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Preface

These lecture notes are intended for advanced students and young researchers with
interests in the analysis of partial differential equations and differential geometry.
We investigate the following problems:

What are geometrical and analytical characteristics of two-dimensional immer-
sions of disc-type in higher-dimensional Euclidean spaces R"?

What can we state about the geometry of orthogonal unit normal frames for such
surfaces, as a generalization of the classical concept of unit normal vectors?

Are there special orthogonal unit normal frames for surfaces which are particu-
larly useful for analytical and geometrical purposes, and how can we construct
such frames?

To be more explicit, we have in mind:

Firstly, to extend treatments on elementary differential geometry of surfaces in
IR3, as presented for example in the excellent textbooks of Bir [4], Blaschke and
Leichtweif} [12], Klingenberg [80], or Kiihnel [84], and to continue treatments,
for example, from Brauner [14] or Eschenburg and Jost [44], where selected
aspects of surface geometry in Euclidean spaces are already discussed, to an
analytical theory of surfaces in Euclidean spaces together with its elements of
complex analysis and partial differential equations.

Secondly, to provide a new approach, as comprehensive as possible, to the con-
struction of orthogonal unit normal frames for surfaces which arise from certain
geometric variational problems, so-called normal Coulomb frames, together with
its elements from the theory of non-linear elliptic systems and modern harmonic
analysis.

Our lecture notes contain four chapters which are organized as follows:

Chapter 1: Surface geometry

We present a comprehensive discussion of the differential geometry of surfaces
immersed in Euclidean spaces.

vii



viii Preface

This, in particular, includes the definition of orthogonal unit normal frames for
surfaces, one central aspect of our analysis, as well as orthogonal transitions
between them.

Furthermore, we derive the differential equations of Gau3 and Weingarten
as well as the corresponding integrability conditions of Codazzi—Mainardi,
Gaul} and Ricci. Based on these fundamental identities we introduce important
curvature quantities of surfaces, for example the curvature tensor of the normal
bundle which plays a particular role in our considerations.

Surface geometry benefits a lot from the theory of generalized analytic
functions. To give an idea of what this means we want to conclude the first
chapter with proving holomorphy of the so-called Hopf vector which in particular
allows us to characterize the zeros of the Gauss curvature of minimal surfaces.

e Chapter?2: Elliptic systems

This intermediate chapter begins by introducing the theory of non-linear ellip-
tic systems with quadratic growth in the gradient, and then presents some results
concerning curvature estimates and theorems of Bernstein-type for surfaces in
Euclidean spaces of arbitrary dimensions.

A famous result of S. Bernstein states that a smooth minimal graph in R3,
defined on the whole plane R?, must necessarily be a plane. Today we know
various strategies to prove this result, and the idea goes back to E. Heinz to
establish first a curvature estimate and to deduce Bernstein’s result in a second
step. However, minimal surfaces with higher codimensions do not share this
Bernstein property, as one of our main examples X(w) = (w,w?) € R* with
w = u + iv convincingly shows. It is still a great challenge to find geometrical
criteria, preferably in terms of the curvature quantities of the surfaces’ normal
bundles, which guarantee the validity of Bernstein’s theorem.

We must admit that we can only discuss briefly some points where we would
wish to employ our tools we develop in this book, but up to now we cannot
continue to drive further developments.

o Chapter 3: Normal Coulomb frames in R*

With this chapter we begin our study of constructing normal Coulomb frames for
surfaces immersed in Euclidean space R*.

Normal Coulomb frames are critical for a new functional of total torsion. We
present the associated Euler—Lagrange equation and discuss its solution via a
Neumann boundary value problem. A proof of the “minimal character” of normal
Coulomb frames follows immediately.

Using methods from potential theory and complex analysis we establish
various analytical tools to control these special frames. For example, we present
two different methods to bound their torsion (connection) coefficients. Methods
from the theory of generalized analytic functions will play again an important
role.

We conclude the third chapter with a class of minimal graphs for which we
can explicitly compute normal Coulomb frames.
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s Chapter4: Normal Coulomb frames in R"+2

Now we consider two-dimensional surfaces immersed in Euclidean spaces R 2
of arbitrary dimension. The construction of normal Coulomb frames turns out to
be more intricate and requires a profound analysis of non-linear elliptic systems
in two variables.

The Euler-Lagrange equations of the functional of total torsion are identified
as non-linear elliptic systems with quadratic growth in the gradient, and, more
exactly, the non-linearity in the gradient is of so-called curi-type, while the Euler—
Lagrange equations appear in a div-curl-form.

We discuss the interplay between curvatures of the normal bundles and torsion
properties of normal Coulomb frames. It turns out that such frames are free of
torsion if and only if the normal bundle is flat.

Existence of normal Coulomb frames is then established by solving a
variational problem in a weak sense using ideas of F. Helein [64]. This, of
course, ensures minimality, but we are also interested in classical regularity of
our frames. For this purpose we employ deep results of the theory of non-linear
elliptic systems of div-curl-type and benefit from the work of many authors:
E. Heinz, S. Hildebrandt, F. Helein, F. Miiller, S. Miiller, T. Riviere, F. Sauvigny,
A. Schikorra, E.M. Stein, F. Tomi, H.C. Wente, and many others.

Parallel frames in the normal bundle are often studied in the literature. These are
special normal Coulomb frames, namely those with vanishing torsion coefficients,
and so they only exist if the normal bundle is flat. In our lecture notes we will mainly
consider non-flat normal bundles and therefore nonparallel normal frames.

Parallel normal frames are widely used in physics, see for example da Costa [30]
for a geometric presentation of certain physical problems in quantum mechanics
or Burchard and Thomas [19] for an analytical description of the dynamics of
Euler’s elastic curves. The treatment of such problems in the more general context
of nonparallel normal frames is surely desirable but must be left open for the future.

Many fundamental mathematical problems are also left open: How can one
construct normal Coulomb frames on surfaces of higher topological type or on
higher-dimensional manifolds? Is it possible to combine our results with Helein’s
construction of tangential Coulomb frames on surfaces from [64]? How can one
construct Coulomb frames on manifolds immersed in general Riemannian spaces
or Lorentzian spaces? This would surely open the door to applications in general
relativity or string theory. The reader is invited to join in the discussion.

Most of the results presented here were obtained in a very fruitful collaboration
with Frank Miiller from the University of Duisburg-Essen. The reader finds our
original approaches in [49, 50] and [51].

I would like to thank the members of Springer for their helpful collaboration, for
their support and for their care in preparing this work for print.

Mainz, Germany Steffen Frohlich
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Chapter 1
Surface Geometry

Abstract We present a comprehensive discussion of the differential geometry of
surfaces immersed in Euclidean spaces.

This, in particular, includes the definition of orthogonal unit normal frames
for surfaces, one central aspect of our analysis, as well as orthogonal transitions
between them.

Furthermore, we derive the differential equations of Gaul and Weingarten as well
as the corresponding integrability conditions of Codazzi—Mainardi, Gauf} and Ricci.
Based on these fundamental identities we introduce important curvature quantities
of surfaces, for example the curvature tensor of the normal bundle which plays a
particular role in our considerations.

Surface geometry benefits a lot from the theory of generalized analytic functions.
To give an idea of what this means we want to conclude the first chapter with
proving holomorphy of the so-called Hopf vector which in particular allows us to
characterize the zeros of the Gauss curvature of minimal surfaces.

1.1 Regular Surfaces

1.1.1 First Definitions

Let n > 1 be an integer. The main objects of our considerations are vector-valued
mappings

X =X(u,v) = (xl(u, V). X" (u, v)), (u,v) € B,
defined on the topological closure B C R? of the open unit disc
B = {w:(u,v)€R2 Cur 4V < 1}.
S. Frohlich, Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces, 1

Lecture Notes in Mathematics 2053, DOI 10.1007/978-3-642-29846-2_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Surface Geometry

From the point of view of analysis and differential geometry we always want to
assume (until not presumed otherwise)

+ X e C*(B,R"*?) with an integer k > 4 and a Holder exponent o € (0, 1), as
well as .
e rank DX (u,v) = 2 forall (u,v) € B

for the Jacobian DX € R?*”+2) of X, i.e. at each point w € B there is a non-
degenerate, two-dimensional tangential plane.
The mapping X thus represents a regular surface or two-dimensional immersion

of disc-type.

1.1.2 Tangential Space and Normal Space

Since X represents an immersion, at each point w € B there exist two linearly
independent tangential vectors

XMW and Xy(w) = 8);(;”),

X,(w) =

represented analytically by the derivatives of X .! which span the two-dimensional
tangential space T x (w) at that pointw € B :

Tx (w) := span { X, (w), X,(w)} = R*.
Its orthogonal complement forms the normal space Ny (w) atw € B, i.e.
Nyw):={Z e R"" : X,w)-Z = X,(w)-Z =0} =R",
where X -Y denotes the inner Euclidean product between two vectors X, Y € R+2,

n+2

X'Y::inyi.

i=1

1.1.3 Orthonormal Normal Frames

At each point w € B we may choose 7 > 1 unit normal vectors N, = N, (w) for
o =1,...,n, satisfying the following orthogonality relations

ISymbols like X,,, Ny, &ij.v €tc. denote partial derivatives w.r.t. u resp. v.
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1 foro =19
Ny - Ny = bgp = forallo, 0 =1,...,n
0foro # 90

with Kronecker’s symbol 6,5. We also use the notations 84y, 83, or §°? for this
symbol. Now choose the N, (w) in such a way that:
(a) They span the normal space Ny (w) at w € B,
(b) They are oriented in the following sense

det (X, Xy, N1, ..., N,) > 0.
Thanks to the contractibility of the domain B we can extend this system of
orthogonal unit normal vectors in a differentiable way to the whole domain B.

Definition 1.1. A system
N=(Ni....,N,) € C-1(B, R0+,

which consists of n > 1 orthogonal unit normal vectors N, = N,(w), oriented
in the above sense, which moves C* _l’“-smoothly along the whole surface X, and
which spans the n-dimensional normal space Ny (w) at each w € B, is called an
orthogonal normal frame, or shortly ONF.

1.2 Examples

1.2.1 Surface Graphs

We consider some important examples of surfaces.

Definition 1.2. A surface graph is a mapping
RZ > (X,y) g X(X,y) = ()C,y,zl(X,y),...,Zn(X,y)) € Rn+2

with sufficiently smooth functions z,, 0 = 1, ..., n, generating the graph.

Surface graphs are always immersions. We can specify a possible “normal frame”
consisting of the unit normal vectors

1
M= (= aa 10.0, . 0),

V14|V 2

1
Ny= ——(—22.0,-2,,0,1,0,...,0) etc.

V1+|Vg?
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with 75, and z,,,, denoting the partial derivatives of z, w.r.t. the coordinates x resp.
y,and Vz, = (Zo.x,20,y) € R? is the Euclidean gradient of z,.

Definition 1.3. These special N, are called the Euler unit normal vectors of the
graph X.

In general, Euler unit normals are not orthogonal, but by means of Gram—Schmidt
orthogonalization we can always construct an orthogonal unit basis from an Euler
unit normal vector frame.

1.2.2 Holomorphic Surface Graphs

Let us consider surface graphs of the special form

R?3 (x,y) = X(x,y) = (x,y.0(x. ), ¥(x,y)) € R*

with ¢ and i being real resp. imaginary part of a complex-valued holomorphic
function

D(x,y) =@(x,y) +iy(x,y) €C

satisfying the Cauchy—Riemann equations

O =Yy, @y =—Yx.

For example,
o+iy = (x+iy)? =x*—y>+2ixy

will play a particular role in our analysis.
The associated Euler unit normal vectors of such a holomorphic graph,

1
Ny = ———(— ¢x,—9¢,, 1,0),
: 1+|qu|2( pr = 10)
1 1
N:— — y — ,0,1 - T s T 50717
2 1+|V1/f|2( Yo =92.0.) 1+|V<p|2((py e 01)

form an ONF in the normal space since we immediately verify

1
N -No=——(—g ) =0
1- N, 1+|V</)|2( Px0y + 0 0x)

We will repeatedly return to holomorphic graphs in the course of our considerations,
in particular when we discuss Bernstein’s principle and curvature estimates for
minimal surfaces in the second chapter, or in Chap.3 when we prove that Euler
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unit normal frames for certain holomorphic graphs of the form (w, @(w)) represent
normal Coulomb frames—the central topic of this book.

1.2.3 The Veronese Surface

This is the surface

with x2 4+ y2 4+ 72 =3, L € R,

first described by G. Veronese. From Chen and Ludden [23] we infer the following
interesting properties which will become more clear after the study of the first two
chapters of our book.

Proposition 1.1. The Veronese surface, as a compact surface (without boundary)
in R, has parallel mean curvature vector and constant normal curvature. Further-
more, it has constant Gauf3 curvature.

A calculation shows that the parametrization X (x, y; 1) maps points (x, y, z) of the
two-dimensional sphere with radius /3,

{(x.y.2) eR? : X2 +)?+ 2 =3} CR’,
into the four-dimensional unit sphere
S* = {(x1, %2, X3, X4, X5) 1 X{ + X3 +x3 +xj+x3 =1} CR’

in such a way that two points (x, y, z) and (—x, —y, —z) are mapped into the same
point of S*. Thus, we have a parametrization of a real projective plane in R>.

For a good introduction to the Veronese surface we refer the reader to Albrecht
[1] who presents also modern applications of it in the field of Computer Aided
Geometric Design.

The Veronese surface is a minimal surface and, as shown in Li [86], it is also a
Willmore surface in S*. These two properties make this surface so attractive for the
geometric analysis, in particular for the famous Willmore problem.

For detailed discussions about the interplay between minimal surfaces in Eu-
clidean spaces or in spheres and Willmore surfaces on the one hand, and methods of
modern harmonic analysis on the other hand, we refer the reader i.e. to Bryant [16],
Helein [64], Li [86], Riviere [99], Weiner [120], or Willmore [125]. Especially in
the fourth chapter we will employ many of Helein’s ideas and methods from [64]
for our construction of normal Coulomb frames.
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1.3 The Fundamental Forms

1.3.1 The First Fundamental Form

1. 2

To apply the classical tensor calculus we introduce the notation u' := u, u” := v.

Definition 1.4. The coefficients g;; of the first fundamental form g € R*? of the
immersion X are defined by

gij = Xui'Xuj, i,j:1,2.
The differential line element of the surface w.r.t. this form then reads as follows
2
ds® = Y gijdu'dul .
ij=1

Formally this line element results from inserting the parametric representation of
X = X(u,v) into the Euclidean form

n+2
ds’ = ) Suodx’dxt
k=1
of the embedding space R"*2 with Cartesian coordinates x* fork = 1,...,n + 2.
Namely, we calculate
n+2
ds? = Y So(xk du+ xf dv)(xf du+ x! dv)
k=1
n+2
= Z {(x{f)2 du® 4 2(x*x*) dudv + (x*)? dvz} .
k=1

Notice that the first fundamental form g is invertible on account of the regularity
property rank DX = 2 for the Jacobian DX of X. For its inverse matrix we write

g—l — (gij)i,j=l,2 e RZXZ'

At each point w € B it then holds

2
(gog ik = Z gij gk = 55‘ with Kronecker’s symbol 81].‘ .
j=1
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1.3.2 The Tensor of the Second Fundamental Forms

We come to

Definition 1.5. To each unit normal vector N, of a given ONF 0t = (Ny,..., N,)
we assign a second fundamental form with coefficients

Lo‘,ij I:XMiM/'NU, i,j:1,2,0':1,...,l’l.

Notice that
XuiLtf : N(T = _Xui : No,uf

which follows directly after differentiation of the orthogonality relations X, -
N, =0foralli =1,2ando =1, ...,n.

In case n = 1 of one codimension there is only one second fundamental form
which is uniquely defined up to orientation of the unit normal vector N.

1.3.3 Conformal Parameters

We will often work with conformal parameters (u,v) € B satisfying the conformal-
ity relations -
gn=W=g»n, gn=0 B

W = V81182 — glzz-

This area element then represents the conformal factor w.r.t. the surface’s conformal
parametrization.
Introducing conformal parameters is justified by results like (see [107])

with the area element

Proposition 1.2. Suppose that the coefficients a, b and ¢ of the Riemannian metric
ds®> = adu® + 2bdudv + ¢ dv?

are of class Cli“(E, R) with « € (0,1). Then there is a conformal parameter
system (u,v) € B.

Recall that ds? is of Riemannian type if ac —b> > no > 0 in B. The regularity
condition required here is satisfied in our situation due to g;; € C k=1(B) with
k>4,

While Sauvigny’s result holds in the large, i.e. on the whole closed disc B,
another optimal result in the small goes back to Korn [83] and Lichtenstein [87],
see also Chern [24] for a simplified proof.

Proposition 1.3. Suppose that the coefficients a, b and ¢ of the Riemannian metric

ds* = adu® +2bdudv + ¢ dV*
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satisfy a Holder condition in B. Then for every point w € B there exists an open
neighborhood over which the surface can be parametrized conformally.

The uniformization principle would now guarantee the global existence of confor-
mal parameters, see i.e. the classical monographs Courant [28] or Nitsche [92] for
comprehensive discussions.

Note also the different regularity assumptions in the propositions due to different
analytical approaches. However, Hartman and Wintner in [58] pointed out that if the
coefficients a, b and ¢ are only continuous then there need not exist any parameter
transformation into a conformal form. Thus, the weakest regularity conditions are
given by Korn and Lichtenstein.

For recent developments on this subject, namely in connection with the classical
Plateau problem for minimal surfaces, we refer the reader to Hildebrandt and von
der Mosel [67] as well as to the detailed analysis in Dierkes et al. [34].

1.3.4 Example: Holomorphic Surfaces

Forw = u +iv € B we consider mappings
X(w) = (¢(W), lI/(w)):E —CxC

with complex-valued holomorphic functions @ = (¢;, ¢2) and ¥ = (Y1, V). Real-
and imaginary part are solutions of the Cauchy—Riemann equations

Olu = P2y, DPly = —P2u and
1pl,u = I,/fZ,v 5 I,/fl,v = _WZ,M .

We calculate the coefficients of the first fundamental form

g1 = XM . Xu = ((pl,ua D2 us I,/fl,l,u 1,/fZ,u)z = (plzu + §022,u + Irlflzl,t + 1p22,l,t ’
g» = Xv * Xv = (plz,v + (p22,v + Irlflzv + Ir//22v = §022,u + (plzu + 1p22,l,t + 1plz,u = &11,
812 = Xu . XV = @1uP1y + D2uP2.v + wl,uwl,v + wZ,uwZ,v = 0.

Proposition 1.4. The map X(w) = (®(w), ¥(w)), w € B, with complex-valued,
holomorphic functions @ and W is conformally parametrized.

1.3.5 Outlook and Some Open Problems

Before we go into a detailed analysis we want to discuss briefly some questions we
do not address in this book, admittedly due to our lack of knowledge, but which
should definitely be approached in the future.
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1. Riemannian embedding spaces
From the analytical and from the geometrical point of view it is of interest to
consider immersions which live in general Riemannian spaces. For example, let
X:B — "2 with a (n + 2)-dimensional manifold .#"*2 be equipped with a
Riemannian metric 7y, satisfying

n+2

Y et E = molg? forall § = (... £"?) e R'?
kt=1

with some real 19 > 0. The corresponding line element is then given by
n+2
ds* = Z e dx*dx*

k=1

from where we infer the induced line element of the surface,

2 n+2 2
ds2 = Z Z nk(xzfi-xﬁj dulduj = Z yl] dulduj with
ij=1kt=1 =
n+2
. k L
Yij = Z NiceX,i X,
k=1

This form is of Riemannian type and admits a conformal parametrization.
2. Lorentz spaces and space forms

We would also like to work with immersions in pseudo-Euclidean spaces
or general hyperbolic space forms of negative curvature, since all of them
are relevant for many applications. The simplest example of such a manifold
diag (—1,1,1,1). A generalization of our calculations to the case of positively
and negatively curved embedding manifolds will appear in future papers. We
will frequently indicate such applications from physics: In Burchard and Thomas
[19], for example, the authors employ parallel normal frames for curves in
three-dimensional space to analyse their elastic properties. The study of elastic
properties of surfaces with higher codimensions, on the other hand, would require
to approach deep analytical questions concerning Willmore surfaces.

And, to mention a second example, further applications and also new prob-
lems should open up in the analysis of classical string actions in physics. In
particular, the coupled Nambu-Goto-Polyakov action combines properties of
minimizers or critical points of the area functional and the Willmore functional
in higher-dimensional spaces, see e.g. Konopelchenko and Landolfi [82]. Such
surfaces then form the basis of physical strings.

The reader is referred to the introductory but comprehensive monograph
Zwiebach [128] who presents this theory from the point of view of classical
calculus of variations and general relativity.
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3. Higher dimensional manifolds
Various analytical problems appear when we work with higher dimensional
manifolds instead of two-dimensional surfaces. This particularly concerns the
theory of non-linear elliptic systems we employ in Chaps.3 and 4. With the
presentation at hand we cover only the two-dimensional situation.

4. General vector bundles
Orthonormal tangential frames are considered in Helein [64], and here we
develop a theory of orthonormal frames in the normal bundle of surfaces. A
theory for arbitrary vector bundles over manifolds is definitely desirable and will
be a topic of future work.

5. Curvature flows
Another issue concerns geometric flows for surfaces in higher-dimensional
spaces, in particular the mean curvature flow, see e.g. Ecker [41] for detailed
discussions on the classical theory, or the recent paper Andrews and Baker [3]
on curvature-pinched submanifolds and their evolution to spheres. The literature
covers further numerous contributions on this problem, but mainly for surfaces
with either mean curvature vector parallel in the normal bundle or even with
flat normal bundles. It is a future aim to employ our theory of normal Coulomb
frames to control geometric flows for objects with higher codimension.

It seems that there is even a lack of a satisfactorily treatment of parallel-type
surfaces with higher codimensions. Beside the omnipresent problem of deriving
manageable expressions for various curvature quantities of parallel surfaces, one
would particularly be faced with the appearance of singularities in such a “process of
parallel displacement,” comparable with central problems from the mean curvature
flow but surely a lot easier. We will briefly discuss such surfaces in Chap. 3.

1.4 Differential Equations

1.4.1 Problem Statement

The system {X,, X,, Ny,..., N,} forms what we want to call a moving (n + 2)-
Jframe for the immersion X. In the following we will quantify the rate of change of
this frame under infinitesimal variations.

1.4.2 The Christoffel Symbols

To evaluate the derivatives of X we first need the following definition.

Definition 1.6. The connection coefficients of the tangent bundle” of the immersion
X are the Christoffel symbols

2The tangent bundle is the collection U {w} x Tx(w).
wEB
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2
1 .o
1—‘1? = 5 ngf (gli,uf +gjl,ui _gij,ué)v L, Jvk = 132
=1

Using conformal parameters from Sect. 1.3.3, the Christoffel symbols take the form

WM Wv WM
Flll _2W’ F112=F211=—2W, lezz__sz
W, W, W,
rj W Flzzzrzzlzﬁs Fzzzzﬁ

with the area element W. They decode the way of parallel transport of surface vector
fields. Of central interest will be the connection coefficients of the normal bundle
which we introduce below.

1.4.3 The Gauf} Equations

With the help of the Christoffel symbols and the coefficients L ;; of the second
fundamental form for some unit normal vector N, € 1 we can state

Proposition 1.5. Let the immersion X together with an ONF 2t be given. Then
there hold the Gauf; equations

2 n
X =Y TEXu+ > LoijNe fori.j=1.2.
k=1

o=1

Proof. We follow Blaschke and Leichtweil3 [12], Sect. 57 and evaluate the ansatz

2 n
k
Xy = Za’-quk + Zbﬁ,ijNﬁ
k=1 ¥=1

with functions af?j and by ;; to be determined. A first multiplication by N,, gives

Lyij = Xyiw - No = Zbﬂ,ijNﬂ -Ny, = Zbﬂ,ij&?w = byij .
- 9=1

To compute next the af?j we multiply our ansatz by X ¢ and arrive at

u’u/ X‘f = E al]gké S Ay
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Note that a;¢; = a¢; due to Schwarz’s lemma. We calculate

ajgj = (Xui : X//)uf - Xui : Xufu./' = &itu — Aeij
which implies g; ,; = ai¢; + aeij. Thus, we infer g ;¢ i + &y — &ijut = 24ait),
and it therefore follows

2
1
Zal]'(jgkl = E (gj{,ui + 80iu _gij,ul)'
k=1

Rearranging for the al’-‘j into the form

2
1
aj = > 8" (e + Stiw — Gijut)
=1

proves the statement. O

1.4.4 The Torsion Coefficients

To determine the infinitesimal variation of the unit normal vectors N, of some fixed
ONF 1 we need the following connection coefficients of the normal bundle.?

Definition 1.7. Let the immersion X together with an ONF 9t be given. The
connection coefficients of its normal bundle are the torsion coefficients

T} := Ny, - Ny fori=12ando,® =1,....n.

Taking N, - Ny = 8,y into account we immediately infer

Proposition 1.6. The torsion coefficients are skew-symmetric w.r.t. interchanging
o <> U, L.e. there always hold

T(fi =-Tg; foralli=12ando,¥ =1,...,n.

In particular, T7; = 0.

The torsion coefficients behave like tensors of rank 1 w.r.t. the lower i-index, and
therefore they depend on the parametrization.

To justify the name “torsion coefficient” we consider an arc-length parametrized
curve c(s) in R? together with the moving 3-frame (t(s), n(s), b(s)) consisting of

3The normal bundle is the collection U {w} x Ny (w), see Definition 1.9 below.
wEB
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the unit tangent vector t(s), the unit normal vector n(s) and the unit binormal vector
b(s). Then its curvature « (s) and torsion t(s) are given by

k(s) = t'()]. () =n'(s)-b(s).

and this already clarifies the analogy to our definition of the torsion coefficients.

In fact, it was Weyl in [124] who first used the terminology “torsion”: Aus einem
normalen Vektor n in P entsteht ein Vektor 0’ + dt (W normal, dt tangential). Die
infinitesimale lineare Abbildung n — n' von Np auf Np: ist die Torsion.*

1.4.5 The Weingarten Equations

We determine the variation of the unit normal vectors N, of a given ONF 91.

Proposition 1.7. Let the immersion X together with an ONF N be given. Then
there hold the Weingarten equations

Uu’ = Z L(ﬂjg X K+ ZT(E’-Nﬁ

Jjk=1

fori =1,2ando =1,...,n

Proof. We follow Blaschke and Leichtweil3 [12] again and determine the unknown
functions a ; and b19 of the ansatz

2 n
Now =3 ak X+ blNy
k=1 =1

Multiplication by X, gives

2
k
_La,if = Uu‘ X = Zaaz 'Xué = Zaa,igkf
k=1

and therefore

2

14

a?i = - E Loicg "
(=1

4From a normal vector n in P there arises a vector n’ + dt (n’ normal, dt tangential). The
infinitesimal linear mapping n — n’ from 91p into 91p/ is the torsion; see the next paragraph.
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A second multiplication by N,, shows
n n
T = Nyu *No =Y _bJ;Ny-Ny =Y b8y, =D,
=1 v=1

proving the statement. O

1.5 Integrability Conditions

1.5.1 Problem Statement

In view of X € C*(B,R"*?) there hold various integrability conditions which we
present in this section.

In particular, a differentiation of the Gaul} equations gives us necessary condi-
tions for the third derivatives of the surface vector X resp. the second derivatives
of the tangential vectors X, in form of the Codazzi—-Mainardi equations and the
famous theorema egregium:

Xuiuv - levu =0
(Xuiuv - Xuivu)norm =0 (Xuiuv - Xuivu)lang =0
Codazzi—Mainardi equations theorema egregium
(Proposition 1.8) (Proposition 1.9)

where the upper “norm” and “tang” mean the normal resp. tangential components.

The Codazzi—-Mainardi equations also arise from a differentiation of the Wein-
garten equations, and this latter system is finally the source of a third system of
integrability conditions, named after Ricci, which has no counter-partin case n = 1
of one codimension.

Concerning the historical background we would like to remark that the theorema
egregium and the Codazzi—Mainardi equations for general submanifolds were first
derived by Voss in [118], while the Ricci equations are actually named after Ricci
1888. The reader finds more references e.g. in the survey articles Chen [22],
Kobayashi [81], or in the classical monographs Eisenhart [43], Schouten [110].

Analogously we will proceed with differentiating the Weingarten equations to
get
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Na,uv - Na,vu = 0

e AN

(Na,uv - Na,vu)lang =0 (NU,uv - NU’W)norm =0
Codazzi—Mainardi equations Ricci equations
(Proposition 1.8) (Proposition 1.11)

To be precise, let us now start with the Gaufl equations from Sect. 1.4.3, i.e.

n
Xuiu = [‘liXu + E%X\; + ZL(T,HN(T 5
o=1

n
Xuiv = EIZX” —+ 1—‘122Xv + ZLa,iZNG

o=1

fori = 1,2. We differentiate the first equation w.r.t. v

2 n
0L + TNTh + Tl =) ) LoinLoag"
{=1o0=1

X, Xu

u' uv

2 n
+ 03+ TR + TATA =Y > LonLong®™p X,

{=10=1

n
OLoit + TiLon + TiLon + Y Lon TS

o=1

3

w=1

Na)a

and the second equation w.r.t. u,

2 n
0,35 + Ty + TA0), — Z Z LoinLo1eg™p Xu

{=10=1

Xuivu =

2 n
0I5+ TADA + T3 = Y- ) LonaLong”
{=1o0=1

+ Xv

n

2

w=1

n
duLwiz+ ThLont + TiLosa + Y LoinTY)

o=1

N .

>For a better overview and to avoid too many commas we also use the symbol 9, I’} := T,

for the partial derivatives.

15

; etc.
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Comparing the tangential and normal parts of these two identities gives the first set
of our integrability conditions as follows.

1.5.2 The Integrability Conditions of Codazzi and Mainardi

Namely, from the identity (X,i,,— X,i,.)"™ = 0 we particularly infer the following
result (we interchange o and ).

Proposition 1.8. Let the immersion X together with an ONF )t be given. Then

n
OLoit + TiLonz + TiLlon + Y Lot TS,

w=1

= 0uLoio + ThLont + T5Le1a + Z LyiaT,

w=1

fori =1,2ando =1,2,...,n.

In contrast to the case n = 1 of one codimension, i.e. for surfaces in R>, these
equations contain the torsion coefficients introduced in Sect. 1.4.4, and this indicates
the richer geometry in the higher-codimensional situation.

1.5.3 The Integrability Conditions of Gauf

Next, from (X i, — X,i,,)"¢ = 0 we infer

Proposition 1.9. Let the immersion X together with an ONF N be given. Then
there hold the integrability conditions of Gauf3

2 2 2 n
av[‘,'zl - auF,ZZ + Z F,ylnr,flz - Z F,? Frﬁl = Z Z(LU,“LU,ZWI - L(T,iZL(T,lm)gm[
m=1 m=1 m=1o0=1
fori, £ =1,2.

These equations actually do not contain the torsion coefficients. Rather they belong
to the inner geometry of the surface as will become more clear in the next
paragraphs. In case n = 1 they read
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2 2
0L — 0.l + ) (I Ty = T3 ) = Y (LitLow — LioLin)g™
=1

m=1

with L;; = X,;,,; - N denoting the coefficients of the second fundamental form w.r.t.
the one unit normal vector N.

1.5.4 The Curvature Tensor of the Tangent Bundle

The left hand side of the GauB integrability conditions gives reason to our next

Definition 1.8. The curvature tensor of the tangent bundle of the immersion X,
also called the Riemannian curvature tensor, is given by components

2
Ry =0,k =0, T + Y (I Ty = TR
=1

fori, j,k, £ =1,2.
Its covariant components are

2
¢
Rnijk = Z R,-jkgzn .
=1
In our case of two dimensions for X, these R,;;x reduce to one essential component:

Riti1 =0, Rxn»n =0, R =0, Ryinu=0, Rnyy=0 Rup=0,
Rii2 =0, Rxni =0, Riu21=0, Rpi=0, Rpp=0 Ry»n=0,

Ro112 = Rin1 = —Ro121 = —Riann.

Let us consider this fact from another direction.

1.5.5 Gauf Curvature and the Theorema Egregium

Namely, the essential component R;1, of the Riemannian curvature tensor repre-
sents the inner curvature of the surface X.

Proposition 1.10. Let the immersion X together with an ONF N be given. Then it

holds the theorema egregium
Rynn = KW?
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with the Gaussian curvature of the surface, defined by

Lsi1Loo — Lilz
W2

K = Z K, with K, :=
=1

and the area element W.

Proof. Using the Gaul} integrability conditions we compute

2 2 n
Roiz = Z Ri g0 = Z Z(LG,IILU,Zm —LonLoim)g™ g0
=1 tm=10=1

2 n n
=3 Lonilom — LonnLon)g*gn = Y K,W? = KW?,

{=10=1 o=1

and the statement follows. O

The Gauss curvature K does neither depend on the choice of the parametrization
(u,v) € ‘B nor on the choice of the ONF 91 (of course, its components K, are not
invariant; we skip a proof of these invariance properties, but for similar calculations
which show the effect of rotational mappings see Sect. 1.6.4 {f.). It can be computed
from the knowledge of the first fundamental form and its first and second derivatives
by means of the Riemannian curvature tensor. This is the content of the famous
theorema egregium.

1.5.6 The Integrability Conditions of Ricci

Now we want to derive Ricci’s integrability conditions which have, as mentioned
above, no counterpart in case n = 1 of one codimension.

Let us first compute the second derivatives of the unit normal vectors of some
given ONF 1 :

2 2 2
N”v"“’ == Z BVL‘Tsljgijuk - Z L‘Tslj avgijuk - Z Lavljgijukv
jk=1 jk=1 jk=1

n n
+ Y OTENy + Y T Nay
=1 =1

2 2
= — Z avL(r,ljgjk + La,ljavgjk + Z La,ljgjmryy]fz Xuk

Jk=1 m=1
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Z '\ Loojg’* X s

n 2
- Z Z LU,ljgjkLw,kZ - Z Tﬁz a)

w=1 | jk=1
as well as
2 2
No,vu = - Z auLU,ngjk + LU,Zj augjk + Z LG,ngijrﬁl Xuk
jk=1 m=1
= T Ly X
=1
- Z Z LaZ]gj kal_3 ng ZTL‘?ZT&l w
w=1 |\ jk=1

using the Gaul} equations and the Weingarten equations. It holds necessarily
Now — Ngyy =0 forallo =1,...,n.

A comparison between the tangential parts would again yield the Codazzi—Mainardi
equations, and thus we drop these calculations.

Notice furthermore that the condition (Ny ,, — Ny, )™™ = 0 is trivially satisfied
in case n = 1 of one codimension due to the symmetry of the g/* and the
coefficients L;; of the second fundamental form:

2 2
T); =0 and Z Lijg'* Ly = Z Lyjg* L .
=1 =1

But in the general case of higher codimension these conditions are not trivial, rather
they yield new equations called the Ricci integrability conditions.

Proposition 1.11. Let the immersion X together with an ONF 2t be given. Then
there hold the Ricci equations

0T, — 0T + Z(szTm T£1T1§"’2)

2
Z (L(I,2j Lw,kl - L(T,lj Lw,k2)gjk

Jk=1

foro,w =1,...,n.
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Both sides of these identities clearly vanish identically if n = 1.

We will employ this Ricci integrability conditions on several occasions: For
example, when we prove invariance of the normal sectional curvatures S¢ in
Proposition 1.12, in Proposition 2.4 when we give an upper bound of the S in
terms of the mean and Gaussian curvature, or in Proposition 3.3 when we consider
evolute type surfaces and the curvatures of their normal bundles.

1.6 The Curvature of the Normal Bundle

1.6.1 Problem Statement

In the same way as we derived the Riemannian curvature tensor from the Gauf}
integrability conditions we now proceed with deriving the curvature tensor of the
normal bundle from the Ricci integrability conditions. In this section we give a
detailed introduction to this curvature quantity.

Definition 1.9. The normal bundle of the immersion X is given by

A (X) = [ J{w} x Ny (w).

weB
Here are some simple examples:

1. The normal bundle of a surface in R? is the collection of all normal lines, thus it
resembles the so-called Grassmann manifold G3 ;.

2. Tubular neighborhoods of curves or surfaces are resembled by its normal bundle,
see also the parallel type surfaces in the next chapter.

In case of higher codimension the normal bundle possesses its own non-trivial
geometry so that we can assign a curvature to the normal bundle. If this curvature
vanishes identically then the normal bundle is called flat.

But, for example, the holomorphic graph X (w) = (w, w?) with w = u + iv has
non-flat normal bundle. Developing handy analytical methods to describe curved
normal bundles is our main concern.

1.6.2 The Curvature Tensor of the Normal Bundle

The following definition concerns a central notion of our considerations.

Definition 1.10. The curvature tensor of the normal bundle of the immersion X is
given by components
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‘TU = 3u/ BMI Z Tl?j Tﬁl)

2
= Z (La,ime,jn - La,ijw,in)gmn

mun=1

Note that the second identity follows from the integrability conditions of Ricci. The
Sg;; now take the role of the Rfj i~ Without proof we remark that the S7’;; behave
like a tensor of rank 2 (w.r.t. i and j) under regular parameter transformations,
and so they are neither invariant w.r.t. parameter transformations nor on rotations of
the ONF, see below. Furthermore it is sufficient to focus on the components S;’;,
because all other components vanish or are equal to these S}, up to sign.

Using conformal parameters we arrive at the representations

n
Sona = T3 — 0155 + Z(T(El Ti, = T2, T3)
9=1

1 1
— (Lsg11 — Ls2n)Lywi2— — (L1 —Lo2)Llsi12.
W (Lo 22) Lo 12 W (Lo, 22)Lo12

A discussion on curvatures for general connections can be found e.g. in Helein [64].

1.6.3 The Casen =2

The definition of S g 1» takes a special form in the case n = 2 :

St =T =T + T\ T, + TE T3, = T, T = T TS,
= div (—le,zv T12,1)

where only 0 = 1 and ¥ = 2 must be taken into account. Here we use the Euclidean
divergence operator

div(=T7,, TE) = 0.1, + 0,TE, -

Furthermore, S 12.12 does not depend on the choice of the ONF )t what turns out as a

by-product in the next paragraph, and finally, W~'S 12,12 is even parameter invariant.
Thus, we are lead to the following

Definition 1.11. The normal curvature of the immersion X: B — R* is given by
1 o . 2 2
S = W Sl,lZ = W le (_TI,Z’ Tl,l)'

This quantity now belongs to the inner geometry of the surface. The general
situation of higher codimension is considered next.
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1.6.4 The Normal Sectional Curvature

If n > 2 then the components S, actually depend on the choice of the normal
frame. So let us fix an index pair (o, ) € {1,...,n} x{1,...,n}.

Proposition 1.12. The quantity S7, is invariant w.r.t. rotations of the unit normal
frame {Ny, N,} spanning the plane & = span{N,, N,}, i.e. under SO(2)-regular
mappings of the form

~

Ny = cos N, + singN,, , Nw = —singpN, + cos N, .

Proof. For the proof we use conformal parameters (u, v) € B.° First, with the new
coefficients L,;; = No - X,y = —N,,i - X,j, and taking the Ricci integrability
conditions into account, we compute
W’S/:;),lz = (Za,llzw,u - ZU,lew,ll) + (ZG,IZZ(D,ZZ - ZG,ZZZ(D,ZI)
= (cos@ Ly11 +sing Ly 11)(—sing Ly 12 + cos¢ L 12)
—(cos@ Lo + sing Ly p1)(—sing Loy + cos¢ L 11)
4+ (cos@ Lg1a +sing Ly, 12)(—sing Lyoy + cos¢ Ly 22)
—(cos@ Lopo + sing Ly 20)(—sing Lo + cos¢ Ly o1).

Collecting and evaluating all the trigonometric squares gives
W:SY?JZ = (Loa1 — Lo22) Loz — (Lot — Lo22) Lotz = WSy,

proving the statement. O
We make the following’
Definition 1.12. The invariant quantity
Sy = W 12
is called the normal sectional curvature of X w.r.t. the plane & = span {N,, N,}.

In the special case n = 2 there is only one normal sectional curvature S, and this
quantity is independent of the choice of the ONF 1.

®Note that the S|, differ eventually by a Jacobian after a parameter transformation.

7For the transformation from a given ONF 91 to another ONF 9N we only admit mappings of class
SO(n) as described above.
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1.6.5 Preparing the Normal Curvature Vector:
Curvature Matrices

Next we set

as special orthogonal mappings in the normal space which transform a given ONF
91 into a new 1 by means of

NU = ZRgNg foroc =1,...,n.
9=1
Lemma 1.1. There holds the transformation rule

S, =RoS,oR

with R" denoting the transposition of R.

Proof. For the proof we consider

T2 =Now Ny = O (R N+ RENG) - RONg
a=1 B=1
= Y (R, RiSep + RIROTS) = S RE (RIY + Y RITS (R}
a,f=1 a=1 a,f=1

T; =R, oR " +RoT;oR".
Using this formula we evaluate (notice T; = —Tf)
§12 = Tl,v —Tz,Ll _Tl OTE + ;Fz OTtI .

Namely, first
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,’i‘/l,v—”flu = (RuoRt +ROT1 ORt)V_(RVORt +R°T20Rr)u
:RuoRtv—RvoR'u+Ro(T1,v—T2,u)oRt
+R,0TioR" +RoT | oR,—R,0T,oR" —RoT,0R/,
and furthermore
TioT,—T,oT, = (R,oR +RoT, oR) o (RoR, +RoT,0oR)
—R,oR"+RoT,oR)o(RoR/ +RoTjoR)
=RuoRtv+RuoT’20Rt+RoTloRf}+RoTlon20Rf
—R,oR,—R,0T/oR"—RoT)oR,—RoT,oT| o R
since Ro R’ = R’ o R = E" with the n-dimensional unit matrix E”. Taking both
identities together gives us
TI,V—TQ’M—PTl OFT’IZ-FPT’zOFT’a
=Ro(Ti, - Ty, —TioTy +T,0T)) o R
+RvoT1oRt+RoT1oRtv—RMoTzoRt—RoTzoR’u
—RMonzoRt—RoTloRf}+RvoT’10Rt+RoT20RtM
=Ro(Ti, - Ty —TioTy, +T,0T)) o R

using again T; = —T?. This proves the statement. O

1.6.6 Preparing the Normal Curvature Vector:
The Exterior Product

For the following algebraic concepts of Grassmann geometry we refer to Cartan
[20] or Heil [60].

Definition 1.13. The exterior product

~1
AR'xR' —R¥, N = (Z)=—”(”2 5

can be introduced by means of the following rules:

(E1) The mapping R” x R” 3 (X,Y) > X AY € RY is bilinear, i.e. it holds
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(1 X1 + a2 X2) A (B1 Y1 + B2Y2)
=i XinYi+a b Xi Ao+ XoAYi+awfrXo AYs

for all oy, a2, B1, B2 € Rand Xy, X5, Y1, Y, € R™.
And A is skew-symmetric,

XANY =-YAX

forall X,Y € R”"; in particular, it holds X A X = 0.
(E2) Lete; = (1,0,0,...,0) e R", e, = (0,1,0,...,0) € R" etc. be the standard
orthonormal basis in R”. Then we define

e|p Ney = (1,0,0,...,0,0)€RN,
eiAes:=(0,1,0,...,0,0) e RV,

e,_1Ae, :=(0,0,0,...,0,1) e RV,

From this setting we immediately obtain

Lemma 1.2. The vectors e, A ey with k # £ form a basis of RN which is
orthonormal w.r.t. the Euclidean metric, i.e.

| ifi=k j=4L i%] k#Let

e;Nei) (ex Nep) =
( i) (e 2 0 else

Lemma 1.3. For two vectors X = (x',...,x")andY = (y',...,y") it holds

XAY = Z (xiyj—xjyi)eiAej.

1<i<j<n

Proof. We compute

i=1 ij=1 I<i<j<n

n n n
XAY = (inei)/\(z yjej) = Z xiyjeiAej = Z (xiyj—xjyi)eiAej,
ji=l1

proving the statement. O
Let us consider an example: For n = 3 we have

et Ae; =(1,0,0), e Ae3=(0,1,0), exne;=1(0,0,1),

and for two vectors X = (x',x2,x*) and Y = (y', y%, y*) we compute
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XAY = xlyzel /\ez—xly3e1 A e3 +x2yle2Ae1 +x2y3e2Ae3
—x3ylesner +x3y2es ney
= @'y =x?yDerner+ (Fy' —xtyer nes + (FPyP —xPyP)es Aes
= 22yl 3y — 3 a2y 3y,

Note that the usual vector product X x Y in R? does not coincide with the exterior
product X A'Y, since

XxY =2 =232 3yl —x!y? xhy2 =2y £ X A Y.
Without proof we want to collect some algebraic and analytical properties of the
exterior product.

Lemma 1.4. For arbitrary vectors A, B, C € R" there hold

* (AA) A B =A(A A B);
e A+B)AC=AANC+BAC;
e (AAB),; =A,;, NB+AANB,.

Finally, let X = (xl,xz, 0,....,00andY = (y', yz,O, ..., 0) such that
X,Y € span{eq, e,}.

Then it holds

* XAY Lspan{X Aes,.... X new, Y Aes,....Y Aeg,e3Nen, ... .en_1 Aey).

1.6.7 The Curvature Vector of the Normal Bundle

Now let us come back to the transformation rule for the matrix §12 from Sect. 1.6.5
which turns out to be the basis for the definition of the following geometric curvature
quantity.

Definition 1.14. The curvature vector of the normal bundle is given by

Gi=— Y SV,NyANy.

1<o<d=<n
Here A denotes the exterior product between two vectors in R"*2 from the previous
paragraph. If n = 2 then & can be identified with the scalar normal curvature S.

Proposition 1.13. The curvature vector of the normal bundle neither depends on
the parametrization nor on the choice of the ONF. In particular, its length
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1
Bl=v6-6= |5 > (Shn)

1<o<¥<n

represents a geometric quantity, the so-called curvature of the normal bundle. O

Proof. We check the invariance w.r.t. rotations:
Using our transformation rule from Sect. 1.6.5 we get

Z §?,12 Nc A Nﬂ = 22,19:1 ZZ,ﬁ:l §g,12(RgNa) A (RgNﬁ)

o, 0=1
= D o9=i ZZ,ﬂ:l(Rg)th,lzRg No A Ng
= Zg.ﬂ=l Sf,lz No A Np
which already proves the statement. O

We want to point out that due to our definition we can distinguish positive and
negative signs of the normal curvature S in the case n = 2. In contrast to this
special situation, the normal curvature is vector-valued if n > 2, so that in general
we can not speak of “negatively” or “positively” curved normal bundles.

It seems that from the point of view of geometric analysis, immersions with
prescribed normal curvature vector G have not been considered so far. For example,
as far as I am aware, results concerning curvature estimates and theorems of
Bernstein-type for such special surfaces, comparable e.g. with Bergner and Frohlich
[8], Jost and Xin [76], Wang [119] or Xin [127], do not exist. For a short discussion
on this subject we refer to the next chapter.

1.6.8 The Hopf Vector

Let an immersion X in R3 with second fundamental form L;; be given. In 1950,
Hopf [72] showed that the following complex-valued function

Lij(w) — La(w) — 2i L1z(w)

is holomorphic if the scalar mean curvature H of X is constant.

As an application of the integrability conditions of Codazzi and Mainardi we
want to conclude this first chapter with a generalization of Hopf’s result for minimal
surfaces of arbitrary codimension. In particular, this will allow us to characterize the
zeros of their Gaussian curvature.
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We start with

Proposition 1.14. Let the conformally parametrized minimal surface X together
with an ONF N be given. Then its complex-valued Hopf vector

H = (%, - ,%) e C" with jﬁ, = La,ll — La,22 — Zl'Lan

satisfies the first-order Pascali system
¢ 1 ; 1 ¢
= E(au+za‘,)jf = ETO%

with the complex-valued matrix T = (T o1 T 1?2)0,19=1 _____

The proof of this proposition makes use of the following

Lemma 1.5. Let the conformally parametrized minimal surface X together with an
ONF N be given. Then there hold

n
Oty = 3 (Lot +iLoi) T3, = (Losz + Lo THa
¥=1

forallo =1,...,n

Proof. Consider the auxiliary functions

* .
HOT = Lo,ll_lLo,IZs 0=1,...,n,

o

satisfying 294, = % due to Ls11 = —Lga forall o = 1,...,n. From the
Codazzi—Mainardi integrability conditions from Sect. 1.5.2 we infer

0 Lo11 —0uLlo12 = Z Ly 12Ty, Z LonTy,,.

w=1

n
aMLU,ll + avL(r,IZ = - Z La) llT 1 Z Lw IZT[:)T,Q .

w=1

using conformal parameters together with the conformal representation of the
Christoffel symbols from Sect. 1.4.2 Therefore,

O = — (3 Lo +0,Ls12) + = (8 Loii —0uLs12)

1 n i n
—5 Z( wl1Ty + Lo, 12T£,2) + 3 Z(La) 12TS 1—Lw11T£,2)-
w=1

w=1

Rearranging proves the statement. O
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Proof of the proposition. First we note that

(=Ly +iLp12) Ty, — (Lyio +iLp) Ty,
= —(Lyn —iLp12) T, —i(Lyan —iLyp12)Ty,
= —HF(TY, +iTy,) = A (TY +iTY)

which implies

R . 1
Oty = 5 ;(Tg?l +iT) A or dwH' = sTot".
This proves the proposition. O

Consequently, we can apply the local similarity principle for generalized analytic
vector-valued functions from Wendland [121], Theorem 5.3.3, Buchanan [17] or
Buchanan and Gilbert [18], Chap. 3, which states that the Hopf vector .7 can be
represented in the form

Mo @

in a sufficiently small neighborhood 2 C Bofa point wy € 13, with a non-singular
and continuous matrix M € C"*" satisfying det M # 0, and a holomorphic column
vector @ € C". Furthermore, if 57 # 0 then 57 has there at most isolated zeros of
finite order.®

The point is that the zeros of the Hopf vector .77 agree with the zeros of the
Gaussian curvature K of the minimal surface X. To see this we compute

|#5)* = (Lot — Lo22)* +4L2 1, = (Lot + Lo22)* —4(Loa1Loo — L2 ,)
=4(H? — K, )W? = —4K, W?

forallo = 1,...,n. Therefore,
(A = | A =4 KW = —4KW?.
o=1 o=1

Corollary 1.1. Either the Gaussian curvature K of the minimal immersion X
vanishes identically and the surface is a plane, or there exist at most isolated zeros

of K in every compact subset ©® C B.

In case n = 1 of one codimension, the Hopf function # € C turns out to be
holomorphic as a solution of the classical Cauchy—Riemann equation since there
are no torsion coefficients.

8For this generalization of Carleman’s theorem see Wendland [121], Theorem 5.3.8.



Chapter 2
Elliptic Systems

Abstract This is an intermediate chapter which first introduces into the theory of
non-linear elliptic systems with quadratic growth in the gradient, and which presents
secondly some results concerning curvature estimates and theorems of Bernstein-
type for surfaces in Euclidean spaces of arbitrary dimensions.

A famous result of S. Bernstein states that a smooth minimal graph in R3,
defined on the whole plane R?, must necessarily be a plane. Today we know various
strategies to prove this result, and the idea goes back to E. Heinz to establish first
a curvature estimate and to deduce Bernstein’s result in a second step. However,
minimal surfaces with higher codimensions do not share this Bernstein property, as
one of our main examples X(w) = (w,w?) € R* with w = u + iv convincingly
shows. It is still a great challenge to find geometrical criteria, preferably in terms
of the curvature quantities of the surfaces’ normal bundles, which guarantee the
validity of Bernstein’s theorem.

We must admit that we can only discuss briefly some points where we would wish
to employ our tools we develop in this book, but up to now we can not continue to
drive further developments.

2.1 The Mean Curvature Vector

2.1.1 Mean Curvature and Mean Curvature Vector

Elliptic systems with quadratic growth in the gradient of the form
|AZ| < ao|VZ|?

with the Euclidean Laplace operator A and the Euclidean gradient V will play
an important role in our analysis. It particularly turns out that the Euler-Lagrange
equations for normal Coulomb frames satisfy such non-linear elliptic systems.

S. Frohlich, Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces, 31
Lecture Notes in Mathematics 2053, DOI 10.1007/978-3-642-29846-2_2,
© Springer-Verlag Berlin Heidelberg 2012
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The construction of normal Coulomb frames thus requires a profound knowledge
of analytical properties of the underlying geometrical objects. For this reason
we devote this intermediate chapter to present some basic facts of conformally
parametrized immersions with prescribed mean curvature vector §) as the standard
example of a non-linear elliptic system of the type from above.

Definition 2.1. Let the immersion X together with an ONF 21 be given. Then the
mean curvature Hy, of an immersion X w.rt. an unit normal vector N, € N is
defined as

2
1 ’ Ly, 11822 — 2L N, 12812 + Ly, 2811

Consider an ONF 91 = (Ny, ..., N,), and set H, := Hy, for abbreviation.

Definition 2.2. The mean curvature vector ) € R" of the immersion X is given by
n
H:=) HyN,.
=1
For surfaces in R? there is, up to orientation, exactly one unit normal vector N and

thus exactly one mean curvature

_ Lugn—2Lingin+ Lang

H
2W?

Nevertheless, sometimes ones speaks of the mean curvature vector § = HN even
in this case of one codimension.

It misleads to believe that the mean curvature vector §) could replace this special
unit normal vector N for surfaces in R3. This is not the case since, for example, for
minimal surfaces it always holds $) = 0 while, of course, N does not vanish.

Definition 2.3. The immersion X is called a minimal surface if and only if
H=0 inB.

The property $5 = 0 does neither depend on the choice of the normal frame 91 nor
on the choice of the parametrization.

In fact, in general it holds: The mean curvature vector $) neither depends on the
parametrization (if we only admit regular parameter transformations which do not
affect the orientation of the unit normal vectors N, € M) nor on the choice of the
ONF (if we only admit transformations of class SO(n) between those frames).

Minimal surfaces are the topic of a huge amount of literature: Courant [28],
Nitsche [92], Osserman [94], Dierkes et al. [34], Colding and Minicozzi [27],
Eschenburg and Jost [44] to enumerate only some few significant contributions and
to illustrate the importance of this surface class in the fields of geometric analysis.



2.1 The Mean Curvature Vector 33
2.1.2 Parallel Mean Curvature Vector

Surfaces with constant mean curvature vector generalize the minimal surface
concept. They actually play a central role in modern geometric analysis of surfaces
with one codimension n = 1 which are immersed in Riemannian or Lorentzian
spaces. We refer the reader e.g. to the classical textbook Kenmotsu [78], or to
the extensive works of Gro3e-Brauckmann, Heinz, Hildebrandt, Karcher, Korevaar,
Kusner, Lawson, Meeks, Sauvigny, Sullivan, Wente, and many others; see for
example [54] and the references therein.
So assume now that the mean curvature vector of the immersion X satisfies

|| = const in B,

where, of course, $ = 0 is allowed. Differentiation yields

Zn: HyH,, =0,
o=1

and therefore

ZE:IiT}LLM _'ZE:ZE:1¥UI¥ﬂ7}1::
o=1

o=19=1

since the double sum is zero due to T =Tg;.
We want to associate this property W1th the followmg concept.

Definition 2.4. The mean curvature vector ) of the immersion X is called parallel
in the normal bundle if the normal parts of the partial derivatives d,;$) vanish
identically, i.e. if there hold

83;.650 inB fori =1,2.

For reasons of simplicity we want to concentrate on the case n = 2 of two
codimensions. Then the following interesting result holds true (see e.g. Chen [21],
or Kenmotsu and Zhou [79] and the references therein).

Proposition 2.1. If the mean curvature vector $) of the immersion X: B — R* is
parallel in the normal bundle then it has constant length. If additionally $ # 0,
then it holds S = 0 for the scalar curvature of the normal bundle.

Proof. The identities

It = ZHMIN +ZH19 i ZHM,N +ZZH0TI9, N, =0

d=10=1
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fori = 1, 2 can be written in the form
Hiy=HT}, Hyy=HT},, Hy,=-HT}., Hy,=-HT,.

Thus, we compute

1 2 _ _ 2 _ 2 _
23u|573| = H1H1,M+H2H2,M = HleTl,l HleTl,l =0,

1
3 W9* = H Hy, + HH,, = HHH,T}, — HHHT, = 0

and infer |$)|> = const. Moreover, it holds
0=0uH —0uH = Hy T}, + H20,T7, — Ha, T — H2d,T7,
= —H\T}\ T}, + Hi T\ TE, + Hd,TE, — Ha0, T
= —H0,T} — 0.T7,)

—H,SW

and analogously 0 = —H/ S W. Therefore, either X is a minimal immersion with
£ = 0, or if not then it is a surface with mean curvature vector of constant length
greater than zero and with flat normal bundle. The statement is proved. O

2.1.3 The Mean Curvature System

From the Gaull equations in connection with the conformal representation of
the Christoffel symbols from Sect.1.4.2 we now derive an elliptic system for
conformally parametrized immersions X with prescribed mean curvature vector $).

Proposition 2.2. Let the conformally parametrized immersion X of prescribed
mean curvature vector $) together with an ONF N be given. Then it holds

AX = ZZHﬁWNﬁ =29W inB.
¥=1

Proof. From the Gauf} equations we infer

AX = (L)) + DY) Xy + (TR + THX, + Y (Lot + Lpaa)Ny
=1

=Y (Loar + Lon)Ny .
=1
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Here we take into account that

W, W,
rl+rl=—>—--—-=-=0,
Tl W oW
rra=-2 Wy
as well as
Ly + Ly =2HyW
from the definition of Hy. The statement follows. ]

This system generalizes the classical mean curvature system
AX =2HWN inB

from Hopf [72] in case n = 1 of one codimension with the scalar mean curvature
H € R and the unit normal vector N of the surface X.

In particular, we infer that conformally parametrized minimal surfaces represent
harmonic vectors, i.e. it then holds

AX =0 inB

which offers the possibility to apply the powerful tools of complex analysis to the
differential geometry of minimal surfaces. We will discuss this fact later.

2.1.4 Quadratic Growth in the Gradient: A Maximum Principle

Now we want to give a geometric application of the classical maximum principle
for subharmonic functions. Namely, assume there is an upper bound |$| < k¢ in B
be given such that for the conformally parametrized immersion X it holds

|AX| <2hoW < ho|VX|* inB

on account of

W=vV(X.- X)X, X)) — (Xu- X)2 = V(Xu- Xu)?

1 1 1
=IXllXl = 5 (X7 +X0) = 5 (X0 + X)) = SIVXP.

Thus, the surface vector X is solution of a non-linear elliptic system with quadratic
growth in the gradient.
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Proposition 2.3. Let X: B — R"*2 be a conformally parametrized immersion with
prescribed mean curvature vector ). Let |9| < ho in B, and suppose that

ho sup |X(u,v)| < 1.
(u,v)€B

Then it holds the geometric maximum principle

max_ |X(u,v)[* = max |X(u,v)|*.
(u.v)EB (u,v)€0B

Proof. We remark that the statement is obviously true without the assumption on the
conformal parametrization since introducing a conformal parameter system (u, v) €
B does not affect the maximum norm of the representation X (u, v). Nevertheless,
using conformal parameters we compute

AIXP =2(VXPP+ X - AX) > 2(]VX]> — ho|X||VX?)
= 2|VX (1 —ho|X]) = 0.

Therefore, the vector | X (u, v) |2 is subharmonic, and the statement follows from the
classical maximum principle. O

Surfaces X with the property

ho sup |X(u,v)| <1
(u,v)€B

are also called small solutions of the mean curvature system in contrast to large
solutions which do not necessarily obey the maximum principle. We will encounter
this fact later again. Minimal surfaces are always small in this sense.

The method of proof we presented here goes already back to Heinz (see also
Sauvigny [107], vol.2, Chap.XII). For further considerations we refer e.g. to
Dierkes [33] and the references therein.

2.2 Curvature Estimates

2.2.1 Problem Statement

With this intermediate chapter we also want to draw the reader’s attention to the
problem of curvature estimates and Bernstein-type theorems for minimal surfaces
in higher-dimensional Euclidean spaces. In particular, we have in mind to confront
some of the methods and results from this field of geometric analysis with the
concepts of extrinsic differential geometry which we developed in the first chapter.
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This plan must be left incomplete due to its complexity. We will therefore
concentrate on some “light” versions of curvature estimates and their immediate
consequences, and we will only discuss briefly more profound approaches and
methods.

2.2.2 Estimate of the S?
0,12
Our first observation is based upon the representation formula

1 1
O = — L(T - L(T Lw - Lw - La) La
o2 = 3 (Lo11 22) Lo 12 W (L1 22)Lo12

of the normal curvature tensor from Sect. 1.6.2. Applying the Cauchy—Schwarz
inequality gives us

|So1al < (L 11+2L 12+L 22)+ (L 11+2La} 12+Lw22)

On the other hand we verify

L2y +2LoniLlom + L2y LonLlen— L7,
2W?2 w2

= L; ATIN 2Lalz + L022

2W?2

2H? - K, =

so that we arrive at the

Proposition 2.4. Let the immersion X together with an ONF )t be given. Then the
components S\, of the curvature vector of its normal bundle can be estimated as
follows

I8¢5l < QH? — Ko)W + 2H. — K,))W  forallo,w =1,....n
In particular, immersions with the property
2H? - K, =0 forallo=1,...,n
have flat normal bundle: Sy, = 0. But, in general, bounds for |S?},| can only be
achieved by establishing bounds for the curvatures and the area element w.

The special case of two codimensions n = 2 leads us to

|S|W < QH} — K)W + QH} — K)W = 2[H*W — KW
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dueto S = % S 12’12. Integration then yields the estimate

2// |Y)|2Wdudv2//|S|Wdudv+//KWdudv
B B B

which we will employ at the end of Sect.2.2.11. Guadalupe and Rodriguez in [55]
derive this integral inequality in case of compact surfaces without boundary.

The Willmore functional
/ / |91°W dudv
B

on the left hand side enjoys a special attention of the geometric analysis due to its
complexity of its non-linear, fourth-order Euler—Lagrange equations, but also due
to its wide range of applications in mathematical biology, chemistry, or physics,
see e.g. the pioneering work of Helfrich [65] who discusses the significant role of
higher-order geometric functionals in R* of the general form

// {0{+,3(H—H0)2 +)/K} W dudv
B

in the theory of so-called elastic bilayers, «, 8, y and H, being material constants.

We want to refer the reader to the classical monograph [125] for Willmore’s
own introduction into the fascinating problem of determining immersions which are
critical or even minimal for this functional named after him.

In e.g. Palmer [95] and the recent work Dall’Acqua [31] we find uniqueness
results for the Willmore problem for special boundary data. Dall’ Acqua et al. [32]
prove existence and classical regularity of Willmore surfaces of catenoid-type which
were observed phenomenologically e.g. by Frohlich and GroBe-Brauckmann using
Ken Brakke’s surface evolver, see [47]. Concerning the general boundary value
problem we want to refer to Schitzle’s paper [108].

Moreover, Riviere [98, 99] extends techniques and results e.g. from Helein [64]
to derive a non-linear differential equation in a divergence-type form for critical
points of the Willmore functional—the basis for further existence and regularity
investigations.

Some of Helein’s results, on the other hand, will play an important role in our
considerations in the fourth chapter.

Let us finally remark that the integral over the Gaussian curvature on the right
hand side of the above inequality can be expressed by the Gau3—~Bonnet formula in
terms of the geodesic curvature «, of the immersion X along the boundary curve
0B,

/ KWdudv://cgds—Zn,
B 9B



2.2 Curvature Estimates 39

see e.g. Blaschke and Leichtweill [12] for more details on this famous identity
connecting analysis, topology and differential geometry.
And the conformally invariant functional

/ |S|W dudv

B

measures the total normal curvature of the surface. In Sakamoto [101] we find the
probably first investigations on critical points of this functional, and this should open
new fields in classical differential geometry.

2.2.3 The Special Case of Holomorphic Minimal Graphs

We want to specify the foregoing estimate
IS|W < 219W — KW

in case of holomorphic minimal graphs.

Proposition 2.5. Let the minimal graph X (w) = (x, ®(w)) on B with a holomor-
phic function
D(w) = @(w) + iy (w)

be given. Then it holds
S(w) =—K(w) forallwe B.

Proof. Making use of the special ONF (see Sect. 1.2.2)

1
Nl = (_(pua _(p\)a 170)9
V1+ Vel

1

m (v, —u,0,1)

we will compute the Gaussian curvature K and the normal curvature scalar S. Since
X is minimal we already know |S| < (—K), and we will verify S = —K.
For this purpose, we first note

(puu @MV @vv

s Ll,12 Bl % Ll,22 s ————
V1+ Vel V1+|Vel? V1+|Vel?
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as well as
Ly =~ S Ly = P = - v
’ V1+|Vel? ’ V1+|Vel? V1+[Vel?
Loy = Puy

what leads us to (recall W = 1 + |Vg|?)

CLinLin—Lin  Qupw— @l
L w2 (4|

_ L2,11L2,22 - L%,IZ _ —(P,fv + PuuPry
1T w2 T+ [VeP)

Thus, the Gaussian curvature of the holomorphic graph turns out to be

-9 PuuPvy — (plfv
(1 +|Ve2)3

Now let us come to the calculation of S : We have

_1
T2, = [0.(1 + Vo) 2 |(—pu. =91, 1,0) - N,
1

+ ————= (~Puu>» —¥uw,0,0) - N>
V1+|Vel?
1
= ———— (—Quus — ¥, 0,0) - (¢, =94, 0, 1
1+|V¢|2(¢ <p ) - (v, =9 )
— PuPuv — PvPuu
1+ |Vel?

and analogously
2 PuPvy — GvPuy

TS =
P L+ |VeP
Compute now the derivatives
_ LuuPvy + PuPuvy — (P,fv — OyPuuy 2((pu§0vv - (pvqouv) ((pu(puu + @v(puv)

9,T2, = — ,
2 1+ |Ve| (14 [Ve[?)?

P T2 — (plfv + PuPuvw — Pov@Puu — PvPuuv _ 2((pu§0uv - @v‘puu)(@u@uv + @v@vv)
s 1+ |Vo|? (1+[Vo[»)?
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A final calculation of |
S = W (alez,l - aule,z)

would then show the stated identity.

2.2.4 Minimal Surfaces in R>

Bernstein in 1914 proved the following result (see [10] and Hopf [70, 71]).

Proposition 2.6. A minimal graph X(x,y) = (x,y,{(x,y)) satisfying the mini-
mal surface equation

1+ éi);xw - nggyé-xy +(1+ g‘ﬁ)in =0,

defined on the whole plane R? and with continuous partial derivatives of first and
second order, is necessarily a plane.

This result characterizes insistently the non-linear character of the minimal surface
equation in contrast to its linearization

AL = oy +§yy =0,

the Laplace equation, which actually possesses non-flat solutions over R
Bernstein’s proof relies essentially on his

Lemma 2.1. Let { = ¢(x,y) be bounded and twice continuously differentiable,
and suppose it solves
Aéxx + ZBCXy + Céyy =0

with coefficients A, B and C which depend on (x,y,,8x.Cy, Cxx. Cay, Cyy) and
fulfill AC — B? > 0. Then it necessarily holds { = const.

Bernstein verifies that u = arctan , is a solution of such a differential equation, and
the boundedness of u implies his proposition.

While Bernstein’s method was topological in its nature, Heinz [61] in 1952 gave
a completely new proof of Bernstein’s principle for minimal graphs by establishing
a curvature estimate first, what requires deep analytical estimates of the derivatives
of the conformally parametrized minimal surface vector from above and an estimate
for its area element from below.

For a comprehensive presentation of the theory of plane harmonic mappings
together with this estimate of the area element we also want to refer to Duren [40].
For complete treatments of the theory of non-linear elliptic systems of second order
with quadratic growth in the gradient we refer the reader to Heinz [62], Sauvigny
[107], vol. 2, or Schulz [111].
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The point we want to stress is that Bernstein’s principle fails for minimal graphs
with higher codimensions, for (w, w?) is obviously a counter-example. One should
find geometric conditions which make this principle hold again.

2.2.5 How a Curvature Estimate Could Work

Let the minimal graph on the closed disc By of radius R > 0 together with an
ONF 91 be given. We introduce conformal parameters and obtain a harmonic vector-
valued mapping X: B — R"+2,

The Gaussian curvature K, (0, 0) in the origin (0,0) € B w.r.t. an arbitrary N, €
I can be estimated by

|L6.11(0,0)||Ls22(0,0)| + | L4,12(0,0)|?

_KU(O’ 0) = W(O, 0)2

where in the enumerator
|L0,fj (07 O)I = IN(T(Ov O)HXuiuf (Ov 0)| = |Xuiuf (07 O)I
or
[Loij (0,0)] < [No,i (0,0)]| X, (0,0)].

Thus, the problem we are faced with is to find (a) upper bounds for the second
derivatives of X, or for its first derivatives and the first derivatives of N, in the
origin, and (b) to establish a lower bound for the area element W(0, 0).

2.2.6 Estimate of the Area Element from Below:
The Heinz Lemma

Let the minimal graph X(x,y) = (x,y,8i1(x,¥),...,{,(x,y)) on the closed disc
By of radius R > 0 be given. Introduce conformal parameters («,v) € B such that
it holds

AX(u,v) =0 1in B.

We now consider the harmonic plane mapping

fu,v) = (xl(u,v),xz(u,v)), (u,v) € B.

Since X (x, y) is a graph, this mapping represents the reparametrization of the graph
into the new form X (u,v), and therefore the scaled plane mapping

_ — 1
F:B— B via F(u,v) := Ef(u,v)
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can be chosen with the properties (see e.g. Sauvigny [107], vol. 2):

¢ F is one-to-one and satisfies F(0,0) = (0, 0).
* F maps the boundary dB positively oriented and topologically onto dB.
e Jg(u,v) > 0in B for the Jacobian of F.

The Heinz lemma on harmonic plane mappings with all these properties states now
the following universal estimate.

Proposition 2.7. With the Heinz constant Cy = % ~ 0.6839... it always holds

|F0(0,0)]> + | F(0,0)|* > Cpy .

This estimate immediately implies a lower bound for the area element, namely

1 1 1
W (0,0) §|VX(0,0)|2 > §|Vx1(o,0)|2+ §|Vx2(0,0)|2

R*|F,,(0,0)|* + R*|F;(0,0)* > R*Cy.

Actually, Heinz first proved
2 4
|F, (0,02 + | Fo(0,0)]> > 1 — Tﬂ +2~01788...
b4

while the sharp form given in the proposition above goes back to Hall [57], see e.g.
Duren’s monograph [40] for more details.

Thus, for a complete curvature estimate it remains to estimate the derivatives of
X and/or the derivatives of the unit normal vectors N, .

2.2.7 Minimal Surfaces with Controlled Growth

Let the minimal graph be conformally parametrized via X: B — R”+2. We have
|LU,11||LG,22| + |LU,12|2 E |qu||XW| + |Xuv|2 .
Due to AX = 0, potential theory yields a universal constant C; € (0, co) such that

|XuiL¢f (Os 0)' = Cl sup |X(M,V)| = Cl sup |X(X, y)|,
(u,v)EB (x,y)EBRr

see e.g. Gilbarg and Trudinger [53], Theorem 4.6. Now we arrive at the following
curvature estimate and theorem of Bernstein-type from Frohlich [48].

Theorem 2.1. Let there exist a constant §2 € (0, 00) such that the minimal graph
X: Br — R"*2 satisfies the following growth condition

|X(x, y)| = 2R
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with some ¢ € [0, 2). Then it holds the curvature estimate

222> R*
cy R

Thus, if the minimal graph is defined over the whole R? then it is a plane.

The last statement in this theorem follows after performing the limit R — oo.

This result is sharp in the following sense: X (w) = (w, w?), defined on the whole
plane R?, has quadratic growth, i.e. ¢ = 2 in the terminology of our theorem, and it
is obviously not a plane!

We also want to mention that our theorem generalizes the classical Liouville
theorem from complex analysis.

It arises the question whether the critical growth ¢ = 2 has something to do with
the non-vanishing of the scalar curvature of the normal bundle. This question must
be left open.

2.2.8 The First and Second Variation of the Area Functional

Now we want to draw the reader’s attention to curvature estimates for stable minimal
surfaces. For this purpose we first consider immersions X : B — R”"*2 which (a) are
critical for the area functional

d[X] = //Wdudv with W = M’
B

and (b) for which its second variation is always positive.
For the next two results we especially refer to Sauvigny [102].

Proposition 2.8. The immersion X: B — R"*2 is critical for </[X] if its mean
curvature vector vanishes identically, i.e. if

H=0 inB.

In other words, minimal surfaces are stationary for the area functional.

Proposition 2.9. The second variation of </ [X] w.r.t. an unit normal vector N, €
N for a conformally parametrized minimal immersion X : B — R"*2 reads

82l [X] = // (IVo|* + 2K, Wg?) dudv
B

+ Zn: // {(Tﬁl)z + (Tﬁz)z}gozdudv

9=1"%

for arbitrary ¢ € C§°(B,R).
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In case n = 1 of one codimension there is only one unit normal vector w.r.t. which
we can evaluate the second variation. Thus, we would then arrive at

82 [X] = / (IVo|* + 2K Wg?) dudv

since the integral over the squared torsion coefficients drops out.

2.2.9 Stable Minimal Surfaces

The second variation leads us directly to the

Definition 2.5. The minimal surface X is called stable if it holds
2/[X] >0 forallg € C°(B,R)

and all unit normal vectors N.

For fixed ONF 91 and fixed test function ¢ € C;°(B, R) we could sum up all the n
stability inequalities (Sg,saf [X]>O0foro =1,...,ntoget

//|Vq0|2dudv>—/ (—K)YW¢? dudv

L5 [ + et duas.

aa)lB

again for all test functions ¢. Note that §) = 0 and K < 0 for the minimal surface.

It must be remarked that the right hand side of these inequalities depends on the
choice of the ONF Yt while the left hand side does not. Thus, it arises the question
whether there exists an ONF 91 with controlled torsion coefficients such that the
difference at the right hand side stays positive for all ¢.

In the next two chapters we will construct special Coulomb-gauged ONF’s for
which we can in fact control the torsion by means of the curvature of the normal
bundle (and certain smallness conditions in case n > 2).

In particular, we will show that if the normal bundle is flat then there exist an
ONF N which is free of torsion, and then the minimal surface is stable if

//|V¢|2dudv22/ (—Kn)We*dudv
B B

for all test functions ¢ € C°(B,R) and all unit normal vectors N. It will turn
out that the curvature of the normal bundle acts as a barrier for the existence of
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orthogonal unit normal frames with vanishing torsion coefficients. So if we set

T:= Z {(Téf’l)z + (T£2)2}

1<o<w=<n

in the general case T > 0, when we can not expect existence of torsion-free ONF’s,
we obtain from the above stability inequality after partial integration

2 2
0< //%IWP + ;(K+T)W<p2} dudv = // %—A¢+;(K+T)W(p} ¢ dudv.
B B

The Schwarzian eigenvalue problem which arises from here,
—Ap+AMK+T)p=0 inB, ¢=0 ondB,

was first considered in Barbosa and do Carmo [5], later in Sauvigny [102, 104] in
his studies of minimal surfaces with polygonal boundaries, but, however, always
without taken the curvature of the normal bundle into particular account.

Thus, also here it remains the question whether we can characterize stability of
minimal surfaces in terms of the eigenvalues of that Schwarzian eigenvalue problem,
and how these eigenvalues depend on the curvature of the normal bundle.

Sauvigny applied his results to prove uniqueness for minimal surfaces spanning
so-called extreme polygonal boundary curves, see e.g. [103]. Moreover, in [106]
he establishes compactness and finiteness results for stable and unstable small
immersions with constant mean curvature spanning regular, extreme Jordan curves.

Concerning new results on finiteness for minimal surfaces with polygonal
boundaries we want to draw the reader’s attention to the papers Jakob [73-75]. In
this context we would also like to refer to a recent result of Bergner and Jakob [9]
on the non-existence of branch points for minimal surfaces in R" 2.

Finally, we want to remark that already Wirtinger in [126] proved the absolutely
area minimizing property of holomorphic minimal surfaces w.r.t. compactly sup-
ported variations which implies stability in the sense of our definition from the
beginning. This minimizing character is also discussed in Eschenburg and Jost [44]
by means of modern calibration methods.

2.2.10 Osserman’s Curvature Estimate and a Generalization

In 1964, Osserman [93] proved the following

Proposition 2.10. Assume that at each point of a minimal immersion X in R"*2 all
unit normal vectors make an angle of at least w > 0 with a fixed axis in space. Then
for the Gauf3 curvature K(P) at some point P = X(wyp), wo € B, with interior
distance d > 0 to the boundary, it holds
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1 16(m+1)
KP)<— ——F7—.
IK( )|_d2 sin*

In particular, if the surface is defined over the whole R?, then it is a plane.

A connection of Osserman’s w-condition with the curvature of the normal bundle
of complete minimal graphs is not known to us. However, his result is sharp in the
sense that the holomorphic graph (w, w?), w € R?, does not obey the w-condition.

A refinement of Osserman’s proof together with applications of potential the-
oretic methods enabled us in Bergner and Frohlich [8] to prove the following
curvature estimate for graphs with prescribed Holder continuous mean curvature
vector.

Proposition 2.11. Let the graph

X(x, ) = (x,3,0(5, 7). &a(x, )

of prescribed mean curvature vector
H=9HX.2)

be given, (X, Z) € R" "2 x §" ™1 with S"*! C R"*2 being the (n + 1)-dimensional
unit sphere. Suppose that X (u,v) represents a conformal reparametrization of this
graph. Assume furthermore

1. The mean curvature vector $ = $H(X, Z) satisfies
I9(X,Z)| <hy forallX e R""*and Z € S"*!

and

9(X1,Z) —H(X2, Zo)| < | X1 — Xo|* + ha|Zy — 2|

for all X\, X, € R"*2 and Z,,Z, € S"*', with real constants ho,h|,hy €
[0, 00) and with some « € (0, 1).

2. The surface represents (or contains) a geodesic disc B, (Xo) of radius r > 0 and
center Xy € R"*?2 (see the next paragraph for details).

3. With a real constant dy > 0, the area of this geodesic disc B,(Xy) can be

estimated by
B, (Xo)] < dor?.

4. At every pointw € B, each normal vector of X makes an angle of at least v > 0
with the x1-axis.

Then, for an arbitrarily chosen ONF N there exists a constant

O = O(hor, hir'™, haor,dy, sinw, a) € (0, 00)
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such that it holds the curvature estimate
1 2
|Ks(0,0)] = — {(hor) + @} forallo =1,...,n.
r

In particular, if $ = 0, and therefore hy, hy, hy = 0, and if the minimal graph is
defined over the whole plane R?, then X (x, y) must be affine linear.

A few words to the assumptions in this theorem: Since X is a conformally
parametrized graph with prescribed mean curvature vector ), it is a solution of

n
AX = 2ZHUWNU =209W in B.

o=1

Together with the first assumption we arrive at the following non-linear elliptic
system with quadratic growth in the gradient (see Sect. 2.1.4)

|[AX| < ho|lVX|* inB.

The first and second derivatives (in the interior) of such a system can be controlled
if X is either a small solution in the sense of

ho- sup |X(u,v)| <1,
(u,v)€B

or if a growth condition for the area as required is known such that a smallness
condition can eventually be forced by means of the Courant—Lebesgue lemma in
connection with a geometric maximum principle.

On the other hand, the assumption on the universal angle w as well as the required
graph property are needed (a) to ensure that also the plane mapping

f.v) = (x"wv),x*@.v)), @v)eB,

solves a non-linear elliptic system with quadratic growth in the gradient, and (b) that
it is one-to-one with F(0,0) = (0, 0), positively oriented and topologically on the
boundary, and possesses a positive Jacobian in B, see Sect.2.2.6.

Most of our inputs were already discussed in the foregoing paragraphs. But also
here the question remains open whether these assumptions can be connected to the
inner geometry of the normal bundle.

2.2.11 On the Growth of Geodesic Discs

At least we can give a partial answer to this question regarding the growth condition
for geodesic discs. Is it valid to require such a condition at all? In Bergner and
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Frohlich [8] we computed directly
[X] < 192772

for geodesic discs of the holomorphic graph (w,w?), where r > 0 is chosen
sufficiently large. Note that in this special case the scalar curvature S of the normal
bundle vanishes asymptotically.

If S is otherwise everywhere strictly larger than a positive constant for some
immersion X : B — R* (or smaller than a negative constant), we can show

Proposition 2.12. Let a minimal surface X: B — R* be given such that the scalar
curvature S of its normal bundle satisfies

Su,v) > Sy >0 forall (u,v)eB

with a fixed real number Sy > 0.

Suppose furthermore that X represents (or contains) a geodesic disc 6,(Xy) with
geodesic radius r > 0 and with center X. Then for the area of this disc it holds the
estimate

S
A [B,(Xo)] > nr? + ILZ” r

Proof. Let the geodesic disc ‘B,(Xp) be given parametrically as X(p, ¢) with
geodesic polar coordinates (p, ¢) € [0, r]x[0, 27r]. With the area element v/ P (p, T),
the line element d s% w.r.t. this coordinate system takes the form

dsy = dp® + P(p.¢) dg.

with smooth P(p, ¢) > 0 for all (p, ¢) € (0, 7] x [0, 27) satisfying
ad
lim P(p,¢) =0, lim — /P(p,p)=1
p—>04 p—>04 p

for all ¢ € [0,2m). For these results and for the following identities we refer
the reader e.g. to Blaschke and Leichtweif} [12]. In particular, with the geodesic
curvature k, of the surface, the integral formula of Gau—Bonnet gives

r I

2
/Kg(pmp)\/P(pmp)dfp+//K(f,<p)x/P(f,<p)dfd<p = 2.
0

0 0

For curves with p = const it holds

3
ke(p. @)V P(p. @) = P vV P(p,p) forall (p,¢) € (0,r] x [0,27),



50 2 Elliptic Systems

and therefore, together with —K > |S| > Sy > 0 (see Sect. 2.2.2) we can estimate

2

2T
d
" /¢P(p,¢)d¢ - /xg(p,wa(p,qo)dw
0 0
2

P
2N—//K(‘C,(p)\/P(‘L',q0)d‘qu0
0 0

A%

p 2
27r+//S0\/mdrd<p
00
= 21 + S0 [B,(X0)]
> 2 + S()Jr,o2

for all p € (0, r]. Integration over the radius coordinate yields

2

S()JT
/\/P(p,fp)dgo > 2mp + Tp3,
0

and a further integration over p = 0...r shows

r 2m

S
B, (Xo)] = // VP(p.¢)dpdp = wr” + IL; 4
0 0
proving the statement. O

At least for certain stable minimal geodesic discs we can show that their areas grow
quadratically in the radius r. Namely, let us start again from the stability inequality

8 (X] = //|V(p|2dudv+2/ KoWe*dudv

+Z//( 702+ (T2 o dudy

o=1"pg

>0

for all ¢ € C5°(B,R) and using conformal parameters. Since for the non-positive
GauB curvature K we know

szzn:Ka:Ks

o=1
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we have the estimate

82X > D A [X] = //lV(plzdudv+2//KW¢2dudv
B B

for all ¢ € C{°(B,R). The integral D>o7[X] agrees with the functional of the
second variation for minimal surfaces in R3 such that in this situation the condition

D*/[X] >0 forallg € C°(B,R)

actually defines stability for minimal surfaces X: B — R3.
Sauvigny in [102] revives this condition to define (strict) stability for minimal

immersions X: B — R"*2, It holds the

Proposition 2.13. Let the geodesic disc B, (Xy) be stable in the sense of
D2/ [B,(X0)] =0 forallp € C°(B,R).

Then its area can be estimates by
4
o [B,(Xo)] < 5.

For the proof we refer the reader to Gulliver [56] and Sauvigny [105].
Two concluding remarks are due: First, and this follows from Sect.2.2.2, we

estimate
So//Wdudvf//|S0|Wdudv§//(—K)Wdudv,
B B B

thatis, if So # O then the curvatura integra is not finite for complete minimal graphs.

And secondly, and this is to round out the beginning of this paragraph, Micallef
in [88] showed that if a minimal graph is complete and stable, and if its area
growths quadratically, then it is holomorphic. Wirtinger in [126] proved that
holomorphic minimal surfaces area absolutely area minimizing w.r.t. compactly
supported variations, see our discussion in Sect. 2.2.9 above.

2.2.12 Curvature Estimates for Higher-Dimensional Minimal
Graphs

The next result, which goes back to Hildebrandt, Jost and Widman [68], states a
Bernstein-type result for higher-dimensional minimal surface graphs in Euclidean
spaces of arbitrary dimensions.
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In particular, it contains a gradient bound of the graph a priori which essentially

reflects the fact that a generalized Gauf3 map of the surface (concerning this, see also

Hoffman and Osserman [69]) must be contained in a geodesic ball of radius ¥ox in

4
the so-called Grassmannian manifold G, .

Proposition 2.14. Letz* = fe*(x) witha = 1,...,sand x = (x',...,x") e R"
be C?-regular, and let it generate a r-dimensional minimal graph

X(x,y) = (xl,...,x",fl(xl,...,x’),...,f“'(xl,...,x’)).

Let there furthermore exist a real number § > 0 such that

e (53)

with

K:{;g;;zl and t:=min{r,s}.
Assume finally that

. df« ofe
det | §;; 4 . < B.
( yt dx? Ox/ ) P
a=l1 ij=l..r

Then the functions f', ..., f* are affine linear on R", and the minimal graph is an

affine linear r-dimensional plane.

In subsequent works, e.g. Jost and Xin [76], Wang [119], or Xin [127], one finds
various improvements of this result as well as generalizations to surfaces with
prescribed mean curvature vector.

Also here the question must be left open how the assumption on the gradient
bound stands in connection with our geometrical and analytical concepts of the
normal bundle. We expect that it can be weakened at least in the special case r = 2
of surfaces in view of other results where less restrictive assumptions are required,
see e.g. Frohlich [46] and the references therein, and combine them for instance
with the discussions from Barbosa and do Carmo [5, 6], and Ruchert [100].

Finally we want to mention the curvature estimates and theorems of Bernstein-
type for minimal submanifolds with flat normal bundle from Smoczyk et al. [113],
where e.g. classical methods from Schoen et al. [109] and Ecker, Huisken [42] were
employed. In Frohlich and Winklmann [52] we succeeded in proving similar results
for graphs of dimension m € [2, 5] but with prescribed mean curvature vector. Can
one find methods and techniques comparable to the ones presented in this book to
establish more general results for submanifolds with arbitrary normal bundles?



Chapter 3
Normal Coulomb Frames in R*

Abstract With this chapter we begin our study of constructing normal Coulomb
frames, here for surfaces immersed in Euclidean space R*.

Normal Coulomb frames are critical for a new functional of total torsion. We
present the associated Euler—Lagrange equation and discuss its solution via a
Neumann boundary value problem. A proof of the “minimal character” of normal
Coulomb frames follows immediately.

Using methods from potential theory and complex analysis we establish various
analytical tools to control these special frames. For example, we present two
different methods to bound their torsion (connection) coefficients. Methods from
the theory of generalized analytic functions will play again an important role.

We conclude the third chapter with a class of minimal graphs for which we can
explicitly compute normal Coulomb frames.

3.1 Torsion-Free Normal Frames for Curves and Surfaces

3.1.1 Curvesin R3

In this third chapter we want to work out methods for a new analytical description
of the normal bundles of surfaces in R*. This particularly contains the construction
of so-called normal Coulomb frames together with a comprehensive discussion of
their regularity properties.

To begin with we consider a regular arc-length parametrized curve c(s) in R3
with

unit tangent vector t(s) = ¢’(s),
t'(s)
[t(s)l

unit binormal vector b(s) = t(s) x n(s).

and

unit normal vector n(s) =

S. Frohlich, Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces, 53
Lecture Notes in Mathematics 2053, DOI 10.1007/978-3-642-29846-2_3,
© Springer-Verlag Berlin Heidelberg 2012
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The torsion t(s) of this curve is then given by

7(s) = n(s)’ - b(s) = —n(s) - b(s)’.

Now we introduce a new unit normal frame (EF) by means of a SO(2)-action, i.e.
by a usual rotation, as follows

W=cospn+singb, b=—singn-+cospb

with an angle of rotation ¢ = ¢(s). The new torsion T associated to this new frame
then results from the following computation

~
~ o~

T=0-b = (—¢'singn+cospn’ + ¢ cospb+singb’)-(—singn+ cosgb)

¢ sin?> ¢ —sin® ¢ (b' - 1) + cos? @ (0 - b) + ¢’ cos® ¢
(p/

+ 7.

In particular, constructing an ONF (E,F) which is free of torsion, i.e. which fulfills
T = 0, by starting with a given ONF (n, b), reduces to solving the problem

@'(s) =—1(s), ¢(s0) =1

with some initial value 7.

Proposition 3.1. Rotating an initial ONF (n, b) by an angle

N

o(s) = —/r(o) do + g0

50

with arbitrary ¢y € R generates an ONF (F(,F) which is free of torsion.

Such a torsion-free ONF is also called parallel because all of its derivatives are
tangential to the curve, that is parallel to t(s). Moreover, they are special normal
Coulomb frames what will become clear in the following.

Parallel ONF’s for curves are widely used in geometry and mathematical physics.
We want to refer again to Burchard and Thomas [19] and the references therein for
an application of such frames in the theory of Euler’s elastic curves, see our short
discussion in Sect. 1.3.5.

3.1.2 Torsion-Free Normal Frames

The question now arises whether there is a similar construction of torsion-free
ONF’s for two-dimensional surfaces.
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In this chapter we focus on the case of two codimensions n = 2. So let us given
an ONF 91 = (Ny, N;). By means of the SO(2)-valued transformation

ﬁl =cos¢ N +singp N, Nz = —sing Ny 4+ cos¢ N;

with a rotation angle ¢ we get a new ONF N = (N N 2).

Lemma3.1. Let X: B — R* be given. Then there hold the transformation
formulas " _
T1, =T + ou. T%,z = T12,2 +¢, inB

. . s ) ’ o
Jor the torsion coefficients T, and T;; of two ONF’s N resp. N.

We omit the proof of this lemma which follows the same lines as our calculation
from the beginning of this chapter. Rather we want to compute an angle ¢ which
carries 91 into a new ONF 91 which is free of forsion, i.e. which satisfies

Pfil =0 and sz =0 everywherein B.
Obviously, ¢ then has to solve the linear system
Qu = —T12,1 and ¢, = —T12,2~
Recall that such a system is solvable if and only if the integrability condition
0 =—0,@, + dupy = 0,17, — 3, T}, = div(-T},. T$)) = SW inB

is satisfied with the scalar curvature S of the normal bundle from Sect. 1.6.3 and the
area element W of the immersion. Since there always exists an ONF 91 thanks to
the special topology of the domain of definition B, we have

Theorem 3.1. The immersion X: B — R* admits a torsion-free ONF tif and only
if the scalar curvature S of its normal bundle vanishes identically in B.

Such a torsion-free ONF is again parallel in the sense that its derivatives have no
normal parts, for the Weingarten equations from Sect. 1.4.5 now take the form

for o0 = 1,2 and using conformal parameters.

Note also that such an ONF is not uniquely determined, rather we can rotate
the whole frame by a constant angle ¢, without effecting the torsion coefficients,
because the above differential equations contain only derivatives of ¢.

We want to remark that existence of parallel frames in case of vanishing curvature
S = 0 is in fact well settled. With our next considerations we want to establish
existence and regularity of ONF’s if the normal bundle is curved, and such new
frames will replace the concept of parallel frames in this more general situation.
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3.1.3 Examples

But first we want to discuss some elementary examples of surfaces with flat normal
bundle.!

1. Let us begin with spherical surfaces characterized by the property
|X(u,v)| =1 forall (u,v) € B.

We immediately compute

i.e. X itself is our first unit normal vector, say X = Nj. A second one follows
after completion of {X,, X,, N} to a basis of the whole embedding space R*.
Then the ONF (Ny, N,) is free of torsion because there hold

T2, =N N2=X,-N=0, T}, =Ni,-Na=X,-N, =0.

2. A special example of such a spherical surface is the flat Clifford torus, given by
the product (see e.g. do Carmo [36], Chap. 6)

1 . .
X(u,v) = — (cosu, sinu,cosv,sinv) ~ S' x S'.

V2

We assign a moving 4-frame {X,,, X,,, N, N,} consisting of

1 1
X, = — (—sinu,cosu,0,0), X, = ——=1(0,0,—sinv,cosv)
V2 V2
as well as
N 1 ( . inv), N 1 ( . inv)
1 = — (cosu, sinu, cosv, sinv), » = —— (—cosu, —sinu, cosv, sinv).
V2 V2

This special ONF 91 = (Nj, N,) is free of torsion. In another context, Pinl in [96]
and [97] discusses examples of spherical surfaces already introduced by Killing,
namely first

Y (u,v) = (sinusinv, cosu cos v, sin u cos v, cos u sinv),

'In Sect.2.1.2 we have already discussed surfaces with parallel mean curvature vector and a
possible connection to the curvatures of their normal bundles.
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a parametrization which was later considered again by Lawson in [85] in the
more general form

(cos u cos v, sin au cos v, cos u sin v, sin u sin v)

and who proved that every ruled minimal surface in S* is of this form for some
constant o > 0, as well as

1
Z(u,v) = 3 (cosu + cosv, sinu — sinv, sinu + sinv, —cosu + cosv).

These three mappings X, Y and Z are spherical, and therefore they admit torsion-
free orthonormal normal frames. Actually, they are flat since the first fundamental
forms g are Euclidean, i.e.

10 20 1(10
0= (1) s =(32). e2=3(;):

However, from the geometric point of view, Killing’s examples have interesting
projections into the three-dimensional subspaces.
3. Next, we want to consider so-called parallel-type surfaces: The immersion

R(u,v) = X(u,v) + f(u,v)N1(u,v) + g(u, v)Na(u, v)

is said to be parallel to X if the tangential planes of R and X are parallel at
corresponding points. Whether surfaces in higher-dimensional spaces are parallel
or not depends on the scalar curvature S of the normal bundle.

Proposition 3.2. Let f.g # 0. If R is parallel to the immersion X: B — R*, i.e. if
there hold
R, -N,=0 foralli =1,2,0=1,2,

at corresponding points, then S = 0.

Proof. For the proof we use the Weingarten equations and compute the normal parts
R:- and R of the tangential vectors R, resp. R, w.r.t. X, that is

Ry = fuNi+ guN2 + [N + gN3, = (fu — gT2) N + (gu + £ T, N2
as well as
R = f,Ni + g.N>+ fN1J,'v + gNzl,v = (f—gTH)N + (8 + lez,z)N%

The condition that R is parallel to X then leads us to the first order system
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fu_ngz,l =0, fv_ngz,z = 0,
gu‘f‘lez,l:Ov gv‘*‘lez,z:O-

Now differentiate the first two equations and make use of the others to get

0= fiw— glez,l - galez,l = fu+ fT12,1T12,2 - galez,l )
0= fou— gule,z - gaule,z = fu+ fT12,1T12,2 _gauT12,2‘
A comparison of the right hand sides shows
0=—gd,T7, + gduT7, = —g - SW.

Similarly we find 0 = f - SW, and this proves the statement. O

We will see that in case S = 0 there is a torsion-free ONF 1. Back to the first order
system above, the proposition can be completed by stating f, g = const.

Parallel-type surfaces are widely used in geometry and mathematical physics, see
e.g. da Costa [30] for an application in quantum mechanics in curved spaces. In this
context we would also like to refer the reader to the classical textbook Dirac [35];
for recent developments with applications in quantum string theory see e.g. Dorn
et al. [38].

4. Finally we want to consider evolute-type surfaces. Again we consider the
variation
T, v) = Xu,v)+ f(u,v)Ni(u,v) + g(u,v) Na(u,v).
The mapping 7T is then called an evolute surface to X if the tangential planes of
T agree with the normal planes of X at corresponding points.

Proposition3.3. Let fig # 0. If T from above is an evolute surface to the
immersion X: B — R* then X has flat normal bundle, i.e. it holds S = 0.

Proof. Using conformal parameters (u,v) € B together with the Weingarten
equations we compute the tangential parts of 7, and 7, that is

L L L L
TMTz(l—f l’“—g z’ll)Xu—(f 1,12+g Z’IZ)XV,

w w w w
Ly Ly o Lo Lr»

Then the conditions
T, -X, =0 fori,j=1,2

leads us to
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W —fLin—gLlou =0, W—fLin—gL»n =0,
fLinn+ gLy = 0.

Now use the Ricci integrability conditions to evaluate the scalar normal curvature

JeSW = f(Lin1 — Li22)gLloia — f(gLait —gL222) L1 12
=—f*(Liy1 — Li2)Liio— f(W — fLin =W + fLin)Ly1
= —f*(Lin—Lipn)Lin+ fA(Lin —Lin)Lin = 0.
This proves the statement. O

For this and further developments we refer to Cheshkova [25].

3.2 Normal Coulomb Frames

3.2.1 The Total Torsion

But what happens if S # 0? Clearly, there is no parallel frame, and it is therefore
desirable to construct ONF’s with similar features. For this purpose we make the

Definition 3.1. The fotal torsion 7 [I] of an ONF 9 = (N, N,) is given by
2 2 B
TN = Z Z // gUT) T W dudy.
ij=log=1"g
Using conformal parameters with the properties
el =g2 =W and g2=0,

and taking the skew-symmetry T(f" ; = —Ty, of the torsion coefficients into account,
reveals the convex character of the functional of total torsion for a fixed surface,

T = 2// {(Tﬁl)2 + (T32)2} dudyv.
B

We remark that .7 [N] does not depend on the choice of the parametrization (we
only admit transformations which leave the unit normal vectors unaffected). But it
depends on the choice of the ONF ), and it arises the question whether there are
ONF’s for which the functional of total torsion attains a smallest value.



60 3 Normal Coulomb Frames in R*

3.2.2 Definition of Normal Coulomb Frames

Clearly, if the immersion X admits an ONF 91 which is free of torsion, then it holds
T [N] = 0 for this special frame. On the other hand, we can make .7 [)1] as large as
we want by choosing ¢ sufficiently “bad.”

Our goal is therefore to construct orthogonal unit normal frames which give
T [N] a smallest possible value. Therefore our next

Definition 3.2. The ONF 91 = (N|, N;) is called a normal Coulomb frame if it is
critical for the functional .7 [N] of total torsion w.r.t. to SO(2)-valued variations of
the form

Nl =cos¢ N; +sing N, sz—sinqul +cosp N;.

In the following we will compute and solve the Euler—Lagrange equation for normal
Coulomb frames. We will furthermore establish various regularity properties for
them. It particularly turns out that they are actually parallel, or free of torsion, in the
special case of flat normal bundles.

3.2.3 The Euler-Lagrange Equation

We already computed in Sect. 3.1.2 the transformation between the torsion coeffi-
cients,

T2 2 72 2

Tiy=T 1 +o. Ti,=T+¢.

This gives us immediately the difference between the new and the old total torsion
by means of a partial integration (see Sect. 3.2.1, use conformal parameters)

2//|V¢|2dudv+4//(Tﬁl¢u+Tﬁzwv)dudv
B B

2//|V¢|2dudv+4/(Tl%l,Tl%2)-vrpds
B

JaB

TN - 7N

—4 / / div(T7), T, dudv
B

with v denoting the outer unit normal vector at the boundary dB.
Thus, we have proved the following criterion for a critical ONF 2t = (N}, N,).

Proposition 3.4. Let the ONF 0 = (N, N») be critical for the functional 7 [N] of
total torsion. Then, using conformal parameters (u,v) € B, the torsion coefficients
Tgi of this ONF satisfy the first order Neumann boundary value problem
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div (T, T3,) =0 inB, (T}.T})-v=0 ondB

with the Euclidean divergence operator div.

The conservation law structure of this Euler-Lagrange equation explains the
terminology normal Coulomb frame in analogy to Coulomb gauges from physics.
We follow Helein [64] where he suggests to adopt this name from physics to
differential geometry and harmonic analysis.

3.3 Constructing Normal Coulomb Frames,
and Their Properties

3.3.1 Construction via a Neumann Problem

How can we construct a normal Coulomb frame 91 from a given ONF M2 For a
critical ONF 91 we have to solve the boundary value problem

0 = div(T3,,T%) = div(T}, —¢.. T1,—¢,) inB,
0 = (le,lv T12,2) Vo= (Til - %ﬁ?z —¢@y)-v ondB

in virtue of the Euler-Lagrange equation from above. Therefore the

Proposition 3.5. The given ONF N transforms into a normal Coulomb frame )t by
means of the SO(2)-action if and only if

Ag = div(T3},,T},) inB,

dg

i (’7:%,1,’7?72) v ondB

holds true for the rotation angle ¢ = ¢(u, v).

What can we state about the solvability of this Neumann boundary value problem?
We know that (see e.g. [29])

Ap = f inB, g—(ng on dB
v

is solvable if and only if the following integrability condition holds

[/fdudv:/gds.

B
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But this condition is obviously fulfilled in our situation:
// div(T3,,T3,) dudv = /('T‘il,'f%,z) -vds.
B B

Theorem 3.2. Starting from a given ONF €N it is always possible to construct a
normal Coulomb frame N for the immersion X: B — R* which is critical for the
functional T|N] of total torsion. In particular, if X € C**(B,R*) with k > 4,
then

Ny, € C*'(B RY for Ny e, o=1,2.

For a general orientation on Neumann boundary value problems we refer the reader
to the classical monograph of Courant and Hilbert [29]. Some detailed regularity
analysis is also contained in our fourth chapter.

3.3.2 Minimality of Normal Coulomb Frames

Let 91 be a normal Coulomb frame. Using conformal parameters we compute

TN =T +2 || Vo> dudv
I

+4/(T31,T1%2)-vfpds—4//diV(Tfl,Tl%2)¢dudv
B

B

=M +2 || [Vel*dudv = TN
If

for a comparison ONF M, taking into account that the boundary integral and the
integral over the divergence vanish due to the Euler-Lagrange equation. From the
parameter invariance of the functional of total torsion we then obtain

Theorem 3.3. A normal Coulomb frame N for the immersion X:B — R*
minimizes the functional of total torsion, i.e. it holds

7 < 7
for all ONF N resulting from a SO (2)-action applied to N. Equality occurs if and
only if ¢ = const.

Note that a normal Coulomb frame remains .7 -critical if it is rotated by a global
constant rotation angle ¢o.
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3.4 Estimating the Torsions of Normal Coulomb Frames

3.4.1 Reduction for Flat Normal Bundles

Let again (u,v) € B be conformal parameters. We want to consider normal
Coulomb frames in case of flat normal bundles S = 0, that is

SW =9,T, — 0,T¢, = div (-T2, T})) = 0.
If 91 is such a normal Coulomb frame then the Neumann boundary condition
(le,l’ T12,2) v=0

from the Euler—Lagrange equation says that the vector field (— sz, T12,1) is parallel
to the outer unit normal vector v along dB. Thus, a partial integration yields

//SWdudv—/( T, Ti)) -vds
=+ / V(T2 + (T2 ds.

In particular, S = 0 implies
Tgi =0 ondB foralli =1,2ando, v = 1,2.

On the other hand, differentiate 0 = 9,77 — 8,7}, w.r.t. u and v and take the
Euler-Lagrange equation d, T, + 9,77, = 0 into account. Then we arrive at

AT =0, AT, =0
showing that T, and T}, are harmonic functions. The maximum principle gives
T(fi =0 inB foralli =1,2ando, ¥ =1,2.

Theorem 3.4. A normal Coulomb frame N for an immersion X: B — R* with flat
normal bundle S = 0 is always free of torsion. In other words, it is always parallel.

To summarize our considerations so far: We have proved existence and regularity of
ONF’s which are critical for the functional of total torsion. If additionally the scalar
curvature S of the normal bundle vanishes identically, such normal Coulomb frames
are free of torsion.
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3.4.2 Estimates via the Maximum Principle

Next we want to consider the case of non-flat normal bundles. From the Euler—
Lagrange equation we know that the torsion vector (T2, T%,) of a normal Coulomb
frame is divergence-free. Thus the differential 1-form

w:=-Thdu+ T} dv
is closed since for its exterior derivative we calculate
do = =03,TE,dv Adu+9,T} du Adv =div(T}, TE) dundy =0.

Poincaré’s lemma therefore ensures the existence of a differentiable function t
satisfying (see e.g. Sauvigny [107], vol. 1, Chap.1, Sect. 7)

dt =1,du+1,dv=uw.

This finally implies
VT = (-Cuv ‘CV) = (_T]%Zs T]%l)'

A second differentiation, taking account of SW = div (— sz, Tfl), leads us to the
following inhomogeneous boundary value problem

At=SW inB, =0 ondB.
To justify the homogeneous boundary condition we note that
Vt-(—v,u) =0 ondB

for normal Coulomb frames because (Tl%l, sz) is perpendicular to the normal v.
Therefore it holds T = const along dB. But 7 is only defined up to a constant of
integration which can be chosen such that the homogeneous boundary condition is
satisfied. Thus, Poisson’s representation formula for the solution t reads

(w) = / / S w)SQOWE) dédy, £ = (. e B.
B

with the non-positive Green kernel of the Laplace operator A (see e.g. Sauvigny
[107], vol. 2, Chap. VIII, Sect. 1). We want to give an integral estimate for this kernel
to establish an estimate for the integral function 7 : Namely, note that

2
-1
w(w):% solves Ay =1inB and ¥ =0ondB.
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Therefore we conclude

) o l—w? 1
J[1e@mi1agay = 2= < 2.
B

Lemma 3.2. Let (u,v) € B be conformal parameters. The integral function t of the
above Poisson problem with the scalar curvature S of the normal bundle satisfies

1
[t(w)| < 1 [SWillcog inB, t(w)=0 ondB.

Well-known potential theoretic estimates for the Laplacian (see e.g. [107], Chap. IX,
Sect. 4, Satz 1) now ensure the existence of two constants ¢; € (0, 00) and ¢, () €
(0, 00) such that

Itlci@ < callSWlco,

holds true, or also an estimate for the higher derivative
Il cota @) < 2 ISWlcog
for all @ € (0, 1).> With the foregoing C'-bound we can formulate the main result

of the present chapter.

Theorem 3.5. Let the conformally parametrized immersion X: B — R* with
normal bundle of scalar curvature S be given. Then there exists a normal Coulomb
frame Nt minimizing the functional of total torsion, with torsion coefficients

satisfying
||Tgl?i||c0(§) = Gil|SWlcog) and ||T£i||cl+w(§) < G@ISW |l ca
for all a € (0, 1) with real constants C; € (0, 00) and C,(xt) € (0, 00).

In particular, for flat normal bundles with S = 0 we recover that normal Coulomb
frames are free of torsion.

3.4.3 Estimates via a Cauchy-Riemann Boundary Value
Problem

Consider again the Euler—Lagrange equation for a normal Coulomb frame together
with the formula for the scalar curvature of the normal bundle, that is

WTE + 0,72, =0, 8T — 0,1, = SW.

2The constants ¢, ¢; and Cy, C, below depend also on the domain B.
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We want to discuss a second method to control the torsion coefficients of a normal
Coulomb frame which is strongly adapted to the case of two codimensions: Namely,
we will prove that a complex-valued torsion ¥ from the next lemma satisfies a first-
order differential equation which can be solved using methods from Vekua [117].
Theorem 3.5 will be replaced by an estimate of certain L”-norms of SW.

Lemma 3.3. Let N be a normal Coulomb frame. Then the complex-valued torsion
=T} —iT,eC

solves the inhomogeneous Cauchy—Riemann equation

W= L SW inB,
2
Re[wlI/(w)] =0 forwedB

using conformal parameters w = (u,v) € B with the setting &y, := % (P, +iD)).

Proof. We compute
W =W, + W, = 0,TF, + ,T75) + i1, —0.T) =0+ iSW e C
as well as

Re [wW(w)] = Re [(u+ iv)(TE, —iT,)]| = uT?, +vTE,
= (_le,zv T12,1) (—v,u) = Vr-(—v,u) = 0

with the integral function t from the previous paragraph. O

We say that ¥ solves a linear Riemann—Hilbert problem. There is a huge complex
analysis machinery to treat such a mathematical problem. The reader is referred e.g.
to Bers [11], Begehr [7], Courant and Hilbert [29], Sauvigny [107], Vekua [117],
Wendland [121].

Let us now derive an integral representation for the complex-valued torsion V.

Lemma 3.4. The above Riemann—Hilbert problem for the complex-valued torsion
¥ of a normal Coulomb frame possesses at most one solution ¥ € C'(B,C) N

C°(B, Q).

Proof. Let ¥, ¥, be two such solutions. Then we set
P(w) 1= wl¥i(w) — ¥ (w)]
and compute immediately

®; =0 in B, Re® =0 ondB.
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Thus the real part of the holomorphic function @ vanishes on dB, and the Cauchy—
Riemann equations yield @ = ic in B with some constant ¢ € R. The continuity of
Y, and ¥, implies ¢ = 0 since @(0,0) = (0, 0). O

Our Riemann—Hilbert problem can now be solved by means of so-called generalized
analytic functions for which we want to present some basic facts (see the references
above for more comprehensive presentations).

For arbitrary f € C'(B, C) we define Cauchy’s integral operator by

Tsf1w) _——// /@ ~dgdn. weC,

Lemma 3.5. There hold 73[f] € C'(C\ dB,C) N C°(C, C) as well as

0 fw),weB
L Tyl flo) = {0’ e

Proof. For a detailed proof see e.g. Vekua [117], Chap. I, Sect. 5. We only verify the
complex derivative: Let {Gy }r=1 ... be a sequence of open, simply connected and
smoothly bounded domains contracting to some point zo € B for k — oco. Let |G|
denote its area. With the characteristic function y we compute (see [107], Chap.1V,
Sect.5)

o /%m(w) w=s |/ __// 1O ey aw
2m|Gk| // f(i)/—dw d&dn

Gy

2m|G| /f(i) 27y, (§) d&dn

=@ G/ [ r@asan

Here we have used Cauchy’s integral formula

/ ﬂdw =2mig({)
w—{

dGy
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for a holomorphic function g with { € Gi. Applying the integration by parts rule in

complex form
/ [ 4= ronasan = [ sz

Gy

we get in the limit

1 Al 10 = fim s [ Tl = fia)

3G

for all zp € B. The statement follows. O
Next we set

_ 1 S O 1 1
Zaflon = [ { e _Wz} agdn = 51100~ Tl f1(=)

B

Then Satz 1.24 in Vekua [117] states the following

Lemma 3.6. With the definitions above we have the uniform estimate

| 2s1f1W)| < CPI f lLrmy, we B,

where p € (2, 400], and C(p) is a positive constant depending on p.

Using this result (which remains unproved here) we obtain our second torsion
estimate, now in terms of L”-norms, the main result of this paragraph.

Theorem 3.6. Let the conformally parametrized immersion X: B — R* be given.
Then the complex-valued torsion W of a normal Coulomb frame N satisfies

W) = c(PISWllLry forallwe B

with a positive constant c(p), where p € (2, 4+00].
For a flat normal bundle with S = 0 we thus verify again our results from Sect. 3.4.1.

Proof. Let us abbreviatory write
fo= %SW e C'(B,C)

to apply the previous results. We claim that the complex-valued torsion ¥ possesses
the integral representation
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w(w)==@3[f](w)=—%//{§f£§v)v ff(viZ§d§d w e B.
B

Then the stated estimate follows at once from the above lemma.

1. First we claim
1 1
w2l /10 =~ [[ 1@ dgan+ b s10 - Fabus)(3)
B

Let us check this identity:

~ |[ 1@ dsan+ Faw 1o - Fabu 1
B

=§ / F@©)dedn - // O iy - Fow 1)

...... -2 [ £ // 9 g

_ow / f(z) 6
B é‘ -1

//(;‘@; ffza)dw

2. Next, taking f = ’5 SW into account, we infer

ERASY ATy

Re {wc@B[f](w)} =0, weodiB,

what follows from

Tp [%inW](w) — ﬂg[%in wlw ™)

:"//l fo dsint //ugsw
Z‘%[/(z%ﬁf—

) SW dé&dn.

1
w

69
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The entry in the brackets is a real number since it holds

‘él

1
— = =Ww ondB.
wow]?

=

Investing

ad
3__ el flw) = f(w),
w

which follows from Lemma 3.5 and our representation of Zg[f](w), we
conclude that Zg[f](w) solves the Riemann-Hilbert problem for ¥. The
above uniqueness result for the Riemann—Hilbert problem proves the stated
representation. O

3.4.4 A Gradient Estimate for Torsion Vectors of Constant
Length

The question remains how we can prove pointwise estimates for the torsion
coefficients Tgi (w) of normal Coulomb frames in terms of the scalar normal
curvature S(w). At least we want to present the following special result concerning
the gradients of the Tgi for torsion vectors of constant length.

Theorem 3.7. Let the conformally parametrized immersion X: B — R* together
with a normal Coulomb frame N be given. Assume that there hold

T2 #0, T2, #0 and |T} >+ |T2,)* = const inB.
Then there hold the pointwise estimates
|3ukT,fi(w)| <|SW)|W(w) forallwe B
andforalli,k =1,2and 0,9 = 1,2.
Proof. For abbreviation we set
f= T12,1’ 8= le,z-

Then the Euler-Lagrange equation together with the definition of the scalar normal
curvature S read
fu+gv:07 fv_gu:SW in B.

Moreover, differentiating f2 + g?> = const w.r.t u and v yields

fug»— frga=0 inB
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taking the assumption f, g # 0 into account. We arrive at

V> = SWf,
IVgl* = —SWg,

fu2+f’4g" =0, fvz_fvgu = SWf,

implying
Jugv + gs =0, fig —gﬁ = SWg,

The Cauchy—Schwarz inequality thus gives
VIR S5 (SWP 45 f2< 2 (SW)+ 2 |VfP
-2 27V T2 2 ’
and an analogous estimate holds true for |V g|?>. We finally infer

IVA?<(SW)*, |Vg><(SW)> inB,

and the statement follows. ]

3.4.5 Estimates for the Total Torsion

The previous results allow us to establish immediately lower and upper bounds for
the total torsion .7 [91] of normal Coulomb frames 91. In particular, Theorems 3.5
and 3.6 show

Theorem 3.8. Let the conformally parametrized immersion X: B — R* with a
normal Coulomb frame N be given.
Then there hold

TN < 4CT TS IIEo g,

with the real constant Cy € (0, 00) from Theorem 3.5, as well as
TN = 2C(p)27T||SW||i,,(B)

forall p € (2, +00] with the real constant ¢ = ¢(p) from Theorem 3.6.

The question remains open whether there even exist an integral estimate of the form
TN <=y // [S|1YW dudv
B

with some sufficiently chosen constant y; € (0,00) and ¢ > 1. Notice, as already
mentioned briefly in part, that the difficulties are hidden behind pointwise or higher-
order L?-estimates of S and W.

The following lower bound for the total torsion of normal Coulomb frames 1 is
a special case of a general estimate which we will prove later when we consider the
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general case of higher codimension. We will therefore only state the result without
giving a proof.

Theorem 3.9. Let the conformally parametrized immersion X: B — R* with a
normal Coulomb frame Nt be given. Assume S # 0 and ||VS||§2(B) > 0 for the
scalar curvature S of its normal bundle. Then it holds

N 2|VS 2,5\
9[91]2( L2(B) T BB ) #x: B,

(1—p)2A[X;B,]  A[X; By

with the functional
S[X; By = / |S|*W dudv,
By

and where the radius p € (0, 1) is chosen such that /[ X ; B,] > 0.

3.5 An Example: Holomorphic Graphs

We consider again graphs
X(w) = (w,®(w)), w=u+iveB,

with a holomorphic function @ = ¢ + iy. We want to show that its Euler unit
normal vectors represent a normal Coulomb frame if it holds |@| = const along the
boundary curve dB. This is true e.g. for the choice @(w) = w".
First, there hold

gn=1+ Vo’ =gn. gn=0

due to the Cauchy—Riemann equations ¢, = ¥, ¢, = —,,, therefore also
Ap = Ay =0,
i.e. the graph X = X(u,v) is conformally parametrized and represents a minimal

surface in R* satisfying
AX(u,v) =0 1in B.

Its area element W > 0 is given by
W =1+ Vo> =1+ |Vy[*,

and its Euler unit normal vectors are



3.5 An Example: Holomorphic Graphs 73

1

1
Nl = = (_wus _(pw 1,0), N2 - \/W

VW

For the associated torsion coefficients we have

(_wus —va Os 1)

1 1 0
T12,1 = W (=Puu®y + Guvu) = ﬁ% |V(p|2 > T12,2 = "5 a. |V(p|2.

Consequently, due to the special form of W we infer

9/ 1\ 0 3/ 1\ 0
div(T?,T?) = — [ — ) — [Ve)? — — [ =— ) — |V
V(T To) = 5 (ZW) o Vel g (ZW) on | V¢!

1 9 1 9
- V 2_ - 7 2
+2W 3v3u| ¢l 2W 3u3v| |
1 0 0 1 9 0
= — Vo> — |Vo|? — —— — |Vo|* — |Vg|? = 0.
W2 3u| ol avl ol W2 avl ol 3u| @l

Thus the Euler—Lagrange equation for a normal Coulomb frame is satisfied.

In order to check the boundary condition from the Euler-Lagrange equation for the
total torsion we introduce polar coordinates u = r cos w, v = r sin w. Note that

In our case we obtain

1 a a 1 0
(T2 1) v = 50 (”5 —Va—u) Vol = 33 g 1Pl on 98

with the complex derivative @, = % (D, —i9,).
We infer that the boundary condition from the Euler—Lagrange equation is satisfied
if and only if % |@,,| vanishes identically at the boundary curve dB.

Thus we have proved

Proposition 3.6. Let the conformally parametrized minimal graph (w, @ (w)) with
a holomorphic function ® = ¢ + iy be given. Then its unit Euler normal vectors
Ny and N, form a normal Coulomb frame N if ®,, does not depend on the angle w
along the boundary curve dB.

As mentioned, this result applies to our well-known examples

X(w) = (w,w") withn € N.



Chapter 4
Normal Coulomb Frames in R”1?2

Abstract Now we consider two-dimensional surfaces immersed in Euclidean
spaces R"*2 of arbitrary dimension. The construction of normal Coulomb frames
turns out to be more intricate and requires a profound analysis of nonlinear elliptic
systems in two variables.

The Euler-Lagrange equations of the functional of total torsion are identified as
non-linear elliptic systems with quadratic growth in the gradient, and, more exactly,
the nonlinearity in the gradient is of so-called curl-type, while the Euler—Lagrange
equations appear in a div-curl-form.

We discuss the interplay between curvatures of the normal bundles and torsion
properties of normal Coulomb frames. It turns out that such frames are free of
torsion if and only if the normal bundle is flat.

Existence of normal Coulomb frames is then established by solving a variational
problem in a weak sense using ideas of F. Helein (Harmonic Maps, Conservation
Laws and Moving Frames, Cambridge University Press, Cambridge, 2002). This, of
course, ensures minimality, but we are also interested in classical regularity of our
frames. For this purpose we employ deep results of the theory of nonlinear elliptic
systems of div-curl-type and benefit from the work of many authors: E. Heinz, S.
Hildebrandt, F. Helein, F. Miiller, S. Miiller, T. Riviére, F. Sauvigny, A. Schikorra,
E.M. Stein, F. Tomi, H.C. Wente, and many others.

4.1 Problem Formulation

In this fourth chapter we want to generalize the previous considerations to the case of
higher codimensions n > 2. We start with computing the Euler-Lagrange equations
for the functional of total torsion

2 n
T = > Y UT)T);W dudy

ij=lop=1

S. Frohlich, Coulomb Frames in the Normal Bundle of Surfaces in Euclidean Spaces, 75
Lecture Notes in Mathematics 2053, DOI 10.1007/978-3-642-29846-2_4,
© Springer-Verlag Berlin Heidelberg 2012
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for an ONF 9t = (Ny, ..., N,). It turns out that these equations form a non-linear
elliptic system with quadratic growth in the gradient.

We will prove existence and regularity of parallel normal frames in case of
vanishing curvature of the normal bundles as well as of critical points of 7 [91]
in the general situation of non-flat normal bundles. Our main intention is to discuss
analytical and geometrical properties of such normal Coulomb frames.

4.2 The Euler-Lagrange Equations

4.2.1 Definition of Normal Coulomb Frames

In this section we derive the Euler-Lagrange equations for .7 -critical ONF’s 9%. For
this purpose we first mention that due to do Carmo [36], Chap.3 we can construct
a family R(w, &) € SO(n) of rotations for a given skew-symmetric matrix A(w) €
C (B, so(n)) by means of the geodesic flow in the manifold SO (n).

In terms of such rotations we consider variations 9t of a given ONF 91 by
means of

n
No(w.e):=Y RI(w.e)Ny(w). o =1, .n.
=1

To be precise, the family of rotations is given by

R(w, &) = (RY(w, ¢)) € C®(B x (—&0, +£0).S0(n)),

o, 0=1,...,

with sufficiently small &y > O such that
ad
R(w,0) = E", % R(w,0) = A(w) € C*(B, so(n))
€

hold true with the n-dimensional unit matrix E”. Such a matrix A (w) is the essential
ingredient for defining the first variation of the functional of total torsion.

Definition 4.1. An ONF s called critical for the total torsion or shortly a normal
Coulomb frame if and only if the first variation

$o 7N := lim 1 (T[] — 7))
t—0 &

vanishes w.r.t. all skew-symmetric perturbations A(w) € C*°(B, so(n)).
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4.2.2 The First Variation

We want to compute the Euler—Lagrange equations for normal Coulomb frames in
the sense of the foregoing definition.

Proposition 4.1. The ONF Nt is a normal Coulomb frame for the conformally
parametrized immersion X: B — R"T2 if and only if its torsion coefficients solve
the following system of Neumann boundary value problems

div(T),,T))) =0 inB, (T}.T))-v=0 ondB

forallo,® = 1,...,n, where v is the outer unit normal vector along dB.

As already mentioned in the previous chapter, the conservation law structure of these
Euler-Lagrange equations motivated us to use the terminology “Coulomb frame,”
and with this we actually follow a suggestion of Helein [64].

Proof. Use conformal parameters and consider a one-parameter family of rotations

R(w, &) = (RY(w, ¢)) . €S0(n)

o 0=1,...,

as above. Expanding around ¢ = 0 yields
R(w,e) = E" + eA(w) + o(¢).

Applying R(w, ¢) to the ONF 9t gives the new ONF M in the form

No = ZR3N19 = Z {87 +eA) + o(e)} Ny = N, + SZA3N19 + o(e).
o=l o=1 9=1

Now we compute

n
NU’,/ = No,u‘f +¢ Z (Az’ué Ny + AZN&MZ) + o(¢e)
¥=1

for the derivatives of these new unit normal vectors. Consequently, the new torsion
coefficients can be expanded to

~

e
ol _N(T,ul'N&)

n n
= Nyt No+eY (AY Ny + ANy 2) - No + &Ny - D ADNy + 0(e)
=1 v=1

=Ty +eA]  +e Z {AVT, + AUT) ) + o(e),
9=1



78 4 Normal Coulomb Frames in R" 12

and for their squares we infer

n

(T¢)? = (TZ)? + 2¢ {A?M TS, + Z (ADTY, T2, + AVT) TE,) ¢ + o(e).
=1

Before we insert this identity into the functional .7 [0] we observe

Z {AVT T, + ANT) T = Z {AVTS T + AVT) TS )
ow, =1 ow,9=1
=2 Z AZT;} ot =
ow,0=1

taking the skew-symmetry of the matrix A(w) into account. Thus the difference
between 7 [N] and .7 [N] computes to (note A? 7% = A° T/ )

w.ut

e n 2
T -TM =2 > // A? (TS dudv + o(e)
B

ow=1 (=1

=4 Y //{A;{MT;{%1+A;*,{VT;)2}+0(5)

< <
I<o<w=n B

= 4¢ Z /Af(T;?l,sz)-vds

1<o<w=n 9B

—4e Y //Agdiv(rgfl,T;)z)dudwro(s).

< <
I<o<w=n B

But A(w) was chosen arbitrarily which proves the statement. O

4.2.3 The Integral Functions

Interpreting the Euler—Lagrange equations as integrability conditions, analogously
to the situation considered in Sect. 3.4.2, we find integral functions

1" e C*~1(B,R)
satisfying

Vi = (=72, 7)) inB forallo,® =1,...,n,

02 Yo,
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using again conformal parameters. The boundary conditions (T(f 1 Tlfz) -v = 0 now

imply
Vi@ . (—v,u) =0 ondB

with the unit tangent vector (—v, u) at 9B, and we may again choose 7(®?) so that

1D =0 ondB forallo,d = 1,...,n.

4.2.4 A Non-linear Elliptic System

With the above integral functions we now define the quantities

n
§t? = Zdet (Vr(”“’),Vr(‘”ﬁ)), 0.0 =1,...n.
w=1

87" will be worked out in following paragraphs.
The aim in this paragraph is to establish an elliptic system with quadratic growth
in the gradient of (°”) for normal Coulomb frames.

Proposition 4.2. Let a normal Coulomb frame R for the conformally parametrized
immersion X: B — R"*2 be given. Then the integral functions ©'°%) are solutions
of the boundary value problems

AT = — 570D 4 S(?,lz inB, =0 ondB,

where 8t grows quadratically in the gradient Vt©?).

Proof. Choose (g,%) € {1,...,n} x{1,...,n} and recall the identity
v s v o 7Y o TV
Soi2 = 0T, — 0Ty, + Z { o1 lws — G,ZTw,l}
=1

for the components of the normal curvature tensor.
Together with V) = (—T(f , T(f 1) we arrive at

n

AT = 3T —3,TY, = — Z{ o Th,— sz(f,l} + 812
w=1
n
=2 {tf,”“’) " - fﬁm)fv(wﬁ)} + S5z

w=1

proving the statement. O
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4.3 Examples

4.3.1 The Casen =2

In this case there is only one integral function t(? satisfying
At =8, inB, "2 =0 ondB.

This is exactly the Poisson equation with homogeneous boundary data from
Sect. 3.4.2 where we used the notations t = 1% and SW = §7,,.

4.3.2 The Casen =3

If n = 3 we have three relations

12 13) _(32 13) _(32 2
A‘C( ) = ‘L"S )Tz,i ) ‘L'LE )‘L"S ) + Sl,lzv
13 12) _(23 12) _(23 Sv3

23 21) (13 21) _(13 3
At®) = D19 @D ( Y+ S5,

Proposition 4.3. Let a conformally parametrized immersion X: B — R’ together
with a normal Coulomb frame 1 be given. Let

1
Ti= ("2, ¢ @) and recall & = W (St 12: Si12:8312)

with the normal curvature vector G from Sect. 1.6.7. Then it holds
AT =%, x%, +6W inB, ¥T=0 ondB

with the usual vector product x in R®. Thus, the vector T solves an inhomogeneous
H -surface system with constant mean curvature H = % and vanishing boundary
data.

Namely, compare it with the mean curvature system in R* from Sect. 2.1.3, i.e.
AX =2HWN inB.
If X additionally satisfies the conformality relations, then it would actually represent

an immersion with scalar mean curvature H.
Let us come back to the above differential system. From Wente [122] we infer!

!'See also Sect.4.5.1, and consult Sect. 4.5.3 for a new proof of Wente’s result.
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Proposition 4.4. Let the immersion X: B — R with flat normal bundle G = 0 be
given. Then it holds T = 0.

In other words: A normal Coulomb frame for an immersion in R® is parallel - insofar
it exists at all. The missing existence proof together with classical regularity results
will be discussed later.

4.4 Quadratic Growth in the Gradient

4.4.1 A Grassmann-Type Vector

The latter example gives rise to a final definition of the following vector of
Grassmann type

T = (t(”ﬁ))

N _n
l<o<t<n SR, N._E(n—l).
In our examples above, this vector T works as follows:

T=71D R forn =2,
T = (1(12), (13, 1(23)) eR?® forn =3.

Analogously we define the Grassmann-type vector
8% = (8t7") _ypep € RV
Then the proposition from Sect. 4.2.4 can be rewritten in the form
AT =—-$6F+G6W inB, =0 ondB.
From the definition of 6¥ we immediately obtain

|AT| < c|VE]* + |6W]| inB

with a suitable real constant ¢ > 0.

4.4.2 A Non-linear System with Quadratic Growth

The exact knowledge of this constant ¢ > 0 will become important later.
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Proposition 4.5. Using conformal parameters (u,v) € B, it holds

Ji2

|AZ] < — IVE|]> + |6W| in B.

Proof. We already know
|AZ| < |6%] + |GW]| in B.

It remains to estimate |§T| appropriately. We begin with computing

2

BT = { > " det (V) V@)

I<o<d®<n \ w=1

IA

(n—-2) Z § Zn:det (Vr(‘m),Vr(”ﬂ))z} .

I<o<d®=<n \ w=1
Note that only derivatives of elements of T appear on the right hand side of |§T|>.

Moreover, this right hand side can be estimated by |T, A ‘Zv|2 since T, A %, has
actually more elements.” Thus using Lagrange’s identity

X AYP = [XPIYP = (X-Y) < |XPIY)]?
we can estimate as follows
|85|2 =< (n - 2)|‘Iu A Iv|2 =< (n - 2)|‘Iu|2|‘zv|2 .

Taking all together shows

vn—2

AT < Vi =2 [T+ [6W] < ~5—= VS + [SW|

which proves the statement. O

In the special case n = 2 we immediately verifyf
|At| < |SW| inB

with the scalar normal curvature & = S.

2In particular, elements of the form det (V<@ , Vt(©@ )2 appear in |T, A T, |2, but they do not
appear in the right hand side of the inequality.
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4.5 Torsion-Free Normal Frames

4.5.1 The Casen =3

As we mentioned above, the only solution (with finite Dirichlet energy) of the
elliptic system
AT =%,x%, inB, =0 ondB,

is T = 0, see Wente [122]. This is exactly the situation for conformally parametrized
immersions X: B — R> with flat normal bundle & = 0.

A proof of Wente’s result would follow from asymptotic expansions of the
solutions ¥ in the interior B and on the boundary 0B as we will employ in
Sect.4.5.4. For such asymptotic expansions we particularly refer to Hartman and
Wintner [59], Heinz [63] or Hildebrandt [66]. But a new and simple proof is
presented as a corollary in paragraph Sect. 4.5.3.

Corollary 4.1. Suppose that the immersion X: B — R> admits a normal Coulomb
frame. Then this frame is free of torsion if and only if the curvature vector G
vanishes identically.

This is a special case of a general result we will discuss in Sect. 4.5.4.

4.5.2 An Auxiliary Function and a New Proof of Wente’s
Result

To handle the general case n > 3 we need some preparations. Let us start with the

Lemma 4.1. Let the conformally parametrized immersion X: B — R"*2 rogether
with a normal Coulomb frame N be given. Assume S = 0. Then the function

d(w) =T, (w) - Tuw) = Y P

1<o<d=<n

with the complex derivative ¢,, = % (¢ — i py) vanishes identically in B.

Proof. We will prove that @ solves the boundary value problem
®; =0 inB, Im(w*®)=0 ondB.
Then the analytic function ¥ (w) := w?@(w) has vanishing imaginary part, and

the Cauchy—Riemann equations imply ¥ (w) = ¢ € R. The assertion follows then
finally from ¥(0) = 0.
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1. In order to deduce the stated boundary condition, recall that 7 = (0 on 3B.
Thus all tangential derivatives vanish identically because

" 4yt = _Imwt*) =0 ondB

forallo, 0 =1,...,n.
The boundary condition now follows from

w w

Im (W?®) = Im (w2 T - ‘IW) = Im {wz Z t("&)t(‘ﬁ)}

1<o<¥=<n

Z Im {(th(v‘”?)) (th(v‘”?))}

1<o<d®<n

2 Z Re (W) Im (wt™) = 0

1<o<d=<n

on the boundary dB.
2. Now we show the analyticity of @ with the aid of the identities

AT = 42(;;9) = 87,

Interchanging indices cyclically yields

n
P |
20; =4%,- T = 4 Z rv(f'j)r‘i%) =3 Z ‘L"E}Gﬂ)A‘E(Gﬂ)
1<o<®<n o,0=1
1 n
=4 Z {T\Eow)tljwﬂ)rbgoﬂ) _ t[gaw)t‘fwﬂ)rbgoﬂ)}
0.0.0=1

n

i
_F Z {T\Eow)_cljwﬂ)_[éoﬂ) _ _L,Lgow)z,‘fwﬂ)_[éoﬂ)}
{Tv(wﬁ) (99) ¢ (00) _ 1(0w) T‘Swﬁ)_c;az?)}

i
-3 {T‘fﬁa),[’ym)) 00) _ low) T‘€wl9)f‘£al9)}
o,%w=1

which shows @5 = 0. The proof is complete. O

This lemma gives us an interesting geometric interpretation of the present situation:
Namely, there hold
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Tw+ %y =0, orequivalently
T, % =%-%,,%,-%, =0 inB.

This means, in other words, that in case & = 0 of flat normal bundle the mapping
T fulfills the conformality relations.

Does this observation implies further consequences? However, it is the key for
our next considerations.

4.5.3 A New Proof of Wente’s Result

But before the following remark is due: As Frank Miiller pointed out in his lecture
notes [90], the above proof provides a generalization of Wente’s result from [122].

Corollary 4.2. Let the immersion X solve the mean curvature system
AX =2HWN =2HX, x X, inB

in case n = 1 of one codimension with vanishing boundary data X = 0 on 0B and
scalar mean curvature H € C°(B,R). Then it holds X = 0 in B.

Sketch of the proof. Let again

. .
b = XW-XW=Z(X3—XV2)—%XM-XV.

Then we verify

1 i

b, = ZXM-AX—ZXV-AXzo in B
as well as
) ) 1 0 )
Im (wX,) =Im(e'?X,,(e'?)) = — 3% X('?) =0 onodB.
2

As in the proof of the previous lemma, we infer
Im (w*®) =0 ondB,

and the statement follows as above. O

Note that the same is true for immersions with prescribed mean curvature vector
$) in the general case n > 1 if we additionally assume the conformality relations
for X, since then it holds
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n
AX =2 HyWN,
9=1
as we know from Sect.2.1.3. Thus, X,, and X, would again be orthogonal to A X
as needed in the proof. But the point is that Wente’s result is independent of such a
parametrization.

4.5.4 The Casen > 3

The main result of this section is the

Theorem 4.1. Suppose that the immersion X: B — R' 2 admits a normal
Coulomb frame N. Then this frame is free of torsion if and only if the curvature
vector G of its normal bundle vanishes identically.

Proof. Let 91 be a normal Coulomb frame. If it is free of torsion then & vanishes
identically. So assume conversely & = 0 and let us show that 91 is free of torsion.
Consider for this purpose the Grassmann-type vector ¥ from above. Because it holds
Ty - %, = 0 by the previous lemma, we find (now independently of n)

Tl =%, %,-%, =0 inB,
i.e. ¥ is a conformally parametrized solution of
AT =—-6% inB, =0 ondB.
According to the quadratic growth condition
8% < c|VE)

from Sect. 4.4.1, the arguments in Heinz [63] apply?: Assume T % constin B. Then
the asymptotic expansion stated in the Satz of Heinz [63] implies that boundary
branch points wy € dB with T,,(wg) = T,(wg) = 0 are isolated. But this contradicts
our boundary condition |33 = 0. Thus, T = const = 0 which implies 7" = 0
forallo,% = 1,...,n, and the normal Coulomb frame is free of torsion. O

The existence of torsion-free resp. parallel ONF’s for surfaces with flat normal
bundle is well established in the literature, we refer e.g. to Chen [21]. With the
previous and the following results we provide alternative methods.

3Let X € C2(B, R") solve the elliptic system AX = Hf (X, X,,, X,) with X2 = X2, XX, = 0,
where | f(x, p. @) < n(xD)(Ip|*> + |¢|?). Then if X, (wo) = O for some wy € 9B, but X,, # 0,
the following asymptotic expansion X,,(wo) = a(w—wp)* + o(|w —wy|*) holds true for w — wy,
where @ € C \ {0} witha? + ...+ a2 = 0,and £ € N\ {0}.
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4.6 Non-flat Normal Bundles

We mainly want to focus on surfaces with non-flat normal bundles, and with normal
Coulomb frames we introduce a concept which replaces parallelism in the normal
bundles if such bundles are curved. We begin with establishing possible upper
bounds for the torsion coefficients of normal Coulomb frames.

4.6.1 An Upper Bound via Wente’s L°°-Estimate

Let | - || r(5) denote the Lebesgue L?-norm. We want to prove the

Proposition 4.6. Let N be a normal Coulomb frame for the conformally parame-
trized immersion X. Then the Grassmann-type vector X satisfies

n—2 1
o) < 5= IVSIaqa + 5 ISW

Proof. 1. Forl <o < ¥ <n,w €{l,...,n} withw ¢ {0, ¥}, and given integral
functions 7(°?) we define the functions y®?®) as the unique solutions of

Ay((n%()) - — det (V‘C(Uw)v V‘1"((00)) il’l Bv y(f”?w) =0 on aB

Wente’s L°-estimate from Wente [123] together with Topping [116] then yields
the optimal inequalities*

1
N 2 3) 12
”y(a w)”LOO(B) < E(”VT(UH))HLZ(B) —+ ||V-[(w )HLZ(B))

foralll <o < ¢ <n,w ¢ {o,0}. In addition, we introduce the Grassmann-
type vector 3 = (Z(aﬁ))lsg<19§n as the unique solution of

A3=6GW inB, 3=0 onodB.

We use Poisson’s representation formula and estimate as follows (see e.g. [107])

30| = / / O WSOW(E) didn| < |SW || / / (¢:w) dedn
B B

“In 1980 H. Wente proved: Let ® € C°(B,R) N H'2(B,R) solve A® = —(f,g, —
fugu) in B with ®=0 on 2 and f,g € H'?(B,R), then [|®| o5y + IVPI 25y <
CIV f L2 IVE Il 12(8) - Following Topping [116] we may set % = L after applying Hélder’s
inequality.
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setting ¢ = (&, n7), which leads us to

1
[3(w)] < 7 [EW || Lo ()

with the Green function ¢ ({; w) for A in B; see e.g. Sect. 3.4.2 where we proved

[[ e@wagan <.
B

2. Now recall that

n n
AP = =% " det (Ve V@) 4+ §7 ) =" Ay©PO) 4 AP

w=1 w=1

Taking account of the unique solvability of the above mentioned Dirichlet
problems with vanishing boundary data, the maximum principle yields

O = Nyt 4 0N <o < <n.
w00}

Now we collect all the estimates obtained and get (we rearrange the summations
and redefine some indices of the sums)

2
D 1y o) + 130 Loon)

1<o<¥=<n wg¢{o,¥}

1 ow w
= 2 2 (IVE e + 19T )

1<o<?¥=<n w¢{c,0}

IA

1€ Lo (B)

IA

1
+ 2 16W =)

1 ow w
E{ > (”VT( M2 + VT ﬁ)HiZ(B))

l1<w<o<i¥<n

+ 3 (VTR + VD )

1<o<w<id¥=<n

s
+ 2 (IVE g + 1V w’uiz(m)}

1<o<d¥<w=<n

1
t7 [SW||Loo ()
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1 1
=5 2 2 VTN + 4 16W o)
1<o<v¥=<n w¢{o,0}

n—2 1
= Zn IVEIZ 5 + 2 I16WllLeoe) -

This proves the statement. O

The dependence on the total torsion [|VE ||i2 ) has an unpleasant effect for higher

codimensions n > 2. We do not know how we could get rid of this.

4.6.2 An Estimate for the Torsion Coefficients

We are now in the position to prove our main result of this section.

Theorem 4.2. Let 0N be a normal Coulomb frame for the conformally parametrized
immersion X: B — R"*2 with total torsion T [N] and given |SW || oo (p). Assume
that the smallness condition

M(n—z

2 2

1
T+ ISW liwin ) < 1

is satisfied.
Then the torsion coefficients of Mt can be estimated by

”Tal?’-”LOO(B) <c, 1=1,2,1<0< D <n,

with a non-negative constant ¢ = c(n, ||SGW ||Loo(p), T [N]) < +o00.

Proof. From Sects. 4.4.2 and 4.6.1 we have the following elliptic system

vn—2

|AT| < 3 IVE? +|6W| inB, T=0 ondB,
n—2 1
1%l ooy < T IVEIZ 5 + i [6W |Loo8) < M € [0, +00).

The smallness condition ensures that we can apply Heinz’s global gradient estimate
from Theorem 1 in [107], Chap. XII, Sect. 3, obtaining ||[VZ| s < c¢.’ This in turn
yields the desired estimate. O

5This theorem states: Let X € C?(B,R"T?) be a solution of the elliptic system [AX| <
alVX|> + bin B with X = 0on 0B and || X||zco5y < M. Assume aM < 1. Then there is
a constant ¢ = c(a, b, M, ) such that | X ||c1+«5) < c(a,b, M, a).
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It remains open to prove global pointwise estimates for the torsion coefficients

without the smallness condition. As mentioned above, we would particularly like
to get rid of the a priori dependence of .7 [1].

4.7 Bounds for the Total Torsion

4.7.1 Upper Bounds

From the torsion estimates above we can easily infer upper bounds for the functional
of total torsion

7m=2 Y // (T”)2+( 2)}dudv

I<o<?¥=n ‘p

for normal Coulomb frames 91. For example, the previous theorem yields an
estimate of the form

TN

IA

2 Z // ” 1||L°°(B)+ ” 2||L00(B)}dudv

1<o<¥=<n

: C(n, ||6W||L°°(B)7 TN

but it remains to solve this inequality for .7 [9%]. Thus, let us mention briefly a second
way which works for small solutions T :
Multiplying

AT = 5T 4+ BW

by ¥ and integrating by parts yields
Proposition 4.7. For small solutions ||T|| Lo (p) < ﬁ it holds

4| Lo ) IGW || 11 ()
2 —/n =2|[%]|Lee (B

The reader is referred to Sauvigny [107] where such small solutions of non-linear
elliptic systems are constructed. Let us emphasize that the case n =2 is much
easier to handle: The classical maximum principle controls ||Z|| oo (p) in terms of
|&W || oo (B, and no smallness condition is needed to bound the functional of total
torsion.
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4.7.2 A Lower Bound

We want to establish a lower bound for the functional of total torsion.

Proposition 4.8. Let N be a normal Coulomb frame for the conformally parame-
trized immersion X. Assume that the curvature vector of its normal bundle satisfies
S # 0and VS| 12y > 0. Then it holds

1812, 2[VSI7.p
TMM> 26|z ) T
[0]> (vn 1S zoo ) + (1—p2A[X; By A[X; By

-1
) yZ[X;Bp]

with the functional

X By = // |SI*W dudv,

and where the radius p € (0, 1) is chosen such that [ X ; B,] > 0.

Proof. 1. Because of G # 0 there exists a p = p(&) € (0, 1) with the property
A[X;Bys)] > 0, and this p = p(&) serves as the radius p from our
assumption. Now we choose a test function n € C°(B,RR) N HOI'Z(B, R) with
the properties

1
nel0,1] inB, n=1 inB,, |V7)|§1— in B.
—p

Multiplying AT = —6% + GW by (nS) and integrating by parts yields

// V‘Z-V(nG)dudvz//nS‘Z-Gdudv—//nIGFWdudv.
B B B

Taking

Vn—=2
6%] < Vi —2|T,|IT,| = S VTP

from Sect. 4.4.2 into account, we estimate as follows
// |S1*W dudv < // n|S1*W dudv
B, B

//77|5‘S-6|dudv+/ VS - V(&) dudv

IA

IA

161lLo08) //ﬂ|5‘fldudV+/ IVl 16]1VE| dudv

//n|vc5| V| dudv
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vn—2
= P2 il [[ 1957 dudy
B

+f/ S dudv+ 53— / VT2 dudv

(

//|V6|2dudv+—//|V‘I|2dudv

with arbitrary real numbers &, § > 0. Summarizing we arrive at

vn—2

. 1 1 2
yz[X, Bp] = ( ”6”L°°(B) + 2e (1 )2 2_5) ”V‘I”LZ(B)

)
”6”L2(B) + = “VGHLZ(B)

2. Now we choose ¢ := ”6” (X By] > 0. Rearranging for %[ X; B,] gives
L2(B)

” ”iZ(B)
\%
G=praixih) *5) Ve

X B, < («/n —2[|S]|LeB) +

+8[VS|2 .-

And since [|V&| ;2(5) > 0 we can insert § := 5 LIVS| 72 . #[X; B, to get

L%(B)
yZ[X Bp] = 2A||V‘I||L2(B)

||6||L2(B) 2||V6||L2(B)
(1-p27X:B,]  A[X:By|

setting A 1= vn — 26| o) +

Together with .7 [N] = 2||VZ|]? 1203) We arrive at the stated estimate. O

4.8 Existence and Regularity of Weak Normal Coulomb
Frames

4.8.1 The Dirichlet Problem for the Poisson Equation

To introduce the function spaces coming next into play we consider the Dirichlet
boundary value problem
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Ap(u,v) =r(,v) inB, ¢u,v)=0 ondB. (DP)

Let us abbreviate this problem by (DP).

4.8.2 Schauder Estimates

Assume that r € C%(B,R) holds true for the right hand side r. The classical
potential theory shows that there exits a solution ¢ of (DP) which satisfies the
following estimates

”d’”cl(E) =<c ”r”CU(E)

or, if one wants to establish higher regularity,
¢l 2y < c2(@Irllcecpy -

The constants ¢j,¢; € [0,00) depend on the domain B, while ¢, additionally
depends on the Holder exponent o € (0, 1). We refer e.g. to Gilbarg and Trudinger
[53], Kalf, Kriecherbauer and Wienholtz [77], or Sauvigny [107].

4.8.3 LP-Estimates

Now let r € L*(B,R). Then a weak solution ¢ € H'?(B,R) of (DP) is of class
H 2’Z(B, R), and it holds the a priori estimate

Pl 2205y < C(”¢”H‘~2(B) + ||"||L2(B)) .

In particular, if r € H"22(B, R) for the right hand side, we have higher regularity

@1l gm2csy < C(Ipll sy + 7l gn—2e5))-

For detailed considerations we refer the reader to Dobrowolski [37], Satz 7.4,
Gilbarg and Trudinger [53], or Sauvigny [107].
Note that we must require » € L?(B, R) to infer higher regularity ¢ € C°(B,R)
because H??(B,R) is continuously embedded in C°(B, R) by Sobolev’s theorem.
But if only, on the other hand, r € L' (B, R), then a weak solution ¢ € H'?(B,R)
of (DP) satisfies a priori

pllLay < Clirllpigy foralll <gq < oo,

IVollLry < Cllrlipip foralll < p<2.
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A function ¢ € H'?(B,R) is not necessarily continuous, or, in other words,
a right hand side r € L'(B,R) is too weak for a good regularity theory for our
purposes.

4.8.4 Wente’s L°°-Estimate

The situation changes dramatically if the right hand side r possesses a certain
algebraic structure. Namely, assume that

with functions a, b € H'?(B,R). Then it holds again r € L'(B,R), but a solution
¢ € H'2(B,R) is actually of class C°(B, R) and satisfies Wente’s L>-estimate

1
PllLoesy + IVO 1208y < o IVallL2) VDIl 28

see Helein [64], or the original approach of Wente [123].

We already used this inequality in Sect. 4.6.1 for establishing an upper bound for
the total torsion of a normal Coulomb frame.

The idea of the proof of Wente’s inequality follows from an ingenious partial
integration of the right hand side » which is actually given in curl-form, and using
the conformal invariance of the differential equation. An approximation of a and b
by smooth functions a,, b, forming a Cauchy sequence with continuous limit would
complete the proof.

4.8.5 Hardy Spaces

Wente’s discovery can be considered as the starting point of the modern harmonic
analysis. Its general framework is the concept of Hardy and Lorentz spaces.

From Helein [64] we will quote two definitions of Hardy spaces leading to equiv-
alent formulations of the theory. For profound and comprehensive presentations of
the underlying ideas and methods of harmonic analysis we refer to Moser [89] and
Stein [114]; see also the recent paper of Sharp and Topping [112]. Finally we refer
to Duren [39] for the classical theory of Hardy spaces in complex analysis.

Definition 4.2. (Tempered-distribution definition)
Let ¥ € C5°(IR™) such that

/lI/(x)dx =1.

Rm
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For each ¢ > 0 we set .
W (x) = — ¥(s ),
Sm

and for ¢ € L' (R") we define

P*(x) = Sugl(‘lfs * ) (x)].

Then ¢ belongs to the Hardy space 7 (R™) if and only if $* € L'(R™) with norm

ol et @y = NDllLi@my + 6™ 21 @m) -

Definition 4.3. (Riesz—Fourier-transform definition)
For any function ¢ € L'(R™) we denote by R,¢ the function defined by

F(Rag) = |%| Z@H)®)

with the ¢-Fourier transform

F(@)E) =

/ e P (x) dx.

RrRM

@)%

Then ¢ belongs to the Hardy space 7" (R™) if and only if
Ryp € L'(R™) foralla =1,...,m

with the norm

m
@l @ = I8lle@n + 3 I Rallrzen) -
a=1
Consider again our Dirichlet problem (DP) with (RHS): Leta,b € H'"?(B,R), and
denote by a — @ and b > b its extensions in H "2 to the whole space R? such that

these mappings are continuous from H'?(B,R) to H'?(R? R). Then, referring
again to Helein [64], it holds r € 7' (R?).

4.8.6 Lorentz Interpolation Spaces

Thus, this latter fact becomes especially important when we consider solutions ¢ of
(DP) together with the special right hand side (RHS).
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Definition 4.4. Let 2 C R be open, and let p € (1,+00) and ¢ € [1, +o¢]. The
Lorentz space L'P9(£2) is the set of measurable functions ¢: 2 — R such that

1
q

o0
1 dt .
A lLoa == /{t”(b*(t)}q -] <o ifg < 400
0
ot || fllLwa = sup t%¢>*(t) < 00 if ¢ = 400. Here ¢* denotes the unique non-
>0

increasing rearrangement of |¢| on [0, meas £2].

Lorentz spaces are Banach spaces with a suitable norm. They may be considered as
a deformation of L?. Notice that (see [64], Sect. 3.3)

L(””’)(B) = L”(B), L(”’l)(B) c L(””’/)(B) - L(M”)(B) - L(”’oo)(B)

for 1 < g’ < ¢q”. Then:

(a) If ¢ € H'2(B,R) solves (DP), (RHS) with r € #'(R?) then g—d’g—f €
LD (B).
(b) In this situation we have ¢ € C°(B,R).

4.8.7 The General Regularity Result

Summarizing we can state the following regularity result, taken from Helein [64],
Chap. 3, Sect.3.3.

Proposition 4.9. Let ¢ € H'2(B,R) solve (DP) with a right hand side r given as
in (RHS) witha,b € H'2(B,R). Then g—‘z, %—f e L@V (B), and it particularly holds
¢ € C°(B,R).

4.8.8 Existence of Weak Normal Coulomb Frames

In case n = 2 we constructed critical points of the functional .7 [D1] of total
torsion by solving the Euler—Lagrange equation directly and verified their minimum
character. Now, in the general situation, we construct critical points by means of
direct methods of the calculus of variations. We start with the following

Definition 4.5. Letm € N, m > 2. For two matrices A, B € R™*™ we define their
inner product

m
(A,B) :=trace (Ao B') = Z A’ BY
o,0=1
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as well as the associated norm

A= V(A A) =

Helein proved in [64], Lemma 4.1.3, existence of weak Coulomb frames in the
tangent bundle of surfaces. We want to carry out his arguments and adapt his
methods to construct weak normal Coulomb frames in our situation. Additionally
we want to present a method to establish classical regularity of such ONF’s.

In the following we always use conformal parameters (u,v) € B.

Proposition 4.10. There exists a weak normal Coulomb frame
MNe H'*(B) N L®(B)

minimizing the functional 7 [N] of total torsion in the set of all weak ONF’s of class
H'2(B) N L*®(B).

Proof. We fix® some ONF 9t € C*¥~1%(B) and interpret 7 [9] as a functional .7 (R)
of SO (n)-regular rotations

by setting

ZR) = Z i[[(nﬁgzdudm[/ (IT1[* + |T2|*) dudv

o=1i=1

Ny ::ZRgﬁg, o=1,...,n.
=1

Choose a minimizing sequence

R = (R))oy=1..n € H'?(B,SO(n))

and define
n

‘No:=) ‘RINy.
=1

SNote that now we start from 9t and transform into 1.
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As in Sect. 1.6.5 we find’

‘T, =R, oR' + RoT,; o R
which implies
“T; o'T; = (Ry oR' +RoT; oR")o(RoR), +eRoFf§oeR')
:ERM,' oeRtMi +eRoﬂfi oeR;l- +eRu,- oﬂfgoéRf+el(oﬂfioﬂf§oéRf.

In particular, we conclude

trace ("T; o “T’) = trace (R, o R',) + 2trace (R o T; o R,

ul

) + trace (T; o T'),

or using our notion of a matrix norm
| T |2 IeRu’ |2+2(£ROTH€RL¢’> + IT |2 (41)

Furthermore, taking |R o T, | = |T,< | into account, we arrive at the estimate

T > (ITi| — | Ry |)2 a.e.on B forall £ € N.
Now because the i are bounded in LZ(B, R and since ‘R is minimizing for .%,
the sequences ‘T; are also bounded in L?(B, R""). Thus, the R, form bounded
sequences in L*(B,R™") in accordance with the last inequality. By Hilbert’s

selection theorem and Rellich’s embedding theorem we find a subsequence, again
denoted by ‘R, which converges as follows:

R, — R, weaklyin L>(B,R™™"), ‘R — R strongly in L>(B, SO(n))

with some R € H'2(B, SO(n)). In particular, going if necessary to a subsequence,
we have R — R a.e. on B as well as

hm //VR oT; —RoT;>dudv =0

according to the dominated convergence theorem. Hence we compute in the limit

"Note that the proof of this identity remains true for R € H>!(B, SO(n)) N H?(B, SO(n)).
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{—00

élim (//(eROFTi—Roﬂfi,eRui)deV'i‘//(ROTj,(RLli>deV)
—00

B B
//(ROT{,Rui)deV.
B

In addition, we obtain

lim // |€Rui|2dudv2// IR, |*dudv
{—00
B B

due to the semicontinuity of the L?-norm w.r.t. weak convergence. Putting the last
two relations into the identity

lim // (RoT:,R,)dudv
B

I'T; > = |Ry > + Z(EROi,éRM + ITi|2

we finally infer

lim .Z(R) = lim // (I'T1 | + |'T2)?) dudv
{—00 {—00
B

[/ (IRu* + |Rv|2)dudv+2[/ (RoTi,R,)

+(Ro Ty, R,)) dudv + // (IT1|? + [T2|?) dudv

%

B
= // (IT1)* + |T2)?) dudv
B
— Z(R)

where T; = (Tlf )o.9=1,...n denote the torsion coefficients of the ONF 9 with entries

N, := Z R'Ny.
=1

Consequently, t € H'2(B) N L*°(B) minimizes .7 [MN] and, in particular, it
represents a weak normal Coulomb frame. O



100 4 Normal Coulomb Frames in R?12

489 H lzo’cl-Regularity of Weak Normal Coulomb Frames

To prove higher regularity of normal Coulomb frames we make essential use of
techniques from harmonic analysis. Consult eventually our foregoing brief overview
from Sects. 4.8.1 to 4.8.7 and the references we gave there. Recall that we always
use conformal parameters (u,v) € B.

Proposition 4.11. A weak normal Coulomb frame Nt € H'>(B) N L>®(B) belongs
to the regularity class H 12061 (B).

Proof. 1. The torsion coefficients T(fi of the normal Coulomb frame 1 are weak
solutions of the Euler—Lagrange equations

div(T),.T),) =0 inB

for all 0,9 = 1,...,n. Hence, by a weak version of Poincare’s lemma (see
e.g. [13], Lemma 3), there exist integral functions °?) € H'?(B, R) satisfying

97" =-1%, 9,7V =T) inB

in weak sense.
Thus, the weak form of the Euler—Lagrange equations can be rewritten as

0 —
O = // {(puav.[((fﬁ) _(pvau.[(”ﬁ)} dudv = /T(aﬁ)a_(f ds’ (p c COO(B,R),
B B

where %—‘f denotes the tangential derivative of ¢ along dB. Note that 7(*?) |y
means the L2-trace of 7(°”) on the boundary curve 0B (see e.g. the textbook Alt
[2], Chap. 6, Appendix A6.6).® Consequently, the lemma of DuBois—Reymond’
yields 7®”) = const on 3B, and by an ordinary translation we arrive at the
boundary conditions

@ =0 ondB.

2. Thus, the integral functions t(®”) are weak solutions of the second-order system

AT = —9,TY, + 0,T), = =Ny Nyu + Nou+ Ny, in B

8Let I < p < 00. Then there is a uniquely determined map S: H'"»(B) — L?(3B) such that
I1S@)ILr @) < Cll$pll 12(5). Additionally, it holds S(¢) = ¢|BB if¢p € H'2(B,R)NC°(B,R).
The map S is called the trace mapping.

°Tts one-dimensional version is the following: Let f € L'([a,b],R) and fab f(x)e'(x)dx =0
for all ¢ € C°°([a. b],R). Then f = const almost everywhere.
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where the second identity follows by direct differentiation. By a result of
Coifman et al. [26],'° the right-hand side of this div-curl type equation belongs
to the Hardy space 7! (B) and, hence, the (") belong to H:'(B,R) by
Fefferman and Stein [45].!' Consequently we find

7). € H)'(B,R) N L*(B,R).

loc

We next employ the Weingarten equations

2 n
Now == Loy g  Xp + Y T} Ny
Jjk=1 =1

in a weak form. For the coefficients of the second fundamental form we have
Loij = Ny - X,i,; which leads us to L,;; € H'?(B,R) taking X,,; €
L>®(B,R""2) and M € H'2(B) N L>°(B) into account. Hence we arrive at
(B.R"*?) and NMe H.(B)

loc

N, € HY!

loc

for our weak normal Coulomb frame.
Notice that T, € H)'(B,R) N L*(B,R) and N; € H'(B,R"*?) n
L®(B,R"™?)imply Y5 _, T2, Ny € H;! (B, R"*?) by a careful adaption of the
classical product rule in Sobolev spaces which is explained in the lemma below.
Modulo this property the statement is proved. O
So let us come to the following lemma to complete the proof.
Lemma 4.2. [t holds

> TY.Ny e H'(B.R"P?).
=1

Proof. It holds T);Ny € L*(B,R"*?) since T}, € L*(B,R) and Ny €
L>®(B,R"*2). We show that T(fi Ny has a weak derivative, i.e. we prove that

7.9, Ny + Nyd,; T); € L'(B,R"*?)

is the weak derivative of T(fj Ny . In other words

OLet ¢ € H'2(R?,R). Then f := det(Vg) € ' (R?), where || f ||l se1®2) < Cllgpllmrege ;
see Sect. 4.8.5 above.

et ¢ € L'(R? R) be a solution of —A¢p = f € #'(R?). Then all second derivatives of ¢
belong to L!(R?, R), and it holds ||¢ || 1@my < Cll f 1@ forall a, p = 1,2.
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/ (T2:9,i Ny + N3, T Yo dudv = —/ (T}, Np)p,s dudv
B B
for all ¢ € C;° (B, R). For such a test function ¢ define
v =T)¢ € Hy'(B.R) N L*(B.R).
We want to verify
/ Ny ¥ dudv = —/ Ny,i dudv.
B B
For the proof we approximate v with smooth functions ¥* € C;°(B,R) in the

sense of Friedrichs. Then ¥* — v in H"!(B,R) N L?(B,R), and ¥ = 0 outside
some compact set K CC B. We now estimate as follows

[ / (Npw ¥ + NoWiur) dudv

= /(Nﬂ’ujl//€+N19w;,)dudv+ / Ny (Y —v®) dudv

B B

+ {/ No(Vy — Vi) dudy

IA

INs.will2pyl¥ — ¥l 28y + INs Loy 1V — Vi L1 (s

taking
/ Ny iy dudv = —/ Nyy’; dudy

B B
into account. Because || — ¥°|| 23y — O and ||¥°; — ¥ llL1(s) — O fore — 0
we arrive at the identity stated above. Now we use the product rule and calculate

/ (T(giNﬂ,uf + Ny, T{f,-)fp dudv

B
= // Ny ¥ dudv+// Nyd,; T2 ¢ dudv
B B
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//(Tmfp)u,Nﬁdudv—i-/ NﬁBuijgodudv

= // 0T, legodudv—// Tﬁi<pu,~Ndudv+/ NﬁaujT{f,-godudv
B B

= —/ (T(file)prj dudv.
B

This proves the lemma. O

4.9 Classical Regularity of Normal Coulomb Frames

Our main result of this chapter is the proof of classical regularity of normal Coulomb
frames. An essential tool on our road to regularity are again the Weingarten
equations from the first chapter.

We present the next proof without giving detailed references.

Theorem 4.3. For a conformally parametrized immersion X € C*F*(B,R"t?)
withk > 4 and a € (0, 1) there exists a normal Coulomb frame

N e Ck1(B)

minimizing 7 [N].

Proof. 1. We fix some ONF NeCckle (B) and construct a weak normal Coulomb
frame 9t € W'2(B) N L°°(B) We then know 91 € H2 '(B). Defining the

loc
orthogonal mapping R = (R )od=1...n DY R’9 Ny - Ny we thus find

n
Ny =) RINy and Re H}\(B.SO@m) N H'*(B.SO®)).

loc
In particular, we can assign a curvature tensor (in matrix form)

S]z = (S(ZIZ)gJ?:] n € Llloc(B’Rnxn)

to 91 by formula
So =0T =0T, + Z(T(;olTa?2 T, ).

Moreover, from Sect. 1.6.5 we infer Sy, € L (B, R"*").
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2. Introduce the matrix T = (¢(*")) , € H'2(B,R™") by

o, 0=1,...,

9t =12, 8,1 =T} inB,
1@ =0 ondB.

Then the definition of the normal curvature tensor gives us the non-linear system

n
At) = — Z(Bur(”‘“)f)vr(“”?) - 9,79,z + 87,

w=1

L% (B,R™"), a part of Wente’s inequality yields v € C°(B,R™"), see e.g.
Brezis and Coron [15]; compare also Riviere [98] and the corresponding bound-
ary regularity theorem in Miiller and Schikorra [91] for more general results. By
appropriate reflection of t and S, (the reflected quantities are again denoted by t
and S},) we obtain a weak solution 7 € W12(B 14, RN CO(B) g, RP") of

At = f(w, V1) inBiig:={weR?: |w<1+d}
with some d > 0 and a right-hand side f satisfying

| fw, p)| <a|p?+b forallp eR*™ | we Biya.
with some reals a,b > 0. Now, applying Tomi’s regularity result from [115]
for weak solutions of this non-linear system possessing small variation locally in
Bi4q, we find T € C'V(B,R"™") for any v € (0, 1) (notice that Tomi’s result
applies for such systems with b = 0, but his proof can easily be adapted to our
inhomogeneous case b > 0).

3. From the first-order system for t©?) we infer T, € C%(B,R""). Thus, the
Weingarten equations for N, , yield

N e WH(B)
on account of 9 € L*°(B), and we obtain from Sobolev’s embedding theorem
N e C*(B).
Inserting this again into the Weingarten equations, we find

N e CH(B).
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Now the right-hand side of the equation for At®”) belongs to C*(B,R), and
potential theoretic estimates ensure 7 € C 2""_(B, R™*™). Involving again our first-
order system for the 7°?) gives T; € C'%(B, R"*"), which proves

N e C**(B)

using the Weingarten equations once more. Finally, for k > 4, we can bootstrap
by concluding R € C?**(B,R™") and S;; € C'¥(B,R™") from the
transformation rule for Si, and repeating the arguments above.

The proof is complete. O
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