0 on X for
every fixed i. If x ∈ X and ε > 0, one can find an i0 such that

∑
i>i0

2−i < ε/2
and such n0 that

∑
i≤i0 hi,n(x) < ε/2 for every n ≥ n0. Thus fn → 0 on X .

Assume that {nk}∞k=0 is increasing and fnk
⇒ 0 on a set A. We can assume

that A is closed. If Int(A) �= ∅ then there exists an ri ∈ Int(A). Hence there exists
an m such that xi,n ∈ Int(A) for n ≥ m. Since for n ≥ m we have

sup{fn(x) : x ∈ A} ≥ f(xi,n) ≥ hi,n(xi,n) = 2−i,

we get a contradiction. �

Corollary [wAC] 7.44. Let {fn}∞n=0 be the sequence of the theorem. If fnk

QN−→ 0
on A, then A is meager.

Proof. If fnk

QN−→ 0 on A then there are closed sets An such that fnk
⇒ 0 on

every An and A ⊆
⋃
nAn. If A is not meager, then there exists an n such that

Int(An) �= ∅, a contradiction. �

We show some properties in which the algebras L/N and Baire/M differ.

Theorem [wAC] 7.45. Boolean algebra Baire/M contains a countable dense sub-
set. No countable set is dense in Boolean algebra L/N .

Proof. Any countable base of the topology is also a dense set in the quotient
algebra Baire/M.

Assume that 〈Vn : n ∈ ω〉 is a countable subset of L([0, 1]) \ N ([0, 1]). For
each n take a set An such that An ⊆ Vn and 0 < λ(An) < 2−n−2. Take A =

⋃
nAn.

Then λ(Vn∩A) > 0 for every n. Since λ(A) < 1 we have λ([0, 1]\A) > 0 and no Vn
is smaller than [0, 1] \A modulo N . Thus 〈Vn : n ∈ ω〉 is not dense in L/N . �

In Section 7.2 we have shown that the Boolean algebras L/N and Baire/M
are not ℵ0-distributive. We show that the algebras differ in a finer property, weak
distributivity. A Boolean algebra B is weakly ℵ0-distributive if for any sequence
〈An : n ∈ ω〉 of predense sets there exists a predense set A such that for any a ∈ A
and any n, there exists a finite subset C ⊆ An with a ≤

∨
C.

Lemma [wAC] 7.46. If a complete Boolean algebra B carries a positive measure,
then B is weakly ℵ0-distributive.
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Proof. Let µ be a positive measure on B. Let 〈An : n ∈ ω〉 be predense subsets
of B. We can assume that each An is countable and contains pairwise disjoint
elements. We show that the set

A = {b ∈ B : (∀n)(∃C ⊆ An) (C finite and b ≤
∨
C)}

is a dense set.
Let a ∈ B, a �= 0B. Since

∑
x∈An

µ(a ∧ x) = µ(a) > 0, there exists a finite
set Cn ⊆ An such that µ(a−

∨
Cn) < 2−n−2µ(a). Then b = a ∧

∧
n

∨
Cn is such

that µ(b) > 0, b ≤ a and b ∈ A. �
Theorem [wAC] 7.47. The Boolean algebra L/N is weakly ℵ0-distributive and the
Boolean algebra Baire/M is not weakly ℵ0-distributive.

Proof. The first assertion follows by Theorem 7.15 and Lemma 7.46.
To obtain a contradiction, suppose that Baire(ωω)/M is weakly distributive.

For i, n ∈ ω we write Cni = {α ∈ ωω : α(n) = i}. Since
⋃
iC

n
i = ωω, the

family An = {Cni : i ∈ ω} is predense for every n. Let A ∈ Baire(ωω) \ M.
Assume that Cn is a finite subset of An, such that A \

⋃
Cn is meager, n ∈ ω.

Then also A \
⋂
n

⋃
Cn is meager and there exists a function α ∈ ωω such that

Cn ⊆ {Cni : i < α(n)}. Since the intersection
⋂
n

⋃
i<α(n) C

n
i is a closed nowhere

dense set, we get a contradiction. �
Corollary [wAC] 7.48. There is no positive measure on Baire/M.

No assertion on the measure dual to the following fine result on meager sets
is known.
Theorem [AC] 7.49 (Z. Piotrowski – A. Szymański).

t ≤ add(M).

We shall use the terminology and notation introduced in Section 5.4.
Lemma [AC] 7.50. If 〈Qξ ⊆ Q : ξ < κ〉 is an almost decreasing sequence of dense
subsets of Q of length κ < t, then there exists a dense set Q ⊆ Q such that Q ⊆∗ Qξ
for every ξ < κ.

Proof. Let {rn : n ∈ ω} be an enumeration of Q. We denote by I the set of all
open intervals with rational endpoints. For any I ∈ I, the sequence 〈I∩Qξ : ξ < κ〉
of infinite subsets of I is almost decreasing. Since κ < t there exists an infinite set
PI ⊆ Q ∩ I such that PI ⊆∗ I ∩Qξ for every ξ < κ. Denote by αξ(I) the first n
such that

(∀m ≥ n) (rm ∈ PI → rm ∈ I ∩Qξ).
Since I is countable and κ < t ≤ b, the set of functions 〈αξ : ξ < κ〉 is bounded,
i.e., there exists a function β : I −→ ω such that αξ <∗ β for every ξ < κ. We set

Q = {rn : (∃I) (rn ∈ PI ∧ n > β(I)}.

It is easy to see that Q is the desired set. �
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Proof of the theorem. Let 〈Gξ ⊆ R : ξ < κ〉 be open dense sets, κ < t. We show
that the intersection

⋂
ξ<κGξ is dense in R.

By induction we construct an almost decreasing sequence 〈Qξ : ξ ≤ κ〉 of
dense subsets of Q. Actually, we set Q0 = Q, Qξ+1 = Qξ ∩Gξ and for limit ξ we
apply the lemma. Note that for any ξ < κ the set Qκ \Gξ is finite.

We define functions αξ : Qκ −→ ω as follows: αξ(r) is the first natural
number n such that (r − 1/n, r + 1/n) ⊆ Gξ, if r ∈ Gξ and αξ(r) = 0 otherwise.
Since κ < b there exists a function β : Qκ −→ ω such that αξ <∗ β for every
ξ < κ.

If s ⊆ Qκ is finite then

Us =
⋃

r∈Qκ\s
(r − 1/β(r), r + 1/β(r))

is an open dense subset of R. Set U =
⋂
{Us : s ∈ [Qκ]<ω}. The set U is dense in

R as well.
Consider a ξ < κ. Let s = Qκ \ Gξ ∪ {r ∈ Q : β(r) < αξ(r)}. The set s is

finite and one can easily see that U ⊆ Us ⊆ Gξ. Thus, U ⊆
⋂
ξ<κGξ. �

The obtained results show that the duality measure-category is limited. How-
ever for a long time all those anti-dual results were considered rather as the excep-
tion that proves the rule. In 1983 Tomek Bartoszyński and independently a bit later
Jean Raisonnier and Jaques Stern have announced results, which finally turned
out to be equivalent, and refute the measure-category duality. Raisonnier-Stern’s
result was proved by using inner models of set theory. Bartoszyński’s result was
formulated in a rather elementary way and the main aim of this section is to prove
it. We follow the technology developed in the late 1980s.
Theorem [AC] 7.51 (T. Bartoszyński).

add(N ) ≤ add(M) and cof(M) ≤ cof(N ).

The theorem follows from Pawlikowski’s Theorem 7.56 below by Theorem
5.43 and equalities (7.1). So our main aim reduces to proving Theorem 7.56.

We start with a comment. By Bartoszyński’s Theorem we have new arrows
in Diagram 2. of Section 7.2:

add(N ) −→ add(M), cof(M) −→ cof(N ).

Moreover very soon it turned out that a reverse inequality add(M) ≤ add(N )
cannot be proved in ZFC and the duality fell. Hence, there is a natural question
as to whether we have to change Diagrams 1. and 2 that look very dual. A result
of such a change is presented in the next section.

We state without a proof the above-mentioned result of Jean Raisonnier and
Jaques Stern.
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Theorem [AC] 7.52 (J. Raisonnier – J. Stern). If every Σ1
2 set of reals is Lebesgue

measurable, then every Σ1
2 set of reals possesses the Baire Property.

Using some well-known results of the theory of models of set theory, one
can deduce the Raisonnier-Stern Theorem from Bartoszyński’s Theorem, more
accurately, from the existence of Tukey connections used in the proof. Again,
using some well-known results of the theory of models of set theory, one can
deduce Bartoszyński’s Theorem from Raisonnier-Stern’s Theorem. Or, one can
change Raisonnier-Stern’s proof into a proof of Bartoszyński’s Theorem.

For a proof of Bartoszyński’s Theorem, we need some technical tools.
Lemma 7.53 (D. Fremlin). If a topological space 〈X,O〉 has a countable base of
topology, then for any n > 0 there exists a countable set V of open sets such that

a) if G ⊆ X is open dense, then there exists a V ∈ V such that V ⊆ G;
b) if V0, . . . , Vn ∈ V, then

n⋂

i=0

Vi �= ∅.

Proof. Let U = {Uk : k ∈ ω} be a countable base of the topology. We can assume
that U is closed under finite unions and ∅ /∈ U . Set

Am =
{
k ∈ ω : k > m ∧ (∀Y ⊆ m+ 1)

(⋂

i∈Y Ui �= ∅ → Uk ∩
⋂

i∈Y Ui �= ∅
)}

,

V =
{⋃

i≤n Us(i) : s ∈ n+1ω ∧ (∀i < n) s(i+ 1) ∈ As(i)
}
.

Let G be open dense. Since the base U is closed under finite unions, for any m
there exists a k ∈ Am such that Uk ⊆ G. Let k0 be such that Uk0 ⊆ G and let
ki+1 ∈ Aki ∩ {k : Uk ⊆ G} for i < n. Then

⋃
i≤n Uki ∈ V and

⋃
i≤n Uki ⊆ G. Thus

a) holds true.
Let V0, . . . , Vn ∈ V , Vi =

⋃
j≤n Uki,j with suitable indexes ki,j . We can assume

that ki,j ∈ Aki,j+1 for any i ≤ n and j < n. We can re-order 〈Vj : 0 ≤ j ≤ n〉 in
such a way that k0,0 ≤ kj,0 for any j ≤ m. By induction, re-order 〈Vj : i ≤ j ≤ n〉
in such a way that ki,i ≤ kj,i for any i ≤ j ≤ n. Then ki,i ≤ ki+1,i < ki+1,i+1 and
consequently ki+1,i+1 ∈ Aki+1,i ⊆ Aki,i . By induction we obtain

⋂
i≤n Uki,i �= ∅.

Since Uki,i ⊆ Vi we obtain
⋂
i≤n Vi �= ∅. �

Let 〈X,S, µ〉 be a measure space with a probabilistic measure. A family
G ⊆ S is said to be measure independent if 0 < µ(A) < 1 for any A ∈ G and

µ

(
n⋂

i=0

Ai

)

=
n∏

i=0

µ(Ai)

for any sets A0, . . . , An ∈ G. One can easily see that, replacing some element of a
measure independent family by its complement, we obtain a measure independent
family.
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We can easily construct an infinite measure independent family of clopen sub-
sets of the measure space 〈ω2,L, λ〉. Actually, if 〈sn ∈ [ω]<ω

2 : n ∈ ω〉 is a sequence
of finite functions with non-empty domains such that dom(sn) ∩ dom(sm) = ∅
for n �= m, then {[sn] : n ∈ ω} is a measure independent family. Note that
λ([s]) = 2−|dom(s)|.

Let {Gn,m : n,m ∈ ω} be a measure independent family of clopen subsets
of ω2 such that λ(Gn,m) = 2−n. Fix an open base {Un : n ∈ ω} on ω2. For
every A ∈ N choose (using AC) a compact set KA disjoint with A and of positive
measure. Moreover we can assume that if Un ∩KA �= ∅ then λ(Un ∩KA) > 0. If
not, replace KA by

KA \
⋃
{Un : λ(Un ∩KA) = 0}.

We write
Loc = {h ∈ ω([ω]<ω) : (∀n) |h(n)| ≤ 2n}. (7.15)

As we shall see later, the condition |h(n)| ≤ 2n may be replaced by |h(n)| ≤ f(n)
with a fast growing f ∈ ωω.

If g, h : ω −→ P(ω) then g ⊆∗ h means that (∃k)(∀n ≥ k) g(n) ⊆ h(n).
Similarly, if α ∈ ωω then α ∈∗ h means that (∃k)(∀n ≥ k)α(n) ∈ h(n).
Lemma [AC] 7.54. There exist functions

ϕ1 : ωω −→ N (ω2), ϕ∗
1 : N (ω2) −→ Loc

such that
ϕ1(α) ⊆ A→ α ∈∗ ϕ∗

1(A)

for any α ∈ ωω and any A ∈ N (ω2).

Proof. For A ∈ N (ω2), k, n ∈ ω we set

Φ(A, k, n) = {m ∈ ω : Uk ∩KA �= ∅ ∧ Uk ∩KA ∩Gn,m = ∅}.

If m ∈ Φ(A, k, n), then Uk ∩ KA ⊆ (ω2 \ Gn,m) and λ(Uk ∩ KA) > 0. Since the
family {ω2\Gn,m : n,m ∈ ω} is measure independent and λ(ω2\Gn,m) = 1−2−n,
the set Φ(A, k, n) is finite. Evidently

(Uk ∩KA) ∩
⋃
{Gn,m : n ∈ ω ∧m ∈ Φ(A, k, n)} = ∅

and therefore

λ(Uk ∩KA) ≤ λ
(⋂

{ω2 \Gn,m : n ∈ ω ∧m ∈ Φ(A, k, n)}
)

=
∏

n∈ω
(1− 2−n)|Φ(A,k,n)|. (7.16)

If Uk ∩ KA = ∅, then also Φ(A, k, n) = ∅ for any n. If Uk ∩ KA �= ∅, then
λ(Uk ∩ KA) > 0 and therefore the infinite product (7.16) converges. Thus by
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Theorem 2.24, b) we obtain

∞∑

n=0

2−n|Φ(A, k, n)| <∞.

Let N(A, k) be the least natural number such that 2−n|Φ(A, k, n)| ≤ 2−k−1 for
every n ≥ N(A, k). We set ϕ∗

1(A) = h where

h(n) =
⋃

k

{Φ(A, k, n) : n ≥ N(A, k)}.

Since

|h(n)| ≤
∞∑

k=0

2n · 2−k−1 = 2n,

we have h ∈ Loc.
If α ∈ ωω we set

ϕ1(α) =
⋂

k

⋃

n≥k
Gn,α(n).

Since for every k,
λ(ϕ1(α)) ≤ λ

( ⋃

n≥k
Gn,α(n)

)
≤ 2−k+1,

we obtain ϕ1(α) ∈ N .
Assume now that ϕ1(α) ⊆ A. Then

⋂
k

⋃
n≥k Gn,α(n) ∩ KA = ∅. Since KA

being compact satisfies the Baire Category Theorem, there exists a k0 such that⋃
n≥k0 Gn,α(n) is not dense in KA. Thus there exists a k1 such that Uk1 ∩KA �= ∅

and
Uk1 ∩KA ∩

⋃

n≥k0
Gn,α(n) = ∅. (7.17)

Let n ≥ k0, n ≥ N(A, k1). By (7.17) we have Gn,α(n)∩Uk1 ∩KA = ∅ and therefore
α(n) ∈ Φ(A, k1, n) ⊆ h(n). �

Lemma [AC] 7.55. There exist functions

ϕ2 : M(ω2) −→ ωω, ϕ∗
2 : Loc −→M(ω2)

such that
ϕ2(B) ∈∗ h→ B ⊆ ϕ∗

2(h)

for any B ∈ M(ω2) and any h ∈ Loc.

Proof. By Lemma 7.53 for every n there exists a system 〈Vn,k : k ∈ ω〉 of open
subsets of Un such that every dense open set contains as a subset some Vn,k and⋂
k∈X Vn,k �= ∅ whenever X ∈ [ω]≤2n

.
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If B ∈ M(ω2), then there exists a sequence of closed nowhere dense sets
〈Hn : n ∈ ω〉 such that B ⊆

⋃
nHn. We can assume that Hn ⊆ Hn+1. We set

ϕ2(B) = α where α(n) is the least natural number such that Hn ∩ Vn,α(n) = ∅.
For h ∈ Loc we set

ϕ∗
2(h) = ω2 \

⋂

n

⋃

m≥n

⋂

k∈h(m)

Vm,k.

Since ∅ �=
⋂
k∈h(m) Vm,k ⊆ Um, one can easily see that ϕ∗

2(h) is meager.
Assume that α = ϕ2(B) ∈∗ h. Then there exists an n0 such that α(n) ∈ h(n)

for n ≥ n0. Hence, for n ≥ n0 we have
⋃

m≥n

⋂

k∈h(m)

Vm,k ⊆
⋃

m≥n
Vm,α(m).

Because ⋃

m≥n
Vm,α(m) ∩Hn = ∅,

we obtain
ϕ∗

2(h) ⊇
⋃

n≥n0

Hn ⊇ B

and we are done. �

Theorem [AC] 7.56 (J. Pawlikowski). The pair of mappings 〈ϕ2 ◦ ϕ1, ϕ
∗
1 ◦ ϕ∗

2〉 is
a Tukey connection from 〈M,⊆〉 into 〈N ,⊆〉.

Proof. The theorem follows from Lemmas 7.54 and 7.55. Actually, if A ∈ N and
B ∈M are such that ϕ2 ◦ϕ1(B) = ϕ1(ϕ2(B)) ⊆ A then by Lemma 7.54 we obtain
ϕ2(B) ∈∗ ϕ∗

1(A) and therefore B ⊆ ϕ∗
2(ϕ∗

1(A)) by Lemma 7.55. �

Exercises

7.10 An Elementary Proof of Theorem 7.40

For n, k ∈ ω and s ∈ n2 we write

N(s) = |{i < n : s(i) = 1}|, S(n, k) =
{
s ∈ n2 :

∣
∣
∣

N(s)
n
− 1

2

∣
∣
∣ > 2−k

}
,

Bk = {α ∈ ω2 : (∀m)(∃n ≥ m)α|n ∈ S(n, k)}.

a) Show that ω2 \A =
⋃

nBn.

b) Show that

Bk ⊆
⋃

n≥m

⋃

s∈S(n,k)

[s]

for any m.
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c)
(

2n
n+k

)
=
(

2n
n−k

)
< 22n exp(−k2/4n) for any k ≥ 2.

Hint: Note that exp(−x) > 1− x for 0 < x < 1 and
(
2n
n

)
<
∑2n

k=0

(
2n
k

)
= 22n. Then

(
2n

n+k

)

(
2n
n

) <

(

1− 1

n

)

· · · · ·
(

1− k − 1

n

)

< exp

(

− 1

n
− · · · − k − 1

n

)

≤ exp(−k2/4n).

d) Show that |S(2n, k)| < 2n22n exp(−n2−2k) for every k and for every n > 2k−1.

Hint: Note that |S(2n, k)| is
∑

i>n+n2−k+1

(
2n
i

)
+

∑

i<n−n2−k+1

(
2n
i

)
=

∑

|i|>n2−k+1

(
2n

n+i

)
.

If n > 2k−1, then the sum contains not more than 2n non-zero summands. For each
of them we have an estimate

(
2n

n+i

)
< 22n exp(−i2/4n) < 22n exp(−n22−2k+2/4n) = 22n exp(−n2−2k).

e) Show that for any given k and any sufficiently large n

|S(n, k)| < n2n exp(−n2−2k−4).

Hint: For n even the result follows by d). Let n = 2m + 1 be odd. If s ∈ S(n, k),
then

n2−k <
∣
∣
∣N(s)− n

2

∣
∣
∣ ≤ |N(s) −N(s|2m)|+ |N(s|2m) −m|+

∣
∣
∣m− n

2

∣
∣
∣

< |N(s|2m) −m|+ 2,

therefore for sufficiently large n

|N(s|2m) −m| > n2−k − 2 > 2m2−k−1.

Thus s|2m ∈ S(2m, k + 1). Hence |S(n, k)| ≤ 2|S(2m, k + 1)|.
f) For any ε > 0 and any k > 0 there exists an m such that

λ

( ⋃

n≥m

⋃

s∈S(n,k)

[s]

)

< ε.

Hint: If s ∈ n2, then λ([s]) = 2−n. Hence by e) we have

λ

( ∞⋃

n=0

⋃

s∈S(n,k)

[s]

)

≤
∞∑

n=0

2−n · n2n exp(−n2−2k−4) =
∞∑

n=0

n · exp(−n2−2k−4) <∞.

Thus, there exists an m such that
∑∞

n=m n · exp(−n2−2k−4) < ε.

g) λ(Bk) = 0 for every k ∈ ω. Therefore Theorem 7.40 holds true.

Hint: Use b), f) and then a).
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7.11 [AC] Product of Boolean Algebras

We assume that all considered Boolean algebras are complete. A Boolean algebra B

with complete injections ji : Bi
1−1−→ B, i = 1, 2 is said to be a product of Boolean

algebras B1,B2 if j1, j2 are complete homomorphisms, B is completely generated by
the set j1(B1) ∪ j2(B2) and j1(x1) ∧ j2(x2) 	= 0 for any x1 	= 0, x2 	= 0. If the set
{j1(x1) ∧ j2(x2) : x1 ∈ B1 ∧ x2 ∈ B2} is dense in B, then the product is called minimal.

a) The projections of T×T onto T induce complete injections of Baire(T)/M(T) into
Baire(T × T)/M(T × T) such that Baire(T × T)/M(T × T) is a product of two
copies of Baire(T)/M(T).

b) Show that the product of a) is minimal.

c) Similarly, the projections proji, i = 1, 2 induce complete injections of L(T)/N (T)
into L(T× T)/N (T × T) such that L(T× T)/N (T× T) is a product of two copies
of L(T)/N (T).

d) If F ⊆ T has positive measure, then X = {〈x, y〉 : x− y ∈ F} is a non-zero element
of Boolean algebra L(T× T)/N (T× T).

e) Let F ⊆ T be closed nowhere dense of positive measure, X being as in d). Then
λ2(A1 ×A2 \X) > 0 for any A1, A2 ⊆ T of positive measure.

Hint: Let 〈Un : n ∈ ω〉 be an open base of T. Set

Bi = Ai \
⋃
{Un : λ(Un ∩ Ai) = 0}.

By the Steinhaus Theorem 7.16 there exists an open set C ⊆ B1 − B2. Since C
cannot be a subset of F we obtain B1 ×B2 � X. Thus, there exist n,m such that
λ(B1 ∩Un) > 0 and λ(B2∩Um) > 0. Note that λ2(A1×A2 \X) = λ2(B1×B2 \X)
and (B1 ∩ Un)× (B2 ∩ Um) ⊆ B1 ×B2 \X.

f) Conclude that the product of part c) is not minimal.

7.12 [wAC] Tukey connection from 〈M,⊆〉 into 〈N ,⊆〉
In proofs of Lemmas 7.54 and 7.55 we have essentially exploited the Axiom of Choice.
Some weaker version of obtained results can be shown by using wAC only.

a) There exists

ψ2 : ωω −→ N (ω2) ∩Gδ, ψ∗
2 : N (ω2) ∩Gδ −→ Loc

such that ψ2(f) ⊆ A→ f ∈∗ ψ∗
2(A) for any f ∈ ωω and any A ∈ N (ω2) ∩Gδ.

b) There exist

ψ3 : M(ω2) ∩ Fσ −→ ωω, ψ∗
3 : Loc −→M(ω2) ∩ Fσ

such that ψ3(B) ∈∗ h→ B ⊆ ψ∗
3(h) for any B ∈ M(ω2) ∩ Fσ and any h ∈ Loc.

c) The pair of mappings 〈ψ3 ◦ ψ2, ψ
∗
2 ◦ ψ∗

3〉 is a Tukey connection from 〈M ∩ Fσ,⊆〉
into 〈N ∩Gδ,⊆〉.
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7.5 Cichoń Diagram

If we change Diagram 2. of Section 7.2 taking into account Bartoszyński’s Theorem
7.51 and inequalities between cardinal invariants of the ideal of meager sets and
cardinals b and d, we obtain the Cichoń Diagram:

ℵ1 add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M) cof(M) cof(N ) c

� � � �

� � � �

�

� �

� �

� �

Diagram 3.

The diagram is not more symmetric. As before, an arrow means the inequality
between corresponding invariants which can be proved in ZFC. All inequalities but
those between cardinal invariants of the ideal of meager sets and the cardinals b
and d have been already proved. The remaining inequalities will be proved in this
section. Moreover we show
Theorem [AC] 7.57 (A.W. Miller – J. Truss).

add(M) = min{cov(M), b}.

and
Theorem [AC] 7.58 (D. Fremlin).

cof(M) = max{non(M), d}.

Let Kσ(X,O), or simply Kσ(X), denote the smallest σ-ideal of subsets of
a topological space 〈X,O〉 containing the family K(X,O) of all compact subsets
of X . For sake of brevity we shall write Kσ instead of Kσ(ωω).

For α ∈ ωω we denote

Cα = {β ∈ ωω : (∀n)β(n) ≤ α(n)}, C∗
α = {β ∈ ωω : β ≤∗ α}.

One can easily see that a set C∗
α is a countable union of sets of the form Cγ .

Conversely, for any sequence 〈βn ∈ ωω : n ∈ ω〉 there exists an α ∈ ωω such that⋃
n Cβn ⊆ C∗

α. By Theorem 3.11 a closed set A ⊂ ωω is compact if and only if
there exists an α ∈ ωω such that A ⊆ Cα. Thus a set A belongs to Kσ if and only
if there exists an α ∈ ωω such that A ⊆ C∗

α. Hence, the family {C∗
α : α ∈ ωω} is

a base of the σ-ideal Kσ.
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Theorem [AC] 7.59 (F. Rothberger).

add(Kσ) = non(Kσ) = b and cov(Kσ) = cof(Kσ) = d.

Proof. If B ⊆ ωω is unbounded then B /∈ Kσ and therefore non(Kσ) ≤ b. If⋃
α∈B C

∗
α /∈ Kσ then B is unbounded and therefore b ≤ add(Kσ). The equalities

follow by Theorem 7.1, a).
Similarly we can prove the second equalities. If B ⊆ ωω is a dominating family

then {C∗
α : α ∈ B} is a base of Kσ and therefore cof(Kσ) ≤ d. If

⋃
α∈B C

∗
α = ωω

then B is a dominating family. �

Since every set {β ∈ ωω : β ≤ α} is nowhere dense, every set C∗
α is meager

and hence Kσ ⊆M(ωω). Thus
Corollary [AC] 7.60.

b ≤ non(M) and cov(M) ≤ d.

Note that by suitable formulation of Theorem 7.59 and Corollary 7.60, the
Weak Axiom of Choice wAC is enough for a proof of both.

Let ωω↑ denote the set of all strictly increasing sequences from ωω. One can
easily see that b = b(ωω↑,≤∗) and d = d(ωω↑,≤∗).
Theorem [AC] 7.61 (T. Bartoszyński). There is a Tukey connection from 〈ωω↑,≤∗〉
into 〈M(ω2),⊆〉. Hence

d ≤ cof(M), add(M) ≤ b.

Proof. We begin with an observation: if G ⊆ ω2 is open dense, then for any n
there exist m > n and t ∈ m\n2 such that [t] ⊆ G. Actually, if s1, . . . , s2n is
an enumeration of all elements of n2, then one can construct by induction finite
functions t1, . . . , t2n such that [si � t1 � · · · � ti] ⊆ G. Set t = t1 � · · · � t2n .

For α ∈ ωω↑ we set

ϕ3(α) = {β ∈ ω2 : (∀n)β(α(2n)) = 1}.

Evidently ϕ3(α) is a closed nowhere dense set.
For a set A ∈ M(ω2) fix a non-decreasing sequence of closed nowhere dense

sets {Hn}∞n=0 such that A ⊆
⋃
nHn. Since ω2 \Hk is open dense, we can define

γ(0) = 0
γ(k + 1) = min{n > γ(k) : (∃t) (t ∈ n\γ(k)2 ∧ [t] ∩Hk = ∅}.

We set ϕ∗
3(A) = γ.

Assume that ϕ3(α) ⊆ A. We want to show that α ≤∗ γ = ϕ∗
3(A). For every

k we fix tk ∈ γ(k+1)\γ(k)2 such that [tk] ∩Hk = ∅ and define

β(k) =
{

1 if k = α(2n) for some n or tm(k) = 1 for some m,
0 otherwise.
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Then β ∈ ϕ3(α). Therefore there exists a k0 such that β ∈ Hk for any k ≥ k0.
Since [tk]∩Hk = ∅, for every k ≥ k0 there exists an ik ∈ γ(k+ 1) \ γ(k) such that
β(ik) �= tk(ik). If tk(ik) = 1, then by definition also β(ik) = 1, which is impossible.
Thus tk(ik) = 0 and β(ik) = 1. By definition of β, for any k ≥ k0 there is nk such
that ik = α(2nk). Since ik < ik+1 for every k, the sequence {nk}∞k=k0 is strictly
increasing for k ≥ k0 (we did not define nk for k < k0). Thus there exists a k1

such that k + 1 ≤ 2nk for k ≥ k1. Then also α(k + 1) ≤ α(2nk) = ik < γ(k + 1).
Thus α ≤∗ γ. �

Assume that 〈Vn : n ∈ ω〉 is a decreasing open base of neighborhoods of
0 ∈ T and Q ∩ T = {rn : n ∈ ω}. For a function α ∈ ωω, n ∈ ω and β ∈ T we set

Dn
α =

⋃

m≥n
(rm + Vα(m)),

Wα,β =
⋃

m

(T \ (β +Dm
α )).

Then Dn
α is an open dense set and Wα,β is a meager Fσ set.

Lemma [wAC] 7.62. If H ⊆ T is a meager Fσ set, β /∈ H − Q, then there is a
function γ ∈ ωω such that for any α ∈ ωω we have

γ ≤∗ α→ H ⊆Wα,β . (7.18)

Proof. Assume that H =
⋃
nHn, where Hn are closed nowhere dense such that

Hn ⊆ Hn+1. Since β+rn /∈ H there exists an m such that (β+rn+Vm)∩Hn = ∅.
Let γ(n) denote the smallest m with this property.

We show that (7.18) holds true. Let γ ≤∗ α ∈ ωω. Consider arbitrary δ ∈ H .
Then there exists an n0 such that γ(n) ≤ α(n) and δ ∈ Hn for every n ≥ n0.
Hence δ /∈ β + rn + Vγ(n) for n ≥ n0.

To obtain a contradiction we assume that δ /∈ Wα,β . Then δ − β ∈ Dm
α for

any m. By definition of the set Dn0
α there exists an integer n ≥ n0 such that

δ − β ∈ rn + Vα(n) ⊆ rn + Vγ(n), a contradiction �

Proof of Theorem 7.57. By Theorem 7.1 we have add(M) ≤ cov(M) and by The-
orem 7.61 we have add(M) ≤ b.

Let A ⊆ M, |A| < b, |A| < cov(M). We want to show that |A| < add(M),
i.e., that

⋃
A is meager.

We can assume that every element of A is an Fσ set. Since |A| < cov(M),
there exists a real

β ∈ T \
⋃

H∈A
(H −Q).

By Lemma 7.62 for every H ∈ A there exists a function γH ∈ ωω satisfying (7.18).
Since cardinality of A is smaller than b there exists a function α such that γH ≤∗ α
for every H ∈ A. Thus

⋃
A ⊆Wα,β . �
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Proof of Theorem 7.58. By Theorem 7.1 we have non(M) ≤ cof(M) and by The-
orem 7.61 we have d ≤ cof(M).

Let A ⊆ T be a non-meager set of cardinality non(M) and F ⊆ ωω be
a dominating family of cardinality d. If H ⊆ T is a meager Fσ set, then A � H−Q
and therefore there exists a β ∈ A \ (H − Q). Then by Lemma 7.62 there exists
a function α ∈ F such that H ⊆Wα,β . Thus {Wα,β : β ∈ A ∧ α ∈ F} is a base of
M of cardinality max{non(M), d}. �

Additivity and cofinality of measure can be characterized in a combinato-
rial way. We use the obtained result to present such a characterization. Similarly,
covering of category and cardinality of the smallest non-meager set can be charac-
terized in a combinatorial way. Theorems 7.63 and 7.66 below can be considered
at least as a contribution to measure-category similarity.

We write (compare Exercise 3.12)

�1 = {f ∈ ωR :
∞∑

n=0

|f(n)| <∞}.

The set �1 ⊆ ωR can be partially preordered by the eventual domination

f ≤∗ g ≡ (∃m)(∀n) (n ≥ m→ f(n) ≤ g(n)).

Our first result is

Theorem [AC] 7.63 (T. Bartoszyński).

add(N ) = b(�1,≤∗) and cof(N ) = d(�1,≤∗).

We construct suitable Tukey connections. Instead of �1 we can consider the
set

�c = {α ∈ ωω : 0 /∈ rng(α) ∧
∞∑

n=0

1
α(n)

<∞}.

One can easily prove that the set {{1/α(n)}∞n=0 : α ∈ �c} ⊆ �1 is cofinal in �1.
Indeed, if f ∈ �1 take α ∈ ωω such that α(n) ≤ max{1, |1/f(n)|} < α(n)+1. Then
α ∈ �c and f ≤∗ {1/α(n)}∞n=0. The partial ordering ≤∗ on {{1/α(n)}∞n=0 : α ∈ �c}
as a subset of �1 corresponds to the inverse ordering ≥∗ on �c ⊆ ωω. Thus

b(�1,≤∗) = b(�c,≥∗) and d(�1,≤∗) = d(�c,≥∗).

Lemma [AC] 7.64. There are mappings ϕ4 : �c −→ ωω and ϕ∗
4 : Loc −→ �c such

that
ϕ4(α) ∈∗ h→ α ≥∗ ϕ∗

4(h) (7.19)

for any α ∈ �c and h ∈ Loc.
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Proof. Let {sn : n ∈ ω} be a one-to-one enumeration of all functions from a finite
subset of ω into ω \ {0}, i.e.,

{sn : n ∈ ω} = {s ∈ a(ω \ {0}) : a ∈ [ω]<ω}.

Let α ∈ �c. We define an increasing function l ∈ ωω as follows: l(n) is the smallest
natural number k such that

∑∞
i=k 1/α(i) < 2−2n−1. Then

l(n+1)−1∑

i=l(n)

1
α(i)

< 2−2n.

We set ϕ4(α) = γ where γ(n) is that m for which sm = α|〈l(n), l(n+ 1)).
Now, let h ∈ Loc. We write

Bn,k =
{
m ∈ h(k) : n ∈ dom(sm) ∧

∑

i∈ dom sm

1/sm(i) < 2−2k
}
,

An =
{
sm(n) : m ∈

⋃

k
Bn,k

}
.

We set ϕ∗
4(h) = β where

β(n) =
{

minAn if An is non-empty,
2n otherwise.

If An �= ∅, then there exists an mn ∈
⋃
kBn,k such that β(n) = smn(n). We set

Ck = {n : mn ∈ Bn,k}, Ck,m = {n ∈ Ck : mn = m}.

Then
Ck =

⋃

m

Ck,m =
⋃

m∈h(k)

Ck,m.

If n ∈ Ck,m, then β(n) = sm(n) and m ∈
⋃
iBi,k. Hence

∑

n∈Ck,m

1
β(n)

≤
∑

n∈ dom sm

1
sm(n)

< 2−2k.

Thus
∑

n∈Ck

1
β(n)

<
|h(k)|
22k

≤ 2−k.

If n /∈
⋃
k Ck then by definition β(n) = 2n. Therefore

∞∑

n=0

1
β(n)

<

∞∑

n=0

2−n +
∞∑

n=0

|h(n)|
22n

≤
∞∑

n=0

2−n +
∞∑

n=0

2−n <∞.

Thus β ∈ �c.
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We want to show that (7.19) holds true. Assume that γ = ϕ4(α) ∈∗ h. Then
there exists a k0 such that d(k) ∈ h(k) for every k ≥ k0. Let d(k) = m. Then
by the definition sm = f |[l(k), l(k + 1)). Assume that i ∈ [l(k), l(k + 1)). Then
m ∈ Bi,k and therefore sm(i) ∈ Ai. Thus d(i) = minAi ≤ sm(i) = f(i). Hence
d(i) ≤ f(i) for any i ≥ l(k0). �

It is easy to show that a set A ⊆ ω2 has measure zero if and only if there
exists a sequence 〈tn ∈ <ω2 : n ∈ ω〉 such that

A ⊆
⋂

m

⋃

n≥m
[tn] and

∞∑

n=0

λ([tn]) <∞. (7.20)

A similar assertion is true for subsets of R with open intervals with rational end-
points instead of [tn].
Lemma [AC] 7.65. There exist mappings ϕ5 : N (ω2) −→ �1 and ϕ∗

5 : �1 −→ N (ω2)
such that

ϕ4(A) ≤∗ α→ A ⊆ ϕ∗
4(α)

for any A ∈ N and any α ∈ �1.

Proof. Let {sn : n ∈ ω} be a one-to-one enumeration of the set <ω2. By (7.20),
if A ∈ N (ω2), then there exists a sequence {tn}∞n=0 of elements of <ω2 such that
A ⊆

⋂
m

⋃
n≥m[tn] and

∑∞
n=0 λ([tn]) < ∞. We can assume that tn �= tm for any

n �= m. We set ϕ4(A) = α, where

α(n) =
{
λ([sn]) if sn = tm for some m,

0 otherwise.

Since
∑∞

n=0 α(n) =
∑∞
n=0 λ([tn]) we have α ∈ �1.

For α ∈ �1 we set

ϕ∗
4(α) =

⋂

m

⋃

n≥m
{[sn] : λ([sn]) ≤ α(n)}.

Evidently ϕ∗
4(f) ∈ N .

Assume that ϕ4(A) = y and y(n) ≤ α(n) for any n ≥ n0. If β ∈ A, then
for any n there exists a kn ≥ n and an ln such that β ∈ [tkn ] = [sln ]. Since∑∞
n=0 λ([tn]) < ∞, any s ∈ <ω2 can be repeated in the sequence {tn}∞n=0 only

finitely many times, therefore the sequence {ln}∞n=0 is unbounded. Thus for any m
there exists a sufficiently large n such that β ∈ [tkn ] = [sln ] and ln ≥ max{n0,m}.
Since λ([sln ]) = y(ln) ≤ α(ln) we obtain β ∈ ϕ∗

4(α). �

Proof of Theorem 7.63. According to Lemmas 7.54 and 7.64 the pair of mappings
〈ϕ4◦ϕ3, ϕ

∗
3◦ϕ∗

4〉 is a Tukey connection from 〈�c,≥∗〉 into 〈N ,⊆〉. Thus by Theorem
5.43 we obtain

add(N ) = b(N ) ≤ b(�c,≥∗) = b(�1,≤∗)
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and
d(�1,≤∗) = d(�c,≥∗) ≤ d(N ) = cof(N ).

By Lemma 7.65 the pair of mappings ϕ4 and ϕ∗
4 is a Tukey connection from N

into �1. Hence in both cases we have the equalities. �

A careful reader can realize that the constructions, say of mappings ϕ2 and
ϕ∗

3, are very close. Even the mapping ϕ∗
2 may be considered as a restriction of the

adequately modified mapping ϕ3. However for practical reasons, i.e., to obtain a
proof as simple as possible, we defined them independently. A reader can easily
find a common language for dealing with them.

Two reals α, β ∈ ωω are called infinitely equal if α(n) = β(n) for infinitely
many n. If α, β are not infinitely equal, i.e., if α(n) �= β(n) for all but finitely
many n, then α, β are called eventually different. If A ⊆ ω is an infinite set, then
we define similarly that α, β are infinitely equal on A if α(n) = β(n) for infinitely
many n ∈ A. Similarly we can define that α, β are eventually different on A.

The next result is a combinatorial characterization of cov(M) and non(M)
in a similar way as those of cov(N ) and non(N ) in Theorem 7.63. One implica-
tion of the theorem will be used and also proved in Section 8.4 as Lemma 8.112.
A complete proof is presented in the exercises.

Theorem [AC] 7.66.

cov(M) = (7.21)
min{|X | : X ⊆ ωω ∧ (∀α ∈ ωω)(∃β ∈ X) (α, β are eventually different)},

non(M) = (7.22)
min{|X | : X ⊆ ωω ∧ (∀α ∈ ωω)(∃β ∈ X) (α, β are infinitely equal)}.

Exercises

7.13 [AC] A Combinatorial Characterization of add(N ) and cof(N )

a) If κ < add(N ), 〈fξ ∈ ωω : ξ < κ〉, then there exists a function h ∈ Loc such that
fξ ∈∗ h for each ξ < κ.

Hint: Use Lemma 7.54.

b) Assume that for any family 〈fξ ∈ ωω : ξ < κ〉 there exists a function h ∈ Loc such
that fξ ∈∗ h for each ξ < κ. Then κ < add(N ).

Hint: Use Lemmas 7.64 and 7.65.

c) κ < add(N ) if and only if for any family 〈fξ ∈ ωω : ξ < κ〉 there exists a function
h ∈ Loc such that fξ ∈∗ h for each ξ < κ.

d) Prove the dual assertion: κ < cof(N ) if and only if for any family 〈hξ ∈ Loc : ξ < κ〉
there exists an f ∈ ωω such that f /∈∗ hξ for any ξ < κ.

7.14 [AC] Chopped Reals

A couple 〈α, I〉, where α ∈ ω2 and I ∈ IP is an interval partition (see Exercise 5.24),
is called a chopped real. A real β ∈ ω2 matches a chopped real 〈α, I〉 if α|I = β|I for
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infinitely many intervals I ∈ I. We write

M(α, I) = {β ∈ ω2 : β matches 〈α, I〉}.

a) M(α, I) is a Gδ dense set.

b) If G ⊆ [0, 1] is Gδ dense, then there exists a chopped real 〈α, I〉 such that
M(α, I) ⊆ G.

Hint: Assume that G =
⋂

n Gn, Gn+1 ⊆ Gn are open. Construct an interval parti-
tion 〈In : n ∈ ω〉 and a real α ∈ ω2 as follows. If Ii are defined for i < n and values
α(j) for j < k, where k is the smallest integer not in

⋃
i<n Ii, then there exists an

m > k and an s ∈ m\k2 such that [s] ⊆ Gn – see the proof of Theorem 7.61. Set
In = [k,m) and α(j) = s(j) for k ≤ j < m.

c) M(α, I) ⊆M(β,J) if and only if

I dominates J ∧ α|J = β|J for all but finitely many J ∈ J (7.23)

holds true.

d) Show that

cov(M) = min{|X| : X ⊆ ω2× IP ∧
⋂

〈α,I〉∈X

M(α, I) = ∅}.

e) Show that

cof(M) = min{|X| : X ⊆ ω2× IP ∧ (∀〈β,J〉)(∃〈α, I〉 ∈ X) ((7.23) holds true)}.

7.15 [AC] A Proof of (7.21)

Let

κ = min{|X| : X ⊆ ωω ∧ (∀α ∈ ωω)(∃β ∈ X) (α, β are eventually different)}.

Fix an interval partition J = 〈Jn : n ∈ ω〉 and consider the set

H = {{α|Ji ∪ Ji+1 : i ∈ A} : A ∈ [ω]<ω ∧ (∀k) (k ∈ A→ k + 1 /∈ A) ∧ α ∈ ω2}.

If I = 〈In : n ∈ ω〉 is an interval partition such that J is not dominated by I, α ∈ ω2,
we define a function fI,α : ω −→ H as follows. Since J is not dominated by I, by
Exercise 5.24, a) there exist infinitely many integers m such that there exists k with
Ik ⊆ Jm ∪ Jm+1 and Ik is not a subinterval of any of Jm, Jm+1. For any n take a set An

of such integers of cardinality 2n+ 1 and such that k ∈ An → k + 1 /∈ An. Set

fI,α(n) = {α|Jm ∪ Jm+1 : m ∈ An}.

If g : ω −→ H is such that g(n) has 2n+ 1 elements for each n, we define a real g̃ ∈ ω2
by induction as follows. If g̃(i), i < n is already defined on at most 2n intervals from J ,
then there exists s ∈ g(n) such that the interval dom(s) is disjoint from them. Extend α
to agree with s on dom(s). The other values of α can be chosen arbitrarily.

a) If g : ω −→ H is infinitely equal to fI,α and such that g(n) has 2n+ 1 elements for
each n, then g̃ matches 〈α, I〉.

b) Note that κ ≤ d.
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c) Show that κ ≤ cov(M).

Hint: Let X ⊆ ω2 × IP be of cardinality < κ. By b) and Exercise 5.24, c) there
exists an interval partition J which is not dominated by any I in X. This partition
will play the rôle of J used in definitions. Then there exists a function g : ω −→ H
infinitely equal to every fI,α, 〈α, I〉 ∈ X. We can assume that |g(n)| = 2n + 1 for
each n. Thus

⋂
〈α,I〉∈X M(α, I) 	= ∅. Consequently |X| < cov(M).

d) Show that κ ≥ cov(M).

Hint: See Lemma 8.112.

7.16 [AC] Proof of (7.22)

a) If α, β are infinitely equal, then β ∈M(α, I).

b) If X ⊆ ωω is such that for every α ∈ ωω there exists a β ∈ X infinitely equal to α,
then X /∈ M.

Hint: If X were meager, then X ∩M(α, I) = ∅ for some chopped real 〈α, I〉. Since
α is infinitely equal to some β ∈ X, we have a contradiction with β ∈M(α, I).

c) If X ⊆ ωω is not meager, then for every α ∈ ωω there exists a β ∈ X infinitely
equal to α.

Hint: For every chopped real 〈α, I〉 there exists a β ∈ X ∩ M(α, I). Then β is
infinitely equal to α.

Historical and Bibliographical Notes
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P.S. Alexandroff on his 80th birthday) noted the simple fact that the contin-
uum hypothesis implies both of them. Then L. Bukovský [1979a] proved both
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Chapter 8

Special Sets of Reals

special adj. 1. of a distinct or particular kind or character; . . . 3. having
a specific or particular function, purpose, etc.; 4. distinguished from
what is ordinary or usual; 5. extraordinary; exceptional; . . .

Webster’s College Dictionary [1990], p. 1284.

In this chapter we shall work in ZFC, i.e., we assume that the Axiom of Choice
holds true. We shall investigate subsets of a Polish space, especially subsets of the
real line with some exceptional, or maybe extremal, properties: small, with nice
subsets, with good properties of sequences of real continuous functions on it, good
covering properties and also those related to harmonic analysis. According to the
extremeness of their properties, one would prefer that some of them do exist (since
they are nice) or one would prefer that some of them do not exist (since they are
at least strange). As we shall see later, ZFC is not strong enough to answer several
questions concerning properties of such sets. However, it turned out that there are
close relationships among them, which we shall investigate.

8.1 Small Sets

We have introduced the notions of an ideal and a σ-ideal as a tool for measuring
smallness of sets. Till now, the main examples of families of small sets were the
σ-ideals of measure zero sets, of meager sets, and that of Kσ sets. However, the
property “to be meager” is not an internal topological property in any extension T
of ZF. From a similar point of view neither is the property “to have measure zero”
an internal property. If we consider the Cantor middle-third set C as a subset of
the “true” real line R then C is small in both senses: C has Lebesgue measure zero
and is nowhere dense in R. However when we identify the real line with the set
ω2, then the set C cannot be small in any of the two senses. Therefore we shall
look for internal topological properties of smallness. Anyway, since not all of the
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properties which we will introduce will be internal, in the affirmative case we shall
state it explicitly (if it is not introduced as a property of a topological space).

Let X be a topological space. A set A ⊆ X is called perfectly meager if for
any perfect set P ⊆ X the intersection A ∩ P is meager in the subspace P . Thus
A is perfectly meager if for any perfect set P there are closed sets Fn such that
A∩P ⊆

⋃
n Fn and the inclusion P ∩U ⊆ Fn implies P ∩U = ∅ for any n ∈ ω and

any open set U . By definition, if X is a perfect Polish space, then any perfectly
meager subset of X is meager in X . Moreover, the family PM(X) of perfectly
meager subsets of X is a σ-ideal. If X has an isolated point, then a perfectly
meager set need not be meager in X .

We show that the property “to be perfectly meager” is internal for the class
of topological spaces with a countable base in the theory ZFW.

Theorem [wAC] 8.1. Let 〈X,O〉 be a topological space with a countable base. A set
A ⊆ X is perfectly meager in 〈X,O〉 if and only if the set A is perfectly meager
in 〈A,O|A〉.

Proof. Let A ⊆ X be perfectly meager in X . Assume that Q ⊆ A is a perfect
set in A, i.e., Q is closed in A and does not have an isolated point. Then there
exists a perfect set P ⊆ X such that Q = A ∩ P (take P = Q closure in X). By
definition, there are closed (in X) sets 〈Fn : n ∈ ω〉 such that A∩P ⊆

⋃
n Fn and

Fn are nowhere dense in P , i.e., if U is open in X and U ∩ P ⊆ Fn for some n,
then also U ∩ P = ∅. Assume that U is open and Q ∩ U ⊆ A ∩ Fn for some n.
Then Q ∩ U ⊆ Q ∩ U ⊆ Fn and therefore U ∩ Q ⊆ U ∩ P = ∅. Hence Fn ∩ Q is
nowhere dense in Q.

Let A be perfectly meager in A. Assume that P is a perfect subset of X . By
Theorem 1.24 we have A∩P = Q∪R, where Q is perfect in A and R is countable.
Evidently R ⊆ P is meager in P . Thus we have to show that Q is meager in P .
Since Q is meager in A, there are closed sets 〈Fn : n ∈ ω〉 such that Q ⊆

⋃
n Fn and

for any open subset U of X and any natural number n, the inclusion U ∩A ⊆ Fn
implies U ∩A = ∅. Let V ⊇ R be open and such that V ∩A = R. Set Cn = Fn \V .
Then Q ⊆

⋃
n Cn. Suppose, to get a contradiction, that U is an open set such that

∅ �= U ∩ P ⊆ Cn for some n. Then U ∩ P ∩ V = ∅ and therefore U ∩Q �= ∅. Since
U ∩Q ⊆ U ∩A ⊆ Fn, we have a contradiction. �

In a certain sense a dual notion is the notion of a universal measure zero set.
Let 〈X,O〉 be a perfectly normal topological space. A set A ⊆ X has universal
measure zero if for any finite diffused Borel measure µ on X we have µ∗(A) = 0,
i.e., µ(B) = 0 for some Borel B ⊇ A. Again, the family UN (X) of universal
measure zero subsets of X is a σ-ideal. Similarly to Theorem 8.1 by Theorem 4.11
we have an equivalent definition which enables us to consider the property “to
have universal measure zero” as internal for the class of separable metric spaces
in the theory ZFW.
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Theorem [wAC] 8.2. Assume that 〈X,O〉 is a separable metric space. A subset
A ⊆ X has universal measure zero if and only if there exists no finite diffused
Borel measure on A.

Proof. Assume that A ⊆ X has universal measure zero and µ is a diffused finite
Borel measure on A. We can extend the measure µ to a diffused finite Borel
measure µ̄ on X by setting µ̄(B) = µ(A ∩ B) for any Borel subset B ⊆ X . Then
µ(A) = µ̄∗(A) = 0.

Now assume that µ is a diffused finite Borel measure on X . We can assume
that the measure µ is complete. If µ∗(A) = ν(A) �= 0, then by Theorem 4.11 the
restriction ν = µ∗|Borel(A) is a diffused finite Borel measure on A. Therefore
µ∗(A) = ν(A) = 0. �

We note the following. If A ⊆ X has universal measure zero then by Lemma
4.6 we have µ∗(A) = 0 for any diffused σ-finite Borel measure as well. Also every
diffused σ-finite Borel measure µ on A is trivial.

Of course, every countable set is perfectly meager and has universal measure
zero. However, we show that there exists an uncountable set that is perfectly
meager and has universal measure zero.
Theorem [AC] 8.3. In any perfect Polish space there exists a perfectly meager
universal measure zero subset of cardinality ℵ1.

Proof. Let X be a perfect Polish space. By Corollary 6.51 there exists a co-analytic
non-analytic subset A ⊆ X . Then A =

⋃
ξ<ω1

Aξ, where 〈Aξ : ξ < ω1〉 are Borel
sets, the constituents of A. Since A is not analytic, there exists arbitrarily large
ξ such that Aξ �= ∅. Let E be a choice set for the system {Aξ : ξ < ω1}, i.e.,
|E ∩ Aξ| = 1 provided that Aξ �= ∅. Evidently |E| = ℵ1. We show that E is
perfectly meager and has universal measure zero.

Let P ⊆ X be a perfect set. Then by Theorem 7.11 the set A ∩ P has the
Baire Property in P , i.e., there exists a Gδ set G such that G ∩ P ⊆ A ∩ P and
(A∩P ) \G is meager in P . By Boundedness Theorem 6.54 there exists a ξ0 < ω1

such that G ∩ P ⊆
⋃
ξ<ξ0

Aξ. Thus E ∩G ∩ P is countable. Since

E ∩ P ⊆ (E ∩G ∩ P ) ∪ ((A ∩ P ) \G),

E ∩ P is meager in P .
Now let µ be a diffused finite Borel measure on X . By Lemma 4.4 the measure

µ is regular. By Theorem 7.11 the set A is measurable, therefore there exists an
Fσ set F ⊆ A such that µ(A \ F ) = 0. As above, by Boundedness Theorem 6.54
there exists a ξ0 < ω1 such that F ⊆

⋃
ξ<ξ0

Aξ. Then F ∩ E is countable. Since

E ⊆ (F ∩E) ∪ (A \ F ),

the theorem follows. �

Using the idea of the proof of Theorem 8.3 we show
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Theorem [AC] 8.4. Assume that c > ℵ1. Then for any Π1
1-subset A ⊆ X of a Polish

space X the following are equivalent:

a) |A| ≤ ℵ1.
b) A is perfectly meager.
c) A has universal measure zero.

Proof. We follow the proof of Theorem 8.3. If |A| = ℵ1 then every constituent,
being Borel, is countable and therefore there exists arbitrarily large ξ such that
Aξ �= ∅. Instead of taking a choice set we let E = A and we obtain that A is
perfectly meager and has universal measure zero.

Vice versa, if A is perfectly meager or has universal measure zero, then A
cannot contain a perfect subset. Thus every constituent is countable. So |A| ≤ ℵ1.

�

We can improve Theorem 8.3 in another direction. We need to know more
on both introduced notions, so we start with auxiliary results.
Lemma 8.5. Let µ be a diffused Borel measure on X, X being a perfect compact
Polish space. Then

(∀ε > 0)(∃δ > 0)(∀U ⊆ X) ((U open ∧ diam(U) < δ) → µ(U) < ε). (8.1)

Proof. Let ε > 0. Since the measure of a one-point set is zero, there exists an nx
such that µ(Ball(x, 2−nx)) < ε (to avoid any use of choice we take the minimal
integer nx with this property). Since X is compact there exist finitely many points
x0, . . . , xk ∈ X such that X is covered by Ball(x0, 2−nx0−1), . . . ,Ball(xk, 2−nxk

−1).
Take δ = min{2−nxi

−1 : i = 0, . . . , k}.
Let diam(U) < δ, U �= ∅ being an open set. Then U∩Ball(xi, 2−nxi

−1) �= ∅ for
some i = 0, . . . , k and therefore U ⊆ Ball(xi, 2−nxi ). So we obtain µ(U) < ε. �

Theorem 8.6. A set A ⊆ [0, 1] has universal measure zero if and only if f(A) has
Lebesgue measure zero for any homeomorphism f : [0, 1] 1−1−→

onto
[0, 1].

Proof. If f : [0, 1] −→ [0, 1] is a homeomorphism and the image f(A) does not
have Lebesgue measure zero, one easily constructs a diffused Borel measure µ on
[0, 1] such that µ∗(A) > 0 by setting µ(B) = λ(f(B)) for any Borel set B (λ is
the Lebesgue measure).

Assume now that µ is a diffused finite Borel measure on [0, 1] such that
µ∗(A) > 0. We want to find a homeomorphism f such that λ∗(f(A)) > 0. Evidently
we can assume that µ([0, 1]) = 1. Moreover, we can assume that µ((a, b)) > 0 for
any a < b, since we could eventually replace µ by 1/2(µ+ λ). By Lemma 8.5 the
increasing function f : [0, 1] −→ [0, 1] defined as f(x) = µ([0, x]) is continuous and
onto [0, 1], thus f is a homeomorphism. Since for any interval (a, b) ⊆ [0, 1] we
have µ(f−1((a, b))) = λ((a, b)), by Theorem 4.10 we obtain µ(f−1(B)) = λ(B) for
any Borel set B ⊆ [0, 1]. Thus λ∗(f(A)) = µ∗(A) > 0. �
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Lemma [wAC] 8.7. Assume that S ⊆ P(X) is a σ-algebra with a countable set of
σ-generators such that S separates points of X, i.e., for any x, y ∈ X, x �= y there
exists a set A ∈ S such that x ∈ A and y /∈ A.

a) There exists an injection c : X 1−1−→ ω2 such that c−1(A) ∈ S for any Borel
set A ⊆ ω2.

b) Set M = rng(c) = c(X). The set c(B) is Borel in M for any B ∈ S.
c) If µ is a finite diffused measure on S then µ∗(A) = 0 for any A ⊆ X,
|A| < non(N ).

d) If there is no finite diffused measure on S, then M = c(X) ⊆ ω2 has universal
measure zero.

Proof. a) Let {En : n ∈ ω} be the set of σ-generators of S. We define the charac-
teristic function of the sequence 〈En : n ∈ ω〉 as

c(x) = {χEk
(x)}∞k=0 ∈ ω2 for x ∈ X.

Since the σ-algebra separates points of X one can easily see that for any
x, y ∈ X , x �= y there exists an n such that either x ∈ En and y /∈ En or x /∈ En
and y ∈ En. Consequently, c : X −→ ω2 is an injection. Set M = rng(c). Since

c−1({α ∈ ω2 : α(n) = 1}) = En ∈ S,

we obtain by induction that c−1(A) ∈ S for any Borel set A ⊆ ω2.
b) Since c(En) = {α ∈ ω2 : α(n) = 1} ∩M , the assertion follows.
c) Assume that µ is a diffused finite measure on S. Let A ⊆ X and µ∗(A) > 0.

We show that |A| ≥ non(N ).
We define a Borel measure ν on ω2 by setting ν(B) = µ(c−1(B)) for any

Borel set B ⊆ ω2. Since ν∗(c(A)) = µ∗(A) > 0, the set c(A) is not of universal
measure zero. By Theorem 8.6 there exists a homeomorphism f : [0, 1] −→ [0, 1]
such that λ∗(f(c(A))) > 0. Because |A| = |f(c(A))|, we obtain |A| ≥ non(N ).

d) If the set M does not have universal measure zero, then there exists a finite
diffused complete Borel measure µ on ω2 with µ∗(M) > 0. By Theorem 4.11, a)
the outer measure µ∗ restricted to Borel subsets of M would be a Borel measure
on M and ν defined as ν(A) = µ∗(c(A)) would be a diffused measure on S. �

Theorem [AC] 8.8 (E. Grzegorek). There exists a universal measure zero set of
reals of cardinality non(N ).

Proof. Assume that X ⊆ [0, 1] is such that |X | = non(N ) = κ and λ∗(X) > 0.
Let X = {xξ : ξ < κ} be a one-to-one enumeration of X . Moreover, we fix an open
base {Un : n ∈ ω} of the topology on [0, 1].
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By assumption we have λ({xη : η < ξ}) = 0 for every ξ < κ and therefore
there exist open sets Gn,ξ, n ∈ ω, ξ < κ such that

{xη : η < ξ} ⊆ Gn,ξ, λ

(
⋂

m

Gm,ξ

)

= 0

for any ξ < κ and any n ∈ ω. We can assume that xξ /∈
⋂
mGm,ξ for any ξ < κ.

Let S ⊆ P(κ) be the σ-algebra with σ-generators

En,m = {ξ < κ : Um ⊆ Gn,ξ}, n,m ∈ ω.

For any η < ξ < κ we have xη /∈
⋂
kGk,η and xη ∈

⋂
kGk,ξ . Hence there exists

an n such that xη /∈ Gn,η and there exists an m such that xη ∈ Um ⊆ Gn,ξ.
Consequently ξ ∈ En,m and η /∈ En,m. Thus S separates points.

To get a contradiction assume that there exists a finite diffused measure ν on
the σ-algebra S. For simplicity, the restriction of the outer Lebesgue measure λ∗

to Borel subsets of X will be denoted by µ. Consider the product measure ν × µ
on κ×X . We set

Z =
{
〈ξ, x〉 : ξ < κ ∧ x ∈ X ∩

⋂

m
Gm,ξ

}
, Zn = {〈ξ, x〉 : ξ < κ∧x ∈ X ∩Gn,ξ}.

Evidently Z =
⋂
n Zn and it is easy to see that Zn =

⋃
m

(
En,m×(X∩Um)

)
. Thus

Z is ν × µ-measurable. For every ξ < κ, the vertical section Zξ = X ∩
⋂
mGm,ξ

has µ-measure 0. If x ∈ X then there exists a ξ < κ such that x = xξ. Then
x ∈
⋂
mGm,η for every η > ξ and therefore Zx ⊇ {η < κ : η > ξ}. By Lemma

8.7, c) we have ν({η < κ : η > ξ}) = 1 and therefore the set Zx has positive
ν-measure. Since µ(X) > 0 we have got a contradiction with Fubini’s Theorem,
Corollary 4.28.

Hence there exists no finite diffused measure on S. Then by Lemma 8.7, d) we
obtain that there exists a universal measure zero subset of C of cardinality |X |. �

We can prove a dual result for category. The proof is similar.
Theorem [AC] 8.9 (E. Grzegorek). There exists a perfectly meager set of reals of
cardinality non(M).

We begin with a result similar to that of Theorem 8.6.
Lemma [wAC] 8.10. Let X ⊆ ω2. If the inverse image f−1(X) is meager for any
Borel measurable bijection f : ω2 1−1−→

onto

ω2, then X is perfectly meager.

The proof is easy. Assume that X is not perfectly meager. Then there exists a
perfect set P ⊆ ω2 such that X∩P is not meager in P . We can assume that ω2\P
is uncountable. Note that every perfect subset of ω2 is homeomorphic to ω2. Then
one can easily construct a Borel measurable bijection f : ω2 1−1−→

onto

ω2 such that

f({α ∈ ω2 : α(0) = 0}) = P, f({α ∈ ω2 : α(0) = 1}) = ω2 \ P
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and f |{α ∈ ω2 : α(0) = 0} is a homeomorphism. Then f−1(X∩P ) is a non-meager
subset of {α ∈ ω2 : α(0) = 0} and therefore f−1(X) is not meager. �

Proof of Theorem 8.9. Assume that Y ⊆ ω2 is a non-meager subset of cardinality
κ = non(M). We can assume that Y is dense in ω2 – if not add a countable dense
set to Y . Fix an open base {Un : n ∈ ω} of topology on ω2.

Note the following: if A ⊆ Y is meager, then A is meager in Y . Actually,
there are nowhere dense closed sets 〈Fn ⊆ ω2 : n ∈ ω〉 such that A ⊆

⋃
n Fn. Let

U be an open set. Since Y is dense we obtain U ⊆ U ∩ Y . If U ∩Y ⊆ Fn ∩Y then
also U ∩ Y ⊆ Fn and therefore U = ∅.

Let Y = {yξ : ξ < κ} be a one-to-one enumeration of Y . Then there are
closed sets 〈Fn,ξ ⊆ ω2 : n ∈ ω, ξ < κ〉 such that

{yη : η < ξ} ⊆
⋃

m

Fm,ξ, Y ∩ Fn,ξ is nowhere dense in Y

for any ξ < κ and any n ∈ ω. We can assume that yξ /∈
⋃
m Fm,ξ. Let

Z =
{

〈ξ, y〉 : ξ ∈ κ ∧ y ∈
⋃

n

Fn,ξ

}

⊆ κ× ω2.

We set En,m = {ξ < κ : Fn,ξ ∩ Um = ∅}. One can easily see that

Z =
⋃

n

⋂

m

((
κ× ω2

)
\
(
En,m × Um

))
. (8.2)

Let S be the σ-algebra of subsets of κ σ-generated by sets 〈En,m : n,m ∈ ω〉.
One can easily check that S separates points of κ. By Lemma 8.7, a) there exists
a function c : κ 1−1−→ ω2 such that c−1(A) ∈ S for any Borel set A ⊆ ω2. Set
M = c(κ). We show that M is perfectly meager.

Assume that M is not perfectly meager. Then there exists a Borel measurable
bijection f : ω2 1−1−→

onto

ω2 such that f−1(M) ⊆ ω2 is not meager. We denote by V the

smallest σ-algebra of subsets of κ×ω2 containing the sets 〈En,m×Um : n,m ∈ ω〉.
By (8.2) we obtain that Z ∈ V . We define

F : f−1(M)× ω2 −→ κ× ω2

by setting F (x, y) = 〈c−1(f(x)), y〉. One can easily see that F−1(B) is Borel for
any B ∈ V . Set

X = F−1(Z) ∩ (f−1(M)× Y ) = {〈x, y〉 ∈ f−1(M)× Y : 〈c−1(f(x)), y〉 ∈ Z}.

Then X is a Borel subset of the separable metric space f−1(M) × Y ⊆ ω2 × ω2.
The vertical section

Xx = Y ∩
⋃

n

Fn,c−1(f(x))
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is meager in Y for any x ∈ f−1(M). On the other hand, for every y = yξ ∈ Y we
have

Xyξ ⊇ f−1(M) \ {x : c−1(f(x)) ≤ ξ}.
Since |{x : c−1(f(x)) ≤ ξ}| < non(M), the set {x : c−1(f(x)) ≤ ξ} is meager and
therefore Xyξ is not meager in f−1(M). We have reached a contradiction with the
Kuratowski-Ulam Theorem 7.33. �

For subsets of a Polish space X there is another notion of smallness related to
the measure. A set A ⊆ X has strong measure zero if for any sequence 〈εn : n ∈ ω〉
of positive reals there exist open sets 〈An : n ∈ ω〉 such that A ⊆

⋃
nAn and

diam(An) < εn for each n. Replacing the open sets An by open balls Ball(an, εn)
with suitably chosen centers an ∈ X , we obtain an equivalent definition. We denote
by SN (X) the family of all subsets of X with strong measure zero.

Note the following: if A has strong measure zero and {εn}∞n=0 is a sequence
of positive reals, then there exists a sequence {An}∞n=0 of open sets such that
diam(An) < εn and every x ∈ A is contained in infinitely many sets {An}∞n=0, i.e.,

A ⊆
⋂

m

⋃

n>m

An. (8.3)

Actually, using a pairing function π satisfying π(n,m) ≥ m, we split the sequence
{εn}∞n=0 into infinitely many sequences and for each of them we find a correspond-
ing sequence of sets. Then we glue the sequences of sets in one sequence. More
precisely, for every fixed m, for the sequence {επ(k,m)}∞k=0 of reals there is a corre-
sponding sequence of open sets {Bk,m}∞k=0 covering the set A. Set An = Bλ(n),ρ(n)

(λ, ρ are inverse to π).
The opposite is trivially true. If for any sequence {εn}∞n=0 of positive reals

there exists a sequence {An}∞n=0 of open sets such that diam(An) < εn and (8.3)
holds true, then A has strong measure zero.
Theorem [wAC] 8.11. Any subset of a perfect σ-compact Polish space of strong
measure zero has universal measure zero.

Proof. The theorem follows immediately from Lemma 8.5. �
Theorem [wAC] 8.12. Let 〈X, ρ〉, 〈Y, σ〉 be Polish spaces, O being the topology on
X induced by the metric ρ.

a) SN (X) is a σ-ideal.
b) If f : X −→ Y is uniformly continuous and A ⊆ X has strong measure zero,

then f(A) has strong measure zero as well.
c) If A ⊆ X has strong measure zero, then there exists a clopen countable base

of the topology O|A.

Proof. We show that the union of strong measure zero sets 〈An : n ∈ ω〉 is
a strong measure zero set. Let π be a pairing function. Assume that a sequence of
positive reals {εn}∞n=0 is given. For given n ∈ ω cover each set An with open sets
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〈Un,k : k ∈ ω〉 of diameters less than επ(n,k). Then 〈Un,k : n, k ∈ ω〉 is a cover of⋃
nAn with diameters less than {επ(n,k}∞n,k=0 = {εn}∞n=0.

Assume that A ⊆ X is a strong measure zero set and f : X −→ Y is
uniformly continuous. We want to cover the set f(A) with open sets of diameters
{εn}∞n=0. Since f is uniformly continuous, there are positive reals 〈δn : n ∈ ω〉 such
that ρ(f(x), f(y)) < εn/2 whenever ρ(x, y) < δn. The set A has strong measure
zero, therefore there exist points 〈an ∈ X : n ∈ ω〉 such that A ⊆

⋃
n Ball(an, δn).

Then f(A) ⊆
⋃
n Ball(f(an), εn/2).

Let S be a countable dense subset of a strong measure zero set A. For any
a ∈ S and any natural number n there exists a real δa,n such that Ball(a, δa,n)∩A
is clopen in A and 2−n−1 < δa,n < 2−n. Actually, the function f(x) = ρ(a, x)
is uniformly continuous and since the interval (2−n−1, 2−n) does not have strong
measure zero there exists a real δa,n ∈ (2−n−1, 2−n) which is not in f(A). The
family {Ball(a, δa,n) ∩A : a ∈ S ∧ n ∈ ω} is a countable clopen base of O|A. �

The famous Borel Conjecture says that every set of reals of strong measure
zero is countable. The Borel Conjecture is neither provable nor refutable in ZFC.
For further information see Section 9.2. The Borel Conjecture is equivalent to the
equality

size(SN ) = ℵ1.

We do not have a category analogue of the notion of a strong measure zero
set yet. The following result is a starting point for such a definition.
Theorem [wAC] 8.13 (F. Galvin – J. Mycielski – R.M. Solovay). A set A ⊆ T
has strong measure zero if and only if for every meager set F ⊆ T there exists a
real a such that (a+A) ∩ F = ∅.

Let us remark that the statement of the theorem is equivalent to the state-
ment “for every meager set F ⊆ T we have A+ F �= T”. One can replace T by R
or by Rn.
Corollary [AC] 8.14.

a) Let A,B ⊆ T. If |A| < add(M) and B has strong measure zero, then A ∪B
has strong measure zero as well.

b) Any set A ⊆ T of cardinality < cov(M) has strong measure zero.

Proof. Assume that B ⊆ T has strong measure zero and |A| < add(M). We can
assume that 0 ∈ A and 0 ∈ B. Then for every meager set F we have

(A ∪B) + F ⊆ (A+B) + F = B + (A+ F ) �= T,

since A+ F is meager.
Assume now, that |A| < cov(M) and F is meager. The family {x+F : x ∈ A}

cannot be a cover of T, therefore A+ F �= T. �

Hence, if cov(M) > ℵ1, then there exists an uncountable set of strong mea-
sure zero.
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We begin a proof of Theorem 8.13 with

Lemma [wAC] 8.15. Suppose that 0 ≤ a < b ≤ 1 and F ⊆ T is a closed nowhere
dense set. Then there exists a finite family F of closed subintervals of [a, b] and
ε > 0 such that for every open interval I ⊆ [0, 1] of length < ε, there exists an
interval J ∈ F such that (I + J) ∩ F = ∅.

Proof. For every x ∈ [0, 1] there are an open interval Ix, x ∈ Ix and a closed
interval Jx such that (Ix +Jx)∩F = ∅. By compactness there exists finitely many
points x0, . . . , xn such that [0, 1] ⊆

⋃n
i=0 Ixi . Let ε be such a positive real that

any set of diameter < ε is contained in one of intervals Ixi , i = 0, . . . , n (ε/2 is the
Lebesgue number of the cover). Set F = {Jxi : i = 0, . . . , n}.

If I is an open interval of length < ε then there is an i ≤ n such that I ⊆ Ixi .
Then I + Jxi ⊆ Ixi + Jxi ⊆ [0, 1] \ F . �

Proof of the theorem. We assume that the set A ⊆ T has strong measure zero
and F =

⋃
n Fn, where 〈Fn : n ∈ ω〉 are nowhere dense closed, Fn ⊆ Fn+1 for

every n. We want to show that A+ F �= T.
Using the lemma we construct a Souslin scheme 〈T, ϕ〉 with vanishing diam-

eter, with a finitely branching subtree T ⊆ <ωω and values of ϕ will be closed
intervals. Moreover, for every s ∈ T ∩ nω we define a positive real εs such that for
any open interval I of length < εs there exists an immediate successor t ∈ T of s
such that (I + ϕ(t)) ∩ Fn = ∅.

Set ϕ(∅) = [0, 1]. Assume that T ∩ nω is already constructed and ϕ(s) is
defined for s ∈ T ∩ nω. Fix an s ∈ T ∩ nω. By the lemma there exists an εs > 0
and a finite family Fs of closed subintervals of ϕ(s) such that for every open
interval I ⊆ [0, 1] of length < εs the intersection (I + J) ∩ F is empty for some
J ∈ Fs. Take the values ϕ(s�0), . . . , ϕ(s�m) exhausting Fs. Of course, we can
assume that diameters of ϕ(s�i), i = 0, . . . ,m are less than 2−n.

Set δn = min{εs : s ∈ T ∩ nω}. Since T is finitely branching we have δn > 0
for every n. By assumption A is a strong measure set. Hence there are open
intervals 〈In : n ∈ ω〉 such that diameter of In is < δn and (8.3) holds true,
i.e., A ⊆

⋂
m

⋃
n>m In. By induction one can define a branch f ∈ [T ] such that

(In + ϕ(f |n)) ∩ Fn = ∅. Then the (unique) real x ∈
⋂
n ϕ(f |n) is such that

(x+A) ∩ F ⊆
(
x+
⋂

m

⋃

n>m

In
)
∩
⋃

n

Fn = ∅.

Actually, assume that x+ y ∈ Fk and y ∈ A. Then there exists an n > k such that
y ∈ In. Since y + x ∈ In + ϕ(f |n), we obtain x+ y /∈ Fn, a contradiction.

Assume now, that for any meager set F ⊆ T there exists a real a such that
(a+A) ∩ F = ∅. Let {εn}∞n=0 be a sequence of positive reals. Take open intervals
〈In : n ∈ ω〉 such that diam(In) < εn for each n and the set

⋃
n In is dense. Then

there exists a real a such that (a+A)∩ (T \
⋃
n In) = ∅, i.e., A ⊆

⋃
n(In− a). �
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A set A ⊆ T of reals is strongly meager if for any set B ⊆ T of Lebesgue
measure zero there exists a real a such that A ∩ (a + B) = ∅. We denote by
SM(T) the family of all strongly meager subsets of T. The equivalent definition
is as follows: if A+ B �= T for any Lebesgue measure zero set B ⊆ T. Again, one
can replace T by R or even by Rn.

Theorem [AC] 8.16.

a) A strongly meager set is meager.
b) The family of all strongly meager sets is a family of thin sets.
c) If B is strongly meager and |A| < add(N ), then A ∪B is strongly meager.
d) If A ⊆ T, |A| < cov(N ), then A is strongly meager.

Proof. a) Let T = A ∪ B, A meager, λ(B) = 0 and A ∩ B = ∅. If E is strongly
meager then there exists a real a such that E ∩ (a+B) = ∅. Then E ⊆ (a+ A).

The assertion b) follows from a).
Proofs of c) and d) are dual to those of Corollary 8.14. �

A subset A of a Polish space X is said to be κ-concentrated on set D if
|A \ U | < κ for every open set U ⊇ D. Note that if A is κ-concentrated on D
then also A ∪D is κ-concentrated on D. So we can always suppose that D ⊆ A.
If κ is a regular cardinal, then the family of all subsets of a Polish space X that
are κ-concentrated on a set D is a κ-additive ideal. We say simply that a set A is
concentrated, if A is ℵ1-concentrated on a countable set.

Theorem [AC] 8.17. There exists a set A ⊆ [0, 1] \ Q of cardinality b that is
b-concentrated on the set Q ∩ [0, 1].

Proof. By Theorem 5.44, there exists an eventually increasing well-ordered un-
bounded sequence {αξ : ξ < b} ⊆ ωω. Let h : ωω

1−1−→
onto

[0, 1] \ Q be the natural

homeomorphism. We set A = {h(αξ) : ξ < b}. If U ⊇ [0, 1] ∩ Q is open, then
[0, 1] \ U ⊆ [0, 1] \Q is compact. Therefore the set K = ωω \ h−1(U) being home-
omorphic to [0, 1] \ U is compact as well. By Theorem 3.11, the set K is bounded
and therefore the set K ∩ h−1(A) has cardinality smaller than b. �

Theorem [AC] 8.18. Any set cov(M)-concentrated on a strong measure zero set
has strong measure zero.

Proof. Let A ⊆ X be cov(M)-concentrated on a strong measure zero set B. As-
sume that {εn}∞n=0 is a sequence of positive reals. Then there are xn ∈ X such
that B ⊆ G where G =

⋃
n Ball(xn, ε2n/2). Since G is an open set containing B we

obtain that |A\G| < cov(M). By Corollary 8.14 the set A\G has strong measure
zero and therefore it may be covered by balls with diameters 〈ε2n+1 : n ∈ ω〉. �

Corollary [wAC] 8.19. Any concentrated set has strong measure zero.
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Thus according to the consistency of the Borel Conjecture one cannot prove
that there exists an uncountable set of reals concentrated on a countable set.
However, under additional assumptions we can find such sets.
Corollary [AC] 8.20. If add(M) = c, then there exists a strong measure zero set
of cardinality c.

Proof. If add(M) = c, then both b = c and cov(M) = c. Let A be the set of
Theorem 8.17. By Theorem 8.21 the set A has strong measure zero. �

The proof of the following theorem is based on the so-called Rothberger’s
trick.
Theorem [AC] 8.21 (F. Rothberger). If b = c, then there exists a set A of reals
of cardinality c such that A is c-concentrated on the set of rationals and can be
mapped continuously onto ω2.

Proof. Assume b = c. By Theorem 5.44 there exists an eventually increasing un-
bounded subset {αξ : ξ < c} of ωω. Let {βξ : ξ < c} be an enumeration of ω2. We
use the Rothberger trick to define

A = {2αξ + βξ : ξ < c}.

The set A is unbounded as well.
Let h : ωω 1−1−→ [0, 1] be the natural embedding. By the same arguments as

in the proof of Theorem 8.17 we obtain that h(A) is c-concentrated on rationals.
For α ∈ ωω we set f(α) = β, where β ∈ ω2 and β(n) = α(n) mod 2 for every n.
Then h−1 ◦ f is a continuous surjection of h(A) onto ω2. �

There is another important property of smallness. A topological space X is
an nCM-space if no continuous mapping from X into [0, 1] is a surjection, i.e., if
X cannot be continuously mapped onto [0, 1].
Theorem 8.22. Any completely regular nCM-space X has a clopen base. Assuming
AC, if X is a normal nCM-space, then Ind(X) = 0, i.e., for any disjoint closed
sets A,B ⊆ X there exists a clopen set U such that A ⊆ U and U ∩B = ∅.

Proof. Let a ∈ U ⊆ X , U being open. By complete regularity, there exists a con-
tinuous mapping f : X −→ [0, 1] such that f(a) = 0 and f(x) = 1 for x /∈ U . Since
f is not a surjection there exists an ε > 0 such that ε /∈ rng(f). Then f−1(〈0, ε))
is a clopen subset of U containing a.

If X is normal, then by the Urysohn Theorem 3.15 there exists a continuous
mapping f : X −→ [0, 1] such that f(x) = 0 for x ∈ A and f(x) = 1 for x ∈ B.
As above, if ε /∈ rng(f), then U = f−1(〈0, ε)) is the desired clopen set. �

Using Theorem 3.26 we obtain
Corollary 8.23. Any nCM-subset of a metric separable space is homeomorphic to
a set of reals, even to a subset of ω2 or ωω.
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Exercises

8.1 [AC] Carlson Theorem

If there exists an uncountable separable metric space of strong measure zero, then there
exists an uncountable set of reals of strong measure zero.

Hint: If c = ℵ1, the result follows easily by Theorem 8.26 and Corollary 8.31. If c > ℵ1,
consider an uncountable separable metric space X of strong measure zero. By Exercise
3.2 there exists a uniformly continuous injection of X into R.

8.2 [AC] Additivity of Strong Measure Zero Sets

Assume that {εn}∞n=0 is a decreasing sequence of positive reals converging to 0. For any
n, let {In

m : m ∈ ω} be an enumeration of rational open intervals of length ≤ ε2n+1 . Let
κ < add(N ).

a) If A ⊆ R has strong measure zero, then there exists a function f ∈ ωω such that

A ⊆
⋂

m

⋃

n>m

In
f(n).

b) If 〈Aξ ⊆ R : ξ < κ〉 are strong measure zero sets, then there exists an h ∈ Loc such
that ⋃

ξ<κ

Aξ ⊆
⋂

m

⋃

n>m

⋃

k∈h(n)

In
k .

Hint: Use results of part a) and Exercise 7.13.

c) If 〈Aξ ⊆ R : ξ < κ〉 are strong measure zero sets, then there exists a sequence
{In}∞n=0 of open intervals such that

⋃
ξ<κ Aξ ⊆

⋃
n In and length of In is smaller

than εn.

Hint: Since |h(n)| ≤ 2n+1 − 2n we can order the set {In
m : m ∈ h(n) ∧ n ∈ ω} into

a sequence {In}∞n=0 such that the length of In is smaller than εn.

d) add(SN (R)) ≥ add(N ).

e) Show that add(SN (X)) ≥ add(N ) for any metric separable space X.

8.3 [AC] Porous Sets

If A is a subset of a metric separable space X, x ∈ X, r is a positive real, we write

γ(x, r,A) = sup{h ≥ 0 : (∃y ∈ X) Ball(y, h) ⊆ Ball(x, r) \ A}.

The number

por(x,A) = lim sup
r→0+

γ(x, r,A)

r

is called the porosity of A at x. A set A ⊆ X is called porous if por(x,A) > 0 for every
x ∈ A. A set A is σ-porous if A ⊆

⋃
n An with An porous.

a) The property “to be porous” is external for any class of topological spaces contain-
ing Euclidean spaces in ZF.

Hint: Consider R as a subset of R2.

b) A porous subset of any Polish space X is nowhere dense.

Hint: Assume that a ∈ A, a ∈ U , U open. Then there are x ∈ A and r > 0 such
that Ball(x, r) ⊆ U . We can assume that γ(x, r,A) > 0 and we find a y ∈ X and
an h > 0 such that Ball(y, h) ⊆ U ∩ (X \ A).
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c) The lower density dens∗(a,A) was defined in Exercise 4.9. Show that dens∗(x,A) ≤
1− por(x,A) for any x ∈ Rk.

d) Find an example when dens∗(x,A) < 1− por(x,A) for every x ∈ Rk.

e) A porous subset of Rk has Lebesgue measure zero.

f) The family of σ-porous subsets of T is a σ-ideal contained in N ∩M.

8.4 [AC] Continuous Images of Small Sets

Assume that X is a perfect Polish space.

a) A homeomorphic image of a universal measure zero set of reals is a universal mea-
sure zero set.

Hint: Use Theorem 8.6.

b) Let A ⊆ X have the following property: for any open set U such that U ∩ A 	= ∅
there exists an open set V ⊆ U such that 0 < |A ∩ V | ≤ ℵ0. If h : X

1−1−→
onto

X is a

homeomorphism then h(A) possesses also this property.

c) A set A with the property of b) is meager.

Hint: Let B be a countable base. For a regular open set U take

V = {V ∈ B : V ⊆ U ∧ |A ∩ V | ≤ ℵ0}.

Show that U \
⋃
V is nowhere dense and therefore A ∩ U is meager.

d) Let B ⊆ ω2 be a Bernstein set. The set ([0, 1] ∩Q) ∪B has the property of b) and
is not perfectly meager.

e) An analogue of Theorem 8.6 for perfectly meager sets is false, i.e., there exists a
set A ⊆ [0, 1] such that every homeomorphic image of A is meager and A is not
perfectly meager.

Hint: Let B ⊆ C ⊆ [0, 1] be a Bernstein set. The set B ∪ Q is not meager in C.
For every open U ⊆ [0, 1] there exists an open set V ⊆ U such that V ∩ (B ∪Q) is
countable. A homeomorphism preserves this property. Use c).

8.5 [AC] (S)0-sets

A subset A of a perfect Polish space X is called an (S)0-set if for every perfect set P ⊆ X
there is a perfect set Q ⊆ P such that A ∩Q = ∅.

a) The property “to be an (S)0-set” is external for any class of topological spaces
containing Euclidean spaces in ZF.

b) The set of all (S)0-subsets of a perfect Polish space is a σ-ideal. This ideal is usually
called a Marczewski ideal.

Hint: Let An be (S)0-sets. By induction construct a regular perfect closed Souslin
scheme 〈ω2, ϕ〉 such that ϕ(s) ∩An = ∅ for s ∈ n2.

c) Any universal measure zero subset A of a perfect Polish space is an (S)0-set.

Hint: If P ⊆ X is perfect, then we can assume ω2 ⊆ P . Let µ be Borel measure on
X defined as µ(E) = λC(ω2 ∩ E). Since µ(A) = 0 there exists a Borel set B such
that A ⊆ B and λC(ω2 \ B) = 1.

d) Any perfectly meager subset of a perfect Polish space is an (S)0-set.

Hint: Proof is dual.
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e) There exists an (S)0-subset of ω2 of cardinality continuum.

Hint: Assume ω2 = {αξ : ξ < c} and {Pξ : ξ < c} is an enumeration of all perfect
subsets of ω2. The function Π : ω2 × ω2 −→ ω2 is defined by (1.11). If A ⊆ ω2,
α ∈ ω2, then Aα = {β ∈ ω2 : Π(α, β) ∈ A} is the vertical section of A. For any
ξ < c take

βξ ∈ ω2 \
⋃
{(Pη)αξ : η < ξ ∧ (Pη)αξcountable}, βξ 	= βη for η < ξ.

Let X = {Π(αξ, βξ) : ξ < c}. Remark that |Xα| = 1 for any α ∈ ω2. Assume
P = Pξ is perfect. If Pα is uncountable for some α ∈ ω2, then there exists Q ⊂ Pα

disjoint with X. Assume that every Pα is countable. If Π(αη, βη) ∈ Pξ ∩ X then
η ≤ ξ. Thus |P ∩X| < c. Split P into a continuum of many disjoint perfect sets.

8.2 Sets with Nice Subsets

We shall consider sets which have nice subsets from at least three different points
of view. We start with the sets in which a “small” set has even a small cardinality.
We shall make this approach precise by an example. Consider a subset A ⊆ X of
a perfect topological space X . Any countable subset of A is meager in A. It would
be very “nice” if the opposite held true: every subset of A, that is meager in A, is
countable. By a generalization and an adequate modification we can define a very
classical notion of a Luzin set or a Sierpiński set. Another approach demands that
a “nice” subset is also “nice” in different ways. We obtain the notion of a σ-set.
Finally we can ask that a subset of “small” cardinality is nice. We obtain, e.g.,
the notion of a λ-set.

There are many such definitions. We shall present and study just a few clas-
sical ones.

The first kind of sets will be introduced in a general way as subsets of a Polish
ideal space and then we shall specify the ideal. Let κ be an uncountable cardinal
not greater than 2ℵ0 . Let 〈X, I〉 be a Polish ideal space. A subset L ⊆ X is called
a κ-I-set if |L| ≥ κ and for any A ∈ I one has |L ∩ A| < κ. Note that a κ-I-set
does not belong to the ideal I. If L is a κ-I-set, |L| ≥ λ > κ, then L is also
a λ-I-set. Moreover, every subset of κ-I-set of cardinality ≥ κ is a κ-I-set. Thus,
if L is a κ-I-set, then immediately from the definition we obtain

non(I) ≤ κ cf(κ) ≤ cov(I). (8.4)

If X is a Polish space, then a κ-M(X)-set is called a κ-Luzin set. If µ is
a diffused Borel measure on X , then a κ-N (µ)-set is called a κ-Sierpiński set.
Note that the notion of a κ-Luzin set is not internal (a κ-Luzin subset of R is not
a κ-Luzin subset of R2) for any class containing Euclidean spaces in the theory
ZF. The notion of a κ-Sierpiński set depends on the considered measure. Thus this
notion is a priori non-internal. Usually we deal with the real line and we consider
the Lebesgue measure. Anyway we can consider any diffused Borel measure on
a Polish space.
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An ℵ1-Luzin set of cardinality c is called a Luzin set and an ℵ1-Sierpiński
set of cardinality c is called a Sierpiński set. Thus a Luzin set is a κ-Luzin set and
a Sierpiński set is a κ-Sierpiński set for any uncountable κ ≤ c.
Theorem [AC] 8.24. Let 〈X, I〉 be a homogeneous Polish ideal space. Then no
subset of a κ-I-set of cardinality ≥ κ belongs to Borel∗(I).

Proof. Let A be a subset of a κ-I-set L, |A| ≥ κ. Assume that A ∈ Borel∗(I).
Then there exists a Borel set B ⊆ A such that A \B ∈ I. Since A /∈ I, neither is
B ∈ I. Thus B is uncountable and being Borel, B contains a Borel uncountable
subset D ∈ I. Then |D∩L| < κ. Since D is Borel, we obtain |D| = |D∩L| = c ≥ κ,
which is a contradiction. �
Corollary [AC] 8.25. No subset of a κ-Luzin set of cardinality ≥ κ has the Baire
Property. No subset of a κ-Sierpiński set of cardinality ≥ κ is measurable.

We begin with the problem of existence of a κ-I-set.
Theorem [AC] 8.26. If κ = cov(I) = cof(I), then there exists a κ-I-set.

Proof. Let {Bξ : ξ < κ} be a base of the ideal I. Since κ = cov(I), for any ξ < κ
we have |X \

⋃
η<ξ Bη| ≥ κ. Thus, one can choose an element xξ ∈ X \

⋃
η<ξ Bη,

xξ �= xη for η < ξ. Let L = {xξ : ξ < κ}. Then |L| = κ.
If A ∈ I, then A ⊆ Bξ for some ξ < κ and therefore L ∩ A ⊆ {xη : η ≤ ξ}.

Thus |L ∩A| < κ. �
Corollary [AC] 8.27. If κ = cov(M) = cof(M), then there exists a κ-Luzin set. If
κ = cov(N ) = cof(N ), then there exists a κ-Sierpiński set.
Theorem [AC] 8.28. Assume that 〈X, I〉 and 〈X,J 〉 are Polish ideal groups with
shift invariant orthogonal σ-ideals. If κ is an uncountable regular cardinal, then
any κ-I-set belongs to J .

Proof. Let L be a κ-I-set. Since I and J are orthogonal, there exist disjoint A ∈ I
and B ∈ J such that A ∪ B = X . Since |L ∩A| < κ, by (8.4) and Theorem 7.26
we have

|L ∩A| < κ ≤ cov(I) ≤ non(J ).

Thus L ∩A ∈ J . Since L ⊆ ((L ∩A) ∪B), we obtain L ∈ J . �
Corollary [AC] 8.29. Any κ-Sierpiński set of reals is meager and any κ-Luzin set
of reals has measure zero, provided that κ is an uncountable regular cardinal.

The result of Corollary 8.29 can be slightly improved.
Theorem [AC] 8.30. Assume that cf(κ) > ω. Then a set L ⊆ X of cardinality ≥ κ
is a κ-Luzin set if and only if L is κ-concentrated on a countable dense subset
of X.

By Corollary 8.19 we obtain that an internal property could follow from an
external one (the exact formulation of the result is left to a reader):
Corollary [AC] 8.31. Every ℵ1-Luzin set has strong measure zero.
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We have a similar result for a Sierpiński set. However, we omit a quite com-
plicated proof, which can be found, e.g., in T. Bartszynski and H. Judah [1995].
Theorem [AC] 8.32 (J. Pawlikowski). Every ℵ1-Sierpiński set is strongly meager.

Corollary 8.31 can be still improved.
Theorem [AC] 8.33. If κ is regular, then any κ-Luzin set of reals has strong mea-
sure zero.

We begin with a lemma which can be interesting in its own.
Lemma [AC] 8.34. If there exists a κ-Sierpiński set of reals, then every set of reals
of cardinality smaller than cf(κ) is strongly meager. Similarly, if there exists a
κ-Luzin set of reals, then every set of reals of cardinality smaller than cf(κ) has
strong measure zero.

Proof. Let S be a κ-Sierpiński set. Assume that |A| < cf(κ) and B has Lebesgue
measure zero. For every x ∈ A we have |(x+B)∩ S| < κ. Thus |(A+B)∩ S| < κ
and therefore A+B �= R.

By Theorem 8.13 we obtain the assertion for the strong measure zero case.
�

Proof of Theorem 8.33. Let L ⊆ R be a κ-Luzin set, {εn}∞n=0 being a sequence of
positive reals. If {rn : n ∈ ω} is dense in R, then U =

⋃
n(rn−ε2n/2, rn+ε2n/2) is

an open dense set and therefore |L\U | < κ. By Lemma 8.34 the set L\U has strong
measure zero and therefore can be covered by intervals of diameter 〈ε2n+1 : n ∈ ω〉.
Then U ∪ (L \ U) can be covered by intervals of diameter 〈εn : n ∈ ω〉. �

By Lemma 8.34, the existence of a κ-Luzin set implies cf(κ) ≤ non(N ).
Similarly, the existence of a κ-Sierpiński set implies that cf(κ) ≤ non(M). We
have a stronger estimate of the size of κ at least for κ regular.
Theorem [AC] 8.35. Let 〈X, I〉 be a Polish ideal space, κ being an uncountable
regular cardinal. If L is a κ-I-set, then κ ≤ |L| ≤ cov(I).

Proof. Let L be a κ-I-set. By definition |L| ≥ κ. Let {Aξ : ξ < cov(I)} ⊆ I be
such that X =

⋃
ξ<cov(I)Aξ. Then

L =
⋃

ξ<cov(I)

(L ∩Aξ),

where |L ∩Aξ| < κ for every ξ < cov(I). Therefore |L| ≤ cov(I). �
Corollary [AC] 8.36. Assume that κ is an uncountable regular cardinal. If there
exists a κ-I-set L, then non(I) ≤ κ ≤ |L| ≤ cov(I).
Theorem [AC] 8.37. Assume that 〈X, I〉 and 〈X,J 〉 are Polish ideal groups with
shift invariant orthogonal σ-ideals, and κ, λ are regular uncountable cardinals. If
there exist both a κ-I-Luzin set L and a λ-J -Luzin set S, then

κ = λ = non(I) = non(J ) = cov(I) = cov(J ) = |L| = |S|.
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Proof. By Corollary 8.36 and Rothberger’s Theorem, Corollary 7.27 we have

non(I) ≤ κ ≤ |L| ≤ cov(I) ≤ non(J ),
non(J ) ≤ λ ≤ |S| ≤ cov(J ) ≤ non(I). �

Corollary [AC] 8.38. Assume that κ, λ are regular uncountable cardinals. If there
exist both a κ-Luzin set L and a λ-Sierpiński set S, then

κ = λ = non(M) = non(N ) = cov(M) = cov(N ) = |L| = |S|.

Corollary [AC] 8.39 (F. Rothberger). If there are both a Luzin set and a Sierpiński
set, then CH holds true.

The σ-ideal Kσ and related notions were introduced in Section 7.5. One can
easily see that 〈ωω,Kσ〉 is a Polish ideal space. By Rothberger’s Theorem 7.59 we
have

cov(Kσ) = cof(Kσ) = d.

Therefore by Theorem 8.26 we immediately obtain the following result.
Theorem [AC] 8.40. There exists a d-Kσ-set.

On the other hand, we have another result.
Theorem [AC] 8.41. There exists a b-Kσ-set.

Proof. By Theorem 5.44 there exists an eventually increasing well-ordered un-
bounded sequence 〈αξ ∈ ωω : ξ < b〉. Set L = {αξ : ξ < b}. If A ⊆ ωω is
a σ-compact set, then there exists an α ∈ ωω such that A ⊆ C∗

α. Then C∗
α ∩ L is

bounded and therefore of cardinality smaller than b. �

Since ZFC + b < d is consistent, see (11.25), we have obtained κ-Kσ-sets for
eventually different κ’s.
Theorem [AC] 8.42. Assume that κ is an uncountable regular cardinal.

a) If there exists a κ-Luzin set L, then there exists a universal measure zero set
of cardinality |L|.

b) If there exists a κ-Sierpiński set S, then there exists a perfectly meager set of
cardinality |S|.

Proof. The assertion a) follows by Grzegorek’s Theorem 8.8, since by Rothberger’s
Theorem, Corollary 7.27 we obtain |L| ≤ cov(M) ≤ non(N ).

The dual assertion b) follows by Rothberger’s Theorem, Corollary 7.27 and
Grzegorek’s Theorem 8.9. �

Now we shall study the second type of sets. A set A ⊆ X is called a σ-set if
for every Fσ set F ⊆ X there exists a Gδ set G such that F ∩ A = G ∩ A. The
obvious relativization argument shows that the property is internal for the class
of all topological spaces in the theory ZF.
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Theorem [wAC] 8.43. Let A ⊆ X be a σ-set, X being a perfect Polish space. Then

a) A is perfectly meager,
b) for every Borel set B there exists a Gδ set G such that A ∩B = A ∩G.

Proof. Since A is a subset of a Polish space, there exists a countable set Y ⊆ A
dense in A. The set Y is Fσ and therefore there exists a Gδ set G such that
Y = A ∩ G. Since Y = A, Y ⊆ G, we obtain that the set A \ G is meager. Thus
A ⊆ (Y ∪ (A \G)) is meager.

If P ⊆ X is perfect, then one can easily see that A ∩ P is a σ-subset of P .
Therefore A ∩ P is meager in P .

Part b) follows easily by transfinite induction. �

Corollary [wAC] 8.44. No κ-Luzin set is a σ-set.

On the other hand we have

Theorem [wAC] 8.45. Every ℵ1-Sierpiński set is a σ-set.

Proof. Assume that S is an ℵ1-Sierpiński set, B is a Gδ set. Let F ⊆ B be an Fσ
set with µ(B \ F ) = 0. We have

S ∩B = S ∩ (F ∪ (S ∩ (B \ F ))).

Since S ∩ (B \ F ) is countable, the set F ∪ (S ∩ (B \ F )) is an Fσ set. �

A subset A of a Polish space X is called a λ-set if for every countable B ⊆ A
there exists a Gδ set G ⊆ X such that B = G ∩ A. By definition, every σ-set is
a λ-set. Hence, every ℵ1-Sierpiński set is a λ-set. Evidently every countable set is
a λ-set and every subset of a λ-set is again a λ-set.

The property “to be a λ-set” is internal for the class of all topological spaces
in the theory ZF.

Theorem [AC] 8.46. Any subset of a Polish space X of cardinality less than b is
a λ-set.

Proof. Let A ⊆ X , |A| < b, B ⊆ A being countable. We enumerate the set B as
〈bn : n ∈ ω〉 in such a way that every b ∈ B occurs infinitely many times in the
enumeration. For each n take a decreasing sequence 〈Un,m : m ∈ ω〉 of open sets
with

⋂
m Un,m = {bn}. For any a ∈ A \B we set

γa(n) = the least m such that a /∈ Un,m.

Since |A| < b, there exists a function α ∈ ωω such that γa ≤∗ α for every a ∈ A\B.
Now, we set

G =
⋂

k

⋃

n≥k

⋂

m≤α(n)

Un,m.
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Evidently G is a Gδ set and we claim that A ∩G = B. Since for every b ∈ B the
set {n : b = bn} is infinite, then

b ∈
⋃

n≥k

⋂

m≤α(n)

Un,m

for every k and therefore b ∈ G.
On the other side, if a ∈ A \B, then there exists a k such that γa(n) ≤ α(n)

for every n ≥ k. Thus a does not belong to
⋃
n≥k
⋂
m≤α(n) Un,m. Therefore neither

a belongs to G. �

Similarly as above for a σ-set, one can show
Theorem [wAC] 8.47. Any λ-subset of a perfect Polish space is perfectly meager.

Proof. Let A be a λ-set, P being a perfect set, P ∩ A �= ∅. Since A is a subset
of a Polish space there exists a countable set B ⊆ P ∩ A dense in P ∩ A. Then
there exists a Gδ set G such that B = G∩A. Then P ∩A \G =

⋃
n Fn, Fn closed

and P ∩A ⊆ (P ∩A \G) ∪B. Since B is countable it suffices to show that every
Fn ∩ P is nowhere dense in P .

So let U be open, U ∩ P ⊆ Fn and U ∩P �= ∅. Then U ∩P ⊆ P ∩A \G and
therefore U ∩ P ∩ A �= ∅. However, then also U ∩ P ∩ B �= ∅, which contradicts
Fn ⊆ P ∩A \B. �
Theorem [AC] 8.48. Every subset of ωω well-ordered by eventual domination is
a λ-set.

Proof. Let A = {αξ : ξ < ζ} be a well-ordered subset of ωω with an increasing
enumeration. We can assume that cf(ζ) �= ω. Indeed, if cf(ζ) = ω, then by results
of Section 5.4 the set A is bounded by some γ ∈ ωω and we shall consider the set
A ∪ {γ}.

Assume that B ⊆ ζ is countable. We can assume that B is closed. If not the
closure of B is obtained from B by adding a countable set C and {αξ : ξ ∈ C} is
an Fσ set. Let η0 be the least element and η1 be the greatest element of B.

For every α ∈ ωω the sets

Gα = {β ∈ ωω : β >∗ α}, Sα = {β ∈ ωω : β <∗ α}

are Fσ sets. E.g., we have

Gα =
⋃

n

⋂

m≥n
{β ∈ ωω : β(m) ≥ α(m) + 1}.

Since B is countable, the set

F = Sαη0
∪Gαη1

∪
⋃

η∈B,η =η1
(Gαη ∩ Sαη+1)

is an Fσ set. One can easily show that {αξ : ξ ∈ B} = A \ F . Thus we are
done. �
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Corollary [AC] 8.49. In any perfect Polish space there exists a λ-subset of cardi-
nality b.

Proof. Since every perfect Polish space topologically contains the Baire space ωω,
it suffices to find a λ-subset of ωω of cardinality b. However, by Theorem 5.44
there exists a well-ordered subset of ωω of order type b. �
Theorem [AC] 8.50. There exists a λ-set B ⊆ [0, 1], |B| = b such that B∪([0, 1]∩Q)
is not a λ-set.

Proof. Let A be the λ-set constructed in the proof of Corollary 8.49. If h is the
homeomorphism constructed in the proof of Theorem 3.25 then B = h(A) is a
λ-subset of [0, 1].

We show that Q ∩ [0, 1] is not a Gδ subset of B ∪ (Q ∩ [0, 1]). Assume that
it is. Then there are closed sets Fn ⊆ [0, 1], n ∈ ω such that Fn ∩ Q = ∅ and
B ⊆

⋃
n Fn. Then every Fn is a compact subset of [0, 1] \ Q and therefore every

h−1(Fn) is a compact subset of ωω. Then by Theorem 3.11 every set h−1(Fn) is a
bounded subset of ωω. Thus, A ⊆

⋃
n h

−1(Fn) is a bounded subset of ωω as well,
a contradiction. �
Corollary [AC] 8.51. non(λ-set) = b.

The family of λ-sets is a family of thin sets. Since any countable set is a
λ-set, according to Theorem 8.50 the family of λ-sets is not an ideal. A slightly
modified notion leads even to a σ-ideal of subsets of a Polish space. A subset A
of a Polish space X is called a λ′-set if for any countable set B ⊆ X there exists
a Gδ set G such that B = G ∩ (A ∪B). Evidently, any λ′-set is a λ-set. The λ-set
of Theorem 8.50 is not a λ′-set. One can easily see that a set A is a λ′-set if and
only if A∪B is a λ-set for each countable B ⊆ X . Therefore by Corollary 8.51 we
obtain

non(λ′-set) = b.

The property “to be a λ′-set” is external for the class of all topological spaces in
ZFC.
Theorem [AC] 8.52. There exists an uncountable λ′-subset of every perfect Polish
space.

Proof. By Theorem 5.57 there exists a strictly increasing sequence of Gδ sets such
that X =

⋃
ξ<ω1

Xξ. Let A ⊆ X be such that |A ∩ (Xξ \
⋃
η<ξXη)| = 1 for each

ξ < ω1.
We show that A is a λ′-set. Actually, if B ⊆ X is countable, then there exists

a ξ < ω1 such that B ⊆ Xξ. Then

B = (A ∪B) ∩ (Xξ \ ((A \B) ∩Xξ)).

Since Xξ is a Gδ set and (A \B) ∩Xξ is countable, we are done. �
Theorem [wAC] 8.53. The family of all λ′-subsets of a Polish space is a σ-ideal.
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Proof. Evidently a subset of a λ′-set is a λ′-set. If 〈An : n ∈ ω〉 are λ′-subsets
of X and B ⊆ X is countable, then there are Gδ sets 〈Gn : n ∈ ω〉 such that
B = Gn ∩ (An ∪B). One can easily check that B = (

⋂
nGn) ∩ (

⋃
n An ∪B). �

Theorem 8.54. Any ℵ1-Sierpiński set is a λ′-set.

The proof is easy. If S is an ℵ1-Sierpiński set and B is countable, then S ∪ B is
also an ℵ1-Sierpiński set and therefore a λ-set. �

A subset A of a Polish space X is called a Q-set if every subset of the set A
is an Fσ set in A. The property is internal for the class of all topological spaces
in the theory ZF. Evidently every Q-set is a σ-set. Since every subset of a Q-set
X is Borel and there are only continuum many Borel sets we have 2|X| ≤ c and
therefore |X | < c. We shall see (in Section 9.1) that it is consistent with ZFC that
there exist Q-sets of any cardinality < c. As an easy consequence of Corollaries
7.24 and 7.25 we obtain
Theorem [AC] 8.55. Every Q-set is perfectly meager and has universal measure
zero.

Proof. Actually, if {xξ : ξ < κ} is an enumeration of a Q-set A ⊆ X , then for
every S ⊆ κ the set {xξ : ξ ∈ S}, being an Fσ set, has the Baire Property and is
µ-measurable for any Borel measure µ. By Corollaries 7.24 and 7.25 the set A is
meager and µ(A) = 0, provided that µ is diffused Borel measure.

Let P ⊆ X be a perfect set. Then it is easy to see that A ∩ P is a Q-subset
of the Polish space P . Therefore A ∩ P is meager in P . �

Exercises

8.6 [wAC] Luzin and Sierpiński Sets

a) Assume that L ⊆ X is an ℵ1-Luzin set. Then Baire(X)|L = ∆0
3(X)|L. Especially

Σ1
1(X)|L = Π1

1(X)|L = ∆0
3(X)|L.

b) Assume that S ⊆ R is an ℵ1-Sierpiński set. Then L|S = ∆0
2(R)|S. Especially

Σ1
1(R)|S = Π1

1(R)|S = ∆0
2(R)|S.

8.7 [AC] κ-Luzin and κ-Sierpiński Sets

κ is an uncountable regular cardinal and 〈R, I〉 is a Polish ideal space. Assume that I is
invariant under multiplication by a rational and shift by a real and κ = cov(I) = cof(I).

a) There exists a κ-I-set A ⊆ R such that A is linearly independent over Q.

Hint: Let {Aξ : ξ < κ} be a base of the ideal I. Construct by transfinite induction
an increasing sequence of reals 〈aξ /∈ Aξ : ξ < κ〉 such that aξ does not belong to
the vector space over Q with base {aη : η < ξ}.

b) There exists a κ-I-set L ⊆ R such that L is a vector space over Q.

Hint: In the construction of a) take aξ not belonging to the vector space generated by
{aη : η < ξ} ∪ Aξ. The vector space L with the base 〈aξ /∈ Aξ : ξ < κ〉 is a κ-I-set.
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c) Formulate the related results for κ-Luzin sets and κ-Sierpiński sets of reals.

d) If κ = cov(M) = cof(M) = cov(N ) = cof(N ), then there exist an isomorphism
f of the additive group 〈R,+〉 onto itself and a κ-Luzin set L such that f(L) is
a κ-Sierpiński set.

Hint: Take a κ-Luzin set L which is a vector space over Q. Extend the base of L to
a Hamel base – see Exercise 7.6, b). Do the same with a κ-Sierpiński set S which
is a vector space.

8.8 [AC] κ-Kσ-Sets

Let κ be an uncountable regular cardinal.

a) A κ-Luzin subset of ωω is a κ-Kσ-set.

b) If there exists a κ-Kσ-set L, then b ≤ κ ≤ |L| ≤ d.

Hint: See Rothberger’s Theorem 7.59 and Corollary 8.36.

c) If there exists a κ-Luzin subsets of R, then

non(M) ≤ d = cof(M), add(M) = b ≤ cov(M).

Hint: Use Theorems 7.57 and 7.58, and Corollary 8.36.

8.9 [AC] Strong I-Sets

Assume that 〈X, I〉 and 〈X,J 〉 are Polish ideal spaces with mutually orthogonal shift
invariant ideals. A set A ⊆ X is a strong I-set if A+B 	= X for every B ∈ J .

a) Any strong I-set belongs to I.

b) If A is a strong I-set, |B| < add(J ), then A ∪B is a strong I-set as well.

Hint: See the proof of Corollary 8.14.

c) Any set of cardinality < cov(J ) is a strong I-set.

Hint: See the proof of Corollary 8.14.

d) If there exists a κ-I-set, then every set of cardinality < κ is a strong I-set.

Hint: See the proof of Lemma 8.34.

8.10 [AC] Rothberger Family

Let 〈X, I〉 be a Polish ideal space, κ being an uncountable regular cardinal. A set R ⊆ I
is a κ-Rothberger family for I, if |R| ≥ κ and for any R0 ⊆ R,

⋃
R0 	= X implies

|R0| < κ.

a) If κ = add(I) = cov(I), then there exists a κ-Rothberger family for I.

Hint: Find increasing sequence {Rξ : ξ < κ} with
⋃

ξ<κ Rξ = X and
⋃

η<ξ Rη ∈ I.
b) If there exists a κ-Rothberger family R for I, then cov(I) ≤ κ ≤ |R| ≤ non(I).

Hint: Set Rx = {R ∈ R : x /∈ R}. Then |Rx| < κ. If |A| < |R|, then A ⊆ R for
any R ∈ R \

⋃
x∈ARx.

c) Assume that 〈X, I〉 and 〈X,J 〉 are Polish ideal groups, I and J are invariant and
orthogonal, and there exists a κ-I-set L. Then there exists a κ-Rothberger family
for J of size |L|.
Hint: If A ∈ I and B ∈ J , A ∪B = X, consider the family R = {B − x : x ∈ L}.
If E ⊆ L and z /∈

⋃
{B − x : x ∈ E}, then E ⊆ A− z. Hence |E| < κ.
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8.11 [AC] λ-set of Maximal Size

a) If f : X
onto−→ Y is continuous, Y is a λ-set, f−1(y) is a λ-set for every y ∈ Y , then

X is a λ-set.

Hint: If B ⊆ X is countable, there exists a countable C = 〈yn : n ∈ ω〉 ⊆ Y such
that B ⊆ f−1(C). Note that f−1(C) is a Gδ set. There exist Gδ sets 〈Gn : n ∈ ω〉
such that B ∩ f−1(yn) = Gn ∩ f−1(yn). Then B = f−1(C) \

⋃
n(f−1(yn) \Gn).

b) Show that a statement similar to a) holds true for λ′-sets as well.

c) If κ = limξ<µ κξ and there exist λ-subsets of ωR of cardinalities 〈κξ : ξ < µ〉 and
µ, then there exists a λ-subset of ωR of cardinality κ.

Hint: Assume that 〈Xξ : ξ < µ〉,X are λ-sets of cardinalities 〈κξ : ξ < µ〉, µ,
X = {xη : η < µ}. Denote A = {[xξ, y] ∈ ωR× ωR : y ∈ Xξ} and f(x, y) = x. Note
that |A| = κ and A = f−1(X) with λ-sets f−1(x) for any x ∈ X.

d) If there exists no inaccessible cardinal ≤ c, then there exists a λ-set of maximal
size, i.e., there exists a maximal element of the set {|A| : A is a λ-set}.

e) Prove a similar result for λ’-sets.

8.12 Hausdorff Gap

Let 〈{αξ}ξ<ω1 , {βξ}ξ<ω1 〉 be a Hausdorff gap. Let H={αξ :ξ<ω1}∪{βξ :ξ<ω1}⊆ω2.

a) H is a λ′-set.

Hint: We know that Aξ = {γ ∈ ω2 : αξ ≤∗ γ ≤∗ βξ} is an Fσ set and
⋂

ξ<ω1
Aξ = ∅.

If X ⊆ ω2 is countable, then X∩Aξ = ∅ for some ξ and X = (H∪X)∩((ω2\Fξ)\Y ),
where Y = ((H ∪X) \ Fξ) \X) is countable.

b) H is perfectly meager.

c) If µ is a diffused Borel measure on ω2, then there exists a ξ0 such that µ(Aξ) = 0
for every ξ ≥ ξ0.

Hint: The sequence µ(Aξ) must stabilize. Assume that µ(Aξ) = ε > 0 for ξ ≥ ξ0.
Let β(n) be such that µ({α ∈ Aξ0 : α(n) = β(n)}) ≥ ε/2. Let ζ ≥ ξ0 be such that
β /∈ Aζ. Set

L = {n ∈ ω : αζ0(n) = βζ(n)}, Bm = {α : (∀n ∈ L, n ≥ m)α(n) = αζ(n)}.

We can assume that the set L is infinite and Aζ =
⋃

m Bm. There exists an m such
that µ(Bm) > ε/2. Since L is infinite there exists a k > m such that β(k) 	= βζ(k).
The sets {α ∈ Aζ : α(k) 	= βζ(k)}, Bm are disjoint subsets of Aξ0 , the former has
measure ≥ ε/2 and the later has measure > ε/2, a contradiction.

d) H has universal measure zero.

Hint: H = Aξ0 ∪ (H \Aξ0), H \ Aξ0 is countable.

8.13 Products

a) If A,B have universal measure zero then A×B has also universal measure zero.

Hint: If µ is a diffused finite Borel measure on A×B set ν(E) = µ(E ×B). Since
B has universal measure zero, ν is diffused.

b) If A,B are λ-sets, then A×B is a λ-set. The same holds true for λ′-sets.

Hint: If E ⊆ A × B is countable take countable C ⊆ A and D ⊆ B such that
E ⊆ C ×D. C ×D is a Gδ set and (C ×D) \E being countable is an Fσ set.
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8.3 Sequence Convergence Properties

By Theorem 3.63 and Lemma 3.62 the space Cp(X) does not possess the sequence
selection property and therefore neither is a Fréchet space, provided that the
Polish space X contains a perfect subset. However, if X is countable then Cp(X)
is Fréchet. Hence a natural question arises whether is there some uncountable X
such that Cp(X) is a Fréchet space?

Investigating thin sets of trigonometric series (compare Section 8.6), for a
given sequence of continuous functions 〈fn : X −→ [0,+∞) : n ∈ ω〉 converging
pointwise to 0 on X , one needs to choose a subsequence 〈fnk

: k ∈ ω〉 such that

∞∑

k=0

fnk
(x) <∞ for every x ∈ X. (8.5)

A topological space for which it is possible is called a Σ-space. Again, every count-
able set is a Σ-space.

If we replace the pointwise convergence by the uniform one, then one can
easily choose a subsequence such that the series

∑∞
k=0 fnk

converges even nor-
mally on X . However, the uniform convergence is usually a quite strong assump-
tion. Therefore we look for a weaker type of convergence which eventually gives
us uncountable sets with the desired property. The quasi-normal convergence is
the natural candidate. Actually, if fn

QN−→ 0 on X , then there exists an increasing
sequence {nk}∞k=0 such that (8.5) holds true.

Let X be a topological space. X is called a QN-space if every sequence of
continuous real functions converging pointwise to 0 on X converges quasi-normally
to 0 on X as well. This notion turns out to be quite strong. The following notion
seems to be much more appropriate. X is called a weak QN-space or shortly
a wQN-space if for every sequence {fn}∞n=0 of continuous real functions converging
pointwise to 0 on X there exists an increasing sequence of integers {nk}∞k=0 such

that fnk

QN−→ 0 on X . Thus a wQN-space is a Σ-space.
Finally, X is called an mQN-space if for every sequence {fn}∞n=0 of continuous

functions such that fn ↘ 0 on X also fn
QN−→ 0 on X . By Theorem 3.50 every

compact space is an mQN-space. Note that if fn ≥ fn+1 for every n and fnk

QN−→ 0

for some increasing sequence {nk}∞k=0, then also fn
QN−→ 0.

Note the following. If fn ↘ 0 on X and fnk

QN−→ 0 on X for some sequence

{nk}∞k=0, then fn
QN−→ 0 on X as well. Thus a weak mQN-space is an mQN-space.

Theorem 8.56. Every Σ-space is an mQN-space.

Proof. Assume that X is a Σ-space and fn ↘ 0 are continuous. Then the series
∑∞
k=0 fnk

converges for some increasing sequence {nk}∞k=0. We show that fnk

QN−→ 0
on X with the control {n−1/2

k }∞k=0.
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Assume not. Then for some x ∈ X there exists an arbitrarily large integer k
such that fnk

(x) ≥ n
−1/2
k . Then

nk∑

i=0

fni(x) ≥ (nk + 1) · n−1/2
k ≥ n

1/2
k ,

which is a contradiction. �

So, we have the implications

QN-space → wQN-space → Σ-space → mQN-space.

Let us recall that if A ⊆ ω is an infinite set, then {eA(n)}∞n=0 is the increasing
sequence enumerating A.
Lemma 8.57. Let X be a wQN-space, fn → 0 on X. If {εn}∞n=0 is a given sequence
of positive reals converging to 0, then for any infinite set A ⊆ ω there exists an
infinite set B ⊆ A such that feB(n)

QN−→ 0 with control {εn}∞n=0.

The proof is easy. By assumption we have feA(n) → 0 on X . Since X is a wQN-

space, there exists an infinite subset C ⊆ A such that feC(n)
QN−→ 0. By Theorem

3.51 there exists an infinite subset B ⊆ C such that feB(n)
QN−→ 0 on X with

control {εn}∞n=0. �

Theorem [AC] 8.58. Consider the following properties of a topological space X:
“ Cp(X) is a Fréchet space”, “X is a QN-space”, “X is a wQN-space”, “X is
a Σ-space”, “X is an mQN-space”. If X is perfectly normal, then any of them is
preserved under continuous image and under passing to a closed subspace.

Proof. Assume that F : X onto−→ Y , F continuous and Cp(X) is a Fréchet space.
Let A ⊆ Cp(Y ), f ∈ A. Set B = {F ◦g : g ∈ A} ⊆ Cp(X). If x1, . . . , xk ∈ X , ε > 0
and

U = {h ∈ Cp(X) : |h(x1)− f(F (x1))| < ε ∧ · · · ∧ |h(xk)− f(F (xk))| < ε}

is a neighborhood of F ◦ f in Cp(X), then

V = {g ∈ Cp(Y ) : |g(F (x1))− f(F (x1))| < ε ∧ · · · ∧ |g(F (xk))− f(F (xk))| < ε}

is a neighborhood of f in Cp(Y ). Since f ∈ A there exists a g ∈ A ∩ V . Then
also F ◦ g ∈ B ∩ U . Thus F ◦ f ∈ B. Since Cp(X) is a Fréchet space there exists
a sequence 〈gn ∈ B : n ∈ ω〉 such that gn → F ◦ f on X . Every gn has the form
gn = F ◦ fn with fn ∈ A. Evidently fn → f on Y . So Cp(Y ) is a Fréchet space.

For QN-, wQN-, Σ- and mQN-space the proof is even simpler.
Lemma 3.62, a) actually says that the property “Cp(x) is a Fréchet space” is

preserved by passing to a closed subspace. In the other cases the assertion easily
follows by Corollary 3.21. �
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Since the interval [0, 1] does not possess any of those properties, by Theorem
8.22 and Theorem 3.26 we obtain

Corollary [AC] 8.59. Every completely regular topological space X with any of
the properties “ Cp(X) is a Fréchet space”, “X is a QN-space”, “X is a wQN-
space”, “X is a Σ-space”, is an nCM-space and therefore has a clopen base of
topology. Thus, a separable metric space with any of those properties is homeo-
morphic to a set of reals.

Note that this need not be true for an mQN-space.

Theorem [AC] 8.60. Let X =
⋃
s∈S Xs, |S| < b. If the sequence {fn}∞n=0 converges

quasi-normally to a function f on each 〈Xs : s ∈ S〉, then it does so on the
union X.

Proof. Let {εsn}∞n=0 witness the quasi-normal convergence fn
QN−→ f on Xs for

every s ∈ S. We can assume that each {εsn}∞n=0 is non-decreasing. We define

αs(k) = min{n : εsn ≤ 2−k ∧ n > αs(k − 1)}.

Since the cardinality of S is smaller than b, there exists a function α ∈ ωω even-
tually bounding the set {αs : s ∈ S}. We write

εn =
{

1 for n < α(1),
2−k for α(k) ≤ n < α(k + 1).

One can easily see that fn
QN−→ f on X with the control {εn}∞n=0. �

The following result expresses the main additivity properties of considered
spaces and their consequences.

Theorem [AC] 8.61.

a) If X =
⋃
s∈S Xs, |S| < b, each Xs is a QN-space, then X is a QN-space.

b) If X =
⋃
s∈S Xs, |S| < h, each Xs is a wQN-space, then X is a wQN-space.

c) If X =
⋃
s∈S Xs, |S| < b, each Xs is an mQN-space, then X is an mQN-

space.
d) Any Fσ-subset of a QN-space, a wQN-space or an mQN-space is a QN-space,

a wQN-space or an mQN-space, respectively.
e) Assume that Y is a metric space and a mapping f : X −→ Y is a quasi-

normal limit of continuous functions. If X is a QN-space, a wQN-space or
an mQN-space, then f(X) is a QN-space, a wQN-space or an mQN-space,
respectively, as well.

Proof. The assertions a) and c) follow immediately from definitions by Theorem
8.60. The assertions of d) follow from a), b) and c) by Theorem 8.58, respectively.
Thus, we have to prove the assertion b).
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Assume that X =
⋃
s∈S Xs, |S| < h and each Xs is a wQN-space. Let fn → 0

on X . Set

Hs = {A ∈ [ω]ω : feA(k)
QN−→ 0 on Xs with control {2−k}∞k=0}.

Every space Xs is a wQN-space, so by Lemma 8.57 the family Hs is a dense subset
of 〈[ω]ω,⊆∗〉. Since we assume that |S| < h there exists a common refinement H
of all Hs modulo finite. One can easily see that feA(k)

QN−→ 0 on X with control
{2−k}∞k=0 for any A ∈ H.

Assume that fn
QN−→ f on X with control {εn}∞n=0, and fn are continuous.

Then X =
⋃
kXk, where Xk = {x ∈ X : (∀m,n ≥ k), |fn(x)− fm(x)| ≤ εn + εm}

are closed and fn ⇒ f on each Xk. The assertion e) follows by Theorem 8.58 and
a), b) and c). �

A discrete space of cardinality b is neither a wQN-space nor an mQN-space,
thus:
Corollary [AC] 8.62.

add(QN-space) = non(QN-space) = add(mQN-space) = non(mQN-space) = b,

h ≤ add(wQN-space) ≤ non(wQN-space) = b.

Theorem [AC] 8.63. If κ ≤ b and S is a κ-Sierpiński subset of a Polish space X
with a finite Borel measure µ, then S is a QN-set.

Proof. Assume that S is a κ-Sierpiński set, 〈fn : n ∈ ω〉 are continuous. Let
fn → 0 on S. By the Egoroff Theorem 7.41, for every m there exists a Borel set
Cm ⊆ X such that fn ⇒ 0 on S \ Cm and µ(Cm) < 1/(m + 1). We can assume

that Cm+1 ⊆ Cm. Then fn
QN−→ 0 on
⋃

m

(S \ Cm) = S \
⋂

m

Cm.

Since µ(
⋂
m Cm) = 0, we have |S ∩

⋂
m Cm| < κ ≤ b and therefore S ∩

⋂
m Cm is

a QN-set. So fn
QN−→ 0 on S. �

An L∗-space X has the property (αi), i = 1, 2, 3, 4, if for any x ∈ X and
for any sequence {{xn,m}∞m=0}∞n=0 of sequences converging to x, there exists a se-
quence {ym}∞m=0 such that limm→∞ ym = x and

(α1) {xn,m : m ∈ ω} ⊆∗ {ym : m ∈ ω} for each n,
(α2) {xn,m : m ∈ ω} ∩ {ym : m ∈ ω} is infinite for each n,
(α3) {xn,m : m ∈ ω} ∩ {ym : m ∈ ω} is infinite for infinitely many n,
(α4) {xn,m : m ∈ ω} ∩ {ym : m ∈ ω} �= ∅ for infinitely many n.
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It is easy to see that
(α1) → (α2) → (α3) → (α4). (8.6)

There is an important (maybe surprising) relationship between the intro-
duced notions in the case of Cp(X).
Theorem 8.64 (M. Scheepers – D.H. Fremlin). For a topological space X the fol-
lowing are equivalent:

a) X is a wQN-space.
b) The space Cp(X) possesses the sequence selection property.
c) The space Cp(X) possesses the property (α2).
d) The space Cp(X) possesses the property (α3).
e) The space Cp(X) possesses the property (α4).

Proof. e) → a). Assume that Cp(X) possesses the property (α4), 〈fn : n ∈ ω〉 are
continuous, and fn → 0 on X . We can assume that fn > 0 for every n. Set
fn,m = 2n ·fn+m. Then fn,m → 0 on X for every n. By (α4), there exist a sequence
{mk}∞k=0 and an increasing sequence {nk}∞k=0 such that fnk,mk

→ 0 on X . We can

assume that the sequence {mk+nk}∞k=0 is increasing. We claim that fmk+nk

QN−→ 0
on X with control {2−nk}∞k=0. Actually, for any x ∈ X there exists a k0 such that
fnk,mk

(x) < 1 for k ≥ k0. Thus fmk+nk
(x) < 2−nk for every k ≥ k0.

a) → b). Assume that X is a wQN-space. Let fn,m → 0 on X for every n.
We set

gm(x) =
∞∑

n=0

min{2−n, fn,m(x)}, x ∈ X. (8.7)

Let x ∈ X , ε > 0 being a real. Then there exists an n0 such that 2−n0+2 < ε. For
every n < n0 there exists an mn such that fn,m(x) < ε/(2n0) for every m ≥ mn.
We set k = max{mn : n < n0}. For m ≥ k we have

gm(x) ≤
∑

n<n0

ε

2n0
+
∑

n≥n0

2−n < ε.

Thus limm→∞ gm(x) = 0. Since X is a wQN-space there exists an increasing

sequence {mn}∞n=0 such that gmn

QN−→ 0 on X with the control {2−n}∞n=0. However

by (8.7), if gmn(x) < 2−n, then also fn,mn(x) < 2−n. Thus fn,mn

QN−→ 0 on X .
b) → c). Assume that Cp(X) possesses the sequence selection property. Let

fn,m → 0 onX for every n. We set hn,m = fλ(n),m, where λ is the left inverse to the
pairing function. Therefore the sequence {hn,m}∞n=0 contains every fi,m infinitely
many times. Let gn,m = max{hi,m : i ≤ n}. Evidently gn,m → 0 for every n. By
Theorem 1.40 there exist increasing sequences {nk}∞k=0 and {mk}∞k=0 such that
limk→∞ gnk,mk

= 0. We set fi = hi,mk
for nk−1 < i ≤ nk. Then fi ≤ gnk,mk

for
nk−1 < i ≤ nk and therefore fi → 0 on X . Every sequence {fn,m}∞m=0 contains
infinitely many members of {fi}∞i=0.

Now the theorem follows by (8.6). �
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Since a Fréchet space possesses the sequence selection property we obtain:

Corollary 8.65. If Cp(X) is a Fréchet space, then X is a wQN-space.

There is a similar result for QN-space.

Theorem 8.66 (M. Scheepers). If Cp(X) has the property (α1), then the topological
space X is a QN-space.

Proof. Let {fm}∞m=0 be a sequence of continuous functions converging pointwise
to 0 on X . For each m and n we set fn,m(x) = 2n · |fm(x)|. Then the sequence
{fn,m}∞m=0 converges pointwise to 0 on X for each n. By (α1) there exists a
sequence {hk}∞k=0 converging to 0 on X and such that the sequence {hk}∞k=0

contains all but finitely many members of the sequence {fn,m}∞m=0 for every n.
Thus, there exists a sequence {mn}∞n=0 such that {fn,m}∞m=mn

is a subsequence
of {hk}∞k=0 for each n. We can assume that {mn}∞n=0 is increasing. Moreover, we
can assume that

(∀m ≥ mn)(∀i) (hi = fn,m → i ≥ n)

for every n. Now we set

εm = 2−k for mk ≤ m < mk+1, εm = 1 for m < m0.

Let x ∈ X be given. Then there exists a k0 such that |hk(x)| < 1 for k ≥ k0.
For any m ≥ mk0 there exists a k ≥ k0 such that mk ≤ m < mk+1. Then
fk,m = hi for some i ≥ k ≥ k0. Hence fk,m(x) < 1. Since εm = 2−k we obtain
|fm(x)| < εm. �

Theorem 8.67 (L. Bukovský – J. Haleš – M. Sakai). If X is a QN-space, then
Cp(X) possesses the property (α1).

Proof. Let {{fn,m}∞m=0}∞n=0 be a sequence of sequences converging to 0 on X . We
can assume that values of each fn,m are in [0, 1]. We define the functions gm by
(8.7). Then gm are continuous and gm → 0 on X .

Since X is a QN-space, there exist positive reals {εn}∞n=0, εn → 0 such that

(∀x)(∃lx)(∀m ≥ lx) gm(x) < εm. (8.8)

There are also natural numbers mk such that

(∀k)(∀m ≥ mk) εm < 2−k.

We can assume that mk < mk+1 for any k. We claim that the sequence (in any
order)

{fn,m : n ∈ ω ∧m ≥ mn} (8.9)

converges to 0 on X .
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Let x ∈ X and ε > 0. Take such a k0 that 2−k0 < ε and mk0 > lx (lx is that
of (8.8)). Moreover, take such a natural number p that fn,m(x) < ε for m ≥ p and
any n < k0. If n ≥ k0 and m ≥ mn ≥ mk0 > lx then

gm(x) < εm < 2−n

and therefore
min{2−n, fn,m(x)} < 2−n ≤ 2−k0 < ε.

Thus fn,m(x) < ε for any n ≥ k0, any m ≥ mn, p and for any n < k0. Therefore
for all members of the sequence (8.9) but for finitely many those with n < k0 and
m < p we have fn,m(x) < ε. �
Corollary 8.68. A topological space X is a QN-space if and only if Cp(X) possesses
the property (α1).
Theorem 8.69. The Cantor middle-third set C is neither a Σ-set nor a wQN-space.

Proof. The sequence of functions 〈hn : n ∈ ω〉 constructed in the proof of Theorem
3.63 witnesses that C is not a Σ-space. �

By Theorem 3.20 we obtain
Corollary [wAC] 8.70. If X is a metric Σ-space, then X does not contain a sub-
set homeomorphic to C. Moreover, if we assume AC, then no perfectly normal
topological Σ-space contains a subset homeomorphic to C.

If we set

gn(α) =
1

min{k : α(k) + k > n}+ 1
for α ∈ ωω, (8.10)

then we have
Lemma 8.71. If X ⊆ ωω, then X is eventually bounded if and only if there exists
a sequence {nk}∞k=0 such that gnk

QN−→ 0 on X.
Theorem 8.72. A continuous image of a wQN-space into ωω is eventually bounded.

The converse assertion is not true since C = ω2 is a bounded subset of ωω.
Corollary 8.73. Let X be a wQN-space. If fn

QN−→ f , where fn : X −→ [0, 1] are
continuous and f : X −→ ωω, then f(X) ⊆ ωω is eventually bounded.

Proof. By Theorem 8.61, e), f(X) ⊆ ωω is a wQN-space. �
Theorem [wAC] 8.74. Any wQN-subset A of a separable metric space X is perfectly
meager.

Proof. Let P ⊆ X be a perfect set, fn : P −→ [0, 1] being functions of Theorem
7.43. Since P is closed, by Corollary 3.21 we can assume that each fn is defined on
the whole space X and fn → 0 on X . Since A is a wQN-set, then there exists an
increasing sequence of natural numbers {nk}∞k=0 such that fnk

QN−→ 0 on A. Then



324 Chapter 8. Special Sets of Reals

there are sets Am closed in A such that A =
⋃
mAm and fnk

⇒ 0 on each Am.
By Theorem 7.43 every set P ∩Am is nowhere dense in P and therefore A ∩ P is
meager in P . �

Corollary [wAC] 8.75. Any wQN-subset of a perfect separable metric space is mea-
ger.

A topological space X has the quasi-normal sequence selection property,
shortly QSSP, if for any functions f, fn, fnm : X −→ R, n,m ∈ ω, such that

(1) fn
QN−→ f on X ,

(2) fnm
QN−→ fn on X for every n ∈ ω,

(3) every fnm is continuous,

there exists an increasing β ∈ ωω such that fnβ(n)

QN−→ f on X .

Theorem 8.76 (L. Bukovský – J. Šupina). Any QN-space has the QSSP property.

Proof. Assume that f, fn, fnm : X −→ R, n,m ∈ ω are such that (1)–(3) hold
true. We can assume that the control of the quasi-normal convergence in (2) is
{2−2m−1}∞m=0 and the control of the quasi-normal convergence in (1) is {εn}∞n=0.

Set
gnm(x) = min{|fnm(x) − fnm+1(x)| · 2m, 1}.

Evidently for a fixed n ∈ ω we have gnm → 0 on X . Since the space Cp(X) satisfies
the condition (α1), there exists an increasing function β ∈ ωω such that the set
{gnm : m ≥ β(n) ∧ n ∈ ω} converges to 0.

We claim that fnβ(n)

QN−→ f with the control {2−β(n)+1 + εn}∞n=0. Actually,
let x ∈ X . Then there exists an n0 such that gnm(x) < 1 for any n ≥ n0 and any
m ≥ β(n). Moreover, we can assume that |fn(x) − f(x)| < εn for n ≥ n0. Hence
|fnm(x) − fnm+1(x)| < 2−m and |fnβ(n)(x) − fnm(x)| < 2−β(n)+1 for any n ≥ n0 and
any m ≥ β(n). Thus |fnβ(n)(x) − fn(x)| ≤ 2−β(n)+1 for n ≥ n0. Therefore, for
n ≥ n0 we obtain |fnβ(n)(x)− f(x)| < 2−β(n)+1 + εn. �

Theorem [AC] 8.77 (I. Rec�law). If a perfectly normal topological space X has the
property QSSP, then X is a σ-space. Therefore every perfectly normal topological
QN-space is a σ-space.

Proof. Assume that F =
⋃
n Fn is an Fσ set, Fn is closed and Fn ⊆ Fn+1 for any

n ∈ ω. We have to show that the characteristic function χF is Gδ-measurable.
Since X is perfectly normal, there exist closed sets 〈Fn,m : n,m ∈ ω〉 such

that Fn,m ⊆ Fn,m+1 and X \ Fn =
⋃
k Fn,k for any n and m. For any n and m,

there exists a continuous function fn,m : X −→ [0, 1] such that fn,m(x) = 1 for

x ∈ Fn and fn,m(x) = 0 for x ∈ Fn,m. Evidently fn,m
D−→ χFn on X . Moreover,

χFn

D−→ χF on X .
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By QSSP there exists a β such that fn,β(n)
QN−→ χF . Since fn,β(n) are contin-

uous, by Theorem 3.57 the function χF is Gδ-measurable. �

Corollary [AC] 8.78. Every subset A ⊆ X of a metric separable QN-space X is
a QN-space.

Proof. If 〈fn : A −→ [0, 1] : n ∈ ω〉 are continuous, fn → 0 on A, then by
Kuratowski’s Theorem 3.29 there exists a Gδ set B ⊇ A and a sequence of con-
tinuous functions 〈gn : B −→ [0, 1] : n ∈ ω〉 such that gn|A = fn for every n. Set
C = {x ∈ B : gn(x) → 0}. Then C ⊇ A is Borel and therefore also an Fσ set. By

Theorem 8.61 we obtain gn
QN−→ 0 on C. �

It is easy to see that neither the corollary and hence nor the theorem holds
true for any topological space. If X ⊆ ωω is unbounded, then X endowed with the
discrete topology is not a QN-space. However, one can easily see that a one-point
compactification X∗ = X ∪ {∞} of X is a QN-space, since for any continuous
function f : X∗ −→ [0, 1] and any ε > 0 we have |f(x) − f(∞)| < ε for all but
finitely many x ∈ X .

By simple refining of Lemma 3.74 we obtain

Lemma [AC] 8.79. If Ind(X) = 0, then every simple ∆0
2-measurable function

g : X −→ [0, 1] is a discrete limit of a sequence {gn}∞n=0 of simple continuous
functions.

Proof. Let g =
∑k

i=0 aiχAi , Ai ∈ ∆0
2 be pairwise disjoint,

⋃k
i=0 Ai = X and

0 ≤ a0 < a1 < · · · < ak ≤ 1. Then there exist non-decreasing and non-increasing
sequences {F in}∞n=0 and {Gin}∞n=0 of Fσ and Gδ sets, respectively, such that Ai =⋃
n F

i
n =
⋂
nG

i
n. Since Ind(X) = 0, there exists clopen sets Cin such that F in ⊆

Cin ⊆ Gin for every i ≤ k and every n ∈ ω. Replacing eventually C0
n by C0

n ∪ (X \⋃
0<i≤k C

i
n), we can assume that

⋃
i≤k C

i
n = X . Let Di

n = Cin \
⋃
j<i C

j
n. Then Di

n

are pairwise disjoint and
⋃
i≤k D

i
n = X . Set gn =

∑k
i=0 aiχDi

n
. Since each Di

n is
clopen, gn is continuous.

Let x ∈ X and g(x) = ai. Then there exists an n0 such that x ∈ F in and
x /∈ Gjn for j < i, for every n ≥ n0. Then x ∈ Di

n and therefore gn(x) = ai. �

Theorem [AC] 8.80. If X is a normal topological space possessing property QSSP,
then any Borel measurable function f : X −→ [0, 1] is a quasi-normal limit of
a sequence of continuous functions.

Proof. If f : X −→ ωω ⊆ [0, 1] is Borel measurable, then by Rec�law’s Theorem 8.77
the function f is ∆0

2-measurable.
For any n and any i < 2n − 1, we write

Ain =
{

x ∈ X :
i

2n
≤ f(x) <

i+ 1
2n

}

, A2n−1
n =

{

x ∈ X :
2n − 1

2n
≤ f(x)

}

.
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Then the sequence of simple ∆0
2-measurable functions

fn =
2n−1∑

i=0

i

2n
χAi

n

converges uniformly to f with control 2−n. By the lemma, for every n there exists
a sequence {gnm}∞m=0 of simple continuous functions such that gnm

D−→ fn on X .

Thus, by Theorem 8.76 there exists an increasing α ∈ ωω such that gnα(n)

QN−→ f .
�

Theorem [AC] 8.81 (B. Tsaban – L. Zdomskyy). The image of a perfectly nor-
mal topological QN-space X by a Borel measurable function into ωω is eventually
bounded.

Proof. Assume that f : X −→ ωω ⊆ [0, 1] is Borel measurable. By Theorem 8.80
there exists a sequence of continuous functions 〈fn : X −→ [0, 1] : n ∈ ω〉 such that

fn
QN−→ f on X . By Corollary 8.73 the set f(X) ⊆ ωω is eventually bounded. �

Corollary [AC] 8.82. For a perfectly normal topological space X the following are
equivalent:

a) X is a QN-space.
b) If 〈fn : n ∈ ω〉 are Borel measurable function from X into [0, 1] and fn → f

on X, then fn
QN−→ f on X.

c) Any Borel measurable image of X into ωω is eventually bounded.

Proof. a)→ c) follows by the Tsaban-Zdomskyy Theorem, the implication b) → a)
is trivial.

We show that c) → b). Let 〈fn : n ∈ ω〉 be Borel measurable functions
from X into [0, 1] and fn → f on X . Set gn(x) = sup{|fm(x) − f(x)| : m ≥ n}.
Then gn is Borel measurable and gn ↘ 0. The function ψ : X → ωω defined as
ψ(x)(m) = min{n : gn(x) < 2−m} is Borel measurable. By c), the set ψ(X) is

eventually bounded by a β ∈ ωω. Then gβ(n)
QN−→ 0 with the control {2−n}∞n=0.

Since {gn}∞n=0 is non-increasing we obtain gn
QN−→ 0 and also fn

QN−→ f . �

In Section 5.4 we have defined a partial preordering of eventual domination
on the Baire space ωω. We can easily extend this preordering (with the same name)
to the set ωR of all sequences of reals as

f ≤∗ g ≡ (∃n0)(∀n ≥ n0) f(n) ≤ g(n)

for any f, g ∈ ωR. Evidently ωω considered as a subset of the preordered set
〈ωR,≤∗〉 is a cofinal subset and therefore

b(ωR,≤∗) = b, d(ωR,≤∗) = d.
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A topological space X is said to have the property H∗ if for any sequence
{fn}∞n=0 of continuous real functions defined on X the family of sequences of reals
{{fn(x)}∞n=0 : x ∈ X} ⊆ ωR is not dominating in the preordering of eventual dom-
ination. Similarly, a topological space X has the property H∗∗ if for any sequence
{fn}∞n=0 of continuous real functions defined on X the family of sequences of reals
{{fn(x)}∞n=0 : x ∈ X} ⊆ ωR is eventually bounded. Evidently

H∗∗ → H∗.

Immediately from the definition one obtains that a continuous image of
a topological space with the property H∗∗ in ωω is eventually bounded.

Using the Tietze-Urysohn Theorem 3.20 one can easily see that:

Theorem [AC] 8.83. The properties H∗∗ or H∗ are preserved under continuous
image and under passing to a closed subset of a normal topological space.

If |X | < b, then the topological space X possesses property H∗∗. If X is an
unbounded subset of ωω and we set fn(α) = α(n) for α ∈ X and n ∈ ω, then one
can easily see that X does not have the property H∗∗. Hence

non(H∗∗) = b. (8.11)
Similarly we obtain

non(H∗) = d. (8.12)

Thus, if b < d, then the unbounded subset of ωω of cardinality b possesses the
property H∗ and does not possess the property H∗∗. A compact space trivially
possesses the property H∗∗. Thus one can easily show that a σ-compact space
possesses the property H∗∗. Actually, any set that is a union of less than b compact
sets possesses the property H∗∗.

Similarly as in the case of a QN-space and a wQN-space, it turned out that
the notion of an mQN-space is equal to a classical notion.

Lemma 8.84 (J. Haleš). If fn ↘ 0 on X are continuous then there exists a con-
tinuous function h : X −→ R such that

(∀x ∈ X)(∀n > h(x)) fn(x) < 1.

Proof. Let

g(x) =
∞∑

n=0

min{1, fn(x)} · 2−n.

The function g : X −→ [0, 2) is continuous. Set h(x) = − log2(2− g(x)).
If x ∈ X and fn(x) ≥ 1, then using the monotonicity of the sequence {fn}∞n=0

we obtain that min{1, f0(x)} = · · · = min{1, fn(x)} = 1. Thus g(x) ≥ 2−2−n and
therefore n ≤ h(x). �
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Theorem 8.85. For a topological space X the following conditions are equivalent:

a) X is an mQN-space.
b) X has the property H∗∗.
c) If for every n ∈ ω, {fn,m}∞m=0 is a sequence of continuous functions de-

fined on X and such that fn,m ↘ 0, then there exists an increasing sequence
{mn}∞n=0 such that fn,mn → 0 on X.

Proof. We begin with proving the implication a) → b). So assume that a) holds
true. Let 〈fn : X −→ R+ : n ∈ ω〉 be continuous. For x ∈ X and n,m ∈ ω we set

hmn (x) = min{1, fn(x)/(m+ 1)}, gm(x) =
∞∑

n=0

2−nhmn (x). (8.13)

Then hm+1
n (x) ≤ hmn (x) ≤ 1 and gm+1(x) ≤ gm(x) for any x ∈ X and any

n,m ∈ ω. We show that gm ↘ 0 on X .
Let x ∈ X , ε > 0. Let m0 ≥ max{2k, 2k · f0(x), . . . , 2k · fk(x)}, where k is

such that 3 · 2−k < ε. For m ≥ m0 and i ≤ k we obtain

hmi (x) ≤ fi(x)/(m+ 1) ≤ m02−k/(m+ 1) ≤ 2−k.

Hence, for m ≥ m0 we have

gm(x) =
k∑

i=0

hmi (x)
2i

+
∑

i>k

hmi (x)
2i

≤ 2
2k

+
1
2k

< ε.

By a) there exists a decreasing control sequence of positive reals {εn}∞n=0 for

gn
QN−→ 0 on X . We set dn = min{m : εm < 2−n}. The sequence {dn}∞n=0 is

non-decreasing and unbounded.
Let x ∈ X . Let n0 be such that gn(x) < εn for every n ≥ n0. Let n1 ≥ n0 be

such that dn ≥ n0 for n ≥ n1. If n ≥ n1 then gdn(x) < εdn < 2−n and therefore
hdn
n (x) < 1. By (8.13) we obtain fn(x) < dn for every n ≥ n1.

Now we show b) → c). Let {{fn,m}∞m=0 : n ∈ ω} be a sequence of sequences
of continuous functions from X into R such that fn,m ↘ 0 for each n ∈ ω. By
Lemma 8.84 there exists a sequence 〈hn : X −→ R : n ∈ ω〉 of continuous functions
such that

(∀n)(∀x ∈ X)(∀m) (m > hn(x) → fn,m(x) < 2−n).

Since the topological space possesses property H∗∗, there exists a sequence of
natural numbers {mn}∞n=0 such that

(∀x ∈ X)(∃n0)(∀n ≥ n0)hn(x) < mn.

Then fn,mn → 0 on X .
A proof of implication c) → a) is easy. If fn ↘ 0 on X , we set fn,m = 2n ·fm.

Then fn,m ↘ 0 on X for each n ∈ ω and by c) there exists an increasing sequence
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{mn}∞n=0 such that fn,mn → 0 on X . Then fmn

QN−→ 0 on X with the control 2−n.

Since the sequence {fn}∞n=0 is non-increasing, we obtain fn
QN−→ 0 on X . �

Corollary 8.86. Every wQN-space has the property H∗∗.
Corollary [AC] 8.87. If κ ≤ b and A is a κ-Sierpiński subset of a Polish space with
a finite Borel measure, then every subset of A has the property H∗∗.

The proof follows immediately from Theorem 8.63 and Corollary 8.78. �
Theorem [wAC] 8.88. If A is a subset of a Polish space X with property H∗∗, then
there exists a σ-compact set B ⊆ X such that A ⊆ B.

Proof. Let {rn : n ∈ ω} be a countable dense subset of X . Set

fn(x) = min{ρ(x, ri) : i = 0, . . . , n}.

Then fn ↘ 0 on X and therefore fn
QN−→ 0 on A. If {εn}∞n=0 is a control sequence

for the quasi-normal convergence of {fn}∞n=0 on A, then the set

Bn = {x ∈ X : (∀m ≥ n) fm(x) ≤ εm}

is closed. If m ≥ n is such that εm ≤ ε, then the set {r0, . . . , rm} is an ε net on
Bn. Thus, Bn is totally bounded and by Theorem 3.36, Bn is compact. Evidently
A ⊆
⋃
nBn. �

The following classical result says that a well-definable space with the prop-
erty H∗∗ is always a σ-compact set.
Theorem [wAC] 8.89 (W. Hurewicz). Any analytic subset A of a Polish space X
possessing the property H∗∗ is σ-compact. However, by Corollary 8.87 this need
not be true for any subset of a Polish space.

Proof. By Theorem 8.88 we can assume that X is σ-compact. Assume that A ⊆ X
is an analytic subset of X and A is not σ-compact. Then neither is A an Fσ set.
Then by Corollary 6.34 there exists a closed subset of A homeomorphic with ωω.
Since ωω does not possess the property H∗∗, by Theorem 8.83 neither does the
set A possess it. �

Exercises

8.14 [AC] Σ-spaces

a) If X is a Σ-space, A ∈ [ω]ω, fn → 0 on X, then there exists a B ∈ [A]ω such that∑∞
n=0 feB(n)(x) <∞ for each x ∈ X.

b) If X =
⋃

s∈S Xs, |S| < h, each Xs is a Σ-space, then X is a Σ-space.

Hint: Follow the proof of Theorem 8.61, b).

c) h ≤ add(Σ-space) ≤ non(Σ-space) = b.

Hint: See (8.11) and Theorem 8.85.

d) An Fσ-subset of a Σ-set is a Σ-set.
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8.15 [wAC] Continuous Image in [0, 1]

a) If fn : X −→ [0, 1] are continuous and ind(fn(X)) = 0, then there exist continuous
H : X −→ [0, 1] and continuous hn : rng(H) −→ [0, 1] such that fn = H ◦ hn for
every n.

Hint: Let F (x) = {fn(x)}∞n=0 ∈ ω[0, 1]. By Exercise 3.3, h) we have ind(F (X)) = 0.

Thus there exists an embedding G : F (X)
1−1−→ [0, 1]. Set hn = G−1 ◦ projn and

H = F ◦G.

b) A topological space X is a QN-space if and only if every continuous image of X
into [0, 1] is a QN-space.

c) A topological space X is a wQN-space if and only if every continuous image of X
into [0, 1] is a wQN-space.

d) In a)–c) one can replace the unit interval [0, 1] by ω2 or ωω.

8.16 (αi) and Continuous Mappings

a) Assume that f : X −→ Y is continuous and (N (x) denotes the filter of neighbor-
hoods of a point x) such that

(∀x ∈ X)(∀V ∈ N (x))(∃W ∈ N (f(x))) f−1(W ) ⊆ V. (8.14)

Show that if Y possesses the property (αi), then X does so, i = 1, . . . , 4.

b) If X is Hausdorff, then a continuous mapping satisfying (8.14) is an injection.

c) Find an injection not satisfying (8.14).

d) If f : X −→ Y is continuous, we define F : Cp(Y ) −→ Cp(X) by F (ϕ) = f ◦ ϕ for
ϕ ∈ Cp(Y ). If f is a surjection, then F satisfies (8.14).

Hint: Let ϕ ∈ Cp(Y ), y1, . . . , yn ∈ Y , ε > 0, and

V = {ψ ∈ Cp(Y ) : |ϕ(yi)− ψ(yi)| < ε for i = 1, . . . , n}.

Let xi be such that f(xi) = yi for i = 1, . . . , n. Take

W = {θ ∈ Cp(X) : |θ(xi)− ϕ(yi)| < ε for i = 1, . . . , n}.

e) If F : X
onto−→ Y is a continuous surjection and Cp(X) possesses the property (αi),

then Cp(Y ) does so, i = 1, . . . , 4.

8.17 L∗-group

Let 〈X, lim〉 be an L∗-space with a group structure 〈X, ◦, e〉.X is said to be an L∗-group if
the group operations are continuous, i.e., if for any sequences {xn}∞n=0, {yn}∞n=0 such that
limn→∞ xn = x, limn→∞ yn = y we have limn→∞ xn ◦yn = x◦y and limn→∞ x−1

n = x−1.

An L∗-group X has the property (αi)
∗, i = 1, 2, 3, 4, if for any sequence {{xn,m}∞m=0}∞n=0

of sequences such that limm→∞ xn,m = xn for every n ∈ ω and limn→∞ xn = x, there
exists a sequence {ym}∞m=0 such that limm→∞ ym = x and

(α1)
∗ {xn,m : m ∈ ω} ⊆∗ {ym : m ∈ ω} for each n,

(α2)
∗ {xn,m : m ∈ ω} ∩ {ym : m ∈ ω} is infinite for each n,

(α3)
∗ {xn,m : m ∈ ω} ∩ {ym : m ∈ ω} is infinite for infinitely many n,

(α4)
∗ {xn,m : m ∈ ω} ∩ {ym : m ∈ ω} 	= ∅ for infinitely many n.
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Show that the properties (α1)–(α4) of an L∗-group are equivalent to (α1)
∗–(α4)

∗, respec-
tively.

Hint: Replace xn,m by xn,m ◦ x−1
n .

8.18 Properties (α0) and (α0)
∗

An L∗-space X has the property (α0)
∗ if for any x ∈ X and limm→∞ xn,m = xn for

every n ∈ ω and limn→∞ xn = x, there exists an unbounded non-decreasing sequence
{nm}∞m=0 of natural numbers such that limm→∞ xnm,m = x. Taking xn = x one obtains
the property (α0).

a) (α1)→ (α0) for any L∗-space.

b) (α0)→ (α0)
∗ for any L∗-group.

c) If Cp(X) has property (α0)
∗ then X is a QN-space.

Hint: Consider fn,m = 2n · fm + 2−n.

d) The following are equivalent:

(i) X is a QN-space,

(ii) Cp(X) has property (α0),

(iii) Cp(X) has property (α0)
∗,

(iv) Cp(X) has property (α1).

8.19 [AC] Property H∗∗

a) A subset A of a Polish space has the property H∗∗ if and only if for every Gδ set
G ⊇ A there exists a σ-compact set F such that A ⊆ F ⊆ G.

Hint: G is a Polish subspace so apply Theorem 8.88. If fn ↘ 0 on A then by using
Theorem 3.29 find a Gδ set G ⊇ A and functions Fn ↘ 0 on G extending.

b) If a subset A of a perfectly normal topological space X has the property H∗∗, then
for every Gδ set G ⊇ A there exists an Fσ set F such that A ⊆ F ⊆ G.

Hint: Let G =
⋂

nGn, Gn+1 ⊆ Gn open. Take fn : X −→ [0, 1] continuous and
such that Z(fn) = X \Gn. Set hn(x) =

∏n
i=0(1 − fi(x)). Then hn ↘ 0 on G. Let

{εn}∞n=0 be the control of quasi-normal convergence of hn on A. Assume that ε < 1
and set F =

⋃
n{x ∈ X : (∀m ≥ n)hm(x) ≤ εm}.
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8.4 Covering Properties

Let X be a topological space. We shall assume that X is infinite, since all consid-
ered properties are trivial for finite spaces. Let us recall that U ⊆ P(X) is a cover
of X if X =

⋃
U and, to avoid a triviality, we assume that X /∈ U . A cover U

of X is said to be an ω-cover if every finite subset of X lies in some member
of U . An infinite cover U of a topological space X is said to be a γ-cover if every
point x ∈ X lies in all but finitely many members of the cover U . Every γ-cover
is an ω-cover. A γ-cover U is shrinkable, if there exists a closed γ-cover V that is
a refinement of U . We shall denote by O(X), Ω(X), Γ(X) and Γsh(X) the set of
all open covers, open ω-covers, open γ-covers, and open shrinkable γ-covers of X ,
respectively.1

Generally an enumeration of a countable cover need not be one-to-one. Often
we shall need that an enumeration 〈Un : n ∈ ω〉 of a cover U of X is adequate,
i.e., that every element of U occurs only finitely many times in the enumeration.

Note that an ω-cover is always infinite. If you split an ω-cover in two parts,
then at least one of them is an ω-cover. Any infinite subset of a γ-cover is a γ-cover.
Especially any infinite countable subset of a γ-cover is a γ-cover.

Assume now that X has a countable base of topology B. We can assume that
B is closed under finite unions. If U is an open ω-cover of X , then

V = {V ∈ B : (∃U)V ⊆ U ∈ U}

is a countable open ω-cover. If we choose a UV ∈ U , V ⊆ UV for each V ∈ V
then {UV : V ∈ V} is a countable ω-subcover of U . If a γ-cover V is a refinement
of a cover U , then for any U ∈ U the set {V ∈ V : V ⊆ U} is finite. Therefore
from any shrinkable γ-cover we can choose a countable shrinkable γ-subcover.
Moreover, if a γ-cover 〈Vn : n ∈ ω〉 is a refinement of a γ-cover 〈Un : n ∈ ω〉, we
can assume that Vn ⊆ Un for each n. Thus dealing with a space with a countable
base, we can always assume that the corresponding open cover, open ω-cover, open
γ-cover or shrinkable γ-cover is countable. However, the axiom of choice AC has
been essentially used. For convenience, if A(X) is a family of covers of a set X we
denote by Aω(X) the family of all countable covers belonging to A(X).

If U and V are ω-covers, then {U ∩ V : U ∈ U ∧ V ∈ V} is an ω-cover, which
is a common refinement of U and V . If U = 〈Un : n ∈ ω〉 and V = 〈Vn : n ∈ ω〉 are
countable open (closed, shrinkable) γ-covers, then the open (closed, shrinkable)
γ-cover 〈Un ∩ Vn : n ∈ ω〉 is a common refinement of U and V . Thus, dealing with
a sequence of ω-covers, countable γ-covers or countable shrinkable γ-covers, we
can assume that each cover is a refinement of the previous one.

1We have already in Section 5.2 denoted by Γ (X) the set of all subsets of X belonging to
a pointclass Γ . The distinction between the notations Γ (X) and Γ(X) is very small, however we
do not want to introduce a notation different from that used in the set-theoretic topology. We
hope that a reader can always identify it from the context.
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A cover U of X is called essentially infinite if no finite subset of U is a cover
of X . Assume that U = {Un : n ∈ ω} is an essentially infinite cover. Then the
increasing sequence 〈

⋃
i≤n Ui : n ∈ ω〉 is an ω-cover. Moreover, if U is a γ-cover,

then the increasing sequence 〈
⋃
i≤n Ui : n ∈ ω〉 is a γ-cover as well.

A topological space X is called a γ-space if from every open ω-cover of X
one can choose a γ-subcover. Note the following: if X is finite, then there exists
no ω-cover of X and therefore X is trivially a γ-space.
Theorem [AC] 8.90. If X has a countable base of the topology and |X | < p, then
X is a γ-space.

Proof. Let U be an open ω-cover of X . We can assume that U is countable. For
any x ∈ X we write

Ux = {U ∈ U : x ∈ U}.
One can easily see that the family {Ux : x ∈ X} possesses the finite intersection
property. Since the cardinality of this family is smaller than p there exists an
infinite set V ⊆ U such that V \ Ux is finite for every x ∈ X . One can easily check
that V is the desired γ-cover. �
Theorem [AC] 8.91. There exists a subset A of ω2 of cardinality p that is not
a γ-space.

Proof. Let F be the family of subsets of ω of cardinality p with the property
(5.33), i.e., F has f.i.p. and has no pseudointersection. Let A ⊆ ω2 be the set
of all characteristic functions of sets from the family F . Thus, for any finite set
{α0, . . . , αk} ⊆ A, the set {n ∈ ω : α0(n) = · · · = αk(n) = 1} is infinite and, there
is no infinite set E ⊆ ω such that the set {n ∈ E : α(n) = 0} is finite for any
α ∈ A. We claim that A is not a γ-space.

We set Un = {α ∈ ω2 : α(n) = 1}. Then {Un : n ∈ ω} is an open ω-cover
of A. Assume that there exists a sequence {nk}∞k=0 such that {Unk

: k ∈ ω} is a
γ-cover of A. Let E = {nk : k ∈ ω}. If α ∈ A then α ∈ Unk

for all but finitely
many k. Thus the set {n ∈ E : α(n) = 0} is finite, which is a contradiction. �
Theorem [AC] 8.92 (F. Galvin – A.W. Miller). If p = c, then there exists a γ-
space A of cardinality c. Moreover, we can assume that A is c-concentrated on
a countable subset.

Recall that in Section 3.1 we equipped the set P(ω) with the topology ob-
tained by identification of ω2 and P(ω). The family

{{C ⊆ ω : C ∩ n = A} : A ⊆ n ∧ n ∈ ω} (8.15)

is a base of this topology.
If U ⊆ P(ω) is open and U ∩ {C ⊆ ω : C ∩ n = A} �= ∅, then there exist

a finite set B ⊇ A and an integer k ≥ n such that for any m > k we have

{C ⊆ ω : C ∩m = B ∩m} ⊆ U ∩ {C ⊆ ω : C ∩ n = A}.
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Lemma 8.93. Let E ∈ [ω]ω, p ∈ ω, U ⊆ P(ω) being open. If P(p) ⊆ U , then there
exists a q ∈ E, q > p such that

{C ⊆ ω : C ∩ q = B} ⊆ U for every B ∈ P(p).

Thus, if C ∩ [p, q) = ∅, then C ∈ U .

The proof is easy. Since every B ⊆ p belongs to U , there exists a qB > p and a set
AB ⊆ qB such that

B ∈ {C ⊆ ω : C ∩ qB = AB} ⊆ U.

Evidently AB = B. We can assume that all qB have a common value q ∈ E. If
C ∩ [p, q) = ∅, then C ∩ q = B with B = C ∩ p ∈ P(p) and therefore C ∈ U . �

If X ∈ [ω]ω we write

X∗ = {Y ∈ [ω]ω : |Y \X | < ℵ0}.

Lemma 8.94. If U is an open ω-cover of [ω]<ω ⊆ P(ω) and E is an infinite subset
of ω, then there exists a set Z ∈ [E]ω and a γ-cover V ⊆ U of Z∗ ∪ [ω]<ω.

Proof. For a given ω-cover U of [ω]<ω and given E ∈ [ω]ω we construct by induc-
tion an increasing sequence {kn}∞n=0 of elements of E and a sequence {Un}∞n=0 of
elements of U such that Y ∈ Un for any Y ⊆ ω satisfying Y ∩ [kn + 1, kn+1) = ∅.

Let k0 be any element of E. Assume that U0, . . . , Un−1 and k0, . . . , kn are
constructed. Since U is an ω-cover of [ω]<ω, there exists a Un ∈ U such that
P(kn+ 1) ⊆ Un. By Lemma 8.93 there exists a kn+1 ∈ E, kn+1 > kn+ 1 such that

{X ⊆ ω : X ∩ kn+1 = B} ⊆ Un

for every B ∈ P(kn + 1). Then Y ∈ Un for any Y disjoint with [kn + 1, kn+1).
We claim that V = {Un : n ∈ ω} is a γ-cover of Z∗, where Z = {kn : n ∈ ω}.

Actually, if Y ∈ Z∗ then Y \Z ⊆ kn for some n. But then Y ∩ [km + 1, km+1) = ∅
for all m ≥ n and therefore Y ∈ Um. If Y ⊆ ω is finite, then Y ∈ Um provided
that km > maxY . �

Proof of Theorem 8.92. We assume that p = c and 〈Uξ : ξ < c〉 is an enumeration
of all countable families of open subsets of P(ω). We construct an almost decreasing
sequence 〈Xξ ⊆ ω : ξ < c〉 such that {Xξ : ξ < c} ∪ [ω]<ω will be a γ-set.

At a limit stage ξ using the assumption p = c we find a set Xξ such that
Xξ \Xη is finite for every η < ξ.

If Xη are constructed for every η ≤ ξ we shall distinguish three cases.
a) If Uξ is not an ω-cover of [ω]<ω, we continue as above: take an infinite set

Xξ+1 almost contained in all 〈Xη : η ≤ ξ〉.
b) If Uξ is an ω-cover of [ω]<ω, but it is not an ω-cover of {Xη : η ≤ ξ}∪[ω]<ω ,

then by Lemma 8.94 there exists a set Xξ+1 ∈ [Xξ]ω and a γ-cover V ⊆ U of the set
X∗
ξ+1 ∪ [ω]<ω.
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c) If Uξ is an ω-cover of {Xη : η ≤ ξ} ∪ [ω]<ω, then by Theorem 8.90 there
exists a γ-coverW ⊆ Uξ of this set. Since W is also an ω-cover of [ω]<ω, by Lemma
8.94 there exists a set Xξ+1 ∈ [Xξ]ω and a γ-cover V ⊆ W of X∗

ξ+1. Since V is
an infinite subcover of a γ-cover of {Xη : η ≤ ξ} ∪ [ω]<ω, we obtain that V is also
a γ-cover of {Xη : η ≤ ξ} ∪X∗

ξ+1 ∪ [ω]<ω.
We claim that A = {Xη : η < c} ∪ [ω]<ω is a γ-set. Note first that for any

ξ < c we have
A ⊆ {Xη : η ≤ ξ} ∪X∗

ξ+1 ∪ [ω]<ω.

Now, let U be a countable open ω-cover of A. Then there exists a ξ < ω1 such
that U = Uξ. Since U is also an ω-cover of the γ-set [ω]<ω ∪ {Xη : η ≤ ξ},
then by part c) of the construction there exists a γ-cover V ⊆ Uξ of the set
{Xη : η ≤ ξ} ∪X∗

ξ+1 ∪ [ω]<ω.
We show that the set A is c-concentrated on [ω]<ω. Let U ⊇ [ω]<ω be an

open set. It is easy to find an increasing sequence of open sets 〈Un : n ∈ ω〉 such
that U =

⋃
n Un. Then U = {Un : n ∈ ω} is an ω-cover of [ω]<ω. Therefore U = Uξ

for some ξ < c and case b) or c) occurs.
In case b) we have a γ-cover V ⊆ U of X∗

ξ+1 ∪ [ω]<ω. So we obtain that
A \ U ⊆ {Xη : η ≤ ξ} and therefore |A \ U | < c. In case c) we have a γ-cover
V ⊆ U of X∗

ξ+1 and {Xη : η ≤ ξ} ∪ [ω]<ω ⊆ U . Therefore A \ U = ∅. �

Now we shall consider so-called covering selection principles. LetA(X), B(X)
be families of covers of a topological space X . X is said to be an S1(A,B)-space
if for every sequence 〈Un : n ∈ ω〉 of covers from A(X) there exist sets Un ∈ Un
such that {Un : n ∈ ω} is a cover belonging to B(X).

Theorem 8.95. Assume that the families A(X) and B(X) of open covers have the
following property:

i) if V ∈ B(X) is a refinement of an open cover U , then there exists a subcover
of U which belongs to B(X),

ii) every two covers of A(X) have a common refinement which belongs to A(X).

Then X is an S1(A,B)-space if and only if for every sequence {Un}∞n=0 of covers
from A(X) such that Un+1 is a refinement of Un for every n, there exist sets
Un ∈ Un such that {Un : n ∈ ω} is a cover belonging to B(X).

The proof is immediate. �

Note that the families of covers O(X), Ω(X), Γ(X), and Γsh(X) satisfy both
conditions of the theorem.

Theorem [AC] 8.96 (J. Gerlits – Z. Nagy). A topological space X is a γ-space if
and only if X is an S1(Ω,Γ)-space.

Proof. Evidently any S1(Ω,Γ)-space is a γ-space: take for Un the same ω-cover for
each n.
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Since X is infinite, we choose distinct 〈xn ∈ X : n ∈ ω〉. Let 〈Un : n ∈ ω〉 be
a sequence of ω-covers. By Theorem 8.95 we can assume that Un+1 is a refinement
of Un for every n. Then

U = {U \ {xn} : U ∈ Un ∧ n ∈ ω}

is an ω-cover. Since X is a γ-space, there exists a γ-subcover {Vk : k ∈ ω} ⊆ U .
Let nk be such that Vk = U \ {xnk

}, where U ∈ Unk
. If {x0, . . . , xn} ⊆ Vk, then

nk > n. Thus the set {nk : k ∈ ω} is infinite and therefore we can assume that
the sequence {nk}∞k=0 is increasing and n0 = 0. For any m < nk, m ≥ nk−1, k > 0
take Um ∈ Um such that Vk ⊆ Um \ {xnk

}. One can easily see that {Um : m ∈ ω}
is a γ-cover. �

Since a γ-cover is an ω-cover as well, we obtain

Corollary [AC] 8.97. A topological γ-space X is an S1(Γ,Γ)-space.

A topological space 〈X,O〉 has the Menger Property if for every sequence
〈Un : n ∈ ω〉 of essentially infinite countable open covers of X there exist finite
subsets 〈Vn ⊆ Un : n ∈ ω〉 such that {

⋃
Vn : n ∈ ω} is a cover of X . Similarly,

we say that a topological space 〈X,O〉 has the Hurewicz Property if for every
sequence 〈Un : n ∈ ω〉 of essentially infinite countable open covers of X there exist
finite subsets 〈Vn ⊆ Un : n ∈ ω〉 such that {

⋃
Vn : n ∈ ω} is a γ-cover. Evidently

a space with the Hurewicz Property has also the Menger Property. A compact
space X has trivially both Menger and Hurewicz Properties, since there is no
essentially infinite open cover of X . It is easy to see that a σ-compact space has
both Menger and Hurewicz Properties as well.

We note that the Menger and Hurewicz Properties are usually defined with-
out the restriction to countable covers. However, we deal mainly with subsets of
Polish spaces and in this case the definitions are equivalent.

Theorem [AC] 8.98. A topological S1(Γ,Γ)-space has the Hurewicz Property.

Proof. Assume that 〈{Un,m : m ∈ ω} : n ∈ ω〉 is a sequence of essentially infinite
countable open covers of a topological space X . If Vn,m =

⋃
i≤m Un,i, then the

family {Vn,m : m ∈ ω} is a γ-cover of X . By definition there exists a sequence
{mn}∞n=0 such that {Vn,mn : n ∈ ω} is a γ-cover. Setting Vn = {Un,i : i ≤ mn} we
obtain a γ-cover {

⋃
Vn : n ∈ ω} witnessing the Hurewicz Property. �

Corollary [AC] 8.99. A γ-space has the Hurewicz Property.

Lemma [wAC] 8.100. If a subset A of a Polish space has the Hurewicz Property
and Int(A) = ∅, then A is meager.

Proof. Since Int(A) = ∅, there exists a dense set {rn : n ∈ ω} disjoint with A. Let

Un,k = X \ Ball(rn, 1/(k + 1)), Un = {Un,k : k ∈ ω}.
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Evidently Un is an increasing open cover of A. By the Hurewicz Property there
exist natural numbers 〈km : m ∈ ω〉 such that A ⊆

⋃
n

⋂
m≥n Um,km . Since the

sets ⋂

m≥n
Um,km ⊆ (X \

⋃

m≥n
Ball(rm, 1/(km + 1)))

are nowhere dense, the set A is meager. �

Theorem [AC] 8.101. An ℵ1-Luzin subset of a perfect Polish space has the Menger
property. A κ-Luzin set does not have the Hurewicz Property.

Proof. Assume that L ⊆ X is an ℵ1-Luzin set. Let {rn : n ∈ ω} be a dense subset
of L. Let {Un}∞n=0 be a sequence of countable open covers of L. For every n there
exists a Un ∈ Un such that rn ∈ Un. Since L \

⋃
n Un is closed nowhere dense,

L \
⋃
n Un is countable, say {qn : n ∈ ω}. Then there are sets Vn ∈ Un such that

qn ∈ Vn. Set Vn = {Un, Vn}.
The second assertion follows by Lemma 8.100. �

A subset A of a topological space X has the Rothberger Property or the
Property C′′ if for every sequence 〈Un : n ∈ ω〉 of open covers of A there exist sets
Un ∈ Un such that {Un : n ∈ ω} is a cover of A, i.e., if A is an S1(O,O)-space.
Note that a set with the Rothberger Property has also the Menger Property.
Theorem 8.102. A subset of a metric space with the Rothberger Property has strong
measure zero.

Proof. If 〈εn > 0 : n ∈ ω〉 are given, we let the cover Un be the set of all open
balls of diameter less than εn. �

Corollary 8.103. Neither Cantor middle-third set C nor [0, 1] has the Rothberger
property.

Since a continuous image of a set with the Rothberger Property is evidently
a set with the Rothberger Property, by Theorem 8.22 we obtain
Corollary [AC] 8.104. A completely regular space with the Rothberger Property
has a clopen base. Hence, a metric separable space with Rothberger Property is
homeomorphic to a set of reals.

Theorem [AC] 8.105. Any set concentrated on a countable subset has the Roth-
berger Property.

Proof. If 〈Un,m : m ∈ ω〉, n ∈ ω are open covers of A and A is concentrated
on a countable set {xn : n ∈ ω}, then one can choose integers m2n such that
xn ∈ U2n,m2n . Then A \

⋃
n U2n,m2n is countable and one can choose m2n+1 such

that A ⊆
⋃
n Un,mn . �

By Theorem 8.30 we obtain
Corollary [AC] 8.106. An ℵ1-Luzin set has the Rothberger Property.
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Corollary [AC] 8.107 (A.S. Besicovitch). If add(M) = c, then there exists a strong
measure zero set A of reals of cardinality c that is not concentrated on any countable
set.

Proof. By Rothberger’s Theorem 8.21 there exists a set A of reals of cardinality c
that is c-concentrated on rationals and can be continuously mapped onto Cantor
space ω2. Since add(M) = c, by Corollary 8.20 the set A has strong measure
zero. Since a continuous image of a set with the Rothberger Property has the
Rothberger Property as well, the set A does not possess the Rothberger Property.
Therefore the set A is not concentrated on any countable set. �
Theorem [wAC] 8.108 (D.H. Fremlin – A.W. Miller). Assume that 〈X,O〉 is a sep-
arable metrizable topological space. Then X has the Rothberger Property if and
only if X has strong measure zero with respect to any metric compatible with the
topology O.

Proof. The implication from left to right follows by Theorem 8.102.
Assume that X has strong measure zero with respect to any metric compat-

ible with the topology O. Let 〈Un : n ∈ ω〉 be a sequence of open covers of X .
By Theorem 8.12, c) there exists a countable clopen base B of the topology O.
Let ρ be a metric on X compatible with the topology O. One can easily construct
a sequence of countable clopen partitions 〈Vn : n ∈ ω〉 of X such that every Vn+1

is a refinement of both Un+1 and Vn, and any V ∈ Vn has ρ-diameter less than
2−n. We let σ(x, y) = 2−n, where n is the least integer such that

(∀U, V ∈ Vn) ((x ∈ U ∧ y ∈ V → U �= V ).

One can easily see that σ is a metric. Moreover, if 2−n < ε and x ∈ V ∈ Vm we
have

Ballσ(x, 2−n) ⊆ Ballρ(x, ε), V ⊆ Ballσ(x, 2−m).

Thus, the metric σ induces the same topology as the metric ρ, i.e., O.
Since X has strong measure zero with respect to metric σ, there exist sets

Vn ∈ Vn of σ-diameters less than 2−n such that
⋃
n Vn = X . Choosing Un ∈ Un

with Vn ⊆ Un, we are ready. �
Theorem [AC] 8.109 (J. Gerlits – Z. Nagy). A γ-space has the Rothberger Property.

Proof. Let 〈Un : n ∈ ω〉 be a sequence of open covers of a topological space X .
We can assume that each Un+1 is a refinement of Un. Fix a sequence {xn}∞n=0 of
distinct elements of X . Set

Vn =
{⋃

k≤2n
Uk \ {xn} : Uk ∈ Un2+k for k = 0, . . . , 2n

}
.

We claim that V =
⋃
n Vn is an ω-cover. Actually, if Y = {y0, . . . , ym} is a finite

subset of X , then take n such that m ≤ 2n+ 1 and xn /∈ Y . Then one can easily
find a set V ∈ Vn with Y ⊆ V .
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Since X is a γ-space, there exists a countable γ-subcover {Vn : n ∈ ω} of V .
Let kn be such that Vn ∈ Vkn . Since xkn /∈ Vn we can assume that kn < kn+1 for
any n. By definition, for every n there exist sets Uk2

n+i ∈ Uk2
n+i, i ≤ 2kn such that

Vn =
⋃
i≤2kn

Uk2
n+i \ {xkn}.

One can easily see that {Uk2
n+i : n ∈ ω ∧ i ≤ 2kn} is a cover of X . �

By Theorem 8.102 we obtain
Corollary [AC] 8.110. A γ-subspace of a metric space has strong measure zero.
Theorem [AC] 8.111 (F. Rothberger). Any topological space X with a countable
base of size |X | < cov(M) has the Rothberger Property.

We begin with a lemma which is actually one implication of Theorem 7.66.
Lemma [AC] 8.112. If A ⊆ ωω is such that

(∀α ∈ ωω)(∃β ∈ A) (α, β are eventually different), (8.16)

then |A| ≥ cov(M).

Proof. For a β ∈ ωω we set Eβ = {α ∈ ωω : α, β are eventually different}. By
simple computation one can easily see that every Eβ is meager. By (8.16) we
obtain that ωω =

⋃
β∈AEβ . Hence |A| ≥ cov(M). �

Proof of the theorem. Let |X | < cov(M) be a topological space with a countable
base, 〈Un = {Un,m : m ∈ ω} : n ∈ ω〉 being a sequence of open covers of X .

For every x ∈ X choose a βx ∈ ωω such that x ∈
⋂
n Un,βx(n). Let us consider

the set A = {βx ∈ ωω : x ∈ X}. Since |A| < cov(M), by the lemma there exists
an α such that

(∀x ∈ X)(∀m)(∃n > m)α(n) = βx(n).

Then {Un,α(n) : n ∈ ω} is a cover of X . Actually, if x ∈ X , then there exists
an m ∈ ω such that α(m) = βx(m). Thus

x ∈
⋂

n

Un,βx(n) ⊆ Um,βx(m) = Um,α(m). �

It is easy to see that a set A ⊆ ωω satisfying (8.16) does not have the
Rothberger Property (take Un,m = {α : α(n) = m}). Thus by Theorem 7.66 we
obtain that

non(C′′) = cov(M).
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Exercises

8.20 [AC] ω-covers

Let (ε) denote the following property of a topological space X: any open ω-cover of
X contains a countable ω-subcover. Recall that X is Lindelöf if any open cover of X
contains a countable subcover, see Exercise 1.19.

a) If X has the property (ε), then X is Lindelöf.

Hint: If U is an open cover, consider the ω-cover {
⋃
V : V ∈ [U ]<ω}.

b) If U is an open cover of Xk, then

G = {G ⊆ X : G open ∧ (∃V ∈ [U ]<ω)Gk ⊆
⋃
V}

is an ω-cover of X.

Hint: If A ⊆ X is finite, find finite V ⊆ U such that Ak ⊆
⋃
V. For every x ∈ A

take a sufficiently small open set Gx such that Gx1 × · · · × Gxk ⊆
⋃
V for any

x1, . . . , xk ∈ A. Then
⋃

x∈A Gx ∈ G.

c) If X has the property (ε), then Xk is Lindelöf for every k.

d) If U is an ω-cover of X then Uk = {Uk : U ∈ U} is an ω-cover of Xk.

e) If Xk is Lindelöf for every k, then X has the property (ε).

Hint: For every k > 0 find a countable Vk ⊆ U such that Vk
k is a countable subcover

of Uk. Then
⋃

k Vk is an ω-cover.

f) X has the property (ε) if and only if Xk is Lindelöf for every k.

g) Property (ε) is preserved under passing to closed subspaces and under continuous
images.

8.21 [AC] γ-space

a) Prove directly that every γ-space is a wQN-space.

Hint: Let {xn : n ∈ ω} be infinite. Set Un,m = {x ∈ X : |fm(x)| < 1/(n+1)}\{xn}
and show that {Un,m : n ≤ m} is an ω-cover of X.

b) An Fσ subset of a γ-space is a γ-space.

Hint: If F =
⋃

n Fn, 〈Fn : n ∈ ω〉 non-decreasing, U an ω-cover of F , set

U∗ = {U ∪ (X \ Fn) : U ∈ U ∧ n ∈ ω}.

c) A continuous image of a γ-space is a γ-space.

8.22 [AC] S1(Γ,Γ) and S1(Γ
sh,Γ)

We suppose that the considered space has a countable base.

a) Show that S1(Γω,Γ) = S1(Γ,Γ).

b) If X is an S1(Γ,Γ)-space and 〈{Un,k : k ∈ ω} : n ∈ ω〉 is a sequence of γ-covers of
X, then there exists an increasing sequence {mn}∞n=0 such that {Un,mn : n ∈ ω} is
a γ-cover.

Hint: Apply S1(Γ,Γ) to covers 〈{Uλ(n),n+m : m ∈ ω} : n ∈ ω〉, where λ is the left
inverse to a pairing function.



8.4. Covering Properties 341

c) If X =
⋃

s∈S Xs, |S| < h, each Xs is an S1(Γ,Γ)-space then X is an S1(Γ,Γ)-space.

Hint: Let 〈Un = {Un,k : k ∈ ω} : n ∈ ω〉 be γ-covers of X. Set

Hs = {E ∈ [ω]ω : {Un,eE(n) : n ∈ ω} is a γ-cover of Xs}.

The set Hs is dense in 〈[ω]ω,⊆∗〉. Compare the proof of Theorem 8.61.

d) An Fσ subset of an S1(Γ,Γ)-space is an S1(Γ,Γ)-space.

e) Every shrinkable γ-cover contains a countable shrinkable γ-subcover.

Hint: If V is a closed γ-cover refining a γ-cover U, then {U ∈ U : (∃V ∈ V)V ⊆ U}
is a γ-cover. Take a countable subcover of it.

f) S1(Γ
sh,Γ) = S1(Γ

sh
ω ,Γ).

8.23 [AC] S1(A,B)

We suppose that the families of covers A and B satisfy conditions of Theorem 8.95.

A cover V is a regular refinement of a cover U , if for every V ∈ V there exists
a U ∈ U such that V ⊆ U . A topological space X has the property S1(A,B), if for every
sequence of covers 〈Un ∈ A : n ∈ ω〉 such that every Un+1 is a regular refinement of Un,
there exist 〈Un ∈ Un : n ∈ ω〉 such that {Un : n ∈ ω} ∈ B.

a) If a cover U has a regular refinement, then U is shrinkable.

b) S1(A,B) → S1(A,B).

c) If A consists of clopen covers then S1(A,B) → S1(A,B).

8.24 [AC] Ufin(A,B)

Assume that X has a countable base. X is a Ufin(A,B)-space if for any sequence {Un}∞n=0

of essentially infinite A-covers of X there exist finite Vn ⊆ Un such that {
⋃
Vn : n ∈ ω}

is a B-cover.

a) If every A1-cover is also an A2-cover then Ufin(A2,B)→ Ufin(A1,B).

b) If every B1-cover is also a B2-cover then Ufin(A,B1)→ Ufin(A,B2).

c) Show that an analogue of Theorem 8.95 holds true for the property Ufin(A,B).

d) An Ufin(O,O)-space is Lindelöf.

e) For a Lindelöf topological space X the following are equivalent:

(i) X has the Menger Property.

(ii) X is a Ufin(Γ,O)-space.

(iii) X is a Ufin(Γ,Λ)-space.

f) For a Lindelöf topological space X the following are equivalent:

(i) X has the Hurewicz Property.

(ii) X is a Ufin(O,Γ)-space.

(iii) X is a Ufin(Γ,Γ)-space.

8.25 [AC] Menger and Hurewicz Properties

If 〈{Un,m : m ∈ ω} : n ∈ ω〉 is a sequence of countable open covers of a topological
space X, then we define a mapping f : X −→ ωω as

f(x)(n) = min{m : x ∈ Un,m}. (8.17)
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a) No dominating subset of ωω has the Menger Property.

Hint: Use the functions (8.10).

b) Every topological space of size less than d has the Menger Property.

Hint: Use the mapping (8.17).

c) non(Menger Property) = d.

d) non(Hurewicz Property) = b.

Hint: Similarly as in a)–b).

8.26 [AC] Rothberger Property

a) A subset A of a Polish space has the Rothberger Property C′′ if and only if A is
zero-dimensional and every continuous image of A in ωω has the Property C′′.

Hint: If Un,m are clopen, then mappings defined by (8.17) are continuous.

b) non(C′′) is the size of the smallest subset of ωω which does not have the Rothberger
Property C′′.

c) If X is a Lindelöf topological space, then the following are equivalent:

i) X has the Rothberger Property.

ii) X is an S1(Λ,O)-space.

iii) X is an S1(Λ,Λ)-space.

iv) X is an S1(Ω,O)-space.

v) X is an S1(Ω,Λ)-space.

d) add(N ) ≤ add(C′′) for any separable metric space X.

Hint: See Exercise 8.2 and Theorem 8.108.

8.5 Coverings versus Sequences

Witold Hurewicz [1927] was probably the first who showed that sequence conver-
gence properties of real continuous functions defined on a metric space X , namely
the above-introduced H∗ and H∗∗, are equivalent to covering properties of X .
Theorem [AC] 8.113 (W. Hurewicz). Let X be a perfectly normal space. Then

a) X has the property H∗ if and only if X has the Menger Property,
b) X has the property H∗∗ if and only if X has the Hurewicz Property.

Proof. Let 〈{Un,k : k ∈ ω} : n ∈ ω〉 be a sequence of countable open covers of X .
We can assume that Un,k �= ∅ for every n, k. Let fn,k : X −→ [0, 1] be a continuous
function such that Z(fn,k) = X \ Un,k. Set

fn =
∞∑

k=0

2−k · fn,k.

Then fn is continuous and fn(x) > 0 for every x ∈ X .
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Assume that the space X has the property H∗. Then there exists a sequence
{an}∞n=0 of positive reals such that

(∀x ∈ X)(∀m)(∃n > m) 1/fn(x) < an.

Let kn be such that ∑

i>kn

2−i < 1/an. (8.18)

Set Vn = {Un,i : i ≤ kn}.
If x ∈ X , then there exists an n such that fn(x) > 1/an. For such an n we

have ∑

i≤kn

2−i · fn,i(x) > 0.

Thus x ∈ Un,i for some i ≤ kn and therefore x ∈
⋃
Vn. Hence {

⋃
Vn : n ∈ ω} is

a cover of X .
Assume now that the space X possesses the property H∗∗. Then there exists

a sequence {an}∞n=0 of positive reals such that {1/fn(x)}∞n=0 ≤∗ {an}∞n=0 for any
x ∈ X . Let kn and Vn be as above. If fn(x) ≥ 1/an, then

∑kn

i=0 2−i · fn,i(x) > 0
and therefore x ∈

⋃
Vn. Since for any x ∈ X , fn(x) ≥ 1/an for all but finitely

many n, also x ∈
⋃
Vn for all but finitely many n. Thus {

⋃
Vn : n ∈ ω} is a γ-cover

of X .
Now, let {fn}∞n=0 be a sequence of continuous real functions defined on

the topological space X . Set Un,m = {x ∈ X : |fn(x)| < m}. Then for every n,
Un = {Un,m : m ∈ ω} is an open cover of X . Moreover, Un,m ⊆ Un,m+1 for any
n,m. Thus the union of any finite subset of Un is equal to its largest element. Also
Un,k = {Un,m : m ≥ k} is a cover.

Let us assume that X has the Menger Property and consider the sequence
of covers 〈Wn = Uρ(n),λ(n) : n ∈ ω〉, where λ, ρ are the inverse functions to the
pairing function π. Then there exist finite sets Vn ⊆ Wn such that {

⋃
Vn : n ∈ ω}

is a cover of X . Since
⋃
Vn = Uρ(n),mn

for some mn ≥ λ(n), we obtain for every
x ∈ X that |fn(x)| < mn for infinitely many n.

If X has the Hurewicz Property, then there exist finite subsets Vn ⊆ Un such
that {

⋃
Vn : n ∈ ω} is a γ-cover of X . Then for every x ∈ X we have |fn(x)| < mn

for all but finitely many n. �
Corollary [AC] 8.114. A γ-space has the property H∗∗.

Proof. Note that the last part of the proof of the theorem works for any topological
space and use Corollary 8.98. �

Another result of this type is the characterization of topological spaces for
which Cp(X) is a Fréchet space. Actually we have
Theorem [AC] 8.115 (J. Gerlits – Z. Nagy). A completely regular topological space
X is a γ-space if and only if the topological space Cp(X) is Fréchet.
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Proof. If X is finite, then the assertion is trivial.
So let X be an infinite completely regular topological space. Fix a sequence

of mutually distinct elements 〈xn ∈ X : n ∈ ω〉. For h ∈ Cp(X) and n ∈ ω we
write

Uh,n = {x ∈ X : |h(x)| < 2−n ∧ x �= xn}.

Evidently Uh,n is an open set.
Assume that X is a γ-space. Let A ⊆ Cp(X), f ∈ A. We can assume that

f /∈ A. We shall find gk ∈ A, k ∈ ω such that gk → f on X .
We start with showing that the family

U = {Uf−g,n : n ∈ ω, g ∈ A}

is an open ω-cover of X .
Let y0, . . . , yk ∈ X be given. Take an n such that xn �= y0, . . . , yk. We consider

the basic neighborhood

V = {h ∈ Cp(X) : |h(yi)− f(yi)| < 2−n for i = 0, . . . , k} (8.19)

of f in Cp(X). Since f ∈ A there exists a g ∈ V ∩ A. Then we have yi ∈ Uf−g,n
for i = 0, . . . , k. Thus, U is an ω-cover.

Now, let G = {Gk : k ∈ ω} be a countable γ-subcover of U . Then there are
gk ∈ A and nk ∈ ω such that

Gk = Uf−gk,nk
for each k ∈ ω.

We claim that f = limk→∞ gk on X .
We start with showing that limk→∞ nk = ∞. Actually if not, then there

exists a natural number m such that nk = m for infinitely many k. Thus xm /∈ Gk
for infinitely many k contradicting the assumption that G is a γ-cover.

For given x ∈ X and ε > 0, one can easily find a k0 such that 2−nk < ε and
x ∈ Gk for k ≥ k0. Then |f(x)− gk(x)| < ε for every k ≥ k0.

Assume now that Cp(X) is Fréchet space. Let U be an open ω-cover of X .
We set

A = {f ∈ Cp(X) : (∃U ∈ U) {x ∈ X : |f(x)| < 1} ⊆ U}.

We show that 0 ∈ A. Actually, let V be a basic neighborhood of f = 0 of the form
(8.19). Since U is an ω-cover there exists a U ∈ U such that y0, . . . , yk ∈ U . Since
X is completely regular, there exists a function h ∈ Cp(X) satisfying h(yi) = 0
for i = 0, . . . , k and h(x) = 1 for x ∈ X \ U . Then h ∈ A ∩ V .

Since Cp(X) is a Fréchet space, there exists a sequence 〈fn ∈ A : n ∈ ω〉
such that limn→∞ fn = 0. By definition of the set A, for every n there exists
a set Un ∈ U such that {x ∈ X : |fn(x)| < 1} ⊆ Un. One can easily see that
{Un : n ∈ ω} is an open γ-cover of X : if x /∈ Un, then |fn(x)| ≥ 1. �
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Hence, by Corollary 8.65 we have:
Corollary [AC] 8.116. A completely regular γ-space is a wQN-space.

By Theorem 8.74 we obtain:
Corollary [AC] 8.117. A metric separable γ-space is perfectly meager.

Now we show similar relationships between wQN-spaces and QN-spaces and
covering properties. We begin with wQN-spaces.
Lemma 8.118. Every S1(Γsh,Γ)-space is a wQN-space.

Proof. Assume that 〈fn : n ∈ ω〉 are continuous, fn → 0 on X . We can assume
that fn(x) > 0 for every x ∈ X and every n (if not, take |fn|+ 2−n). We define

Un,m = {x ∈ X : fm(x) < 2−n}, Un = {Un,m : m ∈ ω}. (8.20)

If X /∈ Un, then Un is a γ-cover of X . Consider the set L = {n ∈ ω : X /∈ Un}. If
n,m ∈ L, m > n, then the closed γ-cover {U : U ∈ Um} is a refinement of Un.

If ω \L = {nk : k ∈ ω} is infinite, then there exists a sequence {mk}∞k=0 such
that Unk,mk

= X for every k. If the sequence {mk}∞k=0 is bounded then mk = m
for infinitely many k and therefore fm = 0 – a contradiction. Thus we can assume
that both sequences {nk}∞k=0 and {mk}∞k=0 are increasing. Since fmk

(x) < 2−nk

for every x ∈ X we obtain that fmk
⇒ 0 on X .

Assume now that ω \ L is finite. Omitting finitely many members we can
assume that L = ω. Then Un is a shrinkable γ-cover for every n. Since X is
a S1(Γsh,Γ)-space there exist Vn ∈ Un such that {Vn : n ∈ ω} is a γ-cover. Let
mn be such that Vn = Un,mn . Assume that the sequence {mn}∞n=0 is bounded.
Then mn = m for infinitely many n. Take any x ∈ X . Since {Un,mn : n ∈ ω} is
a γ-cover we obtain x ∈ Un,m for infinitely many n. Then fm(x) = 0, which is
a contradiction. Thus, we can assume that {mn}∞n=0 is increasing. Then one can

easily see that fmn

QN−→ 0 on X with the control {2−n}∞n=0. �

Corollary 8.119 (M. Scheepers). Every S1(Γ,Γ)-space is a wQN-space.
Theorem [AC] 8.120 (L. Bukovský – J. Haleš). A normal topological space X is
a wQN-space if and only if X is an S1(Γsh,Γ)-space.

Proof. Assume that a normal space X is wQN. Let 〈Un : n ∈ ω〉 be a sequence
of shrinkable γ-covers. Without loss of generality we can assume that every Un is
countable, thus Un = {Un,m : m ∈ ω}. Moreover, by Theorem 8.95 we can assume
that every Un+1 is a refinement of Un. Let Vn = {Vn,m : m ∈ ω} be a closed
γ-cover refining Un. We can assume that Vn,m ⊆ Un,m for every n,m ∈ ω. Since X
is normal, by the Urysohn Theorem 3.15, for every n,m, there exists a continuous
function fn,m : X −→ [0, 1] such that fn,m(x) = 0 for x ∈ Vn,m and fn,m(x) = 1
for x ∈ X \ Un,m.

Assume x ∈ X , n ∈ ω. Since {Vn,m : m ∈ ω} is a γ-cover, there exists an m0

such that x ∈ Vn,m for every m ≥ m0. Thus fn,m(x) = 0 for every m ≥ m0. Hence
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fn,m → 0 on X for every n. By Theorem 8.64 the space Cp(X) has the sequence
selection property and therefore there exists an increasing sequence {mn}∞n=0 such
that fn,mn → 0 on X .

We claim that {Un,mn : n ∈ ω} is a γ-cover of X . Actually, if x ∈ X then
there exists an n0 such that fn,mn(x) < 1 for every n ≥ n0. Then x ∈ Un,mn for all
but finitely many n. We need to show that {Un,mn : n ∈ ω} is infinite. However, if
this set were finite, then Un,mn = U �= X for infinitely many n and any x ∈ X \U
does not belong to infinitely many Un,mn , which is a contradiction. �

Theorem [AC] 8.121. non(S1(Γ,Γ)) = b.

Proof. By Corollaries 8.62 and 8.119 we have non(S1(Γ,Γ)) ≤ b.
Assume that |X | < b. Let 〈{Un,m : m ∈ ω} : n ∈ ω〉 be a sequence of γ-covers

of X . For every x ∈ X we define a βx ∈ ωω as

βx(n) = min{m : (∀k ≥ m)x ∈ Un,k}. (8.21)

Since the family {βx : x ∈ X} ⊆ ωω is eventually bounded, there exists a γ ∈ ωω
such that βx ≤∗ γ for every x ∈ X . One can easily see that {Un,γ(n) : n ∈ ω} is
a γ-cover. �

We show that there exists an uncountable S1(Γ,Γ)-space even if b = ℵ1. We
begin with a technical result.

Lemma [AC] 8.122. Assume that 〈Un = {Un,m : m ∈ ω} : n ∈ ω〉 is a sequence
of γ-covers of a topological space X such that each Un+1 is a refinement of Un,
Y ⊆ X, α ∈ ωω is increasing and such that {Vn = Un,α(n) : n ∈ ω} is a γ-cover of
X\Y . If |Y | < b, then there exists an increasing γ ∈ ωω such that {Un,γ(n) : n ∈ ω}
is a γ-cover of X.

Proof. For each x ∈ Y let βx(n) = min{m : (∀k ≥ m)x ∈ Un,k}. Since |Y | < b,
there exists an increasing sequence β ∈ ωω dominating each βx, x ∈ Y .

Since α is increasing, for every n there exist an m ≥ n and a k ≥ β(n) such
that Vm = Um,α(m) ⊆ Un,k. Set δ(n) = m and γ(n) = k. We can do everything in
such a way that both sequences δ and γ are increasing.

Since Vδ(n) ⊆ Un,γ(n) for every n, each x ∈ X \ Y is contained in all but
finitely many Un,γ(n). If x ∈ Y , then there exists an n0 such that βx(n) ≤ β(n)
for any n ≥ n0. Then x ∈ Un,γ(n) for every n ≥ n0. �

As usual we identify the set P(ω) with Cantor space ω2. The set [ω]<ω is
topologically dense in P(ω) and can be considered as “the set of rationals” of
Cantor space ω2. A base of the topology of P(ω) is described by (8.15).

Theorem [AC] 8.123. If t = b, then there exists a set of reals X ⊆ ω2 of cardinality
b such that X is an S1(Γ,Γ)-space, therefore also a wQN-space, and X \ [ω]<ω is
not a wQN-space. Hence X is not a QN-space nor is it a λ-space.
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Proof. Let κ = t = b. By Theorem 5.51 there exists a tower 〈Aξ : ξ < κ〉 such
that the family of functions {eAξ

: ξ < κ} is unbounded in ωω. We show that the
set X = [ω]<ω ∪ {Aξ : ξ < κ} ⊆ P(ω) is an S1(Γ,Γ)-space.

Let us consider a K ∈ [ω]ω. We show that there exists a ξ < κ such that the
set [eAξ

(n), eAξ
(n+ 1)) ∩K has at least two elements for infinitely many n.

Assume not. Then for every ξ there exists an nξ ≥ eAξ
(0) such that the

intersection K ∩ [eAξ
(n), eAξ

(n + 1)) has at most one element for every n ≥ nξ.
Then eAξ

≤∗ eK\L for some finite L. Evidently there exists a g ∈ ωω such that
eK\L for any L ∈ [ω]<ω. Then g dominates eAξ

for every ξ < κ, a contradiction.
Next we show the following: if 〈Un = {Un,m : m ∈ ω} : n ∈ ω〉 is a sequence

of γ-covers of X such that each Un+1 is a refinement of Un, then there exist a set
Y ⊆ X , |Y | < κ, and increasing α ∈ ωω such that {Vn = Un,α(n) : n ∈ ω} is
a γ-cover of X \ Y . Then by Lemma 8.122 we obtain that X is an S1(Γ,Γ)-space.

We construct a γ-cover {Vn = Un,α(n) : n ∈ ω} of [ω]<ω and an increasing
sequence {kn}∞n=0. Assume that α(i), i < n and ki, i ≤ n are already defined.
Since Un is an ω-cover, there exists an α(n) such that P(kn + 1) ⊆ Un,α(n). By
Lemma 8.93 there exists a kn+1 > kn such that

{A ⊆ ω : A ∩ kn+1 = B ∩ kn+1} ⊆ Un,α(n)

for any B ∈ P(kn + 1). Then A ∈ Un,α(n) for any A disjoint with [kn + 1, kn+1).
By Lemma 8.94, for K = {kn : n ∈ ω} there exists a ξ < κ, an infinite L ⊆ ω and
an increasing sequence {mn}∞n=0 such that eAξ

(mn) ≤ kn < kn+1 < eAξ
(mn+1)

for n ∈ L. Then Aη ∈ Vn for all η ≥ ξ and for all but finitely many n ∈ L. Thus
{Vn : n ∈ L} is a γ-cover of X \ {Aζ : ζ < ξ}.

Since the mapping F : [ω]ω −→ ωω defined as F (A) = eA is continuous
and the image F ({Aξ, ξ < κ}) is unbounded in ωω, by Theorem 8.72 the set
X \ [ω]<ω = {Aξ, ξ < κ} is not a wQN-space. By Theorem 8.61 d), the set [ω]<ω

is not Gδ. �

Theorem [AC] 8.124 (I. Rec�law). There exists an uncountable S1(Γ,Γ)-space,
hence there exists an uncountable wQN-space.

Proof. If b > ℵ1, then the discrete space of cardinality ℵ1 is an S1(Γ,Γ)-space. If
b = ℵ1, then also t = ℵ1 and by Theorem 8.123 there exists an S1(Γ,Γ)-space of
cardinality ℵ1. �

We continue by showing that the property to be a QN-space is equivalent to
certain covering properties. We need some notions and auxiliary results.

We introduce three covering properties of a topological space:

(β1) For every sequence of countable open γ-covers 〈Un : n ∈ ω〉 there exist finite
sets Vn ⊆ Un such that

⋃
n(Un \ Vn) is a γ-cover of X .

(β2) For every sequence of countable open γ-covers 〈Un : n ∈ ω〉 with adequate
enumerations Un = 〈Un,m : m ∈ ω〉, there exists a non-decreasing unbounded
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sequence {nm}∞m=0 such that 〈Unm,m : m ∈ ω〉 is an adequate enumeration
of a γ-cover of X .

(β3) For every sequence of countable open γ-covers 〈Un : n ∈ ω〉 with adequate
enumerations Un = 〈Un,m : m ∈ ω〉, there is an open γ-cover 〈Vm : m ∈ ω〉
such that

(∀n)(∃k)(∀m > k)Vm ⊆ Un,m. (8.22)

Theorem [AC] 8.125 (L. Bukovský – J. Haleš). If X is a perfectly normal topo-
logical space, then the following statements are equivalent:
(a) Cp(X) has the property (α1).
(b) X has the property (β1).
(c) X has the property (β2).
(d) X has the property (β3).
(e) X is a QN-space.

We begin with auxiliary results.
Lemma [AC] 8.126. If X is a normal σ-space with Ind(X) = 0, then for every open
countable γ-cover of X with an adequate enumeration 〈Un : n ∈ ω〉, there exist
clopen sets 〈Vn ⊆ Un : n ∈ ω〉 such that 〈Vn : n ∈ ω〉 is an adequate enumeration
of a γ-cover of X.

Proof. The sequence 〈Gn =
⋂
k≥n Uk : n ∈ ω〉 is a non-decreasing γ-cover by

Gδ sets. Since X is a σ-space, there exist closed sets 〈Fn,m : m ∈ ω〉 such that
Gn =

⋃
m Fn,m. We can assume Fn,m ⊆ Fn,m+1 and Fn,m ⊆ Fn+1,m for every

n,m ∈ ω. Then 〈Fn,n : n ∈ ω〉 is a non-decreasing closed γ-cover. Since Ind(X) =
0, there exist clopen sets 〈Vn : n ∈ ω〉 such that Fn,n ⊆ Vn ⊆ Un. It is easy to see
that 〈Vn : n ∈ ω〉 is an adequate enumeration of a γ-cover of X . �
Lemma [AC] 8.127. A topological space with the property (β1) possesses the prop-
erty (β2) as well.

Proof. Let 〈Un : n ∈ ω〉 be a sequence of countable open γ-covers of X with
adequate enumerations {Un,m : m ∈ ω}. By (β1) there are finite sets Vn ⊆ Un
such that

⋃
n(Un \ Vn) is a γ-cover. Evidently, there exists a non-decreasing se-

quence {kn}∞n=0 such that Vn ⊆ {Un,0, . . . , Un,kn}. By induction we can easily
find an increasing sequence {ln}∞n=0 such that ln ≥ kn for each n, and no set
Ui,j, j ≤ li, i ≤ n occurs in the set {Un+1,k : k > ln+1}. Actually, set l0 = k0 and
using the fact that every enumeration is adequate, find the smallest integer ln+1

greater than max{ln, kn+1} and such that no set Ui,j , j ≤ li, i ≤ n occurs in the
set {Un+1,k : k > ln+1}. Now let ni = m for lm < i ≤ lm+1 for any m. Evidently
{ni}∞i=0 is non-decreasing and unbounded.

Now, the infinite subset 〈Uni,i : i ∈ ω〉 of the γ-cover
⋃
n(Un\Vn) is a γ-cover.

By the choice of ln, any set Uni,i is different from Unj ,j provided that ni > nj .
Thus the enumeration 〈Uni,i : i ∈ ω〉 is adequate. �
Lemma [AC] 8.128. Any normal topological QN-space has the property (β1).
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Proof. Assume that 〈Un : n ∈ ω〉 is a sequence of countable open γ-covers of
a QN-space X . Let 〈Un,m : m ∈ ω〉 be a bijective enumeration of Un for every
n ∈ ω. Since X is a normal σ-space with Ind(X) = 0, by Lemma 8.126 there exist
clopen sets 〈Vn,m ⊆ Un,m : n,m ∈ ω〉 such that 〈Vn,m : m ∈ ω〉 is an adequate
enumeration of a γ-cover of X for every n ∈ ω.

Since X is a normal topological space, for every n,m ∈ ω there exists a con-
tinuous function fn,m : X −→ [0, 1] such that fn,m(x) = 0 for x ∈ Vn,m and
fn,m(x) = 1 for x ∈ X \ Un,m.

Equally as in the proof of Theorem 8.120 one can show that fn,m → 0 on X
for every n. Since a QN-space has the property (α1), there exists a sequence
{mn}∞n=0 of natural numbers such that the sequence 〈fn,m : n ∈ ω ∧ m ≥ mn〉
converges to 0 on X . We show that 〈Un,m : n ∈ ω ∧m ≥ mn〉 is a γ-cover.

Actually, if x ∈ X then fn,m(x) < 1 for all but finitely many couples 〈n,m〉
such that n ∈ ω and m ≥ mn. Therefore also x ∈ Un,m for all but finitely many
couples 〈n,m〉 such that n ∈ ω and m ≥ mn. �

Proof of Theorem 8.125. By Corollary 8.68 and Lemma 8.128 we have (e) → (a)
and (a) → (b). By Lemma 8.127 we have (b) → (c).

We show the implication (c) → (d). Let 〈Un : n ∈ ω〉 be a sequence of
countable open γ-covers with an adequate enumeration Un = 〈Un,m : m ∈ ω〉. We
set

Wn,m =
⋂

i≤n
Ui,m, Wn = {Wn,m : m ∈ ω}.

ThenWn is a γ-cover and a refinement of Un. Then by (c) there is a non-decreasing
unbounded sequence {nm}∞m=0 such that 〈Wnm,m : m ∈ ω〉 is an adequate enu-
meration of a γ-cover. Since Wnm,m ⊆ Un,m for every m such that nm ≥ n, we are
done.

Finally, we show the implication (d) → (e). Assume that X has the property
(β3). Let fm → 0 on X . We can assume that 0 < fm(x) ≤ 1 for every x ∈ X and
every m. Let 〈xn : n ∈ ω〉 be mutually different elements of X . For any n,m ∈ ω
we define

Un,m = {x ∈ X : fm(x) < 2−n ∧ x �= xm}, Un = {Un,m : m ∈ ω}.

It is easy to see that every 〈Un : n ∈ ω〉 is an open γ-cover with an adequate
enumeration Un = {Un,m : m ∈ ω}. By (β3) there exists a γ-cover {Vm : m ∈ ω}
such that (8.22) is satisfied.

If x ∈ X and n ∈ ω are given, then there exists an mn such that for every
m ≥ mn we have x �= xm, x ∈ Vm and Vm ⊆ Un,m. Then also fm(x) < 2−n and
we are done. �

Corollary [AC] 8.129. Every normal QN-space is an S1(Γ,Γ)-space.
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Proof. If 〈Un : n ∈ ω〉 are γ-covers of X , then by (β1) there exist finite sets
〈Vn ⊆ Un : n ∈ ω〉 such that

⋃
n(Un \ Vn) is a γ-cover.

Choose a γ-subcover {Um : m ∈ ω} of
⋃
n(Un \ Vn) such that Um ∈ Um for

each m. �

By Theorem 8.63 we obtain
Corollary [AC] 8.130. If κ ≤ b and A is a κ-Sierpiński subset of a Polish space
with a Borel measure, then every subset of A is an S1(Γ,Γ)-space.

Exercises

8.27 [AC] Weak Distributivity

Let A be a family of subsets of X. A is said to be weakly distributive on a set A ⊆ X
if for any sequence 〈An,m ∈ A : n,m ∈ ω〉 such that A ⊆

⋂
n

⋃
mAn,m, there exists a

function α ∈ ωω such that A ⊆
⋃

k

⋂
n≥k

⋃
m≤α(n) An,m.

a) We denote by A the set of all covers of X by sets from A and by AΓ the set of all
γ-covers by sets from A. Then A is weakly distributive if and only if Ufin(A,AΓ)
holds true.

b) The family of open subsets of a σ-compact space X is weakly distributive.

Hint: If X =
⋂

n

⋃
m An,m, X =

⋃
k Xk, Xk compact, we set α(n) = m, where m

is the smallest integer such that
⋃

k<n Xk ⊆
⋃

i≤mAn,i.

c) The family of open subsets of X is weakly distributive if and only if X has the
Hurewicz Property.

d) If a family A is weakly distributive, then also the family Σ0[A] is weakly distribu-
tive.

e) If a family A ⊆ P(X) is weakly distributive, then every Σ0[A]-measurable image
of X into ωω is eventually bounded.

Hint: If f : X −→ ωω, set An,m = {x ∈ X : f(x)(n) = m}.
f) Assume that a family A ⊆ P(X) satisfies the σ-reduction property. Then A is

weakly distributive if and only if every Σ0[A]-measurable image of X into ωω is
eventually bounded.

g) If X is a perfectly normal wQN-space, then the family of open subsets of X is
weakly distributive.

Hint: See Corollary 8.86, Theorem 8.113 and c).

h) If the family of closed subsets of a perfectly normal space X is weakly distributive,
then X is a σ-space.

Hint: If A ⊆ X is a Gδ set, A =
⋂

nGn, Gn+1 ⊆ Gn open, then there exist
Fn,k closed such that Gn =

⋃
k Fn,k. Since X =

⋂
n

⋃
k(Fn,k ∪ (X \ Gn)), by weak

distributivity there is an α ∈ ωω such that X =
⋃

m

⋂
n≥m

⋃
k≤α(n)(Fn,k∪(X\Gn)).

Then A =
⋃

m

⋂
n≥m

⋃
k≤α(n) Fn,k is an Fσ set.

i) If X is perfectly normal, then the family of closed sets is weakly distributive if and
only if Borel(X) is weakly distributive.

Hint: Use the result of d) and h).
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j) The family of closed subsets of a perfectly normal topological space X is weakly
distributive if and only if X is a QN-space.

Hint: Set An,m = {x ∈ X : (∀k ≥ m) |fk(x)| ≤ 1/(n + 1)} and assume that α is
increasing. For the opposite implication see f) and Theorem 8.81.

k) The family of Borel subsets of a perfectly normal topological space X is weakly
distributive if and only if X is a QN-space.

Hint: See j) and i).

8.28 [AC] Hereditary Properties and σ-space

a) Any open subset A of a perfectly normal nCM-space is a union of countably many
clopen sets. Moreover, for any closed F ⊆ A there exists a clopen set F ⊆ C ⊆ A.

Hint: If A =
⋃

n Fn, Fn closed and non-decreasing, construct by induction contin-
uous functions fn such that fn(x) = 0 for x ∈ Fn ∪ An and fn(x) = 1 for x /∈ A,
where An = f−1

n−1([0, a)), a /∈ rng(fn−1) and A0 = ∅. One can assume that F ⊆ F0.
Then An is clopen and Fn ⊆ An+1 ⊆ A.

b) Assume that X is a perfectly normal nCM-space, A ⊆ X is a Gδ set. If the family
of clopen sets is weakly distributive on A, then A is an Fσ set.

Hint: If A =
⋂

nAn, An open, and An =
⋃

k Un,k, non-decreasing and Uk,n clopen,
by weak distributivity there exists an α ∈ ωω such that A =

⋃
k

⋂
n≥k

⋃
m≤α(n) Un,m.

c) If X is a perfectly normal hereditary wQN-space, then X is a σ-space.

Hint: Use b) and Exercise 8.27, g).

d) If X is a perfectly normal hereditarily S1(Γ,Γ)-space, then X is a σ-space.

Hint: A S1(Γ,Γ)-space is a wQN-space.

e) If a σ-space X is also an S1(Γ,Γ)-space, then X is a hereditary S1(Γ,Γ)-space.

Hint: If {Un,m : m ∈ ω} are open γ-covers of A, n ∈ ω, set B =
⋂

n

⋃
k

⋂
m≥k Un,m.

Since X is a σ-space, B is an Fσ set and every {Un,m : m ∈ ω} is a γ-cover of
B ⊇ A.

f) If P denotes any of the properties wQN, mQN, S1(Γ,Γ), then a perfectly normal
space X is hereditarily P if and only if X is a σ-space and possesses the property P .

8.29 [AC] wQN

The notion of discrete convergence fn
D−→ f has been defined in Exercise 3.22. A space

Cp(X) has the discrete sequence selection property if for any sequence of sequences

〈{fn,m}∞m=0 : n ∈ ω〉 of functions from Cp(X) such that fn,m
D−→ 0 on X for every

n, there exists an increasing sequence {mn}∞n=0 such that fn,mn → 0 on X.

a) If X is a normal topological space and Cp(X) has the discrete sequence selection
property, then X is an S1(Γ

sh,Γ)-space.

Hint: If 〈{Un,m : m ∈ ω} : n ∈ ω〉 is a sequence of γ-covers, 〈{Zn,m : m ∈ ω} :
n ∈ ω〉 are closed γ-covers such that Zn,m ⊆ Un,m, by the Urysohn Theorem 3.15
take fn,m : X −→ [0, 1] such that fn,m(x) = 0 for x ∈ Zn,m and fn,m(x) = 1 for
x ∈ X \ Un,m.

b) An S1(Γ,Γ)-space is a wQN-space.

Hint: Follow the proof of Lemma 8.118.
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c) For a normal topological space X the following conditions are equivalent:

(1) X is a wQN-space.

(2) Cp(X) possesses the sequence selection property.

(3) Cp(X) possesses the discrete sequence selection property.

(4) X is an S1(Γ
sh,Γ)-space.

(5) X is an S1(Γ,Γ)-space.

8.30 [AC] Clopen Refinement Property

A topological space X has the clopen refinement property, shortly the property γγco, if
every countable open γ-cover has a clopen γ-refinement.

a) A perfectly normal wQN-space with the property γγco is an S1(Γ,Γ)-space.

Hint: See the proof of Theorem 8.120.

b) A perfectly normal γ-space has the property γγco.

Hint: If {Un : n ∈ ω} is a γ-cover, by Theorem 8.22 there exist An,m ⊆ An,m+1

clopen,
⋃

mAn,m = Un. If V is a γ-subcover of {An,m : n,m ∈ ω} then the set
{m : An,m ∈ V} is finite.

c) A perfectly normal σ-space with the property nCM has the property γγco.

Hint: See the proof of Lemma 8.126.

d) A perfectly normal hereditarily mQN-space is a σ-space.

e) A perfectly normal hereditarily wQN-space is a hereditarily S1(Γ,Γ)-space.

8.31 [AC] wQN∗ and wQN∗

Replacing in the definition of a wQN-space the word “continuous” by “lower semicontin-
uous” or “upper semicontinuous”, one obtains the notion of a wQN∗-space or a wQN∗-
space, respectively. Similarly, you obtain the property SSP∗ or the property SSP∗, re-
spectively.

a) Show that wQN∗ ≡ SSP∗.

Hint: Follow the proof of Theorem 8.64.

b) Prove that SSP∗ → wQN∗.

c) Prove that SSP∗ → S1(Γ,Γ).

Hint: If {Un = {Un,m : m ∈ ω}}∞n∈ω are γ-covers of X, set fn,m(x) = 0 for
x ∈ Un,m and fn,m(x) = 1 otherwise. If fn,mn → 0, then {Un,mn : n ∈ ω} is
a γ-cover.

d) Prove that S1(Γ,Γ)→ SSP∗.

Hint: If fn,m are upper semicontinuous functions and fn,m → 0 for every n, write
Un,m = {x ∈ X : fn,m(x) < 2−n}.

e) Prove that wQN∗ → QN.

Hint: The function gn(x) = sup{fm(x) : m ≥ n} is lower semicontinuous.

f) Prove that QN→ wQN∗ for any perfectly normal space.

Hint: Note that a lower semicontinuous function is Borel measurable and use The-
orem 8.81.
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g) Conclude that SSP∗ → SSP∗ and wQN∗ → wQN∗ for any normal topological space.

Hint: See Corollary 8.129.

h) Show that wQN∗ → S1(Γ,Γ).

Hint: If {Un = {Un,m : m ∈ ω}}∞n∈ω are γ-covers of X, set Vn,m = U0,m∩· · ·∩Un,m

and define upper semicontinuous functions as follows:

fm(x) =






1 if x ∈ X \ V0,m,
1

k+2
if x ∈ Vk,m \ Vk+1,m,

0 otherwise.

If {mn}∞n=0 is increasing and such that fmn

QN−→ 0 with the control {1/n + 2}∞n=0,
then {Vn,mn : n ∈ ω} is a γ-cover.

i) Conclude that for any perfectly normal topological space we have

wQN∗ ≡ SSP∗ ≡ QN, wQN∗ ≡ SSP∗ ≡ S1(Γ,Γ), wQN ≡ SSP ≡ S1(Γ
sh,Γ).

Moreover, all implications hold true for any topological space with the following
two exceptions: for QN → wQN∗ we need that X is a perfectly normal topological
space and for wQN → S1(Γ

sh,Γ) we need that X is a normal topological space.

8.6 Thin Sets of Trigonometric Series

Let us recall that a series

a0

2
+

∞∑

n=1

(an cos 2πnx+ bn sin 2πnx), (8.23)

where 〈an, bn : n ∈ ω〉 are reals2, is called a trigonometric series. Since all functions
sin 2πnx and cos 2πnx are periodic with the period 1, in all our considerations we
can identify the interval [0, 1] with the circle T. Moreover, T is a Polish group.

J. Fourier [1822] in 1812 asserted3 that every function f : T −→ R can be
expressed as a sum of a trigonometric series. This is not true, however many partial
results in this direction were proved and the problems related to the convergence
of trigonometric series were intensively studied.

A hundred years later, in 1912, A. Denjoy [1912] and N.N. Luzin [1912]
independently proved
Theorem [AC] 8.131 (A. Denjoy – N.N. Luzin). If the series (8.23) absolutely
converges on a set of positive Lebesgue measure, then

∞∑

n=0

(|an|+ |bn|) <∞,

hence the series (8.23) absolutely converges everywhere.
2For simplicity we assume that b0 = 0.
3J. Fourier announced his assertion in 1812, however, he published it only in 1822.
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Later on N.N. Luzin proved

Theorem [AC] 8.132 (N.N. Luzin). If a series (8.23) absolutely converges on a
non-meager set, then

∞∑

n=0

(|an|+ |bn|) <∞,

hence the series (8.23) absolutely converges everywhere.

In the next we shall prove Corollary 8.141, from which both Theorems 8.131
and 8.132 easily follow.

There is a natural question: is the conclusion of either theorem true for some
meager or measure zero set? We show that the answer is affirmative, namely the
Cantor middle-third set in spite of being meager and measure zero, by Corol-
lary 8.142 satisfies the conclusion of both theorems. On the other hand there are
meager and measure zero sets for which the conclusion does not hold true. We
show that for every countable set A ⊆ [0, 1] there is a trigonometric series (8.23)
converging on A absolutely, however

∞∑

n=0

(|an|+ |bn|) = ∞. (8.24)

In connection with such a question we define: a set A ⊆ [0, 1] is called an N-set
if there exists a trigonometric series (8.23) absolutely converging on A and such
that (8.24) holds true.

We find a simpler and more convenient equivalent definition of an N-set.
Let us begin with some notation and an important result. By ‖x‖ we denote

the distance of a real x to the nearest integer. Thus

‖x‖ = min{{x}, 1− {x}},

where {x} = x − �x� denotes the fractional part of the real x (see Section 2.1).
One can easily see that for any reals x, y and n ∈ ω we have

‖x+ y‖ ≤ ‖x‖+ ‖y‖, ‖−x‖ = ‖x‖, ‖nx‖ ≤ n · ‖x‖.

Moreover
‖xy‖ ≤ |x| · ‖y‖+ (|y|+ ‖y‖) · ‖x‖. (8.25)

Since
2‖x‖ ≤ | sinπx| ≤ π‖x‖ (8.26)

for any real x, from the point of view of convergence the functions sin and ‖ ‖
are equivalent. Thus, instead of the sine function we shall deal with the distance
function ‖ ‖.



8.6. Thin Sets of Trigonometric Series 355

Theorem 8.133 (P.G. Lejeune Dirichlet). Let {ni}∞i=0 be an increasing sequence
of natural numbers. For any ε > 0 and for any reals x1, . . . , xk, there are i, j ∈ ω
such that 0 ≤ i < j ≤ (2/ε)k and

‖(nj − ni)xl‖ < ε for l = 1, 2, . . . , k. (8.27)

Proof. We can assume that ε < 1. Let m ∈ ω be such that ε/2 ≤ 1/m < ε. We
split the k-dimensional interval [0, 1)k into t = mk equal intervals of side 1/m. By
the Pigeonhole Principle, Theorem 1.9, there exist 0 ≤ i < j ≤ t = mk ≤ (2/ε)k

such that the k-tuples

[{nix1}, . . . , {nixk}], [{njx1}, . . . , {njxk}],

are in the same interval. Note that if {x} ≤ {y}, then ‖x−y‖ ≤ {y−x} = {y}−{x}.
Therefore (8.27) holds true. �
Corollary 8.134. For any m ∈ ω, for any ε > 0 and for any reals x1, . . . , xk, there
exists an n ≥ m such that n ≤ (2/ε)k + m and

‖nxl‖ < ε for l = 1, 2, . . . , k.

Now we are ready to find an equivalent definition of an N-set.
Lemma 8.135. Assume that A = {x ∈ [0, 1] :

∑∞
n=0 ρn‖cnx + ϕn‖ < ∞}, where

ρn ≥ 0, cn, ϕn are reals,
∑∞

n=0 ρn = ∞, and limn→∞ cn = ∞. Then there are
non-negative reals dn such that

∑∞
n=0 dn = ∞ and

A ⊆
{

x ∈ [0, 1] :
∞∑

n=0

dn‖nx‖ <∞
}

. (8.28)

Proof. Set sn =
∑n
k=0 ρk. We can assume that s0 > 0, cn > 0. Moreover, we can

assume that the sequence {ρn}∞n=0 is bounded. If not, replace ρn by min{1, ρn}.
Then by Theorem 2.23 we obtain

∞∑

n=0

ρns
−1
n = ∞,

∞∑

n=0

ρns
−3/2
n <∞. (8.29)

By Corollary 8.134, for any k ∈ ω there exists a positive integer pk ≤ sk such
that ‖pkck‖ < 2s−1/2

k and ‖pkϕk‖ < 2s−1/2
k . Let nk be the natural number nearest

to pkck, i.e., ‖pkck‖ = |pkck − nk| = ‖pkck − nk‖. Then for x ∈ [0, 1] we have

‖nkx‖ ≤ ‖nkx− pkckx‖ + ‖pkϕk‖+ pk‖ckx+ ϕk‖.

By (8.25) we obtain

‖xnk−pkckx‖ ≤ x‖nk−pkck‖+(|nk−pkck|+‖nk−pkck‖)‖x‖ = (x+2‖x‖)‖pkck‖.
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Thus
ρk
sk
‖nkx‖ <

2ρk
s
3/2
k

(x+ 2‖x‖+ 1) + ρk‖ckx+ ϕk‖

and the series
∑∞

k=0 ρks
−1
k ‖nkx‖ converges for any x ∈ A. We can assume that for

any natural number i > 0 there exists an x ∈ A such that ‖ix‖ �= 0. Otherwise the
setA is finite and one can easily find the reals dn. Hence the sum

∑
k∈{j:nj=i} ρks

−1
k

is either finite or a convergent series for any natural i > 0. We set d0 = 0 and, for
i > 0,

di =
∑

k∈{j:nj=i}
ρks

−1
k .

Then
∑∞

k=0 dk‖kx‖ =
∑∞
k=0 ρks

−1
k ‖nkx‖ < ∞ for x ∈ A and by (8.29) we obtain∑∞

k=0 dk = ∞. �
Theorem 8.136 (R. Salem). Let A ⊆ [0, 1]. The following conditions are equivalent:

a) A is an N-set.
b) There exist non-negative reals dn, n ∈ ω such that

∑∞
n=0 dn = ∞ and

A ⊆
{

x ∈ [0, 1] :
∞∑

n=0

dn| sin(πnx)| <∞
}

.

c) There exist non-negative reals dn, n ∈ ω such that
∑∞

n=0 dn = ∞ and

A ⊆
{

x ∈ [0, 1] :
∞∑

n=0

dn‖nx‖ <∞
}

. (8.30)

Proof. By the inequalities (8.26) the assertions b) and c) are equivalent.
Assume that A is an N-set. Thus there are reals 〈an, bn : n ∈ ω〉 such that

the series (8.23) absolutely converges on A and (8.24) holds true. By elementary
trigonometry there are reals ϕn such that

an cos 2πnx+ bn sin 2πnx = ρn sin(2πnx+ ϕn),

where ρn =
√
a2
n + b2n. By (8.26) we have

A ⊆
{

x ∈ [0, 1] :
∞∑

n=0

ρn‖2nx+ ϕn/π‖ <∞
}

.

By Lemma 8.135 there are non-negative reals dn such that
∑∞
n=0 dn = ∞ and

(8.30) holds true.
Assume that b) holds true. Since | sin 2α| ≤ 2| sinα|, we obtain

A ⊆
{

x ∈ [0, 1] :
∞∑

n=0

dn| sin(2πnx)| <∞
}

and therefore, A is an N-set. �
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A set A ⊆ [0, 1], on which some subsequence of the sequence {e2πinx}∞n=0

converges uniformly to the constant function 1, plays an important role in har-
monic analysis4 and is called a Dirichlet set. Using the inequalities (8.26) and the
elementary equality

| sinx| =

√
1− cos 2x

2
,

we obtain that a set A ⊆ [0, 1] is a Dirichlet set if and only if there is an increasing
sequence {nk}∞k=0 of natural numbers such that

‖nkx‖ ⇒ 0 on A.

Note that A is a Dirichlet set if and only if

(∀ε > 0)(∀m)(∃n > m)(∀x ∈ A) ‖nx‖ < ε.

There are other notions of sets related to convergence of trigonometric series. A
set A ⊆ [0, 1] is called a pseudo Dirichlet set if there is an increasing sequence
{nk}∞k=0 of natural numbers such that

‖nkx‖
QN−→ 0 on A.

By Theorem 3.52 we immediately obtain that a set A ⊆ [0, 1] is a pseudo Dirichlet
set if and only if there exists a non-decreasing sequence 〈An : n ∈ ω〉 of Dirichlet
sets such that A =

⋃
n An. Actually, if A =

⋃
nAn and An ⊆ An+1 are Dirich-

let sets, then one can easily construct an increasing sequence {kn}∞n=0 such that
‖knx‖ < 1/n+1 for every x ∈ An. As a consequence we obtain that a union

⋃
nAn

of a non-decreasing sequence of pseudo Dirichlet sets is a pseudo Dirichlet set.
A set A ⊆ [0, 1] is called an Arbault set, shortly an A-set, if there is an

increasing sequence {nk}∞k=0 of natural numbers such that

‖nkx‖ → 0 on A.

A set A ⊆ [0, 1] is called a weak Dirichlet set if for every Borel measure µ on
[0, 1] there exist a Borel set B ⊇ A and an increasing sequence {nk}∞k=0 of natural
numbers such that

lim
k→∞

∫

B

|e2πinkx − 1| dµ = 0.

As above the last condition is equivalent to

lim
k→∞

∫

B

‖nkx‖ dµ = 0.

4The function e2πinx is a character of the topological group T.
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There is another useful notion of a special set. A set A ⊆ [0, 1] is called an N0-set
if there is an increasing sequence {nk}∞k=0 of natural numbers such that

∞∑

n=0

‖nkx‖ <∞ on A.

We denote the families of N-sets, Dirichlet sets, pseudo Dirichlet sets, N0-sets,
A-sets and weakly Dirichlet sets as N , D, pD, N0, A, and wD, respectively.
Theorem 8.137. The following inclusions hold true:

D pD N0

A

N

wD� � ������

������

������

������

Proof. The inclusion A ⊆ wD follows by Lebesgue Dominated Convergence The-
orem 4.25.

Now, let A be an N-set. Hence, there exist non-negative reals 〈an : n ∈ ω〉
such that

A ⊆ B =

{

x ∈ [0, 1] :
∞∑

n=0

an‖nx‖ <∞
}

and
∑∞

n=0 an = ∞. Thus for every x ∈ B we have

lim
n→∞

∑n
k=0 ak‖kx‖∑n

k=0 ak
= 0.

Since for any n the fraction is bounded by 1/2, by Lebesgue Dominated Conver-
gence Theorem 4.25 we obtain

lim
n→∞

∑n
k=0 ak

∫
B
‖kx‖ dµ

∑n
k=0 ak

= 0

for any Borel measure µ. Consequently

lim inf
n→∞

∫

B

‖nx‖ dµ = 0.

The other inclusions follow directly from definitions. �
Theorem 8.138.

a) Every finite subset of T is a Dirichlet set. Hence, every countable subset of
T is a pseudo Dirichlet set.

b) There exists a perfect Dirichlet set.
c) No (non-trivial) interval is a weak Dirichlet set.



8.6. Thin Sets of Trigonometric Series 359

Proof. a) By Corollary 8.134 for every finite set {x0, . . . , xm} there exists an in-
creasing sequence {nk}∞k=0 such that ‖nkxi‖ < 1/(k + 1) for i = 0, . . . ,m and
each k.

b) Let {nk}∞k=0, n0 = 0 be an increasing sequence of natural numbers such
that the sequence {nk+1−nk}∞k=0 is also increasing and therefore unbounded. For
any x =

∑∞
n=0 xn2−n−1, xn = 0, 1 we let (we take always infinite expansion)

x ∈ A ≡ xn = 0 for any nk ≤ n < nk+1 and any k even. (8.31)

Then for any x ∈ A and any k even we have ‖nkx‖ ≤ 2nk−nk+1 . Thus A is
a Dirichlet set. Evidently A is a perfect set of cardinality c.

c) Let [a, b] ⊆ [0, 1] be a non-trivial interval. For any sufficiently large positive
integer n there exist positive integers k,m such that

k − 1
n

< a ≤ k

n
<
m

n
≤ b <

m+ 1
n

.

Then
m− k

4n
≤
∫

[a,b]

‖nx‖ dλ < m− k + 2
4n

and therefore even for Lebesgue measure we have

lim
n→∞

∫

[a,b]

‖nx‖ dλ =
b− a

4
> 0. �

Consequently every finite set is a Dirichlet set, every countable set is a pseudo
Dirichlet set, an N0-set, an N-set, an A-set, and a weak Dirichlet set. Since the
closure of a Dirichlet set is a Dirichlet set as well, not every countable set is
a Dirichlet set. On the other hand no non-trivial interval is any of the above-
mentioned sets.

Let us recall that a family of thin subsets of a topological space does not
contain a non-empty open set, in our case, no open interval. We can summarize.
Theorem 8.139.

a) The families D, pD, N0, N , A, and wD are families of thin sets.
b) The family D has a closed base, the families pD, N0, N have Fσ bases and

the family A has an Σ0
3 base.

Proof. The part a) follows by Theorem 8.138 and by the definition.
If a sequence {nk}∞k=0 witnesses that A ⊆ [0, 1] is an A-set then

A ⊆ {x ∈ [0, 1] : (∀m)(∃n0)(∀n > n0) ‖nkx‖ ≤ 1/(m+ 1)}.

The last set is a Σ0
3 set.

A similar estimate can be done in the remaining cases. �
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We have already said that instead on [0, 1] we may work on T. We move to
T since T is a group.

Theorem 8.140. If a set A belongs to any of the families D, pD, N0, A, and N ,
then A+A and A−A belongs to the corresponding family as well. Moreover, each
of the families pD, N0, A, and N has a base consisting of Borel subgroups of T.

Proof. Since ‖x± y‖ ≤ ‖x‖+ ‖y‖ the former assertion holds true for all families.
If A ∈ pD we can assume that 0 ∈ A. We set A0 = A and An+1 = An −An.

Then
⋃
nAn is a subgroup of T containing the set A and An ⊆ An+1 for any n.

Since a non-decreasing union of pseudo-Dirichlet sets is a pseudo-Dirichlet set, we
obtain

⋃
nAn ∈ pD.

One can easily see that any of the sets
{

x ∈ T :
∞∑

k=0

‖nkx‖ <∞
}

, {x ∈ T : ‖nkx‖ → 0},
{

x ∈ T :
∞∑

k=0

ak‖kx‖ <∞
}

is a group. Since sets of those kinds form a base of families N0, A, and N , respec-
tively, the latter assertion follows. �

Corollary 8.141. Every D-set, pD-set, N0-set, A-set and every N-set is meager
and has Lebesgue measure zero.

Proof. Assume that A is an A-set. We can assume that A is a Borel set. By
Theorem 8.140 the arithmetical difference A−A is also an A-set. If A has positive
measure then by the Steinhaus Theorem 7.16 the set A − A contains as a subset
a non-empty open interval, a contradiction with Theorem 8.138.

If A is an N-set, then again A−A is an N-set and the proof goes as above.
For the families D, pD, and N0, the assertion follows by Theorem 8.137. �

Corollary 8.142. The Cantor middle-third set C is neither an A-set nor an N-set.

Proof. C− C = T by Theorem 3.6. �

Note that C is meager, even closed and nowhere dense, and has Lebesgue
measure zero.
Theorem 8.143. None of the families D, pD, N0, N , and A is an ideal.

Proof. We construct two Dirichlet sets A,B such that (A ∪B) + (A ∪B) = [0, 1].
Thus A ∪B does not belong to either of those families.

Let {nk}∞k=0, n0 = 0 be an increasing sequence of natural numbers such that
the sequence {nk+1−nk}∞k=0 is also increasing and therefore unbounded. The set A
is that defined by (8.31) and B is defined similarly just replacing in the definition
(8.31) the word “even” by word “odd”. Then

‖2nkx‖ ≤ 2nk−nk+1 for x ∈ A and k even,
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and
‖2nkx‖ ≤ 2nk−nk+1 for x ∈ B and k odd.

Thus A and B are Dirichlet sets.
Any real z can be written as z = x + y, where x ∈ A and y ∈ B. Thus

A+B = T. Since A+B ⊆ ((A∪B)+(A∪B)), by Theorem 8.140 the union A∪B
cannot belong to either of the considered families. �

Let F ⊆ P(T) be a family of thin subsets of a set X . A set A ⊆ X is said to
be F -permitted iff A ∪B ∈ F for any B ∈ F . We write

Perm(F) = {A ⊆ X : A is F -permitted}.

Theorem 8.144.

a) Perm(F) is an ideal,
b) Perm(F) ⊆ F ,
c) Perm(F) = F if and only if F is an ideal.

Theorem 8.145. Any finite set is permitted for any of the families D, pD, N0, N ,
A, and wD.

Proof. Since the family of permitted sets is an ideal it suffices to show that every
one-point set is permitted.

Assume that A is a Dirichlet set and ‖nkx‖ ⇒ 0 on A. Let y ∈ T, ε being
a positive real. By the Dirichlet Theorem 8.133 there are arbitrarily large k < l
such that

‖nkx‖ <
1
2
ε, ‖nlx‖ <

1
2
ε for any x ∈ A, ‖(nl − nk)y‖ < ε.

Then
‖(nl − nk)x‖ < ε

for any x ∈ A ∪ {y}. Thus A ∪ {y} is a Dirichlet set.
For families pD, A, N0, and wD the proofs are similar. The case of an N-set

is more complicated.
So, let A be an N-set, {an}∞k=0 being a sequence of non-negative reals such

that
∑∞

n=0 an = ∞ and

A ⊆ {x ∈ [0, 1] :
∞∑

n=0

an‖nx‖ <∞}

holds true. Let y ∈ T.
We can assume a0 > 0. Set sn =

∑n
k=0 ak. By Theorem 2.23 we have

∞∑

n=0

an
sn

= ∞,
∞∑

n=0

an
s2n

<∞. (8.32)
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By the Dirichlet Theorem 8.133 for every k there exists a positive integer nk ≤ sk
such that ‖knky‖ < 2/sk.

For every n let Mn = {k : knk = n}. Every set Mn is finite and
⋃
nMn = ω.

Moreover, the sets 〈Mn : n ∈ ω〉 are pairwise disjoint. Set bn =
∑

k∈Mn
ak/sk. If

Mn = ∅ then bn = 0. Then

∞∑

n=0

bn‖ny‖ =
∞∑

n=0

∑

k∈Mn

ak
sk
‖knky‖ ≤

∞∑

n=0

∑

k∈Mn

2ak
s2k

<∞.

Similarly for any x ∈ A we have

∞∑

n=0

bn‖nx‖ =
∞∑

n=0

∑

k∈Mn

ak
sk
‖knkx‖ ≤

∞∑

k=0

ak
sk
nk‖kx‖ ≤

∞∑

k=0

ak‖kx‖ <∞.

By (8.32) we have
∑∞

n=0 bn = ∞, hence A ∪ {y} is an N-set. �

Since the union of an increasing sequence of pseudo Dirichlet sets is a pseudo
Dirichlet set, we obtain immediately that every countable set is permitted for the
family of pseudo Dirichlet sets. Actually
Theorem 8.146 (J. Arbault – P. Erdős). Any countable set of reals is permitted
for any of the families N0, N , A, and wD.

We shall not prove the theorem now, since in Section 10.5 we prove a stronger
result.

By Theorem 8.138 there exists a Dirichlet set of cardinality c. Therefore in
any of the introduced families there exists a set of any given cardinality ≤ c. In
spite of the Arbault-Erdős Theorem 8.146 the situation with permitted sets is
much more complicated. We begin with
Theorem 8.147. Any universal measure zero set of reals is permitted for wD.

Proof. Suppose that A is a weak Dirichlet set and B has universal measure zero.
Let µ be a Borel measure. If µ is diffused, then µ∗(B) = 0, i.e., there exists
a Borel set C ⊇ B such that µ(C) = 0. We can assume that A is Borel and there
exists an increasing sequence {nk}∞k=0 such that limk→∞

∫
A
‖nkx‖ dµ = 0. Since∫

A∪C ‖nkx‖ dµ =
∫
A ‖nkx‖ dµ also

lim
k→∞

∫

(A∪C)

‖nkx‖ dµ = 0.

Assume now that µ is not diffused. Then the set D = {x ∈ T : µ({x}) > 0}
is non-empty and countable. The measure ν(E) = µ(E \ D) is a diffused Borel
measure, therefore ν(B) = 0. Since by the Arbault-Erdős Theorem 8.146 the set
D is permitted, we obtain that A ∪B ⊆ (A ∪D) ∪ (B \D) is weak Dirichlet.

Thus B is permitted. �
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Corollary [AC] 8.148. There exists an uncountable permitted set for wD.

Proof. By Theorem 8.3 there exists a universal measure zero set of reals of cardi-
nality ℵ1. �

Inspired by Theorem 8.146, J. Arbault [1952] tried to construct a perfect set
permitted for N . However, N.K. Bari [1961] found an error in his construction.
Therefore a natural question remains open:
Problem 8.149. Does there exist an uncountable permitted set for any of the con-
sidered families?

Or even
Problem 8.150. Does there exist a permitted set of cardinality continuum?

In Section 10.5 we show that ZFC is not enough to answer the latter question,
i.e., the answer is an undecidable statement of ZFC.

Exercises

8.32 [AC] wD versus N
We shall need the following form of the Hahn-Banach Theorem: If A is a closed convex
subset of a Banach space X, 0 /∈ A, then there exists a continuous linear functional
F : X −→ R and an ε > 0 such that F (x) ≥ ε for each x ∈ A. For a proof see Exercise
3.16, c).

a) A Borel set A ⊆ T is a weak Dirichlet set if and only if for every Borel measure µ
and every ε > 0 there exists a compact Dirichlet set K ⊆ A such that µ(A\K) < ε.

Hint: Assume that limk→∞
∫

A
‖nkx‖dµ = 0. Then by Exercise 4.13, a) we obtain

that ‖nkx‖ → 0 almost everywhere on A. Use the Egoroff Theorem 7.41.

To prove the opposite implication, for a given ε > 0 find a compact Dirichlet set
K ⊆ A and an integer n0 such that ‖nx‖ < ε for every n ≥ n0 and µ(A \K) < ε.
Then ∫

A

‖nx‖ dµ ≤ µ(K)ε+ 1/2ε

for any n ≥ n0.

b) If An ⊆ An+1 are weak Dirichlet sets then
⋃

nAn is a weak Dirichlet set.

Hint: The union of an increasing sequence of Dirichlet sets is a pseudo Dirichlet
set and therefore also a weak Dirichlet set.

c) If K ⊆ T is a compact weak Dirichlet set then for any m the zero function belongs
to the closed convex hull of the set {‖nx‖ : n ≥ m}.
Hint: If not, then by the Hahn-Banach Theorem and Exercise 4.17, f) there exist
a Borel measure µ and a positive real ε such that

∫
A
‖nx‖ dµ > ε for every n ≥ m.

d) Every Fσ weak Dirichlet set is an N-set.

Hint: Assume A =
⋃

nAn, An ⊆ An+1, An being compact. By induction using
c) find an increasing sequence of integers {nk}∞k=0 and non-negative reals {ak}∞k=0

such that
∑

nk−1≤i<nk
ai = 1 and

∑
nk−1≤i<nk

ai‖ix‖ < 2−k for x ∈ Ak.

e) A set A ⊆ T is an N-set if and only if A is a subset of an Fσ weak Dirichlet set.
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8.33 [AC] wD is Closed Under Arithmetical Difference

The notion of a capacity was introduced and studied in Exercises 6.7.

a) Assume that A ⊆ T is a weak Dirichlet set and µ is a Borel measure on T. Then
there exists a weak Dirichlet set K ⊆ A− A such that µ((A−A) \K) = 0.

Hint: Let B ⊇ A be a Borel set such that µ(B \ A) = 0. By Exercise 6.8, d)
the set B is capacitable, i.e., there exist compact sets Kn ⊆ Kn+1 ⊆ B such that
µ(B−B) = supn µ(Kn−Kn) = µ(

⋃
n(Kn−Kn)). By Exercise 8.32, d) and Theorem

8.140 every Kn −Kn is a compact N-set. Set K =
⋃

n(Kn −Kn).

b) If A is a weak Dirichlet set, then also A−A is weak Dirichlet.

8.34 H-set

A set A ⊆ T is called an H-set if there exists an increasing sequence {nk}∞k=0 of natural
numbers and a non-empty open interval I such that (nk · A) ∩ I = ∅ for each k. A
countable union of H-sets is called an Hσ-set.

a) Show that A ⊆ T is an H-set if and only if there exists an increasing sequence
{nk}∞k=0 of natural numbers and reals −1/2 ≤ a < 1/2, 0 < b < 1/2 such that
‖nkx− a‖ ≤ b for each k and each x ∈ A.

b) An H-set is σ-porous and therefore has Lebesgue measure zero and is meager.

c) Any A-set is an Hσ-set.

Hint: The set {x ∈ T : (∀k ≥ n) ‖nkx‖ ≤ 1/m} is an H-set for any m > 2 and
any n.

d) Any A-set is σ-porous.

e) There exists an N-set that is not σ-porous.

Hint: The set {x ∈ T :
∑∞

n=0
1
n
‖n!x‖ ≤ 1} is not σ-porous; see R. Zaj́ıček [1987].

8.35 N-set which is not an A-set

Assume that 〈an ≥ an+1 : n ∈ ω〉 are positive reals and {nk}∞k=0 is an increasing sequence
such that

lim
n→∞

an = 0,

∞∑

n=0

an =∞, lim
k→∞

nk/nk+1 = 0,

∞∑

n=0

an
nk

nk+1
<∞.

We assume that nk/nk+1 < 1/4 for any k.

a) Let {mj}∞j=0 be an increasing sequence of positive integers. Then there exists an in-
creasing sequence {ki}∞i=0 such that

(∀i)(∃j)nki ≤ mj < 4mj < nki+1 ,
∞∑

i=0

aki <∞.

b) Construct a sequence of closed intervals I0 ⊇ I1 ⊇ · · · ⊇ Ik ⊇ · · · of lengths 1/nk,
respectively, such that

if k /∈ K = {ki : i ∈ ω}, then ‖nkx‖ ≤
nk

nk+1
for any x ∈ Ik+1,

if k = ki ∈ K, then ‖mjx‖ ≥ 1/4 for any x ∈ Ik+1, nki ≤ mj < 4mj < nki+1 .

Hint: If k /∈ K, take xk ∈ Ik such that ‖nkxk‖ = 0. Find Ik+1 ⊆ Ik with xk ∈ Ik+1.
If k = ki ∈ K, nki ≤ mj < 4mj < nki+1 , find xk ∈ Ik such that ‖mjxk‖ = 1/2,
take Ik+1 ⊆ Ik, xk ∈ Ik+1.
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c)
∑∞

i=0 aki‖nkix‖ <∞ for any x ∈
⋂

k Ik.

Hint: Note that
∑∞

i=0 aki <∞.

d) If x ∈
⋂

k Ik then
∑

k∈ω\K ak‖nkx‖ <∞.

Hint: If k /∈ K, then ‖nkx‖ ≤ nk
nk+1

.

e) Conclude that
∑∞

k=0 ak‖nkx‖ <∞ and limj→∞ ‖mjx‖ 	= 0 for x ∈
⋂

k Ik.

f) The N-set {x ∈ T :
∑∞

k=0 ak‖nkx‖ <∞} is not an A-set.

8.36 A-set which is not an N-set

Assume that {nk}∞k=0 is increasing, limk→∞ nk/nk+1 = 0, ak ≥ 0 and
∑∞

k=0 ak =∞.

a) Assume that 0 ≤ b0 < b1 < b2 < b3 < b4, bi+1− bi = b1− b0 ≤ 1/(4n) for i = 1, 2, 3.
Then there exists an i < 4 such that ‖nx‖ ≥ n(b1 − b0) for each x ∈ [bi, bi+1].

Hint: There exists exactly one x0 ∈ [b0, b0 + 1/n) such that ‖nx0‖ = 0. If x0 /∈
[b0, b4], then take i = 1. If x0 ∈ [bj , bj + 1], take i ≡ j + 2 modulo 4.

b) Let 0 < c < d ≤ 4c, 0 < ε ≤ 1/16. Assume that b0 < b1 < b2 < b3 < b4,
bi+1 − bi = b1 − b0 ≤ ε/c for i = 1, 2, 3. Then there exists an i < 4 such that

(∀x ∈ [bi, bi+1])
∑

c≤n<d

an‖nx‖ ≥ ε/4
∑

c≤n<d

an. (8.33)

Hint: If n < d ≤ 4c, then ε/c < 1/(4n). By a), for each n ∈ [c, d] there exists
an in < 4 such that ‖nx‖ ≥ ε for each x ∈ [bin , bin+1]. There exists an i < 4 such
that
∑
{an : c ≤ n < d ∧ in = i} ≥ 1/4

∑
{an : c ≤ n < d}.

c) Let 0 < b < c, 0 < ε ≤ 1/16. Assume that v− u = 4ε/b. Then there exists a closed
interval I of length not smaller than ε/c, I ⊆ [u, v] and such that

(∀x ∈ I)
∑

b≤n<c

an‖nx‖ ≥ ε/8
∑

b≤n<c

an.

Hint: Take k such that b0 = b, bi+1 = 4bi for i < k and bk = d ≤ 4bk−1. Let

K = {n : (∃i) (0 ≤ i ≤ k ∧ i even ∧ bi ≤ n < bi+1)},
L = {n : (∃i) (0 ≤ i ≤ k ∧ i odd ∧ bi ≤ n < bi+1)}.

Then
∑

n∈K an ≥ 1/2
∑

b≤n<c or
∑

n∈L an ≥ 1/2
∑

b≤n<c. Assume that the for-
mer inequality holds true. Using the result of b) construct by induction a decreasing
sequence of closed intervals I2i, 0 ≤ 2i < k, I0 ⊆ [u, v], of lengths ε/b2i+1, re-
spectively, with the property (8.33). The last member of the sequence is the desired
interval I.

d) There exist positive reals bk, ck, εk, δk, k ∈ ω, such that

lim
k→∞

δk = 0,
∞∑

k=0

εk ·
∑

bk≤n<ck

an =∞

and for almost all k the following conditions hold true:

bk < ck < bk+1, 0 < εk ≤ 1/16, δk ≤ 1, δk/nk = 4εk/bk, 1/nk+1 ≤ εk/ck.

Hint: Set s(b, c) =
∑

b≤n<c an. If there exists a c > 1/16 such that

∑

k
s(nk/16, cnk) =∞,
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find εk ≥ cnk/nk+1 such that
∑

k εks(nk/16, cnk) = ∞ and set bk = nk/16,
ck = cnk and δk = 64εk.

If for every c > 1/16 the series
∑

k s(nk/16, cnk) converges, find an increasing
unbounded sequence dk < nk+1/16nk such that

∑
k s(dknk, nk+1/16) = ∞ and set

bk = dknk, ck = nk+1/16, δk = 1/4dk and εk = 1/16.

e) The A-set {x ∈ T : ‖nkx‖ → 0} is not an N-set.

Hint: Assume that bk, ck, εk, δk, k ∈ ω are those of d). Construct by induction
a non-increasing sequence of closed intervals {Ik}∞k=0 with the length of Ik equal
to 1/nk as follows. If Ik is already defined, find Jk ⊆ Ik of length δk/nk such
that ‖nkx‖ ≤ δk for x ∈ Jk. Since δk/nk ≥ 4εk/bk, by c) there exists an interval
Ik+1 ⊆ Jk of length 1/nk+1 ≤ εk/ck such that

(∀x ∈ Ik+1)
∑

bk+1≤n<ck+1

an‖nx‖ ≥ εk/b
∑

bk+1≤n<ck+1

an.

If x ∈
⋂

k Ik then ‖nkx‖ → 0 and
∑∞

k=0 ak‖kx‖ =∞.

8.37 Inclusions Between Trigonometric Families

a) Closure of a Dirichlet set is a Dirichlet set.

b) A Dirichlet set, which is a group, is finite.

Hint: Closure of an infinite subgroup of T is T.

c) Any countable dense subset of T is a pseudo Dirichlet set which is not Dirichlet.

d) There exists an N-set which is not an N0-set.

e) Conclude that neither A = wD nor N = wD.

f) All inclusions provable between families N , D, pD, N0, A, and wD are those of the
diagram in Theorem 8.137.

Hint: Use results of Exercises 8.35 and 8.36.

8.38 Cardinality of Bases

Let {nk}∞k=0, n0 = 0 be an increasing sequence of natural numbers. If x ∈ T we consider
its infinite dyadic expansion. For a set K ⊆ ω we define

MK = {x ∈ T : if x =

∞∑

k=0

xk

2k
then xn = 0 for every nk ≤ n < nk+1, k ∈ ω \K}.

a) If ω \ K is infinite and the sequence {nk+1 − nk}∞k=0 is increasing then MK is a
Dirichlet set.

b) If K ∩ L is finite then MK +ML contains an open interval.

c) If A is an almost disjoint family of subsets of ω and the sequence {nk+1 − nk}∞k=0

is increasing then

1) MK is a Dirichlet set for any K ∈ A;

2) the set MK + ML does not belong to any of the families D, pD, N0, N , A,
and wD for any K,L ∈ A, K 	= L;

3) the set MK ∪ML does not belong to any of the families D, pD, N0, N , A,
and wD for any K,L ∈ A, K 	= L.
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d) Every base of any of the families D, pD, N0, N , A, and wD has cardinality at
least c.

Hint: Take an almost disjoint family A of cardinality c. If B is a base then any
B ∈ B can contain at most one element MK , K ∈ A.

8.39 Thin Sets Defined by a Continuous Function

Let f : [0, 1] −→ [0, 1] be continuous and such that f(0) = f(1) = 0. We can consider f as
a function from R into [0, 1] such that f(x+ z) = f(x) for any x and any integer z. A set
A ⊆ [0, 1] is called an f -Dirichlet set if there exists an increasing sequence {nk}∞k=0 of
natural numbers such that f(nkx) ⇒ 0 on A. Similarly we can define a pseudo f -Dirichlet
set, an Nf -set, an N0f -set, an Af -set, and a weak f -Dirichlet set. E.g., A ⊆ [0, 1] is
an Nf -set if there exist non-negative reals 〈an : n ∈ ω〉 such that A is a subset of
{x ∈ [0, 1] :

∑∞
n=0 anf(nx) < ∞} and

∑∞
n=0 an = ∞. We denote the corresponding

families as Df , pDf , Nf , N0f , Af , and wDf , respectively.

a) Show that for every interval 〈a, b〉 ⊆ [0, 1] there exists an n0 such that
∫

〈a,b〉
f(nx) dx ≥ 1/2(b − a)

∫

[0,1]

f(x) dx for any n ≥ n0.

Hint: Take n0 ≥ 4/(b− a) and for n ≥ n0 take k, l such that k − 1 ≤ na < k < l <
nb ≤ l + 1 and estimate the integral

∫
〈k/n,l/n〉 f(nx) dx.

b) Prove that the following inclusions hold true:

Df pDf N0f

Af

Nf

wDf
� � ������

������

������

������

Hint: Follow the proof of Theorem 8.137.

c) Everyone of the families is Df , pDf , Nf , N0, Af , and wDf is a family of thin sets.

Hint: Use a) to show that wDf does not contain any open interval.

d) An Fσ weak f -Dirichlet set is an Nf -set.

Hint: See Exercise 8.32.

e) Let g : [0, 1]
onto−→ [0, 1] be continuous, g(0) = g(1) = 0, and f : [0, 1]

onto−→ [0, 1]. If m
is a positive integer such that m · Z(f) ⊆ Z(g), then for every positive ε < 1 there
exists a positive δ such that g(mx) < ε provided that f(x) < δ.

Hint: Set δ = min{f(x) : g(mx) ≥ ε}.
f) If m · Z(f) ⊆ Z(g), then Df ⊆ Dg , pDf ⊆ pDg, Nf ⊆ Ng , Af ⊆ Ag , and wDf ⊆
wDg .

Hint: Use e) in the case of Df , pDf , Af , and wDf . For Nf use d).

g) If Z(f) is a finite set of rationals, then Df = D, pDf = pD, Nf = N , Af = A, and
wDf = wD.

h) If f(x) = ‖x‖ and g(x) = ‖x‖2 then N0f ⊆ N0g, N0f 	= N0g.

Hint: The set {x ∈ T :
∑∞

k=0 ‖2
2k

x‖2 < ∞} belongs to N0g and does not belong to
N0f . For a proof see J. Arbault [1952].



368 Chapter 8. Special Sets of Reals

Historical and Bibliographical Notes

R. Baire [1899] showed that for every Borel measurable function f and for every
perfect set P there exists a set A ⊆ P , meager in P , such that f is continu-
ous on P \ A (that is a consequence of Theorem 7.30). H. Lebesgue [1905] raised
a question whether the opposite assertion holds true. N.N. Luzin [1914], assuming
CH, constructed a perfectly meager subset of [0, 1]. The characteristic function
of this set is a counterexample to Lebesgue’s question. Then N.N. Luzin [1921]
constructed an uncountable perfectly meager set by transfinite induction in ZFC
without the assumption of CH. The set of the proof of Theorem 8.3 was con-
structed by N.N. Luzin and W. Sierpiński [1928].

It seems that the notion of a universal measure zero set appeared for the first
time explicitly in W. Sierpiński and E. Szpilrajn [1936] as a property (α), where
an uncountable set of universal measure zero is constructed as well. They essen-
tially exploited the main result of F. Hausdorff [1936a]. Lemma 8.5 is proved in
E. Szpilrajn [1934], however he attributes the result to V. Saks. Theorem 8.6 was
proved very late by E. Szpilrajn [1937]. Therefore the described results were ob-
tained in two lines. Actually, M.M. Lavrentieff [1924], assuming CH, found an un-
countable set with any homeomorphic image of Lebesgue measure zero. Later on,
W. Sierpiński [1925] showed that the set of the proof of Theorem 8.3 possesses
that property as well. Moreover, S. Banach [1948] raised a problem that is actually
equivalent to the existence of a universal measure zero set of a given cardinality.
Actually Theorem 8.8 by E. Grzegorek [1980] was originally formulated as an an-
swer to the problem raised by S. Banach. Lemma 8.7 was essentially proved by
E. Szpilrajn [1938]. Then E. Grzegorek [1984] proved Theorem 8.9.

E. Borel [1919] introduced implicitly the notion of a strong measure zero
set and conjectured the Borel Conjecture. Theorem 8.11 is proved in [1934], how-
ever E. Szpilrajn attributed it to G. Poprougénko. Theorem 8.13 was announced
by F. Galvin, J. Mycielski and R.M. Solovay [1973]. The presented proof follows
that given by A. Miller [1984a]. Theorems 8.17 and 8.21 are essentially contained
in F. Rothberger [1939], see also K. Kuratowski [1958a]. W. Sierpiński [1928]
proved Corollary 8.19. The notion of an nCM-space was implicitly used for a
long time, compare, e.g., D.H. Fremlin [1994]. The explicit definition was given by
J. Haleš [2005]. Anyway, Theorem 8.22 is folklore.

The results of Exercises 8.1 and 8.2 were proved by T.J. Carlson [1993].
For results and a history of porous sets, Exercise 8.3, see, e.g., L. Zaj́ıček [1987].
E. Szpilrajne [1935] introduced the notion of an (S)0-set and essentially showed
the results of Exercise 8.5.

P. Mahlo [1913] and N.N. Luzin [1914], assuming CH, constructed a Luzin
set. Later W. Sierpiński [1924a] constructed a Sierpiński set provided that CH
holds true. Theorem 8.30 and Corollary 8.31 were essentially proved by E. Szpil-
rajn [1938]. J. Pawlikowski [1996] proved the dual Theorem 8.32 for a Sierpiński
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set. The proofs of Theorem 8.37 and Corollary 8.38 are a generalization of the orig-
inal proof of Corollary 8.39 by F. Rothberger [1938a]. Compare J. Cichoń [1989]
and L. Bukovský [∞].

W. Sierpiński proved that every Borel measurable function defined on a Luzin
set is of Baire order 2. E. Spilrajn [1930] proved, that a Sierpiński set S is a σ-set
(without using that word) and every Borel measurable function defined on S is of
Baire order 1. Compare K. Kuratowski [1958a].

K. Kuratowski [1933] introduced the notion of a λ-set. He remarks that
an argumentation of N.N. Luzin [1921] proves Theorem 8.48. F. Rothberger [1939]
showed Theorem 8.50. N.N. Luzin [1933] essentially showed Corollary 8.49. The
notion of a Rothberger family (Exercise 8.10) was introduced and investigated by
J. Cichoń [1989]

The notions of a QN-, a wQN- and an mQN-space were introduced and in-
vestigated (Theorems 8.56–8.63) by L. Bukovský, I. Rec�law and M. Repický [1991]
and [2001] in connection with some problems of thin sets of trigonometric series.
L. Bukovský [1993] introduced and investigated the notion of a Σ-space.

A.V. Arkhangel’skĭı [1972] defined the properties (α1)–(α4). M. Scheepers
[1998] proved the equivalence of conditions b)–e) of Theorem 8.64 and then [1999]
the implication b) → a). Then D.H. Fremlin [∞] proved the implication a) → b).
Theorem 8.66 by M. Scheepers [1999] actually raised a question whether the op-
posite implication holds true. An affirmative answer was given independently by
L. Bukovský and J. Haleš [2007] and M. Sakai [2007] as Theorem 8.67. Theo-
rem 8.74 was already proved by L. Bukovský, I. Rec�law and M. Repický [1991].
I. Rec�law [1997] proved Theorem 8.77 for metric spaces. The generalization for
perfectly normal spaces is straightforward, see, e.g., L. Bukovský, I. Rec�law and
M. Repický [2001] or J. Haleš [2005]. The presented proof follows L. Bukovský and
J. Šupina [∞]. K. Menger [1924] defined and investigated the Menger Property.
Since a σ-compact space has trivially the Menger Property, he raised a ques-
tion whether the opposite implication does hold true. W. Hurewicz [1927] in-
troduced properties H∗, H∗∗, the Hurewicz Property of a topological space and
proved Theorem 8.113 for metric separable spaces. W. Sierpiński remarked on our
Theorem 8.101 (see W. Hurewicz [1927], p. 196) that a Luzin set possesses the
Menger Property and does not possess the Hurewicz Property. Theorem 8.85 was
proved by L. Bukovský and J. Haleš [2003], for metric separable spaces already
in L. Bukovský, I. Rec�law and M. Repický [2001]. The Key Lemma 8.84 is due
to J. Haleš. Theorem 8.89, which is a partial answer to the Menger problem, was
proved by W. Hurewicz [1928].

J. Gerlits and Z. Nagy [1982] introduced the notion of a γ-space and proved
Theorem 8.96. Then F. Galvin and A.W. Miller [1984] proved Theorems 8.90–
8.92. M. Scheepers [1996] started a systematic study of covering properties. Many
classically known covering properties of topological spaces are covered by the sys-
tem of covering properties introduced by M. Scheepers. That is the case of the
Menger Property, the Hurewicz Property, and also of the Rothberger Property in-
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troduced by F. Rothberger [1938b]. A.W. Miller and D.H. Fremlin [1988] showed
Theorem 8.108 and J. Gerlits and Z. Nagy [1982] showed Theorem 8.109. Theo-
rem 8.111 was proved by F. Rothberger [1941].

The results of Exercise 8.20 are due to J. Gerlits and Z. Nagy [1982]. Exer-
cises 8.22–8.26 contain results by M. Scheepers [1996] and W. Just, A.W. Miller,
M. Scheepers and P.J. Szeptycki [1996].

Actually Theorem 8.115 is considered as the main result of J. Gerlits and
Z. Nagy [1982]. Corollary 8.119 was proved by M. Scheepers [1999]. Then
M. Scheepers conjectured that the opposite implication holds true – see Section 9.2.
Theorem 8.120 was proved by L. Bukovský and J. Haleš [2007]. However, some
weaker versions were already contained in J. Haleš [2005]. Theorem 8.123 was es-
sentially proved by W. Just, A.W. Miller, M. Scheepers and P.J. Szeptycki [1996].
They showed that assuming b = ℵ1, the constructed set is the so-called S1(Γ,Γ)∗-
set. Then I. Rec�law [1997] remarked that this set is actually a wQN-set and showed
Theorem 8.124. Then M. Scheepers [1999] proved that S1(Γ,Γ)∗ = S1(Γ,Γ), hence
the constructed set is an S1(Γ,Γ)-set. Note that Rec�law’s result is a typical non-
constructive proof: we do not know whether b = ℵ1 or not, however in either case
we can find a set with desired properties. Theorem 8.125 is one of main results
by L. Bukovský and J. Haleš [2007]. Theorem 8.81 was proved by B. Tsaban and
L. Zdomskyy [∞]. The presented proof follows L. Bukovský and J. Šupina [∞].

The notion of weak distributivity was introduced by L. Bukovský, I. Rec�law
and M. Repický [1991] and studied also in [2001]. The main results of Exercises 8.28
and 8.30 are due to J Haleš [2005]. Exercise 8.29 contains results of L. Bukovský
and J. Haleš [2007]. Exercise 8.31 contains results by L. Bukovský [2008]. The
result of Exercise 8.31, h) is due to M. Sakai [2009].

J. Cichoń, A. Karazashvili and B. W ↪eglorz [1995] presented several properties
of exceptional sets of reals, however mainly without any proof.

In 1912 in Comptes Rendues d’Académie des Sciences de Paris A. Den-
joy [1912] and N.N. Luzin [1912] published independently two papers under equal
titles “Sur l’absolue convergence des séries trigonométriques.” Both papers contain
a proof of Theorem 8.131. Later, N.N. Luzin [1915] showed that Theorem 8.132 is
an easy consequence of Theorem 8.131.

The proof of Theorem 8.133 is a typical application of the Dirichlet’s Pigeon-
hole Principle.

The sets of points of absolute convergence of a trigonometric series were
studied by several authors and the related set of points of convergence. Prob-
ably P. Fatou was the first one in his thesis in 1906. The notion of an N-set
explicitly introduced J. Marcinkiewicz [1938] who also essentially proved Theo-
rem 8.143. R. Salem [1941b] proved the equivalence of parts a) and b) of Theo-
rem 8.136. The notions of a Dirichlet set and a weak Dirichlet set were introduced
and studied in harmonic analysis. The notion of a pseudo Dirichlet set was inde-
pendently introduced by Z. Bukovská [1990] (as a D-set) and S. Kahane [1993]. J.
Arbault [1952] introduced the notion of an A-set. Theorems 8.137–8.140 are folk-
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lore. J. Arbault [1952] introduced the notion of a permitted set and proved Theo-
rem 8.144 for N-sets. P. Erdős (unpublished) and J. Arbault independently proved
Theorem 8.146 for N-sets. The other cases are easy. The paper by L. Bukovský,
N.N. Kholshchevnikova and M. Repický [1994] surveys the results about trigono-
metric thin sets obtained before 1995.

Results of Exercise 8.32 were obtained by B. Host, J.-F. Méla and F. Par-
reau [1991]. See also L.A. Lindhal and F. Poulsen [1971] and a generalization by
L. Bukovský [1998]. Exercise 8.33 contains an unpublished result by G. Debs (see
S. Kahane [1993]).

It was J. Arbault [1952] who began with showing that some inclusions in the
diagram of Theorem 8.137 are proper. S. Kahane [1993] contributed essentially
to this problem. The results of Exercises 8.35–8.36 are due to P. Eliaš [1997].
Exercise 8.38 follows L. Bukovský [2003]. Part h) of Exercise 8.39 is due to
J. Arbault [1952], the others are due to Z. Bukovská [1999] and [2003].



Chapter 9

Additional Axioms

There are a sort of propositions, which, under the name of maxims
and axioms, have passed for principles of science: and because they are
self-evident, have been supposed innate, without that anybody (that
I know) ever went about to show the reason and foundation of their
clearness or cogency. It may, however, be worth while to inquire into
the reason of their evidence, and see whether it be peculiar to them
alone; and also to examine how far they influence and govern our other
knowledge.

John Locke [1690], Book IV, Chapter VII.

As we have already mentioned there are many problems that the ZFC set theory is
not able to decide. In the first third of the 20th century, mathematicians often used
the continuum hypothesis CH to solve a problem. The continuum hypothesis CH
was used as an additional axiom before its consistency was established. Maybe the
mathematicians believed they could prove CH in ZFC. Actually G. Cantor tried
to do so. The undecidability of CH was established much later.

According to K. Gödel [1931] the ZFC theory is non-complete, provided it
is consistent. Even any consistent extension of ZFC obtained by adding a finite
number of axioms is non-complete. Mathematicians looked for possible finite ex-
tensions of ZFC, i.e., by adding an additional axiom, which would better describe
the properties of the abstraction of the notion of infinity and allows solution of
an important problem. The consequences of an additional axiom are a measure of
its plausibility. We make our explanation precise.

An additional axiom of ZFC or ZF should be a formula ϕ with interesting
consequences, about which we know (assuming that ZF or some stronger theory,
e.g., ZFC + IC, is consistent) that neither ϕ nor ¬ϕ is provable in set theory, i.e.,
an undecidable statement of ZFC or ZF, respectively. Of course, we do not con-
sider every undecidable statement of ZFC as an additional axiom. An additional
axiom is usually an undecidable formula solving important problems that remain
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unanswered in ZFC. Often, a mathematician prefers a positive or negative answer
to a problem. Then the plausibility of an additional axiom is measured by the
result: does it imply what we wanted? Note that if ϕ is an undecidable statement
then ¬ϕ is as well and may become an additional axiom.

We recall some facts. If ¬ϕ is not provable in ZFC and we show (in ZFC)
that ϕ → ψ, then neither is ¬ψ provable in ZFC. E.g., (see Section 9.2) if from
the Borel Conjecture it follows that every QN-space is countable, then one cannot
prove (in ZFC) that there exists an uncountable QN-space. Moreover, if ϕ1, ϕ2 are
undecidable in ZFC and we show (in ZFC) that ϕ1 → ψ and ϕ2 → ¬ψ, then ψ is
undecidable in ZFC as well.

In the second half of the twentieth century, after invention of the forcing
method for construction of models of set theory, mathematicians posited plenty
of interesting sentences with interesting consequences that are undecidable in ZF,
even in ZFC, respectively. Many of those sentences became good candidates to be
an additional axiom of ZF or ZFC.

From a large variety of very different possibilities we have chosen four ar-
eas. Actually one of the first alternative axioms to the continuum hypothesis was
Martin’s Axiom. We present some of its consequences in Section 9.1. The simplest
relationship between several properties of the real line and related combinatorial
structures may be expressed by cardinal invariants, small uncountable cardinals,
introduced in Sections 5.4 and 7.1. A possibility or an impossibility to prove a re-
sult depends often on inequality or equality of some cardinal invariants. Since the
undecidability of such equalities or inequalities are often already known, we pro-
pose them as an additional axiom in Section 9.2. In this Section we also present
a combinatorial principle related to cardinal invariants. The consistency of sev-
eral regularity properties of sets of reals with ZF, usually contradicting the axiom
of choice, were established. We shall investigate their consequences, especially
those related to the cardinal arithmetics in Section 9.3. Finally, J. Mycielski and
H. Steinhaus [1962] proposed the Axiom of Determinacy AD as an alternative to
the Axiom of Choice. The set theory ZF+AD was extensionally studied and many
interesting results were obtained. The basic consequences of AD are presented in
Section 9.4.

Many other axioms were formulated and were intensively used. Let us men-
tion just the Proper Forcing Axiom introduced by S. Shelah [1982] – for some de-
tails see T. Jech [2006], Martin’s Maximum introduced by M. Foreman, M. Magi-
dor and S. Shelah [1988] – see also T. Jech [2006], and the Covering Property
Axiom introduced by K. Ciesielski and J. Pawlikowski [2004]. Each of them tries
to formulate an essence of properties of a particular model of set theory. Unfor-
tunately, in the above-mentioned cases, every such model, in spite of being very
interesting and important, satisfies c = ℵ2 and each of those axioms actually
implies that c = ℵ2.
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9.1 Continuum Hypothesis and Martin’s Axiom

In this section we assume the Axiom of Choice AC, i.e., we work in ZFC. Moreover
we assume that a reader is acquainted with the material of Section 5.3, where the
cardinal invariant m was introduced and studied.

Martin’s Axiom MA is the statement m = c. Thus a special case of MA is
the continuum hypothesis CH. We present some consequences of MA. Of course
each of them is also a consequence of CH. Sometimes mathematicians assume
MA + ¬CH to obtain better results. Such a situation will be explicitly indicated.
By D.A. Martin and R.M. Solovay’s result (11.21) we can assume that m = c = κ,
where κ is any well-defined uncountable regular cardinal (see Section 11.5).

Martin’s Axiom was invented in the time when Bartoszyński’s theorem was
not known and the mathematicians believed in the duality of measure and cate-
gory. The main goals of Martin’s Axiom were the dual consequences for measure
and category. On the other hand, Martin’s Axiom is considered as an interest-
ing alternative to the continuum hypothesis CH. In his famous book, Wac�law
Sierpiński [1934b] deduced 82 propositions C1–C82 from CH. It turned out that
slight modifications of almost any of them (usually replacing the word “countable”
by “of cardinality less than continuum” or ℵ1 by c) follow from Martin’s Axiom.
E.g., the proposition C1 says that there exists an ℵ1-Luzin set. We already know
(see Theorem 8.26) that CH implies C1. If we modify C1 as “there exists a c-Luzin
set”, then by Theorems 8.26 and 9.1, using the inequalities of the Cichoń Diagram,
we obtain that MA implies C1. It is easy to check that, similarly as C1 implies
propositions C2–C14, the modified C1 implies the modified propositions C2–C14.

By Theorems 5.47 and 5.46 we immediately obtain

ℵ0 ≤ κ < m → 2κ = c. (9.1)

Theorem [AC] 9.1.

m ≤ add(N ).

Proof. Let F ⊆ N (T), |F| < m.
We fix a real ε > 0 and consider the Amoeba forcing

A = {A ⊆ T : A open ∧ λ(A) < ε}.

We order A by inverse inclusion. We show that A is a CCC poset. Assume that
D ⊆ A is an uncountable antichain. We can assume that for some 0 < δ < ε we
have λ(A) < δ for every A ∈ D. Actually, if Dn = {A ∈ D : λ(A) < ε − 2−n},
then there exists an n such that Dn is uncountable. We replace D by Dn. Let U
be a countable base of the topology closed under finite unions, e.g., U is the set of
all finite unions of open intervals with rational endpoints. For every A ∈ A there
exists a set UA ∈ U such that UA ⊆ A and λ(A \ UA) < ε/2 − δ/2. Since U is
countable, there exist two distinct sets A1, A2 ∈ D such that UA1 = UA2 . Since
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A1 and A2 are incompatible in ⊇, we have A1 ∪A2 /∈ A, therefore

ε ≤ λ(A1 ∪A2) ≤ λ(UA1) + λ(A1 \ UA1) + λ(A2 \ UA2) < δ + 2 · (ε/2− δ/2) = ε,

which is a contradiction.
For any F ∈ F the set HF = {A ∈ A : F ⊆ A} is dense in the poset 〈A,⊇〉.

Since |F| < m, there exists an {HF : F ∈ F}-generic filter G of A. Set G =
⋃
G.

G is an open set and let there exist a countable set G0 ⊆ G such that G =
⋃
G0.

Since G is a filter, each finite union of elements of G0 is an element of A and
therefore has measure < ε. Then λ(G) =

⋃
G0 ≤ ε. On the other hand since G

meets every HF , F ∈ F we have
⋃
F ⊆ G.

Since ε was arbitrary we obtain λ(
⋃
F) = 0. �

Corollary [AC] 9.2. MA implies that add(N ) = c. Consequently all cardinals in
the Cichoń Diagram, with the exception of ℵ1, are equal to c.

Note that the implication MA → add(M) = c follows by Theorem 5.34, f)
as well.

By Theorems 8.26, 8.8 and 8.9 and Corollary 9.2, we obtain:

Corollary [AC] 9.3. MA implies that there exist a c-Luzin set, a c-Sierpinski set,
a universal measure zero set of cardinality c, and a perfectly meager set of cardi-
nality c.

Corollary [AC] 9.4. If MA, then

a) every set of reals of cardinality less than c is a γ-set, is strongly meager, has
strong measure zero, is a QN-set, therefore a σ-set and also a λ-set;

b) there exists a γ-set of cardinality c;
c) there exist a universal measure zero set of cardinality c and a perfectly meager

set of cardinality c.

If moreover c > ℵ1, then also

d) every Σ1
2 set of reals is Lebesgue measurable and has the Baire Property;

e) there is no Σ1
2 well-ordering of the real line.

Proof. Part a) follows by Theorems 5.49, 8.90, 8.16 d), 8.109, 8.102, 8.61, and
8.77. Part b) follows by Theorem 8.92. Part c) follows by Theorems 8.8 and 8.9.

If c > ℵ1, then Part d) follows from the theorem using Theorem 6.58. Part
e) follows by Theorem 10.4. �

Lemma [AC] 9.5 (R.M. Solovay). Let A,B ⊆ [ω]ω be families of cardinalities
smaller than continuum. Assume that for any A ∈ B and any finite C ⊆ A the
set A \

⋃
C is infinite. If MA holds true, then there exists a set M ⊆ ω such that

A ∩M is finite if A ∈ A and infinite if A ∈ B.
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Proof. Let us consider the set P of all ordered pairs 〈K, C〉 with K a finite subset
of ω and C a finite subset of A. We partially order P as follows:

〈K2, C2〉  〈K1, C1〉 ≡
(
K1 ⊆ K2 ∧ C1 ⊆ C2 ∧K2 ∩

(⋃
C1

)
⊆ K1

)
.

Since 〈K, C1 ∪ C2〉  〈K, Ci〉, i = 1, 2, the partially ordered set 〈P, 〉 is CCC.
For any A ∈ [ω]ω and n ∈ ω we write

YA = {〈K, C〉 ∈ P : A ∈ C},
XA,n = {〈K, C〉 ∈ P : |A ∩K| ≥ n}.

For any A ∈ A, B ∈ B and any n ∈ ω, the families YA and XB,n are dense in P.
Hence, since cardinalities of A,B are smaller than continuum and we assume MA,
there exists a {YA : A ∈ A}∪{XA,n : A ∈ B∧n ∈ ω}-generic filter F of P. We set

M = {n ∈ ω : (∃ 〈K, C〉) (〈K, C〉 ∈ F ∧ n ∈ K)}.

Let A ∈ A. Then there exists a 〈K1, C1〉 ∈ F with A ∈ C1. Assume now
that n ∈ A ∩M . Then there exists 〈K2, C2〉 ∈ F such that n ∈ K2. Since F is
a generic filter there is a 〈K3, C3〉 ∈ F extending both 〈Ki, Ci〉, i = 1, 2. Hence
K2 ∩A ⊆ K3 ∩A ⊆ K1. Thus A ∩M ⊆ K1 is finite.

Now assume that A ∈ B. Let n ∈ ω. Then there exists a 〈K, C〉 ∈ F ∩ XA,n.
Evidently K ⊆ M and |A ∩ M | ≥ n. Since n was arbitrary the set A ∩ M is
infinite. �
Theorem [AC] 9.6. If MA holds true, then every subset of a Polish space of car-
dinality less than c is a Q-set.

Proof. Let Y ⊆ E ⊆ X , |E| < c, X being a Polish space. We can assume that X
has no isolated points. We construct an Fσ set F such that Y = E ∩ F .

Let {Un : n ∈ ω} be an open base of topology. We set Ax = {n ∈ ω : x ∈ Un}.
If x ∈ E \ Y and y0, . . . , yk ∈ Y , then the set Ax \

⋃k
i=0Ayi is infinite. Thus

by Lemma 9.5 there exists a set M ⊆ ω such that M ∩Ax is finite for x ∈ Y and
infinite for x ∈ E \ Y . Set

Gm =
⋃
{Un : n ∈M ∧ n ≥ m}, G =

⋂

m

Gm, F = X \G.

If x ∈ Y , then M ∩Ax is finite and therefore x ∈ F . If x ∈ E \ Y , then Ax ∩M is
infinite and therefore x ∈ G. Hence Y = F ∩ E. �
Theorem [AC] 9.7. Assume A ⊆ C ⊆ [ω]ω, |C| < m and elements of C are pairwise
almost disjoint. Then there exists a set M ⊆ ω such that

|M ∩A| < ℵ0 ≡ A ∈ A

for each A ∈ C.
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Proof. In Lemma 9.5 take B = C \ A. �

Corollary [AC] 9.8. If MA holds true, then every maximal almost disjoint family
of subsets of ω has cardinality c.

We apply the obtained results to the descriptive set theory.
Theorem [AC] 9.9. If MA holds true and c > ℵ1, then the following assertions
are equivalent:

a) There exists a Π1
1 set A ⊆ ω2 of cardinality ℵ1.

b) Every subset of ω2 of cardinality ℵ1 is a Π1
1 set.

c) There exists a Σ1
2 set A ⊆ ω2 of cardinality ℵ1.

d) Every union of ℵ1 many Borel sets is a Σ1
2 set.

e) Every union of ℵ1 many Σ1
2 sets is a Σ1

2 set.

Proof. Evidently b) → a) and e) → d) → c) → a) (the last implication follows
from the Uniformization Theorem 6.62).

We prove b) → e). By Theorem 6.40 there exists a Σ1
2 set U ⊆ ωω × X

universal for Σ1
2(X). If 〈Aξ : ξ < ω1〉 are Σ1

2(X) sets, then there exists a set
B ⊆ ωω of cardinality ℵ1 such that

⋃
ξ<ω1

Aξ =
⋃
x∈B U

x. By b) B ∈ Π1
1 and

y ∈
⋃

x∈B
Ux ≡ (∃x) (x ∈ B ∧ 〈x, y〉 ∈ U).

So we have to prove a) → b). Assume that a) holds true and we show that
any subset of ω2 of cardinality ℵ1 is a Π1

1 set. So, let A,B ⊆ ω2 be such that
|A| = |B| = ℵ1, A ∈ Π1

1(ω2). Let g : A 1−1−→
onto

B. We take a bijection H : ω 1−1−→
onto

<ω2

and define an injection F : ω2 1−1−→ P(ω) by setting (compare the proof of Theorem
5.35)

F (α) = {n ∈ ω : H(n) ⊆ α}.

Then F is a continuous mapping and values of F are pairwise almost disjoint. We
set

Bα,n = {k ∈ ω : π(n, k) ∈ F (α)}

and for a given n,
An = {Bα,n : α ∈ A ∧ g(α)(n) = 1}.

Since An is a family of almost disjoint sets and |An| ≤ ℵ1, by Theorem 9.7 there
exists a set Mn ⊆ ω such that

|Bα,n ∩Mn| < ℵ0 ≡ Bα,n ∈ An

for any n ∈ ω and α ∈ A. We define a subset of ω2× ω2 by setting

〈α, β〉 ∈ G ≡ (∀n) (|Bα,n ∩Mn| < ℵ0 ≡ β(n) = 1).
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Since F is continuous and

|Bα,n ∩Mn| < ℵ0 ≡ (∃k)(∀m ≥ k) (m ∈M → π(n,m) /∈ F (α)),

the set G is Borel. Moreover if α ∈ A, then 〈α, β〉 ∈ G ≡ β = g(α). Since the
projection proj2 : ω2 × ω2 −→ ω2 is injective on G and B = proj2(G ∩ (A × ω2))
we obtain B ∈ Π1

1. �

Together with Theorem 6.58 we obtain

Corollary [AC] 9.10. Assume that MA holds true, c > ℵ1 and there exists a Π1
1

set of cardinality ℵ1. Then a set is Σ1
2 if and only if it is a union of ℵ1 Borel sets.

Now we apply Martin’s Axiom to essentially different topics. Namely we shall
study a topological product of CCC topological spaces. We begin with a combi-
natorial result proved by N.A. Shanin.

Lemma [AC] 9.11 (∆-Lemma). Assume that F is an uncountable family of finite
sets. Then there exist an uncountable subfamily F0 ⊆ F and a finite set C such
that A ∩B = C for any distinct A,B ∈ F0.

Proof. We can assume that there exists a positive integer n such that |A| = n for
each A ∈ F . We prove the assertion by induction. If n = 1, take C = ∅. Assume
that the assertion holds true for n and every element of an uncountable family F
has cardinality n + 1. If the family {A ∈ F : a ∈ A} is uncountable for some a,
apply the assertion to the family {A \ {a} : A ∈ F ∧ a ∈ A}.

Assume that each element belongs to at most countably many elements of
the family F . We can construct an uncountable subfamily {Aξ : ξ ∈ ω1} of F
consisting of pairwise disjoint elements. Actually, if {Aη : η ∈ ξ}, ξ < ω1 is
already constructed, then the set B =

⋃
η<ξ Aη is countable and therefore at most

countably many elements of F meets the set B. Thus there exists an element
Aξ ∈ F such that B ∩Aξ = ∅. Set F0 = {Aξ : ξ < ω1} and C = ∅. �

Theorem [AC] 9.12. Assume that 〈〈Xs,Os〉 : s ∈ S〉 are topological spaces satis-
fying CCC. Then the product space 〈Πs∈SXs,Πs∈SOs〉 is CCC if and only if the
product 〈Πs∈TXs,Πs∈TOs〉 is CCC for every finite T ⊆ S.

Proof. Assume that U is an uncountable family of pairwise disjoint open subsets of
X = Πs∈SXs. We can assume that every U ∈ U is of the form U = Πs∈SUs, where
Us ⊆ Xs are open and the set SU = {s ∈ S : Us �= Xs} is finite. One can easily
see the following. If U ∩ V = ∅, V = Πs∈SVs, then also Πs∈TUs ∩ Πs∈TVs = ∅,
where T = SU ∩ SV .

By ∆-Lemma there exist an uncountable family U0 ⊆ U and a finite set T ⊆ S
such that SU ∩ SV = T for any distinct U, V ∈ U0. Then {Πs∈TUs : U ∈ U0} is
an uncountable family of pairwise disjoint open subsets of Πs∈TXs.

The opposite implication is trivial. �
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Thus the problem, whether a topological product of topological CCC spaces
is CCC, is a problem about the product of two topological CCC spaces. Later in
Section 10.3 we show that the answer is undecidable in ZFC.

A poset 〈P,≤〉 has the Knaster Property, if every uncountable set A ⊆ P
contains an uncountable subset B ⊆ A such that every two elements x, y ∈ B are
compatible, i.e., there exists a z ∈ P , z �= 0P , such that z ≤ x and z ≤ y. Evidently,
a poset with the Knaster Property is CCC. It turned out that the Martin’s Axiom
MA and c �= ℵ1 imply also the opposite assertion.
Theorem [AC] 9.13. If MA and c > ℵ1 hold true, then every CCC poset has the
Knaster Property.

Proof. Let 〈P,≤〉 be a poset satisfying CCC, A = {aξ : ξ < ω1} being an uncount-
able subset of P .

Assume that for every q ∈ P there exists a p ∈ P , p ≤ q compatible with
only countably many elements of A. Then for every η < ω1 there exists a ξ > η
and a pη ≤ aη which is incompatible with all aζ , ζ ≥ ξ. One can easily see that
the set {pη : η < ω1} contains an uncountable subset of incompatible elements
contradicting CCC.

Thus, there exists a q ∈ P such that the set Dξ = {p ≤ q : (∃ζ ≥ ξ) p ≤ aζ} is
dense below q for every ξ < ω1. By MA there exists a {Dξ : ξ < ℵ1}-generic filter
F of P such that q ∈ F . By construction, for every ξ there exists ζ ≥ ξ such that
aζ ∈ F . Thus A ∩ F is an uncountable set of pairwise compatible elements. �
Theorem [AC] 9.14. If MA and c > ℵ1 hold true, then product of two CCC
topological spaces is a CCC topological space.

Proof. Let X and Y be CCC topological spaces. Assume that U is an uncountable
family of open subsets of X × Y . We suppose that every U ∈ U has the form
U = VU ×WU , where VU ,WU are open subsets of X,Y , respectively.

By Theorem 9.13 we can assume that VU1∩VU2 �= ∅ for any U1, U2 ∈ U . Since
Y is CCC, there exist U1, U2 ∈ U such that WU1∩WU2 �= ∅. Then U1∩U2 �= ∅. �

As a consequence of Theorems 9.12 and 9.14 we obtain that Martin’s Axiom
implies an affirmative answer to the question about topological product of CCC
topological spaces.
Corollary [AC] 9.15. If MA and c > ℵ1 hold true, then the topological product of
CCC topological spaces is a CCC space.

Exercises

9.1 [AC] Regularity of c

a) Show that cf(c) ≥ m.

Hint: Use Exercise 1.7, b) and (9.1).

b) MA implies that c is a regular cardinal.

Hint: See Exercise 1.7, c).
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9.2 [AC] Probabilistic Borel Measures

We assume that µ is a diffused probabilistic Borel measure on [0, 1] and MA holds true.

a) The “Amoeba forcing” A(µ) = {U ⊆ [0, 1] : U open ∧ µ(U) < ε} satisfies CCC.

Hint: Follow the proof of Theorem 9.1.

b) add(µ) = c.

Hint: For ξ < κ < c, let Uξ = {U ∈ A(µ) : Aξ ⊆ U}. If G is {Uξ : ξ < κ}-generic
filter, then

⋃
ξ<κ Aξ ⊆

⋃
G and µ(

⋃
G) < 2ε.

9.3 [AC] The Martin Number for a Class of Posets

For simplicity we assume that no poset contains the smallest element. Let C be a class
of separative posets. m(C) is the smallest cardinal κ such that there exist an 〈P,≤〉 ∈ C
and a family D of dense subsets of P , |D| = κ such that there exists no D-generic filter
F of P .

Let 〈P,≤〉 be a poset without the smallest element. A set R ⊆ P is linked if every
two elements of R are compatible. A set, that is a countable union of linked subsets, is
σ-linked. A set R ⊆ P is centered if every finitely many members of R have a common
lower bound in P . A countable union of centered subsets is a σ-centered set.

a) Note that every σ-centered set is σ-linked, every σ-linked poset has the Knaster
Property, and a poset with the Knaster Property is CCC.

b) m(CCC) = m ≤ m(Knaster) ≤ m(σ-linked) ≤ m(σ-centered).

c) m(countable) = cov(M).

Hint: If A ⊆ ω2 is open dense, then {s ∈ <ω2 : [s] ⊆ A} is an open dense subset of
the poset 〈<ω2,⊇〉. Conclude that m(countable) ≤ cov(M). Now, let 〈Dξ : ξ < κ〉 be
dense subsets of a countable poset 〈P,≤〉. Define F : ωP −→ ωP as F (α)(0) = α(0),
F (α)(k+1) = α(k+1) if α(k+1) ≤ F (α)(k), and F (α)(k+1) = F (α)(k) otherwise.
Set Uξ = {α ∈ ωP : (∃k)F (α)(k) ∈ Dξ}. If κ < cov(M), then β ∈

⋂
ξ<κ Uξ is such

that F (β) meets every Dξ.

d) m(σ-centered) ≤ p.

Hint: The poset P in the proof of Theorem 5.49 is σ-centered.

e) m(σ-linked) ≤ add(N ).

Hint: Show that the amoeba forcing 〈A,⊇〉 is σ-linked. Let R be the family of all
finite unions of rational open intervals with measure less than ε. For every U ∈ A
there exists an RU ∈ R such that λ(U \ RU ) < ε − λ(U). Show that λ(U \ RU ) <
1/2(ε − λ(RU )). The family {U ∈ A : RU = R} is linked for any R ∈ R.

9.4 [AC] Bell’s Theorem

We assume that 〈P,≤〉 is a σ-centered poset, P =
⋃

n Pn, Pn centered, D is an infinite
family of open dense subsets of P closed under finite intersections, and |D| < p.

a) There exists a σ-centered subset Q ⊆ P such that |Q| < p and D∩Q is open dense
in 〈Q,≤〉 for any D ∈ D.

Hint: Set Q =
⋃

nQn, where Q0 is any non-empty finite subset of P . By induction,
find Qn+1 ⊇ Qn such that if a finite subset of Qn has a lower bound in P , then it
has a lower bound in Qn+1, and for every p ∈ Qn and every D ∈ D, there exists
a q ∈ Qn+1 with p ≥ q ∈ D, and |Qn+1| ≤ |D|.

b) Assume that Q is the set of a) and F is a {D ∩ Q : D ∈ D}-generic filter on Q.
Then {p ∈ P : (∃q ∈ Q) q ≤ p} is a D-generic filter on P .
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From now on we assume that D contains all

Dp,q = {r ∈ P : r ≤ p, q ∨ r incompatible with p or q}

with p, q ∈ P and |P | < p.

c) If F is a linked subset of P meeting each D ∈ D, then the upward closure of F is
a D-generic filter on P .

d) Assume C ⊆ P is centered. If C meets each D ∈ D, then C is a linked set.

So, we can assume that for every n there exists a set Fn ∈ D with Fn ∩Pn = ∅. For each
p ∈ P , D ∈ D we set A(p,D) = {n ∈ ω : (∃q ∈ Pn ∩D) q ≤ p}.

e) The family {A(p,D) : p ∈ Pn ∧ D ∈ D} has f.i.p., hence it has a pseudointersec-
tion An.

Hint: If p0, . . . , pk ∈ Pn, D0, . . . ,Dk ∈ D, then there exists p ≤ pi, i = 0, . . . , k. For
any m we have D =

⋂
i≤k Di ∩

⋂
j≤m Fj ∈ D. If q ∈ D, q ≤ p, then q ∈ Pn for

some n ≥ m and also n ∈
⋂

i≤k A(pi,Di).

We define a function g : <ωω −→ ω: g(∅) = 0 and g(s�k) = nk, where {nk}∞k=0 is an
increasing enumeration of Ag(s). For any D ∈ D we define function hD : <ωω −→ P as
follows: hD(∅) is an arbitrary element of P0. If hD(s) = p, s ∈ <ωω is already defined
and g(s�k) = n, then we set hD(s�k) equal to any element of D ∩ Pn such that, if
n ∈ A(p,D) , then q ≤ p (and arbitrary in D ∩ Pn otherwise).

f) There exists a branch α ∈ ωω such that for all D ∈ D and for all but finitely many
n, g(n) ∈ A(α|n,D).

Hint: For D ∈ D and s ∈ <ωω, let fD(s) be a number so large, that m ∈ A(hD(s),D)
for every m ≥ fD(s). Since |D| < p ≤ b, there exists an α such that fD <∗ α for
any D ∈ D.

g) There exists a linked subset of P meeting each D ∈ D.

Hint: If α is as in f), construct a branch β setting β(0) = ∅ and β(n) = g(β|n). For
each D ∈ D there exists a natural number mD such that A(β|mD,D) 	= ∅. Then
{fD(β|mD);D ∈ D} meets every D ∈ D and is linked.

h) Prove Bell’s Theorem: m(σ-centered) ≥ p.

i) Conclude, that m(σ-centered) = p.

9.5 [AC] p is regular

a) Assume that A,B ⊆ [ω]ω, |A|, |B| < p, and A is closed under finite intersections.
If for every A ∈ A and B ∈ B the intersection A ∩ B is infinite, then there exists
an infinite set C such that C ⊆∗ A and |C ∩ B| = ℵ0 for every A ∈ A and every
B ∈ B, respectively.

Hint: The set P = {〈I,A〉 : I ⊆ ω is finite ∧A ∈ A} ordered as (compare the proof
of Theorem 5.49)

〈I1, A1〉 � 〈I2, A2〉 ≡ (I2 ⊆ I1 ⊆ (I2 ∪A2) ∧A1 ⊆ A2)

is σ-centered. Since m(σ-centered) = p, there exists a D-generic filter F, where
D = {{〈I, B〉 ∈ P : I finite} : B ∈ B}∪{{〈I, A〉 ∈ P : |I∩A| > n} : n ∈ ω∧A ∈ A}.
Then C = {n ∈ ω : (∃〈I,A〉 ∈ F)n ∈ I} is the desired set.
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b) If B ⊆ [ω]ω is closed under finite intersections, λ = cf(κ) < κ = |B|, then there
exists an increasing sequence 〈Bξ : ξ < λ〉, every Bξ closed under finite intersections,
|Bξ | < κ, and such that B =

⋃
ξ<λ Bξ .

c) Assume that B, Bξ are as in b) with κ = p and A is closed under finite intersections,
|A| < p. If for every A ∈ A and B ∈ B the intersection A∩B is infinite, then there
exists an infinite set C such that C ⊆∗ A and |C ∩ B| = ℵ0 for every A ∈ A and
every B ∈ B, respectively.

Hint: Since Bξ ∪A has f.i.p. and has size < p, there exists a pseudointersection Cξ.
Apply a) with {Cξ : ξ < λ} in the role B.

d) Assume that B, Bξ are as in b) with κ = p. Then there exists an almost decreasing
sequence 〈Bξ : ξ < λ〉 of infinite sets such that each Bξ is a pseudointersection of
Bξ and meets each B ∈ B in an infinite set.

Hint: If 〈Bη : η < ξ〉 are already defined and moreover, each Bη meets each member
of B in an infinite set, then find Bξ as in d) taking A = Bξ ∪ {Bη : η < ξ}.

e) p is regular.

Hint: If not, there exists a family B with property of b). However, then a pseu-
dointersection of the sequence 〈Bξ : ξ < λ〉 of d) is a pseudointersection of B as
well.

9.6 [AC] Knaster Property of a Topological Product

We shall say that a topological space 〈X,O〉 has the Knaster Property if the poset 〈O,⊆〉
has the Knaster Property.

a) If W ⊆ A × B is an uncountable set such that for any a ∈ A the vertical section
Wa is countable and for any b ∈ B the horizontal section W b is countable, then
there exists an uncountable set F ⊆ W such that F is a one-to-one function from
dom(F ) ⊆ A.

b) Let 〈Xi,Oi〉, i = 1, 2 be topological spaces, 〈X2,O2〉 having the Knaster Property.
Assume that W is a family of basic open subsets of the product X1×X2 such that
the set {V ∈ O1 : U × V ∈ O1 ×O2} is uncountable for some U ∈ O1. Then there
exists an uncountable subset of W of pairwise compatible sets.

c) The product of two topological spaces with the Knaster Property has the Knaster
Property as well.

Hint: Use a) and b).

b) Any product of topological spaces with the Knaster Property has the Knaster
Property.

Hint: Apply ∆-Lemma.

9.2 Equalities, Inequalities and All That

We recommend that the reader consult Sections 11.4 and 11.5. In this section,
once and for all we assume that ZF is consistent and we shall not repeat that
assumption.

In Section 7.5, several results about relationships between properties of mea-
sure and category were described by the Cichoń Diagram. It turned out that often
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such a simple description of a relationship is enough to solve many important
problems. In this section we supply the Cichoń Diagram by relationships with
other introduced cardinal invariants.

Taking into account the results of Theorems 5.50, 5.49, 5.52, 9.1, 7.49, and
7.28, we can extend the Cichoń Diagram as follows. Note that the arrow b −→ d
is missing in Diagram 3 for a typographical reason.

ℵ1

add(N ) add(M) cov(M) non(N )

b d

cov(N ) non(M)

non(N )

cof(M) cof(N ) c
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Diagram 3.

Any of the consistent equalities f = g or the consistent inequalities f < g of
the next Metatheorem can be considered as a candidate for a new axiom of ZFC.
Metatheorem 9.1. Assume that f, g are cardinal invariants occurring in Dia-
gram 3.

a) The theory ZFC + f = g is consistent.
b) If the arrow f → g occurs in Diagram 3, then the theory ZFC + f < g is

consistent, but the case f = p and g = t. Moreover, we can assume that
f = ℵ1 < g = c.

c) The following theories are consistent:

ZFC + h = s < b, ZFC + h < s = b, ZFC + b < d,
ZFC + cov(M) < non(M), ZFC + cov(N ) < non(N ),
ZFC + non(M) < cov(M), ZFC + non(N ) < cov(N ).

The metatheorem actually shows that the obtained results were the best
possible and the ZFC set theory is not strong enough to answer the delicate (even
natural) questions.

The consistency of other theories than those presented in Metatheorem 9.1
are known. Some of them are presented in Metatheorem 11.7. We recommend
the monographs T. Bartoszyński and H. Judah [1995], K. Ciesielski and J. Paw-
likowski [2004] and recent survey articles T. Bartoszyński [2010], A. Blass [2010],
J.E. Vaughan [1990], eventually others, for further information.
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Demonstration. Since all cardinals considered in Diagram 3 are not greater than c,
then assuming Martin’s Axiom they all are equal to c.

For every inequality f < g of Parts b) and c), we refer to a corresponding
result presented in Appendix 11.5. In some cases the result is not immediate, one
must use some inequalities of Diagram 3.
ℵ1 < m (11.21) cov(M) < d (11.28), (11.29), (11.36)
m < p (11.30) cov(M) < r (11.23), (11.28)
t < h (11.29) b < r (11.23), (11.26)
m < add(N ) (11.30) s < d (11.36), (11.27), (11.28)
t < add(M) (11.27) s < non(M) (11.23), (11.27), (11.28)
h < s = b (11.37) b < non(M) (11.23)
h = s < b (11.38) b < d (11.22), (11.25), (11.36)
add(N ) < add(M) (11.34) cov(N ) < r (11.22)
add(M) < cov(M) (11.26) d < cof(M) (11.23)
cov(M) < non(N ) (11.35) cov(N ) < non(M) (11.27), (11.29)
add(M) < b (11.29) non(M) < cof(M) (11.35), (11.36)
s < non(N ) (11.27) cof(N ) < c (11.24)
r < c (11.36) cof(M) < cof(N ) (11.39)
add(N ) < cov(N ) (11.23) non(N ) < cof(N ) (11.28)
cov(M) < non(M) (11.29) cov(N ) < non(N ) (11.22)
non(M) < cov(M) (11.22) non(N ) < cov(N ) (11.23) �

For convenience in the next investigation, we formulate some consistency
results as equalities for cardinal invariants. Namely, the results (11.28), (11.31),
(11.32), (11.41), and (11.33), can be expressed as

ZFC + size(SN ) = ℵ1 < c is consistent, (9.2)
ZFC + size(PM) = ℵ2 ≤ c is consistent, (9.3)
ZFC + size(UN ) = ℵ2 ≤ c is consistent, (9.4)
ZFC + size(SM) = ℵ1 < c is consistent, (9.5)

ZFC + size(σ-sets) = ℵ1 < c is consistent, (9.6)

respectively.
Metatheorem 9.2. The following statements are undecidable in ZFC:

a) Borel Conjecture.
b) There exists a κ-Luzin set, where ℵ0 < κ ≤ c is a regular cardinal.
c) There exists a κ-Sierpiński set, where ℵ0 < κ ≤ c is a regular cardinal.
d) Every universal measure zero set has cardinality ≤ ℵ1.
e) Every perfectly meager set has cardinality ≤ ℵ1.
f) Every strongly meager set is countable.

Demonstration. a) By Corollary 8.14 and Metatheorem 9.1 (cov(M) > ℵ1), the
negation of the Borel Conjecture is consistent with ZFC. Therefore by (9.2) the
Borel Conjecture is an undecidable statement of ZFC.
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b) By Corollary 8.36, the inequalities non(M) ≤ κ ≤ cov(M) follow from
the existence of a κ-Luzin set. The inequality non(M) > cov(M) is consistent
with ZFC by Metatheorem 9.1. On the other hand we know that CH or even MA
implies the existence of a c-Luzin.

c) Similarly, by Corollary 8.36 the existence of a κ-Sierpiński set implies
the inequalities non(N ) ≤ κ ≤ cov(N ). Again, MA implies the existence of a c-
Sierpiński set.

d) By the Grzegorek Theorem 8.8 there exists a universal measure zero set
of cardinality non(N ). The assertion follows by Metatheorems 9.1 and (9.4).

e) By the Grzegorek Theorem 8.9 and Metatheorem 9.1 (non(M) > ℵ1),
the negation of “every perfectly meager set has cardinality ≤ ℵ1” is consistent.
Thus, by (9.3) the assertion “every perfectly meager set has cardinality ≤ ℵ1” is
an undecidable statement of ZFC.

f) By Theorem 8.16, d) and Metatheorem 9.1 (cov(N ) > ℵ1), the negation
of “every strongly meager set is countable” is consistent with ZFC. Finally, “every
strongly meager set is countable” is consistent with ZFC by (9.5). �

Now, we summarize the relationships between special subsets of Polish spaces
obtained in Chapter 8 as Diagram 4.

λ-set PM

Q-set

UN

λ’-set SM

κ-Luzin

concentrated SN

σ-set κ-Sierpiński γ-set C”

QN S1(Γ,Γ) wQN H∗∗ H∗
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Diagram 4.

We assume that κ ≤ c is an uncountable regular cardinal. An arrow A −→ B
of the diagram means that any subset of a Polish space possessing the property A
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does possess the property B as well. So the negation means that there exists
a subset of a Polish space with property A which does not posses the property B.

By Corollaries 8.59 and 8.104, every QN-, wQN-, C”-, and γ-subset of a Polish
space being zero-dimensional is homeomorphic to a set of reals, even to a subset of
C or ωω. Any countable set of reals possesses any of the considered properties with
the exception of being a κ-Sierpiński or a κ-Luzin set. Hence one cannot prove any
implication going into “κ-Sierpiński” or “κ-Luzin”. Similarly, since any compact
space possesses the property H∗∗, one cannot prove that a set with the property
H∗∗ possesses any of the considered properties, i.e., no arrow goes from H∗∗ except
that to H∗.

Moreover, we have proved two negative results:

λ-set λ’-set κ-Luzin σ-set� �

Using the proposed additional axioms we can show that some relationships
between considered sets are not provable in ZFC. Namely

Metatheorem 9.3. None of the implications indicated in Diagram 5 is provable in
the theory ZFC.

λ-set PM UN

SM

κ-Luzin

SN concentrated

σ-set λ’-set γ-set C”

wQN QN H∗∗ H∗� 
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Diagram 5.

Demonstration. By Theorem 8.123, if t = b, then there exists a wQN-set of reals
that is not a QN-space. Thus by Metatheorem 9.1 the theory ZFC + QN �= wQN
is consistent.
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By Corollary 8.27, if κ = cov(M) = cof(M), then there exists a κ-Luzin set.
However, by Theorem 8.101 a κ-Luzin set does not have the property H∗∗. By
Metatheorem 9.1 the theory ZFC + cov(M) = cof(M) is consistent, consequently
the theory ZFC + ¬(κ-Luzin → H∗∗) is consistent. Since an ℵ1-Luzin set has the
property H∗, neither is H∗ → H∗∗ provable.1 Moreover, an ℵ1-Luzin set has the
Rothberger property C′′ and therefore the theory ZFC+¬(C′′ → H∗∗) is consistent.

By Metatheorem 9.1 the theory ZFC + p < b is consistent. By Theorem
8.91 there exists a set A ⊆ C of cardinality p that is not a γ-space. However,
since |A| < b, the set A is a QN-space. Thus by Metatheorem 9.1 the theory
ZFC+QN �= γ-space is consistent. The theory ZFC+wQN �= γ-space is consistent
as well. By Theorem 8.124 and (9.2) the theory ZFC+wQN �= σ-space is consistent.

By Theorem 8.52 there exists an uncountable λ′-subset of any perfect Polish
space and therefore, by (9.6) the theory ZFC + λ′-set �= σ-set is consistent and by
(9.2) the theory ZFC + λ′-set �= SN is consistent as well.

By the Rothberger Theorem 8.111 and Theorem 8.91, if p < cov(M), then
there exists a set of reals of cardinality p that is not a γ-space and possesses prop-
erty C′′. Thus, by Metatheorem 9.1 the theory ZFC + C′′ �= γ-space is consistent.

By Corollary 8.49 there exists an uncountable λ-set. Therefore by (9.6) the
theory ZFC + λ-set �= σ-set is consistent.

By the Luzin Theorem 8.3 there exists an uncountable perfectly meager uni-
versal measure zero subset of any perfect Polish space. Hence, by (9.5) the theory
ZFC + PM �= SM is consistent. Similarly, by (9.2) the theory ZFC + UN �= SN
is consistent.

By Corollary 8.107, assuming add(M) = c, there exists a strong measure
zero set that is not concentrated on any countable set, thus neither possesses the
Rothberger property C′′.

If non(N ) < cov(N ), then there exists a set of reals A /∈ N of cardinality
non(N ). Then neither is A of universal measure zero, however by Theorem 8.16,
A is strongly meager. Thus by Metatheorem 9.1 the theory ZFC +¬(SM → UN )
is consistent. �

We shall consider the problem of distinguishing Arkhangel’skĭı’s properties
(α1) and (α2). More precisely, we know that (α1) → (α2) holds true. Can we prove
or disprove the opposite implication?

According to (1.18) instead of dealing with sequences we can work with
infinite countable subsets of an L∗-space X . Thus, e.g., the property (α1) reads:
if Sn ⊆ X are infinite countable sets, limSn = x for every n, then there exists
a countable set S such that limS = x and every Sn \ S is finite.

We begin with a combinatorial principle related to splitting number. A family
A ⊆ [ω]ω is called an ω-splitting family, if for every sequence 〈An : n ∈ ω〉 of
infinite subsets of ω there exists a set in A that splits each An, n ∈ ω.

1Note that this follows also from (8.11), (8.12) and consistency of b < d.
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Now we can formulate the Dow Principle as follows:

every ω-splitting family of subsets of ω contains
a splitting subfamily of cardinality less than b.

Note that instead of subsets of ω we can deal with subsets of any infinite countable
set. A. Dow (11.40) has shown that the Dow Principle is consistent with ZFC2.

We shall need some auxiliary results.
Lemma 9.16. If A is a countable family of infinite subsets of a countable set C,
then there exists a set B ∈ [C]ω splitting each A ∈ A.

The proof is easy and follows the proof of the Bernstein Theorem 7.20. Assume
that 〈An : n ∈ ω〉 is such an enumeration of A in which every element of A occurs
infinitely many times. By induction for every n ∈ ω find two distinct elements
xn, yn ∈ An different from xi, yi for i < n. Set A = {xn : n ∈ ω}. �
Lemma 9.17. Let X be an L∗-space with the property (α2). Assume that limSn = x
for every n, where 〈Sn : n ∈ ω〉 are infinite countable and pairwise disjoint subsets
of X, S =

⋃
n Sn. Then the family

A = {A ∈ [S]ω : (∃F ∈ [S]ω) (limF = x ∧ (∀n) ((A ∩ Sn) \ F is finite))},

is an ω-splitting.

Proof. Note that A ∈ A and B ∈ [A]ω imply B ∈ A.
Assume that 〈An ⊆ S : n ∈ ω〉 are infinite. Set

J = {j ∈ ω : (∀n) (Aj ∩ Sn is finite)}.

If J is finite, set H =
⋃
j∈J Aj .

If J is infinite, then find an increasing sequence 〈Jn : n ∈ ω〉 of finite sets
such that J =

⋃
n Jn. Set

H =
⋃

n

⋃

j∈Jn

Aj ∩ Sn.

If j ∈ J , then there exists an n0 such that j ∈ Jn for every n > n0. Therefore
the set Aj \H being a subset of

⋃
n∈Jn0

Aj ∩ Sn is finite.
In both cases we have |Aj \H | < ℵ0 for each j ∈ J and |H ∩ Sn| < ℵ0 for

each n. Now, for each j ∈ ω \ J choose nj such that Aj ∩ Snj is infinite.
If ω \ J is finite, then the sequence F =

⋃
j /∈J Aj ∩ Snj converges to x and it

is easy to see that F ∪H ∈ A. Moreover, (F ∪H) ∩Aj is infinite for each j.
Assume now that ω \J is infinite. Since X has the property (α2), there exists

an infinite set F ⊆
⋃
j∈J (Aj ∩ Snj ) converging to x and such that F ∩ (Aj ∩ Snj )

is infinite for each j ∈ J . Again F ∪H ∈ A and (F ∪H)∩Aj is infinite for each j.
By Lemma 9.16 there exists a set B ⊆ F ∪H splitting each 〈Aj : j ∈ ω〉. �

2Actually A. Dow shows that there exists an ω-splitting subfamily of cardinality less than b.
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Now we can show the key result.
Theorem 9.18 (A. Dow). The Dow Principle implies that every L∗-space possessing
the property (α2) possesses the property (α1) as well.

Proof. Let X be an L∗-space possessing the property (α2). Assume that Sn ⊆ X
are countable infinite, limSn = x for every n ∈ ω. It is easy to see that we can
assume that 〈Sn : n ∈ ω〉 are pairwise disjoint. If the family A is defined as in the
lemma, by the Dow Principle there exists an ω-splitting family A0 ⊆ A, |A0| < b.

By definition of A, for every A ∈ A0 there exists an infinite set FA ⊆ S
converging to x and such that fA(n) = (A ∩ Sn) \ FA is finite for each n. Since
|A0| < b, there exists a function f ∈ ω ([S]<ω) such that fA(n) ⊆ f(n) for all but
finitely many n for each A ∈ A0. We show that F =

⋃
n(Sn \ f(n)) converges

to x. Assume not. Then by the condition (L3) there exists an infinite set E ⊆ F
such that no infinite subset of E converges to x. Since A0 is splitting, there exists
an A ∈ A0 such that A∩E is infinite. Since (A ∩E) \ FA is finite, the infinite set
A ∩ E ∩ FA converges to x, which is a contradiction. �

The equivalence “a topological space X is a QN-space if and only if X is
a wQN-space” will be abbreviated as QN = wQN. Similarly for other equivalences.

Metatheorem 9.4. The equivalences QN = wQN and QN = S1(Γ,Γ) are undecid-
able in ZFC.

Demonstration. By Theorems 8.64, 8.66, 9.18, and Dow’s result (11.40), the the-
ory ZFC + QN = S1(Γ,Γ) = wQN is consistent.

On the other hand, by Theorem 8.123 there exists an S1(Γ,Γ)-space that is
not a QN-space provided that t = b. By Metatheorem 9.1 the theory ZFC + t = b
is consistent too.

Note also the following: by Rec�law’s Theorem 8.124 there exists an un-
countable S1(Γ,Γ)-space. On the other hand, by Miller’s result (11.33) the theory
ZFC + “every σ-set is countable” is consistent. Since every perfectly normal QN-
space is a σ-space (Theorem 8.77), the result follows again. �

M. Scheepers [1999] claimed the Scheepers Conjecture S1(Γ,Γ) = wQN. By
Metatheorem 9.4 the Scheepers Conjecture is consistent with ZFC. We do not
know, whether the negation of the Scheepers Conjecture is consistent with ZFC.
Metatheorem 9.5. The statement “any L∗-space possessing the property (α2) pos-
sesses the property (α1) as well” is undecidable in ZFC.

Exercises

9.7 [AC] Katowice Problem

The Katowice Problem is the question

“Are the Boolean algebras P(ω)/Fin and P(ω1)/[ω1]
<ω isomorphic?”.
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a) The affirmative answer to the Katowice Problem implies 2ℵ0 = 2ℵ1 .

b) The negative answer to the Katowice Problem is consistent with ZFC.

c) Prove the Balcar Theorem: The affirmative answer to the Katowice Problem implies
d = ℵ1 < c.

Hint: Let h : P(ω1)/[ω1]
<ω 1−1−→

onto
P(ω×ω)/Fin be an isomorphism. Fix 〈An : n ∈ ω〉,

〈Bξ : ξ ∈ ω1〉 such that An ∩Am = ∅ for n 	= m,
⋃

nAn = ω1,
⋃

ξ<ω1
Bξ = ω × ω,

h([An]) = [{n} × ω], [Bξ] = h([ω1 \ ξ]). We can assume that |An| = ℵ1 for each n.
Set

αξ(n) = min{i ∈ ω : 〈n, i〉 ∈ Bξ}.
Since |An∩(ω1 \ξ)| ≥ ℵ0, we have Bξ∩({n}×ω) 	= ∅ for every n and every ξ. Thus
the functions αξ are well defined. Evidently Bξ ⊆∗ Bη for η < ξ. Hence αη ≤∗ αξ.

Let β ∈ ωω. Consider A ⊆ ω1 such that h([A]) = [{〈n, i〉 : i ≤ β(n)}]. Show that
every A∩An is finite and therefore A is countable. Let ξ be such that A ⊆ ξ. Then
β ≤∗ αξ.

9.8 [AC] Ultrafilters on ω

By an ultrafilter we shall understand a free ultrafilter on ω. We introduce necessary
notions. An ultrafilter F is called selective, if for any partition {An : n ∈ ω} ⊆ P(ω) \ F
of ω, there exists an A ∈ F such that |A∩An| ≤ 1 for every n. An ultrafilter F is called
a Q-point, if for any partition {An : n ∈ ω} of ω into finite sets, there exists an A ∈ F
such that |A∩An| ≤ 1 for every n. Finally, an ultrafilter F is called a P-point, if for any
partition {An : n ∈ ω} ⊆ P(ω) \ F of ω, there exists an A ∈ F such that |A ∩ An| < ℵ0

for every n. A rapid filter is defined in Section 9.3. βω is defined in Exercise 5.16.

a) An ultrafilter is selective if and only if it is simultaneously a Q-point and a P-point.

b) An ultrafilter F is a P-point if and only if for every sequence 〈An ∈ F : n ∈ ω〉
there exists a set A ∈ F such that A ⊆∗ An for every n.

c) An ultrafilter F is a P-point if and only if every Gδ-subset of βω \ ω containing F
is a neighborhood of F .

d) Every Q-point is a rapid ultrafilter.

Hint: Let α ∈ ωω, α(0) = 0 be increasing. Set An = {k : α(n) ≤ k < α(n + 1)}. If
A is a selector for this partition, then α ≤∗ eA.

Fix a partition 〈Rn : n ∈ ω〉 of ω such that |Rn| = n for every n. A set A ⊆ ω is growing,
if for every n there exists a k such that |A ∩Rk| ≥ n. Hence, A is growing if and only if
the set {|A ∩Rn| : n ∈ ω} is infinite.

e) G = {A ⊆ ω : (∃n)(∀k) |Rk \ A| < n} is a filter. A ∈ G if and only if ω \ A is not
growing.

f) No ultrafilter F ⊇ G is a Q-point. Hence, there exists an ultrafilter that is not
a Q-point.

g) If A is growing, α ∈ ωω, then there exists a growing set B ⊆ A such that eB >∗ α.

Fix a partition 〈Ln : n ∈ ω〉 ⊆ [ω]ω. A set A ⊆ ω is large, if |A ∩ Ln| = ℵ0 for infinitely
many n. A family A ⊆ P(ω) is large if every element of A is large.

h) If A ⊆ P(ω) is a large family closed under finite intersections, and B ⊆ ω, then
at least one of the families A ∪ {B}, A ∪ {ω \ B} is large and closed under finite
intersections.
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Hint: If A ∩B is large for every A ∈ A, then A∪ {B} works. If A ∩B is not large
for some A ∈ A, then using the inclusion

A ∩ C ∩ Ln ⊆ (A ∩B ∩ Ln) ∪ ((C \ B) ∩ Ln)

one can easily show that C \B is large for any C ∈ A.

i) If A ⊆ P(ω) is a large family closed under finite intersections, then there exists
a large ultrafilter F such that A ⊆ F .

Hint: By transfinite induction using the result of h).

j) There exists an ultrafilter that is not a P-point.

Hint: No large ultrafilter is a P-point.

An infinite set A ⊆ ω is thin, if limn→∞ eA(n)/eA(n+ 1) = 0. An ultrafilter F is thin, if
for every unbounded α ∈ ωω there exists an A ∈ F such that α(A) is thin.

k) Every selective ultrafilter is thin.

Hint: Assume that α ∈ ωω is unbounded, An = {k : n! − 1 ≤ k < (n + 1)! − 1}.
Then 〈Bn = α−1(An) : n ∈ ω〉 is a partition of ω. If there exists an m such that
Bm ∈ F, then, since α(Bm) is finite, you can easily find a set A ⊇ Bm such that
α(A) is thin. If no Bn belongs to F, then take a selector A ∈ F for this partition.
We can assume that C = A ∩

⋃
nB2n ∈ F. Then α(C) is thin.

l) Every thin ultrafilter is a Q-point.

Hint: Let 〈An : n ∈ ω〉 be a partition of ω into finite sets. Let An = {ki
n : i < mn}.

Find an increasing sequence {pn}∞n=0 such that mn ≤ pn+1 − pn and mn ≤ pn for
each n. Define an injection α : ω −→ ω as α(ki

n) = pn + i for i < mn, n ∈ ω. Let
A ∈ F be such that α(A) is thin. By the definition of a thin set, there exists an i0
such that

eα(A)(i)/eα(A)(i+ 1) < 1/2

for every i ≥ i0. Set B = A \ {k : α(k) < eα(A)(i0)}. If n < m ∈ Al ∩ B for some
l, α(n) = eα(A)(i), α(m) = eα(A)(j), then i < j and α(n)/α(m) ≥ 1/2.

m) We can summarize our results in a picture.

selective thin Q-point

P-point rapid

� �

� �

9.9 [AC] Product of Ultrafilters

Let π : ω × ω
1−1−→
onto

ω be a pairing function. We define the product of ultrafilters F ,G
on ω as

A ∈ F × G ≡ {n ∈ ω : {m ∈ ω : π(n,m) ∈ A} ∈ G} ∈ F .
a) Show that F × G is an ultrafilter on ω.
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b) No product of (free!) ultrafilters is a Q-point.

Hint: Consider the decomposition 〈An : n ∈ ω〉, where

An = {π(i, j) : i, j ≤ n ∧max{i, j} = n}.

c) If F is rapid, then F × G is rapid.

Hint: Assume that π is defined by (1.8), λ, ρ are left and right inverse, respectively.
For given increasing α ∈ ωω take an A ∈ F such that

eA(k) ≥ 2 max{α(n) : λ(n) + ρ(n) = k}

and a set B ∈ G such that 0 ∈ B. Then C = {π(n,m) : n ∈ A ∧m ∈ B} ∈ F × G
and for k = π(n,m), n ∈ A, m ∈ B we obtain

eC(k) ≥ eC(π(n+m, 0)) ≥ 1/2eA(n+m) ≥ α(k).

9.10 [AC] Existence of Special Ultrafilters

We shall use the notation and terminology introduced in Exercise 9.8. Especially, we
fix a partition 〈Rn : n ∈ ω〉 of ω such that |Rn| = n for every n and a partition
〈Ln : n ∈ ω〉 ⊆ [ω]ω.

a) If t = c, then there exists a selective ultrafilter.

Hint: Let P(ω) = {Aξ : ξ < c}. Enumerate the set of all countable partitions of ω
as {{Bn

η : n ∈ ω} : η < c ∧ η limit}. Take infinite Cξ+1 ⊆ Cξ such that Cξ+1 ⊆ Aξ

or Cξ+1∩Aξ = ∅. For η limit find an infinite set such that D ⊆∗ Cξ for all ξ < η. If

D ⊆∗ ⋃

k<n

Bk
η

for some n, set Cη = D. Otherwise let Cη = {min(D ∩Bn
η ) : D ∩Bn

η 	= ∅}. Define
F = {A ⊆ ω : (∃ξ < c)Cξ ⊆ A}.

b) If cov(M) = d, then there exists a rapid ultrafilter.

Hint: Let {αξ : ξ < d} be a dominating family consisting of increasing functions. If
〈Aη : η < ξ〉 are constructed, we set

βη(n) = min{m ∈ Aη : αξ(n) ≤ m < αξ(n+ 1)}.

The set

Gη = {α ∈ ωω : (∀m)(∃n ≥ m) (n ∈ dom(βη) ∧ α(n) = βη(n))}

is Gδ dense. There exists an α ∈
⋂

η<ξ Gη. Take Aξ = rng(α). Take any ultrafilter
containing all Aξ, ξ < d.

c) If F is a filter consisting of growing sets with a base F0 of cardinality less than p,
then there exists a growing set A such that A \ B is finite for every B ∈ F .

Hint: The poset P consisting of all ordered triples 〈p,F, f〉 such that p ∈ n2 for
some n, F is a finite subset of F, f ∈ Fω and p(i) = 0 for every i such that E ∈ F ,
i /∈ E and f(E) ≤ i < n, ordered as

〈p,F, f〉 ≤ 〈p′, F ′, f ′〉 ≡ (p′ ⊆ p ∧ F ′ ⊆ F ∧ f ′ ⊆ f),
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is σ-centered. For C ∈ F0 let DC = {〈p, F, f〉 ∈ P : C ∈ F}. Moreover, set

En = {〈p, F, f〉 ∈ P : (∃k) |{i ∈ Rk : p(i) = 1}| ≥ n}.

By Bell’s Theorem, see Exercise 9.4, there exists a {DC : C ∈ F0} ∪ {En : n ∈ ω}-
generic filter G of P. One can easily check that

A = {n ∈ ω : (∃〈p,F, f〉 ∈ G) p(n) = 1}

is the desired growing set.

d) If p = c, then there exists a rapid ultrafilter that is not a Q-point.

Hint: Use c) and Exercise 9.8, g). Note that an ultrafilter consisting of growing sets
is not a Q-point.

e) If there exists a rapid ultrafilter, then there exists a rapid ultrafilter that is not
a Q-point.

Hint: See Exercise 9.9.

f) Assume that F ⊆ P(ω) is such that |F| < p, and for finitely many B0, . . . , Bn ∈ F
the set {|Ri ∩B0 ∩ · · · ∩Bn| : i ∈ ω} is infinite. Then there exists a set E such that
E ⊆∗ B for every B ∈ F and the set {|B ∩ Ri| : i ∈ ω} is infinite.

Hint: Consider the σ-centered set

P = {〈s, F 〉 : s ∈ [ω]<ω ∧ F ∈ [F ]<ω}

ordered as

〈s, F 〉 ≤ 〈s′, F ′〉 ≡ (s′ ⊆ s ∧ F ′ ⊆ F ∧ s \ s′ ⊆
⋂
F ′).

Find suitable dense sets D such that the corresponding D-generic filter G produces
a set

⋃
{s : 〈s, F 〉 ∈ G} ⊆∗ B for any B ∈ F and for every n there exists a couple

〈s, F 〉 ∈ G such that |Ri ∩ s| ≥ n for some i.

g) If p = c, then there exists a P-point that is not a Q-point.

Hint: Similarly as in a) construct by induction an ultrafilter consisting of growing
sets: at the limit step apply the result of f).

h) Let F be the base of a filter of cardinality less than cov(M), α ∈ ωω being un-
bounded. Moreover, assume that ω\Ln ∈ F for every n, the set {n : |F ∩Ln| = ℵ0}
is infinite for every F ∈ F and for every K ∈ [ω]<ω there exists an F ∈ F such
that α−1(K) ∩ F ∩ Ln is infinite for only finitely many n. Then there exists a set
A such that {n : |A∩F ∩Ln| = ℵ0} is infinite for every F ∈ F and α(A) is thin or
finite.

Hint: If α(F ) is thin or finite for some F ∈ F, we take A = F . Thus we can assume
that no α(F ) is thin or finite. We must distinguish two cases.

CASE I. The set IF = {n : α(F ) ∩ Ln is infinite} is infinite for every F ∈ F.
Consider the countable poset

P = {K ∈ [ω]<ω : (∀n,m) ([n,m] ∩ α(K) = {n,m} → m > n2)

ordered as
K ≤ L ≡ (L ⊆ K ∧min{K \ L} > maxL.
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For any n ∈ ω, F ∈ F and k ∈ IF the set DF,n,k = {K ∈ P : |K ∩ F ∩ Ln| ≥ k}
is dense. If G is the corresponding generic filter, then A =

⋃
{K : K ∈ G} is the

desired set.

CASE II. There exists an F0 ∈ F such that {n : α(F )∩Ln is infinite} is finite. Set

JF = {n : F ∩ F0 ∩ Ln is infinite ∧ α(F ∩ F0 ∩ Ln) is finite}.

JF is infinite and for n ∈ JF we can define

h(n) = max{m ∈ α(F ∩ F0 ∩ Ln) : α−1({m}) ∩ F ∩ F0 ∩ Ln is finite}.

Show that {h(n) : n ∈ JF } is infinite and choose a sequence

HF = 〈ki : i ∈ ω〉 ⊆ {h(n) : n ∈ JF }

such that ki+1 > (ki)
2. Consider the countable poset

P = {K ∈ [ω]<ω : (∀n,m) ([n,m] ∩K = {n,m} → m > n2)

ordered as above. The set DF,k = {K ∈ P : |K∩HF | ≥ k} is dense for every F ∈ F
and every k ∈ ω. If H is the corresponding generic filter and H =

⋃
{K : K ∈ H},

then A = α−1(H) is the desired thin set.

i) If cov(M) = c, then there exists a thin ultrafilter which is not a P-point.

Hint: Enumerate all unbounded elements of ωω as 〈αξ : ξ < c〉. By transfinite
induction construct an increasing sequence 〈Fξ : ξ < c〉 of filter bases satisfying
|Fξ | ≤ |ξ| ·ℵ0 and such that {n : |Ln∩A| = ℵ0} is infinite for every ξ < c and every
A ∈ Fξ. Moreover, for every ξ < c, the filter base Fξ+1 contains a set A such that
αξ(A) is thin. At the non-limit step use the result of h). Any ultrafilter extending⋃

ξ<c Fξ is thin. Since the family
⋃

ξ<c Fξ is large, by Exercise 9.8, i) there exists
a large ultrafilter extending this family, which by Exercise 9.8, j) is not a P-point.

j) If CH holds true, then there exists a Q-point that is not a thin ultrafilter.

Hint: Enumerate all partitions of ω into finite sets as 〈Qξ : ξ < ω1〉. By transfinite
induction construct an increasing sequence 〈Fξ : ξ < ω1〉 of countable filter bases
such that |Ln ∩ F | = ℵ0 for every n, for every ξ < ω1 and for every F ∈ Fξ.
Moreover, for every ξ < ω1, the filter base Fξ+1 ⊇ Fξ contains a set A such that
|A ∩ B| ≤ 1 for every B ∈ Qξ, and Fξ =

⋃
η<ξ Fη for ξ limit. F0 is the Fréchet

filter.

Let us assume that Fξ is already constructed. Let 〈Mn : n ∈ ω〉 be an enumeration
of 〈Ln : n ∈ ω〉 such that each Ln is listed infinitely often, 〈Fn : n ∈ ω〉 being
an enumeration of Fξ, and Qξ = 〈Qn : n ∈ ω〉.
If for every F ∈ Fξ there exists a set B ∈ Qξ such that |F ∩ B| > 1, construct by
induction sequences {ki}∞i=0, {ni}∞i=0 such that ki ∈ (

⋂
j<i Fj ∩Mi) \

⋃
j<i Qnj and

ki ∈ Qni . Set A = {ki : i ∈ ω}. Then A is compatible with Fξ, so take for Fξ+1 the
base generated by Fξ and A. Otherwise set Fξ+1 = Fξ.

Set G = {
⋃

n∈G Ln : ω \G ∈
⋃

ξ<ω1
Fξ}. Any ultrafilter containing G ∪

⋃
ξ<ω1

Fξ is
a Q-point but not a thin ultrafilter.
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k) No arrow in the next picture can be proved in ZFC.
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9.3 Assuming Regularity of Sets of Reals

We have proved that many well-defined sets of reals (Borel, analytic) have reg-
ularity properties: they are Lebesgue measurable, possess the Baire Property, if
uncountable, they contain a perfect subset. To construct a set that is irregular
in any of the mentioned senses, we needed an additional assumption, e.g., the
existence of a well-ordering of the real line, compare Section 7.2. That is not an
accident, since (see (11.42))
Metatheorem 9.6 (R. Solovay). If the theory ZFC+IC is consistent, then the theory
ZF + “every set of reals is Lebesgue measurable”+“ every set of reals possesses
the Baire Property”+“every uncountable set of reals contains a perfect subset” is
consistent as well.

Thus we can assume that all sets of reals are regular. We shall study conse-
quences of such an assumption of regularity.

We begin with a technical result. Let p : P(ω) onto−→ P(ω)/Fin be the quotient
mapping. Thus

p(x) = {y ∈ P(ω) : (x \ y) ∪ (y \ x) ∈ Fin}.

For a set x ⊆ ω we set m(x) = {p(x), p(ω \ x)}. Let

Q = {m(x) : x ⊆ ω} ⊆ [P(ω)/Fin]2.

Lemma 9.19. If there exists a selector for the family Q, then there exists a subset
of ω2 that is non-measurable and does not possess the Baire Property.

Proof. Let A ⊆ P(ω)/Fin be a selector for Q. One can easily see that

B0 = {x ⊆ ω : p(x) ∈ A}, B1 = {x ⊆ ω : p(x) /∈ A}

are disjoint tail-sets. Since B0 ∪ B1 = P(ω) and B0 = {x ⊆ ω : ω \ x ∈ B1}, by
Theorems 7.36 and 7.38 we obtain that the sets B0,B1 are neither measurable nor
possess the Baire Property. �

We can summarize the obtained results as
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Theorem 9.20. If “every set of reals is Lebesgue measurable” or “every set of
reals possesses the Baire Property”, then:

a) there exists no selector for any Vitali decomposition;
b) the set of reals R cannot be well ordered;
c) the axiom of choice AC fails;
d) there exists no free ultrafilter on ω;
e) a set of cardinality k cannot be linearly ordered;
f) the axiom of choice for two-elements sets AC2 introduced in Exercise 1.11

fails;
g) c < k� c.

Proof. The assertions a)–d) follow by Theorem 7.17, and Corollaries 7.19 and 7.39.
If the set P(ω)/Fin were linearly ordered, then one could define a selector

for the family Q, a contradiction with Lemma 9.19. Thus we have e).
AC2 implies that there exists a selector for Q, a contradiction. Thus we

have f).
By definition we have k � c. By Theorem 5.35 there exists an injection of

ωω into P(ω)/Fin. Thus c ≤ k. If c = k, then the set P(ω)/Fin could be linearly
ordered. �

A filter F ⊆ (P(ω) \ Fin) is called rapid if for any function α ∈ ωω there
exists a set F ∈ F such that for every k ∈ ω,

|{n ∈ F : n < α(k)}| ≤ k.

If F̃ = {eA : A ∈ F} and Fin ∩ F = ∅, then F is rapid if and only if F̃ is
a dominating family.

If cov(M) = d, then there exists a rapid filter (see Exercise 9.10).
As usual we shall identify subsets of ω with elements of ω2.

Theorem 9.21 (M. Talagrand). A rapid filter is a non-measurable subset of ω2.

Actually a rapid filter does not have the Baire Property. However, we shall
not use this fact and therefore we do not include a proof.
Lemma 9.22. Let ε > 0 be given. If B ⊆ ω2 is a closed set of positive measure,
then there exists arbitrarily large k such that

|{s ∈ k2 : [s] ∩B �= ∅}| · 2−k < λ(B) + ε. (9.7)

Proof. By definition, there exists a set T ⊆ <ω2 such that B ⊆
⋃
s∈T [s] and∑

s∈T λ([s]) < λ(B) + ε. Since B is compact we can assume that T is finite. Let k
be the largest integer such that s ∈ k2 for some s ∈ T . Passing to a refinement we
can assume that the length of every finite sequence s ∈ T is the same, say k. Thus,
we have λ([s]) = 2−k for every s ∈ T . Since the sets 〈[t] : t ∈ k2〉 are pairwise
disjoint we obtain (9.7). �
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Lemma 9.23. If A ⊆ ω2 has positive measure, then there exists a closed set B ⊆ A
and an increasing sequence {nk}∞k=0 such that

(∀k)(∀s ∈ nk2) ([s] ∩B �= ∅ → λ([s] ∩B) > (1− 2−k)λ([s])). (9.8)

Proof. We construct by induction a decreasing sequence of closed sets {Bk}∞k=0

and an increasing sequence {nk}∞k=0 of natural numbers such that, for every k,

|{s ∈ nk+12 : [s] ∩Bk �= ∅}| · 2−nk+1 < λ(Bk) + λ(B0) · 2−nk−2k−4. (9.9)

Let B0 ⊆ A be a compact set of positive measure, n0 = 0. If Bk and nk are
defined, then by Lemma 9.22 there exists a natural number nk+1 > nk such that

Nk = |{s ∈ nk+12 : [s] ∩Bk �= ∅}| < (λ(Bk) + λ(B0)2−nk−2k−4)2nk+1 .

Set

Sk = {s ∈ nk+12 : λ([s] ∩Bk) ≥ (1− 2−k−2)2−nk+1},
Tk = {s ∈ nk+12 : [s] ∩Bk �= ∅ ∧ λ([s] ∩Bk) < (1 − 2−k−2)2−nk+1}.

Thus Nk = |Sk| + |Tk|. We set Bk+1 =
⋃
s∈Sk

([s] ∩ Bk). It is easy to see that
2−nk+1|Sk| ≥ λ(Bk+1) and

λ(Bk)− λ(Bk+1) = λ(Bk \Bk+1) < (1 − 2−k−2)|Tk|2−nk+1.

By simple computation one obtains that

λ(Bk)− λ(Bk+1) < (1− 2−k−2)(Nk − |Sk|)2−nk+1

≤ (1− 2−k−2)(λ(Bk)− λ(Bk+1)) + λ(B0)2−nk−2k−4

and therefore
λ(Bk)− λ(Bk+1) < λ(B0)2−nk−k−2.

Set B =
⋂
k Bk. Then

λ(B) > λ(Bk)− λ(B0)
∞∑

i=k

2−ni−i−2 ≥ λ(Bk)− λ(B0)2−nk−k−1. (9.10)

For k = 0 we obtain λ(B) > 0.
If s ∈ nk2, [s] ∩B �= ∅, then also [s] ∩Bk �= ∅ and therefore

λ([s] ∩Bk) = λ([s] ∩Bk−1) ≥ (1 − 2−k−1)λ([s]).

Since λ([s]) = 2−nk , by (9.10) we obtain

λ([s] ∩B) > (1− 2−k−1) · λ([s])− 2−nk−k−1 = (1 − 2−k)λ([s]). �
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Proof of Theorem 9.21. Assume that a rapid filter F is Lebesgue measurable.
Then the sets F and {ω \ E : E ∈ F} are disjoint and have equal measure.
Therefore λ(F) ≤ 1/2. Thus there exists a closed set A ⊆ ω2 of positive measure
disjoint with F . Let B ⊆ A and {nk}∞k=0 be those of Corollary 9.8. Since F is
rapid, there exists a β ∈ F such that

|{i < nk+1 : β(i) = 1}| ≤ k (9.11)

for each k.
To obtain a contradiction, we construct by inductions 〈sk ∈ nk2 : k ∈ ω〉

such that, for each k,

sk ⊆ sk+1, (∀i < nk) (β(i) = 1 → sk(i) = 1), B ∩ [sk] �= ∅. (9.12)

We set s0 = ∅. Assume that sk is already constructed. Since B ∩ [sk] �= ∅ we have

λ([sk] ∩B) > (1− 2−k)λ([sk]) = (1 − 2−k)2−nk .

On the other hand, by (9.11) we obtain

λ({γ ∈ [sk] : (∀i < nk+1) (β(i) = 1 → γ(i) = 1)}) ≥ 2−nk · 2−k.

Thus B ∩ {γ ∈ [sk] : (∀i < nk+1) (β(i) = 1 → γ(i) = 1)} �= ∅. Take an element
γ of that set and set sk+1 = γ|nk+1. It is easy to see that conditions (9.12) are
satisfied.

Now we set α =
⋃
k sk. Since B is closed and each [sk] meets B, we have

α ∈ B. By (9.12) we have α ∈ F . Thus α ∈ A ∩ F , which is a contradiction. �

For distinct α, β ∈ ω2 we write r(α, β) = min{n : α(n) �= β(n)}. Let X ⊆ ω2.
For an equivalence relation R on ω2 we set

ZR = {r(α, β) : α �= β ∧ α, β ∈ X ∧ 〈α, β〉 ∈ R}.

A Raisonnier filter is the set

FX = {A ⊆ ω : (∃R) (R is a Borel equivalence relation on
ω2 with countably many classes such that ZR ⊆ A)}.

Lemma 9.24. If X is uncountable, then FX is a filter containing all cofinite subsets
of ω.

Proof. Note that ZR1 ∩ ZR2 ⊇ ZR1∩R2 . Since X is uncountable, for every Borel
equivalence relation with countable many classes there exist distinct α, β ∈ X such
that 〈α, β〉 ∈ R. Then r(α, β) ∈ ZR. Consequently ∅ /∈ FX .

For any n ∈ ω the equivalence relation R = {〈α, β〉 : α|n = β|n} is Borel
with finitely many classes. Evidently ZR ⊆ ω \ n. �
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One can easily show a weaker variant of Lemma 9.23.
Lemma 9.25. If A ⊆ ω2 has measure zero, then there exists a closed set B ⊆ ω2
such that B ∩A = ∅, λ(B) > 1/2 and

(∀n)(∀s ∈ n2) ([s] ∩B �= ∅ → λ([s] ∩B) > 2−3n−3). (9.13)

The proof is simpler than that of Lemma 9.23. Take any closed B0 ⊆ ω2 \ A of
measure λ(B0) ≥ 5/6. By induction, let

Bk+1 =
⋃
{Bk ∩ [s] : s ∈ k+12 ∧ λ(Bk ∩ [s]) ≥ 2−3k−3}.

We set B =
⋂
k Bk. Then, similarly as above we obtain

λ([s] ∩ (Bk \Bk+1) < 2−3k−3

for s ∈ k+12 and
λ(Bk \Bk+1) < 2−2k−2.

Then

λ(B) > 5/6−
∞∑

k=0

2−2k−2 = 1/2

and (9.13) holds true. �
We shall need a rather technical auxiliary result. Similarly as in Section 7.4,

one can construct a measure independent family 〈Gs,n,m : s ∈ <ω2 ∧ n,m ∈ ω〉
of clopen subsets of ω2 with λ(Gs,n,m) = 2−n−m. We can assume that each set
Gs,n,m has the form [t] for suitable t ∈ a2 and a ∈ [ω]<ω.
Lemma [wAC] 9.26 (J. Raisonnier). Assume that for every Gδ subset H of ω2×ω2
with measure zero vertical sections the set

H(X) = {y ∈ ω2 : (∃x ∈ X) 〈x, y〉 ∈ H}

has measure zero. Then for any increasing f : ω −→ ω there exists a Borel relation
R ⊆ ω2× ω2 such that

|ZR ∩ f(n)| < n2(3n+ 3)224n (9.14)

for any n ∈ ω.

Proof. Fix a bijection h : <ω2× ω 1−1−→
onto

ω such that h(s, n) ≥ n and h(s, n) ≥ k for

any s ∈ k2.
Let f : ω −→ ω be increasing. We set

〈α, β〉 ∈ Hk ≡ (∃n,m ≥ k)β ∈ Gα|f(n),n,m

and H =
⋂
kHk. Every Hk is open. It is easy to see that every vertical section Hα

has measure zero. So by the assumption we have λ(H(X)) = 0. By Lemma 9.25
there exists a closed set B ⊆ ω2 \H(X) of measure > 1/2.
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Let α ∈ X . Since every vertical section (Hk)α is open, the sets (Hk)α∩B are
open in B. Since

⋂
k(Hk)α = Hα ⊆ H(X), we obtain

⋂
k(Hk)α ∩B = ∅. Thus, by

the Baire Category Theorem 3.27, there exists an n such that (Hn)α ∩ B is not
dense inB, i.e., there exists an s ∈ <ω2 such thatB∩[s] �= ∅ andB∩[s]∩(Hn)α = ∅.
Taking into account this fact we define the desired Borel relation.

For any α ∈ ω2 we set

F (α) =






the least h(s, n) such that B ∩ [s] �= ∅
and B ∩ [s] ∩ (Hn)α = ∅ if there exists any,
∞ otherwise.

Finally, we set

〈α, β〉 ∈ R ≡ (F (α) = F (β) ∧ (F (α) �= ∞→ α|f(F (α)) = β|f(F (β)))). (9.15)

It is easy to show that R is a Borel equivalence relation with countably many
classes. We claim that (9.14) holds true for any n ∈ ω.

For s ∈ l2, n,m ∈ ω we let

∆(s, n,m) = {t ∈ f(n)2 : B ∩ [s] ∩Gt,n,m = ∅}.

Hence
[s] ∩B ⊆

⋂

t∈∆(s,n,m)

(ω2 \Gt,n,m).

Using the measure independence we have

λ(B ∩ [s]) ≤ (1− 2−n−m)|∆(s,n,m)|.

Assume now that B∩ [s] �= ∅. Then by (9.13) we obtain λ(B ∩ [s]) > 2−3l−3. Since
1− x ≤ 2−x for any positive real x, we obtain

2−3l−3 < 2−2−n−m·|∆(s,n,m)|

and therefore
|∆(s, n,m)| < (3l + 3)2n+m. (9.16)

We show that |ZR ∩ f(n)| is not greater than the cardinality of the set

{〈t1, t2〉 : t1, t2 ∈ ∆(s, n,m) ∧ s ∈ l2 ∧ l < n ∧m < n ∧ [s] ∩B �= ∅}. (9.17)

By definition

ZR ∩ f(n) = {r(α, β) < f(n) : α, β ∈ X ∧ α �= β ∧ 〈α, β〉 ∈ R}.

Let r(α, β) ∈ ZR ∩ f(n). Then there exist s ∈ l2,m ∈ ω such that

F (α) = F (β) = h(s,m) and α|f(h(s,m)) = β|f(h(s,m)).
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By definition of r we have r(α, β) ≥ f(h(s,m)). Since f is increasing we obtain
h(s,m) < n and therefore m < n and l < n. Hence, the couple 〈α|f(n), β|f(n)〉
belongs to the set (9.17). Moreover, for different r(α, β) we obtain different couples
〈α|f(n), β|f(n)〉.

The cardinality of the set (9.17) is not greater than
∑
{|∆(s, n,m)|2 : s ∈ l2 ∧ l,m < n ∧B ∩ [s] �= ∅}.

Since for B ∩ [s] �= ∅ we have the estimate (9.16), we obtain

|ZR ∩ f(n)| ≤
∑

l,m<n

(3l + 3)222(n+m) < n2(3n+ 3)224n. �

Theorem [wAC] 9.27 (J. Raisonnier). Let X ⊆ ω2 be uncountable. Assume that
for every Gδ subset H ⊆ ω2× ω2 with measure zero vertical sections also H(X) is
a measure zero set. Then Raisonnier filter FX is rapid.

Proof. Set g(n) = n2(3n + 3)224n. If h : ω −→ ω is increasing, we set f(n) =
h(g(n+ 1)). By the lemma, there exists a Borel relation R such that (9.14) holds
true. If n ∈ ω take k such that g(k) ≤ n < g(k + 1). Then

|ZR ∩ h(n)| ≤ |ZR ∩ f(k)| < g(k) ≤ n.

Thus, FX is rapid. �

Now we are ready to prove important consequences of the assumption that
every set of reals is Lebesgue measurable.
Theorem [wAC] 9.28. The assumption “every set of reals is Lebesgue measurable”
implies all of the following assertions:

a) ¬ℵ1 ≤ c, consequently ℵ1 and c are incomparable,
b) ¬|Borel| = c, i.e., ¬|Borel| ≤ c,
c) ¬ℵℵ0

1 ≤ c and ℵℵ0
1 ≤ |Borel|,

d) there is no mapping f : [R]ω −→ R such that f(A) /∈ A for every A ∈ [R]ω.

Proof. Assume that every set of reals is Lebesgue measurable.
Aiming to get a contradiction, assume that ℵ1 ≤ c. If ℵ1 = c, then by

Theorem 7.17 and Corollary 7.19 there exists a non-measurable set. Thus ℵ1 <
c. Then there exists a set X ⊆ ω2 with |X | = ℵ1. Since X is measurable, X
has measure zero. Consider a Gδ relation H with measure zero vertical sections
(one can easily find such a relation). By assumption the set H(X) is measurable
and therefore by Fubini’s Theorem, Corollary 4.28 we obtain λ(H(X)) = 0. So
the assumption of Lemma 9.26 is fulfilled. However, then by Theorem 9.27 there
exists a rapid filter, that is by Talagrand’s Theorem 9.21 non-measurable, which
is a contradiction.
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To prove part b) assume that |Borel| ≤ c. By Corollary 6.48 there exists an
injection F : ω1

1−1−→ Borel defined as F (ξ) = WOξ. Then ℵ1 ≤ c, a contradiction
with a).

Since ℵ1 ≤ ℵℵ0
1 the former assertion of c) follows by a). The sets WOξ

are pairwise disjoint, the mapping F induces an injection of [ω1]ω0 into Borel,
therefore we obtain the later assertion of c).

Assume that f : [R]ω −→ R is such that f(A) /∈ A for every A ∈ [R]ω.
Then we can define by transfinite induction a mapping F : ω1 −→ R as follows:
for n ∈ ω set F (n) = f(ω ∪ {F (k) : k < n}) and for any ω ≤ ξ < ω1 set
F (ξ) = f({F (η) : η < ξ}). Then F is an injection, a contradiction with a). �

Raisonnier’s Theorem 9.27 has many other important consequences. We have
not developed adequate technology for their proofs. So, just for information.
Metatheorem 9.7 (S. Shelah). If ZF + wAC+“every Σ1

3 set of reals is Lebesgue
measurable” is consistent, then also ZFC + IC is consistent.

Actually, by Raisonnier’s Theorem the assertion “every Σ1
3 set is Lebesgue

measurable” implies that ℵ1 is an inaccessible cardinal in the constructible uni-
verse. The Metatheorem also shows that in Solovay’s Metatheorem 9.6 the as-
sumption of consistency of ZF is not enough. We need IC.

Exercises

9.11 When is ℵ1 ≤ c?

a) If ℵ1 ≤ c, then there exists a mapping f : [R]ω −→ R such that f(A) /∈ A for every
A ∈ [R]ω.

Hint: If B ⊆ R is a well-ordered set of the type ω1, set f(A) = the first x ∈ B \ A
for any A ∈ [R]ω .

b) ℵ1 ≤ c if and only if there exists a mapping f : [R]ω −→ R such that f(A) /∈ A for
every A ∈ [R]ω.

9.12 Properties of k

a) Show that the cardinality of the Vitali decomposition {v(x) : x ∈ T} defined by
(7.8) with S = D is k.

b) Show that k = |R/Q|.
c) Show that kℵ0 � k.

Hint: The natural bijection of P(ω×ω) onto the set ωP(ω) induces a surjection of
P(ω × ω)/Fin onto ω(P(ω)/Fin).

d) Show that k · k = k and 2(kℵ0 ) = 2k .

Hint: Use c) and (1.4).

e) If a Vitali decomposition {v(x) : x ∈ T} can be linearly ordered, then there exists
a non-measurable set and a set without the Baire Property.

Hint: If " is a linear ordering of the set {v(x) : x ∈ T}, then consider the tail-set
A = {〈x, y〉 ∈ T2 : v(x) " v(y)} and apply Theorems 7.36 and 7.38.

f) As a consequence you obtain another proof of the assertion e) of Theorem 9.20.
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9.13 Once more k
ω2 is considered as a topological group. Set

(ω2)∗ = {α ∈ ω2 : |{k : α(k) = 1}| < ℵ0}.

a) The quotient group ω2/(ω2)∗ has cardinality k.

b) Let p : ω2 −→ ω2/(ω2)∗ be the quotient mapping. For any X ⊆ ω2/(ω2)∗ the
inverse image p−1(X) is a tail-set.

c) The set I = {X ⊆ ω2/(ω2)∗ : p−1(X) is meager} is a σ-additive ideal of ω2/(ω2)∗.

d) If “every set of reals possesses the Baire Property”, then I is a maximal ideal.

Hint: Use Theorem 7.38.

e) The set J = {X ⊆ ω2/(ω2)∗ : p−1(X) has measure zero} is a σ-additive ideal on
ω2/(ω2)∗.

f) If “every set of reals is Lebesgue measurable”, then J is a maximal ideal.

Hint: Use Theorem 7.36.

9.14 Choice from Finite Sets

The natural number n = {k < n : k ∈ ω} is considered as the additive group modulo n.
Similarly ωn. As above, we set

(ωn)∗ = {α ∈ ωn : |{k : α(k) = 1}| < ℵ0}.

a) Show that |ω(2k)/(ω(2k))∗| ≤ k for any k > 1.

b) |ωn/(ωn)∗| = k for any n > 1.

Hint: Use a) and the fact |ωn/(ωn)∗| ≤ |ωm/(ωm)∗| for any n ≤ m.

c) Let An be the subgroup of ωn/(ωn)∗ generated by pn(α), where α(k) = 1 for
every k ∈ ω and pn : ωn −→ ωn/(ωn)∗ is the quotient map. The quotient group
(ωn/(ωn)∗)/An is a family of n-elements sets.

Hint: Note that |An| = n.

d) If “every set of reals is Lebesgue measurable”, then there exists no selector for the
family (ωn/(ωn)∗)/An provided that n > 1.

Hint: Assume that Z is a selector for Gn/An. Then ωn =
⋃

α∈An
p−1

n (α+Z). The

tail-sets 〈p−1
n (α+ Z) : a ∈ An〉 are pairwise disjoint and have equal measure. Use

Theorem 7.36.

e) If “every set of reals is Lebesgue measurable”, then the Axiom of Choice from
Finite Sets ACn fails for any n > 1.

f) Show similar conclusions assuming “every set of reals possesses the Baire Property”.
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9.4 The Axiom of Determinacy

We assume that a reader is familiar with the topic of Section 5.5.
Let X be a set, |X | > 1, n > 0 and P ⊆ 2nX . We introduce a finite game

FGamen,X(P ) as follows. Player I plays x2i ∈ X , player II plays x2i+1 ∈ X for
each i < n. Of course each player knows the preceding moves of the other one3.
Player I wins if {xi}2n−1

i=0 ∈ P . Otherwise player II wins.
Player I can win if

(∃x0)(∀x1) . . . (∃x2n−2)(∀x2n−1) {xi}2n−1
i=0 ∈ P. (9.18)

Similarly, player II can win if

(∀x0)(∃x1) . . . (∀x2n−2)(∃x2n−1) {xi}2n−1
i=0 /∈ P. (9.19)

The well-known de Morgan law says that

¬(∀x)V(x) ≡ (∃x)¬V(x).

Thus the negation of the assertion “player I can win” is the assertion “player II
can win”. Therefore by the principle tertium non datur we obtain “player I can
win or player II can win”.

Similarly as in Section 5.5 we can define a strategy in game FGamen,X(P ).
A strategy is a function f : <nX −→ X . Player I follows the strategy f if for each
i < n, she/he plays x2i = f([x1, x3, . . . , x2i−1]) (we assume that f(∅) = x0). The
strategy f is a winning strategy for player I if she/he wins in each particular game
in which she/he follows the strategy f . Similarly we define the notion of a winning
strategy for player II. We say that the game FGamen,X(P ) is determined if at
least one of the two players has a winning strategy.

If player I has a winning strategy, then (9.18) holds true. Generally, those two
assertions are not equivalent. However if the set X can be well ordered, then (9.18)
implies that there exists a winning strategy for player I. Similarly for player II.
Thus, if the set X can be well ordered, then the game FGamen,X(P ) is determined
for any P ⊆ 2nX . This result is known as Zermelo’s Theorem.

We can by analogy formulate similar assertions for infinite games. The fact
that “player I can win in GameX(P )” can be expressed as

(∃x0)(∀x1) . . . (∃x2n)(∀x2n+1) . . . {xn}∞n=0 ∈ P. (9.20)

Extending the de Morgan law for the infinite sequence of quantifiers it seems
natural to assume that the negation of assertion (9.20) is

(∀x0)(∃x1) . . . (∀x2n)(∃x2n+1) . . . {xn}∞n=0 /∈ P. (9.21)

3They play a game with perfect information.
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This assertion however expresses that “player II can win in GameX(P )”. If player
I or player II has a winning strategy in GameX(P ), then (9.20) or (9.21) holds
true, respectively. If X can be well ordered we can proceed as above. Unfortunately,
we do not have any background for extending the de Morgan law for an infinite
string of quantifiers.

However, in spite of all those unclear formulations, J. Mycielski and H. Stein-
haus [1962] proposed an axiom of set theory which is called the Axiom of Deter-
minacy, denoted AD, saying that “the game Gameω(P ) is determined for any
P ⊆ ωω”. In notation of Section 5.5, AD says that Detω(P(ωω)).

Some consequences of AD were already implicitly proved in Section 5.5.
Theorem 9.29. If AD holds true, then

a) the weak axiom of choice wAC holds true,
b) every uncountable set of reals contains a perfect subset,
c) every set of reals possesses the Baire Property,
d) the axiom of choice AC fails.

Proof. a) We have to show that for any 〈Xn ⊆ ωω,Xn �= ∅ : n ∈ ω〉 there exists
a function g : ω −→ ωω such that g(n) ∈ Xn for each n. We set

P = {{xn}∞n=0 ∈ ωω : {x2n+1}∞n=0 /∈ Xx0}.

The set P “depends” only on odd members of sequences. Thus player I has no
possibility to influence the game and actually cannot win (player II simply plays
an element {x2n+1}∞n=0 ∈ Xx0). Thus there exists a winning strategy f for player
II. Let {xk}∞k=0 be the run in game Gameω(P ) in which player II follows the
strategy f and player I plays the sequence 〈n, n, . . . , n, . . . 〉. We set

g(n) = {x2k+1}∞k=0 = R(f̄II({n}∞k=0)).

One can easily see that g is the desired selector, i.e., g(n) ∈ Xn for every n.
b) By Theorem 5.58, b) we have Det∗

ω(P(ωω)) and by Morton Davis’ The-
orem 5.61 we obtain the assertion.

c) By Theorem 5.58, b) we have Det∗∗
ω (P(ωω)). If the set P is meager, we

are done. So assume that P is not meager. We set

G =
⋃
{[t] : t ∈ <ωω ∧ [t] \ P is meager}.

Then
G \ P ⊆

⋃
{[t] \ P : [t] \ P is meager}

and therefore G \ P is meager.
If P \ G is not meager, then by the Banach-Mazur Theorem 5.62 and the

determinacy of Game∗∗
ω (P \ G) there exists a non-empty open set U such that

U \ (P \ G) is meager. Then there exists a finite sequence t ∈ <ωω such that
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[t] \ (P \ G) is meager. Then [t] \ P is meager as well and therefore [t] ⊆ G.
However, then [t] ⊆ [t] \ (P \ U), which is a contradiction. Thus P possesses the
Baire Property.

d) The assertion follows by any of b) or c). �

There is another important consequence of AD.
Theorem 9.30 (J. Mycielski – S. Swierczkowski). If AD holds true, then every set
of reals is Lebesgue measurable.

We present a proof based on a “covering game” invented by L. Harrington.
We need a technical result and some notation. Let {Sn : n ∈ ω} be an enumeration
of the set [<ω2]<ω of finite subsets of finite sequences of 0 and 1. If you prefer to
work with true [0, 1], then {Sn : n ∈ ω} is an enumeration of all finite sets of
open intervals with rational endpoints. Let µ be a Borel measure on ω2. Note the
following. If A ⊆ ω2 has measure zero, then for any decreasing sequence {εn}∞n=0

of positive reals there exists a sequence {mk}∞k=0 such that

A ⊆
⋃

k

⋃

s∈Smk

[s], µ




⋃

s∈Smk

[s]



 < εk for every k. (9.22)

Actually, take a sequence {tn}∞n=0 of elements of <ω2 such that A ⊆
⋃
n[tn] and∑∞

i=0 µ([ti]) < ε0. Now, let n0 = 0 and

nk+1 = min





n > nk :

∑

i≥n
µ([ti]) < εk+1





.

Let mk be such that Smk
= {ti : nk ≤ i < nk+1}.

Evidently
⋃
k Smk

= {ti : i ∈ ω} and the inequality of (9.22) holds true.
For a given set A ⊆ ω2 and ε > 0, the covering game is defined as follows:

player I plays an α ∈ ω2, player II plays a β ∈ ωω such that

µ




⋃

t∈Sβ(n)

[t]



 < ε · 2−2n−1

for each n. Player I wins if α ∈ A \
⋃
n

⋃
t∈Sβ(n)

[t].
It is easy to see that the covering game is equivalent to the game Gameω(P ),

where

P =





Π(α, β) ∈ ωω : α ∈ A \

⋃

n

⋃

s∈Sβ(n)

[s] ∨ β /∈ C





, (9.23)

and where

C =





β ∈ ωω : (∀n)µ

( ⋃

s∈Sβ(n)

[s]
)
< ε · 2−2n−1





.
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Lemma [wAC] 9.31 (L. Harrington). Let Γ be a pointclass containing all open
and closed sets. Let µ be a Borel measure on ω2. If A ∈ Γ (ω2), µ∗(A) = 0 and
Detω(Γ ) holds true, then µ∗(A) = 0.

Proof. The set P defined by (9.23) belongs to Γ . Let us consider the game
Gameω(P ).

We show that player I does not have a winning strategy. We show that for
any strategy f of player I, there exists a play β of player II such that player II
wins.

We may assume that B = Λ(f̄I(C)) ⊆ A, otherwise f is not a winning
strategy. One can easily see that C is a Borel set. Thus B is an analytic set and
therefore µ(B) = 0. If player II plays β ∈ C such that B ⊆

⋃
n

⋃
s∈Sβ(n)

[s], then
she/he wins.

Thus by Detω(Γ ), player II has a winning strategy f . To any partial play
t ∈ n2 of player I player II following this strategy answers by β(n) = f(t) such
that the set Gt =

⋃
s∈Sβ(n)

[s] has measure less than ε · 2−2n−1. Then

µ

(
⋃

t∈n2

Gt

)

< ε · 2−n−1.

Since f is a winning strategy for player II, we obtain A ⊆
⋃
n

⋃
t∈n2Gt and

therefore µ(A) < ε. �

Proof of Theorem 9.30. Let A ⊆ [0, 1]. By Theorems 4.16 and 4.8 there exists a
Borel set C ⊆ A such that λ∗(A) = λ(C). Then λ∗(A\C) = 0. By Lemma 9.31 the
set A\C is Lebesgue measurable and therefore also A is Lebesgue measurable. �

Thus, the Axiom of Determinacy AD implies all assertions of Theorems 9.20
and 9.28, including those concerning the cardinal arithmetics. However, AD influ-
ences the cardinal arithmetics in a much stronger way. We present such a conse-
quence of AD.

Theorem 9.32 (R.M. Solovay). If AD holds true, then there exists a surjection of
P(ω) onto P(ω1), i.e., 2ℵ1 � c = 2ℵ0 .

Proof. We code a set A ⊆ ω1 by a set A∗ ⊆ ω2 using the Lebesgue decomposi-
tion (6.37) of P(ω) and a suitable game. The game may be described as follows.
Player II wins if either player I plays an α /∈ WO or if player I plays a code of
a well-ordering α ∈ WOζ for some ζ < ω1 and player II can decide for any ordinal
ξ ≤ ζ whether ξ ∈ A. Trying to do that, player II plays Π(β, γ) with β ∈ WOη

that is a code of a well-ordering of the length η > ζ, and with γ coding the set
A ∩ η. Thus we can decide for any ξ < η whether ξ ∈ A or not from the run
δ = Π(α,Π(β, γ)).
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We denote by A∗ ⊆ ω2 the set of all runs in such a game, which lead to
the success of player I:

A∗ ={Π(α,Π(β, γ)) ∈ ω2 : α ∈ WO ∧ ¬(β ∈ WO ∧ ot(α) < ot(β)
∧ (∃h) (h is an isomorphism of 〈{dn ∈ D : β(n) = 1}, 〉
onto ot(β) ∧ (∀m) (γ(m) = 1 ≡ h(m) ∈ A ∩ ot(β))))}.

Hence our game is actually the game Game2(A∗).
We claim that player I does not have a winning strategy in Game2(A∗).

Assume that f is a strategy for player I. Then the function f̄I defined by (5.37)
is continuous and f̄I(ω2) ⊆ A∗ is compact. Then Λ(f̄I(ω2)) ⊆ WO and by the
Boundedness Lemma 6.55 there exists an ordinal ζ < ω1 such that

Λ(f̄I(ω2)) ⊆
⋃

ξ<ζ

WOξ.

Thus, if player I follows f , all his plays α are of order type less than ζ. Since
player II could play Π(β, γ) such that ot(β) > ζ and γ codes the set A ∩ ot(β),
the strategy f is not winning.

By determinacy for any set A ⊆ ω1 there exists a winning strategy for
player II in game Game2(A∗). From such a strategy f we can decode the set A.
Namely, for any f ∈ (<ω2)2 we set

σ(f) ={ξ ∈ ω1 : (∀α) ((α ∈ WO ∧ ot(α) > ξ) → (ot(Λ(R(f̄II(α)))) > ot(α)
∧ (∃h) (h is an isomorphism of 〈{dn ∈ D : R(R(f̄II(α)))(n) = 1}, 〉
onto ot(Λ(R(f̄II(α)))) ∧ (∀m) (h(m) = ξ ≡ Λ(R(f̄II(α)))(m) = 1))))}

If f is a winning strategy for player II in the game Game2(A∗), then σ(f) = A.
Hence σ : (<ω2)2 onto−→ P(ω1). �
Theorem 9.33. If AD holds true, then

a) there exists no cardinality between ℵ0 and c, i.e., there is no set X such that
ℵ0 < |X | < c,

b) there exists no well-ordering of the real line,
c) ℵ1 and c are incomparable,
d) there is no selector for Lebesgue decomposition,
e) ℵ1 < ℵ1 + c < ℵ1 + k,
f) 2ℵ1 � c < c + ℵ1 < 2ℵ1 < 2ℵ1 + k < 2k = 2c,
g) the relation � is not antisymmetric.

Proof. a) By b) of Theorem 9.29 an uncountable set of reals contains a subset of
cardinality c, thus there exists no uncountable set of cardinality smaller than c.

b) The assertion follows immediately by Bernstein’s Theorem 7.20 and by b)
of Theorem 9.29.
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c) If c and ℵ1 were comparable, then by b) we would obtain ℵ1 < c which
contradicts a).

d) A selector of Lebesgue decomposition is a set of reals of cardinality ℵ1.
By c) such a set does not exist.

e) The inequalities follow by c) and Theorems 9.29, c) and 9.20, e).
f) The first inequality follows by Theorem 9.32. The second inequality follows

from c). Evidently c + ℵ1 ≤ 2ℵ1 . Since 2ℵ1 + ℵ1 = 2ℵ1 , if c + ℵ1 = 2ℵ1 , then by
Tarski’s Theorem 1.8 we obtain 2ℵ1 = c, contradicting c). The inequality k ≤ 2ℵ1

contradicts Theorem 9.20, e), so we obtain the fourth inequality of f). If 2k =
2ℵ1 + k, then again by Tarski’s Theorem 1.8 we obtain 2ℵ1 = 2k. Since k ≤ 2k,
we obtain a contradiction with Theorem 9.20, e). The last equality follows from
Theorem 9.20, g) by (1.4).

g) By Theorem 9.32 we have 2ℵ1 � c and trivially c � 2ℵ1 . By f) we obtain
c �= 2ℵ1 . �

Note that by f) we have

2ℵ1 � c < 2ℵ1 .

We present without proof another interesting result (the notion of a measur-
able cardinal is defined in Section 10.2):
Theorem 9.34 (R.M. Solovay). If AD holds true, then ℵ1 is a measurable cardinal.
Actually the filter generated by closed unbounded subsets of ω1 is an ultrafilter.

This result shows that the consistency strength of AD is very high. We can
formulate it as
Metatheorem 9.8. If ZF+AD is consistent, then ZFC+“there exists a measurable
cardinal” is consistent as well.

Actually the consistency strength of AD is much higher – see (11.46). We
recommend the reader to T. Jech [2006] and A. Kanamori [2009].

Many important results follow already from some weaker modifications of
the Axiom of Determinacy. We present some examples.

By a result by D.A. Martin [1970] we have
Theorem [AC] 9.35. Assume that there exists a measurable cardinal. Then the
game Gameω(A) is determined for any analytic A ⊆ ωω, i.e., Detω(Σ1

1(ωω))
holds true.

Using this result we obtain
Theorem [AC] 9.36. If there exists a measurable cardinal, then every uncountable
Σ1

2 set of reals contains a perfect subset.

Proof. Let A ∈ Σ1
2(ωω). Similarly as in proof of Corollary 6.63 we can show that

there exists a set C ∈ Π1
1(ωω × ωω) such that A = proj2(C) and |Cα| ≤ 1 for

any α ∈ ωω, or in other words, proj2 is injective. If A is uncountable also C is
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uncountable. By Theorem 5.58 game Gameω(C) is determined and by M. Davis’
Theorem 5.61 the set C contains a perfect subset. Its injective image is a perfect
subset of A. �

We present one of the key results of descriptive set theory in “a playful
universe”, i.e., a consequence of AD, the so-called Coding Lemma. A proof uses
quite a great deal of general recursion theory and therefore is out of the scope of
this book. A proof can be found in Y.N. Moschovakis [1970] or [1980]. We need
a technical notion.

We suppose that X,Y are Polish spaces, S ⊆ X and ρ : S onto−→ λ is a regular
rank. Let f : λ −→ P(Y ). A set C ⊆ X × Y is called a choice set for f if

〈x, y〉 ∈ C → (x ∈ S ∧ y ∈ f(ρ(x)), f(ξ) �= ∅ → (∃x)(∃y) (ρ(x) = ξ ∧ 〈x, y〉 ∈ C).

Lemma 9.37 (The Coding Lemma). Assume AD. Let X, Y be Polish spaces. Let
S ⊆ X, ρ : S onto−→ λ. If Γ is a ωω-parametrized pointclass closed under countable
unions and intersections, closed under ∃ωω and such that Σ1

1 ⊆ Γ , <ρ∈ Γ (X×X),
then every function f : λ −→ P(Y ) has a choice set in Γ (X × Y ).

One of the most interesting consequences of the Coding Lemma is the next
result, which has been proved, under essentially different assumptions, as Corollary
9.10.
Theorem 9.38 (Y.N. Moschovakis). If AD holds true, then a subset A of a perfect
Polish space X is a Σ1

2 set if and only if A is a union of ℵ1 Borel sets. Thus

|Σ1
2(X)| � c = 2ℵ0 < 2ℵ1 ≤ |Σ1

2(X)|.

Proof. If A is a Σ1
2 set, then A is a union of ℵ1 Borel sets by Theorem 6.58.

Let 〈Bξ : ξ ∈ ω1〉 be Borel subsets of X . By Theorem 6.40 there exists
a Σ1

2-universal set U ⊆ ωω ×X . We define

f(ξ) = {α ∈ ωω : Uα = Bξ}.

By the Coding Lemma 9.37 there exists a choice set C ∈ Σ1
2(ωω ×X) for f . One

can easily see that

x ∈
⋃

ξ<ω1

Bξ ≡ (∃y)(∃α) (〈y, α〉 ∈ C ∧ 〈α, x〉 ∈ U).

Hence
⋃
ξ<ω1

Bξ ∈ Σ1
2(X).

Let S be a Π1
1-subset of X , which is not analytic. Then S =

⋃
ξ<ω1

Sξ,
where 〈Sξ : ξ < ω1〉 are the pairwise disjoint Borel constituents of S. Since S is
not analytic, the set T = {ξ ∈ ω1 : Sξ �= ∅} has cardinality ℵ1. The function
F : P(T ) −→ Σ1

2(X) defined as F (E) =
⋃
ξ∈E WOξ for E ⊆ T is an injection.

Therefore 2ℵ1 ≤ |Σ1
2(X)|. The other inequalities have been already proved. �
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The Axiom of Projective Determinacy PD says that Gameω(P ) is deter-
mined for any projective set P ⊆ ωω. Thus, in notations of Section 5.5, the axiom
PD is the assertion Dω(

⋃
nΣ1

n(ωω)). Evidently ZF � AD → PD. However, the
axiom wAC does not follow from PD (at least, we do not know it). As above, we
obtain the main consequences of the axioms PD + wAC.
Theorem [wAC] 9.39. If PD holds true, then

a) every uncountable projective set of reals contains a perfect subset,
b) every projective set of reals possesses the Baire Property,
c) every projective set of reals is Lebesgue measurable,
d) a set A ⊆ R is a Σ1

2 set if and only if A is a union of ℵ1 Borel sets,
e) for any uncountable Polish space X we have

|Σ1
2(X)| � c = 2ℵ0 < 2ℵ1 ≤ |Σ1

2(X)|.

Actually checking the proofs of related consequences of the axiom AD, one
can verify that in case of a projective set, the corresponding game is “projective”,
and therefore the axiom PD is enough for obtaining the result.

Exercises

9.15 Harrington Lemma

Show that Detω(Σ1
1) implies that every Σ1

2 subset of ω2 is measurable.

Hint: If A ∈ Σ1
2(

ω2), then α ∈ A ≡ (∃γ) 〈α, γ〉 ∈ C for a Π1
1 set C ⊆ ω2 × ωω. Modify

the covering game by letting player I play π(α(n), γ(n)). Player I wins if

〈α, γ〉 ∈ C ∧ α /∈
⋃

n

⋃

s∈Sβ(n)

[s].

9.16 Solovay Game

For given S ⊆ ω1 we introduced a game as follows. Player I plays an element α ∈ WO
and player II plays a code β of a countable subset {Projn(β) : n ∈ ω} of ω1. Player II
wins if either α /∈ WO or

{ξ ∈ S : ξ ≤ ot(α)} ⊆ {Projn(β) : n ∈ ω} ⊆ S.

a) If S is unbounded, then player I does not have a winning strategy.

Hint: If f is a winning strategy for player I, then Λ(f̄I(
ω2) ⊆ WO and by the

Boundedness Lemma 6.55 there exists an ordinal ζ < ω1 such that Λ(f̄I(
ω2)) ⊆ ζ.

Player II plays an ordinal greater than ζ – a contradiction.

b) If S is unbounded and player II has a winning strategy, then {α ∈ WO : ot(α) ∈ S}
is a Π1

1 set.

Hint: If f is a winning strategy for player II, then

ot(α) ∈ S ≡ (∃n) (ot(α) = ot(Projn(Λ(ᾱI(
ω2))).

Note that ot(α) is a Π1
1-rank on WO.

c) If AD holds true, then the union
⋃

ξ∈S WOξ is a Π1
1 set for any S ⊆ ω1.

Hint: If S is bounded, then S is countable and use Corollary 6.18.
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Historical and Bibliographical Notes

It was George Cantor who advanced the hypothesis that 2ℵ0 = ℵ1. Moreover
he tried to prove it. D. Hilbert in his lecture at the International Congress of
Mathematicians in Paris 1900 raised his celebrated Hilbert’s Problems. The first
problem was the question whether CH holds true. Later many mathematicians
(e.g., N.N. Luzin [1914], W. Sierpiński [1934b], M.M. Lavrentieff [1924]) used to
answer an important problem assuming CH when they could not find an answer in
the framework of set theory. Of course they considered a proof of an answer with-
out CH as a better result. I propose just one example. N.N. Luzin [1914] proved,
assuming CH, that there exists an uncountable perfectly meager set. Then, the
aim of N.N. Luzin [1921], actually published by W. Sierpiński, “est de démontrer
le même sans l’hypothèse que 2ℵ0 = ℵ1”. W. Sierpiński and many others ob-
tained a great deal of consequences of CH, which they were unable to prove in
ZFC. It turned out that many of those consequences are actually equivalent to
CH. The most important results of this kind were systematically presented by
W. Sierpński [1935]. Finally K. Gödel [1944] showed that CH cannot be refuted
by ZFC. However, K. Gödel did not believe that CH is “true”. As we have already
mentioned F. Rothberger [1939] and [1941] was enough, at least implicitly, to as-
sume that CH is not true. P.J. Cohen [1963] constructed a model of ZFC in which
CH fails.

R.M. Solovay and S. Tennenbaum [1971] have constructed a model of ZFC
in which the Souslin Hypothesis holds true. D.A. Martin observed that they have
proved more: they have constructed a model, in which the Martin Axiom holds
true. The Martin Axiom MA was formulated and the main consequences of it were
presented by D.A. Martin and R.M. Solovay [1970], including (9.1), Theorem 9.1,
Lemma 9.5, and Theorems 9.7 and 9.9. The monograph D.H. Fremlin [1984b] is
devoted to a systematic study of consequences of the Martin Axiom and of two of
its weaker forms.

Shanin’s ∆-lemma 9.11 was proved by N.A. Shanin [1946]. Theorem 9.13 (un-
published) was discovered independently by several authors: K. Kunen, F. Row-
bottom and R.M. Solovay. R. Engelking and M. Karlowicz [1965] proved that
a topological product of topological spaces with the Knaster Property has the
Knaster Property as well. So Theorem 9.14 and Corollary 9.15 follow. See also
Exercise 9.6.

For more information related to Exercise 9.3 see D.H. Fremlin [1984b] and
A. Blass [2010]. Results of Exercise 9.4 are those of M. Bell [1981]. The presentation
in Exercises 9.3–9.5 follows essentially A. Blass [2010].

Results of Metatheorems 9.1–9.3 are attributed to their authors in Sec-
tion 11.5. Lemma 9.17 and Theorem 9.18 are due to A. Dow [1990].

The Katowice Problem was formulated at Katowice University in the 1970s
and is still open. The result of Exercise 9.7, c) is due to B. Balcar (unpub-
lished). The results of Exercise 9.8, k) and l), Exercise 9.10, i) and j) are due to
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J. Flašková [2005]. Some results of Exercise 9.8 are folklore. A reader can find more
information concerning results of Exercise 9.10 in W. Just and M. Weese [1997].

Metatheorem 9.6 was proved by R.M. Solovay [1970b]. Lemma 9.19 is proved
in J. Mycielski [1964b], however the author attributes the result to W. Sierpiński.
Theorem 9.21 was proved by M. Talagrand [1980]. Our proof follows his ideas.
Lemmas 9.24–9.26 and Theorem 9.27 are due to J. Raisonnier [1984]. Results of
Exercises 9.13 and 9.14 are partially contained in J. Mycielski [1964b].

In the theory of models of set theory the following is well known: if ℵ1 is
not inaccessible in the constructible universe L, then there exists a set X ⊆ ω2
of cardinality ℵ1 and a well-ordering R ∈ Σ1

2. Thus the measurability of all Σ1
3

sets implies consistency of the existence of an inaccessible cardinal. Hence the
existence of an inaccessible cardinal is necessary in a demonstration of Metatheo-
rem 9.6. Consequently, the theories ZFC + “there exists an inaccessible cardinal”
and ZF+wAC+“every set of reals is Lebesgue measurable” are equiconsistent. On
the other side, the consistency of the theory ZF implies the consistency of the the-
ory ZF + wAC + “every set of reals possesses the Baire Property”. Thus the con-
sistency strength of wAC + “every set of reals is Lebesgue measurable” is strictly
greater than that of wAC + “every set of reals possesses the Baire Property”. We
can consider this result as another failure of the measure-category duality (see also
Section 11.5).

As we have said the Axiom of Determinacy was proposed by J. Mycielski and
H. Steinhaus [1962]. Since a great deal of results related to infinite games (e.g.,
those by S. Banach and S. Mazur) was not published, we recommend to the reader
J. Mycielski [1964b] for historical remarks. See also a survey by R. Telgársky [1987].
Theorem 9.29 appeared in J. Mycielski [1964b]. Theorem 9.30 was proved by J. My-
cielski and S. Swierczkowski [1964]. The presented proof follows L. Harrington (un-
published). The Solovay’s game of Theorem 9.32 was invented by R.M. Solovay,
see, e.g., Y. Moschovakis [1980] or T. Jech [2006]. Theorem 9.35 was essentially
refined by L. Harrington [1978]. The Coding Lemma 9.37 and Theorem 9.38 was
proved by Y.N. Moschovakis [1970]. See also Y.N. Moschovakis [1980].



Chapter 10

Undecidable Statements

. . . le domaine des ensembles projectifs est un domain où le tiers exclu
ne s’aplique plus . . .

Nikolaj N. Luzin [1930], p. 323.

. . . oblast� proektivnyh mno�estv est� oblast�, gde princip
iskl�qennogo tret�ego u�e neprimenim . . .

Russian translation of Nikolaj N. Luzin [1930], p. 321.

. . . the domain of projective sets is a domain where the principle of
excluded third can no longer be applied . . .

Actually, any of the additional axioms of set theory considered in Chapter 9 is
an undecidable statement of set theory. It is known that assuming consistency of
ZF (sometimes one needs stronger assumptions), one can show consistency of both
theories ZF + “the additional axiom” and ZF + “the negation of the additional
axiom”. However, neither of those axioms is a statement formulated by a working
mathematician non-specialist in set theory1. In this chapter we present several
questions formulated in some mathematical fields related to the structure of the
real line which have no answer in ZFC.

10.1 Projective Sets

In the proofs of many results of Section 7.2 we have replaced the axiom of choice by
a weaker condition: “there exists a well-ordering of the real line”, or equivalently,
“c is an aleph”. The natural question arises immediately: how nice can a well-
ordering of the real line be? If the axiom of constructibility holds true (see Section
11.5), then there exists a Σ1

2 well-ordering. Is this result the best possible?
1Maybe the assertion “every set of reals is Lebesgue measurable” is an exception, since it essen-
tially simplifies the theory of integration.
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Consider a strict well-ordering W of [0, 1], i.e., the set [0, 1] is well ordered
by the relation 〈x, y〉 ∈ W . We denote the diagonal by D = {〈x, x〉 : x ∈ [0, 1]}.
Then the sets W , D and W−1 form a partition of [0, 1] × [0, 1]. The descriptive
complexity of the set W is the same as that of W−1. Since the set D is closed, we
obtain the following simple fact:

W ∈ Σ1
n ≡W ∈ Π1

n,

i.e.,
W ∈ Σ1

n →W ∈∆1
n.

Thus the existence of a Σ1
n well-ordering of reals is equivalent to the existence of

a ∆1
n well-ordering. Also the existence of a Π1

n well-ordering of reals is equivalent
to the existence of a ∆1

n well-ordering.
We shall use the notation of the proof of Theorem 7.17. We repeat a definition

(7.10) of a selector V of the Vitali decomposition using the well-ordering W :

x ∈ V ≡ (∀y) ((x �= y ∧ x− y ∈ Q) → 〈x, y〉 ∈W ).

By the Kuratowski–Tarski Theorem 6.45, if W is a ∆1
n set, then V is a Π1

n set.
Moreover, then every set V + r is a Π1

n set. We know that a countable union of
Π1
n sets is a Π1

n set (assuming wAC). Since

V = T \
⋃

r∈(0,1)∩Q

V + r,

we obtain that V is also a Σ1
n set. So by Corollary 7.19 we obtain

Theorem [wAC] 10.1. If there exists a ∆1
n well-ordering of T, then there exists a

∆1
n set which is neither Lebesgue measurable nor possesses the Baire Property.

Corollary [wAC] 10.2. There is no ∆1
1 well-ordering of T.

Thus Gödel’s result (11.15) about the existence of a Σ1
2 well-ordering of the

real line (and consequently of a ∆1
2 well-ordering) is the best possible.

Lemma [AC] 10.3. If add(N ) > ℵ1, then every Σ1
2 set is Lebesgue measurable. If

add(M) > ℵ1, then every Σ1
2 set possesses the Baire Property.

Proof. By Theorem 6.58 every Σ1
2 set is a union of ℵ1 Borel sets. �

We obtain immediately
Theorem [AC] 10.4. If add(N ) > ℵ1 or add(M) > ℵ1, then there is no ∆1

2 well-
ordering of the real line.

The Axiom of Constructibility V = L has an important consequence (11.14)
which we repeat here for convenience of the reader:

there exists a well-ordering <L of ωω in order type ω1 such that
R = {〈α, β〉 ∈ ωω × ωω : {γ ∈ ωω : γ <L α} = {Projn(β) : n ∈ ω}}
is a Σ1

2 set and (∀α ∈ ωω)(∃β ∈ ωω) 〈α, β〉 ∈ R. (10.1)

We know that (10.1) implies that the well-ordering <L is a Σ1
2 set.
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The assumption (10.1) implies the continuum hypothesis 2ℵ0 = ℵ1 and wAC.
By the basic result of K. Gödel [1944] the Axiom of Constructibility is con-

sistent with ZFC, therefore (10.1) is consistent with ZFC. By Metatheorem 11.7
each of the assumptions add(M) > ℵ1, add(N ) > ℵ1 is consistent with ZFC, thus
we can summarize:
Metatheorem 10.1. If ZF is consistent, then sentences “there exists a ∆1

2 well-
ordering of the reals”, “there exists a non-Lebesgue measurable Σ1

2 set of reals”,
“there exists a Σ1

2 set of reals not possessing the Baire Property” are undecidable
in ZFC.

By Corollary 6.63 the existence of a Σ1
2 set of cardinality ℵ1 is equivalent

to the existence of a Π1
1 set of cardinality ℵ1. Note that |ωω ∩ L| = |ℵL

1|. Thus,
in any model of ZFC +¬CH in which ℵL

1 is not countable, the set of constructible
reals ωω ∩ L is a Σ1

2 set of cardinality ℵ1, since

α ∈ ωω ∩ L ≡ (∃β) 〈α, β〉 ∈<L .

Thus in every such model there exists a Π1
1 set of reals of cardinality ℵ1. Actually

we know many models of this type, see, e.g., T. Jech [2006]. On the other hand
A. Levy and R.M. Solovay [1967] have shown that if ZFC+“there exists a mea-
surable cardinal” is consistent, then the theory ZFC+“there exists a measurable
cardinal”+¬CH is also consistent. By Theorem 9.36 in such a theory every Π1

1 set
has cardinality c. Therefore we obtain:
Metatheorem 10.2. If ZFC + “there exists a measurable cardinal” is consistent,
then the sentence “there exists a Π1

1 set of reals of cardinality ℵ1” is undecidable
in ZFC.

We present some consequences of the axiom of constructibility concerning the
properties of projective sets. Actually, we use the assertion (10.1), which enables
us to replace a universal <L-bounded quantifier by existential ones

(∀β <L α)ϕ(β) ≡ (∃γ) (〈α, γ〉 ∈ R ∧ (∀n)(∃δ) (Projn(γ) = δ ∧ ϕ(δ))) (10.2)

and an existential <L-bounded quantifier by universal ones

(∃β <L α)ϕ(β) ≡ (∀γ) (〈α, γ〉 ∈ R→ (∃n)(∀δ) (Projn(γ) = δ → ϕ(δ)). (10.3)

Theorem 10.5 (J.W. Addison). If (10.1) holds true, then every pointclass Σ1
n,

n ≥ 2 is ranked. Hence, for n ≥ 2, the pointclass Σ1
n has the reduction property

and the pointclass Π1
n has the separation property.

Proof. The later assertions follow from the former one by Theorems 5.22 and
5.20, b).

Let X be a Polish space, A ∈ Σ1
n(X), n > 1. We define a Σ1

n-rank on A. By
Theorem 6.39, c) there exists a set B ∈ Π1

n−1(X × ωω) such that

x ∈ A ≡ (∃α ∈ ωω) 〈x, α〉 ∈ B.
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Since ωω is well ordered by<L in the order type ω1, there exists an order preserving
mapping dL : ωω 1−1−→

onto
ω1. We define a rank ρ on the set A as follows:

ρ(x) = min{dL(α) : 〈x, α〉 ∈ B}.

We need to show that ρ is a Σ1
n-rank.

One can easily check that for any x ∈ X and any y ∈ A the following
equivalences hold true:

ρ(x) ≤ ρ(y) ≡ (x, y ∈ A ∧ (∃α, β ∈ ωω) (〈x, α〉 ∈ B ∧ 〈y, β〉 ∈ B
∧ α ≤L β ∧ (∀δ <L β) 〈y, δ〉 /∈ B)), (10.4)

ρ(x) ≤ ρ(y) ≡ (∀β ∈ ωω) (〈y, β〉 ∈ B → (∃α ≤L β) 〈x, α〉 ∈ B).

By (10.2) the formula (∀δ <L β) 〈y, δ〉 /∈ B is equivalent to the formula

(∃γ) (〈β, γ〉 ∈ R ∧ (∀n)(∃α) (Projn(γ) = α ∧ 〈x, α〉 /∈ B))

and by (10.3) the formula (∃α ≤L β) 〈x, α〉 ∈ B is equivalent to the formula

(∀γ) (〈β, γ〉 ∈ R→ (∃n)(∀δ) (Projn(γ) = δ → 〈x, δ〉 ∈ B)) ∨ 〈x, β〉 ∈ B.

Thus by Theorems 6.43 and 6.45, the formula (∀δ <L β) 〈y, δ〉 /∈ B is Σ1
n and the

formula (∃α ≤L β) 〈x, α〉 ∈ B is Π1
n. Consequently the formulas on the right sides

of (10.4) are Σ1
n and Π1

n, respectively. Thus the relation ρ(x) ≤ ρ(y)) satisfies the
condition b) of Lemma 5.21 and ρ is a Σ1

n-rank. �

Theorem 10.6. Assume (10.1) holds true. Then for n ≥ 2, every pointclass Σ1
n has

the uniformization property.

Proof. By Lemma 5.26 it suffices to consider the sets from Σ1
n(X × ωω), where X

is a Polish space. So let A ∈ Σ1
n(X × ωω) and

〈x, α〉 ∈ A ≡ (∃β) 〈x, α, β〉 ∈ C,

where C ∈ Π1
n−1(X × ωω × ωω).

Let Π , Λ and R be the continuous mappings between ωω and ωω×ωω defined
by (1.11) and (1.12). Set

〈x, α〉 ∈ E ≡ (〈x,Λ(α), R(α)〉 ∈ C ∧ (∀β <L α) 〈x,Λ(β), R(β)〉 /∈ C).

Using (10.2) one can easily show that E ∈ Σ1
n(X × ωω). Now we define

〈x, α〉 ∈ B ≡ (∃β) 〈x,Π(α, β)〉 ∈ E.

Evidently B ∈ Σ1
n(X × ωω) and B uniformizes A. �
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We show that the Axiom of Projective Determinacy PD has essentially dif-
ferent consequences. We begin with an important result often called the First
Periodicity Theorem.
Theorem [wAC] 10.7 (D.A. Martin – Y.N. Moschovakis). Let Detω(∆[Γ ]) hold
true for a pointclass Γ . If every set in Γ (X×ωω) admits a Γ -rank, then every set
in ∀ωω[Γ ](X) admits a ∀ωω∃ωω[Γ ]-rank.

Proof. Assume that B ∈ Γ (X × ωω), A = {x ∈ X : (∀α ∈ ωω) 〈x, α〉 ∈ B} and ρ
is a Γ -rank on B. For given x, y ∈ A we set

Cx,y = {α ∈ ωω : 〈y,R(α)〉 <∗
ρ 〈x,Λ(α)〉}.

By definition Cx,y ∈ Γ (ωω).
If y ∈ A, then (∀α) 〈y, α〉 ∈ B and therefore

ωω \ Cx,y = {α ∈ ωω : 〈x,Λ(α)〉 ≤∗
ρ 〈y,R(α)〉}

and Cx,y ∈ ¬Γ (ωω). Thus Gameω(Cx,y) is determined.
We define

x ! y ≡ (x, y ∈ A ∧ (player II has a winning strategy in Gameω(Cx,y))). (10.5)

We show that ! is a ∀ωω[Γ ]-rank on A.
Let us note the following simple facts. If α is a run in Gameω(Cx,y), then

player I wins ≡ 〈y,R(α)〉 <∗
ρ 〈x,Λ(α)〉, (10.6)

player II wins ≡ 〈x,Λ(α)〉 ≤∗
ρ 〈y,R(α)〉. (10.7)

If x ∈ A and if player II plays the same play as player I, then II wins in
Gameω(Cx,x). Hence ! is reflexive on A.

Assume that x, y, z ∈ A, x ! y and y ! z. Then player II has winning
strategies in both games Gameω(Cx,y) and Gameω(Cy,z). We describe a winning
strategy for player II in Gameω(Cx,z). Assume that α is a play of player I. Let β
be the answer of player II in Gameω(Cx,y) following the winning strategy. Now, let
player I play β in Gameω(Cy,z) and let γ be the answer of player II following the
winning strategy. In Gameω(Cx,z) player II will play the same play2 γ as an answer
to the play α of player I. Since all x, y, z are in A we know that 〈x, α〉, 〈y, β〉, 〈z, γ〉
are in B and therefore

〈x, α〉 ≤ρ 〈y, β〉, 〈y, β〉 ≤ρ 〈z, γ〉.

Hence also 〈x, α〉 ≤ρ 〈z, γ〉 and player II wins.
We show that x ! y or y ! x for every x, y ∈ A. Assume that ¬x ! y. Then

by (10.5) player II does not have a winning strategy in Gameω(Cx,y). Since the

2Of course, everything will be done step by step.
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game is determined, player I does have a winning strategy. We describe a winning
strategy for player II in Gameω(Cy,x). Actually, the player’s II answer β to a play
α by player I is the same as the answer by player I in Gameω(Cx,y) to α played
by player II. Since player I followed the winning strategy, by (10.6) we obtain
〈y, α〉 <∗

ρ 〈x, β〉. Then by (10.7) player II wins in Gameω(Cy,x). Thus y ! x.
We have to show that there is no strictly !-descending infinite sequence of

elements of the set A. To get a contradiction assume that xn ∈ A, and xn+1 � xn
for every n ∈ ω. Thus by the definition (10.5) player I has a winning strategy in
each Gameω(Cxn,xn+1), n ∈ ω. Using wAC, we choose a sequence 〈fn : n ∈ ω〉 of
winning strategies of player I in corresponding games. Following those strategies
in the first step of games Gameω(Cxn,xn+1) player I plays αn(0) for any n. We let
player II answer βn(0) = αn+1(0). By induction, at the step k player I following
the strategy fn plays αn(k) = fn({βn(i)}k−1

i=0 ). Again, we let player II answer
βn(k) = αn+1(k). Thus in Gameω(Cxn,xn+1) the play of player I is αn and the play
of player II is αn+1. Since player I followed her/his winning strategies in each game
of the sequence 〈Gameω(Cxn,xn+1) : n ∈ ω〉, we obtain 〈xn+1, αn+1〉 <ρ 〈xn, αn〉
for each n ∈ ω, a contradiction.

By definition, a strategy Gameω(A) is a function f : <ωω −→ ω. Since the
space (<ωω)ω is homeomorphic to ωω we can consider a strategy as an element of
the Baire space ωω. We recall the notation introduced in Section 5.5: if player I
follows a strategy α and player II plays β, then the resulting run is ᾱI(β). The
mapping F : ωω × ωω −→ ωω defined as F (α, β) = ᾱI(β) is continuous. Similarly
for player II.

Taking into account the determinacy assumption, by definition of the order-
ing ! we obtain

x ! y ≡ (x, y ∈ A ∧ (∀α ∈ (<ωω)ω)(∃β ∈ ωω) ᾱI(β) /∈ Cx,y),

and therefore the relation ! belongs to ∀ωω∃ωω [Γ ]. Similarly

x � y ≡ (x, y ∈ A ∧ (∀α ∈ (<ωω)ω)(∃β ∈ ωω) ᾱII(β) ∈ Cy,x).

Thus ! is a ∀ωω∃ωω[Γ ]-rank. �

As a main consequence of the First Periodicity Theorem we obtain the fol-
lowing result.

Theorem [wAC] 10.8 (D.A. Martin – Y.N. Moschovakis). The Axiom of Projective
Determinacy PD implies that the pointclasses Σ1

2n and Π1
2n−1 are ranked for

any n > 0.

Proof. The theorem follows easily by Theorems 6.53, 5.24 and 10.7. �

Similarly one can prove the Second Periodicity Theorem, see Exercise 10.3
and Y.N. Moschovakis [1980] or A.S. Kechris [1995].
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Theorem [wAC] 10.9 (Y.N. Moschovakis). Let Detω(∆[Γ ]) hold true for a point-
class Γ . If every set in Γ (X×ωω) admits a Γ -scale, then every set in ∀ωω [Γ ](X)
admits a ∀ωω∃ωω[Γ ]-scale.

Again, the main consequence of this Theorem is
Theorem [wAC] 10.10 (Y.N. Moschovakis). If the Axiom of Projective Determi-
nacy PD holds true, then the pointclasses Σ1

2n and Π1
2n−1 have the uniformization

property for any n > 0.

We summarize the situation with two different assumptions: the Axiom of
Constructibility (the universe of the set theory is the smallest possible) and the
Axiom of Projective Determinacy (you have enough strategies for winning your
games). A boxed pointclass in the next pictures possesses the uniformization prop-
erty, is ranked and therefore has the reduction property. Recall that by Corollary
5.23 the pointclasses Π1

n and Σ1
n cannot be both ranked.

In ZFC+Axiom of Constructibility, even in ZF+(10.1)+wAC, we have

Π1
1 Π1

2 Π1
3

. . . Π1
2n−1 Π1

2n Π1
2n+1

. . .

Σ1
1 Σ1

2 Σ1
3

. . . Σ1
2n−1 Σ1

2n Σ1
2n+1

. . .

Assuming the Axiom of Projective Determinacy PD and wAC we obtain an
essentially different picture:

Π1
1 Π1

2 Π1
3

. . . Π1
2n−1 Π1

2n Π1
2n+1

. . .

Σ1
1 Σ1

2 Σ1
3

. . . Σ1
2n−1 Σ1

2n Σ1
2n+1

. . .

Exercises

10.1 Well-ordering of ωω

Assume that ≺ is a well-ordering of ωω in type ω1. The relation R is defined as in (10.1).

a) If R ∈ Σ1
n, then ≺∈∆1

n.

b) Show that

(∀β ≺ α)ϕ(β, . . . ) ≡ (∀γ) (〈α, γ〉 ∈ R→ (∀n)(∃δ) (Projn(γ) = δ ∧ ϕ(δ, . . . )))

≡ (∃γ) ([αγ] ∈ R ∧ (∀n)(∃δ) (Projn(γ) = δ ∧ ϕ(δ, . . . ))),

(∃β ≺ α)ϕ(β, . . . ) ≡ (∃γ) (〈α, γ〉 ∈ R ∧ (∃n)(∃δ) (Projn(γ) = δ ∧ ϕ(δ, . . . )))

≡ (∀γ) (〈α, γ〉 ∈ R→ (∃n)(∃δ) (Projn(γ) = δ ∧ ϕ(δ, . . . ))).

c) If R ∈ Σ1
n, then every pointclass Σ1

m, m ≥ n is ranked and has the uniformization
property.
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10.2 [wAC] Unions of ∆1
n sets

The Moschovakis numbers δ1n were defined in Exercise 6.13.

a) If Π1
n, n > 0 is ranked, then every set A ∈ Σ1

n+1(X) is a union of δ1n sets from ∆1
n.

Hint: See Exercise 5.8, c).

b) If Σ1
n, n > 1 is ranked, then any union

⋃
ξ<δ1

n−1
Aξ with Aξ ∈ Π1

n−1 belongs to

Σ1
n.

c) If AD holds true, then for any n > 0,

A ∈ Σ1
2n ≡ A is a union of δ12n−1 sets from ∆1

2n−1.

10.3 Proof of the Second Periodicity Theorem

Let X be a Polish space, n > 0, Γ being a pointclass, ∆ = Γ ∩ ¬Γ . Assume that
Gameω(D) is determined for every D ∈ ∆(ωω) and B ∈ Γ (X × ωω) admits a Γ -scale.
Then by Exercise 5.9 there exists a very good Γ -scale 〈ρn : n ∈ ω〉 on B. Fix an enumer-
ation <ωω = {sn : n ∈ ω} such that s0 = ∅ and si ⊆ sj → i ≤ j.

a) Let
Cn

x,y = {α ∈ ωω : 〈y, sn
�R(α)〉 <∗

ρn
〈x, sn

�Λ(α)〉}.
Show that Cn

x,y ∈ ∆.

Hint: See the proof of Theorem 10.7.

b) Show that

x "n y ≡ (x, y ∈ A ∧ (II has a winning strategy in Gameω(Cn
x,y)))

is a ∀ ωω[Γ ]-rank on A.

Hint: Again, follow the proof of Theorem 10.7.

c) Define
x �n y ≡ (x �0 y ∨ (x "0 y ∧ y "0 x ∧ x "n y)).

Then 〈�n: n ∈ ω〉 is a ∀ ωω[Γ ] scale on ∀ ωωB.

Hint: Consult A.S. Kechris [1995], pp. 338–339 or Y.N. Moschovakis [1980], pp.
311–317.

d) Prove the Second Periodicity Theorem 10.10.

Hint: Apply the results of c) and Exercise 5.10.

10.2 Measure Problem

In Section 7.2 we have shown that if the real line can be well ordered, then there
exists a Lebesgue non-measurable set. Actually we have proved a stronger result,
Corollary 7.19 saying the following: if S ⊆ P(T) is a σ-algebra and ν is a proba-
bilistic shift invariant measure defined on S, then a Vitali set V does not belong
to S. Thus, the Axiom of Choice implies that there exists no shift invariant prob-
abilistic measure on P(T) and therefore neither on P([0, 1]). The shift invariance
has been essentially used. Thus, a natural question arises.

The Measure Problem. Is there a probabilistic diffused measure on P([0, 1])?
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Let us notice that the Measure Problem is not a question about the real line
but about any set of cardinality c. As we shall see ZFC does not decide the answer
to the Measure Problem.

We shall consider a diffused probabilistic measure ν defined on P(X). The
measure ν is called κ-additive if for every cardinal γ < κ and for every disjoint
family 〈Xξ : ξ < γ〉 of subsets of X , we have

ν




⋃

ξ<γ

Xξ



 =
∑

ξ<γ

ν(Xξ).

Similarly as in Theorem 7.4 one can show that the measure ν is κ-additive if and
only if add(N (ν)) ≥ κ.

An uncountable cardinal number κ is called real-valued measurable if there
exists a diffused probabilistic κ-additive measure on P(κ).3

Theorem [AC] 10.11. If the answer to the Measure Problem is affirmative, then
there exists a real-valued measurable cardinal κ such that ℵ0 < κ ≤ c.

Proof. Let ν be a diffused probabilistic σ-additive measure defined on P([0, 1]).
Since ν({x}) = 0 for any x ∈ [0, 1] and ν([0, 1]) = 1, the measure ν is not c+-
additive. Let κ be the smallest cardinal such that ν is not κ+-additive. Evidently
ℵ0 < κ ≤ c. We show that κ is a real-valued measurable cardinal.

By definition of κ there are pairwise disjoint sets 〈Xξ : ξ ∈ κ〉 such that

ν(Xξ) = 0 for every ξ < κ and ν




⋃

ξ<κ

Xξ



 > 0.

Let ε = ν(
⋃
ξ∈κXξ) > 0. It is easy to see that the function λ defined for A ⊆ κ by

λ(A) = ν




⋃

ξ∈A
Xξ



 /ε.

is a diffused κ-additive probabilistic measure on P(κ). Thus κ is real-valued mea-
surable. �

There are classical important results concerning real-valued measurable car-
dinals. The first one reads as follows.
Theorem [AC] 10.12 (S. Ulam). A real-valued measurable cardinal is weakly inac-
cessible.

The theorem immediately follows from two lemmas.
Lemma 10.13. Every real-valued measurable cardinal is regular.
3Let us recall that κ is the set of all smaller ordinals, i.e., a set of cardinality κ.
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Proof. The proof is easy. Assume that κ is real-valued measurable with a measure
ν and κ is singular. Then

κ =
⋃

ξ∈cf(κ)

Aξ, |Aξ| < κ for each ξ ∈ cf(κ).

Since ν is κ-additive we have ν(Aξ) = 0 for any ξ < cf(κ). Since cf(κ) < κ, then
also ν(κ) = 0, a contradiction. �
Lemma [AC] 10.14. If κ = λ+, then κ is not a real-valued measurable cardinal.

Proof. We begin with constructing an Ulam matrix, i.e., a system

{Aξ,η : ξ ∈ λ, η ∈ κ}

of subsets of κ such that

1) Aξ,η1 ∩Aξ,η2 = ∅ for every η1 �= η2;
2) |κ \

⋃
ξ<λAξ,η| < κ for every η ∈ κ.

For every η < κ choose a one-to-one mapping fη : η 1−1−→ λ. Now, set

Aξ,η = {ζ ∈ κ : η < ζ ∧ fζ(η) = ξ}.

If η1 �= η2, then fζ(η1) �= fζ(η2) and therefore Aξ,η1 ∩Aξ,η2 = ∅. By the definition
we have

ζ ∈
⋃

ξ<λ

Aξ,η ≡ (∃ξ < λ) fζ(η) = ξ ≡ η < ζ.

Thus ∣
∣
∣
∣
∣
∣
κ \
⋃

ξ<λ

Aξ,η

∣
∣
∣
∣
∣
∣
≤ |η|+ 1 < κ.

Now assume that ν is a κ-additive diffused probabilistic measure on P(κ).
For every ξ < λ the set Sξ = {η : ν(Aξ,η) > 0} is countable. Hence the set
S =

⋃
ξ<λ Sξ has cardinality smaller than κ. Thus, there exists an η0 < κ such

that η0 /∈ S, i.e.,
ν(Aξ,η0) = 0 for every ξ < λ.

By 2) we have ν(
⋃
ξ<λAξ,η0) = 1 – a contradiction. �

Corollary [AC] 10.15. If 2ℵ0 is smaller than the first weakly inaccessible cardinal,
e.g. if 2ℵ0 = ℵ1, or 2ℵ0 = ℵω1+1, then the answer to the Measure Problem is
negative.

Thus by the Consequence (11.12) of the Kuratowski Metatheorem 11.3 we
obtain
Metatheorem 10.3. If the theory ZFC is consistent, then

ZFC � “Affirmative answer to the Measure Problem”.



10.2. Measure Problem 425

A cardinal κ is called measurable if there exists a κ-additive diffused prob-
abilistic measure on P(κ) admitting only values 0, 1. In this case we say that
the measure is two-valued. Evidently a measurable cardinal is also a real-valued
measurable. A weaker result holds true in the opposite direction.
Theorem [AC] 10.16 (S. Ulam). Assume that κ is a real-valued measurable cardi-
nal. Then either κ ≤ c or κ is measurable.

Proof. Let ν be a κ-additive diffused probabilistic measure on P(κ). Assume that
κ is not measurable.

For every set A ⊆ κ of positive measure there exists a set B ⊆ A such that
|B| = κ and 0 < ν(B) < ν(A). Actually, if not, then λ(Y ) = ν(A ∩ Y )/ν(A) is a
κ-additive two-valued measure on κ, a contradiction.

Now let A ⊆ κ be such that ν(A) > ε > 0. We claim that

there exists a set B ⊆ A such that
1
2
ε < ν(B) ≤ ε. (10.8)

Suppose that (10.8) does not hold true. We already know that there is a set B ⊆ A
such that 0 < ν(B) < ν(A). Since (10.8) does not hold true we have ν(B) > ε or
ν(B) ≤ ε/2. Denote by A0 the set B in the former case and A \ B in the later
case. If ν(B) ≤ ε/2, then ν(A \B) > ε/2 and since (10.8) does not hold true, also
ν(A \ B) > ε. Thus, in both cases we have ε < ν(A0) < ν(A). If Aξ is defined,
ξ < ω1, then again there is a set B ⊆ Aξ such that 0 < ν(B) < ν(Aξ). As above
let Aξ+1 be that of the sets B, Aξ \ B which has measure greater than ε and
smaller than ν(Aξ). For ξ < ω1 limit we set Aξ =

⋂
η<ξ Aη. Then ν(Aη) ≥ ε. Since

(10.8) does not hold true it must be ν(Aη) > ε and we can continue. So, we have
constructed a (strictly) decreasing sequence {ν(Aξ) : ξ < ω1} of reals, which is
impossible.

Note that for any ε > 0, using (10.8), one can easily construct finitely many
pairwise disjoint sets A0, . . . , Ak such that κ =

⋃k
i=0 Ai and ν(Ai) ≤ ε for any

i = 0, . . . , k.
For every m, let 〈Am,n : n ∈ ω〉 be pairwise disjoint subsets of κ such that

κ =
⋃
n∈ω Am,n and ν(Am,n) ≤ 2−m (apply the above note with ε = 2−m and for

n > k set Am,n = ∅). By the distributive law we obtain

κ =
⋂

m

⋃

n

Am,n =
⋃

α∈ωω

⋂

m

Am,α(m).

For every α ∈ ωω we have ν(
⋂
mAm,α(m)) = 0. If c < κ, then ν is c+-additive and

therefore

ν(κ) =
∑

α∈ωω

ν

(
⋂

m

Am,α(m)

)

= 0,

a contradiction. Thus κ ≤ c. �

Actually, we have proved more. A measure µ on P(κ) is atomless if for any
A ⊆ κ with µ(A) > 0, there exists a set B ⊆ A such that 0 < µ(B) < µ(A). By the
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proof of the theorem we obtain e.g., that if κ is real-valued measurable cardinal
with an atomless measure, then κ ≤ c. We shall not study further properties of
such measures, we stay without a proof an important result and we recommend
a reader to consult T. Jech [2006] or a survey by D.H. Fremlin [1993].
Theorem [AC] 10.17. The following are equivalent:

a) An affirmative answer to the Measure Problem.
b) There exists a real-valued measurable cardinal not greater than c.
c) There exists a real-valued measurable cardinal with an atomless measure.
d) There exists a measure on P(R) extending the Lebesgue measure.

For a measurable cardinal Theorem 10.12 can be strengthened.
Theorem [AC] 10.18 (S. Ulam). Every measurable cardinal is strongly inaccessible.

Proof. Let κ be a measurable cardinal. Assume that there is a cardinal λ such
that λ < κ ≤ 2λ. Let X ⊆ P(λ) be such that |X | = κ. Then there exists a κ-
additive two-valued measure ν on P(X). We extend the measure on P(P(λ))
setting ν(Y ) = ν(Y ∩ X) for any Y ⊆ P(λ). So extended measure is κ-additive
and diffused.

For ξ ∈ λ we write

Aξ = {Y ⊆ λ : ξ ∈ Y }, Bξ = {Y ⊆ λ : ξ /∈ Y }.

Evidently either ν(Aξ) = 1 or ν(Bξ) = 1. Denote by Cξ that of sets Aξ, Bξ which
has measure 1. Let Y0 = {ξ ∈ λ : ν(Aξ) = 1}. Then

Y ∈ Cξ ≡ Y ∩ {ξ} = Y0 ∩ {ξ}

for any Y ⊆ λ. Therefore
⋂
ξ∈λCξ = {Y0}. Since ν(Cξ) = 1 and λ < κ we obtain

ν({Y0}) = 1, a contradiction.
The theorem follows by Lemma 10.13. �

For more than 30 years there was an open problem: is the first strongly
inaccessible cardinal measurable? The negative answer was obtained in the early
1960s. We present a typical result of this kind.
Theorem [AC] 10.19 (W.P. Hanf). If κ is a measurable cardinal, then there exists
κ many strongly inaccessible cardinals smaller than κ.

Proof. Let κ be a measurable cardinal, ν being a κ-additive diffused two-valued
measure on P(κ). On the set H = κκ we define a preordering  by

f  g ≡ ν({ξ ∈ κ : f(ξ) ≤ g(ξ)}) = 1. (10.9)

We shall identify in a suitable way the set H with the corresponding quotient
set and therefore we deal with  as with an ordering. The corresponding strict
ordering will be denoted by ≺ and the quotient equivalence by &. Thus, e.g.,

f & g ≡ ν({ξ ∈ κ : f(ξ) = g(ξ)}) = 1.
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It is easy to see that 〈H, 〉 is a linearly ordered set. We show that  is a well-
ordering. Assume that 〈H, 〉 is not well ordered. Then by Theorem 11.1 there
exists a sequence 〈fn ∈ H : n ∈ ω〉 such that fn+1 ≺ fn for every n ∈ ω. Let
An = {ξ ∈ κ : fn+1(ξ) < fn(ξ)}. Then ν(An) = 1 for every n ∈ ω and therefore
also ν(

⋂
nAn) = 1. Especially,

⋂
nAn �= ∅. Thus there exists a ξ ∈

⋂
nAn. Then

f0(ξ) > f1(ξ) > · · · > fn(ξ) > fn+1(ξ) > · · · . Since values of the functions fn are
ordinals, we have a contradiction.

For any ξ < κ we denote by ξ̂ the function from H defined by ξ̂(η) = ξ for
every η ∈ κ. Then η̂ ≺ ξ̂ if and only if η < ξ. Moreover, if f ≺ ξ̂, then there exists
an η < ξ such that f & η̂. Actually

{ζ ∈ κ : f(ζ) < ξ} =
⋃

η<ξ

{ζ ∈ κ : f(ζ) = η}.

Since ν({ζ ∈ κ : f(ζ) < ξ}) = 1 and ν is κ-additive, there exists an η < ξ such
that ν({ζ ∈ κ : f(ζ) = η}) = 1.

Let d(ξ) = ξ. Then ξ̂ ≺ d for every ξ ∈ κ. Since H is well ordered, there
exists the least h ∈ H such that

ξ < κ→ ξ̂ ≺ h, (10.10)

f ≺ h→ (∃ξ < κ) f & ξ̂. (10.11)

We set

A1 = {ξ ∈ κ : h(ξ) is singular},
A2 = {ξ ∈ κ : there is a cardinal α such that α < h(ξ) ≤ 2α},
A3 = {ξ ∈ κ : h(ξ) is strongly inaccessible}.

Evidently A1 ∪A2 ∪A3 = κ.
To get a contradiction assume that ν(A1) = 1. We define a function f as

f(ξ) = 0 for ξ ∈ κ \A1,
f(ξ) = cf(h(ξ)) for ξ ∈ A1.

Then f ≺ h and by (10.11) there exists an 0 < η < κ such that f & η̂. If we set
B = {ξ ∈ κ : cf(h(ξ)) = η}, then ν(B) = 1. By the definition of the set B, for
every ξ ∈ B there exists an increasing sequence {αξζ : ζ < η} such that

lim
ζ<η

αξζ = h(ξ). (10.12)

We set gζ(ξ) = αξζ for ξ ∈ B and gζ(ξ) = 0 otherwise. Then gζ ≺ h for every
ζ < η. By (10.11) there exists a βζ < κ such that gζ & β̂ζ . Set

Bζ = {ξ : gζ(ξ) = βζ}.
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Then ν(Bζ) = 1 for every ζ < η. Since κ is regular, there exists a β < κ such that
βζ < β for every ζ < η. If we write C = {ξ : β < h(ξ)}, then by (10.10) we obtain
ν(C) = 1. Since the measure ν is κ-additive, we obtain

ν




⋂

ζ<η

Bζ ∩B ∩C



 = 1.

Especially this intersection is non-empty. Let ξ0 ∈
⋂
ζ<η Bζ∩B∩C. Then β < h(ξ0)

and gζ(ξ0) = αξ0ζ = βζ < β, a contradiction with (10.12). Thus ν(A1) = 0.
Now suppose that ν(A2) = 1. By definition, for every ξ ∈ A2 there exists

a cardinal αξ < h(ξ) such that h(ξ) ≤ 2αξ . If we set g(ξ) = αξ for ξ ∈ A2

and g(ξ) = 0 otherwise, then g ≺ h. By (10.11) there exists a β < κ such that
g & β̂. Hence the set B = {ξ : g(ξ) = β} has ν-measure 1. Set γ = 2β. Since
κ is strongly inaccessible we obtain γ < κ. On the other hand, by definitions
h(ξ) ≤ 2αξ = 2β = γ for any ξ ∈ A2 ∩ B. Thus h  γ̂, a contradiction. Hence
ν(A2) = 0 and therefore ν(A3) = 1.

We claim that |{h(ξ) : ξ ∈ A3}| = κ. Actually, if |{h(ξ) : ξ ∈ A3}| < κ,
then there exists an α < κ such that h(ξ) < α for every ξ ∈ A3. Then h ≺ α̂,
a contradiction.

Since {h(ξ) : ξ ∈ A3} is a set of strongly inaccessible cardinals smaller than
κ, we are done. �

By more subtle reasoning one can show

Theorem [AC] 10.20 (R.M. Solovay). If κ is a real-valued measurable cardinal,
then there exist κ many weakly inaccessible cardinals smaller than κ.

So the affirmative answer to the Measure Problem is a rather strong assump-
tion, if you want, an axiom of set theory. Its consistency strength (consult Sections
11.4 and 11.5) is much stronger than that of ZFC.

The proof of Lemma 10.14 uses AC in an essential way, since T. Jech [1968]
has shown

Metatheorem 10.4 (T. Jech). If ZFC+“there exists a measurable cardinal” is con-
sistent, then also ZF + “ℵ1 is measurable” is consistent.

Exercises

10.4 [AC] Martin Axiom and Measure Problem

We assume that MA holds true.

a) If κ ≤ c is real-valued measurable, then κ = c.

Hint: Assume that ν is a κ-additive probabilistic measure defined on P(κ). Let

f : κ
1−1−→ [0, 1]. Then µ(A) = ν(f−1(A)) is an extension of a κ-additive Borel

measure on [0, 1]. If κ < c, then by Exercise 9.2 we obtain ν(κ) = 0.
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b) c is not real-valued measurable.

Hint: Assume that ν is a real-valued c-additive measure on P([0, 1]). By Corol-
laries 9.2 and 8.27 there exists a c-Luzin set L. We can assume that ν(L) = 1.
A contradiction with Theorem 8.33. You can find easily a direct proof.

c) There exists no real-valued measurable cardinal ≤ c.

10.5 [AC] Normal Measure

We follow the notation of the proof of the Hanf Theorem 10.19. Let ν be a two-valued
κ-additive measure on a measurable cardinal κ. ν is said to be a normal measure, if the
function d(ξ) = ξ) is the smallest element greater than all ξ̂, ξ < κ in the preordering
(10.9) of κκ.

a) If κ is measurable cardinal, then there exists a normal measure on κ.

Hint: If ν is a measure, h ∈ κκ is the smallest element greater than all ξ̂, ξ < κ,
set µ(A) = ν(h−1(A)).

b) Show that a measure ν on κ is normal if and only if for every sequence 〈Aξ : ξ < κ〉
with ν(Aξ) = 1 we have ν({ξ ∈ κ : ξ ∈

⋂
η<ξ Aη}) = 1.

c) If ν is a normal measure, then ν({ξ < κ : ξ is a cardinal}) = 1.

Hint: Follow the proof of Theorem 10.19.

Assume that ν is a normal measure on κ.

d) We can order the class κOn by the relation (10.9). Show that there exists an order

preserving isomorphism col : κOn
1−1−→
onto

On.

e) If ν is a normal measure, then col(s) = κ+, where s(ξ) = |ξ|+ for ξ ∈ κ.
f) If F : κ −→ P(On), we extend the mapping col as follows:

col(F ) = {col(f) : ν({ξ ∈ κ : f(ξ) ∈ F (ξ)}) = 1}.

Denote F (ξ) = A ∩ ξ. If A ⊆ κ, then col(F ) = A.

g) Assume that g : κ −→ κ and for every ξ < κ, hξ : P(ξ)
1−1−→
onto

g(ξ). Then

{〈col(F ), col(f)〉 : (∀ξ) (F (ξ) ⊆ ξ ∧ f(ξ) = hξ(F (ξ))}

is a bijection of P(κ) onto col(g) ∈ On.

h) If 2λ = λ+ for every cardinal λ < κ, then 2κ = κ+. More generally, 2κ = κ+

whenever ν({λ : 2λ = λ+}) = 1.

i) If 2λ = λ++ for every cardinal λ < κ, then 2κ = κ++.

10.6 [AC] Weakly Compact Cardinal

An uncountable cardinal κ is called weakly compact, if the partition relation κ → (κ)22
holds true (for the definition of the partition relation see Exercise 1.14).

a) Order the set λ2 lexicographically

f < g ≡ f(min{ξ : f(ξ) 	= g(ξ)}) < g(min{ξ : f(ξ) 	= g(ξ)}).

Show that every increasing or decreasing sequence of this ordering has cardinality
at most λ.
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b) If κ = λ+, then 2λ � (κ)22.

Hint: See Exercise 2.5.

c) If κ is singular, then κ � (κ)22.

Hint: If κ = sup{κξ : ξ < λ}, set F ({η, ζ}) = 0 if κξ ≤ η, ζ < κξ+1 for some ξ < λ
and 1 otherwise.

d) A weakly compact cardinal is weakly inaccessible.

e) A measurable cardinal is weakly compact.

Hint: If F : [κ]2 −→ 2, let Ai
ξ = {η ∈ κ : F ({η, ξ}) = i}, i ∈ 2. There exists an

i ∈ 2 such that ν(B) = 1, where B = {ξ : ν(Ai
ξ) = 1}. If ν is a normal measure,

then ν(B ∩ {ξ : ξ ∈
⋂

η<ξ Aη}) = 1.

f) If ν is a normal measure on a measurable cardinal κ, then

ν({λ < κ : λ is weakly compact ) = 1.

Hint: A proof can be obtained as a more complicated version of the proof of Theorem
10.19 using ideas of Exercise 10.5, f).

10.3 The Linear Ordering of the Real Line

In this section we assume the Axiom of Choice AC.
The basic structure of the real line, Euclidean topology, has been defined

by its ordering. Actually, the ordering of the real line is in itself an important
structure. In this section we shall study some properties of the ordering of reals
and we show that they depend on the assumed set theory, more precisely, on
additional axioms.

In Section 2.3 we have proved Theorem 2.29 which says that a linearly ordered
set with properties (2.15)–(2.17) is order isomorphic to the real line 〈R,≤〉. Of
course, the set of reals 〈R,≤〉 possesses all those properties. For convenience of
the reader we repeat three of the mentioned properties of a linearly ordered set
〈X,≤〉 and one property that is a consequence of the others.

〈X,≤〉 has neither a least nor a greatest element, (10.13)
〈X,≤〉 is densely ordered, (10.14)
there exists a countable dense subset of 〈X,≤〉, (10.15)
every set of pairwise disjoint open intervals in 〈X,≤〉 is countable. (10.16)

By a slight modification of the proof of Theorem 2.29 one can show that any
linearly ordered set with properties (10.13)–(10.15) is order isomorphic to a subset
of the real line 〈R,≤〉. Moreover, if X satisfies the Bolzano Principle, then it is
order isomorphic to R. Evidently

(10.15)→ (10.16)

and any subset of the real line satisfies the condition (10.15).
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M.J. Souslin in 1917 raised the natural question: can the condition (10.15) be
replaced by a seemingly weaker condition (10.16)? Or equivalently: is any linearly
ordered set with properties (10.13), (10.14) and (10.16) order isomorphic to a
subset of the real line? It turned out that the problem is much more difficult than
the author thought. Now we know that the axioms of set theory ZFC are not
enough to decide it.

A linearly ordered set 〈X,≤〉 is said to be a Souslin line if 〈X,≤〉 possesses
properties (10.13), (10.14)), (10.16) and does not possess property (10.15). The
Souslin Hypothesis says that there is no Souslin line, equivalently, any linearly
ordered set with properties (10.13), (10.14), (10.16) is order isomorphic to a subset
of the real line 〈R,≤〉.

The standard completion by adding all Dedekind cuts as presented in Sec-
tion 2.3 allows us to extend any Souslin line to a Souslin line satisfying the Bolzano
Principle.

A linear ordering on a set naturally induces the order topology. The notions
“topologically dense” and “order dense” are equivalent. In topology a set with
countable dense subset is called “separable”. Thus, a linearly dense ordered set is
a Souslin line if it generates a non-separable CCC topological space. The following
rather technical result will be useful in our investigations.

Theorem [AC] 10.21. If there exists a Souslin line X, then there exists a Souslin
line X̃ such that no open interval in X̃ is separable.

Proof. Let 〈X,≤〉 be a Souslin line. We define an equivalence relation ∼ as

x ∼ y ≡ the open interval with endpoints x, y is separable.

Note that a subinterval of a separable interval is separable as well. If x < y and
¬x ∼ y then for every element of the equivalence classes u ∈ [x]∼, v ∈ [y]∼ we
have u < v. Thus the set X̃ = {[x]∼ : x ∈ X} is linearly ordered by the relation

[x]∼ < [y]∼ ≡ (x < y ∧ ¬x ∼ y).

We show that for every x ∈ X there is a countable dense subset Hx ⊆ [x]∼.
Actually either [x]∼ = {x} or [x]∼ contains an open interval. In the former case
set Hx = {x}. In the latter case take a maximal family A of pairwise disjoint open
subintervals of [x]∼. By (10.15), A is countable. Every interval from A contains
a countable dense subset. Let Hx be the union of all them. If an interval (u, v)
meets [x]∼, then it meets some interval from A and therefore also Hx.

Since X is not separable, X̃ has more than one point.
Assume now that [x]∼ < [y]∼. Since (x, y) ∩ (Hx ∪Hy) is not dense in (x, y)

there exists an open interval (a, b) ⊆ (x, y) disjoint with (x, y) ∩ (Hx ∪ Hy). If
z ∈ (a, b) then [x]∼ < [z]∼ < [y]∼. Thus (10.14) holds true.
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Assume that [x]∼ < [y]∼ and the open interval ([x]∼, [y]∼) in X̃ is separa-
ble. Thus there is a countable set B ⊆ X such that {[z]∼ : z ∈ B} is dense in
([x]∼, [y]∼). Take a maximal family A of pairwise disjoint open separable subin-
tervals of (x, y). Again, this family is countable. For every I ∈ A, let GI denote
a countable dense subset of I. Set

D =
⋃

y∈B
Hy ∪

⋃

I∈A
GI .

Let (u, v) ⊆ (x, y). If (u, v) is separable, then (u, v) meets some I ∈ A and then
also (u, v) ∩ GI �= ∅. Otherwise, ([u]∼, [v]∼) is a non-trivial interval and therefore
contains some y ∈ B. Then (u, v) ∩Hy �= ∅. Thus, D is a countable dense subset
of (x, y), a contradiction with ¬x ∼ y.

If ([x]∼, [y]∼), ([u]∼, [v]∼) are disjoint open intervals in X̃ then (x, y), (u, v)
are disjoint open intervals in X . One can easily conclude that X̃ has the property
(10.16).

It may happen that X̃ has a least or a greatest element. We can simply
omit it. �

Now we give a reformulation of the Souslin Hypothesis in terms of trees. A
pruned tree 〈T,≤〉 is called a Souslin tree if

a) the height of T is ℵ1,

b) every branch in T is countable,

c) every antichain in T is countable.

Evidently the condition a) is equivalent to |T | > ℵ0. A pruned subtree S ⊆ T of
a Souslin tree T is again a Souslin tree provided that |S| > ℵ0.

Let us recall that the ξth level T (ξ) is the set of all x ∈ T of the height
hg(x) = ξ. If T is a Souslin tree, then every T (ξ), ξ < ω1 is non-empty and
countable and

T =
⋃

ξ<ω1

T (ξ), |T | = ℵ1.

Let ξ ≤ ω1. A tree T of height ξ is called a normal tree,

d) if each level of T is countable,

e) for every x ∈ T and every ordinal ξ > η > hg(x) there exists a y ∈ T (η) such
that x < y,

f) if x ∈ T is not maximal, then x has infinitely many immediate successors,

g) if η < ξ is limit, x, y ∈ T (η) and {u ∈ T : u < x} = {u ∈ T : u < y}, then
x = y.

Lemma [AC] 10.22. If there exists a Souslin tree, then there exists a normal
Souslin tree.
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Proof. Let T be a Souslin tree. Take (note that T x = {y ∈ T : x ≤ y})

S = {x ∈ T : |T x| = ℵ1}.

The set S contains with any x all y < x. Thus the height of an element in S is
the same as in T . We show that S satisfies the condition e). So let x ∈ S and
hg(x) < η < ω1. Then

T x \
⋃

y∈T (η)

T y

is countable. Since T x is uncountable there exists a y ∈ T (η), y > x with |T y| = ℵ1,
i.e., y ∈ S(η).

For every η < ω1 limit, we eventually add new nodes to S. Consider a node
x ∈ S(η) and denote

A = {y ∈ S : y < x}, B = {z ∈ S(η) : (∀y) (y ∈ A→ y < z)}.

If x is the only element of B, we do not do anything. If |B| > 1 we add a node aA
and we extend the ordering as follows:

(∀y) (y ∈ A→ y < aA), (∀z) (z ∈ B → aA < z).

So obtained tree W satisfies the conditions d), e) and g).
Now one can easily see that the subtree

W1 = {x ∈W : x is a branching point}

satisfies the conditions d), e) and g) as well. Finally, the set W2 ⊆ W1 consisting
of nodes of W1 at limit levels and the root is a normal Souslin tree. �

A complete Boolean algebra B is said to be a Souslin algebra if B is CCC,
ℵ0-distributive and has no atom.
Lemma 10.23. A Souslin algebra is not ℵ1-distributive. Actually there exists a se-
quence 〈Aξ, ξ < ω1〉 of refining partitions of B without a common refinement.

Proof. Let B be a Souslin algebra. Then B is infinite and moreover uncountable.
Since B is not atomic, by Theorem 5.32 there exists an ξ > 0 such that B is
not ℵξ-distributive. Let ξ be the least ordinal with this property. Then ξ ≥ 1.
By definition, there exists a sequence 〈Aη ⊆ B : η < ℵξ〉 of dense subsets of
B without a common refinement. We can assume that elements of every Aη are
pairwise disjoint. Since ℵξ is the least cardinal for which B is not ℵξ-distributive,
we can assume that Aη is a refinement of Aζ for any ζ < η < ω1. Moreover, since
B has no atom, we can assume that Aζ is a strict refinement of Aη, i.e., if y ∈ Aη,
x ∈ Aζ and x ≤ y then actually x < y.

Now, if ξ > 1, then B is ℵ1-distributive and therefore there exists a common
refinement C of all 〈Aη : η < ω1〉. Let c ∈ C, c �= 0. Then for every η < ω1 there
exists xη ∈ Aη, xη ≥ c. The sequence 〈xη : η < ω1〉 is a strictly decreasing chain
contradicting the CCC. Thus ξ = 1. �
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All introduced notions are closely related. Namely
Theorem [AC] 10.24. The following are equivalent:

(i) There exists a Souslin line.
(ii) There exists a Souslin algebra.

(iii) There exists a Souslin tree.

Proof. Let 〈X,≤〉 be a Souslin line. By Theorem 10.21 we can assume that no
interval in X is separable. Let B = RO(X,O), where O is the topology induced
by the order ≤. Since open intervals form a base of the topology O and an open
interval is a regular open set, we obtain that the set of open intervals is dense in
the complete Boolean algebra B. Thus B is CCC and has no atoms.

We have to show that B is ℵ0-distributive. Let 〈An : n ∈ ω〉 be a family of
dense subsets of B. We can assume that elements of each An are pairwise disjoint
open intervals. Let D be the set of all endpoints of intervals 〈An : n ∈ ω〉. Consider
an open interval (x, y). Since we suppose that no open interval is separable, there
exists an open interval (u, v) ⊆ (x, y) such that (u, v) ∩D = ∅. However every set
An is dense. Therefore for every n there exists an interval (xn, yn) ∈ An such that
(u, v) ⊆ (xn, yn). Thus B is ℵ0-distributive.

Assume now that there exists a Souslin algebra B. Since B is not ℵ1-distribu-
tive, there exists a sequence of partitions 〈Aξ : ξ < ω1〉 of B such that every Aξ is
a strict refinement of Aη, provided that η < ξ < ω1. It is easy to see that the set
{1B} ∪

⋃
ξ<ω1

Aξ ordered by the inverse ordering of B is a Souslin tree.
Finally, assume that there exists a normal Souslin tree T . By the condition

f) the set IS(T, x) is countably infinite for each x ∈ T . We order every IS(T, x)
by a relation � in the order type of Q.

Let X be the set of all branches of the tree T . If A,B ∈ X and A �= B, then
there exist a ∈ A, b ∈ B, a �= b are such that {x ∈ A : x < a} = {x ∈ B : x < b}.
By the condition g) we obtain a, b ∈ T (ξ) for a ξ non-limit. Thus there exists
a node x ∈ A ∩ B such that a, b ∈ IS(T, x). We set x = d(A,B). Define the
ordering of X as

A < B ≡ a � b.

It is easy to see that 〈X,<〉 is a linearly densely ordered set.
If (A,B) is an open interval in 〈X,<〉 and x = d(A,B), then there exists

an element y(A,B) ∈ IS(T, x) such that

{E ∈ X : y(A,B) ∈ E} ⊆ (A,B).

If (A,B), (C,D) are disjoint, then y(A,B) and y(C,D) are incomparable elements
of T . Thus, any set of pairwise disjoint intervals in X is countable.

It remains to show that X is not separable. Assume that Y ⊆ X is a countable
set of branches in T . Then there exists an ordinal ξ < ω1 such that every branch
of Y is shorter than ξ. Take any two branches A,B going through x, y ∈ T (ξ+ 1),
x �= y. Then Y ∩ (A,B) = ∅. Thus, Y is not dense in X . �
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We are ready to show one of the main results of this section.
Theorem [AC] 10.25. If MA holds true and c > ℵ1, then there is no Souslin tree.

Proof. The proof is simple. To get a contradiction assume that MA holds true,
c > ℵ1 and there exists a Souslin algebra B. By Lemma 10.23 there exists a family
D = {Aξ : ξ < ω1} of partitions of B such that each Aξ is a strict refinement
of Aη for any ξ > η. By MA there exists a D-generic ultrafilter G ⊆ B. If aξ is
the only element of G ∩ Aξ then 〈aξ : ξ < ω1〉 is a strict decreasing sequence,
a contradiction with CCC. �

We show that ZFC is consistent with the existence of a Souslin line.
Theorem 10.26 (R.B. Jensen). If V = L, then there exists a Souslin tree.

For the proof of the theorem we need a simple auxiliary results. First, we
introduce a principle ♦ dealing with stationary sets. So we need the fundamental
result about them.

Let κ be an uncountable regular cardinal. A set A ⊆ κ is called closed
unboundedif A is unbounded and supB ∈ A for any non-empty bounded B ⊆ A.
A set C ⊆ κ is called stationary if A ∩ C �= ∅ for every closed unbounded subset
A ⊆ κ.
Theorem [AC] 10.27 (G. Fodor). Assume that κ is an uncountable regular cardinal.
If f : κ −→ κ is such that the set B = {ξ ∈ κ : f(ξ) < ξ} is stationary, then there
exists a stationary set C ⊆ B and an ordinal η < κ such that f(ξ) = η for every
ξ ∈ C.

For a proof see T. Jech [2006], W. Just and M. Weese [1997], or Exercise 10.7.
The Diamond Principle ♦ says that there exists a sequence 〈Sξ, ξ < ω1〉 of

sets of ordinals such that Sξ ⊆ ξ for every ξ < ω1 and for every X ⊆ ω1 the set
{ξ < ω1 : X ∩ ξ = Sξ} is stationary.

Studying the fine structure of the constructible universe, R.B. Jensen [1968]
has proved
Theorem 10.28 (R.B. Jensen). If V = L, then ♦ holds true.

For a proof see, e.g., T. Jech [2006].
One can easily show that ♦ → CH. Thus by (11.9) and (11.17), ♦ is unde-

cidable in ZFC.
Lemma 10.29. Assume that T is a normal tree of height ω1. If A ⊆ T is a maximal
antichain, then the set

C = {ξ < ω1 : A ∩ T (< ξ) is a maximal antichain in T (< ξ)}

is closed unbounded.

Proof. One can easily see that C is closed. We show that C is unbounded. Let
η < ω1. Since the set A ∩ T (< η) is countable, there exists an ξ0 > η such that
every node of T (< η) is comparable with some node in A ∩ T (< ξ0). Similarly, if
ξn is already defined, there exists a ξn+1 > ξn such that every node of T (< ξn) is
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comparable with some node of A ∩ T (< ξn+1). If ξ = limn∈ω ξn, then ξ > η and
A ∩ T (< ξ) is maximal in T (< ξ). �

Now, Jensen’s Theorem 10.26 follows immediately from the next result.
Theorem 10.30 (R.B. Jensen). If ♦ holds true, then there exists a Souslin tree.

Proof. Assume that the Diamond Principle ♦ holds true. Then there exists a se-
quence 〈Sξ : ξ < ω1〉 of subsets of ω1 such that the set {ξ < ω1 : X ∩ ξ = Sξ}
is stationary for any X ⊆ ω1. We define an ordering  on ω1 such that 〈ω1, 〉
will be a normal Souslin tree. We will stipulate during the construction that the
partial trees are normal.

We define by transfinite induction sets Wξ ⊆ ω1 and the ordering  |Wξ for
any ξ < ω1. The set Wξ \

⋃
η<ξWη will be the ξth level of the constructed tree.

Moreover we assume that
⋃
η<ξWη is an initial segment of ω1, i.e., a countable

ordinal, and 〈
⋃
η<ξWη, |

⋃
η<ξWη〉 is a normal tree, for every ξ < ω1.

For ξ = 0 we simply set W0 = {0}.
Wξ+1 is obtained by adding countably infinitely many immediate successors

to each node of Wξ \
⋃
η<ξWη.

The main problem consists in constructing Wξ for ξ limit. We must decide
to which ξ-branch of

⋃
η<ξWη do we have to add immediate successors. We use

the Diamond Principle to decide the choice.
If Sξ is not a maximal antichain in

⋃
η<ξWη, then to assure normality, we

take for every u ∈
⋃
η<ξWη a branchBu of length ξ containing u and add a node to

Wξ greater than any node of Bu. Of course, for different branches we add different
nodes to keep the condition f) preserved.

Assume now that Sξ is a maximal antichain in
⋃
η<ξWη. Then for any node

u ∈
⋃
η<ξWη there exists a node v ∈ Sξ compatible with u. Take a branch Bu

of length ξ containing both u and v and add a node to Wξ greater than any
node of Bu.

By construction, the tree 〈ω1, 〉 is normal. We have to show that there exists
no uncountable antichain in the tree 〈ω1, 〉. So assume that A ⊆ ω1 is a maximal
antichain. If we set f(ξ) =

⋃
η<ξWη then we obtain a continuous function from

ω1 into ω1. By elementary ordinal arithmetic, D = {ξ ∈ ω1 : f(ξ) = ξ} is a closed
unbounded set. By Lemma 10.29 the set C is also closed unbounded. Thus, by the
Diamond Principle, there is a limit ordinal ξ ∈ C∩D such that

⋃
η<ξWη∩A = Sξ.

Then
⋃
η<ξWη = ξ and

⋃
η<ξWη ∩ A = Sξ is a maximal antichain in

⋃
η<ξWη.

In this situation, for every node u ∈ Sξ we added a node in Wξ comparable
with u. So the set A, being an antichain, is contained in

⋃
η<ξWη and therefore

countable. �

We can summarize
Metatheorem 10.5. The Souslin Hypothesis is undecidable in ZFC.

The result follows by Theorems 10.25 and 10.26, since by (11.21) and (11.9)
we know that both ZFC + MA + c > ℵ1 and ZFC + V = L are consistent.
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We finish with an important undecidable statement related to the product
of topological spaces.

Theorem [AC] 10.31. Let O be the topology induced by the ordering of a Souslin
line 〈X,≤〉. The topological product 〈X ×X,O ×O〉 is not CCC.

Proof. Let 〈X,≤〉 be a Souslin line.
One can construct by transfinite induction a sequence 〈Iξ, ξ < ω1〉 of non-

empty sets of left-open intervals in X such that:

(i) every I ∈ Iξ is a union of two disjoint intervals Il, Ir ∈ Iξ+1, for every ξ < ω1,
(ii) if I ∈ Iξ and J ∈ Iη, then I ∩ J = ∅ or I ⊆ J .

At the non-limit step, follow the condition (i). At limit step λ the set of all end-
points of intervals from

⋃
ξ<λ Iξ is not dense in X , therefore there exists an interval

I not containing any of those endpoints. Take Iλ = {I}. One can easily show that
(ii) holds true.

Consider the family {Int(Il)×Int(Ir) : I ∈
⋃
ξ<ω1

Iξ} of open sets. Let I ∈ Iξ,
J ∈ Iη, I �= J . Assume η ≤ ξ. Then either I ∩ J = ∅, or I ⊆ J and η < ξ. If I, J
are disjoint, Il × Ir , Jl × Jr are disjoint as well. If I ⊆ J , then I ⊆ Jl or I ⊆ Jr.
Evidently in both cases the sets Il × Ir, Jl × Jr are disjoint.

Thus the topological product 〈X ×X,O ×O〉 is not CCC. �

Metatheorem 10.6. The assertion “the topological product of two CCC topological
spaces is a CCC topological space” is undecidable in ZFC.

Demonstration. By Theorem 9.14, MA + c > ℵ1 implies an affirmative answer.
Assuming the existence of a Souslin line, e.g., assuming the Axiom of Con-

structibility, you obtain a negative answer. �

By Corollary 9.15 we obtain even more.

Metatheorem 10.7. The assertion “the topological product of CCC topological
spaces is a CCC topological space” is undecidable in ZFC.

Exercises

10.7 [AC] A Proof of Fodor’s Theorem

κ is an uncountable regular cardinal.

a) The intersection of two closed unbounded subsets of κ is a closed unbounded set.

Hint: If C,D are closed unbounded, ξ < κ, construct an increasing sequence {ηn}∞n=0

of ordinals greater than ξ such that η2n ∈ C and η2n+1 ∈ D.

b) The intersection of less than κ closed unbounded subsets of κ is a closed unbounded
set.

Hint: By transfinite induction.
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c) If 〈Aξ : ξ < κ〉 are closed unbounded, then also A = {η < κ : η ∈
⋂

ξ<η Aξ} is
closed unbounded.

Hint: One can assume that Aξ =
⋂

η≤ξ Aη. Let ζ be a limit point of A. If ξ < ζ, let

B = {η ∈ A : ξ < η < ζ}

and show that B ⊆ Aξ. Then ζ = supB ∈ Aξ.

If ζ < κ, construct a sequence {ξn}∞n=0 such that ξ ∈ A0 and ξn < ξn+1 ∈ Aξn for
every n. Then ζ < limn ξn ∈ A.

d) Prove Fodor’s Theorem.

Hint: Assume that the set {η < κ : f(η) = ξ} is non-stationary for each ξ < κ.
Take a closed unbounded Aξ such that η ∈ Aξ → f(η) 	= ξ. If ζ ∈

⋂
ξ<ζ Aξ}, then

f(ζ) 	= ξ for any ξ < ζ – a contradiction.

10.8 Aronszajn Tree

A tree T of height ω1 is called an Aronszajn tree if T (ξ) is countable for every ξ < ω1

and every branch is countable.

a) Note that a Souslin tree is an Aronszajn tree.

b) The set

W = {f ∈ <ω1Q : f is increasing and dom(f) is non-limit ordinal}

is a subtree of the tree 〈<ω1Q,⊆〉. For simplicity, for any f ∈W we set

max f = f(ξ) where dom(f) = ξ + 1.

Show that every branch of W is countable.

c) Let ξ < ω1, T ⊆ W (< ξ + 1). Assume that T satisfies the following condition:

(∀f ∈ T (< ξ))(∀r > max f)(∃g ∈ T (ξ)) (f ⊆ g ∧max g ≤ r). (10.17)

Then there exists a countable set C ⊆W (ξ+1) such that T ∪C satisfies condition
(10.17) for ξ + 1.

Hint: Take C = {f�r : f ∈W (ξ) ∧ r ∈ Q ∧ r > max f}.
d) Let λ < ω1 be a limit ordinal. Assume that T ⊆ W (< λ) is countable and such

that (10.17) holds true for every ξ < λ and T (ξ). Then there exists a countable set
C ⊆W (λ) such that T ∪ C satisfies condition (10.17) for λ.

Hint: Let λ = limn∈ω λn, λn, n ∈ ω being increasing. If f ∈ T , max f < r take an
increasing sequence limn→∞ rn = r, r0 > max f . By (10.17) there exist gn ∈ T (ξ)
such that

f ⊆ g0 ⊆ · · · ⊆ gn ⊆ gn+1 ⊆ · · ·
and max gn ≤ rn. For each f ∈ T and r > max f , r ∈ Q choose g =

⋃
n gn and put

into C ⊆W (λ).

e) There exists an Aronszajn tree.

10.9 Kurepa Theorem

If 〈Xi,≤i〉, i = 1, 2 are posets, then a strictly increasing mapping f : X1 −→ X2 is called
a quasi-embedding of X1 into X2. We say that X1 is quasi-embeddable in X2 if there
exists a quasi-embedding of X1 into X2.
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a) Every tree T is quasi-embeddable in hg(T ).

b) A quasi-embedding need not be an injection.

c) If f is a quasi-embedding of X1 into X2, then the set f−1({x}) is an antichain,
provided that x ∈ rng(f).

d) If a poset X is a union X =
⋃

nXn of antichains, then there exists a quasi-
embedding f of X into ω2, ordered lexicographically, such that |rng(f)| ≤ ℵ0.

Hint: Assume that Xn are pairwise disjoint. For x ∈ Xk we set f(x) = h ∈ ω2,
where

h(n) =

{
1 if n ≤ k and there exists a y ≤ x, y ∈ Xn,
0 otherwise.

e) Prove the Kurepa Theorem: A partially ordered set X is quasi-embeddable in Q if
and only if X is a union of countably many antichains.

Hint: Use c), d) and Theorem 11.4.

10.10 [AC] Martin’s Axiom and Aronszajn Trees

We assume that T is an Aronszajn tree.

a) Assume that S ⊆ [T ]n is an uncountable family of pairwise disjoint sets. Then there
exist A,B ∈ S such that x, y are incomparable for any x ∈ A and any y ∈ B.

Hint: Assume not, i.e., any couple A,B ∈ S contains comparable elements. Let
F be a uniform ultrafilter of S. Fix an enumeration {x1, . . . , xn} of each A ∈ S.
For every x ∈ T , 1 ≤ k ≤ n denote by Sx,k the set of all A ∈ S such that x is
comparable with the kth element of A. Then

⋃

x∈A

n⋃

k=1

Sx,k = S.

For each A ∈ S pick xA ∈ A and kA such that SxA,kA ∈ F. There exists a k such
that S′ = {A ∈ S : kA = k} is uncountable.

For any A,B ∈ S′, if C ∈ SxA,k ∩ SxB ,k, then the kth element of C is comparable
with xA and xB. Since SxA,k∩SxB ,k ∈ F, this set is uncountable. Thus there exists
a C ∈ S such that xA ≤ xC and xB ≤ xC . Hence xA and xB are comparable. Thus
{xA : A ∈ S′} is a chain, a contradiction.

b) Assume that S ⊆ [T ]<ω is an uncountable family of pairwise disjoint sets. Then
there exist A,B ∈ S such that x, y are incomparable for any x ∈ A and any y ∈ B.

c) Assume that P is the set of all functions s from a finite subset dom(s) ⊆ T into ω
and such that s(x) 	= s(y) provided that x, y ∈ dom(s) are comparable. Show that
the poset 〈P,⊇〉 is CCC.

Hint: Follow the proof of Lemma 9.11, c). Apply b) to the family {dom(s) \C : s ∈
S2} and find two non-disjoint elements of S2.

d) If ℵ1 < m, then there exists a mapping p : T −→ ω such that p(x) 	= p(y) for any
comparable elements x, y ∈ T .

Hint: Dx = {s ∈ P : x ∈ dom(s)} is dense. If G ⊆ P is {Dx : x ∈ T}-generic filter,
then set p =

⋃
G.
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10.11 Special Aronszajn Tree

An Aronszajn tree T is called special if T is a union of countably many antichains.

a) A Souslin tree is not a special Aronszajn tree.

b) The Aronszajn tree constructed in Exercise 10.8, d) is special.

Hint: The mapping max f is a quasi-embedding into Q.

c) If m > ℵ1, then every Aronszajn tree is special.

Hint: Use the result of Exercise 10.10, d).

d) The assertion “Every Aronszajn tree is special” is undecidable in ZFC.

10.4 Reversing the Order of Integration

We shall deal only with Lebesgue measure on [0, 1] and [0, 1]2.
Let f : [0, 1]× [0, 1] −→ R be a function such that the following holds true:

(i) functions f(·, y), f(x, ·) are measurable for almost every x, y ∈ [0, 1];

(ii) functions

ϕ(y) =
∫

[0,1]

f(x, y) dλ(x), ψ(x) =
∫

[0,1]

f(x, y) dλ(y)

are defined almost everywhere and are measurable;

(iii) the integrals
∫

[0,1]

ψ(x) dλ(x),
∫

[0,1]

ϕ(y) dλ(y)

do exist.

Now a natural question arises: does the equality
∫

[0,1]

ψ(x) dλ(x) =
∫

[0,1]

ϕ(y) dλ(y), (10.18)

hold true?
The main goal of this section is to show that the answer to this question is

undecidable in ZFC.
By the Fubini-Tonelli Theorem 4.29 we obtain

Theorem [AC] 10.32.

a) If f is integrable, then ϕ and ψ are integrable and (10.18) holds true.
b) If f is a non-negative measurable function, then conditions (i) and (ii) are

fulfilled and (10.18) holds true.
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Thus if f is integrable or measurable and bounded from one side, we obtain
the affirmative answer by the Fubini-Tonelli Theorem. We present a simple exam-
ple of an unbounded measurable function for which conditions (i)–(iii) hold true
and equality (10.18) fails.

Let an = 2−n. For any n > 0 and x ∈ (an, an−1〉 we set

f(x, y) =






−22n for 0 ≤ y < an,
22n for an ≤ y < an−1,
0 for an−1 ≤ y ≤ 1,

and
f(0, y) = 0 for any y ∈ [0, 1].

0 220

−22

0

0

24

−24

26

−26

a0

a1

a2

a3

a0a1a2a3

For any y ∈ [an, an−1) we obtain

ϕ(y) =
∫

[0,1]

f(x, y) dλ(x) = 2−n · 22n − (2−(n−1) · 22(n−1) + · · ·+ 2−1 · 22) = 2.

On the other hand, for any x ∈ [0, 1],

ψ(x) =
∫

[0,1]

f(x, y) dλ(y) = 0.
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Hence ∫

[0,1]

ψ(x) dλ(x) = 0,
∫

[0,1]

ϕ(y) dλ(y) = 2.

So we have the only unanswered case: f non-measurable and bounded. We
denote by NROI the following sentence:

There exists a function f : [0, 1] × [0, 1] −→ [0, 1] such that conditions
(i), (ii) and (iii) hold true and the equality (10.18) fails.

Note that condition (iii) is superfluous, since it follows from (i), (ii) and the fact,
that f is bounded. Of course the condition rng(f) ⊆ [0, 1] can be replaced by the
condition “f is bounded”.

The promised main result reads as follows.
Metatheorem 10.8. If ZF is consistent, then NROI is an undecidable statement
of ZFC, i.e.,

ZFC � NROI, ZFC � ¬NROI.

We recall some notation. If A ⊆ X × Y , x ∈ X , y ∈ Y , then the vertical and
the horizontal section of A were defined as the sets

Ax = {u ∈ Y : 〈x, u〉 ∈ A}, Ay = {v ∈ X : 〈v, y〉 ∈ A},

respectively.
A set A ⊆ [0, 1]× [0, 1] is called a Steinhaus set if λ(Ax) = 0 and λ(Ay) = 1

for almost every x, y ∈ [0, 1]. Let us note that if there exists a Steinhaus set, then
there exists a set A ⊆ [0, 1]× [0, 1] such that λ(Ax) = 0 and λ(Ay) = 1 for every
x, y ∈ [0, 1]. If A is a Steinhaus set, then the characteristic function of A satisfies
the conditions of NROI, i.e., NROI holds true.
Theorem [AC] 10.33. If add(N ) = cov(N ) or non(N ) = c, then there exists
a Steinhaus set.

Proof. Assume that add(N ) = cov(N ) = κ. Let [0, 1] =
⋃
ξ<κBξ, Bξ ∈ N . We

can assume that 〈Bξ : ξ ∈ κ〉 are pairwise disjoint. We set

A =
⋃

ξ<κ



Bξ ×
⋃

η<ξ

Bη



 .

If x ∈ Bξ, then Ax =
⋃
η<ξ Bη. Hence λ(Ax) = 0. If y ∈ Bξ then Ay =

⋃
η≥ξ Bη.

Hence λ(Ay) = 1.
Now assume that non(N ) = c and {xξ : ξ < c} is a one-to-one enumeration

of [0, 1]. Similarly as above we set

A = {〈xξ, xη〉 : η < ξ < c}.

Evidently λ(Ax) = 0 and λ(Ay) = 1 for every x, y ∈ [0, 1]. �
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Corollary [AC] 10.34. If add(N ) = cov(N ) or non(N ) = c, then NROI holds
true.

Theorem [AC] 10.35. If non(N ) < cov(N ), then there is no Steinhaus set.

Proof. Assume that A is a Steinhaus set. Let B ⊆ [0, 1] be a non-measure zero set
such that |B| = non(N ). We claim that

⋃
x∈B Ax = [0, 1]. Actually, let y ∈ [0, 1].

Since λ(Ay) = 1 we have B∩Ay �= ∅. Thus there exists an x ∈ B such that y ∈ Ax.
Therefore cov(N ) ≤ non(N ). �

Theorem [AC] 10.36 (C. Freiling – M. Laczkovich). The assertion NROI implies
that there exists a Steinhaus set.

Corollary [AC] 10.37. If non(N ) < cov(N ), then NROI does not hold true.

Demonstration of Metatheorem 10.8. Since by Metatheorem 9.1 each of the equal-
ities and inequality add(N ) = cov(N ), non(N ) = c, non(N ) < cov(N ) is consis-
tent with ZFC, the Metatheorem follows by Corollaries 10.34 and 10.37. �

For a proof of Theorem 10.36 we need a special case of Ergodic Theorem
4.31. Let T : T −→ T be a shift by a real a, i.e., T (x) = x + a. It is known
that T is ergodic if and only if a is irrational, see, e.g., Exercise 4.21, d). Hence
if a is irrational, then the function g∗ of Theorem 4.31 is constant. Since λ is a
probabilistic measure we obtain that g∗(x) =

∫
[0,1]

g dλ for every x ∈ [0, 1]. Thus,
as a special case of Ergodic Theorem 4.31 we have

Theorem [AC] 10.38. Let g : T −→ R be an integrable function, a ∈ R being
irrational. Then

lim
n→∞

1
n

n−1∑

i=0

g(x+ ia) =
∫

[0,1]

g dλ for almost every x.

Now we are ready to show the main result of the section.

Proof of Theorem 10.36. Assume that NROI holds true. Then there exists a func-
tion f : [0, 1]× [0, 1] −→ [0, 1] such that (i)–(iii) hold true and the equality (10.18)
fails. We can assume that

∫

[0,1]

ψ dλ < p <

∫

[0,1]

ϕdλ (10.19)

for suitable real p. The functions ϕ and ψ being bounded are integrable.
Now, we fix an irrational a ∈ [0, 1] and write

X = {x ∈ [0, 1] : (∀n) f(x+ na, ·) is measurable}.
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By NROI we have λ(X) = 1. Set

F (x, y) = lim inf
n→∞

1
n

n−1∑

i=0

f(x+ ia, y), G(x, y) = lim sup
n→∞

1
n

n−1∑

i=0

F (x, y + ia),

A = {〈x, y〉 ∈ [0, 1]2 : G(x, y) < p},

B =

{

x ∈ [0, 1] : lim
n→∞

1
n

n−1∑

i=0

ψ(x+ ia) �=
∫

[0,1]

ψ(t) dt

}

,

C =

{

y ∈ [0, 1] : lim
n→∞

1
n

n−1∑

i=0

ϕ(y + ia) �=
∫

[0,1]

ϕ(t) dt

}

.

By Ergodic Theorem 10.38 we have λ(B) = λ(C) = 0. We show that A is a
Steinhaus set.

For any x ∈ X the function F (x, ·) is measurable, being bounded is integrable,
therefore by Ergodic Theorem 10.38 for almost every y we obtain

G(x, y) = lim sup
n→∞

1
n

n−1∑

i=0

F (x, y + ia) =
∫

[0,1]

F (x, t) dt.

If moreover x /∈ B, then by (ii) and the Fatou Lemma, Corollary 4.24 we obtain
∫

[0,1]

F (x, t) dt ≤ lim inf
n→∞

1
n

n−1∑

i=0

∫

[0,1]

f(x+ ia, t) dt

= lim
n→∞

1
n

n−1∑

i=0

ψ(x + ia) =
∫

[0,1]

ψ(t) dt < p for almost every y.

Thus, for x ∈ X \B we have λ(Ax) = 1.
Again, for any x ∈ X and any y ∈ [0, 1], by Ergodic Theorem 10.38 we obtain

F (x, y) = lim
n→∞

1
n

n−1∑

i=0

f(x+ ia, y) =
∫

[0,1]

f(t, y) dt = ϕ(y) for almost every x ∈ X.

If y /∈ C, then

G(x, y) = lim sup
n→∞

1
n

n−1∑

i=0

F (x, y + ia)

= lim sup
n→∞

1
n

n−1∑

i=0

ϕ(y + ia) =
∫

[0,1]

ϕ(t) dt > p for almost every x ∈ X.

Thus, for y /∈ C we have λ(Ay) = 0. �

We have shown that in the set theory ZFC one cannot decide a natural
question concerning integration.
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Exercises

10.12 Nonabsolutely Convergent Series

a) Prove the well-known theorem of analysis: If
∣
∣
∑∞

n=0 an

∣
∣ <∞ and

∑∞
n=0 |an| =∞,

then for any real α there exists a bijection f : ω
1−1−→
onto

ω such that
∑∞

n=0 af(n) = α.

Moreover, there are bijections g, h such that
∑∞

n=0 ag(n) = +∞ and
∑∞

n=0 ah(n) =
−∞.

b) Show that the example of unbounded function presented in the text is a particular
case of this theorem.

10.13 [AC] Steinhaus Set

Let I be a σ-ideal of a subset of a set X. A set A ⊆ X ×X is called an I-Steinhaus set,
if Ax,X \ Ax ∈ I for any x ∈ X. Show that results similar to those of Theorems 10.33
and 10.35 hold true. Especially, they hold true for the ideal of meager sets in a Polish
space.

10.14 [AC] Bounded Functions into ωω

Let I be a σ-ideal of subsets of a set X. We define a cardinal invariant com(I) of the
ideal I as

com(I) = min{|B| : B ⊆ X ∧X \ B ∈ I}.
We denote by BFB(X, I) the following statement: for every function f : X −→ ωω there
exists a set A ⊆ X such that X \A ∈ I and f(A) is eventually bounded, i.e., f(A) ∈ Kσ.
The notion of a κ-Kσ-set was defined in Section 8.2.

a) If there exists a κ-Kσ-subset C of ωω, where κ = com(I), then BFB(X, I) fails.

Hint: Let X \ B ∈ I, |B| = κ. Take any mapping f from X onto C such that
f |B : B −→ C is a bijection.

b) If com(I) = b or com(I) = d, then BFB(X, I) fails.

Hint: See Theorems 8.40 and 8.41.

c) If there exists a κ-Luzin set of reals, where κ = com(I), then BFB(X, I) fails.

Hint: Any κ-Luzin subset of ωω is a κ-Kσ-set.

d) If com(I) < b, then BFB(X, I) holds true.

10.15 [AC] Generalized Egoroff Theorem

Let I be a σ-ideal of subsets of a set X. We assume that there exists a set B ⊆ X such
that |B| = non(I) and X \B ∈ I. GETh(X, I) denotes the following statement: for every
sequence of functions fn : X −→ R converging to 0 on X there exists a set A ⊆ X such

that X \ A ∈ I and fn
QN−→ 0 on A.

Let T denote the set of all sequences {fn}∞n=0 of functions belonging to XR. We
define a mapping Θ : ω(XR) −→ X(ωω) setting Θ({fn}∞n=0) = F , where F (x) = h ∈ ωω,
where

h(n) = min{m : (∀k ≥ m) |fk(x)| < 2−n}.

a) If Y ⊆ X, then fn
QN−→ 0 on Y if and only if the function Θ({fn}∞n=0)|Y : Y −→ ωω

is eventually bounded.

b) Show that BFB(X, I) is equivalent to GETh(X, I).

Hint: Use a) and note that Θ is a surjection.
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c) If com(I) = b or com(I) = d or there exists a com(I)-Luzin set of reals, then
GETh(X, I) fails.

d) If com(I) < b, then GETh(X, I) holds true.

e) GETh([0, 1],N ) is undecidable in ZFC.

Hint: By Corollary 7.37 we have non(N ) = com(N ) and use Metatheorem 9.1.

f) GETh([0, 1],N ) is equivalent to the statement: for every sequence {fn}∞n=0 of func-
tions from [0, 1] into R and for every ε > 0, there exists a set A ⊆ [0, 1] with
λ∗(A) > 1− ε and such that fn ⇒ 0 on A.

10.16 [AC] Weak Generalized Egoroff Theorem

Let us consider a weak generalization of Egoroff Theorem 7.41 referred to as wGETh: Let
fn : [0, 1] −→ R, fn → 0 on [0, 1]. For every ε < 1 there exist a set A and an increasing
sequence {nk}∞k=0 such that λ∗(A) > ε and fnk ⇒ 0 on A. Evidently GETh([0, 1],N )
implies wGETh.

a) Assume G ⊆ [ω]ω, |G| < cov(M). Then for every α ∈ ωω there exists β ∈ ωω,
β ≥∗ α and such that for any G ∈ G the set G ∩ rng(β) is infinite.

Hint: Assume that α is increasing. Set In = {k ∈ N : α(n) ≤ k < α(n + 1)},
NG = {n ∈ ω : G ∩ In 	= ∅}, γG(n) = minG ∩ In if n ∈ NG and γG(n) = 0
otherwise. By Theorem 7.66 there exists a real γ such that

(∀G ∈ G)(∀m)(∃n > m) (n ∈ NG ∧ γG(n) = γ(n)).

Set β(n) = γ(n) if γ(n) ∈ In and β(n) = α(n) otherwise.

b) If κ = b = cov(M), then for any G ⊆ [ω]ω, |G| = κ there exists a ≤∗ increasing
sequence 〈αξ ∈ ωω : ξ < κ〉 such that

(∀G ∈ G)(∀α ∈ ωω)(∃η)(∀ξ > η) (α ≤∗ αξ ∧ |G ∩ rng(αξ)| = ℵ0).

Hint: By transfinite induction using a).

c) If add(M) = c, then wGETh does not hold true.

Hint: Let 〈αξ : ξ < c〉 be the sequence of c) with G = [ω]ω, [0, 1] = {xξ : ξ < c}.
Define fn(xξ) = 1/k if k > 0 and αξ(k) = m, fn(xξ) = 0 otherwise. Evidently
fn(xξ)→ 0. Suppose A ⊆ [0, 1], λ∗(A) > 0, and {nk}∞k=0 increasing such that

(∀n)(∃k0)(∀x ∈ A)(∀k ≥ k0) |fnk (x)| < 1/(n+ 1).

Since |A| = c there exists a ξ such that xξ ∈ A, {nk : k ∈ ω} ∩ rng(αξ) is infinite
and {nk}∞k=0 ≤∗ αξ, a contradiction.

d) wGETh is undecidable in ZFC.

10.5 Permitted Sets of Trigonometric Series

In Section 8.6 we presented some properties of thin sets of trigonometric series
and we showed that some sets are permitted for those families. We finished the
Section with Problems 8.149 and 8.150 about the existence of a permitted set of
large size. Now we show that in ZFC there is no answer to the latter problem.

We begin with a simple consequence of the Dirichlet Theorem 8.133.
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Lemma 10.39. Assume that {ni}∞i=0 is an increasing sequence of natural numbers.
We write K = {ni − nj : (∃k) 2k ≤ j < i < 2k+1}. Then for any non-empty set
A ⊆ T the function 0 belongs to the closure of the set {‖mx‖ : m ∈ K} ⊆ Cp(A)
in the product topology.

Proof. We have to show that for given x1, . . . , xm ∈ A and ε > 0 there exist
natural numbers i, j, k such that 2k ≤ i < j < 2k+1 and ‖(ni − nj)xl‖ < ε for any
l = 1, . . . ,m.

Let 2k > (2/ε)m. By the Dirichlet Theorem 8.133 there exist natural numbers
i, j such that 2k ≤ i < j ≤ 2k +(2/ε)m and ‖(ni−nj)xl‖ < ε for any l = 1, . . . ,m.
Since 2k + (2/ε)m < 2k+1 we are done. �
Theorem [AC] 10.40. (L. Bukovský – N.N. Kholshchevnikova – M. Repický) Every
γ-subset of T is permitted for any of the families pD, N0, N , A, and wD.

Proof. Assume that A is a pD-set and B is a γ-set. By definition there exists
an increasing sequence of positive integers {nk}∞k=0 such that ‖nkx‖

QN−→ 0 on A.
If K ⊆ N is the set of natural numbers defined in Lemma 10.39, the function 0
belongs to the topological closure of the set {‖mx‖ : m ∈ K} ⊆ BR. Since the set
B is a γ-set there exists a sequence {ml}∞l=0 of elements of the set K such that
‖mlx‖ → 0 on B. Every ml is of the form njl − nil with 2k ≤ il < jl < 2k+1.
Thus we may suppose that both sequences {il}∞l=0 and {jl}∞l=0 are increasing. Since
B is also a wQN-set there exists a subsequence converging to 0 quasi-normally.
Thus without loss of generality we may suppose that ‖mlx‖

QN−→ 0 on B. Since

‖mlx‖ ≤ ‖njlx‖ + ‖nilx‖ we obtain ‖mlx‖
QN−→ 0 on A ∪B.

Proofs for N0-permitted and A-permitted sets are similar. We present a proof
for N-set that uses an old idea by J. Arbault.

Assume now that A is an N-set and B is an infinite γ-set. Let {nk}∞k=0,
{an}∞k=0 be such sequences of natural numbers and non-negative reals, respectively,
that

∑∞
n=0 an = ∞ and

A ⊆
{

x ∈ [0, 1] :
∞∑

n=0

an‖nx‖ <∞
}

holds true. Let {yk}∞k=0 be a sequence of distinct elements of B.
We write sn =

∑n
k=0 ak and assume that a0 ≥ 1. Hence sk ≥ 1 for all k. By

Theorem 2.23 we obtain
∞∑

n=0

ans
−1
n = +∞ and

∞∑

n=0

ans
−1−ε
n < +∞

for any ε > 0. One can easily construct a non-decreasing unbounded sequence
{pn}∞n=0 of positive integers such that

∞∑

n=0

an

s
1+ 1

pn
n

< +∞.
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Set bn = an/sn, εn = s
−1/pn
n and h(n) = min{m :

∑m
k=n bk ≥ 1}. Let Sn be the

set of all sequences t = {t(k)}h(n)
k=n of positive integers with t(k) ≤ sk. For n ∈ ω

and t ∈ Sn we set

Un,t = {x ∈ T : (∀k ≥ n, k ≤ h(n)) ‖t(k)kx‖ < 2εk} \ {yn}.

We claim that {Un,t : n ∈ ω, t ∈ Sn} is an open ω-cover of T.
Assume x1, . . . , xm ∈ T. Take n such that pn ≥ m and xi �= yn for any

i = 1, . . . ,m. For any k, n ≤ k ≤ h(n), by the Dirichlet Theorem 8.133 there
exists a t(k) such that ‖t(k)kxi‖ < 2εk for i = 1, . . . ,m and

t(k) ≤
(

2
2εk

)m
= (s

1
pk

k )m ≤ sk.

Thus t ∈ Sn and xi ∈ Un,t for any i = 1, . . . ,m.
Since B is a γ-set, there exists a sequence {[nk, tk]}∞k=0 such that

B ⊆
∞⋃

m=0

∞⋂

k=m

Unk,tk .

As yn ∈ B the equality n = nk can hold true for finitely many k’s. Therefore the
sequence {nk}∞k=0 is unbounded and we can assume that nk+1 > h(nk) for every
k. By definition of h we obtain

∑∞
k=0

∑h(nk)
n=nk

bn = +∞. We show that the series

∞∑

k=0

h(nk)∑

n=nk

bn‖tk(n)nx‖ (10.20)

converges on A ∪B.
By definition we have bn‖tk(n)nx‖ ≤ bnsn‖nx‖ = an‖nx‖. Thus for x ∈ A

the series (10.20) converges. For x ∈ B there exists an m such that x ∈ Unk,tk for
every k ≥ m. Then

∞∑

k=m

h(nk)∑

n=nk

bn‖tk(n)nx‖ ≤
∞∑

k=m

h(nk)∑

n=nk

bn2εn = 2
∞∑

k=m

h(nk)∑

n=nk

an

s
1+ 1

pn
n

<∞.

For wD-sets the assertion follows by 8.147 since a γ-set has strong measure zero.
�

Since every countable set is a γ-set, the Arbault-Erdős Theorem 8.146 follows.
Since p = c is consistent with ZFC (see e.g. (11.21)), by Theorem 8.92 we

obtain
Metatheorem 10.9. ZFC + “there exists a set permitted for every family N , D,
pD, A, N0, wD of cardinality c” is consistent.



10.5. Permitted Sets of Trigonometric Series 449

On the other hand one can show that permitted sets are small, actually at
least perfectly meager and therefore one cannot prove that there exists a large
permitted set. We start with an auxiliary classical result.

We shall consider Rn as a vector space over the field Q. We define the scalar
product of x = 〈x1, . . . , xn〉, y = 〈y1, . . . , yn〉 ∈ Rn as x · y =

∑n
i=1 xi · yi and the

norm |x| = max{|x1|, . . . , |xn|}. Evidently |x · y| ≤ n · |x| · |y|.
Theorem 10.41 (L. Kronecker). Assume that the set {1, x1, . . . , xn} is linearly
independent over Q and y1, . . . , yn are arbitrary reals. Then for every ε > 0 there
exists an arbitrarily large integer k such that ‖kxi − yi‖ < ε for i = 1, . . . , n.

We assume that the set {1, x1, . . . , xn} is linearly independent over Q. We put

L = {〈p1, . . . , pn〉+ q · 〈x1, . . . , xn〉 : p1, . . . , pn, q ∈ Z}.
Lemma 10.42. Let ε > 0. If u = 〈u1, . . . , un〉 ∈ Rn is a non-zero element, then
there exists a z ∈ L such that |z| < ε and u · z �= 0.

Proof. Assume that for every z ∈ L, |z| < ε we have u · z = 0.
Let v1, . . . , vm, m ≤ n be a base of the smallest vector subspace of R over Q

containing u1, . . . , un. Then u =
∑m
j=1 vj〈a1,j , . . . , an,j〉 for some ai,j ∈ Q, i ≤ n,

j ≤ m. We write a(j) = 〈a1,j , . . . , an,j〉. By the Dirichlet Theorem 8.133 there
exist a natural number l > 0 and integers p1, . . . , pn such that the vector

z = 〈z1, . . . , zn〉 = 〈p1, . . . , pn〉+ l · 〈x1, . . . , xn〉 ∈ L
satisfies |z| < ε. So, by the assumption we have u · z = 0.

Let us consider arbitrary δ < ε. Using again the Dirichlet Theorem 8.133
there exist a natural number k > 0 and integers q1, . . . , qn such that |kzi− qi| < δ.
Hence w = k · 〈z1, . . . , zn〉 − 〈q1, . . . , qn〉 ∈ L and |w| < δ. Since δ < ε we obtain
again u · w = 0. As u · z = 0 we obtain u · [q1, . . . , qn] = 0, i.e.,

m∑

j=1

vj · (a(j) · 〈q1, . . . , qn〉) = 0.

Each scalar product a(j) · 〈q1, . . . , qn〉 is a rational number and vi, . . . , vm are
independent over Q. Therefore a(j) · 〈q1, . . . , qn〉 = 0 for j = 1, . . . ,m. Thus

|a(j) · z| ≤ |ka(j) · z| = |a(j) · (kz − 〈q1, . . . , qn〉)| < n|a(j)| · δ.
Since δ was arbitrary small we have a(j) · z = 0 for j = 1, . . . ,m and therefore

n∑

i=0

ai,j(pi + lxi) = 0

for j = 1, . . . , n. Since the set {1, x1, . . . , xn} is linearly independent over Q we
have ai,j = 0 for every i = 1, . . . , n and every j = 1, . . . ,m. Thus u = 0, a contra-
diction. �
Lemma 10.43. For any given ε > 0 there exists a set {z(1), . . . , z(n)} ⊆ L linearly
independent over R and such that |z(i)| < ε for i = 1, . . . , n.
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Proof. We construct the elements z(1), . . . , z(n) ∈ L by induction. Assume that
a linearly independent set {z(1), . . . , z(m)}, m < n is already constructed. Then
there exists a non-zero u ∈ Rn such that u · z(i) = 0 for i = 1, . . . ,m (a non-zero
solution of m linear equations). By Lemma 10.42 there exists a z(m + 1) ∈ L,
|z(m+ 1)| < ε such that u · z(m+ 1) �= 0. Evidently, the set {z(1), . . . , z(m+ 1)}
is linearly independent over R. �

Proof of Theorem 10.41. Assume that ε > 0, y1, . . . , yn ∈ R are given and the set
{1, x1, . . . , xn} is linearly independent over Q. By Lemma 10.43 there exists a set
{z(1), . . . , z(n)} ⊆ L linearly independent over R and such that |zj,i| < ε/n for
j, i = 1, . . . , n, where z(j) = 〈zj,1, . . . , zj,n〉. Since Rn has dimension n over R
there exist reals b1, . . . , bn such that 〈y1, . . . , yn〉 =

∑n
i=1 bi · z(i). Let mi be the

nearest integer to bi. Then z =
∑n

i=0mi ·z(i) ∈ L and therefore there exist integers
l, p1, . . . , pn ∈ Z such that z = 〈p1, . . . , pn〉+ l · 〈x1, . . . , xn〉. Then

|(pi + lxi)− yi| = |
n∑

j=1

mjzj,i −
n∑

j=1

bjzj,i| ≤
n∑

j=1

|mj − bj ||zj,i| < ε/2,

and therefore ‖lxi − yi‖ < ε/2 for any i = 1, . . . , n. By the Dirichlet Theorem
8.133 there exists a natural number k ≥ k0 + l such that ‖(k − l)xi‖ < ε/2 for
i = 1, . . . n. Then ‖kxi − yi‖ < ε as well. �

We shall need another two auxiliary results.
Lemma [wAC] 10.44. Let P ⊆ T be a perfect set. If a finite set {x0, . . . , xn} ⊆ P
is linearly independent over Q, then for any y ∈ P and any ε > 0 there exists
an element xn+1 ∈ P such that {x0, . . . , xn+1} is linearly independent over Q and
|y − xn+1| < ε.

Proof. The set of all linear combinations of elements of {x0, . . . , xn} over Q is
countable. Thus the set Ball(y, ε)∩ P contains an element not linearly dependent
on {x0, . . . , xn}. �
Lemma [wAC] 10.45. If P ⊆ T is a perfect set, then there exists an increasing
sequence of natural numbers {nk}∞k=0 such that the set P ∩ (y −C) is dense in P
for every y ∈ T, where C = {x ∈ T : (∃k0)(∀k ≥ k0) ‖nkx‖ ≤ 2−k}.

Proof. Let Q ⊆ P be a countable set dense in P . Consider an enumeration 〈qn :
n ∈ ω〉 of Q such that every element occurs in the enumeration infinitely many
times. Set Bk = {m2−k−1 : m < 2k+1}.

By induction we shall construct nk, εk > 0 and finite sets Ak ⊆ P such that
nk < nk+1, εk+1 ≤ εk/2, {qi : i ≤ k} ⊆ Ak and for every a ∈ Ak and b ∈ Bk there
exists a c ∈ Ak+1 satisfying

(1) |a− c| < εk/2,
(2) for any x the inequality |x− c| < εk+1 implies ‖nk+1x− b‖ < 2−k−2,

everything for every k.
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Let A0 = {q0}, n0, ε0 > 0 being arbitrary. We describe the inductive step.
Using Lemma 10.44 for every a ∈ Ak and b ∈ Bk pick an fk(a, b) ∈ P , such that
|fk(a, b)− a| < εk/2, fk is one-to-one, and the set

{1} ∪ {fk(a, b) : a ∈ Ak ∧ b ∈ Bk}

is linearly independent over Q. By the Kronecker Theorem 10.41 there exists a nat-
ural number nk+1 > nk such that ‖nk+1fk(a, b) − b‖ < 2−k−2 for all a ∈ Ak and
b ∈ Bk. Set

Ak+1 = {q0, . . . , qk+1} ∪ {fk(a, b) : a ∈ Ak ∧ b ∈ Bk}.

Since Ak, Bk are finite, there exists a positive real εk+1 ≤ εk/2 such that the
condition (2) is satisfied for c = fk(a, b).

Assume that y ∈ T is given and U is an open set with U ∩ P �= ∅. We show
that U ∩ P ∩ (y − C) �= ∅

For any k take bk ∈ Bk such that ‖nk+1y− bk‖ ≤ 2−k−2. Since each element
of Q occurs infinitely many times in 〈qn : n ∈ ω〉, there exists a k0 such that
Ball(qk0 , εk0) ⊆ U . Set pk = qk0 for k ≤ k0. By induction find a pk+1 ∈ Ak+1

such that |pk+1 − pk| < εk/2 and ‖nk+1x − bk‖ < 2−k−2 for all x satisfying
|x−pk+1| < εk+1. Then {pk}∞k=0 is a Bolzano-Cauchy sequence. If p = limk→∞ pk,
then p ∈ P ∩ Ball(qk0 , εk0) ⊆ P ∩ U and |p− pk| < εk for every k. Moreover, for
any k ≥ k0 we have

‖nk+1(y − p)‖ ≤ ‖nk+1p− bk‖+ ‖nk+1y − bk‖ ≤ 2−k−1.

Hence y − p ∈ C and consequently p ∈ U ∩ P ∩ (y − C). �
Theorem [wAC] 10.46 (P. Eliaš). Assume that F is a family of thin subsets of T
such that F has an Fσ base, pD ⊆ F and A−A ∈ F for any A ∈ F . Then every
F-permitted set is perfectly meager.

Proof. Assume that A ⊆ T is an F -permitted set, P ⊆ T is perfect. By Lemma
10.45 there exists a pseudo Dirichlet set C such that P ∩ (y−C) is dense in P for
every y ∈ T. By assumption about F we have C ∈ F and therefore A ∪ C ∈ F .
Then there exists an Fσ set B ∈ F , B ⊇ A ∪ C. Since B − B ∈ F , we obtain
B − B �= T. Thus there exists a y ∈ T such that B ∩ (y − B) = ∅. Then also
B ∩ (y−C) = ∅ and therefore P ∩ (y−C) ⊆ P \B. Since P ∩ (y−C) is dense in
P , the Gδ set P \B is dense in P . Hence P ∩A ⊆ P ∩B is meager in P . �
Theorem [wAC] 10.47 (P. Eliaš). Every set permitted for any of the families pD,
N , N0, and A is perfectly meager.

Proof. For any of the families pD, N0 and N the assertion follows directly from
Theorem 10.46. For A-sets we must change the proof a little.

Let A be an A-permitted set, P being a perfect set. By Lemma 10.45 there
exists a pseudo Dirichlet set C such that P ∩ (y−C) is dense in P for every y ∈ T.
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Then the set A ∪C is an A-set, and therefore there exists an increasing sequence
{nk}∞k=0 such that A ∪C ⊆ {x ∈ T : ‖nkx‖ → 0}. Set

Bi = {x ∈ T : (∀k ≥ i)‖nkx‖ ≤ 1/8}, B =
⋃

i
Bi.

Then B is an Fσ set and A ∪ C ⊆ B. If x ∈ B − B, then there are i1, i2 and
x1 ∈ Bi1 , x2 ∈ Bi2 such that x = x1 − x2. If i0 = max{i1, i2}, then x1, x2 ∈ Bi0
and therefore x ∈ Bi0 − Bi0 . Thus B − B =

⋃
i(Bi − Bi). On the other hand we

have Bi−Bi ⊆ Bi+1−Bi+1 and Bi−Bi ⊆ {x ∈ T : ‖nix‖ ≤ 1/4}. One can easily
see that λ({x ∈ T : ‖nx‖ ≤ 1/4}) = 1/2 and therefore λ(Bi − Bi) ≤ 1/2 for any
i > 0.4 Thus λ(B − B) ≤ 1/2. Hence B − B �= T and we can continue as in the
proof of Theorem 10.46. �

Using the consistency result (11.31), Theorem 10.46 implies
Metatheorem 10.10. “A permitted set for any of the families pD, N , N0, and A
has cardinality ≤ ℵ1” is consistent with ZFC + ¬CH.

We obtain two important consequences of this Metatheorem. By (11.21),
Theorems 8.90, and 10.40 we have
Metatheorem 10.11. “Every set of cardinality < c is permitted for the families
pD, N , N0, and A” is undecidable in ZFC + ¬CH.

By Metatheorem 10.9 we obtain the promised result concerning an answer
to Problem 8.150
Metatheorem 10.12. If F denotes any of the families pD, N , N0, or A, then the
statement “there exists a permitted set for F of cardinality c” is undecidable in
ZFC.

Note that we have no result about an upper bound of the size of permitted
sets for the family of weak Dirichlet sets. Neither have we any answer to Prob-
lem 8.149.

Exercises

10.17 [AC] Permitted Sets

a) If |A| < s is a wQN-space, then A is permitted for pD and N0.

Hint: If
∑∞

k=0 ‖nkx‖ < ∞ on B, then by the Booth Lemma, Exercise 5.28 we can
assume that both sequences {sinnkπx}∞k=0, {cosnkπx}∞k=0 converge on A. Then

lim
k→∞

| sin(nk+1 − nk)πx| = 0.

Since A is a wQN-space we obtain
∑∞

k=0 ‖(nk+1 − nk)x‖ <∞. Note that

| sin(nk+1 − nk)πx| ≤ | sinnk+1πx|+ | sin nkπx|.

b) Show that non(Perm(pD)) ≥ min{s, b} and non(Perm(N0)) ≥ min{s, b}.
Hint: Use the result of a) and Corollary 8.62.

4Actually λ(Bi) = 0, see Exercise 8.34.
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c) Show that non(Perm(A)) ≥ s.

Hint: Use the Booth Lemma, Exercise 5.28 as in part a).

d) Show that non(Perm(N )) ≥ t.

e) Show that non(Perm(wD)) ≥ cov(M).

Hint: See Corollary 8.14.

10.18 [AC] Dirichlet Permitted Sets

For a perfect set P ⊆ T, let {nk}∞k=0 be the sequence of Lemma 10.45. Set

D = {x ∈ T : (∀k) ‖nkx‖ ≤ n−k}.

a) Show that P +D = T.

Hint: Follow the proof of Lemma 10.45.

b) If A ⊆ T is D-permitted, then there exists no perfect subset of A.

10.19 [AC] Perfectly Meager in the Transitive Sense

A set A ⊆ T is perfectly meager in the transitive sense if for any perfect set P ⊆ T there
exists an Fσ set F ⊇ A such that (F + y) ∩ P is meager in P for every y ∈ T.

a) A set perfectly meager in the transitive sense is perfectly meager.

b) Assume that F is a family of thin subsets of T such that F has an Fσ-base, pD ⊆ F
and A−A ∈ F for any A ∈ F . Then every F-permitted set is perfectly meager in
the transitive sense.

Hint: By Lemma 10.45 there exists a pseudo-Dirichlet set D such that (D−y)∩D is
dense in P for any y. Since A+D ∈ F, there exists an Fσ set F ∈ F, F ⊇ A+D.
Then D+ F ⊆ F + F 	= T. Thus F ∩ (D− x) = ∅ for some x. Then P \ (F + y) ⊇
P ∩ (D − x+ y) is dense in P for every y.

c) Every set permitted for any of the families pD, N , N0, A, and wD is perfectly
meager in the transitive sense.
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Appendix

It may be more interesting to consider a family of problems on the con-
tinuum: investigate cardinal invariants. . . . There is a myriad of such
measures, many of them important in many directions . . . ; naturally
they are uncountable but ≤ 2ℵ0 .
If the continuum is ≤ ℵ2, we will not have (by a trivial pigeonhole
principle) many relations, as no three can be simultaneously distinct.

Saharon Shelah [2003], p. 213

Trying to make the book self-contained, in Sections 11.1 and 11.2 we recall some
well-known notions and their properties. A reader need not read those sections.
If she/he needs to recall something, she/he can use the Index to find it. Section
11.3 summarizes well-known facts from elementary topology showing the close
connection between the notions of a compact topological space and the real line.
Finally, in Sections 11.4 and 11.5 we summarize basic facts of mathematical logic
and main results of the theory of models of set theory. The latter are intensively
used in the basic text.

It is worth noting that many consistency results allow that the cardinality of
the continuum is anything it ought to be, i.e., any well-defined cardinal not cofinal
with ℵ0. On the other hand, several consistency results (e.g., (11.24), (11.27),
(11.28), (11.31), (11.34)) were shown just assuming a strong condition: c can be
only ℵ2. The question whether we can omit this condition is often an important
open problem.

11.1 Sets, Posets, and Trees

An ordered pair 〈x, y〉 is the set {{x}, {x, y}}. The basic property of an ordered
pair is expressed by the equivalence

〈x, y〉 = 〈u, v〉 ≡ (x = u ∧ y = v). (11.1)
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An ordered n-tuple is defined by induction as

〈x1, . . . , xn, xn+1〉 = 〈〈x1, . . . , xn〉, xn+1〉.

Actually we do not worry what an ordered n-tuple is, we ask only that a condition
similar to (11.1) holds true. The Cartesian product or simply the product of sets
A and B is the set A × B of all ordered pairs 〈x, y〉 such that x ∈ A and y ∈ B.
Similarly by induction we define

A1 × · · · ×An ×An+1 = (A1 × · · · ×An)×An+1.

If A1 = · · · = An = A, then we shall write An = A1 × · · · × An. If A ⊆ X × Y ,
x ∈ X , y ∈ Y , then the vertical and the horizontal section of A are the sets

Ax = {u ∈ Y : 〈x, u〉 ∈ A}, Ay = {v ∈ X : 〈v, y〉 ∈ A}, (11.2)

respectively.
A binary relation R is a set of ordered pairs. If X =

⋃⋃
R, then R ⊆ X×X .

The domain of R is the set dom(R) = {x ∈ X : (∃y)〈x, y〉 ∈ R} and the range
of R is the set rng(R) = {x ∈ X : (∃y)〈y, x〉 ∈ R}. The field of R is the set
dom(R) ∪ rng(R). Instead of 〈x, y〉 ∈ R we shall often write xRy. A function f is
a binary relation such that

(∀x, y, z) ((〈x, y〉 ∈ f ∧ 〈x, z〉 ∈ f) → y = z).

If 〈x, y〉 ∈ f we write f(x) = y. y is the value of the function f at x. Often we shall
write fx = y instead of f(x) = y. The set dom(f) is the definition domain of f and
rng(f) is the range or domain of values. By XY we denote the set of all functions
f with dom(f) = X and rng(f) ⊆ Y . Evidently XY ⊆ P(X × Y ). Instead of the
official notion “function” we shall use synonyms mapping, map, transformation
etc.

The notation f : X −→ Y means that f ∈ XY , i.e., f is a function with
dom(f) = X and rng(f) ⊆ Y . The notations f : X 1−1−→ Y and f : X onto−→ Y mean
moreover that f is a one-to-one function and f is a function onto Y = rng(f),
respectively. A one-to-one function is also called an injection, a function onto Y is
called a surjection and a function which is both injection and surjection is called
a bijection.

If f : X −→ Y , A ⊆ X , then the image of A is f(A) = {f(x) : x ∈ A} and if
B ⊆ Y , then the inverse image of B is f−1(B) = {x ∈ X : f(x) ∈ B}. Similarly
for a relation R ⊆ X × Y , e.g., R(A) = {y ∈ Y : (∃x) (x ∈ A ∧ 〈x, y〉 ∈ R)}. The
notation may be sometimes confusing, however from the context it should be clear
what it means. The restrictionof a function f to an A ⊆ dom(f) is the function
f |A = {〈x, y〉 ∈ f : x ∈ A}. A function g is an extension of the function f if f ⊆ g,
i.e., if f = g|dom(f).

Sometimes we shall denote a function f : X −→ Y as 〈f(x) : x ∈ X〉.
We shall be free in using such a denotation and sometimes we shall include in
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it some additional information, e.g., 〈f(x) = {y ∈ A : ϕ(x, y)} : x ∈ X〉 or
〈f(x) ⊆ A : x ∈ X〉, etc. Moreover, sometimes we shall not distinguish between
the function 〈f(x) : x ∈ X〉 and its range {f(x) : x ∈ X}. Always, everything
must be clear from the context.

If f : X −→ Y, g : Y −→ Z, then the composition f ◦ g : X −→ Z is defined
as f ◦ g(x) = g(f(x)) for any x ∈ X . The reader should know what an inverse
of f is. If the inverse of f does exist it will be denoted by f−1. If X ⊆ Y , then
the identity mapping idX : X −→ Y is defined as idX(x) = x for any x ∈ X .

If f : X × Y −→ Z, then instead of f(〈x, y〉) we simply write f(x, y). More-
over, for a fixed x ∈ X the function g : Y −→ Z defined as g(y) = f(x, y) will
be simply denoted by f(x, · ). Similarly f( · , y) for a given y ∈ Y . If Z = X × Y ,
then the projections proj1 : Z −→ X and proj2 : Z −→ Y are defined as

proj1(x, y) = x, proj2(x, y) = y.

If S is a non-empty set and values of the function 〈Xs : s ∈ S〉 are non-empty
sets, then the Cartesian product or simply the product Πs∈SXs is the set of all
functions f : S −→

⋃
s∈S Xs satisfying the condition (∀s) (s ∈ S → f(s) ∈ Xs).

The projection proj
s

: Πt∈SXt −→ Xs is defined as proj
s
(f) = f(s) for any

s ∈ S. If Xs = X for any s ∈ S, then Πs∈SXs = SX . If the set S is finite, e.g.,
S = {1, . . . , n}, then we often identify the sets Πs∈SXs and X1 × · · · ×Xn in the
natural way.

A sequence is a function with dom(f) = ω or dom(f) ∈ ω. In the former case
we speak about an infinite sequence, in the latter about a finite sequence. A value
of a sequence f is usually denoted as fn. An infinite sequence a is also denoted as
{an}∞n=0 and a finite sequence a with dom(a) = n+ 1 is denoted as {ai}ni=0. From
typographical reasons, we shall often use the denotation as 〈an ∈ A : n ∈ ω〉 or
〈ai : i < n〉, etc. We shall also use other related notation, e.g., instead of

⋃
n∈ω An

we shall write
⋃∞
n=0 An or simply

⋃
nAn.

Sometimes we shall identify in the natural way the sets nA and An. Thus
a finite sequence {ai}n−1

i=0 will be also denoted as 〈a0, . . . , an−1〉. Especially we shall
use this convention in the case n = 1, i.e., A = 1A = A1. Moreover, 0A = A0 = {∅}.
We use similar notation for an infinite sequence

{an}∞n=0 = 〈a0, . . . , an, . . . 〉.

The set of all finite sequences of elements of A will be denoted by <ωA =
⋃
n∈ω

nA.
Similarly <ξA =

⋃
η<ξ

ηA for any ordinal ξ.
If α = {ai}ni=0 and β = {bj}mj=0 are finite sequences, then the concatenation

α�β is the sequence {ci}n+m+1
i=0 , where ci = ai for i ≤ n and cn+i+1 = bi for i ≤ m.

Similarly in the case when β is an infinite sequence.
Let X be a set. If F is a subset of P(X) we say that F is a family of sets. Let

A ⊆ X be a non-empty subset of X . A family F of subsets of X is called a cover
of the set A if

⋃
F ⊇ A and ∅, A /∈ F . If F , G are covers of a set A and G ⊆ F ,
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then we say that G is a subcover of F . A cover F of the set X is called a partition
of X if F is a family of pairwise disjoint subsets of X . Moreover, the one point
family {X} is a partition of X as well. A cover G is a refinement of a cover F , if
every C ∈ G is a subset of some D ∈ F .

If F is a family of subsets of a set X and A ⊆ X then

F|A = {B ∩A : B ∈ F} (11.3)

denotes the restriction of the family F to the set A. If F is a cover (a partition)
of X and A ⊆ X then F|A is a cover (a partition) of the set A.

If we deal with subsets of a fixed set X we use the characteristic function χA
of A ⊆ X defined as χA(x) = 1 for x ∈ A and χA(x) = 0 for x ∈ X \A.

We shall very often need a standard identification usually made in mathe-
matics. A binary relation E on a set X is called an equivalence relation if E is
reflexive, symmetric and transitive, i.e.,

xEx, xEy → yEx, (xEy ∧ yEz)→ xEz

for any x, y, z ∈ X , respectively. If E is an equivalence relation on X we define
the equivalence class of an x ∈ X as

{x}E = {y ∈ X : xEy}.

The quotient set of X by E is the set

X/E = {{x}E : x ∈ X}.

If E is an equivalence relation on X , then X/E is a partition of X . Vice versa, if
F is a partition of X , then

xEy ≡ (∃A ∈ F)x, y ∈ A

is an equivalence relation on X such that X/E = F . Such a passing to a quotient
set will be often used without an explicit notice.

Let R ⊆ X ×X be a reflexive, antisymmetric1 and transitive relation. The
couple 〈X,R〉 is a partially ordered set, shortly a poset, and the relationR is called
a partial ordering. R is a strict partial ordering if xRy∨x = y is a partial ordering
and xRx for no x. If R is a partial ordering we often use notations ≤,  , ! and the
strict partial ordering xRy ∧ x �= y is denoted by <, ≺, �, respectively. If x < y,
then we say that y is a successor of x. If there exists no z such that x < z < y
we say that y is an immediate successor of x. Two elements x, y ∈ X are said
to be comparable if x ≤ y or y ≤ x. Otherwise x, y are incomparable. A subset
A ⊆ X is called a chain if any two x, y ∈ A are comparable. If the whole set X is
a chain we say that 〈X,≤〉 is a linearly ordered set. If A ⊆ X , a ∈ A, then a is
called the greatest element (the least element) of A if x ≤ a (a ≤ x) for every
x ∈ A. If a ∈ X , then the set {x ∈ X : x < a} is called an initial segment. A poset
1i.e., xRy and yRx imply x = y for any x, y ∈ X.
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〈X,≤〉 is a well-ordered set if every non-empty subset A ⊆ X has a least element.
A well-ordered set is also linearly ordered.
Theorem 11.1. Assume DC. Then a linearly ordered set 〈X,≤〉 is well ordered if
and only if there is no function f : ω −→ X such that f(n + 1) < f(n) for every
n ∈ ω. If X is countable, we do not need any axiom of choice.

The theorem is a very useful test for showing that a poset is well ordered.
Suppose that 〈X1,≤1〉 and 〈X2,≤2〉 are posets and f : X1 −→ X2 is a map-

ping. f is said to be increasing (non-decreasing) if f(x) <2 f(y) (f(x) ≤2 f(y))
for any x <1 y. A one-to-one mapping onto X2 is called an isomorphism if both
f and f−1 are increasing. 〈X1,≤1〉 and 〈X2,≤2〉 are isomorphic if there exists an
isomorphism from X1 onto X2. If f is an isomorphism from X1 onto f(X1) ⊆ X2,
then we say that f is an embedding of X1 into X2.

If X1 and X2 are isomorphic we say that X1 and X2 have equal order type.
We shall write ot(X1) = ot(X2). If there exists an increasing mapping from X1

into X2 we shall say that the order type of X1 is smaller than or equal to the order
type of X2, write ot(X1) ≤ ot(X2). The meaning of notation ot(X1) < ot(X2) is
clear.
Theorem 11.2. If 〈X1,≤1〉 and 〈X2,≤2〉 are well-ordered sets, then exactly one of
the following possibilities occurs:

a) X1 and X2 are isomorphic,
b) X1 is isomorphic with an initial segment of X2,
c) X2 is isomorphic with an initial segment of X1.

Moreover, if there exists an increasing mapping f : X1 −→ X2, then case a) or b)
occurs.

Let 〈X,≤〉 be a poset, A ⊆ X . An element a ∈ A is called maximal (minimal)
element of A if a ≮ x (x ≮ a) for every x ∈ A. An element a ∈ X is an upper
bound (lower bound) of A if x ≤ a (a ≤ x) for any x ∈ A. Thus a is the greatest
(the least) element of A if a ∈ A and a is an upper (lower) bound of A. Note
that if A is a chain, then a maximal (minimal) element of A is the greatest (the
least) element. The greatest (the least) element of poset 〈X,≤〉 will be denoted by
1X (by 0X) if there exists any. The inequality x �= 1X (x �= 0X) means that the
element x is not the greatest (the least) element of X (independently of whether
1X or 0X does exist or does not). Similarly for x < 1X and x > 0X .

Using Theorem 1.7 one can easily show by induction
Theorem 11.3 (Maximum Principle). If A is a non-empty finite subset of a poset
〈X,≤〉, then there exists a maximal element of A.

A set A is bounded from above(from below) if there exists an upper (lower)
bound of A. An element a is called a supremum (infimum) of the set A, written
a = supA (a = inf A), if a is the least upper (the greatest lower) bound of the
set A. If every non-empty finite subset of a poset 〈X,≤〉 has a supremum and
an infimum, then 〈X,≤〉 is called a lattice.
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Two elements x, y ∈ X are called compatible if

(∃a �= 0X) (a ≤ x ∧ a ≤ y).

Otherwise, x, y are incompatible. Sometimes we speak about disjoint elements
instead of incompatible and we write x ∧ y = 0X . A subset A ⊆ X of pairwise
incompatible elements is called an antichain. A subset A ⊆ B ⊆ X is cofinal in B
if for any x ∈ B there exists an a ∈ A such that x ≤ a. A cofinal subset of the
whole set X is called also a dominating set.

The word “dense” will be used in several meanings. We shall introduce the
notions “order dense”, “linearly dense”, and also “topologically dense”. When one
understand from the context which of those notions we deal with we shall say
simply “dense”. Note that also the notion “open dense” will have at least two
different meanings.

A subset A ⊆ X is order dense or simply dense in X if 0X /∈ A and for
any x ∈ X , x �= 0X there exists an a ∈ A such that a ≤ x. If moreover, for any
y ≤ x ∈ A, y �= 0X , also y ∈ A, the set A is called open dense. A subset A ⊆ X is
predense in X if 0X /∈ A and for any x ∈ X , x �= 0X there exists an a ∈ A such that
a, x are compatible. If A is a predense set, then {x ∈ X : x �= 0X ∧(∃y ∈ A)x ≤ y}
is open dense. A predense set A is a partition of X if every two distinct elements
of A are disjoint. A predense set A is a refinement of a predense set C if for every
a ∈ A there exists a c ∈ C such that a ≤ c. Note that a dense set A is a refinement
of an open dense set C if and only if A ⊆ C.

If 〈X,≤〉 is a poset, a, b ∈ X , a < b we define the open and closed interval

(a, b) = {x ∈ X : a < x < b}, [a, b] = {x ∈ X : a ≤ x ≤ b}.

Similarly we define intervals [a, b), (a, b], (−∞, b), (a,+∞), (−∞, b], [a,+∞), e.g.,
(−∞, b] = {x ∈ X : x ≤ b}. Thus, e.g., the set (−∞, a) = {x ∈ X : x < a} is an
initial segment. If Y ⊆ X , then the interval (a, b) in Y need not be equal to the
interval (a, b) considered in X . However, it will be always clear from the context
which underlying set is considered.

A relation R ⊆ X×X is a partial preordering if R is reflexive and transitive.
The strict part of a preordering R is the relation

{〈x, y〉 ⊆ X ×X : xRy ∧ ¬yRx}.

If ≤,  , ! are preorderings, then their strict parts are usually denoted as <, ≺,
�, respectively.

If R is a partial preordering, we can define an equivalence relation E on X by

xEy ≡ (xRy ∧ yRx). (11.4)

Accordingly defined relation R/E on the quotient set X/E is already a partial
ordering. We shall often not distinguish between the partially preordered set 〈X,R〉
and partially ordered quotient set 〈X/E,R/E〉.
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A preordering R on a set X is called a prewell-ordering if every non-empty
subset A ⊆ X has a least element2, i.e., there exists an element a ∈ A such that
for every x ∈ A we have aRx. One can easily see that R is a prewell-ordering of X
if and only if R/E is a well-ordering of X/E, where the equivalence relation E is
defined by (11.4). The order type of the prewell-ordering R is the ordinal number
ot(R) = ot(R/E).

A subset A ⊆ X of a linearly ordered set 〈X,≤〉 is linearly dense in X ,
shortly dense, if for any x, y ∈ X , x < y there exists a z ∈ A such that x < z < y.
A linearly ordered set 〈X,≤〉 is said to be densely ordered if X is linearly dense
in X .

We introduce a technical notion which will be useful in the proof of the next
theorem. Let X1, X2 be subsets of X . If

(∀x1, x2) (x1 ∈ X1 ∧ x2 ∈ X2) → x1 < x2,

we write X1 < X2. We say that x ∈ X lies between X1 and X2 if

(∀x1, x2) (x1 ∈ X1 ∧ x2 ∈ X2) → x1 < x < x2.

If 〈X,≤〉 is a densely ordered set, X1 < X2 are finite subsets, then there exists
an x ∈ X that lies between X1 and X2.
Theorem 11.4.

a) Any countable linearly ordered set can be embedded in any densely ordered
countable set.

b) Any two densely ordered countable sets without the least and the greatest
elements are order isomorphic.

Proof. Let 〈X,≤〉 and 〈Y, 〉 be infinite countable linearly ordered sets. Assume
that X = {xn : n ∈ ω}, Y = {yn : n ∈ ω} are one-to-one enumerations of those
sets.

Assume that X is a densely ordered set. We construct an increasing mapping
f : Y −→ X by induction. We can assume that X neither has a least nor a greatest
element.

Let f(y0) = x0. Assuming that f(yi), i = 0, . . . , n are defined, we define
f(yn+1). Let A = {yi : i ≤ n ∧ yi < yn+1}, B = {yi : i ≤ n ∧ yi > yn+1}.
Then f(A) < f(B). Let xm be the first element lying between f(A) and f(B). Set
f(yn+1) = xm. It is easy to check that f is the desired mapping.

Assume now that both 〈X,≤〉, 〈Y, 〉 are densely ordered sets, both without
the least and the greatest elements. We define an isomorphism f : X 1−1−→

onto
Y by

induction. Actually we define by induction set Xn ⊆ X such that

|Xn| = 2n+ 2, x0, . . . , xn ∈ Xn, y0, . . . , yn ∈ f(Xn).

2Note that in a partial preordering a least and a greatest element need not be unique.
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Let f(x0) = y0. If y1 > y0 take the first xm such that x0 < xm and set
f(xm) = y1 and X0 = {x0, xm}. Similarly in the case y1 < y0. Assume that the
set Xn is defined and f is defined for x ∈ Xn. Let xm be the first element of
X \ Xn. Let A = {x ∈ Xn : x < xm}, B = {x ∈ Xn : xm < x}. Then there
exists the first yk ∈ Y lying between f(A) and f(B). Set f(xm) = yk. Let yl be
the first element of Y \ (f(Xn) ∪ {yk}). Let C = {x ∈ Xn ∪ {xm} : f(x) < yl},
D = {x ∈ Xn ∪ {xm} : f(x) > yl}. Then there exists an xp ∈ X \ (Xn ∪ {xm})
lying between C and D. Set f(xp) = yl and Xn+1 = Xn ∪ {xm, xp}.

One can easily see that f :
⋃
nXn −→

⋃
n f(Xn) is an isomorphism and

X =
⋃
nXn, Y =

⋃
n f(Xn). �

A poset 〈T,≤〉 with the least element 0T ∈ T is called a tree if every initial
segment {v ∈ T : v < u} is a well-ordered set. An element of a tree is called
a node. The element 0T is called the root of T . The height hg(u) of a node u ∈ T
is the order type of the initial segment {v ∈ T : v < u}. The ξth level T (ξ) is the
set of all nodes u ∈ T with hg(u) = ξ. We also denote

T (< ξ) =
⋃

η<ξ

T (η).

The height hg(T ) of a tree T is the least ordinal ξ such that hg(u) < ξ for every
u ∈ T . Thus the height of a tree T is the least ordinal ξ such that T = T (< ξ).
The set of all immediate successors of a node u ∈ T is denoted as IS(u, T ). The
branching degree of a node u ∈ T is the cardinal BD(u) = |IS(u, T )|. If the
branching degree of any u ∈ T is at most 2 we say that T is a binary tree. A node
u ∈ T is called a leaf if IS(u, T ) = ∅. A tree without leafs is pruned. A tree T is
perfect if for any u ∈ T there exist a v > u with BD(v) > 1. Thus a perfect tree
is pruned. A maximal chain in a tree is called a branch. The set of all branches
of a tree 〈T,≤〉 is denoted by [T ]. If u ∈ T we shall denote by [u], or by [u]T in
the case of possible misunderstanding, the set of all branches of T containing the
node u. If u ∈ T is not a leaf, we have

[0T ] = [T ], [u] =
⋃
{[v] : v ∈ IS(u, T )}. (11.5)

A subset S ⊆ T is called a subtree if S has a least element. Often we ask that for
a subtree hg(S) = hg(T ) and 0T ∈ S hold true. In this case we have

[T ] = [S] ∪
⋃

v∈T\S
[v]. (11.6)

For a node v ∈ T we let T v = {u ∈ T : v ≤ u}. Then T v is a tree. If α ∈ [v]T
is a branch, then α ∩ T v is a branch of T v. Moreover, every branch β ∈ T v has a
unique extension α ∈ [v]T : α = β ∪ {u ∈ T : u < v}.

The set T = <ωX ordered by the inclusion ⊆ is a tree of height ω. The nth
level is T (n) = nX . The degree of branching of any s ∈ T is |X |. Thus, if |X | > 1,
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then T is a perfect tree. If |X | = 2, then <ωX is a (typical) binary perfect tree
with height ω. Actually
Theorem 11.5. Let T be a countable tree of height ω. Let E ⊆ T , E �= ∅ be such
that for any u ∈ E there exist two incomparable nodes v, w ∈ E, u < v, u < w.
Then there exists a subtree S of T , S ⊆ E, isomorphic to <ω2.

Proof. We do not need any form of the axiom of choice for the proof. We can
use standard procedure: take fixed enumeration of T and always choose the first
element in this enumeration.

We construct the subtree S by induction constructing the levels S(n). Let
u ∈ E be any minimal element. Set S(0) = {u}. If S(n) ⊆ E is constructed, then
by the supposed property of the set E, every node u ∈ S(n) has at least two
incomparable successors vu, wu ∈ E. Let

S(n+ 1) = {vu : u ∈ S(n)} ∪ {wu : u ∈ S(n)}.

Then S =
⋃
n S(n) ⊆ E is the desired subtree. �

If α ∈ ωX , then {α|n : n ∈ ω} is a branch of the tree <ωX . Vice versa, each
branch of this tree has the form {α|n : n ∈ ω}. Thus we shall identify those two
sets [<ωX ] = ωX . Similarly, if s ∈ <ωX then [s] = {α ∈ ωX : s ⊆ α}.

One can easily prove
Theorem 11.6. Let T1, T2 be countable trees of height ω. Assume that there exist
cofinal subtrees Si ⊆ Ti, i = 1, 2 such that S1 is isomorphic to S2. Then there
exists a bijection f : [T1] 1−1−→

onto
[T2].

D. König [1926] proved the following simple but important statement.
Theorem 11.7 (König’s Lemma). If T is an infinite tree with finite branching degree
of every node and T can be linearly ordered, then T contains an infinite branch.

Proof. One can easily construct an infinite branch of length ω by induction. Let
v0 be the root of T . Assume that we have already constructed a node vn such that
T vn is infinite. Since the branching degree of vn is finite, for at least one node
v ∈ IS(vn, T ) the set T v is infinite. Take for vn+1 the first (in the linear ordering)
such a node in the finite set IS(vn, T ). �

Note that we have assumed that T can be linearly ordered to avoid any use
of the axiom of choice.

Exercises

11.1 Partially Ordered Sets

Let R ⊆ X ×X. The inverse R−1 of the relation R is defined as

R−1 = {〈x, y〉 ∈ X ×X : 〈y, x〉 ∈ R}.
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If R is a partial ordering, then R−1 is too. R−1 is called the dual partial ordering. Every
notion of a poset 〈X,R〉 has its dual notion.

a) Find dual notions of the following notions: the least element, maximal element,
comparable elements, chain, supremum, disjoint elements.

b) Prove Theorem 11.3. What is the dual statement?

c) When are the notions “cofinal” and “dense” mutually dual.

d) The relation of cofinality is transitive, i.e., if A ⊆ B ⊆ C, A is cofinal in B, B is
cofinal in C, then A is cofinal in C. Therefore also the notion of density is transitive.

11.2 Directed Set

A poset 〈E,≤〉 is said to be directed, if for any x, y ∈ E there is a z ∈ E such that x ≤ z
and y ≤ z.

a) If I is an ideal of subsets of a given set X, then 〈I,⊆〉 is a directed set. Similarly
for a filter with the relation ⊇.

b) If 〈E,≤〉 is directed, then the set F(E) defined as

A ∈ F(E) ≡ (A ⊆ E ∧ (∃a ∈ E)(∀x ≥ a)x ∈ A)

is a filter. The filter F(E) is called Fréchet filter. Show that 〈E,≤〉 is order isomor-
phic to a cofinal subset of 〈F(E),⊇〉.

c) Any directed countable set without the greatest element contains a cofinal subset
of the order type ω.

11.3 Ramsey Theorem and Trees

A tree may be used in proving theorems of Ramsey type.

a) Show the particular case of Ramsey Theorem: ℵ0 → (ℵ0)
2
n for any natural number

n.

Hint: Let F : [X]2 −→ n be a coloring, X being infinite countable. Define a mapping
G : <ωn −→ P(X) as follows: if G(s) is finite, set G(s�i) = ∅ for any i < n.
Otherwise choose a g(s) ∈ G(s) and set G(s�i) = {x ∈ G(s) : F (〈g(s), x〉) = i}. By
the König Lemma the subtree {s ∈ <ωn : G(s) is infinite} has an infinite branch
B ⊆ <ωn. Note that for s, s�i ∈ B we have F (〈g(s), g(t)〉) = i for any t ∈ B, t > s.
Thus there exists an i0 < n and infinite A ⊆ B such that F (g(s), g(t)) = i0 for any
distinct s, t ∈ A.

b) Prove Ramsey Theorem: ℵ0 → (ℵ0)
k
n for any natural numbers k, n.

11.4 Well-founded Relation

An antireflexive (x ≺ x for no x ∈ X) transitive relation ≺ on X is well founded if every
non-empty subset of X has a minimal element.

a) Assuming DC, show that ≺ is well founded if and only if there is no infinite de-
creasing chain x0 # x1 # · · · # xn # · · · . If |X| � c, then DC can be replaced by
wAC.

b) If ≺ is well founded, then there exists a unique ordinal ξ and a mapping ρ : X
onto−→ ξ

such that x ≺ y ≡ ρ(x) < ρ(y) for any x, y ∈ X. ρ is called a rank function, ρ(x) is
the rank of x, and ξ is the rank of ≺.

Hint: Set ρ(x) = sup{ρ(y) + 1 : y ≺ x}.
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c) Show that ξ = sup{ρ(x) + 1 : x ∈ X}.
d) Show that the relation � defined on <ωω by

x � y ≡ (x 	= y ∧ (x ⊆ y ∨ (∃n)(∀k < n) (x(k) = y(k) ∧ x(n) < y(n))))

is a linear well-founded ordering.

e) Compute the rank of �.

f) Do the same for the set <ωn, n > 1.

g) If 〈T,≤〉 is a tree, then < is a well-founded relation.

h) If 〈T,≤〉 is a tree, then the height of a node is its rank and the height of the tree
is its rank.

11.5 König’s Lemma

Prove König’s Lemma replacing the assumption that T can be linearly ordered by the
assumption AC<ω defined in Exercise 1.8.

11.2 Rings and Fields

In algebra a function f : Xn −→ X is called an n-ary operation. In practice we
consider mainly unary (= 1-ary) and binary (= 2-ary) operations. In the case of a
binary operation ( : X ×X −→ X we usually denote the value of the operation (
as x ( y or (x ( y) instead of ((x, y). A binary operation ( is called associative if
(x ( y) ( z = x ( (y ( z) for any x, y, z ∈ X . ( is called commutative if x ( y = y ( x
for any x, y ∈ X .

One of the simplest algebraic structures is a group. A set G endowed with a
binary operation ◦ and a particular element e, usually denoted as G = 〈G, ◦, e〉 is
a group if the operation ◦ is associative, e is the identity, i.e.,

(∀x ∈ G) (x ◦ e = e ◦ x = x)

and every element x ∈ G has an inverse element y, i.e., such that x◦y = y ◦x = e.
Since the inverse element is unique we often denote it x−1. If the group operation
◦ is commutative we say that G is a commutative or an Abelian group.

If O is a topology on G such that the binary operation ◦ is a continuous
mapping fromG×G into G and the inverse operation is a continuous mapping from
G into G, then we say that G = 〈G,O, ◦, e〉 is a topological group. One can easily
see that for given a ∈ G the right multiplication f(x) = x ◦ a is a homeomorphism
of G. Since U ⊆ G is a neighborhood of a if and only if f−1(U) is a neighborhood
of e, the topology of a topological group is determined by neighborhoods of the
identity element e. Similarly for the left multiplication a ◦ x.

A set K endowed with two binary operations + and ·, with two particular
elements 0, 1 ∈ K, 0 �= 1, denoted as K = 〈K,+, ·, 0, 1〉, is called a ring if both
operations + and · are associative and commutative, the distributive law holds
true

(∀x, y, z)x · (y + z) = (x · y) + (x · z),
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the elements 0, 1 are additive and multiplicative identity, respectively, i.e.,

(∀x)x + 0 = x, (∀x)x · 1 = x,

and for any element there exists an additive inverse

(∀x)(∃y)x + y = 0.

When we deal with several rings (or similar structure), then to avoid a misunder-
standing we will write K = 〈K,+K , ·K , 0K , 1K〉.

If 〈K,+, ·, 0, 1〉 is a ring, then the structure 〈K,+, 0〉 is a commutative group.
A ring K = 〈K,+, ·, 0, 1〉 is an integral domain if for any x, y ∈ K the implication

x · y = 0 → (x = 0 ∨ y = 0)

holds true. Finally, a ring K = 〈K,+, ·, 0, 1〉 is called a field if for any non-zero
element there exists a multiplicative inverse, i.e.,

(∀x ∈ K,x �= 0)(∃y ∈ K)x · y = 1.

Every field is an integral domain. Moreover, if K = 〈K,+, ·, 0, 1〉 is a field, then
〈K \ {0}, ·, 1〉 is a commutative group.

The additive inverse of an x ∈ K is unique and is usually denoted by −x.
Similarly the multiplicative inverse is unique and is denoted as x−1 or 1/x. Instead
of x+(−y) we write x−y and instead of x ·y−1 = x ·1/y we write x/y. We suppose
that the reader knows elementary properties of those notions from an elementary
course in algebra.

If 〈Ki,+i, ·i, 0i, 1i〉, i = 1, 2 are rings, then a mapping f : K1 −→ K2 is called
a homomorphism if

f(11) = 12, f(01) = 02, f(x+1 y) = f(x) +2 f(y), f(x ·1 y) = f(x) ·2 f(y)

for any x, y ∈ K1. A homomorphism, that is a bijection is called an isomorphism.
Then the inverse mapping f−1 is a homomorphism as well. If K1,K2 are fields
and f is a homomorphism, then also f(1/x) = 1/f(x) for any x ∈ K1, x �= 01.
Two rings (or fields) are isomorphic if there exists an isomorphism from one of
them onto the another one. Evidently isomorphic rings possess the same properties
expressible in terms of the corresponding algebraic structure.

Let 〈K,+, ·, 0, 1〉 be a ring. A subset L ⊆ K is a subring of K if 0, 1 ∈ L and L
is closed under operations +, · and −, i.e., for any x, y ∈ L also x+y, x ·y,−x ∈ L.
One can easily see that 〈L,+|L× L, ·|L× L,−|L, 0, 1〉 is a ring. If L is a field we
say that L is a subfield of K. Any subring of a field is an integral domain.

If K is a ring and A ⊆ K, then there exists the smallest subring L containing
A, i.e., such that L is a subring of K, A ⊆ L and if M ⊇ A is a subring of K, then
L ⊆M . Actually, it suffices to take the intersection of all subrings of K containing



11.2. Rings and Fields 467

A. We say that the subring L is generated by A. Similarly we define the notion of
a field generated by a subset.

Let Ki, i = 1, 2 be rings. We say that K2 is an extension of K1 if there exist
a subring L ⊆ K2 of K2 and an isomorphism f : K1

1−1−→
onto

L. In other words, if K1

can be identified with a subring of K2.
Theorem 11.8. For any integral domain L there exists a field K that is an extension
of L and every element of K admits the form f(x)/f(y), x, y ∈ L, y �= 0, where
f is the isomorphism of L onto a subring of K. Moreover, the field K is unique
up to isomorphism.

Proof. We sketch a proof. Set M = L × (L \ {0}). An element 〈x, y〉 of M is
intended to be the fraction x/y of the field extension of L. So we define a relation
E on M as follows:

〈x1, y1〉E〈x2, y2〉 ≡ x1 · y2 = x2 · y1.

It is easy to see that E is an equivalence relation on M . Let K = M/E, i.e.,

K = {{a}E : a ∈M}.

We define operation + and · on K as follows:

{〈x1, y1〉}E + {〈x2, y2〉}E = {〈x1 · y2 + x2 · y1, y1 · y2〉}E,
{〈x1, y1〉}E · {〈x2, y2〉}E = {〈x1 · x2, y1 · y2〉}E .

It is easy to see that 〈K,+, ·, {〈0, 1〉}E, {〈1, 1〉}E〉 is a field. We define an isomor-
phism f of L onto a subring of K as

f(x) = {〈x, 1〉}E .

Then every element of K has the desired form. �

The unique field of Theorem 11.8 is called the field of fractions of the integral
domain L.

Let K be a ring. Assume that we have a partial ordering ≤ on K. We shall
say that 〈K,≤,+, ·, 0, 1〉 is an ordered ring if the partial ordering is compatible
with ring structure, more precisely, if the following hold true:

0 < 1,
(∀x, y, z ∈ K)x ≤ y → x+ z ≤ y + z,

(∀x, y, z ∈ K) (z > 0 ∧ x ≤ y) → x · z ≤ y · z.

If ≤ is a linear ordering we speak about a linearly ordered ring. If moreover K is
a field we speak about a linearly ordered field.

Let K be a ring. For an element n ∈ ω we define n × x ∈ K for an x ∈ K
by induction: 0 × x = 0K , (n + 1) × x = n × x +K x. A linearly ordered ring K
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has the Archimedes Property if for any x, y ∈ K, x >K 0K there exists a natural
number n ∈ ω such that n× x >K y.

If K is a field we define similarly 1/n× x for x ∈ K and a natural n > 0 as

1/n× x = x/K(n× 1K),

provided that n× 1k �= 0K .
Assume now that 〈K,+K , ·K , 0K , 1K〉 is a field and 〈V,+V , 0V 〉 is a commu-

tative group. 〈V,+V , 0V 〉 is called a vector space over K if an external operation
· : K × V −→ V is given such that the following equalities hold true:

α · (x+V y) = (α · x) +V (α · y), α · (β · x) = (α ·K β) · x,
(α+K β) · x = (α · x) +V (β · x), 0K · x = 0V , 1K · x = x

for any α, β ∈ K and any x, y ∈ V . Since usually from the context it is clear
whether we are dealing with +K or +V , or with ·K or ·, we shall omit the subscripts
and write simply + and ·.

If A = {x0, . . . , xn} ⊆ V is a finite subset, we say that an element x ∈ V
is a linear combination of A if there exist elements α0, . . . , αn ∈ K such that
x = α0 · x0 + · · · + αn · xn. For any such set A the zero element 0 ∈ V is a
trivial linear combination of A: every αi is 0K . If 0 = α0 · x0 + · · · + αn · xn
is a linear combination of A with some αi �= 0K , we say that it is a non-trivial
linear combination. A set B ⊆ V is linearly independent if 0 is not a non-trivial
linear combination of any non-empty finite subset A of B. A maximal (according
to inclusion) linearly independent subset of a vector space V is called a base. It is
well known that a linearly independent subset A ⊆ V is a base if and only if every
element of V is a linear combination of a finite subset of A. Note that generally
for proving that a vector space over a field has a base, we need AC.

Theorem [AC] 11.9. Any two bases of a vector space have equal cardinality.

If there exists a finite base of a vector space, then one can prove Theorem 11.9
in ZF. The common cardinality of bases is called the dimension of the vector space.

If K is a field, then for a given natural number n > 0 one can define in a
natural way a structure of a vector space on Kn:

〈x1, . . . , xn〉+ 〈y1, . . . , yn〉 = 〈x1 + y1, . . . , xn + yn〉,
z · 〈x1, . . . , xn〉 = 〈z · x1, . . . , z · xn〉,

where x1, . . . , xn, y1, . . . , yn, z ∈ K.
The set {〈1K , 0, . . . , 0〉, 〈0, 1K , 0 . . . , 0〉, . . . , 〈0, . . . , 0, 1K〉} is a base of Kn.

Thus the vector space Kn over K is n-dimensional. Moreover, any n-dimensional
vector space over K is isomorphic to Kn with endowed vector space structure.
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Exercises

11.6 Ideal

Let 〈K,+, ·, 0, 1〉 be a ring. A set J ⊆ K, J 	= K is an ideal3 of K if for any x, y ∈ J and
any a ∈ K we have x+ y ∈ J and a · x ∈ J .

a) If f : K1 −→ K2 is a homomorphism from the ring K1 into the ring K2, then the
kernel of f is Ker (f) = {a ∈ K1 : f(a) = 0}. Show that Ker (f) is an ideal provided
that rng(f) 	= {0}.

b) More generally, if f : K1 −→ K2 is a homomorphism from K1 into K2, J ⊆ K2 is
an ideal, then f−1(J) is an ideal, provided that rng(f) � J .

c) Let a ∈ K. The set a · K = {a · x : x ∈ K} is an ideal if and only if there is no
multiplicative inverse of a in K.

d) If K is a field, then the only ideal is the set {0}.
e) AC implies that every ideal is contained in a maximal ideal4.

Hint: Every chain in 〈{J ⊆ K : J is an ideal},⊆〉 is bounded and apply Zorn’s
Lemma.

11.7 Quotient Ring

If J ⊆ K is an ideal we define an equivalence relation as

a ∼J b ≡ a− b ∈ J.

a) If x ∼J y and u ∼J v, then also x+ u ∼J y + v and x · u ∼J y · v.
b) The quotient set K/ ∼J= {{x}∼J : x ∈ K} is a ring with operations

{x}∼J + {y}∼J = {x+ y}∼J , {x}∼J · {y}∼J = {x · y}∼J .

K/ ∼J= {{x}∼J : x ∈ K} is called the quotient ring and denoted simply by K/J .

c) The mapping { }≡J : K −→ K/J is a homomorphism with kernel J .

d) An ideal J is maximal if and only if K/J is a field.

11.8 Euclidean Domain

An integral domain K is a Euclidean domain if there is a mapping ν : K \{0} −→ ω such
that

1) ν(a) ≤ ν(a · b) for any non-zero a, b ∈ K;

2) For any non-zero a, b ∈ K there are q, r ∈ K such that a = b · q+ r and either r = 0
or ν(r) < ν(b).

An element a ∈ K divides an element b ∈ K if there is a c ∈ K such that b = a · c.
Two elements a, b ∈ K are associated if both a divides b and b divides a. An element
associated with the identity 1 is called a unit. A non-unit element a ∈ K is prime if for
any b, c ∈ K, if a divides b · c, then a divides b or a divides c. An element a ∈ K is
a common divisor of b, c ∈ K, if a divides both b and c. A common divisor a of b, c is
a greatest common divisor if any common divisor d of b, c divides a.

3Sometimes also J = K is allowed and if J �= K we speak about a proper ideal.
4Maximal in the ⊆ order.
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a) Euclidean domain K is a principal ideal domain, i.e., any ideal J ⊆ K has the form
aK for some a ∈ K.

Hint: Consider an element a ∈ J with the minimal value of ν(a).

b) If K is a principal ideal domain, then any two elements b, c ∈ K have a greatest
common divisor a ∈ K.

Hint: The set {b · x+ c · y : x, y ∈ K} either contains the multiplicative identity or
is an ideal.

c) If K is a principal ideal domain and a is a greatest common divisor of b, c ∈ K,
then there exist elements x, y ∈ K such that a = b · x+ c · y.
Hint: The set {b ·x+c ·y : x, y ∈ K} is either an ideal or contains the multiplicative
identity.

d) If K is a principal ideal domain, then the ideal aK is maximal if and only if a is
irreducible, i.e., a is not a unit and every non-unit dividing a is associated with a.

e) Show that in a principal ideal domain any irreducible element is prime.

f) A principal ideal domain is a unique factorization domain, i.e., every non-zero el-
ement a ∈ K not associated with 1 can be decomposed as a = ak0

0 · · · akn
n , where

ai ∈ K is irreducible, ki > 0 is an integer, i = 0, . . . , n and this decomposition is
unique up to a permutation and replacing the elements ai by associated ones.

11.9 Polynomials

Let K be a field, x /∈ K. In algebra a symbol x is called a variable and a finite sequence
〈a0, . . . , an〉 of elements of K is written as

p(x) = a0 + a1 · x+ · · ·+ an · xn

and called a polynomial over K. If an = 0 we identify the polynomial p(x) with the
polynomial a0 +a1 ·x+ · · ·+an−1 ·xn−1. The set of all polynomials over K is denoted by
K[x]. If an 	= 0, then n = deg(p) is the degree of the polynomial p. We suppose that the
reader knows how to introduce the addition and the multiplication in K[x]. Then K[x]
is a ring, actually an integral domain.

a) If p, q ∈ K[x], then deg(p + q) ≤ max{deg(p),deg(q)} and deg(p · q) = deg(p) +
deg(q).

b) If p, q ∈ K[x], then there are polynomials s, r ∈ K[x] such that p = s · q + r and
deg(r) < deg(q).

c) K[x] is a Euclidean domain.

Hint: ν(p(x)) is the degree of p(x).

d) Any two polynomials p, q over K have a common divisor of maximal degree.

e) If r is a common divisor of polynomials p, q, and a ∈ K is such that p(a) = q(a) = 0,
then also r(a) = 0.

Hint: Use the result of Exercise 11.8, c).

f) If a polynomial p over K of degree > 1 is irreducible in K[x], then there exists no
a ∈ K such that p(a) = 0.

g) Show that K[x] is a unique factorization domain.

11.10 Vector Space

a) If K is a subfield of a ring L, then L is a vector space over K.

b) K[x] is an infinite-dimensional vector space over the field K.
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Assume that V1, V2 are vector spaces over a field K. A mapping f : V1 −→ V2 is said to
be linear if for any x, y ∈ V1, α ∈ K we have f(x+y) = f(x)+f(y) and f(α·x) = α·f(x).

c) If e1, . . . , en is a base of V1, then a linear mapping f : V1 −→ V2 is uniquely
determined by the values f(e1), . . . , f(en).

d) If f : V1 −→ V2 is a linear mapping, then the kernel {x ∈ V1 : f(x) = 0} is a vector
subspace of V1.

e) If f : V1 −→ V2 is linear, then rng(f) is a vector subspace of V2.

f) If V1 is a vector subspace of V2, define the quotient vector space V2/V1.

11.11 The Existence of a Base

a) Assume that the vector space V over K has a finite dimension n, k ≤ n. If
{e1, . . . , ek} is a linearly independent subset of V , then there are elements ek+1,
. . . , en ∈ V such that {e1, . . . , en} is a base of the vector space V .

Hint: Consider the set {B ⊆ V : B is linearly independent and {e1, . . . , ek} ⊆ B}
ordered by inclusion. Take the set of maximal cardinality.

b) If a vector space V has a finite dimension, then any linearly independent set is a
subset of a base of V .

c) If V1 is a vector subspace of a finite-dimensional V2, then the dimension of V2 is
the sum of dimensions of V1 and V2/V1.

d) If V1 ⊆ V2 are vector spaces over a field K, V2 has a finite dimension, then the
dimension of V1 is not greater than the dimension of V2.

e) Assuming AC, prove the assertion of a) for any vector space: if D ⊆ V is a linearly
independent set, then there exists a base B of V such that D ⊆ B.

Hint: Consider the poset 〈{A ⊆ V : D ⊆ A ∧ A is linearly independent},⊆〉 and
apply Zorn’s Lemma.

f) AC implies that any vector space possesses a base.

g) AC implies that any linearly independent set is a subset of a base.

11.12 Proof of Theorem 11.9

a) Let {e1, . . . , en} be a base of V , {b1, . . . , bm} being linearly independent. By induc-
tion construct a permutation 〈k1, . . . , kn〉 of 〈1, . . . , n〉 such that

{b1, . . . , bi, eki+1 , . . . , ekn}

is a base of V .

Hint: If k1, . . . , ki are constructed, then bi+1 =
∑i

j=1 xjbj +
∑n

j=i+1 xjekj . There
exists a j > i such that xj 	= 0. Take ki+1 = j.

b) Prove Theorem 11.9 for finite-dimensional space: if a vector space V has a finite
base e1, . . . , en, then any other base has n elements.

c) In an n-dimensional vector space any n+ 1 vectors are linearly dependent.

d) If B,C are bases of V , then |[B]<ω| = |[C]<ω |.
Hint: Any finite subset of B is contained in a subspace of V generated by a (uniquely
determined) finite subset of C.

e) Assuming AC prove Theorem 11.9 for V with an infinite base.
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11.13 Algebraic Extension of a Field

Let L ⊆ K be a subfield of a field K. Let a ∈ K. Similarly as in Exercise 11.9 we denote

L[a] = {p(a) ∈ K : p is a polynomial over L}.

By L(a) we denote the smallest subfield of K containing a as an element and L as
a subset. The element a ∈ K is called algebraic over L if there exists a polynomial p over
L such that p(a) = 0. K is called an algebraic extension of L if every element of K is
algebraic over L.

a) L[a] is a subring of K.

b) If a ∈ K is algebraic over L, then there exists an irreducible polynomial p over L
such that p(a) = 0. Moreover, this polynomial has minimal degree among polyno-
mials q with q(a) = 0.

Hint: Use Exercise 11.9, g).

c) Assume that a is algebraic over L, p(a) = 0, where p is an irreducible polynomial
over L. Then for any polynomial q over L there exists a polynomial r over L with
deg(r) < deg(p) such that q(a) = r(a).

Hint: Use Exercise 11.9, b).

d) If a ∈ K is algebraic over L, then L(a) = L[a].

Hint: Use the result of Exercise 11.8, c) for the ring L[x].

e) a ∈ K is algebraic over L if and only if L(a) as a vector space over L has a finite
dimension.

Hint: By c), if p(a) = 0 and n is the degree of p, then the dimension of the vector
space L[a] over L has a dimension ≤ n. Vice versa, if the dimension of L(a) over
L is n, then the elements 1, a, a2, . . . , an are linearly dependent over L.

f) If a is algebraic over L, b ∈ K, then a is algebraic over L(b) as well.

g) If a ∈ K is algebraic over L and b ∈ L(a), then b is algebraic over L as well.

Hint: Use the result of e).

h) If a is algebraic over L and b is algebraic over L(a), then b is algebraic over L.
Moreover, if dimension of L(a) over L is n, and dimension of L(a)(b) over L(a) is
m, then dimension of L(b) over L is not greater than 1 + (n− 1)(m− 1).

Hint: Consider the dimension of the vector space L(b) over L. If 1, e1, . . . , en−1 is
a base of L(a) over L, 1, f1, . . . , fm−1 is a base of L(a)(b) over L(a), then every
element of L(a)(b) is a linear combination of elements 1, ei · fj , i < n, , j < m over
L. Use the result of Exercise 11.12, b).

i) The set of all elements of K algebraic over L is a subfield of K.

Hint: If a, b ∈ K, b 	= 0 are algebraic over L, then the vector space L(a)(b) over L
has finite dimension and a+ b, a− b, a · b, a/b ∈ L(a)(b).
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11.3 Topology and the Real Line

Maybe the title of the section should be “Adequacy of the topology in investigation
of the real line” or something similar. The main aim of the section is to show how in
the very abstract theory of topological spaces the real line appears as an important
tool. In this section we shall use the axiom of choice in essential ways.

We present three Theorems 11.11, 11.12 and 11.14, which have in common
the following. All say that two conditions are equivalent. The first condition is
formulated in a purely topological language. The second condition essentially uses
the real line or the unit interval.

The notion of a normal topological space was dealt with in Section 1.2. We
know that this notion is not hereditary, i.e., there exists a normal topological space
with a non-normal subspace. It turned out that there exists a weaker property of
a topological space than normality which is hereditary: the notion of a completely
regular topological space. However, in the definition we need the real line.
Theorem 11.10. Any subspace of a completely regular topological space is com-
pletely regular.

Let 〈X,O〉 and 〈Y,Q〉 be topological spaces, f : X 1−1−→ Y being a homeo-
morphism of 〈X,O〉 onto 〈f(X),Q|f(X)〉. The triple 〈Yi,Qi, fi〉 is called a com-
pactification of 〈X,O〉 if Y is compact and f(X) = Y . Compare Exercise 1.20.

The first main result reads as follows.
Theorem [AC] 11.11. Let X be a topological space. Then the following are equiv-
alent:

a) There exists a compactification of X.
b) X is completely regular.

Proof. According to Theorems 1.27, c), 3.15 and 11.10, if 〈X,O〉 has a compacti-
fication, then 〈X,O〉 is completely regular.

We just sketch the idea of a proof of the opposite implication, which can be
found in any textbook of topology.

Let 〈X,O〉 be a completely regular topological space. We denote by F the
set of all continuous functions from X into [0, 1]. Let Z = F [0, 1] be endowed with
the product topology. By the Tychonoff Theorem 1.37 the topological space Z is
compact. Let us remark that a basic open subset of Z is a set of the form

{ϕ ∈ F [0, 1];ϕ(f0) ∈ U0 ∧ · · · ∧ ϕ(fn) ∈ Un},

where f0, . . . , fn ∈ F and U0, . . . , Un are open subsets of [0, 1]. We define an
injection j : X 1−1−→ Z setting j(x) = ϕ, where ϕ(f) = f(x) for each f ∈ F . Let
Y = j(X) ⊆ Z. Then Y , being a closed subset of Z, is compact and 〈Y, j〉 is a
compactification of X . �

If κ = |F| then the product spaces κ[0, 1] and F [0, 1] are homeomorphic and
we can replace the compact space Y by a subspace of κ[0, 1].
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Theorem [AC] 11.12. Let X be a topological space. Then the following are equiv-
alent:

a) X is compact.
b) There is a cardinal κ and a closed subset Y ⊆ κ[0, 1] such that X and Y are

homeomorphic.

Thus the real line, actually the unit interval [0, 1], plays an important rôle in
description of all compact spaces: compact spaces are, up to a homeomorphism,
exactly closed subsets of some power κ[0, 1] of the unit interval [0, 1]. In other
words, the unit closed interval generates all compact spaces by two operations:
(infinite) topological product and taking closed subspaces.

One can easily see that usually a completely regular space has several com-
pactifications, e.g., both T and [0, 1] are compactifications of (0, 1) with the natural
injections. A compactification 〈Y1,Q1, f1〉 is weaker (compare Exercise 1.20) than
the compactification 〈Y2,Q2, f2〉 if there exists a continuous mapping g : Y2

onto−→ Y1

such that f1 = f2 ◦ g. We shall also say that the compactification 〈Y2,Q2, f2〉 is
stronger than 〈Y1,Q1, f1〉.
Theorem [AC] 11.13 (E. Čech – M.H. Stone).

a) The strongest compactification of a completely regular topological space is up
to homeomorphism unique.

b) The compactification of the proof of Theorem 11.11 is the strongest one.

Proof. If 〈Yi,Qi, fi〉, i = 0, 1 are two strongest compactifications of a completely
regular space X , then there exist continuous mappings gi : Yi −→ Y1−i such that
fi ◦ gi = f1−i, i = 0, 1. Since g1(g0(f0(x))) = f0(x) for any x ∈ X and f0(X) is
dense in Y0, we obtain that g0 ◦ g1 = idY0 . Similarly for g1 ◦ g0. Thus g0 and g1
are homeomorphisms.

Assume that 〈Y, k〉 is a compactification of X , and 〈Z, j〉 is the compactifi-
cation constructed in the proof of Theorem 11.11. We have to find a continuous
mapping g : Z onto−→ Y such that j ◦ g = k. If x ∈ X then of course we set
g(j(x)) = k(x). Now assume that ϕ ∈ Z \X ⊆ F [0, 1].

For any continuous function f : Y −→ [0, 1] we define f : Z −→ [0, 1] by
f(ϕ) = ϕ(k ◦ f) for ϕ ∈ Z.

If x ∈ X then by definition j(x) = ψ, where ψ(h) = h(x) for h ∈ F . Thus

f(j(x)) = ψ(k ◦ f) = f(k(x)).

Consequently
k ◦ f = j ◦ f. (11.7)

If f, f1, f2 : Y −→ [0, 1] are continuous and f = min{1, f1 + f2}, then we have
also f = min{1, f1 + f2}. Actually, for x ∈ X we obtain the equality by (11.7) and
since j(X) is dense in Z the equality holds on Z.
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For a ϕ ∈ Z we write

Aϕ = {f : Y −→ [0, 1]; f continuous ∧ f(ϕ) = 0}.

One can easily show that there exists a unique point y ∈ Y such that y ∈ Z(f) for
any f ∈ Aϕ. We set g(ϕ) = y. �

The unique strongest compactification (up to homeomorphism) of a com-
pletely regular topological space 〈X,O〉 is denoted by 〈βX, βO, j〉 and is called
Čech-Stone compactification.

We close with the important characterization of the Čech-Stone compactifi-
cation, which can be easily proved using the previous constructions.

Theorem [AC] 11.14. Let us assume that 〈X,O〉 is a completely regular topological
space, 〈Y,Q〉 is compact, j : X 1−1−→ Y is a homeomorphism of X onto j(X), and
j(X) is dense in Y . Then the following are equivalent:

a) 〈Y,Q, j〉 is the Čech–Stone compactification of 〈X,O〉.
b) For every continuous function f : X −→ [0, 1] there exists a continuous

function F : Y −→ [0, 1] such that j ◦ F = f .

11.4 Some Logic

Similarly as in other scientific disciplines, a mathematician, like a meteorologist,
geologist, chemist, physician, physicist, historian, tries to predict what will happen
or, to explain what actually has happened (with the hope that in future we can
avoid such an unhappy event or repeat a happy one). However, the attempt of
a mathematician in his prediction or/and presentation of results is rather specific.
A mathematician introduces abstractions of considered items and tries to deduce
new knowledge from assumed properties of such abstractions.

A historically developed attempt by mathematicians to make predictions is
based on an abstraction leading to a formulation of primitive notions and axioms,
which describe the basic properties of primitive notions, completed by necessary
definitions as abbreviations for more complicated notions, and usually continues
with a series of theorems with their proofs. The short name for this attempt
is usually expressed as “Definition, Theorem, Proof”.5 Essentially this attempt
was first presented by Euclid about 300 B.C. in his Στoιχει̃α (Stoichea). Till now
mathematicians have not essentially changed this attempt in presentations of their
results, but have instead made non-trivial improvements and have developed the
method presented by Euclid. However, do not forget that mathematics is more
than a proof of a theorem. Usually an abstraction is inspired by a real situation
or problem.

5I suppose that it should be “Axiom, Definition, Theorem, Proof”.
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Logic of the 20th century uses a formal language to describe precisely one
side of this attempt. Since we are going to investigate the work of mathematicians,
we work in metamathematics. We must be very careful in our choice of methods.
We shall try to use in metamathematics only methods that are finite. If we use
some notions of set theory in our investigations, i.e., in metamathematics, we use
them just as a convenient way of speaking and no property of the set we consider,
we prefer to say collection, can be based on an assumption concerning infinity.

We recall the structure of the most used type, which is called the first-order
predicate calculus. We essentially follow J.R. Shoenfield [1967].

A first-order language L has logical symbols:

a) the variables x, y, z, . . . , x1, x2, . . . ;
b) logical connectives ¬,∧,∨,→,≡;
c) the quantifiers ∃, ∀

and may contain non-logical symbols:

d) n-ary predicate symbols P,Q,R, . . . for some n ≥ 0;
e) n-ary function symbols f, g, h, . . . for some n > 0;
f) constants a, b, c, . . . .

Usually we demand that a language contain at least one predicate symbol. We
assume that the reader is familiar with the definitions of a term, free variable in
a term, atomic formula, formula, free and bound variable in a formula. Writing
ϕ(x1, . . . , xk) we say that the formula ϕ does not contain other free variables than
those occurring in the list x1, . . . , xk and not necessarily all of them. Let us recall
that a formula not containing any free variable is called a closed formula . The
metamathematical collection of all closed formulas of a language L is denoted by
CF(L). The universal closure (∀ . . . )ϕ of a formula ϕ(x1, . . . , xk) is the closed
formula (∀x1) . . . (∀xk)ϕ(x1, . . . , xk).

Given a language L, some formulas expressing true statements are called
logical axioms. A finite sequence of formulas of the form

ϕ1, . . . , ϕk
ϕ

,

which leads from true statements to a true statement, is called a rule of inference.
The intended interpretation is such that a rule of inference produces from provable
formulas above the line a provable formula written below the line. We leave it to
the taste of the reader to choose her/his favorite system of logical axioms and rules
of inference.6 Usually modus ponens ,

ϕ, ϕ→ ψ

ψ
,

6I prefer that of S.C. Kleene [1952]. Another plausible system is that of J.R. Shoenfield [1967]
or M. Goldstern and H. Judah [1995].
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is a rule of inference for any formulas ϕ, ψ. In S.C. Kleene [1952] the following
sequences are rules of inference:

ψ(x1, . . . , xk) → ϕ(x, x1, . . . , xk)
ψ(x1, . . . , xk) → (∀x)ϕ(x, x1, . . . , xk)

,
ϕ(x, x1, . . . , xk) → ψ(x1, . . . , xk)

(∃x)ϕ(x, x1, . . . , xk) → ψ(x1, . . . , xk)
,

provided that ψ does not contain the variable x.
A mathematical theory or shortly a theory T is a subcollection of the col-

lection CF(L) of all closed formulas in a language L. The elements of T are called
axioms of the theory T. Since we want to use only finite methods, in the case of
an infinite theory T we must have an algorithm deciding if a given formula is an
axiom or it is not. If T is a theory and ϕ is a closed formula, then T + ϕ is the
theory T ∪ {ϕ}.

If a mathematician tries to express the symmetry of an equality, he usually
says “x = y → y = x” instead of “(∀x)(∀y) (x = y → y = x)”. Generally, if a for-
mula ϕ does not contain any quantifier, then an axiom of the form ϕ(x1, . . . , xk)
means actually the universal closure (∀x1) . . . (∀xk)ϕ(x1, . . . , xk). Such a conven-
tion, called the interpretation of generality, is freely used.

Usually a language of a mathematical theory contains the predicate symbol =
for an equality. Then the theory must contain corresponding axioms for equality:
reflexivity, symmetry, transitivity and substitution rules for every predicate symbol
and every function symbol. We illustrate it in the following examples.
Example 11.1. We describe the Peano arithmetic PA. The language LPA of Peano
arithmetic consists of the predicate symbol of equation =, two binary function
symbols +, · and two constants 0, 1. Thus (not very correctly written)

LPA = {=,+, ·, 0, 1}.

We start with the axioms for equality. The reflexivity, symmetry and transitivity
of the equation is expressed by the universal closure of the formulas

x = x, x = y → y = x, x = y → (y = z → x = z).

The substitution rules for function symbols +, · are the universal closures of the
formulas

(x1 = x3 ∧ x2 = x4) → x1 + x2 = x3 + x4, (x1 = x3 ∧ x2 = x4) → x1 · x2 = x3 · x4.

The next axioms of PA are the formulas (their universal closure):

x + 0 = x,
x + (y + 1) = (x + y) + 1,
x · 0 = 0,
x · (y + 1) = (x · y) + x,
¬(∃x) x + 1 = 0,
x + 1 = y + 1 → x = y,
¬ x = 0 → (∃y) x = y + 1.
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Finally, PA contains infinitely many axioms described by the scheme of mathe-
matical induction: if ϕ(x, x1, . . . , xk) is a formula of the language of PA then

(ϕ(0, x1, . . . , xk) ∧ (∀x) (ϕ(x, x1 , . . . , xk) → ϕ(x + 1, x1, . . . , xk)))
→ (∀x)ϕ(x, x1, . . . , xk)

(its universal closure) is an axiom of PA.
Example 11.2. The language LZF of Zermelo–Fraenkel set theory ZF has two
binary predicate symbols =,∈. The axioms of equality are those of reflexivity,
symmetry, transitivity and the substitution rule for predicate symbol ∈:

(x1 = x3 ∧ x2 = x4) → (x1 ∈ x2 → x3 ∈ x4).

The other axioms of ZF are those of Section 1.1.
The theory ZFC is ZF completed by the axiom of choice AC.

A sequence of formulas ϕ1, . . . , ϕn is a proof in the theory T if for any member
of the sequence, i.e., for any i = 1, . . . , n, at least one of the conditions holds true:

p1) ϕi is a logical axiom,

p2) ϕi is an axiom of the theory T,

p3) there are indexes j1, . . . , jk < i such that

ϕj1 , . . . , ϕjk
ϕi

is an inference rule (of your chosen logical system).

A formula ϕ is provable in T, written T � ϕ, if there exists a proof in the theory
T with the last member ϕ. We used to say that ϕ is a theorem of the theory T.

A theory T is inconsistent if there exists a closed formula ϕ such that both
T � ϕ and T � ¬ϕ. Otherwise, the theory T is consistent. Note that in an in-
consistent theory T any closed formula is provable, or equivalently, a theory T is
consistent if and only if there exists a closed formula non-provable in T. When
the paradoxes of the naive set theory developed in 1870s appeared, the mathe-
matical theory ZF was formulated and mathematicians hoped to show that ZF is
consistent. As we shall see, it is impossible.

Let L1, L2 be two finite languages, L1 = {P1, . . . , Pn, f1, . . . , fk, a1, . . . , al}.
Assume that ψ, ϕ1, . . . , ϕn are formulas of L2 and t1, . . . , tk, s1, . . . , sl are terms of
L2 such that ψ has one free variable, the number of free variables in ϕi is the arity
of the predicate Pi, i = 1, . . . , n, the number of free variables in ti is the arity of fi,
i = 1, . . . , k, and si is a term without a free variable, i = 1, . . . , l. The interpreta-
tion Θ of L1 in L2 given by formulas ψ, ϕ1, . . . , ϕn and terms t1, . . . , tk, s1, . . . , sl is
a metamathematical mapping which assigns to any formula ϕ of L1 a formula Θ(ϕ)
of L2 obtained by replacing each occurrence of P1, . . . , Pn, f1, . . . , fk, a1, . . . , al in ϕ
by corresponding expressions ϕ1, . . . , ϕn, t1, . . . , tk, s1, . . . , sl of the language L2



11.4. Some Logic 479

and replacing each quantifier (∀x)ϑ, (∃x)ϑ by (∀x) (ψ → ϑ), (∃x) (ψ ∧ϑ), respec-
tively. More precisely Θ((∀x)ϑ) is the formula (∀x) (ψ → Θ(ϑ)) and Θ((∃x)ϑ) is
the formula (∃x) (ψ ∧Θ(ϑ)). For details we recommend any standard textbook in
mathematical logic, e.g., J.R. Shoenfield [1967] or P. Hájek and P. Pudlák [1993].

If T1, T2 are theories in the languages L1, L2, respectively, then an interpre-
tation Θ of the language L1 in the language L2 is a syntactic model of the theory
T1 in the theory T2 if the following conditions are satisfied:

a) T2 � (∃x)ψ(x),

b) T2 � (ψ(x1) ∧ · · · ∧ ψ(xpi)) → ψ(ti(x1, . . . , xpi)) for i = 1, . . . , k,

c) T2 � ψ(si) for i = 1, . . . , l,

d) T2 � Θ(ϕ) for any axiom ϕ of T1.

Usually we speak about a model instead of a syntactic model. J.R. Shoenfield
[1967] uses the notion of an “interpretation of the theory T1 in T2” instead of
a syntactic model. The basic property of a syntactic model is expressed by
Metatheorem 11.1. If Θ is a syntactic model of a theory T1 in a theory T2, and
T1 � ϕ, then T2 � Θ(ϕ).
Example 11.3. We describe an interpretation of the language of Peano arithmetic
PA into the language of Zermelo–Fraenkel set theory ZF. We use the definitions
in the theory ZF introduced in Section 1.1.

ψ(x) = x ∈ ω, Θ(x = y) = x = y,

Θ(0) = ∅, Θ(1) = {∅},
Θ(t1 + t2) = Θ(t1) + Θ(t2), Θ(t1 · t2) = Θ(t1) ·Θ(t2).

Actually we have misused the notation. We have used the sign “=” in at least three
different meanings. The sign “+” on the left side of the fifth equality denotes the
name of an operation of the language of Peano arithmetic, and the same sign “+”
on the right side of this line denotes the “term” of ZF introduced in Section 1.1.
Similarly for the sign “·”.

The interpretation Θ is a syntactic model of the theory PA in the theory ZF.

The theory T2 is said to be stronger than the theory T1, or equivalently,
the theory T1 is said to be weaker than the theory T2, if there exists a syntactic
model of T1 in T2. Thus by Example 11.3, the theory ZF is stronger than the
theory PA. If the language of a theory T1 is a subcollection of the language of
a theory T2 and every axiom of T1 is provable in T2, then the identical mapping
is a syntactic model of T1 in T2 and the theory T2 is stronger than T1. In this
case we shall say that T2 is an extension of the theoryT1.
Example 11.4. The interpretation of ZFC in ZFC + “κ is a strongly inaccessible
cardinal” given by formulas7

|TC(x)| < κ, x = y, x ∈ y
7For the definition and properties of the transitive closure TC(x) see Exercise 1.1.
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is a syntactic model of ZFC in

ZFC + “there exists a strongly inaccessible cardinal”.

We can assume that κ is the smallest strongly inaccessible cardinal. Then this
interpretation is a syntactic model of ZFC + “there is no strongly inaccessible
cardinal” in the theory ZFC + “there exists a strongly inaccessible cardinal”.

The main result connecting consistency of a theory and a syntactic model is
the following.
Metatheorem 11.2. If the theory T2 is consistent and there exists a syntactic model
Θ of T1 in T2, then T1 is consistent as well.

Demonstration. Actually, assume that T1 is inconsistent. Then there is a closed
formula ϕ in the language of T1 such that T1 � ϕ and T1 � ¬ϕ. Then T2 � Θ(ϕ)
and T2 � Θ(¬ϕ). By the definition of an interpretation we have Θ(¬ϕ) = ¬Θ(ϕ),
hence T2 � ¬Θ(ϕ), which is impossible. �

Thus, as the main consequence of Example 11.4 we obtain
Metatheorem 11.3 (K. Kuratowski). If ZFC is consistent, then

ZFC � “there is a strongly inaccessible cardinal”.

When we say that “there exists a (syntactic) model Θ of T1 in T2” we want
actually to say that “if the theory T2 is consistent, then T1 is consistent as well”.

All our metamathematical reasonings can be encoded by natural numbers like
a computer encodes any communication in English by sequences of zeros and ones,
which can be considered as binary expansions of natural numbers. Any formula
of the language of PA is encoded by a natural number and this number has its
name as a term without free variables in the language of PA. The property “n is
the number of a logical axiom” can be expressed by a formula of PA. Going on we
can construct a formula expressing “m is the number of a proof of a formula with
the number n”, finishing with the formula ConsPA expressing that “the formula
0 = 1 is not provable in PA”. This formula is an encoding of the assertion that
“PA is consistent”.

In similar way, in the language of PA or ZF, we can encoded as a formula
ConsZF the assertion “ZF is consistent”. By Example 11.3 we obtain

PA � ConsZF → ConsPA.

Since ZF is stronger than PA, we have also

ZF � ConsZF → ConsPA.

On the other hand, by the elementary model theory developed in ZF, one
can easily show that

ZF � Θ(ConsPA),
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where Θ is the syntactic model of Example 11.3, and

ZF + “there exists a strongly inaccessible cardinal” � ConsZF.

We can consider any theory T stronger than PA satisfying the above-men-
tioned finiteness condition: there exists an algorithm deciding about a given for-
mula, whether it is an axiom of the theory T or it is not. Such a theory is called
axiomatizable. The theory ZF is an axiomatizable theory stronger than PA. We
can also construct a formula ConsT expressing the consistency of T.

K. Gödel [1931] proved an important result.

Metatheorem 11.4 (Gödel’s Second Theorem). If the theory PA is consistent, then
PA � ConsPA. More generally, if T is a consistent axiomatizable theory stronger
than PA, then T � ConsT.

According to our restriction to finite metamathematics, we assume that any
metamathematical consideration can be formalized in the theory PA. So, if we
prove the consistency of PA using our metamathematical finite tools, we could
translate the consideration in a proof of ConsPA in PA, contradicting the Second
Gödel’s Theorem. Hence, though we believe that PA is consistent, we cannot prove
its consistency.

We can allow metamathematical reasoning based on the notion of an actual
infinity. Again, we must impose some restriction. The most natural one is that any
metamathematical consideration can be formalized in the theory ZF. Then any
metamathematical proof of consistency of ZF could be translated into a proof of
ConsZF in ZF, again contradicting Gödel’s Second Theorem.

We briefly describe an impact of the existence of a strongly inaccessible car-
dinal on the existence of sets of natural numbers. Now we work in a set theory,
say ZFC. By the basic results of model theory, actually by Gödel’s Completeness
Theorem (see again J.R. Shoenfield [1967]), a theory is consistent if and only if it
has a model. By the Löwenheim-Skolem Theorem, see, e.g., J.R. Shoenfield [1967],
if a theory has a model then it has a countable model. A model of the set theory
formalized in ZFC is a relation on a countable set, that can be encoded as a set
R ⊆ ω. Since ConsZFC is not provable in ZFC, it is not provable that there exists
such a set R. However, in ZFC+“there exists a strongly inaccessible cardinal” one
can prove ConsZFC and therefore one can prove that there exists a special set
R ⊆ ω. Thus the existence of a large (inaccessible) cardinal allows us to prove the
existence of a set of natural numbers, or equivalently, the existence of a real, that
cannot be proved in ZFC alone.

Gödel’s Second Theorem can be generalized in the following way.

Metatheorem 11.5 ( Gödel’s Generalized Second Theorem). If T is a consistent
axiomatizable theory stronger than PA, Θ is a syntactic model of T in T, then
T � Θ(ConsT).

For details we recommend the reader to P. Hájek and P. Pudlák [1993].
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It is natural to say that a theory T1 is consistently stronger than a theory
T2 if the consistency of T2 follows from that of T1. However, there are at least
two basic problems. By Gödel’s Second Theorem we cannot prove the consistency
of the majority of theories we shall deal with. Secondly, what do we mean by “the
consistency . . . follows from . . . ”? To be precise and to avoid both problems, we
introduce a modified notion that is sufficient for our purposes. A theory T1 is
consistently stronger than the theory T2 if there exists a syntactic model of T2

in T1. We shall say that the theories T1 and T2 are equiconsistent if both T1 is
consistently stronger than T2 and T2 is consistently stronger than T1. Finally, T1

is strictly consistently stronger than the theory T2 if T1 is consistently stronger
than T2 and T1 and T2 are not equiconsistent.

An inconsistent theory is a consistently strongest theory. Actually any two
inconsistent theories are equiconsistent. Of course, we shall not consider inconsis-
tent theory. Assuming that the considered theories are consistent, Gödel’s Second
Theorem gives us a tool for strict inequality. We illustrate this phenomena by
examples.

Example 11.5. If the theory PA is consistent then by Gödel’s Second Theorem one
cannot prove ConsPA in PA. By Example 11.3 there is a natural syntactic model
of PA in ZF. Moreover, in ZF one can prove Θ(ConsPA), where Θ is the syntactic
model of Example 11.3. If Ξ were a syntactic model of ZF in PA, then Θ ◦ Ξ is
a syntactic model of PA in PA and PA � Ξ(Θ(ConsPA)), contradicting Gödel’s
Generalized Second Theorem 11.5. Thus, if PA is consistent, then the theory ZF
is strictly consistently stronger than PA.

Example 11.6. If the theory ZFC is consistent then by Gödel’s Second Theorem
one cannot prove ConsZFC in ZFC. By Example 11.4 there is a syntactic model of
ZFC in ZFC+“there exists a strongly inaccessible cardinal”. Similarly as above we
obtain that if ZFC is consistent, then ZFC + “there exists a strongly inaccessible
cardinal” is strictly consistently stronger than ZFC.

We close the section with another important topic, which was practically the
main theme of the book. Let T be a theory. For simplicity we assume that T
is consistent. A closed formula ϕ in the language of T is called an undecidable
statement of T if neither T � ϕ nor T � ¬ϕ. Theory T is complete if there is no
undecidable statement of T. Otherwise T is incomplete.

At the beginning of 1930s, K. Gödel surprised the mathematicians with an un-
expected result.

Metatheorem 11.6 (Gödel’s Incompleteness Theorem). If the theory PA is con-
sistent, then PA is incomplete, i.e., there exists an undecidable statement in PA.
More generally, if T is a consistent axiomatizable theory stronger than PA, then
T is incomplete. Especially, if ZF or ZFC is consistent, then ZF or ZFC is in-
complete, respectively.

Note the following consequence of the Metatheorem. If T is a consistent
axiomatizable theory stronger than PA, then there exists a closed formula ϕ un-
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decidable in T. Consequently, both T + ϕ and T + ¬ϕ are consistent and incom-
plete. Thus, there exist formulas ψ1 and ψ2 undecidable in T + ϕ and T + ¬ϕ,
respectively. We can go on.

As of now we know only quite complicated undecidable statements of PA.
The example presented below is a nice exception. In the case of ZFC or ZF, we
know that plenty of very important statements are undecidable, starting with CH
and finishing with the problem of reversing the order of integration. In the next
section we present those undecidable statements of ZF or ZFC which are closely
related to the topics of the book.

We present a combinatorial principle that is undecidable in Peano arithmetic
PA. We slightly change the definition of the partition relation m→ (r)kn presented
in Exercise 1.14. The strong partition relation m−→∗ (r)kn denotes the following:

for any mapping F : [m]k −→ n there exists a set A ⊆ m and an i < n such that
|A| = r, minA ≤ r and F (x) = i for any x ∈ [A]k.

From the infinite Ramsey Theorem proved in Exercise 11.3 we can easily
conclude that

ZFC � (∀k)(∀n)(∀r)(∃m)m−→∗ (r)kn.

On the other hand, J. Paris and L. Harrington [1977] showed that

if PA is consistent, then PA � (∀k)(∀n)(∀r)(∃m)m−→∗ (r)kn.

Consequently,

if ZF is consistent, then (∀k)(∀n)(∀r)(∃m)m−→∗ (r)kn is undecidable in PA.

For further information we recommend the monograph by P. Hájek and
P. Pudlák [1993].

11.5 The Metamathematics of the Set Theory

In spite of the fact that quite satisfactory theories of real numbers were developed
in the second half of the 19th century before establishing set theory as a theory of
infinity, further investigations of the real line needed a notion of infinity. The set
theory developed by G. Cantor turned out to be a very convenient framework for
such a job, that was done mainly in the 20th century. The deep results of set theory,
after the invention by P. Cohen [1963] of forcing, made an essential contribution
to the knowledge of the structure of the real line. Therefore we present some basic
results concerning the forcing and models of the set theory, that have an impact
on the properties of reals.

Basically, two types of axiomatization of the theory were developed. Zermelo-
Fraenkel type of axiomatization is usually formulated as ZF or ZFC, and was
presented in Section 1.1. Von Neumann-Bernays-Gödel axiomatization is based on
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the notions of a set and a class. For more details we recommend K. Gödel [1938],
T. Jech [2006], or P. Vopěnka and P. Hájek [1972]. The theory ZF needs infinitely
many axioms, the theory GB has only finitely many axioms. The basic result (at
least under some assumptions) connecting both theories reads as follows:

If ϕ is a formula in the language of ZF, then GB � ϕ if and only if ZF � ϕ.

Thus, ZF describes the behavior of sets as well as theory GB. Mathematicians
usually prefer to work in ZF or ZFC. Therefore the presented results will be for-
mulated for Zermelo-Fraenkel type of axiomatization.

In the late 1960s a manuscript written by A.R. Mathias with the name “Sur-
realistic Landscape with Figures” was widespread and intensively used. The paper
was a survey of recent results obtained mainly by forcing construction of (syntac-
tic) models of set theory, shortly called independence results. Later, the paper
was published as A.R. Mathias [1979]. We need a shorter version of such a survey,
however, containing more recent results. This section tries to be such a survey
written according to our needs. We shall try to attribute to each presented result
the source where it is presented, if possible the original one. However, many results
were obtained by several authors independently and they are often considered as
a folklore result.

To simplify our presentation we shall assume that

ZF is consistent. (11.8)

Thus a metatheorem of the form “ZF + ϕ is consistent” is an abbreviation for “If
ZF is consistent, then ZF+ϕ is consistent as well”. If in a particular metatheorem
we need the consistency of ZF + ψ then, for the sake of brevity, we say “ψ is
consistent”. Hence a metatheorem of the form “If ZF + ψ is consistent, then also
ZF + ϕ is consistent” will be expressed as “If ψ is consistent, then also ZF + ϕ
is consistent” or as “If ψ is consistent, then also ϕ is consistent”. According to
Metatheorem 11.2 and our assumption, if we say “there is a model in which ϕ
holds true” we mean the main consequence of this statement saying that “if ZF is
consistent, then ZF + ϕ is consistent as well”.

K. Gödel [1938], [1944] defined a class L of constructible sets. Then he showed
that the interpretation of ZF in ZF (actually, K. Gödel worked with GB) defined
simply by restricting the variables to L is a syntactic model of ZF.8 Moreover, in
this model V = L holds true, i.e., every set in this model is a constructible set.
According to our convention we can express this result as

ZF + V = L is consistent. (11.9)

Then K. Gödel showed that

ZF + V = L � GCH + AC. (11.10)
8Thus, Gödel’s model is the triple of formulas x ∈ L, x = y, x ∈ y.
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Thus
ZF + AC and ZFC + GCH are consistent. (11.11)

According to our convention the last result reads fully as follows: “If ZF is consis-
tent, then ZF + AC and ZFC + GCH are consistent as well.”

If GCH holds true, then any inaccessible cardinal is strongly inaccessible.
Thus any inaccessible cardinal is a strongly inaccessible cardinal in Gödel’s model.
Therefore by the Kuratowski Metatheorem 11.3 we obtain

ZFC � “there exists an inaccessible cardinal”, (11.12)

i.e., if ZFC is consistent, then we cannot prove the existence of an inaccessible
cardinal.

If ≤ is a well-ordering of ωω, we write

R(≤) = {〈α, β〉 ∈ ωω × ωω : {γ ∈ ωω : γ < α} = {Projn(β) : n ∈ ω}}. (11.13)

J.W. Addison [1958b] continued in the study of the constructible universe L and
showed that

ZF + V = L �“ there exists a well-ordering ≤L of ωω in order
type ω1 such that the set R(≤L) is a Σ1

2 set (11.14)
and (∀α ∈ ωω)(∃β ∈ ωω) 〈α, β〉 ∈ R(≤L).”

Since
α <L β ≡ (∃γ) (〈β, γ〉 ∈ R(≤L) ∧ (∃n)α = Projn(γ))

we obtain Gödel’s result
<L∈ Σ1

2. (11.15)

Let us remark that it is easy to show that (11.15) implies that the set

{〈α, β〉 ∈ ωω × ωω : {γ ∈ ωω : γ <L α} ⊇ {Projn(β) : n ∈ ω}}

is Σ1
2. To show that the set defined by the opposite inclusion is Σ1

2 as well, one
needs to know more about the fine structure of the constructible universe L.

D. Scott [1961] proved that

ZF + V = L � “There is no measurable cardinal.” (11.16)

The last assertion follows also from a result of P. Vopěnka [1962].
A. Fraenkel [1922] and A. Mostowski [1939], [1948] developed a method of

permutation models allowing one to show that the axiom of choice AC is not
provable in a weak version of ZF (allowing so-called individuals), neither in ZF +
“Every set can be linearly ordered” nor in ZF + DC.

The definite answer about provability of CH and AC was given by P.J. Co-
hen [1963] and [1966]:

The theories ZFC + ¬CH and ZF + ¬AC are consistent. (11.17)
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Moreover, the technology invented for the construction of corresponding models by
P.J. Cohen, called forcing, turned out to be very fruitful and was further indepen-
dently improved by D. Scott [1971], R.M. Solovay [1970b] and P. Vopěnka [1962]
and [1967], and is still successfully used. Moreover the forcing was combined with
Fraenkel-Mostowski permutation models. There exists a general method, invented
by T. Jech and A. Sochor [1966], for transforming a Fraenkel-Mostowski permu-
tation model in a model of ZF. Using forcing, many results of independence were
obtained. The forcing construction is investigated in several monographs, of which
we recommend T. Jech [2006] or K. Kunen [1980].

We would like to say that “ZFC+2ℵ0 = κ is consistent, where κ is a cardinal”.
Such a sentence has no sense, since we mix two levels of communication: the
words before the comma are spoken in metamathematics and the sentence “κ is
a cardinal” is a formula of ZF, roughly speaking, “κ is a cardinal” is said inside
mathematical theory ZF. We may avoid such a problem, using a new defined
constant in ZF, by a formula ϕ, provided that

ZF � (∃x)ϕ(x) ∧ (∀x) (ϕ(x) → x is a cardinal) ∧ (∀x, y) (ϕ(x) ∧ ϕ(y) → x = y).

The same holds true for any extension of ZF, e.g., for the theory ZFC. Thus we can
say that “ZFC + 2ℵ0 = ℵ2 is consistent” or “ZFC + 2ℵ0 = ℵω1 is consistent”, since
both ℵ2 and ℵω1 are constants defined in ZF and expressing a cardinal. Actually
ℵ2 is the second uncountable cardinal and ℵω1 is the first cardinal such that there
exist uncountably many smaller cardinals. In theory ZFC + IC one can define
a new constant “the first inaccessible cardinal”. In the next, if κ is a constant
defined in ZF (or its extension) expressing a cardinal, we shall briefly say that κ
is a well-defined cardinal.

Cohen’s result (11.17) can be improved as

If κ is a well-defined cardinal such that

ZFC � cf(κ) > ω, then ZFC + 2ℵ0 = κ is consistent. (11.18)

As usual, a subset of ω is identified with a real (e.g., using the dyadic expansion).
According to this convention, Cohen’s model was constructed “by adding κ Cohen
reals”.

Immediately after Cohen’s result, S. Feferman and A. Levy [1963] constructed
a model of the theory

ZF + “P(ω) is a union of countably many countable sets”. (11.19)

T. Jech [1967] and S. Tennenbaum [1968] constructed independently different
models to show

ZFC + “there exists a Souslin line” is consistent. (11.20)

Then R.M. Solovay and S. Tennenbaum [1971] constructed a model of ZFC, in
which there exists no Souslin line, i.e., in which the Souslin Hypothesis holds true.



11.5. The Metamathematics of the Set Theory 487

D.A. Martin realized, see D.A. Martin and R.M. Solovay [1970], that they have
actually shown that for any well-defined uncountable regular cardinal κ,

ZFC + c = m = κ is consistent. (11.21)

Several mathematicians independently have shown that in Cohen’s model the
following equalities hold true:

non(M) = ℵ1 ∧ cov(M) = c. (11.22)

Thus, using results summarized in Diagram 3 of Section 9.2, in Cohen’s model we
have (compare T. Bartoszyński and H. Judah [1995], A. Blass [2010])

m = p = t = h = add(N ) = add(M) = cov(N ) = non(M) = b = s = ℵ1

and
cov(M) = r = d = cof(M) = cof(N ) = non(N ) = c > ℵ1.

R. Solovay [1970b] constructed another model for ¬CH. He “added Random
reals” to the ground model. He essentially showed (compare T. Bartoszyński and
H. Judah [1995], A. Blass [2010]) that for a well-defined regular cardinal κ,

c = κ ∧ cov(N ) = c ∧ d = non(N ) = ℵ1 is consistent. (11.23)

Then G.E. Sacks [1971] constructed a model of ZFC (“adding Sacks reals”)
in which

c = ℵ2 ∧ cof(N ) = ℵ1. (11.24)

For given well-defined cardinals λ, κ, µ satisfying

ℵ1 ≤ λ ≤ cf(µ) ≤ µ ≤ κ ∧ cf(κ) > ℵ0,

S.H. Hechler [1974] by “adding Hechler reals” to a model of d = µ ∧ c = κ
constructed a model of ZFC, in which

b = λ ∧ d = µ ∧ c = κ. (11.25)

Moreover, if, e.g., λ = ℵ1, µ = κ, then in Hechler’s model we have (for details see
T. Bartoszyński and H. Judah [1995] or A. Blass [2010])

cov(N ) = b = s = ℵ1 ∧ non(M) = cov(M) = c. (11.26)

By adding Hechler reals to a model of GCH, one obtains a model of ZFC in which

add(M) = c = ℵ2 ∧ cov(N ) = s = ℵ1. (11.27)

Another basic result is a construction of a model of ZFC by R. Laver [1976] (“by
adding Laver reals”) in which the Borel Conjecture holds true:

ZFC + b = c = ℵ2 + cov(N ) = non(N ) = ℵ1 + “Borel Conjecture”
is consistent. (11.28)
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Adding Mathias reals, A.R.D. Mathias [1977] has constructed a model of ZFC in
which

h = c = ℵ2 ∧ cov(N ) = non(N ) = ℵ1. (11.29)

Later on, R. Laver showed that the Borel Conjecture holds true in Mathias’ model.
K. Kunen and F. Tall [1979] showed that

ZFC+m < add(N )+m < p is consistent. (11.30)

J. Baumgartner and R. Laver [1979] showed that

ZFC + c = ℵ2 + “every perfectly meager set has cardinality ≤ ℵ1”
is consistent (11.31)

and (see A.W. Miller [1983])

ZFC + c > ℵ1 + “every universal measure zero set has cardinality ≤ ℵ1”
is consistent. (11.32)

Finally, there is no hope to prove (in ZFC) that there exists a large σ-set, since
by A.W. Miller [1979] we have

ZFC + “every σ-set of reals is countable” is consistent. (11.33)

A.W. Miller [1981] (alternatively adding a Cohen and a Laver real) con-
structed a model of ZFC, in which

cov(N ) = ℵ1 ∧ add(M) = c = ℵ2. (11.34)

In the same paper A.W. Miller [1981] constructed a model of ZFC in which

cov(M) = non(M) < d = non(N ). (11.35)

Then A.W. Miller [1984b] constructed a model of ZFC (adding Miller re-
als) in which (see also T. Bartoszyński and H. Judah [1995] and A. Blass and
S. Shelah [1989])

c = d = ℵ2 ∧ r = non(N ) = non(M) = ℵ1. (11.36)

S. Shelah [1984b] showed that

h < s = b is consistent. (11.37)

On the other hand, J. Baumgartner [1984], p. 128 and independently A. Dow [1989]
constructed a model of ZFC, in which

ℵ1 = h = s < b. (11.38)
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A. Kamburelis [1989] (also A. Krawczyk, unpublished) showed that

ZFC + cof(M) < cof(N ) is consistent. (11.39)

In [1990] A. Dow showed that in Laver’s model for (11.28)

“Dow Principle” holds true. (11.40)

T. Carlson [1993] showed the consistency of the dual Borel Conjecture:

ZFC + “every strongly meager set is countable” + c > ℵ1 is consistent. (11.41)

A Cichoń Diagram contains ten cardinal invariants. Each of them may have
the value ℵ1 or c > ℵ1 (eventually others). There are 23 possible ways in which to
distribute the values ℵ1 and c > ℵ1 without contradicting the inequalities of the
Cichoń Diagram. T. Bartoszyński and H. Judah [1995] present the construction
of 23 syntactic models of ZFC in ZFC for all those possibilities (several of them
were constructed by other authors). We present it as
Metatheorem 11.7. Any of 23 distributions of values ℵ1 and c > ℵ1 to cardinal
invariants in a Cichoń Diagram which does not contradict the proved inequalities,
is consistent with ZFC.

R.M. Solovay [1970b] proved

If ZFC + IC is consistent, then the theory
ZF + DC + “every set of reals is Lebesgue measurable”
+ “every set of reals has the Baire Property” (11.42)
+ “every uncountable set of reals contains a perfect set”
is consistent as well;

and

If ZFC + IC is consistent, then the theory
ZFC + “every projective set of reals is Lebesgue measurable”
+ “every projective set of reals has the Baire Property” (11.43)
+ “every uncountable projective set of reals contains a perfect set”
is consistent as well.

Later S. Shelah [1984a] (see also J. Raisonnier [1984]) showed that

If ZF + wAC + “every Σ1
3 set of reals is Lebesgue measurable” is consistent,

then ZFC + IC is consistent. (11.44)

Actually the result easily follows from Raisonnier’s Theorem 9.27. If every Σ1
3 set

of reals is measurable, then for every a ⊆ ω, the cardinal ℵL(a)
1 must be countable

(otherwise by Theorem 9.27 we can construct a non-measurable Σ1
3 set of reals).
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Using some elementary reasoning (see Historical and Bibliographical Notes to
Chapter 9) it implies that ℵ1 is inaccessible in L. The results can be refined in
many directions, see J. Raisonnier [1984].

On the other hand, S. Shelah announced – for a proof see H. Judah and
S. Shelah [1993] – that

“every set of reals has the Baire Property”∧DC is consistent. (11.45)

More information can be found, e.g., in T. Bartoszyński and H. Judah [1995].
The former results can be summarized as follows:

The theories ZF + wAC + “every set of reals is Lebesgue measurable”
and ZFC + IC are equiconsistent

and

The theories ZF + DC + “every set of reals has the Baire Property”
and ZFC are equiconsistent.

Let us consider the theory ZFC + “there exists a measurable cardinal”. In
this theory the constant “the first measurable cardinal κ” can be well defined.
Assume that λ is a well-defined cardinal such that

ZFC + “there exists a measurable cardinal” � λ < κ.

By similar reasoning as in Example 11.6 and using the Hanf-Tarski Theorem 10.19
one obtains

The consistency strength of the theory
ZFC + “there exists a measurable cardinal”
is strictly greater than the consistency strength of the theory
ZFC + “there exist λ strongly inaccessible cardinals.”

If λ1, λ2 are well-defined cardinals such that ZFC � λ1 < λ2 < κ, then

The consistency strength of the theory
ZFC + “there exist λ2 strongly inaccessible cardinals”
is strictly greater than the consistency strength of the theory
ZFC + “there exist λ1 strongly inaccessible cardinals.”

Since one can easily well define potentially infinitely many cardinals less than
the first measurable one (e.g., ℵ1, ℵ2, ℵω, ℵω1 etc.), we conclude that there ex-
ists potentially infinitely many strengths of consistency between the consistency
of ZFC and consistency of ZFC + “there exists a measurable cardinal”, i.e., the
consistency strength of the latter theory is very high.
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By Metatheorem 9.8 the consistency strength of AD is at least as much as
that of the existence of a measurable cardinal, therefore it is very high. Indeed,
it is much higher. W.H. Woodin [1999] in a deep investigation of the consistency
strength of the Axiom of Determinacy isolated the notion of a Woodin cardinal. We
did not develop technology for explaining this notion. Remark just the following:
if κ is a Woodin cardinal, then the set {λ < κ : λ is a measurable cardinal} has
cardinality κ. The main result by W.H. Woodin reads as follows.

The theory ZF + AD is equiconsistent with the theory
ZFC + “there exists infinitely many Woodin cardinals”. (11.46)

More surprising is another result by W.H. Woodin [1999] which connects the
consistency of the Axiom of Determinacy with the consistency of a combinatorial
property of the power set of ω1. We denote by NS the ideal of non-stationary
subsets of ω1, i.e., the ideal of those subsets that are disjoint with some closed
unbounded subset of ω1. W.H. Woodin [1999] has shown that

The theory ZFC + AD is equiconsistent with the theory
ZFC + “Boolean algebra P(ω1)/NS has a dense subset of cardinality ℵ1”.

For details see A. Kanamori [2009].
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[1932] Théorie des opérations linéaires, Monografie Matematyczne 1, Warszawa
1932.

[1948] Sur les suites d’ensembles excluant l’existence d’une mesure, (Note post-
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Nauk., JČMF, Praha 1930.

Boole G.

[1847] The mathematical analysis of logic, 1847.

Booth D.

[1970] Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1–24.

Borel É.
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Quaderni di Matematica, 18 (2007), 107–132.

[2008] On wQN∗ and wQN∗ spaces, Topology Appl. 156 (2008), 24–27.

[∞] Generalized Luzin Sets, to appear in Acta Univ. Carolinae – Math. Phys.
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Bukovský L., Rec�law I. and Repický M.
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[2009] Dirichlet Sets and Erdős-Kunen-Mauldin Theorem, Proc. Amer. Math.
Soc. 128 (2009), 1111–1121.

Engelking R.

[1977] General Topology, Monografie Matematyczne 60, Warszawa 1977, revised
edition: Heldermann Verlag, Berlin, 1989.

Engelking R. and Kar�lowicz M.

[1965] Some theorems of set theory and their topological consequences, Fund.
Math. 57 (1965), 275–285.

Erdős P.
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Kiadó, Budapest 1984.
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[1917] Sur une définition des ensembles mesurables B sans nombres transfinis,
C. R. Acad. Sci. Paris 164 (1917), 88–91.

[1920] Problème 3, Fund. Math. 1 (1920), 223.

Staš M.

[2008] Hurewicz Scheme, Acta Univ. Carolinae – Math. Phys. 49 (2008), 75–78.

Steinhaus H.

[1920] Sur les distances des points dans les ensembles de mesure positive, Fund.
Math. 1 (1920), 93–104.

Stone M.H.

[1936] The theory of representations for Boolean algebras, Trans. Amer. Math.
Soc. 40 (1936), 37–111.

[1937] Applications of the theory of Boolean rings to general topology, Trans.
Amer. math. Soc. 41 (1937), 375–481.

[1947] The generalized Weierstrass approximation theorem, Math. Mag. 21
(1947–48), 167–183 and 237–254.

Talagrand M.

[1980] Compacts de fonctions mesurables et filtres non mesurable, Stud. Math.
67 (1980), 13–43.

Tarski A.

[1924] Sur les ensembles finis, Fund. Math. 6 (1924), 45–95.
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[1930] Une contribution à la théorie de la mesure, Fund. Math. 15 (1930), 42–50.
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linearly independent, 468

linked, 381

Luzin, 308

meager, 26

innerly, 270

perfectly, 294

perfectly
in the transitive sense, 453

strongly, 303

measurable

Carathéodory, 128

Lebesgue, 140

N0-, 358

N-, 354

negative, 138

nowhere dense, 26

of functions separates
points, 114

of measure zero

strong, 300

universal, 294

of reals

open, 46

of the first Baire category, 26

open, 21

dense, 460

order dense in a poset, 460

ordered

linearly, 458

partially, 458

outer regular, 130

partially ordered

κ-closed, 185

separative, 185

perfect, 22

permitted, 361

porous, 305

positive, 138

predense in a poset, 460

projective, 230

pseudo Dirichlet, 357

Q-, 314

quotient, 458

Radon, 130

regular, 130

regular open, 21

Sierpiński, 308

sifted

by a sieve, 166

sifted by a Souslin scheme, 162

splits, 199

stationary, 435

Steinhaus, 442

strong I-, 315

tail-, 268

thin, 250, 392

topologically dense, 21

transitive, 4

uncountable, 6

uniformizes, 179

universal, 173

Vitali, 259

Wadge Γ -complete, 220

Wadge Γ -hard, 220

Wadge reducible, 220

weak Dirichlet, 357

well-ordered, 459

sets

almost disjoint, 188

Borel isomorphic, 228

Borel separable, 224

shift, 157

of a set, 75

sieve, 166

space

Σ-, 317

γ-, 333

wQN∗-, 352

wQN∗-, 352

S1(A,B)-, 335

Ufin(A,B)-, 341

QN-, 317

wQN-, 317

Baire, 74

Banach

dual, 97

Cantor, 74

compact
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sequentially, 92

connected

arcwise, 85

locally arcwise, 86

Euclidean, 74

Fréchet, 28

measure, 128

complete, 128

metric, 74

totally bounded, 91

Polish, 86

ideal, 253

perfect, 86

topological, 21

κ-Baire, 35

σ-compact, 25

CCC, 187

compact, 24

completely regular, 81

extremally disconnected, 191

first countable, 33

Hausdorff, 21

Lindelöf, 33

locally compact, 25

normal, 21

perfectly normal, 81

regular, 21

second countable, 33

separable, 22

topologically complete, 35

zero-dimensional, 26

spaces topological homeomorphic, 23

statement undecidable, 482

strategy, 207

winning, 208

structure convergence, 27

subalgebra, 183

complete, 183

subcover, 458

subfield, 466

subring, 466

generated by a subset, 467

subset, 2

cofinal in, 460

predense in a poset, 460

subspace topological, 21

subtree, 462

successor, 458

immediate, 458

sum

arithmetic, 75

direct

of Boolean algebras, 191

of a series, 49

of topological spaces, 93

partial of a series, 49

support of a Borel measure, 130

supremum, 459

surjection, 456

symbol

logical, 476

non-logical, 476

term

of a series, 49

of an infinite product, 50

Theorem, 2

Čech, 35

Alexandroff-Hausdorff, 218

Baire Category, 26

Balcar, 391

Banach-Alaoglou, 97

Bell, 382

Bernstein, 16

Binomial, 18

Bolzano, 48

Boolean Prime Ideal, 10

Cantor-Bernstein, 5

Chinese Remainder, 45

Dirichlet, 355

ergodic, 157

maximal, 158

Euclid, 44

Fatou-Lebesgue, 150

Fodor, 435

Fundamental of Arithmetics, 45

Hahn-Banach, 96

Hessenberg, 7

Kronecker, 449

Kuratowski, 115

Kurepa, 439
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Lagrange, 52

Lebesgue Density, 143

Liouville, 46

Luzin, 255

Luzin-Sierpiński, 238

on Mathematical Induction, 4

Open Mapping, 95

Periodicity

First, 419

Second, 420

Radon-Nikodým, 151

Ramsey, 20, 464

Riesz, 152

Rolle, 52

Sierpiński, 46

Steinhaus, 258

Stone-Weierstrass, 114

Szpilrajn-Marczewski, 257

T. Carlson, 305

Tarski, 7

Tietze-Urysohn, 82

Tsaban-Zdomskyy, 326

Weierstrass

first, 47

second, 47

Zermelo, 8, 405

Theorem [ϕ], 2

Theorem [AC], Theorem [wAC], 2

theories equiconsistent, 482

theory

axiomatizable, 481

complete, 482

consistent, 478

consistently stronger, 482

strictly, 482

incomplete, 482

inconsistent, 478

mathematical, 477

stronger, 479

weaker, 479

Zermelo-Fraenkel set, 2

topology, 21

coarser than, 27

discrete, 27

Euclidean, 75

induced by a metric, 75

of pointwise convergence, 111

Polish, 86

product, 27

subspace, 21

weak∗, 97

weaker than, 27

tower, 197

transformation, 456

tree, 462

Aronszajn, 438

special, 440

base matrix, 205

binary, 462

normal, 432

perfect, 462

pruned, 462

Souslin, 432

ultrafilter, 10, 184

P-point, 391

Q-point, 391

selective, 391

thin, 392

trivial, 10

uniform, 10

ultrametric, 74

unit, 469

value

of continued fraction, 66

of a product, 50

variable, 470

first-order, 233

second-order, 233

zero-order, 233

variation

bounded, 55

negative, 55

positive, 55

total, 55

of measure, 138

zero set, 81
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