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Preface

In recent years, Finsler geometry has been developing rapidly. There are two
main reasons for this development. First, the influence of S.S. Chern in the late
twentieth century was enormous; his guidelines rapidly accelerated both interest
and results, first in the United States, including David Bao, Zhongmin Shen, as
well as other mathematicians, and then in China. Today, a large group of young
and talented mathematical researchers all over the world are working on specific
issues in this field. Second, new areas of application arose in the 1980s (R.S.
Ingarden, P.L. Antonelli, among others) in biology, optics, quantum physics, and
also in psychology, geosciences, geodesy, and other fields. The importance of the
field also grew in the 1990s, when its strong relationship with complex analysis
became clear. A new field, called complex Finsler geometry, was launched. In the
past 20 years, much significant progress has been made in this field, and work in
this subject has resulted in a number of substantial books and monographs that have
greatly enhanced the study of Finsler geometry.

This monograph contains a series of results obtained by the author and collabo-
rators in the last decade. Our main idea was to show that one can use Lie theory
to study Finsler geometry, and our research shows that this method is actually
applicable to many problems. Moreover, results obtained on related topics are
generally simpler in this form than similar results in general Finsler geometry. In
fact, in some special cases (e.g., Randers spaces), we can express curvatures using
only the algebraic structures and the metric, without local coordinate systems. Such
approaches are particularly welcome, since Finsler geometry has a reputation for
complexity due to the extensive use of tensors and indices.

The field of Finsler geometry originated from Riemann’s celebrated habilitation
lecture, “On the Hypotheses, Which Lie at the Foundation of Geometry,” given on
June 10, 1854. A translation of this lecture can be found in M. Spivak’s book A
Comprehensive Introduction to Differential Geometry, Volume II, Chap. 4, Publish
or Perish Inc., 1970. In this lecture, Riemann introduced the notion of a manifold
and metric structures on a manifold. In the special case that the manifold is smooth
and the metric is a quadratic differential form, Riemann successfully introduced
the notions of curvature tensor and sectional curvature, and provided a complete
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viii Preface

treatment of this complicated quantity. This setting had an important impact on
Einstein’s general theory of relativity, and has received a great deal of attention
from both mathematicians and physicists. The subject is now called Riemannian
geometry in the literature.

The restriction to a quadratic form constitutes only a special case. Riemann
did not regard this restriction as necessary. However, for the general case, he
wrote the following: “The next simplest case would perhaps include the manifolds
in which the line element can be expressed as the fourth root of a differential
expression of the fourth degree. Investigation of this more general class would
actually require no essentially different principles, but it would be rather time-
consuming and throw proportionally little new light on the study of space.” This
commentary rendered the general cases dormant for a rather long period. In 1918,
Paul Finsler initiated the study of variational problems in the spaces where the
metric is defined by Minkowski norms. This setting was developed into a new field,
which was much more complicated and difficult compared to Riemannian geometry
and was eventually named Finsler geometry.

In 1926, L. Berwald introduced the notion of flag curvature, which is the natural
generalization of sectional curvature in Riemannian geometry. Berwald found an
important connection, called the Berwald connection, which is a very important
connection in Finsler geometry. He also studied the geometric properties of a special
kind of Finsler spaces—Berwald spaces. The work of Berwald has had a great
impact in the study of Finsler geometry. The Berwald connection is torsion-free but
not metric-compatible. In 1934, É. Cartan found another connection—the Cartan
connection—which is metric-compatible but has torsion. Great progress was also
made in 1943 by S.S. Chern, who found a connection that is torsion-free and almost
metric-compatible. The Chern connection is the simplest in form and now appears
very frequently in the literature.

As a branch of geometry, Finsler geometry has inevitably been influenced by
group theory. The celebrated Erlangen program of F. Klein, posed in 1872, greatly
influenced the development of geometry. Klein proposed to categorize the new
geometries by their characteristic groups of transformations. To this day, this
program has been extremely successful. Nowadays, every geometer expects to
find an effective method for studying geometry by applying group theory. The
theory of homogeneous/symmetric Riemannian spaces provides a sample for this
program. Lie theory was developed in the late nineteenth century, first in the local
fashion, by S. Lie, W. Killing, and É. Cartan. Global Lie groups were emphasized
through the work of H. Weyl, É. Cartan, and O. Schreier during the 1920s. One
of the most important applications of Lie theory to Riemannian geometry was
Cartan’s work on the classification of globally symmetric Riemannian spaces.
The Myers–Steendrod theorem, published in 1939, extended the application of
Lie theory to the scope of all homogeneous Riemannian manifolds. By now,
the theory of homogeneous/symmetric Riemannian manifolds has become the
basis of many branches of mathematics, including group and geometric analysis,
and representation theory. The Myers–Steenrod theorem was generalized to the
Finslerian case by the author and Z. Hou in 2002. This result opened a door to using
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Lie theory to study Finsler geometry. In the last decade, the author and collaborators
have successfully developed the theory of homogeneous/symmetric Finsler spaces.
Meanwhile, there has appeared in the literature some work of other mathematicians
on Finsler geometry that is closely related to Lie theory, including some classical
results of H.C. Wang and Z.I. Szabó’s on Berwald spaces.

The purpose of this book is to introduce the major part of the aspect of Finsler
geometry that has a close relationship with Lie theory, and to bring the reader to
the frontiers of the active research on related topics. The book consists of seven
chapters. Chapters 1 and 2 are an introduction to Finsler geometry and Lie theory.
Chapter 1 can also be used as a textbook for a course in Finsler geometry, provided
the lecturer adds all the necessary details. Chapter 3 is focused on the study of
isometries of Finsler space. The main result of this chapter is the generalized Myers–
Steenrod theorem. In Chap. 4, the theory of general homogeneous Finsler spaces is
developed. Chapter 5 deals with symmetric Finsler spaces. The main features of É.
Cartan’s theory on Riemannian symmetric spaces are generalized to the Finslerian
case. In Chap. 6, we develop a theory of weakly symmetric Finsler spaces. Chapter 7
is devoted entirely to homogeneous Randers spaces.

Apart from the first two chapters, each chapter begins with a brief introduction
to the background and the motivation of the topics under consideration. We believe
that some historical elements will help readers grasp the main ideas more easily.
Moreover, we discuss possible further development of the fields discussed in the
chapter. We hope that this will enhance the study of homogeneous Finsler spaces to
some extent.

There are some aspects of the field of Finsler geometry that have not been
involved in this book. First, although we present some results on invariant complex
structures on homogeneous/symmetric Finsler spaces in Sect. 5.5, a complete theory
of homogeneous complex Finsler spaces has not been established, which in my
opinion will be a main focus in the near future. Second, this book does not deal with
any explicit applications of the theory to the real world, although we have provided
a large number of carefully selected examples, which definitely have promising
applications to other scientific fields.

Finally, although the author has done his best to make everything as accurate as
possible, errors or mistakes, minor or major, are very likely to exist in the book.
Comments and suggestions from readers, either for the improvement of the book or
pointing out mistakes to the author, are very welcome.

Tianjin, China Shaoqiang Deng
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Chapter 1
Introduction to Finsler Geometry

In this chapter, we will give a brief introduction to Finsler geometry. Our goal here
is twofold. First, although currently Finsler geometry is developing rapidly, it is not
as well known as some standard parts of mathematics that are routinely taught in
graduate schools. Additionally, the terminologies and techniques involved in this
field are rather complicated. Therefore, a concise introduction would be helpful. On
the other hand, since the notation used by Finsler geometers varies considerably,
beginners in Finsler geometry sometimes may find it very difficult to adapt to so
many definitions and indices. Our second purpose is therefore to set the notation
and symbols that will be used in this book. The chapter will be restricted to those
aspects of Finsler geometry that are related to the topics in this book. There is no
attempt to make a detailed introduction here, and the content of this chapter is far
from being self-contained.

1.1 Finsler Spaces

As pointed out by the late great geometer Chern [43], Finsler geometry is just
Riemannian geometry without the quadratic restriction. In Riemannian geometry,
the restriction of the metric to a tangent space is an inner product; hence tangent
spaces at different points are linearly isometric to each other. However, in Finsler
spaces this is no longer true. In fact, in a Finsler space, tangent spaces at different
points can be very different. We first give the definitions of Minkowski norms and
Minkowski spaces.

Definition 1.1. Let V be an n-dimensional real vector space. A Minkowski norm
on V is a real-valued function F on V that is smooth on V \ {0} and satisfies the
following conditions:

1. F(u)≥ 0, ∀u ∈V ;
2. F(λu) = λF(u), ∀λ > 0;

S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4614-4244-8 1, © Springer Science+Business Media New York 2012
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2 1 Introduction to Finsler Geometry

3. Fix a basis u1,u2, . . . ,un of V , and write F(y) = F(y1,y2, . . . ,yn) for y = y1u1 +
y2u2 + · · ·+ ynun. Then the Hessian matrix

(gi j) :=

([
1
2

F2
]

yiy j

)

is positive definite at every point of V \ {0}.

The pair (V,F) is called a Minkowski space.

Sometimes we simply say that V is a Minkowski space if the norm is clear. We
first give some examples of Minkowski norms.

Example 1.1. Let 〈 , 〉 be an inner product on V . Define F(y) =
√〈y,y〉. Then F

is a Minkowski norm. In this case it is called Euclidean or coming from an inner
product.

Example 1.2. Let α be a Euclidean norm on an n-dimensional real vector space V
as in Example 1.1 and β a real linear function on V . Define F(y) = α(y)+ β (y).
Then F is a real function on V satisfying conditions (1) and (2) of Definition 1.1. Let
us determine the condition for F to be a Minkowski norm. Fix an orthonormal basis
of V with respect to 〈 , 〉. Suppose β (ei) = bi. Then for y = yiei we have F(y) =√
∑n

i=1(y
i)2 + biyi. The Hessian matrix with respect to the basis e1,e2, . . . ,en has

determinant

D(y) =

(
F(y)
α(y)

)n+1

, y �= 0. (1.1)

This fact can be found in [16, p. 284]. We leave the proof as an exercise for the
reader. This formula has the interesting corollary that the Hessian matrix of such a
function is positive definite if and only if it is positive, i.e., if and only if F(y) > 0,
for y �= 0. It is easily seen that this is true if and only if

n

∑
i=1

(bi)
2 < 1.

If we define an inner product 〈 , 〉∗ on the dual space V ∗ by requiring the dual basis
e∗1,e

∗
2, . . . ,e

∗
n to be orthonormal, then F is a Minkowski norm if and only if the length

of β is less than 1. Such Minkowski norms are called Randers norms. A Randers
norm is Euclidean if and only if β is zero.

Example 1.3. Let (V,〈 , 〉) be a Euclidean space and V1,V2, . . . ,Vs nontrivial sub-
spaces of V such that V is the orthogonal sum of the Vi. For a positive integer m ≥ 2,
define

F(y) =

√√√√|y|2 + m

√
s

∑
i=1

|yi|2m,
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where | · | is the length function of 〈 , 〉 and yi, i = 1,2, . . . ,s, are uniquely
determined by

y = y1 + y2 + · · ·+ ys, yi ∈Vi, i = 1,2, . . . ,s.

It is easy to check that F is a Minkowski norm on V . This Minkowski norm is always
non-Euclidean.

We now study some fundamental properties of Minkowski norms. The following
proposition shows that Minkowski norms have all the characteristics of a norm in
the usual sense, except the absolute homogeneity.

Proposition 1.1. Let (V,F) be a Minkowski space. Then

1. For any y �= 0, F(y)> 0.
2. F(y1 + y2) ≤ F(y1)+F(y2), with equality if and only if y1 = αy1 or y2 = αy1

for some α ≥ 0.

Proof. In the process of the proof we will introduce the fundamental tensor of
the Minkowski norm F . Note that the positive definiteness of the Hessian matrix
amounts to saying that for any nonzero y, the bilinear form

gy(u,v) = gi j(y)u
iv j, u,v ∈V,

is an inner product on V . Using Euler’s theorem on homogeneous functions, one
easily deduces that

F2(y) = gi j(y)y
iy j = gy(y,y), y �= 0.

Hence F(y)> 0, for y �= 0. This proves (1).
By a direct computation, one easily checks that

gy(u,v) =
1
2
∂ 2

∂ s∂ t
[F2(y+ su+ tv)]s=t=0, y �= 0, u,v ∈V.

Now for nonzero u,v, set ū = u
F(u) and v̄ = v

F(v) . Assume first that ū �=±v̄. Consider
the function

ϕ(t) = F2(tū+(1− t)v̄).

Then ϕ(0) = ϕ(1) = 1 and

ϕ ′′(t) = 2gy(ū− v̄, ū− v̄)> 0, 0 < t < 1,

where y = tū+(1− t)v̄ (note that the assumption ū �= ±v̄ implies that y �= 0). This
means that ϕ is a concave function on the interval [0,1]. Therefore for 0 < t < 1,
ϕ(t)< 1. Now in the above function we let

t = t0 =
F(u)

F(u)+F(v)
.



4 1 Introduction to Finsler Geometry

Then we have

F2(t0ū+(1− t0)v̄)< 1.

From this we easily deduce that

F(u+ v)< F(u)+F(v).

If ū =−v̄, then the above inequality holds as well. If ū = v̄, then it is obvious that

F(u+ v) = F(u)+F(v).

Further, equality still holds if at least one of u,v is equal to 0. This completes the
proof of the proposition. ��

The tensor

gy(u,v) = gi j(y)u
iv j, u,v ∈V,

is called the fundamental tensor of the Minkowski space. There is another tensor,
called the Cartan tensor, defined by

Cy(u,v,w) =Ci jk(y)u
iv jwk, u,v,w ∈V,

where

Ci jk(y) =
1
4
[F2]yiy jyk .

Equivalently,

Cy(u,v,w) =
1
4

∂ 3

∂ t∂ s∂ r
[F2(y+ su+ tv+ rw)]|t=s=r=0.

The fundamental tensor gy and the Cartan tensor Cy are both symmetric. The
Cartan tensor also has the following property:

Cy(y,u,v) = 0, u,v ∈V.

The proof of this fact is left to the reader.
Now we can define the notion of a Finsler metric.

Definition 1.2. Let M be a (connected) smooth manifold. A Finsler metric on M is
a function F : T M → [0,∞) such that

1. F is C∞ on the slit tangent bundle T M \ {0};
2. The restriction of F to any TxM, x ∈ M, is a Minkowski norm.

The pair (M,F) is called a Finsler space. We first give some examples of Finsler
spaces.
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Example 1.4. Any Riemannian manifold must be a Finsler space. Hence Rieman-
nian geometry is a special case of Finsler geometry.

Example 1.5. Let (V,F) be a Minkowski space. As a real vector space, for any
u ∈ V , the tangent space Tu(V ) can be canonically identified with V . We can then
define a Finsler metric on V by this identification. Usually the Finsler space is still
denoted by (V,F). Hence a Minkowski space is typically a Finsler space.

Let (M,F) be a Finsler space. If for any x ∈ M, there is a local coordinate system
(U ; x1,x2, . . . ,xn) of x such that on U the expression of F has no independence
on x, then (M,F) is called locally Minkowskian. Obviously, a Minkowski space is
locally Minkowskian. However, the converse is not true. The author can give some
counterexamples without any difficulty (e.g., some Riemannian metrics).

Example 1.6. Let α be a Riemannian metric on a connected manifold M and β a
smooth 1-form on M. As pointed out in Example 1.2, the function F = α + β on
T M defines a Finsler metric on M if and only if the length of β with respect to α is
everywhere less than 1. Finsler metrics of this type are called Randers metrics. Such
metrics were introduced by Randers in 1941 [131], in his study of general relativity.

Example 1.7. Let us give an explicit example of a Randers metric. Let Bn(rμ) be
the open ball of R

n centered at the origin with radius rμ = 1√−μ , where μ < 0.
Identifying any tangent space of x ∈R

n with R
n in the canonical way, we define

F(x,y) =

√|y|2 + μ(|x|2|y|2 −〈x,y〉2)+
√−1μ〈x,y〉

1+ μ |x|2 . (1.2)

By definition, F is a Randers metric on Bn(rμ). When μ = −1, the metric in (1.2)
is called the Funk metric.

Example 1.8. The Randers metric in (1.2) is not reversible. We define another
Finsler metric H on Bn(rμ) by

H(x,y) =
1
2
(F(x,y)+F(x,−y)) .

The metric H is reversible and is called the Hilbert metric. The Hilbert metric is
projectively flat; see [44] for details. When μ =−1, H is the Klein metric on Bn(1).

Now we introduce the following result of Deicke to conclude this section;
see [46].

Theorem 1.1 (Deicke). Let (V,F) be a Minkowski space. Fix a basis of V and
let gi j and Ci jk be the coefficients of its fundamental tensor and Cartan tensor,
respectively. Then F is a Euclidean norm if and only if Ci jk = 0 for all i, j,k, if
and only if Ck =Ci jkg jk = 0 for all k. Here (g jk) is the inverse matrix of (gi j).
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1.2 The Chern Connection and Curvature

To study geometric properties of Finsler spaces, it is important to have a method to
differentiate vector fields and tensor fields. In Riemannian geometry, the Levi-Civita
connection is such a tool, and it plays a fundamental role in the study of all aspects
of the field. It is natural to consider the generalization of the Levi-Civita connection
to Finsler geometry. Unfortunately, in Finsler geometry there exists no connection
having the same fine properties as the Levi-Civita connection. In particular, there is
no connection in Finsler geometry that is both torsion-free and metric compatible.

In 1943, Chern introduced a connection in Finsler geometry. This connection is
now called the Chern connection in the literature. The Chern connection is torsion-
free and almost metric compatible. We will introduce this important tool in the
following. We stress here that there are several connections in Finsler geometry, such
as the Cartan connection, the Berwald connection, and the Hashiguchi connection.
In the study of Finsler geometry, it is important to use the most appropriate
connection for different problems.

The Chern connection is a linear connection on a vector bundle over the slit
tangent bundle T Mo = T M \{0}. Let us first explain the related settings. Recall that
the tangent bundle π : T M → M is a vector bundle over M. The restriction of π to
the slit tangent bundle TMo is a smooth map from TMo to M. Therefore we have the
pullback bundle π∗TM, which is a vector bundle over the manifold T Mo. Intuitively,
the vector bundle π∗T M is obtained by erecting the fiber Tx(M) over (x,y) ∈ T Mo.

A linear connection of π∗T M is a smooth map from Γ (π∗(T M)) to

Γ (T ∗(TMo)⊗π∗(T M))

satisfying some additional conditions. Here Γ means the set of all smooth sections
of the vector bundle. Sometimes we can also express the connection as a family of
smooth maps

∇ : T(x,y)(TMo)×Γ (π∗(T M))→ (π∗(T M))(x,y),

where (π∗(T M))(x,y) means the fiber of π∗(T M) at (x,y). The image of (X̃ ,v) under
∇ is usually denoted by∇X̃ v. The condition for the connection can then be expressed
as follows:

1. ∇X̃ v is linear in X̃ ;

2. ∇X̃ ( f v) = d f (X̃)v+ f∇X̃ v, for f ∈C∞(T Mo).

Now we consider the connection in a local coordinate system. Let

(U ; x1,x2, . . . ,xn)

be a local coordinate system of the manifold M. Then for any x ∈ M, the tangent
vectors ∂

∂x1 ,
∂
∂x2 , . . . ,

∂
∂xn form a basis of the tangent space Tx(M). Therefore each

y ∈ Tx(M) can be uniquely expressed as y = yi ∂
∂xi . Thus
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(x1,x2, . . . ,xn,y1,y2, . . . ,yn)

is a local coordinate system of the open subset TU \{0}. Note that ∂
∂x1 ,

∂
∂x2 , . . . ,

∂
∂xn

also form a local framing of the vector bundle π∗(T M). Suppose

∇
∂
∂xi = ω i

j ⊗
∂
∂x j , i = 1,2, . . . ,n,

where ω i
j are 1-forms on TU \ {0}. Then the connection is uniquely determined

by the family of 1-forms ω i
j, together with the conditions (1) and (2) above. These

forms are called the connection forms of the connection. Therefore, to characterize
a linear connection on the vector bundle, it suffices to give the expression of the
connection forms.

Now we are ready to introduce the Chern connection. For this we need some
quantities related to the metrics. The formal Christoffel symbols of the second
type are

γ i
jk = gis 1

2

(
∂gs j

∂xk − ∂g jk

∂xs +
∂gks

∂x j

)
.

They are functions on TU \{0}. We also define some other functions on TU \{0} by

Ni
j(x,y) := γ i

jkyk −Ci
jkγ

k
rsy

rys.

The quantities Ni
j are called the nonlinear connection of the Finsler manifold.

Theorem 1.2 (Chern [42]). The pullback bundle π∗T M admits a unique linear
connection, called the Chern connection. Its connection forms ω i

j satisfy the
following conditions:

• Torsion-freeness:

dx j ∧ω i
j = 0;

• Almost g-compatibility:

dgi j − gk jωk
i − gikωk

j = 2Ci js(dys +Ns
kdxk).

The torsion-freeness implies that ω i
j = Γ i

jkdxk, with Γ i
jk = Γ i

k j. The coefficients Γ i
jk

are then expressed as

Γ l
jk = γ l

jk − gli(Ci jsN
s
k −CjksN

s
i +CkisN

s
j ).

We will not pursue the proof of this theorem, which is a complicated computation
using the classical Christoffel technique; see [15, 16]. Instead, we will explain in
some detail the terminology appearing in the above theorem. First note that, a priori,
the connection forms ω i

j, which are one-forms on TU \ {0}, can be expressed as

ω i
j = Γ i

jkdxk +Zi
jkdyk.
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Then the torsion-freeness

dx j ∧ω i
j = 0

implies that

Γ i
jkdx j ∧dxk +Zi

jkdx j ∧dyk = 0.

Thus Zi
jk = 0 and Γ i

jk = Γ i
k j. Then one can use the almost metric compatibility to get

the formula for the coefficients Γ i
jk.

If the Finsler metric is Riemannian, then by Deicke’s theorem we have Ci jk = 0.
In this case, the almost metric compatibility reads as

dgi j − gk jωk
i − dgikωk

j = 0.

This is exactly the metric compatibility of the Levi-Civita connection. Hence the
Chern connection is a natural generalization of the Levi-Civita connection. Note
also that in this case the Chern connection coefficients are the Riemannian metric’s
Christoffel symbols of the second kind.

We now introduce the notions of flag curvature and Ricci scalar in Finsler
geometry. First we introduce some differential forms on the manifold T Mo. Let

δyi = dyi +Ni
jdx j.

The curvature 2-forms of the Chern connection are

Ω i
j = dω i

j −ωk
j ∧ω i

k.

Since Ω i
j are 2-forms on TUo, they can be expanded as

Ω i
j =

1
2

R j
i
kldxk ∧dxl +Pj

i
kldxk ∧ δyl

F
+

1
2

Q j
i
kl

δyk

F
∧ δyl

F
,

where R j
i
kl =−R j

i
lk, Q j

i
kl =−Q j

i
lk. Using the torsion-freeness we get dx j∧dwi

j =

−d(dx j ∧ω i
j) = 0. Thus

dx j ∧Ω i
j = dx j ∧ω i

j − dx j ∧ω i
k ∧ωk

j

=
1
2

R j
i
kldx j ∧dxk ∧dxl +Pj

i
kldx j ∧dxk ∧ δyl

F

+
1
2

Q j
i
kldx j ∧ δyk

F
∧ δyl

F
= 0.
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From this we deduce that

Q j
i
kl = 0,

that

Pj
i
kl = Pk

i
jl ,

and that

R j
i
kl +Rk

i
l j +Rl

i
jk = 0. (1.3)

Equation (1.3) is called the first Bianchi identity.
Now we are in a position to introduce the flag curvature in Finsler geometry. This

is a natural generalization of the sectional curvature in Riemannian geometry. Let us
first explain the notion of a flag on M. Given x ∈M, a flag in the tangent space Tx(M)
is a pair (P,y), where P is a 2-dimensional subspace (a tangent plane) of Tx(M) and
y is a nonzero vector contained in P. The nonzero vector y is usually called the flag
pole. Let

R jikl = gisR j
s
kl .

The flag curvature of the flag (P,y) is defined to be

K(P,y) :=
ui(y jR jiklyl)uk

gy(y,y)gy(u,u)− [gy(y,u)]2
,

where u is a nonzero vector in P such that y,u span P. It is easy to show that this
quantity is independent of the selection of u.

Since the flag curvature is the most important notion in Finsler geometry, we
will pause here to present some further clarification. The coefficients R j

i
kl can be

contracted with y to produce

Ri
k = y jR j

i
kly

l .

The Riemann tensor is defined to be

R = Ri
k
∂
∂xi ⊗ dxk.

In particular, if y ∈ Tx(M)\ {0}, then we can define a linear map Ry of Tx(M) by

Ry(u) = Ri
kuk ∂

∂xi , u ∈ Tx(M).

The collection {Ry} is called the Riemann tensor; see [144]. The flag curvature can
then be rewritten as

K(P,y) =
gy(Ry(u),u)

gy(y,y)gy(u,u)− [gy(y,u)]2
.
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The above expression can be used to define the notion of Ricci scalar. The
quantity

Ric(y) =
tr(Ry)

F2(y)
, y ∈ T Mo,

is called the Ricci scalar of the Finsler space. The Ricci scalar can be defined in
another way. Let y

F(y) ,u2, . . . ,un be an orthonormal basis of Tx(M) with respect to
the inner product gy. Then it is easily seen that

Ric(y) =
n

∑
j=2

K(Pi,y),

where Pi is the tangent plane spanned by y and ui.

1.3 Arc-Length Variations and the Exponential Map

In this section we will give the formula for arc-length variations and define the
notion of exponential map for Finsler spaces.

Let (M,F) be a connected Finsler space and σ : [a,b]→ M a smooth curve on
M. The length of the curve σ is defined by

L(σ) =
∫ b

a
F(σ(t), σ̇(t))dt,

where σ̇(t) denotes the tangent vector of the curve at σ(t). The above definition can
easily be generalized to a piecewise smooth curve in an obvious way. The distance
function d : M×M →R

+ can then be defined in a standard way: for x,y ∈ M, just let
d(x,y) be the infimum of the lengths of all the piecewise smooth curves connecting
x and y. The distance function d has almost all the characteristics of a distance in a
metric space. In fact, we have

1. d(x,y)≥ 0, with equality if and only if x = y.
2. d(x,z) ≤ d(x,y)+ d(y,z), for any x,y,z ∈ M.

However, in general d is not symmetric. In fact, d(x,y) = d(y,x) for any x,y ∈ M
if and only if the Finsler metric is reversible. In this case, (M,d) is a genius metric
space. All these facts can be proved without much difficulty and can be left to the
reader.

Now we consider the variation of the arc length. For this we need some notation.
Let V be a nowhere-zero vector field on an open subset N of M. Then we can define
an affine connection on N. In fact, in a local coordinate system (U ; x1,x2, . . . ,xn)
with U ⊂ N, suppose T = T i ∂

∂xi , W =W i ∂
∂xi . Define
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∇V
TW |x = [T (W i)+W jT kΓ i

jk(x,V )]
∂
∂xi ,

where x ∈ M, Γ i
jk are the coefficients of the Chern connection, and T (W i) is the

action of a vector field on a function. It is easy to check that ∇V is actually an affine
connection on N. Moreover, from the properties of the Chern connection we can
easily deduce the following:

1. ∇V is torsion-free, namely, for any vector fields W1,W2 on N,

∇V
W1

W2 −∇V
W2

W1 = [W1,W2].

2. ∇V is almost metric compatible, namely, for any vector fields W,W1,W2 on N,
we have

WgV (W1,W2) = gV (∇V
WW1,W2)+ gV (W1,∇V

WW2)+ 2CV (∇V
WV,W1,W2).

Suppose σ is a regular curve on M with velocity vector field T and W1, W2 are
two vector fields along σ . Extending T (resp. W1, W2) to a smooth vector field T1

(resp. W ′
1, W ′

2) defined on a open subset of M containing the whole curve σ , we can
define

DW1W2 = ∇T1
W ′

1
W ′

2|τ .
It is easily seen that the above definition does not depend on the extension of the
vector fields.

Now we can deduce the formula of variation of arc length. Supposeσ : [a,b]→M
is a regular curve with tangent vector field T . A variation of σ is a smooth map
τ : (−ε,ε)× [a,b] → M such that σ(t) = τ(0, t), a ≤ t ≤ b. Since T is nonzero
along σ and τ is smooth, the tangent vector field of the curve τ(s, t), a ≤ t ≤ b,
must be nonzero for s small enough. Without loss of generality we can assume that
the curves ϕs(t) = τ(s, t), −ε < s < ε , are all regular. Denote by T , U the tangent
vector fields of the t-curves and the s-curves, respectively (note that for s = 0, this
T coincides with the above T ). Denote the length of the curve ϕs by L(s). Then

L(s) =
∫ b

a
F(τ(s, t),T (s, t))dt.

Since F(τ(s, t),T (s, t)) =
√

gT (T,T ), we have

L′(s) =
d
ds

∫ b

a

√
gT (T,T )dt

=
∫ b

a
U
√

gT (T,T )dt
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=

∫ b

a

1
2

2gT (DU T,T )+ 2CT (DU T,T,T )√
gT (T,T )

dt

=
∫ b

a

gT (DU T,T )
F(T )

dt,

where we have used the almost metric compatibility of the Chern connection and
the fact that

CT (V1,T,V2) = 0, ∀V1,V2.

Note that DU T −DTU = [T,U ] = 0 and

TgT (U,T ) = gT (DTU,T )+ gT (U,DT T )+ 2CT (DT T,U,T )

= gT (DTU,T )+ gT (U,DT T ).

We thus get

L′(s) =
∫ b

a

T gT (U,T )− gT (U,DT T )
F(T )

dt

=

∫ b

a

[
T gT

(
U,

T
F(T )

)
− gT

(
U,DT

(
T

F(T )

))]
dt

= gT

(
U,

T
F(T )

)∣∣∣b
a
−
∫ b

a

[
gT

(
U,DT

(
T

F(T )

))]
dt,

where we have used again the properties of the Chern connection to handle the
factor 1

F(T ) .
The above argument can be easily generalized to regular piecewise smooth

curves. Suppose σ(t), a ≤ t ≤ b, is a regular piecewise smooth curve on M and Let
a = t0 < t1 < · · · < tk = b be a partition of the interval [a,b] such that σ is regular
smooth on each subinterval [ti−1, ti]. Suppose τ(s, t), −ε < s < ε , a ≤ t ≤ b, is a
variation of σ such that τ is smooth on each (−ε,ε)× [ti−1, ti]. Denote the length of
the curve τ(s, t), a ≤ t ≤ b, by L(s). Then a similar argument shows that

L′(s) = gT

(
U,

T
F(T )

)∣∣∣b
a
−

k−1

∑
i=1

gT

(
U,

T
F(T )

)∣∣∣t+i
t−i

−
k

∑
i=1

∫ ti

ti−1

gT

(
U,DT

(
T

F(T )

))
dt.

This is the formula of the first variation of the arc length.



1.3 Arc-Length Variations and the Exponential Map 13

Now we introduce the exponential map of a Finsler space. Before this we need
the notion of geodesics in Finsler geometry. The formula of the first variation of the
arc length has the following corollary:

Proposition 1.2. Let σ(t) : a ≤ t ≤ b be a regular piecewise smooth curve on M.
Then the following two conditions are equivalent:

(a) L′(0) = 0 for any piecewise smooth variation of σ that keeps the start and end
points fixed.

(b) σ is smooth and DT (
T

F(T ) ) = 0.

The proof of this proposition is very similar to the Riemannian case and will be
omitted. A curve σ satisfying any of the above two conditions is called a geodesic.
In the Riemannian case, a geodesic can also be characterized as a curve locally
minimizing the distance of the points of this curve. This is also true for Finsler
spaces.

Proposition 1.3. A curve σ on M is a geodesic if and only if it locally minimizes
the distance along this curve. More precisely, σ is a geodesic if and only if for any
t0, there exists ε > 0 such that for any t1 with |t1 − t0|< ε , the curve σ is the shortest
path connecting σ(t0) and σ(t1).

For the proof of this proposition, see [16].
In the Riemannian case, a geodesic must be of constant speed, i.e., F(T ) must be

a constant. However, this is not true in the general Finslerian case. From now on, we
will consider only geodesics of constant speed in a Finsler space. It is easily seen
that constant-speed geodesics can be characterized by the equation

DT T = 0.

In a local coordinate system, this is a system of ordinary differential equations:

d2σ i

dt2 +
dσ j

dt
dσ k

dt
Γ i

jk(σ ,T ) = 0.

Since this is a system of nonlinear equations, we can get only the local existence of
geodesics:

Proposition 1.4. For any p ∈ M there exist a precompact neighborhood U of p and
a positive number ε such that for any x∈U and y∈ Tx(M)\{0} with 0< F(x,y)< ε
there exists a unique constant-speed geodesic σ(x,y) that is defined on (−2,2) with
σ(x,y)(0) = x, σ̇(x,y)(0) = y. Moreover, σ(x,y)(t) is smooth on t, x, and y.

Definition 1.3. The exponential map of (M,F) is defined by

exp(x,y) =

{
σ(x,y)(1), y �= 0,

x, y = 0.
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From this definition, we see that the exponential map is generally defined only in
a tube neighborhood of the zero section of the tangent bundle. For an arbitrary point,
the following theorem guarantees the existence of the certain special neighborhood.
We first define some notation. For x ∈ M and r > 0, we define

B+
x (r) = {p ∈ M|d(x, p)< r}, B−

x = {p ∈ M|d(p,x) < r},
and

S +
x (r) = {p ∈ M|d(x, p) = r}, S −

x = {p ∈ M|d(p,x) = r}.
We also define

Bx(r) = {V ∈ Tx(M)|F(x,V )< r}, Sx(r) = {V ∈ Tx(M)|F(x,V ) = r}.

Theorem 1.3. Let (M,F) be a connected Finsler space and x ∈ M. Then there are
positive numbers r and ε such that exp is a C1 diffeomorphism from the open subset
Bx(r+ ε) to its image. Moreover, the following assertions hold:

1. Any radial geodesic exp(tV ), 0 ≤ t ≤ r, V ∈ Tx(M), F(x,V ) = 1, minimizes the
distance among all piecewise smooth curves that share the same endpoints.

2. Any piecewise smooth curves on M that share the same arc length and with the
same start and end points as exp(tV ) in (1) must be a reparametrization of the
curve exp(tV ).

3. It is true that exp[Bx(r)] = Bx(r)+, expx[Sx(r)] = S +
x (r).

We refer to [16] for the proof. This theorem has the following corollary.

Corollary 1.1. For any x in a connected Finsler space (M,F), there exists a
neighborhood U of x such that each pair of points in U can be joined by a unique
minimizing geodesic lying in U.

Note that the uniqueness in the above corollary means that it is unique as a
point set. In general, we cannot have the global definition of the exponential map.
The Hopf–Rinow theorem presents some conditions for this. Before stating the
theorem, we give some related definitions. A Finsler manifold (M,F) is called
forward geodesically complete if every geodesic γ(t), a ≤ t < b, can be extended to
a geodesic defined on [a,+∞). A sequence {xi}∞i=1 of points in M is called a forward
Cauchy sequence if for any ε > 0, there exists a natural number N such that for any
N < m1 < m2, we have d(xm1 ,xm2)< ε . A subset U of M is called forward bounded
if there exist a point x0 ∈ U and a positive number r such that d(x0,x) < r, ∀x ∈U .
The manifold (M,F) is called forward complete if each forward Cauchy sequence
converges to a point in M.

Theorem 1.4 (Hopf–Rinow). Let (M,F) be a connected Finsler space. Then the
following conditions are mutually equivalent:

1. (M,F) is forward complete.
2. (M,F) is forward geodesically complete.
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3. At every point p ∈ M, the exponential map expp is defined on the whole tangent
space Tp(M).

4. At some point p ∈ M, the exponential map expp is defined on the whole tangent
space Tp(M).

5. Any closed forward bounded subset of M is compact.

Moreover, if any one of the above conditions is satisfied, then any two points of M
can be joined by a minimizing geodesic.

We will not pursue the proof of this theorem, which is similar to the Riemannian
case and can be found in [16]. We remark here that one can similarly define the
notions of backward completeness, backward geodesic completeness, backward
bounded subsets, etc., and there is a backward version of the Hopf–Rinow theorem
(see [16]). In a general Finsler space, backward completeness is not equivalent to
forward completeness. However, if the Finsler metric is reversible, then there is no
difference between backward completeness and forward completeness. This is the
case, in particular, for a Riemannian metric.

At the final part of this section, we will introduce the formula for the second
variation of the arc length. Since the general case is rather complicated, we will
confine ourselves in the special case that the base curve is a (constant-speed)
geodesic. Let σ(t), a ≤ t ≤ b, be a constant-speed geodesic and let τ(s, t),
−ε < s < ε , a≤ t ≤ b, be a variation of σ . Denote the arc length of the curve τ(s, t),
a ≤ t ≤ b, by L(s). Then

L′′(0) = I(U,U)+ gT

(
∇T

UU,
T

F(T )

)∣∣∣b
a
−
∫ b

a

1
F(T )

(
∂F(T )
∂u

)2

dt,

where

I(V,W ) =

∫ b

a

1
F(T )

[gT (DTV,DTU)− gT (R(V,T )T,W )]dt

is the index form. Here R(V,T ))T can be expressed in a local coordinate system as

R(V,T )T = (T jR j
i
klT

l)V k ∂
∂xi .

A proof of this formula can be found in [16].

1.4 Jacobi Fields and the Cartan–Hadamard Theorem

In this section we will introduce the notion of Jacobi fields along a constant-speed
geodesic and use it to study the relationship between the sign of the flag curvature
and the behavior of the geodesic rays. Let σ(t), a ≤ t ≤ b, be a constant-speed
geodesic, with velocity vector field T . A vector field V along σ is called a Jacobi
field if

DT DTV +R(V,T)T = 0. (1.4)
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It is obvious that if J is a Jacobi field along σ and [c,d]⊂ [a,b] is a subinterval,
then the restriction of J to σ |[c,d] is also a Jacobi field. Moreover, in a local
coordinate system, (1.4.1) is a system of linear ordinary differential equations. By
the theory of ordinary differential equations, we have the following propositions.

Proposition 1.5. Given any y1,y2 ∈ Tσ(a)(M), there is a unique Jacobi field J along
σ such that J|σ(a) = y1 and DT J|σ(a) = y2.

Proposition 1.6. The set of zero points of a nonzero Jacobi field along σ is discrete.

Now we will present a method to construct Jacobi fields along a geodesic.

Proposition 1.7. Let σ(t), a≤ t ≤ b, be a geodesic and τ(s, t), −ε < t < ε , a≤ b≤
b, a smooth variation of σ such that each t-curve is a geodesic (i.e., τ is a geodesic
variation). Then the restriction of the transversal vector field U to σ is a Jacobi
field.

The proof of this proposition can be found in [16]. Using this proposition, we can
construct Jacobi fields satisfying some prescribed initial conditions. In the following
we will denote DTU by U̇ , DT DTU by Ü , etc.

Example 1.9. Fix x ∈ M and let T ∈ Tx(M) be a nonzero tangent vector. Then there
is r > 0 such that the curve expx(tT ) is defined on [0,r] and is a constant-speed
geodesic. Suppose W is a nonzero vector in Tx(M). Then

τ(s, t) = expx(t(T + sW))

is a geodesic variation of the base curve expt(T +sW ), 0≤ t ≤ r. By Proposition 1.7,
the variation vector field U is a Jacobi field. It is easy to check that U(0) = 0 and
U̇(0) =W .

Example 1.10. Let τ be a smooth regular curve with velocity vector field V . A
nowhere-zero vector field U along τ is called parallel if in extending V,U to smooth
vector fields on an open subset containing τ , we have

∇U
V U = 0.

Now suppose σ(t), a≤ t ≤ b, is a geodesic and v,w∈ Tx(M) are two nonzero tangent
vectors. Let ζ (s) be a smooth curve satisfying ζ (0) = σ(0) and ζ̇ (0) = v. Suppose
T1,W are two parallel vector fields along the curve ζ satisfying T (0) = σ̇(0) and
W (0) = w. Define

γ(s, t) = expζ (s)(t(T1(s)+ sW (s))).

Then γ is a geodesic variation of σ , and the variation vector field U is a Jacobi field
satisfying U(0) = v, U̇(0) = w.

It should be noted that the converse of Proposition 1.7 is also true, namely, any
Jacobi field along a geodesic must be the variation field of a geodesic variation. The
proof of this assertion is left to the reader.
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One of the important applications of the above-mentioned variations is to study
the influence of the flag curvature on the behavior of geodesics. Fix x ∈ M and
consider two vectors in Tx(M) with F(T ) = 1 and gT (W,W ) = 1, such that T , W are
linearly independent. Consider the variation of the geodesic expx(tT ):

σ(t,s) = expx(t(T + sW )).

Let U(t) = d(expx)|(tT )(tW ). Then the length of the vector field U(t) measures the
rate at which the sth geodesic deviates from the base geodesic expx(tT ). Suppose

f (t) = ‖U(t)‖2 = gT (U(t),U(t)).

Then it can be obtained by a direct computation that (see [16])

f (1)(t) = 2gT (U,U (1)),

f (2)(t) = 2gT (U
(1),U (1))+ 2gT (U,U (2)),

f (3)(t) = 6gT (U
(2),U (1))+ 2gT (U,U (3)),

f (4)(t) = 8gt(U
(3),U (1))+ 6gT (U

(2),U (2))+ 2gT (U,U (4)),

where

U (1) = DTU,

U (2) = DT DTU =−R(U,T )T,

U (3) = DT DT DTU =−(DT R)(U,T )T −R(U̇,T )T,

U (4) = DT DT DT DTU,

where we have used the the fact that the variation field of a geodesic variation is a
Jacobi field.

Considering the above quantities at t = 0, we get

f (t) = ‖U(t)‖2 = t2 − 1
3

K(T,W )t4 +O(t5).

This means that if (M,F) has positive flag curvature, then f (t) < t2 for small t,
and hence geodesics starting from the same point will bunch together. If (M,F) has
negative flag curvature, then f (t) > t2 for small t; hence geodesics starting from
the same point will be dispersive. A more accurate statement of such facts can be
described by Rauch’s comparison theorem; see [16] for more details.

Finally, we introduce the Cartan–Hadamard theorem. For this we need the notion
of conjugate points in Finsler spaces. Suppose (M,F) is a forward geodesically
complete connected Finsler space and σ is a unit-speed geodesic on M. Let p ∈ σ .
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A point q in σ is called conjugate to p along σ if there is a nonzero Jacobi field J
along σ such that J vanishes at both p and q. It is obvious that if p is conjugate to
q, then q is conjugate to p.

Theorem 1.5 (Cartan–Hadamard). Let (M,F) be a forward geodesically com-
plete connected Finsler space with every flag curvature nonpositive. Then we have
the following:

1. Geodesics on M do not contain conjugate points.
2. For any x ∈ M, the exponential map expx : Tx(M) → M is a C1 covering

projection.
3. If M is simply connected, then expx : Tx(M)→ M is a C1 diffeomorphism.

Using the notion of Jacobi fields, we can study the general properties of the index
form of Finsler spaces. This leads to the following result.

Theorem 1.6 (Bonnet–Myers). Let (M,F) be an n-dimensional complete Finsler
space. Suppose the Ricci scalar of (M,F) satisfies the condition

Ric ≥ (n− 1)λ > 0.

Then the following assertions hold:

1. Any geodesic with length at least π/
√
λ must contain conjugate points.

2. M is a compact manifold.
3. The fundamental group of M is finite.

We refer to [16] for the proofs of these theorems.

1.5 Parallel Displacements and Holonomy Groups

In this section we will introduce the notions of parallel displacements and holonomy
groups in Finsler geometry. This will be useful in the next section, where we will
define the notions of Berwald and Landsberg spaces.

Let (M,F) be a connected Finsler space and σ(t), a ≤ t ≤ b, a piecewise smooth
curve in M connecting p and q, with velocity vector field T .

Definition 1.4. Let U = Ui(t) ∂
∂xi |σ(t) be a vector field along σ , and define the

covariant derivative D̃σ̇U(t) along σ by

D̃TU(t) = {U̇ i(t)+T j(t)Ni
j(σ(t),U(t))} ∂

∂xi

∣∣∣
σ(t)

. (1.5)

The vector field U is said to be parallel along σ if D̃σ̇U(t) = 0.
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Remark 1.1. Notice that the covariant derivative defined here is different from the
DVW in Sect. 1.3. In [16], the derivative defined in Sect. 1.3 is called the covariant
derivative with reference vector T , and that defined in the above definition is called
the derivative with reference vector U . However, it is obvious that the definition of
parallel vector fields here coincides with that of Example 1.10 in Sect. 1.4.

In a local coordinate system, (1.5) is a system of linear ordinary differential
equations. Therefore, for any u ∈ Tp(M), there is a unique vector field U that is
parallel along σ such that U(a) = u. This fact enables us to define the parallel
displacements along σ . In fact, one just needs to define Pσ : Tp(M)→ Tq(M) by

Pσ (u) =U(b),

where U =U(t) denotes the (unique) parallel vector field along c with U(a) = u. It
is easily seen that Pσ is a C∞ diffeomorphism from TpM \ {0} onto TqM \ {0}, and
is positively homogeneous of degree one, i.e., Pσ (λu) = λPσ (u),λ > 0, u ∈ Tp(M);
Pσ is called the parallel displacement along σ . Note that by definition, the parallel
displacement is in general not a linear map. However, we have the following result.

Lemma 1.1. Let U be a parallel vector field along a piecewise smooth curve
σ . Then

F(σ(t),U(t)) = constant.

For the proof, see [44].
Using the notion of parallel displacement, we can define the holonomy group of

(M,F) at a point p ∈ M.

Definition 1.5. Define

Hp(M) = {Pσ |σ is a piecewise smooth curve starting from pand ending at p}.

Hp is called the holonomy group of (M,F) at p.

The proof of the fact that Hp is a group is easy and can be left to the reader. It
is obvious that for different points p,q ∈ M, the groups Hp and Hq are isomorphic.
Therefore, we sometimes write Hp as H and call it the holonomy group of (M,F).
From the above discussion it is easily seen that Hp consists of diffeomorphisms of
Tp(M) \ {0}. Furthermore, since for any σ ∈ Hp, F(σ(u)) = F(u), u ∈ Tp(M), Hp

is also a transformation group of the indicatrix

Ip = {y ∈ Tp(M)|F(y) = 1}.

Let (M1,F1) be a Finsler space and (M,π) the universal covering manifold of
M1. Then we can define a Finsler metric on M by F(y) = F1(π∗(y)), y ∈ T M. Using
a similar argument as in the Riemanian case, we can prove the following lemma.
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Lemma 1.2. If we endow the holonomy groups of (M1,F1) and (M,F) with the
compact-open topology, then the holonomy group of (M,F) at x ∈ M can be
identified with the identity component of the holonomy group of (M1,F1) at x1 =
π(x). In particular, the holonomy group of a simply connected Finsler space is
connected.

For the definition of compact-open topology, we refer the reader to [83].
One of the most important applications of the notion of holonomy group is to

study affinely equivalent Finsler metrics. Let M be a connected manifold. Two
Finsler metrics F1 and F2 on M are called affinely equivalent if their geodesics
coincide as parametrized curves. Precisely, if σ is a constant-speed geodesic of
F1, then it is a constant-speed geodesic of F2 (but perhaps with different speeds),
and vice versa. This notion is very useful in studying some special class of Finsler
spaces; see the next section. Now we can use the notions of parallel displacements
and holonomy groups to describe affinely equivalent Finsler metrics.

Lemma 1.3. Let F1 and F2 be two Finsler metrics on the manifold M. Suppose for
any piecewise smooth curve σ and F1-parallel vector field U along σ , we have

F2(σ(t),U(t)) = constant.

Then F2 is affinely equivalent to F1.

The following theorem presents a method to construct Finsler metrics affinely
equivalent to a prescribed metric.

Theorem 1.7. Let (M,F) be a Finsler space and x ∈ M. If F̄ is a Minkowski norm
on Tx(M) that is invariant under the action of the holonomy group Hx of (M,F),
then F̄ can be extended to a Finsler metric F̃ such that F̃ is affinely equivalent to F.

We refer to [44] for the proof of the above result.

1.6 Berwald Spaces and Landsberg Spaces

In this section we will introduce the notions of Berwald spaces and Landsberg
spaces. Let (M,F) be a connected Finsler space and fix a local coordinate system
(U ; x1,x2, . . . ,xn). Then we have a standard coordinate system

(x1,x2, . . . ,xn,y1,y2, . . . ,yn)

on the open set TU \{0} of the slit tangent bundle T Mo. Recall that the fundamental
tensor {gy} is defined by

gy(u,v) =
1
2
∂ 2F2(y+ su+ tv)

∂ s∂ t

∣∣∣
s=t=0

.
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Define

gi j(y) = gy

(
∂
∂xi ,

∂
∂x j

)
.

Then for any nonzero y ∈ Tx(M), the matrix (gi j(y)) is positive definite. Let (gi j(y))
be the inverse matrix of (gi j(y)). Similarly, for any y(�= 0),u,v,w ∈ Tx(M), we have
the Cartan tensor Cy defined by

Cy(u,v,w) =
1
4
∂ 3F2(y+ su+ tv+ rw)

∂ s∂ t∂ r
|s=t=r=0.

The geodesic spray G is a vector field on TMo defined by

G = yi ∂
∂xi − 2Gi ∂

∂yi ,

where

Gi(x,y) =
1
4

gil(x,y)([F2]xkyl (x,y)yk − [F2]xl (x,y)), (1.6)

where [F2]xkyl denotes the partial derivative of F2 with respect to xk and yl . The

vector field G is well defined and Gi satisfies Gi(x,λy) = λ 2G(x,y), λ > 0.
From the definition of a geodesic we see that a smooth curve τ is a geodesic if

and only if in the local coordinate system we have

τ̈ i(t)+ 2Gi(τ(t), τ̇(t)) = 0, i = 1,2, . . . ,n.

The Landsberg curvature L = {Ly | y ∈ T M \ {0}} is defined by

Ly(u,v,w) = Li jkuiv jwk, (1.7)

where the functions Li jk(x,y) are defined by

Li jk(x,y) =−1
2

ysgsm
∂ 3Gm

∂yi∂y j∂yk . (1.8)

There is another expression of Landsberg curvature that is useful in practice. Let

Ni
j =

∂Gi

∂y j

and fix a geodesic τ . A vector field U defined by U(t) =Ui(t) ∂
∂xi along τ is said to

be linearly parallel along τ if it satisfies

U̇ i(t)+U j(t)Ni
j(τ(t), τ̇(t)) = 0.
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Proposition 1.8. For y(�= 0),u,v,w ∈ Tx(M), we have

Ly(u,v,w) =
d
dt
(Cσ̇(t)(U(t),V (t),W (t))), (1.9)

where σ(t) is the geodesic starting from x with initial vector y and U(t),V (t),W (t)
are the linearly parallel vectors fields along σ(t) with initial vectors u,v,w,
respectively.

For the proof, see [44].
From (1.6)–(1.9) it is easily seen that Lλ y = Ly, for λ > 0, and that Ly(u,v,w)

is symmetric with respect to u,v,w. Further, if one of u,v,w is equal to y, then
Ly(u,v,w) = 0. Moreover, if the Finsler metric F is reversible, i.e., F(u) = F(−u)
for any tangent vector u, then L−y(u,v,w) = Ly(u,v,w), ∀y(�= 0),u,v,w ∈ Tx(M).

Definition 1.6. A Finsler space (M,F) is called a Berwald space if the geodesic
spray coefficients Gi are quadratic in y ∈ T Mo. It is called a Landsberg space if its
Landsberg curvature vanishes.

From (1.7) and (1.8) it is easily seen that any Berwald space must be a Landsberg
space. The question whether there exists a Landsberg space that is not a Berwald
space is one of the most longstanding open problems (called by Bao the unicorn
problem; see [14]) in Finsler geometry.

Next we study the fundamental properties of Berwald spaces. By the definition
of parallel displacements in Definition 1.4, one easily deduces the following result.

Proposition 1.9. A connected Finsler space (M,F) is a Berwald space if and only
if the parallel displacement along any piecewise smooth curve is a linear map,
if and only if the holonomy group of (M,F) at any point of M consists of linear
transformations.

Using the notion of affinely equivalent Finsler metrics, we have the following
theorem.

Theorem 1.8 (Szabó [152]). A Finsler space (M,F) is a Berwald space if and only
if F is affinely equivalent to a Riemannian metric on M.

By Definition 1.6, the coefficientsΓ i
jk of the Chern connection of a Berwald space

(M,F) are functions on the underlying manifold. Therefore the Chern connection
is actually a linear connection on M. From this point of view, Szabó determined the
structure of Berwald spaces.

Theorem 1.9 (Szabó [152]). Let (M,F) be a Berwald space. Then there exists a
Riemannian metric g on M whose Levi-Civita connection coincides with the linear
Chern connection of F.

Szabó also studied the converse problem of Theorem 1.9, namely, given a Rie-
mannian metric g on M, whether there is a non-Riemannian Berwald space (M,F)
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such that the Chern connection of F coincides with the Levi-Civita connection of g.
If this is the case, then the Riemannian metric g is called Berwald-metrizable. He
proved the following theorem.

Theorem 1.10 (Szabó [152]). Let (M,g) be a Riemannian metric. Then (M,g) is
Berwald-metrizable if and only if it is holonomy reducible or a holonomy irreducible
locally symmetric space of rank ≥ 2.

For the proof, see Szabó’s paper [152]. In Chap. 4, we will give an alternative
proof of this result.

Theorem 1.10 has the following interesting corollary.

Corollary 1.2 (Szabó). A 2-dimensional Berwald space is either Riemannian or
locally Minkowskian.

Finally, we mention a result of Ichijyō. Recall that the Chern connection of a
Berwald space is a linear connection on the underlying manifold. Hence the two
notions of parallel displacements coincide for a Berwald space. This leads to the
following theorem.

Theorem 1.11 (Ichijyō [92]). Let (M,F) be a Berwald space. Then for any two
points p,q and a smooth curve c connecting p,q, the parallel displacement along c
is a linear isometry between the Minkowski spaces Tp(M) and Tq(M).

1.7 S-Curvature

In this section we will introduce the notion of S-curvature. Let us first explain
briefly the merits of this definition. S-curvature was introduced by Shen in [138].
It is a quantity to measure the rate of change of the volume form of a Finsler
space along geodesics. S-curvature is a non-Riemannian quantity, or in other words,
any Riemannian manifold has vanishing S-curvature. It is shown in [138] that
the Bishop–Gromove volume comparison theorem is true for a Finsler space with
vanishing S-curvature.

We now give the definition of this important quantity. Let V be an n-dimensional
real vector space and F a Minkowski norm on V . For a basis {bi} of V , let

σF =
Vol(Bn)

Vol{(yi) ∈Rn | F(yibi)< 1} ,

where Vol means the volume of a subset in the standard Euclidean space Rn and Bn

is the open ball of radius 1. This quantity is generally dependent on the choice of
the basis {bi}. But it is easily seen that

τ(y) = ln

√
det(gi j(y))

σF
, y ∈V \ {0},

is independent of the choice of basis. We call τ = τ(y) the distortion of (V,F).
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Now let (M,F) be a Finsler space. Let τ(x,y) be the distortion of the Minkowski
norm Fx on Tx(M) and σ the geodesic with σ(0) = x and σ̇(0) = y. Then the quantity

S(x,y) =
d
dt
[τ(σ(t), σ̇ (t))]|t=0

is called the S-curvature of the Finsler space (M,F).
An n-dimensional Finsler space (M,F) is said to have almost isotropic S-

curvature if there exists a smooth function c(x) on M and a closed 1-formη such that

S(x,y) = (n+ 1)(c(x)F(y)+η(y)), x ∈ M,y ∈ Tx(M).

If in the above equation η = 0, then (M,F) is said to have isotropic S-curvature. If
η = 0 and c(x) is a constant, then (M,F) is said to have constant S-curvature.

Let us deduce a formula for S-curvature in a local coordinate system. Suppose
(U ; x1,x2, . . . ,xn) is a local coordinate system and (x1, . . . ,xn,y1,y2, . . . ,yn) is the
standard coordinate system on TU \ {0}. It is easily seen that

τ(x,y)yi =
∂
∂yi

[
ln
√

det(g jk(y))
]
=

1
2

g jk ∂g jk

∂yi .

On the other hand, for a geodesic σ we have

σ̈ + 2G(σ , σ̇) = 0,

where G is the geodesic spray of (M,F). It follows that

n

∑
m=1

∂Gm

∂ym =
1
2

gml ∂gml

∂xi yi − 2τyiGi.

We then get

S(x,y) = yi ∂τ
∂xi − 2

∂τ
∂yi G

i

=
1
2

gml ∂gml

∂xi yi − 2τyiGi − ym ∂
∂xm (lnσF(x))

=
n

∑
m=1

∂Gm

∂ym (x,y)− ym ∂
∂xm (ln(σF(x))). (1.10)

This formula was given by Shen; see [44].
Finally, we introduce the following result to conclude this section.
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Theorem 1.12 (Shen [138]). Let (M,F) be a Finsler space of Berwald type. Then
the S-curvature of (M,F) is everywhere vanishing. In particular, the S-curvature of
a Riemannian manifold is vanishing.

Proof. Suppose x ∈ M and y ∈ Tx(M), y �= 0. Let γ be a geodesic with γ(0) = x
and γ̇(0) = y. Select a basis b1,b2, . . . ,bn of the tangent space Tx(M). Let Pt be
the parallel displacement of (M,F) from x to γ(t), along the geodesic γ . Then by
Theorem 1.11, Pt is a linear isometry between the Minkowski spaces (Tx(M),F) and
(Tγ(t)(M),F). Therefore, with respect to this basis, the functions det(gi j(γ(t)) and
σF(γ(t)) are both constant. Therefore, the distortion τ is constant along γ(t). Hence
S(x,y) = 0. ��

The converse of this theorem is not true. In fact, there exist many reversible non-
Berwald Finsler spaces with vanishing S-curvature. We will give some examples in
Chap. 6.

1.8 Spaces of Constant Flag Curvature and Einstein Metrics

In this section we collect some important results on Finsler spaces of constant
flag curvature and Einstein–Finsler metrics. In Riemannian geometry, a connected
simply connected complete Riemannian manifold of constant sectional curvature
is called a space form. It is well known that for any given constant c, there exists
exactly one space form with constant sectional curvature c (up to isometries). In
particular, up to hometheties, there are only three space forms. However, in Finsler
geometry, this is no longer true. In fact, on the sphere there are infinitely many
Randers metrics of constant positive flag curvature that are not isometric to each
other; see [21] for the classification of such metrics.

We first give the definitions of Finsler spaces with special properties concerning
flag curvature.

Definition 1.7. Let (M,F) be a Finsler space. Given x ∈ M, y ∈ Tx(M)\{0}, and a
tangent plane P in Tx(M) containing y, denote the flag curvature of the flag (P,y) by
K(P,y). If the flag curvature K(P,y) has no independence on y, then (M,F) is said
to have sectional flag curvature. If K(P,y) has no independence on P, then (M,F)
is said to have scalar flag curvature. If K(P,y) has independence neither on P nor
on y, namely, K is a scalar function on the manifold M, then (M,F) is said to have
isotropic flag curvature. In the special case that K is a constant, we say that (M,F)
has constant flag curvature.

It is obvious that any Riemannian manifold has sectional flag curvature, and
any Finsler surface has scalar flag curvature. There is much interesting research on
Finsler spaces with special properties concerning flag curvature; see, for example,
[13, 18, 20, 137, 141, 142].
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Example 1.11. The metric F defined in (1.2) in Sect. 1.1 is of constant flag
curvature μ . Since it is not reversible, it cannot be isometric to any Riemannian
metric. This metric is not complete.

As in the Riemannian case, we have the following Schur’s lemma.

Theorem 1.13 ([115, 132]). Let (M,F) be a connected Finsler space with dimen-
sion ≥ 3. If (M,F) has isotropic flag curvature, then (M,F) has constant flag
curvature.

For the proof, see [16]. One can also find some characterizations of Finsler spaces
of scalar flag curvature, especially for spaces of constant flag curvature. We now
present Akbar-Zadeh’s theorem on Finsler spaces of constant flag curvature.

In the following, we denote by L the Landsberg curvature and define A = FC,
where C is the Cartan tensor. For a fixed point x ∈ M and a positive number r, we
set Bx(r) = B+

x (r)
⋃

B−
x (r).

We first recall the definition of the tensor norm. For simplicity, we explain this
only for the tensor A. Let (V,F) be a Minkowski space. Fix a basis of V and let Ai jk

denote the coefficients of A with respect to this basis. Using the Hessian matrix (gi j)
of F we can raise the indices of A, namely,

Ai
jk = gilAl jk,

Ai j
k = = g jlAi

lk,

Ai jk = gklAi j
l .

The norm of A is then defined as

‖A‖= max
y∈I

√
Ai jkAi jk,

where I is the indicatrix of F . It is easily seen that this norm is independent of the
choice of basis. Now for a Finsler space (M,F) and x ∈ M, we use ‖A‖x to denote
the norm of ‖A‖ of the Minkowdski space (M,F |Tx(M)). Fix a point O in M. We
say that

sup
x∈BO(r)

‖A‖x = o( f (r))

if the left side grows more slowly than f (r) as r → ∞. One can similarly define the
above setting for L or other types of tensors.

Theorem 1.14 (Akbar-Zadeh [2]). Let (M,F) be a connected Finsler space of
constant flag curvature λ . Let O be a designed origin of M, and ∇ the Chern
connection on π∗(T M) over TM \ {0}.
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1. Suppose λ < 0 and (M,F) is complete. If

sup
x∈BO(r)

‖AorL‖x = o
[
e
√−λ r

]
,

then (M,F) must be Riemannian.
2. Suppose λ = 0 and (M,F) is forward geodesically complete. If

sup
x∈BO(r)

‖A‖x = o[r],

then L = 0, and hence F is a Landsberg metric. If additionally,

sup
x∈BO(r)

‖∇vert(A)‖x = o[r],

then (M,F) is locally Minkowskian.

We refer to [16] for the definition of ∇vert in the above theorem. One can also
find a detailed proof there. This theorem provides some insight as to why the Funk
metric cannot be complete.

In the compact case, the norms of all the relevant tensors are bounded. Therefore
we have the following corollary.

Corollary 1.3 (Akbar-Zadeh [2]). Let (M,F) be a compact Finsler space of
constant flag curvature λ .

1. If λ < 0, then F is a Riemannian metric.
2. If λ = 0, then (M,F) is a locally Minkowskian space.

Next we will recall the characterization of constant flag curvature for Randers
spaces, in terms of the navigation data. The navigation data provide another method
to express a Randers metric:

F(x,y) =

√
h(y,W )2 +λh(y,y)

λ
− h(y,W )

λ
,

where h is a Riemannian metric, W is a vector field on M with h(W,W ) < 1, and
λ = 1−h(W,W). The pair (h,W ) is called the navigation data of the Randers metric
F . This version of Randers metric was introduced by Shen in [143]. If F is a Randers
metric with navigation data (h,W ), then we usually say that F solves Zermelo’s
navigation problem of the Riemannian metric h under the influence of an external
vector field W . The navigation data prove to be convenient in handling problems
concerning flag curvature and Ricci scalar.

In a local coordinate system, the transformation laws between the defining form
and navigation data can be described as follows. If

F = α+β =
√

ai jyiy j + biy
i,
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then the navigation data have the form

hi j = (1−‖β‖2)(ai j − bib j), W i =− ai jb j

1−‖β‖2
α
. (1.11)

Conversely, the defining form can also be expressed by the navigation data by the
formula

ai j =
hi j

λ
+

Wi

λ
Wj

λ
, bi =

−Wi

λ
, (1.12)

where Wi = hi jW j and λ = 1−W iWi = 1− h(W,W ). All these formulas can be
found in [19].

Theorem 1.15 (Bao–Robles–Shen [21]). Let (M,F) be a Randers space that
solves Zermelo’s navigation problem on the Riemannina manifold (M,h) under the
influence of an external vector field W. Then (M,F) has constant flag curvature K
if and only if there exists a constant σ such that

1. h is of constant flag curvature (K + 1
16σ

2),
2. W is an infinitesimal homothety of h, namely,

LW (h) =−σh,

where L is the Lie derivative of M.

Moreover, σ must vanish whenever h is not flat.
For the proof, see [19, 21]. This theorem is applied in [21] to obtain a complete

classification of Randers spaces of constant flag curvature. Bao–Robels–Shen also
compute the dimension of the module spaces of such spaces.

Now we recall some results on Einstein–Finsler spaces. We first give the
definition.

Definition 1.8. Let (M,F) be a connected Finsler space. If there exists a smooth
function K(x) on M such that Ric(x,y) = (n−1)K(x), where Ric is the Ricci scalar
of F , then (M,F) is called an Einstein–Finsler space. If in addition the function
K(x) is a constant, then (M,F) is said to be Ricci-constant.

If F is an Einstein Riemannian manifold with dimension ≥ 3, then it is
necessarily Ricci-constant. This is the so-called Schur’s lemma for Einstein metrics.
For a general Finsler space, it is still unknown whether the above assertion holds.
However, Robles proved that Schur’s lemma holds for Einstein–Randers metrics
[133]. In the Riemannian case, there are numerous results on Einstein metrics in
the literature; see [28]. However, in the general case, there are very little research
related to this topic; see [140] for some information. The following result is due to
Bao and Robles.
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Theorem 1.16 (Bao–Robles [19]). Let (M,F) be a Randers space with navigation
data (h,W ). Then F is Einstein with Ricci curvature Ric(x,y) = (n− 1)K(x) if and
only if there exists a real number σ such that the following two conditions hold:

1. The Riemannian metric h is Einstein with Ricci scalar (n− 1)(K(x)+ 1
16σ

2).
2. The vector field W is an infinitesimal homothety of h, namely,

LW h =−σh.

Furthermore, σ must vanish whenever h is not Ricci-flat.

This theorem can be applied to construct many interesting examples of non-
Riemannian Einstein metrics; see [19]. It also has the following important corollary:

Proposition 1.10 (Bao–Robles [19]). Let (M,F) be an Einstein–Randers space.
Then (M,F) has constant S-curvature.

In Chap. 7, we will use Theorem 1.16 to deduce some interesting results on
homogeneous Einstein–Randers metrics.



Chapter 2
Lie Groups and Homogeneous Spaces

In this chapter we will give a brief introduction to Lie groups and homogeneous
spaces. Today, Lie theory is an important field of mathematics with so many topics
that it is impossible to explain the details in such a short survey. So we will omit
many proofs of the results in this chapter. Readers who are familiar with Lie theory
may skip this chapter and go directly to the following chapters.

2.1 Lie Groups and Lie Algebras

We first give the definition of Lie groups.

Definition 2.1. Let G be a smooth manifold with the structure of an abstract group.
If the map

ρ : G×G → G, ρ(g1,g2) = g1g−1
2 , (2.1)

is smooth, then G is called a Lie group.

In the literature, it is generally required that G be an analytic manifold and the
map in (2.1) be analytic. However, it can be proved that these two definitions are
equivalent. More precisely, if G is a Lie group in the sense of Definition 2.1, then
there exists a unique analytic structure on G such that the group operations are
analytic. Setting g1 = e in (2.1), we see that the map g → g−1 is smooth. This then
implies that the map G×G → G : (g1,g2) �→ g1g2 is also smooth.

Let G be a Lie group. Given g ∈ G, it is easily seen that the left translation
Lg : G → G, Lg(h) = gh, for h ∈ G, is a diffeomorphism of G onto itself. Similarly,
the right translation Rg(h) = hg, h ∈ G, is also a diffeomorphism. A (smooth) vector
field X on G is called left-invariant if for any g ∈ G we have dLg(X) = X . Similarly,
we can define right-invariant vector fields. Let g denote the set of all left-invariant
vector fields of G. Then the map X → Xe, where e is the identity element of G, is
a linear isomorphism from g onto Te(M). On the other hand, if X , Y are two left-
invariant vector fields, then the Lie bracket [X ,Y ] is also left-invariant. This implies

S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics,
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that g has the structure of a Lie algebra over the field of real numbers. Namely, there
is a binary operation [ , ] on g that satisfies the following conditions

1. [ , ] is bilinear in each of its two entries.
2. [ , ] is skew-symmetric: [X ,X ] = 0, for any X ∈ g.
3. [ , ] satisfies the Jacobi identity: for any X ,Y,Z ∈ g,

[X , [Y,Z]]+ [Y, [Z,X ]]+ [Z, [X ,Y ]] = 0.

In general, let F be a field and V a vector space over F. If there is a binary
operation [ , ] on V satisfying the conditions (1)–(3) above, then V is called a Lie
algebra over F. Hence in this sense g is a real Lie algebra.

Since as real vector spaces, g� Te(M), we have dimg= dimG. We call g the Lie
algebra of G.

Sometimes the Lie algebra of G will be denoted by Lie G.

Definition 2.2. Let G be a Lie group. A submanifold H of G is called a Lie
subgroup of G if

1. H is an abstract subgroup of G.
2. H is a topological group.

A Lie subgroup H is called a topological Lie subgroup if the topology of H is equal
to the induced topology.

Note that there are examples of Lie subgroups that are not topological Lie
subgroups; see for example [83].

Definition 2.3. Let g be a Lie algebra over a field F. A subspace h is called a
subalgebra of g if for any X ,Y ∈ h, we have [X ,Y ] ∈ h. If in addition [X ,Y ] ∈ h,
for all X ∈ h and Y ∈ g, then h is called an ideal of g.

Example 2.1. Let M be a vector subspace of a Lie algebra g. Define

Zg(M) = {X ∈ g | [X ,Y ] = 0, ∀Y ∈ M}.

Then it is easily seen that Zg(M) is a subalgebra of g. The subalgebra Zg(M) is
called the centralizer of M in g. In the special case that M = g, Zg(g) is an ideal of
g. The ideal Zg(g) is usually denoted simply by Z(g) and is called the center of g.
Similarly, for a subalgebra h of g, define

Ng(h) = {X ∈ g | [X ,Y ] ∈ h, ∀Y ∈ h}.

Then it is easy to check that Ng(h) is a subalgebra of g containing h. This subalgebra
is called the normalizer of h in g.

Now we state an important theorem on Lie subgroups and Lie subalgebras.



2.1 Lie Groups and Lie Algebras 33

Theorem 2.1. Let G be a Lie group and H a Lie subgroup of G. Then the Lie
algebra h of H is a subalgebra of the Lie algebra g of G. Conversely, given any
subalgebra h of g, there exists a unique connected Lie subgroup H of G whose Lie
algebra is h.

Definition 2.4. Let G and H be two Lie groups. A map ϕ from G to H is called a
homomorphism if ϕ is an abstract group homomorphism and it is continuous with
respect to the topology of the groups. A homomorphism ϕ is called an isomorphism
if ϕ is a homeomorphism. In case there exists an isomorphism from G onto H, we
say that G is isomorphic to H.

Similarly, we can define the notion of a homomorphism between Lie algebras.
Let g1,g2 be two Lie algebras over a field F . A linear map φ from g1 to g2 is called
a homomorphism if φ([X ,Y ]) = [φ(X),φ(Y )]. A homomorphism between two Lie
algebras is called an isomorphism of Lie algebras if it is also a linear isomorphism.
In this case, we say that the two Lie algebras are isomorphic.

It is easy to prove that if ϕ is a Lie group homomorphism, then its differential at
the unit element, dϕ |e, is a homomorphism of the Lie algebras. Usually, we denote
dϕ |e simply by dϕ .

Now we introduce the notion of the exponential map of a Lie group. For this we
first define the one-parameter subgroups of a Lie group.

Definition 2.5. A one-parameter subgroup of a Lie group G is a homomorphism
from the additive group R to G.

The next theorem gives the existence and classification of one-parameter sub-
groups.

Theorem 2.2. Let G be a Lie group with Lie algebra g. Then for any X ∈ g there
exists a unique one-parameter subgroup ϕ with ϕ̇(0) = Xe.

Proof. We first prove the existence. Since X is a vector field on G, there exists ε > 0
such that the maximal integral curve ϕ(t) through e is defined on (−ε,ε), i.e., ϕ(t)
is a smooth curve with ϕ(0) = e and ϕ̇(t) = Xϕ(t). Moreover, such a curve is unique
where it is defined. Now we show that if (a,b) is an open interval containing 0 such
that ϕ is defined on (a,b), and s, t,s+ t ∈ (a,b), then

ϕ(s)ϕ(t) = ϕ(s+ t).

To see this, we just fix s and consider ϕ1(t) = ϕ(s)ϕ(t) and ϕ2(t) = ϕ(s+ t) as two
curves in t. Then ϕ1(0) = ϕ2(0) = ϕ(s). On the other hand, we have

ϕ̇1(t) = dLϕ(s)ϕ̇(t) = dLϕ(s)Xϕ(t)

and
ϕ̇2(t) = Xϕ(s+t). (2.2)

Since X is left-invariant, we have

dLϕ(s)Xϕ(t) = Xϕ(s)ϕ(t).
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This means that both the curves ϕ1 and ϕ2 are integral curves of the vector field X .
Since they coincide at 0, they must coincide wherever they are defined. This proves
the assertion.

Now we prove that the integral curve ϕ is defined on the whole space R.
By the above argument, if we define γ(t) = ϕ( ε2 )ϕ(t − ε

2 ), then γ(t) is again an
integral curve of X and it is defined on (− 3

2ε,
3
2ε). Therefore ϕ can be extended to

(− 3
2ε,

3
2ε). This then implies that ϕ can be defined on the whole real line R. On the

other hand, (2.2) shows that ϕ is the required one-parameter subgroup. ��
Now we can define the notion of exponential map of a Lie group.

Definition 2.6. Let G be a Lie group with Lie algebra g. The exponential map from
g to G is defined by

exp(X) = ϕX (1),

where ϕX is the one-parameter subgroup determined by X .

From the definition, it is easily seen that the exponential map is smooth. In fact,
it has better properties. Recall that the tangent space Te(G) is spanned by Xe, X ∈
g. Since the curve exptX is the integral curve of X through e, we easily see that
dexp |e = id. By the inverse function theorem, we have the following result.

Theorem 2.3. There exists a neighborhood U of the zero vector 0 in g such that
exp is a diffeomorphism from U onto exp(U).

We now collect some properties of the exponential map.

Proposition 2.1. For X ,Y ∈ g, we have

exp(tX)exp(tY ) = exp

(
t(X +Y )+

t2

2
[X ,Y ]+O(t3)

)
,

exp(tX)exp(tY )exp(−tX) = exp(tY + t2[X ,Y ]+O(t3)),

exp(tX)exp(tY )exp(−tX)exp(−tY ) = exp(t2[X ,Y ]+O(t3)),

where O(t3) means a vector in g satisfying the condition that there exists ε > 0 such
that 1

t3 O(t3) is bounded and smooth for |t|< ε .

For the proof, see [83].
Using the exponential map, we can determine the Lie algebra of a Lie subgroup,

especially when the subgroup is closed. We first recall the following result.

Theorem 2.4. Let G be a Lie group and H an abstract subgroup of G. If H is a
closed subset, then there exists a unique differential structure on H such that H is a
topological subgroup of G.

We refer the proof of this theorem to [83]. The following theorem gives an
effective method to compute the Lie algebra of a Lie subgroup.
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Theorem 2.5. Let G be a Lie group with Lie algebra g and H a Lie subgroup of G
with Lie algebra h. If H is a topological Lie subgroup, or H has at most countably
many connected components, then

h= {X ∈ g | exp(tX) ∈ H, ∀t ∈ R}.

Example 2.2. Let G = GL(n,R) be the set of all n× n nonsingular matrices. Obvi-
ously G has the structure of an abstract group under the usual matrix multiplication.
Note that G can also be viewed as an open subset of the Euclidean space R

n2
, and

hence it has the structure of a smooth manifold. It can be easily checked that the
group operations are smooth with respect to the manifold structure; hence G is a Lie
group, called the real general linear group. It is not hard to compute its Lie algebra:

g= gl(n,R) = R
n×n,

with Lie brackets

[X ,Y ] = XY −YX .

This Lie algebra is called the real general linear Lie algebra. The exponential map
of G is

exp(X) = eX = In +X +
1
2

X2 + · · ·+ 1
n!

Xn + · · · .
In general, let V be an n-dimensional real vector space. Then the set of all

invertible linear transformations forms a Lie group isomorphic to GL(n,R). In this
case, we usually denote the Lie group by GL(V ).

Now we consider the following subgroups of G:

1. The special linear group SL(n,R) consisting of all elements in G with determi-
nant 1.

2. The orthogonal group O(n) consisting of the orthogonal matrices in G.
3. The special orthogonal group SO(n) consisting of the orthogonal matrices with

determinant 1.

As in the case of general Lie groups, we sometimes write the special linear
group as SL(V ), where V is a real vector space. Moreover, if V is an n-dimensional
Euclidean space, then the set of all orthogonal transformations of V form a Lie
group isomorphic to O(n). This group will usually be denoted by O(V ). Similarly,
we have the notation SO(V ). The Lie algebras of these Lie groups will be denoted
by corresponding notation.

By Theorem 2.5, we easily get the Lie algebras of these Lie subgroups:

1. The Lie algebra of SL(n,R) is sl(n,R), consisting of all the traceless matrices in
g. This Lie algebra is called the special linear Lie algebra.

2. The Lie algebras of O(n) and SO(n) are equal. It is so(n), consisting of all
the skew-symmetric matrices in g. This Lie algebra is called the orthogonal Lie
algebra.
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Example 2.3. The complex version of Example 2.2 is more interesting and useful.
Let GL(n,C) denote the set of all invertible complex n×n matrices. It is a complex
manifold. Moreover, it is easily seen that the map (g1,g2) �→ g1g−1

2 is holomorphic.
In general, if G is a complex manifold as well as an abstract group such that the
map G×G → G, (g1,g2) �→ g1g−1

2 is holomorphic, then G is called a complex Lie
group. A complex Lie group is automatically a (real) Lie group. Hence GL(n,C) is
a Lie group.

The Lie algebra of GL(n,C) is gl(n,C), the complex general linear Lie algebra,
consisting of all complex n× n matrices, with Lie brackets [A,B] = AB−BA. One
can also define the similar Lie subgroups and determine their Lie algebras as in the
real case. We list some of the examples below:

1. The complex special linear group SL(n,C). It is the subgroup of GL(n,C)
consisting of the matrices with determinant 1. Its Lie algebra is sl(n,C),
consisting of all the complex n× n matrices with zero trace.

2. The unitary group U(n). It is the subgroup of GL(n,C) consisting of all unitary
matrices. Its Lie algebra is u(n), consisting of all the skew-Hermitian matrices.

3. The special unitary group SU(n) = SL(n,C)∩ U(n). Its Lie algebra is su(n),
consisting of all the traceless skew-Hermitian matrices.

4. The complex symplectic group Sp(n,C). It is the group of matrices g in
GL(2n,C) satisfying the condition

gtJng = Jn,

where

Jn =

(
0 In

−In 0

)
.

Its Lie algebra is

sp(n,C) =

{(
Z1 Z2

Z3 −Zt
1

) ∣∣∣Z1,Z2,Z3 complexn× nmatrices,Z2,Z3 symmetric

}
.

We put Sp(n) = Sp(n,C)∩U(2n) and call it the symplectic group. Note that in some
books the definition of symplectic group is different from the above. We leave as an
exercise for the reader to determine the Lie algebra of Sp(n).

Note that the Lie groups O(n) and SO(n) are not simply connected. Their
universal covering groups are denoted by Pin(n) and Spin(n) (called the spin group),
respectively. We now recall briefly the construction of these two groups. For the
details, we refer the reader to [34, Sect. 1.6].

Example 2.4 (See [12]). Let V be a real inner product space. The Clifford algebra
Cliff(V ) is the associative algebra freely generated by V modulo the relations

vw+wv =−2(v,w), v,w ∈V.
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If V = R
n is the standard Euclidean space, then Cliff(V ) is generally denoted by

Cliff(n). For example, Cliff(0) = R, Cliff(1) = C, Cliff(2) = H (the quaternions).
Now consider Cliff(n). Let Pin(n) be the group sitting inside Cliff(n) consisting of
all the products of the unit elements in R

n. Recall that each element in O(n) can be
written as a finite product of reflections. Since each unit element v in R

n induces
a reflection transformation τv of Rn, and ±v induce the same transformation, the
group Pin(V ) is a double covering of O(n). Let Spin(n) ⊂ Pin(n) be the subgroup
of the elements that are products of an even number of unit elements in R

n. Then
Spin(n) is a double covering of SO(n). It is not difficult to prove that Spin(n) is
simply connected.

In the final part of this section, we introduce some terminology in representation
theory. Since in this book we will use only some results on finite-dimensional
representations, we shall consider only the finite-dimensional cases. Let G be a Lie
group and V a finite-dimensional real vector space. A representation of G on V is
a continuous homomorphism ρ from G to the general linear group GL(V ). We say
that (V,ρ) is a representation of G, or a G-module. A representation (V,ρ) of G is
called faithful if the homomorphism ρ has trivial kernel.

Similarly, let g be a Lie algebra over the field F and let V be a vector space
over F . A Lie algebra homomorphism from g to gl(V ) is called a representation
of g.

It is clear that if ρ is a representation of a Lie group G on the vector space
V , then its differential dρ is a representation of its Lie algebra g. The converse is
generically not true. But if G is a connected simply connected Lie group, then every
representation of g can be lifted to a representation of G.

For a Lie group G with Lie algebra g, we have a natural representation of
G on g. Note that for X ∈ g, exp(tX) is a one-parameter subgroup of G. Given
g ∈ G, it is easy to check that g(exp(tX))g−1 is again a one-parameter subgroup.
Hence there exists a unique X̃g ∈ g such that g(exp(tX))g−1 = exp(tX̃g). We denote
X̃g by Ad(g)(X). It is easy to check that the map G → GL(g), g → Ad(g) is a
representation of G on g. This representation is called the adjoint representation of
G. The differential of the adjoint representation of the Lie group is called the adjoint
representation of the Lie algebra.

Let G be a Lie group and (V,ρ) a real representation of G. Suppose V is endowed
with an inner product 〈 , 〉. If

〈ρ(g)(X),ρ(g)(Y )〉= 〈X ,Y 〉, ∀X ,Y ∈V, g ∈ G,

then we say that 〈 , 〉 is an invariant inner product, and (V,ρ ,〈 , 〉) is an orthogonal
representation of G.

A Lie group G is called compact if G is a compact manifold. The following
theorem is called Weyl’s unitary trick.

Theorem 2.6. Let G be a connected compact Lie group and (V,ρ) a representation
of G. Then there exists an invariant inner product on V .
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2.2 Lie Transformation Groups and Coset Spaces

In this section we will introduce the fundamental properties of Lie group actions
on smooth manifolds. The general idea is to consider this problem originating
from Felix Klein’s Erlangen Program proposed in 1872. Klein’s proposal was to
categorize the new geometries by their characteristic groups of transformations.
This program has been extremely successful. Today, it is the expectation of each
geometer to find an effective method to study geometry by applying group theory.

We first define the notion of the action of a Lie group on a manifold. Let G be a
Lie group and M a smooth manifold. A smooth action of G on M is a map ρ from
G×M onto M satisfying the following two conditions:

1. ρ is a smooth map.
2. ρ(g2,ρ(g1,x)) = ρ(g2g1,x), ∀g1,g2 ∈ G, x ∈ M.

If we write ρ(g,x) as g · x, then condition (2) can be rewritten as g2 · (g1 · x) =
(g2g1) ·x. Meanwhile, this condition implies that e ·x = x (note that ρ is assumed to
be onto). This then implies that for each g∈G, the map x→ g ·x is a diffeomorphism
of M.

If G has a smooth action on M, then G is called a Lie transformation group of M.
The action is called effective (resp. almost effective) if e is the only element in G
such that ρ(e) is the identity map (resp. if the subgroup ρ−1(id) of G is discrete). It
is called free if for any g �= e in G, the map ρ(g) has no fixed point.

The most important action is the action of a Lie group on the coset spaces. We
have the following theorem.

Theorem 2.7. Let G be a Lie group and H a closed subgroup of G. Then there
exists a unique differentiable structure on the left coset space G/H with the induced
topology that turns G/H into a smooth manifold such that G is a Lie transformation
group of G/H.

For the proof, see [83]. Note that the induced topology on G/H is the unique
topology such that the natural projection π from G onto G/H is both continuous
and open. More precisely, a subset U in G/H is open if and only if the preimage
π−1(U) is an open subset of G.

Suppose G is a Lie group acting transitively on a smooth manifold M. Given
p ∈ M, denote by Gp the set of elements of G that keep p fixed. Then Gp is
a closed subgroup of G. If we endow G/Gp with the induced topology, then
Theorem 2.7 asserts that there exists a unique differentiable structure such that G
is a Lie transformation group of G/Gp. Let α be the map from G onto M defined
by α(g) = g · p. Then α is a diffeomorphism if it is a homeomorphism (see [83]).
On the other hand, if G has a countable base (this is the case if G has countably
many connected components), thenα must be a homeomorphism. Hence in this case
G/Gp is diffeomorphic to M. The following proposition is very useful in practice.

Proposition 2.2. Let G be a Lie group acting transitively on a connected manifold
M. Fix p ∈ M and let α be the map from G/Gp onto M defined by α(g) = g · p. If α
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is a homeomorphism, then the unit connected component G0 is also transitive on M.
In particular, if G has countably many connected components, then G0 is transitive
on M.

Let G be a Lie group and H a closed subgroup of G. In the following we will
always endow G/H with the differentiable structure so that G is a Lie transformation
group of G/H. In general, H will be called the isotropy subgroup. The tangent space
of G/H at the origin eH =H of G/H can be identified with the quotient vector space
g/h. Since the adjoint action of the group H keeps h invariant, H has an action on
g/h defined by

Adg/h(h)(X +h) = Ad(h)(X)+h,

where Ad is the adjoint action of G. This action defines a representation of H on
g/h and is called the linear isotropy representation.

In some special cases there exists a subspace m of g such that

g= h+m (direct sum of subspaces) (2.3)

and

Ad(h)(m)⊂m, ∀h ∈ H.

Then the coset space G/H is called a reductive homogeneous manifold and (2.3)
is usually called a reductive decomposition of g. In this case, the tangent space
TeH(G/H) of G/H at the origin eH can be identified with m through the map

X �→ d
dt

exp(tX)H
∣∣
t=0, X ∈m.

Then the linear isotropy representation corresponds to the adjoint action of H on m.
For the geometry of reductive homogeneous space, we refer the reader to [102].

Next we introduce some notions about the adjoint group of a Lie algebra. Let g
be a real Lie algebra. Since g is a real vector space, we have the general linear group
GL(g). Note that a priori, GL(g) has no relation with the Lie algebra structure of
g. As pointed out in Sect. 2.1, the Lie algebra of the Lie group GL(g) is gl(g),
consisting of all the linear endomorphisms of g with Lie brackets [A,B] = AB−BA.
Now for each X ∈ g, we can define a linear endomorphism ad(X) of g by

ad(X)(Y ) = [X ,Y ], Y ∈ g.

It is obvious that the endomorphisms ad(X), X ∈ g, form a subalgebra of gl(g). We
denote this subalgebra by ad(g). By Theorem 2.1, there exists a unique connected
Lie subgroup of GL(g) with Lie algebra ad(g). This Lie group is called the adjoint
group of g and will be denoted by Intg.

There is another Lie group that is closely related to the Lie algebra structure of
g. A linear isomorphism σ of g is called an automorphism of g if

σ([X ,Y ]) = [σ(X),σ(Y )], ∀X ,Y ∈ g.
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It is clear that the set of all the automorphisms of g is a closed subgroup of
GL(g). Hence it is a topological Lie subgroup of GL(g). This group is called
the automorphism group of g and will be denoted by Aut(g). The Lie algebra of
Aut(g) is denoted by ∂ (g). It is easy to prove that ∂ (g) consists of all the linear
endomorphisms of g satisfying

D([X ,Y ]) = [D(X),Y ]+ [X ,D(Y)], ∀X ,Y ∈ g. (2.4)

A linear endomorphism satisfying (2.4) is called a derivation. It is easily seen that
for a derivation D, etD is an automorphism of g. Hence ∂ (g) consists of all the
derivations of g. By the Jacobi identity we see that for X ∈ g, ad(X) is a derivation.
Thus ad(g) is a subalgebra of ∂ (g) and Int(g) is a subgroup of Autg. Further,
one easily checks that for any automorphism σ of g and any X ∈ g we have, as
endomorphisms of g,

σead(X)σ−1 = ead(σ(X)).

Since Intg is connected, it is generated by the elements of the form ead(X), X ∈ g.
The above identity then implies that Int(g) is a normal subgroup of Aut(g).

Let G be a connected Lie group with Lie algebra g. For g ∈ G, Ad(g) is an
automorphism of g. We assert that Ad(g) lies in Int(g). In fact, this follows from
the facts that G is generated by the elements of the form exp(X), X ∈ g, and that

Ad(exp(X)) = ead(X).

(The proof of the above identity is left to the reader). This means that Ad defines a
map from G onto Int(g). In fact we have the following.

Proposition 2.3. Let G be a connected Lie group with Lie algebra g. Then

1. The map g → Ad(g) is a homomorphism from G onto Int(g) with kernel Z(G).
2. The map gZ(G)→ Ad(g) is an isomorphism from G/Z(G) onto Int(g).

Now we define the notions of compactly embedded Lie algebras and compact
Lie algebras. This notion is very useful in the study of homogeneous Riemannian
and Finsler manifolds.

Definition 2.7. Let g be a real Lie algebra. A subalgebra k is called a compactly
embedded subalgebra of g if the connected Lie subgroup K∗ of Int(g), correspond-
ing to the subalgebra adg(k) of ad(g), is a compact Lie group. A real Lie algebra is
called compact if it is a compactly embedded subalgebra of itself.

As an example, any abelian real Lie algebra g is compact, since in this case its
adjoint Lie group Int(g) consists of the single element {e}, which is compact. It can
be proved that a real Lie algebra g is compact if and only if there is a compact Lie
group G whose Lie algebra is g; see [83].

At the final part of this section, we introduce some terminology concerning
the orbits of general Lie group actions on smooth manifolds, which need not be
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transitive. In particular, we will recall the definition of principal orbits. Let M be
a (connected) smooth n-dimensional manifold and G a Lie group acting smoothly
on M. For x ∈ M, the orbit G · x = {g(x) | g ∈ G} is a submanifold of M and if the
action is proper, namely, the inverse image of every compact subset of M×M under
the map

G×M → M×M : (g, p) �→ (p,g(p))

is compact, then every orbit is a closed submanifold of M. It is easily seen that if G is
a compact Lie group, then the action is proper. If the action is proper, then the space
of orbits is a Hausdorff space and can be endowed with a differentiable structure.

If G acts transitively on M, then M is diffeomorphic to G/Gx, ∀x∈M. In this case,
the action has only one orbit. When the action is nontransitive, the orbit structure is
in general very complicated. One important tool for studying the orbit structure is
the introduction of the notion of a slice of a proper action.

Definition 2.8 (see [122]). Let G be a Lie group acting smoothly and properly on
the manifold M and p ∈ M. Then a slice of the action at p is a submanifold Σ
satisfying the conditions

1. p ∈ Σ .
2. G ·Σ = {g(q) | g ∈ G,q ∈ Σ} is an open submanifold of M.
3. Gp ·Σ = Σ .
4. The action of Gp on Σ is isomorphic to an orthogonal linear action of Gp on an

open ball of a Euclidean space.
5. Let (G × Σ)/Gp be the orbit space of the action of Gp on G × Σ given by

k((g,q)) = (gk−1,k(q)), k ∈ Gp, g ∈ G, q ∈ Σ . Then the map

(G×Σ)/Gp → M : Gp · (g,q) �→ g(q)

is a diffeomorphism onto G ·Σ .

It was proved by Montgomery and Yang that every proper action admits a slice at
each point [122]. This fact enables us to define a partial ordering on the orbit space.
Given p,q ∈ M, we say that the two orbits G · p and G ·q have the same orbit type if
the isotropic subgroups Gp and Gq are conjugate in G. This defines an equivalence
relation among the orbits of G. Denote the orbit type of G · p by [G · p]. Then we can
introduce a partial ordering on the set of orbit types by saying that [G · p] ≤ [G · q]
if and only if Gq is conjugate in G to some subgroup of Gq. If the orbit space is
connected, then there exists an orbit type that is the largest among all the orbit
types. Each representative of the largest orbit type will be called a principal orbit.
Each principal orbit has the maximal dimension among all the orbits. Note that there
may be some orbit that is of maximal dimension but not principal. The following
result is useful.

Proposition 2.4 (see [122]). Let G be a connected Lie group acting smoothly and
properly on a connected manifold M. Then the union of the principal orbits is an
open and dense subset of M.
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2.3 Semisimple Lie Algebras

In this section we will present a survey of the main results on the structure and
classification of real and complex semisimple Lie algebras. This is the basis for the
classification of Riemannian symmetric spaces. We first recall some notions on the
solvability and nilpotency of Lie algebras.

Definition 2.9. A Lie algebra g over a field F is called solvable if there exists a
positive integer m such that g(m) = 0, where g(1) = g and g(l+1) = [g(l),g(l)], for l ≥ 1.

Definition 2.10. A Lie algebra g over a field F is called nilpotent if there exists a
positive integer m such that gm = 0, where g1 = g and gl+1 = [gl ,g], for l ≥ 1. The
minimal integer m satisfying the condition gm = 0 is called the nilpotent index of g.

Note that here F can be any field. It is obvious that any nilpotent Lie algebra
must be solvable. The converse is not true, as can be seen from the 2-dimensional
solvable Lie algebra. The main tools to study solvable and nilpotent Lie algebras are
the following Engel’s theorem and Lie’s theorem.

Recall that an element x in a Lie algebra g is called ad-nilpotent if there exists a
natural number n such that [ad(x)]n = 0. The Lie algebra g is called ad-nilpotent if
all its elements are ad-nilpotent.

Theorem 2.8 (Engel’s theorem). A finite-dimensional Lie algebra is nilpotent if
and only if it is ad-nilpotent.

The following is an equivalent version of this result.

Theorem 2.9 (Engel’s theorem). Let V be a nonzero finite-dimensional vector
space and L a subalgebra of gl(V ). If L consists of nilpotent endomorphisms of
V , then there exists a nonzero element v in V such that A(v) = 0, for all A ∈ L.

Theorem 2.10 (Lie’s theorem). Let V be a nonzero finite-dimensional vector
space over an algebraic closed field F of characteristic 0. Suppose L is a
solvable subalgebra of gl(V ). Then there exists a common eigenvector for all the
endomorphisms in L.

Theorem 2.11 (Cartan’s criterion). Let g be a finite-dimensional Lie algebra over
an algebraically closed field of characteristic 0. Then g is solvable if and only if for
every x ∈ [g,g] and y ∈ g, tr(ad(x)ad(y)) = 0.

The Killing form of the Lie algebra g is the bilinear function

B(x,y) = tr(ad(x)ad(y)), x,y ∈ g.

Then Cartan’s criterion can be restated that g is solvable if and only if

B([g,g],g) = 0.
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The Killing form is symmetric with respect to its two entries and it is easy to check
(using the Jacobi identity) that the following identity holds:

B([x,y],z)+B(y, [x,z]) = 0, ∀x,y,z ∈ g.

Definition 2.11. A Lie algebra g is called semisimple if it has no nonzero abelian
ideal.

We can also define a semisimple Lie algebra as the following. Note that the sum
of two solvable ideals of a Lie algebra is still a solvable ideal. This fact enables us
to define the radical of a Lie algebra as the maximal solvable ideal of it. Then a Lie
algebra is semisimple if and only if its radical is zero.

From now on we will consider only real or complex Lie algebras.

Theorem 2.12. Let g be a real or complex Lie algebra. Then g is semisimple if and
only if the Killing form is nondegenerate.

Theorem 2.13. Let g be a real or complex semisimple Lie algebra. Then each
derivation of g is inner.

Recall that a derivation of a Lie algebra g is a linear endomorphism D of g
such that

D([x,y]) = [D(x),y]+ [x,D(y)], ∀x,y ∈ g.

It is called inner if there exists z ∈ g such that D = ad(z).
A Lie algebra g is called simple if g has no ideal other than {0} and g itself. It

can be easily proved that a real or complex simple Lie algebra must be semisimple.
We have the following result.

Theorem 2.14. Let g be a real or complex semisimple Lie algebra. Then g has a
decomposition

g= g1 +g2 + · · ·+gk,

where gi, 1 ≤ i ≤ k, are simple ideals of g. Moreover, the decomposition is unique
up to an adjustment of the order of the simple ideals.

This theorem reduces the classification of semisimple Lie algebras to that of the
simple ones. In the following we will consider the classification of complex simple
Lie algebras. We begin with the structure theorems for semisimple Lie algebras.

Let g be a complex semisimple Lie algebra. An element x ∈ g is called
semisimple if ad(x) is a semisimple endomorphism of g (i.e., it has a diagonal matrix
under a certain basis of g). It is called nilpotent if ad(x) is a nilpotent endomorphism.
The Jordan–Chevalley decomposition theorem asserts that each endomorphism can
be uniquely written as the sum of a semisimple and a nilpotent endomorphism
that commute with each other. Now given x ∈ g, the endomorphism ad(x) can
be decomposed into the sum of two endomorphisms: ad(x) = s + n, where s is
semisimple and n is nilpotent with [s,n] = sn− ns = 0. It can be easily checked
that s and n are also derivatives of the Lie algebra g. Since g is semisimple, each
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derivative is inner. Thus there exist a semisimple element xs and a nilpotent element
xn such that s = ad(xs) and n = ad(xn), with [ad(xs),ad(xn)] = 0. Then we have
x= xs+xn and [xs,xn] = 0. We usually call this decomposition the Jordan–Chevalley
decomposition of x.

A subalgebra t of g is called a toral subalgebra of g if t consists of semisimple
elements. It is easily seen that a toral subalgebra of a complex semisimple Lie
algebra must be abelian.

Theorem 2.15. Let g be a complex semisimple Lie algebra and h a maximal toral
subalgebra of g. Then g has a decomposition

g= h+ ∑
α∈Δ

gα ,

where Δ is a subset of h∗\{0} and

gα = {x ∈ g|[h,x] = α(h)x, ∀h ∈ h}.

The decomposition has the following properties:

1. The span of Δ is h∗.
2. For any α ∈ Δ , dimgα = 1.
3. If α ∈ Δ , then −α ∈ Δ . Moreover, if α ∈ Δ and c is a nonzero number such that

cα ∈ Δ , then c =±1.
4. If α,β ∈ Δ , then [gα ,gβ ]⊆ gα+β (here gγ = 0 if γ /∈ Δ ∪{0}).
5. The restriction of the Killing form B to h is nondegenerate.
6. Fix α ∈Δ and let tα ∈ h be the unique element satisfying α(h) = B(tα ,h), ∀h∈ h.

Then B(tα , tα) �= 0, and for xα ∈ gα , yα ∈ g−α , [xα ,yα ] = B(xα ,yα)tα .
7. Fix α ∈ Δ . For any nonzero xα ∈ gα , there exists yα ∈ g−α such that xα ,yα ,hα =

[xα ,yα ] span a 3-dimensional Lie algebra isomorphic to sl(2,C). Moreover, hα
is independent of the choice of xα and yα , and hα = 2tα

B(tα ,tα )
, hα =−h−α .

The subset Δ of h∗ in the above theorem is called the root system of g with
respect to h. An element α ∈ Δ is called a root. For α,β ∈ Δ , we define

(α,β ) = B(tα , tβ ).

Then we have the following theorem.

Theorem 2.16. Let α,β ∈ Δ . Then

1. The number 2(β ,α)
(α ,α) is an integer.

2. β − 2(β ,α)
(α ,α) α ∈ Δ .

3. The elements of the form β + lα , l ∈ Z, contained in Δ constitute a continuous
string. Let q,r be the largest integers such that β+qα ∈ Δ and β−rα ∈ Δ . Then
q− r =− 2(β ,α)

(α ,α) .
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The set of the roots β + lα , −r ≤ l ≤ q, is called the α-string through β . Select a
basis α1,α2, . . . ,αm of h∗ such that αi ∈ Δ . Then the bilinear form (α,β ) = B(tα , tβ )
defined above can be extended to an inner product of the real vector space

E =
m

∑
i=1

Rαi.

Then Δ is a root system in the Euclidean space E in the following sense.

Definition 2.12. Let E be a finite-dimensional Euclidean space, with inner product
( , ). A subsetΦ of E is called a root system if the following axioms are satisfied:

1. Φ is a finite subset spanning E and it does not contain 0.
2. α ∈Φ and cα ∈Φ , c ∈R, implies that c =±1.
3. For any α ∈Φ , the reflection σα defined by α leaves the set Φ invariant.
4. For any α,β ∈Φ , the number

〈α,β 〉 = 2(β ,α)
(α,α)

is an integer.

Let Φ be a root system in E . The group generated by all the reflections σα ,
α ∈ Φ , is a finite group of isometric transformations of E . This group is called the
Weyl group of Φ and will be denoted by W . Using the axioms of a root system, we
can easily deduce the following.

Proposition 2.5. Let Φ be a root system in E. Then

1. Suppose α,β ∈ Φ , α �= ±β . If (α,β ) > 0, then α −β ∈ Φ . If (α,β ) < 0, then
α+β ∈Φ .

2. For α,β ∈Φ , the set of roots of the form β + iα is a unbroken string, called the
α-string through β .

3. Let q,r be respectively the largest integers such that β+qα ∈Φ and β−rα ∈Φ .
Then r− q =−〈β ,α〉=− 2(β ,α)

(α ,α) .

A subset Π of Φ is called a base if Π is a basis of the vector space E and each
root β ofΦ can be uniquely written as the sum β =∑α∈π kαα , where kα are integers
that are either all nonnegative or all nonpositive. An element in Π is called a simple
root. It is a fundamental result that every root system has a base. Now we introduce
a method to construct a base. Given α ∈Φ , set

Pα = {x ∈ E|α(x) = 0}.

An element γ ∈ E\∪α∈Φ Pα is called regular. For a regular element γ , define

Φ+(γ) = {α ∈Φ | (γ,α) > 0}, Φ−(γ) = {α|(γ,α)< 0}.
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Fig. 2.1 Dynkin diagrams

A root in Φ+(γ) is called indecomposable if it cannot be written as the sum of two
roots in Φ+(γ).

Theorem 2.17. Let γ be a regular element in E. Then the set of all indecomposable
roots in Φ+(γ) is a base of Φ . Moreover, every base of Φ can be obtained in this
manner.

A connected component of E\∪α∈Φ Pα is called a Weyl chamber. It is clear that
each regular element of E lies in exactly one Weyl chamber. There is a one-to-one
correspondence between the Weyl chambers and the bases of Φ . The Weyl group
can be viewed as a permutation group of the set of Weyl chambers. In fact, the action
of the Weyl group on the set of Weyl chambers is simply transitive.

Let Φ be a root system and Π = {α1,α2, . . . ,αl} a base of Φ . The Dynkin
diagram of Π is a diagram with l vertices such that the ith is joined to the jth
by 〈α j ,αi〉〈αi,α j〉 edges. Moreover, if the lengths |αi| and |α j| are not equal, then
we add an arrow pointing to the shorter one.

A root system Φ is called irreducible if it cannot be partitioned into two proper
and orthogonal subsets. It is easily seen that Φ is irreducible if and only if its
Dynkin diagram is connected. Two root systems Φ1,Φ2 in E1, E2 respectively are
called isomorphic if there exists a linear isomorphism σ from E1 onto E2 such that
σ(Φ1) =Φ2 and for any α,β ∈Φ1 we have 〈α,β 〉1 = 〈σ(α),σ(β )〉2. It is clear that
two irreducible root systems are isomorphic if and only if they have the same Dynkin
diagram. The following theorem gives a complete classification of irreducible root
systems.

Theorem 2.18. Let Φ be an irreducible root system. Then the Dynkin diagram of
Φ must be one of the diagrams in Fig. 2.1. Moreover, any of the diagrams in Fig. 2.1
is the Dynkin diagram of a root system.
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As we have seen above, for a complex semisimple Lie algebra g and a maximal
toral subalgebra h of g, the root system Δ of g with respect to h is a root system
in the sense of Definition 2.12. If h1 is another maximal toral subalgebra of g, then
we have another root system Δ1, the root system of g with respect to h1. It is a very
nice fact that different maximal toral subalgebras are conjugate to each other. In
other words, there exists an automorphism τ of g such that τ(h) = h1 (see Sect. 2.5
below). It is easily seen that this automorphism induces an isomorphism between
the root systems Δ and Δ1. On the other hand, it is clear that g is simple if and
only if Δ is irreducible. Moreover, it can be proved that for each Dynkin diagram in
Fig. 2.1, there exists a complex simple Lie algebra whose Dynkin diagram is exactly
the given one (see [83]). Thus we have the following theorem.

Theorem 2.19. Up to isomorphism, there are nine types of complex simple Lie
algebras, whose Dynkin diagram are respectively Al, Bl, Cl , Dl , E6, E7, E8, F4, G2.

This theorem gives a complete classification of complex simple Lie algebras, as
well as semisimple Lie algebras. Usually, we use the symbols of the Dynkin diagram
to represent the corresponding Lie algebra. The first four classes are called classical
simple Lie algebras and the other five types are called exceptional ones.

In the final part of this section we introduce some results on real semisimple Lie
algebras. We first recall the notion of the complexification of a real Lie algebra.

Suppose g0 is a real Lie algebra. The complexification of g0 is the complex vector
space g0 ⊗C endowed with the Lie brackets

[
x1 +

√−1y1,x2 +
√−1y2

]
= [x1,x2]− [y1,y2]+

√−1([x1,y2]+ [y1,x2]) ,

where xi,yi ∈ g0, i = 1,2. It is easy to check that the above brackets make g0 ⊗C

into a complex Lie algebra. We will denote this Lie algebra by gC
0 . For convenience,

we sometimes use g to denote the complexification of g0.
Conversely, suppose g is a complex Lie algebra. Then g can also be viewed as

a real Lie algebra: just view the complex vector space g as a real vector space and
define the same Lie brackets. This real Lie algebra will be denoted by gR. Note
that set theoretically gR and g are the same thing and that dimR g

R = 2dimC g. The
following proposition can be proved by a direct computation.

Proposition 2.6. Let g0 be a real lie algebra and g its complexification. Denote the
Killing forms of g0, g, and gR by K0, K, and KR, respectively. Then we have

K0(X ,Y ) = K(X ,Y ), for X ,Y ∈ g0,

KR(X ,Y ) = 2Re(K(X ,Y )), for X ,Y ∈ gR,

In view of Theorem 2.12, we have the following.

Proposition 2.7. A real Lie algebra is semisimple if and only if its complexification
is semisimple.
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Let g be a complex Lie algebra. A real form of g is a subalgebra g0 of the real
Lie algebra gR such that

gR = g0 +
√−1g0 (direct sum of vector spaces).

In this case g is isomorphic to the complexification of g0. The following theorem is
very important for the classification of real semisimple Lie algebras.

Theorem 2.20. Let g be a complex semisimple Lie algebra. Then there exists a real
form g0 of g such that g0 is a compact Lie algebra.

Definition 2.13. Let g0 be a real semisimple Lie algebra and g its complexification.
Denote the conjugation of g with respect to g0 by σ . A decomposition g0 = k0 + p0

of g0 into the direct sum of a subalgebra k0 and a vector subspace p0 is called a
Cartan decomposition if there exists a compact real form gk of g such that

σ(gk)⊂ gk, k0 = g0 ∩gk, p0 = g0 ∩ (
√−1gk).

Theorem 2.21. Let g0 be a real semisimple Lie algebra. Then there exists a
Cartan decomposition of g0. Moreover, if g0 = k1 + p1 and g0 = k2 + p2 are two
Cartan decompositions of g0, then there exists g ∈ Int(g0) such that g(k1) = k2 and
g(p1) = p2.

Theorem 2.22. Let g0 be a real semisimple Lie algebra. Then a decomposition g0 =
k0 + p0 of g0 into a subalgebra k0 and a vector space p0 is a Cartan decomposition
if and only if the map s : X +T → X −T, X ∈ k0, T ∈ p0, of g0 is an automorphism
and the Killing form B is positive definite on p0 and negative definite on k0.

2.4 Homogeneous Riemannian Manifolds

In this section we will collect some results on homogeneous Riemannian manifolds.
For a connected Riemannian manifold (M,Q), we have two ways to define an
isometry. On the one hand, we call a diffeomorphism σ of M onto itself an isometry
if for x ∈ M and any tangent vectors X ,Y ∈ Tx(M), we have Q(dσ |x(X),dσ |x(Y )) =
Q(X ,Y ). On the other hand, we can also define an isometry of (M,Q) to be a map τ
of M onto itself such that d(τ(x),τ(y)) = d(x,y), for any x,y∈M. The essence of the
celebrated Myers–Steenrod theorem is that the above two definitions are equivalent.
In the literature, the following corollary of the above result is often referred to as the
Myers–Steenord theorem [123].

Theorem 2.23 (Myers–Steenrod). Let (M,Q) be a connected Riemannian man-
ifold. Then the group of isometries I(M,Q) of (M,Q) admits a differentiable
structure such that I(M,Q) is a Lie transformation group of (M,Q).
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Definition 2.14. A connected Riemannian manifold (M,Q) is called homogeneous
if the group of isometries of (M,Q) is transitive on M.

If (M,Q) is a homogeneous Riemannian manifold, then I(M,Q) has at most
countably many connected components. Therefore by Proposition 2.2, the identity
component I0(M,G) is also transitive on M. Fix x ∈ M and denote by K the isotropy
subgroup of I0(M,Q) at x, Then K is a compact subgroup of I0(M,Q) and M
is diffeomorphic to I0(M,Q)/K. The Riemannian metric Q can be viewed as an
I0(M,Q)-invariant Riemannian metric on M. This means that any homogeneous
Riemannian manifold can be written as a coset space of a connected Lie group
with an invariant Riemannian metric.

Now we consider the more general case. Suppose G is a connected Lie group and
H is a closed subgroup of G such that G acts almost effectively on G/H. We study
the invariant Riemannian metrics on the coset space G/H. Let g,h be respectively
the Lie algebras of G and H. Denote the adjoint representation of G on g by Ad. Note
that for h∈ H, Ad(h) keeps the subalgebra h invariant. Hence Ad(h) induces a linear
map on the quotient space g/h. We denote this map by Adg/h(h). The differential
of this action, which is a representation of h on g/h, will be denoted by adg/h.

Proposition 2.8. There is a one-to-one correspondence between the G-invariant
Riemannian metrics on G/H and the Adg/h(H)-invariant inner products on g/h.

For the proof, see [102].
Given X ∈ h, exptX is a one-parameter subgroup of H. With respect to an

Adg/h(H)-invariant inner product 〈 , 〉 on g/h, exp(tX) are orthogonal transfor-
mations. Taking the derivation with respect to t, we see that adg/h(X) is skew-
symmetric with respect to 〈 , 〉. This observation leads to the following assertion.

Proposition 2.9. Let G/H be a coset space. Suppose G/H admits a G-invariant
Riemannian metric. If the action of G on G/H is almost effective, i.e., if h contains
no ideal of g other than {0}, then the following assertions hold:

1. The Killing form of h is negative semidefinite.
2. The restriction of the Killing form of g to h is negative definite.

The following proposition gives a necessary and sufficient condition for a coset
space to admit an invariant Riemannian metric.

Proposition 2.10. Suppose the action of G on the coset space G/H is almost
effective. Then G/H admits an invariant Riemannian metric if and only if there is an
inner product 〈 , 〉 on the Lie algebra g of G such that for every X ,Y ∈ g and h ∈ H,

〈Ad(h)(X),Ad(h)(Y )〉= 〈X ,Y 〉.

Next we will consider the Levi-Civita connection and the curvatures of homoge-
neous Riemannian manifolds. Let (M,Q) be a homogeneous Riemannian manifold.
A vector field X on M is called a Killing vector field if every local one-parameter
transformation group generated by X consists of local isometries of (M,Q).
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Theorem 2.24. Let (M,Q) be a homogeneous Riemannian manifold with the Levi-
Civita connection ∇. Suppose X ,Y,Z are Killing vector fields on M. Then we have

∇XY =
1
2
([X ,Y ]+U(X ,Y)), (2.5)

where U(X ,Y ) is a symmetric tensor field of type (2,1) on M determined by

Q(U(X ,Y ),Z) =
1
2
(Q([X ,Z],Y )+Q(X , [Y,Z]) .

If we write (M,Q) as a coset space G/H with H compact, then the Lie algebra g
has a decomposition

g= h+m (direct sum of subspaces), (2.6)

where m is a subspace of g such that Ad(h)(m)⊂m, for every h∈ H. In fact, we just
need to fix an inner product as in Proposition 2.10 and take m to be the orthogonal
complement of h with respect to this inner product. Thus in this case, the coset space
G/H is reductive.

The tangent space To(G/H), where o = H is the origin, can be identified with m
through the map

X �→ d
dt
(exp(tX) ·o)|t=0.

Note that for any Y ∈ g, the vector field Ỹ |gH = d
dt (gexp(tY )H)|t=0 is a Killing

vector field (the fundamental Killing vector field generated by Y ). If Y ∈ m, then
Ỹo = Y . This fact combined with the homogeneity of M implies that formula (2.5)
completely determines the Levi-Civita connection of (M,Q). This also leads to the
following formulas of the sectional curvature and Ricci curvature of (M,Q).

Theorem 2.25. Let (G/H,Q) be a homogeneous Riemannian manifold with a
reductive decomposition (2.6). Suppose X, Y are two orthogonal vectors in m of
unit length with respect to Q. Then the sectional curvature of the tangent plane
spanned by X, Y is given by

K(X ,Y ) = −3
4
|[X ,Y ]m|2 − 1

2
Q([X , [X ,Y ]]m,Y )

−1
2

Q([Y, [Y,X ]]m,X)+ |U(X ,Y)|2 −Q(U(X ,X),U(Y,Y)),

where Zm denotes the m-component of Z and | · | is the length with respect to Q.

The proof can be obtained through a direct computation using (2.5); see [28].
Let X1,X2, . . . ,Xn be an orthonormal basis of m with respect to Q. Set

Z =
n

∑
i=1

U(Xi,Xi).
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It is easy to check that Z is the unique element in m such that

Q(Z,X) = tr(adX), ∀X ∈m.

Corollary 2.1. The Ricci curvature is given by

Ric(X ,X) = −1
2∑i

|[X ,Xi]m|2 − 1
2∑i

Q([X , [X ,Xi]m]m,Xi)

−∑
i

Q([X , [X ,Xi]h]m)+
1
4∑i, j

(Q([Xi,Xj]m,X))2

−Q([Z,X ]m,X).

Finally, we recall some results on homogeneous Einstein manifolds. The follow-
ing definition is a special case of the Finslerian notion of Einstein metrics.

Definition 2.15. An n-dimensional connected Riemannian manifold (M,Q) is
called an Einstein manifold if its Ricci curvature is a multiple of the metric. More
precisely, it is called an Einstein manifold if

Ric(X ,Y ) = λQ(X ,Y ), ∀X ,Y ∈ Tx(M),x ∈ M.

The number c = 1
nλ is called the Einstein constant in the literature. If an Einstein

manifold is homogeneous as a Riemannian manifold, then it is called a homoge-
neous Einstein manifold.

There is a great difference between homogeneous Einstein manifolds with
different signs of the Einstein constant. For λ = 0, we have the following result
of Alekseevskii and Kimel’fel’d (see [5, 28]):

Theorem 2.26. A homogeneous Einstein manifold with c = 0 is flat; hence it is
isometric either to a Euclidean space or to a flat torus.

By the Bonnect–Myers theorem, a homogeneous Einstein manifold with positive
Einstein constant c must be compact. A simple observation leads to the following
theorem (see [28]).

Theorem 2.27. A homogeneous Einstein manifold with negative Einstein constant
must be noncompact.

In recent years, homogeneous Einstein manifolds have been studied extensively.
We now survey some important results in this field. It is obvious that the standard
Riemannian metric on spheres are Einstein metrics. The first nonstandard homoge-
neous Einstein metric on spheres was found by Jensen in 1973 [94]. Then Ziller
obtained a complete classification of all the homogeneous Einstein Riemannian
metrics on spheres in 1982 [182]. D’Atri, Wang, and Ziller made a systematic study
of compact homogeneous Einstein manifolds, including the normal homogeneous
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manifolds and naturally reductive left-invariant metrics on compact Lie groups; see
[45, 165]. However, up to now, necessary and sufficient conditions for a compact
homogeneous manifold to have invariant Einstein metrics are still unknown; see
[166] for some partial results. Meanwhile, there has appeared a series of results on
low-dimensional spaces.

In the noncompact case there are also many interesting results. We mention the
following conjecture; see [4].

Conjecture 2.1 (D.V. Alekseevskii). Let M = G/H be a noncompact homogeneous
Einstein manifold. Then H is a maximal compact subgroup of G.

This conjecture is still open. If it is true, then every noncompact homogeneous
Einstein metric can be realized as a left-invariant metric on a solvable Lie group.
Based on this point of view, many researchers have studied left-invariant Einstein
metrics on solvable Lie groups; see, for example, [75, 80, 160].

2.5 Symmetric Spaces

In this section we recall the main results on the structure and classification of
Riemannian symmetric spaces. A connected Riemannian manifold (M,Q) is called
locally symmetric if for every x ∈ M there is a neighborhood U of x such that the
geodesic symmetry

exp(tX)→ exp(−tX), X ∈ Tx(M),

defines a local isometry on U . It is called globally symmetric if for every x ∈ M,
there exists an involutive isometry σ (i.e., σ2 = id) such that x is an isolated fixed
point of σ . It is obvious that a globally symmetric Riemannian space must be locally
symmetric. The results of this section are mainly due to Cartan.

Theorem 2.28. A connected Riemannian manifold (M,Q) is locally symmetric if
and only if its sectional curvature is invariant under parallel displacements. A
complete, connected, and simply connected locally symmetric Riemannian manifold
must be globally symmetric.

Let (M,Q) be a globally symmetric Riemannian space and x ∈ M. Then there
is an involutive isometry τx with x as its isolated fixed point. It is easily seen that
dτx|x = −id|Tx(M). Thus τx is actually a geodesic symmetry at x. Given x1,x2 ∈ M,
we can connect x1 to x2 using a family of geodesic segments γi, i = 1,2, . . . , l. Let zi

be the midpoint of the geodesic segment γi. It is easily seen that the isometry τzl ◦
τzl−1 ◦ · · · ◦ τz1 sends x1 to x2. Thus (M,Q) is homogeneous. Since a homogeneous
Riemannian manifold must be complete, (M,Q) is complete. Moreover, it is easy
to see that the universal covering Riemannian manifold of (M,Q) is also globally
symmetric.
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Let I(M,Q) be the full group of isometries of (M,Q). Then I(M,Q) is a Lie
transformation group that acts transitively on M. Moreover, I(M,Q) has at most
countably many connected components. In view of Proposition 2.2, the unity
component of I(M,Q), denoted by G, is also transitive on M. Fix x ∈ M and denote
by K the isotropy subgroup of G at x. Then as a manifold, M = G/K and the
Riemannian metric Q can be viewed as a G-invariant metric on the coset space
G/K. Now we give a definition:

Definition 2.16. Let G be a connected Lie group and H a closed subgroup of G. If
there exists an involutive automorphism σ of G such that (Gσ )0 ⊂ H ⊂ Gσ , where
Gσ denotes the set of fixed points of σ and (Gσ )0 the unity component of Gσ , then
the pair (G,H) is called a symmetric pair. If in addition, the group AdG(H) is a
compact Lie group, then (G,H) is called a Riemannian symmetric pair.

Note that AdG(H) is the image of H under the adjoint representation AdG(G) of
G. This leads us to our next result.

Theorem 2.29. If (G,K) is a Riemannian symmetric pair, then there exists a G-
invariant Riemannian metric Q on G/K such that (G/K,Q) is a Riemannian
globally symmetric space. Conversely, if (M,Q) is a Riemannian globally symmetric
space, then there exists a connected Lie group G that acts isometrically and
transitively on M such that (G,K) is a Riemannian symmetric pair, where K is the
isotropy subgroup of G at certain x ∈ M.

Note that in the above theorem, G can be taken as the unity component of the full
group of isometries. This theorem reduces the research of Riemannian symmetric
spaces to coset spaces endowed with an invariant Riemannian metric. In fact, we
can reduce the problem further.

Definition 2.17. Let g be a real Lie algebra and s an involutive automorphism of g.
If the set of fixed points of s, denoted by k, is a compactly embedded subalgebra of g,
then (g,s) is called an orthogonal symmetric Lie algebra. If in addition, k∩z = {0},
where z is the center of g, then the pair is called effective.

Theorem 2.30. Let (G,K) be a Riemannian symmetric pair and σ an involutive
automorphism of G such that (Gσ )0 ⊂ K ⊂ Gσ . Let g be the Lie algebra of G and s
the differential of σ at e ∈ G. Then (g,s) is an orthogonal symmetric Lie algebra. If
the action of G on G/K is effective, then (g,s) is effective.

Theorem 2.31. Let (g,s) be an orthogonal symmetric Lie algebra and k the set
of fixed points of s. Suppose (G,K) is a pair associated with (g,s) (i.e., G is a
connected Lie group with Lie algebra g and K is a Lie subgroup of G with Lie
algebra k) such that G is simply connected and K is connected. Then K is closed in
G and the pair (G,K) is a Riemannian symmetric pair.

These theorems reduce the study of symmetric spaces to that of the orthogonal
symmetric Lie algebras. Now we consider the structure of such algebras.
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Definition 2.18. Let (g,s) be an orthogonal symmetric Lie algebra and g = k+ p
the decomposition of g into the eigenspaces of s for the eigenvalues +1 and −1,
respectively. If g is a compact semisimple Lie algebra, then (g,s) is said to be
of compact type; if g is noncompact and semisimple, then (g,s) is said to be of
noncompact type; if p is an abelian ideal of g, then (g,s) is said to be of Euclidean
type. A pair (G,K) associated with (g,s) is said to be of compact, noncompact, or
Euclidean type according to the type of (g,s). A Riemannian globally symmetric
space (M,Q) is said to be of Euclidean, compact, or noncompact type according to
the type of the corresponding symmetric pair.

Note that if a connected simply connected globally symmetric space (M,Q) is of
Euclidean type, then (M,Q) is the standard Euclidean space.

Theorem 2.32. Let (g,s) be an effective orthogonal symmetric Lie algebra. Then
g has a decomposition into the direct sum of ideals g = g0 +gc +gn, where g0, gc,
and gn are all invariant under s and orthogonal with respect to the Killing form of g.
Moreover, let s0, sc, and sn be respectively the restrictions of s to g0, gc, and gn. Then
(g0,s0), (gc,sc), and (gn,sn) are orthogonal symmetric Lie algebras of Euclidean,
compact, and noncompact type, respectively.

The global version of the above theorem is the following.

Theorem 2.33. Let (M,Q) be a connected simply connected Riemannian globally
symmetric space. Then (M,Q) can be decomposed as the product M = M0 ×Mc ×
Mn, where M0 is a Euclidean space, Mc is a Riemannian globally symmetric space
of compact type, and Mn is a Riemannian globally symmetric space of noncompact
type.

There is a remarkable duality between Riemannian globally symmetric spaces of
compact and noncompact type. We start with orthogonal symmetric Lie algebras.
Let (g,s) be an orthogonal Lie algebra and g= k+ p the canonical decomposition.
Consider the subalgebra

g∗ = k+
√−1p

of the complexification gC and define a linear endomorphism s∗ on g∗ by

s∗(X +
√−1Y ) = X −√−1Y, X ∈ k,Y ∈ p.

Then it is easy to check that (g∗,s∗) is again an orthogonal Lie algebra. The pair
(g∗,s∗) is called the dual of (g,s). Two orthogonal symmetric Lie algebras (g1,s1)
and (g2,s2) are called isomorphic if there is a Lie algebra isomorphism ϕ from g1

onto g2 such that ϕ ◦ s1 = s2 ◦ϕ .

Proposition 2.11. The orthogonal symmetric Lie algebra (g,s) is of compact type
if and only if (g∗,s∗) is of noncompact type. If (g1,s1) is isomorphic to (g2,s2), then
(g∗1,s

∗
1) is isomorphic to (g∗2,s

∗
2).
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An orthogonal symmetric Lie algebra (g,s) is called irreducible if in its canonical
decomposition g= k+p, the adjoint representation of k on p is irreducible. It can be
proved that every effective orthogonal Lie algebra of compact or noncompact type
can be decomposed into a direct sum of irreducible orthogonal Lie algebras.

Theorem 2.34. Let (g,s) be an irreducible effective orthogonal Lie algebra. Then
(g,s) must be isomorphic to one of the following types:

(CI) g is compact simple and s is an involutive automorphism of g.
(CII) g = g1 ⊕ g1, where g1 is a compact simple Lie algebra, and s is defined by

s(X ,Y ) = (Y,X), X ,Y ∈ g1.
(NI) g is a noncompact simple Lie algebra whose complexification gC is a complex

simple Lie algebra, and s is a Cartan involution of g.
(NII) g is a noncompact simple Lie algebra whose complexification gC is a complex

nonsimple Lie algebra, and s is a Cartan involution of g.

Among the above four types of orthogonal symmetric Lie algebras, (CI) is dual to
(NI), and (CII) is dual to (NII).

A connected simply connected Riemannian globally symmetric space is said to
be of type (CI), (CII), (NI), or (NII) according to the type of its corresponding
orthogonal symmetric Lie algebra. Note that the symmetric spaces of type (CII) are
exactly all the compact simple Lie groups endowed with bi-invariant Riemannian
metrics. Since each complex simple Lie algebra has a unique (up to an isomorphism)
compact real form, each complex simple Lie algebra in Theorem 2.18 corresponds
to exactly one symmetric space of type (CII). We will use the same notation as in
Theorem 2.18 to denote the corresponding symmetric space.

A complete list of connected simply connected Riemannian globally symmetric
spaces of type (CI) can be found in [83].

There is a great difference between Riemannian globally symmetric spaces of
compact type and those of noncompact type. In the noncompact case, the structure
is very simple:

Theorem 2.35. Let (g0,s) be an effective orthogonal symmetric Lie algebra of
noncompact type and let g0 = h0 +m0 be the associated decomposition. Then g0

is a noncompact semisimple Lie algebra and the above decomposition is a Cartan
decomposition of g0. Suppose (G,H) is any pair associated with (g0,h0). Then we
have the following:

1. H is connected, closed, and contains the center Z of G. Moreover, H is compact
if and only if Z is finite. In this case, H is a maximal compact subgroup of G.

2. The pair (G,H) is a Riemannian symmetric pair.
3. The map ϕ : (X ,h) → (expX)h is a diffeomorphism from m0 ×H onto G and

the exponential map of the Riemannian manifold M = G/H is a diffeomorphism
from m0 onto the manifold M.
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This theorem has the following corollary:

Corollary 2.2. Suppose M and M′ are two irreducible Riemannian globally sym-
metric spaces of noncompact type. If the full groups I(M) and I(M′) have the same
Lie algebra, then up to a positive scalar, M and M′ are isometric.

From Theorem 2.35 we can also deduce the conjugacy of maximal compact
subgroups of noncompact semisimple Lie groups:

Theorem 2.36. Let (G,H) be a Riemannian symmetric pair of noncompact type.
Then we have the following:

(a) For any compact subgroup H1 of G, there exists x ∈ G such that x−1H1 ⊂ H.
(b) H has a unique compact subgroup H0 that is a maximal subgroup of G.
(c) All maximal compact subgroups of a connected semisimple Lie group are

conjugate under an inner automorphism.

From the above results we see that the structure of noncompact Riemannian
symmetric spaces is usually very simple. In particular, if G/H is a connected
Riemannian globally symmetric space of noncompact type, and G is a connected
Lie group, then H must be a connected compact subgroup of G. However, the
above results are usually not true for a Riemannian globally symmetric space of
compact type. In fact, one can construct some examples to show the following (see
[83, Chap. VII]):

Proposition 2.12. Let (u,s) be an orthogonal symmetric Lie algebra of compact
type. Let (U,K) be any pair associated with (u,s). Then

1. The center of U need not be contained in K.
2. Even if U/K is Riemannian globally symmetric, K is not necessarily connected.
3. Even if U/K is Riemannian globally symmetric, s does not necessarily corre-

spond to an automorphism of U.

This difference causes much difficulty in classifying Riemannian globally sym-
metric spaces of compact type. We omit the details here; see [83].

Now we recall some results on Hermitian symmetric spaces. Let (M,J) be a
complex manifold with complex structure J. A Riemannian metric Q on M is
called Hermitian if Q(J(X),J(Y )) = Q(X ,Y ) for all tangent vectors X ,Y on M. If in
addition ∇X J = 0, then the Hermitian metric is called Kählerian.

Definition 2.19. Let M be a connected complex manifold with a Hermitian metric
Q. Then (M,Q) is said to be a Hermitian symmetric space if each point p ∈ M is an
isolated fixed point of an involutive holomorphic isometry sp of M.

It is not hard to prove that a Hermitian symmetric space must be Kählerian.
Moreover, a Hermitian symmetric space must be a Riemannian globally symmetric
space. Therefore, the classification of Hermitian symmetric spaces is reduced
to finding out which Riemannian globally symmetric spaces admit a complex
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structure that is admissible with the metric structure. We say that a Hermitian
symmetric space is of compact or noncompact type according to the type of
the corresponding Riemannian symmetric space. It is called irreducible if the
corresponding Riemannian symmetric space is irreducible. It can be proved that
a Hermitian symmetric space of compact or noncompact type is simply connected.

Theorem 2.37. Let M be a simply connected Hermitian symmetric space. Then M
is a product

M = M0 ×Mc ×Mn,

where M0,Mc,Mn are simply connected Hermitian symmetric spaces, M0 =C×C×
·· ·×C, and Mc and Mn are of compact type and noncompact type, respectively.

Theorem 2.38. Let M be an irreducible Hermitian symmetric space.

(i) If M is of noncompact type, then M is the manifold G/K, where G is a connected
noncompact simple Lie group with center {e} and K is a maximal compact
subgroup of G with nondiscrete center.

(ii) If M is of compact type, then M is the manifold U/K, where U is a connected
compact simple Lie group with center {e} and K is a maximal connected proper
subgroup with nondiscrete center.

Finally we recall some results on the rank of symmetric spaces. Let M be a
Riemannian globally symmetric space. The rank of M is the maximal dimension of
flat, totally geodesic submanifolds of M. Suppose M is of compact or noncompact
type and write M as a coset space G/H, where G is the identity component of the
full group. Let g= h+p be the canonical decomposition of the Lie algebra of G. A
subspace s of p is called a Lie triple system if [[s,s],s]⊂ s. A result of Cartan says
that there is a one-to-one correspondence between totally geodesic submanifolds of
M and Lie triple systems in p through the map s→ Exp(s).

Theorem 2.39. The totally geodesic submanifold Exp(s) is flat if and only if s is
abelian.

Therefore, the rank of a Riemannian globally symmetric space of compact type
or noncompact type is equal to the dimension of the maximal abelian subspace of p.

Theorem 2.40. Let a and a′ be two maximal abelian subspaces of p. Then

1. There exists an element u ∈ p whose centralizer in p is a.
2. There exists an element k ∈ H such that Ad(k)a = a′.
3. p=

⋃
k∈H Ad(k)a.

This theorem has an important corollary that any two maximal flat totally
geodesic submanifolds of M must be congruent under the group of isometries of M.
Applying the above results to connected compact Lie groups, we get the following
theorem.
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Theorem 2.41. Let G be a connected compact Lie group with Lie algebra g.
Suppose t and t′ are two maximal abelian subalgebras of g. Then

1. There exists an element u ∈ t whose centralizer in g is t.
2. There exists an element g ∈ G such that Ad(g)t= t′.
3. g=

⋃
g∈G Ad(g)t.

From this theorem it follows that two Cartan subalgebras of a complex semisim-
ple Lie algebra are congruent under the group of automorphisms.

The material of this section is taken mainly from [83].



Chapter 3
The Group of Isometries

In this chapter we deal with isometries of a Finsler space. The first result on
this topic is the theorem of Van Danzig and van der Waerden, published in 1928
(see [156] and Sect. 3.2 below), asserting that the group of isometries of a locally
compact metric space is a topological transformation group of the underlying
space. Cartan proved in [37] that the group of isometries of a globally symmetric
Riemannian manifold is a Lie transformation group of the underlying manifold.
This result plays a fundamental role in the theory of symmetric Riemannian spaces.
In 1939, this result of Cartan was generalized to all Riemannian manifolds by the
Myers–Steenrod theorem (Theorem 2.23). This theorem is the foundation of the
theory of homogeneous Riemannian manifolds. The proof of the Myers–Steenrod
theorem has been simplified by the work of several people; see, for example,
Palais [127,128], Kobayashi [101], Kobayashi–Nomizu [102]. There are also several
versions of the generalizations of this result. For example, in [102], it is proved that
the group of all affine transformations of an affine manifold is a Lie transformation
group. This result has been applied to the case of pseudo-Riemannian manifolds and
has resulted in many powerful results in the study of pseudo-Riemannian metrics.

The first two sections of this chapter are devoted to generalizing the Myers–
Steenrod theorem from Riemannian geometry to the Finslerian setting, through a
thorough study of isometries and Killing vector fields. In Sect. 3.3, we re-prove
a classical theorem of Wang concerning the maximal dimension of the group of
isometries of non-Riemannian Finsler metrics on a manifold. Section 3.4 is devoted
to studying two-point homogeneous Finsler spaces. The main result is that a two-
point homogeneous Finsler manifold must be Riemannian. Finally, in Sect. 3.5, we
consider the set of fixed points of isometries and generalize an interesting result of
Kobayashi from Riemannian manifolds to Finsler spaces.

We should mention here that in the literature there has yet appeared no result
on the group of isometries of a pseudo-Finsler space (that is, the Hessian matrix of
the Finsler function is assumed only to be nondegenerate on the tangent spaces; see
[139]). It would be interesting to consider this problem and to generalize some of
the results of this chapter to this more generalized case.

S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4614-4244-8 3, © Springer Science+Business Media New York 2012
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The standard references of this chapter are [39, 47, 55]; see [68, 69] for more
information.

3.1 Isometries and Killing Vector Fields

Let (M,F) be a Finsler space. As in the Riemannian case, we have two ways to
define an isometry on (M,F). On the one hand, we can define an isometry to
be a diffeomorphism of M onto itself that preserves the Finsler function. On the
other hand, since on M we still have the definition of distance function (although
generically it is not a distance in the strict sense), we can define an isometry of
(M,F) to be a map of M onto M that keeps the distance of each pair of points of M.
The Myers–Steenrod theorem asserts that the above two conditions are equivalent
for a Riemannian manifold.

In this section we will generalize the Myers–Steenrod theorem to Finsler spaces.
We first prove a result on the distance function.

Lemma 3.1. Let (M,F) be a Finsler space with distance function d and x ∈ M.
Then for any ε > 0, there exists a neighborhood N of the origin of Tx(M) such that
expx is a C1-diffeomorphism from N onto its image and for any A,B ∈ U, A �= B,
and any C1 curve σ0(s),0 ≤ s ≤ 1, connecting A and B that satisfies σ0(s) ∈ N and
σ̇0(s) �= 0, s ∈ [0,1], we have ∣∣∣∣ L(σ)

L(σ0)
− 1

∣∣∣∣≤ ε,

where L(·) denotes the arc length of a curve and σ(s) = expxσ0(s).

Proof. By Theorem 1.3, there exists a tangent ball

Bx(r) = {A ∈ Tx(M)|F(x,A)< r}

of the origin in Tx(M) such that exp= expx is a C1-diffeomorphism from Bx(r) onto
B+

x (r) = {w ∈ M|d(x,w)< r}. Assume that A,B ∈ Bx(r), A �= B. Let σ0(s), 0 ≤ s ≤
1, be a C1 curve connecting A and B such that ∀s,σ0(s) ∈ Bx(r) and σ̇0(s) �= 0. Then
we can write the velocity vector of σ0(s) as σ̇0(s) = t(s)X(s), where X(s) satisfies
F(x,X(s)) = r

2 ,∀s, and t(s)≥ 0 is a continuous function on [0,1]. Therefore the arc
length of σ0 is

L(σ0) =
∫ 1

0
t(s)F(x,X(s))ds.

Set X1(s) = d(expx)|σ0(s)X(s). Then the velocity vector of the curve σ(s) =
expx(σ0(s)), 0 ≤ s ≤ 1, is

σ̇(s) = d(expx)|σ0(s)(t(s)X(s)) = t(s)d(expx)|σ0(s)(X(s)) = t(s)X1(s).
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Therefore, the arc length of σ is

L(σ) =
∫ 1

0
t(s)F(σ(s),X1(s))ds.

Now we select a neighborhood V1 of x in M with compact closure that is
contained in B+

x (r) and fix a coordinate system (x1,x2, . . . ,xn) in V1. Let N1 =
exp−1V1. Suppose σ0 ⊂ N1. Denote by M(s) the matrix of d(expx)|σ0(s) under the

basis ∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xn

. Given any positive number δ < r
2 , since d(expx)|0 = In and

exp is C1 smooth, there exists a neighborhood N2 ⊂ N1 of the origin of Tx(M) such
that for any C1 curve σ0 satisfying σ0(s) ∈ N2,∀s, we have

‖M(s)− I‖< δ
n
, 0 ≤ s ≤ 1,

where ‖ · ‖ denotes the maximum of the absolute values of the entries of a matrix.
Write X(s) and X1(s) as

X(s) =
n

∑
j=1

y j(s)
∂
∂x j

∣∣∣
x
;

X1(s) =
n

∑
j=1

y′j(s)
∂
∂x j

∣∣∣
σ(s)

.

Then we have

|y′j(s)− y j(s)|< δ , 1 ≤ j ≤ n.

Consider the following subset of T Mo:

C0 =
{
(w,(d(expx))|W )y | w ∈V1,W = exp−1

x w,y ∈ TW (T x(M)),F(x,y) =
r
2

}
,

where we have identified TW (Tx(M)) with Tx(M) in the standard way. Since exp is
C1 smooth, the closure of C0 is compact. Hence the function F is bounded on C0.
Suppose r1 is a positive number such that F < r1 on C0. Write the Finsler function
F(w,y) as F(w,y1,y2, . . . ,yn) for y = ∑n

j=1 y j
∂
∂x j

|w. Let D1 be the closure of the set

D0 = {(w,y) ∈ T M | w ∈ V1,F(x,y) ≤ r
2 + r1}. Since F is continuous and D1 is

compact, F is uniformly continuous on D1. Therefore for the given ε > 0, there
exist δ1 > 0 and a neighborhood V2 ⊂V1 of x such that for any w ∈V2 and y,y′ with
|y j − y′j| < δ1, j = 1,2, . . . ,n, F(x,y1,y2, . . . ,yn) <

r
2 + r1 and F(w,y′1, . . . ,y

′
n) <

r
2 + r1, we have

|F(x,y1,y2, . . . ,yn)−F(w,y′1,y
′
2, . . . ,y

′
n)|<

r
2
ε.

Therefore, if we select the above δ so small that δ < δ1, then for the corresponding
N2 and any C1 curve σ0, σ0 ⊂ N2 ∩ (exp)−1V2, we have
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∣∣∣∣ L(σ)
L(σ0)

− 1

∣∣∣∣ = |∫ 1
0 t(s)(F(x,X(s))−F(σ(s),X1(s))ds|

|∫ 1
0 t(s)F(x,X(s))ds|

≤
∫ 1

0 t(s)|F(x,X(s))−F(σ(s),X1(s))|ds

r
∫ 1

0 t(s)ds

≤
r
2ε
r
2

∫ 1
0 t(s)ds∫ 1
0 t(s)ds

= ε.

This completes the proof of the lemma. ��
Theorem 3.1. Let x ∈ M and let Bx(r) be a tangent ball of Tx(M) such that expx
is a C1 diffeomorphism from Bx(r) onto B+

x (r). For A,B ∈ Bx(r), A �= B, let a =
expxA, b = expxB. Then we have

F(x,A−B)
d(a,b)

→ 1

as (A,B)→ (0,0).

Proof. Set B−
x (r) = {w ∈ M|d(w,x) < r}. Suppose r is so small that each pair of

points in B+
x ( r

2 )∩B−
x ( r

2 ) can be joined by a unique minimal geodesic contained in
B+

x (r). Let Γ0(s), 0 ≤ s ≤ 1, be the line segment connecting A and B, and Γ (s) =
expxΓ0(s). By Lemma 3.1, we have

L(Γ0)

L(Γ )
=

F(x,A−B)
L(Γ )

→ 1

as (A,B)→ (0,0). Now let a = expxA, b = expxB. Suppose a,b ∈ B+
x (

r
2 )∩B−

x ( r
2 ).

Let γab(s), 0 ≤ s ≤ 1, be the unique minimal geodesic of constant speed connecting
a and b. Let γ0(s), 0 ≤ s ≤ 1, be the unique curve in Bx(r) that satisfies γab(s) =
expxγ0(s). Then by Lemma 3.1, we also have

L(γ0)

L(γab)
→ 1

as (A,B)→ (0,0). Since

d(a,b)≤ L(Γ ), L(γ0)≥ F(x,A−B),

We have

F(x,A−B)
L(Γ )

≤ F(x,A−B)
d(a,b)

≤ L(γ0)

L(γab)
.

This completes the proof of the theorem. ��
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Next we prove the differentiability of isometries of a Finsler space. We first
consider the special case of a Minkowski space.

Proposition 3.1. Let ‖ ·‖1, ‖ ·‖2 be two Minkowski norms on R
n. Let φ be a map of

R
n into itself such that ‖φ(A)−φ(B)‖2 = ‖A−B‖1, ∀A,B ∈R

n. Then φ is an affine
transformation of Rn onto itself.

Proof. Consider Rn endowed with ‖ · ‖ j, j = 1,2, as two Finsler spaces, denoted
by (M1,F1) and (M2,F2), respectively. It is obvious that geodesics in Mj, j = 1,2,
are straight lines, and the distance function of Mj is d j(A,B) = ‖A−B‖ j, j = 1,2.
Consider φ as a map from the Finsler space (M1,F1) to (M2,F2). Then φ preserves
the distance function. Since short geodesics minimize distance between its start and
end points, φ transforms geodesics to geodesics. Therefore φ transforms straight
lines to straight lines. We first treat the case φ(0) = 0. For A ∈R

n, A �= 0, the curve
φ(tA), t ≥ 0, is a ray that coincides with the ray tφ(A) at t = 0 and t = 1. Therefore
they coincide as point sets. Thus there is a nonnegative function μ(t) such that
φ(tA) = μ(t)φ(A). Since

‖φ(tA)− 0‖2 = ‖tA− 0‖1 = t‖A‖1 = ‖μ(t)φ(A)− 0‖2 = μ(t)‖φ(A)‖2

= μ(t)‖A‖1, t ≥ 0,

we have μ(t) = t. Thus φ(tA) = tφ(A), for t ≥ 0. Suppose A �= B. Then a similar
argument to that above shows that there exists a nonnegative function λ (t) such that
φ(tA+(1− t)B) = λ (t)φ(A)+ (1−λ (t))φ(B), t ≥ 0. Moreover, we can similarly
show that λ (t) = t. In particular, for t = 1

2 , we have

1
2
φ(A+B) = φ(

1
2
(A+B)) =

1
2
φ(A)+

1
2
φ(B).

Thus φ(A + B) = φ(A) + φ(B). Taking A = −B in the above equality we have
φ(−A) =−φ(A). Therefore φ is a linear transformation. Since ker(φ) = {0}, it is a
linear isomorphism. Hence the conclusion holds when φ(0) = 0. Next we suppose
A1 = φ(0) �= 0. Consider the composition map φ1 = πA1 ◦φ , where φA1(A) = A−A1

is parallel translation. By the above argument and the facts that φ1(0) = 0 and
‖φ1(A)− φ1(B)‖2 = ‖A− B‖1, φ1 is a linear isomorphism. Hence φ is an affine
isomorphism of Rn. ��
Theorem 3.2. Let (M, F) be a Finsler space and φ a distance-preserving map of
M onto itself. Then φ is a diffeomorphism.

Proof. Let p ∈ M and put q = φ(p). Let r > 0, ε > 0 be so small that both expp and
expq are C1 diffeomorphisms on the tangent balls Bp(r + ε), Bq(r + ε) of Tp(M)
and Tq(M), respectively. For any nonzero X ∈ Tp(M), consider the radial geodesic
expp(tX), 0 ≤ t ≤ r

2F(p,X)
. The image γ(t) = φ(expp(tX)) is a geodesic, since φ is

distance-preserving. Let X ′ denote the tangent vector of γ at the point q. We have
obtained a map X → X ′ of Tp(M) into Tq(M). Denoting this map by φ ′, we have
φ ′(λX) = λφ ′(X), for X ∈ Tp(M) and λ ≥ 0. Let A,B ∈ Tp(M), A �= B, and let t be
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so small that both tA and tB lie in Bp(r). Let at = expp(tA), bt = expp(tB). Then by
Theorem 3.1 we have

lim
t→0+

F(p, tA− tB)
d(at ,bt)

= 1.

On the other hand, by the definition of φ ′ we have

expq(φ
′(tX)) = φ(exptX),

for any X and t small enough. Thus by Theorem 3.1 we also have

lim
t→0+

F(q,φ ′(tA)−φ ′(tB))
d(φ(at),φ(bt ))

= 1.

Since d(φ(at),φ(bt )) = d(at ,bt), we get

1 = lim
t→0+

F(p, tA− tB)
F(q,φ ′(tA)−φ ′(tB)

= lim
t→0+

tF(p,A−B)
tF(q,φ ′(A)−φ ′(B))

=
F(p,A−B)

F(q,φ ′(A)−φ ′(B))
.

Therefore F(q,φ ′(A)−φ ′(B)) = F(p,A−B). By Proposition 3.1, φ ′ is a diffeomor-
phism of Tp(M) onto Tq(M).

Although on B+
p (r) = exppBr(p), we have φ = expq ◦ φ ′ ◦ (expp)

−1, we still
cannot conclude that φ is smooth on B+

p (r), since in a Finsler space the exponential
map is only C1 at the zero section. That is, we can conclude only that φ is smooth
in Bp(r)\{p}. To finish the proof, we proceed to take r so small that every pair of
points in B+

p (r)∩B−
p (r) can be joined by a unique minimizing geodesic. Select

p1 ∈ B+
p (

r
2)∩B−

p (
r
2 ), p1 �= p. Consider the tangent ball Bp1(

r
2 ) of Tp1(M). The

exponential map is a C1 diffeomorphism from Bp1(
r
2 ) onto B+

p1
( r

2 ). The above
argument shows that φ is smooth in B+

p1
( r

2 )\{p1}, which is a neighborhood of p.
This completes the proof of the theorem. ��

Now we study Killing vector fields of Finsler spaces. A smooth vector field X on
a Finsler space (M,F) is called a Killing vector field if every local one-parameter
transformation group ϕt of M generated by X consists of local isometries of M.

In the following we will give a geometric description of Killing vector fields,
using Chern’s orthonormal frame bundle. Let us first introduce the construction of
Chern’s orthonormal frame bundle of a Finsler space (see [150] for the details). Let
p ∈ M. A Chern’s orthonormal frame at p is a frame (i.e., a basis of the linear space
Tp(M)) {X0,X1, . . . ,Xn−1} on Tp(M) such that

(i) F(X0) = 1.
(ii) The vectors X0,X1, . . . ,Xn−1 form an orthonormal basis of Tp(M) with respect

to the inner product gX0 , where g is the fundamental form of F .
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The set of all Chern’s orthonormal frames is denoted by OF(M) and is called
Chern’s orthonormal frame bundle of (M,F). It is a subbundle of the linear frame
bundle L(M) but in general not a principal subbundle of L(M).

The following proposition is a result of [150].

Proposition 3.2. A diffeomorphism f : M → M is an isometry of (M,F) if and only
if the induced diffeomorphism f̂ of f on L(M) preserves Chern’s orthonormal frame
bundle, i.e., f̂ (OF(M)) ⊂ OF(M).

Now we prove our next result.

Proposition 3.3. A vector field X on a Finsler space (M,F) is a Killing vector field
if and only if the natural lift X̂ of X to L(M) is tangent to Chern’s orthonormal frame
bundle OF(M) at every point of OF(M).

Proof. Recall that the natural lift X̂ can be obtained in the following way [102,
vol. 1, p. 229]: For any point x ∈ M, let ϕt be a local one-parameter group of local
transformations generated by X in a neighborhood U of x. For each t, ϕt induces
a map ϕ̂t of π−1(U) onto π−1(ϕt(U)) in a natural manner, where π : L(M) → M
is the natural projection. The local one-parameter transformation groups {ϕ̂t} of
L(M) obtained in this way induce a vector field on L(M), which is exactly X̂ . If X is
a Killing vector field, then ϕt are all local isometries of (M,F). By Proposition 3.2,
ϕ̂t maps OF(M) into OF(M). Thus X̂ is tangent to OF(M) at every point of OF(M).
On the other hand, if X̂ is tangent to OF(M) at every point of OF(M), then for any
u ∈ OF(M), the curve ϕ̂t(u), as an integral curve through u of the vector field X̂ ,
must be contained in OF(M). Thus ϕ̂t(OF(M)) ⊂ OF(M). By Proposition 3.2, ϕt

are isometries of (M,F). Hence X is a Killing vector field. ��
The proposition implies an important fact, namely that the linear space of all

Killing vector fields of (M,F) is closed under the Lie brackets of vector fields. In
fact, if X1,X2 are Killing vector fields, then the corresponding natural lift to L(M),
X̂1, X̂2 are tangent to OF(M) at every point of OF(M). Since OF(M) is a submanifold
of L(M), [X̂1, X̂2] is tangent to OF(M) at every point of OF(M). It is obvious that
[X̂1, X̂2] is the natural lift of [X1,X2]. Therefore [X1,X2] is also a Killing vector field.
This proves our assertion. In the following, we will denote the Lie algebra formed
by all Killing vector fields by k(M,F) (or simply k(M)) .

The following result will be useful later.

Proposition 3.4. Let (M,F) be a Finsler space and let σ(t), a ≤ t ≤ b, be a
geodesic. Let X be a Killing vector field. Then the restriction of X to σ is a Jacobi
field along σ .

Proof. For any t ∈ [a,b], we can find a neighborhood Nt of σ(t) and a positive
number εt such that X generates a local one-parameter transformation group of M
that is defined on [−εt ,εt ]×Nt . Since the set C = {σ(t) | a ≤ t ≤ b} is compact,
we can find a finite number of such open sets Nt whose union covers C. Therefore,
we can find a positive number ε such that the local one-parameter transformation
group generated by X is defined on [−ε,ε]×V , where V is an open subset of M
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containing C. More precisely, we have a map ψs of [−ε,ε]×V into M that satisfies
the following conditions:

1. For each s ∈ [−ε,ε], ψt : p → ψt(p) is a diffeomorphism of V onto the open set
ψs(U) of M.

2. If s1,s2,s1 + s2 ∈ [−ε,ε], and if p,ψs(p) ∈ ψs(V ), then

ψs1+s2(p) = ψs1(ψs2(p)).

The induced vector field of ψs on V is equal to the restriction of X . Thereforeψs are
local isometries.

Now we define a smooth variation of σ by

σ(t,s) = ψs(σ(t)), a ≤ t ≤ b, −ε < s < ε.

Then all the t-curves are geodesics. This can be seen from the following observation.
Note that σ is locally minimizing, since it is a geodesic. Therefore for any fixed s ∈
(−ε,ε), ψs being a local isometry, the curve ψs(t), a ≤ t ≤ b, is locally minimizing.
Thus ψs(t), a ≤ t ≤ b, is a geodesic. This proves our assertion. Now it follows from
Proposition 1.7 that the variation vector field of this variation, which is just the
restriction of X to σ , is a Jacobi field. ��

3.2 The Group of Isometries

Theorem 3.2 justifies the following definition of an isometry for a Finsler space.

Definition 3.1. Let (M,F) be a Finsler space. A map φ of M onto itself is called
an isometry if φ is a diffeomorphism and for any x ∈ M and X ∈ Tx(M), we have
F(φ(x),dφx(X)) = F(x,X).

In the following we denote the group of isometries of (M,F) by I(M,F), or
simply I(M) if the metric is clear.

Let (N,d) be a connected, locally compact metric space and I(N,d) the group of
isometries of (N,d). For x ∈ N, denote by Ix(N,d) the isotropy subgroup of I(N,d)
at x. Van Danzig and van der Waerden [156] proved that I(N,d) is a locally compact
topological transformation group on N with respect to the compact-open topology
and that the isotropic subgroup Ix(N,d) is compact.

Now on M we have a distance function d defined by the Finsler function F . By
Theorem 3.2, the group I(M,F) coincides with the group of isometries I(M,d) of
(M,d). Although generically d is not a distance, we still have the following result.

Theorem 3.3. Let (M,F) be a connected Finsler space. The compact-open topol-
ogy turns I(M) into a locally compact transformation group of M. Let x ∈ M and
Ix(M) denote the subgroup of I(M) that leaves x fixed. Then Ix(M) is compact.
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Proof. A proof of this result for the Riemannian case was given in Helgason [83,
pp. 201–204], which is valid in the general cases after some minor changes. Just
note that on a Finsler manifold the topology generated by the forward metric balls
B+

p (r) = {x ∈ M | d(p,x)< r}, p ∈ M, r > 0, is precisely the underlying manifold
topology and this is true for the topology generated by the backward metric balls
B−

p (r) = {x ∈ M | d(x, p)< r}, p ∈ M, r > 0. ��
Bochner–Montgomery [29] proved that a locally compact group of differentiable

transformations of a manifold is a Lie transformation group. Therefore we have the
following theorem.

Theorem 3.4. Let (M,F) be a Finsler space. Then the group of isometries I(M,F)
of M is a Lie transformation group of M. Let x ∈ M and let Ix(M,F) be the isotropy
subgroup of I(M,F) at x. Then Ix(M,F) is compact.

Now we consider the relationship between the group of isometries I(M) and the
Lie algebra of all the Killing fields of (M,F). Recall that a smooth vector field X
on M is called complete if the local one-parameter transformation groups generated
by X can be extended to global one-parameter transformations. Denote the set of
all the complete Killing vector fields of (M,F) by i(M,F). We have the following
theorem.

Theorem 3.5. Let (M,F) be a connected Finsler space. Then i(M,F) is a Lie
algebra naturally isomorphic to the Lie algebra of the Lie group I(M,F).

Proof. If X ∈ i(M,F), then the global one-parameter group of transformations
generated by X is contained in I(M,F). On the other hand, if Y is an element of
the Lie algebra of I(M,F), then the vector field Ỹ defined by

Ỹx =
d
dt

exp(tY ) · x∣∣t=0

is a Killing vector field of (M,F). It is obvious that Ỹ is complete. From this the
theorem follows. ��

Since on a compact connected manifold every smooth vector field must be
complete, we have the following corollary.

Corollary 3.1. Let (M,F) be a compact connected Finsler space. The Lie algebra
of all the Killing vector fields of (M,F) is naturally isomorphic to the Lie algebra
of the full group of isometries of (M,F).

3.3 A Theorem of H. C. Wang

In the previous sections we have studied the group of isometries of a Finsler space.
A natural problem is whether there is a bound on the dimension of the Lie group
I(M,F) for an n-dimensional Finsler space (M,F). In [163], Wang proved the
following important theorem:
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Theorem 3.6 (H.C. Wang). If an n-dimensional (n > 2, n �= 4) Finsler space
(M,F) admits a group G of motions depending on r > 1

2 n(n− 1) + 1 essential
parameters, then (M,F) is a Riemannian space of constant curvature.

In view of Theorem 3.4, the above theorem can be restated as:

Theorem 3.6′ Let (M,F) be an n(n > 2,n �= 4) dimensional Finsler space. If
the group of isometries I(M,F) has dimension > 1

2 n(n− 1)+ 1, then (M,F) is a
Riemannian space of constant curvature.

Proof. Let x be an arbitrary point in M and let Ix(M) be the subgroup of I(M)
that leaves x fixed. Then by Theorem 3.3, I(M) is a Lie transformation group of
M with respect to the compact-open topology and Ix(M) is a compact subgroup of
I(M). Each φ ∈ Ix(M) induces a linear isometry dφx on the Minkowski space Tx(M),
and the correspondence φ → dφx is a homomorphism from Ix(M) into GL(Tx(M)).
It is obvious that this homomorphism is one-to-one. Denote by I∗x (M) the group
consisting of the image of this homomorphism. Let I · x be the orbit of x under the
action of I(M). If dim I(M)> 1

2 n(n− 1)+ 1, then

dim I∗x (M) = dim Ix(M) ≥ dim I(M)− dim(I · x)

>
1
2

n(n− 1)+ 1− n=
1
2
(n− 1)(n− 2).

Now fix a basis of the linear space Tx(M). Then I∗x (M) is a compact subgroup of
GL(n,R). We assert that the unit component (I∗x (M))e of I∗x (M) is a subgroup of
SL(n,R). In fact, the determinant function is continuous on GL(n,R), hence must
be bounded on the compact subgroup (I∗x (M))e. Therefore each element in (I∗x (M))e

has determinant ≤ 1. On the other hand, if g ∈ (I∗x (M))e has determinant < 1 (and
of course > 0), then g−1 ∈ (I∗x (M))e has determinant > 1, which is impossible.
This proves our assertion. Now, SL(n,R) is a connected semisimple Lie group and
SO(n) is a maximal subgroup. By the conjugacy of maximal compact subgroups
of semisimple Lie groups (see [83, p. 256]), there exists g ∈ SL(n,R) such that
g−1(I∗x (M))eg ⊂ SO(n). Note that dim(I∗x (M))e >

1
2 (n− 1)(n− 2). According to a

lemma of Montgomery and Samelson [121], if n > 2 and n �= 4, then O(n) contains
no proper subgroup of dimension > 1

2 (n− 1)(n− 2) other then SO(n). Therefore

g−1(I∗x (M))eg = SO(n). (3.1)

Consider the hypersurface g ·Sn of Tx(M) (where Sn is defined by the inner product
determined by assuming the above basis to be orthonormal). The group (I∗x (M))e

acts transitively on it. Hence F is constant on this surface. Therefore F|Tx(M) comes
from an inner product of Tx(M). Since x is arbitrary, F is Riemannian. Moreover, it
is easily seen from (3.1) that (I∗x (M))e acts transitively on the set of planes in Tx(M).
Therefore (M,F) is of constant curvature. ��
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Remark 3.1. H.C. Wang’s proof of this theorem in [163] is elegant but needs some
complicated reasoning. The above proof was given by X. Chen and the author in
[39]. This proof is simpler and more direct compared to Wang’s original one.

Remark 3.2. Recently, V.S. Matveev and M. Troyanov proved that H.C. Wang’s
theorem holds for all dimensions. They also considered the more generalized class
of Finsler metrics that are not necessary smooth. See [116] for the details.

Next we consider the n-dimensional (n > 4) Finsler spaces whose full groups of
isometries have dimension 1

2 n(n− 1) + 1. Such spaces were studied by Szabó in
[151]. We first prove a lemma.

Lemma 3.2. Let (M,F) be an n-dimensional connected Finsler space with

dim I(M,F) =
1
2

n(n− 1)+ 1,

where n > 4. Then (M,F) must be a homogeneous Finsler space; namely, the group
of isometries, I(M,F), acts transitively on M.

Proof. Denote by G the unit component of the group I(M,F). Fix a point x ∈ M and
let H be the isotropy subgroup of G at x. If the action of G on M is not transitive,
then the orbit G · x has dimension less than n. Since G · x = G/H, we have

dimH >
1
2

n(n− 1)+ 1− n=
1
2
(n− 1)(n− 2).

Note that H is isomorphic to a subgroup of the group of linear isometries of the
Minkowski space (Tx(M),F). Thus it can also be viewed as a subgroup of O(n).
Let H0 be the unit component of H. Then H0 is a connected compact subgroup of
O(n), and it has dimension larger than 1

2 (n−1)(n−2). According to Montgomery–
Samelson [121], O(n) has no connected compact subgroup of dimension >
1
2(n − 1)(n − 2) other than SO(n). Hence H0 = SO(n). Thus the action of H0

on Tx(M) is transitive on the unit sphere of Tx(M) with respect to a certain
inner product. Hence F must be a Riemannian manifold. Then (M,F) must be
a Riemannian globally symmetric space of rank one. In particular, it must be a
homogeneous Riemannian manifold. This is a contradiction. Hence the action of
G on M must be transitive. ��

By Lemma 3.2, M can be written as a coset space G/H, where G is the unit
component of the full group I(M,F) of isometries and H is the isotropy subgroup
of G at a certain x ∈ M. Moreover, F can be viewed as a G-invariant Finsler metric
on G/H. Since H is a compact subgroup of G, there exists an inner product in Tx(M)
that is invariant under the action of H. Then by Proposition 2.8, one can construct
a G-invariant Riemannian metric Q on M. Then (M,Q) is an n-dimensional
Riemannian manifold whose isometry group has dimension ≥ 1

2 n(n− 1) + 1. By
Theorem 3.6, to classify the non-Riemannian Finsler spaces, it suffices to consider
the case in which I(M,Q) has dimension 1

2 n(n− 1) + 1. Riemannian manifolds
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with the above properties have been studied by Yano [181], Kuiper [109], Obata
[125], and Kobayashi [101]. The results imply that (M,Q) and G must be one of the
following:

(1) M = R×V and G = R× I0(V ), or M = S1 ×V and G = S1 × I0(V ), where V is
one of the following: V = R

n−1, V = Hn−1 (hyperbolic space), V = Sn−1, and
V = Pn−1(R) (projective space); here I0(V ) denotes the unit component of the
full group of isometries of the standard metric on V .

(2) (M,Q) is the hyperbolic space and G is a subgroup of I(M,Q) that leaves a
family of parallel straight lines invariant.

(3) n = 8, M = R
8, and G = R

8 ·Spin(7) (semidirect product), where R
8 denotes

the translation group on the Euclidean space R
8 and Spin(7) is considered as a

subgroup of SO(8).

Therefore the problem of the classification of n-dimensional non-Riemannian
Finsler spaces whose groups of isometries have order 1

2 n(n−1)+1, n > 4, reduces
to the problem of finding all the G-invariant non-Riemannian Finsler metrics on
M in the above cases (1), (2), and (3). Note that in case (3), the subgroup Spin(7)
must be contained in the isotropy subgroup of G at the origin of R8, and the action
of Spin(7) is transitive on the unit sphere. Therefore, in this case, any G-invariant
Finsler metric on M must be Riemannian. Consequently, we have the following.

Theorem 3.7. If (M,F) is an n-dimensional (n> 4) non-Riemannian Finsler space
with dim I(M,F) = 1

2 n(n−1)+1, then M and G = I0(M,F) must be one of (1) and
(2) above.

It can be shown that in case (1), all the metrics must be Berwaldian and affinely
globally symmetric (see Chap. 5 below for the definition), and in case (2), the space
must be a BLFn-space; see [151] for the details.

3.4 Two-Point Homogeneous Spaces

In this section we study two-point homogeneous Finsler spaces. We first give the
definition.

Definition 3.2. Let (M,F) be a connected Finsler manifold. We say that (M,F)
is two-point homogeneous if for every two pairs of points (p1,q1) and (p2,q2)
satisfying d(p1,q1) = d(p2,q2), there exists an isometry σ of (M,F) such that
σ(p1) = p2 and σ(q1) = q2.

The main result of this section is the following:

Theorem 3.8. A connected two-point homogeneous Finsler space must be
Riemannian.

In the following we will give the proof of this theorem. We first consider the
special case of Minkowski spaces. In this case it is closely related to a classical
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problem in functional analysis, namely the Banach–Mazur rotation problem. This
problem can be stated as follows. Let X be a separable Banach space. Suppose
the group of linear isometries of X acts transitively on the unit sphere of X . Is X
necessarily a Hilbert space? The finite-dimensional case was solved affirmatively
by Mazur in [117]. Note that the norm in the classical sense must be reversible, but
not necessarily smooth on the slit space V\{0}.

Now we generalize Mazur’s result to the nonreversible case, but under the
assumption that the norm is Minkowskian.

Proposition 3.5. Let (Rn,F) be a Minkowski space. If (Rn,F) is two-point ho-
mogeneous when viewed as a Finsler space in the canonical way, then F is the
Euclidean norm of an inner product.

Proof. Let I denote the group of isometries of (Rn,F), and let Io be the subgroup of
I that leaves the origin o fixed. Then by Theorem 3.4, I is a Lie group with respect to
the compact-open topology and Io is a compact subgroup of I. Furthermore, from the
proof of Proposition 3.1, it is easily seen that Io consists of linear transformations of
R

n. Thus Io is a compact subgroup of GL(n,R). Let Ie
o be the unit component of Io.

Then a similar argument as in the proof of Theorem 3.6 shows that Ie
o is a subgroup

of SL(n,R). Moreover, there exists g ∈ SL(n,R) such that g−1Ie
og ⊂ SO(n). Now

consider the indicatrix

Io = {y ∈ R
n | F(y) = 1}.

Since (Rn,F) is two-point homogeneous, for any two points y1,y2 ∈I0, there exists
φ ∈ Io such that φ(y1) = y2. That is, Io is transitive on Io. We assert that Ie

o is also
transitive on Io. In fact, for any y ∈ Io, the orbit Ie

o · y is an open and closed subset
of Io · y = I0. Since Io is connected, we conclude that Ie

o · y = Io. Now for any
x1,x2 ∈ Sn−1 (here Sn−1 is defined with respect to the standard inner product of Rn),
we have

g(x1)

F(g(x1))
∈ Io,

g(x2)

F(g(x2))
∈ Io.

Thus there exists g1 ∈ Ie
o such that

g1

(
g(x1)

F(g(x1))

)
=

g(x2)

F(g(x2))
.

Then we have

g1g(x1) =
F(g(x1))

F(g(x2))
g(x2).

Thus

g−1g1g(x1) =
F(g(x1))

F(g(x2))
x2.
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By the facts that g−1g1g∈ SO(n), x1,x2 ∈ Sn−1, and F(g(x1))
F(g(x2))

> 0, one easily deduces

that F(g(x1))/F(g(x2)) = 1. Thus

g−1g1g(x1) = x2.

This means that g−1Ie
og is transitive on Sn−1, or in other words, Ie

o is transitive on the
hypersurface g ·Sn−1. Hence F is constant on g ·Sn−1. Suppose F(g ·Sn−1) = λ > 0.
Then it is easy to check that F coincides with the Euclidean norm of the inner
product defined by

〈y1,y2〉1 = λ 〈g−1 · y1,g
−1 · y2〉,

where 〈 , 〉 is the standard inner product of Rn. ��
Proof of Theorem 3.8. Let (M,F) be a connected two-point homogeneous Finsler
manifold and p ∈ M. We proceed to prove that (Tp(M),F) is a two-point ho-
mogeneous Minkowski space. Since for any y ∈ Tp(M), the parallel translate πy:
πy(x) = x− y is an isometry with respect to F and F is positively homogeneous of
degree one, we need only show that the isotropy subgroup Io(Tp(M)) of I(Tp(M))
at the origin acts transitively on the set

Io(λ ) = {x ∈ Tp(M)|F(x) = λ},

for some λ > 0. Now we select r > 0, ε > 0 such that the exponential map expp is
a C1-differmorphism from the tangent ball

Bp(r+ ε) = {x ∈ Tp(M)|F(x)< r+ ε}

onto its image. Let Sp(r) = {x ∈ Tp(M)|F(x) = r}, S +
p (r) = {q ∈ M|d(p,q) = r}.

Then we have

expp[Sp(r)] = S +
p (r).

Therefore, for any y1,y2 ∈ Io(r), we have expp(y1),expp(y2) ∈ S +
p (r). Since

(M,F) is two-point homogeneous, there exists an isometry σ of (M,F) such that
σ(p)= p and σ(expp(y1)) = expp(y2). This means that the geodesicsσ(expp(ty1)),
expp(ty2), 0 ≤ t ≤ 1, coincide. Therefore we have

dσp(y1) = y2.

Since dσp is a linear isometry of (Tp(M),F), we conclude that Io(Tp(M)) acts
transitively on Io(r). Thus (Ip(M),F) is a two-point homogeneous Minkowski
space. By Proposition 3.5, F|Tp(M) is the Euclidean norm of an inner product. Since
p is arbitrary, F is Riemannian. ��

Compact two-point homogeneous Riemannian spaces were classified by Wang
[164], and noncompact ones were classified by Tits [154]. By Theorem 3.8,
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their lists are also the classification of two-point homogeneous Finsler spaces.
The classifications of Wang and Tits show that any two-point homogeneous
Riemannian manifold must be globally symmetric. The first classification-free proof
of this result was given by Wolf in 1962; see [177] for the details.

3.5 Fixed Points of Isometries

In this section we study the zero points of Killing vector fields in a Finsler space.
Since a Killing vector field can be viewed as an infinitesimal isometry, we can also
view the zero points as fixed points of isometries.

Let (M,F) be a connected Finsler space. A submanifold M1 of M is called a
totally geodesic submanifold if for every x ∈ M1 and y ∈ Tx(M1), the maximal
geodesic γ with γ(0) = x and γ̇(0) = y is contained in M1.

Theorem 3.9. Let (M,F) be a connected Finsler space of dimension n, and ξ a
Killing vector field of (M,F). Let V be the set of points in M where ξ vanishes and
let V = ∪Vi, where the Vi are the connected components of V . Assume that V is not
empty. Then we have

1. Each Vi is a totally geodesic closed submanifold of M and the codimensions of
the Vi are even.

2. If (M,F) is forwardly complete and x ∈ Vi, y ∈ Vj with i �= j, then there is a
one-parameter family of geodesics connecting x and y. In particular, x and y are
conjugate to each other.

3. If M is compact, then the Euler characteristic number of M is the sum of the
Euler numbers of the Vi, i.e.,

χ(M) =∑χ(Vi).

Proof. (1) Suppose x ∈ V . Then we can take a neighborhood U of x such that ξ
generates a local one-parameter transformation group from U into M. That is,
there is a set of maps {ϕt | |t|< ε,ε > 0} such that each ϕt is a diffeomorphism
from U onto ϕt(U) and

ϕt(ϕs(p)) = ϕt+s(p), for p ∈U, ϕs(p) ∈U, |t + s|< ε.

Moreover, for any p ∈U , ξ (p) is just the initial vector of the curve ϕt(p). Since
ξ (x) = 0, every ϕt keeps x fixed. Therefore the differentials (dϕt)|x, |t|< ε , are
linear automorphisms of the tangent space Tx(M). Since ϕt is a (local) isometry,
(dϕt)|x preserves the length of every vector in Tx(M). Then Proposition 3.1
implies that (dϕt)|x is a linear isometry of the Minkowski space (Tx(M),F |x).
Let L denote the group of linear isometries of (Tx(M),F |x). Then L is a compact
subgroup of the general linear group GL(Tx(M)). Fix a basis {e1,e2, . . . ,en}
of Tx(M). Then GL(Tx(M)) is identified with the group GL(n,R) of all n× n
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real invertible matrices. Since L is a compact subgroup of GL(n,R), the unit
component L0 of L must be contained in the subgroup SL(n,R). Since SL(n,R)
is a connected semisimple Lie group and SO(n) is a maximal subgroup of
SL(n,R), there exists g ∈ SL(n,R) such that g−1L0g ⊂ SO(n). Now consider
the subset {(dϕt)|x} of L. It is obvious that it is contained in L0. Thus
g−1{(dϕt)|x}g is contained in a one-parameter subgroup of SO(n). Since every
pair of maximal connected commutative subgroups (i.e., the maximal tori) are
conjugate and the matrices of the form

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cosθ1 sinθ1

−sinθ1 cosθ1
. . .

cosθr sinθr

−sinθr cosθr

In−2r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, r ≥ 0, θi ∈ R,

constitute a maximal torus of SO(n), there are g1 ∈ SO(n), s ≥ 0, and γi ∈
R,γi �= 0, such that

g−1
1 (g−1{(dϕt)|x}g)g1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

costγ1 sin tγ1

−sin tγ1 costγ1
. . .

costγs sin tγs

−sin tγs costγs

In−2s

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Thus there is a basis {w1,w2, . . . ,wn} of Tx(M) such that the matrix of (dϕt)|x
under this basis is like the right-hand side of the above equation.

If n− 2s = 0, then n is even and x is an isolated fixed point of ϕt , hence an
isolated zero point of ξ . Suppose n−2s> 0. Then for every vector v ∈ S, where
S is the span of w2s+1,w2s+2, . . . ,wn, the geodesic emanating from x with the
direction v must be kept fixed by the one-parameter group ϕt . Now we assert
that there exists a neighborhoodW of x such that the set of such geodesics forms
an (n− 2s)-dimensional submanifold W ′ of W . Let c be a positive number and

B+
x (c) = {y ∈ M | d(x,y)< c}, B−

x (c) = {y ∈ M | d(y,x) < c}.

Then for sufficiently small c, the exponential map is a C1 diffeomorphism from
Bx(c) = {v ∈ Tx(M) | F(v) < c} onto B+

x (c). Therefore the exponential map
is a C1 diffeomorphism from S∩Bx(c) onto exp(S∩Bx(c)). Hence the latter is
an (n− 2s)-dimensional C1 submanifold of B+

x (c). To prove our assertion we
need only proceed to take c so small that every pair of points in B+

x (c)∩B−
x (c)

can be joined by a unique minimizing geodesic. Fix an arbitrary point z in
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exp(S∩Bx(c))∩(B+
x (c)∩B−

x (c)) and consider the exponential map at z. Since
each ϕt (take c small enough that B+

x (c) ⊂ U) keeps z fixed, it is easily seen
that there exists an (n− 2s)-dimensional subspace S′ of Tz(M) such that exp is
a (smooth) diffeomorphism from S′ ∩Bz(c)−{0} onto exp(S′ ∩Bz(c)−{0}),
which is a neighborhood of x in exp(S∩Bx(c)). This proves our assertion. Now
we show that any zero point of ξ in B+

x (c)∩B−
x (c) must be in exp(S∩Bx(c)).

Let y be a zero point of ξ in B+
x (c)∩B−

x (c). Select a geodesic τ joining x and
y. Since x and y are zero points of ξ , ϕt keeps x and y fixed. Hence ϕt must keep
the geodesic τ pointwise fixed. Therefore the initial vector of τ at x must be in
S. This proves that y is in exp(S∩Bx(c)). Hence each Vi is a closed submanifold
and the codimension is even. From the above arguments we easily see that each
Vi must be a totally geodesic submanifold.

(2) Suppose x ∈ Vi, y ∈ Vj, i �= j, and (M,F) is forwardly complete. By the Hopf–
Rinow theorem, there is a geodesic τ joining x and y. By Proposition 3.1.7, the
restriction of the Killing vector field ξ to τ is a Jacobi field along τ . Hence ξ |τ
is the variation vector field of a one-parameter family of geodesics. Since x and
y are zero points of ξ , this family of geodesics can be taken to start from x and
to end at y. However, since i �= j, this family of geodesics cannot be left fixed
by the local transformation group generated by ξ . Otherwise there would be
a curve consisting of zero points of ξ and joining Vi and Vj, contradicting the
definition of Vi.

(3) Since M is compact, every vector field on M is complete. Hence ξ generates
a global one-parameter group of transformations ϕt , −∞ < t < ∞. Every ϕt is
an isometry of the Finsler space (M,F). Let G be the full group of isometries
of (M,F). Then G is a Lie transformation group of M, and for every x ∈ M,
the isotropic subgroup Gx of G at x is a compact subgroup of G. Since M is
compact, G is a compact Lie group. Let G0 be the unit component of G and dμ
the standard normalized bi-invariant Haar measure of G0. Fix any Riemannian
metric h on M and for x ∈ M, v1,v2 ∈ Tx(M) define

h1(x)(v1,v2) =
∫

G0

h(g(x))(dg|x(v1),dg|x(v2))dμ(g).

Then it is easily seen that h1 is a Riemannian metric on M. In fact, the only
point we need to check is the smoothness of h1. But this follows easily from
the smoothness of the action of G on M. By definition, h1 is invariant under the
action of G0. Thus every element of G0 is an isometry of h1. It is easily seen
that the one-parameter subgroup {ϕt} must be contained in G0. Thus for any t,
ϕt is an isometry of the Riemannian metric h1. This means that the vector field
ξ is also a Killing vector field with respect to the Riemannian metric h1. This
reduces the proof of (3) to the Riemannian case.

Now we prove (3) under the assumption that F is a Riemannian metric. The
following proof is adapted from [99].

Let ε be a small positive number. We define Sx to be the set of points y in M such
that there is a geodesic from x to y of length not greater than ε and normal to Vi at x.
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Thus, to every point x of Vi, we attach a solid sphere Sx with center x and radius
ε that is normal to Vi and has dimension 2r (equal to the codimension of Vi). Let
Ni = ∪x∈ViSx. Taking ε very small, we may assume that Ni ∩Nj is empty if i �= j
and that every point in Ni lies exactly in one Sx. Let N = ∩Ni and denote by K the
closure of M−N. Then N ∩K is the boundary dN of N. We now prove a lemma.

Lemma 3.3. χ(M) = χ(N)+ χ(K)− χ(dN).

Proof. It is easy to check that if the sequence

→ Ak → Bk −Ck −Ak−1 → Bk−1 → ···
of vector spaces is exact, then we have

∑= (−1)k dimAk −∑(−1)k dimBk +∑(−1)k dimCk = 0.

Applying this formula to the exact sequences of homology groups induced by

K → M → (M,K)

and

dN → N → (N,dN),

we obtain

χ(K)− χ(M)+ χ(M,K) = 0

and

χ(dN)− χ(N)+ χ(N,dN) = 0.

By the excision axiom, (M,K) and (N,dN) have the same relative homology.
Therefore

χ(M,K) = χ(N,dN).

This completes the proof of the lemma.

The 1-parameter group generated by xi has no fixed point in K and none in dN.
By Lefschetz’s theorem, χ(K) = χ(dN) = 0. Hence χ(M) = χ(N). Since Ni is a
fiber bundle over Vi, with solid sphere S as fiber, we have

χ(Ni) = χ(Vi)χ(S) = χ(Vi).

Therefore we have

χ(M) =∑χ(Ni) =∑χ(Vi). ��

Remark 3.3. The Riemannian case of Theorem 3.9 was obtained by Kobayashi in
[99]. However, Kobayashi’s original proof does not apply to the Finslerian case. The
above proof was given by the author in [48].
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Theorem 3.9 has several interesting corollaries.

Corollary 3.2. Let k be an abelian (finite-dimensional) Lie algebra consisting of
Killing vector fields, and V the set of points on which every element of k vanishes.
Then the same conclusions as in the main theorem hold.

Corollary 3.3. Under the same assumptions as in Corollary 3.2, if (M,F) is a
globally symmetric (resp. locally symmetric) Finsler space, then so is each Vi.

Remark 3.4. A Finsler space (M,F) is called globally symmetric if each point is
the isolated fixed point of an involutive isometry. It is called locally symmetric if
for every x ∈ M there exists a neighborhood U of x such that the local geodesic
symmetry is an isometry on U (see Chap. 5 below).

Corollary 3.4. Under the same assumptions as in Corollary 3.2, if (M,F) is
forward complete and the flag curvature is nonpositive, then V is either empty or
connected.

Corollary 3.5. Let (M,F) be a compact Finsler space of dimension 2m. Suppose a
torus group of dimension m acts on M differentiably and effectively. Then the Euler
number of M is zero or positive according as the fixed point V is empty or not. If M
is orientable and V is nonempty, then the Euler number of M is ≥ 2.

These corollaries can be proved similarly as in the Riemannian case. We omit the
details here; see [99].



Chapter 4
Homogeneous Finsler Spaces

In this chapter we study homogeneous Finsler spaces. Let (M,F) be a connected
Finsler space. Theorem 3.4 asserts that the group of isometries of (M,F), denoted
by I(M,F), is a Lie transformation of M. We say that (M,F) is a homogeneous
Finsler space if the action of I(M,F) on M is transitive. The purpose of this chapter
is to give an exposition of the main results obtained by the author and collaborators
on homogeneous Finsler spaces.

In the Riemannian case, there are numerous articles and books on this topic; see,
for example, Ambrose–Singer [8], Kobayashi–Nomizu [102], Wolf [172, 174, 175,
177], just to name a few. Moreover, homogeneous Einstein–Riemannian manifolds
have been studied rather extensively; see Besse’s survey in [28] and the work of
Ziller [182], Wang–Ziller [165, 166], and the references therein. One can also find
more recent developments of the field in [75, 80, 111], etc.

Our first goal in this chapter is to give an algebraic description of a homo-
geneous Finsler space. To this end we introduce two new algebraic notions in
Sect. 4.1: Minkowski Lie pairs and Minkowski Lie algebras. Then, in Sect. 4.2,
we present a sufficient and necessary condition for a coset space to have invariant
non-Riemannian Finsler metrics. In Sect. 4.3, we apply our result to study the
degree of symmetry of closed manifolds. In particular, we prove that if a closed
manifold is not diffeomorphic to a rank-one Riemannian symmetric space, then
its degree of symmetry can be realized by a non-Riemannian Finsler metric. In
Sect. 4.4, we study homogeneous Finsler spaces of negative curvature and prove
that every homogeneous Finsler space with nonpositive flag curvature and negative
Ricci scalar must be simply connected. Finally, in Sect. 4.5, we study fourth-root
homogeneous Finsler metrics. As an explicit example, we give a classification of all
the invariant fourth-root Finsler metrics on the Grassmannian manifolds.

There are many related topics that are not involved in this chapter, but deserve to
be studied carefully. Homogeneous Einstein–Finsler spaces are not dealt with here.
In fact, up to now, there have appeared only very few results in the literature, mainly
on some special types of Finsler metrics; see Sects. 7.3 and 7.4 for some information
on homogeneous Einstein–Randers metrics. On the other hand, the formulas for flag
curvature and Ricci scalar of homogeneous Finsler spaces have not been obtained

S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics,
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up to now. A deep study of this problem would lead to many interesting and
important results. For example, it would be very nice to give a classification of
homogeneous Finsler spaces of constant flag curvature. Note that by the theorem
of Akbar–Zadeh (see Sect. 1.8), a homogeneous Finsler space of negative constant
flag curvature must be Riemannian, since the Cartan tensor and Landsberg tensor of
a homogeneous Finsler space must be bounded. Similarly, a homogeneous Finsler
space of vanishing flag curvature must be locally Minkowski. Therefore one need
consider only the homogeneous Finsler spaces of positive constant flag curvature.

The standard references of this chapter are [9, 30, 32, 50, 53, 56, 61, 63, 72, 114];
see [52, 68, 69, 90, 107, 108, 110, 134] for further study on related topics.

4.1 Algebraic Description

In this section, we will give an algebraic description of the invariant Finsler metrics
on homogeneous manifolds (not necessarily reductive). Similar to the proof of
Proposition 2.8, we can easily prove the following result.

Proposition 4.1. Let G be a Lie group and H a closed subgroup of G, LieG = g,
LieH = h. Then there is a one-to-one correspondence between the G-invariant
Finsler metric on G/H and the Minkowski norm on the quotient space g/h satisfying

F(Adg/h(h)(w)) = F(w), ∀h ∈ H,w ∈ g/h,

where Adg/h is the representation of H on g/h induced by the adjoint representation
of H on g.

Corollary 4.1. Let G/H be a reductive homogeneous manifold with a reductive
decomposition g = h+m. Then there is a one-to-one correspondence between the
G-invariant Finsler metric on G/H and the Minkowski norm on m satisfying

F(Ad(h)w) = F(w), ∀h ∈ H, w ∈m.

To state the next result, we first give a definition.

Definition 4.1. Let g be a real Lie algebra and h a subalgebra of g. If F is a
Minkowski norm on the quotient space g/h such that

gy(adg/h(w)u,v)+ gy(u,adg/h(w)v)+ 2Cy(adg/h(w)(y),u,v) = 0,

where y,u,v ∈ g/h, y �= 0, w ∈ h, gy is the fundamental tensor of F , and Cy is the
Cartan tensor of F , then {g,h,F} (or simply {g,h}) is called a Minkowski Lie pair.
In particular, if F is a Euclidean norm, then {g,h} is called a Euclidean Lie pair.

Theorem 4.1. Let G be a Lie group and H a closed subgroup of G, LieG = g,
LieH = h. Suppose there exists an invariant Finsler metric on the homogeneous
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manifold G/H. Then there exists a Minkowski norm F on the quotient space g/h
such that {g,h,F} is a Minkowski Lie pair. On the other hand, if H is connected
and there exists a Minkowski norm on g/h such that {g,h,F} is a Minkowski Lie
pair, then there exists an invariant Finsler metric on G/H.

Proof. Let F be an invariant Finsler metric on G/H. Identifying g/h with To(G/H),
where o is the origin of G/H, we get a Minkowski norm on g/h (still denoted by F).
Since F is G-invariant, we have

F(Adg/h(h)(u)) = F(u), ∀h ∈ H,u ∈ g/h.

By the definition of gy, we have

gy(u,v) = gAdg/h(h)(y)(Adg/h(h)(u),Adg/h(h)(v)), ∀y,u,v ∈ g/h, y �= 0, h ∈ H.

For w ∈ h, considering the one-parameter subgroup exptw of H, we get

gy(u,v) = gAdg/h(exp tw)(y)(Adg/h(exptw)(u),Adg/h(exptx)(v)), ∀t ∈ R.

Taking the derivative with respect to t, we obtain

gy(adg/h(w)u,v)+ gy(u,adg/h(w)v)+ 2Cy(adg/h(w)(y),u,v) = 0.

Therefore {g,h,F} is a Minkowski Lie pair. On the other hand, suppose F is a
Minkowski norm on g/h such that {g,h,F} is a Minkowski Lie pair. Given w ∈ h,
y,u,v ∈ g/h, y �= 0, we define a function

ψ(t) = gAdg/h(exptw)(y)(Adg/h(exptw)(u),Adg/h(exptw)(v)).

Then for any t0 ∈ R we have

ψ ′(t0) = gAdg/h(expt0w)(y)(adg/h(t0w)(Adg/h(expt0w)(u)),Adg/h(expt0w)(v))

+gAdg/h(exp t0w)(y)(Adg/h(expt0w)(u),adg/h(w)(Adg/h(expt0w)(v)))

+2CAdg/h(exp t0w)(y)(adg/h(w)(Adg/h(expt0w)(y)),u,v) = 0.

Therefore the function ψ is a constant. Hence

gy(u,v) = gAdg/h(exptw)(y)(Adg/h(exptw)(u),Adg/h(exptw)v), ∀t ∈ R.

As a connected subgroup, H is generated by elements of the form exptw, w ∈ h,
t ∈ R. Therefore for any h ∈ H, we have

gy(u,v) = gAdg/h(h)(y)(Adg/h(h)(u),Adg/h(h)v).
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To complete the proof, we need some computation. Let α1,α2, . . . ,αn be a basis of
the linear space g/h. For u ∈ g/h−{0}, define gi j(u) = gu(αi,α j). Then we have

F2(u) =
n

∑
i, j=1

gi j(u)u
iu j,

where u = ∑uiαi. Now for any h ∈ H, we have

F2(Adg/h(h)(u)) =
n

∑
i, j=1

gi j(Adg/h(h)(u))ū
iū j,

where ūi, i = 1,2, . . . ,n, are defined by Adg/h(h)(u) = ∑ ūiαi. Let (mi j)n×n be
the matrix of Adg/h(h) under the basis α1, . . . ,αn, and (mi j)n×n the inverse of
(mi j). Then

ūi =
n

∑
k=1

mikuk.

Now

gi j(Adg/h(h)(u)) = gAdg/h(h)(u)(αi,α j)

= gu((Adg/h(h))
−1αi,(Adg/h(h))

−1α j)

= gu

( n

∑
k=1

mikαk,
n

∑
l=1

m jlαl

)
.

Therefore, taking into account the fact that gu is bilinear, we have

F2(Adg/h(h)(u)) =
n

∑
i, j=1

gu

( n

∑
k=1

mikαk,
n

∑
l=1

m jlαl

)( n

∑
s=1

misu
s
)( n

∑
t=1

m jtu
t
)

=
n

∑
i, j=1

gu(αi,α j)u
iu j.

Thus

F2(Adg/h(h)(u)) = F2(u).

Since F ≥ 0, we have

F(Adg/h(h)(u)) = F(u).

Therefore, by the correspondence of Proposition 4.1, there exists an invariant Finsler
metric on G/H. ��

To find a sufficient and necessary condition for G/H to have invariant Finsler
metrics, we first make an observation.
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Theorem 4.2. Let G be a Lie group, H a closed subgroup of G. Suppose there exists
an invariant Finsler metric on G/H. Then there exists an invariant Riemannian
metric on G/H.

Proof. Let o=H be the origin of G/H and To(G/H) the tangent space of G/H at o.
Then F defines a Minkowski norm on To(G/H) (still denoted by F). The linear
isotropic group Ad(H) = {Adg/h(h) | h ∈ H} keeps the indicatrix

Io = {x ∈ To(G/H) | F(x) = 1}

invariant. Let G1 be the subgroup of the general linear group GL(To(G/H))
consisting of the elements keeping Io invariant. Then G1 is a compact Lie group and
Ad(H) is a subgroup of G1. Therefore, by Weyl’s unitary trick, there exists a G1-
invariant inner product 〈 , 〉 on To(G/H). Then 〈 , 〉 is Ad (H)-invariant. Therefore,
by Proposition 2.8, there exists a G-invariant Riemannian metric on G/H. ��

By Proposition 2.9, we have the following corollary.

Corollary 4.2. Let G be a Lie group and H a closed subgroup of G such that G
acts almost effectively on G/H. Define LieG = g, LieH = h. Suppose there exists a
G-invariant Finsler metric on G/H and h contains no nonzero ideal of g. Then

1. The Killing form Bh of h is negative semidefinite.
2. The restriction of the Killing form of g to h is negative definite.

Next we consider invariant Finsler metrics on Lie groups. Let G be a Lie group.
Then we can write G = G/H with H = {e} and the action is the left translation of
G. Therefore, by Proposition 4.1, every Minkowski norm on g can produce a left-
invariant Finsler metric on G. It is easy to see that there exist non-Riemannian ones
if dimG ≥ 2. One can also consider the right action. However, we are interested in
bi-invariant Finsler metrics. For this purpose, we consider the product group G×G
and the subgroup

G∗ = {(g,g) ∈ G×G | g ∈ G}.
Then G×G/G∗ is isomorphic to G under the map

(g1,g2)G
∗ �→ g1g−1

2 .

Under this isomorphism, a Finsler metric on G is bi-invariant if and only if the
corresponding Finsler metric on G×G/G∗ is G×G-invariant. Now G×G/G∗ can
be viewed as a reductive homogeneous manifold with the reductive decomposition

(u,v) =

(
1
2
(u+ v),

1
2
(u+ v)

)
+

(
1
2
(u− v),−1

2
(u− v)

)
, u,v ∈ g.
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Let h = {(u,u) ∈ g+ g | u ∈ g}, m = {(u,−u) | u ∈ g}. Then by Theorem 4.1 we
have the following result.

Proposition 4.2. Let G be a connected Lie group. Then there is a one-to-one
correspondence between the bi-invariant Finsler metric on G and the Minkowski
norm F on m such that {g+g,h,F} is a Minkowski Lie pair.

Since h is isomorphic to g as a Lie algebra under the map σ : (u,u) �→ u and m
is linear isomorphic to g as a vector space under the map τ : (u,−u) �→ u, we can
restate Proposition 4.2 without introducing h and m. We first give a definition.

Definition 4.2. Let g be a real Lie algebra and F a Minkowski norm on g. Then
{g,F} (or simply g) is called a Minkowski Lie algebra if the following condition is
satisfied:

gy([w,u],v)+ gy(u, [w,v])+ 2Cy([w,y],u,v) = 0,

where y ∈ g−{0}, w,u,v ∈ g.

Remark 4.1. In the theory of Lie algebras, we have the notion of quadratic Lie
algebras. Let g be a Lie algebra over a field F and let B be a nondegenerate
symmetric bilinear form on g. Then (g,B) is called a quadratic Lie algebra if the
following condition is satisfied:

B([z,x],y)+B(x, [z,y]) = 0, ∀ x,y,z ∈ g.

It is easy to see that the notion of Minkowski Lie algebras is the natural generaliza-
tion of quadratic Lie algebras. Quadratic Lie algebras have important applications
in physics.

Remark 4.2. In [118], Mestag studied invariant Lagrangian systems on a Lie group.
It is proved that bi-invariant Lagrangian systems on a Lie group can also be
described by the notion of Minkowski Lie algebras. This is an interesting application
of Finsler geometry to mechanics and physics.

Proposition 4.3. Let g, h, m be as above. Then a Minkowski norm F on m makes
{g+g,h,F} a Minkowski Lie pair if and only if the induced (by τ) Minkowski norm
on g makes {g,F} a Minkowski Lie algebra.

The proof is easy and we omit it.
In summarizing, we have proved the following:

Theorem 4.3. Let G be a connected Lie group. Then there exists a bi-invariant
Finsler metric on G if and only if there exists a Minkowski norm F on g such that
{g,F} is a Minkowski Lie algebra.

Finally, we point out that the new notions of Minkowski Lie pairs and Minkowski
Lie algebras may be generalized to the nondegenerate case; see [63]. It will be
interesting to generalize this notion to Lie algebras over an arbitrary field and study
such structures from the purely algebraic point of view.
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4.2 Existence Theorem

In this section we consider the existence problem of invariant Finsler metrics on a
coset space of a Lie group. In particular, we will obtain a sufficient and necessary
condition for a homogeneous manifold G/H, where G is a connected Lie group
and H is a compact subgroup of G, to admit G-invariant non-Riemannian Finsler
metrics.

We first define the notion of a Minkowski representation of a Lie group. This will
be useful for describing invariant Finsler metrics on homogeneous manifolds.

Definition 4.3. Let G be a compact Lie group. A triple (V,ρ ,F) is said to be a
Minkowski representation of G, where V is a finite-dimensional real vector space,
ρ is a continuous homomorphism from G to GL(V ), and F is a Minkowski norm on
V such that F(ρ(g)(v)) = F(v), ∀g ∈ G and v ∈V . Two Minkowski representations
(V1,ρ1,F1) and (V2,ρ2,F2) of G are called isomorphic if there exists a linear
isomorphism ϕ from V1 onto V2 such that ϕ ◦ ρ1(g) = ρ2(g) ◦ϕ for every g ∈ G,
and F1(v) = F2(ϕ(v) for every v ∈V1.

If the Minkowski norm F is a Euclidean norm, namely, F(v) =
√〈v,v〉, v ∈ V ,

for some inner product 〈 , 〉, then (V,ρ) is an orthogonal representation of G on
the inner product space (V,〈 , 〉). Therefore, Minkowski representation is a natural
generalization of orthogonal representation.

Corollary 4.1 can be restated as follows.

Theorem 4.4. Let G/H be a coset space of a Lie group G with H compact. Suppose

g= h+m

is a reductive decomposition of the Lie algebra. Then there exists a one-to-one
correspondence between the invariant Finsler metric on G/H and the Minkowski
norm F on m such that (m,Ad,F) is a Minkowski representation of H.

In the next chapter we will define the infinitesimal version of Minkowski
representations. We now give some examples of Minkowski representations.

Example 4.1. Let G be a Lie group and H a closed connected subgroup of G,
Lie G = g, Lie H = h. Suppose F is a Minkowski norm on the quotient space g/h
such that (g,h,F) is a Minkowski Lie pair. That is,

gy(adg/h(w)(u),v)+ gy(u,adg/h(w)v)+ 2Cy(adg/h(w)y,u,v) = 0,

for every y(�= 0), u,v ∈ g/h, w ∈ h, where adg/h is the representation of h on g/h
induced by the adjoint representation. It is proved in Theorem 4.1 that in this case
(g/h,Adg/h,F) is a Minkowski representation of H.
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Example 4.2. Let us give an explicit example of Minkowski representation of the
classical simple group G = SU(n) with n ≥ 3. On the Lie algebra su(n), for each
positive real number λ , we define

Fλ (A) =

√√√√√
n

∑
i=1

|μi(A)|4 +λ
n

∑
i=1

|μi(A)|2, A ∈ su(n),

where μi(A), i= 1,2, . . . ,n, are all the eigenvalues of A and | · | is the length function.
It is easy to check that (su(n),Ad,Fλ ) is a series of Minkowski representations of G
that are not isomorphic to each other (see also[16, p. 21]).

The following result is useful for studying Minkowski representations.

Theorem 4.5. Let G be a compact Lie group and (V,ρ ,F) a Minkowski represen-
tation of G. Then there exists an inner product 〈 , 〉 on V such that (V,ρ ,〈 , 〉) is an
orthogonal representation of G.

Proof. The proof of this theorem is similar to that of Theorem 4.2. Just note that
ρ(G) is contained in the group K of linear isometries of (V,F), which is a compact
subgroup of GL(V ). ��

We now consider the condition for the existence of Minkowski representations.
By Theorem 4.5, we need only treat the case that the Lie group G has an orthogonal
representation on a Euclidean space V and find the condition for the existence of
a non-Euclidean Minkowski norm on V that makes the orthogonal representation a
Minkowski representation. We first prove the following result.

Theorem 4.6. Let G be a compact Lie group and (V,ρ ,〈 , 〉) an orthogonal
representation of G. If the representation V is not irreducible, then there exists
a non-Euclidean Minkowski norm F on V such that (V,ρ ,F) is a Minkowski
representation of G.

Proof. By the assumption, V has a decomposition

V =V0 +V1 + · · ·+Vn,

where V0 is the subspace of fixed points of G and Vi, i = 1,2, . . . ,n,s are irreducible
invariant subspaces. We have the following cases:

1. n ≥ 1. In this case we construct a Minkowski norm F on V as follows:

F(w) =

√
|w|2 + s

√
|w0|2s + |w1|2s + · · ·+ |wn|2s,

where | · | denotes the length with respect to 〈 , 〉, w = w0 + · · ·+ wn is the
decomposition of w corresponding to the above decomposition of V , and s is
an integer greater than 2. Then it is easy to check that F satisfies the condition.

2. n = 0. Then dimV0 ≥ 2. In this case any non-Euclidean Minkowski norm F0 on
V0 is invariant under G.

This completes the proof of the theorem. ��
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Next we consider the irreducible case. We first prove the following theorem.

Theorem 4.7. Let K be a compact Lie group and ρ : K → O(V ) an orthogonal
representation of K on a Euclidean space V . Suppose the representation (V,ρ) is
irreducible. Then there exists a non-Euclidean Minkowski norm F on V such that
(V,ρ ,F) is a Minkowski representation of K if and only if the restriction of the
action of K on the unit sphere of V is nontransitive.

Proof. First consider the case in which K is connected. Suppose the action of
K on the unit sphere S is nontransitive. We assert that there exists a K-invariant
nonnegative smooth function f on S that is not a constant. In fact, let x and y be two
points in S that do not lie in the same orbit of the action of K on S. Then the orbits
K · x and K · y are two closed subsets of S that do not intersect. By the theorem of
partitions of unity, there exists a nonnegative smooth function f1 on S that is equal
to 1 on K ·x and is equal to 0 on K ·y. Let dν be the standard normalized bi-invariant
Haar measure of K and define

f (z) =
∫

K
f1(k(z))dν(k), z ∈ S.

Then f is a smooth function on S that is invariant under the action of K. It is obvious
that f is also equal to 1 on K · x and equal to 0 on K · y; hence it is not a constant
function. Now we consider the function F on V \ {0} defined by

F(u) = |u| f
(

u
|u|
)
, u ∈V \ {0}.

Then F is a smooth function on V \{0} that is positively homogeneous of degree 1.
Fix an orthonormal basis v1,v2, . . . ,vn of V and consider the Hessian matrix

M(w) =

[
1
2
[F2]viv j

]∣∣∣∣
w
.

The entries of M are smooth functions on V \ {0} that are positively homogeneous
of degree 0, that is, M(λw) = M(w), ∀λ > 0. Now let λ1(w),λ2(w), . . . ,λn(w) be
all the eigenvalues of M(w). Then we have

n

∑
i=1

|λi(w)| =
√

n

∑
i=1

|λi(w)|2 + 2∑
i< j

|λi(w)||λ j(w)|

≤ √
n

√
n

∑
i=1

(λi(w))2

=
√

n
√

tr(M(w)2).
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Since the function tr((M(w)2) is smooth on the compact set S, it is bounded on S.
Hence there exists a positive number c0 such that

n

∑
i=1

|λi(w)| ≤ c0, ∀w ∈ S.

Now given any positive number c, we define a function Fc by

Fc(u) =
√

F2(u)+ (c+ c0)〈u,u〉, u ∈V \ {0}.

Then the Hessian of Fc is

M1 = M+(c+ c0)In,

where In is the n × n identity matrix. By the above arguments, M1 has positive
eigenvalues everywhere. Therefore, Fc is a Minkowski norm on V . It is obvious
that Fc is invariant under the action of K. Hence (V,ρ ,Fc) is a Minkowski
representation of K.

Now we prove that Fc is non-Euclidean for every c > 0. Suppose, to the
contrary, that this is not true. Then there exists an inner product 〈 , 〉′ such that
Fc(u) =

√〈u,u〉′, u ∈V \ {0}. Since Fc is invariant under K, the inner product 〈 , 〉′
is invariant under K. Since the representation is irreducible, by Schur’s lemma there
must be a positive number b such that 〈 , 〉′ = b〈 , 〉. Then we have

F2(u)+ (c+ c0)〈u,u〉= b〈u,u〉, u ∈V \ {0}.

In particular, on the unit sphere S we have

F2(w) = b− c− c0, w ∈ S.

This means that F is a constant on S, contradicting the construction of f .
Conversely, if the action of K on S is transitive, then every K-invariant function

on S must be constant. In particular, every K-invariant Minkowski norm on V must
be a positive multiple of the Euclidean norm

√〈 , 〉. This completes the proof of the
theorem in the connected case.

Next we consider the case in which K is not connected. The proof for this case
is similar to that of the connected case but needs some modifications. Suppose the
action of K on S is not transitive. Select x,y in S that do not lie in the same orbit
of K and define a smooth function f1 on S which is equal to 1 on K · x and equal
to 0 on K · y. Let K0 be the unity connected component of K and dμ the standard
normalized bi-invariant Haar measure of K0. Define

f2(z) =
∫

K0

f1(k(z))dμ(k), z ∈ S.
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Moreover, let k0K0,k1K0,k2K0, . . . ,kmK0 (k0 = e) be all the distinct elements of the
quotient group K/K0. Define

f (z) =
1

m+ 1

m

∑
i=0

f2(ki(z)), z ∈ S.

Then it is easily seen that f is a smooth function on S that is also equal to 1 on
K · x and equal to 0 on K · y. Further, it is easy to check that f is invariant under the
action of K. Using the function f , we can prove the theorem in the nonconnected
case similarly as in the connected case. ��

As an application of Theorem 4.7, we give a sufficient and necessary condition
for a coset space to admit invariant non-Riemannian Finsler metrics. Suppose G/H
is a coset space of a connected Lie group G with H compact. Then the Lie algebra
g of G has a reductive decomposition

g= h+m (direct sum of subspaces),

where h =LieH, and Ad(h)(m) ⊂ m, ∀h ∈ H. Since H is compact, there exists
an inner product 〈 , 〉 on m that makes the linear isotropic representation into an
orthogonal representation. Let S denote the unit sphere of m with respect to the
inner product 〈 , 〉.
Theorem 4.8. Let G, H, m, 〈 , 〉, and S be as above. Then there exists a G-invariant
non-Riemannian Finsler metric on the coset space G/H if and only if the restriction
of the linear isotropic representation of H on m to the sphere S is not transitive.

Proof. By Theorem 4.4, there exists a G-invariant non-Riemannian Finsler metric
on G/H if and only if there exists a non-Euclidean Minkowski norm F on m such
that (m,Ad,F) is a Minkowski representation of H. Hence the theorem follows from
Theorem 4.7. ��

4.3 The Degree of Symmetry of Closed Manifolds

In this section we will use the results in the previous sections to study the
relationship between Finsler metrics and the degree of symmetry of a closed
manifold.

Let M be a connected compact smooth manifold. The degree of symmetry of M
is defined to be the maximum of the dimensions of the groups of isometries of all
possible Riemannian metrics on M. This notion was introduced by Hsiang. By the
Meyers–Steenrod theorem, the degree of symmetry of M is equal to the maximum
of the dimensions of Lie groups that act smoothly and effectively on it. The degree
of symmetry is an important geometric invariant of closed manifolds. Since the
introduction of this invariance, many interesting results have been established; see,
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for example, [84,85,112,178]. One of the most important problems in this direction
is to determine the degree of symmetry of an explicit manifold. Let M be an
n-dimensional connected compact manifold and denote its degree of symmetry by
N(M). Then by classical results, one easily deduces that N(M) ≤ 1

2 n(n+ 1), with
equality holding if and only if M admits a Riemannian metric of positive constant
sectional curvature. As another explicit example, Hsiang proved that the degree
of symmetry of the homogeneous manifold SO(n)/SO(n− 2) (the second Stiefel
manifold), with n odd and≥ 20, is equal to 1

2 n(n−1)+1, and its degree of symmetry
can be realized only by its natural metric [84]. However, up to now only very few
results have been obtained on explicit manifolds.

The purpose of this section is to study the relationship between Finsler metrics
and the degree of symmetry of a closed (i.e., connected compact without boundary)
manifold. Let F be a Finsler metric on a closed manifold M. By a simple
observation, we first prove the following.

Theorem 4.9. The degree of symmetry of a compact connetced manifold M is equal
to the maximum of the dimensions of the groups of isometries of all the possible
Finsler metrics on M.

Let F be a Minkowski norm on a real vector space V . Then by Proposition 3.1 and
Theorem 3.3, the group of linear isometries of F , denoted by L(V,F), is a compact
subgroup of GL(V ). Hence the unity component of L(V,F), L0(V,F), is a connected
compact subgroup of SL(V ). Fix an inner product on V . Then by the conjugacy of
compact subgroups of semisimple Lie groups, L0(V,F) is conjugate to a subgroup
of SO(V ). We assert that dimL0(V,F) = dimSO(V ) if and only if F is a Euclidean
norm. In fact, if dimL0(V,F) = 1

2 n(n− 1), where n = dimV , then by Lemma 3.2,
the action of L0(V,F) on the indicatrix

I = {w ∈V | F(w) = 1}

is transitive (see [163]). On the other hand, as a compact Lie group, L0(V,F)
also leaves an inner product 〈 , 〉 invariant. Then it is easy to see that F is equal
to a positive multiple of the Euclidean norm

√〈 , 〉. This proves the assertion.
This fact means that Euclidean norms possess more symmetry than non-Euclidean
Minkowski norms. Intuitively, this fact may imply that on a closed manifold
the most symmetric Finsler metrics should be Riemannian metrics. However, the
following theorem says that this intuition is not true in almost all cases.

Theorem 4.10. Let M be a connected compact manifold and N(M) the degree
of symmetry of M. If M is not diffeomorphic to a compact rank-one Riemannian
symmetric space, then there exists a non-Riemannian Finsler metric on M such that
the group of isometries of F, I(M,F), has dimension N(M).

The rank-one Riemannian symmetric spaces include the spheres Sn, the real
projective spaces RPn, the complex projective spaces CPn, the quaternion projective
spaces HPn, and the Cayley projective plane CayP2, all endowed with their natural
metrics ([164]; see also [83]). These are the most symmetric compact Riemannian
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manifolds. Thus the merit of Theorem 4.10 is to assert that one can find non-
Riemannian Finsler metrics that are most symmetric among all the Finsler metrics
(including Riemannian metrics) on a manifold with only very few exceptions.

The remainder of this section is devoted to the proof of Theorems 4.9 and 4.10.
We first prove a result on the nontransitive actions of a Lie group on a manifold.

Theorem 4.11. Let G be a connected compact Lie group acting smoothly and
effectively on a compact connected manifold M. If the action of G on M is
nontransitive, then there exist infinitely many G-invariant non-Riemannian Finsler
metrics on M that are mutually nonisometric to one another.

Proof. We first assert that there exists a G-invariant Riemannian metric on M.
In fact, suppose Q0 is a fixed Riemannian metric on M. Let dμ be the standard
normalized bi-invariant Haar measure of G. For x ∈ M, X ,Y ∈ Tx(M), define

Q1(X ,Y ) =
∫

G
Q0(dk(X),dk(Y ))dμ(k).

Then it is easily seen that Q1 is a G-invariant Riemannian metric on M. This proves
our assertion. Now suppose Q is a G-invariant Riemannian metric on M. Let x ∈ M
be such that the orbit G · x is a principal orbit. By Proposition 2.4, there exists a
sufficiently small ε > 0 such that for every y ∈ B(x,ε), the orbit G · y is also a
principal orbit, where

B(x,ε) = {z ∈ M | d(x,z)< ε},
and d is the distance function with respect to the Riemannian metric Q. Let U be
the union of all the orbits G ·y, y ∈ B(x,ε). Then from the fact that Q is G-invariant,
it follows that U is an open subset of M and it is invariant under the action of G.
Now we define a series of non-Riemannian Finsler metrics on the submanifold U .
Given y ∈U , we have dimG · y < dimM. Therefore the tangent space Ty(M) has an
orthogonal decomposition

Ty(M) = Ty(G · y)+ (Ty(G · y))⊥. (4.1)

Define a series of Minkowski norms on Ty(M) by

Lm(Y ) =
√

Q(Y,Y )+ m
√

Q(Y1,Y1)m +Q(Y2,Y2)m, Y ∈ Ty(U),

where m ≥ 2 is an integer and Y1,Y2 are determined by the decomposition Y =
Y1 +Y2 with respect to (4.1). It is easy to check that Lm is actually a non-Euclidean
Minkowski norm. Moreover, since the orbit of any point in U is principal, and the
action of G on M is smooth, for any fixed m ≥ 2, the collection of the Lm on the
tangent spaces of U defines a (smooth) non-Riemannian Finsler metric on U . We
still denote this Finsler metric by Lm. It follows easily from the definition that Lm is
invariant under the action of G.
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By the theorem of partitions of unity of smooth manifolds, there exists a
nonnegative smooth function f1 on M that is equal to 1 on the closure of the subset
G ·B(x, 1

2ε) and equal to 0 outside the subset G ·B(x, 3
4ε). Now we define a new

function f by

f (y) =
∫

G
f1(k(y))dμ(k), y ∈ M.

Then f is a G-invariant nonnegative smooth function on M that is still equal to 1 on
G ·B(x, 1

2ε) and equal to 0 outside G ·B(x, 3
4ε). Hence f (y)Lm are globally defined

smooth functions on the slit tangent bundle T (M)\ {0}. Now we define a series of
smooth functions on T (M)\ {0} as the following:

Fm,λ (Y ) =
√

f (y)L2
m(Y )+λQ(Y,Y ), Y ∈ Ty(M), λ > 0.

Then for any m ≥ 2, Fm,λ is a non-Riemannian Finsler metric on M. In fact, the
positive definiteness of the Hessian can be easily checked either in the open subset
G ·B(x,ε), where f ≥ 0 and Lm is a Finsler metric, or outside the open subset G ·
B(x,ε), where f = 0. On the other hand, it is easily seen that for any x ∈ M, the
Cartan tensor of the Minkowski norm of Fm,λ at x is equal to that of Lm, which is
nonzero. Hence Fm,λ is non-Riemannian. Moreover, from the invariance of f , Lm,
and Q, it follows that Fm,λ is G-invariant.

Now we assert that for a fixed m≥ 2, and λ1 �= λ2, we cannot have Fm,λ1
= μFm,λ2

for any μ > 0. In fact, otherwise we have

(1− μ2) f (y)L2
m(Y ) = (λ2μ2 −λ1)Q(Y,Y ), Y ∈ Ty(M), y ∈ M.

In particular, for y ∈ B(x, 1
2ε), we have

(1− μ2)L2
m(Y ) = (λ2μ2 −λ1)Q(Y,Y ), Y ∈ Ty(M).

This implies that Lm is a Euclidean norm on Ty(M), which is a contradiction to the
definition.

Finally, we prove that for a fixed m, there are infinitely many Finsler metrics Fm,λ
that are not isometric to one another. In fact, since

Fm,λ (X)≥
√
λQ(X ,X), ∀X ∈ T M \ {0},

we have D(M,Fm,λ ) ≥
√
λD(M,Q), where D denotes the diameter with respect to

the Finsler metrics. Thus there exist infinitely many numbers λ1 < λ2 < · · ·< λk <
· · · such that

D(M,Fm,λ1
)< D(M,Fm,λ2

)< · · ·< D(M,Fm,λk
)< · · · .

Since isometric Finsler spaces must have the same diameter, the assertion follows.
This completes the proof of the theorem. ��
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Now we can prove the main results of this section.

Proof of Theorem 4.9. Let M be a closed manifold and F a Finsler metric on M.
By Theorem 3.4, the group of isometries of F , I(M,F), is a Lie transformation
group of M and for x ∈ M, the isotropy subgroup of I(M,F) at x, Ix(M,F), is
a compact subgroup. Since M is compact, the action of I(M,F) on M is proper.
Therefore, the orbit I(M,F) · x of x is a closed submanifold of M. In particular,
I(M,F) · x is compact. Since I(M,F)/Ix(M,F) = I(M,F) · x, I(M,F) is a compact
Lie group. Denote by G the unity component of I(M,F). Then G is a connected
compact Lie transformation group of M. By the proof of Theorem 4.11, there exists
a Riemannian metric g on M that is invariant under G. In particular, G ⊂ I(M,g).
Thus

dim I(M,F) = dimG ≤ dim I(M,g).

This completes the proof of Theorem 4.9. ��
Proof of Theorem 4.10. Let M be a connected compact manifold with degree of
symmetry N(M). Select a Riemannian metric Q on M with full isometry group G
such that dimG = N(M). If the action of G on M is not transitive, then the action of
the unity component G0 of G, is not transitive on M either. By Theorem 4.11, there
exists a non-Riemannian Finsler metric F on M that is invariant under G0. Then we
have dim I(M,F)≥ dimG0. Since dimG0 = dimG = N(M), we have dim I(M,F) =
N(M). On the other hand, if the action of G on M is transitive, then the action
of G0 on M is also transitive. Hence M is diffeomorphic to a coset space G0/H0

of G0, where H0 is the isotropic subgroup of G0 at certain point of M. Fix a G0-
invariant Riemannian metric Q on M and let S be the unit sphere of To(M) with
respect to Q, where o = eH0 is the origin of G0/H0. If the action of H0 at To(M)
is not transitive on S, then Theorem 4.11 asserts that there exists a non-Riemannian
Finsler metric F on M that is G0-invariant. Hence dim I(M,F) = N(M). If H0 acts
transitively on S, then M = G0/H0 endowed with the Riemannian metric Q is a
homogeneous Riemannian manifold. We assert further that (M,Q) is a two-point
homogeneous Riemannian manifold, i.e., for every two pairs of points (p1,q1) and
(p2,q2) with d(p1,q1) = d(p2,q2), one can find an isometry σ such that σ(p1) = p2

and σ(q1) = q2. In fact, by homogeneity we can first select an isometry σ1 such that
σ1(p1) = p2. Then

d(p2,σ1(q1)) = d(σ1(p1),σ1(q1)) = d(p1,q1) = d(p2,q2).

Let Hp2 be the isotropy subgroup of the full group of isometries of (M,g) at p2.
Then Hp2 acts transitively on the unit sphere of Tp2(M). By the completeness of
(M,Q), we can select unit vectors X1,X2 ∈ Tp2(M) such that

σ1(q1) = exp(t0X1), q2 = exp(t0X2),

where t0 = d(p2,q2). Now select σ2 ∈ Hp2 such that dσ2(X1) = X2. Then it is easy
to check that σ2(σ1(q1)) = q2. Let σ = σ2 ◦ σ1. Then we have σ(p1) = p2 and
σ(q1) = q2. This proves our assertion. By the classification result of H.C. Wang on
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compact two-point homogeneous Riemannian manifolds [164], M is diffeomorphic
to a rank-one Riemannian symmetric space (see also [83, p. 535]). ��

4.4 Homogeneous Finsler Spaces of Negative Curvature

The Cartan–Hadamard theorem (Theorem 1.5) asserts that the universal covering
space of a connected complete Finsler space of nonpositive flag curvature is
diffeomorphic to Euclidean space. In particular, a connected simply connected
complete Finsler space of nonpositive flag curvature must be diffeomorphic to a
Euclidean space. It is therefore interesting to find out under what conditions a Finsler
space of nonpositive flag curvature is necessarily simply connected. The purpose of
this section is to prove the following theorem.

Theorem 4.12. Let (M,F) be a connected homogeneous Finsler space of nonpos-
itive flag curvature. If the Ricci scalar is everywhere strictly negative, then M is
simply connected.

The Riemannian case of this result is due to Kobayashi [100]. To prove the
theorem in the general case, we need a result about Killing vector fields on
homogeneous Finsler spaces. Let M and N be Finsler spaces and p : N → M a
locally isometric covering projection (see [16] for the fundamental properties of
covering projections between Finsler spaces). Let G be a connected Lie group of
isometries on M that acts transitively on M, g= LieG. Each w ∈ g generates a one-
parameter group of isometries of M, hence can be viewed as a Killing vector field
on M, denoted by w̃. Let w∗ be the lift of w̃ to N (by the projection p). The set
of all such w∗ forms a Lie algebra, denoted by g∗. Since p is a locally isometric
covering projection, each w∗ is a complete Killing vector field on N. Thus g∗ is
a Lie subalgebra of i(N). Let G∗ be the (unique) connected Lie subgroup of I(N)
corresponding to g∗. Then we have the following.

Lemma 4.1. G∗ acts transitively on N.

Proof. The Riemannian case of this lemma is obvious, since it is easy to check that
the G∗-orbit of any point in N is both a closed and an open subset of N. For the
general case, recall (Theorem 4.2) that if a coset space G1/H1 of a Lie group G1

admits a G1-invariant Finsler metric, then it also admits a G1-invariant Riemannian
metric. Now the Lie group G acts transitively and isometrically on M, so M can be
written as G/H, where H is the isotropic subgroup of G at some point. Moreover,
the metric on M is invariant under G. Therefore we can find a Riemannian metric g
on M which is G-invariant. This means that each w ∈ g can also generate a Killing
vector field on M with respect to the Riemannian metric g. Let g∗ = p∗g. Then g∗ is
a Riemannian metric on N and p : (N,g∗)→ (M,g) is a locally isometric covering
projection. This reduces the general case to the Riemannian case, and the lemma is
proved. ��
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Now we turn to the proof of the main theorem. It is just a careful and technical
modification of Kobayashi’s argument in [100]. We first need to prove two lemmas.
Similarly to the Riemannian case, we call an isometry σ of a Finsler space a
Clifford translation if for every two points a,b we have d(a,σ(a)) = d(b,σ(b)).
The Riemannian case of the next lemma was obtained by Wolf in [171].

Lemma 4.2. Let N and M be Finsler spaces and p : N → M a locally isometric
covering projection. If M is homogeneous, then every homeomorphism φ of N onto
itself satisfying p ◦φ = p is a Clifford translation of N.

Proof. By the generalized Myers–Steenrod theorem, a distance-preserving map of
M onto itself is necessarily an isometry. Thus we need only prove that for every two
points a,a′ ∈ N,

d(a′,φ(a′)) = d(a,φ(a)),

where d is the distance function on N. Let G, G∗ be as in Lemma 4.1. Then G∗ is
transitive on N. Hence there exists a ψ ∈ G∗ such that a′ = ψ(a). Since p ◦φ = p,
φ induces the identity map on N. Hence φ∗w∗ = w∗, ∀w∗ ∈ g∗. Therefore, in the Lie
group G∗, we have

exp(φ∗(tw∗)) = exptw∗, ∀t ∈ R.

Hence

φ−1 exp(tw∗)φ = exptw∗, ∀t ∈ R.

From this we conclude that φ commutes with every element of the form exptw∗,
t ∈ R, w∗ ∈ g∗. Since G∗ is connected, it is generated by expU , where U is a
neighborhood of the origin in g∗. Therefore φ commutes with each element of G∗.
In particular, we have φ ◦ψ = ψ ◦φ . Now

d(a′,φ(a′)) = d(ψ(a),φ(ψ(a))) = d(ψ(a),ψ(φ(a))) = d(a,φ(a)).

Thus φ is a Clifford translation. ��
Lemma 4.3. Let M, N, and φ be as in Lemma 4.2. Given a0 ∈ N, let a1 = φ(a0)
and γ∗(t), 0 ≤ t ≤ L, be a unit-speed-minimizing geodesic from a0 to a1. Set γ(t) =
p(γ∗(t)). Then γ(t) is a unit-speed smooth closed geodesic.

Proof. Since p is a local isometry and γ∗ is minimizing, γ is locally minimizing.
Therefore γ is a geodesic and it is obviously with unit speed. Hence we need only
prove that γ(t) is smooth at γ(0) = γ(L). Suppose conversely that this is not true. Let
ε > 0 be so small that the forward metric ball B+

ai
(ε), i = 0,1, in N is diffeomorphic

(by the map p) to the forward metric ball B+
γ(0)(ε) in M. Let δ > 0 be so small that

both γ(L− δ ) and γ(δ ) are contained in B+
γ(0)(ε). Then there exists a curve σ in

B+
γ(0)(ε) from γ(L− δ ) to γ(δ ) with length strictly less than the length of γ from

γ(L− δ ) to γ(δ ). Thus (note that p is a local isometry)

l(σ) < l[γ(t)|[L−δ ,δ ]]≤ l[γ(t)|[L−δ ,L]]+ l[γ(t)|[0,δ ]] = δ + δ = 2δ .
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Let σ∗ be the curve in B+
a1
(ε) such that p(σ∗) = σ and let a∗ be the end point of

σ∗. Then a∗ = φ(γ∗(δ )). Now by the triangle inequality of the distance function in
Finsler spaces, we have

d(γ∗(δ ),a∗)≤ d(γ∗(δ ),γ∗(L− δ ))+ d(γ∗(L− δ ),a∗).

Since γ∗ is minimizing, we have

d(γ∗(δ ),γ∗(L− δ )) = L− 2δ .

On the other hand,

d(γ∗(L− δ ),a∗)≤ l(σ∗) = l(σ)< 2δ .

Hence

d(γ∗(δ ),φ(γ∗(δ ))) = d(γ∗(δ ),a∗)< 2L = d(a0,a1) = d(a0,φ(a0)).

This is a contradiction to Lemma 4.2. ��
Proof of Theorem 4.12. Suppose conversely that M is not simply connected. Let
N be the universal covering manifold of M and p : N → M the covering projection.
Endow N with the Finsler metric F∗ defined by

F∗(y) = F(dp(y)), y ∈ TN.

Then p : N → M is a locally isometric covering projection. Since M is not simply
connected, p is not a diffeomorphism. This means that there exists a nontrivial (i.e.,
not equal to the identity transformation) homeomorphism φ of N such that p◦φ = p.
By Lemmas 4.2 and 4.3, we can find a closed smooth unit-speed geodesic on M, say
γ(t), 0 ≤ t ≤ L, where L > 0. Let T be the tangent vector field of γ and let V be
any Killing vector field on M. Set Tt = T |γ(t). Define a nonnegative function f (t),
−∞< t < ∞, as follows:

f (t) = gTt (V,V ), for 0 ≤ t ≤ L,

and extend f (t) to a periodic function of period L. Note that Tt is everywhere
nonzero, since γ(t) is unit speed. This means that f (t) is well defined and is smooth
on (0,L). By Lemma 4.3, f (t) is smooth for all t.

Let

V ′ = DTV, V ′′ = DTV ′,

where the covariant derivatives are taken with reference vector T . By Proposi-
tion 3.4, V is a Jacobi field along γ , i.e., V ′′ = −R((V,T )T . Therefore we have
(see Sect. 1.5)

f ′(t) = 2gTt (V,V
′),

f ′′(t) = 2gTt (V
′,V ′)− 2gTt(R(V,T )T,V ).
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Since (M,F) has nonpositive flag curvature, we have gTt (R(V,T )T,V )≤ 0,∀t. Thus
f ′′(t)≥ 0. Since f is a periodic smooth function, this implies that f (t) is a constant
function. Thus f ′′(t) = 0. Therefore we have gTt (V

′,V ′) = 0 and

gTt (R(V,T )T,V ) = 0, ∀t.

Now, M is a homogeneous Finsler space. Therefore we can write M = G/H,
where G is a connected Lie group of isometries that is transitive on M and H is
the isotropic subgroup of G at γ(0). By Theorem 4.2, there exists a G-invariant
Riemannian metric on G/H. In particular, G/H is a reductive homogeneous
manifold. Hence there exists a subspace m of g with Ad(H)(m)⊂m such that

g= h+m (direct sum of subspaces).

There is a canonical way to identifym with the tangent space TeH(G/H) = Tγ(0)(M).
For every w ∈ m, the one-parameter subgroup exptw induces a Killing vector field
on M = G/H that is equal to w at γ(0) = eH. Hence

gT0(R(w,T )T,w) = 0, ∀w ∈m.

But this is in contradiction to the assumption that Ric(T0) > 0. The contradiction
comes from the assumption that M is not simply connected. �

4.5 Examples: Invariant Fourth-Root Metrics

In this section we study a special type of invariant Finsler metric on homogeneous
manifolds. This gives numerous explicit examples of homogeneous Finsler spaces.
The metrics we will consider are currently called fourth-root metrics. Such metrics
are a special case of the mth-root metrics, which are defined by the fundamental
function

F = m
√

ai1i2···im(x)yi1 yi2 · · ·yim . (4.2)

This class of Finsler metrics was first studied by Shimada in [148]. Recently, mth-
root metrics, in particular fourth-root metrics, have been taken as a model of space-
time in physics (see, e.g. [129]). See also Li and Shen’s paper [113] on projectively
flat fourth-root Finsler metrics.

Let G/H be a reductive homogeneous space with the reductive decomposition
g= h+m, i.e., Ad(h)m ⊂ m,∀h ∈ H, where g and h are the Lie algebras of G and
H, respectively. By Proposition 4.1, the G-invariant Finsler metric is in one-to-one
correspondence with the Minkowski norm on m satisfying

F(Ad(h)y) = F(y), ∀h ∈ H, y ∈m. (4.3)

If F is an invariant mth-root Finsler metric on G/H, then f = Fm is an Ad(H)-
invariant positive polynomial function of degree m on m. Therefore m must be
even. Hence an invariant mth-root Finsler metric must be reversible. For m = 2,
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the invariant square-root Finsler metrics are invariant Riemannian metrics. It is well
known that there exist invariant Riemannian metrics on homogeneous spaces G/H
when H is compact. Let α =

√
ai jyiy j be an invariant Riemannian metric. Then

F =
2n
√
α2n is an invariant 2nth-root metric and is Riemannian. So we are more

concerned with the non-Riemannian metrics of the form (4.2). By (4.3), in order to
construct an invariant mth-root Finsler metric on G/H, we need to accomplish the
following two steps:

1. Find all H-invariant polynomials of degree m on m.
2. Determine which of them can define a Minkowski norm on m.

In this section, we investigate invariant fourth-root Finsler metrics on the real
Grassmannian manifolds SO(p+ q)/SO(p)×SO(q).

Definition 4.4. A Finsler metric F is called a 2mth-root metric if in a local
coordinate system, F can be expressed in the following form:

F = 2m
√

ai1i2···i2m(x)y
i1 yi2 · · ·yi2m .

Let T denote the 2mth power of a 2mth-root metric F . Then a direct computation
shows that

F = T
1

2m ,

Fyi =
1

2m
T

1
2m−1Tyi ,

Fyiy j =
1

4m2 T
1

2m−2((1− 2m)TyiTyj + 2mTTyiy j ),

gi j = FyiFyj +FFyiy j =
1

2m2 T
1
m−2((1−m)TyiTyj +mTTyiy j ).

From the last equation we easily get the following.

Proposition 4.4. The Hessian matrix (gi j) is positive definite if and only if ((1−m)
TyiTyj +mTTyiy j ) is positive definite.

We now consider invariant fourth-root Finsler metrics on the Grassmannian
manifolds. Recall that they are the symmetric spaces G/H = SO(p+ q)/SO(p)×
SO(q), and are usually denoted by G+

p (R
p+q). Without loss of generality, we

suppose p ≥ q and p+q ≥ 3. Let g= h+m be the standard Cartan decomposition,
namely,

g = so(p+ q) =

{(
A C

−CT B

)∣∣∣∣ A+AT = 0,B+BT = 0,A ∈ Rp×p,B ∈ Rq×q
}
,

h = so(p)+ so(q) =

{(
A O
O B

)∣∣∣∣ A+AT = 0,B+BT = 0,A ∈ Rp×p,B ∈ Rq×q
}
,
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m =

{(
O C

−CT O

)∣∣∣∣C ∈ Rp×q
}
.

Let k[xi j] be a polynomial ring over a field k in pq variables xi j, 1 ≤ i ≤ p, 1 ≤
j ≤ q. The matrix X = (xi j) is called a generic p× q matrix over k. Then the vector
space m can be identified with the set of generic matrices.

Lemma 4.4. Let f be a polynomial on m. Then f is Ad(H)-invariant if and only if

f (X) = f (AX) = f (XBT ), ∀A ∈ so(p), B ∈ so(q). (4.4)

Proof. Recall that the adjoint representation is given by

Ad(h)

(
O C

−CT O

)
=

(
A1 O
O A2

)(
O C

−CT O

)(
AT

1 O
O AT

2

)
=

(
O A1CAT

2
−A2CT AT

1 O

)
,

where

h =

(
A1 O
O A2

)
∈ SO(p)×SO(q),

(
O C

−CT O

)
∈m.

It follows that f is Ad(H)-invariant if and only if

f (X) = f (AXBT ), ∀A ∈ so(p), B ∈ so(q).

This is equivalent to (4.4). ��
Next we introduce some notation from the invariant theory of Lie groups. Let

W be a finite-dimensional real vector space and let R[W ] be the R-algebra of the
ring of polynomial functions on W . A function f ∈ R[W ] is called G-invariant if
f (gw) = f (w) for all g∈G and w∈W . The set of G-invariants forms a subalgebra of
R[W ], denoted by R[W ]G. We need the following famous first fundamental theorem
for SO(p) (see [130]).

Theorem 4.13. Let Vp be a p-dimensional real linear space. Then the invariant
algebra R[V q

p ]
SO(p) is generated by the invariants c(i, j), 1 ≤ i ≤ j ≤ q, together

with the determinants det[i1, i2, . . . , ip], 1 ≤ i1 < i2 < · · · < ip ≤ q, where c(i, j) =
∑p

a=1 xaixa j and det[i1, i2, . . . , ip] means the determinant of the matrix with columns
i1, i2, . . . , ip.

By Lemma 4.4 and the above theorem, we have the following result.

Proposition 4.5. A polynomial f on m is Ad(H)-invariant if and only if

f ∈ R[V q
p ]

SO(p)
⋂

R[V q
p ]

SO(q)r . (4.5)



100 4 Homogeneous Finsler Spaces

Here R[V q
p ]

SO(q)r stands for the algebra of the invariant polynomials of the right
action of SO(q) on Vp. It is easily seen that

R[V q
p ]

SO(q)r =
〈
r(i, j),det[i1, . . . , iq] : 1 ≤ i ≤ j ≤ p,1 ≤ i1 < · · ·< iq ≤ p

〉
, (4.6)

where r(i, j) =∑q
a=1 xiax ja and the determinants are composed of some row vectors.

In particular, if q = 1, then (4.4) becomes

f ∈ R[Vp]
SO(p) =

〈
p

∑
a=1

x2
a1

〉
.

In this case, the corresponding invariant 2mth-root metric is Riemannian.
Next we consider the special case of p= q= 2. It is obvious that SO(4)/SO(2)×

SO(2) is isometric to the Riemannian product SO(3)/SO(2)×SO(3)/SO(2). This
implies that the isotropy representation is not irreducible.

In general, let G/H be a homogeneous manifold with H compact. Suppose the
adjoint representation of H on g/h is not irreducible. Then g/h has a decomposition

g/h=m1 +m2,

where mi are nontrivial invariant subspaces. Since H is compact, there exists an
Ad(H)-invariant inner product αi on mi, i = 1,2. Then we can construct a fourth-
root Finsler metric using the following result (see [44]).

Proposition 4.6. Let M1,M2 be connected manifolds endowed with a Riemannian
metric α1,α2, respectively. Let f : [0,∞)× [0,∞)→ [0,∞) be a C∞ function satisfying

f (λ s,λ t) = λ f (s, t), ∀λ > 0,

and

f > 0, fs > 0, ft > 0, fs + 2s fss > 0, ft + 2t ftt > 0, fs ft − 2 f fst > 0,

for all (s, t) �= (0,0). Then

F(x,y) :=
√

f
(
[α1(x1,y1)]2, [α2(x2,y2)]2

)
defines a reversible Finsler metric on M = M1 ×M2, where x = (x1,x2) ∈ M, y =
y1
⊕

y2 ∈ TxM.

In order to produce a polynomial of degree four, f (s, t) must have the form

f (s, t) = c
√

s2 + 2λ st + μt2 (c > 0). (4.7)



4.5 Examples: Invariant Fourth-Root Metrics 101

It is easy to see that the metric F constructed as above is an invariant Finsler metric
if and only if

0 < λ < 3
√
μ . (4.8)

When λ 2 �= μ , the metric is non-Riemannian and Berwaldian.
A coset space G/H is called isotropy irreducible if the isotropic representation of

H on To(G/H), where o is the origin of G/H, is irreducible. The above arguments
lead to the following result.

Theorem 4.14. If the homogeneous G/H is not isotropy irreducible, then there
exist infinitely many different invariant fourth-root non-Riemannian Finsler metrics
on G/H. In particular, On SO(4)/SO(2) × SO(2) there exist infinitely many
invariant fourth-root non-Riemannian Finsler metrics.

Next we show how to construct invariant fourth-root metrics on SO(4)/SO(2)×
SO(2). This actually gives a classification of all such metrics on it.

Proposition 4.7. Let F = f 1/4 be an invariant fourth-root Finsler metric on
G+

2 (R
4) and m= ( x1 x2

x3 x4 ). Then

f = c
(
A2 + 2tAB+ 4sB2) , (4.9)

where c > 0, A = x2
1 + x2

2 + x2
3 + x2

4, B = x1x4 − x2x3, and s, t satisfy

0 < 1− s < 3
√
(1+ s)2 − t2.

Proof. Let

m=m1 +m2 =
1
2

(
x1 + x4 x2 − x3

x3 − x2 x1 + x4

)
+

1
2

(
x1 − x4 x2 + x3

x2 + x3 x4 − x1

)

be the decomposition of m into irreducible invariant subspaces with respect to the
adjoint representation. Then the invariant Riemannian metrics on m1 and m2 are
(x1 + x4)

2 +(x2 − x3)
2 and (x1 − x4)

2 +(x2 + x3)
2, respectively. By (4.7), (4.8), and

a simple computation we get (4.9). This completes the proof. ��
Now we consider the other cases. Without loss of generality, we can assume that

p > 2,q ≥ 2.

Lemma 4.5. Let f be an Ad(SO(p)×SO(q))-invariant polynomial of degree four
on m. Then

f = λ

⎛
⎜⎝ ∑

1≤u≤p
1≤i≤q

x2
ui

⎞
⎟⎠

2

+ μ ∑
1≤i, j≤q

(
∑

1≤u≤p

xuixu j

)2

+νδ4pδ4qdet(xi j)4×4, (∗)
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where λ ,μ ,ν are real numbers. In other words, the real vector space V of
the Ad(SO(p)× SO(q))-invariant polynomials of degree four is spanned by the
following three polynomials:

α1 =

⎛
⎜⎝ ∑

1≤u≤p
1≤i≤q

x2
ui

⎞
⎟⎠

2

, α2 = ∑
1≤i, j≤q

(
∑

1≤u≤p

xuixu j

)2

, α3 = δ4pδ4q det(xi j)4×4.

Proof. It is obvious that the above-defined f satisfies (4.5). Hence we need only
prove that if f satisfies (4.5), then it must be of the form as stated in the lemma.
Since f ∈ R[V q

p ]
SO(p) by the left action, by Theorem 4.13, f must be a real linear

span of c(i, j)c(k, l), 1 ≤ i ≤ j ≤ q, 1 ≤ k ≤ l ≤ q, i ≤ k and the determinant α3.
Next we consider the right action. By (4.6), f must be a real span of the following
polynomials:

r(u,v)r(s, t), 1 ≤ u ≤ v ≤ p, 1 ≤ s ≤ t ≤ p, u ≤ s;

α3 = δ4pδ4qdet(xi j)4×4;

δ2qr(s, t)

∣∣∣∣xu1 xu2

xv1 xv2

∣∣∣∣ , 1 ≤ s ≤ t ≤ p, 1 ≤ u < v ≤ p;

δ2q

∣∣∣∣xu1 xu2

xv1 xv2

∣∣∣∣
∣∣∣∣xs1 xs2

xt1 xt2

∣∣∣∣ , 1 ≤ u < v ≤ p, 1 ≤ s < t ≤ p,u ≤ s.

Since α3 appears in both cases, we need treat only the following cases:

(1) There is a quadruple (u,v,s, t), with u �= v, such that the coefficient of
r(u,v)r(s, t) in the expansion of f is nonzero. Since

r(u,v)r(s, t) =∑
m,n

xumxvmxsnxtn,

by the invariance of f under the left action, for any pair (m,n), there must
be a quadruple (i, j,k, l) such that xumxvmxsnxtn appears in the expansion of
c(i, j)c(k, l). Then we have u = s, v = t and i = k = m, j = l = n. Now

r(u,v)2 =
(
∑
m

xumxvm

)2
=∑

m,n
xumxvmxunxvn.

Note that among the polynomials c(i, j)c(k, l) and α3, the monomial
xumxvmxunxvn appears only in the expansion of c(m,n)2. Thus all the monomials
c(m,n)2 will appear in the expansion in f with the same coefficients when we
write f as a linear combination of c(i, j)c(k, l) andα3. Therefore the polynomial

∑
m,n

c(m,n)2 =∑
m,n

(
∑
a

xamxan

)2
= α2
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must appear in the expansion of f with nonzero coefficient. On the other hand,
it is easily seen that

α2 = ∑
m,n,a,b

xmaxmbxnaxnb =∑
m,n

r(m,n)2.

A similar argument as above shows that the monomial xmaxmbxnaxnb can appear
only in the expansion of r(m,n)2 when we write f as a linear combination
of the right invariants above. This argument shows that if the coefficient of
r(u,v)r(s, t), u �= v, in the expansion of f is nonzero, then u = s, v = t, and all
the r(u,v)2 appear in f with the same coefficients.

(2) There is a pair (u,s) such that the coefficient of r(u,u)r(s,s) in the expan-
sion of f is nonzero. As in case (1), for any pair (m,n), there must be a
quadruple (i, j,k, l) such that the monomial x2

umx2
sn appears in the expansion

of c(i, j)c(k, l). From this it follows that i = j = m, k = l = n. Similar to case
(1), we can prove that all the c(i, i)c( j, j) appear in the expression of f when f
is written as a linear combination of the left invariants. Hence in this case, the
coefficient of

∑
i, j

c(i, i)c( j, j)

in the expression of f as a linear combination of the invariants of the left action
must be nonzero. Moreover, this shows that all the r(a,a)r(b,b) also appear in
the expression of f as a linear combination of right invariants, with the same
nonzero coefficient. Note that

∑
a,b

r(a,a)r(b,b) = α1.

(3) q = 2 and the coefficient of

∣∣∣∣xu1 xu2

xv1 xv2

∣∣∣∣
∣∣∣∣xs1 xs2

xt1 xt2

∣∣∣∣
in the expansion of f is nonzero. Since in the expansion of c(i, j)c(k, l), each
monomial has at most two row indices, we have u = s and v = t. Then

∣∣∣∣xu1 xu2

xv1 xv2

∣∣∣∣
∣∣∣∣xs1 xs2

xt1 xt2

∣∣∣∣=
∣∣∣∣xu1 xu2

xv1 xv2

∣∣∣∣
2

=

∣∣∣∣r(u,u) r(u,v)
r(u,v) r(v,v)

∣∣∣∣ .
This reduces the proof to cases (1) and (2).

(4) q = 2 and the coefficient of

r(s, t)

∣∣∣∣xu1 xu2

xv1 xv2

∣∣∣∣
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in the expression of f is nonzero. Similarly to case (3), we have u = s, v = t.
However,

r(u,v)

∣∣∣∣xu1 xu2

xv1 xv2

∣∣∣∣= (xu1xv1 + xu2xv2)(xu1xv2 − xu2xv1),

and it is easily seen that for any given quadruple (i, j,k, l), the monomials
in the expansion of the above polynomial cannot appear in the expansion of
c(i, j)c(k, l). This is a contradiction. Therefore this case cannot happen.

Combining cases (1)–(4), we see that f can be expressed as a linear combination
of α1, α2, α3. This completes the proof of the lemma. ��
Remark 4.3. It is easy to check that a polynomial f as in (∗) of the above lemma
can be rewritten as

f = λ [tr(XT X)]2 + μ tr(XT X)2 ±νδ4pδ4q

√
det(XT X). (4.10)

Remark 4.4. The first section in the expression of f in (4.10) corresponds to the
standard Riemannian metric.

Theorem 4.15. When ε is small enough, the function

f =

⎧⎪⎨
⎪⎩

{tr(XT X)}m + ε
{tr((XT X)2)}m

2 , for m even,

{tr(XT X)}m + ε{tr((XT X)2)}m−1
2 tr(XT X), for m odd,

defines an invariant 2mth-root Finsler metric on SO(p+ q)/SO(p)×SO(q).

Proof. It is sufficient to notice the fact that tr(XT X) and tr(XT X)2 are invariant
polynomials from the proof of the above lemma. ��

Combining Theorems 4.14 and 4.15, we get the following result.

Theorem 4.16. For G/H = SO(p+ q)/SO(p)×SO(q) with p ≥ q and p+ q ≥ 3,
we have

1. If q= 1, then there do not exist any invariant non-Riemannian fourth-root Finsler
metrics on G/H.

2. If p = q = 2, then the isotropic representation is reducible and there exist
infinitely many different invariant non-Riemannian fourth-root Finsler metrics
on G/H.

3. If p > q ≥ 2, then the isotropic representation is irreducible and there exist
infinitely many distinct invariant non-Riemannian fourth-root Finsler metrics on
G/H.



Chapter 5
Symmetric Finsler Spaces

In this chapter, we study the symmetry of Finsler spaces. By Theorem 1.9, if a
connected Finsler space (M,F) is a Berwald space, then the Chern connection of
(M,F) is the Levi-Civita connection of a Riemannian metric. We call a Berwald
space (M,F) locally (resp. globally) affine symmetric if its linear connection is
locally (resp. globally) affine symmetric. On the other hand, a connected Finsler
space (M,F) is called locally symmetric if for each point x of the manifold, there
exists a neighborhood U of x such that the geodesic symmetry is a local isometry of
U . It is called globally symmetric if each point is the isolated point of an involutive
isometry of (M,F).

Section 5.1 is devoted to studying the geometric properties of locally affine
symmetric and globally affine symmetric Berwald spaces. Here an important result
of Cartan, Theorem 2.28, is generalized to Berwald spaces; namely, we prove that
a Berwald space is locally affine symmetric if and only if the flag curvature is
invariant under all parallel displacements. In Sect. 5.2, we prove that every globally
symmetric Finsler space must be a Berwald space. In Sect. 5.3, we introduce the
notion of a Minkowski symmetric Lie algebra to give an algebraic description of
affine symmetric Berwald spaces as well as globally symmetric Finsler spaces.
Another important result of Cartan, asserting that a globally symmetric Riemannian
manifold has nonnegative (resp. nonpositive) sectional curvature if it is of compact
type (resp. noncompact type), is generalized to the Finslerian case in this section.
In Sect. 5.4, we prove some important rigidity results on symmetric Finsler spaces.
In particular, we prove that a connected complete locally symmetric Finsler space
whose flag curvature is everywhere nonzero must be Riemannian. Finally, in
Sect. 5.1, we study complex structures on symmetric Finsler spaces and obtain a
complete classification of the complex symmetric Finsler spaces.

Regarding further development of the topics in this chapter, we should men-
tion that the general geometric properties of symmetric Finsler spaces (or more
generally, affine symmetric Berwald spaces) deserve to be studied thoroughly. For
example, there has been a great deal of work on the properties of geodesics and to-
tally geodesic submanifolds of Riemannian symmetric spaces (see [40, 41, 82, 83]),
but for the Finslerian case this problem has not been considered. On the other
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hand, a series of papers as appeared on the structure and classification of pseudo-
Riemannian symmetric spaces (see, for example, Cahen–Parker [36], and Kath–
Olbrich [96, 97]). The Finslerian case of this problem is very interesting.

The standard references of this chapter are [1,57,58,62]; see [50,54,65,76,149,
155, 157, 167] for further information.

5.1 Affine Symmetric Berwald Spaces

We first study some properties of isometries of a Berwald space. This will be useful
in our study of symmetric Finsler spaces. The following results are well known for
Riemannian manifolds. However, for a Berwald space, they are far from obvious.

Theorem 5.1. Let (M,F) be a connected Berwald space and ψ an isometry of
(M,F) onto itself. Then ψ is an affine transformation with respect to the connection
of F.

Proof. We first deduce a formula for the connection D of F . For any vector fields
T,V,W on M, we have (see [16, p. 260])

T gW (V,W ) = gW (DTV,W )+ gW (V,DTW ). (5.1)

Similarly,

VgW (T,W ) = gW (DV T,W )+ gW (T,DVW ), (5.2)

WgW (V,W ) = gW (DWV,W )+ gW (V,DWW ). (5.3)

Subtracting (5.2) from the sum of (5.1) and (5.3), we get

gW (V,DW+TW )+ gW (W −T,DVW )

= TgW (V,W )−VgW (T,W )+WgW (V,W )− gW ([T,V ],W )− gW ([W,V ],W ),

where we have used the symmetry of the connection, i.e., DVW −DWV = [V,W ].
Setting T =W −V in the above equation, we obtain

2gW (V,DWW ) = 2WgW (V,W )−VgW (W,W )− 2gW ([W,V ],W ). (5.4)

Since ψ is an isometry, dψ is a linear isometry between the spaces Tp(M) and
Tψ(p)(M), ∀p ∈ M. Therefore for any vector fields X ,Y,Z on M, we have

gdψ(X)(dψ(Y ),dψ(Z)) = gX(Y,Z).

By (5.4),

gdψ(W)(dψ(V ),Ddψ(W )dψ(W )) = gW (V,DWW ).
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Consequently,

gdψ(W)(dψ(V ),Ddψ(W )dψ(W )) = gdψ(W)(dψ(V ),dψ(DWW )).

Since V is arbitrary and gdψ(W)(·, ·) is an inner product, we have

Ddψ(W)dψ(W ) = dψ(DWW ).

Now using the identity

DVW =
1
2
(DV+W (V +W)−DVV −DWW − [W,V ]),

we get

Ddψ(V )dψ(W ) = dψ(DVW ).

Therefore, ψ is an affine transformation with respect to D. ��
The following result is a generalization of a well-known result in Riemannian

geometry.

Theorem 5.2. Let (Mi,Fi), i = 1,2, be two Berwald spaces, and ψ an affine
diffeomorphism from (M1,F1) onto (M2,F2) with respect to the connections of F1

and F2. If there exists p ∈ M1 such that dψ is a linear isometry from Tp(M1) onto
Tψ(p)(M2), then ψ is an isometry.

Proof. Let q ∈ M1. We prove that F1(y) = F2(dψ(y)), ∀y ∈ Tq(M1). Join q to p by a
curve γ . Let τ denote the parallel transformation from q to p along γ . Then for every
u,v ∈ Tq(M1), we have

gy(u,v) = gτ(y)(τ(u),τ(v)) = gdψ(τ(y))(dψ(τ(u)),dψ(τ(v))).

Now τ(y),τ(u),τ(v) is the result of the parallel displacement (along γ) of y,u,v,
respectively. Since ψ , being an affine diffeomorphism, transforms vectors that are
parallel along γ into vectors that are parallel along ψ(γ), the vectors dψ(τ(y)),
dψ(τ(u)), dψ(τ(v)) must be the result of the parallel displacement (along ψ(γ)) of
dψ(y), dψ(u), dψ(v), respectively. Thus

gdψ(τ(y))(dψ(τ(u)),dψ(τ(v))) = gdψ(y)(dψ(u),dψ(v)).

Therefore

gy(u,v) = gdψ(y)(dψ(u),dψ(v)).

Now the theorem follows from the facts that F1(y) =
√

gy(y,y) and that

F2(dψ(y)) =
√

gdψ(y)(dψ(y),dψ(y)). �
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Next we generalize Cartan’s results on locally symmetric Riemannian manifolds
to Berwald spaces. The following result is a generalization of Theorem 2.28 on
Riemannian manifolds. However, the proof is more complicated. Let us first explain
the notion of parallel displacements of flags. Let (M,F) be a Berwald space and
(P,y) a flag in a tangent space Tp(M), p ∈ M. Let q ∈ M and let c be a piecewise
smooth curve in M connecting p and q. Suppose τ is the parallel displacement along
c(t). Then τ(P) is a plane in Tq(M) containing τ(y) and τ(y) �= 0 (since τ is a
linear isomorphism). Therefore (τ(P),τ(y)) is a flag in Tq(M). We say that the flag
curvature is invariant under the parallel displacement τ if K(P,y) = K(τ(P),τ(y)),
for every flag (P,y) in Tp(M).

Theorem 5.3. Let (M,F) be a Berwald space. Then M is locally affine symmetric
if and only if the flag curvature is invariant under all parallel displacements.

Proof. Let (M,F) be a locally affine symmetric Berwald space. Then its connection
is locally affine symmetric. So the curvature tensor R is invariant under all parallel
displacements. On the other hand, suppose p,q ∈ M and γ is a curve connecting p
and q. Let τ be the parallel displacement along γ . Then for any y(�= 0),u,v ∈ Tp(M),
we have gτ(y)(τ(u),τ(v)) = gy(u,v). Therefore, by the definition of flag curvature,
we have

K(P,y) = K(τ(P),τ(y)),

where P is any plane in Tp(M) containing y. That is, the flag curvature is invariant
under all parallel displacements.

Conversely, suppose the flag curvature is invariant under all parallel displace-
ments. Let p, q, γ , τ , y, u, v be as above and suppose u is linearly independent of y.
Let l = y/F . Consider the quantity

K(l,u,v) =
gl(R(l,u)l,v)

gl(u,v)− gl(l,u)gl(l,v)
. (5.5)

Then K(P,y) = K(l,u,u). Since K(P,y) is invariant under parallel displacements,
we have

K(l,u,u) = K(τ(l),τ(u),τ(u)).

By Theorem 1.11, any parallel displacement of a Berwald space is a linear isometry
between the tangent spaces. Thus the denominator of K(l,u,v) in (5.5) is invariant
under τ . Therefore we have

gl(Rp(l,u)l,u) = gτ(l)(Rq(τ(l),τ(u))τl,τ(u)).

Set R(l,u,v) = gl(R(l,u)l,v). Then it is easy to check that the following polarization
identity holds (see [16, p. 70] and the erratum by Bao):

R(l,u,v) =
1
4
(R(l,u+ v,u+ v)−R(l,u− v,u− v)).
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Then it follows that

gτ(l)(τ(Rp(l,u)l),τ(v)) = gτ(l)(Rq(τ(l),τ(u))τ(l),τ(v)).

This implies that

τ(Rp(l,u)l) = Rq(τ(l),τ(u))τ(l). (5.6)

It is obvious that the above equality still holds if u is linearly dependent of y. Now
suppose Q is a Riemannian metric on M with the same connection as F . Consider
the quadrilinear form B defined by

B(u,v,z, t) = Q(Rq(τ(u),τ(v))τ(z),τ(t))−Q(τ(Rp(u,v)z),τ(t)),

where u,v,z, t ∈ Tp(M). Then we have

(a) B(u,v,z, t) =−B(v,u,z, t);
(b) B(u,v,z, t) =−B(u,v, t,z);
(c) B(u,v,z, t)+B(v,z,u, t)+B(z,u,v, t) = 0;
(d) B(u,v,u,v) = 0.

In fact, (a) is the well-known property of the curvature tensor of a Riemannian
manifold. Moreover, it is easily seen that (b) and (c) follow from the fact

Q(τ(Rp(u,v)z),τ(t)) = Q(Rp(u,v)z, t),

since τ is also the parallel displacement with respect to Q, and that (d) follows
from (5.6). By a well-known result in Riemannian geometry, we have B ≡ 0. Thus

τ(Rp(u,v)z) = Rq(τ(u),τ(v))τ(z),

i.e., τRp = Rq. Therefore DX R = 0 for each vector field X . Thus D is locally affine
symmetric. ��
Theorem 5.4. Let (M,F) be a locally affine symmetric Berwald space. Then
for any p ∈ M there exist a globally affine symmetric Berwald space (M̃, F̃), a
neighborhood Np of p in M, and an isometry ϕ of Np onto an open neighborhood
of ϕ(p) in M̃.

Proof. Let D denote the connection of F . Suppose Q is a Riemannian metric on M
such that D is the Levi-Civita connection of Q. Then (M,Q) is a Riemannian locally
symmetric space. Thus by [83, Theorem 5.1, Chap. IV], there exist a Riemannian
globally symmetric space (M̃, Q̃), a neighborhood Np of p in M, and an isometry
(with respect to Q and Q̃) ϕ from Np onto a neighborhood of ϕ(p) in M̃. Let D̃
be the Levi-Civita connection of Q̃ and denote by H, resp. H̃, the holonomy group
of D (at p), resp. D̃ (at p̃ = ϕ(p)). Then dϕp induces an isomorphism between the
holonomy algebra h of H and h̃ of H̃. Hence there exist a neighborhood Ue of the
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unit element e of H and a neighborhood Ũẽ of the unit element ẽ of H̃ such that dϕp

induces a local isomorphism between Ue and Ũẽ. Without loss of generality, we can
assume that M̃ is simply connected. Then H̃ is connected and is generated by the
elements of Ũẽ.

Now we define a Berwald metric on M̃. Identifying Tp̃(M̃) with Tp(M) through
dϕp, we get a Minkowski norm F̃ on Tp̃(M̃) by

F̃(x̃) = F((dϕp)
−1(x̃)), x̃ ∈ Tp̃(M̃).

Since F is invariant under H, F̃ is invariant under Ũẽ. Therefore, using the fact that
H̃ is generated by the elements of Ũẽ, we see that F̃ is invariant under H̃. Now for
any q̃ ∈ M̃, join q̃ to õ by a curve γ̃ . Let τ̃γ̃ be the parallel displacement of D̃ along

γ̃ . Define a Finsler metric (still denoted by F̃) on M̃ by

F̃(ũ) = F̃(τ̃γ̃ (ũ)), ũ ∈ Tq̃(M̃).

It is easily seen that F̃ is well-defined and (M̃, F̃) is a Berwald space with
connection D̃. Therefore it is a globally affine symmetric Berwald space.

It remains to prove that ϕ is an isometry. But this follows easily from the fact that
ϕ is an affine diffeomorphism and dϕp is a linear isometry between the Minkowski
spaces (TpM,F) and (Tp̃M̃, F̃) (see Theorem 5.2). ��
Corollary 5.1. Let (M,F) be a locally affine symmetric Berwald space and (M̃,π)
the universal covering manifold of M. Then M̃ with the metric π∗(F) is a globally
affine symmetric Berwald space.

5.2 Globally Symmetric Finsler Spaces

Intuitively, the definition of locally and globally affine symmetric Berwald spaces
has no direct relation with geometry and it is limited to Berwald spaces. It is
well known that a locally affine symmetric Riemannian space is actually locally
symmetric. However, this is no longer true for Berwald spaces, since there exist
many examples of nonreversible locally affine symmetric Berwald spaces, and a
locally symmetric Finsler space must be reversible. For example, any Minkowski
space, when viewed as a Finsler space in the canonical way, must be globally affine
symmetric, and a Minkowski space need not be reversible. In this section, we will
consider the symmetry of Finsler spaces from the geometric point of view.

Definition 5.1. Let (M,F) be a connected Finsler space. If for any x ∈ M there
exists a neighborhood U of x such that the geodesic symmetry is a local isometry
of U , then (M,F) is called a locally symmetric Finsler space. If for any x ∈ M there
exists an involutive isometry σx of (M,F) such that x is an isolated fixed point of
σx, then (M,F) is called a globally symmetric Finsler space.
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Note that the exponential map of a Finsler space is generally not smooth. In fact,
it is only C1 at the zero section, and it is smooth if and only if the Finsler space
is of the Berwald type; see [16]. However, using Theorem 1.3 and an argument
similar to that used in the proof of Theorem 3.2, one can easily prove that the local
geodesic isometry is well defined and is a smooth map. In fact, the notion of locally
symmetric Finsler spaces appeared already in Foulon’s paper [71].

We first give an effective method to construct globally symmetric Finsler spaces.

Theorem 5.5. Let G/K be a symmetric coset space. Then any G-invariant re-
versible Finsler metric (if it exists) F on G/K makes (G/K,F) a globally symmetric
Finsler space.

Proof. We first define some diffeomorphisms of G/K onto itself. Let o = eK be the
origin of G/K and σ the involutive automorphism of G such that (Gσ )0 ⊂ K ⊂ Gσ .
Define a map σo of G/K onto itself by

σo(aK) = σ(a)K, a ∈ G.

For any x ∈ G/K, select a ∈ G such that x = π(a), where π is the natural projection
of G onto G/K. Define a map σx of G/K onto itself by

σx = τaσoτ−1
a ,

where τa is defined by τa : gK → agK, g ∈ G. By the definition of symmetric coset
spaces, it is easily seen that σx is independent of the choice of a. Obviously σx is an
involutive diffeomorphism of G/K with x as an isolated fixed point. Next we prove
that it is an isometry. Since F is G-invariant, τa keeps F invariant. Therefore we
need treat only the case of σo. Let g, k be the Lie algebras of G, K, respectively.
Then σ induces an involutive automorphism (still denoted by σ ) of g. By definition,
k coincides with the set of fixed points of σ . Let m be the eigenspace of σ with
eigenvalue −1. Then we have

g= k+m (direct sum of subspaces).

Therefore we can identify the tangent space To(G/K) with m. Under this identifica-
tion, F corresponds to a K-invariant norm on m. By the assumption, F(y) = F(−y),
∀y ∈m. Thus F(σ(y)) = F(y), ∀y ∈m. By the invariance of the metric we see that
σ preserves the length of every tangent vector. Thus σ is an isometry of (G/K,F).
This completes the proof of the theorem. ��

Using the above theorem, we can construct a large number of globally symmetric
Finsler metrics that are non-Riemannian. Let us give an explicit example.

Example 5.1. Let G1/K1, G2/K2 be two symmetric coset spaces with K1,K2

compact. Suppose g1,g2 are invariant Riemannian metrics on G1/K1, G2/K2,
respectively. Let M =(G1/K1)×(G2/K2) and denote by o1, o2 the origins of G1/K1,
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G2/K2, respectively. Let o = (o1,o2) (the origin of M). Now for y = y1 + y2 ∈
To(M) = To1(G1/K1)+̇To2(G2/K2), we define

F(y) =
√

g1(y1,y1)+ g2(y2,y2)+
s
√

g1(y1,y1)s + g2(y2,y2)s,

where s ≥ 2 is an integer. Then F is a K1 ×K2-invariant Minkowski norm on To(M)
(see Example 1.3 of Sect. 1.1). Hence it defines a G-invariant Finsler metric on M.
By Theorem 5.5, (M,F) is a globally symmetric Finsler space.

Next we consider the converse of Theorem 5.5. For this purpose, we first need to
study the geometric properties of globally symmetric Finsler spaces.

Theorem 5.6. Let (M,F) be a globally symmetric Finsler space. For x ∈ M, denote
the involutive isometry of (M,F) at x by σx. Then we have

(a) For every x ∈ M, (dσx)x =−id. In particular, F must be reversible.
(b) (M,F) is (forward and backward) complete.
(c) (M,F) is homogeneous. That is, the group I(M,F) of isometries of (M,F) acts

transitively on M.
(d) Let M̃ be the universal covering manifold of M and π the projection map. Then

(M̃,π∗(F)) is a globally symmetric Finsler space.

Proof. (a) There exists a neighborhood U of the origin of Tx(M) such that the
exponential map expx is a C1 diffeomorphism from U onto its image, and for
any u ∈ U , expx(tu), t < |ε|, is a geodesic through x. Since σx is an isometry,
it maps geodesics into geodesics. Now, σx(expx(tu)) and expx((dσx)xtu) are
two geodesics through x with the same initial vector (dσx)xu. Therefore they
coincide. In particular, we have σx(expx(u)) = expx((dσx)xu). Since σ2

x = id,
we have (dσx)

2
x = id. To prove (dσx)x = −id, we need only prove that the

number 1 is not an eigenvalue of (dσx)x. Suppose conversely that there exists
u �= 0 such that (dσx)x(u) = u. Then (dσx)x(tu) = tu, t ∈R. Therefore for every
t we have

σx(expx(tu)) = expx((dσx)x)(tu) = expx(tu).

But this contradicts the assumption that x is an isolated fixed point of σx.
Therefore (dσx)x =−id.

(b) Let γ(t), 0≤ t ≤ l, be a geodesic parametrized to have constant Finslerian speed.
We construct a curve γ̃ by γ̃(t) = γ(t), for 0 ≤ t ≤ l; γ̃(t) = σγ(l)(γ(2l − t)),
for l ≤ t ≤ 2l. Similarly as in (a), σγ(l)(γ(2l − t)) is a geodesic. By (a), the
incoming vector of the geodesic γ at γ(l) coincides with the initial vector of
the geodesic γ̃ at γ(l). Therefore, by the uniqueness of the geodesics, γ̃(t) is
smooth and γ̃(t), 0 ≤ t ≤ 2l, is a geodesic. It is obvious that this geodesic still
has constant Finslerian speed (since σγ(l) is an isometry). Therefore (M,F) is
forward geodesically complete. By the Hopf–Rinow theorem, (M,F) is forward
complete. Since F is reversible, (M,F) is complete.
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(c) Since (M,F) is complete, for any x,y ∈ M, there exists a unit-speed minimal
geodesic γ(t), 0 ≤ t ≤ T , that realizes the distance of each pair of points in γ .
Let x0 = γ(T

2 ). Since F is reversible, we have d(x0,x) = d(x,x0) = d(x0,y). By
the proof of (a), we know that σx0(x) = y. Therefore (M,F) is homogeneous.

(d) Let (M,F) be a globally symmetric Finsler space. Then it is easily seen that
(M̃,π∗(F)) is a Finsler space. It is well known that any diffeomorphism σ of
M can be lifted to a diffeomorphism σ̃ of M̃ such that σπ = πσ̃ . Furthermore,
if σ(x) = x, then for any x̃ ∈ π̃−1(x), we can take σ̃ such that σ̃(x̃) = x̃. Now
for ỹ ∈ M̃, set y = π(ỹ). Then there exists a diffeomorphism σ̃ỹ of M̃ such that
σyπ = πσ̃ỹ and σ̃ỹ(ỹ) = ỹ. Since σ2

x = idM, we have σ̃2
ỹ π

−1(y) = π−1(y), ∀y ∈
M. Since σ̃ỹ is a diffeomorphism keeping ỹ fixed, we see that σ̃2

ỹ = idM̃ . It is
obvious that ỹ is an isolated fixed point of σ̃ỹ. By the definition of π∗(F), σ̃ỹ is
an isometry. Therefore (M̃,π∗(F)) is a globally symmetric Finsler space. ��

Corollary 5.2. Let (M,F) be a globally symmetric Finsler space. Then for any x ∈
M, σx is a local geodesic symmetry at x. In particular, (M,F) is locally symmetric
and for every x ∈ M, the symmetry σx is unique.

Proof. By (a) of Theorem 5.6, we know that for every x ∈ M, (dσx)x = −id.
Therefore, for every u ∈ Tx(M), we have

σx(expx(tu)) = expx((dσx)x(tu)) = expx(−tu). (5.7)

This means that σx is the local geodesic symmetry at x. Hence (M,F) is locally
symmetric. Since (M,F) is complete (Theorem 5.6 (b)), expx is defined on the whole
space Tx(M) and it is surjective. Therefore, by (5.7), σx is unique. ��
Theorem 5.7. Let (M,F) be a globally symmetric Finsler space. Then there exists
a Riemannian symmetric pair (G,K) such that M is diffeomorphic to G/K and F is
invariant under G.

Proof. By (c) of Theorem 5.6, the group I(M,F) of isometries of (M,F) acts
transitively on M. Since M is connected, the identity component G = I0(M,F) of
I(M,F) is also transitive on M, and the isotropy subgroup K of G at x fixed is
compact. Furthermore, M is diffeomorphic to G/K under the map gH → g ·x, g∈ G.

Similarly to the Riemannian case, we define a map σ of G into itself by σ(g) =
σxgσx, where σx denotes the (unique) involutive isometry of (M,F) with x as an
isolated fixed point. Then it is easily seen that σ is an involutive automorphism of
G and the group K lies between the closed subgroup Kσ of fixed points of σ and the
identity component of Kσ . Furthermore, the group K contains no normal subgroup
of G other than {e}. That is, (G,K) is a symmetric pair. Since K is compact, (G,K)
is a Riemannian symmetric pair. ��

Now we can prove the main result of this section.

Theorem 5.8. Let (M,F) be a globally symmetric Finsler space. Then (M,F) is
a Berwald space. Furthermore, the connection of F coincides with the Levi-Civita
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connection of a Riemannian metric Q such that (M,Q) is a Riemannian globally
symmetric space.

Proof. We first prove that F is a Berwald metric. By Theorem 5.7, there exists a
Riemannian symmetric pair (G,K) such that M is diffeomorphic to G/K and F is
invariant under G. Fix a G-invariant Riemannian metric Q on G/K. Without loss of
generality, we can assume that (G,K) is effective. Since being a Berwald space is a
local property, we can assume further that G/K is simply connected. Then we have
the decomposition

G/K = E ×G1/K1 ×G2/K2 ×·· ·×Gn/Kn,

where E is a Euclidean space, and Gi/Ki s, i = 1,2, . . . ,n, are simply connected ir-
reducible Riemannian globally symmetric spaces. Now we determine the holonomy
group of Q at the origin of G/K. According to the de Rham decomposition theorem,
it is equal to the product of the holonomy group of E and that of the Gi/Ki’s at the
origin. Obviously, E has trivial holonomy group. Next we determine the holonomy
group of the factors Gi/Ki. By the holonomy theorem of Ambrose–Singer [7], the
Lie algebra hi of the holonomy group Hi is linearly spanned by the linear maps of
the form {τ̃−1Ro(u,v)τ̃}, where τ denotes any piecewise smooth curve starting from
o, τ̃ denotes the parallel displacements (with respect to the restricted Riemannian
metric) along τ , Ro is the curvature tensor of Gi/Ki of the restricted Riemannian
metric, and u,v ∈ To(Gi/Ki). Since Gi/Ki is a globally Riemannian symmetric
space, the curvature tensor is invariant under parallel displacements. Therefore

hi = span{Ro(u,v) | u,v ∈ To(Gi/Ki)}.

On the other hand, Since Gi is a semisimple group, the Lie algebra of K∗
i =

Ad(Ki) � K is also equal to the span of Ro(u,v) (see [83, p. 207]). Since Gi/Ki

is simply connected, the groups Hi and K∗
i are connected [102]. Therefore Hi = K∗

i .
Consequently the holonomy group Ho of G/K at the origin is

K∗
1 ×K∗

2 ×·· ·×K∗
n .

Now F defines a Minkwoski norm Fo on To(G/K) that is invariant under Ho. By
Theorem 1.7, we can construct a Finsler metric F̄ on G/K by parallel translations
of Q. Then Theorem 1.8 implies that F̄ is a Berwald metric. Now, for any point
p0 = aK ∈ G/K, there exists a geodesic of the Riemannian manifold (G/K,Q),
say γ(t), such that γ(0) = o and γ(1) = p0. Suppose the initial vector of γ is u0

and take u ∈ p such that dπ(u) = u0. Then γ(t) = exptu · p0 and dτ(exptu) is the
parallel translate of (G/K,Q) along γ . Since F is G-invariant, it is invariant under
this parallel displacement. This means that the two Finsler metrics F and F̄ coincide
in the tangent space Tp0(G/K). Consequently, they coincide everywhere. Thus F is
a Berwald metric.

Now we prove the next assertion. Since (M,F) is a Berwald space, there exists a
Riemannian metric Q1 on M with the same connection as F . Since the above G acts
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isometrically on M, by Theorem 5.1, G acts as a group of affine transformations on
the connection. Since (G,K) is a (Riemannian) symmetric pair, M endowed with this
connection must be globally affine symmetric. Therefore (M,Q1) is a Riemannian
globally symmetric space. ��

From the proof of Theorem 5.8, we obtain the following corollary.

Corollary 5.3. Let (G/K,F) be a globally symmetric Finsler space and g = k+ p
the corresponding decomposition of the Lie algebra. Let π be the natural map of
G onto G/K. Then (dπ)e maps p isomorphically onto the tangent space of G/K at
p0 = eK. If u ∈ p, then the geodesic emanating from p0 with initial tangent vector
(dπ)eu is given by

γdπ ·u(t) = exptu · p0.

Furthermore, if v ∈ Tp0(G/K), then (dexptu)p0(v) is the parallel of v along the
geodesic.

5.3 Minkowski Symmetric Lie Algebras

In this section, we introduce the notion of Minkowski symmetric Lie algebras to give
an algebraic description of symmetric Finsler spaces. By Theorem 5.8, each globally
symmetric Finsler space must be a Berwald space. Therefore, in the following we
will consider locally and globally affine symmetric Berwald spaces. The results are
all valid for globally symmetric Finsler spaces. We first give a new definition.

Definition 5.2. Let (g,σ) be a symmetric Lie algebra and g= k+m the canonical
decomposition of g with respect to the involution σ . If F is a Minkowski norm on
m such that for every y �= 0, y,u,v ∈m, and w ∈ k, we have

gy([w,u],v)+ gy(u, [w,v])+ 2Cy([w,y],u,v) = 0, (5.8)

where gy (resp. Cy) is the fundamental tensor (resp. Cartan tensor), then (g,σ ,F) is
called a Minkowski symmetric Lie algebra.

Using the notion of a Minkowski symmetric Lie algebra, we can give an algebraic
description of globally affine symmetric Finsler spaces. In the following, for a
symmetric pair (G,K), we use σ to denote the involutive automorphism of G as
well as that of the Lie algebra g of G. Let g= k+m be the canonical decomposition
of g with respect to σ . As usual, we identify the tangent space To(G/K) with m.

Theorem 5.9. Let (G/K,F) be a globally affine symmetric Berwald space. Then
(g,σ ,F) is a Minkowski symmetric Lie algebra. Conversely, let (g,σ ,F) be a
Minkowski symmetric Lie algebra and suppose (G,K) is a pair associated with
(g,σ) such that K is closed and connected. Then there exists a Finsler metric (still
denoted by F) on G/K such that (G/K,F) is a locally affine symmetric Berwald
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space. Furthermore, if (G,K) is a symmetric pair, then G/K with this metric is
globally affine symmetric.

Proof. For the first assertion, we need only verify that F satisfies (5.8). Since F is
G-invariant, we have

F(Ad(h)u) = F(u), ∀h ∈ H, u ∈m.

Therefore, for any y(�= 0),u,v ∈m, and w ∈ k, t,r,s ∈R, we have

F2(Ad(exp(tw))(y+ ru+ sv)) = F2(y+ ru+ sv).

By definition,

gy(u,v) =
1
2

∂ 2

∂ r∂ s
F2(y+ ru+ sv)|r=s=0.

Thus

gy(u,v) =
1
2

∂ 2

∂ r∂ s
F2(Ad(exp(tw))(y+ ru+ sv))|r=s=0. (5.9)

Now for u ∈m, we have

Ad(exptw)u = u+ t[w,u]+O(t2).

Therefore

gy(u,v) =
1
2

∂ 2

∂ r∂ s
F2(y+ ru+ sv+ t[w,y+ ru+ sv]+O(t2))|r=s=0.

Taking the derivative with respect to t at t = 0, we get

0 = gy([w,u],v)+ gy(u, [w,v])+ 2Cy([w,y],u,v]).

Therefore, (g,σ ,F) is a Minkowski symmetric Lie algebra.
Conversely, let (g,σ ,F) be a Minkowski symmetric Lie algebra and suppose

(G,H) is a pair associated with (g,σ), with H closed and connected. We assert that
there exists a G-invariant Finsler metric on G/H. In fact, given y(�= 0),u,v∈m, and
w ∈ h, consider the function

ψ(t) = gAd(exp(tw))y(Ad(exp(tw))u,Ad(exp(tw))v).

Taking the derivative with respect to t, we easily see that

ψ ′(t) = 0.
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Therefore ψ(t) = ψ(0), ∀t ∈ R. Since H is connected, it is generated by elements
of the form exp(tw), w ∈ h, t ∈ R. Thus

gy(u,v) = gAd(h)y(Ad(h)u,Ad(h)v), ∀h ∈ H.

Using the formula F(y) =
√

gy(y,y), we have

F(Ad(h)u) = F(u), ∀h ∈ H,u ∈m. (5.10)

Now for any gH ∈ G/H, the map τg : g1H → gg1H is a diffeomorphism of G/H
sending o to gH. Define a Finsler metric F on G/H by

F(y) = F(dτg−1(y)), y ∈ TgH(G/H).

By (5.10), F is well defined. It is obvious that F is a G-invariant Finsler metric
on G/H.

To prove the last two assertions, we only need to show that if (G,H) is a pair
associated with (g,σ) and G is simply connected, then (G/H,F) is a globally
symmetric affine Berwald space. This can be verified similarly to what was done
in Theorem 5.5. We omit the details. ��

By Theorem 5.9, if (g,σ ,F) is a Minkowski symmetric Lie algebra, then (g,σ)
is an orthogonal symmetric Lie algebra. We say that a Minkowski symmetric Lie
algebra (g,σ ,F) is of Euclidean type, compact type or noncompact type according
to the type of the corresponding orthogonal symmetric Lie algebra. Moreover,
(g,σ ,F) is called irreducible if (g,σ) is irreducible as an orthogonal symmetric
Lie algebra.

As in the Riemannian case, there exists a remarkable duality among locally or
globally symmetric Finsler spaces. By Theorem 5.9, we need only treat Minkowski
symmetric Lie algebras.

Proposition 5.1. Let (g,σ ,F) be a Minkowski symmetric Lie algebra and g =
h+m the canonical decomposition. Let g∗ = h+

√−1m be the real subalgebra
of (gC)R. Define a Minkowski norm on

√−1m by

F∗(
√−1u) = F(u), u ∈m.

Let σ∗ be the involutive automorphism of g∗ induced by σ . Then (g∗,σ∗,F∗) is a
Minkowski symmetric Lie algebra. Moreover, if (g,σ ,F) is of compact type (resp.
noncompact type), then (u,σ∗,F∗) is of noncompact type (resp. compact type), and
conversely.

Proof. The only point we need to prove is that F∗ satisfies (5.8). By the definitions
of fundamental form and Cartan tensor, we have

g√−1y(
√−1u1,

√−1u2) = gy(u1,u2),

C√−1y(
√−1u1,

√−1u2,
√−1u3) = Cy(u1,u2,u3),

where y(�= 0), ui ∈m. From this it is easily seen that F∗ satisfies (5.8). ��
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Definition 5.3. The triple (g∗,σ∗,F∗) defined in Proposition 5.1 is called the dual
of the Minkowski symmetric Lie algebra (g,σ ,F).

It is clear that if (g1,σ1,F1) is the dual of (g2,σ2,F2), then (g2,σ2,F2) is the dual
of (g1,σ1,F1).

Definition 5.4. Two Minkowski symmetric Lie algebras (g1,σ1,F1) and
(g2,σ2,F2) are called isomorphic if there exists a Lie algebra isomorphism ϕ
of g1 onto g2 such that ϕ ◦σ1 = σ2 ◦ϕ and F1(u) = F2(ϕ(u)), ∀u ∈ g1.

Proposition 5.2. Let (gi,σi,Fi) be two Minkowski symmetric Lie algebras. Then
(g1,σ1,F1) is isomorphic to (g2,σ2,F2) if and only if (g∗1,σ

∗
1 ,F

∗
1 ) is isomorphic to

(g∗2,σ
∗
2 ,F

∗
2 ).

The proof is similar to the Riemannian case, so we omit it.
In the Riemannian case, every (simply connected) Riemannian globally sym-

metric space can be uniquely decomposed into the product of a Euclidean space,
a Riemannian symmetric space of compact type, and a Riemannian space of non-
compact type. Furthermore, each Riemannian space of compact type or noncompact
type can be uniquely decomposed into the product of irreducible ones. It is natural
to consider the same problem for symmetric Finsler spaces. However, we must be
careful because in this case, we do not have orthogonality. Therefore, the product
of two symmetric Finsler spaces may not be unique. To give a valid definition, we
need the following result:

Theorem 5.10. Let (M,F) be a globally affine symmetric Berwald space and
(G,K) an effective Riemannian symmetric pair such that M � G/K. Then the
connection of F (as a Berwald metric) coincides with the canonical connection
of G/K. In particular, for any effective Riemannian symmetric pair (G,K), the
connection is the same for all G-invariant Finsler metrics on G/K.

Proof. By Theorem 5.8, the connection of F coincides with the Levi-Civita
connection of a G-invariant Riemannian metric Q on G/K. But the Levi-Civita
connection on G/K is the same for all G-invariant Riemannian metrics on G/K.
Therefore the theorem follows. ��

By Theorem 5.10, to consider the decomposition of symmetric Finsler spaces, we
do not need to consider the connection. Therefore we have the following definition:

Definition 5.5. Let (M,F), (M1,F1), (M2,F2) be globally affine symmetric
Berwald spaces. A Finsler space (M,F) is called the product of (M,F1) and (M2,F2)
if M � M1 ×M2 and Fi = F|Mi , i = 1,2. A globally affine symmetric Berwald space
of compact or noncompact type is called irreducible if it cannot be written as the
product of two globally affine symmetric Berwald spaces

Similarly, we can define the notion of product of finitely many globally symmet-
ric Finsler spaces. Now we have the following theorem.



5.3 Minkowski Symmetric Lie Algebras 119

Theorem 5.11. Let (M,F) be a simply connected globally affine symmetric
Berwald space. Then (M,F) can be decomposed into the product of a Minkwoski
space, a globally affine symmetric Berwald space of compact type and a globally
affine symmetric Berwald space of noncompact type. Moreover, every simply
connected globally affine symmetric Finsler space of compact or noncompact
type can be decomposed into the product of irreducible globally affine symmetric
Berwald spaces. The decomposition is unique as manifolds (in general not unique
as Finsler spaces).

Proof. By Theorem 5.8, the only point we need to check is that the coset space
R

n �R
n/{0} endowed with a Finsler metric invariant under the parallel translation

is a Minkowski space. But this is obvious. ��
Remark 5.1. Although we have the decomposition theorem, the classification of
symmetric Finsler spaces is not reduced to the case of irreducible ones, because the
product of two or more symmetric Finsler spaces is not unique.

Next we give a formula to compute the flag curvature and Ricci scalar of locally
affine symmetric Berwald spaces.

Theorem 5.12. Let (g,σ ,F0) be a Minkowski symmetric Lie algebra and (G,H) a
pair associated with (g,σ). Suppose there exists an invariant Finsler metric F on
G/H such that the restriction of F to m is F0. Then the curvature tensor of F is
given by

Ro(u,v)w =−[[u,v],w], ∀u,v,w ∈m,

and the flag curvature of the flag (P,y), y �= 0, y ∈ P, is given by

K(P,y) = gl([[l,v], l],v),

where l = y/F (the distinguished section) and l,u is an orthonormal basis of the
plane P with respect to gl.

Proof. Since flag curvature is a local invariance, we can assume, without loss of
generality, that G is simply connected. Then by Theorem 5.9, G/H with F is
a globally affine symmetric Berwald space. Let D be the (linear) connection of
(G/H,F). Then D is the canonical connection of the globally affine symmetric
space G/H. Therefore,

Ro(u,v)w =−[[u,v],w], u,v,w ∈m.

The last conclusion is the direct consequence of the definition of flag curvature. ��

Corollary 5.4. Let (g,σ ,F0) be a Minkowski symmetric Lie algebra and
(g∗,σ∗,F∗

0 ) its dual. Let (G,H) and (G∗,H∗) be two pairs associated with (g,σ ,F0)
and (g∗,σ∗,F∗

0 ), respectively. Suppose there exist invariant Finsler metrics F on
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G/H and F∗ on G∗/H∗ such that the restrictions of F and F∗ on m and
√−1m

are equal to F0 and F∗
0 , respectively. Then the flag curvatures of (G/H,F) and

(G∗/H∗,F∗) satisfy

K(P,y) =−K(
√−1P,

√−1y), 0 �= y ∈m,

where P is a plane in m containing y and
√−1P is the plane in

√−1m spanned by√−1u, u ∈ P.

It is a result of Cartan (see [83, Theorem 3.1, Chap. V]) that the sectional
curvature of a Riemannian symmetric space is everywhere 0, everywhere ≥ 0, or
everywhere ≤ 0, according as it is of Euclidean type, compact type, or noncompact
type. It is easy to see that the flag curvature of a (locally or globally) affine
symmetric Berwald space of Euclidean type is everywhere 0. However, in the cases
of compact type or noncompact type, the situation is somehow complicated. The
reason for this complexity is that the proof of the Riemannian case depends on the
invariance of the inner product in the formula of the sectional curvature. But in the
formula of flag curvature the inner product gy (or gl) is not invariant under the action
of H. Therefore the original proof is not applicable. However, using Weyl’s unitary
trick, we can generalize this elegant result to the Finslerian case.

Theorem 5.13. Let (G/H,F) be a locally affine symmetric Berwald space with G
semisimple and (g,σ ,F) the associated Minkowski symmetric Lie algebra with the
canonical decomposition g= h+m.

1. If (g,σ) is of compact type, then the flag curvature of (G/H,F) is
everywhere ≥ 0.

2. If (g,σ) is of noncompact type, then the flag curvature of (G/H,F) is
everywhere ≤ 0.

Proof. By the duality, we need treat only the noncompact case. Then H is a
connected compact Lie group (see Sect. 2.5). Given y �= 0 and a vector u that is
linearly independent from y, let P be the plane spanned by y, u. Then the flag
curvature is given by

K(P,y) =
gl([[l,u], l],u)

gl(u,u)− gl(l,u)2 .

Accordingly, we need only prove that gl([[l,u], l],u) ≤ 0. Consider the pullback
bundle π∗(T M) over TM\{0}. It is easily seen that in the notation of [16, pp. 73–
74], we have gl([[l,u], l],u) = (l,u). Moreover, it is also true that (l,u) = (u, l). Thus

gl([[l,u], l],u) = gl([[u, l],u], l).

Set v = [[u, l],u]. Then by the identity

Cl(z1,z2, l) = 0, ∀z1,z2 ∈m,
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we have

gl([w,v], l)+ gl(v, [w, l]) =−2Cl([w, l],v, l) = 0, ∀w ∈ h.

This means that for the given w, the derivative of the function

gl(Ad(exp(tw))v,Ad(exp(tw))l)

is equal to 0 everywhere. Therefore

gl(Ad(exp(tw))v,Ad(exp(tw))l) = gl(v, l), ∀w ∈ h, t ∈ R.

Since H is connected and compact, the exponential map is surjective. Thus

gl(Ad(h)v,Ad(h)l) = gl(v, l), ∀h ∈ H.

Now we define a new inner product Q0 on m by

Q0(u1,v1) =

∫
H

gl(Ad(h)u1,Ad(h)v1) dh, u1,v1 ∈m,

where dh is the normalized standard bi-invariant Haar measure of H. By the
definition, Q0 is Ad(H)-invariant and

Q0(v, l) = gl(v, l).

Using Q0 we can define a G-invariant Riemannian metric Q on the coset space
G/H such that the restriction of Q to m coincides with Q0. Then (G/H,Q) is a
Riemannian globally symmetric space of noncompact type. Therefore the sectional
curvature of (G/H,Q) is everywhere ≤ 0. Thus

Q0(v, l) = gl([[u, l],u], l)≤ 0.

Consequently

gl([[u, l],u], l) = gl(v, l) = Q0(v, l)≤ 0.

Therefore

K(P,y)≤ 0. �

Remark 5.2. In the above theorem, the equality is strict if and only if P is not a
commutative plane. This can be easily seen from the formula of the flag curvature
in Theorem 5.12.

By Theorem 5.12, we have the following result.

Theorem 5.14. Let (G/H,F) be a globally affine symmetric Berwald space and
g= h+m the canonical decomposition of the corresponding Minkowski symmetric
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Lie algebra. Identifying m with the tangent space To(G/H) at the origin, we have
Ric(y) = − 1

2 B(y,y), ∀y(�= 0) ∈ m, where B denotes the Killing form of the Lie
algebra g.

Proof. By Theorem 5.12, the curvature tensor of the connection of the Berwald
space (G/H,F) is

Ro(u,v)w =−[[u,v],w], u,v,w ∈m.

This implies that the Riemann tensor of (G/H,F) satisfies

Ry(u) =−F2(y)[[y,u],y], y(�= 0), u ∈m.

Taking the trace of the linear endomorphism Ry, we find that the Ricci scalar of
(G/H,F) is the same as that of the Riemannian manifold (G/H,Q), where Q is a
G-invariant Riemannian metric on G/H. Now, using Corollary 2.1 one can easily
deduce that Ric(y) =− 1

2 B(y,y). ��

5.4 Rigidity Theorems

In this section, we present some rigidity results on symmetric Finsler spaces related
to flag curvature. We first recall a result of Busemann and Phadke [35] that asserts
that a locally symmetric G-space has a globally symmetric universal covering space.
When the G-space is smooth, it is a (complete) Finsler space. Therefore, combining
Theorems 5.4, 5.6(d), and 5.8, we have the following theorem.

Theorem 5.15. Let (M,F) be a complete locally symmetric Finsler space. Then
for every x ∈ M, there exist a simply connected globally symmetric Finsler space
(M̃, F̃), a neighborhood N of x in M, and an isometry of N onto an open subset Ñ
of M̃. In particular, (M,F) is a Berwald space.

In view of Theorem 5.3, we have the following result.

Theorem 5.16. Let (M,F) be a complete Finsler space. Then (M,F) is locally
symmetric if and only if it is a Berwald space and the flag curvature is invariant
under all parallel displacements.

Now we can deduce some global rigidity theorems on symmetric Finsler spaces.
First we have the following.

Theorem 5.17. Let (M,F) be a complete locally symmetric Finsler space. If the
flag curvature of (M,F) is everywhere nonzero, then F is Riemannian.

Proof. Let x ∈ M. By Theorem 5.15, there exist a neighborhood N of x, a simply
connected globally symmetric Finsler space (M̃, F̃), and an isometry from N onto an
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open subset Ñ of M̃. By the assumption, the flag curvature of (M̃, F̃) is everywhere
nonzero on Ñ. Since (M̃, F̃) is homogeneous (Theorem 5.6 (c)), the flag curvature
of (M̃, F̃) is everywhere nonzero. By Theorem 5.7, M̃ can be written as a coset
space of a Riemannian symmetric pair (G,H) and F̃ corresponds to a G-invariant
Finsler metric F̃1 on G/H. Let g= h+m be the canonical decomposition of the Lie
algebra. Then by Theorem 5.11, we have [u,v] �= 0 for all vectors u,v in m that are
linearly independent. That is, G/H is irreducible and of rank one. Fix a G-invariant
Riemannian metric Q on G/H. Then Ad(H) acts transitively on the unit sphere
of the Euclidean space (To(G/H),Q). Since both Q and F̃1 are invariant under the
action of Ad(H), there exists a positive number c such that F̃1(y) = c

√
g̃(y,y) for

all y ∈ To(G/H). Hence F̃1 is Riemannian. Thus F̃ is Riemannian. Consequently
F is Riemannian on N. Since x is arbitrary, we conclude that F is a Riemannian
metric. ��

Since a compact Finsler space is complete, we have the following corollary.

Corollary 5.5. Let (M,F) be a compact locally symmetric Finsler space. If the flag
curvature of (M,F) is everywhere nonzero, then F is Riemannian.

It should be noted that the negatively curved case in Corollary 5.5 can also
be deduced from the main result in [71]. However, the approaches are essentially
different. Moreover, the method in [71] is not applicable to the positively curved
case here. We mention here that there is a geometric approach to prove the positively
curved case of this corollary; see [98].

Theorem 5.18. Let (M,F) be a locally affine symmetric Berwald space. If the flag
curvature of (M,F) is everywhere nonzero, then F is Riemannian.

Proof. By Theorem 5.4, a locally symmetric Berwald space is locally isometric to a
globally symmetric Berwald space. Therefore the result can be proved in a manner
similar to that of Theorem 5.17. ��

By Theorem 5.4, a Berwald space of constant flag curvature must be locally
symmetric. Therefore we have the following corollary.

Corollary 5.6. A Berwald space of nonzero constant flag curvature is Riemannian.

It should be noted that this result is a special case of Numata’s theorem (see [16]).
It is interesting that the approaches are very different.

Finally, we mention that recently Matveev and Troyanov proved that a locally
symmetric Finsler space must be a Berwald space, without the completeness
assumption. This proves a conjecture posed in [61]. See [116] for details. By their
results, the assertions of Theorems 5.15–5.18 and Corollary 5.5 are all valid without
the completeness assumption.
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5.5 Complex Structures

In this section we consider homogeneous Finsler spaces with invariant compatible
complex structure and give a classification of complex symmetric Finsler spaces.
A complex Finsler manifold (M, I,F) is a (connected) complex manifold (M, I)
endowed with a complex Finsler metric F . Here, by a complex Finsler metric, we
mean a continuous function F : TM → R

+ (where Tx(M), x ∈ M is viewed as a
complex vector space) that satisfies the following conditions:

1. F is smooth on T M\{0};
2. F(u)> 0, ∀u �= 0;
3. F(λu) = |λ |F(u) for every λ ∈ C

∗.

The restriction of F to any TxM is a complex Minkowski norm, i.e., a function on
the complex vector space TxM that is smooth on TxM\{0} and satisfies conditions
(2) and (3). In this section, we will consider only those complex Finsler metrics
which are strongly convex as a real Finsler metric. Namely, let x ∈ M and
v1,v2, . . . ,v2m be a basis of Tx(M) over the field of real numbers. For y = y jv j ∈
Tx(M), write F(y) = F(y1,y2, . . . ,y2m). Then the Hessian matrix

(gi j) =

(
1
2
[F2

yiy j ]

)

is positive definite at every point in Tx(M)\{0}. Therefore, F is a real Finsler metric
in the usual sense.

We first give some examples of complex Minkowski norms and complex Finsler
metrics.

Example 5.2. Let (M, I,Q) be a Hermitian manifold. Then it is obvious that the
function F defined by

F(v) =
√

Q(v,v)

is a complex Finsler metric on (M, I). In this case we say that F is associated with
the Hermitian metric Q.

Example 5.3. Let us give an example that is not associated with any Hermitian
metric. Let n ≥ 2. In the linear vector space Cn, we define

F(x) =

√
|x1|2 + |x2|2 + · · ·+ |xn|2 + s

√
|x1|2s + |x2|2s + |xn|2s,

where x = (x1,x2, . . . ,xn) ∈ C
n, | · | denotes the modulus of a complex number, and

s ≥ 2 is an integer. Then it is easily seen that F is a complex Minkowski norm that
is not the norm of any Hermitian form. In an obvious way, we can view (Cn,F)
as a complex Finsler manifold. It is easily seen that F is not associated with any
Hermitian metric on C

n.
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Let (M, I,F) be an n-dimensional complex Finsler manifold. Then (M,F) is a
(2n)-dimensional real Finsler space. A differmorphism τ of M is called holomorphic
if dτ ◦ I = I ◦ dτ . The set of all holomorphic isometries of (M, I,F) forms a group,
denoted by A(M, I,F). It is obvious that A(M, I,F) is a closed subgroup of I(M,F).
Therefore, by Theorem 3.4, we have the following result.

Proposition 5.3. The group A(M, I,F) of holomorphic isometries of (M, I,F) is
a Lie transformation group of M with respect to the compact-open topology.
Moreover, for every x ∈ M, the isotropy subgroup Ax(M, I,F) at x is a compact
subgroup of A(M, I,F).

Definition 5.6. A complex Finsler manifold (M, I,F) is called homogeneous if the
group of holomorphic isometries A(M, I,F) acts transitively on M.

By the above discussion, we have the following.

Proposition 5.4. Let (M, I,F) be a homogeneous complex Finsler manifold. Then
(M, I,F) can be written as a coset space G/H, where G = A0(M, I,F) is the
unity component of the group A(M, I,F) of holomorphic isometries and H =
(A0)x(M, I,F) is the isotropy subgroup of A0(M, I,F) at x ∈ M.

As an application of the above propositions, we can prove our next theorem.

Theorem 5.19. Let (M, I,F) be a homogeneous complex Finsler manifold. Then
there exists a Riemannian metric Q on M such that (M, I,Q) is a homogeneous
Hermitian manifold.

Proof. By Proposition 5.4, M can be written as the coset space G/H of a Lie group
G with G-invariant complex structure I and complex Finsler metric F . Let o = eH
be the origin of G/H and V = To(G/H). Then the group K of linear isometries of
the (real) Minkowski space (V,F) is a compact subgroup of GL(V ). Fix any inner
product 〈 , 〉0 on V and define an inner product 〈,〉 by

〈u,v〉=
∫

K
(〈Ad(k)u,Ad(k)v〉0 + 〈I(Ad(k)u), I(Ad(k)v)〉0)dk,

where dk is the standard invariant Haar measure on K. It is obvious that 〈 , 〉 is
K-invariant. Since H ⊂ K, 〈 , 〉 is also H-invariant. Therefore 〈 , 〉 can be extended to
a G-invariant Riemannian metric Q on G/H. By definition, it is easy to check that

Q(I(u), I(v)) = Q(u,v)

for every u,v ∈ Tx(G/H), x ∈ G/H. Therefore (G/H, I,Q) is a homogeneous
Hermitian manifold. ��

By the above results, to study complex homogeneous Finsler spaces, we need
only consider invariant Finsler metrics on coset spaces. We have previously intro-
duced several new notions such as Minkowski Lie pairs, Minkowski Lie algebras,



126 5 Symmetric Finsler Spaces

Minkowski symmetric Lie algebras. Now we use a unified method to describe these
notions. This will be useful in describing homogeneous complex Finsler spaces. In
the following, vector spaces are assumed to be finite-dimensional.

We first give an infinitesimal version of the definition of Minkowski representa-
tions of Lie groups.

Definition 5.7. Let g be a (real or complex) Lie algebra. Then a Minkowski
representation of g is a representation (V,φ) of g with a (real or complex)
Minkowski norm F on the (real or complex) vector space V such that

gy(φ(w)u,v)+ gy(u,φ(w)v)+ 2Cy(φ(w)y,u,v) = 0,

for every w ∈ g, y(�= 0), u,v ∈ V . We usually denote the Minkowski representation
by (V,φ ,F).

We first give some examples of Minkowski representations.

Example 5.4. Let G be a Lie group and H a closed connected subgroup of G with
Lie algebras g and h, respectively. Suppose F is a Minkowski norm on the quotient
space g/h such that (g,h,F) is a Minkowski Lie pair. That is,

gy(adg/h(x)(u),v)+ gy(u,adg/h(x)v)+ 2Cy(adg/h(x)y,u,v) = 0,

for every y(�= 0),u,v ∈ g/h, and w ∈ h, where adg/h is the representation of h on
g/h induced by the adjoint representation. Then it is obvious that (g/h,adg/h,F) is
a Minkowski representation of h. Recall that by Theorem 4.1, (g/h,Adg/h,F) is a
Minkowski representation of H.

Example 5.5. Let (g,F) be a Minkowski Lie algebra. That is, g is a real Lie algebra,
F is a Minkowski norm on g, and the following condition is satisfied:

gy([w,u],v)+ gy(u, [w,v])+ 2Cy([w,y],u,v) = 0,

for every y(�= 0), w,u,v ∈ g. Then it is easily seen that (g,ad,F) is a Minkowski
representation of g, where ad is the adjoint representation of g.

Example 5.6. Let (g,σ ,F) be a Minkowski symmetric Lie algebra. That is, g is a
real Lie algebra,σ is an involutive automorphism of g with canonical decomposition
g= h+m, F is a Minkowski norm on p, and the following condition is satisfied:

gy([w,u],v)+ gy(u, [w,v])+ 2Cy([w,y],u,v) = 0,

for every y(�= 0),u,v ∈ m, w ∈ h. Then it is easily seen that (m,ad,F) is a
representation of h, where ad is the adjoint representation of h on m.

The relation between Minkowski representations of Lie groups and Lie algebras
is stated in the following:
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Theorem 5.20. Let G be a Lie group with Lie algebra g. If (V,ρ ,F) is a (real)
Minkowski representation of G, then (V,dρ ,F) is a Minkowski representation of
g. On the other hand, if (V,φ ,F) is a Minkowski representation of g and G is
connected, then there exists a Minkwoski representation (V,ρ ,F) with φ = dρ .

The proof of this theorem is similar to that of Theorem 4.2, so we omit it. We
also have the following result.

Theorem 5.21. Let G be a Lie group and (V,ρ ,F) a real (complex) Minkowski
representation of G. Then there exists an inner product (Hermitian inner product)
〈 , 〉 on V such that (V,ρ ,〈 , 〉) is an orthogonal (unitary) representation of G.

Proof. The proof is similar to Theorem 5.19. Just note that ρ(G) is contained in the
group K of linear isometries of (V,F), which is a compact subgroup of GL(V ). ��

Next we will use the notion of Minkowski representations of Lie groups and
Lie algebras to study homogeneous complex Finsler spaces. By Proposition 5.4,
we need only study the invariant structures on a coset space G/H, where G is a
connected Lie group and H is a closed subgroup of G.

We first consider the special case in which G is a complex Lie group. That is, G
is an (abstract) group as well as a complex manifold and the map: (x,y) �→ xy, resp.
x �→ x−1, is a holomorphic map from G×G, resp. G to G. As a manifold, G can be
viewed as a real smooth manifold, denoted by GR. Then GR with the original group
operation is a real Lie group. The Lie algebra gR has a natural complex structure I.
Therefore gR can be viewed as a complex Lie algebra, which we denote by g and
call the complex Lie algebra of the complex Lie group G.

Let G be a complex Lie group and H a closed complex subgroup of G. Then
it is easily seen that the coset space G/H has a natural complex structure I such
that (G/H, I) is a homogeneous complex manifold. Identifying the tangent space
To(G/H) of G/H at the origin o = eH with the quotient space g/h, we have the
following theorem.

Theorem 5.22. Let G be a complex Lie group and H a closed complex subgroup of
G. If F is a complex Finsler metric on G/H such that (G/H, I,F) is a homogeneous
complex Finsler manifold, then (g/h,adg/h,Fo) is a Minkowski representation
of h. On the other hand, if F∗ is a complex Minkowski norm on g/h such
that (g/h,adg/h,F∗) is a Minkowski representation of h and the subgroup H is
connected, then there exists a complex Finsler metric F on G/H such that F∗ = Fo

and (G/H, I,F) is a homogeneous complex Finsler manifold.

Proof. The proof is similar to the real case; see Theorem 4.2. ��
Theorem 5.22 gives a complete description of the structure of invariant complex

homogeneous Finsler metrics on the coset spaces of complex Lie groups. However,
there exist complex homogeneous manifolds that cannot be written as a coset space
of a complex Lie group. Let us give an example.
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Example 5.7. Consider a bounded domain D in C
n. It is well known that the group

of holomorphic diffeomorphisms of D onto itself, denoted by H(D), is a real Lie
group (see [83]). If the action of H(D) on D is transitive, then D is a homogeneous
complex manifold, called a homogeneous bounded domain. However, in this case,
there cannot be any complex structure on H(D) that makes H(D) a complex Lie
group. In fact, if H(D) is a complex Lie group, then the orbit of any one-parameter
subgroup of H(D) is bounded. According to Liouville’s theorem, every bounded
holomorphic function on C is a constant. This means that the orbit of every one-
parameter subgroup of H(D) consists of a single point, contracting the fact that
H(D) acts transitively on D.

Therefore, to obtain a complete algebraic description of all the complex homo-
geneous Finsler spaces, we have to consider all the coset spaces G/H, where G is
a real Lie group and H is a closed subgroup of G. In the following, we will find a
sufficient and necessary condition for such a coset space to have a complex structure
and an invariant complex Finsler metric simultaneously.

In the following, we will encounter several representations of a Lie algebra h
that are all induced by the adjoint representation. To keep the notation simple,
we sometimes denote such representations simply by ad. Moreover, for a linear
transformation ρ on a real vector space V , we use ρC to denote the induced complex
linear transformation on the complexification VC.

Theorem 5.23. Let G be a (real) Lie group, H a closed subgroup of G, LieG = g,
LieH = h. If I is a complex structure on G/H and F is a Finsler metric on G/H
such that (G/H, I,F) is a homogeneous complex Finsler space, then there exists a
complex subalgebra a of the complex Lie algebra gC (complexification of g) such
that a∩ ā = hC, a+ ā = gC, and a complex Finsler metric F1 on a/hC such that
(a/hC,ad,F1) is a Minkowski representation of h. On the other hand, if there exists
a complex subalgebra a of gC satisfying a∩ ā = hC, a+ ā = gC and a complex
Minkowski norm F1 on a/hC such that (a/hC,ad,F1) is a Minkowski representation
of h and if moreover, H is connected, then there exist a complex structure I on G/H
and a complex Finsler metric F on G/H such that (G/H, I,F) is a homogeneous
complex Finsler space.

Proof. First suppose that I is a G-invariant complex structure on G/H and F is
a Finsler metric on G/H such that (G/H, I,F) is a homogeneous complex space.
Then I corresponds to a Koszul operator J [102, 103] that is a linear transformation
of g such that there exists a subspace m satisfying

g= h+m (direct sum of subspaces),

with J(h) = 0, J(m)⊂m and J2|m =−id. Moreover, we also have

π(JX) = Io(π(X)), X ∈ g,

Ad(h)J ≡ JAd(h)(modh),∀h ∈ H,
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where o is the origin of G/H and π is the natural projection of g onto g/h. Now we
extend J to a complex linear transformation JC of gC = hC +mC. Define

n± = {X ∈ gC | JC(X) =±√−1X}.

It is easily seen that n± ⊂ mC. Set a = hC + n+. Then ā = hC + n−. Therefore we
have a∩ ā= hC, and g= a+ ā. Furthermore, by the definition of a, for every X ∈ hC,
Y ∈ a, we have

IC
o π

C([X ,Y ]) = IC
o π

C(ad(X)Y ) = IC
o ad(X)πC(Y ) = ad(X)IC

o (π
C(Y )),

Since πC(Y ) ∈ n+, we have IC
o (πC(Y )) =

√−1πC(Y ). Thus

IC
o (πC([X ,Y ])) =

√−1ad(X)πC(Y ) =
√−1πC([X ,Y ]).

Therefore, πC([X ,Y ]) ∈ n+. Hence [X ,Y ] ∈ a. That is,

[hC,a]⊂ a.

Now for any Y1,Y2 ∈ a, we have

JC[Y1,Y2] =
√−1[Y1,Y2] (modhC).

Combining this fact with [hC,a]⊂ a, we see that a is a complex subalgebra of gC.
Now the Finsler metric F on G/H defines a Minkowski norm on the vector space

To(G/H). Identifying g/h with To(G/H), we obtain a Minkowski norm F∗ on g/h
defined by

F∗(au+ bIo(u)) =
√

a2 + b2F(u), u ∈ g/h,a,b ∈ R,

F∗(Ad(h)u) = F(u), h ∈ H,u ∈ g/h.

Extend F∗ to a Minkowski norm on (g/h)C = gC/hC (denoted by F∗
1 ) by

F∗
1 (u+

√−1v) =
√
(F∗(u))2 +(F∗(v))2, u,v ∈ g/h.

It is obvious that

F∗
1 ((a id+ bIC

o )u) =
√

a2 + b2F∗
1 (u), u ∈ gC/hC,a,b ∈ R.

Let F1 be the restriction of F∗
1 to a/hC. Then by definition, we have

F1(Ad(h)(x)) = F1(x),
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for every x ∈ a/hC and h ∈ H. On the other hand, for every a,b ∈ R and u ∈ a,
we have

F1((a+ b
√−1)πC(u)) = F1(πC((a+ bJC)u))

= F1((a+ bIC
o )π

C(u)) =
√

a2 + b2F1(πC(u)).

Therefore F1 is a complex Minkowski norm on a/hC. Since F1 is invariant
under H, (a/hC,Ad,F1) is a Minkowski representation of H. By Theorem 5.5.4,
(a/hC,ad,F1) is a Minkowski representation of h.

Conversely, if there exist a complex subalgebra a satisfying gC = a+ ā, a∩ ā= hC

and a complex Minkowski norm F1 on a/hC such that (a/hC,ad,F1) is a Minkowski
representation of h, then we have a direct decomposition

(g/h)C = πC(a)+πC(ā).

Since πC(ā) = πC(a), we can define a (real) linear transformation Io on the real
vector space g/h such that IC

o |πC(a) =
√−1id, and IC

o |πC(ā) = −√−1id. Then it
is known that Io can be extended to an almost complex structure I on G/H and
moreover, I is integrable if and only if a is a subalgebra of gC [103]. Thus we
have defined a complex structure on G/H. Now we extend the Minkowski norm F1

(denoted by F∗
1 ) to gC/hC = (g/h)C by

F∗
1 ((u+hC)+ (v̄+hC)) =

√
(F1(u+hC))2 +(F1(v+hC))2, u,v ∈ a.

It is easily seen that F∗
1 is a complex Minkowski norm on gC/hC. Let Fo be the

restriction of F∗
1 to g/h and for w ∈ g, let

πC(w) = (w1 +hC)+ (w̄2 +hC),

where w1,w2 ∈ a. Then for every a,b ∈ R, we have (here for simplicity we denote
the imaginary unit by i)

Fo((a+ bi)π(w)) = Fo((a+ bIo)π(w)) = F∗
1 ((a+ bIC

o )π
C(w))

= F∗
1 ((a+ bIC

o )((w1 +hC)+ (w̄2 +hC)))

= F∗
1 ((a+ bi)(w1 +hC)+ (a− bi)(w̄2 +hC))

=
√
(F1((a+ bi)(w1 +hC)))2 +(F1((a− bi)(w̄2 +hC))2

=
√
(a2 + b2)(F1(w1 +hC))2 +(a2 + b2)(F1(w̄2 +hC))2

=
√

a2 + b2
√
(F1(w1 +hC))2 +(F1(w̄2 +hC))2

=
√

a2 + b2F1(πC(w)) =
√

a2 + b2Fo(π(w)).
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Therefore, Fo is a complex Minkowski norm on g/h (with respect to the complex
structure Io). On the other hand, since (a/hC,ad,F1) is a Minkowski representation
of h, it is easily seen that (g/h,ad,Fo) is a Minkowski representation of h. Since
H is connected, (g/h,Ad,Fo) is a Minkowski representation of the group H. By
Theorem 4.1, we can define a complex Finsler metric F on G/H that is invariant
under the action of G. Consequently, (G/H, I,F) is a homogeneous complex Finsler
space. ��
Remark 5.3. In some special cases, we have a priori an invariant complex structure
on G/H. In this case, to make G/H a homogeneous complex Finsler space, we need
only find an invariant complex Finsler metric on G/H.

Finally, we study complex symmetric Finsler spaces. Let (M, I,F) be a complex
Finsler space. Then (M, I,F) is called globally symmetric if for every point x ∈ M
there exists an involutive holomorphic isometry σx of M such that x is an isolated
fixed point of σx. It is easily seen that in this case, the group A(M, I,F) acts
transitively on M. Hence (M, I,F) is a homogeneous complex Finsler space. Let
G = A0(M, I,F) and let H be the isotropy subgroup of G at a fixed point x in M.
Then M = G/H. Define an automorphism σ of G by σ(g) = σx · g · σx, g ∈ G.
Then σ is an involutive automorphism of G and (Kσ )0 ⊂ H ⊂ Kσ , where Kσ is the
subgroup of G consisting of fixed points of σ and (Kσ )0 is the identity component
of Kσ . This means that (G,H) is a symmetric pair. Since H is compact, (G,H) is
a Riemannian symmetric pair. By standard results on Hermitian symmetric spaces
(see [83, Chap. VIII]), we have the following theorem.

Theorem 5.24. Let (G/H, I,F) be a globally symmetric complex Finsler space.
Then there exists a G-invariant Riemannian metric Q on G/H such that the triple
(G/H, I,Q) is a Hermitian symmetric space.

The Hermitian symmetric spaces were completely classified by Cartan [83].
Hence Theorem 5.24 reduces the problem of classification of symmetric complex
Finsler spaces to the problem of determining which Hermitian symmetric space
admits an invariant non-Riemannian complex Finsler metric. Now we can prove our
next result.

Theorem 5.25. Let (G1/H1, I1,Q1) and (G2/H2, I2,Q2) be two Hermitian symmet-
ric spaces. Then on the product manifold (G1/H1)× (G2/H2) there exist infinitely
many non-Riemannian Finsler metrics F that are invariant under G1×G2 and make
(G1/H1 ×G2/H2, I1 × I2,F) a symmetric complex Finsler space.

Proof. Let o1, o2 be the origins of G1/H1, G2/H2 respectively and o = (o1,o2). For
every tangent vector y = (y1,y2) ∈ To(G1/H1 ×G2/H2), yi ∈ Toi(Gi/Hi), i = 1,2,
and integer s ≥ 2, define

Fo(y) =
√

Q1(y1,y1)+Q2(y2,y2)+
s
√

Q1(y1,y1)s +Q2(y2,y2)s.

Then Fo is a non-Euclidean Minkowski norm on To(G1/H1 × G2/H2) that is
invariant under H1 × H2. Hence it can be extended to a Finsler metric F on
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G1/H1×G2/H2. It is obvious that F is non-Riemannian. Since Q1,Q2 are Hermitian
metrics, for every a,b ∈ R, we have

Fo((a+ bI)y) = Fo((a+ bI1)y1,(a+ bI2)y2) =
√

a2 + b2Fo(y).

Therefore F is a complex Minkowski norm. ��
The irreducible cases can also be completely settled. First we prove the following

result.

Theorem 5.26. Let G/H be a (compact or noncompact) irreducible Hermitian
symmetric space. Then there exists an invariant complex structure I on G/H such
that (G/H, I,F) is a symmetric complex Finsler space for every G-invariant Finsler
metric on G/H.

Proof. The only point we need to check is that every invariant Finsler metric F
on G/H must be a complex Finsler metric with respect to the complex structure.
We treat only the compact case. The noncompact case can be proved using duality.
By Theorem 2.38, if G/H is a compact irreducible Hermitian symmetric space,
then G/H can also written as U/K, where U is a connected compact simple
Lie group with center {e} and K is a maximal connected proper subgroup of U
with nondiscrete center. Moreover, the center ZK of K is isomorphic to the circle
group S1. Therefore there exists an element of order 4, say j, in K. Let I denote
the induced linear transformation of Ad( j) to To(U/K). Then I2 = −id and it is
true that I induces an invariant complex structure on U/K. Now suppose F is a
U-invariant Finsler metric on U/K and a,b ∈R with a2 +b2 �= 0. We assert that the
endomorphism

a√
a2 + b2

id+
b√

a2 + b2
I

lies in the image of ZK under the inducing map (to To(U/K)). In fact, since ZK � S1

and j is of order 4, we easily see that there exists u ∈ k such that ZK = {exp(tu) |
t ∈ R} and exp(u) = j. Since Ad( j) induces the complex structure I on To(U/K),
Ad(exp(tu)) induces the endomorphism T (t) of To(U/K), where

T (t) = etI = (cost) id+(sin t)I, t ∈R.

This proves our assertion. Now

F((a id+ bI)y) = F

(√
a2 + b2

(
a√

a2 + b2
id+

b√
a2 + b2

I

)
y

)

=
√

a2 + b2F

((
a√

a2 + b2
id+

b√
a2 + b2

I

)
y

)

=
√

a2 + b2F(T (θ )y)

=
√

a2 + b2F(y),
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Table 5.1 Irreducible symmetric complex non-Riemannian Finsler spaces. Here p,q ≥ 1

Noncompact spaces Compact spaces Rank Dimension

AIII SU(p,q)/S(Up×Uq) SU(p+q)/S(Up×Uq) min(p,q) 2pq

BDI SOo(p,2)/SO(p)×SO(2) SO(p+2)/SO(p)×SO(2) 2 2p

DIII SO∗(2n)/U(n)(n ≥ 4) SO(2n)/U(n)(n ≥ 4) [ 1
2 n] n(n−1)

CI Sp(n,R)/U(n)(n ≥ 2) Sp(n)/U(n)(n ≥ 2) n n(n+1)

EIII (e6(−14),so(10)+R) (e6(−78),so(10)+R) 2 32

EVII (e7(−25),e6 +R) (e7(−133),e6 +R) 3 54

where

θ = arccos
a√

a2 + b2

and we have used the above assertion and the fact that F is invariant under Ad(K).
Thus F is a complex Finsler metric on U/K. This proves the theorem. ��

It was proved in Szabó [152] that on each irreducible globally symmetric
Riemannian manifold G/H of rank ≥ 2, there exist infinitely many invariant Finsler
metrics on G/H, and on a rank-1 symmetric Riemannian manifold G/H, there
does not exist any non-Riemannian invariant Finsler metric. On the other hand,
irreducible Hermitian symmetric spaces were completely classified by Cartan (see
[83, p. 518]). Combining these results with Theorem 5.26, we get a complete
classification of irreducible symmetric complex non-Riemannian Finsler spaces.

Theorem 5.27. Let G/H be an irreducible Riemannian symmetric space. If G/H
admits an invariant complex structure I and a non-Riemannian Finsler metric F
such that (G/H, I,F) is a symmetric complex Finsler space, then G/H must be one
of the manifolds in Table 5.1. Furthermore, on each manifold in the table, there exist
infinitely many invariant symmetric complex non-Riemannian Finsler metrics.



Chapter 6
Weakly Symmetric Finsler Spaces

The notion of Riemannian weakly symmetric spaces was introduced by Selberg
in 1956. In the paper [135], he generalized the Poisson summation formula to
the celebrated Selberg trace formula in his study of harmonic analysis on such
manifolds. Every Riemannian symmetric space is weakly symmetric. But the
converse is not true, as pointed out by Selberg by constructing some explicit
examples. Moreover, a Riemannian weakly symmetric space is a commutative
space, in the sense that the differential operators that are invariant under the action
of the full group of isometries form a commutative algebra. Recently the study of
Riemannian weakly symmetric spaces has become rather active. An excellent survey
of related results in this field can be found in Wolf’s recent book [176].

In recent years, we have generalized the notion of a weakly symmetric space to
the Finslerian case and studied weakly symmetric Finsler spaces extensively. One of
the most important applications of this study is that we have found many examples
of reversible non-Berwald spaces with vanishing S-curvature, such spaces as have
been sought in an open problem posed by Shen in the problem section [146].

In this chapter we will introduce our results on weakly symmetric Finsler spaces.
Here is an outline of the main results. We first study the geometric properties
of weakly symmetric Finsler spaces and particularly prove that every weakly
symmetric Finsler space must have vanishing S-curvature. Then we introduce a new
algebraic notion of a weakly symmetric Lie algebra to describe weakly symmetric
Finsler spaces. As an application, we obtain a global classification of all weakly
symmetric Finsler spaces with dimension less than or equal to 3. Finally, we classify
weakly symmetric spaces with a reductive transitive group of isometries, as well
as admissible weakly symmetric metrics on H-type Lie groups. The last section is
devoted to constructing examples of non-Berwaldian reversible Finsler spaces with
vanishing S-curvature.

Here we point out some possible developments in related topics in this chapter.
First, Finslerian g.o. spaces (see Sect. 6.2 for the definition) deserve to be studied
thoroughly. Up to now, the only known examples of Finslerian g.o. spaces are the
Riemannian ones and weakly symmetric Finsler spaces studied in this chapter.
It would be interesting to find some special types of Finslerian g.o. spaces.

S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4614-4244-8 6, © Springer Science+Business Media New York 2012
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For example, the problem of under what condition a homogeneous Randers space
is a g.o. space deserves to be considered. For the Riemannian case of this problem,
see [74]. Another interesting problem concerns the notion of weakly symmetric
Lie algebras introduced in Sect. 6.3 of this chapter. It would be very interesting
to establish a theory of such algebraic structures from a purely algebraic point of
view. For example, if we can classify all weakly symmetric Lie algebras with the
underlying Lie algebra being semisimple or reductive, then an intrinsic proof of the
classification result of Yakimova and Wolf (see Sect. 6.6) can be achieved.

The standard references of this chapter are [49–51,66,179]; see also [54,65,104,
105] for further information.

6.1 Definitions and Fundamental Properties

We first recall the original definition of Selberg.

Definition 6.1. A connected Riemannian manifold (M,Q) is called weakly sym-
metric if there exists a subgroup G of the full group I(M,Q) of isometries such that
G acts transitively on M and there exists an isometry f of (M,Q) with f 2 ∈ G and
f G f−1 = G such that for every two points p,q ∈ M, there exists an isometry g of
(M,Q) satisfying g(p) = f (q) and g(q) = f (p).

This definition seems somehow complicated and roundabout. In [25], Berndt
and Vanhecke proved the following simple geometric characterization of weakly
symmetric spaces.

Proposition 6.1. A Riemannian manifold (M,Q) is weakly symmetric if and only if
for every two points p,q∈ M there exists an isometry f of (M,Q) such that f (p) = q
and f (q) = p, or in short, f interchanges p and q.

Proof. Suppose (M,Q) is a weakly symmetric Riemannian manifold and G is the
subgroup of I(M,Q) satisfying the condition in Definition 6.1, along with a specific
isometry f1. Then for every p,q, there is g1 ∈ I(M,Q) such that f1(p) = g1(q) and
f1(q) = g1(p). Hence the isometry f = g−1

1 f1 interchanges p and q. Conversely,
suppose for every two points p,q in M there is an isometry f1 that interchanges p
and q. Set G = I(M,Q) and f = id. Then it is easy to check that G and f satisfy the
conditions in Definition 6.1. ��

Now we give the definition of a weakly symmetric Finsler space.

Definition 6.2. Let (M,F) be a connected Finsler space and I(M,F) the full group
of isometries. Then (M,F) is called weakly symmetric if for every two points p,q
in M there exists an isometry σ ∈ I(M,F) such that σ(p) = q and σ(q) = p.

From the definition, we see that a weakly symmetric Finsler space is homo-
geneous, i.e., the group I(M,F) of isometries acts transitively on M. Therefore,
a weakly symmetric Finsler space is necessarily (both forward and backward)
complete. Moreover, a weakly symmetric Finsler space (M,F) must be reversible.
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In fact, for any p,q∈M, let σ be an isometry such that σ(p) = q, σ(q) = p. Then we
have d(p,q) = d(σ(p),σ(q)) = d(q, p) (Since an isometry is distance-preserving).
Therefore the distance function of (M,F) is reversible. Hence F is reversible.

The following result is an alternative characterization of weakly symmetric
Finsler spaces. In the Riemannian case, this is given by Szabó; see [153].

Proposition 6.2. A Finsler space (M,F) is a weakly symmetric space if and only if
for every maximal geodesic γ in M and every point m ∈ γ there exists an isometry
σ ∈ I(M,F) such that σ(γ)⊂ γ , σ(m) =m, σ |γ �= id, and σ2|γ = id (in other words,
σ is a nontrivial involution along γ fixing m).

Proof. Let (M,F) be a weakly symmetric Finsler space and γ a maximal geodesic
in M containing m. Without loss of generality, we can assume that γ is of unit speed
and m = γ(0). Let U be a neighborhood of m such that each pair of points in U can
be connected by a unique (minimal) geodesic in U . Select p, q in γ ∩U such that m
is the midpoint along the geodesic segment between p, q, i.e., m is the unique point
in γ with d(p,m) = d(m,q) (note that d is reversible), or equivalently p = γ(ε), q =
γ(−ε), where ε > 0. Then by assumption, there exists an isometry σ of (M,F) such
that σ(p) = q and σ(q) = p. Therefore the curve σ(γ(t)), −ε ≤ t ≤ ε , as another
distance-minimizing curve connecting p and q, must coincide with the curve γ(−t),
−ε ≤ t ≤ ε . Thus σ(γ(t)) = γ(−t) for −ε ≤ t ≤ ε . In particular, σ(m) = m. Now
consider the maximal geodesics σ(γ(t)) and γ(−t), t ∈ R. By the above argument
and the uniqueness of the geodesics, we see that these two geodesics must coincide.
Hence σ(γ(t)) = γ(−t), ∀t ∈ R. Therefore σ is the desired involution on γ .

On the other hand, suppose for every geodesic γ and m ∈ γ there exists an involu-
tion along γ fixing m. Given p1, p2 ∈ M, we can find a series of (constant-speed)
distance-minimizing geodesic segments γi, i = 1,2, . . . ,s, such that γ1(0) = p1,
γi(0) = γi−1(1), i = 2,3, . . . ,s, and γs(1) = p2. Let mi be the unique point in γi

satisfying d(mi,γi(0)) = d(mi,γi(1)) and let σi be the involution along γi fixing
mi. Then it is easily seen that the isometry σi sends γi(o) to γi(1) and γi(1) to
γi(0). Therefore the composition map σsσs−1 · · ·σ1 sends p1 to p2. Thus (M,F) is
homogeneous. In particular, (M,F) is (both forward and backward) complete. Now
for every two points p,q ∈ M, let γ(t), t ∈ R, be a maximal geodesic containing p
and q such that γ realizes the distance of p and q. Let m ∈ γ be the unique point
in γ that lies between p and q and satisfies d(m, p) = d(m,q). Then the involutive
isometry along σ that keeps m fixed interchanges p and q. Hence (M,F) is weakly
symmetric. ��

Next we give another geometric description of weakly symmetric Finsler spaces.

Proposition 6.3. A Finsler space (M,F) is weakly symmetric if and only if for every
m ∈ M and u ∈ Tm(M) there exists an isometry σ of (M,F) such that σ(m) = m and
dσ(u) =−u.

Proof. The proof of the “only if” part is contained in the first part the proof
of Proposition 6.2. In fact, the isometry σ constructed there must reverse the
geodesic γ . Therefore the differential map of the isometry must send the initial
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vector of the geodesic to its negative. Now we prove the “if” part. First we prove that
such a space must be complete. We prove only the forward completeness. The proof
of backward completeness is similar. Let γ(t), 0 ≤ t < b, be a (forward) maximal
unit-speed geodesic. Suppose conversely that b < +∞. Choose an isometry σ such
that σ(γ( 3

4 b)) = γ( 3
4 b) and dσ(v) =−v, where v is the initial vector of the geodesic

γ1(t) = γ( 3
4 b− t), 0 ≤ t ≤ 3

4 b. Then σ(γ1(t)), 0 ≤ t ≤ 3
4 b, is a geodesic. It is easily

seen that the curve τ(t), 0 ≤ t ≤ 3
2 b, defined by

τ(t) =

{
γ(t) 0 ≤ t ≤ 3

4 b

σ(γ1(t − 3
4 b)) 3

4 b ≤ t ≤ 3
2 b,

is a geodesic on [0, 3
4 b] and [ 3

4 b, 3
2 b]. Furthermore, it is C1 smooth at γ( 3

4 b). Hence
it is a smooth geodesic on the interval [0, 3

2 b], which is an extension of γ . This is a
contradiction. Thus (M,F) is complete. Moreover, it is obvious that F is reversible.
Now for every p,q ∈ M, we select a unit-speed geodesic connecting p and q. Let m
be the midpoint of the geodesic and let σ be an isometry such that σ(m) = m and
dσ(w) = −w, where w is the tangent vector of the geodesic at m. Then it is easily
seen that σ(p) = q and σ(q) = p. Therefore (M,F) is weakly symmetric. ��

In the following, we will adopt some definitions in [124]; see also [176].

Definition 6.3. Let G a Lie group and H be a closed subgroup of G. The coset space
G/H is called a homogeneous weakly symmetric space if there exists an analytic
diffeomorphism μ of M = G/H such that

(i) μGμ−1 = G, μ(eH) = eH, and μ2 ∈ H,
(ii) Given any two points x and y in M, there exists g ∈ G such that gx = μy and

gy = μx.

The proof of the following lemma is similar to the Riemannian case; see [124].

Lemma 6.1. Let (M,F) be a weakly symmetric Finsler space. Fix x ∈ M and let
H be the isotropy group of G = I(M,F)0 at x. Then there exists an isometry μ̃ of
M = G/H that makes G/H a homogeneous weakly symmetric space.

Definition 6.4. Let G be a Lie group and H a closed subgroup of G. The pair (G,H)
is called a weakly symmetric pair if there exists an automorphism θ of G such that

(i) θ (H) ⊂ H, and there exists h ∈ H such that θ 2 = Ad(h) (i.e., θ 2(g) = hgh−1,
g ∈ G ).

(ii) Hθ (g)H = Hg−1H for all g ∈ G.

Furthermore, (G,H) is called a Riemannian symmetric pair if AdG(H) is compact.

Lemma 6.2. A pair (G,H) is weakly symmetric if and only if G/H is a homoge-
neous weakly symmetric space.

For the proof, see [124].
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The following theorem will be very useful for studying weakly symmetric Finsler
spaces.

Theorem 6.1. Let (M,F) be a weakly symmetric Finsler space. Fix x ∈ M and let
H be the isotropy subgroup of G = I(M,F)0 at x. Then (G,H) is a Riemannian
weakly symmetric pair. On the other hand, if (G,H) is a weakly symmetric pair,
then every G-invariant reversible Finsler metric (if it exists) on G/H makes G/H
a weakly symmetric Finsler space. In particular, if (G,H) is a Riemannian weakly
symmetric pair, then there exists a G-invariant Finsler metric F on G/H such that
(G/H,F) is a weakly symmetric Finsler space.

Proof. By Theorem 3.2, the isotropic subgroup H of the full group of isometries
of (M,F) is a compact subgroup. Then by Lemma 6.1, G/H is a homogeneous
weakly symmetric manifold. Hence (G,H) is a weakly symmetric pair. Now
the compactness of H implies that AdG(H) is compact. Therefore (G,H) is a
Riemannian weakly symmetric pair. On the other hand, if (G,H) is a weakly
symmetric pair and F is a G-invariant Finsler metric on M = G/H, then by
Lemma 6.1, G/H is a homogeneous weakly symmetric space. Hence there exists
an analytic diffeomorphism μ of the homogeneous manifold M = G/H such that
μgμ−1 = G, μ(eH) = eH, and μ2 ∈ H. Moreover, for every two points p,q ∈ M,
there exists an element g ∈ G such that g(p) = μ(q) and g(q) = μ(p). Since F is
G-invariant, g is an isometry of (M,F). Therefore d(μ(p),μ(q)) = d(g(q),g(p)) =
d(q, p) = d(p,q) (note that F is reversible; hence d is symmetric). Hence μ is an
isometry. Consequently, (M,F,G,μ) is a weakly symmetric Finsler space. Finally,
if (G,H) is a Riemannian weakly symmetric pair, then there exists a G-invariant
reversible Finsler metric (for example, a Riemannian metric) on G/H. Hence it can
be made into a weakly symmetric Finsler space. ��

6.2 Geodesics and S-Curvature

To illustrate the geodesics in weakly symmetric Finsler spaces, we introduce the
following definition.

Definition 6.5. Let (M,F) be a Finsler space and G = I(M,F) the (full) group
of isometries. The space (M,F) is called a Finsler g.o. space if every maximal
(constant-speed) geodesic of (M,F) is the orbit of a one-parameter subgroup of
G. That is, if γ is a maximal geodesic, then there exist w ∈ g = LieG and o ∈ M
such that γ(t) = exp(tw) ·o, t ∈ R.

By definition, a Finsler g.o. space is necessarily (forward and backward)
complete. Moreover, it is easily seen that such spaces must be homogeneous. For
the general properties of Riemannian g.o. spaces, we refer to [74]. The following
theorem gives an important property of a Finsler g.o. space.
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Theorem 6.2. Let (M,F) be a Finsler g.o. space. Then the S-curvature of (M,F)
is vanishing.

Proof. Let (x,y)∈ TM\{0} and let γ(t) be a geodesic with γ(0) = x, γ̇(0) = y. Then
there exists u ∈ g, the Lie algebra of the full group of isometries, such that

γ(t) = (exptu) · x.
we assert that

γ̇(t) = d(exptu)|x(y).
In fact, for every t0 ∈R, we have

γ(t0 + t) = exp(t0 + t)u · x = (expt0u)(exptu) · x = (expt0u) · γ(t).
Thus the curve γ(t0+t) is just the image of the curve γ(t) under the isometry expt0u.
From this our assertion follows. Now let {bi(0)} be an arbitrary basis of Tx(M).
Define bi(t) = d(exptu)|x(bi(0)) (i = 1,2, , . . . ,n). Since exp(tu) are isometries,
{bi(t)} is a basis of Tγ(t)(M) and

gi j(t) = gγ̇(t)(bi(t),b j(t))

= gd(exptu)|x(y)(d(exptX)|x(bi(0)),d(exptu)|(b j(0)))

= gy(bi(0),b j(0)).

Thus det(gi j(t)) is constant along σ .
On the other hand, for (yi) ∈ R

n and the vector field U(t) = yibi(t) along γ(t),
we have

F(σ(t),yibi(t)) = F(σ(t),yid(exptu)|x(bi(0))) = F(σ(0),yibi(0)).

Thus σF is constant along γ . Therefore the distortion τ of (M,F) is constant along
γ(t). Hence the S-curvature of (M,F) vanishes. ��

Finally we have the following result.

Theorem 6.3. A weakly symmetric Finsler space must be a Finsler g.o. space.

Proof. The proof of the theorem for the Riemannian case was provided by Berndt
et al. in [26]. Their proof can be applied to the Finslerian case after some changes.
First recall that a submanifold M1 of a manifold M is called quasiregular if M1 is an
immersed submanifold of M such that every smooth map from every manifold M′
to M whose image is contained in M1 is also a smooth map when considered as a
map from M′ to M1.

Let (M,F) be a connected weakly symmetric Finsler space and G = I(M,F) the
full group of isometries. Then (M,F) is homogeneous hence complete. Now we
consider the sphere bundle

S(M,F) = {(x,y) ∈ T M|x ∈ M, y ∈ Tx(M), F(x,y) = 1}.
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Consider the action of G on S(M,F) defined by

g(x,y) = (g(x),dg(y)),

where dg is the differential of the isometry g. Let γ be any maximal constant-speed
geodesic. Without loss of generality, we assume that γ is of unit speed. Then as
pointed out in [26], the orbit of (γ(0), γ̇(0)) under G, denoted by N, is a quasiregular
submanifold of S(M,F). Let K be the isotropy subgroup of G at (γ(0), γ̇(0)). Then K
is a closed subgroup of G and we have N = G/K. Note that each element of K keeps
the whole geodesic γ pointwise fixed. In fact, if k ∈K, then k ·γ is a geodesic defined
on the whole of R, since an isometry sends every geodesic to a geodesic. Since the
initial points and the initial directions of k · γ and γ coincide, by the uniqueness of
the geodesics in Finsler geometry (see [16]), they must coincide everywhere.

By Proposition 6.2, for every t ∈ R, there exists an isometry τt whose restriction
to γ is a nontrivial involution along γ fixing γ(t). Since γ is a constant-speed
geodesic, this means that τt(γ(t + s)) = γ(t − s). It is easily seen that τ t

2
· τ0

(γ(0), γ̇(0)) = (γ(t), γ̇(t)). Thus (γ(t), γ̇(t)) ∈ N, for every t. Since N is a quasiregu-
lar submanifold of S(M,F) and γ̇ : R→ S(M,F) is an immersed submanifold whose
image is contained in N, γ̇(R) is a smooth submanifold of N.

By definition it is obvious that K is a closed subgroup of G. Similarly as in [26],
we have the following:

• The set

Gγ = {g ∈ G|dg(γ̇(0)) = γ̇(t) for some t ∈ R}
is a submanifold as well as an abstract subgroup of G.

• The submanifolds g · Gγ , g ∈ G, form a foliation F of G. Denote by F0 its
restriction to the unity component G0 of G. Then F0 gives rise to a left-invariant
distribution Δ = TF0. Moreover, Δ is an involutive distribution. The maximal
integral submanifold H of Δ through the identity element e ∈ G0 is a Lie
subgroup of G0.

• Let (Gγ)0 be the unity component of Gγ . Then H is generated by (Gγ )0 as a
group, and dimH = dimGγ = 1+ dimK.

Given u ∈ g, we can define a curve αu : R→ M by αu(t) = exp(tu) · γ(0), where
exp is the exponential map of G. By the dimension condition, there is w ∈ h, the Lie
algebra of H, such that α̇w(0) = γ̇(0). Then we have αw(R) ⊂ γ(R). Now consider
the set

D = {t ∈ R | αw(t) = γ(t), α̇w(t) = γ̇(t)}.
Then 0 ∈ D. Moreover, by continuity, D is a closed subset of R.

We now prove that D is also an open subset of R. Suppose to ∈ D. Then we
have αw(t0) = γ(t0) and also α̇w(t0) = γ̇(t0) �= 0. Since αw(R) ⊂ γ(R) and both
αw and γ are immersed curves on M, there is a positive number ε such that αw is
just a reparametrization curve of γ in the interval (t0 − ε, t0 + ε). That is, there is a
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continuous function λ (t), with λ̇ (t)> 0 in (t0−ε, t0+ε), such that αw(t) = γ(λ (t)),
for t0 − ε < t < t0 + ε . Then we have λ (t0) = t0. Moreover, considering the length
of the tangent vectors of the two curves, we get

F(α̇u(t)) = λ ′(t)F(γ̇(λ (t))) = 1,

for t0−ε < t < t0+ε . By the condition that F(α̇w(t)) = F(γ̇(s)) = 1, for every t,s ∈
R, we get that λ ′(t) ≡ 1, for t0 − ε < t < t0 + ε . Thus in the interval (t0 − ε, t0 + ε)
we have λ (t) = t. Therefore D is an open subset of R. Hence D = R and γ is the
orbit of the one-parameter subgroup exp(tw) of G. This completes the proof of the
theorem. ��

6.3 Weakly Symmetric Lie Algebras

In this section, we introduce the notion of a weakly symmetric Lie algebra to give
an algebraic description of simply connected weakly symmetric Finsler spaces.

Definition 6.6. Let g be a real Lie algebra and h a subalgebra of g. Suppose there
exists a subspace p of g such that g = h+ p (direct sum) and [h,p] ⊂ p. Then
the pair (g,h) is called a weakly symmetric Lie algebra if there exists a finite
set of automorphisms of g, {σ0,σ1,σ2, . . . ,σs} (σ0 = id), satisfying the following
conditions:

W1: Every σi, 0≤ i ≤ s, preserves the subspaces h and p, i.e., σi(h) = h, σi(p) = p.
W2: For every pair i, j, 0 ≤ i, j ≤ s, there exist k, 0 ≤ k ≤ s, and an vector u ∈ h

such that σiσ j = ead(u)σk.
W3: Given v ∈ p, there exist v′ ∈ h and an index k such that ead(v′) ·σk(v) =−v.

We usually say that (g,h) is weakly symmetric with respect to {σ0,σ1, . . . ,σs}.
Moreover, a weakly symmetric Lie algebra (g,h) is called Riemannian if in addition,
h is a compactly embedded subalgebra of g.

We now give two remarks concerning the above definition.

Remark 6.1. The notion of Riemannian weakly symmetric Lie algebras is a natural
generalization of that of orthogonal symmetric Lie algebras. In fact, if (g,σ) is an
orthogonal symmetric Lie algebra, then the fixed points of the involution σ , denoted
by h, is a compactly embedded subalgebra of g. Let p be the eigenspace of σ with
eigenvalue−1. Then (g,p) satisfies the condition in the above definition with respect
to the set {σ0,σ1}, where σ0 = id and σ1 = σ . In the next section, we will construct
a series of examples of Riemannian weakly symmetric Lie algebras that are not
orthogonal symmetric.

Remark 6.2. In general, the set of automorphisms {σ0,σ1, . . . ,σs} in the above
definition is not unique. However, if (g,h) is a weakly symmetric Lie algebra, then
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we can choose a set of automorphisms {τ0(= id),τ1,τ2, . . . ,τl} that satisfy W1, W2,
W3, and the following additional condition:

W4: For every j �= k, τ j(τk)
−1 cannot be written in the form ead(u), u ∈ h.

In this case, we say that the set {τ0(= id),τ1,τ2, . . . ,τl} is a reduced set of
automorphisms. It is easily seen that each set of automorphisms in the definition
can be reduced to a reduced one. In the following, we will usually select a reduced
set of automorphisms to study weakly symmetric Lie algebras.

Now we can give the algebraic description of weakly symmetric Finsler spaces.

Theorem 6.4. Let (M,F) be a weakly symmetric Finsler space. Then there exist
a Lie group G and a closed subgroup H of G such that M = G/H and F is G-
invariant. Furthermore, the Lie algebra pair (g,h) of (G,H) is a Riemannian weakly
symmetric Lie algebra.

Proof. Fix x∈M. By Proposition 6.3, for every u∈Tx(M), there exists an isometry τ
of (M,F) such that τ(x) = x and dτ|x(u) =−u. Let G be the full group of isometries
of (M,F) and H the isotropy subgroup of G at x. Since a weakly symmetric Finsler
spaces is homogeneous, G acts transitively on M. Hence M is diffeomorphic to the
coset space G/H and F is G-invariant. Now we prove that the Lie algebra pair (g,h)
of (G,H) is a weakly symmetric Lie algebra. Since H is compact, G/H is a reductive
homogeneous manifold. Hence there exists a subspace p of g such that g = h+ p
(direct sum) and Ad(h)(p) ⊂ p, ∀h ∈ H. In particular, [h,p] ⊂ p. Now we identify
the space p with the tangent space Tx(M) through the map v �→ d

dt (exptv) · x|t=0,
v ∈ p. Then the isotropic action of H on Tx(M) corresponds to the adjoint action of
H on p. Let e be the unit element and He the identity component of H. Then He is a
normal subgroup of H and the quotient group H/He is finite, since H, as a compact
Lie group, has at most a finite number of components. Let {e,h1, . . . ,hs} be a set
of elements of H such that {eH,h1H, . . . ,hsH} are all the (distinct) elements of the
quotient group.

Let σ0 be the identity transformation of g and σ j = Ad(h j), j = 1,2, . . . ,s. Then
we can prove that the set {σ0,σ1, . . . ,σs} satisfies the conditions W1, W2, W3.
In fact, W1 is obviously satisfied. Now we prove W2. Given a pair i, j, suppose in the
quotient group H/He we have hiHe ·h jHe = hkHe. Then there exist m1,m2,m3 ∈ He

such that him1h jm2 = hkm3, i.e.,

hih j = hk(m3m−1
2 (h jm

−1
1 h−1

j )).

Since h jm
−1
1 h−1

j ∈ He, we have m = m3m−1
2 (h jm

−1
1 h−1

j ) ∈ He. Since He is a
connected compact Lie group, the exponential map is surjective. Hence there exists
ui j ∈ h such that exp(ui j) = m. Then Ad(m) = ead(ui j). Therefore σiσ j = σkead(ui j) =

σkead(ui j)σ−1
k · σk = ead(σk(ui j))σk, i.e., W2 is satisfied. Finally, we prove W3. By

Proposition 6.3, for every v ∈ p we can select h ∈ H such that Ad(h)(v) = −v.
Suppose h lies in the component hiHe. Then there exists h0 ∈ He such that h =
hih0 = hih0h−1

i hi. Since hih0h−1
i ∈ He, we can write h = exp(v′)hi, for some v′ ∈ h.

From this we easily see that W3 is satisfied. This completes the proof. ��
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Now we show that every Riemannian weakly symmetric Lie algebra gives rise to
a weakly symmetric Finsler space, although in general the spaces constructed from
a weakly symmetric Lie algebra are not unique.

Theorem 6.5. Let (g,h) be a Riemannian weakly symmetric Lie algebra. Suppose
G is a connected simply connected Lie group with Lie algebra g and H is the
(unique) connected Lie subgroup of G with Lie algebra h. If H is closed in G (this
is the case if C(g) = 0), then there exists a G-invariant Riemannian metric Q on the
coset space G/H such that (G/H,Q) is a Riemannian weakly symmetric space. In
particular, there exists an invariant Finsler space F on G/H such that (G/H,F) is
a weakly symmetric Finsler space.

Proof. Since h is a compactly embedded subalgebra of g, the Lie algebra adg(h)
is compact. If we identify the tangent space To(G/H) with p, where p is as in
Definition 6.6 and o = eH is the origin of the coset space G/H, then Ad(H) is a
compact group of linear transformations of p. Hence there exists an Ad(H)-invariant
inner product 〈 , 〉1 on p. Fix a reduced set of automorphisms {τ0,τ1, . . . ,τl} (τ0 = id)
as in Remark 6.2 after Definition 6.6, and define an inner product 〈 , 〉 on p as
follows:

〈u,v〉=
l

∑
j=0

〈τ ju,τ jv〉1, u,v ∈ p.

By condition W2, 〈 , 〉 is invariant under the action of each τi, i = 1,2, . . . , l. We
assert that 〈 , 〉 is also Ad(H)-invariant. In fact, for every h ∈ H and every index
j, we have Ad(h) · τ j = τ j · (τ−1

j ·Ad(h) · τ j). Since H is connected, it is generated
by the elements exp(u), u ∈ h. Hence h can be written as (expu1 expu2 · · ·expuk),
where ui ∈ h, i = 1,2, . . . ,k. Then we have

τ−1
j ·Ad(h) · τ j = ead(τ ju1)ead(τ ju2) · · ·ead(τ juk).

From this our assertion follows. Now by Proposition 2.8, 〈 , 〉 can be extended to a
G-invariant Riemannian metric Q on the coset space G/H (here the condition that
H be closed is required, for otherwise it may happen that there is no differentiable
structure on G/H) whose restriction to To(G/H) = p is equal to 〈 , 〉. We assert that
the homogeneous Riemannian manifold constructed above is weakly symmetric.
Since G is connected and simply connected, each automorphism τ j of g can be
lifted to an automorphism of G. We denote the corresponding automorphisms by
τ̃ j, j = 0,1,2, . . . . Since τ j(h) = h, τ̃ j(H)⊂ H. Hence τ̃ j induces a diffeomorphism
of G/H, denoted by τ̂ j , by sending gH to τ̃ j(g)H. The diffeomorphism τ̂ j keeps
the origin o = eH invariant, and its differential at o is just the restriction of τ j to p.
From this we see that τ̂ j keeps the Riemannian metric Q invariant, or in other words,
τ̂ j lies in the isotropic subgroup (at o) of the full group of isometries of (G/H,Q).
By W3, for every v ∈ p = To(G/H), we can choose v′ ∈ h and an index j such
that ead(v′)τ j(v) = −v. This means that the isometry τexp(v′) · τ̂ j of the Riemannian
manifold (G/H,Q), where τh(gH) = hgH, h ∈ H, reverses the tangent vector v.
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Since (G/H,Q) is homogeneous, for every x ∈ G/H and w ∈ Tx(G/H), there exists
an isometry f such that f (x) = x and d f |x(w) =−w. By Proposition 6.3, (G/H,Q)
is weakly symmetric.

Finally, if C(g) = 0, then H is closed in G; see [83, pp. 213–214]. ��
By Theorem 4.8, for almost all weakly symmetric Lie algebras (g,h), one

can find invariant non-Riemannian Finsler metrics on the coset space G/H in
Theorem 6.5 that make G/H a weakly symmetric Finsler space.

6.4 Examples of Weakly Symmetric Lie Algebras

In this section, we present some examples of weakly symmetric Lie algebras. They
will be used in the classification of 3-dimensional weakly symmetric Finsler spaces
in the next section.

Example 6.1. Let h be the 1-dimensional real Lie algebra and

g= h+ su(2) (direct sum of subspaces).

Now we define Lie brackets on g. The Lie brackets between the elements of su(2)
are defined as usual. Let u be a nonzero element in h and

ε1 =

(
0 1
−1 0

)
, ε2 =

(
0

√−1√−1 0

)
, ε3 =

(√−1 0
0 −√−1

)
.

Then we define

[u,ε1] = 0, [u,ε2] =−ε3, [u,ε3] = ε2.

These brackets can be extended linearly to a skew-symmetric binary operation on g.
It is easy to check that the Jacobian identities hold for this operation. Hence g is
a Lie algebra. Obviously [h,su(2)] ⊂ su(2). Now we define an endomorphism τ
on g by

τ(u) =−u, τ(ε1) =−ε1, τ(ε2) =−ε2, τ(ε3) = ε3.

Then it is easy to check that τ is a Lie algebra automorphism, and τ2 = id.
Now we prove that (g,h) is a weakly symmetric Lie algebra with respect to
S = {id,τ}. Since W1, W2 are obviously satisfied, we need only check W3. Note
that the action of ead(tu) on p = su(2) keeps the subspaces V1 = span (ε1) and
V2 = span (ε2,ε3) invariant. Moreover, the restriction of ead(tu) to V1 is equal to the
identity transformation, and its restriction on V2 has the matrix

(
cost sin t
−sin t cost

)
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with respect to the basis ε2,ε3. Thus ead(tu) is a rotation through the angle t if we
define an inner product on V2 by requiring that ε2, ε3 form an orthonormal basis.
Now given an element ε = aε1 + bε2 + cε3 in p, we have τ(ε) = −aε1 − bε2 + cε3.
Since −bε2+cε3 is an element in V2 with the same length as −bε2−cε3, there exists
an appropriate t0 ∈ R such that

ead(t0u)(−bε2 + cε3) =−bε2 − cε3.

Then

e(t0ad(u))τ(ε) =−aε1 − bε2 − cε3 =−ε.
Therefore W3 is satisfied. Hence (g,h) is a weakly symmetric Lie algebra. Note
that the action of ad(u) on p has a skew-symmetric matrix with respect to the
basis ε1,ε2,ε3. Thus h is a compactly embedded subalgebra of h. Hence (g,h) is
a Riemannian weakly symmetric Lie algebra.

Example 6.2. This example is similar to Example 6.1. Here we let

g= h+ sl(2,R) (direct sum of subspaces).

The Lie brackets are defined similarly. In sl(2,R) we use the usual Lie opera-
tions. Let

ε1 =

(
0 1
−1 0

)
, ε2 =

(
1 0
0 −1

)
, ε3 =

(
0 1
1 0

)
.

Then we define

[u,ε1] = 0, [u,ε2] =−ε3, [u,ε3] = ε2.

Moreover, we define an endomorphism τ on g by

τ(u) =−u, τ(ε1) =−ε1, τ(ε2) =−ε2, τ(ε3) = ε3.

Then it can be checked directly that τ is an automorphism of g. Similarly as in
Example 6.1, we can prove that (g,h) is a Riemannian weakly symmetric Lie
algebra with respect to {id,τ}.

Example 6.3. In this example we consider Heisenberg Lie algebras. Let n be a
(2n+ 1)-dimensional real Lie algebra with basis x1,x2, . . . ,xn,y1,y2, . . . ,yn,z and
brackets

[xi,y j] = δi jz, [xi,x j ] = [yi,y j] = 0, [xi,z] = [yi,z] = 0, i, j = 1,2, . . . ,n.

Then n is a 2-step nilpotent Lie algebra. Let g= u(n)+n (direct sum of subspaces)
and define the brackets as follows. The brackets among the elements in u(n) are the
usual operations. For A ∈ u(n) we define [A,z] = 0, and for the element

w =
n

∑
i=1

(aixi + biyi), ai,bi ∈ R,
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we set

zi = ai +
√−1bi, i = 1,2, . . . ,n. (6.1)

Let

(z′1,z
′
2, . . . ,z

′
n) = (z1,z2, . . . ,zn)A

and write z′i = a′i +
√−1b′i, a′i,b′i ∈R. Then we define

[A,w] = w′ =
n

∑
i=1

(a′ixi + b′iyi).

It is easy to check that the Jacobian identities hold among these brackets. Therefore
these brackets together with the brackets of n define a Lie algebra structure on g.
By definition, we have [u(n),n]⊂ n. Now we define an endomorphism τ of g by

τ(A) = Ā, τ(xi) =−xi, τ(yi) = yi, τ(z) =−z,

where A ∈ u(n) and Ā is the complex conjugate matrix of A. It is easy to check that
τ is a (real) automorphism of the real Lie algebra g and τ2 = id.

Now we prove that (g,u(n)) is a weakly symmetric Lie algebra with respect to
{id,τ}. The conditions W1, W2 are obviously satisfied, so we need only check W3.
Note that the action of u(n) in the subspace V2 = span(x1,y1, . . . ,xn,yn) is just the
usual operation of u(n) on the complex linear space Cn if we write the corresponding
coordinates as complex numbers as in (6.1). Hence the action of ead(tA), A ∈ u(n), on
V2 is the operation w �→ w× exp(tA) (matrix multiplication), i.e., it is just the usual
action of the unitary Lie group U(n) on C

n. Now for every w+ cz, w ∈ V2, c ∈ R,
we have

τ(w+ cz) = τ(w)− cz,

where τ(w) lies in V2 and has the same length as w when we identify V2 with
C

n (with the usual Hermitian metric). Since the group U(n) acts as the identity
transformation on span (z) and acts transitively on the unit sphere in C

n, there exists
A0 in u(n) such that

ead(A0)(τ(w)) =−w, ead(A0)(z) = z.

Thus ead(A0) · τ(w+ cz) =−(w+ cz). This proves our assertion.
When n = 1, the Heisenberg Lie algebra has dimension 3. The Lie algebra u(1)

is 1-dimensional. Let x,y,z be the basis of n such that [x,y] = z, [x,z] = [y,z] = 0.
Then we can choose an element u of u(1) such that

[u,z] = 0, [u,x] =−y, [u,y] = x.

The automorphism τ satisfies τ(u) = −u, τ(x) = −x, τ(y) = y. This weakly
symmetric Lie algebra will appear in our classification of 3-dimensional weakly
symmetric Finsler spaces in the next section.
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6.5 Spaces of Low Dimension

As an application of the notion of a weakly symmetric Lie algebra, we now give a
classification of weakly symmetric Finsler spaces of dimension ≤ 3.

We begin with some general observations. Suppose (M,F) is a connected weakly
symmetric Finsler space. Let G̃ = I(M,F) be the full group of isometries and let H̃
be the isotropic subgroup at a point x ∈ M. Then M can be written as G̃/H̃ and F
can be viewed as a G̃-invariant metric on G̃/H̃. Note that as a connected manifold,
the identity component G of G̃ is also transitive on M. Denote by H the isotropy
subgroup of G at x. Then M can also be written as the coset space G/H.

Lemma 6.3. The isotropic representation ρ of H̃ on Tx(M) is faithful. In particular,
the isotropic representation of H on M is faithful.

The proof is similar to the Riemannian case. Just note that an isometry sends a
geodesic to a geodesic and that M is homogeneous, hence complete.

The dimension-2 case is settled by the following theorem.

Theorem 6.6. Let (M,F) be a 2-dimensional connected simply connected weakly
symmetric Finsler space. Then (M,F) must be one of the following:

1. (M,F) is a reversible Minkowski space;
2. F is Riemannian and (M,F) is isometric to a rank-one globally symmetric

Riemannian space.

In each case, (M,F) must be a globally symmetric Finsler space.

Proof. Let G, H, ρ be as above. Then by Lemma 6.3 we have dimH = dimρ(H).
Since ρ(H) is a compact group of linear transformations of Tx(M), we have
dimρ(H)≤ 1. Thus there are only two cases:

Case (i): dimρ(H) = 0. Then H = {e}. Hence M is diffeomorphic to the Lie group
G. Then by Theorem 6.2, the Lie algebra g admits finitely many automorphisms
τ0(= id), τ1, τ2,. . . ,τs such that for every Y ∈ g there exists an index jY such that
τ jY (Y ) = −Y . Let Vj = {Y ∈ g | τ j(Y ) = −Y}. Then Vj are subspaces of g with
g = ∪Vj. Therefore there must be a j0 such that Vj0 = g. Thus for every X ,Y ∈ g,
we have

−[X ,Y ] = τ j0([X ,Y ]) = [τ j0(X),τ j0(Y )] = [−X ,−Y ] = [X ,Y ].

This means that g is abelian. Hence G is a two-dimensional connected simply
connected commutative Lie group, i.e., G = R

2 (here R
2 is viewed as an additive

group). Since F is invariant under G, F is defined by a Minkowski norm in the
canonical way. Hence in this case, (M,F) is a reversible Minkowski space.

Case (ii): dimρ(H) = 1. Since ρ(H) is connected and compact, ρ(H) is isomorphic
to S1. Hence ρ(H) acts transitively on the indicatrix

Ix = {u ∈ Tx(M) | F(u) = 1}
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of F at Tx(M). On the other hand, by the compactness of ρ(H) there exists a ρ(H)-
invariant inner product on Tx(M). The group ρ(H) also acts transitively on the unit
circle of Tx(M) with respect to this inner product. Therefore F |Tx(M) is a Euclidean
norm. Since (M,F) is homogeneous, F is Riemannian. Furthermore, if p1, p2 are
two points in M such that d(x, p1) = d(x, p2), then we can select two unit vectors
u1,u2 in Tx(M) such that

p1 = Exp(tu1), p2 = Exp(tu2),

where Exp is the exponential of M with the Riemannian metric F , and t = d(x, p1).
Since ρ(H) acts transitively on the unit circle of Tx(M), we can choose h ∈ H such
that ρ(h)(u1) = u2. Hence h(p1) = p2. This argument and the fact that (M,F) is
homogeneous imply that (M,F) is actually a two-point homogeneous Riemannian
manifold. By the classification results of Wang [164] and Tits [154] on two-point
homogeneous Riemannian manifolds, if (M,F) is not a Euclidean space, then it
must be a globally symmetric Riemannian manifold of rank 1. This proves the
theorem. ��

Next we consider the 3-dimensional case. The situation here is much more
complicated. Let (M,F) be a 3-dimensional connected simply connected weakly
symmetric Finsler space and let G̃, H̃, G, H, ρ be as above. Then ρ(H) is a
connected compact Lie subgroup of GL(Tx(M)). Hence it is a connected compact
Lie subgroup of SL(Tx(M)). By the conjugacy of the maximal compact subgroup
of semisimple Lie groups (Theorem 2.36), there exists an element g ∈ SL(Tx(M))
such that gρ(H)g−1 ⊂ SO(Tx(M)), where we have fixed an inner product in Tx(M)
and SO(Tx(M)) is defined as usual. Without loss of generality, we can assume that
ρ(H)⊂ SO(Tx(M)). Then there are only two cases:

Case (i): ρ(H) = SO(Tx(M)). In this case, H acts transitively on the indicatrix of F
at Tx(M). Similarly as in the 2-dimensional case, we can prove that F is Riemannian
and (M,F) is isometric to a two-point homogeneous Riemannian manifold.

Case (ii): ρ(H) �= SO(Tx(M)). According to a result of Montgomery and Samelson
[121], O(N) has no proper subgroup of dimension greater than 1

2 (N − 1) (N − 2),
when N > 2 and N �= 4. In particular, SO(Tx(M)) has no proper subgroup of
dimension greater than 1

2 × 2× 1 = 1. Therefore we have either dimρ(H) = 0 or
dimρ(H) = 1. Next we tackle the problem case by case.

The case of dimρ(H)= 0 is easy. In fact, we can proceed in exactly the same way
as in Theorem 6.6 to prove that in this case, (M,F) is just a reversible Minkowski
space. So we are left with the case of dimρ(H) = 1. In this case, we need some
complicated reasoning and computation.

Since ρ is a faithful representation, the dimension of dimH must be 1. So in
the weakly symmetric Lie algebra (g,h) we have dimh = 1. Let g = h+ p be the
corresponding decomposition. As pointed out in the proof of Theorem 6.5, there
exists an inner product in p that is invariant under the actions of ρ(H) and τ j ,
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j = 0,1,2, . . . ,s, where T = {τ0,τ1,τ2, . . . ,τs} is a reduced set of automorphisms
in Definition 6.5. Then for every v ∈ h, the endomorphism ad(v) is skew-symmetric
with respect to this inner product. Fix a nonzero element u in h. Then ad(u)|p must
have a zero eigenvalue, and the corresponding eigenspace V0 is either 1-dimensional
or 3-dimensional. If dimV0 = 3, then g is the direct sum of the ideals h and p. Since
ead(tu) acts as the identity transformation on p for every t ∈ R, there must be a τi,
1 ≤ i ≤ s, such that τi(v) =−v for every v ∈ p. This means that for every v1,v2 ∈ p,
we have

−[v1,v2] = τi([v1,v2]) = [τi(v1),τi(v2)] = [−v1,−v2] = [v1,v2].

Hence [p,p] = 0, i.e., p is an abelian ideal of g. If dimV0 = 1, then it is easily seen
that there exists a basis ε1,ε2,ε3 of p such that adu has the matrix

⎛
⎝0 0 0

0 0 1
0 −1 0

⎞
⎠

with respect to this basis.

Lemma 6.4. The reduced set T can be selected to consist of only two automor-
phisms τ0, τ1 such that τ0 = id and τ1(ε1) =−ε1.

Proof. First, there exist an index j0 and t ∈ R such that

etad(u)τ j0(ε1) =−ε1. (6.2)

We assert that τ j0(ε1) =−ε1. In fact, if

τ j0(ε1) = aε1 + bε2 + cε3,

where ε = bε2 + cε3 is a nonzero vector in V =span(ε2,ε3), then ε ′ = etad(u)(ε) is
also a nonzero vector in V . But

−ε1 = etad(u)τ j0(ε1) = aε1 + ε ′.

This contradicts the assumption that ε1,ε2,ε3 is a basis of p. Hence τ j0(ε1) = aε1.
Substituting this into (6.2) yields a =−1. This proves the lemma. ��

Now we will proceed to give a classification of the weakly symmetric Lie
algebras corresponding to 3-dimensional weakly symmetric Finsler spaces in the
case of dimH = 1 and dimV0 = 1.

The Lie algebra g has a basis u,ε1,ε2,ε3, where u spans h and ε1,ε2,ε3 span p.
Moreover, we have determined the following brackets:

[u,ε1] = 0, [u,ε2] =−ε3, [u,ε3] = ε2.
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It is also known that the automorphism τ1 keeps the subspaces h and p invari-
ant. Thus

τ1(u) = du, d ∈ R.

Since τ1 keeps the inner product invariant and τ1(ε1) = −ε1, τ1 must keep the
space V = span(ε2,ε3) invariant, and τ1|V is an orthogonal linear transformation
with respect to the inner product. Hence with respect to the basis ε2,ε3 of V , the
linear transformation τ1|V has matrix(

cosθ sinθ
−sinθ cosθ

)

or (−cosθ −sinθ
−sinθ cosθ

)
,

where θ ∈R.
To determine the structure of the Lie algebra g, we need only determine the Lie

brackets [εi,ε j ], i, j = 1,2,3. Taking into account the skew-symmetry of the Lie
bracket, we are to determine [ε1,ε2], [ε1,ε3], and [ε1,ε3].

By the Jacobi identity, we have

[u, [ε1,ε2]] = [[u,ε1],ε2]+ [ε1, [u,ε2]].

Thus

[u, [ε1,ε2]] =−[ε1,ε3]. (6.3)

Similarly,

[u, [ε1,ε3]] = [ε1,ε2]. (6.4)

Since [h,g]⊂ p, we have

[ε1,ε2] ∈ p, [ε1,ε3] ∈ p.

Suppose

[ε1,ε2] = aε1 + bε2 + cε3.

Then by (6.3) we have

[ε1,ε3] =−cε2 + bε3.

Substituting this into (6.4) yields

[ε1,ε2] = bε2 + cε3.

Therefore a = 0. Now from

[u, [ε2,ε3]] = [[u,ε2],ε3]+ [ε2, [u,ε3]] = [−ε3,ε3]+ [ε2,ε2] = 0,
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it follows that that

[ε2,ε3] ∈ span(u,ε1).

Therefore we can write [ε2,ε3] = a1u+ a2ε , where a1,a2 ∈R.
First we consider the case in which τ1|V has the matrix

(−cosθ −sinθ
−sinθ cosθ

)
, θ ∈ R,

with respect to the basis ε2,ε3. Since τ1 is an automorphism, we have

−τ1(ε3) = τ1([u,ε2]) = [τ1(u),τ1(ε2)] = d[u,τ1(ε2)].

Thus

(sinθ )ε2 − (cosθ )ε3 =−d(sinθ )ε2 + d(cosθ )ε3.

This implies that
d cosθ =−cosθ , d sinθ =−sinθ .

Thus d =−1.
Next applying τ1 to both sides of

[ε1,ε2] = bε2 + cε3,

we get

(bcosθ − csinθ )ε2 +(ccosθ + bsinθ )ε3

= (−bcosθ − csinθ )ε2 +(ccosθ − bsinθ )ε3.

Therefore we have

bcosθ = 0, bsinθ = 0.

Thus b = 0.
What we have obtained about the Lie brackets of the Lie algebra g can be

summarized as follows:

[u,ε1] = 0, [u,ε2] =−ε3, [u,ε3] = ε2,

[ε1,ε2] = cε3, [ε1,ε3] =−cε2, [ε2,ε3] = a1u+ a2ε1,

where c,a1,a2 are real numbers. If a1 �= 0, we set

ε ′1 = X +
a2

a1
ε1,
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and

p′ = span(ε ′1,ε2,ε3).

Then we have g = h+ p′, [h,p′] ⊂ p′, and the above brackets are still valid with
respect to the new basis u,ε ′1,ε2,ε3. Moreover, the matrix of τ1 on p′ with respect to
the basis ε ′1,ε2,ε3 is the same as that of τ1 on p with respect to the basis ε1,ε2,ε3.
Thus we can assume that a1 = 0. Now we have the following cases:

1. a2 = 0. In this case, we set ε ′′1 = cu+ ε1, p′′ = span(ε ′′1 ,ε2,ε3). Then g= h+ p′′.
It is easy to check that p′′ is an abelian ideal of g, and the action of u on p′′ is

[u,ε ′′1 ] = 0, [u,ε2] =−ε3, [u,ε3] = ε2.

2. a2 �= 0 and c = 0. Without loss of generality, we can assume that a2 = 1
(otherwise, we use a2ε1 to substitute ε1). Then p is a 3-dimensional Heisenberg
Lie algebra, since [ε1,ε2] = [ε1,ε3] = 0, [ε2,ε3] = ε1. The action of u is

[u,ε1] = 0, [u,ε2] =−ε3, [u,ε3] = ε2.

3. a2c > 0. Setting ε ′1 =
2
c ε1, ε ′2 =

2√
a2cε2, 2√

a2cε3, we have

[ε ′1,ε ′2] = 2ε ′3, [ε ′1,ε ′3] =−2ε ′2, [ε ′2,ε ′3] = 2ε ′1.

Thus p is an ideal of g isomorphic to the (real) compact simple Lie algebra su(2)
of skew-Hermitian traceless complex matrices. For simplicity, we just suppose
p= su(2). Let

H1 =

(
0 1
−1 0

)
, X1 =

(
0

√−1√−1 0

)
, Y1 =

(√−1 0
0 −√−1

)

be the standard basis of su(2). Then

[H1,X1] = 2Y1, [H1,Y1] =−2X1, [X1,Y1] = 2H1.

The action of u on p is

[u,H1] = 0, [u,X1] =−Y1, [u,Y1] = X1.

4. a2c < 0. Similarly as in case (3), we can prove that p is an ideal of g that
is isomorphic to the real simple Lie algebra sl(2,R) of traceless 2 × 2 real
matrices. Let

H2 =

(
0 1
−1 0

)
, X2 =

(
1 0
0 −1

)
, Y2 =

(
0 1
1 0

)
.
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Then H2,X2,Y2 form a basis of p and

[H2,X2] =−2Y2, [H2,Y2] = 2X2, [X2,Y2] = 2H2.

The action of u on p is

[u,H2] = 0, [u,X2] =−Y2, [u,Y2] = X2.

It remains to consider the case in which the restriction to V = span(ε2,ε3) of the
automorphism τ1 has the matrix

(
cosθ sinθ
−sinθ cosθ

)
, θ ∈ R,

with respect to the basis ε2,ε3. In this case, applying τ1 to both sides of

[ε1,ε2] = bε2 + ε3,

we get

bcosθ + csinθ = 0,

−bsinθ + ccosθ = 0.

Thus b = c = 0. This means that [ε1,ε2] = [ε1,ε3] = 0. If [ε2,ε3] = 0, then g is
abelian. Otherwise, we can assume that (see case (2) above) [ε2,ε3] = ε1, so p
is a Heisenberg Lie algebra. From this we see that no new structure appears in
this case.

Combining the above arguments with the examples in Sect. 6.4, we have the
following result.

Theorem 6.7. Let (g,h) be a Riemannian weakly symmetric Lie algebra such that
dimh= 1 and dimg= 4. Then (g,h) must be one of the following:

1. g is an abelian Lie algebra. In this case the reduced set of automorphisms can be
chosen to be {id,−id}.

2. g has a decomposition g = h+ p (direct sum), where p is an abelian ideal of g
and we can select a basis u of h, and ε1,ε2,ε3 of p, such that

[u,ε1] = 0, [u,ε2] =−ε3, [u,ε3] = ε2.

In this case, the reduced set of automorphisms can be chosen to be {id,τ1}, where
τ1 is defined by

τ1(u) =−u, τ1(ε1) =−ε1, τ1(ε2) =−ε2, τ1(ε3) = ε3.
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3. g has a decomposition g= h+ su(2) (direct sum), where su(2) is an ideal of g.
In this case, let

ε1 =

(
0 1
−1 0

)
, ε2 =

(
0

√−1√−1 0

)
, ε3 =

(√−1 0
0 −√−1

)

be the standard basis of su(2). Then the action of a nonzero vector u of h on
su(2) is

[u,ε1] = 0, [u,ε2] =−ε3, [u,ε3] = ε2.

The reduced set of automorphisms can be chosen the same as in case (2).
4. g has a decomposition g= h+sl(2,R) (direct sum), where sl(2,R) is an ideal of

g. In this case, let

ε1 =

(
0 1
−1 0

)
, ε2 =

(
1 0
0 −1

)
, ε3 =

(
0 1
1 0

)

be the standard basis of sl(2,R). Then the action of a nonzero vector u of h on
sl(2,R) is the same as in case (3). The reduced set of automorphisms can be
chosen the same as in case (2).

5. g has a decomposition g= h+n (direct sum), where n is an ideal of g and can be
identified with the 3-dimensional Heisenberg Lie algebra consisting of the real
matrices ⎛

⎝0 a c
0 0 b
0 0 0

⎞
⎠ , a,b,c ∈R.

Let

ε1 =

⎛
⎝0 0 1

0 0 0
0 0 0

⎞
⎠ , ε2 =

⎛
⎝0 1 0

0 0 0
0 0 0

⎞
⎠ , ε3 =

⎛
⎝0 0 0

0 0 1
0 0 0

⎞
⎠

be the standard basis of n. Then the action of a nonzero vector u of h on n is the
same as in case (3). The reduced set of automorphisms can be chosen the same
as in case (2).

Using Theorem 6.7, we can give a complete classification of 3-dimensional
weakly symmetric Finsler spaces.

Theorem 6.8. Let (M,F) be a 3-dimensional connected simply connected weakly
symmetric Finsler space. Then (M,F) must be one of the following:

1. (M,F) is a (reversible) globally symmetric Finsler space.
2. M is the compact simple Lie group SU(2) and F is a left-invariant Finsler metric

on M. The restriction of F at the unit element of M is a reversible Minkowski
norm on the Lie algebra su(2) satisfying

F(aε1 + bε2 + cε3) = F(aε1 + b1ε2 + c1ε3), (∗∗)

F(y,y) �= d
√
−B(y,y), ∀d > 0,
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where ε1,ε2,ε3 constitute the basis as in (3) of Theorem 6.7, a,b,c,θ are
arbitrary real numbers, and b1 = bcosθ + csinθ ,c1 = ccosθ − bsinθ . In this
case, there are infinitely many Riemannian metrics as well as infinitely many
non-Riemannian Finsler metrics. All these metrics are nonsymmetric.

3. M is the universal covering group of SL(2,R) and F is a left-invariant Finsler
metric on the Lie group M. The restriction of F at the unit element e of M is a
reversible Minkowski norm on the Lie algebra sl(2,R) satisfying

F(aε1 + bε2 + cε3) = F(aε1 +(bcosθ + csinθ )ε2 +(ccosθ − bsinθ )ε3),

where ε1,ε2,ε3 is the basis as in (4) of Theorem 6.7 and a,b,c,θ are arbitrary
real numbers. In this case, there are infinitely many Riemannian metrics as well
as infinitely many non-Riemannian Finsler metrics. Further, all these metrics are
nonsymmetric.

4. M is the 3-dimensional Heisenberg Lie group

G =

⎧⎨
⎩
⎛
⎝1 x z

0 1 y
0 0 1

⎞
⎠ | x,y,z ∈ R

⎫⎬
⎭ ,

and F is a left-invariant Finsler metric on M. The restriction of F at the unit
element e of M is a reversible Minkowski norm on the 3-dimensional Heisenberg
Lie algebra satisfying

F(aε1 + bε2 + cε3) = F(aε1 +(bcosθ + csinθ )ε2 +(ccosθ − bsinθ )ε3),

where ε1,ε2,ε3 is the basis as in (5) of Theorem 6.7 and a,b,c,θ are arbitrary
real numbers. In this case, in the sense of isometric diffeomorphism, there exists a
unique (up to a positive scalar) Riemannian metric, but there are infinitely many
non-Riemannian Finsler metrics. All these metrics are nonsymmetric.

Proof. Let (M,F) be a 3-dimensional connected and simply connected weakly
symmetric Finsler space. As before, let G̃ be the full group of isometries and H̃
the isotropic subgroup at a fixed point in M. Let H, G be the identity components of
H̃, G̃, respectively. Then we have pointed out that dimH = 0,1, or 3. If dimH = 3,
then (M,F) is a two-point homogeneous Riemannian manifold. If dimH = 0, then
M itself is a commutative Lie group. Hence (M,F) is just a reversible Minkowski
space. If dimH = 1, then by Theorem 6.4, we see that (g,h), where g =Lie
G, h =Lie H, is a Riemannian weakly symmetric Lie algebra. By Theorem 6.7,
there are only five kinds of structures for (g,h). In case (1), (M,F) is obviously
a reversible Minkowski space. Therefore we need consider only cases (2)–(5) of
Theorem 6.7.

We first consider case (2). Let P be the connected Lie subgroup of G with Lie
algebra p. Then P is a commutative normal subgroup of G and G is the semiproduct
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of H and P. Hence the coset space M = G/H is diffeomorphic to the Lie group P.
This means that P is a connected simply connected commutative Lie group, i.e., P=
R

3 (as an additive group). Thus (M,F) must be the Euclidean space R
3 endowed

with a reversible Minkowski norm that is invariant under the actions of H̃ and τ1.
Hence it is a globally symmetric Finsler space.

Next we consider case (3). Similarly to case (2), (M,F) must be a left-invariant
Finsler metric on the Lie group SU(2) whose restriction to the tangent space at
the unit element (= su(2)) is invariant under the actions of H̃ and τ1. In particular,
it is invariant under the action of H. Hence F satisfies (∗∗). On the other hand,
by Theorem 6.5, every Minkowski norm on su(2) satisfying (∗∗) defines a weakly
symmetric left-invariant Finsler metric on SU(2). However, if F(y) = d1

√−B(y,y)
for some positive number d1, then this metric is globally symmetric and the
isotropic subgroup at e contains Ad(SU(2)), which is 3-dimensional. Therefore
the corresponding weakly symmetric Lie algebra cannot be of type (3). Hence
F(y) �= d

√−B(y,y) for every positive number d. It is easily seen that among these
metrics there are infinitely many Riemannian ones as well as non-Riemannian ones.
Finally, if one such metric is (globally) symmetric, then the Lie group pair (G̃, H̃)
is a Riemannian symmetric pair. Thus by Theorems 2.29 and 2.30, the Lie algebra
pair (g,h) is an orthogonal symmetric Lie algebra. But this is impossible because
in an orthogonal Lie algebra we have [p,p]⊂ h, but in our case we have [p,p]⊂ p.
Thus all the metrics in this case are nonsymmetric.

The above arguments are all valid in case (4) except the proof that such metrics
are nonsymmetric. Now we proceed as follows. If one such metric on the universal
covering of SL(2,R) is symmetric, then as in case (3), the isotropic subgroup at
the unit element must be 3-dimensional, for otherwise it will contradict the fact
that (g,h) cannot be an orthogonal symmetric Lie algebra. If the isotropic group
is 3-dimensional, then the space (M,F) is a two-point homogeneous Riemannian
manifold. Hence it is a simply connected noncompact symmetric space of rank
1, i.e., it is 3-dimensional hyperbolic space. In particular, it is a homogeneous
Riemannian space of negative constant curvature −1. Now we can deduce a
contraction as follows. Note that the Lie group SL(2,R), endowed with the left-
invariant Riemannian metric Q whose restriction at e satisfying F(Y ) =

√
Q(Y,Y ),

Y = sl(2,R), is locally isometric to (M,F). Hence (SL(2,R),Q) is also of constant
curvature −1. This is impossible because a classical result of Kobayashi asserts that
a homogeneous Riemannian manifold of strictly negative curvature is necessarily
simply connected [100]. This completes the proof for case (4).

Finally, in case (5), the assertion that the weakly symmetric Riemannian metric
is unique up to a positive factor follows from the fact that on the 3-dimensional
Heisenberg Lie group all left-invariant Riemannian metrics are isometric (up to a
positive factor); see [183]. It is also proved in [183] that this metric is not symmetric.
But then none of the non-Riemannian ones can be symmetric. Otherwise, a
contraction would arise in both cases in which the dimension of isotropic subgroup
is 2 (the Lie algebra pair (g,h) cannot be an orthogonal symmetric Lie algebra),
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or is 3 (Riemannian metric). That there are infinitely many non-Riemannian weakly
symmetric Finsler metrics in this case follows from the facts that the Minkowskian
norms

Fλ (aε1 + bε2 + cε3) =

√
a2 + b2 + c2 +λ 4

√
a4 +(b2 + c2)2, λ > 0,

satisfy condition of (4) and that Fλ1
is not linearly isometric to Fλ2

for λ1 �= λ2 (see
[16, p. 21]). ��

6.6 The Classification

In this section we give a classification of non-Riemannian weakly symmetric Finsler
spaces with reductive isometry groups. First we present a general principle to
classify weakly symmetric Finsler spaces.

Theorem 6.9. Let (M,F) be a connected weakly symmetric Finsler space and G
the full group of isometries of (M,F). Then there exists a Riemannian metric Q on
M that is invariant under the action of G such that (M,Q) is a weakly symmetric
Riemannian manifold. Moreover, every G-invariant Finsler metric on M must be
weakly symmetric.

Proof. Since a connected weakly symmetric Finsler space must be homogeneous, G
acts transitively on M. Hence the identity component G0 of G acts transitively on M.
Fix x ∈ M and denote the isotropy subgroup of G at x by H. Then the isotropy
subgroup of G0 at x is H ∩G0. Since the Lie algebras of G and G0 coincide, it is
easily seen that the identity component H0 of H is also the identity component of
H ∩G0. Since H is compact, it has at most finite components. Therefore the index
[H : H0] is finite. Hence the index of H ∩G0 in H is also finite. Suppose

H = (H ∩G0)∪μ1(H ∩G0)∪·· ·∪μs(H ∩G0)

is the decomposition of H into left cosets of H ∩G0. Since M = Go/(H ∩G0), we
have

M = (G0 ∪μ1G0 ∪·· ·∪μsG0)/H. (6.5)

It is obvious that G = G0 ∪ μ1G0 ∪ ·· · ∪ μsG0. Since H is compact, by Weyl’s
unitary trick there exists an H-invariant inner product 〈 , 〉 on Tx(M). By (6.5), we
easily see that 〈 , 〉 can induce a Riemannian metric Q on M that is invariant under
the action of G = G0 ∪ μ1G0 ∪ ·· · ∪ μsG0. Now we assert that (M,Q) is a weakly
symmetric space. In fact, since (M,F) is weakly symmetric and H is the isotropic
subgroup (at x) of the full group of isometries of (M,F), for every fixed u ∈ Tx(M),
there exists h ∈ H such that dh|x(u) = −u. Thus the isotropy representation of the
homogeneous Riemannian manifold on the right-hand side of (6.5) satisfies the
condition of Proposition 6.3. Hence (M,Q) is weakly symmetric. The last assertion
is clear. ��
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By Theorem 6.9, the strategy to classify weakly symmetric Finsler spaces can be
reduced to two steps: the first step is to classify weakly symmetric Riemannian
manifolds and the second step is to find all the Finsler metrics on a weakly
symmetric Riemannian manifold that make a weakly symmetric Finsler space.
In particular, if there is a non-Riemannian Finsler metric that is invariant under
the full group of isometries of a weakly symmetric Riemannian metric, then this
manifold admits non-Riemannian weakly symmetric Finsler metrics. Combining
this argument with Theorem 4.8, we have the following.

Theorem 6.10. Let (M,Q) be a connected weakly symmetric Riemannian mani-
fold. If M is not diffeomorphic to a rank-one Riemannian symmetric space, then
there exists a non-Riemannian Finsler metric F on M that is invariant under the full
group of isometries of Q such that (M,F) is a weakly symmetric Finsler space.

Now we consider the case of rank-one symmetric Riemannian spaces. By duality,
we need treat only the compact ones. These manifolds include the spheres Sn (n≥ 2),
the real projective spaces RPn (n ≥ 2), the complex projective spaces CPn (n ≥ 2),
the quaternion projective spaces HPn (n≥ 2), and the Cayley projective plane CayP2

(see [83]). Suppose M is one of the manifolds above and F is a weakly symmetric
Finsler metric on M. Then the full group of isometries of F acts transitively on
M. The compact connected groups that admit effective transitive action on spheres
have been classified by Montgomery–Samelson [121] and Borel [31]; see also
[28]. Furthermore, compact Lie groups that admit transitive action on rank-one
Riemannian symmetric spaces were classified by Onishchik [126]. These results
lead to the following theorem.

Theorem 6.11. On the even-dimensional sphere S2n, the even-dimensional real
projective space RP2n, the 4n-dimensional complex projective space CP2n, the
quaternion projective space HPn, and the Cayley projective plane CayP2, every
weakly symmetric Finsler metric must be Riemannian and globally symmetric.
On the odd-dimensional sphere S2n−1 (n ≥ 2), the odd-dimensional real projective
space RP2n−1 (n ≥ 2), and the (4n − 2)-dimensional complex projective space
CP2n−1, there exist infinitely many non-Riemannian weakly symmetric Finsler
metrics.

Proof. As pointed out in [126], if a compact connected Lie group G acts transitively
on S2n (n �= 3), RP2n, CP2n, HPn, or CayP2, then G must be the the identity
component of the full group of isometries of the canonical Riemannian metric Qc on
the corresponding manifold M. Fix x ∈ M and denote the isotropy subgroup of G at
x by H. Since (M,Qc) is a rank-one Riemannian symmetric space, (G,H) must be a
rank-one Riemannian symmetric pair. This means that H acts transitively on the unit
sphere (with respect to Qc) of Tx(M). Therefore every H-invariant Minkowski norm
on Tx(M) must be Euclidean and must be a positive multiple of Qc|Tx(M). Hence
every G-invariant Finsler metric on G/H must be a positive multiple of Qc.

On the other hand, the group G2 has an effective transitive action on the sphere
S6 as isometries. The isotropy subgroup at the point p = (1,0, . . . ,0) is SU(3).
However, in this case, the linear isotropic representation of SU(3) on Tp(S6) is
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also transitive on the unit sphere with respect to the standard metric. Hence every
G2-invariant Finsler metric on S6 must be the standard Riemannian metric. This
proves the first assertion.

Now we prove the second assertion. We first consider the sphere S2n−1 as the unit
sphere of Cn with respect to the standard Hermitian metric. The unitary group U(n)
then acts transitively on S2n−1 and the isotropy group at the point p = (1,0,0, . . . ,0)
is U(n− 1). The tangent space Tp(M) can be viewed as C

n−1 ⊕R
√−1p and the

isotropy representation is given by χ(A)(v,a) = (Av,a). Now we consider another
specific isometry σ of S2n−1, given by taking the conjugate on each coordinate.
Note that σ leaves p fixed. If we take G = U(n)∪σ ◦U(n− 1) and Hp = U(n−
1)∪ σ ◦ U(n − 1), then we have S2n−1 = G/Hp. We assert that Hp satisfies the
condition of Proposition 6.3. In fact, for every (v,a) ∈ Tp(M), we first apply σ
to send (v,a) to (v̄,−a). Then by the transitivity of U(n− 1) on the unit sphere
of Cn−1 we can select an element of U(n− 1) to send (v̄,−a) to (−v,−a). This
proves our assertion. This means that every reversible G-invariant Finsler metric
on S2n−1 is weakly symmetric. Next we consider the isotropy representation of
Hp on Tp(M). It is easily seen that both the subspaces C

n−1 and R
√−1p are

invariant under Hp. By Theorem 4.6, this implies that there exist infinitely many Hp-
invariant non-Euclidean Minkowski norms on Tx(M). Each such Minkowski norm
will then induce a G-invariant Finsler metric on S2n−1 that is weakly symmetric.
This proves the second assertion for the case of the sphere. A similar argument
RP2n−1 = U(n)/(U(n− 1)×{In,−In}) shows that there also exist infinitely many
non-Riemannian Finsler metrics on it that are weakly symmetric. Now we consider
CP2n−1. According to [183], the group G = Sp(n) acts transitively on it with
the isotropic subgroup H = Sp(n − 1)U(1). The isotropy representation can be
described as follows: the tangent space To(G/H) can be identified with H

n−1 ⊕R
2,

the group H acts on R
2 by the usual action (as rotations) of U(1), and it acts on

H
n−1 by

(A,z)(v) = A(v)z̄.

From these we can easily deduce that H satisfies the condition of Proposition 6.3.
In fact, for (v,w) ∈ To(M), we can first use e

√−1π/2 to send it to (−√−1v,−w).
Then by the transitivity of the action of Sp(n− 1) on the unit sphere of Hn−1 we
can select h ∈ Sp(n− 1) that sends −√−1v to −v. This proves our assertion. The
above argument shows that every reversible G-invariant Finsler metric on M must
be weakly symmetric. Since the action of H leaves the subspaces H

n−1 and R
2

invariant, there exist infinitely many such metrics that are non-Riemannian. This
completes the proof of the theorem. ��

Now we consider homogeneous manifolds that admit non-Riemannian weakly
symmetric Finsler metrics with reductive isometry groups. We first recall some
results concerning the classification of weakly symmetric Riemannian manifolds.
Let G be a connected reductive algebraic group over the field of complex numbers
C acting on an algebraic variety X . Then X is called spherical (with respect to G)
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if there exists a Borel subgroup B ⊂ G such that B has a Zariski dense orbit
in X . É. Cartan proved that any complexified symmetric space is spherical with
respect to the identity component of the full group of isometries [38]. An algebraic
subgroup H of G is called spherical if G/H is spherical with respect to G. In
this case the pair (G,H) is usually called a spherical pair. D.N. Akhiezer and
E.B. Vinberg proved in [3] that if (G,H) is a Lie group pair with G reductive,
with the property that every G-invariant Riemannian metric is weakly symmetric,
then the complexification (GC,HC) must be a spherical pair. This reduces the
classification of weakly symmetric Riemannian manifolds to the classification of the
real forms of the spherical pairs. The classification of spherical pairs was achieved
by Akhiezer and Vinberg [3], Brion [33], Krämer [106], and Mikityuk [119]. Using
these results and some reduction, Yakimova and Wolf independently obtained a
complete classification of weakly symmetric Riemannian manifolds with reductive
isometry groups [176, 180]. The result is presented in Table 6.1 (note that the last
three types of manifolds were missed in [180]).

We will adopt the approaches of [180]. Let us recall some terminology related
to Yakimova’s classification. Let G be a reductive Lie group and K a closed
subgroup of G. Let Z(G) denote the center of G and Kr = K/(K ∩ Z(G)). The
coset space G′/Kr, where G′ denotes the commutator subgroup of G, is called
the central reduction of G/K. A Lie group pair (G,K), where G is a semisimple
Lie group and K is a closed subgroup of G, is called principal if Z(K)0 = Z =
(G1∩Z)×(G2∩Z)×·· ·×(Z∩Gs), where G1, . . . ,Gs are all the simple factors of G.

Theorem 6.12 (Yakimova [180]). Let M = G/K be a simply connected compact
irreducible weakly symmetric homogeneous space with G reductive. If (G,K) is
principal, then it must be one of the pairs in Table 6.1.

Now we give some explanation of the notation in Table 6.1. If M = G/H is
a weakly symmetric homogeneous manifold such that there exists a Riemannian
symmetric pair (P,Q) with G ⊂ P, H ⊂ Q, then (P,Q) is called a symmetric
extension of G/H. In this case, on the homogeneous manifold M = G/H there
exists some G-invariant Riemannian metric that is globally symmetric. We use B

to denote the set of all G-invariant Riemannian metrics on M and m to denote the
set of all P-invariant Riemanian metrics on M. The dimensions of B and m are given
in the cases in which there exists a symmetric extension of G/H. If K1 and K2 are
two closed subgroups of a Lie group G, then we use K1 ·K2 to denote the quotient
group of K1 ×K2 with respect to the central subgroup of K1×K2. The notation ×2 G
means the direct product group G×G.

Let us consider invariant Finsler metrics on the manifolds in Table 6.1. We
first find out which one admits weakly symmetric non-Riemannian Finsler metrics.
Note that there are some manifolds that are diffeomorphic to rank-one Riemannian
symmetric manifolds or the product of some rank-one symmetric Riemannian
manifolds. In fact, we have the following relations:
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Table 6.1 Weakly symmetric homogeneous manifolds and symmetric extensions

M = G/K P Q dimB(m)

1a SU(n)/SU(n−1) SO(2n) SO(2n−1) 2(1)
1b SU(n)/(SU(n− k)×SU(k))

(n �= n− k)
1c U(2n)/(U(n)×SU(n))
2 SU(2n+1)/(Sp(n) ·U(1))
3 SU(2n+1)/Sp(n) SU(2n+2) Sp(n+1) 3(1)
4 (U(1) ·Sp(n))/U(n)
5 Sp(n)/(Sp(n−1) ·U(1)) SU(2n) U(2n−1) 2(1)
6 (Sp(n) ·U(1))/(Sp(n−1) ·U(1))
7 SO(2n+1)/U(n) SO(2n+2) U(n+1) 2(1)
8 U(1) ·SO(2n+1)/U(n)
9 U(1) ·SO(4n+2)/U(2n+1)
10 SO(10)/Spin(7)×SO(7)
11 U(1) ·SO(10)/Spin(7)×SO(7)
12 SO(9)/Spin(7) SO(16) SO(15) 2(1)
13 Spin(8)/G2 SO(8)×SO(8) SO(7)×SO(7) 3(2)
14 Spin(7)/G2 SO(8) SO(7) 1(1)
15 E6/Spin(10)
16 G2/SU(3) SO(7) SO(6) 1(1)
17 U(n+1)×SU(n)/U(n) ×2SU(n+1) SU(n+1) 2(1)
18 SU(n)×Sp(m)/(U(n−2)

×SU(2)×Sp(m−1))
19a Sp(n)×Sp(l)×Sp(m)/Sp(n−1)

×Sp(1)×Sp(l −1)×Sp(m−1)
19b Sp(n)×Sp(1)×Sp(m)/Sp(n−1) ×2SO(4n) ×2 SO(4n−1) 6(2)

×Sp(1)×Sp(m−1)
19b′ Sp(1)×Sp(n)×Sp(1)/Sp(1) ×2 SO(4n) ×2 SO(4n−1) 5(2)

×Sp(n−1)×Sp(1)
20 (Sp(n)×Sp(2))/(Sp(n−2)×Sp(2))
21 SU(n)×Sp(m)/(SU(n−2)×Sp(2)

×Sp(m−1))
22a Sp(n)×Sp(2)×Sp(m)/(Sp(n−1)

×Sp(1)×Sp(1)×Sp(m−1))
22b Sp(1)×Sp(2)×Sp(1)/(Sp(1)×Sp(1)) Sp(2)×Sp(2) Sp(2) 3(1)
23 SO(n+1)×SO(n)/SO(n) ×2 SO(n+1) SO(n+1) 2(1)
24a Sp(n)×Sp(m)/(Sp(n−1)×Sp(1)

×Sp(m−1))
24b Sp(n)×Sp(1)/(Sp(n−1)×Sp(1)) SO(4n) SO(4n−1) 3 (1)

Type 1a: SU(n)/SU(n− 1) = S2n−1,
Type 5: Sp(n)/(Sp(n− 1) ·U(1)) = CP2n−1,
Type 6: (U1 ·SP(n))/(Sp(n− 1) ·U(1)) = S4n−1,
Type 12: SO(9)/Spin(7) = S15,
Type 13: Spin(8)/G2 = S7 × S7,
Type 14: Spin(7)/G2 = S7,
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Type 16: G2/SU(3) = S6,
Type 19b: Sp(n)×Sp(l)×Sp(m)/Sp(n− 1)× Sp(1)× Sp(l − 1)× Sp(m− 1) =

S4n−1 × S4m−1,
Type 19b′: Sp(1)×Sp(n)×Sp(1)/Sp(1)×Sp(n− 1)×Sp(1) = S4n−1 × S4n−1,
Type 24b: Sp(n)×Sp(1)/(Sp(n− 1)×Sp(1)) = S4n−1.

As we have explained above, all these manifolds except type 16, G2/SU(3),
admit weakly symmetric non-Riemannian Finsler metrics. Note also that in types
14 and 16, every G-invariant Finsler metric on M = G/H must be Riemannian. This
means that although S7 = Spin(7)/G2 admits weakly symmetric non-Riemannian
Finsler metrics, such metrics cannot be Spin(7)-invariant. To get such a metric, we
must write S7 as SU(4)/SU(3) or Sp(2)×Sp(1)/Sp(1)×Sp(1) and find invariant
Finsler metrics on these coset spaces.

Let us summarize the above as the following:

Theorem 6.13. Let M be a connected homogeneous manifold. If M can be written
as M = G/K, where (G,K) is a principal pair and M admits G-invariant weakly
symmetric non-Riemannian Finsler metrics, then M must be diffeomorphic either to
one manifold or to the product of some manifolds from the following list:

1. The odd-dimensional spheres S2n−1 (n ≥ 2),
2. SU(n)/(SU(n− k)×SU(k)) (n �= n− k),
3. U(2n)/(U(n)×SU(n)),
4. SU(2n+ 1)/(Sp(n) ·U(1)),
5. SU(2n+ 1)/Sp(n),
6. (U(1) ·Sp(n))/U(n),
7. The (4n− 2)-dimensional complex projective spaces CP2n−1,
8. SO(2n+ 1)/U(n),
9. U(1) ·SO(2n+ 1)/U(n),

10. U(1) ·SO(4n+ 2)/U(2n+ 1),
11. E6/Spin(10),
12. SU(n+ 1),
13. SU(n)×Sp(m)/(U(n− 2)×SU(2)×Sp(m− 1)),
14. Sp(n)×Sp(l)×Sp(m)/Sp(n− 1)×Sp(1)×Sp(l − 1)×Sp(m− 1),
15. (Sp(n)×Sp(2))/(Sp(n− 2)×Sp(2)),
16. SU(n)×Sp(m)/(SU(n− 2)×Sp(2)×Sp(m− 1)),
17. Sp(n)×Sp(2)×Sp(m)/(Sp(n− 1)×Sp(1)×Sp(1)×Sp(m− 1)),
18. Sp(2),
19. SO(n+ 1) (n ≥ 2),
20. Sp(n)×Sp(m)/(Sp(n− 1)×Sp(1)×Sp(m− 1)),

Moreover, on each of the above manifolds there exists a non-Riemannian weakly
symmetric Finsler metric.
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6.7 Weakly Symmetric Metrics on H-Type Groups

We now consider left-invariant weakly symmetric Finsler metrics on nilpotent Lie
groups. A Lie algebra g is called two-step nilpotent if [g, [g,g]] = 0. A connected
Lie group is called two-step nilpotent if its Lie algebra is two-step nilpotent.
A result of C. Gordon asserts that if a connected nilpotent Lie group N admits a left-
invariant weakly symmetric Riemannian metric, then N must be two-step nilpotent
[73, 74]. Taking into account Theorem 6.2, we have the following result.

Proposition 6.4. Let N be a connected nilpotent Lie group. If N admits a left-
invariant weakly symmetric Finsler metric, then it must be two-step nilpotent.

Now we turn to find the conditions for a connected two-step nilpotent Lie group
to admit a left-invariant weakly symmetric non-Riemannian Finsler metric. The
following theorem reduces the problem to the Riemannian case.

Theorem 6.14. If a connected simply connected two-step nilpotent Lie group
admits a left-invariant weakly symmetric Riemannian metric, then it admits a left-
invariant weakly symmetric non-Riemannian Finsler metric.

Proof. Without loss of generality, we can assume that N is not abelian. Suppose
Q is a left-invariant weakly symmetric Riemannian metric on N. Let G be the full
group of isometries of Q and let H be the isotropy subgroup of G at the identity
element e. Then N = G/H. N. Wilson proved that N is a normal subgroup of the
identity component G0 of G [170]. Now we assert that the action of H on Te(N) =
To(G/H) (o=H) cannot be transitive on the unit sphere of Te(N) (with respect to the
restriction of Q to Te(N)). In fact, otherwise, (N,Q) would an isotropy Riemannian
manifold hence must be a rank-one Riemannian symmetric space (see [83, p. 535]).
Since N is noncompact, the sectional curvature of (N,Q) must be < 0 everywhere.
But a result of Wolf [173] asserts that for every nonabelian connected nilpotent Lie
group N1, and every left-invariant Riemannian metric Q1 on N1, there exist three
tangent planes Π0, Π+, and Π− such that Π0 has sectional curvature 0, Π+ has
sectional curvature > 0, and Π− has sectional curvature < 0. This is a contradiction.
Therefore H cannot be transitive on the unit sphere of Te(N). By Theorem 4.8, there
must be a non-Euclidean Minkowski norm F0 on Te(N) that is invariant under H.
Then F0 induces a G-invariant Finsler metric F on N = G/H. By Theorem 6.2,
(N,F) must be weakly symmetric. On the other hand, since N is a normal subgroup
of G0, F is left-invariant. This completes the proof of the theorem. ��

By the results above, to determine all the left-invariant weakly symmetric Finsler
metrics on nilpotent Lie groups, we must first find all the two-step nilpotent Lie
groups that admit left-invariant weakly symmetric Riemannian metrics, and then
classify all the left-invariant Finsler metrics that are weakly symmetric (there must
be non-Riemannian ones among them). However, no sufficient and necessary con-
dition for a two-step nilpotent Lie group to admit left-invariant weakly symmetric
Riemannian metrics is known. So in the following we consider a special type of
two-step nilpotent Lie group, namely, the Lie groups of Heisenberg type.
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We first recall the definition of Lie groups of Heisenberg type, or simply
H-type Lie groups. This type of Lie groups were introduced by Kaplan in [95].
After that, several open problems in Riemannian geometry were settled using H-
type Lie groups. We begin with the notion of an H-type Lie algebra. An H-type Lie
algebra is a two-step nilpotent Lie algebra n with an inner product 〈 , 〉 such that
the following property holds: if w is any element in the center z of n, and a is the
orthogonal complement of z, then the linear operator Jw: a→ a defined by

〈Jw(u),v〉= 〈w, [u,v]〉, (6.6)

for u,v ∈ a, satisfies the identity

|Jw(u)|= |w| · |u|, (6.7)

where | · | is the length with respect to 〈·, ·〉. A connected simply connected two-step
nilpotent Lie group N is called of H-type if its Lie algebra n is of H-type.

H-type groups are closely related to the representations of Clifford algebras and
can be classified using this point of view. Let n = a⊕ z be the decomposition of
an H-type Lie algebra and let Jw be the maps defined in (6.6). Then Jw induce an
action of the Clifford algebra C(z,−| · |2) on a. Conversely, given a Euclidean space
z and a C(z,−| · |2)-module a, denote by Jw the action of w ∈ z on a. Then one can
define an inner product on a such that (6.7) holds, as well as a Lie algebra structure
on a⊕ z through (6.6). Obviously different choices of the modules may lead to
isomorphic H-type Lie algebras. Therefore the classification of H-type Lie algebras
up to isomorphism can be achieved by a detailed analysis of modules of Clifford
algebras. The result can be summarized as follows (see [95]):

1. If dimz �≡ 3(mod4), then up to isomorphism, there is only one irreducible
C(z,−| · |2) module, denoted by a0. In this case, all the H-type Lie algebras with
center z are of the form z⊕ (a0)

p with p ≥ 1.
2. If dimz ≡ 3(mod4), then up to isomorphism there are two nonisomorphic

irreducible C(z,−| · |2)-modules, denoted by a1 and a2. In this case, all the
H-type Lie algebras with center z are of the form z⊕((a1)

p⊕(a2)
q), where p,q≥

0, p+q ≥ 1. The H-type Lie algebras z⊕ ((a1)
p ⊕ (a2)

q) and z⊕ ((a1)
q ⊕ (a2)

p)
are isomorphic. In the special case p = 0 or q = 0, a is called isotypic.

Now we consider weakly symmetric Finsler metrics on H-type Lie groups.
We first need to generalize the above-mentioned result of Wilson on the group of
isometries of a left-invariant Riemannian metric to the case of a left-invariant Finsler
metric.

Proposition 6.5. Let N be a connected simply connected nilpotent Lie group with
Lie algebra n. Suppose F is a left-invariant Finsler metric on N and denote the
full group of isometries of (M,F) by G. Then N (viewed as the group of left
translations) is a normal subgroup of G. Moreover, G is the semiproduct of N
with the isotropy subgroup Ge of G at the unity element e and Ge is equal to the
group of automorphisms of N whose differential of F at e is a linear isometry of the
Minkowski space (n,F |n).
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Proof. We first prove that N is a normal subgroup of G. This follows from a simple
observation. Note that N = G/Ge and F is a G-invariant Finsler metric on N, where
Ge is compact. It is easily seen that there exists a G-invariant Riemannian metric Q
on G/Ge. Since N ⊂ G, Q is left-invariant on N. Wilson’s result implies that N is
normal in the full group I(M,Q) of Q. Since G ⊂ I(M,Q), N is normal in G. From
the facts that each element of G can be written as a product of an element in N and an
element of Ge and that N ∩Ge = {e}, one easily deduces that G is the semiproduct
of N and Ge. Now we prove the last assertion. If k ∈ Ge, then it is obvious that
dk|e ∈ L(n,F) (the group of linear isometries of the Minkowski space (n,F)). So
we need only prove that k is an automorphism of N. Suppose x,y ∈ N. Then we have

k(xy) = k(Lx(y)) = kLxk−1(k(y)).

Since N is normal in G, there exists x′ ∈ N such that kLxk−1 = Lx′ . Hence
k(xy) = Lx′k(y). Considering the value at y = e, we find that x′ = k(x). Thus
k(xy) = Lk(x)K(y) = k(x)k(y). This completes the proof of the proposition. ��

Now we can give a classification of a special class of left-invariant weakly
symmetric Finsler metrics on H-type Lie groups. We call a left-invariant Finsler
metric F on an H-type nilpotent Lie group N admissible if the full group of
isometries (N,F) is equal to the full group of isometries A(N) (where N is endowed
with the left-invariant Riemannian metric induced by the inner product 〈·, ·〉 in (6.6).
To prove our result, we need the following lemma.

Lemma 6.5. Let V be a real vector space and let 〈 , 〉1, 〈 , 〉2 be two inner products
on V . Denote the groups of orthogonal transformations with respect to 〈 , 〉1 and
〈 , 〉2 by O1 and O2, respectively. Suppose K is a compact subgroup of GL(V ) that is
contained both in O1 and O2. Then there is a linear transformation g ∈ GL(V ) such
that gO1 g−1 = O2 and gkg−1 = k, ∀k ∈ K.

Proof. The proof uses some elementary results from representation theory. Since K
is compact and 〈 , 〉1 is invariant under K, V has a decomposition

V =V1 ⊕V2 ⊕·· ·⊕Vm,

where the Vi are irreducible subspaces of K and the decomposition is orthogonal
with respect to 〈 , 〉1. Similarly, V also has a decomposition

V =V ′
1 ⊕V ′

2 ⊕·· ·⊕V ′
m′ ,

where the V ′
i are irreducible subspaces of K and the decomposition is orthogonal

with respect to 〈 , 〉2. By elementary representation theory (see [34]), m = m′ and
we can assume that Vi ≡V ′

i as K-modules. Let gi be an isomorphism of K-modules
from Vi to V ′

i . Since 〈 , 〉1|Vi is K-invariant, the inner product

〈x,y〉′ = 〈gi(x),gi(y)〉2, x,y ∈Vi,
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is K-invariant. Since Vi is K-irreducible, by Schur’s lemma there is a positive
constant ci such that

〈 , 〉′ = ci〈 , 〉1.

Without loss of generality we can assume that ci = 1. Then we have

〈g(x),g(y)〉′ = 〈x,y〉1, ∀x,y ∈Vi.

Now we define a linear transformation g such that g|Vi = gi. Then it is easily seen
that g−1 O1 g= O2. Moreover, for every k ∈ K, since gi is an automorphism between
the K-modules Vi and V ′

i , we have

gi(k|Vi) = (k|V ′
i
)gi.

Therefore gkg−1 = k. This completes the proof of the lemma. ��
Theorem 6.15. An H-type Lie group N admits admissible weakly symmetric non-
Riemannian Finsler metrics if and only if it falls into the following cases:

(i) dimz= 1,2,3.
(ii) dimz= 5,6,7 and dima= 8.

(iii) dimz= 7, dima= 16 and a is isotypic.

Proof. Bernt et al. proved in [27] that an H-type Lie group N with the left-invariant
Riemannian metric induced by the inner product on n is weakly symmetric if
and only if it falls into the above three cases. Hence we need only prove that
the above Lie groups admit admissible weakly symmetric non-Riemannian Finsler
metrics. Let N be one of the H-type Lie groups in the above three cases. Then N
is weakly symmetric. From the proof of Theorem 6.10, we see that there exists a
non-Euclidean Minkowski norm F1 on n that is invariant under the isotropy group
A0(N). Let L(F1) be the group of linear isometries of F . Then L(F1) is a compact Lie
group. Hence it preserves an inner product 〈 , 〉′ on n. Let O and O′ be respectively
the groups of orthogonal transformations of n with respect to 〈 , 〉 and 〈 , 〉′. Then
A0(N) can be viewed as a closed subgroup of O as well as of O′. By Lemma 6.5,
there exists an invertible linear transformation τ of n such that τO′ τ−1 = O and
τkτ−1 = k, ∀k ∈ A0(N). Now we define a Minkowski norm F on n by

F(X) = F1(τ(X)).

It is easily seen that L(F) = τL(F1)τ−1. Since L(F1) ⊂ O′, we have L(F) ⊂ O.
Moreover, since τkτ−1 = k, ∀k ∈ A0(N), we also have A0(N) ⊂ L(F). Now
we extend F to a left-invariant Finsler metric on N, still denoted by F . By
Proposition 6.5, we have

I(N,F) = NI0(N,F) (semiproduct),
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where I0(N,F) consists of the automorphisms of N whose differential at the identity
belongs to L(F). Since L(F)⊂O, we have I(N,F)⊂ A(n). On the other hand, since
A0(N)⊂ L(F), we also have A(n)⊂ I(N,F). Therefore I(N,F) = A(N). This means
that F is an admissible weakly symmetric non-Riemannian Finsler metric on N. ��

6.8 Reversible Non-Berwald Finsler Spaces with Vanishing
S-Curvature

In this section we will solve an open problem posed by Shen in [146] concerning
S-curvature. The problem can be stated as follows.

Problem 6.1. Is there any reversible non-Berwaldian Finsler space with vanishing
S-curvature?

The reason to ask this question is that in [138], Shen proved that the Bishop–
Gromov volume comparison theorem holds for a Finsler space with vanishing
S-curvature. Therefore it is important to determine how large the class of Finsler
spaces with vanishing S-curvature is. By Theorem 1.12, every Berwald space has
vanishing S-curvature. It is also known that there are some non-Berwald spaces
(e.g., some Randers spaces) whose S-curvature vanishes. However, all the known
examples of such spaces are not reversible. Therefore it is natural to ask whether
there is a reversible non-Berwald space with vanishing S-curvature.

In this section we shall show that many of the non-Riemannian weakly symmetric
Finsler metrics we have constructed in the previous sections are non-Berwaldian.
Since a weakly symmetric Finsler space must be reversible and with vanishing
S-curvature, this presents a large number of examples that give a positive solution
to Z. Shen’s problem. First we prove the following result.

Theorem 6.16. Let M be a connected simply connected manifold and F a weakly
symmetric Finsler metric on M. If (M,F) is a Berwald space, then (M,F) can be
decomposed into a Berwald product as

(M,F) = (Rm,F0)× (M1,Q1)× (Ms,Qs)× (N1,F1)×·· ·× (Nt ,Ft),

where (Rm,F0) is a reversible Minkowski space, (Mi,Qi) (i = 1, . . . ,s) are holonomy
irreducible weakly symmetric Riemannian manifolds, and (Nj,Fj) ( j = 1, . . . , t)
are holonomy irreducible globally symmetric non-Riemannian Finsler spaces of
rank ≥ 2.

Proof. Note that a weakly symmetric Finsler space must be complete. By the
generalized de Rham decomposition theorem for Berwald spaces due to Szabó
[152], (M,F) can be decomposed into a Berwald product as

(M,F) = (Rm,F0)× (M1,Q1)× (Ms,Qs)× (N1,F1)×·· ·× (Nt ,Ft), (6.8)
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where F0 is a Minkowski metric on R
m, (Mi,Qi) (i = 1, . . . ,s) are holonomy

irreducible Riemannian manifolds, and (Nj,Fj) ( j = 1, . . . , t) are holonomy irre-
ducible globally affine symmetric non-Riemannian Berwald spaces of rank ≥ 2.
Since a totally geodesic submanifold of a weakly symmetric space must also be
weakly symmetric (see [180]), all the factors in (6.8) must be weakly symmetric. In
particular, it is true that F0 must be reversible, that Qi must be weakly symmetric,
and that Fj must be reversible. It is obvious that a reversible affine symmetric
Berwald space must be globally symmetric. This proves the theorem. ��
Theorem 6.17. Let M be a connected simply connected compact manifold of
dimension ≥ 2 and suppose that every homogeneous Riemannian metric on it is
holonomy irreducible. Then a weakly symmetric Finsler metric on M is Berwaldian
if and only if it is either Riemannian or globally symmetric. In particular, a
weakly symmetric Finsler metric on a connected simply connected compact rank-
one symmetric Riemannian manifold is Berwaldian if and only if it is Riemannian.

Proof. For the first assertion we need only prove the “only if” part. Suppose F
is a Berwlad metric on M that is also weakly symmetric. Then by Theorem 1.9,
there exists a Riemannian metric Q whose Levi-Civita connection coincides with
the linear connection of F . Since M is compact, the identity component I0(M,g)
of the full group I(M,Q) of isometries coincides with the identity component
A0(M,Q) of the full group of affine transformations A(M,Q) of the Levi-Civita
connection of (M,Q) (see [102, Vol. 1, p. 244]). Since (M,F) is weakly symmetric,
the full group of isometries I(M,F) acts transitively on it. Hence the identity
component I0(M,F) also acts transitively on M. By Theorem 5.1, an isometry
of a Berwald space must be an affine transformation with respect to its linear
transformation. Therefore we have I0(M,F)⊂ A0(M,Q) = I0(M,Q). Hence (M,Q)
is a homogeneous Riemannian manifold. By the assumption, (M,Q) must be
holonomy irreducible. Then (M,F) is holonomy irreducible. From this the first
assertion follows directly from Theorem 6.9. Now we prove the second assertion.
We need only prove that on a connected simply connected compact rank-one
symmetric Riemannian manifold M every homogeneous Riemannian metric must
be holonomy irreducible. Suppose conversely that Q is a homogeneous Riemannian
metric on M that is holonomy reducible. Then we have the de Rham decomposition

(M,Q) = (M1,Q1)×·· ·× (Ms,Qs), s ≥ 2,

where (Mi,Qi) (i = 1, . . . ,s) are irreducible. According to Hano’s theorem [102],
we have

I0(M,Q) = I0(M1,Q1)×·· ·× I0(M,Qs).

However, from the list of groups that admit transitive action on a compact rank-one
Riemannian symmetric space (see [28, p. 179], and in particular Table 7.1 in this
book), we can easily see that no such group can be decomposed as the product of
two connected (nontrivial) subgroups. This is a contradiction. ��
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Corollary 6.1. On the real projective space RPn, a weakly symmetric Finsler
metric is Berwaldian if and only if it is Riemannian.

Proof. Let π : Sn → RPn be the covering projection. Suppose F is a weakly
symmetric Finsler space on RPn. Then π∗F is a weakly symmetric Finsler metric
on Sn. Since being a Berwald space is a local property, π∗F is Berwaldian if and
only if F is Berwaldian. From this the corollary follows.

Combining the above results with Theorem 6.2, we get the following result.

Proposition 6.6. Every weakly symmetric non-Riemannian Finsler metric on the
odd-dimensional sphere S2n−1 (n ≥ 2), the odd-dimensional real projective space
RP2n−1 (n ≥ 2), and the (4n− 2)-dimensional complex projective space CP2n−1

must be non-Berwaldian. In particular, on each of the above manifolds, there
exist infinitely many Finsler metrics that are reversible, non-Berwaldian, and with
vanishing S-curvature.

Besides the above examples, there are still many examples that possess the above
properties. In particular, we can prove that all the admissible weakly symmetric non-
Riemanian Finsler metrics on H-type nilpotent Lie groups are of this type. We first
prove the following.

Proposition 6.7. Let N (dimN ≥ 2) be a connected simply connected nilpotent Lie
group that is indecomposable, i.e., N cannot be written as the direct product of
two nontrivial normal subgroups. Then a left-invariant Finsler metric F on N is
Berwaldian if and only if it is Riemannian.

Proof. Suppose conversely that there is a left-invariant Finsler metric F on N that
is non-Riemannian but Berwaldian. Let L be the group of linear isometries of the
Minkowski space (Te(N),F), where e is the unity element of N. Then L is a compact
Lie group. Therefore there exists an inner product on Te(N) that is invariant under
the action of L. Let Q be the left-invariant Riemannian metric on N whose restriction
to Te(N) is 〈 , 〉. We assert that Q is affinely equivalent to F , or equivalently, the
Levi-Civita connection of Q coincides with the linear connection of F . Let K
be the holonomy group of the Berwald space. By Theorem 1.11, every parallel
displacement of F is a linear isometry. Thus K ⊂ L. On the other hand, for every
piecewise smooth curve c from e to g∈N, let Pc be the parallel displacement along c.
Then we have

F(Pc(X)) = F(X), ∀X ∈ Te(N).

Moreover, F(L∗
g(X)) = F(X). Thus F((L∗

g)
−1Pc(X)) = F(X), that is, (L∗

g)
−1Pc ∈ L.

Hence Pc keeps the Riemannian metric Q invariant. This proves the assertion. Next
we assert that Q is holonomy irreducible. For this we use again N. Wilson’s result
on the full group of isometries of (N,Q). If Q is holonomy reducible, then we have
a de Rham decomposition

N = N0 ×N1 ×·· ·×Ns,
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where N0 is a Euclidean space and N1, . . . ,Ns, are connected simply connected
holonomy irreducible Riemannian manifolds with dimension≥ 1. Then by J. Hano’s
theorem the identity component of the full group of (N,Q) can be written as the
product of the identity components of full groups of isometries of Ni (i= 0,1, . . . ,s).
From this one can easily deduce a contradiction to the assumption that N is
indecomposable. This proves our second assertion. Now (N,Q) is a holonomy
irreducible Riemannian manifold whose Levi-Civita connection coincides with the
linear connection of a non-Riemannian Berwald space. Then by Theorem 1.10,
(M,Q) must be an (irreducible) globally symmetric Riemannian manifold of rank
≥ 2. This implies that the sectional curvature of (N,Q) is either everywhere ≥ 0
(compact type) or everywhere ≤ 0 (noncompact type). This contradicts again the
result of J. Wolf [173] asserting that every left-invariant Riemannian metric on a
nonabelian nilpotent Lie group must have tangent planesΠ0, Π1, and Π−1 such that
Π0 has sectional curvature 0, Π1 has sectional curvature > 0, and Π−1 has sectional
curvature < 0, respectively. ��

Now we conclude this chapter with the following corollary.

Corollary 6.2. An admissible weakly symmetric Finsler metric on an H-type Lie
group is Berwaldian if and only if it is Riemannian. In particular, on any of the
H-type Lie groups in Theorem 6.15, there exist infinitely many left-invariant Finsler
metrics that are reversible, non-Berwaldian, and with vanishing S-curvature.

Proof. By Proposition 6.7, we need only prove that every H-type Lie group is
indecomposable. For this it suffices to prove that an H-type Lie algebra cannot be
written as the direct sum of two nontrivial ideals. Suppose conversely that an H-type
Lie algebra n has a decomposition

n= n1 ⊕n2,

where n1 and n2 are nontrivial ideals. Without loss of generality, we can assume that
n1 contains an element u that is not in the center z of n. Then it is easily seen (see
[95]) that the map ad(u) : n→ z is surjective. This means that z ⊂ n1. On the other
hand, we can also select a nonzero element v ∈ n2. Then v /∈ z. The above argument
then shows that we should also have z⊂ n2, which is a contradiction. ��



Chapter 7
Homogeneous Randers Spaces

In this chapter we study homogeneous Randers spaces. Randers spaces were first
introduced by Randers in 1941 [131], in his study of general relativity. Thus Randers
metrics have important applications in the theory of relativity. Moreover, They occur
naturally in other physical applications, especially in electron optics. In fact, as
explained by Ingarden, the Lagrangian of the relativistic electrons gives rise to a
Finsler metric of Randers type. Randers metrics are also used as unifying model
for gravitation and electromagnetism; see [10, 93]. In geometry, Randers metrics
provide a rich source of explicit examples of y-global Berwald spaces, particularly
those that are neither Riemannian nor locally Minkowskian. Since they are most
closely related to Riemannian metrics among the class of Finsler spaces, many
new geometric invariants are first computed for them; see for example [17] for the
computation of Laplacians of Randers metrics by Bao and Lackey.

In this chapter, we will present an exposition on recent results on homogeneous
Randers spaces. This is the most fruitful subject in the very general field of
homogeneous Finsler spaces, as can be expected from the definition of a Randers
space. We now give an outline of the contents of the individual sections. In Sect. 7.1,
we give a method to construct invariant Randers metrics on a coset space of a
Lie group, through a thorough study of invariant vector fields on homogeneous
manifolds. In Sect. 7.2, we use the formula of the Levi-Civita connection of an
invariant Riemannian metric on a coset space to deduce an explicit simple formula
for the S-curvature of invariant Randers metrics. In Sects. 7.3 and 7.4, we study
homogeneous Einstein–Randers metrics. The main results are a rigidity result that
every homogeneous Einstein–Randers metric with negative Ricci scalar must be
Riemannian, and a complete classification of all homogeneous Einstein–Randers
metrics on spheres. As a result, we find many new homogeneous Einstein metrics on
spheres. In Sect. 7.5, we prove that a homogeneous Randers metric is Ricci quadratic
if and only if it is Berwald. Finally, in Sects. 7.6 and 7.7, we study homogeneous
Randers metrics with positive flag curvature or negative flag curvature. This results
in an isometric classification of homogeneous Randers spaces with positive flag
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curvature and almost isotropic S-curvature, and a rigidity result asserting that a
homogeneous Randers metric with negative flag curvature and almost isotropic
S-curvature must be Riemannian.

There are some problems deserving to be studied in the future. The classification
of homogeneous Randers spaces of positive flag curvature, without the restriction
of S-curvature, would be an important achievement. It would also be interesting to
study other curvature tensors of homogeneous Randers spaces. For example, up to
now, we have not obtained an explicit formula of the Landsberg tensor and Berwald
tensor.

The standard references of this chapter are [48, 60, 64, 87–89, 147, 162, 168]; see
[67, 120, 136, 145, 161] for further information on related topics.

7.1 General Description

Let M be a smooth n-dimensional manifold. Recall that a Randers metric on M
consists of a Riemannian metric α =

√
ai jdxi ⊗ dx j on M and a 1-form β := bidxi.

Using α and β we define a function F on TM:

F(x,y) = α(x,y)+β (x,y), x ∈ M,y ∈ Tx(M),

where F is a Finsler structure if and only if

‖β‖ :=
√

bibi < 1, (7.1)

where

bi := ai jb j,

and (ai j) is the inverse of the matrix (ai j).
There is a global way to express a Randers metric on a Riemannian manifold,

which is convenient when we consider such structures on homogeneous Riemannian
manifolds. Let x ∈ M. Then the Riemannian metric induces an inner product in
the cotangent space T ∗

x (M) in a standard way. An easy computation shows that
〈dxi, dx j〉 = ai j. This inner product defines a linear isomorphism between T ∗

x (M)
and Tx(M). Through this inner product the 1-form β corresponds to a smooth vector
field U on M. Let

U = ui∂/∂xi.

Then we have

ui =
n

∑
j=1

ai jb j = bi,

and for every y ∈ Tx(M) we have

〈y,U〉=
〈

y,

(
n

∑
j=1

ai j(x)b j

)
∂

/
∂xi

〉
= bi(x)y

i = β (x,y).
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It is obvious that ‖β‖= ‖U‖. Thus (7.1) holds if and only if

‖U‖< 1.

Therefore we have the following result.

Lemma 7.1. The Randers metric on a manifold consisting of a Riemannian metric

α =
√

ai jdxi ⊗ dx j

together with a smooth vector field U with α(U |x)< 1,∀x ∈ M, is defined by

F(x,y) = α(y)+ 〈U,y〉,x ∈ M,y ∈ Tx(M),

where 〈 , 〉 is the inner product induced by the Riemannian metric α .

Recall that the Randers metric defined by Riemannian metric α and 1-form β is
of Berwald type if and only if β is parallel with respect to α . It is obvious that β is
parallel if and only if the corresponding vector field U is parallel with respect to α .
Therefore we have the following.

Lemma 7.2. Let F be a Randers metric on M defined by the Riemannian metric α
and the vector field U. Then (M,F) is a Berwald space if and only if U is parallel
with respect to α .

Now we consider the group of isometries of Randers metrics.

Proposition 7.1. Let (M,F) be a Randers space with F defined by the Riemannian
metric α and the vector field U. Then the group of isometries of (M,F) is a closed
subgroup of the group of isometries of the Riemannian manifold (M,α).

Proof. Let φ be an isometry of (M,F). Let p ∈ M and set q = φ(p). For every
y ∈ Tp(M) we have

F(p,y) = α(p,y)+ 〈U |p,y〉= F(q,dφp(y))

= α(q,dφp(y))+ 〈U |q,dφp(y)〉. (7.2)

Substituting y with −y in (7.2), we get

α(p,y)−〈U |p,y〉= α(q,dφp(y))−〈U |q,dφp(y)〉. (7.3)

Taking the sum of (7.2) and (7.3), we get

α(p,y) = α(q,dφp(y)), 〈U |p,y〉= 〈U |q,dφp(y)〉.

Thus φ is an isometry with respect to the underlying Riemannian metric α and for
every p ∈ M, we have dφp(U |p) =U |φ(p). Therefore I(M,F) is a closed subgroup
of I(M,α). ��



176 7 Homogeneous Randers Spaces

Now we turn to homogeneous Randers spaces. A Randers space (M,F) defined
by a Riemannian metric α and a 1-form β with ‖β‖< 1, or equivalently, a smooth
vector field U with ‖U‖ < 1, is called homogeneous if its full group of isometries
I(M,F) acts transitively on M. By Proposition 7.1, if (M,F) is a homogeneous
Randers space, then the Riemannian manifold (M,α) is necessarily homogeneous.
Since the isotropy subgroup H of I(M,F) at x is compact, M can be written as
a coset space M = I(M,F)/H with compact H. Then I(M,F)/H is a reductive
homogeneous manifold. So we just need to consider invariant Randers metrics on
reductive homogeneous manifolds.

Let G/H be a reductive homogeneous manifold. Let g=Lie G, h=Lie H. Fix a
reductive decomposition of g:

g= h+m (direct sum of subspace), (7.4)

where m is a subspace of g with

Ad(h)m⊂m, ∀h ∈ H.

By the proof of Proposition 7.1, to construct invariant Randers metrics on G/H,
we first need to find G-invariant vector fields on G/H. The following proposition
gives a complete description of invariant vector fields.

Proposition 7.2. There exists a bijection between the set of invariant vector fields
on G/H and the subspace

V = {u ∈m | Ad(h)u = u,∀h ∈ H}.

Proof. Let π : G → G/H be the natural projection, and Lg and Rg the left and right
translations of G by g, respectively. The differential dπ of the map π maps g onto
the tangent space To(G/H) of G/H at the origin o = {H}. The kernel of dπ is h.
The translation τ(g) : xH → gxH satisfies

π ◦Lg = τ(g)◦π .

Moreover, for h ∈ H, we have π ◦Rh = π and Ad(g)u = dRg−1 ◦ dLg(u). Therefore

dπ ◦Ad(h)u = dτ(h)o ◦ dπ(u), u ∈ g.

Thus under the isomorphism g/h � To(G/H) the linear transformation Ad(h) of
g/h corresponds to the linear transformation dτ(h)o of To(G/H).

The decomposition g= h+m gives a natural isomorphism

g/h�m.

Under this isomorphism the linear transformation dτ(h)o of To(G/H) corresponds
to the linear transformation Ad(h) of m.
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Now given u ∈V , let uo be its image under the isomorphism m� To(G/H). For
g ∈ G, define a tangent vector U at gH by

UgH = d(τ(g))o(uo).

If g1H = gH, then g−1g1 ∈H. Since Ad(h)u= u,∀h∈H, the above argument shows
that dτ(g−1g1)ouo = uo. Thus dτ(g)ouo = dτ(g1)ouo. Therefore U is a well-defined
vector field on G/H and it is obviously invariant under the action of G. That the
correspondence u →U is a bijection is easy to verify. ��
Remark 7.1. In the following, we usually denote the invariant vector field generated
by u in Proposition 7.2 by ũ.

By Proposition 7.1, the underlying Riemannian metric of an invariant Randers
metric on G/H must be invariant. Therefore we first fix an invariant Riemannian
metric α on G/H and then consider the invariant Randers metrics on G/H with the
underlying Riemannian metric α .

The invariant Riemannian metric α induces an inner product 〈 , 〉 on g such that

〈Ad(h)w,Ad(h)v〉= 〈w,v〉, w,v ∈ g, h ∈ H. (7.5)

The subspace m in (7.4) can be taken to be the orthogonal complement of h with
respect to this inner product.

Theorem 7.1. Let α be an invariant Riemannian metric on G/H and m the
orthogonal complement of h in g with respect to the inner product induced on g
by α . Then there exists a bijection between the set of invariant Randers metrics on
G/H with the underlying Riemannian metric α and the set

V1 = {u ∈m | Ad(h)u = u,〈u,u〉< 1,∀h ∈ H}.

Proof. Let u ∈ V1. By Proposition 7.2, u corresponds to an invariant vector field ũ
on G/H. Since ũ is invariant under the action of G, we have

α(gH)(ũ) = α(H)(ũ) = 〈u,u〉< 1.

By Lemma 7.1 we can define a Randers metric Fu on G/H by

Fu(gH,y) = α(gH)(ũ)+ 〈ũ,y〉, y ∈ TgH(G/H).

Then Fu is obviously invariant under the action of G. It is easily seen that the
correspondence u → Fu is a bijection. ��

Recall that a Randers metric can also be represented by the navigation data.
From (1.11) it follows that if F is a Randers metric on a coset space G/H with
navigation data (h,W ), then F is invariant under G if and only if both h and W are
invariant under G.
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7.2 S-Curvature

In this section we will deduce an explicit formula for the S-curvature of a
homogeneous Randers space. In contrast to general formulas in Finsler geometry,
which inevitably involve indices with respect to local coordinate systems, we can
express the S-curvature of a homogeneous Randers space in terms of the Lie algebra
structure and the metric. Such an approach is welcome in Finsler geometry.

We first need to deduce some results concerning the Levi-Civita connection of a
homogeneous Riemannian manifold. Let (G/H,α) be a homogeneous Riemannian
manifold. Then G/H is a reductive homogeneous manifold, i.e., the Lie algebra of
G has a decomposition of the Lie algebra

g= h+m (7.6)

such that Ad (h)(m) ⊂ m, ∀h ∈ H. We can identify m with the tangent space
To(G/H). Let 〈 , 〉 be the corresponding inner product on m.

In the literature, there are several versions of the formula for the connection for
Killing vector fields. We will use the formulas in Theorem 2.24. Given v ∈ g, we
can define a one-parameter transformation group ϕt , t ∈ R, of G/H by

φt(gH) = (exp(tv)g)H, g ∈ G.

Then ϕt generates a vector field on G/H. By the left-invariance of the metric, it is
a Killing vector field (this is called the fundamental vector field generated by v in
[102]). We denote this vector field by v̂ (note that this is different from the notation
ũ in Sect. 7.1). Then for every v1,v2,w ∈m, we have

〈∇v̂1 v̂2|o,w〉= 1
2
(−〈[v1,v2]m,w〉+ 〈[w,v1]m,v2〉+ 〈[w,v2]m,v1〉), (7.7)

where o = H is the origin of the coset space and [v1,v2]m denotes the projection of
[v1,v2] to m corresponding to the decomposition (7.6) (caution: for v1,v2 ∈ m, the
Lie bracket [v1,v2]m is exactly the negative of the value of the vector field [v̂1, v̂2] at
the origin).

To apply the formula (7.7) to our study, we need to deduce some formula for the
connection in a local coordinate system. Let u1,u2, . . . ,un be an orthonormal basis
of m with respect to 〈 , 〉. Then there exists a neighborhood N of o in G/H such that
the map

(expx1u1 expx2u2 · · ·expxnun)H �→ (x1,x2, . . . ,xn) (7.8)

defines a local coordinate system on N. Now we compute the coordinate vector
fields ∂

∂xi . Let gH = (x1,x2, . . . ,xn) ∈U . Then
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∂
∂xi |gH =

d
dt
(expx1u1 · · ·expxi−1ui−1 exp(t + xi)ui expxi+1ui+1 · · ·expxnun ·H)|t=0

=
d
dt
(expx1u1 · · ·expxi−1ui−1 exptui exp−xi−1ui−1 · · ·exp−x1u1 ·gH)|t=0

=
d
dt

expt(ex1adu1 · · ·exi−1adui−1(ui)) ·gH|t=0.

Set

vi = ex1adu1 · · ·exi−1adui−1(ui).

We then have
∂
∂xi |gH = v̂i|gH . (7.9)

Next we compute the Levi-Civita connection of α under the above coordinate
system on N. Let un+1, . . . ,um be a basis of h. Then we can write

vi =
m

∑
j=1

f j
i u j,

where f j
i , j = 1,2, . . . ,n, are functions of x1, . . . ,xi−1. Hence

∂
∂xi =

m

∑
j=1

f j
i û j.

Therefore we have

∇ ∂
∂xi

∂
∂x j = ∇ ∂

∂xi

( m

∑
l=1

f l
j ûl

)
=

m

∑
l=1

(
∂ f l

j

∂xi

)
ûl +

m

∑
l=1

f l
j∇ ∂

∂xi
ûl

=
m

∑
l=1

(
∂ f l

j

∂xi

)
ûl +

m

∑
k,l=1

f k
i f l

j∇ûk ûl .

Since by the symmetry of the Levi-Civita connection we have

∇ ∂
∂xi

∂
∂x j −∇ ∂

∂x j

∂
∂xi =

[
∂
∂xi ,

∂
∂x j

]
= 0,

it suffices to compute ∇ ∂
∂xi

∂
∂x j for i ≥ j. Since f l

j are functions of x1, . . . ,x j−1, we

have
∂ f l

j

∂xi = 0, for i ≥ j. Thus

∇ ∂
∂xi

∂
∂x j =

m

∑
k,l=1

f k
i f l

j∇ûk ûl , i ≥ j.
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By the definition of f j
i we easily see that f j

i (0,0, . . . ,0) = δi j. Thus

(
∇ ∂

∂xi

∂
∂x j

)∣∣∣
o
= (∇ûi û j)

∣∣∣
o
, i ≥ j.

Let Γ k
i j be the Christoffel symbols of the connection under the coordinate

system, i.e.,

∇ ∂
∂xi

∂
∂x j = Γ k

i j
∂
∂xk .

Then we have

Γ k
i j (o)

∂
∂xk

∣∣∣
o
= (∇ûi û j)

∣∣∣
o
, i ≥ j.

By (7.9) we see that ∂
∂xk

∣∣
o = v̂k

∣∣
o = uk. Thus,

Γ l
i j(o) = 〈Γ k

i j (o)uk,ul〉= 〈∇ûi û j, ûl〉|o, i ≥ j. (7.10)

By (7.7), we have

Γ l
i j(o) =

1
2
(−〈[ui,u j]m,ul〉+ 〈[ul,ui]m,u j〉+ 〈[ul,u j]m,ui〉), i ≥ j. (7.11)

Sometimes it is convenient to express formula (7.11) using the structure constants
of the Lie algebra. For 1 ≤ i, j ≤ m, let

[ui,u j] =
m

∑
k=1

Ck
i juk.

The constants Ck
i j are the structure constants of the Lie algebra g with respect to the

basis u1, . . . ,un,un+1, . . . ,um. Using the structure constants, we can rewrite (7.11) as

Γ l
i j = Γ l

ji =
1
2
(−Cl

i j +C j
li +Ci

l j), i ≥ j. (7.12)

Now we give some applications of formulas (7.7)–(7.11) to Randers spaces.
By Theorem 7.1, there is a one-to-one correspondence between the invariant
Randers metrics on G/H with the underlying Riemannian metric α and the
G-invariant vector fields on G/H with length <1. Furthermore, the G-invariant
vector fields on G/H are in one-to-one correspondence with the set

V = {u ∈m | Ad(h)u = u, ∀h ∈ H}.
Hence the invariant Randers metrics are in one-to-one correspondence with the set

V1 = {u ∈V | 〈u,u〉< 1}.
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Let u be a nonzero element in V1. Select an orthonormal basis u1,u2, . . . ,un of
m such that un = u/|u| and define the local coordinate system as in (7.8). Since the
vector field ũ generated by u is invariant under the action of G, we have

ũ|gH = dτg(u),

where τg is the diffeomorphism of G/H defined by g1H �→ gg1H. Thus

ũ|gH =
d
dt
(τg(exp(tu)H))|t=0

=
d
dt
(expx1u1 expx2u2 · · ·exp(xn + ct)un)H|t=0 = c

∂
∂xn

∣∣∣
gH
,

where c = |u|< 1.
Our first application is the following.

Proposition 7.3. The Randers metric F = α +β , generated by α and u ∈ V1, is a
Berwald metric if and only if

〈[u,v]m,v〉= 0, 〈[v,w]m,u〉= 0, ∀v,w ∈m.

Proof. By Lemma 7.2, F is of Berwald type if and only if the invariant vector field ũ
is parallel with respect to α , i.e., Γ l

ni =Γ l
in = 0, for i, l = 1,2, . . . ,n. By the invariance

of ũ, it suffices to check at the origin o. By (7.11), this is equivalent to

−〈[un,ui]m,ul〉+ 〈[ul,ui]m,un〉+ 〈[ul,un]m,ui〉= 0, i, l = 1,2, . . . ,n. (7.13)

Setting i = l in (7.13), we get

〈[un,ui]m,ui〉= 0, i = 1,2, . . . ,n. (7.14)

Now it is easily seen that (7.14) is equivalent to

〈[un,ui]m,ul〉+ 〈[un,ul ]m,ui〉= 0, i, l = 1,2, . . . ,n. (7.15)

Combining (7.13), (7.14), and (7.15), we complete the proof. ��
Now we are ready to compute the S-curvature of F . Since (G/H,F) is homoge-

neous, we just need to compute at the origin o = H. Let (N,(x1,x2, . . . ,xn)) be the
local coordinate system defined in (7.8). Recall formula (1.10) for the S-curvature
in local coordinate systems. If the Finsler metric is of Randers type, it is easy to
deduce that (see [44])

S = (n+ 1)
{e00

2F
− (s0 +ρ0)

}
,
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where e00,s0, and ρ0 are defined in the following way:

I. e00 = ei jyiy j, where ei j = ri j + bis j + b jsi, ri j =
1
2 (bi; j + b j;i) and the bi are

defined by β = bidxi. Furthermore, si = b js j
i, and si

j is defined by si
j = aihsh j,

where si j =
1
2 (

∂bi
∂x j − ∂b j

∂xi ) and (akl) is the inverse matrix of (ai j);
II. s0 = siyi;

III. ρ0 = ρxi yi, where ρ = ln
√

1−‖β‖ and ‖β‖ is the length of the form β with
respect to α .

Now we compute the above quantities for a homogeneous Randers space defined
by a Riemannian metric α in G/H and u ∈ m as above. The quantities of type (III)
are easy. In fact, ρxi = 0 for every i, since β , as an invariant form on G/H, has
constant length. Therefore ρ0 = 0. Next we compute e00 and s0.

First, since

bi = β
(
∂
∂xi

)
=

〈
ũ,

∂
∂xi

〉
= c

〈
∂
∂xn ,

∂
∂xi

〉
,

we have

∂bi

∂x j = c
∂
∂x j

〈
∂
∂xn ,

∂
∂xi

〉
= c

(〈
∇ ∂

∂x j

∂
∂xn ,

∂
∂xi

〉
+

〈
∂
∂xn ,∇ ∂

∂x j

∂
∂xi

〉)
.

Hence at the origin we have (here we have used the symmetry of the connection:
∇ ∂

∂x j

∂
∂xi −∇ ∂

∂xi

∂
∂x j = [ ∂

∂x j ,
∂
∂xi ] = 0)

si j(o) =
1
2

c

(〈
∇ ∂

∂xn

∂
∂x j ,

∂
∂xi

〉
−
〈
∇ ∂

∂xn

∂
∂xi ,

∂
∂x j

〉)∣∣∣
o
.

By (7.7)–(7.11), we have

si j(o) =
1
2

c〈[ui,u j]m,un〉. (7.16)

Since at the origin (ai j) = In, we have

si
j(o) = aik(o)sk j(o) =

n

∑
k=1

δiksk j(o) = si j(o),

therefore

si(o) = bl(o)s
l
i(o) = csn

i(o) = csni(o).

Thus for y = yiui ∈m, we have

s0(y) = ylsl(o) = cylsnl(o) =
1
2

c2yl〈[un,ul ]m,un〉

=
1
2
〈[cun,y

lul ]m,cun〉= 1
2
〈[u,y]m,u〉. (7.17)
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Next we compute ri j. First suppose i ≥ j. In this case we have

ri j(o) =
1
2
(bi; j + b j;i)

∣∣∣
o
=

1
2

(
∂bi

∂x j − blΓ l
ji +

∂b j

∂xi − blΓ l
i j

)∣∣∣∣
o

=
1
2

(
∂bi

∂x j +
∂b j

∂xi

)∣∣∣∣
o
− cΓ n

i j (o).

By (7.15) and (7.7)–(7.11) we have

1
2

(
∂bi

∂x j +
∂b j

∂xi

)∣∣∣
o
=−1

2
c〈[ui,u j]m,un〉, i ≥ j. (7.18)

Combining (7.11) with (7.18) we get

ri j(o) =−1
2

c(〈[un,ui]m,u j〉+ 〈[un,u j]m,ui〉), i ≥ j. (7.19)

Note that ri j is symmetric with respect to the indices i, j, and the right-hand side of
(7.19) is also symmetric with respect to i, j. We conclude that (7.19) is also valid
for i ≤ j. On the other hand, a direct computation shows that

bis j + b jsi|o =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, for 0 ≤ i, j ≤ n− 1,
1
2

c3〈[un,ui]m,un〉, for 1 ≤ i ≤ n− 1, j = n,

1
2

c3〈[un,u j]m,un〉, for i = n,1 ≤ j ≤ n− 1,

0, for i = j = n.

Consequently

e00(y) = ri j(o)y
iy j +(bis j + b jsi)|oyiy j

= −1
2

c(〈[un,ui]m,u j〉+ 〈[un,u j]m,ui〉)yiy j + c3〈[un,u j]m,un〉y jyn

= −1
2
(〈[cun,y

iui]m,y
ju j〉+ 〈[cun,y

ju j]m,y
iui〉)+ 〈[cun,u jy

j]m,cun〉cyn

= −〈[u,y]m,y〉+ 〈[u,y]m,u〉〈y,u〉
= 〈[u,y]m,〈y,u〉u− y〉,

where we have used the skew-symmetry of the Lie brackets, [un,un] = 0, and the
facts that cun = u, yn = 〈 and un〉. Finally, we obtain the formula for the S-curvature:

S(o,y) = (n+ 1)

{
e00(y)
2F(y)

− (so(y)−ρ0(y)

}

=
n+ 1

2

{ 〈[u,y]m,〈y,u〉u− y〉
F(y)

−〈[u,y]m,u〉
}
.

We summarize our computation as the following theorem.
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Theorem 7.2. Let G/H be a homogeneous manifold and suppose the Lie algebra
g of G has a reductive decomposition g = h+m with Ad(h)m ⊂ m. Let F be an
invariant Randers metric on G/H defined by an invariant Riemannian metric α and
an H-invariant vector u in m. Then the S-curvature of F is

S(o,y) =
n+ 1

2

{ 〈[u,y]m,〈y,u〉u− y〉
F(y)

−〈[u,y]m,u〉
}
, y ∈m,

where o = H is the origin of G/H, 〈 , 〉 is the inner product induced by α , and we
have identified the tangent space To(G/H) with m.

From the above formula, we can see that S(u) = S(−u) = 0. Therefore, for a
homogeneous Randers space, the S-curvature has at least two (nonzero) zero points
at any tangent space of the manifold.

Next we give some applications of Theorem 7.2. We begin with the following
theorem.

Theorem 7.3. Let (G/H,F) be a homogeneous Randers space where F is defined
by a G-invariant Riemannian metric α and 0 �= u ∈ V1 as in Theorem 7.2. Then
(M,F) has almost isotropic S-curvature if and only if it has vanishing S-curvature.

Proof. We need prove only the “only if” part. Suppose that F has almost isotropic
S-curvature. Then there exist a closed 1-formη on G/H and a function c(x) on G/H
such that

S(x,y) = (n+ 1)(c(x)F(y)+η(y)), ∀y ∈ T (G/H).

In particular, at the origin x = o we have

n+ 1
2

{ 〈[u,y]m,〈y,u〉u− y〉
F(y)

−〈[u,y]m,u〉
}
= (n+ 1)(c(o)F(y)+η(y)), (7.20)

for every y ∈m. Considering the values at y = u and y =−u we get

c(o)F(u)+η(u) = 0, c(o)F(−u)−η(u) = 0.

Thus c(o)(F(u)+F(−u)) = 0. Therefore we have c(o) = 0. Hence{ 〈[u,y]m,〈y,u〉u− y〉
F(y)

−〈[u,y]m,u〉
}
= 2η(y). (7.21)

Writing y = yiui, where ui is the orthonormal basis of m as above, we can rewrite
(7.21) as

(2η(y)+ 〈[u,y]m,u〉)
√

n

∑
i=1

(yi)2

= 〈[u,y]m,〈y,u〉u− y〉− (2η(y)+ 〈[u,y]m,u〉)×〈u,y〉.
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Note that the right-hand side of the above equation is a polynomial in yi. This can
hold only when

2η(y)+ 〈[u,y]m,u〉= 0.

Therefore we have

〈[u,y]m,〈y,u〉u− y〉= 0, ∀y ∈m. (7.22)

Now the subspace m has a decomposition

m= L(u)+L(u)⊥,

where L(u) is the span of u. By (7.22), for every y2 ∈ L(u)⊥ we have

〈[u,y2],y2〉= 0.

Hence for every y = y1 + y2, y1 ∈ L(u), y2 ∈ L(u)⊥ we have

0 = 〈[u,y]m,〈y,u〉u− y〉= 〈[u,y2]m,〈y1,u〉u− y1〉

= 〈[u,y2]m,〈y1,u〉u− 〈y1,u〉
〈u,u〉 u〉= 〈y1,u〉×

(
1− 1

〈u,u〉
)
×〈[u,y2]m,u〉.

Since 〈u,u〉< 1, the above equality implies that

〈[u,y2]m,u〉= 0, ∀y2 ∈ L(u)⊥,

or equivalently

〈[u,y]m,u〉= 0, ∀y ∈m. (7.23)

Combining (7.22) and (7.23), we conclude that the S-curvature of F vanishes at o.
Since (G/H,F) is homogeneous, the S-curvature vanishes everywhere. ��

For y ∈m, we define a linear transformation ad m(y) as

adm(y)(v) = [y,v]m.

The proof of Theorem 7.3 has the following corollary.

Corollary 7.1. The homogeneous Randers space in Theorem 7.2 has almost
isotropic S-curvature if and only if adm(u) is skew-symmetric with respect to
the inner product 〈 , 〉. In particular, it has vanishing S-curvature if and only if
adm(u) is skew-symmetric with respect to the inner product 〈 , 〉.
Proof. If adm(u) is skew-symmetric with respect to 〈 , 〉, then for every y ∈ m,
we have

〈[u,y]m,y〉= 0,
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and

〈[u,y]m,u〉=−〈y, [u,u]m〉= 0.

By Theorem 7.2, F has vanishing S-curvature. On the other hand, if F has almost
isotropic S-curvature, then (7.22) and (7.23) hold. Thus

〈[u,y]m,y〉= 0,

for every y ∈m. Hence adm(u) is skew-symmetric with respect to 〈 , 〉. ��
As another application of the above formulas, we have the following result.

Proposition 7.4. Let (G/H,F) be a homogeneous Randers space defined by α and
u �= 0 as in Theorem 7.2. Then F is of Douglas type if and only if

〈[v1,v2]m,u〉= 0, ∀v1,v2 ∈m.

Furthermore, if F is of Douglas type and has almost isotropic S-curvature, then F
is of Berwald type.

Proof. According to [16], F is of Douglas type if and only if the corresponding
1-form β is closed, i.e., dβ = 0. Since β is G-invariant, it suffices to prove that
dβ |o = 0. Using the local coordinate of (7.8), we see that this is equivalent to

si j(0) =
1
2

(
∂bi

∂x j −
∂b j

∂xi

)
= 0, ∀i, j.

By (7.16), this is equivalent to

1
2

c〈[ui,u j]m,un〉= 0, ∀i, j,

that is,

〈[v1,v2]m,u〉= 0, ∀v1,v2 ∈m.

This proves the first assertion. If F has almost isotropic S-curvature, then by
Corollary 7.1, we have

〈[u,v]m,v〉= 0.

By Proposition 7.3, if F is in addition of Douglas type, then F must be of Berwald
type. ��

Finally we consider the special case of left-invariant Randers metrics on a Lie
group. Let F =α+β be a left-invariant Randers metric on a connected Lie group G.
Then for every g ∈ G and y ∈ g = Te(G), we have F(dLg(y)) = F(y), where Lg is
the left translation defined by g. Hence

α(dLg(y))+β (dLg(y)) = α(y)+β (y). (7.24)
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Substituting y with −y in (7.24) we get

α(dLg(y))−β (dLg(y)) = α(y)−β (y). (7.25)

Combining (7.24) and (7.25) we have

α(dLg(y)) = α(y), β (dLg(y)) = β (y).

This means that both the Riemannian metric α and the 1-form β are invariant under
the left translations of G. The left-invariant Riemannian metric corresponds to an
inner product 〈 , 〉 on g and the 1-from β corresponds to a left-invariant vector
field on G, i.e., an element of g, with length less than 1. On the other hand, every
inner product on g defines a left-invariant Riemannian metric on G, and this metric
together with any element of g of length less than 1 defines a left-invariant Randers
metric on g. By Theorem 7.2 we have the following.

Proposition 7.5. Let G be an n-dimensional connected Lie group with Lie algebra
g. Let 〈 , 〉 be an inner product on g and u ∈ g with 〈u,u〉< 1. Then the left-invariant
Randers metric F on G defined by 〈 , 〉 and u has S-curvature

S(e,y) =
n+ 1

2

{ 〈[u,y],〈y,u〉u− y〉
F(y)

−〈[u,y],u〉
}
.

Here F has almost isotropic S-curvature if and only if F has vanishing S-curvature,
if and only if the linear endomorphism ad(u) of g is skew-symmetric with respect to
the inner product 〈 , 〉.

As an application, we classify left-invariant Randers metrics with almost
isotropic S-curvature on a connected nilpotent Lie group.

Proposition 7.6. Let G be a connected nilpotent Lie group with Lie algebra g and
〈 , 〉 an inner product on g. Suppose u is an element in g with 〈u,u〉 < 1. Then
the Randers metric constructed by 〈 , 〉 and u has almost isotropic S-curvature
(and hence vanishing S-curvature) if and only if u ∈ C(g), where C(g) denotes the
center of g.

Proof. If u lies in the center of g, then ad(u) = 0. Hence it is skew-symmetric
with respect to 〈 , 〉. By Proposition 7.5, the corresponding Randers metric F has
vanishing S-curvature. On the other hand, if F has vanishing S-curvature, then
ad(u) is skew-symmetric with respect to 〈 , 〉. Thus ad(u) is a (complex) semisimple
endomorphism of g. On the other hand, since the Lie algebra g is nilpotent, Engel’s
theorem implies that ad(u) is a nilpotent endomorphism of g. This forces ad(u) = 0.
Hence u ∈C(g). ��

Since a nonzero nilpotent Lie algebra has nonzero center, Proposition 7.6 implies
that for every inner product on the Lie algebra g, there exists u in g such that F has
vanishing S-curvature. However, such a Randers metric may not be of Berwald type,
as indicated by the next examples.
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Example 7.1. A real Lie algebra n is called two-step nilpotent if [n,n] �= 0 and
[[n,n],n] = 0. A two-step nilpotent Lie algebra is called nonsingular if for every
x ∈ n\z(n), where z(n) denotes the center of n, the linear map ad(x) : n → z(n)
defined by ad(x)(y) = [x,y] is surjective. Suppose N is a Lie group with Lie algebra
n that is nonsingular two-step nilpotent. Let 〈 , 〉 be an inner product on n and u ∈ n
such that 〈u,u〉 < 1. According to Proposition 7.6, the corresponding left-invariant
Randers metric F has almost isotropic (hence vanishing) S-curvature if and only if
u∈ z(n). Since n is nonsingular, we have [n,n] = z(n). Now suppose F is in addition
of Berwald type. Then by Proposition 7.3, we have u ⊥ [n,n] = z(n). Hence u = 0.
Thus on a nonsingular two-step nilpotent Lie group, there exists no left-invariant
Randers metric that is non-Riemannian and of Berwald type. But there always exist
non-Riemannian ones with vanishing S-curvature.

The most important nonsingular two-step nilpotent Lie algebras are the Heisen-
berg Lie algebras. Let n be a real vector space with basis x1, . . . ,xn, y1, . . . ,yn, z,
n ≥ 1. Define brackets as follows:

[xi,x j] = [yi,y j] = 0, [xi,y j] = δi jz, [xi,z] = [y j,z] = 0.

Then it is easily seen that n is a two-step nilpotent Lie algebra with center spanned
by z. This Lie algebra is called the Heisenberg Lie algebra. It is also easily seen that
n is nonsingular. Hence on a Lie group with Heisenberg Lie algebra (i.e., Heiserberg
Lie group) there exists no non-Riemannian left-invariant Randers metric of Berwald
type. However, given any inner product 〈 , 〉 on n, if we set

u = c
z√〈z,z〉 , |c|< 1,

then the corresponding Randers metric has vanishing S-curvature.

Example 7.2. Let G be a connected compact Lie group with Lie algebra g.
Fix an Ad(G)-invariant inner product 〈 , 〉 on g. The corresponding left-invariant
Riemannian metric Q is then bi-invariant under the action of G. Hence (G,Q) is
a globally symmetric Riemannian space. Since 〈 , 〉 is Ad(G)-invariant, for every
u ∈ g, ad(u) is skew-symmetric with respect to 〈 , 〉. Therefore, for every u ∈ g
with 〈u,u〉 < 1, the left-invariant Randers metric F constructed by 〈 , 〉 and u
has vanishing S-curvature. Therefore F is of Berwald type if and only if u ⊥
[g,g]. In particular, if G is semisimple, then no such Randers metric can be non-
Riemannian and of Berwald type. However, if G is not semisimple, then g �= [g,g].
For every u ∈ [g,g]⊥, the corresponding Randers metric must be of Berwald type.
This method provides a convenient way to construct globally defined Berwald
spaces that are neither Riemannian nor locally Minkowskian (see [16] for details).
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7.3 Homogeneous Einstein–Randers Spaces

We now turn to the study of homogeneous Einstein–Randers spaces. Recall that a
Finsler space (M,F) is called Einstein if its Ricci scalar is a scalar function K(x) on
M. In the case that (M,F) is homogeneous, it is obvious that the function K(x) is
necessarily constant.

The main result of this section is the following:

Theorem 7.4. A homogeneous Einstein–Randers space with negative Ricci curva-
ture is Riemannian.

Note that Bao and Robles have proved in [19] that a connected compact Einstein–
Randers space with negative Ricci scalar must be Riemannian. However, the above
theorem does not overlap this result, since by Theorem 2.27, a homogeneous
Einstein–Riemannian manifold with negative Ricci curvature must be noncompact,
and by Theorem 7.5 below, the underlying homogeneous Riemannian manifold
(which is Einstein) of a homogeneous Einstein–Randers space must have negative
Ricci curvature.

The remainder of this section is devoted to proving Theorem 7.4. Suppose G/H
is a reductive homogeneous manifold with an invariant Randers metric F with
navigation data (h,W ). As before, there is a decomposition of the Lie algebra:

g= h+m (direct sum of subspaces),

where g, resp. h, is the Lie algebra of G, resp. H, and m is a subspace of g
satisfying Ad(h)(m) ⊂ m. We identify the tangent space TeH(G/H) of G/H at the
origin eH with m, through the map X �→ d

dt (exp(tX)H)|t=0, X ∈ m. Under this
identification, the isotropy representation of H at TeH(G/H) corresponds to the
adjoint representation of H at m. Then W corresponds to an H-fixed vector w in
m with h(w,w)< 1.

Now we study the Killing vector fields of the invariant Riemannain metric on
G/H. If z ∈ m is an H-fixed vector in m and Z is the corresponding G-invariant
vector field, then Z is a Killing vector field if and only if the one-parameter
transformation group

ϕt : G/H → G/H, gH �→ gexp(tz)H, t ∈ R,

consists of isometries of h. In particular, for every z1,z2 ∈m, we have

h(z1,z2) = h(dϕt(z1),dϕt(z2)). (7.26)

Now we compute d(ϕt)(zi). Since zi is the initial vector of the curve (exp(szi))H and

ϕt(exp(szi)H) = exp(szi)exp(tX)H,
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we have

d(ϕt)(zi) =
d
ds

(exp(szi)exp(tX)H)|s=0.

Now

exp(sZi)exp(tX)H = exp(tX)exp(−tX)exp(szi)exp(tX)H. (7.27)

Note that

exp(−tz)exp(szi)exp(tz) = exp(Ad(exp(tz))(szi)) = exp(sead(tz)(zi)).

Taking the derivative with respect to s in (7.27), we get

d(ϕt)(zi) =
d
ds

[
exp(tz)exp(sead(tz)(zi))H

]
|s=0 = dLexptz

[
ead(tz)(zi)

]
m
, (7.28)

where Lexp(tz) is the transformation of G/H defined by gH → exp(tz)gH. Since h is
G-invariant, Lexp(tz) are all isometries. Therefore (7.26) and (7.28) imply that

h(z1,z2) = h([ead(tz)(z1))]m, [e
ad(tz)(z2))]m), ∀t ∈ R.

Taking the derivative with respect to t and considering the value at t = 0, we get

h([z,z1]m,z2)+ h(z1, [z,z2]m) = 0, ∀z1,z2 ∈m. (7.29)

Conversely, if (7.29) holds, then a backward argument implies that Z is a Killing
vector field of h.

Summarizing, we have proved the following result.

Proposition 7.7. Suppose G is a connected Lie group and H is a closed subgroup
such that G/H is a reductive homogeneous space with a reductive decomposition
g = h+m. Let h be a G-invariant Riemannian metric on G/H and suppose z ∈ m
is an H-fixed vector. Then the corresponding invariant vector field Z on G/H is a
Killing vector field with respect to h if and only if z satisfies (7.29).

Combining Theorem 1.16 with Proposition 7.7, we get a characterization of
homogeneous Einstein–Randers spaces.

Theorem 7.5. Let G be a connected Lie group and H a closed subgroup of G such
that G/H is a reductive homogeneous space with a reductive decomposition g= h+
m. Suppose h is a G-invariant Riemannian metric on G/H and w ∈m is an H-fixed
vector with h(w,w)< 1. Let W be the corresponding vector field on G/H. Then the
Randers metric F with navigation data (h,W ) is Einstein with Ricci constant K if
and only if h is Einstein with Ricci constant K and w satisfies (7.29).

Proof. The “if” part is obvious. Now we prove the “only if” part. Assume that F is
Einstein with Ricci constant K. If K ≥ 0, then by Theorem 1.16, we see that h must
be Einstein with Ricci constant K and the constant σ there has to be 0. Hence W
must be a Killing vector field. If K < 0, then we have the following two cases:
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1. h is Ricci flat. If W is not a Killing vector field, then σ �= 0. Hence the
Ricci constant of F is − 1

16σ
2 < 0. Now Theorem 2.26 asserts that a Ricci-

flat homogeneous Riemannian manifold must be locally Euclidean. Thus h is of
constant sectional curvature 0. But then by Theorem 1.15, F must be of constant
flag curvature − 1

16σ
2. Since a homogeneous Finsler space must be complete

and its Cartan tensor is invariant, the norm of the tensors A and L must be
bounded. Then the Akbar–Zadeh theorem (Theorem 1.14) implies that F must be
Riemannian. Hence W = 0. This is a contradiction. Hence W must be a Killing
vector field.

2. h is not Ricci flat. Then Theorem 1.16 ensures that σ = 0. Hence W must be a
Killing vector field.

This completes the proof of the theorem. ��
Now we can give the proof of the main result of this section.

Proof of Theorem 7.4. Assume that (M,F) is a homogeneous Einstein–Randers
metric with negative Ricci curvature K. Then we can write M as a coset space G/H
of a Lie group G with G/H reductive. Let g,h, m, h, W , w be as above. Then by
Theorem 1.16, h is Einstein with Ricci constant K and w satisfies (7.29). Now we
use the formula for Ricci curvature of homogeneous Riemannian manifolds. Let
x1,x2, . . . ,xn be an orthonormal basis of m with respect to h and suppose U is the
bilinear map from m×m to m defined by

2h(U(z1,z2),z3) = h([z3,z1]m,z2)+ h(z1, [z3,z2]m), z1,z2,z3 ∈m.

Set

z =
n

∑
i=1

U(zi,zi).

Then by Corollary 2.1, the Ricci curvature of h can be expressed as

r(y,y) = −1
2

n

∑
i=1

|[y,xi]m|2 − 1
2

n

∑
i=1

h([y, [y,xi]m]m,xi)

−
n

∑
i=1

h([y, [y,xi]h]m,xi)+
1
4

n

∑
i, j=1

h([xi,x j]m,y)
2

−h([z,y]m,y), y ∈m.

Now we consider the value at w. By (7.29) we have

h([w, [w,xi]m]m,xi) =−h([w,xi]m, [w,xi]m) =−|[w,xi]m|2.
Therefore the first term and the second term of r(w,w) sum to 0. Since w commutes
with the subalgebra h, the third term is equal to 0. Now by (7.29),

h([z,w]m,w) =−h(z, [w,w]m) = 0.
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Therefore we have

r(w,w) =
1
4

n

∑
i, j=1

h([xi,x j ]m,w)
2.

The Einstein condition thus implies that

1
4

n

∑
i, j=1

h([xi,x j]m,w)
2 = Kh(w,w).

Therefore, by the assumption K < 0, we have w = 0. Thus F must be Riemannian
and the theorem is proved. ��

7.4 Homogeneous Einstein–Randers Metrics on Spheres

In this section we will describe homogeneous Einstein–Randers metrics on spheres
and give the complete classification of them under isometries. The study of
homogeneous Einstein–Riemannian manifolds is an important subject in differential
geometry. However, up to now there have appeared only very few useful existence
(or nonexistence) theorems in the literature. In the noncompact case, all the known
examples of nonflat homogeneous Einstein–Riemannian manifolds can be viewed
as left-invariant metrics on a solvable Lie group. However, up to now the conjecture
of Alekseevskii has not been proved. So we still don’t know whether there are
examples of homogeneous Einstein–Riemannian metrics that cannot be realized as
left-invariant Riemannian metrics on a solvable Lie group. In the compact case, the
problem is also far from being fully understood; see [28] for a survey on this topic.
In the generalized Finsler case, the problem is more complicated. A complete
treatment seems to be unreachable. Our first goal is to get a classification of
homogeneous Einstein–Randers spaces. In this section, we will perform this for
Randers metrics on spheres.

We first set up the strategy of the classification. By Theorem 7.5, the classification
of homogeneous Einstein–Randers metrics on a sphere Sn can be reduced to the
following two steps:

1. A classification of Einstein–Riemannian metrics on Sn that are invariant under a
transitive subgroup G of transformations.

2. A complete description of G-invariant Killing vector fields on Sn = G/H, where
H is the isotropy subgroup of G at a point.

The classification of Einstein–Riemannian metrics on Sn was established by
Ziller in [182]. Before stating Ziller’s classification, we first study invariant vector
fields on spheres when we write the spheres as coset spaces.

The compact Lie groups that admit an effective transitive action on the n-
dimensional sphere Sn have been classified by Montgomery–Samelson and Borel
[31, 121]. The results are summarized in Table 7.1.
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Table 7.1 Compact Lie groups acting transitively on spheres

Spheres G H Isotropy representation

Sn SO(n+1) SO(n) Irreducible
S2n+1 SU(n+1) SU(n) m=m0⊕m1

S2n+1 U(n+1) U(n) m=m0⊕m1

S4n+3 Sp(n+1) Sp(n) m=m0⊕m1

S4n+3 Sp(n+1)Sp(1) Sp(n)Sp(1) m=m1 ⊕m2

S4n+3 Sp(n+1)U(1) Sp(n)U(1) m=m0 ⊕m1 ⊕m2

S15 Spin(9) Spin(7) m=m1 ⊕m2

S7 Spin(7) G2 Irreducible
S6 G2 SU(3) Irreducible

Each transitive group yields a coset space diffeomorphic to Sn. To determine
all the invariant vector fields on the spheres, we have to consider all such coset
spaces. We will consider only the following two cases: S2n+1 = SU(n+ 1)/SU(n);
S4n+3 = Sp(n+ 1)/Sp(n). Other cases can be treated similarly. Now we determine
invariant vector fields in these cases.

Case 1. S2n+1 = SU(n+ 1)/SU(n). It is a reductive homogeneous space and the
isotropy subgroup is connected. Set G1 = SU(n+ 1), H1 = SU(n), g1 = LieG1 =
su(n+ 1), h1 = LieH1 = su(n). The reductive decomposition can be taken as g1 =
h1 +m1, where m1 is the direct sum of the following subspaces of g:

m′
1 =

{(
0 α

−ᾱ ′ 0

)}
,m′′

1 =

{(
− c

√−1
n In 0
0 c

√−1

)}
, (7.30)

where α ′ = (x1,x2, . . . ,xn) ∈C
n, c ∈R, and In is the identity matrix of order n. The

isotropy representation keeps the above two subspaces invariant. The isotropy action
of SU(n) on m′′

1 is trivial, and the action on m′
1 can be described as

ρ(A)(X) = Y,

where

X =

(
0 α

−ᾱ ′ 0

)
∈m′

1, Y =

(
0 Aα

−(Aα)′ 0

)
.

From this we conclude that the subspace V of the invariant vectors of the H1-action
on m1 is just m′′

1.

Case 2. Let us we consider the reductive homogeneous spaces S4n+3 = Sp(n+ 1)
/Sp(n). The isotropy subgroup is also connected. Recall that the Lie algebra sp(n)
of Sp(n) consists of the skew-Hermitian matrices in End(C2n) of the form

(
A −B̄
B Ā

)
, Ā′ =−A, B′ = B,
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where A and B are n× n complex matrices. A reductive decomposition of the Lie
algebra can be taken as sp(n+1) = sp(n)+m2, where the subspace m2 is defined by

m2 =

⎛
⎜⎜⎜⎝

0 α 0 −β
−α ′ c

√−1 −β ′ −a+ b
√−1

0 β 0 α
β ′ a+ b

√−1 −α ′ −c
√−1

⎞
⎟⎟⎟⎠ , (7.31)

where α , β ∈ C
n, and a,b, c are real numbers. Now we determine the subspace V

of Sp(n)-invariant vectors in m2. Let

P1 =

⎛
⎜⎜⎜⎝

0 α 0 −β
−α ′ c

√−1 −β ′ −a+ b
√−1

0 β 0 α
β ′ a+ b

√−1 −α ′ −c
√−1

⎞
⎟⎟⎟⎠ ∈m2

and

P2 =

⎛
⎜⎜⎝

A 0 −B 0
0 0 0 0
B 0 A 0
0 0 0 0

⎞
⎟⎟⎠ ∈ sp(n).

Then P1 ∈ V if and only if P1P2 = P2P1 for every skew-Hermitian matrix A and
symmetric matrix B. By a direct computation, it is easily seen that this is equivalent
to the equations

Aα−Bβ = 0, Aβ +Bα = 0.

Obviously, this is equivalent to the conditionα = β = 0. Therefore, for the reductive
homogeneous spaces S4n+3 = Sp(n+ 1)/Sp(n), the subspace V is

m′
2 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0 0 0 0
0 c

√−1 0 −a+ b
√−1

0 0 0 0
0 a+ b

√−1 0 −c
√−1

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
|a,b,c ∈ R

⎫⎪⎪⎬
⎪⎪⎭ . (7.32)

For convenience, we denote the orthogonal complement of m′
2 in m2 (with respect

to −B, where B is the Killing form of sp(n+ 1)) by m′′
2. A direct computation then

shows that

m′′
2 =

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

A 0 −B 0
0 0 0 0
B 0 A 0
0 0 0 0

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
|A,B ∈ C

n, Ā′ =−A,B′ = B

⎫⎪⎪⎬
⎪⎪⎭ . (7.33)
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To summarize, we have proved the following theorem:

Theorem 7.6. The set of SU(n + 1)-invariant vector fields on the coset space
S2n+1 = SU(n+ 1)/SU(n) is a vector space of dimension 1. The set of Sp(n+ 1)-
invariant vector fields on the coset space S4n+3 = Sp(n+1)/Sp(n) is a vector space
of dimension 3.

Remark 7.2. A similar method can be used to study the isotropy representation
of other coset spaces. The results are indicated in the last column of Table 7.1,
where m0 denotes the set of H-fixed vectors in m, and mi, i = 1,2, . . . , denote the
irreducible H-invariant subspaces, where the action of H is nontrivial. This result
will be useful in our study of homogeneous Randers spaces of positive flag curvature
in Sect. 7.6.

Now we can state Ziller’s classification of homogeneous Einstein–Riemannian
metrics on spheres. This classification also presented some examples of homoge-
neous Einstein–Riemannian metrics that were new before the publication of [182].

Lemma 7.3 (Ziller [182]). On S2n, every homogeneous Einstein–Riemannian met-
ric must be one of the standard ones. On S2n+1 with n odd, every homogeneous
Einstein–Riemannian metric must be one of the standard ones. If we write S2n+1

as SU(n+ 1)/SU(n), then the standard Riemannian metric with constant sectional
curvature 1 can be written as

h(X1,X2) = c1c2 +Reα ′
1α2, (7.34)

where

Xi =

(
− ci

√−1
n E αi

−ᾱ ′
i ci

√−1

)
∈m1.

On S4n+3 there are two homogeneous Sp(n + 1)-invariant Einstein–Riemannian
metrics:

h1 =−2B|m′
2×m′

2
−B|m′′

2×m′′
2

(7.35)

and

h2 =−B|m′′
2×m′′

2
− 2

2n+ 3
B|m′

2×m′
2
, (7.36)

where m′
2, m′′

2 are defined in (7.32) and (7.33), and B is the Killing form of g. The
metric h1 is the standard metric of constant sectional curvature and h2 is an Einstein
metric of nonconstant sectional curvature.

Moreover, On S15 there is a spin(15)-invariant Einstein Riemannian metric, when
we write S15 as the coset space spin(9)/spin(7).

Up to isometries and homotheties, the above are all the homogeneous Einstein–
Riemannian metrics on spheres.

Remark 7.3. The spin(9)-invariant Einstein Riemannian metric was found by Bour-
guinon and Karcher, see [182]. However, from Table 7.1, one sees that the isotropy
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representation of the coset space spin(9)/spin(7) admits no nonzero fixed vector.
Therefore, this Einstein metric will not produce new Einstein-Randers metrics.
Therefore we need not consider this metric in the following.

Now we describe homogeneous Einstein–Randers metrics on spheres. We first
study the reductive homogeneous space Sp(n+ 1)/Sp(n). The Sp(n+ 1)-invariant
vector fields have already been described in Theorem 7.6. Therefore we need only
find out the homotheties among these vector fields. Since Ricci-flat homogeneous
Riemannian manifolds must be flat, h2 cannot be Ricci-flat. Therefore, homotheties
of h2 are just the Killing vector fields. So it suffices to determine the Killing vector
fields among the invariant vector fields. By a direct computation, we find that all
the invariant vector fields W satisfy (7.29) for the two metrics above. Thus, by
Theorem 7.5, W is a Killing vector field. Using the Riemannian metric h1 in (7.35),
we obtain a family of Sp(n+ 1)-invariant homogeneous Einstein–Randers metrics
F1 on S4n+3:

F1(y) =

√
[h(W,y)]2 + h(y,y)λ

λ
− h(W,y)

λ

=

√
64(n+ 2)2(aa1 + bb1)2 + 8λ (n+ 2)(|α|2+ |β |2 + a2

1 + b2
1)

λ

− 8(n+ 2)(aa1+ bb1)

λ
, (7.37)

where

y =

⎛
⎜⎜⎜⎝

0 α 0 −β
−α ′ c1

√−1 −β ′ −a1 + b1
√−1

0 β 0 α
β ′ a1 + b1

√−1 −α ′ −c1
√−1

⎞
⎟⎟⎟⎠ ∈m2

and

W =

⎛
⎜⎜⎝

0 0 0 0
0 c

√−1 0 −a+ b
√−1

0 0 0 0
0 a+ b

√−1 0 −c
√−1

⎞
⎟⎟⎠ ∈m′

2,

λ = 1− h1(W,W ) = 1− 16(n+ 1)(a2 + b2 + c2), | · | denotes the standard norm of
C

n, and a2 + b2 + c2 < 1
16(n+1) . This family of metrics are non-Riemannian if and

only if a2 +b2 + c2 �= 0. Similarly, using the metric h2 in (7.36), we obtain a family
of Sp(n+ 1)-invariant homogeneous Einstein–Randers metrics F2 on S4n+3 too:

F2(y) =

√
[h(W,y)]2 + h(y,y)λ

λ
− h(W,y)

λ
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=

√
64(n+2)2(aa1+bb1)2

(2n+3)2 + 8λ (n+ 2)(|α|2+ |β |2)+ 8λ (n+2)(a2
1+b2

1)

2n+3

λ

− 8(n+ 2)(aa1+ bb1)

λ (2n+ 3)
, (7.38)

where y and W are as above, λ = 1− h2(W,W ) = 1− 16(n+1)
2n+3 (a2 + b2 + c2), | · |

denotes the standard norm of Cn, and a2 +b2+ c2 < 2n+3
16(n+1) . This family of metrics

are non-Riemannian if and only if a2 + b2 + c2 �= 0.
Next we consider the homogeneous manifold S2n+1 = SU(n+ 1)/SU(n). It is

known that the SU(n + 1)-invariant Riemannian–Einstein metric is a metric of
constant sectional curvature, and the metric h can be written as (7.34). A direct
computation (although somewhat tedious) shows that all the SU(n+ 1)-invariant
vector fields corresponding to an element W ∈ m′′

1 in (7.30) satisfy (7.29). Thus
by Theorem 7.5, all the SU(n+ 1)-invariant vector fields are Killing vector fields.
Therefore, we obtain a family of SU(n + 1)-invariant homogeneous Einstein–
Randers metrics F on S2n+1:

F(y) =

√
[h(W,y)]2 + h(y,y)λ

λ
− h(W,y)

λ
=

√
c2c2

1 +λ (c2
1 + |α|2)

λ
− cc1

λ
,

(7.39)

where h is given by (7.34),

y =

(
− c1

√−1
n E α

−α ′ c1
√−1

)
∈m1, W =

(
− c

√−1
n E 0
0 c

√−1

)
∈m′′

1 ,

and λ = 1 − h(W,W ) = 1 − c2 with c2 < 1. This family of metrics are non-
Riemannian if and only if c �= 0.

Now we can state our main theorem of this section:

Theorem 7.7. Every homogeneous Einstein–Randers metric on the even-
dimensional sphere S2n must be the standard Riemannian metric (up to a
homothety). On S2n+1 with n even, up to homotheties there is one family of
non-Riemannian homogeneous Einstein–Randers metrics. If we write S2n+1 as
SU(n+1)/SU(n), then the metrics can be written as in (7.39). This family of metrics
have constant flag curvature. On S4n+3, up to homothety there are two families of
homogeneous Einstein–Randers metrics. If we write S4n+3 as Sp(n+1)/Sp(n), then
the first family can be written as in (7.37) and the second family can be written as
in (7.38). Metrics in (7.37) have constant flag curvature and metrics in (7.38) have
nonconstant flag curvature.

Proof. Table 7.1 shows that if n �= 3, then the only Lie group that has an
effective transitive action on the even-dimensional sphere S2n is SO(2n). The
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isotropy subgroup of SO(2n) at p = (1,0, . . . ,0) is SO(2n − 1), and the pair
(SO(2n),SO(2n − 1)) is an irreducible Riemannian symmetric pair of compact
type. The isotropy representation has no nonzero fixed points. Therefore every
SO(2n)-invariant Randers metric on S2n must be Riemannian. On the other hand,
the sphere S6 can also be written as G2/SU(3). But it is easily seen that the isotropy
representation of this coset space is transitive on the unit sphere with respect to a
certain G2-invariant Riemannian metric. In particular, the isotropy representation
must also be irreducible, and hence it has no fixed points. This proves the first
assertion.

Next we consider S2n+1 with n even. Since the only SU(n + 1)-invariant
Einstein–Riemannian metric on S2n+1 is the standard one (up to a homothety),
and the SU (n + 1)-invariant vector fields have been completely determined in
Theorem 7.6, we get a family of homogeneous non-Riemannian Einstein–Randers
metrics as described in (7.39). Since the underlying Riemannian metric has constant
sectional curvature, these metrics have constant flag curvature. Now we prove
that up to homotheties these are all the homogeneous non-Riemannian Einstein–
Randers metrics on S2n+1. Suppose F is an arbitrary Randers metric with the
above properties. Then by Lemma 7.3 the underlying Riemannian metric must
be the standard one. Thus F must be also of constant flag curvature. Note that
in a homogeneous Randers metric the invariant vector field has constant length
with respect to the Riemannian metric. By Bao–Robles–Shen’s result in [21], up
to isometry there is only one family of Randers metrics with constant flag curvature
on S2n+1 where the external influence vector field W has constant length. This
proves the second assertion. A similar argument can be used to prove the third
assertion. Finally, S15 can also be written as Spin(9)/Spin(7). However, as noted
by Ziller [183], the isotropy representation of the reductive homogeneous space
Spin(9)/Spin(7) has no nonzero fixed points. Therefore this coset space cannot
produce any new non-Riemannian homogeneous Randers metrics. This completes
the proof of the theorem. ��
Remark 7.4. From the proof we see that the metrics in (7.37) and the metrics
in (7.39) are isometric if we write S4n+1 = SU(2n+1)/SU(2n) = Sp(n+1)/Sp(n).
This family of metrics has also been described in a different way in Bao–Robles–
Shen’s article [21]. However, the merit of this new description is that we find that
these metrics are homogeneous. The metrics in (7.38) are new and they are the only
homogeneous Einstein–Randers metrics on spheres with nonconstant flag curvature.

Finally, we give a classification of the above-described Einstein–Randers metrics
under isometries.

By Remark 7.4, the only metrics we need to study are the metrics F2 on
S4n+1 when it is written as Sp(n + 1)/Sp(n). The problem here is thus to find
the conditions such that the Randers metrics F2 and F ′

2, which solve Zermelo’s
navigation problem for the Riemannian metric h2 under the external influences W
and W ′, respectively, are isometric. Let o denote the point (1,0, . . . ,0)∈H

n+1. Then
ToS4n+3 = {(α,ξ )′|α + α = 0,ξ ∈ H

n}. We can identify the isotropy subgroup
Sp(n) at o with a subgroup of Sp(n+ 1) through the map
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A ↪→
(

1 0
0 A

)
, A ∈ Sp(n).

Suppose (α,ξ )′ is the restriction of an Sp(n+ 1)-invariant vector field at o. Let
A,B ∈ Sp(n+ 1). If Ao = Bo, then B−1A ∈ Sp(n). Since (α,ξ )′ is invariant under
Sp(n+ 1), we have A∗(α,ξ )′ = A(α,ξ )′ = B(α,ξ )′ = B∗(α,ξ )′. This implies that
B−1A(α,ξ )′ = (α,ξ )′. Hence (α,ξ )′ is the restriction of an Sp(n+ 1)-invariant
vector field at o if and only if (α,ξ )′ is a fixed point of the linear isotropy
representation of Sp(n), namely(

1 0
0 A

)(
α
ξ

)
=

(
α

Aξ

)
=

(
α
ξ

)
, ∀A ∈ Sp(n).

So, ξ = 0 if and only if (α,ξ )′ is the restriction of an Sp(n+ 1)-invariant vector
field at o.

Let W and W ′ be two Sp(n+ 1)-invariant vector fields and

W |o = (α,0)′, W ′|o = (β ,0)′.

Recall that the full isometric group of Sp(n+ 1)-invariant metrics of (S4n+3,h2) is
Sp(n+ 1)×Sp(1), with Sp(1) acting by right multiplication (see [182]). Since W
and W ′ are Sp(n+ 1)-invariant, the only maps we can choose are elements from
Sp(1). Let η0 ∈ Sp(n+ 1), and let L(η0), R(η) denote the left multiplication of
η0 and right multiplication of η , respectively. It is obvious that L(η0)R(η)x =
R(η)L(η0)x,∀x ∈ S4n+3. Thus, L(η0)∗R(η)∗W = R(η)∗L(η0)∗W = R(η)∗W . This
implies that R(η)∗W is also an Sp(n+1)-invariant vector field. Thus R(η)∗W =W ′
if and only if R(η)∗W |oη = W ′|oη . But η ⊕ idn = η−1 ⊕ idn ∈ Sp(n + 1) maps
oη to o (idn is the identity map of Hn). Hence R(η)∗W |oη = W ′|oη if and only if
(L(η)∗R(η)∗W )|o =W ′|o, since W and W ′ are Sp(n+ 1)-invariant. In other words,
ηαη = β or αη = ηβ . Let

η = x0 + x1i+ x2j+ x3k, α = a1i+ a2j+ a3k, β = b1i+ b2j+ b3k,

where i, j,k are the standard imaginary quaternion units. Then the equalityαη =ηβ
is equivalent to the following system of linear equations:⎧⎪⎪⎨

⎪⎪⎩
(a1 − b1)x1 +(a2 − b2)x2 +(a3 − b3)x3 = 0,
−(a1 − b1)x0 − (a3 + b3)x2 +(a2 + b2)x3 = 0,
−(a2 − b2)x0 +(a3 + b3)x1 − (a1 + b1)x3 = 0,
−(a3 − b3)x0 − (a2 + b2)x1 +(a1 + b1)x2 = 0.

Set

P =

⎛
⎜⎜⎝

0 a1 − b1 a2 − b2 a3 − b3

−(a1 − b1) 0 −(a3 + b3) a2 + b2

−(a2 − b2) a3 + b3 0 −(a1 + b1)

−(a3 − b3) −(a2 + b2) a1 + b1 0

⎞
⎟⎟⎠.
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Then there exists an isometric map η ∈ Sp(1) satisfying αη = ηβ if and only
if detP = 0. By a direct computation, we obtain detP = (|α|2 − |β |2)2, where
|α|2 = a2

1 + a2
2 + a2

3 and |β |2 = b2
1 + b2

2 + b2
3. So the above system of linear

equations has nonzero solutions if and only if |α|2 = |β |2. From (7.29), one
easily sees that h2(W,W ) = h2(W ′,W ′) if and only if |α|2 = |β |2. Suppose η0 is
such a nonzero solution and |η0| = 1 (otherwise we can replace η0 by η0

|η0| ), i.e.,

η0 ∈ Sp(1). Then (η0)∗W = W ′. Therefore, the Randers metrics F2 and F ′
2 that

solve Zermelo’s problem of navigation on the Riemannian manifold (S4n+3,h2)
under the external influences W and W ′, respectively, are isometric if and only if
h2(W,W ) = h2(W ′,W ′).

This method can also be used to treat the the metrics in (7.37) and (7.39).
However, since the metrics in (7.37) and (7.39) have constant flag curvature, the
problem of classification for this metrics under isometries has already been settled
in Bao–Robles–Shen’s article [21]. The conclusion is that two metrics in (7.37)
(resp. (7.39)) are isometric if and only if the corresponding invariant vector fields
have the same length.

Let us summarize the above as the following theorem.

Theorem 7.8. On S4n+3 = Sp(n+1)/Sp(n), there are two families of homogeneous
Sp(n+ 1)-invariant Einstein–Randers metrics F1 and F2 given by (7.37) and (7.38)
respectively that solve Zermelo’s problem of navigation on the Riemannian manifold
(S4n+3,hi) under the external influence W . The metrics in the family F1 are
of constant flag curvature and those in the family F2 are of nonconstant flag
curvature. If (S4n+3,Fi) and (S4n+3,F ′

i ) solve Zermelo’s problem of navigation on
the Riemannian manifold (S4n+3,hi) under the external influences W and W ′, then
the metrics are isometric if and only if hi(W,W ) = hi(W ′,W ′)(i = 1,2). On S2n+1 =
SU(n+ 1)/SU(n) with n even, there is only one family of homogeneous SU(n+ 1)-
invariant Einstein–Randers metrics F given by (7.39) that solve Zermelo’s problem
of navigation on the Riemannian manifold (S2n+1,h) under the external influenceW.
These metrics are of constant flag curvature. Similarly, if (S2n+1,F) and (S2n+1,F ′)
solve Zermelo’s problem of navigation on the Riemannian manifold (S2n+1,h) under
the external influences W and W ′, respectively, then they are isometric if and only if
h(W,W ) = h(W ′,W ′).

7.5 Homogeneous Ricci-Quadratic Randers Spaces

In this section we prove an interesting result on homogeneous Ricci-quadratic
Randers spaces. A Finsler metric is said to be R-quadratic if its Riemann curvature is
quadratic [44]. R-quadratic metrics were first introduced by Basco and Matsumoto
[11]. They form a rich class of Finsler spaces. For example, all Berwald metrics
are R-quadratic, and some non-Berwald R-quadratic Finsler metrics have been
constructed in [21, 113]. There are many interesting publications related to this
subject (see, for example, [139]).

A Finsler metric is called Ricci-quadratic if Ric(x,y)F2(y) is quadratic in y. It is
obvious that the notion of Ricci-quadratic metrics is weaker than that of R-quadratic
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metrics. Hence any R-quadratic Finsler space must be Ricci-quadratic. In particular,
every Berwald space must be Ricci-quadratic. It has been shown that there are
many non-Berwald spaces that are Ricci-quadratic. In general, it is quite difficult
to characterize Ricci-quadratic metrics. Li and Shen considered the case of Randers
metrics in [113] and obtained a characterization of Ricci-quadratic properties of
such spaces, using some complicated calculations in local coordinate systems. Their
results are rather complicated (see Theorem 7.10 below). In this section we shall
prove the following result.

Theorem 7.9. A homogeneous Randers space is Ricci-quadratic if and only if it is
of Berwald type.

We first use Killing vector fields to present some formulas about the Levi-Civita
connection of homogeneous Riemannian manifolds. This is a continuation of the
study of Sect. 7.2. We will follow the method and notation used there.

Let (G/H,α) be a homogeneous Riemannian manifold with a reductive decom-
position g = h+m. As before, we identify m with the tangent space To(G/H) of
the origin o = H. We shall use the notation 〈 , 〉 to denote the Riemannian metric on
the manifold as well as its restriction to m. Note that it is an Ad(H)-invariant inner
product on m. Hence we have

〈[x,u],v〉+ 〈[x,v],u〉= 0, ∀x ∈ h, ∀u,v ∈m,

which is equivalent to

〈[x,u],u〉= 0, ∀x ∈ h, ∀u ∈m.

Given v ∈ g, the fundamental vector field v̂ generated by v, i.e.,

v̂gH =
d
dt

exp(tv)gH
∣∣∣
t=0

, ∀g ∈ G,

is a Killing vector field.
Let X̂ ,Ŷ , Ẑ be Killing vector fields on G/H and let U,V be arbitrary smooth

vector fields on G/H. Then we have (see [28] for the notation, in particular, pages
40, 182, 183)

[X̂ ,Ŷ ] = −[X ,Y ]̂, (7.40)

X̂〈U,V 〉 = 〈[X̂ ,U ],V 〉+ 〈[X̂,V ],U〉, (7.41)

〈∇X̂ Ŷ , Ẑ〉 = −1
2

(〈[X ,Y ]̂, Ẑ〉+ 〈[X ,Z ]̂,Ŷ 〉+ 〈[Y,Z ]̂, X̂〉) . (7.42)

We shall prove only (7.41). In fact, by (c) of Theorem 1.81 of [28], we have

X̂〈U,V 〉 = 〈∇X̂U,V 〉+ 〈U,∇X̂V 〉
= 〈∇U X̂ ,V 〉+[X̂,U ],V 〉+ 〈U,∇V X̂〉+ 〈U, [X̂,V ]〉
= 〈[X̂ ,U ],V 〉+ 〈[X̂,V ],U〉.
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Let u1,u2, . . . ,un be an orthonormal basis of m with respect to 〈 , 〉. We extend
it to a basis u1,u2, . . . ,um of g. As in (7.8), there is a local coordinate system on a
neighborhood U of o defined by the map

(exp(x1u1)exp(x2u2) · · ·exp(xnun))H → (x1,x2, . . . ,xn).

Let gH = (x1,x2, . . . ,xn) ∈U . Then as in Sect. 7.2, we have

∂
∂xi

∣∣∣∣
gH

=
d
dt
(exptex1adu1 · · ·exi−1adui−1(ui) ·gH)|t=0.

Set

ex1adu1 · · ·exi−1adui−1(ui) = f a
i ua. (7.43)

We have
∂
∂xi

∣∣∣∣
gH

= f a
i ûa|gH .

Remark 7.5. In the following, the range of the indices are governed as follows:

• The indices a,b,c, . . . range from 1 to m.
• The indices i, j,k, . . . range from 1 to n.
• The indices λ ,μ , . . . range from n+ 1 to m.

Let Γ l
i j be the Christoffel symbols under the coordinate system, i.e.,

∇ ∂
∂xi

∂
∂x j = Γ k

i j
∂
∂xk .

Then

Γ l
i j
∂
∂xl = ∇ ∂

∂xi

∂
∂x j =

∂ f a
j

∂xi ûa + f b
i f a

j ∇ûb ûa. (7.44)

From (7.43), we see that f a
i are functions of x1, . . . ,xi−1. Thus

∂ f a
j

∂xi = 0, i ≥ j.

Therefore (7.44) becomes

Γ l
i j
∂
∂xl = f b

i f a
j ∇ûb ûa, i ≥ j.

Differentiating the above equation with respect to xk, we get

∂Γ l
i j

∂xk

∂
∂xl +Γ s

i jΓ l
ks
∂
∂xl =

∂ f b
i f a

j

∂xk ∇ûb ûa + f b
i f a

j f c
k∇ûc∇ûb ûa, i ≥ j. (7.45)
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Differentiating (7.43) with respect to xk and letting (x1, . . . ,xn)→ 0, we obtain

∂ f a
i

∂xk
(0) = f (k, i)Ca

ki,

where Cc
ab are the structure constants of g and f (k, l) is defined by

f (k, i) :=

{
1, k < i,

0, k ≥ i.

Considering the value at the origin o, we get the following result.

Lemma 7.4. The following equalities hold:

Γ l
i j(o) = f (i, j)Cl

i j + 〈∇ûi û j, ûl〉, (7.46)

∂Γ l
i j

∂xk

∣∣∣∣∣
o

= −Γ s
i j(Γ

l
ks + 〈∇ûk ûl , ûs〉)+ f (k, j)Ca

k j〈∇ûi ûa, ûl〉

+ f (k, i)Cs
ki〈∇ûs û j, ûl〉+ ûk〈∇ûi û j, ûl〉, i ≥ j. (7.47)

Proof. From (7.43) we know that f a
i (0) = δ a

i and ∂
∂xk |o = ûk|o = uk. Thus, by (7.44),

Γ l
i j(o) =

〈
Γ s

i j
∂
∂xs , ûl

〉∣∣∣∣∣
o

=

〈∂ f a
j

∂xi ûa + f b
i f a

j ∇ûb ûa, ûl

〉∣∣∣∣∣
o

.

From this (7.46) follows. On the other hand, by (7.45) we have

∂Γ l
i j

∂xk

∣∣∣∣∣
o

=−Γ s
i jΓ

l
ks + f (k, j)Ca

k j〈∇ûi ûa, ûl〉

+ f (k, i)Ca
ki〈∇ûa û j, ûl〉+ 〈∇ûk∇ûi û j, ûl〉, i ≥ j.

Considering the values at the origin, we easily deduce that

〈∇ûk∇ûi û j, ûl〉= ûk〈∇ûi û j, ûl〉− 〈∇ûi û j,∇ûk ûl〉,

that

f (k, i)Ca
ki〈∇ûa û j, ûl〉= f (k, i)Cs

ki〈∇ûs û j, ûl〉,
and that

〈∇ûi û j,∇ûk ûl〉= Γ s
i j〈∇ûk ûl , ûs〉, i ≥ j.

From the above four equations (7.47) follows. ��
To prove Theorem 7.9, we also need the following lemma.
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Lemma 7.5. For ui,u j,uk,ul ∈m,uλ ∈ h, we have

〈∇ûi û j, ûl〉|o =−1
2
(Cl

i j +C j
il +Ci

jl), (7.48)

〈∇ûi ûλ , û j〉|o = 〈[u j,uλ ]m,ui〉=Ci
jλ , (7.49)

ûk〈∇ûi û j, ûl〉|o = 1
2

(
Cl

kaCa
i j +C j

kaCa
il +Ci

kaCa
jl +Cs

i jC
t
klδst +Cs

ilC
t
k jδst +Cs

jlC
t
kiδst

)
,

(7.50)

where [u j,uλ ]m denotes the projection of [u j,uλ ] to m.

Proof. First, (7.48) is an alternative formulation of (7.42) at the origin in terms of
the structure constants. Using the invariance of ad(u)λ , (7.49) can also be deduced
from (7.42). Finally, by (7.42) we have

ûk〈∇ûi û j, ûl〉=−1
2

ûk
(〈[ui,u j ]̂, ûl〉+ 〈[ui,ul ]̂, û j〉+ 〈[u j,ul ]̂, ûi〉

)
.

Considering the value at the origin o and taking into account (7.40) and (7.41), we
can deduce from the above equation that

ûk〈∇ûi û j, ûl〉|o = 1
2
(〈[uk, [ui,u j]

]
m
,ul〉+ 〈[uk, [ui,ul ]

]
m
,u j〉

+ 〈[uk, [u j,ul ]
]
m
,ui〉+ 〈[ui,u j]m, [uk,ul ]m〉

+ 〈[ui,ul ]m, [uk,u j]m〉+ 〈[u j,ul ]m, [uk,ui]m〉),

from which (7.50) follows. ��
By the two lemmas above, at the origin o we have

Γ j
ni −Γ i

n j = 〈∇ûn ûi, û j〉− 〈∇ûn û j, ûi〉=Cn
ji.

Now we recall some notation about Randers spaces used by Li and Shen in the
study of Ricci-quadratic Randers spaces. Let

F = α+β =
√

ai j(x)yiy j + bi(x)y
i

be a Randers metric. Fix a local coordinate system. Let ∇β = bi| jyidx j denote the
covariant derivative of β with respect to α . Define

ri j :=
1
2
(bi| j + b j|i), si j :=

1
2
(bi| j − b j|i), s j := bisi j , t j := smsm

j.
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We use ai j to raise and lower the indices of tensors defined by bi and bi| j. The index
“0” means the contraction with yi. For example, s0 = siyi and r00 = ri jyiy j, etc. For
Ricci-quadratic metrics on Randers spaces, we have the following theorem

Theorem 7.10 (Li–Shen [113]). Let F = α + β be a Randers metric on an
n-dimensional manifold. Then it is Ricci-quadratic if and only if

r00 + 2s0β = 2c̃(α2 −β 2), (7.51)

sk
0|k = (n− 1)A0, (7.52)

where c̃ = c̃(x) is a scalar function and Ak := 2c̃sk + c̃2bk + tk +
1
2 c̃k with c̃k =

∂ c̃
∂xk .

Now we consider homogeneous Randers spaces. Let (G/H,F) be a homoge-
neous Randers space and let (U,(x1, . . . ,xn)) be a local coordinate system as in
Sect. 7.2. Suppose the Randers metric is generated by the pair (〈 , 〉,u) and denote by
ũ the vector field on G/H generated by u. Moreover, we can suppose u= cun(c< 1).
Then by (7.9), we have

ũ|gH = c
∂
∂xn

∣∣∣
gH

.

The quantities bi,
∂bi
∂x j ,bi| j,ri j, si j, and s j were computed in Sect. 7.2. Now we prove

the following lemma.

Lemma 7.6. Let (G/H,F) be a homogeneous Randers space as above. Then (7.51)
implies that

〈[y,u]m,y〉= 0, ∀y ∈m. (7.53)

Proof. Considering the value at o, and using (7.46), (7.48), and the formulas in
Sect. 7.2, we get

(r00 + 2s0β )|o = cΓ 0
n0 + 2c

c
2
(Γ n

n0 −Γ 0
nn)〈u,y〉

= cC0
0n + c2Cn

n0〈u,y〉= 〈[y,u]m,y−〈u,y〉u〉.

On the other hand, it is obvious that

2c̃(α2 −β 2)|o = 2c̃(o)(〈y,y〉− 〈u,y〉2).

Plugging the above two equations into (7.51), we get that at the origin o,

〈
[y,u]m,y−〈u,y〉u〉= 2c̃(o)

(〈y,y〉− 〈u,y〉2) .
Setting y = u and taking into account the fact that 〈u,u〉< 1, we get

c̃(o) = 0.
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Thus 〈
[y,u]m,y−〈u,y〉u

〉
= 0.

Replacing y by y+ u in the above equation yields〈
[y,u]m,u+ y−〈u,u+ y〉u

〉
= 0.

From the above two equations and the fact that 〈u,u〉< 1 we deduce that

〈[y,u]m,u〉= 0, 〈[y,u]m,y〉= 0.

This proves the lemma. ��
Note that in the above lemma we also have

C j
ni +Ci

n j = 0 =Cn
ni, (7.54)

and ti(o) = smsm
i = 0. Moreover, we also have

si(o) = csni =
c2

2
(Γ n

ni −Γ i
nn) =

1
2
〈[u,ui]m,u〉= 0.

Now we can give the proof of Theorem 7.6. First, we need to perform some
complicated computations. Set

ϒ (l jk) :=
∂
∂xk

(Γ s
n jasl)

∣∣∣
o
.

Plugging (7.46) and (7.47) intoϒ (l jk) yields

ϒ (l jk) =
∂Γ l

n j

∂xk +Γ s
n j(Γ

l
ks +Γ t

klδts) (7.55)

= f (k, l)Cs
klΓ

t
n jδts + f (k, j)Ca

k j〈∇ûn ûa, ûl〉+Cs
kn〈∇ûs û j, ûl〉+ ûk〈∇ûn û j, ûl〉.

(7.56)

By (7.46), (7.48), (7.49), (7.50), (7.54), and (7.55), we have

ϒ (000) = f (0,0)Cs
00Γ

t
n0δts + f (0,0)Cs

00〈∇ûn ûs, û0〉+ f (0,0)Cλ
00〈∇ûn ûλ , û0〉

+Cs
0n〈∇ûs û0, û0〉+ û0〈∇ûn û0, û0〉

= f (0,0)Cs
00(〈∇ûn û0, ûs〉+ 〈∇ûn ûs, û0〉)

+ f (0,0)Cλ
00C0

λn −Cs
0nC0

s0 +C0
0aCa

n0

= f (0,0)Cs
00(C

s
n0 +C0

ns)+ f (0,0)Cλ
00C0

λn +C0
0λCλ

n0 = f (0,0)Cλ
00C0

λn.

(7.57)
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Combining (7.46) with the fact that Ci
λn = 0, we get thatϒ (000) = 0. Furthermore,

we also have

2
c
∂ sk0

∂xi |o =
∂ (Γ s

n0ask −Γ s
nkas0)

∂xi =ϒ (k0i)−ϒ (0ki)

= f (i,k)Cs
ikΓ

t
n0δst + f (i,0)Ca

i0〈∇ûn ûa, ûk〉+Cs
in〈∇ûs û0, ûk〉

−( f (i,0)Cs
i0Γ

t
nkδst + f (i,k)Ca

ik〈∇ûn ûa, û0〉+Cs
in〈∇ûs ûk, û0〉)

+ûi〈∇ûn û0, ûk〉− ûi〈∇ûn ûk, û0〉
= f (i,0)(Ca

i0〈∇ûn ûa, ûk〉−Cs
i0Γ

t
nkδst)

− f (i,k)(Ca
ik〈∇ûn ûa, û0〉−Cs

ikΓ
t

n0δst)

+Cs
in(〈∇ûs û0, ûk〉− 〈∇ûs ûk, û0〉)

+ûi〈∇ûn û0, ûk〉− ûi〈∇ûn ûk, û0〉.
By (7.46) and (7.48), we have

〈∇ûs û0, ûk〉− 〈∇ûs ûk, û0〉=Cs
k0.

Then by (7.49), we get

Ca
i0〈∇ûn ûa, ûk〉−Cs

i0Γ
t

nkδst = Cs
i0(〈∇ûn ûs, ûk〉− 〈∇ûn ûk, ûs〉)+Cλ

i0〈∇ûn ûλ , ûk〉
= Cs

i0Cn
ks +Caλ

i0 Cn
kaλ

=Ca
i0Cn

ka.

From (7.50) we easily deduce that

ûi〈∇ûn û0, ûk〉− ûi〈∇ûn ûk, û0〉=Cn
iaCa

0k +Cs
0kC

t
inδst .

Combining the above four equations, we see that Cn
λ i = 0 and that

∂ sk0

∂xi |o =
c
2

(
f (i,k)Cs

ikCn
s0 + f (i,0)Cs

i0Cn
ks +Cs

0kC
n
is

)
. (7.58)

Proof of Theorem 7.9. Since the “only if” part is obvious, we just prove the “if”
part. Let G/H be a Ricci-quadratic homogeneous Randers space. Taking the local
coordinate system as (7.8), we have seen that (7.53) holds. In particular, we have
Cn

ni = 0. Note that it is also true that

Cn
na = 0.

By (7.58) we have

∂ sn0

∂x0

∣∣∣∣
o
=

c
2

(
f (0,n)Cs

0nCn
s0 + f (0,0)Cs

00Cn
ns +Cs

0nCn
0s

)
= 0.
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Differentiating (7.51) and taking into account the fact that c̃(o) = 0 = s0(o), we
deduce from (7.52) that

2c̃0(α2 −β 2)|o = c
∂ (Γ k

n0ak0)

∂x0 + 2cβ
∂ sn0

∂x0 = cϒ (000)+ 2cβ
∂ sn0

∂x0 .

Then it follows from the above two equations and (7.57) that

c̃0 = 0.

Thus

A0(o) =
1
2

c̃0(o) = 0.

On the other hand, we have

si j(o) =
c
2
(Γ i

n j −Γ j
ni) =

c
2

Cn
i j.

Thus

sk
0|k(o) =∑

k

sk0|k =∑
k

(
∂ sk0

∂xk −Γ l
kksl0 −Γ l

0kskl)

=
c
2

n

∑
k=1

( f (k,0)− 1)Ca
k0Cn

ka

+ ∑
1≤k,l≤n

c
2

(
Cn

l0Ck
kl −Cn

kl

(
f (0,k)Cl

0k −
1
2

(
Cl

0k +Ck
0l +C0

kl

)))

=
c
2 ∑

1≤k,l≤n

(
Cn

l0Ck
kl +

1
2

Cn
klC

0
kl

)
.

Therefore (7.52) reduces to

c
2 ∑

1≤k,l≤n

(
Cn

l0Ck
kl +

1
2

Cn
klC

0
kl

)
= 0.

Setting y = u in the above equation and taking into account (7.53), we get

Cn
kl = 0, k, l = 1, . . . ,n,

that is,

〈[uk,ul ]m,u〉= 0, k, l = 1, . . . ,n.

By Proposition 7.9, F must be a Berwald metric. This completes the proof of the
theorem. ��
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7.6 Homogeneous Randers Spaces of Positive Flag Curvature

In this section we will give a classification of homogeneous Randers spaces with
(almost) isotropic S-curvature and positive flag curvature. Let us first explain the
motivation of this study and survey some results in the Riemannian case.

It is one of the central problems in Riemannian geometry to determine how
large the classes of manifolds with positive/nonnegative sectional, Ricci, or scalar
curvature are. Up to now, this problem has been fairly successfully solved in scalar
curvature. Also, a large number of interesting examples of Riemannian metric with
positive Ricci curvature have been constructed. So far, the only known obstruction
to positive Ricci curvature comes from obstructions to positive scalar curvature
and from the classical Bonnet–Myers theorem. For example, it is known that a
compact homogeneous manifold has an invariant Riemannian metric with positive
Ricci curvature if and only its fundamental group is finite.

The most difficult part of the above problem lies in the sectional curvature case.
Although very few obstructions to positive sectional curvature are known, only
several classes of examples of Riemannian manifolds with positive curvature have
been constructed. Among these examples, homogeneous manifolds constitute the
most important part. Besides the compact rank-one symmetric Riemannian spaces,
Berger [24] found two normal homogeneous Riemannian manifolds with positive
curvature in 1961, with respective dimensions 7 and 13; In 1972, Wallach [159]
found three homogeneous Riemannian manifolds, with dimensions 6, 12, 24, which
have positive sectional curvature and are not normal; Later, Aloff–Wallach [6]
constructed an infinite class of 7-dimensional homogeneous Riemannian manifolds
with positive curvature. As proved by Bergery [23], the above examples are
all the connected simply connected homogeneous Riemannian manifolds with
positive curvature. More recently, several classes of inhomogeneous Riemannian
manifolds with positive sectional curvature have been constructed, see for example
Eschenberg [70], Wilking [169], Bazakian [22], Grove–Wilking–Ziller [78] and
Grove–Verdiani–Ziller [79]. However, the problem is far from being completely
understood. For example, the classical problem of Hopf, asking whether there is a
Riemannian metric on the manifold S2×S2 with positive curvature, is still unsolved.

Recently we have initiated the study of this important problem for Finsler spaces.
As in the Riemannian case, the first step is to find examples of homogeneous Finsler
spaces with positive flag curvature and to classify them. However, the problem is
rather complicated in the general case. So we first considered the Randers case.
Our main result is a classification of the homogeneous Randers spaces with almost
isotropic S-curvature and positive flag curvature. Using that, we have presented a
large number of Randers spaces with nonconstant positive flag curvature.

We first establish a principle for classifying homogeneous Randers spaces with
almost isotropic S-curvature and positive flag curvature. For this we need a result
of Huang–Mo. In [91], Huang–Mo studied the property of change of flag curvature
of a Finsler metric under the influence of a vector field. They found that the flag
curvature will decrease under a navigation. In particular, they proved the following:
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Proposition 7.8 (Huang-Mo [91]). Let (M,F) be a Finsler manifold and ũ a
homothetic vector field with dilation σ with F(x, ũ)< 1. Let F̃ be the Finsler metric
produced by navigation problem by F and ũ. Then the flag curvature of F̃ (resp. F),
denoted by K̃(y,v) (resp. K(y,v)), satisfies

K̃(y,v) = K(ỹ,v)−σ2,

where ỹ = y− F̃(x,y)ũ.

A special case is that in which the homothetic vector field is a Killing vector field.
In this case, If F has positive flag curvature, then F̃ also has positive flag curvature.
For our purposes, we must first give a characterization of vanishing S-curvature
for homogeneous Randers spaces using the navigation data. We now deduce the
following theorem.

Theorem 7.11. Let G/H be a reductive homogeneous manifold with a reductive
decomposition of the Lie algebra:

g= h+m. (7.59)

Suppose F is a homogeneous Randers space with navigation data (h,W ). Then F
has almost isotropic S-curvature if and only if W is a Killing vector field with respect
to h, if and only if the the linear map ad(w)m, where w=W |o ∈m, is skew-symmetric
with respect to h, i.e.,

〈[w,x]m,y〉h + 〈x, [w,y]m〉h = 0, ∀x,y ∈m,

or equivalently

〈[w,x]m,x〉h = 0, ∀x ∈m,

where 〈 , 〉h denotes the inner product on m induced by h. In this case, the S-
curvature of F is necessarily vanishing.

Proof. Since both h and W are invariant under G, it suffices to prove the theorem
at the origin o = H. If we write F in its defining form F = α+β and let 〈 , 〉, u be
as in Corollary 7.1, then we need only prove that ad(u)m is skew-symmetric with
respect to 〈 , 〉 if and only if ad(w)m is skew-symmetric with respect to 〈 , 〉h. We now
prove the “only if” part. The proof of the “if” part is similar and will be omitted.
For simplicity we select an orthonormal basis of m with respect to h, v1,v2, . . . ,vn,
such that w =

√μvn, where μ = h(w,w) �= 0. Then ad(w)m is skew-symmetric with
respect to 〈 , 〉h if and only if

〈[w,vi]m,v j〉h + 〈vi, [w,v j]m〉h = 0, 1 ≤ i, j ≤ n.

Equivalently, suppose the matrix of the linear map ad(w)m with respect to the basis
v1,v2, . . . ,vn is B = (bi j)n×n. Then ad(w)m is skew-symmetric if and only if bi j =
−b ji. On the other hand, by (7.4) and (7.5), we have

〈vi,v j〉= δi j

λ
+
δin

λ
δ jn

λ
, 1 ≤ i, j ≤ n,
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and u =−w/λ , where λ = 1− μ . Then

〈[u,vi]m,v j〉 =
〈
− 1
λ

(
n

∑
l=1

bilvl

)
,v j

〉
=− 1

λ

(
n

∑
l=1

bil
〈
vl ,v j

〉)

= − 1
λ

(
n

∑
l=1

bil

(
δl j

λ
+
δln

λ
δ jn

λ

))
=− 1

λ

(
bi j

λ
+

binδ jn

λ 2

)
.

Similarly,

〈vi, [u,v j]m〉=− 1
λ

(
b ji

λ
+

b jnδin

λ 2

)
.

Note that [w,vn] = [
√μvn,vn] = 0. Therefore bnl = −bln = 0, l = 1,2, . . . ,n. From

this and taking into account the fact that the matrix B is skew-symmetric, we
deduce that

〈[u,vi]m,v j〉+ 〈vi, [u,v j]m〉= 0, 1 ≤ i, j ≤ n.

Since v1,v2, . . . ,vn form a basis of m, we have

〈[u,x]m,y〉+ 〈x, [u,y]m〉= 0, ∀x,y ∈m.

This completes the proof of the theorem. ��
Now we summarize the above to obtain a principle for classifying homogeneous

Randers spaces with almost S-curvature and positive flag curvature as follows:

Theorem 7.12. Let G/H be a reductive homogeneous manifold with a reductive
decomposition of Lie algebra as in (7.59). Then there exists a G-invariant non-
Riemannian Randers metric on G/H, with almost isotropic S-curvature and positive
flag curvature, if and only if

1. There exists a G-invariant Riemannian metric α on G/H with positive sectional
curvature.

2. There exists a nonzero vector u ∈m such that

Ad(h)(u) = u, ∀h ∈ H,

satisfying

〈[u,x]m,y〉+ 〈x, [u,y]m〉= 0, ∀x,y ∈m,

where 〈 , 〉 is the inner product on m induced by α when we identify m with the
tangent space To(G/H).

Now we are ready to give the classification. Our first step is to summarize the
results on the classification of the connected simply connected compact homo-
geneous Riemannian manifolds with positive curvature. The results are listed in
Table 7.2. Note that in this list, we not only present all the Lie group pairs (G,H),
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Table 7.2 Compact homogeneous Riemannian manifolds with positive
curvature

Even dimensions Isotropy representation
S2n = SO(2n+1)/SO(2n) Irreducible
CPm = SU(m+1)/U(m) Irreducible
HPk = Sp(k+1)/(Sp(k)×Sp(1)) Irreducible
CayP2 = F4/Spin(9) Irreducible

F6 = SU(3)/T 2 m=m1 ⊕m2 ⊕m3

F12 = Sp(3)/(Sp(1)×Sp(1)×Sp(1)) m=m1 ⊕m2 ⊕m3

F24 = F4/Spin(8) m=m1 ⊕m2 ⊕m3

Odd dimensions Isotropy representation
S2n+1 = SO(2n+2)/SO(2n+1) Irreducible
M7 = SO(5)/SO(3) Irreducible
M13 = SU(5)/(Sp(2)×Z2 S1) m=m1 ⊕m2

N(1,1) = SU(3)×SO(3)/U∗(2) m=m0 ⊕m1 ⊕m2

N(k,l) = SU(3)/S1
(k,l), gcd(k, l) = 1,

kl(k+ l) �= 0 m=m0 ⊕m1 ⊕m2

but also give some partial information of the isotropy representation of the
corresponding coset spaces. However, we will omit the explicit computation
involved here. We just point out that from this table, it is easy to determine whether
the coset space G/H has a nonzero G-invariant vector field.

Let us explain in some detail the manifolds in this list. The first four rows in
the even-dimensional case and the first row in the odd-dimensional case consti-
tute all the simply connected rank-one Riemannian symmetric spaces. Since the
isotropic representation is transitive on the unit sphere with respect to the standard
metric, every invariant Finsler metric on such a coset space must be the standard
Riemannian metric (up to a positive scalar). However, it is known that there are other
compact Lie groups admitting effective and transitive actions on these spaces, and
this will produce other coset spaces that are diffeomorphic to rank-one symmetric
spaces. On these coset spaces, there may exist some invariant metrics other than the
standard metrics, which have positive curvature. These metrics have been classified
by Verdianni–Ziller. We will deal with this problem below. The spaces M7 and M13

are normal and were found to have positive curvature by Berger. The spaces F6,
F12, and F24 are not normal, and they were found to admit invariant Riemannian
metrics with positive curvature by Wallach. Finally, the 7-dimensional spaces N(k,l),
where the subgroups S1

(k,l) are defined by

S1
(k,l) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝e2π

√−1kθ 0 0
0 e2π

√−1lθ 0
0 0 e−2π

√−1(k+l)θ

⎞
⎟⎠
∣∣∣∣∣∣∣ θ ∈R

⎫⎪⎬
⎪⎭ ,
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with kl(k + l) �= 0 and gcd(k, l) = 1, were found to admit invariant Riemannian
metrics with positive curvature by Aloff–Wallach. It was erroneously thought that
all these spaces were not normal. However, Wilking proved in [169] that when
(k, l) = (1,1), the homogeneous Riemannian manifold is normal in some special
case and can also be written as SU(3)×SO(3)/U∗(2). It was proved by Wallach and
Berard Bergery that every connected simply connected nonsymmetric homogeneous
Riemannian manifold with positive curvature can be expressed as one of the
nonsymmetric coset spaces in Table 7.2.

Now we explain the isotropy representation of the coset spaces in Table 7.2.
If the isotropy representation of G/H is irreducible, then we indicate this by
writing “irreducible” in the table. In this case, there is no nonzero H-fixed vector
in the subspace m. Therefore every G-invariant Randers metric on G/H must be
Riemannian. If the isotropy representation is not irreducible, then the space m can
be written as a direct sum:

m=m0 +m1 + · · ·+mk,

where m0 is the subspace of all H-fixed vectors in m and m1,m2, . . . ,mk are
irreducible subspaces of m. From the above table, we see that for the coset spaces
F6, F12, F24, M7, and M13, m0 = 0. For the spaces N(k,l), m0 �= 0.

As we have explained before, besides the groups G in Table 7.2, there are some
other compact Lie groups acting effectively and transitively on compact rank-one
symmetric spaces. These groups have been classified by Montgomery–Samelson
[121], Borel [31], and Onishchik [126]. A survey of their results can be found in
Besse [28]. It was proved by Onishchik that the only connected simply connected
compact Lie group acting effectively and transitively on the symmetric space HPk =
Sp(k+1)/(Sp(k)×Sp(1)), resp. CayP2 = F4/Spin(9), is Sp(k+1), resp. F4. On the
complex projective space CPm = SU(m+1)/U(m), with m = 2n−1 odd, the group
Sp(n) has an effective and transitive action through the identification H

n = C
2n.

However, since the isotropy representation of Sp(n)/Sp(n− 1)U(1) is irreducible,
this coset space does not admit any invariant non-Riemannian Randers metric.

Therefore, it suffices to consider only the spheres here. The compact Lie groups
that admit an effective and transitive action on spheres, as well as the corresponding
isotropy representations, have been summarized in Table 7.1. From this table we see
that there are four cases for which the isotropy representations have nonzero fixed
points:

1. S2n+1 = SU(n+ 1)/SU(n);
2. S2n+1 = U(n+ 1)/U(n);
3. S4n+3 = Sp(n+ 1)/Sp(n);
4. S4n+3 = Sp(n+ 1)U(1)/Sp(n)U(1).

Note that a Riemannian metric on S2n+1 is U(n+ 1)-invariant if and only if it is
SU(n+ 1)-invariant, so case (2) reduces to case (1). Furthermore, (4) is a special
case of (3). So we need consider only cases (1) and (3).
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Invariant Riemannian metrics with positive curvature on the coset space (1) have
been determined by Verdianni–Ziller [158] and can be described as follows. In this
case we have g= su(n+ 1), h= su(n), and m has the decomposition

m=m0 ⊕m1,

where

m0 = RX , X =
√−1

(− 1
n E 0
0 1

)
, (7.60)

and

m1 =

{(
0 α

−α ′ 0

)∣∣∣∣α ′ = (x1, . . . ,xn) ∈ C
n
}
.

Every SU(n + 1)-invariant Riemannian metric on SU(n + 1)/SU(n) can be ex-
pressed as

ht(X1,X2) = tc1c2 +Re(α ′
1α2), (7.61)

with t > 0, where

Xi = ci
√−1

(− 1
n E 0
0 1

)
+

(
0 αi

−α ′
i 0

)
, i = 1,2.

This metric has positive sectional curvature if and only if 0 < t < 2(n+1)
3n .

Now we consider the nonzero SU(n)-invariant vector X (unique up to a scalar)
in m. A direct computation shows that for every X1 ∈m, we have

[X ,X1]m =−√−1

(
1+

1
n

)(
0 α1

α ′
1 0

)
.

Hence

ht([X ,X1]m,X1) =

(
1+

1
n

)
Im(α ′

1α1) = 0.

Therefore the vector field X̃ generated by X is a Killing vector field. This proves the
following result.

Theorem 7.13. On S2n+1 = SU(n+ 1)/SU(n) every SU(n+ 1)-invariant Randers
metric with almost isotropic S-curvature and positive flag curvature must be a
Randers metric that solves the Zermelo navigation problem of the Riemannian
metric ht in (7.61), with 0 < t < 2(n+1)

3n , under the influence of the vector field
generated by the vector cX, where X is defined in (7.60), and |c|< 1/

√
t.

Next we consider case (3). The situation here is much more complicated. Here
we can take the subspace m of sp(n+ 1) to be

m=m0 ⊕m1,
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where

m0 = RX1 ⊕RX2 ⊕RX3 (7.62)

is the subspace of H-fixed vectors in m, and Xi, i = 1,2,3, denote the elements
of H(n+1)×(n+1) with the only nonzero element at the (n+ 1,n+ 1) entry equal to√

2I,
√

2J, and
√

2K respectively; here I,J,K denote the standard imaginary units
in H, and

m1 =

{(
0 α

−(α∗)′ 0

)∣∣∣∣α ′ = (x1, . . . ,xn) ∈H
n
}
.

Then, up to a positive multiple, every Sp(n+ 1)-invariant Riemannian metric on
S4n+3 = Sp(n+ 1)/Sp(n) can be written as

g(t1,t2,t3)(Y,Z) = t1y1z1 + t2y2z2 + t3y3z3 +Re((ξ ∗)′η), (7.63)

where t1, t2, t3 are positive real numbers and

Y = y1X1 + y2X2 + y3X3 +

(
0 ξ

−(ξ ∗)′ 0

)
,

Z = z1X1 + z2X2 + z3X3 +

(
0 η

−(η∗)′ 0

)
.

The condition for such a metric to have positive curvature can be stated as
follows. Let

Vi = (t2
j + t2

k − 3t2
i + 2tit j + 2titk − 2t jtk)/ti and Hi = 4− 3ti,

with (i, j,k) a cyclic permutation of (1,2,3). Then it is shown in [158] that the
homogeneous metrics g(t1,t2,t3) on S4n+3 have positive sectional curvature if and
only if

Vi > 0, Hi > 0, 3 |t jtk − t j − tk + ti|< t jtk +
√

HiVi. (7.64)

It is also pointed out in [158] that the set of the triples (t1, t2, t3) satisfying the above
condition forms a nonempty slice.

Now we determine the condition for an H-fixed vector X in m0 of (7.62) to
generate a Killing vector field with respect to g(t1,t2,t3). Suppose X = x1X1 + x2X2 +

x3X3 ∈ m0, where x1,x2,x3 ∈ R. Set x =
√

2(x1I + x2J + x3K) ∈ H, y =
√

2(y1I +
y2J+ y3K) ∈H. Then we have

[X ,Y ]m =

(
0 ξ x

−(xξ ∗)′ xy− yx

)
.
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Therefore g(t1,t2,t3)([X ,Y ]m,Y ) = 0 if and only if

Re((ξ x)∗)′ξ + 2
√

2

∣∣∣∣∣∣
y1t1 y2t2 y3t3
x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣
= 2

√
2x2(t1 − t3)y1y3 − 2

√
2x3(t1 − t2)y2y1 − 2

√
2x1(t2 − t3)y3y2

= 0.

This is equivalent to the following system of linear equations:

⎧⎨
⎩

x2(t1 − t3) = 0,
x3(t1 − t2) = 0,
x1(t2 − t3) = 0.

If t1, t2, t3 are distinct, then x1 = x2 = x3 = 0. In this case there is no non-Riemannian
Randers metric. If precisely two of t1, t2, t3 are equal, for example t1 = t2 �= t3,
then x1 = x2 = 0. In this case the metric g(t1,t2,t3) is invariant under Sp(n)U(1).
Furthermore, if t1 = t2 = 1 �= t3, then the metric is invariant under U(2n+2). Finally,
if t1 = t2 = t3, then for every xi, the condition is satisfied. In this case, the Riemannian
metric is invariant under Sp(n)Sp(1). We have thus proved the following theorem.

Theorem 7.14. On the sphere S4n+3 = Sp(n+1)/Sp(n), every Sp(n+1)-invariant
Randers metric with almost isotropic S-curvature and positive flag curvature must
be a Randers metric that solves Zermelo’s navigation problem of the Riemannian
metric g(t1,t2,t3) in (7.63), with (t1, t2, t3) satisfying the condition (7.64), under the
influence of a vector field generated by a vector in (7.62). Moreover, the following
conditions must be satisfied:

(i) If t1, t2, t3 are distinct, then x1 = x2 = x3 = 0. In this case, the Randers metric
must be Riemannian.

(ii) If ti = t j �= tk, then xi = x j = 0 and |xk| < 1/tk; here (i, j,k) is any cyclic
permutation of (1,2,3). In this case, there are non-Riemannian Randers
metrics.

(iii) If t1 = t2 = t3 = t, then x1,x2,x3 can be any real numbers satisfying |x1|2 +
|x2|2 + |x3|2 < 1/t. In this case, there are non-Riemannian Randers metrics.

Remark 7.6. Note that if ti = t j = 1 �= tk, with (i, j,k) a cyclic permutation of
(1,2,3), then the Randers metrics described in (ii) of Theorem 7.14 are exactly the
same as the metrics described in Theorem 7.13, i.e., the metrics are invariant under
SU(2n+ 2) (and U(2n+ 2)). It is easy to check that in this case, different cyclic
permutations will produce isometric Riemannian metrics and isometric Randers
metrics (up to a homothety). If ti = t j �= 1 and ti �= tk, then the Riemannian metrics
and the Randers metrics are invariant under Sp(n)U(1), but not invariant under
U(2n+2). If ti = t j = tk, then the underlying Riemannian metrics are invariant under
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Sp(n)Sp(1). However, since Sp(n)Sp(1) has no nonzero invariant vector fields,
the Randers metrics are not invariant under Sp(n)Sp(1), unless it is Riemannian.
Note also that when ti = t j = tk = 1, the underlying Riemannian metric is the
standard Riemannian metric on S4n+3 with constant curvature and it is invariant
under SO(4(n+ 1)).

Next we consider nonsymmetric spaces. According to Table 7.2, to determine
the invariant Randers metrics with almost isotropic S-curvature and positive flag
curvature on a nonsymmetric homogeneous space, we need consider only the spaces
N(k,l), with kl(k+ l) �= 0 and gcd(k, l) = 1. For (k, l) = (1,1), the group SO(3) has
a free isometric action on N(1,1). Therefore N(1,1) = SU(3)×SO(3)/U∗(2). But for
our purposes, this expression is not necessary, since an SU(3)× SO(3)-invariant
Randers metric is automatically SU(3)-invariant. Therefore in the following we
consider only the coset spaces Nk,l = SU(3)/S1

(k,l), where kl(k + l) �= 0 and
gcd(k, l) = 1.

We first consider the case k �= l. In this case the isotropy representation has a
decomposition as

m=V0 ⊕V2k+l ⊕V2l+k ⊕Vk−l,

where

V2k+l =

⎧⎨
⎩
⎛
⎝ 0 0 z

0 0 0
−z 0 0

⎞
⎠
∣∣∣∣∣∣z ∈ C

⎫⎬
⎭ ,

V2l+k =

⎧⎨
⎩
⎛
⎝0 0 0

0 0 z
0 −z 0

⎞
⎠
∣∣∣∣∣∣z ∈ C

⎫⎬
⎭ ,

Vk−l =

⎧⎨
⎩
⎛
⎝ 0 z 0

−z 0 0
0 0 0

⎞
⎠
∣∣∣∣∣∣z ∈ C

⎫⎬
⎭ ,

and

V0 =

⎧⎨
⎩√−1

⎛
⎝ a 0 0

0 b 0
0 0 −(a+ b)

⎞
⎠
∣∣∣∣∣∣(2k+ l)a+(2l+ k)b = 0,a,b ∈ R

⎫⎬
⎭ .

Now the Lie algebra of S1
(k,l) is Rh(k,l), where

h(k,l) =

⎧⎨
⎩
⎛
⎝k

√−1 0 0
0 l

√−1 0
0 0 −(k+ l)

√−1

⎞
⎠
⎫⎬
⎭ .
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Set

V1 =V0 ⊕Vk−l, V2 =V2k+l ⊕V2l+k,

and define

q0(X ,Y ) =−Re(tr(XY )), X ,Y ∈ su(3).

Then q0 is an Ad(SU(3))-invariant inner product on su(3); hence it defines a
bi-invariant Riemannian metric on SU(3). It is easy to check that

q0(hk,l ,V1) = 0, q0(V1,V2) = 0.

Now a direct computation shows that

[V1,V1]⊂ Rhk,l +V1, [V1,V2]⊂V2, [V2,V2]⊂ Rhk,l +V1. (7.65)

For X ,Y ∈m, set X = X1 +X2, Y = Y1 +Y2, with Xi,Yi ∈Vi, and define

qt(X ,Y ) = (1+ t)q0(X1,Y1)+ q0(X2,Y2) = q0(X ,Y )+ tq0(X1,Y1). (7.66)

It is shown in [6] that if −1 < t < 0, then qt defines an SU(3)-invariant Riemannian
metric on SU(3)/S1

(k,l) with positive curvature.
Now we can prove the following result.

Proposition 7.9. 1. If x ∈V1, then (adx)m is skew-symmetric with respect to qt .
2. If y ∈V2, and (ady)m is skew-symmetric with respect to qt , then y = 0.

Proof. Given x ∈V1 and vi ∈Vi, i = 1,2, it is easily seen from (7.65) that

qt([x,v1]m,v2) = 0,

qt([x,v2]m,v1) = 0,

qt([x,v1]m,v1) = (1+ t)q0([x,v1]+ chk,l,v1) = (1+ t)q0([x,v1],v1) = 0,

qt([x,v2]m,v2) = qt([x,v2],v2) = q0([x,v2],v2) = 0.

From the above equalities, (1) follows.
On the other hand, suppose y ∈ V2 and v1,v2 are as above. If ad(y)m is skew-

symmetric, then we have

qt([y,v1]m,v1) = 0 = qt([y,v2]m,v2) = 0

and

qt([y,v1]m,v2)+ qt([y,v2]m,v1) = q0([y,v1],v2)+ (1+ t)q0([y,v2]+ c1hk,l ,v1)

= tq0([y,v2],v1) = tq0([v2,v1],y) = 0.



7.6 Homogeneous Randers Spaces of Positive Flag Curvature 219

This means that y is perpendicular to the subspace [V1,V2] of su(3), with respect the
inner product q0. However, an easy computation shows that [V1,V2] is actually the
whole space su(3). Therefore y = 0 and the lemma is proved. ��

Next we consider the coset space N(1,1) = SU(3)/S1
(1,1). This is only slightly

different from the above case. In this case, we define the following subspaces:

V ′ =

⎧⎨
⎩
⎛
⎝ 0 0 z

0 0 0
−z 0 0

⎞
⎠
∣∣∣∣∣∣z ∈C

⎫⎬
⎭ .

V ′′ =

⎧⎨
⎩
⎛
⎝0 0 0

0 0 z
0 −z 0

⎞
⎠
∣∣∣∣∣∣z ∈C

⎫⎬
⎭ .

V ′′′ =

⎧⎨
⎩
⎛
⎝ 0 z 0

−z 0 0
0 0 0

⎞
⎠
∣∣∣∣∣∣z ∈C

⎫⎬
⎭ .

Moreover, set

V0 =

⎧⎨
⎩√−1

⎛
⎝ a 0 0

0 −a 0
0 0 0

⎞
⎠
∣∣∣∣∣∣a ∈R

⎫⎬
⎭ .

Then the tangent space m can be decomposed into the direct sum of irreducible
S1
(1,1)-submodules as

m=V0 ⊕V ′ ⊕V ′′ ⊕V ′′′.

Define

V1 =V0 ⊕V ′′′, V2 =V ′ ⊕V ′′,

and q0, qt as above. Then qt generates an SU(3)-invariant Riemannian metric on
N(1,1). This metric has positive curvature if and only if −1 < t < 0. Moreover,
Proposition 7.9 still holds in this case.

Let us determine the elements w ∈ m that generate an invariant Killing vector
field on N(k,l). By Proposition 7.9, we need consider only the elements in V1. Since
in both cases the subgroup S1

(k,l) is connected, it suffices to determine the elements

in V1 that commutate with Rh1
(k,l). If (k, l) �= (1,1), then it is easily seen that an

element w ∈V1 satisfies

[h1
(k,l),w] = 0

if and only if w ∈ V0. If (k, l) = (1,1), then a direct computation shows that
[h1

(k,l),V1] = 0.
We now summarize the above as the following theorem.
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Theorem 7.15. 1. If (k, l) �= (1,1), then an SU(3)-invariant Randers metric F on
N(k,l) has almost isotropic S-curvature and positive flag curvature if and only
if F solves Zermelo’s navigation problem of the Riemannian metric defined by
qt in (7.66), with −1 < t < 0, under the influence of a vector field generated
by an element w = diag(a

√−1,b
√−1,−(a+ b)

√−1) ∈ m, where a,b are real
numbers satisfying the conditions

(2k+ l)a+(2l+ k)b = 0 and a2 + b2 +(a+ b)2 <
1

1+ t
.

In this case there is a family of such metrics depending on two parameters.
2. On N(1,1) an SU(3)-invariant Randers metric F has almost isotropic S-curvature

and positive flag curvature if and only if it solves Zermelo’s navigation problem
of the Riemannian metric defined by qt in (7.65), with t ∈ (−1,0), under the
influence of a vector field generated by an element

w =

⎛
⎝ a

√−1 b+ c
√−1 0

−b+ c
√−1 −a

√−1 0
0 0 0

⎞
⎠ ∈m,

where a,b,c are real numbers satisfying the condition a2 + b2 + c2 < 1
2(1+t) .

In this case, there is a family of such metrics depending on four parameters.

At this point, all non-Riemannian homogeneous Randers metrics of almost
isotropic S-curvature and positive flag curvature have been determined. It remains
to determine which among these metrics are isometric. We now prove the following
result.

Theorem 7.16. Let (M,Fi), i = 1,2, be two connected simply connected non-
Riemannian homogeneous Randers spaces with almost isotropic S-curvature and
positive flag curvature solving Zermelo’s navigation problem of the same Rieman-
nian metric h, under the influence of an invariant vector field generated by an
H-invariant vector w1 and w2, respectively. Then (M,F1) is isometric to (M,F2)
if and only if w1 and w2 have the same length with respect to h.

Proof. Non-Riemannian homogeneous Randers metrics with almost isotropic
S-curvature and positive flag curvature have been described in Theorems 7.13, 7.14,
and 7.15. Hence it suffices to check the assertion case by case.

Case (1). Metrics in Theorem 7.13. We note that the sphere S2n+1 is identified
with the coset space SU(n+ 1)/SU(n) through the standard action of SU(n+ 1)
on C

n+1 = R
2n+2, with SU(n) being the isotropic subgroup at the point p =

(1,0,0, . . . ,0). Under this identification, the SU(n+ 1)-invariant vector fields on
S2n+1 can be described very clearly. At the point p = (1,0, . . . ,0), the vector
X =(

√−1,0, . . . ,0) is invariant under SU(n). This vector X generates an SU(n+1)-
invariant vector field, which is equal to

√−1α at the point α ∈ S2n+1. (This can be
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easily seen from the fact that for every unit α ∈ C
n+1, we can find a unitary matrix

A, with det(A) = 1, such that the first column of A is exactly α .) There is another
special diffeomorphism σ of Cn, taking the complex conjugate of each entry of a
vector, which keeps the sphere as well as the point p invariant. Note also that the
metric h in (7.63) is also invariant under σ . However, from the above description
it is easily seen that the action of σ sends the vector field X̃ generated by X to
−X̃ , which is generated by −X . Therefore, in this case, the Randers metrics with
navigation data (h,cX̃) and (h,−cX̃) must be isometric. This proves the assertion in
this case.

Case (2). Metrics in (ii) of Theorem 7.14. By Remark 7.6, the cyclic permutation
is irrelevant. Hence we can assume that t2 = t3 �= t1. In this case the underlying
Riemannian metric g(t1,t2,t2) is invariant under the action of Sp(n)U(1), where U(1)
acts in the standard way on the subspace R

2 = RJ +RK (as rotations). Similarly
to Case (1), the sphere S4n+3 is identified with the coset space Sp(n+ 1)/Sp(n)
through the standard action of Sp(n+ 1) on H

n+1 = C
2n+2 = R

4n+4, with Sp(n) as
the isotropy subgroup at p = (1,0, . . . ,0). The invariant vector field X̃1 generated by
X1 in (7.62) is exactly the vector field described in Case (2) above, when we identify
H

n+1 with C
2(n+1). In other words, X̃1 is actually an invariant vector field invariant

under the action of SU(2n+ 2). (However, the metric g(t1,t2,t3) is generically not
invariant under SU(2n+ 2), unless t2 = t3 = 1.) The diffeomorphism σ in Case (1)
is also an isometry with respect to the metric g(t1,t2,t3). Therefore, similarly to Case
(1), the Randers metrics produced by g(t1,t2,t3) and the vectors cX1 and −cX1, c ∈R,
are isometric. This proves the assertion in Case (2).

Case (3). Metrics in (iii) of Theorem 7.14. As we pointed out in Remark 7.6, in this
case the underlying Riemannian metric is invariant under the group Sp(n+1)Sp(1),
where Sp(n+ 1) acts in the standard way on H

n+1 (left multiplication) and Sp(1)
acts on H

n+1 by right multiplication (to each entry). The isotropic subgroup at p =
(1,0, . . . ,0) is Sp(n)Sp(1) and the isotropy action of the subgroup Sp(1) on the
subspace m0 is just the standard action of Sp(1) = Spin(3) on R

3 (see [77]). Since
the action of Sp(1) = Spin(3) on R

3 is transitive on the unit sphere, and the actions
of Sp(n+ 1) and Sp(1) are commutative, two vectors w1, w2 with the same length
with respect to g(t1,t2,t3) must produce isometric Randers metrics. This proves the
theorem in this case.

Case (4). Metrics in Theorem 7.15 on N(k,l), with (k, l) �= (1,1). In this case we
use a diffeomorphism of N(k,l) induced by an automorphism of SU(3). Since SU(3)
is simply connected, it suffices to describe the automorphism on the Lie algebra
level. Note that su(3) has an involutive automorphism ω defined by ω(X) = X .
It is easily seen that ω sends each diagonal matrix of su(3) to its negative and
keeps the subspace Vk−l invariant. This automorphism induces an automorphism of
SU(3), denoted by ω̃ , that keeps the subgroup S1

(k,l) invariant. Then ω̃ induces a
diffeomorphism ω̄ of N(k,l). Note that the metric q0 is in fact invariant under every
automorphism of su(3), and ω̃ keeps the subspaces V0 and Vk−l invariant. It follows
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from (7.65) that the differential of ω̄ at the origin is an isometry with respect to the
inner product qt . Now we make the following two assertions:

1. ω̄ maps every SU(3)-invariant vector field on N(k,l) to an SU(3)-invariant vector
field on N(k,l).

2. ω̄ is an isometry of the Riemannian metric induced by qt .

We first prove the first assertion. Note that in this case the SU(3)-invariant vector
field is in one-to-one correspondence with the element in V0, or in other words, every
SU(3)-invariant vector field on N(k,l) must be of the form X̃ such that X̃ |gH = dLgX ,
where X ∈V0 and Lg is the diffeomorphism of N(k,l) defined by g1H �→ gg1H.

Since X is the initial vector of the curve exp(tX)H, X̃ |gH is the initial vec-
tor of the curve gexp(tX)H. Hence dω̄X̃ |gH is the initial vector of the curve
ω̄(gexp(tX)H) = ω̃(gexp(tX))H = ω̃(g)ω̃(exp(tX))H. It is easy to see that this is
equal to dLω̃(g)(ω(X)). This proves the first assertion. To prove the second assertion,
suppose Y1,Y2 ∈ TgH(G/H) and denote the Riemannian metric on N(k,l) induced
by qt by Qt . Then we have Qt(Y1,Y2) = qt(Lg−1(Y1),Lg−1(Y2)). Select y1,y2 ∈ m
such that dLg−1(Y1), resp dLg−1(Y2), is the initial vector of the curve exp(ty1)H,
resp. exp(ty2)H. Then Y1, resp. Y2, is the initial vector of the curve gexp(ty1)H,
resp. gexp(ty2)H. Hence dω̄(Y1), resp. dω̄(Y2), is the initial vector of the curve
ω̃(g)ω̃(exp(ty1))H, resp. ω̃(g)ω̃(exp(ty2))H. Therefore we have

Qt(dω̄(Y1),dω̄(Y2)) = Qt(dLω̃(g)ω(y1),dLω̃(g)ω(y2)) = qt(ω(y1),ω(y2))

= qt(y1,y2).

But the last term of the above equality is exactly

qt(dLg−1(Y1),dLg−1(Y2)) = Qt(Y1,Y2).

This proves the second assertion. Now by these two assertions one can easily see
that if w ∈V0 with length < 1, then w and −w will produce isometric Randers spaces
with the underlying Riemannian metric ht . This completes the proof of the theorem
for Case (4).

Case (5). Metrics in Theorem 7.15 on N(1,1). The proof of this case is similar to
Case (4). First, the automorphism ω of the Lie algebra su(3) defined above is equal
to −id on the maximal commutative subalgebra

Rh1
(1,1)⊕V0.

Moreover, this automorphism keeps V1 invariant. Therefore ω induces an auto-
morphism of SU(3) that keeps the subgroup S1

(1,1) invariant. As in Case (4), this
means that the Randers metrics produced by (qt ,w) and (qt ,−w), with w ∈ V0 and
qt(w,w) < 1, must be isometric. Now we consider two distinct vectors w1,w2 ∈ V1
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with qt(w1,w1) = qt(w2,w2) < 1. Note that V1 is actually the Lie algebra su(2)
embedded in su(3) through the standard embedding of the Lie group:

A ↪→
(

A 0
0 1

)
, A ∈ SU(2).

Also note that SU(2) is a rank-one compact Lie group; hence maximal commutative
subalgebras of su(2) are exactly one-dimensional subspaces. By the conjugation of
maximal subalgebras of compact Lie algebras, we conclude that for every two one-
dimensional subspaces U1, U2 of V1, there is an automorphism of su(2) that sends
U1 onto U2. Using the embedding above, the automorphism can be extended to an
automorphism of su(3) that keeps h1

(1,1) fixed and leaves the subspace V1 invariant.
If w1 = −w2 ∈V1, then we set U1 = R(w1) and U2 = V0. The above argument then
shows that there is an automorphism σ such that σ(w1) ∈V0 and σ(h1

(1,1)) = h1
(1,1).

Moreover, we have σ(V1) ⊂ V1. Applying the same argument as in Case (4) to the
automorphism ω ◦σ , we easily show that the Randers metrics produced by (qt ,w1)
and (qt ,w2) are isometric. If w1 and w2 are linearly independent, then we set U1 =
Rw1 and U2 = Rw2. The above argument shows that there exists an automorphism
σ ′ of su(3) such that σ ′(U1) = U2, σ ′(h1

(1,1)) = h1
(1,1), and σ ′(V1) ⊂ V1. Then a

similar argument as above shows that the Randers metrics produced by (qt ,w1) and
(qt ,w2) are isometric. This proves the assertion for the last case, and the theorem is
completely proved. ��

Let us summarize the results in Theorems 7.13–7.16 as follows:

Theorem 7.17. Let (G/H,F) be a connected simply connected non-Riemannian
homogeneous Randers space with almost isotropic S-curvature and positive flag
curvature. Then (G/H,F) must be isometric to one of the following:

1. As a coset space, G/H = SU(n+1)/SU(n) and the metric F is a Randers metric
that solves Zermelo’s navigation problem of the Riemannian metric ht in (7.61),
under the influence of a vector field generated by cX ∈ m0, where X is defined
in (7.60), and 0 < |c| < 1/

√
t. Two pairs (ht ,cX) and (ht′ ,c

′X) correspond to
isometric Randers metrics if and only if t = t ′ and |c|= |c′|.

2. As a coset space, G/H = Sp(n+ 1)/Sp(n) and the metric F is a Randers metric
that solves Zermelo’s navigation problem of the Riemannian metric g(t1,t2,t3)
in (7.63), with t1 �= t2 = t3 �= 1 satisfying the condition (7.64), under the influence
of a vector field generated by cX1 ∈ m0, where X1 is defined in (7.62), and
0 < |c| < 1/t1. Two pairs (g(t1,t2,t3),cX1) and (g(t′1,t′2,t′3),c

′X1) correspond to
isometric Randers metrics if and only if (t1, t2, t3) = (t ′1, t

′
2, t

′
3) and |c|= |c′|.

3. As a coset space, G/H = Sp(n+ 1)/Sp(n) and the metric F is a Randers metric
that solves Zermelo’s navigation problem of the Riemannian metric g(t1,t2,t3)
in (7.63), with t1 = t2 = t3 = t > 0 satisfying the condition (7.64), under the
influence of a vector field generated by aX1 + bX2 + cX3 ∈ m0 in (7.62), with



224 7 Homogeneous Randers Spaces

0 < |a2+b2+c2|< 1/t. Two pairs (g(t,t,t),aX1+bX2+cX3) and (g(t′,t′,t′),a
′X1+

b′X2 + c′X3) correspond to isometric Randers metrics if and only if t = t ′ and
a2 + b2 + c2 = (a′)2 +(b′)2 +(c′)2.

4. G/H = SU(3)/S1
(k,l), with (k, l) �= (1,1), gcd(k, l) = 1, and kl(k+ l) �= 0, and F

is a Randers metric that solves Zermelo’s navigation problem of the Riemannian
metric qt in (7.66), with −1 < t < 0, under the influence of a vector field
generated by an element wa = diag(a

√−1,b
√−1,−(a+ b)

√−1) ∈ m, where
a,b are real numbers satisfying the conditions (2k + l)a + (2l + k)b = 0 and
0 < a2 + b2 +(a+ b)2 < 1/(1+ t). Two pairs (ht ,wa) and (ht′ ,wa′) correspond
to isometric Randers metrics if and only if t = t ′ and |a|= |a′|.

5. G/H = SU(3)/S1
(1,1) and F is a Randers metric that solves Zermelo’s navigation

problem of the Riemannian metric defined by qt in (7.66), with t ∈ (−1,0), under
the influence of a vector field generated by an element

w(a,b,c) =

⎛
⎝ a

√−1 b+ c
√−1 0

−b+ c
√−1 −a

√−1 0
0 0 0

⎞
⎠ ∈m,

where a,b,c are real numbers satisfying the condition 0 < a2 +b2 + c2 < 1
2(1+t) .

Two pairs (ht ,w(a,b,c)) and (ht′ ,w(a′,b′,c′)) correspond to isometric Randers
metrics if and only if t = t ′ and a2 + b2 + c2 = (a′)2 +(b′)2 +(c′)2.

Moreover, Randers metrics in different cases (1) through (5) cannot be isometric.

For the proof, just note that metrics in (ii) of Theorem 7.14, with t1 �= t2 =
t3 = 1, are invariant under the group SU(4n+ 2) and are isometric to metrics in
Theorem 7.13.

7.7 Homogeneous Randers Spaces of Negative
Flag Curvature

We now consider homogeneous Randers spaces with negative flag curvature and
isotropic S-curvature. As we have seen in the above section, there is a large class
of non-Riemannian homogeneous Randers spaces with isotropic S-curvature and
positive flag curvature. One may hope that there also exist some examples of
negative flag curvature. However, in contrast to the positive case, we will obtain
a rigidity theorem. In fact, the rigidity theorem holds even in the more generalized
case for a negative Ricci scalar.

Theorem 7.18. Let (M,F) be a connected homogeneous Randers space. If F has
almost isotropic S-curvature and negative Ricci scalar, then F must be Riemannian.
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Here by “negative Ricci scalar” we mean that its Ricci scalar is everywhere less
than 0. We now recall some results on homogeneous Riemannian manifolds with
negative sectional curvature. It is well known that the rank-one Riemannian symmet-
ric spaces of noncompact type must be of negative curvature. By the discussion of
Chap. 2, all these spaces are simply connected. Kobayashi generalized this result by
showing that every homogeneous Riemannian manifold with nonpositive sectional
curvature and negative Ricci curvature must be simply connected; see Sect. 4.4.

Wolf studied the bounded isometries of homogeneous Riemannian manifolds of
nonpositive sectional curvature and proved that each such Riemannian metric can
be realized as a left-invariant metric on a connected solvable Lie group [174]. Based
on this result, Heintze thoroughly studied homogeneous Riemannian manifolds with
negative sectional curvature in [81]. It turns out that besides noncompact rank-one
symmetric spaces, there is a large number of such spaces. Moreover, E. Heintze also
provided a possible method to classify the homogeneous Riemannian manifolds
with negative sectional curvature. However, up to now there is no classification
result on homogeneous Riemannian manifolds with negative Ricci curvature.

Now we turn to the proof of Theorem 7.18. It is a corollary of the following more
general theorem:

Theorem 7.19. Let (M,F) be a connected homogeneous Randers space that solves
Zermelo’s navigation problem of a Riemannian metric h, under the influence of an
external vector field W. If F has almost isotropic S-curvature and the Ricci scalar
of W is negative somewhere, i.e., there exists x ∈ M such that Ric(x,W )< 0, then F
must be Riemannian.

To prove this theorem, we need the following lemma.

Lemma 7.7. Let F = α+β be a Minkowski Randers norm on a real vector space
V , and (h,W ) its navigation data, with W �= 0. Set λ = 1−h(W,W ). Suppose w1 =
W
|W | ,w2, . . . ,wn is an orthonormal basis of V with respect to the inner product h.
Then w1,w2, . . . ,wn is an orthogonal basis of V with respect to the inner product
gw1(,), where g is the fundamental form of F.

Proof. Since the metric matrix of h with respect to w1,w2, . . . ,wn is the identity
matrix, the metric matrix (ãi j) of α (viewed as an inner product) with respect to the
same basis satisfies

ãi j =
δi j

λ
+
δi1δ j1|W |2

λ 2 , i, j = 1,2, . . . ,n,

where λ = 1−|W |2, and the components of β are

b̃i =−δi1|W |
λ

, i = 1,2, . . . ,n.
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Set

l̃i =
ãi jy j

α(y)
and li = l̃i + b̃i.

Then the fundamental tensor of F has the expression (see [16, p. 284])

gi j(y) =
F(y)
α(y)

(ãi j(y)− l̃i(y)l̃ j(y))+ li(y)l j(y).

Considering the value at y = w1, we easily get

α(w1) =
1
λ
, F(w1) =

1−|W |
λ

, l̃i(w1) =
δi1

λ
, li(w1) =

δi1(1−|W |)
λ

.

From this we directly compute to get

gi j(w1) =

⎧⎪⎪⎨
⎪⎪⎩

(1−|W |)2

λ 2 , if i = j = 1;

(1−|W |)δi j

λ
, if i �= 1 or j �= 1.

From this the assertion follows. ��
Proof of Theorem 7.19. Let G be the unity component of the full group I(M,F) of
isometries of (M,F) and let H be the isotropy subgroup of G at x. Since (M,F) is
homogeneous, I(M,F) is transitive on M. Thus G is also transitive on M (see [83]).
Therefore M can be written as M = G/H and both h and W are invariant under
G. Let g = h+m be a decomposition of the Lie algebra with Ad(h)m ⊂ m and
denote by 〈 , 〉h the inner product on m induced by h. Since F has almost isotropic
S-curvature, by Theorem 7.11, W is a Killing vector field with respect to h and the
corresponding vector w ∈m satisfies

〈[w,v1]m,v2〉h + 〈v1, [w,v2]m〉h = 0, ∀v1,v2 ∈m. (7.67)

We need only prove that w = 0. Suppose, to the contrary, that this is not true.
Consider the Ricci scalar of F at the tangent vector w. Select n− 1 (n = dimM)
vectors v1,v2, . . . ,vn−1 such that w

|w| ,v1,v2, . . . ,vn−1 form an orthonormal basis of m
with respect to h. (Note: not with respect to the fundamental tensor of F .) Then by
Lemma 7.7, w

|w| ,v1, . . . ,vn−1 is an orthogonal basis of m, with respect to the inner

product g w
|w| (,), where g is the fundamental tensor of F . Therefore we have

Ric(x,w) =
n−1

∑
i=1

K(w,vi),
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where K denotes the flag curvature of F . If we denote the sectional curvature of h
by Kh, then by Proposition 7.8, we have

K(w,vi) = Kh(w−|w|w,vi) = Kh((1−|w|)w,vi) = Kh(w,vi), i = 1,2, . . . ,n− 1,

since |w|=√
h(w,w)< 1. Therefore we have

Ric(x,w) =
n−1

∑
i=1

Kh(w,vi) = Rich(w,w)/h(w,w),

where Rich denotes the Ricci scalar of h. By assumption, we have Rich(w,w) < 0.
Now by Corollary 2.1, we have (setting vn =

w
|w| )

Rich(w,w) = −1
2

n

∑
i=1

|[w,vi]m|2 − 1
2

n

∑
i=1

〈[w, [w,vi]]m,vi〉h

−
n

∑
i=1

〈[w, [w,vi]h]m,vi〉h +
1
4

n

∑
i, j=1

〈[vi,v j]m,w〉2
h −〈[z,w]m,w〉h,

Where z denotes the unique element in m such that 〈z,v〉h = tr(adv), and adv denotes
the adjoint action of v in the Lie algebra g. Let us compute each term of the above
formula. By (7.67), we have

−1
2

n

∑
i=1

〈[w, [w,vi]]m,vi〉h =
1
2

n

∑
i=1

〈[w,vi]m, [w,vi]m〉h.

Thus the first term and the second term sum to 0. Since w is invariant under Ad(H),
we have [w,h] = 0. Thus the third term is equal to 0. By (7.67), we also have

〈[z,w]m,w〉h =−〈[w,z]m,w〉h = 〈z, [w,w]m〉= 0.

Therefore we are left with

Rich(w,w) =
1
4

n

∑
i, j=1

〈[vi,v j]m,w〉2
h.

This is a contradiction to Rich(x,w)< 0. Therefore w must be 0 and F is Riemannian
at x. Since F is homogeneous, F is Riemannian everywhere. This completes the
proof of the theorem. ��
Corollary 7.2. Let (M,F) be a connected homogeneous Randers space. If F
has almost isotropic S-curvature and negative flag curvature, then F must be
Riemannian.
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Remark 7.7. In [139], Shen proved the following result: Let (M,F) be a complete
Finsler space with nonpositive flag curvature. If (M,F) has almost constant
S-curvature and bounded mean Cartan torsion, then F must be Riemannian
where the flag curvature is negative. Since a homogeneous with almost isotropic
S-curvature must be with constant S-curvature, and its mean Cartan torsion must
be bounded, Corollary 7.2 also follows from this result of Shen. However, the
approaches are very different. Note also that Theorems 7.18 and 7.19 cannot be
deduced from the above result of Shen.
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2. Akabar-Zadeh, H.: Sur les espaces de Finsler à courbures sectionnelles constantes. Acad. Roy.
Belg. Bull. Cl. Sci. (5) 74, 281–322 (1988)

3. Akhiezer, D.N., Vinberg, E.B.: Weakly symmetric spaces and spherical varieties. Transfor-
mation Groups 4, 3–24 (1999)

4. Alekseevskii, D.V.: Classification of quaternionic spaces with a transitive solvable group of
motions. Izv. Akad. Nauk. SSSR Ser. Mat. 9, 315–362 (1975) (English translation: Math.
USSR-Izv 9, 297–339 (1975))

5. Alekseevskii, D.V., Kinmel’fel’d, B.N.: Structure of homogeneous Riemannian manifolds
with zero Ricci curvature. Funct. Anal. Appl. 9, 95–102 (1975)

6. Aloff, S., Wallach, N.: An infinite family of distinct 7-manifolds admitting positively curved
Riemannian structures. Bull. Am. Math. Soc. 81, 93–97 (1975)

7. Ambrose, W., Singer, I.M.: A theorem on holonomy. Trans. Am. Math. Soc. 75, 428–443
(1953)

8. Ambrose, W., Singer, I.M.: On homogeneous Riemannian manifolds. Duke Math. J. 25,
647–669 (1958)

9. An, H., Deng, S.: Invariant (α ,β )-metrics on homogeneous manifolds. Monatsh. Math. 154,
89–102 (2008)

10. Antonelli, P.L., Ingarden, R.S., Matsumoto, M.: The Theory of Sprays and Finsler spaces with
Applications in Physics and Biology. Kluwer Academic, Dordrecht (1993)

11. Bacso, S., Matsumoto, M.: Randers spaces with the h-curvature tensor H dependent on
position alone. Publ. Math. Debrecen 57, 185–192 (2000)

12. Baez, J.C.: The octonions. Bull. Am. Math. Soc. 39, 145–205 (2002)
13. Bao, D.: Randers space forms. Periodica Mathematica Hungarica 48, 3–15 (2004)
14. Bao, D.: On two curvature-driven problems in Finsler geometry. Adv. Pure Math. 48, 19–71

(2007)
15. Bao, D., Chern, S.S.: On a notable connection in Finsler geometry. Houston J. Math. 19,

135–180 (1993)
16. Bao, D., Chern, S.S., Shen, Z.: An Introduction to Riemann-Finsler Geometry. Springer, New

York (2000)
17. Bao, D., Lackey, B.: Randers surfaces whose Laplacians have completely positive symbol.

Nonlinear Anal. A 38, 27–40 (1999)
18. Bao, D., Robles, C.: On Randers spaces of constant flag curvature. Rep. Math. Phys. 51, 9–42

(2003)

S. Deng, Homogeneous Finsler Spaces, Springer Monographs in Mathematics,
DOI 10.1007/978-1-4614-4244-8, © Springer Science+Business Media New York 2012

229



230 References

19. Bao, D., Robles, C.: Ricci and flag curvatures in Finsler geometry. In: Bao, D., Bryant,
R.L., Chern, S.S., Shen, Z. (eds.) A Sampler of Riemannian-Finsler Geometry, pp. 197–260.
Cambridge University Press, London (2004)

20. Bao, D., Shen, Z.: Finsler metrics with constant positive curvature on the sphere S3. J. Lond.
Math. Soc. 66, 453–467 (2002)

21. Bao, D., Robles, C., Shen, Z.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom.
66, 377–435 (2004)

22. Bazaikin, Y.V.: On a certain class of 13-dimensional Riemannian manifolds with positive
curvature. Siberian Math. J. 37, 1219–1237 (1996)

23. Bérard Bergery, L.: Les variétés Riemannienes homogènes simplement connexes de dimen-
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Szabó, Z.I., ix, 133

T
theorem of H.C. Wang, 67
theorem of partitions of unity, 87
Tits, J., 73, 149
topological Lie subgroup, 32
toral subalgebra, 44
torsion-freeness, 6, 11
totally geodesic submanifold, 73
Troyanov, M., 123
two-point homogeneous space, 70
two-step nilpotent Lie algebra, 164, 188
two-step nilpotent Lie group, 164
2mth-root metric, 98

U
unicorn problem, 22
universal covering manifold, 110

V
Vanhecke, L., 136
Vinberg, E.B., 161

W
Waerdan, van der, 66
Wallach, N., 209
Wang, H.C., ix, 69, 72, 73, 93
weakly symmetric Finsler space, 136
weakly symmetric Lie algebra, 142
weakly symmetric pair, 138
weakly symmetric Riemannian manifold, 136
Weyl chamber, 46
Weyl group, 45
Weyl’s unitary trick, 37, 120
Weyl, H., viii
Wilking, B., 213
Wolf, J.A., xi, 73, 95, 135, 225

Y
Yakimova, O. S., 161
Yano, K., 70

Z
Zermelo’s navigation problem, 27
Ziller, W., 195


	Homogeneous Finsler Spaces
	Preface
	Acknowledgments
	Contents
	Chapter 1: Introduction to Finsler Geometry
	Chapter 2: Lie Groups and Homogeneous Spaces
	Chapter 3: The Group of Isometries
	Chapter 4: Homogeneous Finsler Spaces
	Chapter 5: Symmetric Finsler Spaces
	Chapter 6: Weakly Symmetric Finsler Spaces
	Chapter 7: Homogeneous Randers Spaces
	References
	Index



