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permission of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media Inc., New
York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they
are not identified as such, is not to be taken as an expression of opinion as to whether or not they are
subject to proprietary rights.

Printed in the United States of America. (TXQ/MP)

9 8 7 6 5 4 3 2 1 SPIN 11371755

www.birkhauser.com



A tribute to Tiberiu Popoviciu



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Global Smoothness Preservation, Univariate Case . . . . . . . . . . . . . . . . . 1
1.1 Negative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Global Smoothness Preservation by Some Lagrange, Hermite–Fejér,

and Shepard-Type Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Algebraic Projection Operators and the Global Smoothness

Preservation Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Global Smoothness Preservation by Jackson Trigonometric

Interpolation Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.5 Trigonometric Projection Operators and the Global Smoothness

Preservation Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.6 Bibliographical Remarks and Open Problems . . . . . . . . . . . . . . . . . . . 37

2 Partial Shape Preservation, Univariate Case . . . . . . . . . . . . . . . . . . . . . . 43
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Hermite–Fejér and Grünwald-Type Polynomials . . . . . . . . . . . . . . . . . 45
2.3 Shepard Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.4 Bibliographical Remarks and Open Problems . . . . . . . . . . . . . . . . . . . 69

3 Global Smoothness Preservation, Bivariate Case . . . . . . . . . . . . . . . . . . . 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Bivariate Hermite–Fejér Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.3 Bivariate Shepard Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.4 Bivariate Lagrange Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.5 Bibliographical Remarks and Open Problems . . . . . . . . . . . . . . . . . . . 87

4 Partial Shape Preservation, Bivariate Case . . . . . . . . . . . . . . . . . . . . . . . . 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



viii Contents

4.2 Bivariate Hermite–Fejér Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.3 Bivariate Shepard Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.4 Bibliographical Remarks and Open Problems . . . . . . . . . . . . . . . . . . . 128

A Appendix: Graphs of Shepard Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Preface

This monograph is devoted to two interesting properties in the interpolation of func-
tions: the first deals with the Global Smoothness Preservation Property (GSPP) for the
well-known classical interpolation operators of Lagrange, Grünwald, Hermite–Fejér
and Shepard type, while the second treats the Shape Preservation Property (SPP) for
the same interpolation operators. The examination of the two properties involves both
the univariate and bivariate cases. An exception is the GSPP of complex Hermite–
Fejér interpolation polynomials based on the roots of unity.

An introduction to GSPP of some classical interpolation operators in the univariate
case was given in a short chapter (chapter 6) of a monograph by Anastassiou–Gal [6].
In this work the univariate case is completed with many new results; an entirely new
chapter is devoted to the bivariate case.

The study of SPP classical interpolation operators in both the univariate and
bivariate cases appears here for the first time in book form.

This monograph consists of the author’s research over the past five years with new
concepts and results that have not been previously published. Many open problems
suggested throughout may be of interest to different researchers. In general, the book
may be used in various areas of mathematics — interpolation of functions, numeri-
cal analysis, approximation theory — as well as computer-aided geometric design,
data fitting, fluid mechanics and engineering. Additionally, the work may be used as
supplementary material in graduate courses as well.

Acknowledgments. The basic methods of this book are mainly based on the joint
papers I wrote with Professor Jozsef Szabados from Alfréd Rényi Institute of Mathe-
matics of the Hungarian Academy of Sciences in Budapest, whom I thank very much
for his great contribution.

Also, I would like to thank Professor George Anastassiou from the Department
of Mathematical Sciences, University of Memphis, TN, U.S.A., for our collaboration
on the topic and for his support and Professor Radu Trimbitas from “Babeş-Bolyai”
University, Faculty of Mathematics and Informatics, Cluj-Napoca, Romania, who, by
a very generous help made the graphs of the surfaces in Appendix.
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Finally, I would like to thank Ann Kostant, Executive Editor at Birkhäuser for
support, and my typist Georgeta Bonda of “Babeş-Bolyai” University, Cluj-Napoca,
Romania, for doing a great job so punctually.

Oradea, September 2004 Sorin G. Gal



Introduction

The classical interpolation operators of Lagrange, Grünwald, Hermite–Fejér and
Shepard on various systems of nodes, were introduced in mathematics mainly for
the purpose of approximation of functions. As a consequence, most papers on these
operators deal with their convergence properties.

However, in recent years it has been pointed out that many of these classical inter-
polation operators have other interesting properties too, like the (partial) preservation
of the global smoothness and shape of the interpolated functions.

Systematic results in these directions have been obtained by the author of this
monograph in a series of papers jointly written with other researchers.

The partial global smoothness preservation property can be described as follows.
We say that the sequence of interpolation operators Ln : C[a, b] → C[a, b], n ∈ N,
(in the sense that each Ln(f ) coincides with f on a system of given nodes) partially
preserves the global smoothness of f , if for f ∈ LipMα, 0 < α ≤ 1, there exists
0 < β < α independent of f and n, such that

ω1(Ln(f ); h) ≤ Chβ, ∀h ∈ [0, 1), n ∈ N,

(i.e., Ln(f ) ∈ LipCβ, ∀n ∈ N) where C > 0 is independent of n but may depend
on f . Here ω1(f ; δ) = sup{|f (x + h) − f (x)|; 0 ≤ h ≤ δ, x, x + h ∈ [a, b]} is
the uniform modulus of continuity, and of course it can be replaced by other kinds of
moduli of continuity too.

It seems that in general (excepting, for example, some particular Shepard op-
erators), the interpolation conditions do not permit a complete global smoothness
preservation property, i.e., α = β, as, for example, is the case of Bernstein-type
approximation operators.

An introduction to the global smoothness preservation property (GSPP) in the
univariate case was made in the recent book by Anastassiou–Gal [6].

In the present monograph, for the univariate case many new results are presented.
For example, if τ(f ; h) ≤ Mhα, ∀h ∈ [0, 1), then there exists 0 < β ≤ α such
that τ(Ln(f ); h)L1 ≤ Chβ, ∀n ∈ N, h ∈ [0, 1), where τ(f ; h)L1 is the averaged
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L1-modulus of continuity and Ln(f ) is a certain interpolation operator. Also, new
results on univariate Shepard operators on infinite intervals and on univariate Shepard–
Lagrange operators on [0, 1] are included.

In addition, bivariate cases of these classical operators with respect to the following
three kinds of moduli of continuity are examined:

• the bivariate uniform modulus of continuity given by

ω1(f ; δ, η) = sup{|f (x +h, y +k)−f (x, y)|; 0 ≤ h ≤ δ, 0 ≤ k ≤ η, (x, y),

(x + h, y + k) ∈ I },

• the Bögel modulus of continuity given by

ωB(f ; δ, η) = sup{|�h,kf (x, y)|; 0 ≤ h ≤ δ, 0 ≤ k ≤ η, (x, y),

(x + h, y + k) ∈ I },
where �h,kf (x, y) = f (x + h, y + k) − f (x + h, y) − f (x, y + k) + f (x, y),

• the bivariate Euclidean modulus of continuity given by

ωE(f ; ρ) = sup{|f (x + h, y + k) − f (x, y)|; 0 ≤ h, 0 ≤ k, (h2 + k2)
1
2 ≤ ρ,

(x, y), (x + h, y + k) ∈ I },
where f : I → R with I a bidimensional interval.

The case of complex Hermite–Fejér interpolation polynomials on the roots of
unity is studied as well.

On the other hand, the partial shape preservation property can be described as
follows. Let L : C[a, b] → C[a, b] be an interpolation operator. We say that L

partially preserves the shape of f , if for any monotone (convex) function f (x) on
[a, b], there exist some points ξi ∈ [a, b] (which may be independent of f ) such that
L(f )(x) is of the same monotonicity (convexity, respectively) in some neighborhoods
V (ξi) of ξi .

The first results in this direction were obtained in 1960–1962 by T. Popoviciu, for
the monotonicity case and Hermite–Fejér polynomials on some special Jacobi nodes.
His results were of the qualitative type, i.e., only the existence of these neighborhoods
V (ξi) was proved, without any estimate of their lengths.

In this monograph, quantitative results of T. Popoviciu’s results and new qualita-
tive and quantitative results for other classical interpolation operators are presented.

Bivariate variants of these operators, with respect to various natural concepts of
bivariate monotonicity and convexity, also are studied.

The results in this monograph, especially those in the bivariate case, have potential
applications to data fitting, fluid dynamics, computer aided geometric design, curves,
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and surfaces. At the end of the book we present an Appendix with 20 graphs of various
bivariate Shepard-type operators attached to some particular functions.

Sorin G. Gal
Department of Mathematics
University of Oradea
Romania
September 2004



1

Global Smoothness Preservation, Univariate Case

In this chapter we present results concerning the global smoothness preservation by
some classical interpolation operators.

1.1 Negative Results

Kratz–Stadtmüller [66] prove the property of global smoothness preservation for
discrete sequences {Ln(f )}n of the form

Ln(f )(x) =
n∑

k=1

f (xk,n)pk,n(x), x ∈ [−1, 1], f ∈ C[−1, 1], (1.1)

satisfying the conditions

n∑
k=1

pk,n(x) ≡ sn, which is independent of x ∈ [−1, 1], (1.2)

n∑
k=1

|pk,n(x)| ≤ C1, x ∈ [−1, 1], (1.3)

pk,n ∈ C1[−1, 1] and
n∑

k=1

|(x − xk,n)p
′
k,n(x)| ≤ C2, x ∈ [−1, 1], (1.4)

for some constants C1, C2.
Since the Hermite–Fejér and the Lagrange polynomials are of type (1.1), it is

natural to ask if for these polynomials (1.2)–(1.4) hold. Unfortunately, this is not so
for Lagrange interpolation because of the following:

Theorem 1.1.1. Let M = {Mn}n∈N (Mn = {xk,n}nk=1) be an arbitrary trian-
gular matrix of interpolation nodes in [−1, 1] (i.e., −1 ≤ xn,n < xn−1,n < · · · <
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x1,n ≤ 1, n ∈ N) and lk,n(x) the fundamental polynomials of Lagrange interpolation
on Mn. Then for all n ≥ 2 we have

1 ≤ lim inf
n→∞

infMn
max|x|≤1

n∑
k=1

|x − xk,n| · |l′k,n(x)|

n

≤ lim sup
n→∞

infMn
max|x|≤1

n∑
k=1

|x − xk,n| · |l′k,n(x)|

n
≤ 2.

Proof. Let us denote xk,n = xk , k = 1, . . . , n and

An(x; Mn) =
n∑

k=1

|x − xk,n| · |l′k,n(x)|,

where

lk,n(x) = ωn(x)

ω′
n(x)(x − xk)

, k = 1, . . . , n, ωn(x) =
n∏

k=1

(x − xk).

Consider an index j ∈ {1, 2, . . . , n} such that

|ω′
n(xj )| = max

1≤k≤n
|ω′

n(xk)|.

Then we get

An(xj ; Mn) = |ω′
n(xj )|

n∑
k=1
k 
=j

1

|ω′
n(xk)| ≥ n − 1,

which proves the first inequality in the statement of theorem.
To prove the second inequality, let us choose

ωn(x) = 1

2
[Tn−2(x) − Tn(x)] = sin t sin(n − 1)t, x = cos t,

where Tn(x) = cos[n arccos x] is the Chebyshev polynomials of degree n. Then
xk = cos tk , tk = (k−1)

n−1 π , k = 1, . . . , n, and an easy calculation yields

|ω′
n(xk)| =

{
n − 1, if 2 ≤ k ≤ n − 2
2n − 1, if k = 1, n,

and

max|x|≤1
|ωn(x)| ≤ 1, max|x|≤1

|ω′
n(x)| ≤ 2n − 2.
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Thus, denoting an index j for which |x − xj | = min1≤k≤n |x − xk|, we obtain

An(x; Mn) ≤ |ω′
n(x)|

n∑
k=1

1

|ω′
n(xk)| +

n∑
k=1

|ωn(x)|
|ω′

n(xk)| · |x − xk|

≤ (2n − 2)

(
n − 2

n − 1
+ 2

2n − 2

)
+ 2 +

n∑
k=1
k 
=j

sin t

(n − 1)| cos t − cos tk|

≤ 2n + 1

n − 1

n∑
k=1
k 
=j

(
1

sin t−tk
2

+ 1

sin t+tk
2

)

≤ 2n + O

⎛
⎜⎝ n∑

k=1
k 
=j

1

|j − k|

⎞
⎟⎠ = 2n + O(log n),

which completes the proof. �

Remarks. (1) If {Ln(f )}n are the classical Lagrange polynomials of any system
of nodes, then it is known that (1.3) does not hold. As a conclusion, it seems that
for classical interpolation polynomials all three conditions (1.2) to (1.4) cannot be
verified.

(2) The shortcoming in Remark 1 above can be removed as follows. Let Ln(f )(x)

be of form (1.1) with pk,n(x) satisfying (1.4). Then f ∈ LipM(1; [−1, 1]) implies
Ln(f ) ∈ LipC2M

(1; [−1, 1]), for all n ∈ N. Indeed, we have

|Ln(f )(x) − Ln(f )(y)| =
∣∣∣∣∣(x − y)

n∑
k=1

f (xk,n)p
′
k,n(ξx,y,n)

∣∣∣∣∣
= |x − y|

∣∣∣∣∣
n∑

k=1

[f (xk,n) − f (ξx,y,n)]p′
k,n(ξx,y,n)

∣∣∣∣∣
≤ |x − y|M

n∑
k=1

|xk,n − ξx,y,n| · |p′
k,n(ξx,y,n)| ≤ C2M|x − y|.

(3) If {Ln(f )}n are the Hermite–Fejér polynomials based on the Chebyshev nodes
of first kind, then obviously (1.2) and (1.3) hold with sn ≡ 1 and C1 = 1.

But (1.4) cannot hold since then by Kratz–Stadtmüller [66] would follow that
{Ln(f )}n have the property of global smoothness preservation and by Anastassiou–
Cottin–Gonska [5] this does not hold.

(4) Let xk,n = −1 + 2(k−1)
n−1 , k = 1, . . . , n, be equidistant nodes in [−1, 1] and

H2n−1(f )(x) the Hermite–Fejér interpolation polynomials on these nodes. Berman
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[20] proved that for f (x) = x, x ∈ [−1, 1], the sequence {H2n−1(f )(x)}n is unbound-
edly divergent for any 0 < |x| < 1. Hence this sequence has no the property of partial
preservation of global smoothness. Indeed, if f ∈ Lip1(1; [−1, 1]) and if we suppose
that there exist 0 < α < 1 and M > 0 such that H2n−1(f ) ∈ LipM(α; [−1, 1]) for
all n ∈ N, then

|H2n−1(f )(x) − H2n−1(f )(y)| ≤ M|x − y|α, ∀ x, y ∈ [−1, 1], n ∈ N.

Taking x = −1 and 0 < |y| < 1, letting n → ∞ in the above inequality, we get
a contradiction.

1.2 Global Smoothness Preservation by Some Lagrange,
Hermite–Fejér, and Shepard-Type Operators

Let xk = cos 2k−1
2n

π , k = 1, . . . , n, be the roots of the Chebyshev polynomial Tn(x),
and the Hermite–Fejér polynomial of an f ∈ C[−1, 1] based on these roots,

Hn(f )(x) =
n∑

k=1

f (xk)(1 − xxk)
T 2

n (x)

n2(x − xk)2 .

If we consider the Jackson interpolation trigonometric polynomials Jn(f )(x) (see
Section 1.4), then for f ∈ C[−1, 1], denoting F(t) = f (cos t), it is known that (see,
e.g., Szabados [95], p. 406)

Hn(f )(x) = J2n−1(F )(t), t = arccos x.

Now, if 0 < α < 1 and f ∈ LipM(α; [−1, 1]), then J2n−1(F ) ∈ LipCα (see
Theorem 1.4.2), which can be written as (x = cos u, y = cos v)

|Hn(f )(x) − Hn(f )(y)| = |J2n−1(F )(u) − J2n−1(F )(v)| ≤ C|u − v|α

= C| arccos x − arccos y|α ≤ Cπ√
2

|x − y|α/2, ∀ x, y ∈ [−1, 1],

since arccos x ∈ Lipπ/
√

2(1/2; [−1, 1]), (see, e.g., Cheney [22], Problem 5, p. 88),
which means that Hn(f ) ∈ Lip Cπ√

2
(α/2; [−1, 1]), for all n ∈ N.

If α = 1, in the same way we get

ω1(Hn(f ); h) ≤ C

[
h log

1

h

]1/2

, n ∈ N, h ∈ (0, 1).

As a conclusion, we can say that {Hn(f )}n has the property of partial preservation
of global smoothness of f .

However, by a direct method we will improve the above considerations about
{Hn(f )}n.
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Theorem 1.2.1. For any f ∈ C[−1, 1], h > 0 and n ∈ N we have

ω1(Hn(f ); h)

= min

{
O

(
hn

n∑
k=1

ω1

(
f ; 1

k2

))
, O

(
1

n

n∑
k=1

ω1

(
f ; 1

k

)
+ ω1(f ; h)

)}
,

where the constants in “O” are independent of f , n and h.

Proof. First we obtain an upper estimate for |H ′
n(f )(x)|. Let x ∈ [−1, 1] be fixed,

the index j defined by |x − xj | = min{|x − xj |; 1 ≤ k ≤ n} and denote

Ak(x) = (1 − xxk)
T 2

n (x)

n2(x − xk)2 .

We have

A′
k(x) = −xk

T 2
n (x)

(x − xk)2 + (1 − xxk)
2Tn(x)T ′

n(x)

(x − xk)2 − 2(1 − xxk)T
2
n (x)

(x − xk)3 ,

k = 1, . . . , n, which implies (by 1 − xxk = 1 − x2 + x(x − xk))

|A′
k(x)| ≤ 1

(x − xk)2 + 2(1 − x2)|T ′
n(x)|

(x − xk)2 + 2|T ′
n(x)|

|x − xk|

+2(1 − x2)

|x − xk|3 + 2

(x − xk)2 , k = 1, . . . , n.

For simplicity, all the constants (independent of f , n, and h) which appear will
be denoted by C. Since

H ′
n(f )(x) =

n∑
k=1

f (xk)A
′
k(x) =

n∑
k=1

[f (xk) − f (x)]A′
k(x),

we obtain

|H ′
n(f )(x)| ≤ C

n2

n∑
k=1
k 
=j

ω1(f ; |x − xk|)
[

3

(x − xk)2 + 2(1 − x2)|T ′
n(x)|

(x − xk)2

+2(1 − x2)

|x − xk|3 + 2|T ′
n(x)|

|x − xk|
]

+ Cω1(f ; |x − xj |)|A′
j (x)|. (1.5)

The following known relations (see, e.g., Szabados–Vértesi [100], p. 282) will be
frequently used:

|x − xj | ≤ Cj

n2 , n
√

1 − x2 ∼ j, |x − xk| ∼ |j2 − k2|
n2 , k 
= j. (1.6)

Now by (1.6) and by the combined Bernstein–Markov inequality, we get
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|A′
j (x)| ≤ n2‖Aj‖

n
√

1 − x2 + 1
≤ Cn2

j
,

and

ω1(f ; |x − xj |)|A′
j (x)| ≤ Cω1

(
f ; j

n2

)
n2

j
≤ Cω1

(
f ; 1

n2

)
n2.

Also, by (1.6) we obtain (using also the inequality ω1(f ; T )/T ≤ 2ω1(f ; t)/t ,
for t ≤ T ) ∑

k 
=j

ω1(f ; |x − xk|)
(x − xk)2 ≤ n2

j

∑
k 
=j

ω1(f ; |x − xk|)
|x − xk|

≤ Cn4

j

∑
k 
=j

ω1

(
f ; |j2−k2|

n2

)
|j2 − k2| ≤ Cn4

j

n∑
k=1

1

k2 ω1

(
f ; k2

n2

)
,

∑
k 
=j

ω1(f ; |x − xk|)(1 − x2)|T ′
n(x)|

(x − xk)2 ≤
∑
k 
=j

ω1(f ; |x − xk|)n
√

1 − x2

(x − xk)2

≤ Cj
∑
k 
=j

ω1(f ; |x − xk|)
(x − xk)2 ≤ Cn4

n∑
k=1

1

k2 ω1

(
f ; k2

n2

)
,

∑
k 
=j

ω1(f ; |x − xk|)(1 − x2)

|x − xk|3 ≤ C
∑
k 
=j

ω1

(
f ; |j2−k2|

n2

)
j2

n2

|j2−k2|3
n6

≤ Cn6ω1

(
f ; 1

n2

)∑
k 
=j

1

|j2 − k2| · j2

n2 ≤ Cn6

j2 ω1

(
f ; 1

n2

)
j2

n2

≤ Cn4ω1

(
f ; 1

n2

)
,

∑
k 
=j

ω1(f ; |x − xk|)|T ′
n(x)|

|x − xk| ≤ Cn2
∑
k 
=j

ω1(f ; |x − xk|)
|x − xk|

≤ Cn4
n∑

k=1

1

k2 ω1

(
f ; k2

n2

)
.

Collecting now all these estimates, by (1.5) we get

|H ′
n(f )(x)| ≤ Cn2

n∑
k=1

1

k2 ω1

(
f ; k2

n2

)
.

Since
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n2
n∑

k=1

1

k2 ω1

(
f ; k2

n2

)
∼ n

∫ 1

1/n

ω1(f ; t2)

t2 dt

= n

∫ n

1
ω1

(
f ; 1

u2

)
du ∼ n

n∑
k=1

ω1

(
f ; 1

k2

)

(we have used the equivalence between the Riemann integral sums and the integral
itself, and made the substitution t = 1/u), the above estimate becomes

|H ′
n(f )(x)| ≤ Cn

n∑
k=1

ω1

(
f ; 1

k2

)
. (1.7)

On the other hand, for |x−y| ≤ h and by, e.g., Szabados–Vértesi [100] , Theorem
5.1, p. 168, we get

|Hn(f )(x) − Hn(f )(y)| ≤ |Hn(f )(x) − f (x)| + |f (x) − f (y)| + |f (y)

−Hn(f )(y)| ≤ 2‖Hn(f ) − f ‖ + ω1(f ; h) ≤ C

n∑
k=1

1

k2 ω1

(
f ; k

n

)
+ ω1(f ; h).

But similarly to the above considerations,

n∑
k=1

1

k2 ω1

(
f ; k

n

)
∼ 1

n

∫ 1

1/n

ω1(f ; t)

t2 dt = 1

n

∫ n

1
ω1

(
f ; 1

u

)
du

∼ 1

n

n∑
k=1

ω1

(
f ; 1

k

)
,

and therefore we get

ω1(Hn(f ); h) = O
[

1

n

n∑
k=1

ω1

(
f ; 1

k

)]
+ ω1(f ; h). (1.8)

Now, on the other hand, using (1.7), we obtain for |x − y| ≤ h,

|Hn(f )(x) − Hn(f )(y)| ≤ |H ′
n(f )(ξ)|h ≤ Cnh

n∑
k=1

ω1

(
f ; 1

k2

)
,

i.e.,

ω1(Hn(f ); h) = O
[
hn

n∑
k=1

ω1

(
f ; 1

k2

)]
,

which together with (1.8) proves the theorem. �

Corollary 1.2.1. If f ∈ LipM(α; [−1, 1]), 0 < α ≤ 1, then for all n ∈ N and
0 < h < 1 we have
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ω1(Hn(f ); h) =

⎧⎪⎨
⎪⎩
O

(
h

α
max(2−α,1+α)

)
, if 0 < α < 1/2 or 1/2 < α < 1,

O
([

h log 1
h

] 2α+1
6

)
, if α = 1/2 or 1.

Proof. The optimal choice in Theorem 1.2.1 is when h = vn, where

vn =

n∑
k=1

ω1

(
f ; 1

k

)

n2
n∑

k=1

ω1

(
f ; 1

k2

) .

When h < vn, the minimum in Theorem 1.2.1 is the first term, and when h > vn,
it is the second term. By simple calculations we have

vn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O(nα−2), if 0 < α < 1/2,

O
(

1
n3/2 log n

)
, if α = 1/2,

O(n−1−α), if 1/2 < α < 1,

O
(

log n

n2

)
, if α = 1.

Hence, by using Theorem 1.2.1 we arrive at the statement of the corollary. �

Remarks. (1) Let 0 < α < 1. The obvious inequalities

α

2
<

α

max(2 − α, 1 + α)
, h1/4 >

[
h log

1

h

]1/3

mean that the preservation property given by Corollary 1.2.1 is better than that given
for Hn(f )(x) at the beginning of this section.

(2) It is an open question if the estimates of ω1(Hn(f ); h) in Theorem 1.2.1 and
Corollary 1.2.1 are the best possible. However, if we choose, for example, f0(x) =
x ∈ Lip1(1; [−1, 1]), then we can prove that ω1(Hn(f0); h) ∼ √

h. Indeed, by

Hn(f0)(x) = x − Tn(x)Tn−1(x)

n
= x − T2n−1(x) + T1(x)

2n

(see, e.g., Anastassiou–Cottin–Gonska [5]) we get

|H ′
n(f0)(x)| =

∣∣∣∣1 − T ′
2n−1(x) + 1

2n

∣∣∣∣ ≥ C√
1 − x2

≥ Cn,

for all x ∈
[

1+x1
2 , 1

]
and

ω1

(
Hn(f0); 1 − x1

2

)
≥

∣∣∣∣Hn(f0)(1) − Hn(f )

(
1 + x1

2

)∣∣∣∣
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= |H ′
n(f0)(ξ)| · 1 − x1

2
≥ Cn(1 − x1) = C

√
1 − x1

2
,

as claimed. Now we will prove that in fact Hn(f0) ∈ LipM(1/2; [−1, 1]) for all
n ∈ N. Evidently, it suffices to prove that T2n−1(x)

2n
∈ LipM(1/2; [−1, 1]), for all

n ∈ N. But by Cheney [22], Problem 5, p. 88

|T2n−1(x) − T2n−1(y)|
2n

= cos[(2n − 1) arccos x] − cos[(2n − 1) arccos y]|
2n

≤ (2n − 1)| sin ξ | · | arccos x − arccos y|
2n

≤ M| arccos x − arccos y|

≤ Mπ√
2

|x − y|1/2,

which was to be proved.

(3) It is well known (see, e.g., Szabados–Vértesi [101], relation (3.2)) that the
mean convergence of Hn(f )(x) to f (x) is better than the uniform convergence, that
is, we have

||f − Hn(f )||p,w ≤ Cpω1

(
f ; 1

n

)
, ∀n ∈ N, p > 0,

where ω1
(
f ; 1

n

)
is the uniform modulus of continuity, w(x) = 1√

1−x2 and ||f ||p,w =
(
∫ 1
−1 |f (x)|pdx)

1
p .

This estimate suggests that by using a suitable chosen weighted L1
w-modulus of

continuity, Hn(f )(x) may have a better global smoothness preservation property. In
this sense, let us define

ω1(f ; h)1,w = sup{
∫ 1−t

−1+t

w(x)|f (x + t) − f (x − t)|dx; 0 ≤ t ≤ h},

0 < h < 1.
We present:

Theorem 1.2.2. Let Hn(f ) be the Hermite–Fejér polynomial in Corollary 1.2.1.
If f ∈ LipM(α; [−1, 1]), 0 < α ≤ 1, then for all n ∈ N and 0 < h < 1, it follows

ω1(Hn(f ); h)1,w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

O
[
h

α
2−α

]
, if 0 < α < 1

2 ,

O
[
(h log 1

h
)1/3

]
, if α = 1

2

O
[
h

α
1+α

]
, if 1

2 < α ≤ 1.

Proof. We have

w(x)|Hn(f )(x + t) − Hn(f )(x − t)|
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≤ w(x)

w(x + t)
w(x + t)|Hn(f )(x + t) − f (x + t)| + w(x)|f (x + t) − f (x − t)|

+ w(x)

w(x − t)
w(x − t)|f (x − t) − Hn(f )(x − t)|.

Integrating the inequality from −1+ t to 1− t and applying to the first and third term
the Hölder’s inequality, we get

∫ 1−t

−1+t

w(x)|Hn(f )(x + t) − Hn(f )(x − t)|dx ≤
(∫ 1−t

−1+t

[w2(x)/w(x + t)]dx

)1/2

(∫ 1−t

−1+t

w(x + t)|Hn(f )(x + t) − f (x + t)|2dx

)1/2

+
∫ 1−t

−1+t

w(x)|f (x + t) − f (x − t)|dx

+
(∫ 1−t

−1+t

[w2(x)/w(x − t)]dx

)1/2 (∫ 1−t

−1+t

w(x − t)|Hn(x − t) − f (x − t)|2dx

)1/2

≤ CI1(t)ω1(f ; 1

n
) +

∫ 1−t

−1+t

w(x)|f (x + t) − f (x − t)|dx + CI2(t)ω1

(
f ; 1

n

)
,

where

I1(t) =
(∫ 1−t

−1+t

[w2(x)/w(x + t)]dx

)1/2

,

I2(t) =
(∫ 1−t

−1+t

[w2(x)/w(x − t)]dx

)1/2

.

Passing to supremum with t ∈ [0, h] we get

ω1(Hn(f ); h)1,w ≤ Cω1

(
f ; 1

n

)
[sup{I1(t); t ∈ [0, h]}

+ sup{I2(t); t ∈ [0, h]}] + ω1(f ; h)1,w.

In what follows we show that sup{Ik(t); t ∈ [0, h]} ≤ C, ∀0 < h < 1, k = 1, 2,
where C > 0 is independent of h.

We have ∫ 1−t

−1+t

[
w2(x)

w(x + t)

]
dx =

∫ 0

−1+t

√
1 − (x + t)2

1 − x2 dx

+
∫ 1−t

0

√
1 − (x + t)2

1 − x2 dx ≤
∫ 0

−1+t

dx√
1 − x2

+
∫ 0

−1+t

√−2tx

1 − x2 dx +
∫ 1−t

0

dx√
1 − x2
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≤ C1 +
∫ 0

−1+t

√−2tx

1 − x2 dx + C2.

Also, ∫ 0

−1+t

√−2tx

1 − x2 dx = √
2t

∫ 0

−1+t

√−x

1 − x2 dx.

For x ≤ 0 by some calculation we get∫ √−x

1 − x2 dx = arctg (
√−x) + 1

2
log

1 − √−x

1 + √−x
.

Therefore, we easily obtain

√
2t

∫ 0

−1+t

√−x

1 − x2 dx ≤ c
√

t log(
1 + √

1 − t

1 − √
1 − t

,

and since by the l’Hôpital’s rule it follows

lim
t↘0

√
t log

1 + √
1 − t

1 − √
1 − t

= 0,

as a consequence we immediately obtain

√
2t

∫ 0

−1+t

√−x

1 − x2 dx ≤ C1, ∀t ∈ [0, 1],

and I1(t) ≤ C, ∀t ∈ [0, 1].
Similarly, for t ∈ [0, 1] we have

∫ 1−t

−1+t

[w2(x)/w(x − t)]dx =
∫ 0

−1+t

√
1 − (x − t)2

1 − x2 dx

+
∫ 1−t

0

√
1 − (x − t)2

1 − x2 dx ≤
∫ 0

−1+t

dx√
1 − x2

+
∫ 1−t

0

dx√
1 − x2

+
∫ 1−t

0

√
2tx

1 − x2 dx

≤ C + √
2t

∫ 1−t

0

√
x

1 − x2 dx.

Reasoning as in the case of I1(t), we easily obtain I2(t) ≤ C, for all t ∈ [0, 1].
As a first conclusion, we get the first estimate

ω1(Hn(f ); h)1,w ≤ Cω1(f ; 1/n) + ω1(f ; h)1,w.

On the other hand, by the integral mean value theorem, for each fixed t , there
exists ξ ∈ (−1 + t, 1 − t) such that
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−1+t

w(x)|Hn(f )(x + t) − Hn(f )(x − t)|dx

= |Hn(f )(ξ + t) − Hn(f )(ξ − t)|
∫ 1−t

−1+t

dx√
1 − x2

≤ Ct |H ′
n(f )(η)| ≤ Ct ||H ′

n(f )|| ≤
(by the proof of Theorem 1.2.1) ≤ Cnt

∑n
k=1 ω1(f ; 1/k2). Passing to supremum

with t ∈ [0, h], it follows that

ω1(Hn(f ); h)1,w ≤ Cnh

n∑
k=1

ω1(f ; 1/k2).

Let f ∈ LipM(α; [−1, 1]). The last relation becomes

ω1(Hn(f ); h)1,w ≤

⎧⎪⎨
⎪⎩

Chn2−2α, if 0 < α < 1
2 ,

Chn log(n), if α = 1
2

Chn, if 1
2 < α ≤ 1.

Since f ∈ LipM(α; [−1, 1]) implies ω1(f ; 1/n) ≤ Mn−α and ω1(f ; h)1,w ≤
hα , the first estimate becomes

ω1(Hn(f ); 1/n)1,w ≤ Cn−α + Chα.

For the three cases 0 < α < 1/2, α = 1/2, 1/2 < α < 1, by the standard technique,
the optimal choices for n are from the equations n2−2αh = n−α , hn log(n) = n−1/2

and nh = n−α , respectively. Replacing in the last estimates we get the theorem. �

Remark. Comparing Theorem 1.2.2 with Corollary 1.2.1, we see that for all
α ∈ (0, 1) we have the same global smoothness preservation property for both
moduli ω1(Hn(f ); h)1,w and ω1(Hn(f ); h), while for α = 1, Theorem 1.2.2 gives
a much better result than Corollary 1.2.1, since ω1(Hn(f ); h)1,w ≤ Ch1/2, while
ω1(Hn(f ); h) ≤ C(h log( 1

h
))1/3.

Now, let us consider the Lagrange interpolation algebraic polynomial Ln(f )

based on the Chebyshev nodes of second kind plus the endpoints ±1. It is known
(Mastroianni–Szabados [72]) that

Ln(f )(x) =
n∑

k=1

f (xk)lk(x),

where xk = cos tk , tk = k−1
n−1π , k = 1, n, and

lk(x) = (−1)k−1ωn(x)

(1 + δk1 + δkn)(n − 1)(x − xk)
, k = 1, n,

with ωn(x) = sin t sin(n − 1)t , x = cos t and δkj is the Kronecker’s symbol.
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Theorem 1.2.3. For any f ∈ C[−1, 1], h > 0 and n ∈ N we have

ω1(Ln(f ); h) ≤ C min

{
hn

n∑
k=1

ω1

(
f ; 1

k2

)
, ω1

(
f ; 1

n

)
log n + ω1(f ; h)

}
,

where C > 0 is independent of f , n and h.

Proof. The method will follow the ideas in the proof of Theorem 1.2.1, taking
also into account that the relations (1.6) hold in this case too. Therefore, let x ∈ [0, 1]
be fixed (the proof in the case x ∈ [−1, 0] being similar), the index j defined by
|x − xj | = min{|x − xk|; 1 ≤ k ≤ n} and let us denote ωn(x) = Un(x)(1 − x2),
where Un(x) = sin(n−1)t

sin t
, x = cos t . By simple calculations we get

l′k(x) = (−1)k−1

(1 + δk1 + δkn)(n − 1)(x − xk)

×
[
U ′

n(x)(1 − x2)

x − xk

− 2xUn(x)

x − xk

− Un(x)(1 − x2)

(x − xk)2

]
,

which, as in the proof of Theorem 1.2.1, implies

|L′
n(f )(x)| ≤ 1

n − 1

∑
k 
=j

ω1(f ; |x − xk|)
[ |U ′

n(x)|(1 − x2)

|x − xk|

+2|Un(x)|
|x − xk| + |Un(x)|(1 − x2)

(x − xk)2

]
+ ω1(f ; |x − xj |)|l′j (x)|.

Now, the Bernstein–Markov inequality yields

|l′j (x)| ≤ n2

n
√

1 − x2 + 1
‖lj‖ ≤ Cn2

j
‖lj‖

≤ Cn2

j
· 1

n − 1
· |Un(x)| j2

n2

1
n2

≤ Cn2

j
· 1

n − 1
(n − 1) = Cn2

j
.

Therefore

ω1(f ; |x − xj |)|l′j (x)| ≤ ω1

(
f ; j

n2

)
Cn2

j
≤ n2ω1

(
f ; 1

n2

)
.

Now, we will use the obvious estimates

|Un(x)|(1 − x2) ≤
√

1 − x2 ∼ j

n
, |U ′

n(x)|(1 − x2) ≤ 2(n − 1).

Thus, we obtain

1

n − 1

∑
k 
=j

ω1(f ; |x − xk|) |U
′
n(x)|(1 − x2)

|x − xk| ≤ 2
∑
k 
=j

ω1(f ; |x − xk|)
|x − xk|
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≤ Cn2
n∑

k=1

1

k2 ω1

(
f ; k2

n2

)
≤ Cn

n∑
k=1

ω1

(
f ; 1

k2

)
,

1

n − 1

∑
k 
=j

ω1(f ; |x − xk|) |Un(x)|
|x − xk| ≤

∑
k 
=j

ω1(f ; |x − xk|)
|x − xk|

≤ Cn

n∑
k=1

ω1

(
f ; 1

k2

)
,

1

n − 1

∑
k 
=j

ω1(f ; |x − xk|) |Un(x)|(1 − x2)

|x − xk| ≤ Cj

n2

∑
k 
=j

ω1(f ; |x − xk|)
(x − xk)2

≤ Cj

n2

∑
k 
=j

ω1(f ; |x − xk|)
j

n2 |x − xk|
≤ C

∑
k 
=j

ω1(f ; |x − xk|)
|x − xk|

≤ Cn

n∑
k=1

ω1

(
f ; 1

k2

)
.

Collecting all these estimates, we obtain

|L′
n(f )(x)| ≤ Cn

n∑
k=1

ω1

(
f ; 1

k2

)
,

which, by the same reasoning as in the proof of Theorem 1.2.1, yields

ω1(Ln(f ); h) ≤ Cnh

n∑
k=1

ω1

(
f ; 1

k2

)
. (1.9)

On the other hand, for |x − y| ≤ h we get

|Ln(f )(x) − Ln(f )(y)| ≤ 2‖Ln(f ) − f ‖ + ω1(f ; h),

which implies
ω1(Ln(f ); h) ≤ 2‖Ln(f ) − f ‖ + ω1(f ; h).

Standard technique in interpolation theory (see Szabados–Vértesi [100]) gives

‖Ln(f ) − f ‖ ≤ Cω1

(
f ; 1

n

)
‖λn‖,

where λn(x) = ∑n
k=1 |lk(x)|, x ∈ [−1, 1], is the Lebesgue function of interpolation.

Here by (1.6)

λn(x) ≤
n∑

k=1

∣∣∣∣ Un(x)(1 − x2)

(n − 1)(x − xk)

∣∣∣∣ ≤
∑
k 
=j

|Un(x)|(1 − x2)

(n − 1)|x − xk| + |lj (x)|
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≤ C
∑
k 
=j

j
n

(n − 1)
|j2−k2|

n2

+ |lj (x)| ≤ C
∑
k 
=j

k

|k2 − j2| + |lj (x)|

≤ C log n + |lj (x)|.
Now,

|lj (x)| =
∣∣∣∣ Un(x)(1 − x2)

(n − 1)(x − xj )

∣∣∣∣ = |U ′
n(ξ)|1 − x2

n
.

Here, if j = 1 or n, then 1 − x2 ∼ n−2, and by Markov’s inequality |U ′
n(ξ)| ≤

n2‖Un‖ = n3, i.e., by (1.6)

|U ′
n(ξ)|1 − x2

n
≤ n3

C
n2

n
= C.

If 2 ≤ j ≤ n − 1, then evidently 1 − x2 ∼ 1 − ξ2 and

|lj (x)| = |Un(ξ)|(1 − x2)

n
≤ 1 − x2

1 − ξ2 = C,

whence in both cases |lj (x)| = O(1), and λn = O(log n). Thus

ω1(Ln(f ); h) ≤ Cω1

(
f ; 1

n

)
log n + ω1(f ; h), (1.10)

which together with (1.9) proves the theorem. �

Corollary 1.2.2. (i) If f ∈ LipM(α; [−1, 1]), 0 < α ≤ 1, then for all n ∈ N and
h ∈ (0, 1) we have

ω1(Ln(f ); h) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O
[
h

α
2−α

(
log 1

h

) 2−2α
2−α

]
, if 0 < α < 1

2 ,

O
[
h1/3 log 1

h

]
, if α = 1

2

O
[
h

α
1+α

(
log 1

h

) 1
1+α

]
, if 1

2 < α ≤ 1.

(ii) If ω1(f ; h) = O
(

1
logβ 1

h

)
, β > 1, then

ω1(Ln(f ); h) = O
(

1

logβ−1 1
h

)
.

(All the constants in O are independent of n and h).

Proof. (i) Let f ∈ LipM(α; [−1, 1]), 0 < α ≤ 1. Then (1.9) and (1.10) yield
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ω1(Ln(f ); h) =

⎧⎪⎨
⎪⎩

O(n2−2αh), if 0 < α < 1
2 ,

O(nh log n), if α = 1
2

O(nh), if 1
2 < α ≤ 1,

(1.11)

and

ω1(Ln(f ); h) = O
(

log n

nα
+ hα

)
, (1.12)

respectively. Now if n is smaller than

(
1

h
log

1

h

) 1
2−α

, h−2/3,

(
1

h
log

1

h

) 1
1+α

,

in the cases 0 < α < 1/2, α = 1/2, 1/2 < α ≤ 1, respectively, then we use the
corresponding estimates in (1.11). Otherwise we use (1.12).

(ii) In this case we get from (1.9) and (1.10)

ω1(Ln(f ); h) = O
(

n2h

log n

)

and

ω1(Ln(f ); h) = O
[

1

logβ−1 n
+ 1

logβ 1
h

]
.

As before, we use these estimates according as n is smaller or bigger than
1√
h

(
log 1

h

) 1
2 −β

. �

Now, let us consider the case of the Shepard interpolation operator

Sn,λ(f )(x) =

n∑
k=0

f (k/n)

∣∣∣∣x − k

n

∣∣∣∣
−λ

n∑
k=0

∣∣∣∣x − k

n

∣∣∣∣
−λ

, λ ≥ 1, n ∈ N,

defined for an arbitrary f ∈ C[0, 1]. Since by Szabados [98], Theorem 1 and Lemma
2, we have estimates for ‖Sn,λ − f ‖ and ‖S′

n,λ‖, by applying the above method we
immediately get

ω1(Sn,λ(f ); h)

≤ C min

{
hn2−λ

∫ 1

1/n

ω1(f ; t)

tλ
dt, n1−λ

∫ 1

1/n

ω1(f ; t)

tλ
dt + ω1(f ; h)

}

≤ Chλ−1
∫ 1

h

ω1(f ; t)

tλ
dt, 0 < h < 1 < λ, n ∈ N,

where the constant C is independent of n. As an immediate consequence it follows
the following.
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Corollary 1.2.3. (i) For 1 < λ ≤ 2, f ∈ LipM(α; [−1, 1]), 0 < α ≤ 1, we get

ω1(Sn,λ(f ); h) =

⎧⎪⎨
⎪⎩

O(hα), if α < λ − 1,

O
(
hα log 1

h

)
, if α = λ − 1,

O(hλ−1), if λ − 1 < α.

(ii) If λ > 2 then by∫ 1

h

ω1(f ; t)

tλ
dt ≤ 2ω1(f ; t)

h

∫ 1

h

t1−λdt ≤ Ch1−λω1(f ; h),

we get the simpler relation

ω1(Sn,λ(f ); h) ≤ Cω1(f ; h), 0 < h < 1, λ > 2, n ∈ N.

Remark. The above results show that if λ > 2, or 1 < λ ≤ 2 and α < λ − 1,
then the Shepard operators completely preserve the global smoothness of f . Also,
the case λ = 1 remains unsolved, since in this case Lemma 2 in Szabados [98] does
not give an estimate for ‖S′

n,λ‖.
In what follows we consider the so-called Shepard–Lagrange operator studied in

Coman–Trimbitas [26], defined here on the equidistant nodes xi = i
n

∈ [0, 1], i =
0, 1, . . . , n, n ∈ N, m ∈ N

⋃{0}, m < n, λ > 0, as follows:

Sn,λ,Lm(f )(x) =
n∑

i=0

Ai,λ(x)Lm,i(f )(x),

where

Ai,λ(x) = |x − xi |−λ∑n
k=0 |x − xk|−λ

,

and

Lm,i(f )(x) =
m∑

j=0

ui(x)

(x − xi+j )u
′
i (xi+j )

f (xi+j ),

where ui(x) = (x − xi) · · · (x − xi+m) and xn+ν = xν, ν = 1, . . . , m. Obviously
the Shepard–Lagrange operator generalizes the classical Shepard operator, which is
obtained for m = 0.

With respect to the classical Shepard operator in Corollary 1.2.3 which has the
degree of exactness 0, the Shepard–Lagrange operator has the advantage that its degree
of exactness is m (recall that an operator O is said to have the degree of exactness m,
if O(P ) = P , for any polynomial P of degree ≤ m and there exists a polynomial Q

of degree m + 1, such that O(Q) 
= Q.)

Theorem 1.2.4. Let us suppose that f : [0, 1] → R, f ∈ LipLα, where 0 < α ≤
1. Then for all x ∈ [0, 1], n ∈ N, m ∈ N

⋃{0} we have the estimates:
(i)

|Sn,λ,Lm(f )(x) − f (x)| ≤ CmLEm
λ (n),
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where

Em
λ (n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n2m+1−(m+1)α
log(n)

, if λ = 1,

n2m+2−(m+1)α−λ, if 1 < λ < m + 2,

nm−(m+1)α log(n), if λ = m + 2,

nm−(m+1)α, if λ > m + 2.

(ii)
|S′

n,λ,Lm
(f )(x)| ≤ C max{nEm

λ (n), nm},
for λ ≥ 2, even number.

Proof. Everywhere in the proof we can consider x 
= xk, k = 0, . . . , n, since in
these cases Sn,λ,Lm(f )(xk) = f (xk), k = 0, . . . , n and the estimates are trivial.

(i) We have

|Sn,λ,Lm(f )(x) − f (x)| ≤
n∑

i=0

Ai(x)|Lm,i(f )(x) − f (x)|

≤ L

n∑
i=0

Ai(x)

[
m∑

ν=0

|x − xi | · · · |x − xi+ν |α · · · |x − xi+m|/|u′
i (xi+ν)|

]
.

It is easy to show that because of the equidistant nodes we have |u′
i (xi+ν)| ≥

Cm

nm , ∀i = 0, 1, . . . , n, ν = 0, 1, . . . , m and from |x − xk| ≤ 1, ∀k it follows

|x − xi | · · · |x − xi+ν |α · · · |x − xi+m| ≤ |x − xi |α · · · |x − xi+ν |α · · · |x − xi+m|α.

Therefore,

|Sn,λ,Lm(f )(x) − f (x)| ≤ CmLnm
n∑

i=0

Ai(x)
|x − xi | · · · |x − xi+m|

|x − xi |1−α · · · |x − xi+m|1−α
.

Taking into account the relations (11) and (12) in Coman–Trimbitas [26], pp. 476–477
and denoting γ (x, xi) = |x − xi |...|x − xi+m|, it follows 1

|x−xi+l | ≤ 1
|2(j−l)−1|r and

[1/γ (x, xi)]1−α ≤ [1/rm+1]1−α

[
1/

m∏
l=0

|2(j − l) − 1|
]1−α

≤ [1/rm+1]1−α,

taking into account that
∏m

l=0 |2(j − l) − 1| ≥ 1.
From Theorem 4 in Coman–Trimbitas [26], for the equidistant nodes we have

there M ≤ 3, r ∼ 1
n

and reasoning as in the proof of the above mentioned Theorem
4, we get

|Sn,λ,Lm(f )(x) − f (x)| ≤ CmL[1/r]m+(m+1)(1−α)εm
λ (r),

where εm
λ (r) is given by the formula
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εm
λ (r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

| log(r)|−1, if λ = 1,

rλ−1, if 1 < λ < m + 2,

rλ−1| log(r)|, if λ = m + 2,

rm+1, if λ > m + 2.

All these prove (i).
(ii) We have

|S′
n,λ,Lm

(f )(x)| ≤ |
n∑

i=0

A′(x)Lm,i(f )(x)|

+
∣∣∣∣∣

n∑
i=0

Ai(x)[Lm,i(f )(x)]′
∣∣∣∣∣ := |E1(x)| + |E2(x)|,

where λ is considered even, i.e., λ = 2p, p ∈ N.
Since

A′
i (x) = −2p(x − xi)

−2p−1

S
+ 2p(x − xi)

−2p

S

n∑
k=0

(x − xk)
−2p−1

S
,

where S := ∑n
k=0(x − xk)

−2p, we get

|A′
i (x)| ≤ 2p

|x − xi |−1|x − xi |−2p

S
+ 2p|x − xi |−2p

S

n∑
k=0

|x − xk|−2p−1

S
.

For fixed x ∈ [0, 1], let xd be the nearest point to x, i.e., |x − xd | := min{|x −
xi |; i = 0, 1, . . . , n} ≤ 1

n
. It follows, for all i 
= d ,

|A′
i (x)| ≤ 2pn

|x − xi |−2p

S

and

|A′
d(x)| ≤ 2pn

|x − xd |−2p

S
.

Since
∑n

k=0 A′
i (x) = 0, we get

n∑
i=0

A′
i (x)Lm,i(f )(x) =

n∑
i=0

[Lm,i(f )(x) − f (x)],

which implies

|E1(x)| ≤
n∑

i=0

|A′
i (x)||Lm,i(f )(x) − f (x)|
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≤ Cn

n∑
i=0

|Ai(x)||Lm,i(f )(x) − f (x)| ≤ CnEm
λ (n),

(for the last inequality see (i)).
On the other hand, [Lm,i(f )(x)]′ ≤ Cmnm, which implies |E2(x)| ≤ Cmnm. As

a conclusion,
|S′

n,λ,Lm
(f )(x)| ≤ C max{nEm

λ (n), nm},
where C depends on f but it is independent of x and n. �

Remark. It is easy to see that the estimates in the expression of Em
λ (x) are not

“good” for all the values of n, α and λ. For example, the worst situation seems to
be in the λ = 1 case, when the estimate actually does not prove the convergence of
Sn,λ,Lm(f )(x) to f (x).

Corollary 1.2.4 Let us suppose that f : [0, 1] → R, f ∈ LipLα, where 0 <

α ≤ 1 and let us denote by F1(n, h) and F2(n, h), the estimates of ||S′
n,λ,Lm

(f )|| and
||Sn,λ,Lm(f ) − f ||, respectively. We have:

ω1(Sn,λ,Lm(f ); h) ≤ Cm,f max{hF1(n, h), F2(n, h) + ω1(f ; h)},
where n is the unique solution of equation hF1(n, h) = F2(n, h). �

Proof. By the standard technique we obtain

ω1(Sn,λ,Lm(f ); h)

≤ Cm,f max{h||S′
n,λ,Lm

(f )(x)||, ||Sn,λ,Lm(f )(x) − f (x)|| + ω1(f ; h)},
for all n ∈ N, h ∈ (0, 1). Combined with the estimates in Theorem 1.2.4, the standard
method gives the optimal choice for n, as solution of the equation hF1(n, h) =
F2(n, h). �

Remark. Corollary 1.2.4 contains many global smoothness preservation proper-
ties, depending on the relations satisfied by λ, m and α. In some cases they are “good,”
in other cases are “bad.” For example, let us suppose that λ > m + 2, λ is even and
m > 1−α

α
.

We get nEm
λ (n) = n(m+1)(1−α) < nm and therefore we get the equation hnm =

nm−(m+1)α , which gives n = h
−1

(m+1)α and

ω1(Sn,λ,Lm(f ); h)

≤ Ch × (h
−1

(m+1)α )m = Ch[(m+1)α−m]/[(m+1)α], ∀n ∈ N, 0 < h < 1.

For a “good” property in this case, it is necessary to have (m + 1)α − m > 0,
i.e., m < α

1−α
. It follows the α

1−α
> 1−α

α
, condition which necessarily implies

0 < 1
2 < α < 1. As a conclusion, if α < 1

2 then we don’t have a “good” global
smoothness preservation property.
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As a concrete example, take α = 4
5 . We obtain

ω1(Sn,λ,Lm(f ); h) ≤ Ch
4−m

4m+4 ,

which for m < 4 and λ > m + 2, λ even, gives a “good” global smoothness preser-
vation property.

In what follows we consider a sort of Shepard operator on the semi-axis [0, +∞),
introduced and studied by the papers DellaVecchia–Mastroianni–Szabados [36]–[38].

Let us denote C([0, +∞]) = {f : [0, +∞) → R; there exists limx→+∞ f (x) =
f (+∞) ∈ R}. If f ∈ C([0, +∞]) then obviously the usual modulus of continuity
ω(f ; h) = sup{|f (x) − f (y)|; x, y ≥ 0, |x − y| ≤ h} is finite and for the quantity
εf (x) = supy≥x |f (+∞) − f (y)| it follows that limx→+∞ εf (x) = 0.

Putting ||f || = sup{|f (x)|; x ≥ 0}, let ω�(f ; t) = sup0<h≤t ||�h�(f )|| be the

modulus of smoothness of f with step weight function �(x) = x
1− 1

γ , γ ≥ 1.
Also, for the knots xk = kγ

nγ/2 , k = 0, . . . , n, γ ≥ 1, s ≥ 2 and f ∈ C([0, +∞]),
let us consider the so-called Balázs–Shepard operator defined by

Sn,s(f )(x) =

n∑
k=0

|x − xk|−sf (xk)

n∑
k=0

|x − xk|−s

, x ≥ 0.

The following estimates are known.

Theorem 1.2.5. (See Della Vecchia–Mastroianni–Szabados [37]) Let us suppose
that

lim sup
T >0

∣∣∣∣
∫ T

0
[f (t) − f (+∞)]/[�(t)]dt

∣∣∣∣ < +∞

and

εf (x) ≤ C

(1 + x)1/γ
, ∀x ≥ 0.

(i) (See [37], Theorem 2.2) If s > 2 and 0 < α < 1, then ω�(f ; h) ≤ Chα

implies ||Sn,s(f ) − f || ≤ Cn−α/2;
(ii) (See [37], Theorem 2.4) Let s = 2.
If 0 < α < 1, then ω�(f ; h) ≤ Chα implies ||Sn,s(f ) − f || ≤ Cn−α/2 and if

α = 1 then ω�(f ; h) ≤ Ch implies ||Sn,s(f ) − f || ≤ C
log(n)√

n
.

Theorem 1.2.6. (See Della Vecchia–Mastroianni–Szabados [37], Lemma 3.1, p.
446) If s > 1 then ||�S′

n,s(f )|| ≤ C
√

n||f ||.
Corollary 1.2.5. Let us suppose that

lim sup
T >0

|
∫ T

0
[f (t) − f (+∞)]/�(t)dt | < +∞
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and

εf (x) ≤ C

(1 + x)1/γ
, ∀x ≥ 0.

(i) If s > 2 and 0 < α < 1, then ω�(f ; h) ≤ Chα implies

ω�(Sn,s(f ); h) ≤ Chα/(α+1),

for all n ∈ N, 0 < h < 1, where C > 0 is a constant independent of n and h.
(ii) If s = 2 and ω�(f ; h) ≤ Chα then we have:

ω�(Sn,s(f ); h) ≤ Chα/(α+1) if 0 < α < 1

and
ω�(Sn,s(f ); h) ≤ C[h log(1/h)]1/2 if α = 1.

Both estimates take place for all n ∈ N, 0 < h < 1.

Proof. (i) From the general inequality ω�(f ; h) ≤ Ch||�f ′||, combined with
Theorem 1.2.6, it follows ω�(Sn,s(f ); h) ≤ Ch

√
n||f ||. Combined now with the

Theorem 1.2.5,(i), and by using the standard method, it immediately follows

ω�(Sn,s(f ); h) ≤ C max{hn1/2, n−α/2 + hα}.
From the equation hn1/2 = n−α/2, we get n = h−2/(α+1) which replaced above gives
the required estimate.

(ii) Let s = 2. If 0 < α < 1 then the proof follows similarly from Theorem
1.5.2,(ii). If α = 1 then we get

ω�(Sn,s(f ); h) ≤ C max{hn1/2,
log(n)

n1/2 + h},

which conducts to the equation hn = log(n). This implies n = 1
h

log( 1
h
) and replacing

it above, we get the desired estimate. The proof is complete. �

Unlike the results of this chapter which refer to real functions of one real variable,
let us consider now the case of complex Hermite–Fejér interpolation polynomials on
the roots of unity , attached to a complex function defined on the closed unit disk
D = {z ∈ C; |z| ≤ 1}.

Let us denote by AC={f : D → C; f is analytic on {|z| < 1} and continuous on
D} and let zk = exp2πki/n, k = 1, . . . , n be the nth roots of unity. Then according to a
result of Cavaretta–Sharma–Varga [21], there exists a uniquely determined complex
polynomial Ln(f )(z) of degree at most 2n − 1, such that Ln(f )(zk) = f (zk), k =
1, . . . , n and L′

n(f )(zk) = 0, k = 1, . . . , n.
Denoting by w(f ; h) = sup{|f (expix)−f (expi(x+t))|; x ∈ [0, 2π ], 0 ≤ t < h},

by Theorem 1 in Sharma–Szabados [89] the following estimate

||Ln(f ) − f || ≤ C

[
w

(
f ; 1

n

)
+ E[cn](f ) log(n)

]



1.2 Lagrange, Hermite–Fejér and Shepard-Type Operators 23

holds, where || · || represents the uniform norm on D, C and c are independent of f

and n and En(f ) denotes the error of best polynomial approximation.
Also, recall (see Rubel–Shields–Taylor [84]) that w(f ; h) is equivalent to the

usual modulus of continuity on D defined by

ω(f ; h) = sup{|f (z1) − f (z2)|; z1, z2 ∈ D, |z1 − z2| ≤ h}.
Therefore, we have the estimate

||Ln(f ) − f || ≤ C

[
ω

(
f ; 1

n

)
+ E[cn](f ) log(n)

]
.

We present

Theorem 1.2.7. If f ∈ AC and there exists 0 < α ≤ 1 such that ω(f ; h) ≤
Chα, ∀0 ≤ h < 1 then

ω(Ln(f ); h) ≤ Cf,αhα/(1+α) log

(
1

h

)
, ∀n ∈ N, 0 < h < 1,

where the constant Cf,α > 0 is independent of n and h.

Proof. By the above error estimate we immediately obtain

||Ln(f ) − f || ≤ C

[
1

nα
+ log(n)

nα

]
.

Now, let us prove that the standard method in the real case, works in the complex
case too. Indeed, for z1, z2 ∈ D, we obtain

|Ln(f )(z1) − Ln(f )(z2)| ≤ |Ln(f )(z1) − f (z1)| + |f (z1) − f (z2)|
+|f (z2) − Ln(f )(z2)|,

which immediately implies

ω(Ln(f ); h) ≤ 2||Ln(f ) − f || + ω(f ; h) ≤ Cα

[
log(n)

nα
+ hα

]
.

On the other hand, by the mean value theorem in the complex case, there exists ξ

on the segment [z1, z2] and λ ∈ C with |λ| ≤ 1, such that

Ln(f )(z1) − Ln(f )(z2) = λ · L′
n(f )(ξ)(z1 − z2),

which implies

|Ln(f )(z1) − Ln(f )(z2)| ≤ |L′
n(f )(ξ)||z1 − z2|,

and therefore
ω(Ln(f ); h) ≤ ||L′

n(f )|| · h.
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But by, e.g., Corollary 1.3 in DeVore–Lorentz [41], p. 98, we have ||L′
n(f )|| ≤

Cn||Ln(f )||. Combining it with relation (3.7), page 46 in Sharma–Szabados [89],
we obtain ||L′

n(f )|| ≤ Cn log(n)||f ||.
As a conclusion, it follows ω(Ln(f ); h) ≤ Cf hn log(n).

The best choice for n follows from the equation hn log(n) = log(n)
nα , which implies

n = h−1/(1+α) and finally the estimate ω(Ln(f ); h) ≤ Cf,αhα/(1+α) log( 1
h
), ∀n ∈

N, 0 < h < 1. The theorem is proved. �

At the end of this section, let us make some considerations on the interpolation
of normed spaces valued mappings, of real variable. More exactly, let (X, || · ||) be
a normed space over K , where K = R or K = C and f : [a, b] → X, [a, b] ⊂ R.
First let us recall that in the recent paper [54], for f : [0, 1] → X continuous on
[0, 1] the following estimates hold:

(i)

C1ω
φ
2

(
f ; 1√

n

)
≤ ||Bn(f ) − f ||u ≤ C2ω

φ
2

(
f ; 1√

n

)
,

where ||f ||u = sup{||f (x)||; x ∈ [0, 1]} and C1, C2 > 0 are absolute constants.
(ii)

C1

[
ω

φ
2

(
f ; 1√

n

)
+ ω1

(
f ; 1

n

)]
≤ ||Kn(f ) − f ||u

≤ C2

[
ω

φ
2

(
f ; 1√

n

)
+ ω1

(
f ; 1

n

)]
;

(iii)

||Bn(f )(x) − f (x)|| ≤ M

[
x(1 − x)

n

]α/2

∀x ∈ [0, 1], if and only if

ω2(f ; δ) = O(δα),

where α ≤ 2.
(iv)

ω1(Bn(f ); δ) ≤ 2ω1(f ; δ),

for all n ∈ N and all δ ≤ 1.
Here the usual first-order modulus of continuity ω1(f ; δ), the usual second-order

modulus of smoothness and the second Ditzian–Totik modulus of smoothness are
defined by ω1(f ; δ) = sup{||f (v) − f (w)||; v, w ∈ [0, 1], |v − w| ≤ δ},
ω2(f ; δ) = sup{sup{||f (x + h) − 2f (x) + f (x − h)||; x − h, x, x + h ∈ [0, 1],

h ∈ [0, δ]},
where δ ≤ 1

2 and

ω
φ
2 (f ; δ) = sup{sup{||f (x + hφ(x)) − 2f (x) + f (x − hφ(x))||; x ∈ I2,h},
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h ∈ [0, δ]},
respectively, with I2,h =

[
− 1−h2

1+h2 , 1−h2

1+h2

]
, φ(x) = √

x(1 − x), δ ≤ 1, the Bernstein

and Bernstein–Kantorovich type operators attached to f are defined by

Bn(f )(x) =
n∑

k=0

pn,k(x)f

(
k

n

)
,

and

Kn(f )(x) = (n + 1)

n∑
k=0

pn,k(x)

∫ (k+1)/(n+1)

k/(n+1)

f (t)dt,

respectively, with pn,k(x) = (
n
k

)
xk(1 − x)n−k and the integral

∫ b

a
f (t)dt is defined

as the limit for m → ∞ in the norm || · ||, of the all (classical defined) Riemann sums∑m
i=0(xi+1 − xi)f (ξi).
We want to show that these ideas can be used for interpolation too. Thus, for

f : [−1, 1] → X we can attach to f the Lagrange polynomials Ln(f ) based on
the Chebyshev knots of second kind plus the endpoints −1, +1 given by Ln(f ) :
[−1, 1] → X,

Ln(f )(x) =
n∑

k=1

f (xk)lk(x),

where xk = costk, tk = (k−1)π
n−1 , k = 1, . . . , n and

lk(x) = (−1)k−1ωn(x)

(1 + δk1 + δkn)(n − 1)(x − xk)
, k = 1, n,

with ωn(x) = sin t sin(n − 1)t , x = cos t and δkj is the Kronecker’s symbol.
We can prove the following.

Theorem 1.2.8. Let f : [−1, 1] → X be continuous on [−1, 1]. We have:
(i)

||Ln(f )(x) − f (x)|| ≤ Cω1

(
f ; 1

n

)
log n, ∀n ∈ N, x ∈ [−1, 1];

(ii) if ||f (v) − f (w)|| ≤ M|v − w|α, ∀v, w ∈ [−1, 1], where 0 < α < 1, then
ω1(Ln(f ); h) satisfies the same estimates in the Corollary 1.2.2, (i).

Proof. For x∗ ∈ X∗ = {x∗ : X → K; x∗ is linear and continuous } with
|||x∗||| ≤ 1, define g : [−1, 1] → R by g(x) = x∗[f (x)], x ∈ [−1, 1].

(i) By the relation (1.10) we have

||g − Ln(g)|| ≤ Cω1

(
g; 1

n

)
log n, ∀n ∈ N,

where ||g|| = sup{|g(x)|; x ∈ [−1, 1]}.
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By the linearity of x∗ we get g(x) − Ln(g)(x) = x∗[f (x) − Ln(f )(x)] and
therefore

|x∗[f (x) − Ln(f )(x)]| ≤ Cω1

(
g; 1

n

)
log n, ∀x ∈ [−1, 1].

On the other hand, by |g(v) − g(w)| = |x∗[f (v) − f (w)]| ≤ |||x∗||| · ||f (v) −
f (w)|| ≤ ||f (v) − f (w)||, we easily get that ω1(g; 1

n
) ≤ ω1(f ; 1

n
).

Combined with the above inequality, we get

|x∗[f (x) − Ln(f )(x)]| ≤ Cω1

(
f ; 1

n

)
log n, ∀x ∈ [−1, 1].

For fixed x ∈ [−1, 1], passing to supremum with |||x∗||| ≤ 1 and taking into
account the well-known classical equality

||x|| = sup{|x∗(x)|; x∗ ∈ X∗, |||x∗||| ≤ 1}, ∀x ∈ X,

it follows

||Ln(f )(x) − f (x)|| ≤ Cω1

(
f ; 1

n

)
log n, ∀n ∈ N, x ∈ [−1, 1];

(ii) We have |g(v) − g(w)| = |x∗[f (v) − f (w)]| ≤ |||x∗||| · ||f (v) − f (w)|| ≤
M|v − w|α , for all v, w ∈ [−1, 1]. Then by Corollary 1.2.2, (i), it follows that
ω1(Ln(g); h) ≤ CEn(h, α), where C and En(h, α) obviously do not depend on x∗.

Let h > 0 and v, w ∈ [−1, 1] with |v − w| ≤ h, be fixed. We have

|x∗[Ln(f )(v) − Ln(f )(w)]| = |Ln(g)(v) − Ln(g)(w)|
≤ ω1(Ln(g); h) ≤ CEn(h, α).

Passing to supremum with x∗ ∈ X∗, |||x∗||| ≤ 1 we get as at the above point (i),
||Ln(f )(v) − Ln(f )(w)|| ≤ CEn(h, α). Passing now to supremum with v, w ∈
[−1, 1], |v − w| ≤ h, we obtain ω1(Ln(f ); h) ≤ CEn(h, α), which proves the
theorem. �

1.3 Algebraic Projection Operators and the Global Smoothness
Preservation Property

Let �n be the set of algebraic polynomials of degree at most n. It is well known that
the algebraic projection operators Ln : C[−1, 1] → �n are bounded linear operators
having the properties:

(i) f ∈ C[−1, 1] implies Ln(f ) ∈ �n;
(ii) f ∈ �n implies Ln(f ) ≡ f .
The following approximation result for Ln is known.
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Theorem 1.3.1. (See Szabados [97], Theorem 2.) If f (s) ∈ C[−1, 1], s ∈ N∪{0},
then

‖f (s) − L(s)
n (f )‖ ≤ Csn

−sω1(f
(s); 1/n) · |||L(s)

n |||∗, n ∈ N,

where ‖ · ‖ represents the uniform norm on [−1, 1] and

|||L(s)
n |||∗ = sup{‖L(s)

n (f )‖; f (x)(1 − x2)−s/2 ∈ C[−1, 1],
‖f (x)(1 − x2)−s/2‖ = 1}.

Remark. For s = 0 it is easy to see that

|||L(s)
n |||∗ = |||Ln||| = sup{‖Ln(f )‖; f ∈ C[−1, 1], |f ‖ = 1}

and the above relation becomes

‖f − Ln(f )‖ ≤ Cω1(f ; 1/n) · |||Ln|||, n ∈ N,

where |||Ln||| ≥ C log n. (See, e.g., Szabados–Vértesi [100], pp. 266 and 268).
First we need the following simple

Lemma 1.3.1. If f ∈ Lp[a, b], 1 ≤ p ≤ ∞ and {Ln(f )}n is a sequence of
approximation operators such that Ln(f ) ∈ Lp[a, b], n ∈ N, then for all n, r ∈ N,
h ∈ [

0, b−a
r

]
, we have

ωr(Ln(f ); h)p ≤ 2r‖f − Ln(f )‖p + ωr(f ; h)p,

where ωr(f ; h)p represents the usual modulus of smoothness, ‖ · ‖p is the classical
Lp-norm, L∞[a, b] ≡ C[a, b], ωr(f ; ·)∞ ≡ ωr(f ; ·).

Proof. Let first 1 ≤ p < +∞. For x ∈ [a, b − rt] we have

�r
t Ln(f )(x) = �r

t [Ln(f ) − f ](x) + �r
t f (x)

=
r∑

k=0

(
r

k

)
(−1)r−k[Ln(f )(x + kt) − f (x + kt)] + �r

t f (x).

This implies {∫ b−rt

a

|�r
t Ln(f )(x)|pdx

}1/p

≤
{∫ b−rt

a

[
r∑

k=0

(
r

k

)
|Ln(f )(x + kt) − f (x + kt)| + |�r

t f (x)|
]p

dx

}1/p

(by Minkowski’s inequality)

≤ 2r‖Ln(f ) − f ‖p +
{∫ b−rt

a

|�r
t f (x)|pdx

}1/p

.
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Passing now to supremum with 0 ≤ t ≤ h we get the lemma.
For p = +∞ the proof is obvious. �

The first main result of this section is the following:
Theorem 1.3.2. If f (s) ∈ C[−1, 1], s ∈ N∪{0}, then for all n ∈ N and h ∈ (0, 1)

we have
ω1(L

(s)
n (f ); h)

≤ Cs min{h‖f ‖ · |||L(s+1)
n |||, n−sω1(f

(s); 1/n) · |||L(s)
n |||∗ + ω1(f

(s); h)},
where |||Ln||| = sup

{ ‖Ln(f )‖
‖f ‖ ; 0 
≡ f ∈ C[−1, 1]

}
.

Proof. By Lemma 1.3.1 written for p = +∞, r = 1, f ≡ f (s) and L
(s)
n (f ), and

by Theorem 1.3.1 we get

ω1(L
(s)
n (f ); h) ≤ 2‖L(s)

n (f ) − f (s)‖ + ω1(f
(s); h)

≤ 2Csn
−sω1(f

(s); 1/n) · |||L(s)
n |||∗ + ω1(f

(s); h).

On the other hand, we obtain

ω1(L
(s)
n (f ); h) ≤ h‖f ‖ · |||L(s+1)

n |||,
which completes the proof. �

Corollary 1.3.1. Let us assume that f (s) ∈ LipM(α; [−1, 1]), s ∈ N ∪ {0}. Then
the best possible result concerning the partial preservation of global smoothness of
f by L

(s)
n (f ) which can be derived by Theorem 1.3.2 is

ω1(L
(s)
n (f ); h) = O

[
h

α
2s+2+α

(
log

1

h

) 2s+2
2s+2+α

]
, n ∈ N, h ∈ (0, 1),

attained if simultaneously we have

|||L(s)
n |||∗ = O(ns log n) and |||L(s+1)

n ||| = O(n2(s+1)).

(All the constants in “O” are independent of n and h).

Proof. By Berman [18], the estimate

|||L(s)
n ||| = O(n2s), s ∈ N,

is the best possible, and by Szabados–Vértesi [100], Theorem 8.1, p. 266, the estimate

|||L(s)
n |||∗ = O(ns log n), s ∈ N ∪ {0},

is the best possible.
Replacing in Theorem 1.3.2, we get
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ω1(L
(s)
n (f ); h) ≤ Cs,α,f min{hn2(s+1), n−α log n + hα}, s ∈ N ∪ {0}.

By hn2(s+1) = n−α log n, reasoning exactly as in the proof of Corollary 1.2.2,(i),

we choose n = ( 1
h

log 1
h

) 1
2s+2+α and we obtain

ω1(L
(s)
n (f ); h) = O

[
h1− 2s+2

2s+2+α

(
log

1

h

) 2s+2
2s+2+α

]

= O
[
h

α
2s+2+α

(
log

1

h

) 2s+2
2s+2+α

]
,

which proves the theorem. �

Remark. In Szabados [97], Lagrange interpolation operators {Ln(f )}n are con-
structed, such that |||L(s)

n |||∗ = O(ns log n), s ∈ N. But we do not know if simulta-
neously we have |||L(s+1)

n ||| = O(n2(s+1)).

Corollary 1.3.2. Let us denote

Gs = {f ∈ C[−1, 1]; f (x)(1 − x2)−s/2 ∈ C[−1, 1], ‖f (x)(1 − x2)−s/2‖=1},
s ∈ N.

If Ln(f )(x) represents the Lagrange interpolating polynomial based on the roots
of the polynomial �n(x) introduced in Szabados–Vértesi [99], then for all f ∈ Gs+1
with f (s) ∈ LipM(α; [−1, 1]), s ∈ N ∪ {0}, we have

ω1(L
(s)
n (f ); h) = O

(
h

α
s+1+α log

1

h

)
, 0 < h < 1, n ∈ N,

where the constant which appears in “O” is independent of n and h.

Proof. We have

|L(s)
n (f )(x) − L(s)

n (f )(y)| = |L(s+1)
n (f )(ξ)| · |x − y|

≤ |||L(s+1)
n |||∗h,

for all |x − y| ≤ h and f ∈ Gs+1, which immediately implies

ω1(L
(s)
n (f ); h) ≤ h|||L(s+1)

n |||∗, 0 < h < 1, f ∈ Gs+1.

Then, reasoning as in the proof of Theorem 1.3.2., we get

ω1(L
(s)
n (f ); h)

≤ C min{h|||L(s+1)
n |||∗, n−sω1(f

(s); 1/n) · |||L(s)
n |||∗ + ω1(f

(s); h)}.
By Theorem 1 in Szabados–Vértesi [99], we have
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|||L(s)
n |||∗ = O(ns log n), |||L(s+1)

n |||∗ = O(ns+1 log n),

which replaced in the above inequality gives

ω1(L
(s)
n (f ); h) ≤ C min{hns+1 log n, n−α log n + hα}.

The equation hns+1 log n = n−α log n gives the best choice, h = n−s−1−α , and
the standard technique proves the corollary. �

1.4 Global Smoothness Preservation by Jackson Trigonometric
Interpolation Polynomials

The goal of this section is to show that the sequence of Jackson interpolation trigono-
metric polynomials given by

Jn(f )(x) = 2

n + 1

n∑
k=0

f (tk)φn(x − tk), tk = 2πk

n + 1
,

where f ∈ C2π and �(x) = 1
n+1

sin2((n+1)x/2)

2sin2(x/2)
have the property of (partial) global

smoothness preservation with respect to the uniform and average modulus of conti-
nuity.

First we need:

Definition 1.4.1. (Stechkin [94], pp. 219–220.) Let k ∈ N. One says that the
function ϕ is of Nk-class if it satisfies the following conditions:

(i) ϕ is defined on [0, π ];
(ii) ϕ is nondecreasing on [0, π ];
(iii) ϕ(0) = 0 and limt→0 ϕ(t) = 0;
(iv) ϕ(t) ≥ C1h

k , for all t > 0.
(v) there exists a constant C2 > 0 such that 0 < t < s ≤ π implies s−kϕ(s) ≤

C2t
−kϕ(t).
For f ∈ C2π and ϕ ∈ Nk one says that f belongs to the Hk(ϕ) class if

ωk(f ; t) ≤ C3ϕ(t), for all t ∈ [0, π ],
where ωk(f ; t) represents the usual uniform modulus of smoothness of order k of f .

Remark.An obvious example of ϕ ∈ Nk is ϕ(t) = ωk(f ; t), with fixed f ∈ C2π .

Theorem 1.4.1. (Stechkin [94], Theorem 6, p. 230.) Let k ∈ N, ϕ ∈ Nk and
f ∈ Hk(ϕ). If {Tn}n is a sequence of trigonometric polynomials with degree Tn ≤ n,
which satisfy

‖f − Tn‖ ≤ C4ϕ(1/n), for all n ∈ N,

then
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ωk(Tn; h) ≤ C5ϕ(h), for all h > 0, n ∈ N,

where ‖ · ‖ represents the uniform norm and C4, C5 are absolute positive constants
(independent of f and n).

With respect to the uniform modulus of continuity, we present:

Theorem 1.4.2. Let f ∈ C2π . If f ∈ LipMα, 0 < α < 1, (i.e., ω1(f ; h) ≤ Chα)
then

ω1(Jn(f ); h) ≤ Chα, h > 0, n ∈ N,

and if f ∈ LipM1, then

ω1(Jn(f ); h) ≤ Ch log
1

h
, h ∈ (0, 1), n ∈ N.

Proof. By Szabados [95] the estimate

‖f − Jn(f )‖ ≤ C[ω1(f ; 1/n) + ω(f̃ ; 1/n)], n ∈ N,

holds, where f̃ represents the trigonometric conjugate of f . Let f ∈ LipMα, 0 <

α ≤ 1. If α < 1, then it is known (see, e.g., Bari–Stechkin [9], p. 485) that this
is equivalent to f̃ ∈ LipMα, which, by the above estimate and by Theorem 1.4.1
(applied to ϕ(h) = hα) gives ω1(Jn(f ); h) ≤ Chα , h > 0, n ∈ N. Also, if α = 1,
then by, e.g., Zygmund [110], p. 157 it follows that ω1(f̃ ; h) ≤ Mh log 1

h
, which

again with the above estimate and with Theorem 1.4.1 (applied to ϕ(h) = h log 1
h

)
yields

ω(Jn(f ); h) ≤ Ch log
1

h
, h ∈ (0, 1), n ∈ N. �

Now let us introduce the so-called average modulus of continuity by the following.

Definition 1.4.2. (Sendov [87]) The local modulus of continuity of a bounded
2π -periodic Riemann integrable function f (x) is given by

ω1(f, x, h) = sup{|f (x′) − f (x")|; x′, x" ∈ [x − h/2, x + h/2]},
while the average modulus of continuity in L

p
2π is given by

τ(f ; h)Lp = ||ω(f, x, h)||Lp , 1 ≤ p < ∞.

Remark. These concepts are very useful in some approximation theoretical prob-
lems where the ordinary Lp-modulus of continuity ω1(f, h)Lp = sup{||f (x + t) −
f (x)||Lp ; |t | ≤ h} is not applicable.

First we prove the following estimates.

Theorem 1.4.3. For the Jackson trigonometric interpolation polynomials
Jn(f )(x) defined above, it follows:
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(i)

||J ′
n(f )||L1 ≤ C

n∑
k=1

τ

(
f ; 1

k

)
L1

;

(ii)

τ(Jn(f ); h)L1 ≤ C

n

n∑
k=1

τ

(
f ; 2

k
+ h

)
L1

+ τ(f ; h)L1 .

Proof. (i) Reasoning as in the proof of Theorem 1 in Popov–Szabados [78] we
easily get

|J ′
n(f )(x)| ≤ C

n

n∑
k=0

|f (tk) − f (x)||�′
n(x − tk)|.

But

�′
n(u) = 1

2(n + 1)

[
(n + 1) sin

(
(n + 1)u

2

)
cos

(
(n + 1)u

2

)/
sin2

(u

2

)

− cos
(u

2

)
sin2

(
(n + 1)u

2

)/
sin3

(u

2

)]
.

Denoting by xj the nearest node to x and taking into account that |x − tk| ∼
|j−k|

n
, ∀k 
= j , similar with the proof of Theorem 1 in Popov–Szabados [78] we

obtain

|�′
n(x − tk)| ≤ C[n2|j − k|−2 + n2|j − k|−3] ≤ Cn2|j − k|−2,

and

|�′
n(u)| = | 1

n + 1

n+1∑
k=1

(n + 1 − k) sin(ku)| ≤ 1

n + 1

n∑
k=1

(n + 1 − k)k ≤ Cn2.

It follows that

|J ′
n(f )(x)| ≤ C

n
[cn2ω

(
f, x,

1

n

)

+n2
n∑

k=0,k 
=j

|j − k|−2ω(f, x, |x − tk|)] ≤ Cn

n∑
k=1

k−2ω(f, x, k/n).

Integrating and reasoning exactly as in the proof of Theorem 1 in Popov–Szabados
[78], we obtain

||J ′
n(f )||L1 ≤ Cn

n∑
k=1

k−2τ

(
f ; k

n

)
L1

≤ C

n∑
k=1

τ(f ; 1

n
)L1 .

(ii) Let x′, x" ∈ [x − h
2 , x + h

2 ]. We have
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|Jn(f )(x′) − Jn(f )(x")| ≤ |Jn(f )(x′) − f (x′)|
+|Jn(f )(x") − f (x")| + |f (x′) − f (x")|

(see the proof of Theorem 1 in Popov–Szabados [78])

C

n∑
i=1

i−2ω(f, x′, i/n) + C

n∑
i=1

i−2ω(f, x", i/n) + |f (x′) − f (x")|.

Passing to supremum after x′, x" ∈ [x − h
2 , x + h

2 ], it follows that

ω(Jn(f ), x, h) ≤ C

n∑
i=1

i−2 sup

{
ω(f, x′, i/n); x′ ∈

[
x − h

2
, x + h

2

]}

+C

n∑
i=1

i−2 sup

{
ω(f, x", i/n); x" ∈

[
x − h

2
, x + h

2

]}
+ ω(f, x, h).

But

sup

{
ω(f, x′, i/n); x′ ∈

[
x − h

2
, x + h

2

]}

= sup

{
sup{|f (u′) − f (u")|; u′, u" ∈ [

x′ − i/n, x′ + i/n
]}}; x′ ∈

[
x − h

2
, x + h

2

]}

≤ ω

(
f, x,

2i

n
+ h

)
.

Integrating on [0, 2π ], it follows that

τ(Jn(f ); h)L1 ≤ C

n∑
i=1

i−2τ

(
f ; 2i

n
+ h

)
L1

+ τ(f ; h)L1 ≤

(reasoning as in the proof of Theorem 1 in Popov–Szabados [78])

C

n

∫ 2

2/n

u−2τ(f ; u + h)L1du + τ(f ; h)L1 ≤ C

n

∫ n/2

1/2
τ(f ; 1/v + h)dv

+τ(f ; h)L1 ≤ C

n

n∑
i=1

τ

(
f ; 2

i
+ h

)
L1

+ τ(f ; h)L1 ,

which proves the theorem. �

Corollary 1.4.1. Let us suppose that τ(f ; h)L1 ≤ Mhα , for all 0 < h < 1, where
α ∈ (0, 1]. We have:

τ(Jn(f ); h)L1 ≤ Chα, ∀h ∈ (0, 1), n ∈ N, if 0 < α < 1

and
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τ(Jn(f ); h)L1 ≤ Ch log

(
1

h

)
, ∀h ∈ (0, 1), n ∈ N, if α = 1.

Proof. By Sendov–Popov [88], the property τ(f ; h)Lp ≤ Ch||f ′||Lp , ∀h ∈
(0, 1), holds. This and Theorem 1.4.3,(i), imply

τ(Jn(f ); h)L1 ≤ Ch||J ′
n(f )||L1 ≤ Ch

n∑
k=1

1/kα ≤ Chn1−α, ∀h ∈ (0, 1).

That is, τ(Jn(f ); h)L1 ≤ Chn1−α , for α ∈ (0, 1) and τ(Jn(f ); h)L1 ≤ Ch log(n),
for α = 1. Also, by Theorem 1.4.3,(ii), for α ∈ (0, 1) we get τ(Jn(f ); h)L1 ≤
C
n
[∑n

k=1
1
kα +nhα]+hα ≤ Cn−α +Chα , while for α = 1 we have τ(Jn(f ); h)L1 ≤

C
log(n)

n
+ Ch. The standard method gives the optimal choices of n = h−1 from the

equations n−α = hn1−α and log(n)
n

= h log(n), corresponding to the cases 0 < α < 1
and α = 1, respectively. Replacing in the above estimates, we get the statement of
the theorem. �

1.5 Trigonometric Projection Operators and the Global
Smoothness Preservation Property

Let us denote by Tn the set of trigonometric polynomials of degree at most n. It is
well known that the trigonometric projection operators Pn : C2π → Tn are bounded
linear operators having the properties:

(i) f ∈ C2π implies Pn(f ) ∈ Tn

(ii) f ∈ Tn implies Pn(f ) ≡ f .
The following approximation result for Pn is known.

Theorem 1.5.1 (Runck–Szabados–Vértesi [85], relation (19).) Let s ∈ N ∪ {0}. If
f (s) ∈ C2π then

‖f (s) − P (s)
n (f )‖ ≤ Csn

−sω1(f
(s); 1/n) · |||P (s)

n |||, n ∈ N,

where ‖ · ‖ represents the uniform norm on R and

|||P (s)
n ||| = sup

{
‖P (s)

n (f )‖
‖f ‖ ; 0 
≡ f ∈ C2π

}
.

Also, we need the following result.

Lemma 1.5.1. If f ∈ L
p
2π , 1 ≤ p ≤ +∞, and {Tn(f )}n is a sequence of

approximation operators such that Tn(f ) ∈ L
p
2π , n ∈ N, then for all n, r ∈ N, h > 0,

we have
ωr(Tn(f ); h)p ≤ 2r‖Tn(f ) − f ‖p + ωr(f ; h)p,
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where ωr(f ; h)p represents the periodic Lp-modulus of smoothness of order r and
‖ · ‖p is the classical L

p
2π -norm (L∞

2π ≡ C2π , ωr(f ; ·)∞ ≡ ωr(f ; ·)).
Proof. For 0 ≤ t and x ∈ R, we have

�r
t [Tn(f )](x) = �r

t [Tn(f ) − f ](x) + �r
t f (x)

=
r∑

k=0

(
r

k

)
(−1)r−k[Tn(f )(x + kt) − f (x + kt)] + �r

t f (x).

If 1 ≤ p < +∞, then we obtain

{∫ 2π

0
|�r

t [Tn(f )](x)|pdx

}1/p

≤
{∫ 2π

0

[ r∑
k=0

(
r

k

)
|Tn(f )(x + kt) − f (x + kt)|

+|�r
t f (x)|

]p

dx

}1/p

≤ (by Minkowski’s inequality)

≤
r∑

k=0

(
r

k

){∫ 2π

0
|Tn(f )(x + kt) − f (x + kt)|pdx

}1/p

+
{∫ 2π

0
|�r

t f (x)|pdx

}1/p

=
r∑

k=0

(
r

k

){∫ 2π+kt

kt

|Tn(f )(u) − f (u)|pdu

}1/p

+
{∫ 2π

0
|�r

t f (x)|pdx

}1/p

=
r∑

k=0

(
r

k

){∫ 2π

0
|Tn(f )(u) − f (u)|pdu

}1/p

+
{∫ 2π

0
|�r

t f (x)|pdx

}1/p

= 2r‖Tn(f ) − f ‖p +
{∫ 2π

0
|�r

t f (x)|pdx

}1/p

.

Passing to supremum with 0 ≤ t ≤ h we easily get the statement for 1 ≤ p <

+∞. For p = +∞ the proof is obvious. �

Now, concerning the (partial) global smoothness preservation by Pn(f ) we can
prove the following results.

Theorem 1.5.2. If f (s) ∈ C2π , s ∈ N ∪ {0}, then for all n ∈ N and h ∈ (0, 1) we
have

ω1(P
(s)
n (f ); h)

≤ Cs min{h‖f ‖ · |||P (s+1)
n |||, n−sω1(f

(s); 1/n) · |||P (s)
n ||| + ω1(f

(s); h}.

Proof. By Lemma 1.5.1, written for p = +∞, r = 1, f ≡ f (s) and Tn(f ) ≡
P

(s)
n (f ), and by Theorem 1.5.1, we get

ω1(P
(s)
n (f ); h) ≤ 2‖P (s)

n (f ) − f (s)‖ + ω1(f
(s); h)
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≤ 2Csn
−sω1(f

(s); 1/n) · |||P (s)
n ||| + ω1(f

(s); h).

On the other hand, if |x − y| ≤ h, x, y ∈ R, we have

|P (s)
n (f )(x) − P (s)

n (f )(y)| ≤ |x − y| · ‖P (s+1)
n (f )‖ ≤ h‖P (s+1)

n (f )‖
≤ h‖f ‖ · |||P (s+1)

n |||.
Passing to supremum, we get

ω1(P
(s)
n (f ); h) ≤ h‖f ‖ · |||P (s+1)

n |||.
Collecting the inequalities, we immediately obtain

ω1(P
(s)
n (f ); h)

≤ Cs min{h‖f ‖ · |||P (s+1)
n |||, n−sω1(f

(s); 1/n) · |||P (s)
n ||| + ω1(f

(s); h)},
which proves the theorem. �

Corollary 1.5.1. Let us assume that f (s) ∈ LipMα, s ∈ N∪{0}, 0 < α ≤ 1. Then
the best possible result concerning the partial preservation of global smoothness of
f by P

(s)
n (f ) which can be derived by Theorem 1.5.2 is

ω1(P
(s)
n (f ); h) ≤ Mh

α
s+1+α log

1

h
, 0 < h < 1, n ∈ N,

attained if simultaneously we have

|||P (s)
n ||| = O(ns log n) and |||P (s+1)

n ||| = O(ns+1 log n).

Proof. By Berman [19], the estimates

|||P (s)
n ||| = O(ns log n), |||P (s+1)

n ||| = O(ns+1 log n)

are the best possible.
Replacing in Theorem 1.5.2, we obtain

ω1(P
(s)
n (f ); h) ≤ Cs,α,f min{hns+1 log n, n−α log n + hα},

for all n ∈ N, h ∈ (0, 1).
By the equation n−α log n = hns+1 log n we get h = n−s−1−α . This is the best

choice for h, because when h < n−s−1−α , the minimum in the above inequality is
hns+1 log n, and when h > n−s−1−α , it is n−α log n + hα .

As a conclusion, replacing n = h− 1
s+1+α , we immediately obtain the corollary.�



1.6 Bibliographical Remarks and Open Problems 37

1.6 Bibliographical Remarks and Open Problems

The Theorems 1.1.1, 1.2.1, 1.2.3, Corollaries 1.2.1, 1.2.2, Theorem 1.4.2 and Corol-
lary 1.2.3 are from Gal–Szabados [56]. Lemma 1.3.1, Theorem 1.3.2, Corollaries
1.3.1, 1.3.2, Lemma 1.5.1, Theorem 1.5.2 and Corollary 1.5.1 are from the book
Anastassiou–Gal [6]. Completely new are the following results: Theorems 1.2.2, 1.2.4,
1.2.7, Corollaries 1.2.4, 1.2.5, Theorem 1.2.8, Theorem 1.4.3, and Corollary 1.4.1.

Also, below are described several open problems which might be of interest for
future research.

Open Problem 1.6.1. Construct a sequence of algebraic projection operators
for which in Corollary 1.3.1 we have |||L(s)

n |||∗ = O(ns log n) and |||L(s+1)
n ||| =

O(n2(s+1)), n ∈ N.

Open Problem 1.6.2. Prove global smoothness preservation properties for the
Balász–Shepard operator on an infinite interval (semi-axis) from Della Vecchia–
Mastroianni–Szabados [38], defined on the knots xk = kγ

nγ/2 , k = 0, 1, . . . , n, γ ≥ 1,

with respect to the modulus of continuity ω�(f ; t)w.
We recall that in [38], the convergence behavior is considered with respect to

the weight w(x) = (1 + x)−β and ω�(f ; t)w = sup0≤h≤t {||w(x)[f (x + h�(x)) −
f (x)]||} -the modulus of continuity of f with the step function �(x) = x1−1/γ .

Open Problem 1.6.3. Construct a sequence of trigonometric projection opera-
tors {Pn(f )}n (for example, a sequence of interpolating trigonometric polynomials)
simultaneously satisfying

|||P (s)
n ||| = O(ns log n), |||P (s+1)

n ||| = O(ns+1 log n), n ∈ N,

for a fixed s ∈ N ∪ {0}.
It is possible to be useful the results in the algebraic case in Szabados–Vértesi

[99].

Open Problem 1.6.4. Let us consider the so-called Grünwald interpolation
polynomials given by Gn(f )(x) = ∑n

i=1 l2
i (x)f (xi), where li (x) = l(x)

(x−xi )l
′(xi )

,
l(x) = ∏n

i=1(x − xi), xi = cos (2i − 1)π/[2n].
In Jiang Gongjian [64] the following estimate of convergence is proved: if f ∈

Lipα(0 < α ≤ 1), then

|Gn[f )(x) − f (x)| ≤ 4
√

2

(1 + x)n
(1 + log n)|f (x)| + gn(x), (−1 < x ≤ 1),

where

gn(x) ≤ 8

1 + x

(
2 + 1

1 − α

)(π

n

)α

, (0 < α < 1)

and

gn(x) ≤ 4
√

2

(1 + x)n
(1 + log n), (α = 1).
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Then proving an estimate for ||G′
n(f )|| and using the standard method in this

chapter, find the global smoothness preservation property with respect to the usual
uniform modulus of continuity, satisfied by the Grünwald interpolation polynomials.

More generally, let us consider the positive linear operators introduced by
Criscuolo–Mastroianni [31] of the form

Vm(A; �; f ; x) =
m∑

k=1

l2
m,k(x)

�2
m(xm,k)

f (xm,k)

/ m∑
k=1

l2
m,k(x)

�2
m(xm,k)

,

where A = (xm,k)
m
k=1 is a triangular matrix of nodes, lm,k(x) are the corresponding

fundamental polynomials of Lagrange interpolation, and (�m(x))∞m=1 is a sequence of
functions such that �(xm,i) 
= 0, i = 1, ..., m. Obviously Vm are combined Shepard–
Grünwald operators.

The question is to find global smoothness preservation properties of these opera-
tors with respect to the usual uniform modulus of continuity.

Open Problem 1.6.5. Let X = (xk,n)
n+1
k=1 be an interpolatory matrix on [a, b].

For any f ∈ C[a, b] and x ∈ [a, b], let us consider the Shepard operator

Sn,s(X; f ; x) =

n+1∑
k=0

f (xk,n)|x − xn,k|−s

n+1∑
k=0

|x − xk,n|−s

, s > 1.

Let φ(x) be a function defined on [a, b] such that φ ∼ 1 locally and φ(x) ∼ (x −a)α ,
x → a+ and φ(x) ∼ (b − x)β , x → b−, where α and β are non-negative numbers.
The behavior of convergence in terms of the so-called Ditzian–Totik modulus of
continuity ω

φ
1 (f ; h) is estimated by Della Vecchia–Mastroianni–Vértesi [40].

The question is to find global smoothness preservation properties of Sn,s(X; f ; x)

with respect to the Ditzian–Totik modulus of continuity ω
φ
1 (f ; h).

Open Problem 1.6.6. Let f ∈ C2π and In(f ) be the trigonometric Lagrange
interpolation polynomial of degree n on equidistant nodes in [0, 2π). A classical
theorem of Marcinkiewicz and Zygmund (see, e.g., Zygmund [111]) shows that

||In(f ) − f ||Lp ≤ Cω

(
f ; 1

n

)
∞

.

On the other hand, we can get

ω(In(f ); h)Lp ≤ C||In(f ) − f ||Lp + ω(f ; h)Lp

and
ω(In(f ); h)Lp ≤ Ch||I ′

n(f )||Lp .

The problem is to find an estimate of ||I ′
n(f )||Lp in terms of the ω(f ; 1

n
)∞ mod-

ulus, or more generally in terms of the ω(f ; 1
n
)Lp modulus, the fact of which would



1.6 Bibliographical Remarks and Open Problems 39

imply a global smoothness preservation property of In(f ) with respect to the usual
Lp-modulus of continuity.

Open Problem 1.6.7. In Prestin–Xu [83] it is proved (see p. 118, Corollary 3.2
there) that if f ∈ W

p
1 and m1 > 1, then

||Fn(f ) − f ||Lp ≤ Cpn−1ωm1−1

(
f ′; 1

n

)
Lp

, 1 < p < ∞,

where Fn(f ) represents the (0, m1) trigonometric interpolation polynomials on the
nodes 2kπ/n, k = 0, . . . , n − 1.

An estimate of ||F ′
n(f )||Lp in terms of the ω(f ; 1

n
)Lp modulus, would imply by

the standard method of this chapter a global smoothness preservation property of
Fn(f ), with respect to the usual Lp modulus of continuity.

Open Problem 1.6.8. According to a result of Prasad and Varma (see, e.g., the
survey Szabados–Vértesi [101] and its references), for the Hermite–Fejér polynomial
Hn(f ) based on the knots of Chebyshev of first kind, the estimate

||Hn(f ) − f ||Lp,w ≤ Cω

(
f ; 1

n

)
∞

holds, where w(x) = (1 − x2)−1/2 and

||f ||Lp,w =
(∫ 1

−1
w(x)|f (x)|pdx

)1/p

, 0 < p < ∞.

Defining the modulus

ω(f ; h)L1,w =sup

{∫ 1−t

−1+t

w(x)|f (x + t) − f (x − t)|dx; 0 ≤ t ≤ h

}
, 0 < h < 1,

and possibly taking into account the estimate for ||H ′
n(f )|| in the proof of Theorem

1.2.1 (see relation (1.7) there), find a global smoothness preservation result for Hn(f )

through the above weighted modulus of continuity.
Similar problem for the mean convergence of Lagrange interpolation polynomials.

Open Problem 1.6.9. Let Jn(f )(x) be the Jackson interpolation trigonometric
polynomials considered by Section 1.4. Using the estimate of ||f − Jn(f )||Lp , 1 <

p < +∞, in terms of the Lp-average modulus of continuity τ(f ; h)Lp in Theorem
2 in Popov–Szabados [78] and the standard method in this chapter, find the global
smoothness preservation properties of Jn(f )(x) in terms of τ(f ; h)Lp , p > 1. (The
case p = 1 was solved by Corollary 1.4.1.)

Open Problem 1.6.10. Let Sn,λ,Lm(f )(x) be the Shepard–Lagrange operator
attached to f ∈ C[−1, 1] and to the roots of the sequence of orthogonal polynomials
in Trimbitas [104]. Using the estimate of ||f −Sn,λ,Lm(f )|| in Theorem 2 in [104] and
the standard method in this chapter, find the global smoothness preservation properties
of Sn,λ,Lm(f ).
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Open Problem 1.6.11. Let the Shepard–Taylor operator, given by

Sn,λ,Tm(f )(x) =
n∑

i=−n

Ai,λ(x)Tm,i(f )(x),

where

Ai,λ(x) = |x − xi |−λ

n∑
k=−n

|x − xk|−λ

,

and

Tm,i(f )(x) =
m∑

j=0

f (j)(xi)(x − xi)
j

j ! ,

defined on the special matrix of nodes in Della Vecchia–Mastroianni [33]. Using the
estimates of the approximation error in [33] and the standard method in this chapter,
find the global smoothness preservation properties of Sn,λ,Tm(f )(x).

Open Problem 1.6.12. Theorem 1.2.7 suggests the following problem: Find con-
vergence and global smoothness preservation properties on D, of the complex Shepard
operators on the roots of unity given by

Sn,2p(f )(z) =
n∑

k=1

Ak,2p(z)(f )(zk),

where

Ak,2p(z) = (z − zk)
−2p

n∑
j=1

(z − zj )
−2p

,

p ∈ N,zk = exp2πki/n, f ∈ AC and i = √−1.

Open Problem 1.6.13. In order to reduce the large amount of computation re-
quired by the classical Shepard operator given by the formula

Sn,p(f )(x) =
n∑

k=1

sk,p(x)f (xk),

where

sk,p(x) = (x − xk)
−p

n∑
j=1

(x − xj )
−p

,

p ∈ N, in, e.g., [50], [53], [106] is considered the so-called local variant of it, given
by the formula
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Wn,p(f )(x) =
n∑

k=1

wk,p(x)f (xk),

where

wk,p(x) = Bk,p(x)
n∑

j=1

Bj,p(x)

,

with Bk,p(x) = (R−|x−xk |)p+
Rp |x−xk |p , R > 0 constant, p ∈ N.

Also, replacing in the expression of Wn,p(f )(x) the values f (xk) by the values
of some interpolation operators (like Lagrange or Taylor), in, e.g., [105] the local
variants of Shepard–Lagrange and Shepard–Taylor operators are considered.

Finally, an interesting problem would be to find global smoothness preservation
properties for all these local variants of Shepard operators, too.



2

Partial Shape Preservation, Univariate Case

In this chapter we present results concerning the shape-preserving property of some
classical interpolation operators.

2.1 Introduction

We begin with the following simple

Definition 2.1.1. Let C[a, b] = {f : [a, b] → R; f continuous on [a, b]} and
a ≤ x1 < x2 < · · · < xn ≤ b, be fixed knots. A linear operator U : C[a, b] →
C[a, b] is called of interpolation-type (on the knots xi, i = 1, . . . , n) if for any
f ∈ C[a, b] we have

U(f )(xi) = f (xi), ∀ i = 1, . . . , n.

Remark. Important particular cases of U are of the form

Un(f )(x) =
n∑

k=1

f (xk)Pk(x), n ∈ N,

where Pk ∈ C[a, b] satisfy Pk(xi) = 0 if k 
= i, Pk(xi) = 1, if k = i, and contain
the classical Lagrange interpolation polynomials and Hermite–Fejér interpolation
polynomials.

Now, if f ∈ C[a, b] is, for example, monotone (or convex) on [a, b], it is easy to
note that because of the interpolation conditions, in general U(f ) cannot be monotone
(or convex) on [a, b]. However there is a natural question if U(f ) remains monotone
(or convex) on neighborhoods of some points in [a, b]. In this sense, let us introduce
the following

Definition 2.1.2. Let U : C[a, b] → C[a, b] be a linear operator of interpolation-
type on the knots a ≤ x1 < · · · < xn ≤ b.

Let y0 ∈ (a, b). If for any f ∈ C[a, b], nondecreasing on [a, b], there exists a
neighborhood of y0, Vf (y0) = (y0 − εf , y0 + εf ) ⊂ [a, b], εf > 0 (i.e., depending
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on f ) such that U(f ) is nondecreasing on Vf (y0), then y0 is called a point of weak
preservation of partial monotony and, correspondingly, U is said to have the property
of weak preservation of partial monotony (about y0).

If the above neighborhood V (y0) does not depend on f , then y0 is called a point
of strong preservation of partial monotony.

Similar definitions hold if monotony is replaced by, e.g., convexity (of any order).
In connection with Definition 2.1.2, in a series of papers, T. Popoviciu proved the

following negative and positive results.

Theorem 2.1.1. (i) (Popoviciu [80], p. 328). Let a ≤ x0 < x1 < · · · < xm ≤ b

be fixed. If m ≥ n + 3, (where n ∈ {−1, 0, 1, 2, 3}), then there do not exist in
(a, b) points of strong preservation of partial convexity of order n, for the Lagrange
interpolation polynomial (of degree ≤ m), Lm(x0, . . . , xm; f )(x). Here convexity of
order n means that (the divided difference) [z1, . . . , zn+2; f ] ≥ 0, for all distinct
zi ∈ [a, b], i = 1, . . . , n + 2. The monotony corresponds to n = 0 and the usual
convexity to n = 1.

(ii) (Popoviciu [81], p. 81, Theorem VII). If we denote by Fn(f )(x), n ∈ N, the
classical Hermite–Fejér polynomial based on the roots xi,n ∈ (−1, 1), i = 1, . . . , n,

of the Jacobi polynomials J
(α,β)
n (x) of degree n with −1 ≤ α ≤ 1, −1 ≤ β ≤ 1, then

each root x′
i,n, i = 1, . . . , n−1, of the polynomial l′(x), where l(x) = ∏n

i=1(x−xi,n),
is a point of strong preservation of partial monotony for Fn(f ).

(iii) (Popoviciu [81], p. 82, Theorem VIII.) There do not exist in (−1, 1) points of
strong preservation of partial (usual) convexity for Fn(f ), n ∈ N.

(iv) (Popoviciu [81], p. 82, Theorem IX.) If, for example,

Gn(f )(x) =
n∑

i=1

f (xi)

[
l(x)

(x − xi)l′(xi)

]2

,

l(x) =
n∏

i=1

(x − xi), xi = cos
(2i − 1)π

2n
, i = 1, . . . , n,

are the Grünwald interpolation polynomials, then there do not exist in (−1, 1) points
of strong preservation of partial monotony for Gn(f ), n ≥ 2.

In Section 2.2 first we obtain quantitative estimates of the lengths of neighbor-
hoods V (x′

i,n), i = 1, . . . , n − 1, in Theorem 2.1.1 (ii). In contrast with Theorem
2.1.1(iii), it is proved that in case when n ≥ 3 is odd, 0 is a point of weak preserva-
tion of partial strict-convexity for Fn(f ). The Kryloff–Stayermann polynomials are
studied as well.

A related result for Grünwald polynomials is obtained and quantitative estimates
of the neighborhoods of shape preservation are proved. Also, taking into account the
relationship between the Hermite–Fejér polynomials Fn(f ) based on the Chebyshev
nodes of first kind and the trigonometric Jackson interpolation polynomials Jn(f ),
the shape preserving properties of Jn(f ) are deduced.

Finally, qualitative and quantitative results in partial monotony (or convexity)
preserving approximation by several Shepard-type operators are obtained.
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2.2 Hermite–Fejér and Grünwald-Type Polynomials

First we obtain a quantitative estimate for a particular case of Theorem 2.1.1,(ii) (the
qualitative version of the result is proved in Popoviciu [79]).

Theorem 2.2.1. Let n = 2m be even and let us denote by Fn(x) the classical
Hermite–Fejér polynomial based on the roots xi,n ∈ (−1, 1), i = 1, . . . , n, of λ-
ultraspherical polynomials of degree n, with λ > −1 (i.e., Jacobi polynomials of
degree n, with α = β and λ = α + β + 1, −1 < α, β ≤ 1),

−1 < xn,n < · · · < xn+1−m,n < 0 < xm,n < · · · < x1,n < −1.

There exists a constant c > 0 (independent of f and n) such that if f : [−1, 1] →
R is monotone on [−1, 1], then Fn(f )(x) is monotone (of the same monotonicity) in(
− c

n4 , c
n4

)
⊂ (−1, 1).

Proof. Let us denote Fn(f )(x) = ∑n
i=1 hi,n(x)f (xi,n), where

hi,n(x) = l2
i (x)

[
1 − l′′(xi,n)

l′(xi,n)
(x − xi,n)

]
,

li(x) = l(x)/[(x − xi,n)l
′(xi,n)], l(x) =

n∏
i=1

(x − xi,n).

By, e.g., Popoviciu [79] we have

hi,n(0) = l2(0)[2 − (1 − λ)x2
i,n]/[l′(xi,n)

2(1 − x2
i,n)x

3
i,n], (2.1)

for all i = 1, . . . , n, and

F ′
n(f )(x) =

n−1∑
i=1

[Qi(x)][f (xi,n) − f (xi+1,n)],

where Qi(x) = ∑i
j=1 h′

j,n(x), i = 1, . . . , n − 1.
First we will prove

Qi(0) ≥ h′
1,n(0) > 0, for all i = 1, . . . , n − 1. (2.2)

Indeed, by (2.1) we get

sign {h′
i,n(0)} = +1, for all i = 1, . . . , m,

which immediately implies

Qi(0) ≥ h′
1,n(0), for all i = 1, . . . , m.
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Now, let m + 1 ≤ i < n. Then by (see, e.g., Popoviciu [79], p. 245) h′
i,n(0) =

−h′
n+1−i,n(0), i = 1, . . . , n − 1, we again get

Qi(0) =
i∑

j=1

h′
j,n(0) > h′

1,n(0), i = m + 1, . . . , n − 1,

which proves (2.2). On the other hand, simple calculations show

h′
1,n(0) ≥ c1

n2 (c1 > 0, independent of n). (2.3)

From Szegö [102], §14.6, we have max|x|≤ 1
2

∑n
j=1 |hj,n(x)| ≤ c2. Applying

Bernstein’s inequality, we obtain

max
|x|≤ 1

4

∣∣∣∣∣∣
i∑

j=1

h′
j,n(x)

∣∣∣∣∣∣ = max
|x|≤ 1

4

|Qi(x)| ≤ c3n, i = 1, . . . , n − 1

and
max
|x|≤ 1

8

|Q′
i (x)| ≤ c4n

2, i = 1, . . . , n − 1. (2.4)

Let di be the nearest root of Qi(x) to zero. By (2.2), (2.3) and (2.4) it follows that

c1

n2 ≤ |Qi(0)| = |Qi(di) − Qi(0)| = |di | · |Q′
i (z)| ≤ c4|di |n2,

i.e.,

|di | ≥ c

n4 , for all i = 1, . . . , n − 1,

which proves the theorem. �

Also, we can prove the following
Theorem 2.2.2. Let us denote by Fn(f )(x), n ∈ N, the classical Hermite–Fejér

polynomial based on the roots −1 < xn,n < xn−1,n < · · · < x1,n < 1, of the

Jacobi polynomials P
(α,β)
n (x), with α, β ∈ (−1, 0]. If ξ is any root of the polynomial

l′(x), then there exists a constant c > 0 (independent of n and of f ) such that if
f : [−1, 1] → R is monotone on [−1, 1], then Fn(f )(x) is monotone (of the same
monotony) in(
ξ − cξ

n7+2γ
, ξ + cξ

n7+2γ

)
⊂ (−1, 1), where cξ = c

(1 − ξ2)5/2+δ
, γ = max{α, β},

and

δ =
{

α, if 0 ≤ ξ < 1
β, if −1 < ξ ≤ 0.

Proof. Keeping the notations in the proof of Theorem 2.2.1, and reasoning as in
the proof of Lemma 3 in Popoviciu [81] we get
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Qi(ξ) > min{h′
1,n(ξ), −h′

n,n(ξ)} > 0, for all i = 1, . . . , n − 1.

Let an, bn ∈ (0, 1), an, bn ↘ 0 (when n → +∞) be such that |h′
1,n(ξ)| ≥

c1an, |h′
n,n(ξ)| ≥ c2bn, and sn = min{an, bn}.

It easily follows Qi(ξ) ≥ c3sn, i = 1, . . . , n − 1. By Szegö [102], Theorem
14.5, we have

n∑
j=1

hj,n(x) = 1, ∀ x ∈ [−1, 1],

where hj,n(x) ≥ 0, ∀ x ∈ [−1, 1], j = 1, . . . , n.
Applying twice the Bernstein’s inequality and reasoning exactly as in the proof

of Theorem 2.2.1 (with ξ instead of 0), we obtain

Qi(ξ) ≤ c1|di − ξ |n2/(1 − ξ2), i = 1, . . . , n − 1,

where di is the nearest root of Qi(x) to ξ , and therefore

max
|x−ξ |≤aξ

sn

n2

Qi(x) > 0, i = 1, . . . , n − 1,

with aξ = c2(1 − ξ2).
It remains to find a (lower) estimate for sn. First we have

|P (α,β)
n (ξ)| ≥ c3n

−1/2

(1 − ξ)δ/2+1/4 ,

(see Theorem 8.21.8 in Szegö [102]).
By Popoviciu [81], p. 79, relation (27),

h′
1,n(ξ) = l2(ξ)

(x1,n − ξ)3[l′x1,n)]2

[
2 + (x1,n − ξ)

l′′(x1,n)

l′(x1,n)

]
> 0,

h′
n,n(ξ) = l2(ξ)

(xn,n − ξ)3[l′xn,n)]2

[
2 + (xn,n − ξ)

l′′(xn,n)

l′(xn,n)

]
< 0.

By Szegö [102], Theorem 14.5, 2 + (xi,n − ξ)
l′′(xi,n)

l′(xi,n)
≥ 1 and by Szegö [102],

(7.32.11),

h′
1,n(ξ) ≥ l2(ξ)

(x1,n − ξ)3[l′(x1,n)]2 = [P (α,β)
n (ξ)]2

(x1,n − ξ)3[P (α,β)′
n (x1,n)]2

≥ c4[P (α,β)
n (ξ)]2

n2q(1 − ξ)3 ,

(where q = max{2 + α, 2 + β}).
Also,

−h′
n,n(ξ) = |h′

n,n(ξ)| ≥ c5[P (α,β)
n (ξ)]2

n2q(1 + ξ)3 .
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Thus we obtain

Qi(ξ) ≥ c8

n5+2γ (1 − ξ2)7/2+δ
, i = 1, . . . , n − 1.

Finally, taking sn = c8
n5+2γ (1−ξ2)7/2+δ we easily obtain the theorem. �

Remarks. (1) If ξ is near the endpoints, i.e., 1 − ξ2 ∼ 1
n2 , then the interval of

preservation of the monotony is(
ξ − c

n2+2(γ−δ)
, ξ + c

n2+2(γ−δ)

)
⊂ (−1, 1).

For α = β ∈ (−1, 0), i.e., in the ultraspherical case, we obtain the best possible
interval (

ξ − c

n2 , ξ + c

n2

)
⊂ (−1, 1).

(2) Let us consider, for example, the case α = β = − 1
2 , i.e., xi,n = cos 2i−1

2n
π, i =

1, . . . , n and f (x) = e1(x) = x, ∀ x ∈ [−1, 1]. It is known that Fn(f )(x) =
x − T2n−1(x)+x

2n
, x ∈ [−1, 1], where T2n−1(x) = cos[(2n − 1) arccos x]. We have

F ′
n(e1)(x) = 1 − T ′

2n−1(x) + 1

2n
, F ′

n(e1)(−x) = F ′
n(e1)(x),

F ′′
n (e1)(x) = −T ′′

2n−1(x)/(2n), F ′′
n (0) = 0.

It follows that the roots of F ′
n(e1)(x) are symmetric in respect with 0 and the

equation F ′
n(e1)(x) = 0 is equivalent with T ′

2n−1(x) = 2n − 1. This last one reduces
to

sin[(2n − 1)t] = sin t, t ∈ (0, π),

where x = cos t .
Because of symmetry, we are interested only in the positive roots, i.e., when

t ∈ (
0, π

2

]
.

For n even, 0 is not a root of F ′
n(e1)(x), while for n odd 0 is a double root.

Simple calculations show that the positive roots of F ′
n(e1)(x) are given by

x
(1)
k = cos

2kπ

2n − 2
, k = 1, . . . ,

[
n − 1

2

]
, x

(2)
k = cos

(2k + 1)π

2n
,

k = 0, 1, . . . ,

[
n − 1

2

]
, n ≥ 2.

It is easy to show that for all k,

x
(1)
k > x

(2)
k > x

(1)
k+1 > · · ·

Because x
(1)
1 −x

(2)
1 ∼ 1

n2 , near the endpoints we obtain the best possible estimates.

Now, if for example n is even, then
[

n−1
2

] = n−2
2 and for k = n−2

2 we easily get
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x
(1)
k − x

(2)
k ∼ 1

n
,

which means that near 0, the estimate for the interval of preservation of monotonicity
is much better than those given by Theorems 2.2.1 and 2.2.2.

For n ≥ 3 odd, let us denote by Fn(f )(x) the Hermite–Fejér interpolation polyno-
mial based on the roots xi,n ∈ (−1, 1), i = 1, . . . , n, of λ-ultraspherical polynomials
of degree n, λ > −1, λ 
= 0. Also, let us consider the Côtes–Christoffel numbers of
the Gauss–Jacobi quadrature

λi,n :=22−λπ

[
�

(
λ

2

)]−2
�(n + λ)

�(n + 1)
(1 − x2

i,n)
−1[P (λ)′

n (xi,n)]−2, i = 1, . . . , n

and denote
�2

hf (0) = f (h) − 2f (0) + f (−h).

In contrast to the negative result in Theorem 2.1.1,(iii), we have the following:
Theorem 2.2.3. If f ∈ C[−1, 1] satisfies

n∑
i=1

[λi,n�
2
xi,n

f (0)]
x2
i,n

> 0, (2.5)

then Fn(f )(x) is strictly convex in [−|dn|, |dn|], with

|dn| ≥
c(λ)

(n−1)/2∑
i=1

[λi,n�
2
xi,n

f (0)]/x2
i,n

n2

[
ω1

(
f ; 1

n

)
+ ‖f − Fn(f )‖

]
I

,

where c(λ) > 0 is independent of f and n, I = [− 1
2 , 1

2

]
, ω1

(
f ; 1

n

)[
− 1

2 , 1
2

] is the

modulus of continuity on
[− 1

2 , 1
2

]
and ‖ · ‖[− 1

2 , 1
2

] is the uniform norm on
[− 1

2 , 1
2

]
.

Proof. Denoting Fn(f )(x) = ∑n
i=1 hi,n(x)f (xi,n), we have

h′′
i,n(x) = −4

l′′(xi,n)

l′(xi,n)
li(x)l′i (x) + 2[(l′i (x))2 + li (x)l′′i (x)]

[
1 − l′′(xi,n)

l′(xi,n)
(x − xi,n)

]
.

But li (0) = 0 and l′i (0) = − l′(0)
xi,nl′(xi,n)

, for i 
= (n + 1)/2 and

1 + xi,n

l′′(xi,n)

l′(xi,n)
= 1 + λx2

i,n

1 − x2
i,n

, i = 1, . . . , n (see, e.g., Popoviciu [79]).

We obtain
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h′′
i,n(0) = 2(l′(0))2

(l′(xi,n))2 · 1

x2
i,n

(
1 + λx2

i,n

1 − x2
i,n

)
> 0, ∀ i 
= (n + 1)/2. (2.6)

Also, because xi,n = −xn+1−i,n, i = 1, . . . , n, l′(xi,n) = l′(xn+1−i,n) (since n

is odd) we easily get
h′′

i,n(0) = h′′
n+1−i,n(0).

But

λi,n = c1λ�(n + λ)

�(n + 1)
· 1

(l′(xi,n))2 · 1

1 − x2
i,n

and (l′(0))2 ∼ nλ,

which together with (2.6) implies

h′′
i,n(0) ≥ c2λnλi,n/x

2
i,n, for all i 
= (n + 1)/2.

Therefore

F ′′
n (f )(0) =

(n−1)/2∑
i=1

h′′
i,n(0)�2

xi,n
f (0) ≥ c3λn

n∑
i=1

λi,n�
2
xi,n

f (0)

x2
i,n

> 0. (2.7)

By (2.7) it follows that Fn(f ) is strictly convex in a neighborhood of 0. Let dn be
the nearest root of F ′′

n (f ) to 0. We may assume that |dn| ≤ c
n

(since otherwise there
is nothing to prove, the interval of convexity cannot be larger than

[− c
n
, c

n

]
). Then by

the mean value theorem, Bernstein’s inequality and Stechkin’s inequality (see, e.g.,
Szabados–Vértesi [100], p. 284) we get

F ′′
n (f )(0) = |F ′′

n (f )(0) − F ′′
n (f )(dn)| = |dn| · |F ′′′

n (f )(y)|

≤ |dn|c4n
2‖F ′

n(f )‖J ≤ c5|dn|n3ω1

(
Fn(f ); 1

n

)
I

≤ c5|dn|n3
[
ω1

(
f ; 1

n

)
+ ω1

(
Fn(f ) − f ; 1

n

)]
I

≤ c5|dn|n3
[
ω1

(
f ; 1

n

)
+ ‖f − Fn(f )‖

]
I

,

where J = [− 1
4 , 1

4

]
, I = [− 1

2 , 1
2

]
.

Combining the last inequality with (2.7), the proof of the theorem is immediate.
�

Remarks. (1) It is obvious that if f is strictly convex on [−1, 1], then (2.5)
is satisfied (from λi,n > 0, i = 1, . . . , n). Therefore, because the lower estimate
for |dn| depends on f , we can say that 0 is a point of weak preservation of partial
strict-convexity. Let us suppose that 0 would be point of strong preservation of partial
strict-convexity. For any ε > 0, f1(x) = εx2 + x and f2(x) = εx2 − x are strictly
convex on [−1, 1]. By hypothesis we obtain that there exists a neighborhood of 0,
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Vn(0), independent of ε > 0 (here n ≥ 3 is odd fixed), such that F ′′
n (f1)(x) >

0, F ′′
n (f2)(x) > 0, ∀ x ∈ Vn(0). Passing with ε ↘ 0, we obtain F ′′

n (e1)(x) ≥ 0
and F ′′

n (e1)(x) ≤ 0, ∀ x ∈ Vn(0), i.e., F ′′
n (e1) = 0, ∀ x ∈ Vn(0), where e1(x) =

x, x ∈ [−1, 1]. But this means that degree [Fn(e1)(x)] ≤ 1, x ∈ Vn(0), which is a
contradiction, because Fn(e1)(x) = x − T2n−1(x)+x

2n
, Tm(x) = cos[m arccos(x)].

As a conclusion, 0 cannot be a point of strong type for strict-convexity and Fn(f ).
Let us note that also the strict convexity of f on [−1, 1] can be replaced by the

weaker condition �2
hf (0) > 0, for all h ∈ (0, 1].

(2) More explicit estimate for |dn| in Theorem 2.2.3 can be obtained in the fol-
lowing particular case.

Let us suppose that f is strongly convex on [−1, 1] (i.e., there exists γ > 0
such that ηf (x) + (1 − η)f (y) − f (η + (1 − η)y) ≥ η(1 − η)γ (x − y)2, for all
η ∈ [0, 1], x, y ∈ [−1, 1]) and that f ∈ Lip α, with 0 < α ≤ 1.

It easily follows that �2
xi,n

f (0)/x2
i,n ≥ 2γ , for all i = 1, . . . , (n − 1)/2. Also, by

Szegö [102], relation (15.3.10), we have

λi ∼ iλ/nλ+1, for all i = 1, . . . , n, (2.8)

which immediately implies
(n−1)/2∑

i=1

λi,n ≥ c, (2.9)

c > 0, constant independent of n.
For ‖f − Fn(f )‖I we can use various estimates, (see, e.g., Szabados–Vértesi

[100])

‖f − Fn(f )‖I ≤ c

n∑
k=0

ω1

(
f ; k

n

)
kλ−2, if λ > 0.

Taking into account all the above estimates, by the estimate in Theorem 2.2.3 we
obtain

|dn| ≥ cλγ /

{
n2

[
1

nα
+

n∑
i=0

(
i

n

)α

iλ−2

]}
, if λ > 0,

where the constant c (with cλ > 0) is independent of n but depends on f .
If for example 0 < λ + α < 1, by

∑n
i=0 iα+λ−2 ≤ c, we obtain

|dn| ≥ cλγ

n2−α
, c, λ > 0.

(3) Two open questions appear in a natural way:
(i) If n is odd then find other points of weak preservation of partial strict-convexity

for Fn(f );
(ii) What happens if n is even?
(4) The dependence of |dn| of f in Theorem 2.2.3 can be dropped in a simple way

for some subclasses of functions. Thus, let us define (for a ∈ (0, 1])
B∗[−a, a] = {f : [−1, 1] → R; f is strictly convex on [−a, a],



52 2 Partial Shape Preservation, Univariate Case

f (x) ≥ 0, x ∈ [−a, a], f (0) = 0}.
Let n ≥ 3 be odd. Because hi,n(0) = h′

i,n(0) = 0 and h′′
i,n(0) > 0, for all

i ∈ {1, . . . , n} \ {
n+1

2

}
, obviously there exists εn > 0 such that

h′′
i,n(x) > 0, for all x ∈ [−εn, εn] and all i ∈ {1, . . . , n} \

{
n + 1

2

}
.

For all x ∈ [−εn, εn] and all f ∈ B∗[−1, 1] we get

F ′′
n (f )(x) =

n∑
i=1

h′′
i,n(x)f (xi,n) =

n∑
i=1i 
= n+1

2

h′′
i,n(x)f (xi,n)

≥
(n−1)/2∑

j=1

h∗(x)[f (xj,n) + f (xn+1−j,n)] > h∗(x)
n − 1

2
2f (0) = 0,

where h∗(x) = min
{
h′′

i,n(x); i ∈ {1, . . . , n} \ {
n+1

2

}}
> 0, ∀ x ∈ [−εn, εn], εn

being independent of f ∈ B∗[−1, 1].
On the other hand, it easily follows that hi,n(x) ≥ 0, for all x ∈ [−εn, εn], i.e.,

Fn(f )(x) = ∑n
i=1 hi,n(x)f (xi,n) ≥ 0, for all x ∈ [−εn, εn], f ∈ B∗[−1, 1] and as

a conclusion, Fn(f ) ∈ B∗[−εn, εn].
Now, let us consider the Hermite–Fejér type interpolation with quadruples nodes

introduced by Kryloff–Stayermann [68] (see also, e.g., Gonska [59]), given by
Kn(f )(x) = ∑n

k=1 hk(x)f (xk), where xk = cos 2k−1
2n

π , Tn(x) = cos[n arccos x]
and hk(x) = pk(x)

(x−xk)
4 T 4

n (x),

pk(x) = 1

n4

{
(1 − xxk)

2 + 1

6
(x − xk)

2[(4n2 − 1)(1 − xxk) − 3]
}

.

It is known that Kn(f )(xk) = f (xk), K
(i)
n (f )(xk) = 0, i = 1, 2, 3, k = 1, . . . , n,∑n

k=1 hk(x) ≡ 1.This implies
∑n

k=1 h′
k(x) ≡ 0 and reasoning exactly as in Popoviciu

[79], p. 242, by −1 < xn < xn−1 < · · · < x1 < 1 we obtain

K ′
n(f )(x) =

n−1∑
i=1

[Qi(x)][f (xi) − f (xi+1)],

where Qi(x) = ∑i
j=1 h′

j (x).
First we present two results of qualitative type.
Theorem 2.2.4. If n is even number (i.e., n = 2m), then there exists a neighbor-

hood of 0 where Kn(f )(x) preserves the monotonicity of f .
Proof. We have T ′

n(0) = 0 and

h′
k(x) = pk(x)

(x − xk)4 · 4T 3
n (x)T ′

n(x) + T 4
n (x)

(x − xk)5
[p′

k(x)(x − xk) − 4pk(x)],
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p′
k(x) = 1

n4

{
−2xk(1 − xxk) + 1

3
(x − xk)[(4n2 − 1)(1 − xxk) − 3]

+ (x − xk)
2

6
(−xk)(4n2 − 1)

}
,

h′
k(0) = 1

x5
k

[4pk(0) + xkp
′
k(0)], k = 1, n,

pk(0) = 1

n4

[
1 + 2

3
x2
k (n2 − 1)

]
> 0,

p′
k(0) = − 1

n4

[
2xk + 4

3
xk(n

2 − 1) + x3
k

6
(4n2 − 1)

]
, k = 1, n.

By xn+1−k = −xk, k = 1, m, we get pn+1−k(0) = pk(0), p′
n+1−k(0) = −p′

k(0)

and consequently h′
n+1−k(0) = −h′

k(0), k = 1, m.
By simple calculations

4pk(0) + xkp
′
k(0) = 1

6n4 [n2(8x2
k − 4x4

k ) + 24 − 20x2
k + x4

k ] > 0,

which implies h′
k(0) < 0, if xk < 0 and h′

k(0) > 0, if xk > 0, i.e., h′
k(0) > 0 if

k = 1, m and h′
k(0) < 0, if k = m + 1, 2m.

Reasoning now exactly as in Popoviciu [79], p. 245, we get Qi(0) > 0, for all
i = 1, 2m − 1. This implies that there exist neighborhoods of 0, Vi(0), such that
Qi(x) > 0, ∀ x ∈ Vi(0), i = 1, 2m − 1. Denoting V (0) = ⋂2m−1

i=1 Vi(0), we get
Qi(x) > 0, ∀ x ∈ V (0), i = 1, 2m − 1, which proves the theorem. �

Theorem 2.2.5. Let n ≥ 3 be odd. Then there exists a neighborhood of 0 where
Kn(f )(x) preserves the strict-convexity of f .

Proof. We can write

h′
k(x) = pk(x)

4T 3
n (x)T ′

n(x)

(x − xk)4 + T 4
n (x)E1(x),

h′′
k(x) = 12pk(x)

T 2
n (x)[T ′

n(x)]2

(x − xk)4 + T 3
n (x)E2(x),

h′′′
k (x) = 24pk(x)

Tn(x)[T ′
n(x)]3

(x − xk)4 + T 2
n (x)E3(x),

h
(4)
k (x) = 24pk(x)

[T ′
n(x)]4

(x − xk)4 + Tn(x)E4(x).

For n ≥ 3 odd and k 
= n+1
2 we obtain

hk(0) = h′
k(0) = h′′

k(0) = h′′′
k (0) = 0 and h

(4)
k (0)
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= 24

x4
k

[
1 + 2

3
x2
k (n2 − 1)

]
> 0.

This implies h
(4)
n+1−k(0) = h

(4)
k (0) and therefore

K(4)
n (f )(0) =

n∑
i=1

h
(4)
k (0)f (xk) =

(n−1)/2∑
j=1

[f (xj ) + f (xn+1−j )]h(4)
j (0)

+f (0)h
(4)
n+1

2
(0) > f (0)

(n−1)/2∑
j=1

2h′′
j (0) + f (0)h′′

n+1
2

(0) = f (0)

n∑
i=1

h′′
i (0) = 0.

Because K
(i)
n (f )(0) = 0, i =, 1, 2, 3, it follows that 0 is minimum point for

K ′′
n (f )(x) and K ′′

n (f ) is strictly convex in a neighborhood of 0, V (0).As a conclusion,
K ′′

n (f )(x) > 0, ∀ x ∈ V (0)\{0}, which shows that Kn(f ) is strictly convex on V (0).
Obviously here V (0) depends on f (and of n of course). The theorem is proved.

�

Remark. Theorem 2.2.5 remains valid if the strict-convexity of f on [−1, 1] is
replaced by the weaker condition

�2
hf (0) = f (h) + f (−h) − 2f (0) > 0, ∀ h ∈ (0, 1].

The quantitative version of Theorem 2.2.4 is the following.
Theorem 2.2.6. Let n be even. There exists a constant c > 0 (independent of f

and n) such that if f : [−1, 1] → R is monotone on [−1, 1], then Kn(f ) is of the

same monotonicity in
(
− c

n4 , c
n4

)
⊂ (−1, 1).

Proof. By the proof of Theorem 2.2.4 we easily get

Qi(0) ≥ h′
1(0) > 0, ∀ i = 1, n − 1.

But h′
1(0) = T 4

n (0)

x5
1 6n4 [n2(8x2

1 − 4x4
1) + 24 − 20x2

1 + x4
1 ] ≥ 4n2x2

1
6n4x5

1
≥ 2

3n2 (because

T 4
n (0) = 1, 8x2

1 − 4x4
1 > 4x2

1 and 24 − 20x2
1 + x4

1 > 0).
On the other hand, by 0 ≤ hk(x), k = 1, n,

∑n
k=1 hk(x) = 1, ∀ x ∈ [−1, 1] and

by Bernstein’s inequality we obtain (reasoning as in the proof of Theorem 2.2.1)

max
|x|≤ 1

4

|Qi(x)| ≤ max
|x|≤ 1

4

n

∥∥∥∥∥
i∑

k=1

hk

∥∥∥∥∥
√

1 − x2
≤ c1n, i = 1, n − 1

and
max
|x|≤ 1

8

|Q′
i (x)| ≤ c2n

2, i = 1, n − 1,

where c1, c2 > 0 are independent of n.
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Now, if di is the nearest root of Qi(x) to zero, we get

2

3n2 ≤ Qi(0) = |Qi(0)| = |Qi(0) − Qi(di)| = |di | · |Q′
i (z)| ≤ c2|di |n2,

i.e., |di | ≥ c

n4 , for all i = 1, n − 1, which proves the theorem. �

The quantitative version of Theorem 2.2.5 is the following.
Theorem 2.2.7. Let n ≥ 3 be odd. If f : [−1, 1] → R satisfies

�2
hf (0) = f (h) + f (−h) − 2f (0) > 0, ∀ h ∈ (0, 1],

then Kn(f )(x) is strictly convex in [−|dn|, |dn|], with

|dn| ≥
c

(n−1)/2∑
i=1

�2
xi

f (0)/x2
i

n3
[
ω1

(
f ; 1

n

) + ‖f − Kn(f )‖]
I

, I =
[
−1

2
,

1

2

]
.

Proof. By the proof of Theorem 2.2.5 we have

K(4)
n (f )(0) =

(n−1)/2∑
i=1

h
(4)
i (0)�2

xi
f (0),

where h
(4)
i (0) = 24

x4
i

[
1 + 2

3x2
i (n2 − 1)

] ≥ n2

x2
i

, i.e.,

K(4)
n (f )(0) ≥ n2

(n−1)/2∑
i=1

�2
xi

f (0)

x2
i

> 0.

Let dn be the nearest root of K
(4)
n (f )(x) to 0.

Reasoning as in the proof of Theorem 2.2.3, we have

K(4)
n (f )(0) = |K(4)

n (f )(0) − K(4)
n (f )(dn)| = |dn| · |K(5)

n (f )(y)|

≤ |dn|cn4‖F ′
n(f )‖J ≤ c1|dn|n5ω1

(
Kn(f ); 1

n

)
I

≤ c2|dn|n5
[
ω1

(
f ; 1

n

)
+ ‖f − Kn(f )‖

]
I

,

where J = [− 1
4 , 1

4

]
, I = [− 1

2 , 1
2

]
.

Combining with the previous inequality, we obtain

|dn| ≥
c

(n−1)/2∑
i=1

�2
xi

f (0)/x2
i

n3

[
ω1

(
f ; 1

n

)
+ ‖f − Kn(f )‖

]
I

, I =
[
−1

2
,

1

2

]
,
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where c > 0 is independent of n and f and ω1(f ; ·)I , ‖ · ‖I represents the corre-
sponding concepts on I . �

Remarks. (1) For upper estimates of ‖f − Kn(f )‖ can be used, for example,
Gonska [59].

(2) Comparing Theorem 2.2.6 with Theorem 2.2.1, we see that although the poly-
nomials Kn(f )(x) satisfy higher-order Hermite–Fejér conditions, still the obtained
estimate for the length of preservation of monotonicity is the same as that given by
the classical Hermite–Fejér polynomials.

(3) As was pointed out in the case of classical Hermite–Fejér polynomials, there
are also other points (different from 0) where the monotonicity of f is preserved.
Therefore it is natural to look for other points of this type in the case of the polynomials
Kn(f )(x), too.

In contrast with the negative result in Theorem 2.1.1, (iv), in the case of convexity
we can prove a shape-preserving property of Grünwald interpolation polynomials
based on Chebyshev nodes of the first kind. In this sense, first we need the following
simple result.

Lemma 2.2.1.If xk = cos (2k−1)π
2n

, k = 1, . . . , n and lk(x) = l(x)

(x−xk)l
′
k(xk)

are the

fundamental Lagrange interpolation polynomials (where l(x) = (x−x1) · · · (x−xk)),
then ∥∥∥ n∑

k=1

|lk(x)|p
∥∥∥ ≤ Cp, ∀p > 1,

and ∥∥∥ n∑
k=1

|lk(x)|p
∥∥∥ ≤ Cpn1−p, ∀0 < p < 1,

where Cp is a positive constant depending only on p.
Proof. Let x ∈ [−1, 1] be fixed and the index j defined by |x − xj | := min{|x −

xk|; 1 ≤ k ≤ n}. By the relations in Szabados–Vértesi [100], p. 282 (see also the
relations (1.6) in the proof of Theorem 1.2.1), denoting x = cos(t), tk = (2k−1)π

2n
and

Tn(x) = cos(n arccos(x)), for all k 
= j we get

|lk(x)| = |Tn(x)|| sin(tk)|
n| cos(t) − cos(tk)| ≤

k
n

n
|j2−k2|

n2

≤ C

|j − k| .

Also, lj (xj ) = 1 and

|lj (x)| = |Tn(x)|| sin(tj )|
n| cos(t) − cos(tj )| ≤ 1

n

Cj
n
Cj

n2

= C.

As a conclusion,

n∑
k=1

|lk(x)|p ≤ Cp

n∑
k=1,k 
=j

1

|k − j |p + Cp,
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which immediately proves the lemma. �

Remark. In the case when p = 2 and the fundamental Lagrange interpola-
tion polynomials are based on the roots of α-ultraspherical Jacobi polynomials of
degree n, α ∈ (−1, 0), in Szegö [102], Problem 58, can be found the relation
||∑n

k=1 |lk(x)|2|| ≤ 1
|α| .

We present:
Theorem 2.2.8. Let n ≥ 3 be odd. If �2

hf (0) > 0, ∀ h ∈ (0, 1], then the
Grünwald polynomials Gn(f )(x) on the Chebyshev nodes of first kind (given by
Theorem 2.1.1 (iv)) are strictly convex on [−|dn|, |dn|], where for |dn| we can have
either of the following two lower estimates:

(i)

|dn| ≥ C

(n−1)/2∑
k=1

2(1 − x2
k )

x2
k

�2
xk

f (0)

n3||f || ;
(ii)

|dn| ≥ C

(n−1)/2∑
k=1

2(1 − x2
k )

x2
k

�2
xk

f (0)

n3[ω1(f ; 1
n
) + ||Gn(f ) − f ||]I

.

Proof. It is known that

lk(x) = (−1)k

√
1 − x2

k

x − xk

· Tn(x)

n
.

Denoting hk(x) = l2
k (x), we get h′

k(0) = 2lk(0)l′k(0), h′′
k(0) = 2(l′k(0))2 +

2lk(0)l′′k (0). Now, for k 
= n+1
2 we get xk 
= 0 and lk(0) = 0,

l′k(x) =
(−1)k

√
1 − x2

k

n
· T ′

n(x)(x − xk) − Tn(x)

(x − xk)2 ,

[l′k(0)]2 = 1 − x2
k

x2
k

, h′
k(0) = 0, h′′

k(0) = 2
1 − x2

k

x2
k

= h′′
n+1−k(0) > 0,

because xj = −xn+1−j .
Since

∑n
k=1 h′′

k(0) = 0, it follows

h′′
(n+1)/2(0) = −4

(n−1)/2∑
k=1

1 − x2
k

x2
k

and therefore



58 2 Partial Shape Preservation, Univariate Case

G′′
n(f )(0) =

n∑
k=0

h′′
k(0)f (xk) =

(n−1)/2∑
k=1

2(1 − x2
k )

x2
k

[f (xk) + f (xn+1−k)]

+f (0)h′′
n+1

2
(0) =

(n−1)/2∑
k=1

2(1 − x2
k )

x2
k

�2
xk

f (0).

On the other hand, if we denote dn the nearest root to 0 of G′′
n(f )(x), then by

reasonings similar to those in the proof of Theorem 2.2.3 and by the above Lemma
2.2.1, we get

G′′
n(f )(0) = |G′′

n(f )(0) − G′′
n(f )(dn)| = |dn||G′′′

n (η)|
≤ C|dn|n3||Gn|| ≤ C|dn|n3||f ||.

It immediately follows the estimate in (i).
Also, by reasonings similar to those in the proof of Theorem 2.2.3 (but without to

use the Lemma 2.2.1), we get

G′′
n(f )(0) = |G′′

n(f )(0) − G′′
n(f )(dn)| = |dn||G′′′

n (η)|

≤ C|dn|n2||G′
n||J ≤ C|dn|n3ω1(Gn(f ); 1

n
)I

≤ C|dn|n3[ω1(f ; 1

n
) + ω1(Gn(f ) − f ; 1

n
)]I

≤ C|dn|n3
[
ω1

(
f ; 1

n

)
+ ||Gn(f ) − f ||

]
I

,

where J = [−1/4, 1/4], I = [−1/2, 1/2].
This proves the estimate (ii), too. �

Remarks. (1) Theorem 2.2.8 shows that 0 is a point of weak preservation of partial
strict-convexity for the Grünwald polynomials. Because Gn(e1)(x), n ≥ 3 odd, is a
polynomial of degree > 1, (here e1(x) = x, x ∈ [−1, 1]), reasoning exactly as in
Remark 1 of Theorem 2.2.3, we obtain that 0 cannot be point of strong preservation
of partial strict-convexity for Gn(f ).

(2) For the estimate in Theorem 2.2.8 (ii), might be useful the degree of approxi-
mation in, e.g., Jiang Gongjian [64] and Sheng–Cheng [90].

We end the section with some remarks on the shape-preserving properties of
trigonometric interpolation polynomials. They are based on the well-known rela-
tionship between the Jn(f )(x) in Theorem 1.4.2 and the algebraic Hermite–Fejér
polynomials Fn(f )(x) on the Chebyshev knots of the first kind, given by (see, e.g.,
Szabados [95])

J2n−1(f )(x) = Fn(g)(cos(x)), x ∈ R,

where f (t) = g(cos(t)).
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This relation allows us to extend the properties of Fn(f ) in Theorems 2.2.1, 2.2.2
and 2.2.3, to J2n−1(f ). First we need the following concept.

Definition 2.2.1. Let f : R → R be 2π -periodic. f is called periodically mono-
tone if it is increasing in an interval (x1, x2) and decreasing in (x2, x1 + 2π).

A particular periodically monotone function is the so-called bell-shaped function,
which is 2π -periodic, even and decreasing on [0, π ] (i.e., x1 = π and x2 = 2π ).

Remark. The most natural bell-shaped function f can be generated by an in-
creasing function g : [−1, 1] → R, defining f (x) = g(cos(x)), x ∈ R. Actually it is
easy to show that g is increasing on [−1, 1] if and only if f is bell-shaped.

The shape-preserving properties of J2n−1(f )(x) can be summarized by the fol-
lowing.

Theorem 2.2.9. Let Fn(g)(x) be the Hermite–Fejér polynomials based on the
Chebyshev nodes of the first kind and let Jn(f )(x) be the trigonometric Jackson
interpolation polynomials, where f (x) = g(cos(x)), g : [−1, 1] → R.

(i) If f is bell-shaped and n is even, then J2n−1(f ) is increasing in a neighborhood
of π

2 , of the form (π
2 − c

n2 , π
2 + c

n2 ).
(ii) Let us suppose that f is bell-shaped. If ξ is any root of the polynomial l′(x)

(where l(x) is given by l(x) = ∏n
i=1(x − xi,n), xi,n = cos (2i − 1)π/[2n]), then

J2n−1(f ) is increasing in a neighborhood ofη = arccos(ξ)of the form (η− c
n3 , η+ c

n3 ).

Proof. (i),(ii) It is immediate by taking α = β = − 1
2 (Chebyshev nodes of the

first kind) in Theorems 2.2.1 and 2.2.2 and then taking into account that the function
h(x) = arccos(x) ∈ Lip π√

2
(1/2). �

2.3 Shepard Operators

First, we present some results of qualitative type for a Shepard interpolation operator
of the form

Sn,p(f )(x) =
n∑

k=−n

sk,n(x)f (xk), n ∈ N, f : [−1, 1] → R, (2.10)

−1 ≤ x−n < x−n+1 < · · · < x1 < · · · < xn ≤ 1,

where sk,n(x) = (x − xk)
−2p/

(∑n
i=−n(x − xi)

−2p
)
, p ∈ N, fixed.

It is easy to see that Sn,p(f )(xi) = f (xi), i = −n, . . . , n, Sn,p(f ) is a pos-

itive linear operator, S
(j)
n,p(f )(xi) = 0, i = −n, . . . , n, j = 1, . . . , 2p − 1 and∑n

k=−n sk,n(x) ≡ 1.
Because

∑n
k=−n s′

k,n(x) ≡ 0, reasoning exactly as in Popoviciu [81], p. 76, we
obtain

S′
n,p(f )(x) =

n−1∑
i=−n

⎛
⎝−

i∑
j=−n

s′
j,n(x)

⎞
⎠ (f (xi+1) − f (xi)). (2.11)

We also need the following basic result due to T. Popoviciu.



60 2 Partial Shape Preservation, Univariate Case

Lemma 2.3.1. (Popoviciu [81]) Let Fm(f )(x) = ∑m
k=1 hk(x)f (xk), x ∈ [a, b],

a ≤ x1 < · · · < xm ≤ b, f : [a, b] → R, hk ∈ C1[a, b], ∑m
k=1 hk(x) ≡ 1, ∀ x ∈

[a, b] and x0 ∈ [a, b] be fixed.
If h′

1(x0) < 0, h′
m(x0) > 0 and the sequence

h′
1(x0), h

′
2(x0), . . . , h

′
m(x0)

has exactly one variation of sign, then there exists a neighborhood of x0, V (x0),
independent of f such that if f is monotone on [a, b], then Fm(f ) is of the same
monotonicity on V (x0).

We have the following:
Theorem 2.3.1. Let us denote l(x) = ∑n

i=−n(x − xi)
−2p. Any solution ξ ∈

(x−n, xn) of the equation l′(x) = 0 is a point of strong preservation of partial
monotony for Sn,p(f )(x).

Proof. Obviously l′(ξ) = 0 means

n∑
i=−n

1

(ξ − xi)2p+1 = 0, ξ 
= xi, i = −n, . . . , n. (2.12)

We have

s′
j,n(ξ) = −2p(ξ − xj )

−2p−1

l(ξ)
,

where l(ξ) > 0.
Then,

s′−n,n(ξ) = −2p(ξ − x−n)
−2p−1

l(ξ)
< 0

and

s′
n,n(ξ) = −2p(ξ − xn)

−2p−1

l(ξ)
> 0.

Also, sgn[s′
j,n(ξ)] = sgn(xj − ξ), j = −n, . . . , n, which implies that the sequence

s′−n,n(ξ), s′−n+1,n(ξ), . . . , s′
1,n(ξ), . . . , s′

n,n(ξ)

has exactly one variation of sign.
Applying now Lemma 2.3.1 and (2.11), we obtain the theorem. �

Remarks. (1) It is easy to see that (2.12) is equivalent to the polynomial equation

Fn(ξ) =
n∑

k=−n

⎡
⎣ n∏

i=−ni 
=k

(ξ − xi)

⎤
⎦

2p+1

= 0.

Because simple calculations show that Fn(xj )Fn(xj+1) < 0, j = −n, −n +
1, . . . , n − 1, it follows that in each interval (xj , xj+1) there exists a point ξ with
l′(ξ) = 0.
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(2) An open question is what happens in the case when

sj,n(x) = |x − xj |−(2p+1)/

[
n∑

i=−n

|x − xi |−(2p+1)

]
, p ∈ N.

Concerning the convexity, we can prove the following:
Theorem 2.3.2. If Sn,p(f )(x) is of the form (2.10) with x−k = −xk, x0 = 0, and

�2
hf (0) > 0, ∀ h ∈ (0, 1], then Sn,p(f )(x) is strictly convex in a neighborhood of

0 (depending on f ).
Proof. We can write

sk,n(x) = x2p(x − xk)
−2p

1 +
n∑

i=−ni 
=k

x2p(x − xi)
−2p

, k = −n, −n + 1, . . . , n,

and
s
(i)
k,n(0) = [x2p(x − xk)

−2p](i)x=0, ∀ i = 0, . . . , 2p.

But from simple calculations, for all k 
= 0 we get

[x2p(x − xk)
−2p](i)x=0 =

⎧⎨
⎩

0, i = 1, . . . , 2p − 1
(2p)!
x

2p
k

, i = 2p.

As a conclusion

s
(i)
k,n(0) =

⎧⎨
⎩

0, i = 1, . . . , 2p − 1
(2p)!
x

2p
k

, i = 2p, k 
= 0,

S′
n,p(f )(0) = S′′

n,p(f )(0) = · · · = S
(2p−1)
n,p (f )(0) = 0

and

S
(2p)
n,p (f )(0) =

n∑
k=−n

s
(2p)
k,n (0)f (xk) =

n∑
k=1

(2p)!
x

2p
k

[f (xk) + f (−xk)]

+f (0)s
(2p)
0,n (0) > f (0)

n∑
k=−n

s
(2p)
k,n (0) = 0.

It follows that for Sn,p(f )(x), S′′
n,p(f )(x), . . . , S

(2p−2)
n,p (f )(x), 0 is a minimum point.

On the other hand, by S
(2p)
n,p (f )(0) > 0, there exists a neighborhood V (0) of

0 (depending on f ) such that S
(2p)
n,p (f )(x) > 0, for all x ∈ V (0). It follows that

S
(2p−2)
n,p (f )(x) is strictly convex on V (0), with S

(2p−2)
n,p (f )(0) = 0 and 0 minimum

point for S
(2p−2)
n,p (f )(x). This implies S

(2p−2)
n,p (f )(x) > 0, ∀ x ∈ V (0) \ {0}. Rea-

soning by recurrence, at the end we obtain S′′
n,p(f )(x) > 0, for all x ∈ V (0) \ {0},

i.e., Sn,p(f )(x) is strictly convex in V (0), which proves the theorem. �
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Remarks. (1) Because for f (x) ≡ x, Sn,p(f )(x) obviously is not a polynomial
of degree ≤ 1 in any neighborhood, it follows that there do not exist points of strong
preservation of partial convexity for Sn,p(f )(x).

(2) Obviously Theorem 2.3.2 shows that 0 is a point of weak preservation of
partial strict-convexity for Sn,p(f )(x).

(3) Reasoning exactly as in Remark 1 of Theorem 2.2.3 and taking into account
the above Remark 1, it follows that 0 cannot be a point of strong preservation of partial
strict-convexity for Sn,p(f )(x).

A quantitative version of Theorem 2.3.1 is the following (we use the notation of
Theorem 2.3.1)

Theorem 2.3.3. Let xk = k
n
, k = −n, . . . , n. If ξ ∈ (x−n, xn) is any solution of

the equation l′(x) = 0, then there exists a constant c > 0 (independent of f and n)
such that if f : [−1, 1] → R is monotone on [−1, 1] then Sn,p(f )(x) is of the same

monotonicity in
(
ξ − c

n2p+3 , ξ + c
n2p+3

)
⊂ (−1, 1).

Proof. Reasoning exactly as in the proof of Lemma 3 in Popoviciu [81] and taking
into account the proof of Theorem 2.3.1, we get

Qi(ξ) < max{s′−n,n(ξ), −s′
n,n(ξ)} < 0, ∀ i = −n, . . . , n − 1,

where Qi(x) = ∑i
j=−n s′

j,n(x), s′−n,n(ξ) = −2p(ξ−x−n)−2p−1

l(ξ)
, s′

n,n(ξ) =
2p(xn−ξ)−2p−1

l(ξ)
, l(ξ) > 0. We have two possibilities.

Case 1: x−n < ξ ≤ xn+x−n

2 < xn. In this case,

max{s′−n,n(ξ), −s′
n,n(ξ)} = −s′

n,n(ξ).

Let j0 be such that |xj0 − ξ | = min{|xi − ξ |; i = −n, n}. We obtain

s′
n,n(ξ) = 2p

(xn − ξ)2p+1 · 1
n∑

i=−n

1

|ξ − xi |2p

≥ c1

n2p
> 0.

The last lower estimate is obtained by similar reasonings with those for |E1(x)|
in the estimate of |s′′

j,n(x)| below in the proof.

Case 2: x−n <
xn+x−n

2 < ξ < xn. In this case,

max{s′−n,n(ξ), −s′
n,n(ξ)} = s′−n,n(ξ)

and for xj0 as in Case 1, we again obtain |s′−n,n(ξ) ≥ c2
n2p > 0. As a conclusion,

c

n2p
≤ |Qi(ξ)|, ∀ i = −n, . . . , n − 1.

On the other hand,

sj,n(x) = 1

1 + (x − xj )2p

n∑
k=−n,k 
=j

1

(x − xk)2p

,
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s′
j,n(x) =

2p(x − xj )
2p−1

n∑
k=−n,k 
=j

xk − xj

(x − xk)2p+1

⎡
⎣1 + (x − xj )2p

n∑
k=−n,k 
=j

1

(x − xk)2p

⎤
⎦

2 ,

and

s′′
j,n(x) =

2p(2p − 1)(x − xj )
2p−2

n∑
k=−n,k 
=j

xk − xj

(x − xk)2p+1

⎡
⎣1 + (x − xj )2p

n∑
k=−n,k 
=j

1

(x − xk)2p

⎤
⎦

2

−
2p(2p + 1)(x − xj )

2p−1
n∑

k=−n,k 
=j

xk − xj

(x − xk)2p+2

⎡
⎣1 + (x − xj )2p

n∑
k=−n,k 
=j

1

(x − xk)2p

⎤
⎦

2

+
4p(x − xj )

2p−1
n∑

k=−n,k 
=j

xk − xj

(x − xk)2p+1

⎡
⎣1 + (x − xj )2p

n∑
k=−n,k 
=j

1

(x − xk)2p

⎤
⎦

2

·
2p(x − xj )

2p−1
n∑

k=−n,k 
=j

xk − xj

(x − xk)2p+1

1 + (x − xj )2p

n∑
k=−n,k 
=j

1

(x − xk)2p

= E1(x) − E2(x) + E3(x) · E4(x),

where by Ei(x), i = 1, 4 we denote the expressions above in the order of their
occurrence.

Obviously

|s′′
j,n(x)| ≤ |E1(x)| + |E2(x)| + |E3(x)| · |E4(x)|.

Let us denote |x − xi | = min{|x − xk|; −n ≤ k ≤ n} ∼ 1
n

.
We have two cases.
Case 1: i = j . We obtain
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|E1(x)| ≤ cp

1

n2p−2

n∑
k=−n,k 
=j

|k − i|/n( |i − k|
n

)2p+1

= cpn2
n∑

k=−n,k 
=j

|k − i|
|k − i|2p+1 = cpn2

n∑
k=−n,k 
=j

1

|i − k|2p
≤ cpn2.

It is easy to see that the same kinds of estimates applied to E2(x), E3(x) and E4(x)

give us the estimates

|E2(x)| ≤ cp

1

n2p−1

n∑
k=−n,k 
=j

|k − i|/n( |i − k|
n

)2p+2 ≤ cpn2,

|E3(x)| ≤ cp

1

n2p−1

n∑
k=−n,k 
=j

|k − i|/n( |i − k|
n

)2p+1 ≤ cpn,

|E4(x)| ≤ cpn.

As a conclusion, in this case |s′′
j,n(x)| ≤ cpn2.

Case 2: i 
= j . We obtain

|E1(x)| ≤ c1,p

|x − xj |2p−2
n∑

k=−n,k 
=j

|k−j |/n

|x−xk |2p+1

(
x−xj

x−xi

)4p

≤ c1,p

(x − xi)
4p

(x − xj )2p+2

n∑
k=−n,k 
=j

|k − j |/n

|x − xk|2p+1

≤ c2,p

|x − xi |2p−1|xi − xj |
|x − xj |2p+2

+c3,p

n−4p( |i−j |
n

)2p+2

n∑
k=−n,k 
=i,k 
=j

|k − j |/n( |i−k|
n

)2p+1

≤ c4,p

⎧⎪⎨
⎪⎩

n1−2p(|i − j |/n)( |i−j |
n

)2p+2 + n2

|i − j |2p+1

n∑
k=−n,k 
=i,k 
=j

|k − j |
|i − k|2p+1

⎫⎪⎬
⎪⎭

= c4,p

⎧⎨
⎩ n2

|i − j |2p+1 + n2

|i − j |2p+1

⎛
⎝ n∑

k=−n,k 
=i,k 
=j

1

|i − k|2p
+ |i − j |

|i − k|2p+1

⎞
⎠
⎫⎬
⎭

≤ cpn2.
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Following exactly the same kinds of estimates, we easily get

|E2(x)| ≤ c1,p

|x − xj |2p−1
n∑

k=−n,k 
=j

|k − j |/n

|x − xk|2p+2

(
x−xj

x−xi

)4p

≤ c1,p

(x − xi)
4p

(x − xj )2p+1

n∑
k=−n,k 
=j

|k − j |/n

|x − xk|2p+2 ≤ cn2,

|E3(x)| ≤ c1,p

|x − xj |2p−1
n∑

k=−n,k 
=j

|k − j |/n

|x − xk|2p+1

(
x−xj

x−xi

)4p

≤ c1,p

(x − xi)
4p

(x − xj )2p+1

n∑
k=−n,k 
=j

|k − j |/n

|x − xk|2p+1 ≤ cn,

|E4(x)| ≤ c1,p

|x − xj |2p−1
n∑

k=−n,k 
=j

|k−j |/n

|x−xk |2p+1

(
x−xj

x−xi

)2p

≤ c1,p

(x − xi)
2p

|x − xj |
n∑

k=−n,k 
=j

|k − j |/n

|x − xk|2p+1

≤ c2,p

|xi − xj |
|x − xj | · |x − xi |

+c3,p

n−2p

|i − j |/n

n∑
k=−n,k 
=j,k 
=i

|k − j |/n( |i−k|
n

)2p+1

≤ c4,p

⎧⎨
⎩ (|i − j |/n)

|i−j |
n

· n−1
+ n

|i − j |
n∑

k=−n,k 
=j,k 
=i

|k − j |
|i − k|2p+1

⎫⎬
⎭ ≤ cn.

As a conclusion, in this case too we have |s′′
j,n(x)| ≤ cn2. Let di be the nearest root

of Qi(x) to ξ . It follows

c

n2p
≤ |Qi(ξ)| = |Qi(ξ) − Qi(di)| = |di − ξ | · |Q′

i (η)|
≤ |di − ξ | · c4n

3, ∀i = 1, . . . , n − 1,

and therefore
|di − ξ | ≥ c

n2p+3 , ∀i = 1, . . . , n − 1,

which proves the theorem. �
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Remark.We would like to point out here an error appeared in the proof of Theorem
3.4 in the paper Gal–Szabados [57], where the estimate of the last line, page 241, and
its analogue on page 242, line 3 from above (i.e., s′

n,n(ξ) ≥ c
n

, and |s′−n,n(ξ)| ≥ c
n

)
are wrong, having as a consequence a wrong estimate in Theorem 3.4. The correct
proof and estimate are given by Theorem 2.3.3.

A quantitative version of Theorem 2.3.2 is the following.
Theorem 2.3.4. If f satisfies �2

hf (0) > 0, for all h ∈ (0, 1], then Sn,p(f ; x) of
the form (2.10) with xk = k

n
, k = −n, . . . , n is strictly convex in [−|dn|, |dn|], with

|dn| ≥
cp

n∑
k=1

[�2
xk

f (0)]/x2p
k

n2p+1||f || ,

where cp is a constant depending only on p.
Proof. By the proof of Theorem 2.3.2 we easily get

S
(2p)
n,p (f ; 0) =

n∑
k=1

s
2p
k,n(0)[�2

xk
f (0)] = (2p)!

n∑
k=1

�2
xk

f (0)

x
2p
k

.

Let dn be the nearest root of S
2p
n,p(f ; x) to 0. We have

S
(2p)
n,p (f ; 0) = |S(2p)

n,p (f ; 0) − S
(2p)
n,p (f ; dn)| = |dn||S(2p+1)

n,p (f ; y)|

≤ |dn|
n∑

k=−n

|s(2p+1)
k,n (x)||f (xk)| ≤ |dn|||f ||

n∑
k=−n

|s(2p+1)
k,n (x)|.

Taking into account the proof of Theorem 2.1 in Della Vecchia–Mastroianni [33],
p. 149, we get

|s(2p+1)
k,n (x)| ≤ cpsk,n(x)(1/n)−(2p+1) = cpsk,n(x)n2p+1.

It follows

n∑
k=1

[�2
xk

f (0)]/x2p
k = S

(2p)
n,p (f ; 0) ≤ cp|dn|||f ||n2p+1,

which immediately implies the inequality in the statement of theorem. �

Remarks. (1) If f is strictly convex on [−1, 1], i.e., there exists γ > 0 such that
ηf (x) + (1 − η)f (y) − f (ηx + (1 − η)y) ≥ η(1 − η)γ (x − y)2, for all η ∈ [0, 1]
and x, y ∈ [−1, 1], then we easily get �2

xk
f (0)/x2

k ≥ 2γ , which implies

|dn| ≥ cp2γ

n∑
k=1

[1/x
2p−2
k ]/[||f ||n2p+1] ≥ 2γ cp

n∑
k=1

[1/k2p−2]/[||f ||n3],
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which for p = 1 implies |dn| ≥ 2γ cp/[||f ||n2] and for p ≥ 2 implies |dn| ≥
2γ cp/[||f ||n3].

(2) Replacing xk = k/n, we get x
2p
k = k2p/n2p and the estimate in Theorem

2.3.4 becomes

|dn| ≥
cp

n∑
k=1

�2
xk

f (0)/k2p

n||f || .

(3) We don’t know if the estimate of dn in Theorem 2.3.4 is the best possible.
Concerning the Balász–Shepard operator defined on the semi-axis and whose

global smoothness preservation properties were proved by Corollary 1.5.2, we have:
Theorem 2.3.5 For the knots xk = kγ

nγ/2 , k = 0, . . . , n, n ∈ N, γ ≥ 1, s ≥ 2 and
f ∈ C([0, +∞]), let us consider the so-called Balázs–Shepard operator defined by

Sn,2p(f )(x) =

n∑
k=0

|x − xk|−2pf (xk)

n∑
k=0

|x − xk|−2p

, x ≥ 0.

Let us denote l(x) = ∑n
i=0(x − xi)

−2p. Any solution ξ ∈ (x0, xn) = (0, nγ/2)

of the equation l′(x) = 0 is a point of strong preservation of partial monotony for
Sn,2p(f )(x).

Proof. Similar to the proof of Theorem 2.3.1. �

Remark. The Remarks 1 and 2 after the proof of Theorem 2.3.1 remain true in
this case, too.

At the end, we present some (negative) remarks on the shape preservation prop-
erties of the so-called Shepard–Lagrange operator, whose global smoothness preser-
vation properties were studied by Corollary 1.2.4. These operators are defined on the
equidistant nodes xi = i

n
∈ [−1, 1], i = −n, . . . , 0, . . . , n, n ∈ N, m ∈ N

⋃{0},
m < n, λ > 0, as follows:

Sn,λ,Lm(f )(x) =
n∑

i=−n

Ai,λ(x)Lm,i(f )(x),

where

Ai,λ(x) = |x − xi |−λ

n∑
k=−n

|x − xk|−λ

,

and

Lm,i(f )(x) =
m∑

j=0

ui(x)

(x − xi+j )u
′
i (xi+j )

f (xi+j ),
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where ui(x) = (x − xi)...(x − xi+m) and xn+ν = xν, ν = 1, . . . , m.
Choose λ = 2p even. Reasoning exactly as for the relation (2.11) in Section 2.3,

we obtain

S′
n,λ,Lm

(f )(x) =
n∑

i=−n

A′
i,λ(x)Lm,i(f )(x) +

n∑
i=−n

Ai,λ(x)L′
m,i(f )(x) =

n−1∑
i=−n

[−
i∑

j=0

A′
i,λ(x)][Lm,i+1(f )(x) − Lm,i(f )(x)] +

n∑
i=−n

Ai,λ(x)L′
m,i(f )(x).

Suppose that f would be monotonically increasing on [−1, 1]. Unfortunately, by
Popoviciu [80] (see Theorem 2.2.1 (i)) it follows that for m ≥ 3, Lm,i(f )(x) do not
preserve the monotonicity (around certain points). Let us take the simplest case, i.e.,
m = 1. Then we get

S′
n,2p,Lm

(f )(x) =
n−1∑
i=−n

⎡
⎣−

i∑
j=0

A′
i,2p(x)

⎤
⎦ [Lm,i+1(f )(x) − Lm,i(f )(x)]

+
n∑

i=−n

Ai,2p(x)mi,

where all mi = L′
1,i (f )(x) are ≥ 0 (since if f is increasing on [−1, 1] then it is easily

seen that all the Lagrange polynomials of degree 1, L1,i (f )(x), are increasing).
Now, while the second sum above is obviously positive, the differences

Lm,i+1(f )(x)−Lm,i(f )(x) cannot be positive for all i at some point ξ ∈ [−1, 1]. As
a conclusion, it seems that even in the simplest case m = 1, Sn,2p,L1(f )(x) cannot
preserve the monotonicity around some points.

For the study of convexity, from the proof of Theorem 2.3.2 we get
S

(k)
n,2p,Lm

(f )(0) = 0, ∀k = 1, . . . , 2p − 1 and

S
(2p)
n,2p,Lm

(f )(0) =
n∑

i=−n

A
(2p)
i,2p (0)Lm,i(f )(0)

=
n∑

i=−n,i 
=0

(2p)!
x

2p
i

Lm,i(f )(0) + A
(2p)
0,2p(0)Lm,0(f )(0).

Unfortunately, even in the simplest case m = 1, from this relation we cannot deduce
any convexity-preserving property for Sn,2p,Lm(f )(x), as we did in the proof of
Theorem 2.3.2 for the usual Shepard operator.

Similar reasonings for the so-called Shepard–Taylor operator, given by

Sn,λ,Tm(f )(x) =
n∑

i=−n

Ai,λ(x)Tm,i(f )(x),
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where

Ai,λ(x) = |x − xi |−λ

n∑
k=−n

|x − xk|−λ

,

and

Tm,i(f )(x) =
m∑

j=0

f (j)(xi)(x − xi)
j

j ! ,

even for the simplest case m = 1, show that it does not have the shape-preservation
property (around certain points).

2.4 Bibliographical Remarks and Open Problems

All the results in this chapter, except those where the authors are mentioned and
Lemma 2.2.1, Theorems 2.2.4–2.2.9, 2.3.3–2.3.5, which are new, are from Gal–
Szabados [57].

Open Problem 2.4.1. For the Kryloff–Stayermann polynomials, Kn(f )(x), in
Theorems 2.2.4 and 2.2.6, find other points (different from 0) of preservation for the
monotonicity of f .

Open Problem 2.4.2. What happens if in the Theorems 2.2.1, 2.2.4, 2.2.6 n is
odd and if in the Theorems 2.2.3, 2.2.5, 2.2.7 and 2.2.8 n is even?

Open Problem 2.4.3. What happens if in the statements of Theorems 2.3.1 and
2.3.2, the Shepard operators are of the form

n∑
j=−n

|x − xj |−(2p+1)f (xj )

n∑
k=−n

|x − xk|−(2p+1)

?

Open Problem 2.4.4. For the Balász–Shepard operator defined on the semi-axis,
prove a quantitative version of Theorem 2.3.5.

Also, another question for this operator is if there exist points such that in some
neighborhoods of them, it preserves the strict-convexity of function.

Open Problem 2.4.5. For the general Shepard–Grünwald operators introduced by
Criscuolo–Mastroianni [31] (considered in Open Problem 1.6.4, too), prove shape-
preserving properties.

Open Problem 2.4.6. For the local variants of Shepard operators in Open Problem
1.6.13, prove shape-preserving properties.
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Global Smoothness Preservation, Bivariate Case

Extending the results in the univariate case, we prove in this chapter that the bivariate
interpolation polynomials of Hermite–Fejér based on the Chebyshev nodes of the
first kind, those of Lagrange based on the Chebyshev nodes of second kind and ±1,
and those of bivariate Shepard operators, have the property of partial preservation of
global smoothness with respect to various bivariate moduli of continuity.

3.1 Introduction

It is the aim of this chapter to extend the results of Chapter 1, with respect to various
bivariate moduli of continuity.

In this sense, we will use the following kinds of bivariate moduli of continuity.
Let f : [−1, 1] × [−1, 1] → R. For δ, η > 0, we define

ω(x)(f ; δ) = sup
y∈[−1,1]

sup{|f (x + h, y) − f (x, y)|; x, x + h ∈ [−1, 1],

0 ≤ h ≤ δ},
ω(y)(f ; η) = sup

x∈[−1,1]
sup{|f (x, y + k) − f (x, y)|; y, y + k ∈ [−1, 1],

0 ≤ k ≤ η},
(i.e., the partial bivariate moduli of continuity, see, e.g., Timan [103])

ω(f ; δ, η) = sup{|f (x + h, y + k) − f (x, y)|; 0 ≤ h ≤ δ, 0 ≤ k ≤ η,

x, x + h ∈ [−1, 1], y, y + k ∈ [−1, 1]},
ω(B)(f ; δ, η) = sup{|�h,kf (x, y)|; 0 ≤ h ≤ δ, 0 ≤ k ≤ η,

x, x + h ∈ [−1, 1], y, y + k ∈ [−1, 1]},
(i.e., the Bögel modulus of continuity, see, e.g., Gonska–Jetter [61] or Nicolescu [76])
where
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�h,kf (x, y) = f (x + h, y + k) − f (x + h, y) − f (x, y + k) + f (x, y).

The properties of these moduli of continuity useful in the next sections are given
by the following

Lemma 3.1.1. (see, e.g., Timan [103], p. 111–114). (i) ω1(f ; 0, 0) = 0,
ω(f ; δ, η) is nondecreasing with respect to δ and η,

ω(f ; δ1 + δ2, η1 + η2) ≤ ω(f ; δ1, η1) + ω(f ; δ2, η2),

ω(f ; δ, η) ≤ ω(x)(f ; δ) + ω(y)(f ; η) ≤ 2ω(f ; δ, η).

(ii) (see, e.g., Anastassiou–Gal [6], p. 81)

ω(B)(f ; δ, η) ≤ ω(x)(f ; δ) + ω(y)(f ; η).

3.2 Bivariate Hermite–Fejér Polynomials

Let us define the bivariate Hermite–Fejér polynomial on the Chebyshev nodes of the
first kind by

Hn1,n2(f )(x, y) =
n1∑
i=1

n2∑
j=1

hi,n1(x)hj,n2(y)f (xi,n1 , xj,n2),

where f : [−1, 1] × [−1, 1] → R,

xi,n = cos
2i − 1

2n
π, hi,n(x) = T 2

n (x)(1 − xxi,n)

n2(x − xi,n)2 , i = 1, n.

It is well known that we have

n∑
i=1

hi,n(x) = 1, hi,n(x) ≥ 0, ∀ x ∈ [−1, 1], ∀ i = 1, n.

Let us denote by Hn(f, x) the univariate Hermite–Fejér polynomials based on
Chebyshev nodes of the first kind and

E(α, δ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O
(
δ

α
max{2−α,1+α}

)
, if 0 < α <

1

2
or

1

2
< α < 1,

O

([
δ log

1

δ

] 2α+1
6

)
, if α = 1

2
or 1,

Remark. In all subsequent results of this section, the constants involved in the
signs O, will depend only on the functions considered.
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The following result is known in the univariate case.
Theorem 3.2.1. (see Corollary 1.2.1). If f ∈ LipM(α; [−1, 1]), 0 < α ≤ 1, then

ω(Hn(f ); δ) = E(α, δ).

We also need the following.
Lemma 3.2.1. Let a, b ∈ (0, 1] be fixed. Then, ω(f ; δ, η) ≤ C(δa + ηb) for all

δ, η ≥ 0 if and only ifω(x)(f ; δ) ≤ Cδa,andω(y)(f ; η) ≤ Cηb, for all δ, η ≥ 0. Here
C > 0 denotes an absolute constant, but which can be different at each occurrence.

Proof. Indeed, by hypothesis and Lemma 3.1.1 (i), we get ω(f ; δ, η) ≤ C(δa +
ηb).

Conversely, let us suppose that ω(f ; δ, η) ≤ C(δa + ηb) for all δ, η ≥ 0. From
Lemma 3.1.1,(i) we get

ω(x)(f ; δ) + ω(y)(f ; η) ≤ 2Cδa + 2Cηb for all δ, η ≥ 0.

Now with η = 0 this implies

ω(x)(f ; δ) ≤ 2Cδa for all δ ≥ 0

and
ω(y)(f ; η) ≤ 2Cηb for all η ≥ 0,

respectively, which proves the lemma. �

The first main result is given by the following:
Theorem 3.2.2. Let a, b ∈ (0, 1] be fixed. If ω(f ; δ, η) ≤ C(δa + ηb) for all

δ, η ≥ 0, then

ω(Hn1,n2(f ); δ, η) = E(a, δ) + E(b, η) for all δ, η ≥ 0.

Proof. For each fixed y ∈ [−1, 1], let us denote

Fn2,y(x) =
n2∑

j=1

hj,n2(y)f (x, xj,n2).

By hypothesis and by Lemma 3.2.1 we get that ω(x)(f ; δ) ≤ Cδa . This implies, for
all |x1 − x2| ≤ δ and y,

|Fn2,y(x1) − Fn2,y(x2)| ≤ |
n2∑

j=1

hj,n2(y)[f (x1, xj,n2) − f (x2, xj,n2)]|

≤
n2∑

j=1

hj,n2(y)|f (x1, xj,n2) − f (x2, xj,n2)|≤
n2∑

j=1

hj,n2(y)ω(x)(f ; δ) = ω(x)(f ; δ)

≤ Cδa,
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where C is independent of n2 and y. As a conclusion,

ω(x)(Fn2,y(x); δ) ≤ Cδa for all y ∈ [−1, 1].
Now, it is easily seen that we can write

Hn1,n2(f )(x, y) = Hn1 [Fn2,y(x)](x),

where the univariate Hn1 is applied to Fn2,y(x) as function of x (y is fixed arbitrary).
According to Theorem 3.2.1, we immediately get that for every fixed y we have

ω(x)(Hn1,n2(f ); δ) = ω(x)(Hn1 [Fn2,y(x)]; δ) = E(a, δ).

Similarly we obtain

ω(y)(Hn1,n2(f ); η) = E(b, η).

Adding the last to relations we get the theorem. �

In what follows we deal with global smoothness preservation properties for the
Hermite–Fejér polynomial through the Bögel modulus of continuity, but only for a
special class of functions. In this sense, for a, b ∈ (0, 1], let us define

Da,b = {G : [−1, 1] × [−1, 1] → R; G(x, y) = F [f (x)g(y)], where

F : [−1, 1] → R satisfies
∞∑
i=1

(i2/i!)|F (i)(0)| < +∞

and
f ∈ LipM1

(a; [−1, 1]), g ∈ LipM2
(b; [−1, 1]), ||f ||, ||g|| ≤ 1}.

Remark. A simple example is G(x, y) = sin(xy) ∈ D1,1. For a, b ∈ (0, 1], let
us denote

LipB(a, b; [−1, 1]) = {G : [−1, 1] × [−1, 1] → R; ω(B)(G; a, b) ≤ Cδaηb}.
Lemma 3.2.2. Da,b ⊂ LipB(a, b; [−1, 1]).
Proof. Let G ∈ Da,b. Developing F in MacLaurin series, we get

G(x, y) = F(0) +
∞∑
i=1

f i(x)gi(y)F (i)(0)/i!.

This immediately implies

�h,kG(x, y) =
∞∑
i=1

�hf
i(x)�kg

i(y)F i(0)/i!.

On the other hand, by f ∈ LipM1
(a, [−1, 1]) and ‖f ‖ ≤ 1
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|f i(x + h) − f i(x)| ≤ iM1h
a, |gi(y + k) − gi(y)| ≤ iM2k

b, i = 1, 2, . . . ,

which implies

ω(B)(G; δ, η) ≤
∞∑
i=1

(i2/i!)|F (i)(0)|δaηb ≤ Cδaηb.

These prove the lemma. �

As a consequence we obtain
Corollary 3.2.1. If G ∈ Da,b then

ω(B)(Hn1,n2(G); δ, η) = E(a, δ)E(b, η).

Proof. We easily get

Hn1,n2(G)(x, y) = F(0) +
+∞∑
i=1

Hn1(f
i)(x)Hn2(g

i)(y)F (i)(0)/i!.

Then, as in the proof of Lemma 3.2.2, we have

ω(B)(Hn1,n2(G); δ, η) ≤
+∞∑
i=1

ω1(Hn1(f
i); δ)ω(Hn2(g

i); η)F (i)(0)/i!.

But for f ∈ LipM(a; [−1, 1]), for all i, n ∈ N and all δ ≥ 0 we have
ω1(Hn(f

i); δ) = iE(a, δ). Indeed, from the univariate case (see Theorem 1.2.1)
we get

ω(Hn(f
i); δ) ≤ Ci min

{
δn

n∑
k=1

1/k2a, n−1
n∑

k=1

1/ka + δa

}
,

where C > 0 depends only on the Lipschitz constant M of f . Then reasoning exactly
as in the proof of Corollary 1.2.1, we get the required formula.

Taking now into account Theorem 3.2.1, we immediately obtain

ω(B)(Hn1,n2(G); δ, η) ≤ E(a, δ)E(b, η)

+∞∑
i=1

i2|F (i)(0)|/i!,

which proves the corollary. �

3.3 Bivariate Shepard Operators

Let us first consider the bivariate Shepard operator as a tensor product by
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S(λ,μ)
n,m (f )(x, y) =

n∑
i=0

m∑
j=0

si,λ(x)sj,μ(y)f (i/n, j/m), if (x, y) 
=
(

i

n
,

j

m

)
,

S
(λ,μ)
n,m (f )( i

n
,

j
m

) = f ( i
n
,

j
m

), where 1 < λ, μ and f : [0, 1] × [0, 1] → R,

si,λ(x) = |x − i/n|−λ/

[
n∑

k=0

|x − k/n|−λ

]
,

sj,μ(y) = |y − j/m|−μ/

[
m∑

k=0

|y − k/m|−μ

]
.

Let Sn,λ(f, x) denote the univariate Shepard operator (for univariate f ) and let
us define

Eλ(α, δ) =
⎧⎨
⎩

O (δα) , if 0 < α < λ − 1,

O
(
δα log 1

δ

)
, if α = λ − 1

O
(
δλ−1

)
, if λ − 1 < α ≤ 1,

for 1 < λ ≤ 2.
The following result is known.
Theorem 3.3.1 (see Corollary 1.2.3). (i)If f ∈ LipM(α; [0, 1]), 0 < α ≤ 1,

1 < λ ≤ 2, then for all δ ≥ 0 and n ∈ N we have

ω(Sn,λ(f ); δ) = Eλ(α, δ).

(ii) If λ > 2 then for all δ ≥ 0 and n ∈ N we have

ω(Sn,λ(f ); δ) ≤ Cλω(f ; δ).

We present:
Theorem 3.3.2. Let f : [0, 1] × [0, 1] → R.

(i) Suppose a, b ∈ (0, 1], 1 < λ,μ ≤ 2 are fixed and ω(f ; δ, η) ≤ C[δa + ηb],
for all δ, η ≥ 0. Then for all δ, η ≥ 0 and n, m ∈ N we have

ω(S(λ,μ)
n,m (f ); δ, η) = Eλ(a, δ) + Eμ(b, η).

(ii) If λ, μ > 2 then

ω(S(λ,μ)
n,m (f ); δ, η) ≤ Cλ,μω(f ; δ, η),

for all δ, η ≥ 0 and n, m ∈ N.
Proof. (i) The reasonings are similar to those in the proof of Theorem 3.2.2, taking

into account Theorem 3.3.1 (i) too.
(ii) By Theorem 3.3.1 (ii) and reasoning exactly as in the proof of Theorem 3.2.2,

we get
ω(S(λ,μ)

n,m (f ); δ, η) ≤ Cλ,μ[ω(x)(f ; δ) + ω(y)(f ; η)],
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which combined with Lemma 3.1.1 (i) proves the statement. �

Remark. It is of interest to know the approximation order by the tensor product
Shepard operator S

(λ,μ)
n,m (f )(x, y). Since by, e.g., Szabados [98], Theorem 1, we easily

obtain that for the univariate case we have

||Sn,λ(g)|| ≤ ||Sn,λ(g) − g|| + ||g|| ≤ C||g||,
then for bivariate functions f , the case λ, μ > 2, by Haussmann–Pottinger [63],
Theorem 5, it immediately follows that

||S(λ,μ)
n,m (f ) − f || ≤ Cλ,μ[ω(x)(f ; 1/n) + ω(y)(f ; 1/m)],

which combined with the second relation in Lemma 3.1.1,(i) implies

||S(λ,μ)
n,m (f ) − f || ≤ Cλ,μω(f ; 1/n, 1/m).

Here ||.|| denotes the uniform norm.
For the case of Bögel modulus of continuity, firstly we need to define a new class

of bivariate functions (which includes Da,b) by

D∗ = {G : [0, 1] × [0, 1] → R; G(x, y) = F [f (x)g(y)], where

F : [0, 1] → R satisfies
∞∑
i=1

(i2/i!)|F (i)(0)| < +∞ and ||f ||, ||g|| ≤ 1}.

Reasoning exactly as in the previous section, we get the following.
Corollary 3.3.1. (i) Suppose a, b ∈ (0, 1], 1 < λ,μ ≤ 2 are fixed. If G ∈ Da,b,

G(x, y) = F(f (x)g(y)) then for all δ, η ≥ 0 and n, m ∈ N we have

ω(B)(Sλ,μ
n,m(G); δ, η) = Eλ(a, δ)Eμ(b, η).

(ii) If 2 < λ, μ and G ∈ D∗, G(x, y) = F(f (x)g(y)) then for all δ, η ≥ 0 and
n, m ∈ N we have

ω(B)(Sλ,μ
n,m(G); δ, η) ≤ Cλ,μω(f ; δ)ω(g; η).

Proof. As in the proofs of Lemma 3.2.2 and Corollary 3.2.1 we obtain

ω(B)(Sλ,μ
n,m(G); δ, η) ≤

+∞∑
i=1

ω(Sλ
n(f i); δ)ω(Sμ

m(gi); η)|F (i)(0)|/i!.

(i) The proof in this case follows the ideas of proof in Corollary 3.2.1, based on
the formulas in the univariate case from the end of Section 1.2.



78 3 Global Smoothness Preservation, Bivariate Case

(ii) By mathematical induction we easily get ω(f i; δ) ≤ iω(f ; δ) and ω(gi; η) ≤
iω(g; η).

Now, following the ideas in the proof of Corollary 3.2.1 and taking into account
the above Theorem 3.3.1 too, we easily get the desired conclusion. �

It is well known that the original bivariate operator introduced by Shepard in [91],
actually is not tensor product of the univariate case. More exactly, in [91] Shepard
defines the bivariate operators by

Sn,μ(f )(x, y) =
n∑

i=0

s
(μ)
n,i (x, y)f (xi, yi), if (x, y) 
= (xi, yi),

Sn,μ(f )(xi, yi) = f (xi, yi), where μ > 0 is fixed, f : D → R, D ⊂ R
2, (xi, yi) ∈

D, i = 0, . . . , n, x0 < x1 < · · · < xn, y0 < y1 < · · · < yn,

s
(μ)
n,i (x, y) = [(x − xi)

2 + (y − yi)
2]−μ/2/l(μ)

n (x, y),

l(μ)
n (x, y) =

n∑
i=0

[
(x − xi)

2 + (y − yi)
2
]−μ/2

.

This kind of Shepard operator is useful in computer-aided geometric design (see, e.g.,
Barnhill–Dube–Little [13]).

In what follows, we consider another variant of the bivariate Shepard operator
which is not a tensor product of the univariate case, has good approximation properties
and implicitly better global smoothness preservation properties than that introduced
in Shepard [91].

Thus, let us introduce

Sn1,n2,μ(f ; x, y) = Tn1,n2,μ(f ; x, y)

Tn1,n2,μ(1; x, y)
, if (x, y) 
= (xi, yj ),

Sn1,n2,μ(f ; xi, yj ) = f (xi, yj ), where μ > 0 is fixed, f : D → R, D = [0, 1] ×
[0, 1], xi = i/n1, i = 0, . . . , n1; yj = j/n2, j = 0, 1, . . . , n2 and

Tn1,n2,μ(f ; x, y) =
n1∑
i=0

n2∑
j=0

f (xi, yj )

[(x − xi)2 + (y − yj )2]μ .

The following result will be essential in establishing the smoothness-preserving
properties of this operator.

Theorem 3.3.3. For any f ∈ C(D) and μ > 3/2 we have

‖f − Sn1,n2,μ(f )‖ ≤ cω

(
f ; 1

n1
,

1

n2

)

and
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max

[∥∥∥∥∂Sn1,n2,μ(f ; x, y)

∂x

∥∥∥∥ ,

∥∥∥∥∂Sn1,n2,μ(f ; x, y)

∂y

∥∥∥∥
]

≤ c(n1 + n2)ω

(
f ; 1

n1
,

1

n2

)
.

Proof. Let xu and yv denote the nodes closest to x and y, respectively, and let

K(x, y) := {(i, j)|0 ≤ i ≤ n1, 0 ≤ j ≤ n2, (i, j) 
= (u, v)}.
We prove that

∥∥∥∥∥∥∥∥∥∥

∑
(i,j)∈K(x,y)

|x − xi |λ
[(x − xi)2 + (y − yj )2]ν

Tn1,n2,μ(1; x, y)

∥∥∥∥∥∥∥∥∥∥
≤ cn

2ν−2μ−λ
1 , λ < 2ν − 2, (3.1)

and∥∥∥∥∥∥∥∥∥∥∥

∑
(i,j)∈K(x,y)

|y − yj |λ
[(x − xi)2 + (y − yj )2]ν

Tn1,n2,μ(1; x, y)

∥∥∥∥∥∥∥∥∥∥∥
≤ cn

2ν−2μ−λ
2 , λ < 2ν − 2. (3.2)

Indeed,

∑
(i,j)∈K(x,y)

|x − xi |λ
[(x − xi)2 + (y − yj )2]ν

Tn1,n2,μ(1; x, y)
≤ c

n2ν−λ
1 n2ν

2

∑n1
i=1

n2∑
j=1

iλ(n2
2i

2 + n2
1j

2)−ν

(n1n2)2μ

n1∑
i=1

n2∑
j=1

(n2
2i

2 + n2
1j

2)−μ

≤cn
2ν−2μ−λ
1 n

2ν−2μ
2

n1∑
i=1

⎛
⎝[n2i/n1]∑

j=1

n−2ν
2 iλ−2ν+iλ

n2∑
j=[n2i/n1]+1

n−2ν
1 j−2ν

⎞
⎠

n1∑
i=1

[n2i/n1]∑
j=1

(n2i)
−2μ

≤ cn
2ν−2μ−λ
1 n

2ν−2μ
2

n−1
1 n1−2ν

2

n1∑
i=1

i1+λ−2ν

n−1
1 n

1−2μ
2

n1∑
i=1

i1−2μ

≤ cn
2ν−2μ−λ
1 .
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Equation (3.2) can be proved analogously. It is clear from the above argument that
in the case λ ≥ 2ν − 2μ the summations in (3.1)–(3.2) can be extended to 0 ≤ i ≤
n1, 0 ≤ j ≤ n2.

We shall also use the inequalities

|f (xi, yj ) − f (x, y)| ≤ ω

(
f ; 1

n1
,

1

n2

)
(2 + n1|x − xi | + n2|y − yj |), (3.3)

Tn1,n2,μ(1; x, y) ≥ cn
2μ−1
1 n2, (3.4)

∑
(i,j)∈K(x,y)

|x − xi |λ
[(x − xi)2 + (y − yj )2]ν ≤ cn2ν−λ−1

1 n2, 0 ≤ λ < 2ν − 2 (3.5)

and

max

[∥∥∥∥∂Tn1,n2,μ(1; x, y)/∂x

Tn1,n2,μ(1; x, y)

∥∥∥∥ ,

∥∥∥∥∂Tn1,n2,μ(1; x.y)/∂y

Tn1,n2,μ(1; x, y)

∥∥∥∥
]

≤ c(n1 + n2). (3.6)

Equation (3.3) easily follows from the properties of partial modulus of continuity.
Equations (3.4)–(3.5) can be proved similarly to (3.1)–(3.2). Equation (3.6) follows
from (3.1)–(3.2) with λ = 1, ν = μ + 1.

Next, using (3.1)–(3.2) with λ = 0 or 1 and ν = μ > 3/2, as well as the second
relation in Lemma 3.1.1,(i) we obtain

‖f − Sn1,n2,μ(f )‖ ≤ ω

(
f ; 1

n1
,

1

n2

)

+

∑
(i,j)∈K(x,y)

[ω(x)(f ; |x−xi |) + ω(y)(f ; |y − yj |)][(x − xi)
2 + (y − yj )

2]−μ

Tn1,n2,μ(1; x, y)

≤cω

(
f ; 1

n1
,

1

n2

)
⎡
⎢⎢⎢⎢⎣1 +

∑
(i,j)∈K(x,y)

2 + n1|x − xi | + n2|y − yj |
[(x − xi)2 + (y − yj )2]μ

Tn1,n2,μ(1; x, y)

⎤
⎥⎥⎥⎥⎦

≤ cω

(
f ; 1

n1
,

1

n2

)
.

In order to prove the second relation in the theorem, besides (3.1)–(3.5) we use that

for f = const. we have
∂Sn1,n2,μ(f )

∂x
= ∂Sn1,n2,μ(f )

∂y
≡ 0 for all (x, y) ∈ D, and get

∣∣∣∣∂Sn1,n2,μ(f ; x, y)

∂x

∣∣∣∣
≤ cω

(
f ; 1

n1
,

1

n2

) ∣∣∣∣ ∂

∂x

(
1

[(x − xu)2 + (y − yv)2]μTn1,n2,μ(1; x, y)

)∣∣∣∣
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+

∑
(i,j)∈K(x,y)

|x − xi | · |f (xi, yj ) − f (x, y)|
[(x − xi)2 + (y − yj )2]μ+1

Tn1,n2,μ(1; x, y)
+

∑
(i,j)∈K(x,y)

|f (xi, yj ) − f (x, y)|
[(x − xi)2 + (y − yj )2]μ ·

∑
(i,j)∈K(x,y)

|x − xi |
[(x − xi)2 + (y − yj )2]μ+1

Tn1,n2,μ(1; x, y)2

≤ cω

(
f ; 1

n1
,

1

n2

)
⎡
⎣|x − xu|[(x − xu)

2 + (y − yv)
2]μ−1

∑
(i,j)∈K(x,y)

1

[(x − xi)2 + (y − yj )2]μ

+[(x − xu)
2 + (y − yv)

2]μ
∑

(i,j)∈K(x,y)

|x − xi |
[(x − xi)2 + (y − yj )2]μ+1

+

∑
(i,j)∈K(x,y)

|x − xi |[2 + n1|x − xi | + n2|y − yj |]
[(x − xi)2 + (y − yj )2]μ+1

Tn1,n2,μ(1; x, y)

+

∑
(i,j)∈K(x,y)

2 + n1|x − xi | + n2|y − yj |
[(x − xi)2 + (y − yj )2]μ ·

∑
(i,j)∈K(x,y)

|x − xi |
[(x − xi)2 + (y − yj )2]μ+1

Tn1,n2,μ(1; x, y)2

⎤
⎥⎥⎥⎥⎦

≤ cω

(
f ; 1

n1
,

1

n2

)⎡
⎣ 1

n1

(
1

n2
1

+ 1

n2
2

)μ−1

n
2μ−1
1 n2 +

(
1

n2
1

+ 1

n2
2

)μ

n
2μ
1 n2

+
[

n
2μ
1 n

2μ
2

(n2
1 + n2

2)
μ

· n1

n
2μ−1
1 n2

+ n1 + n2

]
≤ c(n1 + n2)ω

(
f ; 1

n1
,

1

n2

)
.

�
Now we are in the position to state our preservation results, unfortunately only in

the special case n1 = n2. The case n1 
= n2 remains open.
Theorem 3.3.4. For μ > 3/2, n ∈ N and h, k ≥ 0, we have

ω(Sn,n,μ(f ); h, k) ≤ cω(f ; h + k, h + k).

Proof. We apply the standard technique. By the first estimate in Theorem 3.3.3
we get

ω(Sn,n,μ(f ); h, k) ≤ 2||Sn,n,μ(f ) − f || + ω(f ; h, k)
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≤ c

[
ω

(
f ; 1

n
,

1

n

)
+ ω(f ; h, k)

]
.

Then, by the bivariate mean value theorem and by the second estimate in Theorem
3.3.3 we get

ω(Sn,n,μ(f ); h, k) ≤ h

∣∣∣∣
∣∣∣∣∂Sn,n,μ(f ; x, y)

∂x

∣∣∣∣
∣∣∣∣ + k

∣∣∣∣
∣∣∣∣∂Sn,n,μ(f ; x, y)

∂y

∣∣∣∣
∣∣∣∣

≤ cn(h + k)ω

(
f ; 1

n
,

1

n

)
.

Hence by considering the cases (h + k) ≤ 1/n and (h + k) > 1/n separately, we
obtain the theorem. �

Taking into account the form of Sn,n,μ(f )(x, y), it is more natural to consider the
so-called Euclidean bivariate modulus, defined by

ω(E)(f ; �) = sup{|f (x + h, y + k) − f (x, y)|; 0 ≤ h, 0 ≤ k, (h2 + k2)1/2 ≤ �,

x, x + h ∈ [0, 1], y, y + k ∈ [0, 1]},
(see, e.g., Anastassiou–Gal [6], p. 80, Definition 2.3.1).

With respect to this modulus we obtain the following:
Corollary 3.3.2. For μ > 3/2, n ∈ N and � ≥ 0, we have

ω(E)(Sn,n,μ(f ); �) ≤ cω(E)(f ; �).

Proof. Taking h = k in Theorem 3.3.4, it follows that

ω(Sn,n,μ(f ); h, h) ≤ cω(f ; h, h).

But by, e.g., Anastassiou–Gal [6], p. 81, we have

ω(E)(f ; �) ≤ ω(f ; �, �) ≤ ω(E)(f ; √
2�) ≤ 2ω(E)(f ; �),

which combined with the above inequality immediately proves the corollary. �

3.4 Bivariate Lagrange Polynomials

Let us define the bivariate Lagrange interpolation polynomials on the Chebyshev
nodes of the second kind plus the endpoints ±1, by

Ln1,n2(f )(x, y) =
n1∑
i=1

n2∑
j=1

hi,n1(x)hj,n2(y)f (xi,n1 , yj,n2),

where
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xi,n = cos
i − 1

n − 1
, i = 1, n,

and

hi,n(x) = (−1)i−1ωn(x)

(1 + δi1 + δin)(n − 1)(x − xi,n)
, ωn(x) = sin t sin(n − 1)t.

Let us denote by Ln(f, x) the univariate Lagrange polynomials based on Cheby-
shev nodes of the second kind plus the endpoints ±1 and

E(α, δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

O

[
δ

α
2−α

(
ln

1

δ

) 2−2α
2−α

]
, if 0 < α <

1

2
,

O

[
δ

1
3 ln

1

δ

]
, if α = 1

2
,

O

[
δ

α
1+α

(
ln

1

δ

) 1
1+α

]
, if

1

2
< α ≤ 1.

We need the following result in univariate case.
Theorem 3.4.1. (See Corollary 1.2.2) If f ∈ LipM(α; [−1, 1]), 0 < α ≤ 1, then

ω(Ln(f ); δ) = E(α, δ).

Firstly, we consider global smoothness preservation properties with respect to
ω(f ; δ, η). The proofs of our main result require the following three lemmas.

Lemma 3.4.1. For all (x, y) ∈ [−1, 1] × [−1, 1] we have:

∣∣∣∣∂Ln1,n2(f )(x, y)

∂x

∣∣∣∣ ≤ cn1

n1∑
i=1

ω
(x)
1

(
f ; 1

i2

)
,

∣∣∣∣∂Ln1,n2(f )(x, y)

∂y

∣∣∣∣ ≤ cn2

n2∑
j=1

ω
(y)
1

(
f ; 1

j2

)
.

Here c > 0 is an absolute constant (independent of n1, n2, x, y and f ).
Proof. Because

∑n1
i=1 h′

i,n1
(x) = 0, we get

∣∣∣∣∂Ln1,n2(f )(x, y)

∂x

∣∣∣∣ =
∣∣∣∣∣∣

n2∑
j=1

hj,n2(y)

[
n1∑
i=1

h′
i,n1

(x)f (x
(1)
i , x

(2)
j )

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
n2∑

j=1

hj,n2(y)

{
n1∑
i=1

h′
i,n1

(x)[f (x
(1)
i , x

(2)
j ) − f (x, x

(2)
j )]

}∣∣∣∣∣∣
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≤
n2∑

j=1

hj,n2(y)

n1∑
i=1

|h′
i,n1

(x)|ω(x)
1 (f ; |x − x

(1)
i |)

(reasoning as in the univariate case in the proof of Theorem 1.2.2)

≤
n2∑

j=1

hj,n2(y)

[
nc1

n1∑
i=1

ω
(x)
1

(
f ; 1

i2

)]
= cn1

n1∑
i=1

ω
(x)
1

(
f ; 1

i2

)
.

The estimate for
∣∣∣ ∂Ln1,n2 (f )(x,y)

∂y

∣∣∣ is similar. �

Lemma 3.4.2. We have the estimates:

ω(x)(Ln1,n2(f ); δ) ≤
∥∥∥∥∂Ln1,n2(f )

∂x

∥∥∥∥ · δ, ∀ δ ≥ 0

and

ω(y)(Ln1,n2(f ); δ) ≤
∥∥∥∥∂Ln1,n2(f )

∂y

∥∥∥∥ · δ, ∀ δ ≥ 0

where ‖ · ‖ represents the uniform norm on

C[[−1, 1] × [−1, 1]) = {f : [−1, 1]2 → R; f continuous on [−1, 1]2}.

Proof. By the mean value theorem, we get

|Ln1,n2(f )(x + h, y) − Ln1,n2(f )(x, y)| = |h|
∣∣∣∣∂Ln1,n2(f )(ξ, y)

∂x

∣∣∣∣ ,
which immediately implies

ω(x)(Ln1,n2(f ); δ) ≤ δ

∥∥∥∥∂Ln1,n2(f )

∂x

∥∥∥∥ .

The proof of second estimate is similar. �

Lemma 3.4.3. We have the estimates:

ω(x)(Ln1,n2(f ); δ) ≤ 2‖Ln1,n2(f ) − f ‖ + ω(x)(f ; δ),

and
ω(y)(Ln1,n2(f ); δ) ≤ 2‖Ln1,n2(f ) − f ‖ + ω(y)(f ; δ), ∀ δ ≥ 0.

Proof. The first estimate is immediate by

|Ln1,n2(f )(x + h, y) − Ln1,n2(f )(x, y)| ≤ |Ln1,n2(f )(x + h, y) − f (x + h, y)|
+|f (x + h, y) − f (x, y)| + |f (x, y) − Ln1,n2(f )(x, y)|.
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We have a similar proof for the second estimate. �

We obtain the following consequences.
Corollary 3.4.1. For any f ∈ C([−1, 1] × [−1, 1]), any δ > 0 and any n ∈ N,

we have:

ω(x)(Ln,n(f ); δ) ≤ min

{
O

(
δn

n∑
i=1

ω(x)

(
f ; 1

i2

))
,

O

(
ω(x)

(
f ; 1

n

)
log n + ω(y)

(
f ; 1

n

)
log n

)
+ ω(x)(f ; δ)

}

and

ω(y)(Ln,n(f ); δ) ≤ min

{
O

⎛
⎝δn

n∑
j=1

ω(y)

(
f ; 1

j2

)⎞⎠ ,

O

[
ω(x)

(
f ; 1

n

)
log n + ω(y)

(
f ; 1

n

)
log n

]
+ ω(y)(f ; δ)

}
.

Proof. It is immediate by Lemmas 3.4.1, 3.4.2, 3.4.3 for n1 = n2 = n and by the
fact that taking into account the technique in Shisha–Mond [92], p. 1275–1276 and
the estimate in the univariate case, we have

‖Ln1,n2(f ) − f ‖ ≤ c

[
ω(x)

(
f ; 1

n1

)
log n1 + ω(y)

(
f ; 1

n2

)
log n2

]
.

�

Corollary 3.4.2. Let f : [−1, 1] × [−1, 1] → R be Lipschitz of order α ∈ (0, 1]
with respect to x and y, respectively, i.e.,

|f (x1, y) − f (x2, y)| ≤ L1|x1 − x2|α, ∀ x1, x2, y ∈ [−1, 1],
and

|f (x, y1) − f (x, y2)| ≤ L2|y1 − y2|α, ∀ x, y1, y2 ∈ [−1, 1].
Then, for all n ∈ N, δ, η ∈ (0, 1) we have:

ω(Ln,n(f ); δ, η) ≤ C[min{δn, n−α log n + δα}

+ min{ηn, n−α log n + ηα}], if
1

2
< α ≤ 1;

ω(Ln,n(f ); δ, η) ≤ C

[
min

{
δn log n,

log n√
n

+ √
δ

}

+ min

{
ηn log n,

log n√
n

+ √
η

}]
, if α = 1

2
;

ω(Ln,n(f ); δ, η) ≤ C[min{δn2−2α, n−α log n + δα}
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+ min{ηn2−2α, n−α log n + ηα}], if 0 < α <
1

2
.

Proof. By Lemma 3.1.1,(i) we have

ω(Ln1,n2(f ); δ, η) ≤ ω(x)(Ln1,n2(f ); δ) + ω(y)(Ln1,n2(f ); η)

(actually ω(Ln1,n2(f ); δ, η) ∼ [ω(x)(Ln1,n2(f ); δ)+ω(y)(Ln1,n2(f ); η)] which jus-
tifies the method).

Because in general we have

n∑
i=1

1

iα
=

⎧⎨
⎩

O(n1−α), if 0 < α < 1
O(log n), if α = 1
C > 0, if α > 1

it follows

n

n∑
i=1

ω
(z)
1

(
f ; 1

i2

)
≤ C

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n2−2α, if 0 < α <
1

2
n log n, if α = 1

2
n, if

1

2
< α ≤ 1

,

for z := x, z := y, f ∈ Lipα with respect to x and y.
Taking now n = n1 = n2 in Lemma 3.1.1, by Corollary 3.4.1 we get the statement

in corollary. �

Now, we are in position to prove the following global smoothness preservation
property.

Corollary 3.4.3. Let f : [−1, 1] × [−1, 1] → R be Lipschitz of order α ∈ (0, 1]
with respect to x and y, respectively, which obviously is equivalent to

ω(f ; δ, η) ≤ C(δα + ηα), ∀ δ, η > 0.

For all n ∈ N, δ, η ∈ (0, 1), we have:

ω(Ln,n(f ); δ, η) = E(α, δ) + E(α, η).

Proof. By Corollary 3.4.2 and reasoning exactly as in the univariate (for example,
if 1/2 < α ≤ 1, then we consider separately the cases δn ≤ n−α log n, δn >

n−α log n, ηn ≤ n−α log n, ηn > n−α log n), we immediately obtain

ω(Ln,n(f ); δ, η) = E(α, δ) + E(α, η). �

Remark. The method applied for Hermite–Fejér interpolation polynomials in
Section 3.2, unfortunately does not work for Lagrange polynomials.As a consequence,
the case n1 
= n2 still remains open for Lagrange polynomials.

For the case of Bögel modulus of continuity, reasoning exactly as in the previous
Section 3.2, we immediately get the following.
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Corollary 3.4.4. If G ∈ Da,b, G(x, y) = F(f (x)g(y)) then

ω(B)(Ln1,n2(G); δ, η) = E(a, δ)E(b, η).

Remark. All the above results can easily be extended for m variables, m > 2.

3.5 Bibliographical Remarks and Open Problems

All the results in this chapter except those where the authors are mentioned belong to
Gal–Szabados [58].

Open Problem 3.5.1. Prove global smoothness preservation properties for the
Shepard operators Sn1,n2,μ(f )(x, y) in Theorem 3.3.3 and for the Lagrange polyno-
mials Ln1,n2(f )(x, y) in Lemmas 3.4.1–3.4.3, for the general case n1 
= n2. (The
particular case n1 = n2 is solved by Theorem 3.3.4, Corollary 3.3.2 and Corollary
3.4.3.)

Open Problem 3.5.2. For the bivariate tensor product Shepard operators on the
semi-axis, generated by the univariate case in Della Vecchia–Mastroianni–Szabados
[36], prove global smoothness preservation properties.

Open Problem 3.5.3. For the kinds of univariate Shepard operators considered
by Chapters 1 and 2, various bivariate combinations different from those considered
by Chapter 3 can be considered as follows.

We suppose that all the kinds of Shepard operators are defined on equidistant nodes
in the interval [−1, 1] × [−1, 1], i.e., are of the form xk = k

n
, k = −n, . . . , 0, . . . , n

and yj = j
m

, j = −m, . . . , 0, . . . , m.
Type 1. “Original Shepard–Lagrange operator,”

Sn,p,Lm(f )(x, y) =
n∑

i=−n

si,n,p(x, y)Li
m(f )(x, y),

where

si,n,p(x, y) = [(x − xi)
2 + (y − yi)

2]−p∑n
k=−n[(x − xk)2 + (y − yk)2]−p

, p > 2, p ∈ N,

and Li
m(f )(x, y) is the polynomial defined as in, e.g., Coman–Trimbitas [27], on

page 43.
Type 2. “Tensor product Shepard–Lagrange operator”

Sn,m,2p,2q,n1,n2(f )(x, y)

=
n∑

i=−n

m∑
j=−m

si,n,2p(x)sj,m,2q(y)L
i,j
n1,n2(f )(x, y), p, q ≥ 2,

where
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si,n,2p(x) = (x − xi)
−2p

n∑
k=−n

(x − xk)
−2p

,

sj,m,2q(y) = (y − yj )
−2q

m∑
k=−m

(y − yk)
−2q

,

and
L

i,j
n1,n2(f )(x, y)

=
n1∑

ν=0

n2∑
μ=0

ui(x)

(x − xi+ν)u
′
i (xi+ν)

vj (y)

(y − yj+μ)v′
j (yj+μ)

f (xi+ν, yj+μ),

with ui(x) = (x −xi) · · · (x −xi+n1), vj (y) = (y −yj ) · · · (y −yj+n2) and xn1+ν =
xν , yn2+μ = yμ.

Type 3. “Tensor product Shepard–Lagrange-Taylor operator”

Sn,m,2p,2q,n1,n2(f )(x, y)

=
n∑

i=−n

m∑
j=−m

si,n,2p(x)sj,m,2q(y)LT
i,j
n1,n2(f )(x, y), p, q ≥ 2,

where

si,n,2p(x) = (x − xi)
−2p

n∑
k=−n

(x − xk)
−2p

,

sj,m,2q(x) = (y − yj )
−2q

m∑
k=−m

(y − yk)
−2q

,

and

LT
i,j
n1,n2(f )(x, y) =

n1∑
ν=0

n2∑
μ=0

ui(x)

(x − xi+ν)u
′
i (xi+ν)

(y − yj )
μ

(μ)!
∂μf (xi+ν, yj )

∂yμ
.

Obviously, if we change the place of x and y, then we get the “tensor product
Shepard–Taylor–Lagrange” type operator, which is similar.

Type 4. “Original Shepard–Taylor operator”

Sn,p,Tm−n,...,mn
(f )(x, y) =

n∑
i=−n

si,n,p(x, y)T i
mi

(f )(x, y),

where
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si,n,p(x, y) = [(x − xi)
2 + (y − yi)

2]−p

n∑
k=−n

[(x − xk)
2 + (y − yk)

2]−p

, p > 2, p ∈ N,

and

T i
mi

(f )(x, y) =
∑

r+s≤mi

(x − xi)
r

r!
(y − yj )

s

s!
∂r+sf (xi, yi)

∂xr∂ys
.

Type 5. “Tensor product Shepard–Taylor operator”

Sn,m,2p,2q,n−n,...,nn,m−m,...,mm(f )(x, y)

=
n∑

i=−n

m∑
j=−m

si,n,2p(x)sj,m,2q(y)T T
i,j
ni ,mj

(f )(x, y), p, q ≥ 2,

where

si,n,2p(x) = (x − xi)
−2p

n∑
k=−n

(x − xk)
−2p

,

sj,m,2q(x) = (y − yj )
−2q

m∑
k=−m

(y − yk)
−2q

,

and

T T
i,j
ni ,mj

(f )(x, y) =
ni∑

ν=0

mj∑
μ=0

(x − xi)
ν

(ν)!
(y − yj )

μ

(μ)!
∂ν+μf (xi, yj )

∂xν∂yμ
.

Type 6. “Shepard–Gal–Szabados–Taylor operator”

Sn,m,p,n−n,...,nn,m−m,...,mm(f )(x, y)

=

n∑
i=−n

m∑
j=−m

[(x − xi)
2 + (y − yj )

2]−pT T
i,j
ni ,mj

(f )(x, y)

n∑
i=−n

m∑
j=−m

[(x − xi)
2 + (y − yj )

2]−p

,

where

T T
i,j
ni ,mj

(f )(x, y) =
ni∑

ν=0

mj∑
μ=0

(x − xi)
ν

(ν)!
(y − yj )

μ

(μ)!
∂ν+μf (xi, yj )

∂xν∂yμ
.

It would be interesting to find global smoothness preservation properties (with
respect to various bivariate moduli of continuity) of the above six types of bivariate
Shepard operators.
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Open Problem 3.5.4. Starting from the local variants of Shepard operators in the
univariate case defined in Open Problem 1.6.13 (Chapter 1), local bivariate tensor
products can be defined as in the above Open Problem 3.5.3.

The problem is to find global smoothness preservation properties (with respect to
various bivariate moduli of continuity) of these local bivariate Shepard operators.



4

Partial Shape Preservation, Bivariate Case

In this chapter we extend the results of Chapter 2 to the bivariate case.

4.1 Introduction

As it was pointed out in Chapter 2, it is evident that because of the interpolation
conditions, the interpolating operators do not completely preserve the shape of an
univariate function f , on the whole interval that contains the points of interpolation.
A key result used in the univariate case for the proofs of qualitative-type results, is
the following simple one

Lemma 4.1.1. (Popoviciu [81]). Let f : [a, b] → R, a ≤ x1 < x2 < · · · < xn ≤
b and Fn(f )(x) = ∑n

i=1 hi(x)f (xi), where hi ∈ C1[a, b] and
∑n

i=1 hi(x) = 1,
∀x ∈ [a, b].

(i) We have

F ′
n(f )(x) =

n−1∑
i=1

⎛
⎝−

i∑
j=1

h′
j (x)

⎞
⎠ [f (xi+1) − f (xi)].

(ii) If there exists x0 ∈ (a, b) such that h′
1(x0) < 0, h′

n(x0) > 0 and the sequence
h′

1(x0), h′
2(x0), . . . , h

′
n(x0) has a unique variation of sign, then

−
i∑

j=0

h′
j (x0) > 0, for all i = 1, n − 1,

and consequently by (i) there exists a neighborhood V (x0) of x0, where the mono-
tonicity of f assumed on the whole [a, b] is preserved.

In this chapter qualitative and quantitative results for bivariate Hermite–Fejér
polynomial and Shepard operators are obtained. New aspects appear because of var-
ious possible natural concepts for bivariate monotonicity and convexity. Also, three
different kinds of bivariate Shepard operators are studied.
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4.2 Bivariate Hermite–Fejér Polynomials

If g : [−1, 1] → R and −1 < xn,n < xn−1,n < · · · < x1,n < 1 are the roots of Jacobi

polynomials J
(α,β)
n (x), then it is well known that (see, e.g., Fejér [43] or Popoviciu

[81]) the (univariate) Hermite–Fejér polynomials based on the roots above are given
by Fn(g)(x) = ∑n

i=1 hi,n(x)g(xi,n), where

hi,n(x) = �2
i,n(x) ·

[
1 − �′′

n(xi,n)

�′
n(xi,n)

(x − xi,n)

]
,

�i,n(x) = �n(x)

(x − xi,n)�′
n(xi,n)

, �n(x) =
n∏

i=1

(x − xi,n).

We have
∑n

i=1 hi,n(x) = 1, for all x ∈ [−1, 1].
Now, if f : [−1, 1] × [−1, 1] → R, then according to, e.g., Shisha–Mond [92],

the bivariate Hermite–Fejér polynomial is defined by

Fn1,n2(f )(x, y) =
n1∑
i=1

n2∑
j=1

h
(1)
i,n1

(x)h
(2)
j,n2

(y)f (x
(1)
i,n1

, x
(2)
j,n2

) (4.1)

where h
(1)
i,n1

(x), x(1)
i,n1

, i = 1, n1 and h
(2)
j,n2

(y) and x
(2)
j,n2

, j = 1, n2 are defined as in the
univariate case above, n1, n2 ∈ N.

We easily see that

Fn1,n2(f )(x
(1)
i,n1

, x
(2)
j,n2

) = f (x
(1)
i,n1

, x
(2)
j,n2

), ∀i = 1, n1, j = 1, n2.

The key result of this section is
Theorem 4.2.1. With the notations above, we have

∂2Fn1,n2(f )(x, y)

∂x∂y
=

n1−1∑
i=1

[⎛⎝ i∑
p=1

h(1)′
p,n1

(x)

⎞
⎠ ·

{n2−1∑
j=1

⎛
⎝ j∑

q=1

h(2)′
q,m(y)

⎞
⎠

·(f (x
(1)
i,n1

, x
(2)
j,n2

) − f (x
(1)
i,n1

, x
(2)
j+1,n2

)

− f (x
(1)
i+1,n1

, x
(2)
j,n2

) + f (x
(1)
i+1,n1

, x
(2)
j+1,n2

))

}]
.

Proof. We observe

∂Fn1,n2(f )(x, y)

∂x
=

n1∑
i=1

n2∑
j=1

h
(1)′
i,n1

(x)h
(2)
j,n2

(y)f (x
(1)
i,n1

, x
(2)
j,n2

)

=
n2∑

j=1

(
n1∑
i=1

h
(1)′
i,n1

(x)f (xi,n1 , xj,n2)

)
h

(2)
j,n2

(y)(by Lemma 4.1.1 (i) )
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=
n2∑

j=1

[n1−1∑
i=1

⎛
⎝ i∑

p=1

h(1)′
p,n1

(x)

⎞
⎠ (f (x

(1)
i,n1

, x
(2)
j,n2

) − f (x
(1)
i+1,n1

, x
(2)
j,n2

))

]
· h

(2)
j,n2

(y)

=
n1−1∑
i=1

⎛
⎝ i∑

p=1

h(1)′
p,n1

(x)

⎞
⎠ ·

{ n2∑
j=1

h
(2)
j,n2

(y)(f (x
(1)
i,n1

, x
(2)
j,n2

) − f (x
(1)
i+1,n1

, x
(2)
j,n2

))

}
.

It follows that

∂2Fn1,n2(f )(x, y)

∂x∂y
=

n1−1∑
i=1

[⎛⎝ i∑
p=1

h(1)′
p,n1

(x)

⎞
⎠ ·

{ n2∑
j=1

h
(2)
j,n2

(y)

·(f (x
(1)
i,n1

, x
(2)
j,n2

) − f (x
(1)
i+1,n1

, x
(2)
j,n2

))

}]′

y

(by Lemma 4.1.1 (i))

=
n1−1∑
i=1

⎛
⎝ i∑

p=1

h(1)′
p,n1

(x)

⎞
⎠ ·

n2−1∑
j=1

⎛
⎝ j∑

q=1

h(2)′
q,n2

(y)

⎞
⎠

·(f (x
(1)
i,n1

, x
(2)
j,n2

) − f (x
(1)
i+1,n1

, x
(2)
j,n2

) − f (x
(1)
i,n1

, x
(2)
j+1,n2

) + f (x
(1)
i+1,n1

, x
(2)
j+1,n2

)),

which proves the theorem. �

Also, we need the following:
Definition 4.2.1. (see, e.g., Marcus [71], p. 33).We say that f : [a, b]×[c, d] → R

is bidimensional or hyperbolical upper (lower) monotone on [a, b] × [c, d], if

�2(f )(x, y; α, β) = f (x + α, y + β) − f (x, y + β) − f (x + α, y) + f (x, y) ≥ 0

(≤ 0, respectively), for all α, β ≥ 0 and (x, y) ∈ [a, b]× [c, d] such that (x +α, y +
β) ∈ [a, b] × [c, d].

Remark. If f ∈ C2([a, b] × [c, d]) and ∂2f (x,y)
∂x∂y

≥ 0, for all (x, y) ∈ [a, b] ×
[c, d], then f is bidimensional upper monotone on [a, b] × [c, d] (see, e.g., Marcus
[71]).

Corollary 4.2.1. Let n1 = 2p1, n2 = 2p2 be even numbers and let us consider
the bivariate Hermite–Fejér polynomials Fn1,n2(f )(x, y) given by (4.1), based on the

roots x
(1)
i,n1

, i = 1, n1 of λ1-ultraspherical polynomials of degree n1 with λ1 > −1 (i.e.,

the Jacobi polynomials J
(α1,β1)
n1 with α1 = β1, λ1 = α1 + β1 + 1, −1 < α1, β1 ≤ 1)

and on the roots x
(2)
j,n2

, j = 1, n2 of λ2-ultraspherical polynomials of degree n2,

J
(α2,β2)
n2 , λ2 > −1 (i.e., α2 = β2, λ2 = α2 +β2 +1, −1 < α2, β2 ≤ 1). There exists a

constant c > 0 (independent of f and n1, n2) such that if f : [−1, 1]×[−1, 1] → R is
bidimensional monotone on [−1, 1]× [−1, 1], then Fn1,n2(f )(x, y) is bidimensional
monotone (of the same monotonicity) on

(− c

n4
1
, c

n4
1

) × (− c

n4
2
, c

n4
2

)
.

Proof. By the proof of Theorem 2.2.1 (see relation (2.2) and the last relation
there), we have
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i∑
p=1

h(1)′
p,n1

(x) > 0,

j∑
q=1

h(2)′
q,n2

(y) > 0, ∀i = 1, n1 − 1, j = 1, n2 − 1,

∀x ∈
(

− c

n4
1

,
c

n4
1

)
, ∀y ∈

(
− c

n4
2

,
c

n4
2

)
.

Taking into account Theorem 4.2.1, we obtain

∂2Fn1,n2(f )(x, y)

∂x∂y
≥ 0, ∀(x, y) ∈

(
− c

n4
1

,
c

n4
1

)
×

(
− c

n4
2

,
c

n4
2

)
,

which by the Remark after Definition 4.2.1 proves the theorem. �
Corollary 4.2.2. Let us consider Fn1,n2(f )(x, y) given by (4.1), based on the

roots of Jacobi polynomials J
(α1,β1)
n1 , J

(α2,β2)
n2 , of degree n1 and n2, respectively, with

αi, βi ∈ (−1, 0], i = 1, 2. If ξ is any root of the polynomial �(1)′
n1 (x) and η is any root of

the polynomial �(2)′
n2 (y) (here �

(1)
n1 (x) = ∏n1

i=1(x−x
(1)
i,n1

), �(2)
n2 (y) = ∏n2

j=1(y−x
(2)
j,n2

)),
then there exists a constant c > 0 (independent of n1, n2 and f ) such that if f is
bidimensional monotone on [−1, 1]× [−1, 1], then Fn1,n2(f )(x, y) is bidimensional
monotone (of the same monotonicity) on(

ξ − cξ

n
7+2γ1
1

, ξ + cξ

n
7+2γ1
1

)
×

(
η − cη

n
7+2γ2
2

, η + cη

n
7+2γ2
2

)
⊂(−1, 1) × (−1, 1),

where

cξ = c

(1 − ξ2)5/2+δ1
, cη = c

(1 − η2)5/2+δ2
, γi = max{αi, βi}, i = 1, 2

and

δ1 =
{

α1, if 0 ≤ ξ < 1
β1, if − 1 < ξ ≤ 0,

δ2 =
{

α2, if 0 ≤ η < 1
β2, if − 1 < η ≤ 0.

Proof. An immediate consequence of Theorem 4.2.1 above and of Theorem 2.2.2.
�

Remarks. (1) Because �
(1)′
n1 and �

(2)′
n2 have exactlyn1−1 andn2−1 roots in (−1, 1),

respectively, it follows that in (−1, 1)× (−1, 1) there exists a grid of (n1 −1)(n2 −1)

points (ξ, η) from Corollary 4.2.2.
(2) From Remark 1, after Theorem 2.2.2, it follows that if ξ and η are near the

endpoints in the ultra-spherical case, for example, (i.e., αi = βi ∈ (−1, 0), i =
1, 2) then the best possible bidimensional interval of preservation of bidimensional
monotonicity is

(
ξ − c

n2
1
, ξ − c

n2
1

) × (
η − c

n2
2
, η − c

n2
2

)
.
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In what follows we will extend the convexity problem from the univariate case.
In this sense, we need the following.
Definition 4.2.2. (see, e.g., Nicolescu [76]). We say that f : [−1, 1]× [−1, 1] →

R is strictly double convex on [−1, 1] × [−1, 1], if �
2,y
h1

[�2,x
h2

f (a, b)] > 0, for all
h1, h2 > 0, (a, b) ∈ [−1, 1] × [−1, 1], with a ± h2, b ± h1 ∈ [−1, 1], where

�
2,x
h2

f (α, β) = f (α + h2, β) − 2f (α, β) + f (α − h2, β)

and
�

2,y
h1

f (α, β) = f (α, β + h1) − 2f (α, β) + f (α, β − h1).

Remark. By the mean value theorem it is easy to see that if ∂4f (x,y)

∂x2∂y2 (x, y) > 0,

for all (x, y) ∈ [−1, 1]2, then f is strictly double convex on [−1, 1]2.
Now, let n1, n2 ≥ 3 be odd and let us consider as Fn1,n2(f )(x, y) the Hermite–

Fejér polynomial given by (4.1), based on the roots x
(1)
i,n , i = 1, n1 and x

(2)
j,n2

, j = 1, n2

of the λ1-ultraspherical polynomials p
(λ1)
n1 of degree n1 and λ2-ultraspherical poly-

nomials P
(λ2)
n2 of degree n2, respectively, λ1, λ2 ∈ [0, 1], and the Côtes–Christoffel

numbers of the Gauss–Jacobi quadrature

λ
(1)
i,n1

:= 22−λ1π

[
�

(
λ1

2

)]−2
�(n1 + λ1)

�(n1 + 1)
[1 − (x

(1)
i,n1

)2]−1

·[P (λ1)
′

n1
(x

(1)
i,n1

)]−2, i = 1, n1,

λ
(2)
j,n2

:= 22−λ2π

[
�

(
λ2

2

)]−2
�(n2 + λ2)

�(n2 + 1)
[1 − (x

(2)
j,n2

)2]−1

·[P (λ2)
′

n2
(xj,n2)]−2, j = 1, n2.

Theorem 4.2.2. If f ∈ C([−1, 1] × [−1, 1]) satisfies

n1∑
i=1

n2∑
j=1

λ
(1)
i,n1

λ
(2)
j,n2

�
2,y

x
(2)
j,n2

�
2,x

x
(1)
i,n1

f (0, 0)

(x
(1)
i,n1

x
(2)
j,n2

)2
> 0, (4.2)

then Fn1,n2(f )(x, y) is strictly double convex in V (0, 0) = {(x, y); x2+y2 < d2
n1,n2

},
with

|dn1,n2 |

≥ cf,λ1,λ2

n1n2

n1−1
2∑

i=1

n2−1
2∑

j=1
λ

(1)
i,n1

λ
(2)
j,n2

�
2,y

x
(2)
j,n2

[�2,x

x
(1)
i,n1

f (0, 0)]/(x(1)
i,n1

x
(2)
j,n2

)2

(n1 + n2)5
,

where cf1λ1,λ2 > 0 is independent of n1 and n2.
Proof. We observe
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∂4Fn1,n2(f )(x, y)

∂x2∂y2 =
n2∑

j=1

h
(2)′′
j,n2

(y)

(
n1∑
i=1

h
(1)′′
i,n1

(x)f (x
(1)
i,n1

, x
(2)
j,n2

)

)

and reasoning as in the proof of Theorem 2.2.3 in (see relation (2.7) there) we obtain

∂4Fn1,n2(f )(0, 0)

∂x2∂y2 =
n2∑

j=1

h
(2)′′
j,n2

(0)

⎡
⎢⎣

n1−1
2∑

i=1

h
(1)′′
i,n1

(0)�
2,x

x
(1)
i,n1

f (0, x
(2)
j,n2

)

⎤
⎥⎦ .

Denoting G(y) =
n1−1

2∑
i=1

h
(1)′′
i,n1

(0) · �
2,x

x
(1)
i,n1

f (0, y), we get

∂4Fn1,n2(f )(0, 0)

∂x2∂y2 =
n2∑

j=1

h
(2)′′
j,n2

(0)G(x
(2)
j,n2

) =
n2−1

2∑
j=1

h
(2)′′
j,n2

(0)�
2,y

x
(2)
j,n2

G(0)

=
n2−1

2∑
j=1

n1−1
2∑

i=1

h
(2)′′
j,n2

(0)h
(1)′′
i,n1

(0)�
2,y

x
(2)
j,n2

[�2,x

x
(1)
i,n1

f (0, 0)].

Therefore, again by relation (2.7) and by hypothesis we obtain

∂4Fn1,n2(f )(0, 0)

∂x2∂y2 ≥ c3λ1λ2n1n2

n1∑
i=1

n2∑
j=1

λ
(1)
i,n1

λ
(2)
j,n2

�
2,y

x
(2)
j,n2

[�2,x

x
(1)
i,n1

f (0, 0)]/(x(2)
j,n1

x
(1)
i,n2

)2 > 0. (4.3)

So it follows that Fn1,n2(f )(x, y) is strictly double convex in a neighborhood of (0, 0).

Let (αn1,n2 , βn1,n2) be the nearest root of
∂4Fn1,n2 (f )

∂x2∂y2 to (0, 0), in the sense that the

distance dn1,n2 =
√

α2
n1,n2

+ β2
n1,n2

is minimum for all the roots of
∂4Fn1,n2 (f )

∂x2∂y2 . Then,

for all (x, y) ∈ V (0, 0) = {(x, y) ∈ R
2;

√
x2 + y2 < dn1,n2} we necessarily have

∂4Fn1,n2 (f )(x,y)

∂x2∂y2 > 0. By the mean value theorem for bivariate functions we get

∂4Fn1,n2(f )(0, 0)

∂x2∂y2 =
∣∣∣∣∂Fn1,n2(f )(0, 0)

∂x2∂y2 − ∂4Fn1,n2(f )(αn1,n2 , βn1,n2)

∂x2∂y2

∣∣∣∣
≤ |αn1,n2 | ·

∣∣∣∣∣∂
5Fn1,n2(f )(ξ, η)

∂x3∂y2

∣∣∣∣∣ + |βn1,n2 | ·
∣∣∣∣∣∂

5Fn1,n2(f )(ξ, η)

∂x2∂y3

∣∣∣∣∣
≤ |dn1,n2 | ·

[∣∣∣∣∣∂
5Fn1,n2(f )(ξ, η)

∂x3∂y2

∣∣∣∣∣ +
∣∣∣∣∣∂

5Fn1,n2(f )(ξ, η)

∂x2∂y3

∣∣∣∣∣
]

.

Because degree (Fn1,n2(f )) ≤ 2n1 − 1 + 2n2 − 1 = 2n1 + 2n2 − 2, we have degree(
∂5Fn1,n2 (f )

∂x3∂y2

)
≤ 2n1 + 2n2 − 7, degree

(
∂5Fn1,n2 (f )

∂x2∂y3

)
≤ 2n1 + 2n2 − 7. As in the
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proof of Theorem 2.2.3, we can assume that the interval of convexity cannot be larger
than

[− c1
n1

, c1
n1

]×[− c2
n2

, c2
n2

]
. Consequently, we may assume that |dn1,n2 | ≤ c

min{n1,n2} .
Now, by the Bernstein theorem in Kroó–Révész [67], p. 136, relation (8), we

obtain∣∣∣∣∣∂
5Fn1,n2(f )(ξ, η)

∂x3∂y2

∣∣∣∣∣ ≤ c(2n1 + 2n2 − 7)(2n1 + 2n2 − 6)(2n1 + 2n2 − 5)

·(2n1 + 2n2 − 4)(2n1 + 2n2 − 3) · ‖Fn1,n2‖C([−1,1]×[−1,1])
≤ c(n1 + n2)

5 · ‖Fn1,n2‖C([−1,1]×[−1,1]).

But because by Fejér [43], the fundamental interpolation polynomials h
(1)
i,n1

(x) and

h
(2)
j,n2

(y) are ≥ 0, ∀i = 1, n1, ∀j = 1, n2, ∀(x, y) ∈ [−1, 1] × [−1, 1], denoting
Mf = ‖f ‖C([−1,1]×[−1,1]), it follows that∣∣∣∣∣∂

5Fn1,n2(f )(ξ, η)

∂x3∂y2

∣∣∣∣∣ ≤ c(n1 + n2)
5Mf ,

∣∣∣∣∣∂
5Fn1,n2(f )(ξ, η)

∂x2∂y3

∣∣∣∣∣ ≤ c(n1 + n2)
5Mf

and consequently

∂4Fn1,n2(f )(0, 0)

∂x2∂y2 ≤ cf (n1 + n2)
5dn1,n2 ,

where cf > 0 is independent of n1 and n2 (but dependent on f ).
Combining this estimate with (4.3), we easily get the lower estimate for |dn1,n2 |

in the statement of Theorem 4.2.2. �

Remarks. (1) As in the univariate case, the neighborhood V (0, 0) of preservation
of strict convexity depends on f too.

(2) The estimate of |dn1,n2 | in the bivariate case seems to be weaker, in a sense,
than that of the univariate case, because it was not proved yet to be a Stechkin-type
inequality for bivariate polynomials. That would be useful for a better estimate.

(3) If f : [−1, 1] × [−1, 1] → R is strictly double convex on [−1, 1] × [−1, 1],
then the condition (4.2) is obviously satisfied and consequently Fn1,n2(f )(x, y) pre-
serve the strictly double convexity in a disc centered at (0, 0), having for its ray |dn1,n2 |
the lower estimate of Theorem 4.2.2.

(4) Let Fn1,n2(f )(x, y) be given by (4.1), based on the roots x
(1)
i,n1

, i = 1, n1

and x
(2)
j,n2

, j = 1, n2 of the λ1-ultraspherical polynomials P
(λ1)
n1 and λ2-ultraspherical

polynomials P
(λ2)
n2 , respectively, where λ1, λ2 ∈ [0, 1]. Because by Fejér [43], the

polynomials h
(1)
i,n1

(x), h
(2)
j,n2

(y) ≥ 0, ∀i = 1, n1, ∀j = 1, n2, ∀(x, y) ∈ [−1, 1] ×
[−1, 1], by the formulas

∂pFn1,n2(f )(x, y)

∂yp
=

n1∑
i=1

h
(1)
i,n1

(x)

⎡
⎣ n2∑

j=1

∂ph
(2)
j,n2

(y)

∂yp
f (x

(1)
i,n1

, x
(2)
j,n2

)

⎤
⎦ ,
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p = 1, 2, from the univariate case in Section 2.2, the following results are immediate:
If f (x, y) is nondecreasing with respect to y ∈ [−1, 1] (for all fixed x ∈ [−1, 1]),
then for n1, n2 ∈ N and η root of P

(λ2)
′

n2 (y), Fn1,n2(f )(x, y) is nondecreasing with
respect to

y ∈
(

η − cη

n
7+2γ2
2

, η + cη

n
7+2γ2
2

)
,

for all fixed x ∈ [−1, 1] (here cη and γ2 are given by Corollary 4.2.2).
If f (x, y) is strictly convex with respect to y ∈ [−1, 1] (for all fixed x ∈ [−1, 1]),

then for all n1 ∈ N, arbitrary and n2 ∈ N, n2 ≥ 3, n2 odd number, there exists a
neighborhood V (0) of 0, such that for all fixed x ∈ [−1, 1], Fn1,n2(f )(x, y) is strictly
convex with respect to y ∈ V (0).

Similar results hold if we consider
∂pFn1,n2 (f )(x,y)

∂xp , p = 1, 2.
(5) All the results above can easily be extended for n variables, n > 2.

4.3 Bivariate Shepard Operators

For the three types of bivariate Shepard operators considered in Section 3 of Chapter
3, we prove here that preserve natural kinds of bivariate monotonicity and convexity
in the neighborhoods of some points and quantitative estimates of the lengths of these
neighborhoods are obtained.

Let us first consider the bivariate Shepard operator defined as a tensor product by

S(λ,μ)
n,m (f ; x, y) =

n∑
i=−n

m∑
j=−m

si,λ(x)sj,μ(y)f (xi, yj ), if (x, y) 
= (xi, yj ),

S
(λ,μ)
n,m (f ; xi, yj ) = f (xi, yj ), where 1 < λ, μ, −1 ≤ x−n < · · · < xn ≤ 1,

−1 ≤ y−m < · · · < ym ≤ 1 and f : [−1, 1] × [−1, 1] → R,

si,λ(x) = |x − xi |−λ/

[
n∑

k=−n

|x − xk|−λ

]
,

sj,μ(y) = |y − yj |−μ/

[
m∑

k=−m

|y − yk|−μ

]
.

The global smoothness preservation properties and convergence properties of
these operators were studied in Section 3 of Chapter 3. In this section we consider
their properties of preservation of shape.

In this sense, a key result is the following.
Theorem 4.3.1. With the notations above, we have:

∂2S
(λ,μ)
n,m (f ; x, y)

∂x∂y
=

n−1∑
i=−n

⎛
⎝−

i∑
p=−n

s′
p,λ(x)

⎞
⎠ m−1∑

j=−m

⎛
⎝−

j∑
q=−m

s′
q,μ(y)

⎞
⎠
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×(f (xi, yj ) − f (xi, yj+1) − f (xi+1, yj ) + f (xi+1, yj+1)).

Proof. We observe

∂S
(λ,μ)
n,m (f ; x, y)

∂x
=

n∑
i=−n

m∑
j=−m

s′
i,λ(x)sj,μ(y)f (xi, yj )

=
m∑

j=−m

(
n∑

i=−n

s′
i,λ(x)f (xi, yj )

)
sj,μ(y) (by Lemma 4.1.1)

=
m∑

j=−m

⎡
⎣ n−1∑

i=−n

⎛
⎝−

i∑
p=−n

s′
p,λ(x)

⎞
⎠ (f (xi+1, yj ) − f (xi, yj ))

⎤
⎦ sj,μ(y)

=
n−1∑
i=−n

⎛
⎝−

i∑
p=−n

s′
p,λ(x)

⎞
⎠ m∑

j=−m

sj,μ(y) × (f (xi+1, yj ) − f (xi, yj )).

It follows

∂2S
(λ,μ)
n,m (f ; x, y)

∂x∂y
=

n−1∑
i=−n

⎛
⎝−

i∑
p=−n

s′
p,λ(x)

⎞
⎠ m∑

j=−m

s′
j,μ(y)

×(f (xi+1, yj ) − f (xi, yj )),

which by the above Theorem 4.1.1, immediately implies the formula in the statement.
�

Corollary 4.3.1. Let f : [−1, 1] × [−1, 1] → R, λ = 2p, μ = 2q, p, q ∈ N,
xi = i/n, i ∈ {−n, . . . , n}, yj = j/m, j ∈ {−m, . . . , m}, ln,p(x) = ∑n

i=−n(x −
xi)

−2p, lm,q(y) = ∑m
j=−m(y−yj )

−2q . If ξ is any solution of the equation l′n,p(x) = 0
and η is any solution of the equation l′m,q(y) = 0, then there exists a constant
c > 0 independent of n, m and f , such that if f (x, y) is bidimensional monotone
on [−1, 1] × [−1, 1], then S

(λ,μ)
n,m (f ; x, y) is bidimensional monotone (of the same

monotonicity) on

(ξ − c/n2p+3, ξ + c/n2p+3) × (η − c/m2q+3, η + c/m2q+3) ⊂ (−1, 1) × (−1, 1).

Proof. It is immediate by Theorem 4.3.1 and Theorem 2.3.3. �

Remark. Because by Remark 1 after Theorem 2.3.1, each equation l′n,p(x) = 0,
l′m,q(y) = 0 has 2n, respectively, 2m solutions, it follows that in Corollary 4.3.1 there
exists a grid of 4mn points (ξ, η).

In what follows, we will extend the convexity problem from the univariate case.
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Corollary 4.3.2. Let f : [−1, 1] × [−1, 1] → R, λ = 2p, μ = 2q, p, q ∈ N,
xi = i/n, i ∈ {−n, . . . , n}, yj = j/m, j ∈ {−m, . . . , m}. If �

2,y
h [�2,x

k f (0, 0)] > 0,

for all h, k ∈ (0, 1], then S
(λ,μ)
n,m (f ; x, y) is strictly double convex in a bivariate

neighborhood V (0, 0) of (0, 0).
Proof. We observe

∂4S
(λ,μ)
n,m (f ; x, y)

∂x2∂y2 =
m∑

j=−m

s′′
j,μ(y)

(
n∑

i=−n

s′′
i,λ(x)f (xi, yj )

)
.

Reasoning as in the proof of univariate case of Theorem 2.3.2 , we obtain

∂r+sS
(λ,μ)
n,m (f ; 0, y)

∂xr∂ys
=

m∑
j=−m

s
(s)
j,μ(y)

[
n∑

i=−n

s
(r)
i,λ (0)f (xi, yj )

]

= ∂r+sS
(λ,μ)
n,m (f ; x, 0)

∂xr∂ys
=

m∑
j=−m

s
(s)
j,μ(0)

[
n∑

i=−n

s
(r)
i,λ (x)f (xi, yj )

]
= 0,

for all r ∈ {1, . . . , 2p − 1}, s ∈ {1, . . . , 2q − 1}, (x, y) ∈ [−1, 1] × [−1, 1], and

∂2p+2qS
(λ,μ)
n,m (f ; 0, 0)

∂x2p∂y2q
=

m∑
j=−m

s
(2q)
j,μ (0)

[
n∑

i=−n

s
(2p)
i,λ (0)f (xi, yj )

]

=
m∑

j=−m

s
(2q)
j,μ (0)

n∑
i=1

s
(2p)
i,λ (0)�2,x

xi
f (0, yj ) := A.

Denoting

G(y) =
n∑

i=1

s
(2p)
i,λ (0)�2,x

xi
f (0, y)

we get

A =
m∑

j=−m

s
(2q)
j,μ (0)G(yj ) =

m∑
j=1

s
(2q)
j,μ (0)�

2,y
yj

G(0)

=
m∑

j=1

n∑
i=1

s
(2q)
j,μ (0)s

(2p)
i,λ (0)�

2,y
yj

[�2,x
xi

f (0, 0)] > 0,

by hypothesis.
As a conclusion,

∂2p+2qS
(λ,μ)
n,m (f ; 0, 0)

∂x2p∂y2q
> 0,

which implies that there exists a neighborhood V (0, 0) of (0, 0) such that

∂2p+2qS
(λ,μ)
n,m (f ; x, y)

∂x2p∂y2q
> 0,
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for all (x, y) ∈ V (0, 0).
Denote by Vy the projection of V (0, 0) on the OY -axis and by Vx the projection

of V (0, 0) on the OX-axis. Firstly let y ∈ Vy be fixed. Reasoning as in the univariate
case, from the above relations it follows that (0, y) is a minimum point for

∂2p+2q−2S
(λ,μ)
n,m (f ; x, y)

∂x2p−2∂y2q
,

and since by the last relation ∂2p+2q−2S
(λ,μ)
n,m (f ;x,y)

∂x2p−2∂y2q is convex with respect to x ∈ Vx , it
follows that

∂2p+2q−2S
(λ,μ)
n,m (f ; x, y)

∂x2p−2∂y2q
> 0,

for all (x, y) ∈ V (0, 0), with x 
= 0.

Now, let x ∈ Vx , x 
= 0, be fixed. Reasoning for ∂2p+2q−2S
(λ,μ)
n,m (f ;x,y)

∂x2p−2∂y2q as above,
similarly we get

∂2p−2+2q−2S
(λ,μ)
n,m (f ; x, y)

∂x2p−2∂y2q−2 > 0,

for all (x, y) ∈ V (0, 0), with x 
= 0 and y 
= 0.
Reasoning by induction, finally we arrive at

∂4S
(λ,μ)
n,m (f ; x, y)

∂x2∂y2 > 0,

for all (x, y) ∈ V (0, 0), with x 
= 0 and y 
= 0, which proves the theorem. �
As an immediate consequence of the univariate result, for the bivariate tensor

product Shepard operator, we obtain the following quantitative version of Corollary
4.3.2.

Corollary 4.3.3. Let f : [−1, 1] × [−1, 1] → R, λ = 2p, μ = 2q, p, q ∈ N,
xi = i/n, i ∈ {−n, . . . , n}, yj = j/m, j ∈ {−m, . . . , m}. If �

2,y
h [�2,x

k f (0, 0)] > 0,

for all h, k ∈ (0, 1], then S
(λ,μ)
n,m (f ; x, y) is strictly double convex in the bivariate

neighborhood of (0, 0), V (0, 0) = {(x, y); x2 + y2 < d2
n,m}, with

dn,m ≥ cp,q

∑n
i=1

∑m
j=1 �

2,x
xi

[�2,y
yj

f (0, 0)]/(x2p
i y

2p
j )

[n2p+1 + m2q+1]||f || ,

where cp,q is a constant depending only on p, q.
Proof. From the proof of Corollary 4.3.2 and from the univariate case we get

∂2p+2qS
(λ,μ)
n,m (f ; 0, 0)

∂x2p∂y2q
=

m∑
j=1

n∑
i=1

s
(2q)
j,μ (0)s

(2p)
i,λ (0)�

2,y
yj

[�2,x
xi

f (0, 0)]

≥ cp,q

n∑
i=1

m∑
j=1

�2,x
xi

[�2,y
yj

f (0, 0)]/(x2p
k y

2p
j ) > 0.
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Let (αn,m, βn,m) be the nearest root to (0, 0) of ∂2p+2qS
(λ,μ)
n,m (f ;x,y)

∂x2p∂y2q , in the sense

that the distance dn,m = (α2
n,m + β2

n,m)1/2 is minimum for all the roots of
∂2p+2qS

(λ,μ)
n,m (f ;x,y)

∂x2p∂y2q . Then for all (x, y) ∈ {(x, y); (x2 + y2)1/2 < dn,m}, we neces-

sarily have ∂2p+2qS
(λ,μ)
n,m (f ;x,y)

∂x2p∂y2q > 0. By the mean value theorem for bivariate functions,
we get

∂2p+2qS
(λ,μ)
n,m (f ; 0, 0)

∂x2p∂y2q
= ∂2p+2qS

(λ,μ)
n,m (f ; 0, 0)

∂x2p∂y2q
− ∂2p+2qS

(λ,μ)
n,m (f ; αn,m, βn,m)

∂x2p∂y2q

≤ |αn,m|
∣∣∣∣∣∂

2p+2q+1S
(λ,μ)
n,m (f ; ξ, η)

∂x2p+1∂y2q

∣∣∣∣∣ + |βn,m|
∣∣∣∣∣∂

2p+2q+1S
(λ,μ)
n,m (f ; ξ, η)

∂x2p∂y2q+1

∣∣∣∣∣
≤ |dn,m|

[∣∣∣∣∣∂
2p+2q+1S

(λ,μ)
n,m (f ; ξ, η)

∂x2p+1∂y2q

∣∣∣∣∣ +
∣∣∣∣∣∂

2p+2q+1S
(λ,μ)
n,m (f ; ξ, η)

∂x2p∂y2q+1

∣∣∣∣∣
]

≤ |dn,m|[n2p+1 + m2q+1]||f ||,
taking into account the proof of Theorem 2.1 in Della Vecchia–Mastroianni [33],
p. 149, too (see also the proof of Theorem 2.3.4). �

In what follows, let us consider the original bivariate Shepard operator introduced
in Shepard [91] by

Sn,2p(f )(x, y) =
n∑

i=1

s
(2p)
n,i (x, y)f (xi, yi), if (x, y) 
= (xi, yi),

Sn,2p(f )(xi, yi) = f (xi, yi), where p ∈ N is fixed, f : D → R, D = [a, b]×[c, d],
(xi, yi) ∈ D, i = 1, . . . , n, x1 < · · · < xn, y1 < · · · < yn,

s
(2p)
n,i (x, y) = [(x − xi)

2 + (y − yi)
2]−p/l

(2p)
n (x, y),

l
(2p)
n (x, y) =

n∑
i=1

[
(x − xi)

2 + (y − yi)
2
]−p

.

Convergence properties of this kind of operators can be found in, e.g., Gonska
[60], Farwig [42], Allasia [3], [4], while global smoothness preservation properties
have not yet been proved.

On the other hand, concerning the partial shape-preserving property we first can
prove the following qualitative results.

Theorem 4.3.2. If f : D → R, D = [a, b] × [c, d] is such that f (x, y) is
nondecreasing as a function of x (for each fixed y) and nondecreasing as a function
of y (for each fixed x), then for any point (ξ, η) ∈ (a, b) × (c, d) that is a solution of
the system of equations
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∂l
(2p)
n (x, y)

∂x
= 0,

∂l
(2p)
n (x, y)

∂y
= 0,

there exists a neighborhood V (ξ, η) of it (depending on n and p but independent of
f ) such that Sn,2p(f )(x, y) is nondecreasing as a function of x and as a function of
y on V (ξ, η).

Proof. By using Lemma 4.1.1, (i), we get

∂Sn,2p(f )(x, y)

∂x
=

n−1∑
i=1

⎡
⎣−

i∑
j=1

∂s
(2p)
n,j (x, y)

∂x

⎤
⎦

·[f (xi+1, yi+1) − f (xi, yi)],
∂Sn,2p(f )(x, y)

∂y
=

n−1∑
i=1

⎡
⎣−

i∑
j=1

∂s
(2p)
n,j (x, y)

∂y

⎤
⎦

·[f (xi+1, yi+1) − f (xi, yi)].
By hypothesis,

f (xi+1, yi+1) − f (xi, yi) = f (xi+1, yi+1) − f (xi+1, yi) + f (xi+1, yi)

−f (xi, yi) ≥ 0, for all i = 1, n − 1.

Let (ξ, η) ∈ (a, b) × (c, d) be a solution of the system in the statement. Because

∂s
(2p)
n,j (f )(x, y)

∂x
= −2p(x − xj )[(x − xj )

2 + (y − yj )
2]−p−1

�
(2p)
n (x, y)

−
∂�

(2p)
n (x,y)

∂x
[(x − xj )

2 + (y − yj )
2]−p

[�(2p)
n (x, y)]2

and

∂s
(2p)
n,j (f )(x, y)

∂y
= −2p(y − yj )[(x − xj )

2 + (y − yj )
2]−p−1

�
(2p)
n (x, y)

−
∂�

(2p)
n (x,y)

∂y
[(x − xj )

2 + (y − yj )
2]−p

[�(2p)
n (x, y)]2

,

we immediately get

∂s
(2p)
n,1 (ξ, η)

∂x
< 0,

∂s
(2p)
n,n (ξ, η)

∂x
> 0,

sgn

⎡
⎣∂s

(2p)
n,j (ξ, η)

∂x

⎤
⎦ = sgn(xj − ξ)
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and
∂s

(2p)
n,1 (ξ, η)

∂y
< 0,

∂s
(2p)
n,n (ξ, η)

∂y
> 0,

sgn

⎡
⎣∂s

(2p)
n,j (ξ, η)

∂y

⎤
⎦ = sgn(yj − η).

By Lemma 4.1.1,(ii), we easily obtain

−
i∑

j=1

∂s
(2p)
n,j (ξ, η)

∂x
> 0, −

i∑
j=1

∂s
(2p)
n,j (ξ, η)

∂y
> 0, ∀i = 1, n − 1

and consequently

∂Sn,2p(f )(x, y)

∂x
> 0,

∂Sn,2p(f )(x, y)

∂y
> 0, ∀(x, y) ∈ V (ξ, η)

which is a neighborhood of (ξ, η).
The theorem is proved. �

Remark. A natural question is whether or not the system in the statement has
solutions in (a, b)× (c, d). For some particular choices of the nodes xk , yk , k = 1, n,
a positive answer can easily be derived.

Thus, let us first consider the case [a, b] = [c, d] and xk = yk , k = 1, n.
An easy calculation shows that it is equivalent to the system

n∑
k=1

x − xk

[(x − xk)2 + (y − yk)2]p+1 = 0,

n∑
k=1

y − yk

[(x − xk)2 + (y − yk)2]p+1 = 0.

Taking now xk = yk , k = 1, n and subtracting the equations, it necessarily follows
x = y.

Replacing in the first equation of the above system, we obtain
∑n

k=−n
1

(x−xk)
2p+1 =

0, which is exactly equation (2.12) in the proof of Theorem 2.3.1. But according to
Remark 1 after the proof of Theorem 2.3.1, equation (2.12) has 2n solutions. So,
the above system has in this case 2n solutions of the form (ξ, ξ). Another particular
choice would be [a, b] = [c, d] = [−1, 1] and xk = −yk , k = 1, n.

In this second case, by adding both equations we necessarily obtain x = −y, that
is, replacing in the first equation we easily obtain the equation

n∑
k=1

x − xk

(x2 + x2
k )p+1

= 0.



4.3 Bivariate Shepard Operators 105

Denoting F(x) = ∑n
k=1

x−xk

(x2+x2
k )p+1 , we get F(x1) < 0 and F(xn) > 0, that is,

there exists ξ ∈ (x1, xn) with F(ξ) = 0, and as a conclusion, this (ξ, ξ) will be a
solution of the system in the statement. Finally, notice that if n = 2 and p ∈ N,
(xk, yk) ∈ [a, b] × [c, d], k = 1, n, then (ξ, η) with ξ = x1+x2

2 and η = y1+y2
2 is a

solution.
Now, let us discuss some properties of qualitative kind of Sn,2p(f )(x, y) related

to the convexity. In this sense, we will consider f : [−1, 1] × [−1, 1] → R, the
equidistant interpolation knots x−i = −xi , y−i = −yi , i = 1, n, x0 = y0 = 0 and
the Shepard operator given by

Sn,2p(f )(x, y) =
n∑

k=−n

s
(2p)
n,k (x, y)f (xk, yk), (4.4)

where s
(2p)
n,k (x, y) can be written in the form

s
(2p)
n,k (x, y) = (x2 + y2)p[(x − xk)

2 + (y − yk)
2]−p

1 +
n∑

j=−n
j 
=0

(x2 + y2)p[(x − xj )2 + (y − yj )2]−p

. (4.5)

We also need the following
Definition 4.3.1. The function f : [−1, 1]×[−1, 1] → R is called strictly convex

on [−1, 1]× [−1, 1] if for any P1 = (x1, y1), P2 = (x2, y2) ∈ [−1, 1]× [−1, 1] and
any λ ∈ (0, 1), we have

f (λP1 + (1 − λ)P2) < λf (P1) + (1 − λ)f (P2),

where λP1 + (1 − λ)P2 = (λx1 + (1 − λ)x2, λy1 + (1 − λ)y2) ∈ (−1, 1) × (−1, 1).
Remark. It is well known (see, e.g., Fleming [44], p. 114]) that if f ∈

C2([−1, 1] × [−1, 1]) and

∂2f (x, y)

∂x2 > 0,
∂2f (x, y)

∂y2 > 0,
∂2f (x, y)

∂x2 · ∂2f (x, y)

∂y2 >

(
∂2f (x, y)

∂x∂y

)2

,

∀(x, y) ∈ [−1, 1]×[−1, 1], then f is strictly convex on [−1, 1]×[−1, 1]. Moreover,
if the two strict inequalities above are valid for all (x, y) ∈ [−1, 1]×[−1, 1]\{(0, 0)}
and ∂f (0,0)

∂x
= ∂f (0,0)

∂y
= 0, then f is strictly convex on [−1, 1] × [−1, 1] and (0, 0)

is its global minimum point.
We present the following:
Theorem 4.3.3. Let Sn,2p(f )(x, y) be given by (4.4), (4.5), with p = 1.
If f : [−1, 1] × [−1, 1] → R is strictly convex on [−1, 1] × [−1, 1], then there

exists a neighborhood of (0, 0), denoted by V (0, 0) (depending on f and n), such
that Sn,2p(f )(x, y) is strictly convex in V (0, 0).

Proof. By (4.5) and by simple calculations, for all k 
= 0 we get
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∂is
(2p)
n,k (0, 0)

∂xi
= ∂is

(2p)
n,k (0, 0)

∂yi
=

⎧⎪⎪⎨
⎪⎪⎩

0, if k = 1, 2p − 1

(2p)!
(x2

k + y2
k )p

, if k = 2p.
(4.6)

We have
∂2Sn,2(f )(0, 0)

∂x2 =
n∑

k=−n

∂2s
(2)
n,k(0, 0)

∂x2 f (xk, yk)

=
n∑

k=−n

2!
(x2

k + y2
k )2

f (xk, yk) =
n∑

k=1

2

(x2
k + y2

k )2
[f (xk, yk) + f (−xk, −yk)]

+f (0, 0) · ∂2s
(2)
n,0(0, 0)

∂x2 > f (0, 0) ·
n∑

k=−n

∂2s
(2)
n,k(0, 0)

∂x2 = 0,

taking into account that the strict convexity of f implies f (xk, yk)+f (−xk, −y−k) >

2f (0, 0) and that the identity
∑n

k=−n s
(2p)
n,k (x, y) = 1, implies

∑n
k=−n

∂2s
(2p)
n,k (0,0)

∂x2 =
0. Similarly, ∂2Sn,2(f )(0,0)

∂y2 > 0. On the other hand, by simple calculations we get

∂2s
(2)
n,k(0,0)

∂x∂y
= 0, ∀k = −n, n, which implies

∂2Sn,2(f )(0, 0)

∂x∂y
= 0.

So, it easily follows

∂2Sn,2(f )(0, 0)

∂x2 · ∂2Sn,2(f )(0, 0)

∂y2 >

(
∂2Sn,2(f )(0, 0)

∂x∂y

)
= 0.

As a conclusion, there exists a neighborhood of (0, 0), denoted by V (0, 0)

(obviously depending on f and n) such that for all (x, y) ∈ V (0, 0) we have
∂2Sn,2(f )(x,y)

∂x2 > 0, and

∂2Sn,2(f )(x, y)

∂x2 · ∂2Sn,2(f )(x, y)

∂y2 >

(
∂2Sn,2(f )(x, y)

∂x∂y

)2

,

that is Sn,2(f )(x, y) is strictly convex in V (0, 0). �

Remark. Let p ≥ 2. According to the Remark after Definition 4.3.1, it will be
enough if we will prove that there exists a neighborhood V (0, 0) of (0, 0), such that

∂2Sn,2p(f )(x, y)

∂x2 > 0,
∂2Sn,2p(f )(x, y)

∂y2 > 0,

∂2Sn,2p(f )(x, y)

∂x2 · ∂2Sn,2p(f )(x, y)

∂y2 >

(
∂2Sn,2p(f )(x, y)

∂x∂y

)2

, (4.7)
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for all (x, y) ∈ V (0, 0) \ {(0, 0)} because by relations (4.6) we obviously have

∂Sn,2p(f )(0, 0)

∂x
= ∂Sn,2p(f )(0, 0)

∂y
= 0.

Because of the same relations (4.6) we have

∂2Sn,2p(f )(0, 0)

∂x2 = ∂2Sn,2p(f )(0, 0)

∂y2 = 0,

the idea is to prove that the functions

F(x, y) = ∂2Sn,2p(f )(x, y)

∂x2 , G(x, y) = ∂2Sn,2p(f )(x, y)

∂y2

and

H(x, y) = F(x, y) · G(x, y) −
(

∂2Sn,2p(f )(x, y)

∂x∂y

)2

are strictly convex on a neighborhood of (0, 0), having as global minimum point
(0, 0), which would imply the required relations (4.7).

In order to prove the “qualitative result,” Theorem 4.3.3, for all p ∈ N, p ≥ 2,
the following three lemmas are necessary.

Lemma 4.3.1. If p ∈ N, p ≥ 2 and f : [−1, 1] × [−1, 1] → R is strictly convex
on [−1, 1] × [−1, 1], then there exists a neighborhood V (0, 0) of (0, 0), such that

∂2Sn,2p(f )(x, y)

∂x2 > 0,
∂2Sn,2p(f )(x, y)

∂y2 > 0, ∀(x, y) ∈ V (0, 0) − {(0, 0)},

where Sn,2p(f )(x, y) is given by (4.4) and (4.5).
Proof. Denoting

E(x, y) = [(x − xk)
2 + (y − yk)

2]−p

1 + (x2 + y2)p
n∑

j=−n
j 
=0

[(x − xj )2 + (y − yj )2]−p

, k 
= 0,

we have s
(2p)
n,k (x, y) = P(x, y) · E(x, y), where

P(x, y) = (x2 + y2)p =
p∑

i=0

(
p

i

)
x2iy2p−2i

= y2p +
(

p

1

)
x2y2p−2 +

(
p

2

)
x4y2p−4 +

(
p

3

)
x6y2p−6

+ · · · +
(

p

p − 2

)
x2p−4y4 +

(
p

p − 1

)
x2p−2y2 + x2p,

and E(x, y) has at (0, 0) partial derivatives of any order. Denote
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Rk(x, y) = ∂2p−2s
(2p)
n,k (x, y)

∂x2p−2 , k 
= 0.

Firstly, by (4.6) we get

∂2Rk(0, 0)

∂x2 = ∂2ps
(2p)
n,k (0, 0)

∂x2p
= (2p)!

(x2
k + y2

k )p
> 0.

Then

∂2Rk(x, y)

∂y2 = ∂

∂y2

⎡
⎣2p−2∑

i=0

(
2p − 2

i

)
∂iP (x, y)

∂xi
· ∂2p−2−iE(x, y)

∂x2p−2−i

⎤
⎦

= ∂

∂y

[2p−2∑
i=0

(
2p − 2

i

)
∂i+1P(x, y)

∂xi∂y
· ∂2p−2−iE(x, y)

∂x2p−2−i

+
2p−2∑
i=0

(
2p − 2

i

)
∂iP (x, y)

∂xi
· ∂2p−1−iE(x, y)

∂x2p−2−i∂y

]

=
2p−2∑
i=0

(
2p − 2

i

)
∂2

y2

[
∂iP (x, y)

∂xi

]
· ∂2p−2−iE(x, y)

∂x2p−2−i

+2
2p−2∑
i=0

(
2p − 2

i

)
∂

∂y

[
∂iP (x, y)

∂xi

]
· ∂2p−1−iE(x, y)

∂x2p−2−i∂y

+
2p−2∑
i=0

(
2p − 2

i

)
∂iP (x, y)

∂xi
· ∂2p+iE(x, y)

∂x2p−2−i∂y2 .

If we take x = y = 0 in these sums, then all the terms that contain x or (and) y

will become zero, so taking into account the form of polynomial P(x, y), we obtain

∂2Rk(0, 0)

∂y2 = 2p

(
2p − 2
2p − 2

)
(2p − 2)! 1

(x2
k + y2

k )p
= 2p(2p − 2)!

(x2
k + y2

k )p
> 0.

Reasoning for Sn,2p(f )(x, y) exactly as in the case p = 1 (see the proof of Theorem
4.3.3), we easily obtain

∂2

∂x2

[
∂2p−2Sn,2p(f )(0, 0)

∂x2p−2

]
= ∂2pSn,2p(f )(0, 0)

∂x2p
> 0,

∂2

∂y2

[
∂2p−2Sn,2p(f )(0, 0)

∂x2p−2

]
= ∂2pSn,2p(f )(0, 0)

∂x2p−2∂y2 > 0.

So, there exists a neighborhood V1(0, 0) of (0, 0), such that for all (x, y) ∈ V1(0, 0)

we have
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∂2

∂x2

[
∂2p−2Sn,2p(f )(x, y)

∂x2p−2

]
> 0,

∂2

∂y2

[
∂2p−2Sn,2p(f )(x, y)

∂x2p−2

]
> 0.

On the other hand, reasoning as above, we immediately get

∂2

∂y∂x

[
∂2p−2s

(2p)
n,k (0, 0)

∂x2p−2

]
= ∂2ps

(2p)
n,k (0, 0)

∂x2p−1∂y
= 0.

As a first conclusion, ∂2p−2Sn,2p(f )(x,y)

∂x2p−2 is strictly convex in a neighborhood V1(0, 0)

of (0, 0), and because

∂2p−2Sn,2p(f )(0, 0)

∂x2p−2 = ∂2p−1Sn,2p(f )(0, 0)

∂x2p−1 = ∂2p−1Sn,2p(f )(0, 0)

∂x2p−2∂y
= 0,

it follows that ∂2p−2Sn,2p(f )(x,y)

∂x2p−2 > 0, ∀(x, y) ∈ V1(0, 0) \ {(0, 0)}.
By symmetry, we get

∂2p−2Sn,2p(f )(x, y)

∂y2p−2 > 0, ∀(x, y) ∈ V2(0, 0).

Now, if p = 2 then we exactly obtain the statement of the lemma.

If p > 2, then by similar reasonings as above, we obtain that ∂2p−4Sn,2p(f )(x,y)

∂x2p−4

and ∂2p−4Sn,2p(f )(x,y)

∂y2p−4 are strictly convex on a neighborhood U(0, 0) of (0, 0), etc.,
and as a conclusion

∂2p−4Sn,2p(f )(x, y)

∂x2p−4 > 0,
∂2p−4Sn,2p(f )(x, y)

∂y2p−4 > 0,

∀(x, y) ∈ U(0, 0) \ {(0, 0)}.
We can continue in this way until we arrive at

∂2Sn,2p(f )(x, y)

∂x2 > 0,
∂2Sn,2p(f )(x, y)

∂y2 > 0, ∀(x, y) ∈ V (0, 0) \ {(0, 0)}. �

Lemma 4.3.2. Let p ∈ N, p ≥ 2. Then we have:

∂rSn,2p(f )(0, 0)

∂xi∂yj
=

⎧⎨
⎩

= 0, if r < 2p or r > 2p.
= 0, if r = 2p and both i, j are odd
> 0, if r = 2p and both i, j are even.

Proof. Let P(x, y) = (x2 + y2)p. It is easy to check that

∂rP (0, 0)

∂xi∂yj
=

⎧⎨
⎩

= 0, if r < 2p or r > 2p.
= 0, if r = 2p and both i, j are odd
> 0, if r = 2p and both i, j are even.
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We have s
(2p)
n,k (x, y) = P(x, y) ·E(x, y), ∀k 
= 0, where E(x, y) is given in the proof

of Lemma 4.3.1, and

∂rs
(2p)
n,k (x, y)

∂xi∂yj
= ∂i

∂xi

⎡
⎣ j∑

q=0

(
j

q

)
∂2P(x, y)

∂y2 · ∂j−qE(x, y)

∂yj−q

⎤
⎦ ,

which combined with the above properties of ∂rP (0,0)

∂xi∂yj and with the method of proof
in Lemma 4.3.1 (because

(
∂rSn,p(f )(0, 0)

∂xi∂yj
=

n∑
k=−n

∂rs
(2p)
n,k (0, 0)

∂xi∂yj
· f (xk, yk)

)

proves the lemma. �
Lemma 4.3.3. Let p ∈ N, p ≥ 2. We have

∂2Sn,2p(f )(x, y)

∂x2 · ∂2Sn,2p(f )(x, y)

∂y2 −
(

∂2Sn,2p(f )(x, y)

∂x∂y

)2

> 0,

for all (x, y) ∈ V (0, 0)\{(0, 0)}, where V (0, 0) is a neighborhood of (0, 0) (depend-
ing on f, n and p).

Proof. Denote

H(x, y) = ∂2Sn,2p(f )(x, y)

∂x2 · ∂2Sn,2p(f )(x, y)

∂y2 −
(

∂2Sn,2p(f )(x, y)

∂x∂y

)2

.

According to the remark after the proof of Theorem 4.3.3, we have to prove that

∂2H(x, y)

∂x2 > 0,
∂2H(x, y)

∂y2 > 0,
∂2H(x, y)

∂x2 · ∂2H(x, y)

∂y2 −
(

∂2H(x, y)

∂x∂y

)2

> 0,

for all (x, y) ∈ V (0, 0)\{(0, 0)}, and that ∂H(0,0)
∂x

= ∂H(0,0)
∂y

= 0 (because by Lemma
4.3.2 we have H(0, 0) = 0).

Now, by Lemma 4.3.2 we easily get that ∂rH(0,0)

∂xi∂yi > 0 only if r = 2p and both
i, j are even, all the other partial derivatives of H at (0, 0) being 0, so we obtain

∂2pH(0, 0)

∂x2p
> 0,

∂2pH(0, 0)

∂x2p−2∂y2 > 0,
∂2pH(0, 0)

∂x2p−1∂y
= 0,

that is, ∂2p−2H(x,y)

∂x2p−2 is strictly convex in a neighborhood of zero. Because ∂2p−2H(0,0)

∂x2p−2 =
0 and ∂2p−1H(0,0)

∂x2p−1 = ∂2p−1H(0,0)

∂x2p−2∂y
= 0, it follows that (0, 0) is a global minimum point,

so
∂2p−2H(x, y)

∂x2p−2 > 0, ∀(x, y) ∈ V1(0, 0) \ {(0, 0)}.
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Reasoning by symmetry, we get

∂2p−2H(x, y)

∂y2p−2 > 0, ∀(x, y) ∈ V2(0, 0) \ {(0, 0}.

Similarly, by Lemma 4.3.2 we obtain

∂2p−2H(x, y)

∂x2p−4∂y2 > 0, ∀(x, y) ∈ V3(0, 0) \ {(0, 0)}

and consequently

∂2

∂x2

(
∂2p−4H(x, y)

∂x2p−4

)
> 0,

∂2

∂y2

(
∂2p−4H(x, y)

∂x2p−4

)
> 0,

∀(x, y) ∈ V3(0, 0) \ {(0, 0)}.
Let us denote

H1(x, y) = ∂2p−2H(x, y)

∂x2p−2 · ∂2p−2H(x, y)

∂x2p−4∂y2 −
(

∂2p−2H(x, y)

∂x2p−3∂y

)2

.

By the same Lemma 4.3.2, we obtain

∂2H1(0, 0)

∂x2 > 0,
∂2H1(0, 0)

∂y2 > 0,
∂2H1(0, 0)

∂x∂y
= 0,

that is H1(x, y) is strictly convex in a neighborhood of (0, 0). But H1(0, 0) = 0 and
∂H1(0,0)

∂x
= ∂H1(0,0)

∂y
= 0, so it follows that H1(x, y) > 0, ∀(x, y) ∈ V4(0, 0)\{(0, 0)}.

As a conclusion, it follows that ∂2p−4H(x,y)

∂x2p−4 is strictly convex in a neighborhood
of zero, and reasoning as above, we get

∂2p−4H(x, y)

∂x2p−4 > 0, ∀(x, y) ∈ V5(0, 0) \ {(0, 0)}.

Continuing this process by recurrence, finally we will arrive at

∂2H(x, y)

∂x2 > 0, ∀(x, y) ∈ V7(0, 0) \ {(0, 0)},

and by reason of symmetry at

∂2H(x, y)

∂y2 > 0, ∀(x, y) ∈ V8(0, 0) \ {(0, 0)},

and then get that

∂2H(x, y)

∂x2 · ∂2H(x, y)

∂y2 −
(

∂2H(x, y)

∂x∂y

)2

> 0, ∀(x, y) ∈ V9(0, 0) \ {(0, 0)},
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which proves the lemma. �

Corollary 4.3.4. Let Sn,2p(f )(x, y) be given by (4.4), (4.5), with p ∈ N, p ≥ 2.
If f : [−1, 1]× [−1, 1] → R is strictly convex on [−1, 1]× [−1, 1], then there exists
a neighborhood V (0, 0) of (0, 0) (depending on f , n and p) such that Sn,2p(f )(x, y)

is strictly convex in V (0, 0).
Proof. Immediate by the Lemmas 4.3.1, 4.3.2 and 4.3.3. �
Remarks. (1) The idea of the proof of Corollary 4.3.4 is in fact that in the univariate

case.
(2) The results can be extended to n variables, n > 2.
In what follows we present some quantitative versions for the above results,

on the bidimensional interval [−1, 1] × [−1, 1] and for xi = yi = i/n, i =
−n, . . . , 0, . . . , n, i.e.,

Sn,2p(f )(x, y) =
n∑

i=−n

s
(2p)
n,i (x, y)f (i/n, i/n),

where
s
(2p)
n,i (x, y) = [(x − i/n)2 + (y − i/n)2]−p/l

(2p)
n (x, y),

l
(2p)
n (x, y) =

n∑
i=−n

[
(x − i/n)2 + (y − i/n)2

]−p

.

Theorem 4.3.4. If f : [−1, 1]× [−1, 1] → R is such that f (x, y) is nondecreas-
ing as a function of x (for each fixed y) and nondecreasing as a function of y (for
each fixed x), then for any point (ξ, ξ) ∈ (−1, 1) × (−1, 1) which is solution of the
system of equations

∂l
(2p)
n (x, y)

∂x
= 0,

∂l
(2p)
n (x, y)

∂y
= 0,

there exists a constant c > 0 (independent of f and n) such that Sn,2p(f )(x, y)

is nondecreasing as a function of x and as a function of y in (ξ − c/n2p+3, ξ +
c/n2p+3) × (ξ − c/n2p+3, ξ + c/n2p+3).

Proof. By the proof of Theorem 4.3.2 and by the hypothesis on the points (ξ, ξ),
we immediately get

∂s
(2p)
n,i (ξ, ξ)

∂x
= ∂s

(2p)
n,i (ξ, ξ)

∂y
= −p(ξ − i/n)−2p−1∑n

k=−n(ξ − k/n)−2p
,

which for i = −n and i = n give the same expressions (except the constant 1/2)
with those in the univariate case in the proof of Theorem 2.3.3. Then, combining the
ideas in the bivariate case in the proof of Theorem 4.3.2 with those in the univariate
case in the proof of Theorem 2.3.3, we immediately obtain

|Qj(ξ, ξ)| ≥ c/(n2p), |Pj (ξ, ξ)| ≥ c/(n2p), j = −n, . . . , 0, . . . , n − 1,
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where

Qj(x, x) =
j∑

i=−n

∂s
(2p)
n,i (x, x)

∂x
, Pj (y, y) =

j∑
i=−n

∂s
(2p)
n,i (y, y)

∂y
.

By taking x = y in the proof of Theorem 4.3.2, we immediately get that
∂s

(2p)
n,i (x,x)

∂x
actually is 1/2 times the first derivative of the fundamental univariate rational func-
tions s′

j,n(x) in the proof of Theorem 2.3.3.
It follows that our Qj(x, x) is exactly 1/2 times the function Qj(x) which appears

in univariate case, in the proof of Theorem 2.3.3.
Let αj be the nearest root of Qj(x, x) to ξ and βj the nearest root of Pj (y, y)

to ξ .
Reasoning exactly as in the proof of Theorem 2.3.3, we get

|αj − ξ | ≥ c

n2p+3 , |βj − ξ | ≥ c

n2p+3 ,

which proves the theorem. �

For the convexity result, first we need the following bivariate analogous of the
estimate in univariate case in Della Vecchia–Mastroianni [33].

Lemma 4.3.4. For all l, k ≥ 0 with l + k = q and for

s
(2p)
n,i (x, y) = [(x − i/n)2 + (y − i/n)2]−p

l
(2p)
n (x, y)

,

where

l
(2p)
n (x, y) =

n∑
i=−n

[
(x − i/n)2 + (y − i/n)2

]−p

,

we have ∣∣∣∣∣∂
qs

(2p)
n,i (x, y)

∂xl∂yk

∣∣∣∣∣ ≤ Cnqs
(2p)
n,i (x, y),

and ∣∣∣∣∂qSn,2p(f )(x, y)

∂xl∂yk

∣∣∣∣ ≤ Cnq ||f ||,

where ||f || is the uniform norm.
Proof. First let us denote

Fk,p(x, y) =

n∑
i=−n

(x − xi)
k[(x − xi)

2 + (y − yi)
2]−p−k

n∑
i=−n

[(x − xi)
2 + (y − yi)

2]−p

,
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and xu (respectively, yv), the closest point xi (respectively, yj ) to x (respectively, y).
We have

|Fk,p(x, y)| ≤ |x − xu|−k.

Indeed, by |x − xu| ≤ |x − xi |, for all i, we get

|x − xi |k
[(x − xi)2 + (y − yi)2]k ≤ |x − xi |k

(x − xi)2k
= 1/|x − xk|k ≤ |x − xu|−k.

Similarly, if we denote

Gk,p(x, y) =

n∑
i=−n

(y − yi)
k[(x − xi)

2 + (y − yi)
2]−p−k

n∑
i=−n

[(x − xi)
2 + (y − yi)

2]−p

,

we get
|Gk,p(x, y)| ≤ |y − yv|−k.

Now, if we denote

Hk,l,p(x, y) =

n∑
i=−n

(x − xi)
k(y − yi)

l[(x − xi)
2 + (y − yi)

2]−p−k−l

n1∑
i=−n1

[(x − xi)
2 + (y − yi)

2]−p

,

we have
|Hk,l,p(x, y)| ≤ |x − xu|−k|y − yv|−l , k, l ≥ 0.

Then

∂s
(2p)
n,i (x, y)

∂x
= −2p(x − xi)

(x − xi)2 + (y − yi)2 s
(2p)
n,i (x, y) + 2ps

(2p)
n,i (x, y)F1,p(x, y),

which immediately implies∣∣∣∣∣∂s
(2p)
n,i (x, y)

∂x

∣∣∣∣∣ ≤ C|x − xu|−1s
(2p)
n,i (x, y) ≤ Cns

(2p)
n,i (x, y).

Similarly, ∣∣∣∣∣∂s
(2p)
n,i (x, y)

∂y

∣∣∣∣∣ ≤ Cns
(2p)
n,i (x, y).

Then
∂2s

(2p)
n,i (x, y)

∂x2
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= −2ps
(2p)
n,i (x, y)

[
1

(x − xi)2 + (y − yi)2 − 2(x − xi)
2

[(x − xi)2 + (y − yi)2]2

]

− 2p(x − xi)

(x − xi)2 + (y − yi)2

∂s
(2p)
n,i (x, y)

∂x
+ 2p

∂s
(2p)
n,i (x, y)

∂x
F1,p(x, y)

+2ps
(2p)
n,i (x, y)

∂F1,p(x, y)

∂x
,

where

∂F1,p(x, y)

∂x
=

n∑
i=−n

[(x − xi)
2 + (y − yi)

2]−p−1

n∑
i=−n

[(x − xi)
2 + (y − yi)

2]−p

− 2(p + 1)F2,p(x, y)

+2p[F1,p(x, y)]2.

We immediately get∣∣∣∣∣∂
2s

(2p)
n,i (x, y)

∂x2

∣∣∣∣∣ ≤ C|x − xu|−2s
(2p)
n,i (x, y) ≤ Cn2s

(2p)
n,i (x, y).

Also
∂2s

(2p)
n,i (x, y)

∂x∂y
= 4p(x − xi)(y − yi)

[(x − xi)2 + (y − yi)2]2 s
(2p)
n,i (x, y)

− 2p(x − xi)

(x − xi)2 + (y − yi)2

∂s
(2p)
n,i (x, y)

∂y
+ 2p

∂s
(2p)
n,i (x, y)

∂y
F1,p(x, y)

+2ps
(2p)
n,i (x, y)

∂F1,p(x, y)

∂y
,

where

∂F1,p(x, y)

∂y
= −2(p + 1)H1,1,p(x, y) + 2pF1,p(x, y)G1,p(x, y).

It immediately follows that∣∣∣∣∣∂
2s

(2p)
n,i (x, y)

∂x∂y

∣∣∣∣∣ ≤ Cn2s
(2p)
n,i (x, y).

Reasoning in this way, we obtain∣∣∣∣∣∂
3s

(2p)
n,i (x, y)

∂x3

∣∣∣∣∣ ≤ Cn3s
(2p)
n,i (x, y),
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3s

(2p)
n,i (x, y)

∂x2∂y

∣∣∣∣∣ ≤ Cn3s
(2p)
n,i (x, y),

and so on ∣∣∣∣∣∂
qs

(2p)
n,i (x, y)

∂xl2∂yk

∣∣∣∣∣ ≤ Cnqs
(2p)
n,i (x, y),

which proves the first estimate in the lemma. The second one is immediate by

Sn,2p(f )(x, y) =
n∑

i=−n

s
(2p)
n,i (x, y)f (i/n, i/n). �

Theorem 4.3.5. Let p = 1 and f : [−1, 1] × [−1, 1] → R be strictly convex on
[−1, 1]×[−1, 1]. Then Sn,2p(f )(x, y) is strictly convex in V (0, 0) = {x2+y2 < d2

n},
where

|dn| ≥ c

[
n∑

k=1

x−4
k [�2

xk
F (0)]

]2

/n5,

with F(x) = f (x, x), for all x ∈ [−1, 1] × [−1, 1].
Proof. Let us denote

Hn(x, y) = ∂2Sn,2p(f )(x, y)

∂x2

∂2Sn,2p(f )(x, y)

∂y2 −
[
∂2Sn,2p(f )(x, y)

∂x∂y

]2

.

By the proof of Theorem 4.3.3 we have

Hn(0, 0) =
[

n∑
k=1

x−4
k

2
[�2

xk
F (0)]

]2

> 0.

Let (αn, βn) be the nearest root to (0, 0) (in the sense of Euclidean distance in R
2) of

Hn(x, y). Denoting dn = [α2
n + β2

n]1/2, by the mean value theorem we get

0 < Hn(0, 0) = |Hn(0, 0) − Hn(αn, βn)| ≤ |αn|
∣∣∣∣∂Hn(ξ, η)

∂x

∣∣∣∣
+|βn|

∣∣∣∣∂Hn(ξ, η)

∂y

∣∣∣∣ ≤ |dn|
[∣∣∣∣∂Hn(ξ, η)

∂x

∣∣∣∣ +
∣∣∣∣∂Hn(ξ, η)

∂y

∣∣∣∣
]

.

By simple calculation and by the above Lemma 4.3.4 we immediately get∣∣∣∣∂Hn(ξ, η)

∂x

∣∣∣∣ ≤ cn5,

∣∣∣∣∂Hn(ξ, η)

∂y

∣∣∣∣ ≤ cn5,

for all (ξ, η), which immediately implies

|dn| ≥ cHn(0, 0)/n5,
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and the proof is complete. �

Remark. Because of the complicated proof of the qualitative result (see the proofs
of Lemmas 4.3.1, 4.3.2 and 4.3.3), a variant of the above Theorem 4.3.5 for p ≥ 2
still remains an open question.

Now, let us consider the third kind of Shepard operator (which is not a tensor
product), defined by

Sn1,n2,μ(f ; x, y) = Tn1,n2,μ(f ; x, y)

Tn1,n2,μ(1; x, y)
, if (x, y) 
= (xi, yj ),

Sn1,n2,μ(f ; xi, yj ) = f (xi, yj ), where μ > 0 is fixed, f : D → R, D ⊂ R
2,

D = [−1, 1]×[−1, 1], xi = i/n1, i = −n1, . . . , n1; yj = j/n2, j = −n2, . . . , n2
and

Tn1,n2,μ(f ; x, y) =
n1∑

i=−n1

n2∑
j=−n2

f (xi, yj )

[(x − xi)2 + (y − yj )2]μ .

The global smoothness preservation properties and convergence properties of
these operators were studied in Section 3.3. In what follows we consider their prop-
erties of preservation of shape.

Remark. Let us note that with respect to preserving monotonicity, it is unfor-
tunate that this does not seem to be a useful method for dealing with this kind of
Shepard operator in the univariate case — as it had been in dealing with the orig-
inal Shepard operator (see the proof of Theorem 4.3.2) or with the tensor product
Shepard operator. This seems to happen since there is not a way to put the knots
(xi, yj ), i ∈ {−n1, . . . , n1}, j ∈ {−n2, . . . , n2} in a sort of “increasing” sequence.
That is why we consider here only some properties related to the usual bivariate
convexity.

For simplicity, first we consider this Shepard operator for μ = 1.
Theorem 4.3.6. If f : [−1, 1] × [−1, 1] → R is strictly convex on [−1, 1] ×

[−1, 1], then there exists a neighborhood V (0, 0) of (0, 0) (depending on f and
n1, n2) such that Sn1,n2,1(f ; x, y) is strictly convex in V (0, 0).

Proof. We observe that we can write

Sn1,n2,μ(f ; x, y) =
n1∑

i=−n1

n2∑
j=−n2

f (xi, yj )hi,j,μ(x, y),

with

hi,j,μ(x, y) = (x2 + y2)μ[(x − xi)
2 + (y − yj )

2]−μ

1 + ∑n1
i=−n1

∑∗n2
j=−n2

(x2 + y2)μ[(x − xi)2 + (y − yj )2]−μ
,

where
∑∑∗ means that the index (i, j) of double sum is different from (0, 0).

By simple calculation, for μ ∈ N, i 
= 0 and j 
= 0 we get

∂rhi,j,μ(0, 0)

∂xr
= ∂shi,j,μ(0, 0)

∂ys
= 0, (4.8)
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if r, s = 1, . . . , 2μ − 1 and

∂2μhi,j,μ(0, 0)

∂x2μ
= ∂2μhi,j,μ(0, 0)

∂y2μ
= (2μ)!/[(x2

i + y2
j )μ]. (4.9)

By (4.9) and by the obvious relation ∂2μh0,0,μ(0,0)

∂x2μ = ∂2μh0,0,μ(0,0)

∂y2μ = 0, we get

∂2Sn1,n2,1(f ; 0, 0)

∂x2 =
n1∑

i=−n1

n2∑
j=−n2

∂2hi,j,1(0, 0)

∂x2 f (xi, yj )

=
n1∑

i=−n1

n2∑
j=−n2

∗
(2!)f (xi, yj )/(x

2
i + y2

j ) + f (0, 0)
∂2h0,0,1(0, 0)

∂x2

=
n1∑
i=0

n2∑
j=0

∗
[2/(x2

i + y2
j )][f (xi, yj ) + f (−xi, −yj ) + f (−xi, yj ) + f (xi, −yj )]

+f (0, 0)
∂2h0,0,1(0, 0)

∂x2 > f (0, 0)

n1∑
i=−n1

n2∑
j=−n2

∂2hi,j,1(0, 0)

∂x2 = 0,

taking into account that the strict convexity of f implies f (xi, yj )+f (−xi, −yj ) >

2f (0, 0), f (−xi, yj ) + f (xi, −yj ) > 2f (0, 0) and that we have the identity∑n1
i=−n1

∑n2
j=−n2

hi,j,1(x, y) = 1.

Similarly,
∂2Sn1,n2,1(f ;0,0)

∂y2 > 0. On the other hand, by simple calculation we

get
∂2hi,j,1(0,0)

∂x∂y
= 0, for all i = −n1, . . . , n1, j = −n2, . . . , n2, which implies

∂2Sn1,n2,1(f ;0,0)

∂x∂y
= 0.

So it is immediate

∂2Sn1,n2,1(f ; 0, 0)

∂x2

∂2Sn1,n2,1(f ; 0, 0)

∂y2 >

(
∂2Sn1,n2,1(f ; 0, 0)

∂x∂y

)2

.

As a conclusion, there exists a neighborhood V (0, 0) of (0, 0) (depending obviously
on f and n) such that

∂2Sn1,n2,1(f ; x, y)

∂x2

∂2Sn1,n2,1(f ; x, y)

∂y2 >

(
∂2Sn1,n2,1(f ; x, y)

∂x∂y

)2

,

for all (x, y) ∈ V (0, 0), which proves the theorem. �

Remark. For the cases μ ∈ N, μ ≥ 2, it is enough if we prove that there exists a
neighborhood V (0, 0) of (0, 0), such that

∂2Sn1,n2,μ(f ; x, y)

∂x2 > 0,
∂2Sn1,n2,μ(f ; x, y)

∂y2 > 0,
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∂2Sn1,n2,μ(f ; x, y)

∂x2

∂2Sn1,n2,μ(f ; x, y)

∂y2 >

(
∂2Sn1,n2,μ(f ; x, y)

∂x∂y

)2

, (4.10)

for all (x, y) ∈ V (0, 0) \ (0, 0), because by the relations (4.8)–(4.9) we obviously
have

∂Sn1,n2,μ(f ; 0, 0)

∂x
= ∂Sn1,n2,μ(f ; 0, 0)

∂y
= 0.

Taking into account that for μ ≥ 2 relations (4.8)–(4.9) imply

∂2Sn1,n2,μ(f ; 0, 0)

∂x2 = ∂2Sn1,n2,μ(f ; 0, 0)

∂y2 = 0,

the idea of proof (for the μ ≥ 2 case) will be to prove that the functions

F(x, y) = ∂2Sn1,n2,μ(f ; x, y)

∂x2 , G(x, y) = ∂2Sn1,n2,μ(f ; x, y)

∂y2 ,

and

H(x, y) = F(x, y)G(x, y) −
(

∂2Sn1,n2,μ(f ; x, y)

∂x∂y

)2

are strictly convex on a neighborhood of (0, 0), having as global minimum point
(0, 0), which would imply the required relations (4.10).

But the cases μ ≥ 2 also require the following three lemmas.
Lemma 4.3.5. Let μ ∈ N, μ ≥ 2. If f : [−1, 1] × [−1, 1] → R is strictly convex

on [−1, 1] × [−1, 1], then there exists a neighborhood V (0, 0) of (0, 0) such that

∂2Sn1,n2,μ(f ; x, y)

∂x2 > 0,
∂2Sn1,n2,μ(f ; x, y)

∂y2 > 0,

for all (x, y) ∈ V (0, 0) \ (0, 0).
Proof. Denoting for (i, j) 
= (0, 0)

E(x, y) = [(x − xi)
2 + (y − yj )

2]−μ

1 + ∑n1
i=−n1

∑∗n2
j=−n2

(x2 + y2)μ[(x − xi)2 + (y − yj )2]−μ
,

we have hi,j,μ(x, y) = P(x, y)E(x, y), where

P(x, y) = (x2 + y2)μ =
μ∑

k=0

(
μ

k

)
x2ky2μ−2k = y2μ

+
(

μ

1

)
x2y2μ−2k +

(
μ

2

)
x4y2μ−4 + · · · +

(
μ

μ − 1

)
x2μ−2y2 + x2μ.

Let us denote

Ri,j (x, y) = ∂2μ−2hi,j,μ(x, y)

∂x2μ−2 .

Firstly, by (4.8)–(4.9) we get
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∂2Ri,j (x, y)

∂x2 = (2μ)!
[xi

2 + yj
2]μ > 0.

Then

∂2Ri,j (x, y)

∂y2 =
2μ−2∑
k=0

(
2μ − 2

k

)
∂2

∂y2

[
∂kP (x, y)

∂xk

]
∂2μ−2−kE(x, y)

∂x2μ−2−k

+2
2μ−2∑
k=0

(
2μ − 2

k

)
∂

∂y

[
∂kP (x, y)

∂xk

]
∂2μ−1−kE(x, y)

∂x2μ−2−k∂y

+
2μ−2∑
k=0

(
2μ − 2

k

)
∂kP (x, y)

∂xk

∂2μ−kE(x, y)

∂x2μ−2−k∂y2 .

If we take x = y = 0 in these sums, then all the terms that contain x or (and)
y will become zero, so taking into account the form of the polynomial P(x, y), we
obtain

∂2Ri,j (0, 0)

∂y2 = 2μ

(
2μ − 2

2μ − 2

)
(2μ − 2)!

[xi
2 + yj

2]μ > 0.

Reasoning for Sn1,n2,μ(f ; x, y) exactly as in the case μ = 1 (see the proof of Theorem
4.3.6) we easily obtain

∂2

∂x2

[
∂2μ−2Sn1,n2,μ(f ; 0, 0)

∂x2μ−2

]
= ∂2μSn1,n2,μ(f ; 0, 0)

∂x2μ
> 0,

∂2

∂y2

[
∂2μ−2Sn1,n2,μ(f ; 0, 0)

∂x2μ−2

]
= ∂2μSn1,n2,μ(f ; 0, 0)

∂x2μ−2∂y2 > 0.

Therefore, there exists a neighborhood V1(0, 0) of (0, 0) such that for all (x, y) ∈
V1(0, 0), we have

∂2

∂x2

[
∂2μ−2Sn1,n2,μ(f ; x, y)

∂x2μ−2

]
> 0,

∂2

∂y2

[
∂2μ−2Sn1,n2,μ(f ; x, y)

∂x2μ−2

]
> 0.

On the other hand, reasoning as above we immediately get

∂2

∂x∂y

[
∂2μ−2hi,j,μ(0, 0)

∂x2μ−2

]
= ∂2μhi,j,μ(0, 0)

∂x2μ−1∂y
= 0.

As a first conclusion,
∂2μ−2Sn1,n2,μ(f ;x,y)

∂x2μ−2 is strictly convex on the neighborhood
V1(0, 0) and because

∂2μ−2Sn1,n2,μ(f ; 0, 0)

∂x2μ−2 = ∂2μ−1Sn1,n2,μ(f ; 0, 0)

∂x2μ−1
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= ∂2μ−1Sn1,n2,μ(f ; 0, 0)

∂x2μ−2∂y
= 0,

it follows that
∂2μ−2Sn1,n2,μ(f ;x,y)

∂x2μ−2 > 0, for all (x, y) ∈ V1(0, 0) \ (0, 0).

By symmetry, we get
∂2μ−2Sn1,n2,μ(f ;x,y)

∂y2μ−2 > 0, for all (x, y) ∈ V2(0, 0) \ (0, 0).
Now, if μ = 2 then we exactly obtain the statement of the lemma.

If μ > 2 then by similar reasonings as above, we obtain that
∂2μ−4Sn1,n2,μ(f ;x,y)

∂x2μ−4

and
∂2μ−4Sn1,n2,μ(f ;x,y)

∂y2μ−4 are strictly convex in a neighborhood U(0, 0) of (0, 0), and as
a conclusion

∂2μ−4Sn1,n2,μ(f ; x, y)

∂x2μ−4 > 0,
∂2μ−4Sn1,n2,μ(f ; x, y)

∂y2μ−4 > 0,

for all (x, y) ∈ U(0, 0) \ (0, 0).
We can continue in this way until we arrive at

∂2Sn1,n2,μ(f ; x, y)

∂x2 > 0,
∂2Sn1,n2,μ(f ; x, y)

∂y2 > 0,

for all (x, y) ∈ V (0, 0) \ (0, 0), which proves the lemma. �

Lemma 4.3.6. Let μ ∈ N, μ ≥ 2, and let us denote

A := ∂rSn1,n2,μ(f ; 0, 0)

∂xi∂yj
.

We have: A = 0 if r < 2μ or r > 2μ, A = 0 if r = 2μ and both i, j are odd, and
A > 0 if r = 2μ and both i, j are even.

Proof. Let P(x, y) = (x2 + y2)μ. Denoting B := ∂rP (0,0)

∂xi∂yj , it is easy to check
that we have B = 0 if r < 2μ or r > 2μ, B = 0 if r = 2μ and both i, j are odd, and
B > 0 if r = 2μ and both i, j are even. But hi,j,μ(x, y) = P(x, y)E(x, y), where
E(x, y) is given in the proof of Lemma 4.3.5 and

∂rhi,j,μ(x, y)

∂xi∂yj
=

j∑
q=0

(
j

q

)
∂i

∂xi

[
∂2P(x, y)

∂y2

∂j−qE(x, y)

∂yj−q

]
,

which combined with the above properties of ∂rP (0,0)

∂xi∂yj and with the method of proof
in Lemma 4.3.5, taking into account that

∂rSn1,n2,μ(f ; 0, 0)

∂xi∂yj
=

n1∑
i=−n1

n2∑
j=−n2

∂rhi,j,μ(0, 0)

∂xi∂yj
f (xi, yj ),

proves the lemma. �
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Lemma 4.3.7. For μ ∈ N, μ ≥ 2, we have

∂2Sn1,n2,μ(f ; x, y)

∂x2

∂2Sn1,n2,μ(f ; x, y)

∂y2 −
(

∂2Sn1,n2,μ(f ; x, y)

∂x∂y

)2

> 0,

for all (x, y) ∈ V (0, 0)\(0, 0), where V (0, 0) is a neighborhood of (0, 0) (depending
on f , n1, n2 and μ).

Proof. Denote

H(x, y) = ∂2Sn1,n2,μ(f ; x, y)

∂x2

∂2Sn1,n2,μ(f ; x, y)

∂y2 −
(

∂2Sn1,n2,μ(f ; x, y)

∂x∂y

)2

.

According to the Remark after the proof of Theorem 4.3.6, we have to prove that

∂2H(x, y)

∂x2 > 0,
∂2H(x, y)

∂y2 > 0,

∂2H(x, y)

∂x2

∂2H(x, y)

∂y2 −
(

∂2H(x, y)

∂x∂y

)2

> 0,

for all (x, y) ∈ V (0, 0) \ (0, 0), and that ∂H(0,0)
∂x

= ∂H(0,0)
∂y

= 0 (because by Lemma
4.3.6 we have H(0, 0) = 0).

Now, by Lemma 4.3.6 we easily get that ∂rH(0,0)

∂xi∂j
> 0, only if r = 2μ and both

i, j are even, all the other partial derivatives of H on (0, 0) being 0, so we get

∂2μH(0, 0)

∂x2μ
> 0,

∂2μH(0, 0)

∂x2μ−2∂y2 > 0,
∂2μH(0, 0)

∂x2μ−1∂y
= 0,

that is, ∂2μ−2H(x,y)

∂x2μ−2 is strictly convex in a neighborhood of zero. Because ∂2μ−2H(0,0)

∂x2μ−2 =
0 and

∂2μ−1H(0, 0)

∂x2μ−1 = ∂2μ−1H(0, 0)

∂x2μ−2∂y
= 0,

it follows that (0, 0) is a global minimum point, so

∂2μ−2H(x, y)

∂x2μ−2 > 0,

for all (x, y) ∈ V1(0, 0) \ (0, 0).
Reasoning by symmetry, we get

∂2μ−2H(x, y)

∂y2μ−2 > 0,

for all (x, y) ∈ V2(0, 0) \ (0, 0).
Similarly, by Lemma 4.3.6, we obtain

∂2μ−2H(x, y)

∂x2μ−4∂y2 > 0,



4.3 Bivariate Shepard Operators 123

for all (x, y) ∈ V3(0, 0) \ (0, 0), and consequently

∂2

∂x2

(
∂2μ−4H(x, y)

∂x2μ−4

)
> 0,

∂2

∂y2

(
∂2μ−4H(x, y)

∂x2μ−4

)
> 0,

for all (x, y) ∈ V3(0, 0) \ (0, 0).
Let us denote

H1(x, y) = ∂2μ−2H(x, y)

∂x2μ−2

∂2μ−2H(x, y)

∂x2μ−4∂y2 −
(

∂2μ−2H(x, y)

∂x2μ−3∂y

)2

.

By Lemma 4.3.6 we obtain

∂2H1(0, 0)

∂x2 > 0,
∂2H1(0, 0)

∂y2 > 0,
∂2H1(0, 0)

∂x∂y
= 0,

that is, H1(x, y) is strictly convex in a neighborhood of (0, 0). But H1(0, 0) = 0
and ∂H1(0,0)

∂x
= ∂H1(0,0)

∂y
= 0, so it follows that H1(x, y) > 0, for all (x, y) ∈

V4(0, 0) \ (0, 0).

As a conclusion, it follows that ∂2μ−4H(x,y)

∂x2μ−4 is strictly convex in a neighborhood
of zero, and reasoning as above we get

∂2μ−4H(x, y)

∂x2μ−4 > 0,

for all (x, y) ∈ V5(0, 0) \ (0, 0).

Continuing this process by recurrence, finally we arrive to ∂2H(x,y)

∂x2 > 0, for all

(x, y) ∈ V6(0, 0) \ (0, 0), by reason of symmetry to ∂2H(x,y)

∂y2 > 0, for all (x, y) ∈
V7(0, 0) \ (0, 0), and then

∂2H(x, y)

∂x2

∂2H(x, y)

∂y2 −
(

∂2H(x, y)

∂x∂y

)2

> 0,

for all (x, y) ∈ V8(0, 0) \ (0, 0), which proves the lemma. �

Corollary 4.3.5. Let μ ∈ N, μ ≥ 2. If f : [−1, 1]×[−1, 1] → R is strictly convex
on [−1, 1] × [−1, 1], then there exists a neighborhood V (0, 0) of (0, 0) (depending
on f , μ and n1, n2) such that Sn1,n2,μ(f ; x, y) is strictly convex in V (0, 0).

Proof. Immediate by Lemmas 4.3.5–4.3.7.
Remark. For a quantitative estimate of the length of convexity neighborhood

V (0, 0) in Corollary 4.3.5, we need the following.
Lemma 4.3.8. Denoting n = max{n1, n2} and

Ai,j (x, y) = [(x − xi)
2 + (y − yj )

2]−p

Tn1,n2,p(1; x, y)
,

we have
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∂xl∂yk

∣∣∣∣ ≤ CnqAi,j (x, y).

Proof. Firstly, let us denote

Fk,p(x, y) =

n1∑
i=−n1

n2∑
j=−n2

(x − xi)
k[(x − xi)

2 + (y − yj )
2]−p−k

n1∑
i=−n1

n2∑
j=−n2

[(x − xi)
2 + (y − yj )

2]−p

,

and xu (respectively, yv), the closest point xi (respectively, yj ) to x (respectively, y).
We have

|Fk,p(x, y)| ≤ |x − xu|−k.

Indeed, by |x − xu| ≤ |x − xi |, for all i, we get

|x − xi |k
[(x − xi)2 + (y − yj )2]k ≤ |x − xi |k

(x − xi)2k
= 1/|x − xk|k ≤ |x − xu|−k.

Similarly, if we denote

Gk,p(x, y) =

n1∑
i=−n1

n2∑
j=−n2

(y − yj )
k[(x − xi)

2 + (y − yj )
2]−p−k

n1∑
i=−n1

n2∑
j=−n2

[(x − xi)
2 + (y − yj )

2]−p

,

we get
|Gk,p(x, y)| ≤ |y − yv|−k.

Now, if we denote
Hk,l,p(x, y)

=

n1∑
i=−n1

n2∑
j=−n2

(x − xi)
k(y − yj )

l[(x − xi)
2 + (y − yj )

2]−p−k−l

n1∑
i=−n1

n2∑
j=−n2

[(x − xi)
2 + (y − yj )

2]−p

,

then we have

|Hk,l,p(x, y)| ≤ |x − xu|−k|y − yv|−l , k, l ≥ 0.

Then

∂Ai,j (x, y)

∂x
= −2p(x − xi)

(x − xi)2 + (y − yj )2 Ai,j (x, y) + 2pAi,j (x, y)F1,p(x, y),
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which immediately implies∣∣∣∣∂Ai,j (x, y)

∂x

∣∣∣∣ ≤ C|x − xu|−1Ai,j (x, y) ≤ CnAi,j (x, y).

Similarly, ∣∣∣∣∂Ai,j (x, y)

∂y

∣∣∣∣ ≤ CnAi,j (x, y).

Then
∂2Ai,j (x, y)

∂x2

= −2pAi,j (x, y)

[
1

(x − xi)2 + (y − yj )2 − 2(x − xi)
2

[(x − xi)2 + (y − yj )2]2

]

− 2p(x − xi)

(x − xi)2 + (y − yj )2

∂Ai,j (x, y)

∂x
+ 2p

∂Ai,j (x, y)

∂x
F1,p(x, y)

+2pAi,j (x, y)
∂F1,p(x, y)

∂x
,

where

∂F1,p(x, y)

∂x
=

n1∑
i=−n1

n2∑
j=−n2

[(x − xi)
2 + (y − yj )

2]−p−1

n1∑
i=−n1

n2∑
j=−n2

[(x − xi)
2 + (y − yj )

2]−p

−2(p + 1)F2,p(x, y) + 2p[F1,p(x, y)]2.

We immediately get∣∣∣∣∂2Ai,j (x, y)

∂x2

∣∣∣∣ ≤ C|x − xu|−2Ai,j (x, y) ≤ Cn2Ai,j (x, y).

Also
∂2Ai,j (x, y)

∂x∂y
= 4p(x − xi)(y − yj )

[(x − xi)2 + (y − yj )2]2 Ai,j (x, y)

− 2p(x − xi)

(x − xi)2 + (y − yj )2

∂Ai,j (x, y)

∂y
+ 2p

∂Ai,j (x, y)

∂y
F1,p(x, y)

+2pAi,j (x, y)
∂F1,p(x, y)

∂y
,

where

∂F1,p(x, y)

∂y
= −2(p + 1)H1,1,p(x, y) + 2pF1,p(x, y)G1,p(x, y).

It immediately follows
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∂x∂y

∣∣∣∣ ≤ Cn2Ai,j (x, y).

Reasoning in this way, we obtain∣∣∣∣∂3Ai,j (x, y)

∂x3

∣∣∣∣ ≤ Cn3Ai,j (x, y),

∣∣∣∣∂3Ai,j (x, y)

∂x2∂y

∣∣∣∣ ≤ Cn3Ai,j (x, y),

and so on ∣∣∣∣∂qAi,j (x, y)

∂xl∂yk

∣∣∣∣ ≤ CnqAi,j (x, y),

which proves the lemma. �

As an immediate consequence, we get
Corollary 4.3.6. For n = max{n1, n2} and

Sn1,n2,p(x, y) =
n1∑

i=−n1

n2∑
j=−n2

Ai,j (x, y)f (xi, yj ),

we have ∣∣∣∣∂qSn1,n2,p(x, y)

∂xl∂yk

∣∣∣∣ ≤ Cnq ||f ||,
where ||f || is the uniform norm.

The quantitative estimate of convexity in Theorem 4.3.6 is given by the following.
Theorem 4.3.7. Let f : [−1, 1] × [−1, 1] → R supposed to be strictly convex

on [−1, 1] × [−1, 1]. If n = max{n1, n2} then Sn1,n2,1(f )(x, y) is strictly convex in
V (0, 0) = {x2 + y2 < d2

n1,n2
}, where

|dn1,n2 | ≥ C

⎡
⎣ n1∑

i=0

n2∑
j=0

∗
[2/(x2

i + y2
j )]E(xi, yj )

⎤
⎦

2

/n5,

with E(xi, yj ) = [(f (xi, yj ) + f (−xi, −yj ) − 2f (0, 0)) + (f (−xi, yj ) +
f (xi, −yj ) − 2f (0, 0))] and the sum

∑n1
i=0

∑n2
j=0

∗ means that the index (i, j) of
double sum is different from (0, 0).

Proof. From the proof of Theorem 4.3.6, we immediately obtain

∂2Sn1,n2,1(f ; 0, 0)

∂x2 = ∂2Sn1,n2,1(f ; 0, 0)

∂y2

=
n1∑
i=0

n2∑
j=0

∗
[2/(x2

i + y2
j )][f (xi, yj ) + f (−xi, −yj ) + f (−xi, yj ) + f (xi, −yj )]

=
n1∑
i=0

n2∑
j=0

∗
[2/(x2

i + y2
j )]E(xi, yj ) > 0,
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where E(xi, yj ) = (f (xi, yj ) + f (−xi, −yj ) − 2f (0, 0)) + (f (−xi, yj ) +
f (xi, −yj ) − 2f (0, 0)) > 0, from the convexity of f .

Also, we have
∂2Sn1,n2,1(f ;0,0)

∂x∂y
= 0.

Let us denote

H(f )(x, y) = ∂2Sn1,n2,1(f ; x, y)

∂x2

∂2Sn1,n2,1(f ; x, y)

∂y2 − ∂2Sn1,n2,1(f ; x, y)

∂x∂y
.

We have H(f )(0, 0) > 0. Let (αn1,n2 , βn1,n2) be the nearest root to (0, 0) of
H(f )(x, y), in the sense that the distance dn1,n2 = ((αn1,n2)

2+(βn1,n2)
2)2)1/2 is min-

imum for all the roots of H(f )(x, y). Then, for all (x, y) ∈ {(x, y); (x2 +y2)1/2}, we
necessarily have H(f )(x, y) > 0. By the mean value theorem for bivariate functions,
we get

H(f )(0, 0) = |H(f )(0, 0)| = |H(f )(0, 0) − H(f )(αn1,n2 , βn1,n2)|

≤ |dn1,n2 |
[∣∣∣∣∂H(f )(ξ, η)

∂x

∣∣∣∣ +
∣∣∣∣∂H(f )(ξ, η)

∂y

∣∣∣∣
]

.

But
∂H(f )(x, y)

∂x
= ∂3Sn1,n2,1(f ; x, y)

∂x3

∂2Sn1,n2,1(f ; x, y)

∂y2

+∂3Sn1,n2,1(f ; x, y)

∂y2∂x

∂2Sn1,n2,1(f ; x, y)

∂x2 − ∂3Sn1,n2,1(f ; x, y)

∂x2∂y
,

which by Corollary 4.3.6 implies∣∣∣∣∂H(f )(x, y)

∂x

∣∣∣∣ ≤
∣∣∣∣∂3Sn1,n2,1(f ; x, y)

∂x3

∣∣∣∣
∣∣∣∣∂2Sn1,n2,1(f ; x, y)

∂y2

∣∣∣∣
+

∣∣∣∣∂3Sn1,n2,1(f ; x, y)

∂y2∂x

∣∣∣∣
∣∣∣∣∂2Sn1,n2,1(f ; x, y)

∂x2

∣∣∣∣ +
∣∣∣∣∂3Sn1,n2,1(f ; x, y)

∂x2∂y

∣∣∣∣ ≤ Cn5,

with C depending on f , but independent of n.

Analogously,
∣∣∣ ∂H(f )(x,y)

∂y

∣∣∣ ≤ Cn5. We get 0 < H(f )(0, 0) ≤ C|dn1,n2 |n5, i.e.,

|dn1,n2 | ≥ C

⎡
⎣ n1∑

i=0

n2∑
j=0

∗
[2/(x2

i + y2
j )]E(xi, yj )

⎤
⎦

2

/n5,

which proves the theorem. �

Remark. A version of Theorem 4.3.7 for arbitrary p ≥ 2, i.e., for
Sn1,n2,p(f )(x, y), still remains an open question, because of the complicated rea-
sonings in the proofs of Lemmas 4.3.5, 4.3.6 and 4.3.7.
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4.4 Bibliographical Remarks and Open Problems

Theorem 4.2.1, Corollaries 4.2.1, 4.2.2, Theorem 4.2.2 are in Anastassiou–Gal [7],
Theorems 4.3.2, 4.3.3, Lemmas 4.3.1–4.3.3 and Corollary 4.3.4 are in Anastassiou–
Gal [8]. All the other results of this chapter (except those where the authors are
mentioned), are from Gal–Gal [55].

Open Problem 4.4.1. Prove Theorems 4.3.5 and 4.3.7 for all p ≥ 2.
Open Problem 4.4.2. For the bivariate tensor product operator generated by the

univariate Balász–Shepard operator defined on the semi-axis considered by Theorem
2.3.5, prove qualitative and quantitative shape-preserving properties.

Open Problem 4.4.3. For the bivariate tensor product operator generated by the
univariate Shepard–Grünwald operator introduced by Criscuolo–Mastroianni [31]
(see Open Problem 1.6.4, too), prove qualitative and quantitative shape-preserving
properties.

Open Problem 4.4.4. For the bivariate Shepard kind operator defined by

Sn1,n2,μ(f ; x, y) = Tn1,n2,μ(f ; x, y)

Tn1,n2,μ(1; x, y)
, if (x, y) 
= (xi, yj ),

Sn1,n2,μ(f ; xi, yj ) = f (xi, yj ), where μ > 0 is fixed, f : D → R, D ⊂ R
2,

D = [−1, 1]×[−1, 1], xi = i/n1, i = −n1, . . . , n1; yj = j/n2, j = −n2, . . . , n2
and

Tn1,n2,μ(f ; x, y) =
n1∑

i=−n1

n2∑
j=−n2

f (xi, yj )

[(x − xi)2 + (y − yj )2]μ ,

prove properties concerning the preservation of monotonicity of f , in neighborhoods
of some points.

Open Problem 4.4.5. For the local bivariate tensor products, Shepard opera-
tors mentioned in Open Problem 3.5.4 (previous chapter) prove the shape-preserving
properties.
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Appendix: Graphs of Shepard Surfaces

Due to the usefulness of their properties in approximation theory, data fitting, CAGD,
fluid dynamics, curves and surfaces, the Shepard operators (univariate and bivariate
variants) have been the object of much work. Let us mention here the following
papers: [1]–[4], [7], [8], [10]–[17], [23]–[40], [42], [45]–[53], [55]–[58], [60], [62],
[65], [69], [70]–[75], [77], [86], [91], [93], [96], [98], [104]–[109].

In this appendix we present some pictures for various kinds of bivariate Shepard
operators, which illustrate the shape-preserving property of them.

I thank very much Professor Radu Trimbitas from “Babeş-Bolyai” University,
Faculty of Mathematics and Informatics, Cluj-Napoca, Romania, who made all the
graphs in this section.

Except type 4, when the original Shepard–Lagrange operator is defined on 100
random knots uniformly distributed into [−1, 1]×[−1, 1] (which were then sorted in
ascending order with respect to their relative distance), all the other types of bivariate
Shepard operators in this section are defined on equidistant knots in the bidimensional
interval [−1, 1] × [−1, 1], i.e., are of the form xk = k

n
, k = −n, . . . , 0, . . . , n and

yj = j
m

, j = −m, . . . , 0, . . . , m, with n = m = 5.
Recall that by the previous sections, we have considered nine main types of

Shepard operators, given by the following formulas.
Type 1. Original Shepard operator:

Sn,p(f )(x, y) =
n∑

i=−n

si,n,p(x, y)f (xi, yi),

where

si,n,p(x, y) = [(x − xi)
2 + (y − yi)

2]−p∑n
k=−n[(x − xk)2 + (y − yk)2]−p

, p > 2, p ∈ N.

Type 2. Tensor product Shepard operator:

Sn,m,2p,2q(f )(x, y) =
n∑

i=−n

m∑
j=−m

si,n,2p(x)sj,m,2q(y)f (xi, yj ), p, q ≥ 2,
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where

si,n,2p(x) = (x − xi)
−2p∑n

k=−n(x − xk)−2p

and

sj,m,2q(x) = (y − yj )
−2q∑m

k=−m(y − yk)−2q
.

Type 3. Shepard–Gal–Szabados operator

Sn,m,p(f )(x, y) =

n∑
i=−n

m∑
j=−m

[(x − xi)
2 + (y − yj )

2]−pf (xi, yj )

n∑
i=−n

m∑
j=−m

[(x − xi)
2 + (y − yj )

2]−p

,

where p > 2, p ∈ N.
Type 4. Original Shepard–Lagrange operator:

Sn,p,Lm(f )(x, y) =
n∑

i=−n

si,n,p(x, y)Li
m(f )(x, y),

where

si,n,p(x, y) = [(x − xi)
2 + (y − yi)

2]−p

n∑
k=−n

[(x − xk)
2 + (y − yk)

2]−p

, p > 2, p ∈ N,

and Li
m(f )(x, y) is the Lagrange interpolation bivariate polynomial of degree m (i.e.,

of the form
∑

j+k≤m aj,kx
j yk , where aj,k ∈ R), uniquely defined by the conditions

Lm(f )(xi+μ, yi+μ) = f (xi+μ, yi+μ), μ = 1, . . . , m−1, m = (n+1)(n+2)/2, m <

n, (xn+μ, yn+μ) = (xμ, yμ) (see, e.g., Coman–Trimbitas [27], page 9).
Type 5. Tensor product Shepard–Lagrange: operator

Sn,m,2p,2q,n1,n2(f )(x, y)

=
n∑

i=−n

m∑
j=−m

si,n,2p(x)sj,m,2q(y)L
i,j
n1,n2(f )(x, y), p, q ≥ 2,

where

si,n,2p(x) = (x − xi)
−2p

n∑
k=−n

(x − xk)
−2p

,
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sj,m,2q(y) = (y − yj )
−2q

m∑
k=−m

(y − yk)
−2q

,

and
L

i,j
n1,n2(f )(x, y)

=
n1∑

ν=0

n2∑
μ=0

ui(x)

(x − xi+ν)u
′
i (xi+ν)

vj (y)

(y − yj+μ)v′
j (yj+μ)

f (xi+ν, yj+μ),

with ui(x) = (x − xi) · · · (x − xi+n1), vj (y) = (y − yj ) · · · (y − yj+n2).
Type 6. Tensor product Shepard–Lagrange–Taylor operator:

Sn,m,2p,2q,n1,n2(f )(x, y)

=
n∑

i=−n

m∑
j=−m

si,n,2p(x)sj,m,2q(y)LT
i,j
n1,n2(f )(x, y), p, q ≥ 2,

where

si,n,2p(x) = (x − xi)
−2p

n∑
k=−n

(x − xk)
−2p

,

sj,m,2q(x) = (y − yj )
−2q

m∑
k=−m

(y − yk)
−2q

,

and

LT
i,j
n1,n2(f )(x, y) =

n1∑
ν=0

n2∑
μ=0

ui(x)

(x − xi+ν)u
′
i (xi+ν)

(y − yj )
μ

(μ)!
∂μf (xi+ν, yj )

∂yμ
.

Remark. Evidently, by changing the variable x with y we get the “Tensor product
Shepard–Taylor–Lagrange” kind of operator.

Type 7. Original Shepard–Taylor operator:

Sn,p,Tm−n,...,mn
(f )(x, y) =

n∑
i=−n

si,n,p(x, y)T i
mi

(f )(x, y),

where

si,n,p(x, y) = [(x − xi)
2 + (y − yi)

2]−p

n∑
k=−n

[(x − xk)
2 + (y − yk)

2]−p

, p > 2, p ∈ N,
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and

T i
mi

(f )(x, y) =
∑

r+s≤mi

(x − xi)
r

r!
(y − yj )

s

s!
∂r+sf (xi, yi)

∂xr∂ys
.

Type 8. Tensor product Shepard–Taylor operator:

Sn,m,2p,2q,n−n,...,nn,m−m,...,mm(f )(x, y)

=
n∑

i=−n

m∑
j=−m

si,n,2p(x)sj,m,2q(y)T T
i,j
ni ,mj

(f )(x, y), p, q ≥ 2,

where

si,n,2p(x) = (x − xi)
−2p

n∑
k=−n

(x − xk)
−2p

,

sj,m,2q(x) = (y − yj )
−2q

m∑
k=−m

(y − yk)
−2q

,

and

T T
i,j
ni ,mj

(f )(x, y) =
ni∑

ν=0

mj∑
μ=0

(x − xi)
ν

(ν)!
(y − yj )

μ

(μ)!
∂ν+μf (xi, yj )

∂xν∂yμ
.

Type 9. Shepard–Gal–Szabados–Taylor operator:

Sn,m,p(f )(x, y)

=

n∑
i=−n

m∑
j=−m

[(x − xi)
2 + (y − yj )

2]−pT T
i,j
ni ,mj

(f )(x, y)

n∑
i=−n

m∑
j=−m

[(x − xi)
2 + (y − yj )

2]−p

,

where

T T
i,j
ni ,mj

(f )(x, y) =
ni∑

ν=0

mj∑
μ=0

(x − xi)
ν

(ν)!
(y − yj )

μ

(μ)!
∂ν+μf (xi, yj )

∂xν∂yμ
.

The Shepard surfaces generated by the Shepard operators of the types 2, 3, 4, 6, 7
and 8, will be illustrated for the following five examples of functions f (x, y), called
in the sequel “test functions.”

Example 1. Let f1(x, y) = xy, x, y ∈ [−1, 1]. It is a bidimensional (upper)
monotone function, i.e., it satisfies the condition:
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∂2f (x, y)

∂x∂y
≥ 0, ∀x, y ∈ [−1, 1].

Another example of this kind is f4(x, y) = x3y3.
Example 2. Let f2(x, y) = x2y2. It is a “strictly double convex” function, i.e., it

satisfies the condition:

∂4f (x, y)

∂x2∂y2 > 0, ∀x, y ∈ [−1, 1].

Example 3. Let f3(x, y) = x2y2 + x2 + y2. It is an ordinary strictly convex
bivariate function, i.e., satisfies the conditions:

∂2f (x, y)

∂x2 > 0,
∂2f (x, y)

∂y2 > 0,

∂2f (x, y)

∂x2

∂2f (x, y)

∂y2 >

[
∂2f (x, y)

∂x∂y

]2

,

∀x, y ∈ (−1, 1).

Example 4. Let f5(x, y) = 9 exp(x+y)−xy. Simple calculations show that f5 is
simultaneously bidimensional (upper) monotone, strictly double convex and ordinary
strictly convex.

The graphs of the first four functions, f1, f2, f3, f4, are given in Figure A.1. Also,
Figures 5.2, 5.3 and 5.4 contain the graphs of various Shepard operators corresponding
to these four test functions.

Figure A.2 shows the graphs for Shepard–Gal–Szabados operators, type 3, p = 3.
Figure A.3 gives the graphs for tensor product Shepard–Lagrange–Taylor opera-

tors (type 6), p = 2, q = 2.
In Figure A.4 appear the graphs for original Shepard–Taylor operators (type 7)

for p = 4.
Finally, in Figure A.5 we give the graphs for Shepard operators of types 2, 4 and

8, corresponding to the function f5(x, y) = 9 exp(x + y) − xy. The graph of this
function is given in Figure A.5(a).
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Fig. A.1. Graphs of the test functions, f1, f2, f3, f4
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Fig. A.2. Graphs for Shepard–Gal–Szabados operators, Type 3, p = 3



136 A Appendix: Graphs of Shepard Surfaces

Fig. A.3. Graphs for tensor product Shepard–Lagrange–Taylor operators, type 6, p = 2, q = 2
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Fig. A.4. Graphs for original Shepard–Taylor operators, type 7, p = 4
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Fig. A.5. Graphs for f5 and Shepard operators of types 2, 4 and 8
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