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Preface

The study of idempotent elements in group algebras (or, more generally, the
study of classes in the K-theory of such algebras) originates from geometric
and analytic considerations. For example, C.T.C. Wall [72] has shown that
the problem of deciding whether a finitely dominated space with fundamental
group π is homotopy equivalent to a finite CW-complex leads naturally to the
study of a certain class in the reduced K-theory K̃0(Zπ) of the group ring Zπ.
As another example, consider a discrete group G which acts freely, properly
discontinuously, cocompactly and isometrically on a Riemannian manifold.
Then, following A. Connes and H. Moscovici [16], the index of an invariant
0th-order elliptic pseudo-differential operator is defined as an element in the
K0-group of the reduced group C∗-algebra C∗

rG.
The idempotent conjecture (also known as the generalized Kadison conjec-

ture) asserts that the reduced group C∗-algebra C∗
rG of a discrete torsion-free

group G has no idempotents �= 0, 1; this claim is known to be a consequence
of a far-reaching conjecture of P. Baum and A. Connes [6]. Alternatively, one
may approach the idempotent conjecture as an assertion about the connected-
ness of a non-commutative space; if G is a discrete torsion-free abelian group
then C∗

rG is the algebra of continuous complex-valued functions on the dual
group Ĝ, which is itself a compact and connected topological space. Even
though the complex group algebra of a group G is a much simpler object
than the corresponding reduced group C∗-algebra, the idempotent conjecture
for CG remains still an unproved claim when G is an arbitrary torsion-free
group. The latter problem has attracted the attention of ring theorists since
the middle of the 20th century.

On the other hand, reformulating a theorem of R. Swan [70] about projec-
tive modules over integral group rings of finite groups in terms of the Hattori-
Stallings rank, H. Bass stated in [4,5] a conjecture about the trace of idempo-
tent matrices with entries in the group algebra of a group with coefficients in a
suitable subring of the field C of complex numbers. An immediate consequence
of the validity of the conjecture is the equality of various Euler characteristics
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that can be defined for groups. Furthermore, as shown by B. Eckmann [20],
Bass’ conjecture is related to the freeness of certain induced finitely generated
projective modules over the von Neumann algebra of the group.

This book provides an introduction to the study of these problems for grad-
uate students and researchers who are not necessarily experts in the field. Our
aim is to show the unified character of the conjectures mentioned above and
present the basic elements of an area of research that has recently experienced
a revival, in view of its close relationship with deep geometric problems. At
the same time, we hope that this book will become a valuable aid to the ex-
perts as well, as it collects and presents in a systematic way basic techniques
and important results that have been obtained during the past few decades.

The pace of the book is suitable for independent study and the level of
the presentation not very demanding, assuming only familiarity with the tech-
niques of Algebra and Analysis that are usually covered during the first year
of graduate studies. Moreover, in order to facilitate the reader, we have de-
cided to include a few Appendices that detail some of the tools used in the
main text. On the other hand, we have restrained ourselves from using some
of the more advanced techniques that may be employed in the study of these
problems, such as refined tools from K-theory.

In the first chapter, we fix the notation used in the rest of the book and
properly formulate the Bass’ and idempotent conjectures. As a warm-up, we
prove the idempotent conjecture for torsion-free ordered groups and introduce
the Strebel-Strojnowski class, providing some additional examples of groups
satisfying the idempotent conjecture.

In Chap. 2, we present the simplest examples of groups that satisfy Bass’
conjecture, namely the abelian groups and the finite ones. We put the con-
jecture in a geometric perspective, by relating it, in the abelian case, to the
connectedness of the prime spectrum of the group algebra. Using some basic
representation theory, we establish the equivalence between Bass’ conjecture
for finite groups and Swan’s theorem on integral representations, which served
itself as the primary motivation for H. Bass to formulate the conjecture.

In Chap. 3, we study idempotent matrices with entries in complex group
algebras by reduction to positive characteristic. This technique was pioneered
by A. Zaleskii [75], in order to complement a result of I. Kaplansky [38] on the
positivity of the canonical trace. Using the action of the Frobenius operator in
the positive characteristic case and then lifting the result to C, we prove two
theorems of H. Bass and P. Linnell describing some properties of the support
of the Hattori-Stallings rank of an idempotent matrix.

In Chap. 4, we present another method that may be used in the study of
the idempotent conjectures, which is of homological nature. We define cyclic
homology and relate it to the K-theory and the Hattori-Stallings rank. The
nilpotency of Connes’ periodicity operator in the cyclic homology of group
algebras suggests the definition of a class C, which provides us with many
interesting examples of groups that satisfy the idempotent conjectures.
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In the last chapter, we study idempotent matrices with entries in the
reduced group C∗-algebra of a discrete group and prove the integrality of the
canonical trace, in the cases of abelian and free groups. In the abelian case,
this follows from the connectedness of the dual group, whereas the free group
case is taken care of by considering a free action of the group on a tree. We
construct the center-valued trace on the von Neumann algebra of a group
from scratch (i.e. without appealing to the general theory of finite algebras)
and study its importance in K-theory. In particular, we prove the result of
B. Eckmann on the freeness of induced finitely generated projective modules
over group von Neumann algebras.

The five Appendices at the end of the book summarize the results from
Algebra, Number Theory and Analysis that are needed in the main text.

At this point, I would like to acknowledge the intellectual debt owed to
the mathematicians whose work and ideas build up this book; in particular,
to H. Bass, A. Connes, B. Eckmann, I. Kaplansky, P. Linnell and A. Zaleskii.

Athens, Greece Ioannis Emmanouil
June, 2005
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1

Introduction

1.1 Preliminaries

We assume that the reader is familiar with the basic elements of Algebra and
Analysis that are usually covered during the first year of graduate studies. In
particular, we assume some familiarity with the basics of group theory (struc-
ture theorem for finitely generated abelian groups, rank of abelian groups,
solvable groups), ring theory (unique factorization in commutative rings, ten-
sor product and its relation to torsion, flatness) and field theory (field exten-
sions, Galois theory). Prerequisite notions also include the basics of topology
(completion of metric spaces, the Stone-Weierstrass theorem, connectedness
and compactness) and functional analysis (completeness, orthogonality and
bases of Hilbert spaces).

For future reference, we record the basic results from Algebra and Analysis
that are needed in the sequel in §1.1.1 and §1.1.2. We give the details of the
construction of the K0-group of an algebra R in §1.1.3, by means of finitely
generated projective modules and idempotent matrices, and explain the way
that traces on R induce additive maps on K0(R) in §1.1.4.

1.1.1 Basic Notions from Algebra

In this first subsection, we discuss about a variety of topics, including exten-
sion and restriction of scalars in module categories, the order structure on the
set of idempotents of a ring and record certain basic facts about group rings.

Unless otherwise specified, all rings will be associative and unital and
all ring homomorphisms will be assumed to be unit preserving. In the same
way, all modules will be understood to be left modules. If R is a ring, then
U(R) ⊆ R will denote the group of invertible elements and nilR ⊆ R the
subset (ideal, if the ring R is commutative) of nilpotent elements. Given a
ring R, the set Rop = {rop : r ∈ R} can be endowed with a ring structure, by
letting rop + sop = (r + s)op and rop · sop = (sr)op for any rop, sop ∈ Rop; as
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such, Rop is called the opposite ring of R. Then, a right R-module is simply
a (left) Rop-module.

I. Extension and restriction of scalars. If ϕ : R −→ S is a ring
homomorphism then S can be regarded as a left (resp. right) R-module, by
letting r · s = ϕ(r)s (resp. s · r = sϕ(r)) for all r ∈ R and s ∈ S. For any
R-module M the abelian group S ⊗R M can be viewed as a left S-module,
where s · (s′⊗x) = (ss′)⊗x for all s, s′ ∈ S and x ∈M . The resulting functor
from the category R−Mod of left R-modules to the category S−Mod of left
S-modules is referred to as the extension of scalars along ϕ. On the other
hand, given ϕ, any left S-module N can be regarded as a left R-module by
restriction of scalars along ϕ, i.e. by letting r · x = ϕ(r)x for any r ∈ R and
x ∈ M ; the resulting R-module will be denoted by N ′. With this notation,
there is a natural isomorphism of abelian groups

λ : HomS(S ⊗R M,N) ∼−→ HomR(M,N ′) ,

which is defined by letting λ(f) :M −→ N ′ be the map x �→ f(1⊗x), x ∈M ,
for any f ∈ HomS(S ⊗R M,N).

For later use, we record the following simple property of the restriction of
scalars functor.

Lemma 1.1 Let ϕ : R −→ S be a ring homomorphism, N a left S-module
and N ′ the left R-module obtained from N by restriction of scalars.

(i) If {si : i ∈ I} is a set of generators of S as a left R-module and {xj :
j ∈ J} a set of generators of the left S-module N , then {sixj : i ∈ I, j ∈ J}
is a set of generators of the left R-module N ′.

(ii) If the left R-module S is free with basis {si : i ∈ I} and the left S-
module N is free with basis {xj : j ∈ J}, then the left R-module N ′ is free
with basis {sixj : i ∈ I, j ∈ J}.

(iii) If the left R-module S is projective and the left S-module N is pro-
jective, then the left R-module N ′ is projective. �

II. The ordering of idempotents. If R is a ring we denote by Idem(R)
the set of idempotent elements of R, i.e. we let

Idem(R) = {e ∈ R : e2 = e} .

It is clear that 0, 1 ∈ Idem(R). A non-trivial idempotent of R is an idempotent
e with e �= 0, 1. A ring homomorphism ϕ : R −→ S maps idempotents of R
to idempotents of S and hence restricts to a map

Idem(ϕ) : Idem(R) −→ Idem(S) .

Two idempotents e, f ∈ R are called orthogonal if ef = fe = 0; if this is
the case, the element e + f ∈ R is also idempotent. It is easily seen that the
following two conditions are equivalent for two idempotents e, f ∈ R:
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(i) ef = fe = e and
(ii) the element f − e ∈ R is an idempotent orthogonal to e.

We define a relation ≤ on the set Idem(R), by letting e ≤ f if either one of
the equivalent conditions above is satisfied. We now state the basic properties
of that relation:

Proposition 1.2 Let R be a ring and ≤ the relation defined above on the set
Idem(R). Then:

(i) The relation ≤ is an order on Idem(R).
(ii) For any e ∈ Idem(R) we have 0 ≤ e ≤ 1.
(iii) For any e ∈ Idem(R) the element e′ = 1 − e ∈ R is an idempotent,

such that e ∧ (1 − e) = 0 and e ∨ (1 − e) = 1.1 We shall refer to e′ as the
complementary idempotent of e.

(iv) If e, f ∈ R are two idempotents then e ≤ f if and only if f ′ ≤ e′; here,
f ′ (resp. e′) is the complementary idempotent of f (resp. of e).

(v) If e, f ∈ Idem(R) are two commuting idempotents then the elements
ef, e + f − ef ∈ R are also idempotents; in fact, we have e ∧ f = ef and
e ∨ f = e+ f − ef .

(vi) If e, f, g ∈ Idem(R) are three commuting idempotents then we have
e ∧ (f ∨ g) = (e ∧ f) ∨ (e ∧ g).
Proof. The verification of the properties of an order for ≤ is a routine exercise,
whereas assertion (ii) is an immediate consequence of the definitions.

(iii) First of all, we note that for any idempotent e ∈ R the element
1 − e ∈ R is also idempotent. Moreover, if x ∈ Idem(R) is such that x ≤ e
and x ≤ 1 − e, then x = xe = x(1 − e)e = x0 = 0. In view of (ii) above, we
conclude that e∧ (1− e) = 0. On the other hand, if y ∈ Idem(R) is such that
e ≤ y and 1 − e ≤ y, then y = ey + (1 − e)y = e + (1 − e) = 1 and hence
e ∨ (1 − e) = 1, in view of (ii) above.

(iv) It is easily seen that the equalities ef = fe = e are equivalent to the
equalities (1 − f)(1 − e) = (1 − e)(1 − f) = 1 − f .

(v) If e, f ∈ R are two commuting idempotents, then the element ef is
idempotent as well. Since eef = efe = ef and fef = eff = ef , we conclude
that ef ≤ e and ef ≤ f . Moreover, if x ∈ Idem(R) is such that x ≤ e and
x ≤ f , then xef = xf = x and efx = ex = x, i.e. x ≤ ef . It follows that
e ∧ f = ef . Since the complementary idempotents e′ = 1 − e and f ′ = 1 − f
are also commuting, we have e′ ∧ f ′ = e′f ′. Invoking (iv) above, we conclude
that e ∨ f = (e′ ∧ f ′)′ = (e′f ′)′ = 1 − (1 − e)(1 − f) = e+ f − ef , as needed.

(vi) This is an immediate consequence of the formulae established in (v)
above. �

An ordered set (X,≤) is a Boolean algebra if it satisfies the following condi-
tions:
1 If x, y are elements of an ordered set X, we denote by x ∨ y (resp. x ∧ y) the

supremum (resp. infimum) of x and y, whenever that exists.
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(BAi) There exist two elements 0, 1 ∈ X, such that 0 ≤ x ≤ 1 for all
x ∈ X.

(BAii) Any two elements x, y ∈ X have a supremum x∨y and an infimum
x ∧ y.

(BAiii) For any x ∈ X there is an element x′ ∈ X, such that x ∧ x′ = 0
and x ∨ x′ = 1, where 0, 1 ∈ X are the elements of (BAi) above.

(BAiv) For any x, y, z ∈ X we have x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Examples 1.3 (i) Let R be a commutative ring. Then, the ordered set
(Idem(R),≤) defined above is a Boolean algebra (cf. Proposition 1.2).

(ii) For any set X the power set P(X), ordered by inclusion, is a Boolean
algebra. Here, 0 = ∅, 1 = X, A∧B = A∩B, A∨B = A∪B and A′ = X \A
for any two subsets A,B ⊆ X.

(iii) If X is a topological space, then the set L(X) of all clopen (closed
and open) subsets A ⊆ X, ordered by inclusion, is a Boolean algebra (with
formulae for 0, 1, ∧, ∨ and complements as in (ii) above).

Lemma 1.4 Let (X,≤) be a Boolean algebra.
(i) For any element x ∈ X the element x′ in condition (BAiii) above is

unique. We refer to it as the complement of x. In particular, x′′ = x.
(ii) For any two elements x, y ∈ X with complements x′ and y′ respectively,

we have x ≤ y if and only if y′ ≤ x′.
(iii) For any two elements x, y ∈ X with complements x′ and y′ respec-

tively, we have the following rules (de Morgan laws)

x′ ∧ y′ = (x ∨ y)′ and x′ ∨ y′ = (x ∧ y)′ .
Here, we denote by (x ∨ y)′, (x ∧ y)′ the complements of x ∨ y and x ∧ y
respectively.

Proof. (i) If x0 ∈ X is such that x ∧ x0 = 0 and x ∨ x0 = 1, then we have

x′ = x′ ∧ 1 = x′ ∧ (x ∨ x0) = (x′ ∧ x) ∨ (x′ ∧ x0) = 0 ∨ (x′ ∧ x0) = x′ ∧ x0

and hence x′ ≤ x0. Working in the same way, with the roles of x′ and x0

reversed, it follows that x0 ≤ x′. Therefore, we must have x′ = x0.
(ii) If x ≤ y then y′ ∧ x ≤ y′ ∧ y = 0, i.e. y′ ∧ x = 0. It follows that

y′ = y′ ∧ 1 = y′ ∧ (x ∨ x′) = (y′ ∧ x) ∨ (y′ ∧ x′) = 0 ∨ (y′ ∧ x′) = y′ ∧ x′

and hence y′ ≤ x′. Conversely, if y′ ≤ x′ then x = x′′ ≤ y′′ = y.
(iii) This is an immediate consequence of (ii) above. �

Given two Boolean algebras (X,≤) and (Y,≤), a morphism

u : (X,≤) −→ (Y,≤)

is a map u : X −→ Y , such that u(0X)= 0Y , u(1X)= 1Y , u(x∧y) = u(x)∧u(y)
and u(x′) = u(x)′ for all x, y ∈ X. Then, we also have u(x ∨ y) = u(x) ∨ u(y)
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for all x, y ∈ X; this follows from Lemma 1.4(i),(iii). If u is bijective, then the
inverse map u−1 is also a morphism of Boolean algebras. In that case, u is
called an isomorphism of Boolean algebras.

Examples 1.5 (i) Let ϕ : R −→ S be a homomorphism of commutative
rings. Then, the induced map Idem(ϕ) : Idem(R) −→ Idem(S) is a morphism
of Boolean algebras.

(ii) Let f : X −→ Y be a map of sets. Then, the map A �→ f−1(A), A ⊆ Y ,
is a morphism of Boolean algebras f∗ : P(Y ) −→ P(X).

(iii) Let f : X −→ Y be a continuous map of topological spaces. Then,
the map A �→ f−1(A), A ∈ L(Y ), is a morphism of Boolean algebras L(f) :
L(Y ) −→ L(X).

III. Group algebras. The basic type of rings that will be examined in this
book is that of group algebras. If k is a commutative ring and G a group,
then the group algebra kG is defined as follows: As a k-module, kG is free
with basis the set G, whereas the multiplication of kG is the unique k-bilinear
extension of the multiplication of G. Then, kG is a unital k-algebra, which is
commutative if and only if the group G is abelian. We note that any element
a ∈ kG can be written uniquely as a sum

∑
g∈G agg, where ag ∈ k for all

g ∈ G and ag = 0 for all but finitely many g’s. For any g ∈ G we consider the
map

pg : kG −→ k ,

which is defined by letting a �→ ag, a ∈ kG (where a can be written as a sum∑
x∈G axx as above). Then, pg is k-linear, whereas

pg(ab) =
∑

{px(a)py(b) : x, y ∈ G and xy = g}

for all a, b ∈ kG and all g ∈ G.
The group algebra kG associated with a pair (k,G) as above is functorial

in both k and G: If σ : k −→ k′ is a homomorphism of commutative rings
and G a group, there is a unique ring homomorphism σ̃ : kG −→ k′G with
σ̃(r1) = σ(r)1 for all r ∈ k and σ̃(g) = g for all g ∈ G. On the other hand, if k
is a fixed commutative ring and f : G −→ G′ a group homomorphism, there
is a unique k-algebra homomorphism f̃ : kG −→ kG′ with f̃(g) = f(g) for all
g ∈ G.

Let k be a commutative ring and G a group. We note that the group
algebra associated with k and the trivial group {1} is naturally identified
with k. Hence, considering the (unique) group homomorphism G −→ {1}, we
obtain a k-algebra homomorphism

ε : kG −→ k ,

which is defined by letting ε(a) =
∑

g∈G ag for any a =
∑

g∈G agg ∈ kG. We
shall refer to ε as the augmentation homomorphism. The kernel IG(k) of ε is
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the augmentation ideal of kG; it is easily seen that IG(k) is a free k-module
with basis consisting of the elements g − 1, g ∈ G \ {1}.

Remarks 1.6 Let k be a commutative ring,G a group andH ≤ G a subgroup.
Then, the inclusion H ↪→ G induces an inclusion of k-algebras kH ↪→ kG. In
particular, we may regard kG as a (left or right) kH-module.

(i) Let S be a set of representatives of the left cosets of H in G. Then, the
left kH-module kG is free with basis S. Indeed, G is the disjoint union of the
cosets Hs, s ∈ S, and hence kG =

⊕
s∈S kHs as left kH-modules. The claim

follows since kHs  kH (as left kH-modules) for all s ∈ S. In the same way,
the right kH-module kG is free with basis any set S′ of representatives of the
right cosets of H in G.

(ii) Assume that H is a normal subgroup of G and consider the quotient
group G = G/H. We denote by g the canonical image in G of any element
g ∈ G. Then, there is an isomorphism of k-algebras

k ⊗kH kG  kG ,

which identifies 1⊗ g ∈ k⊗kH kG with g ∈ kG for any g ∈ G. Here, we regard
kG as a left kH-module as above and k as a right kH-module by means of
the associated augmentation homomorphism.

Let k be a commutative ring, G a group and R a k-algebra. It is easily seen
that any k-algebra homomorphism from kG to R restricts to a group homo-
morphism from G to the group of units U(R). Conversely, any group homo-
morphism as above can be uniquely extended to a k-algebra homomorphism
from kG to R. Therefore, there is a natural identification

Homk−Alg(kG,R)  HomGrp(G,U(R)) .

In particular, let us consider a k-module M . Then, a kG-module structure
on M , which extends the given k-module structure, is determined by a group
homomorphism from G to the group AutkM of k-linear automorphisms of
M , i.e. by a k-linear action of G on M . A special case where that situation
occurs is when the k-module M is free on a G-set X; the resulting kG-module
is referred to as a permutation module. We recall that an action of a group is
called free if all stabilizers are trivial.

Lemma 1.7 Let k be a commutative ring, G a group and X a free G-set.
Then, the associated permutation kG-module M =

⊕
x∈X k · x is free.

Proof. The decomposition X =
⋃

iXi of X into the disjoint union of G-orbits
induces a decomposition of kG-modulesM =

⊕
iMi, whereMi =

⊕
x∈Xi

k ·x
for all i. Since Xi  G as G-sets, it follows that Mi  kG as kG-modules for
all i. �
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The theory of modules over group algebras possesses two important special
features. First of all, the map g �→ g−1, g ∈ G, extends to an involution
(anti-automorphism of order 2)

τ : kG −→ kG .

We may regard τ as an isomorphism between the group algebra kG and its
opposite algebra (kG)op. Consequently, there is no need to distinguish between
left and right kG-modules: If M is a right kG-module, then we may define a
left kG-module structure on M by letting g ·m = mg−1 for all g ∈ G and all
m ∈M . On the other hand, let us consider the group homomorphism

D : G −→ G×G ,

which is given by g �→ (g, g), g ∈ G. Then, if M,N are two kG-modules, we
may endow the tensor product M ⊗k N with the structure of a kG-module
by means of the composition

G
D−→ G×G −→ AutkM × AutkN −→ Autk(M ⊗k N) .

Here, the second arrow is defined by using the given kG-module structures
on M and N , whereas the third one is defined by letting (α, β) �→ α ⊗ β for
all α ∈ AutkM and β ∈ AutkN . We shall refer to the resulting G-action on
M ⊗k N as the diagonal action.

Lemma 1.8 Let k be a commutative ring and G a group.
(i) The kG-module kG⊗k kG (with diagonal G-action) is free.
(ii) LetM,N be two projective kG-modules. Then, the diagonal kG-module

M ⊗k N is also projective.

Proof. (i) The diagonal kG-module kG ⊗k kG is precisely the permutation
module associated with the action of G by left translations on the set G×G.
Since the latter action is free, the result follows from Lemma 1.7.

(ii) Since both M and N are direct summands of free kG-modules, the
tensor product M ⊗k N is a direct summand of a direct sum of copies of
kG⊗k kG. Hence, the result follows invoking (i) above. �

We conclude this subsection with a basic result in the representation theory
of finite groups.

Theorem 1.9 (Maschke) Let k be a field and G a finite group whose order
is invertible in k. Then, any kG-module is projective.

Proof. Let V be a kG-module and V0 the k-vector space obtained from V by
restriction of scalars. We consider the kG-module kG ⊗k V0 obtained from
V0 by extension of scalars and the k-linear maps i : V −→ kG ⊗k V0 and
π : kG⊗k V0 −→ V , which are defined by letting
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i(v) =
1

|G |
∑

g∈G
g ⊗ g−1v and π(g ⊗ v) = gv

for all v ∈ V and g ∈ G. It is easily seen that both i and π are kG-linear,
whereas π ◦ i is the identity map on V . Therefore, i identifies the kG-module
V with a direct summand of the free kG-module kG⊗k V0. �

1.1.2 Basic Notions from Analysis

In this subsection, we discuss about bounded linear operators on a Hilbert
space H and develop some properties of the strong and weak operator topolo-
gies on B(H). We also define the reduced group C∗-algebra and the von Neu-
mann algebra associated with a discrete group.

I. Linear operators on Hilbert spaces. Let H be a Hilbert space
and B(H) the corresponding algebra of bounded linear operators. For any
a ∈ B(H) its adjoint a∗ is characterized by the equalities

<a(ξ), η>=<ξ, a∗(η)> ,

which are valid for all vectors ξ, η ∈ H. Moreover, we have

im a∗ = (ker a)⊥ and ker a∗ =
(
im a

)⊥ = (im a)⊥ .

A subset of B(H) is called self-adjoint if it contains the adjoints of its ele-
ments. For any a ∈ B(H) the operator norm ‖a‖ is the supremum of the set
{‖a(ξ)‖ : ‖ξ ‖≤ 1} ⊆ [0,∞). The algebra B(H) is complete under that norm.
A C∗-algebra A of operators acting on H is a closed self-adjoint subalgebra
of B(H); in contrast to our general algebraic convention, we will not always
assume that A is unital. As an example, the (non-unital) C∗-algebra K(H)
of compact operators is the closure of the (non-unital) algebra F(H) of finite
rank operators in B(H).

For any positive integer n the algebra Mn(B(H)) acts on the n-fold direct
sum Hn (whose elements are viewed as column-vectors) by left multiplication.
In this way, we identify Mn(B(H)) with the algebra B(Hn). The following
assertions are easily verified (cf. Exercise 1.3.2):

(i) If A = (aij)i,j ∈ Mn(B(H)) then the adjoint A∗ = (bij)i,j is given by
letting bij = a∗ji for all i, j.

(ii) If (Am)m is a sequence in Mn(B(H)) and Am = (aij,m)i,j for all m,
then limmAm = 0 (in the operator norm topology of Mn(B(H))  B(Hn)) if
and only if limm aij,m = 0 for all i, j.
In particular, if A is a C∗-algebra of operators acting on H, then Mn(A) is a
C∗-algebra of operators acting on Hn.

A linear operator u ∈ B(H) is an isometry if u∗u = uu∗ = 1. The operator
v ∈ B(H) is called a partial isometry if there are closed linear subspaces
V, V ′ ⊆ H, such that v maps V isometrically onto V ′ and vanishes on the
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orthogonal complement V ⊥. An operator s ∈ B(H) is called positive if the
complex number <s(ξ), ξ> is real and non-negative for all vectors ξ ∈ H. For
any a ∈ B(H) there is a unique positive operator |a | ∈ B(H) with |a |2 = a∗a;
the operator |a | is called the absolute value of a (cf. [60, Theorem 12.33]). In
fact, if A ⊆ B(H) is any C∗-algebra and a ∈ A, then |a | ∈ A as well [loc.cit.].

Lemma 1.10 Let a ∈ B(H) be an operator and s = | a | its absolute value.
Then, ker s = ker a and im s = im a∗.
Proof. First of all, we note that ker a = ker a∗a. Indeed, the inclusion ker a ⊆
ker a∗a is obvious, whereas for any ξ ∈ ker a∗a we have

‖a(ξ)‖2 =<a(ξ), a(ξ)>=<a∗a(ξ), ξ>= 0

and hence a(ξ) = 0. Applying the above conclusion to the self-adjoint operator
s, it follows that ker s = ker s2. Since s2 = a∗a, it follows that ker s = ker a.
The operator s being self-adjoint, we have im s = (ker s)⊥ = (ker a)⊥ = im a∗,
as needed. �
Proposition 1.11 (polar decomposition) Let a ∈ B(H) be an operator and
s = | a | its absolute value. Then, there is a partial isometry v, which maps
im a∗ isometrically onto im a and vanishes on the orthogonal complement(
im a∗

)⊥, such that a = vs. Moreover, the partial isometry v is uniquely
determined by these properties.

Proof. For any vector ξ ∈ H we have

<a(ξ), a(ξ)>=<a∗a(ξ), ξ>=<s2(ξ), ξ>=<s(ξ), s(ξ)>

and hence ‖a(ξ)‖= ‖s(ξ)‖. It follows that the map s(ξ) �→ a(ξ), s(ξ) ∈ im s,
is well-defined and extends to an isometry

v0 : im s −→ im a .

We extend v0 to a partial isometry v ∈ B(H), by letting v vanish on
(
im s
)⊥.

It is clear that a = vs, whereas im s = im a∗ (cf. Lemma 1.10).
In order to prove the uniqueness of v, assume that v′ is another partial

isometry, which maps im a∗ isometrically onto im a and vanishes on the or-
thogonal complement

(
im a∗

)⊥, such that a = v′s. Then, vs = v′s and hence
v and v′ agree on the image of s. Since im s = im a∗, the (continuous) oper-
ators v and v′ agree on im a∗. On the other hand, both operators vanish on
the orthogonal complement

(
im a∗

)⊥. Hence, it follows that v = v′. �

Let (ei)i be an orthonormal basis of H. An operator a ∈ B(H) is said to be of
trace class if the family (< |a | (ei), ei>)i is summable. We denote by L1(H)
the set of trace class operators and define

‖·‖1 : L1(H) −→ [0,∞)

by letting ‖ a ‖1 =
∑

i < | a | (ei), ei> for all a ∈ L1(H). The following result
describes a few properties of L1(H).
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Theorem 1.12 (cf. [56, §3.4]) Let (ei)i be an orthonormal basis of H.
(i) The set L1(H) is a subspace of B(H), which does not depend upon the

choice of the orthonormal basis (ei)i. Moreover, we have F(H) ⊆ L1(H) ⊆
K(H).

(ii) The map ‖·‖1 defined above is a norm (that will be referred to as the
Schatten 1-norm), which does not depend upon the choice of the orthonormal
basis (ei)i. That norm endows L1(H) with the structure of a Banach space.

(iii) The subspace L1(H) is a self-adjoint ideal of B(H). For all a ∈ L1(H)
and b ∈ B(H) we have ‖ab‖1 ≤‖a‖1 · ‖b‖ and ‖ba‖1 ≤‖b‖ · ‖a‖1.

(iv) For any operator a ∈ L1(H) the family (< a(ei), ei >)i is absolutely
summable and the sum

∑
i < a(ei), ei > does not depend upon the choice of

the orthonormal basis (ei)i. The linear map

Tr : L1(H) −→ C ,

which is defined by letting Tr (a) =
∑

i <a(ei), ei> for all a ∈ L1(H), is such
that Tr (ab) = Tr (ba) for all a ∈ L1(H) and b ∈ B(H). �

II. The strong and weak operator topologies on B(H). Let H be
a Hilbert space. Besides the operator norm topology, the algebra B(H) can
be also endowed with the strong operator topology (SOT). The latter is the
locally convex topology which is induced by the family of semi-norms (Qξ)ξ∈H,
where

Qξ(a) = ‖a(ξ)‖
for all ξ ∈ H and a ∈ B(H). Hence, a net of operators (aλ)λ in B(H) is SOT-
convergent to 0 if and only if limλ aλ(ξ) = 0 for all ξ ∈ H. The weak operator
topology (WOT) on B(H) is the locally convex topology which is induced by
the family of semi-norms (Pξ,η)ξ,η∈H, where

Pξ,η(a) = |< a(ξ), η >|
for all ξ, η ∈ H and a ∈ B(H). In other words, a net of operators (aλ)λ in
B(H) is WOT-convergent to 0 ∈ B(H) if and only if limλ < aλ(ξ), η >= 0 for
all ξ, η ∈ H.

Remarks 1.13 (i) Let (aλ)λ be a net of operators on H. Then, we have

‖·‖− lim
λ
aλ = 0 =⇒ SOT − lim

λ
aλ = 0 =⇒ WOT − lim

λ
aλ = 0 .

If the Hilbert space H is not finite dimensional, none of the implications above
can be reversed (cf. Exercise 1.3.3).

(ii) For any a ∈ B(H) we consider the left (resp. right) multiplication
operator

La : B(H) −→ B(H) (resp. Ra : B(H) −→ B(H)) ,

which is defined by letting La(b) = ab (resp. Ra(b) = ba) for all b ∈ B(H). It is
easily seen that the operators La and Ra are WOT-continuous. On the other
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hand, if the Hilbert space H is not finite dimensional, then the multiplication
in B(H) is not (jointly) WOT-continuous (cf. Exercise 1.3.3).

Proposition 1.14 Let (aλ)λ be a bounded net of operators on H. Then, the
following conditions are equivalent:

(i) WOT − limλ aλ = 0.
(ii) There is an orthonormal basis (ei)i of the Hilbert space H, such that

limλ <aλ(ei), ej>= 0 for all i, j.
(iii) There is a subset B ⊆ H, whose closed linear span is H, such that

limλ <aλ(ξ), η>= 0 for all ξ, η ∈ B.
(iv) There is a dense subset X ⊆ H, such that limλ <aλ(ξ), η >= 0 for

all ξ, η ∈ X.

Proof. It is clear that (i)→(ii)→(iii), whereas the implication (iii)→(iv) follows
by letting X be the (algebraic) linear span of B. It only remains to show that
(iv)→(i). To that end, assume that M > 0 is such that ‖ aλ ‖≤ M for all
λ and consider two vectors ξ, η ∈ H. For any positive ε we may choose two
vectors ξ′, η′ ∈ X, such that ‖ξ − ξ′ ‖< ε and ‖η − η′ ‖< ε. Since

<aλ(ξ), η> − <aλ(ξ′), η′>=<aλ(ξ − ξ′), η> + <aλ(ξ′), η − η′> ,
it follows that

|<aλ(ξ), η> − <aλ(ξ′), η′>|≤ |<aλ(ξ − ξ′), η>| + |<aλ(ξ′), η − η′>|
≤‖aλ ‖ · ‖ξ − ξ′ ‖ · ‖η‖ +
‖aλ ‖ · ‖ξ′ ‖ · ‖η − η′ ‖

≤Mε(‖ξ ‖ + ‖η‖ +ε) .

Since limλ <aλ(ξ′), η′>= 0, we may choose λ0 such that |<aλ(ξ′), η′>|< ε
for all λ ≥ λ0. It follows that |<aλ(ξ), η>|< ε(1 +M(‖ξ ‖ + ‖η‖ +ε)) for all
λ ≥ λ0 and hence limλ <aλ(ξ), η>= 0, as needed. �

Theorem 1.15 Let H be a separable Hilbert space, r a positive real number
and B(H)r = {a ∈ B(H) : ‖ a ‖≤ r} the closed r-ball of B(H). Then, the
topological space (B(H)r,WOT) is compact and metrizable.

Proof. In order to prove compactness, we consider for any two vectors ξ, η ∈ H
the closed disc

Dξ,η = {z ∈ C : |z | ≤ r‖ξ ‖ · ‖η‖} ⊆ C

and the product space
∏

ξ,η∈HDξ,η. In view of Tychonoff’s theorem, the latter
space is compact. We now define the map

f : B(H)r −→
∏

ξ,η∈HDξ,η ,

by letting f(a) = (<a(ξ), η>)ξ,η for all a ∈ B(H)r. It is clear that f is a
homeomorphism of (B(H)r,WOT) onto its image. Therefore, the compactness
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of (B(H)r,WOT) will follow, as soon as we prove that the image im f of f is
closed in

∏
ξ,η∈HDξ,η. To that end, let (zξ,η)ξ,η be an element in the closure

of im f . Then, the family (zξ,η)ξ,η is easily seen to be linear in ξ and quasi-
linear in η, whereas | zξ,η | ≤ r ‖ ξ ‖ · ‖η ‖ for all ξ, η. Hence, there is a vector
aξ ∈ H with ‖ aξ ‖≤ r ‖ ξ ‖, such that zξ,η =< aξ, η > for all ξ, η ∈ H.
Using the linearity of the family (zξ,η)ξ,η in the first variable, it follows that
there is an operator a ∈ B(H)r, such that aξ = a(ξ) for all ξ ∈ H. Then,
(zξ,η)ξ,η = f(a) ∈ im f , as needed.

In order to prove metrizability, we fix an orthonormal basis (en)∞n=0 of the
separable Hilbert space H and define for any a, b ∈ B(H)r

dr(a, b) =
∑

n,m

1
2n+m

|<(b− a)(en), em>| .

It is easily seen that dr is a metric on B(H)r, which induces, in view of
Proposition 1.14, the weak operator topology on B(H)r. �

Our next goal is to prove a result of J. von Neumann, describing the closure
of unital self-adjoint subalgebras of B(H) in the weak and strong operator
topologies in purely algebraic terms. To that end, we consider for any subset
X ⊆ B(H) the commutant

X ′ = {a ∈ B(H) : ax = xa for all x ∈ X} .

The bicommutant X ′′ of X is the commutant of X ′. It is clear that X ⊆ X ′′.

Lemma 1.16 For any X ⊆ B(H) the commutant X ′ is WOT-closed.

Proof. For any operator x ∈ B(H) we consider the linear endomorphisms
Lx and Rx of B(H), which are given by left and right multiplication with
x respectively. Then, X ′ =

⋂
x∈X ker (Lx − Rx) and hence the result follows

from Remark 1.13(ii). �

If n is a positive integer and X ⊆ B(H) a set of operators, we consider the
set X · In = {xIn : x ∈ X} ⊆ Mn(B(H))  B(Hn). Then, the following two
properties are easily verified (cf. Exercise 1.3.5):

(i) The commutant (X · In)′ of X · In in Mn(B(H))  B(Hn) is the set
Mn(X ′) of matrices with entries in the commutant X ′ of X in B(H).

(ii) The bicommutant (X · In)′′ of X · In in Mn(B(H))  B(Hn) is the set
X ′′ · In, where X ′′ is the bicommutant of X in B(H).

Lemma 1.17 Let A be a self-adjoint subalgebra of B(H) and V ⊆ H a closed
A-invariant subspace. Then:

(i) The orthogonal complement V ⊥ is A-invariant.
(ii) If p is the orthogonal projection onto V , then p ∈ A′.
(iii) The subspace V is A′′-invariant.
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Proof. (i) Let ξ ∈ V ⊥ and a ∈ A. Then, for any vector η ∈ V we have
a∗(η) ∈ AV ⊆ V and hence < a(ξ), η >=< ξ, a∗(η) >= 0. Therefore, it
follows that a(ξ) ∈ V ⊥.

(ii) We fix an operator a ∈ A and note that the subspaces V and V ⊥ are
a-invariant, in view of our assumption and (i) above. It follows easily from this
that the operators ap and pa coincide on both V and V ⊥. Hence, ap = pa.

(iii) Let ξ ∈ V , a′′ ∈ A′′ and consider the orthogonal projection p onto V .
In view of (ii) above, we have a′′p = pa′′ and hence a′′(ξ) = a′′p(ξ) = pa′′(ξ) ∈
V , as needed. �

We are now ready to state and prove von Neumann’s theorem.

Theorem 1.18 (von Neumann bicommutant theorem) Let A ⊆ B(H) be
a self-adjoint subalgebra containing the identity operator. Then, ASOT

=
AWOT

= A′′, where we denote by ASOT
(resp. AWOT

) the SOT-closure (resp.
WOT-closure) of A in B(H).

Proof. It is clear that ASOT ⊆ AWOT
. Since A ⊆ A′′, it follows from Lemma

1.16 that AWOT ⊆ A′′. Hence, it only remains to show that A′′ ⊆ ASOT
. In

order to verify this, we consider an operator a′′ ∈ A′′, a positive real number
ε, a positive integer n and vectors ξ1, . . . , ξn ∈ H. We have to show that the
SOT-neighborhood

Nε,ξ1,...,ξn
(a′′) = {a ∈ B(H) : ‖(a− a′′)ξi ‖< ε for all i = 1, . . . , n}

of a′′ intersects A non-trivially. To that end, we consider the self-adjoint subal-
gebra A·In ⊆ Mn(B(H)) acting on the Hilbert space Hn by left multiplication
and the closed subspace

V = {(a(ξ1), . . . , a(ξn)) : a ∈ A} ⊆ Hn .

It is clear that V is A · In-invariant. Invoking Lemma 1.17(iii) and the dis-
cussion preceding it, we conclude that the subspace V is left invariant un-
der the action of the operator a′′In ∈ Mn(B(H)). Since 1 ∈ A, we have
(ξ1, . . . , ξn) ∈ V and hence (a′′(ξ1), . . . , a′′(ξn)) ∈ V . Therefore, there is an
operator a ∈ A, such that

‖(a′′(ξ1), . . . , a′′(ξn)) − (a(ξ1), . . . , a(ξn))‖< ε .

Then, ‖ a′′(ξi) − a(ξi) ‖< ε for all i = 1, . . . , n and hence a ∈ Nε,ξ1,...,ξn
(a′′),

as needed. �

A von Neumann algebra of operators acting on H is a self-adjoint subalgebra
N ⊆ B(H), which is WOT-closed and contains the identity 1. Equivalently, in
view of von Neumann’s bicommutant theorem, a von Neumann algebra N is
a self-adjoint subalgebra of B(H), such that N = N ′′. It is clear that any von
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Neumann algebra N as above is closed under the operator norm topology of
B(H); in particular, N is a unital C∗-algebra.

For any positive integer n we identify Mn(B(H)) with the algebra of
bounded linear operators on Hn. Then, a net (Aλ)λ in Mn(B(H)) with
Aλ = (aij,λ)i,j converges to the zero matrix in the weak operator topology of
Mn(B(H)) if and only if the nets (aij,λ)λ converge to zero in the weak opera-
tor topology of B(H) for all i, j (cf. Exercise 1.3.2). In particular, if N is a von
Neumann algebra of operators acting on H, then Mn(N ) is a von Neumann
algebra of operators acting on Hn. An alternative proof of that assertion is
provided in Exercise 1.3.5.

We have noted that for any C∗-algebra A ⊆ B(H) and any operator a ∈ A
the absolute value s = |a | is contained in A as well. Nevertheless, if a = vs is
the polar decomposition of a (cf. Proposition 1.11), then the partial isometry
v is not always contained in A (cf. Exercise 1.3.6). We now prove that v ∈ A
if A is a von Neumann algebra.

Proposition 1.19 Let N be a von Neumann algebra of operators acting on
the Hilbert space H. We consider an operator a ∈ N , its absolute value s = |a |
and the polar decomposition a = vs. Then, v ∈ N .

Proof. Since N = N ′′, it suffices to show that v commutes with any element
of the commutant N ′. To that end, consider an operator b ∈ N ′. Then, b
commutes with both a and s (since s ∈ N ). Therefore, bvs = ba = ab =
vsb = vbs and hence the operators bv and vb agree on the closed subspace
im s = im a∗ (cf. Lemma 1.10). In order to show that these operators are
equal, it suffices to show that they also agree on the orthogonal complement(
im a∗

)⊥ = ker a. Since ab = ba, the subspace ker a is easily seen to be b-
invariant and hence both operators bv and vb vanish therein. �

Let A ⊆ B(H) be a self-adjoint algebra of operators containing 1 and N its
WOT-closure. Then, any operator a ∈ N can be approximated (in the weak
operator topology) by a net (aλ)λ of operators from A. The following result
implies that the net (aλ)λ can be chosen to be bounded.

Theorem 1.20 (Kaplansky density theorem; cf. [36, Theorem 5.3.5]) Let A
be a self-adjoint subalgebra of B(H) containing 1 and N its WOT-closure.
Then, for any positive real number r the r-ball Ar = A ∩ B(H)r of A is
WOT-dense in the r-ball Nr = N ∩ B(H)r of N . �

III. Operator algebras associated with a discrete group. In this
book, we are primarily interested in those operator algebras that are associ-
ated with (discrete) groups. Given such a group G, we consider the Hilbert
space 2G of square summable complex-valued functions on G with canonical
orthonormal basis (δg)g∈G. In other words, 2G consists of vectors of the form∑

g∈G rgδg, where the rg’s are complex numbers such that
∑

g∈G |rg|2< ∞.
The inner product of two vectors ξ =

∑
g∈G rgδg and ξ′ =

∑
g∈G r

′
gδg is given

by
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<ξ, ξ′>=
∑

g∈G
rgr′g .

For any element g ∈ G we consider the linear endomorphism Lg of 2G, which
is defined by letting

Lg

(∑
x∈G

rxδx

)
=
∑

x∈G
rxδgx

for any vector
∑

x∈G rxδx ∈ 2G. It is easily seen that L1 = 1 and Lgh = LgLh

for all g, h ∈ G. Moreover, Lg is an isometry and hence L∗
g = L−1

g = Lg−1 for
all g ∈ G. We consider the C-linear map

L : CG −→ B(2G) ,

which extends the map g �→ Lg, g ∈ G. For any element a ∈ CG we denote
its image in B(2G) by La.

Lemma 1.21 Let G be a group and L : CG −→ B(2G) the linear map
defined above. Then:

(i) L is an injective algebra homomorphism.
(ii) The subalgebra L(CG) ⊆ B(2G) is self-adjoint.

Proof. (i) It is clear that L is an algebra homomorphism. For any a =∑
g∈G agg ∈ CG, where ag ∈ C for all g ∈ G, we have La =

∑
g∈G agLg

and hence La(δ1) =
∑

g∈G agδg ∈ 2G. It follows readily from this that L is
injective.

(ii) Let a =
∑

g∈G agg ∈ CG, where ag ∈ C for all g ∈ G, and consider
the associated operator La =

∑
g∈G agLg ∈ L(CG). Since L∗

g = Lg−1 for all
g ∈ G, it follows that L∗

a =
∑

g∈G agLg−1 ∈ L(CG). �

We define the reduced C∗-algebra C∗
rG of G to be the closure in the operator

norm topology of L(CG) in B(2G); then, C∗
rG is a unital C∗-algebra. We also

define the group von Neumann algebra NG as the WOT-closure of L(CG)
in B(2G). Since NG is closed under the operator norm topology, it contains
C∗

rG; hence, there are inclusions L(CG) ⊆ C∗
rG ⊆ NG ⊆ B(2G).

Remark 1.22 Assume that the group G is finite of order n. Then, the Hilbert
space 2G is identified with Cn and hence B(2G)  Mn(C). Moreover,
all three topologies defined above on B(2G) (i.e. operator norm topology,
SOT and WOT) coincide with the standard Cartesian product topology on
Mn(C)  Cn2

. Since any linear subspace is closed therein, it follows that
L(CG) = C∗

rG = NG.

1.1.3 The K0-group of a Ring

In this subsection, we define the K0-group of a ring by means of finitely
generated projective modules and idempotent matrices and establish the



16 1 Introduction

equivalence of the two approaches. We then extend the definition of K0 to
the case of non-unital rings.

I. Finitely generated projective modules and K0. We consider a (uni-
tal) ring R and recall that an R-module P is called projective if it satisfies
anyone of the following equivalent conditions:

(i) Any epimorphism of R-modules f :M −→M ′ induces an epimorphism
of abelian groups f∗ : HomR(P,M) −→ HomR(P,M ′).

(ii) Any R-module epimorphism M −→ P splits.
(iii) P is a direct summand of a free R-module.

Moreover, P is a finitely generated projective R-module if and only if it is a
direct summand of Rn, for some n ∈ N. It follows that the direct sum P⊕Q of
two finitely generated projective R-modules P and Q is finitely generated and
projective as well. Let Proj(R) be the set of isomorphism classes of finitely
generated projective R-modules. If P is a finitely generated projective R-
module we denote by [P ] its class in Proj(R). The operation ([P ], [Q]) �→
[P ⊕Q], [P ], [Q] ∈ Proj(R), endows Proj(R) with the structure of an abelian
monoid with zero element the class of the zero module.

Remarks 1.23 (i) Let ϕ : R −→ S be a ring homomorphism. Then, the map
[P ] �→ [S ⊗R P ], [P ] ∈ Proj(R), defines a morphism of abelian monoids

Proj(ϕ) : Proj(R) −→ Proj(S) .

In this way, R �→ Proj(R) becomes a functor from the category of rings to
that of abelian monoids.

(ii) Assume that R is a commutative ring. In this case, the tensor prod-
uct of two finitely generated projective R-modules is also a finitely generated
projective R-module. Therefore, the abelian monoid Proj(R) can be endowed
with a multiplicative structure, by letting [P ] · [Q] = [P ⊗R Q] for any two
finitely generated projective R-modules P,Q. This multiplication law is dis-
tributive over addition and has a unit element [R]; we shall refer to such a
structure as a semiring. This semiring is commutative, i.e. [P ] · [Q] = [Q] · [P ]
for any two finitely generated projective R-modules P,Q. Furthermore, if S
is another commutative ring and ϕ : R −→ S a ring homomorphism, then
the map Proj(ϕ) defined in (i) above is a morphism of semirings (i.e. be-
sides being additive, it is also multiplicative and unit-preserving). In this way,
R �→ Proj(R) becomes a functor from the category of commutative rings to
that of commutative semirings.

(iii) For any ring R there is a unique morphism of abelian monoids ιR :
N −→ Proj(R) with 1 �→ [R]. If ϕ : R −→ S is a ring homomorphism, then
ιS = Proj(ϕ) ◦ ιR. In the special case where the ring R is commutative, ιR is
a morphism of semirings (for the semiring structure on Proj(R) defined in (ii)
above).
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We now define the Grothendieck group of an abelian semigroup. This con-
struction generalizes the passage from the (additive) semigroup N of natural
numbers to the group Z of integers.

Proposition 1.24 Let (S,+) be an abelian semigroup. Then, there exists a
unique (up to isomorphism) abelian group (G(S),+) and a morphism µ :
S −→ G(S) of abelian semigroups, such that for any abelian group G and any
morphism of abelian semigroups λ : S −→ G there exists a unique abelian
group homomorphism Λ : G(S) −→ G with Λ◦µ = λ. The abelian group G(S)
is called the Grothendieck group of S.

Proof. We define an equivalence relation ∼ on the Cartesian product S × S,
by letting (s, t) ∼ (s′, t′) if and only if there exists an element s0 ∈ S, such
that s + t′ + s0 = s′ + t + s0 ∈ S. Then, the quotient G(S) = S × S/ ∼
becomes an abelian group by defining (s, t) + (s′, t′) = (s+ s′, t+ t′) for any
two elements (s, t), (s′, t′) ∈ G(S). Here, the identity element is the class of
(s, s) for any s ∈ S, whereas the opposite of the class of (s, t) is the class of
(t, s). Moreover, the map

µ : S −→ G(S) ,

which is defined by letting µ(s) = (s+ s, s) for all s ∈ S, is additive and
has the universal property in the statement. Indeed, let G be an abelian
group and λ : S −→ G a morphism of abelian semigroups. Then, the map
Λ : G(S) −→ G, which is given by Λ

(
(s, t)

)
= λ(s) − λ(t) for all s, t ∈ S, is

well-defined; in fact, Λ is the unique group homomorphism with Λ ◦ µ = λ.
The uniqueness (up to isomorphism) of the pair (G(S), µ) is an immediate
consequence of the universal property. �

Remarks 1.25 Let (S,+) be an abelian semigroup and (G(S), µ) the pair
defined in Proposition 1.24.

(i) Any element of the group G(S) can be expressed as the difference
between two elements of µ(S) ⊆ G(S). In particular, µ(S) generates G(S).

(ii) Assume that S is an abelian monoid with zero element 0. Then, µ(0)
is the zero element of G(S).

(iii) For any s, s′ ∈ S we have µ(s) = µ(s′) ∈ G(S) if and only if there
exists s′′ ∈ S with s + s′′ = s′ + s′′ ∈ S. In particular, the morphism µ is
injective if and only if the semigroup S has the cancellation property.

(iv) Assume that S is a semiring; by this, we mean that S has an associative
multiplication law, which is distributive over addition and possesses a unit
element 1. Then, there is an induced multiplicative law on G(S), which is
defined by letting (s, t) · (s′, t′) = (ss′ + tt′, st′ + s′t) for any two elements
(s, t), (s′, t′) ∈ G(S). The triple (G(S),+, ·) is a ring with unit µ(1), whereas
µ is a homomorphism of semirings. The ring G(S) is commutative if this is
the case for the semiring S.

(v) Let S′ be another abelian semigroup and ϕ : S −→ S′ a morphism of
semigroups. Then, there exists a unique abelian group homomorphism G(ϕ) :
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G(S) −→ G(S′) with G(ϕ)◦µ = µ′◦ϕ (here, µ′ is the morphism corresponding
to S′). In this way, S �→ G(S) becomes a functor from the category of abelian
semigroups to that of abelian groups. If both S and S′ are semirings and ϕ is,
in addition, multiplicative and unit-preserving, then G(ϕ) is a homomorphism
of rings (for the ring structures defined in (iv) above).

Lemma 1.26 Let G be an abelian group and S ⊆ G a semigroup, which
generates G (as a group). Then, the Grothendieck group G(S) is isomorphic
with G.

Proof. It is easily seen that the pair (G, i), where i : S −→ G is the inclusion
map, has the universal property of Proposition 1.24. �

If R is a ring then the K-theory group K0(R) is the Grothendieck group
associated with the abelian semigroup Proj(R). For any finitely generated
projective R-module P we denote its class in K0(R) by [P ] as well. The zero
element of K0(R) is the class [0] of the zero module. A typical element of
K0(R) is a difference [P ] − [P ′], for suitable finitely generated projective R-
modules P, P ′; in fact, P ′ can be chosen to be of the form Rn for some n ∈ N.
If P, P ′ are two finitely generated projective R-modules, then [P ] = [P ′] ∈
K0(R) if and only if there exists a finitely generated projective R-module P ′′

such that the R-modules P ⊕ P ′′ and P ′ ⊕ P ′′ are isomorphic. In this case
too, we may assume that P ′′ = Rn for some n ∈ N. Being a composition of
functors, the map R �→ K0(R) is a functor from the category of rings to that
of abelian groups. In particular, a ring homomorphism ϕ : R −→ S induces a
group homomorphism K0(ϕ) : K0(R) −→ K0(S).

Remarks 1.27 (i) Assume that the ring R is commutative. Then, K0(R) is
a commutative ring as well, with multiplication given by letting [P ] · [Q] =
[P ⊗R Q] for any two finitely generated projective R-modules P,Q. The unit
element is the class of the free module R. If S is another commutative ring
and ϕ : R −→ S a ring homomorphism, then the induced additive map
K0(ϕ) : K0(R) −→ K0(S) is a ring homomorphism as well. In this way,
R �→ K0(R) is a functor from the category of commutative rings to itself.

(ii) For any ring R there is a group homomorphism ιR : Z −→ K0(R),
which maps 1 onto [R]. The reduced K-theory group K̃0(R) is defined as
the cokernel of ιR, i.e. we let K̃0(R) = coker ιR. If ϕ : R −→ S is a ring
homomorphism, then ιS = K0(ϕ) ◦ ιR. If the ring R is commutative then ιR
is a homomorphism of rings.

If R is a ring and e ∈ R an idempotent, then the left ideal Re is a finitely
generated projective R-module. Indeed, if e′ = 1 − e is the complementary
idempotent of e, then Re ⊕ Re′ = R. Moreover, if R is commutative, then
Re ⊗R Re  Re and hence the class [Re] of Re is an idempotent of the
commutative ring K0(R) (cf. Remark 1.27(i) above).
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Proposition 1.28 Let R be a commutative ring and consider the map

σ = σR : Idem(R) −→ Idem(K0(R)) ,

which is defined by letting σ(e) = [Re] for any idempotent e ∈ R. Then:
(i) σ is a morphism of Boolean algebras (cf. Example 1.3(i)).
(ii) If S is another commutative ring and ϕ : R −→ S a ring homomor-

phism, then the following diagram is commutative

Idem(R) σR−→ Idem(K0(R))
Idem(ϕ) ↓ ↓ Idem(K0(ϕ))

Idem(S) σS−→ Idem(K0(S))

Proof. (i) It is clear that σ maps 0, 1 onto [0] and [R] respectively. In order to
show that σ preserves ∧, we note that for any two idempotents e, f ∈ R there
is an isomorphism Re⊗R Rf  Ref , which shows that

σ(e ∧ f) = σ(ef) = [Ref ] = [Re] · [Rf ] = [Re] ∧ [Rf ] = σ(e) ∧ σ(f) .
Finally, for any idempotent e ∈ R with complement e′ = 1 − e we have
Re ⊕ Re′ = R and hence σ(e′) = [Re′] = [R] − [Re] = [Re]′, i.e. σ preserves
complements.

(ii) For any idempotent e ∈ R we have S ⊗R Re  Sϕ(e) and hence
K0(ϕ)[Re] = [Sϕ(e)], as needed. �

II. K0 and idempotent matrices. If R is a ring then another (equiva-
lent) approach to the definition of Proj(R), and hence to that of K0(R), is

via idempotent matrices with entries in R. The embedding A �→
(
A 0
0 0

)
of

Mn(R) into Mn+1(R), for n ≥ 1, defines the inductive system (Mn(R))n;
let M(R) be the corresponding limit. In a similar way, the group GLn(R)

embeds in GLn+1(R) by the map G �→
(
G 0
0 1

)
. The limit of the correspond-

ing inductive system (GLn(R))n is the group GL(R). The conjugation ac-
tions of the groups GLn(R) on Mn(R) for all n ≥ 1 induce an action of
GL(R) on M(R); by an obvious abuse of language, we refer to the latter ac-
tion as action by conjugation. We note that the set of idempotent matrices
Idem(M(R)) = lim−→n

Idem(Mn(R)) is GL(R)-invariant.

For all n we identify the ring Mn(R) with the opposite of the endomor-
phism ring of the (left) R-module Rn and regard any matrix A ∈ Mn(R)
as the R-linear map Ã : Rn −→ Rn, which is given by right multiplication
with A on the row vectors of Rn. For any idempotent matrix E ∈ Mn(R) we
have im Ẽ ⊕ im Ẽ′ = Rn, where E′ = In − E; in particular, the R-module
P (E) = im Ẽ is finitely generated projective. We note that the isomorphism
class of P (E) depends only upon the class [E] of the idempotent matrix E in
the limit Idem(M(R)). In this way, we obtain a map
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θ : Idem(M(R)) −→ Proj(R) , (1.1)

which is given by letting θ[E] = [P (E)] for any [E] ∈ Idem(M(R)). Since any
finitely generated projective R-module is isomorphic with a direct summand
of Rn for some n, it follows that θ is surjective.

Proposition 1.29 Let R be a ring and E,E′ two idempotent matrices with
entries in R. Then, the finitely generated projective R-modules P (E) and
P (E′) defined above are isomorphic if and only if the classes [E], [E′] ∈
Idem(R) are conjugate under the action of GL(R).

Proof. Suppose that the classes [E], [E′] are conjugate under the action of
GL(R). Then, we may assume that E,E′ ∈ Mn(R) for some n� 0, whereas
there exists G ∈ GLn(R), such that E′ = GEG−1. It follows that GE =
E′G ∈ Mn(R) and hence ẼG̃ = G̃Ẽ′ ∈ EndRR

n. It follows readily from this
that G̃ restricts to an isomorphism between the images P (E′) and P (E) of
Ẽ′ and Ẽ respectively.

Now assume that E,E′ ∈ Idem(Mn(R)) are such that the R-modules
P (E) and P (E′) are isomorphic. Let a : P (E) −→ P (E′) be an R-linear
isomorphism and b : P (E′) −→ P (E) its inverse. We define α ∈ EndRR

n as
the composition

Rn = P (E) ⊕ P (In − E) → P (E) a→ P (E′) → P (E′) ⊕ P (In − E′) = Rn ,

where the first (resp. the last) unlabelled arrow is the natural projection (resp.
the natural inclusion). Then, there exists a matrix A ∈ Mn(R), such that
α = Ã. In the same way, using b, we define β ∈ EndRR

n and let B ∈ Mn(R) be
the matrix with β = B̃. Since αβ is the identity on P (E′), we have E′BA = E′.
On the other hand, β vanishes on P (In − E′) and hence (In − E′)B = 0. It
follows that

E′B = B and BA = E′ .

In the same way, we conclude that

EA = A and AB = E .

The equalities above imply that

BE = B(AB) = (BA)B = E′B = B

and
AE′ = A(BA) = (AB)A = EA = A .

We now define the matrices U, V ∈ M2n(R), by letting

U =
(

A In − E
In − E′ B

)
and V =

(
B In − E′

In − E A

)
.
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Using the equalities established above, it is easily verified that UV = V U =

I2n, whereas V
(
E 0
0 0

)
U =

(
E′ 0
0 0

)
. Therefore, the classes of the idempotent

matrices E and E′ in M(R) are conjugate under the action of GL(R), as
needed. �

We now consider the quotient set V (R) = Idem(M(R))/GL(R) of GL(R)-
orbits in Idem(M(R)). For any idempotent matrix E ∈ Mn(R) we denote
by ρE the GL(R)-orbit of [E] ∈ Idem(M(R)). Then, Proposition 1.29 implies
that the map θ of (1.1) induces, by passage to the quotient, a bijective map

θ : V (R) −→ Proj(R) . (1.2)

For all n, n′ ∈ N we consider the map

Idem(Mn(R)) × Idem(Mn′(R)) −→ V (R) ,

which maps a pair (E,E′) onto the GL(R)-orbit ρE⊕E′ of the idempotent
matrix

E ⊕ E′ =
(
E 0
0 E′

)
∈ Mn+n′(R) .

It is easily seen that ρE⊕E′ = ρE′⊕E for any idempotent matrices E,E′,
whereas the maps defined above induce, by passage to the direct limit, a
well-defined map

Idem(M(R)) × Idem(M(R)) −→ V (R) ,

which maps any pair ([E], [E′]) onto the GL(R)-orbit ρE⊕E′ . Moreover, by
passage to the quotients, we obtain a well-defined map

V (R) × V (R) −→ V (R) ,

which maps any pair (ρE , ρE′) onto ρE⊕E′ . For any idempotent matrices E,E′

as above, we denote, by an obvious abuse of notation, the element ρE⊕E′ by
ρE ⊕ ρE′ . In this way, the pair (V (R),⊕) is an abelian monoid with zero
element ρ0.

Proposition 1.30 The map θ : V (R) −→ Proj (R) of (1.2) is an isomor-
phism of abelian monoids.

Proof. We already know that θ is bijective, whereas θ(ρ0) = θ[0] = [P (0)] =
[0]. In order to show that θ is additive, we consider two idempotent matrices
E,E′ with entries in R and compute

θ(ρE ⊕ ρE′) = θ([E ⊕ E′])
= [P (E ⊕E′)]
= [P (E) ⊕ P (E′)]
= [P (E)] + [P (E′)]
= θ[E] + θ[E′]
= θ(ρE) + θ(ρE′) .



22 1 Introduction

In the above chain of equalities, the third one follows since P (E ⊕ E′) =
im (E ⊕ E′)̃ = im Ẽ ⊕ im Ẽ′ = P (E) ⊕ P (E′). �

Corollary 1.31 Let R be a ring. Then, the map θ : V (R) −→ Proj (R) of
(1.2) induces a canonical identification between the Grothendieck group of the
abelian monoid V (R) and the abelian group K0(R). �

Remark 1.32 Let R be a ring and V an abelian group. We assume that for
any positive integer n we are given a map λn : Idem(Mn(R)) −→ V , in such
a way that the following conditions are satisfied:

(i) For any idempotent matrix E ∈ Mn(R) we have λn(E) = λn+1(E′),

where E′ =
(
E 0
0 0

)
∈ Mn+1(R).

(ii) The λn’s are invariant under conjugation, i.e. for any idempotent ma-
trix E ∈ Mn(R) and any G ∈ GLn(R) we have λn(E) = λn(GEG−1).

(iii) For any idempotent matrices E1 ∈ Mn1(R) and E2 ∈ Mn2(R) we
have λn1+n2(E1 ⊕ E2) = λn1(E1) + λn2(E2).

Then, the λn’s induce (in view of (i)) a well-defined map from the limit
Idem(M(R)) to V , which is invariant under the action of GL(R) (in view of
(ii)). Since the resulting map λ∗ : V (A) −→ V is additive (in view of (iii)),
the universal property of the Grothendieck group and Corollary 1.31 imply
the existence of a group homomorphism λ∗ : K0(R) −→ V , which maps the
class of any idempotent matrix E ∈ Mn(R) onto λn(E).

Taking into account the description of theK0-group of a ring in terms of idem-
potent matrices, the following density result should not be very surprising. Its
proof uses the functional calculus for elements of Banach algebras.

Theorem 1.33 (Karoubi density theorem; cf. [39, II.6.15]) We consider two
unital Banach algebras A,B and let ι : A −→ B be a continuous and injective
homomorphism with dense image. We assume that for any positive integer
n a matrix (aij)i,j ∈ Mn(A) is invertible (in Mn(A)) if and only if the
matrix (ι(aij))i,j ∈ Mn(B) is invertible (in Mn(B)). Then, the induced map
K0(ι) : K0(A) −→ K0(B) is an isomorphism. �

III. Non-unital rings and K0. We now extend the definition of the K0-
group to non-unital rings. To that end, we consider a non-unital ring I and
let I+ be the associated unital ring. Here, I+ = I ⊕ Z as an abelian group,
whereas the product of any two elements (x, n), (y,m) ∈ I+ is equal to (xy+
ny +mx, nm) ∈ I+. We consider the split extension

0 −→ I −→ I+
π−→ Z −→ 0 ,

where π is the projection (x, n) �→ n, (x, n) ∈ I+, and define K0(I) as the
kernel of the induced additive map K0(π) : K0(I+) −→ K0(Z).

Remarks 1.34 (i) Any morphism ϕ : I −→ J of non-unital rings extends
uniquely to a ring homomorphism ϕ+ : I+ −→ J+. Moreover, the additive
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map K0(ϕ+) : K0(I+) −→ K0(J+) restricts to an additive map, denoted by
K0(ϕ), from K0(I) to K0(J). In this way, I �→ K0(I) becomes a functor from
the category of non-unital rings to that of abelian groups.

(ii) If I is a unital ring then I+ decomposes into the direct product I ×Z
and the definition of the group K0(I) given above coincides with that given
previously for unital rings (cf. Exercise 1.3.7(ii)). Moreover, if ϕ : I −→ J
is a ring homomorphism then the additive map K0(ϕ) defined in (i) above
coincides with that defined earlier.

Let I be an ideal in a unital ring R and define the double D(R, I) of R along
I by letting

D(R, I) = {(x, y) ∈ R×R : y − x ∈ I} .
The ring D(R, I) comes equipped with the two coordinate projections π1 and
π2 onto R. We define the relative group K0(R, I) as the kernel of the additive
map K0(π1) : K0(D(R, I)) −→ K0(R). This group is identified with the K0-
group of I by the following basic result.

Theorem 1.35 (excision in K0; cf. [58, §1.5]) Let R be a unital ring, I ⊆ R
an ideal and D(R, I) the double of R along I. We also consider the ring
homomorphism � : I+ −→ D(R, I), which is defined by (x, n) �→ (n·1, x+n·1),
(x, n) ∈ I+. Then, the map K0(�) : K0(I+) −→ K0(D(R, I)) restricts to an
isomorphism ρ : K0(I) −→ K0(R, I). �

1.1.4 Traces and the K0-group

In order to study the K0-group of a ring R, one has to examine the additive
maps from K0(R) to various abelian groups.2 In this subsection, we show
that one method of constructing such additive maps is via traces. We study
several properties of the additive map on K0(R) induced by a trace on R, in
the unital as well as the non-unital case, and construct the universal trace
defined by A. Hattori and J. Stallings.

I. Traces and the Hattori-Stallings rank. Let R be a ring and V
an abelian group. Then, a trace on R with values in V is an additive map
τ : R −→ V , such that τ(rr′) = τ(r′r) for all r, r′ ∈ R. The set of traces on R
with values in V is easily seen to be a subgroup of the group of all additive
maps from R to V . If V ′ is another abelian group and f : V −→ V ′ an additive
map, then for any trace τ : R −→ V the composition f ◦ τ is a trace on R
with values in V ′. On the other hand, if R′ is another ring and ϕ : R′ −→ R
a ring homomorphism, then for any trace τ : R −→ V the composition τ ◦ ϕ
is a V -valued trace on R′.

We now consider the subgroup [R,R] ⊆ R, which is generated by the
commutators rr′−r′r, r, r′ ∈ R, and let T (R) = R/[R,R] be the corresponding
2 In general, any abelian group A is determined by the functor Hom(A, ) from the

category of abelian groups to itself.
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quotient. We note that any ring homomorphism ϕ : R −→ S maps [R,R]
into [S, S]; hence, ϕ induces by passage to the quotients an additive map
T (ϕ) : T (R) −→ T (S). It is clear that any trace τ : R −→ V as above vanishes
on [R,R] and hence induces an additive map τ : T (R) −→ V . Conversely, any
additive map from T (R) to an abelian group can be pulled back to a trace on
R. In this way, the group of traces on R with values in V is identified with the
group Hom(T (R), V ) of all homomorphisms from T (R) to V . In particular,
the identity of T (R) corresponds to the T (R)-valued trace on R, which is given
by the projection map pR : R −→ T (R). We may rephrase the identification
of the group of V -valued traces on R with the group Hom(T (R), V ) as a
universal property of pR, as follows:

Lemma 1.36 Let R be a ring and pR : R −→ T (R) the trace defined above.
(i) Consider an abelian group V and a trace τ : R −→ V . Then, there is

a unique group homomorphism τ : T (R) −→ V , such that τ = τ ◦ pR.
(ii) If S is another ring and ϕ : R −→ S a ring homomorphism, then the

following diagram is commutative

R
pR−→ T (R)

ϕ ↓ ↓ T (ϕ)

S
pS−→ T (S)

Here, pS : S −→ T (S) is the universal trace defined on S.

Proof. Assertion (i) was established in the preceding discussion, whereas the
proof of (ii) is an immediate consequence of the definitions. �

Our next goal is to relate the traces defined on a ring R to traces defined
on the matrix rings Mn(R), n ≥ 1. To that end, we fix n and consider the
additive map

ι : R −→ Mn(R) ,

which maps any element x ∈ R onto the matrix xE11; here, we denote by
Eij , i, j = 1, . . . , n, the matrix units of Mn(R). Since E11 ∈ Mn(R) is
an idempotent, it follows that ι maps [R,R] into the commutator subgroup
[Mn(R),Mn(R)] of Mn(R). Therefore, there is an induced additive map

ι : T (R) −→ T (Mn(R)) .

On the other hand, the ordinary trace of matrices

tr : Mn(R) −→ R

is additive and maps [Mn(R),Mn(R)] into [R,R]. Indeed, if A = (aij)i,j and
B = (bij)i,j are two n×nmatrices with entries in R, then an easy computation
shows that tr(AB−BA) =

∑
i,j(aijbji − bjiaij) ∈ [R,R]. It follows that there

is an induced additive map

tr : T (Mn(R)) −→ T (R) .
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Lemma 1.37 Let R be a ring, n a positive integer and ι, tr the additive maps
defined above.

(i) The maps ι and tr are inverses of each other; in particular, they are
both bijective.

(ii) If S is another ring and ϕ : R −→ S a ring homomorphism, then the
following diagrams are commutative

T (R) ι−→ T (Mn(R))
T (ϕ) ↓ ↓ T (ϕn)

T (S) ι−→ T (Mn(S))

T (Mn(R)) tr−→ T (R)
T (ϕn) ↓ ↓ T (ϕ)

T (Mn(S)) tr−→ T (S)

Here, ϕn denotes the ring homomorphism induced by ϕ between the corre-
sponding matrix rings, whereas we have used the same symbols (ι and tr) to
denote the maps defined above corresponding to the ring S.

Proof. (i) Since tr(xE11) = x for all x ∈ R, it follows that tr ◦ ι is the identity
on R and hence tr ◦ ι is the identity on T (R). The abelian group Mn(R) is
generated by the matrices of the form xEij , where x ∈ R and i, j = 1, . . . , n;
therefore, the abelian group T (Mn(R)) is generated by the classes of these
matrices modulo commutators. Hence, in order to show that the composition
ι ◦ tr is the identity map on T (Mn(R)), it suffices to prove that

(ι ◦ tr)(xEij) − xEij ∈ [Mn(R),Mn(R)]

for all x ∈ R and all i, j = 1, . . . , n. If i = j, this follows since

(ι ◦ tr)(xEii) − xEii = ι(x) − xEii

= xE11 − xEii

= xE1i · Ei1 − Ei1 · xE1i .

In the case where i �= j, we have tr(xEij) = 0 and hence

(ι ◦ tr)(xEij) − xEij = −xEij = Eij · xEii − xEii · Eij .

(ii) The commutativity of both diagrams is an immediate consequence of
the definitions. �

We now consider the commutative diagram

Mn(R) tr−→ R
p ↓ ↓ p

T (Mn(R)) tr−→ T (R)

where we denote by p the universal traces defined on R and Mn(R). The
additive map rR = p ◦ tr = tr ◦ p is a trace on Mn(R) with values in T (R);
in fact, if we identify the abelian groups T (Mn(R)) and T (R) by means of
tr, then rR is identified with the universal trace on Mn(R). The trace rR will
be also denoted by rRHS (or simply by rHS) and referred to as the Hattori-
Stallings trace.
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Lemma 1.38 Let ϕ : R −→ S be a ring homomorphism. Then, the following
diagram is commutative for any positive integer n

Mn(R)
rR

HS−→ T (R)
ϕn ↓ ↓ T (ϕ)

Mn(S)
rS

HS−→ T (S)

Here, we denote by ϕn the homomorphism induced by ϕ between the corre-
sponding matrix rings.

Proof. This is an immediate consequence of the definition of the Hattori-
Stallings trace, in view of Lemmas 1.36(ii) and 1.37(ii). �

Proposition 1.39 Let R be a ring, V an abelian group and τ : R −→ V a
trace.

(i) For any positive integer n the map

τn : Mn(R) −→ V ,

which is defined by letting τn(A) =
∑

i τ(aii) for any matrix A = (aij)i,j ∈
Mn(R), is a V -valued trace on Mn(R).

(ii) There is an additive map τ∗ : K0(R) −→ V , which maps the class of
any idempotent matrix E ∈ Mn(R) onto τn(E).

Proof. (i) We note that τn is the composition

Mn(R) rHS−→ T (R) τ−→ V ,

where rHS is the Hattori-Stallings trace and τ the additive map induced by
τ . It follows readily from this that τn is indeed a trace.

(ii) The existence of τ∗ follows invoking Remark 1.32, since the restrictions
τ ′n : Idem(Mn(R)) −→ V of τn, n ≥ 1, define a sequence of maps satisfying
conditions (i), (ii) and (iii) therein. �

In particular, the universal trace p : R −→ T (R) induces for any positive
integer n the Hattori-Stallings trace rHS = pn : Mn(R) −→ T (R). Moreover,
there is a group homomorphism

p∗ : K0(R) −→ T (R) ,

which maps the K-theory class of any idempotent matrix E ∈ Mn(R) onto
the Hattori-Stallings trace rHS(E) = pn(E), i.e. onto the residue class of the
ordinary trace tr(E) ∈ R in the quotient group T (R) = R/[R,R]. By an
obvious abuse of notation, we denote p∗ by rHS (or rRHS if the dependence
upon the ring R is to be emphasized) and refer to it as the Hattori-Stalling
rank map. If P is a finitely generated projective R-module and E ∈ Mn(R) an
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idempotent matrix with [P ] = θ(ρE) (cf. Proposition 1.30), then the Hattori-
Stallings rank rHS(P ) of P is defined to be the Hattori-Stallings trace (rank)
rHS(E) of E. This definition is independent of the choice of E and depends
only upon the isomorphism class of P .

Proposition 1.40 (i) Let R be a ring and f : V −→ V ′ a homomorphism of
abelian groups. We consider a trace τ : R −→ V and the V ′-valued trace f ◦ τ
on R. Then, the induced additive map (f ◦ τ)∗ : K0(R) −→ V ′ is the composi-
tion

K0(R) τ∗−→ V
f−→ V ′ ,

where τ∗ : K0(R) −→ V is the additive map induced by the trace τ .
(ii) Let ϕ : R −→ S be a ring homomorphism and V an abelian group. We

consider a trace τ : S −→ V and the V -valued trace τ ◦ ϕ on R. Then, the
induced additive map (τ ◦ ϕ)∗ : K0(R) −→ V is the composition

K0(R)
K0(ϕ)−→ K0(S) τ∗−→ V ,

where τ∗ : K0(S) −→ V is the additive map induced by the trace τ .

Proof. (i) Let E = (eij)i,j ∈ Mn(R) be an idempotent matrix and compute

(f ◦ τ∗)[E] = f(τ∗[E])
= f
(∑

i
τ(eii)

)
=
∑

i
f(τ(eii))

=
∑

i
(f ◦ τ)(eii)

= (f ◦ τ)∗[E] .

Since the abelian group K0(R) is generated by the [E]’s (Remark 1.25(i)), it
follows that f ◦ τ∗ = (f ◦ τ)∗.

(ii) Let E = (eij)i,j ∈ Mn(R) be an idempotent matrix and E′ =
(ϕ(eij))i,j the corresponding idempotent matrix with entries in S. Then,

(τ∗ ◦K0(ϕ))[E] = τ∗(K0(ϕ)[E])
= τ∗[E′]
=
∑

i
τ(ϕ(eii))

=
∑

i
(τ ◦ ϕ)(eii)

= (τ ◦ ϕ)∗[E]

and hence we conclude that τ∗ ◦K0(ϕ) = (τ ◦ ϕ)∗. �

Corollary 1.41 Let ϕ : R −→ S be a ring homomorphism. Then, the follow-
ing diagram is commutative
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K0(R)
rR

HS−→ T (R)
K0(ϕ) ↓ ↓ T (ϕ)

K0(S)
rS

HS−→ T (S)

Proof. This is an immediate consequence of Proposition 1.40, in view of
Lemma 1.36(ii). �

Remark 1.42 Let H be a Hilbert space, A a self-adjoint subalgebra of the
algebra B(H) of all bounded operators on H and τ : A −→ C a trace. We fix
a positive integer n and consider the induced C-valued trace τn on Mn(A)
(cf. Proposition 1.39(i)). The matrix algebra Mn(A) ⊆ Mn(B(H)) is viewed
as a self-adjoint subalgebra of B(Hn).

(i) We endow A ⊆ B(H) with the operator norm topology (resp. weak
operator topology) and assume that τ is continuous. Then, the trace τn is
continuous as well, where Mn(A) ⊆ B(Hn) is endowed with the corresponding
operator norm topology (resp. weak operator topology).

(ii) Assume that the trace τ is positive; this means that τ(a∗a) is a non-
negative real number for all a ∈ A. Then, τn is positive as well. Indeed, let us
consider a matrix A = (aij)i,j ∈ Mn(A) and the adjoint matrix A∗ = (bij)i,j ,
where bij = a∗ji for all i, j. Then, the j-th entry along the diagonal of the
product A∗A is equal to

∑
i bjiaij . Hence,

τn(A∗A) =
∑

j
τ
(∑

i
bjiaij

)
=
∑

j
τ
(∑

i
a∗ijaij

)
=
∑

i,j
τ(a∗ijaij)

In view of the positivity of τ , τn(A∗A) is a sum of non-negative real numbers
and hence τn(A∗A) ≥ 0, as needed.

(iii) Assume that the trace τ is positive and faithful; faithfulness means
that the complex number τ(a∗a) vanishes for some element a ∈ A only
if a = 0. In that case, the positive trace τn is faithful as well. Indeed, if
A = (aij)i,j ∈ Mn(A) is a matrix with τn(A∗A) = 0, then the computation
in (ii) above shows that τ(a∗ijaij) = 0 and hence aij = 0 for all i, j.

II. The non-unital case. We now consider a non-unital ring I and let τ
be a trace on I with values in an abelian group V ; by this, we mean that
τ is an additive map which vanishes on the commutators xy − yx, x, y ∈ I.
Then, τ extends uniquely to an additive map τ+ on the associated unital ring
I+ = I⊕Z that satisfies τ+(0, 1) = 0; in fact, τ+ is a trace. We define the map
τ∗ : K0(I) −→ V as the restriction of (τ+)∗ : K0(I+) −→ V to the subgroup
K0(I) ⊆ K0(I+). If the ring I is unital, the additive map τ∗ just defined is
easily seen to coincide with that defined in Proposition 1.39(ii) (cf. Exercise
1.3.7(iii)).



1.1 Preliminaries 29

Example 1.43 Let H be a Hilbert space, L1(H) the ideal of trace-class op-
erators and Tr : L1(H) −→ C the trace defined in Theorem 1.12(iv). Then,
the induced additive map Tr∗ : K0(L1(H)) −→ C is injective with image the
subgroup Z ⊆ C (cf. [58, Lemma 6.3.14]).

The following result will be needed in Chap. 5.

Proposition 1.44 Let ϕ,ψ : A −→ B be two homomorphisms of non-unital
rings and I ⊆ B an ideal, such that ψ(a) − ϕ(a) ∈ I for all a ∈ A. We
consider an abelian group V and an additive map τ : I −→ V that vanishes
on elements of the form xy− yx for all x ∈ I and y ∈ B; in particular, τ is a
trace on I. Let τ ′ : A −→ V be the additive map, which is defined by letting
τ ′(a) = τ(ψ(a) − ϕ(a)) for all a ∈ A. Then:

(i) The map τ ′ is a trace on A.
(ii) The image of the additive map τ ′∗ : K0(A) −→ V is contained in the

image of the additive map τ∗ : K0(I) −→ V .

Proof. (i) For any two elements a, a′ ∈ A we compute

τ ′(aa′) = τ [ψ(aa′) − ϕ(aa′)]
= τ [ψ(a)ψ(a′) − ϕ(a)ϕ(a′)]
= τ [ψ(a)(ψ(a′) − ϕ(a′))] + τ [(ψ(a) − ϕ(a))ϕ(a′)]
= τ [(ψ(a′) − ϕ(a′))ψ(a)] + τ [ϕ(a′)(ψ(a) − ϕ(a))
= τ [ψ(a′)ψ(a) − ϕ(a′)ϕ(a)]
= τ [ψ(a′a) − ϕ(a′a)]
= τ ′(a′a) .

(ii) Without any loss of generality, we may assume that the rings A and
B are unital and the homomorphisms ϕ and ψ unit preserving. Let

D = D(B, I) = {(x, x′) ∈ B × B : x′ − x ∈ I}
be the double of B along I (cf. the discussion following Remarks 1.34) and
consider the ring homomorphism θ : A −→ D, which is defined by letting
θ(a) = (ϕ(a), ψ(a)) for all a ∈ A. The additive map t : D −→ V , which is
given by t(x, x′) = τ(x′ − x) for all (x, x′) ∈ D, is easily seen to be a trace.3

Since the trace τ ′ is the composition

A θ−→ D t−→ V ,

Proposition 1.40(ii) implies that τ ′∗ : K0(A) −→ V is the composition

K0(A)
K0(θ)−→ K0(D) t∗−→ V .

Therefore, it suffices to show that the image of t∗ : K0(D) −→ V is contained
in the image of τ∗ : K0(I) −→ V .
3 In fact, this assertion is really the special case of (i) above, where A = D and

ϕ, ψ are the two coordinate projection maps to B.
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The first coordinate projection map π1 : D −→ B splits by the diagonal
map ∆ : B −→ D and hence the additive map K0(π1) : K0(D) −→ K0(B)
splits by the additive mapK0(∆) : K0(B) −→ K0(D). It follows thatK0(D) =
K0(B, I) ⊕ imK0(∆), where K0(B, I) = kerK0(π1) is the relative K0-group.
We claim that the additive map t∗ vanishes on the subgroup imK0(∆) ⊆
K0(D). In order to verify this, we note that the composition

K0(B)
K0(∆)−→ K0(D) t∗−→ V

is the additive map induced by the V -valued trace t ◦ ∆ on B (loc.cit.).
The claim is proved, since t ◦∆ is the zero map. In particular, it follows that
the image of t∗ : K0(D) −→ V is equal to the image of its restriction to the
subgroup K0(B, I) ⊆ K0(D). We now consider the commutative diagram

K0(I)
ρ−→ K0(B, I)

↓ ↓
K0(I+)

K0(�)−→ K0(D) t∗−→ V

Here, I+ is the unital ring associated with I, � : I+ −→ D the ring homomor-
phism which is defined by letting �(x, n) = (n · 1, x+ n · 1) for all (x, n) ∈ I+
and ρ the excision isomorphism of Theorem 1.35. It follows that the subgroup
t∗(K0(B, I))⊆ V is the image of the composition

K0(I) ↪→ K0(I+)
K0(�)−→ K0(D) t∗−→ V . (1.3)

On the other hand, Proposition 1.40(ii) implies that t∗ ◦K0(�) is the additive
map which is induced by the V -valued trace t ◦ � on I+. Since t ◦ � is easily
seen to coincide with the trace τ+ on I+, which is associated with the trace
τ on I, the composition (1.3) is precisely the additive map τ∗ : K0(I) −→ V .
Therefore, we conclude that t∗(K0(B, I))= τ∗(K0(I)). �

1.2 The Idempotent Conjectures

In this section, we focus our attention to the group algebra kG of a group
G with coefficients in a commutative ring k. We give an explicit description
of the Hattori-Stallings rank on the K0-group of kG and state Bass’ conjec-
ture in §1.2.1. In the following subsection, we examine the relation between
torsion elements in G and idempotent elements in CG and state the idem-
potent conjecture for torsion-free groups. Finally, in §1.2.3, we obtain some
interesting classes of groups that satisfy the idempotent conjecture, by using
only elementary considerations.

1.2.1 The Hattori-Stallings Rank on K0(kG)

Let k be a commutative ring, G a group and kG the associated group algebra.
Then, the subgroup [kG, kG] ⊆ kG is the k-linear span of the set {gh − hg :
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g, h ∈ G}. In particular, [kG, kG] is a k-submodule of kG and hence the
quotient group T (kG) = kG/[kG, kG] has the structure of a k-module. In
order to give an explicit description of that k-module, we consider the set
C(G) of conjugacy classes of elements of G and denote by [g] the conjugacy
class of any g ∈ G. The natural projection G −→ C(G) extends uniquely to a
k-linear map between the respective free k-modules

p : kG −→
⊕

[g]∈C(G)
k · [g] .

In other words, we define p(
∑

g agg) =
∑

g ag[g] =
∑

[g] α[g][g], where α[g] =∑
x∈[g] ax for all [g] ∈ C(G). It is clear that p is surjective.

Lemma 1.45 Let k be a commutative ring, G a group and p the k-linear map
defined above. Then, ker p = [kG, kG].

Proof. For all g, h ∈ G the elements gh and hg are conjugate and hence
p(gh − hg) = [gh] − [hg] = 0. It follows that [kG, kG] ⊆ ker p. Conversely,
assume that a =

∑
g agg ∈ ker p and fix a conjugacy class [g] ∈ C(G).

Then,
∑

x∈[g] ax = 0 and hence
∑

x∈[g] axx =
∑

x∈[g] ax(x − g) ∈ kG. Since
x− g ∈ [kG, kG] for all x ∈ [g], it follows that

∑
x∈[g] axx ∈ [kG, kG]. This is

the case for any [g] ∈ C(G) and hence a =
∑

[g]

(∑
x∈[g] axx

)
∈ [kG, kG], as

needed. �
In view of Lemma 1.45, the map p induces an isomorphism p between the k-
modules T (kG) = kG/[kG, kG] and

⊕
[g]∈C(G) k · [g]. In the sequel, we identify

these k-modules by means of p and write simply T (kG) =
⊕

[g]∈C(G) k · [g].
Then, the universal trace kG −→ T (kG) (cf. Lemma 1.36) is identified with
the map p defined above. For any conjugacy class [g] we consider the coordi-
nate projection

π[g] : T (kG) =
⊕

[x]∈C(G)
k · [x] −→ k · [g]  k

and write any element r ∈ T (kG) as a sum
∑

[g] π[g](r)[g]. We now define for
any g ∈ G the additive map

rg : K0(kG) −→ k

as the composition
K0(kG) rHS−→ T (kG)

π[g]−→ k ,

where rHS is the Hattori-Stallings rank associated with kG. It is clear that
rg = rh if the elements g, h ∈ G are conjugate. By an obvious abuse of
notation, we also denote by rg the composition

Mn(kG) rHS−→ T (kG)
π[g]−→ k
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for all n ≥ 1. With this notation, for any idempotent matrix E ∈ Mn(kG)
the Hattori-Stallings rank rHS(E), i.e. the residue class of the trace tr(E) in
the quotient T (kG), can be expressed as the sum

∑
[g] rg(E)[g].

In the next two results, we describe the functorial behavior of the rg’s with
respect to coefficient ring and group homomorphisms.

Proposition 1.46 Let ϕ : k −→ k′ be a homomorphism of commutative
rings, G a group and ϕ̃ : kG −→ k′G the extension of ϕ with ϕ̃(g) = g for all
g ∈ G. We consider a positive integer n, an idempotent matrix E = (eij)i,j ∈
Mn(kG) with Hattori-Stallings rank rHS(E) =

∑
[g] rg(E)[g] and the induced

idempotent matrix E′ =(ϕ̃(eij))i,j ∈ Mn(k′G). Then, rg(E′) = ϕ(rg(E)) for
all g ∈ G.

Proof. It suffices to verify that the following diagram is commutative for all
g ∈ G

Mn(kG) rHS−→ T (kG)
π[g]−→ k

ϕ̃n ↓ T (ϕ̃) ↓ ↓ ϕ

Mn(k′G) rHS−→ T (k′G)
π[g]−→ k′

Here, we denote by ϕ̃n the map induced by ϕ̃ between the correspond-
ing matrix rings, whereas T (ϕ̃) is obtained from ϕ̃ by passage to the quo-
tients. The commutativity of the right-hand square is an immediate con-
sequence of the definitions and hence the result follows from Lemma 1.38.

�

Proposition 1.47 Let k be a commutative ring, f : G −→ G′ a homomor-
phism of groups and f̃ : kG −→ kG′ the k-algebra homomorphism extending
f . We consider a positive integer n, an idempotent matrix E = (eij)i,j ∈
Mn(kG) with Hattori-Stallings rank rHS(E) =

∑
[g] rg(E)[g] and the induced

idempotent matrix E′ =
(
f̃(eij)

)
i,j ∈ Mn(kG′). Then,

rg′(E′) =
∑

{rg(E) : [g] ∈ C(G) and [f(g)] = [g′] ∈ C(G′)}

for all g′ ∈ G′.

Proof. We fix an element g′ ∈ G′ and consider the k-linear map

φ[g′] : T (kG) −→ k ,

which maps any conjugacy class [g] ∈ T (kG) onto 1 if [f(g)] = [g′] and 0 if
[f(g)] �= [g′]. With this notation, it suffices to verify that the following diagram
is commutative

Mn(kG) rHS−→ T (kG)
φ[g′]−→ k

f̃n ↓ T(f̃) ↓ ‖
Mn(kG′) rHS−→ T (kG′)

π[g′]−→ k
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Here, we denote by f̃n the map induced by f̃ between the corresponding
matrix rings, whereas T

(
f̃
)

is the map obtained from f̃ by passage to the
quotients. As in the proof of Proposition 1.46, the commutativity of the right-
hand square is an immediate consequence of the definitions; hence, the result
follows from Lemma 1.38. �

Corollary 1.48 Let k be a field, G a group and E an idempotent matrix
with entries in the group algebra kG and Hattori-Stallings rank rHS(E) =∑

[g] rg(E)[g] ∈ T (kG). Then, there is a non-negative integer n, such that∑
[g] rg(E) = n · 1 ∈ k.

Proof. We assume that E ∈ Mt(kG) for some t ≥ 1 and consider the aug-
mentation ε : kG −→ k and the induced idempotent matrix E′ = εt(E) with
entries in k. Then, rHS(E′) = n · 1 ∈ k for some non-negative integer n (cf.
Exercise 1.3.8). The result follows from Proposition 1.47 by letting G′ be the
trivial group therein. �

In the sequel, we shall be interested in the Hattori-Stallings rank

rHS : K0(kG) −→ T (kG) ,

in the special case where the coefficient ring is a subring of the field C of
complex numbers. A pair (k,G), where k ⊆ C is a subring and G a group,
will be said to satisfy Bass’ conjecture if the map

rg : K0(kG) −→ k

is identically zero for all elements g ∈ G with g �= 1. In that case, the Hattori-
Stallings rank of an idempotent matrix E with entries in kG will be equal
to n[1] ∈ T (kG) for a suitable non-negative integer n = n(E) (cf. Corollary
1.48). We note that a pair (k,G) as above satisfies Bass’ conjecture if this
is the case for all pairs of the form (k0, G0), where k0 is a finitely generated
subring of k and G0 a finitely generated subgroup of G (cf. Exercise 1.3.9).

Remark 1.49 Let k be a subring of the field C of complex numbers and
G a group having an element g of finite order n > 1. If n is invertible in k,
then the map rg above is not identically zero; in particular, the pair (k,G)
does not satisfy Bass’ conjecture. Indeed, it is easily seen that the element
e = 1

n

∑n−1
i=0 g

i ∈ kG is an idempotent and rg(e) = α
n , where α ∈ {1, . . . , n}

is the number of elements of the cyclic group <g> which are conjugate to g
(i.e. α is the cardinality of the intersection <g> ∩ [g]).

It follows from Remark 1.49 that certain arithmetic restrictions are necessary
conditions for a pair (k,G) as above to satisfy Bass’ conjecture. In particular,
the orders of the non-identity torsion elements of G can’t be invertible in k.
In that direction, we note the following simple result.
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Lemma 1.50 Let k be a subring of the field C of complex numbers. Then,
the following conditions are equivalent:

(i) k ∩ Q = Z.
(ii) No integer n > 1 is invertible in k, i.e. Z ∩ U(k) = {±1}.
(iii) No prime number p is invertible in k.

Proof. (i)→(ii): If a non-zero integer n is invertible in k, then 1
n ∈ k ∩Q = Z

and hence n = ±1.
(ii)→(iii): This is clear.
(iii)→(i): First of all, we note that we always have Z ⊆ k ∩ Q. In order

to show the reverse inclusion, assume that there exist two relatively prime
integers a and b with b �= 0, such that a

b ∈ k \Z. In that case, there is a prime
number p which divides b but not a. Hence, there are x, y, b′ ∈ Z, such that
b = pb′ and ax+ py = 1. Then,

1
p

=
ax

p
+ y =

axb′

b
+ y = xb′ · a

b
+ y · 1 ∈ Z · a

b
+ Z · 1 ⊆ k ,

a contradiction. �

A group G will be said to satisfy Bass’ conjecture if the pair (k,G) satisfies
Bass’ conjecture for any subring k ⊆ C with k ∩ Q = Z. In other words, G
satisfies Bass’ conjecture if the map

rg : K0(kG) −→ k

is identically zero for any subring k ⊆ C with k ∩ Q = Z and any group
element g ∈ G with g �= 1. We note that a group satisfies Bass’ conjecture if
this is the case for all finitely generated subgroups of it (cf. Exercise 1.3.9). In
the following chapters, we study Bass’ conjecture for certain classes of groups,
obtaining thereby some insight about its geometric significance.

1.2.2 Idempotents in CG

Let G be a group and CG the corresponding complex group algebra. Be-
sides the trivial idempotents 0 and 1, the algebra CG may contain non-trivial
idempotents as well. For example, if G is a group having non-trivial torsion
elements, then CG has non-trivial idempotents, in view of Remark 1.49. In
fact, there is a general method for constructing non-trivial idempotents in
CG, by considering finite subgroups of G. More precisely, if H ≤ G is a finite
subgroup, then CH is a subalgebra of CG and hence Idem(CH) ⊆ Idem(CG).
The Wedderburn-Artin theory (cf. [41, Chap. 1]) implies, in view of Maschke’s
theorem (Theorem 1.9), that the group algebra CH can be identified with a
direct product of complex matrix algebras. In this way, idempotent matrices
with complex entries provide us with idempotent elements in CH and hence
in CG as well. Furthermore, identifying a matrix algebra with entries in CH
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with the appropriate direct product of complex matrix algebras, we obtain
examples of idempotent matrices with entries in CH as well. Of course, in
order to obtain explicit formulae for these matrices, one has to explicit the
Wedderburn decomposition of CH.

This technique for constructing idempotents and idempotent matrices with
entries in group algebras is illustrated in the following example (where the
verification of many details is left as an exercise to the reader).

Example 1.51 Let G = S3 be the group of permutations on three letters a, b
and c. Then, there is an isomorphism of complex algebras

CG  C × C × M2(C) (1.4)

(cf. [41, p.129]). The first (resp. second) copy of C corresponds to the trivial
(resp. the sign) representation of G on C, whereas the 2 × 2 matrix algebra
comes from the unique (up to isomorphism) irreducible representation of G
on C2, which is given by

(ab) �→
(

0 1
1 0

)
and (abc) �→

(
0 −1
1 −1

)
.

The central idempotents of CG that correspond to the idempotents (1, 0, 0),
(0, 1, 0) and (0, 0, I2) of the Wedderburn decomposition (1.4) are the elements

e1 =
1
6
(1 + (ab) + (ac) + (bc) + (abc) + (acb)) ,

e2 =
1
6
(1 − (ab) − (ac) − (bc) + (abc) + (acb))

and
e3 = 1 − e1 − e2 =

1
3
(2 − (abc) − (acb))

respectively. Moreover, the element of CG that corresponds to the idempotent

(0, 0, E), where E =
(

1 1
0 0

)
∈ M2(C), is the idempotent

e =
1
3
(1 + (ab) − 2(ac) + (bc) − 2(abc) + (acb)) ∈ CG .

In the same way, the element of CG that corresponds to (0, 0, A), where

A =
(

0 1
0 0

)
∈ M2(C), is the element

a =
1
3
((ab) − (ac) − (abc) + (acb)) ∈ CG.

The Wedderburn decomposition (1.4) of CG induces an algebra isomorphism
between M2(CG) and the direct product



36 1 Introduction

M2(C) × M2(C) × M2(M2(C)) = M2(C) × M2(C) × M4(C) .

In this way, the idempotent((
2 −1
2 −1

)
,

(
0 −3
0 1

)
,

(
I2 A
0 E

))
∈ M2(C) × M2(C) × M2(M2(C)) ,

where the matrices A,E ∈ M2(C) are defined as above, corresponds to the
idempotent matrix(

2e1 + e3 −e1 − 3e2 + a
2e1 −e1 + e2 + e

)
∈ M2(CG) ,

with the elements e1, e2, e3, e, a ∈ CG defined as above.

A natural question that one may ask is whether the existence of non-trivial
idempotents in a complex group algebra is due solely to the existence of non-
trivial torsion elements in the group. In particular, the idempotent conjecture
for a torsion-free group G asserts that the complex group algebra CG has no
non-trivial idempotents. Concerning the role of the field of complex numbers in
that conjecture, we can state the following result (see also Exercises 1.3.13(iv)
and 1.3.14).

Proposition 1.52 The following conditions are equivalent for a group G:
(i) The complex group algebra CG has no non-trivial idempotents.
(ii) For any field F of characteristic 0 the group algebra FG has no non-

trivial idempotents.
(iii) For any commutative Q-algebra k having no non-trivial idempotents,

the group algebra kG has no non-trivial idempotents.

Proof. The implications (iii)→(ii)→(i) are clear. We complete the proof by
showing that (i)→(ii) and (ii)→(iii).

(i)→(ii): Let F be a field of characteristic 0 and e ∈ FG an idempotent.
Since e involves only finitely many elements of F , there exists a finitely gener-
ated subfield F0 of F , such that e ∈ F0G. Being a finitely generated extension
of Q, the field F0 admits an embedding into C and hence we are reduced to
the case where e is an idempotent in CG.

(ii)→(iii): Let k be a commutative Q-algebra having no non-trivial idem-
potents and consider an idempotent e ∈ kG. In order to show that e is trivial,
we can assume (by passing, if necessary, to a finitely generated Q-subalgebra
of k as above) that k is Noetherian; cf. the proof of Corollary A.32 of Appendix
A. Then, the nil radical nil k of k is nilpotent and hence we can further assume
(by passing, if necessary, to k/nil k) that k is reduced; cf. Exercise 1.3.11. In
that case, Exercise 1.3.12 implies that k is a subring of a finite direct product
of fields of characteristic 0, say k ⊆ F1×· · ·×Fn. Then, kG ⊆ F1G×· · ·×FnG
and we may consider the coordinates ei ∈ FiG of e. Since ei ∈ Idem(FiG), our
assumption implies that ei ∈ Fi for all i. On the other hand, the intersection
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kG ∩ (F1 × · · · × Fn) ⊆ F1G× · · · × FnG

is equal to k and hence e ∈ k. It follows that e is trivial. �

Remarks 1.53 (i) Let k be a subring of the field C of complex numbers, such
that the group algebra kG has no non-trivial idempotents for all groups G.
Then, k∩Q = Z.4 Indeed, if k∩Q �= Z then there is a prime number p which
is invertible in k (cf. Lemma 1.50). In that case, Remark 1.49 shows that the
group algebra of the finite cyclic group of order p with coefficients in k has
non-trivial idempotents.

(ii) Even though it is not completely apparent at this point, the idempotent
conjecture turns out to be closely related to Bass’ conjecture. In fact, let
k be a subring of the field C of complex numbers and G a group. Then,
there is a generalized form of Bass’ conjecture on the Hattori-Stallings rank
of idempotent n× n matrices with entries in kG, which reduces to

• Bass’ conjecture if k ∩ Q = Z and
• the idempotent conjecture if k = C, G is torsion-free and n = 1.

For more details on this, see Exercise 3.3.7.

1.2.3 Some First Examples of Groups
that Satisfy the Idempotent Conjecture

In this final subsection, we use some elementary considerations in order to
identify certain classes of torsion-free groups G, for which the complex group
algebra CG has no non-trivial idempotents.

I. Ordered groups. An ordered group G is a group which is endowed with
a total order, such that for any elements x, y, z ∈ G we have

x < y =⇒ xz < yz and zx < zy . (1.5)

We note that any ordered group G is torsion-free. Indeed, if x ∈ G is an
element with x > 1, then a simple inductive argument shows that xn > 1 for
all n ≥ 1; in particular, x has infinite order. We conclude that any element
g ∈ G with g �= 1 has infinite order, since either g or g−1 is > 1.

Remarks 1.54 (i) LetG be an ordered group and consider a subgroupH ⊆ G.
Then, the restriction of the order relation of G endows H with the structure
of an ordered group.

(ii) Let (Gi)i∈I be a family of ordered groups and assume that the index
set I is well-ordered. Then, the lexicographic order endows the direct product
4 Conversely, we shall prove that the group algebra of any group with coefficients

in a subring k of C has no non-trivial idempotents if k ∩ Q = Z; cf. Corollary
3.21.
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G =
∏

iGi with the structure of an ordered group. More precisely, for any
two elements x = (xi)i and y = (yi)i of G with x �= y, we consider the index
i0 = min{i ∈ I : xi �= yi} and define x < y (in the group G) if xi0 < yi0 (in
the group Gi0).

(iii) There are torsion-free groups that can’t be ordered. For example,
consider the group G =< a, b | b−1ab = a−1 >. Since G is the semi-direct
product of < b > Z by < a > Z, it is torsion-free. Assume that there
is a total order on G that satisfies (1.5). If a > 1 then ba−1 = ab > b and
hence a−1 > 1, i.e. 1 > a, a contradiction. A similar argument shows that the
inequality a < 1 is impossible; therefore, the group G can’t be ordered.

Proposition 1.55 An abelian group G can be ordered if and only if G is
torsion-free.

Proof. We already know that any ordered group must be torsion-free. Con-
versely, assume that the abelian groupG is torsion-free. Then,G can be viewed
as a subgroup of the Q-vector space V = G⊗Q. We choose a basis (ei)i∈I of
V and fix a well-ordering on the index set I. Then,

G ⊆ V =
⊕

i
Qei ⊆

∏
i
Qei

and hence it suffices to show that the group
∏

i Qei can be ordered (cf. Re-
mark 1.54(i)). Since the additive group Q of rational numbers can be ordered,
the proof is finished by invoking Remark 1.54(ii). �

The above result provides us with many examples of groups that can be or-
dered. It is known that the free product of ordered groups can be endowed
with the structure of an ordered group as well (Vinogradov’s theorem; cf. [55,
Chap. 13, Theorem 2.7]). In particular, free groups can be ordered. The rele-
vance of the class of ordered groups in the study of the idempotent conjecture
stems from the following result.

Theorem 1.56 If k is an integral domain and G an ordered group, then any
idempotent of kG is contained in k. In particular, the group G satisfies the
idempotent conjecture.

Proof. For any non-zero element a =
∑

g agg ∈ kG, where ag ∈ k for all g ∈ G,
we consider the finite subset Λa = {g ∈ G : ag �= 0} ⊆ G and define the
elements max(a),min(a) ∈ G as the maximum and minimum elements of Λa

respectively. Since k is assumed to be an integral domain, it follows easily that
max(ab) = max(a)max(b) and min(ab) = min(a)min(b) for all a, b ∈ kG\{0}.
In particular, if e ∈ kG is a non-zero idempotent then max(e) = max(e)2 and
min(e) = min(e)2, i.e. max(e) = min(e) = 1. We conclude that e ∈ k, as
needed. �
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II. Reduction modulo the augmentation ideal. In order to obtain more
examples of torsion-free groups that satisfy the idempotent conjecture, we
consider for any group G the augmentation homomorphism

ε : CG −→ C

and the augmentation ideal IG = ker ε. The resulting extension of scalars
functor from the category of left CG-modules to that of C-vector spaces maps
any left CG-module M onto

MG = C ⊗CG M =M/IGM = M/< (g − 1)x; g ∈ G, x ∈M > .

We are interested in projective CG-modules P for which PG vanishes and
examine whether this vanishing implies that P itself is the zero module.

Example 1.57 Let G be a group and g ∈ G a torsion element of order n > 1.
Then, the idempotent e = 1

n (1 + g + · · · + gn−1) ∈ CG is non-trivial and
hence the projective CG-module P = CG(1 − e) is non-zero. Since ε(e) = 1,
we have 1 − e ∈ IG. It follows that P = CG(1 − e)2 ⊆ IG(1 − e) = IGP and
hence PG = P/IGP = 0.

We consider the class S, which consists of those groups G that satisfy the
following condition: For any non-zero projective CG-module P , we have PG �=
0. In view of Example 1.57, any group contained in S must be torsion-free. The
importance of class S in the study of the idempotent conjecture is manifested
by the following result.

Theorem 1.58 Groups in class S satisfy the idempotent conjecture.

Proof. Let G be a group in S and e =
∑

g egg ∈ CG an idempotent, where
eg ∈ C for all g ∈ G. Since the augmentation ε(e) ∈ C is an idempotent,
we have ε(e) = 0 or 1. In order to show that e is trivial, we may assume,
considering if necessary the idempotent 1 − e instead of e, that ε(e) = 0, i.e.
that e ∈ IG. We now consider the projective CG-module P = CGe and note
that P = CGe2 ⊆ IGe = IGP . It follows that PG = P/IGP = 0 and hence our
assumption on G implies that P = 0. Therefore, e = 0 is a trivial idempotent,
as needed. �

For any ideal I of a ring R we define the ideal I∞ =
⋂∞

n=1 I
n. Using this

notation, we now give a criterion for a group G to be contained in S.

Proposition 1.59 Let G be a group and assume that the augmentation ideal
IG of the group algebra CG is such that I∞G = 0. Then, G ∈ S.

Proof. Let P be a projective CG-module. We choose a free CG-module F
containing P as a direct summand and note that P ∩ JF = JP for any
ideal J ⊆ CG. We claim that if I ⊆ CG is an ideal such that P = IP ,
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then P = I∞P . Indeed, we have P = InP ⊆ InF for all n ∈ N and hence
P ⊆ ⋂n(InF ) = (

⋂
n I

n)F = I∞F . Therefore, P = P ∩ I∞F = I∞P .
We now assume that PG = P/IGP vanishes. Then, P = IGP and hence

P = I∞G P = 0, in view of our hypothesis. �

Example 1.60 The additive group Q of rational numbers is an S-group.
Indeed, letting G = Q, the group algebra CG is identified with the algebra
C[ta : a ∈ Q] of functions on the positive real line, and the augmentation ideal
IG with the ideal (ta −1 : a ∈ Q). We shall prove that G ∈ S by showing that
I∞G = 0 (cf. Proposition 1.59). To that end, we note that for any x ∈ In

G the
i-th derivative dix

dti vanishes at t = 1 for all i < n. Let x =
∑m

j=1 xjt
kj ∈ I∞G ,

where the xj ’s are complex numbers and the kj ’s distinct rational numbers.
Then, the derivative dix

dti |t=1 vanishes for all i ≥ 0 and hence the xj ’s satisfy
the system of linear equations∑m

j=1
kj(kj − 1) · · · (kj − i+ 1)xj = 0, i = 0, 1, . . . ,m− 1 .

It is an easy exercise, which is left to the reader, to verify that the determinant
of this linear system is equal to the product

∏
j<j′(kj′ −kj), which is non-zero

since the kj ’s are distinct. Hence, we must have xj = 0 for all j = 1, . . . ,m,
i.e. x = 0. It follows that the ideal I∞G is trivial, as needed.

We now prove that S is closed under subgroups, extensions, direct products
and free products. In this way, invoking Theorem 1.58, we obtain many ex-
amples of groups that satisfy the idempotent conjecture.

Proposition 1.61 The class S is closed under subgroups and extensions.

Proof. In order to show that S is closed under subgroups, let G be an S-
group and consider a subgroup H ≤ G. If P is a projective CH-module with
C ⊗CH P = 0, then P ′ = CG⊗CH P is a projective CG-module with

C ⊗CG P
′ = C ⊗CG (CG⊗CH P ) = C ⊗CH P = 0 .

Since G ∈ S, we have P ′ = 0. On the other hand, CH is a direct summand of
CG as a right CH-module and hence P = CH ⊗CH P is a direct summand
of P ′ as an abelian group. It follows that P must be zero as well and hence
H ∈ S.

In order to show the closure of S under extensions, let N be a normal
subgroup of a group G and assume that both N and the quotient group G =
G/N are contained in S. If P is a projective CG-module with C⊗CG P = 0,
then P = CG⊗CG P is a projective CG-module with

C ⊗CG P = C ⊗CG

(
CG⊗CG P

)
= C ⊗CG P = 0 .

Since G ∈ S, we have P = 0. On the other hand, as a C-vector space, P is
isomorphic to C ⊗CN P = PN , where P is now viewed as a CN -module by
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restriction of scalars (cf. Remark 1.6(ii)). Since the CN -module P is projective
(Lemma 1.1(iii)) and N ∈ S, we conclude that P = 0. Hence, it follows that
G ∈ S. �

In order to obtain another interesting criterion for a group G to be contained
in S, we need the following technical result.

Lemma 1.62 Let G be a group, (Hλ)λ a chain of subgroups of G and H the
intersection of the Hλ’s.

(i) The intersection of the family (IHλ
CG)λ of left CH-submodules of CG

is equal to IHCG.
(ii) If P is a projective CG-module and C ⊗CHλ

P = 0 for all λ, then
C ⊗CH P = 0.

Proof. (i) It is clear that IHCG is contained in the intersection of the IHλ
CG’s.

In order to show the reverse inclusion, let x ∈ CG be an element with x /∈
IHCG. We consider a set T of left H-coset representatives in G and note that
there is a decomposition of left CH-modules

CG =
⊕

t∈T CH · t .
Then, we can write x = x1t1 + · · · + xntn, where xi ∈ CH and ti ∈ T for
all i = 1, . . . , n. Since x /∈ IHCG, there exists i0 with xi0 /∈ IH . Assuming
that the ti’s are distinct, we have tit−1

j /∈ H for all i �= j; hence, there exists
λij with tit−1

j /∈ Hλij
for all i �= j. We can now find an index λ such that

Hλ ⊆ Hλij
for all i �= j. Then, tit−1

j /∈ Hλ and hence the ti’s form part of a
system Tλ of left Hλ-coset representatives in G. Since xi ∈ CH ⊆ CHλ for
all i = 1, . . . , n, it follows that x = x1t1 + · · · + xntn is the expression of x
following the left CHλ-module decomposition

CG =
⊕

t∈Tλ
CHλ · t .

Since CH ∩ IHλ
= IH , we have xi0 /∈ IHλ

; it follows that x /∈ IHλ
CG.

(ii) Let F be a free CG-module containing P as a direct summand. Since
P/IHλ

P = C ⊗CHλ
P = 0, we have P = IHλ

P and hence P ⊆ IHλ
F for

all λ. It follows from (i) above that the intersection of the family (IHλ
F )λ is

equal to IHF ; therefore, P ⊆ IHF . Since P is a direct summand of F as a
CG-module and hence as a CH-module as well, the intersection P ∩ IHF is
easily seen to coincide with IHP . It follows that P = P ∩ IHF = IHP , i.e.
C ⊗CH P = P/IHP = 0, as needed. �

Proposition 1.63 Let G be a group and assume that any non-trivial subgroup
H ≤ G admits a non-trivial homomorphism into a group which is contained
in S. Then, G ∈ S.

Proof. We note that, in view of the closure of S under subgroups (cf. Propo-
sition 1.61), our assumption can be restated as follows: Any non-trivial sub-
group H ≤ G has a non-trivial quotient group which is contained in S. In
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order to show that G ∈ S, let us consider a projective CG-module P with
C⊗CG P = 0. Then, the family F which consists of those subgroups H of G
for which C⊗CHP = 0 is non-empty, since G ∈ F . We order F by the relation
opposite to inclusion and note that Lemma 1.62(ii) implies that the hypoth-
esis of Zorn’s lemma is satisfied. Hence, there is a subgroup H of G which is
minimal with respect to the property that C⊗CH P = 0. If H is trivial then
C ⊗CH P = C ⊗C P = P and hence P = 0. If H is non-trivial there exists
(by assumption) a proper normal subgroup N �H such that H = H/N ∈ S.
The CH-module P = CH ⊗CH P is projective and

C ⊗CH P = C ⊗CH

(
CH ⊗CH P

)
= C ⊗CH P = 0 .

The group H being an S-group, it follows that P = 0. Since P  C⊗CN P as
C-vector spaces (cf. Remark 1.6(ii)), we conclude that N ∈ F , contradicting
the minimality of H. �
Proposition 1.64 The class S is closed under direct products and free prod-
ucts.

Proof. Let (Gi)i be a family of S-groups. We shall prove that both groups∏
iGi and ∗iGi are contained in S, by using the criterion established in Propo-

sition 1.63.
To that end, let H be a non-trivial subgroup of the direct product

∏
iGi.

Then, H maps by the restriction of a suitable coordinate projection onto a
non-trivial subgroup of one of the Gi’s. Hence, the criterion of Proposition
1.63 can be applied.

Now let K be a non-trivial subgroup of the free product ∗iGi. Then, a
theorem of Kurosh (cf. [65, Chap. 1, Theorem 14] impies that K decomposes
into the free product of a free group and a free product of certain subgroups of
G, which are isomorphic with subgroups of the Gi’s. It follows that K admits
a non-trivial homomorphism into one of the Gi’s or else into Z ⊆ Q. Since
Q ∈ S (cf. Example 1.60), the criterion of Proposition 1.63 can be applied in
this case as well. �
Proposition 1.65 The class S contains all torsion-free abelian groups.

Proof. A torsion-free abelian group G is contained in the Q-vector space V =
Q ⊗ G. Such a vector space V is a direct sum of copies of Q and hence
contained in the corresponding direct product of these copies. The proof is
finished, since Q is an S-group (Example 1.60), whereas S is closed under
subgroups (Proposition 1.61) and direct products (Proposition 1.64). �

1.3 Exercises

1. Given two rings A and B, an (A,B)-bimodule is an abelian group M ,
which is a left A-module and a right B-module, in such a way that a(mb) =
(am)b for all a ∈ A, b ∈ B and m ∈M .
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(i) Let S be a ring and L,N two left S-modules. Show that the composition
of maps endows the abelian group HomS(L,N) with the structure of an
(EndSN,EndSL)-bimodule. In particular, if R is another ring and L is
an (S,R)-bimodule, then HomS(L,N) can be naturally viewed as a left
R-module.
(ii) Let R be a ring, L a right R-module and M a left R-module. Show
that the abelian group L ⊗R M can be endowed with the structure of a
module over EndRL⊗EndRM , by letting (f ⊗ g) · (l⊗m) = f(l)⊗ g(m)
for all f ∈ EndRL, g ∈ EndRM , l ∈ L and m ∈ M . In particular, if S is
another ring and L is an (S,R)-bimodule, then L⊗RM can be naturally
viewed as a left S-module.
(iii) Let R,S be two rings, L an (S,R)-bimodule, M a left R-module and
N a left S-module. Show that there is an isomorphism of abelian groups

λ : HomS(L⊗R M,N) ∼−→ HomR(M,HomS(L,N)) ,

which is defined by letting λ(f) : M −→ HomR(L,N) be the map with
λ(f)(m)(l) = f(l ⊗m) for all f ∈ HomS(L⊗R M,N), m ∈M and l ∈ L.
Here, the S-module structure on L ⊗R M is that defined in (ii) and the
R-module structure on HomS(L,N) that defined in (i) above.
(iv) Let ϕ : R −→ S be a ring homomorphism, M a left R-module and N
a left S-module. Letting L be the (S,R)-bimodule S (with right R-module
structure induced by ϕ), show that the isomorphism of (iii) above reduces
to the identification λ, which appears in the text preceding Lemma 1.1.

2. Let H be a Hilbert space, n a positive integer and consider the identi-
fication between Mn(B(H)) and B(Hn) considered in the beginning of
§1.1.2.
(i) Let a ∈ B(H) and ξ = (ξ1, . . . , ξn), η = (η1, . . . , ηn) ∈ Hn. Show
that < aEij(ξ), η >=< a(ξj), ηi > for all i, j = 1, . . . , n. In particular,
(aEij)∗ = a∗Eji for all i, j = 1, . . . , n.
(ii) Show that the adjoint A∗ = (bij)i,j of a matrix A = (aij)i,j ∈
Mn(B(H)) is such that bij = a∗ji for all i, j = 1, . . . , n.
(iii) Let (aλ)λ be a net in B(H) and fix two indices i, j ∈ {1, . . . , n}. Show
that the net (aλEij)λ converges to the zero operator of Hn in the norm
(resp. the strong, resp. the weak) operator topology if and only if the net
(aλ)λ converges to the zero operator of H in the norm (resp. the strong,
resp. the weak) operator topology.
(iv) Let (Aλ)λ be a net of matrices in Mn(B(H)) and write Aλ = (aij,λ)i,j

for all λ. Show that the net (Aλ)λ converges to the zero operator of Hn in
the norm (resp. the strong, resp. the weak) operator topology if and only
if the net (aij,λ)λ converges to the zero operator of H in the norm (resp.
the strong, resp. the weak) operator topology for all i, j = 1, . . . , n.
(Hint: Use (iii) above and note that Aλ =

∑
i,j aij,λEij for all λ and

aij,λE11 = E1iAλEj1 for all i, j, λ.)
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3. Let 2N be the Hilbert space of all square summable sequences of com-
plex numbers and consider the operators a, b ∈ B(2N), which are
defined by letting a(ξ0, ξ1, ξ2, . . .) = (ξ1, ξ2, . . .) and b(ξ0, ξ1, ξ2, . . .) =
(0, ξ0, ξ1, ξ2, . . .) for all (ξ0, ξ1, ξ2, . . .) ∈ 2N.
(i) Show that ‖an ‖= ‖bn ‖= 1 for all n ≥ 1.
(ii) Show that the sequence (an)n is SOT-convergent to 0, but not norm-
convergent to 0. In particular, the sequence (an)n is WOT-convergent to
0.
(iii) Show that the sequence (bn)n is WOT-convergent to 0, but not SOT-
convergent to 0.
(Hint: In order to show WOT-convergence to 0, use Proposition 1.14.)
(iv) Show that the sequence (anbn)n is not WOT-convergent to 0. In
particular, multiplication in B(2N) is not jointly WOT-continuous.

4. Let R be a ring. For any subset X ⊆ R we define the commutant X ′ of
X in R, by letting X ′ = {r ∈ R : xr = rx for all x ∈ X}. Show that:
(i) X ′ is a subring of R for any subset X ⊆ R.
(ii) If X,Y are subsets of R with X ⊆ Y , then Y ′ ⊆ X ′.
(iii) X ⊆ X ′′ for any subset X ⊆ R; here, X ′′ (the bicommutant of X in
R) is defined as the commutant of X ′ ⊆ R.
(iv) X ′ = X ′′′ for any subset X ⊆ R.
(v) The commutant R′ of R is the center Z(R) ⊆ R and R′′ = R.

5. Let R be a ring, n a positive integer and Mn(R) the corresponding matrix
ring. For any subset X ⊆ R we consider the subset Mn(X) (resp. X · In)
of Mn(R), which consists of all n× n matrices with entries in X (resp. of
all matrices of the form xIn, x ∈ X). Show that:
(i) The commutant (Mn(X))′ of Mn(X) in Mn(R) is equal to X ′ · In,
where X ′ is the commutant of X in R. In particular, the center Z(Mn(R))
of Mn(R) is equal to Z(R) · In, where Z(R) is the center of R.
(ii) The commutant (X · In)′ of X · In in Mn(R) is equal to Mn(X ′).
(iii) The bicommutant (Mn(X))′′ of Mn(X) in Mn(R) is equal to
Mn(X ′′), where X ′′ is the bicommutant of X in R. In particular, if S
is a subring of R, such that S′′ = S, then Mn(S) is a subring of Mn(R),
such that (Mn(S))′′ = Mn(S).

6. Let A be the C∗-algebra of continuous complex-valued functions on [0, 1].
We may regard A as a subalgebra of the algebra of bounded linear op-
erators on the Hilbert space L2[0, 1] (under the Lebesgue measure), by
identifying any continuous function on [0, 1] with the corresponding mul-
tiplication operator on L2[0, 1]. Let f ∈ A be the function which is defined
by letting f(x) = max{0, x − 1

2} for all x ∈ [0, 1]. Show that the partial
isometry v ∈ B(L2[0, 1]) in the polar decomposition of f ∈ A ⊆ B(L2[0, 1])
is not contained in A.
(Hint: Since the function f is positive, v is the orthogonal projection onto
the closure of the range of the multiplication operator associated with f .)
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7. Our goal in this Exercise is to show that the definitions of §1.1.3 and
§1.1.4 given for a not necessarily unital ring I coincide with those given
for unital rings if I is unital.
(i) Let R,S be two unital rings. Show that the coordinate projection maps
from the product R × S to R and S induce an isomorphism of abelian
groups K0(R× S)  K0(R) ⊕K0(S).
(ii) Let I be a unital ring and I+ the ring defined in the beginning of
§1.1.3.III. Show that there is an isomorphism of rings I+  I × Z, which
identifies the map π : I+ −→ Z of loc.cit. with the second coordinate
projection from I × Z onto Z. In particular, conclude that the K0-group
of the unital ring I can be identified with the kernel of the additive map
K0(π) : K0(I+) −→ K0(Z).
(iii) Let I be a unital ring, τ a trace on I with values in an abelian group V
and τ∗ : K0(I) −→ V the induced additive map. Let τ+ be the V -valued
trace on I+ defined in the beginning of §1.1.4.II. Show that, under the
identification of K0(I+) with the direct sum K0(I)⊕K0(Z) resulting from
(i) and (ii) above, the restriction of the additive map (τ+)∗ : K0(I+)−→ V
to K0(I) coincides with τ∗.

8. Let k be a field and E an idempotent n×n matrix with entries in k. Show
that rHS(E) = r · 1 ∈ k, where r ∈ {0, 1, . . . , n} is the rank of the matrix
E, as defined in Linear Algebra (i.e. r is the maximum number of linearly
independent rows of E).

9. Let k be a subring of the field C of complex numbers and G a group.
(i) Show that the pair (k,G) satisfies Bass’ conjecture if and only if the
pairs (k′, G) satisfy Bass’ conjecture for any finitely generated subring
k′ ⊆ k.
(ii) Show that the pair (k,G) satisfies Bass’ conjecture if the pairs (k,G′)
satisfy Bass’ conjecture for any finitely generated subgroup G′ ⊆ G.

10. Let G be a group and consider the set

Fin(G) = {o(g) : g ∈ G is an element of finite order} ⊆ N .

We define ΛG (resp. Λ+
G) to be the subring (resp. the additive subgroup)

of Q generated by the set {1/s : s ∈ Fin(G)}. Show that the following
conditions are equivalent for a subring k of the field C of complex numbers:
(i) k ∩ ΛG = Z.
(ii) k ∩ Λ+

G = Z.
(iii) If g ∈ G is a torsion element with g �= 1, then its order o(g) is not
invertible in k.
Moreover, show that if the group G is finite of order n, then the above
conditions are also equivalent to
(iv) k ∩ Z · 1

n = Z.



46 1 Introduction

11. Let R be a commutative ring having no non-trivial idempotents and con-
sider its nil radical nilR. Show that the quotient R = R/nilR has no
non-trivial idempotents as well.5

(Hint: If r ∈ R is such that r ∈ R is an idempotent, then rn(1 − r)n =
0 ∈ R for some n ∈ N. Show that the elements rnx and (1 − r)ny are
complementary idempotents of R for suitable x, y ∈ R.)

12. The goal of this Exercise is to show that any commutative reduced
Noetherian ring can be embedded into a finite direct product of fields.
We shall assume some familiarity with the concept of localization at a
prime ideal (cf. Appendix A). Let R be a Noetherian ring and SpecR its
prime spectrum. For any ideal I ⊆ R we denote by V (I) the set of those
prime ideals ℘ ∈ SpecR that contain I; in particular, SpecR = V (0).
(i) Show that there are finitely many prime ideals ℘1, . . . , ℘n ⊆ R, such
that SpecR =

⋃n
i=1 V (℘i).

(Hint: Argue by contradiction and assume that I ⊆ R is an ideal maximal
with respect to the property that V (I) is not a finite union of subsets of
the form V (℘), ℘ ∈ SpecR.)
(ii) Let ℘1, . . . , ℘n ⊆ R be prime ideals, such that SpecR =

⋃
i V (℘i) as

in (i) above, and assume that r ∈ R is an element whose image in R℘i

vanishes for all i = 1, . . . , n. Then, show that r is nilpotent.
(iii) Assume that the ring R is reduced and let ℘ ⊆ R be a minimal prime
ideal. Then, show that the localization R℘ is a field. Conclude that R
embeds into a finite direct product of fields F1 × · · · × Fn.

13. Let G be a group. The goal of this Exercise is to complement Proposition
1.52 and provide yet another condition, which is equivalent to conditions
(i), (ii) and (iii) therein. To that end, we consider a commutative ring k,
the group algebra kG and an idempotent e ∈ kG.
(i) Show that (r−e)n = rn−(rn−(r−1)n)e ∈ kG for all r ∈ k = k·1 ⊆ kG
and n ≥ 0.
(ii) Assume that r, x ∈ k are two elements, such that rnx = 0 = (1− r)nx
for some n� 0. Then, show that x = 0.
(iii) Let I ⊆ k be a nilpotent ideal, k = k/I the corresponding quotient
ring and e ∈ kG the image of e under the quotient homomorphism kG −→
kG. If e is contained in k = k · 1 ⊆ kG, then show that e is contained in
k = k · 1 ⊆ kG.
(iv) Assume that G satisfies the equivalent conditions of Proposition 1.52,
whereas the commutative ring k is a Q-algebra. Then, show that any
idempotent of kG is contained in k = k · 1 ⊆ kG.

14. (i) Let G be a group and assume that the complex group algebra CG
has a non-trivial idempotent. Show that for all but finitely many prime
numbers p there exists a finite field F of characteristic p, such that the
group algebra FG has a non-trivial idempotent as well.
(Hint: Let e =

∑
g∈G egg ∈ CG be a non-trivial idempotent and con-

5 In that direction, see also Corollary 2.15 in Chap. 2.
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sider suitable quotients of the commutative ring k = Z[eg : g ∈ G]; cf.
Corollaries A.27 and A.22(ii) of Appendix A.)
(ii) Let p be a prime number and consider a cyclic group G of order p.
Show that the complex group algebra CG has non-trivial idempotents,
whereas for any field F of characteristic p the group algebra FG has no
non-trivial idempotents.
(Hint: Consider the left regular representation L : FG −→ Mp(F) and
show that tr(L(e)) = 0 ∈ F for any idempotent e ∈ FG.)

15. Let G be a group, N � G a normal subgroup and G = G/N the corre-
sponding quotient. Prove the following generalization of Theorem 1.58:
If N ∈ S and G satisfies the idempotent conjecture, then G satisfies the
idempotent conjecture as well.
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Notes and Comments on Chap. 1. The basic results from Algebra and Analysis

that are needed in the book can be found in graduate textbooks, such as [42, 60]

and [61]. The standard reference for the algebraic properties of group rings is the

encyclopedic treatise of D. Passman [55]. The K0-group of a ring was defined by

A. Grothendieck, in order to generalize the Riemann-Roch theorem in Algebraic

Geometry [7]. For a more complete introduction to the K-theory of rings, the reader

may consult J. Rosenberg’s book [58]. The universal trace on a ring was introduced

by J. Stallings in [66], in order to give an algebraic proof of D. Gottlieb’s theorem

on finite K(G, 1)-complexes, and, independently, by A. Hattori [32]. The universal

trace for group algebras was used by H. Bass in [4,5], who reformulated accordingly

the theorem of R. Swan on integral representations of finite groups [70]; in that

direction, see also §2.2. The idempotent conjecture for the complex group algebra of

a torsion-free group is a classical problem in ring theory. The fact that ordered groups

satisfy the conjecture is folklore; see, for example, [55]. The class S was introduced

in [23], by relaxing a condition that was imposed on a group by R. Strebel [68], in

his studies on the derived series, and A. Strojnowski [69].
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Motivating Examples

2.1 The Case of Abelian Groups

Let k be a subring of C with k ∩ Q = Z, G an abelian group, kG the corre-
sponding group ring and E ∈ MN (kG) an idempotent matrix. Since the group
ring kG is commutative, we have T (kG) = kG and the Hattori-Stallings rank
rHS(E) of E is precisely its trace tr(E). Hence, Bass’ conjecture for G asserts
that tr(E) ∈ k · 1 ⊆ kG. Our goal in this section is to prove that this is in-
deed the case. We consider the commutative ring R = kG, its prime spectrum
SpecR and the finitely generated projective R-module P = im Ẽ, where Ẽ
is the endomorphism of RN corresponding to E. We construct a certain map
r(P ) : SpecR −→ N, which is locally constant if SpecR is endowed with
the Zariski topology. It will turn out that the space SpecR is connected and
hence the map r(P ) must be constant. If n is the constant value of r(P ),
then we prove that the trace of E is equal to n · 1 ∈ R. Consequently, Bass’
conjecture for G will follow.

Before specializing to the case of the group ring of an abelian group in
§2.1.3, the discussion will concern a general commutative ring. For such a ring,
we construct the geometric rank associated with finitely generated projective
modules in §2.1.1 and study its relation to the Hattori-Stallings rank in §2.1.2.
This approach will put Bass’ conjecture in the case of abelian groups into a
more geometric perspective and exhibit the equivalence of the conjecture to
the assertion that the prime spectrum of the corresponding group ring is
connected. Having that case in mind, one may regard the validity of Bass’
conjecture for an arbitrary (not necessarily abelian) group as a generalized
connectedness assertion. On the other hand, the geometric approach of this
section is formally similar to the approach followed in §5.1.2, where we exhibit
the equivalence of the idempotent conjecture for the reduced group C∗-algebra
associated with a torsion-free abelian group to the connectedness of its dual
group.
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2.1.1 The Geometric Rank Function

We fix a commutative ring R and denote by SpecR the set of all prime ideals
℘ ⊆ R; this is the prime spectrum of R. For any ℘ ∈ SpecR the localization
R℘ is a local ring (cf. Appendix A). We also consider a finitely generated
projective R-module P . Then, Proposition A.10 of Appendix A implies that
for any ℘ ∈ SpecR the finitely generated projective R℘-module P ⊗R R℘ is
free; let r℘(P ) be its rank. In this way, we associate with any prime ideal of
R a non-negative integer. Let

r(P ) : SpecR −→ N

be the map ℘ �→ r℘(P ), ℘ ∈ SpecR. It is clear that r(P ) depends only upon
the isomorphism class of P .

Definition 2.1 Let P be a finitely generated projective R-module. The map
r(P ) defined above is called the geometric rank of P .

Remark 2.2 The geometric rank function r(P ) associated with a finitely
generated projective R-module P is the algebraic analogue of the following
geometric situation:1 If π : E −→ B is a vector bundle over a manifold B,
then its rank r(E) : B −→ N is the function which assigns to any point b ∈ B
the dimension rb(E) of the fibre π−1(b), which is itself a finite dimensional
vector space. The rank function r(E) is locally constant. In particular, if the
base B is connected then the function r(E) is constant.

Our next goal is to define the Zariski topology on the prime spectrum SpecR
of R. To that end, we consider for any ideal I ⊆ R the set

V (I) = {℘ ∈ SpecR : ℘ ⊇ I} .

The following lemma describes some basic properties of the V (I)’s.

Lemma 2.3 (i)
⋂

a V (Ia) = V (
∑

a Ia) for any family (Ia)a of ideals in R.
(ii) V (I) ∪ V (J) = V (IJ) for any ideals I, J ⊆ R.
(iii) V (0) = SpecR and V (R) = ∅.
(iv) V (I) = ∅ only if I = R.
(v) V (I) = SpecR if and only if I ⊆ nilR.
(vi) If I, J ⊆ R are two ideals and V (I) ⊆ V (J), then for any x ∈ J there

exists n ∈ N such that xn ∈ I.
Proof. (i) This is clear, since a (prime) ideal ℘ contains all of the Ia’s if and
only if it contains their sum.

(ii) This property simply asserts that a prime ideal contains the product
of two ideals I and J if and only if it contains one of them.

(iii) This is immediate.

1 For details on this analogy, see [31].
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(iv) This too is clear since any proper ideal I is contained in a maximal
(and hence prime) ideal.

(v) We note that any nilpotent element is contained in any prime ideal.
Therefore, if the ideal I consists of nilpotent elements then I is contained in
all prime ideals. Conversely, if s ∈ I is not nilpotent then the localization
R[S−1] of R at the multiplicatively closed subset S ⊆ R generated by s is a
non-zero ring; as such, it possesses a maximal ideal m. The inverse image ℘ =
{r ∈ R : r/1 ∈ m} of m under the natural ring homomorphism R −→ R[S−1]
is a prime ideal of R with s /∈ ℘. In particular, I �⊆ ℘ and hence ℘ /∈ V (I).

(vi) Assume that V (I) ⊆ V (J) and suppose that there is an element x ∈ J ,
such that no power of it lies in I. Then, the image J of J in the residue ring
R = R/I is not contained in the nil radical nilR. Therefore, we may invoke (v)
above and conclude that there is a prime ideal ℘ = ℘/I ∈ SpecR with J �⊆ ℘.
But then ℘ is a prime ideal of R containing I with J �⊆ ℘, contradicting our
assumption that V (I) ⊆ V (J). �

It follows from assertions (i), (ii) and (iii) of Lemma 2.3 that the V (I)’s form
the collection of closed sets for a certain topology on SpecR.

Definition 2.4 The topology on SpecR with closed sets those of the form
V (I), where I ⊆ R is an ideal, is called Zariski topology.

Lemma 2.5 The prime spectrum SpecR, endowed with the Zariski topology,
is compact.

Proof. Consider a family of closed subsets (V (Ia))a of SpecR corresponding
to a family of ideals (Ia)a of R and suppose that the intersection

⋂
a V (Ia) is

empty. If I is the sum of the Ia’s then V (I) =
⋂

a V (Ia) = ∅ (Lemma 2.3(i))
and hence I = R (Lemma 2.3(iv)). Then, 1 ∈ R is contained in the sum of a
finite subfamily of the Ia’s; say 1 ∈∑n

i=1 Iai
. This means that

∑n
i=1 Iai

= R
and hence we may reverse the arguments above, in order to conclude that⋂n

i=1 V (Iai
) = ∅. We have therefore proved that the space SpecR has the

finite intersection property; hence, it is compact. �

Example 2.6 Let k be an algebraically closed field and R = k[X,Y ] the
k-algebra of polynomials in two variables. In that case, it can be shown (cf.
[3]) that there are three types of prime ideals in R:

(i) ideals of the form (X − a, Y − b), where a, b ∈ k,
(ii) principal ideals generated by irreducible polynomials and
(iii) the zero ideal 0.

One may picture the maximal ideals of R as the points of the affine plane
k2, by letting a maximal ideal (X − a, Y − b) correspond to the point with
coordinates (a, b). Then, any prime ideal ℘ = (f), where f ∈ R is an irre-
ducible polynomial, corresponds to the plane curve with equation f = 0, in
the sense that the maximal ideals contained in V (℘) are precisely those of the
form (X − a, Y − b), where a, b ∈ k are such that f(a, b) = 0.
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Having defined the Zariski topology on SpecR and regarding N as a discrete
space, the geometric rank function r(P ) associated with a finitely generated
projective R-module P is a map between two topological spaces.

Remark 2.7 Let X,Y be two topological spaces and f : X −→ Y a map
between them. The map f is locally constant if for any x ∈ X there exists an
open set U ⊆ X, such that x ∈ U and the restriction f | U is constant. If f
is locally constant then f is clearly continuous. Conversely, if the space Y is
discrete and f is continuous then f is locally constant. Indeed, for any x ∈ X
the singleton V = {f(x)} is open in Y and hence U = f−1(V ) is an open
neighborhood of x in X, on which f is constant.

Theorem 2.8 Let P be a finitely generated projective R-module. Then, the
geometric rank function r(P ) is continuous (i.e. locally constant).

Proof. Let ℘ ⊆ R be a prime ideal and n = r℘(P ). Then, P℘  P ⊗R R℘ 
Rn

℘ as R℘-modules and hence there are elements p1, . . . , pn ∈ P which map
onto an R℘-basis p1/1, . . . , pn/1 of P℘. This means that the R-linear map
ϕ : Rn −→ P , which maps the basis elements of Rn onto the pi’s, becomes
an isomorphism when localized at ℘. Using Proposition A.7 of Appendix A,
we may choose an element u ∈ R \ ℘, such that ϕ becomes an isomorphism
after inverting u. We now invoke Corollary A.3(i) of Appendix A and conclude
that ϕ becomes an isomorphism when localized at any multiplicatively closed
subset containing u. In particular, the localization of ϕ at any prime ideal
℘′ ⊆ R with u /∈ ℘′ is an isomorphism

ϕ⊗ 1 : Rn
℘′

∼−→ P ⊗R R℘′ .

It follows that r℘′(P ) = n for all prime ideals ℘′ ⊆ R with u /∈ ℘′ and hence
r(P ) is constant on the open neighborhood SpecR \ V (u) of ℘. �

2.1.2 K-theory and the Geometric Rank

In this subsection, we keep the commutative ring R fixed and consider its
prime spectrum SpecR. The set of continuous (i.e. locally constant) maps from
SpecR to the discrete space N is a semi-ring with addition and multiplication
defined pointwise; this semi-ring will be denoted by [SpecR,N]. We note that
the constant function with value 0 (resp. 1) is the 0 (resp. 1) of the semi-ring
[SpecR,N]. The geometric rank function associated with finitely generated
projective R-modules defines a map

r : Proj(R) −→ [SpecR,N] .

The next result shows that r is a morphism of semirings, for the semiring
structure on Proj(R) defined in Remark 1.23(ii).



2.1 The Case of Abelian Groups 53

Lemma 2.9 (i) r(P ⊕ Q) = r(P ) + r(Q) and r(P ⊗R Q) = r(P )r(Q) in
[SpecR,N] for any finitely generated projective R-modules P and Q.

(ii) r(0) (resp. r(R)) is the constant function with value 0 (resp. 1).
Proof. Consider a prime ideal ℘ ∈ SpecR.

(i) Let r℘(P ) = n and r℘(Q) = m. The rank r℘(P ⊕Q) of P ⊕Q at ℘ is,
by definition, the rank of the free R℘-module

(P ⊕Q) ⊗R R℘  (P ⊗R R℘) ⊕ (Q⊗R R℘)  Rn
℘ ⊕Rm

℘ = Rn+m
℘

and hence r℘(P ⊕Q) = n+m. Similarly, the rank r℘(P ⊗R Q) of P ⊗R Q at
℘ is the rank of the free R℘-module

(P ⊗R Q) ⊗R R℘  (P ⊗R R℘) ⊗R℘
(Q⊗R R℘)  Rn

℘ ⊗R℘
Rm

℘ = Rnm
℘

and hence r℘(P ⊗Q) = nm.
(ii) This is clear, since the localization of 0 (resp. R) at ℘ is the zero mod-

ule (resp. the free R℘-module of rank one). �

The Grothendieck group of the semi-ring [SpecR,N] is the commutative ring
[SpecR,Z] with addition and multiplication defined pointwise. This is a spe-
cial case of the following lemma.

Lemma 2.10 Let X be a topological space. Then, the Grothendieck group
of the semi-ring [X,N] of locally constant N-valued functions on X is the
commutative ring [X,Z] of locally constant Z-valued functions on X.

Proof. For any f ∈ [X,Z] we consider the functions f+, f− ∈ [X,N], which
are defined by f+ = max{f, 0} and f− = −min{f, 0}. Then, f = f+ − f−
and hence [X,N] generates the group [X,Z]. The result then follows from
Lemma 1.26. �

Corollary 2.11 There is a ring homomorphism r : K0(R) −→ [SpecR,Z],
which is characterized by [P ] �→ r(P ), whenever P is a finitely generated
projective R-module.

Proof. This is an immediate consequence of Lemmas 2.9 and 2.10, in view of
Remark 1.25(v). �

We refer to the ring homomorphism of the corollary above as the geometric
rank corresponding to R. In order to describe some of its properties and relate
it to the Hattori-Stallings rank rHS , we have to study the ring of locally
constant integer-valued functions on SpecR.

In view of the compactness of SpecR (Lemma 2.5), any locally constant
function f : SpecR −→ Z has a finite image, say {a1, . . . , an}. The inverse im-
age of the singleton {ai} under f is a clopen subset Xi ⊆ SpecR, i = 1, . . . , n.
The next result shows that the decompositions of SpecR into the disjoint
union of clopen subsets X1, . . . , Xn correspond bijectively to the decomposi-
tions of the ring R into the direct product of ideals R1, . . . , Rn.
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Proposition 2.12 (i) Assume that R admits a decomposition into a product
of the form

∏n
i=1Ri and let e1, . . . , en be the orthogonal idempotents corre-

sponding to that decomposition. Then, SpecR admits a decomposition into the
disjoint union of clopen subsets X1, . . . , Xn, where Xi = SpecR \V (ei) for all
i = 1, . . . , n.

(ii) Any decomposition of SpecR into the disjoint union of clopen subsets
X1, . . . , Xn arises from a unique direct product decomposition of R as above.

Proof. (i) Since the ei’s sum up to 1, the ideal generated by them is R. Us-
ing the assertions established in Lemma 2.3, we conclude that

⋂n
i=1 V (ei) =

V (
∑n

i=1Rei) = V (R) = ∅ and hence
⋃n

i=1Xi = SpecR. Since the ei’s are
orthogonal, we have V (ei) ∪ V (ej) = V (eiej) = V (0) = SpecR for i �= j
and hence Xi ∩Xj = ∅ for i �= j. Therefore, the open subspaces X1, . . . , Xn

are mutually disjoint and cover SpecR. It follows that each Xi, being the
complement of a union of open sets, is also closed.

(ii) Conversely, assume that SpecR decomposes into the disjoint union of
open subsets X1, . . . , Xn. Then, there are ideals I1, . . . , In of R such that Xi =
SpecR \ V (Ii) for all i = 1, . . . , n. Since the Xi’s cover SpecR, V (

∑n
i=1 Ii)=⋂n

i=1 V (Ii) = ∅ and hence we may invoke Lemma 2.3(iv) in order to conclude
that

∑n
i=1 Ii = R. Therefore, there are elements xi ∈ Ii, i = 1, . . . , n, such

that
∑n

i=1 xi = 1. For any i �= j the intersection Xi ∩Xj is empty and hence
V (IiIj) = V (Ii) ∪ V (Ij) = SpecR. In view of Lemma 2.3(v), we conclude
that IiIj ⊆ nilR whenever i �= j. In particular, there exists t � 0 such that
(xixj)t = 0 for all i �= j. Since

∑n
i=1 xi = 1, we have

1 =
(∑n

i=1
xi

)nt−n+1

=
∑{∏n

i=1
xki

i :
∑n

i=1
ki = nt− n+ 1

}
. (2.1)

Let Λ be the set of n-tuples of non-negative integers (k1, . . . , kn) for which∑n
i=1 ki = nt − n + 1. We define a partition of Λ into the disjoint union of

subsets Λ1, . . . ,Λn as follows: Λ1 consists of those n-tuples (k1, . . . , kn) ∈ Λ
for which k1 ≥ t, Λ2 consists of those n-tuples (k1, . . . , kn) ∈ Λ for which
k1 < t and k2 ≥ t and, in general,

Λi = {(k1, . . . , kn) ∈ Λ : k1 < t, . . . , ki−1 < t and ki ≥ t}
for all i = 1, . . . , n. It is clear that the Λi’s are mutually disjoint. In order to
show that they cover Λ, we consider an n-tuple (k1, . . . , kn) ∈ Λ and assume
that ki < t for all i. Then, ki ≤ t − 1 for all i and hence nt − n + 1 =
k1 + · · · + kn ≤ n(t − 1) = nt − n, a contradiction. Therefore, there are i’s
for which ki ≥ t. If i0 is the smallest such i, then (k1, . . . , kn) ∈ Λi0 . We now
define the elements e1, . . . , en ∈ R by letting

ei =
∑{∏n

i=1
xki

i : (k1, . . . , kn) ∈ Λi

}
for all i = 1, . . . , n. Since the Λi’s form a partition of Λ, (2.1) implies that
1 =

∑n
i=1 ei. We note that for any n-tuple (k1, . . . , kn) ∈ Λi we have ki ≥ t;
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therefore, it follows that ei is a multiple of xt
i for all i. In particular, ei ∈ Ii

for all i and eiej = 0 for all i �= j. Hence, the ei’s are orthogonal idempotents
summing up to 1 ∈ R. Working as in (i) above, the ei’s define a decomposition
of SpecR into the disjoint union of the clopen subsets Y1, . . . , Yn, where Yi =
SpecR\V (ei) for all i = 1, . . . , n. Since ei ∈ Ii, we have V (Ii) ⊆ V (ei) and
hence

Yi = SpecR \ V (ei) ⊆ SpecR \ V (Ii) = Xi

for all i. Using the fact that the Yi’s cover SpecR, whereas the Xi’s are
mutually disjoint, it is easily seen that the above inclusions can’t be proper;
hence, we have Xi = Yi for all i.

It only remains to show that the idempotents e1, . . . , en are uniquely de-
termined by the Xi’s. Indeed, suppose that e′1, . . . , e

′
n is another sequence of

idempotents of R, such that Xi = SpecR \ V (e′i) for all i = 1, . . . , n; then,
V (ei) = V (e′i) for all i. The following Lemma shows that ei = e′i for all i,
thereby finishing the proof of the Proposition. �
Lemma 2.13 Let e, e′ ∈ R be two idempotents, such that V (e) = V (e′) ⊆
SpecR. Then, e = e′.

Proof. Since V (e) ⊆ V (e′), Lemma 2.3(vi) implies that there exists n ∈ N
such that e′ = e′n ∈ Re. But then e′ = xe for some x ∈ R and hence
e′ = xe = x(ee) = (xe)e = e′e. Since we also have V (e′) ⊆ V (e), a symmetric
argument shows that e = ee′ = e′e = e′. �

We have thus established a close relationship between the set Idem(R) of
idempotents of R and the set L(SpecR) of clopen subsets of SpecR. The
correspondence established in Proposition 2.12 preserves the relevant order
structures (cf. Examples 1.3), as shown in the following result.

Proposition 2.14 The map u : Idem(R) −→ L(SpecR), which is given by
e �→ SpecR \ V (e), e ∈ Idem(R), is an isomorphism of Boolean algebras.

Proof. The map u is bijective, in view of Proposition 2.12, and obviously
preserves 0 and 1. The argument given in the proof of Proposition 2.12(i)
shows that u preserves complements. Therefore, it suffices to show that u is
∧-preserving. But this is clear, since

u(e ∧ e′) = u(ee′)
= SpecR \ V (ee′)
= SpecR \ (V (e) ∪ V (e′))
= (SpecR \ V (e)) ∩ (SpecR \ V (e′))
= u(e) ∩ u(e′)
= u(e) ∧ u(e′)

for all e, e′ ∈ Idem(R). �
Corollary 2.15 The commutative ring R has no non-trivial idempotents if
and only if the topological space SpecR is connected. �
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We now consider the Boolean algebra morphism

ν : L(SpecR) −→ Idem(K0(R)) ,

which is defined as the composition

L(SpecR) u−1

−→ Idem(R) σ−→ Idem(K0(R)) .

Here, σ is the morphism of Proposition 1.28. If X ⊆ SpecR is a clopen subset
and e ∈ R the corresponding idempotent (so that X = SpecR \ V (e)), then
ν(X) is the class of the finitely generated projective R-module Re in the K-
theory group K0(R). The K0(R)-valued discrete integral associated with ν
(cf. Appendix B) is a homomorphism of commutative rings

Iν : [SpecR,Z] −→ K0(R) .

For any integer-valued locally constant function f on SpecR, there exist in-
tegers a1, . . . , an and a decomposition of SpecR into the disjoint union of
clopen subsets X1, . . . , Xn, such that f =

∑n
i=1 aiχXi

. If e1, . . . , en are the
orthogonal idempotents of R corresponding to the above decomposition of
SpecR and R =

∏n
i=1Ri the induced direct product decomposition (so that

Ri = Rei for all i), then

Iν(f) =
∑n

i=1
ai[Ri] ∈ K0(R) .

In particular, if f is N-valued then the ai’s are non-negative and we may con-
sider the finitely generated projective R-module

⊕n
i=1R

ai
i , which we denote

by Rf . Then, the formula above becomes

Iν(f) =
[
Rf
] ∈ K0(R) .

Theorem 2.16 The geometric rank r : K0(R) −→ [SpecR,Z] admits the
ring homomorphism Iν as a right inverse. In particular, r is surjective.

Proof. We have to prove that the composition r ◦ Iν is the identity map on
[SpecR,Z]. Let us consider a locally constant N-valued function f on SpecR
and the finitely generated projective R-module P = Rf . We shall prove that
the geometric rank r(P ) of P is equal to f ; since the group [SpecR,Z] is
generated by these f ’s (cf. Lemma 2.10), this will finish the proof. We know
that f determines a decomposition of SpecR into the disjoint union of clopen
subsets X1, . . . , Xn, in such a way that its restriction on Xi is constant, say
with value ai ∈ N, i = 1, . . . , n. Let e1, . . . , en be the orthogonal idempotents
of R corresponding to this decomposition of SpecR and consider the ideals
Ri = Rei, i = 1, . . . , n. Then, P =

⊕n
i=1R

ai
i . In order to show that r(P ) = f ,

let us fix a prime ℘ ∈ SpecR. Of course, ℘ lies in one of the Xi’s; without
loss of generality, we assume that ℘ ∈ X1. Since f is constant on X1 with
value a1, we have f(℘) = a1. Before computing the rank r℘(P ) of P at ℘, we
note that X1 = SpecR \ V (e1) and hence ℘ /∈ V (e1), i.e. e1 /∈ ℘. We need the
following lemma.
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Lemma 2.17 Let ℘ ⊆ R be a prime ideal. Consider a sequence e1, . . . , en of
orthogonal idempotents of R that sum up to 1 and the associated decomposition
of R into the direct product of ideals R1, . . . , Rn (so that Ri = Rei for all i).
If e1 /∈ ℘ then:

(i) e1/1 = 1/1 ∈ R℘ and hence (R1)℘ = R℘,
(ii) ei/1 = 0/1 ∈ R℘ and hence (Ri)℘ = 0 for all i > 1.

Proof of Lemma 2.17. (i) Since e1 /∈ ℘, e1/1 is a unit of the localization R℘.
Being also an idempotent, it must be equal to 1/1 ∈ R℘. Hence, (R1)℘ =
R℘ · (e1/1) = R℘.

(ii) Since e1ei = 0 for all i > 1, it follows from (i) that ei/1 = 0/1 ∈ R℘

for all i > 1. Therefore, (Ri)℘ = R℘ · (ei/1) = 0 for all i > 1. �

Proof of Theorem 2.16 (cont.). In view of Lemma 2.17, we have

P℘ = (
⊕n

i=1R
ai
i )℘ =

⊕n
i=1 (Rai

i )℘ =
⊕n

i=1(Ri)ai
℘ = (R1)a1

℘ = (R℘)a1 .

Taking into account the definition of the geometric rank function r(P ), it
follows that r℘(P ) = a1 = f(℘) and hence the proof is finished. �

Remark 2.18 Theorem 2.16 implies that the K-theory ring K0(R) of the
commutative ring R is the semi-direct product of [SpecR,Z] by the ideal ker r.
Since the ring [SpecR,Z] is reduced, the ideal ker r contains the nil radical
nilK0(R). In fact, one can show that ker r consists of nilpotent elements and
hence ker r = nilK0(R) (cf. Exercise 2.3.5).

We now consider the isomorphism of Boolean algebras

u−1 : L(SpecR) −→ Idem(R) ,

defined in Proposition 2.14. Recall that if X is a clopen subset of SpecR,
then u−1(X) is the idempotent e ∈ R, which is such that X = SpecR \V (e).
The discrete R-valued integral associated with u−1 (cf. Appendix B) is a
homomorphism of commutative rings

Iu−1 : [SpecR,Z] −→ R .

If f is an integer-valued locally constant function on SpecR, then there are
suitable integers a1, . . . , an and a decomposition of SpecR into the disjoint
union of clopen subsets X1, . . . , Xn, such that f =

∑n
i=1 aiχXi

. If e1, . . . , en
are the orthogonal idempotents of R corresponding to the above decomposi-
tion of SpecR, so that Xi = SpecR \ V (ei) for all i, then

Iu−1(f) =
∑n

i=1
aiei ∈ R .

Theorem 2.19 The Hattori-Stallings rank rHS is the composition

K0(R) r−→ [SpecR,Z]
Iu−1−→ R ,

where r is the geometric rank associated with R.
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Proof. Let E be an idempotent N × N matrix with entries in R, Ẽ the cor-
responding endomorphism of the free R-module RN and P = im Ẽ the as-
sociated finitely generated projective R-module. The geometric rank of P is
a locally constant N-valued function f on SpecR. We know that there is a
covering of SpecR by disjoint clopen subsets X1, . . . , Xn and non-negative
integers a1, . . . , an, such that f =

∑n
i=1 aiχXi

. The covering of SpecR by the
Xi’s corresponds to a family of orthogonal idempotents e1, . . . , en ∈ R which
sum up to 1. Hence, that covering determines a decomposition of the ring R
into the direct product of ideals Ri = Rei, i = 1, . . . , n. With this notation,
we have to show that

tr(E) =
∑n

i=1
aiei ∈ R . (2.2)

Since K0(R) is generated by the classes of finitely generated projective R-
modules, this will finish the proof. In order to prove (2.2), we need the principle
described in the following lemma.

Lemma 2.20 An element r ∈ R is equal to zero if and only the element
r/1 ∈ R℘ is equal to zero for any prime ideal ℘ ∈ SpecR.

Proof of Lemma 2.20. We assume that r is zero locally and try to show that
it is actually zero. Let I = {x ∈ R : xr = 0} be the annihilator of r in
R. If I �= R, then I must be contained in a maximal ideal m ⊆ R. Since
r/1 = 0/1 ∈ Rm, there exists s ∈ R \ m with sr = 0. But then s ∈ I and
this contradicts the assumption that I ⊆ m. It follows that I = R and hence
r = 0, as needed. �

Proof of Theorem 2.19 (cont.). Let ℘ be a prime ideal of R, R′ = R℘ and
E′ ∈ MN (R′) the matrix whose entries are the canonical images of the entries
of E in R′. Then, we have to show that

tr(E′) =
∑n

i=1
aiei/1 ∈ R′ .

Without loss of generality, we may assume that ℘ ∈ X1 = SpecR \ V (e1).
Then, e1 /∈ ℘ and hence Lemma 2.17 implies that e1/1 = 1/1 ∈ R′ and
ei/1 = 0/1 ∈ R′ for all i > 1. Therefore, the equality above reduces to

tr(E′) = a1/1 ∈ R′ .

We now consider the R′-module P ′ = P ⊗R R
′. Being a finitely generated

projective module over the local ring R′, P ′ is free; in fact, it is free with rank
the value of the geometric rank function f = r(P ) at the point ℘ ∈ SpecR.
But ℘ ∈ X1 and f is constant on X1 with value a1. It follows that f(℘) = a1
and hence P ′  R′a1 . The endomorphism Ẽ′ of R′N associated with the
matrix E′ is that induced from the endomorphism Ẽ of RN by localization.
Therefore,

P ′ = P ⊗R R
′ = im Ẽ ⊗R R

′ = im
(
Ẽ ⊗ 1

)
= im Ẽ′ .
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We also consider the complementary submodule Q′ = im
(
1 − Ẽ′

)
of P ′ in

R′N . Being a finitely generated projective module over the local ring R′, Q′

is free. Since P ′ ⊕ Q′ = R′N , we must have Q′  R′N−a1 . We can construct
a basis of R′N combining a basis of P ′ and a basis of Q′. The matrix of the
endomorphism Ẽ′ with respect to that basis is diagonal with a1 ones and
N − a1 zeroes along the diagonal. Since E′ is conjugate to that matrix, we
have tr(E′) = a1 · (1/1) + (N − a1) · (0/1) = a1/1 ∈ R′, as needed. �

In the sequel, we use Theorems 2.16 and 2.19 in the form of the following
corollaries.

Corollary 2.21 The Hattori-Stallings rank rHS : K0(R) −→ R is a ring
homomorphism with image the additive subgroup of R generated by the subset
Idem(R) ⊆ R.

Proof. Being a composition of ring homomorphisms (Theorem 2.19), rHS

is a ring homomorphism as well. Since the geometric rank r is surjective
(Theorem 2.16), it follows that im rHS = im Iu−1 . Since the image of Iu−1 is
easily seen to be the subgroup of R generated by its idempotents, the proof
is finished. �

Corollary 2.22 Assume that the commutative ring R has characteristic 0.
Then, the following assertions are equivalent:

(i) R has no non-trivial idempotents.
(ii) The Hattori-Stallings rank of any finitely generated projective R-

module is equal to n · 1 ∈ R, for some n ∈ Z.

Proof. (i)→(ii): If R has no non-trivial idempotents, then Corollary 2.21 im-
plies that im rHS = Z · 1.

(ii)→(i): Assume that im rHS = Z · 1 and consider an idempotent e ∈
R. Then, e = n · 1 for some n ∈ Z. In view of the assumption about the
characteristic of R, the equality n2 · 1 = n · 1 ∈ R occurs only when n = 0, 1;
hence, the idempotent e is trivial. �

2.1.3 The Connectedness of Spec kG

In this subsection, we specialize the previous discussion and consider the case
where R = kG is the group ring of an abelian group G with coefficients in
a subring k of the field C of complex numbers, such that k ∩ Q = Z. We
prove that R has no non-trivial idempotents and hence conclude that the
Hattori-Stallings rank of any finitely generated projective R-module is an
integer multiple of 1 ∈ R. It will follow that the abelian group G satisfies
Bass’ conjecture.

Proposition 2.23 Let k be a subring of C with k ∩ Q = Z, G an abelian
group and R = kG the corresponding group ring. Then, R has no non-trivial
idempotents.
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Proof. Clearly, it suffices to consider the case where the group G is finitely
generated. Then, G = T × F , where T is a finite group and F is free abelian.
Let e =

∑n
i=1 eigi ∈ kG be a non-trivial idempotent, where ei ∈ k \ {0} for

all i and gi �= gj for all i �= j. Since e is non-trivial, there is at least one i such
that gi �= 1; without loss of generality, we assume that g1 �= 1. We now choose
an integer n � 0, in such a way that the images g1, . . . , gn of the gi’s in the
quotient group G = T × F/nF satisfy:

(i) gi �= gj for all i �= j and
(ii) g1 �= 1.

Then, e =
∑n

i=1 eigi is a non-trivial idempotent in kG. Therefore, it suffices
to consider the case where the group G is finite. This case is taken care of by
the following result. �

Lemma 2.24 Let k be a subring of C with k ∩Q = Z, G a finite group (not
necessarily abelian) and R = kG the corresponding group ring. Then, R has
no non-trivial idempotents.

Proof. Let n be the order of G and

L : kG −→ Endk(kG)  Mn(k)

the left regular representation. Then, tr(L(a)) = na1 for all a =
∑

g agg ∈ kG.
Indeed, by linearity it suffices to consider the case where a = g is an element
of G. In that case, L(a) permutes the standard basis of kG and hence the trace
tr(L(a)) counts the fixed points of the permutation. Since that permutation
is fixed-point-free if g �= 1 and the identity if g = 1, the formula follows. In
particular, if e =

∑
g egg ∈ kG is an idempotent then tr(L(e)) = ne1. View-

ing L(e) as an n × n idempotent matrix with complex entries, we conclude
that its trace is an integer i with 0 ≤ i ≤ n. Therefore, e1 = 1

n tr(L(e)) is
a rational number of the form i

n , for some integer i between 0 and n. Since
e1 ∈ k, our assumption shows that e1 can be either 0 or 1. In the former case,
tr(L(e)) = 0 and hence L(e) is the zero matrix; therefore, e = 0. In the latter
case, tr(L(e)) = n and hence L(e) is the identity matrix; therefore, e = 1. �

Remark 2.25 The proof of Proposition 2.23 works more generally in the case
where the group G is locally residually finite. In fact, we shall prove in the
following chapter that for any group G the group ring kG has no non-trivial
idempotents, whenever k is a subring of C with k∩Q = Z (cf. Corollary 3.21).

We are now ready to state and prove the main result of this section.

Theorem 2.26 Abelian groups satisfy Bass’ conjecture.

Proof. Let k be a subring of C with k ∩ Q = Z, G an abelian group and
R = kG the corresponding group ring. Bass’ conjecture for G asserts that
the Hattori-Stallings rank of any finitely generated projective R-module is
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contained in k · 1 ⊆ R. Since R has no idempotents other than 0 and 1 (cf.
Proposition 2.23), the proof follows from Corollary 2.22. �

Remark 2.27 Let k be a subring of C with k∩Q = Z, G a group and R = kG
the corresponding group ring. We already know that the Hattori-Stallings rank
of a finitely generated projective R-module is contained in k ·[1] ⊆ T (R) if and
only if it is an integer multiple of [1] ∈ T (R) (cf. Corollary 1.48). Therefore,
it follows from Corollaries 2.15 and 2.22 that Bass’ conjecture for an abelian
group G is equivalent to the assertion that R has no non-trivial idempotents
and hence to the connectedness of the prime spectrum SpecR.

2.2 The Case of Finite Groups

Let G be a finite group, k a subring of the field C of complex numbers such
that k ∩ Q = Z and E an idempotent matrix with entries in kG. In this
section, we prove that rg(E) = 0 whenever g �= 1, i.e. that the finite group G
satisfies Bass’ conjecture. To that end, we consider the cyclic subgroup H ≤ G
generated by g and show that E induces a certain idempotent matrix E′ with
entries in kH, in such a way that rg(E) = 0 if and only if rg(E′) = 0. On
the other hand, we know that H satisfies Bass’ conjecture (being abelian) and
hence rg(E′) is indeed zero. We also establish the equivalence between the
assertion that finite groups satisfy Bass’ conjecture and a result of Swan on
induced representations.

In §2.2.1, we consider a ring homomorphism ϕ : A −→ B, making B a
finitely generated free right A-module, and construct a transfer homomor-
phism ϕ∗ : T (B) −→ T (A). Specializing the discussion, we consider in §2.2.2
the case of the pair of group rings associated with a group G and a subgroup
H of it of finite index. The relation between the Hattori-Stallings rank of a
finitely generated projective module over the group ring of G and that of the
associated finitely generated projective module over the group ring of H will
immediately yield Bass’ conjecture for finite groups. In §2.2.3, we explain how
the Hattori-Stallings rank of a finitely generated projective module over the
group ring of a finite group determines and is, in fact, determined by the char-
acter of the associated finite dimensional representation of the group. In this
way, we obtain Swan’s theorem on induced representations of finite groups.
It was precisely this result of Swan that Bass attempted to generalize, by
formulating the conjecture we are studying for arbitrary groups.

2.2.1 The Transfer Homomorphism

Let us consider a ring homomorphism ϕ : A −→ B and the induced right
A-module structure on B. Since multiplication to the left by elements of B
commutes with the right A-action, there is a ring homomorphism
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L : B −→ EndAB ,

where L(b) = Lb is the left multiplication with b for all b ∈ B. We assume
that there is a positive integer n, such that B  An as right A-modules. In
that case, we may fix an A-basis of B and obtain a ring homomorphism

B
L−→ EndAB  EndA(An) = Mn(A) ,

which we denote by ϕ∗
1. For any t ≥ 1 we consider the homomorphism of

matrix rings
ϕ∗

t : Mt(B) −→ Mt(Mn(A)) = Mtn(A) ,

which is induced by ϕ∗
1.

Example 2.28 Let us consider the inclusion R ↪→ C. Then, C  R2 as
real vector spaces and the associated 2-dimensional real representation of C
corresponding to the choice of the basis {1, i} of C over R, maps a complex

number a+ bi (a, b ∈ R) onto the matrix
(
a −b
b a

)
.

Proposition 2.29 Let ϕ : A −→ B be a ring homomorphism, such that
B  An as right A-modules for some n ≥ 1. Then, there is a unique group
homomorphism ϕ∗ : T (B) −→ T (A), which makes the following diagram
commutative for all t ≥ 1

Mt(B)
ϕ∗

t−→ Mtn(A)
rB ↓ ↓ rA

T (B)
ϕ∗
−→ T (A)

Here, rA = rAHS and rB = rBHS are the Hattori-Stallings trace maps associated
with A and B respectively.

Proof. Let us denote by Dt the above diagram. Since ϕ∗
1 : B −→ Mn(A) is a

ring homomorphism, the composition

B
ϕ∗

1−→ Mn(A) rA

−→ T (A)

vanishes on the set {bb′ − b′b : b, b′ ∈ B}. Hence, this composition induces by
passage to the quotient a group homomorphism ϕ∗ : T (B) −→ T (A). By the
very definition of ϕ∗ the following diagram is commutative

B
ϕ∗

1−→ Mn(A)
↓ ↓ rA

T (B)
ϕ∗
−→ T (A)
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Since the above diagram is precisely D1, we have established the uniqueness
assertion of the Proposition. In order to show that ϕ∗ makes Dt commutative
for all t > 1 as well, we consider a matrix X = (bij) ∈ Mt(B) and the
corresponding matrix X ′ = ϕ∗

t (X) = (ϕ∗
1(bij))∈ Mt(Mn(A)) = Mtn(A). We

have tr(X ′) =
∑t

i=1 tr(ϕ∗
1(bii)) and hence

rA(X ′) = tr(X ′) =
∑t

i=1
tr(ϕ∗

1(bii)) =
∑t

i=1
rA(ϕ∗

1(bii)) .

On the other hand, we have

ϕ∗(rB(X)
)
= ϕ∗

(
tr(X)

)
= ϕ∗

(∑t

i=1
bii

)
=
∑t

i=1
ϕ∗(bii) .

In view of the commutativity of D1, we have ϕ∗(bii)= rA(ϕ∗
1(bii)) for all i;

hence, we conclude that rA(X ′) = ϕ∗(rB(X)
)
, as needed. �

Definition 2.30 Let ϕ : A −→ B be a ring homomorphism, such that
B  An as right A-modules for some n ≥ 1. The group homomorphism
ϕ∗ : T (B) −→ T (A), defined in Proposition 2.29, is called the transfer homo-
morphism associated with ϕ.

Remarks 2.31 (i) Let ϕ : A −→ B be a ring homomorphism, which makes
B a finitely generated free right A-module. Even though the ring homomor-
phisms ϕt, t ≥ 1, depend upon the choice of a basis of B as a right A-module,
the transfer ϕ∗ is independent of that choice. This is clear, since a different
choice of a basis changes ϕ∗

1 by an inner automorphism of the matrix algebra
Mn(A), whereas

rA : Mn(A) −→ T (A)

is invariant under conjugation.
(ii) If ı is the inclusion of R into C (cf. Example 2.28), then ı∗ : C −→ R

is the map z �→ 2Re z, z ∈ C.

2.2.2 Subgroups of Finite Index

Let G be a group, H ≤ G a subgroup, k a commutative ring and

ι : kH ↪→ kG

the inclusion of the corresponding group rings. If S is a set of representa-
tives of the right H-cosets {gH : g ∈ G}, then there is a decomposition
kG =

⊕
s∈S s · kH of right kH-modules. As every summand in this decompo-

sition is isomorphic with the free right kH-module kH, the right kH-module
kG is free. If, in addition, the index [G : H] = cardS is finite then the ring ho-
momorphism ι does satisfy the hypothesis of §2.2.1. In the present subsection,
we study the specific properties of the transfer homomorphism ι∗ associated
with such a subgroup H ≤ G of finite index. In order to make explicit the
dependence upon the containing group, we shall denote for any h ∈ H (resp.
g ∈ G) its conjugacy class in H (resp. in G) by [h]H (resp. by [g]G).
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Proposition 2.32 Let G be a group and H ≤ G a subgroup of finite index.
Then, there is a function

µ = µ(G,H) : H −→ N \ {0} ,

having the following two properties:
(i) µ is constant on H-conjugacy classes and
(ii) For any commutative ring k the transfer ι∗ : T (kG) −→ T (kH),

associated with the inclusion ι of the corresponding group rings, is such that
ι∗([g]G) =

∑{µ(h)[h]H : [h]H ⊆ [g]G} for all g ∈ G.

Proof. Let [G : H] = n and fix a set S = {s1, . . . , sn} of representatives of the
right H-cosets in G. An element g ∈ G induces the left multiplication map
Lg on the right kH-module kG =

⊕n
i=1 si · kH. In order to represent Lg by

a matrix with entries in kH, we begin by noting that Lg(si) = gsi for all
i. The element gsi ∈ G can be written in the form sjhi with hi ∈ H for a
unique j ∈ {1, . . . , n}; let σ be the self-map of the set {1, . . . , n}, defined by
i �→ j.2 Therefore, Lg(si) = sσ(i)hi and hence the i-th column of the matrix
corresponding to Lg has hi in the σ(i)-th row and 0’s in all other rows. In
particular, the trace of Lg is the sum of those hi’s for which σ(i) = i. But
σ(i) = i if and only if s−1

i gsi ∈ H, in which case s−1
i gsi = hi. It follows that

tr(Lg) =
∑

{s−1
i gsi : 1 ≤ i ≤ n and s−1

i gsi ∈ H} ∈ kH

and hence by the very definition of ι∗ (diagram D1 in the proof of Proposition
2.29) we have

ι∗([g]G)=
∑{[

s−1
i gsi

]
H : 1 ≤ i ≤ n and s−1

i gsi ∈ H
}∈ T (kH) . (2.3)

Since any s−1
i gsi is conjugate to g in G, we conclude that ι∗ maps [g]G onto

a sum (with multiplicities) of H-conjugacy classes [h]H that are contained in
[g]G. Moreover, any H-conjugacy class [h]H contained in [g]G is of the form[
s−1

i gsi
]
H for some i and hence occurs with a positive multiplicity in ι∗([g]G).

In order to complete the proof, we define for any h ∈ H the integer µ(h) as
the multiplicity considered above. More formally, for any h ∈ H we choose an
element g ∈ G in the conjugacy class [h]G of h in G and define µ(h) as the
cardinality of the set of those integers i with 1 ≤ i ≤ n, for which s−1

i gsi ∈ H
and [h]H = [s−1

i gsi]H .3 It is clear that µ is constant on H-conjugacy classes
and hence satisfies condition (i). By its very definition and (2.3), µ satisfies
condition (ii) as well. �
2 It is easily seen that σ is, in fact, a permutation of {1, . . . , n}.
3 The reader can easily provide a direct argument showing that µ(h) does not

depend upon the choice of g ∈ [h]G and is, in fact, strictly positive; cf. Exercise
2.3.8.
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Corollary 2.33 Let G be a group and H ≤ G a subgroup of finite index.
Then, there is a function

µ = µ(G,H) : H −→ N \ {0} ,

having the following two properties:
(i) µ is constant on H-conjugacy classes and
(ii) For any commutative ring k the transfer ι∗ : T (kG) −→ T (kH),

associated with the inclusion ι of the corresponding group rings, maps any
element ρ =

∑
[g]G

ρg[g]G ∈ T (kG) (viewed as a function on G which is
constant on the G-conjugacy classes and vanishes in all but finitely many of
them) onto

∑
[h]H

µ(h)ρh[h]H ∈ T (kH). �

Corollary 2.34 Let G be a group, H ≤ G a subgroup of finite index, k a
commutative ring and ι : kH ↪→ kG the inclusion of the corresponding group
rings. Then, for any h ∈ H there is a positive integer µ(h) inducing a com-
mutative diagram

Mt(kG)
ι∗t−→ Mtn(kH)

r
(G)
h ↓ ↓ r

(H)
h

k
µ(h)−→ k

Here, the bottom arrow is multiplication by µ(h), whereas r(G)
h (resp. r(H)

h )
denotes the map defined in §1.2.1 just before Proposition 1.46, corresponding
to G and its element h (resp. to H and its element h).

Proof. Let X ∈ Mt(kG) and X ′ = ι∗t (X) ∈ Mtn(kH). Then,∑
[h]H

r
(H)
h (X ′)[h]H = r(H)(X ′)

= r(H)(ι∗t (X))
= ι∗

(
r(G)(X)

)
= ι∗

(∑
[g]G
r
(G)
g (X)[g]G

)
=
∑

[h]H
µ(h)r(G)

h (X)[h]H

where the third (resp. fifth) equality follows invoking Proposition 2.29 (resp.
Corollary 2.33). It follows that r(H)

h (X ′) = µ(h) r(G)
h (X) for all h ∈ H, as

needed. �

2.2.3 Swan’s Theorem

We are now ready to prove that finite groups satisfy Bass’ conjecture. This
will be a consequence of the following result.

Proposition 2.35 Let G be a group whose center C is a subgroup of finite
index. Then, G satisfies Bass’ conjecture.
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Proof. Let k be a subring of the field C of complex numbers with k ∩Q = Z,
E ∈ Mt(kG) an idempotent t × t matrix and h ∈ G \ {1}. The subgroup
H ≤ G generated by C and h is abelian and has finite index inG, say [G : H] =
n. We let ι denote the inclusion of kH into kG and consider the idempotent
matrix E′ = ι∗t (E) ∈ Mtn(kH). Then, Corollary 2.34 implies that r(H)

h (E′) =
µ(h) r(G)

h (E) for a suitable positive integer µ(h). Being abelian, the group H
satisfies Bass’ conjecture (cf. Theorem 2.26) and hence r(H)

h (E′) = 0. It follows
that r(G)

h (E) = 0 as well. �

Corollary 2.36 Finite groups satisfy Bass’ conjecture. �

Remark 2.37 Let G be a group and E an idempotent matrix with entries in
kG, where k is a subring of C with k ∩Q = Z. The argument in the proof of
Proposition 2.35 shows that rh(E) = 0, whenever h ∈ G \ {1} is an element
of a subgroup H ≤ G that satisfies the following two conditions:

(i) The index [G : H] is finite and
(ii) H itself satisfies Bass’ conjecture.

Using some basic representation theory, we may reformulate Corollary 2.36,
in order to obtain the following result, that served as the primary motivation
for Bass to formulate the conjecture we are studying.

Theorem 2.38 (Swan) Let k be a subring of C with k ∩ Q = Z, K its field
of fractions and G a finite group. Then, for any finitely generated projective
kG-module P , the KG-module P ⊗k K is free.

In order to prove Swan’s theorem, we examine the relation between the
Hattori-Stallings rank of P and the character of the associated representa-
tion of the group G over K.

Let K be any field of characteristic 0, G a finite group and V a finite
dimensional K-representation of G; equivalently, one may describe V as a
finitely generated KG-module. We denote by α the corresponding homomor-
phism of G into GL(V ). In view of Maschke’s theorem (Theorem 1.9), the
KG-module V is projective and hence we may consider its Hattori-Stallings
rank

rHS(V ) =
∑

[g]∈C(G)
rg(V )[g] ∈ T (KG) =

⊕
[g]∈C(G)K · [g] .

The character χ = χV : G −→ K of V maps any element g ∈ G onto the
trace of the endomorphism α(g) ∈ GL(V ).

Lemma 2.39 Let K be a field of characteristic 0, G a finite group and V
a finite dimensional K-representation of G. Then, the Hattori-Stallings rank

rHS(V ) of V is equal to
1

|G |
∑

g∈G χ(g−1)[g] and hence rg(V ) =
χ(g−1)
|Cg | for

all g ∈ G, where Cg denotes the centralizer of g in G.
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Proof. We consider the induced KG-module KG ⊗K V0, where V0 is the K-
vector space obtained from the KG-module V by restriction of scalars, and
define the K-linear maps

i : V −→ KG⊗K V0 and π : KG⊗K V0 −→ V ,

by letting

i(v) =
1

|G |
∑

g∈G
g ⊗ g−1v and π(g ⊗ v) = gv

for all v ∈ V and g ∈ G. It is easily seen that both i and π are KG-linear,
whereas π ◦ i is the identity map on V (cf. the proof of Maschke’s theorem).
Therefore, the endomorphism

i ◦ π ∈ EndKG(KG⊗K V0)

is an idempotent which identifies the projective KG-module V with a direct
summand of the free KG-module KG ⊗K V0. It follows that the Hattori-
Stallings rank rHS(V ) of V is equal to the class of tr(i ◦ π) ∈ KG in the
quotient group T (KG). Let dimK V0 = n and choose a K-basis v1, . . . , vn of
V0; then, 1 ⊗ v1, . . . , 1 ⊗ vn is a KG-basis of KG⊗K V0. For any l = 1, . . . , n
we compute

(i ◦ π)(1 ⊗ vl) = i(vl)

=
1

|G |
∑

g∈G
g ⊗ g−1vl

=
1

|G |
∑

g∈G
g ⊗
∑n

k=1
αkl(g−1)vk

=
∑n

k=1

[
1

|G |
∑

g∈G
αkl(g−1)g

]
(1 ⊗ vk) .

Here, for any g ∈ G we denote by αkl(g) ∈ K the (k, l)-entry of the matrix
of the endomorphism α(g) ∈ EndKV , with respect to the basis v1, . . . , vn. It
follows that the (k, l)-entry of the matrix of i ◦ π with respect to the basis

1 ⊗ v1, . . . , 1 ⊗ vn of KG⊗K V0 is
1

|G |
∑

g∈G αkl(g−1)g and hence

tr(i ◦ π) =
∑n

k=1

1
|G |
∑

g∈G
αkk(g−1)g

=
1

|G |
∑

g∈G

(∑n

k=1
αkk(g−1)

)
g

=
1

|G |
∑

g∈G
χ(g−1)g .

It follows that rHS(V ) =
1

|G |
∑

g∈G χ(g−1)[g] =
∑

[g]∈C(G)

χ(g−1)
|Cg | [g] and this

finishes the proof. �
Corollary 2.40 Let K be a field of characteristic 0, G a finite group and
V, V ′ two finite dimensional K-representations of G. Then, V  V ′ as KG-
modules if and only if rHS(V ) = rHS(V ′) ∈ T (KG).
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Proof. The KG-modules V, V ′ are isomorphic if and only if their characters χ
and χ′ are equal (cf. [41, Theorem 7.19]). In view of Lemma 2.39, this latter
condition is equivalent to the equality rHS(V ) = rHS(V ′). �

Proof of Theorem 2.38. Let P be a finitely generated projective kG-module
and V = P ⊗k K. In view of Corollary 2.36, there is an element r ∈ k, such
that the Hattori-Stallings rank of P is equal to r[1] ∈ T (kG); in fact, Corollary
1.48 implies that r must be a non-negative integer. Invoking the naturality
of the Hattori-Stallings rank with respect to coefficient ring homomorphisms
(cf. Proposition 1.46), it follows that rHS(V ) = r[1] ∈ T (KG). Therefore, the
Hattori-Stallings rank of V is equal to that of the free KG-module (KG)r.
In view of Corollary 2.40, this implies that V  (KG)r and hence the KG-
module V is indeed free. �

Remark 2.41 We proved Swan’s theorem (Theorem 2.38) using the fact that
finite groups satisfy Bass’ conjecture (Corollary 2.36). Conversely, it is easy
to prove that finite groups satisfy Bass’ conjecture using Swan’s theorem.
Indeed, let G be a finite group, k a subring of C with k ∩ Q = Z, K its field
of fractions and P a finitely generated projective kG-module. Swan’s theorem
asserts that the KG-module V = P ⊗k K is free; say V  (KG)r for some
r ≥ 0. Then, rHS(V ) = r[1] ∈ T (KG) and hence rg(V ) = 0 for all g �= 1.
Taking into account Proposition 1.46, it follows that rg(P ) = 0 for all g �= 1
as well; therefore, G satisfies Bass’ conjecture.

2.3 Exercises

1. Let ϕ : R −→ R′ be a homomorphism of commutative rings.
(i) Show that the map J �→ ϕ−1(J), where J ⊆ R′ is an ideal, restricts to
a continuous map Φ : SpecR′ −→ SpecR.
(ii) Consider a finitely generated projective R-module P and let P ′ =
P ⊗R R

′ be the induced finitely generated projective R′-module. Show
that the geometric rank r(P ′) of P ′ is the composition r(P ) ◦ Φ, where
r(P ) is the geometric rank of P .
(iii) (naturality of the geometric rank) Show that the diagram

K0(R) rR

−→ [SpecR,Z]
K0(ϕ) ↓ ↓ [Φ,Z]

K0(R′) rR′
−→ [SpecR′,Z]

is commutative, where rR (resp. rR
′
) is the geometric rank associated with

R (resp. R′) and [Φ,Z] the map f �→ f ◦ Φ, f ∈ [SpecR,Z].
2. Let ϕ : R −→ R′ be a homomorphism of commutative rings and Φ the

continuous map defined in Exercise 1(i) above.
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(i) (naturality of u) Show that the diagram

Idem(R) uR

−→ L(SpecR)
Idem(ϕ) ↓ ↓ L(Φ)

Idem(R′) uR′
−→ L(SpecR′)

is commutative, where uR (resp. uR′
) is the Boolean algebra isomorphism

corresponding to R (resp. R′), as defined in Proposition 2.14, and L(Φ)
the Boolean algebra morphism X �→ Φ−1(X), X ∈ L(SpecR) (cf. Exam-
ple 1.5(iii)).
(ii) (naturality of ν) Conclude that the diagram

L(SpecR) νR

−→ Idem(K0(R))
L(Φ) ↓ ↓ Idem(K0(ϕ))

L(SpecR′) νR′
−→ Idem(K0(R′))

is commutative, where νR (resp. νR′
) is the Boolean algebra morphism

corresponding to R (resp. R′), as defined in the text following Corol-
lary 2.15.
(iii) (naturality of Iν) Conclude that the diagram

[SpecR,Z]
IR

ν−→ K0(R)
[Φ,Z] ↓ ↓ K0(ϕ)

[SpecR′,Z]
IR′

ν−→K0(R′)

is commutative, where IR
ν (resp. IR′

ν ) is the right inverse of the geometric
rank, that was defined in the text preceding Theorem 2.16, and [Φ,Z] the
map f �→ f ◦ Φ, f ∈ [SpecR,Z].
(Hint: This is a formal consequence of (ii) and Exercises B.3.1(iii) and
B.3.2(iii).)

3. Let R be a commutative ring, r : K0(R) −→ [SpecR,Z] its geometric
rank and K0(R) = ker r.
(i) Show that if R is a field then r is bijective.
(ii) Let F(R) be the set of all homomorphisms ϕ : R −→ F , where F is a

field. Show that K0(R) =
⋂

ϕ∈F(R) ker
[
K0(R)

K0(ϕ)−→ K0(F )
]
.

4. Let A be a commutative ring and assume that a0, a1, . . . , an ∈ A are such
that the polynomial f(T ) =

∑n
i=0 aiT

i is invertible in the polynomial ring
A[T ]. Then, show that ai is nilpotent for all i = 1, . . . , n.
(Hint: If A is an integral domain, then ai must vanish for all i = 1, . . . , n.
Now use Lemma 2.3(v).)

5. Let R be a commutative ring and K0(R) the kernel of the geometric rank
r : K0(R) −→ [SpecR,Z]. The goal of this Exercise is to prove thatK0(R)
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is the nil radical of the ring K0(R). To that end, we define for any finitely
generated projective R-module P and any n ∈ N the power series

γ(P, n) =
∑∞

i=0
[Λi

RP ]T i(1 − T )n−i ∈ K0(R)[[T ]] .

Here, we denote by Λi
RP the i-th exterior power of P for all i ≥ 0. Show

that:
(i) [Λi

R(P ⊕R)] = [Λi
RP ] + [Λi−1

R P ] ∈ K0(R) for all i ≥ 1.
(ii) γ(P, n) = γ(P ⊕R,n+ 1).
(iii) The power series γ(P, n) depends only upon the class x = [P ]−[Rn] ∈
K0(R); let us denote it by γ(x).
(iv) If x = [P ]− [Rn] ∈ K0(R) and γ(x) =

∑∞
i=0 γi(x)T i, then γ0(x) = 1,

γ1(x) = x and γ2(x) = [Λ2
RP ] − (n− 1)[P ] +

1
2
n(n− 1).

(v) γ : K0(R) −→ 1+T ·K0(R)[[T ]] ⊆ U{K0(R)[[T ]]} is a homomorphism
of groups.
(vi) If x ∈ K0(R) and γ(x), γ(−x) ∈ K0(R)[T ], then x ∈ nilK0(R).
(Hint: Use parts (iv), (v) and the result of Exercise 4 above.)
(vii) γ

(
K0(R)

)⊆ K0(R)[T ].
(Hint: If P is a finitely generated projective R-module, such that r(P ) is
the constant function with value n, then Λi

RP = 0 for all i > n.)
(viii) Conclude that K0(R) = nilK0(R).

6. Let R, T be commutative rings.
(i) For any ring homomorphism ϕ : K0(R) −→ T , we consider the Boolean
algebra morphism ϕ̃ : Idem(R) −→ Idem(T ), which is defined as the
composition

Idem(R) σ−→ Idem(K0(R))
Idem(ϕ)−→ Idem(T ) .

Here, σ is the map defined in Proposition 1.28. We now define a map

λ : HomRing(K0(R), T ) −→ HomBoole(Idem(R), Idem(T )) ,

by letting λ(ϕ) = ϕ̃ for all ϕ ∈ HomRing(K0(R), T ). If the ring T is re-
duced, then show that λ is bijective.
(Hint: Use Exercise 5(viii) above and Remark B.8(i) of Appendix B, com-
bined with Proposition 2.14.)
(ii) Assume that R has no non-trivial idempotents and T is reduced. Then,
show that there is a unique ring homomorphism from K0(R) into T .
(iii) For any prime ideal ℘ ∈ SpecR consider the ring homomorphism
ϕ℘ : K0(R) −→ T , which is defined as the composition

K0(R) r−→ [SpecR,Z]
ev℘−→ Z ı−→ T ,

where r is the geometric rank, ev℘ the evaluation map at ℘ and ı the map
n �→ n · 1, n ∈ Z. If R has no non-trivial idempotents, then show that
ϕ℘ = ϕ℘′ for all ℘, ℘′ ∈ SpecR.



2.3 Exercises 71

7. This Exercise refers to the transfer homomorphism ϕ∗ associated with a
ring homomorphism ϕ, as described in §2.2.1.
(i) Let ϕ : A −→ B be a ring homomorphism, such that B  An as
(A,A)-bimodules (cf. Exercise 1.3.1). Show that the composition

T (A)
T (ϕ)−→ T (B)

ϕ∗
−→ T (A)

is multiplication by n.
(ii) Let R be a ring, n ∈ N and ϕ : R −→ Mn(R) the ring homomorphism
with ϕ(r) = rIn for all r ∈ R. Show that the composition

T (R) ı−→ T (Mn(R))
ϕ∗
−→ T (R) ,

where ı is the isomorphism of Lemma 1.37, is multiplication by n.
(iii) Let k be a commutative ring, G a finite group of order n and ϕ the
natural inclusion of k into kG. Show that ϕ∗ : T (kG) −→ k maps any
element

∑
[g]∈C(G) ag[g] ∈ T (kG) onto na1 ∈ k.

8. Let G be a group, H ≤ G a subgroup and S a set of representatives of the
right H-cosets in G. For any pair (h, g) ∈ H × G we consider the subset
S(h, g) ⊆ S, which consists of those elements s ∈ S for which s−1gs ∈ H
and [h]H = [s−1gs]H ∈ C(H).
(i) Show that for any x ∈ H the sets S(h, g) and S(x−1hx, g) coincide.
(ii) Show that for any x ∈ G the sets S(h, g) and S(h, x−1gx) have the
same cardinality.
(Hint: Consider the permutation β of S, which is defined by letting
β(s)H = xsH for all s ∈ S.)
(iii) If [h]G = [g]G ∈ C(G), then show that S(h, g) �= ∅.

9. Let G be a group, ΛG ⊆ Q the subring defined in Exercise 1.3.10 and k a
subring of the field C of complex numbers, such that k ∩ ΛG = Z.
(i) Assume that the group G is finite. Then, show that the group algebra
kG has no non-trivial idempotents.
(ii) Assume that the groupG is abelian. Then, show that the group algebra
kG has no non-trivial idempotents and hence conclude that the pair (k,G)
satisfies Bass’ conjecture.
(iii) Assume that the center of G is a subgroup of finite index. Then, show
that the pair (k,G) satisfies Bass’ conjecture.
(iv) Assume that the group G is finite. Then, show that the pair (k,G)
satisfies Bass’ conjecture.
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Notes and Comments on Chap. 2. The analogy between finitely generated

projective modules P over a commutative ring R and vector bundles on a manifold is

based on a result of R. Swan [71], whereas the basic properties of the geometric rank

r(P ) can be found in books on Commutative Algebra (e.g. in [8]). For further results

on the K0-group of a commutative ring, the reader may consult C. Weibel’s book-in-

progress [73]. The validity of Bass’ conjecture for abelian groups was already noted

in [4]. The construction of the transfer homomorphism associated with an extension

of rings, as presented in §2.2.1, is also due to H. Bass who reformulated in [loc.cit.]

R. Swan’s result [70] on induced representations, in terms of the Hattori-Stallings

rank.
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Reduction to Positive Characteristic

3.1 The Rationality of the Canonical Trace

Let E be an idempotent matrix with entries in the group algebra kG of a group
G with coefficients in a field k. If rg(E) = 0 for all g ∈ G\{1}, then Corollary
1.48 implies that r1(E) = n · 1 ∈ k for a suitable non-negative integer n. In
this section, we study the value of the trace functional r1 on E and show that
r1(E) is always, i.e. without any assumption on the rg(E)’s, an element of the
prime field of k (Zaleskii’s theorem). Even though we are mainly interested
in the case where k = C, we follow closely Zaleskii’s argument and consider
initially the case where k is a field of positive characteristic. In that case, the
result is a consequence of certain basic properties of the Frobenius operator
acting on the corresponding matrix algebra. In order to lift this result to the
characteristic 0 case, we proceed in two steps and study first the case where k
is the field Q of algebraic numbers. Then, we consider the general case where
k = C, by associating with any idempotent matrix in Mn(CG) a certain
idempotent matrix in Mn

(
QG
)
. In the meantime, we prove a positivity result

of Kaplansky, which is to play an important role in the homological approach
to the idempotent conjecture that will be presented in Chap. 4.

In §3.1.1, we consider idempotent matrices E with entries in the group
algebra kG of a group G with coefficients in a field k of characteristic p. We
study the behavior of the p-th power map on the matrix algebra Mn(kG)
with respect to traces and show that r1(E) ∈ Fp. In the following subsection,
we lift this result to the case where k = Q and show that the trace functional
r1 takes rational values on idempotent matrices in Mn

(
QG
)
. In order to

reduce to the positive characteristic case, we use certain basic properties of
the ring of algebraic integers. In §3.1.3, we prove Kaplansky’s theorem on
the positivity of the trace r1 on non-zero idempotent matrices with entries in
CG, by embedding the group algebra CG in the von Neumann algebra NG.
As an immediate consequence of Kaplansky’s positivity theorem, we conclude
that r1(E) is an algebraic number for all idempotent matrices E ∈ Mn(CG).
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We use this information in §3.1.4, combined with the existence of Q-algebra
homomorphisms from finitely generated commutative Q-algebras back to Q,
in order to complete the proof of the rationality of r1(E) for any idempotent
matrix E ∈ Mn(CG).

3.1.1 Coefficient Fields of Positive Characteristic

As explained above, even though we are primarily interested in the case of
idempotent matrices with entries in a group algebra with coefficients in a
subring k of the field C of complex numbers, we first consider the case where
the ring k is a field of positive characteristic. The goal of this subsection is to
prove the following result.

Theorem 3.1 (Zaleskii; the positive characteristic case) Let k be a field of
characteristic p > 0, G a group and E an idempotent matrix with entries in
the group algebra kG. Then, r1(E) is an element of the prime field Fp of k.
In particular, if e =

∑
g∈G egg ∈ kG is an idempotent, where eg ∈ k for all

g ∈ G, then e1 ∈ Fp ⊆ k.
In order to prove Zaleskii’s theorem, we study the p-th power map (Frobenius
operator) on the ring of matrices with entries in kG.

Let R be a ring and p a prime number. We consider the operator

F : R −→ R ,

which is given by x �→ xp, x ∈ R. If R is commutative and has characteristic
p, then F is well-known to be an additive group homomorphism (cf. Lemma
3.2(ii) below). We examine the behavior of F with respect to addition, in the
more general case where R is a not necessarily commutative ring of charac-
teristic p.

Lemma 3.2 Let p be a prime number and R a ring of characteristic p.
(i) If (xi)i∈I is a finite family of elements of R and x =

∑
i xi, then

F (x) ≡∑i F (xi) (mod [R,R]).
(ii) If R is commutative then F is an additive group homomorphism.

Proof. (i) It suffices to consider the universal case, where R is the free non-
commutative Fp-algebra on the letters (xi)i∈I . Then, xp is the sum of mono-
mials of the form xi1xi2 · · ·xip

, where it ∈ I for all t = 1, 2, . . . , p; let X be the
set of these monomials. We consider the action of the cyclic group Λ =<λ>
of order p on X, which is defined by

xi1xi2 · · ·xip

λ�→ xi2 · · ·xip
xi1 .

It is clear that x − λ · x ∈ [R,R] for any element x = xi1xi2 · · ·xip
∈ X. Any

Λ-orbit for this action, being Λ-equivalent to a coset space of Λ, has either
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p elements or else is a singleton. The contribution to the sum of an orbit
consisting of p elements with a representative x is∑p−1

j=0
λj · x ≡

∑p−1

j=0
x ≡ px ≡ 0 (mod [R,R]) .

An orbit with one element is of the form xp
i for some i and hence the contri-

bution of the singleton orbits is
∑

i x
p
i .

(ii) This is an immediate consequence of (i), since the commutator sub-
group [R,R] is trivial if R is commutative. �

Corollary 3.3 Let p be a prime number, R a ring of characteristic p and τ
a trace on R with values in an abelian group. If (xi)i∈I is a finite family of
elements of R and x =

∑
i xi, then τ(xp) =

∑
i τ(x

p
i ). �

We shall apply Corollary 3.3 in the case where R is a ring of matrices with
entries in the group algebra of a group G with coefficients in a field of positive
characteristic and proceed in the description of the relevant traces. We let
C(G) be the set of G-conjugacy classes and consider for any positive integer
m the subset Cm ⊆ C(G), which consists of the conjugacy classes of elements
of order m; in other words,

Cm = {[g] ∈ C(G) : o(g) = m} .

We fix a commutative ring k and recall that the k-module T (kG) is free with
basis the set C(G); let (π[g])[g] be the corresponding dual basis. For any m ≥ 1
we consider the k-linear functional

fm : T (kG) −→ k ,

which is defined by ρ �→ ∑
[g]∈Cm

π[g](ρ), ρ ∈ T (kG). Since C1 = {[1]}, it
follows that f1 = π[1].

Lemma 3.4 For any ρ ∈ T (kG) there exists an integer m0 = m0(ρ) ≥ 1,
such that fm(ρ) = 0 for all m ≥ m0.

Proof. Taking into account the linearity of the fm’s, it suffices to consider the
case where ρ = [g], for some element g ∈ G. In that case, the result is clear
since fm([g]) = 0 for all m if g has infinite order, whereas fm([g]) = 0 for all
m > o(g) if g has finite order. �

We now fix a positive integer n and consider the k-algebra R = Mn(kG) of
n × n matrices with entries in kG. For any m ≥ 1, we consider the k-linear
functional τm on R, which is defined as the composition

Mn(kG) r−→ T (kG)
fm−→ k ,

where r = rHS is the Hattori-Stallings trace.
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Lemma 3.5 Let (τm)m≥1 be the functionals on the k-algebra Mn(kG) defined
above. Then:

(i) τm is a k-linear trace for all m ≥ 1.
(ii) τ1 = r1.
(iii) For any matrix X ∈ Mn(kG) there exists a non-negative integer

m0 = m0(X), such that τm(X) = 0 for all m ≥ m0.

Proof. Assertion (i) is clear, since τm is the composition of the k-linear trace
r followed by the k-linear functional fm. Assertion (ii) follows since f1 = π[1],
whereas (iii) is an immediate consequence of Lemma 3.4. �

We now examine the behavior of the trace functionals defined above with
respect to idempotent matrices, in the positive characteristic case.

Proposition 3.6 Let p be a prime number, k a commutative ring of charac-
teristic p, G a group and Mn(kG) the k-algebra of n×n matrices with entries
in kG. If E ∈ Mn(kG) is an idempotent matrix, then:

(i) τpt(E) = 0 for all t ≥ 1 and
(ii) τ1(E) = (τ1(E))p.

Proof. Let E = (eij)i,j =
∑

i,j eijEij , where Eij is the (i, j)-th matrix unit
and eij ∈ kG for all i, j = 1, . . . , n. We write eij =

∑
g eij,gg, where eij,g ∈ k

for all i, j = 1, . . . , n and g ∈ G. Then, E =
∑

i,j,g eij,ggEij and hence

τm(E) =
∑

i,j,g
τm(eij,ggEij)

=
∑

i,g
fm(eii,g[g])

=
∑

i,g
eii,gfm([g])

=
∑

{eii,g : 1 ≤ i ≤ n, o(g) = m}

for all m ≥ 1. In particular,

τpt(E) =
∑

{eii,g : 1 ≤ i ≤ n, o(g) = pt} (3.1)

for all t ≥ 0. On the other hand, since E = Ep, we may apply Corollary 3.3
for the trace τm on the ring R = Mn(kG), in order to conclude that

τm(E) = τm(Ep)
=
∑

i,j,g
τm((eij,ggEij)p)

=
∑

i,g
τm
(
epii,gg

pEii

)
=
∑

i,g
fm

(
epii,g[g

p]
)

=
∑

i,g
epii,gfm([gp])

=
∑

{epii,g : 1 ≤ i ≤ n, o(gp) = m}

for all m ≥ 1. In particular,
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τpt(E) =
∑

{epii,g : 1 ≤ i ≤ n, o(gp) = pt} (3.2)

for all t ≥ 0.
(i) If t ≥ 1 then o(gp) = pt if and only if o(g) = pt+1. Hence, it follows

from (3.2) that

τpt(E) =
∑

{epii,g : 1 ≤ i ≤ n, o(g) = pt+1}
=
(∑

{eii,g : 1 ≤ i ≤ n, o(g) = pt+1}
)

p

=
(
τpt+1(E)

)
p .

Here, the second equality follows from Lemma 3.2(ii) and the third one from
(3.1). Since τpt(E) = 0 for t� 0 (cf. Lemma 3.5(iii)), the equalities τpt(E) =(
τpt+1(E)

)
p, t ≥ 1, that we have just established, imply that τpt(E) = 0 for

all t ≥ 1.
(ii) Since o(gp) = 1 if and only if g = 1 or o(g) = p, (3.2) for t = 0 reduces

to
τ1(E) =

∑n

i=1
epii,1 +

∑
{epii,g : 1 ≤ i ≤ n, o(g) = p}

=
(∑n

i=1
eii,1

)
p +
(∑

{eii,g : 1 ≤ i ≤ n, o(g) = p}
)

p

= (τ1(E))p + (τp(E))p

= (τ1(E))p .

In the above chain of equalities, the second one is an application of
Lemma 3.2(ii), the third one follows from (3.1) and the last one results from
the vanishing of τp(E), that was established in part (i). �

We are now ready to prove Zaleskii’s theorem.

Proof of Theorem 3.1. It follows from Proposition 3.6(ii) that the element
x = r1(E) = τ1(E) ∈ k (cf. Lemma 3.5(ii)) satisfies the polynomial equa-
tion xp − x = 0. This finishes the proof, since the roots of that equation are
precisely the elements of the prime field Fp ⊆ k. �

3.1.2 Lifting to the Field of Algebraic Numbers

Our next goal is to prove the analogue of Theorem 3.1 for idempotent matrices
with entries in the complex group algebra CG of a group G. As a first step
in that direction, we consider in the present subsection idempotent matrices
E with entries in the group algebra QG, where Q is the field of algebraic
numbers, and prove the following result:

Theorem 3.7 (Zaleskii; the case of the field of algebraic numbers) Let G be
a group and E an idempotent matrix with entries in the group algebra QG.
Then, r1(E) is a rational number. In particular, if e =

∑
g∈G egg ∈ QG is an

idempotent, where eg ∈ Q for all g ∈ G, then e1 ∈ Q.



78 3 Reduction to Positive Characteristic

In order to reduce the proof of Theorem 3.7 to the case of fields of positive
characteristic, we need a few basic properties of the ring R of algebraic inte-
gers. The following properties of R are derived at the end of §A.2 of Appendix
A from general facts about integral dependence:

(AI1) For any algebraic number x ∈ Q there is a non-zero integer n, such
that nx ∈ R.

(AI2) Let x be an algebraic integer and x1(= x), x2, . . . , xk its Galois con-
jugates. Then, all xi’s are algebraic integers, whereas the polynomial∏k

i=1(X − xi) has coefficients in Z.
(AI3) For any prime number p ∈ Z there exists a maximal ideal M ⊆ R,

such that Z ∩M = pZ; then, the field R/M has characteristic p.

Proof of Theorem 3.7. Assume that E is a matrix of size n. Since x = r1(E) ∈
Q is an algebraic number, property (AI1) implies that there exists a positive
integer m, such that mx is an algebraic integer. Replacing the matrix E by
the block diagonal nm× nm matrix that consists of m copies of E along the
diagonal, we may assume that x ∈ R. Let us consider the Galois conjugates
x1(= x), x2, . . . , xk of x. Then, there are automorphisms σ1, . . . , σk of the field
Q of algebraic numbers, such that xi = σi(x) for all i = 1, . . . , k. We know that
xi ∈ R for all i = 1, . . . , k, whereas the polynomial f(X) =

∏k
i=1(X −xi) has

integer coefficients (property (AI2)). We also know from Galois theory that
f(X) is the minimum polynomial of x over Q; therefore, the monic polynomial
f(X) is irreducible in Q[X] and hence in Z[X] as well.

Claim 3.8 There is a finite set Π of prime numbers, such that for any prime
number p /∈ Π the reduction fp(X) ∈ Fp[X] of f(X) modulo p decomposes
into a product of linear factors.

Having established the above claim, we may invoke Corollary C.4 of Appendix
C and conclude that the degree k of the irreducible polynomial f(X) ∈ Z[X]
is 1. But then f(X) = X − x1 and hence x = x1 ∈ Z. �

Proof of Claim 3.8. Any element a ∈ QG can be written uniquely as a sum
of elements of the form aigi, i = 1, . . . , t, where t is a non-negative integer,
the gi’s are distinct elements of G and the ai’s non-zero algebraic numbers.
We denote by Sa the (finite) subset of Q consisting of the ai’s. If A = (aij)i,j

is an n× n matrix with entries in QG, we denote by SA the union
⋃

i,j Saij
;

this is still a finite set of algebraic numbers.
Any field automorphism σ of Q can be extended to an automorphism σ̃

of the group algebra QG, by letting σ̃(g) = g for all g ∈ G. By an obvious
abuse of notation, we also denote by σ̃ the associated automorphism of the
matrix algebra Mn

(
QG
)
. In particular, let us consider the idempotent matri-

ces σ̃1(E), . . . , σ̃k(E) and the finite set S =
⋃k

i=1 Sσ̃i(E). In view of property
AI1, we may choose a (suitably large) integer l, such that ly ∈ R for all y ∈ S.
Then, any y ∈ S is an element of the subring R = R[l−1] of Q. Therefore,
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the entries of σ̃i(E) are elements of the group ring RG for all i = 1, . . . , k
and hence each one of these matrices may be viewed as an idempotent in
Mn(RG).

Let Π be the set consisting of those prime numbers that divide l and con-
sider a prime number p /∈ Π. In view of property (AI3), we can find a maximal
ideal M ⊆ R, such that the residue field F = R/M has characteristic p. Since
l is not a multiple of p, the residue class l of l in F is invertible and hence the
ideal m = M[l−1] ⊆ R[l−1] = R is such that

R/m = R[l−1]/M[l−1] = (R/M)
[
l−1
]
= F

[
l−1
]
= F .

In order to justify formally the second equality above, we note that R[l−1]
(resp. (R/M)

[
l−1
]
) is isomorphic to the quotient of the polynomial ring R[X]

(resp. (R/M)[X]) by the principal ideal generated by the polynomial lX − 1
(resp. lX − 1). The natural ring homomorphism R −→ R/m = F induces a
homomorphism of group rings RG −→ FG and an associated homomorphism
of matrix rings Mn(RG) −→ Mn(FG). We fix an integer i ∈ {1, . . . , k} and
consider the automorphism σi of Q, the matrix σ̃i(E) ∈ Mn(RG) and the
associated matrix σ̃i(E) ∈ Mn(FG). In view of the naturality of the trace
functional r1 with respect to coefficient ring homomorphisms (cf. Proposition
1.46), we have

r1(σ̃i(E))= σi(r1(E)) = σi(x) = xi ∈ R ,

whereas r1
(
σ̃i(E)

)
is the residue class xi of xi = r1(σ̃i(E)) in F. Since F is a

field of characteristic p, we may apply Theorem 3.1 for the idempotent matrix
σ̃i(E) ∈ Mn(FG), in order to conclude that

xi = r1
(
σ̃i(E)

)
∈ Fp ⊆ F .

Of course, this is true for all i = 1, . . . , k. Let us now consider the commutative
diagram

Z −→ R
↓ ↓
Fp −→ F

where the horizontal (resp. vertical) arrows are the natural inclusions (resp.
projections), and the induced diagram of polynomial rings

Z[X] −→ R[X]
↓ ↓

Fp[X] −→ F[X]

The polynomial f(X) ∈ Z[X] decomposes in the ring R[X] into the product∏k
i=1(X − xi) and hence its reduction fp(X) ∈ Fp[X] decomposes in the ring

F[X] into the product
∏k

i=1(X − xi). Since xi ∈ Fp for all i = 1, . . . , k, this
decomposition takes place in Fp[X], i.e. fp(X) decomposes into a product of
linear factors in Fp[X]. �
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3.1.3 The Kaplansky Positivity Theorem

Having proved that the trace functional r1 takes rational values on idempotent
matrices E with entries in the group algebra QG of a groupG, we now consider
the general case where the entries of E are elements of the complex group
algebra CG. Our main goal in the present subsection is to prove that, for
such an idempotent matrix E, r1(E) is a non-negative real number. This
result will be strengthened in §3.1.4, where we prove that r1(E) is, in fact, a
non-negative rational number.

In order to prove that r1(E) ≥ 0, we work with a suitable completion
of the group algebra CG; surprisingly enough, the only known proofs of the
positivity of r1(E) involve analytic techniques. More precisely, we let the group
algebra CG act on the Hilbert space 2G by the left regular representation

L : CG −→ B(2G)

and consider the von Neumann algebra NG, which is defined as the closure
of the image L(CG) in the weak operator topology (cf. §1.1.2.III). Recall that
the weak operator topology (WOT) on the algebra of bounded linear operators
on 2G is the locally convex topology induced by the family of semi-norms
(Pξ,η)ξ,η∈�2G, where

Pξ,η(a) = |< a(ξ), η >|
for all ξ, η ∈ 2G and a ∈ B(2G). Then, NG is a C∗-algebra containing
the group algebra CG  L(CG) as a WOT-dense subalgebra. The elements
of CG are finite linear combinations of elements of G and hence look much
simpler than those of NG, which are operators on 2G of a certain special
form. Nevertheless, it will turn out that the passage to the von Neumann
algebra level offers certain advantages for the study of our problem. In fact,
we shall prove a more general positivity result for idempotent matrices with
entries in NG.

We begin with a lemma describing certain properties that are satisfied by
the operators in the von Neumann algebra NG.

Lemma 3.9 Let G be a group and consider an operator a ∈ NG.
(i) If (δg)g∈G denotes the canonical orthonormal basis of 2G, then we

have <a(δg), δhg>=<a(δ1), δh> for all g, h ∈ G.1

(ii) For any vector ξ ∈ 2G and any group element g ∈ G the family of
complex numbers (<a(δ1), δx> · <ξ, δx−1g>)x is summable and∑

x∈G
<a(δ1), δx> · <ξ, δx−1g>=<a(ξ), δg> .

(iii) If a(δ1) = 0 ∈ 2G then a is the zero operator.

1 In fact, this property characterizes the operators in NG; cf. Exercise 3.3.1.
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Proof. (i) First of all, let us consider the case where a = Lx for some x ∈ G.
In that case, we have to prove that <δxg, δhg>=<δx, δh>. But this equality
is obvious, since xg = hg if and only if x = h. Both sides of the formula to
be proved are linear and WOT-continuous in a and hence the result follows
from the special case considered above, since NG is the WOT-closure of the
linear span of the set {Lx : x ∈ G}.

(ii) Since ξ =
∑

x <ξ, δx> δx, it follows that a(ξ) =
∑

x <ξ, δx> a(δx).
In view of the linearity and continuity of the inner product, we conclude that

<a(ξ), δg> =
∑

x
<ξ, δx> · <a(δx), δg>

=
∑

x
<ξ, δx> · <a(δ1), δgx−1>

=
∑

y
<ξ, δy−1g> · <a(δ1), δy> ,

where the second equality follows from (i) above.
(iii) If a(δ1) = 0, then the equality of (ii) above implies that the inner

product <a(ξ), δg > vanishes for all vectors ξ ∈ 2G and all group elements
g ∈ G. It follows readily from this that a = 0. �

We note that the linear functional r1 : CG −→ C, which maps an element
a ∈ CG onto the coefficient of 1 ∈ G in a, extends to a linear functional

τ : NG −→ C, (3.3)

by letting τ(a) =<a(δ1), δ1> for all a ∈ NG.

Remark 3.10 Let G be a group and τ the linear functional defined above.
Then, the assertion of Lemma 3.9(i) implies that τ(a) =<a(δg), δg > for all
a ∈ NG and g ∈ G.

Proposition 3.11 Let G be a group and τ the linear functional defined above.
Then:

(i) τ is a WOT-continuous trace.
(ii) τ is positive and faithful, i.e. τ(a∗a) ≥ 0 for all a ∈ NG, whereas

τ(a∗a) = 0 if and only if a = 0.
(iii) τ is normalized, i.e. τ(1) = 1, where 1 ∈ NG is the identity operator.

The trace τ will be referred to as the canonical trace on the von Neumann
algebra NG.

Proof. (i) It is clear that τ is WOT-continuous. In order to show that τ is a
trace, we fix an operator a ∈ NG and note that for any g ∈ G we have

<aLg(δg−1), δg−1>=<a(δ1), δg−1>=<a(δ1), L∗
g(δ1)>=<Lga(δ1), δ1> ,

where the second equality follows since L∗
g = Lg−1 . Invoking Remark 3.10, we

conclude that τ(aLg) = τ(Lga). This being the case for all g ∈ G, it follows
that τ(aa′) = τ(a′a) for all a′ ∈ L(CG). Since multiplication in B(2G) is
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separately WOT-continuous (cf. Remark 1.13(ii)), the WOT-continuity of τ
implies that τ(aa′) = τ(a′a) for all a′ ∈ NG.

(ii) For any a ∈ NG we have

τ(a∗a) =<a∗a(δ1), δ1>=<a(δ1), a(δ1)>= ‖a(δ1)‖2 ≥ 0 .

In particular, τ(a∗a) = 0 if and only if a(δ1) = 0; this proves the final assertion,
in view of Lemma 3.9(iii).

(iii) We compute τ(1) =<δ1, δ1>= ‖δ1 ‖2 = 1. �

For any positive integer n we consider the matrix algebra Mn(NG); it is a
von Neumann algebra of operators acting on the direct sum of n copies of
2G. The canonical trace τ of (3.3) induces the trace

τn : Mn(NG) −→ C ,

which maps any matrix A = (aij)i,j ∈ Mn(NG) onto the complex number∑n
i=1 τ(aii) (cf. Proposition 1.39(i)). The trace τn is positive, faithful and

τn(In) = n, where In is the identity n× n matrix (cf. Remark 1.42(ii),(iii)).
We are now ready to state Kaplansky’s result:

Theorem 3.12 (Kaplansky positivity theorem) Let G be a group and E an
idempotent n×n matrix with entries in the von Neumann algebra NG. Then:

(i) The complex number τn(E) is, in fact, real and satisfies the inequalities
0 ≤ τn(E) ≤ n.

(ii) τn(E) = 0 (resp. n) if and only if E is the zero (resp. the identity)
n× n matrix.

In particular, if e ∈ NG is an idempotent then τ(e) is a real number
contained in the interval [0, 1]; moreover, τ(e) = 0 (resp. 1) if and only if
e = 0 (resp. 1).

The following lemma will be the main technical tool in the proof of the theo-
rem. It uses some of the analytic properties of a von Neumann algebra, thereby
justifying the use of NG in the study of our problem.

Lemma 3.13 Let N be a von Neumann algebra of operators acting on the
Hilbert space H. For any idempotent e ∈ N there is a projection f ∈ N , such
that ef = f and fe = e.

Proof. Since e ∈ Idem(N ), the subspace V = im e is easily seen to be closed
and N ′-invariant. Therefore, Lemma 1.17(ii) implies that the orthogonal pro-
jection f onto V is contained in N ′′. Invoking Theorem 1.18, we conclude that
f ∈ N . The equalities ef = f and fe = e follow since e and f are idempotent
operators on H with the same image. �

Proof of Theorem 3.12. In view of Lemma 3.13, we may choose a projection
F ∈ Mn(NG), such that FE = E and EF = F . Then, we have
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τn(E) = τn(FE) = τn(EF ) = τn(F ) = τn(F ∗F ) ≥ 0 ,

where the second equality follows from the trace property of τn and the in-
equality from its positivity. Considering the idempotent matrix In − E, we
may prove in a similar way that τn(In −E) is a non-negative real number as
well. But τn(E)+τn(In−E) = τn(In) = n and hence both numbers τn(E) and
τn(In −E) are contained in the interval [0, n]. If τn(E) = 0 then τn(F ∗F ) = 0
and hence F = 0, in view of the faithfulness of τn. But then E = FE = 0
as well. Working similarly with the idempotent matrix In −E, one can show
that τn(E) = n if and only if E = In. �

Corollary 3.14 Let G be a group and E an idempotent n × n matrix with
entries in the group algebra CG. Then:

(i) The complex number r1(E) is, in fact, real and satisfies the inequalities
0 ≤ r1(E) ≤ n.

(ii) r1(E) = 0 (resp. n) if and only if E is the zero (resp. the identity)
n× n matrix.
In particular, if e =

∑
g egg ∈ CG is an idempotent, where eg ∈ C for all

g ∈ G, then e1 is a real number contained in the interval [0, 1]; moreover,
e1 = 0 (resp. 1) if and only if e = 0 (resp. 1).

Proof. This follows from Theorem 3.12, since the restriction of the trace func-
tional τn to the subalgebra Mn(CG)  Mn(L(CG)) of Mn(NG) coincides
with the trace functional r1. �

The following result will play an important role in the homological approach
to the idempotent conjecture, that will be presented in Chap. 4.

Proposition 3.15 Let G be a group. Then, the following conditions are equiv-
alent for an idempotent e ∈ CG:

(i) The idempotent e is trivial.
(ii) For any g ∈ G \ {1} we have rg(e) = 0.

Proof. It is clear that (i)→(ii). In order to show that (ii)→(i), let us assume
that (ii) holds and write e =

∑
g∈G egg ∈ CG, where eg ∈ C for all g ∈ G.

We consider the augmentation homomorphism ε : CG −→ C. Since ε(e) ∈ C
is an idempotent, we have ε(e) = 0 or 1. We now compute

ε(e) =
∑

{eg : g ∈ G}
= e1 +

∑
{eg : g ∈ G, g �= 1}

= e1 +
∑

{rg(e) : [g] ∈ C(G), [g] �= [1]}
= e1 .

Therefore, e1 = 0 or 1; this finishes the proof, in view of the last assertion of
Corollary 3.14. �
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Our next goal is to prove that for any idempotent matrix E with entries in the
complex group algebra CG of a group G, the real number r1(E) is algebraic.
To that end, we need the following lemma.

Lemma 3.16 Let K,L be fields and assume that L is algebraically closed.
(i) Let K ′ be a monogenic algebraic field extension of K. Then, any em-

bedding of K into L can be extended to an embedding of K ′ into L.
(ii) Assume that L is the algebraic closure of K. Let ς be an automor-

phism of K and σ an embedding of L into itself that extends ς. Then, σ is an
automorphism of L.

(iii) Assume that L is the algebraic closure of K. Then, any automorphism
of K can be extended to an automorphism of L.

(iv) Assume that K is a subfield of L. Then, any automorphism of K can
be extended to an automorphism of L.

Proof. (i) We may regard K as a subfield of L, by means of the given em-
bedding. Let x ∈ K ′ be such that K ′ = K(x) and consider the minimum
polynomial f(X) ∈ K[X] of x over K. Let y be a root of f(X) in L; then,
there is a unique K-algebra homomorphism from K ′ = K(x)  K[X]/(f(X))
into L, which maps the class of X onto y. Since K ′ is a field, this homomor-
phism is an embedding.

(ii) We have to prove that σ is surjective. To that end, let us fix an element
x ∈ L and consider its minimum polynomial f(X) ∈ K[X]. We also consider
the polynomial g(X) ∈ K[X], whose coefficients are obtained from those of
f(X) by applying ς−1. Since L is algebraically closed, there are elements
x1, . . . , xn ∈ L such that g(X) =

∏n
i=1(X − xi) ∈ L[X]. Applying σ to the

coefficients of the polynomials on both sides of that equation, we conclude
that f(X) =

∏n
i=1(X − σ(xi)) ∈ L[X]. But x is a root of f(X) and hence

x = σ(xi) for some i.
(iii) Let ς be an automorphism of K and consider the embedding ı of K

into L, which is defined as the composition

K
ς−→ K ↪→ L .

Let Λ be the set of pairs (E, j), where E is a subfield of L containing K and j
an embedding of E into L extending ı. We order Λ by letting (E, j) ≤ (E′, j′)
if E ⊆ E′ and j′ extends j. By an application of Zorn’s lemma, we may choose
a maximal element (E0, j0) in Λ. The maximality of (E0, j0), combined with
part (i) above, shows that E0 = L. We now invoke part (ii) and conclude that
the embedding j0 of L into itself is actually an automorphism of L.

(iv) Let (Xi)i∈I be a transcendency basis of L over K and consider the
subfield K ′ = K(Xi; i ∈ I) of L, which is a purely transcendental extension
of K. It is clear that any automorphism ς of K can be extended to an auto-
morphism ς ′ of K ′. Since L is the algebraic closure of K ′, ς ′ can be further
extended to an automorphism σ of L, in view of part (iii) above. �
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Corollary 3.17 Let x be a complex number. If σ(x) is a non-negative real
number for any field automorphism σ of C, then x ∈ Q.

Proof. Letting σ be the identity of C, we deduce that x is a non-negative
real number. Assume that x is transcendental over Q; then, x is non-zero
and hence x > 0. The subfield K = Q(x) of C is isomorphic to the field of
rational functions in one variable over Q and hence there is a unique field
automorphism ς of K that maps x onto −x. Since C is algebraically closed,
we may invoke Lemma 3.16(iv) in order to extend ς to an automorphism σ of
C. But then σ(x) = ς(x) = −x < 0, a contradiction. �

Let us now consider an automorphism σ of the field C of complex numbers
and its extension σ̃ to the complex group algebra CG of a group G, which is
such that σ̃(g) = g for all g ∈ G. In view of the naturality of the trace r1 with
respect to coefficient ring homomorphisms (cf. Proposition 1.46), we have

r1(σ̃(E))= σ(r1(E)) (3.4)

for any idempotent matrix E with entries in CG, where σ̃(E) is the idempotent
matrix whose entries are obtained from those of E by applying σ̃.

Proposition 3.18 Let G be a group and E an idempotent matrix with entries
in the complex group algebra CG; then, r1(E) is an algebraic number. In
particular, if e =

∑
g egg ∈ CG is an idempotent, where eg ∈ C for all g ∈ G,

then e1 is an algebraic number.

Proof. Let x = r1(E) ∈ C. We consider a field automorphism σ of C and the
induced automorphism σ̃ of the complex group algebra CG. If E′ = σ̃(E) then
r1(E′) = σ(x), in view of (3.4). We now invoke Corollary 3.14, applied to the
idempotent matrix E′, in order to conclude that σ(x) is real and non-negative.
Since this is the case for any automorphism σ of C, the proof is finished using
Corollary 3.17. �

3.1.4 Idempotent Matrices with Entries
in the Complex Group Algebra

In this subsection, we complete Theorem 3.7 and consider idempotent matrices
with entries in the complex group algebra of a group G. In order to prove
that the trace functional r1 takes rational values on the set of these matrices,
we follow a very simple strategy and associate with any such matrix E an
idempotent matrix with entries in QG. To that end, we consider the finitely
generated Q-subalgebra R of C generated by all complex numbers that are
involved in E and use a Q-algebra homomorphism from R back to Q.

Theorem 3.19 (Zaleskii) Let G be a group and E an idempotent matrix with
entries in the complex group algebra CG. Then, r1(E) is a rational number.
In particular, if e =

∑
g∈G egg ∈ CG is an idempotent, where eg ∈ C for all

g ∈ G, then e1 ∈ Q.
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Proof. As in the proof of Claim 3.8, for any element a =
∑t

i=1 aigi ∈ CG,
where the gi’s are distinct elements of G and the ai’s non-zero complex num-
bers, we denote by Sa the subset of C consisting of the ai’s. If A = (aij)i,j

is an n × n matrix with entries in CG, we denote by SA the finite subset⋃
i,j Saij

of C.
In particular, let us consider the subset SE ⊆ C and the finitely gener-

ated Q-subalgebra R = Q[SE ] of C. It is clear that E may be viewed as an
idempotent matrix with entries in RG. We fix a Q-algebra homomorphism
π : R −→ Q; such a homomorphism exists in view of Corollary A.23 of
Appendix A. Since the complex number x = r1(E) ∈ R is algebraic (cf.
Proposition 3.18), we have π(x) = x. The homomorphism π can be extended
to a homomorphism π̃ : RG −→ QG, by letting π̃(g) = g for all g ∈ G. We
also denote by π̃ the associated homomorphism of matrix rings Mn(RG) −→
Mn

(
QG
)

and consider the idempotent matrix π̃(E) ∈ Mn

(
QG
)
. In view

of the naturality of the trace functional r1 with respect to coefficient ring
homomorphisms (cf. Proposition 1.46), we have

r1(π̃(E))= π(r1(E)) = π(x) = x .

We now invoke Theorem 3.7, applied to the idempotent matrix π̃(E), in order
to conclude that x is a rational number, as needed. �

The passage from C to any field of characteristic 0 is now routine.

Corollary 3.20 Let k be a field of characteristic 0, G a group and E an
idempotent matrix with entries in the group algebra kG. Then, r1(E) is an
element of the prime field Q ⊆ k. In particular, if e =

∑
g∈G egg ∈ kG is an

idempotent, where eg ∈ k for all g ∈ G, then e1 ∈ Q ⊆ k.
Proof. Let SE ⊆ k be the finite set consisting of all elements of k that are
involved in E (cf. the proof of Claim 3.8 and that of Theorem 3.19). Re-
placing it, if necessary, by its subfield Q(SE), we may assume that the field
k is finitely generated. In that case, there exists a subfield k0 ⊆ k, which
is purely transcendental over Q with tr.deg (k0/Q) < ∞, such that k is fi-
nite algebraic over it. It is easily seen that any field K of characteristic 0 with
tr.deg (K/Q) <∞ is countable. Since the field C is uncountable, its transcen-
dence degree over Q is infinite. Therefore, k0 may be embedded in C. We may
extend this embedding to k, by a repeated application of Lemma 3.16(i), and
hence view k as a subfield of C. Then, the result follows from Theorem 3.19. �

The following result is an immediate consequence of the theorems of
Kaplansky and Zaleskii and supplements Proposition 2.23 and Lemma 2.24
(cf. Remark 2.25).

Corollary 3.21 The following conditions are equivalent for a subring k of
the field C of complex numbers.
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(i) k ∩ Q = Z.
(ii) For any group G the group algebra kG has no idempotents �= 0, 1.

Proof. We already know that (ii)→(i); cf. Remark 1.53(i). In order to prove
the reverse implication, let us consider a subring k of C satisfying (i), a group
G and an idempotent e =

∑
g egg ∈ kG, where eg ∈ k for all g ∈ G. In view of

Theorem 3.19, the complex number e1 is rational and hence e1 ∈ k ∩ Q = Z.
Since 0 ≤ e1 ≤ 1 (cf. Corollary 3.14), it follows that e1 = 0 or 1. But then e
is trivial, in view of the last assertion of loc.cit. �

3.2 The Support of the Hattori-Stallings Rank

In Chap. 2, we proved Bass’ conjecture for groups that are finite extensions
of their center (cf. Proposition 2.35). In this section, we prove a result of
Linnell, describing certain conditions on a group that are necessary for it to
be a counterexample to Bass’ conjecture. As it turns out, these conditions
are not satisfied by groups that are finite extensions of their center; therefore,
Linnell’s theorem generalizes the above mentioned result. In the spirit of the
present chapter, the approach we follow consists in replacing the subring k of
C (that satisfies the usual condition k∩Q = Z) by a quotient ring R of prime
power characteristic. Then, any idempotent matrix E with entries in the group
algebra kG of a group G induces an idempotent matrix E with entries in RG.
The idea is to study the Hattori-Stallings rank rHS(E) of E by examining
the corresponding rank of E. This latter rank can be analyzed by using the
action of the Frobenius operator (more precisely, of iterates of the Frobenius
operator) on the ring of matrices with entries in RG. By the same technique,
we obtain a result of Bass that concerns idempotent matrices with entries in a
complex group algebra and prove that torsion-free polycyclic-by-finite groups
satisfy the idempotent conjecture.

In §3.2.1, we consider the action of the Frobenius operator on a ring R of
prime power characteristic and then apply our results, studying the form of
the Hattori-Stallings rank of idempotent matrices in Mn(R). In the following
subsection, we prove the theorems of Bass and Linnell and state a few imme-
diate consequences concerning the idempotent and Bass’ conjectures. Finally,
in §3.2.3, we apply Linnell’s theorem to the study of Bass’ conjecture for solv-
able groups and prove that the conjecture is satisfied by the solvable groups
of finite Hirsch number.

3.2.1 Iterates of the Frobenius Operator

Let R be a ring, p a prime number and

F : R −→ R
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the Frobenius operator, which is given by x �→ xp, x ∈ R. If the ring R has
characteristic p, then we know that F is additive modulo [R,R] (cf. Lemma
3.2(i)). We examine the behavior of certain iterates of F with respect to
addition in the more general case where R has characteristic a power of p and
then apply our results to the study of the Hattori-Stallings rank of idempotent
matrices with entries in R.

Lemma 3.22 Let p be a prime number and R a ring of characteristic pn,
for some n ≥ 1. Then, for any finite family (xi)i∈I of elements of R and any
k ≥ n− 1 we have(∑

i
xi

)
pk ≡

∑
(xi1xi2 · · ·xis

)pk−n+1
(mod [R,R]) ,

where s = pn−1 and the summation on the right is extended over all s-tuples
of indices (i1, i2, . . . , is) ∈ Is.

Proof. We consider the universal case, where R is the free non-commutative
Z/pnZ-algebra on the letters (xi)i∈I . Then, (

∑
i xi)pk

is the sum of monomials
of the form xi1xi2 · · ·xi

pk
, where it ∈ I for all t = 1, 2, . . . , pk; let X be the

set of these monomials. We consider the action of the cyclic group Λ =<λ>
of order pk on X, which is defined by

xi1xi2 · · ·xi
pk

λ�→ xi2 · · ·xi
pk
xi1 .

It is clear that x− λ · x ∈ [R,R] for any x = xi1xi2 · · ·xi
pk

∈ X. Let X ′ ⊆ X
be a Λ-orbit; being Λ-equivalent to a coset space of Λ, X ′ has pm elements
for some m = 0, 1, . . . , k. If card(X ′) = pm then X ′  Λ/Λ′ as Λ-sets, where
Λ′ =<λpm

>. Let us consider an orbit X ′ with pm elements, where m ≥ n. If
x = xi1xi2 · · ·xi

pk
∈ X ′ is a representative of the orbit, then the contribution

of X ′ to the sum is∑pm−1

j=0
λj · x ≡

∑pm−1

j=0
x ≡ pmx ≡ 0 (mod [R,R]) .

We now consider an orbit X ′ with pm elements, where m ≤ n−1. In that case,
any element x = xi1xi2 · · ·xi

pk
∈ X ′ is invariant under λpm

and hence under

λpn−1
= λs as well. But then x is of the form (xi1xi2 · · ·xis

)pk−n+1
. Conversely,

any element x ∈ X of the above form is invariant under λs = λpn−1
and hence

its orbit has pm elements for some m ≤ n− 1. It follows that the contribution
to the sum of those orbits X ′ that contain pm elements, for some m ≤ n− 1,
is equal to ∑

(xi1xi2 · · ·xis
)pk−n+1

,

where the summation is extended over all s-tuples of indices (i1, i2, . . . , is) ∈
Is. �
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Applying the result above to the case of a ring of matrices with entries in a
group algebra, we obtain an interesting property of the Hattori-Stallings rank
of idempotent matrices.

Proposition 3.23 Let p be a prime number and R a commutative ring of
characteristic pn, for some n ≥ 1. If G is a group and E an idempotent
matrix with entries in the group ring RG, then there is an integer N ∈ N and
elements r1, . . . , rN ∈ R and g1, . . . , gN ∈ G, such that

rHS(E) =
∑N

i=1
rp

k

i

[
gpk

i

]
∈ T (RG)

for all k ≥ 0.

Proof. Let E =
∑d

i,j=1 eijEij ∈ Md(RG), where the Eij ’s are the matrix units
and eij ∈ RG for all i, j = 1, . . . , d. We fix an integer k ≥ 2n − 2 and note
that Lemma 3.22, applied to the ring Md(RG), shows that

E ≡ Epk

≡
(∑d

i,j=1
eijEij

)
pk

≡
∑

(ei1j1ei2j2 · · · eisjs
Ei1j1Ei2j2 · · ·Eisjs

)pk−n+1

modulo [Md(RG),Md(RG)], where s = pn−1 and the summation is extended
over all 2s-tuples of indices (i1, j1, i2, j2, . . . , is, js) ∈ {1, . . . , d}2s. The trace of
a commutator of matrices is zero modulo [RG,RG], whereas the trace of a ma-
trix of the form (Ei1j1Ei2j2 · · ·Eisjs

)pk−n+1
is 1 if j1 = i2, j2 = i3, . . . , js−1 =

is, js = i1 and 0 otherwise. Therefore, we conclude that

tr(E) ≡
∑

(ei1i2ei2i3 · · · eisi1)
pk−n+1

(mod [RG,RG]) ,

where the summation is extended over all s-tuples of indices (i1, i2, . . . , is) ∈
{1, . . . , d}s. Being an element of RG, any product ei1i2ei2i3 · · · eisi1 can be
written as a sum

∑
l �lgl for suitable elements �l ∈ R and gl ∈ G. Using

Lemma 3.22 again, this time applied to the ring RG, we conclude that a
typical summand in the summation above is equal to

(ei1i2ei2i3 · · · eisi1)
pk−n+1 ≡

(∑
l
�lgl

)
pk−n+1

≡
∑

(�l1�l2 · · · �lsgl1gl2 · · · gls)pk−2n+2

≡
∑

(�l1�l2 · · · �ls)
pk−2n+2

(gl1gl2 · · · gls)pk−2n+2

modulo [RG,RG], where the latter summations are extended over all s-tuples
(l1, l2, . . . , ls). Since k − 2n + 2 can be any non-negative integer, the proof is
finished by letting �l1�l2 · · · �ls (resp. gl1gl2 · · · gls) be one of the ri’s (resp. one
of the gi’s) in the statement. �
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In order to obtain a simpler form for the expression of the Hattori-Stallings
rank given in Proposition 3.23, in the special case where the ring R is finite,
we need the following lemma.

Lemma 3.24 Let k be a commutative ring and m ⊆ k a maximal ideal, such
that the residue field k/m is finite of order pf , for some prime number p and
some f ≥ 1.

(i) If x ∈ 1 + m then xpf(n−1) ∈ 1 + mn for all n ≥ 1.
(ii) If x ∈ k then xpfn − xpf(n−1) ∈ mn for all n ≥ 1.

Proof. (i) First of all, we note that p · 1 ∈ m, since the residue field k/m has
characteristic p. Therefore, pf · 1 ∈ m as well and hence the result follows by
induction on n, using the binomial formula.

(ii) We begin by observing that

xpfn − xpf(n−1)
= xpf(n−1)

(
x(pf−1)pf(n−1) − 1

)
. (3.5)

If x ∈ m then xpf(n−1) ∈ mpf(n−1)
and the result follows from (3.5), since

pf(n−1) ≥ pn−1 ≥ n. We now assume that x /∈ m. Then, the residue class
x ∈ k/m = Fpf is non-zero and hence xpf−1 = 1 ∈ k/m, i.e. xpf−1 ∈ 1 + m.
Invoking assertion (i) above, we conclude that x(pf−1)pf(n−1) ∈ 1 + mn. In
view of (3.5), the result follows in this case as well. �
Corollary 3.25 Let k be a commutative ring and m ⊆ k a maximal ideal,
such that the residue field k/m is finite of order pf , for some prime number
p and some f ≥ 1. Let R = k/mn for some n ≥ 1. If G is a group and E an
idempotent matrix with entries in RG, then there is an integer N ∈ N and
elements r1, . . . , rN ∈ R and g1, . . . , gN ∈ G, such that

rHS(E) =
∑N

i=1
ri[gi] =

∑N

i=1
ri

[
gpf

i

]
∈ T (RG) .

Proof. Since the residue field k/m has characteristic p, it follows that p·1 ∈ m.
Therefore, pn · 1 ∈ mn and hence R = k/mn is a commutative ring whose
characteristic is a p-th power. Invoking Proposition 3.23, we may choose an
integer N ∈ N and elements r̃1, . . . , r̃N ∈ R and g̃1, . . . , g̃N ∈ G, such that

rHS(E) =
∑N

i=1
r̃i

pk
[
g̃i

pk
]
∈ T (RG)

for all k ≥ 0. For k = f(n− 1) and k = fn this equation becomes

rHS(E) =
∑N

i=1
r̃i

pf(n−1)
[
g̃i

pf(n−1)
]
=
∑N

i=1
r̃i

pfn
[
g̃i

pfn
]
∈ T (RG) .

We now define the elements ri = r̃i
pf(n−1) ∈ R and gi = g̃i

pf(n−1) ∈ G for
i = 1, . . . , N . Since r̃i pfn

= r̃i
pf(n−1) ∈ R, in view of Lemma 3.24(ii), the

above equation can be rewritten as

rHS(E) =
∑N

i=1
ri[gi] =

∑N

i=1
ri

[
gpf

i

]
∈ T (RG)

and hence the proof is finished. �
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3.2.2 The Main Results

Let k be a commutative ring and G a group. If ρ =
∑

[g]∈C(G) ρg[g] ∈ T (kG),
where ρg ∈ k for all g ∈ G, then the support supp ρ of ρ is the finite subset of
C(G) that consists of all conjugacy classes [g], for which ρg is non-zero. In this
subsection, we state and prove two results of Bass and Linnell that describe
certain properties of the support of the Hattori-Stallings rank rHS(E) of an
idempotent matrix E with entries in CG.

If Π is a set of prime numbers we denote by NΠ the multiplicatively closed
subset of N generated by all primes numbers p /∈ Π; in other words, NΠ is the
set of products of primes numbers p /∈ Π. We also consider the subring QΠ of
Q, which consists of all fractions of the form a/b, where a ∈ Z and b ∈ NΠ.
It is easily seen that QΠ is the intersection

⋂
p∈Π Z(p), where Z(p) ⊆ Q is the

localization of Z at the prime ideal pZ for all p ∈ Π. If Π = ∅ then NΠ = N+

and QΠ = Q.

Theorem 3.26 (Bass) Let G be a group and E an idempotent matrix with
entries in the complex group algebra CG. Consider the subset X ⊆ G that
consists of all elements g ∈ G for which rg(E) �= 0; in other words, X = {g ∈
G : [g] ∈ supp rHS(E)}. Then, there is a finite set Π of prime numbers, such
that:

(i) For any prime number p /∈ Π the map [g] �→ [gp], [g] ∈ C(G), restricts
to a bijection of the finite set supp rHS(E) onto itself. In particular, there is
a positive integer u such that the elements g and gpu

are conjugate in G for
all prime numbers p /∈ Π and g ∈ X .

(ii) If g ∈ X is a torsion element then its order o(g) is a product of prime
numbers in Π.

(iii) If g ∈ X is an element of infinite order then there exists a subgroup
K(g) of G containing g, which is isomorphic with the group (QΠ,+).

Proof. Since all claims are trivial if X is the empty set, we may assume that
X �= ∅. As in the proof of Claim 3.8, we consider a typical element a ∈ CG and
write a =

∑t
i=1 aigi, where t is a non-negative integer, the gi’s are distinct

elements of G and the ai’s non-zero complex numbers. We denote by Sa the
subset of C consisting of the ai’s. If A = (aij)i,j is a matrix with entries in
CG, we denote by SA the union

⋃
i,j Saij

. We now replace C by its subring
k = Z[SE ] and view E as a matrix with entries in kG; in particular, rg(E) ∈ k
for all g ∈ G. For any g ∈ X we consider the set Πg that consists of those
prime numbers p ∈ Z, for which rg(E) ∈ pk. Since k is a finitely generated
integral domain of characteristic 0, the set Πg is finite (cf. Corollary A.27 of
Appendix A). Since Πg = Πg′ if [g] = [g′] ∈ C(G), the finiteness of the set
[X ] = supp rHS(E) implies that the set Π =

⋃
g∈X Πg is also finite.

In order to prove assertion (i), we fix a prime number p /∈ Π and note
that, by the very definition of Π, rg(E) /∈ pk for all g ∈ X . In particular, the
ideal pk is proper in k and hence the quotient ring R = k/pk is non-zero. We
consider the idempotent matrix E with entries in RG, which is obtained from
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E by passage to the quotient. In view of the naturality of the Hattori-Stallings
rank with respect to coefficient ring homomorphisms (cf. Proposition 1.46),
we have

rx
(
E
)
= rx(E) ∈ R

for all x ∈ G, where rx(E) denotes the residue class of rx(E) ∈ k modulo pk.
Since rg(E) /∈ pk for all g ∈ X , we conclude that

supp rHS

(
E
)
= supp rHS(E) = [X ] ⊆ C(G) .

Since the commutative ring R has characteristic p, we may invoke Proposi-
tion 3.23 and choose an integer N ∈ N and elements r1, . . . , rN ∈ R and
g1, . . . , gN ∈ G, such that

rHS

(
E
)
=
∑N

i=1
ri[gi] =

∑N

i=1
rpi [gp

i ]∈ T (RG) . (3.6)

Without any loss of generality, we can make the following two assumptions
(replacing, if necessary, N by a lower integer):

• If i �= j then [gi] �= [gj ] ∈ C(G). Indeed, if gi is conjugate to gj for two
indices i and j, then gp

i is conjugate to gp
j as well. In view of Lemma

3.2(ii), we have rpi + rpj = (ri + rj)p ∈ R and hence we may reduce by one
the number of summands in both sums of (3.6). Repeating this reduction
process finitely many times, we arrive at an equation of the form (3.6)
with [gi] �= [gj ] if i �= j.

• All coefficients ri are non-zero. Indeed, if some ri = 0 then rpi = 0 as well
and hence we may remove the corresponding summands from both sums
of (3.6).

Under these two assumptions, we have

[X ] = supp rHS

(
E
)
= {[g1], . . . , [gN ]} ⊆{[gp

1 ], . . . ,[gp
N ]}

and

card([X ]) = card
(
supp rHS

(
E
))

= card({[g1], . . . , [gN ]}) = N .

Comparing cardinalities, we conclude that the inclusion above is an equality

[X ] = {[g1], . . . , [gN ]} ={[gp
1 ], . . . ,[gp

N ]} . (3.7)

We now consider the operator

F : C(G) −→ C(G) ,

which is given by [x] �→ [xp], [x] ∈ C(G); it is clear that this operator is well-
defined. Even though F is, in general, neither injective nor surjective, (3.7)
shows that the restriction F|[X ] is a bijection of the finite set [X ] onto itself.
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Since the group of symmetries of [X ] is finite of order u = N ! = card([X ])!,
we conclude that Fu is the identity operator on [X ]. In particular, we have
[g] = Fu[g] =

[
gpu]

, i.e. the elements g and gpu

are conjugate in G for all
g ∈ X .

Assertion (ii) is an immediate consequence of (i) above, in view of the
following lemma.

Lemma 3.27 Let Π be a set of prime numbers, G a group and g ∈ G a
torsion element with the following property: For any prime number p /∈ Π
there is a positive integer u(p), such that g is conjugate to gpu(p)

in G. Then,
the order of g is a product of prime numbers in Π.

Proof. Let n = o(g) be the order of g and suppose that p is a prime number
dividing n, with p /∈ Π. If m = n/p ∈ Z then, g being conjugate to gpu(p)

, the
element gm is conjugate to

(
gpu(p)

)
m = gpu(p)m = gpu(p)−1n = (gn)pu(p)−1

=

1pu(p)−1
= 1. But then gm = 1, a contradiction as m < n. �

Proof of Theorem 3.26 (cont.) The following lemma shows that assertion (iii)
is a formal consequence of (i) as well. �

Lemma 3.28 Let G be a group and g ∈ G an element of infinite order.
Consider a set Π of prime numbers and assume that for any prime number
p /∈ Π there exists a positive integer u(p), such that g and gpu(p)

are conjugate
in G. Then, there exists a subgroup K ≤ G, such that:

(i) K contains g,
(ii) K is isomorphic with the group (QΠ,+) and
(iii) K is the ascending union of a sequence of cyclic groups that are

generated by conjugates of g.

Proof. It suffices to consider the case where Π is a proper subset of the set of
all prime numbers. In that case, we may consider a sequence (pi)i of prime
numbers that are not contained in Π, such that every prime number p /∈ Π is
repeated infinitely often therein. We define vi = p

u(pi)
i for all i and note that

the sequence (kn)n, where kn =
∏n

i=1 vi for all n ≥ 0 (with the assumption
that k0 = 1), is such that:

(α) vnk−1
n = k−1

n−1 ∈ Q for all n ≥ 1 and
(β) for any m ∈ NΠ there is an integer n ≥ 0, such that m divides kn.2

In particular, the sequence (Cn)n of cyclic groups, where Cn = Z · k−1
n ⊆ Q

for all n ≥ 0, is increasing (in view of (α)), whereas
⋃

n Cn = QΠ (in view of
(β)). The elements g and gvi are conjugate in G and hence there exists xi ∈ G
such that

x−1
i gxi = gvi

2 It is precisely at this point where we need the hypothesis that any prime number
p /∈ Π is repeated infinitely often in the sequence (pi)i.
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for all i. We now define

hn = x1x2 · · ·xn and zn = hngh
−1
n

for all n ≥ 0, with the assumption that h0 = 1. Being conjugate to g, all of the
zn’s are elements of infinite order. It follows that if Kn is the cyclic subgroup
of G generated by zn, then there is an isomorphism

ϕn : Kn −→ Cn ,

which maps zn onto k−1
n ∈ Cn for all n ≥ 0. Since hnx

−1
n = hn−1, we have

zvn
n =

(
hngh

−1
n

)
vn

= hng
vnh−1

n

= hnx
−1
n gxnh

−1
n

= hn−1gh
−1
n−1

= zn−1

for all n ≥ 1. In particular, zn−1 ∈ Kn for all n ≥ 1 and hence the sequence
(Kn)n is increasing. Moreover, the relations zvn

n = zn−1, n ≥ 1, combined
with (α) above, show that there is a ladder of isomorphisms

K0 ↪→ · · · ↪→ Kn−1 ↪→ Kn ↪→ · · · ⊆ G
ϕ0 ↓ ϕn−1 ↓ ϕn ↓
C0 ↪→ · · · ↪→ Cn−1 ↪→ Cn ↪→ · · · ⊆ Q

It follows that the union K =
⋃

nKn, a subgroup of G containing g = z0, is
isomorphic with the union

⋃
n Cn = QΠ. �

We now describe a few consequences of Bass’ theorem that concern the idem-
potent conjecture.

Corollary 3.29 Let G be a torsion-free group that contains no subgroup iso-
morphic with the additive group of the ring QΠ, for any finite set Π of prime
numbers. Then, G satisfies the idempotent conjecture.

Proof. If e ∈ CG is an idempotent then our assumption on G, combined with
Theorem 3.26(iii), implies that rg(e) = 0 for all g ∈ G\{1}. Then, e is trivial,
in view of Proposition 3.15. �

A group is called Noetherian if any subgroup of it is finitely generated. Of
course, finite groups are Noetherian. The following result can be used in or-
der to obtain less trivial examples of Noetherian groups. A group is called
polycyclic-by-finite if it is an iterated extension of cyclic and finite groups.

Proposition 3.30 (i) A finitely generated abelian group is Noetherian.
(ii) An extension of Noetherian groups is Noetherian.
(iii) A polycyclic-by-finite group is Noetherian.
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Proof. (i) It is well-known that any subgroup of a finitely generated abelian
group is finitely generated.

(ii) Let G be a group and N � G a normal subgroup, such that N and
the quotient group G/N are Noetherian. In order to show that G is also
Noetherian, let us consider a subgroup H ≤ G. Then, both groups H ∩N and
H/(H∩N) are finitely generated, being subgroups ofN and G/N respectively.
It follows that H is finitely generated as well.

(iii) This is an immediate consequence of (i) and (ii) above, since finite
groups are Noetherian. �

Corollary 3.31 A torsion-free Noetherian group satisfies the idempotent
conjecture.

Proof. If p is a prime number then the group (Z[p−1],+) is not finitely gener-
ated. On the other hand, Z[p−1] ⊆ QΠ for any set Π of prime numbers with
p /∈ Π. Therefore, a Noetherian group contains no subgroup isomorphic with
the group (QΠ,+), for any proper subset Π of the set of prime numbers. This
finishes the proof, in view of Corollary 3.29. �

Let E be an idempotent matrix with entries in the complex group algebra of
a group G. Bass’ result (Theorem 3.26) gives no information about the p-th
powers of the elements g ∈ G for which rg(E) �= 0, in the case where p ∈ Π is
one of the exceptional prime numbers therein. If we assume that E has entries
in the group algebra kG, where k is a subring of C with k ∩ Q = Z, then we
can obtain information on the p-th power map for all primes numbers p. This
is the theme of the following result of Linnell, whose proof is very similar to
that of Bass’ theorem.

Theorem 3.32 (Linnell) Let k be a subring of the field C of complex numbers
with k ∩ Q = Z, G a group and E an idempotent matrix with entries in the
group algebra kG. Consider the subset X ⊆ G that consists of all elements
g ∈ G, for which rg(E) �= 0; in other words, X = {g ∈ G : [g] ∈ supp rHS(E)}.
Then:

(i) There is a positive integer u such that g and gnu

are conjugate in G
for all n ≥ 1 and all g ∈ X .

(ii) If g ∈ X is a torsion element then g = 1.
(iii) If g ∈ X is an element of infinite order then there exists a subgroup

K(g) of G containing g, which is generated by some conjugates of g, is iso-
morphic with the additive group Q of rational numbers and lies in finitely
many G-conjugacy classes.
In the special case where k = Z is the ring of integers, we also have:

(i)′ rg(E) = rgn(E) for all g ∈ X and all n ≥ 1.

Proof. As in the proof of Theorem 3.26, we may replace k by its subring
generated by all complex numbers occurring in the entries of E and hence
reduce to the case where the ring k is finitely generated. Let us fix a prime
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number p. Then, p ∈ k is not a unit, since k∩Q = Z (cf. Lemma 1.50). Hence,
there is a maximal ideal m ⊆ k with p ∈ m. Since k is finitely generated
as a Z-algebra, the residue field k/m is finitely generated as an Fp-algebra.
Therefore, k/m is a finite field, say with pf elements (cf. Corollary A.22(ii) of
Appendix A). Of course, the positive integer f = f(p) depends on p (as well
as on the chosen maximal ideal containing p). If k = Z is the ring of integers
then the unique maximal ideal of k containing p is the ideal m = pZ with
corresponding residue field k/m equal to the field Fp; it follows that, in this
case, f(p) = 1.

Since [X ] = supp rHS(E) is a finite set, we may apply the Krull intersection
theorem (cf. Corollary A.35 of Appendix A), in order to conclude that there
exists n0 ∈ N such that rg(E) /∈ mn for all integers n ≥ n0 and g ∈ X .
We fix such an integer n and consider the quotient ring R = k/mn and the
idempotent matrix E with entries in RG, which is obtained from E by passage
to the quotient. In view of the naturality of the Hattori-Stallings rank with
respect to coefficient ring homomorphisms (cf. Proposition 1.46), we have

rx
(
E
)
= rx(E) ∈ R (3.8)

for all x ∈ G, where rx(E) denotes the residue class of rx(E) ∈ k modulo mn.
Since rg(E) /∈ mn for all g ∈ X , we conclude that

supp rHS

(
E
)
= supp rHS(E) = [X ] ⊆ C(G) .

We now invoke Corollary 3.25 and choose an integer N ∈ N and suitable
elements r1, . . . , rN ∈ R and g1, . . . , gN ∈ G, such that

rHS

(
E
)
=
∑N

i=1
ri[gi] =

∑N

i=1
ri

[
gpf

i

]
∈ T (RG) . (3.9)

As in the proof of Theorem 3.26, we can assume (replacing, if necessary, N
by a lower integer) that [gi] �= [gj ] ∈ C(G) for all i �= j and ri �= 0 for all i.
Then,

[X ] = supp rHS

(
E
)
= {[g1], . . . , [gN ]} ⊆

{[
gpf

1

]
, . . . ,

[
gpf

N

]}
and

card([X ]) = card
(
supp rHS

(
E
))

= card({[g1], . . . , [gN ]}) = N .

Comparing cardinalities, we conclude that the set
{[
gpf

1

]
, . . . ,

[
gpf

N

]}
has ex-

actly N elements, i.e.
[
gpf

i

]
�=
[
gpf

j

]
∈ C(G) if i �= j, whereas the inclusion

above is an equality

[X ] = {[g1], . . . , [gN ]} =
{[
gpf

1

]
, . . . ,

[
gpf

N

]}
. (3.10)
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We consider the operator

F : C(G) −→ C(G) ,

which is given by [x] �→ [xp], [x] ∈ C(G), and note that (3.10) shows that
the restriction Ff|[X ] is a bijection of the finite set [X ] onto itself. Since the
order of the group of symmetries of [X ] is N ! = card([X ])!, we conclude that
(Ff )N ! = Ff ·N ! is the identity operator on [X ] and hence [g] = Ff ·N ![g] =[
gpf·N!

]
for all g ∈ X . For the given prime number p, we denote the positive

integer f ·N ! = f(p) ·N ! by u(p). Therefore, we have shown that the elements
g and gpu(p)

are conjugate in G for all g ∈ X .
According to Theorem 3.26(i), there is a finite set Π of prime numbers and

a positive integer u0, such that for any element g ∈ X and any prime number
p /∈ Π we have gp ∈ X and [g] =

[
gpu0 ] ∈ C(G).3 For any prime number p ∈ Π

we consider the positive integer u(p) constructed above and define u to be
the least common multiple of u0 and the u(p)’s, for p ∈ Π. For any element
x ∈ G the subset of N consisting of those integers t for which x and xt are
conjugate in G is easily seen to be multiplicatively closed. It follows that g
and gpu

are conjugate in G for all prime numbers p and all g ∈ X . Since any
positive integer is a product of prime numbers, we conclude that g and gnu

are conjugate in G for all n ≥ 1 and all g ∈ X , thereby proving (i).
For later use, we make at this point the following claim.

Claim 3.33 For any g ∈ X the cyclic subgroup generated by g lies in finitely
many G-conjugacy classes.

Proof. We consider the finite set Π of prime numbers provided to us by The-
orem 3.26 and the function p �→ f(p), that was defined in the beginning of
the proof of Theorem 3.32 on the set of all prime numbers. Then, gp ∈ X for
any g ∈ X and any prime number p with p /∈ Π. On the other hand, (3.10)
shows that gpf(p) ∈ X for all prime numbers p and all g ∈ X . We note that
any positive integer n can be written uniquely as the product of three integers
a, b and c, where:

• a is a product of prime numbers p /∈ Π,
• b is a product of powers of the form pf(p), for prime numbers p ∈ Π, and
• c is a product of prime numbers p ∈ Π, such that the power pi divides c

only if i < f(p).

Let C be the set consisting of all c’s as above. Since Π is a finite set, it is
clear that the set C is finite as well. If a, b and c are positive integers of the
above form, n = abc and g ∈ X , then gab ∈ X and hence [gn] = [(gab)c] is an
element of the set
3 In fact, it follows from the proof of Theorem 3.26(i) that u0 can be chosen to be

equal to N !.
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Φ = {[x] ∈ C(G) : there exists [y] ∈ [X ] and c ∈ C, such that [x] = [yc]} .
Both sets [X ] = supp rHS(E) and C being finite, it follows that the set Φ is
also finite. For any subset Ψ ⊆ C(G), let us denote by Ψ−1 the set consisting
of all [x] ∈ C(G) for which [x−1] ∈ Ψ . It is clear that if Ψ is a finite set then
the same is true for Ψ−1; in fact, cardΨ = cardΨ−1. Since

{[gn] : n ∈ Z} = {[gn] : n ≥ 1} ∪ {[1]} ∪ {[g−n] : n ≥ 1} ⊆ Φ ∪ {[1]} ∪ Φ−1,

we conclude that the cyclic group generated by g lies in finitely many G-
conjugacy classes, as needed. �

Proof of Theorem 3.32 (cont.) We fix a conjugacy class [g] ∈ [X ]; then, [g]
is one of the [gi]’s, say [g] = [g1]. Since the [gi]’s are distinct, (3.9) shows
that rg

(
E
)
= rg1

(
E
)
= r1. But the

[
gpf

i

]
’s are distinct as well and hence we

may use (3.9) once again, in order to conclude that r
gpf

(
E
)
= r

gpf

1

(
E
)
= r1.

In particular, it follows that rg
(
E
)

= r
gpf

(
E
) ∈ R; in view of (3.8), this

means that rg(E) ≡ r
gpf (E) modulo mn. This being the case for all n ≥ n0,

Corollary A.35 of Appendix A implies that rg(E) = r
gpf (E) ∈ k.

In the special case where k = Z, we have f = 1 for all prime numbers
p and hence rg(E) = rgp(E) for all such p’s and all g ∈ X . If p is a prime
number and g ∈ X , then gp ∈ X as well (since rgp(E) = rg(E) �= 0); therefore,
rgp(E) = rgpq (E) for all prime numbers q and hence rg(E) = rgpq (E) for all
prime numbers p, q. Since any positive integer is a product of prime numbers,
we may continue in this way and conclude that rg(E) = rgn(E) for all g ∈ X
and all n ≥ 1. Hence, we have proved assertion (i)′.

Assertion (ii) is an immediate consequence of (i), in view of Lemma 3.27
(applied in the special case where the set Π of prime numbers considered
therein is empty).

In order to prove assertion (iii), we fix an element g ∈ X of infinite order
and note that Lemma 3.28, combined with (i) above, shows that there exists
a subgroup K ≤ G containing g, which is isomorphic with the additive group
Q of rational numbers and is equal to the ascending union of a sequence of
cyclic groups that are generated by conjugates of g. Hence, for any x ∈ K
there exists a conjugate z of g, such that x = zn for some n ∈ Z; in particular,
[x] = [zn] = [gn] ∈ C(G). It follows that if K0 ≤ K is the cyclic group
generated by g, then [K] = [K0] ⊆ C(G). Since the set [K0] is finite, in view
of Claim 3.33, we conclude that the subgroup K lies indeed in finitely many
G-conjugacy classes. �

Addendum 3.34 Let G be a group and E a non-zero idempotent matrix
with entries in the integral group ring ZG. Consider the Hattori-Stallings rank
rHS(E) =

∑
[g]∈C(G) rg(E)[g] and let X be the set consisting of all elements

g ∈ G, for which rg(E) �= 0. Then, Corollary 3.14(ii) implies that 1 ∈ X
and hence the finite set [X ] = supp rHS(E) is non-empty; let N = card([X ]).
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If g ∈ X is an element of infinite order then the subgroup K = K(g) of G
that was constructed in the proof of assertion (iii) of Theorem 3.32 lies in the
union of 2N − 1 G-conjugacy classes. Indeed, assertion (i)′ of loc.cit. implies
that the set {[gn] : n ≥ 1} is contained in the (N − 1)-element set [X ] \ {[1]}.
Therefore, the argument used in the final part of the proof of Claim 3.33
shows that the cyclic subgroup K0 of G generated by g lies in the union of
(N−1)+1+(N−1) = 2N−1G-conjugacy classes. Since [K] = [K0] ⊆ C(G), as
noted in the proof of Theorem 3.32(iii), we conclude that card([K]) ≤ 2N −1.

We now describe a few consequences of Linnell’s theorem that concern Bass’
conjecture.

Corollary 3.35 Let k be a subring of the field C of complex numbers with
k ∩ Q = Z, G a group, E an idempotent matrix with entries in the group
algebra kG and g ∈ G \ {1} an element of finite order. Then, rg(E) = 0.

Proof. This is immediate from Theorem 3.32(ii). �

Corollary 3.36 Let G be a group containing no subgroup isomorphic with
the additive group of rational numbers. Then, G satisfies Bass’ conjecture.

Proof. Assume on the contrary that there exists a subring k of the field C of
complex numbers satisfying the condition k∩Q = Z, an idempotent matrix E
with entries in kG and an element g ∈ G\{1}, for which rg(E) �= 0. In view of
Corollary 3.35, g is an element of infinite order. Then, Theorem 3.32(iii) shows
that G has a subgroupK(g), which is isomorphic with the additive group Q of
rational numbers. This contradicts our hypothesis on G and therefore finishes
the proof. �

Corollary 3.37 Noetherian groups satisfy Bass’ conjecture.

Proof. A Noetherian group contains no subgroup isomorphic with the group
(Q,+); hence, the result follows from Corollary 3.36. �

Corollary 3.38 Residually finite groups and torsion groups satisfy Bass’ con-
jecture.

Proof. It is clear that the only element of a finite group which is divisible
by the order of the group is the identity. It follows that a residually finite
group contains no (infinitely) divisible non-identity elements. In particular,
a residually finite group contains no subgroup isomorphic with the additive
group of rational numbers. Of course, this latter statement is also true for
torsion groups. This finishes the proof, in view of Corollary 3.36. �

Proposition 3.39 Let G be a group and H ≤ G a subgroup of finite index.
If H satisfies Bass’ conjecture then so does G.
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Proof. Assume on the contrary that there exists a subring k of the field C of
complex numbers satisfying the condition k ∩ Q = Z, an idempotent matrix
E with entries in kG and an element g ∈ G\{1}, for which rg(E) �= 0. In view
of Corollary 3.35, g is an element of infinite order. Since H ≤ G is a subgroup
of finite index, there is an integer n ≥ 1 such that gn ∈ H. Using Theorem
3.32(i), we can find a positive integer m ∈ nZ, such that [g] = [gm] ∈ C(G);
for example, we may take m = nu, with u > 0 as in loc.cit. In particular, we
have

rgm(E) = rg(E) �= 0 .

Since m is a multiple of n, gm is a power of gn and hence gm ∈ H. Moreover,
g being an element of infinite order, we have gm �= 1. On the other hand, we
may use our assumption that H satisfies Bass’ conjecture and invoke Remark
2.37, in order to conclude that rh(E) = 0 for all h ∈ H \ {1}. This is a
contradiction, since gm ∈ H \ {1}, whereas rgm(E) �= 0. �

Remark 3.40 Since abelian groups satisfy Bass’ conjecture (cf. Theorem
2.26), Proposition 3.39 implies that groups having an abelian subgroup of
finite index satisfy Bass’ conjecture as well. In this way, Proposition 3.39
generalizes Proposition 2.35.

3.2.3 An Application: the Case of Solvable Groups

In this subsection, we examine Bass’ conjecture in the special case of solvable
groups and show how Linnell’s theorem (Theorem 3.32) can be used in order
to prove that solvable groups of finite Hirsch number satisfy the conjecture.4

Let G be a group and N,H � G normal subgroups with N ≤ H. Then,
H = H/N is a normal subgroup of the quotient group G = G/N ; we refer to
it as a normal subquotient of G. We may pull the conjugation action of G on
H back to G and regard H as a group with a G-action. By an obvious abuse
of language, we refer to this action as action by conjugation.

Proposition 3.41 Let G be a finitely generated solvable group which does not
satisfy Bass’ conjecture. Then, there is an abelian normal subquotient V of G
with the following properties:

(i) V is a Q-vector space on which G acts (by conjugation) Q-linearly,
(ii) the Q-vector space V is infinite dimensional,
(iii) V has no proper non-trivial G-invariant subgroup and
(iv) there is a one-dimensional Q-linear subspace V0 ⊆ V which lies in

finitely many G-orbits.

Proof. SinceG does not satisfy Bass’ conjecture, there is a subring k of the field
C of complex numbers with k ∩Q = Z, an idempotent matrix E with entries
4 In fact, F. Farrell and P. Linnell have shown in [28], using techniques that are

beyond the scope of this book, that all solvable groups satisfy Bass’ conjecture.
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in the group algebra kG and an element g ∈ G \ {1}, for which rg(E) �= 0.
Then, g is an element of infinite order (Corollary 3.35) and hence Linnell’s
theorem (Theorem 3.32) implies the existence of a subgroup K ≤ G, such
that the triple (G,K, g) has the following properties:

(L1) There exists a positive integer u such that g and gnu

are conjugate in G
for all n ≥ 1.

(L2) The group K contains g, is generated by some conjugates of g, is isomor-
phic with the additive group Q of rational numbers and lies in finitely
many G-conjugacy classes.

The following lemma asserts that the above properties are preserved under
group homomorphisms.

Lemma 3.42 Consider a group G, a subgroup K ≤ G and an element g ∈ K,
such that the triple (G,K, g) satisfies conditions (L1) and (L2). Let ϕ : G −→
G′ be a group homomorphism and define K ′ = ϕ(K) ≤ G′. If g′ = ϕ(g) �= 1
then the triple (G′,K ′, g′) satisfies conditions (L1) and (L2) as well.

Proof. It is immediate that the triple (G′,K ′, g′) has property (L1). Since
g′ �= 1, it follows from Lemma 3.27 (with Π equal to the empty set) that g′

is an element of infinite order, i.e. < g > ∩ kerϕ = {1}. It follows that the
subgroup K ∩ kerϕ of K intersects trivially the infinite cyclic group < g >.
Since K  (Q,+), in view of property (L2), this can happen only if the group
K ∩kerϕ is itself trivial. But then ϕ restricts to an isomorphism K  K ′ and
hence the triple (G′,K ′, g′) satisfies property (L2) as well. �

Proof of Proposition 3.41 (cont.) We consider the set

A = {N : N �G and g /∈ N} ,
which, ordered by inclusion, is easily seen to satisfy the hypotheses of Zorn’s
lemma. Let N ∈ A be a maximal element and consider the triple

(
G,K, g

)
,

where G = G/N , K = KN/N and g = gN . The maximality of N in A
implies that g is contained in any non-trivial normal subgroup of G. In view of
Lemma 3.42, we may change notation (G � G, K � K and g � g) and
assume that the triple (G,K, g) satisfies conditions (L1) and (L2)5, whereas
g is contained in any non-trivial normal subgroup of G. In this case, G has
a unique minimal non-trivial normal subgroup V , namely the one generated
by the conjugates of g. Since the group K is generated by some of these
conjugates, in view of property (L2), it follows that K ≤ V . Let

� : G −→ Aut(V )

be the group homomorphism associated with the conjugation action of G on
V , i.e. let �(x)(v) = xvx−1 for all x ∈ G and v ∈ V . We shall prove that the
pair (V, �) has all of the properties in the statement of the proposition.
5 In particular, g is still divisible in K and has infinite order.
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(i) Being a minimal non-trivial normal subgroup of G, V can have no
proper non-trivial characteristic subgroup. Since V is solvable, the derived
group DV is a proper characteristic subgroup of V ; it follows that DV is
trivial and hence V is abelian. We now consider the torsion subgroup Vt ⊆ V .
Of course, Vt is a characteristic subgroup of V . On the other hand, g ∈ V is
an element of infinite order and hence g /∈ Vt; therefore, Vt is proper in V . It
follows that Vt is the trivial group and hence V is torsion-free. We also note
that the abelian group V is divisible, since it is generated by the elements
�(x)(g), x ∈ G, which are divisible in V . Being a torsion-free divisible abelian
group, V is a Q-vector space. Since AutZ(V ) = AutQ(V ), the additive (i.e.
Z-linear) action � of G on V is also Q-linear.

(ii) We claim that V is infinite dimensional as a Q-vector space. Assume
on the contrary that dimQ V = m <∞. In this case, we can choose a Q-basis
{v1, . . . , vm} of V with v1 = g and consider the associated matrix representa-
tion

� : G −→ GLm(Q) .

Since G is finitely generated, � factors through GLm

(
Z
[

1
N

])
for some N .

Indeed, if x1, . . . , xs are generators of G, we may choose N to be the least
common multiple of all denominators occurring in the entries of the matrices
�(x1), �(x−1

1 ), . . . , �(xs), �(x−1
s ) ∈ GLm(Q). It follows that the G-orbit G · v1

is contained in the subgroup
⊕m

i=1 Z
[

1
N

]
vi of V . In particular, if p is a prime

number not dividing N , then this G-orbit cannot contain 1
pu v1 ∈ V for any

positive integer u. On the other hand, property (L1) implies that there exists
a positive integer u and an element x ∈ G, such that g = xgpu

x−1. We may
write this equation additively and recall that g = v1, in order to conclude that
v1 = �(x)(puv1) ∈ V . But then v1 = pu�(x)(v1) and hence 1

pu v1 = �(x)(v1)
is contained in the G-orbit of v1. This contradiction shows that dimQ V must
be infinite.

(iii) If V ′ is a proper G-invariant subgroup of V , then V ′ is normal in G
and hence V ′ = 1, in view of the minimality of V .

(iv) The groupK  Q is a one-dimensional subspace of the Q-vector space
V lying in finitely many G-orbits, in view of property (L2). �

In order to give a concrete application of the result above, let us consider a
solvable group G and its derived series (DnG)n. Then, the quotient group
DnG/Dn+1G is abelian and has rank rn = rn(G), which is equal to the
dimension of the Q-vector space

(
DnG/Dn+1G

)⊗ Q for all n. Since G is
solvable, DnG is the trivial group for n� 0 and hence rn = 0 for n� 0. The
sum r =

∑
n rn is the Hirsch number h(G) of the solvable group G. It follows

easily from the definition that

h(G) = h(DiG) + h(G/DiG) (3.11)

for all i ≥ 1. If the group G is abelian then h(G) is the rank of G. The following
result can be viewed as a generalization of some well-known properties of the
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notion of rank for abelian groups to the concept of Hirsch number for solvable
ones.

Lemma 3.43 Let G be a solvable group.
(i) If N �G is a normal subgroup then h(G/N) ≤ h(G).
(ii) If A ≤ G is an abelian subgroup then h(A) ≤ h(G).
(iii) If A is an abelian subquotient of G then h(A) ≤ h(G).6

Proof. (i) The derived series (Dn(G/N))n of the quotient group G/N is
given by Dn(G/N) = (DnG)N/N for all n. In particular, the abelian group
Dn(G/N)/Dn+1(G/N)  (DnG)N/(Dn+1G)N is a quotient of the abelian
group DnG/Dn+1G and hence rn(G/N) ≤ rn(G) for all n. Summing these
inequalities up for all n, we conclude that h(G/N) ≤ h(G).

(ii) We use induction on the degree of solvability n of G. The result is
clear if n = 1, i.e. if G is abelian. If n > 1 we consider the abelian sub-
group Dn−1G ≤ G and the quotient group G/Dn−1G, which is solvable of
degree n− 1. The group A′ = A ∩Dn−1G is contained in Dn−1G and hence
h(A′) ≤ h(Dn−1G), whereas the quotient A/A′ can be embedded as a sub-
group of G/Dn−1G and hence h(A/A′) ≤ h(G/Dn−1G), in view of the induc-
tion hypothesis. Therefore, we have

h(A) = h(A′) + h(A/A′) ≤ h(Dn−1G) + h(G/Dn−1G) = h(G) ,

where the first equality describes a well-known property of the rank of abelian
groups and the last one is a special case of (3.11).

(iii) The subquotient A of G is a subgroup of the quotient G/N , for a
suitable normal subgroup N � G. Then, h(A) ≤ h(G/N) ≤ h(G), where the
first (resp. second) inequality follows from (ii) (resp. from (i)) above. �

Corollary 3.44 If G is a finitely generated solvable group with finite Hirsch
number, then G satisfies Bass’ conjecture.

Proof. Since h(G) is finite, Lemma 3.43(iii) implies that G does not admit an
infinite dimensional Q-vector space as a subquotient. Hence, the result follows
invoking Proposition 3.41. �

We conclude this subsection by describing an example of Hall of a finitely
generated solvable group H, which contains an infinite dimensional Q-vector
space V as a normal subgroup, in such a way that the conjugation action of
H on V satisfies the conditions in the statement of Proposition 3.41. One can
show that Hall’s group H satisfies Bass’ conjecture, by using the homological
techniques of Chap. 4 (cf. Exercise 4.3.5).

Let V be a vector space over the field Q of rational numbers with a count-
able basis {vn : n ∈ Z} and fix an enumeration (pn)n of all prime numbers,

6 In fact, this inequality holds without assuming that A is abelian, but we do not
need this more general result.
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which is indexed by the set Z. Consider the group Aut(V ) of Q-linear auto-
morphisms of V and its subgroup Λ generated by the automorphisms x and y,
where x(vn) = vn+1 and y(vn) = pnvn for all n ∈ Z. We list a few properties
of the pair (V,Λ):

(i) The normal subgroup Λ′ of Λ generated by y is free abelian with basis the
elements x−nyxn, n ∈ Z. The orbit of each basis vector vi ∈ V under the
action of Λ′ is the set consisting of all scalar multiples qvi, where q ∈ Q+ is a
positive rational number, whereas λ′ ∈ Λ′ stabilizes vi only if λ′ = 1.

Proof. For any n ∈ Z the automorphism x−nyxn ∈ Aut(V ) maps vi ∈ V onto
pn+ivi for all i; therefore, x−nyxn commutes with x−myxm for all n,m ∈ Z.
In particular, x−nyxn commutes with y for all n and hence the subgroup Λ′

is easily seen to be generated by the set {x−nyxn : n ∈ Z}. It follows that
Λ′ is abelian. The claim that Λ′ is freely generated by the above set, as well
as the statements made about the orbit and the stabilizer of a basis vector
vi under the Λ′-action, follow from the fundamental theorem of arithmetic,
which asserts that the multiplicative group of positive rational numbers is free
abelian with basis the set of prime numbers.

(ii) The group Λ/Λ′ is infinite cyclic generated by the class of x.

Proof. It is clear that the group Λ/Λ′ is generated by the class of x. Hence,
it suffices to verify that no non-trivial power of x can lie in Λ′. This follows
since the group Λ′ stabilizes the subspace V0 = Qv0, whereas xn maps V0

onto Vn = Qvn for all n.

(iii) The group Λ is metabelian.

Proof. This is an immediate consequence of (i) and (ii).

(iv) The Λ-orbit of v0 consists of all scalar multiples qvn, where n ∈ Z and
q ∈ Q+, i.e. Λ · v0 =

⋃
n(Q+)vn.

Proof. For any integer n the Λ′-orbit of vn consists of the scalar multiples qvn,
q ∈ Q+, whereas the orbit of v0 under the action of the cyclic group generated
by x is the set {vn : n ∈ Z}. The claim follows from this, since any element
of Λ is the product of an element of Λ′ and a power of x.

(v) The one-dimensional subspace V0 = Qv0 ⊆ V is contained in the union of
the Λ-orbits Λ · 0 = {0}, Λ · v0 and Λ · (−v0).
Proof. This follows from (iv) above.

(vi) V has no proper non-trivial Λ-invariant subgroup.

Proof. Let V ′ �= 0 be a Λ-invariant subgroup of V and choose a non-zero
vector v =

∑n
i=1 qiva(i) ∈ V ′, where the qi’s are non-zero rational numbers,

the a(i)’s distinct integers and n > 0 is minimal such. We compute
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pa(1)v − y(v) =
∑n

i=1
pa(1)qiva(i) −

∑n

i=1
qiy(va(i))

=
∑n

i=1
pa(1)qiva(i) −

∑n

i=1
pa(i)qiva(i)

=
∑n

i=1
(pa(1) − pa(i))qiva(i)

= (pa(1) − pa(2))q2va(2) + · · · + (pa(1) − pa(n))qnva(n) .

Since pa(1)v − y(v) ∈ V ′, the minimality of n implies that pa(1)v − y(v) must
be the zero vector. It follows that n = 1 and hence v = q1va(1). Replacing, if
necessary, v by −v, we may assume that q1 > 0. In this case, the Λ-orbit Λ · v
of v consists of all vectors of the form qvn, where n ∈ Z and q ∈ Q+ (cf. (iv)
above). Since these elements generate V as an abelian group, the Λ-invariant
subgroup V ′ must be actually equal to V .

(vii) For any v ∈ V \ {0} the stabilizer Λv = {λ ∈ Λ : λ(v) = v} is trivial.

Proof. Let v =
∑n

i=1 qiva(i), where the qi’s are non-zero rational numbers
and a(1) < · · · < a(n). Any λ ∈ Λ can be written as a product xmλ′, for a
suitable λ′ ∈ Λ′ and some m ∈ Z. Since λ′ restricts to an automorphism of
the subspace Qvi for all i, we conclude that

λ(v) =
∑n

i=1
qi λ
(
va(i)

)
=
∑n

i=1
qi (xmλ′)

(
va(i)

)
=
∑n

i=1
q′i vm+a(i) ,

for suitable non-zero rational numbers q′i, i = 1, . . . , n. In fact, q′i is such that
the restriction of λ′ on Qva(i) is multiplication by q′iq

−1
i for all i = 1, . . . , n. It

follows that λ ∈ Λv if and only if m = 0 and qi = q′i for all i. As noted in (i)
above, q1 = q′1 (i.e. λ′ acts as the identity on the one-dimensional subspace
Qva(1)) if and only if λ′ = 1. Therefore, λ ∈ Λv if and only if λ = 1, as needed.

We define Hall’s group H as the semi-direct product of Λ by V and list below
some of its properties:

(α) The group H is generated by x, y and v0.

Proof. In order to verify this, it suffices to show that any element of V can
be expressed in terms of x, y and v0. But this is clear since the Λ-orbit of v0
generates V as an abelian group, in view of (iv) above.

(β) Hall’s group H is solvable of (solvability) degree 3.

Proof. This follows from (iii).

(γ) If N � H is a normal subgroup then V ⊆ N or N ∩ V = {1}.
Proof. Since V has no proper non-trivial Λ-invariant subgroup, in view of (vi)
above, it is a minimal non-trivial normal subgroup of H. Therefore, being
contained in V , the normal subgroup N ∩ V �H is either trivial or else equal
to the whole of V .
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(δ) For any v ∈ V \ {0} the centralizer Cv of v in H is equal to V .

Proof. It is easily seen that the centralizer Cv is the semi-direct product of
the stabilizer Λv = {λ ∈ Λ : λ(v) = v} by V . Hence, the claim follows from
(vii).

3.3 Exercises

1. Let G be a group. The goal of this Exercise is to show that the prop-
erty of Lemma 3.9(i) characterizes the operators in the von Neumann
algebra NG. To that end, let us fix an operator a ∈ B(2G), for which
<a(δg), δhg>=<a(δ1), δh> for all g, h ∈ G.
(i) Show that for any operator b ∈ B(2G) and any elements g, h ∈ G
the families of complex numbers (< a(δ1), δx > · < b(δg), δx−1h >)x and
(<a(δ1), δx> · <b(δxg), δh>)x are summable with sum <ab(δg), δh> and
<ba(δg), δh> respectively.
(ii) Assume that b ∈ B(2G) is an operator in the commutant L(CG)′ of
the subalgebra L(CG) ⊆ B(2G). Then, show that ab = ba. In particular,
conclude that a ∈ L(CG)′′ = NG.

2. Let G be a finite group of order n.
(i) Consider a positive integer t and an idempotent t × t matrix E with
entries in the complex group algebra CG. Let

L : CG −→ EndC(CG) = Mn(C)

be the left regular representation and

Lt : Mt(CG) −→ Mt(Mn(C)) = Mtn(C)

the induced algebra homomorphism. Show that tr(LtE) = n r1(E) and
hence obtain an elementary proof of the theorems of Kaplansky and
Zaleskii, in the special case of a finite group.
(ii) Let k be a subring of the field C of complex numbers and consider
the trace functional r1 : kG −→ k. Show that the image of the induced
additive map r1∗ : K0(kG) −→ k is contained in k ∩ Z · 1

n .
3. Let G be a group and E an idempotent matrix with entries in the complex

group algebra CG. Consider a normal subgroup N�G and let [N ] ⊆ C(G)
be the set of all G-conjugacy classes of elements of N . Show that the sum∑

[g]∈[N ] rg(E) is a non-negative rational number.
4. Let R be a commutative ring. The goal of this Exercise is to show that

the matrix group GLm(R) satisfies Bass’ conjecture for all m.
(i) Assume that the ring R is Noetherian and let m ⊆ R be a maximal
ideal. Show that mn/mn+1 is a finite dimensional R/m-vector space for
all n ≥ 0.
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(ii) Assume that the ring R is finitely generated and let m ⊆ R be a
maximal ideal. Show that the ring R/mn is finite for all n ≥ 1.
(Hint: Using Corollaries A.27 and A.22(ii) of Appendix A, show that the
field R/m is finite.)
(iii) Assume that the ring R is finitely generated and let r ∈ R\{0}. Show
that there exists an ideal I ⊆ R, such that the ring R/I is finite and r /∈ I.
(Hint: Let m ⊆ R be a maximal ideal containing the annihilator annR(r)
of r in R. Then, Proposition A.33(ii) of Appendix A implies that r /∈ mn

for some n� 0.)
(iv) Assume that the ring R is finitely generated and consider two distinct
m×m matrices A,B with entries in R. Show that there exists a finite ring
R′ and a ring homomorphism ϕ : R −→ R′, such that ϕm(A) �= ϕm(B),
where ϕm : Mm(R) −→ Mm(R′) is the homomorphism induced by ϕ.
(v) Show that the linear group GLm(R) is locally residually finite, i.e.
any finitely generated subgroup G of GLm(R) is residually finite.7 In
particular, conclude that the group GLm(R) satisfies Bass’ conjecture.

5. Let G be a group and k a subring of the field C of complex numbers. We
consider an idempotent matrix E with entries in kG and let rHS(E) =∑

[g]∈C(G) rg(E)[g] be its Hattori-Stallings rank.
(i) Show that there is a positive integer u having the following property:
For any prime number p with p−1 /∈ k and any element g ∈ G with
rg(E) �= 0, we have [g] =

[
gpu]∈ C(G).

(Hint: Review the proof of Theorem 3.32.)
(ii) Let g ∈ G be an element of finite order with rg(E) �= 0. Show that
the order o(g) of g is invertible in k.
(iii) Consider the subring ΛG ⊆ Q defined in Exercise 1.3.10 and assume
that k ∩ ΛG = Z. Then, show that rg(E) = 0 for any element g ∈ G of
finite order with g �= 1.
(iv) Assume that G is a Noetherian group, such that k ∩ ΛG = Z. Show
that the pair (k,G) satisfies Bass’ conjecture, whereas the group ring kG
has no non-trivial idempotents.

6. Let G be a group, H ≤ G a subgroup of finite index and k a subring of
the field C of complex numbers, such that the pair (k,H) satisfies Bass’
conjecture. We consider the subring ΛG ⊆ Q defined in Exercise 1.3.10
and assume that k ∩ΛG = Z = k ∩Z · 1

n! , where n = [G : H]. Then, show
that the pair (k,G) satisfies Bass’ conjecture, whereas the group ring kG
has no non-trivial idempotents.
(Hint: Follow the argument in the proof of Proposition 3.39, using the
result of Exercise 5(i),(iii) above.)

7 In the special case where R is assumed to be a field this result is due to Malcev
[49]; the simple proof outlined in this Exercise is due to R. Coleman.
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7. A group G is said to satisfy the generalized Bass’ conjecture if the map
rg : K0(kG) −→ k is identically zero for any pair (k, g), where k is a
subring of the field C of complex numbers and g ∈ G a group element
whose order is not invertible in k.8 In this way, Exercise 5(ii) implies that
torsion groups satisfy the generalized Bass’ conjecture.
(i) Show that a group G that satisfies the generalized Bass’ conjecture
satisfies (the ordinary) Bass’ conjecture as well.
(ii) Show that a torsion-free group G that satisfies the generalized Bass’
conjecture satisfies the idempotent conjecture.

8 By convention, ∞ is not invertible in any commutative ring.
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Notes and Comments on Chap. 3. The study of idempotent matrices with en-

tries in a complex group algebra by reduction to positive characteristic was initiated

by A. Zaleskii [75], in order to prove the rationality of r1 (complementing I. Kaplan-

sky’s theorem on the positivity of r1; cf. [38]). This technique was subsequently used

by E. Formanek, who showed in [29] that torsion-free Noetherian groups satisfy the

idempotent conjecture (cf. Corollary 3.31), and H. Bass, who proved Theorem 3.26

in [4]. Bass has also proved in [loc.cit.] that the coefficients of the Hattori-Stallings

rank of an idempotent matrix with entries in a complex group algebra are algebraic

numbers and generate an abelian extension of Q; in that direction, see also [2, 24]

and [54]. The relation between the integrality properties of these coefficients and

the torsion of a polycyclic-by-finite group has been studied by G. Cliff, S. Sehgal

and A. Weiss in [13, 14] and [74]. P. Linnell’s result is proved in [43], by using

Lemma 3.22, which is itself due to Cliff [12]. In fact, Linnell proved Theorem 3.32

in the case where k = Z is the ring of integers. The case where k is a ring of alge-

braic integers is due to J. Schafer [62], whereas the general case was proved by J.

Moody [53]. Using the homological techniques that will be developed in Chap. 4,

B. Eckmann proved in [19] that solvable groups with finite Hirsch number satisfy

Bass’ conjecture (cf. Corollary 3.44). The validity of Bass’ conjecture for all solvable

groups has been obtained by F. Farrell and P. Linnell [28], by means of K-theoretic

techniques that are beyond the scope of this book. The construction of the solvable

group H, given at the end of the chapter, is due to P. Hall [30].
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A Homological Approach

4.1 Cyclic Homology of Algebras

In this chapter, we present another method that can be used in the study of
the idempotent conjectures, based on cyclic homology. Our goal in this section
is to define the cyclic homology groups of an algebra and then compute these
groups in the special case of a group algebra. This computation will be used
in order to obtain some results on the idempotent and Bass’ conjectures in
the next section.

For any algebra A the 0-th cyclic homology group HC0(A) coincides with
the abelianization T (A) = A/[A,A]. There is an endomorphism S of cyclic
homology of degree −2, which plays an important role in the applications to
the study of idempotents. A fundamental property of cyclic homology is its
relation to K-theory; there are additive group homomorphisms

chn : K0(A) −→ HC2n(A)

for all n ≥ 0, which are compatible with the operator S and coincide with the
Hattori-Stallings rank in degree 0. In this way, the chn’s provide a factorization
of the Hattori-Stallings rank through the higher cyclic homology groups. In
the special case where A is the group algebra of a group G, we compute these
cyclic homology groups in terms of the homology of certain subquotients of G.
Hence, in this special case, the Hattori-Stallings rank factors through abelian
groups that can be analyzed using the techniques of homological algebra.

In §4.1.1 we define the Hochschild and cyclic homology groups of an algebra
and establish the relationship between these groups and the corresponding
ones of a matrix algebra with entries therein. In the following subsection, we
construct the K-theory characters chn, n ≥ 0, and establish some of their
basic properties. Finally, in §4.1.3 we compute the cyclic homology groups of
a group algebra in terms of group homology.

Throughout this section, we work over a fixed field k. Unless otherwise
specified, all tensor products will be over k.
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4.1.1 Basic Definitions and Results

We consider a k-algebra A and the tensor powers A⊗n = A⊗ · · · ⊗A, n ≥ 1.
We define for all n ≥ 1 and all i ∈ {0, . . . , n} the k-linear operator

dn
i : A⊗n+1 −→ A⊗n ,

by letting

dn
i (a0 ⊗ · · · ⊗ an) =

{
a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an if i < n
ana0 ⊗ a1 ⊗ · · · ⊗ an−1 if i = n

for any elementary tensor a0 ⊗ · · · ⊗ an ∈ A⊗n+1.

Lemma 4.1 Let A be a k-algebra and dn
i the operators defined above. Then,

dn−1
i dn

j = dn−1
j−1 d

n
i whenever n ≥ 2 and 0 ≤ i < j ≤ n.

Proof. We have to verify that both operators agree on any elementary tensor
a = a0 ⊗ · · · ⊗ an ∈ A⊗n+1. For example, if i+ 1 < j < n then both operators
map a onto a0⊗· · ·⊗aiai+1⊗· · ·⊗ajaj+1⊗· · ·⊗an ∈ A⊗n−1. The remaining
cases are left as an exercise to the reader. �
Using the dn

i ’s, we now define the operators

b′n, bn : A⊗n+1 −→ A⊗n ,

by letting b′n =
∑n−1

i=0 (−1)idn
i and bn =

∑n
i=0(−1)idn

i for all n ≥ 1.

Proposition 4.2 Let A be a k-algebra and consider the operators b′n and bn,
n ≥ 1, that were defined above.

(i) The compositions b′n−1b
′
n and bn−1bn vanish for all n ≥ 2.

(ii) The complex (C(A), b′), which is defined by letting Cn(A) = A⊗n+1

for all n ≥ 0 and whose differential b′ is equal to (b′n)n, is contractible.

Proof. (i) Using Lemma 4.1, we compute

b′n−1b
′
n =
∑n−2

i=0

∑n−1

j=0
(−1)i+jdn−1

i dn
j

=
∑

i<j≤n−1
(−1)i+jdn−1

i dn
j +
∑

n−2≥i≥j
(−1)i+jdn−1

i dn
j

=
∑

i<j≤n−1
(−1)i+jdn−1

j−1 d
n
i +
∑

n−2≥i≥j
(−1)i+jdn−1

i dn
j

=
∑

α≤β≤n−2
(−1)α+β+1dn−1

β dn
α +

∑
n−2≥i≥j

(−1)i+jdn−1
i dn

j

= 0

and

bn−1bn =
∑n−1

i=0

∑n

j=0
(−1)i+jdn−1

i dn
j

=
∑

i<j≤n
(−1)i+jdn−1

i dn
j +
∑

n−1≥i≥j
(−1)i+jdn−1

i dn
j

=
∑

i<j≤n
(−1)i+jdn−1

j−1 d
n
i +
∑

n−1≥i≥j
(−1)i+jdn−1

i dn
j

=
∑

α≤β≤n−1
(−1)α+β+1dn−1

β dn
α +
∑

n−1≥i≥j
(−1)i+jdn−1

i dn
j

= 0 .
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(ii) For all n ≥ 0 we consider the k-linear operator

sn : A⊗n+1 −→ A⊗n+2 ,

which is defined by letting sn(a0 ⊗ · · · ⊗ an) = 1 ⊗ a0 ⊗ · · · ⊗ an for any
elementary tensor a0 ⊗ · · · ⊗ an ∈ A⊗n+1. It is easily seen that

dn+1
i sn =

{
sn−1d

n
i−1 if 0 < i ≤ n

id if i = 0

for all n ≥ 0. It follows that

b′n+1sn + sn−1b
′
n =

∑n

i=0
(−1)idn+1

i sn +
∑n−1

i=0
(−1)isn−1d

n
i

= id +
∑n

i=1
(−1)isn−1d

n
i−1 +

∑n−1

i=0
(−1)isn−1d

n
i

= id +
∑n−1

α=0
(−1)α+1sn−1d

n
α +

∑n−1

i=0
(−1)isn−1d

n
i

= id

is the identity operator on A⊗n+1 for all n ≥ 0. Hence, the sequence (sn)n is
a contracting homotopy for the chain complex (C(A), b′). �

Definition 4.3 The Hochschild homology of a k-algebra A is the homology
of the complex (C(A), b), which is itself defined by letting Cn(A) = A⊗n+1

for all n ≥ 0 and whose differential b is equal to (bn)n. We denote the n-th
Hochschild homology group of A by HHn(A) for all n ≥ 0.

Examples 4.4 (i) Let A be a k-algebra. Then, the differential b1 maps any
elementary tensor a⊗a′ ∈ A⊗A = C1(A) onto aa′−a′a ∈ A = C0(A). Hence,
HH0(A) = A/im b1 is the abelianization T (A) = A/[A,A].

(ii) If A = k then Cn(A) = A⊗n+1 = k for all n ≥ 0. The operator
dn

i : k −→ k is the identity map and hence the differential bn : k −→ k
is the zero (resp. the identity) map if n is odd (resp. even). It follows that
HH0(k) = k and HHn(k) = 0 if n > 0.

Remark 4.5 Let A,B be two k-algebras and f : A −→ B a morphism of non-
unital algebras, i.e. a k-linear map which preserves multiplication. Taking into
account the form of the differentials (bn)n, it follows that

f∗ =
(
f⊗n+1

)
n : (C(A), b) −→ (C(B), b)

is a chain map. Therefore, there are induced k-linear maps

fn : HHn(A) −→ HHn(B), n ≥ 0 .

Let A be a k-algebra. We wish to describe the Hochschild homology groups
of A in terms of the Tor functors of homological algebra (cf. §D.1.3 of
Appendix D). To that end, we consider the algebra Ae = A ⊗ Aop and view
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the tensor powers A⊗n, n ≥ 1, as (left) Ae-modules by letting a ⊗ a′op ∈ Ae

act on A⊗n as the operator

a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an �→ aa1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ ana
′ ,

a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an ∈ A⊗n. For all n ≥ 2 we consider the Ae-module
Ae ⊗ A⊗n−2, which is obtained from the k-module A⊗n−2 by extension of
scalars, and note that there is an isomorphism of Ae-modules

φn : A⊗n −→ Ae ⊗A⊗n−2 ,

which identifies an elementary tensor a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an ∈ A⊗n with
(a1 ⊗ aop

n ) ⊗ a2 ⊗ · · · ⊗ an−1 ∈ Ae ⊗ A⊗n−2. We may also view A as a right
Ae-module by letting a ⊗ a′op ∈ Ae act on A as the operator a1 �→ a′a1a ,
a1 ∈ A. Tensoring φn with the identity operator of the right Ae-module A,
we obtain an isomorphism of k-modules

ϕn : A⊗Ae A⊗n −→ A⊗Ae (Ae ⊗A⊗n−2)  A⊗n−1 ,

which identifies a tensor a ⊗ (a1 ⊗ a2 ⊗ · · · ⊗ an−1 ⊗ an) ∈ A ⊗Ae A⊗n with
anaa1 ⊗ a2 ⊗ · · · ⊗ an−1 ∈ A⊗n−1 for all n ≥ 2.

Proposition 4.6 For any k-algebra A and any non-negative integer n there
is a natural isomorphism HHn(A)  TorAe

n (A,A).

Proof. We consider the left Ae-modules A⊗n, n ≥ 2. Since A⊗n is isomorphic
with the extended Ae-module Ae⊗A⊗n−2, it is free and hence projective. It is
clear that the operators dn

i : A⊗n+1 −→ A⊗n are Ae-linear for all 0 ≤ i < n;
in particular, the operator

b′n : A⊗n+1 −→ A⊗n

is Ae-linear for all n ≥ 1. We now consider the complex

F : A⊗2 b′2←− A⊗3 b′3←− · · · b′n←− A⊗n+1 b′n+1←− A⊗n+2 b′n+2←− · · ·

In view of Lemma 4.2(ii), the augmentation

ε = b′1 : A⊗2 −→ A

makes
0 ←− A ε←− F

an Ae-projective resolution of A. Therefore, the groups TorAe

n (A,A) can be
computed as the homology groups of the complex A⊗Ae F . It is an immediate
consequence of the definitions that the following diagram is commutative for
all n ≥ 1
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A⊗Ae A⊗n+2 ϕn+2−→ A⊗n+1

1⊗b′n+1 ↓ ↓ bn

A⊗Ae A⊗n+1 ϕn+1−→ A⊗n

Therefore, the complex A ⊗Ae F is identified with the Hochschild complex
(C(A), b)

A
b1←− A⊗2 b2←− · · · bn−1←− A⊗n bn←− A⊗n+1 bn+1←− · · · .

It follows that

TorAe

n (A,A) = Hn(A⊗Ae F) Hn(C(A), b) = HHn(A)

for all n and hence the proof is finished. �

The following result is an immediate consequence of the description of
Hochschild homology in terms of Tor groups. The resulting computation in
Example 4.8 will turn out to be very useful in the sequel.

Corollary 4.7 Let A1, A2 be two k-algebras and A = A1 × A2 the corre-
sponding direct product. Then, the projection maps from A to the Ai’s induce
an isomorphism HHn(A)  HHn(A1) ⊕HHn(A2) for all n.

Proof. Since Ae decomposes into the direct product of the rings Ae
1, A

e
2, A1 ⊗

Aop
2 and A2 ⊗Aop

1 , the result follows from Proposition D.4(ii) of Appendix D,
in view of Proposition 4.6. �

Example 4.8 Let A = k[σ, τ ]/(σ2 − σ, τ2 − τ, στ). Then, there is a k-algebra
isomorphism

f : A −→ k × k × k
which maps σ onto (0, 1, 0) and τ onto (0, 0, 1). Using the obvious extension
of Corollary 4.7 to the case of a direct product of finitely many k-algebras, we
conclude thatHHn(A)  HHn(k)⊕HHn(k)⊕HHn(k) for all n. In particular,
the group HHn(A) vanishes if n > 0 (cf. Example 4.4(ii)).

Let A be a k-algebra. We fix a positive integer t and consider the algebra
Mt(A) of t × t matrices with entries in A. As usual, we denote by Eij the
matrix units in Mt(A). In order to relate the Hochschild homology groups of
A to those of Mt(A), we consider the morphism of non-unital algebras

ι : A −→ Mt(A) ,

which maps any element a ∈ A onto the matrix aE11 ∈ Mt(A), and the
induced k-linear maps

ιn : HHn(A) −→ HHn(Mt(A)), n ≥ 0

(cf. Remark 4.5). Our goal is to prove that the ιn’s are isomorphisms. To that
end, we extend the ordinary trace tr : Mt(A) −→ A and define for any n ≥ 0
the k-linear map
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trn : Mt(A)⊗n+1 −→ A⊗n+1 ,

as follows: For any elementary tensor a = a0Ei0j0 ⊗ a1Ei1j1 ⊗ · · · ⊗ anEinjn
∈

Mt(A)⊗n+1, where a0, a1, . . . , an are elements of A, we define

trn(a) =

{
a0 ⊗ a1 ⊗ · · · ⊗ an if j0 = i1, j1 = i2, . . . , jn−1 = in and jn = i0

0 otherwise

The behavior of these generalized traces with respect to the operators defining
the Hochschild complex is described in the following result.

Lemma 4.9 Let A be a k-algebra, t a positive integer and Mt(A) the algebra
of t×t matrices with entries in A. Then, trn−1d

n
i = dn

i trn for all n ≥ 1 and all
i ∈ {0, 1, . . . , n}, where we have used the same notation for the d-operators that
correspond to both algebras A and Mt(A). In particular, trn−1bn = bntrn for
all n and hence Tr = (trn)n is a chain map between the Hochschild complexes
of Mt(A) and A.

Proof. It suffices to check the validity of the equality trn−1d
n
i = dn

i trn on the
elementary tensors of the form a0Ei0j0 ⊗ a1Ei1j1 ⊗ · · · ⊗ anEinjn

, where the
a’s are elements of A and the E’s the matrix units in Mt(A). In that case,
the result follows immediately from the definitions, in view of the way that
the matrix units get multiplied in Mt(A). �

Theorem 4.10 (Morita invariance of Hochschild homology) Let A be a k-
algebra, t a positive integer and Mt(A) the algebra of t × t matrices with
entries in A. Then, for all n the map

ιn : HHn(A) −→ HHn(Mt(A))

is an isomorphism with inverse the k-linear map

Trn : HHn(Mt(A)) −→ HHn(A) ,

which is induced by the chain map Tr of Lemma 4.9.

Proof. It follows immediately from the definitions that the composition trn ◦
ι⊗n+1 is the identity map on A⊗n+1 for all n ≥ 0. Therefore, the composition

HHn(A) ιn−→ HHn(Mt(A)) Trn−→ HHn(A)

is the identity map on HHn(A) for all n ≥ 0. In order to show that ιn ◦ Trn

is the identity map on HHn(Mt(A)), we shall construct a chain homotopy
between the composition (ι⊗n+1)n ◦ (trn)n and the identity map of the chain
complex (C(Mt(A)), b). To that end, we consider for all n ≥ 0 and all s ∈
{0, 1, . . . , n} the k-linear operator
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φn
s : Mt(A)⊗n+1 −→ Mt(A)⊗n+2 ,

which is defined as follows: For any elementary tensor

a = a0Ei0j0 ⊗ a1Ei1j1 ⊗ · · · ⊗ anEinjn
∈ Mt(A)⊗n+1 ,

where a0, a1, . . . , an ∈ A, we define φn
s (a) to be the elementary tensor

a0Ei01 ⊗ a1E11 ⊗ · · · ⊗ asE11 ⊗ E1js
⊗ as+1Eis+1js+1 ⊗ · · · ⊗ anEinjn

if j0 = i1, j1 = i2, . . . , js−1 = is and 0 otherwise. It is easily verified that

dn+1
i φn

s =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φn−1
s−1 d

n
i if i < s

dn+1
i φn

s−1 if i = s > 0
dn+1

i φn
s+1 if i = s+ 1 < n+ 1

φn−1
s dn

i−1 if i > s+ 1
id if i = s = 0

ι⊗n+1trn if i = s+ 1 = n+ 1

(4.1)

We now consider for all n ≥ 0 the k-linear operator

Φn =
∑n

s=0
(−1)sφn

s : Mt(A)⊗n+1 −→ Mt(A)⊗n+2

and compute

bn+1Φn =
∑n+1

i=0

∑n

s=0
(−1)i+sdn+1

i φn
s

=
∑

1
+
∑

2
+
∑

3
+
∑

4
+ dn+1

0 φn
0 − dn+1

n+1φ
n
n,

where
∑

1 denotes summation over the set {i < s}, ∑2 summation over the
set {i > s+ 1}, ∑3 summation over the set {i = s > 0} and

∑
4 summation

over the set {i = s+ 1 < n+ 1}. In view of (4.1), we have∑
1

+
∑

2
=
∑

i<s
(−1)i+sdn+1

i φn
s +
∑

i>s+1
(−1)i+sdn+1

i φn
s

=
∑

i<s
(−1)i+sφn−1

s−1 d
n
i +
∑

i>s+1
(−1)i+sφn−1

s dn
i−1

= −
∑

α≤β
(−1)α+βφn−1

β dn
α −

∑
α>β

(−1)α+βφn−1
β dn

α

= −
∑n−1

β=0

∑n

α=0
(−1)α+βφn−1

β dn
α

= −Φn−1bn .

Similarly, we have∑
3

+
∑

4
=
∑n

i=1
dn+1

i φn
i −
∑n

i=1
dn+1

i φn
i−1

=
∑n

i=1
dn+1

i φn
i−1 −

∑n

i=1
dn+1

i φn
i−1

= 0 .
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Since dn+1
0 φn

0 = id and dn+1
n+1φ

n
n = ι⊗n+1trn, we conclude that

bn+1Φn = −Φn−1bn + id − ι⊗n+1trn .

This is the case for all n and hence Φ = (Φn)n is a chain homotopy between
the identity and (ι⊗n+1)n ◦ (trn)n, as needed. �

Remark 4.11 Let A be a k-algebra. For any positive integer t and any i ∈
{1, . . . , t} we may consider the morphism of non-unital algebras

ι′ : A −→ Mt(A) ,

which maps any element a ∈ A onto the matrix aEii ∈ Mt(A). Then, the
induced k-linear map between the Hochschild homology groups

ι′n : HHn(A) −→ HHn(Mt(A))

is an isomorphism for all n; in fact, ι′n = ιn, where ιn is the isomorphism of
Theorem 4.10. Indeed, the composition

A⊗n+1 ι′⊗n+1

−→ Mt(A)⊗n+1 trn−→ A⊗n+1

is the identity map on A⊗n+1 for all n ≥ 0 and hence the composition

HHn(A)
ι′n−→ HHn(Mt(A)) Trn−→ HHn(A)

is the identity map on HHn(A) for all n ≥ 0. The result follows, since Trn is
an isomorphism with inverse ιn.

It is clear that an inner automorphism of a k-algebra A induces the identity
on the abelianization T (A) = A/[A,A]. We generalize this observation, by
proving that such an automorphism induces the identity on all Hochschild
homology groups of A.

Proposition 4.12 Let A be a k-algebra. Then, the conjugation action of the
group U(A) on A induces the trivial action on the Hochschild homology groups
HHn(A), n ≥ 0.

Proof. Let g ∈ U(A) be a unit of A and Ig : A −→ A the associated inner
automorphism. We consider the invertible 2 × 2 matrix

G =
(
g 0
0 1

)
∈ GL2(A)

and the commutative diagram

A
ι−→ M2(A) ι′←− A

Ig ↓ IG ↓ id ↓
A

ι−→ M2(A) ι′←− A
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Here, IG denotes the inner automorphism of M2(A) associated with G and ι
(resp. ι′) the morphism of non-unital algebras given by a �→ aE11, a ∈ A (resp.
a �→ aE22, a ∈ A). There is a corresponding commutative diagram between
the Hochschild homology groups

HHn(A) ιn−→ HHn(M2(A))
ι′n←− HHn(A)

(Ig)n ↓ (IG)n ↓ id ↓
HHn(A) ιn−→ HHn(M2(A))

ι′n←− HHn(A)

where all arrows are isomorphisms, and hence a commutative diagram

HHn(A)
ι
′−1
n ιn−→ HHn(A)

(Ig)n ↓ id ↓
HHn(A)

ι
′−1
n ιn−→ HHn(A)

It follows readily from this that (Ig)n is the identity on HHn(A) for all n ≥ 0,
as needed. �

In order to define the cyclic homology groups of a k-algebra A, we consider
the operator

tn : A⊗n+1 −→ A⊗n+1 ,

which is defined by letting tn(a0 ⊗ a1 ⊗ · · · ⊗ an) = (−1)nan ⊗ a0 ⊗ · · · ⊗ an−1

for any elementary tensor a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗n+1. It is clear that tn+1
n is

the identity operator on A⊗n+1; therefore, tn defines an action of the cyclic
group of order n+1 on A⊗n+1. The homology of Z/(n+1)Z with coefficients
in A⊗n+1 is the homology of the complex

A⊗n+1 1−tn←− A⊗n+1 Nn←− A⊗n+1 1−tn←− A⊗n+1 Nn←− · · · , (4.2)

where Nn =
∑n

i=0 t
i
n (cf. Example D.8(iii) of Appendix D). The following

result describes the behavior of the t’s with respect to the d-operators that
were defined at the beginning of this subsection.

Lemma 4.13 Let A be a k-algebra. Then:
(i) dn

0 tn = (−1)ndn
n,

(ii) dn
i tn = −tn−1d

n
i−1 for all i > 0 and

(iii) dn
i t

j
n =

{
(−1)jtjn−1d

n
i−j if i ≥ j

(−1)n+j−1tj−1
n−1d

n
n+1+i−j if i < j

Proof. (i) This is clear, since both operators map an elementary tensor a0 ⊗
a1 ⊗ · · · ⊗ an ∈ A⊗n+1 onto (−1)nana0 ⊗ a1 ⊗ · · · ⊗ an−1.

(ii) This is clear as well, since both operators map an elementary tensor
a0 ⊗ a1 ⊗ · · · ⊗ an ∈ A⊗n+1 onto (−1)nan ⊗ a0 ⊗ · · · ⊗ ai−1ai ⊗ . . . ⊗ an−1

(resp. onto (−1)nan−1an ⊗ a0 ⊗ · · · ⊗ an−2) if i < n (resp. if i = n).
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(iii) The case where i ≥ j follows by induction on j, in view of (ii) above.
In particular, we have dn

i t
i
n = (−1)itin−1d

n
0 and hence

dn
i t

i+1
n = (−1)itin−1d

n
0 tn = (−1)n+itin−1d

n
n ,

in view of (i) above. Therefore, if i < j then

dn
i t

j
n = (−1)n+itin−1d

n
nt

j−i−1
n = (−1)n+j−1tj−1

n−1d
n
n+1+i−j

and this finishes the proof. �

Corollary 4.14 Let A be a k-algebra. Then, bn(1 − tn) = (1 − tn−1)b′n and
b′nNn = Nn−1bn for all n ≥ 1, where Nn =

∑n
i=0 t

i
n.

Proof. We compute

bn(1 − tn) = bn − bntn
= bn −

∑n

i=0
(−1)idn

i tn

= bn − (−1)ndn
n −
∑n

i=1
(−1)i−1tn−1d

n
i−1

= b′n −
∑n−1

α=0
(−1)αtn−1d

n
α

= b′n − tn−1b
′
n

= (1 − tn−1)b′n,

where the third equality follows from Lemma 4.13(i),(ii). We also have

b′nNn =
∑n−1

i=0

∑n

j=0
(−1)idn

i t
j
n

=
∑

0≤i<j≤n
(−1)idn

i t
j
n +
∑

0≤j≤i<n
(−1)idn

i t
j
n

=
∑

0≤i<j≤n
(−1)n+1+i−jtj−1

n−1d
n
n+1+i−j +∑

0≤j≤i<n
(−1)i−jtjn−1d

n
i−j

=
∑

α+β≥n
(−1)βtαn−1d

n
β +
∑

α+β<n
(−1)βtαn−1d

n
β

=
∑n−1

α=0

∑n

β=0
(−1)βtαn−1d

n
β

= Nn−1bn,

where the third equality follows from Lemma 4.13(iii). �

In view of Corollary 4.14, we may consider for any k-algebra A the double
complex C∗∗(A) pictured below
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...
...

...
...

bn+1 ↓ −b′n+1 ↓ bn+1 ↓ −b′n+1 ↓
A⊗n+1 1−tn←− A⊗n+1 Nn←− A⊗n+1 1−tn←− A⊗n+1 Nn←− · · ·
bn ↓ −b′n ↓ bn ↓ −b′n ↓
A⊗n 1−tn−1←− A⊗n Nn−1←− A⊗n 1−tn−1←− A⊗n Nn−1←− · · ·

bn−1 ↓ −b′n−1 ↓ bn−1 ↓ −b′n−1 ↓
...

...
...

...
b2 ↓ −b′2 ↓ b2 ↓ −b′2 ↓
A⊗2 1−t1←− A⊗2 N1←− A⊗2 1−t1←− A⊗2 N1←− · · ·

b1 ↓ −b′1 ↓ b1 ↓ −b′1 ↓
A

1−t0←− A
N0←− A

1−t0←− A
N0←− · · ·

The n-th row of the double complex consists of the chain complex (4.2),
computing the homology of the cyclic group of order n+1 with coefficients in
A⊗n+1. On the other hand, the even-numbered (resp. odd-numbered) columns
of C∗∗(A) coincide with the Hochschild complex (C(A), b) (resp. the acyclic
complex (C(A),−b′)).
Definition 4.15 The cyclic homology of a k-algebra A is the homology of the
total complex TotC∗∗(A). We denote the n-th cyclic homology group of A by
HCn(A) for all n ≥ 0.

Remark 4.16 Let A, B be two k-algebras and f : A −→ B a morphism of
non-unital algebras. It is clear that

f∗∗ = (f⊗n+1)n,m : C∗∗(A) −→ C∗∗(B)

is a chain bicomplex map. Therefore, there are induced k-linear maps

fn : HCn(A) −→ HCn(B), n ≥ 0 .

Since Hochschild homology is, in principle, easier to compute than cyclic ho-
mology, the following result turns out to be very useful for computation pur-
poses.

Proposition 4.17 For any k-algebra A there is a graded endomorphism S
of degree −2 of the complex TotC∗∗(A), such that the associated operator in
homology fits into a natural long exact sequence (Connes’ exact sequence)

· · · B−→ HHn(A) I−→ HCn(A) S−→ HCn−2(A) B−→ HHn−1(A) I−→ · · · .

By an abuse of language, the operator S will be referred to as the periodicity
operator in cyclic homology.
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Proof. Let S be the endomorphism of the bicomplex C∗∗(A) which vanishes on
the first two columns and maps identically the i-th column onto the (i−2)-th
one for all i ≥ 2. Then, S induces a surjective endomorphism of the complex
TotC∗∗(A) of degree −2, with kernel K equal to the total complex associated
with the double complex formed by the first two columns of C∗∗(A). Since
the complex (C(A),−b′) is acyclic (cf. Proposition 4.2(ii)), Corollary D.2(ii)
of Appendix D implies that Hn(K) = Hn(C(A), b) = HHn(A) for all n ≥ 0.
Then, the long exact sequence in the statement is the one induced in homology
by the short exact sequence of chain complexes

0 −→ K −→ TotC∗∗(A) S−→ TotC∗∗(A)[2] −→ 0 ,

where TotC∗∗(A)[2] denotes the chain complex TotC∗∗(A) with degrees
shifted 2 units to the left. �

Corollary 4.18 Let A be a k-algebra.
(i) The natural map I : HHn(A) −→ HCn(A) is bijective for n = 0 and

surjective for n = 1. In particular, the group HC0(A) is the abelianization
T (A) = A/[A,A].

(ii) Assume that HHn(A) = 0 for all n ≥ 1. Then, the periodicity operator
S : HCn(A) −→ HCn−2(A) is bijective for all n ≥ 2.

Proof. (i) This follows from the exact sequence

HH1(A) I→ HC1(A) S→ HC−1(A) B→ HH0(A) I→ HC0(A) S→ HC−2(A)

and the vanishing of the group HCn(A) for n < 0.
(ii) This follows from the exact sequence

HHn(A) I−→ HCn(A) S−→ HCn−2(A) B−→ HHn−1(A)

and our assumption about the vanishing of the Hochschild homology groups
in positive degrees. �

Example 4.19 Since HH0(k) = k and HHn(k) = 0 if n is positive (cf.
Example 4.4(ii)), Corollary 4.18 implies that HCn(k) = 0 (resp. k) if n is odd
(resp. even and ≥ 0).

Let A be a k-algebra, t a positive integer and Mt(A) the algebra of t × t
matrices with entries in A. We conclude this subsection by relating the cyclic
homology groups of A to those of Mt(A). This relationship will be used in
the following subsection, in order to define the character of an element of
K0(A) in the even cyclic homology groups of A. We consider the morphism
of non-unital algebras

ι : A −→ Mt(A) ,

which maps any element a ∈ A onto the matrix aE11 ∈ Mt(A), and the
induced k-linear maps
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ιn : HCn(A) −→ HCn(Mt(A)), n ≥ 0

(cf. Remark 4.16). We also consider the generalized traces

trn : Mt(A)⊗n+1 −→ A⊗n+1, n ≥ 0 ,

that were defined earlier. The behavior of the trn’s with respect to the oper-
ators defining the cyclic bicomplex is described in the following result.

Lemma 4.20 Let A be a k-algebra, t a positive integer and Mt(A) the algebra
of t × t matrices with entries in A. Then, trntn = tntrn for all n ≥ 0, where
we have used the same notation for the t-operators that correspond to both
algebras A and Mt(A). In particular, trn(1 − tn) = (1 − tn)trn and trnNn =
Nntrn for all n ≥ 0 and hence the trn’s define a chain map Tr between the
cyclic bicomplexes of Mt(A) and A.

Proof. It suffices to check the validity of the equality trntn = tntrn on the elem-
entary tensors of the form a0Ei0j0 ⊗a1Ei1j1 ⊗· · ·⊗anEinjn

, where the a’s are
elements of A and the E’s the matrix units in Mt(A). In that case, the result
follows immediately from the definitions. It is clear that we also have trn(1−
tn) = (1 − tn)trn and trnNn = Nntrn. Since the trn’s are compatible with
the dn

i ’s (cf. Lemma 4.9), it follows that they are compatible with the b- and
b′-operators as well. Therefore, they induce a chain map between the cyclic
bicomplexes, as needed. �

Theorem 4.21 (Morita invariance of cyclic homology) Let us consider a k-
algebra A, a positive integer t and the algebra Mt(A) of t × t matrices with
entries in A. Then, for all n the map

ιn : HCn(A) −→ HCn(Mt(A))

is an isomorphism with inverse the k-linear map

Trn : HCn(Mt(A)) −→ HCn(A) ,

which is induced by the chain bicomplex map Tr of Lemma 4.20.

Proof. Since the composition Trn ◦ ιn is obviously the identity map on the
group HCn(A), it suffices to prove that ιn is an isomorphism for all n. In
view of the naturality of the long exact sequence of Proposition 4.17, the
morphism of non-unital algebras

ι : A −→ Mt(A)

induces a morphism of long exact sequences

· · · B−→ HHn(A) I−→ HCn(A) S−→ HCn−2(A) B−→ · · ·
ιn ↓ ιn ↓ ιn−2 ↓

· · · B−→ HHn(Mt(A)) I−→ HCn(Mt(A)) S−→ HCn−2(Mt(A)) B−→ · · ·
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We note that the ιn’s are isomorphisms between the Hochschild homology
groups, in view of Theorem 4.10. Therefore, we may prove by induction on n
that the ιn’s are isomorphisms between the cyclic homology groups as well,
using the 5-lemma. �

Remark 4.22 Let A be a k-algebra. For any positive integer t and any i ∈
{1, . . . , t} we may consider the morphism of non-unital algebras

ι′ : A −→ Mt(A) ,

which maps an element a ∈ A onto the matrix aEii ∈ Mt(A). Then, the
induced k-linear map between the cyclic homology groups

ι′n : HCn(A) −→ HCn(Mt(A))

is an isomorphism for all n; in fact, ι′n = ιn, where ιn is the isomorphism of
Theorem 4.21. Indeed, the composition

HCn(A)
ι′n−→ HCn(Mt(A)) Trn−→ HCn(A)

is clearly the identity map on HCn(A) for all n and hence the result follows,
Trn being an isomorphism with inverse ιn.

As in the case of Hochschild homology, we can now show that inner automor-
phisms of an algebra induce the identity in cyclic homology.

Proposition 4.23 Let A be a k-algebra. Then, the conjugation action of the
group U(A) on A induces the trivial action on the cyclic homology groups
HCn(A), n ≥ 0.

Proof. This follows by the same argument as in the proof of Proposition 4.12,
where we use Remark 4.22 instead of Remark 4.11. �

Let A be a k-algebra. We consider two positive integers t, t′ with t < t′ and
let

j = jt,t′ : Mt(A) −→ Mt′(A)

be the morphism of non-unital algebras, which maps a t × t matrix X with

entries in A onto the t′ × t′ matrix j(X) =
(
X 0
0 0

)
. Then, j induces k-linear

maps between the cyclic homology groups

jn : HCn(Mt(A)) −→ HCn(Mt′(A)), n ≥ 0

(cf. Remark 4.16). The following result shows that these maps are compatible
with the Morita isomorphisms.
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Lemma 4.24 Let A be a k-algebra. For any pair (t, t′) of positive integers
with t < t′ and any integer n ≥ 0, there is a commutative diagram

HCn(Mt(A)) Trn−→ HCn(A)
jn ↓ ‖

HCn(Mt′(A)) Trn−→ HCn(A)

Proof. In view of the definition of the generalized traces, the following diagram
is commutative for all n ≥ 0

Mt(A)⊗n+1 trn−→ A⊗n+1

j⊗n+1 ↓ ‖
Mt′(A)⊗n+1 trn−→ A⊗n+1

This clearly finishes the proof. �

4.1.2 The Relation to K-theory

Our goal in the present subsection is to describe the relationship between
the K0-group of a k-algebra A and the cyclic homology groups of A. More
precisely, we construct additive group homomorphisms

chn : K0(A) −→ HC2n(A), n ≥ 0 ,

that have the following properties:
(i) ch0 : K0(A) −→ HC0(A) = T (A) is the Hattori-Stallings rank and
(ii) S ◦ chn = chn−1 for all n ≥ 1.

Hence, the chn’s provide factorizations of the Hattori-Stallings rank ch0 = rHS

through the higher even cyclic homology groups of the algebra.
If e ∈ A is an idempotent, we consider the element e⊗n+1 ∈ A⊗n+1 and

note that dn
i

(
e⊗n+1

)
= e⊗n for all 0 ≤ i ≤ n. It is equally clear that the

endomorphism tn of A⊗n+1 acts on e⊗n+1 as multiplication by (−1)n. The
following result describes the behavior of the e⊗n+1’s with respect to the
differentials of the cyclic bicomplex.

Lemma 4.25 Let A be a k-algebra and e ∈ A an idempotent. Then:
(i) b2n

(
e⊗2n+1

)
= e⊗2n for all n ≥ 1,

(ii) b′2n−1

(
e⊗2n

)
= e⊗2n−1 for all n ≥ 1,

(iii) (1 − t2n−1)
(
e⊗2n

)
= 2e⊗2n for all n ≥ 1 and

(iv) N2n

(
e⊗2n+1

)
= (2n+ 1)e⊗2n+1 for all n ≥ 0.

Proof. Assertion (i) is clear since b2n

(
e⊗2n+1

)
is the alternating sum of 2n+1

copies of e⊗2n, whereas (ii) follows since b′2n−1

(
e⊗2n

)
is the alternating sum

of 2n − 1 copies of e⊗2n−1. Finally, assertions (iii) and (iv) are consequences
of the equalities t2n−1

(
e⊗2n

)
= −e⊗2n and t2n

(
e⊗2n+1

)
= e⊗2n+1. �
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Proposition 4.26 Let A be a k-algebra and e ∈ A an idempotent.
(i) The element

ξn(e) =
(

(−1)n(2n)!
n!

e⊗2n+1,
(−1)n(2n)!

2(n!)
e⊗2n,

(−1)n−1(2n− 2)!
(n− 1)!

e⊗2n−1, . . .

)
is a 2n-cycle of the complex TotC∗∗(A) for all n ≥ 0 and

(ii) If S is the endomorphism of the complex TotC∗∗(A) defined in Propo-
sition 4.17, then S(ξn(e))= ξn−1(e) for all n ≥ 1.

Proof. (i) In view of Lemma 4.25, we have

b2n

(
(−1)n(2n)!

n!
e⊗2n+1

)
= (1 − t2n−1)

(
(−1)n(2n)!

2(n!)
e⊗2n

)
and

−b′2n−1

(
(−1)n(2n)!

2(n!)
e⊗2n

)
= N2n−2

(
(−1)n−1(2n− 2)!

(n− 1)!
e⊗2n−1

)
for all n ≥ 1. It follows that the chain ξn(e) ∈ (TotC∗∗(A))2n is indeed a cycle
for all n ≥ 0.

(ii) This is an immediate consequence of the definition of S, in view of the
form of the ξn(e)’s. �

Remarks 4.27 (i) Let A be a k-algebra and e ∈ A an idempotent. Then,
ξ0(e) = e ∈ A = (TotC∗∗(A))0 and hence the cyclic homology class [ξ0(e)] is
the residue class of e ∈ A in the quotient A/[A,A] = HC0(A).

(ii) Let A, B be two k-algebras and f : A −→ B a morphism of non-unital
algebras. If e ∈ A is an idempotent then f(e) ∈ B is also an idempotent and
[ξn(f(e))] = f2n[ξn(e)] ∈HC2n(B) for all n, where

f2n : HC2n(A) −→ HC2n(B)

is the k-linear map induced by f (cf. Remark 4.16).

We now establish a key additivity property of the cyclic homology classes that
are associated with idempotent elements as above.

Lemma 4.28 Let A be a k-algebra and e, f ∈ A two orthogonal idempotents.
Then, e+f ∈ A is an idempotent and [ξn(e+f)] = [ξn(e)]+[ξn(f)] ∈ HC2n(A)
for all n ≥ 0.

Proof. We consider the universal k-algebra R = k[σ, τ ]/(σ2 − σ, τ2 − τ, στ)
on two orthogonal idempotents s = σ and t = τ and the homomorphism of
k-algebras λ : R −→ A, which is given by s �→ e and t �→ f . Then, the induced
k-linear map

λ2n : HC2n(R) −→ HC2n(A)
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is such that λ2n[ξn(s)] = [ξn(λ(s))] = [ξn(e)] (cf. Remark 4.27(ii)) and, sim-
ilarly, λ2n[ξn(t)] = [ξn(f)] and λ2n[ξn(s + t)] = [ξn(e + f)] for all n ≥ 0.
Therefore, in view of the additivity of λ2n, it suffices to prove that

[ξn(s+ t)] = [ξn(s)] + [ξn(t)] ∈ HC2n(R) (4.3)

for all n. We note that (4.3) is valid for n = 0, since [ξ0(s + t)] = s + t,
[ξ0(s)] = s and [ξ0(t)] = t in the group HC0(R) = R (cf. Remark 4.27(i)).
Since the Hochschild homology groups of R vanish in positive degrees (cf.
Example 4.8), we may invoke Corollary 4.18(ii) in order to conclude that

Sn : HC2n(R) −→ HC0(R) = R

is an isomorphism for all n ≥ 0. Then, (4.3) follows since

Sn[ξn(s+ t)] = [ξ0(s+ t)]
= [ξ0(s)] + [ξ0(t)]
= Sn[ξn(s)] + Sn[ξn(t)]
= Sn([ξn(s)] + [ξn(t)])

for all n ≥ 0. In the above chain of equalities, the first and the third ones
follow from Proposition 4.26(ii). �

Let A be a k-algebra, t a positive integer and E an idempotent t × t matrix
with entries in A. For any integer n ≥ 0 we define the cyclic homology class
chn(E) ∈ HC2n(A) as the image of the class [ξn(E)] ∈ HC2n(Mt(A)) under
the map

Tr2n : HC2n(Mt(A)) −→ HC2n(A)

defined in §4.1.1; in other words, we define chn(E) = Tr2n[ξn(E)].

Proposition 4.29 Let A be a k-algebra.
(i) We consider two positive integers t, t′ with t < t′ and the morphism of

non-unital algebras
j = jt,t′ : Mt(A) −→ Mt′(A)

which maps a t × t matrix X with entries in A onto the matrix
(
X 0
0 0

)
. If

E ∈ Mt(A) is an idempotent matrix and E′ = j(E) ∈ Mt′(A), then chn(E) =
chn(E′) ∈ HC2n(A) for all n.

(ii) If t is a positive integer, E ∈ Mt(A) an idempotent and G ∈ GLt(A)
an invertible matrix, then chn(E) = chn(GEG−1) ∈ HC2n(A) for all n.

(iii) Let t1, t2 be positive integers and E1, E2 idempotent matrices with
entries in A of sizes t1 and t2 respectively. Then, the idempotent matrix E =(
E1 0
0 E2

)
is such that chn(E) = chn(E1) + chn(E2) for all n.

(iv) Let t be a positive integer and E ∈ Mt(A) an idempotent matrix.
Then, ch0(E) is the Hattori-Stallings rank rHS(E) ∈ A/[A,A] = HC0(A).
Moreover, S(chn(E)) = chn−1(E) for all n ≥ 1.
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Proof. (i) We fix an integer n ≥ 0 and consider the commutative diagram

HC2n(Mt(A)) Tr2n−→ HC2n(A)
j2n ↓ ‖

HC2n(Mt′(A)) Tr2n−→ HC2n(A)

of Lemma 4.24. In view of Remark 4.27(ii), we have [ξn(E′)] = [ξn(j(E))] =
j2n[ξn(E)] and hence

chn(E′) = Tr2n[ξn(E′)] = (Tr2n ◦ j2n)[ξn(E)] = Tr2n[ξn(E)] = chn(E) .

(ii) The cycle ξn(GEG−1) is obtained from the cycle ξn(E) by letting the
inner automorphism IG ∈ Aut(Mt(A)) associated with G act on the cyclic
bicomplex of Mt(A). Since IG induces the identity operator on the cyclic
homology of Mt(A) (cf. Proposition 4.23), we have [ξn(GEG−1)] = [ξn(E)] ∈
HC2n(Mt(A)) and hence

chn(GEG−1) = Tr2n[ξn(GEG−1)] = Tr2n[ξn(E)] = chn(E) ∈ HC2n(A)

for all n.
(iii) We fix a non-negative integer n and consider the idempotent matrices

E′
1 =
(
E1 0
0 0

)
, E′

2 =
(

0 0
0 E2

)
and E′′

2 =
(
E2 0
0 0

)
in Mt1+t2(A). In view of (i)

above, we have chn(E1) = chn(E′
1) and chn(E2) = chn(E′′

2 ). Since the matri-
ces E′

2 and E′′
2 are conjugate, it follows from (ii) that chn(E′′

2 ) = chn(E′
2) and

hence chn(E2) = chn(E′
2). Applying Lemma 4.28 to the orthogonal idempo-

tent matrices E′
1 and E′

2, we conclude that

[ξn(E)] = [ξn(E′
1)] + [ξn(E′

2)] ∈ HC2n(Mt1+t2(A))

and hence
chn(E) = Tr2n[ξn(E)]

= Tr2n[ξn(E′
1)] + Tr2n[ξn(E′

2)]
= chn(E′

1) + chn(E′
2)

= chn(E1) + chn(E2) .

(iv) First of all, we note that ξ0(E) = E (cf. Remark 4.27(i)). Since
tr0 : Mt(A) −→ A is the usual trace map, ch0(E) = Tr0[ξ0(E)] = Tr0[E] =
[tr0(E)] = [tr(E)] is indeed the residue class of the trace of E in the quotient
group A/[A,A] = HC0(A). In order to prove the final claim, we compute

S(chn(E)) = (S ◦ Tr2n)[ξn(E)]
= (Tr2n−2 ◦ S)[ξn(E)]
= Tr2n−2[S(ξn(E))]
= Tr2n−2[ξn−1(E)]
= chn−1(E)
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for all n ≥ 1. In the above chain of equalities, the second one follows since the
Trn’s are compatible with the periodicity operators1, whereas the fourth one
results from Proposition 4.26(ii). �

In the following theorem, we reformulate the results obtained above in K-
theoretic terms.

Theorem 4.30 Let A be a k-algebra. Then, for any non-negative integer n
there is an additive group homomorphism

chn : K0(A) −→ HC2n(A) ,

such that the sequence (chn)n has the following properties:
(i) ch0 is the Hattori-Stallings rank and
(ii) S ◦ chn = chn−1 for all n ≥ 1.

The chn’s will be referred to as the Connes-Karoubi character maps.

Proof. We fix a positive integer n and consider the cyclic homology classes
chn(E) ∈ HC2n(A) that are associated with idempotent matrices E with
entries in A as above. In view of Remark 1.32, the assertions proved in Propo-
sition 4.29(i),(ii),(iii) imply the existence of a group homomorphism

chn : K0(A) −→ HC2n(A) ,

which maps the K-theory class of an idempotent matrix E as above onto
chn(E). Then, Proposition 4.29(iv) shows that the chn’s have properties (i)
and (ii) in the statement and hence the proof is finished. �

Remark 4.31 In the special case where k is a field of characteristic 0 and A
the algebra of regular functions on a smooth affine algebraic variety X over
k, the cyclic homology groups of A can be expressed as a certain direct sum
of de Rham cohomology groups of X. Moreover, a vector bundle V over X
determines an element [V ] in the K0-group of A and the Connes-Karoubi
characters chn[V ] defined in Theorem 4.30 recover the classical Chern charac-
ters of V . The reader can find a detailed exposition of these results in Loday’s
book [44].

4.1.3 The Cyclic Homology of Group Algebras

In the previous subsections, we defined the cyclic homology groups of a k-
algebra A and established the relationship between these groups and the K-
theory group K0(A). With an eye to the applications we have in mind, we
now assume that the field k has characteristic 0 and specialize the previous
discussion to the case where A = kG is the group algebra of a group G,
which will remain fixed throughout this subsection. Our goal is to study the
structure of the inverse systems
1 Note that the Trn’s are induced by a chain bicomplex map; cf. Exercise 4.3.1.
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· · · S−→ HC2n(kG) S−→ HC2n−2(kG) S−→ · · · S−→ HC0(kG)

and

· · · S−→ HC2n+1(kG) S−→ HC2n−1(kG) S−→ · · · S−→ HC1(kG) .

In analogy with the decomposition

HC0(kG) = T (kG) =
⊕

[g]∈C(G)
k · [g], (4.4)

we shall obtain a decomposition of the inverse systems above into a direct
sum of inverse systems, indexed by the set C(G) of G-conjugacy classes.

For any element g ∈ G we consider its centralizer Cg in G and the quotient
group Ng = Cg/<g>. Using group homology in even degrees, we define the
inverse system X even(g, k) = (Xeven

n (g, k))n as follows:

• If g has finite order then

Xeven
n (g, k) =

⊕n

i=0
H2i(Ng, k)

for all n ≥ 0. In particular, Xeven
0 (g, k) = H0(Ng, k) = k. We note that

Xeven
n (g, k) = Xeven

n−1 (g, k) ⊕H2n(Ng, k) and define the structural map

Xeven
n (g, k) −→ Xeven

n−1 (g, k)

to be the natural projection with kernel H2n(Ng, k) for all n.
• If g has infinite order we consider the central extension

1 −→ Z
g−→ Cg −→ Ng −→ 1

and let αg ∈ H2(Ng,Z) be the corresponding cohomology class (cf. §D.2.2
of Appendix D). We now define

Xeven
n (g, k) = H2n(Ng, k)

for all n, whereas the structural map

Xeven
n (g, k) = H2n(Ng, k) −→ H2n−2(Ng, k) = Xeven

n−1 (g, k)

is the cap-product with the cohomology class αg (cf. §D.2.3 of Appendix
D). In this case too, we have Xeven

0 (g, k) = H0(Ng, k) = k.

In exactly the same way, using group homology in odd degrees, we can asso-
ciate with any element g ∈ G an inverse system X odd(g, k).

Remark 4.32 For any g ∈ G the isomorphism type of the centralizer Cg

depends only upon the conjugacy class [g] ∈ C(G) and the same is true for the
quotient Ng = Cg/<g>. In fact, it is clear that the isomorphism types of the
inverse systems X even(g, k) and X odd(g, k) depend only upon the conjugacy
class [g] of g.

We can now state the main result of this subsection on the structure of the
inverse system (HCω+2n(kG), S)n, ω = 0, 1, as follows:
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Theorem 4.33 There is a natural decomposition of inverse systems

(HCω+2n(kG), S)n 
⊕

[g]∈C(G)
Xω(g, k) ,

where the parity ω can be even (= 0) or odd (= 1). In the even case, this
decomposition generalizes the decomposition of (4.4).

Proof. The strategy of the proof (which will occupy the remainder of this
subsection) will be to replace the double complex C∗∗(kG) with another dou-
ble complex Γ∗∗(G, k), which admits itself a natural decomposition into the
direct sum of subcomplexes indexed by the set C(G) of G-conjugacy classes,
and then compute the homology of the total complexes that are associated
with each one of these subcomplexes.

Let M be the right kG-module which is equal to kG as a k-vector space
with right G-action given by the rule m · g = g−1mg for all g ∈ G and all
m ∈ M ; here, g−1mg denotes the usual product of elements in M = kG.
We also consider the G-set Gn+1 with diagonal action and the associated
kG-module Sn(G, k) = k[Gn+1] for all n. We now let

Γn(G, k) = M ⊗kG Sn(G, k)

and prove the following result, relating the Γn(G, k)’s to the tensor powers
Cn(kG) = kG⊗n+1, n ≥ 0.

Lemma 4.34 (i) There is a natural isomorphism of k-vector spaces

θn : Cn(kG) −→ Γn(G, k) ,

which maps an elementary tensor g0 ⊗ g1 ⊗ · · · ⊗ gn ∈ Cn(kG) onto the
tensor g0g1 · · · gn ⊗ (g0, g0g1, . . . , g0g1 · · · gn) ∈ Γn(G, k) for any elements
g0, g1, . . . , gn ∈ G and any n ≥ 0.

(ii) There is a natural decomposition of k-vector spaces

Γn(G, k) 
⊕

[g]∈C(G)
Γn(g, k) ,

where Γn(g, k) = k ⊗kCg
Sn(G, k) for all g ∈ G and all n. The embedding

Γn(g, k) ↪→ Γn(G, k) identifies the element 1 ⊗ (g0, . . . , gn) ∈ Γn(g, k) with
g ⊗ (g0, . . . , gn) ∈ Γn(G, k) for all g, g0, . . . , gn ∈ G and all n ≥ 0.

Proof. (i) Let us consider the k-linear map

ηn : Γn(G, k) −→ Cn(kG) ,

which maps an elementary tensor m⊗ (g0, . . . , gn) ∈ Γn(G, k) onto the tensor
g−1

n mg0 ⊗ g−1
0 g1 ⊗ · · · ⊗ g−1

n−1gn ∈ Cn(kG) for all m ∈M , g0, . . . , gn ∈ G and
n ≥ 0; here, g−1

n mg0 denotes the usual product of elements in M = kG. It is
easily seen that ηn is well-defined; in fact, it is the inverse of θn for all n.
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(ii) For any g ∈ G we consider the kG-submodule Mg =
⊕

x∈[g] k ·x of M .
Then, there is a natural isomorphism of right kG-modules

Mg  k ⊗kCg
kG ,

which identifies g ∈Mg with 1⊗ 1 ∈ k⊗kCg
kG. Since M =

⊕
[g]∈C(G)Mg (as

right kG-modules), we have an associated decomposition

Γn(G, k) = M ⊗kG Sn(G, k)
=
⊕

[g]∈C(G)
Mg ⊗kG Sn(G, k)


⊕

[g]∈C(G)

(
k ⊗kCg

kG
)⊗kG Sn(G, k)


⊕

[g]∈C(G)
k ⊗kCg

Sn(G, k)

=
⊕

[g]∈C(G)
Γn(g, k)

for all n, as needed. �

By means of the isomorphisms (θn)n, the differentials of the double complex
C∗∗(kG) induce certain differentials on the bigraded k-vector space Γ∗∗(G, k),
which is defined by letting Γij(G, k) = Γj(G, k) for all i, j ≥ 0. In order to
identify these differentials, we consider for all n ≥ 1 and all i ∈ {0, 1, . . . , n}
the k-linear map

δni : Sn(G, k) −→ Sn−1(G, k) ,

which is defined by letting δni (g0, . . . , gn) = (g0, . . . , ĝi, . . . , gn) for any element
(g0, . . . , gn) ∈ Gn+1; here, the symbol ̂ over an element denotes omission of
that element. It is clear that the k-linear maps δni are, in fact, kG-linear for
all n, i. We also consider the kG-linear maps

δn : Sn(G, k) −→ Sn−1(G, k) ,

which are defined by letting δn =
∑n

i=0(−1)iδni for all n ≥ 1. Then, as noted
in Proposition D.6(i) of Appendix D, the δn’s define a kG-free resolution of
the trivial kG-module k

k
ε←− S0(G, k)

δ1←− S1(G, k)
δ2←− · · · δn←− Sn(G, k)

δn+1←− · · · (4.5)

Moreover, if we define the kG-linear maps

δ′n : Sn(G, k) −→ Sn−1(G, k) ,

by letting δ′n =
∑n−1

i=0 (−1)iδni for all n ≥ 1, then the δ′n’s induce a contractible
chain complex
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S0(G, k)
δ′
1←− S1(G, k)

δ′
2←− · · · δ′

n←− Sn(G, k)
δ′

n+1←− · · ·

(cf. Proposition D.6(ii) of Appendix D). We now define the k-linear operators

δ̃ni : Γn(G, k) −→ Γn−1(G, k)

by letting δ̃ni = 1 ⊗ δni for all n ≥ 1 and i ∈ {0, 1, . . . , n}. Similarly, we define
the k-linear operators

δ̃ni (g) : Γn(g, k) −→ Γn−1(g, k)

by letting δ̃ni (g) = 1 ⊗ δni for all n ≥ 1, i ∈ {0, 1, . . . , n} and g ∈ G. The
operators just defined are related to the operators dn

i that were defined in
§4.1.1, as described in the following result.

Lemma 4.35 (i) The diagram

Cn(kG) θn−→ Γn(G, k)
dn

i ↓ ↓ δ̃n
i

Cn−1(kG)
θn−1−→ Γn−1(G, k)

is commutative for all n ≥ 1 and i ∈ {0, 1, . . . , n}.
(ii) The diagram

Γn(g, k) ↪→ Γn(G, k)
δ̃n

i (g) ↓ ↓ δ̃n
i

Γn−1(g, k) ↪→ Γn−1(G, k)

whose horizontal arrows are the embeddings of Lemma 4.34(ii), is commuta-
tive for all n ≥ 1, i ∈ {0, 1, . . . , n} and g ∈ G.

Proof. Both assertions are immediate consequences of the definitions. �

Using the δ̃ni ’s, we define the operators

βn : Γn(G, k) −→ Γn−1(G, k) and β′n : Γn(G, k) −→ Γn−1(G, k) ,

by letting βn =
∑n

i=0(−1)iδ̃ni = 1 ⊗ δn and β′n =
∑n−1

i=0 (−1)iδ̃ni = 1 ⊗ δ′n for
all n ≥ 1. Similarly, for all n ≥ 1 and all g ∈ G we define the operators

βn(g) : Γn(g, k) −→ Γn−1(g, k) and β′n(g) : Γn(g, k) −→ Γn−1(g, k) ,

by letting βn(g) =
∑n

i=0(−1)iδ̃ni (g) and β′n(g) =
∑n−1

i=0 (−1)iδ̃ni (g); we note
that βn(g) = 1 ⊗ δn and β′n(g) = 1 ⊗ δ′n.

Corollary 4.36 (i) The compositions βn−1βn and β′n−1β
′
n vanish for all

n ≥ 1.
(ii) The θn’s induce an isomorphism of chain complexes
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θ : (C(kG), b) −→ (Γ(G, k), β) ,

where Γ(G, k) = (Γn(G, k))n and β = (βn)n. Hence, the Hochschild homology
groups of kG are naturally identified with the homology groups of the complex
(Γ(G, k), β).

(iii) The θn’s induce an isomorphism of chain complexes

θ : (C(kG), b′) −→ (Γ(G, k), β′) ,

where β′ = (β′n)n. In particular, the chain complex (Γ(G, k), β′) is contractible
and hence acyclic.

(iv) There are natural decompositions of chain complexes

(Γ(G, k), β) =
⊕

[g]∈C(G)
(Γ(g, k), β(g))

and
(Γ(G, k), β′) =

⊕
[g]∈C(G)

(Γ(g, k), β′(g)) ,

where Γ(g, k) = (Γn(g, k))n, β(g) = (βn(g))n and β′(g) = (β′n(g))n for all
g ∈ G.

(v) There is a natural isomorphism

HHn(kG) 
⊕

[g]∈C(G)
Hn(Cg, k)

for all n ≥ 0.

Proof. Assertions (i), (ii), (iii) and (iv) follow from Lemma 4.35, in view of
Lemma 4.34. Viewing the acyclic complex (4.5) as a kCg-free resolution of
the trivial kCg-module k, we conclude that the chain complex (Γ(g, k), β(g))
computes the homology groups of Cg with coefficients in k for all g ∈ G.
Therefore, assertion (v) follows from (ii) and (iv). �

The action of the cyclic group of order n + 1 on Cn(kG) induces, by means
of θn, an action on Γn(G, k) for all n ≥ 0. In order to find a formula for this
latter action, we consider the k-linear operator

τn : Γn(G, k) −→ Γn(G, k) ,

which is defined by letting g ⊗ (g0, . . . , gn) �→ (−1)ng ⊗ (g−1gn, g0, . . . , gn−1)
for any elements g, g0, . . . , gn ∈ G. It is easily seen that τn is a well-defined
operator, such that τn+1

n is the identity on Γn(G, k). Similarly, for any g ∈ G
we consider the k-linear operator

τn(g) : Γn(g, k) −→ Γn(g, k) ,

which is defined by letting 1 ⊗ (g0, . . . , gn) �→ (−1)n ⊗ (g−1gn, g0, . . . , gn−1)
for any elements g0, . . . , gn ∈ G. In this case too, one can easily verify that
τn(g) is well-defined and τn(g)n+1 = id.
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Lemma 4.37 (i) The diagram

Cn(kG) θn−→ Γn(G, k)
tn ↓ ↓ τn

Cn(kG) θn−→ Γn(G, k)

is commutative for all n ≥ 0.
(ii) The diagram

Γn(g, k) ↪→ Γn(G, k)
τn(g) ↓ ↓ τn

Γn(g, k) ↪→ Γn(G, k)

whose horizontal arrows are the embeddings of Lemma 4.34(ii), is commuta-
tive for all n ≥ 0 and all g ∈ G.

Proof. Both assertions are immediate consequences of the definitions. �

We now consider the double complex Γ∗∗(G, k), which is defined by letting
Γij(G, k) = Γj(G, k) for all i, j ≥ 0 and whose differentials are given in anal-
ogy with those of the double complex C∗∗(kG), by replacing the bn’s (resp.
the b′n’s, resp. the tn’s) with the βn’s (resp. the β′n’s, resp. the τn’s). The
appropriate commutation rules for the differentials of Γ∗∗(G, k) follow from
the corresponding ones for C∗∗(kG), in view of Corollary 4.36(ii),(iii) and
Lemma 4.37(i). Moreover, the 2-periodicity of the double complex Γ∗∗(G, k)
in the horizontal direction enables us to define a surjective endomorphism S of
it, in analogy with the corresponding operator defined on the cyclic bicomplex
of kG. In particular, there is an induced chain map

S : Tot Γ∗∗(G, k) −→ Tot Γ∗∗(G, k)[2] . (4.6)

Similarly, for any element g ∈ G we consider the double complex Γ∗∗(g, k),
which is defined by letting Γij(g, k) = Γj(g, k) for all i, j ≥ 0 and whose
differentials are given in analogy with those of the double complex C∗∗(kG),
by replacing the bn’s (resp. the b′n’s, resp. the tn’s) with the βn(g)’s (resp. the
β′n(g)’s, resp. the τn(g)’s). We also consider the chain map

S : Tot Γ∗∗(g, k) −→ Tot Γ∗∗(g, k)[2] , (4.7)

which is induced from the endomorphism S of the double complex Γ∗∗(g, k)
that vanishes on the first two columns and maps identically the i-th column
onto the (i− 2)-th one for all i ≥ 2.

Corollary 4.38 (i) The θn’s induce an isomorphism of double complexes

θ : C∗∗(kG) −→ Γ∗∗(G, k) .

In particular, the homology groups of the chain complex TotΓ∗∗(G, k) are
naturally identified with the cyclic homology groups of kG.
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(ii) There is a natural decomposition of double complexes

Γ∗∗(G, k) 
⊕

[g]∈C(G)
Γ∗∗(g, k) .

In particular, the cyclic homology groups of kG decompose into the direct sum
of the homology groups of the complexes TotΓ∗∗(g, k), [g] ∈ C(G).

(iii) The periodicity operator S associated with kG is induced by the chain
map (4.6), in view of the identification of (i) above, and decomposes into the
direct sum of the operators induced by the chain maps (4.7), in view of the
decomposition of (ii) above.

Proof. Assertion (i) follows from Corollary 4.36(ii),(iii) and Lemma 4.37(i),
whereas (ii) is a consequence of Lemma 4.34(ii), in view of Corollary 4.36(iv)
and Lemma 4.37(ii). Finally, assertion (iii) is an immediate consequence of
the definitions. �

We complete the proof of Theorem 4.33 by computing the homology groups
of the complexes Tot Γ∗∗(g, k) for all g ∈ G. In fact, we shall prove that there
is a natural isomorphism of inverse systems

(Hω+2n(Tot Γ∗∗(g, k)), S)n  Xω(g, k) (4.8)

for all g ∈ G, where the parity ω can be even (= 0) or odd (= 1) and S is
the periodicity operator induced by the chain map (4.7). To that end, we
consider an element g ∈ G and let C = Cg be its centralizer in G. We define
Γ̃n(g, k) = k ⊗kC Sn(C, k) and consider the map

γn : Γ̃n(g, k) −→ Γn(g, k) ,

which is induced by the inclusion Sn(C, k) ↪→ Sn(G, k) for all n. This latter
inclusion being a split monomorphism of kC-modules (cf. Exercise 4.3.2), we
conclude that the k-linear map γn is injective for all n. It follows that the γn’s
define a monomorphism of double complexes

γ : Γ̃∗∗(g, k) −→ Γ∗∗(g, k) ,

where Γ̃∗∗(g, k) is the double complex which is defined by letting Γ̃ij(g, k) =
Γ̃j(g, k) for all i, j ≥ 0 and whose differentials are given by the same formu-
lae as the corresponding ones for Γ∗∗(g, k).2 Furthermore, the operator S on
Γ∗∗(g, k) restricts along γ to an operator S on Γ̃∗∗(g, k).

Lemma 4.39 For any element g ∈ G the monomorphism of double complexes
γ : Γ̃∗∗(g, k) −→ Γ∗∗(g, k) defined above is a quasi-isomorphism. In particular,
there is a natural isomorphism of inverse systems

2 More formally, Γ̃∗∗(g, k) is the double complex associated with the pair (C, g),
in the same way that the double complex Γ∗∗(g, k) is associated with the pair
(G, g).
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Hω+2n

(
Tot Γ̃∗∗(g, k)

)
, S
)

n  (Hω+2n(TotΓ∗∗(g, k)), S)n ,

where the parity ω can be even (= 0) or odd (= 1).

Proof. In view of Proposition D.1(i) of Appendix D, it suffices to show that
γ induces isomorphisms between the homology groups of the columns of the
double complexes. As far as the even-numbered columns are concerned, we
note that the inclusion

(S(C, k), δ) ↪→ (S(G, k), δ)

is a morphism of kC-projective resolutions of k lifting the identity. Hence, the
chain map

γ :
(
Γ̃(g, k), β̃(g)

)
−→ (Γ(g, k), β(g))

is a quasi-isomorphism, identifying the homology groups of both sides with
H∗(C, k). Concerning the odd-numbered columns, we note that the complex
(Γ(g, k),−β′(g)) is acyclic, in view of Corollary 4.36(iii),(iv). The same re-
sult, applied to the group C and its element g, shows that the complex(
Γ̃(g, k),−β̃′(g)

)
is acyclic as well. �

In view of Lemma 4.39, the existence of a natural isomorphism as in (4.8) for
an element g ∈ G is equivalent to the existence of a natural isomorphism(

Hω+2n

(
Tot Γ̃∗∗(g, k)

)
, S
)

n  Xω(g, k) ,

where the parity ω can be even (= 0) or odd (= 1). In other words, we may
replace the pair (G, g) with the pair (C, g). Changing notation, it suffices to
prove the existence of a natural isomorphism as in (4.8), under the assumption
that g is central in G.

Therefore, we fix a central element g ∈ G and consider the double complex
Γ∗∗ = Γ∗∗(g, k). We recall that

• Γij = Γj = k ⊗kG Sj(G, k) for all i, j ≥ 0.
• The even-numbered columns consist of the complex (Γ, β(g)) that com-

putes the homology groups of G with coefficients in k.
• The odd-numbered columns consist of the complex (Γ,−β′(g)), which is

acyclic.
• The n-th row of Γ∗∗ is the complex

Γn
1−τn(g)←− Γn

Nn(g)←− Γn
1−τn(g)←− · · ·

that computes the homology of the cyclic group of order n+1 with coeffi-
cients in Γn, where the action is given by means of the operator τn(g),
which maps 1 ⊗ (g0, . . . , gn) onto (−1)n ⊗ (g−1gn, g0, . . . , gn−1) for all
g0, . . . , gn ∈ G.
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In order to identify the homology of the complex Tot Γ∗∗, we distinguish two
cases:

Case I: Assume that g ∈ G is a central element of finite order. We consider
the quotient group G = G/<g> and the identity element 1 ∈ G. In the same
way that the double complex Γ∗∗ is associated with the pair (G, g), we may
consider the double complex Γ∗∗ associated with the pair

(
G, 1
)
. We note that

the quotient map π : G −→ G induces a surjective map of double complexes

π : Γ∗∗ −→ Γ∗∗ .

Lemma 4.40 The chain bicomplex map π : Γ∗∗ −→ Γ∗∗ defined above is a
quasi-isomorphism. In particular, there is a natural isomorphism of inverse
systems

(Hω+2n(TotΓ∗∗), S)n (Hω+2n

(
TotΓ∗∗

)
, S
)
n

for any parity ω.

Proof. In view of Proposition D.1(i) of Appendix D, it suffices to show that the
maps induced by π between the homology groups of the columns of the double
complexes are isomorphisms. This is clear for the odd-numbered columns,
since the relevant homology groups vanish (cf. Corollary 4.36(iii),(iv)). As far
as the even-numbered columns are concerned, we have to show that the chain
map

π : (Γ, β(g)) −→(Γ, β(1))
is a quasi-isomorphism. In other words, we have to show that

π∗ : Hn(G, k) −→ Hn

(
G, k

)
is an isomorphism for all n. This latter assertion follows from Proposition
D.21 of Appendix D, since k is (by assumption) a field of characteristic 0,
whereas the kernel of the surjective group homomorphism π : G −→ G is
finite. Finally, being a chain bicomplex map, π induces a map between the
homology groups of the corresponding total complexes that commutes with
the relevant periodicity operators S (cf. Exercise 4.3.1). This proves the last
assertion in the statement and finishes the proof of the lemma. �

In order to compute the homology of the complex Tot Γ∗∗, we consider for any
n ≥ 0 the k-linear endomorphism �n of Sn

(
G, k

)
= k
[
G

n+1
]
, which is given

by letting

�n(x0, . . . , xn) = 1
(n+1)!

∑
σ∈Λn+1

(−1)σ̃(xσ0, . . . , xσn)

for any elements x0, . . . , xn ∈ G. Here, Λn+1 is the group of permutations
of the set {0, 1, . . . , n}, whereas for any σ ∈ Λn+1 we define σ̃ to be the
cardinality of the set of crossings {(i, j) : 0 ≤ i < j ≤ n and σi > σj};
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then, (−1)σ̃ is the sign of σ. We also consider the k-linear endomorphism τn

of Sn

(
G, k

)
, which is given by letting

τn(x0, . . . , xn) = (−1)n(xn, x0, . . . , xn−1)

for any elements x0, . . . , xn ∈ G. It is clear that the k-linear maps �n and τn

are, in fact, kG-linear.

Lemma 4.41 (i) We have �n = �n ◦ τn for all n.
(ii) The �n’s induce a chain endomorphism of the resolution (4.5), that

corresponds to the group G, lifting the identity map of k.

Proof. (i) This is an immediate consequence of the definitions, since the per-
mutation (0, 1, . . . , n) �→ (n, 0, . . . , n− 1) of {0, 1, . . . , n} has n crossings.

(ii) Since the endomorphism �0 is the identity operator on S0

(
G, k

)
, the

following diagram commutes

k
ε←− S0

(
G, k

)
‖ ↓ �0

k
ε←− S0

(
G, k

)
It remains to prove that (�n)n is a chain map, i.e. that the following diagram
commutes for all n ≥ 1

Sn−1

(
G, k

) δn←− Sn

(
G, k

)
�n−1 ↓ ↓ �n

Sn−1

(
G, k

) δn←− Sn

(
G, k

)
To that end, we fix an (n+ 1)-tuple x = (x0, . . . , xn) ∈ Gn+1

and compute

δn�n(x) = δn

[
1

(n+1)!

∑
σ∈Λn+1

(−1)σ̃(xσ0, . . . , xσn)
]

= 1
(n+1)!

∑
σ∈Λn+1

(−1)σ̃ δn(xσ0, . . . , xσn)

= 1
(n+1)!

∑
σ∈Λn+1

∑n

i=0
(−1)σ̃+i(xσ0, . . . , x̂σi, . . . , xσn)

and

�n−1δn(x) = �n−1

[∑n

j=0
(−1)j(x0, . . . , x̂j , . . . , xn)

]
=
∑n

j=0
(−1)j �n−1(x0, . . . , x̂j , . . . , xn)

= 1
n!

∑n

j=0

∑
τ∈Λn

(−1)j+τ̃ (xτ0, . . . , xτ(j−1), xτ(j+1), . . . , xτn) .

We note that in the very last summation the summand corresponding to
the pair (j, τ) is interpreted by viewing τ ∈ Λn as a permutation of the
set {0, . . . , j − 1, j + 1, . . . , n}. The equality δn�n = �n−1δn is therefore a
consequence of the following result. �
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Lemma 4.42 Let n be a positive integer, j a non-negative integer with j ≤ n
and τ a permutation of the set {0, . . . , j − 1, j + 1, . . . , n}. Then:

(i) There are precisely n+ 1 pairs (i, σ), where i is a non-negative integer
with i ≤ n and σ a permutation of the set {0, . . . , n}, such that the sequences

(τ0, . . . , τ(j − 1), τ(j + 1), . . . , τn) and (σ0, . . . , σ(i− 1), σ(i+ 1), . . . , σn)

coincide.
(ii) For any pair (i, σ) as in (i), we have j + τ̃ ≡ i+ σ̃ (mod 2).

Proof. (i) Having chosen an arbitrary element i ∈ {0, . . . , n}, there is a unique
permutation σ ∈ Λn+1 with the required property; namely, the one which is
defined by letting

(σ0, . . . , σ(i− 1), σ(i+ 1), . . . , σn) = (τ0, . . . , τ(j − 1), τ(j + 1), . . . , τn)

and σi = j.
(ii) Let σ be defined as above, corresponding to the choice of an element

i ∈ {0, . . . , n}. In order to compute σ̃, we have to count the cardinality of the
set of crossings

A = {(x, y) : 0 ≤ x < y ≤ n and σx > σy} .

Let A1 be the set consisting of those pairs (x, y) ∈ A for which x �= i �= y; it
is clear that

cardA1 = τ̃ . (4.9)

We now consider the subsets A2 and A3 of A, that consist of the pairs of
the form (i, y) and (x, i) respectively. Since σi = j, it follows that there are
exactly cardA2 elements of the set {i + 1, . . . , n} and i − cardA3 elements
of the set {0, . . . , i− 1} that are mapped under σ into the set {0, . . . , j − 1}.
Therefore, it follows that

cardA2 + i− cardA3 = j . (4.10)

Since A is the disjoint union of A1, A2 and A3, we conclude from (4.9) and
(4.10) that

σ̃ ≡ cardA ≡ cardA1 + cardA2 + cardA3 ≡ τ̃ + i+ j (mod 2)

and hence the proof is complete. �

The kG-linear endomorphism �n of Sn

(
G, k

)
induces a k-linear endomorphism

ρn = 1 ⊗ �n of Γn = k ⊗kG Sn

(
G, k

)
for all n. We recall that the cyclic

group of order n+ 1 acts on Γn by means of the operator τn
(
1
)
, which maps

1⊗ (x0, . . . , xn) onto (−1)n ⊗ (xn, x0, . . . , xn−1) for any elements x0, . . . , xn ∈
G; therefore, τn

(
1
)
= 1 ⊗ τn.
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Corollary 4.43 (i) We have ρn = ρn ◦ τn
(
1
)

for all n.
(ii) The ρn’s induce a quasi-isomorphism

ρ :
(
Γ, β
(
1
))−→(Γ, β(1)) .

Proof. Both assertions are immediate consequences of Lemma 4.41. �
We now consider the double complex Γ

′
∗∗, whose even-numbered columns

consist of the complex
(
Γ, β
(
1
))

and whose odd-numbered ones vanish. Then,
Corollary 4.43(i) implies that there is a chain bicomplex map

ρ : Γ∗∗ −→ Γ
′
∗∗ ,

whose components are the ρn’s between the even-numbered columns and the
zero maps between the odd-numbered ones. Since the maps induced by ρ
between the homology groups of the columns of the double complexes are iso-
morphisms (this is a consequence of Corollary 4.43(ii) for the even-numbered
columns and Corollary 4.36(iii),(iv) for the odd-numbered ones), Proposition
D.1(i) of Appendix D implies that ρ is a quasi-isomorphism. Being a chain
bicomplex map, ρ induces a map between the homology groups of the corre-
sponding total complexes that commutes with the relevant periodicity oper-
ators S (cf. Exercise 4.3.1). Hence, there is a natural isomorphism of inverse
systems (

Hω+2n

(
Tot Γ∗∗

)
, S
)
n 
(
Hω+2n

(
Tot Γ

′
∗∗
)
, S
)

n (4.11)

for any parity ω. On the other hand, it is clear that

Hn

(
Tot Γ

′
∗∗
)

=
⊕

i≥0
Hn−2i

(
Γ, β
(
1
))

=
⊕

i≥0
Hn−2i

(
G, k

)
for all n ≥ 0. Moreover, the periodicity operator S of the double complex Γ

′
∗∗

induces for any n ≥ 0 a k-linear map

S : Hn

(
Tot Γ

′
∗∗
)
−→ Hn−2

(
Tot Γ

′
∗∗
)
,

which is identified with the natural projection of
⊕

i≥0Hn−2i

(
G, k

)
onto⊕

j≥0Hn−2−2j

(
G, k

)
=
⊕

i≥1Hn−2i

(
G, k

)
with kernel Hn

(
G, k

)
. It follows

that for any parity ω there is an equality of inverse systems(
Hω+2n

(
Tot Γ

′
∗∗
)
, S
)

n = Xω(g, k) .

In view of Lemma 4.40 and (4.11) above, this establishes the existence of a
natural isomorphism as in (4.8), in the case where g is a central element of
finite order.

Case II: We now consider the case where g ∈ G is a central element of in-
finite order. For any integer n ≥ 0 we let σn(g) be the k-linear endomor-
phism of Sn(G, k), which is defined by mapping (g0, . . . , gn) ∈ Sn(G, k) onto
(−1)n(g−1gn, g0, . . . , gn−1) for any (n+1)-tuple (g0, . . . , gn) of elements of G.
Since g is central in G, the k-linear map σn(g) is, in fact, kG-linear.
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Lemma 4.44 (i) The operator 1−σn(g) ∈ EndkGSn(G, k) is injective for all
n ≥ 0.

(ii) δn0 σn(g) = (−1)nδnn for all n ≥ 0.
(iii) δni σn(g) = −σn−1(g)δni−1 for all i > 0.
(iv) δn(1 − σn(g)) = (1 − σn−1(g))δ′n for all n ≥ 0.

In particular, there is an injective chain map

1 − σ(g) : (S(G, k), δ′) −→ (S(G, k), δ) ,

where S(G, k) = (Sn(G, k))n, δ′ = (δ′n)n and δ = (δn)n.

Proof. (i) If x ∈ Sn(G, k) is annihilated by 1 − σn(g), then x = σn(g)x and
hence x = σn(g)n+1x. Since the iterate σn(g)n+1 is multiplication by g−1, we
conclude that (1 − g−1)x = 0. We now consider the cyclic subgroup H of G
generated by g and note that the group algebra kH is isomorphic with the k-
algebra of Laurent polynomials in one variable; in particular, kH is an integral
domain. Since Sn(G, k) is free as a kG-module, it is free as a kH-module as
well (cf. Lemma 1.1(ii) and Remark 1.6(i)). It follows that left multiplication
by 1 − g−1 is injective on Sn(G, k) and hence x = 0.

Assertions (ii) and (iii) are immediate consequences of the definitions (see
also Lemma 4.13(i),(ii)).

(iv) This can be proved in exactly the same way as the first equality
of Lemma 4.14 was proved, using (ii) and (iii) above, instead of Lemma
4.13(i),(ii). �

We are interested in the cokernel T (g) of the chain map 1 − σ(g) of Lemma
4.44; it is the chain complex of kG-modules

T0(g)
δ1←− T1(g)

δ2←− · · · δn←− Tn(g)
δn+1←− · · · ,

where Tn(g) = Sn(G, k)/im(1 − σn(g)) for all n and the δ’s are induced from
the δ’s by passage to the quotient. We claim that g acts trivially on Tn(g) for
all n. Indeed, for any x ∈ Sn(G, k) we have

x− g−1x = x− σn(g)n+1x
=
(
1 − σn(g)n+1

)
x

= (1 − σn(g))
(∑n

i=0
σn(g)ix

)
and hence x − g−1x ∈ im(1 − σn(g)). Being a kG-module, im(1 − σn(g)) is
invariant under the action of g and hence gx−x = g(x−g−1x) ∈ im(1−σn(g)),
as needed. Therefore, the action of G on Tn(g) defines by passage to the
quotient an action of the quotient group G = G/ < g > on Tn(g). In other
words, Tn(g) can be endowed with the structure of a kG-module, in such a
way that the restriction of that structure along the natural k-algebra map
kG −→ kG is the given kG-module structure.
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Lemma 4.45 The kG-module Tn(g) defined above is projective for all n.

Proof. Let us consider the kG-module

T ′
n(g) = Sn(G, k)/im

(
1 − σn(g)n+1

)
= Sn(G, k)/

(
1 − g−1

)
Sn(G, k) .

If H =<g> is the cyclic subgroup of G generated by g, then

T ′
n(g) = k ⊗kH Sn(G, k) = k ⊗kH kG⊗kG Sn(G, k)  kG⊗kG Sn(G, k)

(cf. Remark 1.6(ii)). Since Sn(G, k) is a free kG-module, it follows that T ′
n(g)

is a free kG-module. Therefore, in order to prove that Tn(g) is a projective
kG-module, it suffices to show that it is a direct summand of T ′

n(g). We note
that the image of the endomorphism 1− σn(g)n+1 of Sn(G, k) is contained in
that of 1 − σn(g); hence, there is a kG-linear map

π : T ′
n(g) −→ Tn(g) ,

which is induced from the identity of Sn(G, k) by passage to the quotient. We
also consider the kG-linear endomorphism

f = 1
n+1

∑n

i=0
σn(g)i : Sn(G, k) −→ Sn(G, k) .

We note that f(1 − σn(g)) = 1
n+1

(
1 − σn(g)n+1

)
and hence f maps the kG-

submodule im(1 − σn(g)) into im
(
1 − σn(g)n+1

)
. It follows that f induces by

passage to the quotient a kG-linear map

φ : Tn(g) −→ T ′
n(g) .

Moreover, 1 − f = (1 − σn(g))ψ for some endomorphism ψ of Sn(G, k) and
hence x−f(x) ∈ im(1−σn(g)) for all x ∈ Sn(G, k). Therefore, the composition
π ◦ φ is the identity on Tn(g) and hence Tn(g) is a direct summand of T ′

n(g)
as a kG-module, as needed. �

In degree 0, the endomorphism σ0(g) of S0(G, k) = kG maps any element
x ∈ kG onto g−1x. Therefore,

T0(g) = S0(G, k)/im(1 − σ0(g)) = kG/(1 − g−1)kG = kG

and hence we may consider the augmentation ε from T0(g) = kG to k.

Lemma 4.46 The chain complex

k
ε←− T0(g)

δ1←− T1(g)
δ2←− · · · δn←− Tn(g)

δn+1←− · · ·

is a kG-projective resolution of the trivial kG-module k.
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Proof. In view of Lemma 4.45, we know that Tn(g) is a projective kG-module
for all n ≥ 0. In order to prove exactness, we consider the short exact sequence
of the augmented chain complexes

0 −→
⎛⎝ (S(G, k), δ′)

↓
0

⎞⎠1−σ(g)−→
⎛⎝ (S(G, k), δ)

ε↓
k

⎞⎠−→
⎛⎝(T (g), δ

)
ε↓
k

⎞⎠−→ 0 .

Since the first two complexes are acyclic (cf. Proposition D.6 of Appendix D),
the associated long exact sequence in homology shows that the third complex
is acyclic as well. �

It is an immediate consequence of the definitions that the kG-linear en-
domorphism σn(g) of Sn(G, k) induces the k-linear endomorphism τn(g) of
Γn = Γn(g, k) = k ⊗kG Sn(G, k); in other words, τn(g) = 1 ⊗ σn(g) for all
n. We know that τn(g)n+1 is the identity on Γn and hence τn(g) defines an
action of the cyclic group of order n+ 1 on Γn. We note that

H0(Z/(n+ 1)Z,Γn) = Γn/im(1 − τn(g))
= k ⊗kG(Sn(G, k)/im(1 − σn(g)))
= k ⊗kG Tn(g) .

(4.12)

In general, the homology groups of Z/(n+1)Z with coefficients in Γn may be
computed from the n-th row of the double complex Γ∗∗.

Lemma 4.47 There is a natural isomorphism Hn(TotΓ∗∗)  Hn

(
G, k

)
for

all n ≥ 0.

Proof. Since k is a field of characteristic 0, Maschke’s theorem implies that
the homology groups of Z/(n+ 1)Z with coefficients in Γn vanish in positive
degrees (cf. Example D.8(ii) of Appendix D). It follows that the horizontal
homology of the double complex Γ∗∗ is concentrated in the 0-th column, where
it is given by the groups k ⊗kG Tn(g), n ≥ 0 (cf. (4.12)). Moreover, the
differential induced on k ⊗kG T (g) = (k ⊗kG Tn(g))n from the differential
β(g) = 1 ⊗ δ of the 0-th column of Γ∗∗ by passage to the quotient is equal
to 1 ⊗ δ, in view of the identification of (4.12). Then, Corollary D.2(i) of
Appendix D implies the existence of a natural isomorphism

Hn(Tot Γ∗∗)  Hn

(
k ⊗kG T (g), 1 ⊗ δ)

for all n ≥ 0. Since k ⊗kG T (g) = k ⊗kG T (g), the proof follows by invoking
Lemma 4.46. �

In view of Lemma 4.47, in order to establish the existence of a natural iso-
morphism as in (4.8), in the case where g ∈ G is a central element of infinite
order, it only remains to identify the periodicity operator
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S : Hn(Tot Γ∗∗) −→ Hn−2(Tot Γ∗∗)

with the cap-product map

α ∩ : Hn

(
G, k

)−→ Hn−2

(
G, k

)
,

which is associated with the cohomology class α ∈ H2
(
G,Z

)
that classifies

the central extension

1 −→ Z
g−→ G −→ G −→ 1 .

The proof of the latter assertion will be omitted, since it requires tools from
homotopy theory that are beyond the scope of this book. The interested reader
may consult on that matter the bibliographic sources listed at the end of the
chapter.

4.2 The Nilpotency of Connes’ Operator

We are now ready to use the results of the previous section, in order to study
the idempotent conjectures for groups that satisfy a certain homological con-
dition. This homological condition is equivalent to the nilpotency of Connes’
operator on those components of the cyclic homology of the group algebra
that correspond to conjugacy classes of elements of infinite order. It will turn
out that the resulting class C of groups is closed under several group theoretic
operations, thereby providing us with many examples of groups that satisfy
the idempotent conjectures.

In §4.2.1, we explain the rationale behind the definition of class C and
prove that groups that are residually contained in C satisfy Bass’ conjecture.
In the following subsection, we prove that C contains all abelian groups and
is closed under subgroups, free products and finite direct products. We also
examine the extent to which C is closed under extensions and establish the
relevance of class C in the study of the idempotent conjecture.

4.2.1 Idempotent Conjectures and the Nilpotency of S

Let k be a subring of the field C of complex numbers, G a group and kG the
corresponding group algebra. We are interested in idempotent n×n matrices
E with entries in kG. In the case where the idempotent conjecture for a
torsion-free group G is concerned, we have k = C and n = 1. In the case of
Bass’ conjecture, k is a subring of C with k ∩ Q = Z, n any positive integer
and G any group. For any element g ∈ G with g �= 1 we examine the vanishing
of the complex number rg(E). The relevance of the equality rg(E) = 0 for the
idempotent conjecture stems from Proposition 3.15. In fact, we may restrict
our attention to the case where the element g has infinite order. Indeed, if it
is the idempotent conjecture that we are interested in, then G is a torsion-free
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group and hence any element g ∈ G \ {1} has infinite order. On the other
hand, we already know that rg(E) = 0 if g �= 1 is an element of finite order
and k a subring of C with k ∩ Q = Z (cf. Corollary 3.35).

We are therefore lead to examine the vanishing of the additive map

rg : K0(kG) −→ k ,

in the case where g ∈ G is an element of infinite order. In view of the naturality
of rg with respect to coefficient ring homomorphisms (cf. Proposition 1.46),
it suffices to prove the vanishing of the additive map

rg : K0(CG) −→ C .

We note that the latter map is the composition of the Hattori-Stallings rank
rHS : K0(CG) −→ T (CG), followed by the projection π[g] of the C-vector
space T (CG) = CG/[CG,CG] =

⊕
[x]∈C(G) C · [x] onto C · [g]  C. Then,

Theorem 4.30(i) implies that rg coincides with the composition

K0(CG) ch0−→ HC0(CG) = T (CG)
π[g]−→ C .

For the remainder of this section, we use the following notational conventions,
that apply to any element g ∈ G of infinite order: We denote by Cg the cen-
tralizer of g in G and let Ng be the quotient of Cg by the infinite cyclic group
generated by g. In addition, we denote by αg ∈ H2(Ng,Z) the cohomology
class that classifies the central extension

1 −→ Z
g−→ Cg −→ Ng −→ 1

(cf. §D.2.2 of Appendix D). Using Theorems 4.30(ii) and 4.33, we obtain for
all n ≥ 1 the following commutative diagram

K0(CG) chn−→ HC2n(CG)
π[g]−→ Xeven

n (g,C) = H2n(Ng,C)
‖ Sn ↓ ↓ ↓ αn

g ∩

K0(CG) ch0−→ HC0(CG)
π[g]−→ C = C

(Note that the n-fold composition of cap-product maps with the cohomology
class αg is the cap-product map with the class αn

g ; cf. Corollary D.15(iii)
of Appendix D.) Here, π[g] denotes also the projection of HC2n(CG) =⊕

[x]∈C(G)X
even
n (x,C) onto the summand Xeven

n (g,C) = H2n(Ng,C). For
later use, we record the following immediate consequence of the above discus-
sion.

Observation 4.48 Let k be a subring of the field C of complex numbers, G
a group and g ∈ G an element of infinite order. Then, the map

rg : K0(kG) −→ k
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is identically zero if there exists a positive integer n, such that the cap-product
map

αn
g ∩ : H2n(Ng,C) −→ H0(Ng,C)  C

is the zero map.

Lemma 4.49 Let N be a group and α ∈ Hi(N,Z) a cohomology class. Then,
the following conditions are equivalent:

(i) The image αQ of α in the cohomology group Hi(N,Q) is zero.
(ii) The cap-product map α ∩ : Hi(N,Q) −→ H0(N,Q)  Q vanishes.
(iii) The cap-product map α ∩ : Hi(N,C) −→ H0(N,C)  C vanishes.

Proof. First of all, we note that the cap-product maps

α ∩ : Hi(N,Q) −→ H0(N,Q)  Q

and
αQ ∩ : Hi(N,Q) −→ H0(N,Q)  Q

coincide (cf. Proposition D.14(i) of Appendix D). Hence, the equivalence
(i)↔(ii) follows since the dual Q-vector space HomQ(Hi(N,Q),Q) is isomor-
phic with the cohomology groupHi(N,Q), in such a way that the cap-product
map

αQ ∩ : Hi(N,Q) −→ H0(N,Q)  Q

is identified with αQ ∈ Hi(N,Q) (cf. Corollary D.17 of Appendix D).
Since the trivial N -module C is a direct sum of copies of the trivial N -

module Q, the cap-product map

α ∩ : Hi(N,C) −→ H0(N,C)  C

is a direct sum of copies of the cap-product map

α ∩ : Hi(N,Q) −→ H0(N,Q)  Q .

The equivalence (ii)↔(iii) follows readily from this. �

For any group N the cup-product endows the Q-vector space H•(N,Q) =⊕
iH

i(N,Q) with the structure of an associative Q-algebra (cf. Corollary
D.13(i) of Appendix D). In view of the discussion above, we define a class C
of groups, as follows:

Definition 4.50 The class C consists of those groups G that satisfy the fol-
lowing condition: For any element g ∈ G of infinite order the image (αg)Q of
the class αg in the cohomology ring H•(Ng,Q) is nilpotent.3

3 In this case, we say that αg is rationally nilpotent.
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Remarks 4.51 (i) One way of proving the rational nilpotency of a cohomology
class is by expressing it as a pullback of another class, which is already known
to be rationally nilpotent. More precisely, let us consider a morphism of central
extensions

1 −→ Z −→ C −→ N −→ 1
‖ ↓ ↓ f

1 −→ Z −→ C ′ −→ N ′ −→ 1

and let α ∈ H2(N,Z) and α′ ∈ H2(N ′,Z) be the corresponding cohomology
classes. Then, α is rationally nilpotent if this is the case for α′. Indeed, α =
f∗α′ is the pullback of α′ along f and hence αQ = (f∗α′)Q = f∗

(
α′

Q

)
. The

nilpotency of αQ follows, since

f∗ : H•(N ′,Q) −→ H•(N,Q)

is a Q-algebra homomorphism (cf. Corollary D.13(iii) of Appendix D).
(ii) A group G is contained in C if and only if for any subgroup C ⊆ G

and any central extension

1 −→ Z −→ C −→ N −→ 1

the corresponding cohomology class α ∈ H2(N,Z) is rationally nilpotent. It
is clear that this condition is sufficient for G to be a group in C. Conversely,
let G ∈ C and consider a central extension as above. If g ∈ C ⊆ G is the image
of 1 ∈ Z, then C is contained in the centralizer Cg of g in G and hence there
exists a morphism of extensions

1 −→ Z
g−→ C −→ N −→ 1

‖ ↓ ↓
1 −→ Z

g−→ Cg −→ Ng −→ 1

Since αg is rationally nilpotent, it follows from (i) above that α is rationally
nilpotent as well.

The relevance of class C in the study of the idempotent conjectures is il-
lustrated by the next result. Recall that a group G is said to be residually
contained in C if for any element g ∈ G with g �= 1 there exists a normal
subgroup K �G, such that g /∈ K and G/K ∈ C.

Theorem 4.52 Let G be a group.
(i) If G is residually contained in C, then G satisfies Bass’ conjecture.
(ii) If G ∈ C is torsion-free, then G satisfies the idempotent conjecture.

Proof. (i) Assume on the contrary that G is residually contained in C and does
not satisfy Bass’ conjecture. Then, there exists a subring k of the field C of
complex numbers with k∩Q = Z, an idempotent matrix E with entries in kG
and an element g ∈ G \ {1}, such that rg(E) �= 0. In view of Theorem 3.32(i),
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there exists an integer u > 0 such that g is conjugate to its nu-th power for all
n ≥ 1. Let K�G be a normal subgroup, such that g /∈ K and G = G/K ∈ C.
Then, the image g = gK of g in G is non-trivial and conjugate to its nu-th
power for all n ≥ 1; in particular, g is an element of infinite order. We now
consider the morphism of central extensions

1 −→ Z
g−→ Cg −→ Ng −→ 1

‖ ↓ ↓
1 −→ Z

g−→ Cg −→ Ng −→ 1

where the vertical arrows are induced by the quotient mapG −→ G. Since G ∈
C, the cohomology class αg classifying the bottom row is rationally nilpotent.
In view of Remark 4.51(i), the same is true for αg; hence, there exists n� 0
such that (

αn
g

)
Q =((αg)Q)n = 0 ∈ H2n(Ng,Q) .

We now invoke Lemma 4.49, in order to conclude that the cap-product map

αn
g ∩ : H2n(Ng,C) −→ H0(Ng,C)  C

is the zero map. Therefore, Observation 4.48 implies that the map

rg : K0(kG) −→ k

is the zero map as well. In particular, rg(E) = 0 and this is the desired
contradiction.

(ii) Let G be a torsion-free group contained in C and e ∈ CG an idempo-
tent. We fix an element g ∈ G \ {1} and note that g has infinite order. Since
G ∈ C, we may conclude (using Lemma 4.49 and Observation 4.48, as in the
latter part of the proof of (i) above) that the map

rg : K0(CG) −→ C

is identically zero. In particular, rg(e) = 0. Since this is the case for any ele-
ment g ∈ G \ {1}, Proposition 3.15 implies that e is trivial. Hence, G satisfies
the idempotent conjecture, as needed. �

Remark 4.53 In the following subsection, we will complement Theorem
4.52(ii) and prove that the idempotent conjecture is also satisfied by groups
that are residually contained in the class of torsion-free groups in C (cf. Propo-
sition 4.56).

4.2.2 Closure Properties

Having introduced the class C of groups, we illustrated its importance in the
study of idempotents in group algebras, by proving Theorem 4.52. In order
to obtain specific examples of groups that satisfy the idempotent conjectures,
we establish in the present subsection the closure of C under several group
theoretic operations.
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Proposition 4.54 All torsion and all abelian groups are contained in C.

Proof. It is clear that torsion groups are contained in C. On the other hand,
let C be an abelian group and g ∈ C an element of infinite order. Then, the
extension

1 −→ Z
g−→ C −→ N −→ 1

is classified by a rationally trivial cohomology class αg ∈ H2(N,Z), i.e. we
have (αg)Q = 0 ∈ H2(N,Q). Indeed, (αg)Q classifies the central extension

1 −→ Q −→ C ′ −→ N −→ 1 ,

where C ′ is the quotient of the direct product Q×C by its normal subgroup
{(−n, gn) : n ∈ Z} (cf. §D.2.2 of Appendix D). Since the group C is abelian,
the same is true for C ′. In view of the divisibility of Q, the above extension
of abelian groups splits and hence the cohomology class (αg)Q is trivial, as
claimed. �

Proposition 4.55 The class C has the following properties:
(i) C is closed under subgroups,
(ii) C is closed under finite direct products and
(iii) C is closed under free products.

Proof. (i) This is an immediate consequence of Remark 4.51(ii).
(ii) Let (Gi)i be a finite family of groups that are contained in C and

G =
∏

iGi the corresponding direct product. If g = (gi)i ∈ G is an element
of infinite order, then gi ∈ Gi is an element of infinite order for some index i.
We fix such an i and consider the morphism of central extensions

1 −→ Z
g−→ Cg −→ Ng −→ 1

‖ ↓ ↓
1 −→ Z

gi−→ Cgi
−→ Ngi

−→ 1

Here, Cgi
denotes the centralizer of gi in Gi, Ngi

= Cgi
/<gi> and the vertical

arrows are induced by the i-th coordinate projection map G −→ Gi. Since
Gi ∈ C, the cohomology class αgi

∈ H2(Ngi
,Z) classifying the bottom row is

rationally nilpotent. In view of Remark 4.51(i), the same is true for the class
αg. This being the case for any element g ∈ G of infinite order, we conclude
that G ∈ C.

(iii) Let G1, G2 be two groups contained in C and G = G1 ∗G2 their free
product. In order to show that G ∈ C, we consider an element g ∈ G of infinite
order and distinguish two cases:
Case 1: The conjugacy class [g] does not meet the union G1 ∪ G2. Using
the structure theorem for free products, one can show that, in this case, the
centralizer Cg is infinite cyclic (cf. Exercise 4.3.3). It follows that the quotient
Ng = Cg/<g> is finite and hence the group H2(Ng,Q) is trivial (cf. Example
D.8(ii) of Appendix D); in particular, (αg)Q = 0.
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Case 2: The conjugacy class [g] meets the union G1 ∪ G2. Since the triple
(Cg, Ng, αg) depends, up to isomorphism, only upon the conjugacy class of g
(cf. Remark 4.32), we can assume that g ∈ G1 ∪ G2, say g ∈ G1. Then, Cg

coincides with the centralizer C1,g of g in G1 and the quotient Ng coincides
with the corresponding quotient N1,g = C1,g/<g>. In this way, αg classifies
the central extension

1 −→ Z
g−→ C1,g −→ N1,g −→ 1 .

Since G1 ∈ C, it follows that αg is rationally nilpotent.
Taking into account Cases 1 and 2, we conclude that the group G is con-

tained in C.
Now let (Gi)i∈I be any family of groups contained in C and G = ∗i∈IGi the

corresponding free product. Using induction on the cardinality of the index
set I, one can show that G ∈ C if I is finite. In order to show that G ∈ C in the
general case, we consider an element g ∈ G of infinite order. Then, there is a
finite subset I ′ ⊆ I, such that g ∈ G′ = ∗i∈I′Gi. Since Cg coincides with the
centralizer C ′

g of g in G′ ∈ C, we may conclude as before that the cohomology
class αg is rationally nilpotent. Therefore, it follows that G ∈ C. �

We are now ready to prove the generalization of Theorem 4.52(ii), that was
promised in Remark 4.53. We denote by C∞ the class consisting of those
torsion-free groups that are contained in C.

Proposition 4.56 Let G be a group which is residually contained in C∞.
Then, G satisfies the idempotent conjecture.

Proof. Let e =
∑

g egg ∈ CG be an idempotent, where eg ∈ C for all g ∈ G.
We consider the subset Λ = supp e = {g ∈ G : eg �= 0} ⊆ G. It is a finite set
and hence there exists a finite family of normal subgroups (Ki)i of G, such
that:

(i) G/Ki ∈ C∞ for all i and
(ii) the set Λ maps injectively under the canonical group homomorphism

G −→∏
iG/Ki.

In view of Proposition 4.55(ii), the product group
∏

iG/Ki is contained
in C∞. Therefore, Theorem 4.52(ii) implies that the image of e in the complex
group algebra of

∏
iG/Ki is equal to either 0 or 1. It follows that card(Λ) ≤ 1

and hence e must be itself equal to either 0 or 1. �

We now examine the extent to which C is closed under group extensions. We
note that a group G is said to have finite homological dimension over Q if
there exists an integer n, such that Hi(G,V ) = 0 for all i > n and all QG-
modules V . The smallest such n is the homological dimension hdQG of G over
Q (cf. §D.2.1 of Appendix D).

Lemma 4.57 Let C be a group and A � C a normal subgroup, such that
hdQ(C/A) < ∞. If g ∈ A is an element of infinite order, which is central in
C, then the following conditions are equivalent:
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(i) The cohomology class α ∈ H2(C/<g>,Z) classifying the extension

1 −→ Z
g−→ C −→ C/<g> −→ 1

is rationally nilpotent.
(ii) The cohomology class α′ ∈ H2(A/<g>,Z) classifying the extension

1 −→ Z
g−→ A −→ A/<g> −→ 1

is rationally nilpotent.

Proof. The implication (i)→(ii) follows from the principle of Remark 4.51(i).
In order to show that (ii)→(i), we consider the extension of groups

1 −→ A/<g> −→ C/<g> −→ C/A −→ 1 .

Then, the associated Lyndon-Hochschild-Serre spectral sequence (cf. Theorem
D.20 of Appendix D) provides us with a decreasing filtration (F pHn)p on the
cohomology group Hn(C/<g>,Q) for all n ≥ 0, such that:

• F 0Hn = Hn(C/<g>,Q) and Fn+1Hn = 0,
• F pHn/F p+1Hn is a subquotient of Hp(C/A,Hn−p(A/<g>,Q)),
• F 1Hn = ker

(
Hn(C/<g>,Q) res−→ Hn(A/<g>,Q)

)
and

• if β ∈ F pHn and β′ ∈ F p′
Hn′

, then β ∪ β′ ∈ F p+p′
Hn+n′

.

If d = hdQ(C/A) then

Hp(C/A,Hq(A/<g>,Q)) = Hom(Hp(C/A,Hq(A/<g>,Q)),Q)= 0

for all p > d; here, the first equality follows applying Proposition D.16(ii) of
Appendix D. It follows that F pHn = F p+1Hn for all p > d and hence

F d+1Hn = F d+2Hn = F d+3Hn = · · · = 0

for all n. Since the cohomology class α′ = res(α) ∈ H2(A/<g>,Z) is assumed
to be rationally nilpotent, there exists n� 0 such that

res
(
αn

Q

)
= res(αQ)n = res(α)n

Q = α′n
Q = 0 ∈ H2n(A/<g>,Q) .

Then, αn
Q ∈F 1H2n and hence αn(d+1)

Q =
(
αn

Q

)
d+1 ∈F d+1H2n(d+1) = 0. �

Proposition 4.58 Let G be a group and K�G a normal subgroup, such that
both groups K and G/K are contained in C. If hdQ(G/K) < ∞ then G ∈ C
as well.

Proof. In order to show that G ∈ C, let us consider a subgroup C ≤ G and a
central extension

1 −→ Z
g−→ C −→ N −→ 1 .
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We have to show that the corresponding cohomology class α ∈ H2(N,Z) is
rationally nilpotent (cf. Remark 4.51(ii)). We let g = gK be the image of g in
G = G/K and distinguish three cases:
Case 1: Assume that g = 1 ∈ G, i.e. that g ∈ K. Then, A = K∩C is a normal
subgroup of C containing g and we may consider the morphism of central
extensions

1 −→ Z
g−→ A −→ A/<g> −→ 1

‖ ↓ ↓
1 −→ Z

g−→ C −→ C/<g> −→ 1

Let α′ ∈ H2(A/ < g >,Z) be the element classifying the top row. Then, α′

is rationally nilpotent since A ≤ K ∈ C. We note that the group C/A =
C/(K ∩ C) has finite homological dimension over Q, being isomorphic with
a subgroup of G (cf. Proposition D.9(i) of Appendix D). Therefore, Lemma
4.57 implies that the cohomology class α is rationally nilpotent as well.
Case 2: Assume that g ∈ G is an element of finite order n. Since gn ∈ K, it
follows from Case 1 above that the class β ∈ H2(C/<gn>,Z) that classifies
the central extension

1 −→ Z
gn

−→ C −→ C/<gn> −→ 1

is rationally nilpotent. We now consider the morphism of central extensions

1 −→ Z
gn

−→ C −→ C/<gn> −→ 1
n ↓ ‖ ↓ π

1 −→ Z
g−→ C −→ N −→ 1

and note that π∗α = nβ (cf. Proposition D.10 of Appendix D); it follows
that the class π∗α is rationally nilpotent as well. We note that the group
homomorphism

π : C/<gn> −→ N

is surjective with kernel a cyclic group of order n; hence, the induced map

π∗ : Hi(N,Q) −→ Hi(C/<gn>,Q)

is an isomorphism for all i (cf. Proposition D.21 of Appendix D). Since
π∗(αQ) = (π∗α)Q, we conclude that the cohomology class α is rationally
nilpotent.
Case 3: Assume that g ∈ G is an element of infinite order. In this case, we
consider the morphism of central extensions

1 −→ Z
g−→ C −→ N −→ 1

‖ ↓ ↓
1 −→ Z

g−→ Cg −→ Ng −→ 1
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where the vertical arrows are induced by the projection G −→ G. Since G ∈ C,
the cohomology class αg classifying the bottom row is rationally nilpotent.
Taking into account Remark 4.51(i), we conclude that α is rationally nilpotent
as well. �

Having proved Proposition 4.58, we now consider the class consisting of those
groups G ∈ C with hdQG <∞.

Definition 4.59 The class E consists of those groups G that satisfy the fol-
lowing two conditions:

(i) hdQG <∞ and
(ii) hdQNg <∞ for any element g ∈ G of infinite order.

Proposition 4.60 The class E consists of those groups G ∈ C for which
hdQG <∞.

Proof. Let G be a group contained in E . Then, by assumption, the homo-
logical dimension of G over Q is finite. In order to prove that G ∈ C, let
us fix an element g ∈ G of infinite order. Since hdQNg < ∞, the ho-
mology group H2n(Ng,Q) is trivial for n � 0 and hence H2n(Ng,Q) =
Hom(H2n(Ng,Q),Q) = 0 for n � 0 (cf. Corollary D.17 of Appendix D).
In particular, the cohomology class αg is rationally nilpotent. Since this is the
case for any element g ∈ G of infinite order, we conclude that G ∈ C.

Conversely, let G be a group contained in C with hdQG <∞. In order to
prove that G ∈ E , we consider an element g ∈ G of infinite order. Then, there
exists an integer n� 0, such that hdQG ≤ 2n and (αg)n

Q = 0 ∈ H2n(Ng,Q).
We shall prove that hdQNg ≤ 2n − 1, i.e. that Hi(Ng, V ) = 0 for all QNg-
modules V and all i ≥ 2n. Let us fix a QNg-module V ; we denote by V ′ the
QCg-module obtained from V by restriction of scalars along the quotient map
QCg −→ QNg. Being a subgroup of G, the group Cg has finite homological
dimension over Q; in fact, hdQCg ≤ hdQG ≤ 2n (cf. Proposition D.9(i) of
Appendix D). It follows that the homology group Hi(Cg, V

′) is trivial for all
i ≥ 2n + 1. On the other hand, Proposition D.22 of Appendix D shows that
there are exact sequences

Hi(Cg, V
′) −→ Hi(Ng, V )

αg∩−→ Hi−2(Ng, V ) −→ Hi−1(Cg, V
′)

for all i ≥ 0. Therefore, the cap-product map

αg ∩ : Hi(Ng, V ) −→ Hi−2(Ng, V )

is an isomorphism for all i ≥ 2n+ 2. It follows that the composition

Hi+2n(Ng, V )
αg∩−→ Hi+2n−2(Ng, V )

αg∩−→ · · · αg∩−→ Hi(Ng, V ) ,

is an isomorphism for all i ≥ 2n. This composition coincides with the map
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αn
g ∩ : Hi+2n(Ng, V ) −→ Hi(Ng, V )

(cf. Proposition D.14(iii) of Appendix D) and hence with the map

(αg)n
Q ∩ : Hi+2n(Ng, V ) −→ Hi(Ng, V )

(cf. Proposition D.14(i) of Appendix D). Then, our assumption about the
vanishing of the class (αg)n

Q implies that Hi(Ng, V ) = 0 for all i ≥ 2n, as
needed. �

Corollary 4.61 (i) An abelian group G is contained in E if and only if
hdQG <∞.

(ii) The class E is closed under subgroups, extensions and free products of
families of groups of uniformly bounded homological dimension over Q.

Proof. (i) Since abelian groups are contained in C (cf. Proposition 4.54), this
is an immediate consequence of Proposition 4.60.

(ii) We note that the group operations under consideration preserve the
finiteness of the homological dimension (cf. Proposition D.9 and Corollary
D.19 of Appendix D). Hence, the result follows from Proposition 4.60, in view
of Propositions 4.55 and 4.58. �

We conclude with a few explicit examples.

Examples 4.62 (i) If G is an abelian group of finite rank, then hdQG is finite
(cf. Exercise D.3.1 of Appendix D). Therefore, Corollary 4.61 implies that E
contains all solvable groups with finite Hirsch number. In this way, Theorem
4.52(i) provides us with an alternative proof of Corollary 3.44.

(ii) The inclusion E ⊆ C is strict, since there are abelian groups of infinite
homological dimension over Q; cf. Exercise D.3.1 of Appendix D. In fact, the
group H that was constructed at the end of §3.2.3 is an example of a finitely
generated solvable group, which is contained in C (cf. Exercise 4.3.5), while
having infinite homological dimension over Q (as it contains an infinite direct
sum of copies of Q as a subgroup).

(iii) If G is a finitely generated metabelian group, then G ∈ C (in view
of Propositions 4.54 and 4.58). In particular, Theorem 4.52(i) implies that G
satisfies Bass’ conjecture. Invoking Exercise 1.3.9(ii), we conclude that any
metabelian group satisfies Bass’ conjecture.

4.3 Exercises

1. We are interested in chain bicomplexes C = (Cij)i,j≥0, which are 2-
periodic in the horizontal direction; by this, we mean that the chain com-
plexesDi = (Cij)j andDi+2 = (Ci+2 j)j are identical for all i ≥ 0, whereas
the horizontal differentials dh : Ci+1 j −→ Cij and dh : Ci+3 j −→ Ci+2 j

coincide for all i, j ≥ 0.
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(i) Show that for any chain bicomplex C, which is 2-periodic in the hor-
izontal direction, there is a chain bicomplex map which vanishes on the
first two columns and maps identically the i-th column onto the (i−2)-th
one for all i ≥ 2. We denote by S the induced endomorphism of degree
−2 of the homology of the associated chain complex TotC.
(ii) Let C,C ′ be two chain bicomplexes, which are 2-periodic in the hor-
izontal direction, and ϕ : C −→ C ′ a chain bicomplex map. Show that
the induced maps in homology are such that S′ ◦ϕn = ϕn−2 ◦ S for all n.
Here, we denote by S, S′ the homology endomorphisms that correspond
to C and C ′ respectively.

2. Let k be a commutative ring.
(i) Consider a group H, an H-set X, an H-invariant subset Y ⊆ X and
the permutation kH-modules M = k[X] =

⊕
x∈X k · x and N = k[Y ] =⊕

y∈Y k · y. Show that N is a direct summand of M .
(ii) Let G be a group, H ⊆ G a subgroup and n a non-negative integer.
Show that the inclusion Sn(H, k) ⊆ Sn(G, k) is a split monomorphism of
kH-modules, where Sn(H, k) = k[Hn+1] and Sn(G, k) = k[Gn+1].

3. Let G1, G2 be two groups, G = G1 ∗G2 their free product and g ∈ G an
element which is not conjugate to any element of G1 or G2. Show that
the centralizer Cg of g in G is an infinite cyclic group.

4. Let G be a group. For any g ∈ G we denote by Cg the centralizer of g in
G and consider the quotient Ng = Cg/<g>. Show that the following two
conditions are equivalent:
(i) G ∈ E (cf. Definition 4.59),
(ii) hdQNg <∞ for any element g ∈ G.

5. Let H be the group that was constructed at the end of §3.2.3. Recall that
H is an extension of a finitely generated torsion-free metabelian group Λ
by an abelian group V . The goal of this Exercise is to prove that H ∈ C.
To that end, let us fix an element g ∈ H of infinite order.
(i) If g ∈ V show that the cohomology class αg is rationally trivial.
(Hint: Use property (δ) at the very end of Chap. 3.)
(ii) Show that for any element λ ∈ Λ of infinite order the class αλ is
rationally nilpotent.
(iii) Assume that g /∈ V . Show that the image of g in the quotient group
Λ = H/V is an element of infinite order and conclude that the cohomology
class αg is rationally nilpotent.
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Notes and Comments on Chap. 4. The cyclic (co-)homology of complex alge-

bras and the characters from the corresponding K0-group were introduced by A.

Connes in [15]. The theory was subsequently developed for algebras over an arbi-

trary commutative ground ring by J.L. Loday and D. Quillen [45]. The proof of

the Morita invariance of Hochschild and cyclic homology given here follows R. Mac-

Carthy [47]. The computation of the cyclic homology of group algebras is due to D.

Burghelea [10] (see also [1,40]). Burghelea’s proof uses tools from homotopy theory;

the algebraic proof given in §4.1.3 is due to Z. Marciniak [51]. For more details on

the subject, the reader is referred to Loday’s book [44]. The applicability of cyclic

homology in the study of the idempotent conjectures was first noticed by B. Eck-

mann [19] and Z. Marciniak [50]. The class E was introduced by Eckmann in [19]

and studied, independently, by R. Ji [35] and G. Chadha and I.B.S. Passi [11]. A

relative version of Eckmann’s method was studied by J. Schafer in [63]. The class

C was introduced and studied in [22], as a generalization of class E , whereas [27]

pursues this approach one step further, by considering a homological condition that

takes into account the arithmetic properties of the ground ring.
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Completions of CG

5.1 The Integrality of the Trace Conjecture

Let G be a torsion-free group. The idempotent conjecture for the complex
group algebra CG can be strengthened to the conjecture about the triviality
of idempotents in the reduced group C∗-algebra C∗

rG. This latter conjecture
can be further strengthened to a conjecture about the integrality of the values
of the additive map

τ∗ : K0(C∗
rG) −→ C ,

which is induced by the canonical trace τ on C∗
rG. Some evidence for the

validity of the integrality of the trace conjecture is provided by Zaleskii’s
theorem (cf. Theorem 3.19), which asserts that for any group G (possibly
with torsion) the values of τ∗ on K-theory classes that come from the group
algebra CG are rational. Our goal in this section is to prove the integrality
of the trace conjecture in the cases where G is a torsion-free abelian or a free
group. We note that the idempotent conjecture for the complex group algebra
in these two cases was taken care of in §1.2.3.

After formulating the integrality of the trace conjecture in §5.1.1, we con-
sider the case of an abelian group G in §5.1.2. In that case, the C∗-algebra
C∗

rG is commutative and can be identified with the algebra of continuous
complex-valued functions on the dual group Ĝ. In this way, both the idem-
potent and the integrality of the trace conjectures are seen to be equivalent
to the connectedness of the dual group. It will turn out that Ĝ is connected
if and only if the abelian group G is torsion-free. This approach places both
conjectures (in the abelian group case) into a more geometric perspective and
should be compared to the proof of Bass’ conjecture for abelian groups that
was given in §2.1. In §5.1.3 we consider the case where G is a free group.
In that case, there is a tree X on which the group G acts freely. The rep-
resentations of C∗

rG that are associated with the actions of G to the sets of
vertices and edges of X respectively, define a certain unital and dense subalge-
bra A ⊆ C∗

rG. Then, the integrality of the trace on K0(C∗
rG) follows from the
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integrality of its values on the K-theory classes coming from the subalgebra
A, since the inclusion of A into C∗

rG will turn out to induce an isomorphism
between the respective K0-groups.

5.1.1 Formulation of the Conjecture

Let G be a group and C∗
rG the corresponding reduced group C∗-algebra; recall

that C∗
rG is the norm-closure of the complex group algebra CG under the left

regular representation L of the latter on the Hilbert space 2G (cf. §1.1.2.III).
We note that C∗

rG is a subalgebra of the von Neumann algebra NG and hence
we may consider the canonical trace

τ : C∗
rG −→ C ,

which is defined by letting τ(a) =<a(δ1), δ1> for all a ∈ C∗
rG (cf. Proposition

3.11). It is clear that τ is continuous, whereas its restriction to the subalgebra
CG  L(CG) ⊆ C∗

rG is the trace functional r1. In view of Proposition 1.40(ii),
the composition

K0(CG)
K0(L)−→ K0(C∗

rG) τ∗−→ C ,

where the first arrow is the additive map between the K0-groups induced by
the algebra homomorphism L and the second one the additive map induced
by the trace τ (cf. §1.1.4.I), coincides with the additive map r1∗ induced by
the trace r1.

Remarks 5.1 (i) Let G be a group and H ≤ G a finite subgroup of order n.
Then, e = 1

n

∑{g : g ∈ H} ∈ CG is an idempotent and r1(e) = 1
n . It follows

that the image of r1∗ (and, a fortiori, that of τ∗) contains the subgroup of
C generated by the inverses of the orders of the finite subgroups of G. In
particular, we have

Z ⊆ im
[
K0(CG) r1∗−→ C

]
⊆ im

[
K0(C∗

rG) τ∗−→ C
]
⊆ C .

(ii) If G is a group and E an idempotent matrix with entries in CG, then
Zaleskii’s theorem (Theorem 3.19) asserts that r1(E) is a rational number.
Therefore,

im
[
K0(CG) r1∗−→ C

]
⊆ Q .

(iii) Since the reduced C∗-algebra C∗
rG of a group G is a subalgebra of the

von Neumann algebra NG, we may invoke Kaplansky’s positivity theorem
(Theorem 3.12) in order to conclude that the image of the additive map τ∗ :
K0(C∗

rG) −→ C is a subgroup of (R,+).

The following conjecture provides a prediction for the image of the additive
map τ∗, at least in the case of a torsion-free group. (The situation is more
complicated for groups with torsion; see the Notes at the end of the chapter.)
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The integrality of the trace conjecture: If G is a torsion-free group then
im
[
K0(C∗

rG) τ∗−→ C
]
= Z ⊆ C.

In view of Kaplansky’s positivity theorem, the above conjecture is stronger
than the idempotent conjecture for the reduced C∗-algebra of a torsion-free
group, as we now explain.

Proposition 5.2 If G is a torsion-free group satisfying the integrality of the
trace conjecture, then the C∗-algebra C∗

rG has no idempotents �= 0, 1.

Proof. If e ∈ C∗
rG is an idempotent then τ(e) is a real number contained in

the interval [0, 1], in view of Theorem 3.12. Since τ(e) ∈ im τ∗ = Z, it follows
that τ(e) = 0 or 1; then, e = 0 or 1, in view of the final assertion of loc.cit. �

5.1.2 The Case of an Abelian Group

Our first goal is to prove that torsion-free abelian groups satisfy the integrality
of the trace conjecture. We consider an abelian group G that will remain fixed
throughout this subsection. The strategy of the proof consists in reformulating
the conjecture in terms of the dual group of G.

I. The C∗-algebra C∗
rG and the dual group. Let Ĝ be the set of group

homomorphisms from G to the circle group S1 = {z ∈ C : |z |= 1}, i.e. define

Ĝ = Hom
(
G,S1

)
.

Then, Ĝ is a group with multiplication defined pointwise; in fact, Ĝ is a sub-
group of the direct product group

(
S1
)
G =

∏
g∈G S

1. The usual topology
on S1 induces the structure of a compact topological group on (S1)G (Ty-
chonoff’s theorem). We note that for any two elements g, g′ ∈ G the subgroup
Λg,g′ = {f ∈ (S1

)
G : f(gg′) = f(g)f(g′)} ⊆ (S1

)
G is closed (and hence com-

pact). It follows that Ĝ =
⋂

g,g′∈G Λg,g′ is a compact topological group; as
such, Ĝ is referred to as the dual group or character group of G. The elements
χ ∈ Ĝ are the characters of G.

Examples 5.3 (i) The dual group Ẑ of the infinite cyclic group Z can be
identified with S1, by means of the map χ �→ χ(1), χ ∈ Ẑ.

(ii) Let n be a positive integer. Then, the dual group (Z/nZ)̂ of the finite
cyclic group Z/nZ can be identified with the subgroup of S1 consisting of the
n-th roots of unity (which is itself isomorphic with Z/nZ), by means of the
map χ �→ χ

(
1
)
, χ ∈ (Z/nZ)̂.

(iii) Let (Gi)i be a family of abelian groups and G =
⊕

iGi the cor-
responding direct sum. Then, the dual group Ĝ can be identified with the
direct product

∏
i Ĝi of the family

(
Ĝi

)
i. Under this identification, a char-

acter χ of G corresponds to the family (χi)i, where χi is the restriction of χ
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to the subgroup Gi ⊆ G for all i. Using this principle, together with (i) and
(ii) above, one can determine the dual group of any finitely generated abelian
group.

(iv) Let (Gi)i be an inductive system of abelian groups, G = lim
−→i

Gi the

corresponding direct limit and (λi : Gi −→ G)i the canonical maps. Then, the
dual group Ĝ can be identified with the inverse limit lim

←−i
Ĝi of the projective

system
(
Ĝi

)
i. Under this identification, a character χ of G corresponds to

the compatible family (χi)i, where χi = χ ◦ λi for all i. Using this principle,
together with (iii) above, one can determine the dual group of any abelian
group, by expressing it as the directed union of its finitely generated subgroups
(cf. Exercise 5.3.1).

Let C
(
Ĝ
)

be the algebra of continuous complex-valued functions on the dual

group Ĝ. We endow Ĝ with its normalized Haar measure µ. The measure µ
is the unique regular Borel probability measure on Ĝ, which is translation
invariant, in the sense that∫

Ĝ

f(χ) dµ(χ) =
∫

Ĝ

f(χ0χ) dµ(χ)

for all f ∈ C
(
Ĝ
)

and χ0 ∈ Ĝ. The existence of such a measure µ on Ĝ is a
key result, which, besides being important in its own right, will turn out to
be very useful for our purposes. The construction of µ is a standard topic,
which can be found in books on Functional Analysis such as Rudin’s (cf. [60,
Theorem 5.14]).

For any element g ∈ G we consider the evaluation map evg : Ĝ −→ S1,
which is given by χ �→ χ(g), χ ∈ Ĝ. It is clear that evg is a continuous

group homomorphism. We denote by Hom
(
Ĝ, S1

)
the set of continuous group

homomorphisms from Ĝ to S1. This set is a group with multiplication defined
pointwise, whereas the map

ev : G −→ Hom
(
Ĝ, S1

)
, (5.1)

which is given by g �→ evg, g ∈ G, is a group homomorphism.

Lemma 5.4 (i) For any continuous group homomorphism ω : Ĝ −→ S1 the

value of the integral
∫

Ĝ

ω(χ) dµ(χ) is 1 (resp. 0) if ω = 1 (resp. if ω �= 1).

(ii) The set Hom
(
Ĝ, S1

)
of all continuous group homomorphisms from Ĝ

to S1 is an orthonormal subset of the Hilbert space L2
(
Ĝ
)

of square-integrable

functions on Ĝ (with respect to the Haar measure µ).
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Proof. (i) If ω = 1 then ω(χ) = 1 for all χ ∈ Ĝ and the assertion follows since
µ is a probability measure. If ω �= 1 then ω(χ0) �= 1 for some χ0 ∈ Ĝ and
hence ∫

Ĝ

ω(χ) dµ(χ) =
∫

Ĝ

ω(χ0χ) dµ(χ)

=
∫

Ĝ

ω(χ0)ω(χ) dµ(χ)

= ω(χ0)
∫

Ĝ

ω(χ) dµ(χ) .

It follows that
∫

Ĝ

ω(χ) dµ(χ) = 0, as needed.

(ii) If ω1, ω2 : Ĝ −→ S1 are continuous group homomorphisms, we compute

<ω1, ω2> =
∫

Ĝ

ω1(χ)ω2(χ) dµ(χ)

=
∫

Ĝ

ω1(χ)ω2(χ)−1 dµ(χ)

=
∫

Ĝ

(ω1ω
−1
2 )(χ) dµ(χ) .

Therefore, the result follows from (i) above. �

We now consider the composition

G
ev−→ Hom

(
Ĝ, S1

)
↪→ C

(
Ĝ
)
,

which extends uniquely to an algebra homomorphism

F0 : CG −→ C
(
Ĝ
)
. (5.2)

Since χ(g−1) = χ(g)−1 = χ(g) for all χ ∈ Ĝ and all g ∈ G, it follows that F0

is a ∗-algebra homomorphism.

Lemma 5.5 Let F0 be the ∗-algebra homomorphism defined above.
(i) The image F0(CG) is uniformly dense in C

(
Ĝ
)
.

(ii) The functions evg = F0(g), g ∈ G, form an orthonormal basis of the

Hilbert space L2
(
Ĝ
)

of square-integrable functions on Ĝ.

(iii) If L : CG −→ B(2G) is the ∗-algebra homomorphism associated
with the action of CG on the Hilbert space 2G by left translations, then
‖La ‖= ‖F0(a)‖∞ for any a ∈ CG.

Proof. (i) Since F0(CG) is a ∗-subalgebra of C
(
Ĝ
)
, which contains the con-

stant functions and separates the points of Ĝ, the result follows from the
Stone-Weierstrass theorem.
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(ii) We note that C
(
Ĝ
)

is a dense subspace of L2
(
Ĝ
)
. Since the supremum

norm of a continuous function dominates its L2-norm, it follows from (i) above
that F0(CG) is dense in L2

(
Ĝ
)

as well. Lemma 5.4(ii) implies that {evg :

g ∈ G} ⊆ Hom
(
Ĝ, S1

)
⊆ L2

(
Ĝ
)

is an orthonormal set. Its linear span being

dense in L2
(
Ĝ
)
, this set is an orthonormal basis.

(iii) In view of (ii) above, we may consider the isometry

U : 2G −→ L2
(
Ĝ
)
,

which is given by δg �→ evg, g ∈ G; here, (δg)g is the canonical orthonormal
basis of 2G. For any elements g, x ∈ G we compute

ULgU
−1(evx) = ULg(δx) = U(δgx) = evgx = evgevx =Mevg

(evx) ,

whereMevg
denotes the multiplication operator on L2

(
Ĝ
)

associated with the

continuous function evg ∈ C
(
Ĝ
)
. It follows that the operators ULgU

−1 and

Mevg
agree on the orthonormal basis {evx : x ∈ G} of L2

(
Ĝ
)
; hence, these

operators are equal for all g ∈ G. By linearity, it follows that ULaU
−1 =

MF0(a) for any element a ∈ CG. Since U is an isometry, we have ‖ La ‖=
‖ ULaU

−1 ‖= ‖ MF0(a) ‖ for any a ∈ CG. On the other hand, for any

f ∈ C
(
Ĝ
)

the associated multiplication operator Mf on L2
(
Ĝ
)

has norm
equal to the supremum norm ‖ f ‖∞ of f (cf. Exercise 5.3.2). It follows that
‖La ‖= ‖ F0(a)‖∞ for all a ∈ CG, as needed. �

As a first consequence, we obtain the following duality result.

Theorem 5.6 (Pontryagin) The group homomorphism ev of (5.1) is an iso-
morphism.

Proof. The surjectivity of ev is an immediate consequence of Lemmas 5.4(ii)
and 5.5(ii). Therefore, it only remains to prove that the map ev is injective.
To that end, we note that the group S1 contains a copy of all cyclic groups.
In particular, for any element g ∈ G \ {1} there is a group homomorphism
ψ from the cyclic subgroup < g >⊆ G to S1 with ψ(g) �= 1. Since S1 is
a divisible abelian group, we can extend ψ to a character χ of G. Then,
evg(χ) = χ(g) = ψ(g) �= 1 and hence evg �= 1. �

We can now provide a concrete description of the reduced C∗-algebra of G,
in terms of the dual group Ĝ.

Theorem 5.7 The ∗-algebra homomorphism F0 of (5.2) induces a C∗-algebra
isomorphism F : C∗

rG −→ C
(
Ĝ
)
.
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Proof. This is an immediate consequence of Lemma 5.5(i),(iii), which implies
that the composition

L(CG) L−1

−→ CG F0−→ C
(
Ĝ
)

is an isometric ∗-algebra homomorphism with dense image. �

II. The connectedness of the dual group. The C∗-algebra isomorphism
of Theorem 5.7 reduces the study of idempotent elements of C∗

rG to the study
of clopen subsets of Ĝ. Indeed, it is clear that the idempotent elements of the
algebra C

(
Ĝ
)

are precisely the characteristic functions of the clopen subsets

Y ⊆ Ĝ. In particular, C∗
rG has no idempotents other than 0 and 1 if and

only if Ĝ has no clopen subsets other than ∅ and Ĝ. We are therefore lead to
examine the connectedness of Ĝ.

We recall that a topological space X is called totally disconnected if its
connected components are singletons or, equivalently, if any subspace Y ⊆
X with more than one element is not connected. The space X is called 0-
dimensional if there is a basis of its topology consisting of clopen sets. It is
easily seen that a 0-dimensional Hausdorff space is totally disconnected. We
prove a partial converse of that assertion in Corollary 5.9 below.

Lemma 5.8 Let X be a topological space which is compact and Hausdorff.
(i) Assume that Y ⊆ X is a closed subspace and let x ∈ X be a point

which can be separated from any point y ∈ Y by a clopen set. Then, there is
a clopen set Z with Y ⊆ Z, such that x /∈ Z.

(ii) For any x ∈ X consider the subspace W =W (x) ⊆ X that consists of
all points w ∈ X that can’t be separated from x by a clopen set. Then, W is
connected.

Proof. (i) For any y ∈ Y there is a clopen set Zy with y ∈ Zy and x /∈ Zy.
The open cover (Zy)y∈Y of the closed (and hence compact) subspace Y has a
finite subcover; hence, there are finitely many elements y1, . . . , yn ∈ Y , such
that Y is a subset of the union Z =

⋃n
i=1 Zyi

. Of course, Z is a clopen set
and x /∈ Z.

(ii) It is easily seen that W is a closed subspace containing x. Assuming
that W is not connected, we can find two non-empty disjoint subsets W1

and W2 which are closed (in W and hence in X), such that W = W1 ∪W2.
Without any loss of generality, we may assume that x ∈ W1. Being compact
and Hausdorff, the topological space X is normal; therefore, there is an open
set U , such that W1 ⊆ U and W2 ∩U = ∅. It follows that the closed set U \U
intersects W trivially and hence any point y ∈ U \ U can be separated from
x by a clopen set. In view of (i) above, there is a clopen set Z, such that
U \ U ⊆ Z and x /∈ Z. Then, the set U \ Z = U \ Z is clopen, contains x and
is disjoint from W2. This is a contradiction, since the points of the non-empty
set W2 ⊆W cannot be separated from x by a clopen set. �
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Corollary 5.9 A compact Hausdorff and totally disconnected space X is 0-
dimensional.

Proof. We fix an element x ∈ X and let V be an open neighborhood of it.
Since the connected component of x is {x}, it follows from Lemma 5.8(ii),
applied to the case of the compact space V , that any point y ∈ V with y �= x
can be separated from x by a set Zy ⊆ V , which is clopen in V . We now
invoke Lemma 5.8(i), applied to the case of the closed subset V \ V of the
compact space V , in order to conclude that there is a subset Z ⊆ V , which
is clopen in V , such that V \ V ⊆ Z and x /∈ Z. Then, U = V \ Z = V \ Z
is a neighborhood of x with U ⊆ V , which is clopen in X. Hence, clopen sets
form a basis for the topology of X, as needed. �

Before specializing to the case of Ĝ, we state and prove a few general results
about topological groups.

Lemma 5.10 Let Γ be a topological group.
(i) Assume that K,U are subsets of Γ with K compact, U open and K ⊆ U .

Then, there exists an open neighborhood V of the identity, such that KV ⊆ U .
(ii) Assume that ∆ is a subgroup of Γ containing a non-empty open subset

V . Then, ∆ is open.
(iii) If U ⊆ Γ is an open and compact neighborhood of the identity, then

U contains an open subgroup ∆.
(iv) If ∆�Γ is a closed normal subgroup, then the quotient group Γ = Γ/∆,

endowed with the quotient topology, is Hausdorff.

Proof. (i) For any γ ∈ K let Wγ be an open neighborhood of the identity
with γWγ ⊆ U . We choose an open neighborhood Vγ of the identity with
V 2

γ ⊆ Wγ and consider the open cover (γVγ)γ of K. By compactness, there
are finitely many elements γ1, . . . , γn ∈ K, such that K ⊆ ⋃n

i=1 γiVγi
. Then,

V =
⋂n

i=1 Vγi
is an open neighborhood of the identity with

KV ⊆ ⋃n
i=1γiVγi

V ⊆ ⋃n
i=1γiV

2
γi

⊆ ⋃n
i=1γiWγi

⊆ U ,
as needed.

(ii) Let us fix an element γ0 ∈ V . Then, V0 = γ−1
0 V is an open neighbor-

hood of the identity and for any γ ∈ ∆ we have γV0 = γγ−1
0 V ⊆ γγ−1

0 ∆ = ∆;
hence, ∆ is open.

(iii) In view of (i) above, we can choose an open neighborhood V of the
identity with V = V −1, V ⊆ U and UV ⊆ U . Then, V 2 ⊆ UV ⊆ U and
an inductive argument shows that V n = V n−1V ⊆ UV ⊆ U for all n ≥ 1.
Therefore, ∆ =

⋃∞
n=1 V

n is a subgroup contained in U . Finally, (ii) shows
that ∆ is open.

(iv) Let π : Γ −→ Γ be the quotient map, e ∈ Γ the identity element
and γ ∈ Γ \ ∆. We have to prove that the elements π(e) and π(γ) of Γ
can be separated by disjoint open sets. To that end, we consider an open
neighborhood V of e in Γ, such that V −1V ⊆ Γ \ γ∆. Then, the open subsets
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V∆ and V γ∆ are disjoint. Indeed, if γ1, γ2 ∈ V and δ1, δ2 ∈ ∆ are such
that γ1δ1 = γ2γδ2, then γ−1

2 γ1 = γδ2δ
−1
1 is an element in the intersection

V −1V ∩γ∆, which is assumed to be empty. Since V∆∩V γ∆ = ∅, the subsets
π(V ) and π(V γ) of Γ are disjoint. The proof is finished, since π(V ) (resp.
π(V γ)) is an open neighborhood of π(e) (resp. of π(γ)) in Γ. �

Using the above results, we can determine the structure of the connected
component of the identity in a topological group.

Proposition 5.11 Let Γ be a topological group and consider the connected
component Γ0 of the identity element e ∈ Γ. Then:

(i) Γ0 is a closed normal subgroup of Γ.
(ii) The quotient group Γ = Γ/Γ0 is Hausdorff and totally disconnected.
(iii) If Γ is compact then Γ0 is the intersection of the open subgroups ∆

of Γ.

Proof. (i) Since inversion is a homeomorphism of Γ, the set Γ−1
0 is connected.

Moreover, we have e ∈ Γ−1
0 and hence Γ−1

0 ⊆ Γ0. Therefore, for any element
γ ∈ Γ0 we also have γ−1 ∈ Γ0 and hence the connected set γΓ0 contains e.
But then γΓ0 ⊆ Γ0 and hence Γ0 is a subgroup. In order to show that Γ0 is a
normal subgroup, we consider an element x ∈ Γ and note that conjugation by
x is a homeomorphism. It follows that xΓ0x

−1 is a connected subset containing
e; hence, xΓ0x

−1 ⊆ Γ0. Finally, being a connected component, Γ0 is closed.
(ii) Taking into account Lemma 5.10(iv), it follows from (i) above that the

quotient group Γ is Hausdorff. We consider the projection map π : Γ −→ Γ
and let X be a subspace of Γ, such that π(X) contains strictly the singleton
{π(e)}. Then, XΓ0 is a subspace of Γ that contains strictly Γ0 and hence XΓ0

is not connected. Therefore, there exist open subsets V1, V2 ⊆ Γ, such that
XΓ0 ⊆ V1∪V2, with XΓ0∩V1 �= ∅, XΓ0∩V2 �= ∅ and XΓ0∩V1∩V2 = ∅. Then,
π(X) meets non-trivially the open subsets π(Vi), i = 1, 2, and is contained in
their union. In order to show that π(X) is not connected, it remains to show
that the intersection π(X) ∩ π(V1) ∩ π(V2) is empty. To that end, we note
that for any γ ∈ X the connected set γΓ0 is contained in the union V1 ∪ V2

and hence we have γΓ0 ⊆ Vi for some i. Therefore, both sets XΓ0 ∩ V1 and
XΓ0∩V2 are unions of Γ0-cosets. Since the intersection XΓ0∩V1∩V2 is empty,
it follows easily that the same is true for the intersection π(X)∩π(V1)∩π(V2).

(iii) If ∆ is an open subgroup of Γ then ∆ and
⋃{γ∆ : γ /∈ ∆} are disjoint

open subsets covering the connected set Γ0. Since e is contained in both ∆
and Γ0, we must have Γ0 ⊆ ∆. We now consider an element γ ∈ Γ with
γ /∈ Γ0. Then, π(γ) �= π(e) ∈ Γ = Γ/Γ0, where π : Γ −→ Γ is the projection
map. In view of the compactness assumption on Γ and (ii) above, the space
Γ is Hausdorff, compact and totally disconnected; hence, it is 0-dimensional
(cf. Corollary 5.9). Therefore, there exists a clopen neighborhood U of π(e)
with π(γ) /∈ U . Since U is compact (being closed), Lemma 5.10(iii) implies
the existence of an open subgroup of Γ that doesn’t contain π(γ). The inverse
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image of that subgroup under the homomorphism π is an open subgroup ∆
of Γ with γ /∈ ∆. �

We now return to our previous discussion about the abelian group G and its
dual group Ĝ. The following result relates the triviality of torsion elements in
G to the connectedness of Ĝ and hence to the triviality of idempotents in the
C∗-algebra C∗

rG.

Theorem 5.12 The following conditions are equivalent:
(i) G is torsion-free,
(ii) Ĝ is connected and
(iii) C∗

rG has no non-trivial idempotents.

Proof. (i)→(ii): Assume that the dual group Ĝ is not connected. Then, Propo-
sition 5.11(iii) implies the existence of a proper open subgroup ∆ ≤ Ĝ. Since
∆ is open, the quotient group Ĝ/∆ is discrete. On the other hand, being an
epimorphic image of the compact group Ĝ, the quotient Ĝ/∆ is compact. It
follows that the non-trivial abelian group Ĝ/∆ is finite; hence, it admits an
epimorphism onto the group Z/nZ for some n > 1. Embedding Z/nZ into S1

as the group of n-th roots of unity, we obtain a continuous homomorphism
ω : Ĝ −→ S1, as the composition

Ĝ −→ Ĝ/∆ −→ Z/nZ ↪→ S1 .

It is clear that ω ∈ Hom
(
Ĝ, S1

)
is an element of order n. In view of the

Pontryagin duality theorem (Theorem 5.6), there exists an element g ∈ G of
order n, such that ω = evg. This is a contradiction, since G is assumed to be
torsion-free.

(ii)→(i): We now assume that the dual group Ĝ is connected and consider
an element g ∈ G of finite order n. Let ∆ be the kernel of the continuous
homomorphism evg : Ĝ −→ S1. The group ∆ consists of those characters
χ ∈ Ĝ, for which the subgroup {χ(gi) : i = 0, 1, . . . , n− 1} ⊆ S1 is trivial. It
is easily seen that a subgroup A ⊆ S1 is trivial if and only if |z − 1 |<√

3 for
any z ∈ A (cf. Exercise 5.3.3). Therefore, we conclude that

∆ = {χ ∈ Ĝ : |χ(gi) − 1 |<
√

3 for all i = 0, 1, . . . , n− 1} .

It follows that ∆ is an open subgroup of Ĝ. Since Ĝ is connected, we must
have ∆ = Ĝ and hence evg = 1. Then g = 1, in view of Theorem 5.6.

As we have already noted before, the equivalence (ii)↔(iii) follows from
the existence of the isomorphism C∗

rG  C
(
Ĝ
)

of Theorem 5.7. �

Remark 5.13 In view of the Pontryagin duality theorem, the topological
group Ĝ determines (and is, of course, determined by) the abelian group G.
In this way, every algebraic property of G corresponds to a certain property
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of the topological group Ĝ. It is in that spirit that one should view the equiv-
alence of assertions (i) and (ii) in Theorem 5.12.1

III. The integrality of the trace. Having verified the C∗-algebraic ver-
sion of the idempotent conjecture for torsion-free abelian groups, we now prove
that these groups satisfy the integrality of the trace conjecture. To that end,
we note that the Haar measure µ on the dual group Ĝ induces a continuous
linear functional

τ : C
(
Ĝ
)
−→ C ,

which is given by f �→ ∫
Ĝ
f(χ) dµ(χ), f ∈ C

(
Ĝ
)
. Since the algebra C

(
Ĝ
)

is
commutative, τ is a trace. The following result shows that the isomorphism
of Theorem 5.7 identifies τ with the canonical trace τ .

Proposition 5.14 The linear functionals τ ◦ F and τ are equal.

Proof. We recall that F(Lg) = evg for all g ∈ G. The C∗-algebra C∗
rG being

the closed linear span of the Lg’s, it suffices to verify that (τ ◦F)(Lg) = τ(Lg),
i.e. that τ(evg) = τ(Lg) for all g ∈ G. Since evg = 1 if and only if g = 1 (cf.
Theorem 5.6), Lemma 5.4(i) implies that τ(evg) =

∫
Ĝ

evg(χ) dµ(χ) is equal
to 1 if g = 1 and vanishes if g �= 1, as needed. �

Corollary 5.15 The additive map τ∗ : K0(C∗
rG) −→ C, which is induced by

the canonical trace τ , coincides with the composition

K0(C∗
rG)

K0(F)−→ K0

(
C
(
Ĝ
))

τ∗−→ C ,

where K0(F) is the isomorphism between the K0-groups induced by the C∗-
algebra isomorphism F and τ∗ the additive map induced by the trace τ .

Proof. This is an immediate consequence of Proposition 5.14, in view of Propo-
sition 1.40(ii). �

Having established the equality τ∗ = τ∗ ◦K0(F), we can prove the main result
of this subsection.

Theorem 5.16 Torsion-free abelian groups satisfy the integrality of the trace
conjecture.

Proof. Let G be a torsion-free abelian group. In order to show that the image
of the additive map τ∗ : K0(C∗

rG) −→ C is the subgroup Z ⊆ C, it suffices
(in view of Corollary 5.15) to show that this is the case for the image of the
additive map τ∗ : K0

(
C
(
Ĝ
))

−→ C. To that end, we fix an idempotent

1 As another illustration of this principle, one can prove that an abelian group
is a torsion group if and only if its dual group is 0-dimensional (cf. [33,
Theorem 24.26]).
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matrix E = (eij)i,j with entries in C
(
Ĝ
)
. For any χ ∈ Ĝ the matrix E(χ) =

(eij(χ))i,j is an idempotent matrix with entries in C and hence its trace
tr(E(χ)) is a non-negative integer. Therefore, the continuous function tr(E) =∑

i eii ∈ C
(
Ĝ
)

maps Ĝ into the discrete space Z. In view of Theorem 5.12,

the space Ĝ is connected; hence, the map tr(E) must be constant. It follows
that there exists an integer n, such that tr(E(χ)) = n for all χ ∈ Ĝ. We now
compute

τ∗[E] = τ(tr(E)) =
∫

Ĝ

tr(E(χ)) dµ(χ) =
∫

Ĝ

ndµ(χ) = n
∫

Ĝ

dµ(χ) = n ∈ Z

and this finishes the proof. �

5.1.3 The Case of a Free Group

Our main goal in the present subsection is to prove that free groups satisfy
the integrality of the trace conjecture as well. To that end, we consider a free
action of such a group on a tree and study the induced representations of the
reduced group C∗-algebra.

I. Graphs, trees and group actions. An oriented graph X consists of
a set V (whose elements are called vertices), a set Eor (whose elements are
called oriented edges) and maps

o : Eor −→ V , t : Eor −→ V and r : Eor −→ Eor ,

which are such that r ◦ r = id and t◦ r = o. For any oriented edge e ∈ Eor the
vertex o(e) (resp. t(e)) is called the origin (resp. terminus) of e. The involution
r is said to reverse orientation and the oriented edges e and r(e) are said to
have opposite orientation (or, simply, to be opposite to each other). The set
E of un-oriented edges of X is the quotient of Eor modulo the equivalence
relation generated by the relations e ∼ r(e), e ∈ Eor.

A path p on the graph X is a sequence of edges p = (e1, . . . , en), such that
t(ei) = o(ei+1) for all i = 1, . . . , n − 1. We say that a path p as above has
origin o(e1), terminus t(en) and passes through the vertices t(ei) = o(ei+1),
i = 1, . . . , n − 1. The path p = (e1, . . . , en) is reduced if ei+1 �= r(ei) for
all i = 1, . . . , n − 1. A loop around a vertex v ∈ V is a path with origin and
terminus at v. The graphX is called connected if for any two vertices v, v′ ∈ V
there is a path (or, equivalently, a reduced path) p with origin v and terminus
v′. A graph X is called a tree if it is connected and has no reduced loops.
Equivalently, a graph X is a tree if and only if for any two vertices v, v′ ∈ V
with v �= v′ there is a unique reduced path p with origin v and terminus v′;
this path, denoted by [v, v′], is called the geodesic joining v and v′.
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The number of vertices of a tree exceeds the number of un-oriented edges
of it by 1. In order to make that assertion precise, we let X be a tree and fix
a vertex v0 ∈ V . For any vertex v ∈ V with v �= v0 we consider the geodesic
[v0, v] = (e1, . . . , en) and define the map

λ : V \ {v0} −→ E ,

by letting λ(v) be the equivalence class of the oriented edge en.

Lemma 5.17 Let X be a tree and fix a vertex v0 ∈ V .
(i) The map λ defined above is bijective.
(ii) Let v′0 ∈ V be another vertex and consider the corresponding map

λ′ : V \ {v′0} −→ E. Then, λ(v) = λ′(v) for all but finitely many vertices
v ∈ V \ {v0, v′0}.
Proof. (i) We define a map

κ : E −→ V \ {v0}

as follows: We consider an oriented edge e ∈ Eor and let v = o(e) and v′ = t(e).
Since e is not a loop, at least one of the vertices v, v′ is different than v0. If
one of these vertices is v0, then we let the other vertex be the image of the
un-oriented edge {e, r(e)} under κ. We now assume that none of the vertices
v, v′ is v0 and consider the geodesics [v0, v] and [v0, v′]. It is easily seen that
the absence of reduced loops in X implies that precisely one of the following
two conditions is satisfied:

• [v0, v] consists of the geodesic [v0, v′] followed by r(e) or
• [v0, v′] consists of the geodesic [v0, v] followed by e.

In the former (resp. the latter) case, we let v (resp. v′) be the image of the
un-oriented edge {e, r(e)} under κ. It is an immediate consequence of the
definitions that the compositions κ ◦ λ and λ ◦ κ are the identity maps of the
sets V \ {v0} and E respectively. In particular, λ is bijective.

(ii) Assume that the geodesic [v0, v′0] joining v0 and v′0 passes through
the vertices v1, . . . , vn−1. We fix a vertex v ∈ V \ {v0, v1, . . . , vn−1, v

′
0} and

note that the absence of reduced loops in X implies that precisely one of the
following three conditions is satisfied:

• the geodesic [v0, v] consists of the geodesic [v0, v′0] followed by [v′0, v] or
• the geodesic [v′0, v] consists of the geodesic [v′0, v0] followed by [v0, v] or
• there is an index i ∈ {1, . . . , n−1}, such that the geodesic [v0, v] consists of

the geodesic [v0, vi] followed by [vi, v], whereas the geodesic [v′0, v] consists
of the geodesic [v′0, vi] followed by [vi, v].

In any case, the geodesics [v0, v] and [v′0, v] have the same final edge and hence
λ(v) = λ′(v). �
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Let X1, X2 be two graphs. Then, a morphism

α : X1 −→ X2

is a pair of maps

αV : V1 −→ V2 and αEor : Eor
1 −→ Eor

2

between the sets of vertices and oriented edges of the two graphs respectively,
such that o ◦αEor = αV ◦ o, t ◦αEor = αV ◦ t and r ◦αEor = αEor ◦ r. In other
words, if e1 ∈ Eor

1 is an oriented edge of X1 with origin v1, terminus v′1 and
opposite edge ε1, then the oriented edge αEor (e1) ∈ Eor

2 has origin αV (v1),
terminus αV (v′1) and opposite edge αEor (ε1). It is clear that αEor induces, by
passage to the quotient, a map

αE : E1 −→ E2

between the un-oriented edges of the two graphs. The composition of two
morphisms of graphs is also a morphism of graphs. A morphism of graphs α
as above is an isomorphism of graphs if both maps αV and αEor are bijective.
An automorphism of a graph X is an isomorphism of X onto itself; it is clear
that composition endows the set of these automorphisms with the structure
of a group.

Let α : X1 −→ X2 be an isomorphism of trees, fix a vertex v1 ∈ V1

of X1 and consider the associated bijection λ1 : V1 \ {v1} −→ E1. We also
consider the vertex v2 = αV (v1) ∈ V2 of X2 and the corresponding bijection
λ2 : V2 \ {v2} −→ E2. Then, it is easily seen that

αE ◦ λ1 = λ2 ◦ α′
V , (5.3)

where α′
V denotes the restriction of αV to the subset V1 \ {v1} ⊆ V1.

Let G be a group and X a graph. We say that G acts on X if we are given
a homomorphism of G into the group of automorphisms of X. Equivalently,
the group G acts on X if it acts on the sets V and Eor of vertices and oriented
edges of X respectively, in such a way that o(g · e) = g · o(e), t(g · e) = g · t(e)
and r(g · e) = g · r(e) for any group element g ∈ G and any oriented edge
e ∈ Eor. In that case, the group G acts on the set E of un-oriented edges
of X, in such a way that the quotient map Eor −→ E is G-equivariant. The
action of G on X is said to be free if G acts freely on the sets V and E of
vertices and un-oriented edges of X respectively.

Example 5.18 Let G be a group and consider a subset S ⊆ G. Then, the
Cayley graph X = X(G,S) of G with respect to S is defined as follows: The
set V of vertices of X coincides with G, whereas the set Eor of oriented edges
is the subset of the Cartesian product G×G, consisting of those pairs (g, g′)
for which g−1g′ ∈ S or g′−1g ∈ S; in other words, (g, g′) ∈ Eor if and only
if g′ = gs for some element s ∈ G with s ∈ S ∪ S−1. Any oriented edge
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(g, g′) ∈ Eor has origin o(g, g′) = g and terminus t(g, g′) = g′, whereas its
opposite edge is defined by letting r(g, g′) = (g′, g). The following assertions
are easily verified:

(i) If 1 ∈ G is the identity element, then the set of vertices that can be
joined by a path with the vertex 1 consists of the vertices g ∈<S >, where
<S > is the subgroup of G generated by S. In particular, the Cayley graph
is connected if and only if G can be generated by S.

(ii) The set of loops around a fixed vertex of the Cayley graph is in bijective
correspondence with the set of sequences (s1, ε1, s2, ε2, . . . , sn, εn), where si ∈
S, εi = ±1 ∈ Z for all i and

∏n
i=1 s

εi
i = 1 ∈ G. In this way, the set of

reduced loops corresponds to the set of sequences as above, which are such
that (si+1, εi+1) �= (si,−εi) for all i. In particular, the Cayley graph has no
reduced loops if and only if the set S generates freely the subgroup <S>⊆ G.

(iii) It follows from (i) and (ii) above that the Cayley graph is a tree if and
only if the group G is free on S.

For any pair (G,S) as above, the group G acts on the Cayley graph X =
X(G,S) by left translations. More precisely, for any group element g ∈ G and
any vertex v = g′ (resp. any oriented edge e = (g′, g′′)) we let g ·v = gg′ (resp.
g · e = (gg′, gg′′)). If the group G has no element of order 2, this action is
easily seen to be free. In particular, we conclude that a free group acts freely
on a tree.2

Proposition 5.19 Let X be a tree, v0 ∈ V a vertex of X and

λ : V \ {v0} −→ E

the associated bijection. We consider a group G acting on X and fix an element
g ∈ G. Then, g ·λ(v) = λ(g · v) for all but finitely many v ∈ V \ {v0, g−1 · v0}.
Proof. We consider the vertex g−1 · v0 and let

λ′ : V \ {g−1 · v0} −→ E

be the associated bijection. Since the element g ∈ G induces an automorphism
of the tree X, which maps the vertex g−1 · v0 onto v0, it follows from (5.3)
that g · λ′(v) = λ(g · v) for all v ∈ V \ {g−1 · v0}. This finishes the proof, since
λ(v) = λ′(v) for all but finitely many vertices v ∈ V \{v0, g−1 ·v0} (cf. Lemma
5.17(ii)). �

II. Free actions and the associated representations of C∗
rG. Let G

be a group acting on a graph X. Then, we may consider the unitary repre-
sentations UV and UE of G on the Hilbert spaces 2V and 2E respectively,
which are defined by letting UV (g)(δv) = δg·v and UE(g)(δe) = δg·e for all

2 In fact, it can be shown that any group G that acts freely on a tree is free (cf.
[65]).



174 5 Completions of CG

g ∈ G, v ∈ V and e ∈ E; here, we denote by (δv)v∈V and (δe)e∈E the canon-
ical orthonormal bases of the Hilbert spaces 2V and 2E respectively. Let
V =

⋃
i Vi and E =

⋃
j Ej be the orbit decompositions of the G-sets V and

E and consider the induced orthogonal decompositions of Hilbert spaces

2V =
⊕

i
2Vi and 2E =

⊕
j
2Ej .

Then, the operators UV (g) and UE(g) restrict to unitary operators

UVi
(g) : 2Vi −→ 2Vi and UEj

(g) : 2Ej −→ 2Ej

for all i, j, in such a way that UV (g) =
⊕

i UVi
(g) and UE(g) =

⊕
j UEj

(g)
for all g ∈ G.

In the special case where the action of G on X is free, the orbits Vi and
Ej are isomorphic as G-sets with G for all i, j. Then, the Hilbert spaces 2Vi

and 2Ej are isomorphic with 2G, in such a way that the operators UVi
(g)

and UEj
(g) are identified with Lg ∈ B(2G) for all indices i, j and all g ∈ G.

It follows that the unitary representations UV and UE induce, in this case,
unique ∗-algebra representations

πV : C∗
rG −→ B(2V ) and πE : C∗

rG −→ B(2E) ,

such that πV (Lg) = UV (g) and πE(Lg) = UE(g) for all g ∈ G. Since the
representations πV and πE are direct sums of the regular representation of
C∗

rG on 2G, we have

‖πV (a)‖= ‖a‖ and ‖πE(a)‖= ‖a‖ (5.4)

for all a ∈ C∗
rG. Furthermore, we may invoke Remark 3.10, in order to con-

clude that

<πV (a)(δv), δv>= τ(a) and <πE(a)(δe), δe>= τ(a) (5.5)

for all a ∈ C∗
rG, v ∈ V and e ∈ E, where τ is the canonical trace on C∗

rG.
We now consider a tree X and fix a vertex v0 ∈ V . If λ : V \ {v0} −→ E

is the associated bijection, we consider the continuous linear operator

P = Pv0 : 2V −→ 2E ,

which is defined by letting P (δv) = δλ(v) if v �= v0 and P (δv0) = 0.

Lemma 5.20 Let G be a group acting on a tree X and consider the associated
unitary representations UV and UE of G on 2V and 2E respectively. We fix
a vertex v0 ∈ V and let P : 2V −→ 2E be the linear operator defined above.
Then:

(i) PP ∗ = 1 and P ∗P = 1 − p0, where p0 ∈ B(2V ) is the orthogonal
projection onto the 1-dimensional subspace C · δv0 ⊆ 2V .
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(ii) The operator UV (g) − P ∗UE(g)P ∈ B(2V ) is of finite rank for all
g ∈ G.

(iii) Assume that G acts freely on X and let πV and πE be the induced
representations of C∗

rG on 2V and 2E respectively. Then, the operator
πV (a) − P ∗πE(a)P ∈ B(2V ) is compact for all a ∈ C∗

rG.

Proof. (i) This is straightforward, since the operator P ∗ : 2E −→ 2V maps
δe onto δλ−1(e) for any un-oriented edge e ∈ E.

(ii) We note that UV (g)(δv) = δg·v for all v ∈ V and [P ∗UE(g)P ](δv) =
δλ−1(g·λ(v)) for all v ∈ V \ {v0}. Since

λ−1(g · λ(v)) = g · v ⇐⇒ g · λ(v) = λ(g · v)

for all v ∈ V \ {v0, g−1 · v0}, Proposition 5.19 shows that the operator
UV (g)−P ∗UE(g)P vanishes on δv for all but finitely many vertices v ∈ V . In
particular, UV (g) − P ∗UE(g)P is of finite rank.

(iii) It is an immediate consequence of (ii) above that the operator
πV (a) − P ∗πE(a)P ∈ B(2V ) has finite rank (and is, therefore, compact)
for all a ∈ L(CG). Since the ideal of compact operators is closed in B(2V ),
the continuity of the map a �→ πV (a) − P ∗πE(a)P , a ∈ C∗

rG, finishes the
proof. �

III. Free actions and the subalgebra A ⊆ C∗
rG. Let G be a group

acting freely on a tree X and consider the associated representations πV and
πE of C∗

rG on 2V and 2E respectively. We fix a vertex v0 ∈ V and let
P : 2V −→ 2E be the linear operator constructed above. We denote the
operator P ∗πE(a)P by π̃E(a) for all a ∈ C∗

rG; then,

π̃E : C∗
rG −→ B(2V )

is easily seen to be a ∗-homomorphism of non-unital algebras. Moreover, since
the operators P and P ∗ have norm 1, we have

‖ π̃E(a)‖≤‖a‖ (5.6)

for all a ∈ C∗
rG. We recall that the ideal L1(2V ) of trace-class operators

on 2V consists of those bounded operators f ∈ B(2V ) for which the family
(<|f |(δv), δv>)v∈V is summable (cf. Theorem 1.12) and define

A = Av0 = {a ∈ C∗
rG : πV (a) − π̃E(a) ∈ L1(2V )} .

In other words, the linear subspace A ⊆ C∗
rG fits into a pullback diagram

A ↪→ C∗
rG

πV −π̃E ↓ ↓ πV −π̃E

L1(2V ) ↪→ B(2V )
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We note that there is a linear functional

Tr : L1(2V ) −→ C ,

which maps any trace-class operator f ∈ L1(2V ) onto
∑

v∈V < f(δv), δv >
(loc.cit.), and consider the induced linear functional

τ ′ : A −→ C ,

which is defined by letting τ ′(a) = Tr [πV (a) − π̃E(a)] for all a ∈ A.

Proposition 5.21 Let G be a group acting freely on a tree X, fix a vertex
v0 ∈ V and consider the pair (A, τ ′) defined above. Then:

(i) A is a subalgebra of C∗
rG containing L(CG); in particular, A is unital

and dense in C∗
rG.

(ii) The linear functional τ ′ coincides with the restriction to A of the
canonical trace τ on C∗

rG. In particular, τ ′ is a trace on A.

Proof. (i) For any a, a′ ∈ A we have

πV (aa′) − π̃E(aa′)=πV (a)πV (a′) − π̃E(a)π̃E(a′)
=πV (a)(πV (a′) − π̃E(a′))+(πV (a) − π̃E(a))π̃E(a′) .

Since L1(2V ) is an ideal in B(2V ), it follows that aa′ ∈ A and hence A is a
subalgebra of C∗

rG. Finite rank operators being contained in L1(2V ), Lemma
5.20(ii) implies that πV (Lg)− π̃E(Lg) ∈ L1(2V ) for all g ∈ G. It follows that
Lg ∈ A for all g ∈ G and hence L(CG) ⊆ A.

(ii) We consider an element a ∈ A and compute

τ ′(a) = Tr [πV (a) − π̃E(a)]
=
∑

v∈V
< [πV (a) − π̃E(a)](δv), δv>

=
∑

v∈V
<πV (a)(δv) − π̃E(a)(δv), δv>

=
∑

v∈V
(<πV (a)(δv), δv> − <π̃E(a)(δv), δv>)

=
∑

v∈V
(<πV (a)(δv), δv> − <P ∗πE(a)P (δv), δv>)

=
∑

v∈V
(<πV (a)(δv), δv> − <πE(a)P (δv), P (δv)>)

In view of (5.5), we have < πV (a)(δv), δv > = τ(a) for all v ∈ V , whereas
the inner product < πE(a)P (δv), P (δv) > is equal to τ(a) if v ∈ V \ {v0}
and vanishes if v = v0. Therefore, it follows from the computation above that
τ ′(a) = τ(a). �

Corollary 5.22 Let G be a group acting freely on a tree X, fix a vertex
v0 ∈ V and consider the pair (A, τ ′) defined above. Then, the additive map τ ′∗ :
K0(A) −→ C, which is induced by the trace τ ′, coincides with the composition

K0(A)
K0(ι)−→ K0(C∗

rG) τ∗−→ C ,

where K0(ι) is the additive map induced by the inclusion ι : A ↪→ C∗
rG.
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Proof. This is an immediate consequence of Proposition 5.21(ii), in view of
Proposition 1.40(ii). �

In view of the Corollary above, the following result reduces the study of the
additive map τ∗ to the study of τ ′∗.

Proposition 5.23 Let G be a group acting freely on a tree X, fix a vertex
v0 ∈ V and consider the subalgebra A ⊆ C∗

rG defined above.
(i) If U ∈ Mn(A) is a matrix with entries in A, which is invertible in

Mn(C∗
rG), then U is invertible in Mn(A).

(ii) The inclusion ι : A ↪→ C∗
rG induces an isomorphism of groups K0(ι) :

K0(A) ∼−→ K0(C∗
rG).

Proof. (i) Let B = Mn

(B(2V )) = B(2V ⊕ · · · ⊕ 2V ) be the algebra of
bounded linear operators on the direct sum 2V ⊕ · · · ⊕ 2V of n copies of
2V and consider the ideal L = Mn(L1(2V )) ⊆ B. The ∗-representation πV

of C∗
rG on 2V induces a ∗-representation

ΠV : Mn(C∗
rG) −→ B

of Mn(C∗
rG) on the n-fold direct sum 2V ⊕ · · · ⊕ 2V . In the same way,

the ∗-homomorphism of non-unital algebras π̃E induces a ∗-homomorphism
of non-unital algebras

Π̃E : Mn(C∗
rG) −→ B .

Since Mn(A) consists of those matrices A ∈ Mn(C∗
rG) for which ΠV (A) −

Π̃E(A) ∈ L, in order to prove that the inverse U−1 ∈ Mn(C∗
rG) of U is

contained in Mn(A), we have to show that ΠV

(
U−1

)− Π̃E

(
U−1

) ∈ L. It is
easily seen that ΠV

(
U−1

)− Π̃E

(
U−1

)
is equal to

−ΠV

(
U−1

)[
ΠV (U) − Π̃E(U)

]
Π̃E

(
U−1

)
+ ΠV

(
U−1

)[
ΠV (In) − Π̃E(In)

]
,

where In is the identity n× n matrix. This finishes the proof, since L ⊆ B is
an ideal, whereas In ∈ Mn(A) (cf. Proposition 5.21(i)).

(ii) Let ‖ · ‖1 be the Schatten 1-norm on the ideal L1(2V ) of trace-class
operators (cf. Theorem 1.12(ii)) and define a new norm on A, by letting

|||a |||= ‖a‖ + ‖πV (a) − π̃E(a)‖1

for any a ∈ A, where ‖ · ‖ is the norm of the C∗-algebra C∗
rG. We note that

for any a, a′ ∈ A we have
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‖πV (aa′) − π̃E(aa′)‖1 = ‖πV (a)πV (a′) − π̃E(a)π̃E(a′)‖1

≤ ‖πV (a)πV (a′) − πV (a)π̃E(a′)‖1

+ ‖πV (a)π̃E(a′) − π̃E(a)π̃E(a′)‖1

= ‖πV (a)(πV (a′) − π̃E(a′))‖1

+ ‖(πV (a) − π̃E(a))π̃E(a′)‖1

≤ ‖πV (a)‖ · ‖πV (a′) − π̃E(a′)‖1

+ ‖ π̃E(a′)‖ · ‖πV (a) − π̃E(a)‖1

≤ ‖a‖ · ‖πV (a′) − π̃E(a′)‖1

+ ‖a′ ‖ · ‖πV (a) − π̃E(a)‖1 .

The second inequality above is a consequence of Theorem 1.12(iii), whereas the
last one follows from (5.4) and (5.6). Since ‖aa′ ‖≤‖a‖·‖a′ ‖, it follows that
|||aa′ ||| ≤ |||a ||| · |||a′ ||| and hence (A, ||| · |||) is a normed algebra. Moreover,
the ideal of trace-class operators being complete under the Schatten 1-norm,
it is easily seen that (A, ||| · |||) is a Banach algebra. The inclusion

ι : (A, ||| · |||) −→ (C∗
rG, ‖·‖)

is continuous, since the ||| · |||-norm dominates the ‖ · ‖-norm, and has dense
image (cf. Proposition 5.21(i)). In view of (i) above, we may finish the proof
invoking the Karoubi density theorem (Theorem 1.33). �

Proposition 5.24 Let G be a group acting freely on a tree X, fix a vertex
v0 ∈ V and consider the pair (A, τ ′) defined above and the induced additive
map τ ′∗ : K0(A) −→ C. Then, im τ ′∗ = Z ⊆ C.

Proof. The class of the unit element 1 ∈ A in the group K0(A) gets mapped
under τ ′∗ onto τ ′(1) = Tr(1 − P ∗P ) = Tr(p0) = 1 ∈ C; here, p0 ∈ B(2V ) is
the orthogonal projection onto the 1-dimensional subspace C · δv0 (cf. Lemma
5.20(i)). It follows that Z ⊆ im τ ′∗. In order to prove the reverse inclusion, we
note that the image of the additive map

Tr∗ : K0(L1(2V )) −→ C ,

which is induced by the trace Tr on L1(2V ), is the group Z of integers (cf.
Example 1.43). Since Tr(ab) = Tr(ba) for all a ∈ L1(2V ) and b ∈ B(2V ) (cf.
Theorem 1.12(iv)), the result follows invoking Proposition 1.44(ii), applied to
the case of the morphisms of non-unital algebras

πV , π̃E : A −→ B(2V )

and the ideal L1(2V ), endowed with the trace Tr. �

IV. The integrality of the trace. We can now prove the main result of
this subsection.



5.2 Induced Modules over NG 179

Theorem 5.25 Free groups satisfy the integrality of the trace conjecture.

Proof. We consider a free group G and fix a tree X on which the group acts
freely; for example, X may be the Cayley graph X(G,S) of G associated with
a set S of free generators (cf. Example 5.18). We choose a vertex v0 ∈ V
and consider the corresponding pair (A, τ ′). In view of Proposition 5.23(ii),
the inclusion ι : A ↪→ C∗

rG induces an isomorphism between the respective
K0-groups. Therefore, in order to show that the image of the additive map
τ∗ : K0(C∗

rG) −→ C is the subgroup Z ⊆ C, it suffices to show that this is
the case for the image of the composition

K0(A)
K0(ι)−→ K0(C∗

rG) τ∗−→ C .

In view of Corollary 5.22, the latter composition coincides with the additive
map τ ′∗ : K0(A) −→ C, which is induced by the trace τ ′. Therefore, the result
follows from Proposition 5.24. �

Corollary 5.26 If G is a free group, then the C∗-algebra C∗
rG has no non-

trivial idempotents.

Proof. This is an immediate consequence of Theorem 5.25, taking into account
Proposition 5.2. �

5.2 Induced Modules over NG

Let k be a subring of the field C of complex numbers with k∩Q = Z andK its
field of fractions. We consider a finite group G and let P be a finitely generated
projective kG-module. Then, Swan’s theorem (Theorem 2.38) asserts that the
induced KG-module KG⊗kG P is free. Since KG is a subring of the complex
group algebra CG, it follows that the CG-module CG⊗kGP is free as well. In
this section, we prove a generalization of that result to the case of a possibly
infinite group G, which is due to Eckmann. More precisely, let us consider a
subring k ⊆ C with k ∩Q = Z, a group G and a finitely generated projective
kG-module P . The von Neumann algebra NG of G is an algebra containing an
isomorphic copy of the complex group algebra CG and hence of the group ring
kG as well. Then, Eckmann’s theorem asserts that the NG-module NG⊗kGP
is free. This generalizes Swan’s theorem, since NG  CG if the group G is
finite.

The proof of Eckmann’s theorem is based on certain properties of the
center-valued trace t on NG. We construct the trace t and prove the prop-
erties that we need in §5.2.1. In the following subsection, we extend t to ma-
trix algebras with entries in NG and obtain explicit formulae for the image
under t of idempotent matrices with entries in CG, in terms of their Hattori-
Stallings rank. Finally, we prove Eckmann’s result using Linnell’s theorem
(Theorem 3.32).
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5.2.1 The Center-Valued Trace on NG

Let G be a countable group that will remain fixed throughout this subsection
and consider the action of the group algebra CG on the Hilbert space 2G by
left translations. The associated algebra homomorphism

L : CG −→ B(2G)

identifies CG with the self-adjoint algebra L(CG) of operators on 2G, in such
a way that L∗

g = Lg−1 for any element g ∈ G. We recall (cf. §1.1.2.II) that the
weak operator topology (WOT) on the algebra B(2G) is the locally convex
topology defined by the family of semi-norms (Pξ,η)ξ,η∈�2G, where

Pξ,η(a) = |<a(ξ), η>|

for all ξ, η ∈ 2G and a ∈ B(2G). In other words, a net (aλ)λ of bounded
operators on 2G is WOT-convergent to 0 ∈ B(2G) if and only if the net of
complex numbers (< aλ(ξ), η >)λ converges to 0 ∈ C for all vectors ξ, η ∈
2G. Then, the group von Neumann algebra NG is defined as the WOT-
closure of L(CG) in B(2G). In view of von Neumann’s bicommutant theorem
(Theorem 1.18), NG coincides with the bicommutant (L(CG))′′ of the self-
adjoint algebra L(CG) in B(2G). We note (cf. Proposition 3.11) that there
is a WOT-continuous, positive, faithful and normalized trace functional

τ : NG −→ C ,

which is defined by letting τ(a) =<a(δ1), δ1> for all a ∈ NG. Moreover, for
any positive integer n there is an associated WOT-continuous, positive and
faithful trace functional τn on the matrix algebra Mn(NG), which maps a
matrix (aij)i,j ∈ Mn(NG) onto

∑
i τ(aii).

Let ZG be the center of the von Neumann algebra NG; it is clear that
ZG = NG ∩ (NG)′, being WOT-closed, is itself a von Neumann algebra of
operators on 2G. Our goal in this subsection is to construct a trace

t = tG : NG −→ ZG ,

which is WOT-continuous on bounded sets, maps ZG identically onto itself
and is closely related to the trace functional τ . The importance of t in the
study of idempotent matrices with entries in NG will be illustrated by proving
(in the following subsection) that the induced additive map

t∗ : K0(NG) −→ ZG

is injective.

I. The trace on CG. We begin by defining t on the group algebra CG. To
that end, we consider the subset Gf ⊆ G, consisting of all elements g ∈ G that
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have finitely many conjugates. Since the cardinality of the conjugacy class of
any element g ∈ G is equal to the index of the centralizer Cg of g in G, we
conclude that Gf = {g ∈ G : [G : Cg]< ∞}. We denote by Cf (G) the subset
of C(G) that consists of those conjugacy classes [g], for which g ∈ Gf .

Lemma 5.27 Let Gf and Cf (G) be the sets defined above. Then:
(i) Gf is a characteristic (and hence normal) subgroup of G.
(ii) For any commutative ring k the center Z(kG) of the group algebra kG

is a free k-module with basis consisting of the elements ζ[g] =
∑{x : x ∈ [g]},

[g] ∈ Cf (G).

Proof. (i) It is clear that Gf is non-empty, since 1 ∈ Gf . We note that for
any two elements g1, g2 ∈ G the intersection Cg1 ∩ Cg2 is contained in the
centralizer of the product g1g2. In particular, if g1, g2 ∈ Gf then

[G : Cg1g2 ] ≤ [G : Cg1 ∩ Cg2 ] ≤ [G : Cg1 ] [G : Cg2 ] <∞
and hence g1g2 ∈ Gf . For any element g ∈ G we have Cg = Cg−1 ; therefore,
g−1 ∈ Gf if g ∈ Gf . We have proved that Gf is a subgroup of G. In order
to prove that Gf is characteristic in G, let us consider an automorphism
σ : G −→ G. Then, σ restricts to a bijection between the conjugacy classes
[g] and [σ(g)] for any element g ∈ G. In particular, g ∈ Gf if and only if
σ(g) ∈ Gf .

(ii) It is clear that the subset {ζ[g] : [g] ∈ Cf (G)} ⊆ kG is linearly indepen-
dent over k. Moreover, xζ[g]x

−1 = ζ[g] for all x ∈ G and hence ζ[g] ∈ Z(kG)
for all [g] ∈ Cf (G). In order to show that the ζ[g]’s form a basis of Z(kG), let
us consider a central element a =

∑
g∈G agg ∈ kG, where ag ∈ k for all g ∈ G.

Then, a = xax−1 for all x ∈ G and hence ag = ax−1gx for all g, x ∈ G. There-
fore, the function g �→ ag, g ∈ G, is constant on conjugacy classes. Since its
support is finite, that function must vanish on the infinite conjugacy classes.
It follows that a is a linear combination of the ζ[g]’s, as needed. �

We now define the linear map

t0 : CG −→ Z(CG) ,

by letting t0(g) = 0 if g /∈ Gf and t0(g) = 1
[G:Cg]ζ[g] if g ∈ Gf .3

Proposition 5.28 Let t0 : CG −→ Z(CG) be the C-linear map defined
above. Then:

(i) t0 is a trace with values in Z(CG),
(ii) t0(a) = a for all a ∈ Z(CG),
(iii) t0(aa′) = at0(a′) for all a ∈ Z(CG) and a′ ∈ CG (i.e. t0 is Z(CG)-

linear) and
3 This definition is imposed by the requirement that t0 extends to a trace on the von

Neumann algebra NG with values in ZG, which is WOT-continuous on bounded
sets and maps ZG identically onto itself; cf. Exercise 5.3.5.
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(iv) the trace functional r1 on CG factors as the composition

CG t0−→ Z(CG)
r′
1−→ C ,

where r′1 is the restriction of r1 to the center Z(CG).

Proof. (i) Since t0 is C-linear, it suffices to show that t0(g) = t0(g′) whenever
[g] = [g′] ∈ C(G). But this is an immediate consequence of the definition of
t0.

(ii) We consider an element g ∈ Gf with [G : Cg] = n and let [g] =
{g1, . . . , gn}. Then, t0(gi) = t0(g) for all i = 1, . . . , n and hence

t0(ζ[g]) = t0
(∑n

i=1
gi

)
=
∑n

i=1
t0(gi) = nt0(g) = ζ[g] .

Since t0 is C-linear, the proof is finished by invoking Lemma 5.27(ii).
(iii) We consider an element g ∈ Gf with [G : Cg] = n and let [g] =

{g1, . . . , gn}; then, gi ∈ Gf for all i = 1, . . . , n. If g′ ∈ G is an element with
g′ /∈ Gf , then (Gf being a subgroup of G, in view of Lemma 5.27(i)) gig′ /∈ Gf

for all i = 1, . . . , n. In particular,

t0(ζ[g]g
′) = t0

(∑n

i=1
gig

′
)

=
∑n

i=1
t0(gig′) = 0 = ζ[g]t0(g′) .

We now assume that g′ ∈ Gf and consider the conjugacy class [g′] =
{g′1, . . . , g′m}, where m = [G : Cg′ ]. Then, for any j = 1, . . . ,m there ex-
ists an element xj ∈ G, such that g′j = xjg

′x−1
j . Since ζ[g] is central in CG,

we have ζ[g]g
′
j = xjζ[g]g

′x−1
j and hence (t0 being a trace, in view of (i) above)

t0
(
ζ[g]g

′
j

)
= t0

(
ζ[g]g

′) for all j = i, . . . ,m. It follows that

ζ[g]ζ[g′] = t0
(
ζ[g]ζ[g′]

)
= t0

(∑m

j=1
ζ[g]g

′
j

)
=
∑m

j=1
t0
(
ζ[g]g

′
j

)
= mt0

(
ζ[g]g

′) ,
where the first equality is a consequence of (ii) above, since the element ζ[g]ζ[g′]
is central in CG. We conclude that

t0
(
ζ[g]g

′)= 1
m
ζ[g]ζ[g′] = ζ[g]t0(g′)

in this case as well. Therefore, we have proved that t0
(
ζ[g]g

′)= ζ[g]t0(g′) for
all g′ ∈ G. Since this is the case for any g ∈ Gf , the linearity of t0, combined
with Lemma 5.27(ii), finishes the proof.

(iv) It suffices to verify that the linear functionals r′1 ◦ t0 and r1 agree on
g for all g ∈ G. But this follows immediately from the definitions. �

II. The WOT-continuity of the trace on L(CG). In order to extend
the trace t0 defined above to the von Neumann algebra NG, we consider the
linear maps
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∆ : CG −→ CGf and c : CGf −→ Z(CG) ,

which are defined by letting ∆ map any group element g ∈ G onto g (resp.
onto 0) if g ∈ Gf (resp. if g /∈ Gf ) and c map any g ∈ Gf onto 1

[G:Cg]ζ[g].
Then, t0 can be expressed as the composition

CG ∆−→ CGf
c−→ Z(CG) . (5.7)

Viewing the algebras above as algebras of operators acting on 2G by left
translations, we study the continuity properties of ∆ and c and show that
both of them extend to the respective WOT-closures.

The map ∆ of (5.7). We begin by considering a (possibly infinite) family
(Hs)s∈S of Hilbert spaces and define H to be the corresponding Hilbert space
direct sum. Then, H =

⊕
s∈S Hs consists of those elements ξ = (ξs)s ∈∏

s∈S Hs, for which the series
∑

s∈S ‖ξs ‖2
s is convergent. (Here, we denote for

any s ∈ S by ‖·‖s the norm of the Hilbert space Hs.) The inner product on H
is defined by letting <ξ, η>=

∑
s∈S <ξs, ηs>s for any two vectors ξ = (ξs)s

and η = (ηs)s of H, where < , >s denotes the inner product of Hs for all
s ∈ S. The Hilbert spaces Hs, s ∈ S, admit isometric embeddings as closed
orthogonal subspaces of H by means of the operators ιs : Hs −→ H, which
map an element ξs ∈ Hs onto the element ιs(ξs) = (ηs′)s′ ∈ H with ηs = ξs
and ηs′ = 0 for s′ �= s. Then, the Hilbert space H is the closed linear span of
the subspaces ιs(Hs), s ∈ S. For any index s ∈ S we also consider the projec-
tion Ps : H −→ Hs, which maps an element ξ = (ξs′)s′ ∈ H onto ξs ∈ Hs. It is
clear that Ps is a continuous linear map with ‖Ps‖≤ 1 for all s ∈ S. Moreover,
for any vectors ξ ∈ H and ηs ∈ Hs we have < Ps(ξ), ηs >s = < ξ, ιs(ηs)>;
therefore, Ps = ι∗s is the adjoint of ιs for all s ∈ S.

Let us consider a bounded operator a ∈ B(H) and a vector ξ = (ξs)s ∈ H.
Then, the family (Psaιs(ξs))s ∈∏s∈S Hs is also a vector in H, since∑

s∈S
‖Psaιs(ξs)‖2

s ≤
∑

s∈S
‖aιs(ξs)‖2

≤ ‖a‖2
∑

s∈S
‖ ιs(ξs)‖2

= ‖a‖2
∑

s∈S
‖ξs ‖2

s

= ‖a‖2‖ξ ‖2 .

(5.8)

This is the case for any ξ ∈ H and hence we may consider the map

∆(a) : H −→ H ,

which maps an element ξ = (ξs)s ∈ H onto ∆(a)(ξ) = (Psaιs(ξs))s ∈ H. It is
clear that the map ∆(a) is linear. Moreover, it follows from (5.8) that ∆(a)
is a bounded operator; in fact, we have ‖ ∆(a) ‖≤‖ a ‖. Therefore, we may
consider the map

∆ : B(H) −→ B(H) ,
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which is given by a �→ ∆(a), a ∈ B(H). The map ∆ is linear and continuous
with respect to the operator norm topology on B(H); in fact, ‖∆‖≤ 1.4 It is
easily seen that

∆(a)ιs = ιsPsaιs (5.9)

for all a ∈ B(H) and all indices s ∈ S. Since ∆ is a contraction, it induces by
restriction to the r-ball a map

∆r : (B(H))r −→ (B(H))r

for any radius r. Of course, ∆r is continuous with respect to the operator
norm topology on (B(H))r.

Lemma 5.29 The map ∆r defined above is WOT-continuous for any r.

Proof. Let (aλ)λ be a bounded net of operators in B(H), which is WOT-
convergent to 0. In order to show that the net (∆(aλ))λ of operators in B(H)
is WOT-convergent to 0 as well, it suffices, in view of Proposition 1.14, to
show that limλ <∆(aλ)(ξ), η >= 0, whenever there are two indices s, s′ ∈ S
and vectors ξs ∈ Hs and ηs′ ∈ Hs′ , such that ξ = ιs(ξs) and η = ιs′(ηs′).
Since

∆(aλ)(ξ) = ∆(aλ)ιs(ξs) = ιsPsaλιs(ξs)

(cf. (5.9)), the inner product <∆(aλ)ξ, η >=<∆(aλ)ξ, ιs′(ηs′)> vanishes if
s �= s′. On the other hand, if s = s′ we have

< ∆(aλ)(ξ), η > = < ιsPsaλιs(ξs), ιs(ηs) >
= < Psaλιs(ξs), ηs >s

= < aλιs(ξs), ιs(ηs) > ,

where the last equality follows since Ps = ι∗s. Since WOT-limλ aλ = 0, we
conclude that limλ <∆(aλ)(ξ), η>= 0 in this case as well. �

In order to apply the conclusion of Lemma 5.29, we consider the group G and
a subgroup H ≤ G. If S is a set of representatives of the left cosets of H in G,
then the decomposition of G into the disjoint union of the cosets Hs, s ∈ S,
induces a Hilbert space decomposition 2G =

⊕
s∈S 

2(Hs). We consider the
operator

∆ : B(2G) −→ B(2G) ,

which is associated with that decomposition as above. In particular, let us fix
an element g ∈ G and try to identify the operator ∆(Lg) ∈ B(2G). For any
x ∈ G there is a unique s = s(x) ∈ S, such that x ∈ Hs. Then,

4 The decomposition H =
⊕

s∈S Hs identifies the algebra B(H) with a certain
algebra of S × S matrices whose (s, s′)-entry consists of bounded operators from
Hs′ to Hs for all s, s′ ∈ S. Under this identification, the linear map ∆ maps any
a = (ass′)s,s′∈S onto the diagonal matrix diag{ass : s ∈ S}.
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∆(Lg)(δx) = ∆(Lg)ιs(δx) = ιsPsLgιs(δx) = ιsPsLg(δx) = ιsPs(δgx) ,

where the second equality follows from (5.9). We note that gx ∈ Hs if and
only if g ∈ H and hence ∆(Lg)(δx) is equal to ιs(δgx) = δgx if g ∈ H and
vanishes if g /∈ H. Since this is the case for all x ∈ G, we conclude that

∆(Lg) =
{
Lg if g ∈ H
0 if g /∈ H

In particular, ∆(Lg) is an element of the subalgebra L(CH) ⊆ B(2G). (We
note that here L(CH) is viewed as an algebra of operators acting on 2G.)
Hence, ∆ restricts to a linear map

∆ : L(CG) −→ L(CH) ⊆ B(2G) .

Corollary 5.30 Let H be a subgroup of G and consider the linear operator
∆ : L(CG) −→ L(CH) ⊆ B(2G), which is defined above. Then:

(i) The operator ∆ is a contraction.
(ii) The map

∆r : (L(CG))r −→ (L(CH))r ⊆ (B(2G))r ,

induced from ∆ by restriction to the respective r-balls, is WOT-continuous for
any r. �

The map c of (5.7). Having established Corollary 5.30 (that will be applied in
the special case where H = Gf ), we turn our attention to the map c of (5.7).
We begin by considering a group N together with an automorphism φ : N −→
N . Then, φ extends by linearity to an automorphism of the complex group
algebra CN , which will be still denoted (by an obvious abuse of notation)
by φ. We also consider the associated automorphism Lφ of the algebra of
operators L(CN) ⊆ B(2N), which is defined by letting Lφ(La) = Lφ(a) for
all a ∈ CN . On the other hand, there is a unitary operator Φ ∈ B(2N), such
that Φ(δx) = δφ(x) for all x ∈ N ; here, we denote by (δx)x∈N the canonical
orthonormal basis of 2N .

Lemma 5.31 Let N be a group and φ an automorphism of N .
(i) The associated isometry Φ of the Hilbert space 2N is such that Lφ(a) ◦

Φ = Φ ◦ La ∈ B(2N) for all a ∈ CN .
(ii) The automorphism Lφ of the algebra L(CN) is norm-preserving and

WOT-continuous.

Proof. (i) By linearity, it suffices to verify that Lφ(x)◦Φ = Φ◦Lx for all x ∈ N .
For any element y ∈ N we have

(Lφ(x) ◦ Φ)(δy) = Lφ(x)(δφ(y)) = δφ(x)φ(y) = δφ(xy) = Φ(δxy) = (Φ ◦ Lx)(δy) .

Since the bounded operators Lφ(x) ◦ Φ and Φ ◦ Lx agree on the orthonormal
basis {δy : y ∈ N} of the Hilbert space 2N , they are equal.
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(ii) For any a ∈ CN we have Lφ(a) = Φ ◦ La ◦ Φ−1, in view of (i) above.
Since Φ is unitary, it follows that ‖ Lφ(a) ‖= ‖ La ‖ for all a ∈ CN and
hence Lφ is norm-preserving. On the other hand, the map b �→ Φ ◦ b ◦ Φ−1,
b ∈ B(2N), is WOT-continuous (cf. Remark 1.13(ii)). Being a restriction of
it, Lφ is WOT-continuous as well. �

We now assume that N is a group on which the group G acts by automor-
phisms. Then, for any g ∈ G we are given an automorphism φg : N −→ N ,
in such a way that φg ◦ φg′ = φgg′ for all g, g′ ∈ G. There is an induced ac-
tion of G by automorphisms (φg)g on the complex group algebra CN and
a corresponding action of G by automorphisms (Lφg

)g on the algebra of
operators L(CN) ⊆ B(2N). More precisely, for any g ∈ G the automor-
phism φg : CN −→ CN is the linear extension of φg ∈ Aut(N), whereas
Lφg

: L(CN) −→ L(CN) maps La onto Lφg(a) for all a ∈ CN .
If the G-action on N is such that all orbits are finite (equivalently, if for

any element x ∈ N the stabilizer subgroup Stabx has finite index in G), then
we define the linear map

c : L(CN) −→ L(CN) ,

as follows: For any element x ∈ N with G-orbit {x1, . . . , xm} ⊆ N , where
m = m(x) = [G : Stabx], we let c(Lx) = 1

m

∑m
i=1 Lxi

∈ L(CN).

Lemma 5.32 Assume that G acts on a group N by automorphisms, in such
a way that all orbits are finite, and consider the linear endomorphism c of the
algebra L(CN) defined above.

(i) Let x be an element of N and H ≤ G a subgroup of finite index with
H ⊆ Stabx. If [G : H] = k and {g1, . . . , gk} is a set of representatives of the
right H-cosets {gH : g ∈ G}, then c(Lx) = 1

k

∑k
i=1 Lφgi

(x).
(ii) The operator c is a contraction.
(iii) The map

cr : (L(CN))r −→ (L(CN))r ,

induced from c by restriction to the r-balls, is WOT-continuous for any r.

Proof. (i) Since H is contained in the stabilizer Stabx, we have φg(x) =
φg′(x) ∈ N if gH = g′H. Therefore, the right hand side of the equality
to be proved doesn’t depend upon the choice of the set of representatives of
the cosets {gH : g ∈ G}. Let {s1, . . . , sm} be a set of representatives of the
cosets {g Stabx : g ∈ G}, where m = m(x) = [G : Stabx]. Then, the G-orbit
of x is the set {φs1(x), . . . , φsm

(x)} and hence

c(Lx) =
1
m

∑m

i=1
Lφsi

(x) .

If {u1, . . . , ul} is a set of representatives of the cosets {gH : g ∈ Stabx},
where l = [ Stabx : H], then the set {siuj : 1 ≤ i ≤ m , 1 ≤ j ≤ l}
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is a set of representatives of the the cosets {gH : g ∈ G}. In particular,
k = [G : H] = [G : Stabx] · [ Stabx : H] = ml. Since the uj ’s stabilize x, we
have φsiuj

(x) = φsi
(x) for all i, j and hence

c(Lx) =
1
m

∑m

i=1
Lφsi

(x) =
l

k

∑m

i=1
Lφsi

(x) =
1
k

∑m

i=1

∑l

j=1
Lφsiuj

(x) ,

as needed.
(ii) Let a =

∑r
i=1 aixi ∈ CN , where ai ∈ C and xi ∈ N for all i = 1, . . . , r.

We consider the subgroup H =
⋂r

i=1 Stabxi
, which has finite index in G, and

fix a set of representatives {g1, . . . , gk} of the cosets {gH : g ∈ G}. We note
that La =

∑r
i=1 aiLxi

, whereas Lφgj
(a) =

∑r
i=1 aiLφgj

(xi) for all j = 1, . . . , k.
Hence, it follows from (i) above that

c(La) =
∑r

i=1
aic(Lxi

) =
∑r

i=1
ai

1
k

∑k

j=1
Lφgj

(xi) =
1
k

∑k

j=1
Lφgj

(a) .

Since ‖ Lφgj
(a) ‖ = ‖ La ‖ for all j = 1, . . . , k (cf. Lemma 5.31(ii)), we may

conclude that ‖c(La)‖ ≤ ‖La ‖ and hence c is a contraction.
(iii) Let (aλ)λ be a net of elements in the group algebra CN , such that

the net of operators (Laλ
)λ is bounded and WOT-convergent to 0 ∈ B(2N).

For any index λ we write aλ =
∑

x∈N aλ,xx, where the aλ,x’s are complex
numbers, and note that

<Laλ
(δ1), δx> = <

∑
x′∈N

aλ,x′δx′ , δx> = aλ,x

for all x ∈ N ; in particular, it follows that limλ aλ,x = 0 for all x ∈ N . In order
to show that the bounded net (c(Laλ

))λ of operators in L(CN) ⊆ B(2N) is
WOT-convergent to 0 as well, it suffices to show that

limλ <c(Laλ
)(δy), δz>= 0

for all y, z ∈ N (cf. Proposition 1.14). For any pair of elements x, x′ ∈ N we
write x ∼ x′ if and only if x and x′ are in the same orbit under the G-action,
whereas m(x) denotes the cardinality of the G-orbit of x. Then,

c(Laλ
) =
∑

x∈N
aλ,xc(Lx)

=
∑

x∈N
aλ,x

1
m(x)

∑
{Lx′ : x′ ∼ x}

=
∑

x′∈N

∑
{aλ,x

1
m(x) : x ∼ x′}Lx′

and hence
<c(Laλ

)(δy), δz>=
∑

{aλ,x
1

m(x) : x ∼ zy−1} .
Since limλ aλ,x = 0 for each one of the finitely many x’s in the G-orbit of
zy−1, we conclude that limλ <c(Laλ

)(δy), δz> = 0. �
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Let H be a Hilbert space, S a non-empty index set and H(S) the Hilbert space
direct sum of the constant family of Hilbert spaces (Hs)s∈S with Hs = H for
all s ∈ S. For any bounded operator a ∈ B(H) there is an associated linear
operator a(S) : H(S) −→ H(S), which maps an element (ξs)s ∈ H(S) onto
(a(ξs))s. The map a(S) is well-defined, since for any (ξs)s ∈ H(S) we have∑

s∈S
‖a(ξs)‖2 ≤

∑
s∈S

‖a‖2‖ξs ‖2 = ‖a‖2
∑

s∈S
‖ξs ‖2<∞ .

It follows that the operator a(S) is bounded and ‖ a(S) ‖≤‖ a ‖. In fact, we
may fix an index s ∈ S and consider the restriction of a(S) on the subspace
ιs(H), in order to conclude that ‖a(S) ‖= ‖a‖. Hence, the linear map

ν : B(H) −→ B
(
H(S)

)
,

which is given by a �→ a(S), a ∈ B(H), is an isometry and we may consider its
restriction to the r-balls

νr : (B(H))r −→
(
B
(
H(S)

))
r .

Then, a net (aλ)λ in (B(H))r is WOT-convergent to 0 if and only if this
is the case for the associated net

(
a
(S)
λ

)
λ of operators on H(S). Indeed, if

WOT-limλ a
(S)
λ = 0, then we may consider the restriction of the a(S)

λ ’s on the
subspace ιs(H) ⊆ H(S), for some index s ∈ S, in order to conclude that WOT-
limλ aλ = 0. Conversely, assume that the bounded net (aλ)λ of operators in
B(H) is WOT-convergent to 0. Then, for any pair of indices s, s′ ∈ S and any
vectors ξ, ξ′ ∈ H, we have

< a
(S)
λ ιs(ξ), ιs′(ξ′) >=< ιsaλ(ξ), ιs′(ξ′) >=

{
< aλ(ξ), ξ′ > if s = s′

0 if s �= s′

where the first equality follows since a(S)ιs = ιsa for any operator a ∈ B(H).
In any case, we conclude that limλ < a

(S)
λ ιs(ξ), ιs′(ξ′) >= 0 and hence the

bounded net
(
a
(S)
λ

)
λ is WOT-convergent to 0 (cf. Proposition 1.14).

Corollary 5.33 Assume that G acts on a group N by automorphisms, in
such a way that all orbits are finite. We consider a group N ′ containing N
as a subgroup and let c be the linear endomorphism of the algebra L(CN) ⊆
L(CN ′) ⊆ B(2N ′), which is defined as in the paragraph before Lemma 5.32.
Then:

(i) The operator c is a contraction.
(ii) The map

cr : (L(CN))r −→ (L(CN))r ,

induced from c by restriction to the r-balls, is continuous with respect to the
weak operator topology on (L(CN))r ⊆ (B(2N ′))r for any r.



5.2 Induced Modules over NG 189

Proof. For any element a ∈ CN we denote by La (resp. L′
a) the left trans-

lation induced by a on the Hilbert space 2N (resp. 2N ′). If S ⊆ N ′ is a
set of representatives of the cosets {Nx : x ∈ N ′}, then the Hilbert space
2N ′ =

⊕
s∈S 

2(Ns) is identified with (2N)(S), in such a way that L′
a is

identified with L(S)
a for all a ∈ CN . Therefore, assertions (i) and (ii) are im-

mediate consequences of Lemma 5.32(ii),(iii), in view of the discussion above.
�

The continuity of t on L(CG). Since L : CG −→ L(CG) is an algebra iso-
morphism, it follows that the center Z(L(CG)) of L(CG) coincides with
L(Z(CG)), where Z(CG) is the center of CG. In particular, the linear map
t0 : CG −→ Z(CG) of Proposition 5.28 induces a linear map

t : L(CG) −→ Z(L(CG)) ,

by letting t(La) = Lt0(a) for any a ∈ CG. Using the results obtained above,
we can now establish certain key continuity properties of t.

Proposition 5.34 Let t : L(CG) −→ Z(L(CG)) be the linear map defined
above. Then:

(i) t is a contraction and its restriction

tr : (L(CG))r −→ (Z(L(CG)))r

to the respective r-balls is WOT-continuous for any r,
(ii) t is a trace with values in Z(L(CG)),
(iii) t(La) = La for all La ∈ Z(L(CG)),
(iv) t(LaLa′) = Lat(La′) for all La ∈ Z(L(CG)) and La′ ∈ L(CG) (i.e. t

is Z(L(CG))-linear) and
(v) the canonical trace functional τ on L(CG) factors as the composition

L(CG) t−→ Z(L(CG)) τ ′
−→ C ,

where τ ′ is the restriction of τ to the center Z(L(CG)).

Proof. (i) Let Gf � G be the normal subgroup consisting of those elements
g ∈ G that have finitely many conjugates and consider the linear map

∆ : L(CG) −→ L(CGf ) ,

which is defined on the generators Lg, g ∈ G, by letting ∆(Lg) = Lg if
g ∈ Gf and ∆(Lg) = 0 if g /∈ Gf . The orbit of an element g ∈ Gf under the
conjugation action of G is the conjugacy class [g] ∈ C(G), a finite set with
[G : Cg] elements. We consider the linear map

c : L(CGf ) −→ L(CGf ) ,
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which maps Lg onto 1
[G:Cg]

∑{Lx : x ∈ [g]} for all g ∈ Gf . It is clear that the
composition

L(CG) ∆−→ L(CGf ) c−→ L(CGf )

coincides with the composition

L(CG) t−→ Z(L(CG)) ↪→ L(CGf ) .

Therefore, (i) is a consequence of Corollaries 5.30 and 5.33. The proof of
assertions (ii), (iii), (iv) and (v) follows readily from Proposition 5.28. �

III. The center of NG. Our next goal is to identify the WOT-closure of
the center Z(L(CG)) of L(CG) with the center ZG = NG ∩ (NG)′ of the
von Neumann algebra NG. We note that

Z(L(CG)) = L(CG) ∩ (L(CG))′ ⊆ L(CG)′′ ∩ (L(CG))′′′ = NG ∩ (NG)′ .

Hence, ZG being WOT-closed, we have Z(L(CG))
WOT ⊆ ZG. In order to

prove the reverse inclusion, we need a couple of auxiliary results.

Lemma 5.35 Let a ∈ ZG be an operator in the center of the von Neumann
algebra NG. Then:

(i) For all g, h ∈ G we have <a(δ1), δg−1hg> = <a(δ1), δh>.
(ii) The inner product <a(δ1), δg> depends only upon the conjugacy class

[g] ∈ C(G) and vanishes if g /∈ Gf .
(iii) For any g ∈ G we have

a(δg) =
∑

[x]∈Cf (G)
<a(δ1), δx> Lζ[x](δg) ∈ 2G ,

where Cf (G) = {[x] ∈ C(G) : x ∈ Gf} and ζ[x] =
∑{x′ : x′ ∈ [x]} for all

[x] ∈ Cf (G).

Proof. (i) We fix the elements g, h ∈ G and compute

<a(δ1), δg−1hg> = <a(δ1), Lg−1(δhg)>
= <L∗

g−1a(δ1), δhg>

= <Lga(δ1), δhg>
= <aLg(δ1), δhg>
= <a(δg), δhg>
= <a(δ1), δh>

In the above chain of equalities, the third one follows since L∗
g−1 = Lg, the

fourth one since a commutes with Lg, whereas the last one was established in
Lemma 3.9(i).

(ii) It follows from (i) that the function g �→< a(δ1), δg >, g ∈ G, is
constant on conjugacy classes. Being square-summable, that function must
vanish on those elements g ∈ G with infinitely many conjugates.
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(iii) It follows from (i) and (ii) above that

a(δ1) =
∑

[x]∈Cf (G)
<a(δ1), δx>

∑
{δx′ : x′ ∈ [x])}

=
∑

[x]∈Cf (G)
<a(δ1), δx> Lζ[x](δ1) .

(5.10)

On the other hand, for any g ∈ G the operator Lg commutes with a (since
a ∈ ZG) and Lζ[x] for any x ∈ Gf (since the Lζ[x] ’s are central in L(CG); cf.
Lemma 5.27(ii)). Therefore, we have

a(δg) = aLg(δ1)
= Lga(δ1)
=
∑

[x]∈Cf (G)
<a(δ1), δx> LgLζ[x](δ1)

=
∑

[x]∈Cf (G)
<a(δ1), δx> Lζ[x]Lg(δ1)

=
∑

[x]∈Cf (G)
<a(δ1), δx> Lζ[x](δg) .

In the above chain of equalities, the third one follows from (5.10), in view of
the continuity of Lg. �

Corollary 5.36 Let a ∈ ZG be an operator in the center of the von Neumann
algebra NG and b ∈ (Z(L(CG)))′ an operator in the commutant of Z(L(CG))
in B(2G). Then, for any two elements g, h ∈ G the family of complex numbers
(<a(δ1), δx> · <b(δg), δx−1h>)x∈G is summable and∑

x∈G
<a(δ1), δx> · <b(δg), δx−1h> = <ba(δg), δh> .

Proof. In view of the continuity of b, Lemma 5.35(iii) implies that

ba(δg) =
∑

[x]∈Cf (G)
<a(δ1), δx> bLζ[x](δg)

=
∑

[x]∈Cf (G)
<a(δ1), δx> Lζ[x]b(δg)

=
∑

x∈G
<a(δ1), δx> Lxb(δg) .

In the above chain of equalities, the second one follows since b commutes with
Lζ[x] ∈ Z(L(CG)) for all [x] ∈ Cf (G) (cf. Lemma 5.27(ii)), whereas the last
one is a consequence of Lemma 5.35(ii). Therefore, we have

<ba(δg), δh> =
∑

x∈G
<a(δ1), δx> · <Lxb(δg), δh>

=
∑

x∈G
<a(δ1), δx> · <b(δg), L∗

x(δh)>

=
∑

x∈G
<a(δ1), δx> · <b(δg), Lx−1(δh)>

=
∑

x∈G
<a(δ1), δx> · <b(δg), δx−1h> ,

where the first equality follows from the continuity of the inner product map
< , δh> and the third one from the equalities L∗

x = Lx−1 , x ∈ G. �
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We are now ready to prove the following result, describing the center of the
von Neumann algebra NG.

Proposition 5.37 The center ZG of the von Neumann algebra NG is the
WOT-closure of the center Z(L(CG)) of the algebra L(CG) in the algebra
B(2G) of bounded operators on 2G.

Proof. As we have already noted, the von Neumann algebra ZG contains
the WOT-closure of Z(L(CG)). On the other hand, the WOT-closure of the
self-adjoint algebra Z(L(CG)) coincides with its bicommutant in B(2G) (cf.
Theorem 1.18). Hence, it only remains to show that ZG ⊆ (Z(L(CG)))′′, i.e.
that any a ∈ ZG commutes with any b ∈ (Z(L(CG)))′. Let us fix such a pair
of operators a, b. Since a ∈ ZG ⊆ NG, we have

<a(ξ), δh> =
∑

x∈G
<a(δ1), δx> · <ξ, δx−1h>

for all ξ ∈ 2G and h ∈ G (cf. Lemma 3.9(ii)). In particular, we have

<ab(δg), δh> =
∑

x∈G
<a(δ1), δx> · <b(δg), δx−1h>

for all g, h ∈ G. Therefore, Corollary 5.36 implies that

<ab(δg), δh> = <ba(δg), δh>

for all g, h ∈ G and hence ab = ba, as needed. �

IV. The construction of t on NG. Using the results obtained above, we
can construct the center-valued trace t on the von Neumann algebra NG of the
countable group G. We note that the countability ofG implies that the Hilbert
space 2G is separable. For any radius r we consider the r-ball (B(2G))r of
the algebra of bounded operators on 2G. Then, the space ((B(2G))r,WOT)
is compact and metrizable; in fact, we can choose for any r a metric dr on
((B(2G))r,WOT), in such a way that

dr(a, a′) = d2r(a′ − a, 0) (5.11)

for all a, a′ ∈ (B(2G))r (cf. Theorem 1.15 and its proof). In view of Kaplan-
sky’s density theorem (Theorem 1.20), the r-ball (NG)r is the WOT-closure
of the r-ball (L(CG))r. It follows that ((NG)r,WOT) is also a compact metric
space; in particular, it is a complete metric space. In fact, ((NG)r,WOT) can
be identified with the completion of its dense subspace ((L(CG))r,WOT). As
an immediate consequence of the discussion above, we note that any operator
in NG is the WOT-limit of a bounded sequence of operators in L(CG). Using
a similar argument, combined with Proposition 5.37, we may identify the com-
plete metric space ((ZG)r,WOT) with the completion of its dense subspace
((Z(L(CG)))r,WOT). It follows that any operator in ZG is the WOT-limit
of a bounded sequence of operators in Z(L(CG)).
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We now consider the linear map t : L(CG) −→ Z(L(CG)) of Proposition
5.34. We know that t is a contraction, whereas its restriction tr to the respec-
tive r-balls is WOT-continuous for all r. Having fixed the radius r, we note
that the continuity of t2r at 0 implies that for any ε > 0 there is δ = δ(r, ε) > 0,
such that

d2r(a, 0) < δ =⇒ d2r(t(a), 0) < ε

for all a ∈ (L(CG))2r. Taking into account the linearity of t and (5.11), it
follows that

dr(a, a′) < δ =⇒ dr(t(a), t(a′)) < ε

for all a, a′ ∈ (L(CG))r. Therefore, the map

tr : ((L(CG))r,WOT) −→ ((Z(L(CG)))r,WOT)

is uniformly continuous and hence admits a unique extension to a continuous
map between the completions

tr : ((NG)r,WOT) −→ ((ZG)r,WOT) . (5.12)

Taking into account the uniqueness of these extensions, it follows that there
is a well-defined map

t : NG −→ ZG ,
which is contractive, extends t : L(CG) −→ Z(L(CG)) and its restriction to
the respective r-balls is the WOT-continuous map tr of (5.12) for all r.

Theorem 5.38 Let ZG be the center of the von Neumann algebra NG and
t : NG −→ ZG the map defined above. Then:

(i) t extends the trace t0 : CG −→ Z(CG), in the sense that the following
diagram is commutative

CG t0−→ Z(CG)
L ↓ ↓ L

NG t−→ ZG
(ii) t is contractive and its restriction to bounded sets is WOT-continuous,
(iii) t is C-linear,
(iv) t is a trace with values in ZG,
(v) t(a) = a for all a ∈ ZG,
(vi) t(aa′) = at(a′) for all a ∈ ZG and a′ ∈ NG (i.e. t is ZG-linear),
(vii) the canonical trace functional τ on NG factors as the composition

NG t−→ ZG τ ′
−→ C ,

where τ ′ is the restriction of τ on ZG.
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The trace t will be referred to as the center-valued trace on NG.

Proof. Assertions (i) and (ii) follow from the construction of t.
(iii) As we have already noted, for any a, a′ ∈ NG there are bounded

sequences (an)n and (a′n)n in L(CG), such that WOT-limn an = a and WOT-
limn a

′
n = a′. Then, for any λ, λ′ ∈ C the sequence (λan + λ′a′n)n is bounded

and WOT-convergent to λa+λ′a′. In view of the linearity of t on L(CG), we
have t(λan + λ′a′n) = λt(an) + λ′t(a′n) for all n. Since t is WOT-continuous
on bounded sets, it follows that t(λa+ λ′a′) = λt(a) + λ′t(a′).

(iv) We recall that multiplication in B(2G) is separately continuous in the
weak operator topology (cf. Remark 1.13(ii)). For any element a ∈ L(CG) the
map a′ �→ t(aa′) − t(a′a), a′ ∈ NG, is WOT-continuous on bounded sets and
vanishes on L(CG), in view of Proposition 5.34(ii). Therefore, approximating
any operator of NG by a bounded sequence in L(CG), we conclude that
t(aa′) = t(a′a) for all a′ ∈ NG. We now fix a′ ∈ NG and consider the map
a �→ t(aa′)− t(a′a), a ∈ NG. This latter map is WOT-continuous on bounded
sets and vanishes on L(CG), as we have just proved. Hence, using the same
argument as above, we conclude that t(aa′) = t(a′a) for all a ∈ NG.

(v) We know that any operator a ∈ ZG is the WOT-limit of a bounded
sequence of operators in Z(L(CG)); therefore, the equality t(a) = a is an im-
mediate consequence of Proposition 5.34(iii), in view of the WOT-continuity
of t on bounded sets.

(vi) We fix an operator a ∈ Z(L(CG)) and consider the map a′ �→ t(aa′)−
at(a′), a′ ∈ NG. This map is WOT-continuous on bounded sets and vanishes
on L(CG) (cf. Proposition 5.34(iv)). Approximating any operator of NG by a
bounded sequence in L(CG), we conclude that t(aa′) = at(a′) for all a′ ∈ NG.
We now fix an element a′ ∈ NG and consider the map a �→ t(aa′) − at(a′),
a ∈ ZG. This map is WOT-continuous on bounded sets and vanishes on
Z(L(CG)), as we have just proved. Hence, approximating any operator of
ZG by a bounded sequence in Z(L(CG)), it follows that t(aa′) = at(a′) for
all a ∈ ZG.

(vii) Since the trace τ is WOT-continuous, the equality τ = τ ′ ◦ t follows
from the WOT-continuity of t on bounded sets, combined with Proposition
5.34(v), by approximating any operator a ∈ NG by a bounded sequence of
operators in L(CG). �

Before proceeding any further, we explicit the center-valued trace t defined
above, in the special case where the group G is finite.

Remarks 5.39 (i) Let R = Mn(C) be the algebra of n × n matrices with
entries in C. Then, the center Z(R) ⊆ R consists of the scalar multiples of
the identity matrix In. We note that the matrix units Eij satisfy the following
equalities:
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• Eij = EiiEij −EijEii if i �= j,
• Eii − Ejj = EijEji − EjiEij for all i, j and
• ∑n

i=1Eii = In.

It follows that there is a unique C-linear trace t : R −→ Z(R), which is the
identity on Z(R); t is given by letting t(A) = tr(A)

n In for all matrices A ∈ R.
(Here, we denote by tr the usual trace of a matrix.)

(ii) Assume that the group G is finite. Then, the von Neumann algebra
NG is isomorphic with the complex group algebra CG. We assume that G
has r mutually non-isomorphic irreducible complex representations V1, . . . , Vr

and let χ1, . . . , χr be the corresponding characters. We consider the dimen-
sions ni = dimVi = χi(1), i = 1, . . . , r, of these representations and the
Wedderburn decomposition

CG 
∏r

i=1
Mni

(C) .

This decomposition identifies any element a ∈ CG with the r-tuple of matrices
(�1(a), . . . , �r(a)), where �i(a) ∈ Mni

(C) is the matrix describing the action
of a on Vi = Cni for all i = 1, . . . , r; in particular, tr(�i(a)) = χi(a) for all
i = 1, . . . , r. The center

Z(CG) 
∏r

i=1
Z(Mni

(C)) =
∏r

i=1
C · Ini

is the direct product of r copies of C. Therefore, in view of (i) above, the
center-valued trace t : NG −→ ZG is identified with the map

t : CG −→
∏r

i=1
C · Ini

,

which is defined by letting t(a) =
(

χ1(a)
n1
In1 , . . . ,

χr(a)
nr
Inr

)
for all a ∈ CG.

5.2.2 Matrices with Entries in NG

In this subsection, we fix a countable group G, the associated von Neumann
algebra NG and its center ZG. For any positive integer n we consider the
algebra Mn(NG) of n × n matrices with entries in NG. Then, Mn(NG) is
a von Neumann algebra of operators acting on the n-fold direct sum 2G ⊕
· · · ⊕ 2G, with center Z(Mn(NG)) = {aIn; a ∈ ZG} (cf. Exercise 1.3.5(i)).
The center-valued trace t, defined in Theorem 5.38, induces the trace

tn : Mn(NG) −→ ZG ,

which maps any matrix A = (aij)i,j ∈ Mn(NG) onto
∑n

i=1 t(aii) ∈ ZG (cf.
Proposition 1.39(i)).
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Proposition 5.40 For any integer n > 0 the trace tn : Mn(NG) −→ ZG
defined above has the following properties:

(i) tn(aIn) = na for all a ∈ ZG,
(ii) tn(aA) = atn(A) for all a ∈ ZG and A ∈ Mn(NG) (i.e. tn is ZG-

linear) and
(iii) The trace functional τn on the matrix algebra Mn(NG), which is

induced by the canonical trace τ on NG, factors as the composition

Mn(NG) tn−→ ZG τ ′
−→ C ,

where τ ′ is the restriction of τ on ZG.

Proof. (i) It follows from Theorem 5.38(v) that tn(A) = tr(A) for all matrices
A ∈ Mn(ZG). In particular, tn(aIn) = na for all a ∈ ZG.

(ii) Let us fix an element a ∈ ZG and a matrix A = (aij)i,j ∈ Mn(NG).
Then, aA = (aaij)i,j and hence

tn(aA) =
∑n

i=1
t(aaii) =

∑n

i=1
at(aii) = a

∑n

i=1
t(aii) = atn(A) ,

where the second equality follows from Theorem 5.38(vi).
(iii) For any matrix A = (aij)i,j ∈ Mn(NG) we compute

τn(A) =
∑n

i=1
τ(aii) =

∑n

i=1
τ(t(aii)) = τ

(∑n

i=1
t(aii)

)
= τ(tn(A)) ,

where the second equality follows from Theorem 5.38(vii). �

Our goal is to demonstrate the usefulness of the tn’s in the study of idempo-
tent matrices with entries in NG. As a first result in that direction, we may
reformulate Kaplansky’s positivity theorem (Theorem 3.12), as follows:

Corollary 5.41 Let n be a positive integer. Then, the following conditions
are equivalent for an idempotent matrix E ∈ Mn(NG):

(i) E = 0,
(ii) tn(E) = 0, where tn is the trace induced on the algebra Mn(NG) by

the center-valued trace on NG.

Proof. It is clear that (i) implies (ii). On the other hand, the implication
(ii)→(i) is an immediate consequence of Theorem 3.12, in view of Proposition
5.40(iii). �

At this point we have to introduce some general concepts. We recall that a
bounded operator u on a Hilbert space H is called a partial isometry if there
are closed subspaces V, V ′ ⊆ H, such that u maps V isometrically onto V ′

and vanishes on the orthogonal complement V ⊥. In that case, the adjoint u∗

maps V ′ isometrically onto V and vanishes on the orthogonal complement
V ′⊥. Therefore, u∗u = pV and uu∗ = pV ′ are the orthogonal projections onto
the subspaces V and V ′ respectively and hence
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uu∗u = u and u∗uu∗ = u∗ . (5.13)

If e, f are two projections on H, then e ≤ f if ef = fe = e (cf. §1.1.1.II); in
that case, the (closed) subspace im e is contained in im f , whereas the operator
f − e is the orthogonal projection onto the subspace (im e)⊥ ∩ im f . We write
e < f if e ≤ f and e �= f .

Definition 5.42 Let N be a von Neumann algebra of operators acting on a
Hilbert space H and consider two projections e, f ∈ N .

(i) The projections e, f are called equivalent (more precisely, equivalent
rel N ) if there is a partial isometry u ∈ N , such that e = u∗u and f = uu∗;
in that case, we write e ∼ f .

(ii) The projection e is called weaker (more precisely, weaker rel N ) than
f if there is a projection e′ ∈ N , such that e ∼ e′ and e′ ≤ f ; in that case, we
write e � f .

(iii) The projection e is called strictly weaker (more precisely, strictly
weaker rel N ) than f if e � f and e �∼ f ; in that case, we write e ≺ f .

In particular, for any positive integer n we may apply the concepts of equiva-
lence and weak ordering of projections to the special case of the von Neumann
algebra Mn(NG) of n× n matrices with entries in NG. The following result
describes the behavior of the ZG-valued trace tn with respect to these con-
cepts.

Proposition 5.43 Let n be a positive integer and E,F two projections in the
von Neumann algebra Mn(NG) of n× n matrices with entries in NG.

(i) If E ∼ F then tn(E) = tn(F ).
(ii) If E < F then tn(E) �= tn(F ).
(iii) If E ≺ F then tn(E) �= tn(F ).

Proof. (i) Let U ∈ Mn(NG) be a partial isometry, such that E = U∗U and
F = UU∗. Then,

tn(E) = tn(U∗U) = tn(UU∗) = tn(F ) ,

where the second equality follows since tn is a trace.
(ii) In view of the additivity of tn, it suffices to show that tn(F −E) �= 0.

Since E < F , the operator F −E is a non-zero projection and hence the result
follows from Corollary 5.41.

(iii) Let E′ ∈ Mn(NG) be a projection, such that E ∼ E′ and E′ ≤ F .
Then, we must have E′ < F and hence tn(E) = tn(E′) �= tn(F ), in view of
(i) and (ii) above. �

Using the comparison theory of projections in the algebra of matrices with
entries in NG (cf. Appendix E), we may complement the assertion of Propo-
sition 5.43(i), as follows:
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Proposition 5.44 Let n a positive integer. Then, the following conditions
are equivalent for two projections E,F in the von Neumann algebra Mn(NG)
of n× n matrices with entries in NG:

(i) E ∼ F ,
(ii) tn(E) = tn(F ) ∈ ZG, where tn is the trace on Mn(NG) induced by

the center-valued trace on NG.

Proof. (i)→(ii): This is precisely the assertion of Proposition 5.43(i).
(ii)→(i): Assume on the contrary that the projections E,F ∈ Mn(NG) are

not equivalent, whereas tn(E) = tn(F ). Then, we may invoke Corollary E.8
of Appendix E, in order to find a central projection C ∈ Z(Mn(NG)), such
that CE ≺ CF or CF ≺ CE. In view of Proposition 5.43(iii), we conclude
that in either case we have

tn(CE) �= tn(CF ) . (5.14)

Taking into account the form of the matrices in the center of the algebra
Mn(NG), it follows that C = aIn for some a ∈ ZG (in fact, a must be itself
a projection). Then, Proposition 5.40(ii) implies that

tn(CE) = tn(aE) = atn(E) = atn(F ) = tn(aF ) = tn(CF ) .

This contradicts (5.14), proving therefore that the projections E,F must be
equivalent if tn(E) = tn(F ). �

In order to reformulate the previous results in K-theoretic terms, we note that
the center-valued trace t induces an additive map

t∗ : K0(NG) −→ ZG ,

which maps the class of any idempotent n× n matrix E with entries in NG
onto tn(E) ∈ ZG (cf. Proposition 1.39(ii)). Using the results obtained above,
we shall prove that t∗ is injective, thereby justifying the use of the center-
valued trace in order to represent K-theory classes in K0(NG).

Remark 5.45 Let N be a von Neumann algebra and P a finitely generated
projective N -module. Then, there is a positive integer n and an idempotent
endomorphism α of the free N -module Nn, such that P = imα. Viewing Nn

as the set of row-vectors of size n, we can find an idempotent n × n matrix
E with entries in N , such that α = Ẽ is given by right multiplication with
E. Since the matrix E∗ is idempotent as well, we may invoke Lemma 3.13, in
order to find a projection F ∈ Mn(N ), such that E∗F = F and FE∗ = E∗.
Taking adjoints, we conclude that FE = F and EF = E. It follows that
ẼF̃ = F̃ and F̃ Ẽ = Ẽ and hence im Ẽ = im F̃ . Therefore, P is the image
of the idempotent endomorphism F̃ : Nn −→ Nn, which is given by right
multiplication with F .
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Theorem 5.46 Let t∗ : K0(NG) −→ ZG be the additive map induced by the
center-valued trace t.

(i) If P,Q are two finitely generated projective NG-modules, such that
t∗[P ] = t∗[Q] ∈ ZG, then P and Q are isomorphic.

(ii) t∗ is injective.

Proof. (i) In view of Remark 5.45, there is a positive integer n and two
projections E,F ∈ Mn(NG), such that P = im Ẽ and Q = im F̃ , where
Ẽ, F̃ : (NG)n −→ (NG)n are the maps given by right multiplication with E
and F respectively. Since t∗[P ] = t∗[Q], we conclude that

tn(E) = t∗[E] = t∗[P ] = t∗[Q] = t∗[F ] = tn(F ) ∈ ZG .
Then, Proposition 5.44 implies the existence of a partial isometry U ∈
Mn(NG) with E = U∗U and F = UU∗. Using (5.13) for U , it follows

that the 2n × 2n matrix V =
(

U∗ In − E
In − F U

)
is invertible with inverse

V −1 =
(

U In − F
In − E U∗

)
, whereas V ·

(
F 0
0 0

)
· V −1 =

(
E 0
0 0

)
. Therefore,

Proposition 1.29 implies that the finitely generated projective NG-modules
P and Q are isomorphic.

(ii) This is an immediate consequence of (i). �

Example 5.47 Assume that the group G is finite and has r mutually non-
isomorphic irreducible complex representations V1, . . . , Vr with corresponding
characters χ1, . . . , χr. We consider the dimensions ni = dimVi = χi(1), i =
1, . . . , r, of these representations and the Wedderburn decomposition

CG 
∏r

i=1
Mni

(C) .

Let ei ∈ CG be the central idempotent which acts as the identity on Vi and
induces the zero map on Vj for all j �= i.5 Then, there is an isomorphism of
left CG-modules CG · ei  V ni

i for all i = 1, . . . , r. Since χi(ei) = ni for all i,
whereas χj(ei) = 0 if j �= i, we conclude that

ni t∗[Vi] = t∗[V ni
i ]= t∗[ei]= t(ei) = (0, . . . , 0, Ini

, 0, . . . , 0)

(cf. Remark 5.39(ii)) and hence t∗[Vi] =
(
0, . . . , 0, 1

ni
Ini
, 0, . . . , 0

)
for all

i = 1, . . . , r. If V is any finite dimensional complex representation of G, then
V  ⊕r

i=1 V
li
i for suitable non-negative integers l1, . . . , lr. Taking into ac-

count the additivity of t∗, we conclude that t∗[V ] =
(

l1
n1
In1 , . . . ,

lr
nr
Inr

)
. In

this way, applying Theorem 5.46(i) to the special case of a finite group, we
recover the Krull-Schmidt theorem, which asserts that two finite dimensional
5 Under the Wedderburn decomposition, ei corresponds to the r-tuple of matrices

(0, . . . , 0, Ini , 0, . . . , 0).
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complex representations V ⊕r
i=1 V

li
i and V ′ ⊕r

i=1 V
l′i
i are isomorphic if

and only if the r-tuples of integers (l1, . . . , lr) and (l′1, . . . , l
′
r) coincide (cf. [41,

Theorem 19.21]).

We conclude this section by proving Eckmann’s generalization of Swan’s theo-
rem on induced representations (Theorem 2.38) for arbitrary groups. We note
that the group algebra CG is viewed as a subalgebra of the von Neumann
algebra NG, by means of the algebra homomorphism L. For any positive
integer n we consider the induced algebra homomorphism

Ln : Mn(CG) −→ Mn(NG) .

We also consider the Hattori-Stallings traces

rCG : Mn(CG) −→ T (CG) and rNG : Mn(NG) −→ T (NG) .

Lemma 5.48 (i) The composition

T (CG)
T (L)−→ T (NG) t−→ ZG ,

where T (L) is the map induced from the algebra homomorphism L by passage
to the quotients and t is that induced by the center-valued trace t, is given by

[g] �→
{ 1

[G:Cg] �Lζ[g] if [g] ∈ Cf (G)
0 if [g] /∈ Cf (G)

for all [g] ∈ C(G). Here, Cf (G) is the subset of C(G) consisting of the finite
conjugacy classes and ζ[g] =

∑{x : x ∈ [g]} ∈ CG for all [g] ∈ Cf (G).
(ii) There is a commutative diagram

Mn(CG) Ln−→ Mn(NG) tn−→ ZG
rCG ↓ rNG ↓ ‖
T (CG)

T (L)−→ T (NG) t−→ ZG

for all n ≥ 1, where tn is the trace on Mn(NG), which is induced by the
center-valued trace t.

Proof. (i) This is an immediate consequence of Theorem 5.38(i), which implies
that the composition

CG L−→ NG t−→ ZG ,
maps any element g ∈ G onto 1

[G:Cg] �Lζ[g] (resp. onto 0) if [g] ∈ Cf (G) (resp. if
[g] /∈ Cf (G)).

(ii) The commutativity of the square on the left follows from the functorial-
ity of the Hattori-Stallings trace (cf. Lemma 1.38), whereas the commutativity
of the square on the right follows from the definition of tn. �
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Corollary 5.49 Let P be a finitely generated projective CG-module with
Hattori-Stallings rank rHS(P ) =

∑
[g]∈C(G) rg(P )[g] ∈ T (CG) and consider

the finitely generated projective NG-module P ′ = NG⊗CG P . Then,

t∗[P ′] =
∑

[g]∈Cf,tor(G)

rg(P )
[G : Cg]

Lζ[g] ∈ ZG ,

where Cf,tor(G) is the subset of C(G) consisting of the finite conjugacy classes
of elements of finite order.

Proof. Let n be a positive integer and E an idempotent n × n matrix with
entries in CG, such that P is the image of the endomorphism Ẽ of the free
left CG-module (CG)n, which is associated with E. Then,

rCG(E) = rHS(P ) =
∑

[g]∈C(G)
rg(P )[g] . (5.15)

If E′ = Ln(E) ∈ Mn(NG), then P ′ is the image of the endomorphism Ẽ′
of the free left NG-module (NG)n, which is associated with E′. We now
compute

t∗[P ′] = t∗[E′]
= tn(E′)
= (tn ◦ Ln)(E)
=
(
t ◦ T (L) ◦ rCG

)
(E)

=
(
t ◦ T (L)

)(∑
[g]∈C(G)

rg(P )[g]
)

=
∑

[g]∈C(G)
rg(P )

(
t ◦ T (L)

)
[g]

=
∑

[g]∈Cf (G)

rg(P )
[G:Cg]Lζ[g] .

In the above chain of equalities, the fourth one follows from Lemma 5.48(ii),
the fifth one from (5.15) and the last one from Lemma 5.48(i). On the other
hand, Bass’ theorem implies that any element g ∈ G with rg(P ) �= 0 is
conjugate to infinitely many powers of it (cf. Theorem 3.26(i)). Therefore, if
g ∈ Gf is an element of infinite order then rg(P ) = 0. �

We are now ready to state and prove Eckmann’s generalization of Swan’s
theorem. We note that if k is a subring of the field C of complex numbers
then the group algebra kG, being a subalgebra of CG, may be viewed as a
subalgebra of the von Neumann algebra NG.

Theorem 5.50 (Eckmann) Let k be a subring of the field C of complex num-
bers with k∩Q = Z and kG the corresponding group algebra. If P is a finitely
generated projective kG-module, then the left NG-module NG⊗kG P is free.

Proof. Let rHS(P ) =
∑

[g]∈C(G) rg(P )[g] ∈ T (kG) be the Hattori-Stallings
rank of P and consider the finitely generated projective CG-module P0 =
CG ⊗kG P . Then, rg(P0) = rg(P ) for all g ∈ G (cf. Proposition 1.46) and
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hence rHS(P0) =
∑

[g]∈C(G) rg(P )[g] ∈ T (CG). Invoking Corollary 5.49, we
conclude that

t∗[NG⊗kG P ]= t∗[NG⊗CG P0]=
∑

[g]∈Cf,tor(G)

rg(P )
[G : Cg]

Lζ[g] ,

where Cf,tor(G) is the subset of C(G) consisting of the finite conjugacy classes
of elements of finite order. In view of Linnell’s theorem, rg(P ) = 0 for any
element g ∈ G \ {1} of finite order (cf. Theorem 3.32(ii)); hence,

t∗[NG⊗kG P ]=
r1(P )

[G : C1]
Lζ[1] = r1(P ) · 1 ∈ ZG .

The complex number r1(P ) is rational, in view of Zaleskii’s theorem
(Theorem 3.19), and non-negative, in view of Kaplansky’s positivity theorem
(Corollary 3.14(i)). Since r1(P ) ∈ k and k∩Q = Z, it follows that n = r1(P ) is
a non-negative integer. We note that t∗[(NG)n]= t∗[In] = tn(In) = n·1 ∈ ZG
(cf. Proposition 5.40(i)) and hence t∗[NG⊗kG P ]= t∗[(NG)n]∈ ZG. There-
fore, we may invoke Theorem 5.46(i) in order to conclude that the NG-
modules NG⊗kG P and (NG)n are isomorphic. �

Remarks 5.51 (i) The assertion of Theorem 5.50 can be reformulated in
K-theoretic terms, as follows: For any subring k of the field C of complex
numbers with k ∩ Q = Z, the additive map

K̃0(kG) −→ K̃0(NG)

between the reduced K-theory groups (cf. Remark 1.27(ii)), which is induced
by the composition kG ↪→ CG L−→ NG, is the zero map.

(ii) The arithmetic condition on the coefficient ring k can’t be omitted
from the statement of Theorem 5.50. Indeed, if G is a group with torsion,
then there are always finitely generated projective CG-modules, such that
the induced NG-modules are not free (cf. Exercise 5.3.10 below).

5.3 Exercises

1. Show that the dual group Q̂ of the additive group (Q,+) of rational num-
bers can be identified with the subgroup of the countable direct product∏∞

n=0 S
1 of copies of S1, which consists of those sequences (zn)n that

satisfy the equalities zn+1
n+1 = zn for all n ≥ 0.

2. Let Γ be a compact topological group with Haar measure µ.
(i) Show that µ(U) > 0 for any non-empty open subset U ⊆ Γ.
(ii) Let f ∈ C(Γ) be a continuous function on Γ and Mf the associated
multiplication operator on L2(Γ). Show that the operator norm of Mf is
equal to the supremum norm of f .



5.3 Exercises 203

(Hint: In order to prove that ‖Mf ‖≥‖ f ‖ ∞, consider a point γ0 ∈ Γ
with | f(γ0) |= ‖ f ‖∞. For any ε > 0 choose an open neighborhood U of
γ0, such that | f(γ0) | 2− | f(γ) | 2 < ε for all γ ∈ U , and test with the
function χU ∈ L2(Γ).)

3. Show that a subgroup A ⊆ S1 is trivial if and only if |z − 1 |< √
3 for all

z ∈ A.
4. Let H be a Hilbert space, A ⊆ B(H) a unital self-adjoint subalgebra and

N = A′′ its WOT-closure.
(i) Show that the center Z(N ) of N contains the WOT-closure of the
center Z(A) of A.
In contrast to the situation described in Proposition 5.37, the inclusion
Z(A)′′ ⊆ Z(N ) may be proper. In fact, it is the goal of this Exercise
to provide an example where Z(A)′′ �= Z(N ).6 To that end, we let H0

be an infinite dimensional Hilbert space and consider the Hilbert space
H = H0 ⊕ C.
(ii) For any a ∈ B(H0) and any scalar λ ∈ C we consider the linear map
T (a, λ) : H −→ H, which maps any element (v, z) ∈ H onto (a(v)+λv, λz).
Show that T (a, λ) ∈ B(H).
(iii) Consider the ideal F ⊆ B(H0) of finite rank operators and let A =
{T (a, λ) : a ∈ F , λ ∈ C}, in the notation of (ii) above. Show that A is a
unital self-adjoint subalgebra of B(H), whose center Z(A) consists of the
scalar multiples of the identity.
(iv) Let A ⊆ B(H) be the subalgebra defined in (iii) above. Show that the
center Z(A′′) of the bicommutant A′′ is 2-dimensional and conclude that
the inclusion Z(A)′′ ⊆ Z(A′′) is proper.

5. Let G be a countable group, NG the associated von Neumann algebra
and ZG its center. We consider a C-linear trace t′ : NG −→ ZG, which
is WOT-continuous on bounded sets and maps ZG identically onto itself.
The goal of this Exercise is to show that t′ coincides with the center-valued
trace t constructed in Theorem 5.38.
(i) Let g ∈ G be an element with finitely many conjugates and Cg its
centralizer in G. Show that t′(Lg) = 1

[G:Cg]Lζ[g] ∈ ZG.
(ii) Let (gn)n be a sequence of distinct elements of G. Show that the
sequence of operators (Lgn

)n in B(2G) is WOT-convergent to 0.
(iii) Let g ∈ G be an element with infinitely many conjugates. Show that
t′(Lg) = 0.
(iv) Show that t′ = t.

6. A group G is called i.c.c. (infinite conjugacy class) if any element g ∈
G \ {1} has infinitely many conjugates. Equivalently, G is an i.c.c. group
if the subgroup Gf ⊆ G, defined in the paragraph before Lemma 5.27, is
trivial.
(i) Show that the free group on n ≥ 2 generators is i.c.c.

6 The following example was communicated to me by E. Katsoulis.
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(ii) Let S∞ be the group consisting of those permutations σ of the set
N = {0, 1, 2, . . .}, for which there is an integer n0 = n0(σ), such that
σ(n) = n for all n ≥ n0. Show that S∞ is an i.c.c. group.

7. Let G be a countable i.c.c. group (cf. Exercise 6 above.)
(i) Show that the center ZG of the von Neumann algebra NG consists of
the scalar multiples of the identity operator 1 ∈ B(2G).
(ii) Show that the center-valued trace t on NG is such that t(a) = τ(a) ·1,
where τ : NG −→ C is the canonical trace and 1 the identity operator on
2G.
(iii) Show that the additive map τ∗ : K0(NG) −→ C, which is induced
by the canonical trace τ , is injective.

8. Let G be a countable group and e ∈ CG an idempotent.
(i) Consider the operator Le ∈ NG and show that ‖ t(Le) ‖≤ 1, where t
is the center-value trace on the von Neumann algebra NG.
(Hint: Use Lemma 3.13.)
(ii) Show that

∑
[g]∈Cf (G)

|rg(e)|2
[G:Cg] ≤ 1, where we denote by Cg the central-

izer of any element g ∈ G and let Cf (G) be the subset of C(G) consisting
of the finite conjugacy classes.7

9. Let G be a countable group and consider the complex group algebra CG,
the associated von Neumann algebra NG and its center ZG.
(i) Let t be the center-valued trace on NG. Show that t(a∗) = t(a)∗ for
all a ∈ NG.
(ii) Let n be a positive integer and consider the trace tn, which is induced
by the center-valued trace t on the matrix algebra Mn(NG). Show that
tn(A∗) = tn(A)∗ ∈ ZG for all A ∈ Mn(NG).
(iii) Let t∗ : K0(NG) −→ ZG be the additive map induced by the center-
valued trace t. Show that the subgroup im t∗ consists of self-adjoint oper-
ators.
(Hint: Use Lemma 3.13.)
(iv) Let P be a finitely generated projective CG-module. Show that
rg−1(P ) = rg(P ) for all g ∈ Gf .

10. Let G be a countable group. In this Exercise we examine the extent to
which the assertion of Theorem 5.50 (in its equivalent formulation stated
in Remark 5.51(i)) is valid for finitely generated projective modules over
the complex group algebra CG. To that end, we consider the additive map
in reduced K-theory

K̃0(L) : K̃0(CG) −→ K̃0(NG) ,

which is induced by the algebra homomorphism L. Our goal is to show
that the image im K̃0(L) is a torsion group if and only if the group Gf is
torsion-free.8

7 A stronger version of this inequality was obtained by I.B.S. Passi and D. Passman
in [54].

8 This result is essentially due to B. Eckmann [21].
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(i) If the groupGf has non-trivial torsion elements show that the subgroup
im K̃0(L) ⊆ K̃0(NG) is not a torsion group.
(Hint: Assume that g ∈ Gf is an element of finite order n > 1 and consider
the idempotent e = 1

n

∑n−1
i=0 g

i ∈ CG.)
(ii) If the group Gf is torsion-free show that the subgroup im K̃0(L) ⊆
K̃0(NG) is a torsion group.

11. Let N be a von Neumann algebra of operators acting on a Hilbert space
H and consider an abelian group V and an additive V -valued trace τ on
N . It is the goal of this Exercise to show that τ vanishes on nilpotent
elements of N .9 To that end, we consider a fixed element a ∈ N .
(i) For any non-negative integer n we let pn ∈ B(H) be the orthogonal
projection onto the closed subspace im an ⊆ H. Show that the sequence
(pn)n is a decreasing sequence of projections in N , such that pn+1apn =
apn for all n ≥ 0.
(ii) For any positive integer n we consider the complementary projection
en = pn−1 − pn ∈ N . Show that eipj = 0 if 0 < i ≤ j and hence conclude
that enaen = 0 for all n ≥ 1.
(iii) Show that τ(aen) = 0 for any positive integer n.
(Hint: Use the trace property of τ .)
(iv) If a is nilpotent, then show that τ(a) = 0.
(Hint: In the notation above, if pn = 0 then e1 + · · · + en = 1.)

12. Let G be a group and A a nilpotent matrix with entries in the complex
group algebra CG. Show that rg(A) = 0 for any element g ∈ Gf .10

(Hint: Assuming that G is countable, compute the operator tn(A′) ∈ ZG,
where n is the size of A and A′ = Ln(A). Then, use Exercise 11(iv) above.)

9 The following argument was communicated to me by A. Katavolos.
10 This result is proved by I.B.S. Passi and D. Passman in [54].
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Notes and Comments on Chap. 5. The relevance of the integrality of the trace

conjecture in the study of idempotents in the reduced C∗-algebra of a torsion-free

group G was first noted by A. Connes [15], J. Cuntz [17], M. Pimsner and D.

Voiculescu [57]. In the case where the group G has non-trivial torsion elements, P.

Baum and A. Connes had conjectured in [6] that the image of τ∗ is the subgroup of

Q generated by the inverses of the orders of the finite subgroups of G. This latter

conjecture was disproved by R. Roy [59]. Subsequently, W. Lück [46] formulated a

modified version of that conjecture, according to which the image of τ∗ is contained

in the subring of Q generated by the inverses of the orders of the finite subgroups

of G. The identification of the reduced C∗-algebra of an abelian group G with the

algebra of continuous functions on the dual group Ĝ and the relation between the

existence of non-trivial torsion elements in G to the connectedness of Ĝ are standard

themes in Harmonic Analysis (cf. [33]). The proof of the integrality of the trace

conjecture for free groups, which was presented in §5.1.3, is due to A. Connes [15].

In that direction, it should be noted that M. Pimsner and D. Voiculescu have proved

in [57] that the additive map τ∗ induces an isomorphism K0(C
∗
r G) � Z, in the case

where the group G is free. A center-valued trace t, such as the one defined on NG in

§5.2.1, can be defined for any finite von Neumann algebra; the construction of t in

that generality can be found in Chap. 8 of [36]. Eckmann’s theorem (Theorem 5.50)

was proved in [20] (see also [64]). The relevant induction map (cf. Remark 5.51(i))

is studied in [25] for any coefficient ring k ⊆ C. Further applications of the use of

NG in the study of the Hattori-Stallings rank of idempotent matrices with entries

in group algebras can be found in [26].
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Tools from Commutative Algebra

In this Appendix, we present those results from Commutative Algebra that
were used in Chaps. 2 and 3. For more details on the subject, the reader is
referred to the specialized books [3] and [52] or the encyclopedic treatise [8].

A.1 Localization and Local Rings

I. Localization. Let R be a commutative ring and S ⊆ R a multiplicatively
closed subset containing 1. The localization R[S−1] of R at S is the ring
obtained from R by formally inverting the elements of S. More precisely,
R[S−1] consists of the equivalence classes of pairs of the form (r, s), where
r ∈ R and s ∈ S, under the equivalence relation defined by the rule

(r, s) ∼ (r′, s′) if and only if there exists s0 ∈ S such that s0sr′ = s0s′r

for r, r′ ∈ R and s, s′ ∈ S. We denote the equivalence class of a pair (r, s),
where r ∈ R and s ∈ S, by r/s. Addition and multiplication in R[S−1] are
defined by the rules

r/s+ r′/s′ = (s′r + sr′)/ss′ and (r/s) · (r′/s′) = (rr′)/(ss′)

for r, r′ ∈ R and s, s′ ∈ S. It is straightforward to verify that these operations
are well-defined and endow R[S−1] with the structure of a commutative ring.

Remark A.1 Let S be a multiplicatively closed subset of a commutative ring
R containing 1. Then, the group of units U(R[S−1]) of the localization R[S−1]
consists of those formal fractions x = r/s ∈ R[S−1], where r ∈ R and s ∈ S
are such that there exists t ∈ R with rt ∈ S. Indeed, it is clear that an element
x of that form is invertible with inverse st/rt ∈ R[S−1]. Conversely, if x =
r/s ∈ U(R[S−1]) and x−1 = r′/s′ ∈ R[S−1], for some r′ ∈ R and s′ ∈ S, then
rr′/ss′ = 1/1 ∈ R[S−1] and hence there exists s′′ ∈ S with rr′s′′ = ss′s′′ ∈ R.
Then, the element t = r′s′′ ∈ R is such that rt = rr′s′′ = ss′s′′ ∈ S, as
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needed. In particular, assume that the multiplicatively closed subset S has
the following property: If r ∈ R is such that there exists t ∈ R with rt ∈ S,
then r ∈ S.1 In that case, the group of units of the ring R[S−1] consists of
the fractions r/s with r, s ∈ S.

We now consider the map

λ = λR,S : R −→ R[S−1] ,

which is given by r �→ r/1, r ∈ R. It is clear that λ is a ring homomorphism;
as such, it endows the localization R[S−1] with the structure of a commuta-
tive R-algebra. The following Proposition characterizes R[S−1] as the univer-
sal commutative R-algebra in which the elements of S (more precisely, their
canonical images) are invertible.

Proposition A.2 Let R be a commutative ring, S ⊆ R a multiplicatively
closed subset containing 1, R[S−1] the corresponding localization and λ the
ring homomorphism defined above. Then, for any commutative ring A and
any ring homomorphism ϕ : R −→ A with the property that ϕ(S) ⊆ U(A),
there exists a unique ring homomorphism Φ : R[S−1] −→ A with Φ ◦ λ = ϕ.

Proof. Given a pair (A,ϕ), we may define Φ by letting Φ(r/s) = ϕ(r)ϕ(s)−1 for
all r/s ∈ R[S−1]. It is easily seen that Φ is a well-defined ring homomorphism
and Φ ◦ λ = ϕ. The uniqueness of Φ satisfying that condition follows since
r/s = λ(r)λ(s)−1 ∈ R[S−1] for all r ∈ R, s ∈ S. �

Corollary A.3 (i) Let R be a commutative ring and T ⊆ S ⊆ R two multi-
plicatively closed subsets containing 1. If S′ is the multiplicatively closed subset
of R′ = R[T−1] consisting of the elements of the form s/t, where s ∈ S and
t ∈ T , then there is a unique homomorphism of R-algebras

R′[S′−1] −→ R[S−1] .

Moreover, this homomorphism is bijective and identifies (r/t)/(s/t′) with
rt′/st for any r ∈ R, s ∈ S and t, t′ ∈ T .

(ii) Let R be a commutative ring and s, t ∈ R two elements with u = st.
If S, T and U are the multiplicatively closed subsets of R generated by s, t
and u respectively2 and T ′ is the image of T in R′ = R[S−1], then there is a
unique R-algebra homomorphism

R′[T ′−1] −→ R[U−1] .

Moreover, this homomorphism is bijective and identifies (r/sn)/(tm/1) with
rsmtn/un+m for any r ∈ R and n,m ≥ 0.
1 This property can be rephrased by saying that the complement I = R \S is such

that IR ⊆ I.
2 By this, we mean that S consists of the powers sn, n ≥ 0, of s and similarly for

T and U .
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Proof. Assertion (i) follows since R′[S′−1] is the universal commutative R-
algebra in which the image of S consists of invertible elements. Similarly, the
claim in (ii) is a consequence of the observation that the universal commutative
R-algebra in which the images of s and t are invertible is precisely the universal
commutative R-algebra in which the image of their product u is invertible. �

Our next goal is to prove the flatness of localization. To that end, we let S
be a multiplicatively closed subset of a commutative ring R containing 1 and
fix an R-module M . We then consider the R[S−1]-module M [S−1], which is
defined as follows: As a set,M [S−1] consists of the equivalence classes of pairs
of the form (m, s), where m ∈ M and s ∈ S, under the equivalence relation
defined by the rule

(m, s) ∼ (m′, s′) if and only if there exists s0 ∈ S such that s0sm′= s0s′m

for m,m′ ∈M and s, s′ ∈ S. We denote the equivalence class of a pair (m, s),
where m ∈M and s ∈ S, by m/s. Addition and the R[S−1]-action on M [S−1]
are defined by the rules

m/s+m′/s′ = (s′m+ sm′)/ss′ and (r/s) · (m′/s′) = (rm′)/(ss′)

for m,m′ ∈ M , r ∈ R and s, s′ ∈ S. It is straightforward to verify that
these operations are well-defined and endow M [S−1] with the structure of an
R[S−1]-module.

Pursuing further the analogy with the construction of the ring R[S−1], we
consider the map

λ = λM,S :M −→M [S−1] ,

which is given bym �→ m/1,m ∈M . Then, λ is R-linear and has the universal
property described in the following result.

Proposition A.4 Let R be a commutative ring, S ⊆ R a multiplicatively
closed subset containing 1, M an R-module, M [S−1] the R[S−1]-module de-
fined above and λ : M −→ M [S−1] the corresponding R-linear map. Then,
for any R[S−1]-module N and any R-linear map ϕ : M −→ N ′ there exists
a unique R[S−1]-linear map Φ : M [S−1] −→ N with Φ ◦ λ = ϕ. (Here, we
denote by N ′ the R-module obtained from N by restricting the scalars along
the natural homomorphism R −→ R[S−1].)

Proof. Given a pair (N,ϕ), we may define Φ by letting Φ(m/s) = (1/s) ·ϕ(m)
for all m/s ∈ M [S−1]. Then, Φ is a well-defined R[S−1]-linear map such
that Φ ◦ λ = ϕ. The uniqueness of Φ satisfying that condition follows since
m/s = (1/s) · λ(m) ∈M [S−1] for all m ∈M , s ∈ S. �

Corollary A.5 Let R be a commutative ring, S ⊆ R a multiplicatively closed
subset containing 1 and M an R-module.

(i) There is an R[S−1]-module isomorphism M ⊗R R[S−1]  M [S−1],
which identifies m⊗ 1/s with m/s for all m ∈M and s ∈ S.
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(ii) If there exists an element s ∈ S such that sM = 0, then the R[S−1]-
module M ⊗R R[S−1] vanishes.

(iii) If the R-module M is finitely generated and the R[S−1]-module M⊗R

R[S−1] vanishes, then there exists s ∈ S such that sM = 0.

Proof. (i) This follows from Proposition A.4, in view of the universal property
of the R[S−1]-module M ⊗R R[S−1].

(ii) If s ∈ S and m ∈M are such that sm = 0, then m/1 = 0/1 ∈M [S−1].
Therefore, if sM = 0 then M ⊗R R[S−1] M [S−1] = 0.

(iii) Assume that M is generated over R by m1, . . . ,mn. Since the module
M [S−1]  M ⊗R R[S−1] vanishes, we have mi/1 = 0/1 ∈ M [S−1] for all
i = 1, . . . , n. But then there exists for each i an element si ∈ S, such that
simi = 0. If s =

∏n
i=1 si ∈ S then s annihilates all generators m1, . . . ,mn of

M and hence sM = 0. �

Corollary A.6 Let R be a commutative ring and S ⊆ R a multiplicatively
closed subset containing 1. Then, the R-module R[S−1] is flat.

Proof. In view of Corollary A.5(i), we have to verify that the functor M �→
M [S−1], M an R-module, is left exact. In other words, we have to verify that
for any submodule N of an R-module M the map N [S−1] −→M [S−1], which
maps n/s ∈ N [S−1] onto n/s ∈M [S−1] is injective. But this is clear from the
definition of equality in the modules M [S−1] and N [S−1]. �

II. Localization at a prime ideal. An important class of multiplicatively
closed subsets of a commutative ring R is that arising from prime ideals. If
℘ ⊆ R is a prime ideal (i.e. if ℘ is a proper ideal ofR such that the quotient ring
R/℘ is an integral domain) then the complement S = R\℘ is multiplicatively
closed and contains 1. The corresponding localization is denoted by R℘ and
referred to (by an obvious abuse of language) as the localization of R at ℘. For
example, if R is an integral domain then 0 is a prime ideal and the localization
R0 is the field of fractions of R.

The following result describes a property of localization that was used in
a crucial way in §2.1.1, in the proof of the continuity of the geometric rank
function associated with a finitely generated projective module.

Proposition A.7 Let R be a commutative ring, M (resp. P ) a finitely gen-
erated (resp. finitely generated projective) R-module and ϕ : M −→ P an
R-linear map. Assume that ℘ ⊆ R is a prime ideal, such that ϕ becomes an
isomorphism when localized at ℘. Then, there exists an element u ∈ R \ ℘,
such that ϕ becomes an isomorphism after inverting u (i.e. when localizing at
the multiplicatively closed subset U ⊆ R generated by u).

Proof. The localized map ϕ⊗1 : M⊗RR℘ −→ P⊗RR℘ being bijective, the R-
flatness of R℘ (cf. Corollary A.6) implies that both kerϕ⊗RR℘ and cokerϕ⊗R

R℘ vanish. Since the R-module cokerϕ is finitely generated, Corollary A.5(iii)
implies that there exists s ∈ R \ ℘ such that s · cokerϕ = 0. Let S be the
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multiplicatively closed subset of R generated by s; we note that S ⊆ R \℘. If
R′ = R[S−1], ϕ′ = ϕ⊗ 1 and ℘′ = ℘R[S−1], then the R-flatness of R′ and the
vanishing of cokerϕ ⊗R R

′ (cf. Corollary A.5(ii)) show that there is a short
exact sequence of R′-modules

0 −→ kerϕ⊗R R
′ −→M ⊗R R

′ ϕ′
−→ P ⊗R R

′ −→ 0 .

Since the R′-module P ⊗RR
′ is projective, this short exact sequence splits; in

particular, the R′-module kerϕ′ = kerϕ⊗R R
′ is finitely generated. We note

that
kerϕ′ ⊗R′ R′

℘′ = kerϕ⊗R R
′
℘′ = kerϕ⊗R R℘ = 0 ,

where the second equality follows using Corollary A.3(i). Hence, we may invoke
Corollary A.5(iii) once again in order to find an element t′ ∈ R′ \ ℘′ with
t′ · kerϕ′ = 0. Without loss of generality, we assume that t′ = t/1 for some
t ∈ R \ ℘. Let U (resp. T ′) be the multiplicatively closed subset of R (resp.
R′) generated by u = st ∈ R \ ℘ (resp. by t′). Then,

kerϕ⊗R R[U−1] = kerϕ⊗R R
′[T ′−1] = kerϕ′ ⊗R′ R′[T ′−1] = 0 ,

where the first (resp. third) equality follows from Corollary A.3(ii) (resp.
Corollary A.5(ii)). Since u = st annihilates cokerϕ, Corollary A.5(ii) implies
that cokerϕ⊗R R[U−1] = 0. It follows that the map

ϕ⊗ 1 : M ⊗R R[U−1] −→ P ⊗R R[U−1]

is an isomorphism and this finishes the proof. �

III. Local rings. A commutative ring is called local if it has a unique
maximal ideal. For example, any field is local, whereas the ring Z is not.

Remarks A.8 (i) It is clear that any proper ideal in a commutative ring
consists of singular (i.e. non-invertible) elements. In fact, if R is a local ring
then its maximal ideal m is precisely the set of singular elements. Indeed, if
r ∈ R is not invertible then the ideal Rr is proper and hence contained in the
(unique) maximal ideal m, i.e. r ∈ m.

(ii) As a converse to (i), we note that if the set of singular elements of a
commutative ring R forms an ideal I, then R is a local ring with maximal
ideal m = I. This is clear since any proper ideal J of R consists of singular
elements and is therefore contained in I.

(iii) If R is a commutative ring and ℘ ⊆ R a prime ideal, then the local-
ization R℘ is a local ring with maximal ideal

℘R℘ = {r/s : r ∈ ℘, s /∈ ℘} ⊆ R℘ .

This is an immediate consequence of (ii) above, as soon as one notices that
an element of the localization R℘ is invertible if and only if it is of the form
r/s, with r, s /∈ ℘ (cf. Remark A.1).
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Our next goal is to show that any finitely generated projective module over
a local ring is free,3 a fact used in the very definition of the geometric rank
function associated with a finitely generated projective module in §2.1.1. To
that end, we need the following lemma.

Lemma A.9 Let R be a commutative ring, I ⊆ R a proper ideal and M
a finitely generated R-module satisfying the equality IM = M . Then, there
exists an element r ∈ I such that (1 + r)M = 0. In particular, M is trivial
(i.e. M = 0) if either one of the following two conditions is satisfied:

(i) (Nakayama) R is a local ring or
(ii) R is an integral domain and the R-module M is torsion-free.

Proof. If M =
∑n

i=1Rmi then IM =
∑n

i=1 Imi and hence we can write
mi =

∑n
j=1 rijmj , for suitable elements rij ∈ I. It follows that the matrix

A =

⎡⎢⎢⎢⎣
1 − r11 −r12 · · · −r1n

−r21 1 − r22 · · · −r2n

...
...

...
−rn1 −rn2 · · · 1 − rnn

⎤⎥⎥⎥⎦∈ Mn(R)

annihilates the n× 1 column-vector

�m =

⎡⎢⎢⎢⎣
m1

m2

...
mn

⎤⎥⎥⎥⎦
Multiplying the equation A · �m = 0 to the left by the matrix adjA, we deduce
that the element detA ∈ R annihilates all of the mi’s. Since these elements
generate M , we conclude that (detA)M = 0. It is immediate by the form of
the matrix A that detA = 1 + r, for a suitable element r ∈ I.

(i) Assume that the ring R is local with maximal ideal m. Since the ideal
I is proper, we have I ⊆ m and hence 1 + r /∈ m. In view of Remark A.8(i),
we conclude that 1 + r is invertible in R. The equation (1 + r)M = 0 then
shows that M = 0.

(ii) Assume that R is an integral domain, whereas M is torsion-free and
non-zero. Then, the equation (1 + r)M = 0 implies that 1 + r = 0. But then
1 = −r ∈ I, contradicting our assumption that I is proper. �

Proposition A.10 Let R be a local ring and P a finitely generated projective
R-module. Then, P is free.

Proof. Let m be the maximal ideal of R and k = R/m the residue field. Then,
P/mP = P ⊗R k is a finite dimensional k-vector space; hence, it has a basis

3 In fact, any projective module (not necessarily finitely generated) over a local
ring is free; this result is due to I. Kaplansky [37].
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x1, . . . , xn for suitable elements x1, . . . , xn ∈ P . We shall prove that the xi’s
form a basis of P by showing that the R-linear map ϕ : Rn −→ P , which
maps (r1, . . . , rn) ∈ Rn onto r1x1 + . . . + rnxn ∈ P is an isomorphism. The
exact sequence of R-modules

Rn ϕ−→ P −→ cokerϕ −→ 0

induces the exact sequence of k-vector spaces

kn ϕ⊗1−→ P ⊗R k −→ cokerϕ⊗R k −→ 0 .

Since ϕ ⊗ 1 is bijective, the k-vector space cokerϕ ⊗R k vanishes. Therefore,
Nakayama’s lemma implies that the finitely generated R-module cokerϕ is
actually zero and hence ϕ is onto. We note that the short exact sequence of
R-modules

0 −→ kerϕ −→ Rn ϕ−→ P −→ 0

splits, since P is projective. It follows that the R-module kerϕ is finitely
generated, whereas there is an induced (split) short exact sequence

0 −→ kerϕ⊗R k −→ kn ϕ⊗1−→ P ⊗R k −→ 0 .

As before, Nakayama’s lemma implies that kerϕ = 0 and hence ϕ is 1-1. �

A.2 Integral Dependence

Let us consider a commutative ring R and a commutative R-algebra T . An
element t ∈ T is called integral over R if there is a monic polynomial f(X) ∈
R[X], such that f(t) = 0 ∈ T . It is clear that elements in the canonical image
of R in T are integral over R; if these are the only elements of T that are
integral over R, then R is said to be integrally closed in T . On the other
extreme, the algebra T is called integral over R (or an integral extension of
R) if any element t ∈ T is integral over R. The following result establishes a
few equivalent formulations of the integrality condition.

Proposition A.11 Let R be a commutative ring and T a commutative R-
algebra. Then, the following conditions are equivalent for an element t ∈ T :

(i) t is integral over R.
(ii) The R-subalgebra R[t] ⊆ T is finitely generated as an R-module.
(iii) There is a finitely generated R-submodule M ⊆ T containing 1, such

that tM ⊆M .

Proof. (i)→(ii): Assume that t is integral over R. Then, there is an integer
n ≥ 1 and elements r0, . . . , rn−1 ∈ R, such that

tn + rn−1t
n−1 + · · · + r1t+ r0 = 0 ∈ T .
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It follows that tn is an R-linear combination of 1, t, . . . , tn−1 and hence R[t] =∑n−1
i=0 Rt

i is a finitely generated R-module.
(ii)→(iii): This is clear, since we may choose M = R[t].
(iii)→(i): Let M =

∑n
i=1Rmi ⊆ T be an R-submodule of T that contains

1 and is closed under multiplication by t. Then, there are equations of the
form tmi =

∑n
j=1 rijmj , i = 1, . . . , n, for suitable elements rij ∈ R. It follows

that the n× n matrix

A =

⎡⎢⎢⎢⎣
t− r11 −r12 · · · −r1n

−r21 t− r22 · · · −r2n

...
...

...
−rn1 −rn2 · · · t− rnn

⎤⎥⎥⎥⎦∈ Mn(T )

annihilates the n× 1 column-vector

�m =

⎡⎢⎢⎢⎣
m1

m2

...
mn

⎤⎥⎥⎥⎦
Multiplying the equation A · �m = 0 to the left by the matrix adjA, we deduce
that the element detA ∈ T annihilates all of the mi’s. Since these elements
generate the R-module M , it follows that detA annihilates M ; in particular,
detA = (detA)1 = 0. Then, the expansion of detA provides us with an
equation that shows t to be integral over R. �
Corollary A.12 Let R be a commutative ring, T a commutative R-algebra
and U a commutative T -algebra.

(i) If t1, . . . , tn ∈ T are integral over R, then the finitely generated R-
subalgebra R[t1, . . . , tn] ⊆ T is finitely generated as an R-module.

(ii) If u ∈ U is integral over T and T is integral over R, then u is integral
over R. In particular, if U is integral over T and T integral over R, then U
is integral over R.

Proof. (i) We use induction on n, the case n = 1 following from Proposi-
tion A.11. Since tn is integral over R, it is also integral over R[t1, . . . , tn−1].
Therefore, Proposition A.11 implies that R[t1, . . . , tn] = R[t1, . . . , tn−1][tn] is
finitely generated as an R[t1, . . . , tn−1]-module. By the induction hypothesis,
R[t1, . . . , tn−1] is finitely generated as an R-module and hence R[t1, . . . , tn] is
finitely generated as an R-module (cf. Lemma 1.1(i)).

(ii) Since u is integral over T , there is an integer n ≥ 1 and elements
t0, . . . , tn−1 ∈ T , such that

un + tn−1u
n−1 + · · · + t1u+ t0 = 0 ∈ U .

This equation shows that u is integral over the ring R′ = R[t0, . . . , tn−1].
It follows from Proposition A.11 that R′[u] is finitely generated as an R′-
module. But R′ is finitely generated as an R-module, in view of (i) above, and
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hence R′[u] is finitely generated as an R-module (cf. Lemma 1.1(i)). Using
Proposition A.11 once again, we deduce that u is integral over R. �

Corollary A.13 Let R be a commutative ring, T a commutative R-algebra
and R′ = {t ∈ T : t is integral over R}. Then:

(i) R′ is an R-subalgebra of T and
(ii) R′ is integrally closed in T .

The R-algebra R′ is called the integral closure of R in T .

Proof. (i) For any t1, t2 ∈ R′ the R-algebra R[t1, t2] is finitely generated as
an R-module, in view of Corollary A.12(i). Since R[t1, t2] contains 1 and is
closed under multiplication by t1 ± t2 and t1t2, Proposition A.11 implies that
t1±t2, t1t2 ∈ R′. It follows that R′ is a subring of T . Since r ·1 ∈ T is obviously
integral over R for any r ∈ R, it follows that R′ is an R-submodule of T (and
hence an R-subalgebra of it).

(ii) This is an immediate consequence of Corollary A.12(ii). �

The next result describes some basic properties of the integral closure of a
domain in an extension of its field of fractions.

Lemma A.14 Let R be an integral domain, K its field of fractions, L an
algebraic extension field of K and T the integral closure of R in L.

(i) For any x ∈ L there exists r ∈ R\{0}, such that rx ∈ T . In particular,
L is the field of fractions of T .

(ii) Any field automorphism σ of L over K restricts to an automorphism
of T over R.

Proof. (i) Any element x ∈ L is algebraic over K and hence satisfies an
equation of the form

rnx
n + rn−1x

n−1 + · · · + r1x+ r0 = 0 ,

for an integer n ≥ 1 and suitable elements r0, . . . , rn ∈ R, with rn �= 0.
Multiplying that equation by rn−1

n , we obtain the equation

(rnx)n + rn−1(rnx)n−1 + · · · + rn−2
n r1(rnx) + rn−1

n r0 = 0 .

Hence, rnx is integral over R, i.e. rnx ∈ T .
(ii) Any element t ∈ T satisfies an equation of the form

tn + rn−1t
n−1 + · · · + r1t+ r0 = 0 ,

for an integer n ≥ 1 and suitable elements r0, . . . , rn−1 ∈ R. If σ is an auto-
morphism of L over K, then the element σ(t) ∈ L satisfies the equation

σ(t)n + rn−1σ(t)n−1 + · · · + r1σ(t) + r0 = 0 .

Hence, σ(t) is integral over R, i.e. σ(t) ∈ T . Considering the automorphism
σ−1 of L over K, it follows that σ maps T bijectively onto itself. �
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Having the ring Z of integers in mind, we examine the case where R is a
principal ideal domain or, more generally, a unique factorization domain.

Lemma A.15 A unique factorization domain is integrally closed in its field
of fractions.

Proof. Let R be a unique factorization domain and K its field of fractions. An
element x ∈ K is not contained in R if it can be expressed as a quotient of
the form a/b, where the elements a, b ∈ R \ {0} are relatively prime and b is
not a unit. If such an element x is integral over R, it satisfies an equation of
the form

xn + rn−1x
n−1 + · · · + r1x+ r0 = 0 ∈ K ,

for an integer n ≥ 1 and suitable elements r0, . . . , rn−1 ∈ R. Multiplying that
equation by bn, we obtain the equality

an + rn−1ba
n−1 + · · · + r1bn−1a+ r0bn = 0 ∈ R . (A.1)

Since b is not a unit, it has a prime divisor p. Then, p divides the sum

rn−1ba
n−1 + · · · + r1bn−1a+ r0bn = b(rn−1a

n−1 + · · · + r1bn−2a+ r0bn−1)

and hence (A.1) implies that p divides an. But the prime p does not divide a,
since a and b are relatively prime, and this is a contradiction. �

Corollary A.16 Let R be a unique factorization domain, K its field of frac-
tions, L a Galois extension field of K and T the integral closure of R in L.
Let x ∈ T and consider its Galois conjugates x1(= x), x2, . . . , xk. Then, the
polynomial f(X) =

∏k
i=1(X − xi) has coefficients in R.

Proof. First of all, we note that the xi’s are contained in T , in view of Lemma
A.14(ii); therefore, f(X) is a polynomial in T [X]. Being a symmetric polyno-
mial in the xi’s, any coefficient y ∈ T of f(X) is invariant under the action of
the Galois group of L over K and hence y ∈ K. Since T ∩K = R, in view of
Lemma A.15, we conclude that y ∈ R. �

Corollary A.17 Let R be a principal ideal domain contained in an integral
domain T and assume that T is integral over R. Then, for any prime element
p ∈ R there exists a maximal ideal m ⊆ T , such that R ∩ m = pR; in that
case, the field T/m is an extension of R/pR.

Proof. First of all, we note that elements of R that are invertible in T must be
already invertible in R; this follows from Lemma A.15, since T is integral over
R, whereas the principal ideal domain R is a unique factorization domain.4

In particular, a prime element p ∈ R is not invertible in T and hence the
ideal pT ⊆ T is proper. If m ⊆ T is a maximal ideal containing pT , then the
4 In fact, one doesn’t need the assumption that R is a principal ideal domain; cf.

Exercise A.5.1.
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contraction R ∩ m is a prime (and hence proper) ideal of R containing pR.
But pR is a maximal ideal of R and hence R ∩ m = pR. �
We now specialize the above discussion and consider the subring R of Q
consisting of those algebraic numbers that are integral over Z; this is the
ring of algebraic integers. The following three properties of R are immediate
consequences of the general results established above.

(AI1) For any algebraic number x ∈ Q there is a non-zero integer n, such
that nx ∈ R.

(AI2) Let x be an algebraic integer and x1(= x), x2, . . . , xk its Galois con-
jugates. Then, all xi’s are algebraic integers, whereas the polynomial∏k

i=1(X − xi) has coefficients in Z.
(AI3) For any prime number p ∈ Z there exists a maximal ideal M ⊆ R,

such that Z ∩M = pZ; then, the field R/M has characteristic p.

A.3 Noether Normalization

I. Finitely generated algebras over fields. In order to obtain some
information on the structure of finitely generated commutative algebras over
a field, we begin with a few simple observations on polynomials.

Lemma A.18 Let R be an integral domain of characteristic 0 and consider
m distinct polynomials f1(X), . . . , fm(X) ∈ R[X]. Then, there exists t0 ∈ N
such that for all t ∈ N with t > t0 the m elements f1(t), . . . , fm(t) ∈ R are
distinct.

Proof. For any i �= j, the equation fi(X) = fj(X) has finitely many roots in
R. Since N ⊆ Z is contained in R, the set Λij = {t ∈ N : fi(t) = fj(t)} is
finite. Being a finite union of finite sets, the set Λ =

⋃
i�=j Λij is finite as well.

We now let t0 = max Λ and note that if t ∈ N exceeds t0, then t /∈ Λij (i.e.
fi(t) �= fj(t)) for all i �= j. �

Corollary A.19 Let
(
k

(1)
j

)
j , . . . ,

(
k

(m)
j

)
j ∈ Nn be m distinct n-tuples of

non-negative integers. Then, there are positive integers t1, . . . , tn, with tn = 1,
such that the m integers

∑n
j=1 tjk

(1)
j , . . . ,

∑n
j=1 tjk

(m)
j ∈ N are distinct.

Proof. For all i = 1, . . . ,m, we consider the polynomial

fi(X) =
∑n

j=1
k

(i)
j X

n−j ∈ Z[X] .

In view of our assumption, the polynomials f1(X), . . . , fm(X) are distinct.
Hence, we may invoke Lemma A.18 in order to find t ∈ N, t > 0, such that
the m integers

∑n
j=1 k

(1)
j tn−j , . . . ,

∑n
j=1 k

(m)
j tn−j ∈ Z are distinct. The proof

is finished by letting tj = tn−j for all j = 1, . . . , n. �
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Let k be a commutative ring, R a commutative k-algebra and k[X1, . . . , Xn]
the polynomial k-algebra in n variables. Then, for any n-tuple of elements
(r1, . . . , rn) ∈ Rn there is a unique k-algebra homomorphism

r : k[X1, . . . , Xn] −→ R ,

which maps Xi onto ri for all i = 1, . . . , n. The image of a polynomial
f(X1, . . . , Xn) ∈ k[X1, . . . , Xn] under r is denoted by f(r1, . . . , rn) and re-
ferred to as the evaluation of f at the n-tuple (r1, . . . , rn).

In particular, let us consider n other variables Y1, . . . , Yn−1, X and the
corresponding polynomial algebra R = k[Y1, . . . , Yn−1, X]. If t1, . . . , tn−1 are
positive integers, then the n-tuple (Y1 + Xt1 , . . . , Yn−1 + Xtn−1 , X) ∈ Rn

induces a homomorphism of k-algebras

k[X1, . . . , Xn] −→ R = k[Y1, . . . , Yn−1, X] ,

which maps Xi onto Yi +Xti for all i = 1, . . . , n− 1 and Xn onto X. For any
polynomial f(X1, . . . , Xn) ∈ k[X1, . . . , Xn] the element

g(Y1, . . . , Yn−1, X) = f(Y1 +Xt1 , . . . , Yn−1 +Xtn−1 , X) ∈ R
may be viewed as a polynomial in X with coefficients in k[Y1, . . . , Yn−1]. If
the degree of g in X is m, then we can write

f(Y1 +Xt1 , . . . , Yn−1 +Xtn−1 , X) =
∑m

i=0
gi(Y1, . . . , Yn−1)Xi, (A.2)

where gi(Y1, . . . , Yn−1) ∈ k[Y1, . . . , Yn−1] for all i and gm(Y1, . . . , Yn−1) �= 0.

Corollary A.20 Let k be a commutative ring, X1, . . . , Xn, Y1, . . . , Yn−1, X
independent indeterminates and f(X1, . . . , Xn) ∈ k[X1, . . . , Xn] a non-zero
polynomial. Then, there are positive integers t1, . . . , tn−1, such that the leading
coefficient gm(Y1, . . . , Yn−1) ∈ k[Y1, . . . , Yn−1] of X in the expression (A.2) of

g(Y1, . . . , Yn−1, X) = f(Y1 +Xt1 , . . . , Yn−1 +Xtn−1 , X) ∈ k[Y1, . . . , Yn−1, X]

is a non-zero element of k.

Proof. Let aXk1
1 · · ·Xkn

n be a monomial of the polynomial f(X1, . . . , Xn),
where a ∈ k is non-zero and the ki’s are non-negative integers. For any
choice of positive integers t1, . . . , tn−1, it is clear that the monomial in
Y1, . . . , Yn−1, X of the summand a(Y1 + Xt1)k1 · · · (Yn−1 + Xtn−1)kn−1Xkn

of g(Y1, . . . , Yn−1, X) with the highest degree in X is the product

aXt1k1 · · ·Xtn−1kn−1Xkn = aXt1k1+···+tn−1kn−1+kn ,

whereas all other monomials of a(Y1 +Xt1)k1 · · · (Yn−1 +Xtn−1)kn−1Xkn have
degree in X strictly less than t1k1 + · · ·+ tn−1kn−1 + kn. In view of Corollary
A.19, we may choose the positive numbers t1, . . . , tn−1, in such a way that the
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exponents t1k1+· · ·+tn−1kn−1+kn that result from the various monomials of
f(X1, . . . , Xn) are distinct. Then, the largest of these exponents is the degree
m of g in X, whereas the leading term gmX

m is of the form a′Xm for some
non-zero element a′ ∈ k. �

We are now ready to state and prove the normalization lemma.

Theorem A.21 (Noether normalization lemma) Let k be a field and R a
finitely generated commutative k-algebra. Then, there exists a k-subalgebra
R0 ⊆ R, such that:

(i) R0 is a polynomial k-algebra and
(ii) R is an integral extension of R0.

Proof. Let R = k[r1, . . . , rn] for suitable elements r1, . . . , rn ∈ R. We shall use
induction on n.

If n = 1, then either r1 is algebraically independent over k, in which case
we may let R0 = R, or else r1 satisfies a (monic) polynomial equation with
coefficients in k, in which case dimk R <∞ and we let R0 = k.

Assume that n > 1 and the result has been proved for k-algebras gener-
ated by n − 1 elements. If the elements r1, . . . , rn are algebraically indepen-
dent over k, we may let R0 = R. If not, there exists a non-zero polynomial
f(X1, . . . , Xn) ∈ k[X1, . . . , Xn], such that f(r1, . . . , rn) = 0. In view of Corol-
lary A.20, we can find positive integers t1, . . . , tn−1 such that the leading
coefficient gm(Y1, . . . , Yn−1) ∈ k[Y1, . . . , Yn−1] of X in the expression (A.2) of
the polynomial

g(Y1, . . . , Yn−1, X) = f(Y1 +Xt1 , . . . , Yn−1 +Xtn−1 , X) ∈ k[Y1, . . . , Yn−1, X]

is a non-zero element a ∈ k. Replacing the polynomial f(X1, . . . , Xn) by
a−1f(X1, . . . , Xn), we may assume that gm(Y1, . . . , Yn−1) = 1. Then, g may
be viewed as a monic polynomial in X with coefficients in k[Y1, . . . , Yn−1].
Let r′1 = r1 − rt1n , . . . r

′
n−1 = rn−1 − r

tn−1
n and consider the k-subalgebra

R′ = k[r′1, . . . , r
′
n−1] ⊆ R. It is clear that R = k[r1, . . . , rn] can be generated

by r′1, . . . , r
′
n−1, rn and hence R = k[r′1, . . . , r

′
n−1, rn] = R′[rn]. Since

g(r′1, . . . , r
′
n−1, rn) = f(r′1 + rt1n , . . . , r

′
n−1 + rtn−1

n , rn)
= f(r1, . . . , rn−1, rn)
= 0,

rn is a root of the monic polynomial g(r′1, . . . , r
′
n−1, X) ∈ R′[X]. Therefore,

R = R′[rn] is a finitely generated R′-module and hence R is integral over
R′ (cf. Proposition A.11). In view of the induction hypothesis, there exists
a k-subalgebra R0 ⊆ R′, such that R0 is a polynomial k-algebra and R′ is
integral over it. Since R is integral over R′, we may invoke Corollary A.12(ii)
and conclude that R is integral over R0 as well. �

Often, we apply Noether’s normalization lemma in the form of one of the
following corollaries.
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Corollary A.22 Let k be a subring of a field K.
(i) If K is integral over k, then k is a field.
(ii) If k is a field and K is finitely generated as a k-algebra, then K is a

finite algebraic extension of k.

Proof. (i) If a is a non-zero element of k, then a−1 ∈ K is integral over k and
hence

a−n + bn−1a
−n+1 + · · · + b1a−1 + b0 = 0 ,

for an integer n ≥ 1 and suitable elements b0, . . . , bn−1 ∈ k. Multiplying that
equation by an−1, we conclude that

a−1 + bn−1 + · · · + b1an−2 + b0an−1 = 0

and hence a−1 ∈ k.
(ii) In view of Noether’s normalization lemma, we can find a polynomial

k-algebra K0 contained in K, such that K is integral over it. Using the result
of part (i), we conclude that K0 is a field. Being a polynomial algebra over k,
K0 can be a field only if K0 = k. Therefore, K is an integral (i.e. algebraic)
extension of k. �

Corollary A.23 Let k be an algebraically closed field and R a finitely gener-
ated commutative k-algebra. Then, the set Homk−Alg(R, k) is non-empty.

Proof. Let m ⊆ R be a maximal ideal. Then, the field K = R/m is finitely
generated as a k-algebra and hence Corollary A.22(ii) implies that K is an
algebraic extension of k. Being algebraically closed, k has no proper algebraic
extensions; therefore, K = k. It follows that the quotient map R −→ R/m is
a homomorphism of the type we are looking for. �

II. Finitely generated algebras over UFD’s. We now turn our atten-
tion to finitely generated commutative algebras B over a unique factorization
domain A. Our goal is to examine the prime elements of A that are invertible
in B.

In general, if A is an integral domain and a ∈ A a non-zero element, we
denote by A[a−1] the A-subalgebra of the field of fractions of A generated
by a−1. If M is an A-module then M [a−1] denotes the A[a−1]-module M ⊗A

A[a−1].
We begin with a generalization of Noether’s normalization lemma.

Lemma A.24 Let A be an integral domain and B a finitely generated com-
mutative A-algebra, which is torsion-free as an A-module. Then, there is a
non-zero element a ∈ A and an A[a−1]-subalgebra B0 ⊆ B[a−1], such that:

(i) B0 is a polynomial A[a−1]-algebra and
(ii) B[a−1] is integral over B0.
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Proof. LetB = A[x1, . . . , xn] for suitable elements x1, . . . , xn ∈ B and consider
the field of fractions K of A. Since B is torsion-free as an A-module, it can
be regarded as a subring of the finitely generated commutative K-algebra
R = K ⊗A B = K[x1, . . . , xn]. In view of Noether’s normalization lemma,
there is a polynomial K-subalgebra R0 = K[Y1, . . . , Ym] ⊆ R, such that R is
integral over it. Replacing, if necessary, Yi by siYi, for a suitable si ∈ A \ {0},
we may assume that Yi ∈ B for all i = 1, . . . ,m. Then, for any A-subalgebra
T ⊆ K the T -subalgebra T [Y1, . . . , Ym] ⊆ R0 is contained in T ⊗A B ⊆ R.

Since xi ∈ R is integral over R0, there is a monic polynomial fi(X) ∈
R0[X], such that fi(xi) = 0 for all i = 1, . . . , n. The polynomial fi(X) in-
volves finitely many elements of R0 = K[Y1, . . . , Ym], whereas each one of
these involves finitely many elements of K. It follows that there is a non-zero
element ai ∈ A, such that fi(X) is a polynomial in X with coefficients in
A[a−1

i , Y1, . . . , Ym] ⊆ R0; hence, xi is integral over A[a−1
i , Y1, . . . , Ym]. Let-

ting a =
∏n

i=1 ai ∈ A, we conclude that all of the xi’s are integral over
B0 = A[a−1, Y1, . . . , Ym]. Since the integral closure of B0 in R is a B0-
subalgebra and hence an A[a−1]-subalgebra of R (cf. Corollary A.13(i)), it
follows that A[a−1, x1, . . . , xn] is integral over B0. This finishes the proof,
since A[a−1, x1, . . . , xn] = A[a−1] ⊗A B = B[a−1]. �

Proposition A.25 Let A be a unique factorization domain and B a finitely
generated commutative A-algebra, containing A as a subring. Then, up to as-
sociates, there are only finitely many prime elements p ∈ A that are invertible
in B.

Proof. The torsion submodule Bt of the A-module B is easily seen to be an
ideal of B. Since A is a subring of B, the unit element 1 ∈ B is not contained
in Bt. Therefore, Bt is a proper ideal of B and hence the quotient B = B/Bt

is a non-zero A-algebra. Since a prime element p ∈ A that is invertible in B
is also invertible in B, we may replace B by its quotient B and reduce to the
case where the finitely generated commutative A-algebra B is torsion-free as
an A-module.

Let K be the field of fractions of A. Being torsion-free as an A-module,
B can be regarded as a subring of the finitely generated commutative K-
algebra R = K ⊗A B. In view of Lemma A.24, there is a non-zero element
a ∈ A and a polynomial A[a−1]-subalgebra B0 ⊆ B[a−1], such that B[a−1] is
integral over it. Let R0 = K ⊗A[a−1] B0 ⊆ R. Being a localization of A, the
subring A[a−1] ⊆ K is also a unique factorization domain (cf. Exercise A.5.2).
Invoking Gauss’ lemma, we conclude that the same is true for the polynomial
A[a−1]-algebra B0. Then, Lemma A.15 shows that B0 is integrally closed in
its field of fractions and, a fortiori, in R0. We now consider the commutative
diagram

K −→ R0 −→ R
↑ ↑ ↑

A[a−1] −→ B0 −→ B[a−1] ←− B
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where all arrows are inclusions. Since any element of B[a−1] is integral over
B0, which is itself integrally closed in R0, we conclude that the intersection
B[a−1] ∩R0 is equal to B0. Therefore, it follows that

B ∩K ⊆ B[a−1] ∩K = B[a−1] ∩R0 ∩K = B0 ∩K = A[a−1] ,

where the last equality is a consequence of the fact that B0 is a polynomial
A[a−1]-algebra. Hence, if a prime element p ∈ A is invertible in B then p−1 ∈
B ∩ K ⊆ A[a−1]. It is easily seen that this can happen only if the prime p
divides a. The proof is finished, since, up to associates, there are only finitely
many such primes. �

Corollary A.26 Let A be a unique factorization domain and B a finitely
generated commutative A-algebra. Consider an element x ∈ B and assume
that no power xn, n ≥ 1, is torsion as an element of the A-module B. Then,
up to associates, there are only finitely many prime elements p ∈ A for which
x ∈ pB.

Proof. Consider the localization B′ = B[S−1] of B at the multiplicatively
closed subset S consisting of the powers of x. Then, B′ = B[Y ]/(xY − 1) is a
finitely generated commutative A-algebra, which, in view of the assumption
made on x, contains A as a subring. Hence, Proposition A.25 implies that,
up to associates, the set of prime elements p ∈ A that are invertible in B′

is finite. This finishes the proof, since any prime element p ∈ A for which
x ∈ pB is necessarily invertible in B′. Indeed, if x = pb for some b ∈ B, then
p−1 = b/x ∈ B′. �

In particular, letting A = Z, we obtain the following corollary.

Corollary A.27 Let k be a finitely generated commutative ring of character-
istic 0. Then, there are only finitely many prime numbers that are invertible
in k. If, in addition, k is an integral domain, then for any x ∈ k \ {0} there
are only finitely many prime numbers p ∈ Z for which x ∈ pk. �

A.4 The Krull Intersection Theorem

I. The ascending chain condition. We begin by developing a few basic
properties of Noetherian rings and modules.

Proposition A.28 Let R be a commutative ring. Then, the following condi-
tions are equivalent for an R-module M :

(i) Any submodule N ⊆M is finitely generated.
(ii) Any ascending chain of submodules of M has a maximum element.

If these conditions hold, then M is said to be a Noetherian module.
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Proof. (i)→(ii): Let (Ni)i be an ascending chain of submodules of M and con-
sider the union N =

⋃
iNi. By assumption, there are elements x1, . . . , xn that

generate the R-module N . Since there are only finitely many of them, all of the
xi’s are contained in Ni0 for some index i0. Therefore, N =

∑n
i=1Rxi ⊆ Ni0

and hence N = Ni0 is the maximum element of the given chain of submodules.
(ii)→(i): If a submodule N ⊆M is not finitely generated, then we may use

an inductive argument in order to construct a sequence of elements (xi)i of
N , such that the sequence of submodules (Ni)i, where Ni =

∑i
t=1Rxt for all

i ≥ 0, is strictly increasing. But the existence of such a sequence contradicts
condition (ii). �

In particular, a commutative ring R if said to be Noetherian if the regular
module R is Noetherian.

Lemma A.29 Let R be a commutative ring.
(i) Any submodule and any quotient module of a Noetherian module is

Noetherian.
(ii) If 0 −→ M ′ −→ M −→ M ′′ −→ 0 is a short exact sequence of R-

modules and M ′,M ′′ are Noetherian, then M is Noetherian as well.
(iii) If R is a Noetherian ring then any finitely generated R-module is

Noetherian.

Proof. (i) If N is a submodule (resp. a quotient module) of a Noetherian
moduleM then any submodule of N , being also a submodule (resp. a quotient
module of a submodule) of M , is finitely generated.

(ii) This follows since any submodule of M , being an extension of a sub-
module of M ′′ by a submodule of M ′, is finitely generated.

(iii) By an iterated application of (ii), it follows that any finitely gener-
ated free R-module is Noetherian. Since any finitely generated R-module is a
quotient of such a free module, the result follows from (i). �

Lemma A.30 Let R be a commutative ring.
(i) If R is a principal ideal domain, then R is Noetherian.
(ii) If R is a quotient of a commutative Noetherian ring, then R is

Noetherian as well.

Proof. (i) This is immediate, since any ideal of R is principal (and hence
finitely generated).

(ii) If R is a quotient of a commutative ring T , then any ideal I of R is a
quotient of an ideal J of T . If T is Noetherian, then J is finitely generated as
a T -module and hence I is finitely generated as an R-module. �

In order to obtain non-trivial examples of Noetherian rings, we need the fol-
lowing result of Hilbert.

Theorem A.31 (Hilbert basis theorem) If R is a commutative Noetherian
ring, then so is the polynomial ring R[X].
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Proof. Let I be an ideal of R[X] and consider the increasing sequence of ideals
(Jn)n of R, where Jn ⊆ R consists of the leading coefficients of all polynomials
in I that have degree ≤ n. We also consider the ideal J∞ =

⋃
n Jn. Since R

is Noetherian, the ideal Jn is finitely generated for all n ∈ N ∪ {∞}. Hence,
for all n there is a finite set of polynomials Fn ⊆ I, having degree ≤ n, whose
leading coefficients generate Jn.

We claim that if n0 = max{deg g : g ∈ F∞}, then I is generated by the
(finite) set F = F0 ∪F1 ∪ · · · ∪Fn0−1 ∪F∞. Indeed, let us consider a non-zero
polynomial f ∈ I and show that f ∈ ∑g∈F R[X]g, by using induction on
n = deg f . Assume that elements of I having degree < n are contained in∑

g∈F R[X]g and suppose that n < n0. Then, the leading coefficient of f is an
R-linear combination of the leading coefficients of the polynomials in Fn and
hence the polynomial f −∑g∈Fn

rgX
n−deg gg ∈ I has degree < n, for suitable

elements rg ∈ R, g ∈ Fn. In view of the induction hypothesis, we conclude
that f −∑g∈Fn

rgX
n−deg gg ∈ ∑g∈F R[X]g; since Fn ⊆ F , it follows that

f ∈ ∑g∈F R[X]g. Now suppose that n ≥ n0. Since the leading coefficient of
f is an R-linear combination of the leading coefficients of the polynomials in
F∞, the polynomial f −∑g∈F∞ rgX

n−deg gg ∈ I has degree < n, for suitable
elements rg ∈ R, g ∈ F∞. In view of the induction hypothesis, we conclude
that f −∑g∈F∞ rgX

n−deg gg ∈ ∑g∈F R[X]g; since F∞ ⊆ F , it follows that
f ∈∑g∈F R[X]g in this case as well. �

Corollary A.32 Any finitely generated commutative ring is Noetherian.

Proof. Being a principal ideal domain, the ring Z is Noetherian (Lemma
A.30(i)). Therefore, an iterated application of the Hilbert basis theorem shows
that the polynomial ring Z[X1, . . . , Xn] is Noetherian for all n. Since any fi-
nitely generated commutative ring is a quotient of such a polynomial ring, the
result follows from Lemma A.30(ii). �

II. The intersection of the powers of an ideal. We now study the
intersection of the powers of an ideal in a commutative Noetherian ring.

Proposition A.33 Let R be a commutative ring, I ⊆ R an ideal and M a
Noetherian R-module.

(i) Assume that N,L are two submodules of M , such that N is maximal
with respect to the property N ∩ L = IL. Then, for any r ∈ I there exists
n ∈ N, such that rnM ⊆ N . In particular, if I is finitely generated, then
ItM ⊆ N for t� 0.

(ii) Assume that the ideal I is finitely generated and consider a submodule
L of M , such that L ⊆ ⋂n I

nM . Then, IL = L.

Proof. (i) We fix an element r ∈ I and consider for any non-negative integer
i the submodule Mi ⊆ M consisting of those elements x ∈ M for which
rix ∈ N . Since the R-module M is Noetherian, the increasing sequence (Mi)i

of submodules ofM must be eventually constant; hence, there exists an integer
n ∈ N such that Mn =Mn+1. We claim that
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(rnM +N) ∩ L = N ∩ L . (A.3)

Of course, the ⊇-inclusion is clear. Conversely, let z ∈ (rnM +N)∩L. Then,
there are elements x ∈M and y ∈ N , such that z = rnx+ y ∈ L. Since rz ∈
IL = N ∩ L ⊆ N , we have rn+1x = rz − ry ∈ N and hence x ∈Mn+1 = Mn.
Therefore, rnx ∈ N and hence z = rnx + y ∈ N , i.e. z ∈ N ∩ L. Having
established (A.3), the maximality of N implies that rnM +N = N and hence
rnM ⊆ N .

If the ideal I is generated by elements r1, . . . , rk and n1, . . . , nk are positive
integers, then It ⊆∑k

i=1 r
ni
i R, where t = 1+

∑k
i=1(ni−1). Indeed, it is easily

seen that any summand in the expansion of a typical product∏t

l=1

∑k

i=1
ris

(l)
i =

(∑k

i=1
ris

(1)
i

)
·
(∑k

i=1
ris

(2)
i

)
· · ·
(∑k

i=1
ris

(t)
i

)
,

where all s(l)i ’s are elements of R, is divisible by rni
i for at least one i. In

particular, it follows that ItM ⊆∑k
i=1 r

ni
i M . Having chosen the ni’s in such

a way that rni
i M ⊆ N for all i, it follows that ItM ⊆ N .

(ii) Consider the class consisting of those submodules N ⊆M that satisfy
the condition N ∩ L = IL. This class is non-empty, since it contains IL.
Applying Zorn’s lemma, we may choose a submodule N ⊆ M maximal in
that class. By part (i), we have ItM ⊆ N for some t � 0 and hence L ⊆⋂

n I
nM ⊆ ItM ⊆ N ; therefore, L = N ∩ L = IL. �

Theorem A.34 (Krull intersection theorem) Let I ⊆ R be a proper ideal of
a commutative Noetherian ring R and consider a finitely generated R-module
M . Then, the submodule L =

⋂
n I

nM is trivial (i.e. L = 0) if either one of
the following two conditions is satisfied:

(i) R is a local ring or
(ii) R is an integral domain and M a torsion-free R-module.

Proof. Since R is a Noetherian ring, the ideal I is finitely generated, whereas
Lemma A.29(iii) shows that the R-moduleM is Noetherian. Therefore, Propo-
sition A.33(ii) implies that IL = L. Since M is Noetherian, L is finitely gen-
erated; hence, the proof is finished by invoking Lemma A.9. �

Corollary A.35 Let k be a finitely generated integral domain and I ⊆ k a
proper ideal. Then,

⋂
n I

n = 0.

Proof. This follows from Theorem A.34, in view of Corollary A.32. �

A.5 Exercises

1. Let T be a commutative ring, which is integral over a subring R ⊆ T .
Then, show that U(R) = R ∩ U(T ).
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2. Let R be a unique factorization domain and S ⊆ R a multiplicatively
closed subset containing 1. Show that the localization R[S−1] is a unique
factorization domain as well.

3. Let k be a field and R a finitely generated commutative k-algebra.
(i) Give an example showing that the set Homk−Alg(R, k) may be empty
if k is not algebraically closed.
(ii) If k is the algebraic closure of k, show that Homk−Alg

(
R, k
) �= ∅.

4. Show that the conclusion of Proposition A.25 may be false if either
(i) the commutative A-algebra B is not finitely generated or
(ii) the structural homomorphism A −→ B is not injective.
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Discrete Ring-Valued Integrals

Let X be a compact space and C(X) the associated algebra of continuous
complex-valued functions, endowed with the supremum norm. A regular Borel
measure µ on X induces a continuous linear functional Iµ on C(X), namely
the functional f �→ ∫

f dµ, f ∈ C(X). Moreover, the Riesz representation
theorem (cf. [61, Theorem 6.19]) asserts that any continuous linear functional
on C(X) arises from a unique regular Borel measure µ in this way.

In this Appendix, we consider a discrete version of the above process
and consider measures (more precisely, premeasures) which have values in
an abelian group A. Since A will have, in general, no topological structure,
we suitably restrict the class of functions that can be integrated. In fact, we
consider only the locally constant integer-valued functions on X; these are
precisely the continuous functions from X to the discrete space Z. It will turn
out that the algebra (in the measure-theoretic sense) of subsets of X on which
the measure has to be defined is that consisting of the clopen subsets of X.
The special case where A = R is a commutative ring and the measure of any
clopen subset of X is an idempotent therein is of particular importance for
the applications we have in mind.

B.1 Discrete Group-Valued Integrals

Let us fix a compact topological space X and consider the set L(X) consisting
of the clopen subsets Y ⊆ X. We note that L(X) is a subalgebra of the
Boolean algebra P(X) of all subsets of X (cf. Examples 1.3(ii),(iii)). Since
X is compact, any continuous function f on X with values in Z takes only
finitely many values, say a1, . . . , an. We assume that the ai’s are distinct and
note that the inverse image of the singleton {ai} ⊆ Z under f is a clopen
subset Xi of X for all i = 1, . . . , n. Then, f =

∑n
i=1 aiχXi

; we refer to that
equation as the canonical decomposition of f . It is clear that a decomposition
f =

∑m
j=1 bjχYj

, where bj ∈ Z and Yj ∈ L(X) for all j = 1, . . . ,m, coincides
with the canonical one if the following two conditions are satisfied:
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(i) The integers b1, . . . , bm are distinct and
(ii) The clopen subsets Y1, . . . , Ym of X are non-empty, mutually disjoint

and cover X.
The set of all locally constant integer-valued functions on X is a commutative
ring with operations defined pointwise; we denote this ring by [X,Z]. We note
that the map Y �→ χY , Y ∈ L(X), is an isomorphism of Boolean algebras

χ : L(X) −→ Idem([X,Z]) . (B.1)

Indeed, χ∅ and χX are the constant functions with value 0 and 1 respectively,
whereas for any two clopen subsets Y, Y ′ ⊆ X we have

χY ∩Y ′ = χY χY ′ = χY ∧ χY ′

and

χY ∪Y ′ = χY + χY ′ − χY ∩Y ′ = χY + χY ′ − χY χY ′ = χY ∨ χY ′ .

We now let L be a Boolean algebra of subsets of a set Ω and A an abelian
group. An A-valued premeasure µ on L is a function µ : L −→ A satisfying
the following two conditions:

(µ1) µ(∅) = 0 and
(µ2) if Y1, . . . , Yn ∈ L are disjoint, then µ(

⋃n
i=1 Yi)=

∑n
i=1 µ(Yi).

Given an A-valued premeasure µ on the Boolean algebra L(X) of clopen
subsets of X, we may define for any function f ∈ [X,Z] with canonical de-
composition f =

∑n
i=1 aiχXi

the element Iµ(f) =
∑n

i=1 aiµ(Xi) ∈ A.

Definition B.1 The element Iµ(f) ∈ A defined above is called the discrete
A-valued integral of f with respect to the premeasure µ.

Lemma B.2 Let X be a compact space, A an abelian group and µ an A-
valued premeasure on L(X).

(i) If a1, . . . , an are integers, X1, . . . , Xn mutually disjoint clopen subsets
covering X and f =

∑n
i=1 aiχXi

, then Iµ(f) =
∑n

i=1 aiµ(Xi).
(ii) Iµ(f + g) = Iµ(f) + Iµ(g) for all f, g ∈ [X,Z].

Proof. (i) Let f =
∑m

j=1 bjχYj
be the canonical decomposition of f ; then, the

Yj ’s are mutually disjoint and cover X. It follows that Xi is the disjoint union
of the family (Xi ∩ Yj)j for all i = 1, . . . , n and hence

f =
∑

i
aiχXi

=
∑

i
ai

(∑
j
χXi∩Yj

)
=
∑

i,j
aiχXi∩Yj

. (B.2)

Similarly, the Xi’s being mutually disjoint and covering X, Yj is the disjoint
union of the family (Xi ∩ Yj)i for all j = 1, . . . ,m; hence,

f =
∑

j
bjχYj

=
∑

j
bj

(∑
i
χXi∩Yj

)
=
∑

i,j
bjχXi∩Yj

. (B.3)
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Since the family (Xi∩Yj)i,j consists of mutually disjoint sets, we may compare
the decompositions of f in (B.2) and (B.3) in order to conclude that whenever
Xi ∩ Yj �= ∅ we have ai = bj . Since µ(∅) = 0, it follows that aiµ(Xi ∩ Yj) =
bjµ(Xi ∩ Yj) for all i, j. Therefore, using the additivity of µ (property (µ2)),
we have

Iµ(f) =
∑

j
bjµ(Yj)

=
∑

j
bj

(∑
i
µ(Xi ∩ Yj)

)
=
∑

i,j
bjµ(Xi ∩ Yj)

=
∑

i,j
aiµ(Xi ∩ Yj)

=
∑

i
ai

(∑
j
µ(Xi ∩ Yj)

)
=
∑

i
aiµ(Xi) .

(ii) Let f =
∑n

i=1 aiχXi
and g =

∑m
j=1 bjχYj

be the canonical decom-
positions of f and g respectively; then, f + g =

∑
i,j(ai + bj)χXi∩Yj

. Since
the family (Xi ∩ Yj)i,j consists of disjoint clopen subsets covering X, we may
invoke (i) above and the additivity of µ in order to conclude that

Iµ(f + g) =
∑

i,j
(ai + bj)µ(Xi ∩ Yj)

=
∑

i,j
aiµ(Xi ∩ Yj) +

∑
i,j
bjµ(Xi ∩ Yj)

=
∑

i
ai

(∑
j
µ(Xi ∩ Yj)

)
+
∑

j
bj

(∑
i
µ(Xi ∩ Yj)

)
=
∑

i
aiµ(Xi) +

∑
j
bjµ(Yj)

= Iµ(f) + Iµ(g) ,

as needed. �

With the notation established above, we can state the following discrete ver-
sion of the Riesz representation theorem.

Proposition B.3 Let X be a compact space and A an abelian group.
(i) For any A-valued premeasure µ on L(X) the associated discrete A-

valued integral Iµ : [X,Z] −→ A is a homomorphism of abelian groups.
(ii) Conversely, for any group homomorphism ϕ : [X,Z] −→ A there is a

unique A-valued premeasure µ on L(X), such that ϕ = Iµ.

Proof. (i) This is precisely Lemma B.2(ii).
(ii) Given a homomorphism ϕ : [X,Z] −→ A, define an A-valued map µ

on L(X) by letting µ(Y ) = ϕ(χY ) for all Y ∈ L(X). Since χ∅ is the constant
function with value 0, it follows that µ(∅) = 0. If Y1, . . . , Yn are disjoint clopen
subsets of X and Y =

⋃n
i=1 Yi, then χY =

∑n
i=1 χYi

; therefore,

µ(Y ) = ϕ(χY ) =
∑n

i=1
ϕ(χYi

) =
∑n

i=1
µ(Yi)

and µ is indeed a premeasure. By the very definition of µ, it follows that the
group homomorphisms Iµ and ϕ coincide on the set {χY : Y ∈ L(X)}. Since
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this set generates the group [X,Z], we conclude that Iµ = ϕ. The uniqueness
of µ satisfying that condition is clear. �

For a topological space X and an abelian group A, we denote the set of A-
valued premeasures on L(X) by M(L(X);A). We note that M(L(X);A) has
the structure of an abelian group, where the sum µ + µ′ of two premeasures
µ, µ′ ∈ M(L(X);A) is defined by letting (µ + µ′)(Y ) = µ(Y ) + µ′(Y ) for all
Y ∈ L(X).

Corollary B.4 Let X be a compact space and A an abelian group. Then, the
map µ �→ Iµ, µ ∈ M(L(X);A), is an isomorphism of groups

I : M(L(X);A) −→ Hom([X,Z], A) .

Proof. In view of Proposition B.3, it only remains to show that Iµ+µ′ = Iµ+Iµ′

for all µ, µ′ ∈ M(L(X);A). For any Y ∈ L(X) we have

Iµ+µ′(χY ) = (µ+ µ′)(Y ) = µ(Y ) + µ′(Y ) = Iµ(χY ) + Iµ′(χY ) .

Since the group [X,Z] is generated by the characteristic functions of clopen
subsets Y ∈ L(X), it follows that the homomorphisms Iµ+µ′ and Iµ +Iµ′ are
equal. �

B.2 Idempotent-Valued Premeasures

In this section, we examine the special properties that are enjoyed by the
integrals considered above, in the case where the abelian group A is endowed
with the structure of a commutative ring.

Let L be a Boolean algebra of subsets of a set Ω, R a commutative ring
and ν : L −→ Idem(R) a morphism of Boolean algebras. Then, ν associates
with any Y ∈ L an idempotent ν(Y ) ∈ R, in such a way that the following
properties are satisfied:

(ν1) ν(∅) = 0 and ν(Ω) = 1,
(ν2) ν(Y ∪ Y ′) = ν(Y ) + ν(Y ′) − ν(Y )ν(Y ′) for all Y, Y ′ ∈ L and
(ν3) ν(Y ∩ Y ′) = ν(Y )ν(Y ′) for all Y, Y ′ ∈ L.

Lemma B.5 Let L be a Boolean algebra of subsets of a set Ω and consider a
commutative ring R.

(i) If ν : L −→ Idem(R) is a Boolean algebra morphism then ν is a
premeasure on L, such that ν(Ω) = 1.

(ii) Conversely, assume that ν is a premeasure on L with values in the set
of idempotents of R, such that ν(Ω) = 1. If 2 ∈ R is not a zero-divisor then
ν : L −→ Idem(R) is a Boolean algebra morphism.

Proof. (i) It suffices to verify that ν satisfies property (µ2). To that end, let us
consider two disjoint subsets Y, Y ′ ∈ L. Since ν is ∧-preserving (property (ν3))
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and ν(∅) = 0, we have ν(Y )ν(Y ′) = ν(Y ∩ Y ′) = 0. But ν is ∨-preserving as
well (property (ν2)) and hence ν(Y ∪Y ′) = ν(Y )+ν(Y ′)−ν(Y )ν(Y ′) = ν(Y )+
ν(Y ′). Using induction on n, one can prove that whenever Y1, . . . , Yn ∈ L are
mutually disjoint and Y =

⋃n
i=1 Yi, then ν(Y ) =

∑n
i=1 ν(Yi).

(ii) By assumption, ν satisfies property (ν1). Since property (ν2) is a
consequence of properties (µ2) and (ν3),1 it suffices to prove that ν satisfies
property (ν3). To that end, we note that whenever Y1, Y2 ∈ L are disjoint, the
idempotents e1 = ν(Y1) and e2 = ν(Y2) are orthogonal. Indeed, in that case,
e1 + e2 = ν(Y1) + ν(Y2) = ν(Y1 ∪ Y2) is an idempotent and hence

e1 + e2 = (e1 + e2)2 = e21 + e22 + 2e1e2 = e1 + e2 + 2e1e2 .

Therefore, 2e1e2 = 0 and hence e1e2 = 0. Now let Y, Y ′ ∈ L and e = ν(Y ∩Y ′).
Then, Y \ Y ′ ∈ L is disjoint from Y ∩ Y ′ and ν(Y \ Y ′) = ν(Y ) − e (in view
of property (µ2)). Therefore, e(ν(Y ) − e) = 0 and hence e = e2 = eν(Y ).
Similarly, one can show that e = eν(Y ′). Finally, since the subsets Y \Y ′ and
Y ′ \ Y are disjoint, we have

0 = ν(Y \ Y ′)ν(Y ′ \ Y )
= (ν(Y ) − e)(ν(Y ′) − e)
= ν(Y )ν(Y ′) − eν(Y ) − eν(Y ′) + e2

= ν(Y )ν(Y ′) − e− e+ e
= ν(Y )ν(Y ′) − e

and hence ν(Y ∩ Y ′) = e = ν(Y )ν(Y ′). �

We now consider a compact topological space X, a commutative ring R and
study the discrete R-valued integral Iν , associated with a Boolean algebra
morphism ν defined on the algebra L = L(X) of clopen subsets of X with
values in Idem(R).

Lemma B.6 Let X be a compact space, R a commutative ring and consider
a Boolean algebra morphism ν : L(X) −→ Idem(R). Then:

(i) Iν(fg) = Iν(f)Iν(g) for all f, g ∈ [X,Z].
(ii) If 1 is the constant function on X with value 1 ∈ Z, then Iν(1) = 1.

Proof. (i) Let f =
∑n

i=1 aiχXi
and g =

∑m
j=1 bjχYj

be the canonical de-
compositions of f and g respectively; then, fg =

∑
i,j aibjχXi∩Yj

. Using the
additivity of Iν and property (ν3), we conclude that

Iν(fg) =
∑

i,j
aibjν(Xi ∩ Yj)

=
∑

i,j
aibjν(Xi)ν(Yj)

=
(∑

i
aiν(Xi)

)(∑
j
bjν(Yj)

)
= Iν(f)Iν(g) .

(ii) This is clear, since 1 = χX and ν(X) = 1. �
1 Indeed, property (µ2) for ν is easily seen to imply that ν(Y ∪Y ′) = ν(Y )+ν(Y ′)−

ν(Y ∩ Y ′) for all Y, Y ′ ∈ L.
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Proposition B.7 Let X be a compact space and R a commutative ring.
(i) For any Boolean algebra morphism ν : L(X) −→ Idem(R) the associ-

ated discrete R-valued integral Iν : [X,Z] −→ R is a ring homomorphism.
(ii) Conversely, for any ring homomorphism ϕ : [X,Z] −→ R there is a

unique Boolean algebra morphism ν : L(X) −→ Idem(R), such that ϕ = Iν .

Proof. (i) This follows from Lemmas B.2(ii) and B.6.
(ii) Given a ring homomorphism ϕ : [X,Z] −→ R, we may consider the

premeasure ν : L(X) −→ R defined in the proof of Proposition B.3; recall that
ν(Y ) = ϕ(χY ) for any Y ∈ L(X). Then, ν is the unique premeasure satisfying
Iν = ϕ; we have to show that ν takes values in the set Idem(R) and is a
Boolean algebra morphism with values therein. Since χY is an idempotent in
the function ring [X,Z] and ϕ is multiplicative, it is clear that ν(Y ) ∈ Idem(R)
for all Y ∈ L(X). But then ν is the composition

L(X)
χ−→ Idem([X,Z])

Idem(ϕ)−→ Idem(R) ,

where χ is the isomorphism (B.1) and Idem(ϕ) the morphism of Boolean
algebras induced by ϕ. In particular, it follows that ν is a morphism of Boolean
algebras, as needed. �

Remarks B.8 (i) Let X be a compact space and R a commutative ring.
Then, we can reformulate Proposition B.7 as the assertion that the map

I : HomBoole(L(X), Idem(R)) −→ HomRing([X,Z], R) ,

which is given by ν �→ Iν , ν ∈ HomBoole(L(X), Idem(R)), is bijective.
(ii) The discussion about discrete ring-valued integrals in this Appendix

was motivated by the various constructions associated with the geometric rank
in §2.1. Having that special case in mind, we chose to consider only locally con-
stant integer-valued functions. In fact, we could have replaced the ring Z by
an arbitrary commutative ring k and insisted that the abelian group A (resp.
the commutative ring R) be a k-module (resp. a commutative k-algebra). In
exactly the same way as above, one can define for any A-valued premeasure
(resp. for any Idem(R)-valued Boolean algebra morphism) on L(X) a cor-
responding A-valued (resp. R-valued) integral defined on the class of locally
constant k-valued functions on the compact spaceX and obtain identifications

M(L(X);A)  Homk([X, k], A)

and
HomBoole(L(X), Idem(R))  Homk−Alg([X, k], R) .

B.3 Exercises

1. Let X,X ′ be compact topological spaces and f : X −→ X ′ a continuous
map. We also consider the Boolean algebra morphism L(f) : L(X ′) −→
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L(X), which is given by Y ′ �→ f−1(Y ′), Y ′ ∈ L(X ′) (cf. Example 1.5(iii)).
(i) Let A be an abelian group and µ an A-valued premeasure on L(X).
Show that µ′ = µ ◦ L(f) is an A-valued premeasure on L(X ′) and

Iµ′ = Iµ ◦ [f,Z] : [X ′,Z] −→ A ,

where [f,Z] : [X ′,Z] −→ [X,Z] is the map g �→ g ◦ f , g ∈ [X ′,Z].2

(ii) (naturality of I with respect to the topological space) Let A be an
abelian group. Show that the following diagram is commutative

M(L(X);A) I−→ Hom([X,Z], A)
L(f)∗ ↓ ↓ [f,Z]∗

M(L(X ′);A) I−→ Hom([X ′,Z], A)

where L(f)∗ is the map µ �→ µ ◦ L(f), µ ∈ M(L(X);A), and [f,Z]∗ the
map ϕ �→ ϕ ◦ [f,Z], ϕ ∈ Hom([X,Z], A).
(iii) Let R be a commutative ring. Show that the following diagram is
commutative

HomBoole(L(X), Idem(R)) I−→ HomRing([X,Z], R)
L(f)∗ ↓ ↓ [f,Z]∗

HomBoole(L(X ′), Idem(R)) I−→ HomRing([X ′,Z], R)

where L(f)∗ and [f,Z]∗ are the restrictions of the corresponding maps in
(ii) above.

2. Let A,A′ be abelian groups, σ : A −→ A′ a group homomorphism and X
a compact topological space.
(i) Show that if µ is an A-valued premeasure on L(X), then µ′ = σ ◦ µ is
an A′-valued premeasure on L(X) and

Iµ′ = σ ◦ Iµ : [X,Z] −→ A′ .

(ii) (naturality of I with respect to the abelian group) Show that the
following diagram is commutative

M(L(X);A) I−→ Hom([X,Z], A)
σ∗ ↓ ↓ σ∗

M(L(X);A′) I−→ Hom([X,Z], A′)

where we denote by σ∗ both maps µ �→ σ ◦ µ, µ ∈ M(L(X);A), and
ϕ �→ σ ◦ ϕ, ϕ ∈ Hom([X,Z], A).

2 If we denote the values of Iµ and Iµ′ using the standard
∫

-sign, the equality
Iµ′ = Iµ ◦ [f,Z] takes the familiar form of the change of variables formula:∫

X′ g(z) dµ′(z) =
∫

X
g(f(t)) dµ(t) for all g ∈ [X ′,Z].
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(iii) Let R,R′ be commutative rings and τ : R −→ R′ a ring homomor-
phism. Show that the following diagram is commutative

HomBoole(L(X), Idem(R)) I−→ HomRing([X,Z], R)
Idem(τ)∗ ↓ ↓ τ∗

HomBoole(L(X), Idem(R′)) I−→ HomRing([X,Z], R′)

where Idem(τ) is the Boolean algebra morphism induced by τ and
Idem(τ)∗ (resp. τ∗) the map given by composing to the left with Idem(τ)
(resp. with τ).

3. Let L be a Boolean algebra of subsets of a set Ω and R a commutative
ring. Prove the following strengthening of Lemma B.5:
(i) Let ν : L −→ Idem(R) be a function satisfying properties (ν2) and
(ν3). If ν(∅) = 0, then ν is a premeasure.
(ii) Conversely, assume that ν is a premeasure on L with values in the set
of idempotents of R and let ν(Ω) = e ∈ Idem(R). If 2 ∈ R is not a zero-
divisor then ν(Y ) ∈ Re for all Y ∈ L and ν is a Boolean algebra morphism
from L to the algebra of idempotents Idem(Re) of the commutative ring
Re.

4. The goal of this Exercise is to show that the regularity hypothesis about
2 ∈ R can’t be omitted in Lemma B.5(ii). To that end, let Ω be a finite set
and L = P(Ω) its power set. Consider the commutative ring R = Z/2Z =
{0, 1} and define an R-valued map ν on L, by letting ν(Y ) = 0 (resp. 1)
if the subset Y ⊆ Ω has an even (resp. odd) number of elements. Show
that:
(i) ν is a premeasure on L with values in Idem(R).
(ii) If Ω has an odd number of elements then ν(Ω) = 1.
(iii) If Ω has more than one elements, then ν : L −→ Idem(R) is not a
Boolean algebra morphism.
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Frobenius’ Density Theorem

Let f(X) ∈ Z[X] be a monic polynomial of degree n without multiple roots in
C. For any prime number p we may reduce f(X) modulo p and obtain a poly-
nomial fp(X) ∈ Fp[X]. Even if the original polynomial is irreducible in Z[X],
it may very well happen that its reduction modulo p is reducible in Fp[X].
Moreover, the partition of n induced by the degrees of the irreducible factors
of fp(X) in Fp[X] may vary with p. We also consider the roots a1, . . . , an

of f(X) in C and the corresponding splitting field K = Q(a1, . . . , an). The
Galois group Γ of K over Q may be viewed as a subgroup of the group Sn of
permutations on n letters, by restricting its action to the ai’s. Counting the
lengths of the cycles in the cycle decomposition of an element γ ∈ Γ ⊆ Sn, we
obtain a partition of n. In this way, we obtain partitions of n by two different
methods:

(i) by factoring f(X) modulo prime numbers and
(ii) by viewing elements of the Galois group Γ as permutations of the roots

of f(X).
It turns out that these two methods are related to each other; it is the goal
of the present Appendix to describe this relationship. As a consequence, we
prove that an irreducible monic polynomial f(X) ∈ Z[X] decomposes into the
product of linear factors modulo p for all but finitely many prime numbers
p only if deg f(X) = 1. This fact played an important role in the arguments
that were used in §3.1.2, in the proof of Zaleskii’s theorem.

Frobenius’ theorem is related to Dirichlet’s theorem on primes in arith-
metic progressions; for further details on these results, the reader may consult
the lucid exposition [67].

C.1 The Density Theorem

Let us fix a monic polynomial f(X) ∈ Z[X] of degree n. We assume that f(X)
has n distinct roots a1, . . . , an in C. For any prime number p we consider the
quotient map Z −→ Fp and the induced map between the polynomial rings
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Z[X] −→ Fp[X]. In this way, f(X) induces a monic polynomial fp(X) ∈
Fp[X] of degree n, its reduction modulo p. The polynomial ring Fp[X] being
a unique factorization domain, we may write

fp(X) =
∏sp

i=1
g
(p)
i (X) ,

where sp is a positive integer and g(p)
i (X) a monic irreducible polynomial

in Fp[X] for all i = 1, . . . , sp. Moreover, this decomposition is unique up to
the ordering of the factors. We let n(p)

i = deg g(p)
i (X) for all i and note that

n =
∑sp

i=1 n
(p)
i . Therefore, assuming that the ordering is such that n(p)

i ≥ n(p)
j

whenever i ≤ j, we obtain a partition of n, in the sense of the following
definition.

Definition C.1 Let n be a positive integer. A partition δ of n of length s is a
sequence (n1, . . . , ns) of positive integers, such that n =

∑s
i=1 ni and ni ≥ nj

for all i ≤ j.
Let Π be the set of all prime numbers and ∆n the set of all partitions of n.
The above considerations show that the monic polynomial f(X) induces a
map

δf : Π −→ ∆n ,

where δf (p) =
(
n

(p)
1 , . . . , n

(p)
sp

)
is the partition of n associated with the degrees

of the irreducible factors of the reduction fp(X) ∈ Fp[X] of f(X) modulo
p for all prime numbers p. We say that δf (p) is the decomposition length
type of the polynomial f(X) modulo p. For example, if f(X) is irreducible
modulo p, then its decomposition length type modulo p is (n). On the other
hand, if f(X) decomposes into the product of linear factors modulo p, then
δf (p) = (1, . . . , 1).

We now consider the splitting fieldK = Q(a1, . . . , an) of f(X) and the cor-
responding Galois group Γ. Any element γ ∈ Γ permutes the roots a1, . . . , an

and hence defines an element γ̃ in the group Sn of permutations on n letters.1

We may decompose γ̃ into the product of disjoint cycles

γ̃ =
∏sγ

i=1
c
(γ)
i ,

in such a way that each one of the n letters appears once and only once in
the decomposition. (Hence, cycles of length 1 are allowed.) Moreover, this
decomposition is unique up to the ordering of the c(γ)

i ’s. We let n(γ)
i be the

length of the cycle c(γ)
i for all i = 1, . . . , sγ and assume that the ordering of

the cycles is such that n(γ)
i ≥ n

(γ)
j for all i ≤ j. Since n =

∑sγ

i=1 n
(γ)
i , the

sequence
(
n

(γ)
1 , . . . , n

(γ)
sγ

)
is a partition of n. In this way, we obtain a map

1 The map γ �→ γ̃ depends on the given parametrization of the roots of f(X). If
we relabel the roots, the permutation γ̃ will change by an inner automorphism of
Sn.
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δ′f : Γ −→ ∆n ,

which is defined by letting δ′f (γ) =
(
n

(γ)
1 , . . . , n

(γ)
sγ

)
∈ ∆n for all γ ∈ Γ.2 We

say that δ′f (γ) is the cycle pattern type of γ. For example, the cycle pattern
type of the identity element 1 ∈ Γ is (1, . . . , 1). In fact, the map γ �→ γ̃ being
an embedding of Γ into Sn, 1 is the only element γ ∈ Γ with δ′f (γ) = (1, . . . , 1).

The relationship between the maps δf and δ′f is described by Frobenius’
density theorem. In order to state the result, we need the notion of density of
a set of prime numbers.

Definition C.2 Let Π be the set of all prime numbers. Then, a subset Π0 ⊆ Π
is said to have density d if the limit

limn
card (Π0 ∩ [0, n])
card (Π ∩ [0, n])

= limn
card {p : p ∈ Π0, p ≤ n}
card {p : p prime, p ≤ n}

exists and equals d.

For example, a finite set of prime numbers has density 0. It follows that the
density of a set Π0 of prime numbers is 1 if the complement Π \ Π0 is finite.

We are now ready to state Frobenius’ density theorem.

Theorem C.3 Let f(X) ∈ Z[X] be a monic polynomial of degree n without
multiple roots in C. We consider the Galois group Γ of f(X) and the maps
δf and δ′f defined above. We fix a partition δ ∈ ∆n and let Πδ = δ−1

f (δ) and

Γδ = δ
′−1
f (δ). Then, Πδ has a density which is equal to

card (Γδ)
card (Γ)

. �

The following consequence of the density theorem played an important role
in the argumentation of §3.1.2.

Corollary C.4 Let f(X) ∈ Z[X] be a monic irreducible polynomial, which
splits completely into the product of linear factors modulo p for all but finitely
many prime numbers p. Then, the polynomial f(X) is linear.

Proof. Being irreducible in Z[X], the polynomial f(X) has distinct roots in
C; let Γ be its Galois group. Then, the order N of Γ is equal to the degree of
the splitting field K of f(X) over Q. We apply Frobenius’ density theorem to
the special case of the partition δ = (1, . . . , 1) of n = deg f(X). In view of our
hypothesis, the set Πδ in Theorem C.3 consists of all but finitely many prime
numbers and hence its density is 1. Since the set Γδ is the singleton {1}, we
have 1 = 1

N and hence N = 1. It follows that K = Q, in which case the roots
a1, . . . , an of f(X) are rational numbers. The ring Z being integrally closed in
Q, in view of Lemma A.15, we conclude that ai ∈ Z for all i = 1, . . . , n and
hence f(X) =

∏n
i=1(X−ai) in Z[X]. Since the polynomial f(X) is irreducible

in Z[X], we must have n = 1. �
2 Since the sequences of lengths of the cycles in the cycle decompositions of two

conjugate permutations are the same, the map δ′f does not depend on the labelling
of the roots of f(X) (cf. footnote (1)).
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C.2 Exercises

1. Let Γ be a finite group acting on the non-empty finite set X. For any
γ ∈ Γ we consider the fixed set Fix(γ) = {x ∈ X : γx = x} and denote
by νγ its cardinality. Similarly, for any x ∈ X we consider the stabilizer
Stab(x) = {γ ∈ Γ : γx = x} and denote by µx its order.
(i) Show that

∑
γ∈Γ νγ =

∑
x∈X µx.

(ii) If the action is transitive, then show that
∑

γ∈Γ νγ = |Γ |.
(iii) Assume that the action is transitive. If Fix(γ) �= ∅ for all γ ∈ Γ, then
show that X is a singleton.

2. Let f(X) ∈ Z[X] be a monic irreducible polynomial, whose reduction
fp(X) ∈ Fp[X] has a root in Fp for all but finitely many prime numbers
p. The goal of this Exercise is to prove that f(X) is linear (generalizing
thereby Corollary C.4).
(i) Let Γ be the Galois group of the polynomial f(X). Show that any
element of Γ fixes at least one root of f(X) in C.
(ii) Show that the polynomial f(X) has only one root in C and hence
conclude that deg f(X) = 1.
(Hint: Use Exercise 1(iii) above.)

3. Let a be an integer with
√
a /∈ Z. Show that there are infinitely many

prime numbers p for which a is the square of an integer modulo p and
infinitely many prime numbers p for which a is not the square of any
integer modulo p.
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Homological Techniques

In this Appendix, we collect the basic results from Homological Algebra that
were used in Chap. 4. Our goal is not to present a complete treatment on
group homology, but rather to state the results needed in the book and place
them in the perspective of the general theory. Consequently, we shall give no
proofs of the statements to be made and refer instead the interested reader
to specialized books on the subject, such as [9, 34] and [48].

D.1 Complexes and Homology

D.1.1 Chain Complexes

We fix a ring R. A chain complex of left R-modules is a pair (C, d), where
C =

⊕
i≥0 Ci is a graded left R-module and d = (dn)n a homogeneous R-

linear endomorphism of C of degree −1, satisfying the equality d2 = 0 (d is the
differential of the complex). The chain complex (C, d) is presented pictorially
as

C0
d1←− C1

d2←− · · · dn←− Cn
dn+1←− · · ·

The elements of the submodule ker dn (resp. im dn+1) of Cn are referred to as
n-cycles (resp. n-boundaries). The homology H(C, d) of (C, d) is the graded
R-module, which is given in degree n by Hn(C, d) = ker dn/im dn+1. The
complex (C, d) is called acyclic if Hn(C, d) = 0 for all n.

Let (C, d) and (C ′, d′) be two chain complexes. Then, a chain map

ϕ : (C, d) −→ (C ′, d′)

is a homogeneous R-linear map of degree 0 from C to C ′, such that ϕd = d′ϕ.
A chain map ϕ as above induces R-linear maps

ϕn : Hn(C, d) −→ Hn(C ′, d′)
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for all n. If these latter maps are isomorphisms, the chain map ϕ is called a
quasi-isomorphism. In particular, an isomorphism of chain complexes (defined
in the obvious way) is a quasi-isomorphism. Two chain maps

ϕ,ψ : (C, d) −→ (C ′, d′)

are called homotopic if there exists a homogeneous map Σ : C −→ C ′ of
degree +1, such that Σd + d′Σ = ϕ − ψ. In that case, the maps induced in
homology by ϕ and ψ are equal, i.e.

ϕn = ψn : Hn(C, d) −→ Hn(C ′, d′)

for all n. A chain complex (C, d) is called contractible if the chain endomor-
phisms idC and 0 of (C, d) are homotopic. It follows that a contractible chain
complex is acyclic. A chain map ϕ : (C, d) −→ (C ′, d′) is called a homotopy
equivalence if there exists a chain map ψ : (C ′, d′) −→ (C, d), such that the
compositions ϕψ and ψϕ are homotopic with the identity maps idC′ and idC

respectively.
If ϕ : (C, d) −→ (C ′, d′) is a chain map then the kernel of the R-linear map

ϕ : C −→ C ′ is a graded d-invariant R-submodule of C; therefore, (kerϕ, d) is
a chain complex. Similarly, (imϕ, d′) is a chain subcomplex of (C ′, d′). In this
way, one extends the notion of exactness to the category of chain complexes
and maps. In particular, one may consider a short exact sequence of chain
complexes

0 −→ (C ′, d′) i−→ (C, d)
p−→ (C ′′, d′′) −→ 0 .

A short exact sequence as above induces a long exact sequence of R-modules

· · · −→ Hn(C ′, d′) in−→ Hn(C, d)
pn−→ Hn(C ′′, d′′) ∂n−→ Hn−1(C ′, d′) −→ · · ·

The notions of cochain complexes, cochain maps and cohomology can be
defined in the same way, by considering differentials of degree +1.

D.1.2 Double Complexes

A double chain complex (or chain bicomplex) of left R-modules consists of a
bigraded left R-module C =

⊕
i,j≥0 Cij together with R-linear maps dh and

dv, which are homogeneous of degrees (−1, 0) and (0,−1) respectively and
satisfy the equalities d2h = 0, d2v = 0 and dhdv + dvdh = 0. The map dh (resp.
dv) is referred to as the horizontal (resp. vertical) differential of the double
complex.

If (C, dh, dv) and (C ′, d′h, d
′
v) are chain bicomplexes, then a chain bicomplex

map
ϕ : (C, dh, dv) −→ (C ′, d′h, d

′
v)

is a homogeneous R-linear map of degree (0, 0) from C to C ′, such that ϕdh =
d′hϕ and ϕdv = d′vϕ. It is clear that a chain bicomplex map ϕ as above restricts
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in the horizontal direction to a chain map between the rows (C∗j , dh) and
(C ′

∗j , d
′
h) for all j. Similarly, ϕ restricts in the vertical direction to a chain

map between the columns (Ci∗, dv) and (C ′
i∗, d

′
v) for all i.

For any double complex (C, dh, dv) there is an associated (total) chain
complex (TotC, d), which is defined by letting (TotC)n =

⊕
i+j=n Cij for all

n and d = dh + dv. Moreover, any chain bicomplex map

ϕ : (C, dh, dv) −→ (C ′, d′h, d
′
v)

induces a chain map

Totϕ : (TotC, d) −→ (TotC ′, d′) .

We say that ϕ is a quasi-isomorphism if this is the case for Totϕ.

Proposition D.1 Let ϕ : (C, dh, dv) −→ (C ′, d′h, d
′
v) be a chain bicomplex

map. Then, ϕ is a quasi-isomorphism if either one of the following two con-
ditions is satisfied:

(i) ϕ restricts to a quasi-isomorphism between the columns (Ci∗, dv) and
(C ′

i∗, d
′
v) for all i.

(ii) ϕ restricts to a quasi-isomorphism between the rows (C∗j , dh) and
(C ′

∗j , d
′
h) for all j. �

Corollary D.2 Let (C, dh, dv) be a double complex.
(i) If the rows (C∗j , dh) are acyclic in positive degrees for all j, then the

chain complexes (TotC, d) and
(⊕

j C0j/dhC1j , dv

)
are quasi-isomorphic.

(ii) If the columns (Ci∗, dv) are acyclic for all i > 0, then the complex
(TotC, d) is quasi-isomorphic with the 0-th column (C0∗, dv). �

The notion of a double cochain complex can be defined in the same way, by
considering differentials of degrees (+1, 0) and (0,+1).

Examples D.3 (i) Let R be a ring and (C, d) (resp. (C ′, d′)) a chain complex
of right (resp. left) R-modules. Then, there is a chain bicomplex of abelian
groups (C ⊗R C

′, d ⊗ 1,±1 ⊗ d′), consisting of Ci ⊗R C
′
j in degree (i, j); the

signs + and − in the vertical differentials alternate in order for the operator
dhdv + dvdh to vanish. We note that there are natural maps (called Künneth
maps)

K : Hi(C) ⊗R Hj(C ′) −→ Hi+j(Tot(C ⊗R C
′))

for all i, j ≥ 0, which are given by letting [xi] ⊗ [x′j ] �→ [xi ⊗ x′j ] for any
homology classes [xi] ∈ Hi(C) and [x′j ] ∈ Hj(C ′). Similar remarks apply to
cochain complexes and cohomology.

(ii) Let R be a ring, (C, d) a chain complex and (C ′, d′) a cochain complex
of left R-modules. Then, there is a double cochain complex of abelian groups
(HomR(C,C′), d∗,±d′∗), which consists of HomR(Ci, C

′j) in degree (i, j). Here,
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d∗ and d′∗ denote the additive maps between the Hom-groups induced by d
and d′ respectively. We note that there are natural maps

Hi+j(Tot HomR(C,C′))−→ HomR

(
Hi(C),Hj(C ′)

)
for all i, j ≥ 0, which are given by mapping a cohomology class [f ] ∈
Hi+j(Tot HomR(C,C′)) onto the R-linear map fromHi(C) toHj(C ′) induced
by the component fij ∈ HomR(Ci, C

′j) of f .

D.1.3 Tor and Ext

As an example of the notions introduced above, we define the functors Tor
and Ext. To that end, let us fix a right R-module M and a left R-module N .
For any R-projective resolutions

0 ←−M ε←− P∗ and 0 ←− N η←− Q∗

we may consider the chain complexes of abelian groups P∗ ⊗R N , M ⊗R Q∗
and the double complex P∗⊗RQ∗ (cf. Example D.3(i)). Then, there are quasi-
isomorphisms

P∗ ⊗R N
1⊗η←− Tot(P∗ ⊗R Q∗)

ε⊗1−→M ⊗R Q∗ .

In particular, we may define the Tor-groups by letting

TorR
n (M,N) = Hn(P∗ ⊗R N) Hn(Tot(P∗ ⊗R Q∗)) Hn(M ⊗R Q∗)

for all n. If
0 ←−M ε′

←− P ′
∗ and 0 ←− N η′

←− Q′
∗

are also R-projective resolutions of M and N , then there are chain maps

ϕ : P∗ −→ P ′
∗ and ψ : Q∗ −→ Q′

∗

that satisfy the equalities ε = ε′ϕ0 and η = η′ψ0 and are unique up to
homotopy with that property. These chain maps are homotopy equivalences
and hence there is a commutative diagram of quasi-isomorphisms

P∗ ⊗R N
1⊗η←− Tot(P∗ ⊗R Q∗)

ε⊗1−→ M ⊗R Q∗
ϕ⊗1 ↓ Tot(ϕ⊗ψ) ↓ 1⊗ψ ↓
P ′
∗ ⊗R N

1⊗η′
←− Tot(P ′

∗ ⊗R Q
′
∗)

ε′⊗1−→ M ⊗R Q
′
∗

It follows that the definition of the Tor-groups is independent of the chosen
resolutions, in the sense that the vertical quasi-isomorphisms in the diagram
above induce identifications in homology.

The behavior of the Tor-groups with respect to direct sums is described
in the next result.
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Proposition D.4 (i) Let R be a ring, (Mi)i a family of right R-modules and
(Nj)j a family of left R-modules. If M =

⊕
iMi and N =

⊕
j Nj, then the

inclusions Mi ↪→ M and Nj ↪→ N induce an isomorphism of abelian groups
TorR

n (M,N) ⊕i,j TorR
n (Mi, Nj) for all n.

(ii) Let R1, . . . , Rs be rings and R =
∏s

i=1Ri their direct product. For
each i = 1, . . . , s we consider a right Ri-module Mi and a left Ri-module
Ni. Then, the abelian group M =

⊕s
i=1Mi (resp. N =

⊕s
i=1Ni) has the

structure of a right (resp. left) R-module and there is a natural isomorphism
TorR

n (M,N) ⊕s
i=1 TorRi

n (Mi, Ni) for all n. �
In order to define the Ext-groups of two left R-modules M and N , one con-
siders a projective resolution

0 ←−M ←− P∗

of M and an injective resolution

0 −→ N −→ I∗

of N . Then, there are induced quasi-isomorphisms of cochain complexes

HomR(P∗, N) −→ Tot HomR(P∗, I∗) ←− HomR(M, I∗)

(cf. Example D.3(ii)) and one defines for any n

Extn
R(M,N) = Hn(HomR(P∗, N))

 Hn(Tot HomR(P∗, I∗))
 Hn(HomR(M, I∗)) .

Remarks D.5 (i) Let R be a ring, M a right R-module and N a left R-
module. In degree 0, there is an identification TorR

0 (M,N)  M ⊗R N . The
groups TorR

n (M,N) vanish for all n > 0 if either M or N is projective (or,
more generally, flat) as an R-module.

(ii) Let R be a ring and M,N two left R-modules. In degree 0, there is an
identification Ext0R(M,N)  HomR(M,N). The groups Extn

R(M,N) vanish
for all n > 0 if either M is projective or N is injective as an R-module.

(iii) Let (C, d) and (C ′, d′) be two chain complexes of abelian groups, such
that either one of them is free. Then, the homology of the double complex
(C ⊗ C ′, d⊗ 1,±1 ⊗ d′) fits into a natural short exact sequence

0→(H∗(C) ⊗H∗(C ′))n
K→Hn(Tot(C ⊗ C ′))→(Tor(H∗(C),H∗(C ′)))n−1→0 ,

where
(H∗(C) ⊗H∗(C ′))n =

⊕
i+j=n

Hi(C) ⊗Hj(C ′) ,

K is the Künneth map (cf. Example D.3(i)) and

(Tor(H∗(C),H∗(C ′)))n−1 =
⊕

i+j=n−1
TorZ1 (Hi(C),Hj(C ′))

for all n. In particular, if the complexes (C, d) and (C ′, d′) are free resolutions
of the abelian groupsM andM ′ respectively, then the chain complex Tot(C⊗
C ′) is a free resolution of M ⊗M ′, provided that TorZ1 (M,M ′) = 0.
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D.2 Group Homology and Cohomology

D.2.1 Basic Definitions

We now consider a commutative ring k, a group G and specialize the above
discussion to the case where R is the group algebra kG. For any left kG-
module M we define the homology groups Hn(G,M) and the cohomology
groups Hn(G,M) of G with coefficients in M , by letting

Hn(G,M) = TorkG
n (k,M) and Hn(G,M) = Extn

kG(k,M)

for all n. Here, k is viewed as a (right and left) kG-module, by means of the
trivial G-action. In particular, if

0 ←− k ε←− P∗

is a resolution of k by projective right kG-modules, then

Hn(G,M) = Hn(P∗ ⊗kG M)

for all n. This definition doesn’t depend upon the chosen resolution. More
precisely, if

0 ←− k ε′
←− P ′

∗

is another kG-projective resolution of k, then there is a unique up to homotopy
chain map ϕ : P∗ −→ P ′

∗ satisfying ε = ε′ϕ0, which is a homotopy equivalence
and induces a canonical identification

Hn(P∗ ⊗kG M)  Hn(P ′
∗ ⊗kG M)

for all n. Similarly, the cohomology groups Hn(G,M) of G with coefficients
in the left kG-module M can be computed by using a projective resolution
Q∗ of the trivial left kG-module k, as the cohomology groups of the cochain
complex HomkG(Q∗,M).

In order to describe the so-called standard resolution of k, we let

Sn(G, k) = k[Gn+1] =
⊕{

k · (g0, . . . , gn) : (g0, . . . , gn) ∈ Gn+1
}

for all n ≥ 0, with left (resp. right) kG-module structure induced by the left
(resp. right) diagonal action of G on Gn+1; in particular, S0(G, k) = kG. For
all n ≥ 1 and i ∈ {0, . . . , n} we define a k-linear map

δni : Sn(G, k) −→ Sn−1(G, k) ,

by letting
δni (g0, . . . , gn) = (g0, . . . , ĝi, . . . , gn)
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for any element (g0, . . . , gn) ∈ Gn+1; here, the symbol ̂ over an element
denotes omission of that element. It is clear that the k-linear maps δni are, in
fact, kG-linear for both left and right actions. We now define the operators

δn, δ
′
n : Sn(G, k) −→ Sn−1(G, k) ,

by letting

δn =
∑n

i=0
(−1)iδni and δ′n =

∑n−1

i=0
(−1)iδni

for all n ≥ 1.

Proposition D.6 Let k be a commutative ring and G a group.
(i) The chain complex

k
ε←− S0(G, k)

δ1←− S1(G, k)
δ2←− · · · δn←− Sn(G, k)

δn+1←− · · · ,

where ε is the augmentation, is a free resolution (S(G, k), δ) = (S∗(G, k), δ)
of k as a trivial left or right kG-module.

(ii) The chain complex

S0(G, k)
δ′
1←− S1(G, k)

δ′
2←− · · · δ′

n←− Sn(G, k)
δ′

n+1←− · · ·

is contractible as a complex of left or right kG-modules. In particular, it is
acyclic. �

In order to describe the functoriality of the (co-)homology groups, let us con-
sider a group G and a homomorphism f : M −→ M ′ of left kG-modules.
Then, there are induced additive maps

f∗ : Hn(G,M) −→ Hn(G,M ′) and f∗ : Hn(G,M) −→ Hn(G,M ′)

for all n. On the other hand, let φ : G −→ G′ be a group homomorphism.
Then, φ induces a k-linear chain map

φ̃ : S(G, k) −→ S(G′, k) .

For any kG′-module M we denote by Mφ the kG-module obtained from M
by restriction of scalars along φ. Then, the chain maps

φ̃⊗ 1 : S(G, k) ⊗kG Mφ −→ S(G′, k) ⊗kG′ M

and
Hom

(
φ̃, 1
)

: HomkG′(S(G′, k),M) −→ HomkG(S(G, k),Mφ)

induce additive maps
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φ∗ : Hn(G,Mφ) −→ Hn(G′,M) and φ∗ : Hn(G′,M) −→ Hn(G,Mφ)

respectively for all n.

Remarks D.7 (i) Let k be a commutative ring, G a group and M a left kG-
module. Then, the homology groups Hn(G,M) and the cohomology groups
Hn(G,M) depend only upon the action of G on the abelian groupM . In order
to make this assertion precise, let us denote by M ′ the ZG-module obtained
from the kG-module M by restriction of scalars. Since

S∗(G, k) = S∗(G,Z) ⊗ZG kG and S∗(G, k) = kG⊗ZG S∗(G,Z)

as right and left kG-modules respectively, we have

TorkG
n (k,M) = Hn(S∗(G, k) ⊗kG M)

= Hn(S∗(G,Z) ⊗ZG M
′)

= TorZG
n (Z,M ′)

and
Extn

kG(k,M) = Hn(HomkG(S∗(G, k),M))
= Hn(HomZG(S∗(G,Z),M ′))
= Extn

ZG(Z,M ′),

i.e. Hn(G,M) = Hn(G,M ′) and Hn(G,M) = Hn(G,M ′) for all n.
(ii) Let G be a group, M a left ZG-module and g ∈ G a fixed element. We

consider the inner automorphism (conjugation) Ig ∈ Aut(G) and let Mg =
MIg

be the ZG-module obtained from M by restriction of scalars along Ig.
We also consider the ZG-linear map

λg :M −→Mg ,

which is defined by m �→ gm, m ∈M . Then, the compositions

Hn(G,M)
(λg)∗−→ Hn(G,Mg)

(Ig)∗−→ Hn(G,M)

and
Hn(G,M)

(λg)∗−→ Hn(G,Mg)
[(Ig)∗]−1

−→ Hn(G,M)

can be shown to be the identity operators for all n.

Examples D.8 (i) If G is a group and M a left ZG-module, then

H0(G,M) = Z ⊗ZG M M/<gm−m : g ∈ G,m ∈M>

is the coinvariance MG of M (cf. Remark D.5(i)) and

H0(G,M) = HomZG(Z,M)  {m ∈M : gm = m for all g ∈ G}
is the invariance MG of M (cf. Remark D.5(ii)).
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(ii) Let k be a field of characteristic 0 and G a finite group. Then, in view
of Maschke’s theorem (Theorem 1.9), the groups Hn(G,M) and Hn(G,M)
vanish for all n > 0 and all kG-modules M (cf. Remarks D.5(i),(ii)).

(iii) Let G be a finite cyclic group with generator τ . Then, the chain
complex

Z ε←− ZG 1−τ←− ZG N←− ZG 1−τ←− ZG N←− ZG 1−τ←− · · · ,

where N =
∑{t : t ∈ G}, is a ZG-free resolution of Z. In particular, for any

ZG-moduleM the homology groups of G with coefficients inM are computed
as the homology groups of the chain complex

M
1−τ←−M N←−M 1−τ←−M N←−M 1−τ←− · · ·

Similarly, the cohomology groups of G with coefficients in M are computed
as the cohomology groups of the cochain complex

M
1−τ−→M

N−→M
1−τ−→M

N−→M
1−τ−→ · · ·

In particular, Hn(G,M) = Hn+2(G,M) and Hn(G,M) = Hn+2(G,M) for
all n > 0.

Let k be a commutative ring and G a group. Then, G is said to have finite
homological dimension over k if there exists an integer n ≥ 0, such that
Hi(G,M) = 0 for all i > n and all kG-modules M . The smallest n with
this property is the homological dimension hdkG of G over k. In this way,
Example D.8(ii) implies that hdkG = 0 if G is a finite group and k a field of
characteristic 0.

Proposition D.9 Let k be a commutative ring.
(i) If G is a group of finite homological dimension over k and H ≤ G

a subgroup, then H has finite homological dimension over k as well; in fact,
hdkH ≤ hdkG.

(ii) If (Gi)i is a family of groups of uniformly bounded homological dimen-
sion over k and G = ∗iGi the corresponding free product, then G has finite
homological dimension over k; in fact, hdkG ≤ max{1,maxi hdkGi}.

(iii) If (Gi)i is a directed system of groups of uniformly bounded homolog-
ical dimension over k and G = lim

−→i
Gi the corresponding direct limit, then G

has finite homological dimension over k; in fact, hdkG ≤ maxi hdkGi. �

D.2.2 H2 and Extensions

Let G be a group and M a left ZG-module. Then, an extension of G by M
is a group X having M as a normal subgroup with X/M  G, in such a way
that conjugation induces the given action of G on M . Two extensions
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1 −→M −→ X −→ G −→ 1 and 1 −→M −→ X ′ −→ G −→ 1

are called equivalent if there is a group homomorphism f : X −→ X ′ that fits
into a commutative diagram

1 −→ M −→ X −→ G −→ 1
‖ f ↓ ‖

1 −→ M −→ X ′ −→ G −→ 1

There is a bijective correspondence between the set of equivalence classes of
extensions of G by M and the cohomology group H2(G,M), such that the
equivalence class of the semi-direct product M × G corresponds to the zero
element of H2(G,M). In this way, the functorial behavior of H2 corresponds
to certain operations on extensions. In order to explicit these operations, let
us consider an extension

1 −→M
ı−→ X

π−→ G −→ 1

and the corresponding cohomology class α ∈ H2(G,M).

Functoriality in the coefficient module: Let M ′ be another ZG-module and
f : M −→ M ′ a ZG-linear map. We consider the ZX-module M ′

π ob-
tained from M ′ by restricting its G-module structure along π and note that
{(−f(m), ı(m)) : m ∈ M} is a normal subgroup of the semi-direct product
M ′

π × X. The corresponding quotient group X ′ fits into the commutative
diagram

1 −→ M
ı−→ X

π−→ G −→ 1
f ↓ f ′ ↓ ‖

1 −→ M ′ ı′−→ X ′ π′
−→ G −→ 1

where ı′ and f ′ are obtained by composing the natural maps into M ′ × X
with the projection onto X ′, whereas π′ maps the class of an element (m′, x)
in X ′ onto π(x) ∈ G. Then, the G-module structure induced on M ′ by the
extension in the bottom row of the above diagram is its original G-module
structure and the element of H2(G,M ′) which classifies that extension is the
image f∗α of α under the map

f∗ : H2(G,M) −→ H2(G,M ′) .

Functoriality in the group: Let G′ be another group and φ : G′ −→ G a group
homomorphism. We consider the subgroup X ′′ = {(x, g′) ∈ X × G′ : π(x) =
φ(g′)} of the direct product X×G′ and note that it fits into the commutative
diagram

1 −→ M
ı′′−→ X ′′ π′′

−→ G′ −→ 1
‖ φ′′ ↓ φ ↓

1 −→ M
ı−→ X

π−→ G −→ 1
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where φ′′ and π′′ are the restrictions to X ′′ of the projections of X ×G′ onto
X and G′ respectively, whereas ı′′ maps m ∈ M onto (ı(m), 1) ∈ X ′′. Then,
the G′-module structure induced on M by the extension in the top row of
the above diagram is the one obtained by restricting its original G-module
structure along φ, thereby identifying it with Mφ. Moreover, the element of
H2(G′,Mφ) which classifies that extension is the image φ∗α of α under the
map

φ∗ : H2(G,M) −→ H2(G′,Mφ) .

Proposition D.10 Consider a morphism of group extensions with abelian
kernels

1 −→ M −→ X −→ G −→ 1
f ↓ ↓ φ ↓

1 −→ M ′ −→ X ′ −→ G′ −→ 1

If α ∈ H2(G,M) and α′ ∈ H2(G′,M ′) are the cohomology classes classifying
these extensions, then f∗α = φ∗α′ ∈ H2(G,M ′). �

D.2.3 Products

We fix a group G and consider the standard resolution S∗ = (S∗(G,Z), δ) of
the trivial G-module Z. We recall that Sn = Z[Gn+1] is projective both as a
left and as a right ZG-module. The chain complex Tot(S∗⊗S∗) is a resolution
of Z ⊗ Z = Z (cf. Remark D.5(iii)), consisting of projective left (and right)
ZG-modules (the group G acts diagonally on the tensor product; cf. Lemma
1.8(ii)). Hence, there is a left ZG-linear chain map

∆′ : S∗ −→ Tot(S∗ ⊗ S∗) ,

which commutes with the augmentation maps to Z and is unique up to ho-
motopy with this property. Similarly, there is a right ZG-linear chain map

∆′′ : S∗ −→ Tot(S∗ ⊗ S∗) ,

which commutes with the augmentation maps to Z and is unique up to ho-
motopy with this property. Chain maps ∆′ and ∆′′ as above are homotopy
equivalences and are referred to as diagonal approximations.

We now construct a specific diagonal approximation

∆ : S∗ −→ Tot(S∗ ⊗ S∗) ,

called the Alexander-Whitney map. To that end, we define in degree n the
additive map

∆n : Sn −→
⊕n

i=0
Si ⊗ Sn−i ,

by letting ∆n(g0, . . . , gn) =
∑n

i=0(g0, . . . , gi)⊗(gi, . . . , gn) for all (n+1)-tuples
(g0, . . . , gn) ∈ Gn+1.
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Lemma D.11 The Alexander-Whitney map ∆ = (∆n)n is a chain map,
which is ZG-linear for both left and right actions and commutes with the
augmentation maps to Z. �

Using the Alexander-Whitney map, we define the cup- and cap-products.

Cup-products: Let M,N be left ZG-modules and M ⊗ N the corresponding
tensor product, viewed as a left ZG-module with diagonal action. Then, there
is a morphism of cochain complexes

∪ : Tot(HomZG(S∗,M) ⊗ HomZG(S∗, N))−→ HomZG(S∗,M ⊗N)

(cf. Example D.3(i)), which is defined as follows: For any a∈ HomZG(Si,M)
and b ∈ HomZG(Sj , N), the element a ∪ b ∈ HomZG(Si+j ,M ⊗N) maps any
x ∈ Gi+j+1 ⊆ Si+j with ∆i+jx =

∑
k+l=i+j xk ⊗ x′l ∈

⊕
k+l=i+j Sk ⊗ Sl onto

(−1)ija(xi) ⊗ b(x′j) ∈M ⊗N . The induced additive maps

∪ : Hi(G,M) ⊗Hj(G,N) −→ Hi+j(G,M ⊗N), i, j ≥ 0 ,

are called cup-product maps. Some basic properties of them are summarized
in the next result.

Proposition D.12 The cup-product maps have the following properties:
(i) (associativity) Let L,M and N be left ZG-modules. Then, for any

cohomology classes α ∈ Hi(G,L), β ∈ Hj(G,M) and γ ∈ Hk(G,N), we have
(α ∪ β) ∪ γ = α ∪ (β ∪ γ) ∈ Hi+j+k(G,L⊗M ⊗N).

(ii) (graded-commutativity) Let M,N be left ZG-modules. Then, for any
cohomology classes α ∈ Hi(G,M) and β ∈ Hj(G,N), we have α ∪ β =
(−1)ijτ∗(β ∪ α), where τ : N ⊗M −→M ⊗N is the flip map.

(iii) (naturality with respect to the coefficient modules) Let M,N,M ′ and
N ′ be left ZG-modules. Then, for any ZG-linear maps f : M −→ M ′ and
h : N −→ N ′ there is a commutative diagram

Hi(G,M) ⊗Hj(G,N) ∪−→ Hi+j(G,M ⊗N)
f∗⊗h∗ ↓ ↓ (f⊗h)∗

Hi(G,M ′) ⊗Hj(G,N ′) ∪−→ Hi+j(G,M ′ ⊗N ′)

for all i, j ≥ 0.
(iv) (naturality with respect to the group) Let G′ be another group and

ϕ : G′ −→ G a group homomorphism. Then, for any ZG-modules M,N there
is a commutative diagram

Hi(G,M) ⊗Hj(G,N) ∪−→ Hi+j(G,M ⊗N)
ϕ∗⊗ϕ∗ ↓ ↓ ϕ∗

Hi(G′,M ′) ⊗Hj(G′, N ′) ∪−→ Hi+j(G′,M ′ ⊗N ′)

for all i, j ≥ 0. Here, M ′ = Mϕ and N ′ = Nϕ denote the ZG′-modules
obtained from M and N respectively by restriction of scalars along ϕ. �
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In particular, let us consider a commutative ring k, viewed as a trivial G-
module. Then, the multiplication k ⊗ k −→ k enables one to consider the
composition

Hi(G, k) ⊗Hj(G, k) ∪−→ Hi+j(G, k ⊗ k) −→ Hi+j(G, k)

for all i, j ≥ 0; these maps are referred to as cup-product maps as well.

Corollary D.13 Let k be a commutative ring.
(i) (k-algebra structure) The cup-product maps defined above endow the

cohomology H•(G, k) =
⊕

iH
i(G, k) with the structure of an associative and

graded-commutative k-algebra.
(ii) (naturality with respect to the coefficient ring) Let K be another com-

mutative ring and f : k −→ K a ring homomorphism. Then, the induced
map

f∗ : H•(G, k) −→ H•(G,K)

is a ring homomorphism as well.
(iii) (naturality with respect to the group) Let G′ be another group and

ϕ : G′ −→ G a group homomorphism. Then, the induced map

ϕ∗ : H•(G, k) −→ H•(G′, k)

is a homomorphism of k-algebras. �

Cap-products: We consider again two left ZG-modules M,N and their tensor
productM⊗N (with diagonal G-action). Let α ∈ Hn(G,M) be a cohomology
class, represented by a ZG-linear map a : Sn −→M . We denote by S∗[n] the
complex, which is given in degree i by Si−n and whose differential is (−1)nδ,
and consider the composition

S∗ ⊗ZG N
∆⊗1−→ Tot(S∗ ⊗ S∗) ⊗ZG N

(1⊗a⊗1)gr

−→ S∗[n] ⊗ZG (M ⊗N) ,

where (1⊗a⊗1)gr maps an elementary tensor (xi⊗xj)⊗y ∈ (Si⊗Sj)⊗ZGN
onto the tensor (−1)nixi ⊗ (a(xj) ⊗ y) ∈ Si ⊗ZG (M ⊗ N) (resp. onto 0) if
j = n (resp. if j �= n).1 The induced additive maps

α ∩ : Hi(G,N) −→ Hi−n(G,M ⊗N), i ≥ 0 ,

depend only upon the cohomology class α and are called cap-product maps.
Some basic properties of them are summarized in the next result.
1 Here, we regard S∗ and Tot(S∗⊗S∗) as complexes of right ZG-modules by letting

any element g ∈ G act as left multiplication by g−1. As such, the complexes S∗
and Tot(S∗ ⊗ S∗) provide us with projective resolutions of the trivial right ZG-
module Z; cf. the discussion at the beginning of §D.2.4.
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Proposition D.14 The cap-product maps have the following properties:
(i) (naturality with respect to the coefficient modules) Let M,N,M ′ and

N ′ be left ZG-modules. Then, for any ZG-linear maps f : M −→ M ′ and
h : N −→ N ′ and any cohomology class α ∈ Hn(G,M) there is a commutative
diagram

Hi(G,N) α∩−→ Hi−n(G,M ⊗N)
h∗ ↓ ↓ (f⊗h)∗

Hi(G,N ′)
f∗α∩−→ Hi−n(G,M ′ ⊗N ′)

for all i ≥ 0.
(ii) (naturality with respect to the group) Let G′ be another group and

ϕ : G′ −→ G a group homomorphism. Then, for any left ZG-modules M,N
and any cohomology class α ∈ Hn(G,M) there is a commutative diagram

Hi(G′, N ′)
ϕ∗α∩−→ Hi−n(G′,M ′ ⊗N ′)

ϕ∗ ↓ ↓ ϕ∗

Hi(G,N) α∩−→ Hi−n(G,M ⊗N)

for all i ≥ 0. Here, M ′ =Mϕ and N ′ = Nϕ denote the ZG′-modules obtained
from M and N respectively by restriction of scalars along ϕ.

(iii) (composition) Let L,M and N be left ZG-modules. Then, for any
cohomology classes α ∈ Hn(G,M) and β ∈ Hm(G,L), the composition

Hi(G,N) α∩−→ Hi−n(G,M ⊗N)
β∩−→ Hi−n−m(G,L⊗M ⊗N)

coincides with the cap-product map

γ ∩ : Hi(G,N) −→ Hi−n−m(G,L⊗M ⊗N) ,

where γ = β ∪ α ∈ Hn+m(G,L⊗M), for all i ≥ 0. �

In particular, let k be a commutative ring (viewed as a trivial G-module) and
α ∈ Hn(G, k) a cohomology class. Then, we may consider for all i ≥ 0 the
composition

Hi(G, k)
α∩−→ Hi−n(G, k ⊗ k) −→ Hi−n(G, k) ,

where the latter map is induced by the multiplication of k. These maps are
referred to as cap-product maps as well.

Corollary D.15 Let k be a commutative ring.
(i) (naturality with respect to the coefficient ring) Let K be another commu-

tative ring and f : k −→ K a ring homomorphism. Then, for any cohomology
class α ∈ Hn(G, k) there is a commutative diagram

Hi(G, k)
α∩−→ Hi−n(G, k)

f∗ ↓ ↓ f∗

Hi(G,K) αK∩−→ Hi−n(G,K)
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for all i ≥ 0. Here, αK = f∗α is the image of α in the cohomology group
Hn(G,K).

(ii) (naturality with respect to the group) Let G′ be another group and
ϕ : G′ −→ G a group homomorphism. Then, for any cohomology class α ∈
Hn(G, k) there is a commutative diagram

Hi(G′, k) α′∩−→ Hi−n(G′, k)
ϕ∗ ↓ ↓ ϕ∗

Hi(G, k)
α∩−→ Hi−n(G, k)

for all i ≥ 0. Here, α′ = ϕ∗α is the image of α in the cohomology group
Hn(G′, k).

(iii) (composition) For any cohomology classes α ∈ Hn(G, k) and β ∈
Hm(G, k), the composition

Hi(G, k)
α∩−→ Hi−n(G, k)

β∩−→ Hi−n−m(G, k)

coincides with the cap-product map

γ ∩ : Hi(G, k) −→ Hi−n−m(G, k) ,

where γ = β ∪ α ∈ Hn+m(G, k), for all i ≥ 0. �

D.2.4 Duality

In this subsection, we briefly investigate the extent to which group cohomology
is dual to group homology.

We fix a commutative ring k and a group G. First of all, we define the
(co-)homology groups of G with coefficients in right kG-modules. To that end,
we consider the involution

τ : kG −→ kG

of the k-algebra kG, which is defined by letting τ(g) = g−1 for all g ∈ G.
If U is a right kG-module, we let Ũ be the left kG-module obtained from U
by pulling back its right kG-module structure along τ . In other words, we
define g · u = ug−1 for all g ∈ G and u ∈ U . Then, the (co-)homology of G
with coefficients in U is defined as the (co-)homology of G with coefficients
in Ũ . We note that the right kG-module U is projective if and only if the
left kG-module Ũ is projective. Moreover, if U ′ is another right kG-module
then a k-linear map f : U −→ U ′ is a homomorphism of right kG-modules
if and only if the map f : Ũ −→ Ũ ′ is a homomorphism of left kG-modules.
Therefore, we conclude that

HomkG(U,U ′) = HomkG

(
Ũ , Ũ ′

)
.

It follows that the cohomology groups Hn(G,U), n ≥ 0, of G with coefficients
in the right kG-module U can be computed using a resolution
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0 ←− k ε←− P∗

of k by projective right kG-modules, as the cohomology of the cochain com-
plex HomkG(P∗, U). In a similar way, it turns out that the homology groups
Hn(G,U), n ≥ 0, of G with coefficients in the right kG-module U can be
computed using a resolution

0 ←− k ε←− Q∗

of k by projective left kG-modules, as the homology of the chain complex
U ⊗kG Q∗.

We now consider a left kG-module M and a k-module J . Then, the k-
module U = Homk(M,J) has a natural structure of a right kG-module, which
is obtained by using the left G-action on M (cf. Exercise 1.3.1(i)). If

0 ←− k ε←− P∗

is a resolution of k by projective right kG-modules, then there is a natural
identification of cochain complexes

HomkG(P∗,Homk(M,J)) ∼−→ Homk(P∗ ⊗kG M,J)

(cf. Exercise 1.3.1(iii)). In this way, we obtain k-linear maps

θG,M,J : Hn(G,Homk(M,J)) −→ Homk(Hn(G,M), J)

for all n ≥ 0 (cf. Example D.3(ii)).

Proposition D.16 Let M be a left kG-module, J a k-module and consider
the k-linear maps θ = θG,M,J defined above.

(i) For any cohomology class α ∈ Hn(G,Homk(M,J)) the k-linear map
θ(α) ∈ Homk(Hn(G,M), J) is the composition

Hn(G,M) α∩−→ H0

(
G, ˜Homk(M,J) ⊗M

)
= Homk(M,J) ⊗kG M

ev−→ J ,

where ev denotes the evaluation homomorphism.
(ii) If J is an injective k-module, then θ is an isomorphism for all n. �

Corollary D.17 Assume that k is a field, viewed as a trivial G-module. Then,
there is an isomorphism Hn(G, k)  Homk(Hn(G, k), k), which identifies a
cohomology class α ∈ Hn(G, k) with the cap-product map

α ∩ : Hn(G, k) −→ H0(G, k) = k

for all n ≥ 0. �
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D.2.5 The (co-)homology of an Extension

Let us now consider a group G, a normal subgroup N�G and the correspond-
ing quotient Q = G/N . Our goal is to describe the relationship between the
(co-)homology groups of G with coefficients in a ZG-module M and certain
(co-)homology groups ofN and Q. This relationship can be properly described
by using the notion of a spectral sequence. Instead of giving the details of the
construction of the Lyndon-Hochschild-Serre spectral sequence, we adopt an
ad hoc point of view and state a few results that make the techniques used in
Chap. 4 intelligible.

Our first objective is to compute the homology groups Hn(G,M), n ≥ 0.
We denote by M ′ the ZN -module obtained from M by restriction of scalars
and consider the homology groups Hj(N,M ′), j ≥ 0. For any g ∈ G we
let Ig ∈ Aut(N) be the conjugation by g and define M ′

g = M ′
Ig

to be the
ZN -module obtained from M ′ by restriction of scalars along Ig. If

λg :M ′ −→M ′
g

is the ZN -linear map, which is defined by letting λg(x) = gx for all x ∈ M ′,
then the composition

Hj(N,M ′)
(λg)∗−→ Hj

(
N,M ′

g

) (Ig)∗−→ Hj(N,M ′)

is an additive endomorphism �g of the groupHj(N,M ′). In this way, we obtain
an action � of G on the homology group Hj(N,M ′). This action being trivial
on N (cf. Remark D.7(ii)), we conclude that the group Hj(N,M ′) admits a
natural ZQ-module structure for all j ≥ 0. In particular, we may consider the
homology groups Hi(Q,Hj(N,M ′)) for all i, j ≥ 0.

Theorem D.18 Let G be a group, N �G a normal subgroup and Q = G/N
the corresponding quotient. We consider a ZG-module M and let M ′ be the
ZN -module obtained from M by restriction of scalars. Then, for all n ≥ 0 the
homology group Hn(G,M) admits a natural increasing filtration

0 = F−1Hn ⊆ F0Hn ⊆ F1Hn ⊆ · · · ⊆ Fn−1Hn ⊆ FnHn = Hn(G,M) ,

having the following properties:
(i) The group FpHn/Fp−1Hn is a certain subquotient of the homology

group Hp(Q,Hn−p(N,M ′)) for all p, n.
(ii) The group F0Hn is the image of the map

Hn(N,M ′)−→ Hn(G,M) ,

which is induced by the inclusion N ↪→ G.
(iii) The group Fn−1Hn is the kernel of the map

Hn(G,M) −→ Hn(Q,MN ) ,

which is induced by the natural maps G −→ Q and M −→MN . �
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Corollary D.19 Let k be a commutative ring, G a group, N � G a nor-
mal subgroup and Q = G/N the corresponding quotient. If the groups N,Q
have finite homological dimension over k, then G has also finite homological
dimension over k; in fact, hdkG ≤ hdkN + hdkQ. �

There is a result analogous to Theorem D.18 for the cohomology groups of
G with coefficients in M . As in the homology case, the conjugation action of
G induces a natural ZQ-module structure on the groups Hj(N,M ′). More
precisely, for any element g ∈ G the action of q = gN ∈ Q on Hj(N,M ′) is
given by the composition

Hj(N,M ′)
(λg)∗−→ Hj

(
N,M ′

g

) [(Ig)∗]−1

−→ Hj(N,M ′) ,

where M ′
g, λg and Ig are defined as above.2 In this way, we may consider the

cohomology groups Hi(Q,Hj(N,M ′)) for all i, j ≥ 0.

Theorem D.20 Let G be a group, N �G a normal subgroup and Q = G/N
the corresponding quotient. We consider a ZG-module M and let M ′ be the
ZN -module obtained from M by restriction of scalars. Then, for all n ≥ 0 the
cohomology group Hn(G,M) admits a natural decreasing filtration

Hn(G,M) = F 0Hn ⊇ F 1Hn ⊇ · · · ⊇ FnHn ⊇ Fn+1Hn = 0 ,

having the following properties:
(i) The group F pHn/F p+1Hn is a certain subquotient of the cohomology

group Hp(Q,Hn−p(N,M ′)) for all p, n.
(ii) The group F 1Hn is the kernel of the map

Hn(G,M)−→Hn(N,M ′) ,

which is induced by the inclusion N ↪→ G.
(iii) The group FnHn is the image of the map

Hn
(
Q,MN

)−→ Hn(G,M) ,

which is induced by the natural maps G −→ Q and MN ↪→M .
(iv) Assume that M = k is a commutative ring, viewed as a trivial ZG-

module. Then, for any cohomology classes α ∈ F pHn and α′ ∈ F p′
Hn′

we
have α ∪ α′ ∈ F p+p′

Hn+n′
. �

We conclude our discussion with two results concerning the special cases of
an extension as above, where the normal subgroup N � G is either finite or
infinite cyclic.
2 We note that the ZQ-module structures defined on the (co-)homology groups of

N with coefficients in M ′ are compatible with the duality maps θ; cf. Exercise
D.3.6.
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Proposition D.21 Let k be a field of characteristic 0 and π : G −→ Q a
surjective group homomorphism with finite kernel. We consider a kQ-module
V and let Vπ be the kG-module obtained from V by restriction of scalars along
π. Then, the natural maps

π∗ : Hn(G,Vπ) −→ Hn(Q,V ) and π∗ : Hn(Q,V ) −→ Hn(G,Vπ)

are isomorphisms for all n ≥ 0. �

Proposition D.22 Let

1 −→ Z −→ G
π−→ Q −→ 1

be a central extension and α ∈ H2(Q,Z) the corresponding cohomology class.3

We consider a ZQ-module V and let Vπ be the ZG-module obtained from V
by restriction of scalars along π. Then, there are exact sequences

Hn(G,Vπ) π∗−→ Hn(Q,V ) α∩−→ Hn−2(Q,V ) −→ Hn−1(G,Vπ)

for all n ≥ 0. �

D.3 Exercises

1. Let G be an abelian group. The goal of this Exercise is to prove that G
has finite homological dimension over Q if and only if it has finite rank.
(i) If T ⊆ G is a torsion subgroup, then show that hdQT = 0 and hence
conclude that hdQG ≤ hdQ(G/T ).
(ii) If G = Zn, show that hdkG = n for any commutative ring k.
(iii) If G = Qn, show that hdkG = n for any commutative ring k.
(iv) If G has finite rank, show that G has finite homological dimension
over Q.
(v) If G is an abelian group of infinite rank, then show that G does not
have finite homological dimension over any commutative ring k.

2. (i) Let (C, d), (C ′, d′) and (C ′′, d′′) be chain complexes of abelian groups.
Show that the associativity isomorphisms(

Ci ⊗ C ′
j

)⊗ C ′′
k  Ci ⊗

(
C ′

j ⊗ C ′′
k

)
, i, j, k ≥ 0 ,

induce an isomorphism of chain complexes

Tot(Tot(C ⊗ C ′)⊗ C ′′) Tot(C ⊗ Tot(C ′ ⊗ C ′′)) .

We view this isomorphism as an identification and denote the resulting
chain complex by Tot(C ⊗ C ′ ⊗ C ′′).

3 We note that Q acts trivially on Z, since the extension is assumed to be central.
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(ii) (coassociativity of the Alexander-Whitney map) Let G be a group
and S∗ = (S∗(G,Z), δ) the standard resolution of the trivial G-module Z.
Show that the Alexander-Whitney map

∆ : S∗ −→ Tot(S∗ ⊗ S∗)

induces a commutative diagram

S∗
∆−→ Tot(S∗ ⊗ S∗)

∆ ↓ Tot(∆⊗1) ↓
Tot(S∗ ⊗ S∗) Tot(1⊗∆)−→ Tot(S∗ ⊗ S∗ ⊗ S∗)

(iii) (existence of counit for the Alexander-Whitney map) LetG be a group
and S∗ = (S∗(G,Z), δ) the standard resolution of the trivial G-module Z.
Note that S0 = ZG and define

ε : S∗ −→ Z[0]

to be the chain map which is given by the usual augmentation in degree
0 and vanishes in positive degrees. Show that there is a commutative
diagram

Tot(S∗ ⊗ S∗) ∆←− S∗ ∆−→ Tot(S∗ ⊗ S∗)
Tot(ε⊗1) ↓ ‖ ↓ Tot(1⊗ε)

Tot(Z[0] ⊗ S∗)  S∗  Tot(S∗ ⊗ Z[0])

where ∆ is the Alexander-Whitney map.
3. Let G be a group and S∗ = (S∗(G,Z), δ) the standard resolution of the

trivial G-module Z. We consider three ZG-modules L,M and N and
two cohomology classes α ∈ Hn(G,M) and β ∈ Hm(G,L). The goal
of this Exercise is to prove Proposition D.14(iii). To that end, let us fix
representatives a : Sn −→ M and b : Sm −→ L of α and β respec-
tively and consider the representative c = b ∪ a : Sn+m −→ L ⊗M of
γ = β ∪ α ∈ Hn+m(G,L⊗M).
(i) Show that the following diagram is commutative

Tot(S∗ ⊗ S∗) ⊗ZG N
(1⊗a⊗1)gr

−→ S∗[n] ⊗ZG (M ⊗N)
Tot(∆⊗1)⊗1 ↓ ↓ ∆⊗1⊗1

Tot(S∗ ⊗ S∗ ⊗ S∗) ⊗ZG N
(1⊗1⊗a⊗1)gr

−→ Tot(S∗ ⊗ S∗)[n] ⊗ZG (M ⊗N)

Here, (1 ⊗ 1 ⊗ a ⊗ 1)gr maps an elementary tensor (xi ⊗ xj ⊗ xk) ⊗ y ∈
(Si ⊗ Sj ⊗ Sk)⊗ZG N onto the tensor (−1)ni+nj(xi ⊗ xj)⊗ (a(xk)⊗ y) ∈
(Si ⊗ Sj) ⊗ZG (M ⊗N) (resp. onto 0) if k = n (resp. if k �= n).
(ii) Show that the composition

Hi(G,N) α∩−→ Hi−n(G,M ⊗N)
β∩−→ Hi−n−m(G,L⊗M ⊗N)
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is induced by the composition

S∗⊗ZGN −→ Tot(S∗⊗S∗⊗S∗)⊗ZGN −→ S∗[n+m]⊗ZG (L⊗M ⊗N) ,

where the first chain map is (Tot(∆ ⊗ 1) ◦ ∆) ⊗ 1 and the second one
is (1 ⊗ b ⊗ a ⊗ 1)gr. Here, (1 ⊗ b ⊗ a ⊗ 1)gr maps an elementary tensor
(xi ⊗xj ⊗xk)⊗ y ∈ (Si ⊗Sj ⊗Sk)⊗ZGN onto (−1)ni+nj+mixi ⊗ (b(xj)⊗
a(xk)⊗ y) ∈ Si ⊗ZG (L⊗M ⊗N) (resp. onto 0) if j = m and k = n (resp.
if j �= m or k �= n).
(iii) Show that the cap-product map

γ ∩ : Hi(G,N) −→ Hi−n−m(G,L⊗M ⊗N)

is induced by the composition

S∗⊗ZGN −→ Tot(S∗⊗S∗⊗S∗)⊗ZGN −→ S∗[n+m]⊗ZG (L⊗M ⊗N) ,

where the first chain map is (Tot(1 ⊗ ∆) ◦ ∆) ⊗ 1 and the second one is
(1 ⊗ b⊗ a⊗ 1)gr.
(iv) Prove Proposition D.14(iii).
(Hint: Use the coassociativity of ∆; cf. Exercise 2(ii) above.)

4. Let G be a group and S∗ = (S∗(G,Z), δ) the standard resolution of the
trivial G-module Z. We consider a left ZG-module M , an abelian group J
and the right ZG-module U = HomZ(M,J). The goal of this Exercise is to
prove Proposition D.16(i), in the case where the coefficient ring k therein
is that of integers (the proof for a general k is similar). To that end, let
us fix a cohomology class α ∈ Hn(G,U), represented by a homomorphism
a : Sn −→ U of right ZG-modules.
(i) Show that the map

(1 ⊗ a⊗ 1)gr : Tot(S∗ ⊗ S∗)n ⊗ZG M −→ S0 ⊗ZG

(
Ũ ⊗M

)
,

followed by the natural quotient map

S0 ⊗ZG

(
Ũ ⊗M

)
 Ũ ⊗M −→ U ⊗ZG M ,

coincides with the composition

Tot(S∗ ⊗ S∗)n ⊗ZG M
ε̃⊗1−→ Sn ⊗ZG M

a⊗1−→ U ⊗ZG M .

Here, ε̃ denotes the map

Tot(ε⊗ 1) : Tot(S∗ ⊗ S∗)n −→ Tot(Z[0] ⊗ S∗)n  Sn ,

where ε is the counit defined in Exercise 2(iii) above.
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(ii) Show that the cap-product map

α ∩ : Hn(G,M) −→ H0

(
G, Ũ ⊗M

)
is induced by the additive map

a⊗ 1 : Sn ⊗ZG M −→ U ⊗ZG M = H0

(
G, Ũ ⊗M

)
.

(iii) Prove Proposition D.16(i), in the case where k = Z.
5. The goal of this Exercise is to show that the duality homomorphisms
θG,M,J of Proposition D.16 are natural with respect to the group G, the
coefficient module M and the dualizing module J .
(i) (naturality with respect to the group) Let k be a commutative ring, φ :
G′ −→ G a group homomorphism,M a left kG-module and J a k-module.
We denote by M ′ the left kG′-module obtained from M by restriction
of scalars along φ and consider the right kG-module U = Homk(M,J).
Then, the right kG′-module U ′ obtained from U by restriction of scalars
along φ is identified with Homk(M ′, J). Show that the following diagram
is commutative for all n ≥ 0

Hn(G,U)
φ∗
−→ Hn(G′, U ′)

θG,M,J ↓ ↓ θG′,M′,J

Homk(Hn(G,M), J)
(φ∗)t

−→ Homk(Hn(G′,M ′), J)

Here, (φ∗)t denotes the transpose of φ∗ : Hn(G′,M ′)−→ Hn(G,M).
(ii) (naturality with respect to the coefficient module) Let k be a commu-
tative ring, G a group, f :M ′ −→M a homomorphism of left kG-modules
and J a k-module. We consider the right kG-modules U ′ = Homk(M ′, J)
and U = Homk(M,J) and note that the transpose F = f t : U −→ U ′

of f is kG-linear. Show that the following diagram is commutative for all
n ≥ 0

Hn(G,U) F∗−→ Hn(G,U ′)
θG,M,J ↓ ↓ θG,M′,J

Homk(Hn(G,M), J)
(f∗)t

−→ Homk(Hn(G,M ′), J)

Here, (f∗)t denotes the transpose of f∗ : Hn(G,M ′) −→ Hn(G,M).
(iii) (naturality with respect to the dualizing module) Let k be a commu-
tative ring, G a group, M a left kG-module and τ : J −→ J ′ a homomor-
phism of k-modules. We consider the right kG-modules U = Homk(M,J)
and U ′ = Homk(M,J ′) and note that the induced map T = τ∗ : U −→ U ′

is kG-linear. Show that the following diagram is commutative for all n ≥ 0

Hn(G,U) T∗−→ Hn(G,U ′)
θG,M,J ↓ ↓ θG,M,J′

Homk(Hn(G,M), J) τ∗−→ Homk(Hn(G,M), J ′)
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Here, the map τ∗ in the bottom row is that induced by τ between the
Hom-groups.

6. Let G be a group, N � G a normal subgroup and Q = G/N . The goal
of this Exercise is to show that the ZQ-module structures defined in
§D.2.5 on the (co-)homology groups of N with coefficients in restricted
ZG-modules are compatible with the duality homomorphisms θ of Propo-
sition D.16. To that end, we consider a left ZG-module M , an abelian
group J and the right ZG-module U = HomZ(M,J). We fix an element
g ∈ G and let q = gN ∈ Q.
(i) Show that the left ZQ-module structure on Hn(N,M ′) defined in
the text induces a right ZQ-module structure on the abelian group
HomZ(Hn(N,M ′), J), in such a way that q ∈ Q acts as the composition
of the transpose

((Ig)∗)t : HomZ(Hn(N,M ′), J) −→ HomZ

(
Hn

(
N,M ′

g

)
, J
)

of (Ig)∗ : Hn

(
N,M ′

g

)−→ Hn(N,M ′), followed by the transpose

((λg)∗)t : HomZ

(
Hn

(
N,M ′

g

)
, J
)−→ HomZ(Hn(N,M ′), J)

of (λg)∗ : Hn(N,M ′) −→ Hn

(
N,M ′

g

)
.

(ii) Show that the right ZN -module U ′
g obtained from the right ZN -

module U ′ = HomZ(M ′, J) by restriction of scalars along the automor-
phism Ig : N −→ N is identified with HomZ

(
M ′

g, J
)
, whereas the trans-

pose
ρg : U ′

g −→ U ′

of the map λg : M ′ −→ M ′
g defined in the text is a homomorphism of

right ZG-modules.
(iii) Show that the cohomology group Hn(N,U ′) admits a right ZQ-
module structure, in such a way that q ∈ Q acts as the composition

Hn(N,U ′)
(Ig)∗−→ Hn

(
N,U ′

g

) (ρg)∗−→ Hn(N,U ′) .

(iv) Show that the duality homomorphism

θN,M ′,J : Hn(N,U ′) −→ HomZ(Hn(N,M ′), J)

is a homomorphism of right ZQ-modules for all n ≥ 0.
(Hint: Use the naturality of θ with respect to the group and the coefficient
module; cf. Exercise 5(i),(ii) above.)
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Comparison of Projections

In this Appendix, we examine a few basic properties of the lattice of projec-
tions in a von Neumann algebra N . We begin by reviewing the concepts of
equivalence and weak ordering and then consider the notion of the central
carrier of a projection. Our main goal is to prove the comparison theorem,
which states that any two projections in N can be cut by a central projection
into comparable sub-projections (for the precise statement, see Theorem E.7).
This fact was used in a crucial way in §5.2.2, in order to prove the injectivity
of the additive map t∗, which is induced in K-theory by the center-valued
trace t on the von Neumann algebra of a group.

Of course, our presentation here is very limited, aiming only at those re-
sults that are necessary for the proof of the comparison theorem. For a more
complete treatment of the structure theory of projections in a von Neumann
algebra, the reader may consult specialized books on the subject, such as [18]
and [36].

E.1 Equivalence and Weak Ordering

Let B(H) be the algebra of bounded linear operators on a Hilbert space H.
Any projection e ∈ B(H) is completely determined by its range V = im e,
which is a closed linear subspace of H; indeed, e maps identically V onto itself
and vanishes on the orthogonal complement V ⊥. Conversely, for any closed
linear subspace V ⊆ H there is a (unique) projection in B(H) whose range
is V ; we denote that projection by pV . Two projections e, f are orthogonal
(i.e. ef = 0) if and only if im e ⊥ im f . If e, f are two commuting projections,
then ef is the projection onto the subspace im e∩ im f . Given two projections
e and f , we write e ≤ f if ef = fe = e (cf. §1.1.1.II); in that case, the
(closed) subspace im e is contained in im f , whereas the operator f − e is the
orthogonal projection onto the subspace (im e)⊥∩im f . If e, f, c are projections
in B(H), such that e ≤ f and c commutes with both e and f , then ce ≤ cf .
The correspondence V �→ pV defines an isomorphism of lattices between the
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lattice of closed subspaces of H and that of projections in B(H). For example,
if (ei)i is a family of projections and Vi = im ei for all i, then the supremum
e = supi ei is the projection onto the closed linear subspace V of H, which
is generated by the Vi’s (i.e. V =

∑
i Vi). In the special case where the ei’s

are orthogonal to each other, V is the orthogonal direct sum of the Vi’s and
e =

∑
i ei.

1

Recall that a linear operator u ∈ B(H) is called a partial isometry if there
are closed linear subspaces V, V ′ ⊆ H, such that u maps V isometrically onto
V ′ and vanishes on the orthogonal complement V ⊥. In that case, the adjoint
u∗ maps V ′ isometrically onto V and vanishes on the orthogonal complement
V ′⊥; therefore, we have u∗u = pV and uu∗ = pV ′ .2 Let e = pV and e′ = pV ′

be two projections in B(H). Then, the existence of a partial isometry u, such
that u∗u = e and uu∗ = e′, is easily seen to be equivalent to the condition
dimV = dimV ′, where dim denotes the Hilbert space dimension.

We work with a fixed von Neumann algebra N of operators acting on the
Hilbert space H.

Lemma E.1 The following conditions are equivalent for a closed subspace
V ⊆ H:

(i) pV ∈ N ,
(ii) the subspaces V and V ⊥ are N ′-invariant and
(iii) the subspace V is N ′-invariant.

Proof. (i)→(ii): For any vector ξ ∈ V and any operator a ∈ N ′ we have
a(ξ) = apV (ξ) = pV a(ξ) ∈ im pV = V ; therefore, V is N ′-invariant. The
same argument, applied to the complementary projection 1− pV , shows that
V ⊥ = im(1 − pV ) is N ′-invariant as well.

(ii)→(iii): This is obvious.
(iii)→(i): In view of Lemma 1.17(ii), the N ′-invariance of V implies that

the projection pV is contained in N ′′ = N . �

Corollary E.2 Let (ei)i be a family of projections in N . If e ∈ B(H) is the
supremum of the ei’s, then e ∈ N . In particular, if eiej = 0 for i �= j, then∑

i ei ∈ N .

Proof. Since ei ∈ N , Lemma E.1 implies that the subspace Vi = im ei is N ′-
invariant for all i. Then, the closed linear subspace V =

∑
i Vi is easily seen to

be N ′-invariant as well. The result follows from another application of Lemma
E.1, since e = pV . �

We recall that two projections e, f ∈ N are called equivalent rel N if there is
a partial isometry u ∈ N , such that e = u∗u and f = uu∗; in that case, we
write e ∼ f . Equivalently, e ∼ f if there is a partial isometry u ∈ N , which
maps im e isometrically onto im f and vanishes on the orthogonal complement
1 Here, the infinite sum is understood as the SOT-limit of the net of finite sums.
2 An algebraic description of partial isometries is provided in Exercise E.2.1.
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(im e)⊥. It follows easily that the equivalence rel N is indeed an equivalence
relation. We now state and prove a few basic properties of that relation, that
are needed in the sequel.

Proposition E.3 (i) Assume that e, f ∈ N are projections with e ∼ f . Then,
for any central projection c ∈ N we have ce ∼ cf .

(ii) Consider an operator a ∈ N and let V (resp. U) be the closure of
the range im a of a (resp. of the range im a∗ of a∗). Then, pV , pU ∈ N and
pV ∼ pU .

Proof. (i) Let u ∈ N be a partial isometry which maps im e isometrically onto
im f and vanishes on the orthogonal complement (im e)⊥. We shall prove that
ce ∼ cf , by showing that cu ∈ N maps im ce isometrically onto im cf and
vanishes on the orthogonal complement (im ce)⊥. Since ue(H) = u(im e) =
im f = f(H), we have

cu(ce(H)) = cuce(H) = c2ue(H) = cue(H) = cf(H).

For any vector ξ ∈ im ce = im c ∩ im e we have cu(ξ) = uc(ξ) = u(ξ) and
hence ‖ cu(ξ) ‖= ‖ u(ξ) ‖= ‖ ξ ‖. It follows that cu maps the subspace im ce
isometrically onto im cf . Since u vanishes on (im e)⊥ = im(1 − e), we have
u(1 − e) = 0 and hence

cu(1 − ce) = cu− cuce = cu− c2ue = cu− cue = cu(1 − e) = 0 .

Therefore, cu vanishes on the subspace im(1 − ce) = (im ce)⊥, as needed.
(ii) Since a, a∗ ∈ N , the subspaces V = im a and U = im a∗ are easily

seen to be N ′-invariant. Therefore, Lemma E.1 implies that pV , pU ∈ N . If
a = u |a | is the polar decomposition of a (cf. Proposition 1.11), then u maps
U isometrically onto V and vanishes on the orthogonal complement U⊥. The
proof is finished, since the partial isometry u is contained in the von Neumann
algebra N (cf. Proposition 1.19). �

Proposition E.4 Let (Vi)i and (V ′
i )i be two orthogonal families of closed

subspaces of H, which are such that pVi
, pV ′

i
∈ N and pVi

∼ pV ′
i

for all i.
Then,

∑
i pVi

∼∑i pV ′
i
.

Proof. In view of Corollary E.2, we know that
∑

i pVi
,
∑

i pV ′
i
∈ N . For any

index i there is a partial isometry ui ∈ N , which maps Vi isometrically onto
V ′

i and vanishes on the orthogonal complement V ⊥
i . Let V (resp. V ′) be the

orthogonal direct sum of the family (Vi)i (resp. (V ′
i )i). Then, any vector ξ ∈ H

admits an orthogonal decomposition ξ =
∑

i ξi +η, where ξi ∈ Vi for all i and
η ∈ V ⊥. Then, we have∑

i
‖ui(ξi)‖2 =

∑
i
‖ξi ‖2 ≤‖ξ ‖2 , (E.1)

with equality if and only if η = 0 (i.e. if and only if ξ ∈ V ). It follows that
the sum

∑
i ui(ξi) is a well-defined element of V ′. Hence, we may consider



266 E Comparison of Projections

the linear map u : H −→ H, which is defined by mapping any element ξ ∈ H
onto

∑
i ui(ξi), where ξ =

∑
i ξi + η is the orthogonal decomposition of ξ

as above. In view of (E.1), the operator u is bounded; in fact, u maps V
isometrically onto V ′ and vanishes on the orthogonal complement V ⊥. Since∑

i pVi
= pV and

∑
i pV ′

i
= pV ′ , it only remains to prove that the partial

isometry u ∈ B(H) is an element of the von Neumann algebra N . To that
end, we consider an operator a in the commutant N ′ and prove that ua = au.
Since the projections pV and pVi

are contained in N , Lemma E.1 implies that
the subspaces V ⊥ and Vi are a-invariant for all i. We now fix a vector ξ ∈ H
and consider the decomposition ξ =

∑
i ξi + η, where ξi ∈ Vi for all i and

η ∈ V ⊥. Then, a(ξ) =
∑

i a(ξi)+a(η) is the associated decomposition of a(ξ),
since a(ξi) ∈ Vi for all i and a(η) ∈ V ⊥. Hence,

ua(ξ) = u
(∑

i
a(ξi) + a(η)

)
=
∑

i
uia(ξi)

=
∑

i
aui(ξi)

= a
(∑

i
ui(ξi)

)
= au(ξ) ,

where the third equality follows since the operator ui ∈ N commutes with
a ∈ N ′ for all i and the fourth one is a consequence of the continuity of a.
This is the case for any vector ξ ∈ H and hence ua = au, as needed. �

We now define the central carrier of a projection in N ; this notion will be our
main technical tool in the proof of the comparison theorem.

Proposition E.5 Let e ∈ N be a projection with range V (so that e = pV )
and consider the closed linear subspace U = [NV ]− of H generated by the set
NV = {a(ξ) : a ∈ N , ξ ∈ V }. Then, the projection c = pU ∈ B(H) has the
following properties:

(i) c is a projection in the center of the algebra N ,
(ii) e ≤ c and
(iii) if c′ is a projection in the center of N with e ≤ c′, then c ≤ c′.

The projection c is called the central carrier of e.

Proof. (i) In order to show that c ∈ N ∩ N ′, we shall prove that the closed
linear subspace U is invariant under both N ′ and N ′′ = N (cf. Lemma E.1).
To that end, it suffices to show that the set NV is invariant under N ′ and N .
It is clear that NV is N -invariant. On the other hand, e = pV is a projection
in N and hence the subspace V is N ′-invariant (loc.cit.). It follows easily from
this that NV is N ′-invariant as well.

(ii) The algebra N is unital and hence V ⊆ NV ⊆ [NV ]− = U ; therefore,
e = pV ≤ pU = c.
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(iii) Let c′ be a central projection in N with range U ′ and assume that
e ≤ c′. Since c′ ∈ N ′, the subspace U ′ is invariant under N ′′ = N (loc.cit.).
Moreover, e ≤ c′ and hence V ⊆ U ′. It follows that

NV = {a(ξ) : a ∈ N , ξ ∈ V } ⊆ {a(ξ) : a ∈ N , ξ ∈ U ′} ⊆ U ′

and hence U = [NV ]− ⊆ U ′. Therefore, c = pU ≤ pU ′ = c′. �

We now relate the orthogonality of the central carriers of two projections in
N to the existence of non-zero equivalent sub-projections.

Proposition E.6 The following conditions are equivalent for two projections
e, f ∈ N :

(i) The projections e and f have no non-zero sub-projections, which are
equivalent rel N .

(ii) We have eaf = 0 for all a ∈ N .
(iii) c(e)c(f) = 0, where c(e) and c(f) are the central carriers of e and f

respectively.

Proof. (i)→(ii): Assume that there is an operator a ∈ N with eaf �= 0 and
consider the projection pV onto the closed linear subspace V = im eaf ; then,
0 �= pV ≤ e. The subspace V is easily seen to be N ′-invariant and hence
Lemma E.1 implies that pV ∈ N . Since the operator fa∗e = (eaf)∗ ∈ N is
non-zero as well, the same argument shows that the projection pU onto the
closed linear subspace U = im fa∗e is a projection in N with 0 �= pU ≤ f .
Therefore, pV and pU are non-zero sub-projections of e and f respectively,
which are equivalent rel N , in view of Proposition E.3(ii). It follows that if
(i) holds then eaf = 0 for all a ∈ N .

(ii)→(iii): Assume that eaf = 0 for all a ∈ N . Then, for any a, b ∈ N we
have ea∗bf = 0 and hence for any vectors ξ, η ∈ H we compute

<ae(ξ), bf(η)>=<ξ, ea∗bf(η)>= 0 .

It follows that the closed linear subspaces [N e(H)]− and [N f(H)]−, which
are generated by the sets N e(H) = {ae(ξ) : a ∈ N , ξ ∈ H} and N f(H) =
{bf(η) : b ∈ N , η ∈ H} respectively, are orthogonal to each other. Since
c(e), c(f) are the orthogonal projections onto [N e(H)]− and [N f(H)]−, it
follows that c(e)c(f) = 0.

(iii)→(i): Assume that c(e)c(f) = 0 and consider two projections e′, f ′ ∈ N
with e′ ≤ e, f ′ ≤ f and e′ ∼ f ′. Then, there is a partial isometry u ∈ N ,
which maps im e′ isometrically onto im f ′ and vanishes on the orthogonal
complement (im e′)⊥; in particular, we have u = f ′ue′. Since e′ ≤ e ≤ c(e)
(cf. Proposition E.5(ii)), we have e′ = e′c(e). Arguing similarly, we conclude
that f ′ = f ′c(f). We now compute

u = f ′ue′ = f ′c(f)ue′c(e) = f ′ue′c(e)c(f) = 0 ,
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where the third equality follows since c(f) is central (cf. Proposition E.5(i)).
Hence, we conclude that e′ = u∗u = 0 and f ′ = uu∗ = 0. �

Recall that, given two projections e, f ∈ N , we say that e is weaker than f
rel N if there is a projection e′ ∈ N , such that e ∼ e′ and e′ ≤ f ; in that case,
we write e � f . The projection e is strictly weaker than f rel N if e � f and
e �∼ f ; in that case, we write e ≺ f .

We are now ready to state and prove the main result of this Appendix.

Theorem E.7 (comparison theorem) For any two projections e, f ∈ N there
is a central projection c ∈ N , such that ce � cf and (1 − c)f � (1 − c)e.
Proof. We consider sets of ordered pairs P = {(ei, fi) : i ∈ I}, such that:

(i) ei, fi are projections in N with ei ∼ fi for all i,
(ii) ei ≤ e and fi ≤ f for all i and
(iii) eiej = 0 and fifj = 0 for all i �= j.

Let P be the collection consisting of the sets P as above; then, P �= ∅,
since {(0, 0)} ∈ P. Ordering the set P by inclusion, we note that it satis-
fies the assumptions of Zorn’s lemma. Therefore, P has a maximal element
P =

{(
ei, fi

)
: i ∈ I}. We now consider the projections e0 = e −∑i ei and

f0 = f −∑i fi, which are contained in N (cf. Corollary E.2). If e′, f ′ ∈ N
are non-zero sub-projections of e0 and f0 respectively with e′ ∼ f ′, then
P ∪ {(e′, f ′)} is an element of P which is strictly bigger than P . In view
of the maximality of P , we conclude that the projections e0, f0 ∈ N have
no non-zero equivalent sub-projections. Hence, Proposition E.6 implies that
c(e0)c(f0) = 0, where c(e0) (resp. c(f0)) is the central carrier of e0 (resp. of
f0); since e0 = e0c(e0) (cf. Proposition E.5(ii)), we have

c(f0)e0 = e0c(f0) = e0c(e0)c(f0) = 0 .

Using Propositions E.3(i) and E.4, we conclude that

c(f0)e = c(f0)e0 + c(f0)
∑

i
ei

= c(f0)
∑

i
ei

∼ c(f0)
∑

i
fi

≤ c(f0)f .
Since (1 − c(f0))f0 = f0 − c(f0)f0 = 0 (cf. Proposition E.5(ii)), we also have

(1 − c(f0))f = (1 − c(f0))f0 + (1 − c(f0))
∑

i
fi

= (1 − c(f0))
∑

i
fi

∼ (1 − c(f0))
∑

i
ei

≤ (1 − c(f0))e .
This finishes the proof, by letting c = c(f0). �
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Corollary E.8 Let e, f ∈ N be two projections, which are not equivalent rel
N . Then, there is a central projection c ∈ N , such that ce ≺ cf or cf ≺ ce.
Proof. In view of Theorem E.7, there is a central projection c0 ∈ N , such that
c0e � c0f and (1− c0)f � (1− c0)e. We shall finish the proof by showing that
c0e ≺ c0f or (1 − c0)f ≺ (1 − c0)e. To that end, we argue by contradiction
and assume that c0e ∼ c0f and (1 − c0)f ∼ (1 − c0)e. In that case, we may
invoke Proposition E.4 and conclude that

e = c0e+ (1 − c0)e ∼ c0f + (1 − c0)f = f ,

contradicting our assumption that e �∼ f . �

E.2 Exercises

1. Let H be a Hilbert space and u ∈ B(H) a bounded linear operator. Show
that the following conditions are equivalent:
(i) u is a partial isometry,
(i)’ u∗ is a partial isometry,
(ii) u = uu∗u,
(ii)’ u∗ = u∗uu∗,
(iii) u∗u is a projection and
(iii)’ uu∗ is a projection.

2. Let N be a von Neumann algebra of operators acting on the Hilbert space
H. Two projections e, f ∈ N are called unitarily equivalent in N if there
is a unitary operator u ∈ N , such that f = u∗eu. Show that the relation
of unitary equivalence in N implies that of equivalence rel N .

3. Let N be a von Neumann algebra of operators acting on the Hilbert space
H. Then, N is called finite if there is no projection e ∈ N with e �= 1,
which is equivalent to 1 rel N .
(i) Assume that N is finite and let e, f ∈ N be two projections, such that
e ≤ f and e ∼ f . Then, show that e = f .
(Hint: Use Proposition E.4.)
(ii) Assume that two projections in N are equivalent rel N if and only if
they are unitarily equivalent in N (cf. Exercise 2 above). Then, show that
N is finite.
(iii) Let G be a group and NG the associated von Neumann algebra. Show
that the von Neumann algebra Mn(NG) of n × n matrices with entries
in NG is finite for all n ≥ 1.
(Hint: Use Proposition 5.43(i),(ii).)

4. Let N be a finite von Neumann algebra of operators acting on the Hilbert
space H (cf. Exercise 3 above). The goal of this Exercise is to show that
two projections in N are equivalent rel N if and only if they are unitarily
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equivalent in N (cf. Exercise 2 above).3 To that end, let e, f ∈ N be two
projections with e ∼ f .
(i) Show that 1 − e ∼ 1 − f .
(Hint: Argue by contradiction, using Corollary E.8.)
(ii) Show that e and f are unitarily equivalent in N .

3 In view of Exercise 3(ii) above, it follows that a von Neumann algebra N is finite
if and only if the relation equivalence rel N coincides with unitary equivalence in
N .
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