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Preface

Recently, the non-associative algebraic analytic structures of the spaces of bounded
complex harmonic functions and harmonic functionals, which are eigenfunctions of
convolution operators on locally compact groups and their Fourier algebras, have
been studied in detail in [13, 14]. It was proposed in [13] to further the investiga-
tion in the non-abelian matrix setting which should have wider applications. This
research monograph presents some new results and developments in this connec-
tion. Indeed, we develop a general theory of matrix convolution operators on Lp

spaces of matrix functions on a locally compact group G, for 1 ≤ p ≤ ∞, focus-
ing on the spectral properties of these operators and their eigenfunctions, as well
as convolution semigroups, and thereby the results in [9, 13, 14] can be subsumed
and viewed in perspective in this matrix context. In particular, we describe the Lp-
spectrum of these operators and study the algebraic structures of eigenspaces, of
which the one corresponding to the largest possible positive eigenvalue is the space
of Lp matrix harmonic functions. Of particular interest are the L∞ matrix harmonic
functions which carry the structure of a Jordan triple system. We study contractiv-
ity properties of a convolution semigroup of matrix measures and its eigenspaces.
Connections with harmonic functions on Riemannian manifolds are discussed.

Some results of this work have been presented in seminars and colloquia in
London, Cergy-Pontoise, Hong Kong, Taiwan, Tübingen and York. We thank
warmly the audience at these institutions for their inspiration and hospitality, and
hope this monograph will also serve as a useful reference for the interested audience.

The author gratefully acknowledges financial support from the University of
London Central Research Fund, as well as support of the European Commission
through its 6th Framework Programme “Structuring the European Research Area”
and the contract RITA-CT-2004-505493, during his visit in 2006 at IHÉS, France,
where part of this work was carried out. It is a pleasure to thank several Referees for
their generous comments.

Key words and phrases. Matrix-valued measure. Matrix Lp space. Matrix convolution operator.
Spectrum and eigenvalue. Matrix harmonic function. Convolution semigroup. Group C*-algebra.
JB*-triple. Riemannian symmetric space. Elliptic operator.
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Chapter 1
Introduction

Let G be a locally compact group and 1 ≤ p ≤ ∞. In this monograph, we study
the basic structures of the convolution operators f �→ f ∗σ on Lp spaces of matrix-
valued functions on G, induced by a matrix-valued measure σ on G. This study
is motivated by recent works in [9, 10, 12–14, 16] on complex and matrix-valued
σ -harmonic functions on G which are eigenfunctions of the operator f �→ f ∗σ , as
well as their applications in [45] and the fact that a system of scalar convolution
equations is equivalent to a matrix convolution equation. The ubiquity of matrix-
valued functions gives another impetus to our investigation, for example, the matrix
convolution f ∗σ of a matrix distribution f and a matrix measure σ on R

n has been
used in [49] to study partial differential and convolution equations and recently,
applications of vector-valued L2-convolution operators with matrix-valued kernels
have been described in depth in [6], and the Fredholm properties of finite sums
of weighted shift operators on �p spaces of Banach space valued functions on Z

n

have been analysed in detail in [54]. Convolution operators on Lp spaces of real
and complex functions are well-studied in literature, however, there are at least two
new elements in the matrix setting, namely, the non-commutativity of the matrix
multiplication and the non-associative structures of the harmonic functions, which
add complexity to the subject and often require more delicate treatment. Some of
our results for matrix convolution operators are also new in the scalar case.

Among many well-known examples of convolution operators, the following is
relevant to us. Let G be a connected Lie group and let L be a second order
G-invariant elliptic differential operator on G, annihilating the constant functions.
Then L generates a convolution semigroup of probability measures {σt}t>0 on G,
giving rise to a strongly continuous contractive semigroup Tt : Lp(G)−→ Lp(G) of
convolution operators, where 1≤ p < ∞ and

T0 = I , Tt( f ) = f ∗σt (t > 0).

A function f ∈ L∞(G) satisfies Tt( f ) = f for all t > 0 if, and only if, it is C2 and
L-harmonic on G, that is, L f = 0 (cf. [39] and [1, Proposition V.6]). Moreover,
a C2 Lp-function f on G satisfies L f = α f if, and only if, Tt( f ) = eαt f for all

C.-H. Chu, Matrix Convolution Operators on Groups. Lecture Notes in Mathematics 1956, 1
doi: 10.1007/978-3-540-69798-5, c© Springer-Verlag Berlin Heidelberg 2008



2 1 Introduction

t > 0. A similar example in the matrix setting has been given in [9]. More gener-
ally, if L is a translation invariant Dirichlet form on a locally compact group G,
then the semigroup it generates is also a semigroup of convolution operators on
Lp(G). In view of these examples, it is natural to include convolution semigroups
{σt}t>0 of matrix-valued measures in our study. Also, the 1-eigenspace { f ∈ L∞(G):
f ∗σt = f} of Tt , that is, the space of bounded σt -harmonic functions on G, will be
of particular interest to us.

Now we outline the contents of the monograph. Let Mn be the space of n× n
complex matrices. We first introduce, in Chapter 2, Lp spaces of Mn-valued func-
tions on G, denoted by Lp(G,Mn), as a setting for convolution operators. We recall
some basic definitions and derive some results for scalar convolution operators in
Section 2.1, for later reference. In Section 2.2, we discuss differentiability of the
norm in Lp(G,Mn). When Mn is equipped with the Hilbert-Schmidt norm, we com-
pute, in Proposition 2.2.5, the Gateaux derivative of the norm of Lp(G,Mn). This is
needed in Chapter 4 for proving some differential inequalities for matrix convolu-
tion semigroups in order to derive hypercontractive properties.

We study, in Chapter 3, the matrix convolution operators Tσ : f ∈ Lp(G,Mn) �→
f ∗σ ∈ Lp(G,Mn), where σ is an Mn-valued measure. Due to non-commutativity
of the matrix multiplication, we need to introduce the left convolution operator
Lσ : f �→ σ ∗� f in order to have a consistent duality theory. In the scalar case,
we have Tσ = Lσ . This gives another perspective of the difference between the
scalar and matrix cases. We first characterise the matrix convolution operators Tσ ,
in Section 3.1, and show they are translation invariant operators satisfying some
continuity condition. On the matrix L1 space, they are exactly the operators com-
muting with left translations. This result is known to be false in the scalar case for
Lp spaces if p �= 1, even when G is abelian. We give precise results in the ma-
trix setting for all p. In Section 3.2, we give necessary and sufficient conditions in
Theorem 3.2.1 for weak compactness of the convolution operator Tσ on the matrix
L1 and L∞ spaces. In Section 3.3, we focus on the spectral properties of Tσ . We
prove various results concerning its spectrum and eigenvalues. To obtain these re-
sults, we introduce the matrix-valued Fourier transform and, for abelian groups G,
the determinant of a matrix-valued measure σ on G. The latter enables us to reduce
some arguments to the scalar case. Among other results for abelian groups, we ex-
tend the Wiener-Levy theorem to the matrix setting and use it to show in Theorem
3.3.23 that, for an absolutely continuous matrix-valued measure σ on an abelian
group G, the Lp-spectrum of Tσ is exactly the closure of the eigenvalues of matrices
in the Fourier image of σ . For p = 2, absolute continuity of σ is not required and
the result follows from a matrix version of the Plancherel theorem for L2(G,Mn).
For non-abelian groups, computation of spectrum is known to be rather complicated
and there seem to be fewer definitive results even in the scalar case. Nevertheless,
we develop a device to study the L2 spectrum by identifying the left convolution
operator Lσ on L2(G,Mn) as an element in the tensor product C∗r (G)⊗Mn of the
reduced group C*-algebra C∗r (G) and Mn. From this, we are able to deduce several
spectral results for Tσ and obtain an extension of the above result for L2-spectrum to
the non-abelian case. We show, in Corollary 3.3.39, that, for absolutely continuous
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symmetric σ and disregarding 0, the L2-spectrum of Tσ consists of spectrum of each
element in σ̂( ̂Gr), where σ̂ is the Fourier transform of σ and ̂Gr is the reduced dual
of G. However, for compact groups G and absolutely continuous σ , the convolu-
tion operator Tσ is compact and the above result for Lp-spectrum of Tσ still holds
in this case. As an application, we use the above result for L2-spectrum to describe
the spectrum, in Example 3.3.41, of a discrete Laplacian Ld of a (possibly infinite)
homogeneous graph acted on by a discrete group. If, moreover, Ld acts on vector-
valued functions on the graph, its spectrum is called the vibrational spectrum in [20],
because of its connection with vibrational modes of molecules, and our result also
applies for the case of Mn-valued functions.

The last topic in Chapter 3 concerns the eigenspaces of Tσ :

Hα(Tσ ,Lp(G,Mn)) = { f ∈ Lp(G,Mn) : f ∗σ = α f}.

For α = ‖σ‖, which is the largest possible non-negative eigenvalue, the functions
in Hα(Tσ ,Lp(G,Mn)) are the Mn-valued Lp σ -harmonic functions on G. By nor-
malizing, we consider the space H1(Tσ ,Lp(G,Mn)) for ‖σ‖= 1 and discuss synthe-
sis for complex-valued harmonic functions on abelian groups. For any group G, we
show in Proposition 3.3.56 that there is a contractive projection from Lp(G,Mn) onto
H1(Tσ ,Lp(G,Mn)) and that H1(Tσ ,Lp(G,Mn)) = H1(Lσ̃ ,Lq(G,Mn))∗, for ‖σ‖= 1
and 1 < p < ∞. For p = ∞, this result was proved in [9] and it implies that the
space H1(Tσ ,L∞(G,Mn)) of bounded σ -harmonic functions carries the structure of
a Jordan triple system. The triviality of H1(Tσ ,L∞(G,Mn)), that is, the absence of
a non-constant function in H1(Tσ ,L∞(G,Mn)), is a Liouville type theorem for σ .
Such a Liouville theorem has been proved in [16] when G is nilpotent and σ is pos-
itive and non-degenerate. When σ is positive and adapted, it is not difficult to show
that H1(Tσ ,Lp(G,Mn)) is trivial for compact groups G and for all p. For arbitrary
groups, we show that H1(Tσ ,L1(G,Mn)) has dimension at most n2.

In Section 3.4, we study Jordan structures of the eigenspace H1(Tσ ,L∞(G,Mn))
and discuss applications to harmonic functions on Riemannian symmetric spaces.
To put things in perspective, we first explain how Jordan structures originated from
the geometry of Riemannian symmetric spaces. It is therefore interesting that the
eigenspace H1(Tσ ,L∞(G,Mn)), which is closely related to harmonic functions on
symmetric spaces, also carries a Jordan structure. A symmetric space can be repre-
sented as a right coset space G/K of a Lie group G. Furstenberg [29] has charac-
terised bounded harmonic functions on a symmetric space Ω = G/K of non-compact
type in terms of convolution of a probability measure σ on G. Making use of this and
of our previous results, one can show that the space H∞(Ω,C) of bounded harmonic
functions on Ω contains non-constant functions and has the structure of an abelian
C*-algebra. This gives a Poisson representation of H∞(Ω,C). We should note that,
although this Jordan C*-approach is slightly different from [29] and is valid in the
wider class of locally compact groups, it is based on the main ideas in [29]. The
remaining Section 3.4 is devoted to determining when the space H1(Tσ ,L∞(G)) is a
Jordan subtriple of the von Neumann algebra L∞(G).
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The object of study in Chapter 4 is the convolution semigroup S = {σt}t>0 of
matrix-valued measures on G. Our investigation is guided by two objectives. One
is the application to harmonic functions on Lie groups. The other concerns con-
tractivity properties of the semigroup. The semigroup {σt}t>0 induces a semigroup
{Tσt}t>0 of convolution operators on Lp(G,Mn). Hence our previous results and
techniques can be used in this context. For instance, one can show that there is a
contractive projection P : Lp(G,Mn)−→ Lp(G,Mn) with range

⋂

t>0

H1(Tσt ,L
p(G,Mn)) = { f ∈ Lp(G,Mn) : f = f ∗σt for all t > 0}

which is the space of matrix Lp harmonic functions for the generator of {Tσt}, and
is denoted by H p

S(G,Mn). It is a Jordan triple system when p = ∞. If σt ≥ 0, the triv-
iality of H∞

S (G,Mn) implies that G is amenable. If {σt}t>0 is generated by the above
elliptic operator L on a connected Lie group G, then H p

S(G,C) is the space of Lp

L-harmonic functions on G and it follows from the spectral theory of Tσ that
all Lp L-harmonic functions on G are constant for 1 ≤ p < ∞ (cf. Proposition
4.1.8), and the bounded L-harmonic functions form an abelian C*-algebra which
also admits a Poisson representation. The latter result has been proved in [1].
We should remark that the non-existence of a non-constant Lp L-harmonic func-
tion on Lie groups, for 1 < p < ∞, is well-known from a result of Yau [64] for
complete Riemannian manifolds. However, an analogous result for p = 1 requires
non-negativity of the Ricci curvature and cannot be applied directly to Lie groups
because Ricci curvature of a Riemannian metric can change sign in Lie groups [50].
In the last section, we extend Gross’s result on hypercontractivity for semigroups
[36] to the matrix setting, and show in Theorem 4.2.5 that the matrix semigroup
{Tσt}t>0 is hypercontractive if, and only if, its generator satisfies a log-Sobolev
type inequality.



Chapter 2
Lebesgue Spaces of Matrix Functions

In this Chapter, we introduce the notations and define the spaces Lp(G,Mn) of matrix
Lp functions on locally compact groups G as a setting for later developments. We
recall some basic definitions and derive some results for convolution operators in the
scalar case. We discuss differentiability of the norm in Lp(G,Mn) which is needed
later, and compute the Gateaux derivative of the norm when the matrix space Mn is
equipped with the Hilbert-Schmidt norm.

2.1 Preliminaries

We denote by G throughout a locally compact group with identity e and a right in-
variant Haar measure λ . To avoid the inconvenience of additional measure-theoretic
technicalities, we assume throughout that λ is σ -finite. If G is compact, λ is nor-
malized to λ (G) = 1.

Let 1 ≤ p < ∞. Given a complex Banach space E , we denote by Lp(G,E) the
Banach space of (equivalence classes of) E-valued Bochner integrable functions f
on G satisfying

‖ f‖p =
(
∫

G
‖ f (x)‖pdλ (x)

) 1
p

< ∞

(cf. [22, p.97]). We write Lp(G) for Lp(G,E) if dimE = 1. In the sequel, E is usually
the C∗-algebra Mn of n×n complex matrices in which case, a function f : G−→Mn

is an n×n matrix ( fi j) of complex functions fi j on G.
We denote by B(E) the Banach algebra of bonded linear self-maps on a Banach

space E .
Let Tr : Mn→C be the canonical trace of Mn. Every continuous linear functional

ϕ : Mn→C is of the form ϕ(·) = Tr(·Aϕ) where the matrix Aϕ ∈Mn is unique and
‖ϕ‖ = Tr(|Aϕ |) = Tr((A∗ϕ Aϕ)1/2) which is the trace-norm ‖Aϕ‖tr of Aϕ . We will
identify the dual M∗n , via the map ϕ ∈ M∗n �→ Aϕ ∈ Mn, with the vector space Mn

equipped with the trace-norm ‖ ·‖tr. If we equip Mn with the Hilbert-Schmidt norm

C.-H. Chu, Matrix Convolution Operators on Groups. Lecture Notes in Mathematics 1956, 5
doi: 10.1007/978-3-540-69798-5, c© Springer-Verlag Berlin Heidelberg 2008



6 2 Lebesgue Spaces of Matrix Functions

‖A‖hs = Tr(A∗A)1/2, then Mn is a Hilbert space with inner product 〈A,B〉= Tr(B∗A).
We note that the C*-norm, the trace-norm and the Hilbert-Schmidt norm on Mn are
related by

‖ · ‖ ≤ ‖ · ‖tr ≤
√

n‖ · ‖hs ≤ n‖ · ‖

and norm convergence is equivalent to entry-wise convergence in Mn.
If Mn is equipped with the Hilbert-Schmidt norm, then L2(G,(Mn,‖ · ‖hs)) is a

Hilbert space, with inner product

〈 f ,g〉2 =
∫

G
Tr( f (x)g(x)∗)dλ (x).

Since ‖ f (x)g(x)∗‖hs ≤ ‖ f (x)‖hs‖g(x)‖hs for f ,g ∈ L2(G,(Mn,‖ ·‖hs)), the Bochner
integral

〈〈 f ,g〉〉=
∫

G
f (x)g(x)∗dλ (x)

exists in Mn and defines an Mn-valued inner product, turning L2(G,(Mn,‖·‖hs)) into
an inner product (left) Mn-module.

We denote by L∞(G,Mn) the complex Banach space of Mn-valued essentially
bounded (locally) λ -measurable functions on G, where Mn is equipped with the C*-
norm. It is a von Neumann algebra, with predual L1(G,M∗n ), under the pointwise
product and involution:

( f g)(x) = f (x)g(x), f ∗(x) = f (x)∗ ( f ,g ∈ L∞(G,Mn), x ∈ G).

We will study convolution operators on Lp(G,Mn) defined by matrix-valued mea-
sures. In this section, we first recall some basic definitions and derive some results
for convolution operators on Lp(G), for later reference. One important difference in
the matrix setting is the presence of non-commutative and non-associative algebraic
structures.

We equip the vector space C(G) of complex continuous functions on G with the
topology of uniform convergence on compact sets in G, and denote by Cc(G) the
subspace of functions with compact support. The Banach space of bounded complex
continuous functions on G is denoted by Cb(G). Let C0(G) be the Banach space of
complex continuous functions on G vanishing at infinity. The dual C0(G)∗ identifies
with the space M(G) of complex regular Borel measures on G. Each µ ∈M(G) has
finite total variation |µ | and M(G) is a unital Banach algebra in the total variation
norm and the convolution product:

‖µ‖= |µ |(G) , 〈 f ,µ ∗ν〉=
∫

G

∫

G
f (xy)dµ(x)dν(y) ( f ∈C0(G),µ ,ν ∈M(G))

where we always denote the duality of a dual pair of Banach spaces E and F by

〈·, ·〉 : E×F −→C .
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We also write µ( f ) for 〈 f ,µ〉 =
∫

G f dµ . The unit mass at a point a ∈ G is denoted
by δa where δe is the identity in M(G). A measure µ ∈M(G) is called absolutely
continuous if its total variation |µ | is absolutely continuous with respect to the Haar
measure λ .

Given σ ∈M(G), the support of σ is defined to be the support of its total variation
|σ | and is denoted by suppσ . We denote by Gσ the closed subgroup of G generated
by the support of |σ |. A measure σ ∈M(G) is called adapted if Gσ = G. A measure
σ ∈M(G) is said to be non-degenerate if supp |σ | generates a dense semigroup in
G. Evidently, every non-degenerate measure is adapted. An absolutely continuous
(non-zero) measure on a connected group must be adapted.

By a (complex) measure µ on G, we will mean a measure µ ∈M(G)\{0}.
The convolutions for Borel functions f and g on G, when exit, are defined by

( f ∗ g)(x) =
∫

G
f (xy−1)g(y)dλ (y);

( f ∗ µ)(x) =
∫

G
f (xy−1)dµ(y);

(µ ∗ f )(x) =
∫

G
f (y−1x)
G(y−1)dµ(y)

where
G is the modular function satisfying dλ (xy) =
G(x)dλ (y) and dλ (x−1) =

G(x−1)dλ (x).

We denote by �x and rx, respectively, the left and right translations by an element
x ∈ G :

�x f (y) = f (x−1y) , rx f (y) = f (yx) (y ∈ G)

for any function f on G. A complex function f on G is left uniformly continuous if
‖rx f − f‖∞ −→ 0 as x→ e. It is right uniformly continuous if ‖�x f − f‖∞ −→ 0 as
x→ e. We also write x f = �x−1 f and fx for rx f .

We note that each f ∈Cc(G) is both left and right uniformly continuous, and for
any µ ∈M(G), we have f ∗µ ∈Cb(G) since | f ∗µ(x)− f ∗µ(y)|≤ ‖�xy−1 f− f‖‖µ‖.
We also have

〈 f ,µ ∗ν〉= 〈˜f , ν̃ ∗ µ̃〉 (2.1)

where ν ∈M(G) and we define ˜f (x) = f (x−1) and dµ̃(x) = dµ(x−1). Note that

µ̃( f ) = µ(˜f ) = ( f ∗ µ)(e) and µ̃ ∗ν = ν̃ ∗ µ̃

for f ∈Cc(G).
Let σ ∈M(G). For 1≤ p≤∞, we define the convolution operator Tσ : Lp(G)−→

Lp(G) by
Tσ ( f ) = f ∗σ ( f ∈ Lp(G)).

To avoid triviality, σ is always non-zero for Tσ . The definition of Tσ depends on its
domain Lp(G) although we often omit referring to it if there is no ambiguity. When
regarded as an operator on Lp(G), the operator Tσ is easily seen to be bounded
and we denote its norm by ‖Tσ‖p, or simply ‖Tσ‖ in obvious context. We have
‖Tσ‖p ≤ ‖σ‖.
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A convolution operator Tσ : Lp(G)−→ Lp(G) commutes with left translations:

�xTσ = Tσ �x (x ∈ G).

Conversely, for abelian groups G, every translation invariant operator T : L1(G)−→
L1(G) is a convolution operator Tσ for some σ ∈M(G) [55, 3.8.4]. However, this
result does not hold for 1 < p ≤ ∞, even if G is compact and abelian [44, p.85].
We will characterise the more general matrix convolution operators in Chapter 3. In
particular, the above L1 result is generalized to the matrix-valued case, for all locally
compact groups.

For 1 ≤ p ≤ ∞, we denote by q its conjugate exponent throughout, that is,
1
p

+
1
q

= 1, and for the dual pairing 〈·, ·〉 between Lp(G) and Lq(G), we have

〈 f ∗σ ,h〉= 〈 f ,h ∗ σ̃〉 (2.2)

for f ∈ Lp(G) and h ∈ Lq(G). This implies that Tσ is weakly continuous on Lp(G)
for 1 ≤ p < ∞, and is weak* continuous on L∞(G). In particular, Tσ is a weakly
compact operator on Lp(G) for 1 < p < ∞. For p = 1,∞, we will discuss presently
weak compactness of Tσ : Lp(G)−→ Lp(G), but we note the following two lemmas
first.

Lemma 2.1.1. Let σ ∈M(G) and p < ∞. Let T ∗σ : Lq(G)−→ Lq(G) be the dual map
of the convolution operator Tσ : Lp(G)−→ Lp(G). Then T ∗σ = Tσ̃ . The operator Tσ :
L2(G) −→ L2(G) is self-adjoint if σ̃ = σ is a real measure. The weak* continuous
operator Tσ : L∞(G)−→ L∞(G) has predual Tσ̃ : L1(G)−→ L1(G).

Proof. By (2.2), we have 〈 f ,T ∗σ h〉 = 〈 f ,Tσ̃ h〉 for f ∈ Lp(G) and h ∈ Lq(G). The
adjoint of Tσ in B(L2(G)) is T

˜σ where σ is the complex conjugate of σ . ��

Lemma 2.1.2. Let σ ∈M(G) and let Tσ be the convolution operator on Lp(G) for
p = 1,∞. We have ‖Tσ‖1 = ‖Tσ‖∞ = ‖σ‖.

Proof. We have ‖σ‖= sup{|
∫

G f dσ | : f ∈Cc(G) and ‖ f‖ ≤ 1} in which

∣

∣

∣

∣

∫

G
f dσ
∣

∣

∣

∣

= |˜f ∗σ(e)| ≤ ‖˜f ∗σ‖∞ ≤ ‖Tσ‖∞

where ˜f ∗σ ∈Cb(G). Next, we have ‖Tσ‖1 = ‖T ∗σ ‖∞ = ‖Tσ̃‖∞ = ‖σ̃‖= ‖σ‖. ��

Remark 2.1.3. We note that ‖Tσ‖p need not equal ‖σ‖ if 1 < p < ∞. Indeed, if σ is
an adapted probability measure whose support contains the identity e and if ‖Tσ‖p =
1 for some 1 < p < ∞, then G is amenable (see, for example, [4, Theorem 1]). On
the other hand, if G is amenable and σ is a probability measure, then ‖Tσ‖p = 1 for
all p (cf. [33, p.48]).

By Lemma 2.1.2, the spectral radius of Tσ ∈ B(Lp(G)), for p = 1,∞, is

limn ‖T n
σ ‖

1
n = limn ‖Tσ n‖ 1

n = limn ‖σn‖ 1
n where σn is the n-fold convolution of

σ with itself.
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Lemma 2.1.4. Let G be a compact group and let σ ∈M(G) be absolutely contin-
uous. Then the convolution operator Tσ : Lp(G) −→ Lp(G) is compact for every
p ∈ [1,∞].

Proof. Let σ = h · λ for some h ∈ L1(G). Consider first Tσ : L∞(G) −→ L∞(G).
By absolute continuity of σ , we have Tσ (L∞(G))⊂C(G). Hence, by Arzela-Ascoli
theorem, we need only show that the set

{Tσ ( f ) : ‖ f‖∞ ≤ 1}

is equicontinuous in C(G). Let ε > 0. Pick ϕ ∈ Cc(G) with support K and
‖ϕ − h‖1 < ε

4 . Let W be a compact neighbourhood of the identity e ∈ G. By
uniform continuity, we can choose a compact neighbourhood V ⊂W of e such that

|ϕ(x)−ϕ(y)|< ε
2λ (KW )

whenever x−1y ∈V . Then

‖ϕx−ϕy‖1 =
∫

G
|ϕ(zx)−ϕ(zy)|dλ (z)

=
∫

KW
|ϕ(z)−ϕ(zx−1y)|dλ (z) <

ε
2
.

It follows that, for x−1y ∈V and ‖ f‖∞ ≤ 1, we have

|Tσ ( f )(x)−Tσ ( f )(y)| =
∣

∣

∣

∣

∫

G
f (xz−1)h(z)dλ (z)−

∫

G
f (yz−1)h(z)dλ (z)

∣

∣

∣

∣

≤
∫

G
| f (z−1)h(zx)− f (z−1)h(zy)|dλ (z)

≤ ‖ f‖∞‖hx−hy‖1

≤ ‖ f‖∞(‖hx−ϕx‖1 +‖ϕx−ϕy‖1 +‖hy−ϕy‖1) < ε

which proves equicontinuity and hence, compactness of Tσ : L∞(G)−→ L∞(G).
Likewise Tσ̃ : L∞(G)−→ L∞(G) is compact and therefore Tσ : L1(G)−→ L1(G)

is compact.
Let 1 < p < ∞. Let (hn) be a sequence in C(G) such that ‖hn−h‖1 −→ 0. Then

Tσ = lim
n→∞

Tσn in B(Lp(G)), where σn = hn ·λ . Hence it suffices to show compactness

of Tσ on Lp(G) for the case h ∈C(G).
Let ( fn) be a sequence in the unit ball of Lp(G). Then ‖ fn‖1 ≤ 1 for all n and

compactness of Tσ : L1(G)−→ L1(G) implies that the sequence ( fn ∗σ) contains a
subsequence L1-converging to some f ∈ L1(G), and hence a subsequence ( fk ∗σ)
converging pointwise to f λ -almost everywhere. Since h ∈ C(G), we have ‖ fk ∗
σ‖∞ ≤ ‖ fk‖p‖h‖q ≤ ‖h‖q for all k, and f ∈ L∞(G). It follows that
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‖ fk ∗σ− f‖p
p ≤ ‖ fk ∗σ− f‖1‖ fk ∗σ − f‖p−1

∞ −→ 0 as k→ ∞.

This proves compactness of Tσ : Lp(G)−→ Lp(G). ��

Remark 2.1.5. The above result is clearly false if σ is not absolute continuous, for
instance, Tσ is the identity operator if σ = δe.

A compactness criterion has been given in [48] for a class of convolution oper-
ators of the form f ∈ L1(G) �→ f ∗F ∈ C(G) where F ∈ L∞(G) and G is compact
abelian. Compactness of the composition of a convolution operator with a multi-
plier has also been considered in [59, 60]. Fredholmness of convolution operators
on locally compact groups has been studied in [54, 59, 61].

Proposition 2.1.6. Let σ be a positive measure on a group G such that σ2 ∗ σ̃2 is
adapted. Let Tσ be the associated convolution operator. The following conditions
are equivalent.

(i) Tσ : L1(G)−→ L1(G) is weakly compact.
(ii) Tσ : L1(G)−→ L1(G) is compact.

(iii) Tσ : L∞(G)−→ L∞(G) is weakly compact.
(iv) Tσ : L∞(G)−→ L∞(G) is compact.
(v) Tσ : Lp(G)−→ Lp(G) is compact for all p ∈ [1,∞].

(vi) G is compact and σ is absolutely continuous.

Proof. (i) =⇒ (vi). We first prove compactness of G. Note that L1(G) has the
Dunford-Pettis property and in particular, every weakly compact operator on L1(G)
sends weakly compact subsets to norm compact sets [22, p.154]. Hence weak com-
pactness of Tσ implies that the operator T 2

σ : L1(G) −→ L1(G) is compact, and so
is the operator Tσ∗σ∗σ̃∗σ̃ = T 2

σ̃ T 2
σ . Since σ2 ∗ σ̃2 is a positive measure, the spectral

radius of Tσ 2∗σ̃ 2 is σ(G)4, by a remark before Lemma 2.1.4. On the Hilbert space
L2(G), the operator Tσ 2∗σ̃ 2 = T ∗σ 2Tσ 2 is a positive operator and therefore has only
non-negative eigenvalues. The eigenvalues of Tσ 2∗σ̃ 2 ∈ B(L1(G)) are also eigen-
values of Tσ 2∗σ̃ 2 ∈ B(L2(G)) and therefore non-negative. It follows that σ(G)4 is
an eigenvalue of the compact operator Tσ 2∗σ̃ 2 ∈ B(L1(G)), that is, there is a non-
zero function f ∈ L1(G) satisfying f ∗σ2 ∗ σ̃2 = σ(G)4 f . Note that the measure
σ(G)−4σ2 ∗ σ̃2 is an adapted probability measure on G. Now, by [10, Theorem
3.12], f is constant which implies that G must be compact.

Next, we show that σ is absolutely continuous. By the Dunford-Pettis-Phillips
Theorem [22, p.75], there is an essentially bounded function g : G−→ L1(G) such
that

Tσ ( f ) =
∫

G
f gdλ ( f ∈ L1(G)).

Now the arguments in [22, p.91] can still be applied without commutativity of G.
Let a ∈ G. For each f ∈ L1(G), we have, for λ -a.e. y,
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∫

G
f (x)g(x)(y)dλ (x) = Tσ f (y) = �a−1Tσ (�a f )(y)

=
∫

G
(�a f )(x)g(x)(ay)dλ (x)

=
∫

G
f (a−1x)g(x)(ay)dλ (x)

=
∫

G
f (x)g(ax)(ay)dλ (x).

It follows that
g(ax)(ay) = g(x)(y)

for λ -a.e. x and y. This implies that, for each f ∈C(G), the function

F(y) =
∫

G
f (x)g(yx−1)(y)dλ (x) (y ∈ G)

is invariant under the left translations �a for all a ∈ G. Using compactness of G, one
can show that F is constant λ -almost every on G, as in [22, p.91], and hence we
have,

F(y) =
∫

G
F(z)dλ (z) =

∫

G

∫

G
f (x)g(zx−1)(x)dλ (x)dλ (z) (2.3)

for λ -a.e. y. Let h ∈ L1(G) be defined by

h(x) =
∫

G
g(yx−1)(y)dλ (y).

We show that f ∗σ = f ∗h for each f ∈C(G)⊂ L1(G) which then yields absolutely
continuity of σ . Indeed, for each k ∈ L∞(G), we have

〈k, f ∗ h〉 =
∫

G
k(y)

∫

G
f (yx−1)h(x)dλ (x)dλ (y)

=
∫

G
k(y)

∫

G

∫

G
f (yx−1)g(zx−1)(z)dλ (x)dλ (z)dλ (y)

=
∫

G
k(y)

∫

G
f (yx−1)g(yx−1)(y)dλ (x)dλ (y) (by (2.3))

=
∫

G
k(y) f ∗σ(y)dλ (y) = 〈k, f ∗σ〉

which concludes the proof.
(vi) =⇒ (v). By Lemma 2.1.4.
(v) =⇒ (iv) =⇒ (iii). Trivial.
(iii) =⇒ (ii). The given condition implies that Tσ̃ : L1G) −→ L1(G) is weakly

compact. Repeating (i) =⇒ (v) =⇒ (iv) for σ̃ , we see that Tσ̃ : L∞(G)−→ L∞(G) is
compact, and hence Tσ : L1(G)−→ L1(G) is compact.

(ii) =⇒ (i). Trivial. ��
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Remark 2.1.7. In (i) =⇒ (vi) above, the proof of absolute continuity of σ from weak
compactness of Tσ ∈ B(L1(G)) is valid for any measure σ on a compact group G,
without adaptedness of σ2 ∗ σ̃2.

Corollary 2.1.8. Given a positive absolutely continuous measure σ on a connected
group G, the following conditions are equivalent.

(i) Tσ : L1(G)−→ L1(G) is weakly compact.
(ii) Tσ : L∞(G)−→ L∞(G) is weakly compact.

(iii) Tσ : Lp(G)−→ Lp(G) is compact for all p ∈ [1,∞].
(iv) G is compact.

Proof. This is because absolutely continuous measures on a connected group are
adapted. ��

Definition 2.1.9. The spectrum of an element a in a unital Banach algebra A is
denoted by SpecA a which is often shortened to Speca if the Banach algebra A is
understood. For 1≤ p≤ ∞, we write Spec(Tσ ,Lp(G)), or simply, Spec(Tσ ,Lp), for
the spectrum SpecTσ , when regarding Tσ ∈ B(Lp(G)). We denote by Λ(Tσ ,Lp(G)),
or simply, Λ(Tσ ,Lp), the set of eigenvalues of Tσ : Lp(G)−→ Lp(G).

Given any Banach algebra A and an element a ∈ A, we define, as usual, the
quasi-spectrum of a, denoted by Spec′A a, to be the spectrum SpecA1 a of a in the
unit extension A1 of A. We always have 0 ∈ Spec′A a. If A has an identity, then
we have

Spec′A a = SpecA a∪{0}.

We recall that

Spec(Tσ ,Lp) = Λ(Tσ ,Lp)∪Specr(Tσ ,Lp)∪Specc(Tσ ,Lp)

where Specr(Tσ ,Lp) denotes the residue spectrum of Tσ , consisting of α ∈
Spec(Tσ ,Lp)\Λ(Tσ ,Lp) satisfying

(Tσ −αI)(Lp(G)) �= Lp(G)

and Specc(Tσ ,Lp) denotes the continuous spectrum of Tσ , consisting of α ∈
Spec(Tσ ,Lp)\Λ(Tσ ,Lp) such that

(Tσ −αI)(Lp(G)) = Lp(G).

Since T ∗σ = Tσ̃ for p < ∞, we have

Spec(Tσ ,Lp) = Spec(Tσ̃ ,Lq)

for 1≤ p < ∞, and also Spec(Tσ ,L∞) = Spec(Tσ̃ ,L1).
We denote by Specσ the spectrum of σ in the measure algebra M(G). Note that

Specσ = Spec σ̃ since σ̃ ∗ µ̃ = µ̃ ∗σ for each µ ∈M(G).
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Given a locally compact group G, we let ̂G be the dual space consisting of (the
equivalence classes of) continuous unitary irreducible representations π : G −→
B(Hπ), where Hπ is a Hilbert space. Let ι ∈ ̂G be the one-dimensional iden-
tity representation. For π ∈ ̂G, σ ∈ M(G) and f ∈ L1(G), we define the Fourier
transforms:

σ̂(π) =
∫

G
π(x−1)dσ(x) ∈ B(Hπ),

̂f (π) =
∫

G
f (x)π(x−1)dλ (x) ∈ B(Hπ).

We have f̂ ∗σ(π) = σ̂(π)̂f (π) and µ̂ ∗σ(π) = σ̂(π)µ̂(π) for µ ∈M(G).
The spectrum SpecB(Hπ ) σ̂(π) of σ̂(π) ∈ B(Hπ) will be written as Spec σ̂(π) if

no confusion is likely.
If G is abelian, ̂G is the group of characters and we often use the letter χ to denote

an element in ̂G. For 1 < p < 2 and f ∈ Lp(G), we define the Fourier transform
̂f ∈ Lq( ̂G) via Riesz-Thorin interpolation.

A continuous homomorphism χ from an abelian group G to the multiplica-
tive group C\{0} is called a generalized character. For such a character χ with
|χ(·)| ≤ 1, one can still define σ̂(χ) as above. The spectrum Ω(G) of the Banach
algebra M(G), i.e., the non-zero multiplicative functionals on M(G), identifies with
the generalized characters χ of G with |χ(·)| ≤ 1, and by Gelfand theory, we have
Specσ = σ̂(Ω(G)) which contains σ̂( ̂G). The spectrum of L1(G) identifies with the
dual group ̂G and if G is discrete, then M(G) = �1(G) and Specσ = Spec�1(G) σ =
σ̂(̂G). For arbitrary groups, we have the following result.

Lemma 2.1.10. Let σ be a complex measure on a group G. Then

Λ(Tσ ,L1)⊂
⋃

π∈ ̂G

Spec σ̂(π)⊂ Specσ .

The inclusions are strict in general.

Proof. Similar inclusions hold in the more general matrix setting for which a simple
proof will be given in Proposition 3.3.8. If σ is an adapted probability measure and
G is non-compact, then by [10, Theorem 3.12], 1 /∈ Λ(Tσ ,L1) while 1 ∈ Spec ι(σ)
where ι ∈ ̂G is the identity representation.

If G is abelian, then σ̂( ̂G) =
⋃

π∈ ̂G Spec σ̂(π) and Example 3.3.4 shows that the

last inclusion can be strict. In fact, even the closure σ̂ ( ̂G) may not equal Specσ by
Remark 3.3.24. ��

It has been shown in [10, Lemma 3.11] that 1 /∈ ⋃π∈ ̂G\{ι}Spec σ̂(π) if σ is an
adapted probability measure on a locally compact group G. In general, there seem
to be few definitive results concerning the spectrum of Tσ for non-abelian groups.
We will consider this case in Chapter 3 and prove various results there.
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We will make use of a version of the Wiener-Levy theorem, stated below, which
has been proved in [55, Theorem 6.2.4] and will be generalized to the matrix setting
in Chapter 3.

Lemma 2.1.11. Let Ω be an open set in C and let F : Ω −→ C be a real analytic
function satisfying F(0) = 0 if 0 ∈ Ω. Given an abelian group G and a function

f ∈ L1(G) such that ̂f ( ̂G) ⊂ Ω, then F(̂f ) is the Fourier transform of an L1(G)-
function.

Example 2.1.12. For the Cauchy distribution

dσt(x) =
t

π(t2 + x2)
dx (t > 0)

on R , we have σ̂t(̂R) = {exp(−t|x|) : x ∈ R} = (0,1] = Spec(Tσ ,Lp)\{0} =
Λ(Tσt ,L

∞).

Example 2.1.13. Let G be any locally compact group and let σ = δa be the unit
mass at a ∈ G. Then Tσ is a translation on Lp(G) and we have

Spec(Tσ ,L∞)⊂ {α : |α|= 1}.

If G = T and a = i, then L∞(T) ⊂ L2(T) and Spec(Tσ ,L∞) = Spec(Tσ ,L2) =
σ̂(Z) = {exp(−inπ/2) : n ∈ Z}= {±1,±i} �= {α : |α|= 1}.

If G = Z and a = 1, then Spec(Tσ , �2) = {α : |α|= 1}= Spec(Tσ , �∞).
If G = R and a �= 0, then Spec(Tσ ,Lp) = {α : |α|= 1}= Λ(Tσ ,L∞) as ̂δa(̂R) =

{exp(−iaθ ) : θ ∈R}.
Next consider the measure µ =

1
2

(δ0 + δ1) on R. Its n-fold convolution

µn =
1
2n

n

∑
k=0

(

n
k

)

δk

is a convex sum of discrete measures and we have

Spec(Tµn ,L∞) = Λ(Tµn ,L∞) =

{

1
2n

n

∑
k=0

(

n
k

)

exp(−ikθ ) : θ ∈ R

}

where, for example, Spec(Tµ ,L∞) is the circle containing 0 and internally tangent to
the unit circle at 1, with sinπx as a 0-eigenfunction.

2.2 Differentiability of Norm in Lp(G,Mn)

We will be working with the complex Lebesgue spaces Lp(G,Mn) where, for con-
venience and consistency with previous and related works elsewhere, we equip Mn

with the C*-norm unless otherwise stated. Some remarks are in order here. First,
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there is no essential difference if one chooses to equip Mn with the trace norm
since it amounts to considering the space Lp(G,M∗n ) which is, for p > 1, the dual of
Lq(G,Mn). Also, the Lebesgue spaces Lp(G,Mn) defined in terms of the C*, trace
and Hilbert-Schmidt norms on Mn are all isomorphic and most results for these three
cases are identical. There is, however, a difference among the three cases if one con-
siders the differentiability of the norm of Lp(G,Mn) which will be needed later.

Let us first consider the differentiability of the C*-norm ‖·‖, the trace norm ‖·‖tr
and the Hilbert-Schmidt norm ‖ · ‖hs on Mn, regarded as a real Banach space.

We recall that the norm ‖ · ‖ of a real Banach space E is said to be Gateaux
differentiable at a point u ∈ E if the following limit exists

∂‖u‖(x) = lim
t→0

‖u + tx‖−‖u‖
t

for each x ∈ E , in which case, the limit is called the Gateaux derivative of the norm
at u, in the direction of x. We note that the right directional derivative

∂+‖u‖(x) = lim
t↓0

‖u + tx‖−‖u‖
t

always exists. In fact, it is equal to

sup{ψ(x) : ψ is a subdifferential at u}

where a linear functional ψ in the dual E∗ is called a subdifferential at u if

ψ(x−u)≤ ‖x‖−‖u‖

for each x ∈ E . The norm is Gateaux differentiable at u if, and only if, there is a
unique subdifferential at u, in which case, the subdifferential is the Gateaux deriva-
tive (cf. [53, Proposition 1.8]).

The Hilbert-Schmidt norm ‖ · ‖hs on Mn is Gateaux differentiable at every A ∈
Mn\{0}. Indeed, we have

lim
t→0

‖A + tX‖hs−‖A‖hs

t
= lim

t→0

Tr((A + tX)∗(A + tX))−Tr(A∗A)
t(‖A + tX‖hs +‖A‖hs)

=
Tr(A∗X + X∗A)

2‖A‖hs

=
1
‖A‖hs

ReTr(A∗X).

Although the norm of a separable Banach space is Gateaux differentiable on a dense
Gδ set, it is easy to see that the C*-norm and the trace norm need not be Gateaux
differentiable at every non-zero A ∈Mn.

Lemma 2.2.1. Let A ∈Mn\{0}. The C*-norm on Mn is Gateaux differentiable at A
if, and only if, given any unit vectors ξ ,η ∈C

n with ‖Aξ‖= ‖Aη‖= ‖A‖, we have
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〈Aξ ,Xξ 〉= 〈Aη ,Xη〉 (X ∈Mn).

In the above case, the Gateaux derivative at A is given by

∂‖A‖(X) =
1
‖A‖Re〈Aξ ,Xξ 〉 (X ∈Mn)

where ξ ∈ C
n is a unit vector satisfying ‖Aξ‖= ‖A‖.

Proof. Suppose the norm is Gateaux differentiable at A. Let ξ ∈C
n be a unit vector

such that ‖A‖= ‖Aξ‖. Define a real continuous linear functional ψξ : Mn −→R by

ψξ (X) =
1
‖A‖Re 〈Aξ ,Xξ 〉 (X ∈Mn).

Then for each X ∈Mn, we have

ψξ (X −A) =
1
‖A‖Re〈Aξ ,X−Aξ 〉

=
1
‖A‖Re(〈Aξ ,Xξ 〉− 〈Aξ ,Aξ 〉)≤ ‖X‖−‖A‖.

Hence ψξ is a subdifferential at A. If η is a unit vector in C
n such that ‖Aη‖ =

‖A‖, then we must have ψη = ψξ , by uniqueness of the subdifferential, which gives
〈Aξ ,Xξ 〉= 〈Aη ,Xη〉 for every X ∈Mn.

To show the converse, we note that (cf. [5, Proposition 4.12]),

lim
t↓0

‖A + tX‖−‖A‖
t

= sup

{

lim
t↓0

‖(A + tX)ξ‖−‖Aξ‖
t

: ‖ξ‖= 1,‖Aξ‖= ‖A‖
}

where

lim
t↓0

‖(A + tX)ξ‖−‖Aξ‖
t

= lim
t↓0

〈(A + tX)ξ ,(A + tX)ξ 〉− 〈Aξ ,Aξ 〉
t(‖(A + tX)ξ‖+‖Aξ‖)

=
〈Aξ ,Xξ 〉+ 〈Xξ ,Aξ 〉

2‖A‖ .

Hence the necessary condition implies that the above set on the right reduces to a
singleton which gives the right directional derivative. We also have

lim
t↑0

‖(A + tX)ξ‖−‖Aξ‖
t

= − lim
t↓0

‖(A− tX)ξ‖−‖Aξ‖
t

= −〈Aξ ,−Xξ 〉+ 〈−Xξ ,Aξ 〉
2‖A‖

= lim
t↓0

‖(A + tX)ξ‖−‖Aξ‖
t

.
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This proves Gateaux differentiability at A. The last assertion is clear from the above
computation. ��

Example 2.2.2. Let A =
(

1 0
0 0

)

∈M2. Then the unit vectors in C
2 where A achieves

its norm are of the form (α,0) with |α| = 1. For any matrix X = (xi j) in M2, we
have 〈A(α,0)T ,X(α,0)T 〉= x12 + x21 which is independent of α , and the C*-norm
is Gateaux differentiable at A with derivative

∂‖A‖(X) = Re〈A(1,0)T ,X(1,0)T 〉= Rex11.

The matrix B =
(

1 1
0 0

)

achieves its norm at (
√

2,0) and (
√

2
2 ,
√

2
2 ); but

〈

B(
√

2,0)T ,X(
√

2,0)T
〉

�=
〈

B

(√
2

2
,

√
2

2

)T

,X

(√
2

2
,

√
2

2

)T〉

if X is the identity matrix, say. Hence the C*-norm is not Gateaux differentiable at
B, however, we have the right I-directional derivative

∂+‖B‖(I) = lim
t↓0

‖B + tI‖−‖B‖
t

= lim
t↓0

√

1 + t + t2 +
√

1 + 2t + 2t2−
√

2
t

=
√

2
2

.

On the other hand, the trace norm ‖ · ‖tr is not Gateaux differentiable at A since

‖A + tX‖tr−‖A‖tr

t
=
|t|
t

for X =
(

0 0
0 −1

)

, say.

Lemma 2.2.3. Let A∈Mn\{0}with polar decomposition A = u|A|. If the trace norm
‖ · ‖tr on Mn is Gateaux differentiable at A, then the Gateaux derivative is given by

∂‖A‖tr(X) = ReTr(u∗X) (X ∈Mn).

Proof. We only need to show that ψ(X) = ReTr(u∗X) is a subdifferential. Indeed,
we have |A|= u∗A and

ψ(X−A) = ReTr(u∗X)−ReTr(u∗A)
≤ ‖u∗‖‖X‖tr−‖A‖tr

= ‖X‖tr−‖A‖tr.

��
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Example 2.2.4. In Example 2.2.2 above, we have u = A in the polar decomposition

of A and ReTr(u∗X) = 0 for X =
(

0 0
0 −1

)

, while the right X-directional derivative

is given by

lim
t↓0

‖A + tX‖tr−‖A‖tr

t
= lim

t↓0

|t|
t

= 1.

Due to the non-smoothness of the C*-norm and trace norm on Mn, we will
consider the Lebesgue spaces Lp(G,(Mn,‖·‖hs)) with Mn equipped with the Hilbert-
Schmidt norm when we need to make use of norm differentiability later. We com-
pute below the Gateaux derivatives for Lp(G,(Mn,‖ · ‖hs)).

Since the function u ∈ E �→ ‖u‖p is convex on any Banach space E , we have, for
0 < t < 1 and u,v ∈ E ,

‖u + tv‖p≤ (1− t)‖u‖p + t‖u + v‖p

and

‖u‖p ≤ t
1 + t
‖u− v‖p +

1
1 + t
‖u + tv‖p

which gives

‖u‖p−‖u− v‖p≤ 1
t
(‖u + tv‖p−‖u‖p)≤ ‖u + v‖p−‖u‖p. (2.4)

Proposition 2.2.5. Let 1 < p < ∞. The norm of Lp(G,(Mn,‖ · ‖hs)) is Gateaux dif-
ferentiable at each non-zero f with Gateaux derivative

∂‖ f‖p(g) = Re‖ f‖1−p
p

∫

{x: f (x) �=0}
‖ f (x)‖p−2

hs Tr( f (x)∗g(x))dλ (x)

for g ∈ Lp(G,(Mn,‖ · ‖hs)).

Proof. Given A ∈Mn\{0}, we have, by the chain rule,

d
dt

∣

∣

∣

∣

t=0
‖A + tX‖p

hs = p‖A‖p−1
hs

d
dt

∣

∣

∣

∣

t=0
‖A + tX‖hs = p‖A‖p−1

hs ReTr(A∗X)

for X ∈Mn.
Fix a non-zero f in Lp(G,(Mn,‖ ·‖hs)). Given p > 1 and g ∈ Lp(G,(Mn,‖ ·‖hs)),

we have
d
dt

∣

∣

∣

∣

t=0
‖tg(x)‖p

hs = 0.

By (2.4) and the dominated convergence theorem, we have
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p‖ f‖p−1
p

d
dt

∣

∣

∣

∣

t=0
‖ f + tg‖p =

d
dt

∣

∣

∣

∣

t=0
‖ f + tg‖p

p

=
∫

G

d
dt

∣

∣

∣

∣

t=0
‖ f (x)+ tg(x)‖p

hsdλ (x)

=
∫

{x: f (x) �=0}

d
dt

∣

∣

∣

∣

t=0
‖ f (x)+ tg(x)‖p

hsdλ (x)

=
∫

{x: f (x) �=0}
p‖ f (x)‖p−2

hs ReTr( f (x)∗g(x))dλ (x)

which gives the formula for the Gateaux derivative at f . ��

Corollary 2.2.6. For 1 < p < ∞, the Lebesgue space Lp(G,(Mn,‖ · ‖hs)) is strictly
convex, that is, the extreme points of its closed unit ball are exactly the functions of
unit norm.

Proof. This follows from the fact that a Banach space E is strictly convex if, and
only if, the norm of its dual E∗ is Gateaux differentiable on the unit sphere. ��



Chapter 3
Matrix Convolution Operators

In this Chapter, we study the basic structures of matrix convolution operators
Tσ : f ∈ Lp(G,Mn) �→ f ∗σ ∈ Lp(G,Mn). Noncommutativity of the matrix multipli-
cation necessitates the introduction of the left convolution operator Lσ : f �→ σ ∗� f
for a consistent duality theory. We first characterise these operators and show they
are translation invariant operators satisfying some continuity condition. We also de-
termine when these operators are weakly compact on L1 and L∞ spaces.

Spectral theory is developed in Section 3. We introduce the matrix-valued Fourier
transform and, for abelian groups, the determinant of a matrix-valued measure. We
describe the Lp spectrum of Tσ in Theorem 3.3.23, for an absolutely continuous
matrix measure σ on an abelian group. For non-abelian groups, we develop a de-
vice to study the L2 spectrum by identifying Lσ as an element in the tensor product
C∗r (G)⊗Mn of the reduced group C*-algebra C∗r (G) and Mn. We show that, for
absolutely continuous symmetric σ , the L2 spectrum of Tσ is the union of the spec-
trum of each element in σ̂( ̂Gr), where σ̂ is the Fourier transform of σ and ̂Gr is the
reduced dual of G. This result is used to compute the spectrum of a homogeneous
graph.

We study eigenspaces of Tσ in the latter part of the Chapter. The focus is on the
eigenspace

Hα(Tσ ,Lp) = { f ∈ Lp(G,Mn) : Tσ ( f ) = α f}

with α = ‖σ‖, which is the space of matrix Lp harmonic functions on G. We
show that H‖σ‖(Tσ ,Lp) is the range of a contractive projection P on Lp(G,Mn)
for 1 < p < ∞, extending an analogous result in [9, 13] for p = ∞. We discuss
Liouville theorem and Poisson representation for harmonic functions and show that
dimH‖σ‖(Tσ ,L1) ≤ n2 if σ is positive and adapted. As an application, we use the
results to show the existence of L∞ non-constant harmonic functions on Riemannian
symmetric spaces of non-compact type. Finally, we study the Jordan structures in
H‖σ‖(Tσ ,L∞) and in particular, determine when it is a Jordan subtriple of L∞(G) in
the scalar case.

C.-H. Chu, Matrix Convolution Operators on Groups. Lecture Notes in Mathematics 1956, 21
doi: 10.1007/978-3-540-69798-5, c© Springer-Verlag Berlin Heidelberg 2008
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3.1 Characterisation of Matrix Convolution Operators

We are now prepared to study the structures of matrix-valued convolution operators
f �→ f ∗σ on the Lebesgue spaces Lp(G,Mn) of matrix functions on a locally com-
pact group G, induced by a matrix-valued measure σ on G. Matrix convolutions of
distributions in R

n have also been considered in [49].
We begin in this section by characterising matrix convolution operators. We show

they are the translation invariant operators satisfying some continuity condition. On
L1(G,Mn), they are exactly the translation invariant operators, and on L∞(G,Mn)
they are the weak* continuous translation invariant operators.

We note that Mn is equipped with the C*-norm throughout unless otherwise
stated. A matrix A ∈Mn is positive if 〈Aξ ,ξ 〉 ≥ 0 for all vectors ξ ∈ C

n. Let M+
n

denote the cone of positive matrices in Mn.
We first introduce the notion of a matrix-valued measure. By an Mn-valued mea-

sure µ on a locally compact space G, we mean a (norm) countably additive function
µ : B→Mn where B is the σ -algebra of Borel sets in G. Since the trace-norm ‖ ·‖tr

is equivalent to the C∗-algebra norm on Mn and M∗n = (Mn,‖ · ‖tr), we can regard
an M∗n -valued measure on G as an Mn-valued measure on G, and vice versa. We can
denote an Mn-valued measure µ on G by an n× n matrix µ = (µi j) of complex-
valued measures µi j on G. The variation |µ | of µ is a positive real finite measure on
G defined by

|µ |(E) = sup
P

{

∑
Ei∈P
‖µ(Ei)‖

}

(E ∈ B)

with the supremum taken over all partitions P of E into a finite number of pairwise
disjoint Borel sets. We define the norm of µ to be ‖µ‖ = |µ |(G). As shown in [9,
p. 21], µ has a polar representation µ = ω · |µ | where ω : G→ Mn is a Bochner
integrable function with ‖ω(·)‖ = 1. Likewise, if µ is an M∗n -valued measure, we
define its norm by ‖µ‖tr = |µ |tr(G) = sup

P

{

∑
Ei∈P
‖µ(Ei)‖tr

}

.

A function f = ( fi j) : G−→Mn is said to be µ-integrable if each fi j is a Borel
function and the integrals

∫

G fi jdµk� exist in which case, we define, for any E ∈ B,

the integral
∫

E
f dµ to be an n×n matrix with i j-th entry

∑
k

∫

E
fikdµk j.

We have
∥

∥

∥

∥

∫

E
f dσ
∥

∥

∥

∥

=
∥

∥

∥

∥

∫

E
f (x)ω(x)d|σ |(x)

∥

∥

∥

∥

≤
∫

E
‖ f (x)‖d|σ |(x) (3.1)

since ‖ω(·)‖ = 1. If we regard an Mn-valued measure µ as an M∗n -valued measure,
then we can also regard an Mn-valued µ-integrable function f on G as an M∗n -valued
µ-integrable function, with

∫

E f dµ ∈M∗n , and vice versa.
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Let M(G,M∗n ) be the space of all M∗n -valued measures on G, equipped with
the total variation norm ‖ · ‖tr. It is linearly isomorphic to the space M(G,Mn)
of Mn-valued measures on G, equipped with the total variation norm ‖ · ‖. Let
C0(G,Mn) be the Banach space of continuous Mn-valued functions on G vanish-
ing at infinity, equipped with the supremum norm. Let Cc(G,Mn) be the subspace of
C0(G,Mn) consisting of continuous Mn-valued functions with compact support. We
denote by Cb(G,Mn) the Banach space of bounded continuous Mn-valued functions
on G.

It has been shown in [9, Lemma 5] that M(G,M∗n ) is linearly isometric order-
isomorphic to the dual of C0(G,Mn), where a measure µ ∈M(G,M∗n ) and a function
f ∈C0(G,Mn) are positive if µ(E) and f (x) are positive matrices for all E ∈ B and
x ∈ G. The above duality is given by

〈 , 〉 : C0(G,Mn)×M(G,M∗n)→C

〈 f ,µ〉 = Tr

(
∫

G
f dµ
)

= ∑
i,k

∫

G
fikdµki

where f = ( fi j)∈C0(G,Mn) and µ = (µi j)∈M(G,M∗n ) (cf. [9, Lemma 5]). Further,
as shown in [14, Proposition 2.4], (M(G,M∗n ),‖ · ‖tr) is a Banach algebra in the
convolution product µ ∗ν given by

〈 f ,µ ∗ν〉= Tr

(
∫

G

∫

G
f (xy)dµ(x)dν(y)

)

( f ∈C0(G,Mn)).

Likewise (M(G,Mn),‖ · ‖) is a Banach algebra in the convolution product and is
algebraically isomorphic to M(G,M∗n ).

Given a ∈ G, we denote by δa ∈ M(G,Mn) the unit mass at a, having values
{0, I} ⊂ Mn. A measure σ ∈ M(G,Mn) is called adapted if its variation |σ | is an
adapted measure on G, that is, supp |σ | generates a dense subgroup of G.

Since the matrix product is non-commutative, given a matrix valued measure
σ = (σi j) and a matrix Borel function f = ( fi j) on G, besides the matrix-valued

integral
∫

G
f dσ defined above, we need to introduce the transposed integral

∫

G
dσ(x) f (x)

which is defined to have the i j-entry
(
∫

G
dσ(x) f (x)

)

i j
= ∑

k

∫

G
fk j(x)dσik(x) .

We also have
∥

∥

∥

∥

∫

G
dσ(x) f (x)

∥

∥

∥

∥

≤
∫

G
‖ f (x)‖d|σ |(x) . (3.2)
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The matrix-valued convolution f ∗σ , if exists at x ∈ G, is defined by

f ∗σ(x) =
∫

G
f (xy−1)dσ(y) .

We note that the same definition of matrix convolution of a matrix-valued distribu-
tion and measure on R

n has been given in [49, p.279].
We introduce the left convolution σ ∗� f to be the following integral if it exists :

σ ∗� f (x) =
∫

G
dσ(y) f (xy−1) (x ∈G).

The subscript � is used to avoid confusion with the convolution σ ∗ f in the scalar
case:

σ ∗ f (x) =
∫

G
f (y−1x)
G(y−1)dσ(y) .

Given σ ∈M(G,Mn), we define the measure σ̃ ∈M(G,Mn) by dσ̃(x)= dσ(x−1),
as in the scalar case.

For complex measures µ and σ , we have

µ̃ ∗σ = σ̃ ∗ µ̃

for µ ,σ ∈ M(G). This formula need not hold for matrix-valued measures µ ,σ ∈
M(G,Mn), instead, we have

µ̃ ∗σ = µ̃ ∗� σ̃ (3.3)

where the transposed convolution µ̃ ∗� σ̃ is defined by

µ̃ ∗� σ̃( f ) = Tr

(
∫

G

∫

G
f (xy)dµ̃(y)dσ̃(x)

)

( f ∈C0(G,Mn)).

If σ = g ·λ for some g ∈ L1(G,Mn), then we have

µ̃ ∗� σ̃ = (µ̃ ∗� g) ·λ .

This is one of the reasons for introducing transposed integrals.
An Mn-valued measure σ is called absolutely continuous (w.r.t. λ ) if its total

variation |σ | is absolutely continuous with respect to the Haar measure λ . This is
equivalent to the existence of a function h ∈ L1(G,Mn) such that σ = h ·λ . Indeed,
given the latter and given λ (E) = 0 for some Borel set E ⊂ G, we have

|σ |(E) =
∫

E
‖ω(·)‖2d|σ |=

∫

E
‖ω(·)∗ω(·)‖d|σ |

≤
∫

E
Tr(ω(·)∗ω(·))d|σ |= Tr

∫

E
ω∗dσ

= Tr
∫

E
ω∗hdλ = 0.
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Conversely, if |σ |= k ·λ for some k ∈ L1(G), then kω ∈ L1(G,Mn) and σ = kω ·λ .
Let 1/p + 1/q = 1. Since Mn has the Radon-Nikodym property, the dual

Lp(G,Mn)∗ identifies with the space Lq(G,M∗n ) for 1≤ p < ∞, with the duality

〈·, ·〉 : Lp(G,Mn)×Lq(G,M∗n )−→ C

given by

〈 f ,h〉= Tr

(
∫

G
f (x)h(x)dλ (x)

)

(cf. [22, p.98] and [34]). Likewise Lp(G,M∗n)∗ = Lq(G,Mn).
For f ∈ Lp(G,Mn) and h ∈ Lq(G,M∗n ), we have

〈 f ∗σ ,h〉= Tr

(
∫

G

∫

G
h(xy) f (x)dσ(y)dλ (x)

)

= 〈 f , σ̃ ∗� h〉 (3.4)

which is identical to (2.2) in the scalar case. The above duality is another raison
d’être for the transposed integral σ ∗� f .

As before, given a function h : G−→Mn, we define ˜h(x) = h(x−1).

Lemma 3.1.1. Let f ∈ Lp(G,Mn) and ψ ∈ Lq(G,Mn) where 1 ≤ p,q ≤ ∞. Then
ψ̃ ∗ f : G−→Mn is a bounded and left uniformly continuous function.

Proof. Since ψ̃ ∗ f has the i j-entry

(ψ̃ ∗ f )i j = ∑
k

ψ̃ik ∗ fk j ,

the result follows from entry-wise application of the scalar result in [10,
Lemma 3.2]. ��

We have

〈 f ,h〉= Tr(˜h∗ f )(e) ( f ∈ Lp(G,Mn), h ∈ Lq(G,Mn))

and hence the following consequence.

Lemma 3.1.2. If f ∈ Lp(G,Mn) and Tr(˜h ∗ f )(e) = 0 for all h ∈ Lq(G,Mn), then
f = 0.

Given f ∈ L1(G,Mn), the measure f ·λ ∈M(G,Mn) has total variation

‖ f ·λ‖= | f ·λ |(G) =
∫

G
‖ f (x)‖dλ (x) = ‖ f‖1

by [22, p.46] and we can therefore, as in the scalar case, identify L1(G,Mn) as a
closed subspace of M(G,Mn), consisting of absolutely continuous Mn-valued mea-
sures on G. Moreover, L1(G,Mn) is a right ideal of the Banach algebra M(G,Mn)
since

( f ·λ )∗ µ = ( f ∗ µ) ·λ
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for f ∈ L1(G,Mn) and µ ∈M(G,Mn). Likewise, we identify L1(G,M∗n) as an ideal
in the Banach algebra M(G,M∗n ).

We now define matrix convolution operators. For 1≤ p ≤∞ and σ ∈M(G,Mn),
we define Tσ : Lp(G,Mn)−→ Lp(G,Mn) by

Tσ ( f ) = f ∗σ ( f ∈ Lp(G,Mn)).

We also define the left convolution operator Lσ : Lp(G,Mn)−→ Lp(G,Mn) by

Lσ ( f ) = σ ∗� f ( f ∈ Lp(G,Mn)) .

To avoid triviality, σ is always non-zero for Tσ and Lσ . The operators Tσ and Lσ
are well-defined since, as in the scalar case [10, Lemma 2.1], one can show that
‖ f ∗σ‖p ≤ ‖ f‖p‖σ‖ and ‖σ ∗� f‖p ≤ ‖ f‖p‖σ‖, using (3.1) and (3.2).

In contrast to Lemma 2.1.2 where a convolution operator Tσ on L∞(G) has norm
‖Tσ‖∞ = ‖σ‖ for a complex measure σ , it is possible to have ‖Tσ‖∞ < ‖σ‖ if σ is
matrix-valued for Tσ defined on L∞(G,Mn).

Example 3.1.3. Let G = {a,e} and define a positive M2-valued measure σ on G by

σ{a}=
(

1 0
0 0

)

and σ{e}=
(

0 0
0 2

)

.

Then |σ |(G) = ‖σ{a}‖+‖σ{e}‖= 3.

Let f ∈ L∞(G,M2) with f (a) = (ai j) and f (e) = (bi j). If ‖ f‖∞ ≤ 1, then |a12|2 +
|a22|2 ≤ 1 and |b11|2 + |b21|2 ≤ 1. Hence

‖ f ∗σ(a)‖ =
∥

∥

∥

∥

(

b11 2a12

b21 2a22

)∥

∥

∥

∥

≤ (|b11|2 + |b21|2 + 4|a12|2 + 4|a22|2)
1
2 ≤
√

5 .

Likewise, we have

‖ f ∗σ(e)‖=
∥

∥

∥

∥

(

a11 2b12

a21 2b22

)∥

∥

∥

∥

≤
√

5 .

Therefore we have ‖ f ∗σ‖∞ ≤
√

5 < 3 = ‖σ‖ and ‖Tσ‖∞ < ‖σ‖. This difference
from the scalar case is due to the presence of the trace Tr in the norm of σ :

‖σ‖= sup

{∣

∣

∣

∣

Tr
∫

G
f dσ
∣

∣

∣

∣

: f ∈C0(G,Mn) and ‖ f‖ ≤ 1

}

.

Although we have ‖
∫

G f dσ‖ ≤ ‖Tσ‖∞, the value |Tr
∫

G f dσ |= |a11|+2|b22| could
exceed ‖Tσ‖∞.

Lemma 3.1.4. Let σ ∈ M(G,Mn). Then for p < ∞, the dual map of Tσ :
Lp(G,Mn)−→Lp(G,Mn) is the convolution operator Lσ̃ : Lq(G,M∗n)−→Lq(G,M∗n ).



3.1 Characterisation of Matrix Convolution Operators 27

The weak* continuous operator Tσ : L∞(G,Mn) −→ L∞(G,Mn) has predual
Lσ̃ : L1(G,M∗n )−→ L1(G,M∗n ).

Proof. This follows from the duality in (3.4). ��

As noted before, Lp(G,Mn) is linearly isomorphic to Lp(G,M∗n) and the latter is
identified with Lp(G,(Mn,‖ · ‖tr)), equipped with the norm

‖ f‖p =
(
∫

G
‖ f (x)‖p

trdλ (x)
) 1

p

for 1 ≤ p < ∞, and likewise for L∞(G,M∗n ). Hence a continuous linear map T :
Lp(G,Mn) −→ Lp(G,Mn) can be regarded as one on Lp(G,M∗n ), and vice versa,
although the norm ‖T‖Lp(G,Mn) differs from ‖T‖Lp(G,M∗n ) in general. Nevertheless,
TLp(G,Mn) and TLp(G,M∗n ) have the same spectrum.

We regard Lp(G,Mn) as a left Mn-module by defining

(A f )(x) = A f (x) (x ∈G)

for A ∈ Mn and f ∈ Lp(G,Mn). In this case, every convolution operator Tσ is
Mn-linear, that is, Tσ is complex linear as well as

Tσ (A f ) = ATσ ( f ) (A ∈Mn, f ∈ Lp(G,Mn)).

Also Tσ is invariant under left translations:

�xTσ = Tσ �x (x ∈ G).

We characterise below Tσ among left-translation invariant Mn-linear operators on
Lp(G,Mn).

We note that, since we adopt the right Haar measure on G, the right translation rx :
Lp(G,Mn)−→ Lp(G,Mn) is an isometry and the dual r∗x : Lq(G,M∗n)−→ Lq(G,M∗n)
satisfies r∗x = rx−1 whereas the left translation �x has dual �∗x =
G(x)�x−1 . For 1 ≤
p < ∞, we have ‖�x( f )‖p =
G(x)‖ f‖p.

Lemma 3.1.5. Let B∈Mn. If Tr(BA) = 0 for every positive invertible matrix A∈Mn,
then B = 0.

Proof. We have Tr(B) = 0. For every positive matrix A, the matrix A+ 1
n I is invert-

ible and we have Tr(BA) = Tr(B(A + 1
n I)) = 0. Hence B = 0. ��

Evidently C0(G,Mn) is also a left Mn-module.

Lemma 3.1.6. Let ψ : C0(G,Mn) −→ Mn be a continuous Mn-linear map. Then
there is a unique σ ∈M(G,M∗n ) such that

ψ( f ) =
∫

G
f dσ ( f ∈C0(G,Mn)).
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Proof. Let A be a positive invertible matrix in Mn. Define a continuous linear func-
tional ϕ ∈C0(G,Mn)∗ by

ϕ( f ) = Tr(Aψ( f )) ( f ∈C0(G,Mn)).

By [9, Lemma 5], there is a unique measure µA ∈M(G,M∗n ) such that

Tr(Aψ( f )) = Tr

(
∫

G
f dµA

)

( f ∈C0(G,Mn))

which implies

Tr(ψ( f )) = ϕ(A−1 f ) = Tr

(
∫

G
A−1 f dµA

)

= Tr

(
∫

G
f dµAA−1

)

(3.5)

for f ∈ C0(G,Mn). Define σ ∈M(G,M∗n ) by σ(E) = µA(E)A−1 for each Borel set
E ⊂ G. By (3.5), we have

Tr

(
∫

G
f dµAA−1

)

= Tr

(
∫

G
f dµBB−1

)

( f ∈C0(G,Mn))

for every positive invertible matrix B ∈ Mn. By the isomorphism between
C0(G,Mn)∗ and M(G,M∗n ), we have σ = µBB−1 for every positive invertible B∈Mn

from (3.5), and also

Tr(ψ( f )B) = Tr

(
∫

G
f dσB

)

( f ∈C0(G,Mn)).

Therefore we have

ψ( f ) =
∫

G
f dσ ( f ∈C0(G,Mn))

by Lemma 3.1.5. The uniqueness of σ is clear. ��

Proposition 3.1.7. Let T : L∞(G,Mn) −→ L∞(G,Mn) be a bounded Mn-linear map
satisfying

�xT = T �x (x ∈G).

Then there is a unique measure σ ∈M(G,Mn) such that

T f = f ∗σ for f ∈C0(G,Mn).

Proof. Let (uβ ) be a bounded approximate identity in L1(G). Then

vβ =

⎛

⎜

⎝

uβ
. . .

uβ

⎞

⎟

⎠
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is a bounded approximate identity in L1(G,Mn). Let µβ = vβ · λ . Since vβ is di-
agonal, one verifies readily that µβ ∗� h = h ∗ vβ for h ∈ L1(G,Mn). The measure

µ̃β = ṽβ
G ·λ is absolutely continuous, where ṽβ
G ∈ L1(G).
Let f ∈ C0(G,Mn). Then we have T f ∗ µ̃β ∈ Cb(G,Mn) by Lemma 3.1.1. By

(3.4), we have

〈T f ∗ µ̃β ,h〉= 〈T f ,µβ ∗� h〉= 〈T f ,h ∗ vβ 〉 (h ∈ L1(G,Mn))

which implies that the net (T f ∗ µ̃β ) weak*-converges to T f in L∞(G,Mn).
Define an Mn-linear map ψβ : C0(G,Mn)−→Mn by

ψβ ( f ) = (T f ∗ µ̃β )(e) ( f ∈C0(G,Mn)).

By Lemma 3.5, there is a unique measure σβ ∈M(G,M∗n ), which can be regarded
as an Mn-valued measure, such that

ψβ ( f ) =
∫

G
f dσβ for f ∈C0(G,Mn)

and for x ∈G, we have

T f ∗ µ̃β (x) = �x−1(T f ∗ µ̃β )(e) = (�x−1 T f ∗ µ̃β )(e)

= (T (�x−1 f )∗ µ̃β )(e) = ψβ (�x−1 f ) =
∫

G
�x−1 f dσβ = f ∗ σ̃β (x).

The net (σβ ) is norm bounded in M(G,Mn) since

‖σβ‖= sup

{∣

∣

∣

∣

Tr
∫

G
f dσβ

∣

∣

∣

∣

: f ∈C0(G,Mn) and ‖ f‖ ≤ 1

}

≤ ‖Tr‖‖T‖‖vβ‖1.

By weak* compactness, (σβ ) has a subnet (σγ ) weak*-converging to some σ ∈
M(G,Mn).

Given f ∈ Cc(G,Mn), the net ( f ∗ σ̃γ) weak*-converges to f ∗ σ̃ in L∞(G,Mn).
Indeed, for each h ∈Cc(G,Mn)⊂ L1(G,Mn), we have

〈h, f ∗ σ̃γ〉= Tr
∫

G

˜h∗ f dσγ −→ 〈h, f ∗ σ̃〉

where ˜h ∗ f ∈Cc(G,Mn). Note that the net ( f ∗ σ̃γ) is norm bounded in L∞(G,Mn)
since ‖ f ∗ σ̃γ‖ ≤ ‖ f‖∞‖σ̃γ‖. By density of Cc(G,Mn) in L1(G,Mn), we deduce that

〈k, f ∗ σ̃γ〉 −→ 〈k, f ∗ σ̃〉

for each k ∈ L1(G,Mn).
Hence for each f ∈Cc(G,Mn), we have

T f = w∗- lim
γ

T f ∗ µ̃γ = w∗- lim
γ

f ∗ σ̃γ = f ∗ σ̃
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which implies T f = f ∗ σ̃ for all f ∈ C0(G,Mn). Finally, the uniqueness of σ̃ is
evident. ��

Remark 3.1.8. In the conclusion of the above result, we cannot expect T = Tσ on
L∞(G,Mn) in general. In fact, even in the case of a translation invariant operator T
on �∞(Z), T �= Tσ can occur on Cb(Z) [44, p.78].

We have the following characterization of convolution operators on L∞(G,Mn).

Proposition 3.1.9. Let T : L∞(G,Mn)−→ L∞(G,Mn) be a bounded Mn-linear map.
The following conditions are equivalent.

(i) T = Tσ for some σ ∈M(G,Mn).
(ii) T is weak* continuous and �xT = T�x for all x ∈G.

Proof. We need only prove (ii) =⇒ (i). By weak* continuity, T has a predual T∗ :
L1(G,M∗n ) −→ L1(G,M∗n ). By Proposition 3.1.7, there is a measure σ ∈M(G,Mn)
such that

T g = g ∗σ for g ∈C0(G,Mn).

We use the duality C0(G,Mn)∗ = M(G,M∗n ). Let f ∈ L1(G,M∗n )⊂M(G,M∗n ). Iden-
tify both T∗ f and σ̃ ∗� f as absolutely continuous measures in M(G,M∗n ). For
g ∈C0(G,Mn), we have, by (3.4),

〈g,T∗ f 〉 = 〈T g, f 〉= 〈g ∗σ , f 〉= 〈g, σ̃ ∗� f 〉.

Hence T∗ f = σ̃ ∗� f . As f was arbitrary, this gives T∗ = Lσ̃ and T = Tσ . ��

Next we characterize convolution operators on Lp(G,Mn) for p < ∞.

Proposition 3.1.10. Let 1 ≤ p < ∞ and let T : Lp(G,Mn) −→ Lp(G,Mn) be a
bounded Mn-linear map. The following conditions are equivalent.

(i) T = Tσ for some σ ∈M(G,Mn).
(ii) �xT = T �x for all x ∈ G and T maps Cc(G,Mn) into Cb(G,Mn) continuously in

the supremum norm.

Proof. We show (ii) =⇒ (i). Define an Mn-linear map ψ : Cc(G,Mn)−→Mn by

ψ( f ) = T f (e) ( f ∈Cc(G,Mn)).

Then ψ is continuous by condition (ii). Hence, as before, there is a measure σ ∈
M(G,Mn) such that

ψ( f ) =
∫

G
f dσ

for f ∈Cc(G,Mn) and we have

T f (x) = �x−1T f (e) = T (�x−1 f )(e) = ψ(�x−1 f ) =
∫

G
�x−1 f dσ = f ∗ σ̃(x).
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For any h∈ Lp(G,Mn), there is a sequence ( fn) in Cc(G,Mn) converging to h and
therefore

Th = lim
n→∞

T fn = lim
n→∞

fn ∗ σ̃ = h ∗ σ̃ .

��

We strengthen the above result for p = 1 in the next corollary.

Corollary 3.1.11. Let T : L1(G,Mn) −→ L1(G,Mn) be a bounded Mn-linear map.
The following conditions are equivalent.

(i) T = Tσ for some σ ∈M(G,Mn).
(ii) �xT = T�x for all x ∈ G.

Proof. For (ii) =⇒ (i), it suffices to show that T maps Cc(G,Mn) into Cb(G,Mn)
continuously in the supremum norm. Since the dual T ∗ : L∞(G,M∗n)−→ L∞(G,M∗n)
is weak* continuous and commutes with left translations, we have T ∗= Tµ for some
µ ∈M(G,M∗n ), by Proposition 3.1.9. It follows that T = Lµ̃ which maps Cc(G,Mn)
into Cb(G,Mn) continuously in the supremum norm. ��

Corollary 3.1.12. Let G be a compact group and let T : L∞(G,Mn) −→ L∞(G,Mn)
be a bounded Mn-linear map. The following conditions are equivalent.

(i) T = Tσ for some σ ∈M(G,Mn).
(ii) �xT = T�x for all x ∈ G.

Proof. For (ii) =⇒ (i), we prove that T can be extended to a left-translation invariant
operator on L1(G,Mn) and hence Corollary 3.1.11 applies.

Given that G is compact, we have L∞(G,Mn)⊂ L1(G,Mn). By Proposition 3.1.7,
there exists µ ∈M(G,Mn) such that T f = f ∗ µ for all f ∈C(G,Mn) and hence

‖T f‖1 = ‖ f ∗ µ‖1 ≤ ‖µ‖‖ f‖1.

Since C(G,Mn) is ‖ · ‖1-dense in L1(G,Mn), we can extend T to an Mn-linear oper-
ator on L1(G,Mn) commuting with left translations. ��

3.2 Weak Compactness of Convolution Operators

For 1 < p < ∞, the operator Tσ : Lp(G,Mn) −→ Lp(G,Mn) is weakly compact. In
this section, we determine weak compactness conditions for Tσ on L1(G,Mn) and
L∞(G,Mn).

Theorem 3.2.1. Let σ ∈ M(G,Mn) be a positive measure such that |σ |2 ∗ |σ̃ |2 is
adapted on G. The following conditions are equivalent.

(i) Tσ : L1(G,Mn)−→ L1(G,Mn) is weakly compact.
(ii) Tσ : L∞(G,Mn)−→ L∞(G,Mn) is weakly compact.
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(iii) Lσ : L1(G,Mn)−→ L1(G,Mn) is weakly compact.
(iv) Lσ : L∞(G,Mn)−→ L∞(G,Mn) is weakly compact.
(v) Tσ : L1(G,Mn)−→ L1(G,Mn) is compact.

(vi) Tσ : L∞(G,Mn)−→ L∞(G,Mn) is compact.
(vii) Tσ : Lp(G,Mn)−→ Lp(G,Mn) is compact for all p ∈ [1,∞].

(viiii) G is compact and σ is absolutely continuous.

Proof. We first prove the equivalence of (i) and (viii). The equivalence (ii)⇐⇒(viii)
can be proved analogously.

Let σ = (σi j) and let Tσ : L1(G,Mn) −→ L1(G,Mn) be weakly compact. We
define the coordinate projection Pi j : L1(G,Mn)−→ L1(G) by

Pi j( fi j) = fi j

for ( fi j) ∈ L1(G,Mn). Then Pi j is a contraction since

∫

G
| fi j(x)|dλ (x)≤

∫

G
‖ f (x)‖dλ (x) .

Let D : L1(G)−→ L1(G,Mn) be the natural embedding

D( f ) =

⎛

⎜

⎝

f
. . .

f

⎞

⎟

⎠
.

Then each scalar convolution operator Tσi j : L1(G) −→ L1(G) is the composite
Tσi j = Pi jTσ D and hence weakly compact.

Let µ ∈M(G) be the positive measure

µ = Tr◦σ = σ11 + · · ·+ σnn.

We show that supp µ contains (and hence equals) supp |σ |. Let x∈ supp |σ | and let V
be an open subset of G containing x. We need to show µ(V ) > 0. Suppose µ(V ) = 0.
Given a partition V =

⋃

k

Ek, the positivity of the matrices σ(Ek) implies

∑
k

‖σ(Ek)‖ ≤∑
k

Trσ(Ek)≤∑
k

µ(Ek) = µ(V ) = 0.

It follows that |σ |(V )= 0 which is a contradiction. Hence |µ |(V )> 0 and this proves
x ∈ supp µ .

Likewise we have supp µ̃ ⊃ supp |σ |. It follows that

supp µ2 ∗ µ̃2 = (supp µ)2(supp µ̃)2 ⊃ (supp |σ |)2(supp |σ̃ |)2) = supp |σ |2 ∗ |σ̃ |2.

Hence µ2 ∗ µ̃2 is a positive adapted measure on G. The convolution operator
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Tµ = ∑
k

Tσkk : L1(G)−→ L1(G)

is weakly compact. By Proposition 2.1.6, G is compact. By Remark 2.1.7, each com-
plex measure σi j is absolutely continuous, say, σi j = hi j ·λ for some hi j ∈ L1(G). It
follows that σ = (hi j) ·λ is absolutely continuous.

Conversely, if G is compact and σ = ω · |σ | is absolutely continuous. Then each
σi j = ωi j · |σ | is absolutely continuous and by Proposition 2.1.6 again, the scalar
convolution operator Tσi j : L1(G) −→ L1(G) is weakly compact. Given f = ( fi j) ∈
L1(G,Mn), we have

(Tσ f )i j = ∑
k

fik ∗σk j = ∑
k

Tσk j ( fik) .

If ‖ f‖1≤ 1, then
∫

G | fi j(x)|dλ (x)≤
∫

G ‖ f (x)‖dλ (x) ≤ 1. Therefore entrywise com-
putation implies that Tσ maps the closed unit ball of L1(G,Mn) onto a relatively
weakly compact set, that is, Tσ is weakly compact.

The equivalence of (iii), (iv) and (viii) follows from the fact that, by Lemma
3.1.4, Lσ : L1(G,Mn) −→ L1(G,Mn) has dual Tσ̃ : L∞(G,M∗n) −→ L∞(G,M∗n) and
Lσ : L∞(G,Mn) −→ L∞(G,Mn) has predual Tσ̃ : L1(G,M∗n ) −→ L1(G,M∗n), hence
one can apply (i) and (ii) to Tσ̃ , noting that absolute continuity of σ is equivalent to
that of σ̃ .

Finally, (viii) implies that each convolution operator Tσi j : Lp(G) −→ Lp(G)
is compact, by Lemma 2.1.4. Similar arguments as before show that Tσ :
Lp(G,Mn)−→ Lp(G,Mn) is compact for all p ∈ [1,∞], giving (vii). This concludes
the proof. ��

3.3 Spectral Theory

In this section, we describe the spectrum of the convolution operator Tσ and study
its eigenspaces.

Definition 3.3.1. Given a measure σ ∈ M(G,Mn), we denote by Specσ the spec-
trum of σ in the Banach algebra M(G,Mn). By a previous remark, it is also the
spectrum of σ regarded as an element in M(G,M∗n ).

Given an operator T : Lp(G,Mn) −→ Lp(G,Mn), we denote by Spec(T,Lp

(G,Mn)) and Λ(T,Lp(G,Mn)) its spectrum and the set of eigenvalues respec-
tively. The continuous and residual spectra are denoted by Specc(T,Lp(G,Mn)) and
Specr(T,Lp(G,Mn)) respectively. We note that, these spectra and eigenvalues re-
main unchanged if, in Lp(G,Mn), we change the C*-norm on Mn to the trace norm or
the Hilbert-Schmidt norm. As before, if no confusion is likely, we write Spec(T,Lp)
for Spec(T,Lp(G,Mn)) and Λ(T,Lp) for Λ(T,Lp(G,Mn)).

Lemma 3.3.2. Let σ ∈M(G,Mn). Then for 1 ≤ p ≤ ∞ with conjugate exponent q,
we have
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(i) Λ(Tσ ,L1(G,Mn)) ⊂ Λ(Tσ ,Lp(G,Mn)) ⊂ Λ(Tσ ,L∞(G,Mn)) and they are equal
if G is compact,

(ii) Spec(Tσ ,Lp(G,Mn))
= Λ(Tσ ,Lp(G,Mn))∪Λ(Lσ̃ ,Lq(G,M∗n ))∪Specc(Tσ ,Lp(G,Mn)) for p < ∞,

(iii) Specc(Tσ ,Lp(G,Mn)) = Specc(Lσ̃ ,Lq(G,M∗n )) for 1 < p < ∞,
(iv) Spec(Tσ ,Lp(G,Mn))⊂ Specσ = Spec(Tσ ,L1(G,Mn)) = Spec(Tσ ,L∞(G,Mn)).

Proof. (i) The first inclusion is a simple consequence of Lp ∗ L1 ⊂ L1. Let
α ∈ Λ(Tσ ,Lp(G,Mn)) and let f ∈ Lp(G,Mn)\{0} satisfy f ∗ σ = α f . Then by
Lemma 3.1.2, we can pick h ∈ Lq(G,Mn) such that ˜h ∗ f ∈ L∞(G,Mn)\{0}
and (˜h ∗ f ) ∗ σ = α(˜h ∗ f ). So α ∈ Λ(Tσ ,L∞). If G is compact, we have
Lp(G,Mn)⊂ L1(G,Mn) for all p.

(ii) This follows from the fact that

Specr(Tσ ,Lp)⊂ Λ(T ∗σ ,Lq)⊂ Λ(Tσ ,Lp)∪Specr(Tσ ,Lp)

(cf. [24, p.581]).
(iii) Let 1 < p < ∞ and let α ∈ Specc(Tσ ,Lp). Then α ∈ Spec(Lσ̃ ,Lq) and

(Tσ −αI)(Lp(G,Mn)) = Lp(G,Mn) implies that Lσ̃−αI : Lq(G,M∗)−→ Lq(G,M∗n)
is injective. Hence α ∈ Specr(Lσ̃ ,Lq)∪Specc(Lσ̃ ,Lq). If α ∈ Specr(Lσ̃ ,Lq), then
the proof of (ii) implies α ∈ Λ(Tσ ,Lp) which is impossible. So α ∈ Specc(Lσ̃ ,Lq).
Likewise Specc(Lσ̃ ,Lq)⊂ Specc(Tσ ,Lp).

(iv) If α /∈ Specσ , then σ − αδe is invertible in M(G,Mn) and hence Tσ −
αI : Lp(G,Mn) −→ Lp(G,Mn) is invertible with inverse f ∈ Lp(G,Mn) �→ f ∗
(σ −αδe)−1 ∈ Lp(G,Mn). Therefore α /∈ Spec(Tσ ,Lp(G,Mn)).

Next we show Specσ ⊂ Spec(Tσ ,L1). Let α be a complex number such that
Tσ −αI : L1(G,Mn)−→ L1(G,Mn) is invertible. We show that σ −αδe is invertible
in M(G,Mn). Let (νβ ) be an approximate identity in L1(G) weak* converging to the
unit mass δe ∈M(G). Let

ν̄β =

⎛

⎜

⎝

νβ
. . .

νβ

⎞

⎟

⎠
∈ L1(G,Mn).

Then (ν̄β ) w*-converges to the identity δe ∈M(G,Mn).
Let S : L1(G,Mn) −→ L1(G,Mn) be the inverse of Tσ − αI = Tσ−αδe . Then

S(ν̄β )∗ (σ−αδe) = ν̄β . By choosing a subnet, we may assume that the net (S(ν̄β ))
weak* converges to some µ ∈M(G,Mn). For each h∈Cc(G,Mn), the net (h∗S(ν̄β ))
in L∞(G,Mn) weak* converges to h ∗ µ since

〈k,h ∗ S(ν̄β)〉= 〈˜k ∗ h, S̃(ν̄β )〉 (k ∈Cc(G,M∗n )).

Hence for every f ∈ L1(G,M∗n ), we have, by (3.4),
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〈 f ,h ∗ S(ν̄β )∗ (σ −αδe)〉 = 〈(σ̃ −αδe)∗� f ,h ∗ S(ν̄β )〉
−→ 〈(σ̃ −αδe)∗� f ,h ∗ µ〉
= 〈 f ,h ∗ µ ∗ (σ −αδe)〉

and also 〈 f ,h ∗ S(ν̄β )∗ (σ −αδe)〉= 〈 f ,h ∗ ν̄β 〉 −→ 〈 f ,h ∗ δe〉 which implies

µ ∗ (σ −αδe) = δe

since h ∈Cc(G,Mn) was arbitrary. Thus σ −αδe has a left inverse in M(G,Mn).
It follows from Tσ−αδeTµ = I that S = Tµ which gives TµTσ−αδe = I and

(σ −αδe)∗ µ = δe. Therefore σ −αδe is invertible in M(G,Mn).
Finally, we show Spec(Lσ̃ ,L1(G,Mn)) = Specσ and note that

Spec(Tσ ,L∞(G,Mn)) = Spec(Lσ̃ ,L1(G,Mn)).

If α /∈ Specσ , then Lσ̃ −αI = Lσ̃−αδe
is invertible with inverse Lµ̃ where µ is the

inverse of σ −αδe in M(G,Mn) and we can use the formula ν̃ ∗ µ = ν̃ ∗� µ̃ in (3.3).
Conversely, if Lσ̃ −αI is invertible with inverse S : L1(G,Mn) −→ L1(G,Mn),

then (σ̃ −αδe) ∗� S(ν̄β ) = ν̄β where (ν̄β ) is the above approximate identity and
we may assume S(ν̄β )) weak* converges to some µ ∈ M(G,Mn). For each h ∈
Cc(G,Mn), the net (S(ν̄β )∗� h) weak* converges to µ ∗� h since

〈k,S(ν̄β )∗� h〉= 〈˜h∗ k,S(ν̄β )〉.

We have

〈 f ,(σ̃−αδe)∗� µ ∗� h〉= lim
β
〈 f ,(σ̃−αδe)∗� S(ν̄β )∗� h〉= 〈 f ,δe∗� h〉 ( f ∈ L1(G,M∗n))

which implies (σ̃ −αδe) ∗� µ = δe and (σ −αδe) ∗ µ̃ = δe. As before, σ −αδe is
then invertible in M(G,Mn). ��

Example 3.3.3. The last inclusion in condition (i) in Lemma 3.3.2 is strict in gen-
eral. Let σ be any adapted probability measure on a non-compact group G. By [10,
Theorem 3.12], we have 1 /∈ Λ(Tσ ,Lp(G)) for 1≤ p < ∞, but 1 ∈ Λ(Tσ ,L∞(G)).

Example 3.3.4. Condition (ii) in Lemma 3.3.2 does not hold for p = ∞ and con-
dition (iii) does not hold for p = 1,∞. Consider the Laplace operator ∆/2 on the
Euclidean space R

d , which generates a convolution semigroup {σt}t>0 of measures
on R

d :

dσt(x) =
1

(2πt)d/2
exp(−‖x‖2/2t)dx.

We have σ̃t = σt and the convolution operator Tσt : L∞(Rd) −→ L∞(Rd) is not
weakly compact by Corollary 2.1.8. We have Λ(Tσt ,L

∞) = σ̂t(Rd) = (0,1] (cf.
Proposition 3.3.16), where

σ̂t(z) = exp(−t‖z‖2/2) (z ∈ R
d)
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is the Fourier transform of σt . Now 0∈Specr(Tσt ,L
∞(Rd) since σt is absolutely con-

tinuous and we have L∞(Rd)∗σt ⊂C(Rd) �= L∞(Rd). Also 0 ∈ Specc(Tσ̃t
,L1(Rd))

since Tσ̃t
: L1(Rd)−→ L1(Rd) has dense range by injectivity of Tσt on L∞(Rd).

A function f ∈ L∞(Rd) is an eigenfunction for 1 ∈Λ(Tσt ,L
∞) for all t > 0 if, and

only if, ∆ f = 0, in which case f is constant. By Example 3.3.3, 1 /∈ Λ(Tσt ,L
p(Rd))

for 1≤ p < ∞. In fact, the closure of ∆ has no L2 eigenfunction and Λ(Tσt ,L
2(Rd))=

/0. However, we have Spec(Tσt ,L
p(Rd)) = [0,1] for 1≤ p≤∞ (cf. Theorem 3.3.23).

Example 3.3.5. The inclusion in (iv) in Lemma 3.3.2 is strict in general, for p ∈
(1,∞), even if G is abelian, by Remark 3.3.24. It has been shown by Sarnak
[56] that for σ ∈ M(T), where T is the circle group, one has Spec(Tσ ,Lp(T)) =
Spec(Tσ ,L2(T)) for 1 < p < ∞ if Spec(Tσ ,L2(T)) has zero capacity. We give a
condition for Spec(Tσ ,Lp(G)) = Spec(Tσ ,L1(G)) in Proposition 3.3.6.

Let α /∈ Spec(Tσ ,Lp). Then the resolvent

R(α,Tσ ) = (αI−Tσ )−1 : Lp(G,Mn)−→ Lp(G,Mn)

is Mn-linear and commutes with left translations. Indeed, for A ∈ Mn, x ∈ G and
f ∈ Lp(G,Mn), we have

(α−Tσ )(AR(α,Tσ ) f ) = A(α−Tσ)R(α,Tσ ) f = A f ,

(α−Tσ )�xR(α,Tσ ) = �x(α−Tσ )R(α,Tσ ) = �x .

Applying R(α,Tσ ) to the left of both equations, we get R(α,Tσ )(A f ) = AR(α,Tσ ) f
and �xR(α,Tσ ) = R(α,Tσ )�x. In particular, for p = 1, the resolvent R(α,Tσ ) is a
convolution operator by Corollary 3.1.11. This gives an alternative proof of S = Tµ
in Lemma 3.3.2 (iv). For arbitrary p and |α|> ‖σ‖, we have

R(α,Tσ ) =
∞

∑
n=0

1
αn+1 Tσ n

and the series µ =
∞

∑
n=0

1
αn+1 σn converges in M(G,Mn) which gives R(α,Tσ ) = Tµ .

For the Lp-spectrum to be identical with the L1-spectrum, it is both necessary and
sufficient that all resolvents be convolution operators.

Proposition 3.3.6. Let 1 < p < ∞ and σ ∈M(G,Mn). The following conditions are
equivalent.

(i) Spec(Tσ ,Lp(G,Mn)) = Spec(Tσ ,L1(G,Mn)).
(ii) R(α,Tσ ) is a convolution operator for each α /∈ Spec(Tσ ,Lp).

Proof. (i) =⇒ (ii). Given α /∈ Spec(Tσ ,Lp), we have α /∈ Specσ and hence
(σ − αδe) ∗ µ = µ ∗ (σ − αδe) = δe for some µ ∈ M(G,Mn). It follows that
(Tσ −αI)Tµ = Tµ(Tσ −αI) = I on Lp(G,Mn) and hence R(α,Tσ ) = Tµ .
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(ii) =⇒ (i). Let α /∈ Spec(Tσ ,Lp(G,Mn)). Then R(α,Tσ ) = Tµ for some µ ∈
M(G,Mn). We have (Tσ −αI)Tµ = Tµ(Tσ −αI) = I on L1 ∩Lp, and hence on L1.
Therefore α /∈ Spec(Tσ ,L1). ��

Let π ∈ ̂G. Given σ ∈ M(G,Mn) and f ∈ L1(G,Mn), we define their Fourier
transforms by

σ̂(π) =
∫

G
(1Mn ⊗π)(x−1)d(σ ⊗1B(Hπ))(x) ∈Mn⊗B(Hπ)

and

̂f (π) =
∫

G
f (x)⊗π(x−1)dλ (x)

=

⎛

⎜

⎜

⎜

⎜

⎝

∫

G f11(x)π(x−1)dλ (x) · · ·
∫

G f1n(x)π(x−1)dλ (x)
· ·
· ·
· ·

∫

G fn1(x)π(x−1)dλ (x) · · ·
∫

G fnn(x)π(x−1)dλ (x)

⎞

⎟

⎟

⎟

⎟

⎠

∈Mn⊗B(Hπ)

where Mn⊗B(Hπ) = B(Cn⊗Hπ) is a matrix algebra over B(Hπ) and the Hilbert
space tensor product C

n⊗Hπ identifies with the direct sum of n-copies of Hπ . For
ι ∈ ̂G, we have

̂f (ι) =
∫

G
f dλ ∈Mn.

In contrast to the scalar case, f̂ ∗σ(π) need not equal σ̂(π)̂f (π). Instead, we
have

σ̂ ∗� f (π) = σ̂(π)̂f (π)

although one still has f̂ ∗σ = ̂f σ̂ if G is abelian. However, if we define

π(σ) =
∫

G
(1Mn ⊗π)(x)d(σ ⊗1B(Hπ))(x) = ̂σ̃(π) (3.6)

and π( f ) =
∫

G
f (x)⊗π(x)dλ (x), then, as in [9, p.36], we have

π( f ∗σ) = π( f )π(σ).

If ̂f (π) = 0 for all π ∈ ̂G, then f = 0. Indeed, we have
∫

G
fi j(x)π(x−1)dλ (x) = 0 (π ∈ ̂G)

which gives fi j = 0 for all i, j. If G is abelian, then π is a character and we have

σ̂(π) =
∫

G
π(x−1)dσ(x) ∈Mn
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̂f (π) =
∫

G
f (x)π(x−1)dλ (x) ∈Mn.

For abelian G, the inverse of π ∈ ̂G is given by

π̃(x) = π(x−1) (x ∈G)

and we have σ̂(π̃) = ̂σ̃(π). Hence

{π(σ) : π ∈ ̂G}= {̂σ̃(π) : π ∈ ̂G}= {σ̂(π) : π ∈ ̂G}. (3.7)

Given µ ∈M(G,Mn) and a function f : G−→Mn, we define their transposes by
pointwise transpose:

µT (E) = µ(E)T , f T (x) = f (x)T .

We note that
(µ ∗� f )T = f T ∗ µT .

For each π ∈ ̂G, the Fourier transform

µ̂(π) =
(
∫

G
π(x−1)dµi j(x)

)

is a matrix of operators in Mn⊗B(Hπ) and we have

̂µT (π) =
(
∫

G
π(x−1)dµ ji(x)

)

= µ̂(π)T .

It follows that, for each σ ∈M(G,Mn), we have

Spec σ̂(π) = SpeĉσT (π). (3.8)

Lemma 3.3.7. Let σ ∈M(G,Mn) and 1≤ p ≤ ∞. Then

Spec(Tσ ,Lp(G,Mn)) = Spec(Lσ T ,Lp(G,Mn)).

Proof. If α ∈ C and Tσ −αI has an inverse S ∈ B(Lp(G,Mn)), we define ST ∈
B(Lp(G,Mn)) by

ST ( f ) = S( f )T ( f ∈ Lp(G,Mn)).

Then Lσ T −αI has inverse ST . Indeed, given f ∈ Lp(G,Mn), we have

(Lσ T −αI)ST ( f ) = σT ∗� S( f )T −αS( f )T = ((σT ∗� S( f )T )T −αS( f ))T

= S( f )∗σ−αS( f ) = f = ST (Lσ T −αI)( f ).

The arguments can be reversed. ��
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Proposition 3.3.8. Let σ ∈M(G,Mn). Then

Λ(Tσ ,L1)⊂
⋃

π∈ ̂G

Spec σ̂(π)⊂ Specσ .

Proof. Let α ∈ Λ(Tσ ,L1) with f ∗ σ = α f for some nonzero f ∈ L1(G,Mn).
Then there exists π ∈ ̂G such that ̂f (π) �= 0. We have (σT ∗� f T )T = f ∗σ = α f .

Hence (σT ∗� f T ) = α f T and ̂σT (π)̂f T (π) = ̂σT ∗� f T (π) = α̂f T (π) which gives

(̂σT (π)− αI)̂f T (π) = 0. Therefore ̂σT (π)− αI is not invertible, that is, α ∈
SpeĉσT (π).

If α /∈ Specσ , then σ −αδe has an inverse µ ∈M(G,Mn) and hence

(σT −αδe)∗� µT = (µ ∗ (σ−αδe))T = δe = µT ∗� (σT −αδe).

It follows that, for all π ∈ ̂G, we have ̂(σT −αδe)(π)̂µT (π) = I = ̂µT (π)
̂(σT −αδe)(π), that is, ̂σT (π)− αI is invertible in Mn ⊗ B(Hπ). This proves

the last inclusion. ��

We first develop a matrix spectral theory for abelian groups, and consider non-
abelian groups later. We need to extend the Plancherel theorem to the matrix setting.
For this, denote by Mn,2 the vector space Mn equipped with the Hilbert-Schmidt
norm and consider the Hilbert space L2(G,Mn,2) with inner product 〈·, ·〉2, written
as 〈·, ·〉.

Lemma 3.3.9. (Plancherel Theorem) Let G be abelian and let f ∈ L1(G,Mn,2)∩
L2(G,Mn,2). Then ‖̂f‖2 = ‖ f‖2 and the mapping f ∈ L1(G,Mn,2)∩L2(G,Mn,2) �→
̂f ∈ L2( ̂G,Mn,2) extends to a unitary operator F : L2(G,Mn,2)−→ L2( ̂G,Mn,2).

Proof. The proof is similar to the scalar case, we outline the main steps which re-
quire matrix manipulation, for clarity. Let f ∈ L1(G,Mn,2)∩L2(G,Mn,2) and let f � :
G−→Mn be the involution f �(x) = f (x−1)∗. Then f � ∈ L1(G,Mn,2)∩L2(G,Mn,2)
and ̂f �(γ) = ̂f (γ)∗. The function h = f ∗ f � belongs to L1(G,Mn,2)∩ L2(G,Mn,2)
and has Fourier transform ̂h = ̂f ̂f ∗. Consider the scalar function Tr ◦ h whose
Fourier transform T̂r◦ h equals Tr ◦ ̂h = Tr ◦ ̂f ̂f ∗ which is non-negative on ̂G.
By Lemma 3.1.1, Tr ◦ h = Tr ◦ f ∗ f � is continuous. Hence, by the scalar result,
Tr◦̂h = T̂r◦ h∈ L1( ̂G) which giveŝh∈ L1(G,Mn,2) since ‖̂h(γ)‖hs≤

√
n‖̂h(γ)‖Mn ≤√

nTr(̂h(γ)) by positivity of the matrx ̂h(γ). We also have

Tr◦ h(e) =
∫

̂G
T̂r◦ h(γ)dγ

where dγ is the Haar measure on ̂G. It follows that
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‖̂f ‖2
2 = Tr

(
∫

̂G

̂f (γ)̂f (γ)∗dγ
)

= Tr(h(e))

= Tr

(
∫

G
f (y−1) f (y−1)∗dλ (y)

)

= ‖ f‖2
2.

We can now extend the isometry f ∈ L1(G,Mn,2)∩L2(G,Mn,2) �→ ̂f ∈ L2( ̂G,Mn,2)
to an isometry F : L2(G,Mn,2) −→ L2( ̂G,Mn,2) and it remains to show that F is
surjective. Indeed, if g ∈ L2( ̂G,Mn,2) satisfies 〈ImF ,g〉= 0, then we have, for each
ϕ ∈ L2(G,Mn,2),

〈F′(g),ϕ〉= Tr

(
∫

G
ϕ∗F′(g)

)

= Tr

(
∫

̂G
F(ϕ∗)g

)

= 0

where the map F′ : L2( ̂G,Mn,2) −→ L2(G,Mn,2) is constructed similarly. Hence
F′(g) = 0 in L2(G,Mn,2) and g = 0 in L2( ̂G,Mn,2). ��

Given a subset E ⊂Mn, we denote by

ΛE = {α ∈ C : det(A−αI) = 0 for some A ∈ E}

the set of all eigenvalues of the matrices in E . Using Lemma 3.3.9, the L2-spectrum
of Tσ on an abelian group can be determined without difficulty. We prove a lemma
first.

Lemma 3.3.10. Let Ω be a locally compact Hausdorff space and let f be an element
in the algebra Cb(Ω,Mn) of bounded continuous Mn-valued functions on Ω. Then
the spectrum of f in this algebra is given by

Spec f = Λ{ f (ω) : ω ∈Ω}.

Proof. Since Cb(Ω,Mn) = C(Ω,Mn), where Ω is the Stone-Čech compactification,
it is straightforward to show, using determinant, that

Spec f = Λ{ f (ω) : ω ∈Ω} ⊃ Λ{ f (ω) : ω ∈Ω}.

To see the reverse inclusion, let α be an eigenvalue of f (ω) for some ω ∈ Ω with
ω = limβ ωβ and ωβ ∈Ω. Then we have limβ det( f (ωβ )−α) = det( f (ω)−α) = 0.
If det( f (ωβ )−α) = 0 for some β , there is nothing to prove. Otherwise, let ε > 0
and choose |det( f (ωβ )−α)|< εn. Let ξ be the eigenvalue of f (ωβ )−αI with the
least modulus. Since determinant is the product of eigenvalues, we have |ξ | < ε .
Now α +ξ is an eigenvalue of f (ωβ ) and |(α +ξ )−α|= |ξ |< ε . This proves that
α is in the closure of Λ{ f (ω) : ω ∈Ω}. ��

Remark 3.3.11. The above arguments also show that, if f vanishes at infinity, then
we have 0 ∈ Λ{ f (ω) : ω ∈Ω}.
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Proposition 3.3.12. Let G be abelian and σ ∈M(G,Mn). Then the convolution op-
erator Lσ : L2(G,Mn,2) −→ L2(G,Mn,2) is unitarily equivalent to the multiplica-
tion operator Mσ̂ : h ∈ L2( ̂G,Mn,2) �→ σ̂h ∈ L2( ̂G,Mn,2) via the Fourier transform
F : L2(G,Mn,2)−→ L2( ̂G,Mn,2), that is,

FLσ = Mσ̂F

and we have Spec(Tσ ,L2(G,Mn)) = Λ{σ̂(γ) : γ ∈ ̂G}.

Proof. Define a map ψ : L∞( ̂G,Mn)−→ B(L2(G,Mn,2)) by

ψ( f )(h) = F−1( fF(h)) ( f ∈ L∞( ̂G,Mn,2),h ∈ L2(G,Mn,2)).

One can verify readily that ψ is injective and also an algebra homomorphism. More-
over, ψ is a *-homomorphism. Indeed, given f ∈ L∞( ̂G,Mn) and h,k ∈ L2(G,Mn,2),
we have

〈k,ψ( f ∗)h〉 = 〈k,F−1( f ∗F(h))〉= 〈F(k), f ∗F(h)〉

= Tr

(
∫

G
F(k)( f ∗F(h))∗dλ

)

= Tr

(
∫

G
F(k)F(h)∗ f dλ

)

= Tr

(
∫

G
fF(k)F(h)∗dλ

)

= 〈 fF(k),F(h)〉

= 〈F−1( fF(k)),h〉.

Hence ψ is an isometry (cf. [62, Corollary I.5.4]) and L∞( ̂G,Mn) identifies as a
unital C*-subalgebra of B(L2(G,Mn,2)). We have σ̂ ∈ L∞( ̂G,Mn) and

ψ(σ̂)(h)=F−1(σ̂F(h))=F−1(F(σ ∗� h))= σ ∗� h = Lσ (h) (h∈L2(G,Mn,2))

that is, ψ(σ̂) = Lσ and FLσ = Mσ̂F . Also we have

Spec(Lσ ,L2) = SpecB(L2(G,Mn,2))ψ(σ̂) = SpecL∞( ̂G,Mn)σ̂

where the second equality follows from that L∞( ̂G,Mn) is a unital C*-subalgebra of
B(L2(G,Mn,2)) (cf. [62, Proposition I.4.8]). Since T ∗σ̃ = Lσ , we obtain

Spec(Tσ̃ ,L2) = Spec(T ∗σ̃ ,L2) = Spec(Lσ ,L2) = SpecL∞( ̂G,Mn)σ̂

and hence, noting that Cb( ̂G,Mn) is a unital C*-subalgebra of L∞( ̂G,Mn),

Spec(Tσ ,L2) = SpecL∞( ̂G,Mn)
̂σ̃ = SpecCb( ̂G,Mn)

̂σ̃

which is the closure of Λ{σ̂(γ) : γ ∈ ̂G} by Lemma 3.3.10 and (3.7). ��
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To define Fourier transform for 1 < p < 2, we use the Hausdorff-Young inequal-
ity as in the scalar case.

Lemma 3.3.13. (Hausdorff-Young) Let G be an abelian group and let 1 < p < 2.
Given f ∈ Lp(G,Mn)∩L1(G,Mn), we have ̂f ∈ Lq( ̂G,Mn) and ‖̂f‖q ≤ n2‖ f‖p.

Proof. Let µ be the Haar measure on ̂G such that we have the Hausdorff-Young
inequality

‖̂h‖q ≤ ‖h‖p

for h ∈ Lp(G)∩L1(G) (cf. [27, 4.27]). Let f = ( fi j) ∈ Lp(G,Mn)∩L1(G,Mn). For
π ∈ ̂G, the Fourier transform ̂f (π) is the matrix (̂fi j(π)) ∈Mn and we have

(
∫

̂G
‖̂f (π)‖q

Mn
dµ(π)

)1/q

≤

⎛

⎝

∫

̂G

(

∑
i j

|̂fi j(π)|2
)q/2

dµ(π)

⎞

⎠

1/q

≤
(

∫

̂G

(

∑
i j
|̂fi j(π)|

)q

dµ(π)

)1/q

≤∑
i j

‖̂fi j‖q ≤ n2‖ f‖p.

��
Since Lp(G,Mn)∩L1(G,Mn) is ‖ · ‖p-dense in Lp(G,Mn), the above lemma im-

plies that, for 1 < p < 2, the Fourier transform f ∈ Lp(G,Mn)∩L1(G,Mn) �→ ̂f ∈
Lq(G,Mn) has a unique extension to a bounded linear operator on Lp(G,Mn), which
will still be denoted by f �→ ̂f and called the Fourier transform of Lp(G,Mn).

To obtain further spectral results for abelian groups G, we introduce a use-
ful device, namely, the determinant of a matrix-valued measure. Let σ = (σi j) ∈
M(G,Mn) where G is abelian. We define its determinant, detσ , which is a complex-
valued measure, by convolution:

detσ = ∑
τ

sgn(τ)σ1τ(1) ∗ · · · ∗σnτ(n)

where τ is a permutation of {1, . . . ,n}. This is well-defined since G is abelian. We
can now define the adjugate matrix of σ , Ad j σ ∈M(G,Mn), by convolution such
that

(Adjσ)∗σ = σ ∗ (Adjσ) =

⎛

⎜

⎝

detσ
. . .

detσ

⎞

⎟

⎠ .

Given that G is abelian, ̂G is the group of characters and we have

d̂etσ(π) = det σ̂(π) (π ∈ ̂G).

We have the following matrix version of a Tauberian theorem.



3.3 Spectral Theory 43

Lemma 3.3.14. Let G be abelian and let σ ∈M(G,Mn). Then the following condi-
tions are equivalent.

(i) For each f ∈ L∞(G,Mn), f ∗σ = 0 implies f is constant.
(ii) For each f ∈ L∞(G,M∗n ), σ ∗� f = 0 implies f is constant.

(iii) det σ̂(π) �= 0 for every π ∈ ̂G\{ι}.

Proof. The equivalence of (i) and (iii) has been proved in [12].
(ii) =⇒ (iii). Suppose det σ̂ (π)= 0 for some π �= ι . We can find a non-zero vector

ξ = (ξ1, . . . ,ξn) ∈ C
n such that σ̂(π)ξ = 0. Define a function f ∈ L∞(G,M∗n ) by

f (x) = π(x)

⎛

⎜

⎝

ξ1 · · · ξ1
...

...
ξn · · · ξn

⎞

⎟

⎠ .

We have

σ ∗� f (x) =
∫

G
dσ(y) f (xy−1)

= π(x)
∫

G
π(y−1)dσ(y)

⎛

⎜

⎝

ξ1 · · · ξ1
...

...
ξn · · · ξn

⎞

⎟

⎠
= 0

but f is non-constant.
(iii) =⇒ (ii). Consider the complex measure detσ whose Fourier transform sat-

isfies d̂etσ(π) �= 0 for each π ∈ ̂G\{ι}. Let f = ( fi j) ∈ L∞(G,M∗n ) be such that
σ ∗� f = 0. Let f T and σT be the transposes defined pointwise. Then

f T ∗σT (x) =
∫

G
f T (xy−1)dσT (y) = (σ ∗� f )(x)T = 0

for λ -a.e. x ∈ G. Therefore

f T ∗

⎛

⎜

⎝

detσT

. . .
detσT

⎞

⎟

⎠= f T ∗σT ∗AdjσT = 0

which gives f T
i j ∗ detσ = 0 where f T

i j = f ji ∈ L∞(G). We can apply the equivalence
(i)⇔ (iii) to detσ and L∞(G). This implies that f ji is constant for all i, j. Hence f
is constant. ��

Remark 3.3.15. In the above lemma, (i) =⇒ (iii) can be extended to non-abelian
groups in which case, (i) or (ii) implies that 0 is not an eigenvalue of σ̂(π) for
each π ∈ ̂G\{ι}. However, (iii) =⇒ (i) fails for non-abelian groups. Let σ be an
adapted probability measure on a non-amenable group G. Then there exists a non-
constant function f ∈ L∞(G) such that f ∗σ = f (cf. [13, Proposition 2.1.3]). By [10,
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Lemma 3.11], σ̂ − δe(π) is invertible in B(Hπ) for every π ∈ ̂G\{ι}while f satisfies
f ∗ (σ −δe) = 0. This reveals a different spectral phenomenon between abelian and
non-abelian groups.

Proposition 3.3.16. Let G be abelian and let σ ∈M(G,Mn). Then

Λ(Tσ ,L∞(G,Mn)) = Λ{σ̂(π) : π ∈ ̂G}

and Λ(Tσ ,Lp)⊂ Λσ̂( ̂G) for all p < ∞.

Proof. Let α be an eigenvalue of Tσ so that f ∗σ = α f for some non-zero f ∈
L∞(G,Mn). If f is constant and equal A ∈Mn say, then αA = Aσ(G) = Aσ̂(ι) gives
A(σ̂(ι)−αI) = 0. Hence σ̂ (ι)−αI is not invertible since A �= 0, that is, α is an
eigenvalue of σ̂(ι).

If f is non-constant, then f ∗ (σ −αδe) = 0 and Lemma 3.3.14 imply that there

is some π ∈ ̂G such that det σ̂ −αδe(π) = 0. Hence

det(σ̂(π)−αI) = det σ̂ −αδe(π) = 0

that is, α is an eigenvalue of σ̂(π).
Let α ∈ Λ{σ̂(π) : π ∈ ̂G} and say, α is an eigenvalue of σ̂(π). Then there exists

a non-zero vector ξ = (ξ1, . . . ,ξn) ∈ C
n such that σ̂(π)∗ξ = ᾱξ . Define a non-zero

function f ∈ L∞(G,Mn) by

f (x) = π(x)

⎛

⎜

⎜

⎜

⎝

ξ̄1 · · · ξ̄n

0 · · · 0
...

...
0 · · · 0

⎞

⎟

⎟

⎟

⎠

(x ∈G).

Then we have

f ∗σ(x) = π(x)

⎛

⎜

⎜

⎜

⎝

ξ̄1 · · · ξ̄n

0 · · · 0
...

...
0 · · · 0

⎞

⎟

⎟

⎟

⎠

σ̂(π) = απ(x)

⎛

⎜

⎜

⎜

⎝

ξ̄1 · · · ξ̄n

0 · · · 0
...

...
0 · · · 0

⎞

⎟

⎟

⎟

⎠

since

σ̂(π)∗

⎛

⎜

⎝

ξ1 0 · · · 0
...

...
...

ξn 0 · · · 0

⎞

⎟

⎠
= ᾱ

⎛

⎜

⎝

ξ1 0 · · · 0
...

...
...

ξn 0 · · · 0

⎞

⎟

⎠
.

Hence f ∗σ = α f and α ∈ Λ(Tσ ,L∞).
The last assertion follows from Lemma 3.3.2 (i). ��
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Proposition 3.3.17. Let G be abelian and let σ ∈M(G,Mn). Then we have

Λ{σ̂(π) : π ∈ ̂G} ⊂ Spec(Tσ ,Lp)

for all p ∈ [1,∞].

Proof. First, consider the case 1 < p < 2. Let α be an eigenvalue of σ̂(π) for some
π ∈ ̂G. We show that

Tσ −αI : Lp(G,Mn)−→ Lp(G,Mn)

is not invertible. Suppose otherwise, it has a bounded inverse S : Lp(G,Mn) −→
Lp(G,Mn) which commutes with left translations. Let K be a compact subset of G
with positive Haar measure and define the function k ∈ Lp(G,Mn)∩L2(G,Mn) by

k =

⎛

⎜

⎝

πχK

. . .
πχK

⎞

⎟

⎠

where χK is the characteristic function of K. By surjectivity, there exits
h ∈ Lp(G,Mn) such that

h ∗σ−αh = k

which, as G is abelian, gives ̂hσ̂ − α̂h = ̂k almost everywhere on ̂G. Let D :
Lp(G)−→ Lp(G,Mn) be the natural embedding

D( f ) =

⎛

⎜

⎝

f
. . .

f

⎞

⎟

⎠
.

Given 1 ≤ i, j ≤ n, let ψ : Lp(G,Mn) −→ Lp(G) be the projection onto the i j-
component: ψ(g) = gi j for g = (gi j). Then the mapping ψ ◦S◦D : Lp(G)−→ Lp(G)
commutes with left translations and by [44, Corollary 4.1.2], there exists a function
ϕ ∈ L∞( ̂G) such that

̂hi j = ψ̂(h) = ψSD(πχK )̂ = ϕ π̂χK ∈ L∞( ̂G).

It follows that ̂h ∈ L∞( ̂G,Mn).
Let {Vβ} be a net of neighbourhoods of π decreasing to {π}. Since Vβ has posi-

tive Haar measure, we can find γβ ∈Vβ such that ‖̂h(γβ )‖Mn ≤ ‖̂h‖∞ and

̂h(γβ )σ̂(γβ )−α̂h(γβ ) = ̂k(γβ ).

Therefore

|det̂k(γβ )| ≤ ‖̂h(γβ )‖n
Mn
|det(σ̂(γβ )−α)| ≤ ‖h‖n

∞|det(σ̂(γβ )−α)|
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where ̂k is continuous, giving

0 < λ (K)n = |det̂k(π)| ≤ ‖̂h‖n
∞|det(σ̂(π)−α)|= 0

which is a contradiction. Therefore Tσ −αI is not invertible and α ∈ Spec(Tσ ,Lp).
For 2 < p < ∞, the conjugate exponent q satisfies 1 < q < 2 and the above argu-

ments are applicable to Lσ̃ which commutes with left translations. Hence we have

Spec(Tσ ,Lp) = Spec(Lσ̃ ,Lq)⊃ Λ̂σ̃( ̂G) = Λσ̂( ̂G).

��

The reverse inclusion for the above result requires absolute continuity of σ . To
prove it, we use a Wiener-Levy type theorem and we first develop some technical
tools by adapting the ideas for the scalar case in [55] to the matrix setting.

Let G be an abelian group. We begin by noting that, given a compact set K con-
tained in an open set W in the dual group ̂G, one can find a function f ∈ L1(G,Mn)
such that

̂f =
{

IMn on K
0 on ̂G\W .

Indeed, one can find h ∈ L1(G) whose Fourier transform ̂h equals 1 on K, and van-
ishes outside W . Then the diagonal

f = D(h) =

⎛

⎜

⎝

h
. . .

h

⎞

⎟

⎠

satisfies the requirements. Let

A( ̂G,Mn) = {̂f : f ∈ L1(G,Mn)}.

Then, as in the scalar case, A( ̂G,Mn) is a Banach algebra under the pointwise prod-
uct and the norm

‖|̂f‖| := ‖ f‖1.

Naturally, we call A( ̂G,Mn) the matrix Fourier algebra of ̂G.

Lemma 3.3.18. Let G be abelian and let f ∈ L1(G,Mn). Given ζ ∈ ̂G with a neigh-
bourhood W ⊂ ̂G of ζ , and given ε > 0, there exists a function h ∈ L1(G,Mn) with
‖h‖1 < ε such that ̂h = 0 on ̂G\W and

̂f (γ)−̂h(γ) = ̂f (ζ )

in some neighbourhood of ζ .
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Proof. This follows easily from the scalar result. Let f = ( fi j). By [55,

Theorem 2.6.5], we can find hi j ∈ L1(G) with ‖hi j‖1 < ε/n2 such that ̂hi j = 0

outside W and ̂fi j(γ) −̂hi j(γ) = ̂fi j(ζ ) in some neighbourhood Vi j of ζ . Let
h = (hi j) ∈ L1(G,Mn). Then

‖h‖1 =
∫

G
‖h(x)‖Mndλ (x)≤

∫

G

(

∑
i, j
|hi j(x)|2

)1/2

dλ (x)

≤∑
i, j

∫

G
|hi j(x)|dλ (x) < n2

( ε
n2

)

= ε

and we have ̂h = (̂hi j) = 0 outside W with ̂f (γ)−̂h(γ) = ̂f (ζ ) in the neighbourhood
⋂

i, j

Vi j of ζ . ��

Lemma 3.3.19. Let G be abelian and let f ∈ L1(G,Mn). Given ε > 0, there exists a
function v ∈ L1(G,Mn) such that its Fourier transform v̂ has compact support and
‖ f − f ∗ v‖1 < ε .

Proof. We assume f �= 0. We first note that the set

{v ∈ L1(G,Mn) : v̂ has compact support}

is dense in L1(G,Mn). Indeed, by the scalar result, given f = ( fi j) ∈ L1(G,Mn) and
for δ > 0, one can find v = (vi j) ∈ L1(G,Mn) satisfying

‖vi j− fi j‖1 <
δ
n2

and v̂i j has compact support. Since the support of v̂ is contained in
⋃

i, j

supp v̂i j, it is

also compact. As before, we have

‖v− f‖1 ≤∑
i, j
‖vi j− fi j‖1 < n2

(

δ
n2

)

= δ .

Now, since L1(G,Mn) has an approximate identity, we can find u ∈ L1(G,Mn) such
that ‖ f − f ∗u‖1 < ε/2. Choose v ∈ L1(G,Mn) such that v̂ has compact support and

‖u− v‖<
ε

2‖ f‖1
.

Then we have

‖ f − f ∗ v‖1 ≤ ‖ f − f ∗ u‖1 +‖ f ∗ (u− v)‖1 < ε.

��
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Definition 3.3.20. Let G be an abelian group. A function ψ : ̂G −→ Mn is said to
belong to A( ̂G,Mn) locally at ζ ∈ ̂G if there are a neighbourhood V of ζ and a
function ̂f ∈ A( ̂G,Mn) such that ψ = ̂f on V . If ̂G is not compact, we say that
ψ belongs to A( ̂G,Mn) at ∞ if there are a compact set K ⊂ ̂G and a function ̂f ∈
A( ̂G,Mn) such that ψ = ̂f on ̂G\K.

Lemma 3.3.21. If a function ψ : ̂G −→ Mn belongs to A( ̂G,Mn) locally at every
point of ̂G, including ∞ if ̂G is not compact, then we have ψ ∈ A( ̂G,Mn).

Proof. First suppose ψ has compact support K ⊂ ̂G. Then there are open sets
V1, . . . ,Vk and functions ̂f1, . . . ̂fk ∈ A( ̂G,Mn) such that K ⊂V1∪·· ·∪Vk and ψ = ̂fi

on Vi. Choose open sets Wi ⊂Vi with compact closure Wi ⊂Vi and K ⊂Wi∪·· ·∪Wk.
As noted earlier, we can find ̂hi ∈ A( ̂G,Mn) satisfying

̂hi =
{

I on Wi

0 on ̂G\Vi.

We have ψ̂hi = ̂fi
̂hi ∈ A( ̂G,Mn) for each i which implies

ψ = ψ(1− (1−̂h1)(1−̂h2) · · · (1−̂hk)) ∈ A( ̂G,Mn).

Now, without any assumption on ψ , since ψ belongs to A( ̂G,Mn) at ∞, there
are a compact set K ⊂ ̂G and a function ĝ ∈ A( ̂G,Mn) such that ψ = ĝ out-
side K. Therefore ψ− ĝ has compact support and by the above arguments, we have
ψ− ĝ ∈ A( ̂G,Mn) and hence ψ ∈ A( ̂G,Mn). ��

A holomorphic map F : E −→ F between complex Banach spaces has a series
expansion around a point z0 ∈ E of the form

F(z) =
∞

∑
n=0

1
n!

DnF(z0)(z− z0, . . . ,z− z0)

where DnF(z0) : En −→ F is the n-th derivative of F at z0. We will use another form
of the Taylor series for a holomorphic map F : Mn −→ Mn which is more suitable
to our purpose. We note that, when equipped with the Hilbert-Schmidt norm ‖ · ‖hs,
the Hilbert space Mn identifies with the complex Euclidean space C

n2
via

(zi j) ∈Mn �→ (z11, . . . ,zn1,z12, . . . ,zn2, . . . ,znn) ∈ C
n2

.

Therefore, by considering each i j-th entry of

F = (Fi j) : C
n2 −→Mn,

its Taylor series near w = (wi j) can be written in the form

F(z) = ∑
κ

Aκ(z−w)κ
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where Aκ ∈ Mn and we adopt the usual convention of multi-indices: κ =
(κ11, . . . ,κnn) and wκ = wκ11

11 · · ·wκnn
nn . We note that the neighbourhoods of w can be

described by any norm on Mn since all norms are equivalent on Mn.
We are now ready to derive a matrix version of a Wiener-Levy type theorem. We

note that each ̂f ∈ A( ̂G,Mn) vanishes at infinity and therefore the closure of its range
in Mn contains 0 if ̂G is not compact.

Theorem 3.3.22. Let ̂f ∈ A( ̂G,Mn) and let U be an open subset of Mn containing

the closure ̂f ( ̂G). Then for any holomorphic map F : U −→Mn satisfying F(0) = 0
if ̂G is non-compact, there exists a function ϕ̂ ∈ A( ̂G,Mn) such that

ϕ̂(γ) = F(̂f (γ)) (γ ∈ ̂G).

We will denote ϕ̂ by F(̂f ).

Proof. We need to show that the function F ◦ ̂f : ̂G−→Mn belongs to A( ̂G,Mn). By
Lemma 3.3.21, it suffices to show that F ◦ ̂f belongs to A( ̂G,Mn) locally at every
point of ̂G∪{∞}. Fix ζ ∈ ̂G∪{∞} and define ̂f (∞) = 0.

Regard U as a subset of (Mn,‖ · ‖hs) = C
n2

and let ̂f (ζ ) = w = (w11, . . . ,wnn) ∈
C

n2
. Choose ε > 0 such that F has the Taylor series expansion

F(z) = F(w)+∑
κ

Aκ(z−w)κ

which converges absolutely for ‖z−w‖
Cn2 < ε , where A(0,...,0) = 0.

By Lemma 3.3.18, and by Lemma 3.3.19 if ζ = ∞, we can find a function g =
(gi j) ∈ L1(G,Mn) with ‖g‖1 < ε/n2 such that

̂f (γ) = ̂f (ζ )+ ĝ(γ)

in some neighbourhood of ζ . On G, consider the Mn-valued function

∑
κ

Aκ gκ

where, for κ = (κ11, . . . ,κnn), gκ is the complex function

gκ = gκ11
11 ∗ · · · ∗gκnn

nn

on G, and g
κi j
i j is the κi j-times convolution gi j ∗ · · · ∗gi j. We have

‖gκ‖1 ≤ ‖g11‖κ11
1 · · · ‖gnn‖κnn

1

and |gi j(x)| ≤ ‖g(x)‖hs ≤ n‖g(x)‖Mn implies

(

∑
i, j
‖gi j‖2

1

)1/2

≤
(

∑
i, j

n2‖g‖2
1

)1/2

= (n4‖g‖2
1)

1/2 < ε.



50 3 Matrix Convolution Operators

Therefore the series

∑
κ
‖Aκ‖‖g11‖κ11

1 · · ·‖gnn‖κnn
1

converges. Hence the series ∑κ Aκ gκ converges in L1(G,Mn) to a function, say,
h ∈ L1(G,Mn). We have

̂h = ∑
κ

Aκ ĝ11
κ11 · · · ĝnn

κnn

and

F(̂f (γ)) = F(̂f (ζ ))+∑
κ

Aκ(̂f (γ)− ̂f (ζ ))κ

= F(̂f (ζ ))+∑
κ

Aκ ĝ(γ)κ

= F(̂f (ζ ))+̂h(γ)

in a neighbourhood of ζ and, we can find a function ̂h1 ∈ A( ̂G,Mn) which equals
the constant F(̂f (ζ )) in a smaller neighbourhood. This proves that F ◦ ̂f belongs to
A( ̂G,Mn) locally at every point of ̂G∪{∞}. ��

We can now describe the Lp-spectrum in the abelian case.

Theorem 3.3.23. Let G be abelian and let σ ∈M(G,Mn) be absolutely continuous.
Then we have

Spec(Tσ ,Lp(G,Mn)) = Λ{σ̂(π) : π ∈ ̂G}

for 1≤ p ≤ ∞.

Proof. Let σ = h · λ for some h ∈ L1(G,Mn). We first consider p = 1. Suppose

α /∈ Λσ̂( ̂G) = Λ̂h( ̂G). We show that

Tσ −αI : L1(G,Mn)−→ L1(G,Mn)

is invertible. We have α /∈Λ(Tσ ,L1) for if f ∈ L1(G,Mn) satisfies f ∗(σ−αδe) = 0,
then ̂f (σ̂ −α) = 0 where, for all γ ∈ ̂G, the matrix σ̂(γ)−αI is invertible in Mn

since det(σ̂(γ)−αI) �= 0 and hence ̂f (γ) = 0.
It remains to show that Tσ −α is surjective. Consider the continuous function

ψ : Mn −→C given by

ψ(A) = det(A−α) (A ∈Mn).

We note that the compact set ψ
(

̂h( ̂G)
)

does not contain 0. Otherwise, we have

0 = ψ(A) for some A = limβ ̂h(γβ ) with γβ ∈ ̂G. It follows that limβ det(̂h(γβ )−
α) = det(A− α) = 0 and one argues as in the proof of Lemma 3.3.10 to get a

contradiction that α ∈ Λ̂h( ̂G). We can therefore find an open set V in C containing

ψ
(

̂h( ̂G)
)

, but not 0. This gives an open set U = ψ−1(V ) in Mn containing ̂h( ̂G)
such that, for each A ∈ U , the matrix A−αI is invertible in Mn.
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We consider two cases : (i) α �= 0 and (ii) α = 0.
Case (i). This occurs if ̂G is non-compact since ̂h vanishes at infinity and 0 ∈

Λ̂h( ̂G) by Remark 3.3.11. We define a holomorphic map F : U −→Mn by F(z) =
z(z−α)−1. By Theorem 3.3.22, there exists f ∈ L1(G,Mn) such that ̂f = F(̂h). Then
we have ̂f (γ) = F(̂h(γ)) = ̂h(γ)(̂h(γ)−α)−1 for γ ∈ ̂G.

Given g ∈ L1(G,Mn), we define

u =
1
α

(g ∗ f −g).

Then we have (Tσ −αI)(u) = g since

(u ∗ (σ−αδe))̂ = û(̂h−α) =
1
α

(ĝ̂f − ĝ)(̂h−α) =
1
α

(ĝ̂f (̂h−α)− ĝ̂h+ α ĝ) = ĝ.

Hence Tσ − αI is invertible and α /∈ Spec(Tσ ,L1). This proves Spec(Tσ ,L1) ⊂
Λσ̂( ̂G).

Case (ii). If α = 0, then ̂h(γ) is invertible in Mn for all γ ∈ ̂G and we can apply
Theorem 3.3.22 to the holomorphic function F(z) = z−1 to obtain a function f ∈
L1(G,Mn) satisfying ̂f (γ) = ̂h(γ)−1 for all γ ∈ ̂G. Given g ∈ L1(G,Mn), we have
g = Tσ (u) for u = g ∗ f . Hence Tσ is invertible which also proves Spec(Tσ ,L1) ⊂
Λσ̂( ̂G).

Now it follows from Proposition 3.3.17 that Spec(Tσ ,L∞) = Spec(Tσ ,L1) =
Λσ̂( ̂G). The same conclusion for 1 < p < ∞ follows from Lemma 3.3.2 and
Proposition 3.3.17. ��

Remark 3.3.24. The above result extends the known description of the scalar Lp-

spectrum for abelian groups: Spec(Tσ ,Lp(G)) = σ̂( ̂G) if σ is absolutely continuous.
Without absolute continuity, the result is false for p �= 2 (see, for example, [52,66]).

Corollary 3.3.25. Let G be a discrete abelian group and σ ∈ M(G,Mn). Then we
have Spec(Tσ ,L∞(G,Mn)) = Λ(Tσ ,L∞(G,Mn)).

Proof. Since ̂G is compact, the set Λσ̂( ̂G) is closed by continuity of σ̂ and the deter-
minant function det. Hence the result follows from Theorem 3.3.23 and Proposition
3.3.16. ��

Given an abelian group G, the Fourier algebra A( ̂G) = (L1(G))̂ is abelian and
its spectrum identifies with ̂G. Hence the spectrum of each element f ∈ A( ̂G) is the
closure of f ( ̂G). The matrix Fourier algebra A( ̂G,Mn) is non-abelian and we have
the following spectral result.

Corollary 3.3.26. Let G be an abelian group. The quasi-spectrum of an element ̂h

in the Banach algebra A( ̂G,Mn) is given by Spec′̂h = Λ̂h( ̂G)
⋃{0}.
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Proof. First, assume that ̂G is non-compact. Then as remarked before, we have

0 ∈ Λ̂h( ̂G). Let α ∈ Λ̂h( ̂G)\{0}. We show ̂h/α has no quasi-inverse in A( ̂G,Mn);
otherwise, let ĝ be its quasi-inverse, then ̂h/α + ĝ = (̂h/α)ĝ implies

(αI−α ĝ(γ))(αI−̂h(γ)) = I (γ ∈ ̂G).

Taking determinant both sides, we get a contradiction since det(αI−̂h(γ0)) = 0 for

some γ0 ∈ ̂G. Hence we have Λ̂h( ̂G)⊂ Spec′̂h.
To see the reverse inclusion, we show that Spec′̂h⊂ Spec(Tσ ,L1(G,Mn)) and in-

voke Theorem 3.3.23, where σ = h ·λ . Indeed, if Tσ−β I : L1(G,Mn)−→ L1(G,Mn)
is invertible for some β �= 0, then we can find f ∈ L1(G,Mn) such that f ∗h−β f = h
giving ̂f (̂h−β ) = ̂h and ̂h/β + ̂f = (̂h/β )̂f . Hence ̂h/β has quasi-inverse ̂f and
β /∈ Spec′̂h.

Finally, if ̂G is compact, then G is discrete and A( ̂G,Mn) is unital and the identity
is the constant function on ̂G taking value I ∈Mn. Similar arguments as above yield
Speĉh⊂ Spec(Tσ ,L1(G,Mn)). This completes the proof. ��

In connection with the results above, we consider, given σ ∈M(G,Mn) and f ∈
L1(G,Mn), the existence of solution to the matrix convolution equation h∗σ = f in
L1(G,Mn).

Proposition 3.3.27. Let G be abelian and σ ∈M(G,Mn). The following conditions
are equivalent.

(i) Tσ : L1(G,Mn)−→ L1(G,Mn) has dense range.
(ii) Lσ̃ : L1(G,Mn)−→ L1(G,Mn) has dense range.

(iii) det σ̂(π) �= 0 for each π ∈ ̂G.

Proof. (i) =⇒ (iii). Condition (i) is equivalent to injectivity of T ∗σ = Lσ̃ :

L∞(G,M∗n ) −→ L∞(G,M∗n ) which, by Lemma 3.3.14, implies that det ̂σ̃(π) �= 0
for π ∈ ̂G\{ι}, or, det σ̂(π) �= 0 for π ∈ ̂G\{ι}. Pick h ∈ L1(G,Mn) such that

det̂h(ι) = det
∫

G
hdλ �= 0,

for instance, one can choose h to be a diagonal matrix with a diagonal entry k ∈
L1(G) satisfying

∫

G kdλ �= 0. Condition (i) gives a sequence (hn) in L1(G,Mn) such
that (hn ∗σ) is norm convergent to h. It follows that

̂h(ι) = lim
n

ĥn ∗σ(ι) = lim
n
̂hn(ι)σ̂ (ι) �= 0

which implies that det σ̂(ι) �= 0.
(iii) =⇒ (i). We show that Lσ̃ is injective. Let f ∈ L∞(G,M∗n) satisfy σ̃ ∗� f = 0.

Applying Lemma 3.3.14 to σ̃ , we conclude that f must take constant value A ∈Mn,
say. Then

σ̂(ι)A = σ̃ ∗� f = 0

implies that A = 0 since σ̂(ι) is invertible.
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(ii)⇐⇒ (iii). Condition (ii) is equivalent to injectivity of the dual map L∗σ̃ = Tσ :
L∞(G,M∗n )−→ L∞(G,M∗n), that is, 0 /∈ Λ(Tσ ,L∞(G,M∗n )) = Λ(Tσ ,L∞(G,Mn)). The
last equality holds because M∗n = (Mn,‖ ·‖1) and a bounded M∗n -valued function can
be regarded as a bounded Mn-valued function, and vice versa. ��

Corollary 3.3.28. Let G be abelian and σ ∈ M(G,Mn). The following conditions
are equivalent.

(i) Tσ : L1(G,Mn)−→ L1(G,Mn) is surjective.
(ii) Lσ̃ : L1(G,Mn)−→ L1(G,Mn) is surjective.
(iv) 0 /∈ Specσ .

Proof. By Lemma 3.3.2 and its proof, we have Specσ = Spec(Lσ̃ ,L1(G,Mn)) and
we only need to show (i) =⇒ (iv)⇐= (ii).

(i) =⇒ (iv). By Proposition 3.3.27, we have 0 /∈ Λ(Tσ ,L∞(G,Mn)) and hence
0 /∈ Λ(Tσ ,L1(G,Mn)) by Lemma 3.3.2. Therefore Tσ is invertible on L1(G,Mn).

Similar arguments yield (ii) =⇒ (iv). ��

Example 3.3.29. Let σ be the Gaussian measure on R. Then the convolution op-
erator Tσ : L1(R,Mn) −→ L1(R,Mn) is not surjective, but has dense range. In fact,
if G is a non-discrete abelian group and if σ = f ·λ is absolutely continuous, then
Tσ : L1(G,Mn) −→ L1(G,Mn) is never surjective, for otherwise, we would have
f = h ∗ σ = h ∗ f for some h ∈ L1(G,Mn) which gives ̂f (π̃) = ̂h(π̃)̂f (π̃), with
̂f (π̃) = σ̂(π̃) invertible for all π ∈ ̂G by Proposition 3.3.27, and hence ̂h(π̃) = I
for all π ∈ ̂G which is impossible.

We note that surjectivity of Tσ : L1(G,Mn)−→ L1(G,Mn) implies invertibility of
Tσ : Lp(G,Mn)−→ Lp(G,Mn), for 1 < p < ∞, by Lemma 3.3.2 (iv); but the converse
need not be true by Remark 3.3.24, since there are abelian groups G for which one
can find µ ∈M(G) with Specµ\Spec(Tµ ,L2(G)) �= /0.

We have the following criterion for surjectivity of Tσ on L2(G,Mn).

Lemma 3.3.30. Let H be a Hilbert space and T ∈ B(H) with adjoint T ∗. Then T is
surjective if, and only if, SpecTT ∗ ⊂ [c,∞) for some c > 0.

Proof. We first note that the range T (H) is closed if, and only if,

SpecT T ∗ ⊂ {0}∪ [c,∞)

for some c > 0 (cf. [6, p.95]).
Let T be surjective. Then T ∗(H) is closed by the above remark, and we only need

to show 0 /∈ SpecT T ∗. Since H = T ∗(H)⊕T ∗(H)⊥, we have

H = T T ∗(H)+ T(T ∗(H)⊥) = TT ∗(H).

By self-adjointness, T T ∗ is injective and 0 /∈ SpecTT ∗.
Conversely, 0 /∈ SpecT T ∗ implies that H = T T ∗(H) and T is surjective. ��
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Corollary 3.3.31. Let G be an abelian group and σ ∈M(G). The following condi-
tions are equivalent.

(i) Tσ : L2(G)−→ L2(G) is surjective.
(ii) |σ̂( ̂G)| ⊂ [c,∞) for some c > 0.

Proof. Let σ be the complex conjugate of σ . We have SpecTσ T ∗σ = SpecTσ T
˜σ =

SpecT
˜σ∗σ = ̂̃σ ∗σ( ̂G), where ̂̃σ ∗σ( ̂G) = |σ̂( ̂G)|2 since ̂̃σ ∗σ = σ̂ σ̂ = |σ̂ |2. Now

Lemma 3.3.30 gives the result. ��

For any group G, the operator Tσ : L1(G,Mn) −→ L1(G,Mn) has dense range
if, and only if, 0 /∈ Λ(Lσ̃ ,L∞(G,M∗n )) = Λ(Lσ̃ ,L∞(G,Mn)) = Λ(Tσ̃ T ,L∞(G,Mn)),
the latter equality follows from the fact that (σ̃ ∗� f )T = f T ∗ σ̃T for every f ∈
L∞(G,Mn).

Corollary 3.3.32. Let σ ∈M(G,Mn) be such that Tσ : L1(G,Mn)−→ L1(G,Mn) has

dense range. Then 0 is not an eigenvalue of ̂σ̃(π) for each π ∈ ̂G.

Proof. Injectivity of Lσ̃ : L∞(G,Mn) −→ L∞(G,Mn) implies that 0 is not an eigen-

value of ̂σ̃(π) for π ∈ ̂G\{ι}}, by Remark 3.3.15. The rest of the proof is similar to
that of (i) =⇒ (iii) in Proposition 3.3.27. ��

A complex-valued measure σ is called symmetric if σ̃ = σ . Extending this no-
tion, we call an Mn-valued measure σ symmetric if σ̃ = σT . The above remarks give
the following result.

Proposition 3.3.33. Let σ ∈M(G,Mn) be symmetric. The following conditions are
equivalent.

(i) Tσ : L1(G,Mn)−→ L1(G,Mn) has dense range.
(ii) Lσ̃ : L1(G,Mn)−→ L1(G,Mn) has dense range;

(iii) 0 /∈ Λ(Tσ ,L∞(G,Mn)).

Corollary 3.3.34. Given a symmetric σ ∈ M(G,Mn), the following conditions are
equivalent.

(i) Tσ : L1(G,Mn)−→ L1(G,Mn) is surjective.
(ii) 0 /∈ Specσ .

Proof. Condition (i) implies 0 /∈ Λ(Tσ ,L1(G,Mn)). ��

We now develop a device to study the spectrum of Tσ : L2(G,Mn)−→ L2(G,Mn)
for non-abelian groups G. We will show that T ∗σ identifies with an element of the
C*-tensor product C∗r (G)⊗Mn2 of the reduced group C*-algebra C∗r (G) and Mn2 .
From this, we deduce several results about the spectrum Spec(Tσ ,L2(G,Mn)). We
first recall some basics of group C*-algebras. Since we use the right Haar measure
λ on G, we define the group C*-algebra of G by the right regular representation
ρ : G−→ B(L2(G)) which is given by
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ρ(x)h(y) = h(yx) (x,y ∈G,h ∈ B(L2(G)).

We note that L1(G,Mn) is a Banach �-algebra in the convolution product and the
involution

f �(x) =
G(x−1) f (x−1)∗ (x ∈ G)

where ∗ denotes the involution in Mn and 
G is the modular function of G. The
regular representation ρ extends to a representation of the Banach algebra M(G),
still denoted by ρ :

ρ(µ)(h) =
∫

G
ρ(x)hdµ(x) = h ∗ µ̃ (µ ∈M(G),h ∈ L2(G))

and for f ∈ L1(G)⊂M(G), we have f̃
G ∈ L1(G) and

ρ( f )h(x) =
∫

G
f (y)h(xy)dλ (y) = h ∗ f̃
G(x) (h ∈ L2(G)).

The reduced group C*-algebra C∗r (G) is defined to be the norm closure ρ(L1(G))
in B(L2(G)). The group C*-algebra C∗(G) is the C*-completion of L1(G), that is,
the completion with respect to the norm

‖ f‖c = sup
π
{‖π( f )‖}

where the supremum is taken over all �-representations π : L1(G) −→ B(Hπ). The
regular representation ρ of L1(G) extends to a representation ρ ′ of C∗(G) and we
have ρ ′(C∗(G)) = C∗r (G). Although ρ is injective on L1(G), its extension ρ ′ need
not be so on C∗(G). In fact, ρ ′ is faithful on C∗(G) if and only if G is amenable.

To put our device for Tσ in perspective, we make use of C*-crossed products
which extend the above construction of C∗(G). Let (A,G,β ) be a C*-dynamical
system, that is, A is a C*-algebra, G a locally compact group and β : t ∈ G �→ βt ∈
AutA is a homomorphism to the automorphism group AutA ofA such that the map
t ∈G �→ βt(x) ∈ A is continuous for all x ∈A. We refer to [51] for an exposition of
C*-dynamical systems and C*-crossed products.

Let L1(G,A) be the Lebesgue space of A-valued λ -integrable functions on G. It
is a Banach algebra with the following product and involution:

f ·h(x) =
∫

G
βy( f (xy−1)h(y)dλ (y) ( f ,h ∈ L1(G,A),x ∈G)

f �(x) =
G(x−1)βx( f (x−1))∗ ( f ∈ L1(G,A),x ∈ G)

where ∗ denotes the involution in A. The C*-crossed product G×β A is defined
to be the C*-completion of L1(G,A). In particular, if A = C, then the action β is
trivial, that is, each βt is the identity map of A, and the crossed product G×β C

reduces to C∗(G).
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Given A ⊂ B(H), let L2(G,H) be the Hilbert space of H-valued L2 functions
on G, with respect to the Haar measure λ . One can construct, as before, a regular
representation β ′ : G×β A−→B(L2(G,H)) satisfying

β ′( f )h(x) =
∫

G
βx( f (y))(h(xy))dλ (3.9)

for f ∈ L1(G,A),h ∈ L2(G,H) and x ∈ G. The image β ′(G×β A) is the reduced
C*-crossed product G×β rA.

Given a C*-dynamical system (A,G, ι) in which the action ι is trivial, the crossed
product G×ιA is the projective C*-tensor product C∗(G)⊗maxA, while the reduced
crossed product G×ιrA is the injective C*-tensor product C∗r (G)⊗minA.

We identify Mn2 with the unique C*-tensor product Mn⊗Mn and embed Mn into

Mn2 via the map A ∈Mn �→ IMn ⊗A ∈Mn2 , where IMn ⊗A : C
n2 −→ C

n2
is a linear

map.
If we identify Mn with the vector space C

n2
via the map

(bi j) ∈Mn �→ (b11, . . . ,bn1,b12, . . . ,bn2, . . . ,b1n, . . . ,bnn) ∈ C
n2

(3.10)

then for each B = (bi j) ∈Mn = C
n2

in (3.10), we have

(IMn ⊗A)(B) =

⎛

⎜

⎜

⎜

⎝

A
A

. . .
A

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

b11
...

bn1
...

b1n
...

bnn

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

= AB (3.11)

where AB is regarded as a vector in C
n2

as in (3.10).
Now, given an absolutely continuous σ ∈M(G,Mn), we are ready to identify the

convolution operator Lσ̃ : L2(G,Mn) −→ L2(G,Mn) as an element in the reduced
C*-crossed product G×ιr Mn2 .

Proposition 3.3.35. Let σ ∈ M(G,Mn) be absolutely continuous. Let Mn,2 be the
vector space Mn equipped with the Hilbert-Schmidt norm. Then the convolution
operator Lσ̃ : L2(G,Mn,2) −→ L2(G,Mn,2) is an element in the C*-tensor product
C∗r (G)⊗Mn2 .

Proof. Let σ = f ·λ for some f ∈ L1(G,Mn). Let 1� f : G−→Mn2 be the function

(1� f )(x) = IMn ⊗ f (x) (x ∈ G).

Then we have 1� f ∈ L1(G,Mn2).
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Consider the C*-dynamical system (Mn2 ,G, ι) in which Mn2 acts on the Hilbert

space C
n2

and the action ι is trivial. The regular representation

ι ′ : G×ι Mn2 −→B(L2(G,Cn2
))

is as defined in (3.9). We have, by (3.11),

ι ′(1� f )h(x) =
∫

G
(1� f )(y)(h(xy))dλ (y) (h ∈ L2(G,Cn2

),x ∈ G)

=
∫

G
(IMn ⊗ f (y))(h(xy))dλ (y)

=
∫

G
f (y)h(xy)dλ (y)

= Lσ̃ h(x)

where Mn,2 is the Hilbert space C
n2

. Hence Lσ̃ = ι ′(1� f )∈ ι ′(G×ι Mn2)=C∗r (G)⊗
Mn. ��

Remark 3.3.36. In the above proof, if we regard G×ι Mn2 as the tensor product
C∗(G)⊗Mn2 , then the regular representation ι ′ is just the representation ρ ′ ⊗ 1 of
C∗(G)⊗Mn2 , where ρ ′ is the regular representation of C∗(G) and 1 the identity
representation of Mn2 .

Proposition 3.3.35 provides us with a useful device to compute the spectrum
Spec(Tσ , L2(G,Mn)). Indeed, we noted before that the spectrum does not change
if one replaces the norm of Mn by the trace norm or the Hilbert-Schmidt norm, and
therefore we have

Spec(Tσ ,L2(G,Mn))∪{0}
= Spec(T ∗σ ,L2(G,M∗n ))∪{0}
= Spec(Lσ̃ ,L2(G,Mn,2))∪{0}
= SpecB(L2(G,Mn,2)) Lσ̃ ∪{0}
= Spec ′B(L2(G,Mn,2)) Lσ̃

= Spec ′C∗r (G)⊗Mn2
Lσ̃

where, we note that, given an element a in a C*-subalgebraA of another one B, the
two quasi-spectra Spec ′A a and Spec ′B a are equal. The C*-algebra C∗r (G)⊗Mn2

has an identity if G is discrete, in which case, we have Spec(Tσ ,L2(G,Mn)) =
SpecC∗r (G)⊗Mn2

Lσ̃ .

Corollary 3.3.37. Let G be a discrete group such that C∗r (G) has no proper projec-
tion. Then the spectrum Spec(Tσ ,L2(G)) is connected for each σ ∈M(G).

Proof. Since C∗r (G) is projectionless, functional calculus implies that every element
in C∗r (G), in particular Lσ̃ , has a connected spectrum. ��
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It has been conjectured by Kadison that the reduced C*-algebra C∗r (G) of a tor-
sion free discrete group G is projectionless. The free groups of at least two genera-
tors verify this conjecture, as well as some others (cf. [2, p.90]).

The spectrum of a C*-algebra A is defined to be the space ̂A of (equivalence
classes) of non-zero irreducible representations π : A −→ B(Hπ) of A [23, 3.1.5].
Given a self-adjoint element a in a unital C*-algebra A, we have

SpecA a =
⋃

π∈̂A

SpecB(Hπ ) π(a)

(cf. [23, 3.3.5]). In fact, the above equality holds for an element a ∈ A satisfying

α ∈ SpecA a⇐⇒ a−α1 has no left inverse in A. (3.12)

If A is non-unital, with unit extension A1 = A⊕C, then we have the identification
̂A1 = ̂A∪{ω} where ω is the one-dimensional irreducible representation of A1 an-
nihilating A (cf. [23, 3.2.4]). In this case, for a ∈ A satisfying (3.12) in A1, we have
the quasi-spectrum

Spec′A a = SpecA1
a =

⋃

π∈̂A1

Specπ(a)

=
⋃

π∈̂A

Specπ(a) ∪ Specω(a) =
⋃

π∈̂A

Specπ(a) ∪ {0}.

The spectrum Ĉ∗(G) identifies with ̂G [23, 13.93] where each π ∈ ̂G is identified
as the irreducible representation of C∗(G) satisfying

π( f ) =
∫

G
f (x)π(x)dλ (x) ( f ∈ L1(G)⊂C∗(G)).

The spectrum Ĉ∗r (G) identifies with the following closed subset of ̂G, the reduced
dual of G :

̂Gr = {τρ ′ : τ ∈ Ĉ∗r (G)}= {π ∈ ̂G : kerπ ⊃ kerρ ′}

where ρ ′ is the right regular representation of C∗(G). In general ̂Gr �= ̂G, but they
coincide if G is amenable [23, 18.3].

Lemma 3.3.38. Let σ ∈ M(G,Mn) be symmetric. Then for α ∈ C, we have α ∈
Spec(Lσ̃ ,L2(G,Mn,2)) if, and only if, Lσ̃ −αI has no left inverse in B(L2(G,Mn,2)).

Proof. Let µ = σ −αδe. Then µ̃ = µT and Lµ̃ = Lσ̃ −αI.
It suffices to show that if Lµ̃ has a left inverse S : L2(G,Mn,2) −→ L2(G,Mn,2),

then Lµ̃ has a right inverse. Taking dual, we have I = L∗µ̃S∗ = Tµ S∗, that is, f =
S∗ f ∗ µ for each f ∈ L2(G,Mn,2). It follows that

f T = (S∗ f ∗ µ)T = µT ∗� (S∗ f )T = µ̃ ∗� (S∗ f )T ( f ∈ L2(G,Mn,2))
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by symmetry of µ . Define R : L2(G,Mn,2)−→ L2(G,Mn,2) by

R( f ) = (S∗ f T )T ( f ∈ L2(G,Mn,2)).

Then we have
Lµ̃R( f ) = µ̃ ∗� R( f ) = µ̃ ∗� (S∗ f T )T = f

for each f ∈ L2(G,Mn,2). Hence R is a right inverse of Lµ̃ . ��

Corollary 3.3.39. Let G be a locally compact group and σ ∈ M(G,Mn) be ab-
solutely continuous and symmetric. Then we have

Spec(Tσ ,L2(G,Mn))∪{0}=
⋃

π∈ ̂Gr

Spec σ̂(π) ∪{0}.

If G is discrete, {0} can be removed.

Proof. By absolute continuity, we identify σ as a function in L1(G,Mn) and con-
sider Lσ̃ in C∗r (G)⊗Mn2 . By Lemma 3.3.38, Lσ̃ satisfies (3.12) and hence

Spec ′C∗r (G)⊗Mn2
Lσ̃ =

⋃

γ∈(C∗r (G)⊗Mn2 )̂

Specγ(Lσ̃ )∪{0}

=
⋃

τ∈Ĉ∗r (G)

Spec(τ⊗1)(Lσ̃ )∪{0}.

Let π = τρ ′ ∈ ̂Gr ⊂ ̂G where τ ∈ Ĉ∗r (G) and ρ ′ : C∗(G) −→ C∗r (G) is the right
regular representation.

Let F ∈ L1(G,Mn2) be the function

F = 1�σ =

⎛

⎜

⎝

σ
. . .

σ

⎞

⎟

⎠
.

We can write F = ∑i j Fi j⊗ ei j, where Fi j ∈ L1(G) and {ei j} is the canonical matrix
unit in Mn2 . By Remark 3.3.36 and as in the proof of Proposition 3.3.35, we have

(τ⊗1)(Lσ̃ ) = (τ⊗1)(ι ′(1�σ))

= (τ⊗1)(ρ ′ ⊗1)

(

∑
i j

Fi j⊗ ei j

)

= ∑
i j

τρ ′(Fi j)⊗ ei j = ∑
i j

π(Fi j)⊗ ei j

=

⎛

⎜

⎝

π(σ)
. . .

π(σ)

⎞

⎟

⎠= IMn ⊗π(σ).
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Hence Spec(τ⊗1)(Lσ̃ ) = Spec(IMn ⊗π(σ)) = Specπ(σ) = Spec ̂σ̃ (π), by (3.6).
It follows that

Spec ′C∗r (G)⊗Mn2
Lσ̃ =

⋃

π∈ ̂Gr

Spec ̂σ̃ ∪{0}.

Hence, by (3.8), we have

Spec(Tσ ,L2)∪{0}= Spec ′C∗r (G)⊗Mn2
Lσ̃

=
⋃

π∈ ̂Gr

SpeĉσT (π) ∪{0}=
⋃

π∈ ̂Gr

Spec σ̂(π) ∪{0}.

If C∗r (G) has an identity, the above arguments can be applied to the spectrum of
Lσ̃ instead of its quasi-spectrum. ��

Example 3.3.40. The Heisenberg group

H =

⎧

⎨

⎩

⎛

⎝

1 x z
0 1 y
0 0 1

⎞

⎠ : x,y,z ∈R

⎫

⎬

⎭

is amenable and we have (cf. [27, 6.51])

̂H= {χa,b : a,b ∈R}∪{τt : t ∈ R\{0}}

in which
χa,b : (x,y,z) ∈H �→ e2π i(ax+by) ∈ T,

τt :H−→B(L2(R)) and τt(x,y,z) f (w) = e2π i(tyw+tz) f (w+ x) ( f ∈ L2(R))

where an element inH is naturally denoted by (x,y,z).
For σ ∈M(H), the set

⋃

τ∈ ̂G Spec σ̂(τ) is given by

{
∫

H
e−2π i(ax+by)dσ (x,y,z) : a,b∈R

}

⋃

{

Spec
∫

H
τt(−x,−y,xy− z)dσ (x,y,z) : t �= 0

}

which yields the spectrum Spec(Tσ ,L2(H)) if σ is absolutely continuous and sym-
metric.

If σ is the unit mass δ(x,0,z) or δ(0,y,0) where y �= 0 and x or z is non-zero, then
the translation operator Tσ has spectrum Spec(Tσ ,L∞(H)) = T. This follows from
Proposition 3.3.8 since

⋃

τ∈ ̂G Spec σ̂(τ) = T where

̂δ(x,0,z)(χa,b) = e−2π iax ; ̂δ(0,y,0)(χa,b) = e−2π iby

̂δ(x,0,z)(τt) f (w) = e−2π itz f (w− x) ; ̂δ(0,y,0)(τt ) f (w) = e−2π ityw f (w)

with Spec ̂δ(x,0,z)(τt ) = e−2π itẑδx(̂R) and Spec ̂δ(0,y,0)(τt ) = {e−2π ityw : w ∈ R} (cf.
Example 2.1.13).
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Example 3.3.41. An important problem in spectral geometry is the computation of
the spectrum of the Laplacian. One can use Corollary 3.3.39 to compute the spec-
trum of a discrete Laplacian Ld of a homogeneous graph.

A graph (V,E) is called a homogeneous graph [19] if the vertex set V is a homo-
geneous space of a discrete group G with a graph condition, by which we mean G
acts transitively on V by a right action (v,g) ∈ V ×G �→ vg ∈ V so that V is repre-
sented as a right coset space G/H of G by a finite subgroup H and the edge set E is
described by a finite subset K = K−1 ⊂G in that (v,u)∈ E if, and only if, u = va for
some a ∈ K. We denote a homogeneous graph by (V,K), with the edge generating
set K, and by |K| the cardinality of K. We note that (V,K) is a Cayley graph if H
reduces to the identity of G.

Given a homogeneous graph (V,K) with weight given by a positive symmetric
measure σ on G supported by K, satisfying |K|= ∑a∈K σ{a}, the discrete Laplacian
Ld , acting on real or complex functions f on V , is defined by

Ld f (v) =
1
|K| ∑a∈K

( f (v)− f (va))σ{a}

= f ∗
(

δe−
σ
|K|

)

(v) (v ∈V )

which is a convolution operator on V = G/H, as defined in (3.15). The opera-
tor I−Ld is the transition operator. For a Cayley graph (V,K), it follows from
Corollary 3.3.39 that the L2-spectrum of Ld is given by

1−
⋃

{

Spec

(

∑
a∈K

σ{a}|K|−1π(a)

)

: π ∈ ̂G
}

.

If we let Ld act on Mn-valued functions on V , the L2-spectrum of Ld is an example
of a vibrational spectrum [20] for the graph (V,K) and in this case, one can also
describe the spectrum using Corollary 3.3.39.

Recently, Corollary 3.3.39 has been extended to the setting of homogeneous
spaces in [7, Theorem 2.3] which can be used to describe the spectrum of Ld for
any homogeneous graph (V,K).

It may be of interest to note that the L2-spectrum of certain transition operator
on the discrete lamplighter group, the wreath product Z2wrZ, has been used in [35]
to construct a counterexample to a conjecture of Atiyah concerning the L2-Betti
numbers of closed manifolds.

Corollary 3.3.42. Let G be a finite group and let σ ∈M(G,Mn) be symmetric. We
have

Λ(Tσ , �p(G,Mn))= Spec(Tσ , �p(G,Mn))= Spec(Tσ , �2(G,Mn))=Λ{σ̂(π) : π ∈G}

for all p ∈ [0,1]
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Proof. Since G is finite, each π ∈ ̂Gr = ̂G and �p(G,Mn) are finite-dimensional and
hence Corollary 3.3.39 yields the result. ��

The symmetry condition can be removed from the above result. In fact, the result
is true for compact groups and absolutely continuous σ .

Proposition 3.3.43. Let G be a compact group and σ ∈M(G,Mn). Then we have

Spec(Tσ ,Lp(G,Mn))⊃
⋃

π∈ ̂G

Spec σ̂(π)⊃ Λ(Tσ ,Lp(G,Mn))

for all p ∈ [1,∞].

Proof. The last inclusion follows from Lemma 3.3.2 (i) and Proposition 3.3.8. For
the first inclusion, we need only consider 1 < p < ∞ by Proposition 3.3.8.
Since G is compact, we have Lp(G,Mn) ⊂ L1(G,Mn) and all irreducible rep-
resentations of G are finite dimensional. Let α ∈ Spec σ̂(π) for some π ∈ ̂G,

where Spec σ̂(π) = SpeĉσT (π) by (3.8). Then ̂σT (π) is a matrix and we have

det(̂σT (π)−αIMn⊗B(Hπ )) = 0. Since detπ(e) = 1, we can find a compact neigh-
bourhood K of e such that detπ(x−1) > 1/2 for all x ∈ K.

Suppose, for contradiction, that Lσ T −αI : Lp(G,Mn) −→ Lp(G,Mn) is invert-
ible. Then there exists h ∈ Lp(G,Mn) such that

σT ∗� h−αh =

⎛

⎜

⎝

χK
. . .

χK

⎞

⎟

⎠

where χK is the characteristic function of K.
Since h ∈ L1(G,Mn), we have

̂σT̂h−α̂h =

⎛

⎜

⎝

χ̂K
. . .

χ̂K

⎞

⎟

⎠

on ̂G. In particular, we have

̂σT (π)̂h(π)−α̂h(π) =

⎛

⎜

⎝

∫

K π(x−1)dλ (x)
. . .
∫

K π(x−1)dλ (x)

⎞

⎟

⎠

which gives the contradiction

0 = det(̂σT (π)−α)det̂h(π) = det((̂σT (π)−α)̂h(π))

=
(
∫

K
detπ(x−1)dλ (x)

)n

>
1
2n λ (K)n > 0.
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This proves non-invertibility of Lσ T −αI, that is, α∈Spec (Lσ T ,Lp)=Spec (Tσ ,Lp),
by Lemma 3.3.7. ��

Corollary 3.3.44. Let G be a compact group and σ ∈M(G,Mn). If σ is absolutely
continuous, then we have, for all p ∈ [0,∞],

Spec(Tσ ,Lp(G,Mn)) = Λ(Tσ ,Lp(G,Mn)) =
⋃

π∈ ̂G

Spec σ̂(π).

Proof. This follows from the fact that Tσ is a compact operator in this case, by the
proof of Theorem 3.2.1. ��

Without absolute continuity of σ , the above result is false, as noted in Remark
3.3.24.

In the remaining section, we study the eigenspaces of the convolution operator
Tσ : Lp(G,Mn)−→ Lp(G,Mn) for σ ∈M(G,Mn).

Definition 3.3.45. Let 1≤ p≤∞ and σ ∈M(G,Mn). For each α ∈C, we define the
space

Hα(Tσ ,Lp(G,Mn)) = { f ∈ Lp(G,Mn) : f ∗σ = α f}

which may be written as Hα(Tσ ,Lp) for short. If α ∈ Λ(Tσ ,Lp(G,Mn)), that is,
if α is an eigenvalue of Tσ , then Hα(Tσ ,Lp(G,Mn)) is the α-eigenspace of Tσ in
Lp(G,Mn).

By abuse of language, we call Hα(Tσ ,Lp) the ‘α-eigenspace’ of Tσ even if α /∈
Λ(Tσ ,Lp(G,Mn)). The α-eigenspace Hα(Lσ ,Lp(G,Mn)) of Lσ : Lp(G,Mn) −→
Lp(G,Mn) is defined likewise.

Plainly Hα(Tσ ,Lp) is a left invariant subspace of Lp(G,Mn). One is interested in
the dimension and the description of Hα(Tσ ,Lp). For compact groups and absolutely
continuous σ , the α-eigenspaces are finite dimensional for α �= 0. We discuss later
spectral synthesis for eigenfunctions for abelian groups.

Proposition 3.3.46. Let G be a compact group and σ ∈ M(G,Mn) be absolutely
continuous. Then Tσ is a compact operator on Lp(G,Mn) for each p ∈ [1,∞] and
hence dimHα(Tσ ,Lp(G,Mn)) < ∞ for all α �= 0.

Proof. This follows from Theorem 3.2.1. ��

Example 3.3.47. For the probability measure dσ(x) =
sin2 x
πx2 dx on R, the

eigenspace H0(Tσ ,L2(R)) is infinite dimensional. We have the Fourier transform

σ̂(t) =
2−|t|

2
χ[−2,2](t) (t ∈R)

and Spec(Tσ ,L2(R)) = σ̂(R) = [0,1]. By [10, Corollary 3.14], 1 /∈ Λ(Tσ ,L2(R)),
but 0 ∈ Λ(Tσ ,L2(R)). Indeed, for a < b, let ga,b ∈ L2(R) be defined by
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ga,b(x) =
e−iax− e−ibx

ix

whose Fourier transform ĝa,b equals 2πχ(a,b) on R\{a,b} and it follows that

ĝa,b ∗σ = ĝa,b σ̂ = 0

if (a,b)∩ [−2,2] = /0 and the eigenspace H0(Tσ ,L2(R)) contains

{ga,b : (a,b)∩ [−2,2] = /0}

which is infinite dimensional.

Definition 3.3.48. An eigenspace Hα(Tσ ,Lp(G,Mn)) is said to be trivial if it con-
sists of only constant functions.

We note that, if σ(G) �= IMn , then the constant function 1 : G −→ Mn taking
value IMn does not belong to H1(Tσ ,L∞(G,Mn)). Nevertheless, H1(Tσ ,L∞(G,Mn))
can still contain a non-zero constant function f (·) = A ∈ Mn where, for instance,
IMn−A can be taken to be the support projection of IMn−σ(G) (cf. [10, Example 1]).

Definition 3.3.49. For α = ‖σ‖, the functions in Hα(Tσ ,Lp(G,Mn)) are called the
Mn-valued Lp σ -harmonic functions on G.

By normalizing, it suffices to study the space H1(Tσ ,Lp(G,Mn)) of σ -harmonic
functions for ‖σ‖ = 1. Thus, in this case, 1 /∈ Λ(Tσ ,Lp(G,Mn)), equivalently,
H1(Tσ ,Lp(G,Mn)) = {0}, denotes the absence of a non-zero Mn-valued Lp

σ -harmonic function on G. If σ is an adapted probability measure on G, then
we have 1 /∈ Λ(Tσ ,Lp(G)) for p < ∞ unless G is compact, as shown in [10].

Example 3.3.50. Let a ∈ R\{0} and consider the non-adapted probability measure
σ = 1

2 (δa + δ−a) on R. We have

Λ(Tσ ,L∞) = σ̂(̂R) = {cosax : x ∈ R}= [−1,1]

and the 1-eigenspace H1(Tσ ,L∞(R)) is infinite dimensional [13, Example 2.7.3].

For ‖σ‖ = 1, the triviality of H1(Tσ ,L∞(G,Mn)) is a Liouville type theorem for
bounded harmonic functions on G. It has been shown in [16] that, given a nilpo-
tent group G, if σ ∈ M(G,Mn) is positive, non-degenerate and ‖σ‖ = 1, then
H1(Tσ ,L∞(G,Mn)) is trivial (see also [40]). A Liouville theorem has also been
proved for almost connected [IN]-groups in [15]. For arbitrary p, we have the fol-
lowing result.

Proposition 3.3.51. Let G be a compact group and let σ ∈ M(G,Mn) be positive,
adapted and ‖σ‖= 1. Then H1(Tσ ,Lp(G,Mn)) is trivial for 1≤ p ≤ ∞.
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Proof. Since G is compact, we have Lp(G,Mn) ⊂ L1(G,Mn) and it suffices to con-
sider the case for p = 1. Let f ∈ H1(Tσ ,L1(G,Mn)). Let {uβ}β be a bounded ap-
proximate identity in L1(G) and let

ψβ =

⎛

⎜

⎝

uβ
. . .

uβ

⎞

⎟

⎠ .

Then ψβ ∗ f −→ f in L1(G,Mn). Each ψβ ∗ f is a bounded continuous Mn-valued
σ -harmonic function on G and must be constant, by [9, Proposition 21]. It follows
that f is constant. ��
Example 3.3.52. In contrast to the scalar case where H1(Tσ ,L∞(G)) ⊃ C1 for a
probability measure σ , one can have H1(Tσ ,L∞(G,Mn)) = {0} for a positive matrix
measure σ with ‖σ‖ = 1. Let F2 be the free group on two generators a and b. Let
σ ∈M(G,M2) be supported on {a,b} and defined by

σ{a}=
(

1
2 0
0 0

)

, σ{b}=
(

0 0
0 1

2

)

.

Then σ is a positive adapted measure on F2 with ‖σ‖ = 1. Given f = ( fi j) ∈
H∞

σ (G,M2), we have fi1 ∗ σ11 = fi1 and fi2 ∗ σ22 = fi2, where ‖ fi j ∗ σ j j‖ ≤
‖ fi j‖‖σ j j‖ and ‖σ11‖= ‖σ22‖<1 imply fi j = 0 for all i, j. Hence H∞

σ (G,M2) = {0}.
We now consider the question of synthesis for eigenfunctions in the case of

abelian groups. For each f ∈ Lp(G,Mn), we denote by

�( f ) = lin{�x f : x ∈ G} ⊂ Lp(G,Mn)

the linear span of the left translations of f in Lp(G,Mn).
We first observe that �( f ) �= Lp(G,Mn) for each eigenfunction f ∈ Hα(Tσ ,Lp).

Indeed, if �( f ) = Lp(G,Mn) for some 0-eigenfunction f , then for each h ∈
Cc(G,Mn), there is a sequence ( fn) in �( f ) converging to h in Lp(G,Mn) which
gives h ∗σ = lim

n
fn ∗σ = 0 and

∫

G
hdσ̃ = h ∗σ(e) = 0,

contradicting σ �= 0. Since α is an eigenvalue of Tσ if, and only if, 0 is an eigenvalue
of Tσ−αδe , the assertion is true for any α-eigenfunction f .

Given f ∈ Lp(G,Mn) and ϕ ∈ Lq(G,Mn), we have f ∗ ϕ̃(x) = (�x−1 f )∗ ϕ̃(e) for
each x ∈ G. Hence �( f ) = Lp(G,Mn) if, and only if, ϕ = 0 for any ϕ ∈ Lq(G,Mn)
satisfying f ∗ ϕ̃ = 0.

It follows that, for each eigenfunction f ∈Hα(Tσ ,Lp(G,Mn)), there exists a non-
zero function ϕ ∈ Lq(G,Mn) such that f ∗ ϕ̃ = 0. If G is abelian, then Wiener’s
Tauberian theorem implies that for each eigenfunction f ∈ Hα(Tσ ,L1(G)), its
Fourier transform ̂f has a zero in ̂G.
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To highlight the idea behind synthesis, we consider the scalar case. First, for σ ∈
M(R) with compact support, the continuous 0-eigenfunctions in Lp(R) are the mean
periodic functions on R which have been analysed completely in the classic paper
[58] of Schwartz. In particular, these functions can be synthesized from the so-called
exponential polynomials, in other words, in the space C(R) of complex continuous
functions on R, the subspace of mean periodic functions is the closed linear span of
the mean periodic exponential polynomials. This result has been extended to locally
compact abelian groups by Gilbert [31] and Elliot [26]. We now apply these results
to our eigenspaces.

A complex function on R is called an exponential polynomial if it is of the form

p(x)eiγx

where p(x) is a polynomial with complex coefficients and γ ∈ C. More generally, a
complex function on R

n is called an exponential polynomial if it is of the form

p(x1, . . . ,xn)exp(iγ1x1 + · · ·+ iγnxn)

= ∑
0≤i1,...,in≤k

ai1···inxi1
1 · · ·x

in
n exp(iγ1x1 + · · ·+ iγnxn).

It is clear that a bounded exponential polynomial on R
n reduces to a constant mul-

tiple of a character.

Proposition 3.3.53. Let σ ∈ M(R) have compact support. For α ∈ Λ(Tσ ,L∞(R))
and f ∈ Hα(Tσ ,L∞(R))∩C(R), we have

�( f ) = lin{̂R∩ �( f )}

and hence,
Hα(Tσ ,L∞) = lin{̂R∩Hα(Tσ ,L∞)}

where the closure is the weak* closure.

Proof. Let µ = σ − αδe. Then µ has compact support in R and Hα(Tσ ,L∞) =
H0(Tµ ,L∞).

Let f ∈ H0(Tµ ,L∞)∩C(R) so that f ∗ µ = 0. By [58], there is a net (pβ ) in
C(R) converging to f uniformly on compact subsets of R, where each pβ is a linear
combination of exponential polynomials pβ1

, . . . , pβk
which belong to the closure of

�( f ), in the topology of C(R). We have pβ j
∗ µ = 0 for j = 1, . . . ,k. Since �( f ) ⊂

L∞(R), each pβ j
must be bounded and is therefore a constant multiple of a character.

Also pβ j
belongs to the weak* closure �( f ) for if it is the limit of a net (hγ) in �( f )

in the topology of C(R), then for each k ∈Cc(R), we have

〈k,hγ 〉− 〈k, pβ j
〉=

∫

suppk
k(x)(hγ (x)− pβ j

(x))dλ (x)−→ 0.
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Hence each pβ belongs to lin{ ̂G∩ �( f )} which implies f ∈ lin{ ̂G∩ �( f )} and the
result follows. ��

The above result depends on the property of spectral synthesis in R, proved
in [58], that f can be approximated by exponential polynomials belonging to the
closure of �( f ) in C(R). This property is lost in R

n for n > 1. For instance, if
f : R

2 −→ R is the function f (x,y) = x + y, then the closure of �( f ) in C(R2)
contains no exponential polynomials except the constants. Nevertheless, it is still
true that each f ∈ C(Rn) satisfying f ∗σ = α f can be approximated by exponen-
tial polynomials ψ satisfying ψ ∗σ = αψ although ψ need not lie in the closure of
�( f ). In fact, this is even true for locally compact abelian groups, due to the results
of [26, 31]. To explain the details, we first describe the exponential polynomials on
an abelian group G. A real character on G is a continuous homomorphism from G to
the additive group R. A complex function on G is called an exponential polynomial
if it is of the form

p(χ1(x), . . . ,χ j(x))τ(x) (x ∈ G)

where p(·) is polynomial with a finite number of variables and complex coefficients,
χ1, . . . ,χ j are real characters on G, and τ is a generalized character on G.

We note that a non-zero real character χ on G must be unbounded, for if χ(x) �= 0,
then |χ(xn)| = n|χ(x)| → ∞ as n→ ∞. If p(χ1, . . . ,χ j)τ is bounded, then it must
be a constant multiple of a character on G. Indeed, since τ(·) �= 0, the function
p(χ1, . . . ,χ j) must be bounded which implies that the product χ1 · · ·χ j = 0 for oth-
erwise, there exists y ∈G such that χ1(y) · · ·χ j(y) �= 0, giving

|χ1(yn)i1 · · ·χ j(yn)i j |= ni1+···+i j |χ1(y)i1 · · ·χ j(y)i j | → ∞ (n→ ∞)

if i1 + · · ·+ i j �= 0. Hence p reduces to a constant and the boundedness of τ implies
that τ must be a character.

Let P(G) be the set of exponential polynomials on an abelian group G.

Proposition 3.3.54. Let G be an abelian group and let σ ∈ M(G) have compact
support. For each α ∈ Λ(Tσ ,Lp(G)) where 1≤ p≤ ∞, we have

Hα(Tσ ,Lp)∩C(G)⊂ lin
c {ψ ∈ P(G) : ψ ∗σ = αψ}

where ‘−−c’ denotes the closure in C(G).

Proof. As before, the measure µ = σ − δe has compact support and given f ∈
Hα(Tσ ,Lp)∩C(G), we have f ∗µ = 0. By [31, Theorem 3.2], there is a net (ψβ ) in
C(G) converging to f uniformly on compact subsets of G, and each ψβ is a linear
combination of exponential polynomials ψ ∈ P(G) satisfying ψ ∗ µ = 0. Hence we
have

ψβ ∈ lin{ψ ∈ P(G) : ψ ∗σ = αψ}

which completes the proof. ��
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We note that Hα(Tσ ,L∞)∩C(G) = Hα(Tσ ,L∞) if σ is absolutely continuous.
For 1 ≤ p ≤ ∞, we denote as usual by Lp

loc(G) the space of Borel functions f
on G satisfying f |K ∈ Lp(K) for every compact subset K ⊂ G. The topology of
Lp

loc(G) is defined by the norms ‖ · ‖Lp(K) from compact subsets K of G. We have
Lp(G)⊂ Lp

loc(G).

Corollary 3.3.55. Let G be an abelian group and let σ ∈M(G) have compact sup-
port. For each α ∈ Λ(Tσ ,Lp(G)) where 1≤ p < ∞, we have

Hα(Tσ ,Lp)⊂ lin
loc {ψ ∈ P(G) : ψ ∗σ = αψ}

where ‘−−loc’ denotes the closure in Lp
loc(G).

Proof. Let f ∈Hα(Tσ ,Lp) and let ε > 0. Choose u∈Cc(G) such that ‖u∗ f − f‖p<
ε . We have u ∗ f ∈ Hα(Tσ ,Lp)∩C(G) and by Proposition 3.3.54, there exists a net
(ψβ ) in lin{ψ ∈P(G) : ψ ∗σ = αψ}, converging to u∗ f uniformly on compact sets
in G. Given a compact subset K of G, there exists β0 such that ‖ψβ −u∗ f‖Lp(K) < ε
for β ≥ β0 and hence

‖ψβ − f‖Lp(K) ≤ ‖ψβ −u ∗ f‖Lp(K) +‖u ∗ f − f‖Lp(K) < 2ε

for β ≥ β0. ��
We now consider Lp harmonic functions for arbitrary groups G. It has been

shown in [9, Proposition 14] that, for ‖σ‖ = 1, the eigenspace H1(Tσ ,L∞(G,Mn))
is the range of a contractive projection P : L∞(G,Mn)−→ L∞(G,Mn). There are two
interesting consequences of this result. First, the space H1(Tσ ,L∞(G,Mn)) carries a
Jordan algebraic structure which will be discussed further in Section 3.4. The sec-
ond consequence is that, if G is non-amenable, then H1(Tσ ,L∞(G,Mn)) �= Mn1, for
positive σ with ‖σ‖= 1 [9, Corollary 19]. The existence of a contractive projection
P onto the 1-eigenspace is also true for 1 < p < ∞, shown in the following result
which extends [10, Theorem 2.3], with analogous proof. We outline the main steps
of the arguments.

Proposition 3.3.56. Let σ ∈ M(G,Mn) with ‖σ‖ = 1 and let 1 < p < ∞.
Then there is a contractive projection P : Lp(G,Mn) −→ Lp(G,Mn) with range
H1(Tσ ,Lp(G,Mn)) and P commutes with left translations. Further, the projection
P is the dual map of a contractive projection Q : Lq(G,Mn) −→ Lq(G,Mn) and
H1(Tσ ,Lp(G,Mn)) = H1(Lσ̃ ,Lq(G,Mn))∗.

Proof. The convolution operator Tσ : Lp(G,Mn) −→ Lp(G,Mn) is weakly continu-
ous when Lp(G,Mn) is equipped with the weak topology. For n = 1,2, . . ., we have

Tσ n =

n−times
︷ ︸︸ ︷

Tσ ◦ · · · ◦Tσ .

LetK= co{Tσ n : n = 1,2, . . .} be the closed convex hull of {Tσ n : n = 1,2, . . .} with
respect to the product topology of Lp(G,Mn)Lp(G,Mn) where Lp(G,Mn) is equipped
with the weak topology. Then K is compact. Define Φ :K−→K by
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Φ(Λ)( f ) = Λ( f )∗σ (Λ ∈ K, f ∈ Lp(G,Mn)).

It is straightforward to verify that Φ is well-defined and continuous. Therefore, by
the Schauder-Tychonoff fixed-point theorem (cf. [24, p. 456]), there exists P ∈ K
such that Φ(P) = P which is the required contractive projection. Since Tσ n com-
mutes with left translations, so does P.

We note that P( f ∗ σ) = P( f ) ∗ σ = P( f ) for each f ∈ Lp(G,Mn) since
Tσ n( f ∗σ) = Tσ n( f )∗σ .

Next, apply the same construction as above to the left convolution operator

Lσ̃ : f ∈ Lq(G,Mn) �→ σ̃ ∗� f ∈ Lq(G,Mn)

to yield a contractive projection

Q : Lq(G,Mn)−→ Lq(G,Mn)

with range H1(Lσ̃ ,Lq(G,Mn)), and satisfying Q(σ̃ ∗� g) = σ̃ ∗� Q(g) = Q(g) for g∈
Lq(G,Mn). We show that P = Q∗. Let f ∈ Lp(G,Mn). Then for each g ∈ Lq(G,Mn),
we have

〈g,Q∗ f ∗σ〉 = 〈σ̃ ∗� g,Q∗ f 〉= 〈Q(σ̃ ∗� g), f 〉
= 〈Qg, f 〉= 〈g,Q∗ f 〉.

Hence Q∗ f ∗ σ = Q∗ f . Likewise one can show σ̃ ∗� P∗g = P∗g for each g ∈
Lq(G,Mn). We now have PQ∗ = P since

〈g,PQ∗ f 〉= 〈QP∗g, f 〉= 〈P∗g, f 〉= 〈g,P f 〉

for g ∈ Lq(G,Mn) and f ∈ Lp(G,Mn). Therefore P f = PQ∗ f = Q∗ f .
Finally, as in the proof of [10, Corollary 2.5], we have H1(Lσ̃ ,Lq(G,Mn))∗ =
Q(Lq(G,Mn))∗ � Lp(G,Mn)/Q(Lq(G,Mn))⊥ � H1(Tσ ,Lp(G,Mn)). ��

Remark 3.3.57. By the above construction of P, there is a net of measures (µα) in
the convex hull of {σn : n = 1,2, . . .} such that

P( f ) = w∗- lim
α

f ∗ µα

for every f ∈ Lp(G,Mn). We note that P could be 0 by Example 3.3.52.

The above construction does not apply to the case p = 1. Nevertheless, we will
prove a dimension result for the eigenspace H1(Tσ ,L1(G,Mn)). We need to prove
the following lemma first.

Lemma 3.3.58. Let σ ∈ M(G,Mn) be a positive, adapted measure with ‖σ‖ = 1.
Then for every π ∈ ̂G\{ι}, the operator I−π(σ) is invertible in Mn⊗B(Hπ), where
I is the identity operator.
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Proof. For compact groups G, this result was proved in [9, Lemma 20]. We only
need to remove the compactness assumption in [9, Lemma 20] which was used to
ensure dimπ < ∞. Fix π ∈ ̂G\{ι}. It suffices to show that I−π(σ) has a left inverse
in Mn⊗B(Hπ). Indeed, since (1⊗π)(σ ⊗ 1) = (σ ⊗ 1)(1⊗π) and σ(·)∗ = σ(·),
the same arguments would imply that

I−π(σ)∗ = I−
∫

G
(1⊗π)(x−1)d(σ ⊗1)(x)

has a left inverse, that is, I−π(σ) has a right inverse.
Now, if I−π(σ) has no left inverse, then (Mn⊗B(Hπ))(I−π(σ)) is a proper

weakly closed left ideal of Mn⊗B(Hπ) and hence there is a proper projection p ∈
Mn⊗B(Hπ) such that (Mn⊗B(Hπ))(I− π(σ)) = (Mn⊗B(Hπ))p. Therefore I−
π(σ) = (I−π(σ))p which gives π(σ)(I− p) = I− p and we can pick a unit vector
ξ ∈ (I− p)(Cn⊗Hπ). It follows that π(σ)ξ = ξ and now, analogous to the proof
of [9, Lemma 20], one obtains

∫

G
〈(1⊗π)(x)ξ ,ξ 〉d|σ |(x) = 1

which implies Re〈(1⊗π)(x)ξ ,ξ 〉= 1 for all x∈ supp |σ | and hence (1⊗π)(x)ξ = ξ
for all x ∈G, by adaptedness of |σ |.

Let {e1, . . . ,en} be the standard basis of C
n. Then ξ = ∑k ek ⊗ ξk for some

ξ1, . . . ,ξn ∈ Hπ and we have

∑
k

ek⊗ ξk = ∑
k

(1⊗π)(x)(ek⊗ ξk) = ∑
k

ek⊗π(x)ξk

which implies π(x)ξk = ξk for all x ∈ G, and in particular, for some ξk �= 0. Hence
π = ι by irreducibility of π , contradicting π ∈ ̂G\{ι}. This completes the proof.

��

The following result generalizes [10, Theorem 3.12].

Proposition 3.3.59. Let σ ∈M(G,Mn) be a positive, adapted measure with ‖σ‖=1.
Then dimH1(Tσ ,L1(G,Mn))≤ n2 and n2 is the best possible bound.

Proof. Let f ∈ H1
σ (G,Mn). Then, for all π ∈ ̂G\{ι}, we have π( f ) = π( f ∗σ) =

π( f )π(σ) and hence π( f )(I−π(σ))= 0 which implies π( f ) = 0 by Lemma 3.3.58.
Let

L1
0(G,Mn) =

{

h ∈ L1(G,Mn) :
∫

G
hdλ = 0

}

which is a closed subspace of L1(G,Mn). Note that ̂f (ι) =
∫

G f dλ and the above
yields

H1
σ (G,Mn)∩L1

0(G,Mn) = {0}.

Pick h ∈ L1(G) such that
∫

G hdλ �= 0. Then
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⎛

⎜

⎝

h
. . .

h

⎞

⎟

⎠
/∈ L1

0(G,Mn).

For any g = (gi j) ∈ L1(G,Mn), let

ai j =
(
∫

G
gi jdλ

)(
∫

G
hdλ
)−1

.

Then

g + L1
0(G,Mn) = (ai j)

⎛

⎜

⎝

h
. . .

h

⎞

⎟

⎠
+ L1

0(G,Mn).

Hence L1
0(G,Mn) has co-dimension n2 in L1(G,Mn) and dimH1(Tσ ,L1(G,Mn))≤n2.

If G is compact and σ is diagonal with each diagonal entry the same probabil-
ity measure on G, then f = ( fi j) ∈ H1(Tσ ,L1(G,Mn)) if, and only if, each fi j is
constant. Therefore we have dimH1(Tσ ,L1(G,Mn)) = n2 in this case. ��

Example 3.3.60. Let µ be an adapted probability measure on a locally compact
group G �= {e} and let σ ∈M(G,M2) be given by

σ =
(

µ 0
0 δe

)

.

Then σ is an adapted positive M2-valued measure on G, but ‖σ‖ = 2. We have
dimH1(Tσ ,L1(G,M2)) = ∞, indeed, it contains the functions

(

0 f
0 h

)

for every f ,h ∈ L1(G).

Example 3.3.61. Let σ = δi be the unit mass at i =
√
−1 in the circle group T.

Then σ is not adapted and a continuous function f is in H1(Tσ ,Lp(T)) if, and only
if, f (z) = f (−iz). Hence H1(Tσ ,Lp(T)) is infinite dimensional as it contains the
functions {z4n : n = 1,2, . . .}.

We have the following characterisation of harmonic functions for nilpotent
groups.

Proposition 3.3.62. Let G be a nilpotent group and let σ ∈M(G,Mn) be positive,
symmetric and ‖σ‖= 1. Then we have, for 1≤ p ≤∞,

H1(Tσ ,Lp(G,Mn)) = { f ∈ Lp(G,Mn) : fa−1 = f = f (·)σ(G) ,∀a ∈ suppσ}.
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Proof. Given f ∈ Lp(G,Mn) satisfying the condition on the right-hand side of the
above equality, we have

∫

G
f (xy−1)dσ(y) =

∫

suppσ
f (x)dσ(y) = f (x)σ(G) = f (x).

To show the reverse inclusion, let Gσ be the closed subgroup of G generated by
supp |σ |. Since σ is symmetric, we have |σ̃ |= |σT |= |σ | and (supp |σ |)−1 = supp
|σ | and hence |σ | is a non-degenerate measure on the nilpotent group Gσ . Each
bounded left uniformly continuous Mn-valued σ -harmonic function f on G restricts
to a σ -harmonic function on Gσ , and by [16, Theorem 4], f is constant on Gσ . In
particular, we have

f (a−1) = f (e) (a ∈ suppσ).

Now pick any f ∈ H1(Tσ ,Lp(G,Mn)). For each ψ ∈ Lq(G,Mn), the function
ψ̃ ∗ f is bounded and left uniformly continuous, by Lemma 3.1.1, and also it is
σ -harmonic. Hence we have, for each a ∈ suppσ ,

〈 f − fa−1 ,ψ〉= Tr(ψ̃ ∗ f )(e)−Tr(ψ̃ ∗ f )(a−1) = 0

which yields f − fa−1 = 0 in Lp(G,Mn). This, together with the equation f = f ∗σ ,
then implies f (·) = f (·)σ(G). ��

Under the conditions of the above result, H1(Tσ ,L∞(G,Mn)) is a subalgebra of
L∞(G,Mn) which is not always true in general. We study the non-associative alge-
braic structures of the eigenspace H1(Tσ ,L∞(G,Mn)) in the next section.

3.4 Jordan Structures in Harmonic Functions

Let σ ∈ M(G,Mn) with ‖σ‖ = 1. In this section, we study the Jordan structure
in the space H1(Tσ ,L∞(G,Mn)) = { f ∈ L∞(G,Mn) : f ∗ σ = f} of bounded Mn-
valued σ -harmonic functions on G, and discuss applications to harmonic functions
on Riemannian symmetric spaces. It has been shown in [9] that the existence of a
contractive projection from L∞(G,Mn) onto its subspace H1(Tσ ,L∞(G,Mn)) induces
a Jordan ternary algebraic structure on H1(Tσ ,L∞(G,Mn)) which is non-associative
and is usually different from that of L∞(G,Mn). It is natural to ask when these two
structures coincide, that is, when H1(Tσ ,L∞(G,Mn)) is a subalgebra or a Jordan sub-
triple of L∞(G,Mn). We will consider the scalar case of H1(Tσ ,L∞(G)) for a complex
measure σ . The matrix space H1(Tσ ,L∞(G,Mn)), but with a positive measure σ , has
been studied in [14].

It would be useful to explain first the background of Jordan structures for mo-
tivation. The close relationship between Jordan algebras and differential geome-
try is well-known [43], in particular, Jordan structures occur naturally in the study
of Riemannian symmetric spaces. It is therefore interesting that Jordan structures
also occur in the 1-eigenspace H1(Tσ ,L∞(G,Mn)) of the convolution operator Tσ on
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L∞(G,Mn), which is closely related to harmonic functions on Riemannian symmet-
ric spaces, as we will explain below.

Let Ω be a simply connected Riemannian symmetric space. Then Ω is a product

Ω = Ω0×Ω+×Ω−

where Ω0 is Euclidean, Ω+ is of compact type and Ω− is of non-compact type
[37, p.244]. Since Ω0 and Ω+ have non-negative sectional curvatures, the bounded
harmonic functions on these manifolds are constant by a result of Yau [65], and from
the viewpoint of harmonic functions, we will only be concerned with symmetric
spaces of non-compact type.

We now explain how Jordan structures arise in symmetric spaces. Recall that a
Riemannian symmetric space is a connected Riemannian manifold M in which every
point x is an isolated fixed point of an involutive isometry sx : M −→ M (which is
necessarily unique). Let Ω be a Riemannian symmetric space. Then it is diffeomor-
phic, and hence identified with, the right coset space G/K of a Lie group G by a
maximal compact subgroup K, where G is the identity component of the isometry
group of Ω and K is the isotropy subgroup {g ∈ G : gx = x} at a point x ∈Ω. Let g
be the Lie algebra of G and let Ad : G−→ Aut(g) be the adjoint map. Then the ad-
joint Ad(sx) : g−→ g is an involutive automorphism, giving a Cartan decomposition
g = k⊕p where

k = {X ∈ g : Ad(sx)(X) = X}

and
p = {X ∈ g : Ad(sx)(X) =−X}.

Moreover, p identifies with the tangent space TxΩ at x ∈Ω.
If Ω is non-compact and is Hermitian, then in the above construction, the tangent

space p = TxΩ has the structure of a Jordan triple system and Ω identifies with a
convex domain in p via the Harish-Chandra realization (cf. [47, 57]). In fact, this
construction can even be extended to infinite dimensional manifolds in which case
p becomes a JB*-triple in a suitably chosen norm and Ω identifies with the open unit
ball of p. We refer to [41, 63] for details and to [11] for some recent related results.
For our purpose, we only need to explain the concept of a JB*-triple.

A JB*-triple is a complex Banach space Z, equipped with a Jordan triple prod-
uct {·, ·, ·} : Z×Z×Z −→ Z which is symmetric and linear in the outer variables,
conjugate linear in the middle variable and satisfies the Jordan triple identity

{a,b,{x,y,z}}= {{a,b,x},y,z}−{x,{b,a,y},z}+{x,y,{a,b,z}},

and for each v ∈ Z, the linear map

D(v,v) : z ∈ Z �→ {v,v,z} ∈ Z

is Hermitian, that is, ‖eitD(v,v)‖= 1 for all t ∈R, and has non-negative spectrum with
‖D(v,v)‖= ‖v‖2.
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Example 3.4.1. The upper half-plane {z∈C : Imz > 0}, with the hyperbolic metric,
is a symmetric space diffeomorphic to the coset space SL(2,R)/SO(2) and is of non-
compact type. The Lie algebra g of SL(2,R) is the algebra of 2× 2 real matrices
with trace 0, and in the Cartan decomposition g = k⊕ p, the subalgebra k consists
of skew-symmetric matrices while the subspace p consists of symmetric matrices,
which has a complex structure

J :

(

y x
x −y

)

�→
(

x −y
−y −x

)

and is a JB*-triple with the Jordan triple product

{X ,Y,Z}=
1
2
(XYZ + ZYX) (X ,Y,Z ∈ p).

To complete the picture, we note that a bounded domain in a complex Banach
space is symmetric if, and only if, it is biholomorphic to the open unit ball of a JB*-
triple [41]. We refer to [63] for further details of JB*-triples and symmetric Banach
manifolds.

The space L∞(G,Mn) is a JB*-triple with the Jordan triple product

{ f ,g,h}=
1
2
( f g∗h + hg∗ f )

where g∗ denotes the usual involution ∗ in L∞(G,Mn):

g∗(x) := g(x)∗ ∈Mn (x ∈ G).

In fact, any C*-algebraA is a JB*-triple with the following triple product:

{a,b,c}=
1
2

(ab∗c + cb∗a) (a,b,c ∈A).

The following result has been proved in [9].

Lemma 3.4.2. Let G be a locally compact group and let σ∈M(G,Mn) with ‖σ‖=1.
Then the 1-eigenspace H1(Tσ ,L∞(G,Mn)) of Tσ on L∞(G,Mn) is a JB*-triple. If σ
is a probability measure on G, then H1(Tσ ,L∞(G)) is an abelian C*-algebra.

Proof. We describe the Jordan triple product in H1(Tσ ,L∞(G,Mn)), but re-
fer to [9] for details. By [9, Proposition 14], there is a contractive projection
P : L∞(G,Mn)−→H1(Tσ ,L∞(G,Mn)) which induces the JB*-triple product

{ f ,g,h}=
1
2

P( f g∗h + hg∗ f )

on H1(Tσ ,L∞(G,Mn)), using [28].
If σ is a probability measure, then the constant function 1 is in H1(Tσ ,L∞(G))

which becomes a unital abelian C*-algebra in the product

f ·h := { f ,1,h}.
��
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Given a probability measure σ on G, it has been shown in [13, Theorem 2.2.17]
that the C*-product f · h in H1(Tσ ,L∞(G)), for uniformly continuous f and h, is
given by

( f ·h)(x) = lim
α

∫

G
f (xy−1)h(xy−1)dµα(y) (x ∈G)

where (µα) is a net in the convex hull of {σn : n = 1,2, . . .}. We now show that,
modulo a projection, the C*-product is pointwise.

Proposition 3.4.3. Let σ be a probability measure on G. Then there is a projection
z ∈Cb(G)∗∗ such that

( f ·h)(x)z(εx) = f (x)h(x)z(εx) (x ∈ G)

for f ,h ∈H1(Tσ ,L∞(G))∩C(G), where εx ∈Cb(G)∗ is the evaluation map at x ∈G.

Proof. We observe that H1(Tσ ,L∞(G))∩C(G) is an abelian C*-algebra in the prod-
uct f ·h. Therefore the identity map ι : H1(Tσ ,L∞(G))∩C(G)−→Cb(G) is a linear
isometry between C*-algebras, and by [18, Proposition 2.2; Theorem 3.10], there is
a projection z ∈Cb(G)∗∗ such that

ι( f ·h)z = ι( f )ι(h)z ( f ,h ∈ H1(Tσ ,L∞(G))∩C(G))

where the product on the right hand side is that of Cb(G)∗∗. ��

A JB*-triple is called a JBW*-triple if it has a predual. Since Tσ is weak* con-
tinuous on L∞(G,Mn), it follows that H1(Tσ ,L∞) is weak* closed in L∞(G,Mn) and
is a JBW*-triple.

Now we consider harmonic functions on a symmetric space Ω = G/K of non-
compact type. Let ∆ be a G-invariant second order elliptic differential operator
on Ω, vanishing on constants. Such an operator is called a Laplace operator in [29].
Furstenberg [29] has shown that there is a K-invariant absolutely continuous prob-
ability measure σ on G such that a bounded continuous function f on Ω satisfies
∆ f = 0 if, and only if,

f (Ka) =
∫

G
f (Kya)dσ(y) (Ka ∈Ω = G/K) (3.13)

where K-invariance of σ means dσ(kx) = dσ(xk) = dσ(x) for k ∈ K (see also [30,
Theorem 5]). Let q : G−→G/K be the quotient map. Then (3.13) can be written as

˜f ◦ q = ˜f ◦ q∗σ (3.14)

where we recall that ˜f ◦ q denotes the function ˜f ◦ q(x) = f ◦ q(x−1). As K is com-
pact, we assume that the Haar measure λ on G is chosen so that λ (K) = 1 and the
Haar measure on K is the restriction of λ to K. Also, there is a G-invariant measure
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ν on G/K, unique up to a constant multiple and can be chosen so that ν = λ ◦ q−1

(cf. [27, p.57]). In fact, ν is a Riemannian measure on Ω. Let Lp(Ω) be the Lebesgue
spaces of ν , for 1 ≤ p ≤ ∞. Since Ω is complete, all Lp(Ω) ∆-harmonic functions
on Ω are constant, for 1 < p < ∞, by a result of Yau [65]. We will discuss the case
for p = 1,∞ below.

The above discussion leads naturally first to the consideration of the homoge-
neous space of an arbitrary locally compact group G by a compact subgroup K. In
this case, we fix a G-invariant measure ν = λ ◦ q−1 on Ω = G/K as before and let
Lp(Ω,Mn) be the Lebesgue spaces, with respect to ν , of Mn-valued Lp functions on
Ω, for 1≤ p≤ ∞. Then the map

j : f ∈ Lp(Ω,Mn) �−→ f ◦ q ∈ Lp(G,Mn)

is a well-defined isometric embedding by the change-of-variable formula
∫

Ω
‖ f (ω)‖pdν(ω) =

∫

G
‖ f ◦ q(x)‖pdλ (x).

We define a linear map Q : Lp(G,Mn)−→ Lp(Ω,Mn) by

Q(g)(Kx) =
∫

K
g(yx)dλ (y) (g ∈ Lp(G,Mn)).

Then Q is a contraction because Jensen’s inequality gives

‖Q(g)‖p
p =

∫

Ω
‖Q(g)(Kx)‖p

Mn
dν(Kx)

=
∫

G

∥

∥

∥

∥

∫

K
g(yx)dλ (y)

∥

∥

∥

∥

p

Mn

dλ (x)

≤
∫

G

∫

K
‖g(yx)‖p

Mn
dλ (y)dλ (x)

=
∫

K

∫

G
‖g(x)‖p

Mn

G(y−1)dλ (x)dλ (y) = ‖g‖p

p.

Further, Q is surjective since one verifies readily that Q j is the identity map on
Lp(Ω,Mn). It follows that

jQ : Lp(G,Mn)−→ Lp(G,Mn)

is a contractive projection with range j(Lp(Ω,Mn)).
Let σ ∈M(G,Mn). Then the convolution operator Tσ : Lp(G,Mn)−→ Lp(G,Mn)

induces the operator T ′σ = QTσ j on Lp(Ω,Mn) in the following diagram:
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Lp(G,Mn)
Tσ−→ Lp(G,Mn)

j
1

⏐

⏐

⏐

⏐

3Q

Lp(Ω,Mn)
T ′σ−→ Lp(Ω,Mn).

Actually, we have

T ′σ ( f )(Kx) =
∫

G
f (Kxy−1)dσ(y) (3.15)

and we call T ′σ the convolution operator on Lp(Ω,Mn) defined by σ ∈ M(G,Mn).
The above integral is denoted by f ∗ σ(Kx). By Fubini theorem, we also have T ′σ Q =
QTσ and jT ′σ = Tσ j which will be used repeatedly in the proof below.

Lemma 3.4.4. Let σ ∈M(G,Mn) and 1≤ p ≤ ∞. Then we have

(i) Spec(T ′σ ,Lp(Ω,Mn))⊂ Spec(Tσ ,Lp(G,Mn));
(ii) Λ(T ′σ ,Lp(Ω,Mn))⊂ Λ(Tσ ,Lp(G,Mn));

(iii) Q(Hα(Tσ ,Lp(G,Mn))) = Hα(T ′σ ,Lp(Ω,Mn)) for α ∈ Λ(T ′σ ,Lp(Ω,Mn)).

If ‖σ‖= 1, then the 1-eigenspace H1(T ′σ ,L∞(Ω,Mn)) is a JB*-triple.

Proof. (i) Given that Tσ −αI has a bounded inverse S : Lp(G,Mn) −→ Lp(G,Mn),
for some α ∈ C, we have Q(Tσ −α)S j = Q j = ILp(Ω,Mn). Hence (T ′σ −α)QS j =
(T ′σ Q−αQ)S j = Q(Tσ −α)S j = ILp(Ω,Mn) and α /∈ Spec(T ′σ ,Lp(Ω,Mn)).

(ii) This follows from the fact that T ′σ f = α f for some f ∈ Lp(Ω,Mn) implies
that Tσ j f = jT ′σ f = α j f ∈ Lp(G,Mn).

(iii) Given g ∈ Hα(Tσ ,Lp(G,Mn)), we have

T ′σ Qg = QTσ g = αQg ∈ Hα(T ′σ ,Lp(Ω,Mn)).

On the other hand, if f ∈ Hα(T ′σ ,Lp(Ω,Mn)), then we have Tσ j f = jT ′σ f = α j f ∈
Hα(Tσ ,Lp(G,Mn)) and f = Q( j f ).

Finally, by Lemma 3.4.2, the 1-eigenspace H1(Tσ ,L∞(G,Mn)) is a JB*-triple for
‖σ‖= 1. If we identify H1(T ′σ ,L∞(Ω,Mn)) as a subspace of L∞(G,Mn) via the em-
bedding j, then (iii) implies that it is the range of the contractive projection Q on the
JB*-triple H1(Tσ ,L∞(G,Mn)) and hence is itself a JB*-triple by [42]. ��

Let σ ∈M(G,Mn) and Ω = G/K as above. Motivated by the condition in (3.14),
we introduce the following space, for p = 1,∞:

H p(Ω,Mn) = { f ∈ Lp(Ω,Mn) :˜j f ∗σ =˜j f , j f (·k) = j f (·), ∀k ∈ K}. (3.16)

Lemma 3.4.5. Let Ω = G/K where G is unimodular. Let σ ∈ M(G,Mn) be K-
invariant and let p = 1 or ∞. Given f ∈H1(T ′σ ,Lp(Ω,Mn)), the function

˜f (Kx) := f (Kx−1) (x ∈ G)
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is well-defined and we have ˜f ∈H p(Ω,Mn). Further, all maps in the following com-
mutative diagram are surjective:

H1(Tσ ,Lp(G,Mn))
˜Q−→ H p(Ω,Mn)

j
1

⏐

⏐ ↗
˜

H1(T ′σ ,Lp(Ω,Mn))

where the map
˜

is an isometry and ˜Q( f ) := Q̃( f ). For p = ∞, the condition of
unimodularity of G can be dropped.

Proof. Let f ∈ H1(T ′σ ,Lp(Ω,Mn)). Given Kx = Kz with x = kz for some k ∈ K, we
have

f (Kx−1) = f (Kz−1k−1)

=
∫

G
f (Kz−1k−1y−1)dσ(y)

=
∫

G
f (Kz−1y−1)dσ(y)

= f (Kz−1)

by K-invariance of σ . Hence ˜f is well defined and ˜f ∈ Lp(G,Mn) by unimodularity

of G. Moreover, we have˜j ˜f = j f = j f ∗σ and j ˜f (·k) = j ˜f (·) for all k ∈ K, that is,
˜f ∈ H p(Ω,Mn).

The map
˜

is clearly isometric. To see that it is surjective, pick any g ∈
H p(Ω,Mn) and define g′ : Ω−→Mn by

g′(Kx) = g(Kx−1) (x ∈G).

Then g′ is well-defined since jg(·k) = jg(·) for k ∈K. Also, g′ ∈H1(T ′σ ,Lp(G,Mn))
with ˜g′ = g. ��

We now give an application to ∆-harmonic functions on Riemannian symmetric
spaces. Let Ω = G/K be a symmetric space of non-compact type. We have already
noted that there is no non-zero Lp ∆-harmonic function on Ω, for 1 < p < ∞, by
a result of Yau [64]. However, an analogous result for L1 ∆-harmonic functions on
complete manifolds requires non-negativity of the Ricci curvature (cf. [46]) whereas
Ω has non-positive sectional curvature (cf. [37, p.241]). Nevertheless, our previous
results can be applied to Ω in this case. The space H∞(Ω,C) below has been defined
in (3.16).

Proposition 3.4.6. Let Ω = G/K be a symmetric space of non-compact type. Then
there is no non-zero L1 ∆-harmonic function on Ω. The space H∞(Ω,C) contains
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non-constant functions and is exactly the space of bounded ∆-harmonic functions
on Ω. Moreover, H∞(Ω,C) is linearly isometric to an abelian C*-algebra.

Proof. Let σ ∈M(G) be the absolutely continuous K-invariant probability measure
introduced in (3.13). By Proposition 3.3.59, H1(Tσ ,L1(G)) = {0} since G is not
compact. Let f ∈ L1(Ω) be ∆-harmonic. We can choose a bounded approximate
identity (uβ ) in C∞

c (G) such that the net ( j f ∗ uβ ) L1-converges to j f ∈ L1(G) with
j f ∗ uβ bounded on G. The convolution

f ∗ uβ (Kx) := j f ∗ uβ (x) (x ∈ G)

is a well-defined function on Ω. As in [29, p.367], there is a Laplace operator ˜∆ on
G satisfying

˜∆( j f ) = (∆ f )◦ q.

Hence j f ∗ uβ is a bounded ˜∆-harmonic function on G, and we have

∆( f ∗ uβ )◦ q = ˜∆ j( f ∗ uβ ) = ˜∆( j f ∗ uβ ) = 0.

Therefore f ∗ uβ is a bounded ∆-harmonic function on Ω, and by (3.14), we have

(( f ∗ uβ )◦ q)̃ ∗σ = (( f ∗ uβ )◦ q)̃

for each β . We note that the semisimple Lie group G is unimodular and hence g ∈
L1(G) �→ g̃ ∈ L1(G) is an isometry. It follows that ˜f ◦ q ∗σ = ˜f ◦ q, that is, ˜f ◦ q ∈
H1(Tσ ,L1(G)) and must be 0. Hence f = 0.

Next, the functions in H∞(Ω,C) are all ∆-harmonic on Ω, by the condition (3.14).
Conversely, given a bounded ∆-harmonic function f on Ω, then f satisfies (3.14) and
we have, by [29, Theorem 4.1],

j f (x) =
∫

K
j f (xky)dλ (k)

for all x,y ∈ G. It follows that, for each h ∈ K,

j f (xh) =
∫

K
j f (xhke)dλ (k) =

∫

K
j f (xk)dλ (k) = j f (x). (3.17)

Therefore f ∈ H∞(Ω,C).
We now show that H∞(Ω,C) contains non-constant functions. Suppose other-

wise. Let f ∈ H1(Tσ ,L∞(G)). By K-invariance of σ , it is readily verified that the
function F : Ω−→C given by

F(Hx) := f (x−1) (x ∈ G) (3.18)

is well-defined in L∞(Ω) and satisfies ˜jF ∗ σ = ˜jF . Hence jF is a bounded ∆-
harmonic function on Ω and must be constant by assumption. It follows from (3.18)
that f is constant. Hence all bounded σ -harmonic functions on G are constant and
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therefore G must be amenable (cf. [13, Proposition 2.1.3]), contradicting that G/K
is of non-compact type.

Finally, since σ is a probability measure, the 1-eigenspace H1(Tσ ,L∞(G)) is
an abelian C*-algebra by Lemma 3.4.2. Hence H1(T ′σ ,L∞(Ω)) is also an abelian
C*-algebra since, by Lemma 3.4.4, it is the range of a contractive projection on an
abelian C*-algebra. The last assertion then follows from Lemma 3.4.5. ��

Remark 3.4.7. In the setting of Proposition 3.4.6, it has also been shown in [29,
p.373] that H1(Tσ ,L∞(G)) is an abelian C*-algebra, by a different method using
probability, but it has not been observed in [29] that H∞(Ω,C) is also an abelian
C*-algebra.

Remark 3.4.8. We take the opportunity here of noting a missing remark in [14],
before [14, Corollary 4.11], namely, that the map ˜f (Ha) := f (Ha−1) there is well-
defined for ∆ f = 0 because j f (·k) = j f (·) for all k, as in (3.17) above.

Example 3.4.9. The space H∞(Ω,C) is infinite dimensional for the upper half-plane
Ω = {z ∈ C : Imz > 0}= SL(2,R)/SO(2) which is of non-compact type.

An application of Proposition 3.4.6 gives an alternative approach to the Poisson
representation of harmonic functions on non-compact symmetric spaces given in
[29, Theorem 4.2].

Corollary 3.4.10. Let ∆ be a Laplace operator on a symmetric space Ω = G/K of
non-compact type. Then there is a compact Hausdorff space Π with a probability
measure µ on Π, and an action (x,ω) ∈ G×Π �→ x ·ω ∈ Π such that for each
bounded ∆-harmonic function f on Ω, there is a unique continuous function ̂f on Π
satisfying

f (Kx) =
∫

Π
̂f (x ·ω)dµ(ω) (x ∈ G).

Proof. By Proposition 3.4.6, the space H∞(Ω,C) of bounded ∆-harmonic functions
is an abelian C*-algebra. Let Π be the pure state space of H∞(Ω,C). Then Π is
weak* compact Hausdorff and H∞(Ω,C) is isometrically isomorphic to the algebra
C(Π) of complex continuous functions on Π, via the Gelfand map f ∈H∞(Ω,C) �→
̂f ∈C(Π), where

̂f (ω) = ω( f ) ( f ∈ H∞(Ω,C) ,ω ∈Π).

Define a probability measure µ ∈C(Π)∗ by

µ(̂f ) = f (K).

For each x ∈G, the right translation rx : H∞(Ω,C)−→H∞(Ω,C) defined by

(rx f )(Ka) = f (Kax) (Ka ∈Ω = G/K)
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is an isometry and induces a surjective linear isometry r̂x : C(Π)−→C(Π) given by

r̂x(̂f ) = ̂rx f

for f ∈ H∞(Ω,C) . Hence, by the Banach-Stone theorem, r̂x is a composition oper-
ator on C(Π):

r̂x(̂f ) = ̂f ◦ϕx

for some homeomorphism ϕx : Π −→ Π. Since ϕxy = ϕx ◦ϕy for all x,y ∈ G, the
map

(x,ω) ∈G×Π �→ x ·ω := ϕx(ω) ∈Π

is an action of G on Π. For every f ∈ H∞(Ω,C), we have

f (Kx) = (rx f )(K) = µ(̂rx f )

= µ(̂f ◦ϕx) =
∫

Π
̂f (ϕx(ω))dµ(ω)

=
∫

Π
̂f (x ·ω)dµ(ω) (x ∈G).

��

We now study the JB*-triple H1(Tσ ,L∞(G)) for ‖σ‖ = 1. Our main concern
is the compatibility of the Jordan structures in H1(Tσ ,L∞(G)) with the ones in its
ambient space L∞(G). The two structures are different in general. We determine
below exactly when they coincide.

A linear subspace V of a JB*-triple Z is called a subtriple if it is closed with
respect to the triple product in Z which is equivalent to saying that f ∈ V implies
{ f , f , f} ∈V , by the polarization identity

8{ f ,g,h}= ∑
β 4=γ2=1

β γ{( f + β g + γh),( f + β g+ γh),( f + β g + γh)}.

Our task is to determine when the eigenspace H1(Tσ ,L∞(G)) is a subtriple of L∞(G).
We shall denote { f , f , f} by f (3) in any JB*-triple. If a JB*-triple V has a predual

which is necessarily unique, then its Jordan triple product is separately weak*-
continuous and V contains nonzero tripotents, these are the elements v ∈ V satis-
fying v(3) = v in which case ‖v‖= 1.

Lemma 3.4.11. Let Ω be a locally compact space and let µ be a probability mea-
sure on Ω. Let f ∈ L∞(Ω,µ) satisfy

∫

Ω
f (3)dµ =

(
∫

Ω
f dµ
)(3)

and

∣

∣

∣

∣

∫

Ω
f dµ
∣

∣

∣

∣

=
∫

Ω
| f |dµ .

Then f is constant µ-almost everywhere.

Proof. I f
∫

Ω | f |dµ = 0, there is nothing to prove. We may therefore assume
∫

Ω | f |dµ = 1 by normalizing. The second condition of the lemma implies that
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f = β | f | µ-almost everywhere, for some complex number β of unit modulus. By
the first condition,

∫

Ω
f (3)dµ = β

(
∫

Ω
| f |dµ

)(3)

=
∫

Ω
β | f |3dµ .

We have 2| f |2 ≤ | f |3 + | f | and

2≤ 2
∫

Ω
| f |2dµ ≤

∫

Ω
| f |3dµ +

∫

Ω
| f |dµ = 2

which gives 2| f |2 = | f |3 + | f | and hence | f |= 1 µ-almost everywhere. ��

Example 3.4.12. If f : Ω −→ R satisfies
∫

Ω f 2dµ = (
∫

Ω f dµ)2, then f is constant
µ-almost everywhere, but the same conclusion fails if one replaces the square in

the integrals by the cube, for instance,
∫ 1

0 f 3(x)dx = 0 =
(

∫ 1
0 f (x)dx

)3
for f =

χ[0, 1
2 ]− χ( 1

2 ,1].

In what follows, L∞(G) is equipped with the Jordan triple product { f ,h,k}= f hk
as before.

Lemma 3.4.13. Let G be a locally compact group and let σ be a complex measure
on G with ‖σ‖ = 1 and the polar representation σ = ω · |σ |. The following condi-
tions are equivalent.

(i) H1(Tσ ,L∞(G)) is a subtriple of L∞(G).
(ii) For each f ∈ H1(Tσ ,L∞(G)), we have f (3) ∗σ = 0 λ -a.e. on f−1(0) and f =

ω(y) fy−1 λ -a.e. on G\ f−1(0), for |σ |-a.e. y.

Proof. (i) =⇒ (ii). First, pick an extreme point u in the closed unit ball of
H1(Tσ ,L∞(G)). This is possible because H1(Tσ ,L∞(G)) has a predual. By [13,
Proposition 2.2.5; p.16], H1(Tσ ,L∞(G)) is the range of a contractive projection P
on L∞(G) such that H1(Tσ ,L∞(G)) is a JB*-triple in the Jordan triple product

[ f ,h,g] = P{ f ,h,k} ( f ,h,k ∈ H1(Tσ ,L∞(G)))

and also [ f ,u,u] = f . Since H1(Tσ ,L∞(G)) is a subtriple of L∞(G), we have

f = [ f ,u,u] = { f ,u,u}= f |u|2. (3.19)

Since ‖u‖∞ = 1, we may assume |u| ≤ 1 on G, by re-defining u to be 0 on a λ -null
set if necessary. Let

E = {x ∈ G : u(3)(x) = u(x)u(x)u(x) = u(x) = u ∗σ(x)}.

Then λ (G\E) = 0. Choose any z∈ E∩G\ f−1(0). We have |u(z)|2 = 1 since u(z) =
u(z)u(z)u(z). Therefore
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1 = |u(z)|=
∣

∣

∣

∣

∫

G
u(zy−1)ω(y)d|σ |(y)

∣

∣

∣

∣

≤
∫

G
|u(zy−1)ω(y)|d|σ |(y)≤ 1.

We also have, as ωω = 1,

∫

G
(u(zy−1)ω(y))(3)d|σ |(y) = u(z) = u(3)(z) =

(
∫

G
u(zy−1)ω(y)d|σ |(y)

)(3)

.

By Lemma 3.4.11, u(zy−1)ω(y) is constant for |σ |-almost every y ∈ G. Hence
u(z) = u ∗σ(z) = u(zy−1)ω(y) for |σ |-almost every y ∈ G.

Now pick any f ∈ H1(Tσ ,L∞(G)). Then f (3) ∈ H1(Tσ ,L∞(G)) by condition (i),
and for f (3)(x) = f (x) f (x) f (x) = f (3) ∗σ(x), we have f (3) ∗σ(x) = 0 if f (x) = 0.

Next, condition (i) implies that the function { f , f ,u} = | f |2u belongs to
H1(Tσ ,L∞(G)). Let

N = E ∩{x ∈ G : f (x) = f ∗σ(x) and | f |2(x)u(x) = | f |2u ∗σ(x)}.

Then G\N is a λ -null set. Let x∈N and f (x) �= 0. It follows from (3.19) that u(x) �= 0
and hence we have

| f |2(x)u(x) = (| f |2u)∗σ(x) =
∫

G
| f |2(xy−1)u(xy−1)dσ(y)

= u(x)
∫

G
| f |2(xy−1)d|σ |(y)

which gives
∫

G
| f |2(xy−1)d|σ |(y) = | f |2(x) = | f (x)|2

=
∣

∣

∣

∣

∫

G
f (xy−1)ω(y)d|σ |(y)

∣

∣

∣

∣

2

≤
(
∫

G
| f (xy−1)|d|σ |(y)

)2

≤
∫

G
| f (xy−1)|2d|σ |(y).

Hence the above inequalities are equalities and the last one implies that | f (xy−1)| is
constant for |σ |-almost every y ∈ G. Also
∣

∣

∣

∣

∫

G
f (xy−1)ω(y)d|σ |(y)

∣

∣

∣

∣

=
∫

G
| f (xy−1)|d|σ |(y) =

∫

G
| f (xy−1)ω(y)|d|σ |(y)

implies that f (xy−1)ω(y) is a constant multiple of | f (xy−1)ω(y)| = | f (xy−1)|, and
hence constant, for |σ |-almost every y ∈ G, yielding f (x) = f (xy−1)ω(y) for |σ |-
almost every y ∈ G.
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(ii) =⇒ (i). Let f ∈ H1(Tσ ,L∞(G)). We show f (3) ∈ H1(Tσ ,L∞(G)). Indeed, for
λ -a.e. x in G\ f−1(0), we have

f (3) ∗σ(x) =
∫

G
f (3)
y−1(x)ω(y)d|σ |(y) =

∫

G
f (3)
y−1(x)ω(3)(y)d|σ |(y)

=
∫

G
f (3)(x)d|σ |(y) = f (3)(x).

For λ -a.e. x in f−1(0), we have

f (3)(x) = 0 = f (3) ∗σ(x).

��
We note that the eigenspace H1(Tσ ,L∞(G)) is weak* closed in L∞(G) and

H1(Tσ ,L∞(G))∩Cb(G) is weak* dense in H1(Tσ ,L∞(G)). The latter is a conse-
quence of the existence of a bounded approximate identity (ψβ ) in L1(G). Given
f ∈ Hα(Tσ ,L∞(G)), the convolution ψ̃β ∗ f belongs to Hα(Tσ ,L∞(G)) ∩Cb(G),
where ψ̃β (x) = ψβ (x−1), and the net (ψ̃β ∗ f ) weak* converges to f since, for each
h ∈ L1(G), we have

〈h, f 〉 = lim
β
〈ψβ ∗ h, f 〉= lim

β
〈h, ψ̃β ∗ f 〉.

Theorem 3.4.14. Let G be a locally compact group and let σ be an absolutely con-
tinuous measure on G with ‖σ‖ = 1 and the polar representation σ = ω · |σ |. The
following conditions are equivalent:

(i) H1(Tσ ,L∞(G)) is a subtriple of L∞(G);
(ii) H1(Tσ ,L∞(G)) = { f ∈ L∞(G) : f = ω(y) fy−1 for |σ |-a.e. y ∈ G}.
Proof. (i) =⇒ (ii). Given f ∈ L∞(G) satisfying f = ω(y) fy−1 for |σ |-almost every
y ∈ G, it is easily verified that f is σ -harmonic.

Conversely, for each f ∈ H1(Tσ ,L∞(G)), absolute continuity of σ implies that
f ∗σ ∈Cb(G) and that we may assume, by re-defining if necessary, that f = f ∗σ
on G. By Lemma 3.4.13, we have f (x) = ω(y) f (xy−1) for |σ |-a.e. y∈G if f (x) �= 0.

Suppose f (x) = 0. Then a f (x) �= 0 for some left translate a f of f . We have a f ∈
H1(Tσ ,L∞(G)), and | f |2 a f = { f , f , a f} ∈ H1(Tσ ,L∞(G)) by condition (i). Hence

0 = | f |2 a f (x) = | f |2 a f ∗σ(x)

=
∫

G
| f |2(xy−1) f (axy−1)ω(y)d|σ |(y)

= f (ax)
∫

G
| f (xy−1)|2d|σ |(y)

which implies | f (xy−1)|= 0 as well as f (x) = 0 = f (xy−1)ω(y) for |σ |-almost every
y ∈ G.

(ii) =⇒ (i). If f ∈ H1(Tσ ,L∞(G)), then condition (ii) implies that f (3) is also in
H1(Tσ ,L∞(G)). Hence H1(Tσ ,L∞(G)) is a subtriple of L∞(G). ��
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If σ is a probability measure on G, then H1(Tσ ,L∞(G)) contains constant func-
tions and if it is a subtriple of L∞(G), then it is also a ∗-subalgebra, and vice versa,
since { f ,1,h}= f h and f ∗ = {1, f ,1} in L∞(G).

Corollary 3.4.15. Let σ be an absolutely continuous probability measure on a lo-
cally compact group G. The following conditions are equivalent:

(i) H1(Tσ ,L∞(G)) is a *-subalgebra of L∞(G);
(ii) H1(Tσ ,L∞(G)) is a subtriple of L∞(G);

(iii) H1(Tσ ,L∞(G)) = { f ∈ L∞(G) : f = fa−1 ∀a ∈ suppσ}.

Proof. (ii) =⇒ (iii). Let f ∈ H1(Tσ ,L∞(G)). By absolute continuity of σ , we may
take f to be continuous. By Theorem 3.4.14, the open set {y ∈ G : f �= fy−1} is
disjoint from suppσ . ��



Chapter 4
Convolution Semigroups

In this Chapter, we study matrix harmonic functions and contractivity properties of
a semigroup of matrix convolution operators {Tσt}t>0 where ‖σt‖ = 1. We show
that, for 1 < p ≤ ∞, there is a contractive projection P : Lp(G,Mn) −→ Lp(G,Mn)
whose range is the intersection of 1-eigenspaces of {Tσt}:

⋂

t>0

H1(Tσt ,L
p(G,Mn)) = { f ∈ Lp(G,Mn) : f = f ∗σt for all t > 0}.

This is the space of matrix Lp harmonic functions for the generator of the semigroup,
and it is a JB*-triple if p = ∞, in which case it is nontrivial if σt are positive and G
non-amenable.

If L is a second order G-invariant elliptic operator on a connected Lie group G,
annihilating constant functions, or more generally, a translation invariant Dirichlet
form on a locally compact group G, then it generates a convolution semigroup
{Tσt}t>0 and our results can be applied to this setting. For instance, one can derive
a Poisson representation for L∞ L-harmonic functions on G, and show that all Lp

L-harmonic functions are constant for 1≤ p < ∞.
We study hypercontractivity of the semigroup {Tσt} in the last part of this

Chapter. We show that Gross’s seminal result on hypercontractivity and log-Sobolev
inequality can be extended to the matrix setting.

4.1 Harmonic Functions of Semigroups

Let G be a connected Lie group and let L be a second order G-invariant elliptic
differential operator on G, annihilating the constant functions. A C2-function on G
is L-harmonic if L f = 0. By [39, Theorem 5.1], L generates a convolution semi-
group of absolutely continuous probability measures {σt}t>0 on G, giving rise to a
semigroup Tt : Lp(G)−→ Lp(G) of convolution operators

Tt( f ) = f ∗σt (t > 0)

C.-H. Chu, Matrix Convolution Operators on Groups. Lecture Notes in Mathematics 1956, 87
doi: 10.1007/978-3-540-69798-5, c© Springer-Verlag Berlin Heidelberg 2008
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(cf. [1, p.134]). The intersection of eigenspaces
⋂

t>0

H1(Tσt ,L
∞(G)) = { f ∈ L∞(G) : f ∗σt = f for all t > 0}

is the space of L∞ L-harmonic functions on G (cf. [1, Proposition V.6] and [25,
Theorem 5.9]). More generally, for any locally compact group G, if a self-adjoint
operator L in L2(G) is a Dirichlet form (cf. [21]) and if L commutes with left trans-
lations, then it generates a convolution semigroup e−tL : Lp(G)−→ Lp(G).

In this section we study convolution semigroups {σt}t>0 of matrix-valued mea-
sures on a locally compact group G and our focus is on the harmonic functions of
the semigroup, namely, the intersection of eigenspaces:

⋂

t>0

H1(Tσt ,L
p(G,Mn)) = { f ∈ Lp(G,Mn) : f = f ∗σt for all t > 0}.

We show that it is the range of a contractive projection on Lp(G,Mn) and the space
⋂

t>0 H1(Tσt ,L
∞(G,Mn)) carries the structure of a Jordan triple system. We show

how these results can be applied to L-harmonic functions on Lie groups.
By a (one-parameter) convolution semigroup of Mn-valued measures on a lo-

cally compact group G with identity e, we mean a family {σt}t>0 of measures in
M(G,Mn) satisfying

(i) ‖σt‖= 1 ,
(ii) σs ∗σt = σs+t ,

(iii) δe = w∗- lim
t↓0

σt

where the weak* topology on M(G,Mn) is defined by the duality, as in [9,
Lemma 6],

〈 f ,µ〉 = Tr
∫

G
f dµ ( f ∈C0(G,M∗n ),µ ∈M(G,Mn)).

We note that, if {σt}t>0 are probability measures, then condition (iii) above is equiv-
alent to the following condition in [39] for a convolution semigroup:

(iv) lim
t↓0

σt(V ) = 1 for every open set V containing e

in which case, we have

f (e) = lim
t↓0
〈 f ,σt 〉 for each f ∈Cb(G). (4.1)

Remark 4.1.1. Although one could adopt the weaker condition ‖σt‖ ≤ 1 for (i)
above, we use ‖σt‖= 1 instead for the purpose of discussing harmonic functions.

Let {σt}t>0 be a convolution semigroup of Mn-valued measures on G. Given
h ∈Cc(G,Mn), we have

〈g,h ∗σt〉= 〈g̃ ∗ h, σ̃t〉 (g ∈Cc(G,Mn))
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which implies that (h∗σt) weakly converges to h in Lp(G,Mn) as t ↓ 0, for 1< p<∞.
It follows that {σt}t>0 generates a strongly continuous contractive semigroup of
convolution operators

T0 = I, Tt : f ∈ Lp(G,Mn) �→ f ∗σt ∈ Lp(G,Mn)

for 1 < p < ∞, where f = w-lim
t↓0

Tt f since, for each g ∈Cc(G,Mn), we have

|〈Tt f ,g〉− 〈 f ,g〉| ≤ |〈Tt f ,g〉− 〈Tth,g〉|+ |〈Tth,g〉− 〈h,g〉|+ |〈h,g〉− 〈 f ,g〉|
≤ 2‖ f −h‖‖g‖+ |〈h ∗σt,g〉− 〈h,g〉|

which can be made arbitrarily small for t ↓ 0 by choosing h ∈Cc(G,Mn).
If {σt}t>0 are probability measures, the semigroup {Tt}t≥0 : L1(G)−→ L1(G) is

also strongly continuous by (4.1).

Example 4.1.2. For a family {σt}t>0 of measures, the condition that lim
t↓0
|σt |(V ) =

1, for every open set V containing e, is not sufficient to yield f = w-lim
t↓0

Tt f in

Lp(G,Mn). Let {σt}t>0 be a family of signed measures on R defined by

dσt(x) =
1
t2 ϕt(x)dx

where t > 0 and

ϕt(x) =
{

x for−t < x < t
0 otherwise.

Then ‖σt‖= 1 and lim
t↓0
|σt |(V ) = 1 for every open interval V containing 0. Let f =

χ(0,1) ∈ L1(R) be the characteristic function of (0,1). For t < 1/2, we have

Tt f (x) = ( f ∗σt)(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x2− t2

2t2 for−t ≤ x≤ t ,

2x− x2 + t2−1
2t2 for 1− t ≤ x≤ 1 + t ,

0 otherwise

and 〈Tt f ,χ(0, 1
2 )〉=−t/3 � 〈 f ,χ(0, 1

2 )〉 in L1(R) as t ↓ 0.

Lemma 4.1.3. Let 1 ≤ p < ∞ and let Tt : Lp(G,Mn) −→ Lp(G,Mn) be a strongly
continuous one-parameter semigroup of bounded operators, with generator Lp and
domain Dom(Lp)⊂ Lp(G,Mn). Let f ∈ Lp(G,Mn) and α ∈ C. The following con-
ditions are equivalent:

(i) Tt f = eαt f (t > 0) ;
(ii) f ∈ Dom(Lp) and Lp f = α f .
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Proof. (i) =⇒ (ii). We have

lim
t↓0

1
t

(Tt f − f ) = lim
t↓0

eαt −1
t

f = α f .

Therefore f ∈ Dom(Lp) and Lp f = α f .
(ii) =⇒ (i). We have Tt f − f =

∫ t
0 TxLp f dx = α

∫ t
0 Tx f dx. Hence

d
dt

Tt f = αTt f

which gives Tt f = eαt f . ��

Let S = {σt : t > 0} be a convolution semigroup of Mn-valued measures on G.
We consider the semigroup of convolution operators Tt : Lp(G,Mn)−→ Lp(G,Mn),
where 1≤ p ≤∞, defined by

T0 = I, Tt( f ) = f ∗σt (t > 0).

A function f ∈ Lp(G,Mn) is called S-harmonic or (σt)t>0-harmonic if f = f ∗σt in
Lp(G,Mn) for all t > 0. Let

H p
S(G,Mn) = { f ∈ Lp(G,Mn) : f = f ∗σt for all t > 0}=

⋂

t>0

H1(Tσt ,L
p(G,Mn))

be the Banach space of Mn-valued S-harmonic Lp functions on G. Let Lp be the
generator of {Tt}t≥0 : Lp(G,Mn)−→ Lp(G,Mn) for 1 < p < ∞. Then

H p
S(G,Mn) = { f ∈ Dom(Lp) : Lp f = 0}

by Lemma 4.1.3. Since {Tt}t≥0 is contractive, Lemma 4.1.3 implies that, if α is an
eigenvalue of Lp, then |exp(αt)| ≤ 1 for all t > 0 and in particular, Reα ≤ 0.

We define ˜S = {σ̃t : t > 0} where dσ̃t(x) = dσt(x−1). By (3.3), ˜S is also a
one-parameter convolution semigroup of measures on G, with respect to the con-
volution ∗�.

The following result extends Proposition 3.3.56, with analogous proof. We out-
line the main steps of the arguments.

Proposition 4.1.4. Let 1 < p≤∞ and let S = {σt}t>0 be a convolution semigroup of
Mn-valued measures on G. Then there is a contractive projection PS : Lp(G,Mn)−→
Lp(G,Mn) with range H p

S(G,Mn) and PS commutes with left translations. Further,
for 1 < p < ∞, the projection PS is the dual map of a contractive projection Q

˜S :
Lq(G,Mn)−→ Lq(G,Mn) and H p

S(G,Mn) = ˜Hq
˜S(G,Mn)∗ where

˜Hq
˜S(G,Mn) =

⋂

t>0

H1(Lσ̃t
,Lp(G,Mn)).
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Proof. For each t > 0, let Tt : Lp(G,Mn)−→ Lp(G,Mn) be the convolution operator

Tt( f ) = f ∗σt .

We have ‖Tt‖ ≤ 1 and Tt is weakly continuous when Lp(G,Mn) is equipped with
the weak topology. Let K = co{Tt : t > 0} be the closed convex hull of {Tt : t > 0}
with respect to the product topology T of Lp(G,Mn)Lp(G,Mn) where Lp(G,Mn) is
equipped with the weak topology. Then K is compact. Define Φt :K−→K by

Φt(Λ)( f ) = Λ( f )∗σt (Λ ∈ K, f ∈ Lp(G,Mn)).

It is straightforward to verify that Φt is well-defined and T -continuous. Since σs ∗
σt = σt ∗σs, the family {Φt}t>0 is a commuting family of continuous affine maps
on K and by the Markov-Kakutani fixed-point theorem (cf. [24, p. 456]), {Φt}t>0

has a common fixed-point PS ∈ K which is the required contractive projection.
The projection Q

˜S is constructed similarly via the maps

g ∈ Lq(G,Mn) �→Ψt(˜Λ)(g) = σ̃t ∗� ˜Λ(g) ∈ Lq(G,Mn)

with ˜Λ ∈ ˜K = co{˜Tt : t > 0}and ˜Tt(g) = σ̃t ∗� g.
The proof of PS = Q∗

˜S is similar to the arguments for Proposition 3.3.56, noting
that PS( f ∗σt) = PS( f ) ∗ σt = PS( f ) for each f ∈ Lp(G,Mn) and Q

˜S(σ̃t ∗� g) =
σ̃t ∗� Q

˜S(g) = Q
˜S(g) for each g ∈ Lq(G,Mn).

Finally, we have ˜Hq
˜S(G,Mn)

∗
= Q

˜S(Lq)∗ � Lp/P
˜S(Lq)⊥ � H p

S(G,Mn) where
Lq = Lq(G,Mn). ��

Remark 4.1.5. By the above construction of PS , there is a net of measures (µα) in
the convex hull of {σt : t > 0} such that

PS( f ) = w∗- lim
α

f ∗ µα

for every f ∈ L∞(G,Mn).

Corollary 4.1.6. Then space H∞
S (G,Mn) is a JBW*-triple.

Proof. Since H∞
S (G,Mn) is the range of the contractive projection PS : L∞(G,

Mn) −→ L∞(G,Mn) in Proposition 4.1.4, it is a JB*-triple with the following Jor-
dan triple product

{ f ,g,h}=
1
2

PS( f g∗h + hg∗ f ).

As the map f ∈L∞(G,Mn) �→ f ∗σt ∈ L∞(G,Mn) is weak* continuous, H∞
S (G,Mn) is

weak* closed in L∞(G,Mn) and has a predual, that is, it is a JBW*-triple. ��

As before, let 1 : G−→Mn be the constant function with value I ∈Mn.
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Proposition 4.1.7. Let S = {σt}t>0 be a convolution semigroup of positive Mn-
valued measures on a locally compact group G such that {0} �= H∞

S (G,Mn)⊂Mn1.
Then G is amenable.

Proof. If f ∈H∞
S (G,Mn) and f = A1 for some A ∈Mn, then we have A1 = f ∗σt =

Aσt(A)1 for all t > 0. Hence

H∞
S (G,Mn) = {A1 : A ∈Mn, A = Aσt(G), ∀t > 0}.

Let PS : L∞(G,Mn)−→H∞
S (G,Mn) be the contractive projection in Proposition 4.1.4

and let PS(1) = A1. Then ‖A‖ ≤ 1 and by Remark 4.1.5, we have A≥ 0 in Mn and
A �= 0, for if 0 �= f = B1 ∈H∞

S (G,Mn), then BPS(1) = B1.
We can find a state ϕ of L∞(G,Mn) such that ϕ(PS(1)) = 1 (cf. [62, p.130]).

Since PS commutes with left translations, we have PS�x( f ) = �xPS( f ) = PS( f ) for
all f ∈ L∞(G) and x ∈G, where PS( f ) is a constant function. It follows that ϕ ◦P is
a left-invariant state of L∞(G,Mn) and the function

m : h ∈ L∞(G) �→ ϕ(P(h⊗ I)) ∈ C

is a left-invariant mean. Hence G is amenable. ��

We now apply the above results to the heat semigroup on a Lie group. We write
H p
S(G) for H p

S(G,C). Let G be a connected Lie group and let L be a second order
G-invariant elliptic differential operator on G, annihilating the constant functions.
Then L generates a convolution semigroup {σt}t>0 of absolutely continuous proba-
bility measures on G, giving rise to a strongly continuous one-parameter semigroup
(Tt)t≥0 of convolution operators on Lp(G) for 1 ≤ p < ∞. The generator Lp of
(Tt)t≥0 in Lp(G) coincides with L on C∞

c (G). Our first application is the following
uniqueness result.

Proposition 4.1.8. Let G be a connected Lie group. For 1 ≤ p < ∞, all Lp L-
harmonic functions on G are constant.

Proof. Let S = {σt}t>0 be the semigroup of absolutely continuous probability mea-
sures generated by L. Then H p

S(G) contains the space of Lp L-harmonic functions
on G. Since G is connected, each σt is adapted and by [10, Theorem 3.1], we have
H p
S(G)⊂ H1(Tσt ,L

p(G))⊂ C1. ��

It has been shown by Yau [64] (see also [32]) that all Lp ∆-harmonic functions on
a complete Riemannian manifold are constant, for 1 < p < ∞, where ∆ is the Laplace
operator of the Riemannian metric of the manifold. This result is false for p = 1,∞,
but is true if in addition, the manifold has non-negative Ricci curvature [46, 65]. As
shown by Milnor [50, Theorem 2.5], almost any Lie group admits a left invariant
Riemannian metric for which the Ricci curvature changes sign. Although the L1

result for manifolds cannot be applied directly to all Lie groups, it follows from
Proposition 4.1.8 that all L1 ∆-harmonic functions on Lie groups are constant. For
the case p = ∞, Proposition 4.1.7 gives an alternative proof for the amenability of a
Lie group if all bounded ∆-harmonic functions on it are constant.



4.1 Harmonic Functions of Semigroups 93

As another application of Proposition 4.1.4, we give a Poisson representation
of bounded L-harmonic functions on Lie groups, similar to the construction in
Corollary 3.4.10. Let S = (σt)t>0 be the semigroup generated by L. The functions
in H∞

S (G) are exactly the bounded L-harmonic functions on G. Since 1 is an ex-
treme point of the unit ball of H∞

S (G), by Corollary 4.1.6, H∞
S (G) is a an abelian von

Neumann algebra with product and involution:

f ·g = PS( f g) , f ∗ = PS( f̄ ) = w∗- lim
α

f̄ ∗ µα = PS( f ) = f̄

where µα ∈ co{σt : t > 0} is a probability measure.
Let Ω be the pure state space of H∞

S (G). Then Ω is weak* compact Hausdorff
and H∞

S (G) is isometrically isomorphic to the algebra C(Ω) of complex continuous
functions on Ω, via the Gelfand map f ∈ H∞

S (G) �→ ̂f ∈C(Ω), where

̂f (ω) = ω( f ) ( f ∈ H∞
S (G) ,ω ∈Ω).

Proposition 4.1.9. Let L be a second order G-invariant elliptic differential operator
on a connected Lie group G, annihilating the constant functions. Then there is a
compact Hausdorff space Ω with a probability measure µ on Ω, and an action
(ω ,x) ∈ Ω×G �→ ω · x ∈ Ω such that for each bounded L-harmonic function f on
G, there is a unique complex continuous function ̂f on Ω such that

f (x) =
∫

Ω
̂f (ω · x)dµ(ω) (x ∈ G).

Proof. Let S be the semigroup of probability measures on G generated by L. Let Ω
be the pure state space of H∞

S (G). Define a probability measure µ ∈C(Ω)∗ by

µ(̂f ) = f (e)

where f ∈H∞
S (G) �→ ̂f ∈C(Ω) is the above Gelfand map and e is the identity of G.

For each x ∈ G, the left translation �x : H∞
S (G) −→ H∞

S (G) induces a surjective
linear isometry ̂�x : C(Ω)−→C(Ω) given by

̂�x(̂f ) = ̂�x f

for f ∈ H∞
S (G). Hence ̂�x is a composition operator on C(Ω):

̂�x(̂f ) = ̂f ◦ϕx

for some homeomorphism ϕx : Ω −→ Ω. Since ϕxy = ϕx ◦ϕy for all x,y ∈ G, the
map

(ω ,x) ∈Ω×G �→ ω · x := ϕx−1(ω) ∈Ω

is a (right) action of G on Ω. For every f ∈H∞
S (G), we have
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f (x) = �x−1 f (e) = µ(�̂x−1 f )

= µ(̂f ◦ϕx−1) =
∫

Ω
̂f (ϕx−1(ω))dµ(ω)

=
∫

Ω
̂f (ω · x)dµ(ω) (x ∈ G) .

��

Example 4.1.10. An unbounded self-adjoint positive operator L on L2(G) is called
a Dirichlet form if it satisfies the Beurling-Deny conditions as in [21]. A concrete
example is the second order elliptic operator L discussed above. The operator −L
generates a contractive semigroup e−tL : L2(G) −→ L2(G) which can be extended
to a contractive semigroup Tp(t) : Lp(G)−→ Lp(G). If L commutes with left trans-
lations, that is, if the left translation �x f lies in the domain of L for every f in
the domain and x ∈ G, and L�x f = �xL f , then e−tL, and also Tp(t), commutes
with left translations and hence T1(t) : L1(G)−→ L1(G) is a convolution semigroup
T1(t) = Tσt by Corollary 3.1.11. Further, the contractivity of e−tL on L∞(G) implies
that Tp(t) = Tσt on Lp for all p < ∞, by Proposition 3.1.10. Hence the above re-
sults on semigroups, for instance, Proposition 4.1.4, can be applied to Tp(t) and the
Lp-harmonic functions. The Lp-spectrum Spec(Lp,Lp) of the generatorLp satisfies
exp(t Spec(Lp,Lp))⊂ Spec(Tσt ,L

p).

4.2 Hypercontractivity

We now discuss hypercontractivity of convolution semigroups Tt = Tσt : Lp(G,
Mn) −→ Lp(G,Mn). We are concerned with the question of ‘smoothing’ of the
semigroup {Tt}t>0, that is, the question of contractivity of Tt as an operator from
Lp(G,Mn) to Lq(G,Mn) for some q > p. We extend Gross’s seminal result in [36] on
hypercontractive semigroups to this setting. For this purpose, the appropriate norm
to use for Mn is the Hilbert-Schmidt norm and the setting for the remaining section
will be that of the spaces Lp(G,(Mn,‖ · ‖hs)) which will be denoted by Lp(G,Mn,2)
to simplify notation. Recall that L2(G,Mn,2) is equipped with the inner product

〈 f ,g〉2 =
∫

G
Tr( f (x)g(x)∗)dλ (x).

If there is no confusion, we write 〈·, ·〉 for 〈·, ·〉2 .
Given a measure σ ∈M(G,Mn), we define its adjoint σ∗ ∈M(G,Mn) by

σ∗(E) = σ(E)∗ ∈Mn

for each Borel set E ⊂ G. Recall that dσ̃(x) = dσ(x−1).
We first discuss positivity of the semigroup {Tt}. Let −L be the generator of

{Tt}t≥0 in L2(G,Mn,2). For f ,h ∈ L2(G,Mn,2), we have
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∫

G
h( f ∗ σ̃∗)∗dλ =

∫

G
(h ∗σ) f ∗dλ .

It follows that the domain of the adjoint of −L is given by

D(−L∗) =
{

f ∈ L2(G,Mn,2) : lim
t↓0

1
t
( f ∗ σ̃∗t − f ) exists in L2(G,Mn,2)

}

and L is self-adjoint if, and only if, σ̃∗t = σt for all t > 0.
Since ‖σt‖= 1, we have ‖Tt‖2≤ 1 for all t > 0 and henceL is a positive operator,

that is,
〈L f , f 〉 ≥ 0

for each f in the domain D(L) ⊂ L2(G,Mn,2) of L. Therefore the operator L1/2 is
well-defined. We define the quadratic form of L to be the quadratic form Q with
domain D(L), given by

Q( f ,g) = 〈L f ,g〉= 〈L1/2 f ,L1/2g〉 ( f ,g ∈D(L))

where we use the same symbol Q for the associated symmetric bilinear form.
Let M+

n = {A∗A : A ∈ Mn} be the positive cone in the C*-algebra Mn. We call
a function f ∈ Lp(G,Mn,2) positive and denote this by f ≥ 0 , if f (x) ∈ M+

n for
λ -almost all x ∈G. Given a function f : G−→Mn, we define the functions f ∗, | f | :
G−→Mn by

f ∗(x) = f (x)∗ and | f |(x) = | f (x)|= ( f (x) f (x)∗)1/2 (x ∈ G).

If f ∗ = f , we define the positive and negative parts of f by f +(x) = f (x)+ and
f−(x) = f (x)− respectively.

A map T : Lp(G,Mn,2) −→ Lp(G,Mn,2) is called positivity preserving, in sym-
bol, T ≥ 0, if f ≥ 0 implies T f ≥ 0 for f ∈ Lp(G,Mn,2). Since Cc(G,Mn,2) ⊂
Lp(G,Mn,2), a convolution operator Tσ : Lp(G,Mn,2) −→ Lp(G,Mn,2) is positivity
preserving if, and only if, σ ≥ 0.

A semigroup {Tt}t≥0 of operators on Lp(G,Mn,2) is called positive if Tt ≥ 0 for all
t > 0. The semigroup {Tt}t≥0 induced by a convolution semigroup {σt}t>0 of Mn-
valued measures on G is positive if, and only if, σt ≥ 0 for all t > 0. The following
conditions for the positivity of a semigroup {Tt}t≥0 in terms of its generator L in
L2(G,Mn,2) are well-known in the scalar case. The proof for the matrix-valued case
is similar to [21, Theorem 1]. We note that, for a positive operator L in a Hilbert
space H and for α > 0, the operator α +L has a bounded inverse on H.

Proposition 4.2.1. Let L be a self-adjoint positive operator in L2(G,Mn,2) and
let −L generate a semigroup {Tt}t≥0 of operators on L2(G,Mn,2). Let Q be the
quadratic form of L. The following conditions are equivalent.

(i) Tt ≥ 0 for t > 0.
(ii) Given ϕ = ϕ∗ ∈ D(L1/2), we have |ϕ | ∈ D(L1/2) and Q(|ϕ |)≤ Q(ϕ).

(iii) Given ϕ = ϕ∗ ∈ D(L1/2), we have |ϕ | ∈ D(L1/2) and Q(ϕ+,ϕ−)≤ 0.
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(iv) For α > 0, the map (α +L)−1 : L2(G,Mn,2) −→ L2(G,Mn,2) is positivity pre-
serving.

Proof. (i)⇒ (ii). Let ϕ ∈ D(L1/2). Then by positivity preserving of Tt , we have

〈Ttϕ ,ϕ〉 = 〈Ttϕ+−Ttϕ−,ϕ+−ϕ−〉
= 〈Ttϕ+,ϕ+〉+ 〈Ttϕ−,ϕ−〉−〈Ttϕ+,ϕ−〉−〈Ttϕ−,ϕ+〉
≤ 〈Tt |ϕ |, |ϕ |〉.

Hence
1
t
〈(I−Tt)|ϕ |, |ϕ |〉 ≤

1
t
〈(I−Tt)ϕ ,ϕ〉

and limsupt→0
1
t 〈(I−Tt)|ϕ |, |ϕ |〉 ≤ 〈L1/2ϕ ,L1/2ϕ〉. It follows that |ϕ | ∈ D(L1/2)

and Q(|ϕ |)≤ Q(ϕ).

(ii)⇔ (iii). This follows from

4Q(ϕ+,ϕ−) = Q(|ϕ |)−Q(ϕ)

where ϕ , |ϕ | ∈ D(L1/2) implies that ϕ± ∈ D(L1/2).

(iii)⇒ (iv). Fix α > 0. Denote K = D(L1/2) which is a Hilbert space with respect
to the inner product

〈ψ ,ϕ〉1 = 〈L1/2ψ ,L1/2ϕ〉+ α〈ψ ,ϕ〉.

Let J : K −→ L2(G,Mn,2) be the natural embedding. Then, for ψ ∈ K, f ∈
L2(G,Mn,2), we have

〈ψ ,(α +L)−1 f 〉1 = 〈L1/2ψ ,L1/2(α +L)−1 f 〉+ α 〈ψ ,(α +L)−1 f 〉
= 〈(α +L)ψ ,(α +L)−1 f )〉
= 〈ψ , f 〉 = 〈Jψ , f 〉.

Therefore J∗ f = (α +L)−1 f . Let ψ = J∗ f . We have

〈|ψ |, |ψ |〉1 = Q(|ψ |)+ α〈|ψ |, |ψ |〉
≤ Q(ψ)+ α〈ψ ,ψ〉= 〈ψ ,ψ〉1.

Let f ≥ 0. Then

〈|ψ |,ψ〉1 = 〈|ψ |,J∗ f 〉1
= 〈|ψ |, f 〉
≥ 〈ψ , f 〉= 〈ψ ,J∗ f 〉1 = 〈ψ ,ψ〉1.

Hence (α +L)−1 f = J∗ f = ψ = |ψ | ≥ 0.
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(iv)⇒ (i). This follows from

Tt = lim
n→∞

(

I +
t
n
L
)−n

.

��

Given two functions f ,h ∈ L2(G,Mn,2), we denote by 〈 f ,h〉hs the function x ∈
G �→ Tr( f (x)h(x)∗), and define

| f |hs = 〈 f , f 〉1/2
hs

which gives | f |hs(x) = ‖ f (x)‖hs for x ∈ G.
To simplify notation, we will write | f | for | f |hs in the rest of the chapter where

confusion is unlikely.

Lemma 4.2.2. Let h ∈ Ls(G,Mn,2)\{0} for all s ∈ (1, p). Then ‖h‖s is a differen-
tiable function of s and

d
ds
‖h‖s =

1
s
‖h‖1−s

s

(
∫

G
|h|s log |h|dλ −‖h‖s

s log‖h‖s

)

.

Proof. This follows from a simple computation of

d
ds
‖h‖s =

d
ds

(
∫

G
|h|s
)1/s

= ‖h‖s

(

− 1
s2 log

∫

G
|h|s +

1
s‖h‖s

s

∫

G

d
ds
|h|s
)

where the integrals are with respect to the Haar measure λ . ��

In the remaining chapter, the integrals on G are with respect to the Haar
measure λ .

Lemma 4.2.3. Let {Tt}t≥0 be a strongly continuous contractive semigroup on
Lp(G,Mn,2) where T0 = I and 1 < p < ∞. Let c > 0 and p(t) be a real continuously
differentiable function on [0,c), with infimum p(0) = p. Given ϕ ∈C∞

c (G,Mn,2), the
function ‖Ttϕ‖p(t) is differentiable at t = 0 and

d
dt

∣

∣

∣

∣

t=0
‖Ttϕ‖p(t) = Re‖ϕ‖1−p

p

∫

G
|ϕ |p−2

〈

d
dt

∣

∣

∣

∣

t=0
Ttϕ ,ϕ

〉

hs

+
p′(0)‖ϕ‖1−p

p

p

(
∫

G
|ϕ |p log |ϕ |−‖ϕ‖p

p log‖ϕ‖p

)

.
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Proof. We have

d
dt

∣

∣

∣

∣

t=0
‖Ttϕ‖p(t) = lim

t↓0

1
t

(

‖Ttϕ‖p(t)−‖T0ϕ‖p
)

= lim
t↓0

{

1
t

(

‖Ttϕ‖p(t)−‖Ttϕ‖p
)

+
1
t

(‖Ttϕ‖p−‖ϕ‖p)
}

where, by the chain rule and Proposition 2.2.5, we have

lim
t↓0

1
t

(‖Ttϕ‖p−‖ϕ‖p) = ∂‖T0ϕ‖p

(

d
dt

∣

∣

∣

∣

t=0
Ttϕ
)

= Re‖ϕ‖1−p
p

∫

G
|ϕ |p−2Tr

(

ϕ∗
(

d
dt

∣

∣

∣

∣

t=0
Ttϕ
))

.

By the mean value theorem and Lemma 4.2.2, there exists t1 ∈ (0, t) such that

1
t

(

‖Ttϕ‖p(t)−‖Ttϕ‖p
)

=
p′(t1)
p(t1)

‖Ttϕ‖1−p(t1)
p(t1)

(
∫

G
|Ttϕ |p(t1) log |Ttϕ |−‖Ttϕ‖p(t1)

p(t1)
log‖Ttϕ‖p(t1)

)

.

Letting t→ 0 above and putting the two limits together, we get the result. ��

Remark 4.2.4. In the above lemma, we can write

Re‖ϕ‖1−p
p

∫

G
|ϕ |p−2Tr

(

ϕ∗
(

d
dt

∣

∣

∣

∣

t=0
Ttϕ
))

=
‖ϕ‖1−p

p

2

∫

G
|ϕ |p−2 d

dt

∣

∣

∣

∣

t=0
|Ttϕ |2.

Indeed, by the chain rule and the Gateaux derivative of the Hilbert-Schmidt norm
‖ · ‖hs, we have, for x ∈ G,

d
dt
|Ttϕ |2(x) = 2|Ttϕ |(x)

d
dt
‖Ttϕ(x)‖hs

= 2‖Ttϕ(x)‖hs∂‖Ttϕ(x)‖hs

(

d
dt

Ttϕ(x)
)

= 2ReTr(Ttϕ(x)∗Tt
′ϕ(x)).

The following result for matrix semigroups, extending a result of Gross in [36],
answers the above question of smoothing the semigroup {Tt}t≥0 induced by a con-
volution semigroup {σt}t>0 of Mn-valued measures satisfying σ̃∗t = σt ≥ 0. The
condition for hypercontractivity of {Tt}t≥0 is a log-Sobolev type inequality of in-
dex p for its generator L, for each p ∈ (1,∞). The proof is based on a differential
inequality, as in [36]. See also [3, 17].

We say that an operator L in L2(G,Mn,2) generates a contractive semi-
group {Tt}t≥0 on Lp(G,Mn,2) if each Tt maps L2(G,Mn,2) ∩ Lp(G,Mn,2) into
L2(G,Mn,2))∩Lp(G,Mn,2), and is contractive in the Lp-norm.
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Theorem 4.2.5. Let−L be a self-adjoint operator in L2(G,Mn,2), generating a pos-
itive strongly continuous contractive semigroup {Tt}t≥0 on Lp(G,Mn,2) for all p.
Given a > 0 and b≥ 0, the following conditions are equivalent.

(i) {Tt}t≥0 is hypercontractive, that is, for each p ∈ (1,∞) and t > 0,

||Ttϕ ||p(t) ≤ em(t)||ϕ ||p (ϕ ∈C∞
c (G,Mn))

where p(t) = 1 +(p−1)e4t/a and m(t) = b
(

p−1− p(t)−1) .

(ii) For each p ∈ (1,∞) and ϕ ∈Cc(G,Mn,2), L satisfies the inequality

∫

G
|ϕ |p log |ϕ |pdλ ≤− ap2

4(p−1)

∫

G
|ϕ |p−2Re〈Lϕ ,ϕ〉hsdλ + ||ϕ ||pp(b+ log‖ϕ‖p

p).

Proof. Let ϕ ∈ C∞
c (G,Mn,2)\{0}. For t ∈ [0,∞), let F(t) = e−m(t)||Ttϕ ||p(t) where

m(0) = 0 and p(0) = p. We have

d
dt

logF(t) =−m′(t)+
1

‖Ttϕ‖p(t)

d
dt
‖Ttϕ‖p(t)

where, by Lemma 4.2.3, we have

d
dt

∣

∣

∣

∣

t=0
logF(t) = −m′(0)+

1
‖ϕ‖p

p

∫

G
|ϕ |p−2Re 〈Lϕ ,ϕ〉hs

+
p′(0)

p2‖ϕ‖p
p

(
∫

G
|ϕ |p log |ϕ |p−‖ϕ‖p

p log‖ϕ‖p
p

)

.

For (i) ⇒ (ii), we note that F ′(0) ≤ 0 since F(t) ≤ F(0) for all t. Hence
d
dt

∣

∣

∣

∣

t=0
logF(t)≤ 0 and we have

∫

G
|ϕ |p log |ϕ |p ≤− p2

p′(0)

∫

G
|ϕ |p−2Re 〈Lϕ ,ϕ〉hs + ||ϕ ||pp

(

m′(0)p2

p′(0)
+ log‖ϕ‖p

p

)

.

We note that p(t) and m(t) solve the differential equations

p(t)2

p′(t)
=

ap2

4(p−1)
, p(0) = p

and
m′(t)p(t)2

p′(t)
= b , m(0) = 0 .

Hence we have
p2

p′(0)
=

ap2

4(p−1)
and

m′(0)p2

p′(0)
= b

and (ii) holds.
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Conversely, (ii) implies

F ′(0)
F(0)

=
d
dt

∣

∣

∣

∣

t=0
logF(t)≤ 0

where F(0) = ‖ϕ‖p. It follows that F(t)≤ F(0) for all t, giving

e−m(t)||Ttϕ ||p(t) ≤ ||ϕ ||p.

��

Remark 4.2.6. In the scalar case ϕ ∈C∞
c (G), we have

∫

G
|ϕ |p−2Re 〈Lϕ ,ϕ〉hs = Re

∫

G
Lϕ |ϕ |p−2ϕ

which can be written as Re
∫

GLϕϕp where ϕp = (sgnϕ)|ϕ |p−1 and

sgnz =
{ z
|z| if z �= 0,

0 if z = 0.

Hence, modulo some constants, the inequality in Theorem 4.2.5 (ii) is identical to
that in (2.1) of [36].
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