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Preface

Among the most important tools of mathematics are the elementary functions – ratio-
nal, trigonometric, hyperbolic and exponential functions, logarithms . . . . Their close
relation only becomes apparent when one admits complex numbers as their arguments.
This leads to developing complex analysis, i.e. calculus with complex numbers: the
subject of the present book. Our choice of topics and manner of presentation have
been determined by the following considerations:

1. The theory should rapidly lead to a deeper understanding of the elementary func-
tions as well as to new classes of functions (higher functions). We thus present the
elementary functions in the first chapter, study their deeper properties in the third
chapter, and finally use the powerful methods of complex analysis worked out in
chapters II to IV to introduce several non-elementary functions: elliptic functions,
the Gamma- and the Zeta-function, and the modular map λ. These chapters (V and
VII) contain a proof of the prime number theorem – perhaps the most striking ap-
plication of complex analysis! – as well as a description of plane cubics in terms of
elliptic functions, and a proof of Picard’s theorem on essential singularities.

2. In order to circumvent topological difficulties we start with a local version of
Cauchy’s integral theorem – see chapter II – which suffices to build up most of the the-
ory. A global theorem is then established using winding numbers; we follow Dixon’s
elegant argument. The residue theorem with its important applications then follows
easily.

3. Functions of several complex variables naturally belong within the conceptual
framework of complex analysis – a view which we share, e.g., with authors like
H. Kneser, R. Narasimhan et al. We present these functions in the various chapters
at the appropriate places and study them more deeply in the sixth chapter. Basic
results that are covered are the Weierstrass preparation theorem and the solution of
the Cousin problems in the entire space.

4. The geometric point of view has proven especially fruitful in complex analysis.
It dominates our last chapter where we prove Riemann’s mapping theorem, discuss
hyperbolic geometry and introduce the modular map using a very general version of
Schwarz’s reflection principle.

Large parts of our text are translated from the original German version in [FL] which
concentrates on the most elementary and basic results of complex analysis. We have
considerably extended this text for the English version by the more advanced topics
mentioned above. So the book should be accessible after a one year calculus class
(which is assumed to include the definition of complex numbers), and it ought to take
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the reader from this foundation to fairly sophisticated topics – as expressed in the
title.

Complex analysis is the creation of the great mathematicians of the 19th century;
quite a few of its chapters have assumed their final shape and are presented in the
same form all over the literature. We have of course followed this tradition. Wherever
possible, we have given historical comments to exhibit the origin of important results;
but we are quite unable to write a history of the subject. Both authors have made
their first acquaintance with the field in lectures by H. Grauert to whom we owe
deep gratitude. As to the actual text: the suggestion of translating and extending
our textbook [FL] is due to Ulrike Schmickler-Hirzebruch (Vieweg+Teubner Verlag)
and Dierk Schleicher (Jacobs University Bremen). The difficult task of translation
was carefully and competently executed by Jan Cannizzo (now a graduate student at
Ottawa University). Mathematical advice has come from our colleagues D. Schleicher,
M. Range (Albany), J. Michel (Calais) et al. Daniel Fischer compiled the final LATEX
file and, moreover, suggested many improvements. We are sincerely grateful for all
the help we received.

Bonn & Bremen, August 2011 W. Fischer, I. Lieb
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Chapter I.

Analysis in the complex plane

The fundamental concept of holomorphic function is introduced via complex differentiability in sec-
tion I.1. The relation between real and complex differentiability is then discussed, leading to the
characterization of holomorphic functions by the Cauchy-Riemann differential equations (I.2). Power
series are important examples of holomorphic functions (I.3); we here apply real analysis to show
their holomorphy, although Chapter II will open a simpler way. In particular, the real exponential
and trigonometric functions can be extended via power series to holomorphic functions on the whole
complex plane; we discuss these functions without recurring to the corresponding real theory (I.4).
Section I.5 presents an essential tool of complex analysis, viz. integration along paths in the plane.
In I.6 we carry over the basic theory to functions of several complex variables.

The interpretation of complex numbers as points of the plane was given about 1800 by Gauss, Ar-
gand, and Wessel (independently); the term “Gaussian plane” is still in use. – Since 1820, Cauchy
systematically investigated functions of a complex variable; he discussed the concept of complex
differentiability (1841), as did Riemann (1851); both of them obtained the Cauchy-Riemann differen-
tial equations. The connection to real differentiability of functions of 2 or 2n real variables could, of
course, only be clarified after the latter concept had been precisely formulated; this happened surpris-
ingly late (Stolz 1893) [Sto]. – The “quotient-free” definition we use can be found in Carathéodory
[Ca]. It offers technical advantages in complex as well as in real analysis, in particular in connection
with Wirtinger derivatives, introduced by Poincaré and Wirtinger (∼ 1900). – Holomorphic functions
of several variables were investigated in the 19th century (Cauchy, Jacobi, Riemann, Weierstrass); a
systematic theory was only developed in the 20th century.

0. Notations and basic concepts

Complex analysis develops differential and integral calculus for functions of one or
several complex variables and applies these tools to elementary and non-elementary
functions. The fundamental topological and analytic concepts of real analysis, quite
naturally, play again an essential role: we recall some of them here and fix the meaning
of some words.

The field C of complex numbers yields coordinates in the plane; we therefore talk
about the complex plane. The absolute value (or modulus) |z| of a complex number z
measures its euclidean distance from 0; it satisfies the usual properties of a valuation.
For a complex number z = x+iy, with x = Re z and y = Im z real and i the imaginary
unit , the complex conjugate is defined as

z̄ = x− iy;

W. Fischer, I. Lieb, A Course in Complex Analysis, DOI 10.1007/978-3-8348-8661-3_1, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012



2 Chapter I. Analysis in the complex plane

the map z �→ z̄ is an automorphism of C (reflection in the real axis), and we have

|z| = √
zz̄.

By Dε(z0) or Uε(z0) we denote the open disk of radius ε and centre z0:

Dε(z0) = Uε(z0) = {z ∈ C : |z − z0| < ε};
D = D1(0) is the unit disk, the unit circle {z ∈ C : |z| = 1} is occasionally denoted
by S. We write H for the upper half plane {z : Im z > 0} and C∗ = C \ {0}.
Let us now turn to some topological concepts. Uε(z0) is also called the ε-neighbourhood
of z0. An arbitrary neighbourhood of z0 is a set U which contains an ε-neighbourhood.
A set is open if it is a neighbourhood of each of its points; complements of open sets

are closed. The interior
◦
M of a set M is the largest open set contained in M ; the

smallest closed set containing M is its closure M ; the (topological) boundary of M is

∂M = M \
◦
M . The intersection of an open set U with an arbitrary set M is called

relatively open in M or more simply open in M ; relatively closed sets are defined
correspondingly.

Convergent sequences and their limits are introduced in the usual way via neighbour-
hoods; let us note the rules

lim
ν→∞(zν + wν) = lim

ν→∞ zν + lim
ν→∞wν ,

lim
ν→∞ zνwν = lim

ν→∞ zν lim
ν→∞wν ,

lim
ν→∞

1

zν
=

1

lim
ν→∞ zν

;

the last formula is valid if lim zν is different from 0. A point z0 ∈ C is an accumulation
point of M ⊂ C, if there is a sequence zν in M \ {z0} with lim zν = z0.

A set K which is bounded – i.e. |z| � R for some R and all z ∈ K – and closed
is called compact ; in this case each sequence in K contains convergent subsequences
with limit in K. The latter property is equivalent to compactness. – By

U ⊂⊂ V

we will denote that the closure of U is compact and contained in V ; for short: U is
relatively compact in V .

Our main subject is the study of complex valued functions f : M → C, where M is
a (usually open) subset of C or – in the case of several complex variables – Cn. A
function f is continuous at z0 ∈M , if for each neighbourhood V of w0 = f(z0) there is
a neighbourhood U of z0 with f(U∩M) ⊂ V . This property can also be expressed as

f
(
lim
ν→∞ zν

)
= lim

ν→∞ f(zν)
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for all convergent sequences zν ∈ M with limit z0. Any complex valued function – as
any complex number – can be decomposed into its real and imaginary parts :

f = g + ih,

where g and h are real valued; f is continuous if and only if both g and h are. The
composition of continuous functions is again continuous.

Examples of continuous functions are polynomials in z and z̄:

f(z) =
N∑

ν,μ=0

aνμz
ν z̄μ;

the coefficients aνμ are complex numbers. The case of polynomials in z alone –

f(z) =

N∑
ν=0

aνz
ν

is of particular importance. Other essential examples are paths u : [a, b] → C, i.e.
continuous maps from closed finite intervals into the complex plane. The image set
u([a, b]) is the trace of the path, denoted by Tru, the points u(a) and u(b) are the
initial and end points , respectively; u connects its initial point with its endpoint. A
set M is (pathwise) connected if any two points of M can be connected by a path
whose trace lies in M . A connected open set is called a domain. An open set U is
a domain if and only if no decomposition of U into disjoint nonempty open subsets
exists.

Images of compact or connected sets under continuous functions are again compact
or connected, resp. The corresponding statement for open or closed sets is false: it
is not the images but the inverse images of open resp. closed sets that are open or
closed, resp.

To conclude this sketchy reminder of things known, let us point out that all the above
notions make sense for subsets of Rn and maps between such sets. One replaces the
absolute value by the euclidean norm or any other norm and defines accordingly. We
will make use of this remark without further mention.

1. Holomorphic functions

We begin with the central notion of complex analysis.

Definition 1.1. A complex-valued function f defined on an open set U ⊂ C is (com-
plex) differentiable at z0 ∈ C if there exists a function Δ on U , continuous at z0, such
that

f(z) = f(z0) + Δ(z)(z − z0) (1)
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holds for all z ∈ U . If f is complex differentiable at all points z0 ∈ U , then we say
that f is holomorphic on U . We say that f is holomorphic at z0 if there exists an
open neighbourhood of z0 on which f is holomorphic.

We call the number Δ(z0), which is uniquely determined by (1), the value of the
derivative of f at z0, i.e.

Δ(z0) = f ′(z0) =
df

dz
(z0).

If a function f is complex differentiable on all of U , then the values of its derivative
at points z ∈ U define

f ′(z) =
df

dz
(z)

as a function on all of U . Accordingly, we may define the higher derivatives

f ′′(z) =
d

dz
f ′(z) =

d2f

dz2
(z),

...

f (n)(z) =
d

dz

dn−1f

dzn−1
(z) =

dnf

dzn
(z),

provided they exist. In the next chapter, we will show that if f is holomorphic, then
all of these higher derivatives do in fact exist! – Note that we will occasionally put
f (0) = f .

Examples:

i. If f(z) ≡ c (i.e. if f is constant), then f(z) = f(z0) + 0(z − z0), so that f ′(z) ≡ 0.

ii. For f(z) ≡ z, we have f(z) = f(z0) + 1(z − z0); thus f
′(z) ≡ 1.

iii. Unlike the first two examples, the function f(z) = z is nowhere complex differen-
tiable: If, as per (1), it were true that

z − z0 = Δ(z)(z − z0),

where Δ is continuous at z0, then for all z for which z − z0 is real and nonzero, we
would have

z − z0 = Δ(z)(z − z0),

so that Δ(z) ≡ 1, whereas for all z for which z − z0 is imaginary and nonzero – thus
z − z0 = −(z − z0) – we would have

−(z − z0) = Δ(z)(z − z0),

so that Δ(z) ≡ −1. It follows that Δ cannot be continuous at z0.
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Example iii is surprising: an everywhere continuous but nowhere complex differen-
tiable function! And yet the definition of complex differentiability is copied from the
definition of real differentiability in one variable – and finding continuous nowhere
differentiable functions on R is rather difficult. We will clarify this situation in the
following section. For the moment, however, let us make use of the formal equality
between the definitions of real and complex differentiability for functions of one vari-
able in order to set up the differentiation rules familiar from real analysis. All proofs
follow their real counterparts verbatim and are therefore left to the reader.

Proposition 1.1. Any function that is complex differentiable at a point z0 is contin-
uous at z0.

Proposition 1.2. Let f and g be complex differentiable at the point z0. Then the
functions f + g, fg, and 1/f (provided f(z0) 	= 0) are complex differentiable at z0,
and we have

(f + g)′(z0) = f ′(z0) + g′(z0)
(fg)′(z0) = f ′(z0)g(z0) + f(z0)g

′(z0)(
1

f

)′
(z0) = − f ′(z0)

f(z0)
2 .

The set of holomorphic functions on an open set U thus forms a ring (or, more
precisely, a C-algebra), which we denote by O(U).

Proposition 1.3 (The chain rule). Let f : U → V and g : V → C be mappings of
open subsets of C that are complex differentiable at z0 ∈ U and f(z0) = w0 ∈ V ,
respectively. Then

g ◦ f : U → C

is complex differentiable at z0, and

(g ◦ f)′(z0) = g′(w0)f
′(z0).

We introduce the following concepts concerning inverse functions.

Definition 1.2. A map f : U → V between open subsets of C is called biholomorphic
if it is bijective and holomorphic and, moreover, its inverse f−1 is holomorphic.

We now show:

Proposition 1.4. Let f : U → C be a holomorphic function with a nonvanishing
derivative. Then

i. For every z0 ∈ U , there exists a neighbourhood U(z0) such that z = z0 is the
only solution of the equation f(z) = f(z0) in U(z0).

ii. The map f is open (meaning that the images of open sets under f are open).
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Proof: Without loss of generality, let z0 = 0 and f(z0) = 0. Claim i is almost trivial:
Since f is holomorphic, it can be decomposed as

f(z) = Δ(z)z, (2)

where Δ is continuous at 0 and takes the value

Δ(0) = f ′(0) 	= 0

there. Thus Δ is nonzero in a neighbourhood of 0, and 0 = Δ(z)z implies z = 0. We
postpone the proof of the second claim to the following section.

As in single-variable real calculus, the continuity of the inverse function (see ii above)
yields

Proposition 1.5. A map f : U → V is biholomorphic if and only if it is bijective and
holomorphic and its derivative is nonvanishing. If this is the case, then(

f−1
)′
(w) =

1

f ′(z)
, where w = f(z).

The previous two propositions are special cases of the more general inverse function
theorem from real analysis – cf. [Ru]; their proofs, however, are especially simple. We
will strengthen both theorems considerably in the next chapter, showing that bijective
holomorphic maps are biholomorphic.

Combining the examples of this section with the above rules, we obtain:

Proposition 1.6. Polynomials in z, i.e. functions of the form

p(z) =
n∑

ν=0

aνz
ν ,

are holomorphic on C; their derivatives are again polynomials, namely

p′(z) =
n∑

ν=1

νaνz
ν−1.

Proposition 1.7. Rational functions, i.e. quotients of polynomials

f(z) =
p(z)

q(z)
,

are holomorphic everywhere except at the zeros of their denominators, and their
derivatives are again rational functions.

Polynomials and rational functions constitute the most basic classes of functions; we
will investigate them in more detail in Chapter III.
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Exercises

1. Show that a function f is complex differentiable at z0 in the sense of Def. 1.1 if and only if the
limit

lim
z→z0

f(z)− f(z0)

z − z0

exists.

2. Find the derivative of f(z) = (az + b)/(cz + d).

3. Where are the functions Re z, Im z, |z|, and |z|2 complex differentiable?
4. Prove that every real-valued holomorphic function on C is constant.

2. Real and complex differentiability

Given that complex-valued functions of one complex variable can be viewed as maps
(of subsets) of R2 into R2, the notion of (real) differentiability can be applied to them.
A suitable formulation is:

A function

f = g + ih : U → C, (1)

where U ⊂ C is open, is real differentiable at z0 = x0+ iy0 ∈ U if there exist functions
Δ1,Δ2 : U → C, continuous at z0, such that

f(z) = f(z0) + (x− x0)Δ1(z) + (y − y0)Δ2(z) (2)

holds for all z = x + iy ∈ U . The functions Δ1 and Δ2 are not unique, but their
values at z0 are:

Δ1(z0) = fx(z0) =
∂f

∂x
(z0)

Δ2(z0) = fy(z0) =
∂f

∂y
(z0).

(3)

It is immediate that this condition is equivalent to the differentiability of the real
functions g and h, with

fx = gx + ihx, fy = gy + ihy. (4)

We want to avoid the decomposition into real and imaginary parts and free ourselves
of the real coordinates x and y. To this end, we note that

x− x0 =
1

2
(z − z0 + z − z0), y − y0 =

1

2i
(z − z0 − (z − z0)), (5)

and substitute (5) into (2). An easy computation now yields:
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The function f : U → C is real differentiable at z0 ∈ U if there exist functions
Δ,E: U → C that are continuous at z0 and for which

f(z) = f(z0) + (z − z0)Δ(z) + (z − z0)E(z). (2′)

The values Δ(z0) and E(z0) are uniquely determined by f .

We indeed obtain Δ and E from (2) and (5):

Δ =
1

2
(Δ1 − iΔ2), E =

1

2
(Δ1 + iΔ2). (6)

Definition 2.1. The values Δ(z0) and E(z0) in the decomposition (2′) are called the
Wirtinger derivatives of f at z0, denoted

Δ(z0) =
∂f

∂z
(z0) = fz(z0)

E(z0) =
∂f

∂z
(z0) = fz(z0).

In light of (3), we obtain from (6)

fz =
1

2
(fx − ify) (7)

fz =
1

2
(fx + ify). (8)

The connection between real and complex differentiability is now immediately appar-
ent from (2′):

Theorem 2.1. A function f : U → C is complex differentiable at z0 ∈ U if and only
if it is real differentiable at z0 and

∂f

∂z
(z0) = 0.

If this is the case, then f ′(z0) =
∂f

∂z
(z0).

Proof: If f is complex differentiable, we have the decomposition (1) from I.1, which
is precisely (2′) with E(z) ≡ 0; in particular, fz(z0) = 0. Moreover, we have

f ′(z0) = Δ(z0) = fz(z0).

Conversely, if fz(z0) = 0, then for z 	= z0 we may write (2′) as

f(z) = f(z0) + (z − z0)

(
Δ(z) +

z − z0
z − z0

E(z)

)
.
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Since E(z0) = fz(z0) = 0 and∣∣∣∣z − z0
z − z0

∣∣∣∣ = 1,

the function

Δ(z) +
z − z0
z − z0

E(z)

is continuous at z0. It follows that f is complex differentiable at z0.

Definition 2.2. The differential operator

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
is called the Cauchy-Riemann operator.

In requiring that a function be complex differentiable we thus simultaneously require
that a certain partial differential equation be satisfied. In other words, holomorphic
functions are the differentiable solutions of the Cauchy-Riemann equation

∂f

∂z
(z) ≡ 0. (9)

It is therefore plausible that holomorphic functions possess special properties that
real differentiable functions in general do not – whether in one or in two variables.

The following “real” interpretation of the Cauchy-Riemann equations is especially
important:

Let f be a twice differentiable function that satisfies (9). Then

∂2f

∂z∂z
(z) ≡ 0. (10)

A simple calculation shows that

∂2

∂z∂z
=

1

4

(
∂2

∂x2
+

∂2

∂y2

)
=

1

4
Δ. (11)

The operator Δ is called the Laplace operator, and solutions of the equation Δf = 0
are called harmonic functions. Since Δ is a real differential operator – i.e. Δf =Δf – a
function is harmonic precisely when both its real and imaginary parts are harmonic.

Proposition 2.2. Twice differentiable holomorphic functions are harmonic, as are
their real and imaginary parts.
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As we will see, the above differentiability requirement is superfluous – see Thm. II.3.4.
Conversely, we will show that real harmonic functions are locally the real (or imagi-
nary) parts of holomorphic functions – see VII.5. This connection between Laplace’s
equation and complex analysis is decisive in dealing with many questions. It only
arises, however, in the theory of one complex variable. In this text, we will use it only
in VII.6.

Before moving on, we give the Cauchy-Riemann equations in real form. Taking
f = g + ih, they are as follows:

gx = hy, gy = −hx.

The gradients and, consequently, the equipotential lines of g and h are thus perpen-
dicular to one another at all points where the gradients do not vanish.

As a further consequence of Thm. 2.1, we note:

Proposition 2.3. If G is a domain, f : G → C is holomorphic, and f ′ ≡ 0, then f
is constant.

The reason is that the Cauchy-Riemann equations then yield fz = 0, fz = 0, fx = 0,
and fy = 0.

We are now ready to finish the proof of Prop. 1.4. Let us note that if f and g are
holomorphic functions, then fg is real differentiable, and

∂

∂z

(
f(z)g(z)

)
= f ′(z)g(z). (12)

Now we consider again the situation of Prop. 1.4. By part i, there is an r > 0 such that
z = 0 is the only zero of f onDr(0); in particular, |f(z)| > 0 on ∂Dr(0) = {z : |z| = r},
and since ∂Dr(0) is compact, there is an ε > 0 such that

|f(z)| � 2ε (13)

for |z| = r. We will show that

Dε(0) ⊂ f
(
Dr(0)

)
, (14)

which implies the claim. For an arbitrary point w1 ∈ Dε(0), the function

g(z) = |f(z)− w1|2

is real differentiable and, due to (13), satisfies the following inequalities:

g(0) = |w1|2 < ε2

g(z) = |f(z)− w1|2 > ε2, for |z| = r.
(15)
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Since g is continuous, it attains its minimum value on Dr(0), and by (15), this min-
imum must be attained in the interior of Dr(0), at, say, z1 ∈ Dr(0). All partial
derivatives of g must vanish at z1, so that, in particular,

0 = gz(z1) = f ′(z1)
(
f(z1)− w1

)
. (16)

Since f ′(z1) 	= 0, we have w1 = f(z1).

We need a special case of the chain rule for Wirtinger derivatives. The general case
is left to the reader as Ex. 1.

Lemma 2.4. Let f : U → C be a real differentiable function defined on an open set
U ⊂ C, and let w : [a, b] → U be a differentiable map (i.e. a differentiable path in U).
Then for all t ∈ [a, b],

∂

∂t
(f ◦ w)(t) = (

fz(w(t)) fz(w(t))
)(ẇ(t)

ẇ(t)

)
= fz(w(t))ẇ(t) + fz(w(t))ẇ(t).

Here we denote ∂w
∂t by ẇ and use matrix multiplication.

We will draw on this lemma in giving a further interpretation of complex differentia-
bility. First, let us recall some facts from linear algebra:

A complex linear map l : C → C is characterized by the conditions

l(z + w) = l(z) + l(w) (17)

l(rz) = rl(z), (18)

where z, w, r ∈ C; if (18) holds only for real r, then l is called real linear. Every
complex linear map is of the form

w = l(z) = az

for some unique number a ∈ C, and every real linear map is of the form

w = l(z) = az + bz =
(
a b

)(z
z

)
(19)

for some unique pair
(
a b

) ∈ C2. Thus l is complex linear if and only if b = 0.

Definition 2.3. Let f : U → C be real differentiable at the point z0. The real linear
map from C to C determined by the vector

(
fz(z0) fz(z0)

)
as per (19) is called the

tangent map of f at z0.

We now have:

Proposition 2.5. A function f is complex differentiable at a point z0 if and only if
its tangent map at z0 is complex linear.



12 Chapter I. Analysis in the complex plane

Consider a differentiable path w whose initial point is z0, i.e. a path w : [a, b] → C
such that w(a) = z0, and assume that ẇ(a) 	= 0. Then we may interpret ẇ(a) as the
direction vector of w at a. If v : [a, b] → C is another such path with direction vector
v̇(a), then the angle between w and v, denoted �(w, v), is by definition the oriented
angle between the vectors ẇ(a) and v̇(a), i.e. �(ẇ(a), v̇(a)). A real differentiable
function f maps the paths w and v to paths f ◦ w and f ◦ v, respectively, that cross
each other at an angle

�(f ◦ w, f ◦ v) = �
(

∂

∂t
(f ◦ w)(a), ∂

∂t
(f ◦ v)(a)

)
at the point f(z0). Now if f is complex differentiable at z0 and f ′(z0) 	= 0, then by
Lemma 2.4,

�
(

∂

∂t
(f ◦ w)(a), ∂

∂t
(f ◦ v)(a)

)
= �

(
f ′(z0)ẇ(a), f ′(z0)v̇(a)

)
= �

(
ẇ(a), v̇(a)

)
,

so that the image paths f ◦ w and f ◦ v cross at the same angle. Lemma 2.4 implies
the converse of this statement as well.

Definition 2.4. A map f : U → V is called conformal, or angle-preserving, if it is
differentiable and has a differentiable inverse and if for all z ∈ U and any differentiable
paths w and v, both with initial point z ∈ U , we have

�(w, v) = �(f ◦ w, f ◦ v).

We have thus shown:

Theorem 2.6. A map f : U → V is conformal if and only if it is biholomorphic.

Exercises

1. Formulate and prove the chain rule for Wirtinger derivatives. Furthermore, show that

∂f

∂z
=
∂f

∂z
.

2. Which of the following real functions are real parts of holomorphic functions?

x3 − y3, x3y − xy3, ex cosx, ex cos y.

3. Let the map f = g + ih : U → C be real differentiable. The real and complex Jacobian matrices
of f are

JRf =

(
gx gy
hx hy

)
and JCf =

(
fz fz
fz fz

)
,

respectively. Show that det JRf = det J
C

f . In particular, show that if f is holomorphic, then this

determinant is equal to |f ′|2.
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3. Uniform convergence and power series

Already in real analysis, important elementary functions are generated from simpler
functions – typically polynomials – via limiting processes. This technique can natu-
rally be transferred to complex analysis, allowing us to extend elementary real analytic
functions on the real line to the complex plane and leading to a deeper understanding
of their properties. Let us first recall some fundamental concepts.

An infinite series

∞∑
ν=0

aν

of complex numbers is convergent if and only if the sequence

sn =

n∑
ν=0

aν

of its partial sums is convergent; the limit s of the sequence sn is then by definition
the sum of the series:

s =
∞∑
ν=0

aν .

The series is absolutely convergent if the series whose terms are the absolute values |aν |
is convergent. In this case, the series

∑∞
ν=0 aν is in fact unconditionally convergent,

meaning that it will remain convergent (with the same sum) upon any reordering of
its terms. If |aν | � |bν | for all but finitely many ν, then the absolute convergence of∑∞

ν=0 bν implies the absolute convergence of
∑∞

ν=0 aν (the comparison test). Likewise,
the ratio and root tests familiar from real analysis are at our disposal. Both are derived
via a comparison with the geometric series, which we now give for complex z.

Proposition 3.1. The geometric series converges (even absolutely) precisely when
|z| < 1; for such z, we have

∞∑
ν=0

zν =
1

1− z
.

This, together with the ratio test, allows us to see easily that the series

∞∑
ν=1

ν zν−1,

∞∑
ν=2

ν(ν − 1)zν−2, . . . ,

∞∑
ν=k

ν(ν − 1) · · · (ν − k + 1)zν−k (1)

are absolutely convergent for |z| < 1; their sums will be computed later.
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Let us now consider sequences and series of functions. A sequence fν of functions
defined on M ⊂ C converges pointwise to the function f , written

lim
ν→∞ fν = f or fν → f,

if for all z ∈ M , we have fν(z) → f(z). Much more important than pointwise
convergence, however, is uniform convergence:

Definition 3.1. A sequence of functions fν : M → C converges uniformly on M to
the function f if for every ε > 0, there is an index ν0 such that for all ν � ν0 and all
z ∈ M ,

|fν(z)− f(z)| < ε.

The sequence fν converges locally uniformly to f on an open set U if for every point
z0 ∈ U , there is a neighbourhood V (z0) ⊂ U on which fν converges uniformly to f .

Locally uniform convergence is equivalent to compact convergence, meaning uniform
convergence on every compact subset K ⊂ U . From real analysis, we have:

Proposition 3.2. The limit of a uniformly or locally uniformly convergent sequence
of continuous functions is continuous.

Proposition 3.3. Let fν be a sequence of holomorphic functions that converges to f
on an open set U , and assume that the derivatives f ′ν are continuous and converge
locally uniformly to a function g. Then f is holomorphic, and f ′ = g.

Proof: We have fν,z = f ′ν and fν,z = 0, which implies that all partial derivatives with
respect to x and y are continuous and converge locally uniformly. The proposition
now follows from standard results of differential calculus.

We will obtain Prop. 3.3 in a stronger form and by simpler means (namely without
recourse to real analysis) in Chapter II.

As usual, definitions and results about sequences of functions can be translated into
analogous statements concerning series of functions. For us, the most important such
definition is the following:

Definition 3.2. An infinite series
∑∞

ν=0 fν of functions defined on a set M is ab-
solutely uniformly convergent on M if the series of moduli

∑∞
ν=0|fν | is uniformly

convergent on M .

The following proposition gives criteria for absolute uniform convergence.
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Proposition 3.4.

i. (The Cauchy convergence test) The series
∑∞

ν=0 fν is absolutely uniformly con-
vergent on M if and only if for every ε > 0, there is an index n0 such that for
all n,m � n0 (with m � n) and all z ∈ M ,

m∑
ν=n

|fν(z)| < ε.

ii. (The majorant test) If
∑∞

ν=0 aν is a convergent series with positive terms and
if for almost all ν and all z ∈ M we have

|fν(z)| � aν ,

then
∑∞

ν=0 fν is absolutely uniformly convergent on M .

We introduce absolute locally uniform convergence following Def. 3.1. Prop. 3.2
and 3.3 then hold for the limits of absolutely locally uniformly convergent series.

Before moving on to important examples, we note that the above definitions and
theorems remain meaningful and true when applied to mappings of subsets of Rn (or
Cn) into Rm (or Cm). We only need to replace the absolute value with the euclidean
norm (or any other norm).

An infinite series of the form

P (z − z0) =

∞∑
ν=0

aν(z − z0)
ν ,

where aν ∈ C and z0 ∈ C, is called a power series with base point z0 and coefficients
aν . As an example, consider the geometric series

∞∑
ν=0

zν =
1

1− z
(2)

(see Prop. 3.1); it is not difficult to see that it converges absolutely locally uniformly to
the function (1− z)−1 in the unit disk D = {z : |z| < 1}. Making use of the majorant
test, we get the following:

Proposition 3.5. Assume that for some point z1 	= 0, the terms of the power series∑∞
ν=0 aνz

ν are bounded, that is |aνzν1 | � M independently of ν. Then the series
converges absolutely locally uniformly in the disk D|z1|(0) = {z : |z| < |z1|}.
Proposition 3.6. For every power series P (z) =

∑∞
ν=0 aνz

ν , there is a well-defined
number 0 � r � ∞ such that P (z) converges absolutely locally uniformly in the disk
Dr(0) and diverges for |z| > r.

Definition 3.3. The number introduced in Prop. 3.6 is called the radius of conver-
gence of the power series P (z), and Dr(0) is called its disk of convergence.
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Here we regard ∞ as a number. If r = 0, we say that P (z) is nowhere convergent,
and if r = ∞, so that Dr(0) = C, we say that P (z) converges everywhere. We can of
course immediately carry over the above statements to power series P (z − z0) with
an arbitrary base point: the disk of convergence will then be centred at z0.

Proof: It suffices to prove Prop. 3.5, since Prop. 3.6 is a direct consequence of it.
Thus, let

|aν ||z1|ν � M

for all ν. We choose z2 such that 0 < |z2| < |z1| and for |z| � |z2| obtain

|aν ||z|ν � |aν ||z2|ν = |aν ||z1|ν
∣∣∣z2
z1

∣∣∣ν � Mqν ,

where q = |z2/z1| < 1. By Prop. 3.4.ii and Prop. 3.1, this guarantees absolute uniform
convergence in the disk D|z2|(0).

With a bit of extra effort, one can also prove the Cauchy-Hadamard formula

r =
1

lim sup
ν→∞

ν
√|aν |

(3)

for the radius of convergence. We leave this to the reader in Ex. 2.

By Prop. 3.2, a power series converges to a continuous function – which we also denote
by P (z) – in its disk of convergence. But more is true:

Theorem 3.7. The sum of a power series

P (z) =
∞∑
ν=0

aνz
ν (4)

is holomorphic in its disk of convergence Dr(0). Its derivative is

P ′(z) =
∞∑
ν=1

νaνz
ν−1, (5)

and the radius of convergence of P ′ coincides with that of P .

Proof: The series (5) is obtained from (4) by termwise differentiation. To apply
Prop. 3.3, let us show that (5) converges locally uniformly in the disk of convergence
of (4).

As in the proof of Prop. 3.5, we choose two points 0 < |z2| < |z1|, where z1 ∈ Dr(0).
The convergence of (4) now implies that

|aν ||z1|ν−1 � M
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independently of ν. If |z| � |z2|, then

|νaνzν−1| � ν|aν ||z1|ν−1
∣∣∣z2
z1

∣∣∣ν−1

� Mνqν−1,

where q = |z2/z1|. Comparing this with the first of the series in (1) gives the uniform
convergence of (5) in the disk |z| � |z2|. Moreover it is easy to see that the radius of
convergence of (5) cannot be larger than that of (4) – we leave this to the reader.

It follows that power series are in fact infinitely often complex differentiable in their
disks of convergence – all of their derivatives are again convergent power series and
are therefore holomorphic. We have

P (k)(z) =

∞∑
ν=k

ν(ν − 1) · · · (ν − k + 1)aνz
ν−k.

Corollary 3.8 (The identity theorem for power series).

i. Let P (z) =
∑∞

ν=0 aνz
ν be a convergent power series. Then

aν =
P (ν)(0)

ν!
.

ii. If P (z) ≡ 0 in a neighbourhood of 0, then aν = 0 for all ν.

iii. If P (z) =
∑∞

ν=0 aνz
ν and Q(z) =

∑∞
ν=0 bνz

ν are convergent power series such
that P (z) = Q(z) in a neighbourhood of 0, then aν = bν for all ν.

Proof: Claim i is a direct consequence of the remarks preceding the corollary, ii
follows from i, and iii follows from ii.

In Chapter II, we will prove a general theorem that includes the preceding propositions.
For now, however, let us apply our results in order to compute the sums (1). Repeated
differentiation of the geometric series (2), namely

dk

dzk
1

1− z
=

k!

(1− z)k+1
,

gives us the series (1). Thus,

∞∑
ν=k

ν(ν − 1) · · · (ν − k + 1)zν−k =
k!

(1− z)k+1
.

To conclude, we ask a few questions whose answers, although they could be given
now, will be easier to come by in the next chapter.
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a) Let z0 be a point that belongs to the disk of convergence of a convergent power
series

f(z) =

∞∑
ν=0

aνz
ν .

Is there a power series expansion

f(z) =

∞∑
ν=0

bν(z − z0)
ν

of f about z0? What would be the coefficients of this new series, and what would be
its radius of convergence?

b) Does a rational function necessarily admit a power series expansion about every
point in its domain of definition? How would one compute the coefficients of such a
series?

Exercises

1. Prove that, on open subsets of Rn, locally uniform convergence is equivalent to compact conver-
gence. Does this equivalence hold on arbitrary subsets of Rn?

2. Prove the Cauchy-Hadamard formula (3).

3. Show that if the limit limν→∞|aν/aν+1| exists, then it is equal to the radius of convergence of
the series

∑∞
ν=0 aνz

ν .

4. Determine the radii of convergence of the following series:

∞∑
ν=0

νkzν ,

∞∑
ν=0

zν

ν!
,

∞∑
ν=0

ν!zν ,

∞∑
ν=0

(2ν)!

2νν!
zν ,

∞∑
ν=0

(2ν)!

(ν!)2
zν .

5. Let aν be a decreasing sequence of real numbers that converges to 0, and suppose that the radius
of convergence of the series

∑∞
ν=0 aνz

ν is 1. Show that for every δ > 0 the series converges

uniformly on D \Dδ(1) (so that 1 is the only point on ∂D at which it could diverge).
Hint: Estimate the sum (1− z)

∑n
ν=m aνzν .

6. Show that the series
∑∞

ν=0 aν converges absolutely if and only if each of the four subseries
consisting, respectively, of those terms aν that lie in the quadrant where Re z > 0 and Im z � 0,
those that lie in the quadrant where Re z � 0 and Im z > 0, and so on, converges.

4. Elementary functions

In real analysis, the elementary functions (exponential functions, trigonometric func-
tions, and hyperbolic functions) exhibit very different behaviour (periodic, aperiodic,
bounded, or unbounded) and seem to have little to do with one another. Consider-
ing them as functions of a complex variable, however, makes their close relationship
apparent: All of them stem from the complex exponential function.
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The power series

exp z =

∞∑
ν=0

zν

ν!
(1)

converges absolutely locally uniformly on all of C and therefore defines a holomorphic
function, the (complex) exponential function. We have

exp 0 = 1, (2)

and we define Euler’s number to be

e = exp 1 =

∞∑
ν=0

1

ν!
. (3)

Since the coefficients of the series (1) are real, we have

exp z = exp z. (4)

In particular, the complex exponential function is real for real z and coincides with
the real exponential function on R. The termwise differentiation of (1) gives

d

dz
exp z = exp z, (5)

the differential equation of the exponential function. Everything that follows is a
consequence of the preceding identities.

Let w ∈ C be fixed. Then (5) implies that

d

dz
exp(w + z) exp(−z) = exp(w + z) exp(−z)− exp(w + z) exp(−z) = 0.

Hence,

exp(w + z) exp(−z) ≡ const. (6)

Setting z = 0 shows that this constant equals expw; setting w = 0 gives, in view
of (2),

exp z exp(−z) = 1, (7)

and after multiplying (6) with exp z, we get

Proposition 4.1 (The addition rule).

exp(z + w) = exp z expw,

exp z 	= 0.
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For n ∈ Z, the addition rule reads

expn = (exp 1)n = en.

We will from now on write

exp z = ez (8)

for an arbitrary number z ∈ C as well.

The identity (4) implies that

|ez| = |ez/2|2 = e(z+z)/2 = eRe z. (9)

The exponential function thus maps vertical lines Re z = c to circles; in particular, it
maps the line iR = {z : Re z = 0} to S = {w : |w| = 1}. Moreover, if z = x is real,
then by (9), ex = |ex| > 0.

In summary:

Lemma 4.2. The exponential function is a group homomorphism from C into C∗

that maps the subgroup R into R>0 and the subgroup iR into S.

Note that the group operation on C, R, and iR is addition and the group operation
on C∗, R>0, and S is multiplication. Furthermore:

Proposition 4.3. The three homomorphisms exp: C → C∗, exp: R → R>0, and
exp: iR → S are surjective.

Proof: By Prop. 1.4 and (5), the exponential map is open; let U be its image in C∗.
If a ∈ C∗ \ U (which is closed), then the coset

aU = {aw : w ∈ U}
is also open, and

U ∩ aU = ∅.

Indeed, if there were a number b ∈ U ∩aU , then for some numbers z, w ∈ C, we would
have

a ez = b = ew,

so that a = ew−z ∈ U . It follows that C∗ \U is open and therefore empty, since C∗ is
connected. This shows that the first of the above homomorphisms is surjective. Now
let u ∈ R>0. There exists a number z = x+ iy ∈ C such that u = ez, so that, by (9),

u = |u| = eRe z = ex,

which shows that the second of the above homomorphisms is surjective. Finally, if
|w| = 1 and w = ez, then eRe z = ex = 1, and since ex is increasing (its derivative is
positive), we have x = 0, which completes the proof.
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Next, let us consider the kernel N of the homomorphism exp: C → C∗, namely

N = {z : ez = 1}.

Since there exists a number z∗ ∈ C such that ez
∗
= −1, 2z∗ is a nonzero element of

N . We already know that N ⊂ iR. By Prop. 1.4, there is a neighbourhood U of 0
such that U ∩N = {0}, and since N is closed, there is a smallest positive number p
such that ip ∈ N . We define the number π to be p/2:

Definition 4.1. The number π is the smallest positive number for which e2πi = 1.

It is now clear that N consists of the integer multiples of 2πi: if N contained a number
q 	∈ {2kπi : k ∈ Z}, then by adding some integer multiple of 2πi, one could produce a
number q0 = iq′ in N such that 0 < q′ < 2π. – The addition rule now tells us that N
consists exactly of the periods of ez, i.e.

ez+2kπi = ez, (10)

where z ∈ C and k ∈ Z. We thus have:

Proposition 4.4.

i. The exponential function is periodic with period 2πi.

ii. If a domain contains at most one member of each congruence class modulo 2πi,
then the exponential function maps it biholomorphically onto its image in C∗.

Let us summarize the key mapping properties of the exponential function.

1. The mapping t �→ et maps R onto R>0 bijectively.

2. The mapping t �→ eit maps [0, 2π) onto S bijectively.

A horizontal line z = x + iy0 is thus mapped bijectively onto the open ray Ly0 that
begins at 0 and passes through the point eiy0 on the unit circle. A vertical line
z = x0 + iy is mapped onto the circle centred at 0 and of radius ex0 ; an interval of
length less than 2π on this line is mapped injectively into this circle.

Every half-open horizontal strip

Sy0 = {z = x+ iy : y0 � y < y0 + 2π}

is mapped bijectively onto C∗. The line z = x+ iy0 is mapped to the ray Ly0 , and the
remaining open strip (i.e. Sy0 minus its lower boundary) is mapped biholomorphically
onto the “slit” plane C∗ \Ly0 . For y0 = −π, one thus obtains the slit plane C∗ \R<0

cut along the negative real axis.

We introduce the remaining elementary functions in terms of the exponential function
via the following Euler formulas:
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Definition 4.2 (Trigonometric and hyperbolic functions).

i. The cosine function: cos z = 1
2 (e

iz + e−iz).

ii. The sine function: sin z = 1
2i (e

iz − e−iz).

iii. The hyperbolic cosine function: cosh z = 1
2 (e

z + e−z).

iv. The hyperbolic sine function: sinh z = 1
2 (e

z − e−z).

Properties of these functions can immediately be derived from the corresponding prop-
erties of the exponential function. We summarize them in the following proposition.

Proposition 4.5.

i. The functions cos z and sin z are periodic with period 2π; cosh z and sinh z are
periodic with period 2πi.

ii. d

dz
sin z = cos z

d

dz
cos z = − sin z

d

dz
sinh z = cosh z

d

dz
cosh z = sinh z

iii. sin(z + w) = sin z cosw + cos z sinw

cos(z + w) = cos z cosw − sin z sinw

sinh(z + w) = sinh z coshw + cosh z sinhw

cosh(z + w) = cosh z coshw + sinh z sinhw

iv. For each of the above functions, f(z) = f(z).

v.
cos z =

∞∑
ν=0

(−1)ν
z2ν

(2ν)!
sin z =

∞∑
ν=0

(−1)ν
z2ν+1

(2ν + 1)!

cosh z =
∞∑
ν=0

z2ν

(2ν)!
sinh z =

∞∑
ν=0

z2ν+1

(2ν + 1)!

vi. eiz = cos z + i sin z

vii. sin2 z + cos2 z ≡ 1

cosh2 z − sinh2 z ≡ 1.

It follows from v that, for real z, all of the above functions coincide with the trigono-
metric and hyperbolic functions familiar from calculus. Formula vi gives the decom-
position of ez into its real and imaginary parts (it is also called Euler’s formula):

ex+iy = ex(cos y + i sin y). (11)

Concerning the zeros of the trigonometric functions, we have:

Proposition 4.6. The zeros of the sine function are the real numbers kπ, and the
zeros of the cosine function are the numbers π

2 + kπ, where k ∈ Z.
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Proof: Let us restrict our attention to the cosine function. The equation

cos z =
1

2
(eiz + e−iz) = 0

implies that

e2iz + 1 = 0. (12)

The only solutions of (12) are the aforementioned ones.

In real analysis, one sometimes defines π via the condition that π/2 is the smallest
positive zero of the cosine function. The above theorem shows that our definition of
π gives the same number as this more elementary definition. The connection between
π and the circumference of a circle will be derived in the following section.

As an application of the preceding formulas and definitions, let us exhibit the nth
roots of unity, i.e. the n solutions of the equation

Xn = 1

in C. Clearly,

ζn = e2πi/n = cos
2π

n
+ i sin

2π

n

is such a solution; all the solutions are the powers ζhn , for 0 � h � n − 1. These
numbers all lie on the circle S and span a regular n-gon one of whose vertices is 1.
They form a cyclic group of order n (under multiplication); in the exercises, the reader
is asked to show that all finite subgroups (and in fact all closed proper subgroups) of
S are groups of nth roots of unity. Consequently, every complex number z = |z| eit
has nth roots, which can be written in the form

n
√

|z| eit/n ζhn , (13)

where 0 � h � n− 1. For z 	= 0, all of these roots are distinct.

We conclude with a list of the remaining trigonometric and hyperbolic functions:

tan z =
sin z

cos z
, cot z =

cos z

sin z
, (14)

tanh z =
sinh z

cosh z
, coth z =

cosh z

sinh z
. (15)

They are holomorphic everywhere except at the zeros of their denominators and have
periods π or, in the hyperbolic case, πi.

Concluding remark: In this section, we extended the elementary real analytic func-
tions ex, cosx, etc. to holomorphic functions on the complex plane. Prop. II.4.2
will show that this extension can be carried out in only one way and is therefore not
arbitrary.
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Exercises

1. Let ζ �= 1 be an nth root of unity. Show that

1 + 2ζ + 3ζ2 + . . .+ nζn−1 =
n

ζ − 1 .

2. Prove that every closed proper subgroup of S is finite cyclic and thus consists of nth roots of
unity.

3. a) Show that |sin z| � sinh|z| and |cos(z)| � cosh|z|. Investigate the behaviour of the trigono-
metric and hyperbolic functions as Re z → ∞ and Im z → ∞.

b) Where do the functions sin z, cos z, tan z, and cot z take on real values? Where do they take
on imaginary values?

4. Show that the function tan z never takes on the values ±i, and that therefore d
dz
tan z �= 0

everywhere. Show that the tangent function maps the strip S0 = {z : − π/2 < Re z < π/2}
biholomorphically onto C \ {it : t ∈ R, |t| � 1}.

5. Show that the radius of convergence of the power series

f(z) =

∞∑
ν=0

zν!

is 1, and that for any fixed α ∈ Q, f(r e2πi α) is unbounded as r → 1.

5. Integration

We will now introduce the most important tool in complex analysis: the integration of
complex-valued functions along suitable curves (“paths of integration”) in the complex
plane. That is, we will define∫

γ

f(z) dz, (1)

where f is a – generally continuous – function and γ : [a, b] → C is a piecewise contin-
uously differentiable path in the domain of f . To the reader who is already familiar
with path integrals: (1) is the integral of the special Pfaffian form f(z) dz along
the path γ. But we now define things “ab ovo”, assuming (almost) no background
knowledge.

The integral of the function f = g+ ih : [a, b] → C, where [a, b] is a closed real interval,
is the complex number

b∫
a

f(t) dt =

b∫
a

g(t) dt+ i

b∫
a

h(t) dt. (2)

It exists if f is integrable, e.g. if f is piecewise continuous:
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Definition 5.1.

i. The function f : [a, b] → C is piecewise continuous if there exists a partition

a = t0 < . . . < tn = b (3)

of the interval [a, b] into subintervals [tν−1, tν ] such that the restriction of f to
the open intervals ]tν−1, tν [ is continuous and admits a continuous extension to
the endpoints tν−1 and tν .

ii. The function f is piecewise continuously differentiable if the derivative f ′ exists
everywhere except at the points of a partition (3) and can be extended to a
piecewise continuous function.

Note that the functional

I(f) =

b∫
a

f(t) dt

is complex linear and satisfies I
(
f
)
= I(f). We thus have:

I(Re f) = Re I(f), I(Im f) = Im I(f). (4)

The following inequality is essential:

Lemma 5.1.∣∣∣∣
b∫

a

f(t) dt

∣∣∣∣ �
b∫

a

|f(t)| dt.

Proof: Choose a number α ∈ R such that

eiα
b∫

a

f(t) dt � 0.

Then using |eiα| = 1 and (4), we have

∣∣∣∣
b∫

a

f(t) dt

∣∣∣∣ = ∣∣∣∣eiα
b∫

a

f(t) dt

∣∣∣∣ = Re

(
eiα

b∫
a

f(t) dt

)
= Re

b∫
a

eiαf(t) dt

=

b∫
a

Re(eiαf(t)) dt �
b∫

a

∣∣eiαf(t)∣∣ dt = b∫
a

|f(t)| dt.

Of course, the central theorems of integral calculus hold for complex-valued functions
as well. Let us record the following two results for later use.
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Proposition 5.2.

i. Let f be continuously differentiable on [a, b]. Then

b∫
a

f ′(t) dt = f(b)− f(a).

ii. (Substitution rule) Let f be piecewise continuous on [a, b], and let h : [c, d]→ [a, b]
be a continuous, nondecreasing, and piecewise continuously differentiable bijec-
tion. Then

b∫
a

f(s) ds =

d∫
c

f(h(t))h′(t) dt. (5)

(The integrand on the right hand side of (5) may be undefined at finitely many points,
but this does not matter!)

We are now ready to define the paths along which we will integrate:

Definition 5.2. Let M ⊂ C be a subset of the complex plane. A path of integration
in M is a continuous and piecewise continuously differentiable map γ : [a, b] → M .

The interval [a, b] is called the parameter interval, and γ runs from its initial point
γ(a) to its end point γ(b). The image γ[a, b] is called the trace of the path γ and is
denoted Tr γ. We borrow the following from real analysis:

Proposition 5.3. Paths of integration are rectifiable, and their length is given by

L(γ) =

b∫
a

|γ′(t)| dt. (6)

We now come to the key definition:

Definition 5.3. Let f : M → C be continuous on M ⊂ C, and let γ : [a, b] → M be a
path of integration in M . The integral of f along γ is defined as

∫
γ

f(z) dz =

b∫
a

f(γ(t))γ′(t) dt. (7)

The integrand on the right hand side might again be undefined at finitely many points,
but it is nevertheless piecewise continuous.
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Examples:

i. Let a, b ∈ C, and let γ : [0, 1] → C be defined as

γ(t) = a+ t(b− a).

We will denote this path by [a, b] and refer to it as the segment joining a to b. If a
and b are real and a < b, then it is immediate that

∫
[a,b]

f(z) dz =

b∫
a

f(t) dt.

ii. For z0 ∈ C and r > 0, put

κ(r; z0)(t) = z0 + r eit, (8)

where −π � t � π. We call this path of integration the (positively oriented) circle
with centre z0 and radius r; the trace of the path (8) is precisely ∂Dr(z0).

Prop. 5.3 tells us that the length of the above circle is

L (κ(r; z0)) =

π∫
−π

|ir eit| dt = 2πr.

We thus see that the number π that we defined in terms of the period of the exponential
function in the previous section coincides with the number π familiar from geometry.

iii. An especially important example is:

∫
κ(r;z0)

dz

z − z0
=

π∫
−π

ir eit

r eit
dt = 2πi. (9)

Definition 5.4. A parameter transformation is a map

h : [c, d] → [a, b]

between real intervals with the following properties:

i. It is a continuous, piecewise continuously differentiable bijection.

ii. There exists a number δ > 0 such that h′(t) � δ for all t for which h′(t) is
defined.

It follows that h is increasing and that its inverse h−1 is a parameter transformation
as well (this time from [a, b] to [c, d]). Moreover, the composition of two parameter
transformations is again a parameter transformation. If γ : [a, b] → C is a path of
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integration, then γ ◦ h : [c, d] → C is a path of integration with the same initial point,
end point, and trace as γ. We say that γ ◦ h is a reparametrization of γ.

Suppose now that f is continuous on the trace of γ. By (5) and (7),

∫
γ

f(z) dz =

b∫
a

f
(
γ(t)

)
γ′(t) dt =

d∫
c

f
(
γ(h(s))

)
(γ ◦ h)′(s) ds =

∫
γ◦h

f(z) dz. (10)

Integrals are therefore invariant under reparametrization.

In light of this, we will identify two paths of integration if they are reparametriza-
tions of each other. To be pedantic: a path of integration is an equivalence class of
(parametrized) paths of integration with respect to the aforementioned equivalence
relation. The maps γ and γ ◦ h are thus parametrizations of the same path of inte-
gration.

The substitution rule also controls the behaviour of path integrals under holomorphic
mappings. If γ is a path of integration in the open set U ⊂ C and h : U → V is a
holomorphic function, then h ◦ γ is a path of integration in V . It follows that if f is
continuous on V , then

∫
h◦γ

f(w) dw =

b∫
a

f
(
h
(
γ(t)

))
h′
(
γ(t)

)
γ′(t) dt =

∫
γ

(f ◦ h)h′(z) dz. (11)

Note the extra factor h′ that appears in the integrand!

Paths of integration may, in a natural way, be combined, subdivided, and reversed:

a) Let γ1 and γ2 be two paths of integration such that the end point of γ1 is the
initial point of γ2. We may – reparametrizing if necessary – assume that γ1 and γ2
are defined on the intervals [a, b] and [b, c]. Then by setting

γ(t) =

{
γ1(t), t ∈ [a, b]

γ2(t), t ∈ [b, c],

we define a new path of integration γ. If f is a continuous function, then clearly∫
γ

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz. (12)

We therefore also write (in this order!)

γ = γ1 + γ2.
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b) If γ : [a, b] → C is a path of integration and a = t0 < . . . < tn = b is a partition of
[a, b], then the restriction γν = γ

∣∣[tν−1, tν ] is also a path of integration, and

γ = γ1 + . . .+ γn.

The subpaths γν arise upon subdividing γ.

c) Let γ : [0, 1] → C again be a path of integration. We define the path

−γ : [0, 1] → C

by −γ(t) = γ(1− t) and call −γ the reverse of γ. The trace stays the same, whereas
the initial and end points are switched. Clearly,∫

−γ

f(z) dz = −
∫
γ

f(z) dz. (13)

We will write γ1 − γ2 as shorthand for γ1 + (−γ2).

Let us continue our list of examples:

iv. A path γ : [a, b] → C such that γ(t) ≡ c is a constant path. Any integral along γ
is zero.

v. A path is called closed if its initial and end points coincide. The circle κ(r; z0), for
example, is a closed path, as is the boundary ∂Δ of the triangle Δ with vertices a, b,
and c:

∂Δ = [a, b] + [b, c] + [c, a].

vi. Example iii (formula (9)) shows that the value of an integral depends on the path
of integration: if it did not, the integral over every closed path of integration would
be zero (i.e. equal to the integral over a constant path). Two further typical examples
of integrals over the circle κ(1; 0) : t �→ eit, where −π � t � π, are:

∫
κ(1;0)

zn dz = i

π∫
−π

ei(n+1)t dt = 0 for n 	= −1,

∫
κ(1;0)

z dz =

∫
κ(1;0)

dz

z
= 2πi.

vii. Instead of specifying a particular path along we which we want to integrate, we
will often specify its trace when it is clear how it is to be parametrized. We may thus
write the integrals in vi as

∫
S
or
∫
|z|=1

.
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Translating Lemma 5.1 into the language of path integrals, we obtain:

Proposition 5.4 (The standard estimate). Let f be continuous on the trace of the
path of integration γ. Then∣∣∣∣∫

γ

f(z) dz

∣∣∣∣ � max
z∈Tr γ

|f(z)| · L(γ).

Proof: Since Tr γ is compact, |f | is bounded on it, say by M . Lemma 5.1 then
implies

∣∣∣∣∫
γ

f(z) dz

∣∣∣∣ = ∣∣∣∣
b∫

a

f(γ(t))γ′(t) dt
∣∣∣∣ �

b∫
a

|f(γ(t))| |γ′(t)| dt

� M

b∫
a

|γ′(t)| dt = ML(γ).

The following proposition is an immediate consequence of this estimate:

Proposition 5.5. Let fν be a sequence of continuous functions that converges uni-
formly to a function f on the trace Tr γ of a path of integration γ. Then f is contin-
uous, and∫

γ

f(z) dz = lim
ν→∞

∫
γ

fν(z) dz.

(Limit and integral signs are thus interchangeable.)

Proof: We already know that f is continuous. We then have∣∣∣∣∫
γ

f(z) dz −
∫
γ

fν(z) dz

∣∣∣∣ = ∣∣∣∣∫
γ

(f(z)− fν(z)) dz

∣∣∣∣
� max

z∈Tr γ
∣∣f(z)− fν(z)

∣∣ · L(γ) → 0.

Two further propositions will be important in the chapters to come. Both of them are
known results from the theory of integration in Rn. We therefore state them without
proof:

Proposition 5.6. Let γ be a path of integration in C, let M ⊂ Rn, and let
f : Tr γ ×M → C be a continuous function. Then:
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i. The function

F (x) =

∫
γ

f(z,x) dz

is continuous on M.

ii. If M is open and the partial derivative of f with respect to xν is continuous on
Tr γ ×M , then F is continuously differentiable with respect to xν , and

∂F

∂xν
(x) =

∫
γ

∂f

∂xν
(z,x) dz.

iii. If M ⊂ C is open and, for every z ∈ Tr γ, f is complex differentiable with
respect to w ∈ M and the derivative fw(z, w) is continuous on Tr γ ×M , then
F is holomorphic in the variable w, and

F ′(w) =
∫
γ

fw(z, w) dz.

Claim iii follows from ii, and i follows from the standard estimate in the same way
as Prop. 5.5 (and can be seen as a generalization of Prop. 5.5).

Finally, the Fubini theorem (about interchanging the order of integration):

Proposition 5.7. Let α and β be two paths of integration, and suppose the function
f is continuous on Trα× Trβ. Then∫

α

(∫
β

f(z, w) dw

)
dz =

∫
β

(∫
α

f(z, w) dz

)
dw.

Moreover, the theory of integration tells us that the following statement can be viewed
as a special case of Prop. 5.7:

Proposition 5.8. Let aνμ, where (ν, μ) ∈ N×N, be complex numbers. If there exists
a bound M , independent of n and m, for which

m∑
μ=0

n∑
ν=0

|aνμ| � M,

the series
∑∞

ν=0

(∑∞
μ=0 aνμ

)
and

∑∞
μ=0

(∑∞
ν=0 aνμ

)
are convergent, with the same sum.

Exercises

1. Let f : [a, b]→ C be a continuous function. Prove that

∣∣∣∣
b∫

a

Re f(t) dt

∣∣∣∣ �
∣∣∣∣

b∫
a

f(t) dt

∣∣∣∣ and

∣∣∣∣
b∫

a

Im f(t) dt

∣∣∣∣ �
∣∣∣∣

b∫
a

f(t) dt

∣∣∣∣.
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2. Determine the trace of the path γ(t) = a eit + b e−it, where 0 � t � 2π and a > b > 0, and
compute the integrals∫

γ

z dz and

∫
γ

z2 dz.

3. Compute
∫
κ(r;0) Re z dz and

∫
[a,b] Re z dz, where a, b ∈ C.

6. Several complex variables

The foundation laid in the first sections supports more than just the theory of holomor-
phic functions on the plane: we can easily extend our definitions to functions of several
complex variables. In doing so, the proofs and results remain largely unchanged, al-
though the theory of several complex variables eventually leads to questions that do
not arise in the theory of one complex variable. Now for the details!

Given a point in the n-dimensional complex vector space

Cn = {z = (z1, . . . , zn) : zν ∈ C},
we will denote the real and imaginary parts of its coordinates zν by xν and yν , re-
spectively. Moreover, we equip Cn with the “maximum norm”

|z| = max
1�ν�n

|zν |

instead of the euclidean norm. We will consider complex-valued functions f : U → C
defined on an open set U ⊂ Cn.

Definition 6.1. A function f : U → C is complex differentiable at the point z0 ∈ U
if there exist n functions Δ1, . . . ,Δn : U → C, continuous at z0, for which

f(z)− f(z0) =

n∑
ν=1

Δν(z)(zν − z0ν) (1)

holds for all z ∈ U . If f is complex differentiable at every point z0 ∈ U , then f is
said to be holomorphic on U . We say that f is holomorphic at z0 if it is holomorphic
on a neighbourhood of z0.

The numbers Δν(z0) are uniquely determined by (1); they are by definition the values
of the complex partial derivatives of f with respect to zν . We write:

Δν(z0) =
∂f

∂zν
(z0) = fzν (z0).

If f is holomorphic on all of U , the maps

z �→ ∂f

∂zν
(z), z ∈ U,
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define the complex partial derivatives of f as functions on U ; we denote them by

fzν =
∂f

∂zν
.

If they are again holomorphic, one may take higher partial derivatives

∂2f

∂zν∂zμ
, . . . ,

∂k1+...+knf

∂zk11 · · · ∂zkn
n

.

If we now define real differentiability as cleverly as we did in I.2, namely in terms of
the relation

f(z)− f(z0) =

n∑
ν=1

Δν(z)(zν − z0ν) +

n∑
ν=1

Eν(z)(zν − z0ν), (2)

where Δν and Eν are continuous at z0, then as before we conclude:

The values Δν(z0) and Eν(z0) are uniquely determined by f and z0. We call them
the Wirtinger derivatives of f and denote them by

∂f

∂zν
and

∂f

∂zν
. (3)

The same computation as in I.2 shows their relationship with the partial derivatives
of f with respect to the real coordinates xν and yν :

fzν =
∂f

∂zν
=

1

2

(
∂f

∂xν
− i

∂f

∂yν

)
fzν

=
∂f

∂zν
=

1

2

(
∂f

∂xν
+ i

∂f

∂yν

)
.

(4)

Likewise, the following is a consequence of the discussion in I.2:

Theorem 6.1. A function f : U → C is holomorphic if and only if it is real differen-
tiable and satisfies the differential equations

∂f

∂zν
= 0, 1 � ν � n. (5)

If this is the case, the Wirtinger derivatives fzν coincide with the complex partial
derivatives of f (which is why we denote them in the same way!).

The system (5) is called the system of Cauchy-Riemann equations in n variables.

A holomorphic function f in n variables is clearly holomorphic in each variable; more
generally, if one fixes k variables, then f is holomorphic in the remaining n − k
variables.

The usual rules for finding partial derivatives evidently apply to functions of several
complex variables as well. By observing that constant functions and the coordinate
functions zν – but not zν ! – are holomorphic, one obtains the following:
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Proposition 6.2. The set of holomorphic functions on an open set U forms a C-
algebra that contains the polynomial algebra C[z1, . . . , zn].

Furthermore, the quotient rule for derivatives implies:

Proposition 6.3. A quotient of holomorphic functions is holomorphic everywhere
except at the zeros of its denominator. In particular, a rational function (i.e. a
quotient of polynomials) is holomorphic at every point in its domain of definition.

In order to formulate the chain rule, we need the following definition.

Definition 6.2. Let F = (f1, . . . , fm) be a mapping of an open set U ⊂ Cn into
Cm. Then we say that F is holomorphic if all of the coordinate functions fμ are
holomorphic.

To be more explicit: F (z1, . . . , zn) = (w1, . . . , wm), where

wμ = fμ(z1, . . . , zn), 1 � μ � m.

Let all fμ be holomorphic. Then if f is a function that is holomorphic in a neighbour-
hood of a point w0 = F (z0), one obtains for the function f ◦ F in a neighbourhood
of z0:

Chain rule. The function f ◦ F is holomorphic at z0, and

∂(f ◦ F )

∂zν
(z0) =

m∑
μ=1

∂f

∂wμ
(F (z0))

∂fμ
∂zν

(z0). (6)

Formula (6) is typically written more concisely as

∂(f ◦ F )

∂zν
=

m∑
μ=1

∂f

∂wμ

∂wμ

∂zν
. (6′)

The proof is obtained as in the case of one variable. Alternatively, one can derive this
formula from the corresponding formula from real analysis.

To conclude, let us turn our attention to the integration of functions of several vari-
ables. The only case we will need in establishing basic results is the following:

Let γν : [0, 1] → C be paths of integration, where 1 � ν � n. Then

Γ(t1, . . . , tn) = (γ1(t1), . . . , γn(tn)) (7)

defines a mapping of the n-dimensional cube

Qn = {(t1, . . . , tn) : 0 � tν � 1} ⊂ Rn
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into Cn. We call Γ a parametrized surface of integration in Cn; its image Γ(Qn) is
the trace of Γ. For a continuous function f on the trace of Γ, we define∫

Γ

f(z1, . . . , zn) dz1 . . . dzn =

∫
γn

· · ·
∫
γ2

(∫
γ1

f(z1, . . . , zn) dz1

)
dz2 . . . dzn. (8)

Thus one first fixes the variables z2, . . . , zn and integrates the function

z1 �→ f(z1, z2, . . . , zn)

over γ1, obtaining a continuous function (see I.5) in the variables z2, . . . , zn, say
F (z2, . . . , zn). One then integrates the function

z2 �→ F (z2, . . . , zn),

where z3, . . . , zn are fixed, over γ2, and so on. By Prop. 5.7, the order in which one
integrates does not matter.

For the reader who has studied differential forms: (8) gives the integral of the complex
(n, 0)-form

f(z1, . . . , zn) dz1 ∧ . . . ∧ dzn

over the n-dimensional surface of integration Γ ⊂ Cn = R2n, i.e.∫
Γ

f(z) dz1 ∧ . . . ∧ dzn.

It is possible to integrate in far greater generality, but this is needed only in the
further development of the theory of several complex variables, which is beyond the
scope of this book.

Exercises

1. Explicitly derive the Cauchy-Riemann equations from the definition of complex differentiability.

2. Derive the chain rule (6).

3. A map F : U → V , where U and V are open subsets of Cn, is biholomorphic if it is bijective and
holomorphic and its inverse F−1 is holomorphic as well. Show that F is biholomorphic if it is
bijective and holomorphic and F−1 is real differentiable.
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The fundamental theorems of complex analysis

Holomorphic functions differ fundamentally from real differentiable functions: they are infinitely
often (real and complex) differentiable (II.3, II.7), they even admit power series expansions (II.4),
their entire behaviour is determined by their values on arbitrarily small open sets (II.4, II.7), and
they satisfy powerful convergence theorems and estimates (II.5). All of these properties are conse-
quences of the Cauchy integral theorem and the integral representations that arise from it (II.1–3).
Meromorphic functions extend the class of holomorphic functions (II.6); their study leads to the
notion of isolated singularities and to generalizations of power series obtained by allowing negative
powers (Laurent series). In addition to the phenomena that occur in the theory of functions of one
complex variable, a fundamentally new phenomenon enters the picture in higher dimensions: the
simultaneous holomorphic continuation of all holomorphic functions from a given domain to a larger
one (II.7). Here the Cauchy integral formula (in one variable!) is again the decisive tool.

The Cauchy integral theorem was already known to Gauss (1811). It was proved independently
of Gauss by Cauchy (1825) and by Weierstrass (1842). Goursat’s proof (1900) does not require
continuity of the derivative; the elegant technique of using triangular paths of integration, which
we employ in the second section, is due to Pringsheim (1901). The Cauchy integral formulas were
published by Cauchy in 1831 in the case of a circular path of integration and, much like we do
here, were used by him to develop the theory of complex analysis. The beginnings of the theory of
isolated singularities can likewise be traced to him. The theory of normal families (Thm. 5.3) was
developed by Montel (1912). The remaining material in this chapter, with the exception of II.7, is
“classical” – it was no doubt known in the second half of the nineteenth century. Work in the theory
of several complex variables (II.7) began with Cauchy; the results were known to complex analysts
of the late nineteenth century – with one (important!) exception: the use of Cauchy’s integral in
holomorphically continuing functions of several complex variables is due to Hartogs (1906). It is with
him that the modern theory of functions of several complex variables begins (see [FG] and [Li]).

1. Primitive functions

The fundamental theorem of calculus shows that indefinite integration can be seen
as the inverse of differentiation. We now investigate this question in the context of
functions of a complex variable.

Definition 1.1. Let f : G → C be a continuous function defined on a domain G ⊂ C.
A function F : G → C is called a primitive of f if it is holomorphic and satisfies
F ′ = f .

W. Fischer, I. Lieb, A Course in Complex Analysis, DOI 10.1007/978-3-8348-8661-3_2, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012



1. Primitive functions 37

Example:
On its disk of convergence, a power series

∞∑
n=0

an(z − z0)
n

has the primitive

∞∑
n=0

an
n+ 1

(z − z0)
n+1

(cf. I.3); in particular, the primitives of the functions exp z, sin z, and cos z are the
ones we already know. The function (z − z0)

−n, where n ∈ N, is holomorphic on
C \ {z0}, and for n 	= 1,

1

1− n
(z − z0)

1−n

is a primitive. If n = 1, then it does not have a primitive defined on C \ {z0}, as we
shall soon see.

If F is a primitive of the function f : G → C, then it is easy to evaluate line integrals
of f : if γ : [a, b] → G is continuously differentiable, then, since (f ◦ γ)γ′ is continuous,
the fundamental theorem of calculus implies that

∫
γ

f(z) dz =

b∫
a

f(γ(t))γ′(t) dt =

b∫
a

(F ◦ γ)′(t) dt = F (γ(b))− F (γ(a)). (1)

If γ is only piecewise continuously differentiable, we choose a partition

a = t0 < . . . < tn = b

for which every γν = γ
∣∣[tν−1, tν ] is continuously differentiable and apply (1) to the

subpaths γν :∫
γ

f(z) dz =

n∑
ν=1

∫
γν

f(z) dz

=
n∑

ν=1

(
F
(
γ(tν)

)− F
(
γ(tν−1)

))
= F

(
γ(b)

)− F
(
γ(a)

)
.

We have thus shown:
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Proposition 1.1. If F is a primitive of f : G → C, then for every path of integration
γ in G from z0 to z1, we have∫

γ

f(z) dz = F (z1)− F (z0).

Thus, in this case the value of the integral depends only on the endpoints of the path
of integration. In particular, if γ is a closed path of integration in G, then∫

γ

f(z) dz = 0. (2)

In the real setting, every continuous function defined on an interval has a primitive.
In the complex setting, functions as simple as z �→ Re z or z �→ |z| do not (see Ex. 2).
Not even the function z �→ 1/z, which is holomorphic on C\{0}, has a primitive there
– this follows from (2) and the fact that∫

|z|=1

dz

z
= 2πi.

(Concerning notation, cf. I.5, Example vii).

The necessary condition (2) for the existence of a primitive is also sufficient:

Proposition 1.2. If f is continuous on a domain G ⊂ C and satisfies∫
γ

f(z) dz = 0

for every closed path of integration γ in G, then f has a primitive on G.

Proof: Let a ∈ G be fixed. For every z ∈ G, choose a path of integration γz in G
from a to z and set

F (z) =

∫
γz

f(ζ) dζ.

Let us show that F is complex differentiable at every point z0 ∈ G and satisfies
F ′(z0) = f(z0). If z is a point that is sufficiently close to z0, then [z0, z] ⊂ G, and
γz0 + [z0, z]− γz is a closed path in G. By assumption, we have∫

γz0

f(ζ) dζ +

∫
[z0,z]

f(ζ) dζ −
∫
γz

f(ζ) dζ = 0,
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so that

F (z)− F (z0) =

∫
[z0,z]

f(ζ) dζ =

1∫
0

f
(
z0 + t(z − z0)

)
(z − z0) dt = (z − z0)A(z),

where

A(z) =

1∫
0

f
(
z0 + t(z − z0)

)
dt.

We have A(z0) = f(z0); moreover, A is continuous at z0, because the above integrand
is a continuous function of z (in a neighbourhood U of z0).

Note that the primitive F depends on a but not on the choice of the paths γz. If γ̃z
is another path in G from a to z, then γz − γ̃z is closed, so that∫

γz

f(ζ) dζ −
∫
γ̃z

f(ζ) dζ =

∫
γz−γ̃z

f(ζ) dζ = 0.

If we restrict ourselves to domains of a special shape, we may weaken the conditions
of Prop. 1.2. Rather than considering arbitrary closed paths, it suffices to consider
triangular paths.

Definition 1.2. A domain G ⊂ C is called star-shaped if there exists a point a ∈ G
such that, for every z ∈ G, the segment [a, z] is contained in G.

Convex domains are of course star-shaped.

Proposition 1.3. Let G ⊂ C be a star-shaped domain (with respect to a ∈ G), and
let f : G → C be continuous. If for every closed triangle Δ ⊂ G one of whose vertices
is a, we have∫

∂Δ

f(ζ) dζ = 0,

then f has a primitive.

Proof: We claim that

F (z) =

∫
[a,z]

f(ζ) dζ



40 Chapter II. The fundamental theorems of complex analysis

is a primitive of f . If z0 ∈ G and z is close enough to z0 such that [z0, z] ⊂ G, then
the triangle Δ with vertices a, z, and z0 lies inside G, and

0 =

∫
∂Δ

f(ζ) dζ =

∫
[a,z]

f(ζ) dζ −
∫

[z0,z]

f(ζ) dζ −
∫

[a,z0]

f(ζ) dζ.

Thus,

F (z)− F (z0) =

∫
[z0,z]

f(ζ) dζ,

and the claim follows by the argument used in the proof of Prop. 1.2.

Remark: IfG is an arbitrary domain and
∫
∂Δ

f(ζ) dζ = 0 holds for all closed triangles
Δ ⊂ G, then f has local primitives, i.e. every point a ∈ G has a neighbourhood U
such that f

∣∣U has a primitive. It suffices to take for U a disk that is centred at a and
contained in G and then to apply Prop. 1.3.

Exercises

1. Let γ be a path of integration from i+1 to 2i. Compute the integrals of the following functions
over γ:

cos(1 + i)z, iz2 + 1− 2iz−2, (z + 1)3, z exp(iz2).

2. Show that the functions z �→ Re z and z �→ |z| do not have primitives on C.

3. Show that if a function f : G → C has local primitives, then for every closed triangle Δ in G, we
have

∫
∂Δ f(z) dz = 0.

2. The Cauchy integral theorem

We now come to the central theorem of complex analysis – virtually all of the impor-
tant results of this chapter and the next make direct or indirect use of the contents
of this section.

Theorem 2.1 (Goursat’s lemma). Let f be holomorphic in a neighbourhood of a
closed triangle Δ. Then∫

∂Δ

f(z) dz = 0.

Holomorphic functions thus satisfy the conditions of Prop. 1.3.
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Δ1
1�

Δ2
1�

Δ3
1�

Δ4
1

�

Δ

Figure 1. Subdivision of a triangle

Proof: Let us subdivide Δ into four subtriangles Δ1
1, . . . ,Δ

4
1 by connecting the mid-

points of the edges of Δ (see Fig. 1). Every segment that joins two midpoints belongs
to the boundary of exactly two subtriangles; thus, if we form the sum

4∑
k=1

∫
∂Δk

1

f(z) dz,

the integrals over these segments cancel, and we have∫
∂Δ

f(z) dz =

4∑
k=1

∫
∂Δk

1

f(z) dz,

so that∣∣∣∣∫
∂Δ

f(z) dz

∣∣∣∣ � 4 max
1�k�4

∣∣∣∣ ∫
∂Δk

1

f(z) dz

∣∣∣∣.
Among the triangles Δk

1 , choose one such that the absolute value of its boundary
integral is maximal, and call it Δ1. We then have∣∣∣∣∫

∂Δ

f(z) dz

∣∣∣∣ � 4

∣∣∣∣ ∫
∂Δ1

f(z) dz

∣∣∣∣.
Now apply the same procedure to the triangle Δ1, yielding a triangle Δ2 such that∣∣∣∣ ∫

∂Δ1

f(z) dz

∣∣∣∣ � 4

∣∣∣∣ ∫
∂Δ2

f(z) dz

∣∣∣∣.
Continuing in this way, we obtain a sequence of nested triangles

Δ = Δ0 ⊃ Δ1 ⊃ . . . ⊃ Δn ⊃ . . .
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for which∣∣∣∣∫
∂Δ

f(z) dz

∣∣∣∣ � 4n
∣∣∣∣ ∫
∂Δn

f(z) dz

∣∣∣∣. (1)

Moreover, the perimeters L(∂Δn) and diameters diamΔn satisfy

L(∂Δn) =
1

2
L(∂Δn−1) = . . . =

1

2n
L(∂Δ) (2)

diamΔn =
1

2n
diamΔ. (3)

Since all Δn are compact, their intersection is nonempty, and by (3), it consists of a
single point z0, i.e.⋂

n�0

Δn = {z0}.

The function f is complex differentiable at z0, so that

f(z) = f(z0) + (z − z0)f
′(z0) + (z − z0)A(z),

where A is a continuous function on Δ that vanishes at z0. This allows us to estimate
the integral of f as follows: The linear function

f(z0) + (z − z0)f
′(z0)

has a primitive, so its integral over the closed path ∂Δn is zero. The standard estimate
then yields∣∣∣∣ ∫

∂Δn

f(z) dz

∣∣∣∣ = ∣∣∣∣ ∫
∂Δn

(z − z0)A(z) dz

∣∣∣∣
� L(∂Δn) max

z∈Δn

∣∣(z − z0)A(z)
∣∣

� L(∂Δn) diamΔn max
z∈Δn

|A(z)|.

(4)

Combining (4) with (1), (2), and (3), we have∣∣∣∣∫
∂Δ

f(z) dz

∣∣∣∣ � 4n · 2−n · 2−nL(∂Δ)diamΔ · max
z∈Δn

|A(z)|

= L(∂Δ)diamΔ · max
z∈Δn

|A(z)|.

The continuous function A(z) vanishes at z0, hence

lim
n→∞ max

z∈Δn

|A(z)| = 0,
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from which it follows that∫
∂Δ

f(z) dz = 0,

as claimed.

Prop. 1.3 and Goursat’s lemma imply that, on a star-shaped domain, holomorphic
functions have primitives. This is the “fundamental theorem of complex analysis”:

Theorem 2.2 (The Cauchy integral theorem for star-shaped domains). Let f be a
holomorphic function defined on a star-shaped domain G. Then∫

γ

f(z) dz = 0

for every closed path of integration γ in G.

A holomorphic function defined on a domain G that is not star-shaped may or may
not have a primitive defined on all of G, but it does have local primitives, because
every point in G has a convex neighbourhood contained in G.

Exercises

1. Let f be continuous on D and holomorphic on D. Show that∫
∂D

f(ζ) dζ = 0.

Hint: Consider the functions fr(z) = f(rz) as r ↑ 1.
2. a) Let a �= 0 be a real number. Using the formula ∫∞

−∞ e−x2 dx =
√
π, compute the integral

∞∫
−∞

exp(−x2 − 2iax) dx.

Hint: Integrate exp(−z2) over the boundary of the rectangle with vertices ±R and ±R + ia,
and let R → ∞.

b) Using the result from part a), compute the following integral for λ ∈ R:
∞∫
−∞

exp(−x2) cos(λx) dx.

3. Compute the “Fresnel integrals”
∞∫
0

cos(x2) dx =
√
π/8 =

∞∫
0

sin(x2) dx.

Hint: Apply the Cauchy integral theorem to sectors with centre 0 and corners given by R and
eiπ/4R, where R → ∞.

4. Show that, for 0 � a < 1,
∞∫
0

e−(1−a2)x2 cos(2ax2) dx =

√
π

2(1 + a2)
and

∞∫
0

e−(1−a2)x2 sin(2ax2) dx =
a
√
π

2(1 + a2)
.
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3. The Cauchy integral formula

We will derive an integral representation from the Cauchy integral theorem that shows
how the values of a holomorphic function in the interior of a disk are determined by
its values on the boundary circle.

Theorem 3.1 (The Cauchy integral formula). Let G be a domain, let z0 ∈ G, and
let D = Dr(z0) ⊂⊂ G. Then for every holomorphic function f on G,

f(z) =
1

2πi

∫
∂D

f(ζ)

ζ − z
dζ for all z ∈ D. (1)

Proof: For a sufficiently small ε > 0, U = Dr+ε(z0) is a convex (and thus star-shaped)
neighbourhood of z0 contained in G. For a fixed z ∈ D, consider the function

g(ζ) =

⎧⎨⎩
f(ζ)− f(z)

ζ − z
for ζ 	= z

f ′(z) for ζ = z

on U . It is certainly holomorphic on U \{z}, and although it may not be holomorphic
at the point ζ = z, it is continuous there. We will nevertheless apply the Cauchy
integral theorem to g – this is justified by Cor. 3.3 below. We then have

0 =

∫
∂D

g(ζ) dζ =

∫
∂D

f(ζ) dζ

ζ − z
−
∫
∂D

f(z) dζ

ζ − z
.

The theorem now follows provided we show that∫
∂D

dζ

ζ − z
= 2πi (2)

for z ∈ D. This will be done after Cor. 3.3.

Lemma 3.2. Let Δ ⊂ C be a closed triangle, and let f be holomorphic in a neigh-
bourhood of Δ with the possible exception of a point z0 ∈ Δ, at which f is continuous.
Then ∫

∂Δ

f(z) dz = 0.

Proof: a) Suppose z0 is a vertex of Δ. The function f is continuous and hence
bounded on the compact set Δ, say |f(z)| � M . For a given ε > 0, split Δ into three
subtriangles, as shown in the left of Fig. 2, in such a way that L(∂Δ1) < ε. Then by
Thm. 2.1, the integrals over ∂Δ2 and ∂Δ3 vanish, and we have∣∣∣∣∫

∂Δ

f(z) dz

∣∣∣∣ = ∣∣∣∣ ∫
∂Δ1

f(z) dz

∣∣∣∣ � L(∂Δ1) ·M < εM.
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z0 z1

z′1

Δ1

Δ2

Δ3

z0

Δ1 Δ2 z0
Δ1

Δ2

Figure 2. Splitting of triangles

b) Suppose now that z0 lies on an edge of Δ but is not a vertex. Split Δ as shown in
the middle of Fig. 2. By part a), we obtain∫

∂Δ

f(z) dz =

∫
∂Δ1

f(z) dz +

∫
∂Δ2

f(z) dz = 0.

c) If z0 belongs to the interior of Δ, then split Δ as shown in the right of Fig. 2. By
part b), we again have∫

∂Δ

f(z) dz =

∫
∂Δ1

f(z) dz +

∫
∂Δ2

f(z) dz = 0.

One can derive the following corollary from Lemma 3.2 in the same way that one
derives the Cauchy integral theorem from Goursat’s lemma.

Corollary 3.3. Let G ⊂ C be a star-shaped domain, and let f : G → C be a contin-
uous function that is holomorphic everywhere except possibly at z0. Then for every
closed path of integration γ in G,∫

γ

f(z) dz = 0.

In order to prove (2), we differentiate the integral in (2) with respect to z and, by
Prop. I.5.6, obtain

∂

∂z

∫
∂D

dζ

ζ − z
=

∫
∂D

dζ

(ζ − z)2
.

The latter integral is equal to zero because (ζ−z)−2 has the primitive ζ �→ −(ζ−z)−1

on C \ {z}. Therefore,∫
∂D

dζ

ζ − z
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is constant on D; we have already determined its value at the centre z0 to be 2πi.

This completes the proof of Thm. 3.1.

The Cauchy integral formula has many important consequences. We derive the first
ones now, keeping the notation used in Thm. 3.1.

The integrand in the formula

f(z) =
1

2πi

∫
∂D

f(ζ) dζ

ζ − z

is holomorphic in z ∈ D, so that, as before, we can differentiate with respect to z
under the integral sign:

f ′(z) =
1

2πi

∫
∂D

f(ζ) dζ

(ζ − z)2
for z ∈ D. (3)

Here the integrand is again holomorphic in z ∈ D. As before, it follows that f ′ is
holomorphic on D, and we have

f ′′(z) =
2

2πi

∫
∂D

f(ζ) dζ

(ζ − z)3
for z ∈ D.

Continuing in this way, we see that the holomorphic function f is infinitely often
complex differentiable on D and that its derivatives satisfy the formula

f (n)(z) =
n!

2πi

∫
∂D

f(ζ) dζ

(ζ − z)n+1
for z ∈ D and n = 0, 1, 2, 3, . . .

Here the disk D ⊂⊂ G was arbitrary. Since every point in G belongs to such a disk,
we conclude

Theorem 3.4. The derivative of a holomorphic function is again holomorphic. Holo-
morphic functions are infinitely often complex differentiable.

Theorem 3.5 (The Cauchy integral formula). If f : G → C is holomorphic and the
disk D is relatively compact in G, then for every z ∈ D and n = 0, 1, 2, . . .,

f (n)(z) =
n!

2πi

∫
∂D

f(ζ) dζ

(ζ − z)n+1
.

Thm. 3.4 shows that complex differentiability is a condition of far more consequence
than real differentiability: The derivative of a real differentiable function need not be
continuous, let alone differentiable.

With the help of Thm. 3.4, we can derive several criteria for a function to be holo-
morphic. The first of these is a converse of Goursat’s lemma (Thm. 2.1).
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Proposition 3.6 (Morera). Let f be continuous on a domain G ⊂ C, and suppose
that

∫
∂Δ

f(z) dz = 0 for every closed triangle Δ ⊂ G. Then f is holomorphic on G.

Proof: Let D be an arbitrary disk in G. Given our assumptions, Prop. 1.3 implies
that f has a primitive F on D. By Thm. 3.4, f = F ′ is holomorphic on D.

Remark: Let f : G → C be continuous on the domain G and holomorphic on G\{z0}
for some z0 ∈ G. It follows from Lemma 3.2 that

∫
∂Δ

f(z) dz = 0 for every closed
triangle Δ in G, so that f is holomorphic on all of G, by Morera’s theorem. The
condition “continuous, and holomorphic with the possible exception of one point”
thus only seems to be more general than the condition “holomorphic”. We required
the former, however, in order to prove the Cauchy integral formula and Morera’s
theorem.

To conclude, we give an often used criterion that substantially sharpens the above
remark.

Theorem 3.7 (The Riemann extension theorem). Let G ⊂ C be a domain, let z0 ∈ G,
and assume that the function f is holomorphic on G\{z0} and bounded near z0. Then
f can be uniquely extended to a holomorphic function on all of G.

Here “f is bounded near z0” means that there is a neighbourhood U ⊂ G of z0 and
a bound M such that |f(z)| � M for all z ∈ U \ {z0}.

Proof: Since f is bounded near z0, we have lim
z→z0

(z − z0)f(z) = 0. Therefore, the

function

F (z) =

{
(z − z0)f(z) for z 	= z0

0 for z = z0

is holomorphic on G \ {z0} and continuous at z0. In light of the above remark, F is
holomorphic on all of G. We have

F ′(z0) = lim
z→z0

F (z)− F (z0)

z − z0
= lim

z→z0
f(z);

in particular, the latter limit exists. This means that f can be uniquely extended to
a continuous function f̂ on G. Applying the above remark to f̂ proves the claim.

The extension of f to f̂ means that the gap in the domain of definition of f can be
removed. Thm. 3.7 is thus frequently referred to as Riemann’s removable singularity
theorem.
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Example:
Let f(z) = sin z

z for z 	= 0. The power series of the sine function gives us

f(z) = 1− 1

3!
z2 + . . . ,

so lim
z→0

f(z) = 1, and by setting f(0) = 1, f becomes a holomorphic function on all

of C.

Exercises

1. Using the Cauchy integral formulas, compute the following integrals:

a)

∫
|z+1|=1

dz

(z + 1)(z − 1)3 , b)

∫
|z−i|=3

dz

z2 + π2
,

c)

∫
|z|=1/2

exp(1− z) dz

z3(1− z)
, d)

∫
|z−1|=1

(
z

z − 1
)n

dz (n � 1).

2. Let f be holomorphic in a neighbourhood of the closed disk D ⊂ C. Show that

z �→
∫
∂D

f(ζ) dζ

ζ − z

determines a holomorphic function on C \D. Which function is this?
3. Let f be continuous on the closed disk D ⊂ C and holomorphic on D. Show that

1

2πi

∫
∂D

f(ζ) dζ

ζ − z
= f(z)

for z ∈ D (cf. Ex. 1 in II.2).

4. Check whether the following functions can be holomorphically extended to z0 = 0.

z cot2 z; z2 cot2 z; z (ez − 1)−1; z2 sin(1/z).

4. Power series expansions of holomorphic functions

In Chapter I, we saw that a convergent power series determines a holomorphic function
in its disk of convergence. We will now prove that a holomorphic function defined
on a disk D = Dr(z0) has a power series expansion with base point z0 and radius of
convergence at least r. This is again a difference between real and complex analysis:
the radius of convergence of the Taylor series of an infinitely often real differentiable
function f can be 0, and even if it is positive, the series need not converge to f .

Theorem 4.1. Let f be holomorphic on the domain G ⊂ C, and let z0 ∈ G. Then f
can be represented by its Taylor series

f(z) =

∞∑
n=0

an(z − z0)
n, where an =

1

n!
f (n)(z0),
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in a neighbourhood of z0. This series converges to f on the largest disk centred at z0
that is still contained in G.

It is possible that the Taylor series T (z) of f converges in a larger disk D(z0) than is
guaranteed by the above theorem. Whether it is true that f(z) ≡ T (z) on G ∩D(z0)
must then be checked on a case-by-case basis: in general, it is not true. Clarifying
the relationship between f(z) and T (z) leads to the theory of Riemann surfaces (cf.
[FL2, Fo2]).

Proof of Thm. 4.1: a) If a function f that is holomorphic on G can be represented
as a power series f(z) =

∑∞
n=0 an(z − z0)

n in a neighbourhood of z0, then

f (k)(z0) = k!ak

for k = 0, 1, 2, . . .; in particular, these coefficients are unique (see Cor. I.3.8).

b) Choose a radius r such that D = Dr(z0) ⊂⊂ G. In the Cauchy integral formula

f(z) =
1

2πi

∫
∂D

1

ζ − z
f(ζ) dζ,

expand the term
1

ζ − z
into a geometric series with respect to powers of

z − z0
ζ − z0

:

1

ζ − z
=

1

ζ − z0
· 1

1− z−z0
ζ−z0

=
1

ζ − z0

∞∑
n=0

(
z − z0
ζ − z0

)n

=

∞∑
n=0

1

(ζ − z0)n+1
(z − z0)

n.

For a fixed z ∈ D, this series converges uniformly on ∂D. Since f is bounded on ∂D,
the series

∞∑
n=0

f(ζ)

(ζ − z)n+1
(z − z0)

n

also converges uniformly on ∂D, and we may interchange the order of summation and
integration in the following calculation:

f(z) =
1

2πi

∫
∂D

( ∞∑
n=0

f(ζ)

(ζ − z0)n+1
(z − z0)

n

)
dζ

=

∞∑
n=0

(
1

2πi

∫
∂D

f(ζ)

(ζ − z0)n+1
dζ

)
(z − z0)

n,

where z ∈ D. This is the sought-after expansion of f into a power series; by the
Cauchy integral formula for derivatives (Thm. 3.5), the coefficients in parentheses are
indeed the values f (n)(z0)/n!. Note that, together with part a), this calculation yields
a new proof of Thm. 3.5.
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c) Let DR(z0) be the largest disk centred at z0 that is contained in G (in case G = C,
note that R = ∞). Given a point z ∈ DR(z0), we can choose a radius r such that
|z − z0| < r < R. By part b), the above representation of f as a power series is valid
at z.

Examples of power series expansions:

The coefficient formula an = f (n)(z0)/n! is usually of little help, because higher
derivatives often become intractable. For rational functions, Example i gives us a
method for finding Taylor expansions. The remaining examples show how one can
often attain at least the beginning of a Taylor series.

i. The function f(z) = (z − a)−1 can be expanded into a power series with radius of
convergence |z0 − a| about every point z0 	= a (cf. the proof of Thm. 4.1):

1

z − a
=

∞∑
n=0

an(z − z0)
n, where an = −(a− z0)

−n−1.

For g(z) = (z − a)−2, we have g(z) = −f ′(z), so that

1

(z − a)2
= −

∞∑
n=1

nan(z − z0)
n−1 = −

∞∑
n=0

(n+ 1)an+1(z − z0)
n.

Higher powers of (z − a)−1 are handled similarly. With more complicated ratio-
nal functions, one decomposes the function into partial fractions and combines the
corresponding power series. In III.2, we will study partial fraction decompositions
systematically; for now, let us give a concrete example, namely

h(z) =
z + 1

(z − 1)2(z − 2)
=

3

z − 2
− 3

z − 1
− 2

(z − 1)2
.

The power series expansion about z0 = 0 is thus

h(z) = −3

∞∑
n=0

2−n−1zn + 3

∞∑
n=0

zn − 2

∞∑
n=0

(n+ 1)zn

=

∞∑
n=0

(3− 3 · 2−n−1 − 2(n+ 1))zn for |z| < 1.

ii. Let the functions f and g be holomorphic in a neighbourhood of z0. Leibniz’s rule
for the derivatives of the product fg says that

(fg)(n)(z0)/n! =

n∑
m=0

f (m)(z0)

m!
· g

(n−m)(z0)

(n−m)!
.
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If f(z) =
∑∞

n=0 an(z − z0)
n and g(z) =

∑∞
n=0 bn(z − z0)

n are the Taylor series of f
and g, then the Taylor series of fg is therefore

(fg)(z) =

∞∑
n=0

( n∑
m=0

ambn−m

)
(z − z0)

n.

One can also obtain this series by formal multiplication of the series for f and g.

iii. Suppose f(z) =
∑∞

n=0 an(z − z0)
n in a neighbourhood of z0, and assume that

f(z0) = a0 	= 0. Then 1/f is holomorphic near z0, and the coefficients of the expansion

1

f(z)
=

∞∑
n=0

bn(z − z0)
n

can be determined from

1 =
1

f(z)
· f(z) =

∞∑
n=0

( n∑
m=0

bman−m

)
(z − z0)

n

by comparing coefficients; we obtain

b0a0 = 1 and

n∑
m=0

bman−m = 0 for n � 1.

Thus,

b0 = a−1
0 , b1 = −a1a

−2
0 , b2 = (a21 − a0a2)a

−3
0 , etc.

iv. Let us determine the beginning of the power series expansion of f(z) = tan z
about z0 = 0. Note that f is an odd function, i.e. f(−z) = −f(z); the derivatives of
even order of f therefore vanish at the origin. It follows that the expansion has the
form

tan z =
∞∑
n=0

a2n+1z
2n+1.

The tangent function is holomorphic on C with the exception of the points π
2 + kπ,

where k ∈ Z, so that the radius of convergence of the above series is π
2 – cf. Ex. 5a. One

can now obtain the first few coefficients by, for example, substituting the power series
for sin z and cos z into the equation cos z · tan z = sin z and comparing coefficients:(

1− 1
2!z

2 + 1
4!z

4 −+ . . .
)(
a1z + a3z

3 + a5z
5 + . . .

)
= z − 1

3!z
3 + 1

5!z
5 −+ . . .

gives us a1 = 1, a3 − 1
2!a1 = − 1

3! , a5 − 1
2!a3 +

1
4!a1 = 1

5! , etc., so that a3 = 2
3! , a5 = 16

5! ,
etc.
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In order to determine the derivatives f (n)(z0) of a function f that is holomorphic at
z0, one only needs to know the values f(z) on, say, a segment (z0 − δ, z0 + δ) parallel
to the real axis. If f and g are two functions that are holomorphic at z0 and coincide
on such a segment, then f (n)(z0) = g(n)(z0) for all n. The functions f and g thus
have the same Taylor series expansion about z0, so that they in fact coincide on a
neighbourhood of z0! The following proposition sharpens this observation.

Proposition 4.2 (The identity theorem). Let G be a domain in C, and let f and g
be holomorphic functions on G. The following are equivalent:

i. There exists a point z0 ∈ G and a sequence zμ in G \ {z0} converging to z0 such
that f(zμ) = g(zμ) for μ � 1.

ii. f ≡ g.

iii. There exists a point z0 ∈ G such that f (n)(z0) = g(n)(z0) for all n � 0.

Proof: By passing to the function f − g, we may assume that g ≡ 0.

a) Claims i and iii follow trivially from ii.

b) Let us assume that i holds and show that iii holds with the same z0. Consider the
Taylor series expansion of f about z0:

f(z) =
∞∑
n=0

an(z − z0)
n.

We have a0 = f(z0) = limμ f(zμ) = 0. Suppose now that a0 = . . . = an−1 = 0 for
some n � 1. Then

f(z) = (z − z0)
n(an + an+1(z − z0) + . . .) = (z − z0)

nF (z),

where F is continuous (and in fact holomorphic) at z0. Since zμ − z0 	= 0, we have
F (zμ) = 0 for all μ, and hence an = limμ F (zμ) = 0. Thus, for all n,

f (n)(z0) = n! an = 0.

c) We now derive ii from iii By Thm. 4.1, f ≡ 0 in a neighbourhood of z0. Consider
the set

M = {z1 ∈ G : f ≡ 0 in a neighbourhood of z1}.

By definition, M is open, and z0 ∈ M . But M is also closed in G: If z2 ∈ G is a
boundary point of M , then there exists a sequence zμ in M \ {z2} converging to z2.
By part b), we then have f (n)(z2) = 0 for all n � 0, from which it follows that f ≡ 0
in a neighbourhood of z2, i.e. z2 ∈ M . Since G is a domain, M = G, so that f ≡ 0
on G.
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By the identity theorem, a holomorphic function on a domain G is completely de-
termined by its values on any nondiscrete set in G. Here a set M ⊂ G is called
nondiscrete in G if G contains an accumulation point of M ; if this is not the case,
then M is called discrete in G. Properties that can be expressed via identities between
holomorphic functions on G thus only need to be verified on a nondiscrete set in G,
e.g. on a curve C ⊂ G, in order to be satisfied on all of G – they “propagate from C
to G”. Let us illustrate this important principle with a typical example. The function
f(z) = cotπz is holomorphic on C \ Z and has period 1 on R \ Z. This means that
the holomorphic functions

z �→ f(z), z �→ f(z + 1)

coincide on the nondiscrete set R \ Z ⊂ C \ Z and hence coincide everywhere. The
periodicity of the real cotangent function thus implies the periodicity of the complex
cotangent function.

In particular, the identity theorem implies that the extension of the real elementary
functions sin : R → R, etc. to holomorphic functions can be accomplished in only one
way, since R is nondiscrete in C.

The notion of the order of a zero of a polynomial can be transferred to holomorphic
functions as follows:

Definition 4.1. A holomorphic function f has a zero of order (or multiplicity) k at
z0 if

f(z0) = f ′(z0) = . . . = f (k−1)(z0) = 0, f (k)(z0) 	= 0.

It assumes the value w at z0 with order (or multiplicity) k if f −w has a zero of order
k at z0.

Here one may allow k = ∞. If f takes on the value w with order ∞ at z0, then f ≡ w
in a neighbourhood of z0 – see Prop. 4.2.

The function (z − z0)
k has a zero of order k at z0. More generally, it is easy to show

the equivalence of the following claims:

i. The function f has a zero of order k at z0.

ii. The Taylor series expansion of f about z0 is

f(z) =
∞∑
n=k

an(z − z0)
n, where ak 	= 0.

iii. In a neighbourhood of z0, one can write

f(z) = (z − z0)
kg(z),

where g is holomorphic and satisfies g(z0) 	= 0.
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The identity theorem shows that if G is a domain and f : G → C is a nonconstant
holomorphic function, then for every w ∈ C, the points at which f takes on the
value w are isolated, i.e. the set f−1(w) = {z ∈ G : f(z) = w} does not have an
accumulation point in G (it may of course be empty!).

To conclude this section, we give several characterizations of the term “holomorphic
function”. We leave it to the reader to verify how they follow from the theorems we
have proved thus far.

Theorem 4.3. Let f : U → C be a function defined on an open set U ⊂ C. The
following are equivalent:

i. f is holomorphic.

ii. f is real differentiable and satisfies the Cauchy-Riemann equations.

iii. f admits a power series expansion about every point in U .

iv. f has local primitives.

v. f is continuous, and for every closed triangle Δ ⊂ U ,
∫
∂Δ

f(z) dz = 0.

Exercises

1. Determine the power series expansion of the following functions about z0 = 0:

2z + 1

(z2 + 1)(z + 1)2
, sin2 z, ez cos z.

Hint: It is sometimes helpful to express trigonometric functions in terms of the exponential
function.

2. Assume that the power series f(z) =
∑∞

0 anzn converges on D = Dr(0). Show that:

– If f is real-valued on R ∩D, then all an are real.

– If f is an even (odd) function, then an = 0 for all odd (even) n.

– If f(iz) = f(z), then an can only be nonzero if n is divisible by 4.

In addition: Discuss the equation f(ρz) = μf(z), where ρ, μ ∈ C \ {0} are given.
3. There are only even powers of z in the power series expansion of f(z) = 1

cos z
about 0. It is most

often written in the form

1

cos z
=
∞∑

n=0

(−1)n E2n

(2n)!
z2n.

The E2n are called Euler numbers. Determine a recursion formula for the numbers E2n and show
that they are all integers. In addition: Show that (−1)nE2n is always positive. Furthermore:
Show that (−1)nE2n ≡ 0 mod 5 for even n > 0 and that (−1)nE2n ≡ 1 mod 5 for odd n.

4. Prove that if f and g are holomorphic on a domain G and fg ≡ 0, then f ≡ 0 or g ≡ 0.

5. a) Let the function f be holomorphic on Dr(0), and suppose there exists a point z1 ∈ ∂Dr(0)
such that lim

z→z1
f(z) does not exist. Show that the radius of convergence of the Taylor series

expansion of f about 0 is exactly r.

b) Determine the radii of convergence of the Taylor series expansions about 0 of

tan z,
1

cos z
,

z

sin z
,

z

ez − 1 .
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6. a) Suppose the domain G is symmetric with respect to the real axis and that f is holomorphic

on G and real-valued on G ∩ R. Show that f(z) = f(z) for all z ∈ G.

b) Suppose G = Dr(0) and f is holomorphic on G and real-valued on G ∩ R. Show that if f is
even (odd), then the values of f on G∩ iR are real (imaginary). Prove this without using the
power series expansion of f .

7. a) Suppose the domain G is symmetric with respect to the real axis and f is continuous on G
and holomorphic on G \ R. Show that f is holomorphic on all of G.
Hints: Use Morera’s theorem. In splitting up the triangle Δ ⊂ G, one sees that the only
problematic case is the one in which an edge of Δ lies on R. In this case, approximate Δ by a
triangle Δε one of whose edges lies on R± iε, let ε tend to 0, and use the uniform continuity
of f on Δ.

b) Let G be as in part a), and let f be continuous on G ∩ {z : Im z � 0}, holomorphic on
G∩{z : Im z > 0}, and real-valued on G∩R. Show that f can be extended to a function that
is holomorphic on all of G (cf. Ex. 6a).

5. Convergence theorems, maximum modulus principle,
and open mapping theorem

From the fundamental results of the previous sections, we now deduce further impor-
tant properties of holomorphic functions. We begin with a useful estimate.

Proposition 5.1 (The Cauchy inequalities). Let f be holomorphic in a neighbourhood
of the closed disk DR(z0), and let 0 < r < R. Then for all z ∈ Dr(z0) and all n � 0,∣∣f (n)(z)

∣∣ � C max
ζ∈∂DR(z0)

|f(ζ)|, (1)

where C is a constant that depends on n, r, and R and is given by

C =
n!R

(R− r)n+1
. (2)

The proof follows immediately from the Cauchy integral formula:∣∣f (n)(z)
∣∣ = ∣∣∣∣ n!2πi

∫
∂DR(z0)

f(ζ)

(ζ − z)n+1
dζ

∣∣∣∣
� n!

2π
2πR

1

(R− r)n+1
max

ζ∈∂DR(z0)
|f(ζ)|.

If one sets r = 0 in (2), then, in particular,∣∣f (n)(z0)
∣∣ � n!

Rn
max

ζ∈∂DR(z0)
|f(ζ)|. (3)

One now easily obtains the following convergence theorem due to Weierstrass:
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Theorem 5.2. Suppose the sequence of holomorphic functions (fν) converges locally
uniformly to the function f on a domain G. Then f is holomorphic, and the sequence

of nth derivatives (f
(n)
ν ) converges locally uniformly to f (n) for all n.

Proof: a) The function f is continuous. If Δ is a closed triangle in G, then∫
∂Δ

f(z) dz =

∫
∂Δ

lim
ν→∞ fν(z) dz = lim

ν→∞

∫
∂Δ

fν(z) dz = 0

by Goursat’s lemma. Thus, f is holomorphic by Morera’s theorem.

b) Let DR(z0) ⊂⊂ G and 0 < r < R. By applying (1) to fν − f , we have∣∣f (n)
ν (z)− f (n)(z)

∣∣ � C max
ζ∈∂DR(z0)

|fν(ζ)− f(ζ)|

for z ∈ Dr(z0). The uniform convergence of the sequence fν on the compact set

∂DR(z0) therefore implies the uniform convergence of the f
(n)
ν on Dr(z0).

The above theorem again shows how complex analysis differs from real analysis: the
limit of a uniformly convergent sequence of differentiable functions need not be differ-
entiable. Moreover the theorem yields a new proof (which does not depend on real
analysis) that the sum of a power series is holomorphic – cf. Thm. I.3.7.

Another fundamental convergence property is the following

Theorem 5.3 (Montel). Let
(
fν
)
be a locally uniformly bounded sequence of holo-

morphic functions in the domain G. Then
(
fν
)
has a locally uniformly convergent

subsequence.

The proof rests on a topological statement. We recall the pertinent definition: A se-
quence

(
fν
)
of complex valued functions defined on a subset S ⊂ Rn is called equicon-

tinuous on S, if for every ε > 0 there is a δ = δ(ε) > 0 such that
∣∣fν(x′)− fν(x

′′)
∣∣ < ε

for all x′, x′′ ∈ S with |x′ − x′′| < δ and all ν. – The sequence is locally equicon-
tinuous on an open subset U ⊂ Rn, if each point of U has a neighbourhood where
the sequence is equicontinuous. This is equivalent to equicontinuity on all compact
subsets of U .

Proposition 5.4 (Ascoli-Arzelà). Let
(
fν
)
be a locally bounded and locally equicon-

tinuous sequence of complex-valued functions on an open set U ⊂ Rn. Then
(
fν
)
has

a locally uniformly convergent subsequence.

Proof: a) Let M = {x1, x2, x3, . . . } be a denumerable subset of U . Then
(
fν
)
has

a subsequence which converges pointwise on M . Namely, the values fν(x1) being
bounded, there is a subsequence of

(
fν
)
, which we denote by

(
fν1

)
, such that the se-

quence of values fν1(x1) converges. The values fν1(x2) are also bounded, hence there



5. Convergence theorems, maximum modulus principle, open mapping theorem 57

is a subsequence
(
fν2

)
of
(
fν1

)
such that the values fν2(x2) converge. Continuing

like this, we get subsequences
(
fνκ

)
, κ = 1, 2, 3, . . . , such that

fνκ is a subsequence of fν,κ−1 and fνκ(xk) converges for 1 � k � κ.

Now consider the diagonal sequence
(
fνν

)
ν�1

. Since
(
fνν

)
ν�κ is a subsequence of(

fνκ
)
, the values fνν(xk) converge for every xk.

b) Now let
(
fν
)
be given as in the proposition and let M = {x1, x2, x3, . . . } be a

dense denumerable subset of U , e.g. M = U ∩ Qn. By a) we may assume that
(
fν
)

converges pointwise on M . Let V ⊂⊂ U be an open neighbourhood of some point
x0 ∈ U , on which

(
fν
)
is equicontinuous. We show that

(
fν
)
converges uniformly

on V . Fix ε > 0 and choose δ = δ(ε) according to the definition of equicontinuity.
Because M ∩V is dense in V and, consequently, in V , we can cover V by finitely many
balls Dδ(xkλ

), λ = 1, . . . , 
, with centres xkλ
in V . As fν(xkλ

) converges, there is an
index ν0 such that∣∣fν(xkλ

)− fμ(xkλ
)
∣∣ < ε for λ = 1, . . . , 
 and μ, ν � ν0.

Now let x∈V be arbitrary. Choose λ with x∈Dδ(xkλ
) and let ν, μ � ν0. Then∣∣fν(x)−fμ(x)

∣∣ � ∣∣fν(x)−fν(xkλ
)
∣∣+ ∣∣fν(xkλ

)−fμ(xkλ
)
∣∣+ ∣∣fμ(xkλ

)−fμ(x)
∣∣ < 3ε

by the choice of δ and ν0. Hence the Cauchy criterion for uniform convergence on V
is satisfied.

Proof of Thm. 5.3: Local uniform boundedness of holomorphic functions fν implies
local equicontinuity: If, on Dr(z0) ⊂⊂ G, we have |fν(z)| � M0 for all ν, the Cauchy
inequalities (Prop. 5.1) imply |f ′ν(z)| � M1 for z ∈ Dr/2(z0) and all ν, with a suitable

constant M1. Hence, for z′, z′′ ∈ Dr/2(z0) and all ν

∣∣fν(z′)− fν(z
′′)
∣∣ = ∣∣∣∣ ∫

[z′, z′′]

f ′ν(ζ) dζ
∣∣∣∣ � M1|z′ − z′′|,

so
(
fν
)
is equicontinuous on Dr/2(z0). Now Prop. 5.4 yields the claim.

Using different terminology, we can formulate this theorem as follows: Every locally
bounded family of holomorphic functions is normal. We will prove a deeper theorem
on normal families in the last chapter.

Let us turn our attention to the value distribution of a holomorphic function. As is
well known, a real continuous function on the plane generally has local minima and
maxima. However:

Theorem 5.5 (The maximum modulus principle). Let f be holomorphic on a domain
G. If |f | has a local maximum at z0 ∈ G, then f is constant.
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Thus, local maxima of |f | cannot occur if f is a nonconstant holomorphic function,
and local minima can occur only at the zeros of f . Namely, if f has no zeros on G,
then 1/f is also holomorphic on G, and the local minima of |f | are the local maxima of
|1/f |. We thus note the following consequence of the maximum modulus principle:

Proposition 5.6 (The minimum modulus principle). If f is holomorphic and nonzero
on G and |f | has a local minimum at z0 ∈ G, then f is constant.

Proof of Thm. 5.5: Suppose that

|f(z)| � |f(z0)| (4)

for all z ∈ DR(z0) ⊂⊂ G. The Cauchy integral formula gives us

f(z0) =
1

2πi

∫
|z−z0|=r

f(z)

z − z0
dz =

1

2π

2π∫
0

f(z0 + r eit) dt,

where r � R is arbitrary. Due to (4), we have

|f(z0)| � 1

2π

2π∫
0

|f(z0 + r eit)| dt � 1

2π

2π∫
0

|f(z0)| dt = |f(z0)|,

so that

2π∫
0

(|f(z0)| − |f(z0 + r eit)|) dt = 0.

Since the integrand is continuous and nonnegative, it must be identically zero; thus,

|f(z0)| = |f(z0 + r eit)|
for all r � R, i.e. |f | is constant on DR(z0).

Differentiating the equation

f · f = const (on DR(z0))

with respect to z (Wirtinger derivative!), we obtain

fz · f = 0.

If f ≡ 0, then there is nothing to show; otherwise, fz ≡ 0, and f is constant on
DR(z0). The identity theorem then implies that f is constant on G.

Since a real continuous function takes on its maximum and minimum on a compact
set, the previous propositions imply:
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Corollary 5.7. Let G ⊂⊂ C be a bounded domain, and let f : G → C be continuous
on G and holomorphic on G.

i. The modulus |f | attains its maximum on the boundary ∂G; if f is nonconstant,
then for all z ∈ G,

|f(z)| < max
z∈∂G

|f(z)|.

ii. If f has no zeros in G, then |f | attains its minimum on ∂G; if f is nonconstant,
then for all z ∈ G,

|f(z)| > min
z∈∂G

|f(z)|.

Claim ii can be used to prove the existence of zeros: if, in the above situation, there
is a point z0 ∈ G such that

|f(z0)| < min
z∈∂G

|f(z)|,

then f must have a zero in G.

Theorem 5.8 (The open mapping theorem). Let f be a nonconstant holomorphic
function on a domain G ⊂ C. Then f(G) is a domain.

Proof: We only need to check that f(G) is open. Let w0 = f(z0), and choose a
radius r such that D = Dr(z0) ⊂⊂ G and f does not assume the value w0 on the
boundary ∂Dr(z0) – this is certainly possible, since the points at which f equals w0

are isolated. Then

δ = min
z∈∂Dr(z0)

|f(z)− w0| > 0.

If |w − w0| < δ/2, then for z ∈ ∂D, we have

|f(z)− w| � |f(z)− w0| − |w − w0| > δ − δ/2 = δ/2,

but

|f(z0)− w| < δ/2.

By the minimum modulus principle (see the remark following Cor. 5.7), f(z)−w has
a zero in D, i.e. f takes on the value w in D. We thus see that Dδ/2(w0) ⊂ f(G),
and f(G) is open.

Nonconstant holomorphic functions are thus open mappings: they send open sets to
open sets. We may thus improve the inverse function theorem (Prop. I.1.4) consider-
ably (the following proof is taken from [RS]):
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Theorem 5.9 (The inverse function theorem). Let f : G → G′ be a bijective holomor-
phic function. Then if G is a domain, G′ is a domain as well, and f−1 is holomorphic
on G′.

Proof: We already know that G′ is a domain and that f is an open mapping and
hence a homeomorphism from G to G′. The set of zeros of f ′ is a discrete subset M
of G, since f ′ is holomorphic and f ′ 	≡ 0. Thus M ′ = f(M) is also discrete in G′,
and by Prop. I.1.5, the map f : G \ M → G′ \ M ′ is biholomorphic. It follows that
f−1 is holomorphic on G′ \ M ′ and continuous on G′. By the Riemann removable
singularity theorem, f−1 is therefore holomorphic on all of G′. Since f ◦ f−1 = id, i.e.
f ′ · (f−1)′ ≡ 1, we see that in fact M = M ′ = ∅.

Let us explicitly note: the derivative of an injective holomorphic function f on a
domain U has no zeros.

Exercises

Notation: If f : DR(z0)→ C is continuous, then for 0 < r < R, we put

Mr(f) =Mr(f ; z0) = max{|f(z)| : |z − z0| = r}.
1. Suppose f(z) =

∑∞
n=0 an(z − z0)n converges on DR(z0). Show that:

a) |an| � r−nMr(f) for 0 < r < R.

b) If f is nonconstant, then Mr(f) is a strictly increasing function of r.

2. Verify that the series
∑∞

n=1
zn

1−zn
defines a holomorphic function on D, and find its power series

expansion about 0.

3. Consider a polynomial p(z) = zn + an−1zn−1 + . . .+ a0.

a) Show that if |p(z)| � 1 on the circle |z| = 1, then p(z) = zn.

b) Show that r−nMr(p) is strictly decreasing as a function of r on ]0,+∞[ unless p(z) = zn.

Hint: Consider also q(z) = 1 + an−1z + . . .+ a0zn.

4. Let G be a bounded domain, and let f be continuous on G and holomorphic on G. Show that if
|f | is constant on ∂G, then f is constant or f has a zero.

5. Let f and g be holomorphic on D and continuous and nonzero on D. Show that if |f | = |g| on
∂D, then f = cg for some constant c. Does this remain true if one allows zeros in D?

6. Let f(z) = a0 + amzm + am+1zm+1 + . . . be a convergent power series such that am �= 0 (here
m � 1). Prove that for a sufficiently small r, Mr(f) > |a0|. Prove this without using the
maximum modulus principle, and then derive the maximum modulus principle from the claim.
Hint: In the case where a0 �= 0, one can assume that a0 = 1. Then choose z1 such that
amzm1 > 0.

7. a) Let f(z) = 1 +
∑∞

1 anzn on DR(0). Show that if 0 < ρ < R and r = ρ
1+Mρ(f)

, then f has

no zeros in Dr(0).

Hint: Use the fact that |an| � ρ−nMρ(f) to estimate f(z)− 1.
b) For an arbitrary holomorphic function f �≡ 0 on DR(0), use part a) to give a radius r such
that f has at most the zero z0 = 0 in Dr(0).

8. Let
(
fν

)
be a locally equicontinuous sequence of continuous functions G → C. Show that

(
fν

)
is

equicontinuous on every compact K ⊂ G.
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6. Isolated singularities and meromorphic functions

Functions like tan z = sin z
cos z ,

sin z
z , exp(1/z), or rational functions are holomorphic out-

side a discrete set, namely the set of zeros of their denominators. We now investigate
this in general. In doing so, it is convenient to use the following terminology: If U is a
neighbourhood of the point z0, then we say that U \{z0} is a punctured neighbourhood
of z0.

Definition 6.1. Let the function f be holomorphic on a punctured neighbourhood of
z0 ∈ C. Then z0 is called an isolated singularity of f .

We already saw an occurrence of this in II.3 and proved the Riemann extension theo-
rem: If f is bounded near z0, then lim

z→z0
f(z) exists, and by defining f(z0) = lim

z→z0
f(z),

we obtain a function that is holomorphic on all of U . Isolated singularities with this
property are therefore called removable singularities.

In many cases, the values of a function grow to infinity as one approaches an isolated
singularity.

Definition 6.2. Let z0 be an isolated singularity of f .

i. If lim
z→z0

|f(z)| = +∞, then z0 is called a pole of f .

ii. If z0 is neither a removable singularity nor a pole of f , then z0 is called an
essential singularity of f .

Here lim
z→z0

|f(z)| = +∞ means that, for every C > 0, there is an r > 0 such that f is

defined on Dr(z0) \ {z0} and satisfies |f(z)| � C there.

An essential singularity thus occurs precisely when there exist sequences zn, z
′
n in the

domain of f such that zn → z0, z
′
n → z0, and f(zn) is bounded whereas f(z′n) is

unbounded.

Let us consider the examples mentioned before: The isolated singularities of tan z are
the points zk = π

2 +kπ, where k ∈ Z. Since cos zk = 0 and sin zk 	= 0, each zk is a pole.
As we have already seen, the origin is a removable singularity of the function (sin z)/z.
If R(z) = p(z)/q(z) is a rational function, then the zeros zk of the denominator q(z)
are isolated singularities of R, and zk is a pole if p(zk) 	= 0; in case p(zk) = 0, zk
may be a removable singularity. The origin is an essential singularity of the function
f(z) = exp(1/z): one has ± 1

n → 0, but f( 1n ) → +∞ and f(− 1
n ) → 0 as n → ∞.

Let us study the behaviour of a function near a pole more closely. Let f be holomor-
phic on a punctured neighbourhood U \ {z0} of z0, and suppose that z0 is a pole of f .
We may assume that f is nonzero on U \ {z0} (if not, we can always make U smaller).
Then g(z) = 1/f(z) is holomorphic and nonzero on U \ {z0}, and lim

z→z0
|f(z)| = +∞

implies that lim
z→z0

|g(z)| = 0. By the Riemann removable singularity theorem, g can be
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extended to a holomorphic function on all of U – we will also denote this extension g.
If k is the order of g at z0, we may write

g(z) = (z − z0)
kh̃(z),

where h̃ is holomorphic on U and h̃(z0) 	= 0. Thus h̃ is nonzero on all of U , h = 1/h̃
is holomorphic on U , and

f(z) = (z − z0)
−kh(z)

on U \ {z0}. We have thus shown:

Proposition 6.1. Let f be holomorphic on a punctured neighbourhood U \{z0} of z0,
and suppose that z0 is a pole of f . Then there exists a natural number k � 1 and a
holomorphic function h on U with h(z0) 	= 0, such that

f(z) = (z − z0)
−kh(z) (1)

on U \ {z0}. The number k and the function h are uniquely determined by f .

The number k is called the order or multiplicity of the pole z0. If k = 1, then z0 is
also called a simple pole.

As before, suppose z0 is a pole of order k of f : U \{z0} → C. Then we can substitute
the power series expansion h(z) =

∑∞
0 bn(z− z0)

n into (1) to express f as a series:

f(z) = (z − z0)
−k

∞∑
0

bn(z − z0)
n =

∞∑
n=−k

an(z − z0)
n,

where an = bn+k for n = −k,−k + 1, . . .. In particular, a−k = b0 = h(z0) 	= 0.

The series
∑∞

0 bn(z − z0)
n converges locally uniformly on the largest disk DR(z0)

that is still contained in U , and (z − z0)
−k is bounded on every compact subset of

DR(z0) \ {z0}. Thus, our series converges locally uniformly on DR(z0) \ {z0}, which
proves most of the following proposition.

Proposition 6.2. Let f be holomorphic on a punctured neighbourhood U \ {z0} of z0
and have a pole of order k at z0. Then there exists a series expansion

f(z) = a−k(z − z0)
−k + . . .+ a−1(z − z0)

−1 +
∞∑
n=0

an(z − z0)
n, (2)

where a−k 	= 0. It converges locally uniformly on the largest punctured disk centred at
z0 contained in U . The coefficients an are unique: we have

an =
1

2πi

∫
|z−z0|=r

f(z) dz

(z − z0)n+1
(3)

for every r such that Dr(z0) ⊂ U .
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Proof: The uniqueness of the coefficients an follows from the uniqueness of the coef-
ficients bm in the expansion of h(z). Moreover

an = bn+k =
1

2πi

∫
|z−z0|=r

h(z) dz

(z − z0)n+k+1
=

1

2πi

∫
|z−z0|=r

f(z) dz

(z − z0)n+1
.

The integral formula for the coefficients an formally coincides with the corresponding
expression for the coefficients of the Taylor series of a holomorphic function. For
n = −1 we have the important formula

a−1 =
1

2πi

∫
|z−z0|=r

f(z) dz.

The series expansion (2) is called the Laurent series expansion of f about the pole z0.

The subseries hz0(z) =
∑−1

n=−k an(z − z0)
n describes how f becomes infinite near z0

and is called the principal part of (the Laurent series expansion of) f at z0.

Without reference to (2), the principal part of f can be characterized as follows: hz0(z)
is the (unique) polynomial in (z−z0)

−1 with no constant term for which f(z)−hz0(z)
is holomorphic at z0.

Examples:

i. The origin is an isolated singularity of cot z = cos z/ sin z. Since cos 0 	= 0 and
sin 0 = 0, the origin is a pole. The multiplicative decomposition (1) is

cot z =
1

z
h(z), where h(z) = cos z · z

sin z

(the last factor should be defined to take the value 1 at the origin, so that it is
holomorphic there). The origin is thus a simple pole, and the principal part of cot z
at 0 is h(0)/z = 1/z. Since cot(z + π) = cot z, all of the isolated singularities
zm = mπ, where m ∈ Z, are simple poles, and their principal parts are 1/(z − zm).
The identities tan z = − cot(z − π

2 ) or tan z = 1/ cot z now yield the singularities of
the tangent function with their principal parts.

ii. The partial fraction decomposition of the rational function

R(z) =
z4 + z2 + 1

z(z2 + 1)
= z +

1

z
− 1

2

(
1

z − i
+

1

z + i

)
shows that R has simple poles at 0, i, and −i with principal parts

1

z
, −1

2

1

z − i
, −1

2

1

z + i
,
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respectively. The Laurent series expansion of R about 0 can be obtained by expanding

R(z)− 1

z
= z − z

1 + z2

as a power series about 0; we have

R(z) =
1

z
+

∞∑
n=1

(−1)n+1z2n+1.

As z approaches a removable singularity or a pole of f , the values of f behave in a
clear way. The opposite is true of essential singularities:

Proposition 6.3 (Casorati-Weierstrass). Suppose that z0 is an essential singularity
of a function f that is holomorphic on a punctured neighbourhood U \ {z0}. Then for
every w0 ∈ C, there is a sequence zn in U \ {z0} such that zn → z0 and f(zn) → w0.

Applying the open mapping theorem, we see that f maps U \{z0} onto an open, dense
subset of the complex plane – and the same is true of every punctured neighbourhood
V \ {z0} ⊂ U \ {z0}! It follows immediately that f is not injective on U \ {z0}: the
image f(U \V ), where z0 ∈ V and V ⊂⊂ U , necessarily intersects the open, dense set
f(V \ {z0}) nontrivially.

In fact more is true: “Picard’s big theorem” (whose considerably more difficult proof
will be given in the last chapter) states that the image of every punctured neighbour-
hood V \ {z0} under f is the entire complex plane with the possible exception of one
point.

Proof of Prop. 6.3: Suppose that z0 is an isolated singularity of f and the claim
is false. Then there exist a point w0 ∈ C and positive radii r and ε such that
|f(z)− w0| � ε for all z satisfying 0 < |z − z0| < r. The function

g(z) =
1

f(z)− w0

is thus holomorphic for 0 < |z − z0| < r and bounded by 1/ε. By the Riemann
removable singularity theorem, g can be extended to a holomorphic function at z0.
The relationship f(z) = w0+1/g(z) now shows that f has a removable singularity (if
g(z0) 	= 0) or a pole (if g(z0) = 0) at z0, but certainly not an essential singularity.

The proof of Prop. 6.1 yields a characterization of the order of a pole in terms of the
growth of f as it approaches the pole:
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Corollary 6.4. Let z0 be an isolated singularity of f .

i. The function f has a pole of order less than or equal to k or a removable singu-
larity at z0 if and only if

|f(z)| � C1|z − z0|−k

on a punctured neighbourhood of z0, where C1 is some positive constant.

ii. The function f has a pole of order greater than or equal to k at z0 if and only if

|f(z)| � C2|z − z0|−k

on a punctured neighbourhood of z0, where C2 is some positive constant.

Functions whose only isolated singularities are poles are not much more complicated
than holomorphic functions.

Definition 6.3. A meromorphic function f on a domain G is a holomorphic function
f : G \ Pf → C, where Pf is a discrete subset of G whose points are poles of f .

Later, we will see that such a function can be extended to a continuous function
f : G → C ∪ {∞} by introducing a “point at infinity”, denoted ∞, and setting
f(z0) = ∞ for all z0 ∈ Pf .

Holomorphic functions on G are of course meromorphic (their set of poles is empty).
Quotients f/g of holomorphic functions on G (where g 	≡ 0) are meromorphic: the
set of zeros of g is discrete in G, and its points are isolated singularities of f/g that
are either removable or poles. In particular, rational functions are meromorphic on
all of C, as are functions like tan z. On the other hand, exp(1/z) is not meromorphic
on C, since the origin is an essential singularity.

A natural question is: Is every meromorphic function on a domain G a quotient of
two holomorphic functions that are holomorphic on all of G? The answer is “yes” –
see, for example, [FL1]. At this stage, however, we will only record the weaker claim
that every meromorphic function is locally the quotient of two holomorphic functions.
To be more precise:

Let f be holomorphic everywhere on G with the exception of a discrete subset Pf .
Then f is meromorphic if and only if there is a neighbourhood U ⊂ G about any point
z0 ∈ G such that, on U \ Pf , f = h/g is the quotient of two holomorphic functions
g, h : U → C.

Functions of this form are certainly meromorphic. Conversely, if f is meromorphic
and z0 is not a pole of f , then one can choose h = f and g ≡ 1. If z0 is a pole of
order k, then by (1), f(z) = h(z)/(z−z0)

k near z0, where h is holomorphic at z0. – It
follows that if f 	≡ 0, then 1/f is also meromorphic; the zeros of f are the poles of 1/f ,
and the poles of f are the zeros of 1/f . Moreover the above description shows that
the set of meromorphic functions on a domain G is a field – i.e. sums, differences,
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products, and quotients of meromorphic functions are again meromorphic (f ≡ 0
is the zero element, which is excluded as a denominator). The ring of holomorphic
functions O(G) is a subring of this field, and the positive answer to the above question
implies that it is the field of fractions of this ring. Here it is of course essential that
one consider a domain, i.e. a connected open set (if U is not connected, then O(U)
has zero divisors!).

To conclude, we remark that the identity theorem applies to meromorphic functions.
We leave it to the reader to justify this claim.

Exercises

1. Determine the type of singularity that each of the following functions has at z0. If the singularity
is removable, calculate the limit of f(z) as z → z0; if the singularity is a pole, find its order and
the principal part of f at z0.

a)
1

1− ez
at z0 = 0, b)

1

z − sin z at z0 = 0,

c)
z eiz

(z2 + b2)2
at z0 = ib (b > 0), d) (sin z + cos z − 1)−2 at z0 = 0.

2. Let f be holomorphic on Dr(z0) \ {z0} with a pole at z0. Show that there exists an R > 0 such
that

f(Dr(z0) \ {z0}) ⊃ C \DR(0).

3. Suppose z0 is an isolated singularity of f . Show that z0 is not a pole of ef .
(Hint: Use the result of Ex. 2.)

4. Let f be holomorphic for 0 < |z| < r0. For 0 < r < r0, putMr(f) = max{|f(z)| : |z| = r}. Prove
that:

a) The origin is a removable singularity of f if and only if Mr(f) stays bounded as r → 0. If
this is the case, then Mr(f) is a strictly increasing function of r, provided f is nonconstant,
and lim

r→0
Mr(f) = |f(0)|.

b) The origin is a pole of f if and only if Mr(f) → ∞ as r → 0 and there is a number � such
that r�Mr(f) stays bounded. The order of the pole is the minimal � with this property.

c) The origin is an essential singularity of f if and only if r�Mr(f)→ ∞ for all � � 0 as r → 0.

d) In parts b) and c), there is an r1 ∈ ]0, r0[ such that r �→ Mr(f) is strictly decreasing on ]0, r1].

5. Suppose that the functions a1, . . . , an are holomorphic at z0 and that f has an essential singular-
ity at z0. Show that g = fn+ a1fn−1+ . . .+ an has an essential singularity at z0. Furthermore,
show that the claim remains true if the functions aν are only assumed to be meromorphic.

7. Holomorphic functions of several variables

A holomorphic function of n variables z1, . . . , zn is holomorphic in each individual
variable and can therefore be expressed via the Cauchy integral formula by applying
it to each zν . This leads to n successive integrations with respect to the variables zν .
More explicitly:
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Let z0 = (z01 , . . . , z
0
n) ∈ Cn, and let

D = Dr(z
0) =

{
z = (z1, . . . , zn) : |zν − z0ν | < rν , ν = 1, . . . , n

}
be a polydisk about z0 with polyradius r = (r1, . . . , rn), where rν > 0. Thus, D is the
product of n disks of radius rν about z0ν . We put

T =
{
z : |zν − z0ν | = rν , ν = 1, . . . , n

}
;

this is a product of n circles Tν , i.e. an n-dimensional torus, and it is clearly an
n-dimensional surface of integration (cf. I.6). The torus T is called the distinguished
boundary of D.

Let f be holomorphic on the open set U , and suppose that U ⊃ D. We choose a
point z ∈ D and apply the Cauchy integral formula to the first variable:

f(z) =
1

2πi

∫
T1

f(ζ1, z2, . . . , zn)

ζ1 − z1
dζ1.

A second application – this time with respect to the second variable – gives us

f(ζ1, z2, . . . , zn) =
1

2πi

∫
T2

f(ζ1, ζ2, z3, . . . , zn)

ζ2 − z2
dζ2,

so that

f(z) =

(
1

2πi

)2 ∫
T1

∫
T2

f(ζ1, ζ2, z3, . . . , zn)

(ζ1 − z1)(ζ2 − z2)
dζ2 dζ1.

Repeating this procedure n times yields the Cauchy integral formula for polydisks.

Theorem 7.1. Let f be holomorphic in a neighbourhood of a closed polydisk D with
distinguished boundary T . Then for every z ∈ D,

f(z) =

(
1

2πi

)n ∫
T

f(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 . . . dζn.

More generally, we define the Cauchy integral for a continuous function h on T as

Ch(z) =

(
1

2πi

)n ∫
T

h(ζ)

(ζ1 − z1) · · · (ζn − zn)
dζ1 . . . dζn,

where z ∈ D. Differentiating under the integral shows that Ch(z) is holomorphic on
D and arbitrarily often differentiable with respect to all variables, and it yields the
formula

∂k1+...+kn

∂zk11 · · · ∂zkn
n

Ch(z) =
k1! · · · kn!
(2πi)n

∫
T

h(ζ)

(ζ1 − z1)k1+1 · · · (ζn − zn)kn+1
dζ1 . . . dζn.

By combining this information with Thm. 7.1, we obtain, as in II.3:
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Theorem 7.2. Holomorphic functions of several variables are infinitely often complex
differentiable; all of their derivatives are again holomorphic.

One must only note that every point in Cn has arbitrarily small polydisk neighbour-
hoods.

A series of further important results that hold for holomorphic functions of one vari-
able can be carried over unchanged to the setting of several complex variables. Their
proofs can either be given using the Cauchy integral formula for polydisks, as is
done above, or by tracing them back to the corresponding claims for functions of one
variable. We take the second approach.

Theorem 7.3 (The identity theorem). Let f be holomorphic on a domain G and
identically zero on a nonempty open subset U of G. Then f ≡ 0 on all of G.

First, a simple lemma that we will also use for the proofs to follow:

Lemma 7.4. Let a,b ∈ Cn and b 	= 0; moreover, let λ : C → Cn be the affine line
λ(t) = a+ tb, where t ∈ C, and let L denote the image of λ. If f is holomorphic on
U ⊂ Cn, then f ◦ λ is holomorphic on λ−1(U).

Indeed, it is not difficult to show that

d

dt
(f ◦ λ)(t) =

n∑
ν=1

∂f

∂zν
(λ(t))bν .

In short, if f is holomorphic on U , then the restriction of f to every affine line L is
holomorphic on L∩U . This lemma generalizes the self-evident fact that a holomorphic
function of n variables is holomorphic in each individual variable.

Proof of Thm. 7.3: a) Let G be a polydisk. By the identity theorem in one variable
(Prop. 4.2), f ≡ 0 on L ∩ G for every affine line L that intersects U . But G is the
union of such lines, so f ≡ 0 on G.

b) LetG be an arbitrary domain, and letG0={z∈G : f ≡ 0 in a neighbourhood of z}.
Then G0 is open. On the other hand, if z0 is a limit point of G0 in G, then there
exists a polydisk D about z0 that intersects G0 and is contained in G. By part a),
f ≡ 0 on D. Therefore z0 ∈ G0, i.e. G0 is closed in G. It follows that G0 = G.

It is not very difficult to derive the further versions of the identity theorem, e.g. if f
is holomorphic on G and Df(z0) = 0 for all complex derivatives D of any order, then
f ≡ 0. But f can vanish on a nondiscrete set without vanishing identically – consider,
for instance, the function z1 in C2.

Using Lemma 7.4, we can prove the following theorem just as before:
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Theorem 7.5 (The maximum modulus principle). Let f be holomorphic on the do-
main G, and suppose that |f | has a local maximum at z0. Then f(z) ≡ f(z0).

Proof: By the maximum modulus principle in one variable (Thm. 5.5), f(z) ≡ f(z0)
on all affine lines L that pass through z0 (that is to say, on the path component of z0

in L ∩ G). It follows that f ≡ f(z0) on an open neighbourhood of z0 and therefore
on all of G, by the identity theorem.

As in the case of one complex variable, the Weierstrass convergence theorem follows
from the Cauchy integral formula:

Theorem 7.6. Let fν be a locally uniformly convergent sequence of holomorphic func-
tions on a domain G whose limit is f . Then f is holomorphic, and the sequence of
derivatives

Dkfν =
∂k1+...+kn

∂zk11 · · · ∂zkn
n

fν

converges locally uniformly to the corresponding derivative Dkf .

Power series expansions of holomorphic functions follow from Cauchy’s integral for-
mula as in the case of one variable, but we will not pursue this in detail because power
series in more than one variable are technically more difficult to handle.

The theory of holomorphic functions of several variables has thus far shown itself to
be a direct generalization of complex analysis in one variable. In the case of more than
one complex variable, however, the Cauchy integral formula leads to a surprise:

Let f be holomorphic in a neighbourhood of the closed polydisk Dr(0) ⊂ Cn, where
n > 1, with the possible exception of the origin. By the Cauchy integral formula in
one variable,

f(z1, . . . , zn) =
1

2πi

∫
|ζn|=rn

f(z1, . . . , zn−1, ζn)

ζn − zn
dζn

in case not all zν , where 1 � ν � n − 1, are zero. But the integral on the right
hand side depends holomorphically on z1, . . . , zn for all z ∈ Dr(0) and thus also for
z1 = . . . = zn = 0. In this way, the right hand side extends f to a holomorphic
function on all of D – the origin cannot be an isolated singularity. The fact that we
have singled out the origin is of course irrelevant. Therefore:

Theorem 7.7. A function of at least two variables that is holomorphic in a punctured
neighbourhood of z0 can be holomorphically extended to z0.

Holomorphic functions of more than one variable cannot have isolated singularities.
Since an isolated zero of a holomorphic function f is an isolated singularity of 1/f , it
follows that:
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Proposition 7.8. Holomorphic functions of several variables do not have isolated
zeros.

We will learn more about the zeros of holomorphic functions of one or more variables
in Chapter IV. Let us mention two consequences of Thm. 7.7 here:

1. There exist domains G � Ĝ in Cn, where n > 1, such that O(G) = O(Ĝ), i.e.

every holomorphic function on G is the restriction of a holomorphic function on Ĝ.
The domains D \ {0} and D serve as an example.

2. Meromorphic functions cannot be defined in terms of their behaviour at isolated
singularities; they must be defined as local quotients of holomorphic functions – see
the discussion following Def. 6.3.

The actual theory of several complex variables begins here (cf. [FG] and [Ra]); we
will say more about it later.

Exercises

1. Let 0 � rν < Rν (where 1 � ν � n), and let D = DR(0)\Dr(0) be the difference of the polydisks
with polyradii R = (R1, . . . , Rn) and r = (r1, . . . , rn). Assume that n > 1. Show that every
holomorphic function on D is the restriction of a holomorphic function on DR(0)
Hint: Use the proof of Thm. 7.7.



Chapter III.

Functions on the plane and on the sphere

By adding a “point at infinity”, denoted ∞, to the complex plane, we obtain the Riemann sphere
(III.1); it allows an elegant description of meromorphic and, in particular, rational functions and
an interpretation of Möbius transformations as automorphisms of the sphere (III.2,4). Important
theorems about functions that are holomorphic on all of C (“entire functions”) follow from the fact
that the point ∞ is an isolated singularity of these functions (III.3). Polynomials and rational func-
tions are investigated in detail in III.2; in particular, this section contains proofs of the fundamental
theorem of algebra as well as historical notes. With the logarithm function and the functions that
arise from it, we conclude our “elementary” study of the elementary functions; among other things,
we describe the local mapping properties of holomorphic or meromorphic functions via root functions.
Partial fraction decompositions (III.6) are an essential tool in the study of meromorphic functions;
in addition to a general existence theorem, this section contains the decompositions of the functions
cotπz and 1/ sin2 πz and their consequences. The Weierstrass product formula (III.7) for entire
functions substantially generalizes the factorisation of polynomials into linear factors. We shall use
it in V.1 and V.4 to define non-elementary functions.

A large part of this chapter contains classical material whose origin dates to before 1800. The Rie-
mann sphere is, naturally, the complex projective line, and the geometry of Möbius transformations
is one-dimensional projective geometry (valid over an arbitrary field). Thm. 6.1 was established by
Mittag-Leffler in 1877; Euler succeeded in summing the series

∑
n−2k in 1740; Bernoulli numbers

were introduced by Jakob Bernoulli around 1700 in order to compute power sums. The product
decomposition of sin z goes back to Euler (1734); Weierstrass proved his general product theorem in
1876.

1. The Riemann sphere

By adding a new point ∞ to C, we extend the complex plane to a compact space
Ĉ = C∪{∞} such that meromorphic functions become continuous maps into Ĉ if one
assigns to them the value ∞ at their poles.

In more detail: We set Ĉ = C ∪ {∞} and call ∞ the “point at infinity”. We then

extend the topology on C to Ĉ as follows:

Definition 1.1. A subset U of Ĉ is called open if either U ⊂ C and U is open in C
or ∞ ∈ U and Ĉ \ U is compact in C.

Examples of open neighbourhoods of ∞ include the complements Ĉ\D of closed disks
D ⊂ C. A sequence (zn) of complex numbers therefore converges to ∞ if and only
if for every radius R only finitely many elements of the sequence are contained in

W. Fischer, I. Lieb, A Course in Complex Analysis, DOI 10.1007/978-3-8348-8661-3_3, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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x

ϕ(x)

Figure 3. Stereographic projection

DR(0), i.e. if and only if |zn| → ∞ as per our former understanding. Once we have
introduced open sets, the complete language of topology is at our disposal and can be
applied to Ĉ. Note also that we have given a precise meaning to expressions such as

lim
z→a

(z − a)−1 = ∞, lim
z→∞ z2 = ∞.

The space Ĉ is called the extended plane (the one-point compactification of C), or the
Riemann sphere. The latter terminology is based on the following geometric model:
Consider R3 with the coordinates x1, x2, and x3, and identify C with the (x1, x2)-
plane by setting z = x1+ ix2. As indicated in Fig. 3, we stereographically project the
two-dimensional unit sphere

S2 = {(x1, x2, x3) ∈ R3 : x1
2 + x2

2 + x3
2 = 1}

from its “north pole” N = (0, 0, 1) onto C. Every point x ∈ S2\{N} is thus associated
to the point ϕ(x) at which the line connecting N and x intersects C. This gives us a
continuous bijection

ϕ : S2 \N → C, ϕ(x1, x2, x3) =
1

1− x3
(x1 + ix2),

and the inverse map

ϕ−1 : C → S2 \N, ϕ−1(x+ iy) =
1

x2 + y2 + 1
(2x, 2y, x2 + y2 − 1)

is also continuous. If we extend ϕ to a bijection

ϕ̂ : S2 → Ĉ, where ϕ̂(x) = ϕ(x) for x 	= N, ϕ̂(N) = ∞,

then both ϕ̂ and its inverse ϕ̂−1 : Ĉ → S2 are continuous. We may thus identify Ĉ
and the sphere S2 as topological spaces.
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Proposition 1.1. The Riemann sphere Ĉ is a compact, connected topological space.

Proof: The space S2 ⊂ R3 has these properties.

We may now reformulate Def. II.6.3, the definition of meromorphic functions:

A meromorphic function on a domain G ⊂ C is a continuous map f : G → Ĉ with the
following properties:

i. The set Pf = {z ∈ G : f(z) = ∞} is discrete in G.

ii. The restriction f : G \ Pf → C is holomorphic.

It is useful to allow ∞ to be not only a value, but an argument as well. We note
that

ψ : Ĉ → Ĉ, ψ(z) = 1/z for z 	= 0,∞, ψ(0) = ∞, ψ(∞) = 0

defines a homeomorphism from Ĉ to itself; we have ψ = ψ−1, and ψ is holomorphic
on C∗ = Ĉ \ {0,∞}. The function ψ maps neighbourhoods of ∞ to neighbourhoods
of 0 and vice versa.

Definition 1.2. A function f defined in a neighbourhood of ∞ is called holomorphic
at ∞ if the function

f∗ = f ◦ ψ :

{
ζ �→ f(1/ζ) for ζ 	= 0

0 �→ f(∞)

is holomorphic at the origin.

For example, the power functions fk(z) = z−k, where k ∈ N, are holomorphic at ∞
if one sets fk(∞) = 0 – then f∗k (ζ) = ζk.

Let f be a holomorphic function on Uε(∞) = {z ∈ C : |z| > 1/ε}∪ {∞}, and suppose
that f(∞) = w0. Then f∗ admits a power series expansion on Uε(0) = ψ(Uε(∞)),
namely

f∗(ζ) = w0 +

∞∑
n=k

anζ
n, where ak 	= 0.

From this, we obtain the expansion

f(z) = w0 + akz
−k + ak+1z

−k−1 + . . . ,

which is valid on Uε(∞)\{∞}, and say that f takes on the value w0 with multiplicity
k at ∞.

The notion of an isolated singularity can be extended to the point ∞:
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Definition 1.3. Let f be holomorphic in a punctured neighbourhood of ∞.

i. The point ∞ is a removable singularity of f if f is bounded near ∞.
ii. The point ∞ is a pole of f if lim

z→∞ f(z) = ∞.

iii. If ∞ is neither a removable singularity nor a pole of f , then it is an essential
singularity of f .

It follows that ∞ is a singularity of type i, ii, or iii of f if and only if 0 is a singularity
of type i, ii, or iii, respectively, of f∗ = f ◦ψ. This in turn implies that the Riemann
extension theorem and the Casorati-Weierstrass theorem, as well as their corollaries,
apply to ∞ as an isolated singularity.

If f has a pole at ∞, then its order is naturally defined to be the order of 0 as a pole
of f∗. If this order is k, we can write

f(z) = zkg(z),

where g is a function that is holomorphic at ∞ and satisfies g(∞) 	= 0. The principal
part h∞(z) of f at ∞ can then be defined as the (unique) polynomial h∞(z) with
no constant term for which f(z) − h∞(z) is holomorphic at ∞. The degree of this
polynomial coincides with the order of ∞ as a pole of f .

Examples:

i. Let h(z) = a−k(z−z0)
−k+ . . .+a−1(z−z0)

−1, where a−k 	= 0. Then lim
z→∞h(z) = 0,

so that h is holomorphic at ∞ and vanishes there.

ii. A polynomial p(z) = a0 + a1z+ . . .+ anz
n, where an 	= 0, has a pole of order n at

∞. The principal part of p at ∞ is h∞(z) = a1z + . . .+ anz
n.

iii. Consider a “fractional linear” function

f(z) =
az + b

cz + d
,

where a, b, c, d ∈ C, c 	= 0, and ad − bc 	= 0 (otherwise f would be constant). This
function is holomorphic on C \ {−d/c} and has a simple pole at z0 = −d/c. But f is
also holomorphic at ∞ if we set f(∞) = a/c: The function

f∗(ζ) =
a/ζ + b

c/ζ + d
=

a+ bζ

c+ dζ

is holomorphic at 0, with f∗(0) = a/c.

iv. The function f(z) = ez has an essential singularity at ∞, because f∗(ζ) = e1/ζ

has an essential singularity at 0.

Functions that are holomorphic on the entire Riemann sphere are especially simple:

Proposition 1.2. Any function that is holomorphic on all of Ĉ is constant.
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Proof: Let f : Ĉ → C be holomorphic. Since Ĉ is compact, the continuous function
|f | : Ĉ → R attains a maximum value. If this occurs at z0 ∈ C, then f is constant on

C by the maximum modulus principle and therefore constant on Ĉ by continuity. If
|f | is maximal at ∞, then |f∗| has a maximum at 0. It follows that f∗ and therefore
f are constant.

In our definition of a meromorphic function f , we may thus allow G ⊂ Ĉ, i.e. we
may allow f to be defined at ∞. The open mapping theorem also holds in this more
general situation:

Proposition 1.3. If f is a nonconstant meromorphic function on a domain G ⊂ Ĉ,
then f(G) is a domain in Ĉ.

We leave the proof to the reader as Ex. 2.

The following definition will help to simplify the terminology:

Definition 1.4. Let G1 and G2 be domains in Ĉ. A holomorphic mapping f of G1

onto G2 is a meromorphic function f : G1 → Ĉ such that f(G1) = G2.

The fractional linear functions from Example iii are thus holomorphic mappings of Ĉ
onto itself; we will investigate them in more detail later.

The expressions “holomorphic mapping” and “holomorphic function” are thus no
longer synonymous: A holomorphic mapping f : G1 → G2 is a holomorphic function
if and only if ∞ 	∈ f(G1).

Exercises

1. a) Determine the order of the zero of
k∑

n=1
bn(z − z0)−n at ∞.

b) For the following functions, determine the value w0 = f(∞) and its multiplicity:

f(z) =
2z4 − 2z3 − z2 − z + 1

z4 − z3 − z + 1
, f(z) =

z4 + iz3 + z2 + 1

z4 + iz3 + z2 − iz
.

2. Let G ⊂ Ĉ be a domain, and let f be a nonconstant meromorphic function on G. Show that
f(G) is a domain in Ĉ.

2. Polynomials and rational functions

Let us first consider polynomials, i.e. functions of the form

p(z) = a0 + a1z + . . .+ anz
n, (1)

where a0, . . . , an are complex constants; the degree of p(z) is n, provided an 	= 0. We
are interested in the existence and position of zeros of p, as well as in factorization,
i.e. expressing p as a product.
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We begin by studying the behaviour of polynomials for large |z|. Let p, as given in
(1), be of degree n � 1. By III.1, p has a pole at ∞, i.e.

lim
z→∞ p(z) = ∞. (2)

The formula

p(z) = anz
n

(
1 +

an−1

an
z−1 + . . .+

a0
an

z−n

)
shows that

lim
z→∞

p(z)

anzn
= 1, (3)

so anz
n is the dominant term of p(z) for large |z|.

We will improve the banal result (3) by a more precise estimate. Set c =
∑n−1

ν=1 |aν |
and q(z) = p(z)− anz

n =
∑n−1

ν=0 aνz
ν . Then for |z| � 1,

|q(z)| =
∣∣∣∣zn−1

n−1∑
ν=0

aνz
1−n+ν

∣∣∣∣ � |z|n−1
n−1∑
ν=0

|aν ||z|1−n+ν � c|z|n−1

and

|an||z|n
(
1− c

|an| · |z|
)

= |an| · |z|n − c|z|n−1

� |p(z)| � |an||z|n + c|z|n−1

= |an||z|n
(
1 +

c

|an| · |z|
)
.

For ε > 0 and R(ε) = c/ε|an|, we obtain:

Proposition 2.1. Let p(z) = a0 + . . . + anz
n be a polynomial of degree n � 1, and

let c =
∑n−1

ν=0 |aν |. Then for every ε > 0 and |z| � max(1, R(ε)), we have

(1− ε)|an||z|n � |p(z)| � (1 + ε)|an||z|n.

If ε < 1, this estimate shows that p has no zeros for |z| � max(1, R(ε)). Letting
ε → 1, we see that:

Corollary 2.2. All zeros of p lie in the closed disk

{z ∈ C : |z| � max(1, c/|an|)}.

The example p(z) = zn − 1 shows that zeros may lie on the boundary of this disk.

We have not yet proved that an arbitrary nonconstant polynomial has zeros in C. The
“fundamental theorem of algebra” shows this to be true (see also the historical note
at the end of this section):
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Proposition 2.3. Let p be a polynomial of degree n � 1 with complex coefficients.
Then p has a zero in C.

First proof: By (2), we may choose an R such that |p(z)| > |p(0)| for |z| � R; thus,
min
|z|=R

|p(z)| > |p(0)|. By the minimum modulus principle (Prop. II.5.6), p has a zero

in DR(0).

Second proof: Let us regard p as a meromorphic function on Ĉ. By Prop. 1.3,
p(Ĉ) is a domain in Ĉ. Since the image p(Ĉ) is also closed (this follows from the

compactness of Ĉ), we have necessarily p(Ĉ) = Ĉ; in particular, 0 ∈ p(Ĉ). Since
p(∞) = ∞, we have 0 ∈ p(C).

Assume that z1 is a zero of p, and that p is of degree n � 1. Then

p(z) = (z − z1)p1(z),

where p1 is a polynomial of degree n − 1. This can be seen either via polynomial
division or by expanding p into powers of z − z1 as

p(z) = p(z1) + p′(z1)(z − z1) + . . .+
1

n!
p(n)(z1)(z − z1)

n,

taking into account that p(z1) = 0. If n − 1 � 1, then p1 has a zero z2, so that
p1(z) = (z − z2)p2(z) and

p(z) = (z − z1)(z − z2)p2(z),

where p2 is a polynomial of degree n− 2. After n steps, we have

p(z) = c

n∏
ν=1

(z − zν), (4)

where the constant c is the coefficient of zn in p. Of course, the zν need not be
distinct. By combining repeated factors in (4) (and renumbering the zeros of p), the
factorization of p can be written in the form

p(z) = c

r∏
ρ=1

(z − zρ)
nρ (5)

with distinct zeros z1, . . . , zr. The exponent nρ is the multiplicity (order) of the zero
zρ; we have

∑r
ρ=1 nρ = n.

If w is an arbitrary complex number, then we can factor p(z)− w as per (4):

p(z)− w = c

n∏
ν=1

(z − ζν).
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This shows that p takes on the value w at the n (not necessarily distinct) points
ζ1, . . . , ζn. The polynomial p takes on the value w at ζ with multiplicity greater than
1 if and only if p(ζ) = w and p′(ζ) = 0, thus it is precisely at the at most n− 1 zeros
of p′ that p assumes its value with multiplicity greater than 1.

We now turn to rational functions f(z) = p(z)/q(z). Here p and q are polynomials,
with q 	≡ 0. We can (and will) assume that p and q have no common zeros. Then the
zeros (of order k) of p are exactly the zeros (of order k) of f in C; the zeros (of order
k) of q give the poles (of order k) of f in C. In order to clarify the behaviour of f at
∞, we write p(z) =

∑m
ν=0 aνz

ν and q(z) =
∑n

ν=0 bνz
ν , where ambn 	= 0, and

f(z) =
amzm + . . .+ a0
bnzn + . . .+ b0

= zm−n am + am−1z
−1 + . . .+ a0z

−m

bn + bn−1z−1 + . . .+ b0z−n
.

Hence, if m > n, then f has a pole of order m − n at ∞; if m = n, then f is
holomorphic at infinity, with f(∞) = am/bn 	= 0; if m < n, then f has a zero of order
n−m at ∞. Moreover we see that the number of zeros of f , counting multiplicity, on
the entire sphere Ĉ is d = max(m,n), and that the number of poles, again counting
multiplicity, is also d.

Definition 2.1. The degree of the rational function f = p/q is

d = max(deg p, deg q).

Proposition 2.4. A rational function f = p/q of degree d takes on every value w ∈ Ĉ
exactly d times on Ĉ (counting multiplicity).

Proof: We may assume that w ∈ C. The claim then follows from the fact that the
function f(z)−w = (p(z)−wq(z))/q(z) is also of degree d, and hence has d zeros.

In integrating rational functions, partial fraction decomposition plays an important
role. We prove its existence.

Proposition 2.5. Let f be a rational function, let z1, . . . , zr be the distinct poles of
f in C, and let h1(z), . . . , hr(z) be their principal parts, respectively. If f has a pole
at ∞, let h∞(z) be its corresponding principal part; otherwise, set h∞ ≡ 0. Then

f(z) =

r∑
ρ=1

hρ(z) + c+ h∞(z), (6)

where c is a constant.

Proof: The function f −∑r
ρ=1 hρ − h∞ is a rational function without poles in Ĉ, i.e.

it is holomorphic on Ĉ and therefore constant (Prop. 1.2).
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The functions hρ(z) are of the form

a
(ρ)
−kρ

(z − zρ)
−kρ + . . .+ a

(ρ)
−1(z − zρ)

−1.

The individual summands are the partial fractions that give (6) its name.

Concerning h∞ and c: the term h∞ actually appears only when deg p > deg q. If this
is the case, one can obtain h∞(z) and c via polynomial division, which gives

p(z) = p∗(z)q(z) + r(z)

with polynomials p∗ and r. Here r 	≡ 0 (otherwise p and q would have common zeros
or q would be constant), and the degree of r is smaller than the degree of q. Thus,

f(z) =
r(z)

q(z)
+ p∗(z). (7)

Since p∗(z) is holomorphic on C, f and r/q have the same principal parts hρ. By the
preceding discussion, r/q =

∑r
ρ=1 hρ, so that p∗(z) = c+ h∞(z).

In order to determine the principal parts hρ, one must know the zeros zρ of q and
their orders kρ. As in II.6, one can then calculate the principal part hρ from the
beginning of the power series expansion of

gρ(z) = (z − zρ)
kρ

r(z)

q(z)

about zρ. If zρ is a simple zero of q, then

hρ(z) =
r(zρ)

q′(zρ)
1

(z − zρ)
.

In simple cases, ad hoc methods lead to the answer more quickly. Let us illustrate
this with the function

f(z) =
z2 − 5z + 6

(z − 1)2(z + 1)
.

We write down the partial fraction decomposition with undetermined coefficients:

z2 − 5z + 6

(z − 1)2(z + 1)
=

a2
(z − 1)2

+
a1

z − 1
+

b

z + 1
,

then multiply both sides by the denominator (z − 1)2(z + 1) and obtain

z2 − 5z + 6 = a2(z + 1) + a1(z − 1)(z + 1) + b(z − 1)2. (8)

Comparing coefficients in (8) yields a system of linear equations for a1, a2, b. One may
also substitute the zeros±1 of the denominator and one other value, say z = 0, into (8),
or, alternatively, substitute the zeros ±1 into (8) and evaluate the equation obtained
by differentiating (8) at the double zero z = 1. One gets a1 = −2, a2 = 1, b = 3.

Rational functions are meromorphic on all of Ĉ. To finish, let us prove the converse:

Proposition 2.6. Every function that is meromorphic on all of Ĉ is rational.
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Proof: Let f : Ĉ → Ĉ be meromorphic. Since Ĉ is compact, the discrete set of poles
of f must be finite: Pf = {z1, . . . , zr} (we admit ∞ ∈ Pf ). Let hρ be the principal

part of f at zρ, for 1 � ρ � r. Then f −∑r
ρ=1 hρ is holomorphic on all of Ĉ and

hence equal to a constant c, by Prop. 1.2. But then f =
∑r

ρ=1 hρ + c is rational.

Historical note

Determining zeros of polynomials (first with “real coefficients”) occupied mathematicians for cen-
turies. The solution for quadratic polynomials is ancient and appears in the form of series of examples
in Babylonian and ancient Chinese mathematics. Quadratic polynomials without real roots and cu-
bic polynomials led to the discovery of complex numbers (Bombelli, 1560). In the sixteenth century,
Italian mathematicians (Scipio del Ferro, Cardano, and Ferrari) found formulas for solving polyno-
mial equations of degrees three and four; equations of higher degrees remained inaccessible (in the
beginning of the nineteenth century, Abel and Galois proved that such equations could not in general
be solved in terms involving only the usual algebraic operations and radicals). There was still the
feeling, however, that the roots of such equations existed in the field of complex numbers. In 1749,
Euler gave an incomplete proof of this fact; it was improved by Lagrange in 1772. Gauss was the
first to give a more or less complete proof in 1799 and would go on to publish three others. These
proofs used – in modern terminology – topological and complex analytical arguments. Since the
development of complex analysis in the nineteenth century, many simple proofs were found. We
have given two in this section, and more will follow. The word “algebra” has a different meaning
today than it did in the nineteenth century, and the name “fundamental theorem of algebra” must
be understood in a historical context – the theorem belongs to complex analysis.

Exercises

1. Give the partial fraction decomposition of the following functions:

a)
z5 + 2z4 − 2z3 − 3z2 + z + 6

(z2 − 1)2 b)
4z2 + 6z + 2

(z2 + 1)(z − 1) c)
12z + 4

(z2 + 1)2(z − 1) .

2. a) Show that the polynomial q(z) = zn − αn−1zn−1 − . . . − α0, where n � 1, has exactly one
positive zero provided αν � 0 (for 0 � ν � n− 1) and at least one αν is strictly positive.

b) Consider p(z) = zn + an−1zn−1 + . . .+ a0, where n � 1, aν ∈ C, and not all aν are zero. Let
r be the positive zero of q(z) = zn−|an−1|zn−1 − . . .−|a0| – cf. part a). Show that for every
zero z0 of p(z), we have |z0| � r.

3. a) Let q̃(z) = zn + αn−1zn−1 + . . . + α1z − α0, where αν � 0 and α0 > 0. Show that q̃ has
exactly one positive zero ρ. Use 2a)!

b) Let p(z) be as in 2b), where a0 �= 0, and let ρ be the positive zero of zn + |an−1|zn−1 + . . .+
|a1|z − |a0|. Show that for every zero z0 of p(z), we have ρ � |z0|.

3. Entire functions

Definition 3.1. An entire function is a function that is holomorphic on the entire
complex plane. An entire function that is not a polynomial is called an entire tran-
scendental function.

Examples of entire transcendental functions include the exponential function, sine,
and cosine, and also functions like exp(f(z)), where f is any nonconstant entire
function.
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Considered as a function on the Riemann sphere Ĉ, an entire function has an isolated
singularity at ∞.

Proposition 3.1. Let f be an entire function.

i. If ∞ is a removable singularity of f , then f is constant.

ii. The point ∞ is a pole of order n � 1 of f if and only if f is a polynomial of
degree n.

iii. The point ∞ is an essential singularity of f if and only if f is entire transcen-
dental.

Proof: Let us prove i and ii. Claim iii then follows automatically.

For i: If ∞ is removable, then f can be holomorphically extended to Ĉ and is therefore
constant.

For ii: If ∞ is a pole of order n, then the principal part h∞ of f at ∞ is a polynomial
of degree n, and f − h∞ is holomorphic on Ĉ and hence constant. The converse is
clear.

The above proposition subsumes a number of well-known theorems of complex analysis
that we now state separately.

Theorem 3.2 (Liouville). Every bounded entire function is constant.

Namely, any such function has a removable singularity at ∞.

This proposition yields a further – perhaps the best-known – proof of the fundamental
theorem of algebra: If p(z) is a polynomial without zeros, then 1/p(z) is a bounded
entire function and hence constant.

Proposition 3.3. Let f be an entire function.

i. If for sufficiently large |z|, f satisfies

|f(z)| � C |z|n,

where C � 0 and n ∈ N, then f is a polynomial of degree less than or equal to n.

ii. If for sufficiently large |z|, f satisfies

|f(z)| � C |z|n,

where C > 0 and n ∈ N, then f is a polynomial of degree greater than or equal
to n.

Proof: Applying Cor. II.6.4 to the pole 0 of f∗(ζ) = f(1/ζ) shows that f has a pole
of order less than or equal to n at ∞ in the former case, and that f has a pole of
order greater than or equal to n at ∞ in the latter case.
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Proposition 3.4. An entire function is entire transcendental if and only if for every
w ∈ Ĉ, there is a sequence zν → ∞ such that f(zν) → w.

By the Casorati-Weierstrass theorem (Prop. II.6.3), this means precisely that f has
an essential singularity at ∞.

Liouville’s theorem also holds for entire functions of n variables, i.e. functions that
are holomorphic on all of Cn:

Theorem 3.2′. Every bounded entire function on Cn is constant.

As was done in II.7, the claim can be reduced to the case of one variable (Thm. 3.2).

Exercises

1. Let f and g be entire functions such that |f | � |g|. Show that f = cg for some constant c.

2. Let f be a nonconstant entire function. Show that ef is transcendental.

3. Given an entire function f =
∞∑

n=0
anzn, put Mr =Mr(f) = max

|z|=r
|f(z)|.

a) Show that if f is transcendental, then lim
r→∞ r−kMr = +∞ for all k ∈ N.

b) Investigate the limit lim
r→∞

logMr
log r

.

4. Consider the function f(z) = z + ez . Show that for all t ∈ [0, 2π], lim
r→∞ f(r eit) = ∞ and that

the convergence is uniform with respect to t on the sets {t : |t − π| � π
2
} and {t : |t| � α} for

every α < π/2. How does this agree with Prop. 3.4?

5. a) Let f(z) = exp(z2) and α ∈ ]0, π/4[. Show that for t ∈ [−α, α]∪[π−α, π+α], lim
r→∞ f(r eit) =∞

uniformly in t, and that for t ∈ [−π
2
−α,−π

2
+α

]∪[
π
2
−α, π

2
+α

]
, lim
r→∞ f(r eit) = 0 uniformly

in t.

b) Let p(z) = zn+. . .+a0 be a polynomial, and let f(z) = exp(p(z)). Moreover let 0 < α < π/2n.
Show that

lim
z→∞ f(z) =∞ uniformly on {z : | arg z − 2kπ/n| � α}
lim

z→∞ f(z) = 0 uniformly on {z : | arg z − (2k + 1)π/n| � α}
for 0 � k � n− 1.

4. Möbius transformations

In this section, we will investigate rational functions of degree 1, i.e. functions of the
form

z �→ az + b

cz + d
, (1)

where a, b, c, and d are complex constants. We will always assume that ad− bc 	= 0 –
otherwise, the function would be constant. We will most often use the letters S, T, . . .
rather than f, g, . . . to denote functions of this sort and will often write Tz instead of
T (z).
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If c 	= 0, then we call (1) a fractional linear transformation T ; if one puts T (−d/c) = ∞
and T (∞) = a/c, then T is a holomorphic mapping from Ĉ to itself. It is bijective,
and its inverse is

w �→ dw − b

a− cw
,

which is again a fractional linear transformation.

If c = 0, we may assume that d = 1, so that Tz = az + b, with T (∞) = ∞. We
then call T an entire linear transformation. The transformation T is a holomorphic
bijection from Ĉ to itself that maps C onto C. Its inverse w �→ (w − b)/a is also an
entire linear transformation. We will call linear transformations – whether fractional
or entire – Möbius transformations.

The composition S ◦ T = ST of two Möbius transformations

Sz =
αz + β

γz + δ
and Tz =

az + b

cz + d

works out to

(S ◦ T )(z) = (αa+ βc)z + (αb+ βd)

(γa+ δc)z + (γb+ δd)
, (2)

which is again a Möbius transformation. If S and T are entire linear, then so is ST .

Proposition 4.1. The set of Möbius transformations forms a group M of biholo-
morphic mappings of Ĉ onto itself. The set of entire linear transformations is the
subgroup M0 = {T ∈ M : T∞ = ∞} of M. The elements of M0 are biholomorphic
mappings of C onto itself.

The following is remarkable:

Proposition 4.2. Möbius transformations are the only biholomorphic mappings of Ĉ
onto itself, and entire linear transformations are the only biholomorphic mappings of
C onto itself.

Proof: a) A biholomorphic map f : Ĉ → Ĉ is a meromorphic function and hence a
rational function (Prop. 2.6). Since it assumes every value exactly once, its degree is
1 and it is thus a Möbius transformation.

b) If f : C → C is biholomorphic, then ∞ cannot be an essential singularity of f ; if it
were, then f would not be injective – see the remark following Prop. II.6.3. It follows
that f is an injective polynomial and hence of degree 1.
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Every matrix A =

(
a b
c d

)
∈ GL(2,C) gives rise to the Möbius transformation

TA : z �→ az + b

cz + d
,

and formula (2) shows that this assignment defines a group homomorphism from
GL(2,C) onto M. Its kernel

{A ∈ GL(2,C) : TA = id}
consists of the matrices of the form λI, where I is the identity matrix and λ ∈ C∗.
If (detA)1/2 denotes a square root of detA, then A and (detA)−1/2A yield the same
Möbius transformation; the second matrix has determinant 1. This yields

Proposition 4.3. The assignment A �→ TA is a surjective group homomorphism from
GL(2,C) onto M whose kernel is {λI : λ ∈ C∗}. It also yields a group homomorphism
from

SL(2,C) = {A ∈ GL(2,C) : detA = 1}
onto M whose kernel is {±I}.

We now study geometric properties of Möbius transformations. First, we note that a
transformation T ∈ M, T 	= id, has at least one and at most two fixed points in Ĉ,
i.e. points z such that Tz = z:

az + b

cz + d
= z

leads to the equation cz2+(d−a)z−b = 0 for z 	= ∞, which has at most two solutions
in C. If c = 0, so that T is entire, then this equation has at most one solution in C, but
it is precisely in this case that ∞ is a (further) fixed point; exactly the translations
z �→ z + b, where b 	= 0, have ∞ as their only fixed point.

Any Möbius transformation with more than two fixed points is thus equal to the
identity map. It follows that a transformation T ∈ M is completely determined if
one knows the images of three distinct points in Ĉ under T .

Arbitrary triples of pairwise distinct points (z1, z2, z3) and (w1, w2, w3) can actually
be mapped to one another by a unique Möbius transformation. We may assume that
(w1, w2, w3) = (0, 1,∞) and immediately verify that

Tz =
z − z1
z − z3

:
z2 − z1
z2 − z3

(3)

has the desired property. If all zk 	= ∞, this is clear. If one of the zk is ∞, one
replaces the point zk with 1/ζ in (3), simplifies, and finally sets ζ = 0 to again obtain
a Möbius transformation. E.g. if z1 = ∞, we get

Tz =
z2 − z3
z − z3

.

We describe (3) by a new word:
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Definition 4.1. Let z1, z2, z3 be three distinct points in Ĉ, and let z ∈ C be arbi-
trary. The cross-ratio CR(z, z1, z2, z3) is the value at z of the uniquely defined Möbius
transformation that sends (z1, z2, z3) to (0, 1,∞). It is given by (3), where ∞ has to
be dealt with as described above.

In summary:

Proposition 4.4. Let (z1, z2, z3) and (w1, w2, w3) be two triples of distinct points

in Ĉ. Then z �→ CR(z, z1, z2, z3) is the Möbius transformation that maps z1 to 0,
z2 to 1, and z3 to ∞. There is exactly one T ∈ M such that Tzk = wk for 1 � k � 3.

The transformation T can, for example, be obtained by solving the equation

CR(w,w1, w2, w3) = CR(z, z1, z2, z3)

for w.

The cross-ratio is invariant under Möbius transformations in the following sense:

Proposition 4.5. If z1, z2, and z3 are three distinct points in Ĉ, then for every
T ∈ M, we have

CR(Tz, Tz1, T z2, T z3) = CR(z, z1, z2, z3).

Proof: The map S(z) = CR(Tz, Tz1, T z2, T z3) is the composition of z �→ Tz = w
and w �→ CR(w, Tz1, T z2, T z3) and thus a Möbius transformation. We have Sz1 = 0,
Sz2 = 1, and Sz3 = ∞, so that Sz = CR(z, z1, z2, z3).

In order to more conveniently formulate geometric properties of Möbius transforma-
tions, we introduce the following terminology:

Definition 4.2. A subset K ⊂ Ĉ is called a Möbius circle if K is a circle in C or a
union of a straight line in C with the point ∞.

Möbius circles are precisely the images of circles on the sphere S2 ⊂ R3 under stere-
ographic projection ϕ : S2 → Ĉ, whereby circles through the north pole are mapped
to straight lines (including ∞). In any case, the part of a Möbius circle that lies in C
can be described by an equation

αzz + bz + bz + γ = 0, (4)

where α, γ ∈ R, b ∈ C, and αγ < bb.

Proposition 4.6. The image of a Möbius circle under a Möbius transformation is
again a Möbius circle. Given two Möbius circles K1 and K2, there is a T ∈ M such
that T (K1) = K2.
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Proof: a) If T is a translation z �→ z + b or a homothety z �→ az, the first claim
is evident. Let T be the inversion z �→ 1/z. Substituting w = 1/z into (4) and
multiplying by ww, the image of the Möbius circle described by (4) is seen to satisfy
the equation

α+ bw + bw + γww = 0,

which again describes a Möbius circle.

b) Every Möbius transformation (1) can be written as a composition of translations,
dilations, rotations, and possibly an inversion. This is clear if c = 0. For c 	= 0, this
follows from the formula

az + b

cz + d
=

bc− ad

c2

(
z +

d

c

)−1

+
a

c
.

Part a) of the proof now implies the invariance claim.

c) A Möbius circle is uniquely determined by three distinct points that lie on it. Let
z1, z2, and z3 be three distinct points on K1, let w1, w2, and w3 be three distinct
points on K2, and let T ∈ M be such that Tzk = wk for 1 � k � 3. By what we
have already proved, T maps K1 to the Möbius circle through w1, w2, and w3, which
is K2.

Moreover, we have:

Proposition 4.7. A point z∈ Ĉ lies on the Möbius circle K determined by the points
z1, z2, and z3 if and only if CR(z, z1, z2, z3) ∈ R ∪ {∞}.

Proof: The transformation T : z �→ CR(z, z1, z2, z3) maps K onto the Möbius circle
that passes through 0, 1, and ∞, i.e. onto R ∪ {∞}. Thus z ∈ K if and only if
Tz ∈ R ∪ {∞}.

A Möbius circle K divides Ĉ\K into two disjoint domains G1 and G2: the inside and
outside of K, or two open half-planes. A Möbius transformation that sends K to K ′

maps each of the domains determined byK biholomorphically onto one of the domains
determined by K ′. In particular, if we take a T ∈ M such that T (K) = R ∪ {∞},
then T (G1) = H and T (G2) = H− = {z ∈ C : Im z < 0}, or else T (G2) = H and
T (G1) = H−. After composing T with the map z �→ −z, if necessary, we see that:

Proposition 4.8. Let the domain G ⊂ Ĉ be bounded by a Möbius circle. Then there
exists a T ∈ M that maps G biholomorphically onto the upper half-plane H.

In order to map D onto H, for example, we can use the transformation

S : z �→ CR(z, 1, i,−1) = i
1− z

1 + z
.

Here the points 1, i,−1 ∈ ∂D are mapped to 0, 1, and ∞, respectively, i.e. ∂D is
mapped onto R ∪ {∞}; S(0) = i ∈ H then shows that S(D) = H.
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Later, we will show that all biholomorphic mappings between disks or half-planes are
Möbius transformations.

Exercises

1. a) Let S, T ∈ M. Show that a point z1 ∈ Ĉ is a fixed point of T if and only if Sz1 is a fixed
point of STS−1.

b) Suppose T has exactly one fixed point z1. Show that there is an S ∈ M such that STS−1 is a

translation. Moreover, show that for every z ∈ Ĉ, we have limTnz = z1, where Tn = T ◦. . .◦T
denotes the n-fold composition of T with itself.

c) Suppose T has exactly two fixed points z1 and z2. Show that there is an S ∈ M such that
STS−1 is of the form z �→ az, where a ∈ C∗, and that the pair {a, a−1} is uniquely determined
by T .

d) Show that if in part c) we have |a| �= 1, then after a possible renumbering of our fixed points,
we have limTnz = z1 for all z ∈ Ĉ\{z2}. In case |a| = 1, show that every point in Ĉ\{z1, z2}
lies on a T -invariant Möbius circle.

2. a) Suppose T ∈ M has exactly one fixed point z1 ∈ Ĉ. Show that

{S ∈ M : ST = TS} = {S ∈ M : z1 is the only fixed point of S or S = id}
and that this is a commutative subgroup of M.

b) Suppose T has two distinct fixed points z1, z2 ∈ Ĉ and T 2 �= id. Show that
{S ∈ M : ST = TS} = {S ∈ M : Sz1 = z1 and Sz2 = z2}

and that this is a commutative subgroup of M.

c) Suppose T 2 = id and T �= id. Show that T has two fixed points and ST = TS if and only
if S either has the same fixed points as T or permutes the fixed points of T . If the latter
is the case, show that CR(z1, w1, z2, w2) = −1, where z1 and z2 are the fixed points of T
and w1 and w2 are the fixed points of S. Show that the group {S ∈ M : ST = TS} is not
commutative.

3. Let f be a rational function of degree 2. Prove that there exist a transformation T ∈ M and
an entire linear transformation S such that S f T (z) = z2 if and only if f has a pole of order 2.
Prove that there exist transformations S and T as above such that S f T (z) = z + 1/z if and
only if f has simple poles.

5. Logarithms, powers, and roots

Definition 5.1. Let z 	= 0 be a complex number. A number ζ ∈ C is called a logarithm
of z if eζ = z. We write ζ = log z.

Every z ∈ C∗ has infinitely many logarithms; any two logarithms of z differ by an
integer multiple of 2πi. We thus have

elog z = z

for every logarithm of z; conversely, for an appropriate choice of logarithm of ez, we
have

log ez = z.
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Likewise, for an appropriate choice of the involved logarithms, we have the addition
rule

log(zw) = log z + logw. (1)

If z is real and positive, then the real logarithm is a logarithm of z, and all other
logarithms are obtained by adding multiples 2kπi, where k ∈ Z. Writing z = |z| eit,
it follows from (1) that

log z = log |z|+ it, where log |z| ∈ R. (2)

The real part of a logarithm is unique; the imaginary part is unique up to integer
multiples of 2π.

Definition 5.2. For z 	= 0, arg z = Im log z is an argument of z.

Via the logarithm, we introduce powers with an arbitrary exponent : For z 	= 0 and
an arbitrary w, let

zw = ew log z. (3)

There are thus in general infinitely many values for zw, depending on the choice of
logarithm of z; they differ only by factors of the form exp(w · 2kπi), where k ∈ Z. If,
in particular, w = n ∈ Z, then formula (3) yields exactly one value, namely

zn = en log z; (4)

the factors en·2πik are all 1. If w = 1/n, then (3) yields exactly n values, namely the
nth roots, which can be written as

n
√
z = z

1
n = |z| 1n eit/n ζj , 0 � j � n− 1, (5)

where z = |z| eit and the ζj = exp(j · 2πi/n) are the nth roots of unity. The laws of
exponents

zw1+w2 = zw1zw2 (6)

(z1z2)
w = zw1 z

w
2 (7)

hold in the following sense: in (6), the same choice of logarithm of z must be used in
both sides, and in (7), log z1 + log z2 must be chosen as the value of the logarithm of
the product.

With these rules, we have concluded the arithmetic of complex numbers. Here is a
nice example:

ii = ei log i = ei(
π
2 i+2πi k) = e−

π
2 e−2πk, k ∈ Z.

Note that all of these powers are real. Euler discovered this relation in 1746 and
called it “merkwürdig” – cf. [RS].

Because of the ambiguity of the above expressions, it is not clear how one can assemble
the values of, say, log z into a holomorphic function. Indeed, this is impossible on all
of C∗, but it can be done on appropriately chosen subsets of C∗.
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Definition 5.3. A logarithm function on a domain G ⊂ C∗ is a continuous function
z �→ log z that satisfies the condition

elog z = z.

Suppose that log z is such a function on G. By definition, it is injective. We denote
its image by G′. For z, z0 ∈ G, let

w = log z, w0 = log z0.

Then ew = z, ew0 = z0, so that

log z − log z0
z − z0

=
w − w0

ew − ew0
.

As z → z0, w → w0 by the continuity of log z, so that we have

lim
z→z0

w − w0

ew − ew0
=

1

ew0
=

1

z0
.

Thus, log z is holomorphic, and

d

dz
log z =

1

z
. (8)

The image G′ must be a domain on which the exponential function serves as the left
inverse of the bijection log z and hence also the right inverse. We thus have:

Proposition 5.1. If there exists a (continuous) logarithm function on a domain G,
then it is in fact holomorphic, and its derivative is 1/z. It is injective and satisfies
the identities

elog z ≡ z, log ew ≡ w,

where z ∈ G and w ∈ G′ = logG. The image G′ is again a domain, and log z and ew

are mutually inverse biholomorphic mappings between G and G′.

Any two logarithm functions on G differ by an integer multiple of 2πi. Instead of
speaking of a logarithm function, we will often speak of a branch of the logarithm.

Proposition 5.2. Let G ⊂ C∗ be a domain. Then the following are equivalent:

i. There exists a branch of the logarithm defined on G.

ii. There exists a G′ ⊂ C that is bijectively mapped onto G under the exponential
function.

iii. The function 1/z has a primitive on G.

iv. For every closed path of integration γ in G, we have∫
γ

dz

z
= 0.
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Almost all of the claims have already been proved – it only remains to show that i
follows from iii. Let l(z) be a primitive of 1/z. Then

d

dz

el(z)

z
=

1

z2

(
z el(z)

z
− el(z)

)
= 0,

so that el(z) = cz. Writing c = ea, we obtain

el(z)−a = z,

i.e. l(z)− a is a branch of the logarithm.

This proposition shows that there is no branch of the logarithm defined on all of C∗,
but that there is a branch defined on every star-shaped subdomain of C∗, e.g. on a
“slit plane” C \ Lϕ, where Lϕ is the ray {z = t eiϕ : 0 � t < ∞}.
Let us consider the different branches of log z on a subdomain G ⊂ C∗. A priori,
there is nothing that distinguishes one branch from the others. On the other hand,
for positive real numbers, it is reasonable to choose real logarithms that coincide with
those from elementary analysis. We thus define:

Definition 5.4. Let G ⊂ C∗ be a domain on which branches of the logarithm exist,
and suppose that G ∩ R>0 is connected. The principal branch of the logarithm is the
branch that is real for positive real arguments.

An especially large domain that satisfies the above condition is C∗\R<0, the slit plane
cut along the negative real axis. Denoting the principal branch by Log z, we have

Log z = log |z|+ i arg z, where − π < arg z < π. (9)

Starting from Log′(z) = 1/z, it is easy to find power series expansions of Log z. We
record only the expansion about z0 = 1 in the form

Log(1 + z) =

∞∑
n=1

(−1)n−1

n
zn for |z| < 1. (10)

The principal branch of the logarithm cannot be continuously extended to C∗. Letting
z ∈ C∗ \ R<0 tend to x0 < 0 in the upper half-plane, we have

limLog(z) = log |x0|+ πi,

and letting z tend to x0 in the lower half-plane, we have

limLog(z) = log |x0| − πi.

The values of Log z thus jump by 2πi upon crossing the negative real axis.
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A branch of the logarithm exists exactly when there exists a continuous branch of the
argument function; the latter is then automatically infinitely often real differentiable.
Using the functions log z and arg z, we would like to interpret the integral∫

γ

dz

z

over closed paths as concretely as possible. Let γ : [a, b] → C∗ be a closed path.

ϕν(zν)− ϕν(zν−1)

O

γ

zν−1

zν

zν+1

Gν

Gν+1

Figure 4. Interpreting the winding number

Choose a partition a = t0 < . . . < tn = b of the parameter interval such that every
subpath γν = γ

∣∣
[tν−1,tν ]

belongs to a domain Gν on which there exists a branch of

the logarithm (the Gν can, for instance, be chosen to be disks). We now determine
branches lν(z) = log |z|+ iϕν(z) on the Gν as follows: Let l1 be an arbitrary branch
of the logarithm. For ν � 2, we fix the branch lν via lν(γ(tν−1)) = lν−1(γ(tν−1)).
Then

ϕ : t �→ ϕν(γ(t)), where t ∈ [tν−1, tν ],

is a continuous function ϕ on [a, b] that associates to every t an argument of γ(t).
Putting zν = γ(tν), we then have∫

γν

dz

z
= lν(zν)− lν(zν−1) = log |zν | − log |zν−1|+ i(ϕν(zν)− ϕν(zν−1)),

the imaginary part of which is ϕ(tν)− ϕ(tν−1) and therefore measures the change in
the argument of γ(t) on the subinterval [tν−1, tν ]. Summing these integrals over all
subpaths, the real parts cancel, since zn = z0, and we are left with∫

γ

dz

z
= i(ϕ(b)− ϕ(a)).
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Our integral thus measures the total change of the argument along the closed path γ,
i.e. the number 1

2πi

∫
γ

dz
z (which is an integer!) tells us how often γ(t) winds around

the origin when t goes from a to b (here counterclockwise windings are automatically
counted as positive, and clockwise windings are counted as negative).

Likewise, we of course have: If γ is a closed path of integration and z0 	∈ Tr γ, then

1

2πi

∫
γ

dz

z − z0

is an integer that tells us how often γ winds around the point z0. We thus define:

Definition 5.5. Let γ be a closed path of integration in C, and suppose z0 	∈ Tr γ.
Then the integer

n(γ, z0) =
1

2πi

∫
γ

dz

z − z0

is called the winding number of γ about z0.

Winding numbers will play a key role in the formulation the general Cauchy integral
theorem in Chapter IV.

Prop. 5.2 implies:

A branch of the logarithm exists on G ⊂ C∗ if and only if for every closed path of
integration γ in G, the winding number n(γ, 0) = 0. This is true, for example, for all
star-shaped domains in C∗.

As with the logarithm, we will now introduce branches of root and power functions;
to do so, it is easiest to exploit our considerations concerning the logarithm. In what
follows, let G be a subdomain of C∗ on which a branch of the logarithm log z exists.

Definition 5.6. For a fixed w ∈ C and z ∈ G,

zw = ew log z

is a branch of the power function z �→ zw.

Thus, z �→ zw is holomorphic on G, and

d

dz
zw = wzw−1, (11)

where the same branch of the logarithm is to be used on the left and right hand sides.
In general, there may be infinitely many branches of zw; if w is an integer, then there
is exactly one, namely the functions zn, n ∈ Z, that we have already studied. For
n � 0, they can be holomorphically extended to 0, and for n < 0, they are defined
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on all of C∗ (these functions can of course be defined without recourse to logarithms).
For w = 1/n, where n > 1, we obtain exactly n branches of the nth root function,
which arise from one another via multiplication by an nth root of unity.

Finally, the general exponential functions

z �→ az, a 	= 0 fixed,

are defined on all of C. They differ by factors of the form e2πi kz.

Let us give the particularly important Taylor series expansion of the function
f(z) = (1 + z)α. This power is certainly holomorphic in z for |z| < 1. If one re-
quires f(0) = 1, i.e. if one works with the principal branch of the logarithm, then by
comparing coefficients, the relation

(1 + z)f ′(z) = αf(z)

yields the binomial series

(1 + z)α =

∞∑
n=0

(
α

n

)
zn, for |z| < 1, (12)(

α

n

)
=

α(α− 1) · · · (α− n+ 1)

n!
,

(
α

0

)
= 1.

Next, we will investigate the question whether a nonconstant holomorphic function
f ∈ O(G) has a holomorphic logarithm, i.e. whether there exists a function g ∈ O(G)
such that f = eg. It is clearly necessary that f have no zeros, i.e. that f(G) ⊂ C∗.
If a branch log of the logarithm exists on the domain f(G), then one can simply set
g = log ◦f . Otherwise, the following is helpful:

Proposition 5.3. Let G be a star-shaped domain in C, and let f be holomorphic and
nonzero on G. Then f has a holomorphic logarithm on G.

Proof: The function f ′/f is holomorphic on G, and since G is star-shaped, it has a
primitive h on G. We have

(e−hf)′ = e−h(−h′f + f ′) = 0,

so that f = c1 e
h = eh+c with constants c1 and c, and g = h + c is the desired

logarithm.

The constant c in the proof is only determined up to addition of integer multiples of
2πi. The notation g = log f thus refers to a unique function only upon specifying the
value log f(z) at some point z.

The existence of a holomorphic logarithm of f implies the existence of holomorphic
nth roots of f : If f(z) = eg(z) on G, then h(z) = eg(z)/n is holomorphic on G and
satisfies hn = f .
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Remarks:

a) Each of the following conditions implies the existence of log f :

i. The function f is holomorphic and nonzero on a star-shaped domain. The image
of f may then be arbitrary.

ii. The image f(G) is a domain on which a holomorphic logarithm of f exists; then
G need not be star-shaped.

b) An nth root of f , i.e. a holomorphic function g such that gn = f , can also exist if
f does not have a holomorphic logarithm – see the exercises.

Using holomorphic root functions, we can now understand the local mapping proper-
ties of arbitrary holomorphic functions. For k ∈ N, consider the function

z �→ zk = w (13)

in a disk about the origin. This function clearly maps the disk Dr(0) surjectively
onto the disk Drk(0), whereby every point w ∈ Drk(0) with the exception of 0 has
exactly k preimages, namely the kth roots of w; the only preimage of the point 0 is
0. Moreover the map f is open and finite, i.e. the fibres {z : zk = w} are finite. In
topology, maps of this kind are called (k-fold) branched coverings.

U

∗
∗

∗
∗

z �→u−−−→
∗∗

∗ ∗

u �→uk−−−−→

V = f(U)

∗

Figure 5. A branch point of order 4

Let f : G → C be an arbitrary nonconstant holomorphic function. Upon composing
with translations, we may assume that f(0) = 0. If k is the order of f at 0, then

f(z) = zkg(z), g(0) 	= 0 (14)

for some holomorphic function g. It follows that a kth root of g, i.e. a holomorphic
function h such that

h(z)k ≡ g(z), (15)

exists in a sufficiently small neighbourhood of 0. The map f may thus be described
as follows:

z �→ zh(z)
def
= u, (16)

u �→ uk. (17)
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The map (16) is biholomorphic in a neighbourhood of 0, and the map (17) is a k-fold
branched covering – meaning that its fibres consist of k points with the exception of
the branch point 0. We thus have:

Proposition 5.4. Let f be a nonconstant holomorphic function, and suppose f takes
on the value w0 at z0 with multiplicity k. Then there exist neighbourhoods U and V
of z0 and w0, respectively, such that f : U → V is a k-fold branched covering with
branch point z0. In particular, f(U) = V , and f is open.

We have thus found a new proof of the fact that holomorphic functions are open
mappings.

Exercises

1. Let f be the branch of the logarithm on C \ R�0 that takes the value −iπ/2 at −i. Determine

f(i), f(−e), f(−1− i
√
3), f

(
(−1− i

√
3)2

)
.

2. a) Find a maximal domain on which holomorphic functions log(1−z)2 and
√
z +

√
z, respectively,

can be defined.

b) Show that a logarithm of the tangent function exists on G = C \ ⋃
k∈Z

[kπ − π
2
, kπ].

3. Show that there exists an entire function g such that g(z)2 = 1−cos z. (Hint: Begin with the strip
S0 = {z : −2π < Re z < 2π}.) Does 1−cos z have a holomorphic logarithm on C\{2kπ : k ∈ Z}?

4. The tangent function maps the strip S0 = {−π/2 < Re z < π/2} biholomorphically onto
G0 = C \ {ti : t ∈ R, |t| � 1}. Express the inverse function arctan: G0 → S0 using the princi-

pal branch of the logarithm and show that arctanw =
∫
γw

dζ
1+ζ2

, where γw is a path from 0 to

w in G0.

5. The sine function maps the strip S0 = {−π/2 < Re z < π/2} biholomorphically onto
G1 = C \ {t ∈ R : |t| � 1}. Express the inverse function arcsin : G1 → S0 using logarithms and
roots (specify the branches to be used!), and show that

arcsinw =

∫
γw

dζ√
1− ζ2

,

where γw is a path from 0 to w in G1 and we choose the branch of the square root function that
takes the value 1 at w = 0.

6. Partial fraction decompositions

In this section, we want to, on the one hand, construct meromorphic functions that
have poles at a given set of points. On the other hand, we will establish a series
representation (partial fraction decomposition) for meromorphic functions in terms of
their principal parts. To do so, we must extend the definition of compact convergence
to series of meromorphic functions.
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Definition 6.1. Let G ⊂ C be a domain, and let fi, i ∈ I, be a countable collection of
meromorphic functions on G. The sum

∑
i∈I fi converges (absolutely) compactly on

G if for every compact subset K ⊂ G, there exists a finite subset J of the index set I
such that the fi, with i ∈ I \ J , have no poles in K and the sum

∑
i∈I\J fi converges

(absolutely) uniformly on K.

In this situation, the set P of poles of the functions fi is discrete in G, and f =
∑

i∈I fi
is a meromorphic function on G whose set of poles must be contained in P . Compact
convergence is again equivalent to locally uniform convergence.

Consider a meromorphic function f on G with the discrete (and hence at most count-
able) set of poles P = {a1, a2, a3, . . .}; assume the principal part of f at aν is

hν(z) =
c
(ν)
1

z − aν
+ . . .+

c
(ν)
k(ν)

(z − aν)k(ν)
. (1)

If P = {a1, . . . , an} is finite, then

f = g +

n∑
ν=1

hν

for some function g ∈ O(G), since the function f − ∑n
ν=1 hν only has removable

singularities. If P is infinite, then
∑∞

ν=1 hν will only converge in lucky cases; if it
does, then one of course has

f = g +
∞∑
ν=1

hν ,

where g ∈ O(G). In general, one must try to find “convergence-generating summands”
pν ∈ O(G) such that the series

∞∑
ν=1

(hν − pν)

converges compactly on G. It then yields a meromorphic function with the same poles
and principal parts as f . We thus have

f = g +
∞∑
ν=1

(hν − pν), (2)

where g ∈ O(G); we call this representation a partial fraction decomposition of f .

The reverse question is: Suppose we are given a discrete subset P = {a1, a2, a3, . . .}
of G, as well as a principal part hν(z) for every aν ∈ P (i.e. hν(z) is a function of the
form (1)). Does there exist a meromorphic function on G that has poles precisely at
the points aν and whose principal part at each aν is hν?
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If one can find pν ∈ O(G) such that
∑∞

ν=1(hν − pν) converges compactly, then this
series clearly solves our problem. The construction of such convergence-generating
summands is possible for arbitrary domains G. We will only treat the simplest case
G = C, and prove:

Theorem 6.1 (Mittag-Leffler).

i. Let P = {a1, a2, a3, . . .} be an infinite discrete set in C, and let hν(z) be a
principal part at aν for every aν ∈ P . Then there exist polynomials pν(z) such
that the series

∞∑
ν=1

(hν − pν) (3)

converges absolutely and locally uniformly on C. It yields a meromorphic func-
tion that has poles precisely at the points aν and whose principal part at each
aν is hν .

ii. Let f be a meromorphic function on C with infinitely many poles aν , and let hν
be the principal part at aν . Then there exists a partial fraction decomposition

f = g +
∞∑
ν=1

(hν − pν),

where g is an entire function and the pν are polynomials.

Proof: It suffices to find polynomials pν such that (3) converges. Let us assume that
0 	∈ P and that the aν are ordered by increasing absolute values:

0 < |a1| � |a2| � |a3| � . . . .

We then choose positive numbers εν such that
∑∞

ν=1 εν < ∞. The principal part
hν(z) is holomorphic on {z : |z| < |aν |}, and its Taylor series (about 0) converges
compactly to hν . We may thus choose the polynomial pν(z) as a partial sum of this
Taylor series such that

|hν(z)− pν(z)| � εν on Dν = {z : |z| � |aν |/2}.
We prove convergence: Given an arbitrary radius R > 0, choose ν0 such that 2R � |aν |
for ν � ν0. Then DR(0) ⊂ Dν for ν � ν0, so that for z ∈ DR(0) we have

∞∑
ν=ν0

|hν(z)− pν(z)| �
∞∑

ν=ν0

εν < ∞.

This shows the absolute uniform convergence of
∑∞

ν=ν0
(hν−pν) onDR(0). By Def. 6.1,∑∞

ν=1(hν − pν) is then absolutely and compactly convergent on C. In case 0 ∈ P , we
add h0 to obtain

h0 +

∞∑
ν=1

(hν − pν).
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The pν are of course not unique; in dealing with a concrete case, one would choose
polynomials whose degrees are as small as possible.

Let us look at two examples; afterwards, we will identify the results as well-known
elementary functions.

Examples:

i. We take P = Z; let hn(z) = (z − n)−2 be the given principal part at n ∈ Z. For
|z| � R and n � 2R, we have |z−n|2 � (|n|−R)2 � |n|2/4, and since

∑∞
n=1 n

−2 < ∞,
the series

∑
|n|�2R(z−n)−2 is absolutely and uniformly convergent for |z| � R. Thus,

f1(z) =
∑
n∈Z

1

(z − n)2
(4)

is a meromorphic function on C with poles at the points n ∈ Z and principal parts
(z − n)−2.

ii. As before, take P = Z, but suppose the principal parts at n ∈ Z are given by
hn(z) = (z−n)−1; in particular, h0(z) = 1/z. The series

∑
n∈Z(z−n)−1 is divergent,

so we need corrective terms. The constant term pn(z) = −1/n of the Taylor expansion
of hn(z) is already sufficient: For |z| � R and |n| � 2R, we have∣∣∣∣ 1

z − n
+

1

n

∣∣∣∣ = |z|
|n| · |n− z| �

2R

|n|2 .

Thus, the series

f2(z) =
1

z
+

∑
n∈Z\{0}

(
1

z − n
+

1

n

)
(5)

is absolutely and locally uniformly convergent.

We now look for a partial fraction decomposition of the function

f0(z) =
π2

sin2 πz
.

It is meromorphic on C with poles of order two at the points n ∈ Z. The principal
part of f0 at the origin is easily computed to be 1/z2. The principal part at n is
(z − n)−2 due to the periodicity f0(z + 1) = f0(z), and the same holds true of the
function f1 from Example i . We thus have

π2

sin2 πz
= g(z) +

∑
n∈Z

1

(z − n)2

for some entire function g. We claim that g ≡ 0:



6. Partial fraction decompositions 99

Proposition 6.2.

π2

sin2 πz
=
∑
n∈Z

1

(z − n)2
.

Proof: We will employ a trick: Both f0 and f1 satisfy (for 2z 	∈ Z) the “duplication
formula”

4h(2z) = h(z) + h
(
z +

1

2

)
. (6)

Namely, we have

4

sin2(2πz)
=

1

sin2 πz
+

1

cos2 πz
=

1

sin2 πz
+

1

sin2 π(z + 1
2 )

and

f1(2z) =
∑
n∈Z

1

(2z − n)2
=
∑
m∈Z

1

(2z − 2m)2
+
∑
m∈Z

1

(2z − 2m+ 1)2

=
1

4
f1(z) +

1

4
f1

(
z +

1

2

)
.

The holomorphic function g = f0 − f1 thus satisfies the relation (6) on all of C. Now
let R > 0, A = {z : 0 � Re z � 1, | Im z| � R}, and M = max{|g(z)| : z ∈ A}. Choose
z0 ∈ A such that |g(z0)| = M . Since z0/2 and (z0 + 1)/2 also belong to A, (6) yields

4M = |4g(z0)| = |g(z0/2) + g((z0 + 1)/2)| � 2M,

so that M = 0. It follows that g ≡ 0 on A and hence on all of C by the identity
theorem.

By integrating, we obtain a partial fraction decomposition of the cotangent function
from Prop. 6.2. Indeed, f3(z) = −π cotπz is a primitive of f0(z) = π2(sinπz)−2, and,
on the other hand,

−f2(z) = −1

z
−
∑
n∈Z

(
1

z − n
+

1

n

)
is clearly a primitive of f1. Since f0 = f1, the functions −f2 and f3 differ only by a
constant, and since both are odd functions of z, this constant is 0. We thus have

Proposition 6.3.

π cotπz =
1

z
+
∑
n∈Z

(
1

z − n
+

1

n

)
=

1

z
+

∞∑
n=1

2z

z2 − n2
.

The second sum arises from the first upon combining the terms corresponding to n
and −n.
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With the help of basic trigonometric identities like

cosπz = sinπ
(
z +

1

2

)
tanπz = − cotπ

(
z +

1

2

)
cotπz + tanπz =

2

sin 2πz
,

the previous propositions yield further partial fraction decompositions (the proofs are
left to the reader):

Corollary 6.4. Putting an = n− 1/2, we have

π2

cos2 πz
=
∑
n∈Z

1

(z − an)2

π tanπz = −
∑
n∈Z

(
1

z − an
+

1

an

)
π

sinπz
=

1

z
+

∞∑
n=1

(−1)n
2z

z2 − n2
.

To conclude, we will use Prop. 6.3 to evaluate the sums

ζ(2μ) =
∞∑
ν=1

1

ν2μ

for μ ∈ N. The remarkable result was found by Euler. The idea is to determine the
Taylor expansion of the function πz cotπz, which is holomorphic at 0, in two different
ways: first by using its partial fraction decomposition, and then by expressing the
cotangent function in terms of the exponential function.

By Prop. 6.3, we have

πz cotπz = 1 + 2
∞∑
ν=1

z2

z2 − ν2
. (7)

We expand z2/(z2 − ν2) as a geometric series

z2

z2 − ν2
= −

∞∑
μ=1

z2μ

ν2μ
,

substitute this into (7), switch the order of summation, and obtain

πz cotπz = 1− 2

∞∑
μ=1

( ∞∑
ν=1

1

ν2μ

)
z2μ. (8)
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On the other hand, we have

z cot z = iz
e2iz + 1

e2iz − 1
= iz +

2iz

e2iz − 1
= iz + f(2iz), (9)

where we have set

f(z) =
z

ez − 1
.

By putting f(0) = 1, we make f holomorphic at 0, and we see from (9) that f(z)+z/2
is an even function, hence its Taylor series contains only even powers of z. We write
it in the form

f(z) = 1− z

2
+

∞∑
μ=1

B2μ

(2μ)!
z2μ. (10)

Equation (10) defines the Bernoulli numbers B2, B4, B6 . . . One can extend this defi-
nition by putting B0 = 1, B1 = −1/2, and B2μ+1 = 0 for μ � 1.

The relationship f(z)(ez−1) = z allows to derive a recursion formula for the numbers
B2μ (Ex. 2), which shows, in particular that the B2μ are rational numbers. The first
few Bernoulli numbers are:

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
.

Substituting the series (10) into (9) and replacing z with πz, one obtains

πz cotπz = 1 +
∞∑
μ=1

(−1)μ
22μB2μ

(2μ)!
π2μz2μ. (11)

Comparing coefficients in (8) and (11) then yields the following beautiful formula:

Proposition 6.5.

∞∑
ν=1

1

ν2μ
= (−1)μ−122μ−1 B2μ

(2μ)!
π2μ.

For example:

∞∑
ν=1

1

ν2
=

π2

6
,

∞∑
ν=1

1

ν4
=

π4

90
,

∞∑
ν=1

1

ν6
=

π6

945
,

∞∑
ν=1

1

ν8
=

π8

9450
.

Let us record a few corollaries:

i.
∑∞

ν=1
1

ν2μ is a rational multiple of π2μ.

ii. The Bernoulli numbers B2μ have alternating signs.

iii. lim
μ→∞ |B2μ| = ∞, since

∑∞
ν=1

1
ν2μ � 1 and an

n! → 0 for a > 0.
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Exercises

1. Show that lim
μ→∞ |B2μ| (2π)2μ

(2μ)!
= 2.

2. For k � 1, prove the recursion formulas
k∑

n=0

(k + 1
n

)
Bn = 0,

k∑
μ=0

(2k + 1
2μ

)
B2μ =

1

2
(2k + 1).

3. Show that
∞∑

ν=1

(−1)ν−1 1

ν2μ
= (1− 21−2μ)

∞∑
ν=1

1

ν2μ
,

∞∑
ν=1

1

(2ν − 1)2μ = (1− 2−2μ)
∞∑

ν=1

1

ν2μ
.

4. a) Derive the power series expansion of z
sin z

about 0 using Cor. 6.4.iii.

b) Using this result and (8), write down the power series of tan z about 0 (express the coefficients
in terms of the Bernoulli numbers).

5. Use Cor. 6.4.iii to find a partial fraction decomposition of π/ cosπz. In analogy to the proof of
Prop. 6.5, express the sums

∞∑
ν=1

(−1)ν−1

(2ν − 1)2μ+1
, μ = 1, 2, 3, . . . ,

in terms of the Euler numbers (cf. Ex. 3 of II.4).

7. Product Expansions

If a function f(z), holomorphic on a domain G ⊂ C, has only finitely many zeros
a1, . . . , ar with multiplicities n� respectively, it can be written as

f(z) = g(z)
r∏
1

(z − a�)
n� ,

g(z) being holomorphic without zeros on G. We ask whether there is a similar product
representation exhibiting the zeros of f in case there are infinitely many. The answer
is affirmative for any G. We prove it only in the case G = C, the proof in the general
case is much more intricate.

We begin by defining infinite products of numbers and of functions, taking care of the
special role of 0 with respect to multiplication.

First, let
(
aν
)
ν�1

be a sequence of non-zero complex numbers. We say that the

infinite product
∞∏
1
aν converges to a and write

∞∏
1
aν = a, if the sequence of partial

products pn =
n∏
1
aν converges to a and a 	= 0. Since an = pn/pn−1, we have the

obvious necessary condition an → 1.
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Proposition 7.1. The product

∞∏
1

aν converges if and only if the series

∞∑
1

log aν

converges (for a suitable choice of the logarithms).

Note that convergence of
∞∑
1
log aν implies aν → 1 and that log aν is the principal

value for large ν.

Proof: Assume
∞∑
1
log aν converges. Then

pn =

n∏
1

aν = exp

( n∑
1

log aν

)
→ exp

( ∞∑
1

log aν

)

by the continuity of the exponential function. Conversely, if
∞∏
1
aν = a 	= 0, we can

choose a neighbourhood U(a) of a on which a branch of log exists. We may assume
that logU(a) is contained in a horizontal strip of width < 2π. Then, for n sufficiently
large, n � n0 say, pn ∈ U(a) and log pn+1 = log pn + log an+1 with log an+1 being the
principal value. Thus

log pn+1 = log pn0 +

n+1∑
n0+1

log aν ,

and the convergence of
∞∑

n0+1
log aν follows.

In view of the condition aν → 1 we often write aν = 1 + uν . The following criterion
is very useful:

Proposition 7.2. The series

∞∑
1

log(1 + uν) converges absolutely if and only if

∞∑
1

uν

is absolutely convergent.

Proof: Easy estimates of the power series expansion of log(1 + u) yield

2

3
|u| � |log(1 + u)| � 4

3
|u| for |u| � 1

4
.

The proposition follows by the majorant criterion.

Absolute convergence of
∑

log(1 + uν) implies that the sum is not affected by per-
mutation of the terms. Hence, in this case, the infinite product

∏
(1 + uν) remains

unchanged if we permute the factors. Therefore, we define
∏
(1+uν) to be absolutely

convergent if
∑

uν or, equivalently,
∑

log(1 + uν) converges absolutely.
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We now extend the definition to arbitrary sequences aν of complex numbers. We call
∞∏
1
aν (absolutely) convergent, if there is an index ν0 such that aν 	= 0 for ν � ν0, and

∞∏
ν0

aν converges (absolutely). We then set

∞∏
1

aν =

ν0−1∏
1

aν · lim
n→∞

n∏
ν0

aν .

Clearly, this definition does not depend on the choice of ν0.

Of course, we are mainly interested in infinite products of holomorphic functions.
Let G be a domain in C, and let fν = 1 + uν be holomorphic on G. We always
assume that no fν vanishes identically. The notion of pointwise convergence of
∞∏
1

fν(z) =

∞∏
1

(
1 + uν(z)

)
should be clear, but is of minor importance. The following

condition implies that the product is well-behaved.

Definition 7.1. The infinite product
∏

(1 + uν) converges absolutely and locally uni-

formly on G if the series
∑

uν(z) does.

In view of Prop. 7.1 and 7.2 this implies pointwise convergence. If the condition in
Def. 7.1 holds, then for any compact K ⊂ G there is a ν0 such that |uν(z)| < 1, hence
fν(z) 	= 0, for all z ∈ K and ν � ν0. In particular, on K there are only a finite
number of zeros of the factors fν .

Proposition 7.3. Let uν ∈ O (G) , ν � 1. If F (z) =

∞∏
1

(
1 + uν(z)

)
converges

locally uniformly and absolutely on G, then the sequence of the partial products

pn(z) =

n∏
1

(
1 + uν(z)

)
converges locally uniformly to F (z), hence F (z) is holomor-

phic on G. Moreover, permutation of the factors does not affect F (z).

Proof: First note∣∣ez − 1
∣∣ � 2|z| for |z| � 1/2.

Therefore, if gn is a sequence of continuous functions converging uniformly on a com-
pact set K, then the gn are uniformly bounded on K, i.e. |gn(z)| � M for all z ∈ K
and all n, and∣∣egn − egm

∣∣ = ∣∣egm ∣∣ · ∣∣egn−gm − 1
∣∣

� eM · 2|gn − gm|
if |gn − gm| � 1/2 on K. Thus the functions egn also converge uniformly on K.
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Now, assume
∑

uν is an absolutely and locally uniformly convergent series of holomor-
phic functions on G. For any compact K ⊂ G, there is a ν1 such that |uν(z)| � 1/4

for all z ∈ K and ν � ν1. By Prop. 7.2 the sequence

n∑
ν1

log
(
1 + uν(z)

)
converges

uniformly on K. Therefore, the products

n∏
ν1

(
1 + uν(z)

)
= exp

n∑
ν1

log
(
1 + uν(z)

)
converge uniformly on K, and so do the pn(z).

We are now ready to address the main theme of this section. Let Z = {a1, a2, a3, . . . }
be an infinite discrete subset of C, and let nν , ν � 1, be positive integers. We want
to construct an entire function f which vanishes precisely at the aν and has order nν

at aν .

If there is such a function f , its logarithmic derivative h = f ′/f will be holomorphic
except for simple poles at the aν with residue nν . But a meromorphic function h
with this property can be constructed by means of the Mittag-Leffler theorem, and
we shall obtain the desired f by integration from h.

To this end, we assume for the moment that 0 /∈ Z and arrange the aν according to
increasing modulus:

0 < |a1| � |a2| � |a3| � . . . .

Thm. 6.1 then yields a series

∞∑
ν=1

hν(z) with hν(z) = nν

( 1

z − aν
+ pν(z)

)
converging absolutely and locally uniformly to a meromorphic function h on C with
the required poles and residues; the pν(z) are suitable polynomials.

Let qν(z) be the primitive of pν(z) with qν(0) = 0, and define

fν(z) =

[(
1− z

aν

)
exp qν(z)

]nν

.

This is an entire function vanishing only at aν (of order nν), satisfying fν(0) = 1 and
f ′ν(z)/fν(z) = hν(z).

We will show that the infinite product

f(z) =

∞∏
1

fν(z) =

∞∏
1

[(
1− z

aν

)
exp qν(z)

]nν

converges absolutely and locally uniformly on C, thus it solves our problem.
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Fix R > 0 and ν0 such that |aν | > R for ν � ν0. Then

∞∑
ν0

hν(z) is a series of

holomorphic functions on |z| � R, converging absolutely and uniformly. The series

∞∑
ν0

log fν(z) =

∞∑
ν0

∫
[0, z]

hν(ζ) dζ

then converges absolutely and uniformly on |z| � R, too. By Prop. 7.2 and Def. 7.1

this implies absolute and uniform convergence of

∞∏
ν0

fν on |z| � R.

For a complete statement of the result we use the pν as given in Thm. 6.1, namely
as suitable partial sums of the power series expansion of −1/(z − aν) at z = 0.
Furthermore, we admit a0 = 0 as a possible zero of order n0 � 0 by writing an
additional factor zn0 .

Theorem 7.4 (Weierstrass product theorem). Let Z = {0, a1, a2, . . . } be a discrete
set in C, arranged by increasing modulus. Let n0 be a nonnegative integer, and for
ν � 1, let nν be a positive integer. Choose integers kν , ν � 1, such that the series

∞∑
1

nν

(
1

z − aν
+

1

aν

kν∑
μ=0

( z

aν

)μ)
(1)

converges absolutely and locally uniformly on C. Then the infinite product

f(z) = zn0
∞∏
ν=1

[(
1− z

aν

)
exp

kν+1∑
μ=1

1

μ

( z

aν

)μ]nν

(2)

is an entire function with zeros of order nν precisely at aν (ν � 0).

It is reasonable to choose the kν as small as possible and desirable to have them all
equal. E.g. if

∑
nν |aν |−1 < ∞, kν = −1 for all ν, i.e. pν(z) ≡ 0 for all ν, will do.

Corollary 7.5. Let aν , nν and f be as in the theorem. Then any entire function g
with zeros of order nν at the aν (and no other zeros) can be written as g(z) = eh(z)f(z)
with an entire function h.

Namely, the quotient g/f is, after removing the singularities, an entire function with-
out zeros, thus of the form exph.

Corollary 7.6. Any meromorphic function on C is the quotient of two entire func-
tions.

Proof: Let h 	≡ 0 be meromorphic on C with poles at aν of multiplicities nν . By
Thm. 7.4 there is an entire function g with zeros of order nν at the aν (this statement
is elementary if there are only finitely many aν). Then f = g · h has only removable
singularities and can hence be regarded as an entire function.
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As an example, let us determine the product expansion of the entire function sinπz.

It has simple zeros at the points ν ∈ Z. As the series
∑
ν �=0

( 1

z − ν
+

1

ν

)
converges

absolutely and locally uniformly on C, Thm. 7.4 yields a product representation

sinπz = eg(z) z
∏
ν �=0

(
1− z

ν

)
ez/ν . (3)

To determine g, we form the logarithmic derivative of (3):

π cotπz = g′(z) +
1

z
+
∑′( 1

z − ν
+

1

ν

)
.

By Prop. 6.3, g′ ≡ 0, i.e. g is constant. Since lim
z→0

sinπz

z
= π, we have eg ≡ π and

Proposition 7.7. sinπz = πz
∏
ν �=0

(
1− z

ν

)
ez/ν = πz

∞∏
ν=1

(
1− z2

ν2

)
.

The second product results by combining the factors with index ν and −ν in the first
product.

Euler found the product representation of sinπz in 1734 and proved it some years
later. The specialization z = 1/2 yields a still older formula of Wallis (1655):

π

2
=

∞∏
ν=1

(2ν)2

(2ν − 1)(2ν + 1)
=

2 · 2
1 · 3 · 4 · 4

3 · 5 · 6 · 6
5 · 7 · · · · .

A product representation of cosπz can be obtained on similar lines:

cosπz =
∏
ν∈Z

(
1− z

aν

)
ez/aν with aν = ν − 1/2.

Exercises

1. Let F (z) =

∞∏
1

fν(z) be a locally uniformly convergent product of holomorphic functions on G.

a) Show that Hn(z) =
∞∏
n

fν(z) converges locally uniformly to 1 on G, and hence H′n → 0 locally

uniformly.

b)
F ′(z)
F (z)

=

∞∑
1

f ′ν(z)
fν(z)

, the right hand side being a locally uniformly convergent series of mero-

morphic functions on G.

2. Find a product representation of e2πz − 1.



Chapter IV.

Integral formulas, residues, and applications

The concept of the winding number allows a general formulation of the Cauchy integral theorems
(IV.1), which is indispensable for everything that follows. IV.2 presents a generalization of the
Cauchy integral formula to real differentiable functions; it will play a basic role in Chapter VI. With
the Laurent series expansion (IV.3) and the residue theorem (IV.4), further essential tools of complex
analysis are at our disposal. They will be used to evaluate complicated integrals (IV.5) and then to
study the equation f(z) = w, where f is a holomorphic function (IV.6). If one makes the integral
formulas from sections IV.3 and IV.6 dependent on parameters, then one obtains the Weierstrass
preparation theorem (IV.7), which gives fundamental information about the zeros of holomorphic
functions of several variables.

The winding number was already used in complex analysis by Hadamard in 1910; it is a special
case of the Kronecker index. Its systematic use for the development of complex analysis was first
proposed by Artin (ca. 1944); the elegant proofs in IV.1 were developed by Dixon only in 1971 [D].
The inhomogeneous Cauchy integral formula seems to occur first in Pompeiu (1911); after 1950, it
was exploited by Dolbeault and Grothendieck in the theory of several complex variables. Laurent
series were introduced by Laurent in 1843 (Weierstrass already knew about them in 1841); the theory
of residues (IV.4–IV.6) goes back to Cauchy. The Weierstrass preparation theorem has a complicated
history; it was rediscovered and proved several times – cf. [Car]. Weierstrass published it in 1886
but knew of it since roughly 1860. The proof in IV.7, which is based on a clever application of the
residue formulas from the preceding sections, is due to Stickelberger (1887) [St]; in presenting it, we
follow [Fo1] and [Ra].

1. The general Cauchy integral theorem

In Chapter II, we proved the Cauchy integral theorem for star-shaped domains; it
is time to get rid of this restriction. More precisely, the following question is to be
answered:

For which closed paths of integration γ in an arbitrary domain G is the Cauchy integral
theorem valid, i.e. for which γ do we have∫

γ

f(z) dz = 0

for every holomorphic function on G? – Equivalently: Given two paths of integration
γ1 and γ2 from a to b in G, when does the identity∫

γ1

f(z) dz =

∫
γ2

f(z) dz

W. Fischer, I. Lieb, A Course in Complex Analysis, DOI 10.1007/978-3-8348-8661-3_4, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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hold for all holomorphic functions on G?

It is clear that an answer will be especially useful for evaluating integrals, e.g. by
changing the path of integration. Before turning to our question, let us recall
Def. III.5.5.

Definition 1.1. Let γ be a closed path of integration, and let z be a point that does
not lie on γ, i.e. z 	∈ Tr γ. The winding number of γ about z is

n(γ, z) =
1

2πi

∫
γ

dζ

ζ − z
.

In the previous chapter, we saw that n(γ, z) is always an integer. Here is a simple
alternative proof:

Let γ : [0, 1] → C be piecewise continuously differentiable with γ(0) = γ(1), and for
t ∈ [0, 1], let

h(t) =
1

2πi

t∫
0

γ′(τ)
γ(τ)− z

dτ.

Then h(0) = 0 and h(1) = n(γ, z). Moreover,

h′(t) =
1

2πi

γ′(t)
γ(t)− z

.

Thus

d

dt

e2πi h(t)

γ(t)− z
=

e2πi h(t)

(γ(t)− z)
2

((
γ(t)− z

)
2πi h′(t)− γ′(t)

)
= 0,

so that

e2πi h(t) = c(γ(t)− z)

with a nonzero constant c. Now γ(0) = γ(1) implies that

1 = e2πi h(0) = c(γ(0)− z) = c(γ(1)− z) = e2πi h(1),

i.e.

e2πi n(γ,z) = 1.

It follows that n(γ, z) is an integer.
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To give a simple example, note that for κm(t) = r eimt, where 0 � t � 2π, the m-times
traversed circle, we have

n(κm, z) =

{
m for |z| < r

0 for |z| > r.

Here m can be negative – the circle is then traversed in the clockwise direction.
Furthermore:

Lemma 1.1. The function

z �→ n(γ, z) (1)

is locally constant and vanishes on the unbounded path component of the set C \Tr γ.

Proof: The first claim follows from the continuity of the function (1), which can only
take on integer values. Assume that Tr γ is contained in the disk DR(0). Then

|n(γ, z)| � 1

2π
L(γ)

1

|z| −R
< 1,

provided |z| is large enough. Thus n(γ, z) = 0 for these z, and by continuity on the
entire unbounded path component of C \ Tr γ.

It will be useful to slightly generalize the definition of a closed path of integration:

Definition 1.2. A cycle Γ is a formal linear combination of closed paths of integration
with integer coefficients:

Γ = n1γ1 + . . .+ nrγr. (2)

The integral of a continuous function defined on the trace of Γ,

TrΓ = Tr γ1 ∪ . . . ∪ Tr γr,

is ∫
Γ

f(z) dz =

r∑
ρ=1

nρ

∫
γρ

f(z) dz.

The winding number of Γ about z 	∈ TrΓ is defined to be

n(Γ, z) =

r∑
ρ=1

nρn(γρ, z).

The length of Γ is L(Γ) =
∑r

ρ=1|nρ|L(γρ).
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A few comments:

A summand of the form 0 ·γ can always be added or subtracted from (2) – in defining
the trace of Γ, we of course count only those γρ with nonzero coefficients; we always
set 1 · γ = γ and (−1) · γ = −γ. Cycles can be added:

r∑
ρ=1

nργρ +

r∑
ρ=1

mργρ =

r∑
ρ=1

(nρ +mρ)γρ.

They therefore form an abelian group. We have∫
Γ1

f(z) dz +

∫
Γ2

f(z) dz =

∫
Γ1+Γ2

f(z) dz, (3)

and, in particular,

n(Γ1 + Γ2, z) = n(Γ1, z) + n(Γ2, z) (4)

n(−Γ, z) = −n(Γ, z) (5)

(for every z for which the winding number is defined). It should be noted that the
plus sign in (2) has nothing to do with the combination of paths as in I.5.

We now describe a configuration that will be important for many considerations to
follow:

Let 0 < r < R be real numbers, z0 ∈ C, and

Γ = κ(R; z0)− κ(r; z0).

The annulus

K(z0; r,R) = {z : r < |z − z0| < R}
is characterized by

n(Γ, z) = 1,

and the complement of its closure by n(Γ, z) = 0. We generalize this situation as
follows:

Definition 1.3. A domain with positive boundary is a bounded domain G in C whose
boundary ∂G is the union of the traces of n+ 1 pairwise disjoint simple closed paths
of integration γ0, . . . , γn. For the cycle

Γ = γ0 − γ1 − . . .− γn,

we require

G = {z ∈ C : n(Γ, z) = 1}
C \G = {z ∈ C : n(Γ, z) = 0}.
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G

γ0

γ1
γ2

Figure 6. A domain with positive boundary

A closed path γ : [a, b] → C is simple, if γ is injective on [a, b[. – The cycle Γ is also
denoted by ∂G and called the boundary (or boundary cycle) of G. Intuitively, G lies
“on the left hand side of its (oriented) boundary”. Examples are disks, annuli, and
general domains such as the one shown in Fig. 6.

Using winding numbers, we now introduce the notion of homology that will be decisive
for what follows.

Definition 1.4. A cycle Γ in G is called null-homologous in G if for every point
z 	∈ G, we have

n(Γ, z) = 0.

Two cycles Γ1 and Γ2 are called homologous in G if Γ1 − Γ2 is null-homologous.
Notation: Γ ∼ 0, Γ1 ∼ Γ2.

The circle κ(r; 0) is null-homologous in C but not in C∗ = C \ {0}.
The main result of this section is

Theorem 1.2 (The general Cauchy integral theorem and general Cauchy integral
formulas). Let Γ be a null-homologous cycle in a domain G, and let f be a holomorphic
function on G. Then

i.

∫
Γ

f(z) dz = 0.

ii. For every z 	∈ TrΓ and all k = 0, 1, 2, . . ., we have

n(Γ, z)f (k)(z) =
k!

2πi

∫
Γ

f(ζ)

(ζ − z)k+1
dζ.

(For z 	∈ G, ii says that the integral on the right hand side is 0.)
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Proof: We will first prove the second claim, where we may of course set k = 0: the
general claim then follows by differentiating under the integral sign. By substituting
the definition of the winding number into the formula in ii, it takes the form∫

Γ

f(ζ)− f(z)

ζ − z
dζ = 0, for z ∈ G \ TrΓ. (6)

To prove this, we consider the integral (6) as a function of z. We will extend this
function to an entire function h; the latter will then satisfy

lim
z→∞h(z) = 0,

which, by Liouville’s theorem, implies that h(z) ≡ 0.

Let us investigate the integrand of (6) as a function of ζ and z simultaneously, i.e.

g(ζ, z) =

⎧⎨⎩
f(ζ)− f(z)

ζ − z
, ζ 	= z

f ′(z), ζ = z.

This function is defined on G × G and – as we will show – is continuous in both
variables.

This is clear for ζ 	= z. To prove continuity on the diagonal, we consider the difference

g(ζ, z)− g(z0, z0)

in a neighbourhood Uδ(z0)× Uδ(z0)

a) if ζ = z:

g(z, z)− g(z0, z0) = f ′(z)− f ′(z0),

b) if ζ 	= z:

g(ζ, z)− g(z0, z0) =
f(ζ)− f(z)

ζ − z
− f ′(z0) =

1

ζ − z

∫
[z,ζ]

(
f ′(w)− f ′(z0)

)
dw.

Now, the derivative f ′ is continuous – see Thm. II.3.4. Therefore, for any ε > 0, the
number δ can be chosen small enough such that

|f ′(w)− f ′(z0)| < ε

for all w ∈ Uδ(z0). In case a), we then have

|g(z, z)− g(z0, z0)| < ε,
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and in case b),

|g(ζ, z)− g(z0, z0)| � 1

|ζ − z| |ζ − z|ε = ε.

This shows that g is continuous. We now put

h0(z) =

∫
Γ

g(ζ, z) dζ.

This function is continuous on G. If, moreover, γ is the boundary of a triangle that
lies in G, then∫

γ

h0(z) dz =

∫
γ

∫
Γ

g(ζ, z) dζ dz =

∫
Γ

∫
γ

g(ζ, z) dz dζ.

For ζ fixed, the function

z �→ g(ζ, z)

is holomorphic for z 	= ζ and continuous at ζ and hence holomorphic everywhere.
Thus ∫

γ

g(ζ, z) dz = 0

by Goursat’s lemma; it follows that∫
γ

h0(z) dz = 0,

and by Morera’s theorem, h0 is holomorphic.

We now use the fact that Γ is null-homologous. Let

G0 = {z ∈ C : n(Γ, z) = 0}.
On G ∩G0, we have

h0(z) =

∫
Γ

f(ζ)

ζ − z
dζ

def
= h1(z),

but the integral allows one to define h1 as a holomorphic function on all of G0. There-
fore, h0 can be holomorphically extended to G ∪G0 via

h(z) =

{
h0(z) for z ∈ G

h1(z) for z ∈ G0.



1. The general Cauchy integral theorem 115

But since Γ ∼ 0, we have

G ∪G0 = C,

i.e. h is an entire function. For large |z|,

|h(z)| = |h1(z)| � 1

dist(z,TrΓ)
· L(Γ) ·max

TrΓ
|f |

holds on G0. It follows that

lim
z→∞h(z) = 0,

so that h(z) ≡ 0 by Liouville’s theorem. This is what we wanted to show.

We now derive the first claim of the theorem from the second. Let a be an arbitrary
point in G \TrΓ. The function F (z) = (z − a)f(z) is holomorphic on G and satisfies
F (a) = 0. By part ii of the theorem, we then have

0 = n(Γ, a)F (a) =
1

2πi

∫
Γ

F (z)

z − a
dz =

1

2πi

∫
Γ

f(z) dz,

so that indeed∫
Γ

f(z) dz = 0.

We note as an immediate consequence:

Theorem 1.3. Let Γ1 and Γ2 be homologous cycles in G. Then for every holomorphic
function on G,∫

Γ1

f(z) dz =

∫
Γ2

f(z) dz.

This is because

0 =

∫
Γ1−Γ2

f(z) dz =

∫
Γ1

f(z) dz −
∫
Γ2

f(z) dz.

The concept of a star-shaped domain can now be generalized:

Definition 1.5. A domain G ⊂ C is called simply connected if every cycle in G is
null-homologous.
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It is in such domains – and clearly only in such domains! – that the Cauchy integral
theorem∫

Γ

f(z) dz = 0

holds for all holomorphic functions on G and all cycles in G. Examples include
domains with positive boundary that have only one “boundary component” Γ = γ0
– see Def. 1.3. For simply connected domains G – and only for such domains! – the
following holds: Every holomorphic function f on G has a primitive; if f has no zeros,
then f has a holomorphic logarithm and thus holomorphic powers with arbitrary
exponents (cf. Prop. III.5.2).

In the case of a domain with positive boundary, Thm. 1.2 takes an especially simple
and often used form:

Theorem 1.4 (Cauchy integral theorems for domains with positive boundary). Let
f be holomorphic in a neighbourhood U of G, where G is a domain with positive
boundary. Then we have:

i.

∫
∂G

f(z) dz = 0.

ii. For z ∈ G and all k = 0, 1, 2, . . .,

f (k)(z) =
k!

2πi

∫
∂G

f(ζ)

(ζ − z)k+1
dζ.

We may assume that U is connected and note that ∂G ∼ 0 in U . This implies i; the
second claim follows from Thm. 1.2.ii and the fact that n(∂G, z) = 1.

We note without proof that one only needs to assume that f is continuous on G and
holomorphic in the interior of G.

In order to check our assumptions, we have to know how to compute winding numbers.
Let γ be a closed path of integration, and let U = C \ Tr γ. The set U can be
decomposed into path components, among which there is exactly one unbounded
component U0. By Lemma 1.1, n(γ, z) is constant on the path components of U and
vanishes on U0. The remaining values can be obtained using the following “right of
way” rule:

Let a and b be points from different components of U , and suppose there is a path in
C from a to b that intersects γ exactly once at a “regular” point of γ, whereby γ is
crossed from right to left (with respect to the orientation of γ). Then

n(γ, b) = n(γ, a) + 1.

We refer the reader to [FL1] for a detailed explanation.
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a

b1
b2

b3

a′

b′

0

1

2
−1

Figure 7. Determining the winding number

We also note the following intuitive fact without proof:

Every simple closed continuously differentiable path of integration γ in C is (if given
an appropriate orientation) the boundary of a simply connected domain with positive
boundary. We again refer the reader to [FL1] for a proof.

Exercises

1. Suppose the domain G is bounded by a simple closed polygonal path. Show that G is simply
connected. Extend this claim to piecewise smooth boundaries.

2. Determine whether the following domains are simply connected:

C \ {0}, C \ [−1, 1], C \ R�0, C∗ \ {z = et(1+i) : t ∈ R}.
3. Show that the image of a simply connected domain under a biholomorphic mapping is simply
connected. Is it sufficient to assume that the mapping is locally biholomorphic?

2. The inhomogeneous Cauchy integral formula

A different method of generalising Cauchy’s integral formula is based on Stokes’ the-
orem. We consider a domain G with positive boundary ∂G as defined in the previous
section, and a continuously differentiable function f defined in a neighbourhood of G;
f need not be holomorphic!

Let us fix a point z∈G and choose a disk Dr(z)⊂⊂G. The complement G\Dr(z)=Gr

is a domain with positive boundary ∂G− ∂Dr(z). Application of Stokes’ theorem to
the continuously differentiable 1-form

ω(ζ) =
1

2πi

f(ζ)

ζ − z
dζ
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on Gr yields∫
∂Gr

ω(ζ) =

∫
Gr

dω(ζ).

Inserting the definitions we obtain

1

2πi

∫
∂G

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂Dr(z)

f(ζ)

ζ − z
dζ − 1

2πi

∫
Gr

∂f/∂ζ̄

ζ − z
dζ ∧ dζ̄.

For r → 0 the surface integral tends to

1

2πi

∫
G

∂f/∂ζ̄

ζ − z
dζ ∧ dζ̄

(since the integrand is integrable); the boundary integral over ∂Dr(z) can be rewritten
as

1

2πi

∫
∂Dr(z)

f(z)

ζ − z
dζ +

1

2πi

∫
∂Dr(z)

f(ζ)− f(z)

ζ − z
dζ.

The first integral yields

f(z) · 1

2πi

∫
∂Dr(z)

dζ

ζ − z
= f(z);

the second integral can be estimated, using |ζ − z| = r, by∣∣∣∣ 1

2πi

∫
∂Dr(z)

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ � max
|ζ−z|=r

|f(ζ)− f(z)|,

which tends to zero with r. So we have established

Theorem 2.1 (Inhomogeneous Cauchy formula). Let f be a continuously differen-
tiable function in a neighbourhood of a domain G with positive boundary ∂G. Then
one has, for each point z ∈ G,

f(z) =
1

2πi

∫
∂G

f(ζ)

ζ − z
dζ +

1

2πi

∫
G

∂f/∂ζ̄(ζ)

ζ − z
dζ ∧ dζ̄.

Note that if f is holomorphic in G, we have again Thm. 1.4.
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3. Laurent decomposition and Laurent expansion

Functions that are holomorphic on disks can be represented as power series. We now
present a generalization for functions that are holomorphic on an annulus.

Let r < R � ∞ be real numbers, with R > 0. We denote by

K(r,R) = {z : r < |z| < R} (1)

the annulus centred at 0 with inner radius r and outer radius R. If r < 0, then K(r,R)
is the disk DR(0), and if r = 0, it is the punctured disk DR(0) \ {0}. If one chooses
another centre, say z0, then we write

K(z0; r,R) = {z : r < |z − z0| < R}. (2)

The following theorems are formulated in terms of the general situation (2), but to
simplify notation, we will always set z0 = 0 in the proofs, i.e. we will work with the
case (1).

Theorem 3.1 (Laurent decomposition). Let f be holomorphic in an annulus (2).
Then there exist unique holomorphic functions f0 on DR(z0) and f∞ on C \Dr(z0)
such that

f = f0 + f∞ (3)

lim
z→∞ f∞(z) = 0. (4)

Definition 3.1. The decomposition given by (3) and (4) is called the Laurent decom-
position of f . The terms f0 and f∞ are called the regular part and principal part,
respectively, of the decomposition.

Laurent decompositions have already appeared in special cases in the theory of iso-
lated singularities (II.6).

Proof of Thm. 3.1: a) Uniqueness. Let

0 = f0 + f∞, lim
z→∞ f∞(z) = 0 (5)

be a Laurent decomposition of the zero function. Setting

f̃(z) =

{
f0(z) for |z| < R

−f∞(z) for |z| > r,

one obtains an entire function f̃ that tends to 0 as z → ∞. Thus f̃(z) ≡ 0, and hence
f0(z) ≡ 0 ≡ f∞(z).
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b) Existence. Assume that r � 0 – the case r < 0 is trivial, since then f = f0 and
f∞ = 0.

Choose r′ and R′ such that r < r′ < R′ < R. For z with r′ < |z| < R′, the Cauchy
integral formula gives

f(z) =
1

2πi

∫
|ζ|=R′

f(ζ)

ζ − z
dζ − 1

2πi

∫
|ζ|=r′

f(ζ)

ζ − z
dζ

def
= f0(z) + f∞(z). (6)

The functions f0 and f∞ defined by the above integrals are holomorphic for |z| < R′

and |z| > r′, respectively, and f∞(z) → 0 as z → ∞. By the Cauchy integral theorem
for homologous cycles, the integrals in (6) are independent of R′ and r′, respectively, as
long as r < r′ < |z| < R′ < R. Therefore, f0 and f∞ can be extended holomorphically
to all of DR(0) and C \Dr(0), respectively, preserving the decomposition (3) and the
property (4).

Let f = f0 + f∞ be the Laurent decomposition of a function f that is holomorphic
in an annulus K(r,R). The function f0, which is holomorphic on DR(0), can be
expanded into its (locally uniformly convergent) Taylor series:

f0(z) =

∞∑
ν=0

aνz
ν , |z| < R. (7)

The principal part f∞ is holomorphic on C \ Dr(0) and, since limz→∞ f∞(z) = 0,

can be extended to a holomorphic function on Ĉ \ Dr(0) by setting f∞(∞) = 0.
Consequently,

g(z) = f∞

(
1

z

)
, g(0) = 0 (8)

is holomorphic on the disk of radius 1/r and has the series expansion

g(z) =

∞∑
ν=1

bνz
ν (9)

there (note that b0 must vanish!). We rewrite (9) as

f∞(z) = g

(
1

z

)
=

∞∑
ν=1

bν
1

zν
=

−∞∑
ν=−1

aνz
ν , (10)

where aν = b−ν . By combining (7) and (10), we obtain:
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Theorem 3.2 (Laurent expansion). Let f be holomorphic in the annulus K(z0; r,R).
Then f can be expanded into an absolutely locally uniformly convergent series

f(z) =
∞∑
−∞

aν(z − z0)
ν . (11)

The coefficients aν satisfy

aν =
1

2πi

∫
|z−z0|=ρ

f(z)(z − z0)
−(ν+1) dz, (12)

where ρ can be chosen to be any number between r and R.

It remains only to show (12), but this follows immediately upon substituting (11) into
the integral in (12) and exchanging the order of summation and integration.

The sum (11) means

∞∑
−∞

aν(z − z0)
ν =

−∞∑
ν=−1

aν(z − z0)
ν +

∞∑
ν=0

aν(z − z0)
ν , (13)

i.e. the left hand side is defined to be the right hand side of (13).

Series like

∞∑
−∞

aν(z − z0)
ν

that appear in Thm. 3.2 are called Laurent series; they are convergent at z if the
principal part

−∞∑
ν=−1

aν(z − z0)
ν

and the regular part

∞∑
ν=0

aν(z − z0)
ν

are convergent at z. Their domain of convergence is either an annulus K(z0; r,R) or
empty; in the former case, they converge compactly to a holomorphic function. Using
the standard estimate, formula (12) yields the Cauchy inequalities:
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Proposition 3.3. Let f be given as

f(z) =
∞∑
−∞

aν(z − z0)
ν

in an annulus K(z0; r,R). Then for every ρ such that r < ρ < R, we have

|aν | � ρ−ν max
|z−z0|=ρ

|f(z)|.

Power series are of course special cases of Laurent series. Similar to power series ex-
pansions, Laurent expansions of rational functions can also be calculated by applying
geometric series. Here is an example:

The function

f(z) =
1

z(z − 1)2

is holomorphic on C\{0, 1}, and we already know its Laurent expansion inK(0; 0, 1):

1

z(z − 1)2
=

1

z

d

dz

1

1− z
=

1

z

∞∑
ν=1

νzν−1.

Accordingly, in K(0; 1,∞) one has

1

z(z − 1)2
=

1

z3

∞∑
ν=1

ν

(
1

z

)ν−1

.

To conclude, we record the identity theorem for Laurent series:

Proposition 3.4. If the Laurent series
∑∞

−∞ aνz
ν converges to 0 in an annulus

K(r,R), then all aν are zero.

With these results, we return to the theory of isolated singularities. The function f
has an isolated singularity at z0 if and only if it is holomorphic in a punctured disk

DR(z0) \ {z0} = K(z0; 0, R).

It thus has the absolutely locally uniformly convergent Laurent expansion

f(z) =
∞∑
−∞

aν(z − z0)
ν =

−∞∑
ν=−1

aν(z − z0)
ν +

∞∑
ν=0

aν(z − z0)
ν (14)

in K(z0; 0, R), which we have decomposed into its principal and regular parts. The
case of a finite principal part – i.e. the case when aν = 0 for ν < −n – is the familiar
case of a pole of order less than or equal to n at z0, or a removable singularity, in case
the principal part in (14) vanishes. The case of an infinite principal part – i.e. when
infinitely many aν are nonzero for ν < 0 – must therefore correspond to an essential
singularity, which gives us:
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Proposition 3.5. The function f has an essential singularity at z0 if and only if the
principal part of its Laurent expansion about z0 contains infinitely many powers of
(z − z0)

−1.

Note that the principal part in (14) is always holomorphic on Ĉ \ {z0}.
We conclude with the following observation: Let f be holomorphic on C with the
exception of a discrete set of singularities S. Given an arbitrary point z0 ∈ C, the
Taylor series (or Laurent series) of f converges in the largest (possibly punctured) disk
about z0 that contains no points in S\{z0}. Together with the Cauchy-Hadamard for-
mula for the radius of convergence, this statement is occasionally useful for computing
limits (see Ex. 3).

Exercises

1. Determine the sets on which the following Laurent series converge:

∞∑
−∞

2−|ν|zν ,
∞∑
−∞

(z − 1)ν
3ν + 1

,

∞∑
−∞

zν

1 + ν2
,

∞∑
−∞

2ν(z + 2)ν .

2. Find the principal part of the Laurent expansion of

z − 1
sin2 z

in 0 < |z| < π and of
z

(z2 + b2)2
in 0 < |z − ib| < 2b.

3. a) Let aν = 3 · 2ν + 2 · 3ν . Find limν→∞ a
1/ν
ν by considering the series

∑∞
ν=0 aνz

ν .

b) Compute lim sup
ν→∞

( |E2ν |
(2ν)!

)1/2ν

(cf. II.4, Ex. 3).

It follows that Euler numbers can become very large.

4. Let Sω = {a < Im(z/ω) < b} with ω ∈ C∗, −∞ � a < b � +∞, be a parallel strip. Then
w = F (z) = exp(2πiz/ω) maps Sω onto an annulus K = K(r, R). Let f be holomorphic on Sω

and satisfy the periodicity condition f(z + ω) ≡ f(z). Show that there is a unique holomorphic
function f̃ : K → C such that f = f̃ ◦ F . Translate the Laurent series of f̃ into a Fourier series
representation f(z) =

∞∑
−∞

an exp(2πinz/ω). Express the coefficients an by f .

4. Residues

Definition 4.1. Let f be holomorphic on a domain G with the exception of a discrete
set S. The residue of f at the point z0 ∈ G is the number

resz0 f =
1

2πi

∫
κ(r;z0)

f(z) dz, (1)

where r is chosen small enough that the disk Dr(z0) lies in G and contains no points
of S except possibly z0.
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Taking the above restriction into account, r can be chosen arbitrarily as long as
Dr(z0) ⊂ G; the value of the integral (1) will not change. Similarly, the value of the
integral will not change if one replaces κ(r; z0) with a cycle Γ such that n(Γ, z0) = 1
and n(Γ, z) = 0 for all z ∈ S \ {z0}.
The function f has isolated singularities at the points in S. Formula (12) from the
previous section gives us:

resz0 f = a−1, (2)

where

f(z) =
∞∑
−∞

aν(z − z0)
ν

is the Laurent expansion of f about z0. In particular, the residue is 0 in the case of
a removable singularity – but not only in this case! Formula (2) is sometimes also
called the local residue theorem. For example, (1) and (2) immediately yield∫

κ(r;0)

e1/z dz = 2πi,

a result that is even more remarkable when one considers that exp(1/z) is not an
elementary integrable function. This leads to an ansatz for evaluating certain definite
integrals: this method will be expanded upon in the following section. Our next goal
is to “globalize” formula (2):

Theorem 4.1 (The residue theorem). Let f be holomorphic on a domain G with the
possible exception of a discrete set S ⊂ G, and let Γ be a null-homologous cycle in G
that does not meet any point in S. Then

1

2πi

∫
Γ

f(z) dz =
∑
z∈G

n(Γ, z) resz f. (3)

Proof: The sum in (3) is finite, because there are only finitely many points z ∈ S
such that n(Γ, z) 	= 0. Let z1, . . . , zk be these points; then the cycle Γ is also null-
homologous in G \ S′, where S′ is the remaining set of points in S. For every zκ , let
hκ denote the principal part of the Laurent expansion of f about zκ :

hκ(z) =
−∞∑
ν=−1

aκν (z − zκ)
ν . (4)

The function hκ is holomorphic on Ĉ \ {zκ}, and the function

F (z) = f(z)−
k∑

κ=1

hκ(z) (5)



4. Residues 125

is holomorphic on G \ S′, i.e. it can be holomorphically extended to the points zκ .
The Cauchy integral theorem now implies∫

Γ

F (z) dz = 0,

so that∫
Γ

f(z) dz =

k∑
κ=1

∫
Γ

hκ(z) dz. (6)

We compute the integrals on the right hand side:∫
Γ

hκ(z) dz =

−∞∑
ν=−1

aκν

∫
Γ

(z − zκ)
ν dz

= aκ−1 · n(Γ, zκ) · 2πi (7)

= reszκ f · n(Γ, zκ) · 2πi.
Substituting (7) into (6) yields the claim.

As an immediate corollary, we have:

Corollary 4.2. Let G be a domain with positive boundary cycle ∂G = Γ, and let f
be holomorphic in a neighbourhood of G with the exception of isolated singularities,
none of which lie on the boundary. Then

1

2πi

∫
∂G

f(z) dz =
∑
z∈G

resz f. (8)

In order to apply the above formulas, one must of course be able to calculate residues.
The following rules are easily proved:

resz(af + bg) = a resz f + b resz g, (9)

where a, b ∈ C. If f has a simple pole at z0, then

resz0 f = lim
z→z0

f(z)(z − z0); (10)

if, in addition, g is holomorphic in z0, then

resz0(gf) = g(z0) resz0 f. (11)

For poles of order n � 2, the situation is slightly more complicated:

resz0 f =
1

(n− 1)!

dn−1

dzn−1

(
(z − z0)

nf(z)
)∣∣∣

z=z0
. (12)
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Formula (12) can be easily deduced from the Laurent expansion of f . From formula
(10), we obtain a rule that is often useful:

Suppose f has a simple zero (so that 1/f has a simple pole) at z0; then if g is holo-
morphic,

resz0
g(z)

f(z)
=

g(z0)

f ′(z0)
. (13)

To take an easy example, let us compute the residues of the function

f(z) =
z

z2 + 1
.

It has simple poles at i and −i. By (13), we then have

resi f =
i

2i
=

1

2
,

and likewise for −i.

Concluding remark: Suppose F : G → G′ is a biholomorphic mapping and f is
holomorphic on G′ except at certain isolated singularities. Then f ◦F is holomorphic
on G except at isolated singularities. If f has a singularity of a certain type at w0

(removable, pole of order k, or essential), then f ◦ F has a singularity of the same
type at z0, where F (z0) = w0. But residues are not preserved by this transformation:
using formula (1), it is not difficult to see that

resF (z0) f = resz0(f ◦ F ) · F ′. (14)

This shows that the residue is actually to be associated with the differential form

f(w)dw. (15)

This concept is also necessary in order to define residues at the point ∞. We refer
the reader to [FL1] for a more detailed explanation.

Exercises

1. Let f be holomorphic on C with the exception of isolated singularities. Show that:

i. If f is even, then res−z f = − resz f .
ii. If f is odd, then res−z f = resz f .

iii. If f(z + ω) ≡ f(z) for some ω ∈ C, then resz+ω f = resz f .

iv. If f is real on R, then resz f = resz f .

2. Find the residues of the following functions at their singularities:

1− cos z
z

,
z2

(1 + z)2
,

ez

(z − 1)3 ,
1

cos z
, tan z.

3. Let G be a simply connected domain, and let f be holomorphic on G with the exception of a set
of isolated singularities S. Show that f has a primitive (on G \ S) if and only if all residues of f
vanish.
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5. Residue calculus

The subject of this section is the evaluation of definite integrals over real intervals
using the residue theorem (it should of course be possible to extend the integrand to a
holomorphic function). A simple case occurs when one integrates a periodic function
over a period-interval: by making a substitution, one can transform the integral
directly into an integral over a closed path in C. In other cases, one completes the
interval of integration to a closed path in C by adding a “detour” γ to it. One can
then apply the residue theorem, provided one has information about the integral over
γ. We will exhibit a collection of methods and examples that can be adapted to
situations other than those described – there exists no systematic theory.

We begin with periodic integrands. As an example, we investigate the integral

I =

2π∫
0

dt

a+ sin t
, where a > 1.

Using z = eit and sin t = 1
2i

(
z − 1

z

)
, we can write I as an integral over the unit

circle:

I =

∫
|z|=1

1

a+ 1
2i

(
z − 1

z

) dz
iz

=

∫
|z|=1

2 dz

z2 + 2iaz − 1
.

The integrand is a rational function of z with simple poles at z1 = −i(a−√
a2 − 1) ∈ D

and z2 = −i(a+
√
a2 − 1) 	∈ D. The residue at z1 is

2

z1 − z2
=

1

i

1√
a2 − 1

,

so that by the residue theorem

2π∫
0

dt

a+ sin t
=

2π√
a2 − 1

.

We extract the following rule:

Given a rational function R(cos t, sin t) that stays finite for all t ∈ R, the substitution
z = eit, i.e.

cos t =
1

2

(
z +

1

z

)
, sin t =

1

2i

(
z − 1

z

)
,

transforms the integral
∫ 2π

0
R(cos t, sin t) dt into an integral of a rational function R̃(z)

over ∂D that can be evaluated using the residue theorem.
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Next, we consider integrals of the form
∫∞
−∞ f(x) dx, assuming that f(x) can be

extended to a function f(z) that is holomorphic in a neighbourhood of the closed
upper half-plane H with the possible exception of finitely many singularities, none of
which lie on R – we will call such functions admissible.

The basic idea is this: Choose r1, r2 > 0 and paths γ in H (which depend on r1 and
r2) from r2 to −r1 such that the closed path [−r1, r2] + γ encircles all singularities of
f in H with winding number 1. The residue theorem then gives

r2∫
−r1

f(x) dx = 2πi
∑
z∈H

resz f −
∫
γ

f(z) dz.

If f(z) tends to 0 sufficiently quickly as z → ∞, then by appropriately choosing the
paths γ, one can expect the integral on the right hand side to tend to 0 as r1, r2 → +∞;
then

∞∫
−∞

f(x) dx = 2πi
∑
z∈H

resz f, (1)

upon which the existence of the integral on the left hand side (as an improper Riemann
integral) is proved as well.

Let us illustrate this with the example f(z) = z2/(1 + z4). Here it is clear that the
integral of f over R exists. Choosing r1 = r2 = r and γ = γr as the semicircle from r
to −r, we have∣∣∣∣∫

γr

f(z) dz

∣∣∣∣ � πrmax
{|f(z)| : |z| = r, z ∈ H

}
.

Since f has a double zero at ∞, |f(z)| � cr−2 on Tr γr, where c is a constant; it
follows that

∫
γr

f(z) dz → 0 as r → ∞. We may thus apply (1), and it remains

only to compute the residues. The (simple) poles of f in H are z1 = (1 + i)/
√
2 and

z2 = (−1 + i)/
√
2, and the denominator of f factorizes as

z4 + 1 = (z − z1)(z − z2)(z + z1)(z + z2).

Thus,

resz1 f =
z21

2z1(z1 − z2)(z1 + z2)
, resz2 f =

z22
2z2(z2 − z1)(z2 + z1)

.

Their sum is 1/2(z1 + z2) = 1/(2
√
2i), so (1) yields

∞∫
−∞

x2

1 + x4
dx =

π√
2
.
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O−r1 r2

is

γ1

γ2

γ3

γ4

O−r1 r2

is

ρ−ρ

γρ

Figure 8. For the proof of (2) and (6)

Let us extract the conditions under which this “semicircle method” works:

Suppose f(z) is an admissible function,
∫∞
−∞ f(x) dx exists, and

lim
z→∞ zf(z) = 0.

Then (1) holds.

For the integral

∞∫
−∞

x sinx

a2 + x2
dx, a > 0,

this rule does not apply, since | sin it| = | sinh t| grows exponentially as t → ∞. More-
over the existence of the integral is not known a priori. The situation improves if we
write

∞∫
−∞

x sinx

a2 + x2
dx = Im

∞∫
−∞

x eix dx

a2 + x2
,

because the factor eiz on the right hand side becomes small for large Im z. But the
semicircle method, which is based on the standard estimate, still does not help; one
needs more accurate estimates and better paths of integration.

More generally, we treat integrals of the form

∞∫
−∞

g(z) eiz dz

and to begin with assume only that g is an admissible function. The positive numbers
r1, r2, and s are chosen such that the rectangle with corners −r1, r2, r2 + is, and
−r1 + is contains all the singularities of g in H. For our auxiliary path γ, we take
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the part γ1 + γ2 + γ3 of the boundary of this rectangle (see Fig. 8) and estimate the
integrals over the paths γj . For γ2, the standard estimate is sufficient:∣∣∣∣∫

γ2

g(z) eiz dz

∣∣∣∣ � max
z∈Tr γ2

|g(z)| · e−s(r1 + r2).

For γ1, we have

∣∣∣∣∫
γ1

g(z) eiz dz

∣∣∣∣ = ∣∣∣∣
s∫

0

g(r2 + it) ei(r2+it)i dt

∣∣∣∣
� max

z∈Tr γ1
|g(z)| ·

s∫
0

e−t dt � max
z∈Tr γ1

|g(z)|,

and the same goes for γ3. Assuming limz→∞ g(z) = 0 (this applies to the above
example), then given an ε > 0, one can choose r1, r2, and s large enough so that
|g(z)| < ε on γ, and then, possibly by further enlarging s, ensure that e−s(r1+r2) � 1.
Then | ∫

γ
g(z) eiz dz| < 3ε, which proves the following rule:

Suppose g(z) is an admissible function and g(z) → 0 as z → ∞ in H. Then

∞∫
−∞

g(z) eiz dz = 2πi
∑
z∈H

resz
(
g(ζ) eiζ

)
. (2)

Here the integral may be an improper integral.

These conditions are clearly satisfied if g is a rational function without poles on
R that vanishes at ∞. Let us return to our example: The only singularity of
g(z) = z eiz/(a2 + z2) in H is the simple pole ia with residue e−a/2, so by (2),

∞∫
−∞

x sinx

a2 + x2
dx = Im

∞∫
−∞

x eix dx

a2 + x2
= Im2πi · e−a/2 = π e−a.

As a consequence of (2), we note that if g(z) is real-valued on R, then

∞∫
−∞

g(x) cosx dx = Re

(
2πi

∑
z∈H

resz
(
g(ζ) eiζ

))
∞∫

−∞
g(x) sinx dx = Im

(
2πi

∑
z∈H

resz
(
g(ζ) eiζ

))
.

(3)
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Should one need these integrals when g(z) is not real-valued, one may, for example,
put

∞∫
−∞

g(x) cosx dx =
1

2

∞∫
−∞

g(z) eiz dz +
1

2

∞∫
−∞

g(z) e−iz dz.

Our rule can be applied to the first integral on the right hand side; in order to
evaluate the second integral, one must pass to the lower half-plane (e−iz becomes
small as Im z → −∞!). This of course requires g to be holomorphic on the entire
complex plane except for finitely many singularities (none of which lie on R) and to
satisfy limz→∞ g(z) = 0. One thus obtains

∞∫
−∞

g(x) cosx dx = πi
∑

Im z>0

resz
(
g(ζ) eiζ

)− πi
∑

Im z<0

resz
(
g(ζ) e−iζ

)
. (4)

The minus sign in front of the second sum is there because the boundary of the
rectangle we have to use in the lower half-plane encircles the singularities there with
winding number −1. Likewise, we have

∞∫
−∞

g(x) sinx dx = π
∑

Im z>0

resz
(
g(ζ) eiζ

)
+ π

∑
Im z<0

resz
(
g(ζ) e−iζ

)
. (5)

The techniques developed so far do not allow us to compute the integral

∞∫
−∞

sinx

x
dx.

Seen as a real function, the integrand is harmless at x = 0, but the complex integrand
eiz/z has a pole of order 1 at 0. In such cases, there is a trick that will lead us to our
goal – let us immediately formulate it in general terms. Let g(z) be holomorphic in a
neighbourhood of H except for finitely many singularities in H and a simple pole at 0,
and suppose limz→∞ g(z) = 0. We then choose ρ > 0 such that g has no singularities
in Dρ(0) \ {0}. We proceed as in the proof of (2) but replace the subinterval [−ρ, ρ]
of [−r1, r2] by the semicircle γρ(t) = ρ ei(π−t), where 0 � t � π (cf. Fig. 8). As
r1, r2, s → ∞, we obtain

−ρ∫
−∞

g(z) eiz dz +

∫
γρ

g(z) eiz dz +

∞∫
ρ

g(z) eiz dz = 2πi
∑

Im z>0

resz
(
g(ζ) eiζ

)
.

But writing

g(z) eiz =
c

z
+ h(z),
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in Dρ(0), we see that∫
γρ

g(z) eiz dz = c

∫
γρ

dz

z
+

∫
γρ

h(z) dz = c

π∫
0

(−i) dt+

∫
γρ

h(z) dz.

The first integral on the right hand side is

−πi res0
(
g(ζ) eiζ

)
= −πi res0 g,

and the last integral on the right hand side tends to zero as ρ → 0. It follows that

lim
ρ→0

( −ρ∫
−∞

g(z) eiz dz +

∞∫
ρ

g(z) eiz dz

)
= 2πi

∑
Im z>0

resz
(
g(ζ) eiζ

)
+ πi res0 g. (6)

The left hand side of this formula is also called the Cauchy principal value of the
improper integral

∫∞
−∞ g(z) eiz dz. It is not difficult to extend (6) to the case when g

has finitely many simple poles on R.

In our example, we now have

∞∫
−∞

sinx

x
dx = lim

ρ→0
Im

( −ρ∫
−∞

eiz

z
dz +

∞∫
ρ

eiz

z
dz

)
= Im

(
πi res0

(
1

ζ

))
= π.

Note that (sinx)/x is not integrable over R; the integral must be understood as an
improper integral.

To conclude, we give a method for computing integrals of the types

∞∫
0

R(x) dx,

∞∫
0

R(x) log x dx,

∞∫
0

xαR(x) dx,

where R(x) is a rational function without poles on R�0 and with a zero of order � 2
at ∞ and where 0 < α < 1.

Here a new idea appears: We cut the complex plane along the positive real axis,
choose the branch of the logarithm on G = C \ R�0 that satisfies 0 < Im log z < 2π,
and compare integrals over paths above and below the cut. Concretely, say with ρ > 0
small and r > ρ large:

r∫
ρ

R(x+ iε) log(x+ iε) dx →
r∫

ρ

R(x) log x dx for ε ↓ 0

r∫
ρ

R(x− iε) log(x− iε) dx →
r∫

ρ

R(x)(log x+ 2πi) dx for ε ↓ 0.
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ρ r

γ1

γ2

γ3

γ4 ε

Figure 9. For the proof of (7), (8), and (11)

The difference of the integrals to the left thus tends to −2πi
∫ r

ρ
R(x) dx. In order to

apply the residue theorem, we construct a closed path as shown in Fig. 9 that has
γ1 = [ρ+ iε, r + iε] and γ3 = [r − iε, ρ− iε] as subpaths (here γ2 and γ4 are circular
arcs about 0, and we assume 0 < ε < ρ). If ρ is sufficiently small and r is sufficiently
large, then γ = γ1+γ2+γ3+γ4 encircles all poles of R(z) log z, i.e. the poles of R(z),
and we have∫

γ

R(z) log z dz = 2πi
∑
z∈G

resz(R(ζ) log ζ).

On the other hand, the above considerations yield

lim
ρ→0
r→∞

lim
ε→0

∫
γ1+γ3

R(z) log z dz = −2πi

∞∫
0

R(z) dz.

In order to obtain a result, we must determine the limits of the integrals over γ2 and
γ4. The function R(z) is bounded near 0, and |R(z)| � c/|z|2 in a neighbourhood
of ∞. Since limρ→0(ρ log ρ) = 0 and limr→∞(r−1 log r) = 0, the standard estimate
yields

lim
ρ→0

∫
γ4

R(z) log z dz = 0, lim
r→∞

∫
γ2

R(z) log z dz = 0

uniformly in ε. To summarize, we have the following rule:

Let R(z) be a rational function with no poles on R�0 and with at least a double zero
at ∞. Then

∞∫
0

R(x) dx = −
∑
z �=0

resz(R(ζ) log ζ). (7)
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For example,

∞∫
0

dx

x3 + 1
=

2π

3
√
3
,

since R(z) = (z3+1)−1 has simple poles at −1, z1 = (1+i
√
3)/2, and z1 with residues

1/3, −(1+ i
√
3)/6, and −(1− i

√
3)/6, respectively. With log(−1) = πi, log z1 = πi/3,

and log z1 = 5πi/3, formula (7) yields the result.

In order to find

∞∫
0

R(x) log x dx,

we integrate the function R(z)(log z)2 over our path γ, choosing the same logarithm
as above. We then have

lim
ε→0

∫
γ1

R(z) log2 z dz =

r∫
ρ

R(x) log2 x dx

lim
ε→0

∫
γ3

R(z) log2 z dz = −
r∫

ρ

R(x)(log x+ 2πi)2 dx,

and as before,

lim
ρ→0

∫
γ4

R(z) log2 z dz = 0 = lim
r→∞

∫
γ2

R(z) log2 z dz.

In the limit, the relation∫
γ

R(z) log2 z dz = 2πi
∑
z∈G

resz(R(ζ)(log ζ)2)

thus yields

4πi

∞∫
0

R(x) log x dx = 4π2

∞∫
0

R(x) dx− 2πi
∑
z �=0

resz(R(ζ) log2 ζ). (8)

We already have methods for computing the integral on the right hand side; it is
superfluous if R(x) is real-valued on R, in which case, passing to the imaginary part,
(8) implies that

∞∫
0

R(x) log x dx = −1

2
Re

∑
z �=0

resz(R(ζ) log2 ζ). (9)
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As an example, let us show that

∞∫
0

log x dx

x2 + a2
=

π log a

2a
for a > 0.

The function R(z) = (z2 + a2)−1 has simple poles at ia and −ia with residues
1/2ia and −1/2ia, respectively. The claim now follows from (9) by noting that
log ia = log a+ πi/2 and log(−ia) = log a+ 3πi/2.

To conclude, we consider integrals of the form

∞∫
0

xαR(x) dx, where 0 < α < 1.

Here we may allow that R(z) has a simple pole at the origin without affecting the
existence of the integral. We set zα = exp(α log z) on G = C \ R�0 with the same
choice of log z as above and then integrate zαR(z) over our path γ, which encircles
all poles of R except possibly 0. Since

lim
ε↓0

(x+ iε)α = xα and lim
ε↓0

(x− iε)α = e2πi αxα,

we have

lim
ε→0

∫
γ3

zαR(z) dz = −e2πi α lim
ε→0

∫
γ1

zαR(z) dz. (10)

The integrals over γ2 and γ4 vanish as r → ∞ and ρ → 0. This is because |R(z)|� c/|z|
near 0 and |R(z)| � c|z|−2 near ∞, so that the standard estimate yields∣∣∣∣∫

γ4

zαR(z) dz

∣∣∣∣ � 2πρ · ρα · cρ−1 and

∣∣∣∣∫
γ2

zαR(z) dz

∣∣∣∣ � 2πr · rα · cr−2.

Passing to the limit as ε → 0, ρ → 0, and r → ∞, the residue theorem, together with
(10), thus yields

∞∫
0

xαR(x) dx =
2πi

1− e2πi α

∑
z �=0

resz(R(ζ)ζα). (11)

For example, −1 is the only pole in G of the function

R(z) =
1

z(z + 1)
,

its residue is −1, and (−1)α = eπiα. Therefore, (11) yields

∞∫
0

xα−1

x+ 1
dx =

−2πi eπiα

1− e2πi α
=

π

sinπα
for 0 < α < 1.
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Exercises

1. Prove that
∞∫
−∞

dx

coshx
= π.

Hint: Integrate over the boundary of the rectangle whose corners are ±r and ±r + iπ.

2. Find
∞∫
0

xα

1 + xn
dx for n > α+ 1 > 0 and n � 2.

Hint: Integrate over the boundary of the sector with corners 0, r, and r e2πi/n.

3. Compute the following:

a)

π∫
0

sin2 x

a+ cosx
dx for a > 1 b)

2π∫
0

dt

1− 2a cos t+ a2
, a ∈ C and |a| �= 1.

4. Compute the following:

a)

∞∫
0

dx

(x2 + 1)(x2 + 4)
b)

∞∫
−∞

dx

(a2 + b2x2)n
(a, b > 0, n � 1)

c)

∞∫
0

√
x dx

x2 + 16

first by reducing to (1) using the substitution x = u2,
then by using (11).

5. a) Compute

∞∫
−∞

x e−πix/2 dx

x2 − 2x+ 5 .

b) Compute

I(a) =

∞∫
−∞

eiax dx

x2 + 1
for a ∈ R.

Is I(a) differentiable?

6. Show that
2i+∞∫

2i−∞

z sin az

z2 + 1
dz = π cosh a

(the integral is to be taken over the line parallel to the real axis and passing through 2i).
Hint: It is easier to adapt the proof of (5) than to transform the above into an integral over R.

7. Compute the Cauchy principal value of

∞∫
−∞

1− eitx

x2
dx

for t > 0 and thereby

∞∫
0

1− cos tx
x2

dx and

∞∫
0

sin2 x

x2
dx.
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8. Compute

a)

∞∫
0

xα dx

(x+ t)(x+ 2t)
for 0 < α < 1 and t > 0

b)

∞∫
0

xα

1 + x1/3
dx for − 1 < α <

−2
3
.

9. Show that for a rational function R(x) that satisfies the conditions needed for (11) and for
0 < α < 1,

∞∫
0

R(x)xα log x dx =
2πi

1− e2πi α

∑
z �=0

resz(R(ζ)ζ
α log ζ) +

π2

sin2(πα)

∑
z �=0

resz(R(ζ)ζ
α).

For zα, choose 0 < arg z < 2π.

10. Using Ex. 9, compute

∞∫
0

log x

(x2 + 1)
√
x
dx.

6. Counting zeros

By the identity theorem, the fibres f−1(w) of a nonconstant holomorphic function are
discrete subsets of the domain of f . The residue theorem provides information about
the number of points in such a fibre. This is what we will carry out in this section.

Let f : G → C be holomorphic on a domain G, and suppose f takes the value
w0 = f(z0) at the point z0 ∈ G with multiplicity k > 0. Then

f(z) = w0 + (z − z0)
kg(z), (1)

g is holomorphic at z, and g(z0) 	= 0. Thus,

f ′(z)
f(z)− w0

=
k

z − z0
+

g′(z)
g(z)

, (2)

and we have

resz0
f ′(z)

f(z)− w0
= k. (3)

For meromorphic functions that have a pole of order k at z0, we have for arbitrary
w ∈ C

f(z)− w =
g(z)

(z − z0)k
(4)

with a holomorphic function g such that g(z0) 	= 0. Therefore,

f ′(z)
f(z)− w

=
−k

z − z0
+

g′

g
, (5)
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i.e.

resz0
f ′(z)

f(z)− w
= −k. (6)

The residue theorem now yields:

Proposition 6.1. Let f be meromorphic in a domain G with poles b1, b2, . . . of mul-
tiplicities k(bμ), where μ = 1, 2, . . .. Let w ∈ C, and suppose f takes on the value w
at the points a1, a2, . . . with multiplicities k(aμ), again where μ = 1, 2, . . .. Then for
every null-homologous cycle Γ in G that does not pass through any of these points,

1

2πi

∫
Γ

f ′(z)
f(z)− w

dz =
∑
μ

n(Γ, aμ)k(aμ)−
∑
μ

n(Γ, bμ)k(bμ).

By (3) and (6), the right hand side is the “total residue” of f ′(z)/(f(z) − w) in the
domain G0 = {z : n(Γ, z) 	= 0}. The sum is finite, because G0 is relatively compact
in G.

The situation is especially clear in the case of a domain with positive boundary:

Corollary 6.2. Let G be a domain with positive boundary, and suppose f is mero-
morphic in a neighbourhood of G and does not assume w and ∞ on ∂G. Then

1

2πi

∫
∂G

f ′(z)
f(z)− w

dz = N(w)−N(∞),

where N(w) and N(∞) are the number of points in G at which f takes on the value
w and the number of poles of f in G (counting multiplicity), respectively.

Let us again consider a holomorphic function f : G → C that takes on the value w0 at
z0 with multiplicity k. Then there exists a neighbourhood U = Uδ(z0) such that z0
is the only point of Uδ(z0) where f has the value w0 and moreover is the only point
at which f ′ (possibly) vanishes. We thus have

N(w0) = k =
1

2πi

∫
∂Uδ(z0)

f ′(z)
f(z)− w0

dz

in U . For values w that are sufficiently close to w0, say w ∈ V for some neighbourhood
of w0, the integral

N(w) =
1

2πi

∫
∂Uδ(z0)

f ′(z)
f(z)− w

dz

exists and is a continuous function of w. By Cor. 6.2, it is integer-valued and thus
constant, and therefore equal to k. This gives
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Proposition 6.3. If a holomorphic function f takes on the value w0 at z0 with mul-
tiplicity k, then there exist neighbourhoods U and V of z0 and w0, respectively, with
the following property: Every value w ∈ V is assumed by f at exactly k distinct points
in U with the exception of the value w0, which is assumed by f exactly at z0.

That the equation f(z) = w has exactly k distinct solutions in V follows from the
fact that f ′(z) 	= 0 for z 	= z0. Setting

U ′ = U ∩ f−1(V ),

f : U ′ → V is surjective and a k-fold branched covering of V with exactly one branch
point z0. If k = 1, then f is biholomorphic. We already derived this result using a
different argument in III.5.

As a further easy corollary of Prop. 6.1, we have:

Proposition 6.4 (Rouché’s theorem). Let f and g be holomorphic in a neighbourhood
of G, where G is a domain with positive boundary, and suppose

|f(z)− g(z)| < |f(z)|

on ∂G. Then f and g have the same number of zeros (counting multiplicity) in G.

Proof: For 0 � λ � 1,

|f(z) + λ(g(z)− f(z))| > 0

on ∂G. By Cor. 6.2, the number Nλ of zeros of f + λ(g − f) in G is given by

Nλ =
1

2πi

∫
∂G

f ′(z) + λ(g′(z)− f ′(z))
f(z) + λ(g(z)− f(z))

dz

and is thus continuous in λ and, since it is an integer, constant. Putting λ = 0 and
λ = 1, one obtains the number of zeros of f and g, respectively.

The following application of Cor. 6.2 is important in the theory of holomorphic map-
pings:

Proposition 6.5. Let fν : G → C be a locally uniformly convergent sequence of injec-
tive holomorphic functions. Then the limit function f is either injective or constant.

Proof: Let w be a value that is assumed by f at two different points z0 and z1. If f
is nonconstant, then there exist disjoint compact disks Dr(z0) and Dr(z1) in G such
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that f takes on the value w in these disks only at the points z0 and z1. By Cor. 6.2,
we have

N0 =
1

2πi

∫
∂Dr(z0)

f ′(z)
f(z)− w

dz � 1

N1 =
1

2πi

∫
∂Dr(z1)

f ′(z)
f(z)− w

dz � 1

in these disks. On the other hand,

N0 = lim
ν→∞

1

2πi

∫
∂Dr(z0)

f ′ν(z)
fν(z)− w

dz,

and likewise for N1. But the integrals on the right hand side give the number of points
at which fν takes on the value w in the disks Dr(z0) and Dr(z1) and can therefore
converge to a nonzero value only in one case, i.e. either in the case of ∂Dr(z0) or in
the case of ∂Dr(z1). This contradiction shows that f must be constant: f(z) ≡ w.

To conclude, we use the tools developed here to supply a proposition that will be
useful in the next section.

Proposition 6.6. Suppose f is a meromorphic function on the disk DR(0) that has
exactly k zeros and k poles (counting multiplicity), and suppose that all of these points
lie in the disk Dr(0), where r < R. Then there is a holomorphic logarithm of f in the
annulus K(r,R).

Proof: Let γ be a closed path of integration in K(r,R). Then γ is null-homologous
in DR(0), and by Prop. 6.1,

1

2πi

∫
γ

f ′(z)
f(z)

dz =
∑

n(γ, aμ)k(aμ)−
∑

n(γ, bμ)k(bμ), (7)

where aμ and bμ are the zeros and poles of f with their corresponding multiplicities.
But

n(γ, aμ) = n(γ, bμ)
def
= n0

independently of μ – the right hand side of (7) is thus equal to n0(k − k) = 0. The
function f ′/f thus has a primitive g, and as before

eg = cf, c ∈ C∗,

so that g − a, where ea = c, is a holomorphic logarithm of f .



7. The Weierstrass preparation theorem 141

Finally, let us record the formula

log f(z) =

z∫
z0

f ′(ζ)
f(ζ)

dζ + const, (8)

valid in the above situation. The integral is extended over an arbitrary path of
integration in K(r,R).

Exercises

1. Suppose f is holomorphic in the domain G and Γ is a null-homologous cycle in G that does not
pass through any zeros of f . Let aμ be the zeros of f with multiplicities kμ. Show that

1

2πi

∫
Γ

z
f ′(z)
f(z)

dz =
∑
μ

n(Γ, aμ) kμ aμ.

2. Replace the zeros in Ex. 1 with the points at which f takes on a value w and derive an analogous
formula. If, in particular, f is injective, give an integral formula for the inverse function f−1.

3. Let λ > 1. Show that the equation e−z + z = λ has exactly one solution in the half-plane
Re z > 0. Show that it is real.

4. Find the number of zeros of f in the domains G:

f(z) = 2z4 − 5z + 2, G = {z : |z| > 1}
f(z) = z5 + iz3 − 4z + i, G = {z : 1 < |z| < 2}.

5. Prove the fundamental theorem of algebra using Rouché’s theorem.

7. The Weierstrass preparation theorem

The results and methods of Sections 3 and 6 also provide insight into the distribution
of zeros of holomorphic functions of several variables. Up to now, we only know that
the zeros of such functions are never isolated – see II.7.

We start by proving “parameter dependent” versions of Thm. 3.1 and Prop. 6.1
and 6.6.

Proposition 7.1 (Laurent decomposition). Let U ⊂ Cn be an open set, K = K(r,R)
⊂ C an annulus, and f : U ×K → C a holomorphic function. Then there exist unique
holomorphic functions f0 on U ×DR(0) and f∞ on U × (C \Dr(0)) such that

f = f0 + f∞ and lim
w→∞ f∞(z, w) = 0.

Here we have denoted the coordinates in U ⊂ Cn by z and the coordinate in K ⊂ C
by w. For n = 0, the proposition reduces to Thm. 3.1.
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To prove existence, we use formula (6) from IV.3; in our case, it is

f(z, w) =
1

2πi

∫
|ζ|=R′

f(z, ζ)

ζ − w
dζ − 1

2πi

∫
|ζ|=r′

f(z, ζ)

ζ − w
dζ, (1)

where z ∈ U and r′ < |w| < R′. The two integrals above are simultaneously holo-
morphic in z and w for |w| < R′ and |w| > r′ and yield the desired decomposition as
before. The proof of uniqueness follows exactly as in the proof of Thm. 3.1.

One also obtains the following proposition upon analysing a proof, namely the proof
of Prop. 6.1:

Proposition 7.2. Let U ⊂ Cn be a domain, let DR(0) ⊂ C be the disk of radius R,
and let f : U × DR(0) → C be a holomorphic function of the n + 1 variables z ∈ U
and w ∈ DR(0) that is nonzero for r � |w| < R and z ∈ U . Then the number of zeros
(counting multiplicity) of the functions w �→ f(z, w) is independent of z ∈ U .

Indeed, the number of zeros of w �→ f(z, w) is given by

N(z) =
1

2πi

∫
∂Dr

fw(z, w)

f(z, w)
dw, (2)

and this function is continuous in z and integer-valued, hence constant.

In the situation of the above theorem, we call the number of zeros N(z) the order of
the function f with respect to w.

The “parameter dependent” version of Prop. 6.6 reads as follows:

Proposition 7.3. Let f : U ×DR(0) → C be a holomorphic function of order k with
respect to w, and suppose f is nonzero for r � |w| < R. Then there exists a nonzero
holomorphic function c on U and a holomorphic function h on U ×K(r,R) such that

wk · eh(z,w) = c(z)f(z, w).

Proof: For every z ∈ U , the function

w �→ g(z, w) =
f(z, w)

wk
(3)

satisfies the conditions of Prop. 6.6 with respect to w. Therefore,

gw(z, w)

g(z, w)
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has a primitive with respect to w, namely

h(z, w) =

w∫
w0

gζ(z, ζ)

g(z, ζ)
dζ, (4)

on U×K(r,R). The integral (4) depends holomorphically on z and w. Differentiating
with respect to w yields

∂

∂w

eh(z,w)

g(z, w)
≡ 0, (5)

so that for every z ∈ U , there exists a constant c(z) 	= 0 such that

eh(z,w) = c(z)g(z, w). (6)

The identity (6) implies that c depends holomorphically on z. Substituting (3) into
(6) yields the claim.

The main result of this section is

Theorem 7.4 (The Weierstrass preparation theorem). Let f be a holomorphic func-
tion on U ×DR(0) whose order with respect to w is k, and let U ⊂ Cn be a domain.
Then there exist a nonzero holomorphic function e on U ×DR(0) and a polynomial
ω ∈ O(U)[w] of degree k with leading coefficient 1 such that

f(z, w) = e(z, w)ω(z, w). (7)

The functions e and ω are uniquely determined by (7) and the above conditions.

Proof: Choose r such that f is nonzero for r � |w| < R, and apply Prop. 7.3: there
exist holomorphic functions c(z) and h(z, w) on U and U×K(r,R), respectively, such
that

wk eh(z,w) = c(z)f(z, w) (8)

and c(z) is nonzero. Now apply Prop. 7.1 to obtain the Laurent decomposition of h:

h(z, w) = h0(z, w) + h∞(z, w), (9)

where h0 ∈ O(U ×DR(0)) and h∞ ∈ O(U × C \Dr(0)), and also

lim
w→∞h∞(z, w) = 0. (10)

Substituting this into (8) yields

f(z, w) =
1

c(z)
eh0(z,w) wk eh∞(z,w). (11)



144 Chapter IV. Integral formulas, residues, and applications

We now set

e(z, w) =
1

c(z)
eh0(z,w) (12)

and investigate the remaining factors in (11). It follows from (10) that

lim
w→∞ eh∞(z,w) = 1; (13)

for fixed z, we therefore have the Laurent expansion

eh∞(z,w) = 1 +

∞∑
ν=1

aν(z)w
−ν , (14)

whose coefficients are given by integrals that depend holomorphically on z and are
thus holomorphic on U . We write

wk eh∞(z,w) = wk

(
1 +

k∑
ν=1

aν(z)w
−ν

)
+ wk

∞∑
ν=k+1

aν(z)w
−ν

= ω(z, w) +R∞(z, w)

and obtain

f(z, w) = e(z, w) (ω(z, w) +R∞(z, w)) , (15)

which is the desired decomposition if we can show that R∞(z, w) ≡ 0. But by (15),
we have

0 =
f(z, w)

e(z, w)
− ω(z, w)−R∞(z, w)

def
= R0(z, w)−R∞(z, w) (16)

on U ×K(r,R), and this is the Laurent decomposition of the zero function! Since the
Laurent decomposition is unique,

R0(z, w) = 0, R∞(z, w) = 0,

which proves the existence of the decomposition (7).

Uniqueness is almost trivial: for every z, the functions

w �→ f(z, w)

w �→ ω(z, w)

have the same zeros. This determines ω(z, w) and therefore also e(z, ω).

The preparation theorem contains a great deal of information about the local structure
of the set of zeros of a holomorphic function of several complex variables. In the
remainder of this section, we will describe such sets of zeros.
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Let f be holomorphic in a connected neighbourhood W of 0 ∈ Cn+1 such that f 	= 0
and f(0) = 0. Then f cannot be identically zero on every complex line that passes
through 0. Choosing a complex line L such that f

∣∣L 	≡ 0 as the w-axis, then after
a linear change of coordinates and possibly shrinking W , we may assume the follow-
ing:

We have f ∈ O (U ×DR(0)), where U is a connected neighbourhood of 0 ∈ Cn and
the only zero of f(0, w) is 0, which is a zero of order k. Without loss of generality, let
f be of order k on U ×DR(0).

The conditions of Thm. 7.4 are satisfied:

f(z, w) = e(z, w)ω(z, w),

where e and ω are as in the theorem. In particular, the set of zeros of f coincides
with that of ω.

Here

ω(z, w) = wk + a1(z)w
k−1 + . . .+ ak(z), (17)

where aκ is holomorphic on U and, by our assumption about f at 0, aκ(0) = 0 for
1 � κ � k.

From now on, we therefore only have to consider sets of zeros of polynomials (17) –
so-called Weierstrass polynomials – where we may assume that they are contained in
U ×DR(0) = U ×D, where U is a domain in Cn. Clearly, for every z ∈ U , there are
at least one and at most k points (z, w) such that ω(z, w) = 0. In other words: the
holomorphic projection

p : U ×D → U

(z, w) �→ z

maps the set of zeros

M = {(z, w) : ω(z, w) = 0} (18)

onto U , and the fibres
(
p
∣∣M)−1

(z) have at most k elements.

We want to study the projection p
∣∣M more closely. Let us make the abbreviation

H = O(U), and letK denote the field of fractions of the integral domain H. Moreover,
assume that

ω(z, w) ∈ H[w] ⊂ K[w]

is an irreducible polynomial over K. We then set

ω′ = ωw(z, w),
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so ω′ is a polynomial of degree k − 1 in H[w]. Since ω is irreducible, ω and ω′ are
coprime in K[w] and thus satisfy an equation

aω + bω′ = 1,

for some a, b ∈ K[w]. Multiplying by a common denominator of the coefficients of a
and b yields an identity

Aω +Bω′ = C,

where A,B ∈ H[w] and C ∈ H. To be precise,

A(z, w)ω(z, w) +B(z, w)ωw(z, w) ≡ C(z).

Outside of the set of zeros of C in U , i.e. outside of a nowhere dense set, ω(z, w)
and ωw(z, w) thus have no common zeros, which means that the polynomial ω(z, w)

can be decomposed into k linear factors: the fibre
(
p
∣∣M)−1

(z) has exactly k points.
Let (z0, w0) be such a point. In a neighbourhood V (z0)×D(w0), the function ω thus
has order 1 with respect to w − w0: by the Weierstrass preparation theorem, we can
factor ω:

ω(z, w) = e1(z, w)ω1(z, w),

with e1(z, w) 	= 0 on V (z0)×D(w0) and

ω1(z, w) = w − w0 +A0(z),

where A0(z) is holomorphic on V and satisfies A0(z0) = 0. The set of zeros of ω in a
neighbourhood of (z0, w0) is thus given by an equation

w = w0 −A0(z).

Its projection onto V (z0) is clearly a homeomorphism.

To summarize:

Proposition 7.5. Let U ⊂ Cn be a domain and

ω(z, w) = wk + a1(z)w
k−1 + . . .+ ak(z)

an irreducible polynomial over the field of fractions of H = O (U), with aκ(z) ∈ H
(κ = 1, . . . , k), and let M = {(z, w) : ω(z, w) = 0} be its set of zeros. Then there
exists a holomorphic function C on U , not identically zero, such that for all z with
C(z) 	= 0, the projection

p : M → U, p(z, w) = z

is a locally homeomorphic mapping. All fibres
(
p
∣∣M)−1

(z) with C(z) 	= 0 contain
exactly k points. If (z0, w0) is such a point, then in a neighbourhood of V (z0)×D(w0)
the set M is the graph of a holomorphic function:

M ∩ (V (z0)×D(w0)) = {(z, w) : z ∈ V (z0), w = w0 +A0(z)}.
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The Weierstrass preparation theorem can be used to show much more, but we will
content ourselves with the above application.

Exercises

1. Let U be a neighbourhood of 0 in Cn and D a disk about 0 in C, and suppose f(z, w) is
holomorphic on U×D with f(0, 0) = 0 and f(0, w) �≡ 0. Show that there exists a neighbourhood

U0 ⊂ U of 0, radii 0 < r < R, and a number k � 1 such that f is nonzero on U0×(DR(0)\Dr(0))
and w �→ f(z, w) has exactly k zeros in Dr(0) (counting multiplicity) for z ∈ U0. One can thus
apply Thm. 7.4 to f

∣∣U ×DR(0).

2. Suppose the function f(z, w) has order k with respect to w in U ×DR(0) and f(0, w) has a zero
of order k at w = 0. Show that if ϕ : U → DR(0) is a function that assigns to every z a zero of
w �→ f(z, w), then ϕ is continuous at 0 ∈ U .

3. Suppose f is holomorphic in a neighbourhood U of 0 ∈ Cn, f(0) = 0, and f �≡ 0. Show that
there exists a linear bijection L : Cn → Cn, a neighbourhood V of 0 ∈ Cn−1, and numbers
0 < r < R such that g = f ◦ L is of order k � 1 on V × DR(0), i.e. for (z1, . . . , zn−1) ∈ V ,
zn �→ g(z1, . . . , zn−1, zn) has exactly k zeros in DR(0) that all lie in Dr(0).



Chapter V.

Non-elementary functions

The theory of the preceding chapters permits the construction and investigation of new transcen-
dental functions. The Γ-function, interpolating the factorials, is perhaps the most important non-
elementary function (V.1). Riemann’s ζ-function (V.2,3) and its generalizations play an eminent
role in number theory and algebraic geometry. It is the main tool in most proofs of the prime
number theorem (V.2). Elliptic functions, i.e. functions with two independent periods, and their
connection with plane cubic curves is a classical theme (V.4,5) with applications in many areas, e.g.
mathematical physics and cryptography.

Beginning in 1729, Euler interpolated the factorials by an infinite product and established integral
representations for it. Legendre, Gauss, and Weierstrass took up this theme. – Riemann introduced
his ζ-function in a seminal paper in 1859 [Ri], which we follow in V.3. For the prime number theorem
see the remarks at the end of V.2. – Elliptic functions appear as inverse functions of indefinite elliptic
integrals (Gauss since 1796, Abel, Jacobi); they were a leading theme in 19th century mathematics.
We follow Hurwitz [HuC], who leaned on methods developed by Weierstrass; a great deal of the
results go back to Eisenstein and Liouville (1844–47).

1. The Γ-function

We look for a meromorphic function on the complex plane, as simple as possible,
interpolating the factorials, i.e. a function satisfying f(n) = (n − 1)! (for historical
reasons, we do not demand f(n) = n!). In view of the recursive definition of the
factorials,

0! = 1, n · (n− 1)! = n!,

we require

f(1) = 1, z · f(z) = f(z + 1). (1)

By (1) we have lim
z→0

zf(z) = f(1) = 1, therefore any solution of (1) must have a simple

pole at z = 0 with residue 1. More generally, applying (1) n+ 1 times leads to

(z + n)f(z) =
1

z(z + 1) · · · (z + n− 1)
f(z + n+ 1).

Taking the limit z → −n shows that f must have simple poles at z = −n with
n = 0, 1, 2, . . . , the residues being (−1)n/n! .

W. Fischer, I. Lieb, A Course in Complex Analysis, DOI 10.1007/978-3-8348-8661-3_5, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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Therefore, if f satisfies (1), the function g(z) = 1/f(z) will have simple zeros at
0, −1, −2, . . . and satisfy the functional equation

g(1) = 1, zg(z + 1) = g(z). (2)

The Weierstrass product theorem suggests we try

g(z) = eh(z)z

∞∏
1

(
1 +

z

ν

)
e−z/ν (3)

with h ∈ O (C). This yields an entire function with the prescribed zeros, but we still
have to show that h can be chosen so that g satisfies (2). We note that g(1) = 1 is
equivalent to lim

z→0
g(z)/z = 1, i.e. to exph(0) = 1. To cope with the second equation

in (2) we consider the partial products

gn(z) = eh(z)z

n∏
1

(
1 +

z

ν

)
e−z/ν

=
1

n!
exp

(
h(z)− z

n∑
1

1

ν

) n∏
0

(z + ν).

Then

zgn(z + 1)

gn(z)
= (z + n+ 1) exp

(
h(z + 1)− h(z)−

n∑
1

1

ν

)
=
(
1 +

1 + z

n

)
exp

(
h(z + 1)− h(z) + log n−

n∑
1

1

ν

)
.

Recall now that γ := lim
n→∞

( n∑
1

1

ν
− log n

)
= 0.5772 . . . exists (cf. Ex. 3); this is the

so-called Euler’s constant.

Therefore

1 =
zg(z + 1)

g(z)
= lim

n→∞
zgn(z + 1)

gn(z)
= exp

(
h(z + 1)− h(z)− γ

)
.

In other words: g satisfies (2) if and only if

exp
(
h(z + 1)− h(z)− γ

)
= 1 and exph(0) = 1. (4)

The simplest solution of (4) is h(z) = γz, leading to the following definition:

Definition 1.1. The function

Γ(z) = e−γz 1

z

∞∏
1

(
1 +

z

ν

)−1

ez/ν

is called the Gamma function.
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Summarizing:

Proposition 1.1. Γ(z) is meromorphic and without zeros throughout the complex
plane. It satisfies the functional equation

Γ(1) = 1, zΓ(z) = Γ(z + 1),

in particular, Γ(n) = (n−1)! . It has simple poles precisely at z = −n, n = 0, 1, 2, . . . ,
the residue in −n is (−1)n/n! . If z = x is real and positive, Γ(x) is positive.

We consider once more the entire function g(z) = 1/Γ(z). The product representation
(3) (with h(z) = γz) implies (cf. Prop. III.7.7)

g(z)g(−z) = −z2
∞∏
1

(
1− z2

ν2

)
= −z

sinπz

π
.

Using (2) for −z, i.e. g(−z) = −zg(1− z), we obtain

g(1− z)g(z) =
sinπz

π
.

Proposition 1.2. The equation Γ(1− z)Γ(z) =
π

sinπz
holds.

Setting z = 1
2 shows

Γ
(1
2

)
=

√
π,

and, employing the functional equation for n = 1, 2, 3, . . . ,

Γ
(1
2
+ n

)
= 2−n

(
1 · 3 · . . . · (2n− 1)

)√
π,

Γ
(1
2
− n

)
= (−1)n2n

(
1 · 3 · . . . · (2n− 1)

)−1√
π.

We now deduce two other useful representations of the Γ-function, originating with
Euler and Gauss. We begin by rewriting

gn(z) =
1

n!
exp

(
z
(
γ −

n∑
1

1

ν

)) n∏
0

(z + ν)

=
1

n!nz
exp

(
z
(
γ −

n∑
1

1

ν
+ log n

)) n∏
0

(z + ν).

Now Γ(z) = lim
n→∞

1

gn(z)
together with the definition of γ yields immediately

Proposition 1.3. Γ(z) = lim
n→∞

n!nz

z(z + 1) · . . . · (z + n)
.
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The fraction in this formula can be represented as an integral. Indeed, assuming
z = x � 1 real, integrating by parts (n+ 1) times we arrive at

n∫
0

(
1− t

n

)n
tx−1dt = nx

1∫
0

(1− s)nsx−1ds =
n!nx

x(x+ 1) · . . . · (x+ n)
.

In view of taking the limit n → ∞, we introduce the functions

ϕn(t) =
(
1− t

n

)n
for 0 � t � n, ϕn(t) = 0, for t � n.

The ϕn converge to e−t pointwise, furthermore ϕn(t) � e−t (the function ϕn(t)e
t is

nonincreasing for t � 0). Therefore, by Lebesgue’s theorem on dominated convergence,
applied to the sequence ϕn(t)t

x−1, we obtain

∞∫
0

e−ttx−1dt = lim
n→∞

∞∫
0

ϕn(t)t
x−1dt = lim

n→∞
n!nx

x(x+ 1) · . . . · (x+ n)
.

Proposition 1.4. For Re z > 0 we have

Γ(z) =

∞∫
0

e−ttz−1dt. (5)

Proof: We just proved the equation for z real � 1. If we show the integral in (5) to
be a holomorphic function in Re z > 0, the claim will follow from the identity theorem.
Now

In(z) =

n∫
1/n

e−ttz−1dt

is clearly holomorphic in C. Using |tz−1| = tx−1 one verifies easily that the In
converge uniformly on every vertical strip 0 < c1 � Re z � c2 < ∞. By Weierstrass’s
convergence theorem, I(z) = lim In(z) is holomorphic on Re z > 0.

Remark: Of course, Prop. 1.4 follows directly from Lebesgue’s theorem on inter-
changing limits; we preferred to use the weaker Prop. I.5.6.

Another useful identity is Legendre’s duplication formula:

Proposition 1.5. Γ(2z) =
1√
π
22z−1Γ(z)Γ(z + 1

2 ).
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Proof: We use the Weierstrass product to compute the logarithmic derivative of Γ:

d

dz
log Γ(z) = −γ − 1

z
+

∞∑
1

(1
ν
− 1

z + ν

)
, (6)

d2

dz2
log Γ(z) =

∞∑
0

1

(z + ν)2
. (7)

Therefore,

d2

dz2
log
(
Γ(z)Γ(z + 1

2 )
)
=

∞∑
0

1

(z + ν)2
+

∞∑
0

1(
z + 1

2 + ν
)2

=

∞∑
0

4

(2z + 2ν)2
+

∞∑
0

4

(2z + 1 + 2ν)2

= 4

∞∑
0

1

(2z + ν)2
=

d2

dz2
log Γ(2z).

Consequently,

log
(
Γ(z)Γ(z + 1

2 )
)− log Γ(2z)

is a linear function az + b, and

Γ(z)Γ(z + 1
2 )

Γ(2z)
= eaz+b.

To determine the coefficients a and b, we set z = 1 and z = 1/2, obtaining

1

2

√
π = Γ

(3
2

)
= ea+b and

√
π = Γ

(1
2

)
= e(a/2)+b,

and finally ea = 1/4, eb = 2
√
π.

We conclude this section with a proof of Stirling’s formula, which describes the be-
haviour of Γ(z) for Re z → +∞ and enables one to calculate good approximations of
the values Γ(z) for Re z large.

We start with formula (7) and the identity

∞∫
0

te−(z+ν)tdt =
1

(z + ν)2
for Re z > 0, ν = 0, 1, 2, . . . .

Summation yields

d2

dz2
log Γ(z) =

∞∫
0

te−zt
∞∑
0

e−νtdt =

∞∫
0

e−(z−1)t t

et − 1
dt
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or

d2

dz2
log Γ(z + 1) =

∞∫
0

e−zt t

et − 1
dt. (8)

The interchange of summation and integration is again justified by the dominated
convergence theorem. Integrating (8) formally with respect to z leads to the integral

∞∫
0

e−zt dt

et − 1
,

which does not exist on account of the singularity at t = 0. To avoid this and an
analogous complication with a second integration, we recall (cf. III.6 (10))

t

et − 1
= 1− t

2
+

1

12
t2 −+ · · ·

for small t and write

t

et − 1
= 1− t

2
+ t2f(t),

that is

f(t) =
( 1

et − 1
− 1

t
+

1

2

)1
t
. (9)

Then we have for Re z > 0

∞∫
0

e−zt t

et − 1
dt =

∞∫
0

e−ztt2f(t)dt+

∞∫
0

e−zt
(
1− t

2

)
dt

=

∞∫
0

e−ztt2f(t)dt+
1

z
− 1

2z2
.

Now we may integrate twice under the integral sign with respect to z and obtain

d

dz
log Γ(z + 1) = log z +

1

2z
−

∞∫
0

e−zttf(t)dt+ c1, (10)

log Γ(z + 1) = z(log z − 1) +
1

2
log z +

∞∫
0

e−ztf(t)dt+ c1z + c0 (11)

with integration constants c0 and c1. To fix c0 we choose the principal branch of the
logarithm.
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Now we determine c0 and c1.
For c1: Since lim

t→∞ tf(t) = 1
2 , the function tf(t) is bounded on [0, +∞[, |tf(t)| � M

say, and∣∣∣∣
∞∫
0

e−zttf(t)dt

∣∣∣∣ � M

Re z
→ 0

for Re z → +∞. Therefore by (10)

c1 = lim
Re z→∞

(d
dz

log Γ(z + 1)− log z − 1

2z

)
= lim

Re z→∞

(d
dz

log Γ(z + 1)− log z
)
.

We let z → ∞ by integer values n. By (6) we have

dlog Γ

dz
(n+ 1)− log n =

(
−γ +

n∑
1

1

ν

)
− log n.

By the definition of γ, the limit is 0, i.e. c1 = 0.

For c0: The integral in (11) tends to zero for Re z → ∞, too, as f is bounded.
Therefore

c0 = lim
Re z→∞

(
log Γ(z + 1)− (z + 1

2 ) log z + z
)
,

or, taking exponentials,

c2 := ec0 = lim
Re z→∞

(
Γ(z + 1)z−z−1/2ez

)
,

or, replacing z by 2z:

c2 = lim
Re z→∞

(
Γ(2z + 1)(2z)−2z−1/2e2z

)
.

Into the last formula we insert a slightly modified duplication formula (Prop. 1.5),
namely Γ(2z+1) = π−1/222zΓ(z+1)Γ(z+ 1

2 ). After some elementary manipulations
we obtain

c2 = c2
2(2π)−1/2e1/2 lim

Re z→∞

(
1− 1

2z

)z
= c2

2(2π)−1/2,

that is c0 = log c2 = 1
2 log 2π.

This proves the first part of

Proposition 1.6. Define f(t) by (9), then the following equation holds for Re z > 0:

log Γ(z + 1) =
(
z +

1

2

)
log z − z +

1

2
log 2π +

∞∫
0

e−ztf(t)dt,

and, uniformly in Im z,

lim
Re z→∞

(
log Γ(z + 1)−

(
z +

1

2

)
log z + z

)
=

1

2
log 2π.
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The last equation is equivalent to Stirling’s formula

lim
Re z→∞

(
Γ(z + 1)z−z−1/2ez

)
=

√
2π.

Using Γ(z + 1) = zΓ(z), we can write this as

Γ(z) ∼
√
2πzz−1/2e−z,

the sign ∼ (“asymptotic equality”) meaning that the quotient of both sides tends to
1 as Re z → +∞.

Proof of Prop. 1.6, second part: f is bounded on [0, +∞[, |f(t)| � M , say. There-
fore ∣∣∣∣

∞∫
0

e−ztf(t)dt

∣∣∣∣ � M

∞∫
0

e−tRe zdt =
M

Re z
→ 0.

More precisely, the sharp inequality 0 < f(t) � 1

12
holds for t � 0 (cf. Ex. 4). This

yields∣∣∣log Γ(z + 1)−
(
z +

1

2

)
log z + z − 1

2
log 2π

∣∣∣ � 1

12Re z

for Re z > 0, and for real x > 0
√
2πxx−1/2e−x � Γ(x) �

√
2πxx−1/2e−x+(1/12x).

As an example we take x = 1000 and obtain

5912.1281 � log(1000!) � 5912.1282,

that is

4.023 · 102567 � 1000! � 4.024 · 102567.

Exercises

1. Express Γ( 1
2
+z)Γ( 1

2
−z) and Γ(z)Γ(−z) by trigonometric functions. Deduce |Γ(iy)|2 = π

y sinhπy
(y �= 0, real).

2. Show Γ(z + 1)Γ(z + 1
2
) =

√
π4−zΓ(2z + 1).

3. Prove: The sequence

n∑
1

1

ν
− logn is positive and decreasing (hence its limit γ exists).

4. For the function f(t) defined in (9) prove the estimate 0 < f(t) � 1
12
.

Hint: f ′(t) is clearly negative for t � 4. In a neighbourhood of 0 the terms of the power series
for f have alternating signs and decreasing modulus (cf. III.6.(11)).

5. Show

∞∫
0

t dt

et − 1 =
π2

6
.
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2. The ζ-function and the Prime Number Theorem

Riemann’s ζ-function is defined by

ζ(s) =

∞∑
n=1

n−s (1)

for complex s = σ + it (this notation of the complex variable was introduced by
Riemann). For the power n−s = e−s logn we use the real logarithm of n. Since∣∣n−s

∣∣ = n−σ, the series (1) converges uniformly for σ � σ0 > 1, therefore locally
uniformly on the half plane {σ + it : σ > 1}. Accordingly, (1) defines ζ(s) as a
holomorphic function on Re s > 1. We have already calculated the special values
ζ(2n), n = 1, 2, . . . in Prop. III.6.5.

The following product representation, found by Euler, is fundamental for the use of
ζ(s) in number theory.

Proposition 2.1.

ζ(s) =
∏
p

(1− p−s)−1 (2)

for Re s > 1, where the product is extended over all prime numbers.

Proof: The product converges locally uniformly and absolutely, since
∑

p−s is a
subseries of

∑
n−s. – We number the primes in increasing order: p1 = 2, p2 = 3,

p3 = 5, . . . . Then, by expanding into geometric series:

∏
p1,...,pk

(1− p−s)−1 =
∏

p1,...,pk

∞∑
m=0

(
pm
)−s

=
∑

n−s,

the right hand sum being taken over those n whose (unique !) prime factor decompo-
sition contains only p1, . . . , pk. Thus the first missing n is pk+1. Now k → ∞ proves
the claim.

From (2) we infer that there are infinitely many primes and even the divergence of∑
p
1/p: If there were only finitely many, the product would have a finite limit for

s → 1, whereas the sum tends to infinity (cf. also Ex. 1).

Denoting by π(x) the number of of primes p � x, we therefore have

lim
x→∞π(x) = ∞.

The old problem (cf. the historical note at the end of this section) of the order of
growth of π(x) is answered by
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Theorem 2.2 (Prime Number Theorem).

lim
x→∞

π(x) log x

x
= 1. (3)

Using the notion of asymptotic equality introduced after Prop. 1.6, we can write (3)
as

π(x) ∼ x

log x
.

The remainder of this section is devoted to the proof of Thm. 2.2.

First, we derive two properties of the ζ-function. Here and later on, we will make use
of an integral transformation:

Let f : [1, +∞[→ R be a locally integrable function, assume there is a k ∈ R with
|f(x)| � Cxk. Then f(x)x−s−1 is integrable for Re s > k and

Mf : s �→ s

∞∫
1

f(x)x−s−1dx

is holomorphic in this half plane. We call Mf the Mellin transform of f .

As an example, for f(x) = x one easily computes

Mf (s) =
s

s− 1
=

1

s− 1
+ 1.

Taking g(x) = [x] (the Gauss bracket [x] denotes the largest integer � x), we obtain
for Re s > 1:

Mg(s) = s

∞∫
1

[x]x−s−1dx =

∞∑
n=1

s

n+1∫
n

nx−s−1dx

=

∞∑
n=1

n
(
n−s − (n+ 1)−s

)
.

Assuming Re s > 2, we can decompose the last sum:

Mg(s) =

∞∑
n=1

n1−s −
∞∑
n=1

(n+ 1− 1)(n+ 1)−s

=

∞∑
n=1

n1−s −
∞∑
n=2

n1−s +

∞∑
n=2

n−s

= 1 +
(
ζ(s)− 1

)
= ζ(s).
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By the identity theorem, the equation Mg(s) = ζ(s) holds for Re s > 1, too.

Combining these examples, we get for Re s > 1

M([x]−x)(s) = ζ(s)− 1

s− 1
− 1.

But [x]− x is bounded, so M([x]−x) is holomorphic for Re s > 0. Therefore

Proposition 2.3. The Riemann ζ-function can be extended by

ζ(s) =
1

s− 1
+ 1 +M([x]−x)(s)

to a function meromorphic on the half plane Re s > 0. The extension is holomorphic
save for a simple pole at s = 1 with residue 1.

The other property of ζ(s) we need is

Proposition 2.4. ζ(s) has no zeros on the line Re s = 1.

Proof: Suppose ζ(1 + it0) = 0 for some real t0 	= 0. Consider the function

g(s) = ζ(s)3ζ(s+ it0)
4ζ(s+ 2it0).

Since the pole at s = 1 of the first factor is cancelled by the zero of the second, g(s)
is holomorphic in a neighbourhood of s = 1 and g(1) = 0. Therefore, log|g(s)| → −∞
if s → 1. Now Euler’s product (2) gives for Re s > 1

log|ζ(s)| = Re
∑
p

log(1− p−s)−1

= Re
∑
p

∞∑
ν=1

1

ν
(pν)−s

= Re

∞∑
n=1

ann
−s

where an = 0 if n is not a power of a prime and an = 1/ν if n = pν . We only use
an � 0.

Then, for σ > 1

log|g(σ)| = 3 log|ζ(σ)|+ 4 log|ζ(σ + it0)|+ log|ζ(σ + 2it0)|

=
∞∑
n=1

an Re
(
3n−σ + 4n−σ−it0 + n−σ−2it0

)
=

∞∑
n=1

an n−σ
[
3 + 4 cos(t0 log n) + cos(2t0 log n)

]
.
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The term in brackets is nonnegative since

3 + 4 cosα+ cos 2α = 3 + 4 cosα+ 2 cos2 α− 1 = 2(1 + cosα)2.

Therefore log|g(σ)| � 0, contradicting lim
σ↓1

log|g(σ)| = −∞.

Now we turn to some number theoretic preliminaries. We introduce the function

ϑ(x) =
∑
p�x

log p,

(summation is extended over all primes � x), which is more amenable to analytic
methods than π(x). The connection between ϑ(x) and π(x) is expressed by

Proposition 2.5. If one of the limits in the following formula exists, then so does
the other, and they are equal:

lim
x→∞

π(x) log x

x
= lim

x→∞
ϑ(x)

x
.

We shall eventually show that the right hand side limit exists and has the value 1.
This will prove the prime number theorem.

Proof: On the one hand

ϑ(x) =
∑
p�x

log p �
∑
p�x

log x

log p
log p = log x

∑
p�x

1 = π(x) log x.

On the other hand we can estimate

π(x) = π(y) +
∑

y<p�x

1 � π(y) +
1

log y

∑
y<p�x

log p � y +
1

log y
ϑ(x)

for 1 < y < x, hence

π(x) log x

x
� y log x

x
+

log x

log y
· ϑ(x)

x
.

Choosing (for x � 3) y =
x

(log x)2
, we obtain

π(x) log x

x
� 1

log x
+

log x

log x− 2 log log x
· ϑ(x)

x
.

Combining the two inequalities yields the claim because

lim
x→∞

1

log x
= 0, lim

x→∞
log x

log x− 2 log log x
= 1.
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Complex analysis enters the scene in form of the Mellin transform of ϑ(x). We need

Lemma 2.6. The function
ϑ(x)

x
is bounded on [1, +∞[.

Proof: We start with the following observation: If k < p � 2k, then p divides the
binomial coefficient(

2k

k

)
=

(k + 1) · . . . · (2k − 1) · 2k
k!

.

Therefore
(
2k
k

)
is divisible by the product of all p with k < p � 2k, in particular not

less than this product:∏
k<p�2k

p �
(
2k

k

)
� 22k; (4)

the right hand inequality results from the binomial expansion of (1+ 1)2k. By (4) we
have ∑

k<p�2k

log p � 2k log 2.

Inserting k = 1, 2, 22, . . . , 2�−1 and adding the inequalities, we obtain∑
p�2�

log p � (2 + 4 + . . .+ 2�) log 2 � 2�+1 log 2.

Given x � 1, we choose 
 so that 2�−1 � x < 2�, and get

ϑ(x) =
∑
p�x

log p �
∑
p�2�

log p � 2�+1 log 2 � 4x log 2.

In view of the lemma, Mϑ is holomorphic on Re s > 1. We have

Proposition 2.7. For Re s > 1,

Mϑ(s) =
∑
p

log p

ps
= −ζ ′(s)

ζ(s)
−
∑
p

log p

ps(ps − 1)
(5)

holds (the sums are extended over all primes p).

Proof: First, we deduce the left equation. Noting ϑ(x) = ϑ(n) if n � x < n+ 1, we
compute

s

∞∫
1

ϑ(x)x−s−1dx = s

∞∑
n=1

n+1∫
n

ϑ(x)x−s−1dx = s

∞∑
n=1

ϑ(n)

n+1∫
n

x−s−1dx

=

∞∑
n=1

ϑ(n)
(
n−s − (n+ 1)−s

)
.
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By the lemma,
∑

ϑ(n)n−s converges for Re s > 2. Thus, assuming Re s > 2, we may
decompose the last sum and find, using ϑ(0) = 0,

s

∞∫
1

ϑ(x)x−s−1dx =

∞∑
n=1

ϑ(n)n−s −
∞∑
n=2

ϑ(n− 1)n−s

=

∞∑
n=1

(
ϑ(n)− ϑ(n− 1)

)
n−s.

Since ϑ(n)− ϑ(n− 1) = log p if n = p is a prime and ϑ(n)− ϑ(n− 1) = 0 otherwise,
this proves the left equation in (5) for Re s > 2. Both sides of the equation are
holomorphic for Re s > 1, so the equation holds on Re s > 1, too.

Now we prove the right equation in (5). Logarithmic derivation of the Euler product

ζ(s) =
∏
p

(1− p−s)−1

leads to

−ζ ′(s)
ζ(s)

=
∑
p

p−s log p

1− p−s
=
∑
p

log p

ps − 1
.

The identity∑
p

log p

ps − 1
−
∑
p

log p

ps(ps − 1)
=
∑
p

log p

ps

is evident.

Equation (5) implies

M(ϑ(x)−x)(s) = −ζ ′(s)
ζ(s)

− 1

s− 1
− 1−

∑
p

log p

ps(ps − 1)
. (6)

By Prop. 2.4, −ζ ′/ζ is holomorphic in a neighbourhood of Re s � 1, excepting the
pole at s = 1 with residue 1. The sum in (6) converges locally uniformly for Re s > 1

2
and is, consequently, holomorphic there. So (6) provides a holomorphic extension of
M(ϑ(x)−x) to a neighbourhood of Re s � 1, and we can apply the following crucial
statement:

Proposition 2.8. Let f : [1, +∞[→ R be locally integrable and let f(x)/x be bounded.
If Mf has a holomorphic extension to a neighbourhood of Re s � 1, then

lim
μ→∞

μ∫
1

f(x)

x

dx

x

exists.
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The existence of lim
μ→∞

μ∫
1

(ϑ(x)
x

− 1
)dx
x

implies lim
x→∞

ϑ(x)

x
= 1, i.e. the prime number

theorem, by

Lemma 2.9. Let g : [1, +∞[ → R be nondecreasing, assume the existence of

lim
μ→∞

μ∫
1

(g(x)
x

− 1
)dx
x
. Then lim

x→∞
g(x)

x
= 1.

Proof: Suppose the claim is wrong. Then there exists a number η > 0 and a sequence

xν → +∞ such that
∣∣∣g(xν)

xν
− 1

∣∣∣ � η. Assume
g(xν)

xν
− 1 � η, i.e. g(xν) � (1 + η)xν ,

for infinitely many ν. After passing to a subsequence, we can assume this inequality

holds for all ν. Setting � =
1 + η

1 + η
2

, we have for xν � x � �xν

(
1 +

η

2

)
x � (1 + η)xν � g(xν) � g(x),

the last inequality by the monotonicity of g. Then

�xν∫
xν

(
g(x)

x
− 1

)
dx

x
� η

2

�xν∫
xν

dx

x
=

1

2
η log � > 0

for all ν, contradicting the existence of the improper integral.
In case that g(xν) � (1− η)xν for almost all ν, we can proceed similarly.

It remains to prove Prop. 2.8. We set g(x) = f(x)/x and note that the factor s,
appearing in the definition of Mf , does not affect holomorphy on Re s � 1. Thus,
Prop. 2.8 is contained in

Theorem 2.10. Let g : [1, +∞[→ R be a bounded locally integrable function. Set, for
Re s > 1,

G(s) =

∞∫
1

g(x)x−s dx.

If G can be holomorphically extended to a neighbourhood U of the closed half plane
Re s � 1, then

lim
μ→∞

μ∫
1

g(x)
dx

x
= G(1).



2. The ζ-function and the Prime Number Theorem 163

We have denoted the extension of G again by G; this explains the right hand side of
the equation. Note that we do not claim the existence of the integral

∞∫
1

g(x)
dx

x
.

Proof: The functions

Gμ(s) =

μ∫
1

g(x)x−s dx

are holomorphic for all s ∈ C; we have to show

lim
μ→∞Gμ(1) = G(1).

We represent the difference G(1)−Gμ(1) by Cauchy’s integral formula:

For any R > 0 there is a δ = δ(R) > 0 such that the circular segment
S = {s : |s − 1| � R, Re s � 1 − δ} is contained in U . We subdivide the posi-
tively oriented boundary γ of S into γ = γ1 + γ2, γ1 being the part of γ in Re s � 1
and γ2 the part in Re s � 1.

�� �

�

0 1

γ1γ2

Re z = 1

Figure 10. Path of integration

Then

G(1)−Gμ(1) =
1

2πi

∫
γ

(
G(s)−Gμ(s)

) ds

s− 1
.

We hope that the integral will become small for R and μ large. Not knowing much
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about G(s) for Re s � 1, we decompose∫
γ

(
G(s)−Gμ(s)

) ds

s− 1

=

∫
γ1

(
G(s)−Gμ(s)

) ds

s− 1
−
∫
γ2

Gμ(s)
ds

s− 1
+

∫
γ2

G(s)
ds

s− 1
.

We may assume |g| � 1. Then one can estimate the integrands as follows. For
σ = Re s > 1,

∣∣G(s)−Gμ(s)
∣∣ = ∣∣∣∣

∞∫
μ

g(x)x−sdx

∣∣∣∣ �
∞∫
μ

x−σdx

=
1

σ − 1
μ1−σ =

∣∣∣∣ 2

(s− 1) + (s̄− 1)
μ1−s

∣∣∣∣,
thus for Re s > 1 and |s− 1| = R∣∣∣∣(G(s)−Gμ(s)

) 1

s− 1

∣∣∣∣ � ∣∣∣∣ 2

(s− 1)2 +R2
μ1−s

∣∣∣∣, (7)

this bound is clearly bad if s → 1± iR.

For σ = Re s < 1,

∣∣Gμ(s)
∣∣ � μ∫

1

x−σdx =
1

1− σ

(
μ1−σ − 1

)
� 1

1− σ
μ1−σ,

thus for Re s < 1 and |s− 1| = R∣∣∣∣Gμ(s)
1

s− 1

∣∣∣∣ � ∣∣∣∣ 2

(s− 1)2 +R2
μ1−s

∣∣∣∣. (8)

This bound is again bad for s → 1± iR and also for large μ.

So the straightforward estimates of the integrals do not lead to a satisfactory estimate
of G(1) − Gμ(1). The essential trick now is to replace G − Gμ by (G−Gμ) · hμ,R,
where hμ,R is a suitable holomorphic function satisfying hμ,R(1) = 1, then

G(1)−Gμ(1) =
1

2πi

∫
γ

(
G(s)−Gμ(s)

)hμ,R(s)
s− 1

ds.

The above estimates (7) and (8) suggest we choose

hμ(s) = hμ,R(s) =
(s− 1)2 +R2

R2
μs−1.
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Then we have

G(1)−Gμ(1) =
1

2πi

∫
γ1

(
G(s)−Gμ(s)

)hμ(s)
s− 1

ds

− 1

2πi

∫
γ2

Gμ(s)
hμ(s)

s− 1
ds+

1

2πi

∫
γ2

G(s)
hμ(s)

s− 1
ds

=: I1 − I2 + I3.

Applying (7) we see∣∣∣∣(G(s)−Gμ(s)
)hμ(s)
s− 1

∣∣∣∣ � 2

R2

on γ1 (by continuity, this estimate also holds for s = 1± iR). The standard estimate
now yields for all μ

|I1| � 1

R
.

To estimate I2 we note that the integrand is holomorphic on C \ {1}. By Cauchy’s
integral theorem we can replace the path γ2 by the semicircle |s − 1| = R, Re s � 1
without changing the integral. On the semicircle we have by (8)∣∣∣∣Gμ(s)

hμ(s)

s− 1

∣∣∣∣ � 2

R2
,

therefore |I2| � 1

R
for all μ.

It remains to investigate

I3 =
1

2πi

∫
γ2

G(s)

(
s− 1

R2
+

1

s− 1

)
μs−1ds.

G is clearly bounded on γ2, thus∣∣∣∣G(s)

(
s− 1

R2
+

1

s− 1

)∣∣∣∣ � A(R, δ) = A.

The standard estimate then gives

|I3| � 1

2π
L(γ2)A · sup

γ2

μσ−1 � RA

2
, (9)

which is of no use. But, if we choose δ1 ∈]0, δ] and denote the part of γ2 in Re s � 1−δ1
by γ′2, we get in place of (9)∣∣∣∣ 1

2πi

∫
γ′
2

G(s)

(
s− 1

R2
+

1

s− 1

)
μs−1ds

∣∣∣∣ � RA

2
· sup

γ′
2

μσ−1 =
RA

2
μ−δ1 (10)
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and this bound is small for μ large (R, δ, δ1 fixed). The integral over the arcs of
|s− 1| = R above and below [1− δ1, 1] remains to be accounted for. These arcs have
length � πδ1/2; using |μs−1| � 1 we get∣∣∣∣ 1

2πi

∫
γ2−γ′

2

G(s)

(
s− 1

R2
+

1

s− 1

)
μs−1ds

∣∣∣∣ � 1

2π
· πδ1A. (11)

Now the claim follows: Given ε > 0, choose R =
1

ε
and a suitable δ = δ(R). Then

|I1| � ε, |I2| � ε, and we may take δ1 so small that the right hand side of (11)
becomes � ε. Finally, we choose μ0 so large that the right hand side of (10) is � ε
for μ � μ0. Then |I3| � 2ε, so that for μ � μ0∣∣G(1)−Gμ(1)

∣∣ � |I1|+ |I2|+ |I3| � 4ε.

Historical Note

The classical proof that there are infinitely many primes is in Euclid (about −300). The first
statement on the distribution of primes seems to be due to Euler (1737): Using the Euler product
(2) he showed the divergence of

∑
1/p. On the basis of numerical evidence, Gauss conjectured

π(x) ∼ x/ log x in 1792; in later years, he and Legendre proposed similar, but numerically better
approximations (without proofs).

Riemann was the first to consider ζ(s) as a holomorphic function on Re s > 1. He extended it to
a meromorphic function on C (see the next section) and in 1859 found deep connections between
the distribution of prime numbers and the zeros of ζ(s), of which complete proofs were only given
towards the end of the 19th century.

About 1850, Chebyshev proved our Prop. 2.5 and, as a first approximation to the prime number
theorem, the estimate 0.92 � ϑ(x)/x � 1.11 for x sufficiently large. The first proofs of the theorem
itself were only given in 1896 by Hadamard and de la Vallée-Poussin, independently of each other.
They showed our Prop. 2.4 and then worked with very subtle estimates of ζ(s) for Re s � 1.

The proof presented here is very much simpler than the original ones. The essential trick is done by
Prop. 2.8 (or Thm. 2.10) which are due to D. J. Newman [Ne].

There are “elementary” (but by no means simple) proofs, i.e. proofs not making use of complex
analysis. The first of these were published by P. Erdős and A. Selberg in 1949, again independently
of each other.

Exercises

1. Show that
∑
1/p diverges (sum over all prime numbers p).

2. Deduce from Prop. 2.3:

lim
s→1

(
ζ(s)− 1

s− 1
)
= γ,

where γ is Euler’s constant.
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3. Let
(
an

)
n�1

be a sequence of complex numbers, satisfying an estimate |an| � Cnk; define

f(x) =
∑
n�x

an for x � 1. Show

Mf (s) =

∞∑
1

ann
−s,

both sides being holomorphic for Re s > k + 1.

4. Define Λ: N → R by Λ(n) = log p, if n is a power of a prime p, Λ(n) = 0 otherwise. For
ψ(x) =

∑
n�x

Λ(n) show Mψ(s) = −ζ′(s)/ζ(s).

5. Gauss proposed the approximation Li(x) =

∫ x

2

dt

log t
of π(x). Show Li(x) ∼ x

log x
.

Hint: an upper estimate for Li may e.g. be obtained by partial integration of

∫ x

√
x
1 · 1

log t
dt.

3. The functional equation of the ζ-function

In the previous section we defined the Riemann ζ-function on the half plane
{s = σ + it ∈ C : σ > 1} by

ζ(s) =

∞∑
n=1

n−s.

We proved that it can be extended meromorphically to the half plane σ > 0. Now
we will show how it can be extended to a meromorphic function on the whole plane.
Then we will deduce a remarkable functional equation for ζ(s). We follow the ideas
of Riemann (1859).

In section 1 we saw that, for σ > 0,

Γ(s) =

∞∫
0

e−tts−1dt = ns

∞∫
0

e−nxxs−1dx,

(the last equation results by substituting nx = t). Thus

ζ(s)Γ(s) =
∞∑
n=1

∞∫
0

e−nxxs−1dx =

∞∫
0

( ∞∑
n=1

e−nx

)
xs−1dx,

ζ(s)Γ(s) =

∞∫
0

xs−1

ex − 1
dx (1)

for σ > 1. The interchange of summation and integration is justified by the theorem
on dominated convergence.
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The integral in (1) does not exist for σ � 1 because of the singularity at 0.

By modification of the path of integration we shall produce an integral valid for all
s ∈ C. We will modify the integrand, too: On the z-plane slit along the positive real
axis, i.e. on G = C \ {z ∈ R : z � 0}, we consider the function

f(z, s) =
(−z)s−1

ez − 1
, (2)

with (−z)s−1 = exp[(s − 1) log(−z)] and −π < Im log(−z) < π. As a function of z,
f is meromorphic on G with simple poles at z = 2πiν, ν ∈ Z \ {0}; as a function
of s, f is holomorphic everywhere if z 	= 2πiν is fixed. We integrate f(z, s) along

Figure 11.

the path γr,δ = γ1 + γ2 + γ3 shown in Fig. 11. The parameters r, δ are subject to
the condition 0 < δ � r/2 < π/2; γ1 is the ray parallel to the x-axis from infinity to
x0 + iδ =

√
r2 − δ2 + iδ, γ2 is the positively oriented arc of |z| = r from x0 + iδ to

x0 − iδ, and γ3 is the ray parallel to the x-axis from x0 − iδ to infinity. Integrals over
the infinite paths γ1 and γ3 are defined in the obvious way as limits of integrals over
finite paths.

The integral

Ir,δ(s) =

∫
γr,δ

f(z, s)dz (3)

exists for arbitrary s ∈ C since

|f(z, s)| � e|t|π
|z|σ−1∣∣ez − 1

∣∣ . (4)

The function Ir,δ(s) is holomorphic on C: If we denote the part of γr,δ to the left of

Re s = n by γ(n), then I
(n)
r,δ (s) =

∫
γ(n)

f(z, s)dz is in O (C) by Prop. I.5.6. Using (4)

one verifies easily that, for n → ∞, the I
(n)
r,δ (s) converge locally uniformly – of course

to Ir,δ(s). The Weierstrass convergence theorem yields the claim.
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Moreover, Ir,δ(s) does not depend on the choice of parameters: If e.g. r′ < r and
δ′ < δ, there are no singularities of f between γr,δ and γr′,δ′ . Since f(z, s) tends
exponentially to 0 for Re z → +∞ (s fixed), the Cauchy integral theorem gives

Ir,δ(s) = Ir′,δ′(s) =: I(s).

On the other hand, we will show

lim
r→0

lim
δ→0

Ir,δ(s) =
(
e(s−1)πi − e−(s−1)πi

) ∞∫
0

xs−1

ex − 1
dx

= −2i sin(sπ)

∞∫
0

xs−1

ex − 1
dx (5)

if σ > 1. Inserting (1) and using sin(sπ)Γ(s)Γ(1− s) = π we arrive at

Proposition 3.1. The equation

ζ(s) = −Γ(1− s) · 1

2πi
I(s) (6)

holds for Re s > 1.

Proof: We have to verify (5). By our choice of the power (−z)s−1 we have

lim
δ↓0

f(x± iδ, s) = exp
(∓(s− 1)πi

) xs−1

ex − 1
.

Therefore

lim
δ↓0

∫
γ1

f(z, s)dz = − lim
δ↓0

∞∫
x0

f(x+ iδ, s)dx

= −
∞∫
r

lim
δ↓0

f(x+ iδ, s)dx

= −e−(s−1)πi

∞∫
r

xs−1

ex − 1
dx.

Similarly, we obtain

lim
δ↓0

∫
γ3

f(z, s)dz = e(s−1)πi

∞∫
r

xs−1

ex − 1
dx.
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The interchange of limit and integration is legitimate, because by (4)

|f(x± iδ, s)| � const · x
σ−1

ex − 1

for x � r and 0 � δ � r/2.

Putting things together, we see

lim
δ↓0

Ir,δ(s) = 2i sin(s− 1)π ·
∞∫
r

xs−1

ex − 1
dx+

∫
κr(0)

(−z)s−1

ez − 1
dz. (7)

In view of taking the limit r → 0, we now assume Re s > 1. Then

∞∫
r

xs−1

ex − 1
dx →

∞∫
0

xs−1

ex − 1
dx,

∫
κr(0)

(−z)s−1

ez − 1
dz → 0,

the last limit by the standard estimate. – This proves (5).

Let us review equation (6) in Prop. 3.1. The function Γ(s) is meromorphic on the
whole plane and I(s) is an entire function. So, the right hand side of (6) is a mero-
morphic function on C. Therefore we may define ζ(s) on Re s � 1 by this equation,
thus extending the ζ-function as a meromorphic function to all of C.

The poles of Γ(1 − s) are situated at s = 1, 2, 3, . . . , since Γ(s) has poles precisely
at s = 0, −1, −2, . . . . As ζ(s) is holomorphic for Re s > 1, the poles at s = 2, 3, . . .
of Γ(1 − s) must cancel against zeros of I(s). On the other hand, the simple pole of
Γ(1 − s) at 1 gives rise to a simple pole of ζ(s) at s = 1, since by Cauchy’s integral
theorem

1

2πi
I(1) =

1

2πi

∫
γr,δ

dz

ez − 1
=

1

2πi

∫
|z|=1

dz

ez − 1
= 1 	= 0.

Observing ress=1 Γ(1− s) = −1, we get

Proposition 3.2. The function ζ(s), extended to C by (6), is holomorphic everywhere
save for a simple pole at s = 1 with residue 1.

The values ζ(−n), n = 0, 1, 2, . . . , can be determined from the definition: We have
by (7),

1

2πi
I(−n) =

1

2πi
lim
δ↓0

Ir,δ(−n) =
1

2πi

∫
|z|=r

(−z)−n−1

ez − 1
dz,
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and thus, by (6), inserting Γ(n+ 1) = n!,

ζ(−n) = (−1)nn!

[
1

2πi

∫
|z|=r

z−n−1

ez − 1
dz

]
.

Since r < 2π, the term in brackets is the coefficient of zn in the Laurent expansion of(
ez − 1

)−1
about zero. In III.6.10 we have written down this expansion in terms of

Bernoulli numbers:

1

ez − 1
=

1

z
− 1

2
+

∞∑
ν=1

B2ν

(2ν)!
z2ν−1.

This yields

Proposition 3.3. We have ζ(0) = −1/2, ζ(−n) = 0 for n > 0 even, and
ζ(−n) = −Bn+1/(n+ 1) for n > 0 odd.

Figure 12.

Now we shall deduce the functional equation. To this end, we consider not only the
path γ = γr,δ, but also paths γn we obtain by replacing the part of γ to the left of
Re z = (2n+1)π with the positively oriented boundary of the square Sn with vertices
(2n+ 1)π(±1± i), omitting, of course, the segment [(2n+ 1)π − iδ, (2n+ 1)π + iδ] –
cf. Fig. 12. The path γn− γ encloses the poles ±2πiν, ν = 1, . . . , n, of the integrand
f(z) = (−z)s−1/(ez − 1) (we keep s fixed).

By the residue theorem

1

2πi

∫
γn

f(z)dz − 1

2πi

∫
γ

f(z)dz =
∑

−n�ν�n

ν �=0

res2πiν f. (8)
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Now the residue at 2πiν is (−2πiν)s−1; since arg(−i) = −π/2, we obtain the value
(2πν)s−1exp(−iπ(s−1)/2) for ν>0; similarly (−2πiν)s−1=(2π|ν|)s−1exp(iπ(s−1)/2)
for ν < 0. Therefore, we may write the sum in (8) as

n∑
ν=1

(2πν)s−1 · 2 cos π(s− 1)

2
= 2sπs−1 sin

πs

2

n∑
ν=1

νs−1.

Assuming Re s < 0, the last sum tends to ζ(1− s) for n → ∞.

On the other hand, we shall show that for Re s < 0

lim
n→∞

∫
γn

f(z)dz = 0. (9)

Thus (8) implies

− 1

2πi
I(s) = 2sπs−1ζ(1− s) sin

πs

2

for Re s < 0. Combining this with (6), we obtain the claim of the following theorem
in case Re s < 0; the case Re s � 0 then follows by the identity theorem.

Theorem 3.4. The following functional equation holds throughout C :

ζ(s) = Γ(1− s)ζ(1− s)2sπs−1 sin
πs

2
. (10)

Proof: It remains to verify (9). The denominator of f(z) = (−z)s−1/(ez − 1) is
bounded away from zero on the edges of the square Sn:∣∣ez − 1

∣∣ = ∣∣−ex − 1
∣∣ � 1 on the horizontal edges,∣∣ez − 1

∣∣ � e(2n+1)π − 1 � e3π − 1 on the right hand edge,∣∣ez − 1
∣∣ � 1− e−(2n+1)π � 1− e−3π on the left hand edge.

Furthermore, |z| � const ·n on the boundary of Sn, so for σ = Re s < 0∣∣(−z)s−1
∣∣ = |z|σ−1e−t arg(−z) � const ·nσ−1.

Therefore, by the standard estimate∣∣∣∣∫
γ′
n

f(z)dz

∣∣∣∣ � const ·nσ → 0,

where γ′n denotes the part of γn on the boundary of Sn.

The integrals of f over the infinite horizontal segments ]+∞+ iδ, (2n+1)π+ iδ] and
[(2n+ 1)π − iδ, +∞− iδ[ tend to zero too, as

∫
γ
f(z)dz exists.
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We can achieve a more symmetrical form of the functional equation if we make use
of Legendre’s duplication formula (Prop. 1.5) in the form

Γ(1− s) = π−1/22−sΓ
(1− s

2

)
Γ
(
1− s

2

)
and of the equation

Γ
(s
2

)
Γ
(
1− s

2

)
sin

πs

2
= π.

Inserting this into (10), an easy computation yields

Corollary 3.5.

π−s/2Γ
(s
2

)
ζ(s) = π−(1−s)/2Γ

(1− s

2

)
ζ(1− s).

To conclude this section, let us have a look at the zeros of ζ(s). The Euler product
shows ζ(s) 	= 0 for Re s > 1, by Prop. 2.4 there are no zeros on the line Re s = 1. Now
apply the functional equation (10) for Re s � 0, i.e. Re(1− s) � 1. The only zeros of
the right hand side stem from the sine factor, so the only zeros of ζ(s) in the closed
left half plane are the “trivial zeros” s = −2, −4, −6, . . . (cf. Prop. 3.3).

In other words, all “non-trivial zeros” of ζ(s) must be contained in the “critical
strip”

{s = σ + it : 0 < σ < 1}.
The statement ζ(s) 	= 0 for σ = 1 is essential in all analytical proofs of the Prime
Number Theorem. More is true: Explicit knowledge of “large” zero-free regions to
the left of σ = 1 leads to “good” estimates of the deviation

π(x)− x

log x
or π(x)− Li(x)

(for details we must refer the reader to treatises on analytic number theory). Therefore
the situation of the zeros of ζ(s) is of eminent number theoretical interest.

Already in his 1859 paper, Riemann stated his famous conjecture that there are
infinitely many non-trivial zeros and all of them lie on the line σ = 1

2 . This conjecture
– the Riemann Hypothesis – has been corroborated by many theoretical and numerical
investigations, but up to now it remains unproven. Anyhow, Hardy showed in 1914
that an infinity of zeros lie on this line.

If the Riemann Hypothesis is correct, then∣∣∣∣π(x)−
x∫

2

dt

log t

∣∣∣∣ � Cx1/2 log x (11)

(cf. Ex. 2.5). Conversely, (11) implies the Riemann Hypothesis.
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Exercises

1. If s is a non-real zero of the ζ-function, then so are s̄, 1− s, 1− s̄.

2. Let ξ(s) = s(s−1)π−s/2Γ
(
s
2

)
ζ(s). Show that ξ(s) is an entire function whose zeros are precisely

the non-real zeros of ζ(s). Moreover, ξ(1− s) = ξ(s), and ξ is real-valued on the line σ = 1
2
.

4. Elliptic functions

We consider functions f defined on the complex plane. A complex number ω is called
a period of f if f(z+ω) ≡ f(z). Every function has the trivial period 0; the periods of
a given function f form a subgroup Gf of the additive group C. A constant function
has Gf = C, but the period group of a non constant meromorphic function f is a
discrete subset of C: If there were a convergent sequence in Gf , say ων → ω0, then
for an arbitrary z0, f(z0) = f(z0 + ων) = f(z0 + ω0) would hold – the last equality
by the continuity of f – and f would be constant by the identity theorem.

Now the converse question arises: Given a discrete subgroup G 	= {0} of C, are there
non constant meromorphic functions whose period group is (or contains) G? The
simplest examples of such subgroups are the infinite cyclic groups Zω, ω ∈ C \ {0},
which are the period groups of f(z) = exp(2πiz/ω). There is only one type of non
cyclic discrete subgroup of C, namely the lattices (cf. Ex. 1):

Definition 4.1. A lattice Ω in C is an additive subgroup of C of the form

Ω = {mω1 + nω2 : m, n ∈ Z},

where ω1, ω2 ∈ C are linearly independent over R.

We call (ω1, ω2) a basis of Ω and write Ω = 〈ω1, ω2〉. Of course, a given lattice has
many bases, e.g. 〈ω1 + ω2, ω2〉 = 〈ω1, ω2〉 – see Ex. 2.

If Ω = 〈ω1, ω2〉 is a lattice, ω1 and ω2 do not lie on a straight line through 0, hence
they span a parallelogram

P = P (ω1, ω2) = {z = t1ω1 + t2ω2 : 0 � t1, t2 < 1},

the (half-open) period-parallelogram. The translates ω+P = {ω+ z : z ∈ P}, ω ∈ Ω,
tessellate the plane: Every z ∈ C has a unique representation z = ω + z′ with ω ∈ Ω
and z′ ∈ P .

Definition 4.2. An elliptic function with respect to the lattice Ω is a meromorphic
function f on C with

f(z + ω) ≡ f(z) for all ω ∈ Ω. (1)
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x

y

0

ω1

ω1 + ω2ω2

P

Figure 13. Lattice with period parallelogram

The period group Gf thus contains Ω, but may be larger. If Ω = 〈ω1, ω2〉, then (1)
follows from f(z+ω1) ≡ f(z) ≡ f(z+ω2). Any value assumed by f is assumed in P ,
and also in any a+ P = {a+ z : z ∈ P}.
In the sequel, let Ω = 〈ω1, ω2〉 denote a fixed lattice; “elliptic” will mean “elliptic
with respect to Ω”. We first prove some general statements on elliptic functions; the
existence of non constant such functions will be established later.

Proposition 4.1. The elliptic functions constitute a field K(Ω) containing C (as field
of constant functions). If f ∈ K(Ω), then f ′ ∈ K(Ω).

Proof: This follows immediately from (1).

Proposition 4.2. The only holomorphic elliptic functions are the constants.

Proof: A holomorphic elliptic function is bounded on the compact closure of the
period parallelogram, hence on C. Liouville’s theorem yields the claim.

In other words: A non constant elliptic function must have poles. The number of
poles in P is, of course, finite.

Proposition 4.3. Let f be elliptic with poles z1, . . . , zn in P . Then

n∑
1

reszν f = 0.

Hence a non constant f ∈ K(Ω) has at least two poles in P (counting multiplicity).
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Proof of Prop. 4.3: Assume Ω = 〈ω1, ω2〉 with Im(ω2/ω1) > 0. Then
◦
P is a domain

with positive boundary

∂P = [0, ω1] + [ω1, ω1 + ω2] + [ω1 + ω2, ω2] + [ω2, 0].

We suppose no pole of f is on ∂P and apply the residue theorem:

2πi
n∑
1

reszν f =

∫
∂P

f(z) dz

=

∫
[0, ω1]

f(z) dz +

∫
[ω1, ω1 + ω2]

f(z) dz −
∫

[ω2, ω1 + ω2]

f(z) dz −
∫

[0, ω2]

f(z) dz.

As f(z + ω1) = f(z) = f(z + ω2), the first integral cancels against the third and the
second against the fourth: the sum is 0. – If some of the poles are on ∂P , we choose
a near 0 such that the zν are in the interior of a+P , and integrate over ∂(a+P ).

Proposition 4.4. A non constant elliptic function f assumes every w ∈ Ĉ in P
equally often (counting multiplicity).

Proof: Given w, choose a + P such that f(z) 	= w, ∞ on ∂(a + P ). The proof of
Prop. 4.3 shows, since f ′(z)/(f(z)− w) ∈ K(Ω),

1

2πi

∫
∂(a+P )

f ′(z)dz
f(z)− w

dz = 0.

By Cor. IV.6.2, the left hand side is the difference of the number of points with
f(z) = w and the number of poles of f in a+ P (counting multiplicity).

Definition 4.3. The order of an elliptic function is the number of its poles in P
(counting multiplicity).

It is easily seen that this number depends only on Ω and not on the choice of the
basis (ω1, ω2).

The device used to prove the last propositions also yields

Proposition 4.5. Let a1, . . . , ak be the different zeros in P of the elliptic function
f , with multiplicities m1, . . . , mk, and let b1, . . . , b� be the different poles of f in P ,
with multiplicities n1, . . . , n�. Then

k∑
κ=1

mκaκ −
�∑

λ=1

nλbλ ∈ Ω.
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Proof: We assume that none of aκ , bλ is on ∂P (otherwise we replace P by a suitable

a+ P ). Then g(z) = z
f ′(z)
f(z)

has no poles on ∂P . The only singularities of g in P are

simple poles, viz. at the aκ with residues mκaκ and at the bλ with residues −nλbλ.
Thus ∑

mκaκ −
∑

nλbλ =
1

2πi

∫
∂P

zf ′(z)
f(z)

dz.

Now consider the opposite segments [0, ω1] and [ω1+ω2, ω2] of ∂P . Since f is elliptic,
one has

(z + ω2)f
′(z + ω2)

f(z + ω2)
− zf ′(z)

f(z)
= ω2

f ′(z)
f(z)

.

Therefore

1

2πi

( ∫
[0, ω1]

g(z) dz +

∫
[ω1 + ω2, ω2]

g(z) dz

)
= − ω2

2πi

∫
[0, ω1]

f ′(z)
f(z)

dz.

Since f(0) = f(ω1), f maps the segment [0, ω1] onto a closed path γ and

ω2

2πi

∫
[0, ω1]

f ′(z)
f(z)

dz =
ω2

2πi

∫
γ

dw

w
= ω2 · n(γ, 0) ∈ Zω2.

Similarly, integration over the remaining segments of ∂P leads to an integral multiple
of ω1.

For instance, if f is of order 3 and has a triple pole at the origin, it must have three
zeros z1, z2, z3 ∈ P satisfying z1 + z2 + z3 ∈ Ω (of course, some of the zeros may
coincide).

We now construct elliptic functions by means of partial fraction series. We have the
obvious candidates∑

ω∈Ω

1

(z − ω)k
(2)

for k = 2, 3, . . . : if (2) converges to a meromorphic function fk, we have for any
ω0 ∈ Ω

fk(z + ω0) =
∑
ω∈Ω

1(
z − (ω − ω0)

)k = fk(z),

as ω − ω0 ranges over all of Ω if ω does.

Proposition 4.6. The series (2) converge absolutely locally uniformly for k � 3.
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The proof depends on

Proposition 4.7. The series
∑

ω∈Ω\{0}
ω−k converges absolutely for k > 2.

Summation over all lattice points 	= 0 occurs here and frequently in the sequel; we
write for short∑′

=
∑′

ω∈Ω
=

∑
ω∈Ω\{0}

.

Proof of Prop. 4.7: Let Ω = 〈ω1, ω2〉 and denote P� the parallelogram with vertices
±
ω1 ± 
ω2, 
 = 1, 2, 3, . . . . Then δ := dist(∂P1, 0) > 0 and dist(∂P�, 0) = 
δ. The
lattice points ω ∈ ∂P� are 8
 in number, they satisfy |ω|k � (
δ)k. Hence, for k > 2
we have∑′|ω|−k =

∞∑
�=1

∑
ω∈∂P�

|ω|−k � 8δ−k
∞∑
�=1


−k+1 < +∞.

Proof of Prop. 4.6: Given R > 0, there are only finitely many ω ∈ Ω with |ω| < 2R.
For |ω| > 2R and |z| � R, the estimate

|z − ω| � |ω| − |z| � |ω|/2
holds, hence, for |z| � R and k � 3,∑

|ω|�2R

|z − ω|−k � 2k
∑

|ω|�2R

|ω|−k < +∞.

In view of Def. III.6.1, this yields the claim.

Prop. 4.6 exhibits elliptic functions of order k for k = 3, 4, . . . . According to Prop. 4.3,
a function g of order 2 may possibly exist. As (2) diverges for k = 2, we try to
construct such a g by integration of f3 (we could also employ the Mittag-Leffler
theorem).

The function
∑′

(z − ω)−3 is holomorphic on G = (C \ Ω) ∪ {0}, all its residues are
zero. Integrating it along a path in G from 0 to z yields as a primitive the absolutely
and locally uniformly convergent series

−1

2

∑′
(

1

(z − ω)2
− 1

ω2

)
.

Hence

g(z) = −1

2

(
1

z2
+
∑′( 1

(z − ω)2
− 1

ω2

))
(3)
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is a primitive of f3 on C \ Ω which is meromorphic on C, having poles in the lattice
points, each of order 2. It is, however, not clear whether g is periodic; the periodicity
of f3 translates to

g′(z + ω)− g′(z) ≡ 0

for every ω ∈ Ω. This implies g(z + ω)− g(z) = C(ω) with a constant C(ω). Taking
a basis (ω1, ω2) of Ω and setting z = −ωj/2, j = 1, 2, we get

g(ωj/2)− g(−ωj/2) = C(ωj), j = 1, 2.

But g is clearly an even function, hence C(ω1) = C(ω2) = 0 and the periodicity of g
follows.

We introduce the standard notation:

Definition 4.4. The Weierstrass ℘-function of the lattice Ω is

℘(z) =
1

z2
+
∑′

ω∈Ω

(
1

(z − ω)2
− 1

ω2

)
. (4)

By construction, ℘ is an even elliptic function of order 2 with double poles at the
lattice points. Its derivative,

℘′(z) = −2
∑
Ω

(z − ω)−3, (5)

is an odd elliptic function of order 3.

In a way, ℘ is the simplest elliptic function, but together with its derivative, it gener-
ates the field K(Ω) of all elliptic functions! As any f ∈ K(Ω) is the sum of an even
and an odd function in K(Ω):

f(z) =
1

2

(
f(z) + f(−z)

)
+

1

2

(
f(z)− f(−z)

)
,

the claim is a consequence of the following

Proposition 4.8.

i. Every even elliptic function f is a rational function of ℘: f = R(℘) with
R(X) ∈ C(X).

ii. Every odd elliptic function g can be written in the form g = ℘′ · R(℘) with
R(X) ∈ C(X).

Proof: If g ∈ K(Ω) is odd, then g/℘′ is even. Hence ii follows from i.

To prove i we first treat the case of an even f ∈ K(Ω) with poles z1, . . . , zk in P \{0}.
As ℘(z)−℘(zj) vanishes in zj , the function

(
℘(z)−℘(zj)

)mj
f(z) will have a removable
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singularity at zj for mj sufficiently large. Hence we can choose exponents mj such
that

f1(z) =

k∏
j=1

(
℘(z)− ℘(zj)

)mj
f(z)

has no poles in P \ {0}. The proof is then completed by

Lemma 4.9. Let f1 be an even elliptic function with poles (if any) only in the lattice
points. Then f1 is a polynomial in ℘: f1 = a0 + a1℘+ . . .+ an℘

n with aν ∈ C.

Proof: This is clear if f1 is constant. If not, consider the Laurent expansion of f1
about 0. As f1 is even, only even powers of z occur:

f1(z) = b−2nz
−2n + . . . , b−2n 	= 0,

in particular, f1 is of even order. Now the Laurent expansion of ℘(z) about 0 begins
with z−2 by (4). Therefore the coefficient of z−2n in the Laurent expansion of

f2(z) = f1(z)− b−2n

(
℘(z)

)n
vanishes: The even elliptic function f2 is of lower order than f1 and has singularities
at most in the lattice points. Induction on the order proves the lemma.

In particular, we can apply the lemma to the function (℘′)2, which is even and of
order 6. Accordingly, there is an equation

(℘′)2 = a0 + a1℘+ a2℘
2 + a3℘

3,

a differential equation for ℘! To explicitly determine the coefficients aν as in the proof
of the lemma, we need the first few terms of the Laurent expansion of ℘ about 0. We
write

℘(z) =
1

z2
+ c2z

2 + c4z
4 + . . . ; (6)

the constant term vanishes by (4). We then have

℘3(z) =
1

z6
+ 3c2

1

z2
+ 3c4 + . . . ,

℘′(z) =
−2

z3
+ 2c2z + 4c4z

3 + . . . ,(
℘′(z)

)2
=

4

z6
− 8c2

1

z2
− 16c4 + . . . ,
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whence

℘′2(z)− 4℘3(z) = −20c2z
−2 − 28c4 + . . . ,

℘′2(z)− 4℘3(z) + 20c2℘(z) = −28c4 + . . . .

The right hand side is a holomorphic elliptic function, hence is the constant −28c4.
Thus ℘ satisfies the differential equation

℘′2 = 4℘3 − 20c2℘− 28c4.

It is desirable to express the coefficients c2, c4 or even all c2ν in (6) in terms of the
lattice Ω. To this end we consider

h(z) =
∞∑
1

c2νz
2ν = ℘(z)− 1

z2
=
∑′

(
1

(z − ω)2
− 1

ω2

)
.

We have for μ � 1

h(μ)(z) = (−1)μ(μ+ 1)!
∑′

(z − ω)−μ−2.

Since (2ν)! c2ν = h(2ν)(0), the equation

c2ν = (2ν + 1)
∑′

ω−2ν−2. (7)

follows. – We summarize:

Theorem 4.10. The Weierstrass ℘-function of the lattice Ω satisfies the differential
equation

℘′2 = 4℘3 − g2℘− g3, (8)

with g2 = g2(Ω) = 60
∑′

ω−4 and g3 = g3(Ω) = 140
∑′

ω−6.

The lattice Ω is determined uniquely by the numbers g2(Ω) and g3(Ω) (cf. Ex. 11),
they are therefore called the invariants of Ω.

We note two formulas resulting from (8) by differentiation:

℘′′ = 6℘2 − 1

2
g2 = 6℘2 − 10c2

℘′′′ = 12℘℘′.
(9)

To factorize the polynomial

q(X) = 4X3 − g2X − g3

on the right hand side of (8), we have to determine the zeros of ℘′. To this end, we
fix a basis (ω1, ω2) of Ω and define

�1 = ω1/2, �2 = (ω1 + ω2)/2, �3 = ω2/2;

these are the points z ∈ P satisfying 2z ∈ Ω, z /∈ Ω.
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ω1

ω1 + ω2

ω2

ρ1

ρ2ρ3

Figure 14. The points �j

Lemma 4.11. An odd g ∈ K(Ω) has zeros or poles (of odd multiplicity) in 0, �1, �2, �3.
An even f ∈ K(Ω) assumes its values in these points with (even) multiplicity > 1.

Proof: If z0 ∈ {0, �1, �2, �3} and g ∈ K(Ω) is odd with g(z0) 	= ∞, we have, since
2z0 ∈ Ω,

−g(z0) = g(−z0) = g(−z0 + 2z0) = g(z0),

i.e. g(z0) = 0. For even f ∈ K(Ω) the derivative f ′ is odd, hence f(z0) = ∞ or
f ′(z0) = 0. – The statements about the parity of the multiplicities are left to the
reader.

In particular, ℘′ has zeros in �1, �2, �3; as ℘′ is of order 3, these are all simple and
are the only zeros of ℘′ in P . Setting

℘(�i) = ei, i = 1, 2, 3,

the ei are exactly the values assumed by ℘ with multiplicity 2. They are all distinct,
since ℘ assumes every value only twice in P . Hence e1, e2, e3 are the three distinct
zeros of q(X):

q(X) = 4(X − e1)(X − e2)(X − e3), (10)

and the differential equation of ℘ may be rewritten:

Theorem 4.12.

(
℘′
)2

= 4

3∏
1

(℘− ej). (11)

By elementary algebra, (10) or (11) imply the equations

e1 + e2 + e3 = 0

−4(e1e2 + e2e3 + e3e1) = g2

4e1e2e3 = g3.
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The discriminant

Δ = 16(e1 − e2)
2(e2 − e3)

2(e3 − e1)
2

of q(X) can be computed to

Δ = g2
3 − 27g3

2.

As the ej are all distinct, we have Δ 	= 0.

We mentioned above that the lattice Ω is characterized by its invariants g2(Ω), g3(Ω).
One can show that for any pair of complex numbers g2, g3 with g2

3− 27g3
2 	= 0 there

exists a lattice Ω with g2 = g2(Ω), g3 = g3(Ω) – see [FL2, HuC].

As a consequence of the above we have an algebraic description of K(Ω):

Proposition 4.13. K(Ω) is isomorphic to the quotient field of the polynomial ring
C(X)[Y ] over the rational function field C(X) by the ideal generated by

Y 2 − (4X3 − g2X − g3).

Namely, the homomorphism of C(X)[Y ] into K(Ω), given by X �→ ℘, Y �→ ℘′, is
surjective by Prop. 4.8; its kernel is the given ideal by Thm. 4.10.

We now ask if there are elliptic functions with prescribed zeros and poles. More
precisely, let P be the (half-open) period parallelogram of Ω = 〈ω1, ω2〉, let a1, . . . , ak,
b1, . . . , b� be different points of P and m1, . . . , mk, n1, . . . , n� positive integers. Does
there exist an f ∈ K(Ω) with zeros exactly at the aκ with multiplicities mκ , and
poles exactly at the bλ with multiplicities nλ? Prop. 4.4 and 4.5 give two necessary
conditions:

k∑
1

mκ =

�∑
1

nλ (12)

k∑
1

mκaκ −
�∑
1

nλbλ ∈ Ω. (13)

We will show that these conditions are also sufficient. To this end, we shall construct
an entire function σ(z), having simple zeros at the points of Ω (and no other zeros),
and satisfying the transformation rules

σ(z + ωj) = exp(ηjz + cj)σ(z), j = 1, 2 (14)

with constants ηj , cj .

Replacing, if necessary, one of the aκ ’s by an equivalent point mod Ω, we may as-
sume∑

mκaκ −
∑

nλbλ = 0

in place of (13). Then the following proposition holds:
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Proposition 4.14. With the above notation,

f(z) =

∏k
1 σ(z − aκ)

mκ∏�
1 σ(z − bλ)nλ

is an elliptic function with the desired zeros and poles.

Proof: For the moment we assume the existence of σ(z). Then obviously f is mero-
morphic on C with the prescribed poles and zeros. We show the periodicity of f :
Using (14), we find for j = 1, 2

f(z + ωj) =

∏
σ(z + ωj − aκ)

mκ∏
σ(z + ωj − bλ)nλ

=

∏
σ(z − aκ)

mκ∏
σ(z − bλ)nλ

expAj = f(z) expAj

where

Aj =
∑
κ

mκ(ηj(z − aκ) + cj)−
∑
λ

nλ(ηj(z − bλ) + cj).

By (12) and (13), Aj = 0.

It remains to construct σ(z). Recall

−℘(z) = − 1

z2
−
∑′

(
1

(z − ω)2
− 1

ω2

)
. (15)

An obvious primitive of −℘ is

ζ(z) =
1

z
+
∑′

(
1

z − ω
+

1

ω
+

z

ω2

)
, (16)

the so-called Weierstrass ζ-function (it is not related to Riemann’s ζ-function!). Since(
ζ(z + ωj)− ζ(z)

)′
= 0, there are constants η1, η2 such that

ζ(z + ωj) = ζ(z) + ηj .

The series in (15) converges locally uniformly and absolutely, so the same is true for
the series in (16), obtained by integration. The infinite product

σ(z) = z
∏′(

1− z

ω

)
exp

( z

ω
+

z2

2ω2

)
has the series (16) as its logarithmic derivative and therefore, by the Weierstrass
product theorem, defines an entire function, called the Weierstrass σ-function (the
product

∏′
is extended over all ω ∈ Ω \ {0}). It has simple zeros at the lattice points

and no other zeros.
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From σ′/σ = ζ we deduce

σ′(z + ωj)

σ(z + ωj)
= ζ(z + ωj) = ζ(z) + ηj =

σ′(z)
σ(z)

+ ηj .

Upon integrating, we obtain

σ(z + ωj) = σ(z) exp(ηjz + cj)

with constants cj , j = 1, 2. This completes the proof of Prop. 4.14, since the Weier-
strass σ-function has the required properties.

Note that ζ(z) and σ(z) are odd functions, and that by putting z = −ωj/2 in (14)
we find cj = (ηjωj + 2πi)/2.

Finally, we study a special case in more detail and illustrate how integration of certain
algebraic functions leads to elliptic functions. We consider a rectangular lattice Ω,
generated by ω1 ∈ R, ω2 ∈ iR. Then ω ∈ Ω implies ω ∈ Ω and

℘(z) =
1

z2
+
∑′( 1

(z − ω)2
− 1

ω2

)
(4)

satisfies ℘(z̄) = ℘(z). Hence the coefficients c2ν in the Laurent expansion (6) are
all real, and so are the invariants g2, g3. Likewise, the values of ℘ on the real and
imaginary axes are real or ∞. The same holds for the straight lines �1+iR and �3+R,
because e.g.

℘(�1 + iy) = ℘(−�1 + iy) = ℘(�1 − iy) = ℘(�1 + iy).

We study the behaviour of ℘ on these straight lines more closely. By (4), ℘(t) → +∞
and ℘(it) → −∞, if t → 0 through positive values. As ℘′ 	= 0 in ]0, �1], ℘(x) decreases
strictly from +∞ to e1 if x increases from 0 to �1. Similarly, we see that ℘(z) decreases
strictly from e1 to e2 (from e2 to e3 resp. from e3 to −∞) if z runs from �1 to �2
(from �2 to �3 resp. from �3 to 0). Thus, the positive boundary of the open rectangle
Q with vertices 0, �1, �2, �3 is mapped bijectively onto R, traversed from +∞ to −∞.
We conclude that ℘ maps Q biholomorphically onto the lower half plane.

We now focus on the real interval ]0, �1]. Here ℘ is a strictly decreasing function
mapping ]0, �1] onto [e1, +∞[. Let

E : [e1, +∞[→]0, �1], u �→ E(u) = ℘−1(u)

be the inverse function. On ]e1, +∞[, its derivative is

E′(u) =
1

℘′
(
E(u)

) =
−1√

4u3 − g2u− g3



186 Chapter V. Non-elementary functions

in view of the differential equation (8); the minus sign is there because E decreases. In
other words: 1√

4u3−g2u−g3
has the primitive −E on ]e1,+∞[, and for u0, u1 ∈]e1,+∞[

we have

u1∫
u0

du√
4u3 − g2u− g3

= E(u0)− E(u1) = ℘−1(u0)− ℘−1(u1). (17)

Summarizing: Assume the polynomial q(X) = 4X3 − g2X − g3 has three real roots
e1, e2, e3 with e1 > e2 > e3. There exists a unique lattice Ω in C, whose invariants
are the coefficients g2, g3 of q(X), moreover, Ω is a rectangular lattice. Then (17)
holds with ℘ = ℘Ω.

Taking the existence of Ω for granted, it is not hard to see that Ω has to be rectangular
(Ex. 8 & 9).

A more profound analysis shows: For every polynomial q(X) = 4X3 − g2X − g3,
g2, g3 ∈ C, with non-vanishing discriminant, path integrals∫

γ

du√
q(u)

in the complex plane can be evaluated by means of the inverse function of a suitable
Weierstrass ℘-function.

If q is a quadratic polynomial with distinct zeros, formulas like∫
(1− u2)−1/2 du = arcsinu

show that integrals of type
∫
q(u)−1/2 du can be evaluated using inverse functions

of trigonometric functions. For polynomials of degree 3 or 4 with real coefficients
and distinct zeros one can show: The indefinite integral

∫
q(u)−1/2 du has inverse

functions which can be extended to the complex plane and yield elliptic functions.
In this way, the theory of elliptic functions was developed by Gauss, Legendre, Abel,
Jacobi, Weierstrass et al. In the context of complex analysis, the restriction to real
polynomials is artificial, it means to consider only rectangular resp. rhomboid lattices
(cf. Ex. 8).

Exercises

1. Every discrete subgroup G �= {0} of the additive group C is one of the following:

α) G = Zω with ω �= 0,
β) G = {mω1 + nω2 : m, n ∈ Z} with ω1, ω2 linearly independent over R.

Hint: Choose ω1 ∈ G \ {0} with minimal absolute value. Then G ∩ Rω1 = Zω1. If G �= Zω1,
choose ω2 ∈ G \ Zω1 with minimal absolute value and show G = 〈ω1, ω2〉.
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2. Let (ω1, ω2) be a basis of a lattice Ω. Prove: Ω = 〈ω1
′, ω2

′〉 if and only if ω1
′ = aω1 + bω2,

ω2
′ = cω1 + dω2 with integers a, b, c, d satisfying ad− bc = ±1.

3. Choose a basis (ω1, ω2) of the lattice Ω according to the hint in Ex. 1. Suppose τ = ω2/ω1 ∈ H
(this can be obtained, if necessary, by replacing ω2 by −ω2). Prove |τ | � 1 and |Re τ | � 1/2.
Prove further that, by modifying the basis, −1/2 � Re τ < 1/2 and |τ | > 1 for 0 < Re τ < 1/2
can be achieved.

4. Let Ω be a lattice and 2z1 /∈ Ω. Find all even elliptic functions of order 2 having poles only in
z1 + ω, −z1 + ω (ω ∈ Ω).

5. Let an even f ∈ K(Ω) be given. If z0 is a pole of f of multiplicity m, then so is −z0, and in case
2z0 ∈ Ω, m is even. Now find a minimal set {z1, . . . , zr} ⊂ P \ {0} and minimal exponents such
that

r∏
1

(
℘(z)− ℘(zj)

)mj f(z)

has no poles outside the lattice points.

6. Consider the Laurent series (6) of ℘ and the formulas (9). Derive a recursion formula for c2ν ,
ν � 3. Deduce
(∗)There are polynomials Pν(X,Y ) with positive rational coefficients, independent of the lattice,

such that c2ν = Pν(c2, c4).

7. Let Ω be a lattice with invariants g2, g3 and Weierstrass function ℘ = ℘Ω. Prove that the
following conditions are equivalent (use (∗) in Ex. 6):
(i) g2, g3 ∈ R,

(ii) the c2ν in (6) are all real,

(iii) ℘(z̄) = ℘(z),

(iv) ω ∈ Ω implies ω ∈ Ω.
8. A lattice satisfying the conditions of Ex. 7 is called real. Rectangular lattices and rhomboid lat-
tices, i.e. lattices with a basis 〈ω1, ω1〉, are real. Prove the converse: A real lattice is rectangular
or rhomboid.

9. Let Ω = 〈ω1, ω1〉 be a rhomboid lattice, �2 = (ω1 + ω1)/2. Show that the values of ℘Ω

are real or ∞ on the straight lines R, ω1 + R, ω1 + iR. In particular, e2 = ℘(�2) ∈ R,
e3 = e1 = ℘(ω1/2). Show further that ℘(x) decreases from +∞ to e2 for 0 < x � �2. Dis-
cuss

∫ u1
u0
(4u3 − g2u− g3)−1/2 du for u0, u1 > e2 (gj = gj(Ω)).

10. Let Ω be a square lattice, i.e. with basis ω1, iω1, where ω1 ∈ R. Then the coefficients c4ν in
(6) vanish, ℘ takes purely imaginary values on the diagonals of the fundamental square, and
e3 < e2 = 0 < e1 = −e3, g2 > 0, g3 = 0.

11. Deduce from (∗) in Ex. 6: If Ω and Ω′ are lattices with g2(Ω) = g2(Ω′) and g3(Ω) = g3(Ω′), then
Ω = Ω′.

12. Show that

ζ(z + u) + ζ(z − u)− 2ζ(z) = ℘′(z)
℘(z)− ℘(u)

.

Hint: Both sides are elliptic functions of z (or of u).

13. An elliptic function f with only simple poles, situated at a1, . . . , ak ∈ P , can be written as

f(z) = c0 +

k∑
κ=1

cκζ(z − aκ)

with suitable constants c0, . . . , ck.
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14. Show that

℘(z)− ℘(u) = −σ(z − u)σ(z + u)

σ2(z)σ2(u)
.

Use this formula to derive the result of Ex. 12.

15. Let f and g be meromorphic solutions of the differential equation w′2 = 4w3 − g2w− g3, defined
on all of C. Assume that f is even and has a pole and g is not constant. Prove g(z) = f(z − z0)
with a suitable z0 ∈ C. Hint: There are z1, z2 ∈ C such that f(z1) = g(z2) �= ∞. What about
f ′(z1) and g′(z2)? What about f (k)(z1) and g(k)(z2), k � 2?

5. Elliptic functions and plane cubics

Let Ω be a lattice in C. The function ℘(z) belonging to Ω is holomorphic in C \ Ω.
Together with its derivative it defines a holomorphic map

ϕ : C \ Ω → C2, z �→ (
℘(z), ℘′(z)

)
.

By the differential equation of ℘ (Thm. 4.10), the image of ϕ is contained in the cubic
curve

E = {(u, v) ∈ C2 : v2 = 4u3 − g2u− g3}.
In fact, ϕ maps onto E: For a given point (u, v) ∈ E there is a point z ∈ C \ Ω with
℘(z) = u. Then ℘′(z) = v or ℘′(z) = −v, that is ϕ(z) = (u, v) or ϕ(−z) = (u, v).

Moreover ϕ(z1) = ϕ(z2) if and only if z2 − z1 ∈ Ω: Assume ℘(z1) = ℘(z2), then
z2 − z1 ∈ Ω or z1 + z2 ∈ Ω, and the condition ℘′(z1) = ℘′(z2) excludes z1 + z2 ∈ Ω
unless ℘′(zj) = 0, in which case both hold (recall that ℘ is an even function).

We want to extend the map ϕ : C \Ω → E to all of C. To this end we embed C2 into
the complex projective plane P2(C), take the closure E of E in P2(C) and map the
points of Ω to the unique point of E \ E.

In more detail: The points P ∈ P2(C) are described by triples (w0, w1, w2) 	= (0, 0, 0)
of complex numbers, two triples describing the same point if and only if they differ
by a scalar factor 	= 0. We write P = [w0 : w1 : w2] and call the wj homogeneous
coordinates of P .

Now we map the affine plane C2 injectively into P2(C) by

(u, v) �→ [1 : u : v]

and identify C2 with its image. The complement of C2 in P2(C) is the “line at infinity”
{P ∈ P2(C) : w0(P ) = 0}.
The embedding C2 ↪→ P2(C) takes E to the set of points with w0(P ) 	= 0 whose
homogeneous coordinates satisfy

w0w2
2 = 4w1

3 − g2w1w0
2 − g3w0

3. (1)
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This equation makes sense for w0 = 0, too; the only solution with w0 = 0 is
P0 = [0 : 0 : 1].

The set E = E ∪ {P0} of all solutions is called a projective cubic (in Weierstrass
normal form).

Now we can extend the map ϕ : C\Ω → E to a continuous map ϕ : C → E by defining
ϕ(ω) = P0 for ω ∈ Ω. Note that, in a neighbourhood of ω, ϕ can be written as

ϕ(z) = [(z − ω)3 : (z − ω)3℘(z) : (z − ω)3℘′(z)];

the homogeneous coordinates of ϕ(z) thus are holomorphic functions of z.

For the extended map ϕ : C → E it remains true that ϕ(z1) = ϕ(z2) if and only if
z2 − z1 ∈ Ω. Hence ϕ induces a bijection of the quotient group C/Ω onto E.

C (or C/Ω) is an abelian group under addition. By ϕ, we can transfer this structure
to E, simply by defining

P +Q := ϕ
(
ϕ−1(P ) + ϕ−1(Q)

)
for P, Q ∈ E. Thus P0 is the neutral element of the group E.

The group structure thus defined on E may seem rather artificial. But it admits of
a nice geometric interpretation, which will eventually show that it does not depend
on the parametrization of E by (℘, ℘′), but only on the geometry of the projective
cubic.

To this end, we need one more property of the ℘-function, namely the following
addition theorem.

Proposition 5.1. Let z1, z2 ∈ C \ Ω, ℘(z1) 	= ℘(z2). Then

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

)2

.

If, in this formula, we let z2 tend to z1, assuming 2z1 /∈ Ω, i.e. ℘′(z1) 	= 0, we arrive
at

Corollary 5.2. For 2z /∈ Ω, we have

℘(2z) = −2℘(z) +
1

4

(
℘′′(z)
℘′(z)

)2

= −2℘(z) +
1

4

(
12℘(z)2 − g2

2℘′(z)

)2

.

Proof of Prop. 5.1: We assume z1, z2 lie in a period parallelogram of Ω. Consider
the function

f(z) = ℘′(z)− a℘(z)− b,
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the constants a and b being chosen such that f(z1) = f(z2) = 0, in particular

a =
℘′(z1)− ℘′(z2)
℘(z1)− ℘(z2)

.

Now f is an elliptic function of order three with poles only at the lattice points.
Consequently, there is a third zero z3 of f in the period parallelogram. By Prop. 4.5,
z1 + z2 + z3 ∈ Ω. In other words, f(−z1 − z2) = 0, that is

℘′(−z1 − z2) = a℘(−z1 − z2) + b

or

−℘′(z1 + z2) = a℘(z1 + z2) + b.

We write pj = ℘(zj), p
′
j = ℘′(zj) for j = 1, 2, and p3 = ℘(z1 + z2), p

′
3 = ℘′(z1 + z2).

Then

p′j = apj + b for j = 1, 2, −p′3 = ap3 + b;

the points (p1, p
′
1), (p2, p

′
2), (p3, −p′3) lie on the line

L = {(u, v) ∈ C2 : v = au+ b}.
On the other hand, the differential equation for ℘ (Thm. 4.10) gives

4pj
3 − g2pj − g3 = p′j

2
= (apj + b)2.

Thus the numbers p1, p2, p3 are zeros of the cubic polynomial

g(w) = 4w3 − g2w − g3 − (aw + b)2.

We now assume p3 	= p1, p2; given z1, this excludes only finitely many values of
z2 in the period parallelogram. Then p1, p2, p3 are the three different zeros of
g(w) = 4(w − p1)(w − p2)(w − p3). Comparing the coefficients of w2, we see

4(p1 + p2 + p3) = a2.

This is the formula of the proposition. By continuity, it also holds for the previously
excluded values of z2.

We now use the information contained in the proof to geometrically describe the
addition on E. Let z1, z2, z3 = z1 + z2 /∈ Ω and pj = ℘(zj), p

′
j = ℘′(zj). Then the

points P = (p1, p
′
1), Q = (p2, p

′
2) and R′ = (p3, −p′3) are the intersection points of

the affine cubic E with the line L = {(u, v) : v = au+ b}, where

a =
p′1 − p′2
p1 − p2

if p1 	= p2, a =
12p1

2 − g2
2p′1

if p1 = p2, and b = p′1 − ap1 (2)
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Figure 15. Addition on a cubic in Weierstrass normal form

(for the case p1 = p2 see Ex. 1). Moreover, R = P +Q = (p3, p
′
3) is the intersection

of E with the vertical line u = p3 through R′. Passing to the projective plane, this
line is the (affine part of the) line w1 = p3w0 which intersects E in P0 = [0 : 0 : 1]
and, of course, in R′ and R.

Note that a complex line in P2(C) intersects the cubic E in three points, counting mul-
tiplicity, i.e. a simple point of tangency is counted twice, an inflexion point thrice.

Thus, we have the following construction:

Given P, Q ∈ E, let R′ be the third point of intersection of the line through P and Q
with E. Then R = P +Q is the third point of intersection of the line through P0 and
R′ with E. (In case P = Q or P0 = R′ take the tangential line to E.)

We have established the construction under the assumption z1, z2, z1 + z2 /∈ Ω, i.e.
P, Q, R 	= P0. The reader may verify that it holds in the other cases, too. The
parametrization ϕ : C → E does not enter into the geometric description of the addi-
tion on E, nor into the algebraic description

p3 = −p1 − p2 +
a2

4
, p′3 = −(ap3 + b), (3)

a and b being given by (2). The group laws can be verified geometrically or by
computation. Therefore, any nonsingular projective cubic in Weierstrass normal form,
i.e. given by (1) with g2

3−27g3
2 	= 0, can be made an abelian group in this manner.

Our geometric construction of the addition on the nonsingular cubic E does not
depend on the explicit equation of E either. It can be shown that, choosing a point
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Figure 16. Addition on an arbitrary cubic

P0 ∈ E arbitrarily, the construction makes E into an abelian group with P0 as the
zero element.

Exercises

1. Prove an addition theorem and a duplication formula for ℘′. Use the latter to verify that the
tangent to E at P =

(
℘(z), ℘′(z)

)
, ℘′(z) �= 0, intersects E in −(P + P ) =

(
℘(2z), −℘′(2z)).

2. Let the curve C in C2 be given by the equation

b2v
2 + b1v + b0 = g(u), b2 �= 0,

g being a polynomial of degree 3 with 3 distinct roots. Show that by an affine linear bijection, C
can be transformed into a curve in Weierstrass normal form (v2 = 4u3−g2u−g3, g23−27g32 �= 0).
Assuming the fact that there is a lattice Ω in C with g2(Ω) = g2 and g3(Ω) = g3, show that C
can be parametrized by elliptic functions in K(Ω).

3. Let C = {(u, v) ∈ C2 : v2 = f(u)}, f being a polynomial of degree 4 with 4 distinct roots. Show
the map

z = (u− u0)
−1, w = v(u− u0)

−2,

u0 suitably chosen, transforms C into a cubic w2 = g(z), g a cubic polynomial with distinct
zeros. Then, applying Ex. 2, parametrize C by elliptic functions.



Chapter VI.

Meromorphic functions of several variables

This chapter presents the analogues of the Mittag-Leffler and Weierstrass theorems for functions of
several complex variables. To this end it develops fundamental methods of multivariable complex
analysis that reach far beyond the applications we are going to give here. –Meromorphic functions of
several variables are defined as local quotients of holomorphic functions (VI.2); the definition requires
some information on zero sets of holomorphic functions (VI.1). After introducing principal parts and
divisors we formulate the main problems that arise: To find a meromorphic function with i) a given
principal part (first Cousin problem) ii) a given divisor (second Cousin problem); iii) to express a
meromorphic function as a quotient of globally defined holomorphic functions (Poincaré problem).
These problems are solved on polydisks – bounded or unbounded, in particular on the whole space
– in VI.6–8. The essential method is a constructive solution of the inhomogeneous Cauchy-Riemann
equations (VI.3 and 5) based on the one-dimensional inhomogeneous Cauchy formula – see Chap-
ter IV.2. Along the way, various extension theorems for holomorphic functions are proved (VI.1
and 4). Whereas the first Cousin problem can be completely settled by these methods, the second
requires additional topological information which is discussed in VI.7, and for the Poincaré problem
one needs some facts on the ring of convergent power series which we only quote in VI.8.

The main results on principal parts and divisors go back to P. Cousin 1895 and H. Poincaré 1883.
It was remarked somewhat later (Gronwall 1917) that the second Cousin problem meets with a
topological obstruction whose nature was finally cleared up by K. Oka in 1939 [Ok, Ra]. It was
also Oka who solved these problems on the class of domains where they are most naturally posed:
on domains of holomorphy of which polydisks are the simplest example [Ok]. The solution of the
inhomogeneous Cauchy-Riemann equation in VI.5 is given by a method due to S. Bochner [Bo]; the
result is usually referred to as Dolbeault’s lemma, because P. Dolbeault exploited it systematically in
his study of complex manifolds. The connection of compactly supported solutions and holomorphic
extension theorems was discovered by L. Ehrenpreis in 1961 [Eh]; the Kugelsatz in VI.4 is due to
F. Hartogs. Hartogs’ work of 1906 ff [Ha] can be seen as the beginning of modern complex analysis
in n variables. The language of cocycles and their solutions that we have used throughout the last
sections was worked out, in this context, by H. Cartan and J. P. Serre around 1950. All the above
problems can be solved on arbitrary plane domains [FL1].

A modern comprehensive exposition of the theory on general domains of holomorphy – even on Stein
manifolds – can be found in [GR], [Hö], and [Ra]. Our presentation follows Hörmander and Range.
For historical aspects see also [Li].

1. Zero sets of holomorphic functions

Let f be a function holomorphic on some subdomain G of Cn; we assume f 	≡ 0. The
zero set

V (f) = {z : f(z) = 0}

W. Fischer, I. Lieb, A Course in Complex Analysis, DOI 10.1007/978-3-8348-8661-3_6, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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of f is clearly a relatively closed nowhere dense subset of G. We can say more:

Proposition 1.1. G \ V (f) is connected.

This will be deduced from the following fundamental result:

Theorem 1.2 (Riemann’s extension theorem). If a function h is holomorphic on

G \ V (f) and locally bounded on G, then it extends to a holomorphic function ĥ on
all of G:

ĥ ∈ O (G) , ĥ|G \ V (f) = h.

Proof: Since V (f) is nowhere dense in G, the extension ĥ, if it exists, is uniquely
determined by h. So we only have to find a local holomorphic extension (near an
arbitrary point z0 ∈ V (f)). We choose coordinates z = (z′, zn), z′ ∈ Cn−1, zn ∈ C,
such that z0 = 0 = (0′, 0) and f(0′, zn) 	≡ 0. Because f is continuous, there are
polydisks D′ ⊂ Cn−1 and Dn ⊂ C with centres 0′ and 0, respectively, with the
following properties: D = D′ ×Dn ⊂⊂ G and f(z) 	= 0 on D′ × ∂Dn. Therefore, for
each z′ ∈ D′, the function zn �→ f(z′, zn) is holomorphic on Dn and not identically
zero; its zeros are consequently isolated in Dn. This shows that the function h(z′, zn)
is, for fixed z′ ∈ D′, holomorphic in zn, as long as (z′, zn) /∈ V (f), and bounded
on Dn; Riemann’s extension theorem in one variable yields a holomorphic (in zn)

extension ĥ(z′, zn) to all of Dn. It remains to show that ĥ is holomorphic on D as a
function of z = (z′, zn). But this follows from the Cauchy integral representation

ĥ(z′, zn) =
1

2πi

∫
∂Dn

h(z′, ζn)
ζn − zn

dζn :

the right hand side is holomorphic in (z′, zn).

The proof of Prop. 1.1 is now easy: if G \ V (f) could be decomposed into two open
non-empty sets U0 and U1,

G \ V (f) = U0 ∪ U1, U0 ∩ U1 = ∅,

the function f = 0 on U0 and = 1 on U1 would be holomorphic on G \ V (f) but
clearly not holomorphically extendible to G.

We will consider a slightly more general situation.

Definition 1.1.

i. An analytic hypersurface S of a domain G is a non-empty subset S ⊂ G with
the following property: for each z0 ∈ G there exists an open neighbourhood U of
z0 and a holomorphic function f on U , nowhere ≡ 0, such that

S ∩ U = V (f) = {z ∈ U : f(z) = 0}.
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ii. A subset M ⊂ G is called thin, if it is relatively closed in G and if for each
z ∈ M there is a neighbourhood U and a holomorphic function f 	≡ 0 on U with
M ∩ U ⊂ V (f).

Analytic hypersurfaces are clearly closed in G, hence thin. The same proof as above
carries Prop. 1.1 over to thin sets:

Proposition 1.3. If M is a thin subset of a domain G then G \M is connected.

Exercises

1. The 2n-dimensional (Lebesgue-)measure of a thin set is zero. Proof! Hint: Apply the Weierstrass
preparation theorem.

2. The function z−1
2 cannot be holomorphically extended to all of C2. Is it locally integrable? Is it

locally square integrable?

2. Meromorphic functions

Meromorphic functions of one complex variable were defined, in Chapter II, as func-
tions which are holomorphic up to isolated singularities; the singularities were required
to be poles. Since, in more than one variable, there are no isolated singular points,
we use the alternative characterisation of meromorphic functions as local quotients of
holomorphic functions for our definition.

Definition 2.1. A meromorphic function on a domain G ⊂ Cn is a pair (f, M),
where M is a thin set in G and f a holomorphic function on G\M with the following
property: for each point z0 ∈ G there is a neighbourhood U of z0 and there are
holomorphic functions g and h on U , such that V (h) ⊂ M and

f(z) =
g(z)

h(z)
for z ∈ U \M. (1)

Examples:

a) f = g/h, M = V (h), where g and h are holomorphic on G and h 	≡ 0, is a
meromorphic function.

b) In particular, holomorphic functions are meromorphic.

The representation (1) is of course not unique. A closer study of the ring of convergent
power series allows to define a representation (1) by a reduced fraction which is
essentially unique. We do not need that here. We therefore introduce, for general
(f, M), the set

P = {z ∈ G : h(z) = 0 for all (g, h) with (1)}
Then P is obviously contained in M and closed, and f can be extended to a holomor-
phic function f̂ on G \ P . We identify (f, M) with (f̂ , P ).
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Definition 2.2. The set P as defined above is called the polar set of f .

Since P is uniquely determined by the holomorphic function f on G \ M , we will
denote meromorphic functions (f, M) simply by f , assuming, if necessary, that f is
holomorphically continued to all of G \ P . It can even be shown that the polar set
is a hypersurface or empty, but this requires a more detailed study of the ring of
convergent power series. The polar set can alternatively be described as the set of
points where f is unbounded.

We continue our examples:

c) The function f(z1, z2) = z1/z2 is meromorphic in C2, with the polar set
P = V (z2) = {(z1, z2) : z2 = 0}. Note that f is unbounded at all points of P ,
but that |f(z1, z2)| → ∞ only for (z1, z2) → (a, 0) with a 	= 0. This is a general phe-
nomenon: a meromorphic function need not yield a continuous map into the Riemann
sphere Ĉ – except in the case of one variable.

d) The most common way of defining a meromorphic function is the following: Let
{Ui : i ∈ I} be an open covering of G and gi, hi ∈ O (Ui) satisfy

i. hi nowhere ≡ 0

ii. gihj ≡ gjhi on Uij = Ui ∩ Uj .

Then, setting

f =
gi
hi

on Ui,

we obtain a well-defined meromorphic function f on G. It is holomorphic outside the
thin set

M = {z : hi(z) = 0 for all i with z ∈ Ui}.

Let us now state the identity theorem for meromorphic functions:

Proposition 2.1. If two meromorphic functions f1 and f2 on G coincide on a non-
empty open set where both are holomorphic, they are identical on G.

Proof: G \ (P1 ∪ P2), where Pj is the polar set of fj , is connected; consequently,
f1 ≡ f2 there. This says that (f1, P1∪P2) and (f2, P1∪P2) are the same meromorphic
function and implies, in fact, that P1 = P2.

Addition or multiplication of meromorphic functions at the points where they are holo-
morphic clearly yield meromorphic functions: the polar set of the resulting function
is contained in the union of the polar sets of the summands resp. factors. Also, if f is
meromorphic and does not vanish identically, 1/f is again a meromorphic function.
Namely, let f = g/h on an open connected set U ⊂ G; then g 	≡ 0, and 1/f = h/g
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defines a meromorphic function on U . Since G can be covered by open sets as above,
we are in the situation of example d) to define 1/f .

Note that the polar set Q of 1/f is locally contained in the zero set V (g), and that

Q ∩ (G \ P ) = V (f),

where P is the polar set of f . All this is summed up in

Proposition 2.2. The meromorphic functions on a domain G form a field, denoted
by M (G).

At this point we ask an important – and deep – question: Is M (G) the quotient
field of O (G)? The answer is positive for polydisks (including Cn) and more general
classes of domains, but not for arbitrary domains.

Exercises

1. Consider the function f(z1, z2) = z1/z2. Prove: the set of accumulation points of sequences
f(zj), zj → 0, is the Riemann sphere.

2. (A more precise description of the above situation) Let f : C2\{0} → Ĉ be given by f(z) = z1/z2.

Let M ⊂ (C2 \{0})× Ĉ be its graph. Consider M as a subset of C2× Ĉ and show that its closure
M is M ∪ ({0} × Ĉ). Introduce homogeneous coordinates ζ1, ζ2 on Ĉ and describe M by a
homogeneous quadratic polynomial in z1, z2, ζ1, ζ2.

3. The inhomogeneous Cauchy-Riemann equation in
dimension 1

Holomorphic functions of n variables are solutions of the homogeneous Cauchy-
Riemann equations

∂f

∂z̄ν
= 0, ν = 1, . . . , n. (1)

In the next sections we shall construct holomorphic or meromorphic functions with
prescribed additional properties by the following method: We will, in a first step, con-
struct a smooth but not holomorphic solution with the required additional properties,
say f . Then f does not satisfy (1), that is

∂f

∂z̄ν
= fν 	= 0.

In a second step we will find a solution of the inhomogeneous Cauchy-Riemann sys-
tem

∂u

∂z̄ν
= fν , (2)
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such that f − u still has the required properties; the function f − u is then clearly
holomorphic. – This method is based on a careful study of (2); note that (2) can only
be solved if the right-hand side satisfies the integrability condition

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (3)

This condition is automatically fulfilled if the fν are given as above.

The main work will be done in one variable, so from now on we take n = 1. The
integrability condition (3) is then empty.

Theorem 3.1. Let D′ ⊂⊂ D be two disks in C and G ⊂ Rk a domain. There is a
linear operator

T : C∞ (D ×G) → C∞ (D′ ×G) (4)

with

∂Tf

∂z̄
= f |D′ ×G (5)

and

∂

∂tj
Tf = T

∂f

∂tj
, j = 1, . . . , k. (6)

(We have denoted the variable in C by z, the variables in Rk by tj . C∞ is the space
of smooth - i.e. infinitely differentiable - functions. – The theorem holds with the
same proof for any pair of domains D′ ⊂⊂ D ⊂ C, but we only need it in the above
situation.)

Proof: 0) We choose a smooth real-valued function ϕ with compact support in D,
ϕ ≡ 1 on D′, and define, for f ∈ C∞ (D ×G), z ∈ D′, t ∈ G:

Tf(z, t) =
1

2πi

∫
C

ϕ(ζ)f(ζ, t)

ζ − z
dζ ∧ dζ̄. (7)

This operator will be shown to have the required properties.

1) The substitution w = ζ − z leads to

Tf(z, t) =
1

2πi

∫
C

ϕ(w + z)f(w + z, t)

w
dw ∧ dw, (8)

which immediately shows that Tf is smooth on C × G; differentiation under the
integral (7) yields (6).
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2) The inhomogeneous Cauchy formula – see IV.2 – gives for the compactly supported
function ϕf

ϕ(z)f(z, t) =
1

2πi

∫
C

∂/∂ζ̄[ϕ(ζ)f(ζ, t)]

ζ − z
dζ ∧ dζ̄; (9)

a boundary integral does not occur because ϕ(ζ)f(ζ, t) ≡ 0 for |ζ| large enough. –
On the other hand, differentiation of (8) with respect to z̄ leads to

∂

∂z̄
Tf(z, t) =

1

2πi

∫
C

∂/∂z̄[ϕ(z + w)f(z + w, t)]

w
dw ∧ dw

=
1

2πi

∫
C

∂/∂ζ̄[ϕ(ζ)f(ζ, t)]

ζ − z
dζ ∧ dζ̄.

(10)

Comparison of (9) and (10) shows the claim: for z ∈ D′ one has

f(z, t) = ϕ(z)f(z, t) =
∂

∂z̄
Tf(z, t).

Remark: If f is holomorphic in some of the parameters, then Tf is holomorphic in
the same parameters.

In fact, assume f holomorphic in t0 – so now G is a subdomain of C × R� with
coordinates t0 and t – then in view of (6)

∂

∂t0
Tf(z, t0, t) = T

∂

∂t0
f(z, t0, t) = 0.

Exercises

1. Justify in detail the differentiation under the integral sign used in the proof of Thm. 3.1.

4. The Cauchy-Riemann equations with compact
support

We will solve, for n = 1, 2, . . . , the Cauchy-Riemann differential equations

∂u

∂z̄ν
= fν , ν = 1, . . . , n, (1)

where the fν are smooth functions in Cn with compact support satisfying the integra-
bility condition

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (2)

The main result is
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Theorem 4.1. (1) has a smooth solution u. If n > 1, then u can be chosen with
compact support.

More precisely: If fν ≡ 0, ν = 1, . . . , n, outside a compact set K then there is, in case
n > 1, a solution which vanishes on the unbounded component of the complement of
K. – Note that solutions are of course not unique: we can always add a holomorphic
function to obtain a new solution from a given one.

Proof: We define

u(z1, . . . , zn) =
1

2πi

∫
C

f1(ζ, z2, . . . , zn)

ζ − z1
dζ ∧ dζ̄; (3)

this is a smooth function on Cn satisfying – see the previous section –

∂u

∂z̄1
= f1.

In fact, (3) is the solution Tf1 of section 3 constructed for a sufficiently large disk D′

and D = C. Now, for ν > 1,

∂u

∂z̄ν
=

1

2πi

∫
C

∂f1/∂z̄ν(ζ, z2, . . . , zn)

ζ − z1
dζ∧dζ̄ =

1

2πi

∫
C

∂fν/∂ζ̄(ζ, z2, . . . , zn)

ζ − z1
dζ∧dζ̄,

because of (2). Since fν has compact support, the last integral is, by the inhomo-
geneous Cauchy integral formula, fν(z1, . . . , zn). So u solves (1). – Moreover, let
the support of the functions fν be contained in a compact set K, and let U0 be the
unbounded component of Cn \K. If n > 1, there is an affine hyperplane E contained
in U0. The function u is holomorphic outside K, in particular its restriction to E is
an entire function of n− 1 variables. Now, the integration in (3) only has to extend
over a bounded domain (again because the support of f1 is compact). This shows
that u(z) → 0 for |z| → ∞. By Liouville’s theorem, u|E ≡ 0. As E could be chosen
arbitrarily in U0, the identity theorem gives u ≡ 0 on U0.

Remark: For n = 1 the above solution need not have compact support – see Ex. 1.

A striking consequence of the above theorem is

Theorem 4.2 (Hartogs’ Kugelsatz). Let K be a compact subset of an open set
U ⊂ Cn, with n > 1, and suppose that U \ K is connected. Then any function f

holomorphic on U \K is the restriction to U \K of a holomorphic function f̂ on U .

Proof: We choose a smooth real-valued function ϕ with compact support in U , ϕ ≡ 1
in a neighbourhood of K, and set, for f ∈ O (U \K),

f̃ = (1− ϕ)f. (4)
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This function is smooth on all of U – where f is not defined, the right-hand side of
(4) is 0. The derivatives

gν =
∂f̃

∂z̄ν
(5)

are smooth in Cn, with support contained in the support of ϕ, because outside that
support f̃ = f is holomorphic. They obviously satisfy the integrability conditions (2)
and therefore there exists a solution u of

∂u

∂z̄ν
= gν , (6)

which vanishes in the unbounded component of the complement of the support of ϕ.
But the boundary of U belongs to that component. So

f̂ = f̃ − u (7)

coincides with f on a non-empty open set in U \ K, hence on all of U \ K, and is
holomorphic on U because of (5) and (6).

The theorem applies in particular to a spherical shell: this explains the name.

Exercises

1. Let f ∈ C∞ (C) be a smooth function with compact support; set g = fz . Compute the integral∫
C

g(z) dx dy

with the help of Stokes’ theorem. Use the information obtained that way to construct a compactly
supported smooth function g in the plane that has no solution f of fz = g with compact support.

5. The Cauchy-Riemann equations in a polydisk

The problem of solving the Cauchy-Riemann equations is more difficult if one drops
the assumption of compact support; we study it here in polydisks. In all that follows,
D, D′, D0, . . . will stand for polydisks in Cn centred at the origin. Let the functions
fν , for ν = 1, . . . , n, be smooth on D and satisfy the integrability conditions

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (1)

We want to solve

∂u

∂z̄ν
= fν , ν = 1, . . . , n, (2)

by a smooth function u on D.
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Proposition 5.1. Let D0 ⊂⊂ D be relatively compact in D. Then (2) can be solved
by a function u ∈ C∞ (D0).

Proof: We denote by Ak(D
′) the set of n-tuples of smooth functions

(f) = (f1, . . . , fn)

on D′ satisfying fν ≡ 0 for ν > k and condition (1). Here, D′ stands for any polydisk
contained in D. Let us prove, for arbitrary pairs of polydisks D0 ⊂⊂ D′, the claim in
case the right-hand side of (2) belongs to Ak(D

′); the case k = n is what we want.

We proceed by induction with respect to k. If k = 0, then (f) = (0), and the function
u ≡ 0 solves. Now consider (f) ∈ Ak(D

′), and assume the claim for k − 1 � 0. So

(f) = (f1, . . . , fk, 0, . . . , 0).

By (1) we have for μ > k:

∂fk
∂z̄μ

=
∂fμ
∂z̄k

≡ 0,

since fμ ≡ 0. Hence fk is holomorphic in the variables zk+1, . . . , zn. We now choose
the solution v of

∂v

∂z̄k
= fk (3)

constructed in section 3 on a polydisk D′′ with D0 ⊂⊂ D′′ ⊂⊂ D′:

v(z1, . . . , zn) = Tfk(z1, . . . , zn).

Then v is holomorphic in zk+1, . . . , zn, so

∂v

∂z̄μ
= 0 = fμ, μ > k. (4)

The system (g) = (g1, . . . , gn) with

gj = fj − ∂v

∂z̄j

belongs to Ak−1(D
′′) and satisfies the integrability conditions: in fact, for j > k we

have fj = 0 = ∂v/∂z̄j , and for j = k we have gk = 0 in view of (3); finally (1)
is satisfied for (g) because it is satisfied for (f) and for the derivatives of v. The
induction hypothesis yields a solution w ∈ C∞ (D0) with

∂w

∂z̄j
= gj ;

setting u = v+w on D0 we thus solve (2). – This concludes the induction and proves
our claim.
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An approximation argument will finally give a solution of the Cauchy-Riemann system
on the whole polydisk:

Theorem 5.2. The system

∂u

∂z̄ν
= fν , ν = 1, . . . , n, (2)

with fν ∈ C∞ (D) has a solution u ∈ C∞ (D) if and only if it satisfies the integrability
conditions

∂fν
∂z̄μ

=
∂fμ
∂z̄ν

, ν, μ = 1, . . . , n. (1)

Proof: We choose a sequence of polydisks

D0 ⊂⊂ D1 ⊂⊂ D2 ⊂⊂ . . . ⊂⊂ D

with ⋃
κ�0

Dκ = D

and functions u′κ ∈ C∞ (Dκ) which solve (2) on Dκ . If the sequence u′κ – which is
defined on each fixed Dk for all κ � k – were convergent on Dk, we would simply
define our solution u as the limit of that sequence. So our task is to modify the u′κ
in order to obtain a convergent sequence. We set u0 = u′0, u1 = u′1 and assume that
we have found solutions uκ of (2) on Dκ , for κ = 1, . . . , k, such that

|uκ − uκ−1|Dκ−2
< 21−κ . (5)

Here |·|M denotes the supremum norm of a function on M . Now u′k+1 and uk both
solve (2) on Dk and consequently differ by a holomorphic function fk on Dk. Power
series development of fk around 0 yields a polynomial pk such that

|fk − pk|Dk−1
= |u′k+1 − uk − pk|Dk−1

< 2−k.

Setting

uk+1 = u′k+1 − pk,

we get a new solution of (2) on Dk+1 which now satisfies (5) for κ = k + 1. Let us
now define, for z ∈ D,

u(z) = lim
κ→∞uκ(z).

The limit is well-defined – see our remark above. Moreover, for κ � λ � k + 2 and
z ∈ Dk

|uκ(z)− uλ(z)| � |uκ(z)− uκ−1(z)|+ · · ·+ |uλ+1(z)− uλ(z)|
� 2−κ+1 + · · ·+ 2−λ � 2 · 2−λ;
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so the limit exists uniformly on Dk. This shows that u is a continuous function on D.
Now, on Dk we have

u− uk = lim
κ�k+2

(uκ − uk),

and the terms on the right-hand side are holomorphic on Dk – which implies that
their uniform limit is holomorphic as well. Hence, u − uk and therefore u is smooth
on Dk, and u thus solves (2) because it differs from the solution uk by a holomorphic
function.

6. Principal parts: the first Cousin problem

Let G ⊂ Cn be a domain.

Definition 6.1. A Cousin-I-distribution on G is a system (fi, Ui), i ∈ I, where the
Ui are open subsets of G which form a covering of G and the fi are meromorphic
functions on Ui such that

fij = fj − fi ∈ O (Uij) , (1)

i.e. fij is holomorphic on Uij = Ui ∩ Uj.

If Uij = ∅, condition (1) is of course void. The principal part of a meromorphic
function can be defined as follows: two meromorphic functions f and g have the same
principal part if their difference is holomorphic. In particular, their polar sets coincide
in that case. So in the above definition, the principal parts of fi and fj coincide where
both functions are defined. – Instead of Cousin-I-distribution we could also speak of
a distribution of principal parts or simply of a principal part on G. Note that on C
the Mittag-Leffler data define naturally a Cousin-I-distribution, and vice versa – see
exercises.

Definition 6.2. A solution of a Cousin-I-distribution (fi, Ui) is a meromorphic func-
tion f on G such that f − fi is holomorphic on Ui for all i.

In other words: f should be a meromorphic function with the given principal parts.
The Mittag-Leffler theorem gives a solution of any Cousin-I-distribution in the com-
plex plane. In general, on an arbitrary domain in Cn, with n > 1, not every Cousin-
I-distribution is soluble; for n = 1, it is – see [FL1]. We will show that any Cousin-I-
distribution on a polydisk is soluble. So from now on, we will choose for G a (bounded
or unbounded) polydisk D ⊂ Cn. The main work will be done in proving the next
theorem.
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Theorem 6.1. Let {Ui : i ∈ I} be an open covering of the polydisk D. Suppose that
for each pair of indices i, j ∈ I with Uij 	= ∅ a holomorphic function gij ∈ O (Uij) is
given such that the following conditions are fulfilled:

gij = −gji (2)

gjk − gik + gij = 0 on Uijk. (3)

Then there are holomorphic functions gi ∈ O (Ui) with

gj − gi = gij on Uij . (4)

We have used the notation Uij = Ui ∩ Uj , Uijk = Ui ∩ Uj ∩ Uk. If Uijk = ∅, then
condition (3) is void.

Proof: Let us choose a partition of unity subordinate to the covering, i.e. functions
ϕi ∈ C∞ (D), 0 � ϕi � 1, suppϕi ⊂ Ui, such that the system of supports of the ϕi is
locally finite, and∑

i∈I
ϕi(z) ≡ 1. (5)

Then for each i

hi =
∑
k∈I

ϕkgki (6)

is a well-defined smooth function on Ui, and we have on Uij

∂hi
∂z̄ν

− ∂hj
∂z̄ν

=
∑
k∈I

∂ϕk

∂z̄ν
(gki − gkj) =

∑
k∈I

∂ϕk

∂z̄ν
gji =

(
∂

∂z̄ν

∑
k∈I

ϕk

)
gji = 0 (7)

because of (3) and (5). Hence, for each ν, the function

Fν(z) =
∂hi
∂z̄ν

(z), z ∈ Ui, (8)

is well-defined on all of D, and the Fν satisfy, in view of their definition (8) as
derivatives, the integrability conditions for the Cauchy-Riemann system. The previous
section yields a smooth function u ∈ C∞ (D) with

∂u

∂z̄ν
= Fν . (9)

Now set on Ui

gi = hi − u. (10)

Then gi ∈ O (Ui) and

gj − gi = hj − hi =
∑
k∈I

ϕk(gkj − gki) =

(∑
k∈I

ϕk

)
gij = gij ,

again by (2), (3) and (5). So the gi solve (4).
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Let us point out that we only used solubility of the Cauchy-Riemann equations in the
proof. It is worthwhile to state this explicitly as

Theorem 6.2. If G is a domain where the Cauchy-Riemann equations for smooth
data are always soluble, then for all data

(
Ui, gij

)
as in Thm. 6.1 there are holomor-

phic functions gi ∈ O (Ui) with gij = gj − gi.

It is equally worthwhile to introduce a new word in order to express the above results,
and also for later use:

Definition 6.3. The data
(
Ui, gij

)
with the properties (2) and (3) of Thm. 6.1 is

called an O-cocycle; the
(
Ui, gi

)
satisfying (4) are an O-solution of this cocycle.

So we can say more conveniently: An arbitrary O-cocycle on a polydisk has an
O-solution; the same result holds on domains where the Cauchy-Riemann system
is soluble.

From here we deduce easily

Theorem 6.3. Any Cousin-I-distribution on a polydisk – more generally: on a do-
main satisfying the assumption of Thm. 6.2 – is soluble.

Proof: Let (fi, Ui) be such a distribution. Then the fij given by (1) define an
O-cocycle, which therefore has an O-solution (gi). Let us now set

f = fi − gi on Ui. (11)

In view of (4) the definition is independent of the choice of i and yields a meromorphic
function on D which, by (11), solves the distribution.

Exercises

1. Let G ⊂ Cn be an arbitrary domain and fj , j = 1, . . . , n, be smooth functions on G satisfying
the integrability conditions (1) from section 5. Show that every point a ∈ G has a neighbourhood
U such that there is a smooth function u on U with

∂u

∂zj
= fj |U.

Choose an open covering Ui with corresponding solutions ui of the above equation. Consider
the differences uj − ui on Uij . From here, state and prove a converse to Thm. 6.2.
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7. Divisors: the second Cousin problem

We now carry over Weierstrass’ product theorem to higher dimensions. We shall even
consider a slightly more general situation. In all that follows, G will be a domain in
Cn; later on it will be taken to be a polydisk. M∗(U) denotes the set of meromorphic
functions on the open set U which nowhere vanish identically, O∗(U) is the set of
holomorphic functions on U without zeros. Both sets are multiplicative groups: the
groups of units in the rings M (U) resp. O (U).

Definition 7.1. A divisor on G is a system

Δ =
(
Ui, fi

)
i∈I , I an index set,

where the Ui ⊂ G form an open covering of G and the fi are elements of M∗(Ui),
such that for all i, j ∈ I with Uij = Ui ∩ Uj 	= ∅ one has

fj
fi

= gij ∈ O∗(Uij) . (1)

Two divisors Δ and Δ′ are – by definition! – equal if their union Δ∪Δ′ is a divisor.

Condition (1) means, intuitively, that on Uij the polar sets of fi and fj coincide,
including multiplicities, and that also the zero sets of fi and fj are identical, and that
the two functions vanish there with the same multiplicity. By sticking to the above
definition one circumvents the need to explicitly define the notion of multiplicity. –
A positive divisor is a divisor given by holomorphic functions fi satisfying (1).

If f 	≡ 0 is a meromorphic function on G, then (G, f) is a divisor. We call these
divisors principal – notation: div f . Now suppose that Δ =

(
Ui, fi

)
is an arbitrary

divisor. Then clearly,

Δ = div f, f ∈ M∗(G) ,

if and only if the quotients f/fi are holomorphic without zeros on Ui, for all i. We
define:

Definition 7.2. A solution of Δ is a meromorphic function f with Δ = div f .

Such a solution – if it exists – is obviously determined up to multiplication with an
element of O∗(G). In the case of a positive divisor it is a holomorphic function with
prescribed zeros (including multiplicities): that is just what is given in the Weierstrass
product theorem.

Divisors – more precisely, the
(
Ui, fi

)
satisfying (1) – are also called Cousin-II-

distributions. The second Cousin problem can now be briefly stated:

Is each divisor on G a principal divisor?
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The problem is by now completely understood for large classes of domains (domains
of holomorphy); here we shall give a positive answer in the case of polydisks. Our
discussion will show that certain topological conditions play a role, conditions which
are fulfilled on a polydisk but not in general. The method of proof reaches beyond
our immediate aim.

We start with a topological result:

Lemma 7.1. Let f : U → C∗ be a continuous function in a simply connected domain
U ⊂ Rk. Then f has a continuous logarithm, i.e. there is a continuous function F
on U with

f = expF. (2)

In fact, the universal cover of the punctured plane C∗ is the exponential map
exp: C → C∗, so f lifts to a continuous map F to C.

Before proving the multiplicative analogue of Thm. 6.1 we introduce a convenient
terminology:

Definition 7.3.

i. An O∗-cocycle in a domain G is a data g =
(
Ui, gij

)
, where the Ui, i ∈ I, are

an open covering of G and gij ∈ O∗(Uij) such that

gij = gji
−1, (3)

gjkgik
−1gij = 1 on Uijk, (4)

provided Uijk 	= ∅.

ii. An O∗-solution h of g is a system hi ∈ O∗(Ui) of holomorphic functions with

gij =
hj
hi

on Uij .

If we replace O∗ by C∗, the space of continuous functions without zeros, we obtain
in the same way the notion of a C∗-cocycle and a C∗-solution. Since an O∗-cocycle is
also a C∗-cocycle, we can speak of C∗-solutions of an O∗-cocycle.

The analogue of Thm. 6.1 and 6.2 now comes up with a surprise:

Theorem 7.2. Let D be a polydisk – or, more generally, a domain where the Cauchy-
Riemann system is always soluble. Then an O∗-cocycle has an O∗-solution if and only
if it has a C∗-solution.

Proof: Let
(
Ui, gij

)
be the given cocycle.
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1) We first assume that the Ui are simply connected. By our assumption,

gij = cjci
−1 (5)

with non-vanishing continuous functions ci, cj on Ui and Uj , respectively.
By Lemma 7.1, for each i,

ci = exp bi,

bi continuous on Ui. Now, on the intersection Uij :

gij = exp(bj − bi),

which means that

bij = bj − bi (6)

is holomorphic. The bij are clearly an O-cocycle and Thm. 6.1 provides us with a
solution ai ∈ O (Ui):

bij = aj − ai (7)

on Uij . Let us now set hi = exp ai. Then

hj
hi

= exp(aj − ai) = exp bij =
cj
ci

= gij ,

as required.

2) The general case will now be reduced to the above special case. Let the O∗-cocycle
g =

(
Ui, gij

)
i∈I be given with a C∗-solution c =

(
Ui, ci

)
i∈I . We choose a covering

Vα, α ∈ A, of simply connected open sets which is finer than the covering by the Ui,
i.e. each Vα is contained in some Ui, and there is a refinement map τ : A → I such
that always Vα ⊂ Uτ(α). We now set

g′αβ = gτ(α)τ(β); c′α = cτ(α),

restricted to Vαβ and Vα resp. Then
(
Vα, g

′
αβ

)
is again an O∗-cocycle with a C∗-

solution
(
Vα, c

′
α

)
, and by the first part of the proof we obtain an O∗-solution

h′α ∈ O∗(Vα) with

g′αβ =
h′β
h′α

. (8)

We now define hi ∈ O∗(Ui) by

hi = h′αgτ(α)i on Ui ∩ Vα. (9)

On Ui ∩ Vαβ we have in view of (4):

h′αgτ(α)ih
′
β
−1

giτ(β) = g′βαgτ(α)τ(β) = g′βαg
′
αβ = 1,
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so (9) defines hi on Ui uniquely. The definition yields on Uij ∩ Vα

hjhi
−1 = h′αgτ(α)jh

′
α
−1

giτ(α) = gτ(α)jgiτ(α) = gij ;

so (9) solves our problem.

As in the previous section we point out that, among the various properties of D, we
only need the solubility of the Cauchy-Riemann equations for smooth data. We state
this explicitly as

Theorem 7.3. If G ⊂ Cn is a domain where the Cauchy-Riemann system is soluble,
then an O∗-cocycle on G has an O∗-solution if and only if it has a C∗-solution.

To express this more briefly we introduce

Definition 7.4. A domain G ⊂ Cn has the Oka property if each C∗-cocycle has a
C∗-solution.

It now follows easily

Theorem 7.4. Let G be a domain with the Oka property where the Cauchy-Riemann
system is soluble. Then all divisors on G are principal.

Proof: Let Δ =
(
Ui, fi

)
be a divisor. By the Oka property there are continuous

functions without zeros ci on Ui such that

fj
fi

=: gij =
cj
ci
.

The previous theorem gives us holomorphic functions hi ∈ O∗(Ui) with

gij =
hj
hi

.

Then

f :=
fi
hi

on Ui

is a well-defined meromorphic function on G with divisor Δ.

In order to apply this to the polydisk we need

Theorem 7.5. Polydisks have the Oka property.

We do not give the – purely topological – proof, but refer the reader to [Ra]. The
main consequence now is

Theorem 7.6. All divisors on a polydisk are principal.
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8. Meromorphic functions revisited

We go back to the quotient representation of meromorphic functions. We have to
use certain algebraic properties of the ring of convergent power series which can be
deduced from the Weierstrass preparation theorem which has been proved in Chap-
ter IV; the details of the deduction, however, will not be given in our book. So this
is one instance where we rely on a bit more than just the previous arguments.

Let f be holomorphic in a domain G. If z0 ∈ G, then, as a consequence of Cauchy’s
integral formula, f can be developed into a convergent power series in z − z0; let us
call this series fz0 . We now need

Theorem 8.1. The ring H of convergent power series of n variables is factorial.

Moreover, again as a consequence of the Weierstrass preparation theorem, we have

Proposition 8.2. If f and g are holomorphic and their power series fz0 and gz0 are
coprime, then for all points z in a sufficiently small neighbourhood of z0 the series fz
and gz are also coprime.

For the proofs we refer to [Hö].

The upshot of the previous statements is: A meromorphic function f can always lo-
cally be represented by quotients g/h of holomorphic functions with gz and hz coprime
for all z in a sufficiently small open set.

We apply this information to divisors. Let us first note that a divisor Δ given as

Δ =
(
Ui, fi

)
i∈I

can equally well be given as

Δ =
(
Vj , gj

)
j∈J ,

where the Vj are a refinement of the covering Ui and

gj = fσ(j)|Vj ,
with σ : J → I a refinement map, i.e. Vj ⊂ Uσ(j). Different refinement maps yield
different gj but the same divisor. So two divisors Δ and Γ can always be given by a
Cousin-II-distribution defined over the same open covering: just pass to a common
refinement of the original coverings! Now, if

Δ =
(
Ui, fi

)
i∈I ,

Γ =
(
Ui, gi

)
i∈I

are given, we define their product as

ΔΓ =
(
Ui, figi

)
i∈I .
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It is easy to check that this is again a divisor, and that the divisors on G form an
abelian group under this multiplication; for instance

Δ−1 =
(
Ui, 1/fi

)
i∈I .

Let now

Δ =
(
Ui, fi

)
i∈I

be a divisor. We can choose the Ui so small that we have a representation

fi = gi/hi, gi, hi ∈ O (Ui)

with giz and hiz coprime for each z ∈ Ui.

This implies that

Δ+ =
(
Ui, gi

)
i∈I

and

Δ− =
(
Ui, hi

)
i∈I

are again – necessarily positive – divisors. We show it for Δ+:

On Uij there are holomorphic non-vanishing functions aij ∈ O∗(Uij) with

fj = aijfi on Uij .

So

gj = aij
hj
hi

gi.

Since giz and hiz are coprime, the right-hand side can only be holomorphic if hj/hi
is holomorphic – without zeros, because we can apply the same argument to hi/hj .
This shows

aij
hj
hi

∈ O∗(Uij)

and verifies our claim for Δ+. Hence

Proposition 8.3. Every divisor is the quotient of positive divisors.

Now let f 	≡ 0 be a meromorphic function on a polydisk D. Its divisor decomposes

div f = Δ+/Δ−

into the quotient of two positive divisors. Since these are principal – by what we know
by now – we find holomorphic functions g and h on D with

div g = Δ+, div h = Δ−.
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This implies

div f = div(g/h),

and so f and g/h differ by a function a ∈ O∗(D).

f = a · g
h
.

Hence

Theorem 8.4. Meromorphic functions on a polydisk are quotients of globally defined
holomorphic functions; the field M (D) is the quotient field of the ring O (D).

Exercises

1. Use the Mittag-Leffler and Weierstrass theorems from Chapter III to explicitly solve the Cousin
and Poincaré problems in the plane. (This has been mentioned in the main text without expla-
nation of the details.)



Chapter VII.

Holomorphic maps: Geometric aspects

We study holomorphic, in particular biholomorphic, maps between domains in C and, in one case,
in Cn, n > 1. These maps are for n = 1 conformal (angle and orientation preserving); so we shall
use the terms biholomorphic and conformal interchangeably in this case. For n > 1 we consistently
use biholomorphic. Automorphisms of domains, i.e. biholomorphic self-maps, are determined for
disks resp. half-planes, the entire plane, and the sphere: they form groups consisting of Möbius
transformations (VII.1). The proof of this fact relies on an important growth property of bounded
holomorphic functions: the Schwarz lemma 1.3. Because the automorphism group of the unit disk
(or upper half plane) acts transitively, it gives rise – according to F. Klein’s Erlangen programme – to
a geometry, which turns out to be the hyperbolic (non-euclidean) geometry (VII.2 and 3). The unit
disk is conformally equivalent to almost all simply connected plane domains: Riemann’s mapping
theorem, proved in VII.4. For n > 1 even the immediate generalisations of the disk – the polydisk
and the unit ball – are not biholomorphically equivalent (VII.4). Riemann’s mapping theorem can
be generalised to the general uniformization theorem (VII.4): a special but exceedingly useful case
of this is the modular map λ which we introduce in VII.7. Its construction uses tools that are also
expedient for other purposes: harmonic functions (with a solution of the Dirichlet problem for disks)
and Schwarz’s reflection principle (VII.5 and 6). The existence of λ finally yields two important
classical results: Montel’s and Picard’s ”big theorems”.

Schwarz’s lemma was established by H. A. Schwarz in 1869, its invariant form by G. Pick in 1915.
C. Carathéodory [Ca] recognised its importance for the theory of bounded holomorphic functions
where it is basic for most estimates. It also plays an important role in higher dimensions – see [La, Si].
For notes on the history of non-euclidean geometry we refer to the corresponding VII.3. – Riemann
proved his mapping theorem in 1851 by potential theoretic methods which at that time had not yet
been fully justified. Our proof – like most modern presentations – uses Montel’s theorem. – The
non-equivalence of the ball and the polydisk was discovered by H. Poincaré in 1907; our proof follows
Range [Ra] who ascribes it to R. Remmert and K. Stein [RSt]. – The theory of harmonic functions is
centuries old – we do not attempt to go into its history. The reflection principle – crucial for many
questions on conformal mappings – was worked out and abundantly used by Schwarz from 1869 on.
– The modular map is a special instance of an automorphic function. These functions are intimately
tied up with elliptic functions and form an important part of 19th and 20th century mathematics:
F. Klein, H. Poincaré ... : its history requires a book of its own. For a broader exposition we refer
to [FL2] and [HuC]. The uniformization theorem 4.2 was established by Poincaré and P. Koebe at
the beginning of the 20th century. It is most satisfactorily dealt with in the framework of Riemann
surfaces – see e.g. [FL2, Fo2].

1. Holomorphic automorphisms

Biholomorphic mappings of a domain G ⊂ Ĉ onto itself are called (holomorphic)
automorphisms of G. A trivial example of such an automorphism is the identity
mapping id: G → G; for some domains, this is the only automorphism. If f and g

W. Fischer, I. Lieb, A Course in Complex Analysis, DOI 10.1007/978-3-8348-8661-3_7, 
© Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH 2012
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are automorphisms of G, then so are f ◦ g and f−1: The composition of mappings
yields a group structure.

Definition 1.1. Let G be a domain in Ĉ. The group of biholomorphic mappings from
G onto itself is called the automorphism group of G and is denoted AutG.

We already determined the automorphism groups of Ĉ and C in Prop. III.4.2:

Aut Ĉ is the group of all Möbius transformations, and AutC is the group of entire
linear transformations.

The following proposition is useful in determining further automorphism groups:

Proposition 1.1. Let F : G1 → G2 be a biholomorphic mapping of domains in Ĉ. If
f ∈ AutG1, then F∗(f) = FfF−1 ∈ AutG2, and the mapping F∗ : AutG1 → AutG2

is a group isomorphism.

We leave the easy verification to the reader.

To take an example, consider the biholomorphic mapping

S : H → D, z �→ i− z

i+ z
. (1)

It follows that AutH and AutD are isomorphic! We will determine these groups,
beginning with the upper half-plane. It will be seen that they consist of Möbius
transformations – cf. III.4 for their elementary properties.

The translations z �→ z+ b, where b is real, and the homotheties z �→ λz, where λ > 0,
are Möbius transformations that belong to AutH. Every z ∈ H can be moved to the
imaginary axis by such a translation and then moved to the point i with a homothety.
The group AutH∩M thus acts transitively on H, i.e. for every z1, z2 ∈ H, there is a
T ∈ AutH ∩M such that Tz1 = z2.

We will show that all automorphisms of H that fix i are Möbius transformations:

Fi = {f ∈ AutH : f(i) = i} ⊂ M. (∗)

It then easily follows that AutH ⊂ M: Let h ∈ AutH, with h(i) = z0. Then there
exists a T ∈ AutH∩M such that Tz0 = i. Therefore, i is a fixed point of T ◦ h, and
by (∗), we have T ◦ h ∈ M, so that h ∈ M as well.

Let us determine the Möbius transformations T with T (H) = H. This is equivalent to
T (R∪{∞}) = R∪{∞} (in which case T (H) = H or T (H) = −H) and T (i) ∈ H. For

Tz =
αz + β

γz + δ
, (2)
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T (R∪ {∞}) = R∪ {∞} is the same as saying that the coefficients α, β, γ, and δ can
be chosen to be real – note that they are only determined up to a common factor by
T ! This is because we can write T as a cross-ratio:

Tz = CR(z, z1, z2, z3) =
z − z1
z − z3

:
z2 − z1
z2 − z3

, (3)

where z1, z2, and z3 are the preimages of 0, 1, and ∞ under T . If R ∪ {∞} is
T -invariant, then z1, z2, z3 ∈ R ∪ {∞}, and (3) yields the formula (2) with real coeffi-
cients. The converse is trivial.

If the coefficients in (2) are real, then one computes

ImT (i) =
αδ − βγ

γ2 + δ2
,

so that the statement T i ∈ H is equivalent to the determinant αδ−βγ being positive.
We thus have:

Proposition 1.2. The group AutH is the group of Möbius transformations

Tz =
αz + β

γz + δ

such that α, β, γ, δ ∈ R and αδ − βγ > 0.

Thus, AutH is isomorphic to the group SL(2,R)/{±I}, cf. Prop. III.4.3.
To completely prove this proposition, it remains to establish the claim (∗). This is
made easier by transferring the problem to D via the isomorphism

S∗ : AutH → AutD, T �→ STS−1,

where S is given by (1). Since S(i) = 0, the stabilizer Fi of i in AutH is sent to the
stabilizer F0 of 0 in AutD, and since S is in M, it suffices to show that

F0 = {g ∈ AutD : g(0) = 0} ⊂ M. (∗′)
The proof of (∗′) depends on a growth property of bounded holomorphic functions
that is also important in many other contexts:

Theorem 1.3 (The Schwarz lemma). Let f : D → D be a holomorphic function with
f(0) = 0. Then |f(z)| � |z| for all z ∈ D and |f ′(0)| � 1. If |f(z0)| = |z0| at some
point z0 ∈ D \ {0} or if |f ′(0)| = 1, then f is a rotation, i.e. f(z) = eiλz, where
λ ∈ R.

Proof: The function g : D → C given by

g(z) =
f(z)

z
for z 	= 0, g(0) = f ′(0)
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is holomorphic on D, since f(0) = 0. For |z| � r < 1, the maximum modulus principle
implies that

|g(z)| � max
|ζ|=r

|g(ζ)| < 1

r
,

where we have used that |f(ζ)| < 1. Letting r → 1, we obtain |g(z)| � 1 for z ∈ D,
which is the first claim of the proposition. It follows from |f(z0)| = |z0| or |f ′(z0)| = 1
that |g| attains a maximum at z0 or 0, respectively. But then g is a constant of
absolute value 1.

Using the Schwarz lemma, we can easily determine the group F0. Let g ∈ AutD be
such that g(0) = 0. Then |g′(0)| � 1 by Thm. 1.3. The point 0 is also a fixed point
of the inverse map g−1, so that |(g−1)′(0)| � 1 as well. Using g′(0) · (g−1)′(0) = 1, it
follows that |g′(0)| = 1, and by Thm. 1.3, g(z) = eiλz, where λ ∈ R. Conversely, all
of these rotations of course belong to F0. We have thus shown:

The group F0 is the group of rotations about the origin; in particular, F0 ⊂ M.

Prop. 1.2 is thus completely proved. Moreover, S ∈M implies that AutD= S∗(AutH)
consists of Möbius transformations as well.

In order to explicitly determine the elements of AutD, one can compute STS−1 for
T ∈ AutH – we leave this to the reader. One obtains

Proposition 1.4. The group AutD is the group of Möbius transformations that can
be written in the form

Tz =
az + b

bz + a
, (4)

where a, b ∈ C and aa− bb > 0.

Let us interpret (4) in a geometric way. Since aa−bb > 0, we have a 	= 0 and |b/a| < 1.
We write

Tz =
az + b

bz + a
=

a

a
· z + (b/a)

(b/a)z + 1
,

and if we define λ ∈ R by a = |a| eiλ/2 and set −b/a = z0 ∈ D, then

Tz = eiλ
z − z0
1− z0z

(5)

with λ ∈ R and z0 ∈ D. Formula (5) decomposes T into an automorphism that sends
z0 to 0 and a rotation about the origin.

To conclude, we note that every biholomorphic mapping between domains G1 and G2

in Ĉ whose boundaries are Möbius circles is a Möbius transformation. In particular,
AutG ⊂ M for every such G. In fact, by Prop. III.4.6, there exist transformations
Tj ∈ M such that Tj(H) = Gj , where j = 1, 2. If f : G1 → G2 is biholomorphic, then
T−1
2 fT1 ∈ AutH ⊂ M and hence f ∈ M.
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Exercises

1. a) Show that, given z0 ∈ D and z1, z2 ∈ ∂D, there is exactly one T ∈ AutD such that Tz0 = z0
and Tz1 = z2.

b) Given z0 ∈ D, describe the group {T ∈ AutD : Tz0 = z0}; given z0, w0 ∈ D, describe the set
{T ∈ AutD : Tz0 = w0}.

2. Use the Schwarz lemma to derive statements of a similar type for holomorphic functions
f : Dr(a)→ C such that |f | < M or f : Dr(a)→ Dρ(b) such that f(a) = b.

3. Let z1, . . . , zr be distinct points in Ĉ and G = Ĉ \ {z1, . . . , zr}.
a) Show that every automorphism of G can be extended to a T ∈ M that permutes the points
z1, . . . , zr.

b) Determine AutG for r = 1, 2, 3.

c) Investigate the case r = 4 (AutG depends on CR(z1, z2, z3, z4)!).

4. Determine AutG for G = D \ {0}, G = D \ {0, 1/2}, and G = D \ {0, 1/2, i/3}.

2. The hyperbolic metric

Path lengths in C are invariant under euclidean movements: L(S ◦ γ) = L(γ) for
S : z �→ az + b with |a| = 1. We now derive another way to measure path lengths
in D and H that is invariant under AutD and AutH, respectively. This hyperbolic
metric is, on the one hand, essential to the theory of Riemann surfaces; it also serves
to construct a non-euclidean geometry. We will treat the latter topic in the next
section.

In the previous section, we saw that AutD acts transitively on D: for any z0, w0 ∈ D,
there exists a T ∈ AutD such that Tz0 = w0. In particular,

Tz0 : z �→ z − z0
1− z0z

(1)

sends z0 ∈ D to the origin.

On the other hand, given two pairs of distinct points (z0, z1) and (w0, w1) in D, there
does not always exist a T ∈ AutD such that Tz0 = w0 and Tz1 = w1: If, say,
z0 = w0 = 0 and Tz0 = w0, then T is a rotation about 0, and Tz1 = w1 is possible
if and only if |z1| = |w1|. An arbitrary pair of points (z0, z1) can be sent to (w0, w1)
by an automorphism of D if and only if (Tz0z0, Tz0z1) = (0, Tz0z1) can be sent to
(Tw0

w0, Tw0
w1) = (0, Tw0

w1), i.e. if and only if |Tz0z1| = |Tw0
w1|.

Proposition 2.1. Let (z0, z1) and (w0, w1) be pairs of distinct points in D. Then
there exists a T ∈ AutD such that Tzj = wj (j = 0, 1), if and only if∣∣∣∣ z1 − z0

1− z0z1

∣∣∣∣ = ∣∣∣∣ w1 − w0

1− w0w1

∣∣∣∣ .
If such a T exists, then it is unique.
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In particular, for T ∈ AutD and z, z0 ∈ D, one always has∣∣∣∣ Tz − Tz0

1− Tz0 · Tz

∣∣∣∣ = ∣∣∣∣ z − z0
1− z0z

∣∣∣∣ .
Dividing by z − z0, then letting z → z0, one obtains the relation

|T ′(z0)|
1− |Tz0|2 =

1

1− |z0|2 , (2)

which we will need below.

In order to define the hyperbolic length of a path in D, we begin with a general
consideration concerning the concept of length. The euclidean length of a path of
integration γ : [a, b] → G in a domain G ⊂ C is the integral over the length of its

tangent vectors: L(γ) =
∫ b

a
|γ′(t)| dt. One can now modify this concept by weighting

the tangent vectors, i.e. by choosing a continuous, positive function λ on G and
setting

Lλ(γ) =

b∫
a

λ(γ(t))|γ′(t)| dt. (3)

An immediate consequence of this definition is:

i. Lλ(γ) � ε(γ) · L(γ) > 0, provided γ is not constant; here

ε(γ) = min{λ(z) : z ∈ Tr γ}.

ii. Lλ(−γ) = Lλ(γ).

iii. Lλ(γ1 + γ2) = Lλ(γ1) + Lλ(γ2), provided γ1 + γ2 is defined.

Under which condition is the “λ-length” invariant under AutG, i.e.

iv. Lλ(T ◦ γ) = Lλ(γ) for all T ∈ AutG and all γ?

With

Lλ(T ◦ γ) =
b∫

a

λ(Tγ(t)) · |(T ◦ γ)′(t)| dt =
b∫

a

λ(Tγ(t)) · |T ′(γ(t))| · |γ′(t)| dt,

we obtain a sufficient (and necessary) condition for the validity of iv, namely

λ(Tz) · |T ′(z)| = λ(z) (4)

for all z ∈ G and T ∈ AutG.

Let us apply this to G = D. Substituting Tz0 from (1) into (4), we obtain for z = z0

λ(0) · |T ′
z0(z0)| = λ(z0)
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Computing |T ′
z0(z0)| and writing z for z0, a necessary condition for the AutD-invari-

ance of Lλ is seen to be

λ(z) =
1

1− |z|2λ(0).

We normalize this by putting λ(0) = 1, so that

λ(z) =
1

1− |z|2 . (5)

Equation (4) then reads

|T ′(z)|
1− |Tz|2 =

1

1− |z|2 ,

and by (2), this is satisfied for all T ∈ AutD, so that Lλ is indeed AutD-invariant.

Definition 2.1. Let γ : [a, b] → D be a path of integration. The hyperbolic length of
γ is given by

Lh(γ) =

b∫
a

|γ′(t)|
1− |γ(t)|2 dt. (6)

By construction, it has the properties i to iv ; in i we have Lh(γ) � L(γ).

As an example, let us compute the hyperbolic length of the segment [0, s], where
0 � s < 1:

Lh([0, s]) =

s∫
0

dx

1− x2
=

1

2
log

1 + s

1− s
. (7)

As s → 1, Lh([0, s]) grows to ∞!

A definition of length of the type (3) or (6) leads to a new definition of distance:

Definition 2.2. The hyperbolic distance (h-distance) between z0, z1 ∈ D is

δ(z0, z1) = inf{Lh(γ) : γ is a path of integration in D from z0 to z1}.

By conditions i to iv, δ indeed satisfies the axioms of a metric on D and is invariant
under automorphisms of D.

This raises the question whether, for given points z0, z1 ∈ D (where z0 	= z1), there ex-
ists a path of minimal h-length connecting them, i.e. that turns the infimum in Def. 2.2
into a minimum. Using a T ∈ AutD, we first send z0 to 0 and z1 to the point

s =

∣∣∣∣ z0 − z1
1− z1z0

∣∣∣∣ ∈ ]0, 1[.
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Let γ = γ1 + iγ2 : [a, b] → D be an arbitrary path of integration from 0 to s. Then

Lh(γ) =

b∫
a

|γ′(t)| dt
1− |γ(t)|2 �

b∫
a

γ′1(t) dt
1− |γ1(t)|2 =

s∫
0

dx

1− x2
= Lh([0, s]), (8)

so that the segment [0, s] is the hyperbolically shortest path joining 0 and s. The
preimage of [0, s] under T is then the shortest path joining z0 and z1. Since T−1 is
angle-preserving, the preimage of the diameter of D passing through s is a circular
arc (or a diameter) that intersects the boundary circle S = ∂D perpendicularly. We
call such arcs, as well as diameters of D, orthocircles. We have:

Proposition 2.2. Two distinct points z0, z1 ∈ D lie on a unique orthocircle. The
hyperbolically shortest path joining z0 to z1 is the corresponding arc of this orthocircle.

To use a term from differential geometry, orthocircles are the geodesics of the hyper-
bolic metric on D.

The relationships (7) and (8) yield a formula for the hyperbolic distance:

δ(z0, z1) =
1

2
log

1 + d(z0, z1)

1− d(z0, z1)
, where d(z0, z1) =

∣∣∣∣ z0 − z1
1− z1z0

∣∣∣∣ . (9)

Using the hyperbolic tangent

tanhx =
e2x − 1

e2x + 1
,

this formula can be rewritten as

tanh δ(z0, z1) =

∣∣∣∣ z0 − z1
1− z1z0

∣∣∣∣ = d(z0, z1). (10)

0
−1 1

z0 z1

z2

z3

s

Figure 17. Orthocircles; δ(0, s) = δ(z1, z2)
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Using (9) or (10), we can reformulate Prop. 2.1: Two pairs of distinct points (z0, z1)
and (w0, w1) in D can be mapped to one another by an automorphism of D if and
only if δ(z0, z1) = δ(w0, w1).

The h-distance between two points is not smaller than their euclidean distance:
δ(z0, z1) � |z1 − z0|. It can, however, be much larger: Keeping z0 fixed and letting
z1 approach the boundary S, we see that δ(z0, z1) → ∞, since δ(0, |z1|) = δ(0, z1) �
δ(0, z0) + δ(z0, z1) and δ(0, |z1|) → ∞ as |z1| → 1.

Happily, we nevertheless have the following:

Proposition 2.3. The hyperbolic metric induces the same topology on D as the eu-
clidean metric.

Proof: It suffices to show that both metrics lead to the same notion of convergence.
Since δ(z, w) � |z − w| and the function δ is continuous in both variables, this is
clear.

We now transfer these concepts to the upper half-plane H via a biholomorphic map-
ping S : H → D.

Given a path of integration γ : [a, b] → H, we define its hyperbolic length to be

LH(γ) = Lh(S ◦ γ).

This is independent of the choice of S: If S̃ : H → D is also biholomorphic, then
S̃S−1 ∈ AutD, so that

Lh(S̃γ) = Lh((S̃S
−1)Sγ) = Lh(Sγ).

We obtain AutH-invariance in similar fashion: For T ∈ AutH,

LH(Tγ) = Lh((STS
−1)Sγ) = Lh(Sγ) = LH(γ),

since STS−1 ∈ AutD.

In order to get an explicit expression for LH, we use the special mapping

S : z �→ i− z

i+ z
, H → D.

A short calculation shows that |S′(z)|(1− |S(z)|2)−1 = (2 Im z)−1, so that

LH(γ) =

b∫
a

|(S ◦ γ)′(t)| dt
1− |S ◦ γ(t)|2 =

b∫
a

|γ′(t)| dt
2 Im γ(t)

.

For the corresponding h-distance on H, namely

δH(z0, z1) = inf
{
LH(γ) : γ is a path of integration in H from z0 to z1

}
,
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we have δH(z0, z1) = δ(Sz0, Sz1) and the explicit formula

δH(z0, z1) =
1

2
log

1 + d∗(z0, z1)
1− d∗(z0, z1)

, where d∗(z0, z1) = d(Sz0, Sz1) =

∣∣∣∣ z0 − z1
z0 − z1

∣∣∣∣ ,
or, as before,

tanh δH(z0, z1) = d∗(z0, z1).

Geodesics with respect to the metric LH are the preimages, under S, of orthocircles
in D, i.e. semicircles (whose centres lie on R) or vertical rays {z : Re z = c, Im z > 0}
in H. We also call these lines orthocircles in H.

Examples:

i. For λ > 1, we have

δH(i, λi) =

λ∫
1

dt

2t
=

1

2
log λ.

Using AutH-invariance, this yields

δH(x1 + λ1i, x1 + λ2i) =
1

2
|log(λ1/λ2)| .

ii. Suppose the points z1, z2 lie on the orthocircle with centre a and radius r, e.g.
z1 − a = r eiϕ and z2 − a = r eiψ, where 0 < ϕ � ψ < π. Then

δH(z1, z2) =

ψ∫
ϕ

dt

2 sin t
=

1

2
log

tan(ψ/2)

tan(ϕ/2)
.

To conclude, we formulate a generalization of the Schwarz lemma with the help of the
hyperbolic metric:

Proposition 2.4 (The Schwarz-Pick lemma). A holomorphic function f : D → D
is a contraction for the hyperbolic distance, i.e. for all z1, z2 ∈ D, we have
δ(f(z1), f(z2)) � δ(z1, z2). If equality holds for a pair of distinct points, then f is
an automorphism of D.

Proof: If z1 ∈ D is arbitrary and w1 = f(z1), then Tw1
◦f◦T−1

z1 satisfies the conditions
of the Schwarz lemma (here Tz1 and Tw1 are defined by (1)). We thus have either
|Tw1 ◦ f ◦ T−1

z1 (ζ)| < |ζ| for ζ ∈ D \ {0} or Tw1 ◦ f ◦ T−1
z1 (ζ) = eiλζ, where λ ∈ R. In

the latter case, f ∈ AutD, and in the former case, substituting ζ = Tz1(z) yields

tanh δ(f(z), f(z1)) =

∣∣∣∣∣ f(z)− f(z1)

1− f(z1)f(z)

∣∣∣∣∣ <
∣∣∣∣ z − z1
1− z1z

∣∣∣∣ = tanh δ(z, z1) (11)

for z 	= z1. The claim now follows from the fact that tanh is strictly increasing.
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By passing to the limit as z → z1 in the inequality (11), we obtain an “infinitesimal”
version of the proposition that generalizes equation (2):

Corollary 2.5. Holomorphic functions f : D → D satisfy

|f ′(z)|
1− |f(z)|2 � 1

1− |z|2 .

Exercises

1. Prove the formula δ(z1, z2) =
1
2

∣∣CR(z1, z0, z2, z3)∣∣. Here z1 �= z2, and z0 and z3 are the points
of intersection of the orthocircle that passes through z1 and z2 with the boundary ∂D.

2. Transfer Prop. 2.4 and its corollary to holomorphic functions g : H → H.

3. Show that

d(z0, z1) =

∣∣∣∣ z0 − z1

1− z1z0

∣∣∣∣
defines a metric on D.

4. Let γ : [a, b]→ D be continuously differentiable, and for every partition
Z : a = t0 < t1 < . . . < tn = b of [a, b], let

SZ(γ) =
n∑

ν=1

d(γ(tν−1), γ(tν)).

Show that Lh(γ) = sup
Z

SZ(γ).

5. Show that for w, z ∈ H, we have cosh 2δH(w, z) = 1 +
|w−z|2

2(Imw)(Im z)
.

3. Hyperbolic geometry

The concepts of point, line, segment, distance, and so on are fundamental in plane
euclidean geometry. We now give these words a new meaning and thereby define a
new geometry: hyperbolic geometry. It will be seen that many statements that are
valid in euclidean geometry are valid in hyperbolic geometry as well – and also that
there exist important differences between these two geometries.

The construction of new “non-euclidean” geometries was essential in clarifying the (ax-
iomatic) foundations of geometry; we will address this point at the end of the section.

The basic idea in our construction of hyperbolic geometry is to regard only points in
the interior of the unit disk D as points of our geometry and to use the hyperbolic
metric on D to measure distances. The results of the previous section suggest the
following terminology:

The hyperbolic plane (h-plane) is D. Straight lines in the h-plane (h-lines for short)
are the orthocircles in D (including diameters of D). The h-segment [z1, z2]h from
z1 to z2 (where z1 	= z2) is the arc between z1 and z2 on the orthocircle that passes
through z1 and z2. The h-length of this segment is the hyperbolic distance δ(z1, z2).
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gz0

Figure 18. h-parallels through z0 to g

These h-concepts are invariant under AutD; for example, given an arbitrary T ∈AutD,
the image of the h-segment [z1, z2]h under T is the h-segment [Tz1, T z2]h, and the
h-length remains the same. We may thus regard AutD as a group of orientation-
preserving isometries of the h-plane; later, we will show that AutD is in fact the full
group of such isometries (see Prop. 3.6).

Many elementary geometric concepts can also be formulated in terms of h-geometry,
e.g. rays, angles (two rays emanating from the same point), and triangles. We leave
it to the reader to give precise formulations.

Since biholomorphic mappings are angle-preserving, euclidean angle measure is invari-
ant under AutD; this legitimizes measuring angles in the h-plane in the usual way.

By regarding orthocircles in D, the following claims are seen to be valid in both
h-geometry and euclidean geometry:

– Two distinct points determine a unique h-line.

– Two distinct h-lines intersect in at most one point.

– For every h-line g1 and every point z0 ∈ g1, there exists a unique perpendicular to
g1 that passes through z0, i.e. there exists a unique h-line g2 that intersects g1 at a
right angle at the point z0. (Using an h-isometry, g1 can be made to be a diameter
of D, whence the claim is evident.)

– For every h-line g1 and every point z0 	∈ g1, there is a unique perpendicular to g1
that passes through z0, i.e. there is a unique h-line g2 through z0 that intersects
g1 at a right angle.

The most important difference is this: In the euclidean plane, we have the parallel
axiom, namely “for every straight line g and every point P 	∈ g, there exists exactly
one straight line that passes through P and does not intersect g”. In h-geometry, for
every h-line g and every point z0 	∈ g, there exist infinitely many h-lines that pass
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through z0 and do not intersect g. This is clear if one chooses z0 to be the origin –
h-lines that pass through 0 are diameters of D.

If one founds euclidean geometry on an axiom system that includes the parallel axiom,
then one can show the following: In h-geometry, all theorems of euclidean geometry
are valid whose proofs do not require the parallel axiom.

The points of the boundary S of D do not belong to the hyperbolic plane. But because
δ(z0, z) → ∞ as |z| → 1, we may regard them as “points at infinity”. There are thus
two points at infinity associated to every h-line (whereas there is only one point at
infinity associated to every line in the projective closure of the euclidean plane).

We would like to measure not only length but also area in the h-plane. Differential
geometry tells us that if we have a definition of length in a domain G ⊂ C, namely

Lλ(γ) =
∫ b

a
λ
(
γ(t)

)|γ′(t)| dt (for a path γ : [a, b] → G), then the corresponding area
measure is given by Fλ(A) =

∫
A
λ2(z) dx dy. Thus:

Definition 3.1. The h-area of A ⊂ D is given by

Fh(A) =

∫
A

dx dy

(1− |z|2)2 ,

provided the integral exists.

Area is invariant: Fh(TA) = Fh(A) for any T ∈ AutD.

Since biholomorphic mappings from D to H are isometries with respect to the hy-
perbolic metric, we can transfer the h-geometry of D to H. We then speak of the
half-plane model and also call D the disk model of h-geometry. Some considerations
and computations are more easily carried out in the half-plane model. – More explic-
itly: h-lines in H are the orthocircles in H, i.e. semicircles whose centres lie on R, as
well as vertical euclidean rays {z : Re z = c} ∩H. The points at infinity are now the
points on R ∪ {∞}. The area of B ⊂ H is given by

FH(B) =

∫
B

dx dy

(2y)2
.

It is invariant under AutH and satisfies FH(B) = Fh(SB) for biholomorphic mappings
S : H → D.

We now investigate circles and triangles in the disk model. The h-circle of h-radius
r centred at z0 ∈ D is naturally defined to be Kr(z0) = {z ∈ D : δ(z, z0) = r}. In
case z0 = 0, this is a euclidean circle of radius ρ = tanh r centred at 0, in view of
δ(z, 0) = δ(|z|, 0). As automorphisms of D send circles to circles, Kr(z0) is always a
euclidean circle in D whose euclidean centre, however, is different from z0 for z0 	= 0.
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In order to find the h-length of Kr(z0), we may assume that z0 = 0 and parametrize
Kr(0) as γ(t) = ρ eit. Formula (4) below yields

Lh

(
Kr(0)

)
=

2π∫
0

ρ dt

1− ρ2
=

2πρ

1− ρ2
= 2π

tanh r

1− tanh2 r
= π sinh(2r).

To find the area of the disk Dh
r (z0) = {z ∈ D : δ(z, z0) � r}, we again assume that

z0 = 0 and obtain

Fh

(
Dh

r (z0)
)
=

∫
|z|�ρ

dx dy

(1− |z|2)2 = 2π

ρ∫
0

t dt

(1− t2)2
=

πρ2

1− ρ2
= π sinh2 r.

Since sinhx > x for x > 0, h-circumferences and h-areas of disks are always larger
than their corresponding euclidean values.

An h-triangle is determined by its vertices za, zb, and zc, which of course must not
all lie on the same h-line. Its edges are the h-segments [zb, zc]h, etc., and we denote
their h-lengths by a = δ(zb, zc), etc. and the interior angles by α (for za), etc.

ab

c

za z
b

zc

α β

γ

γ
0

−1 1

reiγ

s

Figure 19. h-triangles

One can transform a given h-triangle with an automorphism T ∈ AutD in such a way
that one of its vertices is the origin; the edges that meet there lie on radii of D. Put
in this position, it is evident that the sum α+ β + γ of the angles of an h-triangle is
less than π – contrary to euclidean geometry!

The sum of the h-lengths of two sides of a triangle is greater than the h-length of
the third: δ satisfies the triangle inequality. Conversely, given three side lengths that
satisfy this requirement, one can, following Euclid, construct a triangle. Let

max(a, b) � c < a+ b. (1)

Choose an h-segment [za, zb]h of length c and draw the circles Kb(za) and Ka(zb).
By (1), these intersect at two points z′c and z′′c , and together with za and zb, each of
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these points yields a triangle with the desired lengths (these two triangles are mirror
images of one another with respect to the h-line that passes through za and zb).

It is occasionally useful to consider “improper” triangles as well, namely triangles at
least one of whose vertices is at infinity, i.e. belongs to S (or to R ∪ {∞}, in the half-
plane model). The interior angle corresponding to a vertex at infinity is 0, and the
edges that meet at such a vertex have infinite length. Nevertheless, the area remains
finite, as we will soon see.

0−1 1

za
zb

zc

α β

β′
γ

α

β + β′

Figure 20. For the proof of Prop. 3.1

In order to compute the area of a triangle Δ with vertices za, zb, and zc, it is practical
to work with the half-plane model. After applying a suitable automorphism, we can
assume that za and zb lie on the unit circle, that the h-line through za and zc is a
vertical ray, and that Im zc > Im za (see Fig. 20). We next compute the area of the
improper triangle Δ1 with vertices za, zb, and ∞ and angles α, β + β′, and 0. We
have

Δ1 =
{
z = x+ iy : cos(π − α) � x � cos(β + β′), y �

√
1− x2

}
,

4FH(Δ1) =

∫
Δ1

dx dy

y2
=

cos(β+β′)∫
cos(π−α)

( ∞∫
√
1−x2

dy

y2

)
dx

=

cos(β+β′)∫
cos(π−α)

dx√
1− x2

=

π−α∫
β+β′

dt = π − α− (β + β′).

Similarly, the area of the improper triangle Δ2 with vertices zc, zb, and ∞ and angles
π − γ, β′, and 0 is seen to be 4FH(Δ2) = π − (π − γ)− β′. We thus have

4FH(Δ) = 4FH(Δ1)− 4FH(Δ2) = π − (α+ β + γ).
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Proposition 3.1. The area of an h-triangle Δ with interior angles α, β, and γ is

F (Δ) =
1

4

(
π − (α+ β + γ)

)
.

This again implies that the sum of angles α+β+γ is always less than π, because area
is positive! Moreover, it can be seen that there do not exist h-triangles of arbitrarily
large area: π/4 is an upper bound – it is assumed by improper triangles all of whose
vertices are at infinity.

In euclidean geometry, computations involving triangles are governed by trigonometric
functions. The fundamental laws are:

The law of sines:
sinα

a
=

sinβ

b
=

sin γ

c
.

The law of cosines: c2 = a2 + b2 − 2ab cos γ.

ab

c
α β

γ

We will derive analogues to these laws for h-geometry, as well as a second law of cosines.
In doing so, the h-lengths of edges will appear as arguments of hyperbolic functions –
this is one reason for the name “hyperbolic geometry”. First, we give several formulas;
they are easily derived from the definitions of the hyperbolic functions:

cosh2 x− sinh2 x = 1 (2)

cosh(2x) = cosh2 x+ sinh2 x =
1 + tanh2 x

1− tanh2 x
(3)

sinh(2x) = 2 coshx · sinhx =
2 tanhx

1− tanh2 x
. (4)

We consider an h-triangle in D, using the usual notation.

Proposition 3.2 (The first law of cosines).

cosh(2c) = cosh(2a) cosh(2b)− sinh(2a) sinh(2b) cos γ.

Proof: By applying a suitable transformation in AutD, we may assume that our
vertices satisfy

zc = 0, za = s ∈ ]0, 1[, zb = w = r eiγ , where 0 < r < 1, 0 < γ < π.

Then the edge lengths a = δ(zb, zc), b, and c satisfy

tanh a = r, tanh b = s, tanh c =

∣∣∣∣ w − s

1− sw

∣∣∣∣ =: t.
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We now use (3):

cosh(2c) =
1 + t2

1− t2
=

|1− sw|2 + |w − s|2
|1− sw|2 − |w − s|2

=
1 + r2 + s2 + r2s2 − 2s(w + w)

1− r2 − s2 + r2s2
,

and since w + w = 2r cos γ,

cosh(2c) =
1 + r2

1− r2
· 1 + s2

1− s2
− 2r

1− r2
· 2s

1− s2
cos γ. (5)

By (3) and (4), (5) is exactly our claim.

Proposition 3.3 (The law of sines).

sinα

sinh(2a)
=

sinβ

sinh(2b)
=

sin γ

sinh(2c)
.

Proof: We write A = cosh 2a, B = cosh 2b, and C = cosh 2c for short, so that
sinh 2a = (A2 − 1)1/2, etc. Prop. 3.2 then gives

cos γ =
AB − C√

A2 − 1
√
B2 − 1

, (6)

and likewise for the other angles. From this, we have

sin2 γ = 1− cos2 γ =
D

(A2 − 1)(B2 − 1)
, (7)

where D = 1−A2 −B2 − C2 + 2ABC; thus,

sin2 γ

sinh2 2c
=

D

(A2 − 1)(B2 − 1)(C2 − 1)
.

The latter term is symmetric in A, B, and C and must therefore coincide with
sin2 α/ sinh2(2a) and sin2 β/ sinh2(2b). The claim then follows by taking the square
root, since all values of sin and sinh in question are positive.

Proposition 3.4 (The second law of cosines).

cosh(2c) sinα sinβ = cosα cosβ + cos γ.

Proof: By (7), the left hand side of this equation is

C
D1/2√

(B2 − 1)(C2 − 1)
· D1/2√

(A2 − 1)(C2 − 1)
=

CD√
(A2 − 1)(B2 − 1)(C2 − 1)

,
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and by (6), the right hand side is

BC −A√
(B2 − 1)(C2 − 1)

· AC −B√
(A2 − 1)(C2 − 1)

+
AB − C√

(A2 − 1)(B2 − 1)

=
(BC −A)(AC −B) + (AB − C)(C2 − 1)√

(A2 − 1)(B2 − 1)(C2 − 1)
.

The numerator of the last fraction is again CD, which proves the proposition.

Prop. 3.4 does not have an analogue in euclidean geometry, but it has a remarkable
consequence:

Corollary 3.5. The three angles of an h-triangle uniquely determine the lengths of
its edges.

Any two h-triangles with the same angles and the same orientations can thus be
mapped to one another via an isometry T ∈ AutD; contrary to euclidean geometry,
in h-geometry there are no “similar triangles”. Moreover for given angles α, β, and γ
such that α+ β + γ < π, there is always a triangle whose interior angles are precisely
these. This can be seen in the disk model by placing one vertex at the origin.

The holomorphic automorphisms of D keep h-distances invariant and are thus isome-
tries, in the following sense.

Definition 3.2. An isometry of the h-plane D is a bijection τ : D → D such that
δ(τz, τw) = δ(z, w) for all z, w ∈ D.

The definition of δ immediately implies that κ : z �→ z, i.e. reflection in the h-line
g0 = R ∩ D is also an isometry; it is clearly not holomorphic. If g is an arbitrary
h-line, then g = Tg0 for some T ∈ AutD, and σg = TκT−1 is the h-reflection in g,
characterized by the properties σ2

g = id and {z ∈ D : σg(z) = z} = g.

The isometries of D form a group IsoD under composition that contains AutD as a
subgroup.

Proposition 3.6. The group IsoD is generated by AutD and h-reflections.

Remarks:

a) Since σg = TκT−1, IsoD is generated by AutD and κ. Clearly, κTκ−1 ∈ AutD
for T ∈ AutD; thus, AutD is a normal subgroup of index 2 in IsoD.

b) Every isometry τ that does not belong to AutD can therefore be written as τ = Tκ,
where T ∈ AutD, i.e. it can be written in the form

z �→ az + b

bz + a
, where aa− bb = 1.
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Proof of Prop. 3.6: Let τ ∈ IsoD and τ 	= id.

a) Suppose τ has (at least) two fixed points z0, z1 ∈ D. Then τ is the reflection in the
h-line that passes through z0 and z1: Since τ is an isometry, g is fixed pointwise (say
z ∈ [z0, z1]h – then δ(z0, z) + δ(z, z1) = δ(z0, z1), and hence δ(z0, τz) + δ(τz, z1) =
δ(z0, z1), i.e. τz ∈ [z0, z1]h; since δ(z0, τz) = δ(z0, z), we have τz = z). Every z ∈ D\g
is a point of intersection of the circles Kr0(z0) and Kr1(z1), where r0 = δ(z, z0) and
r1 = δ(z, z1). Therefore, τz must coincide with z or the other point of intersection z∗

of these circles. Since τ is continuous (by virtue of being an isometry), either τz = z∗

for all z or τz = z for all z. But we excluded the latter possibility.

b) Suppose τ has exactly one fixed point z0. Taking Tz0 as in VII.2, formula (1), we
pass to Tz0τT

−1
z0 , i.e. we may assume that z0 = 0. We then choose a point z1 	= 0.

Since δ(0, τz1) = δ(0, z1), there exists a rotation Dϕz = eiϕz such that Dϕ(τz1) = z1.
Then Dϕτ has the fixed points 0 and z1 and, by part a), is therefore either a reflection
or the identity.

c) Suppose τ has no fixed points. Setting z0 = τ(0), we see that Tz0τ has at least the
fixed point 0, and we may apply part a) or b).

The following statement is interesting with regard to the axiomatic development of
geometry:

Proposition 3.7. The group IsoD is generated by h-reflections.

Proof: By Prop. 3.6, it suffices to show that every T ∈ AutD is a product of reflec-
tions. We may write T = DϕTz0 and need only concern ourselves with the individual
factors.

a) We easily verify that Dϕ = (Dϕ/2κD−ϕ/2)κ: Dϕ is the product of two reflections.

b) Consider Tz0 , where z0 	= 0. Let g1 and g2 be the perpendiculars to the h-line
connecting 0 and z0 at the point 0 and at the h-midpoint of [0, z0]h, respectively.
Then σg1σg2 belongs to AutD, leaves the h-line through 0 and z0 invariant, and maps
z0 to 0. But these properties characterize Tz0 , so that Tz0 = σg1σg2 .

In our introduction of h-geometry, we imposed two normalizing conditions: We de-
veloped our geometry in the disk of radius R = 1, and we required of our metric
λ(z) that λ(0) = 1 (see VII.2, preceding (5)). The latter condition guarantees that
limz→0 δ(z, 0)/|z−0| = 1, i.e. in a very small neighbourhood of 0, the hyperbolic and
euclidean metrics almost coincide. We will keep this normalization but now regard
DR = DR(0), where R is arbitrary, as the hyperbolic plane.

Our previous computations easily carry over to this new situation; let us give several
results:

AutDR =

{
T : z �→ eitR2 z − z0

R2 − z0z
, where |z0| < R, t ∈ R

}
.
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The AutDR-invariant metric λR on DR such that λR(0) = 1 is

λR(z) =
R2

R2 − |z|2 ,

and the h-distance δR(w, z) between w, z ∈ DR satisfies

tanh

(
1

R
δR(w, z)

)
= R

|w − z|
|R2 − zw| .

The h-length of an h-circle Kr of h-radius r in DR is thus

LR
h (Kr) = πR sinh

2r

R
, (8)

and the h-area of the disk Br bounded by Kr is

FR
h (Br) = πR2 sinh2

r

R
. (9)

In the trigonometric formulas, the edge lengths a, b, and c must be replaced by a/R,
b/R, and c/R, e.g. the first law of cosines in DR is

cosh(2c/R) = cosh(2a/R) cosh(2b/R)− sinh(2a/R) sinh(2b/R) cos γ. (10)

If one lets R → ∞ in these formulas, then by expanding the hyperbolic functions into
power series, we see that for r fixed,

lim
R→∞

LR
h (Kr) = 2πr, lim

R→∞
FR
h (Br) = πr2,

and as R → ∞, (10) turns into the euclidean law of cosines:

c2 = a2 + b2 − 2ab cos γ.

Intuitively speaking, for a sufficiently large R, h-geometry is arbitrarily close to eu-
clidean geometry on any fixed compact subset of DR; plane euclidean geometry is the
limiting case of h-geometry of DR as R → ∞.

A corresponding relation holds for the geometry on a sphere of radius R. Let us
briefly investigate this: Let SR = {x ∈ R3 : |x| = R}. The shortest path between two
points A,B ∈ SR is an arc of the great circle that passes through A and B; its length
is the spherical distance δRs (A,B) = R · �AOB, provided �AOB � π (here O is the
origin in R3). The length of the circle Kr(M) = {A ∈ SR : δRs (A,M) = r} is seen to
be

LR
s (Kr) = 2πR sin

r

R
, (11)

and the area of the (smaller) “cap” Br={A ∈ SR : δRs (A,M)�r} bounded by Kr is

FR
s (Br) = 2πR2

(
1− cos

r

R

)
= 4πR2 sin2

r

2R
. (12)
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Given a triangle ABC on SR with interior angles α, β, and γ and edge lengths
a = δRs (B,C), b, and c, it is not difficult to derive the first law of cosines of spherical
trigonometry:

cos(c/R) = cos(a/R) cos(b/R) + sin(a/R) sin(b/R) cos γ. (13)

If one lets R → ∞ in (11)-(13), then one again obtains the corresponding formulas
from euclidean geometry, i.e. the latter is the limiting case of spherical geometry
on SR.

A remarkable connection arises upon substituting iR for R in the “spherical” formulas
(11)-(13) (use cos ix = coshx and sin ix = i sinhx): (11)-(13) then turn into the for-
mulas (8)-(10) for hyperbolic geometry on D2R! It is for this reason that, for instance,
Lambert (1766) suggested regarding h-geometry, for which he attained initial – still
tentative – results (see below), as geometry on a “sphere with imaginary radius”.

The concept of (Gaussian) curvature κ on a surface equipped with a metric sheds
further light on the situation. For the euclidean plane, κ ≡ 0 (and every surface for
which κ ≡ 0 is locally isometric to a subset of the euclidean plane); the sphere SR

has constant curvature κ ≡ 1/R2. If in a domain G ⊂ R2 = C the metric is defined
via (3) from VII.2, then

κ(z) = − 1

λ(z)2
Δ log λ(z).

For the h-metric λR on DR, one computes κ ≡ −4/R2: the h-plane has constant
negative curvature! And as R → ∞, the curvatures of DR and SR tend to 0. The
euclidean plane is thus the common limiting case of surfaces of constant positive or
negative curvature.

Historical remark

Euclid’s Elements begins with definitions, postulates, and axioms. They are all straightforward (the
third postulate, for example, requires that one always be able to construct a circle given a centre
and a radius), with the exception of the fifth postulate:

The following is required: If a straight line h intersects two straight lines g1 and g2
lying in the same plane in such a way that the interior angles on one side of h together
are less than two right angles, then g1 and g2 intersect on this side of h.

We will denote this (slightly reformulated) postulate as P.5. Euclid then develops geometry in a
strictly deductive manner; in Proposition 17, he proves the converse of the implication in P.5, and
it is in the proof of Proposition 29 (concerning the equality of alternate angles with respect to a
transversal of two parallel straight lines) that P.5 is first used. The converse of Proposition 29 is
proved earlier.

This complicated situation led later Hellenistic mathematicians to attempt to prove P.5 as a theorem
using Euclid’s first 28 propositions. These efforts were continued by Islamic mathematicians (ca.
900-1300), and when European mathematicians began to seriously study Euclid in the late sixteenth
century, the topic was revived.

These efforts led to many “proofs”, which, however, always used other unproved statements. Speaking
in modern terms, one realized that P.5 was, for example, equivalent to:
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– For every straight line g and every point P not lying on g, there exists exactly one parallel to g
that passes through P .

– The sum of the angles of a triangle is two right angles.

– There exist similar, non-congruent triangles.

– The points that are equidistant from a fixed straight line lie on two straight lines.

– Given three points that do not lie on the same straight line, it is always possible to draw a circle
that passes through them.

A more profound analysis was given by Saccheri and Lambert in the eighteenth century. Lambert
considers a quadrangle with three right angles. The assumption that the fourth angle is obtuse
soon leads to a contradiction; the assumption that the fourth angle is a right angle yields P.5.
Assuming that the fourth angle is acute, Lambert (in the hope of finding a contradiction) constructs
a substantial building of propositions, showing, for example, that the area of a triangle is proportional
to π − (α+ β + γ). No contradiction turned up.

The progress in the beginning of the nineteenth century was intimately connected with a change in
viewpoint. The protagonists Gauss (who did not publish anything on the matter), N. I. Lobachevsky
(beginning in 1826), and J. Bolyai (1832) did not search for a contradiction, but held a new geometry
as plausible. They constructed, assuming the negation of P.5, a “non-euclidean” (two- and three-
dimensional) geometry, complete with trigonometry, area and volume measure – a comprehensive,
“self-contained” theory. A universal positive constant k arises in the quantitative non-euclidean
geometry of Gauss; he gives the circumference of a circle to be 2πk sinh(r/k), for instance. In our
notation, k is thus none other than the radius of the disk DR on which one considers h-geometry.

Geometry was then to a large extent still understood as a description of physical space. The question
of whether this space is “euclidean” or “non-euclidean” could not be answered empirically, since,
roughly speaking, measuring differences in sufficiently small regions between the two geometries
is beyond the precision of physical instruments. If, for example, one measures the radius r and
circumference L of a circle, then one cannot say with certainty whether L = 2πr or L = πR sinh(2r/R)
for an r that is very small compared to R.

In the second half of the nineteenth century, the mathematical concept of space was broadened
substantially, particularly by Riemann; the problem of mathematically modelling physical space
reached a new level. Since various “non-euclidean” geometries have by now been discovered, we have
referred to the theory of Lobachevsky and Bolyai as “hyperbolic geometry”.

Even a well-developed theory based on plausible assumptions may in principle contain a contradic-
tion. Since 1871, however, when Klein, following Beltrami (1868) [Bel], gave a model of hyperbolic
geometry in the framework of projective geometry, it is clear that if hyperbolic geometry contains
a contradiction, then so must euclidean geometry. In 1882, Poincaré found a simple model of the
hyperbolic plane (which had also been discovered by Beltrami) while studying complex differential
equations – this is the model that we have treated here. It may readily be generalized to a model of
three-dimensional hyperbolic space.

Exercises

1. Investigate when two h-lines have a common perpendicular. Hint: Use the half-plane model.

2. a) Let z1 and z2 be distinct points. Show that their perpendicular bisector (i.e. the perpendicular
to [z1, z2]h through its midpoint) is defined by

{z : δ(z, z1) = δ(z, z2)}.
b) Let Δ be an h-triangle. Show that the three perpendicular bisectors of the edges of Δ either
intersect at one point (which is then the centre of the h-circle that passes through the vertices
of Δ) or do not intersect at all. Show that the latter is the case if and only if the euclidean
circle that passes through the vertices of Δ is not contained in D (or H).
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3. Let g be an h-line and d > 0. Investigate the set of points whose distance from g is d.

4. Show that all improper triangles whose interior angles are all 0 are congruent, meaning that they
can be mapped to one another under isometries.

5. Consider an improper triangle with interior angles π/2, α, and 0 and whose finite edge has
h-length �. Prove the (equivalent) formulas

e−2� = tan
α

2
, cosh 2� =

1

sinα
.

Warning: The second law of cosines is not proved for improper triangles! Hint: Choose vertices
i, z0, and ∞ in H.

6. Prove that two h-triangles with the same interior angles can be mapped onto one another via an
isometry.

7. Show that an h-triangle is equilateral (meaning that a = b = c) if and only if all of its interior
angles are the same. Show that for every edge length a, there exists an equilateral triangle, and
that 2 cosh a · sin(α/2) = 1 holds.

8. Show that every isometry of the h-plane is the product of at most three reflections.

4. The Riemann mapping theorem

The Schwarz-Pick lemma establishes a close connection between complex analysis and
(plane) hyperbolic geometry: the holomorphic automorphisms of the unit disk or of
the upper half-plane are precisely the orientation-preserving hyperbolic isometries.
This connection is given significantly more meaning by the following result:

Theorem 4.1 (The Riemann mapping theorem). Every simply connected subdomain

of the sphere Ĉ that has at least two boundary points is conformally equivalent to the
unit disk.

Before proving the theorem, let us make a few comments.

We call a subdomain of Ĉ simply connected if it is either Ĉ itself or biholomorphi-
cally equivalent to a simply connected subdomain of C. By the Riemann mapping
theorem, there are thus exactly three simply connected domains up to biholomorphic
equivalence:

– The sphere Ĉ
– The plane C
– The unit disk D.

These three domains are clearly not conformally equivalent to one another: Ĉ is not
even homeomorphic to C or D. The unit disk D is homeomorphic to C, as is shown
by the mapping

z �→ z

1− |z| ,
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but certainly not biholomorphically equivalent to C: a holomorphic map from C to
D is a bounded entire function and hence constant.

The unit disk, with its automorphisms and geometry, gains still further significance
via the following fact, known as the uniformization theorem:

Theorem 4.2. Let G be an arbitrary subdomain of Ĉ that has at least three boundary
points. Then there exists an unbranched surjective holomorphic map f from D to G.

“Unbranched” means that f ′ 	= 0 everywhere, i.e. f is locally biholomorphic. This
theorem is most readily proved in the context of the theory of Riemann surfaces –
see, for example, [FL2] – but there are also “direct” proofs that only rely on complex
analysis in the plane – cf. [RS]. In Sect. 7 we shall prove Thm. 4.2 for the special case

G = Ĉ \ {0, 1,∞}. The consequences of this particular theorem, expanded in Sect. 8,
indicate the power of the uniformization theorem.

Proof of Thm. 4.1: Step 1. WemapG conformally onto a subdomain of the unit disk.

By assumption, G has at least two boundary points. Using a Möbius transformation,
we send one of them to ∞, so that the image of G, again denoted by G, is a simply
connected subdomain of C with at least one boundary point a ∈ C. Using a transla-
tion, we send a to the origin. Now, if G is a simply connected domain that does not
contain the origin, then a holomorphic branch h of the square root exists on G:

h : G → G′ = h(G),

z �→ w = h(z), h(z)2 ≡ z.

The inverse of h on G′ is the function w �→ w2. Since this is necessarily injective on
G′, we have: if w ∈ G′, then −w 	∈ G′. Let w0 ∈ G′, and let r be small enough that
the disk Dr(w0) belongs to G′. The “mirrored disk”

−Dr(w0) = {w : − w ∈ Dr(w0)}
does not intersect G′, which means that G′ lies in the exterior of a certain disk. Using
a translation and a homothety, we map G′ onto a subdomain in the exterior of the
unit disk. The reflection z �→ 1/z exchanges the interior and exterior of the unit
disk, so that we can now biholomorphically map G onto a subset of D. By possibly
applying an automorphism of D, we may assume that 0 belongs to our domain.

Step 2. It remains to show that every simply connected subdomain G ⊂ D with 0 ∈ G
can be biholomorphically mapped onto D.

Let F denote the following family of holomorphic mappings f : G → D:

F = {f : G → D, f is injective, f(0) = 0, f ′(0) > 0}.
The identity certainly belongs to F , so F is nonempty. Now let

α = sup{f ′(0) : f ∈ F}.
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We have 1�α�∞, and by definition there exists a sequence of functions fν ∈F such
that f ′ν(0)→α. Since the sequence fν is uniformly bounded, it contains a locally uni-
formly convergent subsequence by Montel’s theorem (Thm. II.5.3), which we also de-
note by fν . By the theorem of Weierstrass (Thm. II.5.2), the limit function f satisfies

lim
ν→∞ fν(0) = f(0) = 0

lim
ν→∞ f ′ν(0) = f ′(0) = α,

which implies that α < ∞. Since f ′(0) 	= 0, the function f is nonconstant and
therefore injective by Prop. IV.6.5.

Step 3. Let us now show that the above mapping f : G → D is also surjective and
therefore solves the problem.

We have |f(z)| � 1 for all z; therefore, since f is nonconstant, |f(z)| < 1 by the
maximum modulus principle. Now G0 = f(G) is a simply connected subdomain of D
that contains 0. In case this domain is not all of D, then by the following converse
(Prop. 4.3) of the Schwarz lemma (Thm. 1.3), choose an injective holomorphic map-
ping h : G0 → D such that h(0) = 0 and h′(0) > 1. Then we would have h ◦ f ∈ F
with

(h ◦ f)′(0) > α,

contradicting the definition of α.

Step 4. It remains to find the mapping h, i.e. we will show the following:

Proposition 4.3. Let G0 ⊂ D be a proper subdomain of D that is simply connected
and contains 0. Then there exists an injective holomorphic mapping h : G0 → D such
that h(0) = 0 and h′(0) > 1.

Proof: Let a ∈ D \G0. Via the automorphism

Tz =
z − a

1− az
,

G0 is biholomorphically mapped to a simply connected subdomain G1 ⊂ D with
Ta = 0, i.e. 0 	∈ G1. Via f(z) =

√
z, G1 is biholomorphically mapped onto a

subdomain G2 ⊂ D (here
√
z is a fixed branch of the square root function) with

f(T0) = f(−a) =
√−a = b ∈ G2. Finally, the transformation

Sz =
z − b

1− bz

(we again have S ∈ AutD) biholomorphically maps the domain G2 onto G3 ⊂ D with
Sb = 0 ∈ G3. We now put

h0 = S ◦ f ◦ T
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and compute

h0(0) = 0

|h′0(0)| =
∣∣∣∣1 + |b|2

2b

∣∣∣∣ > 1.

A further rotation through an angle ϑ, i.e. Sϑz = eiϑz, then yields

h = Sϑh0

with h′(0) > 1.

This also completes the proof of the Riemann mapping theorem.

Remarks:

a) Two conformal mappings f, g : G → D differ only by an automorphism of D:

f ◦ g−1 ∈ AutD.

We may thus uniquely determine f by requiring, for an arbitrary point a ∈ G, that
f(a) = 0 and f ′(a) > 0.

b) Although almost every simply connected domain can be conformally mapped onto
D, our proof says nothing about the “effective construction” of such a mapping. The
only elementary case is that of “crescents” – see the exercises. The effective construc-
tion of conformal mappings for particular domains – such as polygons – is connected
with the theory of special functions; cf. [FL2].

c) There is no Riemann mapping theorem in the theory of several complex variables!
To conclude, we prove the following theorem:

Theorem 4.4. For n > 1, the polydisk Dn = {z : |zν | < 1} and the unit ball
Bn = {z : ∑n

ν=1 |zν |2 < 1} are not biholomorphically equivalent.

Proof: Let

Dn = Dn−1 × D = {(z, w) : |z| < 1, |w| < 1}
be the n-dimensional unit polydisk, which we write as a product of the (n − 1)-
dimensional unit polydisk (with coordinates z = (z1, . . . , zn−1)) and the unit disk in
the w-plane; we have n � 2. The unit ball Bn ⊂ Cn is given by

Bn = {u ∈ Cn : ‖u‖2 =

n∑
ν=1

|uν |2 < 1}.

Suppose that

F = (f1, . . . , fn) : Dn → Bn
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is a biholomorphic mapping. The functions

uν = fν(z, w), 1 � ν � n

are thus holomorphic. For every z ∈ Dn−1, we denote by

Fz : D → Bn

the mapping

w �→ F (z, w),

i.e. Fz = (f1z, . . . , fnz); the fνz are thus holomorphic functions in the unit disk of the
w-plane that are bounded independently of z.

Let zj ∈ Dn−1 be a sequence that converges to a boundary point z0 ∈ ∂Dn−1. The
sequence fνzj is then bounded for every 1 � ν � n and therefore has a locally
uniformly convergent subsequence by Montel’s theorem. By passing to a subsequence
of zj , we may assume that

zj → z0 ∈ ∂Dn−1

fνzj
→ ϕν , 1 � ν � n.

The ϕν are holomorphic on the unit disk D, and the fact that F (zj , w) ∈ Bn, i.e.

n∑
ν=1

|fν(zj , w)|2 < 1,

implies that in the limit

n∑
ν=1

|ϕν(w)|2 � 1.

That is, for w ∈ D, the point

Φ(w) =
(
ϕ1(w), . . . , ϕn(w)

)
belongs to Bn. Suppose Φ(w0) ∈ Bn for a point w0 ∈ D. Then Φ(w0) = F (z∗, w∗),
where z∗ ∈ Dn−1, w∗ ∈ D, and

(zj , w0) = F−1 ◦ F (zj , w0) → F−1
(
Φ(w0)

)
= (z∗, w∗).

Hence zj → z∗∈Dn−1, contradicting zj → z0∈∂Dn−1. We thus have Φ(D)⊂ ∂Bn, i.e.

n∑
ν=1

|ϕν(w)|2 ≡ 1
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on D. Denote the derivative of ϕν by ϕ′
ν ; differentiating with respect to w and w

yields

n∑
ν=1

|ϕ′
ν(w)|2 ≡ 0,

i.e. ϕ′
ν ≡ 0 on D.

By the construction of ϕν , this means that

lim
j→∞

∂

∂w
fν(zj , w) = 0.

The holomorphic function

z �→ ∂

∂w
fν(z, w), w ∈ D fixed,

on Dn−1 thus admits a continuous extension by 0 to the boundary of Dn−1; by the
maximum modulus principle, it is thus identically zero. The function F therefore
does not depend on w and, in particular, cannot be injective.

Exercises

1. Let Wα = {z = r eit : 0 < t < α} be the open angular domain with angle α � 2π. Find an
elementary function that conformally maps it onto D.

2. Using elementary functions, conformally map a crescent onto D. Do the same for a strip that is
parallel to the real axis.

3. Use elliptic functions to conformally map a rectangle onto the unit disk.

4. Let Hn+1 = {(z, w) ∈ Cn+1: Imw > ‖z‖2}, where ‖z‖ is the euclidean norm. The space Hn+1

is called the Siegel upper half-space. We define a mapping u �→ (z, w) of the ball Bn+1 into Hn+1

by

zj =
uj

1 + un+1
, for 1 � j � n; w = i

1− un+1

1 + un+1
.

Show that Bn+1 is thereby biholomorphically mapped onto Hn+1 (for n = 0, this is a mapping
from D onto H = H1). Investigate the behaviour of this mapping on the boundaries!

5. Harmonic functions

We recall some facts from I.2: The Laplace operator

Δ = 4
∂2

∂z∂z̄
=

∂2

∂x2
+

∂2

∂y2

acts on twice differentiable functions in plane regions. A function u is harmonic if
Δu = 0. The Cauchy-Riemann equations show that holomorphic functions as well
as their real and imaginary parts are harmonic. Another example is given by log|f |,
where f is a holomorphic function without zeros. – Henceforth, we consider only
real-valued harmonic functions.



242 Chapter VII. Holomorphic maps: Geometric aspects

Proposition 5.1. Let u be a real-valued harmonic function on the convex domain
G ⊂ C. Then there is a holomorphic function F on G such that u = ReF .

Proof: Since uzz = 0, the function uz is holomorphic on G. As G is convex, it has a
primitive f on G. Then(

Re f
)
z
=

1

2
(f + f)z =

1

2
fz =

1

2
uz,

(
Re f

)
z
=

1

2
fz =

1

2
uz.

Therefore u = Re(2f) + c with a real constant c.

We note that the function F is determined uniquely up to addition of a purely imag-
inary constant.

Corollary 5.2. A harmonic function is infinitely often (real) differentiable.

Corollary 5.3. Let f : G → C be a non-constant holomorphic function. If u is
harmonic on f(G), then u ◦ f is harmonic on G.

Proof: Locally, we can write u = Re g with a holomorphic function g.
Then u ◦ f = Re(g ◦ f).

From Prop. 5.1 we derive an identity theorem for harmonic functions:

Proposition 5.4. If a harmonic function u : G → R, G a domain, vanishes on a
non-void open subset U ⊂ G, it vanishes on G.

The example u(z) = Re z shows that harmonic functions may vanish on a non-discrete
set without vanishing identically.

Proof: Let M = {z ∈ G : u ≡ 0 in a neighbourhood of z}. Then M is open and by
assumption non-void. We show that M is also relatively closed in G, hence M = G:
Let z1 ∈ M ∩ G, choose a convex neighbourhood V ⊂ G of z1 and f ∈ O (V ) with
u = Re f on V . Then Re f vanishes on the non-void open set V ∩M . By the identity
theorem for holomorphic functions, f is an imaginary constant on V , i.e. u ≡ 0 on V
and z1 ∈ M .

Let u be a harmonic function. A function v is said to be a conjugate harmonic of
u, if u + iv is holomorphic. If it exists, it is uniquely determined up to addition of
a real constant. The example u(z) = log |z| on C∗ shows that conjugate harmonic
functions need not exist globally; on the other hand, Prop. 5.1 shows they always exist
locally, e.g. on convex domains. Note that if v is a conjugate harmonic of u, then v is
harmonic, and −u is a conjugate harmonic function of v, because −i(u+ iv) = v− iu
is holomorphic.
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Definition 5.1. A continuous function f : G → C has the mean value property at
z0 ∈ G, if there exists DR(z0) ⊂⊂ G such that

f(z0) =
1

2π

2π∫
0

f(z0 + reit) dt for 0 � r � R. (1)

If this holds for all z0 ∈ G, the function f has the mean value property on G.

Holomorphic functions have the mean value property on their domain of definition
– this is an immediate consequence of Cauchy’s integral formula (see the proof of
Thm. II.5.5). Prop. 5.1 implies

Proposition 5.5. Harmonic functions have the mean value property.

Proof: Represent the harmonic function u locally as u = Re f with a holomorphic
function f and take real parts in (1).

As in the case of holomorphic functions, we have a maximum principle for functions
with the mean value property, in particular for harmonic functions.

Proposition 5.6. Let u be a real-valued function on the domain G having the mean
value property. If u attains a local maximum or minimum at a point z0 of G, then u
is constant in a neighbourhood of z0. If u attains a global extremum at z0 ∈ G, then
u is constant.

Proof: A minimum of u is a maximum of −u, it suffices therefore to consider the
case of a local maximum of u in z0 ∈ G. Choose D = DR(z0) ⊂⊂ G such that (1)
holds (with u in place of f) and that u(z) � u(z0) for z ∈ D. Then, for every r � R,

1

2π

2π∫
0

(
u(z0 + reit)− u(z0)

)
dt = u(z0)− u(z0) = 0.

Since the integrand is continuous and non-positive, it must be ≡ 0, that is
u
(
z0 + reit

)
= u(z0) for 0 � t � 2π and r � R. Thus u is constant on D. The

set M = {z ∈ G : u(z) = u(z0)} is closed in G and nonvoid; if u(z0) is a global
maximum of u, M is open by the above, whence M = G.

Corollary 5.7. Let G be a bounded domain and u : G → R a continuous function sat-
isfying the mean value property on G. Then u attains its maximum and its minimum
on ∂G, and min

∂G
u < u(z) < max

∂G
u for z ∈ G unless u is constant.
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We now consider a function u harmonic in a neighbourhood of a diskDR(z0). Prop. 5.5
represents the value u(z0) at the centre as an integral over the boundary ∂DR(z0).
Applying an automorphism of DR(z0), we deduce an integral representation of u(z),
z ∈ DR(z0) arbitrary. To simplify the notation, we assume z0 = 0.

Thus, let u be harmonic on a neighbourhood of DR = DR(0). For fixed z ∈ DR, the

Möbius transformation Sζ = R2 ζ − z

R2 − z̄ζ
is in AutDR, maps (a neighbourhood of)

DR onto (a neighbourhood of) DR and z to 0. The mean value property of the
harmonic function u ◦ S−1 implies

u(z) =
(
u ◦ S−1

)
(0) =

1

2π

2π∫
0

(
u ◦ S−1

)(
Reiϑ

)
dϑ =

1

2πi

∫
|η|=R

(
u ◦ S−1

)
(η)

dη

η
.

Substituting ζ = S−1η we get

u(z) =
1

2πi

∫
|ζ|=R

u(ζ)
ζS′(ζ)
S(ζ)

dζ

ζ
.

An easy computation gives
ζS′(ζ)
S(ζ)

=
R2 − |z|2
|ζ − z|2 . Thus

u(z) =
1

2πi

∫
|ζ|=R

u(ζ)
R2 − |z|2
|ζ − z|2

dζ

ζ
=

1

2π

2π∫
0

u
(
Reiϑ

) R2 − |z|2
|Reiϑ − z|2 dϑ. (2)

Definition 5.2. The Poisson kernel of the disk DR(0) is the function

PR : ∂DR(0)×DR(0) → R, PR(ζ, z) =
1

2π

R2 − |z|2
|ζ − z|2 . (3)

Sharpening the result (2), we have

Proposition 5.8. Let u : DR(0) → R be continuous and harmonic on DR(0). Then,
with ζ = Reiϑ,

u(z) =

2π∫
0

u(ζ)PR(ζ, z) dϑ (4)

for z ∈ DR(0).

Proof: By (2), the claim is true if u is harmonic in a neighbourhood of DR(0). For
the general case, we apply (2) to the functions ur(z) = u(rz), r < 1, which are
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harmonic on a neighbourhood of DR(0):

ur(z) =

2π∫
0

ur(ζ)PR(ζ, z) dϑ. (5)

For r → 1, the functions ur tend to u uniformly on DR(0). Therefore, we can
interchange limit and integral in (5) to get (4).

For later use, we list some properties of the Poisson kernel:

i. PR(ζ, z) > 0,

ii. PR(ζ, z) =
1

2π
Re

ζ + z

ζ − z
, hence PR(ζ, z) is harmonic in z ∈ DR(0),

iii.
2π∫
0

PR(ζ, z) dϑ = 1 (ζ = Reiϑ),

iv. PR(Reiϑ, reit) =
1

2π

R2 − r2

R2 − 2Rr cos(ϑ− t) + r2
.

i is clear, ii and iv follow from the definition by short computations, for iii apply
Prop. 5.8 to the function u ≡ 1.

Prop. 5.8 shows that the values of a harmonic function u on DR(0), remaining con-
tinuous on the boundary, are completely determined by its boundary values. On the
other hand, we can write down the Poisson integral

2π∫
0

h(ζ)PR(ζ, z) dϑ (6)

for any (real-valued) continuous function h on ∂DR(0). It represents a function u(z)
on DR(0), which is harmonic: In applying the Laplace operator to (6), we may differ-
entiate under the integral sign and then use ii. In fact, more is true:

Theorem 5.9. Let h be a continuous real-valued function on ∂DR(0). Then the
function

u(z) =

⎧⎪⎨⎪⎩
2π∫
0

h(ζ)PR(ζ, z) dϑ for |z| < R

h(z) for |z| = R

(7)

is continuous on DR(0) and harmonic on DR(0).
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Proof: We need only show that u(z) as defined by (7) is continuous at an arbitrary
point z0 = Reiϑ0 of the boundary. In view of u(z0) = h(z0) and iii,

u(z)− u(z0) =

ϑ0+π∫
ϑ0−π

(
h(ζ)− h(z0)

)
PR(ζ, z) dϑ. (8)

Since h is continuous at z0, there is, for every ε > 0, a δ ∈ ]0, π[ such that∣∣h(Reiϑ
) − h

(
Reiϑ0

)∣∣ � ε if ϑ ∈ J1 = {ϑ : |ϑ − ϑ0| � δ}. Accordingly, we split
the integral in (8) into the integrals over J1 and J2 = [ϑ0 − π, ϑ0 + π] \ J1. The
integral over J1 is easily estimated using i and iii:∣∣∣∫

J1

(
h(ζ)− h(z0)

)
PR(ζ, z) dϑ

∣∣∣ � ∫
J1

∣∣h(ζ)− h(z0)
∣∣PR(ζ, z) dϑ

� ε

∫
J1

PR(ζ, z) dϑ � ε

2π∫
0

PR(ζ, z) dϑ = ε

for any z ∈ DR(0). To estimate the integral over J2, we note that h(ζ) − h(z0) is
bounded for |ζ| = R, say |h(ζ)− h(z0)| � M . Thus∣∣∣∫

J2

(
h(ζ)− h(z0)

)
PR(ζ, z) dϑ

∣∣∣ � M

∫
J2

PR(ζ, z) dϑ. (9)

Now we restrict z to a small neighbourhood V of z0, such that |ζ − z| � c > 0 for

ζ = Reiϑ, ϑ ∈ J2, z ∈ V ∩DR(0). Then PR(ζ, z) =
1

2π

R2 − |z|2
|ζ − z|2 tends to 0 uniformly

in ϑ ∈ J2 if z ∈ V ∩DR(0), |z| → R. Therefore, the integral in (9) tends to 0 if z → z0,
and the proof is complete.

We place the result within the context of the Dirichlet problem: Given a bounded
domain G and a continuous real-valued function h on ∂G, is there a function u,
continuous on G and harmonic on G, such that u|∂G = h? Thm. 5.9 solves the
Dirichlet problem for circular domains and arbitrary continuous boundary values.
The solution is unique, as follows from

Proposition 5.10. Given G ⊂⊂ C and a continuous function h on ∂G, the Dirichlet
problem has at most one solution.

Proof: Let u and v be continuous on G, harmonic on G, and satisfy u|∂G = v|∂G = h.
Then u − v is continuous on G, harmonic on G and ≡ 0 on ∂G. By the maximum
principle (Cor. 5.7), u− v ≡ 0.

We are now in a position to prove the converse of Prop. 5.5, namely
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Proposition 5.11. A continuous function with the mean value property is harmonic.

Proof: Let f : G → R be a continuous function with the mean value property; choose
z0 ∈ G and DR(z0) ⊂⊂ G such that (1) holds. Let u be the solution of the Dirichlet
problem for DR(z0) and the boundary values f |∂DR(z0). Then the difference f − u
has the mean value property (Prop. 5.5) and is ≡ 0 on ∂DR(z0). By the maximum
principle, f coincides with u in the neighbourhood DR(z0) of z0 and hence is harmonic
there. As z0 was arbitrary, the claim is proved.

The proposition shows the remarkable strength of the mean value property: it is a
property of continuous functions that forces them to be infinitely often differentiable
and even real analytic.

Exercises

1. For the Poisson kernel PR(ζ, z) of DR(0) prove the estimate

1

2π

R− |z|
R+ |z| � PR(ζ, z) �

1

2π

R+ |z|
R− |z|

for |z| < R. Deduce from this: if u is a nonnegative continuous function on DR(0), harmonic on
DR(0), then for |z| � r < R

R− r

R+ r
u(0) � u(z) � R+ r

R− r
u(0).

2. Prove: A locally uniform limit of harmonic functions is harmonic.

3. Let u1 � u2 � u3 � . . . be a monotonic sequence of harmonic functions on a domain G. Assume
that for one point z0 ∈ G, the sequence un(z0) is bounded. Prove: The un converge locally
uniformly to a harmonic function. Hint: Use the results of Ex. 1 and 2.

4. Give an example of an unbounded region G, for which the solution of the Dirichlet problem is
not unique. Hint: Consider a period strip of a periodic function.

5. Let D = DR(0) and u be a bounded harmonic function on D\{0}. Show that u can be extended
to a harmonic function on D. Hint: One may assume u to be continuous on D \ {0}. Let v be
the solution of the Dirichlet problem on D with boundary values u|∂D. For ε > 0, apply the
maximum principle to hε = v − u+ ε log|z|.

6. Schwarz’s reflection principle

We consider holomorphic functions f defined in a domain whose boundary contains a
line segment or a circular arc, and look for conditions that guarantee the existence of a
holomorphic extension of f across the segment respectively arc to a larger domain.

To begin with, we consider a domain G ⊂ C, symmetric with respect to the real axis,
and set G+ = G ∩H = {z ∈ G : Im z > 0}, G− = {z ∈ G : Im z < 0} and J = G ∩ R.
If f is holomorphic on G and real-valued on J , then f(z) = f(z). For u = Re f and
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v = Im f this means u(z̄) = u(z), v(z̄) = −v(z). If f is only defined and continuous
on G+ ∪ J , holomorphic on G+ and real-valued on J , then it is not difficult to show
that f can be extended to a holomorphic function on all of G by defining f(z) = f(z̄)
for z ∈ G− (cf. Ex. 7 in II.4). In order to weaken the continuity condition, we first
state

Lemma 6.1. Let G = G+ ∪ J ∪ G− as above and let v be a real harmonic function
on G+. Assume v(z) → 0 if z tends to any point of J . Then

v̂ : z �→

⎧⎪⎨⎪⎩
v(z) for z ∈ G+

0 for z ∈ J

−v(z̄) for z ∈ G−

is a harmonic extension of v to G.

Proof: As v̂ is clearly continuous on G and harmonic on the subdomains G+ and
G−, it suffices to show that v̂ has the mean value property at the points x0 ∈ J . But,
if DR(x0) ⊂⊂ G, the equality

π∫
−π

v̂(x0 + reit) dt = 0 = v̂(x0)

(for r � R) follows from v̂(x0 + reit) = −v̂(x0 + re−it).

Proposition 6.2 (Schwarz reflection principle). Let G = G+ ∪ J ∪G− as above, and
let f be a holomorphic function on G+ such that v(z) = Im f(z) tends to 0 if z tends

to any point of J . Then f has a holomorphic extension f̂ to G.

Note that we make no continuity assumptions on the real part of f ! – Of course Re f
and Im f may be exchanged.

Proof: By the lemma, v = Im f has a harmonic extension to G, we denote it by v,
too. Now let x ∈ J be arbitrary and choose Dx = Dr(x) ⊂ G. On Dx, the function
v has a harmonic conjugate −ũ. As −Re f is a harmonic conjugate of v on Dx ∩G+,
we can assume ũ = Re f on Dx ∩G+. Then f̃x = ũ + iv is a holomorphic extension
of f to Dx.

For x1, x2 ∈ J , the intersection Dx1 ∩Dx2 , if not empty, is connected and intersects
G+. As f̃x1 = f = f̃x2 on Dx1 ∩Dx2 ∩ G+, the identity theorem implies f̃x1 = f̃x2

on Dx1 ∩Dx2 .

Thus, the functions f̃x give rise to a holomorphic extension f̃ of f to G+ ∪ U with
U ⊂ G a neighbourhood of J . Since v|J = 0, f̃ is real-valued on J and hence f̃(z)
coincides with f(z̄) on U ∩G−. The latter function is holomorphic on all of G− and
thus extends f̃ holomorphically to G.
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In the next section, we need a generalization of Prop. 6.2. We first introduce some
terminology.

We call an open circular arc or line segment C a free boundary arc of the domain
G, if each z0 ∈ C has a circular neighbourhood U(z0) such that U(z0) \ C consists
of two components, only one of which is in G – i.e. G is on one side of C only. A
holomorphic (meromorphic) function f on G is then said to be extendible across C,
if there is an open neighbourhood W of C with W ∩ ∂G = C such that f extends to
a holomorphic (meromorphic) function on G ∪W .

For a meromorphic function f on G and a point z0∈∂G, the cluster set of f in z0 is

CG(f, z0) = {w ∈ Ĉ : there is a sequence zn in G with zn → z0, f(zn) → w}.

For example, the condition on f in Prop. 6.2 means CG+(f, x0) ⊂ R for all x0 ∈ J .

Theorem 6.3. Let G be a domain with free (circular or rectilinear) boundary arc C

and f meromorphic on G. If CG(f, z0) ⊂ R̂ = R∪ {∞} for all z0 ∈ C, then f can be
extended meromorphically across C.

Remarks:

a) It is natural to work here with meromorphic functions: if ∞ ∈ CG(f, z0), an
extension of f will have a pole at z0.

b) If one assumes CG(f, z0) ⊂ R̂ \ {w0} for a fixed w0 ∈ R̂ and all z0 ∈ C, the claim
can be readily deduced from Prop. 6.2 by applying suitable Möbius transformations
(see Ex. 2).

Proof: a) We simplify the situation, first by choosing a Möbius transformation T
that maps C on an open interval J ⊂ R. Setting G1 = T (G), f1 = f ◦ T−1, we

have CG1
(f1, x0) ⊂ R̂ for all x0 ∈ J . Secondly, we replace f1 by F =

f1 − i

f1 + i
. Since

w �→ (w − i)/(w + i) maps R̂ onto ∂D, the cluster sets of F at points x0 ∈ J are
contained in ∂D. We shall show that F can be holomorphically extended across J ;
then the meromorphic extendibility of f1 and f follows. Since f1 = i(1 +F )/(1−F ),
the points with F (z) = 1 are poles of f1.

b) Now fix x0 ∈ J and choose ε = ε(x0) > 0 such that

i. [x0 − ε, x0 + ε] ⊂ J ,

ii. D+ = Dε(x0) ∩G is the upper (or lower) half of Dε(x0),

iii. 1/2 < |F (z)| < 2 for z ∈ D+.

There is in fact an ε > 0 such that iii is satisfied: Otherwise there would be a sequence
zn in D+ with zn → x0 and |F (zn)| � 1/2 or |F (zn)| � 2 for all n, contradicting
CG(F, x0) ⊂ ∂D.
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In view of iii, there exists a holomorphic logF on the simply connected domain D+,
we have Re logF (z) = log|F (z)| → 0 if z tends to a point of ]x0 − ε, x0 + ε[. By
Prop. 6.2, logF extends to a holomorphic function on G ∪Dε(x0), hence so does F .

The “local” extensions of F for all x0 ∈ J give rise to a well defined holomorphic
extension of F across J , this follows as in the last part of the proof of Prop. 6.2.

We conclude with some remarks on reflection in Möbius circles. The reflection in
R̂ = R ∪ {∞} is complex conjugation κ : z �→ z̄. It is uniquely determined by being

antiholomorphic and having R̂ as fixed point set: If σ : Ĉ → Ĉ is another such map,
κσ : Ĉ → Ĉ is holomorphic and the identity map on R̂, hence everywhere, i.e. σ = κ.

If K ⊂ Ĉ is any Möbius circle, i.e. a euclidean circle or a straight line (with ∞ added),

there is a unique antiholomorphic map σK : Ĉ → Ĉ fixing K pointwise: Pick a Möbius
transformation S carrying K into R̂ and define σK = S−1κS. Uniqueness follows as
above. We call σK the reflection in K.

We visualize σK for a euclidean circle K = {z ∈ C : |z − z0| = r}. With

S : K → R̂, Sz = i
r − (z − z0)

r + (z − z0)
,

σK = S−1κS computes to

σK(z) =
r2

z̄ − z̄0
+ z0 or

(
σK(z)− z0

)
(z − z0) = r2.

The last formula shows that, for z 	= z0, z and σK(z) lie on a ray starting at z0, and
that the distances |σK(z)−z0| and |z−z0| multiply to r2. In particular, σK exchanges
z0 and ∞ as well as the interior and the exterior of K.

Now consider a domain G, a Möbius circle K such that G ∩ K is an arc, and a
holomorphic function f on G which maps G ∩K into another Möbius circle L. We
claim σL ◦ f = f ◦ σK whenever both sides are defined, i.e. on G ∩ σKG. Indeed,
choose Möbius transformations S with S(K) = R̂ and T with T (L) = R̂. Then

f̃ = TfS−1 : S(G) → Ĉ is real-valued on S(G ∩K) = S(G) ∩ R̂, hence f̃(z̄) = f̃(z).
Inserting the definitions of σK and σL proves the claim.

Exercises

1. Let f be a conformal map of the annulus K1 = {z : r1 < |z| < r2} onto the annulus
K2 = {w : �1 < |w| < �2}, r1, �1 > 0. Show that f can be extended to a biholomorphic

map f̂ : C∗ → C∗. Conclude �2/�1 = r2/r1.

2. Let K and L be Möbius circles, w0 ∈ L (w0 =∞ admitted), let G be a domain symmetric with
respect to K, i.e. σKG = G, denote G+ one of the two (!) components of G \K. Show that a
holomorphic function f : G+ → C with CG+ (f, z) ⊂ L \ {w0} can be extended holomorphically
to G (use Prop. 6.2 only!).



7. The modular map λ 251

7. The modular map λ

In this section, we construct a holomorphic function λ : H → C\{0, 1} which exhibits

the upper half plane H as universal covering of the sphere Ĉ punctured in 0, 1, ∞. In
the next section, the existence of λ will be essential in proving the Little and Big Picard
theorems. – The term universal covering is taken from topology: An (unbranched)
covering is a continuous surjective map f : X → Y of topological spaces with the
property: Every point y of Y has a neighbourhood V such that the preimage f−1(V )
is the disjoint union of sets Uι ⊂ X, each of which is mapped homeomorphically
onto V by f . A covering is universal if X is connected and simply connected. An
easy example is the exponential function exp: C → C∗, which is a universal covering
map.

As a first step, we tessellate H by hyperbolic triangles, starting from a special one and
using iterated reflections. In a second step, we define λ, following the construction of
the tessellation and using the reflection principle.

It is convenient to use two terms of hyperbolic geometry (we do not need more of
VII.3): An orthocircle (in H) is either a euclidean semicircle with centre on R or a
vertical ray {z : Re z = x0, Im z > 0}. The reflection σK in an orthocircle K is defined
in the obvious manner, it interchanges the two parts into which K divides H. – A
hyperbolic triangle is a curvilinear triangle in H = H ∪ R ∪ {∞} bounded by arcs of

orthocircles. We allow the vertices to lie on R̂ = R∪{∞}, in fact, only such triangles
will occur. – We shall often omit the attribute “hyperbolic”.

We start with the open hyperbolic triangle Δ0 with vertices 0, 1, ∞, i.e. the set{
z ∈ H : 0 < Re z < 1,

∣∣z − 1
2

∣∣ > 1
2

}
.

We then reflect Δ0 in each of its edges to obtain three new triangles Δ1 (of “first
generation”), then reflect each Δ1 in its two free edges to obtain six new triangles
Δ2 (triangles of “second generation”). Repeating this process infinitely often results

in a net of triangles in H with vertices on R̂. This net is often called a modular net.
Different (open) triangles of the net do not intersect: It suffices to show Δ0 ∩Δ = ∅
for Δ 	= Δ0. This may be seen by induction on the “generation” (cf. Fig. 21) – we
defer the details to Ex. 9.

Furthermore, our net covers all of H, more precisely, H is contained in the union A of
the closures of our triangles. To see this, let Π0 = Δ0, and if Πk is already defined, let
Πk+1 be the union of Πk with all its reflections in its edges. Thus Π1 is a curvilinear

hexagon consisting of Δ0 and the three Δ1’s, all of whose vertices lie on R̂, Π2 is a
30-gon etc. We have

Π0 ⊂ Π1 ⊂ Π2 ⊂ . . . ,
⋃
k

Πk = A.

The boundary of Πk consists of two vertical rays L1, L2 and a collection of euclidean
semicircles. The reflection σK in one of these semicircles takes ∞ to the centre MK
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Δ2 Δ1 Δ0 Δ1 Δ2

Δ1Δ2 Δ2
Δ2 Δ2

�
−2 −1 0 1 2 3

S3

S1

S2

Figure 21. The modular net

of K, hence σKLj is a semicircle in the interior of K abutting in MK , and the radius
of σKLj is at most half the radius of K. By this we see inductively

Πk ⊃ {x+ iy : 0 � x � 1, y � 2−k−1},

and A ⊃ {x + iy : 0 � x � 1, y > 0}. As A is clearly invariant under translations
z �→ z + k, k ∈ Z, the claim A ⊃ H follows.

We proceed to the construction of λ.

We start with a biholomorphic mapping f : Δ0 → H. Consider a sequence zn in Δ0

tending to a point z0 of the boundary ∂Δ0 (with respect to Ĉ). As f is bijective,
f(zn) cannot have an accumulation point in H, therefore the cluster sets CΔ0(f, z0)

are in R̂ for all z0 ∈ ∂Δ0.

Denote Sj , j = 1, 2, 3, the (open) edges of Δ0 as in Fig. 21 and let σj be the
reflection in Sj . For the moment fix j. By Thm. 6.3, f can be meromorphically
extended across Sj ; by the remark at the end of the last section, this extension –
denoted f , too – coincides with f ◦ σj on σjΔ0, hence maps σjΔ0 biholomorphically
onto H− = {w ∈ C : Imw < 0}. As f is injective on Δ0 and σjΔ0, f takes all its
values on Sj with multiplicity 1 (cf. Prop. III.5.4); of course, f may have a pole on

Sj . Hence Sj is mapped bijectively onto an open arc Jj ⊂ R̂, and Δ0 ∪ Sj ∪ σjΔ0

biholomorphically onto H ∪ Jj ∪H−.

This works for j = 1, 2, 3. We claim moreover, that the arcs J1, J2, J3 are disjoint:
Let z1, z2 ∈

⋃
Sj , z1 	= z2. Choose disjoint neighbourhoods U1, U2 of z1, z2, symmet-

ric with respect to the pertinent σj . Then f(U1 ∩ Δ0) and f(U2 ∩ Δ0) are disjoint,
by symmetry so are f(U1) and f(U2), hence f(z1) 	= f(z2).

We prove next that R̂ \ (J1 ∪ J2 ∪ J3) consists of three points only: Assume there

is an open arc J ⊂ R̂ disjoint from J1 ∪ J2 ∪ J3; we may suppose ∞ /∈ J . Consider
the domain G = H ∪ J ∪ H− and the function g = (f |Δ0)

−1 : H → Δ0. If wn is a
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sequence in H converging to w∗ ∈ J , the points g(wn) can only accumulate at the

vertices 0, 1, ∞ of Δ0, i.e. CH(g, w∗) ⊂ {0, 1, ∞} ⊂ R̂ for w∗ ∈ J . By Thm. 6.3, g
has a meromorphic extension ĝ to G. In particular, ĝ is continuous on J with values
in {0, 1, ∞}, hence constant on J , hence constant on all of G – a contradiction.

We denote by w0 resp. w1 resp. w∞ the points of R̂ between J3 and J1 resp. J1 and
J2 resp. J2 and J3. Setting f(0) = w0, f(1) = w1, f(∞) = w∞ yields a continuous
extension of f to the vertices 0, 1, ∞ of Δ0. Of course, we then define f(σj0) = w0

etc., thus obtaining a continuous extension of f to Δ0 ∪
⋃
σjΔ0.

Up to now, f has been arbitrary under the condition that f : Δ0 → H be biholomor-
phic. We now normalize and define

λ(z) = T
(
f(z)

)
,

where T ∈ AutH is such that Tw0 = 1, Tw1 =∞, Tw∞ = 0. Note that the possible
pole of f on one of the Sj disappears under this transformation! The properties of f
translate to properties of λ, namely:

i. λ defines a continuous bijection of Δ0 (closure in Ĉ) onto H = H ∪ R̂, which
maps Δ0 biholomorphically onto H, the vertices 0, 1, ∞ of Δ0 to 1, ∞, 0, and
the (open) edges of Δ0 to the real intervals between these points.

ii. λ can be extended by reflection in the edges of Δ0 to continuous functions
Δ0 ∪ σjΔ0 → Ĉ, which are locally biholomorphic in the interior and map σjΔ0

biholomorphically onto H− (j = 1, 2, 3).

iii. The interior of Δ0 ∪
⋃
σjΔ0 is mapped onto Ĉ \ {0, 1, ∞}.

We can now extend the domain of definition of λ successively to H: First, extend λ to
the triangles Δ2 of “second generation” by reflection in the free edges of the triangles
of first generation σjΔ0, j = 1, 2, 3. This extension maps each Δ2 biholomorphically

onto H and its boundary onto R̂. Then continue in this manner, always using reflec-
tions in the free edges of the polygon to which λ has been extended in the previous
step. – We summarize the properties of λ:

Theorem 7.1. Given the modular net in H described above, there is a unique holo-
morphic function λ : H→ C \ {0, 1} with the following properties:

i. λ is surjective and locally biholomorphic,

ii. λ maps each triangle of the modular net biholomorphically onto H or H−,
iii. λ maps the open edges of any of these triangles on the intervals ]0, 1[, ]1, +∞[,

]−∞, 0[,

iv. lim
z→0

λ(z) = 1, lim
z→1

λ(z) =∞, lim
z→∞λ(z) = 0,

v. λ is a covering map.
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Property v follows from the construction: For example, the preimage λ−1(U) of an
open set U ⊂ H consists of open sets, one in each triangle of even generation, which
are mapped biholomorphically onto U . In fact, λ is a universal covering map because
H is simply connected. We call λ the modular map.

A final remark: If S is a Möbius transformation mapping D onto H, then S transfers
the modular net from H to D and λ ◦ S : D→ C \ {0, 1} is a universal covering map,
too.

Much more can be said about this function λ, which is an example of a modular
function. There are connections to group theory (cf. exercises) and, surprisingly, to
elliptic functions and algebraic number theory. We do not go into this.

Exercises

Notations: σ1, σ2, σ3 and λ(z) as in the text. Γ0 is the group of mappings H → H the elements of
which are products of an even number of factors σj . Γ(2) is the subgroup of AutH consisting of
the transformations z �→ (az + b)/(cz + d) with ad− bc = 1, a and d odd, b and c even.

1. Γ0 is generated by τ1 = σ2σ3 and τ2 = σ3σ1 (note τ3 = σ1σ2 = (τ1τ2)−1!). Find explicit
formulas for τ1(z) and τ2(z), conclude Γ0 ⊂ Γ(2). Moreover, λ is Γ0-invariant, i.e. λ(τz) = λ(z)
for all τ ∈ Γ0.

2. A fundamental set of Γ0 is a subset F ⊂ H such that H =
⋃

τ∈Γ0
τ(F) and τ(F) ∩ τ ′(F) = ∅ for

τ, τ ′ ∈ Γ0, τ �= τ ′. Show that F = {z ∈ H : −1 � Re z < 1, |z + 1
2
| � 1

2
, |z − 1

2
| > 1

2
} is a

fundamental set of Γ0 (use the mapping properties of λ). Conclude: λ(z1) = λ(z2) if and only if
z2 = τz1 with τ ∈ Γ0.

3. Prove Γ0 = Γ(2). This is equivalent to proving: Every A =
(
a b
c d

) ∈ SL2(Z) with A ≡ I mod 2

is (±1) · product of powers of T1 and T2, T1 =
(
1 2
0 1

)
, T2 =

(
1 0
−2 1

)
. Hint: The case b = 0 is

clear. For b �= 0, consider the effect of right multiplication by T1
k or T2

k on the first row of A,
combine to reduce to the case b = 0.

4. Prove the functional equations

λ(−1/z) = 1− λ(z), λ(z + 1) = λ(z)/(λ(z)− 1) for z ∈ H.

Hint: Consider the mappings Δ0 → H induced by the sides of the equations.

5. Show that Γ = SL2(Z)/{±I} ⊂ M is generated by S : z �→ −1/z and T : z �→ z + 1. (Proof
similar to, but simpler than proof in Ex. 3).

6. Expressing the functional equations of Ex. 4 in the form λ ◦ S = U ◦ λ, λ ◦ T = W ◦ λ with
suitable U, W ∈ GL2(Z)/{±I}, conclude the existence of a homomorphism of Γ onto the group
S generated by U and W , the kernel of which is Γ0.

7. The group S of Ex. 6 is the group of automorphisms of Ĉ \ {0, 1, ∞}. It is isomorphic to the
full permutation group S3 on three letters. Hence [Γ : Γ0] = 6.

8. Calculate λ(i), λ
(
1+i
2

)
, λ(1 + i), λ

(
e2πi/3

)
, λ

(
eπi/3

)
.

9. Show: The triangles Δn of n-th generation (n � 1) in the modular net are contained in⋃
k∈Z

{z : ∣∣z − (
k + 1

2

)∣∣ < 1
2
} and their “upper edge” is not free, excepting the triangles with

vertices (−n, −n+ 1, ∞) and (n, n+ 1, ∞). Hence they do not intersect Δ0.
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8. Theorems of Picard and Montel

We shall admit of the following topological statement: Let p : X → Y a covering map,
and assume the topological space Z to be path connected, locally path connected, and
simply connected. Then for every continuous map f : Z → Y and every choice of
z0 ∈ Z and x0 ∈ X satisfying f(z0) = p(x0), there exists a unique continuous map
F : Z → X with p ◦ F = f and F (z0) = x0.

In our context, X, Y, Z will be domains in Ĉ. They are path connected by definition
and locally path connected as open sets, so the relevant condition is that Z be simply
connected.

In this case, the so-called “lift” F of f is automatically holomorphic if p and f
are: With z1 ∈ Z, let U ⊂ X be a neighbourhood of F (z1) that is mapped by p
biholomorphically onto p(U), and let V be a neighbourhood of z1 with F (V ) ⊂ U .
Then F |V = (p|U)−1 ◦ (f |V ) is holomorphic.

In the last section we have constructed a holomorphic universal covering map
λ : D → C \ {0, 1} =: C′′. Together with the above, the “Little Picard Theorem”
follows almost immediately:

Theorem 8.1. Let f : C → C be a non-constant entire function. Then f assumes
every complex number with at most one exception as a value.

Proof: Suppose that f is an entire function with values in C \ {a, b}, a 	= b. Then

f1(z) =
f(z)− a

f(z)− b
is an entire function with values in C \ {0, 1} and can be lifted to a

holomorphic function F1 : C→ D. By Liouville’s theorem, F1 is constant, and so are
f1 = λ ◦ F1 and f .

To prove the “Big Theorem” of Picard, we need a considerably sharpened version of
the Montel theorem II.5.3, which we now present.

Theorem 8.2 (Montel). Let fn be a sequence of holomorphic functions on a domain
G, that do not assume the values 0 and 1. Then fn has a subsequence fnk

converg-
ing locally uniformly to a holomorphic function f : G → C or to the constant map
G→ {∞}.

The latter means: for all compact K ⊂ G and all radii R, fnk
(K) ∩DR(0) = ∅ for k

sufficiently large.

Proof: a) We assume G to be simply connected and fix z0 ∈ G. Assume further
that the numbers fn(z0) have an accumulation point w0 in C′′ (the case that all
accumulation points of fn(z0) are in {0, 1, ∞} will be considered in part b). Replacing
fn by a subsequence, again noted fn, we may suppose fn(z0)→ w0.
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Now consider the universal cover λ : D→ C′′, choose a point ζ0 ∈ D with λ(ζ0) = w0

and a connected neighbourhood V ⊂ C′′ of w0 such that the components of λ−1(V )
are mapped biholomorphically onto V by λ. Denote U the component of ζ0 in λ−1(V ).

The values fn(z0) are in V for n � n0; in the sequel we always suppose n � n0. Set
ζn = (λ|U)−1fn(z0). Then ζn → ζ0. Now let Fn : G → D be the lift of fn with
Fn(z0) = ζn. As the Fn are uniformly bounded, by Thm. II.5.3 we can choose a
subsequence converging locally uniformly to F : G→ D. We denote this subsequence
again by Fn. If F (G) ∩ ∂D 	= ∅, then F is a constant of modulus 1 by the maximum
principle. But F (z0) = limFn(z0) = ζ0 ∈ D, so F : G→ D. To finish the proof in the
case considered, we show that fn = λ ◦ Fn → λ ◦ F =: f locally uniformly. Indeed,
if K ⊂ G is compact, there is a radius R < 1 such that F (K) and the Fn(K) are
contained in {ζ : |ζ| � R}. Then, for z ∈ K

|fn(z)− f(z)| = |λ(F (z)
)− λ

(
Fn(z)

)|
=
∣∣∣ ∫

[Fn(z), F (z)]

λ′(ζ) dζ
∣∣∣ � max

|ζ|�R
|λ′| · sup

K

∣∣Fn − F
∣∣→ 0.

b) We still assume that G is simply connected and suppose now that 0, 1, ∞ are the
only possible accumulation points of fn(z0), for a fixed z0 ∈ G.

Assume first that, after passing to a subsequence, we have fn(z0)→ 1. As G is simply
connected and fn without zeros, there are holomorphic square roots gn=

√
fn : G→C′′.

We choose the branches such that gn(z0) → −1. Then, by a), gn has a subsequence
gnk

converging locally uniformly to a holomorphic function g : G → C′′, and the
fnk

= g 2
nk

converge locally uniformly to g2.

If 1 is not an accumulation point of fn(z0), but 0 is, we replace fn by 1 − fn and
apply the above.

If fn(z0) → ∞, we replace fn by 1 − 1/fn and again apply the above. Note that, if√
1− 1/fn converges to the constant −1, the fnk

will tend to ∞.

c) Parts a) and b) prove the theorem for simply connected G. Now let the domain G
be arbitrary. We choose a sequence of disks Dk such that

Dk ⊂⊂ G, G =
⋃
k

Dk, Dk ∩
k−1⋃
1

Dj 	= ∅ (k � 2)

(cf. Ex. 1). Let fn : G→ C′′ be a sequence of holomorphic functions. Then there is a

subsequence
(
fn1

)
converging uniformly on D1 to a map f̂1 : D1 → Ĉ which is either a

holomorphic function or ≡ ∞ (apply a) resp. b) to a disk D′
1 with D1 ⊂⊂ D′

1 ⊂⊂ G).
Now assume that for k > 1 we have found subsequences

(
fn1

)
,
(
fn2

)
, . . . ,

(
fn,k−1

)
of
(
fn
)
such that(

fnj
)
is a subsequence of

(
fn,j−1

)
,
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(
fn,k−1

)
converges uniformly on

k−1⋃
1

Dj to f̂k−1 :
k−1⋃
1

Dj → Ĉ,

which is a holomorphic function or ≡ ∞.

Then
(
fn,k−1

)
has a subsequence

(
fnk

)
converging uniformly on Dk to a map

fk : Dk → Ĉ. On Dk ∩
k−1⋃
1

Dj – an open nonvoid set – fk coincides with f̂k−1,

hence fk defines an extension of f̂k−1 to
k⋃
1
Dj which is either a holomorphic function

or ≡ ∞. The diagonal sequence
(
fnn

)
then converges locally uniformly on G either

to a holomorphic function or to ∞.

We are now in a position to prove the “big theorem” of Picard:

Theorem 8.3 (Picard). Let f be holomorphic on the punctured neighbourhood U\{z0}
of z0 and have an essential singularity at z0. Then each number w ∈ C, with one
possible exception, is assumed infinitely often as a value of f in U \ {z0}.

An exceptional “non-value” may indeed occur, as shown by exp(1/z) at z0 = 0.

Proof: Suppose that f ∈ O (U \ {z0}) attains two values a, b ∈ C, a 	= b, only
finitely often. We will show that, in this case, z0 is a removable singularity or a pole
of f .

By shrinking U , we may assume that f omits the values a and b. As in the proof
of Thm. 8.1, we normalize a = 0, b = 1. To simplify notations, suppose z0 = 0 and
U = DR(0), R > 1. For n = 0, 1, 2, . . . define fn(z) = f(2−nz) on U \ {0}.
Then f takes on |z| = 2−n the same values as fn takes on |z| = 1, and no fn takes
the values 0 and 1. By Thm. 8.2, there is a subsequence fnk

of fn converging locally
uniformly on U \ {0} either to a holomorphic function g or to ∞. In the first case,
the fnk

are uniformly bounded on |z| = 1, say |fnk
| � M on ∂D.

This implies |f(z)| � M on |z| = 2−nk , k = 1, 2, . . . . By the maximum modulus
principle, |f(z)| � M for 2−nk+1 � |z| � 2−nk , k = 1, 2, . . . , hence |f(z)| � M on
0 < |z| < 2−n1 . The Riemann extension theorem then implies that 0 is a removable
singularity of f .

– In the second case, 1/fnk
→ 0 locally uniformly in U \ {0}. By the above, 1/f has

a removable singularity at 0, hence 1/f has a zero in 0 and f has a pole.

Exercises

1. a) Prove that any domain G ⊂ C may be covered by a denumerable family of disks Dk ⊂⊂ G,
k = 1, 2, 3, . . . . Hint: Choose the points of a denumerable dense subset {z1, z2, z3, . . . } ⊂ G
as centres.

b) Show that by renumbering the Dk from a), one can achieve Dk ∩
k−1⋃
1
Dj �= ∅, k = 2, 3, . . . .



Hints and solutions of selected exercises

As a rule, there is more than one way to solve any problem. The way proposed here may be
suboptimal, the reader may find a better one.

In the sequel, a symbol like IV.6.2 refers to exercise 2 in section 6 of chapter IV. The notation used
in the text of an exercise will be used in its solution without further explanation.

I.1.3. f(z) = |z|2 is complex differentiable only at the origin; the other functions nowhere.
I.2.1. The chain rule for Wirtinger derivatives is

∂

∂z
(f ◦ g) = ∂f

∂w
· ∂g
∂z

+
∂f

∂w
· ∂g
∂z

,
∂

∂z
(f ◦ g) = ∂f

∂w
· ∂g
∂z

+
∂f

∂w
· ∂g
∂z

.

I.2.3. AJRf A
−1 = JCf with A =

(
1 i
1 −i

)
.

I.3.1. Let M ⊂ Rn be arbitrary. A sequence of functions on M converges compactly on M if it con-
verges locally uniformly. The converse is true if every point ofM has a compact neighbourhood inM .
WithM = R\{1, 1

2
, 1

3
, . . . }, this condition is not satisfied, and fn(x) = n when 1/(n+1) < x < 1/n,

fn(x) = 0 else, converges compactly on M , but not uniformly in any neighbourhood of 0.

I.3.4. The radii are 1, ∞, 0, 0, 1
4
.

I.3.6. The nontrivial implication: If the subseries converge, then
∑|Re aν | < ∞,

∑|Im aν | < ∞,
hence

∑|aν | �
∑(|Re aν |+ |Im aν |

)
< ∞.

I.4.2. Let G be an infinite subgroup of S. As S is compact, there are zν ∈ G with zν → 1, zν �= 1.
Any arc of S contains points zνk (ν large), thus G is dense in S.

I.4.4. To study the mapping properties, decompose tan z = g(h(z)) with ζ = h(z) = e2iz and
g(ζ) = (ζ − 1)/i(ζ + 1).
II.2.2. The first integral is

√
π exp(−a2), the second √

π exp(−λ2/4).

II.2.4. The claims combine to

(1− ia)

∞∫
0

exp
(−(1− ia)2x2

)
dx =

√
π

2
.

To prove this, apply the Cauchy integral theorem to the function exp(−z2) and the triangle with
vertices 0, R, (1− ia)R, then let R → +∞.

II.3.1.c) The function f(z) = exp(1−z)/(1−z) is holomorphic in a neighbourhood of D1/2(0), hence
the value of the integral is πif ′′(0) = iπe.

II.4.3. The recursion formula is E0 = 1,
m∑
0

(2m
2n

)
E2n = 0 (m � 1). Hint for the addenda: For

f(z) = tan z we have f (n)(z) = f(z)Pn(tan z) with polynomials Pn(X) satisfying a recursion formula

II.4.6a) The function f(z̄) is holomorphic on G and coincides with f on G ∩ R.
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II.5.2. For |z| � r < 1 we have
∣∣∣ zn

1−zn

∣∣∣ � rn

1−rn
, hence the series converges uniformly on |z| � r.

Inserting geometric series for zn/(1 − zn) yields the power series
∑

amzm with am equal to the
number of divisors of m.

II.5.3a) Write p(z) = znq
(
1
z

)
. If q is not constant, then 1 = q(0) < M1(q) =M1(p).

II.5.3b) r−nMr(p) =M1/r(q); if q �≡ 1, M1/r(q) is a strictly decreasing function of r. Furthermore,

lim
r→∞ r−nMr(p) = 1.

II.5.6. For a0 = 0 the claim is clear. – Without loss of generality a0 = 1. Write f(z) = 1+amzm
(
1+

zh(z)
)
, choose r0 smaller than the radius of convergence of the series, then C with |h(z)| � C for

|z| � r0. For 0 < r � r0 choose z0 such that amzm0 = |am|rm > 0. Then for r < 1/(2C)

|f(z0)| � 1 + |am|rm − |am|rm+1C > 1.

II.5.7a) For |z| < � by |an| � �−nM�(f)

|f(z)− 1| �
∞∑
1

�−nM�(f)|z|n =M�(f)|z|(�− |z|)−1 < 1,

if |z| < �
(
1 +M�(f)

)−1
.

II.6.3. Let z0 be a pole of f . Then f
(
Dr(z0) \ {z0}

)
, r small, contains the complement of a disk,

and this contains period strips of exp . . . The other cases are simpler.

II.6.5. Without loss of generality z0 = 0, an(0) �= 0. Then zk → 0 and f(zk) → 0 imply g(zk) →
an(0) �= 0; for a sequence z′k → 0 such that f(z′k) converges to a zero of w

n+a1(0)wn−1+ . . .+an(0),
we have g(z′k) → 0. Hence 0 is an essential singularity of g. The case of meromorphic coefficients
can be reduced to the above by multiplication with a suitable power of z − z0.

III.2.2a) Write q(z) = zn
(
1− q∗(z)

)
. On ]0, +∞[, q∗ strictly decreases from +∞ to 0, hence there

exists a unique r > 0 with q∗(r) = 1, i.e. q(r) = 0.

III.2.2b) |z0| � r follows from

0 = p(z0) � |z0|n −
n−1∑
0

|aν ||z0|ν = q(|z0|).

III.3.3a) The integral formula for an yields |an| � r−nMr = (1/r)r−n+1Mr. Hence r−n+1Mr → ∞
if an �= 0.
III.3.3b) r−nMr → ∞ for r → ∞ implies logMr/ log r > n for large r. Hence, if f is transcendental,
logMr/ log r → ∞. For f a polynomial, logMr/ log r → deg f .

III.3.5a) Writing z = reit, we have |exp z2| = exp(r2 cos 2t). If |t| � α < π/4, then cos 2t � cos 2α >
0, hence |exp z2| � exp(r2 cos 2α) → ∞. If |t − π/2| � α < π/4, then cos 2t � − cos 2α < 0, hence
|exp z2| � exp(−r2 cos 2α)→ 0.

III.4.3. Let f have a double pole. Find T ∈ M such that f1 = fT has a double pole at ∞, i.e. f1
is a polynomial of deg 2. Find S1, S2 such that S2f1S1(z) = z2. Let f have two simple poles. Find
T ∈ M such that f1 = fT (z) = az + b+ c/z. Then find S1, S2 such that S2f1S1(z) = z + 1/z.

III.5.2a) 2 Log(1− z) is a holomorphic logarithm of (1− z)2 on C \ [1, +∞[. – Choose the principal
branch of the square root. Then z +

√
z maps the slit plane C \ R�0 into itself.

III.5.3. On S0 we have f(z) = 1− cos z = z2f̃0(z), with f̃0 without zeros. S0 being convex, f̃0 has a
holomorphic square root g̃0, without loss of generality g̃0 > 0 on S0∩R. Set g0(z) = zg̃0(z). Similarly,
f(z) = (z − 2π)2g̃1(z)2 on S1 = {|Re z − 2π| < 2π}, g̃1 > 0 on S1 ∩ R. Set g1(z) = (z − 2π)g̃1(z).
Then g0 = g1 on S0 ∩ S1 ∩ R, hence on S0 ∩ S1, i.e. they define a holomorphic square root of f on
S0 ∪ S1. Continue like this.
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III.5.5. The mapping properties of the sine function become clearer by writing sin z = h(g(z)) with
ζ = g(z) = eiz and h(ζ) = 1

2i
(ζ + 1/ζ). Hence

arcsinw =
1

i
Log(iw +

√
1− w2),

where Log is the principal branch, and the chosen branch of
√
1− w2 on G1 has value 1 at w = 0.

III.6.2. The first formula results from

1 =
ez − 1
z

· f(z) =
( ∞∑
ν=0

1

(ν + 1)!
zν

)( ∞∑
μ=0

Bμ

μ!
zμ

)
,

the second from

ez − 1
z

·
∞∑

μ=1

B2μ

(2μ)!
z2μ = 1− ez − 1

z

(
1− z

2

)
.

III.6.4a) By the first formula in Ex. III.6.3,

πz

sinπz
= 1 + 2

∞∑
1

(1− 21−2μ)ζ(2μ)z2μ.

III.6.4b) tan z =
∞∑
1
(−1)μ−122μ(22μ − 1) B2μ

(2μ)!
z2μ−1.

III.7.2. e2πz − 1 = 2πeπz
∏
n �=0

(
1− z

in

)
ez/in.

IV.1.3. Let F : G → G′ be biholomorphic, G simply connected. For a cycle Γ′ =
∑

n�γ� in G′ set
Γ =

∑
n�(F−1 ◦ γ�). Then∫

Γ′

f(w) dw =

∫
Γ

f
(
F (z)

)
F ′(z) dz = 0

for every f ∈ O (G′). Apply this to f(w) = 1/(w − w0), w0 /∈ G′. – The function F (z) = z3 maps
H onto C∗.

IV.3.1. The sets of convergence are

{z : 1/2 < |z| < 2}, {z : 1 < |z − 1| < 3}, {z : |z| = 1}, ∅.

IV.3.2. The principal part of z(z2 + b2)−2 at ib is 1
4ib
(z − ib)−2.

IV.4.3. If γ is a closed path in G\S, then ∫
γ
f(z) dz = 2πi

∑
z∈G

n(γ, z) resz f = 0. Apply Prop. II.1.2.

IV.5.2. Let zα denote the principal branch. Then f(z) = zα/(1+zn) is holomorphic in a neighbour-
hood of the sector save for a simple pole at z0 = eπi/n with residue −z0α+1/n. The integral of f

over [0, rz02] is z02(α+1)
r∫
0

f(z) dz, the integral over the circular arc tends to 0 for r → ∞ (standard

estimate), hence (1− z02(α+1))
∞∫
0

f(z) dz = −2πi z0α+1/n, i.e.

∞∫
0

f(z) dz =
π/n

sin
(
π(α+ 1)/n

) .

IV.5.3. a) π(a−√
a2 − 1), b) 2π/(1− a2) if |a| < 1, 2π/(a2 − 1) if |a| > 1.
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IV.5.4. a) π/6, c) π/2
√
2.

IV.5.5b) I(a) = π exp(−|a|) fails to be differentiable at a = 0.
IV.5.7. The principal value of the first integral is πt, the second integral is one half the real part of
the first one. The third can be reduced to the second by 2 sin2 x = 1− cos 2x.
IV.5.9. Integrate R(z)zα log z over the path γ described in the text.

IV.6.2. The formula for the inverse function: If f(z) = w, w fixed, z /∈ TrΓ, then
1

2πi

∫
Γ

ζf ′(ζ)
f(ζ)− w

dζ = n(Γ, z) z.

For Γ = ∂Dr(z0) with Dr(z0) ⊂⊂ G, one obtains for w ∈ f
(
Dr(z0)

)
f−1(w) =

1

2πi

∫
|ζ−z0|=r

ζf ′(ζ)
f(ζ)− w

dζ.

IV.6.4. The number of zeros is 3 resp. 4.

V.1.3. Compare with a suitable definite integral of 1/t.

V.2.2. To show
∞∫
1

(x− [x])x−2 dx = 1− γ, compute

k+1∫
1

(x− [x])x−2 dx =
k∑
1

n+1∫
n

(x− n)x−2 dx = log(k + 1)−
k+1∑
1

1/n+ 1.

V.2.4. Mψ(s) =
∑
Λ(n)n−s follows by Ex. 3. On the other hand,

−ζ′(s)/ζ(s) =
∑
p

p−s

1− p−s
log p =

∑
p

∞∑
m=1

log p(p−s)m =
∞∑
1

Λ(n)n−s.

V.3.2. Corollary 3.5 implies ξ(1− s) = ξ(s). As ζ(s) has only one simple pole at s = 1 and Γ(s) has
(simple) poles at 0, −1, −2, . . . , ξ(s) can have (simple) poles at most at s = 1 and s = 0, −2, −4, . . ..
But in these points either s(s− 1) or ζ(s) vanish. Hence ξ(s) is an entire function.
V.4.3. By construction, |τ | � 1. If Re τ > 1

2
, then |ω2 − ω1| < |ω2| and if Re τ < 1

2
, then

|ω2 + ω1| < |ω2|, contradicting the choice of ω2. If Re τ =
1
2
, replace (ω1, ω2) by (ω1, ω2 − ω1); if

|τ | = 1, Re τ > 0, replace (ω1, ω2) by (−ω2, ω1).

V.4.4. f(z) =
(
a0 + a1℘(z)

)
/
(
℘(z)− ℘(z1)

)
.

V.4.6. The recursion formula is

(k − 1)(2k + 5)c2(k+1) = 3
∑

�+m=k

c2�c2m for k � 2.

V.4.7. (i) ⇒ (ii) by (∗); (iii) ⇒ (iv): the poles �= 0 of ℘ occur in pairs of complex conjugates;
(iv)⇒ (i): the series defining g2 and g3 are invariant under complex conjugation.

V.4.8. Let ω1 ∈ Ω∩R the minimal positive number and ω2 ∈ Ω∩iR with minimal positive imaginary
part. If the parallelogram spanned by ω1, ω2 contains no ω ∈ Ω in its interior, then Ω = 〈ω1, ω2〉.
In the other case, ω = 1

2
(ω1 + ω2) and Ω = 〈ω, ω〉.

V.4.11. By (∗), the Laurent series of ℘Ω and ℘Ω′ at 0 coincide, hence ℘Ω = ℘Ω′ . But Ω =
{poles of ℘Ω}, Ω′ = {poles of ℘Ω′}.



262 Hints and solutions of selected exercises

V.4.12. Both sides have simple poles at z = 0 and z = ±u (if 2u /∈ Ω) with the same residues, hence
their difference is a constant. But at z = ω1/2, both sides vanish.

V.4.14. If 2u /∈ Ω, both sides are elliptic functions of z, with only one pole at z = 0, where the
principal part is 1/z2. And both sides vanish at z = ±u.
V.5.1. Differentiate the addition theorem of ℘ with respect to z1 and z2, then add and simplify.

VII.2.1. The cross ratio as well as δ(z1, z2) are AutD-invariant. Hence we may assume z0 = 1,
z1 = 0, z2 = s ∈]0, 1[, z3 = −1. Then CR(z0, z1, z2, z3) = (1 + s)/(1− s) > 1.

VII.2.2. Corollary 2.5 now reads: If g : H → H is holomorphic, then |g′(z)| � |Im g(z)/ Im z|.
VII.2.5. It suffices to check the equation for z = i, w = λi (λ > 1), as both sides are AutH-invariant.

VII.3.3. We work in H and take g = iR>0. Let z1, z2 be the points on |z| = 1 with δH(z1, i) = d =
δH(i, z2). As the homotheties z �→ λz (λ > 0) are in AutH, the set {z ∈ H : δH(z, g) = d} consists of
the euclidean rays from 0 through z1 resp. z2. The general case follows by application of T ∈ AutH:
{z ∈ H : δH(z, g) = d} consists of two euclidean circular arcs passing through the points at infinity
of g.

VII.3.4. Any two triples of distinct points on ∂D can be mapped onto each other by a T ∈ AutD.
VII.3.5. Example ii for δH in VII.2 helps for the h-triangle in H with vertices i, z0, ∞.
VII.3.6. By the second law of cosines, corresponding edges have the same length. The construction
of a h-triangle from given edges shows uniqueness up to isometry.

VII.3.7. Use both laws of cosines.

VII.3.8. Work in D and show that DλTz0 is a product of two reflections. Write Tz0 = σg1σg2 as in
the proof of Prop. 3.7. Then g1 passes through 0 and Dλ = (Dλ/2σg1D−λ/2)σg1 =: σg0σg1 , hence
DλTz0 = σg0σg2 .

VII.5.3. Let z1 be any point of G with un(z1) → c < +∞, and D = DR(z1) ⊂⊂ G. By Ex. 1, for

n > m and |z − z1| � r < R, we have 0 � un(z) − um(z) � R+ r

R− r

(
un(z1) − um(z1)

)
, hence un

converges locally uniformly on D to a function that is harmonic by Ex. 2. Similarly, if un(z2)→ +∞,
then un → +∞ on a neighbourhood of z2. Now use that G is connected.

VII.6.1. Extend f by reflection in {|z| = r2} and {|z| = r1} to a larger annulus, which is then
mapped conformally to an annulus containing K2, etc.

VII.7.1. τ1(z) = z + 2, τ2(z) = z/(1− 2z).
VII.7.2. By construction, the τΔ0 and τσ3Δ0 (τ ∈ Γ0) cover H. Hence, for z ∈ H, there is τ ∈ Γ0

such that τz = z1 ∈ F . If Re z1 = 1, then τ1−1z1 ∈ F ; if |z1 − 1
2
| = 1, then τ2z1 ∈ F . As λ is

Γ0-invariant and maps F injectively, z1, z2 ∈ F and z2 = τz1, τ ∈ Γ0, imply τ = id.

VII.7.4. E.g. λ(−1/z) and 1− λ(z) both map Δ0 onto H− with (0, 1, ∞) �→ (0, ∞, 1).

VII.7.7. Note that any f ∈ Aut
(
Ĉ \ {0, 1, ∞}) can be extended to an f̂ ∈ Aut Ĉ which permutes

0, 1, ∞.
VII.7.8. λ(i) = 1/2, λ

(
(1 + i)/2

)
= 2, λ(1 + i) = −1; λ(e2πi/3

)
= −e2πi/3, λ

(
eπi/3

)
= eπi/3.

Example: Apply a functional equation of λ to i = (−1)/i.
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[Ca] Carathéodory, C.: Funktionentheorie 2 Vol. Birkhäuser (Basel) 1950
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[FL] Fischer, W./Lieb, I.: Einführung in die Komplexe Analysis Vieweg+Teubner
(Wiesbaden) 2010

[FL1] Fischer, W./Lieb, I.: Funktionentheorie 9th ed. Vieweg+Teubner (Wiesbaden)
2005
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Index of Symbols

◦
M , M , ∂M 2
U ⊂⊂ V 2

C 1
D, H, C∗, S 2
H− 86
Ĉ = C ∪ {∞} 71
Cn 32
Dε(z0) = Uε(z0) 2
Dr(z0) 67
K(z0; r,R), K(r,R) 119
Ω = 〈ω1, ω2〉 174

Re z, Im z, z, |z| 1
|z| 32

f ′(z),
df

dz
(z), f (n)(z) 4

∂f

∂x
,
∂f

∂y
7

fz =
∂f

∂z
, fz =

∂f

∂z
8

Δf 9

∂f

∂zν
,
∂f

∂zν
32

resz0 f 123
V (f) 193

Tr γ, Tr Γ 3, 110∫
γ
,
∫
|z|=1

,
∫
Γ

26, 29, 35, 110

n(γ, z), n(Γ, z) 92, 109, 110

L(γ), L(Γ) 26, 110

Lλ(γ), Lh(γ), LH(γ) 219, 220, 222

δ(z0, z1), δH(z0, z1) 220, 222

O (U) 5
M (G) 197
M, M0 83
Mf 157
Aut(G) 215

log z, arg z 87
Log z 90
π(x) 156
ϑ(x) 159
Li(x) 167
℘(z) 179
PR(ζ, z) 244
λ(z) 253
CR(z, z1, z2, z3) 85
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A
Abel, N. H. (1802–1829) 80, 148, 186
absolute convergence 13
absolute uniform convergence 14
addition theorem

– of the ℘-function 189
–, exponential function 19

analytic hypersurface 194
area, hyperbolic 226
Argand, J. R. (1768–1822) 1
argument 88
Artin, E. (1898–1962) 108
Arzelà, C. (1847–1912) 56
Ascoli, G. (1843–1896) 56
automorphism 71, 214

– group 215

B
basis of a lattice 174
Beltrami, E. (1835–1900) 235
Bernoulli, Jakob (1654–1705) 71, 101

Bernoulli numbers 71, 101, 171
biholomorphic 5 f., 12, 214
Bochner, S. (1899–1982) 193
Bolyai, J. (1802–1860) 235
Bombelli, R. (1526–1572) 80
boundary 2, 112

– cycle 112
–, distinguished 67

bounded 2
– near z0 47
–, locally uniformly 56

branch
– of the logarithm 89, 92
– of the power/root function 92

branch point 95

C
C∗-cocycle 208
Carathéodory, C. (1873–1950) 1, 214
Cardano, G. (1501–1576) 80

Cartan, H. (1904–2008) 193
Casorati, F. (1835–1890) 64, 74
Casorati-Weierstrass theorem 64
Cauchy, A. L. (1789–1857) 1, 36, 108

Cauchy inequalities 55, 121
Cauchy integral 67
Cauchy principal value 132
Cauchy’s integral formula 36, 44, 46,

69, 108, 112
– for polydisks 67
–, inhomogeneous 108, 118, 193

Cauchy’s integral theorem 36, 43, 92,
108, 112
– for domains with positive bound-

ary 116
Cauchy-Hadamard formula 16
Cauchy-Riemann

– equations 1, 9, 33, 54
–, inhomogeneous 193, 197, 199,

201
– operator 9

Chebyshev, P. L. (1821–1894) 166
circle

–, positively oriented 27
closure 2
cluster set 249
cocycle 193

–, C∗- 208
–, O- 206
–, O∗- 208

compact 2
compact convergence 14
compact support 199
complex differentiable 1, 3, 32
complex linear 11
complex partial derivative 32
conformal 12, 214
conjugate harmonic 242
connected 3

– pathwise 3
–, simply 115, 236
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Index 267

continuous, piecewise 25
convergence 13

– of infinite products 103
–, (absolute) compact 96
–, absolute 13
–, absolute (of products) 103 f.
–, absolute locally uniform 15

– of products 104
–, absolute uniform 14
–, compact 14
–, disk of 15 f.
–, locally uniform 14, 96
–, pointwise 14
–, radius of 15
–, uniform 14

convergence test
– Cauchy 15
– comparison 13
– majorant 15
– ratio 13
– root 13

convex 39
Cousin, P. A. (1867–1933) 193

Cousin-I-distribution 204, 206
–, solution of 204

Cousin-II-distribution 207
first Cousin problem 193
second Cousin problem 193, 207

covering 251
–, branched 95
–, unbranched 251
–, universal 251

cross-ratio 85
cubic curve 188

–, plane 148, 188
–, projective 189

cycle 110
–, boundary 112
–, length of a 110
–, null-homologous 112
–s, homologous 112

D
degree 78

– of a rational function 78
derivative 4

–, Wirtinger 8, 11, 33
–, complex partial 32 f.
–, higher 4

–, higher partial 33
differentiable

–, complex 8, 11, 32
–, piecewise continuously 25
–, real 1, 7 f., 33, 54

differential equation
– of the ℘-function 181 f.
–, exponential function 19

Dirichlet, P. G. L. (1805–1859)
Dirichlet problem 214, 246

discrete 53
disk of convergence 15
disk model 226
distinguished boundary 67
distribution of principal parts 204
divisor 193, 207

–, positive 207, 212
–, principal 207

Dixon, J. D. (�1937) 108
Dolbeault, P. (�1924) 108, 193

Dolbeault’s lemma 193
domain 3

– with positive boundary 111
–, convex 39
–, simply connected 115, 236
–, star-shaped 39, 43

duplication formula
– Legendre’s 151

E
Ehrenpreis, L. (1930–2010) 193
Eisenstein, G. (1823–1852) 148
elliptic function 148, 174

–, order 176
elliptic integrals 148
end point 3, 26
entire linear transformation 83
equicontinuous 56

–, locally 56
Erdős, P. (1913–1996) 166
essential singularity 61
estimate, standard 30
Euclid (ca. 360–280 BC) 166, 234

Elements 234
euclidean geometry 224 f.
fifth postulate 234

Euler, L. (1707–1783) 71, 80, 88, 100,
148, 156, 166
Euler numbers 54
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Euler product 156, 166

Euler’s constant 149

Euler’s formula 21 f.

expansion

–, Laurent 63, 121

–, power series 48 ff.

exponential function 18 f., 21

–, addition theorem 19

–, differential equation 19

–, general 93

extended plane 72

extension theorems 193

F
Ferrari, L. (1522-1565) 80

del Ferro, Scipio (1465–1526) 80

finer (covering) 209

fixed point 84

fractional linear transformation 83

Fubini, G. (1879–1943) 31

Fubini’s theorem 31

function

–, holomorphic in z0 32

–, admissible 128

–, automorphic 214

–, bounded near z0 47

–, elliptic 148

–, entire 71, 80

–, entire transcendental 80, 82

–, fractional linear 74

–, harmonic 9, 214, 241, 247

–, holomorphic 1, 32, 54, 68, 75

–, holomorphic at ∞ 73

–, hyperbolic 22 f.

–, inverse 5

–, logarithm 71

–, meromorphic 36, 65, 70, 73, 79,
193, 195, 197, 211

–, modular 254

–, order of a 142

–, piecewise continuous 25

–, rational 6, 34, 71, 78 f.

–, root 71

–, transcendental 148

–, trigonometric 22 f.

fundamental theorem of algebra 71, 76,
80 f.

G
Γ-function 148 f.
Galois, E. (1811–1832) 80
Gauss, C. F. (1777–1855) 1, 36, 80,

148, 166, 186, 235
geodesic 221, 223
geometric series 13, 15
Goursat, É. (1858–1936) 36, 40

Goursat’s lemma 40
Grothendieck, A. (�1928) 108

H
Hadamard, J. (1865–1963) 108, 166
half plane, upper 2, 86, 222, 251
half-plane model 226
Hardy, G. H. (1877–1947) 173
Hartogs, F. (1874–1943) 36, 193, 200

Hartogs’ Kugelsatz 193, 200
holomorphic 4, 32 ff., 54, 75

– at ∞ 73
holomorphic continuation 36
holomorphic logarithm 93, 140
homogeneous coordinates 188
homologous cycles 112
Hörmander, L. (�1931) 193
Hurwitz, A. (1859–1919) 148
hyperbolic distance 220 f.
hyperbolic functions 18, 22
hyperbolic geometry 214, 224 ff.

h-area 226
h-area of an h-triangle 229
h-circle 226
h-length 224
h-line 224, 226
h-plane 224
h-reflection 231 f.
h-triangle 227
disk model 226
half-plane model 226
points at infinity 226

hyperbolic length 220
hyperbolic metric 218

I
identity theorem 52, 66, 68

– for Laurent series 122
– for harmonic functions 242
– for meromorphic functions 196
– for power series 17
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inequalities
–, Cauchy 55, 121

infinity
–, line at 188
–, point at 65, 71, see also hyper-

bolic geometry
inhomogeneous Cauchy integral formula
118

initial point 3, 26
integrability condition 198
integral 24, 110

– of f along γ 26
–, Cauchy 67
–, elliptic 148

integral formula, Cauchy’s 44, 46
integration

–, parametrized surface of 35
interior 2
inverse function theorem 6, 59 f.
isolated singularity 36
isometry 225, 231

J
Jacobi, C. G. J. (1804–1851) 1, 148,

186

K
Klein, F. (1849–1925) 214, 235

Klein’s Erlangen programme 214
Koebe, P. (1882–1945) 214
Kronecker, L. (1823–1891) 108

Kronecker index 108

L
Lagrange, J. L. (1736–1813) 80
Lambert, J. H. (1728–1777) 234 f.
Laplace, P. S. (1749–1827)

Laplace operator 9, 241
lattice 174, 187

– invariants 181
–, real 187
–, rectangular 186 f.
–, rhomboid 186 f.

Laurent, P. A. (1813–1854) 63, 108
Laurent decomposition 119, 141

–, principal part 119
–, regular part 119

Laurent expansion 63, 108, 121
–, principal part of the 63, 74

Laurent series 36
–, identity theorem 122

law of cosines
–, first 229, 234
–, second 230

law of sines 230
Legendre, A.-M. (1752–1833) 148, 166,

186
Legendre’s duplication formula 151,
173

Leibniz, G. W. (1646–1716) 50
Leibniz’s rule 50

lemma
– Goursat’s 40
– Schwarz 216
– Schwarz-Pick 223, 236

length 26
– of a cycle 110

line at infinity 188
Liouville, J. (1809–1882) 81, 148

Liouville’s theorem 81 f.
Lobachevsky, N. I. (1793–1856) 235
local primitive 40, 43
local residue theorem 124
locally uniform convergence 14
locally uniformly bounded 56
logarithm 87

–, addition rule 88
–, branch of the 89
–, continuous 208
–, principal branch of the 90

logarithm function 89

M
map

–, conformal 12
–, complex linear 11
–, holomorphic 34
–, open 59
–, real linear 11
–, tangent 11

mapping
–, open 5
–, holomorphic 75

maximum principle 57, 69, 243
mean value property 243, 247
Mellin, R. H. (1854–1933) 157

Mellin transform 157
meromorphic 36, 65
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minimum modulus principle 58
Mittag-Leffler, M. G. (1846–1927) 71,

97
Mittag-Leffler theorem 97, 193

modular map 214, 254
modular net 251
Möbius, A. F. (1790–1868) 71, 83

Möbius circle 85
Möbius transformation 71, 83

Montel, P. (1876–1975) 36, 56
Montel’s big theorem 214, 255
Montel’s theorem 56, 214

Morera, G. (1856–1909) 47
Morera’s theorem 47

multiplicity see order

N
neighbourhood 2

–, ε- 2
–, punctured 61

Newman, D. J. (1930–2007) 166
non-euclidean geometry 214, 218, 235
nondiscrete 53
norm

–, euclidean 3
–, maximum 32

normal family 36, 57
null-homologous 112

O
O-cocycle 206
O-solution 206
O∗-cocycle 208
O∗-solution 208
Oka, K. (1901–1978) 193

Oka property 210
open 2, 71

– in M 2
– mapping 5, 59

open mapping theorem 59, 75
order 53

– of a function with respect to w 142
– of a pole 62, 64, 74
– of a zero 53
– of an elliptic function 176

orthocircle 221, 223, 226, 251

P
π 21, 23

℘-function 179, 181
–, addition theorem 189

parallel axiom 225 f.
parameter transformation 27
partial fraction 50

– decomposition 63, 71, 78, 96 f., 100
– decomposition of π cotπz 99

path 3
– length 26
– of integration 26, 28
–, closed 29
–, reparametrization 28
–, simple closed 112

period 174
period-parallelogram 174
Pfaff, J. F. (1765–1825) 24

Pfaffian form 24
Picard, É. (1856–1941) 64

Picard’s big theorem 64, 214, 257
Picard’s theorem 255

Pick, G. (1859–1942) 214
Schwarz-Pick lemma 223, 236

plane
–, extended 72
–, slit 90

Poincaré, H. (1854–1912) 1, 193, 214,
235
Poincaré problem 193

point
– at infinity 65
–, fixed 84

Poisson, S. D. (1781–1840)
Poisson integral 245
Poisson kernel 244

polar set 196
pole 61, 74

–, order of a 62, 64, 74
–, simple 62

polydisk 67, 193, 201, 203, 214
polynomial 3, 6, 34, 71, 75
polyradius 67
Pompeiu, D. (1873–1954) 108
power

– with an arbitrary exponent 88
power series 1, 15

– expansion 48 ff., 69
– expansions of Log z 90
–, identity theorem 17

prime number theorem 148, 157
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primitive 36
–, local 40, 43, 54

principal branch of the logarithm 90
principal part 193, 204

– of a meromorphic function 204
– of the Laurent decomposition 119
– of the Laurent expansion 63, 74

Pringsheim, A. (1850–1941) 36
projection

–, stereographic 72, 85
projective geometry 71, 235
projective line 71
projective plane 188
punctured neighbourhood 61

R
radius of convergence 15
Range, R. M. (�1943) 193, 214
rational function 34, 78

–, degree 78
real linear map 11
rectifiable 26
refinement map 209, 211
reflection

– in Möbius circles 250
– in an orthocircle 251
– in the real axis 2

reflection principle
–, Schwarz’s 214

regular part
– of the Laurent decomposition 119

relatively closed 2
relatively compact 2
relatively open 2
Remmert, R. (�1930) 214
removable singularity 47
reparametrization 28
residue 123
residue calculus 127
residue theorem 108, 124
Riemann, G. F. B. (1826–1866) 1, 71,

148, 166 f., 173, 214, 235
Riemann hypothesis 173
Riemann sphere 71 ff.
Riemann surface 49, 214
Riemann’s ζ-function 148, 155 ff.
Riemann’s extension theorem 47, 74,
194

Riemann’s mapping theorem 214,
236

root
– of unity 23
–, nth 88
–, holomorphic nth 93

Rouché, E. (1832–1910) 139
Rouché’s theorem 139

S
Saccheri, G. (1667–1733) 235
Schwarz, H. A. (1843–1921) 214, 216

Schwarz lemma 214, 216
–, converse of 238

Schwarz’s reflection principle 214,
248

Schwarz-Pick lemma 223, 236
segment 27
Selberg, A. (1917–2007) 166
series

–, absolutely convergent 13
–, convergent 13
–, geometric 13, 15
–, sum of 13

Serre, J.-P. (�1926) 193
set

–, discrete 53
–, nondiscrete 53
–, open 71

singularity
–, essential 61, 74, 123
–, isolated 36, 61, 69, 73
–, removable 47, 61, 74

slit plane 90
solution

– of a divisor 207
–, C∗- 208
–, O∗- 208

sphere
– with imaginary radius 234

sphere, Riemann 72
spherical geometry 233
standard estimate 30
star-shaped 39, 43
Stein, K. (1913–2000) 214

Stein manifolds 193
stereographic projection 72, 85
Stickelberger, L. (1850–1936) 108
Stirling, J. (1692–1770)
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Stirling’s formula 152, 155

straight line (hyperbolic) 224

substitution rule 26, 28

support, compact 199

surface

–, parametrized 35

T
tangent map 11

Taylor, B. (1685–1731) 48

Taylor series 48

theorem

– Ascoli-Arzelà 56

– Casorati-Weierstrass 64, 74

– Cauchy integral 36, 43, 112

– Fubini 31

– Fundamental theorem of algebra 71

– Liouville 81 f.

– Mittag-Leffler 97

– Montel 56, 255

– Morera 47

– Picard 64, 255

– Riemann’s extension 47, 61, 74

– Rouché 139

– Weierstrass convergence 55, 69

– Weierstrass preparation 108, 143

– Weierstrass product 106

– inverse function 60

– open mapping 59, 75

– prime number 148

– residue 108, 124

– uniformization 214

thin set 195

trace 3, 26, 110

transformation

–, Möbius- 83

–, entire linear 83

–, fractional linear 83

trigonometric functions 18, 22

U
unbranched 237

– covering 251

uniform convergence 14

uniformization theorem 214, 237

unit ball 214

universal covering 251

V
de la Vallée-Poussin, C.-J. (1866–1962)
166

W
Wallis, J. (1616–1703) 107
Weierstrass, K. (1815–1897) 1, 36, 55,

64, 71, 74, 108, 148, 186
Weierstrass ℘-function 179, 181
Weierstrass convergence theorem 55,

69
Weierstrass normal form 189
Weierstrass polynomial 145
Weierstrass preparation theorem 108,
143

Weierstrass product theorem 71, 106,
193, 207

Wessel, C. (1745–1818) 1
winding number 92, 108 ff.
Wirtinger, W. (1865–1945) 1

Wirtinger derivatives 1, 8, 11, 33

Z
ζ-function see Riemann
zero 22

– sets of holomorphic functions 193
–, isolated 70
–, order of a 53
–s of ζ(s) 173
–s, existence of 59
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