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Preface

A CR manifold is a C∞ differentiable manifold endowed with a complex subbundle
T1,0(M) of the complexified tangent bundle T (M)⊗C satisfying T1,0(M)∩T1,0(M) =
(0) and the Frobenius (formal) integrability property[

�∞(T1,0(M)) , �
∞(T1,0(M))

] ⊆ �∞(T1,0(M)).

The bundle T1,0(M) is the CR structure of M , and C∞ maps f : M → N of CR
manifolds preserving the CR structures (i.e., f∗T1,0(M) ⊆ T1,0(N )) are CR maps. CR
manifolds and CR maps form a category containing that of complex manifolds and
holomorphic maps. The most interesting examples of CR manifolds appear, however,
as real submanifolds of some complex manifold. For instance, any real hypersurface
M in Cn admits a CR structure, naturally induced by the complex structure of the
ambient space

T1,0(M) = T 1,0(Cn) ∩ [T (M)⊗ C].

Let (z1, . . . , zn) be the natural complex coordinates on Cn . Locally, in a neighborhood
of each point of M , one may produce a frame {Lα : 1 ≤ α ≤ n − 1} of T1,0(M). Geo-
metrically speaking, each Lα is a (complex) vector field tangent to M . From the point
of view of the theory of PDEs, the Lα’s are purely tangential first-order differential
operators

Lα =
n∑

j=1

a j
α(z)

∂

∂z j
, 1 ≤ α ≤ n − 1,

and T1,0(M) may be thought of as a bundle-theoretic recasting of the first-order PDE
system with complex-valued C∞ coefficients

Lαu(z) = 0, 1 ≤ α ≤ n − 1,

called the tangential Cauchy–Riemann equations. These may be equally thought of as
being induced on M by the Cauchy–Riemann equations in Cn . CR functions are solu-
tions u(z) to the tangential Cauchy–Riemann equations, and any holomorphic function
defined on a neighborhood of M will restrict to a CR function on M .
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These introductory remarks lead to two fundamental problems in CR geometry
and analysis. Given an (abstract) CR manifold, is it possible to realize it as a CR
submanifold of Cn (of some complex manifold)? This is known as the embeddability
problem, introduced to mathematical practice by J.J. Kohn [246]. The second problem
is whether a given CR function u : M → C extends to a holomorphic function defined
on some neighborhood of M (the CR extension problem). Both these problems have
local and global aspects, present many intricacies, and involve scientific knowledge
from many mathematical fields. The solution to the local embeddability problem is due
to A. Andreotti and C.D. Hill [13] in the real analytic category. Partial solutions in the
C∞ category are due to L. Boutet de Monvel [77], M. Kuranishi [263], and T. Akahori
[2]. As to the CR extension problem, it is the object of intense investigation, cf. the
monographs by A. Boggess [70] and M.S. Baouendi, P. Ebenfelt, and L.P. Rothschild
[31] for an account of the present scientific achievements in this direction.

It should become clear from this discussion that CR manifolds and their study lie
at the intersection of three main mathematical disciplines: the theory of partial dif-
ferential equations, complex analysis in several variables, and differential geometry.
While the analysis and PDE aspects seem to have captured most of the interest within
the mathematical community, there has been, over the last ten or fifteen years, some
effort to understand the differential-geometric side of the subject as well. It is true that
A. Bejancu’s discovery [55] of CR submanifolds signaled the start of a large num-
ber of investigations in differential geometry, best illustrated by the monographs by
K. Yano and M. Kon [446], A. Bejancu [56], and S. Dragomir and L. Ornea [125]. Here
by a CR submanifold we understand a real submanifold M of a Hermitian manifold
(X, J, g), carrying a distribution H(M) that is J -invariant (i.e., J H(M) = H(M))
and whose g-orthogonal complement is J -anti-invariant (i.e., J H(M)⊥ ⊆ T (M)⊥,
where T (M)⊥ → M is the normal bundle of M in X ). The notion (of a CR sub-
manifold of a Hermitian manifold) unifies concepts such as invariant, anti-invariant,
totally real, semi-invariant, and generic submanifolds. Also, the observation (due to
D.E. Blair and B.Y. Chen [64]) that proper CR submanifolds, in the sense of A. Be-
jancu, are actually CR manifolds shows that these investigations have the same central
object, the CR category, as defined at the beginning of this preface, or by S. Green-
field [187]. The study of CR submanifolds in Hermitian manifolds, in the sense of
A. Bejancu, has led to the discovery of many refined differential-geometric properties
(e.g., K. Yano and M. Kon’s classification of CR submanifolds of a complex projective
space, with semiflat normal connection, parallel f -structure in the normal bundle, and
the covariant derivative of the second fundamental form of constant length [445]) and
will surely develop further within its own borders. It should be remarked nevertheless
that as confined to Riemannian geometry (i.e., to the theory of submanifolds in Rie-
mannian manifolds, cf., e.g., [91]), the above-mentioned study is perhaps insufficiently
related to the (pseudo) convexity properties of submanifolds in complex manifolds, as
understood in analysis in several complex variables. To be more precise, if M is a real
hypersurface in Cn then the first and second fundamental forms of the given immersion
describe the way M is shaped, both intrinsically (Riemannian curvature) and extrin-
sically, yet do not describe a priori the intrinsic properties of M as related to its Levi
form. As an extreme case, M may be Levi flat yet will always exhibit, say, curvature
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properties arising from its first fundamental form. Or to give a nondegenerate example,
the boundary of the Siegel domain �n = {z = (z′, zn) ∈ Cn−1 × C : Im(zn) > ‖z′‖2}
(i.e., the Heisenberg group) admits a contact form θ with a positive definite Levi form
Gθ , and hence gθ = πH Gθ + θ ⊗ θ (the Webster metric) is a Riemannian metric, yet
none of the metrics gλθ , λ ∈ C∞(M), λ > 0, coincides with the metric induced on
M by the flat Kähler metric of Cn .

Central to the present monograph is the discovery, around 1977–78, of a canonical
linear connection ∇ on each nondegenerate CR manifold M of hypersurface type (the
Tanaka–Webster connection) due to independent investigations by N. Tanaka [398]
and S. Webster [422]. ∇ parallelizes both the Levi form and the complex structure
of the Levi, or maximally complex, distribution of M , resembles both the Levi-Civita
connection of a Riemannian manifold, and the Chern connection of a Hermitian man-
ifold, and is a foundational tool for the pseudo-Hermitian geometry of a (nondegener-
ate) CR manifold, which is the main subject of this book. Now the curvature proper-
ties of ∇ are indeed tied to the CR structure: for instance, the Chern curvature tensor
Cβαλσ , a CR invariant of M , is computable in terms of the curvature of ∇ (and its con-
tractions, such as the pseudo-Hermitian Ricci tensor and the pseudo-Hermitian scalar
curvature) and Cβαλσ = 0 if and only if M is locally CR equivalent to the standard
sphere in Cn+1, n > 1 (cf. S.S. Chern and J. Moser [99]). Variants of the Tanaka–
Webster connection are known already in different contexts, e.g., on CR manifolds
of higher CR codimension (R. Mizner [312]) or on contact Riemannian manifolds
(S. Tanno [401]), whose almost CR structure is not integrable, in general.

After a detailed exposition of the basic facts of pseudo-Hermitian geometry of
nondegenerate CR manifolds in Chapter 1, the present monograph introduces the main
geometric object, the Fefferman metric, both a tool and object of investigation of the
first magnitude. It is due to C. Fefferman [138], who first devised it as a (Lorentz)
metric on (∂�) × S1, for a given strictly pseudoconvex domain � ⊂ Cn , in connec-
tion with the boundary behavior of the Bergman kernel of � and the solution to the
Dirichlet problem for the (inhomogeneous) complex Monge–Ampére equation⎧⎪⎨⎪⎩(−1)n+1 det

(
u ∂u/∂zk

∂u/∂z j ∂2u/∂z j∂zk

)
= 1 in �,

u = 0 on ∂�

(the existence, uniqueness, and regularity of the solution are due to S.Y. Cheng and
S.T. Yau [97]). See Chapter 2 of this book. By the mathematical creation of F. Far-
ris [137], and J.M. Lee [271], an intrinsic description of the Fefferman metric (as a
Lorentz metric on

C(M) =
(
�n+1,0(M) \ {0}

)/
R+,

where n is the CR dimension) is available. Also, the work of G. Sparling [377],
C.R. Graham [182], L. Koch [242]–[244], helped clarify a number of geometric facts
(e.g., how the Fefferman metric may be singled out, in terms of curvature properties,
from the set of all Lorentz metrics on C(M) (cf. [182]), or providing a simple proof
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(cf. [242]) to H. Jacobowitz’s theorem (cf. [220]) that nearby points on a strictly pseu-
doconvex CR manifold may be joined by a chain). Other properties are known, e.g.,
that certain Pontryagin forms of the Fefferman metric are obstructions to global CR
equivalence to a sphere (and perhaps to global embeddability); cf. E. Barletta et al.
[38]. The Fefferman metric remains however an insufficiently understood object and
worth of further investigation.

One of the most spectacular results in this book is D. Jerison and J.M. Lee’s so-
lution (cf. [226]–[228] and our Chapter 3) to the CR Yamabe problem, which is the
Yamabe problem for the Fefferman metric. As the Yamabe problem in Riemannian
geometry (find a conformal transformation g̃ = f g, f > 0, such that g̃ is of constant
scalar curvature) the Yamabe problem for the Fefferman metric may be reformulated
as a nonlinear PDE on C(M) whose principal part is the Laplace–Beltrami operator of
the metric; here the wave operator as the metric is Lorentzian, and hence nonelliptic.
However, this equation may be shown (cf. [227]) to project on

bn�bu + ρu = λu p−1,

the CR Yamabe equation, a nonlinear PDE on M , whose principal part is the sub-
Laplacian �b. The book presents the solution to the CR Yamabe problem only when
λ(M) ≤ λ(S2n+1) (cf. Theorem 3.4 in Chapter 4), where λ(M) is the CR analogue to
the Yamabe invariant in Riemannian geometry; i.e.,

λ(M) = inf{
∫

M
{bn‖πH∇u‖2 + ρu2}θ ∧ (dθ)n :

∫
M

|u|pθ ∧ (dθ)n = 1}.

The remaining case was dealt with by N. Gamara and R. Yacoub [164], who completed
the solution to the CR Yamabe problem (see the comments at the end of Section 4.7).
�b is degenerate elliptic and subelliptic of order 1/2 (and hence hypoelliptic). The au-
thors of this book believe that subelliptic PDEs are bound to play within CR geometry
the strong role played by elliptic theory in Riemannian geometry. A similar applica-
tion is to use the Fefferman metric in the study of pseudoharmonic maps; cf. Chapter
4 (these are, locally, J. Jost and C.J. Xu’s subelliptic harmonic maps; cf. [234]).

Another main theme of the book is represented by pseudo-Einsteinian structures
(i.e., contact forms such that the pseudo-Hermitian Ricci tensor of their Tanaka–
Webster connection is proportional to the Levi form) and the problem of local and
global existence of pseudo-Einsteinian structures on CR manifolds. We present the
achievements in the field, together with the Lee conjecture [that each compact strictly
pseudoconvex CR manifold whose CR structure has a vanishing first Chern class
(c1(T1,0(M)) = 0) must possess some global pseudo-Einsteinian structure]. The global
problem turns out to be related to the theory of CR immersions, certain aspects of
which are discussed in Chapter 6. The source mainly used for discussing pseudo-
Einsteinian structures is, of course, the original paper [270]. However, our works [121]
(solving the Lee conjecture on a compact strictly pseudoconvex CR manifold admit-
ting a contact form whose corresponding characteristic direction is regular in the sense
of R. Palais) [37] (demonstrating pseudo-Einsteinian contact forms on (total spaces of)
tangent sphere bundles over real space forms Mn(1)) [68] (taking into account the re-
lationship between the pseudo-Einsteinian condition and pseudo-Hermitian holonomy,
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i.e., the holonomy of the Tanaka–Webster connection), and the work by M.B. Stenzel
[386] (producing pseudo-Einsteinian structures on boundaries of tubes T ∗εX over har-
monic Riemannian manifolds (X, g)), extend the knowledge about pseudo-Einsteinian
structures somewhat beyond the starting point of J.M. Lee [270]. As to the relation-
ship between the global existence problem of pseudo-Einsteinian structures and the
theory of CR, or rather pseudo-Hermitian, immersions (cf. [424] and [120]), let us
mention that the Lee class may be interpreted as an obstruction to the existence of a
pseudo-Hermitian immersion f : M → S2N+1, of a strictly pseudoconvex CR mani-
fold M into an odd-dimensional sphere, such that f has flat normal Tanaka–Webster
connection ∇⊥ (cf. [36] and the corollary to Theorem 6.1 in this book). The Lee class
is a cohomology class γ (M) ∈ H1(M,P) with coefficients in the sheaf P of CR-
pluriharmonic functions on M , as devised by J.M. Lee [270], such that γ (M) = 0 if
and only if M admits a globally defined pseudo-Einsteinian contact form.

We deal with quasiconformal mappings of CR manifolds (a subject developed
mainly by A. Korányi and H. Reimann [254]–[255]) in Chapter 7, with H. Urakawa’s
Yang–Mills connections (cf. [412]) on CR manifolds in Chapter 8, and with spectral
geometry of CR manifolds (cf. A. Greenleaf [186]) in Chapter 9. A previous version
of this text contained material devoted to the interplay between CR geometry and
foliation theory, which in the meanwhile grew into an independent volume. While the
presentation in Chapter 7 owes, as mentioned above, to A. Korányi and H. Reimann
(cf. op. cit.), the observation that the ordinary Beltrami equations in several complex
variables (cf. [419]) induce on tial�n (the boundary of the Siegel domain �n) the
(tangential) Beltrami equations considered by A. Korányi and H. Reimann is new (cf.
[41]). It is interesting to note that given a strictly pseudoconvex domain � ⊂ Cn , any
biholomorphism F of � lifts to a C∞ map

F� : ∂�× S1 → ∂�× S1 , F�(z, γ ) := (F(z), γ − arg(det F ′(z))),

preserving the “extrinsic” Fefferman metric (2.62) up to a conformal factor(
F�
)∗

g = ∣∣det F ′(z)
∣∣2/(n+1)

g ,

(cf. [138], p. 402, or by a simple calculation based on (2.62) in Chapter 2 of this book).
When F is only a symplectomorphism of (�, ω), with ω := −i∂∂ log K (z, z)), ex-
tending smoothly to the boundary, a fundamental result of A. Korányi and H. Reimann,
presented in Chapter 7, is that the boundary values f of such F constitute a contact
transformation. Thus, in general, F is not a holomorphic map, nor are its boundary
values f a CR map, both phenomena manifesting in the presence of a “dilatation”
(dil(F) for F , and μ f for f , themselves related in the limit as z → ∂�, cf. Theo-
rem 7.7 in Chapter 7). Although f ∗Gθ = λ f Gθ fails to hold (since f is not CR),
one may “adjust” the complex structure J on H(∂�) (cf. section 7.1) and get a new
complex structure J f such that f ∗Gθ = λ f G f , where G f (X, Y ) := (dθ)(X, J f Y ),
X, Y ∈ H(M). The problem of computing the Fefferman metric of (M, J f , θ), or
more generally of investigating the relationship (if any) between Fθ and the symplec-
tomorphisms of (�, ω), remains unsolved.

As to Chapter 8, let us mention that while solving the inhomogeneous Yang–Mills
equation
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d∗
D RD = 4ni{dc

Mρ − ρ θ} ⊗ I (0.1)

for a Hermitian connection D ∈ C(E, h), pseudo-Einsteinian structures come once
again into the picture in a surprising way. The canonical line bundle K (M) → M
over a pseudo-Einsteinian manifold M is a quantum bundle (in the sense of [259]):
this is just the condition that the canonical S-connection of K (M) has curvature of
type (1, 1), and one may use Theorem 8.2 to explicitly solve (0.1) (demonstrating
among other things the strength of the purely differential-geometric approach to the
study of the inhomogeneous Yang–Mills equations on CR manifolds).

This book also aims to explain how certain results in classical analysis apply to
CR geometry (part of the needed material is taken from the fundamental paper by
G.B. Folland and E.M. Stein [150]). This task, together with the authors’ choice to
give detailed proofs to a number of geometric facts, is expected to add to the clar-
ity of exposition. It surely added in volume and prevented us from including certain
modern, and still growing, subjects. A notable example is the theory of homogeneous
CR manifolds (cf. H. Azad, A. Huckleberry, and W. Richthofer [26], A. Krüger [262],
R. Lehmann and D. Feldmueller [277], and D.V. Alekseevski and A. Spiro [9]–[10]).
See however our notes at the end of Chapter 5. Another absent protagonist is the theory
of deformation of CR structures (cf. T. Akahori [3]–[6], T. Akahori and K. Miyajima
[7], R.O. Buchweitz and J.J. Millson [78], J.J. Millson [302], and K. Miyajima [306]–
[311]). The same holds for more recent work, such as H. Baum’s (cf. [49]) on spinor
calculus in the presence of the Fefferman metric, and F. Loose’s (cf. [288]) initiating
a study of the CR moment map, perhaps related to that of CR orbifolds (cf. [128]).

We may conclude that such objects as the Tanaka–Webster connection, the Fef-
ferman metric, and pseudo-Einsteinian structures constitute the leitmotif of this book.
More precisely, this book is an attempt to understand certain aspects of the relation-
ship between Lorentzian geometry (on (C(M), Fθ )) and pseudo-Hermitian geometry
(on (M, θ)), a spectacular part of which is the relationship between hyperbolic and
subelliptic PDEs (as demonstrated in Sections 2.5 and 4.4.3 of this monograph). The
authors found a powerful source of techniques and ideas in the scientific creation of
S.M. Webster and J.M. Lee, to whose papers they returned again and again over the
years, and to whom they wish to express their gratitude.

Sorin Dragomir
Giuseppe Tomassini
August 2005
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CR Manifolds

Let � be a smooth domain in Cn+1, i.e., there is an open neighborhood U ⊃ � and
a real-valued function ρ ∈ C2(U ) such that � = {z ∈ U : ρ(z) > 0}, Cn+1 \ � =
{z ∈ U : ρ(z) < 0}, the boundary of � is given by ∂� = {z ∈ U : ρ(z) = 0}, and
Dρ(z) �= 0 for any z ∈ ∂�. Here Dρ is the gradient

Dρ =
(
∂ρ

∂x1
, . . . ,

∂ρ

∂x2n+2

)
and (x1, . . . , x2n+2) are the Cartesian coordinates on R2n+2 � Cn+1.

The Cauchy–Riemann equations in Cn+1 induce on ∂� an overdetermined system
of PDEs with smooth complex-valued coefficients

Lαu(z) ≡
n+1∑
j=1

a j
α(z)

∂u

∂z j
= 0, 1 ≤ α ≤ n (1.1)

(the tangential Cauchy–Riemann equations), z ∈ V , with V ⊆ (∂�) ∩ U open. Here
Lα are linearly independent (at each point of V ) and

n+1∑
j=1

a j
α(z)

∂ρ

∂z j
= 0, 1 ≤ α ≤ n, (1.2)

for any z ∈ V , i.e., Lα are purely tangential first-order differential operators (tangent
vector fields on ∂�). It then follows that[

Lα, Lβ
] = Cγαβ(z)Lγ (1.3)

for some complex-valued smooth functions Cγαβ on V .
At each point z ∈ V the Lα,z’s span a complex n-dimensional subspace T1,0(∂�)z

of the complexified tangent space Tz(∂�) ⊗R C. The bundle T1,0(∂�) → ∂� is the
CR structure of ∂�, and a bundle-theoretic recast of (1.1)–(1.3) consists in observing
that
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T1,0(∂�) = [T (∂�)⊗ C] ∩ T 1,0(Cn+1), (1.4)

where T 1,0(Cn+1) is the holomorphic tangent bundle over Cn+1, and that M = ∂�

satisfies the axioms (1.5)–(1.6) below. A C1 function u : ∂� → C is a CR function if
Z(u) = 0 for any Z ∈ T1,0(∂�). Locally, a CR function is a solution of (1.1).

The pullback (via j : ∂� ⊂ U ) of the complex 1-form i
2 (∂ − ∂)ρ is a pseudo-

Hermitian structure θ on ∂�. When ∂� is nondegenerate θ is a contact form. Every-
thing stated above holds should one replace the boundary ∂� by some (open piece of
a) smooth real hypersurface in Cn+1.

As observed by N. Tanaka [398], and S. Webster [422], when θ is a contact form
M may be described in terms of pseudo-Hermitian geometry (a term coined as a se-
guito of the—fundamental to this book—paper [422]), which complements the (better-
known) contact Riemannian geometry (cf. [62]) and is well suited for capturing the
convexity properties of M (as familiar in the analysis in several complex variables).
M carries a semi-Riemannian metric gθ (Riemannian, if M is strictly pseudoconvex)
coinciding with the Levi form along the maximal complex distribution of M . This
is the Webster metric (cf. Section 1.1.3). Of course, M carries also the Riemannian
metric induced from the (flat Kähler) metric of Cn+1, and the pseudo-Hermitian and
contact Riemannian geometries do interact. However, that the two are quite differ-
ent in character should be emphasized: for instance, none of the Webster metrics
gλθ , for every smooth λ : M → (0,+∞), of the boundary of the Siegel domain
�n+1 = {(z, w) ∈ Cn × C : Im(w) > ‖z‖2} coincides with the metric induced from
Cn+1.

CR manifolds as in (1.3), or in (1.12) below, are embedded. The currently accepted
concept of a CR manifold as a tool for studying the tangential Cauchy–Riemann equa-
tions by geometric methods is, however, more general. The manifold may be abstract,
and not all CR manifolds embed, even locally (cf. Section 1.6). The CR codimension
(cf. Section 1.1) may be > 1, and distinct from the codimension (when M is a CR
submanifold). The Levi form may be vector, rather than scalar, valued (and then there
is no natural notion of strict pseudoconvexity) or degenerate (and then the tools of
pseudo-Hermitian geometry are not available).

According to our purposes in this book, that is, to describe (1.1) by means of
pseudo-Hermitian geometry, we shall assume integrability, nondegeneracy, and CR
codimension 1. The reader should nevertheless be aware of the existence of a large
literature, with similar expectations, and not subject to our hypothesis.1

1 For instance, H. Rossi and M. Vergne [356], deal with CR manifolds � = �(V, N , E) of
the form � = {(x + iy, u) : x, y ∈ Rn, u ∈ E, y − N (u) ∈ V }, where E is a domain in
Cm , N : E → Rn is a smooth function, and V is a submanifold in Rn . These are in general
degenerate (the Levi form has a nontrivial null space); yet this is not relevant to the purpose
of analysis on �. Indeed, it may be shown (by a partial Fourier transform technique) that the
CR functions on � satisfy a Paley–Wiener (type) theorem (cf. [356], p. 306). An application
of their result (to constant-coefficient PDEs on the Heisenberg group) is given by D.E. Blair
et al. [67]. To give one more example, we may quote the long series of papers by C.D. Hill
and M. Nacinovich [202], in which the CR codimension is always > 1, and eventually only
a small amount of pseudoconcavity is prescribed (cf. [203]).
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Chapter 1 is organized as follows. In Section 1.1 we discuss the fundamentals (CR
structures, the Levi form, characteristic directions, etc.) and examples (e.g., CR Lie
groups). Sections 1.2 to 1.5 are devoted to the construction and principal properties
of what appears to be the main geometric tool through this book, the Tanaka–Webster
connection. Ample space is dedicated to curvature properties, details of which appear
nowhere else in the mathematical literature, and to applications (due to S. Webster
[422]) of the Chern–Moser theorem (CR manifolds with a vanishing Chern tensor
are locally CR isomorphic to spheres) to several pseudo-Hermitian space forms. In
Section 1.6 we discuss CR structures as G-structures and hint at some open problems.

1.1 CR manifolds

1.1.1 CR structures

Let M be a real m-dimensional C∞ differentiable manifold. Let n ∈ N be an integer
such that2 1 ≤ n ≤ [m/2]. Let T (M) ⊗ C be the complexified tangent bundle over
M . Elements of T (M)⊗ C are of the form u ⊗ 1 + v⊗ i , where u, v ∈ T (M) are real
tangent vectors (and i = √−1). For simplicity, we drop the tensor products and write
merely u + iv (a complex tangent vector on M). The following definition is central to
this book.

Definition 1.1. Let us consider a complex subbundle T1,0(M) of the complexified tan-
gent bundle T (M)⊗ C, of complex rank n. If

T1,0(M) ∩ T0,1(M) = (0) (1.5)

then T1,0(M) is called an almost CR structure on M . Here T0,1(M) = T1,0(M) and
throughout an overbar denotes complex conjugation. The integers n and k = m − 2n
are respectively the CR dimension and CR codimension of the almost CR structure
and (n, k) is its type. A pair (M, T1,0(M)) consisting of an almost CR structure of
type (n, k) is an almost CR manifold (of type (n, k)). �

It is easy to see that an almost CR manifold of type (n, 0) is an almost complex
manifold (cf., e.g., [241], vol. II, p. 121).

Given a vector bundle E → M we denote by �∞(U, E) the space of all C∞
cross-sections in E defined on the open subset U ⊆ M . We often write �∞(E) for
�∞(M, E) (the space of globally defined smooth sections). Also Ex is the fiber in E
over x ∈ M .

Definition 1.2. An almost CR structure T1,0(M) on M is (formally) integrable if for
any open set U ⊆ M ,[

�∞(U, T1,0(M)), �
∞(U, T1,0(M))

] ⊆ �∞(U, T1,0(M)). (1.6)

2 If a ∈ R then [a] ∈ Z denotes the integer part of a.
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That is, for any two complex vector fields Z ,W (defined on U ⊆ M) belonging to
T1,0(M), their Lie bracket [Z ,W ] belongs to T1,0(M), i.e., [Z ,W ]x ∈ T1,0(M)x for
any x ∈ U . An integrable almost CR structure (of type (n, k)) is referred to as a CR
structure (of type (n, k)), and a pair (M, T1,0(M)) consisting of a C∞ manifold and a
CR structure (of type (n, k)) is a CR manifold (of type (n, k)). �

CR manifolds are the objects of a category whose arrows are smooth maps pre-
serving CR structures. Precisely we have the following definition:

Definition 1.3. Let (M, T1,0(M)) and (N , T1,0(N )) be two CR manifolds (of arbitrary,
but fixed type). A C∞ map f : M → N is a CR map if

(dx f )T1,0(M)x ⊆ T1,0(N ) f (x), (1.7)

for any x ∈ M , where dx f is the (C-linear extension to Tx (M)⊗RC of the) differential
of f at x . �

It is easy to see that the complex manifolds and holomorphic maps form a subcat-
egory of the category of CR manifolds and CR maps.

Let (M, T1,0(M)) be a CR manifold of type (n, k). Its maximal complex, or Levi,
distribution is the real rank 2n subbundle H(M) ⊂ T (M) given by

H(M) = Re{T1,0(M)⊕ T0,1(M)}.
It carries the complex structure Jb : H(M)→ H(M) given by

Jb(V + V ) = i(V − V ),

for any V ∈ T1,0(M). Here i = √−1. The (formal) integrability requirement (1.6) is
equivalent to

[Jb X, Y ] + [X, JbY ] ∈ �∞(U, H(M)), (1.8)

[Jb X, JbY ] − [X, Y ] = Jb{[Jb X, Y ] + [X, JbY ]}, (1.9)

for any X, Y ∈ �∞(U, H(M)); cf. S. Greenfield [187]. This is formally similar to
the notion of integrability of an almost complex structure (cf., e.g., [241], vol. II, p.
124). It should be noted, however, that in contrast to the case of an almost complex
manifold, Jb is not defined on the whole of T (M), and [Jb X, Y ] + [X, JbY ] may not
lie in H(M) (thus requiring the axiom (1.8)). Proving the equivalence of (1.6) and
(1.8)–(1.9) is an easy exercise and therefore left to the reader.

Let f : M → N be a CR mapping. Then (1.7) is equivalent to the prescriptions

(dx f )H(M)x ⊆ H(N ) f (x) (1.10)

and

(dx f ) ◦ Jb,x = J N
b, f (x) ◦ (dx f ), (1.11)

for any x ∈ M . Here J N
b : H(N )→ H(N ) denotes the complex structure in the Levi

distribution H(N ) of N .



1.1 CR manifolds 5

Definition 1.4. f : M → N is a CR isomorphism (or a CR equivalence) if f is a C∞
diffeomorphism and a CR map. �

CR manifolds arise mainly as real submanifolds of complex manifolds. Let V be a
complex manifold, of complex dimension N , and let M ⊂ V be a real m-dimensional
submanifold. Let us set

T1,0(M) = T 1,0(V ) ∩ [T (M)⊗ C] , (1.12)

where T 1,0(V ) is the holomorphic tangent bundle over V , i.e., locally the span of
{∂/∂z j : 1 ≤ j ≤ N }, where (z1, . . . , zN ) are local complex coordinates on V . The
following result is immediate:

Proposition 1.1. If M is a real hypersurface (m = 2N − 1) then T1,0(M) is a CR
structure of type (N − 1, 1).

In general the complex dimension of T1,0(M)x may depend on x ∈ M . Nevertheless,
if

dimC T1,0(M)x = n (= const)

then (M, T1,0(M)) is a CR manifold (of type (n, k)). The reader will meet no difficulty
in checking both statements as a consequence of the properties T 1,0(V ) ∩ T 0,1(V ) =
(0) (where T 0,1(V ) = T 1,0(V )) and Z ,W ∈ T 1,0(V ) �⇒ [Z ,W ] ∈ T 1,0(V ).

Definition 1.5. If k = 2N − m (i.e., the CR codimension of (M, T1,0(M)) and the
codimension of M as a real submanifold of V coincide) then (M, T1,0(M)) is termed
generic. �

1.1.2 The Levi form

Significant portions of the present text will be devoted to the study of CR manifolds
of CR codimension k = 1 (referred to as well as CR manifolds of hypersurface type).
Let M be a connected CR manifold of type (n, 1). Assume M to be orientable. Let

Ex = {ω ∈ T ∗
x (M) : Ker(ω) ⊇ H(M)x },

for any x ∈ M . Then E → M is a real line subbundle of the cotangent bundle
T ∗(M) → M and E � T (M)/H(M) (a vector bundle isomorphism). Since M is
orientable and H(M) is oriented by its complex structure Jb, it follows that E is ori-
entable. Any orientable real line bundle over a connected manifold is trivial, so there
exist globally defined nowhere vanishing sections θ ∈ �∞(E).

Definition 1.6. Any such section θ is referred to as a pseudo-Hermitian structure on
M . Given a pseudo-Hermitian structure θ on M the Levi form Lθ is defined by

Lθ (Z ,W ) = −i(dθ)(Z ,W ), (1.13)

for any Z ,W ∈ T1,0(M). �
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Since E → M is a real line bundle, any two pseudo-Hermitian structures θ, θ̂ ∈
�∞(E) are related by

θ̂ = λ θ, (1.14)

for some nowhere-zero C∞ function λ : M → R. Let us apply the exterior differenti-
ation operator d to (1.14). We get

d θ̂ = dλ ∧ θ + λdθ.

Since Ker(θ) = H(M) (the C-linear extension of) θ vanishes on T1,0(M) and T0,1(M)
as well. Consequently, the Levi form changes according to

L
θ̂

= λLθ (1.15)

under any transformation (1.14) of the pseudo-Hermitian structure. This leads to a
largely exploited analogy between CR and conformal geometry (cf., e.g., J.M. Lee
[270, 271], D. Jerison and J.M. Lee [227, 228], C.R. Graham [182], etc.), a matter we
will treat in detail in the subsequent chapters of this text.

Let (M, T1,0(M)) be an orientable CR manifold of type (n, 1) (of hypersurface
type) and θ a fixed pseudo-Hermitian structure on M . Define the bilinear form Gθ by
setting

Gθ (X, Y ) = (dθ)(X, JbY ), (1.16)

for any X, Y ∈ H(M). Note that Lθ and (the C-bilinear extension to H(M) ⊗ C of)
Gθ coincide on T1,0(M)⊗ T0,1(M). Then

Gθ (Jb X, JbY ) = Gθ (X, Y ), (1.17)

for any X, Y ∈ H(M). Indeed, we may (by (1.8)–(1.9)) perform the following calcu-
lation:

Gθ (Jb X, JbY )− Gθ (X, Y ) = −(dθ)(Jb X, Y )− (dθ)(X, JbY )

= 1

2
{θ([Jb X, Y ])+ θ([X, JbY ])}

= 1

2
θ(Jb{[X, Y ] − [Jb X, JbY ]}) = 0,

since θ ◦ Jb = 0. In particular, Gθ is symmetric.

Definition 1.7. We say that (M, T1,0(M)) is nondegenerate if the Levi form Lθ is non-
degenerate (i.e., if Z ∈ T1,0(M) and Lθ (Z ,W ) = 0 for any W ∈ T1,0(M) then Z = 0)
for some choice of pseudo-Hermitian structure θ on M . If Lθ is positive definite (i.e.,
Lθ (Z , Z) > 0 for any Z ∈ T1,0(M) , Z �= 0) for some θ , then (M, T1,0(M)) is said
to be strictly pseudoconvex. �
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If θ and θ̂ = λθ are two pseudo-Hermitian structures, then as a consequence of (1.15),
Lθ is nondegenerate if and only if L

θ̂
is nondegenerate. Hence nondegeneracy is a CR-

invariant property, i.e., it is invariant under a transformation (1.14). Of course, strict
pseuoconvexity is not a CR-invariant property. Indeed, if Lθ is positive definite then
L−θ is negative definite.

Definition 1.8. Let M be a nondegenerate CR manifold and θ a fixed pseudo-
Hermitian structure on M . The pair (M, θ) is referred to as a pseudo-Hermitian man-
ifold. �
Let f : M → N be a CR map and θ , θN pseudo-Hermitian structures on M and N ,
respectively. Then f ∗θN = λ θ , for some λ ∈ C∞(M).
Definition 1.9. Let M and N be two CR manifolds and θ , θN pseudo-Hermitian struc-
tures on M and N , respectively. We say that a CR map f : M → N is a pseudo-
Hermitian map if f ∗θN = c θ , for some c ∈ R. If c = 1 then f is referred to as an
isopseudo-Hermitian map. �
Let us go back for a moment to the case of CR manifolds of arbitrary type. If
(M, T1,0(M)) is a CR manifold of type (n, k) then its Levi form is defined as follows.
Let x ∈ M and v,w ∈ T1,0(M)x . We set

Lx (v,w) = i πx
[
V,W

]
x ,

where π : T (M) ⊗ C → (T (M) ⊗ C)/(H(M) ⊗ C) is the natural bundle map and
V,W ∈ �∞(T1,0(M)) are arbitrary C∞ extensions of v,w (i.e., Vx = v, Wx =
w). The definition of Lx (v,w) does not depend on the choice of extensions of v,w
because of

πx
[
V,W

]
x = vαwβπx

[
Tα, Tβ

]
x
,

where v = vαTα,x and w = wαTα,x , for some local frame {T1, . . . , Tn} of T1,0(M)
defined on an open neighborhood of x (and Tα = Tα). Then (M, T1,0(M)) is said to
be nondegenerate if L is nondegenerate. However, since for k ≥ 2 the Levi form L
is vector valued, there isn’t any obvious way to generalize the notion of strict pseudo-
convexity (to the arbitrary CR codimension case).

Let us check that the new and old concepts of Levi form coincide (up to an isomor-
phism) when k = 1. Let (M, T1,0(M)) be an oriented CR manifold (of hypersurface
type) and θ a pseudo-Hermitian structure on M . Consider the bundle isomorphism

�θ :
T (M)⊗ C
H(M)⊗ C

→ E

given by

(�θ )x (v + H(M)x ⊗R C) = θx (v) θx ,

for any v ∈ Tx (M)⊗ C, x ∈ M . Then

(�θ )x Lx (v,w) = 2 (Lθ )x (v,w) θx ,

for any v,w ∈ T1,0(M)x . �
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1.1.3 Characteristic directions on nondegenerate CR manifolds

Let (M, T1,0(M)) be a CR manifold and θ a fixed pseudo-Hermitian structure on M .
As a consequence of the formal integrability property,

(dθ)(Z ,W ) = 0, Z ,W ∈ T1,0(M).

Of course, in the preceding identity dθ is thought of as extended by C-linearity (to
T (M)⊗ C). Moreover, we also have (dθ)(Z ,W ) = 0 (by complex conjugation), for
any Z ,W ∈ T1,0(M). If (M, T1,0(M)) is nondegenerate then dθ is nondegenerate on
H(M). Indeed, let us assume that X = Z + Z ∈ H(M) (Z ∈ T1,0(M)) and

(dθ)(X, Y ) = 0, (1.18)

for any Y ∈ H(M). Let X � denote the interior product with X . For instance,
(X� dθ)(Y ) = (dθ)(X, Y ) for any Y ∈ X (M). When X � dθ is extended by C-
linearity, (1.18) continues to hold for any Y ∈ H(M) ⊗ C = T1,0(M) ⊕ T0,1(M);
hence

0 = (dθ)(X,W ) = i Lθ (Z ,W ),

for any W ∈ T1,0(M). It follows that Z = 0. �
Consequently we may establish the following proposition:

Proposition 1.2. There is a unique globally defined nowhere zero tangent vector field
T on M such that

θ(T ) = 1, T � dθ = 0. (1.19)

T is transverse to the Levi distribution H(M).

To prove Proposition 1.2 one uses the following fact of linear algebra (together with
the orientability assumption).

Proposition 1.3. Let V be a real (n + 1)-dimensional linear space and H ⊂ V an
n-dimensional subspace. Let ω be a skew-symmetric bilinear form on V . Assume that
ω is nondegenerate on H. Then there is v0 ∈ V , v0 �= 0, such that ω(v0, v) = 0 for
any v ∈ V .

Proof. Let us set

K = {v ∈ V : ω(v, u) = 0 , ∀ u ∈ H}.
The proof of Proposition 1.3 is organized in two steps, as follows.
Step 1. K is 1-dimensional.
Indeed, given a linear basis {e1, . . . , en+1} of V with {e1, . . . , en} ⊂ H , then for
each v = ∑n+1

j=1 λ j e j ∈ K we have Aλ = 0 where A = [a jk], a jk = ω(e j , ek),

1 ≤ j ≤ n + 1, 1 ≤ k ≤ n, and λ = (λ1, . . . , λn+1)
T . Thus K is the solution
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space to the homogeneous system AX = 0, so that dimR K = n + 1 − rank(A) and
rank(A) = n (by the nondegeneracy of ω on H ). �
Step 2. H ∩ K = (0).
If v ∈ H ∩ K then v ∈ K yields ω(v, u) = 0 for any u ∈ H such that v = 0 (since
v ∈ H and ω is nondegenerate). �

By Steps 1 and 2, V = H ⊕ K . Let (by Step 1) v0 ∈ K , v0 �= 0. This is the
vector we are looking for. Indeed, given any v ∈ V there are w ∈ H and λ ∈ R with
v = w + λv0 such that ω(v0, v) = 0 by the skew-symmetry of ω. �

The tangent vector field T determined by (1.19) is referred to as the characteristic
direction of (M, θ). Next, we may state the following result:

Proposition 1.4. Let (M, T1,0(M)) be a nondegenerate CR manifold, θ a pseudo-
Hermitian structure on M, and T the corresponding characteristic direction. Then

T (M) = H(M)⊕ RT . (1.20)

Indeed, let X ∈ T (M) and set Y = X − θ(X)T . Then θ(Y ) = 0, i.e., Y ∈ Ker(θ) =
H(M). Proposition 1.4 is proved.

Using (1.20) we may extend Gθ to a semi-Riemannian metric gθ on M , which will
play a crucial role in the sequel.

Definition 1.10. Let (M, T1,0(M)) be a nondegenerate CR manifold and θ a pseudo-
Hermitian structure on M . Let gθ be the semi-Riemannian metric given by

gθ (X, Y ) = Gθ (X, Y ), gθ (X, T ) = 0, gθ (T, T ) = 1,

for any X, Y ∈ H(M). This is called the Webster metric of (M, θ). �

Assume that (M, T1,0(M)) is nondegenerate. It is not difficult to check that the
signature (r, s) of Lθ,x doesn’t depend on x ∈ M . Also, (r, s) is a CR-invariant.
Moreover, the signature of the Webster metric gθ is (2r + 1, 2s). If (M, T1,0(M)) is
strictly pseudoconvex and θ is chosen in such a way that Lθ is positive definite, then gθ
is a Riemannian metric on M . Let πH : T (M) → H(M) be the projection associated
with the direct sum decomposition (1.20). If πH Gθ denotes the (0, 2)-tensor field
on M given by (πH Gθ )(X, Y ) = Gθ (πH X, πH Y ), for any X, Y ∈ T (M), then the
Webster metric may be written as

gθ = πH Gθ + θ ⊗ θ.
gθ is not a CR-invariant. To write the transformation law for gθ (under a transformation
θ̂ = λθ of the pseudo-Hermitian structure) is a rather tedious exercise. Of course
G
θ̂

= λGθ and θ̂ ⊗ θ̂ = λ2 θ ⊗ θ ; yet πH transforms as well. We will return to this
matter in Chapter 2.
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1.1.4 CR geometry and contact Riemannian geometry

We start be recalling a few notions of contact Riemannian geometry, following for
instance D.E. Blair [62]. Let M be a (2n +1)-dimensional C∞ manifold. Let (φ, ξ, η)
be a synthetic object, consisting of a (1, 1)-tensor field φ : T (M)→ T (M), a tangent
vector field ξ ∈ X (M), and a differential 1-form η on M . (φ, ξ, η) is an almost contact
structure if

φ2 = −I + η ⊗ ξ, φξ = 0, η(ξ) = 1, η ◦ φ = 0.

An almost contact structure (φ, ξ, η) is said to be normal if

[φ, φ] + 2(dη)⊗ ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ. A Riemannian metric g on M is said to be
compatible with the almost contact structure (φ, ξ, η) if

g(φX, φY ) = g(X, Y )− η(X)η(Y ),
for any X, Y ∈ T (M). A synthetic object (φ, ξ, η, g) consisting of an almost contact
structure (φ, ξ, η) and a compatible Riemannian metric g is said to be an almost con-
tact metric structure. Given an almost contact metric structure (φ, ξ, η, g) one defines
a 2-form � by setting �(X, Y ) = g(X, φY ). (φ, ξ, η, g) is said to satisfy the contact
condition if � = dη, and if this is the case, (φ, ξ, η, g) is called a contact metric
structure on M . A contact metric structure (φ, ξ, η, g) that is also normal is called a
Sasakian structure (and g is a Sasakian metric).

Let (M, T1,0(M)) be a nondegenerate CR manifold and θ a pseudo-Hermitian
structure on M . Let T be the characteristic direction of (M, θ). Let us extend Jb to
a (1, 1)-tensor field on M by requiring that

JbT = 0. (1.21)

Then (by summarizing properties, old and new)

J 2
b = −I + θ ⊗ T,

JbT = 0, θ ◦ Jb = 0, gθ (X, T ) = θ(X),

gθ (Jb X, JbY ) = gθ (X, Y )− θ(X)θ(Y ),
for any X, Y ∈ T (M). Therefore, if (M, T1,0(M)) is a strictly pseudoconvex CR
manifold and θ is a contact form such that Lθ is positive definite, then (Jb, T, θ, gθ )
is an almost contact metric structure on M . Also

� = −dθ, (1.22)

where � is defined by

�(X, Y ) = gθ (X, JbY ),
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for any X, Y ∈ T (M). That is, if we set φ = Jb, ξ = −T, η = −θ , and g = gθ , then
(φ, ξ, η, g) is a contact metric structure on M , provided that (M, T1,0(M)) is strictly
pseudoconvex. By (1.20) it suffices to check (1.22) on H(M) ⊗ H(M), respectively
on H(M)⊗ RT and RT ⊗ RT . Let X, Y ∈ H(M). Then (by (1.17))

�(X, Y ) = gθ (X, JbY ) = (dθ)(X, J 2
b Y ) = −(dθ)(X, Y ).

Finally (by (1.19))

�(T, X) = 0 = −(dθ)(T, X),

for any X ∈ T (M). Strictly pseudoconvex CR manifolds are therefore contact Rie-
mannian manifolds, in a natural way. However, they might fail to be normal. As we
shall see in the sequel, the almost contact structure (Jb, T, θ) is normal if and only
if the Tanaka–Webster connection of (M, θ) (to be introduced in Section 1.2) has a
vanishing pseudo-Hermitian torsion (τ = 0). The converse, that is, which almost con-
tact manifolds are CR manifolds, was taken up by S. Ianuş [214]. Indeed, an almost
contact manifold (M, (φ, ξ, η)) possesses a natural almost CR structure T1,0(M) de-
fined as the eigenbundle Eigen(J C

b ; i) of J C
b corresponding to the eigenvalue i . Here

Jb is the restriction of φ to H(M) = Ker(η) and J C
b is the C-linear extension of Jb

to H(M) ⊗ C. In general, T1,0(M) may fail to be integrable. By a result of S. Ianuş
(cf. op. cit.), if (φ, ξ, η) is normal then T1,0(M) is a CR structure. The converse is not
true, in general. The question (of characterizing the almost contact manifolds whose
natural almost CR structure is integrable) has been settled by S. Tanno [401], who
built a tensor field Q (in terms of (φ, ξ, η)) such that Q = 0 if and only if T1,0(M)
is integrable. This matter (together with the implication [φ, φ] + 2(dη)⊗ ξ = 0 �⇒
Q = 0) will be examined in the sequel.

1.1.5 The Heisenberg group

Let us set Hn = Cn × R, thought of as endowed with the natural coordinates (z, t) =
(z1, . . . , zn, t). Hn may be organized as a group with the group law

(z, t) · (w, s) = (z + w, t + s + 2Im〈z, w〉),
where 〈z, w〉 = δ jk z jwk . This actually makes Hn into a Lie group, referred to as
the Heisenberg group. A good bibliographical reference is the paper by G.B. Folland
and E.M. Stein [150], pp. 434–437, yet the mathematical literature (dealing with both
geometric and analysis aspects) on the Heisenberg group occupies a huge (and still
growing) volume. Let us consider the complex vector fields on Hn ,

Tj = ∂

∂z j
+ i z j ∂

∂t
, (1.23)

where

∂

∂z j
= 1

2

(
∂

∂x j
− i

∂

∂y j

)
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and z j = x j + iy j , 1 ≤ j ≤ n. Let us define T1,0(Hn)(z,t) as the space spanned by the
Tj,(z,t)’s, i.e.,

T1,0(Hn)(z,t) =
n∑

j=1

CTj,(z,t), (1.24)

for any (z, t) ∈ Hn . Since

[Tj , Tk] = 0, 1 ≤ j, k ≤ n,

it follows that (Hn, T1,0(Hn)) is a CR manifold of type (n, 1) (a CR manifold of hy-
persurface type). Next, let us consider the real 1-form θ0 on Hn defined by

θ0 = dt + i
n∑

j=1

(
z j dz j − z j dz j

)
. (1.25)

Then θ0 is a pseudo-Hermitian structure on (Hn, T1,0(Hn)). By differentiating (1.25)
we obtain

dθ0 = 2i
n∑

j=1

dz j ∧ dz j .

Then, by taking into account (1.13), it follows that

Lθ0(Tj , Tk) = δ jk,

where Tj = Tj , 1 ≤ j ≤ n.
Our choice of θ0 shows that (Hn, T1,0(Hn)) is a strictly pseudoconvex CR mani-

fold. Its Levi distribution H(Hn) is spanned by the (left-invariant) tangent vector fields
{X1, . . . , Xn, Y1, . . . , Yn}, where

X j = ∂

∂x j
+ 2y j ∂

∂t
, Y j = ∂

∂y j
− 2x j ∂

∂t
, 1 ≤ j ≤ n.

The reader may easily check that T = ∂/∂t is the characteristic direction of (Hn, θ0).
For n = 1, T1̄ = ∂/∂ z̄ − i z∂/∂t is the Lewy operator (discovered by H. Lewy

[284], in connection with the boundary behavior of holomorphic functions on �2 =
{(z, w) ∈ C2 : Im(w) > |z|2}). The Lewy operator exhibits interesting unsolvability
features described, for instance, in [232], pp. 235–239. See also L. Ehrenpreis [134],
for two new approaches to the Lewy unsolvability phenomenon (one based on the
existence of peak points in the kernel of T1̄, and the second on a Hartogs-type extension
property), both with ramifications in the area of topological algebra.

Definition 1.11. The map Dδ : Hn → Hn given by Dδ(z, t) = (δz, δ2t), for any
(z, t) ∈ Hn , is called the dilation by the factor δ > 0. �

It is an easy exercise to prove the following result:
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Proposition 1.5. Each dilation is a group homomorphism and a CR isomorphism.

The Euclidean norm of x = (z, t) ∈ Hn is denoted by ‖x‖ (i.e., ‖x‖2 = ‖z‖2 +
t2). The Euclidean norm is not homogeneous with respect to dilations. However, Hn

carries another significant function, the Heisenberg norm, which enjoys the required
homogeneity property.

Definition 1.12. The Heisenberg norm is

|x | = (‖z‖4 + t2)1/4,

for any x ∈ Hn . �

The Heisenberg norm is homogeneous with respect to dilations, i.e.,

|Dδx | = δ|x |, x ∈ Hn .

Let us consider the transformation T δ = D1/δ . Then

(dx T δ)Tj,x = δ−1Tj,T δ(x),

i.e., the Tj are homogeneous of degree −1 with respect to dilations. As to the form θ0
given by (1.25), it satisfies

(D∗
δ θ)x = δ2θ0,Dδx .

The following inequalities hold on the Heisenberg group:

Proposition 1.6.

‖x‖ ≤ |x | ≤ ‖x‖1/2 , (1.26)

for any x ∈ Hn such that |x | ≤ 1.

We shall occasionally need the following:

Proposition 1.7. There is a constant γ ≥ 1 such that

|x + y| ≤ γ (|x | + |y|), (1.27)

|xy| ≤ γ (|x | + |y|), (1.28)

for any x, y ∈ Hn.

Definition 1.13. The inequalities (1.27)–(1.28) are called the triangle inequalities.
�

The proof of (1.27)–(1.28) is elementary. Indeed, by homogeneity we may assume that
|x | + |y| = 1. The set of all (x, y) ∈ Hn × Hn satisfying this equation is compact;
hence we may take γ to be the larger of the maximum values of |x + y| and |xy| on
this set. �
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The Heisenberg group may be identified with the boundary of a domain in Cn+1.
Indeed, let �n+1 be the Siegel domain, i.e.,

�n+1 = {(z, w) ∈ Cn × C : v > ‖z‖2},
where z = (z1, . . . , zn) and w = u + iv (u, v ∈ R). Also ‖z‖2 = ∑n

j=1 |z j |2. Let
then

f : Hn → ∂�n+1, f (z, t) = (z, t + i‖z‖2),

for any (z, t) ∈ Hn . f is a CR isomorphism, where the boundary ∂�n+1 = {(z, w) :
‖z‖2 = v} of the Siegel domain is thought of as a CR manifold (of hypersurface
type) with the CR structure induced from Cn+1. Computing the differential d f (on the
generators Tj , Tj , and T ) is a tedious but useful exercise (left to the reader).

Another useful identification is that of the Heisenberg group and the sphere
S2n+1 ⊂ Cn+1 minus a point. Let � ⊂ CN be a domain with smooth boundary
∂�, i.e., there is an open neighborhood U of the closure � in CN and a C∞ function
ρ : U → R such that � = {x ∈ U : ρ(x) > 0} (and ∂� = {x ∈ U : ρ(x) = 0})
and (Dρ)x �= 0 at any x ∈ ∂�. Let T1,0(∂�) be the induced CR structure on ∂�, as
a real hypersurface in CN . Let θ be the pullback to ∂� of the real 1-form i(∂ − ∂)ρ
on U . Then θ is a pseudo-Hermitian structure on (∂�, T1,0(∂�)). As we just saw,
the boundary of the Siegel domain is a strictly pseudoconvex CR manifold. Also, the
sphere S2n+1 ⊂ C2n+1 is a strictly pseudoconvex manifold, since the boundary of the
unit ball Bn+1 = {z ∈ Cn+1 : |z| < 1}, and the (restriction to S2n+1 \ {e1} of the)
Cayley transform

� : Cn+1 \ {z1 = 1} → Cn+1,

�(z) = i
e1 + z

1 − z1
, z1 �= 1, e1 = (1, 0, . . . , 0),

gives a CR isomorphism S2n+1 \ {e1} � ∂�n+1 (and thus a CR isomorphism S2n+1 \
{e1} � Hn).

1.1.6 Embeddable CR manifolds

Let M ⊂ CN be a real m-dimensional submanifold. If M is a CR manifold (of type
(n, k)) whose CR structure is given by (1.12) with V = CN , then M is referred to as
an embedded (or realized) CR manifold.

Let (M, T1,0(M)) be a CR manifold. If in some neighborhood of each point x ∈
M, (M, T1,0(M)) is CR isomorphic to an embedded CR manifold, then (M, T1,0(M))
is termed locally embeddable. If a global isomorphism with an embedded CR manifold
exists, then (M, T1,0(M)) is called embeddable (or realizable).

Let (M, T1,0(M)) be a CR manifold. We say that (M, T1,0(M)) is real analytic
if M is a real analytic manifold and T1,0(M) is a real analytic subbundle of T (M) ⊗
C, i.e., T1,0(M) is locally generated by real analytic vector fields. By a (classical)
result of A. Andreotti and C.D. Hill [13], any real analytic CR manifold (M, T1,0(M))
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of type (n, k) , k ≥ 1, is locally embeddable. Precisely, for any x ∈ M , there is a
neighborhood U of x in M such that (U, T1,0(M)|U ) is CR isomorphic via a real
analytic CR map to a real analytic generic embedded CR manifold in Cn+k . Here
T1,0(M)|U is the pullback of T1,0(M) by ι : U ⊆ M . A proof of the embeddability
result of A. Andreotti and C.D. Hill (cf. op. cit.) is already available in book form,
cf. A. Boggess [70], pp. 169–172, and will not be reproduced here. A discussion of
characteristic coordinates (the relevant ingredient in the proof) is also available in the
book by D.E. Blair [62], pp. 57–60, in the context of the geometric interpretation of
normal almost contact structures ([62], pp. 61–63). By a result of A. Andreotti and
G.A. Fredricks [15], real analytic CR manifolds are also globally embeddable, i.e.,
globally isomorphic to a generic CR submanifold of some complex manifold. This
generalizes a result by H.B. Shutrick [373], on the existence of complexifications.

The embedding problem (i.e., decide whether a given abstract CR manifold is (lo-
cally) embeddable) was first posed by J.J. Kohn [246], and subsequently solved to a
large extent by M. Kuranishi [263]. By M. Kuranishi’s result, each strictly pseudocon-
vex CR manifold of real dimension 2n + 1 ≥ 9 is locally embeddable in Cn+1. T.
Akahori [2], settled the question in dimension 7. A much simpler proof was given by
S. Webster [429]. The embedding problem is open in dimension 5, while L. Nirenberg
[326], built a counterexample in dimension 3 (as a perturbation of the CR structure
of H1). More generally, by a result of H. Jacobowitz and F. Trèves [224], analytically
small perturbations of 3-dimensional embeddable strictly pseudoconvex CR manifolds
are known to be nonembeddable. M.S. Baouendi, L.P. Rothschild, and F. Treves [30],
showed that the existence of a local transverse CR action implies local embeddability.
As a global version of this result, though confined to the 3-dimensional case, we may
quote a result by L. Lempert [278]: Let M be a 3-dimensional (n = 1) CR manifold
admitting a smooth CR action of R that is transverse. Then M is the boundary of a
strictly pseudoconvex complex surface, i.e., it is embeddable. More recently, by a re-
sult of Z. Balogh and C. Leuenberger [29], if a CR manifold M of hypersurface type
admits a local semi-extendable R-action then M is locally realizable as the boundary
of a complex manifold.

Embeddability is related to solvability of certain PDEs, as shown by the following
example, due to C.D. Hill [200]. Let t = (t1, t2, t3) be the Cartesian coordinates on
R3. The natural coordinates on R5 = R3 × C are denoted by (t, z). Let

L = T1 = 1

2

(
∂

∂t1
+ i

∂

∂t2

)
− i(t1 + i t2)

∂

∂t3

be the Lewy operator on H1 = R3. Given a C∞ function ω : H1 → C we consider
the first-order PDE

Lχ = ω. (1.29)

Definition 1.14. We say that (1.29) is solvable at a point t0 ∈ R3 if there is an open set
U ⊆ R3 such that t0 ∈ U and there is a C∞ function χ : U → C such that Lχ = ω

on U . �
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Moreover, let us consider the complex vector fields P, Q ∈ T (H1 × C)⊗ C given by

P = ∂

∂z
, Q = L + ω(t) ∂

∂z
. (1.30)

Clearly {P, Q, P, Q} are linearly independent at each point of H1×C and [P, Q] = 0.
Consequently

T0,1(H1 × C)(t,z) = CP(t,z) + CQ(t,z) , (t, z) ∈ H1 × C,

gives a CR structure on H1 × C. We shall prove the following theorem:

Theorem 1.1. (C.D. Hill [200])
The CR structure (1.30) is locally embeddable at (t0, z0) ∈ H1×C if and only if (1.29)
is solvable at t0.

On the other hand, by a result of H. Lewy [284], there is ω ∈ C∞(R3) such that for
any open set U ⊆ R3 the equation (1.29) has no solution χ ∈ C1(U ). Hence the CR
structure (1.30) is not locally embeddable in general.

Proof of Theorem 1.1. As shown in Section 1.1.5, the map

R3 → C2, t !→ (v1(t), v2(t)),

v1(t) = t1 + i t2 , v2(t) = t3 + i(t2
1 + t2

2 ),

embeds H1 globally into C2. The functions v j : H1 → C form a maximal set of
functionally independent characteristic coordinates (in the sense of A. Andreotti and
C.D. Hill [13]), i.e., Lv j = 0 and dv1 ∧ dv2 �= 0. If we adopt the terminology in
Chapter 6, the map v = (v1, v2) : H1 → C2 is a CR immersion, i.e., an immersion
and a CR map (and it determines a CR isomorphism H1 � ∂�2).

Let us prove first the sufficiency. Assume that (1.29) is solvable at t0, i.e., there is
χ ∈ C∞(U ) with t0 ∈ U ⊆ H1 and Lχ = ω on U . Let us consider the function

v3 : U × C → C, v3(t, z) = z − χ(t).
A calculation shows that

Pv j = 0, Qv j = 0, j ∈ {1, 2, 3}, dv1 ∧ dv2 ∧ dv3 �= 0;
that is,

ϕ : U × C → C3, ϕ(t, z) = (v(t), v3(t, z)), t ∈ U, z ∈ C,

is a CR immersion (of a neighborhood of (t0, z0)).
The proof of necessity is more involved. Let us assume that there is a CR immer-

sion u = (u1, u2, u3) : V → C3 of an open set V ⊆ H1 × C with (t0, z0) ∈ V , that
is, Pu j = 0, Qu j = 0, and du1 ∧ du2 ∧ du3 �= 0 on V . In particular, each u j is
holomorphic with respect to the z-variable. Consequently the Jacobian matrix of u has
the form
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∂u

∂t

∂u

∂z
0

∂u

∂t
0
∂u

∂z

⎞⎟⎟⎟⎠
with six rows and five linearly independent columns. It follows that

∂u j

∂z
(t0, z0) �= 0

for some j ∈ {1, 2, 3}, say (∂u3/∂z)(t0, z0) �= 0. Thus ∂u3/∂z �= 0 at each point of a
neighborhood of (t0, z0), denoted by the same symbol V . It is easily seen that

Pv1 = Pv2 = Pu3 = 0, Qv1 = Qv2 = Qu3 = 0.

On the other hand,

dv1 ∧ dv2 ∧ du3 = (2v1
∂u3

∂t3
− ∂u3

∂t2
+ i
∂u3

∂t1
)dt1 ∧ dt2 ∧ dt3

+ ∂u3

∂z
(2v1 dt1 ∧ dt2 + dt1 ∧ dt3 + idt2 ∧ dt3) ∧ dz �= 0;

hence

ϕ : V → C3, ϕ(t, z) = (v1(t), v2(t), u3(t, z)), (t, z) ∈ V,

is another CR immersion of V into C3, so that M = ϕ(V ) is a real hypersurface of
C3. In other words, (v1, v2, u3) is another maximal set of functionally independent
characteristic coordinates. By eventually restricting the open set V we may assume
that ϕ is injective, so that ϕ : V → M is a CR isomorphism. Let us consider the
functions

f : V → C, f (t, z) = − 1

(∂u3/∂z)(t, z)
, (t, z) ∈ V,

F : M → C, F(ζ ) = f (ϕ−1(ζ )), ζ ∈ M.

If A is an open subset of some CR manifold, let CR�(A) denote the set of all CR
functions on A of class C�. Since u3 ∈ CR∞(V ) it follows that ∂u3/∂z ∈ CR∞(V )
and then f ∈ CR∞(V ). As ϕ : V → M is a CR diffeomorphism we may conclude
that F ∈ CR∞(M). Let ϕ−1 = (ψ1, ψ2, ψ3, z ◦ ϕ−1) be the components of ϕ−1 :
M → V ⊂ R3 × C. Then

∂F

∂ζ 3
(ζ ) = ∂( f ◦ ϕ−1)

∂ζ 3
(ζ ) =

∑
j

∂ f

∂t j
(t, z)

∂ψ j

∂ζ 3
(ζ )

+ ∂ f

∂z
(t, z)

∂(z ◦ ϕ−1)

∂ζ 3
(ζ )+ ∂ f

∂z
(t, z)

∂(z ◦ ϕ−1)

∂ζ 3
(ζ ),
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for any ζ = (ζ1, ζ3, ζ3) ∈ M , ζ = ϕ(t, z). Now on the one hand, (∂ f/∂z)(t, z) =
(P f )(t,z) = 0. On the other hand, ϕ−1 ◦ (v1, v2, u3) = 1V , so that

ψ j (v1(t), v2(t), u3(t, z)) = t j ,

and differentiation with respect to z gives

∂ψ j

∂ζ 3
(ϕ(t, z)) = 0.

Similarly (i.e., applying ∂/∂z to (z ◦ ϕ−1)(v1(t), v2(t), u3(t, z)) = z), we obtain

∂(z ◦ ϕ−1)

∂ζ 3
(ϕ(t, z)) = 0.

We may conclude that ∂F/∂ζ 3 = 0. Next let us set

G : M → C, G(ζ ) =
∫ ζ3

O
F(ζ1, ζ2, η)dη, ζ ∈ M,

where integration is carried along a curve γ joining the origin O to ζ3 in the complex
ζ3-plane. For a fixed (t, z) ∈ V we set Vt = {w ∈ C : (t, w) ∈ V } and define ht :
Vt → C by ht (w) = u3(t, w). Then (∂ht/∂w)(w) �= 0 so that ht is a diffeomorphism
of a neighborhood of w onto a neighborhood of u3(t, w). Therefore γ may be covered
with open sets that are images by ht of open subsets of Vt , so that (ζ1, ζ2, η) ∈ M
for any ζ ∈ M and any point η on γ . It follows that G(ζ ) is well defined and G ∈
CR∞(M). Finally, let us set

g(t, z) = G(ϕ(t, z)), (t, z) ∈ V .

Then g ∈ CR∞(V ), again because ϕ : V → M is a CR isomorphism. Now on the one
hand, ∂g/∂z = Pg = 0, and on the other,

∂g

∂z
(t, z) = ∂G

∂ζ3
(ϕ(t, z))

∂u3

∂z
(t, z) = F(v1(t), v2(t), u3(t, z))

∂u3

∂z
(t, z) = −1;

hence g(t, z) = χ(t) − z, where χ(t) is a “constant of integration.” Then Qg = 0
implies Lχ − ω = 0 and the proof of Theorem 1.1 is complete.

1.1.7 CR Lie algebras and CR Lie groups

Definition 1.15. Let G be a (2n + k)-dimensional real Lie algebra. A CR structure
(of type (n, k)) on G is an n-dimensional complex subalgebra a ⊂ G ⊗R C such that
a ∩ a = (0). A pair (G, a) consisting of a real Lie algebra G and a CR structure a on G
is a CR Lie algebra (cf. G. Gigante and G. Tomassini [176]). �
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Let (G, a) be a CR Lie algebra and set h = Re{a ⊕ a}. Then h ⊂ G is a 2n-
dimensional real subspace (though in general, not a subalgebra). Define J : h → h by
setting J (Z+Z) = i(Z−Z), Z ∈ a. Then h is an n-dimensional complex linear space
(with the multiplication i X = J X, X ∈ h) and the map X !→ X⊗1−(J X)⊗i, X ∈ h,
gives h � a (a complex linear isomorphism).

Define dG : G∗ → �2G∗ by setting

(dGα)(X, Y ) = −α([X, Y ])

for any α ∈ G∗, X, Y ∈ G. Next, assume that k = 1 and let θ ∈ G∗ be some linear
functional such that Ker(θ) = h. Let us set

〈Z ,W 〉θ = −i(dGθ)(Z ,W )

for any Z ,W ∈ a.

Definition 1.16. One says that (G, a) is nondegenerate if 〈, 〉θ is nondegenerate on a
for some θ (and thus for all). �

Definition 1.17. Let G be a real (2n + k)-dimensional Lie group and T1,0(G) a CR
structure of type (n, k) on G. The pair (G, T1,0(G)) is a CR Lie group if T1,0(G) is
left invariant, i.e.,

(dg Lh)T1,0(G)g = T1,0(G)hg

for any g, h ∈ G, where Lh : G → G, Lh(g) = hg. �

That is, each left translation Lh is a CR map. For instance, the Heisenberg group
Hn is a CR Lie group (with the CR structure T1,0(Hn) given by (1.24)). Indeed, the
components L j , L0 of the left translation L(z,t) : Hn → Hn are given by

L j (w, s) = z j + w j , L0(w, s) = t + s + 2 Im〈z, w〉 ,
so that

∂L j

∂wk
= δ

j
k ,

∂L j

∂w̄k
= 0,

∂L j

∂s
= 0,

∂L0

∂wk
= i z̄k,

∂L0

∂w̄k
= −i zk,

∂L0

∂s
= 1,

and hence (
d(w,s)L(z,t)

) ∂

∂w j

∣∣∣∣
(w,s)

= ∂

∂z j

∣∣∣∣
(z,t)·(w,s)

+ 2z j ∂

∂t

∣∣∣∣
(z,t)·(w,s)

,

(
d(w,s)L(z,t)

) ∂
∂s

∣∣∣∣
(w,s)

= ∂

∂t

∣∣∣∣
(z,t)·(w,s)

,



20 1 CR Manifolds

whence (
d(w,s)L(z,t)

)
Tj,(w,s) = Tj,(z,t)·(w,s) . �

A family of examples (containing Hn � ∂�n+1) of CR Lie groups is furnished
by the so-called quadric submanifolds. Let q : Cn−d × Cn−d → Cd be a quadratic
form (i.e., q is C-bilinear, symmetric, and q(z, w) = q(z, w), for any z, w ∈ C). A
submanifold M ⊂ Cn given by

M = {(x + iy, w) ∈ Cd × Cn−d : y = q(w,w)}
is called a quadric submanifold of Cn . Let us set

(z1, w1) ◦ (z2, w2) = (z1 + z2 + 2iq(w1, w2), w1 + w2).

Then (by Lemma 1 in [70], p. 112) the operation ◦ defines a group structure on Cd ×
Cn−d that restricts to a group structure on M . Also ◦ : M × M → M is C∞, hence
(M, ◦) is a Lie group. Finally, the CR structure T1,0(M) is easily seen to be spanned
by

Tj = ∂

∂w j
+ 2i

∂q�

∂w j

∂

∂z�
, 1 ≤ j ≤ n − d,

and (according to Theorem 1 in [70], p. 113) each Tj is left invariant, and hence
(M, T1,0(M)) is a CR Lie group.

Let (G, T1,0(G)) be a CR Lie group of type (n, k) and G = L(G) its Lie algebra
(of left-invariant tangent vector fields on G). Then

a = j−1 (T1,0(G)e
)

is a CR structure on G (of type (n, k)), where j is the (C-linear extension to G ⊗R C
of the) R-linear isomorphism j : G → Te(G), X !→ Xe, X ∈ G, and e is the identity
element in G. Conversely, any CR structure a on G = L(G) determines a unique
left-invariant CR structure on G (by simply setting T1,0(G)g = (de Lg) j (a), g ∈
G). Classifications of left-invariant CR structures on classical groups are available in
particular cases (cf., e.g., S. Donnini and G. Gigante [118], for a classification of left-
invariant CR structures on GL+(3,R)).

Assume from now on that k = 1 and let θ0 ∈ L(G)∗ such that Ker(θ0) = h. Then
θ0 determines a left-invariant pseudo-Hermitian structure θ on G. Indeed, one may set

θg = θ0 j−1(dg Lg−1), g ∈ G,

so that Ker(θ) = H(G) and (Lh)
∗θ = θ . �

In particular, (G, T1,0(G)) is nondegenerate if and only if (L(G), a) is nondegen-
erate.

Let (G, T1,0(G)) be a nondegenerate CR Lie group and let T ∈ G be the unique
vector such that
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θ0(T ) = 1, T � dGθ0 = 0.

Then T is the characteristic direction of (G, θ) (and, by its very definition, a left-
invariant vector field on G).

CR structures of CR codimension 1 and of k-torsion zero on a reductive Lie algebra
G of the first category are studied in [176]. Their main result is that any such CR
structure is determined by a CR structure on a compact Cartan subalgebra h ⊂ G and
by a direct sum of root spaces.

1.1.8 Twistor CR manifolds

As another example of CR manifold we briefly discuss the twistorial construction
due to C. LeBrun [268], itself generalizing work by R. Penrose [342]. Let M be an
n-dimensional manifold and X := T ∗(M) ⊗ C. Let π : X → M be the projec-
tion. Let (U, x̃ j ) be a local coordinate system on M and define local coordinates
x j : π−1(U ) → R and ζ j : π−1(U ) → C on X by setting x j (χ) := x̃ j (π(χ))

and ζ j (χ) := 〈χ, ∂/∂ x̃ j 〉, for any χ ∈ X . Let A ⊂ T (X ) ⊗ C be the span of

{∂/∂ζ j
: 1 ≤ j ≤ n}, i.e., the portion of A over a fiber π−1(x) (clearly a com-

plex n-dimensional manifold) is the antiholomorphic tangent bundle over π−1(x), for
any x ∈ M .

Definition 1.18. The canonical 1-form θ of X is given by

θχ (w) := 〈χ, (dχπ)w〉 , w ∈ Tχ (X ), χ ∈ X . �

In local coordinates one has the expression θ = ζ j dx j .

Definition 1.19. The Hamiltonian form of X is ω := dθ = dζ j ∧dx j . A codimension-
2 submanifold Y ⊂ X is an energy surface if π−1(x) ∩ Y is a complex hypersurface
in π−1(x), for any x ∈ X . �
Let

N∗
x := { f ∈ T ∗

χ (π
−1(x)) : Ker( f ) ⊇ Tχ (π

−1(x) ∩ Y)}, χ ∈ π−1(x) ∩ Y,

be the conormal bundle of π−1(x) ∩ Y in π−1(x). Consider the map

f ∈ T ∗
χ (π

−1(x)) � π−1(x) = T ∗
x (M)⊗R C → Tx (M)⊗R C " z f ,

where the last arrow is the double-dual identification, i.e.,

f = f j dζ j

∣∣∣
χ

+ f
j
dζ j

∣∣∣
χ

!−→ z f := f j ∂

∂ x̃ j

∣∣∣∣
x
. (1.31)

Definition 1.20. An energy surface Y ⊂ X is generic if

{ f ∈ N∗
x : z f = z f } = (0),

that is, N∗
x contains no nonzero vector corresponding to a real vector in Tx (M)⊗R C,

under the linear map (1.31). �
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If ι : Y → X is the canonical inclusion we set ω̃ := ι∗ω and consider the bundle
morphism

�ω̃ : T (Y)⊗ C → T ∗(Y)⊗ C, W !→ ω̃(W, ·), W ∈ T (Y)⊗ C .

According to C. LeBrun [268], the following result holds:

Theorem 1.2. Let Y ⊂ X be an energy surface. Then D := K er(�ω̃) ⊂ T (Y) ⊗ C
is involutive. If additionally Y is generic then D ∩ D = (0). In particular, if M is a
3-dimensional manifold then D is a CR structure on Y , of CR codimension 1.

C. LeBrun applied (cf. op. cit.) his finding (that any generic energy surface associated
with a 3-dimensional manifold is a 7-dimensional CR manifold (of hypersurface type))
to the following situation. Let M be a 3-dimensional CR manifold endowed with a
conformal structure G = {eu g : u ∈ C∞(M)}, where g is a fixed Riemannian metric
on M . Next, let us consider the 7-dimensional manifold N̂ := {χ ∈ X : g∗(χ, χ) =
0, χ �= 0}. Then C∗ := C \ {0} acts freely on N̂ and we may consider the quotient
space N := N̂/C∗ (a 5-dimensional manifold). Note that N̂ , and then N , depends only
on the conformal structure G (rather than on the fixed metric g). According to [268],
N̂ ⊂ X is a generic energy surface; hence (by Theorem 1.2) carries a CR structure
D. Its projection T1,0(N ) := P∗D is a CR structure on N , and N is referred to as
the twistor CR manifold of M . Here P : N̂ → N = N̂/C∗ is the natural projection.
There is a natural projection π : N → M , all of whose fibers are complex lines. Again
together with [268], one concludes that (N , T1,0(N )) is a nondegenerate CR manifold
carrying a smooth foliation by CP1’s, and (N , T1,0(N )) is embeddable if and only if M
admits a real analytic atlas with respect to which the conformal structure G contains
a real analytic representative (a generalization of the construction and embeddability
theorem to n dimensions is due to H. Rossi [355]). When M is a totally umbilical real
hypersurface of a real analytic 4-dimensional Lorentzian manifold, the twistor CR
manifold N coincides with R. Penrose’s CR manifold, cf. [342]. We end this section
by giving a brief account of the original R. Penrose construction (cf. op. cit.). Let
M = (R4, S) be the Minkowski space, where

S(x, x) = x2
0 − x2

1 − x2
2 − x2

3 , x = (x0, x1, x2, x3) ∈ R4.

We identify R4 with the vector space H(2) of 2 × 2 Hermitian matrices by

φ(x) =
(

x0 + x3 x1 + i x2
x1 − i x2 x0 − x3

)
, x ∈ R4.

Then S(x, x) = detφ(x). Let

η =
(

0 σ0
σ0 0

)
∈ M4(R),

where

σ0 =
(

1 0
0 1

)
.
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Definition 1.21. Let T = (C4, �) be the twistor space, where �(W ) = WηW t ,W ∈
C4. According to R. Penrose [342], W ∈ T and x ∈ M are incident if

(W2,W3) = 1

i
√

2
(W0,W1)φ(x). (1.32)

�

Let W ∈ T. If there is x ∈ M incident with W then

�(W ) = 0. (1.33)

Definition 1.22. Let P(T) = (T \ {0})/C̃ be the projective twistor space. Let [W ]
denote the point of P(T) of homogeneous coordinates W . If X ⊂ T then P(X) =
{[W ] : W ∈ X \ {0}}. Let T+ (respectively T−) consist of all W such that �(W ) > 0
(respectively �(W ) < 0). Also, let T0 be the hypersurface in T defined by (1.33).

�

Then P(T±) are open subsets of P(T) and P(T0) is their common boundary. According
to R. Penrose [342], each point of P(T+) describes a right-handed (helicity s > 0)
“classical” spinning photon. Moreover,

dimR P(T+) = 6,

and, roughly speaking, two of these real dimensions correspond to the direction of
motion, one to energy, and three to position. Also, points in P(T−) represent the left-
handed (helicity s < 0) “classical” photons. For our purposes, the helicity s : T → R
is given3 by s(W ) = 1

2�(W ),W ∈ T.
Let I be the projective line I = {[W ] : W0 = W1}. Since (1.32) is homogeneous

with respect to W , the incidence relation on T × M naturally induces an incidence
relation on P(T)×M . Then P(T0)\ I consists of all points [W ] of the projective twistor
space that are incident with some x ∈ M . Indeed, let [W ] be incident with some
x ∈ M . Then, as observed before, the homogeneous coordinates W satisfy (1.33), i.e.,
[W ] ∈ P(T0). On the other hand, [W ] /∈ I , because (by (1.32)) no element of the form
[(0, 0,W2,W3)] may be incident with some x ∈ M . To check the opposite inclusion,
let [W ] ∈ P(T0) \ I and denote by N[W ] the set of all x ∈ M that are incident with
[W ]. Note that (1.32) may be written as

W1x1 + W0x3 = i
√

2W2 − W0x0 + iW1x2

W 0x1 − W 1x3 = −i
√

2W 3 − W 1x0 + iW 0x2

and

∣∣∣∣ W1 W0

W 0 −W 1

∣∣∣∣ �= 0 because [W ] /∈ I . Hence N[W ] �= ∅. �

We shall need the following lemma:

3 It may be shown that Sa = s pa , where pa is the momentum (of a massless particle in flat
space-time) and Sa the Pauli–Lubanski spin vector; cf., e.g., [342], p. 69.
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Lemma 1.1. Let (W0,W1) ∈ C2. There is a unique null vector v ∈ M, i.e., S(v, v) =
0, such that

φ(v) =
( |W1|2 −W1W 0

−W0W 1 |W0|2
)
. (1.34)

Let f : C2 → M be given by f (W0,W1) = v, where v is determined by (1.34). Then

f (λ(W0,W1)) = |λ|2 f (W0,W1)

for any λ ∈ C.

Proposition 1.8. Let [W ] ∈ P(T0) \ I and x0 ∈ N[W ]. Then

N[W ] = {x0 + tv : t ∈ R}, (1.35)

where v = f (W0,W1). Hence N[W ] is a null geodesic of M.

Proof. Since φ : R4 → H(2) is R-linear and (by (1.34)) (W0,W1)φ(v) = 0, the
inclusion ⊇ in (1.35) follows from (W0,W1)φ(x0+tv) = i

√
2(W2,W3). The opposite

inclusion is a bit trickier. For each (W0,W1) ∈ C2 \ {0} set

X(W0,W1) = {φ(y) : y ∈ M, (W0,W1)φ(y) = 0}.
Let x ∈ N[W ]. Then φ(x − x0) ∈ X(W0,W1). On the other hand, X(W0,W1) may be
explicitly described as

X(W0,W1) = {tφ( f (W0,W1)) : t ∈ R};
hence x − x0 = t f (W0,W1) for some t ∈ R. �

Let�0 be the space of all null geodesics in M , i.e., if N ∈ �0 then N = {x0 + tv :
t ∈ R} for some x0 ∈ M, v ∈ R4 \ {0} , S(v, v) = 0. Then

P(T0) \ I � �0

(a bijection). Indeed, the map P(T0) \ I → �0, [W ] !→ N[W ], is bijective.
Let x ∈ M and let us set

Lx = {[W ] ∈ P(T) : (W0,W1)φ(x) = i
√

2(W2,W3)}.
Then Lx is a projective line entirely contained in P(T0)\ I . Actually, the map x !→ Lx

is a bijection of M onto the set of all projective lines entirely contained in P(T0) \ I .

Definition 1.23. The projective lines in P(T0) that meet I are the points at infinity for
M , and the totality of all projective lines in P(T0) forms the conformal compactifi-
cation M� of M . The family (�0)x of all light rays (null geodesics) through a point
x ∈ M may be thought of as the field of vision of an observer situated at x . �
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Since (�0)x = {N[W ] : [W ] ∈ Lx } � Lx , the field of vision (�0)x has a natural
structure of a Riemann surface.

R. Penrose has proposed (cf. [341, 342]) a program aiming at a reconstruction of
the foundations of relativistic physics involving a transformation of the latter into a
part of complex geometry on the space of complex light lines. A development of Pen-
rose’s program is carried out in [197]. G.M. Henkin shows (cf. op. cit.) that the theory
of classical Yang–Mills fields, and Higgs and Dirac fields on Minkowski spaces can be
transformed (via the so-called Radon–Penrose transform) into the theory of tangential
Cauchy–Riemann equations on a 1-concave submanifold of the twistor space.

1.2 The Tanaka–Webster connection

Let (M, T1,0(M)) be a nondegenerate CR manifold and θ a fixed pseudo-Hermitian
structure. Let T be the characteristic direction of (M, θ). If ∇ is a linear connection
on M then let T∇ denote its torsion tensor field.

Definition 1.24. We say that T∇ is pure if

T∇(Z ,W ) = 0, (1.36)

T∇(Z ,W ) = 2i Lθ (Z ,W )T, (1.37)

τ ◦ J + J ◦ τ = 0, (1.38)

for any Z ,W ∈ T1,0(M). Here τ : T (M)→ T (M) is defined by

τ X = T∇(T, X),

for any X ∈ T (M). �

On each nondegenerate CR manifold (of hypersurface type) on which a pseudo-Her-
mitian structure has been fixed, there is a canonical linear connection compatible with
both the complex structure of the Levi distribution and the Levi form. Precisely, we
may state the following theorem:

Theorem 1.3. Let (M, T1,0(M)) be a nondegenerate CR manifold and θ a pseudo-
Hermitian structure on M. Let T be the characteristic direction of (M, θ) and J the
complex structure in H(M) (extended to an endomorphism of T (M) by requiring that
J T = 0). Let gθ be the Webster metric of (M, θ). There is a unique linear connection
∇ on M satisfying the following axioms:

(i) H(M) is parallel with respect to ∇, that is,

∇X�
∞(H(M)) ⊆ �∞(H(M))

for any X ∈ X (M).
(ii) ∇ J = 0, ∇gθ = 0.

(iii) The torsion T∇ of ∇ is pure.
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Definition 1.25. The connection ∇ given by Theorem 1.3 is the Tanaka–Webster con-
nection of (M, T1,0(M), θ). The vector-valued 1-form τ on M is the pseudo-Hermitian
torsion of ∇. �

The Tanaka–Webster connection was first built by N. Tanaka in [398], a mono-
graph that appears to have remained little known to Western scientists up to the early
1980s. Independently from the work of N. Tanaka, S. Webster gave (cf. [422]) another
approach to the Tanaka–Webster connection (though only as a connection in T1,0(M)).
Clearly, since both the Levi distribution H(M) and its complex structure J are paral-
lel with respect to the Tanaka–Webster connection ∇, it parallelizes the eigenbundles
T1,0(M) and T0,1(M) of J and therefore ∇ is reducible to a connection in T1,0(M).
The proof of Theorem 1.3 in [422] is based on exterior differential calculus with re-
spect to admissible coframes in T1,0(M)∗ (arising from the integrability of the given
CR structure). We adopt the proof in [398] and relegate all local considerations to
further sections.

Let π+ : T (M)⊗ C → T1,0(M), respectively π− : T (M)⊗ C → T0,1(M), be the
natural projections associated with the direct sum decomposition

T (M)⊗ C = T1,0(M)⊕ T0,1(M)⊕ CT .

Then π−Z = π+Z for any Z ∈ T (M) ⊗ C. We establish first the uniqueness of a
linear connection ∇ on M obeying the axioms (i)–(iii). Let Y, Z ∈ T1,0(M). We may
write (by (1.37)) the identity

[Y , Z ] = ∇Y Z − ∇Z Y + 2i Lθ (Z , Y )T,

whence (as ∇Y Z ∈ �∞(T1,0(M)) and ∇Z Y ∈ �∞(T0,1(M))) we obtain

π+[Y , Z ] = ∇Y Z . (1.39)

Let � = −dθ . Then T �� = 0. The axiom ∇gθ = 0 may be written as

X (gθ (Y, Z)) = gθ (∇X Y, Z)+ gθ (Y,∇X Z)

for any X, Y, Z ∈ T (M). In particular, for Y = T we obtain

X (θ(Z)) = gθ (∇X T, Z)+ θ(∇X Z). (1.40)

We distinguish two cases: (I) Z ∈ H(M) and (II) Z = T . If Z ∈ H(M) then (1.40)
yields gθ (∇X T, Z) = 0 or

πH ∇X T = 0,

where πH : T (M) → H(M) is the natural projection associated with the direct sum
decomposition (1.20). Finally, set Z = T in (1.40) to obtain

2θ(∇X T ) = 0.
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By taking into account (1.20) we may conclude that

∇T = 0. (1.41)

Note that

∇� = 0,

as a consequence of axiom (ii) in Theorem 1.3. Therefore

X (�(Y, Z)) = �(∇X Y, Z)+�(Y,∇X Z)

for any X, Y, Z ∈ T1,0(M). Using (1.39) we may rewrite this identity as

�(∇X Y, Z) = X (�(Y, Z))−�(Y, π−[X, Z ]), (1.42)

which, in view of the nondegeneracy of � on H(M), determines ∇X Y for any X, Y ∈
T1,0(M). We shall need the bundle endomorphism KT given by

KT = −1

2
J ◦ (LT J ),

where L denotes the Lie derivative. On the other hand (by ∇T = 0),

∇T X = τ X + LT X (1.43)

for any X ∈ T (M). Note that as a consequence of axiom (1.38), τ is H(M)-valued.
We may use ∇ J = 0 and (1.43) to perform the following calculation:

0 = (∇T J )X = ∇T J X − J∇T X

= τ(J X)+ LT (J X)− J (τ X + LT X)

= −Jτ X + LT (J X)− J (τ X + LT X) = −2Jτ X + (LT J )X .

Let us apply J in both members of this identity and use the fact that τ is H(M)-valued
to obtain

τ = KT .

Therefore (1.43) may be rewritten as

∇T X = KT X + LT X (1.44)

for any X ∈ T (M). At this point, the identities (1.39), (1.41)–(1.42), and (1.44) ac-
count for the uniqueness statement in Theorem 1.3. To prove existence, we must show
that the same expressions may be taken as the definition of a linear connection obeying
(i)–(iii) in Theorem 1.3. This is, however, somewhat trickier, and may be carried out
as follows. Let ∇ : �∞(T (M) ⊗ C) × �∞(T (M) ⊗ C) → �∞(T (M) ⊗ C) be the
differential operator defined by
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∇X Y = π+[X , Y ], ∇X Y = ∇X Y ,

∇X Y = UXY , ∇X Y = ∇X Y ,

∇T X = LT X + KT X, ∇T X = ∇T X ,

∇ T = 0,

for any X, Y ∈ T1,0(M). Here

U : �∞(T1,0(M))× �∞(T1,0(M))→ �∞(T1,0(M))

is defined by

�(UXY , Z) = X (�(Y, Z))−�(Y, π−[X, Z ]),

for any X, Y, Z ∈ T1,0(M). Then ∇ is a linear connection on T (M). The rest of the
proof is devoted to showing that ∇ satisfies (i)–(iii) in Theorem 1.3. We need some
preparation. Note that

LT θ = 0.

Indeed,

(LT θ)X = T (θ(X))− θ(LT X) = T (θ(X))− X (θ(T ))− θ([T, X ])

= 2(dθ)(T, X) = 2(T � dθ)X = 0,

for any X ∈ T (M). Using LT θ = 0 and J 2 = −I + θ ⊗ T we may perform the
following calculation:

(J ◦ (LT J )+ (LT J ) ◦ J ) X

= J ([T, J X ] − J [T, X ])+ [T, J 2 X ] − J [T, J X ]

= (T (θ(X))− θ([T, X ])− X (θ(T ))) T = 2(dθ)(T, X)T = 0.

We may conclude that

J ◦ (LT J )+ (LT J ) ◦ J = 0. (1.45)

Note that

LT�
∞(H(M)) ⊆ �∞(H(M)).

Indeed,

θ(LT X) = −2(dθ)(T, X) = 0

for any X ∈ H(M). Note that

J ◦ KT + KT ◦ J = 0 (1.46)
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as a direct consequence of (1.45) and the definition (of KT ). Next, we need to notice
that

(LT + KT ) �
∞(T1,0(M)) ⊆ �∞(T1,0(M)). (1.47)

To prove (1.47), let X ∈ T1,0(M) (so that J X = i X ). Clearly LT X + KT X ∈ H(M).
Moreover (by (1.46)),

J (LT X + KT X) = −(LT J )X + iLT X + J KT X

= (LT J )(J 2 X)+ iLT X − KT J X

= −J ◦ (LT J )(J X)+ i(LT X − KT X)

= −i J (LT J )X + iLT X + i

2
J ◦ (LT J )X = i(LT X + KT X).

Let X, Y ∈ T1,0(M). Then

0 = (d2θ)(T, X, Y ) = −(d�)(T, X, Y )

= −1

3
(T (�(X, Y )+ Y (�(T, X))+ X (�(Y , T )

−�([T, X ], Y )−�([Y , T ], X)−�([X, Y ], T ))

= −1

3
(LT�)(X, Y ).

We have obtained the identity

(LT�)(X, Y ) = 0 (1.48)

for any X, Y ∈ T1,0(M). Note that

�(J X, JY ) = �(X, Y )

for any X, Y ∈ T (M) (as a consequence of the integrability of the CR structure). We
wish to show that

�(KT X, Y )+�(X, KT Y ) = 0 (1.49)

for any X, Y ∈ T (M). To this end we perform the following calculation:

�(KT X, Y )+�(X, KT Y )

= 1

2
(�(LT J X, JY )−�(JLT X, JY )+�(J X,LT JY )−�(J X, JLT Y ))

= 1

2
((LT�)(X, Y )− (LT�)(J X, JY )) = 0

and (1.49) is proved. Next
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X (�(Y, Z))+ Y (�(Z , X))+�(Z , [X, Y ])

+�(Y, π−[Z , X ])+�(X, π−[Y, Z ]) = 0 (1.50)

for any X, Y, Z ∈ T1,0(M), as a consequence of

(d�)(X, Y, Z) = 0.

Finally, we may use (1.46)–(1.47) and (1.49)–(1.50) to check the axioms. Note that

T∇(X, Y ) ∈ T1,0(M)

for any X, Y ∈ T1,0(M) because of

T∇(X, Y ) = UXY − UY X − [X, Y ] ∈ T1,0(M).

Therefore

�(T∇(X, Y ), Z) = �(UXY , Z)−�(UY X , Z)−�([X, Y ], Z)

= X (�(Y, Z))−�(Y, π−[X, Z ])− Y (�(X, Z))

+�(X, π−[Y, Z ])−�([X, Y ], Z) = 0

(by (1.50)) for any Z ∈ T1,0(M). By the nondegeneracy of � on H(M) we get
T∇(X, Y ) = 0 (i.e., (1.36) holds). At this point we may check (1.38). From the defini-
tions,

τ X = T∇(T, X) = ∇T X − ∇X T − [T, X ]

= ∇T X − [T, X ] = LT X + KT X − [T, X ] = KT X,

and therefore (by (1.46))

(τ ◦ J + J ◦ τ)X = KT J X + J KT X = 0.

Next, let us prove that ∇gθ = 0. This is equivalent to ∇� = 0 and ∇T = 0. Note that
∇X� vanishes on complex tangent vectors of the same type (i.e., both in T1,0(M), or
both in T0,1(M)). Let Y, Z ∈ T1,0(M). We have

(∇X�)(Y, Z) = X (�(Y, Z))−�(∇X Y, Z)−�(Y,∇X Z)

= X (�(Y, Z))−�(UXY , Z)−�(Y, π−[X, Z ]) = 0,

for any X ∈ H(M), by definition. Moreover,

(∇T�)(X, Y ) = T (�(X, Y ))−�(∇T X, Y )−�(X,∇T Y )

= T (�(X, Y ))−�(LT X + KT X, Y )−�(X,LT Y + KT Y )

= T (�(X, Y ))−�(LT X, Y )−�(X,LT Y )

−�(KT X, Y )−�(X, KT Y )

= T (�(X, Y ))−�(LT X, Y )−�(X,LT Y ) = (LT�)(X, Y ) = 0,
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(by (1.48)). Let us check that H(M) is parallel with respect to ∇. By definition, ∇X Y ,
∇X Y , ∇T X ∈ T1,0(M) for any X, Y ∈ T1,0(M), so that ∇ parallelizes T1,0(M) (and
therefore, by complex conjugation, since ∇ is a real operator, it parallelizes T0,1(M),
as well). Finally, if Y = V + V , V ∈ T1,0(M), then

∇X Y = ∇X V + ∇X V

= ∇X V + ∇X V ∈ Re{T1,0(M)⊕ T0,1(M)} = H(M),

for any X ∈ T (M). It remains to be checked that ∇ J = 0. Indeed,

(∇X J )Y = ∇X JY − J∇X Y = ∇X iY − i∇X Y = 0,

for any X ∈ T (M) and Y ∈ T1,0(M) (since ∇X Y ∈ T1,0(M)), etc. Finally, let us check
(1.37):

T∇(X, Y ) = ∇X Y − ∇Y X − [X, Y ]

= π−[X, Y ] + π+[X, Y ] − [X, Y ]

= −θ([X, Y ])T = 2(dθ)(X, Y )T = 2i Lθ (X, Y )T,

for any X, Y ∈ T1,0(M). Theorem 1.3 is completely proved. �
We end the section with the following remark. Let ∇ be the Tanaka–Webster con-

nection of (M, θ). The purity properties (1.36)–(1.38) of T∇ may be formulated com-
pactly as

π+T∇(Z ,W ) = 0

for any Z ∈ T1,0(M), W ∈ T (M)⊗ C. The proof is left as an exercise to the reader.

1.3 Local computations

Given a CR manifold M (of hypersurface type), as long as one is concerned with dif-
ferential-geometric applications, e.g., calculations of characteristic classes of T1,0(M),
one needs a connection adapted to the given CR structure. Assume M to be nondegen-
erate. Then its Levi distribution H(M) is as far from being integrable as possible, so
that any linear connection ∇ on M that is reducible to a connection in H(M) must
have a nonvanishing torsion tensor field (any distribution parallel with respect to a
torsion-free linear connection is involutive). Also, since the Levi form Lθ is precisely
the obstruction to the integrability of H(M), one expects Lθ to be somehow encoded
in T∇ . By Theorem 1.3 we see that this is indeed the case, and (1.37) gives the ex-
plicit relation between T∇ and Lθ for the Tanaka–Webster connection. Also, T∇ may
have some additional nontrivial part, the pseudo-Hermitian torsion τ , the properties of
which are soon to be investigated.
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1.3.1 Christoffel symbols

For all local calculations, let {Tα : 1 ≤ α ≤ n} be a local frame of T1,0(M) defined
on the open set U ⊆ M . Since the Tanaka–Webster connection parallelizes the eigen-
bundles of J there exist uniquely defined complex 1-forms ωαβ ∈ �∞(T ∗(M) ⊗ C)
(locally defined on U ) such that

∇Tβ = ωαβ ⊗ Tα .

These are the connection 1-forms. Let us set Tα = Tα . Then

{T1, . . . , Tn, T1, . . . , Tn, T }
is a frame of T (M)⊗ C on U . Let us set ωα

β
= ωαβ . Then (since ∇ is a real operator)

we have

∇Tβ = ωα
β

⊗ Tα.

We shall need the Christoffel symbols �αAβ : U → C given by

�αAβ = ωαβ(TA).

Unless otherwise stated, we adopt the following conventions as to the range of in-
dices. The Greek indices α, β, γ, . . . vary from 1 to n, while the block Latin indices
A, B,C, . . . vary in {0, 1, . . . , n, 1̄, . . . , n̄}, with the convention T0 = T . Therefore

∇Tγ Tβ = �αγβTα,∇Tγ Tβ = �αγβTα,∇T Tβ = �α0βTα .

In applications, given a concrete nondegenerate CR manifold (of hypersurface type)
we shall compute its Tanaka–Webster connection by computing its Christoffel sym-
bols with respect to an arbitrary (local) frame of T1,0(M). We denote by

hαβ = Lθ (Tα, Tβ)

the components of the Levi form. Recall that

∇X Y = UXY ,

for any X, Y ∈ T1,0(M). Let us set for simplicity

Uαβ = UTαTβ .

Then on the one hand,

Uαβ = �
γ
αβTγ .

On the other hand, taking into account that

�(Tα, Tβ) = −ihαβ
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we have

−i�αγβhασ = �(�αγβTα, Tσ ) = �(Uγβ, Tσ )

= Tγ (�(Tβ, Tσ ))−�(Tβ, π−[Tγ , Tσ ])

= −iTγ (hβσ )−�(Tβ, [Tγ , Tσ ])

and contraction by hσμ leads to

�αγβ = hσα
(
Tγ (hβσ )− gθ (Tβ, [Tγ , Tσ ])

)
. (1.51)

Throughout [hαβ ] = [hαβ ]−1, so that

hαβhβσ = δασ .

The next step is to compute the Christoffel symbols �αγβ . To this end, by recalling the
definitions, we start from

π+[Tγ , Tβ ] = ∇Tγ Tβ = �αγβTα.

Let us take the inner product (using the Webster metric gθ ) with Tμ and contract the
resulting identity with hμβ . This procedure furnishes

�αγβ = hμαgθ ([Tγ , Tβ ], Tμ). (1.52)

Note that

∀X ∈ �∞(H(M)) : [T, X ] ∈ �∞(H(M)).

Using this observation we may compute the remaining Christoffel symbols �α0β of the
Tanaka–Webster connection. Indeed, recalling the definitions, we have

�α0βTα = ∇T Tβ = LT Tβ + KT Tβ = [T, Tβ ] − 1

2
J ◦ (LT J )Tβ

= [T, Tβ ] − 1

2
J
(
[T, J Tβ ] − J [T, Tβ ]

) = 1

2

(
[T, Tβ ] − i J [T, Tβ ]

)
.

Taking the inner product with Tμ and contracting with hμρ in the resulting identity we
obtain

�α0β = hμαgθ ([T, Tβ ], Tμ). (1.53)

Summing up (by (1.51)–(1.53)) we have proved the following identities:

�αγβ = hμ̄α
{
Tγ (hβμ̄)− gθ (Tβ, [Tγ , Tμ̄])

}
,

�αγ̄ β = hμ̄αgθ ([Tγ̄ , Tβ ], Tμ̄),

�α0β = hμ̄αgθ ([T, Tβ ], Tμ̄).

(1.54)



34 1 CR Manifolds

As an application of (1.54), we compute the (Christoffel symbols of the) Tanaka–
Webster connection of the family of CR manifolds Hn−ν

n , n/2 ≤ ν ≤ n (which con-
stitute the Heisenberg group).

Let us consider Cn × R with the coordinates (z1, . . . , zn, t). Let us assume that
n ≥ 3 and let ν ∈ Z such that n/2 ≤ ν ≤ n. Let us set

W j = ∂

∂w j
+ ε j i w j ∂

∂t
, (1.55)

where

w j =
{

z j if 1 ≤ j ≤ ν,
z j if ν + 1 ≤ j ≤ n,

and

ε j =
{
+1 if 1 ≤ j ≤ ν,

−1 if ν + 1 ≤ j ≤ n,

for any 1 ≤ j ≤ n. Let us set

Hx =
n∑

j=1

CW j,x

for any x ∈ Cn × R. Since

[W j ,Wk] = 0 (1.56)

it follows that H is a CR structure on Cn × R. Let θ0 be given by (1.25). Then θ0 is a
pseudo-Hermitian structure on (Cn × R,H). Then, the commutation formula

[W j ,Wk] = −iδ jk(ε j + εk)
∂

∂t
(1.57)

yields

Lθ0(W j ,Wk) = 1

2
δ jk(ε j + εk),

so that (Cn×R,H) is a nondegenerate CR manifold (of hypersurface type) whose Levi
form has signature (ν, n − ν). Let Hn−ν

n denote Cn ×R together with the CR structure
H spanned by the complex vector fields (1.55). Then H0

n is the Heisenberg group Hn

(carrying the standard strictly pseudoconvex CR structure). Using the commutation
formulas (1.56)–(1.57), the identities (1.51)–(1.53) yield

�βμα = 0, �βμα = 0, �β0α = 0.

Also τ = 0. Therefore the Tanaka–Webster connection of Hn−ν
n is flat and has vanish-

ing pseudo-Hermitian torsion. Finally, note that Hn−ν
n is a Lie group with the group

structure
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(z, t) · (w, s) = (z + w , t + s + 2 Im Qn−ν(z, w)) ,

where Qn−ν is the Hermitian form given by

Qn−ν(z, w) =
n∑

j=1

ε j z jw j ,

for any z, w ∈ Cn . As with Hn , we may provide the following geometric interpretation
of Hn−ν

n . Let M ⊂ Cn+1 be the real hypersurface defined by

M = {(z, u + iv) : v = Qn−ν(z, z)} .
Then the map f : Hn−ν

n → M given by

f (z, t) = (z, t + i Qn−ν(z, z))

is a CR isomorphism, where M is thought of as carrying the CR structure induced
from Cn+1. See also S. Kaneyuki [238].

Next, we wish to compute the Tanaka–Webster connection of a CR Lie group.
Let (G, T1,0(G)) be a nondegenerate CR Lie group, G = L(G) its Lie algebra, and
a = j−1T1,0(G)e the CR structure on G induced by T1,0(G). With the notation and
conventions in Section 1.1.7, let θ0 ∈ G∗ be an annihilator of h, θ0 �= 0, and let θ
be the corresponding left-invariant pseudo-Hermitian structure of (G, T1,0(G)). Let
us compute the Tanaka–Webster connection of (G, θ). To this end, let {Tα} be a linear
basis of a over C (hence {TA} = {T, Tα, Tᾱ} spans G ⊗R C). Let us set

[TB, TC ] = C A
BC TA .

Of course, the structure constants C A
BC are not independent (because of the skew-

symmetry of the Lie algebra product and the Jacobi identity). Also (since a ⊂ G⊗R C
is a subalgebra)

C γ̄αβ = 0, C0
αβ = 0.

Other relations may be obtained from [TA, TB] = [TĀ, TB̄] (with the convention 0̄ =
0). The identity

[Tα, Tβ̄ ] = �
γ̄

αβ̄
Tγ̄ − �γ

β̄α
Tγ − 2ihαβ̄T

leads to

�
γ̄

αβ̄
= C γ̄

αβ̄
, hαβ̄ = i

2
C0
αβ̄
.

Similarly, the identity

[T, Tβ ] = �
γ

0βTγ − Aγ̄βTγ̄
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leads to

�
γ

0β = Cγ0β , Aγ̄β = −C γ̄0β .

The coefficients Aαβ (describing locally the pseudo-Hermitian torsion) are introduced
shortly after Lemma 1.2. Finally (by (1.51)),

�
γ
αβ = −hγ μ̄C λ̄αμ̄hβλ̄ .

1.3.2 The pseudo-Hermitian torsion

We proceed by establishing a few elementary properties of the pseudo-Hermitian tor-
sion τ of the Tanaka–Webster connection.

Lemma 1.2. τ(T1,0(M)) ⊆ T0,1(M).

The proof follows from (1.38). By Lemma 1.2 there exist uniquely defined C∞ func-
tions Aαβ : U → C such that

τ Tβ = AαβTα .

The calculation

τ Tα = T∇(T, Tα) = ∇T Tα − [T, Tα]

shows that

AβαTβ = −π−[T, Tα] .

Let us take the inner product with Tμ and contract the resulting identity with hμσ . This
procedure leads to

Aβα = −hμβgθ ([T, Tα], Tμ). (1.58)

Let us set

A(X, Y ) = gθ (τ X, Y ),

for any X, Y ∈ T (M). Also, we set Aαβ = A(Tα, Tβ). Then

Aαβ = Aγαhγ β .

The matrix of τ with respect to the local frame {Tα, Tα, T } is given by

τ :

⎛⎜⎝ 0 Aβα 0
Aβα 0 0
0 0 0

⎞⎟⎠ ,
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where Aβα = Aβα . Therefore, since the trace of an endomorphism of a linear space
coincides with the trace of its extension (by C-linearity) to the complexified linear
space, it follows that

trace(τ ) = 0. (1.59)

To explain the geometric meaning of (1.59) we need to recall the notion of minimality
of a C∞ distribution in Riemannian geometry.

Definition 1.26. Let (N , g) be a Riemannian manifold and D : x !→ Dx ⊆ Tx (N ) a
C∞ distribution on N . Let D⊥ be the orthogonal complement (with respect to g) of
D in T (N ) (so that T (N ) = D ⊕ D⊥). Let ∇N be the Levi-Civita connection of N .
Define

B(X, Y ) = π⊥ ∇N
X Y

for any X, Y ∈ D. Here π⊥ : T (N ) → D⊥ is the natural projection. Finally, set
H = trace(B). We say that D is minimal in (N , g) if H = 0. �

Returning to pseudo-Hermitian geometry, we may state the following result:

Theorem 1.4. Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold and θ a
pseudo-Hermitian structure on M such that the Levi form Lθ is positive definite. Let
gθ be the corresponding Webster metric. Then the Levi distribution H(M) is minimal
in (M, gθ ).

Proof. Since Lθ is positive definite, gθ is a Riemannian metric on M . The orthogonal
complement (with respect to gθ ) of H(M) in T (M) is precisely RT (where T is the
characteristic direction of dθ ). The projection of a tangent vector field X ∈ T (M) on
RT is θ(X)T . Let ∇θ be the Levi-Civita connection of (M, gθ ). Consider

B(X, Y ) = θ(∇θX Y )T,

for any X, Y ∈ H(M). We shall show that trace(B) = 0. We need the following
lemma:

Lemma 1.3. Let (M, T1,0(M)) be a nondegenerate CR manifold and θ a fixed pseudo-
Hermitian structure on M. Let ∇ be the Tanaka–Webster connection of (M, θ). Then
the torsion tensor field T∇ of ∇ is given by

T∇ = 2(θ ∧ τ −�⊗ T ). (1.60)

Moreover, the Levi-Civita connection ∇θ of the semi Riemannian manifold (M, gθ ) is
related to ∇ by

∇θ = ∇ + (�− A)⊗ T + τ ⊗ θ + 2θ $ J. (1.61)
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Here $ denotes the symmetric tensor product.4 The proof of the identity (1.60) in
Lemma 1.3 is a straightforward consequence of the purity conditions (1.36)–(1.38).
As to (1.61), it follows from the Christoffel process applied to the metric connection
∇. Indeed, since ∇gθ = 0 we may write

X (gθ (Y, Z)) = gθ (∇X , Y, Z)+ gθ (Y,∇X Z)

for any X, Y, Z ∈ T (M). The Christoffel process consists in the cyclic permutation
of X, Y, Z in the above identity (thus producing two more identities of the kind),
summing the first two, and subtracting the third. This leads (by the very definition of
T∇ ) to

X (gθ (Y, Z))+ Y (gθ (Z , X))− Z(gθ (X, Y )) =
2gθ (∇X Y, Z)+ gθ (T∇(X, Z), Y )+ gθ (T∇(Y, Z), X)− gθ (T∇(X, Y ), Z)

+ gθ ([X, Z ], Y )+ gθ ([Y, Z ], X)− gθ ([X, Y ], Z)

for any X, Y, Z ∈ T (M). Next we use Proposition 2.3 in [241], vol. I, p. 160, to con-
clude that

2gθ (∇θX Y, Z) =
2gθ (∇X Y, Z)+ gθ (T∇(X, Z), Y )+ gθ (T∇(Y, Z), X)− gθ (T∇(X, Y ), Z).

Lemma 1.4. The pseudo-Hermitian torsion τ : T (M) → T (M) is self-adjoint with
respect to the Webster metric, that is,

gθ (τ X, Y ) = gθ (X, τY )

for any X, Y ∈ T (M).

We shall prove Lemma 1.4 later on. Using Lemma 1.4 we may finish the proof of
(1.61). Indeed, by (1.60) and Lemma 1.4 we may perform the calculation of the torsion
terms,

gθ (T∇(X, Z), Y )+ gθ (T∇(Y, Z), X)− gθ (T∇(X, Y ), Z) =
2θ(Y )gθ (τ Z , X)− 2θ(Z)gθ (τ X, Y )

− 2
(
�(X, Z)θ(Y )+�(Y, Z)θ(X)−�(X, Y )θ(Z))

yielding

∇θX Y = ∇X Y − gθ (τ X, Y )T +�(X, Y )T + θ(Y )τ X + θ(X)JY + θ(Y )J X

for any X, Y ∈ T (M). �
4 For instance, 2(θ $ J )(X, Y ) = θ(X)JY + θ(Y )J X for any X, Y ∈ T (M).



1.3 Local computations 39

Using (1.61) in Lemma 1.3 we may conclude the proof of Theorem 1.4 as follows.
Let X, Y ∈ H(M). Then (1.61) may be written

∇θX Y = ∇X Y + (�− A)(X, Y )T

such that

B(X, Y ) = (
�(X, Y )− A(X, Y )

)
T .

Let {E1, . . . , E2n} be a local orthonormal frame of H(M). Then (by the skew-sym-
metry of �) we have

trace(B) =
2n∑
j=1

B(E j , E j ) = −
2n∑
j=1

A(E j , E j )T = −(trace(τ ))T = 0

(by (1.59)). Our Theorem 1.4 is completely proved. �

At this point we ought to prove Lemma 1.3. Let {T1, . . . , Tn} be a local frame of
T1,0(M) and {θ1, . . . , θn} the dual coframe in T1,0(M)∗, that is,

θα(Tβ) = δαβ , θα(Tβ) = 0, θα(T ) = 0.

Then dθ may be written in the following form:

dθ = Bαθ ∧ θα + Bαθ ∧ θα + Bαβθ
α ∧ θβ + Bαβθ

α ∧ θβ + Bαβθ
α ∧ θβ

where the coefficient functions satisfy (since dθ is a real 2-form) the identities

Bα = Bα, Bαβ = Bαβ, Bαβ = −Bβα .

Next T � dθ = 0 yields Bα = 0. Also (by the integrability of the CR structure)

0 = −θ([Tσ , Tρ]) = 2(dθ)(Tσ , Tρ) = Bσρ − Bρσ ,

so that

Bαβθ
α ∧ θβ = 0.

Finally,

ihλμ = (dθ)(Tλ, Tμ) = 1

2
Bλμ.

We conclude that

dθ = 2ihαβθ
α ∧ θβ . (1.62)

Let us define the local 1-forms τα ∈ �∞(U, T ∗(M)⊗ C) by setting
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τα = Aα
β
θβ .

Then

τ = τα ⊗ Tα + τα ⊗ Tα, (1.63)

where τα = τα . The proof of (1.63) is straightforward. Next

dθα = θβ ∧ ωαβ + θ ∧ τα . (1.64)

The proof of (1.64) follows from the identity

2(dθα)(X, Y ) = (∇Xθ
α)Y − (∇Y θ

α)X + θα(T∇(X, Y ))

for any X, Y ∈ T (M). At this point we may prove Lemma 1.4. To this end, let us
differentiate (1.62) to obtain

0 = 2idhαβ ∧ θα ∧ θβ + 2ihαβdθα ∧ θβ − 2ihαβθ
α ∧ dθβ .

We may substitute from (1.64) so that

0 = dhαβ ∧ θα ∧ θβ + hαβ(θ
γ ∧ ωαγ + θ ∧ τα) ∧ θβ

− hαβθ
α ∧ (θγ ∧ ωβγ + θ ∧ θβ) . (1.65)

On the other hand, we may use the local coordinate representation of ∇gθ = 0, that
is,

dhαβ = hαγ ω
γ

β
+ ωγα hγ β,

to rewrite (1.65) as

0 = (ωγαhγ β + hαγ ω
γ

β
) ∧ θα ∧ θβ − hμβω

μ
α ∧ θα ∧ θβ + hαβθ ∧ τα ∧ θβ

− hαμω
μ

β
∧ θα ∧ θβ − hαβθ

α ∧ θ ∧ τβ

= hαβ Aαμθ ∧ θμ ∧ θβ − hαβ Aβλθ
α ∧ θ ∧ θλ,

or

Aμβθ ∧ θμ ∧ θβ = Aλαθ
α ∧ θ ∧ θλ,

that is,

Aλαθ
α ∧ θ ∧ θλ = 0.

Finally, applying this identity to (Tμ, T, Tβ) we get

Aβμ = Aμβ,

and Lemma 1.4 is completely proved. �
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The following remark (relating the theory of CR manifolds to the theory of CR
submanifolds in Hermitian manifolds, in the sense of A. Bejancu [55]), is in order.
The fact that H(M) is minimal in (M, gθ ) (cf. Theorem 1.4) is an analogue of a result
by B.Y. Chen [90], i.e., the holomorphic distribution of a CR submanifold M of a
Kählerian manifold is minimal in (M, g), where g is the metric induced on M by
the ambient Kähler metric. To make this statement precise we need to recollect a few
definitions and conventions (cf., e.g., [56]).

Definition 1.27. Let (N , J, g̃) be a Hermitian manifold, where J denotes the complex
structure and g̃ the Hermitian metric. Let M be a real submanifold of N and g = j∗g̃
the induced metric, where j : M → N is the inclusion. We say that M is a CR
submanifold of N if M carries a distribution H(M) such that (i) H(M) is holomorphic
(i.e., Jx H(M)x = H(M)x for any x ∈ M) and (ii) the orthogonal complement (with
respect to g) H(M)⊥ of H(M) in T (M) is anti-invariant (i.e., Jx H(M)⊥x ⊆ ν( j)x for
any x ∈ M). Here ν( j)→ M is the normal bundle of j . �

For a CR submanifold (M, H(M)) of a Hermitian manifold (N , J, g̃) we set
dimR H(M)x = 2n and dimR H(M)⊥x = k, for any x ∈ M . Clearly the complex
structure J descends to a complex structure Jb : H(M) → H(M). Let us extend Jb

to H(M) ⊗ C by C-linearity and let T1,0(M) = Eigen(i) be the eigenbundle of Jb

corresponding to the eigenvalue i . By a result of D.E. Blair and B.Y. Chen [64], for
any proper (i.e., n �= 0, k �= 0) CR submanifold (M, H(M)) of a Hermitian manifold,
(M, T1,0(M)) is a CR manifold of type (n, k) (and H(M) is its Levi distribution). See
also K. Yano and M. Kon [446], pp. 83–85. Moreover, if (N , J, g̃) is a Kähler manifold
and (M, H(M)) a (proper) CR submanifold of N , then the anti-invariant distribution
H(M)⊥ is (cf. [90]) integrable (so that each CR submanifold comes equipped with
a natural totally real foliation) and the holomorphic distribution H(M) is minimal in
(M, g). This is, however, distinct from the result in our Theorem 1.4, as we emphasize
below.

The CR manifolds considered in [90] have arbitrary CR codimension k. Therefore,
to draw a comparison line among strictly pseudoconvex CR manifolds and CR sub-
manifolds, let us consider an orientable real hypersurface M of a Kählerian manifold
(N , J, g̃). M is a proper CR submanifold in a natural way.5 Moreover, (M, T1,0(M))
is a CR manifold (of hypersurface type) for which θ X = g(X, Jξ) (with X ∈ T (M))
is a pseudo-Hermitian structure. Yet in general, the induced metric g and the Webster
metric gθ do not coincide (hence our Theorem 1.4 doesn’t follow from B.Y. Chen’s
result; cf. op. cit.). For instance, none of the Webster metrics of ∂�2 (the boundary of
the Siegel domain in C2) coincides with the metric induced on ∂�2 from the standard
(flat) Kähler metric of C2. Let us check this statement, in the following more general
situation. Let

M3 = {(z, w) ∈ C2 : v = h(z)}
5 Indeed, let ξ ∈ �∞(ν( j)) be a unit normal vector field on M . Then Jξ is tangent to M .

Let H(M) be the orthogonal complement of RJξ in T (M). Then H(M) is holomorphic and
RJξ is anti-invariant.
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(a rigid hypersurface in C2) for some R-valued C2 function h, z = x +iy,w = u+iv.
Let us set

g = (1 + h2
x + h2

y)
1/2.

The Levi distribution H(M3) is generated by

X1 = e1 + hye3, X2 = e2 − hx e3,

where

e1 = ∂

∂x
+ hx

∂

∂v
, e2 = ∂

∂y
+ hy

∂

∂v
, e3 = ∂

∂v

(the generators of T (M3)). Thus T1,0(M3) is the span of Z = ∂/∂z +2ihz∂/∂w. Next

θ = 4(hydx − hx dy − du)

is a contact form on M3 and

dθ = −4�h dx ∧ dy,

so that the Levi form of M3 is given by

Lθ (Z , Z) = �h.

Thus M3 is nondegenerate (respectively strictly pseudoconvex) if �h �= 0 every-
where (respectively h is strictly subharmonic). Let j : M3 ⊂ C2 be the inclusion
and gcan the flat Kähler metric of C2. Then j∗gcan = diag(g2, g2, g2) (with respect to
{X1, X2, X = ∂/∂u − hy∂/∂x + hx∂/∂y}). Also guθ = diag(2u�h, 2u�h, 16u2g4),
where u ∈ C∞(M3) is any smooth (0,∞)-valued function. Thus the induced metric
on M3 coincides with the Webster metric guθ if and only if 4u = 1/g and
�h = 2g3. �

The vanishing of the pseudo-Hermitian torsion (τ = 0) admits an important geo-
metric interpretation, due to S. Webster [422]. Precisely, we may state the following
theorem:

Theorem 1.5. Let M be a nondegenerate CR manifold, θ a contact form on M, and T
the characteristic direction of dθ . Then the Tanaka–Webster connection of (M, θ) has
a vanishing pseudo-Hermitian torsion (τ = 0) if and only if T is an infinitesimal CR
automorphism.

Definition 1.28. By an infinitesimal CR automorphism we mean a real tangent vector
field whose (local) 1-parameter group of (local) transformations of M consists of (lo-
cal) CR automorphisms. �

The following simple characterization of infinitesimal CR automorphisms is available:
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Lemma 1.5. Let X be a tangent vector field on a CR manifold (of hypersurface type).
Let θ be a pseudo-Hermitian structure. Then X is an infinitesimal CR automorphism
if and only if LXθ ≡ 0 mod θ and LXθ

α ≡ 0 mod θ, θβ, for any (local) frame {θα}
in T1,0(M)∗.

Here LX indicates the Lie derivative in the direction X . Also ≡ denotes the ordinary
congruence relation among forms (for instance, LXθ ≡ 0 mod θ if Lxθ belongs to
the ideal spanned by θ in the de Rham algebra of M). The proof of Lemma 1.5 is
straightforward (and therefore left as an exercise to the reader). Recall that LX =
iX d + d iX . Then

LT θ = iT dθ = 0,

LT θ
α = iT dθα + d(iT θ

α) = iT {θβ ∧ ωαβ + θ ∧ τα}
= −1

2
ωαβ(T )θ

β − 1

2
τα(T )θ + 1

2
τα ,

for any admissible (local) coframe {θα}. Finally, to prove Theorem 1.5, note that τ = 0
is equivalent to the prescriptions in Lemma 1.5 since τα = Aα

β
θβ . �

1.3.3 The volume form

Let M be a nondegenerate CR manifold and θ a pseudo-Hermitian structure on M .

Proposition 1.9.  = θ ∧ (dθ)n is a volume form on M.

In other words, θ is a contact form on M . This is done by explicitly computing with
respect to an (admissible) coframe {θα : 1 ≤ α ≤ n}. By taking the nth exterior power
of the identity

dθ = 2ihαβθ
α ∧ θβ

we obtain

(dθ)n = 2ninhα1β1
· · · hαnβn

θα1 ∧ θβ1 ∧ · · · ∧ θαn ∧ θβn .

A straightforward exercise of multilinear algebra shows that the wedge product may
be rearranged as

θα1 ∧ θβ1 ∧ · · · ∧ θαn ∧ θβn = (−1)n(n−1)/2θα1···αn ∧ θβ1···βn ,

where

θα1···αn = θα1 ∧ · · · ∧ θαn , θα1···αn = θα1···αn .

The proof is simply elementary combinatorics. Indeed, we may set

θα1 ∧ θβ1 ∧ · · · ∧ θαn ∧ θβn = I (n)θα1···αn ∧ θβ1···βn
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and obtain the recurrence relation I (n+1)=(−1)n I (n), whence I (n)=(−1)n(n−1)/2.
Therefore

(dθ)n = 2nin(−1)n(n−1)/2hα1β1
· · · hαnβn

θα1···αn ∧ θβ1···βn .

Furthermore, note that

hα1β1
· · · hαnβn

θα1···αn ∧ θβ1···βn = n! det(hαβ)θ
1···n·1···n,

where

θ1···n·1···n = θ1 ∧ · · · ∧ θn ∧ θ1 ∧ · · · ∧ θn .

Once again, the proof is an exercise in multilinear algebra. Precisely, we may carry
out the calculation

hα1β1
· · · hαnβn

θα1···αn ∧ θβ1···βn =
∑

f,g∈σn

h f (1)g(1) · · · h f (n)g(n)ε( f )ε(g)θ1···n·1······n

=
∑

f,g∈σn

h
1 g( f −1(1))

· · · h
n g( f −1(n))

ε(g f −1)θ1···n·1······n

= n! det(hαβ)θ
1···n·1···n . �

We conclude that

(dθ)n = 2n in2
n! det(hαβ)θ

1···n·1···n,

so that  is given by

 = 2n in2
n! det(hαβ)θ ∧ θ1 ∧ · · · θn ∧ θ1 ∧ · · · ∧ θn . (1.66)

In particular, let x ∈ M and let {θα : 1 ≤ α ≤ n} be a local admissible coframe
defined on an open neighborhood U of x . By (1.66) it follows that  x �= 0, i.e.,  is
a volume form. �

Now let us discuss the divergence of a vector field on a nondegenerate CR mani-
fold. The divergence div(X) of a vector field X ∈ X (M) is defined by

LX = div(X) ,

where LX denotes the Lie derivative. As usual, we may extend div to complex vector
fields (by C-linearity). Then, since div is a real operator,

div(Z) = div(Z),

for any Z ∈ �∞(T1,0(M)). The divergence div(X) may be computed in yet another
way, i.e.,

div(X) = trace{Y ∈ T (M) !→ ∇Y X}, (1.67)
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where ∇ is the Tanaka–Webster connection of (M, θ). A remark is in order: Note that
the traces of the endomorphisms

T1,0(M)→ T1,0(M), W !→ ∇W Z ,

and

T (M)⊗ C → T (M)⊗ C, W !→ ∇W Z ,

coincide for any Z ∈ �∞(T1,0(M)), so that (1.67) yields

div(Z) = trace{W ∈ T1,0(M) !→ ∇W Z}, (1.68)

for any Z ∈ T1,0(M). Consequently, if Z = ZαTα then

div(Z) = Tα(Z
α)+ Zβ�ααβ.

We end this section by proving (1.68). The reader may easily complete this to a full
proof of (1.67). Let us set

θ ∧ θ1···n·1···n = θ01···n·1···n, θ = θ0 , f = det(hαβ),

for simplicity. Note that

θ01···n·1···n(T, T1, . . . , Tn, T1, . . . , Tn) = 1

(2n + 1)!
.

Then (by applying LZ = (div Z) at (T, T1, . . . , Tn, T1, . . . , Tn)) we obtain

f div(Z) = Z( f )− f
2n∑

A=0

θ A(LZ TA), (1.69)

where we agree to relabel for a moment {T, Tα, Tα} as {TA : 0 ≤ A ≤ 2n}. Taking
into account the identities

[Z , T ] = −
(

T (Zα)+ Zβ�α0β

)
Tα + Zβ AαβTα,

[Z , Tμ] = −
(

Tμ(Z
α)+ Zβ�αμβ

)
Tα,

[Z , Tμ] = −
(

Tμ(Z
α)+ Zβ�αμβ

)
Tα + Zβ�αβμTα − 2i ZβhβμT,

we may write (1.69) as

f div(Z) = Z( f )+ f
(

Tα(Z
α)+ Zβ�ααβ − Zβ�αβα − Zβ�αβα

)
. (1.70)

Note that

hλμ = 1

f

∂ f

∂hλμ
.



46 1 CR Manifolds

Then

Z( f ) = f hλμZ(hλμ),

so that (1.70) becomes

div(Z) = trace{W !→ ∇W Z} + hλμZ(hλμ)− �αβαZβ − �αβαZβ,

which yields (1.68) because of

dhαβ = hαγ ω
γ

β
+ ωγαhγ β .

1.4 The curvature theory

We start by relating semi-Riemannian and pseudo-Hermitian curvature. Let
(M, T1,0(M)) be a nondegenerate CR manifold (of hypersurface type) of CR dimen-
sion n. Let θ be a fixed pseudo-Hermitian structure on M, T the characteristic direc-
tion of dθ , and gθ the corresponding Webster metric. Let ∇ and ∇θ be the Tanaka–
Webster connection of (M, θ), respectively the Levi-Civita connection of the semi-
Riemannian manifold (M, gθ ). Let R and Rθ be the curvature tensor fields of ∇ and
∇θ , respectively. We recall that (cf. (1.61))

∇θ = ∇ + (�− A)⊗ T + τ ⊗ θ + 2θ $ J,

so that we may derive an identity relating the curvature tensor fields Rθ and R. This
will indeed prove to be useful in circumventing the difficulties arising from the failure
of Ri jk� to satisfy the identity Ri jk� = Rk�i j . Note, however, that

Ri jk� + Ri j�k = 0

(because R is a 2-form) and

Ri jk� + R jik� = 0

(because of ∇gθ = 0). Here, given a local coordinate system (U, xi ) on M , we set

Ri jk� = gθ (R(∂k, ∂�)∂ j , ∂i )

and ∂i = ∂/∂xi . As is well known (cf., e.g., [241], vol. I, pp. 198–199), the missing
property Ri jk� = Rk�i j would hold if

Ri
jk� + Ri

k�j + Ri
�jk = 0.

Yet this no longer holds for the curvature of the Webster connection (due to the fact
that the Webster connection has nontrivial torsion). Instead, we have the following first
Bianchi identity



1.4 The curvature theory 47∑
XY Z

R(X, Y )Z =
∑
XY Z

((∇X T∇)(Y, Z)+ T∇(T∇(X, Y ), Z))

(cf. Theorem 5.3 in [241], vol. I, p. 135) for any X, Y, Z ∈ T (M). Here
∑

XY Z denotes
the cyclic sum over X, Y, Z .

Let us use (1.61) to perform the following calculations:

∇θX∇θY Z = ∇X∇Y Z +�(X,∇Y Z)T − A(X,∇Y Z)T

+ (τ X)θ(∇Y Z)+ θ(X)J∇Y Z + θ(∇Y Z)J X + X (�(Y, Z))T

+�(Y, Z)L X − X (A(Y, Z))T − A(Y, Z)L X + X (θ(Z))τY

+ θ(Z)∇θXτY + X (θ(Y ))J Z + θ(Y )∇θX J Z + X (θ(Z))JY + θ(Z)∇θX JY

because of

∇θX T = L X,

where the (1, 1)-tensor field L on M is given by

L = τ + J.

Furthermore,

∇θX∇θY Z = ∇X∇Y Z +�(X,∇Y Z)T − A(X,∇Y Z)T

+ θ(∇Y Z)τ X + θ(X)J∇Y Z + θ(∇Y Z)J X + X (�(Y, Z))T

+�(Y, Z)L X − X (A(Y, Z))T − A(Y, Z)L X + X (θ(Z))τY

+ θ(Z){∇XτY +�(X, τY )T − A(X, τY )T + θ(X)JτY }
+ X (θ(Y ))J Z + θ(Y ){∇X J Z +�(X, J Z)T − A(X, J Z)T + θ(X)J 2 Z}

+ X (θ(Z))JY + θ(Z){∇X JY +�(X, JY )T − A(X, JY )T + θ(X)J 2Y }

due to θ ◦ J = 0 and θ ◦ τ = 0. Similarly, one computes ∇θY ∇θX Z . Furthermore,

∇θ[X,Y ] Z = ∇[X,Y ] Z +�([X, Y ], Z)T − A([X, Y ], Z)T

+ (τ [X, Y ])θ(Z)+ θ([X, Y ])J Z + θ(Z)J [X, Y ].

We may replace the Lie bracket from

[X, Y ] = ∇X Y − ∇Y X − T∇(X, Y ) .

Taking into account the identity (1.60) in Lemma 1.3 we may actually express [X, Y ]
as

[X, Y ] = ∇X Y − ∇Y X − θ(X)τY + θ(Y )τ X + 2�(X, Y )T

Therefore
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∇θ[X,Y ] Z = ∇[X,Y ] Z + θ([X, Y ])J Z

+ {�(∇X Y, Z)−�(∇Y X, Z)− θ(X)�(τY, Z)+ θ(Y )�(τ X, Z)}T
− {A(∇X Y, Z)− A(∇Y X, Z)− θ(X)A(τY, Z)+ θ(Y )A(τ X, Z)}T

+ θ(Z){τ∇X Y − τ∇Y X − θ(X)τ 2Y + θ(Y )τ 2 X}
+ θ(Z){J∇X Y − J∇Y X − θ(X)JτY + θ(Y )Jτ X},

due to J T = 0 and τT = 0. At this point we may perform the following calculations:

Rθ (X, Y )Z = R(X, Y )Z +�(X,∇Y Z)T −�(Y,∇X Z)T

− A(X,∇Y Z)T + A(Y,∇X Z)T + θ(∇Y Z)τ X − θ(∇X Z)τY

+ θ(X)J∇Y Z − θ(Y )J∇X Z + θ(∇Y Z)J X − θ(∇X Z)JY

+ X (�(Y, Z))T − Y (�(X, Z))T +�(Y, Z)L X −�(X, Z)LY

− X (A(Y, Z))T + Y (A(X, Z))T − A(Y, Z)L X + A(X, Z)LY

+ X (θ(Z))τY − Y (θ(Z))τ X

+ θ(Z){∇XτY − ∇Y τ X +�(X, τY )T −�(Y, τ X)T

− A(X, τY )T + A(Y, τ X)T + θ(X)JτY − θ(Y )Jτ X}
+ X (θ(Y ))J Z − Y (θ(X))J Z + θ(Y )∇X J Z − θ(X)∇Y J Z

+ θ(Y )�(X, J Z)T − θ(X)�(Y, J Z)T

− θ(Y )A(X, J Z)T + θ(X)A(Y, J Z)T

+ X (θ(Z))JY − Y (θ(Z))J X + θ(Z)∇X JY − θ(Z)∇Y J X

+ θ(Z)�(X, JY )T − θ(Z)�(Y, J X)T

− θ(Z)A(X, JY )T + θ(Z)A(Y, J X)T

+ θ(Z)θ(X)J 2Y − θ(Z)θ(Y )J 2 X − θ([X, Y ])J Z

−�(∇X Y, Z)T +�(∇Y X, Z)T

+ θ(X)�(τY, Z)T − θ(Y )�(τ X, Z)T

+ A(∇X Y, Z)T − A(∇Y X, Z)T

− θ(X)A(τY, Z)T + θ(Y )A(τ X, Z)T

− θ(Z)τ∇X Y + θ(Z)τ∇Y X + θ(X)θ(Z)τ 2Y − θ(Y )θ(Z)τ 2 X

− θ(Z)J∇X Y + θ(Z)J∇Y X + θ(X)θ(Z)JτY − θ(Y )θ(Z)Jτ X.

At this point we may use the identities

∇θ = 0,∇ J = 0,∇� = 0,

(∇X A)(Y, Z) = gθ ((∇Xτ)Y, Z).

Also, due to

−�(X, Y )+ A(X, Y ) = gθ (L X, Y )

we have
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(−�(X, Z)+ A(X, Z))LY − (−�(Y, Z)+ A(Y, Z))L X

= gθ (L X, Z)LY − gθ (LY, Z)L X

= (L X ∧ LY )Z .

The wedge product of two tangent vector fields X, Y on (M, gθ ) is defined as usual
by (X ∧ Y )Z = gθ (X, Z)Y − gθ (Y, Z)X for any Z ∈ T (M). Then

Rθ (X, Y )Z = R(X, Y )Z + {
(∇Y A)(X, Z)− (∇X A)(Y, Z)

}
T

+ (L X ∧ LY )Z + θ(Z){(∇Xτ)Y − (∇Y τ)X}
+ 2(dθ)(X, Y )J Z

+ {− θ(Y )gθ (J X, J Z)+ θ(X)gθ (JY, J Z)

− θ(Y )gθ (τ X, J Z)+ θ(X)gθ (τY, J Z)

− θ(X)gθ (JτY, Z)+ θ(Y )gθ (Jτ X, Z)

− θ(X)gθ (τ 2Y, Z)+ θ(Y )gθ (τ 2 X, Z)
}
T

+ θ(Z){θ(X)JτY − θ(Y )Jτ X + θ(X)J 2Y − θ(Y )J 2 X

+ θ(X)τ 2Y − θ(Y )τ 2 X + θ(X)JτY − θ(Y )Jτ X
}
.

On the other hand, one may observe that

− θ(Y )gθ (J X, J Z)+ θ(X)gθ (JY, J Z)− θ(Y )gθ (τ X, J Z)+ θ(X)gθ (τY, J Z)

− θ(X)gθ (JτY, Z)+ θ(Y )gθ (Jτ X, Z)− θ(X)gθ (τ 2Y, Z)+ θ(Y )gθ (τ 2 X, Z)

= θ(Y )gθ (OX, Z)− θ(X)gθ (OY, Z) = −2gθ ((θ ∧ O)(X, Y ), Z)

where

O = τ 2 + 2Jτ − I .

These calculations yield the following theorem:

Theorem 1.6. Let M be a nondegenerate CR manifold and θ a pseudo-Hermitian
structure on M. The curvature tensor fields R and Rθ (of the Tanaka–Webster con-
nection ∇ of (M, θ) and the Levi-Civita connection ∇θ of (M, gθ )) are related by

Rθ (X, Y )Z = R(X, Y )Z + (L X ∧ LY )Z − 2�(X, Y )J Z

− gθ (S(X, Y ), Z)T + θ(Z)S(X, Y )
− 2gθ ((θ ∧ O)(X, Y ), Z)T + 2θ(Z)(θ ∧ O)(X, Y ) (1.71)

for any X, Y, Z ∈ X (M), where S is given by

S(X, Y ) = (∇Xτ)Y − (∇Y τ)X .
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1.4.1 Pseudo-Hermitian Ricci and scalar curvature

We shall examine the consequences of (1.71) later on. Let us look at the local mani-
festation of R with respect to a local frame {T1, . . . , Tn} of T1,0(M) on U . We adopt
the unifying notation

{TA} = {T, Tα, Tα},
where

T0 = T, A ∈ {0, 1, . . . , n, 1, . . . , n} .
We define the functions RA

D
BC : U → C by setting

R(TB, TC )TA = RA
D

BC TD = RA
σ

BC Tσ + RA
σ

BC Tσ + RA
0

BC T .

If A = α ∈ {1, . . . , n} then R(TB, TC )Tα ∈ T1,0(M), so that

Rα
σ

BC = 0, Rα
0

BC = 0 .

Similarly, if A = α then

Rα
σ

BC = 0, Rα
0

BC = 0.

Also, ∇T = 0 yields

R0
D

BC = 0.

Definition 1.29. The Ricci tensor of the Webster connection is defined by

Ric(Y, Z) = trace{X !−→ R(X, Z)Y } ,
for any Y, Z ∈ T (M). The pseudo-Hermitian Ricci tensor is then given by Rλμ =
Ric(Tλ, Tμ). �

Note that

Rλμ = Rλ
α
αμ .

The pseudo-Hermitian Ricci tensor was introduced by S. Webster [422]. It is a natural
question whether Rαμ determines Ric. As we shall demonstrate later on, unless τ =
0 the answer is negative (there are other nontrivial components of Ric that may be
computed as certain (contractions of) covariant derivatives of the pseudo-Hermitian
torsion).

Definition 1.30. Let us set ρ = hλμRλμ. This is the pseudo-Hermitian scalar curva-
ture. �

It will be shortly shown (at the end of Section 1.4.2) that ρ = 1
2 trace (Ric).
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1.4.2 The curvature forms �
β
α

We may perform the following calculation:

R(X, Y )Tα = ∇X∇Y Tα − ∇Y ∇X Tα − ∇[X,Y ]Tα

= ∇X (ω
β
α(Y )Tβ)− ∇Y (ω

β
α(X)Tβ)− ωβα([X, Y ])Tβ

= 2(dωβα)(X, Y )Tβ + (ωβα(Y )ωγβ (X)− ωβα(X)ωγβ (Y ))Tγ .
Consequently,

R(X, Y )Tα = 2(dωβα − ωγα ∧ ωβγ )(X, Y )Tβ . (1.72)

Let us take the inner product of (1.71) with W to obtain

gθ (R
θ (X, Y )Z ,W ) =
gθ (R(X, Y )Z ,W )+ gθ ((L X ∧ LY )Z ,W )+ 2(dθ)(X, Y )gθ (J Z ,W )

− gθ (S(X, Y ), Z)θ(W )+ gθ (S(X, Y ),W )θ(Z)

− 2gθ ((θ ∧ O)(X, Y ), Z)θ(W )+ 2gθ ((θ ∧ O)(X, Y ),W )θ(Z) . (1.73)

Using (1.73) and the symmetry of the Riemann–Christoffel tensor field of (M, gθ ),

gθ (R
θ (X, Y )Z ,W ) = gθ (R

θ (W, Z)Y, X),

we obtain

gθ (R(X, Y )Z ,W ) =
gθ (R(W, Z)Y, X)− gθ ((L X ∧ LY )Z ,W )+ gθ ((LW ∧ L Z)Y, X)

+ gθ (S(X, Y ), Z)θ(W )− gθ (S(W, Z), Y )θ(X)

− θ(Z)gθ (S(X, Y ),W )+ θ(Y )gθ (S(W, Z), X)

+ 2gθ ((θ ∧ O)(X, Y ), Z)θ(W )− 2gθ ((θ ∧ O)(W, Z), Y )θ(X)

− 2θ(Z)gθ ((θ ∧ O)(X, Y ),W )+ 2θ(Y )gθ ((θ ∧ O)(W, Z), X) (1.74)

for any X, Y, Z ,W ∈ T (M). In particular, for X, Y, Z ,W ∈ H(M) the identity (1.74)
becomes

gθ (R(X, Y )Z ,W ) =
gθ (R(W, Z)Y, X)− gθ ((L X ∧ LY )Z ,W )+ gθ ((LW ∧ L Z)Y, X). (1.75)

Furthermore, let us set X = T in (1.74) to obtain (since LT = 0)

gθ (R(T, Y )Z ,W ) =
θ(R(W, Z)Y )+ θ((LW ∧ L Z)Y )

+ gθ (S(T, Y ), Z)θ(W )− gθ (S(W, Z), Y )− θ(Z)gθ (S(T, Y ),W )

+ 2gθ ((θ ∧ O)(T, Y ), Z)θ(W )− 2gθ ((θ ∧ O)(W, Z), Y )

− 2θ(Z)gθ ((θ ∧ O)(T, Y ),W )+ 2θ(Y )θ((θ ∧ O)(W, Z))
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for any Y, Z ,W ∈ T (M). We may use

τH(M) ⊆ H(M),

T � S = ∇T τ, θ(S(X, Y )) = 0,

T � (θ ∧ O) = 1

2
(O + θ ⊗ T ) ,

θ ◦ (θ ∧ O) = 0, θ ◦ L = 0,

θ((LW ∧ L Z)Y ) = 0,

to obtain

gθ (R(T, Y )Z ,W ) =
θ(R(W, Z)Y )+ gθ ((∇T τ)Y, Z)θ(W )− gθ ((∇T τ)Y,W )θ(Z)

− gθ (S(W, Z), Y )− 2gθ ((θ ∧ O)(W, Z), Y )

+ θ(W )gθ (OY, Z)− θ(Z)gθ (OY,W ). (1.76)

In particular, for Y, Z ,W ∈ H(M) we obtain

gθ (R(T, Y )Z ,W ) = gθ (S(Z ,W ), Y ). (1.77)

Note that with respect to a local frame {Tα} in T1,0(M) we have

LTα = iTα + AβαTβ , LTα = −iTα + AβαTβ .

Next, we wish to express dωβα − ωγα ∧ ωβγ with respect to the components RA
D

BC of
the curvature tensor R of the Tanaka–Webster connection. To this end we write

2(dωβα − ωγα ∧ ωβγ ) = Bβαλμθ
λ ∧ θμ + Bβ

αλμ
θλ ∧ θμ

+ Bβαλμθ
λ ∧ θμ + Bβα0μθ ∧ θμ + Bβαλ0θ

λ ∧ θ . (1.78)

Hence, using (1.72) we obtain

R( · , · )Tα = (θλ ∧ θμ)⊗ (BβαλμTβ)+ (θλ ∧ θμ)⊗ (Bβ
αλμ

Tβ)

+ (θλ ∧ θμ)⊗ (BβαλμTβ)+ (θ ∧ θμ)⊗ (Bβα0μTβ)+ (θλ ∧ θ)⊗ Bβαλ0Tβ) .

Therefore

Rα
β
σρ = 1

2
(Bβασρ − Bβαρσ ), (1.79)

Rα
β
σ̄ ρ̄ = 1

2
(Bβασ̄ ρ̄ − Bβρ̄σ̄ ), (1.80)

Rα
β
σρ = 1

2
Bβασρ , (1.81)

Rα
β

0ρ = 1

2
Bβα0ρ , (1.82)

Rα
β
σ0 = 1

2
Bβασ0 . (1.83)
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Using (1.79)–(1.83) to substitute in (1.78) we obtain

2(dωβα − ωγα ∧ ωβγ ) = Rα
β
λμθ

λ ∧ θμ + Rα
β
λ̄μ̄θ

λ ∧ θμ
+ 2(Rα

β
λμ̄θ

λ ∧ θμ + Rα
β

0μθ ∧ θμ + Rα
β
λ0θ

λ ∧ θ). (1.84)

Let us set X = Tλ, Y = Tμ, Z = Tα , and W = Tσ in (1.75) and note that

gθ (R(Tσ , Tα)Tμ, Tλ) = 0

to obtain

Rα
β
λμhβσ = −gθ ((LTλ ∧ LTμ)Tα, Tσ )+ gθ ((LTσ ∧ LTα)Tμ, Tλ).

On the other hand,

(LTλ ∧ LTμ)Tα = AλαLTμ − AμαLTλ ,

(LTσ ∧ LTα)Tμ = −ihσμLTα − AαμLTσ .

Consequently

Rα
ρ
λμ = 2i(Aμαδ

ρ
λ − Aλαδ

ρ
μ). (1.85)

Similarly, set X = Tλ, Y = Tμ, Z = Tα , and W = Tσ in (1.75) to obtain

Rα
β
λ̄μ̄hβσ = −gθ ((LTλ ∧ LTμ)Tα, Tσ )+ gθ ((LTσ ∧ LTα)Tμ, Tλ)

because of

gθ (R(Tσ , Tα)Tμ, Tλ) = 0.

On the other hand, due to

(LTλ ∧ LTμ)Tα = −ihλαLTμ + ihμαLTλ,

(LTσ ∧ LTα)Tμ = Aσ̄ μ̄LTα − ihαμLTσ ,

we may conclude that

Rα
ρ
λ̄μ̄ = 2i(hαλAρμ − hαμAρ

λ
) . (1.86)

Next we apply (1.77) for Y = Tμ, Z = Tα , and W = Tσ to obtain

Rα
ρ

0μ = hμλhσρSλασ , (1.87)

where

S(Tα, Tσ ) = Sλασ Tλ + Sλασ Tλ .

Similarly, again from (1.77) for Y = Tλ, Z = Tα , and W = Tσ we get
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Rα
ρ
λ0 = −hσρhμλSμασ . (1.88)

At this point we may substitute from (1.85)–(1.88) into (1.84) to derive the identity

dωβα − ωγα ∧ ωβγ = i(Aμαδ
β
λ − Aλαδ

β
μ)θ

λ ∧ θμ + i(hαλAβμ − hαμAβ
λ
)θλ ∧ θμ

+ Rα
β
λμθ

λ ∧ θμ + hμλhσβ Sλασ θ ∧ θμ − hσβhμλSμασ θ
λ ∧ θ .

We define the covariant derivative AC D,B of A(X, Y ) = gθ (X, τY ) (with respect to
the Tanaka–Webster connection) by setting

AC D,B = (∇TB A)(TC , TD)

and note that

hμλSλασ = Aμ̄σ̄ ,α , hμλSλασ = −Aαλ,σ ,

because of

(∇Tσ τ )Tα ∈ T0,1(M).

Finally, we obtain

dωβα − ωγα ∧ ωβγ = Rα
β
λμθ

λ ∧ θμ
+ Wβ

αλθ
λ ∧ θ − Wβ

αμθ
μ ∧ θ + 2iθβ ∧ τα + 2iθα ∧ τβ, (1.89)

where

Wβ
αμ = hσβ Aμ̄σ̄ ,α, Wβ

αλ = hσβ Aαλ,σ ,

and

τα = hαβτ
β, θα = hαβθ

β .

Indeed,

(Aαμδ
β
λ − Aαλδ

β
μ)θ

λ ∧ θμ = 2Aαμθ
β ∧ θμ = 2θβ ∧ τα

and

(Aβμhαλ − Aβ
λ

hαμ)θ
λ ∧ θμ = 2Aβμhαλ = 2θα ∧ τβ .

Let us define the local 2-forms !βα , �βα ∈ �∞(U,�2T ∗(M)⊗ C) by setting

!βα = dωβα − ωγα ∧ ωβγ ,
�βα = !βα − 2iθα ∧ τβ + 2iτα ∧ θβ .

With this notation (1.89) may be written as follows:
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Theorem 1.7. (S.M. Webster [422])
Let M be a nondegenerate CR manifold and θ a pseudo-Hermitian structure on M.
Then

�βα = Rα
β
λμθ

λ ∧ θμ + Wβ
αλθ

λ ∧ θ − Wβ

αλ
θλ ∧ θ . (1.90)

Next, we set by definition

Rαβλμ = gθ (R(Tλ, Tμ)Tα, Tβ) = hγ β Rα
γ
λμ . (1.91)

Let us look at the various symmetry properties satisfied by Rαβλμ. First,

Rαβλμ + Rαβ̄μ̄λ = 0 (1.92)

because R is a 2-form. Moreover,

Rαβλμ + Rβαλμ = 0 (1.93)

because ∇gθ = 0. Other symmetries may be obtained from (1.90) as follows. Let us
set

�αγ = �βαhβγ .

Let us contract with hβγ in (1.90) to obtain

�αγ = Rαγλμθ
λ ∧ θμ + λαγ ∧ θ, (1.94)

where

λαγ = Wβ
αλhβγ θ

λ − Wβ

αλ
hβγ θ

λ .

We recall the identity (1.64):

dθα = θβ ∧ ωαβ + θ ∧ τα .
Exterior differentiation leads to

0 = dθβ ∧ ωαβ − θβ ∧ dωαβ + dθ ∧ τα − θ ∧ dτα .

Next, we replace from

dθ = 2ihαβθ
α ∧ θβ ,

and rearrange terms to obtain

θγ ∧ (ωβγ ∧ ωαβ − dωαγ + 2iθγ ∧ τα)+ θ ∧ (τβ ∧ ωαβ − dτα) = 0,

and taking into account that

θγ ∧ τγ = 0.
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we obtain

0 = θγ ∧ (−!αγ + 2iθγ ∧ τα − 2iτγ ∧ θα)+ θ ∧ (τβ ∧ ωαβ − dτα),

or

θγ ∧�αγ + θ ∧ (dτα − τβ ∧ ωαβ) = 0. (1.95)

Let us set by definition

�α = dτα − τβ ∧�αβ , �β = �αhαβ .

With this notation, let us contract (1.95) by hαβ . We obtain

θγ ∧�γβ + θ ∧�β = 0. (1.96)

Using (1.94) we have

θγ ∧ (Rγ βλμθλ ∧ θμ + λγβ ∧ θ)+ θ ∧�β = 0,

that is,

Rγ βλμθ
γ ∧ θλ ∧ θμ + θ ∧ (�β − λγβ ∧ θγ ) = 0. (1.97)

Applying (1.97) to (Tρ, Tν, Tα) we obtain the following theorem:

Theorem 1.8. (S.M. Webster [422])
Let M be a nondegenerate CR manifold, with a fixed pseudo-Hermitian structure θ .
Then the curvature tensor Rαβλμ of the Tanaka–Webster connection of (M, θ) satisfies

Rρβνα = Rνβρα . (1.98)

Let us recall that the pseudo-Hermitian Ricci curvature Rλμ is given by

Rλμ = Rλ
α
αμ .

Contraction with hβμ in (1.98) gives

Rρ
μ
να = Rν

μ
ρα,

whence

Rλμ = Rα
α
λμ, (1.99)

which agrees with the definition (2.16) in [422], p. 33. �
We end this section by discussing the Ricci operator and by proving that (up to a

factor of 1/2) the pseudo-Hermitian scalar curvature is the trace of Ric.
Let (M, T1,0(M)) be a nondegenerate CR manifold (of hypersurface type) of CR

dimension n. Let F be a complex vector bundle over M and ϕ a global C∞ section
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of T ∗(M)⊗ T ∗(M)⊗ F (i.e., an F-valued (0, 2)-tensor field on M). Let �θϕ be the
trace of ϕ with respect to the Levi form Lθ . Precisely, let x ∈ M and {E1, . . . , En} an
orthonormal frame of T1,0(M) defined on some open neighborhood U ⊆ M of x , i.e.,
Lθ (Eα, Eβ̄ ) = εαδαβ , where ε1 = · · · = εr = −εr+1 = · · · = −εr+s = 1, r + s = n.
Here (r, s) is the signature of Lθ . Then

i (�θϕ)x =
n∑
α=1

εαϕ(Eα, Eᾱ)x .

Let U (r, s) consist of all A ∈ GL(n,C) such that A−1 = D A
t
D, where t denotes

the transpose and D = diag(ε1, . . . , εn). If {Êα} is another orthonormal frame of
T1,0(M), defined on the open set V ⊆ M , x ∈ V , then Êα = aβα Eβ for some A =[
aβα
]

: U ∩ V → U (r, s), i.e.,
∑n
α=1 εαaλαaμ̄ᾱ = ελδλμ, where εα = εα . Thus the

definition of (�θϕ)x does not depend on the choice of (local) orthonormal frame at x
and �θϕ is a global C∞ section of F .

Definition 1.31. The Ricci operator R∗ is given by

R∗X = �θ R(·, ·)J X

for any X ∈ H(M). �

On a strictly pseudoconvex CR manifold (the case in [398], p. 34)

R∗X = −i
n∑
α=1

R(Eα, Eᾱ)J X

for some (local) orthonormal frame {Eα} of T1,0(M). Hence, with respect to an arbi-
trary (local) frame {Tα} of T1,0(M),

R∗X = −ihαβ̄ R(Tα, Tβ̄ )J X,

and a calculation shows that

R∗Tα = Rα
βTβ,

where Rαβ = hβγ̄ Rαγ̄ .

Proposition 1.10. The following identities hold:

R∗T1,0(M) ⊆ T1,0(M), gθ (R∗Z ,W ) = gθ (Z , R∗W ),

for any Z ,W ∈ T1,0(M).

As previously remarked, Rαβ̄ is only a fragment of Ric and (as a consequence of
(1.71)) we have
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Rθ
αβ̄

= hαβ̄ − 1

2
Rαβ̄ ,

Rαβ = i(n − 1)Aαβ ,

R0β = Sᾱᾱβ , Rα0 = R00 = 0.

(1.100)

Here Sᾱ
β̄γ

are (among) the complex components of S. Also we set

Rθ
αβ̄

= trace{X !→ Rθ (X, Tα)Tβ̄} .

In particular (by the first of the identities (1.100)), Rαβ̄ = Rβ̄α (and the second of the
formulas in Proposition 1.10 may be easily proved).

Finally, we wish to prove that trace(Ric) = 2ρ. Again by (1.71), the following
formulas hold:

Ric(Xα, Xβ) = i(n − 1)(Aαβ − Aᾱβ̄ )+ Rαβ̄ + Rᾱβ ,

Ric(J Xα, Xβ) = −(n − 1)(Aαβ + Aᾱβ̄ )+ i(Rαβ̄ − Rᾱβ) ,

Ric(Xα, J Xβ) = −(n − 1)(Aαβ + Aᾱβ̄ )+ i(Rᾱβ − Rαβ̄) ,

Ric(J Xα, J Xβ) = −i(n − 1)(Aαβ − Aᾱβ̄ )+ Rαβ̄ + Rᾱβ ,

where Xα = Tα + Tᾱ . Then we may compute trace(Ric) as

trace(Ric) = gi j Ric(Xi , X j ),

where {X j } = {Xα, J Xα} and

gα+n,β+n = gαβ, gα,β+n = −gα+n,β ,

gα0 = g0α = 0, g00 = 1 ,

gαβ = 1

4
(hαβ̄ + hᾱβ), gα,β+n = i

4
(hαβ̄ − hᾱβ) .

1.4.3 Pseudo-Hermitian sectional curvature

We devote this section to a pseudo-Hermitian analogue (cf. S. Webster [422]) of the
notion of holomorphic sectional curvature in Hermitian geometry (cf., e.g., [241],
vol. II, p. 168). First, we consider the following pseudo-Hermitian analogue of the
Riemann–Christoffel tensor field (of a Riemannian manifold):

R(Z ,W, X, Y ) = gθ (R(X, Y )Z ,W ),

for any X, Y, Z ,W ∈ T (M). This agrees with our preceding conventions (cf. (1.91)),
that is,

R(Tα, Tβ, Tλ, Tμ) = Rαβλμ.
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Let x ∈ M . Let G1(H(M))x consist of all 2-planes σ ⊂ Tx (M) such that (i) σ ⊂
H(M)x and (ii) Jx (σ ) = σ . Then G1(H(M)) (the disjoint union of all G1(H(M))x )
is a fiber bundle over M with standard fiber CPn−1. Define a function

kθ : G1(H(M))→ R

by setting

kθ (σ ) = −1

4
Rx (X, Jx X, X, Jx X) (1.101)

for any σ ∈ G1(H(M)) and any linear basis {X, Jx X} in σ satisfying Gθ (X, X) = 1.
It is a simple matter that the definition of kθ (σ ) does not depend on the choice of
orthonormal basis {X, Jx X}, as a consequence of the following properties:

R(Z ,W, X, Y )+ R(Z ,W, Y, X) = 0,

R(Z ,W, X, Y )+ R(W, Z , X, Y ) = 0.

Definition 1.32. kθ is referred to as the (pseudo-Hermitian) sectional curvature of
(M, θ). �

With respect to an arbitrary (not necessarily orthonormal) basis {X, Jx X} of the 2-
plane σ , the sectional curvature kθ (σ ) is also expressed by

kθ (σ ) = −1

4

Rx (X, Jx X, X, Jx X)

Gθ (X, X)2

(to see this, one merely applies the definition (1.101) for the orthonormal basis
{U, JxU }, with U = Gθ (X, X)−1/2 X ). Since X ∈ H(M)x , there is Z ∈ T1,0(M)x
such that X = Z + Z . Thus

kθ (σ ) = 1

4

Rx (Z , Z , Z , Z)

gθ (Z , Z)2
.

Therefore, we have the following:

Proposition 1.11. (S.M. Webster [422])
If Z = ξαTα with respect to some (local) frame {Tα} in T1,0(M), then kθ (σ ) may be
expressed as

kθ (σ ) = 1

4

Rαβλμξ
αξβξλξμ(

hαβξ
αξβ

)2
,

where ξα = ξα .

The coefficient 1/4 makes the sphere S2n+1 ⊂ Cn+1 have constant curvature +1.
Indeed, if M = S2n+1 then
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Rθ (X, Y )Z = gθ (Y, Z)X − gθ (X, Z)Y.

Also τ = 0 (hence S = 0,O = I, L = J ) and (1.72) shows that

R(X, Y )Z = gθ (Y, Z)X − gθ (X, Z)Y

+ gθ (JY, Z)J X − gθ (J X, Z)JY − 2gθ (J X, Y )J Z ,

for any X, Y, Z ∈ H(S2n+1). We have thus proved the following result:

Proposition 1.12. Let θ = ι∗ i
2 (∂ − ∂)|z|2 be the natural pseudo-Hermitian structure

on S2n+1. Then the pseudo-Hermitian sectional curvature of (S2n+1, θ) is kθ (σ ) = 1,
for any σ ∈ G1(H(S2n+1)).

Let Psh(M, θ) be the group of CR transformations f : M → M such that f ∗θ = θ .
The following result is due to S. Webster [422].

Theorem 1.9. If (M, θ) is a (2n + 1)-dimensional pseudo-Hermitian manifold then
Psh(M, θ) is a Lie group of dimension ≤ (n + 1)2, with isotropy groups of dimension
≤ n2. If M is strictly pseudoconvex then the isotropy groups are compact, and if M is
compact then Psh(M, θ) is compact.

The Riemannian counterpart of Theorem 1.9 is Theorem 3.4 in [241], Vol. I, p. 239.
The proof is beyond the scope of this book (cf. also Theorem 1.2 in [422], p. 31).
By a well-known result in Riemannian geometry (cf., e.g., [241], Vol. I, p. 238), if
N is a connected n-dimensional Riemannian manifold then its Lie algebra i(N ) of
infinitesimal isometries has dimension ≤ n(n + 1)/2. Moreover, if i(N ) has maximal
dimension, i.e., dimR i(N ) = n(n + 1)/2, then N has constant sectional curvature.
The pseudo-Hermitian analogue of this result has been analyzed by E. Musso [319].
Let Hn be the standard hyperbolic complex space form.

Theorem 1.10. (E. Musso [319])
Let (M, θ) be a connected (2n+1)-dimensional pseudo-Hermitian manifold such that
Lθ is positive definite. If dim Psh(M, θ) = (n + 1)2 then M is contact homothetic to
one of the following spaces:

(i) a canonical pseudo-Hermitian manifold B(k) over CPn,
(ii) Hn × S1 or Hn × R equipped with their canonical pseudo-Hermitian structures,

(iii) Cn × S1 or Cn × R, equipped with their canonical pseudo-Hermitian structures.

For the definitions of the objects in Theorem 1.10 the reader may see Section 5.10 in
this book.

1.5 The Chern tensor field

Let (M, T1,0(M)) be a nondegenerate CR manifold (of hypersurface type) of CR di-
mension n. Let θ be a fixed pseudo-Hermitian structure on M and ∇ the Tanaka–
Webster connection of (M, θ).
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Definition 1.33. The Chern tensor field C is defined by

C(X, Y )Z = R(X, Y )Z

− 1

n + 2

{
gθ (X, Y )Ric�(Z)+ gθ (Z , Y )Ric�(X)

+ Ric(X, Y ) Z + Ric(Z , Y ) X
}

+ ρ

(n + 1)(n + 2)

{
gθ (X, Y )Z + gθ (Z , Y )X

}
(1.102)

for any X, Y, Z ∈ T (M). Here R, Ric, and ρ are respectively the curvature tensor, the
Ricci tensor, and the (pseudo-Hermitian) scalar curvature of ∇. Also Ric� : T (M) →
T (M) is defined by gθ (Ric� X, Y ) = Ric(X, Y ) for any X, Y ∈ T (M). �

Definition 1.34. Let {Tα} be a local frame of T1,0(M) and set

C(Tλ, Tσ̄ )Tβ = Cβ
A
λσ̄ TA.

Then Cβαλσ̄ is Chern’s pseudoconformal curvature tensor. �

Explicitly (by (1.102)),

Cβ
α
λσ̄ = Rβ

α
λσ̄ − 1

n + 2

{
Rβ
αhλσ̄ + Rλ

αhβσ̄ + δαβ Rλσ̄ + δαλ Rβσ̄
}

+ ρ

(n + 1)(n + 2)

{
δαβhλσ̄ + δαλhβσ̄

}
.

This is similar to H. Weyl’s conformal curvature tensor of a Riemannian manifold
(cf., e.g., L.P. Eisenhart [132]). Note that Cααλσ̄ = 0 hence Chern’s pseudoconformal
curvature tensor vanishes identically when n = 1.

Theorem 1.11. (S.S. Chern and J. Moser [99])
When n > 1, Cβαλσ̄ = 0 if and only if M is locally CR isomorphic to the unit sphere
S2n+1 ⊂ Cn+1.

A CR manifold is called spherical if it is locally CR isomorphic to S2n+1. Therefore,
nondegenerate CR manifolds with a vanishing Chern pseudoconformal curvature ten-
sor are spherical. Compact spherical CR manifolds M with amenable6 holonomy may
be classified.7 By a result of R.R. Miner [303], such M is finitely covered by S2n+1,
S1 × S2n , or a compact quotient of the Heisenberg group Hn/�, where � is a lattice
in Hn .

While the proof of the Chern–Moser theorem is beyond the scope of this book,
we wish to look at few instances in which it may be applied. Let [gαβ̄ ] ∈ GL(n,C)

6 A topological group G is amenable if for every continuous G-action on a compact metrizable
space X , there exists a G-invariant probability measure on X .

7 W. Goldman [181], obtained the same classification under the assumption that the holonomy
of M is nilpotent instead of amenable.



62 1 CR Manifolds

be a Hermitian matrix, of signature (p, q), p + q = n, and let c ∈ (0,+∞). Let
(z, w) = (z1, . . . , zn, w) be the natural complex coordinates in Cn+1 and consider

Q0 : r0(z, w) = gαβ̄ zαzβ + i

2
(w − w̄) = 0,

Q+(c) : r+(z, w) = gαβ̄ zαzβ + ww̄ − c = 0,

Q−(c) : r−(z, w) = gαβ̄ zαzβ − ww̄ + c = 0.

Each M ∈ {Q0, Q±(c)} is a real hypersurface in Cn+1.

Definition 1.35. Let M be a nondegenerate CR manifold (of hypersurface type). Let
θ be a pseudo-Hermitian structure on M . We call (M, θ) a pseudo-Hermitian space
form if kθ = const (where kθ is defined by (1.101)). �

Let r be one of the defining functions {r0, r±} and set

θ = j∗
[
i(∂ − ∂)r]

(where j : M ⊂ Cn+1). We shall show that

Theorem 1.12. (S.M. Webster [422])
(M, θ) is a pseudo-Hermitian space form, for each M ∈ {Q0, Q±(c)}.
Let us consider the biholomorphism

F : Cn+1 \ {w = 0} → Cn+1 \ {w = 0}, F(z, w) =
(√

c

w
z,

c

w

)
.

Note that F maps Q−(c) \ {w = 0} onto Q+(c) \ {w = 0}. Hence Q−(c) \ {w = 0}
and Q+(c) \ {w = 0} are CR equivalent. However, the induced CR transformation f
is not isopseudo-Hermitian. Let j± : Q±(c) ⊂ Cn+1 and set θ± = j∗±

[
i(∂ − ∂)r±

]
.

The identities

F∗dzα =
√

c

w
dzα −

√
c

w2
zαdw , F∗dw = − c

w2
dw,

yield

f ∗θ+ = c

|w|2 θ−.

A transformation mapping Q0 onto Q+(c) minus a point was devised in [99]. Let G0
denote the group of all matrices

a =
⎛⎝1 bβ b

0 Bβα bα
0 0 1

⎞⎠ ∈ Mn(C)

satisfying
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Bγα gγ ρ̄B ρ̄
β̄

= gαβ̄ , bα = 2i Bρα gργ̄ bγ̄ , 0 = i

2
(b − b̄)+ gαβ̄bαbβ̄ ,

where Bβ̄ᾱ = Bβα and bᾱ = bα . There is a natural action of G0 on Cn+1 given by

G0 × Cn+1 −→ Cn+1, (a, (z, w)) !→ a · (z, w) = (z′, w′),
z′α = Bαβ zβ + bα,

w′ = w + bβ zβ + b,

for any

a =
⎛⎝1 bβ b

0 Bβα bα
0 0 1

⎞⎠ ∈ G0, (z, w) ∈ Cn+1.

A short calculation shows that r0(a · (z, w)) = r0(z, w), for any a ∈ G0, (z, w) ∈
Cn+1, i.e., the action of G0 on Cn+1 preserves r0. Hence it descends to an action of
G0 on Q0. Each right action Ra : Q0 → Q0 is a CR map (because (z, w) !→ a ·(z, w)
is holomorphic). Moreover, the identities

R∗
adzα = Bαβ dzβ, R∗

adw = bβdzβ + dw

yield R∗
aθ0 = θ0, i.e., Ra is isopseudo-Hermitian. Here

θ0 = j∗0
[
i(∂ − ∂)r0

]
and j0 : Q0 ⊂ Cn+1. The isotropy group at (0, 0) ∈ Q0 is given by

{a ∈ G0 : a · (0, 0) = (0, 0)} =
⎧⎨⎩
⎛⎝ 1 0 0

0 Bβα 0
0 0 1

⎞⎠ : [Bβα ] ∈ U (p, q)

⎫⎬⎭ � U (p, q),

where by U (p, q) one denotes the unitary group of the Hermitian form gαβ̄ . Hence

Q0 � G0/U (p, q). Let us set θα = j∗0 dzα and θ ᾱ = θα . Then

dθ0 = 2igαβ̄θ
α ∧ θβ;

hence {θα} is admissible. Next dθα = 0 yields �αβ = 0 and τα = 0. Thus (Q0, θ0)

is Tanaka–Webster flat. In particular, C = 0; hence Q0 is locally CR equivalent to
S2n+1. Let 〈 , 〉+ be the Hermitian form given by

〈(z, w), (ζ,�)〉+ = gαβ̄ zαζ
β + w�

for any (z, w), (ζ,�) ∈ Cn+1. Let U (p + 1, q) be the unitary group of 〈 , 〉+. Then
U (p + 1, q) acts transitively on Q+(c) and preserves θ+. On the other hand, the
isotropy group at (0,

√
c) is U (p, q); hence
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Q+(c) � U (p + 1, q)/U (p, q).

Similarly, if U (p, q + 1) is the unitary group of the Hermitian form

〈(z, w), (ζ,�)〉− = gαβ̄ zαζ
β − w�,

then it may be shown that

Q−(c) � U (p, q + 1)/U (p, q).

We wish to compute the curvature Rαβ̄λμ̄ of Q±(c). We do this in a slightly more
general situation, as follows. Note that both defining functions r± are of the form
r(z, w) = p(z)+ q(w). Let us compute the torsion and curvature of M = {r = 0} on
the open subset U = M ∩ {qw �= 0}. We adopt the notation

pα = ∂p

∂zα
, pᾱ = ∂p

∂zα
, pαβ̄ = ∂2 p

∂zα∂zβ
, qw = ∂q

∂w
, qw̄ = ∂q

∂w̄
.

A pseudo-Hermitian structure on M is given by the (pullback to M via j : M ⊂ Cn+1

of the following) form

θ = i(pᾱdz̄α − pαdzα + qw̄dw̄ − qwdw).

Hence

dθ = 2i(pαβ̄dzα ∧ dz̄β + qww̄dw ∧ dw̄). (1.103)

We shall make use of the following lemma:

Lemma 1.6. Let M = {r = 0} and let j : M → Cn+1 be the inclusion. Then
(i) j∗(∂r ∧ ∂r) = 0 and (ii) j∗∂r = − j∗ ∂r .

Using the identities

∂r = pαdzα + qwdw, ∂r = pᾱdz̄α + qw̄dw̄

and (i) of Lemma 1.6 we may compute the (pullback via j : M → Cn+1 of the) form
dw ∧ dw̄ as

dw ∧ dw̄ = 1

qwqw̄

(
pα pβ̄dzα ∧ dz̄β − ∂r ∧ pβ̄dz̄β − pαdzα ∧ ∂r

)
.

Next (by (ii) of Lemma 1.6) θ is expressed both by θ = 2i j∗∂r and by θ = −2i j∗∂r ;
hence

dw ∧ dw = 1

qwqw̄

(
pα pβ̄dzα ∧ dz̄β + 1

2i
θ ∧ pβ̄dz̄β − 1

2i
pαdzα ∧ θ

)
. (1.104)

Let us substitute from (1.104) into (1.103) to obtain
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dθ = 2ihαβ̄dzα ∧ dz̄β + ηαdzα ∧ θ + ηᾱdz̄α ∧ θ,
where

Q = qww̄
qwqw̄

, hαβ̄ = pαβ̄ + Qpα pᾱ, ηα = −Qpα, ηᾱ = ηα.

Finally, set

θα = dzα + i

2
ηαθ, ηα = hαβ̄ηβ̄ .

Then

dθ = 2ihαβ̄θ
α ∧ θ β̄ . (1.105)

The characteristic direction T of dθ is given by

T = − i

2
ηα

∂

∂zα
+ i

2
ηᾱ

∂

∂ z̄α
+ i

qw

(
1 + ηα pα

) ∂
∂w

− i

qw̄

(
1 + ηᾱ pᾱ

) ∂

∂w̄
.

A local frame of T1,0(M) (on U = M ∩ {qw �= 0}) is given by

Tα = ∂

∂zα
− 1

qw
pα
∂

∂w
.

At this point, we may compute the connection and torsion components (of the Tanaka–
Webster connection of (M, θ)). To this end, we differentiate θα = dzα + (i/2)ηαθ to
get

dθα = θβ ∧ ω′α
β + θ ∧

(
− i

2
Tβ̄ (η

α)θ β̄
)
, (1.106)

where

ω′α
β = −ηαhβγ̄ θ

γ̄ + i

2
Tβ(η

α)θ.

Thus, on one hand, the pseudo-Hermitian torsion τα = Aα
β̄
θ β̄ is given by

Aα
β̄

= − i

2
Tβ̄ (η

α). (1.107)

On the other, a comparison between (1.106) and (1.65) yields

θβ ∧ (ω′α
β − ωαβ) = 0;

hence (by successively applying this identity to (Tλ, Tμ̄), respectively to (Tλ, T ))

�αμ̄λ = −ηαhλμ̄, �
α
0λ = i

2
Tλ(η

α).
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The same identity applied to the pair (Tλ, Tμ) gives only as much as γ αλμ = �αμλ.
Therefore, to compute �αλμ, we recall the identity (1.51), that is,

�αγβ = hσ̄ α{Tγ (hβσ̄ )− gθ (Tβ, [Tγ , Tσ̄ ])}.
The bracket [Tγ , Tσ̄ ] may be computed directly from

Tα = ∂

∂zα
− 1

qw
pα
∂

∂w
.

However, to avoid lengthy computations, we may exploit the identity (1.37) (since the
�αμ̄λ are already determined). This procedure yields

[Tγ , Tσ̄ ] = hγ σ̄
(
ηαTα − ηᾱTᾱ − 2iT

)
and therefore

�αγβ = δαγ ηβ + hσ̄ αTγ (hβσ̄ ).

Finally, by collecting the identities expressing the Christoffel symbols, we derive

ωαβ =
(
δαμηβ + hσ̄ αTμ(hβσ̄ )

)
θμ − ηαhβμ̄θ

μ̄ + i

2
Tβ(η

α)θ. (1.108)

For the rest of this section, let ≡ denote the congruence relation mod θα∧θβ , θ ᾱ∧θ β̄ ,
θα ∧ θ , θ ᾱ ∧ θ . Differentiation of (1.108) furnishes

dωαβ ≡ −
{

[δαρηβ + hσ̄ αTρ(hβσ̄ )]η
ρhλμ̄

+ δαλTμ̄(ηβ)+ hασ̄ Tμ̄Tλhβσ̄ + Tμ̄(h
σ̄ α)Tλ(hβσ̄ )

+ Tλ(η
α)hββ̄ + ηαTλ(hβμ̄)+ ηαhβρ̄η

ρ̄hλμ̄ + Tβ(η
α)hλμ̄

}
θλ ∧ θμ̄.

Also (again by (1.108))

ω
γ
β ∧ ωαγ ≡{

−
(
δ
γ
λ ηβ + hσ̄ γ Tλ(hβσ̄ )

)
ηαhγ μ̄ +

(
δαληγ + hσ̄ αTλ(hγ σ̄ )

)
ηγ hβμ̄

}
θλ ∧ θμ̄.

Next (by (1.107))

θα ∧ τβ ≡ 0, τα ∧ θβ ≡ 0.

Recall (cf. (1.90)) that

!βα = dωβα − ωγα ∧ ωβγ ,
�βα = !βα − 2iθα ∧ τβ + 2iτα ∧ θβ,
�βα = Rα

β
λμ̄θ

λ ∧ θμ̄ + Wβ
αλθ

λ ∧ θ − Wβ

αλ̄
θ λ̄ ∧ θ.
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Hence, by collecting the various identities established above, we have

Rβ
α
λμ̄ = −[δαρηβ + hσ̄ αTρ(hβσ̄ )]η

ρhλμ̄

− δαλTμ̄(ηβ)− hασ̄ Tμ̄Tλhβσ̄ − Tμ̄(h
σ̄ α)Tλ(hβσ̄ )

− Tλ(η
α)hβμ̄ − ηαTλ(hβμ̄)− ηαhβρ̄η

ρ̄hλρ̄ − Tβ(η
α)hλμ̄

+
(
δ
γ
λ ηβ + hσ̄ γ Tλ(hβσ̄ )

)
ηαhγ μ̄ − ηγ hβμ̄

(
δαληγ + hσ̄ αTλ(hγ σ̄ )

)
,

or (after some simplification)

Rβε̄λμ̄ = −Tμ̄Tλhβε̄ + hσ̄ αTμ̄(hαε̄)Tλ(hβε̄)− hλμ̄η
ρTρ(hβε̄)+ hλμ̄η

αTβ(hαε̄)

− hλε̄Tμ̄(ηβ)− hβμ̄Tλ(ηε̄)− hλμ̄Tβ(ηε̄)− ηε̄ηβhλμ̄ − ηγ ηγ hβμ̄hλε̄ . (1.109)

See also S. Webster [422], p. 38. Let us return now to M ∈ {Q±(c)}. Because Q±(c)
are homogeneous, it suffices to compute their torsion and curvature at points where
z = 0. To fix the ideas, let M = Q+(c). Then

hαβ̄ = gαβ̄ + |w|−2hαμ̄ z̄μhλβ̄ zλ, qηα = −|w|−2gαμ̄ z̄μ,

Tα = ∂

∂zα
− 1

w
gαμ̄ z̄μ

∂

∂w
.

Then (1.107) shows that Aα
β̄

= 0 at z = 0. Also, substitution into (1.109) shows that

Rβε̄λμ̄ = |w|−2{hβμ̄hλε̄ + hλμ̄hβε̄}
at z = 0. Finally (0, w) ∈ Q+(c) yields |w|2 = c. Similar computations may be
performed for M = Q−(c). We may conclude that

Rαβ̄λμ̄ = ε

c
{hαμ̄hλβ̄ + hλμ̄hαβ̄}, (1.110)

at any point (0, w) ∈ M, M ∈ {Q±(c)}, where

ε =
{

1 if M = Q+(c),
−1 if M = Q−(c).

Let σ ∈ G1(H(M)) and X ∈ H(M)x such that {X, Jx X} is a basis of σ . Let us set
X = Z + Z , Z = ξαTα . Then

kθ (σ ) = 1

4

(
hαβ̄ξ

αξ̄β
)−2 ε

c

(
hαμ̄hλβ̄ + hλμ̄hαβ̄

)
ξαξ̄βξλξ̄μ,

that is, kθ±(σ ) = ±1/(2c). �
As another consequence of (1.110), we have the following:

Corollary 1.1. The Chern tensor vanishes for each M ∈ {Q±(c)}.
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Properties of the pseudo-Hermitian sectional curvature of CR submanifolds (e.g.,
CR analogues of Proposition 9.2 and 9.3 in [241], vol. II, p. 176, regarding the holo-
morphic sectional curvature of Kähler submanifolds) are not known. A theory of
pseudo-Hermitian immersions is presented in Chapter 6, yet no applications to CR
submanifolds of pseudo-Hermitian space forms are known so far (while CR subman-
ifolds of complex space forms are known to be rich in geometric properties, cf., e.g.,
[446], pp. 76–136).

1.6 CR structures as G-structures

Consider the group G0 consisting of all (2n + 1)× (2n + 1) matrices of the form⎛⎝ v 0 0
aα aαβ bαβ
bα −bαβ aαβ

⎞⎠ , (1.111)

where v ∈ R \ {0}, aα, bβ ∈ R, 1 ≤ α ≤ n, and [aαβ + ibαβ ] ∈ GL(n,C). Then G0 is a
Lie subgroup of GL(2n+1,R). At this point, we need some notation and terminology.
If E → M is a real vector bundle of rank r over a C∞ manifold M , then we denote
by L(E) → M the principal GL(r,R)-bundle of all frames in the fibers of E , i.e., if
x ∈ M then u ∈ L(E)x is an R-linear isomorphism u : Rr → Ex . We also adopt the
notation F(M) = L(T (M)) (the principal GL(m,R)-bundle of linear frames tangent
to M , m = dimR M).

Definition 1.36. Given a Lie subgroup G ⊂ GL(m,R), a G-structure on M is a prin-
cipal G-subbundle of F(M)→ M . �

The theory of G-structures is a classical, yet central chapter of differential geometry.
See S. Sternberg [388], P. Mollino [314], for a treatment of the main themes of this
theory.

Let M be a real (2n + 1)-dimensional C∞ manifold and BG0(M) → M a G0-
structure on M , where G0 is the Lie group of all matrices of the form (1.111), as
before.

Proposition 1.13. Any G0-structure determines an almost CR structure on M and
conversely.

Indeed, let x ∈ M and set

H(M)x = p( j (R2n))

for some p ∈ BG0(M)x , where j : R2n → R2n+1, j (ξ) = (0, ξ) ∈ R×R2n , ξ ∈ R2n .
Any g ∈ G0 preserves j (R2n); hence H(M)x is well defined, i.e., its definition doesn’t
depend on the choice of linear frame p at x , adapted to the G0-structure. Then H(M)
is a rank-2n subbundle of T (M). If {e0, e1, . . . , e2n} is the canonical basis in R2n+1,
we set
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Xα = p(eα), Yα = p(eα+n)

for p ∈ BG0(M)x fixed. Next, define Jx : H(M)x → H(M)x by setting

Jx Xα = Yα, Jx Yα = −Xα.

Then Jx is a (well-defined) complex structure in H(M)x . Extend J to H(M)⊗ C by
C-linearity and note that Spec(J ) = {±i}. Then T1,0(M) = Eigen(i) is an almost CR
structure on M . In a moment we shall investigate under what conditions this almost
CR structure is integrable, i.e., a CR structure. Conversely, any almost CR structure
T1,0(M) determines a G0-structure on M , for we may set

Bx = {u : R2n+1 → Tx (M) : u(eα) ∈ H(M)x , u(eα+n) = Jx u(eα), 1 ≤ α ≤ n},
for any x ∈ M . To see that B (the disjoint union of the Bx , x ∈ M) is a G0-structure
on M we may use the following standard criterion (cf., e.g., M. Crampin [107]):

Theorem 1.13. Let G ⊂ GL(2n +1,R) be a Lie subgroup and B ⊂ F(M) a subman-
ifold. If

(i) the projection π : F(M)→ M maps B onto M,
(ii) given p ∈ B and q ∈ F(M) such that q = pg for some g ∈ GL(2n + 1,R) then

q ∈ B ⇐⇒ g ∈ G,
(iii) for any x ∈ M there is an open neighborhood U and a C∞ section σ : U →

F(M) such that σ(U ) ⊆ B,

then B is a G-structure on M.

Clearly (i) holds. Let p, q ∈ Bx such that q = pg, g ∈ GL(2n + 1,R). We wish to
show that g ∈ G0. Indeed

q(eα) = (pg)(eα) = p(e j )g
j
α = p(e0)g

0
α + p(eβ)g

β
α + p(eβ+n)g

β+n
α .

Yet q(eα) ∈ H(M)x = span of p(eα), p(eα+n), 1 ≤ α ≤ n; hence we may conclude
that

g0
α = 0, 1 ≤ α ≤ n. (1.112)

Similarly, from

q(eα+n) = p(e0)g
0
α+n + p(eβ)g

β
α+n + p(eβ+n)g

β+n
α+n

we get

g0
α+n = 0. (1.113)

Moreover, from Jq(eβ) = q(eβ+n) we deduce

gβα = gβ+n
α+n , gβ+n

α = −gβα+n . (1.114)
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The identities (1.112)–(1.114) show that g ∈ G0. Finally, we need to check (iii). Let
{Xα, J Xα} be a local frame of H(M) on U . Let θ be a nowhere-zero real 1-form on U
such that Ker(θ) = H(M) |U (as we showed previously, θ may be chosen to be global
if M is oriented). Let T be a tangent vector field on U such that θ(T ) = 1 (for instance,
fix a Riemannian metric gi j on U and set T i = ‖θ‖−2gi jθ j ). Then {Xα, J Xα, T } is
a (local) frame of T (M) on U (giving rise to a C∞ section σ : U → F(M) with
σ(U ) ⊆ B). �

1.6.1 Integrability

Originally, S.S. Chern and J.K. Moser, in their paper [99], regarded almost CR struc-
tures as principal subbundles of the principal GL(2n + 1,C)-bundle L(T ∗(M) ⊗ C)
(rather than G0-structures on M). Let us see how the two points of view match. Con-
sider the group monomorphism h : G0 → GL(2n + 1,C) given by

h :

⎛⎝ v 0 0
aα aαβ bαβ
bα −bαβ aαβ

⎞⎠ !→
⎛⎝ v 0 0

aα + ibα aαβ + ibαβ 0
aα − ibα 0 aαβ − ibαβ

⎞⎠ .
Also set GC

0 = h(G0) (so that GC
0 is a Lie subgroup of GL(2n+1,C)). Let BG0(M)→

M be a G0-structure on M and let p : R2n+1 → Tx (M) be a linear frame adapted to
BG0(M). If {e j } = {e0, eα, eα+n} is the canonical basis in R2n+1, set X j = p(e j ), 0 ≤
j ≤ 2n, and let {� j } be the dual basis in T ∗

x (M), i.e., � j (Xi ) = δ
j
i . Think of {e j } as

a linear basis (over C) in C2n+1 and let {e j } be the dual basis in (Cn+1)∗. Define

pC : (Cn+1)∗ → T ∗
x (M)⊗R ⊗C, pC(e j ) = � j ⊗ 1.

Next, let us consider BG0(M)
C
x = {pC : p ∈ BG0(M)x }.

Proposition 1.14. BG0(M)
C is a principal G0-subbundle of L(T ∗(M) ⊗ C) isomor-

phic to BG0(M).

Let us address now the question of integrability and formal (Frobenius) integrability.

Definition 1.37. A G-structure BG(M)→ M is integrable if for any x ∈ M there is a
coordinate neighborhood (U, xi ) such that σ0(y) ∈ BG(M) for any y ∈ U , where

σ0(y) : R2n+1 → Ty(M), σ0(y)(e j ) = ∂

∂x j

∣∣∣∣
y
. �

Let T1,0(M) be an (almost) CR structure on M and B → M the G0-structure on M
deduced from T1,0(M), as before.

Definition 1.38. We say (M, T1,0(M)) is Levi flat if the Levi form of M vanishes, i.e.,
L = 0 (equivalently, if H(M) is integrable). �
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Let us look at the following example. Let z j = x j + iy j , j = 1, 2, be coordinates in
C2 and let

M = {z ∈ C2 : y2 = 0} (1.115)

be a real hyperplane in C2. In his well-known 1907 paper, H. Poincaré pointed out
(cf. [350]) a natural exterior differential system H(M) on a real hypersurface M ⊂ C2

(generated by the tangential holomorphic cotangent vectors and their complex conju-
gates) possessing the property that H(M) is completely integrable if and only if M is
locally CR equivalent to the example (1.115). The obstruction to the integrability of
H(M) turns out to be the Levi form, and Poincaré’s result was later reformulated by
B. Segre [368], in the form that a real hypersurface in C2 is locally CR equivalent to a
hyperplane if and only if the Levi form vanishes. This was shown to be true in Cn for
arbitrary n ≥ 2 by F. Sommer [376].

If B is integrable (as a G0-structure) then (M, T1,0(M)) is Levi flat (indeed, since
σ0(x) ∈ B for any x ∈ U , it follows that {∂/∂xα, ∂/∂xα+n} is a (local) frame of
H(M); hence H(M) is involutive), so that for a generic (almost) CR structure T1,0(M)
the G0-structure B is not integrable. Consequently, it would be useful to study (com-
pute) the structure functions8 (cf., e.g., S. Sternberg [388], pp. 317–318) of B (an open
problem, as yet).

To understand for which G0-structures the corresponding almost CR structure is
integrable, let σ : U → B be a section and define X j : U → T (M) by X j (x) =
σ(x)(e j ), x ∈ U . Next, let ω j : U → T ∗(M) be the dual 1-forms and define θα :
U → T ∗(M) ⊗ C by θα = ωα + iωα+n, 1 ≤ α ≤ n (hence σ(x)C(eα + ieα+n) =
θα(x), x ∈ U ). Also set T = X0 and θ = ω0. We may prove the following theorem:

Theorem 1.14. Let (M, T1,0(M)) be an almost CR manifold. The following statements
are equivalent:

(1) The almost CR structure is formally integrable, i.e.,[
�∞(T1,0(M)), �

∞(T1,0(M))
] ⊆ �∞(T1,0(M)).

(2) For any (local) section σ : U → B one has

dθ ≡ 0 mod θ, θβ,

dθα ≡ 0 mod θ, θβ.

Proof. For instance, let us prove the implication (1) �⇒ (2). We have

dθ = Bαβθ
α ∧ θβ + Bαβθ

α ∧ θβ + Bᾱβ̄ θ
ᾱ ∧ θ β̄ + Bαθ ∧ θα + Bᾱθ ∧ θ ᾱ,

for some C∞ functions Bα, Bαβ, Bαβ̄ : U → C, where Bᾱ = Bα , Bᾱβ̄ = Bαβ (since
θ is real). Let us set

8 For example, c : B → Hom(R2n+1 ∧ R2n+1,R2n+1)/∂Hom(R2n+1, L(G0)) (the first
structure function [388], p. 318), carrying information about the nonintegrability of B, where
∂ : Hom(R2n+1, L(G0)) → Hom(R2n+1 ∧ R2n+1,R2n+1) is the map (∂T )(ξ ∧ η) =
T (ξ)η − T (η)ξ .
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Tα = 1

2
(Xα − i Xα+n) ∈ �∞(U, T1,0(M)).

Then θ(Tα) = 0. Also, since T1,0(M) is formally integrable, (dθ)(Tα, Tβ) = 0 hence
Bαβ = Bβα and dθ may be written as

dθ = θ ∧�+ θα ∧�α,
where� = Bαθα+ Bᾱθ ᾱ and�α = Bαβ̄θ

β̄ . The proof that dθα = θ∧�α+θβ ∧�αβ ,
for some 1-forms �α,�αβ , is similar and thus left as an exercise to the reader. �

Let (M, T1,0(M)) be an almost CR manifold (of hypersurface type) and B → M
the G0-structure corresponding to T1,0(M). Let σ : U → B be a (local) section and
θ, θα (respectively T, Tα) associated with σ , as before. Let hαβ̄(σ ) : U → C be
defined by

hαβ̄(σ ) = −2idθ(Tα, Tβ̄ ),

so that hαβ̄(σ ) = hβᾱ(σ ).

Theorem 1.15. If T1,0(M) is integrable then

dθ ≡ ihαβ̄(σ )θ
α ∧ θ β̄ mod θ.

Proof. As seen above, dθ = θ ∧ � + θα ∧ �α for some real-valued 1-form � and
some 1-form �α = Bαβ̄θ

β̄ . Then

Bαβ̄ = 2dθ(Tα, Tβ̄ ) = ihαβ̄(σ ). �

1.6.2 Nondegeneracy

Consider the complex line bundle F → M constructed as follows. Let x ∈ M and
σ : U → B a (local) section in B with x ∈ U . Let θ be associated with σ , as before,
and set Fx = Cθ(x) ⊂ T ∗

x (M)⊗R C. To see that Fx is well defined, let σ̂ : Û → B
be another local section, x ∈ Û . Then there is g : U ∩ Û → G such that σ̂ = σg on
U ∩ Û . In particular, θ = g0

0 θ̂ on U ∩ Û . �
Note that F is the annihilator of H(M)⊗ C in T ∗(M)⊗ C.

Theorem 1.16. Let (M, T1,0(M)) be a CR manifold (of hypersurface type). The fol-
lowing statements are equivalent

(i) (M, T1,0(M)) is nondegenerate.

(ii) det
[
hαβ̄(σ )

]
�= 0 on U for any section σ : U → B.

To prove the theorem, one considers the bundle morphism

�σ :
T (M)⊗ C
H(M)⊗ C

|U → F |U , (�σ )x (v + H(M)x ⊗ C) = θx (v)θx ,

for any x ∈ U , and observes that

(�σ )x Lx (v,w) =
(

hαβ̄(σ )(x)v
αwβ

)
θx ;

hence Lx is nondegenerate if and only if det
[
hαβ̄(σ )(x)

]
�= 0. �
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1.7 The tangential Cauchy–Riemann complex

The tangential Cauchy–Riemann operator (on functions, i.e., (∂b f )Z = Z( f ), Z ∈
T1,0(M)) of an almost CR manifold admits a natural extension to forms of arbitrary
type (0, q), q ≥ 1, thus giving rise to a pseudocomplex (in the sense of I. Vaisman
[416]) satisfying the complex condition (1.119) below precisely when the almost CR
structure is integrable. We give a detailed proof of (1.119), an elementary but rather
involved matter (our discussion is based on the monograph by G. Taiani [394]).

When M is a nondegenerate CR manifold (of hypersurface type) the sections of
�q T0,1(M)∗, q ≥ 1, may be identified with ordinary differential forms and the ∂b

operator admits a useful reformulation (due to [271]) in terms of a fixed contact form.
We only hint at the problem of holomorphic extension of CR objects (functions, forms,
etc.), a subject that is not within the purposes of this book. The reader may find a
precise account of the matter in the recent monographs by A. Boggess [70], and M.S.
Baouendi, P. Ebenfelt, and L.P. Rothschild [31].

As another topic of this section we present CR-holomorphic bundles, and the dis-
cussion is based on the monograph by N. Tanaka [398]. Moreover, we show how a fil-
tration of the de Rham complex leads to the Frölicher spectral sequence of a CR mani-
fold, which in turn may be used to study the Kohn–Rossi cohomology. Our discussion
relies again on [398] and is confined to the nondegenerate case (where an explicit
relation among d, the exterior differentiation operator, and ∂b, the tangential Cauchy–
Riemann operator, is available). We establish a CR analogue of a result by R. Bott
and P. Baum [76], in the theory of holomorphic foliations. The proof of Theorem 1.18
relies on the formal analogy between a connection in T̂ (M) := [T (M)⊗ C]/T0,1(M)
extending the ∂ T̂ (M) operator and the Bott connection of a holomorphic foliation. The
last section is technical and provides the explicit expression (1.146) of the Kohn–Rossi
Laplacian (on forms of arbitrary type) of a nondegenerate CR manifold, in terms of
covariant derivatives and curvature (of the Tanaka–Webster connection). Applications
of (1.146) are given in Chapter 4.

1.7.1 The tangential Cauchy–Riemann complex

We start by defining the tangential Cauchy–Riemann operator on forms. Let
(M, T1,0(M)) be a CR manifold of type (n, k). We define a differential operator

∂
q
b : �∞(�q T0,1(M)

∗)→ �∞(�q+1T0,1(M)
∗), q ≥ 0.

Here �∞(�0T0,1(M)∗) = �∞(M × C) consists of the C∞ functions f : M → C.
For q = 0 we set

(∂b f )Z = Z( f ), (1.116)

for any C∞ function f : M → C and any Z ∈ �∞(T1,0(M)). In general, if q ≥ 1,
we set
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(∂
q
b ϕ)(Z1, . . . , Zq+1) = 1

q + 1

{ q+1∑
i=1

(−1)i+1 Zi (ϕ(Z1, . . . , Ẑ i , . . . , Zq+1))

+
∑

1≤i< j≤q+1

(−1)i+ jϕ([Zi , Z j ], Z1, . . . , Ẑ i , . . . , Ẑ j , . . . , Zq+1)

}
(1.117)

for any ϕ ∈ �∞(�q T0,1(M)∗) and any Z1, . . . , Zq+1 ∈ �∞(T1,0(M)). As usual, a hat
denotes the suppression of a term. By the integrability of the CR structure [Zi , Z j ] ∈
�∞(T0,1(M)), so that the term

ϕ([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . )

makes sense. It is an elementary matter that ∂
q
b ϕ is skew-symmetric and C∞(M)⊗C-

multilinear. Then ∂
q
b is referred to as the tangential Cauchy–Riemann operator. We

obtain a sequence of C∞(M)⊗ C-modules and differential operators

�∞(M × C)
∂b−→ �∞(T0,1(M)

∗)
∂

1
b−→ �∞(�2T0,1(M)

∗)
∂

2
b−→ · · · . (1.118)

The central result of the present section is the following theorem:

Theorem 1.17. The sequence (1.118) is a cochain complex, that is,

∂
q+1
b (∂

q
b ϕ) = 0 (1.119)

for any ϕ ∈ �∞(�q T0,1(M)∗) and any q ≥ 0.

Consequently, we may consider the cohomology

H0,q(M) = Hq(�∞(�·T0,1(M)
∗), ∂ q

b )

= Ker{∂ q
b : �∞(�q T0,1(M)∗)→ �∞(�q+1T0,1(M)∗)}

∂
q−1
b �∞(�q−1T0,1(M)∗)

of the cochain complex (1.118). This is the Kohn–Rossi cohomology of the CR mani-
fold (M, T1,0(M)). See J.J. Kohn and H. Rossi [252]. The proof of Theorem 1.17 is a
rather lengthy exercise in multilinear algebra (cf. also G. Taiani [394], pp. 23–26).

Proof of Theorem 1.17. We start with the following lemma:

Lemma 1.7. For any ϕ ∈ �∞(�pT0,1(M)∗) and ψ ∈ �∞(�q T0,1(M)∗) the follow-
ing identity holds:

∂
p+q
b (ϕ ∧ ψ) = (∂

p
bϕ) ∧ ψ + (−1)pϕ ∧ ∂ q

b ψ. (1.120)

As to multilinear algebra, we adopt the notation and conventions in [241], vol. I,
pp. 26–38. It is an elementary matter that
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(ϕ ∧ ψ)(Z1, . . . , Zq+1) =
1

q + 1

q+1∑
i=1

(−1)i+1ϕ(Zi )ψ(Z1, . . . , Ẑ i , . . . , Zq+1), (1.121)

for any

ϕ ∈ �∞(T0,1(M)
∗), ψ ∈ �∞(�q T0,1(M)

∗),

and any Z1, . . . , Zq+1 ∈ �∞(T0,1(M)). To prove Lemma 1.7 we look first at the case
p = 0, that is, we need to show that

∂
q
b ( fψ) = (∂b f ) ∧ ψ + f ∂

q
b ψ.

Using (1.121) for ϕ = ∂b f we may perform the following calculation:

∂
q
b ( fψ)(Z1, . . . , Zq+1) = 1

q + 1

{ q+1∑
i=1

Zi ( fψ(. . . , Ẑ i , . . . ))

+
∑

1≤i< j≤q+1

(−1)i+ j fψ([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . )

}

= 1

q + 1

{ q+1∑
i=1

(−1)i+1{Zi ( f )ψ(. . . , Ẑ i , . . . )+ f Z i (ψ(. . . , Ẑ i , . . . ))
}

+
∑
i< j

(−1)i+ j fψ([Zi , Z j ] . . . , Ẑ i , . . . , Ẑ j , . . . )

}
= ((∂b f ) ∧ ψ)(Z1, . . . , Zq+1)+ f (∂

q
b ψ)(Z1, . . . , Zq+1).

Next we examine the case p = 1. Given ϕ ∈ �∞(T0,1(M)∗) note that

(q + 1)(q + 2)((∂
1
bϕ) ∧ ψ)(Z1, . . . , Zq+2) = S1 + S2 + S5, (1.122)

where

S1 =
q+2∑
i=1

(−1)i+k
∑

1≤k≤i−1

Zi (ϕ(Zk))ψ(. . . , Ẑ k, . . . , Ẑ i , . . . ),

S2 =
q+2∑
i=1

∑
i≤k≤q+1

(−1)i+k Zi (ϕ(Zk+1))ψ(. . . , Ẑ i , . . . , Ẑ k+1, . . . ),

S5 =
∑

1≤i< j≤q+2

(−1)i+ jϕ([Zi , Z j ])ψ(. . . , Ẑ i , . . . , Ẑ j , . . . ).

We may perform the following calculation (by (1.121)):
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(q + 2)∂
q+1
b (ϕ ∧ ψ)(Z1, . . . , Zq+2)

=
q+2∑
i=1

(−1)i+1 Zi ((ϕ ∧ ψ)(Z1, . . . , Ẑ i , . . . , Zq+2))

+
∑

1≤i< j≤q+2

(−1)i+ j (ϕ ∧ ψ)([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . )

=
q+2∑
i=1

(−1)i+1 Zi (
1

q + 1

q+1∑
j=1

(−1) j+1ϕ(W i j )ψ(W i1, . . . , Ŵ i j , . . . ,W i,q+1))

+
∑

1≤i< j≤q+2

(−1)i+ j 1

q + 1

q+1∑
k=1

(−1)k+1ϕ(V i jk)ψ(V i j1, . . . , V̂ i jk, . . . , V i j,q+1),

where

Wi j =
{

Z j if 1 ≤ j ≤ i − 1,

Z j+1 if i ≤ j ≤ q + 1,

for any i ∈ Iq+2 , j ∈ Iq+1, and

Vi jk =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
[Zi , Z j ] if k = 1,

Zk−1 if 2 ≤ k ≤ i ,

Zk if i + 1 ≤ k ≤ j − 1,

Zk+1 if j ≤ k ≤ q + 1,

for any 1 ≤ i < j ≤ q + 2 and any k ∈ Iq+1. Then

(q + 1)(q + 2)∂
q+1
b (ϕ ∧ ψ)(Z1, . . . , Zq+2)

=
q+2∑
i=1

∑
1≤ j<i

(−1)i+ j Z i (ϕ(Z j )ψ(. . . , Ẑ j , . . . , Ẑ i , . . . ))

+
q+2∑
i=1

∑
i≤ j≤q+1

(−1)i+ j Z i (ϕ(Z j+1)ψ(. . . , Ẑ i , . . . , Ẑ j+1, . . . ))

+
∑

1≤i< j≤q+2

(−1)i+ jϕ([Zi , Z j ])ψ(. . . , Ẑ i , . . . , Ẑ j , . . . , Zq+2)

+
∑

1≤i< j≤q+2

(−1)i+ j+k+1
∑

2≤k≤i

ϕ(Zk−1)ψ([Zi , Z j ], Z1, . . .

. . . , Ẑ k−1, . . . , Ẑ i , . . . , Ẑ j , . . . , Zq+2)

+
∑

1≤i< j≤q+2

(−1)i+ j+k+1
∑

j≤k≤q+1

ϕ(Zk+1)ψ([Zi , Z j ], Z1, . . .

. . . , Ẑ i , . . . , Ẑ j , . . . , Ẑ k+1, . . . , Zq+2),
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that is,

(q + 1)(q + 2)∂
q+1
b (ϕ ∧ ψ)(Z1, . . . , Zq+2) =

8∑
i=1

Si , (1.123)

where

S3 =
q+2∑
i=1

∑
1≤ j<i

(−1)i+ jϕ(Z j )Zi (ψ(. . . , Ẑ j , . . . , Ẑ i , . . . )),

S4 =
q+2∑
i=1

∑
i< j≤q+2

(−1)i+ j+1ϕ(Z j )Zi (ψ(. . . , Ẑ i , . . . , Ẑ j , . . . )),

S6 =
∑

1≤i< j≤q+2

(−1)i+ j+k
∑

1≤k<i

ϕ(Zk)

× ψ([Zi , Z j ], Z1, . . . , Ẑ k, . . . , Ẑ i , . . . , Ẑ j , . . . , Zq+2),

S7 =
∑

1≤i< j≤q+2

(−1)i+ j+k+1
∑

i<k< j

ϕ(Zk)

× ψ([Zi , Z j ], Z1, . . . , Ẑ i , . . . , Ẑ k, . . . , Ẑ j , . . . , Zq+2),

S8 =
∑

1≤i< j≤q+2

(−1)i+ j+k
∑

j<k≤q+2

ϕ(Zk)

× ψ([Zi , Z j ], Z1, . . . , Ẑ i , . . . , Ẑ j , . . . , Ẑ k, . . . , Zq+2).

Next

(q + 2)(ϕ ∧ ∂ q
b ψ)(Z1, . . . , Zq+2)

=
q+2∑
i=1

(−1)i+1ϕ(Zi )(∂
q
b ψ)(· · · , Ẑ i , . . . )

=
q+2∑
i=1

(−1)i+1ϕ(Zi )

{
1

q + 1

q+1∑
j=1

(−1) j+1W i j
(
ψ(W i1, . . . , Ŵ i j , . . . ,W i,q+1)

)
+ 1

q + 1

∑
1≤ j<k≤q+1

(−1) j+kψ
(
[W i j ,W ik],W i1, . . . , Ŵ i j , . . . , Ŵ ik, . . . ,W i,q+1

)}
,

so that

(q + 1)(q + 2)(ϕ ∧ ∂ q
b ψ)(Z1, . . . , Zq+2) = S3 + S4 + S6 + S7 + S8. (1.124)

Comparing (1.123) with (1.122) and (1.124) we may conclude that (1.120) holds for
any
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ϕ ∈ �∞(T0,1(M)
∗), ψ ∈ �∞(�q T0,1(M)

∗).

The proof of (1.120) for arbitrary p is by induction over p. Let us assume that (1.120)
holds for any ϕ ∈ �∞(�pT0,1(M)∗)). Any (0, p + 1)-form ϕ may be written as a
sum of terms of the form λ ∧ μ with λ ∈ �∞(T0,1(M)∗) and μ ∈ �∞(�pT0,1(M)∗).
Since both sides of (1.120) are C-linear in ϕ it suffices to prove (1.120) for ϕ = λ∧μ.
We may perform (by (1.120) with ϕ = λ, respectively with ϕ = μ) the following
calculation:

∂
p+q+1
b ((λ ∧ μ) ∧ ψ) = ∂

p+q+1
b (λ ∧ (μ ∧ ψ))

= (∂
1
bλ) ∧ (μ ∧ ψ)− λ ∧ ∂ p+q

b (μ ∧ ψ)
= (∂

1
bλ) ∧ (μ ∧ ψ)− λ ∧ ((∂ p

bμ) ∧ ψ + (−1)pμ ∧ ∂ q
b ψ)

=
[
(∂

1
bλ) ∧ μ− λ ∧ ∂ p

bμ
]
∧ ψ + (−1)p+1(λ ∧ μ) ∧ ∂ q

b ψ.

Finally (by (1.120) for ϕ = λ and ψ = μ)),

∂
p+q+1
b ((λ ∧ μ) ∧ ψ) = ∂

p+1
b (λ ∧ μ) ∧ ψ + (−1)p+1(λ ∧ μ) ∧ ∂ q

b ψ,

and our Lemma 1.7 is completely proved. At this point, we may prove Theorem 1.17.
To this end, we consider the operators

�∞(�q T0,1(M)
∗)

∂
q
b−→ �∞(�q+1T0,1(M)

∗)
∂

q+1
b−→ �∞(�q+2T0,1(M)

∗).

We shall prove that ∂
q+1
b ◦ ∂ q

b = 0 by induction over q . First, let q = 0, i.e., ϕ = f ∈
�∞(M × C). Then

(∂
1
b∂b f )(Z1, Z2) = 1

2

(
Z1(Z2 f )− Z2(Z1 f )− [Z1, Z2] f

) = 0,

for any Z1, Z2 ∈ �∞(T1,0(M)). Next, let ϕ ∈ �∞(T0,1(M)∗). Then

(∂
2
b∂

1
bϕ)(Z1, Z2, Z3) = 1

3

{
Z1

(
(∂

1
bϕ)(Z2, Z3)

)
− Z2

(
(∂

1
bϕ)(Z1, Z3)

)
+ Z3

(
(∂

1
bϕ)(Z1, Z2)

)
− (∂1

bϕ)([Z1, Z2], Z3)+ (∂1
bϕ)([Z1, Z3], Z2)

− (∂1
bϕ)([Z2, Z3], Z1)

}
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= 1

6

{
Z1

(
Z2(ϕZ3)− Z3(ϕZ2)− ϕ([Z2, Z3])

)
− Z2

(
Z1(ϕZ3)− Z3(ϕZ1)− ϕ([Z1, Z3)

)
+ Z3

(
Z1(ϕZ2)− Z2(ϕZ1)− ϕ([Z1, Z2])

)
− [Z1, Z2](ϕZ3)+ Z3(ϕ[Z1, Z2])+ ϕ([[Z1, Z2], Z3])

+ [Z1, Z3](ϕZ3)− Z2(ϕ[Z1, Z3])− ϕ([[Z1, Z3], Z2])

− [Z2, Z3](ϕZ1)+ Z1(ϕ[Z2, Z3])+ ϕ([[Z2, Z3], Z1)

}
= 0,

by Jacobi’s identity. Assume now that the identity (1.119) holds for any ϕ ∈
�∞(�q T0,1(M)∗). As noticed above, it suffices to check (1.119) for ϕ = λ ∧ μ,
where λ ∈ �∞(T0,1(M)∗) and μ ∈ �∞(�q T0,1(M)∗). We have (by Lemma 1.7 and
by (1.119) for ϕ = λ, respectively for ϕ = μ)

∂
q+2
b ∂

q+1
b (λ ∧ μ) = ∂

q+2
b

(
(∂

1
bλ) ∧ μ− λ ∧ ∂ q

b μ
)

= (∂
2
b∂

1
bλ) ∧ μ+ (∂1

bλ) ∧ ∂ q
b μ− (∂1

bλ) ∧ ∂ q
b μ+ λ ∧ ∂q+1

b ∂
q
b μ

= 0

and (1.119) is completely proved. �
We proceed by discussing the reformulation of the ∂b operator on a nondegenerate

CR manifold. Let (M, T1,0(M)) be a nondegenerate CR manifold, of CR dimension
n, and θ a pseudo-Hermitian structure on M . Let T be the characteristic direction of
dθ .

Definition 1.39. A complex-valued q-form ϕ on M is said to be a (0, q)-form if
T1,0(M) �ϕ = 0 and T �ϕ = 0. �

Let �0,q(M) be the bundle of all (0, q)-forms on M . Clearly �0,0(M) = M × C,
the trivial line bundle over M . Let {Tα} be a local frame of T1,0(M) and {θα} the
corresponding admissible local coframe, i.e.,

Tβ � θα = δαβ , Tβ̄ � θα = 0 , T � θα = 0.

We define a differential operator

∂b : �∞(�0,q(M))→ �∞(�0,q+1(M))

as follows.

Definition 1.40. Let ϕ be a (0, q)-form on M . Then, by definition, ∂bϕ is the unique
(0, q + 1)-form on M that agrees with dϕ when both are restricted to T0,1(M)⊗· · ·⊗
T0,1(M) (q + 1 terms). �
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For instance, given a C∞ function f : M → C, then (locally)

∂b f = Tᾱ( f )θ ᾱ.

Also, let ϕ be a (0, 1)-form (locally) given by

ϕ = ϕᾱθ
ᾱ.

Let ∇ be the Tanaka–Webster connection of (M, θ) and let us set

∇ᾱϕβ̄ = (∇ᾱϕ)Tβ̄
(so that ∇ᾱϕβ̄ = Tᾱ(ϕβ̄)− �ρ̄ᾱβ̄ϕρ̄). Then

∂bϕ = (∇ᾱϕβ̄ ) θ ᾱ ∧ θ β̄ .
Moreover,

(q + 1)(∂bϕ)(Z1, . . . , Zq+1) =
q+1∑
i=1

(−1)i+1 Zi
(
ϕ(Z1, . . . , Zi−1, Zi+1, . . . , Zq+1)

)
+

∑
1≤i< j≤q+1

(−1)i+ jϕ([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . )

for any Z1, . . . , Zq+1 ∈ �∞(T1,0(M)). In other words, modulo the identification (in
the presence of an admissible local frame {θα}) of T0,1(M)∗ with a subbundle of
T ∗(M) ⊗ C, the differential operator ∂b is precisely the tangential Cauchy–Riemann
operator of (M, T1,0(M)) as previously introduced. We obtain a sequence of �∞(M ×
C)-modules and differential operators

�∞(�0,0(M))
∂b−→ �∞(�0,1(M))

∂b−→ �∞(�0,2(M))
∂b−→ · · ·

· · · ∂b−→ �∞(�0,n+1(M))
∂b−→ 0 (1.125)

satisfying

∂
2
b = 0, (1.126)

that is, (1.125) is a cochain complex. The alternative approach to ∂b on a nonde-
generate CR manifold (of hypersurface type) through the use of the given pseudo-
Hermitian structure, rather than as a CR-invariant differential operator (cf. also J.M.
Lee [270], p. 165) has the advantage that since elements in �∞(�0,q(M)) are genuine
differential forms on M , the properties of ∂b may be easily deduced from the corre-
sponding properties enjoyed by the exterior differentiation operator d . Indeed, for any
ϕ ∈ �∞(�0,q(M)) and any Z1, . . . , Zq+2 ∈ �∞(T1,0(M)) we have
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(q + 2)(∂
2
bϕ)(Z1, . . . , Zq+2) =

q+2∑
i=1

(−1)i+1 Zi ((∂bϕ)(· · · , Ẑ i , . . . )

+
∑

1≤i< j≤q+2

(−1)i+ j (∂bϕ)([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . ).

Since (by the integrability of the CR structure) [Zi , Z j ] ∈ �∞(T0,1(M)), it follows
that

(∂bϕ)([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . ) = (dϕ)([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . )

(by the very definition of ∂b on a nondegenerate CR manifold). Then

(q + 2)(∂
2
bϕ)(Z1, . . . , Zq+2) =

q+2∑
i=1

(−1)i+1 Zi ((dϕ)(Z1, . . . , Ẑ i , . . . , Zq+2)

+
∑

1≤i< j≤q+2

(−1)i+ j (dϕ)([Zi , Z j ], . . . , Ẑ i , . . . , Ẑ j , . . . )

= (q + 2)(d2ϕ)(Z1, . . . , Zq+2) = 0

and (1.126) is proved. Similarly, one may check that

∂b(ϕ ∧ ψ) = (∂bϕ) ∧ ψ + (−1)qϕ ∧ ∂bψ (1.127)

for any (0, q)-form ϕ and any (0, p)-form ψ on M . �
We wish to make a few remarks on the tangential CR equations on functions. Let

(M, T1,0(M)) be a CR manifold (of arbitrary, but fixed, type).

Definition 1.41. A function f ∈ �∞(M × C) is CR-holomorphic (or simply CR) if

∂b f = 0 (1.128)

and (1.128) are the tangential Cauchy–Riemann equations. �

We do not discuss CR functions (and the holomorphic extension problem) in this
book. Excellent monographs treating the argument are those of A. Boggess [70], M.S.
Baouendi, P. Ebenfelt, and L.P. Rothschild [31]. Let us look, however, at a couple of
simple examples.

(1) Let U ⊆ CN be an open subset and F : U → C a holomorphic function. Let
M ⊂ U be an embedded CR manifold. Then f = F ◦ ι is a CR-holomorphic function
on M (where ι : M → U is the inclusion). The converse is not true in general. That
is, given a CR-holomorphic function f : M → C and a point x ∈ M , then in general,
f may not extend to a function that is holomorphic in a neighborhood of x in CN . For
instance, let

M = {(z1, z2) ∈ C2 : Im(z1) = 0}.
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Then T0,1(M) is spanned by T1 = ∂/∂z2 and the tangential Cauchy–Riemann equa-
tions may be written

∂ f

∂z2
= 0. (1.129)

Let us set z1 = x + iy. Then any C∞ function f (x) is a solution of (1.129); yet f (x)
may not extend to a holomorphic function in C2 unless it is real analytic in x to start
with. See A. Boggess [70], p. 141. �

(2) Let F : Hn → Hn be a C∞ map, where Hn is the Heisenberg group. Then F
is a CR map if and only if F j , 1 ≤ j ≤ n, and |F |2 − i f are CR-holomorphic. Here
we have set F = (F1, . . . , Fn, f ) and |F |2 = δ jk F j Fk . �

The problem whether (or under what assumptions) a given CR function on an em-
bedded CR manifold extends (locally or globally) to a holomorphic function occupies
a large amount of literature (cf. [70] and references therein). For instance (by a clas-
sical result of F. Severi [370], and G. Tomassini [403], who extended Severi’s result
to the case of CR manifolds of arbitrary CR codimension), if M is a real analytic
embedded CR manifold then any real analytic CR-holomorphic function extends to a
function that is holomorphic in some neighborhood of M .

A generalization of the Cauchy–Riemann equations (in one complex variable) has
been proposed by I.N. Vekua (cf. [418]), who studied solutions to the PDE ∂zw =
aw + bw (generalized analytic functions), where a, b are C2 functions on a domain
in C. The ideas of I.N. Vekua were carried over to the case of several complex vari-
ables by A. Koohara ([253]) and L.G. Mikhailov and A.V. Abrosimov ([301]), who
considered systems of the form

∂z jw = a jw + b jw + c j , 1 ≤ j ≤ n (1.130)

(and Y. Hayashi ([195]) extended their work to nonlinear equations of the form ∂z jw =
a j f j (w)). The problem of studying traces of solutions to (1.130) on a smooth real
hypersurface in Cn (generalized CR functions) is open.

1.7.2 CR-holomorphic bundles

Let (M, T1,0(M)) be a CR manifold and E → M a C∞ complex vector bundle over
M . Let

∂E : �∞(E)→ �∞(T0,1(M)
∗ ⊗ E)

be a differential operator satisfying the following requirements:

∂E ( f u) = f ∂E u + (∂b f )⊗ u, (1.131)

[Z ,W ]u = Z W u − W Z u, (1.132)

for any f ∈ C∞(M) ⊗ C , u ∈ �∞(E) , Z ,W ∈ �∞(T1,0(M)). As to the notation
in (1.132), we have set Zu = (∂E u)Z . Following N. Tanaka [398], we make the
following definition:
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Definition 1.42. A pair (E, ∂E ) consisting of a complex vector bundle (over a CR
manifold) and a differential operator satisfying (1.131)–(1.132) is said to be a CR-
holomorphic vector bundle. �

Let us look at a few examples of CR-holomorphic vector bundles.

(i) Let V be a complex manifold. Let M ⊂ V be a CR submanifold (carrying the
CR structure (1.12) induced on M by the complex structure of V ). Assume that M is
regularly embedded in V as a closed subset. Let π : F → V be a holomorphic vector
bundle over V . Then the portion E = π−1(M) of F over M is CR-holomorphic.
Indeed, since F is holomorphic, there is a natural differential operator

∂F : �∞(F)→ �∞(T 0,1(V )∗ ⊗ F),

where T 0,1(V ) is the antiholomorphic tangent bundle over V . Given u ∈ �∞(E)
let ũ ∈ �∞(F) be a C∞ extension of u as a cross-section in F and set

(
∂E u

)
x =(

∂F ũ
)

x for any x ∈ M . The definition of
(
∂E u

)
x does not depend on the choice of

extension ũ of u because (∂ f )|T0,1(M) = ∂b( f|M ) for any C∞ function f : V → C.
Let {�α : π−1(�α) → �α × Cm : α ∈ I } be a trivialization atlas for F and Gβα :
�β∩�α → GL(m,C) the corresponding transition functions. Let us set Uα = �α∩M
and gβα = Gβα |Uα∩Uβ

. Since the Gβα are holomorphic, it follows that E → M is a
peculiar type of CR-holomorphic vector bundle (called locally trivial by C. Le Brun
[268]) in that its transition functions are matrix-valued CR functions on M . �

(ii) Let (M, T1,0(M)) be a CR manifold and consider the quotient bundle

T̂ (M) = T (M)⊗ C
T0,1(M)

and the canonical bundle map π : T (M) ⊗ C → T̂ (M). We define a differential
operator

∂ T̂ (M) : �∞(T̂ (M))→ �∞(T0,1(M)
∗ ⊗ T̂ (M))

as follows. For any u ∈ �∞(T̂ (M)) there is W ∈ �∞(T (M)⊗C) such that π(W ) = u.
Then we set

(∂ T̂ (M)u)Z = π [Z ,W ] ,

for any Z ∈ �∞(T1,0(M)). The definition of ∂ T̂ (M)u does not depend on the choice
of W with π(W ) = u because of the formal integrability property (1.6) of the CR
structure T1,0(M). Then (T̂ (M), ∂ T̂ (M)) is a CR-holomorphic vector bundle. It is in-

teresting to note that the construction of ∂ T̂ (M) is very similar to that of the complex
Bott connection of a holomorphic foliation (compare with R. Bott and P. Baum [76]).
This analogy is further exploited in the next section. �

(iii) The CR structure T1,0(M) itself may be organized, when M is nondegenerate,
as a CR-holomorphic vector bundle over M . Indeed, if θ is a contact structure on
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M and ∇ the corresponding Tanaka–Webster connection, then we may consider the
first-order differential operator

∂T1,0(M) : �∞(T1,0(M))→ �∞(T0,1(M)
∗ ⊗ T1,0(M)),

(∂T1,0(M)Z)W := ∇W Z , Z ,W ∈ T1,0(M).

Then the pair (T1,0(M), ∂T1,0(M)) is a CR-holomorphic vector bundle because the
curvature R∇ of ∇ satisfies R∇(Z ,W )V = 0, for any Z , V,W ∈ T1,0(M) (cf. H.
Urakawa [412], p. 569). �

(iv) The canonical bundle K (M) is organized as a CR-holomorphic vector bundle
in Chapter 8 of this book (in connection with the solutions to the inhomogeneous
Yang–Mills equation). �

Let (E, ∂E ) be a CR-holomorphic vector bundle. We define a differential operator

∂
q
E : �∞(�q T0,1(M)

∗ ⊗ E)→ �∞(�q+1T0,1(M)
∗ ⊗ E)

by setting

(∂
q
Eϕ)(Z1, . . . , Zq+1) =

1

q + 1

{
q+1∑
i=1

(−1)i+1
(
∂Eϕ(Z1, . . . , Ẑ i , . . . , Zq+1)

)
Zi

+
∑
i< j

(−1)i+ jϕ([Zi , Z j ], Z1, . . . , Ẑ i , . . . , Ẑ j , . . . , Zq+1)

}

for any ϕ ∈ �∞(�q T0,1(M)∗ ⊗ E) and any Z j ∈ �∞(T1,0(M)) , 1 ≤ j ≤ q +1. Just
as in the case of the Cauchy–Riemann operator ∂b one may show that ∂

q
Eϕ is a C∞

section in �q+1T0,1(M)∗ ⊗ E and that ∂
q+1
E ◦ ∂q

E = 0 for any q ≥ 0.

Proposition 1.15. {�∞(�q T0,1(M)∗ ⊗ E) , ∂
q
E }q≥0 is a cochain complex.

Let Hq(M, E) be the corresponding cohomology groups.

1.7.3 The Frölicher spectral sequence

We start by introducing a certain filtration of the de Rham complex. Let

{�k(M) := �∞(�k T ∗(M)⊗ C), d}k≥0

be the de Rham complex of M with complex coefficients and Hk(M,C) the corre-
sponding de Rham cohomology groups. Let x ∈ M . Let F p�k(M)x consist of all
ϕ ∈ �k T ∗(M)x ⊗R C such that

ϕ(W1, . . . ,Wp−1, V 1, . . . , V k−p+1) = 0,
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for any Wi ∈ Tx (M)⊗R C and any Vj ∈ T1,0(M)x , 1 ≤ i ≤ p−1, 1 ≤ j ≤ k − p+1.
Then F p�k(M) is a subbundle of �k T ∗(M)⊗ C satisfying the following properties:

F p�k(M) ⊃ F p+1�k(M), F p+1�p(M) = 0.

We also set F0�k(M) = �k T ∗(M)⊗ C. Note that

d �∞(F p�k(M)) ⊂ �∞(F p�k+1(M)).

Hence

Proposition 1.16. {�∞(F p�k(M))}p,k≥0 is a (decreasing) filtration of the de Rham
complex

...
...

...

↓ ↓ ↓
�k(M) ⊃ �∞(F1�k(M)) ⊃ �∞F2�k(M)) ⊃ · · ·
↓ d ↓ d ↓ d

�k+1(M) ⊃ �∞(F1�k+1(M)) ⊃ �∞(F2�k+1(M)) ⊃ · · ·
↓ ↓ ↓
...

...
...

Let {Er (M)}r≥1 be the spectral sequence associated with this filtration. In analogy
with [158] we make the following definition:

Definition 1.43. {Er (M)}r≥1 is referred to as the Frölicher spectral sequence of the
CR manifold M . �
Precisely, we set

C p,q
r (M) = �∞(F p�p+q(M)) ∩ d−1�∞(F p+r�p+q+1(M)),

and

D p,q
r (M) = �∞(F p�p+q(M)) ∩ d �∞(F p−r�p+q−1(M)).

Note that

D p,q
r (M) = dC p−r,q+r−1

r (M).

Finally, we set

Er (M) = {E p,q
r (M)}p,q≥0,

E p,q
r (M) = C p,q

r (M)

C p+1,q−1
r−1 (M)+ D p,q

r−1(M)
.

We shall be particularly interested in E p,q
1 (M) and Ek,0

2 (M), which are denoted by
H p,q(M) and Hk

0 (M). This is consistent with our previous notation, since, as will be

shortly shown, E0,q
1 (M) are precisely the Kohn–Rossi cohomology groups. CR ana-

logues of Theorems 1 and 3 of L. Cordero, M. Fernandez, L. Ugarte, and A. Gray [106]
(describing the Frölicher spectral sequence of a complex manifold) are not known,
so far.
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Next, we express ∂b in terms of covariant derivatives. For the rest of this section,
we assume (M, T1,0(M)) to be a nondegenerate CR manifold (of hypersurface type) of
CR dimension n. Let θ be a fixed pseudo-Hermitian structure on M . Let {T1, . . . , Tn}
be a (local) frame of T1,0(M), defined on some open set U ⊆ M . Let {θ1, . . . , θn}
be the corresponding dual admissible coframe. As a useful consequence of our non-
degeneracy assumption, we may express ∂b in terms of covariant derivatives, with
respect to the Tanaka–Webster connection ∇ of (M, θ). Any (0, q)-form ϕ on M may
be represented locally as

ϕ = 1

q!
ϕᾱ1···ᾱq θ

ᾱ1 ∧ · · · ∧ θ ᾱq .

The covariant derivatives ∇Aϕᾱ1···ᾱq of ϕ with respect to ∇ are defined by

∇Aϕᾱ1···ᾱq = (∇TAϕ)(Tᾱ1 , . . . , Tᾱq ),

where A ∈ {0, 1, . . . , n, 1̄, . . . , n̄} and T0 = T . Explicitly,

∇Aϕᾱ1···ᾱq = 1

q!

{
TA(ϕᾱ1···ᾱq )−

q∑
j=1

ϕᾱ1···ᾱ j−1μ̄ᾱ j+1···ᾱq�
μ̄
Aᾱ j

}
. (1.133)

If T∇ is the torsion tensor field of ∇, we recall that T∇(Tᾱ, Tβ̄ ) = 0, that is,

[Tᾱ, Tβ̄ ] =
(
�
μ̄

ᾱβ̄
− �μ̄

β̄ᾱ

)
Tμ̄ . (1.134)

We may perform the following calculation:

1

(q + 1)!
(∂bϕ)ᾱ1···ᾱq+1 = (∂bϕ)(Tᾱ1 , . . . , Tᾱq+1) = (dϕ)(Tᾱ1 , . . . , Tᾱq+1)

= 1

q + 1

{ q+1∑
i=1

(−1)i−1Tᾱi (ϕ(· · · T̂ᾱi · · · ))

+
∑
i< j

(−1)i+ jϕ([Tᾱi , Tᾱ j ], . . . , T̂ᾱi , . . . , T̂ᾱ j , . . . )

}
;

hence (by (1.134))

(∂bϕ)ᾱ1···ᾱq+1 =
q+1∑
i=1

(−1)i−1Tᾱi (ϕᾱ1··· ˆ̄αi ···ᾱq+1
)

+
q+1∑
i=1

∑
i< j

(−1)i+ j�
μ̄
ᾱi ᾱ j

ϕ
μ̄ᾱ1··· ˆ̄αi ··· ˆ̄α j ···ᾱq+1

−
q+1∑
j=1

∑
i< j

(−1)i+ j�
μ̄
ᾱ j ᾱi

ϕ
μ̄··· ˆ̄αi ··· ˆ̄α j ···ᾱq+1

.

Finally (interchanging i and j in the last sum), by the skew-symmetry of ϕᾱ1···ᾱq we
obtain the following result:
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Proposition 1.17. Let M be a nondegenerate CR manifold. For any (0, q)-form ϕ

on M,

∂bϕ = 1

(q + 1)!
(∂bϕ)ᾱ1···ᾱq+1θ

ᾱ1 ∧ · · · ∧ θ ᾱq+1 ,

(∂bϕ)ᾱ1···ᾱq+1 = q!
q+1∑
i=1

(−1)i∇ᾱiϕᾱ1··· ˆ̄αi ···ᾱq+1
. (1.135)

Next, we wish to establish an explicit identity relating the exterior differentiation oper-
ator d and the tangential Cauchy–Riemann operator ∂b. Precisely, we relate dϕ to ∂bϕ,
for any (0, q)-form ϕ on M . Let πq : �q(M) → �0,q(M) be the natural projection.
Then

∂bϕ = πq+1dϕ.

Another way to put it is that

dϕ = ∂bϕ + ψ,
for some uniquely defined (q + 1)-form ψ such that ψ(Z1, . . . , Zq+1) = 0 for any
Z j ∈ �∞(T1,0(M)), 1 ≤ j ≤ q + 1. The (q + 1)-form ψ may be explicitly computed
in terms of covariant derivatives of ϕ. Indeed, using the identities

d f = Tα( f )θα + Tᾱ( f )θ ᾱ + T ( f )θ,

dθα = θβ ∧ ωαβ + θ ∧ τα,
ωβα = �βμαθ

μ + �βμ̄αθμ̄ + �β0αθ,
τα = Aα

β̄
θ β̄ ,

we may perform the calculation

q!dϕ = (dϕᾱ1···ᾱq ) ∧ θ ᾱ1 ∧ · · · ∧ θ ᾱq

+ ϕᾱ1···ᾱq

q∑
i=1

(−1)i−1θ ᾱ1 ∧ · · · ∧ θ ᾱi−1 ∧ dθ ᾱi ∧ θ ᾱi+1 ∧ · · · ∧ θ ᾱq

= TA(ϕᾱ1···ᾱq )θ
A ∧ θ ᾱ1 ∧ · · · ∧ θ ᾱq

+ ϕᾱ1···ᾱq

q∑
i=1

(−1)i−1θ ᾱ1 ∧ · · · ∧ θ ᾱi−1 ∧(
�
ᾱi

μβ̄
θ β̄ ∧ θμ + �ᾱi

μ̄β̄
θ β̄ ∧ θμ̄ + �ᾱi

0β̄
θ β̄ ∧ θ + Aᾱi

μ θ ∧ θμ
)

∧ θ ᾱi+1 ∧ · · · ∧ θ ᾱq ;

hence (by interchanging β and αi )
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q!dϕ = q!∂bϕ + Tμ(ϕᾱ1···ᾱq )θ
μ ∧ θ ᾱ1 ∧ · · · ∧ θ ᾱq

−
q∑

i=1

�
β̄
μᾱi
ϕᾱ1···ᾱi−1β̄ᾱi+1···ᾱq

θμ ∧ θ ᾱ1 ∧ · · · ∧ θ ᾱq

+ T (ϕᾱ1···ᾱq )θ ∧ θ ᾱ1 ∧ · · · ∧ θ ᾱq

−
q∑

i=1

�
β̄

0ᾱi
ϕᾱ1···ᾱi−1β̄ᾱi+1···ᾱq

θ ∧ θ ᾱ1 ∧ · · · ∧ θ ᾱq

+
q∑

i=1

(−1)i−1 Aβ̄μϕᾱ1···ᾱi−1β̄ᾱi+1···ᾱq
θ ᾱ1 ∧ · · ·∧ θ ᾱi−1 ∧ (θ ∧ θμ)∧ θ ᾱi+1 ∧ · · ·∧ θ ᾱq .

Finally (by (1.133)),

dϕ = ∂bϕ +
{ (∇μϕᾱ1···ᾱq

)
θμ + (∇0ϕᾱ1···ᾱq

)
θ
}

∧ θ ᾱ1 ∧ · · · ∧ θ ᾱq

+ θ ∧ 1

q!

q∑
i=1

ϕᾱ1···ᾱq θ
ᾱ1 ∧ · · · θ ᾱi−1 ∧ τ ᾱi ∧ θ ᾱi+1 ∧ · · · ∧ θ ᾱq . (1.136)

Next, we look at the Kohn–Rossi cohomology groups.

Proposition 1.18. (N. Tanaka [398])

E0,q
1 (M) � H0,q(M)

(an isomorphism).

First, note that

E0,q
1 (M) = C0,q

1 (M)

C1,q−1
0 (M)+ D0,q

0 (M)
,

C0,q
1 (M) =

{
ϕ ∈ �q(M) : (dϕ)(Z1, . . . , Zq+1) = 0,

∀Z j ∈ T1,0(M), 1 ≤ j ≤ q + 1
}
,

C1,q−1
0 (M)+ D0,q

0 (M) =
{
ψ + dϕ : ϕ ∈ �∞(ωq−1(M)⊗ C), ψ ∈ �q(M),

ψ(Z1, . . . , Zq) = 0,∀Z j ∈ T1,0(M), 1 ≤ j ≤ q
}
.

We build an isomorphism � : H0,q(M) → E0,q
1 (M) as follows. Let ω be a ∂b-

closed (0, q)-form on M and [ω]H0,q (M) its Kohn–Rossi cohomology class. Then ω is
a complex q-form and (dω)(Z1, . . . , Zq+1) = 0 by the definition of ∂b, so that the

class [ω]
E0,q

1 (M)
of ω (modulo C1,q−1

0 (M)+ D0,q
0 (M) ) is well defined. We set

�([ω]H0,q (M)) = [ω]
E0,q

1 (M)
.
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The definition of �([ω]H0,q (M)) doesn’t depend on the choice of representative be-
cause

∂b�
0,q−1(M) ⊂ C1,q−1

0 (M)+ D0,q
0 (M).

Indeed, if ϕ is a (0, q − 1)-form on M then (by (1.136)) dϕ = ∂bϕ − ψ for some
uniquely determined q-form ψ such that ψ(Z1, . . . , Zq) = 0; hence ∂bϕ ∈
C1,q−1

0 (M)+D0,q
0 (M). To prove that� is one-to-one, assume that�([ω]H0,q (M)) = 0.

Then ω = ψ + dϕ for some ψ ∈ �q(M) , ϕ ∈ �q−1(M) with ψ(Z1, . . . , Zq) = 0.
Yet we may write ϕ = πq−1ϕ + η for some uniquely determined (q − 1)-form η

such that η(Z1, . . . , Zq−1) = 0. Thus (dη)(Z1, . . . , Zq) = 0, as a consequence
of the formal integrability property of T1,0(M). Finally, ω = ψ + dπq−1ϕ + dη
yields ω = ∂bπq−1ϕ, that is, [ω]H0,q (M) = 0. To check the surjectivity of �, let

[η]
E0,q

1 (M)
∈ E0,q

1 (M). It suffices to observe that η − πqη ∈ C1,q−1
0 (M) + D0,q

0 (M)

(indeed, set ψ = η − πqη and ϕ = 0). �

Our next task is to look at the cohomology groups H p,q(M). Let (M, T1,0(M)) be
a CR manifold and set

�p,q(M) = F p�p+q(M)

F p+1�p+q(M)
.

In particular,

�0,q(M)= �q T ∗(M)⊗ C

{ϕ ∈ �q T ∗(M)⊗ C : ϕ(Z1, . . . , Zq) = 0,∀Z j ∈ T1,0(M), 1 ≤ j ≤ q} ;

hence, if M is a nondegenerate CR manifold (of hypersurface type) then �0,q(M) is
the bundle of all (0, q)-forms on M . Let us set

�p,q(M) := �∞(�p,q(M)).

Since the filtration {�∞ (
F p�k(M)

)} is stable under d (the exterior differentiation
operator), there is a naturally induced differential operator

∂
p,q

b : �p,q(M)→ �p,q+1(M)

such that ∂
p,q+1

b ◦ ∂ p,q
b = 0, i.e., {

�p, ·(M), ∂ p, ·
b

}
is a cochain complex. Clearly, for p = 0 this is the tangential Cauchy–Riemann com-
plex (1.118).

Proposition 1.19. (N. Tanaka [398])

Hq
(
�p, ·(M) , ∂ p, ·

M

)
� H p,q(M)

(an isomorphism), i.e., H p,q(M) are the cohomology groups of the complex
{�p,·(M), ∂ p,·

b }.
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Proof. We have

H p,q(M) = E p,q
1 (M) = C p,q

1

C p+1,q−1
0 + D p,q

0

= �∞(F p�p+q(M)) ∩ d−1�∞(F p+1�p+q+1(M))

�∞(F p+1�p+q(M))+ d�∞(F p�p+q−1(M))
.

We define a homomorphism

 : H p,q(M)→ Hq(�p,·(M), ∂ p,·
b )

by setting

 ([ϕ]E p,q
1
) = [ϕ + F p+1�p+q ]

for any ϕ ∈ �∞(F p�p+q(M)) such that dϕ ∈ �∞(F p+1�p+q+1(M)). Here [ϕ]E p,q
1

is the class of ϕ modulo

�∞(F p+1�p+q(M))+ d�∞(F p�p+q−1(M)).

Also

ϕ + F p+1�p+q ∈ �∞(�p,q)

and [ϕ + F p+1�p+q ] is the class of ϕ + F p+1�p+q modulo

∂
p,q−1
b �∞(�p,q−1(M)) .

Since dϕ ∈ �∞(F p+1�p+q+1(M)) it follows that

∂
p,q
b (ϕ + F p+1�p+q) = 0;

hence ϕ + F p+1�p+q does define a cohomology class in

Hq(�p,·(M), ∂ p,·
b ).

To see that the definition of ([ϕ]E p,q
1
) doesn’t depend on the choice of representative,

it suffices to check that given ϕ ∈ C p+1,q−1
0 + D p,q

0 one has ϕ + F p+1�p+q ∈
∂

p,q−1
b �p,q−1(M). Indeed ϕ = α + dβ for some α ∈ �∞(F p+1�p+q(M)) and
β ∈ �∞(F p�p+q−1(M)); therefore

ϕ + F p+1�p+q = dβ + F p+1�p+q = ∂
p,q−1
b (β + F p+1�p+q−1).

The reader may check that  is an isomorphism. �
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We shall need the complex vector bundle

E p = �pT̂ (M)∗.

We organize E p → M as a CR-holomorphic bundle by considering the differential
operator

∂E p : �∞(E p)→ �∞(T0,1(M)
∗ ⊗ E p)

defined by(
(∂E pϕ)Z

)
(u1, . . . , u p) =

Z(ϕ(u1, . . . , u p))−
p∑

i=1

ϕ(u1, . . . , ui−1, Zui , ui+1, . . . , u p),

for any ϕ ∈ �∞(E p) and any Z ∈ �∞(T1,0(M)), ui ∈ �∞(T̂ (M)), 1 ≤ i ≤ p. Here
Zui = (∂ T̂ (M)ui )Z .

Proposition 1.20. (N. Tanaka [398])

�p,q(M) � �q T0,1(M)
∗ ⊗ E p

(a complex vector bundle isomorphism).

Proof. Define

f p,q : F p�p+q(M)→ �q T0,1(M)
∗ ⊗ E p

by setting(
( f p,qϕ)(Z1, . . . , zq)

)
(u1, . . . , u p) = ϕ(W1, . . . ,Wp, Z1, . . . , Zq),

for any ϕ ∈ F p�p+q(M), Z j ∈ T1,0(M), 1 ≤ j ≤ q , and ui ∈ T̂ (M), 1 ≤ i ≤ p.
Here Wi ∈ T (M)⊗ C is a lift of ui , i.e., π(Wi ) = ui . The definition doesn’t depend
on the choice of lifts Wi of ui because ϕ ∈ F p�p+q(M). Note that

0 → F p+1�p+q(M) ↪→ F p�p+q(M)
f p,q

−→ �q T0,1(M)
∗ ⊗ E p → 0 (1.137)

is a short exact sequence of complex vector bundles and complex vector bundle ho-
momorphisms. It is not difficult to check that Ker( f p,q) = F p+1�p+q(M). However,
the surjectivity of f p,q is somewhat trickier. Let ψ ∈ �q T0,1(M)∗ ⊗ E p. To build
a ϕ ∈ F p�p+q(M) such that f p,q(ϕ) = ψ we choose just any complement F of
T0,1(M) in T (M) ⊗ C (e.g., if M is a nondegenerate CR manifold of hypersurface
type and T the characteristic direction of (M, θ), then we set F = T1,0(M)⊕CT ) and
let π0,1 : T (M)⊗ C → T0,1(M) be the natural projection (associated with the direct
sum decomposition T (M) ⊗ C = T0,1(M) ⊕ F). Next, we define ϕ ∈ �p+q(M) by
setting
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ϕ(W1, . . . ,Wp+q) =
(−1)pq

p!q!

∑
σ∈σp+q

ε(σ )ψ(π0,1Wσ(1), . . . , π0,1Wσ(q))(πWσ(q+1), . . . , πWσ(q+p)),

for any W j ∈ T (M) ⊗ C , 1 ≤ j ≤ p + q . Clearly ϕ so defined is an element of
�∞(F p�p+q(M)). For the convenience of the reader we compute f p,q(ϕ) explicitly.
Given f ∈ σp and g ∈ σq let σ(g, f ) ∈ σp+q be defined by

σ(g, f ) =
(

1 · · · q q + 1 · · · q + p
p + g(1) · · · p + g(q) f (1) · · · f (p)

)
.

Then ε(σ (g, f )) = (−1)pqε( f )ε(g). Finally, one may perform the calculation

ϕ(W1, . . . ,Wp, Z1, . . . , Zq) =
(−1)pq

p!q!

∑
f ∈σp , g∈σq

ε(σ (g, f ))ψ(π0,1Wp+g(1), . . . , π0,1Wp+g(q))(πW f (1), . . . , πW f (p))

= ψ(Z1, . . . , Zq)(πW1, . . . , πWp),

where Wp+ j = Z j , 1 ≤ j ≤ q . �

Finally, from (1.137) we have

�q T0,1(M)
∗ ⊗ E p = Im( f p,q) � F p�p+q(M)

Ker( f p,q)
= �p,q(M). �

Let g p,q : �p,q(M) → �q T0,1(M)∗ ⊗ E p be the isomorphism furnished by the
preceding proposition. If f : E → F is a complex vector bundle homomorphism
then we denote by f� : �∞(E) → �∞(F) the induced map of sections. Consider the
diagram

�p,q(M)
g p,q
�−→ �∞(�q T0,1(M)∗ ⊗ E p)

↓ ∂
p,q
b ↓ ∂

q
E p

�p,q+1(M)
g p,q+1
�−→ �∞(�q+1T0,1(M)∗ ⊗ E p)

Then

∂
q
E p ◦ g p,q

� = (−1)pg p,q+1
� ◦ ∂ p,q

b . (1.138)

The proof of (1.138) is left as an exercise to the reader.

Corollary 1.2. (N. Tanaka [398])

H p,q(M) � Hq(M, E p)

(an isomorphism).
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Proof. By (1.138) the map g p,q
� induces a map (g p,q)∗ on cohomology. Finally, we

inspect the diagram

H p,q(M) � Hq
(
�p,·(M), ∂ p,·

b

)
↓ (g p,q)∗

Hq(M, E p) = Hq
(
�·T0,1(M)∗ ⊗ E p, ∂

·
E p

)
. �

Let (E, ∂E ) be a CR-holomorphic vector bundle (over the CR manifold (M, T1,0(M))).

Definition 1.44. A cross-section u ∈ �∞(E) is CR-holomorphic if ∂E u = 0. �

The purpose of the present section is to establish the following result:

Proposition 1.21.

Ek,0
1 (M) � Ker(∂Ek ), Hk

0 (M) � Hk(E ·,0
1 (M), d

·,0
1 ).

That is, Ek,0
1 (M) is isomorphic to the space of CR-holomorphic sections in E p =

�pT̂ (M) and Hk
0 (M) are the cohomology groups of the complex {Ek,0

1 (M), dk,0
1 }k≥0

(where dk,0
1 is naturally induced by d).

Proof. Since Fk�k−1(M) = 0 it follows that

Ek,0
1 (M) = �∞ (

Fk�k(M)
)

∩ d−1�∞ (
Fk+1�k+1(M)

)
.

Hence

d : �∞(Fk�k(M))→ �∞(Fk�k+1(M))

descends to a differential operator

dk,0
1 : Ek,0

1 (M)→ Ek+1,0
1 (M)

such that

dk+1,0
1 ◦ dk,0

1 = 0.

Note that Ek,0
1 (M) consists of all ϕ ∈ �∞(�k(M)⊗ C) with

ϕ(W1, . . . ,Wk−1, Z) = 0

and

(dϕ)(W1, . . . ,Wk, Z) = 0

for any Wi ∈ T (M)⊗ C, 1 ≤ i ≤ k, and any Z ∈ T1,0(M). Let us define

� : Ker(∂Ek )→ Ek,0
1 (M)
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by setting

(�ψ)(W1, . . . ,Wk) = ψ(πW1, . . . , πWk).

Since

(�ψ)(W1, . . . ,Wk−1, Z) = 0,

(�ψ)(W1, . . . ,Wk, Z) = (−1)k
(
(∂Ekψ)Z

)
(πW1, . . . , πWk) = 0,

it follows that �ψ is well defined. The reader may check that � is an isomorphism
with the (obvious) inverse

(�−1ϕ)(u1, . . . , uk) = ϕ(W1, . . . ,Wk),

where Wi ∈ T (M)⊗ C is some lift of ui ∈ T̂ (M), 1 ≤ i ≤ k.
To prove the second statement in the proposition, note that

Hk
0 (M) = Ek,0

1 (M) = Ck,0
2 (M)

Ck+1,−1
1 (M)+ Dk,0

1 (M)
,

Ck,0
2 (M) = {ϕ ∈ �∞(Fk�k(M)) : dϕ = 0},

Ck+1,−1
1 (M)+ Dk,0

1 (M) =
(
�∞(Fk�k(M))

)
∩ d�∞(Fk−1�k−1(M)).

Also

Hk(E ·,0
1 (M), d

·,0
1 ) = Ker(dk,0

1 )

dk−1,0
1 Ek−1,0

1 (M)
.

Let ϕ ∈ �∞(Fk�k(M)) be such that dϕ = 0. The reader may check that

[ϕ]Hk
0 (M)

!−→ ϕ + dk−1,0
1 Ek−1,0

1 (M)

is a (well-defined) isomorphism. �

1.7.4 A long exact sequence

Let d p,q be the restriction of d to �∞(F p�p+q(M)). Since

d �∞(F p�p+q(M)) ⊂ �∞(F p�p+q+1(M))

it follows that {�∞(F p�p+·(M)), d p,·} is a cochain complex. Let us set

H p,q∗ (M) = Hq (�∞(F p�p+·(M)), d p,·) .



1.7 The tangential Cauchy–Riemann complex 95

Proposition 1.22. (N. Tanaka [398])
There is a natural exact sequence of cohomology groups

0 → Hk
0 (M)→ Hk−1,1∗ (M)→ Hk−1,1(M)→ Hk,1∗ (M)→

→ Hk−1,2∗ (M)→ · · · → Hk,p∗ (M)→
→ Hk−1,q+1∗ (M)→ Hk−1,q+1(M)→ Hk,q+1∗ (M)→ · · ·

Proof. Consider the short exact sequence

0 → Fk�k+p(M)→ Fk−1�k+q(M)→ �k−1,q+1(M)→ 0,

for any q ≥ 0. An inspection of the diagram

0 0
↓ ↓

· · · → �∞ (
Fk�k+q(M)

) dk,q−→ �∞ (
Fk�k+q+1(M)

) → · · ·
↓ ↓

· · · → �∞ (
Fk−1�k+q(M)

) dk−1,q+1−→ �∞ (
Fk−1�k+q+1(M)

) → · · ·
↓ ↓

· · · → �∞ (
�k−1,q+1(M)

) ∂
k−1,q+1
b−→ �∞ (

�k−1,q+2(M)
) → · · ·

↓ ↓
0 0

furnishes the cohomology sequence

Hk,q∗ (M)→ Hk−1,q+1∗ (M)→ Hk−1,q+1(M)
δk−1,q+1−→ Hk,q+1∗ (M),

where all but the connection homomorphism δk−1,q+1 are naturally induced maps.
As to δk−1,q+1, it is defined by the following considerations. Let ϕ + Fk�k+q ∈
Ker(∂

k−1,q+1
b ). Then

0 = ∂
k−1,q+1
b

(
ϕ + Fk�k+q

)
= dϕ + Fk�k+q+1;

hence dϕ ∈ �∞ (
Fk�k+q+1(M)

)
. Therefore the class [dϕ]

Hk,q+1∗ (M)
of dϕ (modulo

dk,q�∞ (
Fk�k+q(M)

)
) is well defined. Note that in general dϕ is not dk,q -exact (be-

cause one only has ϕ ∈ �∞(Fk−1�k+q(M)), rather than ϕ ∈ �∞(Fk�k+q(M))).
Finally, we set

δk−1,q+1 : [ϕ + Fk�k+q ]Hk−1,q+1(M) !−→ [dϕ]
Hk,q+1∗ (M)

.

It is a standard exercise in homological algebra that the definition doesn’t depend on
the choice of representative. For q = 0 one obtains the sequence

Hk,0∗ (M)→ Hk−1,1∗ (M)→ Hk−1,1(M)
δk−1,1−→ Hk,1∗ (M)→ · · · .
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This is exact at all terms, except at Hk,0∗ (M). Finally, the sequence in the statement of
the proposition may be obtained from the identities

Hk,0∗ (M) = {ϕ ∈ �∞ (
Fk�k(M)

)
: dϕ = 0},

Ker
(

Hk,0∗ (M)→ Hk−1,1∗ (M)
)

= Dk,0
1 (M),

Hk
0 (M) � Hk

(
E ·,0

1 (M), d
·,0
1

)
= Hk,0∗ (M)

Dk,0
1 (M)

. �

1.7.5 Bott obstructions

Let (M, T1,0 M)) be a CR manifold of type (n, k). Recall the (CR holomorphic) vector
bundle T̂ (M) = (T (M)⊗ C)/T0,1(M).

Definition 1.45. A connection D in T̂ (M) is said to be basic if it extends the ∂ T̂ (M)
operator, that is,

Z � DπW = π [Z ,W ]

for any Z ∈ T1,0(M) and any W ∈ T (M)⊗ C. �

For instance, if (M, T1,0(M)) is a nondegenerate CR manifold of hypersurface type
and θ ∈ �1(M) is a fixed pseudo-Hermitian structure on M then let T be the char-
acteristic direction of dθ and σ : T̂ (M) → T1,0(M) ⊕ CT the natural isomorphism
(associated with the decomposition T (M)⊗ C = T1,0(M)⊕ T0,1(M)⊕ CT ). Let ∇
be the Tanaka–Webster connection of (M, θ). Then the connection D in T̂ (M) given
by

DV u =
{
π [V, σ (u)] if V ∈ T0,1(M),

π∇V σ(u) if V ∈ T1,0(M)⊕ CT ,

is clearly basic. The reader may note the analogy with the transverse Levi-Civita con-
nection of a Riemannian foliation (cf. (5.3) in [408], p. 48).

Let D be a connection in T̂ (M) and

K (D) : T̂ (M)→ [�2T ∗(M)⊗ C] ⊗ T̂ (M)

its curvature 2-form. The aim of the present section is to establish the following result:

Theorem 1.18. Let M be a nondegenerate CR manifold (of hypersurface type) of CR
dimension n and θ an arbitrary pseudo-Hermitian structure on M. Let D be a basic
connection in T̂ (M). Then

K (D) ≡ 0 mod θα, θ

for any admissible frame {θ1, . . . , θn} of T1,0(M) on U.
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Proof. As we shall see shortly, this is similar to the P. Baum and R. Bott vanishing
theorem (cf. (0.51) in [76], p. 287). To prove Theorem 1.18, let {θα} be an admissible,
i.e., θα(Tβ) = δαβ , θα(Tβ̄ ) = θα(T ) = 0, frame of T1,0(M)∗ on U . Next, let I (U )

be the ideal of �∗(U ) (the de Rham algebra of U ) spanned by {θ1, . . . , θn, θ}. We
organize the proof in several steps, as follows.

Step 1 d I (U ) ⊆ I (U ). To prove Step 1, let η = ∑n
j=0 θ

j ∧ η j , where θ0 = θ .

Then (by (1.64))

dη =
n∑

j=0

(
dθ j ∧ η j − θ j ∧ dη j

)
≡

≡ 2ihαβ̄θ
α ∧ θ β̄ ∧ η0 + (θβ ∧ ωαβ + θ ∧ τα) ∧ ηα ≡ 0.

All congruence relations are mod I (U ). Let D be a basic connection in T̂ (M). Note
that {πT1, . . . , πTn, πT } is a (local) frame of T̂ (M) on U . The corresponding con-
nection 1-forms γ i

j of D are given by

DπTj = γ i
j ⊗ πTi .

Here 0 ≤ i, j ≤ n and T0 = T .

Step 2 γ 0
0 ≡ 0, γ 0

α ≡ 2ihαβ̄θ
β̄ , γ α0 ≡ Aα

β̄
θ β̄ , γ αμ ≡ �α

β̄μ
θ β̄ .

Since D extends the ∂ T̂ (M) operator we have

γ i
j (Z)πTi = π [Z , Tj ],

for any Z ∈ T1,0(M). Then (by (1.37))

γ 0
α (Z) = 2i Lθ (Tα, Z),

γ βα (Z) = ∇Z Tα,

γ 0
0 (Z) = 0, γ β0 (Z)Tβ = τ(Z),

and Step 2 is proved. Let K i
j be the curvature 2-forms of D with respect to {πTj }, that

is,

K (D)πTj = K i
j ⊗ πTi .

Then

K i
j = dγ i

j + γ i
k ∧ γ k

j .

It remains to prove that K i
j ≡ 0. Using Steps 1 and 2 and the symmetry of Aαβ (cf.

the proof of Lemma 1.4) we may perform the calculation
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K 0
0 = dγ 0

0 + γ 0
k ∧ γ k

0 ≡ γ 0
α ∧ γ α0 ≡ 2ihαβ̄θ

β̄ ∧ Aαμ̄θ
μ̄ = 2i Aβ̄μ̄θ

β̄ ∧ θμ̄ = 0,

hence K 0
0 ≡ 0. Next, by ∇gθ = 0 and (1.64), and again by Steps 1 and 2, we have

K 0
α = dγ 0

α + γ 0
k ∧ γ k

α ≡ 2id(hαβ̄θ
β̄ )+ γ 0

β ∧ γ βα
≡ 2i{dhαβ̄ ∧ θ β̄ + hαβ̄dθ β̄} + 2ihβλ̄θ

λ̄ ∧ �βμ̄αθμ̄

= 2i{
(

hαμ̄ω
μ̄

β̄
+ ωμα hμβ

)
∧ θ β̄ + hαβ̄(θ

μ̄ ∧ ωβ̄μ̄ + θ ∧ τ β̄)} + 2ihβλ̄�
β
μ̄αθ

λ̄ ∧ θμ̄

≡ 2i{(hαμ̄�μ̄ρ̄β̄θ ρ̄ + hμβ̄�
μ
ρ̄αθ

ρ̄)∧ θ β̄ + hαβ̄θ
μ̄ ∧ �β̄ρ̄μ̄θ ρ̄ + hβλ̄�

β
μ̄αθ

λ̄ ∧ θμ̄} = 0;

hence K 0
α ≡ 0. Similarly

K α
0 = dγ α0 + γ 0

k ∧ γ k
0 ≡ d(Aα

β̄
θ β̄ )+ γ αβ ∧ γ β0

≡ (d Aα
β̄
) ∧ θ β̄ + Aα

β̄
dθ β̄ + �α

λβ
θ λ̄ ∧ Aβμ̄θ

μ̄

≡ Tρ̄ (A
α

β̄
)θ ρ̄ ∧ θ β̄ + Aα

β̄
(θ ρ̄ ∧ ωβ̄ρ̄ + θ ∧ τ β̄)+ �α

λ̄β
Aβμ̄θ

λ̄ ∧ θμ̄

≡ {Tρ̄ (Aαβ̄)+ +�αρ̄λAλ
β̄

− Aα
λ̄
�λ̄
ρ̄β̄

}θ ρ̄ ∧ θ β̄ = hαγ̄
(
∇ρ̄ Aβ̄γ̄

)
θ ρ̄ ∧ θ β̄ .

Yet

∇αAβγ = ∇β Aαγ ; (1.139)

hence K α
0 ≡ 0. The proof of (1.139) is left as an exercise to the reader. See also (2.6)

in [270], p. 163. Finally (by (1.89)),

K α
β = dγ αβ + γ αk ∧ γ k

β ≡ d(�αμ̄βθ
μ̄)+ γ α0 ∧ γ 0

β + γ αμ ∧ γ μβ
≡ dωαβ + Aαμ̄θ

μ̄ ∧ 2ihβλ̄θ
λ̄ + �αρ̄μθ ρ̄ ∧ �μ

λ̄β
θ λ̄

≡ dωαβ + ωαμ ∧ ωμβ + 2ihβλ̄Aαμ̄θ
μ̄ ∧ θ λ̄

= !αβ + 2iτα ∧ θβ ≡ �αβ == Rβ
α
λρ̄ + Wα

βλθ
λ ∧ θ − Wα

βλ̄
θ λ̄ ∧ θ;

hence K α
β ≡ 0. Theorem 1.18 is completely proved. �

We close the section with the following remark. Let V be a complex manifold, of
complex dimension n, and let F be an involutive, that is,

[�∞(F), �∞(F)] ⊆ �∞(F),

complex subbundle of the holomorphic tangent bundle T 1,0(V ) of V . Assume
dimC Fx = k , x ∈ V . Moreover, let ϕ ∈ C[X1, . . . , Xn] be a symmetric homo-
geneous polynomial of degree � ≤ n. Let σ1, . . . , σn be the elementary symmetric
functions of X1, . . . , Xn . Clearly ϕ may be written as a function ϕ̃(σ1, . . . , σ�) of the
first � elementary symmetric functions. Define ϕ(T 1,0(V )/F) ∈ H∗(V,C) by setting
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ϕ(T 1,0(V )/F) = ϕ̃(c1(T
1,0(V )/F), . . . , c�(T

1,0(V )/F)),

where c j (T 1,0(V )/F) are the Chern classes of T 1,0(V )/F . Then the P. Baum and
R. Bott vanishing theorem is that

ϕ(T 1,0(V )/F) = 0, (1.140)

for any symmetric homogeneous polynomial ϕ ∈ C[X1, . . . , Xn] of degree n − k <
� ≤ n. Let (U, zα) be local complex coordinates on V such that F|U is the span of
∂/∂z1, . . . , ∂/∂zk . Let I (U, F) be the ideal of�∗(U )⊗C spanned by dzk+1, . . . , dzn .
Let π : T 1,0(V ) → T 1,0(V )/F be the projection. Let K α

β be the curvature forms of a

basic (in the sense of [76], p. 295) connection in T 1,0(V )/F , with respect to the local
frame {π∂/∂zk+1, . . . , π∂/∂zn}. The proof of (1.140) is to show that K α

β ∈ I (U, F)

(hence, if the degree of ϕ is large enough (i.e., � > n − k) the characteristic form9

ϕ̃(σ1(K ), . . . , σ�(K )) vanishes because of ω1, . . . , ωn−k+1 ∈ I (U, F) �⇒ ω1 ∧
· · · ∧ ωn−k+1 = 0). In this respect, the P. Baum and R. Bott vanishing theorem is
similar to our Theorem 1.18. However, Theorem 1.18 is the best one can get, for one
may not interpret Theorem 1.18 as a vanishing of ϕ(T̂ (M)) = 0 for some ϕ. Indeed, if
ϕ ∈ C[X1, . . . , Xn] is a symmetric homogeneous polynomial with deg(ϕ) ≤ n, then
one has only

ω1, . . . , ωn+2 ∈ I (U ) �⇒ ω1 ∧ · · · ∧ ωn+2 = 0; (1.141)

hence the degree of ϕ should be at least n + 2 (to allow the use of (1.141)). Yet, if this
is the case, the characteristic form vanishes in its own right:

ϕ̃(σ1(K ), . . . , σn(K )) = 0

(because it has degree ≥ 2n + 2 and dimR M = 2n + 1). �

1.7.6 The Kohn–Rossi Laplacian

Let
(
M, T1,0(M)

)
be a strictly pseudoconvex CR manifold, of CR dimension n. Let θ

be a choice of pseudo-Hermitian structure on M such that the Levi form Lθ is positive
definite. Let {Tα} be a local frame of T1,0(M) and {θα} the corresponding (admissible)
dual frame. Given ϕ,ψ ∈ �0,q(M) we define a pointwise inner product 〈ϕ,ψ〉θ by
setting

〈ϕ,ψ〉θ = 1

q!
ϕα1···αqψ

α1···αq ,

9 Let D be a connection in T 1,0(V )/F and K (D) its curvature form. Define σ j (K ) , 1 ≤ j ≤
n, by det(In−k + t K ) = 1 + tσ1(K ) + · · · + tn−kσn−k(K ) and σa(K ) = 0 , n − k <
a ≤ n. Patching together the local forms (i/(2π))�ϕ̃(σ1(K ), . . . , σ�(K )) gives rise to a
globally defined form (i/(2π))�ϕ̃(σ1(K (D)), . . . , σ�(K (D))) representing the cohomology
class ϕ(T 1,0(V )/F).
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where

ϕ = 1

q!
ϕα1···αq θ

α1 ∧ · · · ∧ θαq ,

ψ = 1

q!
ψα1···αq θ

α1 ∧ · · · ∧ θαq ,

ψα1···αq = ψα1···αq , ψα1···αq = hα1β1 · · · hαqβqψβ1···βq
.

As usual, we define an L2 inner product by setting

(ϕ, ψ)θ =
∫

M
〈ϕ,ψ〉θ θ ∧ (dθ)n

for any (0, q)-forms ϕ, ψ on M (at least one of compact support). The formal adjoint
∂

∗
b of the tangential Cauchy–Riemann operator ∂b is given by(

∂
∗
bψ, ϕ

)
θ

= (
ψ, ∂bϕ

)
θ

for any (0, q)-form ϕ, respectively any (0, q + 1)-form ψ on M . We shall need the
following definition:

Definition 1.46. The Kohn–Rossi Laplacian �b given by

�b = ∂
∗
b ∂b + ∂b∂

∗
b . �

The main purpose of the present section is to express �bϕ locally in terms of the co-
variant derivatives of ϕ (with respect to the Tanaka–Webster connection ∇ of (M, θ)).
To compute ∂

∗
bψ we recall the local expression (1.135) of ∂bϕ. Therefore, we may

perform the calculation(
∂

∗
bψ, ϕ

)
θ

= (
ψ, ∂bϕ

)
θ

=
∫

M
〈ψ, ∂bϕ〉θ θ ∧ (dθ)n

= 1

(q + 1)!

∫
M
ψα1···αq+1(∂bϕ)α1···αq+1 θ ∧ (dθ)n

= 1

q + 1

q+1∑
i=1

(−1)i−1
∫

M
ψα1···αq+1∇αiϕα1···α̂i ···αq+1 θ ∧ (dθ)n;

hence (by (1.133)),

(
∂

∗
bψ, ϕ

)
θ

= 1

(q + 1)!

q+1∑
i=1

(−1)i−1
∫

M
ψα1···αq+1{Tαi

(
ϕα1···α̂i ···αq+1

)
−
∑
j<i

ϕα1···α j−1μα j+1···α̂i ···αq+1�
μ
αiα j

−
∑
i< j

ϕα1···α̂i ···α j−1μα j+1···αq+1�
μ
αiα j

} θ ∧ (dθ)n .
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Let us define Zi ∈ T1,0(M), 1 ≤ i, j ≤ q + 1, by setting

Zi = ψα1···αq+1ϕα1···α̂i ···αq+1 Tαi .

As we shall see

div(Zi ) = Tα(Z
α
i )+ Zβi �

α
αβ.

By Green’s lemma ∫
M

div(Zi ) θ ∧ (dθ)n = 0

hence

(
∂

∗
bψ, ϕ

)
θ

= 1

(q + 1)!

q+1∑
i=1

(−1)i
∫

M

{
ψα1···αq+1ϕα1···α̂i ···αq+1�

μ
μαi

+
∑
j<i

ψα1···αq+1ϕα1···α j−1μα j+1···α̂i ···αq+1�
μ
αiα j

+
∑
i< j

ψα1···αq+1ϕα1···α̂i ···α j−1μα j+1···αq+1�
μ
αiα j

+ ϕα1···α̂i ···αq+1 Tαi

(
ψα1···αq+1

) }

= 1

(q + 1)!

q+1∑
i=1

(−1)i
∫

M

{
Tαi

(
ψα1···αq+1

)
+
∑
j<i

ψα1···α j−1μα j+1···αq+1�
α j
αiμ + ψα1···αq+1�μμαi

+
∑
i< j

ψα1···α j−1μα j+1···αq+1�
α j
αiμ

}
ϕα1···α̂i ···αq+1θ ∧ (dθ)n .

At this point we define the (0, q)-forms Ai , 1 ≤ i ≤ q + 1, by setting

Ai = 1

q!
(Ai )α1···αq θ

α1 ∧ · · · ∧ θαq ,

(Ai )α1···αq = hα1β1 · · · hαqβq A
β1···βq
i ,

A
α1···α̂i ···αq+1
i = Tαi

(
ψα1···αq+1

)+
q+1∑
j=1

ψα1···α j−1μα j+1···αq+1�
α j
αiμ.

Therefore(
∂

∗
bψ, ϕ

)
θ

= 1

(q + 1)!

q+1∑
i=1

(−1)i
∫

M
A
α1···α̂i ···αq+1
i ϕα1···α̂i ···αq+1 θ ∧ (dθ)n

= 1

q + 1

q+1∑
i=1

(−1)i
∫

M
〈Ai , ϕ〉θ θ ∧ (dθ)n,
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so that

∂
∗
bψ = 1

q + 1

q+1∑
i=1

(−1)i Ai .

On the other hand, using the identities

dhαβ = hαγ ω
γ

β
+ ωγαhγ β , Tρ(h

γμ) = −hβμhαγ Tρ(hαβ),

and the expression (1.133) of the covariant derivative of a (0, q)-form, one may show
that

A
α1···α̂i ···αq+1
i = (q + 1)! hα1β1 · · · hαq+1βq+1(∇αiψβ1···βq+1

);
hence

∂
∗
bψ =

q+1∑
i=1

(−1)i hαβ(∇αψμ1···μi−1βμi ···μq
)θμ1 ∧ · · · ∧ θμq ,

or (by the skew-symmetry of ψα1···αq+1 )

∂
∗
bψ = (−1)q+1(q + 1) hλμ(∇λψα1···αqμ)θ

α1 ∧ · · · ∧ θαq (1.142)

for any (0, q + 1)-form ψ on M . For simplicity, set ϕ = ∂
∗
bψ . We wish to compute

∂bϕ. Again by (1.135) we have

∂bϕ = 1

q + 1

q+1∑
i=1

(−1)i−1(∇αiϕα1···α̂i ···αq+1
)θα1 ∧ · · · ∧ θαq+1 ,

where (by (1.142))

ϕα1···αq = (−1)q+1(q + 1)! hλμ∇λψα1···αqμ.

Hence we need to compute the covariant derivatives of ϕ. To this end we define

∇μ∇λψα1···αq+1 = (∇Tμ(∇ψ)
)
(Tλ, Tα1 , . . . , Tαq+1)

for any (0, q + 1)-form ψ on M . Explicitly

∇μ∇λψα1···αq+1 =

Tμ(∇λψα1···αq+1)− �ρμλ∇ρψα1···αq+1 −
q+1∑
j=1

�
ρ
μ̄ᾱ j

∇λψα1···ᾱ j−1ρ̄ᾱ j+1···αq+1 .

Using this identity, we obtain

∇αiϕα1···α̂i ···αq+1
= (−1)q+1(q + 1) hλμ∇αi ∇λψα1···α̂i ···ᾱq+1μ̄
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and therefore

∂b∂
∗
bψ = −

q+1∑
i=1

hλμ∇αi ∇λψα1···ᾱi−1μ̄ᾱi+1···αq+1θ
α1 ∧ · · · ∧ θαq+1 . (1.143)

To compute ∂
∗
b ∂bψ we start from

∂
∗
b ∂bψ = (−1)q+2(q + 2) hλμ(∇λ(∂bψ)α1···αq+1μ)θ

α1 ∧ · · · ∧ θαq+1 ,

(∂bψ)α1···αq+2 = (q + 1)!
q+2∑
i=1

(−1)i−1∇αiψα1···α̂i ···αq+2
.

First, we obtain

∇λ(∂bψ)α1···αq+2 = 1

q + 2

q+2∑
i=1

(−1)i−1∇λ∇αiψα1···α̂i ···αq+2
. (1.144)

The proof of (1.144) is a rather lengthy computation in multilinear algebra. For the
more pedantic reader, we give some of the details below. Let us start with

∇λ(∂bψ)α1···αq+2 = 1

(q + 2)!

{
Tλ
(
(∂bψ)α1···αq+2

)−
q+2∑
j=1

(∂bψ)α1···ᾱ j−1μ̄ᾱ j+1···αq+2�
μ
λα j

}
and define the multi-index

(β j1, . . . , β j,q+2) = (α1, . . . , α j−1, μ, α j+1, . . . , αq+2).

Then

∇λ(∂bψ)α1···αq+2

= 1

q + 2

q+2∑
i=1

(−1)i−1
{

Tλ
(∇αiψα1···α̂i ···αq+2

)−
q+2∑
j=1

(∇β j i
ψ
β j1···β̂ j i ···β j,q+2

)
�
μ
λα j

}

= 1

q + 2

q+2∑
i=1

(−1)i−1
{

Tλ
(∇αiψα1···α̂i ···αq+2

)
−
∑
j<i

(∇αiψα1···ᾱ j−1μ̄ᾱ j+1···α̂i ···αq+1

)
�
μ
λα j

− (∇μψα1···α̂i ···αq+1

)
�
μ
λαi

−
∑
i< j

(∇αiψα1···α̂i ···ᾱ j−1μ̄ᾱ j+1···αq+1

)
�
μ
λα j

}

= 1

q + 2

q+2∑
i=1

(−1)i−1∇λ∇αiψα1···α̂i ···αq+2

and (1.144) is proved. �
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We have obtained

∂
∗
b ∂bψ = hλμ

{ q+1∑
i=1

∇λ∇αiψα1···ᾱi−1μ̄ᾱi+1···αq+1 − ∇λ∇μψα1···αq+1

}
θα1 ∧ · · · ∧ θαq+1 .

(1.145)

At this point, using (1.143) and (1.145) we get

�bψ = 1

(q + 1)!
(�bψ)α1···αq+1θ

α1 ∧ · · · θαq+1 ,

where

1

(q + 1)!
(�bψ)α1···αq+1 + hλμ∇λ∇μψα1···αq+1

=
q+1∑
i=1

hλμ
{∇λ∇αiψα1···ᾱi−1μ̄ᾱi+1···αq+1 − ∇αi ∇λψα1···ᾱi−1μ̄ᾱi+1···αq+1

}
.

Of course, as in Riemannian geometry (cf., e.g., [178], p. 78) the presence of the term
∇λ∇αiψα1···ᾱi−1μ̄ᾱi+1···αq+1 − ∇αi ∇λψα1···ᾱi−1μ̄ᾱi+1···αq+1 in the above identity is an in-
dication that we may express �bψ in terms of the curvature of the Tanaka–Webster
connection of (M, θ). Using the identities

[Tλ, Tμ] = �
ρ
λμTρ − �ρμλTρ − 2ihλμT,

Rα
γ
λμ = Tλ(�

γ
μ̄ᾱ)− Tμ(�

γ

λα)+ �ρμ̄ᾱ�γλρ − �ρλα�γμ̄ρ̄
− �ρλμ�γρ̄ᾱ + �ρμλ�γρα + 2ihλμ�

γ

0α,

after some unenlightening calculations, which we omit, we obtain

q!
(∇λ∇μϕα1···αq − ∇μ∇λϕα1···αq

)
= −2i q! hλμ∇0ϕα1···αq −

q∑
j=1

ϕα1···ᾱ j−1γ̄ ᾱ j+1···αq Rα j
γ
λμ

for any (0, q)-form ϕ on M . Finally, one may observe that

hλβ Rβ
γ

λμ
= −Rγ μ,

where

Rγ μ = hαγ Rαμ,

to obtain the sought-after expression of the Kohn–Rossi Laplacian of (M, θ).
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Theorem 1.19. Let M be a strictly pseudoconvex CR manifold. Let θ be such that Lθ
is positive definite. Then

�bψ =
{

− hλμ∇λ∇μψα1···αq+1 − 2i(q + 1)∇0ψα1···αq+1

+ 1

(q + 1)!

[ q+1∑
i=1

ψα1···ᾱi−1γ̄ ᾱi+1···αq+1 Rγ αi

−
q+1∑
i=1

(∑
j<i

Rα j
γ̄ μ̄
αi
ψα1···ᾱ j−1γ̄ ᾱ j+1···ᾱi−1μ̄ᾱi+1···αq+1

+
∑
j>i

Rα j
γ̄ μ̄
αi
ψα1···ᾱi−1μ̄ᾱi+1···ᾱ j−1γ̄ ᾱ j+1···αq+1

)]}
θα1 ∧ · · · ∧ θαq+1 (1.146)

for any (0, q + 1)-form ψ on M.

The reader should compare our (1.146) with its Riemannian counterpart (2.12.4) in
[178], p. 78. A combination of (2.12.4) in [178], Green’s lemma, and the fundamen-
tal theorem10 in [178], p. 76, is known to lead to the classical relationship11 among
curvature and homology (cf. Theorem 3.2.4 in [178], p. 88). It should be mentioned
that although a CR analogue (in terms of Kohn–Rossi cohomology groups and ∂b-
harmonic forms) of the fundamental theorem above has been known for quite some
time (cf. J.J. Kohn [246]) similar applications (based on our (1.146)) seem to be un-
known as yet. The very explicit identity (1.146) doesn’t seem to appear anywhere in
the literature (apparently only approximate formulas such as (A.5) in Appendix A,
modulo error terms, have been derived).

In particular, for q = 0 the identity (1.146) becomes

�bψ =
{
−hλμ∇λ∇μψα − 2i∇0ψα + ψγ Rγ α

}
θα

for any ψ ∈ �0,1(M). Also, if f : M → C is some C∞ function then

�b f = ∂
∗
b ∂b f = hλμ∇λ fμ,

where fμ = Tμ( f ). Note the presence of the second-order differential operator
hλμ∇λ∇μ in the expression of �b. Since we wish hλμ to be positive definite, it is only
natural to employ a Riemannian background metric to define our L2 inner product
on (0, q)-forms and the corresponding formal adjoint ∂

∗
b of the tangential Cauchy–

Riemann operator. Hence, as shown above, when
(
M, T1,0(M)

)
is strictly pseudocon-

vex one may use the Webster metric gθ (for some fixed choice of pseudo-Hermitian

10 Let M be a compact orientable Riemannian manifold. Then the number of linearly indepen-
dent real harmonic forms of degree p is equal to the pth Betti number of M .

11 If on a compact and orientable Riemannian n-dimensional manifold M the quadratic form
F(α) = Ri jα

i i2···i pα j
i2···i p + p−1

2 Ri jk�α
i j i3···i pαk�

i3···i p is positive definite then bp(M) =
0, 0 < p < n.
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structure θ such that the Levi form Lθ is positive definite). When
(
M, T1,0(M)

)
is only

nondegenerate of signature (k, n − k) then (by Lemma 13.2 in [150], p. 469) there is
a Hermitian form 〈 , 〉 on T1,0(M) such that for any x ∈ M there is an open neighbor-
hood U of x and a frame {T1, . . . , Tn} of T1,0(M) on U such that 〈Tα, Tβ〉 = δαβ and
〈Tα, Tβ〉θ = εαδαβ (i.e., a Hermitian, hence positive definite, form 〈 , 〉 such that 〈 , 〉
and 〈 , 〉θ may be simultaneously diagonalized). Here 〈Z ,W 〉θ = Lθ (Z ,W ) for any
Z , W ∈ T1,0(M). Also εα = 1 if 1 ≤ α ≤ k and εα = −1 if k + 1 ≤ α ≤ n. One then
uses 〈 , 〉 to build ∂

∗
b .

Let
(
M, T1,0(M)

)
be a CR manifold (of hypersurface type). A Levi metric is a

semi-Riemannian metric g on M such that (1) g(J X, JY ) = g(X, Y ) for any X , Y ∈
H(M), and (2) there is a pseudo-Hermitian structure θ on M such that g∗(θ, θ) = 1
and gC = Lθ on T1,0(M) ⊗ T0,1(M). Here g∗ is the naturally induced cometric on
T ∗(M) and gC is the C-linear extension of g to T (M)⊗C. For any pseudo-Hermitian
structure θ on a nondegenerate CR manifold M , the Webster metric gθ is a Levi metric.

A Riemannian metric on a CR manifold M is compatible with the CR structure
of M if T1,0(M) and T0,1(M) are orthogonal with respect to the Hermitian form in
T (M) ⊗ C that is induced by this metric (and J.J. Kohn [248], employs such a com-
patible metric to build the L2 closure of ∂b and its L2 adjoint).

If g is a Levi metric and h(A, B) = gC(A, B), for any A, B ∈ T (M) ⊗ C, then
T1,0(M) ⊥ T0,1(M) with respect to h. Hence any Levi metric is compatible with the
CR structure of M . However, when M is only nondegenerate the converse is not true
(for k �= n). Hence it is unclear whether ∂

∗
b and �b may be expressed in terms of

covariant derivatives (with respect to the Tanaka–Webster connection ∇) in this more
general setting (i.e., when a compatible Riemannian metric on a nondegenerate CR
manifold (with k �= n) replaces the use of the Webster metric gθ ). Indeed, the proof of
(1.142) (and hence that of (1.146)) uses the fact that ∇ parallelizes gθ (rather than the
additional compatible Riemannian metric). On the other hand, at least a Levi metric
is needed in order to build intrinsic canonical connections (similar to the Tanaka–
Webster connection) on a CR manifold; cf. C.M. Stanton [378].

1.8 The group of CR automorphisms

We close Chapter 1 of this book by an informal discussion of the group AutC R(M) of
all CR automorphisms of a CR manifold. A fundamental result is the following:

Theorem 1.20. (J.M. Lee [273])
Let M be a compact, connected, strictly pseudoconvex CR manifold of dimension 2n+
1 ≥ 3. Then the identity component of AutC R(M) is compact in the compact-open
topology unless M is globally CR equivalent to S2n+1 with its standard CR structure.

When 2n + 1 ≥ 5 the result above follows from known results on biholomorphism
groups of complex manifolds with boundary (actually the full CR automorphism group
is compact unless M is globally CR equivalent to the sphere). Indeed any such M can
be realized as the boundary of an analytic variety whose biholomorphism group is
isomorphic to AutC R(M). Then, by results of B. Wong [434], J.P. Rosay [353], and
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D. Burns and S. Shnider [79], it follows that any such variety with a noncompact bi-
holomorphism group is biholomorphic to the unit ball, so M is CR equivalent to the
sphere. However, abstract 3-dimensional CR manifolds aren’t in general realizable as
boundaries, so the arguments above fail to apply. Previous to Theorem 1.20 it was
known only that a compact, connected, strictly pseudoconvex CR manifold M with
AutC R(M) noncompact is locally CR equivalent to a sphere (cf. S. Webster [423]).
By taking into account the analogy between conformal and CR geometry, J.M. Lee
conjectured (cf. op. cit.) that for any connected, strictly pseudoconvex CR manifold
M the full automorphism group AutC R(M) acts properly12 unless M is CR equivalent
to either S2n+1 or Hn . When M is compact the properness of the action implies the
compactness of AutC R(M). When M is noncompact it may be shown that AutC R(M)
acts properly if and only if it preserves some pseudo-Hermitian structure. The conjec-
ture of J.M. Lee was later13 proved by R. Schoen [366]. The final result is our next
theorem:

Theorem 1.21. (R. Schoen [366])
The CR automorphism group of a strictly pseudoconvex CR manifold M acts properly
unless M is globally CR equivalent to the sphere or the Heisenberg group with the
standard CR structure.

The proof of Theorem 1.20 is imitative of that of results in conformal geometry by
M. Obata [330], and J. Lafontaine [265]. It was actually shown by S.M. Webster [423],
that except for one step the arguments in conformal geometry carry over easily to the
CR case. S.M. Webster’s result is (cf. op. cit.) that if M is a compact, connected,
strictly pseudoconvex CR manifold that is locally CR isomorphic to the sphere, and
for which there is a closed noncompact 1-parameter subgroup G1 ⊂ AutC R(M) with
a fixed point, then M must be globally CR isomorphic to the sphere. The contribution
of J.M. Lee (cf. op. cit.) is precisely to show that a closed noncompact 1-parameter
group of AutC R(M) has a fixed point.

The paper by R. Schoen (cf. op. cit.) establishes first a result in conformal geom-
etry: the conformal automorphism group of a Riemannian manifold M acts properly
unless M is conformally diffeomorphic to the sphere or the Euclidean space with the
standard metric. R. Schoen provides a PDE-theoretic proof14 that can be adapted eas-
ily to give Theorem 1.21.

Bochner-type formulas for operators related to CR automorphisms and spherical
CR structures were obtained by J-H. Cheng [95]. Such formulas allow conclusions
about rigidity of 3-dimensional CR manifolds. Let M be a 3-dimensional strictly
pseudoconvex CR manifold and let Aut0(M) be the identity component of AutC R(M).
One of the main results in [95] is as follows:

12 A Lie group G acts properly on the manifold X if the map G × X → X × X given by
(g, x) !→ (g cot x, x) is proper.

13 J.M. Lee’s paper [273] was published in 1996 yet was available in preprint form since 1994.
14 Elliptic estimates for the (elliptic) equation satisfied by the dilation factor of a conformal

diffeomorphism f (the factor by which f stretches lengths).
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Theorem 1.22. (J-H. Cheng [95])
Let θ be a contact form on M such that Lθ is positive definite. If ρ < 0 and

√
3T (ρ)−

2Im(A11,1 1) > 0 then Aut0(M) consists only of the identity automorphism. If ρ < 0

and
√

3T (ρ)− 2Im(A11,1 1) = 0 then Aut0(M) has dimension ≤ 1.

A spherical CR structure Jb is rigid if for any smooth 1-parameter family {J (t)b } of

spherical CR structures on M with J (0)b = Jb one has

d

dt
{J (t)b }t=0 = LX Jb

for some tangent vector field X on M . Another result in [95] is the following:

Theorem 1.23. (J-H. Cheng [95])
Let M be a closed spherical 3-dimensional CR manifold. Assume that there is a contact
form θ on M such that ρ > 0 and

3

8
ρ2 − 2ρ|A11,1 1|2/3 − 25|A11|2 > 0,

(3

8
ρ2 − 2ρ

∣∣A11,1 1

∣∣2/3 − 25|A11|2)
{ 83

3456
ρ2 + 55

1152
�bρ

+ 5

4
|A11|2 − 5

36
|A11,1|4/3 + 5i

9
(A11,1 1 − A1 1,11)

}
− 15

8

(1

8
ρ − 2

3
|A11,1|2/3

)∣∣∣ 5

48
T1(ρ)− 2i A1 1,1

∣∣∣2 > 0.

Then the CR structure is rigid.
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The Fefferman Metric

Let � ⊂ Cn+1 be a smoothly bounded strictly pseudoconvex domain. The Fefferman
metric is a Lorentz metric on (∂�)× S1, originally discovered by C. Fefferman [138],
in connection with the boundary behavior of the Bergman kernel K (z, w) of �. This
is the metric g induced on (∂�) × S1, as z → ∂�, by the nondegenerate complex
(0, 2)-tensor field on �× (C \ {0}):

G = ∂2 H

∂z A∂zB
dz A $ dzB,

H(z, ζ ) = |ζ |2/(n+1)u(z), u(z) = K (z, z)−1/(n+1).

(2.1)

Except from certain particular domains, such as � = {(z, w) ∈ Cn × Cm : ‖z‖2 +
‖w‖2p < 1} (for p = 1 this is the ball), cf. J.P. D’Angelo [111], or the complex
ovals of G. Francsics and N. Hanges [156], the Bergman kernel cannot be computed
explicitly, a fact that results in a lack of computability for g. As a remedy to this
difficulty, C. Fefferman replaced (cf. op. cit.) u(z) in (2.1) by a solution to the Dirichlet
problem for the complex Monge–Ampére equation⎧⎪⎨⎪⎩J (u) ≡ (−1)n+1 det

(
u ∂u/∂zk

∂u/∂z j ∂2u/∂z j∂zk

)
= 1 in �,

u = 0 on ∂�,

(2.2)

and showed that (2.1) furnishes, in the limit z → ∂�, the same Lorentz metric
g. The understanding of the fact that a solution u(z) to (2.2) does the same job as
K (z, z)−1/(n+1) was based on heuristic arguments, e.g., C. Fefferman’s observation
that a solution to J (u) = 1 transforms, under a biholomorphism of �, as a negative
power of the Bergman kernel (cf. Proposition 2.10 below). Also, for the case of the
ball, the Bergman kernel on the diagonal is n!π−n(1 − ‖z‖2)−(n+1) and 1 − ‖z‖2 is a
solution to (2.2).

Of course, the interrelation between the Bergman kernel, the Dirichlet problem
(2.2), and the geometric aspects associated with the metric g is interesting in itself.
By a theorem of S.Y. Cheng and S.T. Yau [97], the solution u(z) to (2.2) exists and



110 2 The Fefferman Metric

is unique (u ∈ C∞(�) ∩ Cn+(3/2)−ε(�)). No explicit solution to (2.2) is available;
yet, as shown by C. Fefferman, the 2-jet, along the boundary, of a solution is actually
sufficient to produce g. The function u(z) = u(2)(z),

u(2) =
{

1 + 1 − J (u(1))

n + 1

}
u(1),

u(1) = ψ

J (ψ)1/(n+1)
, � = {ψ > 0},

(2.3)

in his approximation scheme, leads to g and bypasses the original lack of computabil-
ity of the solution to (2.2). However, even for explicit domains such as �0 = {ψ >

0} ⊂ C2, where

ψ(z, w) = z + z − ww + i(z − z)w2w2, (2.4)

the computation of g, and subsequently of its null geodesics, based on the approximate
solution (2.3) to the solution of (2.2), turns out to be highly complicated (cf. [138],
pp. 410–415). On the other hand, ∂� is a strictly pseudoconvex CR manifold and
it is a natural question whether g may be computed in terms of pseudo-Hermitian
invariants (of ∂�). This is indeed the case, as demonstrated by F. Farris [137], and
J.M. Lee [271], on whose work we report in this chapter.

The Fefferman metric Fθ , as rebuilt by J.M. Lee (cf. op. cit.), is well defined for
each (abstract) strictly pseudoconvex CR manifold M , lives on the total space of the
principal S1-bundle

C(M) := [�n+1,0(M) \ 0]/GL+(1,R) π−→ M,

has a particularly simple expression (cf. also (2.28)–(2.29))

π∗G̃θ + 2

n + 2
(π∗θ)$

{
dγ + π∗

(
iωαα − i

2
hαβdhαβ − ρ

4(n + 1)
θ

)}
, (2.5)

and its restricted conformal class [Fθ ] = {eu◦π Fθ : u ∈ C∞(M)} is a CR invariant
(cf. Theorem 2.3). Also, it may be characterized (in terms of curvature restrictions)
among all Lorentz metrics on C(M) (cf. C.R. Graham [182], and also G. Sparling
[377]) and its null geodesics project on S.S. Chern and J.K. Moser’s chains; cf. [99]
(a biholomorphically invariant system of curves in M) when M = ∂� (of course,
C(∂�) � (∂�) × S1 and Fθ given by (2.5) is the metric g originally defined by C.
Fefferman, up to a conformal diffeomorphism). The fact that chains can be obtained
as projections of null geodesics of g enabled C. Fefferman to show that the boundary
∂�0 of the domain (2.4) admits an infinite family of chains, which spiral in toward the
origin (cf. [138]), and more recently L. Koch to give a simple proof (cf. [243]) of H.
Jacobowitz’s result that nearby points on a strictly pseudoconvex CR manifold can be
joined by a chain (cf. [220]).

Among the most recent results on the Fefferman metric, it is known that the Pon-
tryagin forms of g are CR invariants of M (cf. Theorem 2.6). Also, if M � S2n+1,
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a CR isomorphism, then the first Pontryagin form of M vanishes (P1(�
2) = 0) and

the de Rham cohomology class of the corresponding transgression form has integer
coefficients (cf. Theorem 2.7).

The Fefferman metric also leads to interesting new problems and geometric no-
tions, such as the CR Yamabe problem (the Yamabe problem for the Fefferman metric),
or the pseudoharmonic maps (coinciding locally with J. Jost and C.J. Xu’s subellip-
tic harmonic maps [234]). Finally, we should mention the work by H. Baum [49],
developing the spinor calculus in the presence of the Fefferman metric.

2.1 The sub-Laplacian

The scope of this section is to introduce the sub-Laplacian of a strictly pseudoconvex
CR manifold, a second-order differential operator �b in many ways similar to the
Laplace–Beltrami operator of a Riemannian manifold. �b is a degenerate elliptic (in
the sense of J.M. Bony [73]) operator, which is subelliptic of order 1/2 (in the sense of
G.B. Folland [146]) and hence (by a result of L. Hörmander [213]) hypoelliptic. This is
the main common feature enjoyed by�b and the Laplacian of a Riemannian manifold.
It led to a considerable development of the theory of second-order subelliptic equations
on domains in Rn , often by analogy with the elliptic theory; cf., e.g., G. Citti, N.
Garofalo, and E. Lanconelli [104], N. Garofalo and E. Lanconelli [165], N. Garofalo,
and D.M. Nhieu [166], D. Jerison and A. Sánchez-Calle [230], A. Parmeggiani [339],
A. Parmeggiani and C.J. Xu [340], A. Sánchez-Calle [362, 363], C.J. Xu [438, 441],
C.J. Xu and C. Zuily [442, 443]. The authors believe that subelliptic theory is bound
to play within CR and pseudo-Hermitian geometry the strong role played by elliptic
theory in Riemannian geometry.

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold, of real dimension 2n+
1 and CR dimension n. Let θ be a pseudo-Hermitian structure and  = θ ∧ (dθ)n the
corresponding volume form. As in Chapter 1, if X is a vector field of class C1 the
divergence of X is meant with respect to  , i.e.,

LX = div(X) ,

where L denotes the Lie derivative.

Definition 2.1. The sub-Laplacian is the differential operator �b defined by

�bu = div(∇H u),

for any u ∈ C2(M). Here ∇H u is the horizontal gradient, i.e., ∇H u = πH∇u, where
πH : T (M)→ H(M) is the natural projection associated with the direct sum decom-
position T (M) = H(M)⊕RT (T is the characteristic direction of (M, θ)). Also ∇u is
the ordinary gradient of u with respect to the Webster metric, i.e., gθ (∇u, X) = X (u),
for any X ∈ X (M). �

Let ∇ be the Tanaka–Webster connection of (M, θ). Since ∇θ = 0 it follows that
∇ω = 0; hence we may compute the divergence of a vector field as in
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div(X) = trace{Y ∈ T (M) !→ ∇Y X ∈ T (M)}.
This was explicitly proved in Chapter 1, though only for complex vector fields of type
(1, 0). Let {Xa : 1 ≤ a ≤ 2n} be a local Gθ -orthonormal frame of H(M) (i.e.,
Gθ (Xa, Xb) = δab) defined on the open set U ⊆ M . Then

�bu = trace{Y ∈ T (M) !→ ∇Y (∇H u)

(since H(M) is parallel with respect to ∇)

= trace{Xa !→ ∇Xa∇H u} =
2n∑

a=1

Gθ (∇Xa∇H u, Xa)

(since ∇gθ = 0)

=
∑

a

{Xa(gθ (∇H u, Xa))− gθ (∇H u,∇Xa Xa)},

or

�bu =
2n∑

a=1

{Xa(Xau)− (∇Xa Xa)u} (2.6)

on U . Let (U, x1, . . . , x2n+1) be a local coordinate system on M . We set Xa =
bi

a ∂/∂xi , where bi
a : U → R are C∞ functions. Then

2n∑
a=1

Xa Xau = ai j ∂2u

∂xi∂x j
+

2n∑
a=1

bi
a
∂b j

a

∂xi

∂u

∂x j
,

2n∑
a=1

(∇Xa Xa)u = ai j�k
i j
∂u

∂xk
+

2n∑
a=1

bi
a
∂b j

a

∂xi

∂u

∂x j
,

where we set by definition ai j = ∑
a bi

ab j
a . Moreover, �i

jk are the local coefficients of

∇ with respect to the local frame {∂/∂xi : 1 ≤ i ≤ 2n + 1}. Hence

�bu = ai j ∂2u

∂xi∂x j
− ai j�k

i j
∂u

∂xk
,

or

�bu = ∂

∂xi

(
ai j ∂u

∂x j

)
+ c j ∂u

∂x j
, (2.7)

where we set

c j = −∂ai j

∂xi
− aik�

j
ik .
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Let us observe that the matrix ai j is symmetric and positive semidefinite; hence �b is
a degenerate elliptic operator (in the sense of M. Bony [73]). Let us consider the L2

inner product

(u, v) =
∫

M
uv  ,

where u, v ∈ L2(M). The formal adjoint X∗
a of Xa is given by

(X∗
au, v) = (u, Xav) =

∫
u Xav =

∫
ubi

a
∂v

∂xi
 

for any u, v ∈ C∞
0 (U ). Then, by the well-known identity div( f X) = f div(X)+X ( f )

it follows that

(X∗
au, v) =

∫ { ∂

∂xi

(
ubi

av
)

− ∂

∂xi

(
ubi

a

)
v
}
 

=
∫ {

div(uvXa)− uvbi
a div

( ∂

∂xi

)
− ∂

∂xi

(
ubi

a

)
v
}
 ;

hence by Green’s lemma,

X∗
au = − ∂

∂xi

(
bi

au
)

− bi
a div

( ∂

∂xi

)
u

for any u ∈ C∞
0 (U ). Let us observe that

div(∂i ) = trace{∂ j !→ ∇∂ j ∂i } = �
j
j i ,

where we set (for simplicity) ∂i = ∂/∂xi . In the end

X∗
au = − ∂

∂xi

(
bi

au
)

− b j
a�

i
i j u. (2.8)

Definition 2.2. The Hörmander operator is defined by

Hu = −
2n∑

a=1

X∗
a Xau. �

Let us substitute from (2.8). We obtain

Hu = ∂

∂xi

(
ai j ∂u

∂x j

)
+ ai j�k

ki
∂u

∂x j
. (2.9)

Let us write locally T = bi
0 ∂/∂xi . It is not difficult to check that ai j = gi j − bi

0b j
0 ,

where [gi j ] = [gi j ]−1 and gi j = gθ (∂i , ∂ j ), and consequently c j = ai j�k
ki . The

verifications are left as an exercise to the reader. Therefore, if we compare (2.7) and
(2.9) we come to

�bu = Hu (2.10)

on U . Let us recall the following definition:
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Definition 2.3. A formally self-adjoint second-order differential operator L : C∞(M)
→ C∞(M) is said to be subelliptic of order ε (0 < ε ≤ 1) at a point x ∈ M if there is
an open neighborhood U ⊆ M of x such that

‖u‖2
ε ≤ C

(
|(Lu, u)| + ‖u‖2

)
,

for any u ∈ C∞
0 (U ). Here ‖u‖ε is the Sobolev norm1 of order ε. L is subelliptic (of

order ε) if it is subelliptic (of order ε) at any x ∈ M . �
Definition 2.4. Let L be a differential operator with the formal adjoint L∗. If T ∈
C∞

0 (M)
′ is a distribution on M then the distribution LT is defined by (LT )(ϕ) =

T (L∗ϕ), for any ϕ ∈ C∞
0 (M). We say that L is hypoelliptic if LT ∈ C∞(M) yields

T ∈ C∞(M). �
Theorem 2.1. The sub-Laplacian �b is subelliptic of order 1/2. Consequently �b is
hypoelliptic, and more generally, for any x ∈ M there is an open neighborhood U of
x such that

‖u‖2
s+1 ≤ Cs

(
‖�bu‖2

s + ‖u‖2
)
, s ≥ 0,

for any u ∈ C∞
0 (U ).

Proof. Let us start by checking that�b is formally self-adjoint. For any u,v∈C∞
0 (M),

(�∗
bu, v) = (u,�bv) =

∫
u�bv =

∫
u div(∇Hv) 

=
∫ {

div(u∇Hv)− (∇Hv)(u)
}
 

(by Green’s lemma)

= −
∫

gθ (∇u,∇Hv) = −
∫

gθ (∇H u,∇v) = −
∫
(∇H u)(v) 

= −
∫

div(v∇H u) +
∫

div(∇H u) v = (�bu, v). �

We accept now (without proof) the following result:

Lemma 2.1. (E.V. Radkevic [351])
Let K ⊆ M be a compact set and let {Z1, . . . , Z N } be a system of complex vector
fields on M such that (i) the space spanned by {Z1, . . . , Z N } (over C) is closed under
complex conjugation and (ii) {Z1,x , . . . , Z N ,x } ∪ {[Zi , Z j ]x : 1 ≤ i, j ≤ N } span
Tx (M)⊗R C, for any x ∈ K . Then there is a constant C > 0 such that

‖u‖2
1/2 ≤ C

( N∑
j=1

‖Z j u‖2 + ‖u‖2
)
,

for any u ∈ C∞
0 (K ).

1 If û is the Fourier transform of u ∈ C∞
0 (R

2n+1) then ‖u‖2
ε = ∫

(1 + |ξ |2)ε |û(ξ)|2 dξ .
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Let now x ∈ M and let {T1, . . . , Tn} be a local orthonormal (Lθ (Tα, Tβ) = δαβ ) frame
of T1,0(M), defined on an open neighborhood U of x . We set

Xα = 1√
2
(Tα + Tα), Xα+n = i√

2
(Tα − Tα).

If Z is a complex vector field on M then for u, v ∈ C∞
0 (M) one has

(Z∗u, v) = (u, Zv) =
∫

u Zv =
∫

{Z(uv)− Z(u)v}

=
∫

{div(uvZ)− uv div(Z)− Z(u)v};

hence

Z∗u = −Zu − u div(Z).

Therefore

X∗
αu = 1√

2

(
T ∗
α u + T ∗

α u
)
, X∗

α+nu = − i√
2

(
T ∗
α u − T ∗

α u
)
.

Then (2.10) implies (on U )

�bu = −
n∑
α=1

(T ∗
α Tα + T ∗

α Tα)u. (2.11)

The fields {Tα, Tα} satisfy the hypothesis of Lemma 2.1 because by the purity property
of T∇ ,

T∇(Tα, Tβ) = 2iδαβT,

it follows that

[Tα, Tβ ] = �
γ

αβ
Tγ − �γ

βα
Tγ − 2iδαβT

and {Tα, Tα, T } is a local frame of T (M) ⊗ C. Thus there is a constant C > 0 such
that for any u ∈ C∞

0 (U ) one has

‖u‖2
1/2 ≤ C

(
n∑
α=1

(‖Tαu‖2 + ‖Tαu‖2)+ ‖u‖2

)
.

On the other hand,

(�bu, u) =
∫
(�bu)u = −

∑
α

∫
(T ∗
α Tαu + T ∗

α Tαu)u

= −
∑
α

{‖Tαu‖2 + ‖Tαu‖2};
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hence

‖u‖2
1/2 ≤ C

(
|(�bu, u)| + ‖u‖2

)
,

for any u ∈ C∞
0 (U ). To justify the second statement in Theorem 2.1 we recall that by

a result of J.J. Kohn and L. Nirenberg [250], any subelliptic operator L (of order ε) is
hypoelliptic and satisfies the a priori estimates

‖u‖2
s+2ε ≤ Cs

(
‖Lu‖2

s + ‖u‖2
)
, s ≥ 0,

for any u ∈ C∞
0 (U ). Hence the second statement in Theorem 2.1 follows from the

first. �
Another approach to the sub-Laplacian (on a strictly pseudoconvex CR manifold)

on C2 functions is as the trace of the pseudo-Hermitian Hessian. Let M be a nonde-
generate CR manifold and θ a pseudo-Hermitian structure on M . Let ∇ be the Tanaka–
Webster connection of (M, θ). Let f ∈ C2(M).

Definition 2.5. The pseudo-Hermitian Hessian of f is defined by

(∇2 f )(X, Y ) = (∇X d f )Y = X (Y ( f ))− (∇X Y )( f ), X, Y ∈ X (M). �

Let B be a bilinear form on T (M). We denote by πH B the restriction of B to H(M)⊗
H(M). Moreover, if ϕ is a bilinear form on H(M), we make the following definition:

Definition 2.6. The trace of ϕ with respect to Gθ is the C∞ function traceGθ (ϕ) :
M → R given by

traceGθ (ϕ)x =
2n∑
j=1

ε j ϕ(X j , X j ) ,

for some (local) orthonormal frame {X j : 1 ≤ j ≤ 2n} of H(M) (with respect to
Gθ , i.e., Gθ (Xi , X j ) = εi δi j , ε2

i = 1), defined on an open neighborhood U of x ,
x ∈ M . �
The definition of traceGθ (ϕ)x does not depend on the choice of (local) orthonormal
frame at x .

Proposition 2.1. Let M be a strictly pseudoconvex CR manifold and θ a pseudo-
Hermitian structure on M. Then

�bu = traceGθ {πH∇2u} (2.12)

for any C2 function u : M → R.

Proof. Let {Xa : 1 ≤ a ≤ 2n} be a local orthonormal frame of H(M), i.e., Gθ (Xa, Xb)

= δab (ε2
α = 1). Then (by (2.6))

traceGθ (πH∇2u) =
2n∑

a=1

(∇2u)(Xa, Xa) =
∑

a

{Xa(Xau)− (∇Xa Xa)(u)} = �bu.

Proposition 2.1 is proved. �
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To obtain yet another useful expression of the sub-Laplacian on functions we
need a few remarks from linear algebra. Let us consider a local orthonormal frame
{Xα, J Xα : 1 ≤ α ≤ n} (Gθ (Xα, Xβ) = δαβ ) of H(M), defined on U ⊆ M . Next,
let us set Zα = 1√

2
(Xα − i J Xα). Then Lθ (Zα, Zβ) = δαβ . If ϕ is a bilinear form on

H(M) then

traceGθ (ϕ) =
n∑
α=1

{ϕ(Zα, Zᾱ)+ ϕ(Zᾱ, Zα)} . (2.13)

If, in turn, {Tα} is just any local frame of T1,0(M) defined on U then Tα = Uβ
α Zβ for

some C∞ function [Uβ
α ] : U → GL(n,C) satisfying

n∑
μ=1

Uμ
α U μ̄

β̄
= hαβ̄

(where hαβ = Lθ (Tα, Tβ)). Let [V αβ ] = [Uα
β ]−1. Then

∑n
λ=1 V αλ V β̄

λ̄
= hαβ̄ ; hence

(by Zα = V βα Tβ and (2.13))

traceGθ (ϕ) = hαβ̄ϕ(Tα, Tβ̄ )+ hαβ̄ϕ(Tᾱ, Tβ) (2.14)

or, if ϕ is real, i.e., ϕ(Z ,W ) = ϕ(Z ,W ) for any Z ,W ∈ H(M)⊗ C, then

traceGθ (ϕ) = 2 Re{hαβ̄ϕ(Tα, Tβ̄ )}.
At this point, by Proposition 2.1

�bu =
∑
α

{hαβ(∇2u)(Tα, Tβ)+ hαβ(∇2u)(Tα, Tβ)}

hence we have proved the following result:

Proposition 2.2. Let M be a strictly pseudoconvex CR manifold and θ a contact form
on M. The sub-Laplacian �b of (M, θ) is locally given by

�bu = uαα + uᾱ ᾱ,

for any u ∈ C2(M).

Here we have adopted the notation u AB = (∇2u)(TA, TB). In particular, if {Tα} is
chosen so that hαβ̄ = δαβ then

�bu =
n∑
α=1

(uαᾱ + uᾱα). (2.15)

The sub-Laplacian was first introduced by G.B. Folland [146], in the special context
of the Heisenberg group. Precisely, G.B. Folland established (cf. op. cit.) the following
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Theorem 2.2. The differential operator L0 on the Heisenberg group Hn given by

L0 =
n∑
α=1

{
− ∂2

∂zα∂ z̄α
− |zα|2 ∂

2

∂t2
+ i

∂

∂t

(
zα

∂

∂zα
− z̄α

∂

∂ z̄α

)}
is left invariant and is subelliptic of order 1/2 at each x ∈ Hn.

Proof. Let us observe that

L0 = −1

2

n∑
α=1

(TαTᾱ + TᾱTα) ,

where Tα = ∂/∂zα + i zα∂/∂t , i.e., L0 is the Folland–Stein operator obtained for
α = 0; cf. Chapter 1 of this book. Thus the left invariance of L0 follows from that
of Tα . On the other hand (by (2.11)), L0 = 1

2�b (where �b is the sub-Laplacian on
Hn with respect to the canonical contact form θ0 = dt + i

∑n
j=1

(
z j dz j − z j dz j

)
),

whence the last statement in Theorem 2.2. �

The Laplace–Beltrami operator (on functions) on a Riemannian manifold is often
viewed as the differential operator −d∗d , where d denotes the exterior differential
operator and d∗ its formal adjoint (with respect to the given Riemannian structure). To
derive a similar expression for �b we need to introduce the operator db. Let

r : T ∗(M)→ H(M)∗

be the natural restriction map ω !→ ω|H(M).

Definition 2.7. For any C∞ function u : M → C we define a section dbu ∈
�∞(H(M)∗) by setting

dbu = r ◦ du = du
∣∣

H(M). �

Let {Tα : 1 ≤ α ≤ n} be a local frame of H(M) on U ⊆ M and let {θα : 1 ≤ α ≤ n}
be the corresponding admissible frame. We extend the Levi form Lθ to a (pointwise)
inner product L∗

θ on (H(M)⊗ C)∗ by merely requiring that

L∗
θ (θ

α, θβ) = hαβ , L∗
θ (θ

α, θβ) = 0 , L∗
θ (θ

α, θβ) = 0.

Then we may consider the L2 inner product

(ω, η) =
∫

M
L∗
θ (ω, η)  ,

for any C∞ sections ω, η in (H(M)⊗ C)∗ (i.e., for any 1-forms ω, η on M such that
T �ω = 0 and T � η = 0).

Proposition 2.3.

(�bu, v) = −(dbu, dbv),

for any C∞ functions u, v : M → R, at least one of compact support.
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Proof. Locally, we may write

dbu = uαθ
α + uαθ

α,

where uα = Tα(u), uα = Tα(u). Thus

L∗
θ (dbu, dbv) = uαvβhαβ + uαvβhαβ.

Consequently

(dbu, dbv) =
∫

M

(
uαvβhαβ + uαvβhαβ

)
 

=
∫

M

(
Tβ(u

βv)− vTβ(u
β)+ Tβ(u

βv)− vTβ(uβ)
)
 .

Thus, we may perform the following calculation:

(dbu, dbv) =
∫

M

(
div(uβvTβ)− uβv�ααβ − vTβ(u

β)

+ div(uβvTβ)− uβv�α
αβ

− vTβ(u
β)
)
 

(by Green’s lemma)

= −
∫

M

(
uβ�ααβ + uβ�α

αβ
+ Tβ(u

β)+ Tβ(u
β)
)
v  

= −
∫

M
(uαα + uαα)v  = −

∫
M
(�bu)v  .

Proposition 2.3 is proved. �

2.2 The canonical bundle

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold (of CR dimension n) and
θ a pseudo-Hermitian structure on M such that Lθ is positive definite. Let K (M) =
�n+1,0(M) and π0 : K (M)→ M the natural projection.

Definition 2.8. C → K (M)→ M is called the canonical bundle over M . �
Let K 0(M) = K (M) \ { zero section }. Let R+ × K 0(M)→ K 0(M) be the natural
action of R+ = (0,+∞) on K 0(M) and

C(M) = K 0(M)/R+
π−→ M

the quotient bundle. Note that C(M)→ M is a principal S1-bundle.

Definition 2.9. S1 → C(M)→ M is called the canonical circle bundle or the Feffer-
man bundle over M . �



120 2 The Fefferman Metric

A local frame {θα} of T1,0(M)∗ on U ⊆ M induces the trivialization chart

π−1(U )→ U × S1 , [ω] !→
(

x,
λ

|λ|
)
,

where ω ∈ K 0(M), π0(ω) = x ∈ U , and

ω = λ
(
θ ∧ θ1···n)

x
,

with λ ∈ C, λ �= 0. We shall need the following definition:

Definition 2.10. The tautologous form ξ ∈ �n+1(K (M)) is defined by

ξω(Z1, . . . , Zn+1) = ω((dωπ0)Z1, . . . , (dωπ0)Zn+1),

for any Z1, . . . , Zn+1 ∈ Tω(K (M)) and any ω ∈ K (M). �

Lemma 2.2. For any ω ∈ �∞(K 0(M)) there is a unique C∞ function λ : M →
(0,∞) such that

2nin2
n! θ ∧ (T �ω) ∧ (T �ω) = λ θ ∧ (dθ)n .

Proof. Let {θα} be a (local) frame of T1,0(M)∗ on U ⊆ M . Then ω ∈ �∞(K 0(M))
may be represented as

ω|U = f θ ∧ θ1···n

for some C∞ function f : U → C, f �= 0 everywhere on U . Then

T �ω = f

n + 1
θ1···n, T �ω = f

n + 1
θ 1̄···n̄ .

Let us set, by definition,

λ = 1

(n + 1)2
| f |2

det(hαβ)
> 0.

Then (cf. the local expression of the volume form  in Chapter 1)

2n in2
n! θ ∧ (T �ω) ∧ (T �ω) = 2n in2

n!
| f |2

(n + 1)2
θ ∧ θ1···n,1̄···n̄ = λ θ ∧ (dθ)n .

Finally, it is easy to see that λ is invariant under any transformation

θ ′α = Uα
β θ
β, det[Uα

β ] �= 0, on U ∩ U ′.

Lemma 2.2 is proved. �
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Proposition 2.4. There is a natural embedding iθ : C(M)→ K (M).

Indeed, let [ω] ∈ C(M) with π0(ω) = x . By Lemma 2.2 there is a unique λ ∈
(0,+∞) such that

2n in2
n! θx ∧ (Tx �ω) ∧ (Tx �ω) = λ x .

Then we set

iθ ([ω]) = 1√
λ
ω.

If ω′ is another representative of [ω] then ω′ = aω for some a ∈ (0,+∞); hence
λ′ = a2λ, such that iθ ([ω]) is well defined. �

Another way to put it is that (by Lemma 2.2) within each class c = [ω] ∈ C(M)
there is a unique representative η such that

2n in2
n! θx ∧ (Tx � η) ∧ (Tx � η) =  x

(where x = π(c)) and then iθ (c) = η by definition.
Using the embedding iθ we may define the form ζ ∈ �n+1(C(M)) as the pullback

of the tautologous (n + 1)-form ξ on K (M):

Definition 2.11.

ζ = 1

n + 1
i∗θ ξ. �

Let {θ1, . . . , θn} be a frame of T1,0(M)∗ on U . Let us define the (local) form ξ0 ∈
�∞(U, K (M)) as follows.

Definition 2.12. Let M be a strictly pseudoconvex CR manifold, {Tα : 1 ≤ α ≤ n}
a local frame of T1,0(M) on U ⊆ M , and {θα : 1 ≤ α ≤ n} the corresponding
admissible local coframe. We set

ξ0 = det(hαβ)
1/2θ ∧ θ1···n

on U . Also, let us consider ζ0 ∈ �n+1(C(U )) given by ζ0 = π∗ξ0 on U . �
If c ∈ C(M) is fixed, we define the C∞ curve ac : R → C(M) by setting

ac(θ) = eiθc , θ ∈ R.

Next, let S be the tangent vector field on C(M) given by

Sc = dac

dθ
(0).

S is a vertical vector field for the principal S1-bundle C(M) → M , in the sense
that S ∈ Ker(dπ). Indeed, ac lies in the S1-orbit of c so that π ◦ ac = const. and
consequently

(dcπ)Sc = d0(π ◦ ac)
d

dθ

∣∣
0 = 0.

Let {θα : 1 ≤ α ≤ n} be a local frame of T1,0(M)∗ defined on U , as above.
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Definition 2.13. Let us define γ : π−1(U )→ R by setting

γ ([ω]) = arg

(
f

| f |
)
,

where

ω = f (θ ∧ θ1···n)x , π0(ω) = x, f ∈ C, f �= 0.

We call γ a local fiber coordinate on C(M). �
Here arg : S1 → [0, 2π), so that if w = eiθ ∈ S1 then θ ∈ Arg(w) = {arg(w)+2kπ :
k ∈ Z}.
Lemma 2.3. Let M be a strictly pseudoconvex CR manifold and S1 → C(M)

π−→ M
the canonical circle bundle over M. Let γ be a local fiber coordinate on C(M) and S
the tangent to the S1-action. Then (1) ζ = eiγ ζ0 and (2) (dγ )S = 1.

Proof. Both ζ and S are thought of as restricted to π−1(U ). To prove Lemma 2.3, let
ω = f (θ ∧ θ1···n)x ∈ K 0(M)x . Since π0 ◦ iθ = π we may perform the following
calculation:

ζ[ω] = 1

n + 1

(
i∗θ ξ

)
[ω] = 1

n + 1
ξiθ ([ω])

(
d[ω]iθ

)
= 1

n + 1
iθ ([ω]) ◦ (diθ ([ω])π0) ◦ (d[ω]iθ ) = f

| f |ξ0,x (d[ω]π)

= ei arg( f/| f |)(π∗ξ0)[ω] = eiγ ([ω])ζ0,[ω]

and (1) is proved. To prove (2) note that

eiγ (a[ω](θ)) = ei(θ+γ ([ω])).

Differentiation with respect to θ then gives

d

dθ

(
γ ◦ a[ω]

) = 1.

Lemma 2.3 is proved. �

2.3 The Fefferman metric

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold and θ a pseudo-Hermitian
structure on M such that Lθ is positive definite. Let T be the characteristic direction
of (M, θ).

Lemma 2.4. (J.M. Lee [271])
There is a unique complex n-form η on C(M) such that

V � η = 0, ζ = (π∗θ) ∧ η,
for any lift V of T to C(M), i.e., for any V ∈ X (C(M)) such that π∗V = T .
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Proof. Let V be a lift of T to C and let us set

η = (n + 1)V � ζ.
First, we check that the definition of η doesn’t depend on the choice of the lift. Indeed,
if V ′ is another vector field on C(M) with π∗V ′ = T then V ′ − V ∈ Ker(π∗), that is,

V ′ = V + f S

for some f ∈ C∞(C(M)). On the other hand (by Lemma 2.3),

S � ζ = S � (eiγ ζ0) = eiγ S � (π∗ξ0) = eiγ (π∗S) � ξ0 = 0.

Clearly V � η = 0 (because ζ is skew). To establish the second requirement we per-
form the calculation

(π∗θ) ∧ η = (n + 1)(π∗θ) ∧ (V � ζ )
= (n + 1)eiγ (π∗θ) ∧ (V � ζ0) = (n + 1)eiγ (π∗θ) ∧ (V �π∗ξ0)
= (n + 1)eiγ π∗ (θ ∧ (T � ξ0)) .

On the other hand,

T � ξ0 = 1

n + 1
det(hαβ)

1/2θ1 ∧ · · · ∧ θn

and the proof is complete. �
Next, we need to establish the following proposition:

Proposition 2.5. (J.M. Lee [271])
There is a unique real 1-form σ ∈ �1(C(M)) such that

dζ = i(n + 2)σ ∧ ζ,
σ ∧ dη ∧ η = trace(dσ) i σ ∧ (π∗θ) ∧ η ∧ η,

where the 1-form η is given by Lemma 2.4.

Proof. First, we make use of the identities

dθ = 2ihαβθ
α ∧ θβ, dθα = θβ ∧ ωαβ + θ ∧ τα,

to compute the exterior derivative of θ01···n , that is,

dθ01···n = dθ ∧ θ1···n − θ ∧
n∑
α=1

(−1)α−1θ1 ∧ · · · ∧ dθα ∧ · · · ∧ θn

= 2ihαβθ
α ∧ θβ ∧ θ1···n

+ θ ∧
n∑
α=1

(−1)αθ1 ∧ · · · ∧ (θβ ∧ ωαβ + θ ∧ τα) ∧ · · · ∧ θn

= θ ∧
n∑
α=1

(−1)αθ1 ∧ · · · ∧ (θα ∧ ωαα) ∧ · · · ∧ θn .
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We obtain

dθ01···n = −ωαα ∧ θ01···n . (2.16)

Let us set H = det(hαβ)
1/2, for the sake of simplicity. Then (by (2.16))

dξ0 = d H ∧ θ01···n + Hdθ01···n = (d H − Hωαα) ∧ θ01···n;
hence

dξ0 = (d log H − ωαα) ∧ ξ0. (2.17)

Let us set h = log H ∈ C∞(M). Define the local form ω ∈ �1,0(M) by setting

ω = (hβ − �αβα)θβ, hβ = Tβ(h).

Then (by (2.17))

dξ0 = ω ∧ ξ0 = (ω − ω) ∧ ξ0
(since ω ∧ ξ0 = 0). Since ω − ω is purely imaginary we may define a real 1-form
σ0 ∈ �1(M) by setting

ω − ω = i(n + 2)σ0;
hence

dξ0 = i(n + 2)σ0. (2.18)

At this point, we may differentiate ζ = eiγ ζ0 and use (2.18) to obtain

dζ = i(n + 2)σ ∧ ζ, (2.19)

where σ ∈ �1(C(M)) is the real 1-form defined by

σ = 1

n + 2
dγ + π∗σ0. (2.20)

We proceed by introducing a notion of trace of a 2-form. As before, let (M, T1,0(M))
be a strictly pseudoconvex CR manifold, of CR dimension n, and let θ be a pseudo-
Hermitian structure on M such that the corresponding Levi form Lθ is positive defi-
nite. For any differential 2-form ω ∈ �2(M), perhaps real, there is a natural concept
of trace, defined as follows.

Definition 2.14. Let ω̃ : T1,0(M) → T1,0(M) be the bundle endomorphism naturally
induced by the (1, 1)-component of ω, that is,

(dθ)(ω̃Z ,W ) = ω(Z ,W ),
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for any Z ,W ∈ T1,0(M). Locally, with respect to some (local) frame {Tα} of T1,0(M),
we may write

ω = ωαβθ
α ∧ θβ + ωᾱβ̄θα ∧ θβ + ωα0θ

α ∧ θ + ωα0θ
α ∧ θ + i ωαβθ

α ∧ θβ.
It is also customary to write

ω ≡ i ωαβθ
α ∧ θβ (mod θα ∧ θβ, θα ∧ θβ, θα ∧ θ, θα ∧ θ).

Therefore, we have ω̃Tα = ω
β
αTβ , where ωβα = 1

2 hβγ ωαγ . Finally, by definition the
trace of ω is the trace of the endomorphism ω̃, i.e.,

trace(ω) = trace(ω̃) = 1

2
hβγ ωβγ . �

Let � be a 2-form on M . Then by definition,

trace(π∗�) = trace(�) ◦ π
where trace(�) is taken in the sense of Definition 2.14. Since (by (2.20)) dσ = π∗dσ0
and dσ0 ∈ �2(M) the above definition may be applied to make sense of trace(dσ).

Let f ∈ �0(M) be a real-valued C∞ function and define σ f ∈ �1(C(M)) by
setting

σ f = σ + π∗( f θ).

Let η be the n-form on C(M) furnished by Lemma 2.4. Let us take the exterior deriva-
tive of

ζ = (π∗θ) ∧ η
to get

dζ = (π∗dθ) ∧ η − (π∗θ) ∧ dη;
hence (by (2.19))

(π∗θ) ∧ dη = (π∗dθ) ∧ η − i(n + 2)σ ∧ ζ.
Consequently

σ f ∧ dη ∧ η = σ ∧ dη ∧ η + f
(
(π∗dθ) ∧ η − i(n + 2)σ ∧ ζ ) ∧ η;

hence

σ f ∧ dη ∧ η = σ ∧ dη ∧ η − i(n + 2) f σ ∧ (π∗θ) ∧ η ∧ η (2.21)

because of
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(π∗dθ) ∧ η ∧ η = 0.

Indeed, to see that this is true it suffices to look at the explicit expression of η, that is
(cf. the proof of Lemma 2.4),

η = eiγ π∗(det(hαβ)
1/2θ1···n).

Let us take the exterior derivative of

σ f = σ + π∗( f θ)

to get

dσ f = dσ + π∗(d f ∧ θ + f dθ).

We wish to compute trace(dσ f ). Since

d f ∧ θ + f dθ = ( fαθ
α + fαθ

α) ∧ θ + 2 f ihαβθ
α ∧ θβ

(where fα = Tα( f ) and fα = Tα( f )) it follows that

trace(d f ∧ θ + f dθ) = n f ;
hence

trace(dσ f ) = trace(dσ)+ n f ◦ π. (2.22)

During the following calculations, for the sake of simplicity, we do not distinguish
notationally between f and f ◦ π , respectively θ and π∗θ . Using (2.22) we obtain

trace(dσ f )iσ f ∧ θ ∧ η ∧ η = trace(dσ) i σ ∧ θ ∧ η ∧ η + n f iσ ∧ θ ∧ η ∧ η.
(2.23)

We wish to determine f ∈ �0(M) such that

σ f ∧ dη ∧ η = trace(dσ f )iσ f ∧ θ ∧ η ∧ η (2.24)

(then σ f would be the real 1-form on C(M) we are looking for, because of ( f θ)∧ζ =
0). To solve (2.24) for f we substitute from (2.21) and (2.23). We obtain

σ ∧ dη ∧ η − trace(dσ) i σ ∧ θ ∧ η ∧ η = 2(n + 1)i f σ ∧ θ ∧ η ∧ η, (2.25)

which uniquely determines f because σ ∧ θ ∧ η ∧ η is a volume form on C(M).
However, we need to check that f (determined by (2.25)) is real-valued. Since σ ∧
dη ∧ η is a (2n + 2)-form on C(M), there is a C∞ function u : C(M)→ C such that

σ ∧ dη ∧ η = uiσ ∧ θ ∧ η ∧ η. (2.26)

Lemma 2.5. u is real-valued.
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Proof. Note that

η ∧ η = det(hαβ)θ
1···n,1···n,

or (by taking into account the explicit expression of (dθ)n)

(dθ)n = 2n in2
n! η ∧ η;

hence (by differentiating both sides)

0 = dη ∧ η + (−1)nη ∧ dη,

which may be written as

dη ∧ η = (−1)n
2+1dη ∧ η. (2.27)

Finally, it is easily seen that (2.26)–(2.27) yield u = u. Lemma 2.5 is proved. �

Let us substitute from (2.26) into (2.25). Since σ ∧ θ ∧ η∧ η is a volume form, we
obtain

u − trace(dσ) = 2(n + 1) f ;
hence f is real-valued. The proof of Proposition 2.5 is complete. �

The following remark is in order. In the proof of Proposition 2.5 we made use
several times of the fact that σ ∧ (π∗θ) ∧ η ∧ η is a volume form. This follows by
observing that

2n in2
n! (n + 2) σ ∧ (π∗θ) ∧ η ∧ η = dγ ∧ (π∗ ). �

We extend Gθ to a degenerate (0, 2)-tensor field G̃θ on M by setting (by definition)

G̃θ (X, Y ) = Gθ (X, Y ), X, Y ∈ H(M), (2.28)

G̃θ (T,W ) = 0, W ∈ T (M) (2.29)

(in particular T is null, i.e., G̃θ (T, T ) = 0). At this point, we may define the semi-
Riemannian metric Fθ on C(M) by setting

Fθ = π∗G̃θ + 2(π∗θ)$ σ, (2.30)

where σ ∈ �1(C(M)) is the real-valued 1-form furnished by Proposition 2.5. It is
easy to see that Fθ is a Lorentz metric on C(M). Set

h(Z ,W ) = Fθ (Z ,W )

for any Z , W ∈ T (C(M)) ⊗ C. Since {π∗θ, π∗θα, π∗θα, σ } are pointwise indepen-
dent, we may consider the dual frame {V, Vα, Vα,�}. Set Zα = π∗Vα . Then Zα ∈
T1,0(M). Hence h is represented (with respect to the chosen frame {V, Vα, Vα,�}) as
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h :

⎡⎢⎢⎣
0 0 0 1
0 gαβ 0 0
0 0 gαβ 0
1 0 0 0

⎤⎥⎥⎦ ,
where gαβ = Lθ (Zα, Zβ). The characteristic polynomial is

(1 − t2)

∣∣∣det(gαβ − tδαβ)
∣∣∣2 = 0;

hence Fθ has signature (+ · · · + −). The proof is an exercise in elementary linear
algebra. Indeed, let t ∈ R and let us set

p(t) =

∣∣∣∣∣∣∣∣
−t 0 0 1
0 gαβ − tδαβ 0 0
0 0 gαβ − tδαβ 0
1 0 0 −t

∣∣∣∣∣∣∣∣ .
Clearly p(0) �= 0, so that Fθ is nondegenerate. Let C j , 1 ≤ j ≤ 2n + 2, be the
columns of p(t). To compute p(t) one performs the elementary transformation C1 !→
C1 + tC2n+2 and applies (twice) the Laplace theorem to the resulting determinant.

Definition 2.15. The Lorentz metric Fθ (given by (2.30)) is the Fefferman metric of
the (strictly pseudoconvex) CR manifold M . �
The main result in [271] is the following:

Theorem 2.3. (J.M. Lee [271])
Let M be a strictly pseudoconvex CR manifold and θ a contact form on M such that Lθ
is positive definite. If θ̂ = e2uθ is another contact form on M, and F

θ̂
is the associated

Lorentz metric, then F
θ̂

= e2u◦π Fθ . Thus the set {e2u◦π Fθ : u ∈ C∞(M)} is a CR
invariant of M.

We relegate the proof of Theorem 2.3 to Section 2.4. The metric (2.30) was firstly
discovered by C. Fefferman [138], for the case of a strictly pseudoconvex hypersurface
M in Cn+1. If this is the case, then M × S1 carries a Lorentz metric whose conformal
class is invariant by biholomorphisms (cf. op. cit.). Moreover, the null geodesics of this
metric project on the biholomorphically invariant system of curves on M called chains
(cf. S.S. Chern and J.K. Moser [99]). Throughout this section we have followed the
line of J.M. Lee [271], in order to find a description of the Fefferman metric in terms
of the (intrinsic) CR structure of M , thus making the Fefferman metric available on an
abstract (i.e., not necessarily embedded) CR manifold.

Other attempts at building an abstract version of the Fefferman metric belong to
D. Burns, K. Diederich, and S. Schneider [81], who showed how the Fefferman metric
may be obtained from the Chern connection of the Chern CR structure bundle of M ,
and to F. Farris [137]. The construction of the Fefferman metric by F. Farris (cf. op.
cit.) makes use of a closed (n + 1, 0)-form on M . As we shall see in Chapter 5 of this
book, closed (n +1, 0)-forms do exist when M is embedded, yet they may fail to exist
for an abstract, nonembeddable CR manifold; cf. H. Jacobowitz [222].
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Our next goal is to express the Fefferman metric (2.30) in terms of the Tanaka–
Webster connection. We prove

Theorem 2.4. (J.M. Lee [271])
The real 1-form σ ∈ �1(C(M)) in (2.30) may be expressed as

σ = 1

n + 2

{
dγ + π∗

(
i ωα

α − i

2
hαβdhαβ − 1

4(n + 1)
ρ θ

)}
. (2.31)

Proof. Here ρ = hαβ Rαβ is the pseudo-Hermitian scalar curvature. Note that (due to
the identity ωαβ + ωβα = dhαβ ) the 1-form

i ωα
α − i

2
hαβdhαβ

is real. Hence σ given by (2.31) is a real 1-form and (by the uniqueness statement
in Proposition 2.5) to prove Theorem 2.4 we need to check only that σ satisfies the
relations

dζ = i(n + 2)σ ∧ ζ, (2.32)

σ ∧ dη ∧ η = trace(dσ) i σ ∧ (π∗θ) ∧ η ∧ η, (2.33)

where η is the complex n-form furnished by Lemma 2.4. Let us differentiate in ζ =
eiγ ζ0 to get

dζ = idγ ∧ ζ + eiγ dζ0.

Recall that

ζ0 = π∗ξ0, ξ0 = Hθ ∧ θ1 ∧ · · · ∧ θn, H = det(hαβ)
1/2.

Moreover

dξ0 = d H ∧ θ01···n + H dθ01···n

and (by (2.16))

dθ01···n = −ωαα ∧ θ01···n .

Hence

dξ0 = (d H − Hωα
α) ∧ θ01···n .

On the other hand, note that

d H = 1

2
Hhλμdhλμ. (2.34)
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Indeed, let �αβ be the algebraic complement of hαβ . Then (2.34) follows from the
identities

det(hαβ) = hα1�α1 + · · · + hαn�αn ,

∂

∂hλμ

(
det(hαβ)

)
= �λμ, hλμ = �λμ

det (hαβ)
,

d
(

det(hαβ)
)

= ∂

∂hλμ

(
det(hαβ)

)
dhλμ .

Finally, we obtain

dζ = i eiγ (H ◦ π){dγ + π∗(i ωαα − i

2
hαβdhαβ)} ∧ π∗(θ ∧ θ1 ∧ · · · ∧ θn),

so that

i (n + 2)σ ∧ ζ =
i eiγ {dγ + π∗(i ωαα − i

2
hαβdhαβ − 1

4(n + 1)
ρθ)} ∧ π∗(H θ01···n) = dζ,

that is, σ (given by (2.31)) satisfies (2.32). Next, we recall (cf. the proof of Lemma
2.4) that

η = eiγ π∗(H θ1···n).

Then

dη = i eiγ dγ ∧ π∗(H θ1···n)+ eiγ π∗d(H θ1···n),

dθ1···n = −ωααθ1···n − θ ∧
n∑
α=1

θ1 ∧ · · · ∧ θα−1 ∧ τα ∧ θα+1 ∧ · · · ∧ θn

so that

dη = i

{
dγ + π∗(i ωαα − i

2
hαβdhαβ)

}
∧ η − eiγ (H ◦ π)π∗(θ ∧

n∑
α=1

θ1 ∧ · · · ∧ θα−1 ∧ τα ∧ θα+1 ∧ · · · ∧ θn
)
.

Note that τα ∧ η = 0. Thus

σ ∧ dη ∧ η = 1

n + 2

{
dγ + π∗(i ωαα − i

2
hαβdhαβ − 1

4(n + 1)
ρθ)

}
∧ i

{
dγ + π∗(i ωαα − i

2
hαβdhαβ)

}
∧ η ∧ η

= i(ρ ◦ π)
4(n + 1)

σ ∧ (π∗θ) ∧ η ∧ η.
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Finally, to see that σ (given by (2.31)) satisfies (2.33), it remains to check that

trace(dσ) = ρ ◦ π
4(n + 1)

.

Note that

d(hαβdhαβ) = 2 d2 log H = 0;
hence

dσ = 1

n + 2
π∗

{
i dωα

α − 1

4(n + 1)
ρ dθ − 1

4(n + 1)
dρ ∧ θ

}
.

Taking into account (1.62) we get trace(dθ) = n. Also trace(dρ ∧ θ) = 0. Let us
contract α and β in (1.89) and note that ωαγ ∧ ωγ α = 0. Also, using the symmetry
Aαβ = Aβα , we obtain

dωα
α = Rλμθ

λ ∧ θμ + Wα
αλθ

λ ∧ θ − Wα
αμθ

μ ∧ θ;
hence

trace(i dωα
α) = 1

2
hλμRλμ = 1

2
ρ.

Therefore

trace(dσ) = 1

n + 2

{
trace(i dωα

α) ◦ π − n

4(n + 1)
(ρ ◦ π)

}
= ρ ◦ π

4(n + 1)
.

Our Theorem 2.4 is completely proved. �

As an example, let us look at the boundary of a pseudo-Siegel domain

Sp =
{

z ∈ Cn :
n−1∑
α=1

|zα|2pα + Im(z pn
n )− 1 < 0

}
,

p = (p1, . . . , pn) ∈ Zn, p j ≥ 1, 1 ≤ j ≤ n.

Let us set

ψ(z) = −1 + 1

2i
(z pn

n − z pn
n )+

n−1∑
α=1

|zα|2pα ,

so that Sp = {ψ(z) < 0}. Then

∂ψ

∂zα
= pα|zα|2(pα−1)zα,

∂ψ

∂zn
= pn

2i
z pn−1

n ,

∂∂ψ = p2
α|zα|2(pα−1)dzα ∧ dzα
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where z j = z j . The CR structure T1,0(∂Sp) is locally spanned by the complex vector
fields Z = z j∂/∂z j satisfying Z(ψ) = 0, i.e., T1,0(∂Sp) admits the local frame

Tα = ∂

∂zα
− 2i

pα|zα|2(pα−1)zα

pnz pn−1
n

∂

∂zn
, 1 ≤ α ≤ n − 1,

defined on the open set U = ∂Sp \ {zn = 0}. Therefore, the Levi form of ∂Sp is

hαβ = 1

2
p2
α|zα|2(pα−1)δαβ;

hence

det(hαβ) = 1

2n−1

n−1∏
α=1

p2
α|zα|2(pα−1).

Let us consider the set A = {α ∈ {1, . . . , n − 1} : pα ≥ 2}. Then det(hαβ) = 0
precisely on

w(∂Sp) =
⋃
α∈A

(∂Sp) ∩ {zα = 0}

(the weak pseudoconvexity locus of ∂Sp), while det(hαβ) > 0 on

Mp = (∂Sp) \ w(∂Sp)

(an open subset of ∂Sp), i.e., Mp is a strictly pseudoconvex CR manifold. Note also
that

w(∂Sp) =
⋃
α∈A

∂S(p1,..., p̂α,...,pn).

Let us set

fα(z) = pα|zα|2(pα−1)zα

pnz pn−1
n

, z ∈ U,

for simplicity, so that

Tα = ∂

∂zα
− 2i fα(z)

∂

∂zn
.

The real 1-form

θ = pnz pn−1
n dzn + pnz pn−1

n dzn + 2i pα|zα|2(pα−1)zαdzα − 2i pα|zα|2(pα−1)zαdzα

is a contact form on Mp and

dθ = −4i p2
α|zα|2(pα−1)dzα ∧ dzα.
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Then

T = 1

2pn|zn|2(pn−1)

{
z pn−1

n
∂

∂zn
+ z pn−1

n
∂

∂zn

}
is the characteristic direction of dθ . We have the following commutation relations:

[Tα, T ] = 0, [Tα, Tβ ] = 0,

[Tα, Tβ ] = 2iδαβ
p2
α|zα|2(pα−1)

pn|zn|2(pn−1)

{
z pn−1

n
∂

∂zn + z pn−1
n

∂

∂zn

}
,

which may be also written

[Tα, Tβ ] = 4iδαβ p2
α|zα|2(pα−1)T .

The commutation formulas and the identity

2gθ (∇X Y, Z) = X (gθ (Y, Z))+ Y (gθ (X, Z))− Z(gθ (X, Y ))

+ gθ ([X, Y ], Z)+ gθ ([Z , X ], Y )− gθ ([Y, Z ], X)

+ gθ (T∇(X, Y ), Z)+ gθ (T∇(Z , X), Y )− gθ (T∇(Y, Z), X)

give the expressions of the Christoffel symbols (of the Tanaka–Webster connection)
of (Mp, θ):

�
γ
αβ = pα − 1

zα
δαβδ

γ
α , �

γ

αβ
= 0, �γ0β = 0.

Hence the connection 1-forms

ωαβ = �αμβθ
μ + �αμβθμ + �α0βθ

are given by

ωαβ = pα − 1

zα
δαβθ

α,

where θα = dzα . Then

R(X, Y )Tγ = 2{dωαγ + ωαβ ∧ ωβγ }(X, Y )Tα
shows that R = 0, i.e., the Tanaka–Webster connection of (Mp, θ) is flat. Finally, we
wish to compute the 1-form

σ = 1

n + 1

{
dγ + π∗(iωαα − i

2
hαβdhαβ − ρ

4n
θ
)}

on C(Mp). To this end, note that

dhαβ = 1

2
p2
α(pα − 1)|zα|2(pα−2)δαβ{zαdzα + zαdzα}.
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Then

ωαα = pα − 1

zα
θα , hαβdhαβ = pα − 1

|zα|2 {zαθα + zαθ
α},

lead to the following corollary:

Corollary 2.1. The Fefferman metric Fθ of (Mp, θ), the strictly pseudoconvex part of
∂Sp, is given by (2.30), where the 1-form σ is given by

σ = 1

n + 1

{
dγ + i

2
(pα − 1)π∗

(
1

zα
θα − 1

zα
θα
)}
.

As previously mentioned, S.S. Chern and J.K. Moser have constructed (cf. [99]) a fam-
ily of CR-invariant curves on each nondegenerate CR manifold M embedded in Cn+1

as a real hypersurface, the chains of M . For any X ∈ Tx (M) transverse to H(M)x ,
there is a unique chain of initial data (x, X). S.S. Chern and J.K. Moser also showed
(cf. op. cit.) that along a chain, M may be represented in a normal form that osculates
M to maximal order by the holomorphic image of a quadric (an excellent exposition
of these ideas is given by H. Jacobowitz [221]). Chains, thought of by S.S. Chern
and J.K. Moser as several-complex-variables analogues of geodesics in Riemannian
geometry, carry a significant amount of information about the CR structure. For in-
stance, by a result of Jih-Hsin Cheng [94], a chain-preserving diffeomorphism of two
nondegenerate CR manifolds is either a CR or a conjugate CR isomorphism. While
the precise definition of chains is not needed through this text, let us mention that
by a result of D. Burns, K. Diederich, and S. Shnider [81], on a strictly pseudocon-
vex CR manifold — the case of our main concern in this book — a chain is precisely
the projection of a nonvertical2 null geodesic of the Fefferman metric Fθ . Therefore,
when the Levi form Lθ is positive definite, this may be taken as a definition for chains.
However, when M is only nondegenerate of signature (r, s), with r �= 0, s �= 0, and
r+s = n, the Fefferman metric makes sense (it is a semi-Riemannian metric on C(M),
of signature (2r + 1, 2s + 1); cf. C.R. Graham [182]) and there exist nonvertical null
geodesics whose projections on M are not chains (cf. L. Koch [242]). The character-
istic direction T of a nondegenerate CR manifold M , on which a contact form θ has
been fixed, and thus the flow obtained by locally integrating T , are transverse to the
Levi distribution of M , as well as the chains of M . An interesting question, raised by
M.B. Stenzel [386], is whether the two are related. M.B. Stenzel’s finding (cf. op. cit.)
is that given a compact connected real analytic Riemannian manifold (N , g) and the
tube T ∗εN := {α ∈ T ∗(N ) : g∗(α, α)1/2 < ε}, which for ε > 0 sufficiently small
carries a canonical complex structure (by a result of M.B. Stenzel and V. Guilemin
[387], or L. Lempert and R. Szöke [280]), if the integral curves of T on the boundary
Mε := ∂T ∗εN of the tube are chains of Mε then (N , g) is an Einstein manifold. A
partial converse, due to the same author, is that the integral curves of T are indeed
chains when (N , g) is harmonic (in the sense of A. Besse [60]). The fact that Mε is
indeed nondegenerate (actually strictly pseudoconvex) was proved in [387] (and inde-
pendently in [280]). When � = {z ∈ Cn+1 : ϕ(z) < 0} is a strictly pseudoconvex

2 That is, not tangent to Ker(dπ) at any of its points.
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domain, C.R. Graham and J.M. Lee considered (cf. [185]) the foliation F by level sets
of ϕ. The foliation F is defined on a one-sided neighborhood U of M := ∂�. Then
they built a connection ∇ on U such that the induced connection on each leaf of F
is precisely the Tanaka–Webster connection of the leaf. Here the notion of an induced
connection is similar to that appearing in the Gauss formula within the theory of sub-
manifolds in Riemannian manifolds. ∇ is the Graham–Lee connection; cf. [129] for a
new axiomatic description. It is interesting to note that the C.R. Graham and J.M. Lee
construction carries over to the case of the boundaries Mε = ∂T ∗εN (ε > 0 small)
and that an important technical ingredient in M.B. Stenzel’s proof of his result is the
possibility of expressing the Fefferman metrics of the leaves Mε in terms of ∇.

In view of the H. Jacobowitz theorem (cf. [220]) and, in general, in view of the
philosophy, mentioned above, that chains should play in several complex variables the
role of geodesics in Riemannian geometry, it is a natural question whether a variational
theory of chains may be developed. Yet chains are projections of light rays of the
Fefferman metric, hence one may ask for a variational theory of null geodesics. This
indeed exists for certain classes of Lorentzian manifolds, as developed by F. Giannoni
and A. Masiello [170, 172]. For instance, F. Giannoni and A. Masiello have studied
(cf. op. cit.) the relation between the set of light-like geodesics joining a point p to
a smooth time-like curve γ on a Lorentzian manifold and the topology of the space
of light-like curves joining p and γ . The result by F. Giannoni and A. Masiello states
the existence of a formal series Q(r) = ∑∞

n=0 anrn with positive cardinal integer
coefficients such that∑

z∈Z+
rμ(z) = P(L+

p,γ , K )(r)+ (1 + r)Q(r) (2.35)

holds. Here L+
p,γ is the set of smooth light-like future pointing curves joining p and

γ , while Z+ is the set of light-like geodesics joining p and γ in the future of p. Also,
given z ∈ Z+, one denotes by μ(z) the index of z, i.e., the number of points z(s)
conjugate to z(0), counted with their multiplicities. Finally,

P(X, K )(r) =
∑
q∈N

βq(X, K )rq , βq(X, K ) = dim Hq(X, K ),

is the Poincaré polynomial of X = L+
p,γ and K is an arbitrary field. The beautiful

finding (2.35) by F. Giannoni and A. Masiello (cf. op. cit.) cannot be applied directly
to the case of C(M) with the Fefferman metric. Indeed, in view of Theorem 1.6 of
[172], p. 858, one should investigate whether (C(M), Fθ ) admits some time function,
whether p and γ may be chosen such that L+

p,γ �= ∅ and such that L+
p,γ is c-compact,

for any c ∈ R, etc. We leave this as an open problem.

2.4 A CR invariant

We wish to prove Theorem 2.3, i.e., show that the restricted conformal class [Fθ ] =
{e2u◦π Fθ : u ∈ �0(M)} of the Fefferman metric Fθ is invariant under a transformation
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θ̂ = e2uθ

with u ∈ C∞(M). If F
θ̂

is the Fefferman metric of (M, θ̂ ) then we are going to show
that

F
θ̂

= e2u◦π Fθ (2.36)

(hence [Fθ ] = [F
θ̂
], i.e., [Fθ ] is a CR invariant). At first, we need to derive the trans-

formation law of the connection 1-forms ωβα under a transformation θ̂ = e2uθ . We
establish the following lemma:

Lemma 2.6. Let ω̂ α
β be the connection 1-forms of the Tanaka–Webster connection of

(M, θ̂ ). Then

ω̂β
α = ωβ

α + δαβdu + 2(uβθ
α − uαθβ)+ (uμθμ − uμθμ)δ

α
β

+ i

2
(∇αuβ + ∇βuα + 4uβuα + 4uμuμδαβ )θ. (2.37)

Proof. Define the tangent vector field T̂ by setting

T̂ = e−2u(T + i uγ Tγ − i uγ Tγ ).

A calculation then shows that

θ̂ (T̂ ) = 1, T̂ � d θ̂ = 0;
hence T̂ is the characteristic direction of (M, θ̂ ). Let πH : T (M) → H(M) (respec-
tively π̂H : T (M) → H(M)) be the natural projection associated with the direct sum
decomposition T (M) = H(M)⊕RT (respectively with T (M) = H(M)⊕RT̂ ). Then

π̂H = πH + i θ ⊗ (uαTα − uαTα). (2.38)

Let ∇u be the gradient of u with respect to gθ , i.e., gθ (∇u, X) = X (u) for any X ∈
T (M). Then (2.38) may be written also in the (index-free) form

π̂H = πH + θ ⊗ JπH∇u,

where J is the complex structure in H(M). Let us recall that (by (1.51))

�αγβ = hσα
{
Tγ (hβσ )gθ (Tβ, [Tγ , Tσ ])

}
.

On the other hand,

g
θ̂
(Tβ,W ) = e2u {gθ (Tβ,W )− i uβθ(W )

}
, (2.39)

for any W ∈ T (M)⊗ C. Using (2.39) and
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θ([Tγ , Tσ ]) = −2i hγ σ

one easily shows that

�̂αγβ = �αγβ + 2(uγ δ
α
β + uβδ

α
γ ). (2.40)

Next, let us recall that (by (1.52))

�αγβ = hμαgθ ([Tγ , Tβ ], Tμ).

Again by (2.39), a calculation leads to

�̂αγ β = �αγβ − 2uαhβγ . (2.41)

Moreover, we have

�
γ

0α = hγ β
{

T (hαβ)+ gθ (Tα, [Tβ, T ])
}
. (2.42)

This may be obtained from the identities

[T (hαβ) = hαγ �
γ

0β
+ hγ β�

γ

0α , [T, Tβ ] = �
γ

0β
Tγ − Aμ

β
Tμ

(and the reader may check that the expressions (2.42) and (1.53) are equivalent). Using
(2.39) and

[Tμ, Tβ ] = �
ρ

μβ
Tρ − �ρ

βμ
Tρ − 2i hμβT,

[Tβ, T̂ ] = e−2u{−2uβ(T + i uμTμ − i uμTμ)

+ [Tβ, T ] + i uμ[Tβ, Tμ] + i Tβ(u
μ)Tμ

− i uμ[Tβ, Tμ] − i Tβ(u
μ)Tμ} ,

a calculation yields

e2u�̂
γ

0̂α
= �

γ

0α + 2u0δ
γ
α + i{∇γ uα − 2uαuγ + uρ�γρα − uρ�γρα}. (2.43)

Here we adopt the following notation for the second-order covariant derivatives

∇γ uα = hγ β∇βuα , ∇βuα = Tβ(uα)− �μβαuμ .

Consider the 1-forms θ̂ α on M given by

θ̂ α = θα + i uαθ.

Then θ̂ α(Tβ) = δαβ , θ̂ α(Tβ) = 0 and θ̂ α(T̂ ) = 0, that is, {θ̂ α} is an admissible coframe.
At this point we may use the transformation laws (2.40)–(2.41) and (2.43) of the con-
nection coefficients to prove Lemma 2.6. Indeed
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ω̂ α
β = �̂αμβ θ̂

μ + �̂αμβ θ̂μ + �̂α
0̂β
θ̂

may be written as

ω̂ α
β = ωβ

α + 2(uβθ
α − uαθβ)

+ 2uμθ
μδαβ + 2u0δ

α
βθ + i(∇αuβ + 2uβuα + 2uμuμδαβ )θ.

Finally, to see that this is equivalent to (2.37) one may use

∇μuλ = ∇λuμ + 2i hλμu0 .

Lemma 2.7. If Âαβ is the pseudo-Hermitian torsion of the Tanaka–Webster connec-
tion of (M, θ̂ ) then

Âαβ = Aαβ + i∇αuβ − 2i uαuβ . (2.44)

Proof. We recall (cf. (1.58)) that

Aλα = −hμλgθ (Tμ, [T, Tα]),

and use once again (2.39). �

Let us contract the indices α and β in (2.37) and use the expression of the sub-
Laplacian in Proposition 2.2. We obtain

ω̂ α
α = ωα

α + (n + 2)(uαθ
α − uαθα)+ i

2
{4(n + 1)uαuα +�bu}θ + n du. (2.45)

Differentiation of (2.45) gives

dω̂ α
α ≡ dωα

α + (n + 2)d(uαθ
α − uαθα)+ i

2
{4(n + 1)uαuα +�bu} dθ mod θ.

Here we use the standard relation of congruence of differential forms:

Definition 2.16. Two q-forms ϕ, ψ on M are congruent modulo θ (and we write ϕ ≡
ψ mod θ ) if ϕ = ψ + θ ∧ η for some (q − 1)-form η on M . �

On the other hand, a calculation shows that

d(uαθ
α − uαθα) ≡ −(∇αuβ + ∇βuα)θ

α ∧ θβ mod θα ∧ θβ , θα ∧ θβ , θ;
hence

dω̂ α
α ≡ dωα

α − (n + 2)(∇αuβ + ∇βuα)θ
α ∧ θβ

+ {2(n + 1)uαuα +�bu}dθ mod θα ∧ θβ , θα ∧ θβ , θ. (2.46)
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The trace function of a differential 2-form obviously depends on the choice of the
pseudo-Hermitian structure θ on M . Since we deal with the effect of θ̂ = e2uθ on
various tensor fields (depending on θ ) we refine our notation trace(ω) to traceθ (ω)
(for the remainder of this section only). Let us recall that

traceθ (i dωα
α) = 1

2
ρ.

Hence

traceθ (i dω̂ α
α ) = 1

2
hλμ(i dω̂ α

α )λμ = e2u trace
θ̂
(i dω̂ α

α ) = 1

2
e2u ρ̂.

Let us apply the operator traceθ to both sides of (2.46) to get

e2u ρ̂ = ρ − 4(n + 1)�bu − 4n(n + 1)uαuα (2.47)

(since traceθ (dθ) = n). At this point we may derive the transformation law for σ .
Recall (cf. (2.31)) that

σ = 1

n + 2

{
dγ + π∗(i ωαα − i

2
hαβdhαβ − 1

4(n + 1)
ρθ)

}
.

Using (2.37) one first obtains

i ω̂ α
α − i

2
ĥαβdĥαβ − ρ̂

4(n + 1)
θ̂

= i ωα
α − i

2
hαβdhαβ − ρ

4(n + 1)
θ + (n + 2){i (uαθα − uαθα)− uαuαθ}.

Let us see how the fiber coordinate γ : π−1(U ) → R depends on the choice of θ . If
c ∈ [ω] ∈ C(M) then ω = f (θ01···n)x and ω = f̂ (θ̂01···n)x lead to f̂ = e−2u(x) f
hence f/| f | = f̂ /| f̂ | and γ = γ̂ . We may then conclude that

σ̂ = σ + π∗{i (uαθα − uαθα)− uαuαθ}. (2.48)

At this point we are able to prove (2.36). To this end, let us note that

L̃θ = 2θα $ θα
on T (M) ⊗ C. Here L̃θ is the degenerate extension to the whole of T (M) ⊗ C of
Lθ , obtained by setting L̃θ = Lθ on T1,0(M) ⊗ T0,1(M) and Lθ (T,W ) = 0 for any
W ∈ T (M)⊗ C. Clearly, the extension of G̃θ (by C-linearity) and Lθ coincide. Then

L̃
θ̂

= e2u L̃θ + 2e2u{i (uαθα − uαθ
α)$ θ + uαuαθ2}

and

(π∗θ̂ )$ σ̂ = e2u(π∗θ)$ σ + e2u◦ππ∗{i(uαθα − uαθα)$ θ − uαuαθ2}
lead to ĥ = e2u◦πh and Theorem 2.3 is completely proved. �
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2.5 The wave operator

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold of CR dimension n and θ a
pseudo-Hermitian structure on M such that Lθ is positive definite. Let Fθ be the Fef-
ferman metric of (M, θ) and � the Laplace–Beltrami operator, or the wave operator,
of (C(M), Fθ ). Then � is invariant under any isometry of (C(M), Fθ ):

Proposition 2.6. Let φ ∈ Isom(C(M), Fθ ). Let us set vφ = v ◦ φ−1 and �φv =(
�vφ−1

)φ
, for any v ∈ �0(C(M)). Then �φ = �.

Cf., e.g., S. Helgason [196]. On the other hand,

S1 ⊂ Isom(C(M), Fθ ).

Indeed, if z ∈ S1 then

eiγ ◦Rz = zeiγ ,

where Rz : C(M)→ C(M) is the right translation by z. Hence d(γ ◦ Rz) = dγ . Then
(by (2.30)) R∗

z g = g.

Proposition 2.7. � is S1-invariant.

Given u ∈ �0(M), by π ◦ Rz = π and by the S1-invariance of � we obtain

(�(u ◦ π)) ◦ Rz = �(u ◦ π);
hence �(u ◦ π) descends to a function on M , denoted by the same symbol �(u ◦ π).
That is to say, � pushes forward to a differential operator

π∗� : �0(M)→ �0(M)

given by

(π∗�)u = �(u ◦ π),
for any u ∈ �0(M). We shall need the following result:

Proposition 2.8. (J.M. Lee [271])
The wave operator � (i.e., the Laplacian of (C(M), Fθ )) and the sub-Laplacian �b

of (M, θ) are related by

π∗� = �b .

Proof. The wave operator � (on functions) of (C(M), Fθ ) is given by

� = −d∗ d,
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where d∗ is the formal adjoint of d with respect to the L2 inner product

(v,w)g =
∫

C(M)
vw ∗ 1

for any C∞ functions v,w : C(M) → C (at least one of compact support). Here ∗
is the Hodge operator (with respect to the Fefferman metric Fθ ). To prove Proposition
2.8 we observe first that given a C∞ function f on M with supp( f ) ⊂ U , where U is
the domain of a chart � : π−1(U )→ U × S1 of C(M), we have∫

C(M)
( f ◦ π) ∗ 1 = 2π

∫
M

f . (2.49)

Indeed, let {Tα} be a local frame of T1,0(M) on U , so that hαβ = δαβ . Then (by (1.66))

 = 2nin2
n! θ ∧ θ1···n ∧ θ 1̄···n̄ .

Let xi : U → R be local coordinates on U . Then

 = 2nin2
n! det(θ A

B )dx1 ∧ · · · , dx2n+1

where

θ j = θ
j
Adx A , 0 ≤ j ≤ n, θα+n

A = θαA.

Moreover,

∗1 = cndγ ∧ π∗ 

(for some constant cn > 0 depending only on n and on the orientation of M , cf.,
e.g., E. Barletta et al. [44]) and (xi ◦ π, γ ) are local coordinates on C(M); hence∫

C(M)( f ◦ π) ∗ 1 may be calculated by the theorem of Fubini. Finally (using (2.49)
twice), ∫

M
((π∗�)u) v = − 1

2π

∫
C(M)

(�(u ◦ π)) (v ◦ π) ∗ 1

= − 1

2π

∫
C(M)

F∗
θ (d(u ◦ π), d(v ◦ π)) ∗ 1

= − 1

2π

∫
C(M)

L∗
θ (dbu, dbv) ◦ π ∗ 1

= −
∫

M
L∗
θ (dbu, dbv) =

∫
M
(�bu)v . �

2.6 Curvature of Fefferman’s metric

Let K be the scalar curvature of the Fefferman metric Fθ on C(M). By the S1 invari-
ance of Fθ it follows that K is constant on the fibers of π and thus it descends to a
function on M , which will be denoted by π∗K . Define Dθ ∈ C∞(M) by setting
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Dθ = π∗K − 2n + 1

n + 1
ρ.

Let F
θ̂

be the Fefferman metric of θ̂ = e2uθ . Then F
θ̂

= e2u◦π Fθ ; hence a standard

calculation (cf., e.g., T. Aubin [23]) shows that the scalar curvature K̂ of F
θ̂

is related
to K by

K̂ = e−2u◦π {K + 2(2n + 1)�(u ◦ π)− 2n(2n + 1)F∗
θ (π

∗du, π∗du)}. (2.50)

Let us observe that

F∗
θ (π

∗du, π∗du) = L∗
θ (dbu, dbu) = 2uαuα.

At this point, using (2.50) and (2.47) we get

D
θ̂

= e−2u Dθ .

This may be shown (cf. J.M. Lee [271], p. 426) to yield Dθ = 0:

Proposition 2.9. (J.M. Lee [271])

π∗K = 2n + 1

n + 1
ρ.

The proof of Proposition 2.9 relies on the Chern–Moser normal form (cf. [99]) and
falls beyond the purposes of this book. The reader may find an excellent account of
the Chern–Moser normal form in the monograph by H. Jacobowitz [221].

This relationship between the pseudo-Hermitian scalar curvature ρ of (M, θ) and
the scalar curvature K of the Fefferman metric Fθ suggests several geometric prob-
lems on the given CR manifold M . An important example, to be discussed in detail in
Chapter 3 of this book, is the Yamabe problem for the Fefferman metric Fθ on C(M),
i.e., find a representative F̂θ in the restricted conformal class of Fθ such that its scalar
curvature K̂ is a constant λ. This may be reformulated as a nonelliptic problem, be-
cause the principal part of the relevant (nonlinear) equation is the wave operator, yet it
may be reduced to a subelliptic problem on M , known as the CR Yamabe problem; cf.
D. Jerison and J.M. Lee [226] [227]. Precisely, the Yamabe equation on C(M) projects
on M to an equation of the form

cn�bu + ρu = λu p−1. (2.51)

As previously mentioned, the analysis of the solutions to (2.51) lies within the scope
of Chapter 3 of this book.

2.7 Pontryagin forms

By classical work of S.S. Chern and J. Simons [100], the Pontryagin forms of a Rie-
mannian manifold are conformal invariants. On the other hand, the restricted confor-
mal class of the Fefferman metric was shown (cf. Theorem 2.3) to be a CR invariant.
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This is evidence enough to ask whether the result by S.S. Chern and J. Simons (cf.
op. cit.) may carry over to Lorentz geometry. One finds (cf. Theorem 2.6 below) that
the Pontryagin forms P(��) of the Fefferman metric are CR invariants of M . Also,
whenever P(��) = 0, the de Rham cohomology class of the corresponding transgres-
sion form is a CR invariant as well. As an application, we shall show that a necessary
condition for M to be globally CR equivalent to the sphere S2n+1 is that P1(�

2) = 0
(i.e., the first Pontryagin form of (C(M), Fθ ) must vanish) and the corresponding
transgression form gives an integral cohomology class.

We start with a brief review of Chern–Weil theory (cf. also S. Kobayashi and
K. Nomizu [241], vol. II, pp. 293–320). Let G be a Lie group with finitely many com-
ponents and let G = L(G) be its Lie algebra. Let {EG , BG} be a universal bundle and
classifying space for G. Its key property is that each principal G-bundle E over M
admits a bundle map into {EG , BG}, and any two such maps of the same G-bundle
{E,M} are homotopic. Since G has finitely many components,

H2�−1(BG ,R) = 0,

for all �. Also, EG is contractible. Next, if� is any coefficient ring and u ∈ Hk(BG,�),
then with any principal G-bundle α = {E,M} one may associate the characteristic
class u(α) ∈ Hk(M,�), built by pulling back u under any bundle map.

Let us set G� = G ⊗ · · · ⊗ G (� terms). A symmetric multilinear map P : G� → R
is a polynomial of degree �. Let I �(G) be the space of invariant polynomials of degree
�, i.e., if P ∈ I �(G) then

P((ad(g)A1)⊗ · · · ⊗ (ad(g)A�)) = P(A1 ⊗ · · · ⊗ A�),

for any g ∈ G and any A j ∈ G , 1 ≤ j ≤ �. Invariant polynomials multiply in a natu-
ral way; hence I (G) = ∑

�≥0 I �(G) turns out to be a graded ring. These polynomials
give information about the real cohomology of the classifying space BG . We recall the
universal Weil homomorphism

W : I �(G)→ H2�(BG ,R).

The Chern–Weil theorem is that P(��)M ∈ W (P)(α) for any P ∈ I �(G) and any
principal G-bundle α = {E,M} with a connection 1-form ω ∈ �∞(T ∗(E) ⊗ G).
Here � = Dω is the curvature 2-form of ω and �� = � ∧ · · · ∧ � (� terms). Also
P(��) ∈ �∞(�2�T ∗E) is given by P(��) = P ◦��. The 2�-form P(��) is closed,
invariant, and horizontal; hence it projects to a (closed) 2�-form on M denoted by
P(��)M .

Let ε(G) be the category whose objects are triples {E,M, ω}, where {E,M} is
a principal G-bundle and ω a connection 1-form on E , and whose morphisms are
connection-preserving bundle maps. An object A ∈ ε(G) is n-classifying if (i) for any
α = {E,M, ω} ∈ ε(G) with dim(M) ≤ n there is a morphism α → A, and (ii) any
two such morphisms are homotopic through bundle maps (not necessarily through
ε(G)-morphisms). Then the M.S. Narasimhan and S. Ramanan theorem is that for
each n there is an n-classifying object A ∈ ε(G); cf. [325].



144 2 The Fefferman Metric

Let α = {E,M, ω} ∈ ε(G) and set

T P(ω) = �

∫ 1

0
P(ω ∧��−1

t )dt,

where

�t = t�+ t (t − 1)

2
[ω,ω]

for any P ∈ I �(G). Then T P(ω) is an invariant (2�−1)-form on E (the transgression
form) and d T P(ω) = P(��). Let us set

I �0 (G) = {P ∈ I �(G) : W (P) ∈ H2�(BG ,Z)}.
Building on the M.S. Narasimhan and S. Ramanan theorem, S.S. Chern and J. Simons
have shown (cf. Theorem 3.16 in [100], p. 56) that given α = {E,M, ω} ∈ ε(G) and
P ∈ I �0 (G) with P(��) = 0 there is U ∈ H2�−1(M,R/Z) such that q[T P(ω)] =
π∗U . Here q is the natural homomorphism H2�−1(E,R) → H2�−1(E,R/Z) and
π : E → M the projection.

Let Q� ∈ I �(GL(2n)) , 1 ≤ � ≤ 2n, be the natural generators of the ring of
invariant polynomials on gl(2n) = L(GL(2n)), where GL(2n) is short for GL(2n,R)
(cf. [100], p. 57, for the explicit expression of the Q�). Let (M, T1,0(M)) be a strictly
pseudoconvex CR manifold of CR dimension n−1 and θ a pseudo-Hermitian structure
on M such that Lθ is positive definite. Let Fθ be the Fefferman metric of (M, θ). Let
F(C(M)) → C(M) be the principal GL(2n)-bundle of all linear frames tangent to
C(M) and ω ∈ �∞(T ∗(F(C(M))) ⊗ gl(2n)) the connection 1-form (of the Levi-
Civita connection) of the Lorentz manifold (C(M), Fθ ).

Theorem 2.5. The characteristic forms Q2�+1(�
2�+1) vanish for 0 ≤ � ≤ n − 1.

Proof. Let L(C(M)) → C(M) be the principal O(2n − 1, 1)-bundle of all Lorentz
frames, i.e., u = (c, {Xi }) ∈ L(C(M)) if Fθ,c(Xi , X j ) = εiδi j , where εα = 1 , 1 ≤
α ≤ 2n − 1; and ε2n = −1 and c ∈ C(M). Here O(2n − 1, 1) is the Lorentz group.
Let o(2n − 1, 1) be its Lie algebra. By hypothesis

ωu(Tu(L(C(M)))) ⊆ o(2n − 1, 1),

i.e., ε ωu(X) + ωu(X)t ε = 0 for any X ∈ Tu(L(C(M))), u ∈ L(C(M)). Here ε =
diag(ε1, . . . , ε2n). Let {Ei

j } be the canonical basis of gl(2n) and set ω = ωi
j ⊗ E j

i . We
claim that

εi�i
j + ε j�

j
i = 0, (2.52)

at all points of L(C(M)), as a form on F(C(M)). Here εi = εi . Since� is horizontal,
it suffices to check (2.52) on horizontal vectors (hence tangent to L(C(M))). We have

εi�i
j = εi

(
dωi

j + ωi
k ∧ ωk

j

)
= d(−ε jω

j
i )+

∑
k

(−εkωk
i ) ∧ ωk

j = −ε j�
j
i
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on Tu(L(C(M))) for any u ∈ L(C(M)), etc. Next, note that for any A ∈ o(2n − 1, 1)
one has (i) trace(A) = 0, (ii) trace(AB) = 0 for any B ∈ M2n(R) satisfying B =
εBtε, and (iii) trace(A2�+1) = 0. Then

trace(A1 · · · A2�+1) = 0, (2.53)

for any A1, . . . , A2�+1 ∈ o(2n − 1, 1) (the proof is by induction over �). Since
Q2�+1(�

2�+1) is invariant, we need only show that it vanishes at the points of
L(C(M)). But at those points the range of �2�+1 lies (by (2.52)–(2.53)) in the kernel
of Q2�+1. Our Theorem 2.5 is proved. �

By Theorem 2.5, the transgression forms T Q2�+1(ω) are closed; hence we get the
cohomology classes

[T Q2�+1(ω)] ∈ H4�+1(F(C(M)),R).

Let us observe that

[T Q2�+1(ω)] ∈ Ker( j∗), (2.54)

where the homomorphism

j∗ : H4�+1(F(C(M)),R)→ H4�+1(L(C(M)),R)
is induced by j : L(C(M)) ⊂ F(C(M)). Indeed T Q2�+1(ω) may be written as

T Q2�+1(ω) =
2�∑

i=0

Bi Q2�+1(ω ∧ [ω,ω]i ∧�2�−i ),

for some constants Bi > 0. Since j∗ω is o(2n − 1, 1)-valued, the same argument as in
the proof of Theorem 2.5 shows that j∗T Q2�+1(ω) = 0.

A remark is in order. One has to work with j∗ω (rather than ω at points of
L(C(M))) because ω (unlike its curvature form) is not horizontal.

If g0 is a Riemannian metric on C(M)with connection 1-formω0 and O(C(M))→
C(M) is the principal O(2n)-bundle of orthonormal (with respect to g0) frames tangent
to C(M), then orthonormalization of frames gives a deformation retract F(C(M))→
O(C(M)) and hence (cf. Proposition 4.3 in [100], p. 58) the transgression forms
T Q2�+1(ω0) are exact. As to the Lorentz case, in general (2.54) need not imply exact-
ness of T Q2�+1(ω). For instance R2

1 is a Lorentz manifold for which the homomor-
phism

j∗ : H1(F(R2
1),R)→ H1(L(R2

1),R)

(induced by j : L(R2
1) ⊂ F(R2

1)) has a nontrivial kernel. Here we have set

RN
ν =

(
RN , 〈 , 〉N−ν,ν

)
, 〈x, y〉N−ν,ν =

N−ν∑
i=1

xi yi −
N∑

i=N−ν+1

xi yi .
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Indeed, since both F(R2
1) and L(R2

1) are trivial bundles, j∗ may be identified with the
homomorphism

j∗ : H1(GL(2),R)→ H1(O(1, 1),R)

induced by j : O(1, 1) ⊂ GL(2). Now, the Lorentz group O(1, 1) has four compo-
nents, each diffeomorphic to R. Hence H1(O(1, 1),R) = 0. Moreover O(2) ⊂ GL(2)
is a homotopy equivalence; hence Ker( j∗) = H1(GL(2),R) = H1(O(2),R) = R⊕R
(since O(2) has two components, each diffeomorphic to S1).

Theorem 2.6. Let M be a strictly pseudoconvex CR manifold of CR dimension n − 1
and P ∈ I �(GL(2n)). Then P(��) is a CR invariant of M. Moreover, if P(��) = 0
then the cohomology class [T P(ω)] ∈ H2�−1(F(C(M)),R) is a CR invariant of M.
In particular [T Q2�+1(ω)] ∈ H4�+1(F(C(M)),R) is a CR invariant.

Proof. Let ϕ ∈ �∞(T ∗(F(C(M))) ⊗ R2n) be the canonical 1-form and set ϕ =
ϕi ⊗ ei , where {ei } is the canonical basis in R2n . Moreover, let Ei = B(ei ) be the
corresponding standard horizontal vector fields (cf., e.g. [241], vol. I, p. 119). Let u :
M → R be a C∞ function and let F̂θ be the Fefferman metric of (M, e2uθ). Let ω̂ be
the corresponding connection 1-form. Then

ω̂i
j = ωi

j + d(u ◦ ρ)δi
j + E j (u ◦ ρ)ϕi − εi Ei (u ◦ ρ)ε jϕ

i (2.55)

at all points of L(C(M)), as forms on F(C(M)). Here ρ = π ◦ pF and π : C(M)→
M respectively pF : F(C(M)) → C(M) are projections. The proof of (2.55) is to
relate the Levi-Civita connections of the conformally equivalent Fefferman metrics
Fθ and F̂θ , followed by a translation of the result in principal bundle terminology. The
reader may supply the details. Consider the 1-parameter family of Lorentz metrics
g(s) = e2s(u◦π)Fθ , 0 ≤ s ≤ 1, on C(M). Let ω(s) be the corresponding connection
1-form and let us set

ω′ = d

ds
{ω(s)}s=0 .

By (2.55) (applied to su instead of u) we obtain

ω′i
j = d(u ◦ ρ)δi

j + Ei (u ◦ ρ)ϕi − εi Ei (u ◦ ρ)ε jϕ
j (2.56)

at all points of L(C(M)), as forms on F(C(M)). Let P ∈ I �(GL(2n)). We wish to
show that P(��) is invariant under any transformation θ̂ = e2uθ . Note that a relation
of the form

T P(ω̂) = T P(ω)+ exact (2.57)

yields P(�̂�) = P(��); hence we need only prove (2.57). Since the Q� generate
I (GL(2n)) we may assume that P is a monomial in the Q�. Using Proposition 3.7
in [100], p. 53, an inductive argument shows that it is sufficient to prove (2.57) for
P = Q�. It is enough to prove that
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d

ds
{T Q�(ω(s))} = exact. (2.58)

Since each point on the curve s !→ g(s) is the initial point of another such curve, it
suffices to prove (2.58) at s = 0. By Proposition 3.8 in [100], p. 53, we know that

d

ds
{T Q�(ω(s))}s=0 = �Q�(ω

′ ∧��−1)+ exact;

hence it is enough to show that Q�(ω′ ∧��−1) = exact. Using (2.56) and the identity

Q�(ψ ∧��−1) =
∑

i1,...,i�

ψ
i1
i2

∧�i2
i3

∧ · · · ∧�i�
i1

(cf. (4.2) in [100], p. 57) for any gl(2n)-valued form ψ on F(C(M)), we may perform
the following calculation:

Q�(ω
′ ∧��−1) =

∑
ω′i1

i2
∧�i2

i3
∧ · · · ∧�i�

i1

=
∑

d(u ◦ ρ) ∧�i2
i3

∧ · · · ∧�i�
i2

+
∑(

Ei2(u ◦ ρ)ϕi1 − εi1 Ei1(u ◦ ρ)εi2ϕ
i2
)

∧�i2
i3

∧ · · · ∧�i�
i1
.

Let us recall the structure equations, cf., e.g. [241], vol. I, p. 121. Since Fθ is Lorentz,
ω is torsion-free. Hence ϕi1 ∧ �i�

i1
= 0. This and (2.52) also yield εi2ϕ

i2 ∧ �i2
i3

= 0.
Hence

Q�(ω
′ ∧��−1) = d(u ◦ ρ) ∧ Q�−1(�

�−1) = exact

(because d Q�−1(�
�−1) = 0) at each point of L(C(M)), as a form on F(C(M)). This

suffices because both

Q�(ω
′ ∧��−1) and (u ◦ ρ)Q�−1(�

�−1)

are invariant forms. �

2.8 The extrinsic approach

2.8.1 The Monge–Ampère equation

Let u be a function on a strictly pseudoconvex domain � ⊂ Cn . We set

J (u) = (−1)n det

(
u uk
u j u jk

)
,

where u j = ∂u/∂z j and uk = ∂u/∂zk , etc. Next, we consider the following Dirichlet
problem for the complex Monge–Ampère equation
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J (u) = 1 in �,

u = 0 on ∂�. (2.59)

The Bergman kernel of � is closely related to the solutions of (2.59). For instance, if
� is the unit ball in Cn then its Bergman kernel on the diagonal is given by

K (z, z) = Cn(
1 − |z|2)n+1

,

where Cn = n!/πn (cf., e.g., S.G. Krantz [261], p. 50) while u(z) = 1 − |z|2 satisfies
(2.59). Therefore, a natural question is, how closely is K (z, z) (the Bergman kernel
of an arbitrary pseudoconvex domain �) approximated by Cn/ (u(z))n+1, where u is
a solution of (2.59)? Equivalently, is J (C1/(n+1)

n K −1/(n+1)) nearly 1? By a result of
L. Hörmander [212], J (C1/(n+1)

n K −1/(n+1)) = 1 on ∂�. On the other hand, if for
instance � = {z ∈ Cn : φ(|z1|, . . . , |zn|) < 1} (where φRn → R is a smooth
function) then

J (C1/(n+1)
n K −1/(n+1))z=0 �= 1;

hence the relationship of (2.59) to the Bergman kernel is only asymptotic. To further
investigate this phenomenon, we first show that the solutions of (2.59) transform like
a negative power of the Bergman kernel (cf., e.g., S.G. Krantz [261], p. 44)

Proposition 2.10. (C. Fefferman [138])
Let F : � → �̃ be a biholomorphic map and ũ a real-valued function on �̃. Let us
set

u(z) = ∣∣det F ′(z)
∣∣−2/(n+1)

ũ(F(z)),

for any z ∈ �. Then

J (u) = J (ũ) ◦ F.

In particular, if J (ũ) = 1 then J (u) = 1.

Proof. Here F ′(z) = (
∂F j/∂zk

)
. To prove Proposition 2.10, let us lift F to the bi-

holomorphic map

F : C∗ ×�→ C∗ × �̃
given by

F(ζ, z) =
(

ζ

det F ′(z)
, F(z)

)
,

for any ζ ∈ C∗ and z ∈ �. Here C∗ = C \ {0}. On the other hand, let us define
U : C∗ ×�→ R (respectively Ũ : C∗ × �̃→ R) by setting
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U (ζ, z) = |ζ |2/(n+1)u(z)

for any ζ ∈ C∗, z ∈ � (respectively Ũ (ζ, z) = |ζ |2/(n+1)ũ(z) for any ζ ∈ C∗, z ∈ �̃).
One may check that

U = Ũ ◦ F, det
(F ′(ζ, z)

) = 1,

for any ζ ∈ C∗, z ∈ �. Consequently

det(UAB) = [det(ŨAB)] ◦ F, (2.60)

where (UAB) is the complex Hessian of U . Finally,

∂2U

∂ζ∂ζ
= 1

(n + 1)2
|ζ |2/(n+1)−2u(z),

∂2U

∂ζ∂zk
= 1

n + 1
ζ |ζ |2/(n+1)−2uk(z),

∂2U

∂z j∂zk
= |ζ |2/(n+1)u jk(z),

and hence

det(UAB) = 1

(n + 1)2
J (u),

and (2.60) yields the statement in Proposition 2.10. �

C. Fefferman has developed (cf. [138], pp. 399–400) a formal technique for finding
approximate solutions of (2.59). His goal was to produce smooth functions u on some
neighborhood of�, vanishing at ∂�, for which J (u)−1 vanishes to high order at ∂�.
Precisely, let � ⊂ Cn be a smoothly bounded domain, i.e., there is U open, � ⊂ U ,
and a smooth functionψ : U → R such that� = {z ∈ U : ψ(z) > 0} and Dψ(z) �= 0
for any z ∈ ∂�. Let f be a function on a neighborhood of �. We say that f = O(ψ s)

if | f | ≤ Cψ s on �, for some constant C > 0. Next, let us assume that � = {ψ > 0}
is strictly pseudoconvex and define recursively

u(1) = ψ

J (ψ)1/(n+1)
,

u(s) =
{

1 + 1 − J (u(s−1))

(n + 2 − s)s

}
u(s−1),

for 2 ≤ s ≤ n + 1. Then Fefferman’s result is that each u(s) satisfies

J (u(s)) = 1 + O(ψ s).

For instance, let us look at the first approximation u(1). Clearly
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J (u(1)) = 1

on ∂� because

J (ηψ) = ηn+1 J (ψ)

whenever ψ = 0, for any smooth function η. To see that

J (u(1)) = 1 + O(ψ)

it suffices to use

u(1)j = J (ψ)−1/(n+1)ψ j + O(ψ),

u(1)
j k̄

= J (ψ)−1/(n+1)ψ j k̄

− 1

n + 1
J (ψ)−1/(n+1)−1{ψk̄ J (ψ) j + ψ j J (ψ)k̄} + O(ψ),

as a determinant is a multilinear function of its rows (columns).
To end this section, let us mention that by a result of S.Y. Cheng and S.T. Yau [97],

the solution u of (2.59) exists and is unique. Moreover, u is C∞ in the interior of �
and belongs to Cn+(3/2)−ε(�).

2.8.2 The Fefferman metric

In this section we present Fefferman’s original approach (cf. [138]) to the metric g
on C(M), as an induced metric. Let � ⊂ Cn be a strictly pseudoconvex domain and
let u be the solution of (2.59). This exists and is unique by the S.Y. Cheng and S.T.
Yau theorem quoted above (cf. [97]). However, as we shall see shortly, the second
approximation u(2) to the solution u of (2.59) is actually sufficient for our purposes.
Define H : U × C∗ → R by setting

H(z, ζ ) = |ζ |2/(n+1)u(z),

and consider the (0, 2)-tensor field G on U × C∗ given by

G = ∂2 H

∂z A∂zB
dz A $ dzB .

Here 0 ≤ A, B, . . . ≤ n and z0 = ζ . The restriction of G to�×C∗ is a biholomorphic
invariant of�, in the following sense. Let F : �→ � be a biholomorphic map. Then,
by the proof of Proposition 2.10, F lifts to a biholomorphism F of � × C∗ in itself
and H ◦F = H ; hence F∗G = G. Since det(HAB) = J (u)/(n +1)2 and� is strictly
pseudoconvex, it follows that G is nondegenerate. Let j : ∂�× S1 → U × C∗ be the
inclusion. We wish to compute the pullback j∗G of G to ∂�× S1. The metric G may
be written explicitly as
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G = u(z)

(n + 1)2
|ζ |2/(n+1)−2dζ $ dζ

+ |ζ |2/(n+1)

n + 1
(∂u)$ (1

ζ̄
d ζ̄ )+ |ζ |2/(n+1)

n + 1
(

1

ζ
dζ )$ (∂u)

+ |ζ |2/(n+1)u jk̄dz j $ dz̄k . (2.61)

Let γ : S1 \ {(1, 0)} → (0, 2π), γ (w) = arg(w), be a local coordinate on S1. Then

j∗dζ = ieiγ dγ ;
hence

j∗G = − i

n + 1
j∗(∂u − ∂u)$ dγ + j∗(u jk̄dz j $ dz̄k). (2.62)

Let us set M = ∂� and let ι : M → Cn be the inclusion. Then ζ0 = ι∗dz1 ∧ · · · ∧ dzn

is a global C∞ section in K 0(M); hence C(M) is trivial. Then (2.30) and (2.62) agree
(via the isomorphism C(M) � M × S1). A calculation shows that ζ0 satisfies the
volume normalization

2nin2
n!θ ∧ (T � ζ0) ∧ (T � ζ̄0) = θ ∧ (dθ)n

if and only if u satisfies J (u) = 1 along M (cf. Proposition 5.2 in [137], p. 43). Let
αζ0 ∈ �0(M) be defined by

d(T � ζ0) ∧ (T � ζ̄0) = iαζ0θ ∧ (T � ζ0) ∧ (T � ζ̄0).

Again by a result of F. Farris (cf. [137], p. 45) the Lorentz metric

π∗Lθ + 2

n + 1
θ $ dγ + 1

n
αζ0θ $ θ,

where θ = (i/2)ι∗(∂ − ∂)u, agrees with (2.62). Hence, to prove that g = j∗G it
suffices to show that

σ = 1

n + 1
dγ + 1

2n
αζ0θ.

See J.M. Lee [271], p. 424, for further details.

2.8.3 Obstructions to global embeddability

Let M be a strictly pseudoconvex CR manifold. Assume that M is realizable as the
boundary of a smooth domain � in Cn . If ϕ : M → Cn is the given immersion then
η = ϕ∗dz1 ∧ · · · ∧ dzn is a nowhere-zero global (n, 0)-form on M ; hence C(M) is
a trivial bundle. There is a smooth defining function ψ of M satisfying the complex
Monge–Ampère equation J (ψ) = 1 to second order along M , so that F∗h is the
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Fefferman metric of (M, θ̂ ), θ̂ = (i/2)ϕ∗(∂ − ∂)ψ , where h is the Lorentz metric
given by

h = − i

n + 1
j∗{(∂ − ∂)ψ} $ dγ + j∗

{ ∂2ψ

∂z j∂ z̄k
dz j $ dz̄k

}
and F : C(M) � M × S1 is the diffeomorphism induced by η. Also γ is a local
coordinate on S1 and j : M × S1 ⊂ Cn+1. Let θ be any pseudo-Hermitian structure
on M (such that Lθ is positive definite). Then θ̂ = e2uθ for some smooth function u
on M and F∗h and g = Fθ (given by (2.30)) turn out to be conformally equivalent
Lorentz metrics. On the other hand, h = j∗G, where G is the semi-Riemannian metric
given by (2.61) with u = ψ . Summing up, we have the following result:

Proposition 2.11. If M is realizable as ∂� then (C(M), g) admits a global conformal
immersion in (U ×C∗,G), for some open neighborhood U of�, where C∗ = C \ {0}.
On the other hand, let us recall that given an n-dimensional Riemannian manifold
(N , g), a necessary condition for the existence of a global conformal immersion N →
Rn+k is that P⊥

i (�
2i ) = 0 and [ 1

2 T P⊥
i (ω)] ∈ H4i−1(F(N ),Z) for any i > [k/2],

where P⊥
i ∈ I 2i

0 (GL(n)) are the inverse Pontryagin polynomials; cf. Theorem 5.14
of S.S. Chern and J. Simons [100], p. 64. Here ω is the connection 1-form of (the
Levi-Civita connection of) (N , g) and � its curvature 2-form. In view of this result, it
is reasonable to expect that some of the CR invariants furnished by Theorem 2.5 are
obstructions to the global embeddability of a given abstract CR manifold M . While
we leave this as an open problem, we address the following simpler situation. Assume
M to be globally CR equivalent to S2n−1 (that is to say M globally embeds in Cn

as the boundary of the unit ball). Then C(M) is diffeomorphic to the Hopf manifold
Hn = S2n−1 × S1.

Lemma 2.8. In+1 = {ζ ∈ C : ζ n+1 = 1} acts freely on Cn × C∗ as a properly
discontinuous group of complex analytic transformations.

Proof. We organize the proof in two steps, as follows.

Step 1. Let z, z′ ∈ Cn × C∗ such that Ra(z) �= z′ for any a ∈ In+1. Then there exist
neighborhoods U and U ′, of z respectively z′, such that Ra(U ) ∩ U ′ = ∅ for any
a ∈ In+1.

Let ak = e2π ik/(n+1) with k ∈ {0, 1, . . . , n}. Set zk = ak z and s = min{|z′ − zk | : 0 ≤
k ≤ n}. Then z′ �= zk yields s > 0. Next, set r = min{s/2, sin π

n+1 } and U = B(z, r).
Then for any a ∈ In+1 one has Ra(U ) ⊆ B(az, r).

Step 2. For any z ∈ Cn ×C∗ there is a neighborhood U of z such that Ra(U )∩U = ∅
for any a ∈ In+1.

To prove Step 2 let zk = ak z and set r = min{|z−zk | : 1 ≤ k ≤ n} = 2|z| sin π
n+1 > 0.

Finally, set U = B(z, r/2). Then Ra(U ) ⊆ B(az, r/2); hence Ra(U ) ∩ U = ∅. �

By Lemma 2.8 the quotient space Vn+1 = (Cn × C∗)/In+1 is a complex (n + 1)-
dimensional manifold. Consider the biholomorphism p : Vn+1 → Cn × C∗ given by



2.8 The extrinsic approach 153

p([z, ζ ]) =
( z

ζ
, ζ n+1

)
,

for any [z, ζ ] ∈ Vn+1, and let us set

φ0 = p−1 ◦ j ◦ F.

Next

G0 =
n∑

j=1

dz j $ dz̄ j − dζ $ d ζ̄ (2.63)

is In+1-invariant, hence gives rise to a globally defined semi-Riemannian metric of
index 2 on Vn+1. Note that (Vn+1,G0) is locally isometric to R2n+2

2 .

Lemma 2.9. φ0 : (C(M), g)→ (Vn+1,G0) is a conformal immersion.

Proof. A calculation shows that G0 = p∗G. Indeed,

p∗dz j = 1

ζ
dz j − z j

ζ 2
dζ, p∗dζ = (n + 1)ζ ndζ ;

hence

p∗G =
∑

j

(
dz j − z j

ζ
dζ

)
$
(

dz̄ j − z̄ j

ζ̄
d ζ̄

)
+
∑

j

z̄ j
(

dz j − z j

ζ
dζ

)
$
(1

ζ̄
d ζ̄

)
+
(1

ζ
dζ

)
$
∑

k

zk
(

dz̄k − z̄k

ζ̄
d ζ̄

)
+ (|z|2 − |ζ |2)

(1

ζ
dζ

)
$
(1

ζ̄
d ζ̄

)
=

n∑
j=1

dz j $ dz̄ j − dζ $ d ζ̄ .

Finally, if we set ψ(z) = |z|2 − 1 in the expression of h then it may be seen that
F : (C(M), g)→ (Hn, h) is a conformal diffeomorphism. Lemma 2.9 is proved. �

Let Pi ∈ I 2i (GL(2n)) be the invariant polynomials given by

det

(
λI2n − 1

2π
A

)
=

n∑
i=0

Pi (A ⊗ · · · ⊗ A)λ2n−2i + Q(λ2n−odd),

i.e., the Pi are the invariant polynomials obtained by ignoring the powers λ2n−odd in
the expression of det(λI2n − A/(2π)). We obtain the following result:

Theorem 2.7. Let M be a strictly pseudoconvex CR manifold of CR dimension n − 1
and θ a pseudo-Hermitian structure on M such that Lθ is positive definite. Let g = Fθ
be the Fefferman metric of (M, θ). Let ω be the connection 1-form of g and � its
curvature 2-form. If M is globally CR equivalent to S2n−1, then P1(�

2) = 0 and
[T P1(ω)] ∈ H3(F(C(M)),Z) provided n ≥ 3.
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Proof. To prove Theorem 2.7, we study the geometry of the second fundamental form
of the immersion φ = p−1 ◦ j : Hn → (Cn × C∗,G). Set Cn = √

n + 1/
√

2(n + 1).
The tangent vector fields ξa given by

ξ1 = Cn

(
z j ∂

∂z j
+ z̄ j ∂

∂ z̄ j
+ ζ ∂

∂ζ
+ ζ̄ ∂

∂ζ̄

)
,

ξ2 = Cn

(
z j ∂

∂z j
+ z̄ j ∂

∂ z̄ j
− (n + 2)

(
ζ
∂

∂ζ
+ ζ̄ ∂

∂ζ̄

))
,

are such that G(ξ1, ξ2) = 0,G(ξ1, ξ1) = 1, and G(ξ2, ξ2) = −1, and they form a
frame of the normal bundle of φ. Since p is a biholomorphism with the inverse

p−1(z, ζ ) = [zζ 1/(n+1), ζ 1/(n+1)]

we have

p∗
∂

∂z j
= ζ−1/(n+1) ∂

∂z j
,

p∗
∂

∂ζ
= ζ−1/(n+1)

(
− z j ∂

∂z j
+ (n + 1)ζ

∂

∂ζ

)
.

Due to the identity (2.63), the Christoffel symbols of the Levi-Civita connection ∇0 of
(Vn+1,G0) vanish. The Levi-Civita connection ∇ of (Cn × C∗,G) is related to ∇0 by

p∗(∇X Y ) = ∇p∗ X p∗Y

for any X, Y ∈ T (Vn+1). A calculation shows that

∇∂/∂z j
∂

∂zk
= 0, ∇∂/∂ζ ∂

∂ζ
= − n

n + 1

1

ζ

∂

∂ζ
, ∇∂/∂ζ ∂

∂z j
= 1

n + 1

1

ζ

∂

∂z j
,

Tangent vector fields on Hn are of the form X + Y with X = A j∂/∂z j + A j∂/∂ z̄ j

and Y = B∂/∂ζ + B∂/∂ζ̄ satisfying A j z̄ j + A j z j = 0, respectively Bζ̄ + Bζ = 0.
Here z j = z j . It follows that

∇Xξ1 = Cn
n + 2

n + 1
X , ∇Xξ2 = − Cn

n + 1
X, (2.64)

∇Y ξ1 = Cn

n + 1

{
Y + Bζ̄ z j ∂

∂z j
+ Bζ z̄ j ∂

∂ z̄ j

}
, (2.65)

∇Y ξ2 = Cn

n + 1

{
− (n + 2)Y + Bζ̄ z j ∂

∂z j
+ Bζ z̄ j ∂

∂ z̄ j

}
. (2.66)

Let Aa = Aξa be the Weingarten operator corresponding to the normal section ξa . We
shall need the following lemma:

Lemma 2.10. The first Pontryagin form of (Hn, h) is

1

4π2
 12 ∧ 12,
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where (with respect to a local coordinate system (xi ) on Hn)

 12 = h
( ∂

∂xi
, A1 A2

∂

∂x j

)
dxi ∧ dx j .

Proof. Let us recall (cf., e.g. [241], vol. II, p. 313) that

P�(�
2�) = c�

∑
δ

j1··· j2�
i1···i2�

�
i1
j1

∧ · · · ∧�i2�
i2�
,

where c� = 1/[(2π)2�(2�)!] and the summation runs over all ordered subsets
(i1, . . . , i2�) of {1, . . . , 2n} and all permutations ( j1, . . . , j2�) of (i1, . . . , i2�), and
δ

j1··· j2�
i1···i2�

is the sign of the permutation. We need the Gauss equation (cf., e.g., (2.4)
in [446], p. 21)

R�ki j = Ba
jk A�ai − Ba

ik A�aj ,

where R�ki j , Ba
jk are respectively the curvature tensor field of (Hn, h) and the second

fundamental form of φ (with respect to a local coordinate system (U, xi ) on Hn). Also
Aa∂i = A j

ai∂ j , where ∂i is short for ∂/∂xi . The Gauss equation and the identity

R(X, Y )Z = u(2�(X∗, Y ∗)u(u−1 Z))

(cf. [241], vol. I, p. 133) for any X, Y, Z ∈ Tx (Hn) and some u ∈ F(Hn)x furnish

2�r
s = Y r

p Xk
s

(
Ba

jk Ap
ai − Ba

ik Ap
aj

)
dxi ∧ dx j

(where Xi
j : p−1

F (U ) → R are fiber coordinates on F(Hn) and (Y i
j ) = (Xi

j )
−1).

Using

Ba
jk = Ar

aj hrk

a calculation leads to

2P1(�
2) = −c1

(
Ba1 j1k1 Ak2

a1 p1
Ba2

j2k2
Ak1

a2 p2
− Ba1

p1k1
Ak2

a1 j1
Ba2

j2k2
Ak1

a2 p2

)
dx p1

∧ dx j1 ∧ dx p2 ∧ dx j2;
hence

P1(�
2) = c1

∑
a,b

 ab ∧ ab,

where  ab is the 2-form on F(Hn) given by

 ab = h(Aa∂i , Ab∂ j )dxi ∧ dx j .

Finally, let us observe that  11 =  22 = 0 and  21 = − 12. Lemma 2.10 is
proved. �
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Note that the proof works for any codimension-two submanifold of a flat Riemannian
manifold. At this point we may finish the proof of Theorem 2.7. Let us recall the Ricci
equation (of the given immersion φ, cf., e.g., (2.7) in [446], p. 22)

G(R(X, Y )ξ, ξ ′) = G(R⊥(X, Y )ξ, ξ ′)+ h([Aξ , Aξ ′ ]X, Y ),

where R, R⊥ are respectively the curvature tensor fields of (Cn × C∗,G) and those
of the normal connection. As a consequence of (2.64)–(2.66), ξa are parallel in the
normal bundle; hence the immersion φ has a flat normal connection (R⊥ = 0). On
the other hand, R = 0 (because (Vn+1,G0) is flat) and the Ricci equation shows that
the Weingarten operators Aa commute. Then  12 = 0 and our Lemmas 2.9 and 2.10
together with Theorem 2.5 yield P1(�

2) = 0. �
Let q : H3(F(C(M)),R)→ H3(F(C(M)),R/Z) be the natural homomorphism.

By Theorem 3.16 in [100], p. 56, since P1(�
2) = 0 there is a cohomology class α ∈

H3(C(M),R/Z) such that p∗
Fα = q([T P1(ω)]), where pF : F(C(M)) → C(M) is

the projection. Yet for the Hopf manifold, H3(Hn,R/Z) = 0 provided that n ≥ 3;
hence [T P1(ω)] ∈ Ker(q) and then by the exactness of the Bockstein sequence

· · · → H3(F(C(M)),Z)→ H3(F(C(M)),R)→
→ H3(F(C(M)),R/Z)→ H4(F(C(M)),Z)→ · · ·

it follows that [T P1(ω)] is an integral class. �
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The CR Yamabe Problem

The scope of Chapter 3 is to present D. Jerison and J.M. Lee’s solution (cf. [226, 228])
to the CR Yamabe problem (cf. Theorem 3.4 below). We start with a brief presentation
of the Riemannian Yamabe problem. The reader less familiar with the Riemannian
counterpart of Chapter 3 may consult the expository paper by J.M. Lee and T. Parker
[275]. The high interest shown in the (Riemannian) Yamabe problem, over more than
twenty years,1 by an ample portion of the mathematical community, is perhaps the
best motivation for introducing a CR version of the problem (in terms of the Feffer-
man metric). A parallel between the Riemannian and the CR Yamabe problems also
offers to the reader a lively comparison between the elliptic and subelliptic theories,
as applied to nonlinear problems arising from differential geometry.

Let (M, g) be an m-dimensional Riemannian manifold, m ≥ 3. Let K̃ be the scalar
curvature of the Riemannian metric

g̃ = φq−2g, q := 2m

m − 2
.

By a standard calculation (cf., e.g., T. Aubin [24])

K̃ = φ1−q (am�φ + Kφ) , am := 4(m − 1)

m − 2
,

where � is the Laplace–Beltrami operator of g and K the scalar curvature of g. Then
the Yamabe problem is to find a metric g̃, conformally related to g, such that K̃ is a
constant. If g̃ = φq−2g then the equation K̃ = μ = constant is

am�φ + Kφ = μφq−1.

This is the Yamabe equation. The Yamabe equation is the Euler–Lagrange equation of
the constrained variational principle

μ(M) = inf

{∫
M

(
am‖dφ‖2 + Kφ2

)
dvg :

∫
M

|φ|qdvg = 1

}
(3.1)

1 H. Yamabe’s work [444] was published in 1960. R. Schoen’s completion [365] of the solution
to the Yamabe problem appeared in 1984.
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provided that φ ≥ 0. Exploiting the variational description of the Yamabe equation,
the following fundamental result may be established:

Theorem 3.1. (H. Yamabe [444], N. Trudinger [409], T. Aubin [24])
Let (M, g) be a compact Riemannian manifold, m ≥ 3. Then

(a) μ(M) is a conformal invariant.
(b) μ(M) ≤ μ(Sm).
(c) If μ(M) < μ(Sm) then μ(M) is attained for some positive C∞ solution φ of the

Yamabe equation am�φ + Kφ = μφq−1.

Therefore g̃ = φq−2g has constant scalar curvature μ = μ(M).

Theorem 3.2. (T. Aubin [24])
If m ≥ 6 and M is not locally conformally flat then μ(M) < μ(Sm).

Theorem 3.3. (R. Schoen [365])
μ(M) < μ(Sm) unless M is the sphere.

The theorem by R. Schoen completes the solution to the Yamabe problem. The proof
of (a) in the Yamabe–Trudinger–Aubin theorem relies on the observation that g̃ =
tq−2g implies that(

am�̃+ K̃
)
φ̃ = t1−q (am�+ K ) φ, φ̃ := t−1φ,

where �̃, K̃ are respectively the Laplace–Beltrami operator and the scalar curvature
of g̃ = tq−2g. As a consequence, it may be shown that the integrals

∫
M

(
am‖dφ‖2+

Kφ2
)

dvg and
∫

M |φ|qdvg are unchanged if g, φ, and K are replaced by g̃, φ̃, and K̃ ,
respectively; hence μ(M) is a conformal invariant.

To prove (b) one starts with the special case of Sm . By a conformal change of
variables one may convert the variational problem on Sm into a problem on Rm ,

μ(Sm) = inf
{

am

∫
Rm

‖d f ‖2dx :
∫

Rm
| f |qdx = 1

}
, (3.2)

which is just the problem of finding the best constant and extremal functions for the
Sobolev inequality on Rm

μ(Sm)

(∫
Rm

| f |qdx

)2/q

≤ am

∫
Rm

‖d f ‖2dx .

T. Aubin (cf. [24]) showed that extremals exist and are of the form(
a + b‖x − x0‖2

)−(m−2)/2
. (3.3)

See also G. Talenti [396]. Now, given a compact Riemannian manifold M , one may use
normal coordinates on M and the dilation invariance of the problem (3.2) to transplant
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a suitable extremal (3.3) from Rm to a sufficiently small neighborhood on M and
conclude that μ(M) ≤ μ(Sm).

To prove (c) one employs the Sobolev lemma for compact Riemannian manifolds.
Let W 1,2(M) be the Sobolev space with the norm

‖ f ‖W 1,2(M) =
(∫

M

(
‖d f ‖2 + | f |2

)
dvg

)1/2

.

By the Sobolev lemma, there is an embedding

W 1,2(M)→ Ls(M),
1

s
≥ 1

2 − 1

m
,

and this embedding is compact if 1
s >

1
2 − 1

m . If φi ∈ W 1,2(M) is a minimizing se-
quence for the problem (3.1), then by the Sobolev lemma, {φi } is uniformly bounded
in W 1,2(M); hence there is a subsequence weakly convergent to some φ ∈ W 1,2(M).
Unfortunately, the inclusion W 1,2(M)→ Lq(M) is not compact; hence the constraint∫

M |φ|qdvg = 1 might fail to be preserved in the limit. One is led to consider the
perturbed equation

am�φ + Kφ = μsφ
s−1, 2 ≤ s < q.

Now, given a minimizing sequence (for the corresponding variational principle), due
to the compactness of W 1,2(M) → Ls(M), there will exist a sequence converging
strongly in the Ls-norm to some φ(s) ∈ W 1,2(M); hence φ(s) satisfies the constraint.
At this point, an iteration procedure of the standard L p estimates for the Laplace–
Beltrami operator shows that φ(s) is smooth, while the strong maximum principle
yields φ(s) > 0.

To complete the proof, one should show that φ(s) → φ as s → q, where φ is
smooth and > 0. This has been shown by T. Aubin (cf. op. cit.) as follows. Let μ =
μ(Sm). Then for any compact manifold M and any ε > 0 there is CM,ε > 0 such that

(μ− ε)
( ∫

M
| f |qdvg

)2/q ≤ am

∫
M

‖d f ‖2dvg + CM,ε

∫
M

| f |2dvg (3.4)

for any f ∈ W 1,2(M). The inequality (3.4) is obtained by transplanting the inequality
from Rm to a normal coordinate neighborhood in M , and then to the whole of M by
a partition of unity argument. Let ε > 0 be such that μ − ε > μs , for s sufficiently
close to q. Then (3.4) for f = φ(s) shows that ‖φ(s)‖L2(M) is bounded away from zero
as s → q, and the proof is complete.

Next, we wish to discuss the following CR analogue of the Yamabe problem. Let
M be a strictly pseudoconvex CR manifold of CR dimension n. Let θ be a pseudo-
Hermitian structure on M such that the Levi form Lθ is positive definite. Let Fθ be
the Fefferman metric of (M, θ). By a result in Chapter 2 of this book, Fθ is a Lorentz
metric on the total space C(M) of the canonical circle bundle S1 → C(M)

π→ M . By
Theorem 2.3 of the same chapter, if θ is replaced by θ̂ = u p−2θ , with p = 2 + 2/n,
then Fθ goes over to
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F
θ̂

= (u ◦ π)p−2 Fθ ,

so that the (restricted) conformal class of the Fefferman metric is a CR invariant of M .
The reason for representing the conformal factor as u p−2, u > 0, is that it simplifies
the transformation law (2.47). Indeed, due to the identity

�b(log u) = 1

u
�bu + 1

u2
uαuα

the transformation law (2.47) (of the pseudo-Hermitian scalar curvature ρ, under a
transformation θ̂ = u p−2θ ) may be written

ρ̂ = u1−p (bn�bu + ρu) ,

where bn = 2 + 2/n. Hence a necessary and sufficient condition for the contact form
θ̂ = u p−2θ to have constant pseudo-Hermitian scalar curvature ρ̂ = λ is that u satisfy

bn�bu + ρu = λu p−1. (3.5)

This is the CR Yamabe equation. It is the Euler–Lagrange equation for the constrained
variational problem

λ(M) = inf{Aθ (u) : Bθ (u) = 1}, (3.6)

where

Aθ (u) =
∫

M
{bn‖πH∇u‖2 + ρu2}θ ∧ (dθ)n,

Bθ (u) =
∫

M
|u|pθ ∧ (dθ)n .

Here ∇u is the gradient of u (given by gθ (∇u, X) = X (u) for any X ∈ T (M)) and
πH : T (M)→ H(M) is the projection (associated with the direct sum decomposition
T (M) = H(M) ⊕ RT ). The purpose of Chapter 3 is to describe the following result
by D. Jerison and J.M. Lee (cf. [227]):

Theorem 3.4. Let M be a compact strictly pseudoconvex CR manifold of CR dimen-
sion n. Let θ be a contact form on M for which Lθ is positive definite. Then

(i) λ(M) is a CR invariant of M.
(ii) λ(M) ≤ λ(S2n+1) (where the sphere S2n+1 ⊂ Cn+1 carries the standard CR

structure).
(iii) If λ(M) < λ(S2n+1) then the infimum (3.6) is achieved by a positive solution u of

(3.5). Hence the contact form θ̂ = u p−2θ has constant pseudo-Hermitian scalar
curvature ρ̂ = λ(M).

We refer to Theorem 3.4 as the Jerison–Lee theorem. S.S. Chern and R. Hamilton [88],
studying contact structures on 3-manifolds, proved independently a result equivalent
to (iii) in Theorem 3.4 in the case λ(M) ≤ 0 and n = 1.
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3.1 The Cayley transform

We start by discussing the bundle of densities and the CR invariant Laplacian �c
b. Let

M be a strictly pseudoconvex CR manifold and θ such that Lθ is positive definite. Let
us set

E+
x = {λθx : λ ∈ R+},

for any x ∈ M , where R+ = (0,∞). This furnishes an R+-bundle E+ → M . Let
α ∈ R and let us set

Eαx = {μ : E+
x → R : μ(λθx ) = λ−αμ(θx ) , ∀λ > 0},

for any x ∈ M .

Definition 3.1. The resulting bundle Eα → M is referred to as the bundle of densities
of CR weight α on M . �

Let us define μθ : M → E1 by setting μθ(x) = (μθ )x , where (μθ )x : E+
x → R is

given by (μθ )x (λθx ) = λ−1. Then μθ ∈ �∞(E1). Moreover, any C∞ section in Eα

is of the form uμαθ for some u ∈ C∞(M).
We consider the differential operator

�c
b : �∞(En/2)→ �∞(En/2+1)

given by

�c
b(uμ

n/2
θ ) = (bn�bu + ρu)μn/2+1

θ .

Note that �c
b is invariant under a transformation θ̂ = u p−2θ .

Definition 3.2. �c
b is called the CR invariant Laplacian of M . �

The CR invariance of λ(M) (i.e., the statement (i) in Theorem 3.4) follows from

λ(M) = inf
{ ∫

M

(
�c

bφ
)⊗ φ : φ ∈ C∞(En/2), φ > 0,

∫
M
φ p = 1

}
.

Next, we need to recall a few facts regarding the Cayley transform. Let Bn+1 = {z ∈
Cn+1 : |z| < 1} be the unit ball in Cn+1.

Definition 3.3. The Cayley transform is

C(ζ ) =
( ζ ′

1 + ζ n+1
, i

1 − ζ n+1

1 + ζ n+1

)
, ζ = (ζ ′, ζ n+1), 1 + ζ n+1 �= 0. �

The Cayley transform gives a biholomorphism of Bn+1 onto the Siegel domain �n+1.
Moreover, when restricted to the sphere minus a point, C gives a CR diffeomorphism
(onto the boundary of the Siegel domain)
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C : S2n+1 \ {(0, . . . , 0,−1)} → ∂�n+1.

Let us recall (cf. Chapter 1 of this book) the CR diffeomorphism

f : Hn → ∂�n+1, f (z, t) = (z, t + i |z|2),
with the obvious inverse f −1(z, w) = (z,Re(w)), z ∈ Cn , w ∈ C. We obtain the CR
equivalence

F : S2n+1 \ {(0, . . . , 0,−1)} → Hn, F := f −1 ◦ C.

We shall need the following lemma:

Lemma 3.1. Let θ1 = j∗
[
i(∂ − ∂)|ζ |2] be the standard contact form on the sphere,

where j : S2n+1 ↪→ Cn+1 is the inclusion. Let θ0 be the canonical contact form on
Hn. Then (

F∗θ0
)
ζ

= 1

|1 + ζ n+1|2 θ1,ζ ,

for any ζ ∈ S2n+1 \ {(0, . . . , 0,−1)}.
To prove Lemma 3.1 we first carry out some local calculations for the sphere. The
standard CR structure T1,0(S2n+1) admits the (local) frame{

Tα := ∂

∂ζα
− ζ

α

ζ
n+1

∂

∂ζ n+1
: 1 ≤ α ≤ n

}

defined on the open set S2n+1 ∩ {ζ : ζ n+1 �= 0}. Moreover, the characteristic direction
T of dθ1 is

T = i

2

n+1∑
j=1

(
ζ j ∂

∂ζ j
− ζ j ∂

∂ζ
j

)
.

Next, let us note that

(dζC) ∂

∂ζ j

∣∣∣∣
ζ

=

⎧⎪⎪⎨⎪⎪⎩
1

1 + ζ n+1

∂

∂zβ

∣∣∣∣C(ζ ), j = β,

− 1

(1 + ζ n+1)2

[
ζ α

∂

∂zα
+ 2i

∂

∂w

]
C(ζ )

, j = n + 1;

hence

(dζC)Tα,ζ = 1

1 + ζ n+1

[
δβα + ζ αζ

β

ζ
n+1
(1 + ζ n+1)

] ∂
∂zβ

∣∣∣C(ζ )+ 2iζ α

ζ
n+1
(1 + ζ n+1)2

∂

∂w

∣∣∣C(ζ ),
where ζ j = ζ j , and
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(dγ C)Tζ = i

2

(
ζ α

(1 + ζ n+1)2

∂

∂zα

∣∣∣∣C(ζ ) − ζ
α

(1 + ζ n+1
)2

∂

∂zα

∣∣∣∣C(ζ )
)

+ ζ n+1

(1 + ζ n+1)2

∂

∂w

∣∣∣∣C(ζ ) + ζ
n+1

(1 + ζ n+1
)2

∂

∂w

∣∣∣∣C(ζ ) .
Let us set g := f −1. Taking into account

(d(z,w)g)
∂

∂zα

∣∣∣∣
(z,w)

= ∂

∂zα

∣∣∣∣
(z,Re(w))

, (d(z,w)g)
∂

∂w

∣∣∣∣
(z,w)

= 1
2
∂

∂t

∣∣∣∣
(z,Re(w))

it follows that

(dζ F)Tα,ζ = 1

1 + ζ n+1

[
δβα + ζ αζ

β

ζ
n+1
(1 + ζ n+1)

]
Zβ,F(ζ ), (3.7)

(dζ F)Tζ = iζ α

2(1 + ζ n+1)2
Zα,F(ζ ) − iζ

α

2(1 + ζ n+1
)2

Zα,F(ζ ) + 1

|1 + ζ n+1|2
∂

∂t

∣∣∣∣
F(ζ )

where Zα = ∂/∂zα + i zα∂/∂t . At this point we may prove Lemma 3.1. The pullback
of θ0 = dt + i

∑n
α=1 (z

αdzα − zαdzα) (the standard contact form of the Heisenberg
group) is of the form

F∗θ0 = λ j dζ
j + λ j dζ

j
.

Then, on the one hand,

λα − ζ
α

ζ
n+1

λn+1 = θ0,F(ζ )(dζ F)Tα,ζ = 0

(by (3.7)), and on the other,

λn+1 = θ0,F(ζ )(dζ F)
∂

∂ζ n+1

∣∣∣∣
ζ

= − iζ
n+1

|1 + ζ n+1|2 ,

i.e.,

F∗θ0 = i

|1 + ζ n+1|2
n+1∑
j=1

{
ζ j dζ

j − ζ j dζ
j
}
,

and Lemma 3.1 is proved. �
Let us consider the function

a(z, w) := 4

|i + w|2 , (z, w) ∈ U := {(z, w) ∈ Cn+1 : w + i �= 0}.

Note that ∂�n+1 ⊂ U (hence we may restrict a to the boundary of the Siegel domain).
Let us set

b(z, t) := a( f (z, t)) = 4

|t + i(1 + |z|2)|2 , (z, t) ∈ Hn .
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Then (by Lemma 3.1)

F∗ (bθ0) = θ1 .

Let us differentiate and take into account that b(F(ζ )) = |1 + ζ n+1|2. We obtain

dθ1 =
( dζ n+1

1 + ζ n+1
+ dζ

n+1

1 + ζ n+1

)
∧ θ1 + |1 + ζ n+1|2 F∗dθ0;

hence

θ1 ∧ (dθ1)
n = |1 + ζ n+1|2(n+1)F∗ [θ0 ∧ (dθ0)

n] .
Given a nondegenerate CR manifold M endowed with the contact form θ , let us extend
the Hermitian form 〈Z ,W 〉 = Lθ (Z ,W 〉, Z ,W ∈ T1,0(M), to complex 1-forms by
setting

〈θα, θβ〉 = hαβ, 〈θα, θβ〉 = hαβ,

〈θα, θβ〉 = 0 = 〈θα, θβ〉, 〈θα, θ〉 = 0 = 〈θα, θ〉, 〈θ, θ〉 = 0.

When we wish to emphasize on the choice of θ we also write L∗
θ (λ, μ) instead of

〈λ,μ〉, for any λ, μ ∈ �1(M). Also, we set ‖λ‖2
θ = 〈λ, λ〉. Note that ‖πH∇u‖ =

‖du‖θ . Recall that (cf. Chapter 2)∫
M
(�bu)v θ ∧ (dθ)n = −

∫
M

〈du, dv〉θ ∧ (dθ)n ,
for any u, v ∈ C∞(M), at least one of compact support. It is also useful to note that
for any u ∈ C1(Hn),

‖du‖2
θ0

=
n∑
α=1

|Zαu|2.

The pseudo-Hermitian scalar curvature of (Hn, θ0) is zero; hence

λ(Hn) = inf

{∫
Hn

bn

n∑
α=1

|Zαu|2 θ0 ∧ (dθ0)
n :

∫
Hn

|u|pθ0 ∧ (dθ0)
n = 1

}
,

with p = bn = 2 + 2/n. Consider the function

v(ζ ) = u(F(ζ ))

|1 + ζ n+1|n+1
.

Then ∫
S2n+1

(
bn|dv|2θ1

+ ρnv
2
)
θ1 ∧ (dθ1)

n =
∫

Hn

bn

n∑
α=1

|Zαu|2θ0 ∧ (dθ0)
n

∫
S2n+1

v pθ1 ∧ (dθ1)
n =

∫
Hn

u pθ0 ∧ (dθ0)
n

(where ρn = n(n + 1)/2 is the pseudo-Hermitian scalar curvature of the sphere
(S2n+1, θ1)) for any u ∈ C1(Hn), u ≥ 0, and hence the extremal problems (3.6)
for Hn and S2n+1 are the same. In particular λ(Hn) = λ(S2n+1). �
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3.2 Normal coordinates

Let (M, T1,0(M)) be a strictly pseudoconvex2 CR manifold of CR dimension n, on
which one has fixed a contact 1-form θ such that the Levi form Lθ is positive definite.
Let T be the characteristic direction of (M, θ).

Definition 3.4. Let {Tα} be a local orthonormal (i.e., Lθ (Tα, Tβ̄ ) = δαβ ) frame of
T1,0(M) defined on the open subset V ⊆ M . Such a {Tα} is referred to as a pseudo-
Hermitian frame. �

Following the ideas in [150], pp. 471–476, we are going to introduce, for any x0 ∈
M , local coordinates z1, . . . , zn, t at x0, naturally associated with the given pseudo-
Hermitian frame {Tα} in the sense that Tα = ∂/∂zα + i z̄α∂/∂t and T = ∂/∂t modulo
suitably small error terms near x0 (cf. Theorem 3.5 below).

Given a pseudo-Hermitian frame {Tα} let us set Xα = Tα+Tᾱ and Yα = i(Tᾱ−Tα).
When we think of {Xα, Yα, T } together we write {X j } (with 0 ≤ j ≤ 2n and X0 =
T , Xα+n = Yα). Let also {θ j } be the dual frame with respect to {X j } (here θ0 = θ ).
We shall denote by (ξα, ηα, τ ) the Cartesian coordinates in R2n+1 and we shall also
write (ξ j ) (with 0 ≤ j ≤ 2n and ξ0 = τ , ξα+n = ηα) when (ξα, ηα, τ ) will be
thought of as together.

Let x ∈ M be fixed. Given ξ ∈ R2n+1, let us consider the tangent vector field

Xξ = ξ j X j ∈ X (V ).

For ξ sufficiently close to the origin in R2n+1, let Ex (ξ) be the endpoint C(1) of the
integral curve C : [0, 1] → M of Xξ issuing at x , i.e.,

dC

dt
(t) = Xξ (C(t)),

C(0) = x .
(3.8)

By standard ODE theory Ex is a smooth map of a star-shaped neighborhood Ũx of
0 ∈ R2n+1 into M . Also

(d0 Ex )
∂

∂ξ j

∣∣∣∣
0
= X j (x);

hence Ex is a diffeomorphism of a perhaps smaller neighborhood Ux ⊆ Ũx of 0 ∈
R2n+1 (which may be assumed to be star-shaped, too) onto a neighborhood Vx of x in
M . Then E−1

x : Vx → Ux is the local chart we were looking for.

Definition 3.5. The resulting local coordinates are referred to as the Folland–Stein
(normal) coordinates at x . �

2 The matters discussed in this section, i.e., existence of Folland–Stein normal coordinates and
Heisenberg-type order may be easily generalized to the case of an arbitrary nondegenerate
CR manifold (of hypersurface type).
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Next, we discuss the notion of Heisenberg-type order. For x ∈ M fixed let

#x = E−1
x = (x j ) = (xα, yα, t) : Vx → Ux ⊆ R2n+1

be Folland–Stein coordinates at x .

Definition 3.6. A function f on Vx is said to be O1 (and we write f = O1) if

f (y) = O
( n∑
α=1

(|xα(y)| + |yα(y)|)+ |t (y)|1/2
)

as y → x in Vx . For k ∈ Z, k ≥ 2, we define f = Ok inductively, i.e., f = Ok if and
only if f = O(O1 · Ok−1). �

Note that f = O2 if and only if

f (y) = O
( n∑
α=1

(|xα(y)|2 + |yα(y)|2)+ |t (y)|
)

as y → x in Vx .

Theorem 3.5. (G.B. Folland and E.M. Stein [150])
With respect to the Folland–Stein normal coordinates

E−1
x = (x j ) = (xα, yα, t)

on Vx one has

Xα = ∂

∂xα
+ 2yα

∂

∂t
+

n∑
β=1

(
O1 ∂

∂xβ
+ O1 ∂

∂yβ

)
+ O2 ∂

∂t
,

Yα = ∂

∂yα
− 2xα

∂

∂t
+

n∑
β=1

(
O1 ∂

∂xβ
+ O1 ∂

∂yβ

)
+ O2 ∂

∂t
,

T = ∂

∂t
+

n∑
β=1

(
O1 ∂

∂xβ
+ O1 ∂

∂yβ

)
+ O2 ∂

∂t
.

Proof. Let us set

X j = Bk
j
∂

∂xk

for some B j
k : Vx → R. The coordinates x j : Vx → R are given by x j (y) =

p j (E−1
x (y)), where p j : R2n+1 → R are the canonical projections. Let y = Ex (ξ)

for ξ ∈ Ux be arbitrary. Then

x j (Ex (ξ)) = ξ j
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and by differentiation one has

∂E j
x

∂ξ k
= δ

j
k , (3.9)

or

(dξ Ex )
∂

∂ξ j

∣∣∣∣
ξ

= ∂

∂x j

∣∣∣∣
Ex (ξ)

.

It follows that

B j
k (x) = δ

j
k . (3.10)

We shall need the following lemma:

Lemma 3.2. Let G j
k : Ux → R be the local expression of B j

k , i.e., G j
k = B j

k ◦ Ex .
Then

G j
k (sξ)ξ

k = ξ j (3.11)

for any ξ ∈ Ux and any |s| ≤ 1.

Proof. Let C(t) be the solution of the Cauchy problem (3.8) and set Cs(t) = C(st).
Hence

dCs

dt
(t) = s

dC

dt
(st) = s Xξ (C(st)) = sξ j X j (C(st)) = Xsξ (Cs(t))

so that (since Cs(0) = x)

Ex (sξ) = Cs(1) = C(s), (3.12)

by the definition of Ex . Differentiation with respect to s gives (by (3.9))

dC

ds
(s) = dC j

ds
(s)

∂

∂x j

∣∣∣∣
C(s)

= ∂E j
x

∂ξ k
(sξ)ξ k ∂

∂x j

∣∣∣∣
C(s)

= ξ j ∂

∂x j

∣∣∣∣
C(s)

,

or (by (3.8))

Xξ (C(s)) = ξ j ∂

∂x j

∣∣∣∣
C(s)

,

i.e.,

ξ j Bk
j (C(s)) = ξ k,

which is equivalent (again by (3.12)) to (3.11). �

Next, let us consider the structure functions Ci
jk : V → R defined by

[X j , Xk] = Ci
jk Xi .
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Let A = B−1 and denote by F j
k the local expression of each A j

k , i.e., F j
k = A j

k ◦ Ex .
For arbitrary ξ ∈ Ux and |s| ≤ 1 let us consider the matrices

A(s, ξ) =
[
A j

k (s, ξ)
]

0≤ j,k≤2n
, A j

k (s, ξ) = s F j
k (sξ),

�(s, ξ) =
[
�

j
k (s, ξ)

]
0≤ j,k≤2n

, �
j
k (s, ξ) = C j

�k(Ex (sξ))ξ
� .

We shall need the following lemma:

Lemma 3.3.

∂A
∂s

= I − �A.

Proof. Note that

Ci
jk B�i = Bm

j
∂B�k
∂xm

− Bm
k

∂B�j
∂xm

.

In particular, at the point y = Ex (sξ) one gets the identity

Ci
jk(Ex (sξ)) = Fi

� (sξ)

{
Gm

j (sξ)
∂G�k
∂ξm

(sξ)− Gm
k (sξ)

∂G�j
∂ξm

(sξ)

}
.

Let us contract with ξ j and use Lemma 3.2. Then

Ci
jk(Ex (sξ))ξ

j = Fi
� (sξ)

{
ξm ∂G�k
∂ξm

(sξ)− Gm
k (sξ)ξ

j
∂G�j
∂ξm

(sξ)

}

= −ξm ∂Fi
�

∂ξm
(sξ)G�k(sξ)− Fi

� (sξ)G
m
k (sξ)ξ

j
∂G�j
∂ξm

(sξ)

(because of Fi
�G�k = δi

k). We have derived the identity

sCi
jk(Ex (sξ))ξ

j = −Fi
� (sξ)G

m
k (sξ)sξ

j
∂G�j
∂ξm

(sξ)− s
d

ds

{
Fi
� (sξ)

}
G�k(sξ). (3.13)

Differentiating G�j (sξ)ξ
j = ξ� with respect to ξm , one gets

sξ j
∂G�j
∂ξm

(sξ) = δ�m − G�m(sξ),

which substituted into (3.13) leads to

sCi
jk(Ex (sξ))ξ

j = −δi
k + Gi

k(sξ)− s
d

ds

{
Fi

j (sξ)
}

G j
k (sξ),
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or (by contraction with Fk
� (sξ))

∂

∂s
Ai
�(s, ξ) = δi

� − �i
k(s, ξ)Ak

�(s, ξ)

and Lemma 3.3 is completely proved. �

Let us go back to the proof of Theorem 3.5. By Taylor’s formula (with the remain-
der in Lagrange’s form)

G j
k (sξ) = δ

j
k + s

∂G j
k

∂ξ�
(0)ξ� + 1

2 s2 ∂2G j
k

∂ξ�∂ξm
(csξ)ξ�ξm

for some c ∈ (0, 1) (depending on s). Let 0 < δ < 1 so that B(0, δ) ⊆ Ux and set

a j
k�m = sup

B(0,δ)

∣∣∣∣∣ ∂2G j
k

∂ξ�∂ξm

∣∣∣∣∣ , C j
k = 4 max

0≤�,m≤2n
a j

k�m,

f j
k (ξ) = 1

2

∂2G j
k

∂ξ�∂ξm
(cξ)ξ�ξm .

Then, for any ξ ∈ B(0, δ),

| f j
k (ξ)| ≤ 2C j

k

∑
�,m

|ξ�| |ξm | ≤ C j
k ‖ξ‖2 ≤ C j

k |ξ |2 ≤ C j
k

(
|w|2 + |τ |

)
,

where wα = ξα + iξα+n and τ = ξ0 (because of (1.26) as ‖ξ‖ < 1); hence f j
k = O2

in Ux as ξ → 0. We therefore have

G j
k (ξ) = δ

j
k + G(1)(ξ) j

k + O2 , (3.14)

where

G(1)(ξ) j
k = ∂G j

k

∂ξ�
(0)ξ� .

We wish to compute G(1)(ξ). The Taylor series expansions for F(sξ) and G(sξ) read

F(sξ) = I + s F (1)(ξ)+ s2 F (2)(ξ)+ · · · ,
G(sξ) = I + sG(1)(ξ)+ s2G(2)(ξ)+ · · · ,

for some matrices F (p)(ξ),G(p)(ξ), p ≥ 1. Then

G(1)(ξ) = −F (1)(ξ) (3.15)

because of FG = I . Also, we may write

A(s, ξ) = A(0, ξ)+ sA(0)(ξ)+ s2A(1)(ξ)+ · · ·



170 3 The CR Yamabe Problem

for some matrices A j (ξ). Note that A(0, ξ) = 0 (by the definition of A) and

A(0)(ξ) =
[

d

ds

{
s F j

k (sξ)
}

s=0

]
0≤ j,k≤2n

=
[

F j
k (0)

]
0≤ j,k≤2n

= I ;

hence

A(s, ξ) = s I + s2A(1)(ξ)+ s3A(2)(ξ)+ · · · .
Let us differentiate with respect to s and use Lemma 3.3. We get

I − �(s, ξ)A(s, ξ) = I + 2sA(1)(ξ)+ 3s2A(2)(ξ)+ · · · .
Now the Taylor series expansion of �(s, ξ) reads

�(s, ξ) =
[
C j
�k(s)ξ

�
]

0≤ j,k≤2n
+ s�(1)(ξ)+ s2�(2)(ξ)+ · · · ,

for some matrices �(p)(ξ); hence

A(1)(ξ) = − 1
2

[
C j
�k(x)ξ

�
]
.

Summing up, we have

A(s, ξ) = s I − 1
2 s2

[
C j
�k(x)ξ

�
]
+ O(s3),

or

s
(

I + s F (1)(ξ)+ s2 F (2)(ξ)+ · · ·
)

= s I − 1
2 s2

[
C j
�k(x)ξ

�
]
+ O(s3);

hence (by (3.15))

G(1)(ξ) = 1
2

[
C j
�k(x)ξ

�
]
. (3.16)

Let us write Tα = 1
2 (Xα + i Xα+n). Then

4[Tα, Tβ ] =
(

C j
αβ − C j

α+n,β+n + iC j
α,β+n − iC j

α+n,β

)
X j .

Yet [Tα, Tβ ] ∈ �∞(T1,0(M)); hence the T -component must vanish:

C0
αβ = C0

α+n,β+n

C0
α,β+n = −C0

α+n,β .
(3.17)

Likewise

4[Tα, Tβ̄ ] =
(

C j
αβ + C j

α+n,β+n − iC j
α,β+n + iC j

α+n,β

)
X j ,
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and the coefficient of T in this formula must be −8iδαβ ; hence

C0
αβ = −C0

α+n,β+n

C0
α+n,β = C0

α,β+n − 8δαβ.
(3.18)

Finally, solving (3.17)–(3.18) yields

C0
αβ = C0

α+n,β+n = 0

C0
α,β+n = −C0

α+n,β = 4δαβ.
(3.19)

Using (3.19) one may write (3.14) as

G j
k (ξ) = δ

j
k + 1

2 C j
�k(ξ)ξ

� + O2.

Let y = Ex (ξ) be an arbitrary point in Vx . Then

Xk(y) = G j
k (ξ)

∂

∂x j

∣∣∣∣
y
= ∂

∂xk

∣∣∣∣
y
+ 1

2 Cα�k(x)ξ
� ∂

∂x j

∣∣∣∣
y
+ 1

2 Cα+n
�k (x)ξ�

∂

∂yα

∣∣∣∣
y

+ 1
2 C0

�k(x)ξ
� ∂

∂t

∣∣∣∣
y
+

2n∑
j=0

O2 ∂

∂x j

∣∣∣∣
y
.

Now ξα = O1, ξα+n = ηα = O1, and ξ0 = τ = O2, and of course an O2 is O1 as
well. Hence (by (3.19))

Xα = ∂

∂xα
+

n∑
β=1

(
O1 ∂

∂xβ
+ O1 ∂

∂yβ

)
− 2ξα+n ∂

∂t
+ O2 ∂

∂t

and the first formula in Theorem 3.5 is proved. The proof of the remaining formulas is
quite similar, hence omitted. �

As a corollary of Theorem 3.5 we have that the expression of the complex tangent
vectors Tα in Folland–Stein local coordinates is

Tα = ∂

∂zα
+ i z̄α

∂

∂t
+

n∑
β=1

(
O1 ∂

∂zβ
+ O1 ∂

∂ z̄β

)
+ O2 ∂

∂t
. (3.20)

Let us set

� =
⋃

x∈M

{x} × Vx

so that � is a neighborhood of the diagonal in M × M . For any (x, y) ∈ � let us set

#(x, y) = #x (y),

where #x : Vx → R2n+1 are the Folland–Stein coordinates at x . The reader may well
note that for M = Hn and Tα = ∂/∂zα + i z̄α∂/∂t one gets #(x, y) = x−1 y. Finally,
let us set
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ρ(x, y) = |#(x, y)|
(Heisenberg norm) for any (x, y) ∈ �.

Theorem 3.6. (G.B. Folland and E.M. Stein [150])

(1) #(x, y) = −#(y, x) = #(x, y)−1 ∈ Hn (in particular #(x, x) = 0).
(2) # : �→ Hn is C∞.
(3) Let K ⊂ M be a compact subset and x, y, z ∈ K such that

(x, y), (x, z), (y, z) ∈ �,
ρ(x, y) ≤ 1, ρ(x, z) ≤ 1.

There exist constants C1 > 0,C2 > 0 such that

|#(x, y)−#(z, y)| ≤ C1

(
ρ(x, z)+ ρ(x, z)1/2ρ(x, y)1/2

)
, (3.21)

ρ(z, y) ≤ C2 (ρ(x, z)+ ρ(x, y)) . (3.22)

Part (1) follows from definitions, while part (2) is a consequence of standard ODE
theory (dependence of solutions of ODEs on initial conditions and parameters). For
the proof of part (3) the reader should see [150], p. 476. �
Let us set

y = (z, t) = #(ξ, η), (ξ, η) ∈ �.
Definition 3.7. A C∞ function f (ξ, y), (ξ, y) ∈ V ×#(�), is said to be of type Ok

if for each compact set K ⊂ V there is a constant CK > 0 such that

| f (ξ, y)| ≤ CK |y|k ,
for any ξ ∈ K . Here |y| is the Heisenberg norm of y. Moreover, OkE denotes an
operator involving linear combinations of the indicated derivations, with coefficients
of type Ok . �

Summing up the information in Theorem 3.5, the identity (3.20), and Theorem 3.6
above, we may state the following theorem:

Theorem 3.7. Let {Wα} be a pseudo-Hermitian frame, defined on the open set V ⊆
M. Then there is an open set � ⊆ V × V , such that (ξ, ξ) ∈ � for any ξ ∈ V , and
there is a C∞ map # : �→ Hn such that

(1) #(ξ, η) = −#(η, ξ) = #(η, ξ)−1, for any (ξ, η) ∈ �.
(2) Set #ξ(η) := #(ξ, η). Then #ξ is a diffeomorphism of a neighborhood �ξ of ξ

onto a neighborhood of the origin in Hn.
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(3) The following identities hold:

(#−1
ξ )

∗θ = θ0 + O1dt +
n∑

j=1

(
O2dz j + O2dz j

)
,

(#−1
ξ )

∗ (θ ∧ (dθ)n) = (1 + O1)θ0 ∧ (dθ0)
n,

(#ξ )∗W j = Z j + O1E
( ∂
∂z

)
+ O2E

( ∂
∂t

)
,

(#ξ )∗T = ∂

∂t
+ O1E

( ∂
∂z
,
∂

∂t

)
,

(#ξ )∗�b = L0 + E
( ∂
∂z

)
+ O1E

( ∂
∂t
,
∂2

∂z2

)
+ O2E

( ∂
∂z
,
∂

∂t

)
+ O3E

( ∂2

∂t2

)
.

Here ∂/∂z denotes any of the derivations ∂/∂z j , ∂/∂z j and

L0 = − 1
2

n∑
j=1

(Z j Z j + Z j Z j ).

Actually the last identity in Theorem 3.7 follows from an additional piece of informa-
tion, the identity (A.6) below. The uniformity with respect to ξ of bounds on functions
of type Ok is not stated explicitly in our preparation (preceding Theorem 3.7), yet
follows easily from the fact that the coefficients are C∞.

Note that when M = Hn and θ = θ0 one may take#(ξ, η) = ξ−1η, and the terms
with Ok coefficients (in Theorem 3.7) vanish identically. Hence these terms may be
viewed as error terms (and # as an approximate group multiplication). Indeed, in the
case of an arbitrary strictly pseudoconvex CR manifold, these terms have a higher
homogeneity with respect to dilations. Precisely, let us set

T δ(z, t) = (δ−1z, δ−2t), (z, t) ∈ Hn, δ > 0.

Consider a compact set K ⊂ V and r > 0. For sufficiently small δ > 0 and any ξ ∈ K
one has

T δ#ξ (�ξ ) ⊃ Br := {y ∈ Hn : |y| ≤ r}.
Then, for any ξ ∈ K and y ∈ Br ,
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T δ#ξ

)−1
]∗
θ = δ2

(
1 + δO2

)
θ0 ,[(

T δ#ξ
)−1

]∗
θ ∧ (dθ)n = δ2n+2

(
1 + δO1

)
θ0 ∧ (dθ0)

n ,(
T δ#ξ

)
∗ W j = δ−1

(
Z j + δO1E

( ∂
∂z

)
+ δ2 O2E

( ∂
∂t

))
,

(
T δ#ξ

)
∗�b = δ−2

(
L0 + E

( ∂
∂z

)
+ δO1E

( ∂
∂t
,
∂2

∂z2

)
+ δ2 O2E

( ∂
∂z

· ∂
∂t

)
+ δ3 O3E

( ∂2

∂t2

))
.

(3.23)

Here an Ok may depend on δ, yet its derivatives are bounded by multiples of the frame
constants, uniformly as δ → 0.

Definition 3.8. The term frame constants is used to mean bounds on finitely many
derivatives of the coefficients in the OkE terms in Theorem 3.7. �

We wish to prove (ii) in Theorem 3.4, i.e., λ(M) ≤ λ(S2n+1).

Lemma 3.4. The class of test functions defining λ(Hn) can be restricted to C∞ func-
tions with compact support.

To this end, let ψ ∈ C∞
0 (Hn) such that ψ ≥ 0 and

∫
Hn
ψ(y)dy = 1. Let us set

ψδ(x) = δ−(2n+2)ψ(δ−1x),

where δ−1x is short for T δ(x). Moreover, let u be a test function satisfying∫
Hn

|u|pθ0 ∧ (dθ0)
n = 1, Z j u ∈ L2(Hn), 1 ≤ j ≤ n.

Since Z j is left invariant, it follows that

Z j (ψ
∗
δ u) = ψ∗

δ Z j u.

Next, one checks easily that ψ∗
δ u ∈ C∞(Hn) and ψ∗

δ u → u in L p(Hn), ψ∗
δ Z j u →

Z j u in L2(Hn), as δ → 0. Therefore one can restrict the class of test functions to
C∞(Hn).

Consider φ ∈ C∞(Hn) such that φ(x) = 1 for |x | < 1, φ(x) = 0 for |x | > 2,
and 0 ≤ φ(x) ≤ 1, for any x ∈ Hn . Next, let us set φδ(x) = φ(δx). Then Z jφ

δ is
supported in δ−1 ≤ |x | ≤ 2δ−1 and there is a constant C > 0 such that∣∣Z jφ

δ
∣∣ ≤ Cδ, 1 ≤ j ≤ n.

Consequently
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Hn

∣∣Z j
(
φδu

)∣∣2 θ0 ∧ (dθ0)
n =

∫
Hn

∣∣(Z jφ
δ
)

u + φδZ j u
∣∣2 θ0 ∧ (dθ0)

n

≤
∫

Hn

[(
1 + 1

s

) ∣∣Z jφ
δ
∣∣2 |u|2 + (1 + s)|φδ|2|Z j u|2

]
θ0 ∧ (dθ0)

n

≤ C2
(

1 + 1

s

)∫
Hn

δ2χδ|u|2θ0 ∧ (dθ0)
n + (1 + s)

∫
Hn

|Z j u|2θ0 ∧ (dθ0)
n

for any s > 0. Here

χδ(x) =
{

1, on δ−1 ≤ |x | ≤ 2δ−1,

0, otherwise.

Since ∫
Hn

χδ(x)dx = Cnδ
−(2n+2),

by the Hölder inequality and (2n + 2)(1 − 2
p ) = 2 it follows that

∫
Hn

δ2χδ|u|2dx ≤
(∫

Hn

|u|pχδdx

)2/p

δ2
(∫

Hn

χδ(x)dx

)1−2/p

= C1−2/p
n

(∫
Hn

|u|pχδdx

)2/p

.

This integral tends to zero as δ → 0 (since u ∈ L p(Hn)). Finally, for s and δ suffi-
ciently small we get

lim sup
δ→0

∫
Hn

n∑
j=1

∣∣Z j (φ
δu)

∣∣2 θ0 ∧ (dθ0)
n ≤

∫
Hn

n∑
j=1

|Z j u|2θ0 ∧ (dθ0)
n .

Also, let us note that

lim
δ→0

∫
Hn

|φδu|pθ0 ∧ (dθ0)
n =

∫
Hn

|u|pθ0 ∧ (dθ0)
n;

hence one may restrict the class of test functions to C∞
0 (Hn). �

To see that λ(M) ≤ λ(Hn), let u ∈ C∞
0 (Hn) be such that Bθ0(u) = 1 and Aθ0(u) <

λ(Hn)+ ε. Let us set

u(δ)(x) := δ−nu(δ−1x).

Let ξ ∈ M and let #ξ be a Folland–Stein normal coordinate chart at ξ (cf. Theorem
3.7). Set

v(δ)(η) := u(δ)(#ξ (η)).
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For δ sufficiently small, supp(u(δ)) ⊂ #ξ(�ξ ); hence v(δ) has compact support in
�ξ . Let us extend v(δ) to a function in C∞(M) by setting v(δ) = 0 outside �ξ . It is
immediate that

Bθ0(u(δ)) = Bθ0(u) = 1,

Aθ0(u(δ)) = Aθ0(u) < λ(Hn)+ ε.
Moreover ∫

Hn

|u(δ)|2θ0 ∧ (dθ0)
n = δ2

∫
Hn

|u|2θ0 ∧ (dθ0)
n → 0,

as δ → 0. Then (3.23) implies that

lim
δ→0

Bθ (v(δ)) = 1,

lim
δ→0

Aθ (v(δ)) = Aθ (u) < λ(Hn)+ ε,

with ε > 0 arbitrary; hence λ(M) ≤ λ(S2n+1). �

3.3 A Sobolev-type lemma

To establish the regularity results for�bu = f , and then for the CR Yamabe equation,
we need to prepare the following analogue of the classical Sobolev lemma:

Theorem 3.8. Set X j = Re(Z j ) and X j+n = Im(Z j ), 1 ≤ j ≤ n. There is a
constant Cn > 0 such that(∫

Hn

| f |pθ0 ∧ (dθ0)
n
)2/p

≤ Cn

∫
Hn

2n∑
j=1

|X j f |2θ0 ∧ (dθ0)
n (3.24)

for any f ∈ C∞
0 (Hn), where p = 2 + 2/n.

The proof of Theorem 3.8 requires the fundamental solution to the operator L0. We
shall present a more general result (cf. Theorem 3.9 below) exhibiting the fundamental
solutions for the family of Folland–Stein operators

Lα = − 1
2

n∑
μ=1

(
TμTμ + TμTμ

)+ i α
∂

∂t
,

(for α ∈ C admissible; see the definitions below). The results within the harmonic
analysis on the Heisenberg group that we need are classical and at least partially pre-
sented in book form (cf. E.M. Stein [385]).

Our first task is to write (1.146) for the Heisenberg group M = Hn (carrying
the standard strictly pseudoconvex CR structure). Let ψ ∈ �0,q+1(Hn). The Tanaka–
Webster connection of Hn is flat; hence (1.146) becomes
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�bψ = −
(

hλμ̄∇λ∇μ̄ψᾱ1···ᾱq+1 + 2i(q + 1)∇0ψᾱ1···ᾱq+1

)
θ ᾱ1 ∧ · · · ∧ θ ᾱq+1 .

Also

�ᾱ
μβ̄

= �ᾱ
μ̄β̄

= �ᾱ
0β̄

= 0

and hence we may replace the covariant derivatives by ordinary derivatives

∇0ψᾱ1···ᾱq+1 = 1

(q + 1)!
T (ψᾱ1···ᾱq+1),

∇λ∇μ̄ψᾱ1···ᾱq+1 = 1

(q + 1)!
TλTμ̄ψᾱ1···ᾱq+1 ,

where Tλ are given by (1.25) and T = ∂/∂t . Next, using the commutation formula
[Tα, Tβ̄ ] = −2iδαβT we may calculate �bψ as follows:

�bψ = − 1

(q + 1)!

{
δλμTλTμ̄ψᾱ1···ᾱq+1 + 2i(q + 1)T

(
ψᾱ1···ᾱq+1

)}
θ ᾱ1 ∧ · · · ∧ θ ᾱq+1

= − 1

(q + 1)!

n∑
λ=1

{
1
2 TλTλ̄ψᾱ1···ᾱq+1 + 1

2 (Tλ̄Tλ − 2iT )ψᾱ1···ᾱq+1

+ 2i(q + 1)T
(
ψᾱ1···ᾱq+1

) }
θ ᾱ1 ∧ · · · ∧ θ ᾱq+1 .

Therefore, we may adopt the following definition:

Definition 3.9. Let Tλ be the Lewy operators on the Heisenberg group Hn and T =
∂/∂t . The differential operators Lα (α ∈ C), given by

Lα = − 1
2

n∑
λ=1

(
TλTλ̄ + Tλ̄Tλ

)+ iαT,

are called the Folland–Stein operators. �

Proposition 3.1. The Kohn–Rossi operator of (Hn, θ0) is given by

�bψ = 1

(q + 1)!

(Ln−2(q+1)ψᾱ1···ᾱq+1

)
θ ᾱ1 ∧ · · · ∧ θ ᾱq+1 , (3.25)

for any ψ ∈ �0,q+1(Hn).

A fundamental solution for L0 has been determined by G.B. Folland [146]. Pre-
cisely, there is a constant c0 �= 0 such that ϕ0 : Hn \{0} → R given by ϕ0(x) = |x |−2n

satisfies L0ϕ0 = c0δ, where δ is the Dirac distribution (concentrated in zero). Fol-
lowing G.B. Folland and E.M. Stein [150], we obtain fundamental solutions for the
operators Lα . Let us consider

ϕα(z, t) = |(z, t)|−2n f

(
t

|(z, t)|2
)
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and look for the unknown function f (ω) such that Lαϕα = 0 on Hn \ {0}. Let us set
ω = t/|(z, t)|2. Then

∂ω

∂t
= |x |−2(1 − ω2),

∂ω

∂ z̄ j
= −t |x |−6‖z‖2z j ,

where x = (z, t). Using (1.25) one may write Lα in the following form:

Lα = −
n∑

j=1

{
∂2

∂z j∂ z̄ j
+ |z j |2 ∂

2

∂t2
− i

∂

∂t

(
z j ∂

∂z j
− z̄ j ∂

∂ z̄ j

)}
+ iα

∂

∂t
.

Taking into account

∂ϕα

∂z j
= −|x |−2(n+2)‖z‖2 z̄ j [n f (ω)+ ω f ′(ω)],

∂ϕα

∂t
= −|x |−2(n+1)[nω f (ω)+ (ω2 − 1) f ′(ω)],

one obtains

∂2ϕα

∂t2
= |x |−2(n+2)

{
n[(n + 2)ω2 − 1] f (ω)

+ (2n + 3)ω(ω2 − 1) f ′(ω)+ (ω2 − 1)2 f ′′(ω)
}
,

∂2ϕα

∂ z̄ j∂z j
= |x |−2(n+4)‖z‖2|z j |2[(n + 1)ω f ′(ω)+ ω2 f ′′(ω)]

− |x |−2(n+2)[‖z‖2 + |z j |2 − (n + 2)‖z‖4|z j |2|x |−4][n f (ω)+ ω f ′(ω)].

Then one may write Lαϕα = 0 as

|x |−6‖z‖6[(n + 1)ω f ′(ω)+ ω2 f ′′(ω)]
− |x |−2‖z‖2[n + 1 − (n + 2)‖z‖4|x |−4][n f (ω)+ ω f ′(ω)]

+ ‖z‖2|x |−2{n[(n + 2)ω2 − 1] f (ω)+ (2n + 3)ω(ω2 − 1) f ′(ω)
+ (ω2 − 1)2 f ′′(ω)} + iα[nω f (ω)+ (ω2 − 1) f ′(ω)] = 0.

Finally, using 1 − ω2 = |x |−4‖z‖4, the above ODE may be written as

(1 − ω2)3/2 f ′′(ω)− (1 − ω2)1/2[(n + 1)ω + iα(1 − ω2)1/2] f ′(ω)
+ inαω f (ω) = 0. (3.26)

Since 1 − ω2 = |x |−4‖z‖4 > 0 we may set ω = cos θ , 0 ≤ θ ≤ π , and g(θ) =
f (cos θ). Consequently (3.26) becomes

(sin θ)g′′(θ)+ (n cos θ + iα sin θ)g′(θ)+ inα(cos θ)g(θ) = 0,

or
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(sin θ)

d

dθ
+ n cos θ

][ d

dθ
+ iα

]
g(θ) = 0. (3.27)

Note that g(θ) = ce−iαθ are bounded solutions of (3.27). Since e−iθ = ω− i
√

1 − ω2

we obtain

f (ω) = c
( t − i‖z‖2

|x |2
)α
.

Let c = iα . Then

ϕα(z, t) = (‖z‖2 − i t
)−(n+α)/2(‖z‖2 + i t

)−(n−α)/2
. (3.28)

We are in a position to prove the following theorem:

Theorem 3.9. (G.B. Folland and E.M. Stein [150])

Lαϕα = cαδ,

where cα is given by

cα = 22−2nπn+1

�
( n+α

2

)
�
( n−α

2

) .
Proof. Let ε > 0 and let us set

ρε(z, t) = ‖z‖2 + ε2 − i t, ϕα,ε = ρ−(n+α)/2
ε ρ̄−(n−α)/2

ε .

Then ϕα,ε is a C∞ function on Hn , and we may prove the following lemma:

Lemma 3.5. ϕα,ε → ϕα as ε → 0, in distribution sense.

Indeed, let ψ ∈ C∞
0 (Hn). We must show that

lim
ε→0

∫
Hn

ϕα,ε(x)ψ(x)dV (x) =
∫

Hn

ϕα(x)ψ(x)dV (x), (3.29)

where dV (x) = 2−ndx and dx is the Lebesgue measure on R2n+1. Clearly ϕα,ε(x)→
ϕα(x) as ε → 0, at any x ∈ Hn . Let us set K = supp(ψ) and �ψ = supK |ψ | > 0.
Let us recall that for any a, s ∈ C one has

|as | = |a|Re(s)e−Im(s) arg(a) ,

where arg : C → [−π, π). Let x ∈ K . Then

|ϕα,ε(x)ψ(x)| ≤ �ψ |ϕα,ε(x)| = �ψ |ρε(x)|−neIm(α) arg(ρε(x))

≤ �ψ |(‖z‖2 + ε2)2 + t2|−n/2eIm(α)π ≤ �ψeπ Im(α)|x |−2n .

On the other hand, for any u ∈ Hn we have
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|u| ≤ 1 �⇒ ‖u‖ ≤ |u| ≤ ‖u‖1/2.

Hence∫
K

|x |−2ndV =
∫

K∩{|x |≤1}
|x |−2ndV +

∫
K∩{|x |>1}

|x |−2ndV

≤ A +
∫

K∩{|x |≤1}
|x |−2ndV ≤ A +

∫
K∩{|x |≤1}

‖x‖−2n2−ndx

= A + 2−n
∫ 1

0

(∫
‖x‖=ρ

ρ−2ndσ(x)

)
dρ = A + 2−nω2n ,

for some constant A > 0. Here ωN is the “area” of the sphere SN . Hence one may
apply Lebesgue’s convergence theorem to obtain (3.29). �
Next, let us set

ψα,ε = Lαϕα,ε .

Lemma 3.6. ψα,ε → cαδ, as ε → 0.

Let a ∈ C. Note that

Tj (ρ
a
ε ) = 2az̄ jρa−1

ε , Tj (ρ̄
a
ε ) = Tj̄ (ρ

a
ε ) = 0, T (ρa

ε ) = −iaρa−1
ε ,

where Tj = ∂/∂z j + i z̄ j∂/∂t and T = ∂/∂t . Let us write ρ = ρε , for simplicity.
Then, for any a, b ∈ C, we have

Tj Tj̄ (ρ
a ρ̄b) = 2bρa ρ̄b−1 + 4abρa−1ρ̄b−1|z j |2,

T (ρa ρ̄b) = iρa−1ρ̄b−1(−aρ̄ + bρ).

Due to the commutation formula [Tj , Tj̄ ] = −2iT the operator

Lα = − 1
2

n∑
j=1

(Tj Tj̄ + Tj̄ Tj )+ iαT

may be also written as

Lα = −
n∑

j=1

Tj Tj̄ + i(α − n)T .

In particular for

a = −n + α
2

, b = −n − α
2

we have
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ψα,ε = Lαϕα,ε = Lα
(
ρ−(n+α)/2
ε ρ̄−(n−α)/2

ε

)
= ρ−(n+α+2)/2ρ̄−(n−α+2)/2

{
n(n − α)ρ − (n2 − α2)‖z‖2

− 1
2 (α − n)2ρ + 1

2 (n
2 − α2)ρ̄

}
.

Next, since ρ = ‖z‖2 + ε2 − i t , we may write ψα,ε as

ψα,ε(z, t) = ε2(n2 − α2)
(‖z‖2 + ε2 − i t

)−(n+α+2)/2(‖z‖2 + ε2 + i t
)−(n−α+2)/2

,

whence

ψα,ε = ε−2n−2ψα,1 ◦ δ1/ε;
hence ∫

Hn

ψα,εdV =
∫

Hn

ψα,1dV . (3.30)

This may be checked by a change of variable (z′, t ′) = δ1/r (z, t) under the first integral
sign in (3.30) (since dV ′ = ε−2n−2dV ). Let us set

cα =
∫

Hn

ψα,1dV . (3.31)

Let ϕ ∈ C∞
0 (Hn) be an arbitrary test function. We must show that

lim
ε→0

∫
Hn

ψα,εϕdV = cαϕ(0).

Using (3.30) we may perform the following estimates:∣∣∣∣∫
Hn

ψα,εϕdV − cαϕ(0)

∣∣∣∣ =
∣∣∣∣∫

Hn

ψα,εϕdV − ϕ(0)
∫

Hn

ψα,1dV

∣∣∣∣
=
∣∣∣∣∫

Hn

ψα,ε(ϕ − ϕ(0))dV

∣∣∣∣ ≤
∫

Hn

|ψα,ε | |ϕ − ϕ(0)|dV ≤ �ϕ
∫

K
|ψα,ε |dV → 0,

as ε → 0. Here �ϕ = supK |ϕ − ϕ(0)| and K = supp(ϕ). �
Summing up, we have proved that

ϕα,ε → ϕα , Lαϕα,ε → cαδ,

as ε → 0, in the sense of distributions, where cα is given by (3.31).

At this point we may show that Lαϕα = cαδ. Indeed, let u ∈ C∞
0 (Hn). Then∫

Hn

(Lαϕα)u dV =
∫

Hn

ϕα(L∗
αu)dV

= lim
ε→0

∫
Hn

ϕα,ε(L∗
αu)dV = lim

ε→0

∫
Hn

(Lαϕα,ε)u dV = cαδ(u),

by the Lagrange-Green identity. �
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To finish the proof of Theorem 3.9 we compute the constants (3.31). Let us set

β = 1
2 (n + α + 2), γ = 1

2 (n − α + 2).

Let A(z) be a positive function of z. Then∫
R
(A − i t)−β(A + i t)−γ dt = A−β−γ

∫
R

(
1 − i

t

A

)−β (
1 + i

t

A

)−γ
dt

= A−n−1
∫

R
(1 − iτ)−β(1 + iτ)−γ dτ.

In particular, for A = ‖z‖2 + 1, since dV = 2−ndx dy dt (with z j = x j + iy j , 1 ≤
j ≤ n) we have

cα =
∫

Hn

ψα,1dV =
∫

Hn

(n2 − α2)(A − i t)−β(A + i t)−γ dV

= 2−n(n2 − α2)

∫
R2n

(∫
R
(A − i t)−β(A + i t)−γ dt

)
dx dy

= 2−n(n2 − α2)

∫
R2n

A−n−1
(∫

R
(1 − iτ)−β(1 + iτ)−γ dτ

)
dx dy,

that is,

cα = 2−n(n2 − α2)

(∫
Cn
(‖z‖2 + 1)−n−1dx dy

)
×
(∫

R
(1 − i t)−β(1 + i t)−γ dt

)
. (3.32)

The integrals in (3.32) may be computed as follows. First∫
R2n
(‖z‖2 + 1)−n−1dx dy =

∫ ∞

0

(∫
‖z‖=ρ

(ρ2 + 1)−n−1dσ(x, y)

)
dρ

= ω2n−1

∫ ∞

0
(ρ2 + 1)−n−1ρ2n−1dρ = 1

2ω2n−1

∫ ∞

1
s−n−1(s − 1)n−1ds,

where we set s = ρ2 + 1. Moreover, ω2n−1 = 2πn/�(n) and (by setting σ = 1/s)
we get ∫

R2n
(‖z‖2 + 1)−n−1dx dy = πn

�(n)

∫ 1

0
(1 − σ)n−1dσ = πn

�(n + 1)

(because of �(n) = (n−1)!). The second integral is more difficult to compute. Assume
for the time being that α ∈ [−n, n]. Then β ≥ 1 , γ ≥ 1. We shall make use of the
identity ∫ ∞

0
e−sx xγ−1dx = �(γ )s−γ , (3.33)
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which holds for any complex number s in the domain

{s ∈ C : Re(s) > 0}.
In particular for s = 1 + i t we get

(1 + i t)−γ �(γ ) =
∫ ∞

0
e−i xt e−x xγ−1dx,

which may be written as

(1 + i t)−γ �(γ ) = f̂ (t), (3.34)

where f is defined by

f (x) =
{

e−x xγ−1 x > 0,

0 x ≤ 0,

and f̂ is its Fourier transform

f̂ (t) =
∫

R
e−i xt f (x)dx .

Similarly (i.e., again by (3.33)) we obtain

(1 − i t)−β�(β) = ĝ(t), (3.35)

where

g(y) =
{

0 y ≥ 0,

e|y||y|β−1 y < 0.

Note that ∫
R

f̂ (t)ĝ(t)dt = 2π
∫

R
f (x)g(−x)dx . (3.36)

The 2π factor appears due to our choice of definition for f̂ (in comparison with the
usual one; cf. [147], p. 20) together with Proposition 0.26 in [147], p. 23. Let us multi-
ply (3.34)–(3.35) term by term and integrate over R in the resulting identity. Then (by
(3.36)) we obtain

�(β)�(γ )

∫
R
(1 − i t)−β(1 + i t)−γ dt = 2π

∫ ∞

0
e−2x xndx,

or (by (3.33) for s = 2 and γ = n + 1)∫
R
(1 − i t)−β(1 + i t)−γ dt = π�(n + 1)2−n

�(β)�(γ )
, (3.37)
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for any α ∈ [−n, n]. Returning to general α ∈ C, we may write∫
R
(1 − i t)−β(1 + i t)−γ dt =

∫
R
(1 − i t)−(n+α+2)/2(1 + i t)−(n−α+2)/2dt

=
∫

R
(1 + t2)−(n+2)/2(1 − i t)−α/2(1 + i t)α/2dt

and

(1 − i t)−α/2(1 + i t)α/2 = e−α/2 log(1−i t)eα/2 log(1+i t) = eiα arctan t ,

that is, ∫
R
(1 − i t)−β(1 + i t)−γ dt =

∫
R
(1 + t2)−(n+α)/2eiα arctan t dt;

hence α !→ ∫
R(1 − i t)−β(1 + i t)−γ dt is a holomorphic function on C. Thus∫

R
(1 − i t)−β(1 + i t)−γ dt − 2−nπ�(n + 1)

�(β)�(γ )

is a holomorphic function of α and therefore vanishes identically (otherwise, by Propo-
sition 4.1 in [89], p. 41, it would have a discrete set of zeros; yet (by (3.37)) it vanishes
on [−n, n], a contradiction). Summing up, we have computed both integrals in (3.32),
so that cα may be written

cα = 22−2nπn+1

�
( n+α

2

)
�
( n−α

2

)
and Theorem 3.9 is completely proved. �

Note that cα = 0 if and only if α ∈ {±n,±(n + 2),±(n + 4), . . . }.
Definition 3.10. We call α ∈ C admissible if cα �= 0. �

Let α ∈ C be admissible. Then

�α = 1

cα
ϕα

is a fundamental solution for Lα with source at 0, i.e., Lα�α = δ. �
Before attacking the proof of the announced Sobolev-type lemma, we also need to

analyze the solutions to the equation Lα f = g. Let D′(Hn) be the space of distribu-
tions, and E ′(Hn) the space of distributions of compact support on Hn .

Definition 3.11. Given f, g : Hn → C the convolution product of f, g is given by

( f ∗ g)(x) =
∫

Hn

f (y)g(y−1x)dV (y). �
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Then we have also

( f ∗ g)(x) =
∫

Hn

f (xy−1)g(y)dV (y).

The proof is an elementary exercise involving a change of variables via the diffeomor-
phism h : Hn → Hn , h(y) = y−1x . If x = (w, s), y = (z, t) and w j = u j + iv j ,
z j = x j + iy j , then h is given by

h j (x, y, t) = u j − x j , hn+ j (x, y, t) = v j − y j ,

h2n+1(x, y, t) = s − t + 2
n∑

j=1

(x jv j − y j u j ),

with the Jacobian

det

⎡⎣−δi
j 0 0

0 −δi
j 0

2v j −2u j −1

⎤⎦ = −1. �

Let us set g̃(x) = g(x−1) for any x ∈ Hn . Then∫
Hn

( f ∗ g)(x)h(x)dV (x) =
∫

Hn

(∫
Hn

f (y)g(y−1x)dV (y)

)
h(x)dV (x)

=
∫

Hn

f (y)

(∫
Hn

h(x)g(y−1x)dV (x)

)
dV (y)

=
∫

Hn

f (y)

(∫
Hn

h(x)g̃(x−1 y)dV (x)

)
dV (y);

hence ∫
Hn

( f ∗ g)(x)h(x)dV (x) =
∫

Hn

f (y)(h ∗ g̃)(y)dV (y), (3.38)

whenever both sides make sense. �
Let f ∈ C∞

0 (Hn) and α ∈ C admissible. Let us set as before �α = ϕα/cα , where
ϕα is given by (3.28).

Definition 3.12. Let us define Kα : C∞
0 (Hn)→ C∞(Hn) by setting

Kα f = f ∗�α . �

Proposition 3.2. (G.B. Folland and E.M. Stein [150])
For any f ∈ C∞

0 (Hn) and any admissible value of α ∈ C we have

LαKα f = KαLα f = f.
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Proof. Lα is an invariant differential operator, i.e.,

Lα(g ◦ Lx ) = (Lαg) ◦ Lx ,

for any x ∈ Hn (where Lx : Hn → Hn is given by Lx (y) = xy, for any y ∈ Hn) and
any g ∈ C∞(Hn). Consequently

(LαKα f )(x) = (Lα)x
∫

Hn

f (y)�α(y
−1x)dV (y)

=
∫

Hn

(Lα(�α ◦ L y−1)
)
(x)dV (y)

=
∫

Hn

f (y) (Lα�α) (y−1x)dV (y)

=
∫

Hn

f (xy−1) (Lα�α) (y)dV (y)

= (Lα�α) (gx ) = δ(gx ) = gx (0) = f (x),

where gx is defined by gx (y) = f (xy−1) for any y ∈ Hn . We therefore have

LαKα f = f. (3.39)

To prove the remaining identity in Proposition 3.2, let g ∈ C∞
0 (Hn). Note that c−α =

cα hence if α is admissible, then −α is admissible as well. Since (3.39) holds for any
admissible value of α and any test function f , we have∫

Hn

g(x) f (x)dV (x) =
∫

Hn

(L−αK−αg) (x) f (x)dV (x).

We shall make use of the following lemma:

Lemma 3.7. L∗
α = Lᾱ .

The adjoint L∗
α of Lα is defined by∫

Hn

(Lαϕ)ψdV =
∫

Hn

ϕL∗
αψdV .

We shall prove Lemma 3.7 later on. For the time being, by Lemma 3.7, we have∫
Hn

(L−αK−αg) f dV =
∫

Hn

(L−αK−αg) f̄ dV

=
∫

Hn

(K−αg)L∗−α f̄ dV =
∫

Hn

(K−αg)L−ᾱ f̄ dV .

But

L−ᾱ =
(

− 1
2

n∑
j=1

(
Tj Tj̄ + Tj̄ Tj

)
+ i(−ᾱ)T

)−

= − 1
2

n∑
j=1

(
Tj̄ Tj + Tj Tj̄

)
+ iαT = Lα;
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hence

L−ᾱ = Lα .

Summing up, we have (by (3.38))∫
Hn

g f dV =
∫

Hn

(K−αg) (Lα f ) dV

=
∫

Hn

(g ∗�−α) (Lα f ) dV =
∫

Hn

g
(
(Lα f ) ∗ �̃−α

)
dV .

Finally, because of

�̃−α(x) = �−α(x−1) = 1

cα
ϕ−α(x−1) = 1

cα
ϕα(x) = �α(x)

we have ∫
Hn

g f dV =
∫

Hn

g((Lα f ) ∗�α)dV =
∫

Hn

g(KαLα f )dV ;

hence f = KαLα f , and Proposition 3.2 is completely proved. �

At this point we may prove Lemma 3.7. Indeed, Lemma 3.7 follows from T ∗
j =

−Tj̄ , T ∗̄
j

= −Tj (hence (Tj Tj̄ )
∗ = Tj Tj̄ ) and from

(i(α − n)T )∗ = i(ᾱ − n)T .

In turn, the proof of these identities is mere computation. For instance∫
Hn

(Tjϕ)ψdV =
∫

Hn

((
∂

∂z j
+ i z̄ j ∂

∂t

)
ϕ

)
ψdV

= −
∫

Hn

ϕ
∂ψ

∂z j
dV − i

∫
Hn

ϕ
∂

∂t

(
z̄ jψ

)
dV

=
∫

Hn

ϕ

(
− ∂ψ
∂ z̄ j

+ i z j ∂ψ

∂t

)−
dV .

The operator Kα is clearly continuous from C∞
0 (Hn) to C∞(Hn)with the usual topolo-

gies; hence we may consider the induced operator (Kα)′ : E ′(Hn)→ D′(Hn) given by(
(Kα)

′ T
)
(ϕ) = T (Kαϕ),

for any T ∈ E ′(Hn) and ϕ ∈ C∞
0 (Hn). As is well known, there are natural inclu-

sions C∞
0 (Hn) → E ′(Hn) and C∞(Hn) → D′(Hn), e.g., if ϕ ∈ C∞

0 (Hn) then one
may define ϕ : C∞(Hn) → C by ϕ(ψ) = ∫

Hn
ϕψ dV . The following diagram is

commutative:



188 3 The CR Yamabe Problem

C∞
0 (Hn) −→ E ′(Hn)

Kα ↓ ↓ (K−α)′
C∞(Hn) −→ D′(Hn)

(where horizontal arrows are natural inclusions), that is, (K−α)′ extends Kα to E ′(Hn).
Indeed (by (3.38)),(
(K−α)′ ϕ

)
(u) = ϕ(K−αu)

=
∫

Hn

ϕ (K−αu) dV =
∫

Hn

ϕ(u ∗�−α)dV =
∫

Hn

u
(
ϕ ∗ �̃−α

)
dV .

But �̃−α = �α; hence(
(K−α)′ ϕ

)
(u) =

∫
Hn

u (ϕ ∗�α) dV =
∫

Hn

u (Kαϕ) dV = Kαϕ(u)

for any ϕ, u ∈ C∞
0 (Hn). Similarly, it is easy to see that the following diagrams are

commutative:

C∞
0 (Hn) −→ E ′(Hn)

Lα ↓ ↓ (L−α)′
C∞

0 (Hn) −→ E ′(Hn)

and

C∞(Hn) −→ D′(Hn)

Lα ↓ ↓ (L−α)′
C∞(Hn) −→ D′(Hn)

We agree to denote both the operator Kα (respectively Lα) and its extension (K−α)′
(respectively (L−α)′) by the same symbol Kα (respectively by Lα).

Corollary 3.1. (G.B. Folland and E.M. Stein [150])
Let α ∈ C be admissible. Then

(i) For any F ∈ E ′(Hn) we have

LαKαF = KαLαF = F.

(ii) Lα is locally solvable, i.e., for any g ∈ E ′(Hn) there is f ∈ D′(Hn) such that
Lα f = g.

(iii) The equation Lα f = 0 has no nontrivial solutions in E ′(Hn).

Proof. To prove (i) we may perform (by Proposition 3.2) the following calculation:

(LαKαF) (ϕ) = (
(L−α)′ (K−α)′ F

)
(ϕ)

= (
(K−αL−α)′ F

)
(ϕ) = F (K−αL−αϕ) = F(ϕ),

for any ϕ ∈ C∞
0 (Hn), etc. Next, (ii) follows from (i) by setting f = Kαg. Finally, to

prove (iii) we assume that Lα f = 0, for some f ∈ E ′(Hn), f �= 0. Then we apply Kα
and use (i) to get 0 = KαLα f = f , a contradiction. �
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By a result of G.B. Folland and E.M. Stein (cf. Proposition 7.5 in [150], p. 444),
Lα is hypoelliptic if and only if α is admissible. Hence the Lα furnish an example3 of
a family of operators of the form A + αB, where A is second-order hypoelliptic and
B is first-order, that are hypoelliptic for all but an infinite discrete set of values of the
parameter α. According to a result by L. Hörmander [213], this phenomenon cannot
occur for operators with real coefficients. �

Let us return to the Sobolev-type lemma.

Proof of Theorem 3.8. By Theorem 3.9, let

�0(x) = an|x |−2n, an := 1

c0
= 22n−2�( n

2 )
2

πn+1
,

be the fundamental solution of L0 = −∑2n
j=1 X2

j (i.e., L0�0 = δ). Next, let us
consider

K0 : C∞
0 (Hn)→ C∞

0 (Hn), K0 f = f ∗�0 ,

where ∗ is the convolution product. Then (by Proposition 3.2)

K0L0 f = f,

for any f ∈ C∞
0 (Hn). Also, since X j is left invariant, if g ∈ C∞

0 (Hn) then

K0(X j g) = g ∗ (X j�0);
hence

f = K0L0 f = (L0 f ) ∗�0 = −
2n∑
j=1

(X j f ) ∗ (X j�0).

Note that X j�0 is homogeneous of degree −2n − 1. In particular

|(X j�0)(x)| ≤ C |x |−2n−1.

Now Theorem 3.8 follows from the following theorem:

3 Generalized by F. De Mari, M.M. Peloso, and F. Ricci [114] (a generalization further in-
vestigated by D. Müller, M.M. Peloso, and F. Ricci [318]) as follows. Let J := ( 0 In−In 0

)
and recall that S ∈ Sp(n,C) if St J S = J (where St is the transpose). Moreover, set
P+

n := {S ∈ Sp(n,C) : S = St , Re(S) ≥ 0}. Given S ∈ P+
n and α ∈ C, the second-order

differential operator �S,α , on the Heisenberg group Hn , defined by

�S,α := − 1
4 (X1, . . . , Xn, Y1, . . . , Yn) S (X1, . . . , Xn, Y1, . . . , Yn)

t + iαT

is left-invariant and homogeneous with respect to the dilations δs . Clearly, �I2n ,α are the
Folland–Stein operators Lα (treated above). D. Müller, M.M. Peloso, and F. Ricci discuss
(cf. op. cit.) the solvability of �S,α (certain operators �S,α turn out to be solvable, while
their transposes are not). Another reason that we mention the work by D. Müller et al. is that
no (more refined) regularity results for �S,α are known (e.g., there is no �S,α-analogue to
Theorem 9.5 in [150], p. 457).
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Theorem 3.10. (E.M. Stein [383])
If F is a regular homogeneous distribution of degree λ, with −2n − 2 < λ < 0,
then the map ϕ !→ ϕ ∗ F extends to a bounded map from L p to Lq , where 1/q =
1/p − λ/(2n + 2)− 1, provided that 1 < p < q < ∞, and from L1 to L−(2n+2)/λ−ε

loc
for any ε > 0.

Indeed, if 0 < α < 2n + 2 and |H(x)| ≤ C |x |−2n−2+α then (by Theorem 3.10) the
map g !→ g ∗ H extends to a bounded map Lr (Hn)→ L2(Hn), where 1

s = 1
r − α

2n+2
and 1 < r < s <∞. Now let us set α = 1, r = 2, and s = p. �

For the sake of completeness, we end this section with a discussion of homoge-
neous distributions, as appearing in Theorem 3.10.

Definition 3.13. Let x ∈ Hn . The translation operators

τx , τ
x : C∞(Hn)→ C∞(Hn)

are defined by setting

(τx f ) (y) = f (x−1 y),
(
τ x f

)
(y) = f (yx−1),

for any f ∈ C∞(Hn) and any y ∈ Hn . Also we define the reflection operator

J : C∞(Hn)→ C∞(Hn)

by setting (J f )(y) = f (y−1), for any y ∈ Hn . �

Definition 3.14. For ϕ ∈ C∞
0 (Hn) and G ∈ D′(Hn) we consider the C∞ functions

G ∗ ϕ and ϕ ∗ G given by

(G ∗ ϕ)(x) = G(Jτxϕ), (ϕ ∗ G)(x) = G(Jτ xϕ).

For v ∈ T0(Hn), i.e., for any vector v tangent to Hn at the origin, we consider the
distribution Dv ∈ E ′(Hn) given by

Dv f = −(d0 f )v. �

Let Lv and Rv be the left-invariant and right-invariant extensions of v, respectively.
Then Lv f = f ∗ Dv and Rv f = Dv ∗ f . For 1 ≤ α ≤ n let us set

vα = 1
2
∂

∂xα

∣∣∣
0
, vα+n = 1

2
∂

∂yα

∣∣∣
0
,

D j = Dv j , L j = Lv j , R j = Rv j ,

where {v j } = {vα, vα+n}. With this notation,

Xα = 2Lα, Yα = 2Lα+n, T = ∂

∂t
= [Lα+n, Lα].
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Definition 3.15. For a function f on Hn and r > 0 we define

fr (x) = f (Dr (x)), x ∈ Hn ,

where Dr is the dilation Dr (z, t) = (r z, r2t). We say that f is homogeneous of degree
λ if fr = rλ f , r > 0. �

The notion of homogeneity extends to distributions as follows.

Definition 3.16. Let us set

f r (x) = r−2n−2 f (δ1/r (x)), r > 0, x ∈ Hn .

Next, let F ∈ D′(Hn) and r > 0. We say that F is homogeneous of degree λ if

F(ϕr ) = rλF(ϕ),

for any ϕ ∈ C∞
0 (Hn) and any r > 0. �

Proposition 3.3. If F ∈ D′(Hn) is homogeneous of degree λ then L j F and R j F are
homogeneous of degree λ− 1, 1 ≤ j ≤ 2n.

The proof is elementary. One is mainly interested in functions and distributions that are
homogeneous of degree −2n−2, since this is the exponent on the edge of integrability
at 0 and ∞. The first step is to define a notion of mean value for such functions. We
shall need the following result:

Proposition 3.4. (G.B. Folland and E.M. Stein [150])
Let f be a homogeneous function of degree −2n − 2 that is locally integrable away
from the origin. There is a constant μ f such that∫

Hn

f (x)g(|x |)dV (x) = μ f

∫ ∞

0

g(r)

r
dr (3.40)

for all measurable functions g on (0,∞) such that both integrals are defined.

To prove Proposition 3.4 let us set

A f (r) =

⎧⎪⎪⎨⎪⎪⎩
∫

1≤|x |≤r
f (x)dV (x) for r ≥ 1,

−
∫

r≤|x |≤1
f (x)dV (x) for 0 < r < 1.

Then A f is continuous on (0,∞) and A f (rs) = A f (r) + A f (s) (because of
dV (δε(x)) = ε2n+2dV (x)). Hence A f (r) = μ f log r for some (unique) constant
μ f , i.e., Proposition 3.4 is proved when g is the characteristic function of an interval.
By forming linear combinations and passing to limits one may complete the proof for
an arbitrary measurable function g. �

Definition 3.17. The constant μ f in (3.40) is referred to as the mean value of f . �
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In particular, let f (x) = |x |−2n−2 and let C0 = μ f be its mean value. Also, let g(r)
be rλ times the characteristic function of the interval (a, b) with 0 < a < b < ∞.
Then (3.40) leads to∫

a≤|x |≤b
|x |λ−2n−2dV (x) =

{
C0λ

−1(bλ − aλ), λ �= 0,

C0 log b
a , λ = 0.

(3.41)

Definition 3.18. Let f be a homogeneous function of degree −2n − 2, continuous
away from the origin, and with μ f = 0. Then f gives rise to a distribution PV f
defined by

(PV f )(ϕ) = lim
ε→0

∫
|x |≥ε

f (x)ϕ(x)dV (x)

for any ϕ ∈ C∞
0 (Hn). �

Proposition 3.5.
PV f is a homogeneous distribution of degree −2n − 2.

The proof is left as an exercise to the reader.

Definition 3.19. A distribution F is regular if there is a function f that is C∞ on
Hn \ {0} such that

F(ϕ) =
∫

f ϕdV,

for any ϕ ∈ C∞
0 (Hn \ {0}). �

The following is a result of G.B. Folland and E.M. Stein [150]:

Theorem 3.11. If F is a regular homogeneous distribution of degree λ that agrees
with f ∈ C∞(Hn \ {0}) on Hn \ {0}, then (i) f is homogeneous of degree λ, (ii) if
λ > −2n − 2 then f ∈ D′(Hn) and F = f , and (iii) if λ = −2n − 2 then μ f = 0
and F = PV f + Cδ, for some constant C.

The proof of Theorem 3.11 is beyond the scope of this book. See Proposition 8.5. in
[150], p. 447. Therefore, one is entitled to adopt the following definition:

Definition 3.20. A regular homogeneous distribution of degree −2n −2 is called a PV
distribution. �
Note that by a slight abuse of terminology, one refers to the Dirac δ as a PV distri-
bution. PV distributions play the role of the classical singular integral kernels on the
group Hn . Indeed, the following analogue of the Calderón–Zygmund theorem holds:

Theorem 3.12. (A.W. Knapp, E.M. Stein, R. Coifman, and G. Weiss [240], [105])
If F is a PV distribution then the map ϕ !→ ϕ ∗ F, ϕ ∈ C∞

0 (Hn), extends to a bounded
transformation on L p(Hn), 1 < p <∞.

The proof of Theorem 3.12 is omitted. See A.W. Knapp and E.M. Stein [240], for
p = 2 and A. Korányi and S. Vági [258], or R. Coifman and G. Weiss [105], for the
remaining values of p. Kernels of higher homogeneity are known to satisfy a similar
property; cf. Theorem 3.10 above.
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3.4 Embedding results

Let us consider now the inequality (3.24) for real-valued functions f ∈ C∞
0 (Hn). As

shown above, the class of test functions defining λ(Hn) may be restricted to C∞
0 (Hn);

hence finding λ(Hn) is equivalent to finding the best constant Cn in (3.24). In particu-
lar, Theorem 3.8 is equivalent to λ(Hn) > 0.

Let U be a relatively compact open subset of a normal coordinate neighborhood
�ξ ⊂ M , as in Theorem 3.7. With the notation there, if X j = Re(W j ), X j+n =
Im(W j ), we set

Xα = Xα1 · · · Xαk , α = (α1, . . . , αk), 1 ≤ α j ≤ 2n.

If α = (α1, . . . , α�) set �(α) = �. Consider the norms

‖ f ‖S p
k (U )

= sup
�(α)≤k

‖Xα f ‖L p(U ), (3.42)

where

‖g‖L p(U ) =
( ∫

U
|g|pθ ∧ (dθ)n

)1/p
.

Definition 3.21.
The Folland–Stein space S p

k (U ) is the completion of C∞
0 (U ) under the norm (3.42).

�
Hölder spaces suited to (regularity properties of) �b may be introduced as well. Con-
sider the distance function

ρ(ξ, η) = |#(ξ, η)|
(Heisenberg norm) on U .

Definition 3.22. Let 0 < β < 1 and let

�β(U ) = { f ∈ C0(U ) : | f (x)− f (y)| ≤ Cρ(x, y)β}
with the norm

‖ f ‖�β(U ) = sup
x∈U

| f (x)| + sup
x,y∈U

| f (x)− f (y)|
ρ(x, y)β

.

Next, if k ∈ Z, k ≥ 1, and k < β < k + 1, consider

�β(U ) = { f ∈ C0(U ) : Xα f ∈ �β−k(U ), �(α) ≤ k}
with the norm

‖ f ‖�β(U ) = sup
x∈U

| f (x)| + sup
x,y∈U
�(α)≤k

|(Xα f )(x)− (Xα f )(y)|
ρ(x, y)β−k

. �
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All norms above depend on the choice of pseudo-Hermitian frame.

Definition 3.23. Let M be a compact strictly pseudoconvex CR manifold and let {U j :
1 ≤ j ≤ s} be a finite open cover of M . Let {ϕ j } be a C∞ partition of unity subordinate
to {U j }. We define

S p
k (M) = { f ∈ L1(M) : ϕ j f ∈ S p

k (U ), 1 ≤ j ≤ s}
and

�β(M) = { f ∈ C0(M) : ϕ j f ∈ �β(U j ), 1 ≤ j ≤ s}. �

Then we have the following embedding:

Theorem 3.13. (G.B. Folland and E.M. Stein [150])

Sr
k (M) ⊂ Ls(M), where

1

s
= 1

r
− k

2n + 2
and 1 < r < s <∞.

The proof of Theorem 3.13 relies on the theory of singular integral operators, i.e.,
specifically on Lemma 3.9 below. We need some preparation. Let M be a strictly
pseudoconvex CR manifold, as before, and {Tα} a pseudo-Hermitian frame on some
open set V ⊆ M . By eventually shrinking V we may assume that V is a relatively
compact subset of M . Moreover, as a matter of notation, keeping in mind that our
analysis is purely local, we shall write at times M instead of V .

Definition 3.24. A singular integral operator on M is an operator of the form

A f = lim
ε→0

Aε f,

where

(Aε f )(x) =
∫
{ρ(x,y)>ε}

K (x, y) f (y)dy

and K is a singular integral kernel, i.e., it satisfies to the following requirements:
(1) K ∈ C∞(M × M \�), where � is the diagonal in M × M , (2) the support of K
is contained in � ∩ {(x, y) : ρ(x, y) ≤ 1}, and (3) when ρ(x, y) is sufficiently small
K (x, y) = k(#(y, x)), where k is regular homogeneous of degree −2n −2 with mean
value zero. �

Theorem 3.14. (G.B. Folland and E.M. Stein)
Singular integral operators are bounded on L p, 1 < p <∞.

The proof (cf. [150], pp. 479–486) is quite involved. However, for our needs in this
book only a step in the proof of Theorem 3.14 is actually required. First one needs to
establish the following analogue of the mean value zero property.

Lemma 3.8. Let K be a singular integral kernel. Then∫
{ε<ρ(x,y)<δ}

K (x, y)dy ≤ C(δ − ε),

the constant C being independent of x.
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By a result in Chapter 1,

 = 2nin2
n!θ ∧ θ1 ∧ · · · ∧ θn ∧ θ 1̄ ∧ · · · ∧ θ n̄ .

Also, if  0 = θ0 ∧ (dθ0)
n then

 0 = 2nin2
n!θ0 ∧ dw1 ∧ · · · ∧ dwn ∧ dw̄1 ∧ · · · ∧ dw̄n,

where (w, τ) = (ξ + iη, τ) are the natural coordinates on Hn . We have

#∗
x = f 0 ,

for some f ∈ C∞(Vx ). Then the identity

θ ∧ θ1 ∧ · · · ∧ θn ∧ θ 1̄ ∧ · · · ∧ θ n̄(T, T1, . . . , Tn, T1̄, . . . , Tn̄) = 1

(2n + 1)!

together with

(#x )∗ Tα = ∂

∂wα
+

n∑
β=1

(
O1 ∂

∂wβ
+ O1 ∂

∂w̄β

)
+ O2 ∂

∂τ

(by Theorem 3.5) lead to

f = 1 + O1 .

Let us prove Lemma 3.8. We may assume that δ is small enough so that K (x, y) =
k(#y(x)) = k(−#x (y)) over the region of integration. Then (since μk = 0)∫

ε<ρ(x,y)<δ
K (x, y)dy =

∫
ε<|ξ |<δ

k(−ξ)(1 + O1)dV (ξ)

=
∫
ε<|ξ |<δ

k(−ξ)O1dV (ξ) ≤ C
∫
ε<|ξ |<δ

|ξ |−2n−1dV (ξ) ≤ C(δ − ε)

by (3.41). The uniformity in x is due to the assumption that V is relatively compact,
so the error term in the measure is uniformly O1.

Lemma 3.9. Let f ∈ C∞
0 and A a singular integral operator. Assume that Aε f is

Cauchy in L p (1 ≤ p ≤ ∞) as ε → 0. Then A f exists as a strong L p limit (1 ≤ p ≤
∞).
Proof. Let ε < δ < 1. Then

(Aε f − Aδ f )(x) =
∫
ε<ρ(x,y)<δ

K (x, y) f (y) dy

=
∫
ε<ρ(x,y)<δ

K (x, y)( f (y)− f (x)) dy + f (x)
∫
ε<ρ(x,y)<δ

K (x, y) dy.
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By Lemma 3.8, the second term is ≤ C(δ−ε) f (x). Also, note that f (y)− f (x) = O1

as a function of y. Therefore, the first term is

≤
∫
ε<|ξ |<δ

|ξ |−2n−1dV (ξ) ≤ C(δ − ε).

Hence {Aε f } is Cauchy in the uniform norm; hence (since V has finite volume) it is
Cauchy in L p. �
Proof of Theorem 3.13. By Lemma 3.9 there exist operators A j , 0 ≤ j ≤ 2n, of the
form

A j f (x) =
∫

M
K j (x, y) f (y)dV (y),

∣∣K j (x, y)
∣∣ ≤

{
Cρ(x, y)−2n−1, (x, y) ∈ �,
C, otherwise,

such that

f =
2n∑
j=1

A j X j f + A0 f,

for any f ∈ Sr
1(M). Since f, X j f ∈ Lr (M) it follows (by the analogue of Theorem

3.10 for M , rather than Hn) that f ∈ Ls(M). The proof may be completed by induc-
tion over k. �

We end this section by mentioning the following result (the proof of which requires
the theory of pseudodifferential operators associated with the subelliptic operator �b

(cf. [324]) and a calculus allowing one to define Folland–Stein spaces S p
k (M) for

fractional values of k), as has been announced in [227].

Theorem 3.15. If 1 < r < s < ∞ and 1
s >

1
r − 1

2n+2 then the unit ball in Sr
1(M) is

compact in Ls(M).

3.5 Regularity results

Let U be a relatively compact open set in a normal coordinate neighborhood �ξ , and
(z, t) = #ξ, ξ ∈ U .

Definition 3.25. Given 0 < β < 1 the (standard) Hölder space �β(U ) is defined by

�β(U ) = { f ∈ C0(U ) : | f (x)− f (y)| ≤ C‖x − y‖β},
‖ f ‖�β(U ) = sup

x∈U
| f (x)| + sup

x,y∈U

| f (x)− f (y)|
‖x − y‖β .

Moreover, if k < β < k + 1, with k ∈ Z, k ≥ 1, then we set

�β(U ) = { f ∈ C0(U ) :

(
∂

∂x

)α
f ∈ �β−k(U ), |α| ≤ k}. �
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Theorem 3.16. For any β ∈ (0,∞) \ Z and any 1 < r < ∞, and any k ∈ Z, k ≥ 1,
there is a constant C > 0 such that for any f ∈ C∞

0 (U ):

(1) ‖ f ‖�β(U ) ≤ C‖ f ‖Sr
k (U )

,
1

r
= k − β

2n + 2
;

(2) ‖ f ‖�β/2(U ) ≤ C‖ f ‖�β(U );
(3) ‖ f ‖Sr

2(U )
≤ C

(‖�b f ‖Lr (U ) + ‖ f ‖Lr (U )
) ;

(4) ‖ f ‖�β+2(U ) ≤ C
(‖�b f ‖�β(U ) + ‖ f ‖�β(U )

)
.

The constant C depends only on the frame constants.

Theorem 3.16 with �b replaced by �b is due to G.B. Folland and E.M. Stein; cf.
Theorems 20.1 and 21.1 in [150], p. 515 and p. 517 respectively. The arguments there
apply to�b with only minor modifications. By a partition of unity argument it follows
that the estimates in Theorem 3.16 hold when U is replaced by a compact strictly
pseudoconvex CR manifold M . The estimates in Theorem 3.16 yield the following
regularity result:

Theorem 3.17. (G.B. Folland and E.M. Stein [150])
Let u, v ∈ L1

loc(U ) so that �bu = v in the sense of distributions on U. Then, for any
η ∈ C∞

0 (U ):
(1) if v ∈ Lr (U ), n + 1 < r ≤ ∞, then ηu ∈ �β(U ), where β = 2 − 2n+2

r ;
(2) if v ∈ Sr

k (U ), 1 < r <∞, k = 0, 1, 2, . . . , then ηu ∈ Sr
k+2(U );

(3) if v ∈ �β(U ), β ∈ (0,∞) \ Z, then ηu ∈ �β+2(U ).

The proof of Theorem 3.17 is imitative of that of Theorem A.15. The following result
is a variant of results in [444], and [409]

Theorem 3.18.
Let U be as in Theorem 3.16. Assume that f ∈ Ln+1(U ) and f ∈ L p(U ), with
p = 2 + 2

n and u ≥ 0, and �bu + f u = 0 in the sense of distributions on U. Then
ηu ∈ Ls(U ) for any η ∈ C∞

0 (U ) and any s <∞.

The reader may see the appendix in [227] for a proof.

Theorem 3.19. Under the hypothesis of Theorem 3.18, if additionally f ∈ Ls(U ), for
some s > n + 1, then u is Hölder continuous in U and there is β > 0 such that

‖u‖�β(K ) ≤ C

for any compact set K ⊂ U, where the constant C depends only on the set K , on the
numbers ‖ f ‖Ls (U ) and ‖u‖L p(U ), and on the frame constants.

Proof. Let η j ∈ C∞
0 (U ) such that η j = 1 on K and

supp(η j+1) ⊆ {x ∈ U : η j (x) = 1}, j ≥ 1.

Then

f u ∈ Lq(U ),
1

q
= 1

p
+ 1

s
,
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by the Hölder inequality. Next η1u ∈ Sq
2 (U ), by (2) in Theorem 3.17. Thus

η1u ∈ L p1(U ),
1

p1
= 1

q
− 2

2n + 2
= 1

p
−
[

1

n + 1
− 1

s

]
by Theorem 3.13. An iteration of this argument leads to

ηku ∈ L pk (U ),
1

pk
= 1

p
− k

[
1

n + 1
− 1

s

]
,

for any k for which 1/pk > 0. If k is the largest possible then pk > n + 1 and we get
Hölder regularity

ηk+1u ∈ �β(U ), β = 2 − 2n + 2

pk
,

by (1) of Theorem 8.10 (the bound on ‖u‖�β(K ) follows from Theorem 3.16). �

The following Poincaré-type inequality was established in [225] (the proof there is
for q = 2, yet as indicated in [225], p. 521, the same proof does work for 1 < q <∞):

Theorem 3.20. Let U be as above and Br ⊂ U a ball of radius r with respect to the
distance function ρ. Then for any f with ‖d f ‖θ ∈ Lq(Br ), 1 < q <∞, the following
inequality holds:∫

Br

| f − fBr |qθ ∧ (dθ)n ≤ Crq
∫

Br

‖d f ‖q
θ θ ∧ (dθ)n,

where C > 0 is a constant depending only on the frame constants.

Here we have adopted the following definition:

Definition 3.26.

f A :=

∫
A

f θ ∧ (dθ)n∫
A
θ ∧ (dθ)n

is the average value of f on A. �
Using Theorem 3.20 as the main ingredient, one may adapt J. Moser’s proof (cf. [317])
of the Harnack inequality for uniformly elliptic operators to yield the following result:

Theorem 3.21. Under the hypothesis of Theorem 3.19, if additionally f ∈ L∞(U )
then

max
x∈K

u(x) ≤ C min
x∈K

u(x),

where C is a constant depending on the same bounds as in Theorem 3.19 and in
addition on ‖ f ‖L∞(U ).
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Note that the Poincaré-type inequality above implies the following interpolation in-
equality for the spaces Sq

1 :

Proposition 3.6. If u ∈ L1(U ) and ‖du‖θ ∈ Lq(U ), 1 < q < ∞, then u ∈ Sq
1 (U )

and

‖u‖Sq
1 (U )

≤ C
(‖‖du‖θ‖Lq (U ) + ‖u‖L1(U )

)
,

where the constant C depends only on the frame constants.

Proof. It suffices to estimate ‖u‖Lq (U ):

‖u‖Lq (U ) ≤ C
(‖u − uU‖Lq (U ) + ‖uU‖Lq (U )

)
,

‖uU‖Lq (U ) = C‖uU‖L1(U ) ≤ C
(‖u − uU‖L1(U ) + ‖u‖L1(U )

)
≤ C

(‖u − uU‖Lq (U ) + ‖u‖L1(U )

)
(where uU is the average value of u on U ) and one may apply Theorem 3.20 to end
the proof. �

At this point, we may establish regularity results for the CR Yamabe equation:

Theorem 3.22. (D. Jerison and J.M. Lee [227])
Let U be a relatively compact open subset of a normal coordinate neighborhood. Let
f, g ∈ C∞(U ), u ∈ Lr (U ) for some r > p, and u ≥ 0 on U. Assume that

�bu + gu = f uq−1

in the sense of distributions on U, for some q, 2 ≤ q ≤ p. Then u ∈ C∞(U ), u > 0,
and if K ⊂ U is a compact set, its norm ‖u‖Ck (K ) depends only on K , ‖u‖Lr (U ),
‖ f ‖Ck (K ), ‖g‖Ck (K ), and the frame constants (but not on q).

Proof. Let h = f uq−2 − g ∈ Lr/(q−2)(U ). Then

h ∈ Ls(U ), s = r

p − 2
> n + 1,

by the Hölder inequality. Also ‖h‖Ls (U ) depends only on the bounds stated in Theo-
rem 3.22. Let us choose a compact set K1 such that K ⊂ K1 ⊂ U . Then u ∈ �β(K1)

for some β > 0 (by Theorem 3.19). Then, by Theorem 3.21, u is bounded away
from zero by a constant depending on the same bounds. Since �β(K1) is an alge-
bra, uα ∈ �β(K1) for any α ∈ R. Therefore, by eventually replacing K1 with a
smaller set denoted by the same symbol, h ∈ �β(K1) and (4) in Theorem 3.16 yields
u ∈ �β+2(K1). Finally, (2) in Theorem 3.16 and induction lead to u ∈ Ck(K ) for
any k. �
Corollary 3.2. Let U, f , g, and u be as in Theorem 3.22, except that r = p instead
of r > p. Then u > 0 and u ∈ C∞(U ).

Proof. Consider h = g− f uq−2 and K1 as in the proof of Theorem 3.22. The proof of
Corollary 3.2 is carried out in three steps: (1) h ∈ Ln+1(K1), (2) u ∈ Ls(K1), s < ∞
(by Theorem 3.18), and (3) u > 0 and u ∈ C∞ (by Theorem 3.22). �
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3.6 Existence of extremals

We shall prove now (iii) in Theorem 3.4. To do so, we consider the following perturbed
variational problem. Let M be a compact strictly pseudoconvex CR manifold and θ a
contact form on M . For each q, 2 ≤ q ≤ p, let us set

λq = inf{Aθ (φ) : φ ∈ S2
1(M), Bθ,q = 1}, (3.43)

Bθ,q(φ) =
∫

M
|φ|qθ ∧ (dθ)n .

Theorem 3.23. (D. Jerison and J.M. Lee [227])
If 2 ≤ q < p there is a positive C∞ solution uq to

bn�bv + ρv = λqv
q−1 (3.44)

satisfying Aθ (uq) = λq and Bθ,q(uq) = 1.

Proof. Let φ j be a minimizing sequence for (3.43), i.e.,

Aθ (φ j )→ λq , j → ∞, Bθ,q(φ j ) = 1.

By replacing φ j with |φ j | one may assume that φ j ≥ 0. Since {Aθ (φ j )} and {Bθ,q(φ j )}
are bounded, and {φ j } is bounded in S2

1(M), there is a subsequence converging weakly
in S2

1(M) to some φ ∈ S2
1(M). By Theorem 3.15, this subsequence converges in the

Lq -norm; hence Bθ,q(φ) = 1. Next (by the Hölder inequality)∫
M
ρφ2

j θ ∧ (dθ)n →
∫

M
ρφ2θ ∧ (dθ)n, j → ∞,

and then Aθ (φ) ≤ λq . Yet λq is an infimum; hence we must have equality Aθ (φ) =
λq . Furthermore, since φ ≥ 0, a standard variational argument shows that φ satisfies
(3.44), sense of distributions. Applying Theorem 3.13 we see that φ ∈ L p(U ). Finally,
by Corollary 3.2, φ > 0 and φ ∈ C∞. �

Now we analyze the behavior of uq as q → p. We shall need the following lemma:

Lemma 3.10. Let θ be a contact form on M so that
∫

M θ ∧ (dθ)n = 1.

(1) If λq < 0 for some q, then λq < 0 for any q ≥ 2 and q !→ λq is a nondecreasing
function.

(2) If λq ≥ 0 for some q ≥ 2 (and hence for all, in view of (1)), then q !→ λq is a
nonincreasing function, and it is continuous from the left.

Proof. Assume that λq < 0 for some q . Let s ≥ 2 be arbitrary. Given ε > 0 such that
λq + ε < 0 let φ be a C∞ function such that

Bθ,s(φ) = 1, Aθ (φ) < λq + ε.
Let α ∈ R and set ψ = αφ. Then

Bθ,q(ψ) = αs Bθ,s(φ), Aθ (ψ) = α2 Aθ (φ).
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Choose now α := Bθ,s(φ)−1/s such that

Bθ,s(ψ) = 1, Aθ (ψ) < 0.

Therefore λs < 0. If s ≤ q then α ≥ 1 (by the Hölder inequality and
∫

M θ ∧ (dθ)n =
1). Hence

Aθ (ψ) ≤ λq + ε,
i.e., λq is nondecreasing (as a function of q). �

When λq ≥ 0 the same argument yields s ≥ q �⇒ λs ≤ λq . As s approaches q ,
α approaches 1; hence λq is continuous from the left. �

Theorem 3.24. (D. Jerison and J.M. Lee [227])
Let θ be such that

∫
M θ ∧ (dθ)n = 1 and assume that λ(M) < λ(S2n+1). There is a

sequence q j ≤ p such that q j → p, j → ∞, and such that uq j converges in Ck(M),
for any k, to some u ∈ C∞(M) with u > 0 and

bn�bu + ρu = λ(M)u p−1 ,

Aθ (u) = λ(M), Bθ,p(u) = 1.

Proof. We distinguish two cases: (I) λ(M) < 0, and (II) λ(M) ≥ 0. In the first case,
let 2 ≤ q < p and φ ∈ S2

1(M). Then∫
M

(〈duq , dφ〉 + ρuqφ
)
θ ∧ (dθ)n =

∫
M
λquq−1

q φ θ ∧ (dθ)n,

where uq is furnished by Theorem 3.23. Set φ = uq−1
q in this equation. Since λq < 0,

by Lemma 3.10

q − 1

2

∫
M

uq−2
q ‖duq‖2

θ θ ∧ (dθ)n ≤
∫

M
|ρuq

q |θ ∧ (dθ)n .

Let us set wq := uq/2
q . Then∫

M
‖dwq‖2

θ θ ∧ (dθ)n ≤ C
∫

M
w2

qθ ∧ (dθ)n = C
∫

M
uq

qθ ∧ (dθ)n = C.

By Theorem 3.13∫
M
w

p
q θ ∧ (dθ)n ≤ C

∫
M

(
‖dwq‖2

θ + w2
q

)
θ ∧ (dθ)n;

hence ∫
M
w

p
q θ ∧ (dθ)n ≤ C.
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Let q0 > 2 and r := q0 p
2 > p. Then ‖uq‖Lr (M) is uniformly bounded as q → p, q ≥

q0. Then (by Theorem 3.22) {uq} is uniformly bounded in Ck(M); hence there is a
subsequence uq j convergent in Ck(M), for each k, the limit u of which will satisfy

bn�bu + ρu = λu p−1,

Aθ (u) = λ, Bθ,p(u) = 1, u > 0, u ∈ C∞(M),

where λ = lim j→∞ λq j . By Lemma 3.10 we get λ ≤ λ(M); hence λ = λ(M) (by the
definition of λ(M)). �

Let us look at case II. Then

lim
q→p

λq = λp = λ(M)

by Lemma 3.10. We distinguish two subcases:

(a) supM ‖duq j ‖θ is uniformly bounded, for some sequence q j → p, j → ∞, or
(b) supM ‖duq‖θ → ∞ for q → p.

We shall show that case II(b) actually doesn’t occur. Let ξq ∈ M be a point such that

sup
M

‖duq‖θ = ‖duq‖θ (ξq).

Let #ξq be normal coordinates at ξq , as furnished by Theorem 3.7. Moreover, let U
be a neighborhood of the origin in Hn , contained in the image of #ξq , for all q. Next,
identify U , via #ξq , with a neighborhood of ξq with coordinates (z, t) = #ξq . Let us
set

(z̃, t̃) = T δ(z, t) = (δ−1z, δ−2t),

θ̃0 = dt̃ + i
n∑

j=1

(
z̃ j d z̃

j − z̃
j
d z̃ j

)
= δ−2

[
(T δ)−1

]∗
θ0 .

On the set δ−1U , with coordinates (z̃, t̃), let

hq(z̃, t̃) = δ2/(q−2)uq(δz̃, δ
2 t̃),

where δ = δq > 0 is chosen such that

‖dhq‖θ̃0
(0) = 1.

Since θξq = (θ0)0 and

‖ω‖2
δ−2θ

= δ2‖ω‖2
θ ,

for any 1-form ω, it follows that

‖dhq‖θ̃0
(0) = ‖(T δ)∗dhq‖δ−2θ0

(0) = δ1+2/(q−2)‖duq‖θ (ξq).
In particular, if q → p then δ → 0; hence δ−1U tends to the whole of Hn . �



3.6 Existence of extremals 203

Let us consider now the contact form

θq = δ−2
[(

T δ
)−1

]∗
θ

defined on δ−1U , and let us set

Lq := �
θq
b = δ2�

[(T δ)−1]∗θ
b

(here �θb is the sub-Laplacian of (M, θ)). Then

bnLq hq + ρqδ
2
q hq = λq hq−1

q ,

where ρq is the scalar curvature of θq . Note that |ρq | ≤ ‖ρ‖L∞(M). Since M is compact
we may assume (by passing to a subsequence, if necessary) that ξq converges to some
ξ ∈ M . At the same time, if {W q

1 , . . . ,W q
n } is the pseudo-Hermitian frame used to

build #ξq , we may assume that {W q
1 , . . . ,W q

n } converges in Ck , for each k, to some
frame {W1, . . . ,Wn}. Then

Zq
j := δ(T δ)∗W j , 1 ≤ j ≤ n,

is a pseudo-Hermitian frame for (δ−1U, θq). By looking at the error terms in the ex-
pression (3.23) of W q

j one may show that Zq
j converges in Ck(BR) to Z j , for each k

and any R > 0. Similarly (again by (3.23)) θq (respectively Lq ) converges uniformly
in Ck(BR) to θ0 (respectively to L0). �

Let R > 0 be fixed. For q sufficiently close to p one has B3R ⊂ δ−1
q U . Let

η ∈ C∞
0 (B2R) such that η = 1 on BR . Then

Lq(ηhq) = ηLq hq − 2L∗
θq
(dη, dhq)+ (Lqη)hq

= η(−ρqδ
2
q hq + λq hq−1

q )− 2L∗
θq
(dη, dhq)+ (Lqη)hq .

Note that ‖dhq‖θq is bounded by 1 in B2R (it attains its maximum (= 1) at the origin).
Also∫

|(z̃,t̃)|<R
|hq(z̃, t̃)|qdz̃dt̃ = δ

2q/(q−2)−(2n+2)
q

∫
|(z,t)|<δq R

|uq(z, t)|q dz dt. (3.45)

If q < p then 2q/(q − 2) > 2n + 2 hence δ2q/(q−2)−(2n+2)
q < 1 as q → p. Moreover

(by (3.23))

dz dt = Cn(1 + δO1)θ ∧ (dθ)n

on B2δR . Thus

hq ∈ Lq(B2R, dz̃ dt̃)

with uniform bounds on the norm. In particular hq ∈ L1(B2R, dz̃ dt̃), uniformly as
q → p, a fact that together with the uniform bound on ‖dhq‖θq yields

hq ∈ Sr
1(B2R, θq), r <∞,
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with uniform bounds on the norm (by Proposition 3.6). Thus (by Theorem 3.13) ηhq

is uniformly bounded in Lr (B2R) for any r , and then (by Theorem 3.22) uniformly
bounded in Ck(BR) for each k.

Consider now a subsequence q j → p such that hq j converges in C1(BR). Define
a function u on Hn by first choosing a subsequence convergent in C1(B1), and then a
subsequence convergent in C1(B2), and so on. Then u ≥ 0, u ∈ C1(Hn), and u �≡ 0
(since ‖du‖θ0(0) = 1). As θq j → θ0,∫

Hn

[
bn L∗

θ0
(du, dφ)− λ(M)u p−1φ

]
θ0 ∧ (dθ0)

n = 0, (3.46)

for any φ ∈ C∞
0 (Hn). Let us set

‖u‖p =
( ∫

Hn

u pθ0 ∧ (dθ0)
n
)1/p

.

We claim that

‖u‖p ≤ 1. (3.47)

Indeed, as θq ∧ (dθq)
n → θ0 ∧ (dθ0)

n uniformly on compact sets, the constraint∫
M uq

qθ ∧ (dθ)n = 1 and (3.45) yield
∫

BR
u pθ0 ∧ (dθ0)

n = 1 with R > 0 arbitrary,
and (3.47) is proved. �

Next, we claim that ∫
Hn

‖du‖2
θ0
θ0 ∧ (dθ0)

n ≤ C <∞. (3.48)

Indeed∫
BR

‖du‖2
θ0
θ0 ∧ (dθ0)

n = lim
j→∞

∫
BR

‖dhq j ‖2
θq j
θq j ∧ (dθq j )

n

= lim
j→∞

∫
BδR

δ2q/(q−2)‖duq j ‖2
θ δ

−2θ ∧ (δ−2dθ)n

≤ lim sup
j→∞

∫
M

‖duq j ‖2
θ θ ∧ (dθ)n,

which is bounded. Here δ = δq j . �
At this point, we may conclude the proof of Theorem 3.24. By the estimates

(3.47)–(3.48) there is a sequence φ j ∈ C∞
0 (Hn) converging to u in the norms as-

sociated with (3.47) and (3.48). Thus (by (3.46))

bn

∫
Hn

‖du‖2
θ0
θ0 ∧ (dθ0)

n = λ(M)‖u‖p
p .

Now, the function

ũ = u

‖u‖p
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satisfies the constraint ‖ũ‖p = 1; yet (by (3.47) and p ≥ 2)

bn

∫
Hn

‖dũ‖2
θ0
θ0 ∧ (dθ0)

n = λ(M)
‖u‖p

p

‖u‖2
p

≤ λ(M) < λ(Hn),

contradicting the definition of λ(Hn). Hence case II.b doesn’t occur, and the proof of
Theorem 3.24 is complete. �

3.7 Uniqueness and open problems

Another important problem, related to the CR Yamabe problem, is to decide whether
a compact contact manifold (M, θ) of constant pseudo-Hermitian scalar curvature is
unique. As it turns out, the answer depends on the sign of the CR invariant λ(M).
Precisely, one may state the following theorem:

Theorem 3.25. (D. Jerison and J.M. Lee [227])
If λ(M) ≤ 0 then any two contact forms of constant pseudo-Hermitian scalar curva-
ture are homothetic.

Lemma 3.11. Given (M, θ) with ρ = const the sign of ρ is a CR invariant.

Indeed, let θ̂ = u p−2θ be another contact form such that ρ̂ = const as well. Then

bn�bu + ρu = ρ̂u p−1.

Integration over M together with
∫

M (�bu)θ ∧ (dθ)n = ∫
M 〈d1, du〉θ ∧ (dθ)n = 0

yields either ρ = ρ̂ = 0 or

ρ

ρ̂
=

∫
M u p−1θ ∧ (dθ)n∫

M uθ ∧ (dθ)n > 0. �

Let us return to the proof of Theorem 3.25. Let us assume that λ(M) < 0. By the
Jerison–Lee theorem, there is θ of scalar curvature ρ = λ(M). Let θ̂ = u p−2θ be of
constant scalar curvature ρ̂. Then ρ̂ < 0 (by Lemma 3.11); hence, by multiplying u
by a suitable constant, one may assume that ρ = ρ̂. Then

bn�bu + ρu = ρu p−1.

To prove the statement in Theorem 3.25 it suffices to show that u ≡ 1. Since �b is
degenerate elliptic, it satisfies a weak maximum principle (see the next section). If
x ∈ M is a point where u(x) = supM u then�bu(x) ≥ 0; hence u(x)p−1 − u(x) ≤ 0,
which yields u ≤ 1. Similarly, if y ∈ M is such that u(y) = infM u, then u(y) ≥ 1;
hence u ≥ 1. Therefore u ≡ 1. �

Let us look now at the case λ(M) = 0. By the Jerison–Lee theorem there is θ with
ρ = 0 and by the first part of the proof of Theorem 3.25 any other θ̂ = u p−2θ with ρ̂ =
const has ρ̂ = 0. Thus bn�bu = 0 which yields

∫
M ‖du‖2

θ θ ∧ (dθ)n = 0. It follows
that du = f θ for some f ∈ C∞(M). Differentiation then gives 0 = (d f )∧ θ + f dθ ,
an identity that restricted to H(M) yields f dθ |H(M)⊗H(M) = 0, or f ≡ 0, i.e.,
u = const. �
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When λ(M) > 0, as opposed to the situation in Theorem 3.25, the solution to the
CR Yamabe problem may be not unique. For instance, if M = S2n+1 and θ1 is the
standard contact form then �∗θ1 has constant pseudo-Hermitian scalar curvature, for
any � ∈ AutC R(S2n+1), yet in general �∗θ1 and θ1 are not homothetic. Are these
solutions extremals for the problem (3.6) for the sphere? As shown in [227], one may
observe first that extremals do exist:

Theorem 3.26. (D. Jerison and J.M. Lee [227])
There is u ∈ C∞(S2n+1), u > 0, such that the infimum λ(S2n+1), in (3.6) with θ :=
u p−2θ1, is attained.

In view of Theorem 3.26 and the results of M. Obata [330], one expects that the contact
forms {�∗θ1 : � ∈ AutC R(S2n+1)} are the only contact forms on S2n+1 that have
constant pseudo-Hermitian scalar curvature and therefore

λ(S2n+1) = n(n + 1)

2

[∫
S2n+1

θ1 ∧ (dθ1)
n
]2/p

as conjectured in [227].
Let θ be a contact form on S2n+1 with ρ = const. Then θ̂ = (F−1)∗θ is a contact

form on Hn with ρ̂ = const. Let u ∈ C∞(Hn), u > 0, so that θ̂ = u p−2θ0. We have∫
Hn

u pθ0 ∧ (dθ0)
n =

∫
Hn

θ̂ ∧ (d θ̂ )n =
∫

S2n+1
θ ∧ (dθ)n <∞;

hence u ∈ L p(Hn). As in the proof of Theorem 3.25, one may multiply u by a constant
to get ρ = n(n+1)

2 ; hence

4�bu = n2u p−1 (3.49)

on Hn . On the other hand, if � ∈ AutC R(S2n+1) and θ = �∗θ1 then a calculation
shows that

u(z, t) = C
∣∣∣t + i |z|2 + z · μ+ λ

∣∣∣−n
, (3.50)

where C > 0, λ ∈ C, Im(λ) > 0, and μ ∈ Cn . Therefore, the conjecture above is true
whenever the following statement is true: If u ∈ L p(Hn) is a positive C∞ solution to
(3.49) then u is of the form (3.50). �

The full solution to the question above was given in [229] by following the ideas
in Obata’s approach (cf. [330]) to the Riemannian counterpart of the problem, which
we briefly recall. If g0 is the standard metric on the sphere Sm and g = ϕ2g0 is
any conformally equivalent metric then ϕ−2g is an Einstein metric and consequently
the traceless Ricci tensor B(g) of g may be computed in terms of the Hessian ∇2ϕ.
Moreover the first Bianchi identity together with the assumption that g has constant
scalar curvature imply that

div
(
B(g)i jϕi∂ j

) = ϕ|B(g)|2 (3.51)
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and integration over Sm yields B(g) = 0, i.e., g is an Einstein metric. One is left with
the problem of describing the Einstein metrics conformal to g0, which is easy to solve.
We emphasize that Obata’s argument leads from one nonlinear equation satisfied by ϕ
(the condition that ϕ2g0 has constant scalar curvature) to a whole system of equations
(namely B(ϕ2g0) = 0). In the CR case one looks (cf. [229]) for an analog to (3.51).
The finding in [229] is a rather complicated identity (involving not only the norm |B2|
of the traceless Ricci tensor Bαβ̄ = Rαβ̄ − (ρ/n)hαβ̄ , cf. Definition 5.11 in Chapter 5,

but also the norm |A|2 of the pseudo-Hermitian torsion and higher-order terms such as
| div A|2) playing a role similar to (3.51) in Riemannian geometry (cf. [229], pp. 8–10).

The results of D. Jerison and J.M. Lee presented in this chapter can be formally
compared to the partial completion of the proof of the Riemannian Yamabe conjecture
by T. Aubin [24]. The remaining cases should, by analogy, be solved using a CR
version of the positive mass theorem. Unfortunately, especially because the theory of
CR minimal surfaces does not exist at the present stage of research, a CR version
of positive mass theorem is not available yet. However, as observed by N. Gamara
and R. Yacoub [164], besides T. Aubin’s and R. Schoen’s proof of the Riemannian
Yamabe conjecture, yet another proof due to A. Bahri [27], of the Yamabe conjecture
is available (it exploits techniques related to the theory of critical points at infinity)
and may be generalized to the CR category (since no use of minimal surfaces or the
positive mass theorem is required). N. Gamara and R. Yacoub obtain the following
result (related to N. Gamara [163], and to Z. Li, Webster scalar curvature problem on
CR manifolds, preprint):

Theorem 3.27. (N. Gamara and R. Yacoub [164])
Let M be an orientable compact real (2n + 1)-dimensional CR manifold, locally CR
equivalent to the sphere S2n+1. Let θ be a contact form on M. Then the problem
�c

bu = u1+2/n, u > 0, on M, admits a solution.

Here �c
b is the CR invariant Laplacian of (M, θ).

3.8 The weak maximum principle for �b

For the convenience of the reader we present briefly the weak maximum principle
for degenerate elliptic operators (following mainly J.M. Bony [73]). For an extensive
treatment (of the theory of degenerate elliptic operators), see, e.g., N. Shimakura [372],
pp. 183–224, and again [73]. Let � ⊂ Rn be a domain and let L be a second-order
differential operator, with real-valued C∞ coefficients defined in �:

Lu(x) =
n∑

i, j=1

ai j (x)
∂2u

∂xi∂x j
+

n∑
i=1

ai (x)
∂u

∂xi
+ a(x)u(x).

We assume from now on that L possesses the following three additional properties:
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(1) the quadratic form ai j (x) is positive at any x , but not necessarily positive definite,
i.e., for any x ∈ � and any ξ ∈ Rn ,

n∑
i, j=1

ai j (x)ξiξ j ≥ 0,

(2) one has a(x) ≤ 0 for any x ∈ �,
(3) there exist C∞ vector fields X1, . . . , Xr , Y on � such that

Lu =
r∑
α=1

X2
αu + Y u + au.

Definition 3.27. L is referred to as a degenerate elliptic operator. �

See, e.g., J.M. Bony [73]. For instance, consider the operator

L = ∂2

∂x2
1

+
(

n∑
j=2

x j−1
1

∂

∂x j

)2

.

Then ai = 0, a = 0, and (ai j ) is the matrix⎛⎜⎜⎜⎝
1 0 · · · 0
0 x2

1 · · · xn
1

...
...

...

0 xn
1 · · · x2n−2

1

⎞⎟⎟⎟⎠ .
Let H be the hyperplane x1 = 0. If x ∈ H then

n∑
i, j=1

ai j (x)ξ
iξ j = (ξ1)2 ≥ 0,

while for x ∈ Rn \ H one has

∑
i j

ai j (x)ξ
iξ j = (ξ1)2 + x−2

1

( n∑
α=2

xα1 ξ
α

)2

≥ 0.

Also L = ∑n
j=1 X2

j , where X1 = ∂/∂x1 and Xα = xα−1
1 ∂/∂xα for 2 ≤ α ≤ n; hence

L is a degenerate elliptic operator. �
Degenerate elliptic operators of second order were investigated in several papers

essentially devoted to the Dirichlet problem: existence, uniqueness, and regularity of
solutions (cf., e.g., O.A. Oleinik [333], J.J. Kohn and L. Nirenberg [251], J.M. Bony
[71]), and to hypoellipticity (cf. L. Hörmander [213]). In [73] one is mainly inter-
ested in different properties appearing in the classical potential theory. The degenerate
elliptic operators satisfy the following weak form of the maximum principle:



3.8 The weak maximum principle for �b 209

Theorem 3.28. If a C2 function u achieves in x0 a nonnegative local maximum then
(Lu)(x0) ≤ 0. If moreover this maximum is (strictly) positive and a(x0) < 0 then
(Lu)(x0) < 0.

Proof. Set

Xα = ai
α∂/∂xi , 1 ≤ α ≤ r.

Then the hypothesis (3) amounts to ai j = ∑r
α=1 ai

αa j
α . Since x0 is a local maximum

point, the Hessian
[
∂2u
∂xi ∂x j (x0)

]
is negative semidefinite. Thus

n∑
i, j=1

ai j (x0)
∂2u

∂xi∂x j
(x0) =

∑
i, j,α

∂2u

∂xi∂x j
(x0)a

i
αa j
α ≤ 0.

This, together with the property (2), i.e., a(x0) ≤ 0, and ∂u
∂xi (x0) = 0, yields

(Lu)(x0) ≤ 0. �
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Pseudoharmonic Maps

By a well-known result of A. Lichnerowicz [287], any holomorphic map of compact
Kähler manifolds is a stable harmonic map. In odd real dimension, the closest analogue
of a Kählerian manifold seems to be a strictly pseudoconvex CR manifold (eventually
with vanishing pseudo-Hermitian torsion, for some fixed contact form). CR manifolds
appear mainly as boundaries of smooth domains in Cn+1 and a holomorphic map of a
neighborhood of a domain � ⊂ Cn+1 into a neighborhood of a domain �′ ⊂ CN+1,
preserving boundaries, gives rise to a CR map ∂� → ∂�′. On the other hand, when
� and �′ are strictly pseudoconvex domains, the Levi forms of their boundaries ex-
tend to Riemannian metrics (the Webster metrics) and it is a natural question whether
a CR map ∂� → ∂�′ is harmonic with respect to these metrics. It comes as some
surprise that the answer is, in general, negative. Precisely, by a result of H. Urakawa
[413], given two strictly pseudoconvex CR manifolds M and M ′, endowed with con-
tact forms θ and θ ′ (such that the corresponding Levi forms are positive definite), a CR
map φ : M → M ′ is harmonic (with respect to the Webster metrics gθ and gθ ′ ) if and
only if T ( f ) = 0, where f is the unique C∞ function with φ∗θ ′ = f θ and T is the
characteristic direction of dθ . Even worse, a harmonic map of (M, gθ ) into (M ′, gθ ′)
is, in general, unstable. Indeed, by a result of Y.L. Xin [437], any stable harmonic map
of the sphere S2n+1 to a Riemannian manifold is a constant map. It is natural to ask
how CR maps fit into our theory of pseudoharmonicity (see the definitions below).

A fundamental ingredient in the study of harmonic maps from a Kählerian mani-
fold to a Riemannian manifold of nonpositive curvature is the Siu–Sampson formula
(cf. [374]–[361]). In an attempt to recover this formula for C∞ maps φ : M → N
from a strictly pseudoconvex CR manifold M to a Riemannian manifold (N , h), R. Pe-
tit considered (cf. [346]) the following (analogue of the) second fundamental form (of
a C∞ map between Riemannian manifolds)

β(φ)(X, Y ) = (
φ−1∇h)

X (dφ)Y − (dφ)∇X Y.

Here φ−1∇h is the connection in the pullback bundle φ−1T N → M , induced by
the Levi-Civita connection ∇h of (N , h), and ∇ is the Tanaka–Webster connection of
(M, θ), for a fixed choice of contact 1-form θ on M . Since one interesting applica-
tion (cf. Theorem 5.6 in [346]), the (pseudo-Hermitian) analogue of the Siu–Sampson
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formula (cf. Propositions 3.1 and 3.2 in [346]) led to a description of the curvature
properties of a strictly pseudoconvex CR manifold (of small pseudo-Hermitian tor-
sion, ‖τ‖ < n/

√
2) similar to that in Sasakian geometry (cf. [62], p. 65) where τ = 0.

As a natural continuation of R. Petit’s ideas, we restrict β(φ) to the maximal com-
plex distribution of M and take the trace with respect to the Levi form. The resulting
φ-vector field τ(φ; θ,∇h) ∈ �∞(φ−1T N ) is the tension field of φ (with respect to
the data (θ,∇h)). Smooth maps with τ(φ; θ,∇h) = 0 are then pseudo-Hermitian ana-
logues of harmonic maps (of Riemannian manifolds), and are referred to as pseudo-
harmonic in the sequel. It is with this sort of maps that Chapter 4 is mainly concerned.
We show that a C∞ map φ : M → N is pseudoharmonic if and only if it satisfies the
PDE system

�bφ
i + 2 hαβ̄Tα(φ

j )Tβ(φ
k)
(
�′i

jk ◦ φ) = 0,

whose principal part is the sub-Laplacian �b of (M, θ). As to the geometric interpre-
tation of pseudoharmonicity, we discover the following phenomenon. Let K (M) =
�n+1,0(M) be the canonical bundle over the strictly pseudoconvex CR manifold M .
Let C(M) = (K (M) \ {0})/R+ be the canonical circle bundle over M and π :
C(M) → M the projection. Given a contact 1-form θ on M , let Fθ be the Feffer-
man metric associated with θ ; cf. Chapter 2 of this book. We show that φ : M → N is
pseudoharmonic if and only if its vertical lift φ◦π is harmonic as a map of (C(M), Fθ )
into (N , h).

From the point of view of variational calculus, pseudoharmonicity may be looked
at as follows. For any compact strictly pseudoconvex pseudo-Hermitian manifold
(M, θ), consider

E(φ) = 1
2

∫
M

traceGθ

(
πHφ

∗h
)
θ ∧ (dθ)n .

We show that the critical points of E(φ) are precisely the pseudoharmonic maps. We
derive the second variation formula for E(φ) and consider the corresponding notion
of stability. When the target space is a Riemannian manifold of nonpositive curva-
ture, any pseudoharmonic map is shown to be stable. Let N be a totally umbilical real
hypersurface of a real space form Mm+1(c), of mean curvature ‖H‖ (a constant a pos-
teriori). If (m − 2)‖H‖2 + (m − 1)c > 0 then any nonconstant pseudoharmonic map
φ : M → N ∩ V (where V ⊂ Mm+1(c) is a simple and convex open subset) is shown
to be unstable. The results in Chapter 4 are based on the works by E. Barletta et al.
[43], and E. Barletta [32, 33].

4.1 CR and pseudoharmonic maps

Let (M, T1,0(M)) be a nondegenerate CR manifold (of CR dimension n), θ a contact
form on M , and T the characteristic direction of dθ . Let (N , D′) be a manifold with
linear connection. Let φ : M → N be a C∞ map and φ−1T N → M the pullback
of T (N ) by φ. Let φ−1 D′ be the connection in φ−1T N induced by D′. This is most
easily described in local coordinates, as follows.
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Definition 4.1. The natural lift Ỹ : φ−1(V ) → φ−1T N of a tangent vector field
Y : V → T (N ) (with V ⊆ N open) is given by Ỹ (x) = Y (φ(x)), x ∈ φ−1(V ). �
Let {Tα} be a local frame of T1,0(M), defined on the open set U ⊆ M , and {θα} the
corresponding admissible coframe, i.e., θα(Tβ) = δαβ , θα(Tβ) = 0, θα(T ) = 0. Let

(V, yi ) be a local coordinate system on N with φ(U ) ⊆ V and let Yi be the natural
lift of ∂/∂yi , so that dφ = φi

Aθ
A ⊗ Yi , for some C∞ functions φi

A on U , where
A ∈ {0, 1, . . . , n, 1̄, . . . , n̄} and θ0 = θ .

Definition 4.2. The induced connection φ−1 D′ in φ−1T N → M is defined by(
φ−1 D′)

TA
Y j = φi

A

(
�′k

i j ◦ φ
)

Yk,

where T0 = T and �′i
jk are the local coefficients of D′ with respect to (V, yi ). �

Moreover, let ∇φ be the connection in T ∗(M)⊗ φ−1T N determined by

∇φX (ω ⊗ s) = (∇Xω)⊗ s + ω ⊗ (φ−1 D′)X s, X ∈ X (M).
As usual, for any bilinear form B on T (M), we denote by πH B the restriction of B to
H(M)⊗ H(M).

Definition 4.3. Let us consider the φ-tensor field on M given by

τ(φ; θ, D′) = traceGθ {πH∇φdφ} ∈ �∞(φ−1T N ).

We say that φ is pseudoharmonic, with respect to the data (θ, D′), if τ(φ; θ, D′)
= 0. �

Theorem 4.1. Let M, N be nondegenerate CR manifolds and θ, θ ′ contact forms on
M and N, respectively. Let ∇′ be the Tanaka–Webster connection of (N , θ ′). Then for
any CR map φ : M → N,

τ(φ; θ,∇′) = 2n J̃ ′(dφ)T . (4.1)

In particular, a CR map φ is pseudoharmonic with respect to the data (θ,∇′) if
and only if φ is a pseudo-Hermitian map, i.e., φ∗θ ′ = cθ , for some c ∈ R. Here
J̃ ′ : φ−1T N → φ−1T N is the natural lift of J ′ : T (N ) → T (N ), i.e., J̃ ′

x Ỹx =
J ′
φ(x)Yφ(x), Y ∈ X (N ), x ∈ M.

Proof. To compute τ(φ; θ,∇′) we need

(∇φX dφ)Y =
(
φ−1∇′)

X
(dφ)Y − (dφ)∇X Y.

Let {Xα, J Xα} be a local Gθ -orthonormal frame of H(M), i.e.,

Gθ (Xα, Xβ) = εαδαβ,

ε1 = · · · = εr = −εr+1 = · · · = −εr+s = 1, r + s = n.
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Then

τ(φ; θ,∇′) =
n∑
α=1

εα

{(
∇φXαdφ

)
Xα +

(
∇φJ Xα

dφ
)

J Xα
}
.

We have

∇J X J X = −∇X X + J [J X, X ] + J T∇(J X, X),

for any X ∈ H(M), because of ∇ J = 0. On the other hand (cf., e.g., (5) in [120],
p. 174), πH T∇ = 2(dθ)⊗ T ; hence JπH T∇ = 0, and the previous identity becomes

∇J X J X = −∇X X + J [J X, X ]. (4.2)

Similarly, (
φ−1∇′)

J X
(dφ)J X = J̃ ′ (φ−1∇′)

J X
(dφ)X

(by (dφ)J X = J̃ ′(dφ)X , since φ is a CR map). Also

T̃∇′((dφ)X, (dφ)Y ) = 2d(φ∗θ ′)(X, Y )T ′ ◦ φ
(where T̃∇′ is the φ-vector field induced by T∇′ ) leads to(

φ−1∇′)
X
(dφ)Y =

(
φ−1∇′)

Y
(dφ)X + (dφ)[X, Y ] + 2d(φ∗θ ′)(X, Y )T̃ ′,

for any X, Y ∈ H(M). Then (by J̃ ′T̃ ′ = 0)(
φ−1∇′)

J X
(dφ)J X +

(
φ−1∇′)

X
(dφ)X = J̃ ′(dφ)[J X, X ]. (4.3)

Finally (by (4.2)–(4.3))

τ(φ; θ,∇′) =
n∑
α=1

εα

{
J̃ ′(dφ)[J Xα, Xα] − (dφ)J [J Xα, Xα]

}
=

n∑
α=1

εα J̃ ′dφ
{
[J Xα, Xα] − πH(M)[J Xα, Xα]

}
,

where πH(M) : T (M) → H(M) is the projection associated with the direct sum
decomposition T (M) = H(M)⊕ RT . Hence

τ(φ; θ,∇′) =
n∑
α=1

εα J̃ ′θ ([J Xα, Xα]) (dφ)T

and

n∑
α=1

εαθ([J Xα, Xα]) = −2
n∑
α=1

εα(dθ)(J Xα, Xα) = 2
n∑
α=1

εαGθ (Xα, Xα) = 2n,
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which leads to (4.1). Now sufficiency follows from Corollary 3.2 in [413], p. 236.
Indeed, for a CR map φ : M → N the property φ∗θ ′ = cθ , for some c ∈ R,
is equivalent (cf. op. cit.) to (dφ)T = cT̃ ′ and then τ(φ; θ,∇′) = 0 by (4.1) and
J ′T ′ = 0.

Conversely, since φ is a CR map, φ∗θ ′ = λθ , for some λ ∈ C∞(M). To have
Theorem 4.1, we only have to see that pseudoharmonicity yields that λ is constant.
Indeed, we have

d(φ∗θ ′) = (dλ) ∧ θ + λdθ,

so that

T (λ)θ − dλ = T � d(φ∗θ ′). (4.4)

Assume φ to be pseudoharmonic. Then (by (4.1))

(dxφ)Tx = λ(x)T ′
φ(x), x ∈ M.

Consequently (
T � d(φ∗θ ′)

)
x = λ(x)(dθ ′)φ(x)(T ′

φ(x), (dxφ)·) = 0

and (by (4.4)) dλ = 0 on H(M). In particular, λ is a real-valued CR function, hence a
constant, by the following lemma (see also Theorem 2.1 in [215]):

Lemma 4.1. Let M be a connected nondegenerate CR manifold and λ : M → R a
C∞ solution of ∂bλ = 0. Then λ must be constant.

Proof. Let {Tμ} be a local frame of T1,0(M). The tangential Cauchy–Riemann equa-
tions (satisfied by λ) read Tμ(λ) = 0. Then Tμ(λ) = 0, by complex conjugation,
hence [Tμ, Tμ](λ) = 0. Let θ be a contact form on M , and (by the nondegeneracy
assumption) T the characteristic direction of dθ . Let �A

BC be the local coefficients of
the Tanaka–Webster connection (of (M, θ)) with respect to {Tμ, Tμ, T }. By the purity
axiom

�
μ

αβ
Tμ − �μ

βα
Tμ − [Tα, Tβ ] = 2ihαβT,

where hαβ = Lθ (Tα, Tβ). Then T (λ) = 0. �

4.2 A geometric interpretation

The main purpose of this section is to show that a map is pseudoharmonic if and only
if its vertical lift is harmonic with respect to the Fefferman metric (cf. Theorem 4.2).
We start by establishing the following result:
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Proposition 4.1. Let φ : M → N be a C∞ map of a nondegenerate CR manifold M
into a C∞ manifold N. Let θ be a contact form on M, and D′ a torsion-free linear
connection on N. Then φ is pseudoharmonic, with respect to the data (θ, D′), if and
only if

�bφ
i + 2 hαβTα(φ

j )Tβ(φ
k)
(
�′i

jk ◦ φ
)

= 0, (4.5)

for some local frame {Tα} of T1,0(M) and some local coordinate system (V, yi ) on N,
where φi = yi ◦ φ.

Proof. Let {Xα, J Xα} be a Gθ -orthonormal local frame of H(M), i.e., Gθ (Xα, Xβ) =
εαδαβ . As usual, we set Zα = 1√

2
{Xα −√−1J Xα}, so that for any bilinear form ϕ on

H(M),

traceGθ {ϕ} =
n∑
α=1

εα{ϕ(Zα, Zα)+ ϕ(Zα, Zα)}.

Let {θα} be the admissible coframe associated with {Zα}. The identities ∇θ = 0 and
∇θα = −ωαβ ⊗ θβ lead to

∇φZ dφ = {Z(φi
A)θ

A − φi
αω

α
β(Z)θ

β − φi
αω

α

β
(Z)θβ} ⊗ Yi + (φi

Aθ
A)⊗ (φ−1 D′)Z Yi ,

for any Z ∈ T (M)⊗ C. Hence

traceGθ {πH∇φdφ} =
n∑
μ=1

εμ{Zμ(φ
i
μ)− φi

α�
α
μμ + Zμ(φ

i
μ)− φi

α�
α
μμ + (φ j

μφ
k
μ + φk

μφ
j
μ)�

′i
jk ◦ φ}Yi ,

for any linear connection D′ on N . When D′ is torsion-free one may express the
tension field of φ, with respect to the data (θ, D′), since

τ(φ; θ, D′) =
{
�bφ

i +
n∑
μ=1

εμZμ(φ
j )Zμ(φ

k)(�′i
jk ◦ φ)

}
Yi .

Finally, if {Tα} is an arbitrary local frame of T1,0(M) then Zα = Uβ
α Tβ , for some C∞

functions Uβ
α with

∑
β εβUλ

βUμ

β
= hλμ, so that (4.5) is proved. �

To state the main result of Chapter 4, we need the Fefferman metric of (M, θ).
Assume M to be strictly pseudoconvex and θ chosen such that the Levi form Lθ is
positive definite. The Fefferman metric of (M, θ) is expressed by

Fθ = π∗G̃θ + 2(π∗θ)$ σ, (4.6)

σ = 1

n + 2

{
dγ + π∗(iωαα − i

2
hαβdhαβ − ρ

4(n + 1)
θ
)}

;

cf. Chapter 2 of this book. Let (N , h) be a Riemannian manifold, where h denotes the
Riemannian metric, and � : (C(M), Fθ )→ (N , h) a C∞ map.
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Definition 4.4. The energy of � over a compact domain D ⊆ C(M) is

E(�; D) = 1
2

∫
D

traceFθ

(
�∗h

)
dvol(Fθ ),

where dvol(Fθ ) is the volume element of (C(M), Fθ ). Then � is harmonic if for any
compact domain D ⊆ C(M), it is an extremal of the energy E( · ; D) with respect to
all variations of � supported in D. �

Therefore, � is harmonic if and only if it satisfies the Euler–Lagrange equations

��i +
2n+2∑
p,q=1

g pq
(
�′i

jk ◦�
) ∂� j

∂u p

∂�k

∂uq
= 0, (4.7)

for some local coordinate system (U, xa) on M , respectively (V, yi ) on N (such that
�(U ) ⊆ V ), with �i = yi ◦�. See, e.g., [124] for an elementary introduction to the
theory of harmonic maps and the first variation formula. Here � is the wave operator
(the Laplace–Beltrami operator associated with the Lorentz metric Fθ ). One endows
C(M) with the induced local coordinate system (π−1(U ), u p), with ua = xa ◦ π and
u2n+2 = γ . Also [g pq ] = [gpq ]−1 and gpq = Fθ (∂p, ∂q), where ∂p is short for ∂/∂u p.

Theorem 4.2. Let M be a strictly pseudoconvex CR manifold and θ a contact form
such that Lθ is positive definite. Let Fθ be the Fefferman metric of (M, θ) and (N , h)
a Riemannian manifold. Then a C∞ map φ : M → N is pseudoharmonic, with respect
to the data (θ,∇h), if and only if its vertical lift � = φ ◦ π : (C(M), Fθ ) → (N , h)
is a harmonic map.

Proof. Let � : C(M) → N be an S1-invariant C∞ map. Then � descends to a
C∞ map φ : M → N (so that � = φ ◦ π ). Again by a result in Chapter 2, the
wave operator � pushes forward to a differential operator π∗� : C∞(M)→ C∞(M)
(given by (π∗�)u = �(u ◦ π), for any u ∈ C∞(M)) and π∗� = �b. Hence, the
S1-invariant map � is harmonic if and only if (by (4.7))

(�bφ
i ) ◦ π +

2n+1∑
a,c=1

gac
(
�′i

jk ◦ φ ◦ π
)(∂φ j

∂xa
◦ π

)(
∂φk

∂xc
◦ π

)
= 0. (4.8)

Let {Tα} be a local frame of T1,0(M) and {θα} the corresponding admissible coframe.
Then {π∗θ A, σ } is a local frame of T ∗(C(M))⊗C. Let {VA, �} be dual to {π∗θ A, σ }.
Relabel the variables xa, 1 ≤ a ≤ 2n + 1, since x A, A ∈ {0, 1, . . . , n, 1, . . . , n},
where xα = xα+n, x0 = x2n+1. Then TA = λB

A∂/∂x B , for some C∞ functions
λB

A : U → C. It follows that

VA = (λB
A ◦ π) ∂

∂u B
, � = (n + 2)

∂

∂γ
.

Set μ = λ−1. Since Lθ = 2hαβθ
α $ θβ we get (by (4.6))
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g =
⎡⎢⎣ hαβ(μ

α
Aμ

β
B + μβAμαB)

1

n + 2
μ0

A

1

n + 2
μ0

B 0

⎤⎥⎦ , (4.9)

with respect to the frame {∂/∂u A, ∂/∂γ }. The inverse of (4.9) is denoted by⎡⎣ g AB g A,2n+2

g2n+2,B g2n+2,2n+2

⎤⎦ ,
and a calculation shows that

g ABμαAμ
β
B = hαβ, g ABμ0

A = 0, g ABμαAμ
β
B = 0.

Consequently

g AB ∂φ
j

∂x A

∂φk

∂x B
= hαβ{Tα(φ j )Tβ(φ

k)+ Tβ(φ
j )Tα(φ

k)}. (4.10)

Hence (4.8) yields (4.5). �

4.3 The variational approach

In this section, we first introduce an energy functional, similar to the Dirichlet energy
functional in the theory of harmonic maps, by means of the following definition:

Definition 4.5. Let φ : M → N be a C∞ map of a compact strictly pseudoconvex CR
manifold M into a Riemannian manifold (N , h). The energy of φ is given by

E(φ) = 1
2

∫
M

traceGθ

(
πHφ

∗h
)
θ ∧ (dθ)n .

Here θ is a contact form on M with Lθ positive definite. �

Theorem 4.3. The critical points of E are precisely the C∞ maps that are pseudo-
harmonic with respect to the data (θ,∇h). Moreover, let {φt }|t |<ε be a smooth 1-
parameter variation of φ (φ0 = φ) and set

� : (−ε, ε)× M → N , �(t, x) = φt (x), x ∈ M, |t | < ε,

V ∈ �∞(φ−1T N ), Vx = (d(0,x)�)
∂

∂t

∣∣∣∣
(0,x)

.

Then

d

dt
{E(φt )}t=0 = −

∫
M

h̃(V, τ (φ; , θ,∇h)) θ ∧ (dθ)n . (4.11)

Here h̃ is the Riemannian bundle metric induced by h in φ−1T N. Also ∇̃ = φ−1∇h

and R̃h is the φ-tensor field induced by Rh (the curvature of ∇h).
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Proof. Let Fθ be the Fefferman metric of (M, θ). Set E = E( · ; C(M)) for simplicity.
Note that ∫

C(M)
( f ◦ π)dvol(Fθ ) = 2π

∫
M

f θ ∧ (dθ)n

(integration along the fiber) for any f ∈ C∞(M). Then (by (4.10))

E(φ ◦ π) = 1
2

∫
C(M)

2n+1∑
a,c=1

gac
(∂φ j

∂xa
◦ π

)(∂φk

∂xc
◦ π

)
(g′

jk ◦ φ ◦ π)dvol(Fθ )

=
∫

C(M)
(hαβ ◦ π) (Tα(φ j ) ◦ π) (Tβ(φk) ◦ π) (g′

jk ◦ φ) dvol(Fθ )

= 2π
∫

M
hαβTα(φ

j )Tβ(φ
k)(g′

jk ◦ φ) θ ∧ (dθ)n,

where g′
jk = h(∂/∂y j , ∂/∂yk). On the other hand,

traceGθ

(
πHφ

∗h
) = 2hαβTα(φ

j )Tβ(φ
k)g′

jk ◦ φ,
hence

E(φ ◦ π) = 2πE(φ). (4.12)

Let φ : M → N be pseudoharmonic, with respect to the data (θ,∇h). Then (by
Theorem 4.2) φ ◦ π is a critical point of E. If φt is a 1-parameter variation of φ,
then φt ◦ π is a 1-parameter variation of φ ◦ π , and (by (4.12)) it follows that φ
is a critical point of E . To prove the converse, one may no longer use (4.12) (since
vertical lifts of 1-parameter variations do not lead to arbitrary 1-parameter variations
of φ ◦ π ). However, if φ is a critical point of E then (by the first variation formula
(4.11)) τ(φ; θ,∇h) = 0. �

Let us prove (4.11). Let �−1T N → (−ε, ε) × M be the pullback of T (N ) by
�. Let {X j : 1 ≤ j ≤ 2n} be a local Gθ -orthonormal frame of H(M). The product
manifold (−ε, ε)×M is endowed with the Riemannian metric dt ⊗dt +gθ . Of course,
one may think of X j as (orthonormal) vector fields tangent to (−ε, ε)× M . Then

d

dt
traceGθ

{
πHφ

∗
t h
} = ∂

∂t

2n∑
j=1

(
�∗h

)
(X j , X j ) = 2

2n∑
j=1

h̃(∇̃∂/∂t (d�)X j , (d�)X j ),

where ∇̃ = �−1∇h (and h̃ is induced by h in�−1T N ). Moreover (since ∇h is torsion-
free),

d

dt
traceGθ

{
πHφ

∗
t h
} = 2

2n∑
j=1

h̃(∇̃X j (d�)
∂

∂t
, (d�)X j )

= 2
2n∑
j=1

[
X j (h̃(d�)

∂

∂t
, (d�)X j ))− h̃((d�)

∂

∂t
, ∇̃X j (d�)X j )

]
.
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Let Xt ∈ �∞(H(M)) be defined by

Gθ (Xt , Y )x = h̃((d�)
∂

∂t
, (d�)Y )(t,x), x ∈ M, |t | < ε,

for any Y ∈ �∞(H(M)). Then

d

dt
traceGθ

{
πHφ

∗
t h
} = 2

2n∑
j=1

{
X j (Gθ (Xt , X j ))− h̃(d�)(

∂

∂t
, ∇̃X j (d�)X j )

}

= 2
2n∑
j=1

{
Gθ (∇X j Xt , X j )+ Gθ (Xt ,∇X j X j )− h̃((d�)

∂

∂t
, ∇̃X j (d�)X j )

}
by ∇gθ = 0. Let us compute the divergence of Xt with respect to the volume form  .
We have

div(Xt ) =
2n∑
j=1

Gθ (∇X j Xt , X j ).

Finally, let us integrate over M in

d

dt
traceGθ

{
πHφ

∗
t h
} = 2 div(Xt )− 2

2n∑
j=1

h̃((d�)
∂

∂t
, ∇̃X j (d�)X j − (d�)∇X j X j ),

and set t = 0 in the resulting identity. This leads to (4.11). �

Theorem 4.4. Under the hypothesis of Theorem 4.3, let {φs,t }−ε<s,t<ε be a smooth
2-parameter variation of φ : M → N (φ0,0 = φ) and let us set

� : (−ε, ε)× (−ε, ε)× M → N ,

�(s, t, x) = φs,t (x), x ∈ M, −ε < s, t < ε,

Vx = (d(0,0,x)�)
∂

∂t

∣∣∣∣
(0,0,x)

, Wx = (d(0,0,x)�)
∂

∂s

∣∣∣∣
(0,0,x)

, x ∈ M.

Then, for any pseudoharmonic (with respect to the data (θ,∇h)) map φ : M → N,

∂2

∂s∂t

{
E(φs,t )

}
s=t=0 =∫

M

{
〈∇̃V, ∇̃W 〉 −

2n∑
j=1

h̃(R̃h(V, (dφ)X j )(dφ)X j ,W )
}
θ ∧ (dθ)n, (4.13)

for any Gθ -orthonormal (local) frame {X j } in H(M).
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Proof. We have

∂2

∂s∂t

{
E(φs,t )

}
s=t=0 = 1

2
∂

∂s

{ ∫
M

∂

∂t

2n∑
j=1

(
�∗h

)
(X j , X j ) θ ∧ (dθ)n

}
s=t=0

= ∂

∂s

{ ∫
M

[
X j ((d�)

∂

∂t
, (d�)X j ))− h̃((d�)

∂

∂t
, ∇̃X j (d�)X j )

]
θ∧(dθ)n

}
s=t=0

.

Let Xs,t ∈ �∞(H(M)) be defined by

Gθ (Xs,t , Y ) = h̃((d�)
∂

∂t
, (d�)Y ) ◦ αs,t ,

αs,t : M → (−ε, ε)2 × M, αs,t (x) = (s, t, x), x ∈ M,

for any Y ∈ �∞(H(M)). Let us set

β(X, Y ) = ∇̃X (d�)Y − (d�)∇X Y.

Then

∂2

∂s∂t

{
E(φs,t )

}
s=t=0

= ∂

∂s

{∫
M

2n∑
j=1

[
X j (Gθ (Xs,t , X j ))− h̃

(
(d�)

∂

∂t
, ∇̃X j (d�)X j

)]
 

}
s=t=0

= ∂

∂s

{∫
M

[
div(Xs,t )− h̃

(
(d�)

∂

∂t
,

2n∑
j=1

β(X j , X j )
)]
 

}
s=t=0

= −
{∫

M
h̃
(
∇̃∂/∂s(d�)

∂

∂t
,

2n∑
j=1

β(X j , X j )
)
 

}
s=t=0

−
{∫

M
h̃
(
(d�)

∂

∂t
, ∇̃∂/∂s

2n∑
j=1

β(X j , X j )
)
 

}
s=t=0

= −
∫

M
h̃
((∇̃∂/∂s(d�)

∂

∂t

)
s=t=0, τ (φ; θ,∇h)

)
 

−
{∫

M
h̃
(
(d�)

∂

∂t
,

2n∑
j=1

[∇̃∂/∂s∇̃X j (d�)X j − ∇̃∂/∂s(d�)∇X j X j
])
 

}
s=t=0

.

Note that

∇̃∂/∂s∇̃X j (d�)X j = ∇̃X j ∇̃∂/∂s(d�)X j + R̃(
∂

∂s
, X j )(d�)X j ,

since [∂/∂s, X j ] = 0. Therefore, if φ is pseudoharmonic,
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∂2

∂s∂t

{
E(φs,t )

}
s=t=0 = −

∫
M

h̃

(
(d�)

∂

∂t
,

2n∑
j=1

[
∇̃X j ∇̃∂/∂s(d�)X j

+ R̃
( ∂
∂s
, X j

)
(d�)X j − ∇̃∂/∂s(d�)∇X j X j

])
s=t=0

 

= −
∫

M

2n∑
j=1

[
X j

(
h̃
(
(d�)

∂

∂t
, ∇̃X j (d�)

∂

∂s

))
− h̃

(
∇̃X j (d�)

∂

∂t
, ∇̃X j (d�)

∂

∂s

)
+ h̃

(
R̃
( ∂
∂s
, X j

)
(d�)X j − ∇̃∂/∂s(d�)∇X j X j , (d�)

∂

∂t

)]
s=t=0

 .

Let Xφ ∈ �∞(H(M)) be defined by

Gθ (Xφ, Y ) = h̃(∇̃Y W, V ),

for any Y ∈ �∞(H(M)). Then

2n∑
j=1

[
X j

(
h̃
(
(d�)

∂

∂t
, ∇̃X j (d�)

∂

∂s

))
− h̃

(
∇̃∂/∂s(d�)∇X j X j , (d�)

∂

∂t

)]
s=t=0

=
2n∑
j=1

[
X j (Gθ (Xφ, X j ))− Gθ (Xφ,∇X j X j )

] =
2n∑
j=1

Gθ (∇X j Xφ, X j ) = div(Xφ)

and (by Green’s lemma) (4.13) is proved. �
As a consequence of (4.13) we get an immediate pseudo-Hermitian analogue of

the notion of stability (of a harmonic map between Riemannian manifolds).

Definition 4.6. Given a pseudoharmonic map φ : M → N , we set

I (V, V ) =
∫

M

{
‖∇̃V ‖2 −

2n∑
j=1

h̃
(
R̃h(V, (dφ)X j )(dφ)X j , V

)}
θ ∧ (dθ)n,

and call φ stable if I (V, V ) ≥ 0 for any V ∈ �∞(φ−1T N ). �
Then, as well as in Riemannian geometry, we have the following result:

Proposition 4.2. Any pseudoharmonic map, of a strictly pseudoconvex CR manifold
into a Riemannian manifold of nonpositive sectional curvature, is stable.

Next, our purpose in this section is to prove Theorem 4.5 below. To this end, we need
some preparation. Let j : N ⊂ (Mm+1(c), h) be a real hypersurface, and let h = j∗h
be its first fundamental form. Let tanx and norx be the canonical projections associated
with the direct sum decomposition

Tx (M
m+1(c)) = Tx (N )⊕ Tx (N )

⊥, x ∈ N .

Let ξ be a unit normal field on N . Then nor(V ) = h(V, ξ)ξ , for any V ∈ X (Mm+1(c)).
We shall need the Gauss and Weingarten equations (of the immersion j)
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∇X Y = ∇N
X Y + B(X, Y ), (4.14)

∇Xη = −AηX + ∇⊥
X η, (4.15)

where ∇N , B, Aη, and ∇⊥ are respectively the induced connection, the second fun-
damental form (of j), the Weingarten operator (associated with the normal section
η), and the normal connection (∇⊥ξ = 0). Next, let {X j : 1 ≤ j ≤ 2n} be a local
Gθ -orthonormal frame in H(M), defined on an open subset U ⊆ M .

It is well known that any nonconstant harmonic map of a Riemannian manifold
into a sphere is unstable. This result carries over easily to the case of pseudoharmonic
maps.

Theorem 4.5. Let M be a strictly pseudoconvex, compact CR manifold and N an ori-
entable totally umbilical real hypersurface, of mean curvature vector H, regularly
embedded in a real space form Mm+1(c). Let V ⊆ Mm+1(c) be a simple and convex1

open subset, N ∩ V �= ∅. If (m − 2)‖H‖2 + (m − 1)c > 0 then any nonconstant
pseudoharmonic (with respect to the data (θ,∇N )) map φ : M → N ∩ V is unstable.

Proof. Let φ : M → N ∩ V be a pseudoharmonic map, with respect to the data
(θ,∇N ). Let {Va : 1 ≤ a ≤ m + 1} be a parallel (i.e., ∇Va = 0) local h-orthonormal
frame on V . To build such a frame one merely starts with an orthonormal frame {va} ⊂
Tp(Mm+1(c)) at some point p ∈ V and considers the vector field Va obtained by
parallel translation of va along geodesics issuing at p. We wish to compute

I (tan(Va), tan(Va)) =
2n∑
j=1

∫
M

{
‖∇̃X j tan(Va)‖2 − h̃(R̃N (tan(Va), (dφ)X j )(dφ)X j , tan(Va))

}
θ∧(dθ)n,

where ∇̃ = φ−1∇N . Then (by (4.14)–(4.15))

∇̃X j tan(Va) = ∇N
(dφ)X j

tan(Va) = tan
(∇(dφ)X j tan(Va)

)
= tan

(∇(dφ)X j (Va − nor(Va))
) = − tan

(∇(dφ)X j nor(Va)
)

= Anor(Va)(dφ)X j .

Using ‖X‖2 = ∑m+1
a=1 h(X, Va)

2 we may compute

‖∇̃X j tan(Va)‖2 = ‖Anor(Va)(dφ)X j‖2 =
m+1∑
b=1

h(Anor(Va)(dφ)X j , Vb)
2

=
m+1∑
b=1

(Anor(Va)(dφ)X j , tan(Vb)) =
m+1∑
b=1

h(B((dφ)X j , tan(Vb)), nor(Va))
2.

1 In the sense of [241], Vol. I, p. 149.
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Assume from now on that N is totally umbilical in Mm+1(c), i.e., B = h ⊗ H (in
particular ‖H‖ = const, by the Codazzi equation). Then

‖∇̃X j tan(Va)‖2 =
m+1∑
b=1

h((dφ)X j , tan(Vb))
2 h(H, nor(Va))

2

= ‖(dφ)X j‖2 h(H, nor(Va))
2.

For any normal section η one has ‖η‖2 = h(η, ξ)2. Thus

h(H, nor(Va)) = ‖ nor(Va)‖2 ‖H‖2,

and the last identity becomes

‖∇̃X j tan(Va)‖2 = ‖(dφ)X j‖2 ‖ nor(Va)‖2 ‖H‖2;
hence

2n∑
j=1

‖∇̃X j tan(Va)‖2 = traceGθ {πHφ
∗h} ‖ nor(Va)‖2 ‖H‖2.

Since ‖ξ‖ = 1 and h(Va, Vb) = δab, it follows that
∑m+1

a=1 ‖ nor(Va)‖2 = 1. Therefore

m+1∑
a=1

2n∑
j=1

‖∇̃X j tan(Va)‖2 = ‖H‖2 traceGθ {πHφ
∗h}.

The Gauss equation (cf., e.g., [91])

RN (X, Y )Z = (c + ‖H‖2){h(Y, Z)X − h(X, Z)Y }
leads to

h̃(R̃N (tan(Va), (dφ)X j )(dφ)X j , tan(Va))

= (c + ‖H‖2){‖(dφ)X j‖2 ‖ tan(Va)‖2 − h̃(tan(Va), (dφ)X j )
2}.

Next ‖ tan(Va)‖2 + ‖ nor(Va)‖2 = 1 yields
∑m+1

a=1 ‖ tan(Va)‖2 = m; hence

2n∑
j=1

h̃(R̃N (tan(Va), (dφ)X j )(dφ)X j , tan(Va))

= (c + ‖H‖2){‖ tan(Va)‖2 traceGθ

{
πHφ

∗h} −
2n∑
j=1

h((dφ)X j , Va)
2
}
,

or
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m+1∑
a=1

2n∑
j=1

h̃(R̃N (tan(Va), (dφ)X j )(dφ)X j , tan(Va))

= (c + ‖H‖2)
{

m traceGθ {πHφ
∗h} −

2n∑
j=1

‖(dφ)X j‖2
}

= (m − 1)(c + ‖H‖2) traceGθ {πHφ
∗h}.

Summing up

m+1∑
a=1

I (tan(Va), tan(Va)) = −2
[
(m − 2)‖H‖2 + (m − 1)c

]
E(φ) < 0.

Theorem 4.5 is proved. �

Pseudoharmonic maps are solutions to the nonlinear subelliptic PDE system (4.5).
Other subelliptic PDEs, such as the the CR Yamabe equation, were successfully stud-
ied by exploiting results in harmonic analysis on the Heisenberg group; cf. Chapter 3
of this book. Let us also remark that as well as (4.5), the CR Yamabe equation is the
projection on M of a nonelliptic PDE (whose principal part is the wave operator on
C(M)).

Let φ : M → N be a pseudoharmonic map, with respect to the data (θ,∇h). Let
{X p} = {Xα, J Xα} be a local orthonormal frame of H(M), defined on a coordinate
neighborhood (Ũ , ϕ) in M , and (V, yi ) a local coordinate system on N such that
φ(Ũ ) ⊆ V . Since �b = H the equations (4.5)) may be written

Hφi +
2n∑

p=1

X p(φ
j )X p(φ

k)(�′i
jk ◦ φ) = 0,

where H = −∑2n
p=1 X∗

p X p is the Hörmander operator (cf. Chapter 2 of this book).

We wish to emphasize the formal analogy between φ ◦ϕ−1 : �→ V and a subelliptic
harmonic map, in the sense of J. Jost and C.J. Xu [234] (� = ϕ(U ), U ⊂⊂ Ũ ).
Nevertheless, two differences occur. First, J. Jost and C.-J. Xu discuss (cf. op. cit.)
Hörmander systems of vector fields {X p} defined on an open set in RN (the dimen-
sion N is arbitrary, while N = 2n + 1 in CR geometry). Second, the formal adjoints
of the X p’s, and therefore the Hörmander operator, are built with respect to the Eu-
clidean metric of RN (while we use the volume form  arising from the given contact
structure). See also Z.R. Zhou [449]. On the other hand, there is an increasing litera-
ture regarding subelliptic equations on domains in RN (cf., e.g., [230], [340], [362]–
[363], [441], and [443]). Encouraged by the progress there we may state the following
conjecture (whose Riemannian counterpart is a result by J. Eells and M.J. Ferreira
[131]): Let M be a nondegenerate CR manifold, θ a contact form on M, and (N , h) a
Riemannian manifold. Let H be a homotopy class of C∞ maps φ : M → N. Then
there are u ∈ C∞(M) and φ ∈ H such that φ is pseudoharmonic with respect to the
data (exp(u) θ,∇h). �
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We end this section by looking at some examples of (globally defined) pseudo-
harmonic maps and by stating a few related open problems.

Example 3. Let M be a nondegenerate CR manifold. For a C∞ map � : M →
(Rm, h0),

τ(�; θ, D0) =
(
�b�

i
)

Yi

(where D0 is the Levi-Civita connection of the Euclidean metric h0).

Proposition 4.3. � is pseudoharmonic (with respect to (θ, D0)) if and only if �i are
harmonics of the sub-Laplacian.

Example 4. Let M be a strictly pseudoconvex CR manifold, θ a contact form on M
with Lθ positive definite, and gθ the Webster metric of (M, θ). Let φ : M → (N , h)
be an isometric (φ∗h = gθ ) immersion of (M, gθ ) into (N , h). Then

τ(φ; θ,∇h) = (2n + 1)H(φ)− α(φ)(T, T ), (4.16)

where dim(M) = 2n + 1 and H(φ) = 1
2n+1 tracegθ α(φ) is the mean curvature vector

of φ.

Proposition 4.4. Any pseudo-Hermitian immersion of (M, θ) into a strictly pseudo-
convex CR manifold (N , θ ′) is pseudoharmonic with respect to (θ,∇h), with h := gθ ′
the Webster metric of (N , θ ′).

This follows from the description of pseudo-Hermitian immersions performed in detail
in Chapter 6. We anticipate a few notions and results that enable us to give a proof of
Proposition 4.4. Let M, N be two CR manifolds. A CR immersion φ : M → N
is an immersion and a CR map (cf. [424]). Let θ, θ ′ be contact forms on M, N ,
respectively. A CR map φ : M → N is isopseudo-Hermitian if φ∗θ ′ = θ (cf. [219]).
Let T ′ be the characteristic direction of dθ ′. A pseudo-Hermitian immersion is an
isopseudo-Hermitian CR immersion φ : M → N such that T ′ is normal to φ(M)
(cf. [120] [36]). See [120], p. 190, and Theorem 12, p. 196, for examples of pseudo-
Hermitian immersions. Let us prove Proposition 4.4. Given X, Y ∈ X (M) one has

β(φ)(X, Y ) = ∇h
φ∗ Xφ∗Y − φ∗∇X Y.

On the other hand, the Levi-Civita connection ∇gθ of the Webster metric and the
Tanaka–Webster connection ∇ are related (cf. Chapter 1 of this book) by

∇gθ = ∇ − (A + dθ)⊗ T + τ ⊗ θ + 2θ $ J,

where A(X, Y ) = gθ (X, τY ). Using the Gauss formula

∇h
φ∗ Xφ∗Y = φ∗∇gθ

X Y + α(φ)(X, Y )
we obtain
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β(φ)(X, Y ) = α(φ)(X, Y )− {A(X, Y )+ (dθ)(X, Y )}φ∗T

+ θ(Y )φ∗τ X + θ(X)φ∗ JY + θ(Y )φ∗ J X. (4.17)

Let us restrict (4.17) to H(M) ⊗ H(M) and take traces (with respect to Gθ ); then
tracegθ τ = 0 and τ(T ) = 0 yield (4.16). �

Assume h = gθ ′ and let φ be a pseudo-Hermitian immersion. Then

α(φ)(T, T ) = ∇gθ ′
T ′ T ′ − φ∗∇gθ

T T = 0

and (by Theorem 7 in [120], p. 189) H(φ) = 0 hence τ(φ; θ,∇gθ ′ ) = 0. �
Example 5. Let φ : (M, gθ ) → (Sm(r), h) be an isometric immersion, where h :=
ι∗h0 and ι : Sm(r) ⊂ Rm+1. Set� := ι◦φ : M → Rm+1. Then we have the following
result:

Proposition 4.5. φ is pseudoharmonic with respect to (θ,∇h) if and only if

�b� = λ�+ α(φ)(T, T )+ T 2(�),

for some λ ∈ C∞(M). If additionally m = 2�+ 1 and φ∗T = T0 [the characteristic

direction of (S2�+1(r),
√−1

2 ι∗(∂ − ∂)|z|2)] then φ is pseudoharmonic if and only if

�b� = −2(n + 1)

r2
�,

i.e., �i are eigenfunctions of the sub-Laplacian corresponding to the eigenvalue
2(n + 1)r−2.

To prove this statement, note that (by Theorem 10.1 in [124], p. 84)

H(φ) = 1

2n + 1
tanSm (r) ��;

hence (by (4.16)) φ is pseudoharmonic (with respect to (θ,∇h)) if and only if

tanSm (r) �� = α(φ)(T, T ),

i.e.,

�� = α(φ)(T, T )+ λ�,
for some λ ∈ C∞(M), or, by a formula in [186] [cf., e.g., (68) in [120], p. 194, i.e.,
�b = �+ T 2 on C∞(M) (Greenleaf’s formula)]

�b� = α(φ)(T, T )+ λ�+ T 2(�).

Assume from now on that m = 2�+ 1 and φ∗T = T0. Then

α(φ)(T, T ) = ∇h
T0

T0 − φ∗∇gθ
T T = 0.
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Also

T0 = 1

r
J0

(
x j ∂

∂x j
+ y j ∂

∂y j

)
= 1

r

(
x j ∂

∂y j
− y j ∂

∂x j

)
,

so that
∑2�+2

A=1 T (�A)∂/∂x A = T0 yields

T (� j ) = −1

r
� j+�+1, T (� j+�+1) = 1

r
� j ;

hence

T 2(�) = −r−2�.

Then φ is pseudoharmonic if and only if �b� = (λ− r−2)�, for some λ ∈ C∞(M).
Yet (by �� = λ� and the proof of Theorem 10.2 in [124], p. 86) λ =
−(2n + 1)r−2. �
Example 6. By Example 5, pseudoharmonicity is related to the spectrum of �b [very
much as minimality in submanifold theory is related to the spectrum of the Lapla-
cian on a Riemannian manifold; cf. T. Takahashi [395], whose work led to the (still
growing) theory of submanifolds of finite type, cf., e.g., [92]]. Since �b is subel-
liptic, by a result of A. Menikoff and J. Söstrand [300], �b has a discrete spectrum
tending to +∞. Since explicit minimal immersions among spheres may be built (cf.,
e.g., Theorem 10.4 in [124], p. 92) by using orthonormal systems of eigenfunctions
of the Laplacian, one may ask whether eigenfunctions of �b may be produced in
any effective way. For instance, if M = S2n+1 then �v = −k(k + 2n)v, where
v = H |S2n+1 with H ∈ Hk (the space of all harmonic polynomials H : R2n+2 → R,
homogeneous of degree k), and all eigenfunctions of � are obtained in this way (cf.
[59], p. 160–162). Let H ∈ H2, i.e., H = ∑n+1

i, j=1(ai j xi x j + bi j xi y j + ci j yi y j ) with∑n+1
i=1 (aii + cii ) = 0. Set T0 = ∑n+1

j=1

(
x j∂/∂x j − y j∂/∂x j

)
(hence ι∗T = T0, where

T is the standard contact vector of S2n+1). Then

H =
n+1∑
i=1

aii (x
2
i + y2

i )+
∑
i< j

(ai j + a ji )(xi x j + yi y j )+
n+1∑

i, j=1

bi j xi y j , (4.18)

n+1∑
i=1

aii = 0, bi j = −b ji ,

are all harmonic polynomials H ∈ H2 satisfying T 2
0 (H) = 0. Set

P0 := Eigen(�; 4(n + 1)) ∩ Ker(T 2).

By the calculation above, P0 = {H |S2n+1 : H given by (4.18)}. Also P0 ⊆
Eigen(�b; 4(n + 1)), by Greenleaf’s formula. See [59], p. 160. The restriction to
the sphere C∞(R2n+2) → C∞(S2n+1) descends to an isomorphism H2 →
Eigen(�; 4(n + 1)); hence dimR P0 = n(n + 2). More generally, set
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Pλ := Eigen(�; 4(n + 1)) ∩ Ker(T 2 − λI ),

Nλ := dimR Pλ, λ ∈ R \ {−2}.

(For λ = −2 one has H2 ∩ Ker(T 2
0 − λI ) = (0).) Then

Pλ ⊆ Eigen(�b; 4(n + 1)− λ)
and

Nλ =

⎧⎪⎪⎨⎪⎪⎩
n(n + 1)

2
, λ ∈ R \ {−4,−2, 0},

(n + 1)(n + 2), λ = −4,

n(n + 2), λ = 0.

Let {v1, . . . , vn(n+2)} be a basis of P0 and set � = (v1, . . . , vn(n+2)) : S2n+1 →
Rn(n+2). Then �b� = −4(n + 1)�. If � is an isometric immersion [of (S2n+1, gθ )
into (Rn(n+2), h0)] then (by Theorem 6.2 in [124], p. 45, Greenleaf’s formula, and
T 2(�) = 0) �b� = (2n + 1)H(�); hence � is normal to S2n+1. Therefore F(x) :=
‖�(x)‖2

Rn(n+2) is a constant function, i.e., F(x) = c = const, x ∈ S2n+1, i.e.,

�(S2n+1) ⊂ Sn(n+2)−1(
√

c). In view of Theorem 10.4 in [124], p. 92 (cf. also [395]),
it is an open question whether S2n+1 → Sn(n+2)−1(

√
c) may be adjusted into a pseu-

doharmonic map.

We close with a few open problems. A smooth curve γ : I → M in a nondegen-
erate CR manifold, defined on an open interval I containing the origin, is a parabolic
geodesic of M if (i) γ̇ (0) ∈ H(M)γ (0) and (ii) (∇γ̇ γ̇ )γ (t) = 2cTγ (t), t ∈ I , for
some c ∈ R (cf. [228]; see also [120], pp. 191–192). Compute the form β(φ) of a map
φ : M → N carrying parabolic geodesics to parabolic geodesics.

Let X be a unit (gθ (X, X) = 1) vector field on a strictly pseudoconvex CR man-
ifold M . Then X is a map of M into U (M), the (total space of the) tangent sphere
bundle over (M, gθ ). U (M) has a well-known almost CR structure (integrable if, for
instance, M = S2n+1; see, e.g., [37]). Also U (M) carries a natural Riemannian metric
(induced by the Sasaki metric on T (M)) arising from gθ . In view of [69] one may ask,
when is X a pseudoharmonic (a CR, a pseudo-Hermitian) map?

Let φ : M → N be a continuous map of a strictly pseudoconvex CR manifold
M into a Riemannian manifold N . We call φ a pseudoharmonic morphism if there is
a contact form θ on M , with Lθ positive definite, such that for any local harmonic
function v : V → R (V ⊆ N open, �v = 0) one has φ−1(V ) �= ∅ and the pullback
v ◦ φ satisfies �b(v ◦ φ) = 0 in φ−1(V ). If this is the case, note that �(v ◦ φ ◦ π) =
�b(v ◦ φ) ◦ π = 0; hence φ ◦ π is a harmonic morphism of (C(M), Fθ ) into N . The
problem to prove a CR analogue of the Fuglede–Ishihara theorem (cf. [159], [217])
that harmonic morphisms are precisely the horizontally weakly conformal harmonic
maps has recently been dealt with by E. Barletta [33]. The results are described in
detail in the next section.

Already dealing with “horizontal conformality” leads to interesting problems. Let
φ : M → N be a smooth map and set� = φ◦π . Then the restriction of the Fefferman
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metric Fθ to Ker(d�) is indefinite. Indeed, if S is the vector field on C(M) tangent to
the S1-action then S ∈ Ker(d�) and Fθ (S, S) = 0. Is Ker(d�) at least nondegenerate
in (T (C(M)), Fθ )?

Proposition 4.6. (a) Ker(d�) = [
π∗Ker(dφ)

]⊕ RS.
(b) The restriction of Fθ to π∗Ker(dφ) is positive definite if and only if T is transverse

to Ker(dφ).

Here
[
π∗Ker(dφ)

]
u is the preimage of Ker(dπ(u)φ) by duπ : Ker(σu) → Tπ(u)(M),

u ∈ C(M) (a linear isomorphism, since σ is a connection 1-form in the principal
S1-bundle π : C(M) → M). The statement (a) follows easily from definitions. To
prove “�⇒” in (b), assume that Tx ∈ Ker(dxφ) for some x ∈ M . Let u ∈ π−1(x) and
let A ∈ Ker(σu) be the unique vector with (duπ)A = Tx . Thus A ∈ [

π∗Ker(dφ)
]

u .
Next,

0 = G̃θ (T, T )x = Fθ,u(A, A); (by A ∈ Ker(σu) and (4.6));

hence A = 0, i.e., Tx = 0, a contradiction. To prove “⇐�” in (b), let A ∈ π∗Ker(dφ)
and X := π∗ A, X = X H + θ(X)T , where X H ∈ H(M). Then

Fθ (A, A) = Gθ (X H , X H ) ≥ 0

and = 0 if and only if X H = 0, i.e., Ker(dφ) " X = θ(X)T , which gives θ(X) = 0
(since T is transverse to Ker(dφ)). Thus X = 0, i.e., A = 0. �

Definition 4.7. Let h be a Riemannian metric on N . We say that φ is horizontally
pseudoconformal if (i) T is transverse to Ker(dφ) and (ii) for any u ∈ C(M) there is
λ(u) ∈ R such that

λ(u)2 Fθ,u(A, B) = (�∗h)u(A, B),

for any A, B ∈ Hu , where Hu is the orthogonal complement (with respect to Fθ,u) of
Vu := [

π∗Ker(dφ)
]

u . �

By condition (i) Vu is, in particular, nondegenerate in (Tu(C(M)), Fθ,u). In particular,
the dilation λ : C(M) → R of φ is a continuous function (not necessarily smooth).
If θ̂ = e f θ, f ∈ C∞(M), let T̂ be the characteristic direction of d θ̂ . Since F

θ̂
=

e f ◦π Fθ it follows (by (b)) that T is transverse to Ker(dφ) if and only if T̂ is transverse
to Ker(dφ). Also λ̂2 F

θ̂
= �∗h on H ⊗ H, where λ̂ := e f ◦π)λ. We have thus proved

the following result:

Proposition 4.7.
Horizontal pseudoconformality is a CR-invariant property.

An interesting question is whether pseudoharmonic maps of S2n+1 into a Riemannian
manifold are unstable. In view of Theorem 3.1 of [437], p. 611, the answer is expected
to rely on a CR analogue of the Weitzenböck formula (for φ−1T N -valued forms on
S2n+1). Only a CR version of the Bochner formula (due to [186] and presented in
detail in Chapter 9 of this book) is known so far.
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4.4 Hörmander systems and harmonicity

In this section, given a Hörmander system X = {X1, . . . , Xm} on a domain � ⊆
Rn we show that any subelliptic harmonic morphism φ from � into a ν-dimensional
Riemannian manifold (N , h) is a (smooth) subelliptic harmonic map (in the sense of J.
Jost and C.-J. Xu [234]). Also φ is a submersion provided that ν ≤ m and X has rank
m. If � = Hn (the Heisenberg group) and X = { 1

2 (Lα + Lα) ,
1
2i (Lα − Lα)}, where

Lα = ∂/∂zα − i zα∂/∂t is the Lewy operator, then a smooth map φ : � → (N , h) is
a subelliptic harmonic morphism if and only if φ ◦ π : (C(Hn), Fθ0) → (N , h) is a

harmonic morphism, where S1 → C(Hn)
π−→ Hn is the canonical circle bundle and

Fθ0 is the Fefferman metric of (Hn, θ0). For any S1-invariant weak solution � to the
harmonic map equation on (C(Hn), Fθ0),

��i + Fab
θ0

(∣∣∣∣ i
jk

∣∣∣∣ ◦ π) ∂� j

∂ua

∂�k

∂ub
= 0, 1 ≤ i ≤ ν,

the base map φ (i.e., φ ◦ π = �) is shown to be a weak subelliptic harmonic map.
We obtain a regularity result for weak harmonic morphisms from (C({x1 > 0}), Fθ(k))
into a Riemannian manifold, where Fθ(k) is the Fefferman metric associated with the
system of vector fields X1 = ∂/∂x1, X2 = ∂/∂x2 + xk

1 ∂/∂x3 (k ≥ 1) on � =
R3 \ {x1 = 0}.

J. Jost and C.-J. Xu studied (cf. [234]) the existence and regularity of weak solu-
tions φ : �→ (N , h) to the nonlinear subelliptic system

Hφi +
m∑

a=1

(∣∣∣∣ i
jk

∣∣∣∣ ◦ φ) Xa(φ
j )Xa(φ

k) = 0, 1 ≤ i ≤ ν , (4.19)

where H = ∑m
a=1 X∗

a Xa is the Hörmander operator associated with a system X =
{X1, . . . , Xm} of smooth vector fields on an open set� ⊆ Rn satisfying the Hörmander
condition on � and (N , h) is a Riemannian manifold. See Definitions 4.10 and 4.11
below. Also

∣∣ i
jk

∣∣ are the Christoffel symbols associated with the metric h. If ω ⊂ � is
a smooth domain such that ∂ω is noncharacteristic for X , the result of J. Jost and C.-J.
Xu (cf. op. cit., Theorems 1 and 2, pp. 4641–4644) is that the Dirichlet problem for
(4.19), with boundary data having values in regular balls of (N , h), may be solved and
the solution is continuous on ω, up to the boundary. Any such map is then smooth by a
result of C.-J. Xu and C. Zuily (cf. [443]), who studied higher regularity of continuous
solutions to a quasilinear subelliptic systems including (4.20).

Definition 4.8. Solutions (smooth a posteriori) to (4.19) are subelliptic harmonic maps
and (4.19) is the subelliptic harmonic map system. �

See also Z-R. Zhou [449]. Clearly, if Xa = ∂/∂xa , 1 ≤ a ≤ n, then a subelliptic
harmonic map is an ordinary harmonic map (� is thought of as a Riemannian mani-
fold, with the Euclidean metric). An important class of harmonic maps are harmonic
morphisms, i.e., smooth maps of Riemannian manifolds pulling back local harmonic
functions to harmonic functions. That these are indeed harmonic maps is a classical
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result of T. Ishihara (cf. [217]), actually holding in general for harmonic morphisms
between semi-Riemannian manifolds (cf. B. Fuglede [160]). In the present section we
extend the notion of a harmonic morphism to the context of systems of vector fields
and generalize the Fuglede–Ishihara theorem. The results are due to E. Barletta [32].

Definition 4.9. A localizable2 map φ : � → (N , h) is a (weak) subelliptic harmonic
morphism if for any v : V → R, with V ⊆ N open and �Nv = 0 in V , one has
(i) v◦φ ∈ L1

loc(U ), for any open set U ⊂ � such that φ(U ) ⊂ V , and (ii) H(v◦φ) = 0,
in the distributional sense. �

The main result in this section is the following:

Theorem 4.6. (E. Barletta [32])
Let X = {X1, . . . , Xm} be a Hörmander system on a domain � ⊆ Rn and (N , h) a
ν-dimensional Riemannian manifold. If ν > m there are no subelliptic harmonic mor-
phisms of � into (N , h), except for the constant maps. If ν ≤ m then any subelliptic
harmonic morphism φ : � → (N , h) is an actually smooth subelliptic harmonic map
and there is a smooth function λ : �→ [0,+∞) such that

m∑
a=1

(Xaφ
i )(x)(Xaφ

j )(x) = λ(x)δi j , 1 ≤ i, j ≤ ν , (4.20)

for any x ∈ � and any normal coordinate system (V, yi ) at φ(x) ∈ N, where
φi = yi ◦ φ. In particular if x ∈ U = φ−1(V ) is such that λ(x) �= 0 then the
matrix [(Xaφ

i )(x)] has maximal rank; hence φ is a C∞ submersion provided that
{X1, . . . , Xm} are independent at any x ∈ �.

When � = Hn , the Heisenberg group, and X = {Xα, Yα : 1 ≤ α ≤ n}, where Xα =
(1/2)∂/∂xα + yα∂/∂t and Yα = J Xα , we relate subelliptic harmonic morphisms to
harmonic morphisms (from a certain Lorentzian manifold).

Theorem 4.7. (E. Barletta [32])
Let Hn = Cn × R be the Heisenberg group endowed with the standard strictly pseu-
doconvex CR structure and the contact form θ0 = dt + i

∑n
α=1(z

αdzα − zαdzα).
Consider the Fefferman metric

Fθ0 = π∗Gθ0 + 2

n + 2
(π∗θ0)$ (dγ )

on C(Hn) = (
�n+1,0(Hn) \ {0}) /R+, where π : C(Hn) → Hn is the projection and

γ a fiber coordinate on C(Hn). Then a smooth map φ : Hn → (N , h) is a subelliptic
harmonic morphism, with respect to the system of vector fields X = {Xα, Yα}, if and
only if φ ◦ π : (C(Hn), Fθ0)→ (N , h) is a harmonic morphism.

2 In the sense of [233], p. 434, i.e., for any x0 ∈ � there is an open neighborhood U ⊂ � of
x0 and a coordinate neighborhood (V, yi ) on N such that φ(U ) ⊂ V .
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The main ingredient in the proof is the relationship between the Laplace–Beltrami
operator � of the Fefferman metric Fθ0 and the Hörmander operator H on Hn . This
was presented in Chapter 2 of this book (cf. also J.M. Lee [271]), where � is related to
the sub-Laplacian�b of the given strictly pseudoconvex CR manifold, yet seems to be
unknown in the literature on PDEs. We emphasize the relationship between subelliptic
and hyperbolic PDEs by providing a short direct proof that for the Heisenberg group,
π∗� = −2H , where

� f = 1
2

n∑
α=1

( ∂2 f

∂(uα)2
+ ∂2 f

∂(uα+n)2

)
+ 2(|z|2 ◦ π) ∂2 f

∂(u2n+1)2

+ 2uα+n ∂2 f

∂uα∂u2n+1
− 2uα

∂2 f

∂uα+n∂u2n+1
+ 2(n + 2)

∂2 f

∂u2n+1∂u2n+2
,

for any f ∈ C2(Hn). Here u A = x A ◦ π , 1 ≤ A ≤ 2n + 1, and u2n+2 = γ , where
(x A) = (zα = xα + iyα, t) are coordinates on Hn .

4.4.1 Hörmander systems

Let � ⊆ Rn be an open set and X = {X1, . . . , Xm} a system of C∞ vector fields
on �.

Definition 4.10. We say that X satisfies the Hörmander condition (or that X is a
Hörmander system) on � if the vector fields X1, . . . , Xm together with their com-
mutators up to some fixed length r span the tangent space Tx (�), at each x ∈ �. �

A commutator of the form [Xa, Xb] has length 2 (and by convention each Xa has
length 1). If Xa = bA

a (x)∂/∂x A then we set X∗
a f = −∂(bA

a f )/∂x A, for any f ∈
C1

0(�). Our convention as to the range of indices is a, b, . . . ∈ {1, . . . ,m} and A, B,
. . . ∈ {1, . . . , n}.
Definition 4.11. The Hörmander operator is

Hu = −
m∑

a=1

X∗
a Xau =

n∑
A,B=1

∂

∂x A

(
a AB(x)

∂u

∂x B

)
,

where a AB(x) = ∑m
a=1 bA

a (x)b
B
a (x). �

The reader should observe that although we employ the same terminology, H is dis-
tinct from the operator in Definition 2.2. Indeed the formal adjoint X∗

a is defined with
respect to the Euclidean metric (while X∗

a in (2.8) is built with respect to the volume
form arising from a fixed contact form). The matrix a AB is symmetric and positive
semidefinite; yet it may fail to be definite; hence in general H is not elliptic (H is a
degenerate elliptic operator).

Example 1. (Cf. [234], p. 4634) The system of vector fields

X1 = ∂/∂x1 , X2 = ∂/∂x2 + (x1)k∂/∂x3 (k ≥ 0) (4.21)
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satisfies the Hörmander system on R3 with r = k + 1. We have X∗
a = −Xa , a ∈

{1, 2}; hence the Hörmander operator is

Hu = ∂2u

∂(x1)2
+ ∂2u

∂(x2)2
+ (x1)2k ∂2u

∂(x3)2
+ 2(x1)k

∂2u

∂x2∂x3
. (4.22)

As we shall see later, there is a CR structure H(k) on � = R3 \ {x1 = 0} such that
the (rank-2) distribution D spanned by the Xa’s is precisely the Levi (or maximally
complex) distribution of (�,H(k)).
Example 2. Let Hn = Cn × R be the Heisenberg group with coordinates (z, t) =
(z1, . . . , zn, t) and set zα = xα + iyα , 1 ≤ α ≤ n. Consider the Lewy operators
Lα = ∂/∂zα− i zα ∂/∂t , 1 ≤ α ≤ n, and the system of vector fields X := {Xα, Xα+n :
1 ≤ α ≤ n}, Xα+n = J Xα , where

Xα = 1
2 (Lα + Lα) , (4.23)

and Lα = Lα . As in Chapter 1 of this book, the Heisenberg group is thought of as a
CR manifold (of hypersurface type) with the standard CR structure

T1,0(Hn)x =
n∑
α=1

CLα,x , x ∈ Hn .

Also, J is the complex structure in the (real rank 2n) distribution H(Hn) =
Re e

(
T1,0(Hn)⊕ T0,1(Hn)

)
, i.e., J (Z + Z) = i(Z − Z), for any Z ∈ T1,0(Hn). Since

[Lα, Lα] = −2iδαβT (with T = ∂/∂t), (4.23) is a Hörmander system on Hn , with
r = 2. Next X∗

a = −Xa and the corresponding Hörmander operator is

Hu = 1
4

∑
α=1

{
∂2u

∂(xα)2
+ ∂2u

∂(yα)2

}
+ yα

∂2u

∂xα∂t
+ xα

∂2u

∂yα∂t
+ |z|2 ∂

2u

∂t2
. (4.24)

We end this section with a discussion of the function spaces W k,p
X (�) (which the

reader will meet again in applications in Section 4.4.4).
Let U ⊆ Rn be an open set and X = {X1, . . . , Xm} a Hörmander system on U .

Let � be a bounded domain in Rn such that � ⊂⊂ U . Let k ∈ Z, k ≥ 1, and
p ∈ R, p ≥ 1. We define the function spaces

W k,p
X (�) = { f ∈ L p(�) : X J f ∈ L p(�), ∀ J = ( j1, . . . , js), |J | := s ≤ k} .

If J = ( j1, . . . , js) and 1 ≤ ji ≤ m then X J f := X j1 · · · X js f (and derivatives are
intended in the sense of distribution theory). As a matter of notation, we admit that
|J | = 0 (i.e., J is the empty multi-index) and then X J f := f . Also we set

‖ f ‖
W k,p

X (�)
=
( ∑

|J |≤k

‖X J f ‖p
L p(�)

)1/p
, W k

X (�) := W k,2
X (�).
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Theorem 4.8. (C.-J. Xu [440])
(1) If 1 ≤ p <∞ then W k,p

X (�) is a separable3 Banach space.

(2) If 1 < p <∞ then W k,p
X (�) is reflexive.4

(3) W k
X (�) is a separable Hilbert space.

If J = ( j1, . . . , js) with 1 ≤ ji ≤ m then we denote by (X J )∗ the adjoint of X J on
C∞

0 (�), i.e.,∫
�

(X J u) v dx =
∫
�

u (X J )∗v dx, ∀ u, v ∈ C∞
0 (�).

Then the function spaces W k,p
X (�) may be also described as

W k,p
X (�) =

{
f ∈ L p(�) : ∃ gJ ∈ L p(�) such that∫
�

f
(
(X J )∗ϕ

)
dx =

∫
�

gJ ϕ dx, ∀ ϕ ∈ C∞
0 (�), ∀ |J | ≤ k

}
.

Of course gJ is unique (up to a zero measure set) and commonly denoted by X J f .

Proof of Theorem 4.8. Let {uν} be a Cauchy sequence in W k,p
X (�). Then for any ε > 0,

there is νε ≥ 1 such that

‖X J uν − X J uμ‖p
L p(�) ≤ ‖uν − uμ‖p

W k,p
X (�)

< ε p

for any ν, μ ≥ νε , i.e., {X J uν} is a Cauchy sequence in L p(�), for any |J | ≤ k.
Therefore, there is u J ∈ L p(�) such that X J uν → u J in L p(�), since ν → ∞.
Since∣∣∣∣∫

�

(X J uν) ψ dx −
∫
�

u J ψ dx

∣∣∣∣ ≤ ‖X J uν − u J ‖L p(�)‖ψ‖Lq (�),
1

p
+ 1

q
= 1,

it follows that
∫
�

X J uμ ψ dx → ∫
�

u J ψ dx as ν → ∞, for any ψ ∈ C∞
0 (�).

Hence, by letting ν → ∞ in∫
�

uν (X
J )∗ϕ dx =

∫
�

(X J uν) ϕ dx

we obtain ∫
�

u0 (X J )∗ϕ dx =
∫
�

u J ϕ dx,

3 A topological space X is separable if there is a countable dense subset A ⊆ X .
4 If X is a Banach space, let X∗ be its normed dual (itself a Banach space). Consider the linear

isometry φ : X → X∗∗ given by 〈φx, x∗〉 = 〈x∗, x〉, for any x ∈ X, x∗ ∈ X∗. Then
φ is an isometric isomorphism of X onto a closed subspace of X∗∗ and X is reflexive if
φ(X) = X∗∗.
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where 0 is the empty multi-index. Thus u0 ∈ W k,p
X (�) and X J u0 = u J and

‖uν − u0‖p

W k,p
X (�)

=
∑
|J |≤k

‖X J (uν − u0)‖p
L p(�) =

∑
|J |≤k

‖X J uν − u J ‖p
L p(�) → 0

for ν → ∞, i.e., uν → u0 in W k,p
X (�). This proves that W k,p

X (�) is Banach. Any L p

space with 1 < p <∞ is reflexive. Thus the product space

E :=
∏

|J |≤k

L p(�) = {{ f J }|J |≤k : f J ∈ L p(�), |J | ≤ k
}
,

‖{ f J }|J |≤k‖E :=
( ∑

|J |≤k

‖ f J ‖p
L p(�)

)1/p
,

is a reflexive Banach space. Moreover, the map

T : W k,p
X (�)→ E, T (u) := X J u, u ∈ W k,p

X (�),

is a linear isometry. Since T (W k,p
X (�)) is a closed subspace of E and T (W k,p

X (�))

is reflexive, it follows that W k,p
X (�) is reflexive as well. The proof of the separability

may be obtained in a similar way.

4.4.2 Subelliptic harmonic morphisms

Proposition 4.8. A weak subelliptic harmonic morphism φ : � → (N , h) is actually
smooth.

Indeed, let x ∈ � and p = φ(x) ∈ N . Let (V, yi ) be a local system of harmonic
coordinates at p (cf., e.g., [60], p. 143), i.e., p ∈ V and �N yi = 0 in V , where �N

is the Laplace–Beltrami operator of (N , h). Since φ is localizable, we may consider
an open neighborhood U of x such that φ(U ) ⊂ V . Then yi ◦ φ ∈ L1

loc(U ) and
H(yi ◦φ) = 0. Moreover, it is a well-known fact that H is hypoelliptic, i.e., if Hu = f
in the distributional sense, and f is smooth, then u is smooth, too. Hence yi ◦ φ ∈
C∞(U ). �

To show that φ is a subelliptic harmonic map we need the following lemma:

Lemma 4.2. (T. Ishihara [217])
Let (N , h) be a ν-dimensional Riemannian manifold and Ci , Ci j ∈ R a system of
constants such that Ci j = C ji and

∑ν
i=1 Cii = 0. Let p ∈ N. Then there is a normal

coordinate system (V, yi ) in p and a harmonic function v : V → R such that

∂v

∂yi
(p) = Ci , vi, j (p) = Ci j .
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Lemma 4.2 is referred to as Ishihara’s lemma. Here vi, j are the second-order covariant
derivatives

vi, j = ∂2

∂yi∂y j
−
∣∣∣∣ k
i j

∣∣∣∣ ∂v∂yk
.

Let i0 ∈ {1, . . . , ν} be a fixed index and consider the constants Ci = δi i0 and Ci j = 0.
By Ishihara’s lemma there is a local harmonic function v : V → R such that

∂v

∂yi
(p) = δi i0 , vi, j (p) = 0.

A calculation shows that

Xa(v ◦ φ) = ∂v

∂y j
Xa(φ

j ),

H(v ◦ φ) = (Hφ j )
∂v

∂y j
−

m∑
a=1

(Xaφ
j )(Xaφ

k)

{
v j,k +

∣∣∣∣ i
jk

∣∣∣∣ ∂v∂yi

}
. (4.25)

Then (by (4.25)),

0 = H(v ◦ φ)(x) = (Hφi0)(x)−
m∑

a=1

(Xaφ
j )(x)(Xaφ

k)(x)

∣∣∣∣ i0
jk

∣∣∣∣ (p).
To prove (4.20) in Theorem 4.6 consider the constants Ci j ∈ R such that Ci j = C ji

and
∑ν

i=1 Cii = 0. Let x ∈ � and p = φ(x) ∈ N . By Ishihara’s lemma there is a
normal coordinate system (V, yi ) in p and a local harmonic function v on V such that

∂v

∂yi
(p) = 0, vi, j (p) = Ci j .

Since φ is a subelliptic harmonic morphism (again by (4.25)),

0 = H(v ◦ φ)(x) = −
m∑

a=1

(Xaφ
j )(x)(Xaφ

k)(x)C jk,

that is,

C jk X jk(x) = 0, (4.26)

where

X jk :=
m∑

a=1

(Xaφ
j )(Xaφ

k).

The identity (4.26) may be also written as∑
i �= j

Ci j Xi j (x)+
∑

i

Cii

{
Xii (x)− X11(x)

}
= 0. (4.27)
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Now let us choose the constants Ci j such that Ci j = 0 for any i �= j and

Cii =

⎧⎪⎨⎪⎩
1, i = i0,

−1, i = 1,

0, otherwise,

where i0 ∈ {2, . . . , ν} is a fixed index. Then (4.27) gives

Xi0i0(x)− X11(x) = 0,

that is,

X11(x) = X22(x) = · · · = Xνν(x),

and (4.27) becomes ∑
i �= j

Ci j Xi j (x) = 0. (4.28)

Let us fix i0, j0 ∈ {1, . . . , ν} such that i0 �= j0, otherwise arbitrary, and set

Ci j =
{

1, i = i0 , j = j0ori = j0 , j = i0,

0, otherwise.

Then (4.28) implies that Xi0 j0(x) = 0. Let us set

λ := X11 =
m∑

a=1

(Xaφ
1)2 ∈ C∞(U ),

where U = φ−1(V ) ⊂ �. Summing up the results obtained so far, we have

m∑
a=1

(Xaφ
i )(x)(Xaφ

j )(x) = λ(x)δi j ,

which is (4.20), and in particular

ν λ(x) =
∑
a,i

(Xaφ
i )(x)2 .

Therefore, we have built a global C∞ function λ : � → [0,+∞). Indeed, if (V, ϕ =
(y1, . . . , yν)) and (V ′, ϕ′ = (y′1, . . . , y′ν)) are two normal coordinate systems at
p = φ(x) and F = ϕ′ ◦ ϕ−1, then the identities

Xaφ
′i = ∂Fi

∂ξ j
Xaφ

j ,
∑

k

∂Fk

∂ξ i
(p)
∂Fk

∂ξ j
(p) = δi j

yield
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i

(Xaφ
′i )(x)2 =

∑
j

(Xaφ
j )(x)2 .

Assume that there is x0 ∈ � such that λ(x0) �= 0 and consider

vi :=
(
(X1φ

i )(x0), . . . , (Xmφ
i )(x0)

)
∈ Rm, 1 ≤ i ≤ ν .

Clearly vi �= 0, for any i , and vi · v j = 0, for any i �= j . Consequently
rank[(Xaφ

i )(x0)] = ν; hence ν ≤ m. Thus, whenever ν > m it follows that λ = 0,
i.e., Xaφ

i = 0, and then the commutators of the Xa’s, up to length r , annihilate φi .
Since X = {X1, . . . , Xm} is a Hörmander system and � is connected, it follows that
φi = const.

4.4.3 The relationship to hyperbolic PDEs

We recall (cf., e.g., [433]) the following definition:

Definition 4.12. A smooth map � : M → N of semi-Riemannian manifolds is a
harmonic morphism if for any local harmonic function v : V → R on N , the pullback
v ◦� is harmonic on M , i.e., �(v ◦�) = 0 in U = �−1(V ). Here � is the Laplace–
Beltrami operator of M . �
In the context of Example 2, we shall relate the subelliptic harmonic morphisms φ :
Hn → N to harmonic morphisms from the Lorentzian manifold (C(Hn), Fθ0). Recall
that θ0 = dt + i

∑n
α=1(z

αdzα − zαdzα) is a contact form on Hn , i.e., θ0 ∧ (dθ0)
n is a

volume form. Let us consider the 1-form σ = 1
n+2 dγ on C(Hn) and let us set

Fθ0 = π∗Gθ0 + 2(π∗θ0)$ σ.
By the results in Chapter 2, Fθ0 is a Lorentz metric on C(Hn), the Fefferman metric of
(Hn, θ0). With respect to the local coordinates (ua) = (u A, γ ), where u A = x A ◦ π ,
the Fefferman metric may be written as

Fθ0 = 2
n∑
α=1

[
(duα)2 + (duα+n)2

]
+ 2

n + 2

[
du2n+1 + 2

n∑
α=1

(uαduα+n − uα+nduα)
]
$ du2n+2 . (4.29)

We wish to compute the Laplace–Beltrami operator

� f = 1√|F |
∂

∂ua

(√|F | Fab
θ0

∂ f

∂ub

)
, f ∈ C2(C(Hn)).

A calculation shows that

F := det[(Fθ0)ab] = −
( 2n

n + 2

)2
, (4.30)



240 4 Pseudoharmonic Maps

Fab
θ0

:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 · · · 0 0 · · · 0 un+1 0
...

...
...

...
...

...

0 · · · 1/2 0 · · · 0 u2n 0
0 · · · 0 1/2 · · · 0 −u1 0
...

...
...

...
...

...

0 · · · 0 0 · · · 1/2 −un 0
un+1 · · · u2n −u1 · · · −un 2|z|2 ◦ π n + 2

0 · · · 0 0 · · · 0 n + 2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
; (4.31)

hence

� f = 1
2

n∑
α=1

[
∂2 f

∂(uα)2
+ ∂2 f

∂(uα+n)2

]
+ 2(n + 2)

∂2 f

∂u2n+1∂u2n+2

+ 2uα+n ∂2 f

∂uα∂u2n+1
− 2uα

∂2 f

∂uα+n∂u2n+1
+ 2(|z| ◦ π)2 ∂2 f

∂(u2n+1)2
. (4.32)

Proposition 4.9. Let c ∈ π−1(0) ⊂ C(Hn). Then [Fab
θ0
(c)] has spectrum {1/2, n + 2,

−n − 2} (with multiplicities {2n, 1, 1}, respectively). The corresponding eigenspaces
are

Eigen(1/2) =
2n∑
j=1

Re j , Eigen(±(n + 2)) = R(0, . . . , 0, 1,±1).

Here {e1, . . . , e2n+2} ⊂ R2n+2 is the canonical linear basis. Consequently, under the
coordinate transformation⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w j = √
2 u j , 1 ≤ j ≤ 2n,

w2n+1 = 1√
2(n + 2)

(
u2n+1 + γ

)
,

w2n+2 = 1√
2(n + 2)

(
u2n+1 − γ

)
,

(4.32) goes over to the canonical hyperbolic form

(� f )(c) =
2n+1∑
A=1

∂2 f

∂(wA)2
(c)− ∂2 f

∂(w2n+2)2
(c).

The unit circle S1 acts freely on C(Hn) by Rw([ω]) = [ω] ·w := [wω], w ∈ S1. Then
u A ◦ Rw = u A and γ ◦ Rw = γ +arg(w)+2kπ , for some k ∈ Z; hence R∗

wFθ0 = Fθ0 ,
i.e., S1 ⊂ Isom(C(Hn), Fθ0). As is well known, this yields �Rw = �, where we set

�ψ f := (� f ψ
−1
)ψ and f ψ

−1
:= f ◦ ψ , for any diffeomorphism ψ of C(Hn) into

itself. Therefore,

π∗� : C∞(Hn)→ C∞(Hn), (π∗�)u := (�(u ◦ π))̃,
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is well defined, where for a given S1 invariant function f on C(Hn), f̃ denotes the
corresponding base map. Finally, a calculation based on (4.24) and (4.32) leads to

(π∗�)u = 2 Hu, u ∈ C2(Hn). (4.33)

At this point, Theorem 4.7 is proved. For given a local harmonic function v : V → R
on N and φ : Hn → N a subelliptic harmonic morphism then (by (4.33)) 0 = 2 H(v ◦
φ) = (π∗�)(v ◦ φ); hence �(v ◦�) = 0, i.e., � = φ ◦ π is a harmonic morphism.

Example 1. (continued) Theorem 4.7 applies, with only minor modifications, to sub-
elliptic harmonic morphisms from � = R3 \ {x1 = 0}, with respect to the Hörmander
system (4.23). R3 is a CR manifold with the CR structure H(k) spanned by

Z := 2
∂

∂z
− i

( z + z

2

)k ∂

∂t
,

where z = x1 + i x2 and t = x3. Next

θ(k) = dt + i

2

( z + z

2

)k
(dz − dz)

is a pseudo-Hermitian structure on R3 with the Levi form

Lθ(k)(Z , Z) = −k
( z + z

2

)k−1;

hence (R3,H(0)) is Levi flat, while (�,H(k)) is nondegenerate, for any k ≥ 1. More-
over, if k ≥ 1, each connected component �+ = {x1 > 0} and �− = {x1 < 0} is
strictly pseudoconvex. The Tanaka–Webster connection of (�, θk) is given by

�1
11

= 0, �1
11 = 2(k − 1)

z + z
, �1

01 = 0.

In particular, the Tanaka–Webster connection of (�, θ(k)) has pseudo-Hermitian scalar
curvature R = − k−1

k (2/(z + z))k+1, and one may explicitly compute the Feffer-
man metric Fθ(k) of (�±, θ(k)). Also, the pseudo-Hermitian torsion vanishes (i.e.,

A1
1 = 0). Note that (�, θ(1)) is Webster flat. Set ∇H u = πD∇u, where ∇u is the

gradient of u ∈ C∞(�) with respect to the Webster metric and πH : T (�) → D the
projection with respect to the direct sum decomposition T (�) = D ⊕ R∂/∂t . That
is, ∇H u = u1 Z + u1 Z , where u1 = h11u1 and u1 = Z(u). The sub-Laplacian is
�bu = div(∇H u), where the divergence is taken with respect to the volume form
θ(k) ∧ (dθ(k))n . Since

div(Z) = k − 1

x1
, h11 = −1

k
x1−k

1 (x1 = x1),

one has �b = − 1
k x1−k

1 (Z Z + Z Z); hence (by (4.22)) �b = − 1
k x1−k

1 H on C∞
functions. By a result in Chapter 2, the Laplace–Beltrami operator � of the Fefferman
metric of (�±, θ(k)) is related to the sub-Laplacian by π∗� = �b; hence

(π∗�)u = −1

k
x1−k

1 Hu, u ∈ C∞(�±). (4.34)
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Proposition 4.10.
For any subelliptic harmonic morphism φ : �± → N, with respect to the Hörmander
system (4.22), the map � = φ ◦ π : C(�±) → N is a harmonic morphism, with
respect to the Fefferman metric of (�±, θ(k)).

For the converse, one may see our next section.

4.4.4 Weak harmonic maps from C(Hn)

From now on, we assume that N is covered by one coordinate chart ϕ = (y1, . . . , yν) :
N → Rν and �i := yi ◦�.

Definition 4.13. A map � : C(Hn) → N is said to satisfy weakly the harmonic map
system

��i + Fab
θ0

(∣∣∣∣ i
jk

∣∣∣∣ ◦ π) ∂� j

∂ua

∂�k

∂ub
= 0, 1 ≤ i ≤ ν , (4.35)

if �i ∈ L2(C(Hn)), X (�i ) ∈ L2(U), for any smooth vector field X on U ⊆ C(Hn)

open, and

ν∑
i=1

{∫
C(Hn)

�i �ϕi d vol(Fθ0)+
∫

C(Hn)

Fab
θ0

(∣∣∣∣ i
jk

∣∣∣∣ ◦ π) ∂� j

∂ua

∂�k

∂ub
ϕi d vol(Fθ0)

}
= 0,

for any ϕ ∈ C∞
0 (C(Hn),Rν). �

Of course, the prescription X (�i ) ∈ L2(U) means that there is gi
X ∈ L2(U) such that∫

U
gi

Xϕ d vol(Fθ0) =
∫
U
�i X∗ϕ d vol(Fθ0),

where X∗ is the formal adjoint of X with respect to the L2-inner product (u, v) =∫
uv dvol(Fθ0), for u, v ∈ C∞(C(Hn)), at least one of compact support. A posteriori,

the element gi
X is uniquely determined a.e. and denoted by X (�i ).

Earlier in this chapter, given a strictly pseudoconvex CR manifold M , one related
smooth harmonic maps from C(M) (with the Fefferman metric corresponding to a
fixed choice of contact form on M) to smooth pseudoharmonic maps from M (as
argued there, these are locally formally similar to J. Jost and C.-J. Xu’s subelliptic
harmonic maps). Here we wish to attack the same problem for weak solutions (of the
harmonic, respectively subelliptic harmonic, map equations). We recall the Sobolev-
type spaces

W 1,2
X (�) = {u ∈ L2(�) : Xau ∈ L2(�), 1 ≤ a ≤ m},

adapted to a system of vector fields X = {X1, . . . , Xm} on � ⊆ Rn (the Xau’s are
understood in the distributional sense). See also Section 4.4.1 of this book.
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Definition 4.14. φ : �→ N is a weak solution to (4.19) if φi ∈ W 1,2
X (�) and

ν∑
i=1

{∫
�

m∑
a=1

(Xaφ
i ) (Xaϕ

i ) dx −
∫
�

m∑
a=1

(∣∣∣∣ i
jk

∣∣∣∣ ◦ φ) (Xaφ
j )(Xaφ

k)ϕi dx

}
= 0,

for any ϕ ∈ C∞
0 (�,R

ν). �
See, e.g., [234], p. 4641.

Lemma 4.3. Let � : C(Hn) → N be an S1-invariant map and φ = �̃ the corre-
sponding base map. If �i ∈ L2(C(Hn)) and Y (�i ) ∈ L2(U), for any smooth vector
field Y on U ⊆ C(Hn), then φi ∈ W 1,2

X (Hn).

One has ‖�i‖L2(C(Hn))
= 2π‖φi‖L2(Hn)

; hence φi ∈ L2(Hn). In particular φi ∈
L1

loc(Hn) and �i ∈ L1
loc(C(Hn)). Let ϕ ∈ C∞

0 (Hn). Then ϕ ◦ π ∈ C∞
0 (C(Hn))

(because S1 is compact) and∫
C(Hn)

�i�(ϕ ◦ π) dvol(Fθ0) = −2
∫

C(Hn)

(φi Hϕ) ◦ π dvol(Fθ0) (by (4.33))

= −4π
∫

Hn

φi Hϕ θ0 ∧ (dθ0)
n

= −4π
∫

Hn

2n∑
a=1

(Xaφ
i )(Xaϕ) θ0 ∧ (dθ0)

n .

On the other hand,∫
Hn

φi (X∗
αϕ)dx = −

∫
Hn

φi (Xαϕ)dx

= − 1

2π

∫
C(Hn)

�i (Xαϕ) ◦ π dx dγ = − 1

2π

∫
�i X̂α(ϕ ◦ π) dx dγ

(since (∂/∂ua)∗ = −∂/∂ua)

= 1

2π

∫
�i (X̂a

)∗
(ϕ ◦ π) dx dγ = 1

2π

∫ (
X̂a�

i
)
(ϕ ◦ π) dx dγ.

The notation dx (respectively, dx dγ ) is short for θ0 ∧ (dθ0)
n (respectively, for

d vol(Fθ0)). Also, we set

X̂α := 1

2

∂

∂uα
+ uα+n ∂

∂u2n+1
, X̂α+n = 1

2

∂

∂uα+n
− uα

∂

∂u2n+1
.

The Jacobian of the right translation Rw with w ∈ S1 is the unit matrix, hence for any
ψ ∈ C∞

0 (C(Hn)),∫ (
X̂a�

i
)
ψ dx dγ = −

∫
�i X̂aψ dx dγ = −

∫
(�i ◦ Rw) (X̂aψ) ◦ Rw dx dγ
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(since X̂a is right-invariant)

= −
∫ (

�i ◦ Rw
)
(x, γ )

(
(d(x,γ )Rw)X̂a

)
(ψ)(x, γ )

(since �i is S1-invariant)

= −
∫
�i X̂a(ψ ◦ Rw) dx dγ =

∫
(X̂a�

i ) (ψ ◦ Rw) dx dγ

=
∫ (

(X̂a�
i ) ◦ Rw−1

)
ψ dx dγ ;

hence X̂a�
i = (X̂a�

i ) ◦ Rw−1 , i.e., there is an element of L2(Hn), which we denote
by Xaφ

i , such that

X̂a�
i = (Xaφ

i ) ◦ π .
We may conclude (by Fubini’s theorem) that∫

φi X∗
aϕ dx =

∫
(Xaφ

i ) ϕ dx ,

i.e., Xaφ
i is indeed the weak derivative of φi . Lemma 4.3 is proved. �

At this point we may establish the following theorem:

Theorem 4.9. Let φ : Hn → N be a map such that � := φ ◦ π satisfies weakly the
harmonic map system (4.35). Then φ is a weak solution to the subelliptic harmonic
map system (4.19).

Combining the regularity results in [234] and [443] with Theorem 4.9 we obtain the
following result:

Corollary 4.1. Let N be a complete Riemannian manifold of sectional curvature ≤ κ2.
Let � : C(Hn) → N be a bounded S1-invariant weak solution to the harmonic map
equation (4.35) such that �(C(Hn)) is contained in a regular5 ball of N . Then � is
smooth.

The statement in Theorem 4.9 follows from the preceding calculations and the identity(∣∣∣∣ i
jk

∣∣∣∣ ◦�) ∂� j

∂ua

∂�k

∂ub
Fab
θ0

=
(∣∣∣∣ i

jk

∣∣∣∣ ◦�)
{

2
2n∑

a=1

(X̂a�
j )(X̂a�

k)+ (n + 2)
(∂� j

∂γ

∂�k

∂u2n+1
+ ∂� j

∂u2n+1

∂�k

∂γ

)}
5 That is, a ball B(p, ν) = {q ∈ N : dN (q, p) ≤ ν} such that ν < min{π/(2κ) , i(p)}, where

i(p) is the injectivity radius of p (cf. [234], p. 4644).
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(itself a consequence of (4.31)) provided we show that ∂� j/∂γ = 0, as a distribution.
Indeed, given ϕ ∈ C∞

0 (C(Hn)) set C := supC(Hn)
|∂ϕ/∂γ |, � := supp(ϕ), and

�H = π(�). Then, given φ j
ν ∈ C∞

0 (Hn) such that φ j = L2 − limν→∞ φ j
ν ,∣∣∣∣∫

C(Hn)

(φ j
ν ◦ π) ∂ϕ

∂γ
dvol(Fθ0)−

∫
C(Hn)

(φ j ◦ π) ∂ϕ
∂γ

dvol(Fθ0)

∣∣∣∣
≤ 2πC vol(�H )

1/2‖φ j
ν − φ j‖L2(Hn)

;
hence (since (4.30) implies (∂/∂γ )∗ = −∂/∂γ )

∂� j

∂γ
(ϕ) = −

∫
C(Hn)

(φ j ◦ π) ∂ϕ
∂γ

dvol(Fθ0)

= − lim
ν→∞

∫
C(Hn)

(φ j
ν ◦ π) ∂ϕ

∂γ
dvol(Fθ0) = 0,

by Green’s lemma and div(∂/∂γ ) = 0, again as a consequence of (4.30).

Example 1. (continued) As shown by Proposition 4.8, as a consequence of the hy-
poellipticity of the Hörmander operator together with the existence of local harmonic
coordinates on the target manifold, there is no notion of weak subelliptic harmonic
morphism (of course, this is true for harmonic morphisms between Riemannian man-
ifolds as well). Nevertheless, in the context of the Hörmander system (4.22) it makes
sense (since � is nonelliptic) to adopt the following definition:

Definition 4.15. We say that a localizable map � : (C(�±), Fθ(k)) → (N , h) is a
weak harmonic morphism if, for any local harmonic function v : V → R on N one
has v◦� ∈ L1

loc(U), for any U ⊆ C(�±) open such that�(U) ⊂ V , and �(v◦�) = 0
in the distributional sense. �
Then we may prove the following regularity result (and converse of Proposition 4.10):

Proposition 4.11. If � : C(�±) → N is an S1-invariant weak harmonic morphism
then the base map φ = �̃ : �± → N is a smooth subelliptic harmonic morphism (in
particular, � is smooth).

Let ϕ ∈ C∞
0 (�

±). Then

0 = �(v ◦�)(ϕ ◦ π) =
∫

C(�±)
(v ◦�)�(ϕ ◦ π) dvol(Fθ(k))

(by (4.34) and Fubini’s theorem)

= −2π

k

∫
�±
(v ◦ φ)(x)x1−k

1 (Hϕ)(x) dx = −2π

k
H(x1−k

1 v ◦ φ)(ϕ),

i.e., H(x1−k
1 v◦φ) = 0 in the distributional sense [here dx is short for θ(k)∧(dθ(k))n].

Hence there is f ∈ C∞(U ) such that v◦φ = xk−1
1 f , i.e., v◦φ is smooth (here U ⊆ �±

is any open set such that φ(U ) ⊂ V ). Then, again by (4.34), H(v ◦ φ) = 0. �
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4.5 Generalizations of pseudoharmonicity

Owing to the ideas of M. Ara (cf. [22]) and K. Uhlenbeck (cf. [410]), in this section
we consider F-pseudoharmonic maps, i.e., critical points of the energy

EF (φ) =
∫

M
F
( 1

2 traceGθ (πHφ
∗h)

)
θ ∧ (dθ)n ,

on the class of smooth maps φ : M → N from a (compact) strictly pseudoconvex
CR manifold (M, θ) to a Riemannian manifold (N , h), where θ is a contact form and
F : [0,∞)→ [0,∞) is a C2 function such that F ′(t) > 0. F-pseudoharmonic maps
generalize both J. Jost and C.-J. Xu’s subelliptic harmonic maps (the case F(t) = t ,
cf. [234]) and P. Hajlasz and P. Strzelecki’s subelliptic p-harmonic maps (the case
F(t) = (2t)p/2, cf. [192]).

The present section is organized as follows. We obtain the first variation formula
for EF (φ). We investigate the relationship between F-pseudoharmonicity and pseu-
doharmonicity, by exploiting the analogy between CR and conformal geometry (cf.
M. Ara [22] for the Riemannian counterpart). We consider pseudoharmonic mor-
phisms from a strictly pseudoconvex CR manifold and show that any pseudoharmonic
morphism is a pseudoharmonic map (the CR analogue of T. Ishihara’s theorem, cf.
[217]). We give a geometric interpretation of F-pseudoharmonicity in terms of the
Fefferman metric of (M, θ). The results we report on belong to E. Barletta [33].

Let (M, T1,0(M))) be a strictly pseudoconvex CR manifold, of CR dimension n,
and θ a contact form on M such that the Levi form Gθ is positive definite.

Definition 4.16. Let F : [0,∞) → [0,∞) be a C2 function such that F ′(t) > 0. For
a smooth map φ : (M, θ) → (N , h) and a compact domain D ⊆ M we consider the
energy function

EF (φ; D) =
∫

D
F
(

1
2 traceGθ (πHφ

∗h)
)
θ ∧ (dθ)n . (4.36)

Here (N , h) is a Riemannian manifold. Then φ is F-pseudoharmonic if for any com-
pact domain D ⊆ M , it is an extremal of the energy EF (· ; D) with respect to all
variations of φ supported in D. �

For F(t) = t , (4.36) is the energy function in Definition 4.5 (and extremals were
referred to as pseudoharmonic maps). The cases F(t) = (2t)p/2 (p ≥ 4) and F(t) =
exp(t) (familiar in the theory of harmonic maps of Riemannian manifolds and their
generalizations, such as p-harmonic maps, cf., e.g., P. Baird and S. Gudmundson [28],
L.F. Cheung and P.F. Leung [101], or exponentially harmonic maps, cf. M.C. Hong
[210], S.E. Koh [245]) have not been studied from the point of view of CR and pseudo-
Hermitian geometry. However, if F(t) = (2t)p/2 and φ : (M, θ) → (Sm, h0) is F-
pseudoharmonic [where Sm is the unit sphere in Rm+1 and h0 the standard Riemannian
metric on Sm] then given a local coordinate system (U, ϕ) on M , the map φ ◦ ϕ−1 :
� → Sm (� = ϕ(U )) is formally similar to a subelliptic p-harmonic map in the
sense of P. Hajlasz and P. Strzelecki [192]. We emphasize, however, that our notion
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is distinct from theirs. Indeed, P. Hajlasz and P. Strzelecki (cf. op. cit.) employ the
Euclidean metric on � (rather than the volume form θ ∧ (dθ)n) to define the relevant
operators (formal adjoints, the Hörmander operator, etc.).

Let us look at the following first variation formula [stated for simplicity in the case
M is compact (and then one adopts the shorter notation EF (φ) := EF (φ; M))].

Theorem 4.10. (E. Barletta [33])
Let M be a compact strictly pseudoconvex CR manifold, of CR dimension n, and θ
a contact form on M such that the Levi form Gθ is positive definite. Let (N , h) be a
Riemannian manifold. Let F : [0,∞) → [0,∞) be a C2 map such that F ′(s) > 0
and set ρ(s) := F ′(s/2). Let {φt }|t |<ε be a 1-parameter variation of a smooth map
φ = φ0 : M → N. Then

d

dt
{EF (φt )}t=0 = −

∫
M

h̃ (V, τF (φ; θ, h)) θ ∧ (dθ)n,

where Q := traceGθ (πHφ
∗h) and

τF (φ; θ, h) :=
2n∑

a=1

[
(φ−1∇N )Xa (ρ(Q)φ∗Xa)− ρ(Q)φ∗∇Xa Xa

]
.

Here {Xa} is a local Gθ -orthonormal frame of H(M). Also we set M̃ := (−ε, ε)× M
and

� : M̃ → N , �(t, x) := φt (x), x ∈ M, |t | < ε,
Vx := (d(0,x)�)

∂

∂t

∣∣∣∣
(0,x)

∈ Tφ(x)(N ), x ∈ M.

Then φ is F-pseudoharmonic if

τF (φ; θ, h) = 0. (4.37)

Moreover, for each smooth map φ : M → N the tension field

τF (φ; θ, h) ∈ �∞(φ−1T N )

is also given by

τF (φ; θ, h) =
{

div(ρ(Q)∇Hφi )+
2n∑

a=1

ρ(Q)

(∣∣∣ i
jk

∣∣∣ ◦ φ) Xa(φ
j )Xa(φ

k)

}
Yi (4.38)

on U := φ−1(V ), where (V, yi ) is a local coordinate system on N, φ j := y j ◦ φ,
and Y j (x) := (∂/∂y j )(x), x ∈ U, 1 ≤ j ≤ m.

The proof is relegated to the next section. Here∣∣∣∣ i
jk

∣∣∣∣ = hi�| jk, �|, |i j, k| = 1
2

(
∂hik

∂y j
+ ∂h jk

∂yi
− ∂hi j

∂yk

)
,
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are the Christoffel symbols of (N , h). As a consequence of (4.38) the Euler–Lagrange
equations (4.37) (the F-pseudoharmonic map equation) for φ : (M, θ) → (Rm, h0)

may be written

div(ρ(Q)∇Hφ j ) = 0, 1 ≤ j ≤ m. (4.39)

Here h0 is the natural flat metric on Rm . The reader should compare to (4.39) to the
equation (0.1) considered by K. Uhlenbeck [410].

The relationship between F-pseudoharmonicity and pseudoharmonicity is clari-
fied by the following theorem:

Theorem 4.11. (E. Barletta [33])
Let a CR manifold (M, θ), a Riemannian manifold (N , h), and a C2 function F :
[0,∞)→ [0,∞) be as in Theorem 4.10. Then

τF (φ; θ, h) = F ′
(

Q

2

)1+1/n

τ

(
φ ; F ′

(
Q

2

)1/n

θ , h

)
.

Thus φ : (M, θ) → (N , h) is an F-pseudoharmonic map if and only if φ :
(M, F ′(Q/2)1/n θ) → (N , h) is a pseudoharmonic (with respect to the data
(F ′(Q/2)1/n θ , h)) map.

The tension field τ(φ; θ, h) in Theorem 4.11 is obtained from τF (φ; θ, h) for
F(t) = t .

4.5.1 The first variation formula

Let {Z1, . . . , Zn} be a local frame of T1,0(M), defined on an open set U ⊆ M , such
that Lθ (Zα, Zβ) = δαβ (with Zβ = Zβ ). We recall that for any bilinear form B on
T (M),

traceGθ (πH B) =
n∑
α=1

{B(Xα, Xα)+ B(J Xα, J Xα)} ,

where Xα := 1√
2
(Zα + Zα) (hence Gθ (Xα, Xβ) = δαβ ). If X is a tangent vector field

on M , φ∗X denotes the section in φ−1T N → M given by (φ∗X)(x) := (dxφ)Xx ∈
Tφ(x)(N ) = (φ−1T N )x , x ∈ M . Note that

traceGθ (πHφ
∗h) =

2n∑
a=1

h̃(φ∗Xa, φ∗Xa) ≥ 0;

hence the definition of EF (φ; D)makes sense (remember that F(t) is defined only for
t ≥ 0). Here {Xa : 1 ≤ a ≤ 2n} := {Xα, J Xα : 1 ≤ α ≤ n}.

Let φ : M → N be a smooth map. Then φ is F-pseudoharmonic if

d

dt
{EF (φt )}t=0 = 0,
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for any compactly supported 1-parameter variation {φt }|t |<ε of φ0 = φ. To write the
first variation formula we set M̃ := (−ε, ε)× M and

� : M̃ → N , �(t, x) := φt (x), x ∈ M, |t | < ε.
Also

Vx := (d(0,x)�)
∂

∂t

∣∣∣∣
(0,x)

∈ Tφ(x)(N ), x ∈ M.

Then V ∈ �∞(φ−1T N ). Moreover, let

V := �∗
∂

∂t
∈ �∞(�−1T N )

(hence V(0,x) = Vx ). Let ∇̃ := �−1∇N be the connection in �−1T N → M̃ induced
by ∇N (the Levi-Civita connection of (N , h)). We have

d

dt
{EF (φt )} = d

dt

∫
M

F
(

1
2 traceGθ

(
πHφ

∗
t h
))
 

=
∫

M

d

dt
F
(

1
2

2n∑
a=1

(φ∗
t h)(Xa, Xa)

)
 ,

where as usual = θ ∧ (dθ)n . Let αt : M → M̃ be given by αt (x) := (t, x), x ∈ M .
If X is a tangent vector field on M we set X̃(t,x) := (dxαt )Xx . The symbol h̃ denotes
the bundle metric �−1h (induced by h) in �−1T N → M̃ as well. Then

(φ∗
t h)(X, Y ) = h̃(�∗ X̃ ,�∗Ỹ ) ◦ αt .

Set

Qt := traceGθ

(
πHφ

∗
t h
) ∈ C∞(M), |t | < ε.

Then

d

dt
{EF (φt )} = 1

2

∫
M

F ′(Qt

2

) 2n∑
a=1

d

dt

{
h̃(�∗ X̃a,�∗ X̃a) ◦ αt

}
 

=
∫

M
F ′(Qt

2

) 2n∑
a=1

h̃(∇̃∂/∂t�∗ X̃a,�∗ X̃a) 

=
∫

M
F ′(Qt

2

) 2n∑
a=1

h̃(∇̃X̃a
�∗

∂

∂t
,�∗ X̃a) ,

since ∇̃ h̃ = 0, ∇N is torsion-free, and [X̃ , ∂/∂t] = 0. Next

d

dt
{EF (φt )} =

∫
M

F ′(Qt

2

)∑
a

{
X̃a(h̃(V,�∗ X̃a))− h̃(V, ∇̃X̃a

�∗ X̃a)
}
 .
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For |t | < ε fixed, let Xt ∈ �∞(H(M)) be defined by

Gθ (Xt , Y ) = h̃(V,�∗Ỹ ) ◦ αt , Y ∈ �∞(H(M)).

Also, if f ∈ C∞(M̃) and |t | < ε we set ft := f ◦ αt ∈ C∞(M), so that

X ( ft ) = X̃( f ) ◦ αt ,

for any X ∈ T (M). Therefore

d

dt
{EF (φt )} =

∫
M
ρ(Qt )

∑
a

{
Xa(Gθ (Xt , Xa))− h̃(V, ∇̃X̃a

�∗ X̃a)
}
 

=
∫

M
ρ(Qt )

∑
a

{
Gθ (∇Xa Xt , Xa)+ Gθ (Xt ,∇Xa Xa)− h̃(V, ∇̃X̃a

�∗ X̃a)
}
 ,

where ρ(s) := F ′(s/2) and ∇ is the Tanaka–Webster connection of (M, θ) (so that
∇Gθ = 0). As usual we compute the divergence by the formula

div(X) = trace{Y !→ ∇Y X}.
Then

d

dt
{EF (φt )} =

∫
M
ρ(Qt )

{
div(Xt )− −

∑
a

h̃(V, ∇̃X̃a
�∗ X̃a −�∗ ˜∇Xa Xa)

}
 

=
∫

M

{
div(ρ(Qt )Xt )−Xt (ρ(Qt ))−ρ(Qt )

∑
a

h̃(V, ∇̃X̃a
�∗ X̃a −�∗ ˜∇Xa Xa)

}
 ,

because of div( f X) = f div(X) + X ( f ). Since φt is compactly supported, so is Xt .
Therefore (by Green’s lemma)

d

dt
{EF (φt )} = −

∫
M

{
Gθ (Xt ,∇Hρ(Qt ))

+ h̃(V, ρ(Qt )
∑

a

(∇̃X̃a
�∗ X̃a −�∗ ˜∇Xa Xa))

}
 

= −
∫

M
h̃

(
V,

∑
a

(
∇̃X̃a

(ρ(Qt )�∗ X̃a)− ρ(Qt )�∗ ˜∇Xa Xa

))
 .

The last equality holds because of

2n∑
a=1

∇̃X̃a

(
ρ(Qt )�∗ X̃a

)
=
∑

a

(
X̃a(ρ(Qt ))�∗ X̃a + ρ(Qt )∇̃X̃a

�∗ X̃a

)
= �∗∇Hρ(Qt )+ ρ(Qt )

∑
a

∇̃X̃a
�∗ X̃a .

Note that
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(�−1∇N )X�∗Y

)
(0,x)

=
(
(φ−1∇N )Xφ∗Y

)
x
.

We are left with the proof of (4.38). We have

div(ρ(Q)∇Hφ j ) = trace{Y !→ ∇Y (ρ(Q)∇Hφ j )}

=
2n∑

a=1

Gθ (∇Xa (ρ(Q)∇Hφ j ), Xa)+ θ(∇T (ρ(Q)∇Hφ j ))

=
2n∑

a=1

[
Xa(Gθ (ρ(Q)∇Hφ j , Xa))− Gθ (ρ(Q)∇Hφ j ,∇Xa Xa)

]
+ T (θ(ρ(Q)∇Hφ j )) ,

because of ∇gθ = 0 and ∇T = 0. Also (since H(M) is ∇-parallel)

Gθ (∇Hφ j ,∇Xa Xa)Y j = gθ (∇φ j ,∇Xa Xa)Y j = (∇Xa Xa)(φ
j ) Y j = φ∗∇Xa Xa;

hence

div
(
ρ(Q)∇Hφ j )Y j =

2n∑
a=1

{
Xa

(
ρ(Q)Xa(φ

j )
)
Y j − ρ(Q)φ∗∇Xa Xa

}
.

Consequently (by the definition of τF (φ; θ, h))
τF (φ; θ, h) = div(ρ(Q)∇Hφ j )Y j + ρ(Q)

∑
a

{∇̃Xaφ∗Xa − (X2
aφ

j )Y j }

and the following calculation leads to (4.38)

∇̃Xaφ∗Xa − (X2
aφ

j )Y j = ∇̃Xa (Xa(φ
j )Y j )− (X2

aφ
j )Y j

= Xa(φ
j )Xa(φ

k)

(
∇N
∂/∂yk

∂

∂y j

)
◦ φ

=
(∣∣∣∣ i

jk

∣∣∣∣ ◦ φ) Xa(φ
j )Xa(φ

k)Yi .

Theorem 4.10 is proved. �
To prove Theorem 4.11 we need to derive the transformation law for τ(φ; θ, h)

under a change of contact form θ̂ = e2uθ , u ∈ C∞(M). Set

βφ(X, Y ) := (φ−1∇N )Xφ∗Y − φ∗∇X Y ,

for any X, Y ∈ T (M), so that

τ(φ; θ, h) = traceGθ

(
πHβφ

)
.

Consequently
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τF (φ; θ, h) = F ′(Q

2

)
τ(φ; θ, h)+ φ∗∇H F ′(Q

2

)
. (4.40)

If {Zα} is a local orthonormal frame of T1,0(M) we set Ẑα := e−u Zα . Note that

τ(φ; θ, h) =
n∑
α=1

{
βφ(Zα, Zα)+ βφ(Zα, Zα)

}
.

Therefore

τ(φ; θ̂ , h) =
n∑
α=1

{∇̃Ẑα
φ∗ Ẑα − φ∗∇̂Ẑα

Ẑα + ∇̃Ẑα
φ∗ Ẑα − φ∗∇̂Ẑα

Ẑα
}
,

where ∇̃ = φ−1∇N and ∇̂ is the Tanaka–Webster connection of (M, θ̂ ). Set ∇Z A Z B =
�C

AB ZC , where A, B, . . . ∈ {1, . . . , n, 1, . . . , n, 0} and Z0 := T . Then

∇̂Z W = ∇Z W − 2Lθ (Z ,W )∇0,1u , Z ,W ∈ T1,0(M)

(where ∇0,1u := π0,1∇u and π0,1 : T (M)⊗ C → T0,1(M) is the projection (associ-
ated with T (M)⊗ C = T1,0(M)⊕ T0,1(M)⊕ CT )) leads to

e2u τ(φ; θ̂ , h) = τ(φ; θ, h)+ 2n φ∗∇H u .

Set λ := eu . Then

τ(φ; λ2θ, h) = λ−2(n+1)
{
λ2nτ(φ; θ, h)+ φ∗∇H (λ2n)

}
. (4.41)

This is the transformation law we were looking for. Setting λ := ρ(Q)1/(2n), the
formulas (4.40)–(4.41) lead to the identity in Theorem 4.11. �

4.5.2 Pseudoharmonic morphisms

Pseudo-Hermitian maps are known to be examples of pseudoharmonic maps φ :
(M, θ)→ (N , gθN ), where gθN is the Webster metric of (N , θN ), and these are also the
only CR maps that are pseudoharmonic; cf. Theorem 4.1. New examples, as obtained
in this section, are the pseudoharmonic morphisms.

Definition 4.17. Let M be a nondegenerate CR manifold and θ a contact form on M .
Let φ : M → N be a smooth map into a Riemannian manifold (N , h). We say that
φ is a pseudoharmonic morphism if for each local harmonic function v : V → R
(V ⊆ N open, �Nv = 0, where �N is the Laplace–Beltrami operator of (N , h)) one
has �b(v ◦ φ) = 0 in U := φ−1(V ). �

Theorem 4.12. (E. Barletta [33])
Let M be a nondegenerate CR manifold, of CR dimension n, and θ a contact form
on M. Let (N , h) be an m-dimensional Riemannian manifold. If m > n there is no
pseudoharmonic morphism of (M, θ) into (N , h), except for the constant maps. If m ≤
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n then any pseudoharmonic morphism φ : (M, θ)→ (N , h) is a pseudoharmonic map
and a C∞ submersion and there is a unique C∞ function λ : M → [0,+∞) such that

g∗
θ (dHφ

i , dHφ
j )x = 2λ(x)δi j , 1 ≤ i, j ≤ m, (4.42)

for any x ∈ M and any normal coordinate system (V, yi ) at φ(x) ∈ N.

The Riemannian counterpart of Theorem 4.12 is a result of T. Ishihara [217] (thought
of as foundational for the theory of harmonic morphisms; cf., e.g., J.C. Wood [433]).
To prove Theorem 4.12 we make use of T. Ishihara’s lemma (cf. Lemma 4.2 in this
book). The proof of Theorem 4.12 is similar to that of Theorem 4.6.

Let φ : (M, θ) → (N , h) be a pseudoharmonic morphism. Let x ∈ M be an
arbitrary point and set p := φ(x) ∈ N . Let i0 ∈ {1, . . . ,m} be a fixed index and
set Ci := δi i0 and Ci j := 0, 1 ≤ i, j ≤ m. By Ishihara’s lemma, given normal
coordinates (V, yi ) at p, there is a harmonic function v : V → R. Then�b(v◦φ) = 0
in U := φ−1(V ), by the definition of pseudoharmonic morphisms. Let {Zα} be an
orthonormal frame of T1,0(M) on U . Note that

(v ◦ φ)α,β = (v j ◦ φ)φ j
α,β

+ φi
αφ

j
β

(
vi, j +

∣∣∣∣ k
i j

∣∣∣∣ vk

)
◦ φ, vi := ∂v

∂yi
,

�b(v ◦ φ) =
∑
α

{(v ◦ φ)α,α + (v ◦ φ)α,α},

yield

�b(v ◦ φ) = (�bφ
j )(v j ◦ φ)+ 2

∑
α

φ j
αφ

k
α

(
v j,k +

∣∣∣∣ i
jk

∣∣∣∣ vi

)
◦ φ . (4.43)

Let us apply (4.43) at the preferred point x :

0 = (�bφ
i0)(x)+ 2

∑
α

φ j
α(x)φ

k
α(x)

∣∣∣∣ i0
jk

∣∣∣∣ (p) = τ(φ; θ, h)i0
x ,

i.e., φ is a pseudoharmonic map.
Let us consider now Ci j ∈ R such that Ci j = C ji and

∑m
i=1 Cii = 0. By Ishihara’s

lemma there is v : V → R such that �Nv = 0, vi (p) = 0 and vi, j (p) = Ci j . Since
φ is a pseudoharmonic morphism (by (4.43)),

0 = �b(v ◦ φ)(x) =
∑
α

φ j
α(x)φ

k
α(x)C jk .

Set

X jk :=
∑
α

φ j
αφ

k
α ,

so that

C jk X jk(x) = 0.
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Thus ∑
i �= j

Ci j Xi j (x)+
∑

i

(
Xii (x)− X11(x)

)
Cii = 0. (4.44)

Let us choose for a moment Ci j = 0 for any i �= j and

Cii =

⎧⎪⎨⎪⎩
1, i = i0,

−1, i = 1,

0, otherwise,

for i0 ∈ {2, . . . ,m} fixed. Then (4.44) yields

Xi0i0(x)− X11(x) = 0,

i.e.,

X11(x) = · · · = Xmm(x),

and (4.44) becomes ∑
i �= j

Ci j Xi j (x) = 0.

Again we may fix i0, j0 ∈ {1, . . . ,m} with i0 �= j0 and choose

Ci j =
{

1, i = i0, j = j0,

0, otherwise,

to get

Xi0 j0(x) = 0.

We have proved that Xi j (x) = 0 for any i �= j . If we set

λ := X11 =
n∑
α=1

φ1
αφ

1
α ∈ C∞(U ),

then

n∑
α=1

φi
α(x)φ

j
α(x) = λ(x)δi j . (4.45)

The contraction of i, j now leads to

mλ =
∑
α,i

|φi
α|2 ≥ 0;
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hence λ : M → [0,+∞) is a C∞ function. To complete the proof of Theorem 4.12
assume that there is x ∈ M such that λ(x) �= 0 and set

wi := (φi
1(x), . . . , φ

i
n(x)) ∈ Cn .

Clearly wi �= 0 and (by (4.45)) i �= j �⇒ wi ·w j = 0, that is, the rows of [φi
α(x)] =

(w1, . . . , wm)t are mutually orthogonal nonzero vectors in Cn . Hence rank[φi
α(x)] =

m and then m ≤ n. Therefore m > n implies λ = 0; hence φi
α = 0. Thus φi

α = 0
(by complex conjugation) or ∂bφ

i = 0, i.e., φi is an R-valued CR function on a
nondegenerate CR manifold; hence φi = const, 1 ≤ i ≤ m, i.e., φ is a constant
map. �

4.5.3 The geometric interpretation of F-pseudoharmonicity

The notion of a F-pseudoharmonic map admits the following geometric interpretation
(in terms of the Fefferman metric):

Theorem 4.13. (E. Barletta [33])
Let M be a compact strictly pseudoconvex CR manifold, θ a contact form on M, (N , h)
a Riemannian manifold, and F : [0,+∞) → [0,+∞) a C2 function, as in Theorem
4.10. Let S1 → C(M)

π−→ M be the canonical circle bundle and Fθ the Fefferman
metric of (M, θ). Let φ : M → N be a smooth map. Then φ : (M, θ) → (N , h) is an
F-pseudoharmonic map if and only if its vertical lift φ ◦ π : (C(M), Fθ )→ (N , h) is
an F-harmonic map in the sense of M. Ara, [22], i.e., a critical point of the energy

E(�) =
∫

C(M)
F
(

1
2 traceFθ �

∗h
)

d vol(Fθ ),

on the class of all smooth functions � : C(M) → N. Here d vol(Fθ ) is the natural
volume form on the Lorentzian manifold (C(M), Fθ ).

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold, of CR dimension n, and θ
a contact form on M with Gθ positive definite. Let F(t) ≥ 0 be a C2 map defined for
t ≥ 0, such that F ′(t) > 0. For simplicity, assume for the rest of this section that M is
compact; hence C(M) is compact as well.

Definition 4.18. A smooth map � : (C(M), Fθ ) → (N , h) is said to be F-harmonic
if it is a critical point of

EF (�) =
∫

C(M)
F
(

1
2 traceFθ (�

∗h)
)

d vol(Fθ ),

i.e., if τF (�; Fθ , h) = 0, where (cf. M. Ara [22])

τF (�; Fθ , h) := F ′( 1
2 traceFθ (�

∗h)
)
τ(�; Fθ , h)+�∗

{
∇F ′( 1

2 traceFθ (�
∗h)

)}
.

(4.46)

Here τ(�; Fθ , h) is the ordinary tension field of � : (C(M), Fθ ) → (N , h) and
∇ : C∞(C(M)) → X (C(M)) the gradient operator with respect to the Fefferman
metric Fθ . �
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At this point we may prove Theorem 4.13. Let (U, x A) be a local coordinate system on
M (the convention as to the range of indices is A, B, . . . ∈ {0, 1, . . . , n, 1, . . . , n}) and
let us set u A := x A ◦ π : π−1(U ) → R. Moreover, let gab = Fθ (∂/∂ua , ∂/∂ub) be
the local components of the Fefferman metric with respect to this coordinate system,
and [gab] = [gab]−1, where a, b, . . . ∈ {0, 1, . . . , n, 1, . . . , n, 2n +2} and u2n+2 = γ .
Let φ : M → N be a smooth map and let us set � := φ ◦ π . Then

traceFθ

(
�∗h

) = gab ∂�
j

∂ua

∂�k

∂ub
(h jk ◦�) = g AB

(
∂φ j

∂x A
◦ π

)(
∂φk

∂x B
◦ π

)
(h jk ◦�)

(because ∂π A/∂γ = 0) and

g AB
(
∂φ j

∂x A
◦ π

)(
∂φk

∂x B
◦ π

)
= hαβ

{
Tα(φ

j )Tβ(φ
k)+ Tβ(φ

j )Tα(φ
k)
}

◦ π;

hence

traceFθ

(
�∗h

) = 2hαβTα(φ
j )Tβ(φ

k) ◦ π = {
traceGθ

(
πHφ

∗h
)} ◦ π = Q ◦ π.

Therefore (by (4.46))

τF (�; Fθ , h) = F ′ ( 1
2 Q ◦ π

)
τ(�; Fθ , h)+�∗∇

{
F ′ ( 1

2 Q ◦ π
)}
,

i.e., � = φ ◦ π is F-harmonic if and only if

(ρ(Q) ◦ π)τ(�; Fθ , h)+�∗∇(ρ(Q) ◦ π) = 0, (4.47)

where ρ(s) := F ′(s/2). It is well known that under a conformal change of metric, the
tension tensor field transforms as

τ(�; λ2 Fθ , h) = λ−(2n+2)
{
λ2nτ(�; Fθ , h)+�∗∇(λ2n)

}
, (4.48)

for any λ ∈ C∞(C(M)). By Theorem 4.11, φ is F-pseudoharmonic, if and only if
τ(φ; ρ(Q)1/nθ, h) = 0, that is (by Theorem 4.1) if and only if φ ◦π is harmonic with
respect to the Fefferman metric Fρ(Q)1/n θ , i.e.,

τ(φ ◦ π;Fρ(Q)1/n θ , h) = 0.

Finally [by (4.48) with λ := (ρ(Q) ◦ π)1/(2n)] φ is F-pseudoharmonic if and only if
(4.47) holds. �

4.5.4 Weak subelliptic F-harmonic maps

Earlier in this chapter we introduced F-pseudoharmonic maps (see Definition 4.16 in
Section 4.5) as critical points φ : M → N of the functional

EF (φ) =
∫

M
F
( 1

2 traceGθ (πHφ
∗h)

)
θ ∧ (dθ)n, (4.49)
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where M is a compact strictly pseudoconvex CR manifold and (N , h) a Riemannian
manifold. Also F : [0,+∞) → [0,+∞) is a C2 function such that F ′(t) > 0.
Moreover, it has been shown (cf. Theorem 4.10 in Chapter 4) that the Euler–Lagrange
equations of the variational principle δEF (φ) = 0 are

div(ρ(Q)∇Hφi )+
2n∑

a=1

ρ(Q)(

∣∣∣∣ i
j�

∣∣∣∣ ◦ φ)(Xaφ
j )(Xaφ

�) = 0, (4.50)

ρ(t) := F ′(t/2), Q := traceGθ (πHφ
∗h).

When N = Sm (the standard sphere in Rm+1) the equations (4.50) become

−
2n∑

a=1

X∗
a(ρ(Q)Xaφ

i ) = ρ(Q)φi |Xφ|2 , 1 ≤ i ≤ m, (4.51)

|Xφ|2 :=
2n∑

a=1

m+1∑
A=1

Xa(φ
A)2 , φA := y A ◦ φ,

where (y A) are the Cartesian coordinates on Rm+1. To see that (4.50) implies (4.51)
one takes into account the local expression of the divergence operator div with respect
to the local Gθ -orthonormal frame {Xa} of H(M) on U . The adjoint X∗

a is with respect
to  = θ ∧ (dθ)n , i.e.,

∫
u X∗

av  = − ∫
(Xau)v  for any u ∈ C∞

0 (U ) and

v ∈ C∞(U ). Taking into account the constraint
∑m+1

A=1 φ
2
A = 1 (where φA = φA)

it follows that φm+1 satisfies (4.50) as well.
Our scope in Section 4.5.4 is to look at local properties of weak solutions to (4.50).

At the present time the theory is rather incomplete, and we deal only with the problem
in which φ : �→ Sm , for some bounded domain � ⊂ Rn . If this is the case the local
frame {Xa : 1 ≤ a ≤ 2n} of H(M) is replaced by an arbitrary Hörmander system
{X1, . . . , Xk} on Rn , and then (4.49) and (4.51) become

EF (φ) =
∫
�

F( 1
2 |Xφ|2)dx,

−X∗ · (ρ(|Xφ|2)Xφ) = ρ(|Xφ|2)φ|Xφ|2 . (4.52)

Here if V = (V1, . . . , V2n) is a vector field we adopt the notation X∗ · V =∑2n
a=1 X∗

a Va . When F(t) := (2t)p/2, t ≥ 0, and m = 1 the left-hand side of (4.52)
becomes Lpφ, where Lpu ≡ −X∗ · (|Xu|p−2)Xu) is the subelliptic p-Laplacian in
[85]. L. Capogna, D. Danielli, and N. Garofalo were (cf. op. cit.) the first to study
regularity properties to (a single equation) Lpu = 0.

In Section 4.5.4 we also recall the “subelliptic technicalities” that are necessary to
understand the proof of P. Hájlasz and P. Strzelecki result in [192] (which carries over
to the more general case of (4.52), cf. E. Barletta et al. [42.1]). Rudiments of subelliptic
theory were presented in Chapter 3, as needed for solving the CR Yamabe problem.
Here we give additional details, trying to emphasize (in the spirit of P. Hájlasz [191])
the results that hold in the general setting of metric spaces endowed with a Borel
measure.
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Let X := {X1, . . . , Xk} be a Hörmander system with smooth real coefficients de-
fined on Rn (see Definition 4.10 in Chapter 4 of this book). We shall need the following
definition:

Definition 4.19. An absolutely continuous curve C : [0, T ] → Rn is said to be
admissible if Ċ(t) = ∑k

a=1 fa(t)Xa(C(t)), for some functions fa(t) satisfying∑k
a=1 fa(t)2 ≤ 1. �

If the vector fields Xa are not linearly independent at some point then the coefficients
fa are not unique.

Definition 4.20. The Carnot–Carathéodory distance dX (x, y), x, y ∈ Rn , is the in-
fimum of all T > 0 for which there is an admissible curve C : [0, T ] → Rn such
that C(0) = x and C(T ) = y. Balls with respect to dX are referred to as Carnot–
Carathéodory balls. �

The main ingredient in the proof that dX is indeed a distance function on Rn is a
classical result of W.L. Chow [103], according to which any two points in Rn may be
joined by an admissible curve.

Example 7. Let Hn be the Heisenberg group (cf. Section 1.1.5 in Chapter 1) and

X j = ∂

∂x j
+ 2y j ∂

∂t
, Y j = ∂

∂y j
− 2x j ∂

∂t
. (4.53)

Then X = {X j , Y j : 1 ≤ j ≤ n} is a Hörmander system on R2n+1 (cf. also Example
2 in Section 4.4.1 of this book). Let dX be the corresponding Carnot–Carathéodory
distance and set |x |X = dX (0, x). Then (i) | · |X : Hn → [0,+∞) is continuous,
(ii) |x−1|X = |x |X , (iii) |Dδx |X = δ|x |X , (iv) |x |X = 0 if and only if x = 0. Here
Dδ is the dilation by the factor δ > 0 (see Definition 1.11). The metric dX is left
invariant. Consequently dX (x, y) = |x−1 y|X . Also, dX commutes with dilations, i.e.,
dX (Dδx, Dδ y) = δ(x, y). It may be shown (cf. J. Mitchell [305]) that the Hausdorff
dimension of H1 with respect to dX equals 4. Another homogeneous (with respect to
dilations) norm | · | on Hn was considered in Definition 1.12 (the Heisenberg norm).
This satisfies (i)–(iv) above, and d(x, y) = |x−1 y| is a distance function on Hn . The
metrics dX and d are equivalent.6 �

Several relevant properties of the Carnot–Carathéodory metric were discovered7

by A. Nagel, E.M. Stein, and S. Wainger [323].

6 This is an easy exercise following from the fact that both dX and d are left invariant and
commute with dilations.

7 While our presentation doesn’t aim to be accurate from the historical point of view, we should
nevertheless mention the work by E. Lanconelli [266], in which a geometric approach (based
on the properties of the integral curves of vector fields associated with the given partial
differential operator) is used to study the Hölder continuity of weak solutions to certain
strongly degenerate equations (for which a prototype is Lαu ≡ ∂2u/∂x2 +|x |2α∂2u/∂y2 =
0 (α > 0)). The paper [266] was published in 1983 (while [323] appeared in 1985).
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Theorem 4.14. (A. Nagel, E.M. Stein, and S. Wainger [323])
For every open set � ⊂⊂ Rn there are constants Ci > 0 and λ ∈ (0, 1] such that

C1‖x − y‖ ≤ dX (x, y) ≤ C2‖x − y‖λ (4.54)

for any x, y ∈ �.

Here ‖·‖ is the Euclidean norm. In particular the identity map 1 : Rn → Rn , 1(x) = x ,
gives a homeomorphism (Rn, dX ) ≈ (Rn, d0), where d0 is the Euclidean metric on Rn .
As another consequence, if � is bounded with respect to d0 then it is bounded with
respect to dX as well. The converse is false, in general (if for instance X1 = x2

1 ∂/∂x1
then it may be shown that the Carnot–Carathéodory distance to infinity is finite). To
avoid any difficulties of the sort we assume throughout that in addition to being C∞,
the coefficients of the vector fields {X1, . . . , Xk} are globally Lipschitz on Rn . Indeed,
if this is the case then (by a result of N. Garofalo and D.M. Nhieu [166]) a subset of
Rn is bounded with respect to dX if and only if it is bounded with respect to d0.

Example 7. (continued) For the Hörmander system (4.53) on H1 it may be proved
directly that for any bounded set � ⊂ H1 there is a constant C > 0 such that

1

C
‖x − y‖ ≤ dX (x, y) ≤ C ‖x − y‖1/2

for any x, y ∈ �. �

Definition 4.21. Let X be a metric space with the distance function ρ. Let μ be a
Borel measure on X such that μ is finite on bounded sets. We say that μ is doubling
on � ⊂ X if there is a constant Cd ≥ 1 such that

μ(B(x, 2r)) ≤ Cd μ(B(x, r))

for any x ∈ � and any 0 < r < 5 diam(�). Cd is referred to as the doubling constant.
�

Here B(x, R) = {y ∈ X : ρ(x, y) < R}. Under our assumptions the Lebesgue
measure is doubling on any bounded open subset of Rn with respect to the Carnot–
Carathéodory metric. This is made precise in the following theorem:

Theorem 4.15. (A. Nagel, E.M. Stein, and S. Wainger [323])
Let X = {X1, . . . , Xk} be a Hörmander system on Rn, with globally Lipschitz coef-
ficients. Then for every bounded open set � ⊂ Rn there is a constant C > 1 such
that

|BX (x, 2r)| ≤ |BX (x, r)| (4.55)

for any x ∈ � and any 0 < r ≤ 5 diam(�).

Here the ball BX (x, R) and the diameter are meant with respect to dX . Also if A ⊂ Rn

is a Lebesgue measurable set then |A| denotes its Lebesgue measure.
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Example 7. (continued) The Lebesgue measure of a Carnot–Carathéodory ball
BX (x, r) in the lowest-dimensional Heisenberg group (H1, dX ) is

|BX (x, r)| = Cr4

for some constant C > 0 and any x ∈ H1, r > 0. �

Definition 4.22. Let H = ∑k
a=1 X∗

a Xa be the Hörmander operator. A function
G(x, y) defined for (x, y) ∈ � × �, smooth off � = {(x, y) ∈ � × � : x = y}, is
said to be a fundamental solution for H if(

H
∫
�

G(·, y)ϕ(y)dy
)
(x) = ϕ(x) (4.56)

for any ϕ ∈ C∞
0 (�). �

By a result of A. Sánchez-Calle [363], for any bounded domain � ⊂ Rn there is8

a fundamental solution of the Hörmander operator H , possessing growth properties
that extend naturally those of the fundamental solution for the classical Laplacian.
Precisely, if G is a fundamental solution for H in � and n ≥ 3 then

1

C

dX (x, y)2

|BX (x, dX (x, y))| ≤ G(x, y) ≤ C
dX (x, y)2

|BX (x, dX (x, y))|
and (for n ≥ 2)

|XaG(x, y)| ≤ C
dX (x, y)

|BX (x, dX (x, y))| , (4.57)

|Xa XbG(x, y)| ≤ C

|BX (x, dX (x, y))| (4.58)

for any x, y ∈ �. Here it is irrelevant whether differentiation is performed with respect
to x or y. Only the estimates on the derivatives of G are needed in the sequel.

Example 8. Let us consider the differential operator L0 (cf. Definition 3.9 for α = 0).
The Hörmander operator (associated with the Hörmander system (4.53)) is given by
H = 4L0 = ∑n

j=1(X
2
j + Y 2

j ). Let us recall (cf. Theorem 3.9 in Chapter 5, for α = 0)

that L0
(|x |−2n

) = c0δ, where c0 = (22−2nπn+1/�( n
2 ))

2. A fundamental solution for
H is given by G(x, y) = w(xy−1), where

w(x) = C

|x |2n
= C

(‖z‖4 + t2)n/2
, x = (z, t) ∈ Hn,

where C = 1/(4c0). �
Let us multiply both sides of (4.56) by u ∈ C∞

0 (�) and integrate with respect to
x . Next, we integrate by parts (in the left-hand side) to obtain the following result:

8 The existence of G(x, y) is well known to follow from the hypoellipticity of H and Bony’s
maximum principle (cf. J.M. Bony [73]).
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Proposition 4.12. Let � ⊂ Rn be a bounded domain. Then

u(x) =
∫
�

X yG(y, x) · X yu(y) dy (4.59)

for any u ∈ C∞
0 (�) and any x ∈ �.

Definition 4.23. A function ϕ(x) is said to be a cut-off function if ϕ(x) = 1 for any
point x in a Carnot–Carathéodory ball BX (x0, r), ϕ(x) = 0 for any x ∈ Rn\B(x0, 2r),
and there is a constant C > 0 such that |Xϕ| ≤ C/r . �

Smooth cut-off functions were built by G. Citti, N. Garofalo, and E. Lanconelli [104]
(by exploiting the fact that a fundamental solution G has decay properties similar to
those of dX ):

Theorem 4.16. (G. Citti, N. Garofalo, and E. Lanconelli [104])
For any open bounded set � ⊂ Rn there is a constant such that for any x ∈ � and
any 0 < r ≤ diam(�) there is a function ϕ ∈ C∞

0 (BX (x, r)) such that 0 ≤ ϕ ≤ 1,
ϕ = 1 on BX (x, r/2) and |Xϕ| ≤ C/r .

Let � ⊆ Rn be an open set and W 1,p
X (�) the Sobolev-type spaces associated with the

Hörmander system X on Rn , i.e.,

W 1,p
X (�) = {u ∈ L p(�) : Xau ∈ L p(�), a ∈ {1, 2, . . . , k}}

equipped with the norm ‖u‖
W 1,p

X (�)
= ‖u‖L p(�) + ‖Xu‖L p(�) (derivatives are meant

in the distributional sense). See also Section 4.4.1 of Chapter 4. The case p = 2 was
considered in Section 4.4.4 of this book. By a result of B. Franchi, R. Serapioni, and
F. Serra Cassano [155], C∞(�) is dense in W 1,p

X (�).

Definition 4.24. Let � ⊂ Rn be a bounded open set. A number D is called a homo-
geneous dimension relative to � (with respect to X ) if there is a constant C > 0 such
that

|BX (x, r)|
|BX (x0, r0)| ≥ C

(
r

r0

)D

(4.60)

for any Carnot–Carathéodory ball B0 = B(x0, r0) of center x0 ∈ � and radius 0 <
r0 ≤ diam(�), and any Carnot–Carathéodory ball B = B(x, r) of center x ∈ B0 and
radius 0 < r ≤ r0. �

The doubling property (cf. Theorem 4.15 above) is known to imply the existence of
homogeneous dimensions. Precisely, this holds in the general context of metric spaces
endowed with Borel measures.

Theorem 4.17. (R. Coifman and G. Weiss [105])
Let (X, ρ) be a metric space and μ a Borel measure on X that is finite on bounded
sets. Let � ⊂ X be an open bounded set and assume that μ is doubling on �, with
doubling constant Cd ≥ 1. Then
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μ(B(x, r))

μ(�)
≥
(

r

2 diam(�)

)log2 Cd

for any x ∈ � and any 0 < r ≤ diam(�).

Clearly, if D is a homogeneous dimension (relative to �) then any D′ ≥ D is a
homogeneous dimension as well.

Example 9. For the Heisenberg group H1 the smallest homogeneous dimension is
known to be D = 4, so that w(x) in Example 8 (with n = 1) may be written9 as
w(x) = C |x |2−D . �

When F(t) = (2t)2p (t ≥ 0) the subelliptic F-harmonic map equations become

−X∗ · (|Xφ|p−2 Xφ) = |Xφ|pφ, (4.61)

a form that is well suited for introducing the notion of weak solution φ ∈ W 1,p
X (�, Sm).

Definition 4.25. (P. Hájlasz and P. Strzelecki [192])
Let 1 < p < ∞. An element φ = (φ1, . . . , φm+1) ∈ W 1,p

X (�, Sm) (that is, each

φA ∈ W 1,p
X (�) and

∑m+1
A=1 φ

2
A = 1) is a weak solution to the system (4.61) if∫

�

|Xφ|p−2(XφA) · (Xψ) dx =
∫
�

|Xφ|pφAψ dx (4.62)

for any 1 ≤ A ≤ m + 1 and any ψ ∈ C∞
0 (�). Any such weak solution10 is referred to

as a weak subelliptic p-harmonic map. �

Definition 4.26. An element φ ∈ W 1,p
X (�, Sm) is a weak solution to (4.52) if

ρ(|Xφ|2)(XφA) · (Xψ), and ρ(|Xφ|2)|Xφ|2φAψ are in L1(�) and∫
�

ρ(|Xφ|2)(XφA) · (Xψ) dx =
∫
�

ρ(|Xφ|2)|Xφ|2φAψ dx

for any 1 ≤ A ≤ m + 1 and any ψ ∈ C∞
0 (�). Any such weak solution11 is called a

weak subelliptic F-harmonic map. �
9 The form of w(x) is reminiscent of the fundamental solution to the classical Laplacian (cf.,

e.g., (2.12) in [177], p. 17) and suggests that the (smallest) homogeneous dimension plays
(within the analysis of the Hörmander operator) the role of the Euclidean dimension (in the
analysis of the Laplacian).

10 Note that (by |φ| ≤ 1 and Hölder’s inequality)∣∣∣∣∫
�

|Xφ|pφAψ dx

∣∣∣∣ ≤ C
∫
�

|Xφ|p|φ| dx ≤ C‖Xφ‖p
L p(�)

,∣∣∣∣∫
�

|Xφ|p−2(XφA) · (Xψ) dx

∣∣∣∣ ≤
∫
�

|Xφ|p−1|Xψ | dx

≤ C
∫
�

|Xφ|p−1dx ≤ Cμ(�)1/p‖Xφ‖p/q
L p(�)

;

hence both integrals in (4.62) make sense.
11 Under the hypothesis of Theorem 4.19 (that is, ρ(t) ≤ K t p for some 0 < p < (D − 2)/2)

one has (by Hölder’s inequality (since D/(2p + 1) > 1))
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Theorem 4.18. (P. Hájlasz and P. Strzelecki [192])
Let X = {Xa = bA

a (x)∂/∂x A : 1 ≤ a ≤ k} be a Hörmander system on Rn such
that bA

a ∈ C∞(Rn) ∩ Lip(Rn). Let � ⊂ Rn be an open bounded set and D be a
homogeneous dimension relative to �, with respect to X. Then every weak subelliptic
D-harmonic map φ ∈ W 1,D

X (�, Sm) is locally Hölder continuous.

For the case of an arbitrary F(t) (F ∈ C2, F(t) ≥ 0, F ′(t) > 0) only the following
less-precise result is known:

Theorem 4.19. (E. Barletta et al. [42.1])
Let X, �, and D be as in Theorem 4.18. Assume that t p/K ≤ ρ(t) ≤ K t p for some
constant K ≥ 1 and some 0 < p < (D − 2)/2. Let φ ∈ W 1,D

X (�, Sm) be a weak
solution to the system (4.52). Let R0 > 0 and �1 ⊂⊂ � such that B(x, 2R0/τ) ⊂ �

for any x ∈ �1, τ := 1/200. Then there are λ ∈ [1/2, 1) and 0 < r0 ≤ R0 such that

Ip(r) :=
∫

BX (x,r)
|Xφ|2(p+1)(y) dy ≤ C rγ , γ := (log λ)/(log τ),

for any x ∈ �1 and any 0 < r ≤ r0. Consequently, if τ D < λ < τ D−2(p+1) then
φ ∈ S0,α

loc (�) with α := 1 + (γ − D)/(2p + 2).

The Hölder-like spaces (associated with the given Hörmander system) in Theorem
4.19 are given by

S0,α(�) =
{

f ∈ L∞(�) : sup
x,y∈�

| f (x)− f (y)|
dX (x, y)α

<∞
}
, 0 < α ≤ 1.

In the sequel we prove Theorem 4.19 (for a complete proof of Theorem 4.18 the reader
may see [192], pp. 353–359).

We shall need the Poincaré inequality. This is known to follow easily from the
Sobolev inequality. Generalizations (to the context of systems of vector fields) of the
Sobolev embedding theorem have been obtained by several authors:12

Theorem 4.20. Let X be a Hörmander system on Rn with globally Lipschitz coeffi-
cients. Let � ⊂ Rn be an open bounded set and D a homogeneous dimension relative
to �. For each 1 ≤ p < D there is a constant C > 0 such that for any Carnot–
Carathéodory ball B = BX (x, r) with x ∈ � and 0 < r ≤ diam(�),( 1

|B|
∫

B
|u − u B |p∗

dx
)1/p∗

≤ Cr
( 1

|B|
∫

B
|Xu|pdx

)1/p
, (4.63)

where p∗ = Dp/(D − p) and u B = (1/|B|) ∫B u dx.∣∣∣∣∫
�
ρ(|Xφ|2)(XφA) · (Xψ) dx

∣∣∣∣ ≤ C
∫
�
|Xφ|2p+1 dx ≤ Cμ(�)D/(D−2p−1)‖Xφ‖2p+1

L D(�)
,

so that ρ(|Xφ|2)(XφA) · (Xψ) is integrable. Similarly ρ(|Xφ|2)|Xφ|2φAψ ∈ L1(�).
12 The statement of Theorem 4.20 is taken from B. Franchi, G. Lu, and R.L. Wheeden [154],

and L. Capogna, D. Danielli, and N. Garofalo [86]. However, versions of Theorem 4.20 are
also due to M. Biroli and U. Mosco [61], B. Franchi [153], B. Franchi and E. Lanconelli
[152], G. Lu [289], N. Garofalo, and D.M. Nhieu [167], and D. Jerison [225].
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The inequality (4.63) implies the Poincaré inequality( ∫
B
|u − u B |pdx

)1/p ≤ Cr
( ∫

B
|Xu|pdx

)1/p
(4.64)

for any 1 ≤ p <∞. To prove (4.64) one should distinguish two cases: (I) 1 ≤ p < D
and (II) 1 ≤ p < ∞ is arbitrary. In the first case one applies the Hölder inequality.13

In the second case we may choose D′ > max{D, p} and proceed as in case I (as
emphasized above, any D′ > D is another homogeneous dimension relative to �).

Proof of Theorem 4.19. If C > 0 is a constant then C B(x0, r) is the ball B(x0,Cr).
Also, by r ≈ s we mean r/C ≤ s ≤ Cr , for some C ≥ 1. To start the study of weak
solutions φ to (4.52) with the constraint

∑m+1
i=1 φ

2
i = 1, we set Vi,a := ρ(Q)Xaφi ,

1 ≤ a ≤ k, and Vi = (Vi,1, . . . , Vi,k). Then

Vi =
m+1∑
j=1

φ j (φ j Vi − φi V j ),

merely as a consequence of the constraint. Next, we set Ei, j := φ j Vi −φi V j and then
(4.52) implies

X∗ · Ei, j = 0, 1 ≤ i, j ≤ m + 1. (4.65)

Indeed, for any ψ ∈ C∞
0 ,∫

�

(X∗ · (φi V j ))ψ dx =
k∑

a=1

∫
�

X∗
a(φi V j,a)ψ dx = −

∑
a

∫
�

φi V j,a Xaψ dx

= −
∑

a

∫
ρ(Q)(Xaφ j ) [Xa(φiψ)− ψXaφi ] dx

=
∑

a

∫
X∗

a(ρ(Q)Xaφ j )φiψ dx

+
∑

a

∫
ψρ(Q)(Xaφi )(Xaφ j )dx

=
∫
ρ(Q)

[
− Qφiφ j +

∑
a

(Xaφi )(Xaφ j )
]
ψ dx .

(by (4.52))

Hence X∗ ·(φi V j ) is symmetric in i, j , which yields (4.65). The identity (4.65) implies
the following result:

13 Note that 1/(p∗/p)+ 1/D = 1; hence (by Hölder’s inequality)∫
B

|u − u B |pdx ≤ |B|1/D
( ∫

B
|u − u B |p∗

dx
)p/p∗

and then one may use (4.63).
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Lemma 4.4. (The duality inequality)
Let � ⊂ Rn be a bounded domain and Xa = bA

a ∂/∂x A a Hörmander system on Rn

with bA
a (x) globally Lipschitz. Let R0 > 0 and�1 ⊂⊂ � such that B(x, 400R0) ⊂ �,

for any x ∈ �1. Let B = B(x0, r), x0 ∈ �1, be a ball such that 0 < r ≤ R0, and
ϕ ∈ W 1,D

X (B) a function of compact support. Then∣∣∣∣∫
B

X∗ · (φ j Ei, j )ϕ dx

∣∣∣∣ ≤ C K‖Xϕ‖L D(B)

(‖Xφ‖L2p+2(100B)

)2p+2
, (4.66)

for some constant C = C(�1, D,Cd , R0) > 0, provided that ρ(t) ≤ K t p, t ≥ 0,
for some K > 0 and 0 < p < (D − 2)/2.

Aside from some additional technical difficulties (e.g., one applies twice the frac-
tional integration theorem), the proof of Lemma 4.4 is similar to that of Lemma 3.2 in
P. Hájlasz and P. Strzelecki [192], p. 354.

To prove Theorem 4.19 we fix�1 ⊂⊂ � and R0 > 0 as in Lemma 4.4. Taking the
dot product of Vi = ∑m+1

j=1 φ j Ei, j with X∗ we get

X∗ · (ρ(Q)Xφi ) =
m+1∑
j=1

X∗ · (φ j Ei, j )

(a consequence of the constraint alone) and integrating over 2B [where B = B(x, r),
x ∈ �1, 0 < r < R0] against ψi := η(φi − (φi )2B), where 0 ≤ η ≤ 1 is a smooth
cut-off function such that η = 1 on B, η = 0 on � \ 2B, and |Xη| ≤ C/r , we obtain∫

X∗ · (ρ(Q)Xφi )ψi dx =
m+1∑
j=1

∫
X∗ · (φ j Ei, j )ψi dx . (4.67)

The left-hand side may be also written∫
X∗ · (ρ(Q)Xφi )ψi dx = −

∫
ρ(Q)(Xφi ) · (Xψi ) dx

= −
∫
ρ(Q)(Xφi ) ·

[
(Xη)(φi − (φi )2B)+ η(Xφi )

]
dx;

hence (4.67) becomes (by summing over 1 ≤ i ≤ m + 1)

∫
2B
ηQρ(Q) dx +

m+1∑
i=1

∫
2B
ρ(Q)(φi − (φi )2B)(Xφi ) · (Xη) dx

= −
∑
i, j

∫
2B

X∗ · (φ j Ei, j )ψi dx .

Consequently
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B

Qρ(Q) dx ≤
∫

2B
ηQρ(Q) dx

≤
∑

i

∫
2B
ρ(Q)

∣∣φi − (φi )2B

∣∣ |Xφi | |Xη| dx +
∑
i, j

∣∣Ii, j
∣∣ ,

where

Ii, j :=
∫

2B
X∗ · (φ j Ei, j )ψi dx .

Moreover, by |Xφi | ≤ |Xφ| = Q1/2 and by the Hölder inequality (with
1/[2(p + 1)] + 1/q = 1),∫

B
Qρ(Q) dx ≤

∑
i

∫
2B

Q1/2 ρ(Q) |Xη| ∣∣φi − (φi )2B

∣∣ dx +
∑
i, j

∣∣Ii, j
∣∣

≤
∑
i, j

∣∣Ii, j
∣∣+∑

i

(∫
2B

∣∣φi − (φi )2B

∣∣2(p+1)
)1/[2(p+1)]

×
(∫

2B\B

(
Q1/2ρ(Q)|Xη|

)2(p+1)/(2p+1)
)(2p+1)/[2(p+1)]

.

At this point, we may apply the Poincaré inequality(∫
2B

|u − u2B |sdx

)1/s

≤ Cr

(∫
2B

|Xu|sdx

)1/s

, 1 ≤ s <∞,

and Lemma 4.4 (with ϕ replaced by ψi ) to obtain∫
B

Qρ(Q) dx ≤ C
∑

i

(∫
2B

|Xφi |2(p+1) dx

)1/[2(p+1)]

×
(∫

2B\B

(
Q1/2ρ(Q)

)2(p+1)/(2p+1)
dx

)(2p+1)/[2(p+1)]

+
∑
i, j

∣∣Ii, j
∣∣

≤ C

(∫
2B

Q p+1 dx

)1/[2(p+1)] (∫
2B\B

(
Qρ(Q)2

)(p+1)/(2p+1)
dx

)(2p+1)/[2(p+1)]

+ C
∑

i

‖Xψi‖L D(2B)

(‖Xφ‖L2p+2(200B)

)2p+2
.

By ρ(t) ≤ K t p we have(∫
2B\B

(
Qρ(Q)2

)(p+1)/(2p+1)
dx

)(2p+1)/[2(p+1)]

≤ K

(∫
2B\B

|Xφ|2(p+1) dx

)(2p+1)/[2(p+1)]

.
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Now we may use t p/K ≤ ρ(t) to estimate
∫

Qρ(Q)dx from below, and the inequality∑
i

‖Xψi‖L D(2B) ≤ C‖Xφ‖L D(2B) (4.68)

to obtain

Ip(r) ≤
C
[
Ip(2r)1/(2p+2)(Ip(2r)− Ip(r))

(2p+1)/(2p+2) + ‖Xφ‖L D(2B) Ip(200r)
]
, (4.69)

where

Ip(r) :=
∫

B(x,r)
|Xφ|2p+2 dx .

As to (4.68), it follows from∑
i

‖Xψi‖L D(2B) ≤
∑

i

(‖(Xη)(φi − (φi )2B)‖L D(2B) + ‖ηXφi‖L D(2B))

=
∑

i

(∫
2B

|Xη|D
∣∣φi − (φi )2B

∣∣D
dx

)1/D

+
∑

i

(∫
2B

|η|D|Xφi |D dx

)1/D

dx

≤ C

r

∑
i

(∫
2B

∣∣φi − (φi )2B

∣∣D
dx

)1/D

+
∑

i

(∫
2B

|Xφi |D dx

)1/D

dx

≤ C

(∫
2B

|Xφ|D dx

)1/D

dx (by the Poincaré inequality).

Using (4.69) we may establish the following lemma:

Lemma 4.5. There are r0 > 0 and λ ∈ [1/2, 1) such that

Ip(r) ≤ λIp(200r), (4.70)

for any 0 < r ≤ r0.

The proof is by contradiction. Assume that for any r0 > 0 and any λ ∈ [1/2, 1) there
is 0 < r ≤ r0 such that λIp(200r) < Ip(r). Then (by (4.69))

λIp(200r) < Ip(r)

≤ C
[

Ip(2r)1/(2p+2)(Ip(2r)− Ip(r))
(2p+1)/(2p+2) + ‖Xφ‖L D(2B) Ip(200r)

]
≤ C

[
Ip(200r)(1 − λ)(2p+1)/(2p+2) + ‖Xφ‖L D(2B) Ip(200r)

]
.

That is,

1
2 ≤ λ < C

[
(1 − λ)(2p+1)/(2p+2) + ‖Xφ‖L D(2B)

]
.
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Consequently, for any r0 > 0 there is 0 < r ≤ r0 such that( 1

2C

)D ≤
∫

2B
|Xφ|D dx .

Indeed, let λν ∈ [1/2, 1), λν → 1 as ν → ∞, and 0 < rν ≤ r0 correspondingly.
By eventually passing to a subsequence, we may assume that rν → r∞ as ν → ∞,
for some 0 ≤ r∞ ≤ r0. Let us take ν → ∞ in 1/2 < C[(1 − λν)

(2p+1)/(2p+2) +
(
∫

B(x,2rν )
|Xφ|D dy)1/D]. Then we may use the Vitali absolute continuity of the inte-

gral to conclude that either r∞ > 0 and then we get the desired inequality, or r∞ = 0
and then 1/2 ≤ 0, a contradiction. In particular, for r0 = 1/k there is 0 < r ≤ 1/k
such that ( 1

2C

)D ≤
∫

B(x,2r)
|Xφ|D dy ≤

∫
B(x,2/k)

|Xφ|D dy

and (again using absolute continuity) the last integral goes to 0 as k → ∞, a contra-
diction. Lemma 4.5 is proved. �

The inequality (4.70) may be written Ip(τr) ≤ λIp(r), where τ = 1/200. There-
fore

Ip(τ
mr) ≤ λm Ip(r),

for any integer m ≥ 1. The following argument (leading to the estimate (4.71)) is stan-
dard. Details are for the sake of completeness. The family of intervals {(τm, τm−1] :
m ≥ 1} is a cover of (0, 1]; hence τm < r/r0 ≤ τm−1, for some m ≥ 1. Now
r ≤ τm−1r0 yields

Ip(r) ≤ Ip(τ
m−1r0) ≤ λm−1 Ip(r0).

Let us set γ := (log λ)/(log τ) (then 0 < γ < 1, because of λ ≥ 1/2 > τ ). On the
other hand, r/r0 ≥ τm yields( r

r0

)γ
> τmγ = τ (log λm )/(log τ) = λm .

Then λm−1 < (r/r0)
γ /λ, whence

Ip(r) ≤ λm−1 Ip(r0) <
1

λ

( r

r0

)γ
Ip(r0) = Crγ

(where C = Ip(r0)/(λrγ0 )). We have obtained∫
B(x,r)

|Xφ|2(p+1)(y) dy ≤ Crγ , (4.71)

which is the Caccioppoli-type estimate sought. To complete the proof of Theorem
4.19 we need to recall (cf. Proposition 2.1 in C.-J. Xu and C. Zuily [443], p. 326) the
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following result. Let u ∈ L2(�). Then the following two conditions are equivalent:
(i) u ∈ S0,α

loc (�), and (ii) there are constants r0 > 0 and C > 0 such that for any
0 < r ≤ r0 and any x ∈ � such that B(x, 2r) ⊂ � one has∫

B(x,r)
|u(y)− u B(x,r)|2 dy ≤ C |B(x, r)|r2α .

By the Poincaré inequality∫
B(x,r)

|φi (y)− (φi )B(x,r) |2dy ≤ Cr2
∫

B(x,r)
|Xφ|2 dy

≤ Cr2
(∫

B(x,r)
|Xφ|2p+2dy

)1/(p+1)

|B(x, r)|p/(p+1)

by the Hölder inequality (with 1/(p + 1)+ 1/q = 1), which in turn

≤ Cr2|B(x, r)|p/(p+1)rγ /(p+1) ≤ C |B(x, r)|r2α

by (4.71) and by the definition of homogeneous dimension, where α := 1 +
(γ − D)/(2p + 2). Now α > 0 provided that p > (D − 2)/2 − γ /2, and α ≤ 1
when D > γ , which holds since D is tacitly assumed to be large (usually D is larger
than the Euclidean dimension). Theorem 4.19 is proved.

We end this section by proving the duality inequality. It suffices to prove Lemma
4.4 for ϕ ∈ C∞

0 (B). Since the proof is fairly long, we organize it in several steps,
as follows. For any bounded domain � ⊂ Rn and any u ∈ C∞

0 (�) one has the
representation formula (4.59) (see Proposition 4.12 above). By Theorem 4.16 above,
we may construct a smooth cut-off function η0 such that η0 = 1 on 2B, η0 = 0 on
� \ 4B, and |Xη0| ≤ C/diam(B). The diameter of a set is meant with respect to dX .
Then, using (4.59) (with u = ϕ)∫

B
X∗ · (φ j Ei, j )ϕ dx =

∫
B
X∗ · (φ j Ei, j )ϕη0 dx

=
∫∫

(x,y)∈B×B
X∗ · (φ j Ei, j )(x)η0(x)

(
X yG(y, x)

) · (X yϕ(y)
)

dx dy;

hence ∫
B

X∗ · (φ j Ei, j )ϕ dx =
∫

B
A · (Xϕ) dy ,

where

A(y) :=
∫

B
X∗ · (φ j Ei, j )(x)η0(x)X yG(y, x) dx .

Our Step 1 is to establish a bound on |Aa(y)|. To this end we need the Whitney
decomposition of �y := � \ {y}. The Whitney decomposition of an open set in Rn

has been generalized to the context of metric spaces endowed with doubling measures
by R.A. Macı́as and C. Segovia [292]. We recall a few details, as follows. Let (X, ρ)
be a metric space and � ⊂ X an open set, X \ � �= ∅. Let μ be a measure on X that
is doubling on �, with the doubling constant Cd ≥ 1.
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Theorem 4.21. (R.A. Macı́as and C. Segovia [292])
Let x ∈ � and rx = dist(x, X \�)/1000, so that {B(x, rx ) : x ∈ �} is a covering of
�. Let {B(xi , ri ) : i ∈ I } be a maximal subfamily of mutually disjoint balls. Then

� =
⋃
i∈I

B(xi , 3ri ) (4.72)

and there is N ≥ 1 such that any point of � belongs to at most N balls B(xi , 6ri ).

Proof. (4.72) follows from the maximality of {B(xi , ri ) : i ∈ I }. The existence of
N ≥ 1 in the second statement follows from the doubling property (N depends only
on Cd ). �

Definition 4.27. The decomposition (4.72) is called a Whitney decomposition
of �. �

To a Whitney decomposition of � into balls one may associate a partition of unity as
follows. Let 0 ≤ ψ ≤ 1 be a smooth function such that ψ(t) = 1 for 0 ≤ t ≤ 1 and
ψ(t) = 0 for t ≥ 4/3. Let us set

ϕi (x) = ψ(ρ(x, xi )/(3ri )).

Then ϕi (y) = 1 for any y ∈ B(xi , 3ri ), ϕi (y) = 0 for any y ∈ X \ B(xi , 4ri ), and
each ϕi is Lipschitz, with a Lipschitz constant of the form C/ri . Finally, we set

θi (x) = ϕi (x)∑
k∈I ϕk(x)

.

By Theorem 4.21 at most N terms in the sum above are nonzero, so that θi (x) is well
defined.

Proposition 4.13. (R.A. Macı́as and C. Segovia [292])∑
i∈I θi (x) = 1 for any x ∈ � and supp(θi ) ⊂ B(xi , 6ri ). Also θi is a Lipschitz

function with a Lipschitz constant of the form C/ri , where the constant C depends
only on Cd.

Let us go back to the proof of Step 1. Let y ∈ B and let {θα}α∈I be a smooth partition
of unity associated with a Whitney decomposition of �y := � \ {y}. Precisely as in
Theorem 4.21, for x ∈ �y we set rx := dX (x,Rn \ �y)/1000 and choose, among
{B(x, rx )}x∈�y , a maximal family of mutually disjoint balls {B(xα, rα)}α∈I (hence
�y = ⋃

α∈I B(xα, 3rα) and there is N ≥ 1 such that each x ∈ � belongs to at most
N balls B(xα, 6rα)). Then (by Proposition 4.13) we may consider a family of smooth
functions {θα}α∈I such that 0 ≤ θα ≤ 1,

∑
α∈I θα = 1 on �y , supp(θα) ⊂ Bα :=

B(xα, 6rα), and |Xθα| ≤ C/rα . The bounds on the gradients follow from Theorem
4.16). Then

Aa(y) =
∑
α∈I

∫
Bα

X∗ · (φ j Ei, j )(x)η0(x)θα(x)Xa,yG(y, x) dx

=
∑
α∈I

∫
Bα

X∗ · [φ j − (φ j )Bα

]
Ei, j (x)η0(x)θα(x)Xa,yG(y, x) dx, (by (4.65))
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where (φ j )Bα := (1/|Bα|)
∫

Bα
φ j (x)dx . Next

Aa(y) = −
∑
α∈I

∫
Bα

[
φ j − (φ j )Bα

]
Ei, j (x) · Xx

(
η0(x)θα(x)Xa,yG(y, x)

)
dx .

Using the estimates (4.57)–(4.58) and |Xη0(x)| ≤ CdX (x, y)−1 and |Xθα(x)| ≤
CdC (x, y)−1, α ∈ I , we obtain∣∣Xb,x (η0(x)θα(x)Xa,yG(y, x))

∣∣ ≤ C

|B(y, dX (x, y))| ;

hence

|Aa(y)| ≤ C
∑
α∈I

∫
Bα

|φ j (x)−
(
φ j
)

Bα
| |Ei, j |

|B(y, dX (x, y))| dx . (4.73)

Note that

|B(y, dX (x, y))| ≥ C |Bα| , x ∈ Bα . (4.74)

Indeed, dX (x, xα) < 6rα . On the other hand, dX (y, xα) ≥ 1000rα , from y ∈ Rn \�y

and the definition of rα . Hence

1000rα ≤ dX (y, xα) ≤ dX (x, y)+ dX (x, xα) ≤ dX (x, y)+ 6rα,

that is, rα ≤ dX (x, y)/994 or 6rα ≤ dX (x, y). This yields |B(y, 6rα)| ≤
|B(y, dX (x, y))|. Moreover

|B(y, 6rα)|
|B(xα, 6rα)| ≥ C,

as a consequence of (4.60) (which holds by Theorem 4.17). Combining the last two
inequalities leads to (4.74). Let us consider the set of indices

J := {α ∈ I : supp(θα) ∩ 4B �= ∅}.
By (4.73)–(4.74) and the Hölder inequality (with 1/ν∗ + 1/β = 1)

|Aa(y)| ≤ C
∑
α∈J

1

|Bα|
∫

Bα

∣∣∣φ j (x)−
(
φ j
)

Bα

∣∣∣ ∣∣Ei, j
∣∣ dx

≤ C
∑
α∈J

(
1

|Bα|
∫

Bα

∣∣∣φ j (x)−
(
φ j
)

Bα

∣∣∣ν∗ dx

)1/ν∗ ( 1

|Bα|
∫

Bα

∣∣Ei, j
∣∣β dx

)1/β

.

Next, we need to apply the Sobolev inequality (4.63). Precisely, given 1 ≤ p < D
there is a constant C > 0 such that for any ball B = B(x, r) with x ∈ � and 0 < r ≤
diam(�) one has
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1

B

∫
B
|u − u B |p∗

dx

)1/p∗

≤ Cr

(
1

B

∫
B
|Xu|p dx

)1/p

, p∗ = Dp

D − p

(where D is a homogeneous dimension of � relative to X ). Let us choose ν∗ :=
Dν/(D − ν) (hence β = ν∗/(ν∗ − 1) = Dν/[D(ν − 1)+ ν]) with 1 ≤ ν < D. Then
(since Xaφ j ∈ Lν)

|Aa(y)| ≤ C
∑
α∈J

rα

(
1

|Bα|
∫

Bα
|Xφ j |νdx

)1/ν ( 1

|Bα|
∫

Bα

∣∣Ei, j
∣∣β dx

)1/β

.

Note that (by the definition of Ei, j ) one has |Ei, j | ≤ 2ρ(Q)|Xφ|. Therefore, using
also ρ(Q) ≤ K Q p,

|Aa(y)| ≤ C K
∑
α∈J

rα

(
1

|Bα|
∫

Bα
|Xφ|νdx

)1/ν ( 1

|Bα|
∫

Bα
|Xφ|β(2p+1)dx

)1/β

.

The second integral converges if β ≤ D/(2p + 1). Later on, we shall choose ν (and
this will produce a limitation on p). Given α ∈ J , there is k ∈ Z such that xα ∈
B(y, 2k−1) \ B(y, 2k−2). Let us observe (together with P. Hájlasz and P. Strzelecki
[192], p. 356) that Bα = B(xα, 6rα) ⊂ B(y, 2k). Moreover, rα ≈ 2k ; hence, by
applying (4.60) with x0 = y, r0 = 2k , and x = xα , r = 6rα ,

|B(xα, 6rα)|∣∣B(y, 2k)
∣∣ ≥ C

(
6rα
2k

)D

,

we get |Bα| ≈ |B(y, 2k)|. In the end, when 2k−2 ≥ diam(8B) the set {α ∈ J : xα ∈
B(y, 2k−1) \ B(y, 2k−2)} is empty. Therefore

|Aa(y)| ≤ C
∑

2k≤4diam(8B)

2k
(

1

|B(y, 2k)|
∫

B(y,2k )

|Xφ|νdx

)1/ν

×
(

1

|B(y, 2k)|
∫

B(y,2k )

|Xφ|β(2p+1)dx

)1/β

. (4.75)

Our Step 2 is to rewrite the estimate (4.75) in terms of Riesz potentials and apply
the fractional integration theorem. We recall its essentials, in the framework of metric
spaces with Borel measures.

Definition 4.28. Let (X, ρ) be a metric space and let μ be a Borel measure on X such
that μ(B) > 0 for any ball B ⊂ X . Given a bounded open set A ⊂ X and the numbers
q > 0, σ ≥ 1, and h > 0 we set

(Jσ,Ah,q g)(x) =
∑

2k≤2σdiam(A)

2kh
(

1

|B(x, 2k)|
∫

B(x,2k )

|g(z)|q dz

)1/q

. (4.76)

We call Jσ,Ah,q an abstract Riesz potential operator. �
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Theorem 4.22. (P. Hajlasz and P. Koskela [190]) Let (X, ρ) be a metric space and let
μ be a Borel measure on X such that μ(B) > 0 for any ball B ⊂ X. Let A ⊂ X be a
bounded open set. Assume that μ is doubling on

V = {x ∈ X : dist(x, A) < 2σdiam(A)}.
Moreover, let us assume that there are constants b > 0 and D1 > 0 such that

μ(B(x, r)) ≥ b
( r

diam(A)

)D1
μ(A)

for any x ∈ A and any 0 < r ≤ 2σdiam(A). Let h > 0 and 0 < q < s < D1/h. Then

‖Jσ,Ah,q g‖Ls∗ (A,μ) ≤ C

(
diam(A)

μ(A)D1

)h

‖g‖Ls (V,μ),

where s∗ = s D1(D1 − hs) and the constant C > 0 depends only on h, σ , q, s, b, D1,
and Cd.

Let us go back to Step 2. With the notation adopted in Definition 4.28 we may rewrite
(4.75) as

|Aa(y)| ≤ C
(

J 2,8B
1/2,ν |Xφ|(y)

) (
J 2,8B

1/2,β |Xφ|2p+1(y)
)
. (4.77)

Since Step 3 we may end the proof of Lemma 4.4. By the Hölder inequality (with
1/D + 1/D′ = 1)∣∣∣∣∫

B
X∗ · (φ j Ei, j )ϕ dx

∣∣∣∣ ≤
∑

a

‖Xϕ‖L D(B)

(∫
B
|Aa(y)|D′

dy

)1/D′

≤ C‖Xϕ‖L D(B)

(∫
B
(Jα|Xφ|)D′ (

Jβ |Xφ|2p+1
)D′

dy

)1/D′

(by (4.77) in Step 2)

≤ C‖Xϕ‖L D(B)

(
‖(Jν |Xφ|)D′ ‖Ls∗/D′

(8B) · ‖(Jβ |Xφ|2p+1)D′ ‖Lr ′ (8B)

)1/D′

(again by the Hölder inequality, with D′/s∗ + 1/r ′ = 1). At this point we may apply
(twice) Theorem 4.22 (with A = 8B, D1 = D, σ = 2, h = 1/2 and q = ν

(respectively q = β)). Let us set

Jq := J 2,8B
1/2,q

for simplicity. Now, on the one hand,

‖Jν |Xφ|‖Ls∗ (8B) ≤ C

(
diam(8B)

|8B|1/D

)1/2

‖Xφ‖Ls (V ), s∗ = 2Ds

2D − s
,
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and on the other,

‖Jβ |Xφ|2p+1‖Lr∗ (8B) ≤ C

(
diam(8B)

|8B|1/D

)1/2

‖|Xφ|2p+1‖Lr (V ), r∗ = 2Dr

2D − r
.

We wish to have r∗ = s∗D′/(s∗ − D′) = 2Ds/[2s(D − 1)− 2D + s]; hence we must
take r := s/(s − 1) and require that 0 < ν < s and 0 < β < s/(s − 1). Summing up
(by ‖gn‖Lm/n = (‖g‖Lm )n),∣∣∣∣∫

B
X∗ · (φ j Ei, j )ϕ dx

∣∣∣∣ ≤ C
diam(8B)

|8B|1/D
‖Xϕ‖L D(B) ‖Xφ‖Ls (V ) ‖|Xφ|2p+1‖Ls/(s−1)(V ),

and the integrals in the right-hand member are convergent if

D/(D − 2p − 1) ≤ s ≤ D. (4.78)

At this point, we choose s := 2(p + 1) (hence s/(s − 1) = 2(p + 1)/(2p + 1)). The
inequalities (4.78) are satisfied (because 0 < p < (D − 2)/2). With this choice of s
we must have β = Dν/[D(ν − 1)+ ν] < 2(p + 1)/(2p + 1); hence

2D(p + 1)/[D + 2(p + 1)] < ν < 2(p + 1)

(again, such a choice of ν is possible because p < (D − 2)/2). Finally, note that
‖|Xφ|2p+1‖Ls/(s−1)(V ) = (‖Xφ‖L2(p+1)(V )

)2p+1 and V ⊂ 100B; hence∣∣∣∣∫
B

X∗ · (φ j Ei, j )ϕ dx

∣∣∣∣ ≤ C
diam(8B)

|8B|1/D
‖Xϕ‖L D(B)

(‖Xφ‖L2(p+1)(100B)

)2(p+1)
.

To end the proof of Lemma 4.4, let R0 > 0 and consider a relatively compact subset
�1 ⊂⊂ � such that B(x, 400R0) ⊂ �, for any x ∈ �1. For any 0 < r ≤ R0, from
the definition of the homogeneous dimension,

|8B| ≥ C

(
8r

400R0

)D

|B(x, 400R0)| ≥ C(8r)D(400R0)
sd−D |�|

(2 diam(�))sd

where sd := log2 Cd and Cd ≥ 1 is the doubling constant (on �, relative to the
Lebesgue measure). In the end, diam(8B)/|8B|1/D ≤ C , for some constant C =
C(�1, D,Cd , R0) > 0. The inequality (4.66) is proved.
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Pseudo-Einsteinian Manifolds

Let (M, T1,0(M)) be a nondegenerate CR manifold (of hypersurface type) of CR
dimension n. A contact form θ on M is said to be pseudo-Einstein if the pseudo-
Hermitian Ricci tensor Rαβ of (the Tanaka–Webster connection of) (M, θ) is propor-
tional to the Levi form, i.e.,

Rαβ = ρ

n
hαβ

on U , for any (local) frame {Tα : 1 ≤ α ≤ n} in T1,0(M) on U . Here ρ = hαβ Rαβ is
the pseudo-Hermitian scalar curvature (cf. Chapter 1 of this book). A nondegenerate
CR manifold admitting some pseudo-Einsteinian contact form is a pseudo-Einsteinian
manifold.

The pseudo-Einsteinian condition was considered for the first time by J.M. Lee; cf.
[270]. It is of course an analogue of the Einstein condition in Riemannian geometry,
yet less rigid than the Einstein condition: indeed, the Bianchi identities no longer imply
ρ = const (due to the presence of torsion terms).

The natural problem, given a compact nondegenerate CR manifold, is to find a
pseudo-Einsteinian contact form. As we shall shortly see, the problem has a local as-
pect, and a global aspect as well. Note that any contact form on a 3-dimensional non-
degenerate CR manifold is actually pseudo-Einsteinian (since the pseudo-Hermitian
Ricci tensor has but one component R11); hence we may assume that M has CR di-
mension n ≥ 2.

In the sequel, we describe J.M. Lee’s results (cf. [270]) in some detail, together
with some results in [121] and [36, 37].

5.1 The local problem

In this section we address the problem of the existence of pseudo-Einsteinian con-
tact forms in some neighborhood of an arbitrary point of M . The known results in
this direction follow from a theorem of J.M. Lee (cf. op. cit.) and the positive (local)
embeddability results available in contemporary science.
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Theorem 5.1. (J.M. Lee [270]) Let M be a nondegenerate CR manifold, of CR di-
mension n. If M admits a nowhere-vanishing closed (n + 1, 0)-form then M admits
a (global) pseudo-Einsteinian contact form. Conversely, if M is a pseudo-Einsteinian
manifold then for any point of M, there is an open neighborhood U and a nowhere-
vanishing closed section in K (M) = �n+1,0(M) defined on U.

Clearly, any real hypersurface j : M ⊂ Cn+1 admits a globally defined, nowhere-
vanishing closed (n + 1, 0)-form (η = j∗

(
dz1 ∧ · · · ∧ dzn+1

)
); hence we have the

following corollary:

Corollary 5.1. Let M be a nondegenerate CR manifold (of hypersurface type). If M
admits a CR embedding in Cn+1 then M is a pseudo-Einstein manifold.

Also, by the results of L. Boutet de Monvel [77] (any compact, strictly pseudoconvex
CR manifold is locally embeddable in Cn+1) and M. Kuranishi [263], T. Akahori [2]
(the same is true in the noncompact case if the CR dimension is ≥ 3) one has the
following:

Corollary 5.2. Let M be a strictly pseudoconvex CR manifold. If either M is com-
pact or dim(M) ≥ 7 then in a neighborhood of each point of M there is a pseudo-
Einsteinian contact form.

When M is 5-dimensional or the Levi form is not definite there may be no global
closed sections of K (M) and manifolds with closed sections are not necessarily em-
beddable (cf. H. Jacobowitz [222]).

To prove Theorem 5.1, let us examine the relationship between sections in the
canonical bundle K (M) and pseudo-Hermitian structures. Let θ be a contact form on
M and hαβ the components of the Levi form Lθ , with respect to a (local) frame {Tα}
in T1,0(M), defined on the open set U . There is P : U → GL(n,C) such that

[hαβ ] = P · diag(λ1, . . . , λn) · P
t

on U , where Spec(Lθ,x ) = {λ1(x), . . . , λn(x)}, x ∈ M , are the eigenvalues of the
Levi form. Then

det(hαβ) = λ1 · · · λn · |det P|2 ;
hence sign{det(hαβ)} = (−1)s , provided that Lθ has signature (r, s).

Definition 5.1. A contact form θ is said to be volume-normalized with respect to a
section ω ∈ �∞(K (M)) if

2nin2
n!(−1)sθ ∧ (T �ω) ∧ (T �ω) = θ ∧ (dθ)n,

where T is the characteristic direction of dθ . �
We set K 0(M) := K (M) \ {zero section} and assume that there is ζ ∈ �∞(K 0(M)).
By (the proof of) Lemma 2.2 (in Chapter 2) there is a C∞ function λ : M → R∗ such
that sign(λ(x)) = (−1)s and

2nin2
n!θ ∧ (T � ζ ) ∧ (T � ζ ) = λ θ ∧ (dθ)n .

Let us set μ := (−1)sλ. Then θ is volume-normalized with respect to ω := μ−1/2ζ .
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Proposition 5.1. (J.M. Lee [270]) Let θ be a contact form on M. Then θ is pseudo-
Einsteinian if and only if for any x ∈ M there is an open set U ⊆ M with x ∈ U
and a section ζ ∈ �∞(U, K 0(M)) such that dζ = 0 and θ is volume-normalized with
respect to ζ .

Proof. To prove the sufficiency let {Tα} be an orthonormal frame of T1,0(M), i.e.,
hαβ = εαδαβ , ε2

α = 1. Then ζ = f θ ∧ θ1···n for some C∞ function f : U → C∗, and

(dθ)n = 2nin2
n!(−1)sθ1···n·1···n .

Taking into account

θ ∧ (dθ)n = 2nin2
n!(−1)sθ ∧ (T � ζ ) ∧ (T � ζ )

(since by hypothesis, θ is volume-normalized with respect to ζ ) and

T � ζ = f

n + 1
θ1···n , T � ζ = f

n + 1
θ1···n ,

we obtain | f | = n + 1. Let us set

[Uα
β ] := diag( f, 1, . . . , 1), T̂α := Uβ

α Tβ .

Let {θ̂ α} be the corresponding admissible coframe, i.e.,

θ̂1 = f −1θ1, θ̂α = θα, α ≥ 2.

Then

ζ = θ ∧ θ̂1 ∧ · · · ∧ θ̂n,

and taking the exterior derivative yields

dζ = (dθ) ∧ θ̂1 ∧ · · · ∧ θ̂n +
n∑
α=1

(−1)αθ ∧ θ̂1 ∧ · · · ∧ (d θ̂ α) ∧ · · · ∧ θ̂n

=
n∑
α=1

(−1)αθ ∧ θ̂1 ∧ · · · ∧
(
θ̂ β ∧ ω̂αβ + θ ∧ τ̂ α

)
∧ · · · ∧ θ̂n

=
∑
α

(−1)αθ ∧ θ̂1 ∧ · · · ∧
(
θ̂ α ∧ ω̂αα

)
∧ · · · ∧ θ̂n = −ω̂αα ∧ ζ,

i.e.,

dζ = −ω̂αα ∧ ζ.

Yet dζ = 0; hence ω̂αα is a (1, 0)-form. The components ĥαβ of the Levi form Lθ , with

respect to the new frame {T̂α}, are given by
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ĥαβ = ε̂αδαβ, ε̂α :=
{
(n + 1)2ε1, α = 1,

εα, α ≥ 2.

On the other hand, as a consequence of ∇gθ = 0,

dĥαβ = ω̂γα ĥγ β + ĥαγ ω̂
γ

β
,

or

ω̂βα ε̂βδβγ + ω̂βγ ε̂αδαβ = 0,

i.e.,

ε̂γ ω̂
γ
α + ε̂αω̂αγ = 0

(no sums), which may be also written as

ω̂βα + ε̂αε̂β ω̂αβ = 0,

where ε̂α := 1/ε̂α . Contraction of α and β now gives

ω̂αα + ω̂αα = 0;
hence ω̂αα is pure imaginary. Therefore (since ω̂αα is a (1, 0)-form, as previously shown)

ω̂αα = iuθ,

for some real-valued u ∈ C∞(U ). On the other hand, by (1.89) in Chapter 1,

dω̂αα = R̂λμθ̂
λ ∧ θ̂μ + ϕ̂ ∧ θ , ϕ̂ := Ŵα

αλθ̂
λ − Ŵα

αλ
θ̂λ ,

dω̂αα = i du ∧ θ + iu dθ ;
hence

R̂λμ = 2uĥλμ ,

i.e., θ is pseudo-Einsteinian. �
Conversely, assume θ to be pseudo-Einsteinian. Let {Tα} such that hαβ = εαδαβ .

Consider the (locally defined) (n + 1, 0)-form

ζ0 := θ ∧ θ1 ∧ · · · ∧ θn .

Then (by a computation similar to that of dζ above)

dζ0 = −ωαα ∧ ζ0 . (5.1)

We need the following lemma:

Lemma 5.1. The contact form θ is pseudo-Einsteinian if and only if the 1-form ωαα +
i

2nρθ is closed, for any frame {Tα} of T1,0(M) on U ⊆ M.
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We shall prove Lemma 5.1 later on. By Lemma 5.1, by eventually restricting further
the open set U , there is a real-valued function ϕ ∈ C∞(U ) such that

ωαα + iρ

2n
θ = i dϕ.

Here, we have also exploited the fact that ωαα is pure imaginary (a fact following from
ωαβ + ωβα = 0). Note that

d(eiϕζ0) = eiϕ {i dϕ ∧ ζ0 + dζ0}
= eiϕ {i dϕ − ωαα

} ∧ ζ0 = eiϕ iρ

2n
θ ∧ ζ0 = 0

(by (5.1)); hence ζ := eiϕζ0 is closed and

2nin2
n!(−1)sθ ∧ (T � ζ ) ∧ (T � ζ ) = (−1)s

(n + 1)2
1

det(hαβ)
θ ∧ (dθ)n

= 1

(n + 1)2
θ ∧ (dθ)n,

i.e., ω := (n+1)ζ is closed and θ is volume-normalized with respect to ω. Proposition
5.1 is completely proved. �

5.2 The divergence formula

We first define two differential operators db and dc
b on functions.

Definition 5.2. For any C∞ function f : M → C we set

db f := (∂b + ∂b) f, dc
b := i(∂b − ∂b) f. �

Consequently, on any nondegenerate CR manifold on which a contact form θ has been
fixed,

d f = f0θ + db f,

where f0 = T ( f ), and T is the characteristic direction of (M, θ). Given a (1, 0)-form
σ = σαθ

α we set as usual

σα,β := (∇Tβ σ )Tα, σα,
β := hβγ σα,γ ,

and define the differential operator δb on (1, 0)-forms as follows.

Definition 5.3. Let δb : �1,0(M)→ C∞(M)⊗ C be the differential operator defined
by δb(σαθ

α) := σα,
α . �

It is an easy exercise that the definition of (δbσ)x doesn’t depend on the choice of
local frame {Tα} on U " x , i.e., δbσ is a globally defined smooth function. Assume
σ ∈ �∞

0 (�
1,0(M)), i.e., that σ has compact support.
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Proposition 5.2. Let M be a nondegenerate CR manifold, θ a contact form on M, and
σ a (1, 0)-form on M. Then ∫

M
(δbσ) θ ∧ (dθ)n = 0.

Proposition 5.2 is referred to as the divergence formula. Indeed, let σ� be the vector
field given by

gθ (σ
�, X) = σ(X),

for any X ∈ X (M). Then σ� = σαTα and

div(σ �) = Tα(σ
α)+ σβ�α

αβ
= σα,α = σα,

α = δbσ.

Clearly δbσ = div(σ �) yields the divergence formula. �
Let ∂∗b be the formal adjoint of ∂b, i.e.,

(∂∗bσ, u) = (σ, ∂bu)

for any (1, 0)-form σ and any u ∈ C∞
0 (M). Then (by Green’s lemma)

(∂∗bσ, u) =
∫

M
σαuα  =

∫
M

{
div(uσβTβ)− uσβ�α

αβ
− uTβ(σ

β)
}
 = (−δbσ, u).

We have proved the following result:

Proposition 5.3. On any nondegenerate CR manifold M one has ∂∗b = −δb. In par-
ticular d∗

b = −δb − δb.

5.3 CR-pluriharmonic functions

Definition 5.4. A real-valued function u ∈ C∞(M) is said to be CR-pluriharmonic if
for any point x ∈ M , there is an open neighborhood U of x in M and a real-valued
function v ∈ C∞(U ) such that ∂b(u + iv) = 0. �

In other words, CR-pluriharmonic functions are, locally, real parts of CR-holomorphic
functions. On a nondegenerate CR manifold, the following description of CR-pluri-
harmonic functions is available:

Lemma 5.2. Let M be a nondegenerate CR manifold, of hypersurface type, and u ∈
C∞(M) a real-valued function. Let θ be a contact form on M.

(1) u is CR-pluriharmonic if and only if for any x ∈ M there is an open neighborhood
U ⊆ M of X and a real-valued function λ ∈ C∞(U ) such that the 1-form η :=
dc

bu + λθ is closed.
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(2) There is a (globally defined) real-valued function v ∈ C∞(M) such that ∂b(u +
iv) = 0 if and only if there is a real-valued function λ ∈ C∞(M) such that the
1-form η := dc

bu + λθ is exact.

Proof. Let us prove the implication �⇒ in statement (1). To this end, let x ∈ M and
v ∈ C∞(U ), U " x , such that u + iv is CR-holomorphic in U . Then

0 = i∂b(u + iv)− i∂b(u − iv) = dc
bu − ∂bv − ∂bv = dc

bu − dv + v0θ,

i.e.,

dc
bu + v0θ = dv.

Let us set λ := v0 ∈ C∞(U ). Then dc
bu + λθ is closed. �

Next, we prove the implication ⇐� in statement (1). If d(dc
bu + λθ) = 0 then (by

the Poincaré lemma) there is V ⊆ U such that x ∈ V and there is v ∈ C∞(V ) such
that

dc
bu + λθ = dv,

which may be written as

iuβθ
β − iuβθ

β + λθ = vβθ
β + vβθβ + v0θ.

Comparing the (0, 1) components we find that

iuβ = vβ ,

i.e., ∂b(u + iv) = 0. �
Let us prove the implication �⇒ in statement (2). If there is v ∈ C∞(M) such that

∂b(u + iv) = 0 then

dc
bu + v0θ = dv = exact. �

Conversely, to prove ⇐�, let us assume that dc
bu + λθ = exact = dv, for some λ.

Then iuβ = vβ in a neighborhood of any point of M , i.e., ∂b(u + iv) = 0. Lemma 5.2
is completely proved. �

Lemma 5.3. Let M be a nondegenerate CR manifold of dimension ≥ 5 and ξ ∈
�2(M) a closed (dξ = 0) complex two-form such that ξ |H(M)⊗H(M) = 0. Then
ξ = 0.

Proof. Since ξ |H(M)⊗H(M) = 0 there is a complex 1-form σ ∈ �1(M) such that ξ =
σ ∧ θ . Yet ξ is closed; hence

0 = dξ = (dσ) ∧ θ − σ ∧ dθ.

Consequently

σ ∧ dθ |H(M)⊗H(M)⊗H(M) = 0.
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Let α, β, γ ∈ {1, . . . , n} be chosen such that {Tα, Tβ, Tγ } are linearly independent at
each point of U and let us set

(A1, A2, A3) := (α, β, γ ).

Then

0 = 1
6

∑
π∈π3

ε(π)(σ ⊗ dθ)(TAπ(1) , TAπ(2) , TAπ(3) )

= 1
3

(
σ(Tα)(dθ)(Tβ, Tγ )+ σ(Tβ)(dθ)(Tγ , Tα)+ σ(Tγ )(dθ)(Tα, Tβ)

) ;
or

0 = iσαhβγ − iσβhαγ .

Let us contract by hγμ followed by a contraction of the indices μ and β. We get
(n − 1)σα = 0; hence by the assumption on the dimension (2n + 1 > 3), σα = 0.
Thus σ |H(M) = 0 and consequently ξ = 0. �

Proposition 5.4. (J.M. Lee [271]) Let M be a nondegenerate CR manifold of dimen-
sion dim(M) > 3. Let u ∈ C∞(M). Then u is CR-pluriharmonic if and only if for any
(local) frame {Tα} of T1,0(M) on U, there is a function μ ∈ C∞(U )⊗ C such that

uαβ = μhαβ

in U, where u AB := (∇TB du)TA.

Proof. To prove the implication �⇒, let u be a CR-pluriharmonic function. Then, for
any x ∈ M , there is an open neighborhood U of x in M and a function λ ∈ C∞(U )
such that d(dc

bu + λθ) = 0, i.e.,

0 = d(iuαθ
α − iuαθ

α + λθ)
= i(duα) ∧ θα + iuαdθα − i(duα) ∧ θα − iuαdθα + (dλ) ∧ θ + λ dθ

= iTβ(uα) θ
β ∧ θα + iTβ (uα)θ

β ∧ θα

+ iT (uα) θ ∧ θα + iuα
{
θβ ∧ ωα

β
+ θ ∧ τα}

− iTβ(uα) θ
β ∧ θα − iTβ(uα) θ

β ∧ θα − iT (uα) θ ∧ θα

− iuα
{
θβ ∧ ωαβ + θ ∧ τα}+ λα θα ∧ θ + λαθα ∧ θ + 2iλhαβθ

α ∧ θβ .
In particular, the (1, 1) component must vanish, i.e.,{

Tα(uβ)− �γαβuγ + Tβ(uα)− �γβαuγ + 2λhαβ

}
θα ∧ θβ = 0;

hence

uβα + uαβ + 2λhαβ = 0. (5.2)
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On the other hand, the identity

(∇X du)Y = (∇Y du)X − T∇(X, Y )(u)

leads to

uαβ = uβα + 2ihαβu0 .

Using the commutation formula to replace uβα in (5.2) we obtain

uαβ = (iu0 − λ)hαβ . �

Conversely, in order to prove ⇐�, let us assume that uαβ = μhαβ on U and set
λ := iu0 − μ. By taking complex conjugates we get uαβ = μhαβ . Hence, again by
the commutation formula for uαβ ,

μ− 2iu0 = μ .

Consequently λ = λ, i.e., λ is real-valued, as it should be. Taking into account the
identity

d(uαθ
α) = uβαθ

α ∧ θβ − uαβθ
α ∧ θβ + θ ∧

(
uα0θ

α + uαAα
β
θβ
)

and the commutation formula

uαβ = uβα

we derive

d(dc
bu + λθ) = i

{
uβα + uαβ + 2λ hαβ

}
θα ∧ θβ + θ ∧ φ, (5.3)

φ := (iuβ Aβα − iuα0 − λα)θα + (iuα0 − iuβ Aβα − λα)θα .
Before going any further, let us collect the commutation formulas:

uαβ = uβα ,

uβα = uαβ − 2ihαβu0 ,

uβ0 = u0β − uαAαβ .

By the second commutation formula, (5.3) may be also written as

dη = 2i
{

uαβ + (λ− iu0)hαβ

}
θα ∧ θβ + θ ∧ φ. (5.4)

A remark regarding the first part of the proof is in order. If u is CR-pluriharmonic,
then in addition to the expression of uαβ we also get θ ∧ φ = 0; hence

uα0 = iλα + uβ Aβα .
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Let us return to the proof of the opposite implication. Under the assumptions made
(5.4) becomes

dη = θ ∧ φ.
At this point, we may apply Lemma 5.3 for ξ := dη to conclude that ξ = 0; hence by
Lemma 5.2, u is CR-pluriharmonic. Proposition 5.4 is completely proved. �

In particular

uα0 = iλα + uβ Aβα = iTα(iu0 − μ)+ uβ Aβα

= −Tα(u0)− iμα + uβ Aβα = −u0α − iμα + uβ Aβα = −uα0 − iμα ,

i.e.,

uα0 = − i

2
μα .

For the sake of completeness, let us examine now the case n = 1. If this is the
case, then any function u satisfies u11 = μ h11 for some μ; hence to characterize
CR-pluriharmonic functions one should use directly Lemma 5.2.

Proposition 5.5. Let M be a 3-dimensional nondegenerate CR manifold and P :
C∞(M)→ �∞(T ∗(M)⊗ C) the differential operator given by

Pu :=
(

u1
1

1 + 2i A11u1
)
θ1 .

Then u is CR-pluriharmonic if and only if Pu = 0.

Proof. Assume that u is CR-pluriharmonic. Then d(dc
bu + λθ) = 0 for some λ ∈

C∞(U ), by Lemma 5.2. That is,

2i
{
u11 + (λ− iu0)h11

}
θ1 ∧ θ1 + θ ∧ φ = 0,

φ = (−iu10 + iu1 A1
1 − λ1)θ

1 + (iu10 − iu1 A1
1
− λ1)θ

1 ,

or

u11 = (iu0 − λ)h11 ,

−iu10 + iu1 A1
1 − λ1 = 0.

(5.5)

The commutation formula u11 = u11 − 2ih11u0 yields

iu0 = 1
2

(
u1

1 − u1
1
)
;

hence λ = iu0 − u1
1 may be written

λ = − 1
2

(
u1

1 + u1
1
)
.
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Let us set

u ABC := (∇3u)(TC , TB, TA)

= (∇TC ∇2u)(TB, TA)− (∇2u)(∇TC TB, TA)− (∇2u)(TB,∇TC TA),

(∇2u)(X, Y ) := (∇X du)Y.

Then

uβμα = Tα(uβμ)− �ναμuβν − �ναβuνμ,

or, using

Tα(h
γ ν) = −hγ ρhενTα(hερ)

we get

Tα(uβ
γ ) = uβ

γ
α

+ uν
γ �ναβ − uβ

ε�γαε;
hence when n = 1,

T1(u1
1) = u1

1
1 .

Consequently

λ1 = − 1
2

(
u1

1
1 + u1

1
1

)
.

At this point we need the commutation formula (cf. Chapter 9)

fβγ A − 2i f0Ahβγ = fγ βA,

whence

fα
α

A − 2ni f0A = f ααA .

Then, for A = β,

fα
α
β = f ααβ + 2ni f0β,

or

fα
α
β = fα

α
β + 2ni

{
fβ0 + fαAαβ

}
.

For n = 1,

u1
1

1 = u1
1

1 + 2i
{

u10 + u1 A1
1

}
;

hence λ1 may be written

λ1 = −u1
1

1 − i
(

u10 + u1 A1
1

)
,
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and the second of the identities (5.5) becomes

u1
1

1 + 2iu1 A1
1 = 0. �

Conversely, if Pu = 0 then

u1
1

1 + 2iu1 A1
1 = 0,

and by letting λ := − 1
2

(
u1

1 + u1
1
)

in the identity

dη = 2i
{
u11 + (λ− iu0)h11

}
θ1 ∧ θ1 + θ ∧ φ,

φ := (−iu10 + iu1 A1
1 − λ1)θ

1 + (iu10 − iu1 A1
1
− λ1)θ

1 ,

we get dη = 0; hence by Lemma 5.2, u is CR-pluriharmonic. �
We end this section by discussing a few well-known matters, perhaps classical at

least within the Italian mathematical culture, related to the subject of CR-pluriharmonic
functions and suitable for shedding light on the latter. Let � be a domain in Cn and U
an open set such that U ⊇ �. Assume that ∂� is a smooth hypersurface in Cn .

Definition 5.5. A C2 function u : U → R is pluriharmonic if ∂∂u = 0 in U . �

Let u : U → R be a pluriharmonic function. If U is simply connected, there is a
function w, holomorphic in U (∂w = 0 in U ), such that Re(w) = u. Thus f :=
w|∂� is a CR function on ∂�. Moreover, u|∂� = Re( f ); hence U := u|∂� is a
CR-pluriharmonic function on ∂�, in the sense adopted in this chapter. Thus CR-
pluriharmonic functions may be thought of as boundary values of pluriharmonic func-
tions. On the other hand, one of the antique problems in analysis is to characterize
traces on � := ∂� of pluriharmonic functions. We present one of the first contribu-
tions in this direction, in two complex variables, belonging to L. Amoroso (cf. [11]) (a
new proof of which is due to G. Fichera (cf. [141])), together with a generalization of
the result to an arbitrary number n of complex variables (n ≥ 2) (cf. [142]). We close
with a characterization of boundary values of pluriharmonic functions on the unit ball
in Cn , due to E. Bedford (cf. [52]) and related to the result by L. Amoroso.

1 L. Amoroso’s theorem. The real part of a function w that is holomorphic (∂w = 0)
in � is pluriharmonic. If � is simply connected the converse is true (i.e., any pluri-
harmonic function is the real part of some function holomorphic in �). The first to
consider the previously stated problem was H. Poincaré (cf. [349]): given U on �,
find u pluriharmonic in � whose trace on � coincides with U (the Dirichlet problem
for pluriharmonic functions). As H. Poincaré observed, any pluriharmonic function is
in particular harmonic in� and, since a harmonic function is determined by its bound-
ary values, one may not assign U arbitrarily if one wants the given harmonic function
to be additionally pluriharmonic. The difficulty of the problem (i.e., find necessary and
sufficient conditions on U such that U is the boundary values of a pluriharmonic func-
tion) was emphasized by T. Levi-Civita (cf. [281]). L. Amoroso (cf. op. cit.) was the
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first to solve the problem. Although later F. Severi showed (cf. [369]) that the condi-
tions found by L. Amoroso were overdetermined, the work by L. Amoroso remains of
great importance, and according to G. Fichera (cf. op. cit.), insufficient credit is given
to L. Amoroso in the existing literature on functions of several complex variables. See
also G. Tomassini [404].

Let ρ ∈ Cm(R4), with m ≥ 1, such that � = {ρ > 0}, � = {ρ = 0}, and
R4 \� = {ρ < 0}, and let us assume that Dρ(x) �= 0, for any x ∈ �.

Definition 5.6. A linear differential operator L , of order m, with continuous coeffi-
cients is tangential to � if Lu = 0 on � for any u ∈ Cm(R4) that satisfies
u|� = 0. �
L. Amoroso (cf. op. cit.) characterized traces of pluriharmonic functions in terms of
the following invariant. Let ν be the inward unit normal vector on �.

Definition 5.7. The Levi invariant of � is

L(ρ) :=
2∑

i, j=1

∂2ρ

∂zi∂z j
λiλ j ,

where

λ1 := ∂ρ

∂z2
, λ2 := − ∂ρ

∂z1
. �

In the language of pseudo-Hermitian structures, introduced by S. Webster ([422])
and adopted by us throughout this book, if j : � ⊂ Cn is the inclusion and θ :=
j∗{ i

2 (∂ − ∂)ρ}, then

L(ρ) = 2Lθ (T1, T1),

where Lθ is the Levi form and T1, the generator of the CR structure T1,0(�), is given
by

j∗T1 = ∂ρ

∂z1

∂

∂z2
− ∂ρ

∂z2

∂

∂z1
.

As such, the Levi invariant Lθ := 2Lθ (T1, T1) makes sense on an arbitrary 3-dimen-
sional CR manifold M on which a pseudo-Hermitian structure has been fixed. If T1 is
defined on the open set U ⊆ M then Lθ ∈ C∞(U ) and the Levi invariant transforms
as L

θ̂
= λLθ , under a transformation θ̂ = λθ of pseudo-Hermitian structure.

Theorem 5.2. (L. Amoroso [11])
Assume that � admits a defining function ρ ∈ C2(�) such that L(ρ) �= 0 every-
where on �. Then there is a tangential (relative to �) second-order linear differential
operator D such that

∂u

∂ν
= 1

L(ρ)Du, (5.6)

for any u ∈ C2(�) which is pluriharmonic in �.
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Proof. (G. Fichera [141]) Let ω ⊂ � be a simply connected subdomain. Let u ∈
C2(�) be such that ∂∂u = 0 in �. Then ∂∂u = 0 in ω, hence there is a function w(z)
holomorphic in ω such that u = Re(w). Let us set v := Im(w) (in particular, v is
pluriharmonic in ω, as the real part of the holomorphic function iw). Then w = u + iv
and ∂w = 0 yield

∂v

∂z j
= i

∂u

∂z j
. (5.7)

Let us set

L := j∗T1 = ∂ρ

∂z1

∂

∂z2
− ∂ρ

∂z2

∂

∂z1
. (5.8)

Then L , L are tangential first-order linear differential operators. By the Cauchy–
Riemann equations (5.7)

Lv = ρz1

∂v

∂z2
− ρz2

∂v

∂z1
= i

(
ρz1

∂u

∂z2
− ρz2

∂u

∂z1

)
= i Lu,

i.e.,

Lv = i Lu, Lv = −i Lu. (5.9)

Let us set

� := [
L, L

] = L L − L L = a1
∂

∂z1
+ a2

∂

∂z2
− a1

∂

∂z1
− a2

∂

∂z2
, (5.10)

M := L L + L L

= 2
(
ρz1ρz1

∂2

∂z2∂z2
− ρz1ρz2

∂2

∂z1∂z2
− ρz1ρz2

∂2

∂z1∂z2
+ ρz2ρz2

∂2

∂z2∂z2

)
+ a1

∂

∂z1
+ a2

∂

∂z2
+ a1

∂

∂z1
+ a2

∂

∂z2
, (5.11)

where

a1 := λ1
∂2ρ

∂z2∂z1
+ λ2

∂2ρ

∂z2∂z2
, a2 := −λ1

∂2ρ

∂z1∂z1
− λ2

∂2ρ

∂z1∂z2
.

Clearly �, M are tangential linear differential operators, of the first and second order,
respectively. Note that (by (5.9))

�v = L Lv − L Lv = L(i Lu)− L(−i Lu) = i(L L + L L)u = i Mu,

i.e.,

�v = i Mu

in ω, which, in view of (5.10)–(5.11) becomes
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ρz1ρz1

∂2u

∂z2∂z2
− ρz1ρz2

∂2u

∂z1∂z2
− ρz1ρz2

∂2u

∂z1∂z2
+ ρz2ρz2 = 0,

hence (5.11) leads to

a1
∂u

∂z1
+ a2

∂u

∂z2
+ a1

∂u

∂z1
+ a2

∂u

∂z2
= Mu (5.12)

in ω. Since ω may be chosen around an arbitrary point of �, (5.12) holds in �. Note
that

a1 = λ1ρz1z2 + λ2ρz2z2 , a2 = −λ1ρz1z1 − λ2ρz1z2

may be written as

a1 = − L(ρ)
|λ1|2 + |λ2|2

∂ρ

∂z1
+ p1, a2 = − L(ρ)

|λ1|2 + |λ2|2
∂ρ

∂z2
+ p2, (5.13)

where

p1 := λ1ρz1z2 + λ2ρz2z2 − λ2L(ρ)
|λ1|2 + |λ2|2 ,

p2 := −λ2ρz1z2 − λ1ρz1z1 + λ1L(ρ)
|λ1|2 + |λ2|2 .

Moreover, note that

Q := p1
∂

∂z1
+ p2

∂

∂z2
, Q = p1

∂

∂z1
+ p2

∂

∂z2
, (5.14)

are tangential differential operators. Since Q is a vector field (a priori tangent to C2)
it suffices to check that Qρ = 0. Indeed,

Qρ = p1ρz1 + p2ρz2

= −
(
λ1ρz1z2 + λ2ρz2z2 − λ2L(ρ)

|λ1|2 + |λ2|2
)
λ2

+
(

− λ2ρz1z2 − λ1ρz1z1 + λ1L(ρ)
|λ1|2 + |λ2|2

)
λ1

= −λ1λ2ρz1z2 − λ2λ2ρz2z2 − λ2λ1ρz1z2 − λ1λ1ρz1z2

+ |λ2|2L(ρ)
|λ1|2 + |λ2|2 + |λ1|2L(ρ)

|λ1|2 + |λ2|2 = 0. �

Let us set

∇u := uz1

∂

∂z1
+ uz2

∂

∂z2
+ uz1

∂

∂z1
+ uz2

∂

∂z2
.

Since ν = ‖∇ρ‖−1∇ρ,

∂u

∂ν
= 〈∇u, ν〉 = 1

‖∇ρ‖
(
uz1ρz1 + uz2ρz2 + uz1ρz1 + uz2ρz2

) ;
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hence (by (5.13))

a1uz1 + a2uz2 + a1uz1 + a2uz2 =
− L(ρ)

|λ1|2 + |λ2|2
(
ρz1uz1ρz2uz2 + ρz1uz1 + ρz2uz2

)+p1uz1+p2uz2+p1uz1+p2uz2 ,

or (by (5.12))

Mu = −L(ρ)
‖λ‖2

‖∇ρ‖∂u

∂ν
+ Qu + Qu.

Finally, since ‖∇ρ‖2 = 2‖λ‖2, the last equation may be written

∂u

∂ν
= 1

L(ρ)Du

on �, where

D := − 1
2‖∇ρ‖

(
L L + L L − Q − Q

)
,

and Theorem 5.2 is completely proved. �

2 G. Fichera’s theorem. Let� ⊂ R2n be a (2n −1)-cell (n > 2) of class C� (� ≥ 1),
i.e., � := φ(T 2n−1) where T k := {t ∈ Rk : tα ≥ 0,

∑k
α=1 tα ≤ 1} is the standard

simplex in Rk and φ : T 2n−1 → R2n, φ(t1, . . . , t2n−1) =: (x1, y1, . . . , xn, yn) satis-
fies (1) φ ∈ C�(T 2n−1), (2) ∂(x1,y1,...,xn ,yn)

∂(t1,...,t2n−1)
has rank 2n − 1 at any point of T 2n−1, and

(3) φ is injective. That is, a (2n − 1)-cell in R2n is a regularly embedded (into R2n)
standard (2n − 1)-simplex.

Definition 5.8. Let � ⊂ R2n be a domain such that � ⊃ �. A linear differential
operator of order �,

D =
�∑

|μ|=0

aμ(z)D
μ, aμ ∈ C0(�),

is tangential to � if Du|� = 0 for any u ∈ C�(�) with u|� = 0. We say that D
is a Cauchy–Riemann operator in � if for any open set A ⊆ � and any function w,
holomorphic in A, we have Dw = 0 in A. Moreover, we say that D is a pluriharmonic
operator in � if for any open set A ⊆ � and any function u, pluriharmonic in A, we
have Du = 0 in A. Also D is a real operator if the aμ are real-valued. �

Proposition 5.6. Any pluriharmonic operator is a Cauchy–Riemann operator. Con-
versely, any real Cauchy–Riemann operator is a (real) pluriharmonic operator.

Let us consider again the Dirichlet problem for pluriharmonic functions (i.e., given
U ∈ C0(�) find u ∈ C0(�), pluriharmonic in �, such that u|� = U ). Each plurihar-
monic function (in �) is harmonic (in �) hence uniqueness in the Dirichlet problem
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is obvious. Therefore, the Dirichlet problem admits the following reformulation: find
necessary and sufficient conditions on U such that its harmonic extension in� is pluri-
harmonic. G. Fichera (cf. [143]–[145]) has formulated two approaches to the Dirichlet
problem. The so-called local approach consists in finding, for any x ∈ �, an open
neighborhood x ∈ A ⊂ � and (differential) conditions satisfied by U such that U is
the trace on A of a pluriharmonic function (in�). The global approach is to determine
a set  of functions defined on � such that the following statements are equivalent:
(1) U is the trace on � of a pluriharmonic (in �) function, and (2)

∫
�

Uψ dσ = 0 for
any ψ ∈  .

As shown by G. Fichera (cf. op. cit.), the local approach leads to a solution of
the following problem: given U on a (2n − 1)-cell � ⊂ � find u pluriharmonic in
some domain �+ ⊆ � with ∂�+ ⊃ � such that u|� = U. The local approach uses
tangential Cauchy–Riemann operators as its main tool.

Let Mn
� (�) be the set of all real Cauchy–Riemann operators, of order �, tangential

to �.

Definition 5.9. Two operators in Mn
� (�) are equivalent if their restrictions to � coin-

cide. �
The same symbol Mn

� (�) will denote the quotient space, modulo this equivalence
relation, with the natural structure of a C0(�)-module (actually an algebra). Clearly
Mn
� (�) has finite rank.

Definition 5.10. Assume that � ∈ C2 and let z ∈ �. We say that � satisfies the E.E.
Levi condition at z if there is Z ∈ T1,0(�)z such that Lθ,z(Z , Z) �= 0 (where Lθ is the
Levi form corresponding to the pseudo-Hermitian structure θ = j∗[ i

2 (∂ − ∂)ρ]). �
In other words, if � fails to satisfy the E.E. Levi condition at each z ∈ � then �
is Levi flat. Since Lθ changes conformally the E.E. Levi condition is a CR-invariant
condition.

The following result, the proof of which will not be given here, is an important
instrument in G. Fichera’s local approach (to the Dirichlet problem for pluriharmonic
functions):

Theorem 5.3. (G. Fichera [142])

(i) Let � ∈ C1. Then rank Mn
1 (�) = 0.

(ii) Let � ∈ C2. Let us assume that the E.E. Levi condition holds at each point of �.
Then we have rank Mn

2 (�) = n2 − 2n. In particular rank M2
2 (�) = 0.

(iii) Let � ∈ C3. Let us assume that the E.E. Levi condition holds at each point of �.
Let us set

Pn
3 (�) :=

{
D ∈ Mn

3 (�) : D =
s∑

j=1

f j L j D j , s ∈ Z, s ≥ 1,

f j ∈ C0(�) (real-valued),

L j a real first-order tangential (to �) operator, D j ∈ Mn
2 (�), 1 ≤ j ≤ s

}
.
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Then there is a C0(�)-module Qn
3(�) such that

Mn
3 (�) = Pn

3 (�)⊕ Qn
3(�)

and rank Qn
3(�) > n (in particular rank Q2

3(�) = 3).

Let ρ ∈ C2(R2n) be such that (1) ρ|� = 0 and Dρ �= 0 everywhere on � (where D
is the ordinary gradient), and (2) for any z ∈ �, there are λ1, . . . , λn ∈ C such that

n∑
j=1

∂ρ

∂z j
(z)λ j = 0, (5.15)

L(ρ, λ) :=
n∑

j,k=1

∂2ρ

∂z j∂zk
(z)λ jλk �= 0. (5.16)

Let � be a domain such that � ⊃ � and ν the inward unit normal on �. Let z0 ∈
� be fixed and assume, to fix ideas, that ∂ρ

∂z1
(z0) �= 0. We may state the following

generalization of L. Amoroso’s result (i.e., of Theorem 5.2):

Theorem 5.4. (G. Fichera [142])
Let u ∈ C2(�∪�) be pluriharmonic in�. There is a neighborhood A of z0 in� such
that

∂u

∂ν
= 1

L(ρ, λ(z))Du (5.17)

in A, for some tangential (to �) second-order differential operator, where

λ1(z) := − 1

ρz1(z
0)

n∑
j=2

λ jρz j (z),

λ j (z) := 1

ρz1(z
0)
λ jρz1(z), 2 ≤ j ≤ n,

and λ := (λ1, . . . , λn) is some vector in Cn satisfying (5.15)–(5.16) with z = z0.

Proof. Let λ1, . . . , λn ∈ C such that (5.15)–(5.16) hold at z = z0. Without loss of
generality, we may assume λ2 �= 0 (since a consequence of (5.16)). Let us set α :=
1/ρz1(z

0) and consider the matrix a ∈ Mn(C) given by

a :=

⎡⎢⎢⎢⎢⎢⎣
α λ1 − α 0 0 · · · 0
0 λ2 0 0 · · · 0
0 λ3 1 0 · · · 0
...

...
...
...

...

0 λn 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦ .

Then det(a) = λ2α �= 0; hence a is invertible. Let us set A := a−1. Then A gives
rise to a biholomorphism ζ = Az. Let �̃ := A(�) be the transform of � by this
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biholomorphism and set ζ 0 := Az0 ∈ �̃. Let r := ρ ◦ a. Then r(ζ ) = 0 for any
ζ ∈ �̃. Let us set μ := Aλ. Since

r(ζ1, . . . , ζn) = ρ(a j
1ζ j , . . . , a

j
nζ j )

we have

∂r

∂ζ j
(ζ 0) =

n∑
k=1

a j
k ρzk (z

0).

Thus
n∑

j=1

rζ j (ζ
0)μ j = 0,

n∑
j,k=1

rζ j ζ k
(ζ 0)μ jμk �= 0. (5.18)

From the definitions of a and μ we get

μ1 = μ2 = 1, μ3 = · · · = μn = 0.

Note that

rζ1(ζ
0) =

n∑
k=1

a1
kρzk (z

0) = αρz1(z
0) = 1

(in ai
j the index i is the column index). Also, the first of the formulas (5.18) may be

explicitly written

rζ1(ζ
0)+ rζ2(ζ

0) = 0.

Let us set

μ1(ζ ) := −rζ2(ζ ), μ2(ζ ) := rζ1(ζ ), μ3(ζ ) := · · · = μn(ζ ) := 0.

Note that
n∑

j=1

∂r

∂ζ j
(ζ )μ j (ζ ) = 0.

Also

μ j (ζ
0) = μ j , 1 ≤ j ≤ n;

hence by (the second of the formulas (5.18) and by) continuity, there is an open neigh-
borhood Ĩ (ζ 0) of ζ 0 in �̃ such that

L(r, μ(ζ )) �= 0,

for any ζ ∈ Ĩ (ζ 0). Consider now the first-order differential operators (tangential to �̃)

L := ∂r

∂ζ 1

∂

∂ζ 2
− ∂r

∂ζ 2

∂

∂ζ 1
, L = ∂r

∂ζ1

∂

∂ζ2
− ∂r

∂ζ2

∂

∂ζ1
.
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Since our considerations are local, we may assume without loss of generality that� is
simply connected (otherwise choose a simply connected subdomain ω ⊂ � such that
ω " z0). Let w be a holomorphic function in � such that Re(w) = u and let us set
v := Im(w). Next, let us set �̃ := A(�) and w̃ := w ◦ a. Clearly w̃ is holomorphic in
�̃ (since a is a biholomorphism); hence by the Cauchy–Riemann equations in �̃,

L ṽ = i Lũ, L ṽ = −i Lũ , (5.19)

where w̃ = ũ + i ṽ are the real and imaginary parts of w̃. Let us set � := [L, L] and
M := L L + L L . Then (by (5.19))�ṽ = i Mũ in �̃; hence (by a calculation similar to
that in the previous section)

a1
∂ ũ

∂ζ 1
+ a2

∂ ũ

∂ζ 2
+ a1

∂ ũ

∂ζ1
+ a2

∂ ũ

∂ζ2
= Mũ

in �̃ and, since ũ ∈ C2(�̃∪�̃), in �̃ as well. This is formally similar to (5.12), and the
proof of Theorem 5.4 may be completed along the lines of that of Theorem 5.2. �

3 E. Bedford’s theorem. Consider the tangential first-order differential operators
(complex vector fields) on S2n−1

Li j = ζ i
∂

∂ζ j
− ∂ j

∂

∂ζi
, 1 ≤ i, j ≤ n.

These operators extend naturally in the interior of the unit ball Bn .

Theorem 5.5. (E. Bedford [52]) Let L be one of the operators Li j , or their complex
conjugates. If u ∈ C3(S2n−1) then L L L(u) = 0 if and only if u extends to a pluri-
harmonic function in Bn.

The proof is a rather simple consequence of the fact that given a function u ∈
C1(S2n−1) one has

(Lζu) ∗ P(z, ζ ) = Lz[u ∗ P(z, ζ )]

for ζ ∈ S2n−1 and z ∈ Bn , where P(z, ζ ) is the Poisson kernel of Bn . The reader may
see [52], p. 21, for details. See also P. De Bartolomeis et al. [115].

5.4 More local theory

At this point we may prove Lemma 5.1. We recall (see Chapter 1 of this book)

�βα = Rα
β
λμθ

λ ∧ θμ + Wβ
αλθ

λ ∧ θ − Wβ

αλ
θλ ∧ θ,

where
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�βα := !βα − 2iθα ∧ τβ + 2iτα ∧ θβ ,
!βα := dωβα − ωγα ∧ ωβγ .

Since Rλμ = Rααλμ we may derive

�αα = Rλμθ
λ ∧ θμ + Wα

αλθ
λ ∧ θ − Wα

αλ
θλ ∧ θ.

Also, note that �αα = dωαα ; hence

dωαα = Rαβθ
α ∧ θβ + Wα

αβθ
β ∧ θ − Wα

αβ
θβ ∧ θ. (5.20)

Assume now that θ is pseudo-Einsteinian, i.e., Rαβ = (ρ/n)hαβ . Substitution in (5.20)
gives

dωαα = − iρ

2n
dθ +

(
Wα
αβθ

β − Wα

αβ
θβ
)

∧ θ,
or

d(ωαα + iρ

2n
θ) =

{
Wα
αβθ

β − Wα

αβ
θβ + i

2n
dρ

}
∧ θ. (5.21)

Let us set

ξ := d
(
ωαα + iρ

2n
θ
)

and note that ξ |H(M)⊗H(M) = 0. Then, by Lemma 5.3, ξ = 0, i.e., ωαα + iρ
2n θ is

closed. �
To prove the converse, assume ωαα + iρ

2n θ to be closed. By (5.20)

dωαα = Rλμθ
λ ∧ θμ + ϕθ, ϕ := Wα

αλθ
λ − Wα

αλ
θλ .

Then our assumption yields

0 = d
(
ωαα + iρ

2n
θ
)

= i

2n
d(Rθ)+ Rαβθ

α ∧ θβ + ϕ ∧ θ,
or

Rαβθ
α ∧ θβ + ϕ ∧ θ = − iρ

2n
dθ − i

2n
(dρ) ∧ θ. (5.22)

Let us apply (5.22) to (Tα, Tβ). It follows that Rαβ = (ρ/n)hαβ , i.e., θ is pseudo-
Einsteinian. Lemma 5.1 is completely proved. �
In particular

ϕ ∧ θ = − i

2n
(dρ) ∧ θ.

Applying this identity to (Tλ, T ), respectively to (Tλ, T ), we get

Wα
αλ = − i

2n
ρλ, Wα

αλ
= Wα

αλ .
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5.5 Topological obstructions

5.5.1 The first Chern class of T1,0(M)

One of the main purposes of the present section is to establish the following proposi-
tion:

Proposition 5.7. (J.M. Lee [270])
If (M, θ) is pseudo-Einsteinian then c1(T1,0(M)) = 0.

Here c1(T1,0(M)) ∈ H2(M; R) is the first Chern class of T1,0(M). Before proving
Proposition 5.7, let us look at Chern classes of an arbitrary complex vector bundle
over a CR manifold. Let π : E → M be a rank-r complex vector bundle over M . The
kth Chern class ck(E) ∈ H2k(M; R) is the cohomology class ck(E) = [γk], where
the 2k-form γk on M is determined by

det
(

Ir − 1

2π i
�
)

= p∗ (1 + γ1 + · · · + γr ) .

Here p : L(E) → M is the principal GL(r,C)-bundle of all frames in the fibers of E
(so that (L(E)× Cr )/GL(r,C) � E , a bundle isomorphism). Also

� ∈ �∞(�2T ∗(L(E))⊗ gl(r,C))

is the curvature 2-form of an arbitrary, fixed connection

D : �∞(E)→ �∞(T ∗(M)⊗ E).

If RD(X, Y ) = [DX , DY ] − D[X,Y ] is the curvature tensor of D then (cf., e.g., [241],
vol. I)

�(X H , Y H )uu−1s(p(u)) = u−1(RD(X, Y )s)p(u) , (5.23)

for any X, Y ∈ X (M), u ∈ L(E), and s ∈ �∞(E). Also X H denotes the horizontal
lift (with respect to D) of X to L(E).

Let {s1, . . . , sr } be a local frame in E , defined on the open set U . By eventually
restricting the open set U , we may assume the existence of a local frame {Tα} in
T1,0(M), defined on U as well. Let {Ei

j } be a linear basis of gl(r,C) � Cr2
and let us

set

� = �i
j ⊗ E j

i , �
i
j ∈ �∞(�2T ∗L(E)).

If u ∈ L(E)x , x ∈ M , i.e., u : Cr → Ex (a C-linear isomorphism) we set σ j :=
u(e j ), where {e j } is the canonical linear basis in Cr . We have (by (5.23))

u−1(RD(TA, TB)s j
)

x = �(T H
A , T H

B )uu−1s j (x). (5.24)

On the other hand, we set
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RD(TA, TB)s j =: Rk
j ABsk

and σ := [σ k
j ] ∈ GL(r,C), where σ j = σ k

j sk(x). Then (5.24) may be written

Rk
j AB(x)(σ

−1)ikei = ��k(T
H
A , T H

B )u Ek
� ·

(
(σ−1)ij ei

)
,

or, by taking into account that E j
k · ei = δki e j ,

��i (T
H
A , T H

B )u = σ
j
� Rk

j AB(x)(σ
−1)ik . (5.25)

Let ζ i
j : p−1(U ) → C be fiber coordinates on L(E), i.e., ζ i

j (u) := σ i
j . Since

Ker(p∗) �� = 0, the identity (5.25) may be written

��i = ζ
j
� (R

k
j AB ◦ p)(ζ−1)ik(p

∗θ A) ∧ (p∗θ B). (5.26)

We recall (cf. again [241], vol. II)

p∗(γk) = Ck

∑
δ

j1··· jk
i1···ik

�
i1
j1

∧ · · · ∧�ik
jk
,

where

Ck := (−1)k

(2π i)kk!

and the sum is taken over all ordered subsets (i1, . . . , ik) in {1, . . . , r} and all per-
mutations ( j1, . . . , jk) of (i1, . . . , ik), while δi1···ik

j1··· jk
is the sign of the permutation

(i1, . . . , ik) !→ ( j1, . . . , jk). In particular

p∗(γ1) = C1

∑
δ

j1
i1
�

i1
j1

= C1

r∑
i=1

�i
i .

Now (5.26) yields

�i
i = p∗ (Ri

i ABθ
A ∧ θ B

)
.

Note that p∗ is injective (and C1 = −1/(2π i)). We obtain

γ1 = − 1

2π i
R j

j ABθ
A ∧ θ B . (5.27)

The computation of the (representatives of the) Chern classes ck(E), for k ≥ 2, is
usually more involved. For instance

p∗γ2 = C2

∑
δ

j1 j2
i1i2
�

i1
j1

∧�i2
j2

= C2

∑
(i1,i2)∈{1,...,r}2

(
�

i1
i1

∧�i2
i2

−�i1
i2

∧�i2
i1

)
,

i.e.,

p∗γ2 = C2

r∑
i=1

r∑
j=1

(
�i

i ∧� j
j −�i

j ∧� j
i

)
.
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A careful examination of Chern classes of CR-holomorphic vector bundles over CR
manifolds is still missing from the contemporary literature, even for well-known ex-
amples (cf. the many examples in Chapter 1). If the given CR-holomorphic bundle
(E, ∂E ) → M carries a Hermitian structure and M is nondegenerate then one may
use, at least in principle, the Tanaka connection to compute the representatives γk .
While we leave this as an open problem, let us look at the main example, which is of
course E = T1,0(M). The Tanaka–Webster connection ∇ descends to a connection in
T1,0(M); hence (by (5.27))

c1(T1,0(M)) =
[
− 1

2π i
Rα
α

ABθ
A ∧ θ B

]
.

By a result in Chapter 1

Rα
α
λμ = 0, Rα

α
λμ = 0, Rα

α
0μ = Wα

αμ , Rα
α
λ0 = Wα

αλ .

We may conclude that the first Chern class of T1,0(M) is represented by

γ1 = − 1

2π i

{
Rλμθ

λ ∧ θμ + Wα
αλθ

λ ∧ θ − Wα
αμθ

μθμ ∧ θ
}
.

At this point we may prove Proposition 5.7. Assume that θ is pseudo-Einsteinian, i.e.,

Rαμ = ρ

n
hαμ , Wα

αλ = − i

2n
ρλ , Wα

αμ = i

2n
ρμ ;

hence

γ1 = − 1

2π i

{
ρ

n
hλμθ

λ ∧ θμ − i

2n
ρλθ

λ ∧ θ − i

2n
ρμθ

μ ∧ θ
}

= − 1

2nπ i

{
ρhλμθ

λ ∧ θμ − i

2
(dρ) ∧ θ

}
= − 1

2nπ i

{
1

2i
ρ dθ + 1

2i
(dρ) ∧ θ

}
= 1

4nπ
d(Rθ).

We have proved the following result:

Proposition 5.8. For any pseudo-Einsteinian manifold, the first Chern class of
T1,0(M) is represented by

γ1 = 1

4nπ
d(ρθ).

This is exact; hence c1(T1,0(M)) = 0. �
Note that for any pseudo-Einsteinian contact form θ , the curvature form of the

Tanaka–Webster connection of (M, θ) satisfies

�
j
j = 1

2ni
p∗d(ρθ).
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5.5.2 The traceless Ricci tensor

Let M be a nondegenerate CR manifold and θ a contact form on M .

Definition 5.11. The traceless Ricci tensor Bαβ is given by

Bαβ := Rαβ − ρ

n
hαβ . �

Let us recall that (by a result in Chapter 2) under a transformation θ̂ = e2uθ , the
contracted connection 1-forms (of the Tanaka–Webster connection) transform as

ω̂αα = ωα
α + (n + 2)(uαθ

α − uαθα)+ i
{

2(n + 1)uαuα + 1
2�bu

}
θ + n du.

Consequently

dω̂αα = dωα
α + (n + 2)d(uαθ

α − uαθα)

+ i
{

2(n + 1)uαuα + 1
2�bu

}
dθ + id

(
2(n + 1)uαuα + 1

2�bu
)

∧ θ,

or, by a curvature formula in Chapter 1,

R̂λμθ
λ ∧ θμ + Ŵα

αλθ
λ ∧ θ − Ŵα

αμθ
μ ∧ θ

= Rλμθ
λ ∧ θμ + Wα

αλθ
λ ∧ θ − Wα

αμθ
μ ∧ θ + (n + 2)d(uαθ

α − uαθα)

+ i
(
2(n + 1)uαuα + 1

2�bu
)
dθ + id

(
2(n + 1)uαuα + 1

2�bu
) ∧ θ;

hence

(R̂λμ − Rλμ)θ
λ ∧ θμ ≡ − {

�bu + 4(n + 1)uαuα
}

hλμθ
λ ∧ θμ

+ (n + 2)
{

d(uαθ
α)− d(uαθ

α)
}

mod θ,

or

(R̂λμ − Rλμ)θ
λ ∧ θμ ≡ − {

�bu + 4(n + 1)uαuα
}

hλμθ
λ ∧ θμ

− (n + 2)
{

uλμθ
λ ∧ θμ + uμλθ

λ ∧ θμ
}

mod θα ∧ θβ, θα ∧ θβ, θ,

whence

R̂λμ = Rλμ − (n + 2)(uλμ + uμλ)−
{
�bu + 4(n + 1)uαuα

}
hλμ .

Using the commutation formula for uλμ, we have

R̂λμ = Rλμ − 2(n + 1)(uλμ − ihλμu0)−
{
�bu + 4(n + 1)uαuα

}
.

Contraction with hλμ leads to
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e2u ρ̂ = ρ − (n + 2)
(

uλ
λ + uλ

λ
)

− n
(
�bu + 4(n + 1)uαuα

)
and since

�bu = uλ
λ + uλ

λ

we get

e2u ρ̂ = ρ − 2(n + 1)�bu − 4n(n + 1)uαuα .

Therefore

B̂λμ = R̂λμ − ρ̂

n
ĥλμ = Rλμ − (n + 2)(uλμ + uμλ)

− {
�bu + 4(n + 1)uαuα

}
hλμ − 1

n
hλμ

{
ρ − 2(n + 1)�bu − 4n(n + 1)uαuα

}
,

i.e.,

B̂λμ = Bλμ − (n + 2)(uλμ + uμλ)+ n + 2

n
(uα

α + uα
α)hλμ .

Let us set

(Qu)αβ := uαβ − 1

n
uγ
γ hαβ .

We have already proved that u is CR-pluriharmonic if and only if Qu = 0; cf. Propo-
sition 5.4. Then

B̂λμ = Bλμ − (n + 2)
{
(Qu)λμ + (Qu)μλ

}
.

Yet, again by the commutation formula for second-order covariant derivatives

(Qu)μλ = uμλ − 1

n
uγ
γ hμλ = uλμ − 2ihλμu0 − 1

n
hλμ

{
uγ γ − 2inu0

}
= (Qu)λμ ,

i.e.,

(Qu)λμ = (Qu)μλ

and we have proved the following:

Proposition 5.9. The traceless Ricci tensor transforms, under a transformation of the
contact form θ̂ = e2uθ , as

B̂λμ = Bλμ − 2(n + 2)(Qu)λμ. (5.28)

In particular, θ̂ is pseudo-Einsteinian if and only if

Qu = 1

2(n + 2)
B.

Let P be the sheaf of CR-pluriharmonic functions (on open sets of M). If a pseudo-
Einsteinian contact form is available, the remaining pseudo-Einsteinian contact forms
may be parameterized by elements in P(M), as follows.
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Theorem 5.6. (J.M. Lee [270]) If (M, θ) is pseudo-Einsteinian then

{e2uθ : u ∈ P(M)}
is the set of all pseudo-Einsteinian contact forms on M.

Proof. Let θ be pseudo-Einsteinian, i.e., B = 0. Let u ∈ C∞(M) and set θ̂ := e2uθ .
Then θ̂ is pseudo-Einsteinian if and only if Qu = 1

2(n+2) B; yet B = 0; hence θ̂ is
pseudo-Einsteinian if and only if u is CR-pluriharmonic. �

5.5.3 The Lee class

When the given nondegenerate CR manifold is locally embeddable (as a real hyper-
surface in Cn+1), a precise description of the obstruction to the existence of global
pseudo-Einstein contact forms is available, in terms of a cohomology class γ (M),
with coefficients in P , referred to hereinafter as the Lee class of M .

Theorem 5.7. (J.M. Lee [270]) Let M be a locally realizable nondegenerate CR man-
ifold. There exists a CR-invariant cohomology class γ (M) ∈ H1(M;P) such that
γ (M) = 0 if and only if M admits a global pseudo-Einsteinian contact form.

Proof. Let θ be a contact form on M . By hypothesis, for any x ∈ M there is an open
neighborhood U " x and a CR immersion ψ : U → Cn+1. Let us set

ζ := ψ∗(dz1 ∧ · · · ∧ dzn+1) ∈ �∞(U, K 0(M)).

Then dζ = 0 and (by Lemma 2.2 in Chapter 2) there is a unique C∞ function λ :
U → (0,∞) such that

λθ ∧ (dθ)n = 2nin2
n!(−1)sθ ∧ (T � ζ ) ∧ (T � ζ ).

If θ̂ = e2uθ then

d θ̂ = e2u (2(du) ∧ θ + dθ) ;
hence

θ̂ ∧ (d θ̂ )n = e2(n+1)uθ ∧ (dθ)n

and consequently

θ̂ ∧ (T̂ � ζ ) ∧ (T̂ � ζ ) = e−2uθ ∧ (T � ζ ) ∧ (T � ζ ).
In particular for

u := log λ

2(n + 2)

we have λ = e2(n+2)u and then
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θ̂ ∧ (d θ̂ )n = e2(n+1)uθ ∧ (dθ)n = e−2uλθ ∧ (dθ)n
= e−2un!2nin2

(−1)sθ ∧ (T � ζ ) ∧ (T � ζ )
= n!2nin2

(−1)s θ̂ ∧ (T̂ � ζ ) ∧ (T̂ � ζ ),

i.e., θ̂ is volume-normalized with respect to ζ . Since ζ is also closed, we may apply
Proposition 5.1 to conclude that θ̂ is a pseudo-Einstein contact form on U . Therefore,
there is a locally finite open covering {Ui : i ∈ I } of M and a family {θi : i ∈ I } of
local contact forms such that each (Ui , θi ) is pseudo-Einsteinian. Then

θi = e2ui j θ j

on Ui ∩ U j , for some ui j ∈ C∞(Ui ∩ U j ). By Theorem 5.6, ui j ∈ P(Ui ∩ U j ). Also,
clearly

ui j + u ji = 0 on Ui ∩ U j ,

ui j + u jk + uki = 0 on Ui ∩ U j ∩ Uk .

Let us set U := {Ui }i∈I and let N (U) be the nerve of U . Let f ∈ C1(N (U),P) be the
1-cochain defined by

f (σ ) := ui j ∈ P(∩σ), σ = (UiU j ) ∈ S1(N (U)).

Consider the coboundary operator

δ1 : C1(N (U),P)→ C2(N (U),P).

Then, for σ = (UiU jUk),

(δ1 f )(σ ) =
2∑
α=0

ρσα,σ f (σα)

= ρσ 0,σ f (σ 0)− ρσ 1,σ f (σ 1)+ ρσ 2,σ f (σ 2).

Here we have adopted the following notation. If σ = �(i0, . . . , i p) is a p-simplex, we
set ∩σ := ∩p

j=0Ui j and

σ j := �(i0, . . . , i j−1, i j+1, i p) ∈ S p−1(N (U)).

Also, if F is a given presheaf on M then

ρσ j ,σ : F(∩σ j )→ F(∩σ)

denotes the restriction map. We use the notation and conventions (as to Čech co-
homology) in [178]. Thus

(δ1 f )(σ ) = u jk
∣∣∩σ − uik |∩σ + ui j

∣∣∩σ = 0,
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i.e., f ∈ Z1(N (U),P). We may then set by definition

� := [ f ] ∈ H1(N (U),∩P),

and

γ (M) := 〈�〉 ∈ H1(M,∩P) = lim
U

H1(N (U),P).

Definition 5.12. γ (M) is called the Lee class of M . �

First, let us show that the Lee class depends only on the CR structure. Indeed, let
Ũ := {Ũ j } j∈J be another open covering of M , together with pseudo-Einstein contact
forms θ̃ j on Ũ j . By passing to a common refinement if necessary, one may assume
without loss of generality that I = J and Ui = Ũi , for any i ∈ I . Then

θ̃i = e2hi θi

on Ui , for some hi ∈ P(Ui ). Thus

ũi j − ui j = hi − h j ,

i.e.,

f̃ = f − δh;
hence �̃ = �. Here h ∈ C0(N (U),P) is defined by h(�(i)) := hi ∈ P(Ui ). Next, let
us show that γ (M) = 0 if and only if M admits a global pseudo-Einsteinian contact
form. The implication “⇐�” is left as an exercise to the reader. To prove “�⇒” assume
that 0 = γ (M) = 〈�〉, i.e., there is a refinement V of U (V < U) such that1 φUV� =
0. Thus [φ̃ f ] = 0, i.e.,

φ̃ f = δh. (5.29)

Let V, V ′ ∈ V such that V ∩ V ′ �= ∅ and let us set

V ⊂ φ(V ) =: Ui , V ′ ⊂ φ(V ′) =: U j ,

for some i, j ∈ I . Then Ui ∩ U j �= ∅ and θi = e2ui j θ j on V . Let us set

σ := (V, V ′) ∈ S1(N (V)).
Then (by (5.29))

1 Again, we are consistent with the conventions in [178], i.e., if φ : V → U is a map such
that V ⊆ φ(V ), for any V ∈ V , then the naturally induced map of simplicial complexes
φ∗N (V)→ N (U) induces a map φ̃ on cochains, and then a map φ∗ on cohomology

(φ∗)p : H p(N (U),P)→ H p(N (V),P).
This depends only on V and U and is commonly denoted by φUV .
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ui j
∣∣∩σ = ρ1 f (φ1σ) = (δ0h)(σ ) = h(V ′)

∣∣∩σ − h(V )|∩σ ;
hence

e2h(V )θi = e2h(V ′)θ j

on V ∩ V ′. Let us set θV := θi |V . Since U !→ �∞(U, H(M)⊥) is a sheaf, there is
θ ∈ �∞(M, H(M)⊥) such that θ |V = e2h(V )θV for any V ∈ V . Now Theorem 5.6
implies that θ is pseudo-Einsteinian in each V ∈ V , and hence in M . �

5.6 The global problem

In this section we examine certain sufficient conditions under which the global ex-
istence problem for pseudo-Einsteinian contact forms admits a positive solution. As
we have previously shown, for a given strictly pseudoconvex CR manifold M the first
Chern class of its CR structure T1,0(M) is an obstruction to the existence of globally
defined pseudo-Einsteinian contact forms. The following conjecture, referred to as the
Lee conjecture in this book, has been proposed in [270]:

Conjecture. Any compact strictly pseudoconvex CR manifold M whose CR struc-
ture has a vanishing first Chern class (c1(T1,0(M)) = 0) admits a global pseudo-
Einsteinian contact form.

Already with the work of J.M. Lee (cf. op. cit.) the conjecture was known to
be true when either M admits some contact form of positive semidefinite pseudo-
Hermitian Ricci tensor or M has transverse symmetry (a notion to be defined shortly).
Successively we shall examine a result in [121], i.e., show that M admits a global
pseudo-Einsteinian contact form, provided it admits some pseudo-Hermitian struc-
ture whose characteristic direction T is regular (in the sense of R. Palais [336]). Both
transverse symmetry and regularity will be seen to yield zero pseudo-Hermitian tor-
sion (τ = 0). Yet, examples of compact strictly pseudoconvex CR manifolds admitting
global pseudo-Einsteinian contact forms of nonzero pseudo-Hermitian torsion will be
built, thus hinting at a wider validity of the Lee conjecture.

Let θ be a contact form on a compact, strictly pseudoconvex CR manifold M .
Assume that c1(T1,0(M)) = 0. Then

i

2π
dωαα = γ1 = −dλ,

for some global 1-form λ on M . Since ωαα is pure imaginary, we may take λ to be real.
Let us set σ := iλ. Then

Rαβθ
α ∧ θβ + Wα

αμθ
μ ∧ θ − Wα

αμθ
μ ∧ θ = 2πdσ. (5.30)

If we write σ locally as

σ = σαθ
α − σαθα + iσ0θ,
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then

dσ = σβ,αθ
α ∧ θβ − σα,βθα ∧ θβ + θ ∧ (σα,0θα + σαAαβθ

β)− σβ,αθα ∧ θβ

+ σα,βθα ∧ θβ − θ ∧ (σα,0θα + σαAα
β
θβ)+ i(dσ0) ∧ θ + iσ0dθ.

Hence (from (5.30))

Rαβ = 2π
(
σβ,α + σα,β − 2σ0hαβ

)
, (5.31)

1

2π
Wα
αμ = −σαAαμ + σμ,0 + iTμ(σ0),

− 1

2π
Wα
αμ = −σμ,0 + σαAαμ + iTμ(σ0).

Also

σβ,αθ
α ∧ θβ − σβ,αθα ∧ θβ = 0;

hence

σβ,α = σα,β . (5.32)

Let us set θ̂ = e2uθ , with u ∈ C∞(M). Then θ̂ is pseudo-Einsteinian, i.e., B̂λμ = 0 if
and only if (by (5.28))

Bλμ − (n + 2)(uλμ + uμλ)+ n + 2

n

(
uα
α + uα

α
)

hλμ = 0

if and only if (by (5.31))

(n + 2)(uλμ + uμλ)

= 2π(σλ,μ + σμ,λ)+
{n + 2

n

(
uα
α + uα

α
)

− ρ

n
− 4πσ0

}
hλμ . (5.33)

We shall use now J.J. Kohn’s “Hodge theory” for the ∂b complex; cf. [246].

Theorem 5.8. (J.J. Kohn [246])
If M is a compact, strictly pseudoconvex CR manifold and η ∈ �0,1(M) a smooth
(0, 1)-form on M such that ∂bη = 0 then there is f ∈ C∞(M)⊗ C such that

∂b f − η ∈ Ker(�b).

Let us set γ := ∂b f − η (hence �bγ = 0). Then

0 = (�bγ, γ ) = 2
(
∂
∗
b∂bγ + ∂b∂

∗
bγ, γ

)
= 2‖∂bγ ‖2 + 2‖∂∗bγ ‖2;

hence
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∂bγ = 0, ∂
∗
bγ = 0. (5.34)

Since

∂b(σαθ
α) = σβ,αθ

α ∧ θβ

the identity (5.32) yields

∂b(σαθ
α) = 0.

In particular for

η := 2π

n + 2
σαθ

α ∈ �0,1(M)

we have ∂bη = 0; hence by the result in [246] quoted above, there is f ∈ C∞(M)⊗C
such that

γ := n + 2

2π

(
∂b f − η) ∈ Ker(�b).

With respect to a local frame, taking into account (5.34) as well, we get

fα = 2π

n + 2
(σα + γα) , (5.35)

γα,β = γβ,α, γα,
α = 0. (5.36)

Summing up, we have proved the following:

Lemma 5.4. Let M be a compact, strictly pseudoconvex CR manifold, with
c1(T1,0(M)) = 0. Let θ be a contact form on M. Then there are a 1-form σ ∈ �1(M)
and a (0, 1)-form γ ∈ �0,1(M) and a function f = u + iv ∈ C∞(M)⊗ C such that
the identities (5.30) and (5.35)–(5.36) are satisfied.

Let us set, from now on γα := γα .

Lemma 5.5. Let u and γ be as in Lemma 5.4. Then θ̂ := e2uθ is pseudo-Einsteinian
if and only if

γα,β + γβ,α = 0.

Proof. Taking covariant derivatives in

uα + ivα = 2π

n + 2
(σα + γα)

we obtain



5.6 The global problem 307

(n + 2)(uαβ + ivαβ) = 2π(σα,β + γα,β),
(n + 2)(uβα − ivβα) = 2π(σβ,α + γβ,α),

whence, by adding up these two identities,

(n + 2)(uαβ + uβα) = i(n + 2)(vβα − vαβ)+ 2π(σα,β + σβ,α + γα,β + γβ,α),
or, by applying the commutation formula for vαβ ,

(n + 2)(uαβ + uβα) = 2π(σα,β + σβ,α + γα,β + γβ,α)− 2(n + 2)v0hβα . (5.37)

Hence (by (5.33)) θ̂ is pseudo-Einsteinian if and only if

2π
(
γβ,α + γα,β

)− 2(n + 2)v0hβα =
( (n + 2)

n
�bu − ρ

n
− 4πσ0

)
hβα ,

i.e., if and only if

γβ,α + γα,β = λhβα,

λ := n + 2

π
v0 + n + 2

2nπ
�bu − ρ

2nπ
− 2σ0,

or, by contraction with hβα ,

γβ,
β + γα,α = nλ;

hence (by (5.36)) λ = 0 and Lemma 5.5 is completely proved. �

Lemma 5.6. Let M be a compact, strictly pseudoconvex CR manifold, and θ a contact
form on M. Assume that dim(M) ≥ 5. If the pseudo-Hermitian Ricci tensor Rαβ of

(M, θ) is positive semidefinite, then for any (0, 1)-form γαθα ∈ �0,1(M),

�b(γαθ
α) = 0 �⇒

⎧⎪⎨⎪⎩
γα,β = 0,

γα,β = 0,

γα,0 = − i
n Rαβγ β .

Proof. Let us set γ := γαθ
α . As seen before, �bγ = 0 yields γα,α = 0. This may

be written hαβγα,β = 0, and by differentiating covariantly and taking into account the
commutation formula

γα,βγ − γα,γ β = ihβγ γα,0 + Rα
ρ
βγ γρ

we have

0 = hαβγα,βγ = hαβ
(
γα,γ β + ihγ βγα,0 − Rα

ρ
γβγρ

) = γα,γ
α + iγγ ,0 − Rα

ρ
γ
α
γρ.

Yet γα,γ = γγ ,α; hence
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γγ ,α
α = −iγγ ,0 + Rλγ γ

λ . (5.38)

To get (5.38) we also rely on the following calculation [taking into account the sym-
metry property (1.98) of the curvature tensor (of the Tanaka–Webster connection); cf.
Chapter 1]:

Rα
ρ
γ
α
γρ = hρλhαμRαλγμ = hρλhαμRαμγλ = Rα

α
γλhρλ = Rγ λhρλ .

On the other hand, the identity

γα,βγ − γα,γ β = ihβγ γα,0 + Rα
μ
βγ γμ (5.39)

may be written

γα,βγ hβγ − γα,γ γ = inγα,0 + Rα
μγ
γ γμ .

Yet γα,β = γβ,α; hence

γβ,αγ hβγ − γα,γ γ = inγα,0 + Rα
μ
β
β
γμ,

and using once again the commutation formula we started with, we obtain

hβγ
(
γβ,γ α + ihαγ γβ,0 + Rβ

μ
αγ
γμ

)
− γα,γ γ = inγα,0 + Rα

μγ
γ γμ,

or

γβ,γ αhβγ + iγα,0 + Rβ
μ
α
β
γμ − γα,γ γ = inγα,0 + Rα

μγ
γ γμ,

or

γβ,
β
α︸ ︷︷ ︸

=0

−γα,γ γ = i(n − 1)γα,0 +
(

Rα
μ
β
β − Rβ

μ
α
β
)
γμ . (5.40)

On the other hand [by (1.98) in Chapter 1],

Rα
μ
β
β − Rβ

μ
α
β = hμλhβσ

[
Rαλβσ − Rβλασ

]
= 0;

hence (5.40) becomes

γα,γ
γ = i(n − 1)γα,0 . (5.41)

At this point, we may perform the following calculation:

γβ,αγ
β,α + (n − 1)γβ,γ γ

β,γ + (n − 1)Rαβγ
αγ β

(by (5.38)) = γβ,αγ
β,α + (n − 1)γβ,γ γ

β,γ + (n − 1)γ β
[
γβ,α

α + iγβ,0

]
(by (5.41)) = γβ,αγ

β,α + (n − 1)γβ,γ γ
β,γ + (n − 1)γ βγβ,γ

γ + γ βγβ,γ γ

= γβ,αγ
β,α + γβ,ααγ β + (n − 1)

[
ρβ,γ γ

β,γ + γβ,γ γ γ β
]

= λα,
α + (n − 1)μγ ,

γ
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where

λα := γβ,αγ
β, μγ := γβ,γ γ

β .

By the divergence formula,∫
M

[
γβ,αγ

β,α + (n − 1)γβ,γ γ
β,γ + +(n − 1)Rαβγ

αγ β
]
θ ∧ (dθ)n = 0. (5.42)

Yet by hypothesis Rαβγ
αγ β ≥ 0; hence

γβ,α = 0, γβ,γ = 0.

Then (5.39) becomes

ihβγ γα,0 + Rα
μ
βγ γμ = 0

and contraction with hβγ leads to

inγα,0 + Rα
μ
β
β
γμ = 0.

Yet (by using twice (1.98))

Rα
μ
β
β = Rαλhμλ;

hence

inγα,0 + Rαλγ
λ = 0,

and Lemma 5.6 is completely proved. �
As a byproduct, we obtain the following:

Proposition 5.10. Let M be a compact, strictly pseudoconvex CR manifold, of dimen-
sion dim(M) ≥ 5. Let θ be a contact form on M. If the pseudo-Hermitian Ricci tensor
Rαβ of (M, θ) is positive definite then

H0,1
∂b
(M) = 0.

Proof. By J.J. Kohn’s “Hodge theory” for ∂b.

Theorem 5.9. (J.J. Kohn [246]) Any cohomology class in the Kohn–Rossi cohomology
group H0,1

∂b
(M) has a unique smooth representative γ with �bγ = 0.

Then (5.42) yields Rαβγ
αγ β = 0; hence γ = 0. �

To state the main result of this section we need the following definition:

Definition 5.13. We say that M has transverse symmetry if M admits a 1-parameter
group of CR automorphisms transverse to the Levi distribution. �
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Precisely, if M has transverse symmetry, there is a tangent vector field V ∈ X (M),
transverse to H(M), whose 1-parameter transformation group {ϕt }t∈R consists of CR
automorphisms ϕt : M → M (since M is compact, the local integration of V fur-
nishes, of course, a global 1-parameter group of global automorphisms).

Theorem 5.10. (J.M. Lee [270])
Let M be a compact, strictly pseudoconvex CR manifold whose CR structure has a
vanishing first Chern class (c1(T1,0(M)) = 0). Let us suppose that (at least) one of
the following assumptions is satisfied

(i) M admits a contact form θ with Rαβ positive semidefinite.
(Ii) M has transverse symmetry.

Then M admits a globally defined pseudo-Einsteinian contact form.

Proof. To prove (i), let θ be a contact form with Rαβ positive semidefinite. By Lemma

5.4 there are a 1-form σ ∈ �1(M), a (0, 1)-form γ ∈ �0,1(M), and a function f =
u + iv ∈ C∞(M)⊗ C such that

Rαβθ
α ∧ θβ + Wα

αμθ
μ ∧ θ − Wα

αμθ
μ ∧ θ = 2πdσ ,

fα = 2π

n + 2
(σα + γα) , γα,β = 0, γα

α = 0.

By Lemma 5.6 we get γβ,α = 0 and (by complex conjugation) γβ,α = 0. Finally, by

Lemma 5.5, e2uθ is pseudo-Einsteinian. �
Let us prove (ii). Let θ1 be a contact form on M and let us set λ := θ1(V ). Since

T (M) = H(M)⊕RV it follows that λ(x) �= 0, for any x ∈ M . Let us set θ := (1/λ)θ1
(hence θ(V ) = 1). The Lie derivative of θ , in the direction V , is given by

(LV θ)x = lim
t→0

1

t

{
θx − (ϕ∗

t θ)x
} = lim

t→0

1

t
{θx − λt (x)θx } = u(x)θx ,

for some λt ∈ C∞(M) (since ϕt is a CR map), where

u(x) := lim
t→0

1

t
(1 − λt (x)).

Then

uθ = LV θ = (ιV d + d ιV ) θ = V � dθ + d(V � θ)︸ ︷︷ ︸
=0

,

and applying both members to T ,

u = uθ(T ) = (dθ)(V, T ) = 0

since T � dθ = 0. We have proved that

θ(V ) = 1, V � dθ = 0,
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relations that uniquely describe the characteristic direction of dθ , i.e., we may con-
clude that V = T , hence that T is an infinitesimal CR automorphism of M . By
S. Webster’s Theorem 1.5 in Chapter 1, (the Tanaka–Webster connection of) θ has
zero pseudo-Hermitian torsion, i.e., τ = 0. Hence the identity

ργ − Rγ σ ,
σ = i(n − 1)Aαγ,

α

becomes

ργ = Rγ σ ,
σ . (5.43)

Also, the commutation formula

σα,βγ − σα,γ β = ihαβ Aγ ρσ
ρ − ihαγ Aβρσ

ρ

(true for any (1, 0)-form σαθ
α on M) yields (since Aαβ = 0) uαβγ = uαγβ , or, by

contraction with hγα ,

uαβ
α = uα

α
β . (5.44)

Let γ be as in Lemma 5.4. By (5.37)

2π(γβ,α + γα,β) = (n + 2)(uβα + uαβ)− 2π(σβ,α + σα,β)+ 2(n + 2)v0hβα .

At this point, we may perform the following calculation:

2π(γβ,α + γα,β)(γ β,α + γ α,β) = 2πγ β,α(γβ,α + γα,β)+ 2πγ β,α(γβ,α + γα,β)
= 4π Re{γ β,α(γβ,α + γα,β)}

= 2 Re{γ β,α(n + 2)(uαβ + uβα)− 2πγ β,α(σα,β + σβ,α)+ 2(n + 2)v0hαβγ
β,α}.

Yet

2π(σα,β + σβ,α) = Rαβ + 4πσ0hαβ .

Thus

2π(γβ,α + γα,β)(γ β,α + γ α,β)
= 2 Re γ β,α

[
(n + 2)

(
2uαβ − ihαβu0

)− Rαβ − 4πσ0hαβ + 2(n + 2)v0hαβ

]
= 2 Re γ β,α

[
2(n + 2)uαβ − Rαβ

]+ 2 Re γ β,αhαβ︸ ︷︷ ︸
=γα,α=0

[(n + 2)(2v0 − iu0)− 4πσ0] ,

i.e.,

2π(γβ,α + γα,β)(γ β,α + γ α,β) = 2 Re γ β,α
[
2(n + 2)uαβ − Rαβ

]
. (5.45)
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On the other hand,

γ β,αuαβ = (
γ βuαβ

),α − γ βuαβ
α

(by (5.44)) = (
γ βuαβ

),α − γ βuα
α
β

(because of γ β
,β

= 0) = (
γ βuαβ

),α − (
γ βuα

α
)
,β

i.e.,

γ β,αuαβ = (
γ βuαβ

),α − (
γ βuα

α
)
,β
. (5.46)

Moreover,

γ β,αRαβ = (
γ β Rαβ

),α − γ β Rαβ,
α

(by (5.43)) = (
γ β Rαβ

),α − γ βρβ
i.e.,

γ β,αRαβ = (
γ β Rαβ

),α − (
γ βρ

)
,β
. (5.47)

Substitution from (5.46)–(5.47) into (5.45) leads to

2π(γβ,α + γα,β)(γ β,α + γ α,β) =
2 Re

{
2(n + 2)

[(
γ βuαβ

),α − (
γ βuα

α
)
,β

]
− (
γ β Rαβ

),α + (
γ βρ

)
,β

}
.

Finally, let us integrate over M and use the divergence formula. We get γβ,α + γα,β =
0; hence (by Lemma 5.5) e2uθ is pseudo-Einsteinian. �

5.7 The Lee conjecture

In this section, we deal with the Lee conjecture,2 as stated in the preceding section.
We solve in the affirmative the Lee conjecture for compact strictly pseudoconvex CR
manifolds with a regular (in the sense of R. Palais [336]) contact vector. The regularity
assumption leads (via the Boothby–Wang theorem [75] and B. O’Neill’s fundamental
equations of a submersion [334]) to zero pseudo-Hermitian torsion (and we may apply
a result of J.M. Lee [270]).

Let (M, T1,0(M)) be a CR manifold of CR dimension n. In the previous sections
we formulated the following natural problem: assuming that M is nondegenerate, find
a pseudo-Hermitian structure θ such that (M, θ) is pseudo-Einsteinian. It turned out
that the solution to the local problem is intimately related to the question of embed-
dability, and then to classical results by M. Kuranishi [263] and T. Akahori [2], while

2 A CR analogue of the Calabi problem.
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there are a number of obstructions to (the solution of) the global problem, such as
the first Chern class of the given CR structure. In the defense of the Lee conjecture
we construct an example of a compact strictly pseudoconvex CR manifold that carries
a globally pseudo-Einsteinian contact form with nonvanishing pseudo-Hermitian tor-
sion. This is obtained as a quotient of the Heisenberg group Hn by a discrete group of
CR automorphisms (and is the CR analogue of the construction of H. Hopf [211], en-
dowing S2n−1 × S1 with a complex structure). Precisely, we construct a family Hn(s),
0 < s < 1, of compact strictly pseudoconvex CR manifolds such that each Hn(s)
satisfies the Lee conjecture. We endow Hn(s) with the contact form (5.51). Our con-
struction is reminiscent of W.C. Boothby’s Hermitian metric (cf. [74]) on a complex
Hopf manifold (cf. also [125]).

5.7.1 Quotients of the Heisenberg group by properly discontinuous groups of
CR automorphisms

Let Ds : Hn \ {0} → Hn \ {0}, s > 0, be the parabolic dilations, i.e., Ds(z, t) =
(sz, s2t). If m ∈ Z, m > 0, we set Dm

s = Ds ◦ · · · ◦ Ds (m factors). Also, we set
D−m

s = δm
1/s and D0

s = I . Consider the discrete group Gs = {Dm
s : m ∈ Z}.

Theorem 5.11. ([121]) Let 0 < s < 1 and n > 1. Then Gs acts freely on Hn \ {0}
as a properly discontinuous group of CR automorphisms of Hn \ {0}. The quotient
space Hn(s) = (Hn \ {0})/Gs is a compact strictly pseudoconvex CR manifold of CR
dimension n.

Proof. Clearly δs
m x = x for some x ∈ Hn \ {0} yields m = 0. Thus the action of Gs

on Hn \ {0} is free.
Let |x | be the Heisenberg norm on Hn . Let x0 ∈ Hn \ {0} and set Uε(x0) = {x ∈

Hn \ {0} : |x − x0| < ε} , ε > 0. Let ‖x‖ be the Euclidean norm on Hn � R2n+1. By
a result in Chapter 1, for any x ∈ Hn with |x | ≤ 1 one has

‖x‖ ≤ |x | ≤ ‖x‖1/2.

Thus the sets Uε(x), x ∈ Hn \ {0}, 0 < ε < 1, form a fundamental system of
neighborhoods in Hn \ {0}. To show that Gs is properly discontinuous, given x0 ∈
Hn \ {0} one needs to choose ε > 0 such that

δm
s (Uε(x0)) ∩ Uε(x0) = ∅, (5.48)

for any m ∈ Z, m �= 0. By Lemma 8.9 in [150], p. 449, there exists γ ≥ 1 such that
|x + y| ≤ γ (|x | + |y|) for any x, y ∈ Hn . Consequently

|x | − γ |y| ≤ γ |x − y|, (5.49)

for any x, y ∈ Hn . Let

ξm = |δm
s (x0)− x0|
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for m ∈ Z. Since Gs acts freely on Hn \ {0}, it follows that ξm ≥ 0 and ξm = 0 ⇐⇒
m = 0. Next, since 0 < s < 1, one obtains

0 ≤ m1 < m2 �⇒ ξm1 < ξm2 , ξ−m1 < ξ−m2 .

Therefore

ξm ≥ min{ξ1, ξ−1} = ξ1

for any m ∈ Z, m �= 0. Let us set N = 2γ +1. Choose 0 < ε < 1
N ξ1. Let x ∈ Uε(x0).

Then

|δm
s (x)− δm

s (x0)| = sm |x − x0| < smε < ε

shows that

δm
s (Uε(x0)) ⊆ Uε(δ

m
s (x0)). (5.50)

Using (5.49)–(5.50) we have the estimates

γ |x0 − δm
s (x)| = γ |x0 − δm

s (x0)− (δm
s (x)− δm

s (x0))|
≥ |x0 − δm

s (x0)| − γ |δm
s (x)− δm

s (x0)|
> ξm − γ ε ≥ ξ1 − γ ε > Nε − γ ε = (γ + 1)ε,

so that

|x0 − Dm
s (x)| >

γ + 1

γ
ε > ε.

This shows that δm
s (x) �∈ Uε(x0), for any x ∈ Uε(x0), m ∈ Z, m �= 0, so that (5.48)

holds. �
Let π : Hn \ {0} → Hn(s) be the natural map. Let

�2n = {x ∈ Hn : |x | = 1}.
Then �2n is a compact real hypersurface in Hn . The map Hn(s)→ �2n × S1 defined
by

π(x) !→
(

z

|x | ,
t

|x |2 , exp
(2π i log |x |

log s

))
is a diffeomorphism, x = (z, t) ∈ Hn \ {0}. Thus Hn(s) is compact. Since π is a local
diffeomorphism, Hn(s) inherits the structure of a CR manifold (of hypersurface type)
of CR dimension n. Let (U, z1, . . . , zn, t) be the natural local coordinate system on
Hn(s) , zα = xα + iyα . Let us set

θ = |x |−2
{

dt + 2
n∑
α=1

(
xαdyα − yαdxα

) }
(5.51)
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on U . The right-hand member of (5.51) is Gs-invariant and thus defines a global 1-
form on Hn(s). Let {θα} be dual to Tα , where Tα = ∂/∂zα + i zα∂/∂t on U . The Levi
form associated with (5.51) is given by

Lθ = |x |−2δαβθ
α ∧ θβ

on U . Thus Hs := T1,0(Hn(s)) is strictly pseudoconvex. Our Theorem 5.11 is com-
pletely proved. �
Let

γs := γ (Hn(s)) ∈ H1(Hn(s),P)

be the Lee class of Hn(s), a CR invariant of Hn(s), as previously shown. Let
{(Ui , zαi , t

α
i )}i∈I be an atlas on Hn(s) such that for any i, j ∈ I with Ui ∩ U j �= ∅ the

coordinate transformation reads

zαj = sm ji zαi , t j = s2m ji ti , (5.52)

for some m ji ∈ Z. Let us define

θi = dti + 2
n∑
α=1

(
xαi dyαi − yαi dxαi

)
on Ui , i ∈ I . Each (Ui , θi ) is a strictly pseudoconvex CR manifold with a vanishing
Ricci tensor (in particular θi is pseudo-Einsteinian). As a consequence of (5.52) one
has

θ j = exp(2m ji log s)θi

on Ui ∩U j . Let c = (2mi j log s) ∈ Z1(N (U),R) be the corresponding cocycle, where
N (U) is the nerve of U = {Ui }i∈I . If

i : C1(N (U),R)→ C1(N (U),P)

is the natural cochain map then γs is the image of [c] via

i∗ : H1(Hn(s),R)→ H1(Hn(s),P).

We are going to show that (5.51) is globally pseudo-Einsteinian, so that γs = 0.
Yet c �= 0 (since ker(i∗) �= 0). Indeed [c] corresponds (under the isomorphism
H1

d R(Hn(s)) � H1(Hn(s),R)) to the de Rham cohomology class [ω] of the 1-form
ω = d log |x |−1 (which is not exact).3 Also γs = 0 yields c1(Hs) = 0. We may show
that actually all Chern classes of Hs vanish (by constructing a flat connection D in
Hs). We do this in the following more general setting.

3 Note that d log |x |−1 is Gs -invariant, so that ω is globally defined.
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Let (M, T1,0(M)) be a nondegenerate CR manifold. Let u ∈ C∞(M) be a real-
valued smooth function on M . Let {Tα} be a frame in T1,0(M) defined on some open
set U ⊆ M . Let

θ̂ = e2uθ , θ̂α = θα + 2iuαθ,

T̂ = e−2u{T − 2iuβTβ + 2iuβTβ},
where

uα = hαβuβ, uβ = Tβ(u), uσ = uσ .

Note that with these choices, one has

T̂ �θ̂ = 1, T̂ �d θ̂ = 0, T̂ �θ̂ α = 0.

Then G
θ̂

= e2uGθ ; hence ĥαβ = e2uhαβ , where ĥαβ = l
θ̂
(Tα, Tβ).

Let (M, T1,0(M)) be a nondegenerate CR manifold admitting a real, closed (glob-
ally defined) 1-form ω. Let B = ω�, where � denotes raising of indices with respect to
gθ . Next, set B1,0 = π+B. Locally, if

ω = ωαθ
α + ωαθα + ω0θ,

where ωα = ωα , then

B1,0 = hαβωβTα.

By the Poincaré lemma, there exists an open covering {Ui }i∈I of M and a family
{ui }i∈I of R-valued functions ui ∈ C∞(Ui ) such that

ω
∣∣
Ui

= dui , i ∈ I.

Let us set θi = exp(2ui )θ |Ui
. By applying the identities

�̂σβα = �σβα + 2uβδ
σ
α + 2uαδ

σ
β ,

�̂σ
βα

= �σ
βα

− 2uσ hβα ,

e2u�̂σ
0̂α

= �σ0α + 2u0δ
σ
α − 4iuαuσ + 2iuα,

σ + 2i�σμαuμ − 2i�σμαuμ ,

(5.53)

to u = ui it follows that the Tanaka–Webster connections of the nondegenerate CR
manifolds (Ui , θi ), i ∈ I , glue up to a (globally defined) linear connection D expressed
by

DZ W = ∇Z W + 2{ω(Z)W + ω(W )Z},
DZ W = ∇Z W − 2Lθ (Z ,W )B1,0,

DT W = ∇T W + 2i∇W B1,0 + 4iω(W )B1,0 + 4i‖B1,0‖2W,

DZ Tω = 2ω(Z)Tω , DTωTω = 2ω(T )Tω ,

(5.54)
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for any Z ,W ∈ T1,0(M). Here ∇ is the Tanaka–Webster connection of (M, θ) and

Tω = T − 2i B1,0 + 2i B0,1.

Note that Tω is transversal to H(M) (so that the formulas (5.54) define D everywhere
on T (M)). In analogy with I. Vaisman [415], we make the following definition:

Definition 5.14. We call D the Weyl connection of (M, θ, ω). �

Theorem 5.12. Let 0 < s < 1 and n > 1. Then (i) all Chern classes of Hs vanish,
and (ii) the contact form (5.51) is pseudo-Einsteinian and has a nonvanishing pseudo-
Hermitian torsion.

Proof. Let M = Hn(s) with the C∞ atlas {Ui , zαi , ti }i∈I as above. Let ui ∈ C∞(Ui )

be defined by ui = log |xi |, xi = (zi , ti ). Then (by (5.52)) we have

u j − ui = m ji log s = const

on Ui ∩ U j . Consequently, the local 1-forms dui glue up to a real (closed) global
1-form ω on Hn(s). The Tanaka–Webster connections of the local pseudo-Hermitian
structures {θi }i∈I are flat, so that the Weyl connection D of (Hn(s), θ, ω) (with θ given
by (5.51)) is flat. Since D J = 0 the Weyl connection is reducible to a (flat) connection
in Hs . By the Chern–Weil theorem the characteristic ring of Hs must vanish. �

Let (M, T1,0(M), θ) be a nondegenerate CR manifold. Let us set θ̂ = e2uθ . As a
consequence of (5.53) one has

Âαβ = Aαβ + 2iuα,β − 4iuαuβ. (5.55)

At this point we may prove (ii) in Theorem 5.12. Indeed, we may apply (5.55) with
u = log |x |−1, Aαβ = 0, and ωαβ = 0. If Tα = ∂/∂zα + i zα∂/∂t then

uα = − 1
2 |x |−4zαφ,

Tα(uβ) = |x |−8φ2zαzβ,

where φ(z, t) = ‖z‖2 + i t . Finally, since φ is CR-holomorphic, (5.55) yields

Âαβ = 2iTα(uβ)− 4iuαuβ = i |x |−8zαzβφ
2,

so that (5.51) has nonvanishing pseudo-Hermitian torsion. �
Let (M, T1,0(M)) be a nondegenerate CR manifold of CR dimension n and θ̂ =

e2uθ . Then the pseudo-Hermitian Ricci tensors Rαβ, R̂αβ of θ, θ̂ are related by

R̂αβ = Rαβ − (n + 2)(uα,β + uβ,α)−
[
uρ,

ρ + uρ,
ρ + 4(n + 1)uρuρ

]
hαβ . (5.56)

If M = Hn(s) and θ is given by (5.51) then we may apply (5.56) with Rαβ = 0,

u = log |x |−1, hαβ = δαβ , and ωαβ = 0. Then
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uρ,
ρ = −n

2
|x |−4φ, uρuρ = 1

4 |x |−4‖z‖2, uα,β = − 1
2 |x |−4φδαβ ,

so that (5.56) yields

R̂αβ = (n + 1)|x |−2‖z‖2ĥαβ,

which means that (5.51) is pseudo-Einsteinian. Our Theorem 5.12 is completely
proved. �

A remark is in order. Let R∗ � {(0, t) : t ∈ R \ {0}} ⊂ Hn \ {0}. The pseudo-
Hermitian Ricci curvature of the contact form (5.51) vanishes on π(R∗), so that Propo-
sition 6.4 in [270], p. 175, does not apply. �

5.7.2 Regular strictly pseudoconvex CR manifolds

Let M be an m-dimensional differentiable manifold.

Definition 5.15. A local chart (U, ϕ) on M is cubical (of breadth 2a centered at x ∈
M) if ϕ(x) = (0, . . . , 0) and ϕ(U ) = {(t1, . . . , tm) ∈ Rm : |t j | < a,
1 ≤ j ≤ m}. �

Definition 5.16. Let (U, ϕ), ϕ = (x1, . . . , xm), be a cubical local chart on M . Let
1 ≤ p ≤ m and t = (t p+1, . . . , tm) ∈ Rm−p such that |t p+ j | < a, 1 ≤ j ≤ m − p.
The p-dimensional slice �t of (U, ϕ) is given by

�t = {y ∈ U : x p+ j (y) = t p+ j , 1 ≤ j ≤ m − p}. �

Let (M, T1,0(M), θ, T ) be a nondegenerate CR manifold of CR dimension n.

Definition 5.17. T is regular if M admits a C∞ atlas {(U, xi )} such that the in-
tersection of U with any maximal integral curve of T is a 1-dimensional slice of
(U, xi ). �

Let 〈T 〉 be the distribution spanned by T , i.e., 〈T 〉x = RTx , x ∈ M .

Theorem 5.13. (Theorem VIII and Theorem X in [336], pp. 19–20)
If T is regular then the quotient space4 M/〈T 〉 admits a natural manifold structure
with respect to which the canonical projection π : M → M/〈T 〉 is differentiable.

Theorem 5.14. Let (M, T1,0(M)) be a compact strictly pseudoconvex CR manifold.
If M admits a contact form whose contact vector is regular then M admits a global
pseudo-Einstein structure.

To prove Theorem 5.14 we need to recall the essentials of the Boothby–Wang theorem
(cf. [75]). Since T is regular, its maximal integral curves are closed subsets of M (cf.
Theorem VII [336], p. 18). But M is compact, so that each maximal integral curve is
homeomorphic to S1. Let λ be the period of T , i.e.,

4 That is, the space of all maximal integral curves of T .
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λ(x) = inf{t > 0 : ϕt (x) = x}, x ∈ M,

where {ϕt }t∈R is the (global) 1-parameter group generated by T . We may assume that
λ = 1 (otherwise, since λ = const > 0 (by an argument in [400]) we may replace T by
(1/λ)T ). Then, by the Boothby–Wang theorem, T generates a free and effective action
of S1 on M . Next M becomes the total space of a principal S1-bundle π : M → B,
where B = M/〈T 〉. The projection map of any principal bundle is in particular a
submersion (and we may apply the results in [334]). Let gθ be the Webster metric. Let
d/dt be the generator of Lie algebra L(S1) � R. Then θ ⊗ (d/dt) is a connection
1-form in S1 → M −→ B. Let us set

hθ (X, Y )u = gθ (X
H , Y H )x ,

where x ∈ π−1(u), u ∈ B, and X, Y ∈ Tu(B). Here X H denotes the horizontal lift
of X with respect to θ ⊗ (d/dt). The definition of hθ (X, Y )u does not depend on the
choice of x in π−1(u). It follows that π : M → B is a Riemannian submersion from
(M, gθ ) onto (B, hθ ). Let P, Q be the fundamental tensors of π (cf. [334], p. 460),
that is,

PX Y = h∇̃vXvY + v∇̃vX hY, (5.57)

Q X Y = h∇̃h X hY + v∇̃h XvY, (5.58)

for any X, Y ∈ T (M). Here ∇̃ denotes the Levi-Civita connection of (M, gθ ). More-
over, h = πH and vX = θ(X)T are the canonical projections associated with T (M) =
H(M)⊕ RT . Let us substitute from

∇̃ = ∇ − (dθ + A)⊗ T + τ ⊗ θ + θ $ J (5.59)

into (5.58). Since J T = 0, τT = 0, ∇T = 0 and H(M) is parallel with respect to ∇,
our (5.58) becomes

Q X Y = −{(dθ)(X, Y )+ A(X, Y )}T,
Q X T = τ(X)+ J X,

QT X = 0, QT T = 0,

(5.60)

for any X, Y ∈ H(M). Since τ is self-adjoint, by a result in [334], p. 460, Q is skew-
symmetric on horizontal vectors. Clearly the Levi distribution H(M) coincides with
the horizontal distribution of the Riemannian submersion π : M → B. Then the first
of the formulas (5.60) yields A = 0 and thus there is u ∈ C∞(M) such that exp(2u)θ
is globally pseudo-Einsteinian. The proof of Theorem 5.14 is complete. �
A couple of remarks are in order.

(i) Let us substitute from (5.59) into (5.57). This procedure leads to P = 0. Con-
sequently the fibers of the submersion π : M → B are totally geodesic in (M, gθ ).

(ii) By a result of G. Gigante [175], p. 151, and by the proof of Theorem 5.14, any
compact strictly pseudoconvex symmetric (in the sense of [175], p. 150) CR manifold
is a Sasakian manifold.
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5.7.3 The Bockstein sequence

Let (M, T1,0(M)) be a nondegenerate CR manifold, and θ a contact form. Let EC R be
the sheaf of (local) CR-holomorphic functions on M .

Proposition 5.11. There is a short exact sequence

0 → R
j−→ EC R

η−→ P → 0, (5.61)

where

jU : R → EC R(U ), jU (c) = ic,

and

ηU : EC R(U )→ P(U ), ηU ( f ) = Re( f ),

for any c ∈ R and f ∈ EC R(U ).

Indeed, let σx ∈ Ker(ηx ), x ∈ M . That is, there are an open set U ⊂ M, x ∈ U , and
a real-valued function v ∈ C∞(U ) such that [iv]x = σx and ∂bv = 0. Then ∂bv = 0
(by complex conjugation) and dv = T (v)θ . Exterior differentiation gives

0 = (dT (v)) ∧ θ + T (v)dθ = (dT (v)) ∧ θ + 2iT (v)hαβθ
α ∧ θβ.

Let us apply this to the pair (Tα, Tβ) to yield 0 = iT (v)hαβ , which (by contraction

with hαβ ) gives T (v) = 0, i.e., there is an open set V ⊂ U , x ∈ V , and a constant
c ∈ R such that v = c on V . Thus σx = [ic]x = jx (c). �

Consider the Bockstein exact sequence

· · · → H1(M,R)→ H1(M, EC R)
η∗−→ H1(M,P) b−→ H2(M,R)→ · · ·

associated with (5.61). If M is compact and strictly pseudoconvex one may try to
show that (i) b(γ (M)) = c1(T1,0(M)) and (ii) Im(η∗) = 0 (by the results in the
previous sections, this would imply the Lee conjecture). The example Hn(s) kills a
hope to solve the Lee conjecture along the lines indicated above. Indeed, the map
r : Hn \ {0} → �2n defined by

r(x) = δ|x |−1(x), x ∈ Hn \ {0},
is a deformation retract. Thus, by Hn(s) � �2n × S1 and the Küneth formula, it
follows that

H2(Hn(s),R) = H2(�2n,R) = H2(Hn \ {0},R) = H2(S2n,R) = 0,

and the Bockstein sequence yields

Im(η∗) = H1(Hn(s),P).
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5.7.4 The tangent sphere bundle

Let M be a Riemannian manifold and U (M) its tangent sphere bundle. The natural
almost complex structure J̃ of T (M) induces an almost CR structure H on U (M) (as
a real hypersurface of T (M)). Although J̃ is rarely integrable (in fact, only when M
is locally Euclidean; cf. P. Dombrowski [116]) H may turn out to be a CR structure.
For instance, if M is a space form then H is integrable.

Theorem 5.15. (E. Barletta et al. [37])
Let M be an n-dimensional Riemannian manifold and H the natural almost CR struc-
ture of U (M). The following statements are equivalent:

(i) (U (M),H) is a strictly pseudoconvex CR manifold (of CR dimension n−1) whose
Tanaka–Webster connection has a vanishing pseudo-Hermitian torsion.

(ii) M is an elliptic space form Mn(c) of sectional curvature c = 1.

The natural pseudo-Hermitian structure of U (Mn(1)) is globally pseudo-Einsteinian.
In particular U (Mn(1)) has positive pseudo-Hermitian scalar curvature and the first
Chern class of its CR structure H vanishes.

As a corollary, the first statement in Theorem 5.15 yields a short proof of a result by
Y. Tashiro [402] (the contact vector of U (M) is Killing if and only if M = Mn(1)).
The proof of the second statement in Theorem 5.15 relies on a result by E.T. Davies
and K. Yano [113].

We need a brief preparation on the geometry of the tangent bundle over a Rieman-
nian manifold. Let (M,G) be an n-dimensional Riemannian manifold. Let D be the
Levi-Civita connection of (M,G).

Definition 5.18. (W. Barthel [48]) A C∞ distribution on T (M),

N : v ∈ T (M) !→ Nv ⊂ Tv(T (M)),

is called a nonlinear connection on M if

Tv(T (M)) = Nv ⊕ [Ker(dv!)] , (5.62)

for any v ∈ T (M). Here ! : T (M)→ M is the natural projection. �
D gives rise to a nonlinear connection N on T (M). Precisely, let (U, xi ) be a local
coordinate system on M and (!−1(U ), xi , yi ) the naturally induced local coordinates
on T (M). Let �i

jk(x) be the coefficients of D (with respect to (U, xi )) and let us set

δ

δxi
= ∂

∂xi
− N j

i
∂

∂y j
,

where

N i
j (x, y) = �i

jk(x)y
k .

Then {δ/δxi : 1 ≤ i ≤ n} is a local frame of N (on !−1(U )).
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Definition 5.19. For each v ∈ T (M) let βv : Tx (M) → Nv be the horizontal lift, i.e.,
the inverse of dv! : Nv → Tx (M), where x = !(v). �
Locally, one has

β
∂

∂xi
= δ

δxi
.

Definition 5.20. The vertical lift γv : Tx (M)→ Ker(dv!) is given by

γv(w) = dC

dt
(0) ,

for any w ∈ Tx (M). Here C : (−ε, ε) → Tx (M) is the curve given by C(t) =
v + tw, |t | < ε. �
Locally

γ
∂

∂xi
= ∂

∂yi
,

so that γ is a bundle isomorphism. Let Qv : Tv(T (M)) → Ker(dv!) be the natural
projection (associated with (5.62)).

Definition 5.21. (P. Dombrowski [116])
The Dombrowski map Kv : Tv(T (M))→ Tx (M) is given by K = γ−1 ◦ Q. �
Locally

K
δ

δxi
= 0, K

∂

∂yi
= ∂

∂xi
.

Next, we shall need the following definition:

Definition 5.22. The Sasaki metric g̃ on T (M) is given by

g̃(V,W ) = G(K V, K W )+ G(!∗V,!∗W )

for any V,W ∈ T (T (M)). �
This is a Riemannian metric on T (M) and the distributions N and Ker(!∗) are or-
thogonal (with respect to g̃).

Let us set U (M)x = {v ∈ Tx (M) : Gx (v, v) = 1}. The disjoint union U (M)
of U (M)x for all x ∈ M is a real hypersurface of T (M) and the total space of an
Sn−1-bundle π : U (M)→ M . The portion of U (M) over U is given by the equation

gi j (x)y
i y j = 1, (5.63)

where the gi j are the components of G with respect to (U, xi ). Note that

Nv ⊂ Tv(U (M)),

Ker(dvπ) = Tv(U (M)) ∩ Ker(dv!),

for any v ∈ U (M).
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Definition 5.23. Let J̃ be the natural almost complex structure of T (M) given by
J̃ ◦ β = γ and J̃ ◦ γ = −β. �

Locally

J̃
δ

δxi
= ∂

∂yi
, J̃

∂

∂yi
= − δ

δxi
.

Let us set

T1,0(U (M))v = T 1,0(T (M))v ∩ [Tv(U (M))⊗R C],

where T 1,0(T (M)) ⊂ T (T (M)) ⊗ C is the eigenbundle of J̃ corresponding to the
eigenvalue i .

Proposition 5.12. H = T1,0(U (M)) is an almost CR structure on U (M), i.e., H∩H =
(0).

By a result of P. Dombrowski [116], if D is flat then (T (M), J̃ ) is a complex manifold.

Corollary 5.3. If (M,G) is locally Euclidean then H is integrable.

For instance U (Rn) is a CR manifold (of CR dimension n−1). In general, H is only an
almost CR structure, and the problem of studying the corresponding Cauchy–Riemann
pseudocomplex is open.

Let P = β ◦ K . Then Pv : Ker(dv!) → Nv is a linear isomorphism. We shall
need the following lemma:

Lemma 5.7. The maximal complex distribution H(U (M)) of the almost CR manifold
(U (M),H) is given by

H(U (M))v = Ker(dvπ)⊕ [Pv Ker(dvπ)]

for any v ∈ U (M).

Proof. Let E(ι)→ U (M) be the normal bundle of the immersion ι : U (M) ↪→ T (M).
Let us set ν = yi∂/∂yi . Then ν is a (globally defined) unit normal (νv ∈ E(ι)v) on
U (M). Let us set ξ ′ = − J̃ν. Then ξ ′ is tangent to U (M). Locally, we have ξ ′ =
yiδ/δxi . Let η′ be the real 1-form on U (M) given by

η′(V ) = g′(V, ξ ′),

for any V ∈ T (T (M)), where g′ = ι∗g̃ is the metric induced on U (M) by the Sasaki
metric g̃ of T (M). Note that H(U (M)) = Ker(η′). Also Ker(π∗) ⊂ Ker(η′). Let us set
yi = gi j y j . Then η′(δ/δxi ) = yi . At this point Lemma 5.7 follows from the fact that
a vertical tangent vector X = Bi∂/∂yi is tangent to U (M) if and only if gi j Bi y j = 0
(by taking into account (5.63)). �
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Let us set Ũ = {ym �= 0} ⊂ π−1(U ). The portion of Ker(π∗) over Ũ is the span
of {Yα : 1 ≤ α ≤ n − 1}, where

Yα = ∂

∂yα
− Aα

∂

∂yn
, Aα = yα

yn
.

Let us set ϕV = tan{ J̃ V } for any V ∈ T (U (M)). Here tanv : Tv(T (M)) →
Tv(U (M)) is the natural projection associated with the decomposition

Tv(T (M)) = tv(U (M))⊕ E(ι)v ,

for any v ∈ U (M). The restriction J of ϕ to H(U (M)) and the complex structure
JU (M) of H(U (M)) actually coincide. Note that J Xα = Yα , where

Xα = δ

δxα
− Aα

δ

δxn
.

Thus (by Lemma 5.7) H = T1,0(U (M)) is (locally) the span of {Tα}, where Tα =
Xα − iYα . Let Ri

jk� be the components of the curvature tensor field R of D (with

respect to (U, xi )). Let us set

Ri
k� = Ri

jk�y j .

Note that [ δ
δxi
,
δ

δx j

]
= −Rk

i j
∂

∂yk
(5.64)

(so that the Pfaffian system dyi + N i
j (x, y)dx j = 0 is integrable if and only if Rk

i j =
0). We shall prove the following lemma:

Lemma 5.8. The almost CR structure H on U (M) is integrable if and only if

Ri
αβ + AαRi

βn + Aβ Ri
nα = 0 (5.65)

on Ũ , for any local coordinate neighborhood (U, xi ) on M.

Proof. The generators Xα, Yα satisfy the commutation formulas

[Xα, Xβ ] = {Xβ(Aα)− Xα(Aβ)} δ
δxn

− {Ri
αβ + AαRi

βn + Aβ Ri
nα}

∂

∂yi
,

[Yα, Yβ ] = {Yβ(Aα)− Yα(Aβ)} ∂
∂yn

,

[Xα, Yβ ] = Yβ(Aα)
δ

δxn
− Xα(Aβ)

∂

∂yn
+ {Yβ(N i

α)− AαYβ(N
i
n)}

∂

∂yi
.

These follow from (5.64) together with the identities[ δ
δxi
,
∂

∂y j

]
= �k

i j
∂

∂yk
,
[ ∂
∂yi
,
∂

∂y j

]
= 0.
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A straightforward calculation shows that

Xα(Aβ) = Xβ(Aα), Yα(Aβ) = Yβ(Aα),

Yα(N
i
β)− AβYα(N

i
n) = Yβ(N

i
α)− AαYβ(N

i
n),

so that

[Tα, Tβ ] = −{Ri
αβ + AαRi

βn + Aβ Ri
nα}

∂

∂yi
. (5.66)

Finally, from (5.66) and from

Tα = δ

δxα
− i

∂

∂yα
− Aα

( δ

δxn
− i

∂

∂yn

)
we see that [Tα, Tβ ] ∈ H if and only if (5.65) holds on Ũ . �

Let X be a real (2m + 1)-dimensional manifold. Let (ϕ, ξ, η) be an almost contact
structure on X . The restriction of ϕ to Ker(η) is a complex structure. Let us extend ϕ to
Ker(η)⊗C and let us set T1,0(X) = Eigen(i). Then T1,0(X) is an almost CR structure
(of CR dimension m) on X . If (ϕ, ξ, η) is normal (in the sense of [62], p. 48) then
(by a result of [214]) T1,0(X) is integrable. Going back to X = U (M), set ξ = 2ξ ′
and η = (1/2)η′. Then (ϕ, ξ, η) is an almost contact structure on U (M). Next, set
g = (1/4)g′. Then (ϕ, ξ, η, g) is a contact metric structure on U (M) (in the sense of
[62], p. 25). By a result of Y. Tashiro [402], if M = Mn(1) (i.e., (M,G) has constant
sectional curvature 1) then (ϕ, ξ, η, g) is a Sasakian structure on U (M). In particular
it is normal, so that by applying the theorem of S. Ianus quoted above, we have proved
the following:

Proposition 5.13. (Y. Tashiro [402])
U (Mn(1)) is a CR manifold.

Our Lemma 5.8 may be used to indicate examples of Riemannian manifolds M other
than those covered by Y. Tashiro’s theorem, for which U (M) is CR.

Definition 5.24. ([420]) (M,G) is a Riemannian manifold of quasi-constant curva-
ture if its curvature tensor field is given by

R�i jk = c{δ�j gki − δ�k g ji } + b{(δ�jvk − δ�kv j )vi + (v j gki − vk g ji )v
�}, (5.67)

for some real-valued functions b, c ∈ C∞(M) and some unit tangent vector field
V = vi∂/∂xi on M . �
If M is a Riemannian manifold of quasi-constant curvature we write M = Mn

c,b(V ).

Proposition 5.14. (E. Barletta et al. [37]) Let M be an n-dimensional Riemannian
manifold. Then

R�jk yi + R�ki y j + R�i j yk = 0 (5.68)

on U (M) is a sufficient condition for the integrability of the natural almost CR struc-
ture H of U (M). If M = Mn

c,b(V ) then (5.68) holds if and only if either n = 2 or
n ≥ 3 and b = 0. In particular U (Mn(c)) is CR for any space form Mn(c).
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Proof. Clearly (5.68) yields (5.65), so that the first statement follows from Lemma 5.8.
Next (by taking into account (5.67))

R�jk yi + R�ki y j + R�i j yk = b f T �j ik,

where

T �j ik = δ�j yivk − δ�i y jvk + δ�i ykv j − δ�j ykvi + δ�k y jvi − δ�k yiv j

and f : U (M)→ R is f = vi yi . Note that

T �j ik + T �i jk = T �j ik + T �jki = T �j ik + T �ki j = 0.

Clearly n = 2 or b = 0 yields (5.68). �
Conversely, assume that (5.68) holds. Then

b f T j
jikv

i = 0,

or

(n − 2)b f ( f vk − yk) = 0.

If n ≥ 3 then b = 0. Indeed, if b(x) �= 0 for some x ∈ M then one may choose
u ∈ U (M)x such that {u, Vx } span a 2-plane and Gx (u, Vx ) �= 0. Then f (u) �= 0 and
f (u)vi (x)− ui �= 0, a contradiction. �

Let us consider a C∞ manifold X carrying the contact metric structure (ϕ, ξ, η, g).
Let us set T = −ξ and θ = −η. By the contact condition (dη = � where�(V,W ) =
g(V, ϕW )) one has T �dθ = 0. Assume T1,0(X) = Eigen(i) to be a CR structure on X .
Again by the contact condition gθ = g, so that (X, T1,0(X)) is a strictly pseudoconvex
CR manifold. Let ∇ and ∇θ be respectively the Tanaka–Webster connection and the
Levi-Civita connection of (X, g). Then ∇T = 0; hence

∇θ ξ = −ϕ − τ. (5.69)

In particular, the almost contact metric structure (ϕ, ξ, η, g) of X = U (M) satisfies
the contact condition (cf. [62], p. 133), so that the considerations above may be applied
to compute the pseudo-Hermitian torsion τ of (U (M), η). Precisely, we establish the
following:

Lemma 5.9. Assume H = T1,0(U (M)) to be a CR structure. Then

τ
δ

δxi
= Hk

i (δ
�
k − yk y�)

∂

∂y�
, (5.70)

τ
∂

∂yi
= Hk

i
δ

δxk
, (5.71)

where

Hk
i = Rk

i j y j + yi yk − δk
i .
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Proof. Let us use

τ = − 1
2 JX ◦ (LT JX )

for X = U (M). Then (5.70)–(5.71) may be gotten from the following identities:[
ξ,

δ

δx j

]
= 2

{
N i

j
δ

δxi
− yi Rk

i j
∂

∂yk

}
,[

ξ,
∂

∂y j

]
= 2

{
− δ

δx j
+ N k

j
∂

∂yk

}
,

[ξ, ν] = −ξ,
ξ(y j ) = 2yi yk | jk, i |,

tan

(
∂

∂yi

)
= (δk

i − yi yk)
∂

∂yk
,

where ξ = 2yiδ/δxi and ν = yi∂/∂yi .

At this point we may prove Theorem 5.15. Assume (ii) holds. Then (5.68) holds
on U (M), so that U (M) is a CR manifold. On the other hand, M = Mn(1) yields

Rk
i j y j = δk

i − yi yk, (5.72)

so that (by Lemma 5.9) τ = 0. Conversely, assume (i) holds. Then Lemma 5.9 yields
(5.72). Let x ∈ M and X, v ∈ Tx (M) be two unit tangent vectors such that Gx (X, v) =
0. Let us set X = Xi∂/∂xi . Let us apply (5.72) at v and contract with Xi in the
resulting identity. This procedure leads to

Rk
�i j (x)X

iv jv� = Xk

(since Xivi = 0), or

Rx (X, v)v = X,

which (by taking the inner product with X ) yields constant sectional curvature 1. �
Let us show that Y. Tashiro’s theorem ([402]) follows from the first statement of

our Theorem 5.15. Indeed, if M = Mn(1) then (with the arguments above) it makes
sense to consider the Tanaka–Webster connection, and τ = 0 yields normality by a
result in [120]. Thus U (M) is Sasakian (and any Sasakian structure is in particular K -
contact). Conversely, if the contact structure (ϕ, ξ, η, g) of U (M) is K -contact then
∇θ ξ = −ϕ (by (8) in [62], p. 64), which together with (5.69) yields τ = 0 and
Theorem 5.15 applies. �

When Mn(1) is compact U (Mn(1)) is a compact strictly pseudoconvex CR man-
ifold; hence (by a result of L. Boutet de Monvel [77]) U (Mn(1)) is locally embed-
dable (as a real hypersurface in Cn). It is natural to ask whether U (Mn(1)) is globally
pseudo-Einsteinian.
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Let K̃ be the Ricci tensor field of the Sasaki metric g̃ on T (M). By a result of E.T.
Davies and K. Yano [113], one has

K̃

(
δ

δx j
,
δ

δxk

)
= R jk + 1

4 ym
{

Rr
ji Ri

krm + Rr
ki Ri

jrm

}
, (5.73)

K̃

(
∂

∂y j
,
δ

δxk

)
= 1

2 y�
{
∇i Ri

k�j + Ri
k�j

∂

∂xi
(log

√
�)

}
, (5.74)

K̃

(
∂

∂y j
,
∂

∂yk

)
= 1

4 R�irk Ri
�js yr ys , (5.75)

where R jk denotes the Ricci curvature of (M,G) and � = det[gi j ]. We need the
Gauss equation (cf. [241], vol. II, p. 23) of U (M) in (T (M), g̃):

R̃(X, Y, Z ,W )

= R(X, Y, Z ,W )+ g′(X, aν Z)g′(Y, aνW )− g′(X, aνW )g′(Y, aν Z), (5.76)

for any X, Y, Z ,W ∈ T (U (M)). Here aν is the shape operator of ι. Taking traces in
(5.76) leads to

K θ (X, Y ) = K̃ (X, Y )+ g′(aνX, aνY )− g′(X, aνY )‖μ‖ − R̃(X, ν, Y, ν), (5.77)

where K θ is the Ricci curvature of ((M), g′) and μ is the mean curvature vector of ι.
At this point, a calculation based on the identities (2) in [62], p. 130, shows that

R̃(X, ν, Y, ν) = 0,

for any X, Y ∈ T (U (M)). Next, by taking into account

aν
δ

δxi
= 0, aνX = −X,

for any X ∈ Ker(π∗); cf. [62], p. 132, we obtain

K θ

(
δ

δxi
,
δ

δx j

)
= K̃

(
δ

δxi
,
δ

δx j

)
,

K θ (X, Y ) = K̃ (X, Y )+ (1 + ‖μ‖)g′(X, Y ),

K θ

(
X,

δ

δx j

)
= K̃

(
X,

δ

δx j

)
,

(5.78)

for any X, Y ∈ Ker(π∗). Note that g(Xα, Xβ) = 2hαβ , where hαβ is the Levi form of
(U (M), θ). If M = Rn then (5.73)–(5.75) and (5.78) lead to

K θ

αβ
= 2(1 + ‖μ‖)hαβ,

where K θ

αβ
= K θ (Tα, Tβ). By a result in Chapter 1 of this book

K θ

αβ
= Kαβ − 1

2 hαβ,

where Kαβ is the (pseudo-Hermitian) Ricci tensor (of (U (M), θ)).
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Corollary 5.4. U (Rn) is globally pseudo-Einsteinian.

Similarly, if M = Mn(1) then (5.73)–(5.75) may be written as

K̃

(
δ

δx j
,
δ

δxk

)
= 2n − 3

2
g jk − n − 2

2
y j yk,

K̃

(
∂

∂y j
,
∂

∂yk

)
= 1

2 (g jk − y j yk),

K̃

(
∂

∂y j
,
δ

δxk

)
= 1

2 (y
i g jk − δi

j )
∂

∂xi
(log

√
�)

on U (Mn(1)), which together with (5.78) furnish

K θ

αβ
= 2(n + ‖μ‖)hαβ.

Thus

ρ = 2n(n + ‖μ‖)+ n

2
> 0. �

Let c1(H) ∈ H2(U (Mn(1)),R) be the first Chern class of H. Since U (Mn(1)) is
pseudo-Einsteinian, we may conclude that c1(H) = 0. �

5.8 Pseudo-Hermitian holonomy

Let (M, T1,0(M)) be a strictly pseudoconvex CR manifold, of CR dimension n. Let
θ be a contact form on M such that the Levi form Lθ is positive definite. Let T be
the characteristic direction of (M, θ). Let GL(2n + 1,R) → L(M) −→ M be the
principal bundle of all linear frames tangent to M . For each x ∈ M , let B(θ)x consist
of all R-linear isomorphisms u : R2n+1 → Tx (M) such that

u(e0) = Tx , u(eα) ∈ H(M)x , u(eα+n) = Jx u(eα),

gθ,x (u(eα), u(eβ)) = δαβ, gθ,x (u(eα), u(eβ+n)) = 0,

where J is the complex structure in H(M) and gθ is the Webster metric of (M, θ).
Also {e0, eα, eα+n} ⊂ R2n+1 is the canonical linear basis.

Proposition 5.15. B(θ)→ M is a U(n)×1-structure on M, i.e., a principal U(n)×1-
subbundle of L(M).
On a strictly pseudoconvex CR manifold, there are two natural families of holonomy
groups one may consider: the holonomy of the Levi-Civita connection of (M, g) and
the holonomy of the Tanaka–Webster connection. The Tanaka–Webster connection ∇
of (M, θ) gives rise to a connection � in B(θ). Let �0(u) be the restricted holonomy
group of �, with reference point u ∈ B(θ).

Definition 5.25. We call �0(u) the pseudo-Hermitian holonomy group of (M, θ)
at u. �
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A systematic study of the (pseudo-Hermitian) holonomy of a CR manifold is still miss-
ing in the present-day mathematical literature. In this section we establish a pseudo-
Hermitian analogue of a result by H. Iwamoto [218].

Theorem 5.16. (D.E. Blair et al. [68])
Let M be a real (2n + 1)-dimensional Sasakian manifold, with the structure ten-
sors (ϕ, ξ, η, g). The pseudo-Hermitian holonomy groups of (M, η) are contained
in SU(n) × 1 if and only if the Tanaka–Webster connection of (M, η) is Ricci flat
(Ric = 0).

Proof. M is thought of as a strictly pseudoconvex CR manifold carrying a contact
form with vanishing Webster torsion (τ = 0) and g is its Webster metric. For any
u ∈ B(θ), �0(u) ⊂ U(n) × 1. Let � be the curvature 2-form of �. By Lemma 1 in
[241], Vol. II, p. 151, given an ideal h of L(U(n) × 1), the Lie algebra of U(n) × 1,
one has the following:

Proposition 5.16. L(�0(u)) ⊂ h if and only if � is h-valued.

Throughout, L(G) is the Lie algebra of the Lie group G. Let Ei
j ∈ gl(2n + 1,R)

be the matrix with 1 in the j th row and i th column and 0 at all other entries. Then
� = �i

j ⊗ E j
i . A basis of L(U(n)× 1) is{

Eβ+1
α+1 − Eα+1

β+1 + Eβ+n+1
α+n+1 − Eα+n+1

β+n+1, Eβ+1
α+n+1 − Eα+n+1

β+1 + Eα+1
β+n+1 − Eβ+n+1

α+1

};
hence

�i
1 = 0, �1

j = 0,

�α+1
β+1 = �α+n+1

β+n+1 = �αβ −�βα,
�α+n+1
β+1 = −�α+1

β+n+1 =  αβ + βα ,
for some scalar 2-forms�αβ,  

α
β on B(θ). Since SU(n) = O(n)∩ SL(n,C) it follows

that � is L(SU(n) × 1)-valued if and only if  αα = 0. On the other hand, using the
identity

2u
(
�(X�, Y�)u u−1(Zx )

)
= (R(X, Y )Z)x , u ∈ B(θ)x , (5.79)

we may compute the forms  αα in terms of RA
B

C D . Here X, Y, Z are vector fields
on M and X� is the �-horizontal lift of X . Let x ∈ M and let {Xα, J Xα, T } be a
cross-section in B(θ), defined on some open neighborhood U of x . Let us set ξα =

1√
2
(Xα − i J Xα) (hence gαβ = δαβ ). Let u = (x, {Xα,x , ϕx Xα,x , Tx }) and note that

u−1(ξγ,x ) = 1√
2
(eγ − i eγ+n). Then (5.79) leads to(

R(X, Y )ξγ
)

x = 2{�αγ −�γα + i( αγ + γα )}(X�, Y�)uξα,x ,

because of Ei
j ek = δi

ke j . Take the inner product with ξα and contract α and γ in the
resulting identity. We obtain
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4i  αα (X
�, X�)u =

n∑
α=1

g(R(X, Y )ξα, ξα)x . (5.80)

The curvature form � is horizontal; hence L(U(n) × 1)∗ �ψαα = 0, where A∗ is the
fundamental vertical vector field associated with the left-invariant vector field A. Also

4i  αα (ξ
�
λ , ξ

�
μ )u =

∑
α

Rα
σ
λμgσα = Rα

α
λμ = 0.

Similarly

4i  αα (T
�, ξ�λ ) = Rα

α
0λ =

∑
α

Sλαα = 0.

Finally (again by (5.80))

Rλμ(x) = 4i αα (ξ
�
λ , ξ

�
μ )u . (5.81)

Since  αα is a real form, (5.81) shows that  αα = 0 if and only if Rλμ = 0. Yet when
τ = 0 the only nonzero components of Ric are Rλμ (cf. also Lemma 5.10). �

Note that the hypothesis τ = 0 was not fully used in the proof of Theorem 5.16
(only S = 0 was actually needed). Therefore, we have obtained the following result:

Theorem 5.17. Let M be a strictly pseudoconvex CR manifold, of CR dimension n,
and θ a contact form with parallel Webster torsion (∇τ = 0). Then the Tanaka–
Webster connection ∇ of (M, θ) has pseudo-Hermitian holonomy contained in
SU(n) × 1 if and only if the pseudo-Hermitian Ricci tensor of (M, θ) vanishes
(Rαβ = 0).

5.9 Quaternionic Sasakian manifolds

The closest odd-dimensional analogue of Kählerian manifolds seems to be Sasaki-
an manifolds. On the other hand, real 4m-dimensional Riemannian manifolds whose
holonomy group is contained in Sp(m) (the so-called hyperkählerian manifolds) or in
Sp(m)Sp(1) (the quaternionic-Kähler manifolds) are quaternion analogues, and by a
well-known result of M. Berger [58], any hyperkählerian manifold is Ricci flat, while
any quaternion-Kähler manifold is Einstein, (provided that m ≥ 2). Cf. also S. Ishihara
[216].

It is then a natural question whether a Sasakian counterpart of quaternionic-Kähler
manifolds may be devised, with the expectation of producing new examples of pseudo-
Einsteinian contact forms.

Evidence on the existence of such a notion may be obtained as follows. Recall (cf.,
e.g., [60], p. 403) the following proposition:

Proposition 5.17. A Riemannian manifold (M4m, g) is a quaternionic-Kähler mani-
fold if and only if there is a covering of M4m by open sets Ui and for each i , two
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almost complex structures F and G on Ui such that (a) g is Hermitian with respect
to F and G on Ui , (b) FG = −G F, (c) the covariant derivatives (with respect to
the Levi-Civita connection of (M4m, g)) of F and G are linear combinations of F, G
and H := FG, and (d) for any x ∈ Ui ∩ U j the linear space of endomorphisms of
Tx (M4m) spanned by F, G, and H is the same for both i and j .

In an attempt to unify the treatment of quaternionic submanifolds, and of totally real
submanifolds of a quaternionic-Kähler manifold (cf. S. Funbashi [161], S. Marchi-
afava [293], A. Martinez [294], A. Martinez, J.D. Pérez, and F.G. Santos [295], G. Pitis
[348], Y. Shibuya [371]) M. Barros, B.-Y. Chen, and F. Urbano introduced (cf. [47])
the notion of quaternionic CR submanifold of a quaternionic-Kähler manifold, as fol-
lows.

Definition 5.26. Let N be a real submanifold of a quaternionic-Kähler manifold M4m .
A C∞ distribution H(N ) on N is a quaternionic distribution if for any x ∈ N and any
i such that x ∈ Ui ⊆ M4m one has F(H(N )x ) ⊆ H(N )x , G(H(N )x ) ⊆ H(N )x
[and then, of course, Hx (H(N )x ) ⊆ H(N )x ]. A submanifold N of a quaternionic-
Kähler manifold is a quaternionic CR submanifold if it is endowed with a quater-
nionic distribution H(N ) such that its orthogonal complement H(N )⊥ in T (N ) sat-
isfies F(H(N )⊥x ) ⊆ T (N )⊥x , G(H(N )⊥x ) ⊆ T (N )⊥x and H(H(N )⊥x ) ⊆ T (N )⊥x , for
any x ∈ Ui and any i . �

Here T (N )⊥ → N is the normal bundle (of the given immersion of N in M4m). Let
us also recall (cf., e.g., [60], p. 398) the following result:

Proposition 5.18. A Riemannian manifold (M4m, g) is hyperkählerian if and only if
there exist on M4m two complex structures F and G compatible with g and such
that (a) F and G are parallel, i.e., g is a Kählerian metric for both F and G, and
(b) FG = −G F.

Given a quaternionic CR submanifold (N , H(N )) of a hyperkählerian manifold
(M4m, g, F,G), by a theorem of D.E. Blair and B-Y. Chen [64], the complex struc-
tures F and G induce two CR structures on N (provided N is proper, i.e., H(N ) �= 0
and H(N )⊥ �= 0) such that H(N ) is the Levi distribution for both. Taking this situa-
tion as a model one may produce the following notion of abstract (i.e., not embedded)
hyper CR manifold.

Definition 5.27. Let (M, T1,0(M)) be a CR manifold of type (n, k) where n = 2m
(hence dimR M = 4m + k) and k ≥ 1. Let H(M) be its Levi distribution and

F : H(M)→ H(M), F(Z + Z) = i(Z − Z), Z ∈ T1,0(M),

its complex structure. We say that (M, T1,0(M)) is a hyper CR manifold if it possesses
two additional CR structures, say T1,0(M)′ and T1,0(M)′′, with the same Levi distribu-
tion H(M), such that the corresponding complex structures G, H : H(M) → H(M)
satisfy
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F2 = G2 = H2 = −I,

FG = −G F = H, (5.82)

G H = −H G = F,

H F = −F H = G. �

Definition 5.28. A quaternionic CR manifold is by definition a real (4m + k)-dimen-
sional manifold M , k ≥ 1, endowed with a real rank-4m subbundle H(M) ⊂ T (M)
and a real rank-3 subbundle E → M of H(M)∗ ⊗ H(M) → M such that for any
x ∈ M there is an open neighborhood U of x and a local frame {F,G, H} of E on U
satisfying the identities (5.82). �

A priori, the notions of a hyper CR manifold, or a quaternionic CR manifold, seem
not to be direct analogues of the notions of hyperkählerian and quaternionic-Kähler
manifolds, since there is no counterpart of the metric structure there. However, in
complex analysis one is interested in the metric structure arising from the complex
structure, e.g., the Levi form of a given CR manifold, extending (for nondegenerate
CR structures) to a semi-Riemannian metric (the Webster metric).

Let M4m+1 be a hyper CR manifold such that (M4m+1, T1,0(M)) is nondegenerate,
and let θ be a fixed contact form.

Definition 5.29. We say that θ is a hyper contact form if ∇G = 0 and ∇H = 0, where
∇ is the Tanaka–Webster connection of (M4m+1, θ). �

More generally, let (M4m+1, H(M), E) be a quaternionic CR manifold of the follow-
ing sort: M4m+1 carries a nondegenerate CR structure T1,0(M)whose Levi distribution
is H(M) and for any x ∈ M4m+1 there is an open neighborhood U and a local frame
of E on U of the form {F,G, H}, where F is the (restriction to U of the) complex
structure in H(M) associated with T1,0(M) and satisfying the identities (5.82). Such
a local frame of E at x will be referred to hereinafter as an F-frame.

Definition 5.30. A contact form θ on (M4m+1, T1,0(M)) is said to be a quaternionic
contact form if for any x ∈ M4m+1 there is an open neighborhood U and an F-frame
{F,G, H} of E on U such that

(dθ)(F X, FY )+ (dθ)(X, Y ) = 0,

(dθ)(G X,GY )+ (dθ)(X, Y ) = 0,

(dθ)(H X, HY )+ (dθ)(X, Y ) = 0,

(5.83)

for any X, Y ∈ H(M), and moreover,

∇X F = 0,

∇X G = p(X)H,

∇X H = −p(X)G,

(5.84)

for some 1-form p on U and any X ∈ T (M), where ∇ is the Tanaka–Webster connec-
tion of (M4m+1, F, θ). �
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Note that the first row identities in (5.83)–(5.84) are written for uniformity’s sake (and
are automatically satisfied, one as a consequence of the formal integrability property
of T1,0(M), and the other by the very construction of ∇).

Definition 5.31. A quaternionic CR manifold carrying a quaternionic contact form θ

is said to be a quaternionic Sasakian manifold. �

This is motivated by Theorem 5.18 below, according to which the Webster torsion of
θ vanishes (τ = 0), i.e., the underlying Riemannian metric is indeed Sasakian.

Theorem 5.18. (D.E. Blair et al. [68])
Let (M4m+1, θ) be a quaternionic Sasakian manifold. Then τ = 0, i.e., the Webster
metric g of (M4m+1, θ) is a Sasakian metric. Moreover, either the Tanaka–Webster
connection of (M4m+1, θ) is Ricci flat, or m = 1. If this is the case (i.e., m = 1) then
(M5, θ) is pseudo-Einsteinian if and only if 4p + ρ θ is a closed 1-form on U, for any
F-frame of E on U satisfying (5.83)–(5.84).

A few remarks are in order. By Theorem 5.16 any quaternionic Sasakian manifold
M4m+1 of dimension ≥ 9 has pseudo-Hermitian holonomy contained in SU(2m)× 1.
By a result in this very chapter, the first Chern class of the CR structure of M4m+1 must
vanish (c1(T1,0(M4m+1)) = 0). Finally, let Mn(1) be a real space form of sectional
curvature 1. By a result in this chapter the pseudo-Hermitian Ricci tensor of U (Mn(1))
is given by Rαβ = [ 1

2 + 2(n + ‖μ‖)]gαβ , where μ is the mean curvature vector

of U (Mn(1)) in T (Mn(1)). Therefore (by Theorem 5.18) U (M2m+1(1)) admits no
quaternionic Sasakian structure for m ≥ 2. �

To prove Theorem 5.18, let (M4m+1, θ) be a quaternionic Sasakian manifold and
{F,G, H} a (local) F-frame on U satisfying (5.82)–(5.84). Let g be the Webster met-
ric of (M4m+1, θ). Then ⎧⎪⎨⎪⎩

g(F X, FY ) = g(X, Y ),

g(G X,GY ) = g(X, Y ),

g(H X, HY ) = g(X, Y ),

(5.85)

for any X, Y ∈ H(M). The first identity is obvious. The second, for instance, follows
from

g(G X,GY ) = (dθ)(G X, FGY ) = (dθ)(G X, HY )

= −(dθ)(G2 X,G HY ) = (dθ)(X, FY ) = g(X, Y ),

by the definition of the Webster metric g. We shall need the following curvature iden-
tities

[R(X, Y ), F] = 0, (5.86)

[R(X, Y ),G] = α(X, Y )H, (5.87)

[R(X, Y ), H ] = −α(X, Y )G, (5.88)
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for any X, Y ∈ T (M), where α := 2 dp. The first identity is a consequence of ∇F =
0. The second, for instance, follows from

[R(X, Y ),G]Z = R(X, Y )G Z − G R(X, Y )Z

= ∇X (∇Y G)Z − ∇Y (∇X G)Z − (∇[X,Y ]G)Z

+ (∇X G)∇Y Z − (∇Y G)∇X Z

= 2(dp)(X, Y )H Z + p(Y )(∇X H)Z − p(X)(∇Y H)Z

= α(X, Y )H Z ,

for any X, Y ∈ T (M) and Z ∈ H(M). �
Let us take the inner product of (5.88),

[R(X, Y ), H ]Z = −α(X, Y )G Z , Z ∈ H(M),

with G Z to obtain

α(X, Y )‖Z‖2 = g(H Z , R(X, Y )G Z)+ g(R(X, Y )Z , F Z). (5.89)

Consider a local orthonormal frame of H(M) on U of the form

{Xi : 1 ≤ i ≤ 4m} = {Xa, F Xa,G Xa, H Xa : 1 ≤ a ≤ m}.
Let us set Z = Xi in (5.89) and sum over i to obtain

4m α(X, Y ) =
4m∑
i=1

{g(H Xi , R(X, Y )G Xi )+ g(R(X, Y )Xi , F Xi )}. (5.90)

Since

{(G Xi , H Xi ) : 1 ≤ i ≤ 4m} = {(εi Xi , εi F Xi ) : 1 ≤ i ≤ 4m},
where εi ∈ {±1}, the equation (5.90) becomes

2m α(X, Y ) =
4m∑
i=1

g(R(X, Y )Xi , F Xi ). (5.91)

We shall need the first Bianchi identity,∑
XY Z

{R(X, Y )Z + T∇(T∇(X, Y ), Z)+ (∇X T∇)(Y, Z)} = 0,

for any X, Y, Z ∈ T (M). Throughout
∑

XY Z denotes the cyclic sum over X, Y, Z .
Also, we recall that

T∇(X, Y ) = 2(dθ)(X, Y )T,

for any X, Y ∈ H(M). Therefore (by ∇T = 0 and ∇� = 0)
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XY Z

{R(X, Y )Z − 2�(X, Y ) τ Z} = 0, (5.92)

for any X, Y, Z ∈ H(M). Let us set Z = F Xi in (5.92), and take the inner product
with Xi in the resulting identity. Next, sum over i to obtain

− 2m α(X, Y )+
4m∑
i=1

{g(Xi , R(Y, F Xi )X)+ g(Xi , R(F Xi , X)Y )}

= 2�(X, Y ) trace(τ F)+ 2�(Y, Fτ X)+ 2�(FτY, X). (5.93)

Note that trace(τ F) = 0, because τ T1,0(M) ⊆ T0,1(M), and

�(Y, Fτ X)+�(FτY, X) = 0,

by the symmetry property of A(X, Y ) = g(τ X, Y ), with the corresponding simpler
from of (5.93). From the curvature theory developed in Chapter 1 of this book we
recall that

R̃(X, Y )Z = R(X, Y )Z + (L X ∧ LY )Z + 2�(X, Y )ϕZ

− g(S(X, Y ), Z)ξ + η(Z)S(X, Y )− 2g((η ∧ O)(X, Y ), Z)ξ

+ 2η(Z)(η ∧ O)(X, Y ), (5.94)

for any X, Y, Z ∈ T (M), where

L = ϕ − τ, O = τ 2 − 2ϕ τ − I,

and (X ∧ Y )Z = g(X, Z)Y − g(Y, Z)X . Here R̃ is the curvature of (M, g). In partic-
ular, if X, Y, Z ∈ H(M),

R̃(X, Y )Z = R(X, Y )Z + (L X ∧ LY )Z + 2�(X, Y )ϕZ − g(S(X, Y ), Z)ξ .

Let us take the inner product with W ∈ H(M) to obtain

R̃(W, Z , X, Y )

= g(R(X, Y )Z ,W )+ g((L X ∧ LY )Z ,W )− 2�(X, Y )�(Z ,W ), (5.95)

for any X, Y, Z ,W ∈ H(M), where R̃(W, Z , X, Y ) = g(R̃(X, Y )Z ,W ) is the
Riemann–Christoffel 4-tensor of (M, g). Exploiting the well-known symmetry

R̃(W, Z , X, Y ) = R̃(X, Y,W, Z),

the identity (5.95) furnishes

g(R(X, Y )Z ,W )

= g(R(W, Z)Y, X)+ g((LW ∧ L Z)Y, X)− g((L X ∧ LY )Z ,W ). (5.96)
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Let us replace the vectors (X, Y, Z ,W ) by the vectors (F Xi , X, Y, Xi ) in the formula
(5.96). We obtain

4m∑
i=1

g(R(F Xi , X)Y, Xi ) =
4m∑
i=1

g(R(Xi , Y )X, F Xi )+ g(X, LY ) trace(F L)

− g(X, L F LY )+ g(L X, Y ) trace(L F)− g(L F L X, Y ).

Substitution into (5.93) gives

2m α(X, Y ) =
4m∑
i=1

{g(R(Y, F Xi )X, Xi )− g(R(Y, Xi )X, F Xi )}

+ g(X, LY ) trace(F L)− g(X, L F LY )

+ g(L X, Y ) trace(L F)− g(L F L X, Y ),

and by observing that

{(F Xi , Xi ) : 1 ≤ i ≤ 4m} = {(λi Xi , μi F Xi ) : 1 ≤ i ≤ 4m},
λi , μi ∈ {±1}, λiμi = −1,

we obtain

2m α(X, Y ) = 2
∑

i

g(R(Xi , Y )X, F Xi )+ terms,

or (replacing X by F X )

2 Ric(X, Y ) = 2m α(F X, Y )

+ g(F X, L FY )− g(F X, LY ) trace(F L)

+ g(L F L F X, Y )− g(L F X, Y ) trace(L F), (5.97)

for any X, Y ∈ H(M). Next, let us take the inner product of (5.86),

[R(X, Y ), F]Z = 0, X, Y, Z ∈ H(M),

with G Z , so that

g(R(X, Y )F Z ,G Z)+ g(R(X, Y )Z , H Z) = 0.

Let us set Z = Xi and sum over i to obtain

4m∑
i=1

{
g(R(X, Y )F Xi ,G Xi )+ g(R(X, Y )Xi , H Xi )

} = 0

and observe that

{(F Xi ,G Xi ) : 1 ≤ i ≤ 4m} = {(εi Xi , εi H Xi ) : 1 ≤ i ≤ 4m}, εi ∈ {±1}.



338 5 Pseudo-Einsteinian Manifolds

Therefore

4m∑
i=1

g(R(X, Y )Xi , H Xi ) = 0. (5.98)

Let us set Z = H Xi in (5.92) and take the inner product with Xi in the resulting
identity. Then (by (5.98))

4m∑
i=1

{
g(R(Y, H Xi )X, Xi )+ g(R(H Xi , X)Y, Xi )

}
= 2�(X, Y ) trace(τH)+ 2�(Y, Hτ X)+ 2�(HτY, X). (5.99)

Now replace (X, Y, Z ,W ) by (H Xi , X, Y, Xi ) in (5.96) to obtain

g(R(H Xi , X)Y, Xi ) = g(R(Xi , Y )X, H Xi )

+ g((L Xi ∧ LY )X, H Xi )− g((L H Xi ∧ L X)Y, Xi )

and substitute into (5.99). Also observe that

{(H Xi , Xi ) : 1 ≤ i ≤ 4m} = {(λi Xi , μi H Xi ) : 1 ≤ i ≤ 4m},
λi , μi ∈ {±1}, λiμi = −1;

hence

2
4m∑
i=1

g(R(Xi , Y )X, H Xi )− g(L H LY, X)+ g(LY, X) trace(H L)

− g(L H L X, Y )+ g(L X, Y ) trace(L H)

= 2�(X, Y ) trace(τH)+ 2�(Y, Hτ X)+ 2�(HτY, X). (5.100)

The inner product of (5.88),

R(X, Y )H Z = H R(X, Y )Z − α(X, Y )G Z ,

with Xi gives

g(R(X, Y )H Z , Xi ) = g(H R(X, Y )Z , Xi )− α(X, Y )g(G Z , Xi ),

or, replacing (X, Z) by (Xi , X),

g(R(Xi , Y )H X, Xi ) = g(H R(Xi , Y )X, Xi )− α(Xi , Y )g(G X, Xi ),

and taking the sum over i we have

4m∑
i=1

g(R(Xi , Y )X, H Xi ) = −α(G X, Y )− Ric(H X, Y ),
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i.e., (by (5.100) and replacing X by H X )

2 Ric(X, Y ) = 2α(F X, Y )+ g(L H LY, H X)

− g(LY, H X) trace(H L)+ g(L H L H X, Y )− g(L H X, Y ) trace(L H)

+ 2�(H X, Y ) trace(τH)+ 2�(Y, HτH X)+ 2�(HτY, H X), (5.101)

for any X, Y ∈ H(M). To compute the pseudo-Hermitian Ricci curvature, set first
X = ξλ and Y = ξμ in (5.97). We obtain

Rλμ = i m αλμ + 1
2

(
Aβλ Aβμ − Aαλ Aαμ

)
.

The torsion terms vanish (by Aαβ = Aβα); hence

Rλμ = i m αλμ. (5.102)

Let us set also X = ξλ and Y = ξμ in (5.97) and note that

g(Fξλ, L F Lξμ) = −2i Aλμ = g(L F L Fξλ, ξμ),

g(Fξλ, Lξμ) = i Aλμ = g(L Fξλ, ξμ),

trace(F L) = −4m = trace(L F),

i.e.,

Rλμ = im αλμ + 2i(2m − 1) Aλμ. (5.103)

Taking traces in (5.94), we obtain the following:

Lemma 5.10. Let M2n+1 be a nondegenerate CR manifold, on which a contact form
θ has been fixed. Let g be the Webster metric of (M2n+1, θ). Then

Rαβ = 2(gαβ − Rg
αβ
), Rαβ = i(n − 1) Aαβ,

R0β = Sααβ, Rα0 = R00 = 0,

for any local frame {ξα} in T1,0(M). Here Rg
αβ

= R̃ic(ξα, ξβ) and R̃ic is the Ricci ten-

sor of (M2n+1, g). Also S A
BCξA := S(ξB, ξC ) with A, B, . . . ∈ {0, 1, . . . , n, 1, . . . , n}

and T0 = T .

Combining (5.103) and Lemma 5.10 (with n = 2m) gives m αλμ+ (2m −1) Aλμ = 0.
Yet α is skew, while the Webster torsion is symmetric, hence αλμ = 0 and Aλμ = 0.
Thus g is a Sasakian metric. As another consequence of τ = 0, (5.101) becomes

2 Ric(X, Y ) = 2α(F X, Y )+ g(F H FY, H X)+ g(F H F H X, Y )

(since trace(H L) = trace(H F) = trace(G) = 0) and then (by (5.85))

Ric(X, Y ) = α(F X, Y ),

for any X, Y ∈ H(M). Consequently Rλμ = i αλμ and by (5.102) we get
(m − 1) Rλμ = 0; hence either m = 1 or the pseudo-Hermitian Ricci curvature van-
ishes. Therefore, if m ≥ 2 then (by Lemma 5.10) Ric = 0. �
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Let us look now at the case m = 1. As a consequence of (5.89) we may write

α(F X, X)‖Z‖2 = g(R(F X, X)Z , F Z)+ g(R(F X, X)G Z , H Z),

α(H X,G X)‖Z‖2 = g(R(H X,G X)Z , F Z)+ g(R(H X,G X)G Z , H Z).

Summing up the last two identities we get

α(F X, X)‖Z‖2 + α(H X,G X)‖Z‖2

= g(R(F X, X)Z , F Z)+ g(R(F X, X)G Z , H Z)

+ g(R(H X,G X)Z , F Z)+ g(R(H X,G X)G Z , H Z).

Note that the right-hand member of this last identity is symmetric in X, Z . Hence

{α(F X, X)+ α(H X,G X)}‖Z‖2 = {α(F Z , Z)+ α(H Z ,G Z)}‖X‖2;
or

{Ric(X, X)+ Ric(G X,G X)}‖Z‖2 = {Ric(Z , Z)+ Ric(G Z ,G Z)}‖X‖2 .

Let us set Z = Xi and sum over i . We have

4{Ric(X, X)+ Ric(G X,G X)} =
4∑

i=1

{Ric(Xi , Xi )+ Ric(G Xi ,G Xi )}‖X‖2,

or, again due to the particular form of our frame,

2{Ric(X, X)+ Ric(G X,G X)} =
4∑

i=1

Ric(Xi , Xi )‖X‖2 .

Finally, trace(Ric) = 2ρ; hence (by T � Ric = 0; cf. Lemma 5.10 with τ = 0)

Ric(X, Y )+ Ric(G X,GY ) = ρ g(X, Y ), (5.104)

for any X, Y ∈ H(M). Note that use was made of the symmetry of Ric on H(M) ⊗
H(M), a consequence of Lemma 5.10 as well. It remains to be shown that θ is pseudo-
Einsteinian if and only if

d(4p + ρ θ) = 0. (5.105)

Due to FG = −G F , G2 = −I , and g(G X,GY ) = g(X, Y ) for any X, Y ∈ H(M),
one has

Gξα = Gβαξβ, GβαGλ
β

= −δλα, gαβ = GμαGλ
β

gλμ,

for some smooth functions Gβα : U → U , where Gβα = Gβα . Let us set αAB =
α(ξA, ξB) and note that αλμ = 0, αλμ = 0. The identity (5.104) may be written
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Rαβ + i GμαGλ
β
αλμ = ρ gαβ.

Consequently θ is pseudo-Einsteinian, i.e., Rαβ = (ρ/2)gαβ if and only if

i αλβ = (ρ/2) gαβ. (5.106)

Since d(ρθ) = (dρ) ∧ θ + ρ dθ and θ vanishes on H(M), (5.106) may be written

4(dp)(ξα, ξβ)+ d(ρθ)(ξα, ξβ) = 0,

i.e., d(4p + ρθ) = 0 on H(M) ⊗ H(M). Finally, by Lemma 5.3 (established earlier
in this chapter) if a closed 2-form % vanishes on H(M)⊗ H(M) then % = 0; hence
(5.105) holds. �

5.10 Homogeneous pseudo-Einsteinian manifolds

A complete classification of all homogeneous pseudo-Einsteinian manifolds is ob-
tained in [319].

Definition 5.32. A pseudo-Hermitian manifold (M, θ) is said to be G-homogeneous
if there is a closed subgroup G ⊆ Psh(M, θ) such that G is transitive on M . �

Of course, if we fix a point x0 ∈ M then we may identify M and G/H , where H
is the isotropy group at x0. The results in [319] are mainly concerned with strictly
pseudoconvex CR manifolds M on which a contact form θ has been fixed in such
a way that the Levi form Lθ is positive definite and the corresponding characteristic
direction T is regular (in the sense of R. Palais [336]). If this is the case then M is
principal bundle over the orbit space B of all trajectories of T , with structure group S1

or R. Indeed G-homogeneous pseudo-Hermitian manifolds (M, θ) with Lθ positive
definite belong to this class (cf., e.g., Proposition 3.4 in [319], p. 226).

In the terminology of [319] two pseudo-Hermitian manifolds (M, θ) and (M ′, θ ′)
are contact homothetic if there is a C∞ diffeomorphism such that f ∗θ ′ = s θ and
(d f )T = r T ′, for some r, s ∈ (0,+∞). Here T and T ′ are the characteristic direc-
tions of dθ and dθ ′, respectively. See [319], p. 230, for the definition of the principal
S1-bundle π(1) : B(1) → B (appearing in Theorem 5.19 below). Also, given a posi-
tive integer k, let π(k) : B(k) → B be the kth tensor power of π(1) : B(1) → B. Cf.
[319], p. 232. B(k) admits a canonical pseudo-Hermitian structure related (via π(k)) to
(B,

√
kg), where g is the original Kähler–Einstein metric on B. If additionally (M, θ)

is pseudo-Einsteinian then B is a G-invariant homogeneous Einstein–Kähler manifold,
thus prompting the following result:

Theorem 5.19. (E. Musso [319])
Let M be a strictly pseudoconvex CR manifold and let θ be a contact form on M with
Lθ positive definite. Assume that (M, θ) is G-homogeneous and pseudo-Einsteinian.
(1) If (M, θ) has positive pseudo-Hermitian scalar curvature (ρ > 0) then M is a
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principal S1-bundle over B and the integral Chern class c1(M) is an integer multiple
of c1(B(1)), i.e.,

c1(M) = k c1(B
(1))

for some k ∈ Z. Moreover, (M, θ) is contact homothetic to the canonical pseudo-
Hermitian manifold B(k). (2) If (M, θ) has negative pseudo-Hermitian scalar curva-
ture (ρ < 0) then the orbit space B is an affinely homogeneous Siegel domain of
the second kind with its Bergman metric and (M, θ) is contact homothetic to either
(i) B × S1 with the contact form

c dγ + i(∂ − ∂) log K (z, z),

where c > 0 is a constant, γ is a fiber coordinate, and K (z, ζ ) is the Bergman kernel
of B, or to (ii) B × R with the contact form

c dt + i(∂ − ∂) log K (z, z).

(3) If ρ = 0 then (M, θ) is contact homothetic to either (i) Cn × S1 with the contact
form c dγ + 2yi dxi , or to (ii) Cn × R with the contact form c dt + 2yi dxi .

A deeper analysis of the 3-dimensional case is due to D. Perrone [343]–[344].

Theorem 5.20. (D. Perrone [344])
Let (M, θ) be a simply connected 3-dimensional pseudo-Hermitian manifold such that
Lθ is positive definite. Assume that there is a Lie group G ⊆ Psh(M, θ) such that
(M, θ) is G-homogeneous. Then M is a Lie group and both θ and gθ are invariant.
Moreover, the following classification holds:

(1) If M is unimodular then it is one of the following Lie groups:
(i) the Heisenberg group when ρ = ‖τ‖ = 0,

(ii) the 3-sphere group SU(2) when 4
√

2ρ > ‖τ‖,
(iii) the group Ẽ(2), i.e., the universal covering of the group of rigid motions of

Euclidean 2-space, when 4
√

2ρ = ‖τ‖ > 0,
(iv) the group S̃L(2,R) when −‖τ‖ �= 4

√
2ρ < ‖τ‖,

(v) the group E(1, 1) of rigid motions of the Minkowski 2-space when 4
√

2ρ =
−‖τ‖ < 0.

(2) If M is nonunimodular then its Lie algebra is given by

[E1, E2] = αE2 + 2T, [E1, T ] = γ E2, [E2, T ] = 0,

where α �= 0, with E1, E2 = Jb E1 ∈ H(M) and 4
√

2ρ < ‖τ‖. Moreover, if
γ = 0 then the pseudo-Hermitian torsion vanishes (τ = 0), i.e., M is a Sasakian
manifold, and the pseudo-Hermitian scalar curvature is given by ρ = −α2/4.

Since it may be shown that

4ρ − ‖τ‖√
2

= ρθ

2
+
(

1 − ‖τ‖
2
√

2

)2
,
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where ρθ is the (Riemannian) scalar curvature of gθ , one gets the following corol-
lary: the 3-sphere group SU(2) is the only simply connected 3-dimensional manifold
that admits a structure of a homogeneous contact Riemannian manifold (respectively
Sasakian manifold) with scalar curvature ρθ > −2(1 − ‖τ‖/(2√2))2 (respectively
ρθ > −2). As another consequence, the Heisenberg group and S̃L(2,R) are the only
simply connected 3-manifolds that admit a unimodular homogeneous contact Rieman-
nian manifold structure of vanishing pseudo-Hermitian scalar curvature (ρ = 0).

The theory of homogeneous pseudo-Hermitian manifolds enters, of course, the
more general theory of homogeneous CR manifolds, as mentioned in the preface of
this book.

Definition 5.33. A CR manifold M is said to be homogeneous if there is a Lie group
G acting transitively5 on M as a group of CR automorphisms. �

A more pedantic terminology is to refer to a pair (M,G) consisting of a CR manifold
M and a real Lie G group acting on M as above, as a homogeneous CR manifold.
Any real analytic nondegenerate CR manifold is homogeneous, because in this case
(by a result of N. Tanaka [397]) AutC R(M), the group of all CR automorphisms of M ,
is a real Lie group. The only CR structure (of hypersurface type) on S2n+1 (n ≥ 2)
that admits a transitive action of a Lie group of CR automorphisms is the standard CR
structure inherited from Cn+1 (cf. R. Lehmann and D. Feldmueller [277]).

Much work has been done on the classification of compact homogeneous CR man-
ifolds. The history of the subject starts with the work of Y. Morimoto and T. Nagano
[316], under the assumptions that (1) M is strictly pseudoconvex and the boundary
of a domain in a Stein manifold, and (2) the fundamental group π1(M) is finite. An
important consequence (cf. H. Samelson [360]) of the assumption (2) is that a max-
imal compact subgroup K ⊂ G acts transitively on M . The result by Y. Morimoto
and T. Nagano (cf. op. cit.) is that such M is either the sphere S2n+1 ⊂ Cn+1 or a
finite cover of a sphere bundle in the tangent bundle of a symmetric space of rank
one.6 H. Rossi [354], replaced Y. Morimoto and T. Nagano’s assumption (1) by the
requirement that (1′) M be strictly pseudoconvex and its real dimension be ≥ 5. This
is known to imply (cf., e.g., A. Andreotti and Y.T. Siu [21]) that M is the boundary of a
domain in a Stein space Z . Then K acts on Z and has precisely one orbit E . Moreover,
either Z is a manifold and then one may apply the Y. Morimoto and T. Nagano result
above, or the singular set of Z (a K -stable analytic set) is precisely E , i.e., E = {x0}
is a fixed point. H. Rossi (cf. op. cit.) desingularizes, π : Z̃ → Z , and shows (by using
the K -action) that Q := π−1(x0) is a homogeneous rational manifold and that Z̃ is a
K -invariant tube in the normal bundle of Q in Z̃ . Therefore M is the boundary of a K -
invariant domain in an affine cone over Q. The story of the strictly pseudoconvex case
ends up with the work of D. Burns and S. Shnider [79], concerning the 3-dimensional

5 Certain authors (cf., e.g., H. Azad et al. [26]) assume also that the action of G on M is almost
effective.

6 Such a symmetric space is either a sphere, or a projective space over R, C, or H, or the
projective space over the Cayley numbers. Moreover, its tangent bundle possesses a natural
K -invariant complex structure as a Stein manifold.
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case. Their result is that any 3-dimensional strictly pseudoconvex compact homoge-
neous CR hypersurface M has a finite π1(M). The case that M is a nondegenerate CR
manifold (compact, of hypersurface type) was examined by H. Azad et al. [26]. Any
such M is (via the so-called basic g-anticanonical fibration; cf. [26], pp. 130–133) a
principal S1-bundle over a homogeneous rational manifold Q, or a finite covering of
a CR hypersurface that is a G-orbit under a linear representation in CPm . In the S1-
bundle case M is the boundary of a tube in a line bundle over Q with nondegenerate
invariant Chern form. In the projective algebraic case the following may be proved.
Let G be a linear Lie group in PSLm+1(C) and let Ĝ be the smallest complex Lie
group containing G. Assume that there is p ∈ CPm such that the orbit M̃ := G(p)
is a compact hypersurface in the Ĝ-orbit Ĝ(p). Then either the semisimple part K ss

of K acts transitively on M̃ or M̃ is a CR-product S1 × Q, where Q is a complex ho-
mogeneous rational manifold. In particular, unless M̃ is the Levi flat product S1 × Q,
the fundamental group π1(M̃) is finite. Moreover, if S is the complexification of K ss

in PSLm+1(C) then M̃ is a hypersurface in � := S(p) that is Zariski open in its S-
almost homogeneous closure X (and X is a rational algebraic variety). See [26] for the
detailed classification, according to whether the g-anticanonical fiber is S1 or finite.
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Pseudo-Hermitian Immersions

Let M and A be two CR manifolds, of CR dimensions n and N = n + k, k ≥ 1,
respectively. A CR immersion f : M → A is an immersion and a CR map. If f is
the inclusion then M is a CR submanifold of A (a CR hypersurface when k = 1).
For instance, let M2n+1 be the intersection between the sphere S2n+3 and a transverse
complex hypersurface in Cn+2. Then M2n+1 is a CR hypersurface of S2n+3 (in par-
ticular M2n+1 is strictly pseudoconvex). Let M be a CR submanifold of A. Then M
is rigid in A if any CR diffeomorphism F : M → M ′ onto another CR submanifold
M ′ of A (e.g., F may be the restriction of a biholomorphic mapping) extends to a CR
automorphism of A (e.g., if A = S2n+3 then F should extend to a fractional linear, or
projective, transformation preserving S2n+3).

A theory of CR immersions has been initiated by S. Webster [424]. There it is
shown that S2n+1 is rigid in S2n+3 if n ≥ 2. Also, if n ≥ 3 then any CR hyper-
surface of S2n+3 is rigid. The basic idea in [424] is to endow the ambient space
S2n+3 with the Tanaka–Webster connection (rather than the Levi-Civita connection
associated with the canonical Riemannian structure) and obtain CR analogues of the
Gauss–Weingarten (respectively Gauss–Ricci–Codazzi) equations (from the theory of
isometric immersions between Riemannian manifolds). In the end, these could be used
to show that the intrinsic geometry determines the (CR analogue of the) second fun-
damental form of the given CR immersion.

The main inconvenience of this approach seems to be the nonuniqueness of choice
of a canonical connection on the CR submanifold (i.e., the induced and “intrinsic”
Tanaka–Webster connection of the submanifold do not coincide, in general). In [120]
one compensates for this inadequacy by restricting oneself to a smaller class of CR
immersions, as follows. Let f : M → A be a CR immersion between two strictly
pseudoconvex CR manifolds on which contact 1-forms θ and# have been fixed. Then

f ∗# = λθ

for some C∞ function λ : M → R. If λ ≡ 1 then f is called isopseudo-Hermitian
(following the terminology in [219]). An isopseudo-Hermitian immersion f : M → A
is a pseudo-Hermitian immersion if f (M) is tangent to the characteristic direction of
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(A,#). If this is the case then (by a result in [120] and the first section below) f is
an isometry (with respect to the Webster metrics of (M, θ) and (A,#)). Also, one
may use the axiomatic description of the Tanaka–Webster connection to show that the
induced and intrinsic connections on M coincide. Moreover, by a result of H. Urakawa
(any CR map f : M → A satisfying f∗T = λ TA for some λ ∈ C∞(M) with
T (λ) = 0 is harmonic with respect to the Webster metrics of M and A; cf. Corollary
3.2 in [413], p. 263) any pseudo-Hermitian immersion is actually minimal. Cf. also
Theorem 7 in [120].

The scope of Chapter 6 is to present the theory of pseudo-Hermitian immersion
together with its application to the problem of the existence of pseudo-Einsteinian
pseudo-Hermitian structures (cf. Chapter 5 of this book) on (locally realizable) CR
manifolds.

As in [120], our main tool will consist of pseudo-Hermitian analogues of the
Gauss and Weingarten equations. In particular, we shall introduce the concept of
normal Tanaka–Webster connection ∇⊥ (of a given pseudo-Hermitian immersion be-
tween two strictly pseudoconvex CR manifolds). When ∇⊥ is flat we use the (pseudo-
Hermitian analogues of the) Gauss–Ricci–Codazzi equations to relate the pseudo-
Hermitian Ricci tensors of the Tanaka–Webster connections of the submanifold and
ambient space and prove the following theorem:

Theorem 6.1. (E. Barleta et al. [36])
Let f : M → A be a pseudo-Hermitian immersion between two strictly pseudoconvex
CR manifolds (M, θ) and (A,#). If the normal Tanaka–Webster connection is flat
(i.e., R⊥ = 0) then

Rαβ = trace{Z !→ R A(Z , f∗Tα) f∗Tβ}. (6.1)

In particular, if # is pseudo-Einsteinian, then θ is pseudo-Einsteinian, too.

As a corollary, we may regard the Lee class γ (M) (a cohomology class in the first
cohomology group of the given (locally realizable) CR manifold M with coefficients
in the sheaf of CR-pluriharmonic functions; cf. Chapter 5) as an obstruction to the
existence of pseudo-Hermitian immersions f : M → S2N+1 with a flat normal
Tanaka–Webster connection of a strictly pseudoconvex CR manifold M into an odd-
dimensional sphere.

The methods we employ are similar to those in B.Y. Chen and H.S. Lue [93]
(where holomorphic immersions between Kähler manifolds are dealt with). We ex-
ploit the symmetries of the curvature tensor field of the Tanaka–Webster connection
(rather than the Riemann–Christoffel tensor field in [93]) and deal with the highly
complicated (due to the presence of torsion terms there) of the Bianchi identities (cf.,
e.g., (6.66)). The key points (leading from (6.78) to (6.1) in Theorem 6.1) are Lemma
6.8 (the (0, 2)-tensor field Ea is proportional to the Levi form of the submanifold) and
a nontrivial cancellation of torsion terms.

As a byproduct we prove (cf. Theorem 6.10) the nonexistence of pseudo-Hermitian
immersions of Hn(s) (cf. Chapter 5) into a Tanaka–Webster flat strictly pseudoconvex
CR manifold (e.g., HN or Uα,β ).
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6.1 The theorem of H. Jacobowitz

In this section we refine a result by H. Jacobowitz (any real analytic CR map between
real analytic CR manifolds (of hypersurface type) of the same dimension is a local
diffeomorphism or a constant map; cf. [219]) to the case in which the dimensions of
the source and target CR manifolds are not necessarily equal (cf. Theorem 6.2). The
proof parallels closely the proof of the original result in [219]. Lemma 6.2 is however
new. Our point of view is that Theorem 6.2 may be regarded as a motivation for the
study of CR immersions (submersions) between (abstract) CR manifolds. As a main
objective of the present chapter, a study of CR immersions is carried out in the next
two sections.

Definition 6.1. Let�(z, t) be an R-valued function (defined on some domain D ⊂ Hn

with 0 ∈ D). Then � is said to be of weight r if �(sz, s2t) = sr�(z, t), for any
s ∈ R. �

If� is real analytic, one may regroup the terms of its Taylor series expansion to obtain
a decomposition

� =
∞∑
χ=0

�χ ,

where �χ is of weight χ . Then � is of weight greater than or equal to r if and only if
�χ = 0 for 0 ≤ χ ≤ r − 1.

Let M be an orientable C∞ nondegenerate CR manifold of CR dimension n. Fix
a point x0 ∈ M .

Lemma 6.1. (H. Jacobowitz [219])
There exist Folland–Stein local coordinates (V, zα, u) with origin at x0 and there are
functions kα(z, u), hαβ(z, u) of weight at least 2 such that

θ = du +
n∑
α=1

{(i zα + kα)dzα + (−i zα + k
α
)dzα} (6.2)

is a pseudo-Hermitian structure on M and

θα = dzα +
n∑
β=1

hαβdzβ (6.3)

is a frame of T1,0(M)∗ on V .

Cf. also [150], p. 471, and [227], p. 177, and Chapter 4 of this book. The proof of
Lemma 6.1 is omitted. Cf. [219], p. 233, for details. Let f : M → A be a CR map,
of class C∞, between two orientable C∞ nondegenerate CR manifolds of CR dimen-
sions n and N , respectively. By Lemma 6.1, we may choose Folland–Stein coordinates
(Z j ,U ) on A with origin at f (x0), and respectively a pseudo-Hermitian structure #
on A and a (local) frame {# j }1≤ j≤N of T1,0(A)∗ given by
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# = dU +
N∑

j=1

{(i Z j + K j )d Z
j + (−i Z

j + K
j
)d Z j }, (6.4)

# j = d Z j +
N∑

k=1

H jkd Z
k
, (6.5)

for some functions K j (Z ,U ), H jk(Z ,U ) of weight at least 2. Since f is a CR map
we have

f ∗# jU ≡ 0 mod θ, θα , (6.6)

f ∗# ≡ 0 mod θ . (6.7)

Using (6.2)–(6.3) the equations (6.6)–(6.7) may be written

Lβ f j = kβ
∂ f j

∂u
+

N∑
k=1

H jk
(

− Lβ f k + kβ
∂ f k

∂u

)
+

n∑
α=1

hαβ
{
Lα f j − kα

∂ f j

∂u
+

N∑
k=1

H jk
(
Lα f k − kα

∂ f k

∂u

)}
, (6.8)

Lα f 0 = kα
∂ f 0

∂u
+

N∑
j=1

{
(i f j + K j )

(
− Lα f j + kα

∂ f j

∂u

)

+ (i f j + K j )
(

− Lα f j + kα
∂ f j

∂u

)}
, (6.9)

where

Lα = ∂

∂zα
− i zα

∂

∂u

(the Lewy operator) and f j = Z j ◦ f , f 0 = U ◦ f .

Theorem 6.2. Let f : M → A be a real analytic CR map between two orientable real
analytic strictly pseudoconvex CR manifolds of CR dimensions n and N, respectively,
M connected. Then either f has maximal rank or f (M) is a point.

Proof. Let x0 ∈ M . Choose, as above, Folland–Stein coordinates (zα, u) and (Z j ,U )
at x0 and f (x0), respectively, pseudo-Hermitian structures θ and#, and (local) frames
{θα} and {# j } given by (6.2)–(6.5). Since the CR structures on M, A are supposed to
be real analytic, one may choose kα, hαβ, K j , and H jk to be real analytic, too. The
proof of Theorem 6.2 follows from a direct inspection of the equations (6.8)–(6.9) and
is a refinement of the proof in [219], pp. 234–238. Let

f 0 =
∞∑
χ=1

f 0
χ , f j =

∞∑
χ=1

f j
χ (6.10)



6.1 The theorem of H. Jacobowitz 349

where f 0
χ , f j

χ are of weight χ , for χ ≥ 1 (since (Z j ,U ) have origin at f (x0) one has

f 0(0) = 0, f j (0) = 0 and the Taylor series of f 0, f j contain no terms of weight
zero). Arguments analogous to that in [219] (which we omit) furnish

Lα f j
1 = 0 (6.11)

and

∂ f j

∂zα
(0) = 0. (6.12)

Finally, the commutation formula[
Lα , Lβ

]
= 2iδαβ

∂

∂u

and (6.11) lead to

δαβ
∂ f 0

∂u
(0) = ∂ f j

∂zβ
(0)

∂ f j

∂zα
(0). (6.13)

Let us set f j = X j + iY j and zα = xα + iyα . By (6.12) the (real) Jacobian of f at
z = 0, u = 0 is given by

JR( f )(0) =
⎛⎜⎝ X j

xα (0) −Y j
xα (0) X j

u(0)
Y j

xα (0) X j
xα (0) Y j

u (0)
0 0 f 0

u (0)

⎞⎟⎠
(where subscripts denote partial derivatives). We distinguish two cases. Either
rank JR( f )(0) = min{2n + 1, 2N + 1} and then we are done, or

rank JR( f )(0) < min{2n + 1, 2N + 1}. (6.14)

If (6.14) holds we show that the derivatives of arbitrary order of f j , f 0 at z = 0,
u = 0 vanish, so that the statement in Theorem 6.2 may be obtained by analytic
continuation. �

Lemma 6.2.

∂ f 0

∂u
(0) = 0.

Proof. Let M : Cn → CN be the C-linear map defined by

Meα =
N∑

j=1

∂ f j

∂zα
(0)e j ,
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where {eα} and {e j } are the canonical linear bases in Cn and CN respectively. By
(6.13), for any x ∈ Cn one has

‖Mx‖2 = 〈MtMx, x〉 = ∂ f 0

∂u
(0)‖x‖2. (6.15)

The proof of Lemma 6.2 is by contradiction. Assume that f 0
u (0) �= 0. Then M is

injective, by (6.15). We distinguish three cases: n = N , n > N , and n < N . When
n = N our Lemma 6.2 follows from [219], p. 237. If n > N the fact that M is
injective already leads to a contradiction. Hence we may assume that n < N . Let
(i1, . . . , in) ∈ {1, . . . , N }n, i1 < · · · < in . Denote by �i1···in the square matrix of
order 2n extracted from JR( f )(0) as follows:

(1) The first n lines of �i1···in are the lines i1, . . . , in of JR( f )(0).
(2) The last n lines of �i1···in are the lines i1 + N , . . . , in + N of JR( f )(0).
(3) From each line chosen at (1)–(2) one has previously eliminated the elements of

the last column of JR( f )(0).

For instance,

�1···n =
(

Xα
xβ
(0) −Y α

xβ
(0)

Y α
xβ
(0) Xα

xβ
(0)

)
.

Since n < N , our (6.14) yields rank JR( f )(0) < 2n + 1, so that all determinants of
order 2n + 1 of JR( f )(0) must vanish. Thus

f 0
u (0) det

(
�i1···in

) = 0,

and consequently

det
(
�i1···in

) = 0.

Then ∣∣∣∣det

[
∂ f iα

∂zβ
(0)

]∣∣∣∣2 = det
(
�i1···in

) = 0,

i.e., rank(M) < n, a contradiction (M is injective). Our Lemma 6.2 is completely
proved. �
Using (6.13) and Lemma 6.2 we obtain

∂ f j

∂zα
(0) = 0,

and the proof of Theorem 6.2 may be completed by using the following fact:

Lemma 6.3. (H. Jacobowitz [219], p. 237)
For any real analytic CR map f = ( f 1, . . . , f N , f 0) with the weight decomposition
(6.10), if f j

χ = 0, 1 ≤ χ ≤ r , then (i) f 0
χ = 0, 1 ≤ χ ≤ 2r + 1, and (ii) f j

r+1 = 0 .
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A remark is in order. The assumption of strict pseudoconvexity in Theorem 6.2 is mo-
tivated by the following example. Let Q3 ⊂ C2 be the hyperquadric Q3 = {(z1, z2) :
Im(z2)− |z1|2 = 0}. Let A = {z ∈ C3 : Im(z3) = |z1|2 − |z2|2} and f : Q3 → A the
CR map given by f (z1, z2) = (z1, z1, 0). Then rank( f ) = 1 and f is nonconstant.
Our Theorem 6.2 does not apply since A is only nondegenerate. �

6.2 The second fundamental form

Let (M, T1,0(M)) and (A, T1,0(A)) be two CR manifolds of CR dimensions n and
n + k, k > 0, respectively.

Definition 6.2. A CR immersion is a CR map f : M → A such that rank(dx f ) =
dim(M) at any x ∈ M . �

That is, a CR immersion is an immersion and a CR map. For instance, let M2n be a
complex n-dimensional Hermitian manifold and T 1,0(M2n) its holomorphic tangent
bundle. Then (M, T 1,0(M2n)) is a CR manifold of type (n, 0). Let M be a proper CR
submanifold of M2n (in the sense of A. Bejancu [56]; see Chapter 1 for definitions).
Then the inclusion j : M → M2n is a CR immersion.

Definition 6.3. Let f : M → A be a CR immersion. The CR normal bundle of f is
defined by

ν2k
H ( f ) = LA/ f∗LM , (6.16)

where LM and LA are the bundles whose total spaces are H(M) and H(A) respec-
tively (i.e., the Levi distributions regarded as vector bundles). �

When A is a strictly pseudoconvex CR manifold the CR normal bundle (of the given
CR immersion f ) is isomorphic to the orthogonal complement of f∗LM in LA with
respect to the (real) Levi form of A.

Let (M, T1,0(M), θ) and (A, T1,0(A),#) be two strictly pseudoconvex CR man-
ifolds of CR dimensions n and n + k respectively (thus dim(M) = 2n + 1 and
dim(A) = 2(n + k)+ 1).

Definition 6.4. Let f : M → A be a CR immersion. Then f is isopseudo-Hermitian
if

f ∗# = θ. (6.17)

Let f : M → A be an isopseudo-Hermitian CR immersion. (T1,0(A),#) is strictly
pseudoconvex, hence (A, g#) is a Riemannian manifold. Let ν2k( f ) be the normal
bundle of f and E(ν2k( f )) its total space. Then

T f (x)(A) = [ f∗Tx (M)] ⊕ E(ν2k( f ))x (6.18)

for any x ∈ M . Note that (6.17) yields
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f ∗d# = dθ. (6.19)

Using the fact that f is a CR map,

JA ◦ f∗ = f∗ ◦ J ; (6.20)

hence

f ∗G# = Gθ . (6.21)

Yet in general, the immersion f fails to be isometric (with respect to the Riemannian
metrics gθ and g#) unless f (M) is tangent to the characteristic direction TA of (A,#);
cf. our Theorem 6.3 below. Again, since f is a CR map,

f∗H(M) ⊆ H(A). (6.22)

Let E(ν2k
H ( f ))x be the orthogonal (with respect to G#, f (x)) complement of

(dx f )H(M)x in H(A) f (x), for x ∈ M . Then E(ν2k
H ( f )) is the total space of a (real)

rank-2k vector bundle isomorphic to ν2k
H ( f ) (and denoted by the same symbol in the

sequel). Moreover,

H(A) f (x) = [(dx f )H(M)x ] ⊕ E(ν2k
H ( f ))x , (6.23)

for any x ∈ M . The CR normal bundle ν2k
H ( f ) and the normal bundle ν2k( f ) do not

coincide (i.e., E(ν2k
H ( f ))x �= E(ν2k( f ))x , for x ∈ M) in general, unless f (M) is

tangent to TA. Yet we have the following:

Proposition 6.1. ν2k
H ( f ) and ν2k( f ) are canonically isomorphic.

If N is a manifold, let τN be its tangent bundle. To prove Proposition 6.1, we construct
a bundle isomorphism

� : LA/ f∗LM → τA/ f∗τM

by setting

�x (X + f∗H(M)x ) = X + f∗Tx (M),

where X ∈ H(A) f (x) and x ∈ M . Since LA/ f∗LM and τA/ f∗τM have the same rank,
it is sufficient to check that � is a bundle monomorphism. To see this, assume that
X + f∗Tx (M) = 0 for some X ∈ H(A) f (x). Then X ∈ H(A) f (x) ∩ f∗Tx (M). Since

f∗H(M)x ⊆ H(A) f (x) ∩ f∗Tx (M) ⊆ f∗Tx (M)

and dimR H(M)x = 2n, dimR Tx (M) = 2n + 1, it follows that either

H(A) f (x) ∩ f∗Tx (M) = f∗H(M)x

and then we are done, or
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H(A) f (x) ∩ f∗Tx (M) = f∗Tx (M).

Yet since f is isopseudo-Hermitian, the last alternative does not occur. Indeed, if
f∗Tx (M) ⊆ H(A) f (x) then f∗Tx ∈ H(A) f (x) and by (6.17) one has

0 = # f (x)( f∗Tx ) = ( f ∗#)x (Tx ) = θx (Tx ) = 1,

a contradiction. �
Let tanx , norx be the natural projections associated with (6.18). Let us set T ⊥

A =
nor(TA). Let ∇ A be the Tanaka–Webster connection of (A,#). Let X, Y ∈ T (M). Let
us set

∇X Y = tan{∇ A
f∗ X f∗Y }, α( f )(X, Y ) = nor{∇ A

f∗ X f∗Y }.
Then ∇ is a linear connection on M , while α( f ) is C∞(M)-bilinear and has values
in E(ν2k( f )). Thus, by (6.18), one obtains the following CR analogue of the Gauss
formula (from the theory of isometric immersions between Riemannian manifolds):

∇ A
f∗ X f∗Y = f∗∇X Y + α( f )(X, Y ). (6.24)

Next, if X ∈ T (M) and ξ ∈ E(ν2k( f )) then we set

aξ X = − tan{∇ A
f∗ Xξ}, ∇⊥

X ξ = nor{∇ A
f∗ Xξ}.

Then a is C∞(M)-bilinear, while ∇⊥ is a connection in ν2k( f ). We are led to a CR
analogue of the Weingarten formula (from Riemannian geometry)

∇ A
f∗ Xξ = − f∗aξ X + ∇Xξ . (6.25)

In general, the “induced” connection ∇ in (6.24) does not coincide with the “intrinsic”
Tanaka–Webster connection of (M, θ) (unless T ⊥

A = 0), nor is α( f ) (the CR analogue
of the second fundamental form of an isometric immersion between Riemannian man-
ifolds) symmetric.

Theorem 6.3. Let f : M → A be an isopseudo-Hermitian CR immersion between
two strictly pseudoconvex CR manifolds of CR dimensions n and n + k. The following
statements are equivalent:

(i) f ∗g# = gθ .
(ii) T ⊥

A = 0.
(iii) E(ν2k

H ( f ))x = E(ν2k( f ))x , for any x ∈ M.

Lemma 6.4. The following identities hold:

X A � θ = 1 − ‖T ⊥
A ‖2, X A � dθ = − f ∗ (T ⊥

A � d#
)
,

where X A = tan(TA).
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The proof of Lemma 6.4 is straightforward. At this point we may prove Theorem 6.3.
To this end, assume (i) holds. For any X ∈ T (M) one has

gθ (X A, X) = g#( f∗X A, f∗X) = g#(TA, f∗X) = #( f∗X) = θ(X) = gθ (T, X)

and thus X A = T . One still has to show that TA is tangent to f (M). To see this, apply
# to TA = f∗T + T ⊥

A . This procedure yields ‖T ⊥
A ‖ = 0.

Conversely, if (ii) holds, then X A = T by Lemma 6.4. By (1.16) in Chapter 1 and
(6.19) the verification of (i) amounts to checking that

g#( f∗T, f∗X) = 0,

for any X ∈ H(M). This follows from (6.22).
Assume (iii) holds. Since T ⊥

A ∈ E(ν2k( f )), by (iii) and (6.23) it follows that T ⊥
A ∈

H(A). Thus ‖T ⊥
A ‖2 = g#(TA, T ⊥

A ) = 0. Conversely, if (ii) holds then TA = f∗T by
Lemma 6.4. Let ξ ∈ E(ν2k

H ( f ))x and X ∈ Tx (M), for x ∈ M . By (1.20) in Chapter 1
one has

X = Y + cTx , Y ∈ H(M)x , c ∈ R.

Thus

g#(ξ, f∗X) = cg#(ξ, f∗T ) = cg#(ξ, TA) = 0

and thus E(ν2k
H ( f ))x ⊆ E(ν2k( f ))x , for any x ∈ M . �

Taking into account Theorem 6.3 we define the following central notion.

Definition 6.5. A pseudo-Hermitian immersion is an isopseudo-Hermitian CR immer-
sion with the additional property T ⊥

A = 0. �

Let f : M → A be a pseudo-Hermitian immersion. Let πHα( f ) be a vector-valued
form defined by (πHα( f ))(X, Y ) = α( f )(πH X, πH Y ), for any X, Y ∈ T (M). Here
πH : T (M)→ H(M) is the projection associated with T (M) = H(M)⊕ RT .

Theorem 6.4. Let M, A be two strictly pseudoconvex CR manifolds and f : M → A
a pseudo-Hermitian immersion. Then

(i) ∇ is the Tanaka–Webster connection of (M, θ).
(ii) πHα( f ) is symmetric.

(iii) aξ is H(M)-valued and for any x ∈ M, (aξ )x : H(M)x → H(M)x is self adjoint
(with respect to Gθ,x ).

We organize the proof in several steps, as follows.

Step 1. H(M) is parallel with respect to ∇.

Let Y ∈ H(M). Since f is a CR map, f∗Y ∈ H(A). Then (6.24) and Theorem 6.3
yield

α( f )(X, Y ) ∈ E(ν2k( f )) = E(ν2k
H ( f )) ⊂ H(A).



6.2 The second fundamental form 355

Thus, again by (6.24), one has f∗∇X Y ∈ H(A). To complete the proof of Step 1,
recall that since f is pseudo-Hermitian, one has

(dx f )H(M)x = [(dx f )Tx (M)] ∩ H(A) f (x)

for any x ∈ M .

Step 2. J is parallel with respect to ∇.

This follows from ∇ A JA = 0, (6.20), (6.24), and Step 1. Moreover, since ξ ∈
E(ν2k

H ( f )) �⇒ JAξ ∈ E(ν2k
H ( f )), besides ∇ J = 0 one additionally obtains

α( f )(X, JY ) = JAα( f )(X, Y ) (6.26)

for any X ∈ T (M), Y ∈ H(M).

Step 3. gθ is parallel with respect to ∇.

This follows from (6.24) since f is an isometric immersion. By Tanaka’s theorem (i.e.,
Theorem 1.3 in Chapter 1), it remains to show that T∇ is pure.

Step 4. T∇ is pure.

Let Z ∈ T1,0(M), W ∈ T (M)⊗ C. Since f is a CR map,

π A+ T∇ A ( f∗Z , f∗W ) = 0 (6.27)

(by Theorem 1.3 and the equivalent formulation of the purity conditions (1.36)–(1.38)),
where T∇ A is the torsion of ∇ A. Also π A+ : T (A) ⊗ C → T1,0(A) is the natural pro-
jection. We have

∇ A
f∗ Z f∗W = f∗∇Z W + α( f )(Z ,W )

since both sides are C-linear and coincide (by (6.24)) on real vectors. Then (6.27) may
be written

π A+{ f∗T∇(Z ,W )+ α( f )(Z ,W )− α( f )(W, Z)} = 0 (6.28)

for any Z ∈ T1,0(M), W ∈ T (M)⊗ C. We have

T (A)⊗ C = [ f∗T (M)⊗ C] ⊕ [E(ν2k( f ))⊗ C].

As noticed above, JA restricts to a complex structure on ν2k( f )(= ν2k
H ( f )). Extend

JA to E(ν2k( f ))⊗ C (by C-linearity) and set

E(ν2k( f ))1,0 = Eigen(JA; i).

Since f is a CR map, f∗ ◦ π+ = π A+ ◦ f∗ and the restriction of π A+ to E(ν2k( f ))⊗ C
is the natural projection E(ν2k( f ))⊗ C → E(ν2k( f ))1,0. Finally, note that

T1,0(A) = [ f∗T1,0(M)] ⊕ E(ν2k( f ))1,0,

so that (6.28) yields π+T∇(Z ,W ) = 0. Thus part (i) in Theorem 6.4 is proved. �
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Note that since ∇ ATA = 0, ∇T = 0, and TA = f∗T , the identity (6.24) yields

α( f )(X, T ) = 0, (6.29)

for any X ∈ T (M). Let us consider the (vector-valued) differential 1-form Q ∈
�∞(T ∗(M)⊗ E(ν2k( f ))) defined by

Q X = α( f )(T, X), (6.30)

for any X ∈ T (M). Then

τA f∗X = f∗τ X + Q X. (6.31)

Here τA denotes the pseudo-Hermitian torsion of ∇ A. At this point (6.24), (1.60), and
(6.31) yield

α( f )(X, Y ) = α( f )(Y, X)+ 2(θ ∧ Q)(X, Y ). (6.32)

Therefore, in general, α( f ) is not symmetric. Yet by (6.32), since θ vanishes on
H(M), πHα( f ) is symmetric. This proves part (ii) in Theorem 6.4. �

Let us use (6.24)–(6.25) and ∇ Ag# = 0 to obtain

g#(α( f )(X, Y ), ξ) = gθ (aξ X, Y ), (6.33)

for any X, Y ∈ T (M), ξ ∈ E(ν2k( f )). Let us set Y = T in (6.33) and use (6.29). It
follows that

θ(aξ X) = 0, (6.34)

that is, aξ is H(M)-valued. Then (6.33) and the symmetry of πHα( f ) complete the
proof of part (iii). �

6.3 CR immersions into Hn+k

We may state the following theorem:

Theorem 6.5. Let f : M → A be a pseudo-Hermitian immersion between two strictly
pseudoconvex CR manifolds M and A of CR dimensions n and n+k, respectively. Then
f is a minimal isometric immersion. Consequently, there are no pseudo-Hermitian
immersions from a compact oriented strictly pseudoconvex CR manifold of CR dimen-
sion n into the Heisenberg group Hn+k (carrying the standard strictly pseudoconvex
pseudo-Hermitian structure).

Proof. Let f : M → A be a pseudo-Hermitian immersion. Then

trace[πHα( f )] = 0. (6.35)
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Let now ∇̃ A be the Levi-Civita connection of (A, g#). We shall need the Gauss for-
mula of (M, gθ ) in (A, g#), i.e.,

∇̃ A
f∗ X f∗Y = f∗∇̃X Y + β( f )(X, Y ) (6.36)

for any X, Y ∈ T (M). Here β( f ) denotes the second fundamental form (of the isomet-
ric immersion f ), while ∇̃ is the Levi-Civita connection of (M, gθ ). Since ∇̃ A, ∇ A

are related (cf. (1.61)), the Gauss formula (6.36) and its CR analogue (6.24) furnish

β( f ) = α( f )+ Q ⊗ θ. (6.37)

By (6.29), QT = 0. Thus (6.35), (6.37) lead to

trace[β( f )] = 0, (6.38)

that is, f is minimal. Next, we need a lemma on the Riemannian structure of Hn

(endowed with the pseudo-Hermitian structure (1.25)). Let us use (1.61) (with τ = 0)
to obtain

∇̃ = ∇ − (dθ0)⊗ X0 + θ0 $ J, (6.39)

where X0 = ∂/∂t . Let us set {∂i }1≤i≤2n+1 = {∂/∂xα, ∂/∂yα, ∂/∂t}. By (6.39), we
obtain

∇̃X Y = X (Y i )∂i + 3(dθ0)(X, Y )X0 + (θ0 $ J )(X, Y ) (6.40)

for any X, Y ∈ T (Hn), where Y = Y i∂i . Let A = Hn+k . Let us set f = ( f i ), 1 ≤
i ≤ 2(n + k)+ 1. Then (6.40) and the Gauss formula of M in Hn+k yield

(� f i )∂i = trace[β( f )].

Here � is the Laplace–Beltrami operator (on C∞(M)) associated with gθ . Thus, by
(6.38), each f i is harmonic. �
Let us look at a few examples.

(1) Let n < N and consider the natural embedding f : Hn → HN given by

f (z1, . . . , zn, t) = (z1, . . . , zn, 0, . . . , 0, t).

Then f is a CR map and f (Hn) is tangent to X0 = ∂/∂t . Also

f ∗{dt + i
N∑

j=1

(z j dz j − z j dz j )
}

= dt + i
n∑
α=1

(zαdzα − zαdzα),

so that f is isopseudo-Hermitian. Next α( f ) = 0 (by (6.24)) and f is totally geodesic
(with respect to the Webster metrics) by (6.37). �

(2) Let a1, . . . , an ∈ Z, a j ≥ 2, and

X (a1, . . . , an+1) = {(z1, . . . , zn+1) : (z1)a1 + · · · + (zn+1)an+1 = 0}.
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Then X (a1, . . . , an+1) is an algebraic hypersurface with one singularity (at the origin)
and X (a1, . . . , an+1)\{0} is a complex n-dimensional manifold. The Brieskorn sphere

�2n−1(a1, . . . , an+1) = [X (a1, . . . , an+1) \ {0}] ∩ S2n+1

is a CR manifold and the inclusion�2n−1(a1, . . . , an+1)→ S2n+1 is a CR immersion.
If a1 = · · · = an+1 = a then�2n−1(a, . . . , a) is tangent to the contact vector of S2n+1

(and Theorem 6.5 applies). �
Let f : M → A be a CR immersion. We may give the following geometric

interpretation of πHα( f ). We start by giving the following definition:

Definition 6.6. (D. Jerison and J.M. Lee [227])
A regular curve γ : I → M , defined on some open interval I containing the origin, is
a parabolic geodesic of the nondegenerate CR manifold (of hypersurface type) M if

(i) γ̇ (0) ∈ H(M)γ (0).
(ii) There is c ∈ R such that

(∇γ̇ γ̇ )γ (t) = 2cTγ (t) (6.41)

for any t ∈ I . �

Lemma 6.5. Let f : M → A be a pseudo-Hermitian immersion such that for any
parabolic geodesic γ of M, f ◦ γ is a parabolic geodesic of A. Then πHα( f ) = 0.

The proof is straightforward. Let γ : I → M be a parabolic geodesic. Then

d

dt
θ(γ̇ ) = d

dt
gθ (γ̇ , T ) = gθ (∇γ̇ γ̇ , T ) = 2cgθ (T, T ) = 2c,

so that

γ̇ (t) = πH γ̇ ( f )+ 2ctTγ (t) . (6.42)

The converse of Lemma 6.5 does not hold, in general. Indeed, if πHα( f ) = 0 and
γ is a parabolic geodesic of M then (by the pseudo-Hermitian analogue of the Gauss
equation) we get only as much as

∇ A
f∗γ̇ f∗γ̇ = 2cTA( f (γ (t)))+ 2ct Q(πH γ̇ ).

Nevertheless, if Q = 0, i.e., the entire fundamental form α( f ) vanishes, then f ◦ γ is
a parabolic geodesic of A. �

As another useful tool in the theory of isometric immersions between Riemann-
ian manifolds, one derives the Gauss–Codazzi–Ricci equations, relating the second
fundamental form of the given immersion to the Riemannian curvature of the ambient
space and submanifold, respectively. It is of course desirable to have CR, or pseudo-
Hermitian, analogues of these equations, relating α( f ) to the curvature of the Tanaka–
Webster connections ∇ A and ∇, respectively. To this end, let f : M → A be a pseudo-
Hermitian immersion. Using (6.24)–(6.25) and (1.60) one may derive
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tan{R A( f∗X, f∗Y ) f∗Z} = R(X, Y )Z + aα( f )(X,Z)Y − aα( f )(Y,Z)X, (6.43)

nor{R A( f∗X, f∗Y ) f∗Z = (∇Xα( f ))(Y, Z)− (∇Yα( f ))(X, Z)+ θ(X)α( f )(τY, Z)

− θ(Y )α( f )(τ X, Z)+ (dθ)(X, Y )Q Z , (6.44)

g#(R
A( f∗X, f∗Y )ξ, η) = g#(R

⊥(X, Y )ξ, η)
+ gθ (aξ X, aηY )− gθ (aξY, aηX), (6.45)

for any X, Y, Z ∈ T (M) and ξ, η ∈ E(ν2k( f )). Here R A, R, and R⊥ denote the cur-
vature tensor fields of ∇ A, ∇, and ∇⊥, respectively. Note that only the CR analogue
(6.44) of the Codazzi equation presents a different aspect with respect to its Rieman-
nian counterpart. The additional terms in (6.44) are a manifestation of the pseudo-
Hermitian torsion τA. By (6.31), τ and Q are its tangential and normal components,
respectively.

Definition 6.7. Let M be a CR manifold and x ∈ M . A parabola tangent to M at x is
a curve γ : R → Tx (M) given by

γ (s) = s X + (s2 + as + b)cTx , s ∈ R,

for some X ∈ H(M)x and a, b, c ∈ R. �

Let {Xα, J Xα} be a holomorphic frame of H(M) defined on some open neighborhood
of x . This induces an isomorphism hx : Tx (M)→ Hn given by

hx : X + cTx !−→ (z, c), X ∈ H(M)x ,

where X = zαTα,x +zαTα,x , z = (z1, . . . , zn) ∈ Cn , c ∈ R, and Tα = 1
2 (Xα−i J Xα).

Let γ : R → Tx (M) be a parabola tangent to M at x . If a = b = 0 then hx (γ (s)) =
Ds(z, c) (where Ds : Hn → Hn is Ds(z, c) = (sz, s2c), s > 0), i.e., parabolas tangent
to a CR manifold correspond to parabolic dilations under the natural identification of
tangent spaces with the Heisenberg group.

Each Ds, s �= 0, is a CR automorphism of Hn . On the other hand, if (z, c) !→
(sz, (s2 + as + b)c) is a CR map for at least two distinct values of s �= 0, then
a = b = 0.

Definition 6.8. A curve γ : R → Hn given by γ (s) = (z, t) · (s Z , s2c) (Heisenberg
product), s ∈ R, for some (z, t), (Z , c) ∈ Hn , is called a parabola in Hn . �

If z = 0, t = 0 then γ is a parabola through the origin (neutral element) in Hn .

Lemma 6.6. Any parabolic geodesic of Hn is a parabola.

The proof is straightforward.

Theorem 6.6. Let M be a strictly pseudoconvex CR manifold of CR dimension n and
f : M → Hn+k a pseudo-Hermitian immersion. Then

(i) The Tanaka–Webster connection of M has a negative semidefinite Ricci form.
(ii) If f = ( f i ) then �b f i = 0, 1 ≤ i ≤ 2(n + k)+ 1.
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(iii) The pseudo-Hermitian scalar curvature R vanishes if and only if for any parabolic
geodesic γ of M, f ◦ γ is a parabola in Hn+k . In particular, if R = 0 then M is
a Sasakian space-form.

Here �b is the sub-Laplacian of (M, θ). If A = Hn+k then τA = 0 and consequently
τ = 0, Q = 0, by (6.31). In particular M turns out to be a Sasakian manifold. Next
R A = 0, so that (6.43) becomes

R(X, Y )Z = aα( f )(Y,Z)X − aα( f )(X,Z)Y.

A suitable contraction of indices then leads to

Ric(X, Y ) = −
2k∑
j=1

gθ (a
2
j X, Y ), (6.46)

where a j = aξ j and {ξ j }1≤ j≤2k is a given (local) orthonormal frame of ν2k( f ). Since
Q = 0 each a j is self-adjoint and thus Ric(X, X) ≤ 0 for any X ∈ T (M). Yet
Ric(X, T ) = 0, i.e., Ric is degenerate.

Let f i be the components of f : M → Hn+k . Then � f i = 0 by the proof of
Theorem 6.5. Also, since X⊥

0 = 0, it follows that

T ( f 2(n+k)+1) = 1, T ( f a) = 0, 1 ≤ a ≤ 2(n + k).

At this point (ii) follows from a formula of A. Greenleaf ([186]),

�bu = �u + T (T (u)), (6.47)

for any u ∈ C∞(M). A further contraction of indices in (6.46) gives

2R = −
2k∑
j=1

trace(a2
j ).

Then R = 0 if and only if α( f ) = 0. This follows from (6.33). Indeed, since Q = 0,
there exists a local frame with respect to which a j = diag(λ j,1, . . . , λ j,2n+1). Thus
a2

j = diag(λ2
j,1, . . . , λ

2
j,2n+1). At this point we may apply Lemma 6.5. Finally, if the

pseudo-Hermitian scalar curvature vanishes then the Tanaka–Webster connection of
M is flat and (1.71) in Chapter 1 becomes

Rθ (X, Y )Z = 1
4 {θ(X)gθ (Y, Z)X0 − θ(Y )gθ (X, Z)X0

+ θ(Z)θ(Y )X − θ(Z)θ(X)Y
− (J X ∧ JY )Z + 2(dθ)(X, Y )J Z} , (6.48)

for any X, Y, Z ∈ T (M). An inspection of (6.48) in comparison with (3) in [62],
p. 97, shows that M (with the Sasakian structure (J, X0, θ, gθ )) is a Sasakian space-
form. Theorem 6.6 is completely proved. �
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We close this section with a remark relating Sasakian and pseudo-Hermitian ge-
ometry. By a result of S. Ianus [214], any (2m + 1)-dimensional manifold A carrying
a normal almost contact structure (ϕ, ξ, η) is a CR manifold. Precisely, let L be the
distribution on A given by the Pfaffian equation η = 0. Then ϕ2 = −I on L. Let
us complexify L and ϕ and set L1,0 = Eigen(ϕ; i). Then (A,L1,0) is a CR manifold
(of hypersurface type) of CR dimension m and η is a pseudo-Hermitian structure. Let
(ϕ, ξ, η, g) be a Sasakian structure. Then G−η = g on L, so that (A,L1,0,−η) is
strictly pseudoconvex. Conversely, we have the following theorem (thus completing a
discussion started in Chapter 1):

Theorem 6.7.
Let (M, T1,0(M), J, θ, T ) be a strictly pseudoconvex CR manifold. Then (J, T, θ, gθ )
is a contact metric structure on M. The almost contact structure (J, T, θ) is normal if
and only if τ = 0. In particular, the Heisenberg group (carrying the Sasakian structure
(J,−2T,− 1

2θ,
1
4 gθ ) with θ given by (1.25)) is a Sasakian space-form of ϕ-sectional

curvature c = −3.

6.4 Pseudo-Einsteinian structures

As mentioned in the introduction to this chapter, the machinery in the previous sections
may be applied to the study of pseudo-Einsteinian structures; cf. our Chapter 5, from
which we recall a few basic facts concerning the Lee class. These are used to establish
Theorem 6.8.

6.4.1 CR-pluriharmonic functions and the Lee class

Let f : M → A be a pseudo-Hermitian immersion. Then

∂b f ∗η = f ∗∂bη (6.49)

for any (0, q)-form η on A. Here the symbol ∂b denotes both the tangential Cauchy–
Riemann operators on M and those A. Let PA be the sheaf of CR-pluriharmonic func-
tions on A. Assume for the rest of this section that f is a homeomorphism on its image.
As a consequence of (6.49), we have the following result:

Proposition 6.2. If D ⊆ A is open and v ∈ PA(D) then v ◦ f ∈ P(V ), where
V = f −1(D ∩ f (M)).

We need to recall the construction of the CR-invariant cohomology class γ (A) ∈
H1(A,PA) built in Chapter 5 of this book. Assume from now on that A is locally re-
alizable. Then there is an open covering D = {D j } j∈� of A and a pseudo-Einsteinian
pseudo-Hermitian structure # j on each D j , j ∈ �. If Ii j : Di ∩ D j → D j are
inclusions, then

I ∗
i j# j = exp(2U ji )I

∗
j i#i ,
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for some C∞ functions U ji : Di ∩ D j → R. By Theorem 5.6 in Chapter 5, U ji ∈
PA(Di ∩ D j ). Let N (D) be the nerve of D. Let C ∈ C1(N (D),PA) be the 1-
cochain mapping each 1-simplex σ = (Di D j ) of N (D) in U ji ∈ PA(∩σ). Then
C ∈ Z1(N (D),PA), i.e., C so built is a 1-cocycle with coefficients in PA. Finally
γ (A) ∈ H1(A,PA) is the equivalence class of [C] ∈ H1(N (D),PA).

Proposition 6.3. Each pseudo-Hermitian immersion f : M → A such that f : M �
f (M) (a homeomorphism) induces a map on cohomology

f ∗ : H p(A,PA)→ H p(M,P).
Let Cov(A) be the set of all open coverings of A. Let � ∈ H p(A,PA). Since

H p(A,PA) = lim−→ H p(N (D),PA),

there is D ∈ Cov(A) and h ∈ H p(N (D),PA) such that � = [h]. Let Vj = f −1(D j ∩
f (M)) and set V = {Vj } j∈� . Then V ∈ Cov(M). Let us set f ∗� = [ f ∗h] where

f ∗ : H p(N (D),PA)→ H p(N (V),P)
is described as follows. Let c ∈ Z p(N (D),PA) be such that h = [c] and set f ∗h =
[ f ∗c], where

f ∗ : C p(N (D),PA)→ C p(N (V),P)
is described as follows. Let σ = (Vj0 · · · Vjp ) be a p-simplex of N (V) and set

( f ∗c)σ = ρ f ∗σ,σ c( f ∗σ),

where f ∗σ = (D j0 · · · D jp ), while

ρ f ∗σ,σ : PA(∩ f ∗σ)→ P(∩σ), ρ f +σ,σ (v) = v ◦ f,

for any CR-pluriharmonic function v : D j0 ∩ · · · ∩ D jp → R. It is an elementary
matter to check that the definition of f ∗ doesn’t depend (at the various stages) on the
choice of representatives. Throughout we use the notation and conventions in [178],
pp. 272–275.

Theorem 6.8. (E. Barletta et al. [36])
Let f : M → A be a pseudo-Hermitian immersion (so that f : M → f (M) is a
homeomorphism) between two strictly pseudoconvex CR manifolds M and A of CR
dimensions n and N = n + k. Assume that both M, A are locally realizable (e.g.,
either M, A are compact or n > 2). Then

f ∗γ (A)− γ (M) ∈ Ker( j),

where j : H1(M,P)→ H1(M, E) is the map induced on cohomology by the natural
sheaf morphism P → E (and E is the sheaf of C∞ functions on M). Let us set ϕ j =
f ∗# j , Vj = f −1(D j ∩ f (M)), j ∈ �. If each (Vj , ϕ j ) is pseudo-Einsteinian then
f ∗γ (A) = γ (M); in particular, if A admits a global pseudo-Einsteinian structure,
then so does M.
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Proof. Let V = {Uα}α∈I ∈ Cov(M) and uβα ∈ P(Uα ∩ Uβ) such that i∗αβθβ =
exp(2uβα)i∗βαθα , where iαβ : Uα∩Uβ → Uβ are inclusions. Then γ (M) ∈ H1(M,P)
is the equivalence class of [c] ∈ H1(N (U),P), where c : �(αβ) !→ uβα . Let W ∈
Cov(M) so that W < U and W < V . Let us set W = {Wa}a∈J . There are maps
φ : J → I and ψ : J → � such that Wa ⊂ Uφ(a) ∩ Vψ(a) for each a ∈ J . Let us set
λa = r∗

a θφ(a) and μa = s∗
aϕψ(a) where ra : Wa → Uφ(a) and sa : Wa → Vψ(a) are

inclusions. Note that

k∗
abλb = exp(2hba)k

∗
baλa, (6.50)

where kab : Wa ∩ Wb → Wb are inclusions and hba = uβα ◦ rab with α = φ(a)
and β = φ(b), and rab : Wa ∩ Wb ⊂ Uα ∩ Uβ . In other words hba = ρφσ,σ (uβα),
where ρφσ,σ : P(∩φσ) → P(∩σ) is the restriction map (σ = �(ab) ∈ N (W)) and
φ : N (W) → N (U) the natural simplicial map. If φ̃ : C1(N (U,P) → C1(N (W),P)
is the induced map on cochains, then (φ̃c)σ = hba , and if φ∗ : H1(N (U),P) →
H1(N (W),P) is the induced map on cohomology then φ∗g = [φ̃c] with g = [c], so
that

γ (M) = [φ∗g]

(one checks that g ∼ φ∗g by looking at W as a common refinement of itself and U).
Both (Wa, λa) and (Wa, μa) are strictly pseudoconvex CR manifolds, so that

μa = exp(2va)λa (6.51)

for some va ∈ E(Wa). Let v ∈ C1(N (W), E) be given by v : �(a) !→ va . Similarly
to (6.50) we have

k∗
abμb = exp(2h̃ba)k

∗
baμa, (6.52)

where h̃ba = ũ j i ◦ sab with i = ψ(a), j = ψ(b) and sab : Wa ∩ Wb ⊂ Vi ∩ Vj . Also
ũ j i = U ji ◦ fi j and fi j : Vi ∩ Vj → Di ∩ D j is induced by f . Finally (6.50)–(6.52)
lead to

h̃ba = vb ◦ kab + hba − va ◦ kba . (6.53)

Let j : C1(N (W),P) → C1(N (W), E) be induced by the natural sheaf morphism
P → E (i.e., P(U ) → E(U ) is the inclusion, for each U ⊆ M open). Then (6.53)
may be written

jψ̃ f ∗C = δEv + j φ̃c,

where

δE : C1(N (W), E)→ C2(N (W), E)
is the coboundary operator. Consequently
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jφVW f ∗G = jφUWg,

where j : H1(N (W),P) → H1(N (W), E). Finally, since j and φ∗ (respectively
j and ψ∗) commute, it follows that j ( f ∗γ (A) − γ (M)) = 0. Note that in general
Ker( j) �= 0 (because B1(N (W),P) ⊂ B1(N (W), E), strict inclusion). If each μa is
pseudo-Einsteinian then va ∈ P(Wa) and (6.53) may be written

φ̃ f ∗C = δv + φ̃c,

where δ : C1(N (W),P)→ C2(N (W),P) is the coboundary operator. Thus

φVW f ∗G = φUWg,

that is,

f ∗γ (A) = γ (M),

and Theorem 6.8 is proved. �

6.4.2 Consequences of the embedding equations

In order to prove Theorem 6.1 we shall need the following lemma:

Lemma 6.7. For any X, Y ∈ T (M) and any ξ ∈ ν2k( f ) the following identity holds:

gθ (aξ J X + Jaξ X, Y ) = gθ (T∇ A ( f∗X, f∗Y ), JAξ). (6.54)

Using

gθ (aξ X, Y ) = g#(α( f )(X, Y ), ξ),

α( f )(X, Y )− α( f )(Y, X) = nor{T∇ A ( f∗X, f∗Y )},
α( f )(X, JY ) = JAα( f )(X, Y ),

(6.55)

we may perform the calculation

gθ (aξ J X, Y ) = g#(α( f )(J X, Y ), ξ)

= g#(α( f )(Y, J X)+ T∇ A ( f∗ J X, f∗Y ), ξ)

= g#(JAα( f )(Y, X)+ T∇ A ( f∗ J X, f∗Y ), ξ)

= g#(JAα( f )(X, Y ), ξ)+ g#(T∇ A ( f∗ J X, f∗Y ), ξ)

− g#(JA nor{T∇ A ( f∗X, f∗Y )}, ξ).
Finally,

J 2
A = −I + θ ⊗ TA,

g#(JA X, JAY ) = g#(X, Y )−#(X)#(Y ), X, Y ∈ T (A),

lead to (6.54). �



6.4 Pseudo-Einsteinian structures 365

Let ξ ∈ ν2k( f ) be such that R⊥(X, Y )ξ = 0, for any X, Y ∈ T (M). Then

g#(R
A( f∗X, f∗Y )ξ, η) = g#(R

⊥(X, Y )ξ, η)+ gθ (aηY, aξ X)− gθ (aηX, aξY ),

aJAξ X = Jaξ X,

furnish

R A( f∗X, f∗Y, ξ, JAξ) = gθ (JaξY, aξ X)− gθ (Jaξ X, aξY ). (6.56)

Throughout, R(X, Y, Z ,W ) = gθ (R(X, Y )Z ,W ). �
Note that (6.55) may be restated as

gθ (aξ X, Y ) = gθ (X, aξY )+ g#(T∇ A ( f∗X, f∗Y ), ξ). (6.57)

By (6.57) and J 2 = −I + θ ⊗ T we obtain

gθ (JaξY, aξ X) = −gθ (aξ Jaξ X, Y )− g#(T∇ A ( f∗Y, f∗ Jaξ X), ξ). (6.58)

Let us replace X by aξ X in (6.54) of Lemma 6.7 to obtain

gθ (aξ Jaξ X, Y ) = −gθ (Ja2
ξ X, Y )

+ g#(T∇ A ( f∗aξ X, f∗Y ), JAξ)+ g#(T∇ A ( f∗ Jaξ X, f∗Y ), ξ). (6.59)

Substitution from (6.59) into (6.58) now leads to

gθ (JaξY, aξ X) = gθ (Ja2
ξ X, Y )− g#(T∇ A ( f∗aξ X, f∗Y ), JAξ). (6.60)

On the other hand, we may replace X by Y and Y by Jaξ X in (6.57). The resulting
identity and (6.59) furnish

gθ (aξ X, aξY ) = −gθ (Ja2
ξ X, Y )+ g#(T∇ A ( f∗aξ X, f∗Y ), JAξ). (6.61)

Finally, by (6.60)–(6.61) the (CR analogue of) Ricci’s equation becomes

R A( f∗X, f∗Y, ξ, JAξ) = 2gθ (Ja2
ξ X, Y )− 2g#(T∇ A ( f∗aξ X, f∗Y ), JAξ), (6.62)

for X, Y ∈ T (M) and ξ ∈ ν2k( f ) with the property that R⊥(X, Y )ξ = 0. Let

{ξ1, . . . , ξk, JAξ1, . . . , JAξk}
be a local orthonormal frame of ν2k( f ). Moreover, let

{E1, . . . , E2n+1}
be a local orthonormal frame of T (M), with E2n+1 = T and E j ∈ H(M), for any
1 ≤ j ≤ 2n. Let

K (Z ,W ) = trace{V → R A(V, Z)W }.
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It is our purpose to compute K ( f∗X, f∗Y ) for any X, Y ∈ T (M). To this end, note
that

tan{R A( f∗X, f∗Y ) f∗Z} = R(X, Y )Z + aα( f )(X,Z)Y − aα( f )(Y,Z)X

may be restated as

R A( f∗X, f∗Y, f∗Z , f∗W ) = R(X, Y, Z ,W )

+ g#(α( f )(Y,W ), α( f )(X, Z))− g#(α( f )(X,W ), α( f )(Y, Z)), (6.63)

for any X , Y , Z , W ∈ T (M). To compute traces we use

K ( f∗X, f∗Y ) =
2n+1∑
i=1

R A( f∗Ei , f∗X, f∗Y, f∗Ei )

+
k∑

a=1

{R A(ξa, f∗X, f∗Y, ξa)+ R A(JAξa, f∗X, f∗Y, JAξa)}.

We may assume that Eα+n = J Eα, 1 ≤ α ≤ n. Consequently

2n+1∑
i=1

α( f )(Ei , Ei ) = 0.

Of course, here α( f ) is not the second fundamental form of f (with respect to the
Webster metrics of M and A) but rather its pseudo-Hermitian analogue. Nevertheless,
as previously shown, the “true” second fundamental form of f is traceless as well (and
f is a minimal isometric immersion). This is natural since pseudo-Hermitian immer-
sions appear to behave very much like holomorphic isometric immersions between
Kählerian manifolds. The implications of minimality have been discussed earlier in
this chapter. Next (6.63) leads to

Ric(X, Y ) = K ( f∗X, f∗Y )

−
k∑

a=1

{
R A(ξa, f∗X, f∗Y, ξa)+ R A(JAξa, f∗X, f∗Y, JAξa)

}
−

2n+1∑
i=1

g#(α( f )(X, Ei ), α( f )(Ei , Y )), (6.64)

for any X, Y ∈ T (M). �
At this point we may start the proof of Theorem 6.1. We shall need the first Bianchi

identity for ∇ A (cf., e.g., S. Kobayashi and K. Nomizu [241], Vol. I, p. 135)∑
V Z W

R A(V, Z)W =
∑

V Z W

{(∇ A
V T∇ A )(Z ,W )+ T∇ A (T∇ A (V, Z),W )}, (6.65)
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for any V, Z ,W ∈ T (A). Here
∑

V Z W is the cyclic sum over V, Z ,W . Let us set
V = f∗X , Z = JA f∗Y and W = ξa in (6.65) and take the inner product of the
resulting identity with JAξ . This procedure leads to

R A( f∗X, JA f∗Y, ξa, JAξa) = Ea(X, Y )

+ R A(ξa, JA f∗Y, f∗X, JAξa)− R A(ξa, f∗X, JA f∗Y, JAξa), (6.66)

where

Ea(X, Y ) = g#((∇ A
f∗ X T∇ A )(JA f∗Y, ξa), JAξa)

+ g#((∇ A
JA f∗Y T∇ A )(ξa, f∗X), JAξa)+ g#((∇ A

ξa
T∇ A )( f∗X, JA f∗Y ), JAξa)

+ g#(T∇ A (T∇ A ( f∗X, JA f∗Y ), ξa)JAξa)+ g#(T∇ A (T∇ A (JA f∗Y, ξa), f∗X), JAξa)

+ g#(T∇ A (ξa, f∗X), JA f∗Y ), JAξa).

Note that

R A(V, Z)JAW = JA R A(V, Z)W (6.67)

(as a consequence of ∇ A JA = 0) for any V, Z ,W ∈ T (A). By (6.67) and #(ξa) = 0
we obtain

R A(ξa, f∗X, JA f∗Y, JAξa) = R A(ξa, F∗X, f∗Y, ξa). (6.68)

Next, replace ξ by ξa and Y by JY in (6.62) to obtain (provided R⊥ = 0)

R A( f∗X, f∗ JY, ξa, JAξa)

= 2gθ (a
2
ξa

X, Y )− 2g#(T∇ A ( f∗aξa X, f∗ JY ), JAξa), (6.69)

for any X, Y ∈ T (M). At this point we may use (6.68)–(6.69) to write (6.66) as
follows:

2gθ (a
2
ξa

X, Y )− 2g#(T∇( f∗aξa X, f∗ JY ), JAξa)

= R A(ξa, JA f∗Y, f∗X, JAξa)− R A(ξa, f∗X, f∗Y, ξa)+ Ea(X, Y ), (6.70)

for any X, Y ∈ T (M). To deal with the torsion terms in (6.70) we need the following
lemma:

Lemma 6.8. Let Tα = 1
2 (Eα − i J Eα), 1 ≤ α ≤ n. Then

Ea(Tα, Tβ) = ig#(τAξa, JAξa)hαβ. (6.71)

The proof of Lemma 6.8 is a straightforward consequence of

T∇ A (Z ,W ) = T∇ A (Z ,W ) = 0,

T∇ A (Z ,W ) = 2iG#(Z ,W )TA,

τA Z ∈ T0,1(A),

for any Z ,W ∈ T1,0(A). �
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Lemma 6.9. For any X, Y, Z ,W ∈ H(A) the following identity holds:

R A(X, Y, Z ,W ) = R A(Z ,W, X, Y )

− A#(Y, Z)(d#)(W, X)− A#(X,W )(d#)(Z , Y )

− A#(W, Y )(d#)(X, Z)− A#(Z , X)(d#)(Y,W ), (6.72)

where A#(X, Y ) = g#(τA X, Y ).

For the proof of Lemma 6.9 the reader may see Chapter 1 of this book. Using (6.72)
we may compute the first curvature term in (6.70) as

R A(ξa, f∗ JY, f∗X, JAξa)

= R A( f∗X, JAξa, ξa, f∗ JY )− A#( f∗ JY, f∗X)(d#)(JAξa, ξa)

− A#(ξa, JAξa)(d#)( f∗X, f∗ JY ), (6.73)

for any X, Y ∈ H(M). Also

R A( f∗X, JAξa, ξa, f∗ JY ) = −R A(JAξa, f∗X, f∗Y, JAξa). (6.74)

Let us substitute from (6.73)–(6.74) into (6.70) and use the identities

A#( f∗X, f∗Y ) = A(X, Y ),

(d#)( f∗X, f∗ JY ) = g#(X, Y ),

to obtain

2g#(a
2
ξa

X, Y )− 2g#(T∇ A ( f∗aξa X, f∗ JY ), JAξa)

= R A(JAξa, f∗X, f∗Y, JAξa)− R A(ξa, f∗X, f∗Y, ξa)

+ A(X, JY )− gθ (X, Y )A#(ξa, JAξa)+ Ea(X, Y ), (6.75)

for any X, Y ∈ H(M). On the other hand (using (6.54)) one may show that

2n+1∑
i=1

g#(α( f )(X, Ei ), α( f )(Ei , Y ))

=
k∑

a=1

{
2gθ (a

2
ξa

X, Y )+ g#(T∇ A ( f∗Y, f∗aξa X), ξa)

− g#(T∇ A ( f∗Y, f∗ Jaξa X), JAξa)

}
. (6.76)

Finally, substitution from (6.75)–(6.76) into (6.64) gives

Ric(X, Y ) = K ( f∗X, f∗Y )

−
k∑

a=1

{
g#(T∇ A ( f∗ Jaxia X, f∗Y ), ξa)− 2gθ (T∇ A ( f∗aξa , f∗ JY ), JAξa)

− A(X, JY )+ gθ (X, Y )A#(ξa, JAξa)− Ea(X, Y )

}
, (6.77)
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for X, Y ∈ H(M). Let us extend both sides of (6.77) by C-linearity to H(M) ⊗ C.
It follows that (6.77) holds for any X, Y ∈ H(M) ⊗ C (since both sides are C-linear
and coincide on real vectors). Let us set X = Z , Y = W , with Z ,W ∈ T1,0(M). We
obtain

Ric(Z ,W ) = K ( f∗Z , f∗W )+
k∑

a=1

{A#(ξa, JAξa)gθ (Z ,W )− Ea(Z ,W )}. (6.78)

Finally, we set Z = Tα and W = Tβ in (6.78) and use (6.71) to obtain (6.1). �

6.4.3 The first Chern class of the normal bundle

Let (M, θ) and (A,#) be two strictly pseudoconvex CR manifolds and f : M → A
a pseudo-Hermitian immersion. The purpose of the present section is to look at the
converse of Theorem 6.1, i.e., it may be asked whether (6.1) yields R⊥ = 0. We
establish the following weaker result. Let ν2k( f )→ M be the normal bundle of f . By
a result in this chapter, ν2k( f )x ⊂ H(A) f (x), for any x ∈ M , so that JA descends to a
complex structure J⊥ in ν2k( f ). Let us extend J⊥ by complex linearity to ν2k( f )⊗C
and let ν2k( f )1,0 be the eigenbundle corresponding to the eigenvalue i .

Theorem 6.9. Let f : M → A be a pseudo-Hermitian immersion with the property
Rαβ = Kαβ , where Kαβ = K ( f∗Tα, f∗Tβ). If the Tanaka–Webster connection of A

has parallel pseudo-Hermitian torsion (that is, ∇ AτA = 0) then c1(ν
2k( f )1,0) = 0.

Throughout, if E → M is a complex vector bundle then c1(E) ∈ H2(M,R) denotes
its first Chern class. To prove Theorem 6.9 we need the following lemma:

Lemma 6.10. Let f : M → A be a pseudo-Hermitian immersion. If the ambient
space A has parallel pseudo-Hermitian torsion then

(∇X A)(Y, Z) = g#(α( f )(X, Z), Q( f )Z)+ g#(Q( f )Y, α( f )(X, Z)), (6.79)

for any X, Y, Z ∈ T (M).

The proof of Lemma 6.10 follows from ∇ AτA = 0, the (pseudo-Hermitian analogues
of the) Gauss–Weingarten formulas, and

τA f∗X = f∗τ X + Q( f )X

in a straightforward manner. �
Let us recall that c1(T1,0(M)) is represented by (i/(2π))dωαα , where

dωαα = Rαβθ
α ∧ θβ + Wα

αβθ
β ∧ θ − Wα

αβ
θβ ∧ θ,

Wα
βγ = Aβγ,σ hασ , Aαβ,γ = (∇Tγ A)(Tα, Tβ).

Here ωαβ are the connection 1-forms of ∇. Cf. Chapter 5 of this book. Moreover, let

{#1, . . . , #N } be the admissible coframe corresponding to {T1, . . . , Tn, ζ1, . . . , ζk},
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where ζa = (1/2)(ξa − i JAξa). Then f ∗#α = θα and f ∗#α+n = 0. Next c1(T1,0(A))

is represented by (i/(2π))d� j
j , where �i

j are the connection 1-forms of ∇ A and
(A#)i j,k = 0 yields

d� j
j = K jk #

j ∧#k .

Finally (6.79) gives Aαβ,γ = 0, so that f ∗c1(T1,0(A)) = c1(T1,0(M)), and the direct
sum decomposition

T1,0(A) f (x) = [(dx f )T1,0(M)x ] ⊕ ν2k( f )1,0x , x ∈ M,

yields c1(ν
2k( f )1,0) = 0. �

Let f : M → A be a pseudo-Hermitian immersion. Assume that R A = 0 (e.g.,
A = HN ). Then (6.64) gives

Ric(X, Y ) = −
2n+1∑
i=1

g#(α( f )(X, Ei ), α( f (Ei , Y )),

or (by computing traces)

2ρ = −‖α( f )‖2 ≤ 0. (6.80)

Theorem 6.10. (E. Barletta et al. [36])
There is no pseudo-Hermitian immersion of(

Hn(s), |x |−2
{

dt + 2
n∑
α=1

(xαdyα − yαdxα)
})

into a Tanaka–Webster flat strictly pseudoconvex CR manifold.

Proof. By a result in Chapter 5 of this book, we have

Rαβ = (n + 1)|x |−2‖z‖2hαβ, (6.81)

or (by computing traces)

ρ = n(n + 1)|x |−2‖z‖2. (6.82)

Assume that there is a strictly pseudoconvex CR manifold A with R A = 0 and a
pseudo-Hermitian immersion f : Hn(s) → A. Then (6.82) contradicts (6.80) and
Theorem 6.10 is completely proved. �

A remark regarding the analogy with Kählerian geometry (cf. [93], p. 554) is in
order. Let f : M → A be a pseudo-Hermitian immersion. Assume that c1(T1,0(M)) =
0. Then there is a real 1-form η on M such that

� = dη, (6.83)

where � = (i/(2π))dωαα .
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Definition 6.9. A C-valued 2-form on M is a (1, 1)-form if T � η = 0 and η(Z ,W ) =
η(Z ,W ) = 0 for any Z ,W ∈ T1,0(M). �

Let �1,1(M) be the bundle of (1, 1)-forms on M .

Definition 6.10. Let

Lθ : C∞(M)⊗ C → �1,1(M)

be defined by setting

Lθ f = − f dθ ,

for any C∞ function f : M → C. Also, we consider

�θ : �1,1(M)→ C∞(M)⊗ C

given by

(�θψ, f )θ = (ψ, Lθ f )θ , ψ ∈ �∞(�1,1(M)). �

Here ( , )θ is the usual L2 inner product

(φ, ψ)θ =
∫

M
〈φ,ψ〉 θ ∧ (dθ)n,

for any (1, 1)-forms φ,ψ on M , at least one of compact support, where

〈φ,ψ〉 = φαβψ
αβ ,

φ = φαβθ
α ∧ θβ, ψ = ψαβθ

α ∧ θβ,
ψαβ = ψαβ, ψαβ = ψλμhλαhμβ.

We may extend �θ to an operator

�θ : �2T ∗M ⊗ C → C∞(M)⊗ C

by declaring it to be zero on �0,2(M)⊕�2,0(M). Then

�θ� = − 1

π
ρ,

and we may apply �θ to (6.83) to obtain

1

2π
ρ = nη0 + i div(Z), (6.84)

where η = ηαθ
α + ηαθ

α + η0θ and Z = ZαTα − ZαTα with Zα = hαβηβ . The
divergence in (6.84) is taken with respect to the volume form  = θ ∧ (dθ)n . There-
fore, if

∫
M η0 ≥ 0 then (6.80) gives α( f ) = 0 and thus R⊥ = 0 (as a consequence
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of the (pseudo-Hermitian analogue of the) Ricci equation) provided that R A = 0.
Yet, by a previous result, if (M, θ) is pseudo-Einsteinian, one representative of � is
η = (1/(2πn))ρθ , so that (in view of (6.80)) the hypothesis

∫
M η0 ≥ 0 is gener-

ically not satisfied. Indeed, let η′ be another real 1-form such that � = dη′. If for
instance H1(M,R) = 0 then η′ = η + du for some C∞ function u : M → R and
(6.84) yields ∫

M
T (u) = 0,

that is, ∫
M
η′0 =

∫
M
η0 ≤ 0. �

Let us look at several examples.

(1) (Heisenberg groups) Let Hn be the Heisenberg group, endowed with a standard
strictly pseudoconvex CR structure spanned by Tα = ∂/∂zα+i zα∂/∂t , and the contact
form θ0 = dt + i

∑n
α=1{zαdzα − zαdzα}, zα = zα . The map f : Hn → HN , N =

n+k, k ≥ 1, induced by the natural inclusion Cn → CN (i.e., f (z, t) = (z, 0, t), 0 ∈
Ck), is a pseudo-Hermitian immersion with a flat normal Tanaka–Webster connection.
R⊥ = 0 follows from the Ricci equation.

(2) (Quotients of the Heisenberg group by discrete groups of dilations) Let Hn(s),
0 < s < 1, carry the CR structure induced by the covering map π : Hn \{0} → Hn(s),
and the contact 1-form θ given by

θπ(x) = |x |−2θ0,x ◦ (dxπ)
−1, (6.85)

for any x ∈ Hn \ {0}. The map F : Hn(s) → HN (s) induced by f : Hn \ {0} →
HN \ {0} (i.e., F ◦ π = ! ◦ f , where ! : HN \ {0} → HN (s) is the natural covering
map) is a pseudo-Hermitian immersion. Indeed, if HN (s) is endowed with the contact
1-form # given by

#!(X) = |X |−2#0,X ◦ (dX!)
−1, (6.86)

#0 = ds +
N∑

j=1

{w j dw j − w j dw j },

for any X ∈ HN \{0}, then | f (x)| = |x | (Heisenberg norms), x ∈ Hn , yields F∗# = θ

(i.e., F is isopseudo-Hermitian). Moreover, we may write (6.85)–(6.86) as

θ = e2uθ0, # = e2U#0

(with U = log |X |−1 and u = U ◦ f ). Therefore, the characteristic directions T and
TA of (Hn(s), θ) and (HN (s),#) are respectively given by

T = e−2u
{
∂

∂t
− 2iuβTβ + 2iuβTβ

}
,

TA = e−2U
{
∂

∂s
− 2iU j W j + 2iU j W j

}
.
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Note that

U j ( f (x)) = |x |2W j (U ) f (x)

and

W j (U ) = − 1
2 |X |−4w j�

where �(w, s) = |w|2 + is (note that � is CR-holomorphic). Finally

Uα = |x |2Uα , Uα ◦ f = uα , Uα ◦ f = uα,

and

Tα(u) = − 1
2 |x |−4zαφ

(where φ = � ◦ f ) yield f∗T = TA. Next, let us compute the curvature of the normal
Tanaka–Webster connection ∇⊥ of F . We perform our task in a more general setting,
as follows. Let f : M → A be a pseudo-Hermitian immersion between (M, θ) and
(A,#) and set θ̂ = e2uθ, #̂ = e2U#, with U ∈ C∞(A), u = U ◦ f . Readily
f ∗#̂ = θ̂ . Let us set

T̂ = e−2u{T − 2iuβTβ + 2iuβTβ},
where T is the characteristic direction of (M, θ). Since Uα ◦ f = uα we obtain

T̂A( f (x)) = ( f∗T̂ )( f (x))

+ 2ie−2u(x){Uα+n( f (x))Wα+n( f (x))− Uα+n( f (x))Wα+n( f (x))},
for any x ∈ M . Thus f∗T̂ = T̂A (i.e., f is a pseudo-Hermitian immersion from (M, θ̂ )
into (A, #̂)) if and only if ζa(U ) = 0. Let us look now at the relation between ∇⊥ and
∇̂⊥ (the normal Tanaka–Webster connection of (M, θ̂ ) in (A, #̂)). Let ν̂2k( f )x be the
orthogonal complement (with respect to g

#̂, f (x)) of (dx f )Tx (M) in T f (x)(A), for any
x ∈ M . Then ν̂2k( f )x = ν2k( f )x , although the Webster metrics g

#̂
and g# are not

conformally related.
Assume from now on that f is a pseudo-Hermitian immersion both as a map of

(M, θ) into (A,#) and as a map of (M, θ̂ ) into (A, #̂). We need to recall (cf. Chap-
ter 2) the following result:

Lemma 6.11. Let (M, T1,0(M), θ, T ) be a nondegenerate CR manifold. Then, under a
transformation θ̂ = e2uθ , the Christoffel symbols of the Tanaka–Webster connections
of (T1,0(M), θ) and (T1,0(M), θ̂ ) are related by

γ̂ σβα = �σβα + 2uβδ
σ
α + 2uαδ

σ
β ,

�̂σ
βα

= �σ
βα

− 2uσ hβα,

e2u�̂σ
0̂α

= �σ0α + 2u0δ
σ
α + iuα,

σ + 2i�σμαuμ − 2i�σμαuμ,

where uα,σ = uα,βhσβ .
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Using Lemma 6.11, the Weingarten formula, and

∇̂ A
f∗ Xξ = − f∗âξ X + ∇̂⊥

X ξ,

for X ∈ X (M) and ξ ∈ �∞(ν2k( f )), we obtain

∇̂⊥
Tβ ζa = ∇⊥

Tβ ζa + 2uβζa,

∇̂⊥
Tβ
ζa = ∇⊥

Tβ
ζa ,

∇̂T̂ ζa = ∇⊥
T̂
ζa + 2u0e−2uζa .

(6.87)

If M = Hn and A = HN we have ∇ Aζa = 0 and thus ∇⊥ζa = 0. Thus (by (6.87)) if
M = Hn(s) and A = HN (s) the normal Tanaka–Webster connection of F is given by

∇⊥
Tβ ζa = 2uβζa,

∇⊥
Tβ
ζa = 0,

∇⊥
T ζa = 2u0e−2uζa,

(6.88)

with u = log |x |−1. Next (as a consequence of (6.88)) we may use the identities

[Tα, Tβ ] = 0, [Tα, Tβ ] = −2iδαβ
∂

∂t
,

and

∇⊥
∂/∂tζa = 2(u0 + 2iuβuβ)ζa

to obtain

R⊥(Tα, Tβ = ζa = 0, R⊥(Tα, Tβ)ζa = 0, (6.89)

and

R⊥(Tα, Tβ)ζa = {−2Tβ(uα9 + 4iδαβ(u0 + 2iuσuσ )}ζa .
Finally, taking into account the identities

uα = − 1
2 |x |−4zαφ, Tβ(uα) = − 1

2 |x |−4δαβφ,

u0 = − 1
2 |x |−4t, φφ = |x |4,

uσuσ = 1
4 |x |−4‖z‖2,

it follows that

R⊥(Tα, Tβ)ζa = −|x |−4φδαβζa . (6.90)

Summing up, the pseudo-Hermitian immersion F : Hn(s) → HN (s) has (by (6.90))
R⊥ �= 0. However, (6.81) yields Kαβ = λRαβ with λ = (N + 1)/(n + 1).



6.4 Pseudo-Einsteinian structures 375

(3) (Pseudo-Siegel domains) Let (α, β) = (α1, . . . , αn, β) ∈ Zn+1+ be a fixed
multi-index and

Dα,β = {
(z1, . . . , zn, w) ∈ Cn+1 :

n∑
j=1

|z j |2α j + I m(wβ)− 1 < 0
}

(cf. [45]). Then D1,1 is the Siegel domain in Cn+1 (and ∂D1,1 � Hn). Assume that
β > 1 from now on. The boundary ∂Dα,β of Dα,β inherits a CR structure (as a real
hypersurface of Cn+1) spanned by

Tj = ∂

∂z j
− 2i f j

∂

∂w
(6.91)

in some neighborhood of w �= 0 where

f j = α j

β
w1−β z

α j −1
j z

α j
j .

Hence we have the commutation relations

[Tj , Tk] = 0,

[Tj , Tk] = 2i

β

{
α2

j |z j |2(α j −1)

wβ−1

∂

∂w
+ α2

k |zk |2(αk−1)

wβ−1

∂

∂w

}
δ jk . (6.92)

Endow ∂Dα,β with the pseudo-Hermitian structure θ = θα,β given by

θ = βwβ−1dw + βwβ−1dw + 2i
n∑

j=1

(g j dz j − g j dz j ), (6.93)

where

g j = α j z
α j −1
j z

α j
j .

Therefore the Levi form of (∂Dα,β, θ) is diag(λ1, . . . , λn), where

λ j = 4α2
j |z j |2(α j −1).

Therefore, if α j > 1, 1 ≤ j ≤ n, then Gθ is degenerate at each point of
⋃n

j=1 M j ,
where M j is the trace of the complex hyperplane L j = {(z, w) : z j = 0} on the
boundary of Dα,β . Next

Uα,β = ∂Dα,β \
[ n⋃

j=1

M j

]
(an open subset of ∂Dα,β ) is a strictly pseudoconvex CR manifold. The characteristic
direction T of
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dθ = −4iα2
j |z j |2(α j −1)dz j ∧ dz j

is given by

T = 1

4β|w|2(β−1)

{
wβ−1 ∂

∂w
+ wβ−1 ∂

∂w

}
.

Note that (6.92) may be written

j �= k �⇒ [Tj , Tk] = 0,

[Tj , Tj ] = iλ j T .

Also

[Tj , T ] = 0.

Using the explicit expressions of the Christoffel symbols in Chapter 1, we derive the
(Christoffel symbols of the) Tanaka–Webster connection of (Uα,β, θ):

�s
jk = ∂

α j − 1
z jδ jkδ js, �

s
jk

= 0, �s
0k = 0. (6.94)

Therefore (Uα,β, θ) has a vanishing pseudo-Hermitian torsion (τ = 0). As a straight-
forward consequence of (6.94) the Tanaka–Webster connection of (Uα,β, θ) is flat
(R = 0).

Finally, we look at the structure of the points of weak pseudoconvexity of ∂Dα,β .
Let 1 ≤ p ≤ n and set

M j1··· jp = ∂Dα,β ∩ L j1 ∩ · · · ∩ L jp .

Then

M j1··· jp � ∂Dα j1··· jp ,β
⊂ Cn+1−p

(a diffeomorphism), where α j1··· jp = (α1, . . . , α̂ j1 , . . . , α̂ jp , . . . , αn). A natural ques-
tion is how M j1··· jp sits in ∂Dα,β , i.e., equivalently study the geometry of the immer-
sion f : ∂D(α1,...,αk ),β → ∂Dα,β induced by the natural map

Ck × C → Cn × C, (z, w) !→ (z, 0, w), 0 ∈ Ck, 0 < k < n.

Using (6.91) one may show that f is a CR immersion. Finally (6.93) yields

f ∗θα,β = θ(α1,...,αk ),β ,

i.e., f is isopseudo-Hermitian.



7

Quasiconformal Mappings

Our scope in Chapter 7 is to report on results by A. Korányi and H.M. Reimann [254]–
[256]. The central notion is that of a K -quasiconformal map, that is, a contact transfor-
mation f : M → M ′ of a strictly pseudoconvex CR manifold M , whose differential
d f is a quasi-isometry as a map d f : H(M)→ H(M ′), with respect to the Levi forms.
One of the main results of A. Korányi and H.M. Reimann (cf. op. cit.) is that the exis-
tence of smooth K -quasiconformal maps f : Hn → M ⊂ Cn+1 from the Heisenberg
group is tied to the existence of solutions to the tangential Beltrami equations, very
much as in the one complex variable counterpart of the theory, cf. L.V. Ahlfors [1].
We also present a generalization of the celebrated Fefferman theorem (cf. [139]) that
biholomorphisms of strictly pseudoconvex domains extend smoothly up to the bound-
ary, and therefore induce CR isomorphisms of the boundaries. Here one weakens the
hypothesis on the given transformation F : � → �, i.e., one assumes only that F is
a symplectomorphism (with respect to the Kähler form associated with the Bergman
metric) that extends smoothly up to the boundary. The (weaker) conclusion is that the
boundary values of F give rise at least to a contact transformation (cf. Theorem 7.6).
The proof relies on the Fefferman asymptotic expansion of the Bergman kernel of �.
Symplectomorphisms of the Siegel domain are shown to satisfy the (several complex
variables) Beltrami system (cf. E. Barletta et al. [41])

∂ f

∂z j
=
∑

k

dk
j

∂ f

∂zk
. (7.1)

The reader may consult L. Wang [419], for an analysis of the solutions to (7.1). Clos-
ing a circle of ideas, the boundary values of solutions to (7.1) satisfy the tangential
Beltrami equations.

7.1 The complex dilatation

Let (M, T1,0(M)) be an orientable CR manifold (of hypersurface type) of CR dimen-
sion n. Let H(M) be its Levi distribution.
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Definition 7.1. A C2 diffeomorphism f : M → M ′ of M onto another CR manifold
M ′ is a contact transformation if

(dx f )H(M)x = H(M ′) f (x) ,

for any x ∈ M . �
Assume from now on that both M and M ′ are strictly pseudoconvex and let θ and θ ′
be pseudo-Hermitian structures, on M and M ′ respectively, whose corresponding Levi
forms are positive definite. Let f : M → M ′ be a contact transformation. Then

f ∗θ ′ = λ f (θ, θ
′) θ (7.2)

for some nowhere-vanishing C∞ function λ f (θ, θ
′) : M → R.

Proposition 7.1. For any contact transformation f : M → M ′ of strictly pseudocon-
vex CR manifolds, the property

λ f (θ, θ
′) > 0 (7.3)

(when achieved) is a CR invariant property.

Indeed, if θ̂ and θ̂ ′ are pseudo-Hermitian structures on M and M ′ such that the corre-
sponding Levi forms are positive definite, then there are C∞ functions u : M → R
and u′ : M ′ → R such that θ̂ = euθ and θ̂ ′ = eu′

θ ′. Let v := u′ ◦ f . Then (by (7.2))

λ f (θ̂ , θ̂
′) = ev−uλ f (θ, θ

′),

and Proposition 7.1 is proved. �
We shall need the following lemma:

Lemma 7.1. Let M and M ′ be two strictly pseudoconvex CR manifolds and f : M →
M ′ a contact transformation. Assume that f possesses the CR invariant property (7.3).
Then (dx f )Z does not belong to T1,0(M ′) f (x), for any Z ∈ T1,0(M)x , Z �= 0, and
any x ∈ M.

Proof. The proof is by contradiction. Assume that

(dx f )Z ∈ T1,0(M
′) f (x) ,

for some Z ∈ T1,0(M)x , Z �= 0, and some x ∈ M . Let θ and θ ′ be pseudo-Hermitian
structures on M and M ′ respectively such that the corresponding Levi forms Lθ and
Lθ ′ are positive definite. Then

Lθ ′, f (x)((dx f )Z , (dx f )Z) > 0.

On the other hand,

Lθ ′, f (x)((dx f )Z , (dx f )Z) = −i(dθ ′) f (x)((dx f )Z , (dx f )Z)

= −i( f ∗dθ ′)x (Z , Z) = −id(λ f θ)x (Z , Z)

= −i
{
(dλ f ) ∧ θ + λ f dθ

}
x (Z , Z)

= iλ f (dθ)x (Z , Z) = −λ f Lθ,x (Z , Z) < 0,

a contradiction. Here λ f is short for λ f (θ, θ
′). �
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Definition 7.2. Let T1,0(M) f ⊂ H(M)⊗ C be defined by setting

T1,0(M) f = {Z ∈ H(M)⊗ C : (d f )Z ∈ T1,0(M
′)}. �

Lemma 7.2. Let f : M → M ′ be a contact transformation as in Lemma 7.1. Then
there is a C-antilinear bundle map μ : T1,0(M)→ T1,0(M) such that

T1,0(M) f = {Z − μZ : Z ∈ T1,0(M)}.

Proof. Let π ′
0,1 : H(M ′)⊗ C → T0,1(M ′) be the natural projection. Then

T1,0(M) f = Ker(π ′
0,1 ◦ (d f )).

Let {Tα} be a frame of T1,0(M) on U , and {T ′
α} a frame of T1,0(M ′) on U ′, such that

f (U ) ⊆ U ′. Then

(d f )Tα = f βα T ′
β + f β̄α T ′̄

β
, (d f )Tᾱ = f βᾱ T ′

β + f β̄ᾱ T ′̄
β
,

for some f βα , f β̄α : U → C. Here f βᾱ = f β̄α and f β̄ᾱ = f βα . The matrix
[

f β̄ᾱ

]
is

nonsingular at each point of U . Indeed, if det
(

f β̄ᾱ

)
= 0 at some x0 ∈ U then

f β̄ᾱ (x0)ζ α = 0, 1 ≤ β ≤ n,

for some (ζ 1, . . . , ζ n) ∈ Cn \ {0}. Let us set Z = ζ αTα,x0 ∈ T1,0(M)x0 . Then

(dx0 f )Z = ζ α(dx0 f )Tᾱ,x0 = ζ α f βᾱ (x0)T
′
β, f (x0)

∈ T1,0(M
′) f (x0) ,

in contradiction to Lemma 7.1.
Let μ : T1,0(M)→ T1,0(M) be defined by setting

μ Tα = μ
β
ᾱTβ

followed by C-antilinear extension, where μβᾱ is given by

μ
β
ᾱ f γβ = f γᾱ .

Finally, note that Tα − μTα ∈ T1,0(M) f . Indeed

π ′
0,1 ◦ (d f )(Tα − μTα) = π ′

0,1 ◦ (d f )(Tα − μβ̄αTβ̄ )

= π ′
0,1( f βα T ′

β + f β̄α T ′̄
β

− μβ̄α( f γ
β̄

T ′
γ + f γ̄

β̄
T ′̄
γ ))

= ( f γ̄α − μβ̄α f γ̄
β̄
)T ′̄
γ = 0,

where μβ̄α = μ
β
ᾱ . �
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Definition 7.3. The bundle map μ : T1,0(M) → T1,0(M) (determined by f via
Lemma 7.2) is called the complex dilatation of f . �

When danger of confusion may arise, we denote μ by μ f . Note that

(dθ)(Z , μW )+ (dθ)(μZ ,W ) = 0,

for any Z ,W ∈ T1,0(M). Indeed, let Z ∈ T1,0(M). Then (by Lemma 7.2) Z − μZ ∈
T1,0(M) f ; hence (by the definition of T1,0(M) f ) (d f )(Z − μZ) ∈ T1,0(M ′). By the
integrability of the CR structure T1,0(M), the 2-form dθ vanishes on complex vectors
of the same type. Hence

0 = (dθ ′)((d f )(Z − μZ), (d f )(W − μW ))

= λ f (dθ)(Z − μZ ,W − μW )

= −λ f
(
(dθ)(Z , μW )+ (dθ)(μZ ,W )

)
.

A couple of remarks are in order.
(1) Let f : M → M ′ be a contact transformation of strictly pseudoconvex CR

manifolds possessing the property (7.3). Then f is a CR map if and only if μ f = 0.
(2) If f : M → M ′ is a CR map then f ∗Gθ ′ = λ f Gθ on H(M) ⊗ H(M). This

is no longer true when f is only contact. Nevertheless, one may change the complex
structure on H(M) in a suitable way. That is, let J f : H(M)→ H(M) be given by

J f,x = (dx f )−1 ◦ J ′
f (x) ◦ (dx f )

for any x ∈ M . Also, let us set

G f (X, Y ) = (dθ)(X, J f Y )

for any X, Y ∈ H(M). Then f ∗Gθ ′ = λ f G f on H(M)⊗ H(M).

Proposition 7.2. Let fi : M → Mi , i = 1, 2, be two contact transformations of
strictly pseudoconvex CR manifolds, both possessing the CR invariant property (7.3).
If fi , i ∈ {1, 2}, have the same complex dilatation, i.e.,μ f1 = μ f2 , then φ = f2◦ f −1

1 :
M1 → M2 is a CR diffeomorphism.

Proof. Let us choose contact forms θ, θi on M,Mi , respectively, and adopt the notation

λi = λ fi (θ, θi ) , i ∈ {1, 2},
so that

f ∗
i θi = λiθ , λi > 0.

It is easy to see that

φ∗θ2 = λ2

λ1
θ1;
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hence

λφ = λφ(θ1, θ2) = λ1

λ2
> 0.

In particular φ is a contact transformation of M1 into M2 possessing the CR invariant
property (7.3). Let then μφ : T1,0(M1) → T1,0(M1) be its complex dilatation. Since
the maps fi have the same dilatation,

Ker(π(1)0,1 ◦ (d f1)) = Ker(π(2)0,1 ◦ (d f2)),

where π(i)0,1 : H(Mi )⊗ C → T0,1(Mi ) are the natural projections. Then

{Z − μφZ : Z ∈ T1,0(M1)} = Ker(π(2)0,1 ◦ (dφ))
⊆ (d f1)

(
Ker(π(2)0,1 ◦ (d f2))

)
= (d f1)

(
Ker(π(1)0,1 ◦ (d f1))

)
= (d f1){Z ∈ H(M)⊗ C : (d f1)Z ∈ T1,0(M1)} ⊆ T1,0(M1).

Consequently, for any Z ∈ T1,0(M1) we get Z − μφZ ∈ T1,0(M1). It follows that

μφZ ∈ T1,0(M1) ∩ T0,1(M1) = (0);
hence μφ = 0. �

We close this section by relating the notion of Beltrami differential (such as intro-
duced by L. Lempert [278]) to the notion of complex dilatation.

Let M be a 3-dimensional CR manifold. Let {gζ : ζ ∈ S1} be a positive contact
action of S1 on M . Let p ∈ M and X ∈ H(M)p ⊗ C be such that {X, X} are linearly
independent. Since M is 3-dimensional, H(M)p ⊗C has complex dimension 2; hence
{X, X} span H(M)p ⊗ C. Since we have T0,1(M)p ⊂ H(M)p ⊗ C it follows that
there is (α, β) ∈ C2∗ with

αX + βX ∈ T0,1(M)p .

Then αX + βX ∈ T1,0(M)p; hence {αX + βX, αX + β X} are linearly independent.
As an immediate consequence |α| �= |β|. Indeed, if |α| = |β| = r then α = reiϕ and
β = reiψ (r �= 0) and

αX + βX = r(eiϕX + eiψ X) = rei(ϕ+ψ)(e−iϕX + e−iψ X) = ei(ϕ+ψ)(αX + β X),

i.e., {αX + βX, αX + β X} are linearly dependent, a contradiction. �
Consequently, either |α| < |β| or |α| > |β|. We adopt the following definition:

Definition 7.4. X is said to be a (1, 0)-like vector if

{(α, β) ∈ C2∗ : αX + βX ∈ T0,1(M)p} ⊆ {(α, β) ∈ C2 : |α| > |β|}. �
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Here C2∗ = C2 \ {(0, 0)}. Since gζ : M → M is a contact map for each ζ ∈ S1, one
has

(dpgζ )X, (dpgζ )X ∈ H(M)gζ (p) ⊗ C,

and {(dpgζ )X, (dpgζ )X} are linearly independent (since dpgζ is a linear isomor-
phism). Therefore, there is (a, b) ∈ C2∗ such that

a(dpgζ )X + b(dpgζ )X ∈ T0,1(M)gζ (p).

Definition 7.5. Let μ : S1 → C ∪ {∞} be defined by μ(ζ ) = b/a. μ is called a
Beltrami differential associated with the orbit of p. �

Note that μ(ζ ) is uniquely determined. Indeed, if (a′, b′) ∈ C2∗ is such that

a′(dpgζ )X + b′(dpgζ )X ∈ T0,1(M)gζ (p),

then (since T0,1(M)gζ (p) has complex dimension 1)

a′(dpgζ )X + b′(dpgζ )X = λ[a(dpgζ )X + b(dpgζ )X ]

for some λ ∈ C; hence a′ = λa, b′ = λb (and λ �= 0). �
Next, let us observe that |μ(ζ )| < 1, for any ζ ∈ S1. Indeed, note first that μ(1) =

β/α; hence |μ(1)| < 1. Moreover, it may be seen that |μ(ζ )| �= 1, by an argument
entirely analogous to that leading to the conclusion |α| �= |β|. Therefore, it must be
that |μ(ζ )| < 1 for each ζ ∈ S1. �

The terminology adopted in Definition 7.5 is justified by the following result:

Proposition 7.3. (L. Lempert [278])
Let p′ = gω(p) be a point in the orbit of p (ω ∈ S1). Letμ′ be the Beltrami differential
determined by p′ and by a vector X ′ ∈ H(M)p′ ⊗ C of (1, 0)-type. Then there is an
automorphism ϕ ∈ Aut(�) of the unit disk � ⊂ C such that μ′(ζ ) = ϕ(μ(ωζ)), for
any ζ ∈ S1.

In his paper [278], L. Lempert wrote, “Let us remark here that ‘Beltrami coefficients’
on CR manifolds have first been introduced by Korányi and Reimann.1 . . . Although
our Beltrami differentials are in spirit related to theirs, there is no logical relationship,
and they are different kind of objects.” As it turns out, mathematical reality is for once
better than the researcher’s expectations. In the remainder of this section we shall
demonstrate the actual relationship between the Beltrami differential associated with
the orbit of a point and the complex dilatation associated with a contact transformation.

Assume M to be strictly pseudoconvex and let θ be a contact form on M with Lθ
positive definite. Since gζ : M → M is a contact transformation,

g∗
ζ θ = λζ θ,

1 Cf. A. Korányi and H.M. Reimann [254]–[255].
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where, with the notation adopted earlier in this section, λζ = λgζ (θ, θ). Assume that
λζ > 0 everywhere on M and let

μζ = μgζ : T1,0(M)→ T1,0(M)

be the complex dilatation associated with gζ . Let {T1} be a local frame of T1,0(M),
defined on an open set U ⊆ M . Then

(dgζ )T1 = f 1
1 (ζ )T1 + f 1

1 (ζ )T1,

(dgζ )T1 = f 1
1
(ζ )T1 + f 1

1
(ζ )T1,

for some smooth functions f A
B : U → C such that f 1

1 (ζ ) is (C \ {0})-valued. Then the
complex dilatation μζ of gζ is given by

μζ T1 = μ1
1
(ζ )T1, μ1

1
(ζ ) := f 1

1
(ζ )

f 1
1 (ζ )

.

Let p ∈ M and let X ∈ H(M)p ⊗ C be a (1, 0)-like vector, i.e.,

Ap(X) ⊆ {(α, β) ∈ C2 : |α| > |β|},
where Ap(X) := {(α, β) ∈ C2∗ : αX + βX ∈ T0,1(M)p}. Next, let us set

Bp(X; ζ ) := {(a, b) ∈ C2∗ : a(dpgζ )X + b(dpgζ )X ∈ T0,1(M)gζ (p)}.

As previously shown, Bp(X; ζ ) ⊆ {(a, b) ∈ C2 : |a| �= |b|}. Let (a, b) ∈ Bp(X; ζ ).
If X = AT1,p + BT1,p then

T0,1(M)gζ (p) " a(dpgζ )X + b(dpgζ )X

= (a A + bB){ f 1
1
(ζ )T1 + f 1

1
(ζ )T1}p + (aB + bA){ f 1

1 (ζ )T1 + f 1
1 (ζ )T1}p

= {(a A + bB) f 1
1
(ζ )p + (aB + bA) f 1

1 (ζ )p}T1,p

+ {(a A + bB) f 1
1
(ζ )p + (aB + bA) f 1

1 (ζ )p}T1,p

= f 1
1 (ζ )p{(a A + bB)μ1

1
(ζ )p + aB + bA}T1,p

+ f 1
1
(ζ )p{a A + bB + (aB + bA)μ1

1(ζ )p}T1,p;

hence (since f 1
1 (ζ )p �= 0)

(a A + bB)μ1
1
(ζ )p + aB + bA = 0.

Note that a A + bB �= 0. Indeed, if it were a A + bB = 0 then aB + bA = 0 as well;
hence a(dpgζ )X + b(dpgζ )X = 0, i.e., one would get a = b = 0, a contradiction.
Consequently (by taking into account that μ : S1 → � is given by μ(ζ ) = b/a)
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μ1
1
(ζ )p = − Aμ(ζ )+ B

Bμ(ζ )+ A
. (7.4)

Our claim is proved. An elegant formulation of the result is

μζ,p
(
αX + β X

) = − Aμ(ζ )+ B

Bμ(ζ )+ A

(
αX + β X

)
(7.5)

for any X = AT1,p + BT1,p and any (α, β) ∈ Ap(X). To prove (7.5) let (α, β) ∈
Ap(X). Then αB + βA = 0. If for instance A �= 0 then β = −(B/A)α and

μζ,p(αX + β X) = (αA + β B)μ1
1
(ζ )pT1,p = |A|2 − |B|2

A
α μ1

1
(ζ )p T1,p.

Then (7.4) and

T1,p = A

|A|2 − |B|2 X − B

|A|2 − |B|2 X

yield (7.5). �

7.2 K -quasiconformal maps

The following notion is central to the present chapter.

Definition 7.6. Let K > 0 be fixed. A contact transformation f : M → M ′ satisfying
the CR invariant property (7.3) is called a smooth K -quasiconformal map if

λ f

K
Gθ (X, X) ≤ Gθ ′((d f )X, (d f )X) ≤ λ f K Gθ (X, X), (7.6)

for any X ∈ H(M), for some contact 1-forms θ, θ ′ with Lθ , Lθ ′ positive definite (and
thus for all). �
Note that (7.6), when satisfied, is a CR invariant property. The following reformulation
of K -quasiconformality is elementary, yet useful.

Proposition 7.4. Let f : M → M ′ be a contact transformation. Then f is a K -
quasiconformal map if and only if

1

K
Gθ (X, X) ≤ G f (X, X) ≤ K Gθ (X, X),

for some contact 1-form θ on M and all X ∈ H(M).

As to compositions of quasiconformal maps, we have the following theorem:

Theorem 7.1. Let fi : M → Mi be Ki -quasiconformal, i ∈ {1, 2}, for some
Ki > 0. If the maps fi have the same complex dilatation then φ = f2 ◦ f −1

1 is a
K -quasiconformal map, of zero dilatation, with K = K1 K2.
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The proof is left as an exercise to the reader.
Let f : M → M ′ be a contact transformation of complex dilatation μ. For further

use, let us define ‖μ‖ : M → [0,∞) by setting

‖μ‖x = sup{Lθ,x (μx Z , μx Z)1/2 : Lθ,x (Z , Z) = 1, Z ∈ T1,0(M)x }
for any x ∈ M .

7.3 The tangential Beltrami equations

Let f : Hn → Cn+1 be a C2 map of components f = ( f 1, . . . , f n+1). Then

(d f )Tα = Tα( f k)
∂

∂zk
+ Tα( f k)

∂

∂ z̄k
,

where Tα = ∂/∂zα + i z̄α∂/∂t . Since Tα ∈ T1,0(Hn), if f is a contact transformation
of complex dilatation μ then

Tα − μTα ∈ T1,0(Hn) f = Ker
(
π0,1 ◦ (d f )

∣∣H(Hn)⊗C
)

(where π0,1 : H(M) ⊗ C → T0,1(M) is the projection and M = f (Hn) carries the
CR structure induced from (the complex structure of) Cn+1). Throughout, we assume
M to be strictly pseudoconvex. The complex dilatation of f is a bundle morphism
μ : T1,0(Hn)→ T1,0(Hn); hence we may write

μTα = μ
β
ᾱTβ

and

0 = π0,1

(
(d f )

(
Tα − μβ̄αTβ̄

))
= π0,1

[(
Tα( f k)

∂

∂zk
+ Tα( f k)

∂

∂ z̄k

)
− μβ̄α

(
Tβ̄ ( f k)

∂

∂zk
+ Tβ̄ ( f k)

∂

∂ z̄k

)]
= Tα( f k)

∂

∂ z̄k
− μβ̄αTβ̄ ( f k)

∂

∂ z̄k

(where μβ̄α = μ
β
ᾱ), whence

Tᾱ( f k) = μ
β
ᾱTβ( f k), 1 ≤ k ≤ n + 1. (7.7)

Definition 7.7. The equations (7.7) are referred to as the tangential Beltrami equa-
tions. �
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The reason for the choice of terminology will become apparent when we discuss the
boundary behavior of a symplectomorphism (cf. [256]) of the Siegel domain to itself.
A. Korányi and H.M. Reimann refer to (7.7) as the Beltrami equation (cf. [255]) by
analogy with the Beltrami equation ∂z̄ f = μ∂z f in one complex variable (cf., e.g.,
[1]). However, as we shall see later on, the trace on ∂�n+1 of any solution f ∈ C2(�n)

of the ordinary Beltrami system (cf., e.g., [419]) satisfies the tangential Beltrami equa-
tions on some open subset; hence our terminology seems the most appropriate.

Let f : M → M ′ be a contact transformation of complex dilatation μ and let {Tα}
be a (local) frame of T1,0(M). Then (by an earlier observation)

(dθ)(Tα, μTβ)+ (dθ)(μTα, Tβ) = 0,

i.e.,

μαβ = μβα,

where

μαβ = μᾱβ̄ , μᾱβ̄ = hγ ᾱμ
γ

β̄
.

Let us set

θ0 = dt + i

2

n∑
α=1

(
zαdz̄α − z̄αdzα

)
.

We have shown that the components of a contact transformation f : Hn → M =
f (Hn) ⊂ Cn+1 satisfy the tangential Beltrami equations (7.7). As to the converse of
this statement, we have the following result:

Theorem 7.2. (A. Korányi and H.M. Reimann [255])
Let f : Hn → M = f (Hn) ⊂ Cn+1 be a diffeomorphism each of whose components
f k satisfies the tangential Beltrami equations Tᾱ( f k) = μ

β
ᾱTβ( f k) for some smooth

functions μβᾱ : Hn → C such that μαβ = μβα . Assume M to be strictly pseudoconvex.
Then

(i) The map f is a contact transformation and there is a contact 1-form θ ′ on M such
that λ f (θ0, θ

′) = 1.
(ii) Let μ be the complex dilatation of f . If ‖μ‖ ≤ 1 then Lθ ′ is positive definite,

where ‖μ‖ is computed with respect to θ0 and θ ′ (furnished by (i)).

Proof. Let us set

Vα = Tα( f k)
∂

∂zk
, Wα = Tᾱ( f k)

∂

∂zk
.

Then, on the one hand,

(d f )Tα = Vα + Wᾱ ,
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where Wᾱ = Wα , and on the other, since f k satisfies the tangential Beltrami equations,

Wα = μ
β
ᾱVβ .

Let us show that

(d f )
(

Tα − μβ̄αTβ̄

)
∈ T1,0(M). (7.8)

Indeed

(d f )
(

Tα − μβ̄αTβ̄

)
= Vα + Wᾱ − μβ̄α

(
Vβ + Wβ

)
= Vα + Wᾱ − Wα − μβ̄αWβ ∈ T 1,0(Cn+1) ∩ [T (M)⊗ C] = T1,0(M).

As our next step, let us observe that the complex tangent vectors

Zα = (d f )
(

Tα − μβ̄αTβ̄

)
are (pointwise) linearly independent and span T1,0(M). At this point, we may prove
the existence of a pseudo-Hermitian structure θ ′ on M such that f ∗θ ′ = θ0. Indeed,
let θ ′′ be just any pseudo-Hermitian structure on M and let us set

B = span
{

Tα − μβ̄αTβ̄

}n

α=1
⊂ T (Hn)⊗ C.

Then dimC Bx = n, x ∈ Hn . Note that Re{B ⊕ B} ⊆ H(Hn). Yet Re{B ⊕ B} has real
rank 2n; hence we have equality, i.e.,

H(Hn) = Re{B ⊕ B}. (7.9)

Taking into account (7.8), we have(
f ∗θ ′′

)
B = θ ′′(d f )B ⊆ θ ′′(T1,0(M)) = 0.

Then, by complex conjugation
(

f ∗θ ′′
)

B = 0; hence (by (7.9))(
f ∗θ ′′

)
H(Hn) = 0.

Consequently

f ∗θ ′′ = λθ0 ,

for some λ ∈ C∞(Hn). Note that λ(x) �= 0 for any x ∈ Hn . Indeed, if λ(x) = 0
for some x ∈ Hn then

(
f ∗θ ′′

)
x = 0, i.e., θ ′′f (x) ◦ (dx f ) = 0. Yet dx f is a linear

isomorphism; hence θ ′′f (x) = 0, i.e., Sing(θ ′′) �= ∅, a contradiction. Then we set

θ ′ = 1

λ ◦ f −1
θ ′′ .
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Therefore(
f ∗θ ′

)
x = θ ′f (x) ◦ (dx f ) = 1

λ(x)
θ ′′f (x) ◦ (dx f ) = 1

λ(x)

(
f ∗θ ′′

)
x = θ0,x ,

or

f ∗θ ′ = θ ,

i.e., f is a contact transformation with λ f (θ0, θ
′) = 1. �

To prove the second statement in the theorem, note that, by the definitions, if Z ∈
T1,0(Hn) then Z −μZ ∈ T1,0(Hn) f , i.e., Z −μZ ∈ H(M)⊗ C and (d f )(Z −μZ) ∈
T1,0(M). Consequently

T1,0(M) = Span{Zα}n
α=1,

and to see that Lθ ′ is positive definite it suffices to estimate Lθ ′(Zα, Zᾱ) from below.
Indeed

Lθ ′(Zα, Zᾱ) = −i(dθ ′)(Zα, Zᾱ)

= −i(d f ∗θ ′)(Tα − μβ̄αTβ̄ , Tᾱ − μγᾱTγ )

= −i(dθ0)(Tα, Tᾱ)− i(dθ0)(Tβ̄ , Tγ )μ
β̄
αμ

γ
ᾱ

= Lθ0(Tα, Tᾱ)− Lθ0(μTα, μTα)

= Lθ0(Tα, Tᾱ)
{

1 − Lθ0(μTα, μTα)

Lθ0(Tα, Tᾱ)

}
≥ Lθ0(Tα, Tᾱ)(1 − ‖μ‖2) ≥ 0. �

7.3.1 Contact transformations of Hn

Theorem 7.3. (A. Korányi and H.M. Reimann [254])
Let f : Hn → Hn be a contact transformation with λ = λ f (θ0, θ0) > 0. The following
statements are equivalent:

(i) f is a K -quasiconformal map.
(ii) The complex dilatation μ of f satisfies

‖μ‖ ≤ K − 1

K + 1
.

Proof. We adopt the following notation:

eα = Xα = ∂

∂xα
+ 2yα

∂

∂t
= Tα + Tᾱ ,

eα+n = Yα = ∂

∂yα
− 2xα

∂

∂t
= i(Tα − Tᾱ),

(d f )eA = F B
A eB ,

g =
[ 1√
λ

F B
A

]
1≤A≤2n
1≤B≤2n

: Hn → GL(2n,R),
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where {eA} = {eα, eα+n}. Consider

Sp(2n,R) = {g ∈ GL(2n,R) : gt J0g = J0},
where

J0 =
(

0 −In

In 0

)
.

Since f ∗θ0 = λθ0 and exterior differentiation commutes with the pullback by C1

maps, it follows that

f ∗(dθ0) = (dλ) ∧ θ0 + λ(dθ0);
hence

(dθ0)((d f )X, (d f )Y ) = λ(dθ0)(X, Y ),

for any X, Y ∈ H(Hn). In particular

FC
A F D

B (dθ0)(eC , eD) = (dθ0)((d f )eA, (d f )eB) = λ(dθ0)(eA, eB).

On the other hand,

(dθ0)(eA, eB) = 2i
( n∑
α=1

dzα ∧ dz̄α
)
(eA, eB)

= i
n∑
α=1

(
dzα(eA)dz̄α(eB)− dzα(eB)dz̄α(eA)

)
and by

dzα(eβ) = δαβ , dzα(eβ+n = iδαβ ,

dz̄α(eβ) = δαβ , dz̄α(eβ+n) = −iδαβ ,

we get

(dθ0)(eβ, eγ ) = 0, (dθ0)(eβ, eγ+n) = 2δβγ ,

(dθ0)(eβ+n, eγ ) = −2δβγ , (dθ0)(eβ+n, eγ+n) = 0.

Consequently (for A = α and B = β)

0 = FC
α F D

β (dθ0)(eC , eD)

= Fλα Fμβ (dθ0)(eλ, eμ)+ Fλα Fμ+n
β (dθ0)(eλ, eμ+n)

+ Fλ+n
α Fμβ (dθ0)(eλ+n, eμ)+ Fλ+n

α Fμ+n
β (dθ0)(eλ+n, eμ+n)

= 2Fλα Fμ+n
β δλμ − 2Fλ+n

α Fμβ δλμ,
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or

n∑
λ=1

(
Fλα Fλ+n

β − Fλ+n
α Fλβ

)
= 0, (7.10)

for any 1 ≤ α, β ≤ n. Similar calculations for A = α, B = β + n, respectively for
A = α + n, B = β, and for A = α + n, B = β + n, lead to the following identities:

n∑
λ=1

(
Fλα Fλ+n

β+n − Fλ+n
α Fλβ+n

)
= λ δαβ , (7.11)

n∑
λ=1

(
Fλα+n Fλ+n

β − Fλ+n
α+n Fλβ

)
= −λ δαβ , (7.12)

∑
λ=1

(
Fλα+n Fλ+n

β+n − Fλ+n
α+n Fλβ+n

)
= 0. (7.13)

Note that

a =
(

aβα aβα+n

aβ+n
α aβ+n

α+n

)
∈ Sp(2n,R)

if and only if ∑
γ

(
aγ+n
α aγβ − aγα aγ+n

β

)
= 0,

∑
γ

(
aγ+n
α+n aγβ − aγα+naγ+n

β

)
= δαβ ,∑

γ

(
aγ+n
α aγβ+n − aγα aγ+n

β+n

)
= −δαβ ,∑

γ

(
aγ+n
α+n aγβ+n − aγα+naγ+n

β+n

)
= 0.

Then, by taking into account (7.10)–(7.13), we have the following result:

Proposition 7.5. g : Hn → GL(2n,R) is actually Sp(2n,R)-valued.

Next, let K ⊂ Sp(2n,R) be given by

K = {k ∈ Sp(2n,R) : kt = k−1}
and let us set

A = {a = diag
(
et1 , . . . , etn , e−t1 , . . . , e−tn

)
: t j ∈ R, 1 ≤ j ≤ n},

A+ = {a ∈ A : t1 ≥ t2 ≥ · · · ≥ tn ≥ 0}.
We shall need the so-called Cartan decomposition of Sp(2n,R):
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Proposition 7.6. Sp(2n,R) = K A+ K .

Let

j : GL(n,C)→ GL(2n,R), j : A + i B !→
(

A −B
B A

)
.

Note that K = O(2n) ∩ j (U(n)). Using

(d f )Tα = f βα Tβ + f β̄α Tβ̄ ,

(d f )Tᾱ = f βᾱ Tβ + f β̄ᾱ Tβ̄ ,

μ
β
ᾱ f γβ = f γᾱ ,

Tα = 1
2 (eα − ieα+n) , Tᾱ = 1

2 (eα + ieα+n) ,

one has

1
2 ((d f )eα − i(d f )eα+n) = (d f )Tα = f βα Tβ + f β̄Tβ̄

=
√
λ

2

(
gβα eβ + gβ+n

α eβ+n − igβα+neβ − igβ+n
α+n eβ+n

)
,

where g A
B = F A

B /
√
λ are the components of g : Hn → Sp(2n,R). Therefore

f βα + f β̄α = √
λ
(

gβα − igβα+n

)
,

f βα − f β̄α = i
√
λ
(

gβ+n
α − igβ+n

α+n

)
.

By summing up (respectively by subtracting) these identities, one gets

f βα = 1
2

√
λ
(

gβα + gβ+n
α+n

)
+ i

2

√
λ
(

gβ+n
α − gβα+n

)
, (7.14)

f β̄α = 1
2

√
λ
(

gβα − gβ+n
α+n

)
− i

2

√
λ
(

gβ+n
α + gβα+n

)
. (7.15)

Since g is Sp(2n,R)-valued, we may write

g = j (k) a j (k′), (7.16)

for some functions k, k′ : Hn → U(n) and a : Hn → A+. Since the matrices j (k),
respectively a, have the form

j (k) =
(

kαβ kαβ+n
−kαβ+n kαβ

)
,

a = diag(et1 , . . . , etn , e−t1 , . . . , e−tn ),

we have
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j (k)aj (k′) =
(

kαγ k′γ
β etγ − kαγ+nk′γ

β+ne−tγ kαγ k′γ
β+netγ + kαγ+nk′γ

β e−tγ

−kαγ+nk′γ
β etγ + kαγ k′γ

β+ne−tγ −kαγ+nk′γ
β+netγ + kαγ k′γ

β e−tγ

)
;

hence (7.16) has the following scalar form:

gαβ = kαγ k′γ
β etγ − kαγ+nk′γ

β+ne−tγ ,

gαβ+n = kαγ k′γ
β+netγ + kαγ+nk′γ

β e−tγ ,

gα+n
β = −kαγ+nk′γ

β etγ − kαγ k′γ
β+ne−tγ ,

gα+n
β+n = −kαγ+nk′γ

β+netγ + kαγ k′γ
β e−tγ .

At this point, we substitute into (7.14)–(7.15) to obtain

f αβ = √
λ
(

kαγ − ikαγ+n

) (
k′γ
β − ik′γ

β+n

)
cosh tγ

f ᾱβ = √
λ
(

kαγ + ikαγ+n

) (
k′γ
β − ik′γ

β+n

)
sinh tγ .

Let us substitute into μβᾱ f γβ = f γᾱ . We get

μβαhγσ h′σ
β cosh tγ = hγσ h′σ

α sinh tσ ,

where hγσ = kγσ − ikγσ+n , etc. Let us contract with hγ̄ρ̄ = hγρ . We get

μ
β
ᾱhγσ h′σ

β hγ̄
β̄

cosh tσ = hγσ h′σ̄
ᾱ hγ̄ρ̄ sinh tσ . (7.17)

On the other hand, because of

k = (ki
j ) =

(
A −B
B A

)
,

AAt + B Bt = In , B At − ABt = 0,

we may compute hγσ hγ̄ρ̄ as

hγσ hγ̄ρ̄ = (kγσ − ikγσ+n)(k
γ
ρ + ikγρ+n)

= (kγσ − ikγσ+n)(k
ρ
γ − ikρ+n

γ ) = δσρ,

and (7.17) becomes

μ
β
ᾱh′ρ
β cosh tρ = h′ρ̄

ᾱ sinh tρ

(here ρ is not a summation index). Finally, by contracting with h′ρ̄
γ̄ we get (because of

h′ρ
β h′ρ̄

γ̄ = δβγ )

μ
β
ᾱ =

n∑
σ=1

(
h′−1

)β
σ

h′σ̄
ᾱ tanh tσ ,
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or

μ = h′−1 diag(tanh t1, . . . , tanh tn)h′ . (7.18)

At this point, we may compute ‖μ‖. Taking into account

(dθ0)(Tα, Tβ̄ ) = iδαβ ,

‖μ‖2 = sup
Z∈T1,0(Hn)

Lθ0(μZ , μZ)

Lθ0(Z , Z)
,

Z = aαTα ∈ T1,0(Hn),

we get

‖μ‖2 = sup
a∈Cn

|a|=1

∑
α,β,γ

aαaγ̄ μβᾱμ
β̄
γ .

On the other hand (by (7.18)),∑
β

μ
β
ᾱμ

β̄
γ =

∑
σ

(tanh tσ )
2 h′σ̄
α h′σ

γ̄

≤ max
tσ
(tanh tσ )

2
∑
σ

h′σ̄
α h′σ

γ̄ = (tanh t1)
2 δαγ .

Then

‖μ‖2 ≤ (tanh t1)
2
∑
α,γ

aαaγ̄ δαγ = (tanh t1)
2
∑
α

|aα|2 = (tanh t1)
2 ,

i.e.,

‖μ‖ ≤ tanh t1 . (7.19)

On the other hand, let Z = aαTα ∈ T1,0(Hn) such that
∑
α aαh′σ̄

α = δ1σ . With this
choice of Z we have

Lθ0(μZ , μZ) = (tanh t1)
2 .

Hence (by (7.19) and the definition of ‖μ‖)

‖μ‖ = tanh t1 .

Consequently

1 + ‖μ‖
1 − ‖μ‖ = 1 + tanh t1

1 − tanh t1
.

Also
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max|x |=1 |g(x)|
min|x |=1 |g(x)| = et1

e−t1
= 1 + ‖μ‖

1 − ‖μ‖ .

If f is K -quasiconformal then

1

K
Gθ0(X, X) ≤ Gθ0(gX, gX) ≤ K Gθ0(X, X),

for any X ∈ H(Hn). Here gX is the ordinary2 matrix product. Thus

1

K
|x |2 ≤ |gx |2 ≤ K |x |2 ,

for any x ∈ R2n . It follows that

max|x |=1 |g(x)|
min|x |=1 |g(x)| ≤ K ,

or

‖μ‖ ≤ K − 1

K + 1
.

The converse is left as an exercise to the reader.

7.3.2 The tangential Beltrami equation on H1

An interesting question (posed by A. Korányi and H.M. Reimann (cf. [254], p. 65))
is to decide which antilinear morphisms μ may arise as complex dilatations of K -
quasiconformal mappings. Let f : Hn → Cn+1 be a C∞ map such that M := f (Hn)

is a real hypersurface in Cn+1. Assume from now on that M is a strictly pseudoconvex
CR manifold (with the CR structure induced from the complex structure of Cn+1) and
f : Hn → M is a K -quasiconformal map. In particular f is a contact transforma-
tion possessing the CR invariant property (7.3), so that we may consider its complex
dilatation μ = μ f . We set

Jμ,x = (dx f )−1 ◦ J f (x) ◦ (dx f ), x ∈ N ,

where J : H(M) → H(M) is the complex structure (of the Levi distribution of
M). Then Jμ,x is a new complex structure in H(Hn)x . As the notation suggests, Jμ
is determined by the complex dilatation μ. To see that this is indeed so let Zα =
∂/∂zα + i zα ∂/∂t and let us write

JμZα = Jβα (μ)Zβ + Jβα (μ)Zβ (7.20)

2 One identifies X to a R2n-valued function X̃ on Hn (by using the (global) frame {eA}), and
identifies back gX̃ with a section (denoted by gX ) in H(Hn).
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for some C∞ functions Jβα (μ), Jβα (μ) : Hn → C. Given a local frame {Tα : 1 ≤ α ≤
n} of T1,0(M), defined on an open set U ⊆ M , the left-hand member of (7.20) may

also be written (d f )−1 J ( f βα Tβ + f βα Tβ) or i(d f )−1( f βα Tα − f βα Tβ). Hence (7.20)
yields

Jβα (μ) f γβ + Jβα (μ) f γ
β

7 = i f γα , (7.21)

Jβα (μ) f γβ + Jβα (μ) f γ
β

7 = −i f γα , (7.22)

on f −1(U ). Let us recall that the complex dilatation μ is locally given by μZα =
μ
β
α Zβ , where

μ
β
α = f γα gβγ , [gαβ ] := [ f αβ ]−1.

Let us contract with gβγ in (7.21) (respectively with gβγ in (7.22)). We obtain

Jβα (μ)+ μβσ Jσα (μ) = iδβα , (7.23)

μβσ Jσα (μ)+ Jβα (μ) = −iμβα . (7.24)

Next (7.23)–(7.24) may be also written as

Uβ
γ J γα (μ) = i(δβα + μβσμσγ ), Uβ

γ J γα (μ) = −2iμβα , (7.25)

where

Uβ
γ := δβγ − μβσμσγ .

Lemma 7.3. det[Uα
β (x)] �= 0 for any x ∈ f −1(U ).

Lemma 7.3 shows that J γα (μ) and J γα (μ) are completely determined by μ. The proof
of Lemma 7.3 is by contradiction. If det[Uα

β (x0)] = 0 for some x0 ∈ f −1(U ) then

there is ζ = (ζ 1, . . . , ζ n) ∈ Cn \ {0} such that Uα
β (x0)ζ

β = 0, i.e.,

ζ α = μασ (x0)μ
σ
β (x0)ζ

β . (7.26)

Let θ = dt + i(zαdzα − zαdzα) (with zα = zα). Let us set

Z = |ζ |−1 ζ αZα,x0 ∈ T1,0(Hn)x0 ,

where |ζ |2 = δαβζ
αζ β and ζ α = ζ α . Then Lθ,x0(Z , Z) = 1 and

Lθ,x0(μx0 Z , μx0 Z) = |ζ |−2ζ αζ βμσα(x0)μ
ρ
β(x0)δσρ.

On the other hand, as shown earlier in this chapter, μ is symmetric, i.e., μαβ = μβα ,

where μαβ = μ
γ
αhβγ (here of course hαβ = δαβ ). Then (by (7.26))
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Lθ,x0(μx0 Z , μx0 Z) = |ζ |−2ζ αζ βμσρ (x0)μ
ρ
β(x0)δσα

= |ζ |−2ζ αζ σ δσα = 1.

Finally

‖μ‖x0 = sup{Lθ,x0(μx0 W, μx0 W ) : Lθ,x0(W,W ) = 1, W ∈ T1,0(Hn)x0} ≥ 1,

which contradicts ‖μ‖ ≤ (K − 1)/(K + 1) < 1. Lemma 7.3 is proved. Hence if
[V αβ ] := [Uα

β ]−1 then

J γα (μ) = iV γβ (δ
β
α + μσαμβσ ), J γα (μ) = 2iV γβ μ

β
α .

Let us set

Vα = Zα − μβα Zβ ∈ T1,0(Hn).

Then

JμVα = (J γα (μ)− μβα J γ
β
(μ))Zγ + (J γα (μ)− μβα J γ

β
(μ))Zγ

= i(V γα − μσαμβσV γβ )Zγ − i(μβαV γ
β

− μβαμρβμσρV γσ )Zγ

= iV γβ Uβ
α Zγ − iV γσ μ

β
αUσ

β
Zγ ,

i.e., JμVα = i Vα . Let H(μ) ⊂ H(Hn) ⊗ C be the complex subbundle spanned by
{Vα : 1 ≤ α ≤ n}. Then, as we have just shown, H(μ) is the eigenbundle of Jμ
corresponding to the eigenvalue i . Assume from now on that n = 1. Then H(μ) is
a new CR structure on H1 such that Jμ is the corresponding complex structure in
H(Hn)⊗ C = H(μ)⊕ H(μ).

Conversely, let us assume that μ1
1

: H1 → C is a C∞ function such that the

antilinear morphism μ : T1,0(H1) → T1,0(H1) given by μZ1 = μ1
1

Z1 satisfies

‖μ‖ ≤ (K − 1)/(K + 1). Then a K -quasiconformal map f : H1 → M ⊂ C2

with μ f = μ exists if and only if the CR manifold (R3,H(μ)) is embeddable in
C2. Also the CR manifold (R3,H(μ)) is CR equivalent to H1 if and only if there is a
K -quasiconformal mapping f : H1 → H1 with the complex dilatation μ. The embed-
ding problem is particularly difficult. H. Jacobowitz and F. Trèves [224], have shown
that the complex dilatations μ such that H(μ) is not embeddable are dense. Clearly,
if f j , j ∈ {1, 2}, are C1 solutions to the tangential Beltrami equation Z f = μ Z f
(with Z = Z1) satisfying d f 1 ∧ d f 2 �= 0 then locally ( f 1, f 2) : H1 → C2 gives an
embedding of (R3,H(μ)) in C2. We are left with the natural question, for which μ
does the tangential Beltrami equation Z f = μ Z f have nonconstant solutions? In the
remainder of this section we report on a result of A. Korányi and H.M. Reimann (cf.
[254], p. 73) exhibiting a class of functions μ with the property that the tangential Bel-
trami equation on the lowest-dimensional Heisenberg group H1 admits nonconstant
solutions. We assume throughout that μ is a measurable function of compact support
such that
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‖μ‖∞ = ess supx∈H1
|μ(x)| < 1.

Let λ ∈ R \ {0} and denote by Hλ the space of all holomorphic functions φ : C → C
such that

‖φ‖λ =
( |λ|
π

∫
C

exp
(
−|λ| |ζ |2

)
|φ(ζ )|2dζ

)1/2
<∞.

Definition 7.8. Let Tλ : H1 → EndC(Hλ) be the Bargmann representation of H1, i.e.,
the unitary representation on Hλ given by

[Tλ(z, t)φ] (ζ ) =
{

exp
(−λ

2 (|z|2 + i t)− λz̄ζ
)
φ(ζ + z), λ > 0,

exp
(
λ
2 (|z|2 − i t)+ λz̄ζ

)
φ(ζ + z), λ < 0.

�

Definition 7.9. Given a function f in the Schwartz class S(H1) its Fourier transform
at λ (λ ∈ R \ {0}) is the operator Tλ( f ) on Hλ given by

[Tλ( f )φ] (ζ ) =
∫

H1

f (z, t) [Tλ(z, t)φ] (ζ ) dx dy dt. �

Definition 7.10. The trace norm of Tλ( f ) is given by

‖Tλ( f )‖2 = trace{Tλ( f )∗Tλ( f )}. �
Using the inversion and Plancherel formulas (cf. J. Faraut [136]) one may extend the
Fourier transform Tλ to functions in L2(H1). Next, let L2+(H1) be the orthogonal com-
plement of

L2−(H1) = { f ∈ L2(H1) : Tλ( f ) = 0 for a.e. λ > 0}.
Under the rotation group the space L2(H1) decomposes into the mutually orthogonal
subspaces

U k = { f ∈ L2(H1) : f (eiϕz, t) = eikϕ f (z, t) , ϕ ∈ R}, k ∈ Z.

Consider the complete orthogonal sums

D j =
⊕
k≤ j

U k .

We also need the following definition:

Definition 7.11. Let W p
1 (H1) be the Sobolev type spaces

W p
1 (H1) = {g ∈ L1

loc(H1) : Z(g), Z(g) ∈ L p(H1)}. �
Theorem 7.4. (A. Korányi and H.M. Reimann [254])
Assume that h is a CR-holomorphic function (Z(h) = 0) and μ ∈ L∞(H1). If one of
the conditions

(1) μ ∈ L2+(H1), μZ(h) ∈ L2+(H1) and ‖μ‖∞ < 1/
√

2,
(2) μ ∈ D−2, μZ(h) ∈ D−1 and ‖μ‖∞ < 1/

√
2,

(3) μ ∈ D−2 ∩ L2−(H1), μZ(h) ∈ D−1 ∩ L2−(H1) and ‖μ‖∞ < 1,
holds, then the tangential Beltrami equation Z( f ) = μ Z( f ) has a unique solution f
such that f − h ∈ W 2

1 (H1).
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The proof is based on the integral representation for solutions of the equation Z( f ) =
g, cf., e.g., P.C. Greiner, J.J. Kohn, and E.M. Stein [188]. �

It is an open question whether one may solve the tangential Beltrami equation
Z( f ) = μ Z( f ) with |μ(x)| < 1 a.e. in H1, but not necessarily ‖μ‖∞ < 1. For the
ordinary Beltrami equation, G. David has shown (cf. [112]) that given constants α > 0
and C ≥ 0 and a measurable function μ : C → C such that

meas ({z ∈ C : |μ(z)| > 1 − ε}) ≤ Ce−α/ε

for sufficiently small ε > 0, then there is a unique homeomorphism f of C fixing
0, 1, and ∞ such that f admits (locally integrable) partial derivatives and ∂ f/∂ z̄ =
μ · (∂ f/∂z) a.e. in C.

7.4 Symplectomorphisms

Let � ⊂ Cn be a strictly pseudoconvex domain and K (z, ζ ) the reproducing (or
Bergman) kernel for L2 H(�), the space of square integrable functions, with respect to
the Lebesgue measure in R2n , that are holomorphic in � (cf., e.g., S. Bergman [58]).
Consider the complex tensor field

H =
∑

1≤i, j≤n

( ∂2

∂zi∂z j
log K (z, z)

)
dzi ⊗ dz j

and the corresponding real tangent (0, 2)-tensor field g given by

g = Re
{

H
∣∣X (�)×X (�)

}
.

Then g is a Kählerian metric on � (the Bergman metric of �, cf., e.g., S. Helgason
[196]); hence ω = −i∂∂ log K (z, z) is a symplectic structure (the Kähler 2-form of
(�, g)). One of the problems we take up in the present section may be stated as fol-
lows. Let F : �→ � be a symplectomorphism of (�, ω) into itself, smooth up to the
boundary. Does F : ∂� → ∂� preserve the contact structure of the boundary? The
interest in this question may be motivated as follows. If F : � → � is a biholomor-
phism, then by a celebrated result of C. Fefferman (cf. Theorem 1 in [139], p. 2) F is
smooth up to the boundary; hence F : ∂�→ ∂� is a CR diffeomorphism, and in par-
ticular a contact transformation. Also, biholomorphisms are known to be isometries of
the Bergman metric g (cf., e.g., [196], p. 370); hence symplectomorphisms of (�, ω).
On the other hand, one may weaken the assumption on F by requiring only that F
be a C∞ diffeomorphism and F∗ω = ω. Then, by a result of A. Korányi and H.M.
Reimann [256], if F is smooth up to the boundary then F : ∂� → ∂� is a contact
transformation.

7.4.1 Fefferman’s formula and boundary behavior of symplectomorphisms

We wish to report on the result by A. Korányi and H.M. Reimann quoted above.
The main ingredient in the proof of this result is that a certain negative power of
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the Bergman kernel (ρ(z) = K (z, z)−1/(n+1)) is a defining function of �, allowing
one to relate the symplectic structure of � to the contact structure of its boundary.
In turn, this is a consequence of C. Fefferman’s asymptotic expansion of K (z, ζ ) (cf.
Theorem 2 in [139], p. 9), which we now proceed to recall.

Let � be a smoothly bounded strictly pseudoconvex domain � = {z ∈ Cn :
ϕ(z) < 0}, where ϕ is such that the Levi form Lϕ satisfies

Lϕ(w)ξ ≥ C1|ξ |2 , ξ ∈ Cn,

for ϕ(w) < δ0, δ0 > 0, and C1 depending only on �. Let us set

 (ζ, z) = (F(ζ, z)− ϕ(z))χ(|ζ − z|)+ (1 − χ(|ζ − z|))|ζ − z|2,
where

F(ζ, z) = −
n∑

j=1

∂ϕ

∂z j
(z)(ζ j − z j )− 1

2

n∑
j,k=1

∂2ϕ

∂z j∂zk
(z)(ζ j − z j )(ζk − zk)

and χ is a C∞ cut-off function of the real variable t , with χ(t) = 1 for |t | < ε0/2 and
χ(t) = 0 for |t | ≥ 3ε0/4.

Theorem 7.5. (C. Fefferman [139])
Let K (ζ, z) be the Bergman kernel of �. Then

K (ζ, z) = c�|∇ϕ(z)|2 · det Lϕ(z) · (ζ, z)−(n+1) + E(ζ, z),

where E ∈ C∞(� × � \ �), � is the diagonal of ∂� × ∂�, and E satisfies the
estimate

|E(ζ, z)| ≤ c′
�| (ζ, z)|−(n+1)+ 1

2 | log | (ζ, z)||.

From now on it is understood that � is a strictly pseudoconvex domain satisfying all
hypothesis of Theorem 7.5.

Theorem 7.6. (A. Korányi and H.M. Reimann [256])
Let F be a symplectomorphism of (�, ω), i.e., a C∞ diffeomorphism F : � → �

with F∗ω = ω. If F is smooth up to the boundary then F : ∂� → ∂� is a contact
transformation.

Proof. By a result in [58] one has the representation

K (ζ, z) =
∑

k

φk(ζ )φk(z)

for any complete orthonormal system {φk} in L2 H(�). Hence K (z, z) > 0 (because
for any z ∈ � there is f ∈ L2 H(�) with f (z) �= 0). Then it makes sense to consider
the function
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ρ(z) = K (z, z)−1/(n+1) .

By Theorem 7.5

ρ(z) ≤ |ϕ(z)|
{
�(z)+ C |ϕ(z)| 1

2 | log |ϕ(z)||
}−1/(n+1)

,

for some � ∈ C∞(�) such that �(z) �= 0 near ∂�. Hence ρ(z) → 0 as z → ∂�.
Also, as a corollary of Theorem 7.5 one has

K (z, z) = �(z)|ϕ(z)|−(n+1) + �̃(z) log |ϕ(z)| ,
for some �, �̃ ∈ C∞(�), �(z) �= 0 near ∂�; hence ρ ∈ C∞(�) and ∇ρ �= 0 on ∂�,
i.e., ρ can be used as a defining function for � (and � = {ρ > 0}).

We need some notation. Let F be the foliation of U (a one-sided neighborhood of
the boundary of �) by level sets of ρ (so that ρ−1(0) = ∂�). Each leaf Mc = ρ−1(c)
is a strictly pseudoconvex CR manifold with the CR structure T1,0(Mc) induced from
the complex structure on U . Let T1,0(F) be the subbundle of T (U )⊗C whose portion
over Mc is T1,0(Mc). Since � is strictly pseudoconvex, there is a uniquely defined
complex vector field ξ of type (1, 0) on U that is orthogonal to T1,0(F) with respect
to ∂∂ρ and for which ∂ρ(ξ) = 1 (cf., e.g., [274], p. 163). Let us define r : U → R by
setting r = 2

(
∂∂ρ

)
(ξ, ξ), so that ξ and r are characterized by

ξ � ∂∂ρ = r ∂ρ , ∂ρ(ξ) = 1. (7.27)

Let θ = i(∂ − ∂)ρ/2 and N = 2Re(ξ). Then (dρ)N = 2 and θ(N ) = 0. Note that

ω = i(n + 1)
(∂∂ρ
ρ

− ∂ρ ∧ ∂ρ
ρ2

)
. (7.28)

Let us set H(F) = Re{T1,0(F) ⊕ T1,0(F)} (so that the portion of H(F) over a leaf
Mc is the Levi distribution of Mc). Then (by (7.28))

ω(X, N ) = 0,

for any X ∈ H(F). On the other hand, we may write (7.28) as

ω = (n + 1)
(dθ

ρ
− dρ ∧ θ

ρ2

)
;

hence (by F∗ω = ω)

0 = ω((d F)X, (d F)N )

= (n + 1)ρ−1(dθ)((d F)X, (d F)N )− (n + 1)ρ−2(dρ ∧ θ)((d F)X, (d F)N )

for any X ∈ H(F). Since F is smooth up to the boundary,

(dθ)((d F)X, (d F)N )
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stays finite near ∂�. Hence, in the limit,

(dρ)((d F)X)θ((d F)N )− (dρ)((d F)N )θ((d F)X)

vanishes on ∂�. If X lies in H(∂�), the Levi distribution of ∂� as a CR manifold,
then (d F)X ∈ T (∂�); hence (dρ)((d F)X) = 0. Finally (dρ)((d F)N ) �= 0 (since
F is a diffeomorphism and dρ �= 0 on ∂�); hence θ((d F)X) = 0 for any X ∈
H(∂�). �

7.4.2 Dilatation of symplectomorphisms and the Beltrami equations

Let � ⊂ Cn be a bounded domain. Let F be a symplectomorphism of (�, ω) into
itself. We have

Lemma 7.4. For any z ∈ � and any Z ∈ T 1,0(�)z , Z �= 0, one has (dz F)Z �∈
T 1,0(�)F(z).

The proof is imitative of that of Lemma 7.1. Assume that (dz F)Z ∈ T 1,0(�)F(z)
for some Z ∈ T 1,0(�)z, Z �= 0, and some z ∈ �. Since F is a diffeomorphism,
(dz F)Z �= 0. Hence

0 < ‖(dz F)Z‖2 = gγ,F(z)((dz F)Z , (dz F)Z) = −iωγ,z(Z , Z) = −‖Z‖2,

a contradiction. �

Let T 1,0(�)F consist of all Z ∈ T (�)⊗ C with (d F)Z ∈ T 1,0(�).

Lemma 7.5. For any symplectomorphism F of (�, ω) there is a C-antilinear bundle
map

dil(F) : T 1,0(�)→ T 1,0(�)

such that

T 1,0(�)F = {Z − dil(F)Z : Z ∈ T 1,0(�)}.

The proof is imitative of that of Lemma 7.2. Let π0,1 : T (�)⊗ C → T 0,1(�) be the
natural projection. Then

T 1,0(�)F = Ker(π0,1 ◦ (d F)).

Let (z1, . . . , zn) be the natural complex coordinates on Cn . Let us set

F j
k = ∂F j

∂zk
, F j

k
= ∂F j

∂zk
,

etc. Then det(Fk̄
j̄
) �= 0 everywhere on �. Indeed, if det(Fk̄

j̄
(z0)) = 0 at some z0 ∈ �

then
∑

k F j̄
k̄
(z0)ζ k = 0, 1 ≤ j ≤ n, for some (ζ 1, . . . , ζ n) ∈ Cn − {0}. Let us set

Z = ∑
j ζ

j
(
∂/∂z j

)
z0

∈ T 1,0(�)z0 . Then Z �= 0 and
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(dz0 F)Z =
∑
j,k

ζ k F j
k̄
(z0)

(
∂

∂z j

)
F(z0)

∈ T 1,0(�)F(z0),

a contradiction (by Lemma 7.4). Let dil(F) : T 1,0(�) → T 1,0(�) be given by
dil(F)

(
∂/∂z j

) = ∑
k dil(F)k

j̄
∂/∂zk (followed by C-antilinear extension), where

F�
j̄
=
∑

k

dil(F)k
j̄

F�k . (7.29)

Finally, note that ∂/∂z j − dil(F)∂/∂z j ∈ Ker(π0,1 ◦ (d F)). �
Definition 7.12. The bundle map dil(F) is referred to as the complex dilatation of the
symplectomorphism F . �
Proposition 7.7. Let F be a symplectomorphism of (�, ω) and dil(F) its complex
dilatation. Then

ω(Z , dil(F)W )+ ω(dil(F)Z ,W ) = 0,

for any Z ,W ∈ T 1,0(�). Also, dil(F) = 0 if and only if F is holomorphic.

Indeed, if Z ∈ T 1,0(�) then (d F)(Z − dil(F)Z) ∈ T 1,0(�). Therefore, since ω
vanishes on complex vectors of the same type,

0 = ωγ ((d F)(Z − dil(F)Z), (d F)(W − dil(F)W ))

= ωγ (Z − dil(F)Z ,W − dil(F)W )

= −ωγ (Z , dil(F)W )− ωγ (dil(F)Z ,W ),

for any Z ,W ∈ T 1,0(�).

By (7.29), each component F j of the symplectomorphism F satisfies the first-
order PDE (with variable coefficients)

∂ f

∂z j
=
∑

k

dk
j̄

∂ f

∂zk
, (7.30)

where dk
j̄
= dil(F)k

j̄
.

Definition 7.13. We refer to (7.30) as the Beltrami equations. �
Cf., e.g., [419].

Theorem 7.7. (A. Korányi and H.M. Reimann [256])
Assume that the symplectomorphism F : � → � with complex dilatation dil(F)
extends smoothly to the boundary. Then dil(F) restricted to H(F) converges to the
complex dilatation of the boundary contact transformation.

Proof. The complex dilatation dil(F) describes the pullback of the complex structure.
But on the boundary, the Levi distribution H(∂�) is invariant under the boundary
contact transformation. The pullback of the complex structure within H(∂�) there-
fore has to be the limit of the pullback of the complex structure in the interior, after
restriction to H(F).
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7.4.3 Boundary values of solutions to the Beltrami system

Let �n be the Siegel domain in Cn and let dk
j̄

be smooth functions defined on some

neighborhood of �n . The complex vector fields ∂/∂ζ
j − ∑

k dk
j
∂/∂ζ k span a rank-n

complex vector subbundle B ⊂ T (�n)⊗C. For the Siegel domain�n , the vector field
ξ (determined by (7.27)) is given by ξ = 2i∂/∂ζ 1. The CR isomorphism φ : Hn−1 �
∂�n maps the Lewy operators Lα into Zα = ∂/∂ζ

α + ζ αξ , 2 ≤ α ≤ n.

Proposition 7.8. Let D be an open neighborhood of �n and

μ : T 1,0(D)→ T 1,0(D)

a fiberwise C-antilinear bundle morphism that maps T1,0(∂�n) into itself. Let Bb ⊂
T (∂�n)⊗C be the rank-(n−1) complex subbundle spanned by Zᾱ−μβᾱ Zβ , 2 ≤ α ≤ n,

where μβᾱ are given by μ(Zα) = μ
β
ᾱ Zβ . Let dk

j̄
be given by μ(∂/∂ζ j ) = dk

j̄
∂/∂ζ k and

set h(ζ ) = 2i
∑
β dβ

1̄
ζ β − d1

1̄
− 1. Then

Bb = [T (∂�n)⊗ C] ∩ B

on ∂�n ∩{ζ : h(ζ ) �= 0}. In particular, the trace on ∂�n of any solution f ∈ C∞(�n)

of the Beltrami equations (7.30) satisfies the tangential Beltrami equations Z ᾱ f =
μ
β
ᾱ Zβ f on the open set {ζ ∈ ∂�n : h(ζ ) �= 0}.

Indeed, since μ(T1,0(∂�n)) ⊆ T1,0(∂�n),

μ
β
ᾱ = dβᾱ − 2iζαdβ

1̄
, 2iμβᾱζ β = d1

ᾱ − 2iζαd1
1̄
,

where ζα = ζ α . Consequently Z = a j
(
∂/∂ζ

j − dk
j̄
∂/∂ζ k

)
is tangent to ∂�n ∩ {h �=

0} if and only if a1 = −2iζαaα , i.e., Z ∈ �∞(Bb). �

7.4.4 A theorem of P. Libermann

Let M be a nondegenerate CR manifold and θ a contact 1-form on M . Let fs : M →
M , |s| < ε, be a (local) 1-parameter group of contact transformations. Then f ∗

s θ =
λsθ , for some C∞ function λs on M (depending smoothly on the parameter). Let V
be the tangent vector field on M induced by ( fs)|s|<ε . Let μ be the C∞ function on M
defined by

μ(x) = d

ds
(λs(x))s=0 , x ∈ M.

Then f ∗
s θ = λsθ yields LV θ = μθ (where L is the Lie derivative). Next, let us set

p = θ(V ) ∈ C∞(M).

Then (by Cartan’s formula LX = iX d + d iX )
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iV dθ + dp = LV θ − diV θ + dp = μθ .

Let T be the characteristic direction of (M, θ). Then

V = θ(V )T + h(V ), (7.31)

where h(V ) = πH V (and πH : T (M) → H(M) is the projection). The local in-
tegration of T furnishes a flow F on M (the contact flow of M). Let �k

1
2 B
(F) be

the C∞(M)-module of all semibasic k-forms (with respect to the foliation F , i.e.,
T (F) � η = 0 for any η ∈ �k

1
2 B
(F)). Consider the map

αθ : �∞(H(M))→ �1
1
2 B
(F), αθ : X !→ iX dθ.

αθ is well defined because of iT iX dθ = 0. Also, if iX dθ = 0, then by the nondegen-
eracy of dθ on H(M), it follows that X = 0, i.e., αθ is injective. Finally, given ω =
ωαθ

α + ωᾱθ ᾱ ∈ �1
1
2 B
(F), ωᾱ = ωα , we may choose X = ZαTα + ZαTᾱ ∈ H(M)

given by Zα = −ihαβ̄ωβ̄ and with this choice iX dθ = ω; hence αθ is surjective. Then
the equation

iV dθ + dp = μθ

may be written as follows. First, apply iT to get μ = T (p) and substitute from (7.31)
to get

iθ(V )T+h(V )dθ + dp = T (p)θ,

or

αθ (h(V )) = T (p)θ − dp,

and (7.31) becomes

V = pT + α−1
θ (T (p)θ − dp).

We have proved the following theorem:

Theorem 7.8. (P. Libermann [285])
Let M be a nondegenerate CR manifold and θ a contact 1-form on M. Then to any
C∞ function p on M there corresponds an infinitesimal contact transformation Vp

(given by Vp = pT + α−1
θ (T (p)θ − dp)) and conversely, to any infinitesimal contact

transformation V on M there corresponds a C∞ function p (i.e., p = θ(V )) such that
Vp = V .

Let us apply P. Libermann’s theorem to Hn . For the contact 1-form

θ0 = dt + i

2

n∑
j=1

(
z j dz j − z j dz j

)
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one has T = ∂/∂t and dθ0 = i
∑n

j=1 dz j ∧dz j , so we may compute the isomorphism

α = αθ0 : �∞(H(Hn)) → �1
1
2 B
(F) (here F is the foliation of Hn by the curves Cx ,

x ∈ Hn , where Cx (s) = (z, s + t), s ∈ R, x = (z, t)). We have

α(X) = (dθ0)(X, ·) =
∑

j

(
−i Z

j
dz j + i Z j dz j

)
,

for any X = Z j Tj + Z
j
Tj̄ ∈ H(Hn). Finally, we obtain the following corollary:

Corollary 7.1. (P. Libermann [285])
Any infinitesimal contact transformation V on Hn has a representation of the form

V = i
n∑

j=1

(
Tj̄ (p)Tj − Tj (p)Tj̄

)
+ pT (7.32)

for some real-valued C∞ function p on Hn. Conversely, integration of any tangent
vector field V of the form (7.32) yields a local 1-parameter group of contact transfor-
mations of Hn.

Cf. also A. Korányi and H.M. Reimann [257], p. 70.

7.4.5 Extensions of contact deformations

Let � ⊂ Cn be a smoothly bounded strictly pseudoconvex domain satisfying the
assumptions of Theorem 7.5.

Definition 7.14. An infinitesimal contact transformation on ∂� is referred to as a con-
tact deformation of ∂�. �

Let f ∈ C∞(�) and denote by X f the Hamiltonian vector field associated with f
(determined by X f �ω = d f ).

Theorem 7.9. (A. Korányi and H.M. Reimann [256])
Any smooth contact deformation of ∂� extends to a Hamiltonian vector field on �.

Proof. Let V be a contact deformation of ∂�. Then, by P. Libermann’s theorem, there
is p ∈ C∞(∂�) such that V can be expressed as V = pT +α−1

θ (T (p)θ − dp), where
θ = (i/2)(∂ − ∂ρ) and ρ(z) = K (z, z)−1/(n+1). Then, let us continue the function p
to a smooth function on � and let us set

f (z) = p(z)K (z, z)1/(n+1) .

Then X f is the Hamiltonian vector field one is looking for. Indeed, we may show that
X f is a continuous extension of [−2/(n+1)]V . Near the boundary we set W1 = ξ/‖ξ‖
and complete W1 to a local orthonormal frame {W1, . . . ,Wn} of T 1,0(�). Next, let us
set
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Tj =
√

n + 1

2ρ
W j .

A calculation shows that

X f = 2i

n + 1

n∑
j=2

[
−Tj (p)Tj̄ + Tj̄ (p)Tj

]
+ i

ρ‖T1‖2

[−T1(p)T1̄ + T1̄(p)T1
]− p

2ρ2‖T1‖2
T .

Then

lim
z→∂�

1

2ρ2‖T1‖2
= 2

n + 1
, lim

z→∂�

1

ρ‖T1‖2
= 0

(because ρ → 0 as z → ∂�). Thus X f converges to

2

n + 1
i

n∑
j=2

(
−Tj (p)Tj̄ + Tj̄ (p)Tj

)
+ 2

n + 1
pT = − 2

n + 1
V . �

The reader may see also L. Capogna and P. Tang [87], and P. Tang [399].
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Yang–Mills Fields on CR Manifolds

In this chapter, we build a canonical family {DS} of Hermitian connections in a Hermi-
tian CR-holomorphic vector bundle (E, h) over a nondegenerate CR manifold M , pa-
rameterized by the elements S ∈ �∞(End(E))with S skew-symmetric. Consequently,
we prove an existence and uniqueness result for the solution to the inhomogeneous
Yang–Mills equation d∗

D RD = f on M . As an application we solve for D ∈ D(E, h)
when E is the trivial line bundle, a locally trivial CR-holomorphic vector bundle over
a nondegenerate real hypersurface in a complex manifold, or a canonical bundle over
a pseudo-Einsteinian CR manifold.

In an attempt to extend the results of S. Donaldson [117], and K. Uhlenbeck and
S.T. Yau [411], to CR manifolds (of hypersurface type), H. Urakawa has solved (cf.
[412]) the Yang–Mills equation for Hermitian connections D ∈ D(E, h) (in a Her-
mitian CR-holomorphic vector bundle over a strictly pseudoconvex manifold) with
(1, 1)-type curvature RD . The solution turned out to be precisely the canonical con-
nection built by N. Tanaka [398]. In the present chapter, we generalize H. Urakawa’s
result by dealing with the inhomogeneous Yang–Mills equation

d∗
D RD = f.

This is solved by a geometric method resembling both Tanaka’s construction and the
proof of Theorem 2.3 in [412], p. 551. The main difference is that we look for so-
lutions D whose curvature has prescribed (rather than zero) trace �θ RD . The result
is contained in Theorem 8.2 and is applied to solve several concrete inhomogeneous
Yang–Mills equations.

8.1 Canonical S-connections

Let (E, ∂E ) be a CR-holomorphic vector bundle over a strictly pseudoconvex CR
manifold M . Let θ be a contact form such that Lθ is positive definite. Let h be a
Hermitian structure in E . By a result of N. Tanaka [398], there is a unique connection
D in E (the Tanaka connection) such that (i) D0,1 = ∂E , (ii) Dh = 0, and (iii)
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�θ RD = 0, where RD is the curvature tensor field of D and �θ is the trace operator.
Here D0,1s is the restriction of Ds to T0,1(M).

Definition 8.1. A connection D in E is Hermitian if it satisfies the axioms (i)–(ii)
above. �

By slightly generalizing Tanaka’s result, one may single out a Hermitian connection
D whose curvature RD has prescribed trace (rather than zero trace) with respect to a
fixed contact form θ on M . Also, this can be made to work in the arbitrary-signature
case.

Theorem 8.1. Let (M, T1,0(M)) be a nondegenerate CR manifold (of hypersurface
type) of CR dimension n and θ a contact form on M. Let (E, ∂E ) be a CR-holomorphic
vector bundle over M. Let h be a Hermitian structure in E and S ∈ �∞(End(E)) a
global field of skew-symmetric endomorphisms, i.e., h(Su, v)+ h(u, Sv) = 0 for any
u, v ∈ �∞(E). There is a unique connection D = D(h, θ, S) in E such that

(i) DZ u = (∂E u)Z,
(ii) V (h(u, v)) = h(DV u, v)+ h(u, DV v), for any Z ∈ �∞(T1,0(M)),

V ∈ �∞(T (M)⊗ C) and u, v ∈ �∞(E), and
(iii) �θ RD = 2nS.

Proof. We first establish uniqueness. Let

D : �∞(E)→ �∞(T ∗(M)⊗ E)

be a connection in E satisfying axioms (i)–(iii). Consider a complex vector field Z ∈
�∞(T1,0(M)) and a section u ∈ �∞(E). Then DZ u and DZ u are expressed by

DZ u = (∂E u)Z , (8.1)

h(DZ u, v) = Z(h(u, v))− h(u, (∂Ev)Z), (8.2)

for any v ∈ �∞(E). Let T be the characteristic direction of (M, θ). Since T (M)⊗C =
T1,0(M)⊕ T0,1(M)⊕ CT it remains to compute DT u. Let D2u be defined by

(D2u)(X, Y ) = DX DY u − D∇X Y u , X, Y ∈ �∞(T (M)).

Here ∇ is the Tanaka–Webster connection of (M, θ). Next, let B be given by

B(X, Y )u = (D2u)(X, Y )− (D2u)(Y, X).

A calculation shows that

B(X, Y )u = RD(X, Y )u − DT∇ (X,Y )u. (8.3)

Note that T∇(Eα, Eᾱ) = 2iεαT , for any local orthonormal frame {Eα} of
(T1,0(M), Lθ ). Then (by taking traces in (8.3)) we obtain
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DT u = S(u)− 1

2n
(�θ B) u. (8.4)

Clearly (by (8.1)–(8.2)) the trace�θ B of B is determined (in terms of the data (∂E , h)).
By (8.1)–(8.2) and (8.4) we get the uniqueness statement in Theorem 8.1. �

To establish existence, let us first prescribe DZ u and DZ u by (8.1)–(8.2), for any
Z ∈ �∞(T1,0(M)), u ∈ �∞(E). Then �θ B is known. Hence we may define DT u by
(8.4). Then D is a connection in E . For instance, the property

DT ( f u) = f DT u + T ( f )u

follows from

(�θ B)( f u) = f (�θ B)u − 2nT ( f )u , f ∈ C∞(M).

Moreover, (8.1) yields D0,1 = ∂E . Also �θ RD = 2nS as a consequence of (8.3)–
(8.4). It remains to check the axiom (ii). Note that

V (h(u, v)) = h(DV u, v)+ h(u, DV v), (8.5)

for any V ∈ �∞(H(M) ⊗ C) (by (8.2) and its complex conjugate, as an identity in
C∞(M)). A straightforward calculation (based on (8.5)) leads to

T∇(V,W )(h(u, v)) = −h(B(V,W )u, v)− h(u, B(V ,W )v), (8.6)

for any V,W ∈ H(M)⊗ C. Next, by taking traces in (8.6), we obtain

2nT (h(u, v)) = −h((�θ B)u, v)− h(u, (�θ B)v), (8.7)

h(DT u, v)+ h(u, DT v) = h(Su, v)+ h(u, Sv)

− 1

2n
{h((�θ B)u, v)+ h(u, (�θ B)v)} = T (h(u, v)),

and the proof of Theorem 8.1 is complete. �

Definition 8.2. The connection D = D(h, θ, S) furnished by Theorem 8.1 will be re-
ferred to as the canonical S-connection (determined by the data (h, θ, S)) in
(E, ∂E ). �

It possesses the following curvature properties:

Corollary 8.1. Let us consider a Hermitian CR-holomorphic vector bundle (E, ∂E , h)
and a bundle endomorphism S ∈ �∞(End(E)) such that h(Su, v)+ h(u, Sv) = 0 for
any u, v ∈ �∞(E). The curvature RD of the canonical S-connection D in E satisfies
the identities

RD(Z ,W ) = RD(Z ,W ) = 0, (8.8)

h(RD(Z ,W )u, v)+ h(u, RD(Z ,W )v) = 0, (8.9)

for any Z ,W ∈ T1,0(M) and u, v ∈ �∞(E). In particular D has a (1, 1)-type curva-
ture tensor field, i.e., RD ∈ B1,1(End(E)), if and only if T � RD = 0.
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Proof. The integrability property for ∂E yields RD(Z ,W ) = 0. Then (by (8.3))
RD(Z ,W ) = 0, and (8.8) is proved. To prove (8.9) one performs the following calcu-
lation (based on (8.3), (8.6)):

h(RD(Z ,W )u, v)+ h(u, RD(Z ,W )v)

= h(B(Z ,W )u, v)+ h(u, B(Z ,W )v)+ h(DT∇ (Z ,W )u, v)+ h(u, DT∇ (Z ,W )v)

= −T∇(Z ,W )(h(u, v))+ 2i Lθ (Z ,W )h(DT u, v)

+ 2i Lθ (Z ,W )h(u, DT v) = −2i Lθ (Z ,W )(DT h)(u, v) = 0,

and the proof of (8.9) is complete.

8.2 Inhomogeneous Yang–Mills equations

Let (E, h) be a Hermitian CR-holomorphic vector bundle over a compact strictly pseu-
doconvex CR manifold M , and let

YM(D) = 1
2

∫
M

‖RD‖2θ ∧ (dθ)n (8.10)

be the Yang–Mills functional on the space of all connections D in E . It is known
(cf., e.g., [392], p. 125) that D is a critical point of YM if and only if it satisfies the
Yang–Mills equation

d∗
D RD = 0,

where d∗
D is the formal adjoint of dD with respect to the L2 inner product (8.24). H.

Urakawa has shown (cf. Theorem 2.3 in [412], p. 551) that a Hermitian connection of
(1, 1)-type curvature RD is a solution of the (homogeneous) Yang–Mills equation if
and only if D is the Tanaka connection (i.e., D = D(h, θ, 0)). See also [413]–[414].
As an application of Theorem 8.1 we establish the following result:

Theorem 8.2. (H. Urakawa et al. [127])
Let (M, T1,0(M)) be a compact orientable nondegenerate CR manifold, of CR dimen-
sion n, and θ a contact form on M. Let (E, ∂E ) be a CR-holomorphic vector bundle
over M and h a Hermitian metric on E. Let f = f 1,0 + f 0,1 + θ ⊗ u ∈ A1(End(E)),
with f 1,0 ∈ B1,0(End(E)), f 0,1 = f 1,0, and u skew-symmetric. Let DS be the canon-
ical S-connection, determined by the data (h, θ, S), −4nS = u, and assume that DS

has a (1, 1)-type curvature tensor field. Then the inhomogeneous Yang–Mills equation

d∗
D RD = f (8.11)

admits a unique solution D of (1, 1)-type curvature, provided that f satisfies the com-
patibility relation

∂DS u = −i f 0,1. (8.12)

Moreover, if this is the case, then the solution to (8.11) is precisely DS.
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Proof. For f = 0 this is, of course, H. Urakawa’s result quoted above ([412]). Let D
be a Hermitian connection in (E, h) with curvature

RD ∈ C1,1(End(E)) ⊂ A2(End(E))

(one adopts the notation and conventions in Section 8.4). To compute d∗
D RD ∈

A1(End(E)) we take into account the decomposition

A1(End(E)) = B1,0(End(E))⊕ B0,1(End(E))⊕ �∞((CT )∗ ⊗ End(E)).

For any ϕ ∈ B1,0(End(E)),(
d∗

D RD, ϕ
)
θ

=
(

RD, dD ϕ
)
θ

=
(

RD, A(ϕ)+ d ′
Dϕ + d ′′

Dϕ
)
θ

=
(

RD, d ′′
Dϕ

)
θ
,

by (8.23) in Section 8.4 and because of

(p, q) �= (p′, q ′) �⇒ C p,q(End(E))⊥C p′,q ′
(End(E)).

From now on, assume that RD ∈ B1,1(End(E)). Recall that the pseudo-Hermitian
torsion τ of the Tanaka–Webster connection possesses the property

τ(T0,1(M)) ⊆ T1,0(M),

and let us set τ(Eβ̄ ) = Aα
β̄

Eα . Then

d ′′
Dϕ = 2∂Dϕ + 2Aα

β̄
ϕα θ ∧ θ β̄ ,

where ϕα = ϕ(Eα) ∈ �∞(End(E)). Then (since RD is of type (1, 1))(
d∗

D RD, ϕ
)
θ

=
(

RD, 2 ∂Dϕ
)
θ

=
(

2 ∂
∗
D RD, ϕ

)
θ
,

i.e., 2∂
∗
D RD is the B1,0(End(E))-component of d∗

D RD . In a similar manner one
shows that the B0,1(End(E))-component of d∗

D RD is 2∂∗D RD . Next, let ϕ = θ ⊗ u,
with u ∈ �∞(End(E)). Then(

d∗
D RD, ϕ

)
θ

=
(

RD, dDϕ
)
θ

= 2
(

RD, (dθ)⊗ u − θ ∧ Du
)
θ
.

Moreover (again because RD is of type (1, 1)),(
d∗

D RD, θ ⊗ u
)
θ

=
(

RD, 2(dθ)⊗ u
)
θ

=
(

RD,−2�⊗ u
)
θ

=
(

RD,−2Lu
)
θ

=
(
�θ RD,−2u

)
θ

=
(
−2θ ⊗�θ RD, θ ⊗ u

)
θ

(where the last equality holds due to g∗
θ (θ, θ) = 1). Consequently, the �∞((CT )∗ ⊗

End(E))-component of d∗
D RD is −2θ ⊗�θ RD . Summing up, we have
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d∗
D RD = 2

{
∂
∗
D RD + ∂∗D RD − θ ⊗�θ RD

}
. (8.13)

Note that

DT RD = T � dD RD = 0,

by the second Bianchi identity. Hence d ′
D RD = 0 and the identity (8.25) for ϕ = RD

yield

∂D RD = 0.

In a similar way one proves

∂D RD = 0.

Hence, by taking into account the commutation formulas (8.26), we obtain

∂∗D RD = −i∂D(�θ RD) , ∂
∗
D RD = i∂D(�θ RD),

which together with (8.13) gives

d∗
D RD = 2i

[
∂D − ∂D + iθ

]
�θ RD. (8.14)

Then, on the one hand,

d∗
DS

RDS = 4ni
[
∂DS − ∂DS + iθ

]
S = f

(by the compatibility relation (8.12)), i.e., DS is a solution of the inhomogeneous
Yang–Mills equation (8.11). Conversely, let D be a Hermitian connection, of (1, 1)-
type curvature, satisfying (8.11). Then (by (8.14))

f 1,0 = 2i∂D�θ RD , f 0,1 = −2i∂D�θ RD , u = −2�θ RD .

Finally, the last identity and Theorem 8.1 yield D = D(h, θ,− 1
4n u), and the first two

are identically satisfied (by (8.12)). �

8.3 Applications

In this section, we apply Theorem 8.2 to solve several concrete inhomogeneous Yang–
Mills equations. The bundles dealt with are quantum bundles and therefore the condi-
tion that the background S-connection have (1, 1)-type curvature is always satisfied.
For the notions we use the main reference is [259].

Let π : L → M be a complex line bundle. Let us set C∗ = C \ {0} and L̃ =
L \ {zero section}. If U ⊆ M is an open set and s, t ∈ �∞(U, L̃) then the unique
f ∈ C∞(U,C∗) such that t = f s on U is denoted by f = t/s.

Let D be a connection in L . With each s ∈ �∞(U, L̃) one associates a (local)
1-form α(s) ∈ �1(U ) given by
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α(s)X = 1

i

DX s

s
,

for any X ∈ �∞(U, T (M)). Next, let us consider the complex 1-form (1/(i z))dz on
C∗. It is a GL(1,C)-invariant 1-form on C∗. Consequently, for any x ∈ M there is a
unique 1-form βx ∈ �1(L̃ x ) such that

λ∗ βx = 1

i z
dz,

for any GL(1,C)-equivariant map λ : C∗ → L̃ x .

Definition 8.3. A complex 1-form α ∈ �1(L̃) is a connection form on L if (i) α is
GL(1,C)-invariant, and (ii) j∗x α = βx for any x ∈ M , where jx : L̃ x ⊂ L . �

Given a complex line bundle with connection (L , D) there is (cf. Proposition 1.5.1 in
[259], p. 101) a unique connection form α ∈ �1(L̃) such that s∗ α = α(s) for any
local section s ∈ �∞(U, L̃).

Definition 8.4. Let α be the connection form of (L , D). The curvature form of (L , D)
is the unique closed 2-form curv(L , D) ∈ �2(M) on M determined by

π̃∗ curv(L , D) = dα,

where π̃ is the restriction of π to L̃ . �

The following concept is of central importance for the present section.

Definition 8.5. Let M be a C∞ manifold and H → M a symplectic subbundle of
T (M), with symplectic form�. Let L → M be a complex line bundle, D a connection
in L , and h a D-invariant (i.e., Dh = 0) Hermitian structure in L . Then (L , D, h) is
called a quantum bundle over (M, H, �) if

curv(L , D) = �

on H ⊗ H . �

This slightly generalizes the notion of B. Kostant [259], p. 133 (cf. also K. Gawedzki
[169], p. 14), where H = T (M). We shall deal with symplectic vector bundles arising
on CR manifolds (and the corresponding quantum bundles).

Let (E, h) be a Hermitian CR-holomorphic vector bundle over a CR manifold
M (of hypersurface type) of CR dimension n and denote by D(E, h) the set of all
Hermitian connections in (E, h). Let θ be a pseudo-Hermitian structure on M and
consider the inhomogeneous Yang–Mills equation

d∗
D RD = 4ni θ ⊗ I, (8.15)

where I is the identical transformation.



414 8 Yang–Mills Fields on CR Manifolds

8.3.1 Trivial line bundles

We look for solutions D ∈ D(L , h) to (8.15), where L = M ×C is the trivial complex
line bundle, over a nondegenerate CR manifold M , with the Hermitian structure

hx ((x, z), (x, w)) = zw , z, w ∈ C.

Let π : M ×C → M and π̂ : M ×C → C be the natural projections. Then α ∈ �1(L̃)
given by

α = π̂∗( 1

i z
dz
)

− π∗ θ

is a connection form on L whose curvature form is −dθ . Also h is α-invariant. Indeed,
if s(x) = (x, f (x)), f ∈ C∞(M,C∗), is a (nowhere-vanishing) section in L , then
(by s∗α = α(s))

α(s) = f ∗( 1

i z
dz
)

− θ, (8.16)

so that Dh = 0. We have proved the following:

Proposition 8.1. (L , α, h) is a quantum bundle over (M, H(M),−dθ).

Indeed, let us consider the differential operator

∂L : �∞(L)→ �∞(T0,1(M)
∗ ⊗ L),

(
∂Ls

)
x = (

x,
(
∂M f

)
x

)
, s(x) = (x, f (x)) , x ∈ M.

Then (L , ∂L) is a CR-holomorphic line bundle. Note that as another consequence of
(8.16), one has D0,1 = ∂L and

(
�θ RD

)
s = −2nis. Hence D (given by (8.16)) is

precisely the canonical S-connection D = D(h, θ, S) obtained for S = −i I . By
Theorem 2, we can deduce the following result:

Proposition 8.2. D is the unique solution (in D(L , h)) to (8.15).

8.3.2 Locally trivial line bundles

Let M be a CR manifold. Let us recall (cf. Chapter 5 of this book) that a function
u ∈ C∞(M,R) is CR-pluriharmonic if for any x ∈ M there is an open neighborhood
U of x in M and a function v ∈ C∞(U,R) such that ∂b(u + iv) = 0. By a result of
E. Bedford, under fairly general assumptions (cf. [51], p. 334) the boundary values of
pluriharmonic functions are locally real parts of CR functions, i.e., CR-pluriharmonic.
By a result of J.M. Lee [270], which was discussed in detail in Chapter 5 of this
book, if M is nondegenerate of CR dimension n ≥ 2 then a function u ∈ C∞(M,R)
is CR-pluriharmonic if and only if the covariant (1, 1)-Hessian (with respect to the
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Tanaka–Webster connection) of u is a scalar multiple of the Levi form at each point
of M .

Let M be a nondegenerate real hypersurface of a complex manifold V . Let π :
F → V be a holomorphic line bundle over V , with a flat Hermitian structure H . Then
E = π−1(M) is a locally trivial CR-holomorphic line bundle over M . Let h be the
Hermitian structure induced by H on E . We look for solutions D ∈ D(E, h) to the
inhomogeneous Yang–Mills equation (8.15). Let D = D(h, θ, S) be the canonical
S-connection obtained for S = −i I .

Proposition 8.3. (E, D, h) is a quantum bundle over (M, H(M),−dθ).

To prove this statement, let σ : U → F be a holomorphic frame in F , hence
s = σ |M∩U is a frame of E (and ∂E s = 0). The first Chern form of F is
(−1/2π i)∂∂ log H(σ, σ ). Hence, since H is flat, log H(σ, σ ) is pluriharmonic. Then
(cf. [51], pp. 334–335) log h(s, s) is CR-pluriharmonic. Consequently (by Proposition
3.3 in [270], p. 167) there is λ ∈ C∞(M,C) such that

∇β̄∇α log h(s, s) = λ hαβ̄ . (8.17)

Contraction with hαβ̄ in (8.17) gives

λ = −1

n
(�b log h(s, s)− inT (log h(s))) .

Let ω = curv(E, D). Then (8.30) becomes (by (8.17))

2π ω(Tα, Tβ̄ ) = S(s)

s
hαβ̄;

hence (since S = −I ) ω = −dθ on H(M) ⊗ H(M). By Theorem 8.2 we have the
following:

Proposition 8.4. D is the unique solution (in D(E, h)) to (8.15).

Let M be a nondegenerate CR manifold of CR dimension n and θ a contact form on
M . Let ∇ be the Tanaka–Webster connection of (M, θ) and R its curvature tensor
field. Let {Tα} be a local frame of T1,0(M) on U ⊆ M and set

R(TC , TD)TA = RA
B

C DTB,

where A, B, . . . ∈ {0, 1, . . . , n, 1̄, . . . , n̄} and T0 = T . Let Rλμ̄ = Rααλμ̄ and

ρ = hαβ̄ Rαβ̄ be the pseudo-Hermitian Ricci tensor and the pseudo-Hermitian scalar
curvature of (M, θ). Given a Hermitian CR-holomorphic vector bundle (E, h) over
M , we consider the inhomogeneous Yang–Mills equation

d∗
D RD = 4ni{dc

bρ − ρθ} ⊗ I, (8.18)

where dc
b = i(∂b − ∂b).
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8.3.3 Canonical bundles

Let us set �p,0(M) = �pT̂ (M)∗. Then K (M) = �n+1,0(M) is a complex line
bundle over M (the canonical bundle of (M, T1,0(M))). Let {θα} be the admissible
coframe determined by {Tα}, i.e., θα are the complex 1-forms on U determined by
θα(Tβ) = δαβ , θ

α(Tβ̄ ) = θα(T ) = 0. If s, t ∈ �∞(K (M)) we set

h(s, t) = H−1 f g, H =
∣∣∣det(hαβ̄)

∣∣∣ ,
s = f θ ∧ θ1 ∧ · · · ∧ θn , t = g θ ∧ θ1 ∧ · · · ∧ θn .

Then h is a globally defined Hermitian structure in K (M). We wish to look for solu-
tions to (8.18) in D(K (M), h). The Tanaka–Webster connection ∇ of (M, θ) induces a
connection D in K (M). Precisely, if s ∈ �∞(K (M)) then Ds is the covariant deriva-
tive of s, thought of as a (scalar) (n +1, 0)-form on M , with respect to ∇. We consider
the local frame ζ0 : U → K (M) given by

ζ0 = √
H θ ∧ θ1 ∧ · · · ∧ θn .

Let ωαβ be the connection 1-forms of the Tanaka–Webster connection, i.e., ∇θα =
−ωαβ ⊗ θβ . Then

Dζ0 =
{

d log
√

H − ωαα
}

⊗ ζ0 (8.19)

and Dh = 0 is equivalent to

ωαα + ωᾱᾱ = d log H. (8.20)

Finally (8.20) is a consequence of ωαβ̄ + ωβ̄α = d hαβ̄ . Hence h is D-invariant. As

another consequence of (8.19), the curvature RD of D is given by

RD(X, Y )ζ0 = −2(dωαα)(X, Y )ζ0, (8.21)

for any X, Y ∈ T (M). Let us set Aαβ = hαμ̄Aμ̄β . Then

Rα
ρ
λμ = 2i(Aμαδ

ρ
λ − Aλαδ

ρ
μ).

Thus Rααλμ = 0. Therefore (8.21) together with the identity

hαβ̄Lθ (R(X, Y )Tα, Tβ̄ ) = 2(dωαα)(X, Y )

leads to RD(Z ,W ) = 0 for any Z ,W ∈ T1,0(M). Finally, again as a consequence of
(8.21), one gets

RD(Tα, Tβ̄ )ζ0 = −Rαβ̄ζ0. (8.22)
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Assume M to be a nondegenerate CR manifold admitting a pseudo-Einsteinian struc-
ture θ of nowhere-zero pseudo-Hermitian scalar curvature ρ. Let us set

θ̂ = − ρ

2n
θ.

Then (by (8.22))

RD(Z ,W )ζ0 = 2L
θ̂
(Z ,W )ζ0 , Z ,W ∈ T1,0(M).

This is summarized in the following proposition:

Proposition 8.5. (H. Urakawa et al. [127])
(K (M), D, h) is a quantum bundle over (M, H(M),−d θ̂ ).

Let us set

∂K (M) = D0,1.

Then (K (M), ∂K (M)) is a CR-holomorphic (line) bundle. Clearly

∂K (M)( f ζ0) = f ∂K (M)ζ0 + (∂M f )⊗ ζ0,

for any f ∈ C∞(M,C). Next, a calculation based on

∂K (M)ζ0 =
{
∂M log

√
H − ωαα ◦ j0,1

}
⊗ ζ0

(where j0,1 : T0,1(M) ⊂ T (M)⊗ C) leads to[
Z ,W

]
ζ0 = Z W ζ0 − W Z ζ0 + 2(dωαα)(Z ,W )ζ0

(where Zζ0 = (
∂K (M)ζ0

)
Z ) for any Z ,W ∈ �∞(T1,0(M)). Then the identity

Rα
ρ
λ̄μ̄ = 2i

(
hαλ̄Aρμ̄ − hαμ̄Aρ

λ̄

)
and the self-adjointness of τ (with respect to gθ ) yields

2(dωαα)(Tλ̄, Tμ̄) = Rα
α
λ̄μ̄ = 0,

that is, ∂K (M) satisfies the requested integrability property. Finally (by (8.22))(
�θ RD)ζ0 = iρζ0.

We therefore have the following result:

Proposition 8.6. The connection D in K (M) is precisely the canonical S-connection
D(h, θ, S) obtained for S = iρ I ; hence it is the unique solution to (8.18).
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8.4 Various differential operators

We recall several technical facts used through the proof of Theorem 8.2. Proofs are
omitted. The main references for this section are [398] and [412].

Let E → M be a complex vector bundle over the nondegenerate CR manifold M .
Let θ be a contact form on M and T the corresponding characteristic direction. Let us
set

T̂ (M) = T1,0(M)⊕ CT,

and consider the following spaces of C∞ sections:

Ak(E) = �∞ (
(�k T ∗(M)⊗ C)⊗ E

)
,

Bk(E) = �∞ (
(�k H(M)∗ ⊗ C)⊗ E

)
,

B p,q(E) = �∞ (
�pT1,0(M)

∗ ∧�q T0,1(M)
∗ ⊗ E

)
,

C p,q(E) = �∞(�pT̂ (M)∗ ∧�q T0,1(M)
∗ ⊗ E).

Note that

B p,q(E) = B p+q(E) ∩ C p,q(E).

Let D and ∇ be respectively a Hermitian connection in (E, h) and the Tanaka–Webster
connection of (M, θ). Let X be a tangent vector field on M . We need the differential
operators

DX : Ak(E)→ Ak(E),

dD : Ak(E)→ Ak+1(E),

A : C p,q(E)→ C p+2,q−1(E),

d ′
D : C p,q(E)→ C p+1,q(E), d ′′

D : C p,q(E)→ C p,q+1(E),

given by

(DXϕ)(X1, . . . , Xk) = DX (ϕ(X1, . . . , Xk))−
k∑

j=1

ϕ(X1, . . . ,∇X X j , . . . , Xk),

(dDϕ)(X1, . . . , Xk+1) =
k+1∑
j=1

(−1) j+1 DX j (ϕ(X1, . . . , X̂ j , . . . , Xk+1))

+
∑

1≤i< j≤k+1

(−1)i+ jϕ([Xi , X j ], X1, . . . , X̂i , . . . , X̂ j , . . . , Xk+1),

for any X, Xi ∈ �∞(T (M)⊗ C). Here a hat indicates, as usual, the suppression of a
term. Moreover,
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(Aϕ)(Z1, . . . , Z p+2,W 1, . . . ,W q−1)

=
∑

1≤i< j≤p+2

(−1)i+ j+1ϕ(T∇(Zi , Z j ), Z1, . . . , Ẑi , . . . , Ẑ j , . . . ,

. . . , Z p+2,W 1, . . . ,W q−1)(d
′
Dϕ)(Z1, . . . , Z p+1,W 1, . . . ,W q)

=
p+1∑
j=1

(−1) j+1(DZ jϕ)(Z1, . . . , Ẑ j , . . . , Z p+1,W 1, . . . ,W q)

(d ′′
Dϕ)(Z1, . . . , Z p,W 1, . . . ,W q+1)

=
q+1∑
j=1

(−1)p+ j+1(DW j
ϕ)(Z1, . . . , Z p,W 1, . . . , Ŵ j , . . . ,W q+1)

+
p∑

i=1

q+1∑
j=1

(−1)p+i+ j+1ϕ(T∇(Zi ,W j ), Z1, . . . ,

. . . , Ẑi , . . . , Z p,W 1, . . . , Ŵ j , . . . ,W q+1)

for any Zi ∈ �∞(T̂ (M)) and W j ∈ �∞(T1,0(M)). Then

dDϕ = A(ϕ)+ d ′
Dϕ + d ′′

Dϕ, ϕ ∈ C p,q(E). (8.23)

Proposition 8.7. For any Hermitian connection D in (E, h) over the nondegenerate
CR manifold M one has RD ∈ C1,1(End(E)) and

A(RD) = 0, d ′
D RD = 0, d ′′

D RD = 0.

This is Lemma 1.15 in [412], p. 548, stated for Hermitian bundles over a strictly pseu-
doconvex CR manifold in [412], yet it holds in the case of an arbitrary nondegenerate
CR manifold (of hypersurface type). Cf. [398], p. 105.

Proposition 8.8. There is a real operator

∗B : Bk(E)→ B2n−k(E)

such that

〈ϕ,ψ〉θ (dθ)n = n!ϕ ∧ ∗Bψ,
∗B ∗B ϕ = (−1)kϕ,

for any ϕ,ψ ∈ Bk(E).

Here 〈 , 〉θ is the pointwise inner product induced on (H(M)∗ ⊗ C)⊗ E by gθ and h.

Definition 8.6. Let us set � = −dθ and consider the operator

L : Bk(E)→ Bk+2(E), Lϕ = � ∧ ϕ.
Also let us consider

�θ : Bk+2(E)→ Bk(E), �θψ = (−1)k ∗B L ∗B ψ. �
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Proposition 8.9. �θ is the formal adjoint of L with respect to the L2 inner product

(ϕ, ψ)θ =
∫

M
〈ϕ,ψ〉θ θ ∧ (dθ)n . (8.24)

Note that

i �θψ =
n∑
α=1

εαψ(Eα, Eα) , ψ ∈ B1,1(E),

where {Eα} is a local orthonormal (i.e., Lθ (Eα, Eβ̄ ) = εαδαβ , where ε1 = · · · = εr =
−εr+1 = · · · = −εr+s = 1) frame in T1,0(M). Let D = D(h, θ, 0) be the Tanaka
connection of the Hermitian CR-holomorphic vector bundle (E, h) over (M, θ) and
θ̂ = e f θ . Using the frame Êα = e− f/2 Eα one shows easily that �̂ϕ = e− f�θϕ;
hence �̂θ RD = 0. Then (by the uniqueness statement in Theorem 8.1) D(h, θ̂ , 0) =
D(h, θ, 0), which is equivalent to the following:

Proposition 8.10. The Tanaka connection is a CR invariant.

If {θα} is the admissible coframe determined by {Eβ} then (by Lemma 1.17 in [412],
p. 549)

d ′
Dϕ =

n∑
α=1

θα ∧ DEαϕ + θ ∧ DTϕ. (8.25)

Next, we shall need the differential operators

∂D : B p,q(E)→ B p+1,q(E), ∂D : B p,q(E)→ B p,q+1(E),

given by

∂Dϕ =
n∑
α=1

θα ∧ DEαϕ,

∂Dϕ =
n∑
α=1

θ ᾱ ∧ DEᾱ ϕ,

and their formal adjoints

∂∗D : B p+1,q(E)→ B p,q(E), ∂
∗
D : B p,q+1(E)→ B p,q(E),

with respect to ( , )θ . Explicitly

∂∗Dϕ = − ∗B ∂D ∗B ϕ, ∂
∗
Dψ = − ∗B ∂D ∗B ψ.

Finally, we recall (cf. Lemma 1.20 in [412], p. 550) the following result:

Proposition 8.11. The commutation formulas:

[�θ, ∂D] = i∂
∗
D,

[
�θ, ∂D

] = −i∂∗D (8.26)

are valid on any nondegenerate CR manifold.
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8.5 Curvature of S-connections

We wish to compute the (1, 1)-component of the curvature form

ω = curv(L , D)

of the canonical S-connection of a locally trivial CR-holomorphic line bundle (L , ∂L).
Given a nowhere-vanishing CR-holomorphic section s on U we have (by (8.1)–(8.2))

α(s)Z = 0,

α(s)Z = 1

i
Z(log ρ(s)),

where ρ(s) = h(s, s). Moreover, given a local frame {Tα} of T1,0(M) on U , we have

(D2s)(Tα, Tβ) = 0, (8.27)

(D2s)(Tβ, Tα) =
(
∇β∇α log ρ(s)

)
s (8.28)

(covariant derivatives are taken with respect to the Tanaka–Webster connection of
(M, θ)). Let �b be the Kohn–Rossi operator on (M, θ). Using (8.27)–(8.28) and the
identities

�b f = −hλμ∇λ∇μ f, �b f = �b f − inT ( f )

(for any f ∈ C∞(M)) one may compute the trace of B as

(�θ B) s = −{i�b log ρ(s)+ nT (log ρ(s))} s.

Hence (by (8.4))

α(s)T = 1

i

{ S(s)

s
+ 1

2n

[
i�b log ρ(s)+ nT (log ρ(s))

] }
.

Finally

iα(s) = Tα(log ρ(s))θα +
{ S(s)

s
+ 1

2n
(i�b log ρ(s)+ nT (log ρ(s)))

}
θ, (8.29)

for any nowhere-vanishing CR-holomorphic section s ∈ �∞(U, L). The curvature
form ω = curv(L , D) is given by ω = dα(s) on U . Let us differentiate in (8.29) and
use the identity

dθα = θβ ∧ ωαβ + θ ∧ τα

to obtain

ω ≡
{

S(s)

s
+ 1

2n

[
i�b log ρ(s)+ nT (log ρ(s))

]}
dθ

−
(
∇β∇α log ρ(s)

)
θα ∧ θβ,mod θα ∧ θβ, θα ∧ θ, θα ∧ θ. (8.30)
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Spectral Geometry

We present A. Greenleaf’s lower bound (cf. Theorem 9.1 below) on the first nonzero
eigenvalue of the sub-Laplacian �b of a compact strictly pseudoconvex CR mani-
fold. The methods employed are L2 (that is, we establish Bochner-type formulas) and
the result is a CR analogue of the well-known theorem of A. Lichnerowicz (cf. [59],
pp. 179–186) that the first nonzero eigenvalue λ1 of the Laplace–Beltrami operator �
of a compact n-dimensional Riemannian manifold (M, g) of Ricci curvature ≥ C g,
for some constant C > 0, satisfies

λ1 ≥ n

n − 1
C. (9.1)

No CR analogue of M. Obata’s theorem (cf. [328]) [that under the same hypothesis,
equality is achieved in (9.1) if and only if M is isometric to the standard sphere Sn]
has been obtained as yet.

By the same techniques, and under the same hypothesis as in Theorem 9.1, we
give a lower bound on the first nonzero eigenvalue of the operator�b − icT, |c| < n.

9.1 Commutation formulas

Let (M, T1,0(M)) be a nondegenerate CR manifold, of hypersurface type, and θ a
contact form on M . Let {Tα : 1 ≤ α ≤ n} be a (local) frame of T1,0(M), defined on an
open set U ⊆ M , and let us set {TA} = {T, Tα, Tᾱ}, where A ∈ {0, 1, . . . , n, 1̄, . . . , n̄}
and T0 = T ).

Let f ∈ C∞(M)⊗C. Let ∇2 f be the pseudo-Hermitian Hessian of f , with respect
to the Tanaka–Webster connection ∇ of (M, θ). For all local calculations, we set

f AB = (∇2 f )(TA, TB),

so that
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fαβ = Tα( fβ)− �γαβ fγ , (9.2)

fαβ̄ = Tα( fβ̄ )− �γ̄αβ̄ fγ̄ , (9.3)

f0β = T ( fβ)− �γ0β fγ , (9.4)

fα0 = Tα( f0) , (9.5)

where fα = Tα( f ), fᾱ = Tᾱ( f ), and f0 = T ( f ). The pseudo-Hermitian Hessian
∇2 f of f is not symmetric, but rather one has the following:

Proposition 9.1. The commutation relations

fαβ = fβα , (9.6)

fαβ̄ = fβ̄α − 2ihαβ̄ f0 , (9.7)

fα0 = f0α + Aβ̄α fβ̄ , (9.8)

hold on any nondegenerate CR manifold.

To prove (9.6)–(9.8) we differentiate the identity

d f = fαθ
α + fᾱθ

ᾱ + f0θ

to get

d f = (d fα) ∧ θα + fαdθα + (d fᾱ) ∧ θ ᾱ + fᾱdθ ᾱ + (d f0) ∧ θ + f0dθ .

Let us recall (1.62) and (1.64) of Chapter 1,

dθ = 2ihαβ̄θ
α ∧ θ β̄ ,

dθα = θβ ∧ ωαβ + θ ∧ τα ,
and substitute in the previous identity. We obtain (by (9.2)–(9.5))

fαβθ
α ∧ θβ +

{
fαβ̄ − fβ̄α + 2ihαβ̄ f0

}
θα ∧ θ β̄ + fᾱβ̄ θ

ᾱ ∧ θ β̄

+
{

f0β − fβ0 + fᾱAᾱβ

}
θ ∧ θβ +

{
f0β̄ − fβ̄0 + fαAα

β̄

}
θ ∧ θ β̄ = 0 ,

which (by comparing types) yields (9.6)–(9.8). �

Definition 9.1. We define a third-order covariant derivative ∇3 f of f by setting

(∇3 f )(X, Y, Z) = (∇X∇2 f )(Y, Z)

= X ((∇2 f )(Y, Z))− (∇2 f )(∇X Y, Z)− (∇2 f )(Y,∇X Z) ,

for any X, Y, Z ∈ T (M). �
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Also, with respect to the local frame {TA}, set

f ABC = (∇3 f )(TA, TB, TC ) .

We shall need the corresponding commutation formulas. These are referred to as inner
commutation relations if they involve the indices B,C , respectively as outer commu-
tation relations if they involve the indices A, B. We start from the identity

d fα = fβαθ
β + fβ̄αθ

β̄ + f0αθ + fγ ω
γ
α .

Let us differentiate and use the formulas (1.62), (1.64) of Chapter 1. We obtain

0 = (d fβα) ∧ θβ + (d fβ̄α) ∧ θ β̄

+ (d f0α) ∧ θ + (d fγ ) ∧ ωγα + fβα{θγ ∧ ωβγ + θ ∧ τβ}

+ fβ̄α{θ γ̄ ∧ ωβ̄γ̄ + θ ∧ τ β̄} + 2i f0αhβγ̄ θ
β ∧ θ γ̄ + fγ dωγα .

At this point, we recall (1.90) of Chapter 1,

!βα = dωβα − ωγα ∧ ωβγ
�βα = !βα − 2iθα ∧ τβ + 2iτα ∧ θβ ,
�βα = Rα

β
λμ̄θ

λ ∧ θμ + Wβ
αλθ

λ ∧ θ − Wβ

αλ̄
θ λ̄ ∧ θ ,

and substitute in the previous identity. This procedure yields

0 = {Tλ( fμα)+ Tλ( fγ )�
γ
μα + fβα�

β
μλ + 2i fλAαμ − fβ�

γ
μα�

β
λγ }θλ ∧ θμ

+ {−Tμ̄( fλα)+ Tλ( fμ̄α)+ Tλ( fγ )�
γ
μ̄α − Tμ̄( fγ )�

γ
λα + fβα�

β
μ̄λ − fβ̄α�

β̄
λμ̄

+ 2i f0αhλμ̄ + fβ Rα
β
λμ̄ + fβ�

γ
λα�

β
μ̄γ − fβ�

γ
μ̄α�

β
λγ }θλ ∧ θμ̄

+ {Tλ̄( fμ̄α)+ Tλ̄( fγ )�
γ
μ̄α + fβ̄α�

β̄

μ̄λ̄
+ 2i fβhαλ̄Aβμ̄ − fβ�

γ
μ̄α�

β

λ̄γ
}θ λ̄ ∧ θμ̄

+ {T ( fμα)− Tμ( f0α)− Tμ( fγ )�
γ

0α + T ( fγ )�
γ
μα − fβα�

β

0μ

+ fβ̄αAβ̄μ − fβWβ
αμ − fβ�

γ
μα�

β

0γ + fβ�
γ

0α�
β
μγ }θ ∧ θμ

+ {T ( fμ̄α)− Tμ̄( f0α)− Tμ̄( fγ )�
γ

0α + T ( fγ )�
γ
μ̄α

+ fβαAβμ̄ − fβ̄α�
β̄

0μ̄ + fβWβ
αμ̄ − fβ�

γ
μ̄α�

β

0γ + fβ�
γ

0α�
β
μ̄γ }θ ∧ θμ̄ .

Using (9.2)–(9.5) and
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fαβγ = Tα( fβγ )− �λαβ fλγ − fβμ�
μ
αγ , (9.9)

fαβ̄γ = Tα( fβ̄γ )− �λ̄αβ̄ fλ̄γ − fβ̄μ�
μ
αγ , (9.10)

fᾱβγ = Tᾱ( fβγ )− �λᾱβ fλγ − fβμ̄�
μ̄
ᾱγ , (9.11)

fᾱβ̄γ = Tᾱ( fβ̄γ )− �λ̄ᾱβ̄ fλ̄γ − fβ̄μ�
μ
ᾱγ , (9.12)

f0βγ = T ( fβγ )− �λ0β fλγ − fβμ�
μ
0γ , (9.13)

fα0γ = Tα( f0γ )− f0μ�
μ
αγ , (9.14)

f0β̄γ = T ( fβ̄γ )− �λ̄0β̄ fλ̄γ − fβ̄μ�
μ
0γ , (9.15)

fᾱ0γ = Tᾱ( f0γ )− f0μ�
μ
ᾱγ , (9.16)

we obtain

0 = { fλμα + 2i fλAαμ}θλ ∧ θμ
+ {− fμ̄λα + fλμ̄α + 2i f0αhλμ̄ + fβ Rα

β
λμ̄}θλ ∧ θμ̄

+ { fλ̄μ̄α + 2i fβhαλ̄Aβμ̄}θ λ̄ ∧ θμ̄

+ { f0μα − fμ0α + fβ̄αAβ̄μ − fβWβ
αμ}θ ∧ θμ

+ { f0μ̄α − fμ̄0α + fβαAβμ̄ + fβWβ
αμ̄}θ ∧ θμ̄ .

Therefore, we have proven the following:

Proposition 9.2. The outer commutation relations

fλμα = fμλα + 2i( fμAαλ − fλAαμ) , (9.17)

fλμ̄α = fμ̄λα − 2i f0αhλμ̄ − fβ Rα
β
λμ̄ , (9.18)

fλ̄μ̄α = fμ̄λ̄α + 2i fβ(hαμ̄Aβ
λ̄

− hαλ̄Aβμ̄) , (9.19)

fμ0α = f0μα + fβ̄αAβ̄μ − fβWβ
αμ , (9.20)

fμ̄0α = f0μ̄α + fβαAβμ̄ + fβWβ
αμ̄ , (9.21)

hold on any nondegenerate CR manifold.

Proposition 9.3. The inner commutation formulas

f Aβγ = f Aγβ , (9.22)

f Aβγ̄ = f Aγ̄ β − 2i f A0hβγ̄ , (9.23)

f Aβ0 = f A0β + Aμ̄β f Aμ̄ + fγ̄ Aγ̄β , A , (9.24)

hold on any nondegenerate CR manifold, where Aγ̄β , A are given by

(∇TAτ1,0)Tβ = (Aγ̄β , A)Tγ̄ .
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Here τ1,0 is the restriction of τ to T1,0(M) (a bundle morphism T1,0(M) → T0,1(M),
by Lemma 1.2). The identities (9.22)–(9.24) follow from (9.9)–(9.16) and from the
commutation formulas (9.6)–(9.8). Only (9.24) needs some care. We have (by (9.8))

f Aβ0 − f A0β = TA( fβ0 − f0β)− �μAβ( fμ0 − f0μ)

= TA(A
μ̄
β fμ̄)− �μAβ Aγ̄μ fγ̄

and

Aμ̄α,B = TB(A
μ̄
α )+ Aβ̄α�

μ̄

Bβ̄
− �βBαAμ̄β ;

hence (by replacing ordinary derivatives in terms of covariant derivatives from (9.3)–
(9.4)) one gets (9.24). �

9.2 A lower bound for λ1

Let M be an arbitrary nondegenerate CR manifold and {Tα} a (local) frame of T1,0(M).
Then the formal adjoints (with respect to the volume form  = θ ∧ (dθ)n) of Tα ,
respectively of Tᾱ , are given by

T ∗
α = −Tᾱ − �β̄

β̄ᾱ
, (9.25)

T ∗̄
α = −Tα − �ββα . (9.26)

To prove (9.25), we may write

( f, T ∗
α g) = (Tα f, g) =

∫
M
(Tα f )g 

for f, g ∈ C∞(M)⊗ C, at least one of compact support. Note that

div( f gTα) = Tα( f g)+ �ββα f g

and also

(Tα f )g = div( f gTα)− �ββα f g − f Tα(g) .

Thus ∫
M
(Tα f )g = ( f,−Tα(g)− �β̄β̄ᾱg) ,

i.e., (9.25) holds. Finally, (9.26) follows from (9.25) by complex conjugation (since
( f, g) = ( f , g)). �
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On a strictly pseudoconvex CR manifold, we shall employ (9.25)–(9.26) for a
frame {Tα} with respect to which hαβ̄ = δαβ . We recall that (cf. the first of the identi-
ties (1.54))

�αγβ = hμ̄α
{
Tγ (hβμ̄)− gθ (Tβ, [Tγ , Tμ̄]

} ;
hence (since hαβ̄ = δαβ )

�αγβ = −gθ (Tβ, [Tγ , Tᾱ]) = −gθ (Tβ,∇Tγ Tᾱ) = −�μ̄γ ᾱhβμ̄ ,

i.e.,

�αγβ = −�β̄γ ᾱ (9.27)

and the formulas (9.25)–(9.26) may be also written as

T ∗
α = −Tᾱ +

n∑
β=1

�α
β̄β
, (9.28)

T ∗̄
α = −Tα +

n∑
β=1

�ᾱ
ββ̄

(9.29)

(compare to (3.12) in [186], p. 200). Hence (by (9.28)–(9.29))

�b f =
n∑
α=1

( fαᾱ + fᾱα) =
n∑
α=1

(
Tα( fᾱ)− �γ̄αᾱ fγ̄

)
+

n∑
α=1

(
Tα( fα)− �γᾱα fγ

)
=
∑
α

{
− T ∗̄

α Tᾱ f +
∑
β

�ᾱ
ββ̄

fᾱ − �γ̄αᾱ fγ̄
}

+
∑
α

{
− T ∗

α Tα f +
∑
β

�α
β̄β

fα − �γᾱα fγ
}
,

so that (by (9.27))

�b f = −
n∑
α=1

(
T ∗
α Tα + T ∗̄

α Tᾱ
)
. (9.30)

In particular�b is a self-adjoint operator. Finally, let us recall that�b is subelliptic of
order 1/2. In particular, by a result of A. Menikoff and J. Sjöstrand [300], it follows
that �b has a discrete spectrum consisting of nonnegative eigenvalues and tending to
+∞:

0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · → +∞.
The reader may consult the paper by A. Menikoff and J. Sjöstrand (cf. op. cit.) for a
study of the spectral asymptotics of a larger class of operators.
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Let M be a strictly pseudoconvex CR manifold and θ a fixed contact 1-form on
M with respect to which Lθ is positive definite. Given u ∈ C∞(M), let ∇u be its
gradient with respect to the Webster metric gθ . Let πH : T (M) → H(M) be the
natural projection (with respect to the direct sum decomposition (1.20)). Then, there
is a unique complex vector field ∇1,0u ∈ �∞(T1,0(M)) such that

πH∇u = ∇1,0u + ∇0,1u,

where ∇0,1u = ∇1,0u. With respect to a local frame {Tα} of T1,0(M),

∇1,0u = hαβ̄uβ̄Tα,

or, if hαβ̄ = δαβ , then

∇1,0u =
n∑
α=1

uᾱTα. (9.31)

Our next task is to compute�b
(‖∇1,0u‖2

)
in terms of covariant derivatives. Note that

(by (9.31))

‖∇1,0u‖2 =
n∑
λ=1

|uλ|2.

Then (by (9.2)–(9.3))

Tα
(
‖∇1,0u‖2

)
=
∑
λ

{
Tα(uλ)uλ̄ + uλTα(uλ̄)

}
=
∑
λ

{
uαλuλ̄ + �μαλuμuλ̄ + uλuαλ̄ + uλ�

μ̄

αλ̄
uμ̄

}
.

Next (by (9.27))∑
λ

{
�
μ
αλuμuλ̄ + �μ̄

αλ̄
uλuμ̄

}
=
∑
λ,μ

{
−�λ̄αμ̄uμuλ̄ + �μ̄

αλ̄
uλuμ̄

}
= 0;

hence

Tα
(
‖∇1,0u‖2

)
=
∑
λ

(
uλuαλ̄ + uλ̄uαλ

)
. (9.32)

Moreover (by (9.3) and (9.32)),(
‖∇1,0u‖2

)
αᾱ

= Tα
(

Tᾱ‖∇1,0u‖2
)

− �γ̄αᾱTγ̄
(
‖∇1,0u‖2

)
= Tα

(∑
λ

(
uλ̄uᾱλ + uλuᾱλ̄

) )− �γ̄αᾱ
∑
λ

(
uλ̄uγ̄ λ + uλuγ̄ λ̄

)
=
∑
λ

{
Tα(uλ̄)uᾱλ + Tα(uλ)uᾱλ̄

+ uλ̄

[
Tα(uᾱλ)− �γ̄αᾱuγ̄ λ

]
+ uλ

[
Tα(uᾱλ̄)− �γ̄αᾱuγ̄ λ̄

]}
.
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At this point, we may replace the ordinary derivatives by covariant derivatives, by
(9.2)–(9.3) and (9.10)–(9.11), and observe the cancellation of Christoffel symbols (cf.
also (9.27)). We obtain(

‖∇1,0u‖2
)
αᾱ

=
∑
λ

{
uαλ̄uᾱλ + uαλuᾱλ̄ + uλ̄uαᾱλ + uλuαᾱλ̄

}
. (9.33)

Finally (by (2.15) and (9.33)), we have the following result:

Proposition 9.4.

�b

(
‖∇1,0u‖2

)
= 2

∑
α,λ

(
uαλ̄uᾱλ + uαλuᾱλ̄

)
+
∑
α,λ

(
uλ̄uαᾱλ + uλuαᾱλ̄ + uλuᾱαλ̄ + uλ̄uᾱαλ

)
. (9.34)

9.2.1 A Bochner-type formula

By the (inner) commutation formulas (9.22)–(9.23) we have

uαᾱλ = uαλᾱ + 2iuα0δλα ,

uαᾱλ̄ = uαλ̄ᾱ ,

uᾱαλ̄ = uᾱλ̄α − 2iuᾱ0δαλ ,

uᾱαλ = uᾱλα;
hence (9.34) becomes

�b

(
‖∇1,0u‖2

)
= 2

∑
α,λ

(
uαλ̄uᾱλ + uαλuᾱλ̄

)
+
∑
α,λ

(
uλ̄uαλᾱ + uλuαλ̄ᾱ + uλuᾱλ̄α + uλ̄uᾱλα

)+ 2i
∑
α

(uᾱu0α − uαu0ᾱ)

+ 2i
∑
α,β

(
Aαβuᾱuβ̄ − Aᾱβ̄uαuβ

)
. (9.35)

Next, by the (outer) commutation relations (9.18)–(9.19) we have

uαλᾱ = uλαᾱ − 2iuβ̄

(
δαλAβ̄α − Aβ̄λ

)
,

uαλ̄ᾱ = uλ̄αᾱ − 2iu0ᾱδλα + uβ̄ Rᾱ
β̄
λ̄α,

uᾱλ̄α = uλ̄ᾱα + 2iuβ
(
δαλAβᾱ − Aβ

λ̄

)
,

uᾱλα = uλᾱα + 2iu0αδλα + uβ Rα
β
λᾱ.

Also, we may use the identity

(�bu)β =
∑
α

(
uβαᾱ + uβᾱα

)
,

which allows us to write (9.35) as follows:
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Proposition 9.5.

�b

(
‖∇1,0u‖2

)
= 2

∑
α,λ

(
uαλ̄uᾱλ + uαλuᾱλ̄

)+ 4i
∑
α

(uᾱu0α − uαu0ᾱ)

+ 2
∑
α,β

Rαβ̄uᾱuβ + 2in
∑
α,β

(
Aαβuᾱuβ̄ − Aᾱβ̄uαuβ

)
+
∑
α

(uᾱ (�bu)α + uα (�bu)ᾱ) . (9.36)

Here, to recognize
∑
λ Rλ̄

ᾱ
μ̄λ as the Ricci curvature, one uses the symmetries (1.92)–

(1.93) (in chapter 1) so that (by hαβ̄ = δαβ )

Rαμ̄ = Rα
λ
λμ̄ =

∑
λ

Rαλ̄λμ̄ =
∑
λ

Rλ̄αμ̄λ = Rλ̄
ᾱ
μ̄λ.

9.2.2 Two integral identities

Assume from now on that M is compact. We shall need the following lemma:

Lemma 9.1. For any u ∈ C∞(M),∫
M

i
∑
α

(u0αuᾱ − u0ᾱuα) 

= 1

n

∫
M

(∑
α,β

uαβ̄uᾱβ −
∑
α,β

uαβuᾱβ̄ −
∑
α,β

Rαβ̄uᾱuβ
)
 , (9.37)

∫
M

i
∑
α

(u0αuᾱ − u0ᾱuα) 

=
∫

M

(
− 2

n

∣∣∣∑
α

uαᾱ
∣∣∣2 − 1

n
(�bu)2 + i

∑
α,β

(
Aᾱβ̄uαuβ − Aαβuᾱuβ̄

))
. (9.38)

Proof. By (9.28) (giving the expression of the formal adjoint of Tα)∫
M

(∑
α,β

uαβuᾱβ̄

)
 =

∑
α,β

(
uαβ, uαβ

)
=
∑
α,β

(
uαβ, Tα(uβ)− �γαβuγ

)
=
∑
α,β

(
T ∗
α uαβ, uβ

)−
∑
α,β,γ

(
�
γ̄

ᾱβ̄
uαβ, uγ

)
= −

∑
α,β

(
Tᾱuαβ, uβ

)+
∑
α,β,γ

(
�αγ̄ γ uαβ − �β̄ᾱγ̄ uαγ , uβ

)
.
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At this point, we express uαβ in terms of ordinary derivatives (cf. (9.2)) and use the
identity

TᾱTα = TαTᾱ + �γᾱαTγ − �γ̄αᾱTγ̄ + 2iT

to switch Tᾱ and Tα . We have∫
M

(∑
α,β

uαβuᾱβ̄

)
 = −

∑
α,β

(
TᾱTαuβ − Tᾱ

(
�
γ
αβuγ

)
, uβ

)
+

∑
α,β,γ

(
�αγ̄ γ uαβ − �β̄ᾱγ̄ uαγ , uβ

)
= −

∑
α,β

(
TαTᾱuβ, uβ

)− 2in
∑
β

(
T (uβ), uβ

)
+

∑
α,β,γ

(
�
γ̄
αᾱTγ̄ (uβ)− �γᾱαTγ (uβ)+ �αγ̄ γ uαβ

− �
β̄
ᾱγ̄ uαγ + Tᾱ(�

γ
αβ)uγ + �γαβTᾱ(uγ ), uβ

)
.

Let us replace the ordinary derivatives of uβ (all except for T (uβ)) in terms of covari-
ant derivatives (cf. (9.2)–(9.3)). Then∫

M

(∑
α,β

uαβuᾱβ̄

)
 = −

∑
α,β

(
Tα(uᾱβ)+ Tα(�

γ
ᾱβuγ ), uβ

)
−2in

∑
β

(
T (uβ), uβ

)
+

∑
α,β,γ

(
�
γ̄
αᾱuγ̄ β − �γᾱαuγβ + �αγ̄ γ uαβ − �β̄ᾱγ̄ uαγ + �γαβuᾱγ , uβ

)
+

∑
α,β,γ

(
Tᾱ(�

γ
αβ)uγ , uβ

)
+

∑
α,β,γ,δ

(
�
γ̄
αᾱ�

ρ
γ̄ βuρ − �γᾱα�ργβuρ + �γαβ�ρᾱγ uρ, uβ

)
= −

∑
α,β

(
uᾱβ , T ∗

α uβ
)− 2in

∑
β

(
T uβ, uβ

)
+

∑
α,β,γ

(
Tα(�

γ
αβ)uγ − Tα(�

γ
ᾱβ)uγ , uβ

)
+

∑
α,β,γ,ρ

(
(�
γ̄
αᾱ�

ρ
γ̄ β − �γᾱβ�ραγ + �γαβ�ρᾱγ − �γᾱα�ργβ)uρ, uβ

)
+

∑
α,β,γ

(
�
γ̄
αᾱuγ̄ β − �γᾱαuγβ + �αγ̄ γ uαβ + �γαβuᾱγ , uβ

)
.

Let us use (9.28) and the (local) expression of the curvature tensor

R(Tᾱ, Tα)Tβ = Rβ
ρ
ᾱαTρ,

i.e.,
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Rβ
ρ
ᾱα = Tᾱ(�

ρ
αβ)− Tα(�

ρ
ᾱβ)+ �γαβ�ρᾱγ − �γᾱβ�ραγ + �γ̄αᾱ�ργ̄ β − �γᾱα�ργβ − 2i�ρ0β,

and observe that (by (9.27))

∑
α,β,γ

{(
uᾱβ , �

γ
ᾱβuγ

)
−
(
�ᾱγ γ̄ uᾱβ , uβ

)
+
(
�
γ̄
αᾱuγ̄ β , uβ

)
− (
�
γ
ᾱαuγβ, uβ

)
+
(
�αγ̄ γ uαβ, uβ

)
+
(
�
γ
αβuᾱγ , uβ

)}
= 0.

We obtain∫
M

(∑
α,β

uαβuᾱβ̄

)
 

=
∑
α,β

(
uᾱβ , uᾱβ

)+
∑
α,β,ρ

(
Rβ
ρ
ᾱαuρ + 2i�ρ0βuρ, uβ

)
− 2in

∑
β

(
T uβ, uβ

) ;
hence (by (9.4))∫

M
i
(∑

α

u0αuᾱ
)
 = 1

2n

∫
M

∑
α,β

(
uᾱβuαβ̄ − uαβuᾱβ̄ − Rαβ̄uᾱuβ

)
. (9.39)

Again, one recognizes the Ricci curvature by∑
α

Rβ
ρ
ᾱα =

∑
α

Rβρ̄ᾱα = −
∑
α

Rρ̄βᾱα = −
∑
α

Rᾱβρ̄α = −
∑
α

Rᾱ
β̄
ρ̄α = −Rβρ̄

(cf. (1.93) and (1.98) in Chapter 1). Let us take the complex conjugate of (9.39) and
sum up the resulting identity and (9.39). This procedure leads to (9.37). �

To prove (9.38) let us perform the calculation (by (2.15))∫
M
(�bu)2 =

∫
M

(∑
α

(uαᾱ + uᾱα)
)2
 

=
∫

M

∑
α,β

(
uαᾱ + uββ̄ + uαᾱuβ̄β + uᾱαuββ̄ + uᾱαuβ̄β

)
 

=
∫

M

{
2
∣∣∣∑
α

uαᾱ
∣∣∣2+∑

α,β

(
(uᾱα − 2iu0) uββ̄ + uᾱα

(
uββ̄ + 2iu0

)) }
 

by the commutation formula (9.7). Finally,∫
M
(�bu)2 = 4

∫
M

∣∣∣∑
α

uαᾱ
∣∣∣2 − 2n

∫
M

i
∑
α

u0 (uαᾱ − uᾱα) . (9.40)

The last term in (9.40) may be computed as



434 9 Spectral Geometry∫
M

∑
α

u0 (uαᾱ − uᾱα) =
∑
α

(u0, uᾱα − uαᾱ)

=
∑
α

(
u0, Tᾱ(uα)− �γᾱαuγ − Tα(uᾱ)+ �γ̄αᾱ

)
=
∑
α

{(
T ∗̄
α u0, uα

)− (
T ∗
α u0, uᾱ

)}+
∑
α,γ

{
− (

u0, �
γ
ᾱαuγ

)+
(

u0, �
γ̄
αᾱuγ̄

)}
=
∑
α

{− (Tαu0, uα)+ (Tᾱu0, uᾱ)}

(the terms containing Christoffel symbols cancel in pairs). Then, by expressing ordi-
nary derivatives in terms of covariant derivatives and using the commutation formula
(9.8), we obtain∫

M

∑
α

u0 (uαᾱ − uᾱα) 

=
∫

M

∑
α

(u0ᾱuα − u0αuᾱ)  +
∑
α,β

{
−
(

Aαβuβ̄ , uα
)

+
(

Aᾱβ̄uβ, uᾱ
)}
. (9.41)

Finally, we may substitute from (9.41) into (9.40) and solve for∫
M

i
∑
α

(u0αuᾱ − u0ᾱuα) .

This procedure furnishes (9.38). �

9.2.3 A. Greenleaf’s theorem

Let us recall that by definition, �bu = div (πH∇u). In particular∫
M
(�bu) = 0,

for any u ∈ C∞
0 (M). Let us assume from now on that M is compact. Integration of

(9.36) over M leads to

0 =
∫

M

(∑
α,β

uαβ̄uᾱβ +
∑
α,β

uαβuᾱβ̄ + 2i
∑
α

(uᾱu0α − uαu0ᾱ)

+
∑
α,β

Rαβ̄uᾱuβ + in
∑
α,β

(
Aαβuᾱuβ̄ − Aᾱβ̄uαuβ

)
+ 1

2

∑
α

(uᾱ (�bu)α + uα (�bu)ᾱ)

)
 . (9.42)

We shall need the following identity:
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Proposition 9.6.∫
M

∑
α

uα (�bu)ᾱ  = −
∫

M
(�bu) div

(
∇1,0u

)
 . (9.43)

Let us prove (9.43). We have∫
M

∑
α

uα (�bu)ᾱ  =
∫

M
uᾱTᾱ (�bu) =

∫
M

(
Tᾱ

(
uᾱ�bu

)
− (�bu) Tᾱ(u

ᾱ)
)
 .

Let us set Z = (�bu)uαTα ∈ T1,0(M). Then

div(Z) = trace{V !→ ∇V Z} = (∇Tᾱ Z
)ᾱ = Tᾱ

(
uᾱ�bu

)
+ uβ̄ (�bu) �ᾱ

ᾱβ̄
,

i.e.,

Tᾱ
(

uᾱ�bu
)

= div(Z)− uβ (�bu) �ᾱ
ᾱβ̄
.

Finally, by Green’s lemma∫
M

∑
α

uα (�bu) =
∫

M
{−uβ̄ (�bu) �ᾱ

ᾱβ̄
− (�bu) Tᾱ(u

ᾱ)} 

= −
∫

M
(�bu) div

(
uᾱTᾱ

)
 . �

Now let us take the complex conjugate of (9.43) and sum up the resulting identity
and (9.43). We obtain∫

M

∑
α

(uα (�bu)ᾱ + uᾱ (�bu)α) = 2
∫

M
(�bu)2 ;

hence (9.42) becomes∫
M

(∑
α,β

uαβ̄uᾱβ +
∑
α,β

uαβuᾱβ̄ − 1
2 (�bu)2

+
∑
α,β

Rαβ̄uᾱuβ + in
∑
α,β

(
Aαβuᾱuβ̄ − Aᾱβ̄uαuβ

)
+ 2i

∑
α

(uᾱu0α − uαu0ᾱ)

)
 = 0. (9.44)

Let C ∈ R and write∫
M

i
∑
α

(u0αuᾱ − u0ᾱuα) 

= C
∫

M
i
∑
α

(u0αuᾱ − u0ᾱuα) + (1 − C)
∫

M
i
∑
α

(u0αuᾱ − u0ᾱuα) .
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Next, let us calculate the last two integrals using (9.37) and (9.38), respectively. We
obtain∫

M
i
∑
α

(u0αuᾱ − u0ᾱuα) 

=
∫

M

{
C

n

∑
α,β

uαβ̄uᾱβ − C

n

∑
α,β

uαβuᾱβ̄ − 2(1 − C)

n

∣∣∣∑
α

uαᾱ
∣∣∣2 + (1 − C)

2n
(�bu)2

− C

n

∑
α,β

Rαβ̄uᾱβuβ + i(1 − C)
∑
α,β

(
Aᾱβ̄uαuβ − Aαβuᾱuβ̄

)}
.

Now, we use this identity to replace the term
∫

M i
∑
α (u0αuᾱ − u0ᾱuα) in (9.44).

Then (9.44) becomes∫
M

{(
1 + 2C

n

)∑
α,β

uαβ̄uᾱβ +
(

1 − 2C

n

)∑
α,β

uαβuᾱβ̄

− 4(1 − C)

n

∣∣∣∑
α

uαᾱ
∣∣∣2 +

(
− 1

2 + 1 − C

n

)
(�bu)2 +

(
1 − 2C

n

)∑
α,β

Rαβ̄uᾱuβ

+ i(n − 2(1 − C))
∑
α,β

(
Aαβuᾱuβ̄ − Aᾱβ̄uαuβ

)}
 = 0. (9.45)

In particular, for C = −n/2 the identity (9.45) furnishes∫
M

{
2
∑
α,β

uαβuᾱβ̄ −
(

2 + 4

n

)∣∣∣∑
α

uαᾱ
∣∣∣2 + 1

n
(�bu)2

+ 2
∑
α,β

Rαβ̄uᾱuβ + 2i
∑
α,β

(
Aᾱβ̄uαuβ − Aαβuᾱuβ̄

)}
 = 0. (9.46)

Also, for C = 1, the identity (9.45) furnishes∫
M

{(
1 + 2

n

)∑
α,β

uαβ̄uᾱβ +
(

1 − 2

n

)∑
α,β

uαβuᾱβ̄ − 1
2 (�bu)2

+
(

1 − 2

n

)∑
α,β

Rαβ̄uᾱuβ − in
∑
α,β

(
Aᾱβ̄uαuβ − Aαβuᾱuβ̄

)}
 = 0. (9.47)

Note that∫
m
(�bu)2 =

∫
M

(∑
α

(uαᾱ + uᾱα)
)2
 

=
∫

M

{(∑
α

uαᾱ
)2 +

(∑
α

uᾱα
)2 + 2

∣∣∣∑
α

uαᾱ
∣∣∣2} ;
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hence∫
M
(�bu)2 − 2

∫
M

∣∣∣∑
α

uαᾱ
∣∣∣2 =

∫
M

{(∑
α

uαᾱ
)2 +

(∑
α

uᾱα
)2
}
 . (9.48)

Let u ∈ C∞(M) be a real eigenfunction of�b corresponding to the eigenvalue λ > 0,
i.e., �bu = λu. We may distinguish two cases:

(I)
∫

M

{(∑
α

uαᾱ
)2 +

(∑
α

uᾱα
)2}
 ≥ 0

and

(II)
∫

M

{(∑
α

uαᾱ
)2 +

(∑
α

uᾱα
)2}
 < 0.

If case I occurs, then (9.48) yields

2
∫

M

∣∣∣∑
α

uαᾱ
∣∣∣2 ≤

∫
M
(�bu)2 

and then (by (9.46))

0 =
∫

M

{
2
∑
α,β

uαβuᾱβ̄ −
(

2 + 4

n

)∣∣∣∑
α

uαᾱ
∣∣∣2 + 1

n
(�bu)2

+ 2
∑
α,β

[
Rαβ̄uᾱβ + i

(
Aᾱβ̄uαuβ − Aαβuᾱuβ̄

)]}
 

≥
∫

M

{
−
(

1 + 1

n

)
(�bu)2 +

∑
α,β

[
Rαβ̄uᾱuβ + i

(
Aᾱβ̄uαuβ − Aαβuᾱuβ̄

)]}
 ,

or, if we assume that

Rαβ̄ ZαZ
β + i

(
Aᾱβ̄ Z

α
Z
β − Aαβ ZαZβ

)
≥ 2khαβ̄ ZαZ

β
, (9.49)

for some k > 0 and any Z = ZαTα ∈ T1,0(M), then

0 ≥
∫

M

{
−
(

1 + 1

n

)
(�bu)2 + 4k

∑
α

|uα|2
}
 . (9.50)

We need the following identity:

Proposition 9.7.

−2
∫

M

∑
α

|uα|2 =
∫

M
u (�bu) . (9.51)
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Indeed (9.51) may be checked as follows∫
M

∑
α

|uα|2 =
∑
α

(uα, uα)

=
∑
α

(Tα(u), uα) =
∑
α

(
u, T ∗

α uα
)

= −
∑
α

(u, Tᾱuα)+
∑
α,β

(
u, �α

β̄β
uα
)

= −
∑
α

(u, uᾱα)−
∑
α,β

(
u, �βᾱαuβ

)
+
∑
α,β

(
u, �α

β̄β
uα
)
,

i.e., ∫
M

∑
α

|uα|2 = −
∑
α

(u, uᾱα) .

Take the complex conjugate and sum up with the resulting identity. We get

2
∫

M

∑
α

|uα|2 = −
∑
α

(u, uᾱα + uαᾱ) ,

which is equivalent (by (2.15)) to (9.51). �
We may use (9.51) to rewrite the estimate (9.50) as

0 ≥
∫

M

{
−
(

1 + 1

n

)
+ k

λ

}
(�bu)2 ,

hence

0 ≥ −
(

1 + 1

n

)
+ k

λ
,

or

λ ≥ kn

n + 1
. (9.52)

As to case II, by (9.48) one gets∫
M
(�bu)2 ≤ 2

∫
M

∣∣∣∑
α

uαᾱ
∣∣∣2 . (9.53)

On the other hand,∑
α,β

uαβ̄uᾱβ =
∑
α,β

∣∣∣uαβ̄ ∣∣∣2 ≥
∑
α

|uαᾱ|2 ≥ 1

n

∣∣∣∑
α

uαᾱ
∣∣∣2 .

Therefore (by (9.53))∫
M

(∑
α,β

uαβ̄uᾱβ
)
 ≥ 1

2n

∫
M
(�bu)2 ,
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and the identity (9.47) leads to

0 ≥
∫

M

{
2

n

(
1 + 1

2n

)
(�bu)2 − 1

2 (�bu)2

+
(

1 − 2

n

)∑
α,β

Rαβ̄uᾱuβ − in
∑
α,β

(
Aᾱβ̄uαuβ − Aαβuᾱuβ̄

)}
 ,

provided that n ≥ 2. Furthermore, if we assume that n ≥ 3 and

Rαβ̄ ZαZ
β − n2

n − 2
i
(

Aᾱβ̄ Z
α

Z
β − Aαβ ZαZβ

)
≥ 2khαβ̄ ZαZ

β
, (9.54)

for some k > 0 and any Z = ZαTα ∈ T1,0(M), then (by (9.51))

0 ≥
∫

M

(
1

n

(
1 + 2

n

)
− 1 + (n − 2)

n

k

λ

)
 ;

hence

0 ≥ 1

n

(
1 + 2

n

)
− 1 +

(
1 − 2

n

) k

λ
,

or λ ≥ nk/(n + 1), i.e., (9.52) holds. We have proved the following result:

Theorem 9.1. (A. Greenleaf [186])
Let M be a strictly pseudoconvex CR manifold of CR dimension n ≥ 3. Let θ be a
contact 1-form on M with the Levi form Lθ positive definite. Assume that there is a
constant k > 0 such that

Rαβ̄ ZαZ
β + i

(
Aᾱβ̄ Z

α
Z
β − Aαβ ZαZβ

)
≥ 2khαβ̄ ZαZ

β

and

Rαβ̄ ZαZ
β − n2

n − 2
i
(

Aᾱβ̄ Z
α

Z
β − Aαβ ZαZβ

)
≥ 2khαβ̄ ZαZ

β

for any Z = ZαTα ∈ T1,0(M). Then the first nonzero eigenvalue λ1 of the sub-
Laplacian �b of (M, θ) satisfies the estimate

λ1 ≥ kn

n + 1
.

9.2.4 A lower bound on the first eigenvalue of a Folland–Stein operator

Let us set Xα = 1
2 (Tα + Tᾱ) and Yα = i

2 (Tᾱ − Tα). Then (by (9.25)–(9.26))

X∗
α = −Xα + 1

2

∑
β

(
�α
β̄β

+ �ᾱ
ββ̄

)
,

Y ∗
α = −Yα + i

2

∑
β

(
�α
β̄β

− �ᾱ
ββ̄

)
.
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Next, we perform the following calculation:∑
α

(Tα f, Tα f ) =
∑
α

((Xα + iYα) f, (Xα + iYα) f )

=
∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2 + i

(
X∗
αYα f, f

)− i
(
Y ∗
α Xα f, f

)}
=
∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2 − i (XαYα f, f )+ i (YαXα f, f )

+ i

2

∑
β

(
(�α
β̄β

+ �ᾱ
ββ̄
)Yα f, f

)
+ 1

2

∑
β

(
(�α
β̄β

− �ᾱ
ββ̄
)Xα f, f

)}
=
∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2

− 1
4 ((Tᾱ − Tα)( fα + fᾱ), f )+ 1

4 ((Tα + Tᾱ)( fᾱ − fα), f )

+ 1
4

∑
β

(
(�α
β̄β

− �ᾱ
ββ̄
)( fα + fᾱ), f

)
− 1

4

∑
β

(
(�α
β̄β

+ �ᾱ
ββ̄
)( fᾱ − fα), f

)}
=
∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2 + 1

2

(
Tα fᾱ − �β̄αᾱ fβ̄ − Tᾱ fα + �βᾱα fβ, f

)}
=
∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2 + 1

2 ( fαᾱ − fᾱα, f )
}
;

hence (by (9.7))∑
α

‖Tα f ‖2 =
∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2

}
− in ( f0, f ) .

Note that (iT )∗ = iT ; hence (i f0, f ) ∈ R. We obtain

n (i f0, f ) ≤
∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2

}
.

On the other hand,∑
α

{
‖Xα f ‖2 + ‖Yα f ‖2

}
= 1

4

∑
α

{( fα + fᾱ, fα + fᾱ)+ ( fᾱ − fα, fᾱ − fα)}

= 1
2

∑
α

{( fα, fα)+ ( fᾱ, fᾱ)} = 1
2 (�b f, f )

(the last equality follows by integration by parts). Hence

2n (i f0, f ) ≤ (�b f, f ) .

Analogously, one may develop
∑
α ‖Tᾱ f ‖2 and prove that

2n (i f0, f ) ≥ − (�b f, f ) .

Therefore

2n |(i f0, f )| ≤ (�b f, f ) , (9.55)
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for any f ∈ C∞(M)⊗ C. Consider the operators

Lc = �b − icT, |c| < n.

Then

(Lc f, f ) = (�b f, f )− c (i f0, f )

≥ (�b f, f )− |c| |(i f0, f )| ≥
(

1 − |c|
2n

)
(�b f, f ) .

By a result in [150] each Lc, |c| < n, is a subelliptic operator of order ε = 1/2; hence
Lc has a discrete spectrum tending to +∞.

Proposition 9.8. (A. Greenleaf [186])
Let λc

1 be the first eigenvalue of Lc. Assume that there is λ ∈ Spec(�b), λ �= 0, such
that

Eigen
(Lc, λ

c
1

) ∩ Eigen (�b, λ) �= (0) .

Then, under the hypothesis of Theorem 9.1, one has

λc
1 ≥

(
1 − |c|

n

)
nk

n + 1
.

9.2.5 Z. Jiaqing and Y. Hongcang’s theorem on CR manifolds

We end this chapter by reporting on a recent result on spectra of CR manifolds, cf. E.
Barletta et al. [35]. Let M be a compact strictly pseudoconvex (2n + 1)-dimensional
CR manifold and �b the sub-Laplacian corresponding to a fixed choice of contact 1-
form θ on M . Let λk be the kth nonzero eigenvalue of �b. Using L2 methods (i.e.,
a pseudo-Hermitian analogue of the Bochner formula in Riemannian geometry) A.
Greenleaf has shown (see Theorem 9.1 in this chapter) that the first nonzero eigenvalue
λ1 of �b satisfies

λ1 ≥ n

n + 1
C0 (9.56)

under a restriction involving the pseudo-Hermitian Ricci tensor Rαβ and the pseudo-
Hermitian torsion Aαβ . The restriction and proof are imitative of those in A. Lich-
nerowicz [286], p. 135. A similar result is the following:

Theorem 9.2. (E. Barletta et al. [35])
Let M be a compact strictly pseudoconvex CR manifold (of CR dimension n). Assume
that the problem ⎧⎪⎨⎪⎩

�bv = λkv, T (v) = 0,

sup v = 1,

inf v = −C, 0 < C ≤ 1,

(9.57)
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admits some C∞ solution v. If

Ric(X − i J X, X + i J X)+ 2(n − 2)A(X, J X) ≥ 0, (9.58)

for any X ∈ H(M), then

λk ≥ π2

d2
θ

. (9.59)

Here T is the characteristic direction of (M, θ) and dθ is the diameter of M with
respect to the Webster metric gθ . The proof of Theorem 9.2 is omitted (in contrast to
[186], L∞ methods are employed). If for instance M = S2n+1 (the sphere carrying
the standard pseudo-Hermitian structure) then both the hypothesis of Theorem 9.1 in
this chapter and the assumption (9.58) hold.

Let M be a strictly pseudoconvex CR manifold of vanishing pseudo-Hermitian
torsion. Then the assumption (9.58) is weaker than the hypothesis of Theorem 9.1.
However, it must be pointed out that while one works under less-restrictive geometric
conditions, the proof of (9.59) requires the existence of a solution of (9.57) (rather
than a solution of an eigenvalue problem for�b, alone). As a result, one may estimate
terms of the form uα(L2uα) at a point (where L2 is a Folland–Stein operator). General
existence theorems for the solutions of (9.57) are not known (and this is precisely the
limitation of Theorem 9.2). An example in which (9.57) may be solved is indicated
below.

If v is a solution of (9.57) then �bv = �v (where � is the Laplace–Beltrami
operator of (M, gθ )) so that actually λk ∈ Spec(M, gθ ) and the estimate (9.59) follows
from work by Z. Jiaqing and Y. Hongcang [231], provided that the metric (here the
Webster metric gθ ) has nonnegative Ricci curvature. Nevertheless, this requirement
may be seen to be generically stronger than our assumption (9.58). Indeed, let M be a
strictly pseudoconvex CR manifold of vanishing pseudo-Hermitian torsion. We have

Ricθ (X, Y ) = Ric(X, Y )− 1
2 gθ (X, Y )+ n + 1

2
θ(X)θ(Y ) (9.60)

for any X, Y ∈ T (M). Thus

Ric(X − i J X, X + i J X) = Ricθ (X, X)+ Ricθ (J X, J X)+ ‖X‖2

for any X ∈ H(M). Consequently, if Ricθ (X, X) ≥ 0 for any X ∈ T (M) then Rαβ is
positive semidefinite (while the converse does not follow from (9.60)).

The problem of the existence of a solution of (9.57) is open. If for instance M =
S2n+1 then (9.57) has no solution for k = 1 (i.e., there is no first-degree harmonic
polynomial H on R2(n+1) satisfying T (H) = 0). Next, all solutions of{

�bv = λ2v,

T (v) = 0,
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are given as v = H|S2n+1 , where

H(x, y) =
∑

1≤i<i≤n+1

ai j (xi x j + yi y j ) , ai j ∈ R

(and λ2 = 4(n +1)). Also, for each (i, j) ∈ {1, . . . , n +1}2 , i < j , the eigenfunction
vi j = Hi j |S2n+1 , where Hi j = 2(xi x j + yi y j ), has sup vi j = 1 and inf vi j = −1 (i.e.,
vi j is a solution of (9.57) with k = 2 and C = 1).

The estimate (9.56) may be thought of as an estimate on λk , k ≥ 2. As such, (9.59)
is sharper than (9.56) provided that

dθ < π

√
n + 1

nC0
. (9.61)

However, among the odd-dimensional spheres only S3 and S5 satisfy (9.61) (since
M = S2n+1 yields C0 = n + 1; cf. [422]).



A

A Parametrix for �b

For the convenience of the reader we give a few additional details concerning the
analysis on the Heisenberg group and, more generally, on a strictly pseudoconvex CR
manifold. The source is the fundamental work by G.B. Folland and E.M. Stein [150].
We start by recalling the following lemma:

Lemma A.1. Let f be a homogeneous function of degree λ ∈ R that is C1 away from
0. There is a constant C > 0 such that
(1) | f (x)− f (y)| ≤ C |x − y| |x |λ−1 for any x, y ∈ Hn with |x − y| ≤ 1

2 |x |,
(2) | f (xy)− f (x)| ≤ C |y| |x |λ−1 for any x, y ∈ Hn with |y| ≤ 1

2 |x |.
Proof. To establish (1) one may assume, by homogeneity, that |x | = 1 and |x−y| ≤

1
2 . But then y is bounded away from zero, hence (by the mean value theorem and
(1.26))

| f (x)− f (y)| ≤ C‖xy − x‖.
For the proof of (2), the same argument leads to

| f (xy)− f (x)| ≤ C‖xy − x‖.
Yet y !→ xy is C∞; hence

‖xy − x‖ ≤ C‖y‖ ≤ C |y|. �

There is a right-invariant version of the operator L0 that we need to recall. Note
that

L0 = − 1
4

n∑
α=1

(
X2
α + Y 2

α

)
= −

2n∑
j=1

L2
j .

By analogy, we may consider the right-invariant differential operator

R0 = −
2n∑
j=1

R2
j .
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The fact that �0 is a two-sided inverse for L0 (cf. Proposition 3.2) yields

R0�0 = δ. (A.1)

Indeed, if D0 = −∑2n
j=1 D j∗D j is the distribution kernel of L0, then L0�0 = �0∗D0

and R0�0 = D0 ∗�0 and both these expressions equal δ. �
For further use one may rewrite (A.1) also as

−
2n∑
j=1

D j ∗ D j ∗�0 = δ.

One of the deep results of G.B. Folland and E.M. Stein is the following (cf. Theorem
8.13 in [150], p. 450):

Theorem A.1. Let F be a PV distribution.1 Then there exist homogeneous distribu-
tions F1, . . . , F2n of degree −2n − 1 such that

F =
2n∑
j=1

D j ∗ Fj .

Theorem A.1 provides a set of “noncommutative Riesz transforms” with which one
may manipulate derivatives. The proof is quite involved and out of the scope of this
book. The reader may see [150], pp. 450–454. �

The following result emphasizes the importance of the Folland–Stein spaces S p
k :

Theorem A.2. If F is a PV distribution, the map ϕ !→ ϕ ∗ F, ϕ ∈ C∞
0 (Hn), extends

to a bounded operator on S p
k for 1 < p <∞ and k ∈ {0, 1, 2, . . . }.

Cf. Proposition 9.2 in [150], p. 455, for a proof. �
With these tools, we look at L p estimates for Lα . Since its fundamental solution

�α is regular homogeneous of degree −2n, one may establish the following result:

Theorem A.3. (G.B. Folland and E.M. Stein [150])
Let α be admissible.2 Then

(1) The map ϕ !→ Kαϕ = ϕ ∗ �α, ϕ ∈ C∞
0 , extends to a bounded map from L p to

Lq , where 1/q = 1/p − 1/(n + 1), provided that 1 < p < q < ∞, and from L1

to L(n+1)/n−ε
loc for any ε > 0.

(2) The maps ϕ !→ L j Kαϕ = ϕ∗�α ∗ D j , ϕ ∈ C∞
0 , 1 ≤ j ≤ 2n, extend to bounded

maps of L p to Lr , where 1/r = 1/p −1/(2n +2), provided that 1 < p < r <∞
and from L1 to L(2n+2)/(2n+1)−ε

loc for any ε > 0.
(3) The maps ϕ !→ Li L j Kαϕ = ϕ ∗�α ∗ D j ∗ Di , ϕ ∈ C∞

0 , 1 ≤ i, j ≤ 2n, extend
to bounded operators on S p

k for 1 < p <∞ and k ∈ {0, 1, 2, . . . }.
1 See Definition 3.20 in Chapter 3.
2 See Definition 3.10 in Chapter 3.
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As a corollary one obtains the following estimates for Lα:

Corollary A.1. If α is admissible, 1 < p <∞, and k ∈ {0, 1, 2, . . . }, then

‖ϕ‖p,k+2 ≤ C p,k
(‖Lαϕ‖p,k + ‖ϕ‖p

)
,

for any ϕ ∈ C∞
0 (Hn).

Indeed, by Proposition 3.2, one has ϕ = KαLαϕ; hence [by part (3) in Theorem A.3
above]

‖Li L jϕ‖p,k ≤ C p,k
(‖Lαϕ‖p,k + ‖ϕ‖p

)
.

Yet

‖ϕ‖p,k+2 ≤ ‖ϕ‖p +
2n∑
j=1

‖L jϕ‖p +
2n∑

i, j=1

‖Li L jϕ‖p,k ,

so it suffices to prove the estimate

‖L jϕ‖p ≤ C j

(
‖L2

jϕ‖p + ‖ϕ‖p

)
.

Let γ j (t) be the 1-parameter group of transformations obtained by integrating L j .
Then, by Taylor’s formula for the function � j (t) = ϕ(xγ j (t)) one has

ϕ(xγ j (1)) = ϕ(x)+ (L jϕ)(x)+
∫ 1

0
(1 − t)(L2

jϕ)(xγ j (t))dt,

or

(L jϕ)(x) = ϕ(xγ j (1))− ϕ(x)−
∫ 1

0
(1 − t)(L2

jϕ)(xγ j (t))dt.

The estimate sought is obtained by using the translation invariance of ‖ · ‖p and the
Minkowski inequality, and by taking the L p norms of both sides. �

Definition A.1. For U ⊆ Hn we define the spaces

S p
k (U, loc) = {F ∈ D′(Hn) : ϕF ∈ S p

k f or any ϕ ∈ C∞
0 (U )}. �

We may state the following L p regularity result:

Theorem A.4. (G.B. Folland and E.M. Stein [150])
Let α be admissible and F,G ∈ D′(Hn) such that LαF = G on U ⊆ Hn. Then
(1) If G ∈ S p

k (U, loc) with 1 < p <∞ then F ∈ S p
k+2(U, loc).

(2) If G ∈ L p
loc(U ) and 1/q = 1/p − 1/(n + 1) > 0 then F ∈ Lq

loc(U ) provided

that p > 1, and F ∈ Lq−ε
loc (U ) for any ε > 0, provided that p = 1.

Cf. also Theorem 9.5 in [150], p. 457, and the rather involved proof there. �
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Let us look now at Lipschitz estimates for Lα . One of the important results by G.B.
Folland and E.M. Stein (cf. op. cit.) is the fact that convolution with a PV distribution
is a bounded operator on �β for all β.

Theorem A.5. If K0 is a PV distribution and f ∈ �β , 0 < β < ∞, is a function of
compact support, then f ∗ K0 ∈ �β .

Cf. also Theorem 10.1 in [150], p. 458. Also, the following result on kernels of higher
homogeneity is known to hold (cf. Theorem 10.12 in [150], p. 465):

Theorem A.6. Let K be a regular homogeneous distribution of degree k −2n −2, k ∈
{1, 2, 3, . . . } and let f be a function of compact support. Set g = f ∗ K . Then
(1) If f ∈ �β , 0 < β <∞, then g ∈ �β+k(loc).
(2) If f ∈ L p and β = k − (2n + 2)/p > 0 then g ∈ �β(loc).

We may now state the Lipschitz regularity result for Lα .

Theorem A.7. (G.B. Folland and E.M. Stein [150])
Let α be admissible and F,G ∈ D′(Hn) satisfy LαF = G on U ⊆ Hn. Then
(1) If G ∈ �β(U, loc) with 0 < β <∞ then F ∈ �β+2(U, loc).
(2) If G ∈ L p

loc(U ) and β = 2 − (2n + 2)/p > 0 then F ∈ �β(U, loc).

The remainder of Appendix A is devoted to a few results concerning analysis on a CR
manifold. Precisely, we review certain classical results, such as (1) the construction of
a parametrix for the Kohn–Rossi operator �b of a strictly pseudoconvex CR manifold
(inverting �b up to operators of type 1; these are smoothing, i.e., are bounded opera-
tors of Folland–Stein spaces S p

k (M)→ S p
k+1(M)) and therefore, by general theorems

estimating integral operators of type λ, (2) the derivation of estimates for �b, e.g.,

‖ϕ‖p,k+2 ≤ C
(‖�bϕ‖p,k + ‖ϕ‖p

)
, (A.2)

for any ϕ ∈ �∞(�0,q(M)) supported in a fixed compact set (here 0 < q < n,
1 < p < ∞, k ≥ 0, and C = C(p, k) > 0, cf. Theorem A.14); hence leading to
(3) regularity results for �b, e.g., (by (A.2)) if ϕ is a locally integrable (0, q)-form,
0 < q < n, and �bϕ ∈ S p

k (U, loc) for U ⊆ M open, 1 < p < ∞, k ∈ {0, 1, 2, . . . },
then ϕ ∈ S p

k+2(U, loc).
The main tool are the normal, or Folland–Stein, local coordinates on a strictly

pseudoconvex CR manifold, as introduced in Chapter 4. The main feature of Folland–
Stein coordinates is to compensate for the lack of a CR analogue of local complex
coordinates (of a complex manifold). If M is a complex manifold, and J its almost
complex structure (that is, Jx : Tx (M) → Tx (M), J 2

x = −I , x ∈ M ; i.e., Jx is the
complex linear structure at the level of the tangent space), then for any point x ∈ M
there is an open neighborhood U and complex coordinates ϕ = (z1, . . . , zn) : U →
Cn such that Tx (M) � Tϕ(x)(Cn), a complex linear isomorphism, i.e., the {(∂/∂z j )x }
span Tx (M), and as is well known, this is guaranteed by the Nijenhuis integrability of
J . If, in turn, M is a CR manifold, the analogue (1.8)–(1.9) of the integrability property
of J doesn’t lead in general to the existence of such special coordinates, i.e., we may
not infer the existence of, say, local coordinates (z1, . . . , zn, t) : U → Cn × R �
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Hn such that Tx (M) is spanned by the Lewy operators Lα,x = (∂/∂zα + i zα∂/∂t)x .
In other words, a choice of local coordinates ϕ around a point x ∈ M gives an R-
linear isomorphism Tx (M) � Tϕ(x)(Hn) that will not preserve, in general, the CR
structures. G.B. Folland and E.M. Stein [150], constructed a sort of exponential map,
which takes into account the splitting T (M) = H(M) ⊕ RT , such that the resulting
local coordinates (at x) #x : Vx ⊂ M → R2n+1 map a given pseudo-Hermitian frame
Tα,x not to Lα,x as argued above, but rather to Lα,x plus “error terms,” i.e.,

(#x )∗ Tα = Lα +
∑
β=1

(
O1 ∂

∂zβ
+ O1 ∂

∂zβ

)
+ O2 ∂

∂t
,

where Ok denotes a function of Heisenberg-type order k (cf. Chapter 4). It was then
remarkable that #(x, y) := #x (y) is x−1 y when M = Hn , that # is C∞ on � =⋃

x∈M {x} × Vx , and that ρ(x, y) = |#(x, y)| (Heisenberg norm) is a sort of distance
function (though not satisfying the triangle inequality, but only (3.22)).

Furthermore, we shall look at estimates on integral operators (with kernel of the
form

Kα(x, y) = �α(#(x, y)),

for x close to y), which rely on several, nowadays classical, results in functional analy-
sis, and due to A.W. Knapp and E.M. Stein [240], R. Coifman and G. Weiss [105]. The
proofs are but sketchy; yet the amount we give invites the reader to take note of ma-
terial involving deep ideas in other disciplines, such as the theory of singular integrals
(cf., e.g., the Hardy–Littlewood–Sobolev fractional integration theorem ([384], p. 119)
based itself, as well as its generalization (cf. Lemma A.4) on the Marcinkiewicz inter-
polation theorem ([384], p. 272)), possessing of course their own history and exegetes
(cf., e.g., E.M. Stein [384]).

The main results we seek to state are the existence of a parametrix and the regu-
larity for �b. It is worth noting that the same arguments apply to the sub-Laplacian
�b with only minor alterations (because �b is modeled on L0, which possesses the
fundamental solution �0), resulting in fundamental estimates and regularity theorems
for �b; cf. Theorems 3.16 and 3.17 (which, in the end, yield regularity results for the
CR Yamabe equation, cf. Theorem 3.22).

Let us start by discussing estimates for integral operators. Following [150], we are
going to build a parametrix for �b out of integral operators whose kernels are of the
form Kα(x, y) = �α(#(y, x)) for x close to y. To work with such operators, one
needs the following general lemmas:

Lemma A.2. Let A1, A2, A3, . . . be a sequence of bounded operators on a Hilbert
space such that

‖A j
(

A�
)∗ ‖ ≤ Cε| j−�|, ‖

(
A j
)∗

A�‖ ≤ Cε| j−�|,

for some ε ∈ (0, 1) and some C > 0. There is a constant C1 > 0 independent of N
such that
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j=1

A j
∥∥∥ ≤ C1 .

For a proof the reader may see A.W. Knapp and E.M. Stein [240]. �

Definition A.2. Let (X, μ) be a measure space and f a measurable function on X .
The distribution function β f : [0,∞)→ [0,∞] of f is given by

β f (s) = μ ({x ∈ X : | f (x)| > s}) . �

Then, with the notation in Definition A.2,∫
| f |p dμ = p

∫ ∞

0
s p−1β f (s) ds, (A.3)

for any 0 < p <∞.

Definition A.3. We say that f is weak L p if

β f (s) ≤
(C

s

)p
,

for some C > 0. An operator A mapping L p(X, μ) into measurable functions is of
weak type (p, q), q <∞, if

βA f (s) ≤
(C‖ f ‖p

s

)q

for some C > 0 and any f ∈ L p(X, μ). �

We recall the following result:

Theorem A.8. (E.M. Stein [384])
If A is defined on L p0 + L p1 and is of weak type (p0, q0) and (p1, q1) with 1 ≤ p j ≤
q j < ∞ and q0 �= q1, then A is bounded from L pt to Lqt for any 0 < t < 1, where
1
pt

= 1−t
p0

+ t
p1

and 1
qt

= 1−t
q0

+ t
q1

.

Theorem A.8 is referred to as the Marcinkiewicz interpolation theorem. See [384],
p. 272.

Lemma A.3. Let k be a measurable function on X×X. Assume that there is a constant
C0 > 0 such that∫

|k(x, y)| dμ(y) ≤ C0,

∫
|k(x, y)| dμ(x) ≤ C0,

for any x, y ∈ X. Then the operator
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(A f )(x) =
∫

k(x, y) f (y) dμ(y)

satisfies

‖A f ‖p ≤ C0‖ f ‖p

for any p ∈ [1,∞].

Proof. For p = ∞ the statement is obvious. Let p ∈ [1,∞) and q be such that
1/p + 1/q = 1. Then (by Hölder’s inequality)

|(A f )(x)| ≤
∫

|k(x, y)| | f (y)|dμ(y) =
∫

|k(x, y)|1/q |k(x, y)|1/p| f (y)|dμ(y)

≤
( ∫

|k(x, y)|dμ(y)
)1/q( ∫ |k(x, y)| | f (y)|pdμ(y)

)1/p

≤ C1/q
0

( ∫
|k(x, y)| | f (y)|pdμ(y)

)1/p
.

Next, by Fubini’s theorem∫
|(A f )(x)|pdμ(x) = C p/q

0

∫
dμ(x)

∫
|k(x, y)| | f (y)|pdμ(y)

≤ C1/q+1/p
0 ‖ f ‖p = C0‖ f ‖p . �

Lemma A.4. Let k be a measurable function on X × X. Assume that there is r > 0
such that (1) k(x, ·) is weak Lr uniformly in x, and (2) k(·, y) is weak Lr uniformly in
y. Then the operator

(A f )(x) =
∫

k(x, y) f (y)dμ(y)

is bounded from L p to Lq whenever 1/q = 1/p + 1/r − 1 and 1 < p < q <∞, and
from L1 to Lr−ε

loc for any ε > 0.

This extends (cf. also Lemma 15.3 in [150], p. 478) a result in [384], p. 119, i.e.,
the theorem of fractional integration there. To prove Lemma A.4, note that (by the
Marcinkiewicz interpolation theorem with p0 = p1 = p and q0 = q1 = q) when
p > 1 it suffices to show that A is of weak type (p, q), whenever 1/q = 1/p+1/r −1
and 1 ≤ p < q <∞. Let us set

k1(x, y) =
{

k(x, y), |k(x, y)| ≥ γ,
0, otherwise,

k2(x, y) = k(x, y)− k1(x, y),

where γ > 0 is to be chosen later. Let Ai be the integral operators with kernels
ki , i = 1, 2. Then A = A1 + A2; hence
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βA f (2s) ≤ βA1 f (s)+ βA2 f (s),

and (to produce an estimate of the form βA f (t) ≤ (
C‖ f ‖p/t

)q , t > 0) it suffices to
estimate the last two terms. Let f ∈ L p. Without loss of generality we may assume
‖ f ‖p = 1. Let p′ be such that 1/p + 1/p′ = 1. Then (by Hölder’s inequality)

|(A2 f )(x)| ≤
∫

|k2(x, y)| | f (y)| dμ(y)

≤
( ∫

|k2(x, y)|p′
dμ(y)

)1/p′
‖ f ‖p =

( ∫
|k2(x, y)|p′

dμ(y)
)1/p′

.

Note that 1/r − 1/p′ = 1/q > 0. Then (by (A.3))∫
|k2(x, y)|p′

dμ(y) = p′
∫ ∞

0
s p′−1βk2(x,·)(s)ds = p′

∫ γ

0
s p′−1βk(x,·)(s)ds

≤ p′
∫ γ

0
s p′−1

(C

s

)r
ds ≤ p′Cr

p′ − r
γ p′−r

(because k(x, ·) is weak Lr uniformly with respect to x). Then

|(A2 f )(x)| ≤ C0γ
1−r/p′ = C0γ

r/q ,

where

C0 =
( p′Cr

p′ − r

)1/p′
> 0.

At this point we may choose γ = (s/C0)
q/r such that |(A2 f )(x)| ≤ s; hence

βA2 f (s) = 0. Moreover, since r > 1,∫
|k1(x, y)| dμ(y) =

∫ ∞

0
βk1(x,·)(s) ds

=
∫ ∞

γ

βk(x,·)(s) ds ≤
∫ ∞

γ

(C

s

)r
ds = Cr

1 − r
γ 1−r .

Likewise ∫
|k1(x, y)| dμ(x) ≤ Cr

1 − r
γ 1−γ .

Therefore (by Lemma A.3) the operator A1 satisfies

‖A1 f ‖p ≤ Cr

1 − r
γ 1−r‖ f ‖p = Cr

1 − r
γ 1−r ,

or ∫
|(A1 f )(x)|pdμ(x) ≤

( Cr

1 − r
γ 1−r

)p
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and we have the estimates( Cr

1 − r
γ 1−r

)p ≥
∫

|(A1 f )(x)|pdμ(x)

≥
∫
{x :(A1 f )(x)>s}

|(A1 f )(x)|pdμ(x) >
∫
{x :(A1 f )(x)>s}

s pdμ(x) = s pβA1 f (s),

so that

βA1 f (s) ≤
( Cr

1 − r

γ 1−r

s

)p = C1s−q = C1

(‖ f ‖p

s

)q
,

where C1 is the constant Cr p/[(1 − r)pCq/r
0 ]. This completes the proof in the case

p > 1. �
The proof above shows that A is of weak type (1, r); hence f ∈ L1 yields

A f ∈ {weak Lr } ⊂ Lr−ε
loc ,

for any ε > 0. �
The reader may well note that Lemma A.4 for X = Hn yields Theorem 3.10

by merely taking k(x, y) = F(y−1x) because (by (3.41)) F is weak Lr with r =
−λ/(2n + 2). �

Let K be a singular integral kernel. Let us set

K j (x, y) =
{

K (x, y) 1/2 j ≤ ρ(x, y) ≤ 1/2 j−1,

0 otherwise,

for any j ∈ {1, 2, 3, . . . }. Then

K =
∞∑
j=1

K j .

Let A j be the corresponding integral operator, i.e.,

(A j f )(x) =
∫

K j (x, y) f (y) dy.

Lemma A.5. The operators A j are uniformly bounded on L2. Moreover,
‖∑N

j=1 A j‖2 ≤ C, where the constant C is independent of N .

Proof. Note that

|K (x, y)| ≤ Cρ(x, y)−2n−2 .

Then (since #∗
x dV (ξ) = (1 + O1) dy)∫

|K j (x, y)| dy ≤ C
∫

1/2 j ≤|ξ |≤1/2 j−1
|ξ |−2n−2 dV (ξ) ≤ C log 2.
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Similarly ∫
|K j (x, y)| dx ≤ C log 2,

so that (by Lemma A.3) the operators A j are uniformly bounded on L2. To prove the
second statement in Lemma A.5 it suffices to show that, for j sufficiently large, the
operators A j obey to the hypothesis of Lemma A.2. This follows from Lemma A.3
and the estimate ∫

|G j�(x, y)|dy ≤ C2(�− j)/2 (A.4)

for � large and j >> �. The proof of (A.4) is quite technical and would take us too far
afield (cf. [150], pp. 481–483, for the details).

Lemma A.6. Let K be a singular integral kernel and set

Kε(x, y) =
{

K (x, y) ρ(x, y) > ε,

0 otherwise.

There exist constants C1,C2 such that∫
ρ(x,z)>C1ρ(x,y)

|Kε(z, x)− Kε(z, y)|dz ≤ C2 ,

for any x, y ∈ V and ε > 0.

The proof follows from the estimates (3.21)–(3.22) together with Lemma A.1 (cf.
[150], pp. 484–485, for the details).

Lemma A.7. Let K ′(x, y) be a function with support in

� ∩ {(x, y) : ρ(x, y) ≤ 1} .
Assume that there exist constants C1,C2,C3 > 0 such that∫

ρ(x,z)>C1ρ(x,y)
|K ′(z, x)− K ′(z, y)|dz ≤ C2

and

(A′ f )(x) =
∫

K ′(x, y) f (y)dy

exists a.e. for any f ∈ L p, 1 ≤ p ≤ 2, and

‖A′ f ‖2 ≤ C3‖ f ‖2

for any f ∈ L2. Then

‖A′ f ‖p ≤ C‖ f ‖p

for any f ∈ L p, 1 < p ≤ 2, where C depends only on C1,C2,C3, and p.
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This is a special case of a result by R. Coifman and G. Weiss [105], which generalizes
the classical Calderon–Zygmund theorem; cf., e.g., [384]. Similar generalizations are
due to A. Korányi and S. Vági [258], and N.M. Rivière [352]. For a proof the reader
should see [105], p. 74. As pointed out by G.B. Folland and E.M. Stein (cf. [150],
p. 485) the hypothesis K ′ ∈ L2(M × M) in [105] should be replaced by the hypothesis
that (A′ f )(x) exists for a.e. x and all f ∈ L p, 1 ≤ p ≤ 2.

Theorem A.9. Let A be a singular integral operator with kernel K (x, y) and let 1 <
p < ∞. The operators Aε are uniformly bounded on L p and converge strongly as
ε → 0. Hence A may be defined on L p by A f = limε→0 Aε f and A is bounded
on L p.

Proof. Let Kε be defined as in Lemma A.6. Then

(Aε f )(x) =
∫

Kε(x, y) f (y) dy

exists for all x and f ∈ L p because

|(Aε f )(x)| ≤
(∫

Kε(x, y)qdy

)1/q

‖ f ‖p <∞

for all x (where q ∈ R is such that 1/p + 1/q = 1) since Kε(x, ·) is a bounded
function of compact support. By Lemma 3.9, Aε converges strongly as ε → 0 on a
dense subspace of L p. Therefore, it remains to be shown that Aε is bounded on L p,
1 < p <∞, uniformly in ε. For p = 2 this follows from Lemma A.5. Next, Lemmas
A.6 and A.7 yield the statement for 1 < p ≤ 2. To end the proof, set

K̃ (x, y) = K (y, x).

Then K̃ is a singular integral kernel; hence the corresponding integral operators

( Ãε f )(x) =
∫
ρ(x,y)>ε

K̃ (x, y) f (y) dy

are, by the first part of this proof, bounded on L p, 1 < p ≤ 2, uniformly in ε. Yet∫
(Aε f )(x)g(x) dx =

∫
f (x)( Ãεg)(x) dx;

hence by Hölder’s inequality, Aε is uniformly bounded on L p, 2 ≤ p <∞. �
At this point we introduce a class of kernels on M that play the role of regular

homogeneous distributions on Hn .

Definition A.4. Let λ ≥ 0. A function K (x, y) on M × M is a kernel of type λ if for
any m ∈ Z,m > 0, one can write K in the form

K (x, y) =
N∑

i=1

ai (x)Ki (x, y)bi (y)+ Em(x, y),
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where (1) Em ∈ Cm
0 (M × M), (2) ai , bi ∈ C∞

0 (M), 1 ≤ i ≤ N , and (3) Ki is
C∞ away from the diagonal and is supported in � ∩ {(x, y) : ρ(x, y) ≤ 1}, and
Ki (x, y) = ki (#(y, x)) for ρ(x, y) sufficiently small, where ki is homogeneous of
degree λi = λ − 2n − 2 + μi for some μi ∈ Z, μi ≥ 0. In addition, if λ = 0 and
λi = −2n − 2 one requires that ki have mean value zero. �

In other words, a kernel of type λ is one whose “principal part” is regular homogeneous
of degree λ− 2n − 2 near the diagonal.

Definition A.5. An operator of type λ, λ > 0, is an operator A of the form

(A f )(x) =
∫

K (x, y) f (y) dy,

where K is a kernel of type λ. An operator of type 0 is an operator A of the form

(A f )(x) = lim
ε→0

∫
ρ(x,y)>ε

K (x, y) f (y) dy + a(x) f (x),

where K is a kernel of type 0 and a ∈ C∞
0 . �

Theorem A.10. Let A be an operator of type λ > 0. Then A is bounded on L p, 1 ≤
p ≤ ∞. Moreover, if 0 < λ < 2n+2 then A is bounded from L1 to L(2n+2)/(2n+2−λ)−ε
for any ε > 0 and from L p to Lq , 1/q = 1/p−λ/(2n+2), whenever 1 < p < q <∞.

For a proof the reader should see [150], p. 487. It may be also shown that operators of
type 0 are bounded on L p, 1 < p <∞. �

All constructions so far rely on the local orthonormal frame {X j }. These vector
fields (as differential operators) interact with operators of type λ ≥ 0 as follows.

Proposition A.1. Let A be an operator of type λ. If λ ≥ 1 then X j A and AX j are
operators of type λ − 1 for 1 ≤ j ≤ 2n, while if λ ≥ 2 then X0 A and AX0 are
operators of type λ− 2.

Cf. Proposition 15.14 in [150], p. 487. Also Theorem 3.10 in Chapter 4 admits the
following analogue

Theorem A.11. If A is an operator of type 0 then there exist operators A0, . . . , A2n

of type 1 such that

A =
2n∑
j=1

A j X j + A0 .

Cf. Theorem 15.15 in [150], p. 490.

Definition A.6. The space S p
k (M)loc consists, by definition, of all f ∈ L p

loc such that
D f ∈ L p

loc, as D runs over all differential operators that are sums of monomials of
order at most k formed with vector fields in �∞(H(M)⊗ C). �
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We wish to remark that although the Folland–Stein space S p
k (M) is defined in terms

of the pseudo-Hermitian frame {X j }, the space S p
k (M)loc is a CR invariant.

Theorem A.12. Let A be an operator of type m,m ∈ {0, 1, 2, . . . }. Then A is bounded
from S p

k (M) to S p
k+m(M) for k ∈ {0, 1, 2, . . . } and 1 < p <∞.

Cf. Theorem 15.19 in [150], p. 491. �
Now we recall the Lipschitz-type spaces on M :

Definition A.7. If 0 < β < 1, let �β(M) consist of all bounded functions f for which

sup
x,y

| f (y)− f (x)|
ρ(x, y)β

<∞.

Also, let �1(M) consist of all bounded functions f for which

sup
x,y

| f (y)+ f (ỹ)− 2 f (x)|
ρ(x, y)

<∞,

where ỹ = #−1
x (−#x (y)). Finally, let us set

�m+β ′(M) = { f : D f ∈ �β ′(M) for all D ∈ Am},
for any m ∈ {1, 2, 3, . . . } and 0 < β ′ ≤ 1. �
The spaces �β(M)loc are intrinsically defined, i.e., they are independent of the choices
made in constructing normal coordinates. It may be shown (cf. Theorem 15.20 in
[150], p. 493) that operators of type m satisfy the following Lipschitz regularity re-
sult:

Theorem A.13. Let A be an operator of type m, m ∈ {0, 1, 2, . . . }, and let us set
A f = g. If f ∈ �β(M), 0 < β < ∞, then g ∈ �β+m(M). If f ∈ L p, p ≥ 1, and
β = m − (2n + 2)/p > 0 then g ∈ �β(M).

Let us discuss now the existence of a parametrix for �b. Let ϕ be a (0, q)-form on
M . Locally

ϕ =
∑

J

ϕJ θ
J̄ ,

where J = (α1, . . . , αq) is a multi-index and θ J̄ = θ ᾱ1 ∧ · · · ∧ θ ᾱq .

Definition A.8. We say that ϕ ∈ S p
k (respectively ϕ ∈ �β ) if ϕJ ∈ S p

k (respectively
ϕJ ∈ �β ) for all multi-indices J . �
Clearly this is independent of the choice of pseudo-Hermitian frame.

Definition A.9. An operator A on forms is said to be of type λ if

A =
∑
J,K

(AJ KϕJ )θ
K̄ ,

where AJ K is an operator (on functions) of type λ, for any multi-indices J, K . �



458 A A Parametrix for �b

We adopt the following notation for “error terms”:

Definition A.10. E(ϕ) will denote an expression of the form∑
J K

aJ KϕJ θ
K , aJ K ∈ C∞.

Also E(Wϕ) will denote an expression of the form∑
J,K ,α

aJ Kα(WαϕJ )θ
K , aJ Kα ∈ C∞,

with similar conventions for E(Wϕ), E(Tϕ), etc., where {W1, . . . ,Wn} is a given (lo-
cal) frame of T1,0(M). Also, E(A, B) is short for E(A)+ E(B). �

For instance, if M is strictly pseudoconvex and {Wα} is chosen such that 〈Wα,Wβ〉θ =
δαβ , then the equation

∇WαWβ − ∇Wβ
Wα − [Wα,Wβ ] = 2ihαβT

may be written

[Wα,Wβ ] f = −2iδαβT f + E(W f,W f ),

for any f ∈ C2(M).
We already computed ∂b, ∂

∗
b, and �b in terms of the given frame {Wα}; cf. our

identities (1.135), (1.142), and (1.146). A rough form, but at times easier to handle,
of these equations, in which use is made of the above error term notation, follows
immediately. For instance

∂bϕ =
∑
J,α

(WαϕJ )θ
α ∧ θ J +

∑
J

ϕJ ∂bθ
J

=
∑
J,α

(WαϕJ )θ
α ∧ θ J + E(ϕ).

Similarly (1.146) yields

q!�bϕ =
∑

J

(Ln−2qϕJ
)
θ J + E(Wϕ,Wϕ, ϕ), (A.5)

for any ϕ ∈ �0,q(M). Therefore �b is expressed by the same formula as for the
Heisenberg group, modulo lower-order error terms (compare to (3.25)).

Let {Wα} be a pseudo-Hermitian frame, defined on the open set V ⊆ M . Let ξ ∈ V
and let #ξ : Vξ → #ξ(Vξ ) ⊆ Hn be a normal coordinate system at ξ , associated with
{Wα}. We let Lα act on functions f : Vξ → C by setting

Lα f := Lα( f ◦#−1
ξ ).
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Let us set x = (z, t) = #ξ . Then (by (A.5))

�bϕ =
∑

J

(Ln−2qϕJ
)
θ J + E(ϕ, ∂ϕ

∂z
,
∂ϕ

∂z
)

+ O1E
(∂ϕ
∂t
,
∂2ϕ

∂z2
,
∂2ϕ

∂z∂z
,
∂2ϕ

∂z2

)
+ O2E

( ∂2ϕ

∂z∂t
,
∂2ϕ

∂z∂t

)
+ O3E

(∂2ϕ

∂t2

)
, (A.6)

where OkE(·) is an expression of the form E(·) whose coefficients are of type Ok . In
spite of the rather complicated appearance of the error terms in (A.6), its use is quite
simple: one should think of ϕ as a sum of homogeneous terms and note the fact that
Ln−2q lowers the homogeneity by 2 degrees, while the error terms lower it by at most
one.

At this point, we may build a parametrix for �b. By a partition of unity argument,
we need only look at forms supported in some compact set W . Let ψ(ξ, η) be a real-
valued C∞

0 function supported in � ∩ {(ξ, η) : ρ(ξ, η) ≤ 1} and such that ψ(ξ, η) =
ψ(η, ξ) and ψ(ξ, η) = 1 in some neighborhood of the diagonal in W × W . Let�α be
the fundamental solution for Lα on Hn . Let 0 < q < n and set

Kq(ξ, η) = ψ(ξ, η)�n−2q(#(η, ξ)).

Since �n−2q is homogeneous of degree −2n, Kq is a kernel of type 2. Moreover,

Kq(η, ξ) = Kq(ξ, η)

because of�α(−x) = �α(x). Let Aq be the operator (of type 2) on (0, q)-forms given
by

Aqϕ(ξ) =
∑

J

( ∫
Kq(ξ, η)ϕJ (η)dη

)
θ J
ξ .

Also, consider the operator

Bqϕ(ξ) = ψ(ξ, ξ)ϕ(ξ)− �b Aqϕ(ξ).

Proposition A.2. Bq is an operator of type 1.

Proof. Let ϕ be a smooth form of compact support. Define Aεq by

Aεqϕ(ξ) =
∑

J

( ∫
K ε

q (ξ, η)ϕJ (η)dη
)
θ J
ξ ,

K ε
q (ξ, η) = ψ(ξ, η)�n−2q,ε(#(η, ξ)),

�α,ε = 1

cα
ϕα,ε ,

ϕα,ε = ρ
− n+α

2
ε ρ

− n−α
2

ε , ρε(z, t) = |z|2 + ε2 − i t



460 A A Parametrix for �b

(we replaced �n−2q in the definition of Aq by its regularized version �n−2q,ε , as in
the proof of Theorem 3.9). Then (by the dominated convergence theorem)

‖Aεqϕ − Aqϕ‖∞ ≤ ‖ϕ‖∞
∫ ∣∣∣K ε

q (ξ, η)− Kq(ξ, η)

∣∣∣ dη → 0, ε → 0;

hence Aεqϕ → Aqϕ as distributions. Then �b Aεqϕ → �b Aqϕ. All functions entering
Aεqϕ are C∞, so we may differentiate under the integral sign. We get (by (A.6))

�b Aεqϕ(ξ) =
∑

J

(
Ln−2q(A

ε
qϕ)J (ξ)

)
θ J
ξ + (error terms) (ε, ξ)

=
∑

J

[ ∫
Lξn−2q(K

ε
q (ξ, η))ϕJ (η)dη

]
θ J
ξ + (error terms) (ε, ξ). (A.7)

As ε → 0, the error terms give rise to an integral operator applied to ϕ whose kernel
consists of ξ -derivatives of ψ(ξ, η)�n−2q(#(η, ξ)), which lower the homogeneity by
j ∈ {0, 1, 2, 3, 4}, multiplied by coefficients of type O j−1. In particular, the coeffi-
cients kill any part (of these distribution derivatives) supported on the diagonal. Then
it may be shown that the error terms form an operator of type 1 applied to ϕ (cf. also
[150], p. 495). As to the first term in the expression of �b Aεqϕ, we have

Lξn−2q

[
ψ(ξ, η)�n−2q,ε(#(η, ξ))

]
=
(
Lξn−2qψ

)
�n−2q,ε(#(η, ξ))+ ψ(ξ, η)Lξn−2q

[
�n−2q,ε(#(η, ξ))

]
. (A.8)

Note that Lξn−2qψ is a first-order operator involving only the derivatives X1, . . . , X2n

(and not involving X0). Therefore (by Proposition A.1)(
Lξn−2qψ

)
�n−2q,ε(#(η, ξ))

is a kernel of type 1. Let us set u = #η(ξ). Then the second term in (A.8) is
ψ(ξ, η)Ln−2q(�n−2q,ε(u)). Since dξ and dV (u) for ξ = η coincide, it follows (by
Theorem 3.10) that

ψ(ξ, η)Ln−2q(�n−2q(u))→ ψ(ξ, η)δ(ξ, η), ε → 0,

where δ(ξ, η) is the distribution on M × M given by∫
δ(ξ, η) f (ξ)g(η)dξdη =

∫
f (ξ)g(ξ)dξ.

Thus (by (A.7)–(A.8))

�b Aqϕ(ξ) = lim
ε→0

�b Aεqϕ(ξ) = ψ(ξ, ξ)ϕ(ξ)+ (Hqϕ)(ξ)

for some operator Hq of type 1. Yet Hq = −Bq (by the definitions). �
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Proposition A.3. Let ϕ be a (0, q)-form, 1 ≤ q ≤ n − 1, with supp(ϕ) ⊂ W . Then

�b Aqϕ = ϕ − Bqϕ, Aq�bϕ = ϕ − B∗
qϕ ,

and B∗
q is of type 1.

Proof. The formula �b Aqϕ = ϕ− Bqϕ is merely the definition of Bq , since ψ(ξ, ξ) =
1 for any ξ ∈ W . To prove the second formula, let λ,μ be (0, q)-forms. Then

(Aqλ,μ) =
∑

J

∫
Kq(ξ, η)λJ (η)μJ (ξ)dηdξ

=
∑

J

∫
λJ (η)Kq(η, ξ)μJ (ξ)dηdξ = (λ, Aqμ),

i.e., Aq is symmetric. Next, since �b is symmetric on forms with compact support,

Aq�bϕ = (
�b Aq

)∗
ϕ = (I − B∗

q )ϕ.

Finally, the adjoint of an operator of type 1 is of type 1. �
Therefore, Aq is a two-sided parametrix for �b on W , i.e., I −�b Aq and I −Aq�b

are smoothing operators, i.e., are bounded operators of S p
k into S p

k+1, 1 < p < ∞,
k ∈ {0, 1, . . . } (by Theorem A.12). If better smoothing is desired, one may set

A(m)q = Aq

m−1∑
j=0

(Bq)
j , A[m]

q =
m−1∑
j=0

(B∗
q )

j Aq ,

and then

I − �b A(m)q = I − (I − Bq)

m−1∑
j=0

(Bq)
j = (Bq)

m,

I − A[m]
q �b = I −

m−1∑
j=0

(B∗
q )

j (I − B∗
q ) = (B∗

q )
m,

and (Bq)
m and (B∗

q )
m are bounded operators from S p

k to S p
k+m . Again by Theorem

A.12, A(m)q and A[m]
q are bounded operators from S p

k to S p
k+2. �

Consequently, one has the following estimates for �b:

Theorem A.14. If 0 < q < n, 1 < p < ∞, and k ≥ 0, there is a constant C =
C(p, k) > 0 such that

‖ϕ‖p,k+2 ≤ C
(‖�bϕ‖p,k + ‖ϕ‖p

)
,

for any ϕ ∈ �∞
0 (�

0,q) supported in a fixed compact set W .
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Proof.

‖ϕ‖p,k+2 ≤ ‖A[k+2]�bϕ‖p,k+2 + ‖(B∗
q )

k+2ϕ‖p,k+2

≤ C
(‖�bϕ‖p,k + ‖ϕ‖p

)
. �

We are now in a position to state the main regularity theorem for �b.

Theorem A.15. Let ϕ and ψ be locally integrable (0, q)-forms, 0 < q < n, such that
�bϕ = ψ on an open set U ⊆ M. Then

(a) ϕ ∈ L(n+1)/n−ε(U, loc) for any ε > 0.
(b) If ψ ∈ L p(U, loc), 1 < p < n + 1, then ϕ ∈ Lr (U, loc), where 1

r = 1
p − 1

n+1 .
(c) If ψ ∈ L p(U, loc), n + 1 < p ≤ ∞, then ϕ ∈ �β(U, loc), where β = 2 − (2n +

2)/p.
(d) If ψ ∈ S p

k (U, loc) with 1 < p <∞ and k ∈ {0, 1, 2, . . . }, then ϕ ∈ S2
k+2(U, loc).

(e) If ψ ∈ �β(U, loc), 0 < β <∞, then ϕ ∈ �β+2(U, loc).
(f) If ψ ∈ C∞(U ) then ϕ ∈ C∞(U ).

For a proof the reader should see see [150], pp. 497–498.
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2(1966), 1–14.

[83] E. Brieskorn and A. Van de Ven, Some complex structures on products of homotopy
spheres, Topology, 7(1968), 389–393.

[84] R.L. Bryant, Holomorphic curves in Lorenzian CR manifolds, Trans. A.M.S.,
(1)272(1982), 203–221.

[85] L. Capogna, D. Danielli, and N. Garofalo, An embedding theorem and the Härnak in-
equality for nonlinear subelliptic equations, Commun. in Partial Differential Equations,
(9&10)18(1993), 1765–1794.

[86] L. Capogna, D. Danielli, and N. Garofalo, Subelliptic mollifiers and basic pointwise
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[130] R. Dwilewicz, Bergman-Szegö type theory for CR structures, in Complex Analysis

III, Proceedings, Univ. of Maryland 1985–86, ed. by A. Berenstein, Lecture Notes in
Math., vol. 1277, pp. 15–34, Springer-Verlag, Berlin-Heidelberg-New York-London-
Paris-Tokyo, 1987.

[131] J. Eells and M.J. Ferreira, On representing homotopy classes by harmonic maps, Bull.
London Math. Soc., 23(1991), 160–162.

[132] L.P. Eisenhart, Riemannian geometry, Princeton Univ. Press, Princeton, 1966.
[133] N. Ejiri, Bochner Kähler metrics, Bull. Sc. Math., 108(1984), 423–436.
[134] L. Ehrenpreis, Lewy unsolvability and several complex variables, Michigan Math. J.,

38(1991), 417–439.
[135] D. Ellis, C.D. Hill, and C.C. Seabury, The maximum modulus principle, I. Necessary

conditions, Indiana Univ. Math. J., (7)25(1976), 709–715.



References 469

[136] J. Faraut, Analyse harmonique et fonctions spéciales, in Deux cours d’analyse har-
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74(1998), 67–97.

[167] N. Garofalo and D.M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-
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Fis. Milano, 39(1969), 1–12.
[288] F. Loose, A remark on the reduction of Cauchy-Riemann manifolds, Math. Nachr.,

214(2000), 39–51.
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CR-invariant property, 7
CR-pluriharmonic function, 280, 414
curvature form, 413

(of an S-connection), 421
cut-off function, 261

de Rham cohomology groups, 84
de Rham complex, 73, 84
degenerate elliptic operator, 113, 207
dilation, 12
Dirac distribution, 177
Dirac field, 25
Dirichlet energy functional, 218
Dirichlet problem

for the complex Monge–Ampére equation,
109, 147

for the subelliptic harmonic maps
equation, 231

discrete group, 313
distribution function, 450
divergence, 111
Dombrowski map, 322
double-dual identification, 21
doubling constant, 259
doubling measure, 259

eigenfunction, 227
Einstein manifold, 134
elliptic space form, 321
embeddable, 14
embedded (CR manifold), 14
embedding problem, 15
energy surface, 21
error terms, 458
Euler–Lagrange equation, 157
Euler–Lagrange equations, 217
exact sequence (of cohomology groups), 95
extremal functions, 158

Fefferman
bundle, 119
metric, 109, 128, 216, 232, 239

Fefferman’s asymptotic expansion, 399
fiber coordinate, 122
field of vision, 24
filtration, 73, 84
first variation formula, 247
Folland–Stein

normal coordinates, 165, 348
operator, 177
space, 193
space S p

k (M)loc, 456
formal (Frobenius) integrability, 70
Fourier transform, 183
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frame constant, 174
Frölicher spectral sequence, 73

of a CR manifold, 85
Fuglede–Ishihara theorem, 229
fundamental solution, 176

for the Hörmander operator, 260
fundamental tensors (of a Riemannian

submersion), 319

Gauss
equation, 155, 224
formula, 353

generalized CR function, 82
generic (energy surface), 21
generic submanifold, 5
globally embeddable, 15
Graham–Lee connection, 135
Greenleaf’s

formula, 227, 228, 360
theorem, 434

Hamiltonian
form, 21
vector field, 405

harmonic
map, 211, 217
morphism, 229, 231
polynomial, 228

Harnack inequality, 198
Heisenberg

group, 11, 34
norm, 13, 313
-type order, 166

helicity, 23
Hermitian connection, 408
Higgs field, 25
Hodge operator, 141
holomorphic

distribution, 41
extension problem, 81
foliation, 73, 83
map, 211
tangent bundle, 5

homogeneous CR manifold, 343
homogeneous distribution, 191
homogeneous function, 191
homogeneous pseudo-Hermitian manifold,

341
horizontal gradient, 111

hyper contact form, 333
hyper CR manifold, 332
hyperkählerian manifold, 331
hyperquadric, 351
hypersurface type, 5
hypoelliptic, 111, 189
hypoelliptic operator, 114
Hörmander

condition, 233
operator, 113, 225, 231, 233
system, 225, 233

induced connection, 213
infinitesimal CR automorphism, 42
inhomogeneous Yang–Mills equation, 84,

410
inner commutation relations, 425
integrable (G-structure), 70
integral class, 156
interpolation inequality, 199
invariant polynomial, 143
inverse Pontryagin polynomial, 152
isopseudo-Hermitan, 62

immersion, 345
map, 7

isotropy group, 63

Jerison–Lee theorem, 160, 205

kernel of type λ, 455
Kohn–Rossi cohomology, 73, 74, 309
Kohn–Rossi cohomology groups, 85, 88
Kohn–Rossi Laplacian, 73, 100, 104
Kohn–Rossi operator, 177
Kähler metric, 41
Kählerian manifold, 41
Küneth formula, 320

Laplace–Beltrami operator, 217
Lee class, 303, 346, 361
Lee conjecture, 304
left-invariant CR structure, 20
left-invariant pseudo-Hermitian structure, 20
Levi

distribution, 4
flat, 70
form, 5, 7
metric, 106

Lewy operator, 12, 231, 403
Libermann’s theorem, 404
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light-like geodesic, 135
locally embeddable, 14
locally trivial (CR-holomorphic vector

bundle), 83
Lorentz

frame, 144
metric, 128

Marcinkiewicz interpolation theorem, 450
maximal complex distribution, 4
mean value, 191
minimal immersion, 228
minimality (of a distribution), 37
minimizing sequence, 159, 200
Minkowski space, 22
momentum (of a massless particle in flat

space-time), 23
Monge–Ampère equation, 151

natural lift, 213
Nijenhuis torsion, 10
nondegenerate (CR manifold), 6
nonlinear connection, 321
normal, 10
normal form, 134, 142
normal Tanaka–Webster connection, 346
null geodesic, 110, 134

operator of type λ, 456
outer commutation relations, 425

parabola (tangent to a CR manifold), 359
parabolic geodesic, 229, 358
parametrix (of the Kohn–Rossi operator), 448
Pauli–Lubanski spin vector, 23
pluriharmonic function, 286
Poincaré

inequality, 198
polynomial, 135

Poisson kernel, 294
Pontryagin form, 110, 142, 154
potential theory, 208
projective twistor space, 23
proper (CR submanifold), 41
properly discontinuous group, 152, 313
pseudo-Einstein, 275
pseudo-Einsteinian

manifold, 275
structure, 361

pseudo-Hermitian
frame, 165
geometry, 2
Hessian, 116
holonomy group, 329
immersion, 68, 345, 354
manifold, 7
map, 7
Ricci curvature, 56
Ricci tensor, 50, 275
scalar curvature, 50, 275
space form, 62
structure, 5
torsion, 26, 36

pseudo-Siegel domain, 131, 375
pseudocomplex, 73
pseudoconformal curvature tensor, 61
pseudoharmonic

map, 111, 212, 213
morphism, 229, 252

pseudoharmonicity, 211
pullback bundle, 212
purely tangential first-order differential

operators, 1

quadric submanifold, 20
quantum bundle, 412
quasi-constant curvature, 325
quaternionic

contact form, 333
CR submanifold, 332
distribution, 332
Sasakian manifold, 334
submanifold, 332
-Kähler manifold, 331

Radon–Penrose transform, 25
realizable, 14
realized (CR manifold), 14
reflection operator, 190
regular (vector field), 318
regular distribution, 192
regular homogeneous distribution, 190
restricted conformal class, 110, 135
Ricci operator, 56
Riemann–Christoffel tensor, 51
Riemannian

foliation, 96
submersion, 319
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Yamabe problem, 157

Sasaki metric, 10, 229, 322
Sasakian space-form, 360
Sasakian structure, 10
Schwartz class, 397
second fundamental form, 155
sheaf (of CR-pluriharmonic functions), 300
Siegel domain, 14, 403
singular integral

kernel, 194, 454
operator, 194

Siu–Sampson formula, 211
slice, 318
Sobolev

inequality, 158
lemma, 159, 176
norm, 114
space, 159
-type space, 261

spectral asymptotics, 428
spectrum (of the sub-Laplacian), 228
spherical (CR manifold), 61
spinor calculus, 111
standard contact vector (of the sphere), 228
strictly pseudoconvex (CR manifold), 6
sub-Laplacian, 111, 212
subelliptic, 111

p-harmonic map, 246
p-Laplacian, 257
harmonic map, 111, 231
harmonic morphism, 231, 232
operator, 114
theory, 111

submanifold of finite type, 228
symmetric homogeneous polynomial, 99
symplectomorphism, 399

Tanaka connection, 407, 420
Tanaka–Webster connection, 26, 241
tangent sphere bundle, 229, 321
tangential Beltrami equations, 385
tangential Cauchy–Riemann

equations, 1, 81
operator, 73

tautologous form, 120

theorem of Fubini, 141
third-order covariant derivative, 424
time-like curve, 135
totally real foliation, 41
totally umbilical, 223
trace (of a pluriharmonic function), 287
trace norm, 397
traceless Ricci tensor, 299
transgression form, 143, 144
transition functions, 83
translation operator, 190
transverse Levi-Civita connection, 96
transverse symmetry, 309
triangle inequalities, 13
tube, 134
twistor space, 23
twistorial construction, 21
type (of an almost CR structure), 3

uniformly elliptic operator, 198
universal Weil homomorphism, 143
unsolvability (of the Lewy operator), 12

vanishing theorem, 97, 99
volume form, 43
volume-normalized, 276

wave operator, 140, 217, 225
weak maximum principle, 207
weak pseudoconvexity locus, 132
weak type operator, 450
Webster metric, 9
Weingarten

equation, 222
formula, 353
operator, 154, 223

Weyl connection, 317

Yamabe
equation, 157
problem, 142

Yamabe–Trudinger–Aubin theorem, 158
Yang–Mills

equation, 410
field, 25
functional, 410
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