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Preface

This monograph is devoted to two interesting properties in the interpolation of func-
tions: the first deals with the Global Smoothness Preservation Property (GSPP) for the
well-known classical interpolation operators of Lagrange, Griinwald, Hermite—Fejér
and Shepard type, while the second treats the Shape Preservation Property (SPP) for
the same interpolation operators. The examination of the two properties involves both
the univariate and bivariate cases. An exception is the GSPP of complex Hermite—
Fejér interpolation polynomials based on the roots of unity.

An introduction to GSPP of some classical interpolation operators in the univariate
case was given in a short chapter (chapter 6) of a monograph by Anastassiou—Gal [6].
In this work the univariate case is completed with many new results; an entirely new
chapter is devoted to the bivariate case.

The study of SPP classical interpolation operators in both the univariate and
bivariate cases appears here for the first time in book form.

This monograph consists of the author’s research over the past five years with new
concepts and results that have not been previously published. Many open problems
suggested throughout may be of interest to different researchers. In general, the book
may be used in various areas of mathematics — interpolation of functions, numeri-
cal analysis, approximation theory — as well as computer-aided geometric design,
data fitting, fluid mechanics and engineering. Additionally, the work may be used as
supplementary material in graduate courses as well.

Acknowledgments. The basic methods of this book are mainly based on the joint
papers I wrote with Professor Jozsef Szabados from Alfréd Rényi Institute of Mathe-
matics of the Hungarian Academy of Sciences in Budapest, whom I thank very much
for his great contribution.

Also, I would like to thank Professor George Anastassiou from the Department
of Mathematical Sciences, University of Memphis, TN, U.S.A., for our collaboration
on the topic and for his support and Professor Radu Trimbitas from “Babeg-Bolyai”
University, Faculty of Mathematics and Informatics, Cluj-Napoca, Romania, who, by
a very generous help made the graphs of the surfaces in Appendix.
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Finally, I would like to thank Ann Kostant, Executive Editor at Birkhduser for
support, and my typist Georgeta Bonda of “Babes-Bolyai” University, Cluj-Napoca,
Romania, for doing a great job so punctually.

Oradea, September 2004 Sorin G. Gal



Introduction

The classical interpolation operators of Lagrange, Griinwald, Hermite—Fejér and
Shepard on various systems of nodes, were introduced in mathematics mainly for
the purpose of approximation of functions. As a consequence, most papers on these
operators deal with their convergence properties.

However, in recent years it has been pointed out that many of these classical inter-
polation operators have other interesting properties too, like the (partial) preservation
of the global smoothness and shape of the interpolated functions.

Systematic results in these directions have been obtained by the author of this
monograph in a series of papers jointly written with other researchers.

The partial global smoothness preservation property can be described as follows.
We say that the sequence of interpolation operators L, : Cla, b] — Cla, b],n € N,
(in the sense that each L, (f) coincides with f on a system of given nodes) partially
preserves the global smoothness of f, if for f € Lipya, 0 < o < 1, there exists
0 < B < o independent of f and n, such that

o1(Ly(f); h) < ChP, Vhe[0,1),n €N,

(i.e., L,(f) € LipcB,V¥n € N) where C > 0 is independent of n but may depend
on f.Here w1(f;8) =sup{lf(x +h) — f(x);0 <h <§x,x+h € |[a,b]}is
the uniform modulus of continuity, and of course it can be replaced by other kinds of
moduli of continuity too.

It seems that in general (excepting, for example, some particular Shepard op-
erators), the interpolation conditions do not permit a complete global smoothness
preservation property, i.e., « = f, as, for example, is the case of Bernstein-type
approximation operators.

An introduction to the global smoothness preservation property (GSPP) in the
univariate case was made in the recent book by Anastassiou—Gal [6].

In the present monograph, for the univariate case many new results are presented.
For example, if t(f; h) < Mh*,Vh € [0, 1), then there exists 0 < B < « such
that T(L,(f); h)p1 < ChP,¥n € N,h € [0, 1), where T(f; h)p1 is the averaged
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L'-modulus of continuity and L, (f) is a certain interpolation operator. Also, new
results on univariate Shepard operators on infinite intervals and on univariate Shepard—
Lagrange operators on [0, 1] are included.

In addition, bivariate cases of these classical operators with respect to the following
three kinds of moduli of continuity are examined:

e the bivariate uniform modulus of continuity given by
wi1(fi 8, m) =sup{|f(x+h, y+k)—fx, ;. 0=<h=680=<k=n (x,y),

(x+h,y+k)el},

e the Bogel modulus of continuity given by
WP (f18,m) = sup{lAni fOe, M 0<h<8,0<k=n (x,y)

(x+h,y+k)el},

where Ap i f(x,y) = f(x+h,y+k) = f(x+h,y)— flx,y+k)+ fx, ),
e the bivariate Euclidean modulus of continuity given by

B (f;p) =sup{|f(x+h,y+k) — fx,y); 0<h,0<k, 2 +1)7 < p,

(x,y), x +h,y+k)el},
where f : I — R with [ a bidimensional interval.

The case of complex Hermite—Fejér interpolation polynomials on the roots of
unity is studied as well.

On the other hand, the partial shape preservation property can be described as
follows. Let L : Cla,b] — Cla, b] be an interpolation operator. We say that L
partially preserves the shape of f, if for any monotone (convex) function f(x) on
[a, b], there exist some points &; € [a, b] (which may be independent of f) such that
L(f)(x) is of the same monotonicity (convexity, respectively) in some neighborhoods
V(&) of &.

The first results in this direction were obtained in 1960-1962 by T. Popoviciu, for
the monotonicity case and Hermite—Fejér polynomials on some special Jacobi nodes.
His results were of the qualitative type, i.e., only the existence of these neighborhoods
V(&) was proved, without any estimate of their lengths.

In this monograph, quantitative results of T. Popoviciu’s results and new qualita-
tive and quantitative results for other classical interpolation operators are presented.

Bivariate variants of these operators, with respect to various natural concepts of
bivariate monotonicity and convexity, also are studied.

The results in this monograph, especially those in the bivariate case, have potential
applications to data fitting, fluid dynamics, computer aided geometric design, curves,
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and surfaces. At the end of the book we present an Appendix with 20 graphs of various
bivariate Shepard-type operators attached to some particular functions.

Sorin G. Gal

Department of Mathematics
University of Oradea
Romania

September 2004
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Global Smoothness Preservation, Univariate Case

In this chapter we present results concerning the global smoothness preservation by
some classical interpolation operators.

1.1 Negative Results

Kratz—Stadtmiiller [66] prove the property of global smoothness preservation for
discrete sequences {L,(f)}, of the form

Ln(f)(x) = Zf(Xk,n)Pk,n(X), xe[-1,1], feC[-11] (1.1)

k=1

satisfying the conditions

n
Z Pk.n(x) = s,, which is independent of x € [—1, 1], (1.2)
k=1
n
Y lpka@ =€ xe[-1.1], (13)
k=1

n
Pka €C'I-L 1] and Y | —x)ph, 0 < Cor xe[~1 11, (14)
k=1
for some constants Cy, Cs.
Since the Hermite—Fejér and the Lagrange polynomials are of type (1.1), it is
natural to ask if for these polynomials (1.2)—(1.4) hold. Unfortunately, this is not so
for Lagrange interpolation because of the following:

Theorem 1.1.1. Let M = {M}pen (My, = {xp.n}}_,) be an arbitrary trian-
gular matrix of interpolation nodes in [—1, 1] (i.e., =1 < X < Xp—1p < -+ <
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x1.n < 1,n € N)and Iy ,(x) the fundamental polynomials of Lagrange interpolation
on My, Then for all n > 2 we have

n
inf g, max <1 Y |x = Xeul - [l , ()]

.. k=1
1 < liminf
n—o00 n

n
inf g, max <1 Y % = Xpal - 11, ()]
. =1
< lim sup k < 2.
n—oo n

Proof. Let us denote x; , = xx, k =1,...,n and

n
Anes My) =Y Ix = xinl - Il , ()],

k=1
where
wn (X) -
len(x) = O k=1,....,n, wp(x)= L[](x — X0).
Consider an index j € {1, 2, ..., n} such that
0, ()| = max o], (xo)l.
Then we get

n
1
An(xjs My) = o, (x)] ) —— =n—1,
e e Z |}, (xo)|
k£
which proves the first inequality in the statement of theorem.
To prove the second inequality, let us choose

wp(x) = %[Tn,z(x) — T,(x)] =sintsin(n — 1)t, x = cost,

where T,,(x) = cos[n arccos x] is the Chebyshev polynomials of degree n. Then

xk:costk,tk:(ﬁ:i)n,k:1,...,n,andaneasycalculationyields
! ()| = n—1, if2<k<n-2
O =N o — 1, ifk = 1, n,

and

max |w, (x)] <1, max |w,(x)| <2n—2.
[x|=1 [x[<1



1.1 Negative Results 3

Thus, denoting an index j for which |x — x| = minj<x<, |x — x|, we obtain

+y |ewn ()]

= Jop ol - 1x — xl

1

|y, (x1)

Ay(x; My) < |w:1(x)| Z
k=1

n

n—
- n—1 2n-2 (n — 1)| cost — cos 1|

k=1
ke

1 < 1 1
§2n+n_1z< - +,t+tk>

in 5k e
= \sin — sin =5
kit

n

1
<2n+0O E T =2n + O(logn),
i)

which completes the proof. (|

Remarks. (1) If {L,(f)}, are the classical Lagrange polynomials of any system
of nodes, then it is known that (1.3) does not hold. As a conclusion, it seems that
for classical interpolation polynomials all three conditions (1.2) to (1.4) cannot be
verified.

(2) The shortcoming in Remark 1 above can be removed as follows. Let L, ( f)(x)
be of form (1.1) with pyg ,(x) satisfying (1.4). Then f € Lip,,(1; [—1, 1]) implies
L,(f) € LipCZM(I; [—1,1]), for all n € N. Indeed, we have

@ =Y F @) PhnExyn)

k=1

ILn(f)(x) = La(HHW)] =

D 1 Gan) = fEy.)1php Exyon)

k=1

= |x —y|

n
<= YIM Y i — Exynl - 1P Enyn)| < CoaMIx — yl.
k=1

B)YIf{L, (f)}, are the Hermite—Fejér polynomials based on the Chebyshev nodes
of first kind, then obviously (1.2) and (1.3) hold with s, = 1 and C| = 1.

But (1.4) cannot hold since then by Kratz—Stadtmiiller [66] would follow that
{L,, ()}, have the property of global smoothness preservation and by Anastassiou—
Cottin—Gonska [5] this does not hold.

@) Letxg,, = —1 4+ 25Dk = 1, n, be equidistant nodes in [—1, 1] and
Hy,—1(f)(x) the Hermite—Fejér interpolation polynomials on these nodes. Berman
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[20] proved that for f(x) = x,x € [—1, 1], the sequence { H2,—1 (f)(x)}, isunbound-
edly divergent for any O < |x| < 1. Hence this sequence has no the property of partial
preservation of global smoothness. Indeed, if f € Lip;(1; [—1, 1]) and if we suppose
that there exist 0 < o < 1 and M > 0 such that H»,—1(f) € Lipy,(cr; [—1, 1]) for
all n € N, then

|Hon—1(f)(x) = Hop1 (YW = Mlx —y|*, Vx,yel[-11], neN.

Taking x = —1 and 0 < |y| < 1, letting n — oo in the above inequality, we get
a contradiction.

1.2 Global Smoothness Preservation by Some Lagrange,
Hermite-Fejér, and Shepard-Type Operators

Let x; = cos %n, k=1,...,n,be the roots of the Chebyshev polynomial 7}, (x),
and the Hermite—Fejér polynomial of an f € C[—1, 1] based on these roots,

Hy(£)) = Y (1 = xx)— )

— )2
P (x = x)

If we consider the Jackson interpolation trigonometric polynomials J,, (/) (x) (see
Section 1.4), then for f € C[—1, 1], denoting F (t) = f(cos?), it is known that (see,
e.g., Szabados [95], p. 406)

Hy(f)(x) = Jop—1(F)(t), t = arccosx.

Now, if 0 < o« < 1 and f € Lipy(a;[—1, 1]), then Jo,—1(F) € Lipco (see
Theorem 1.4.2), which can be written as (x = cosu, y = cosv)

[Hy (f)(x) = Ho (YD) = [J2n—1(F) (W) — Jop—1(F)(W)| < Clu —v|*
= C|arccos x — arccos y|* < %Ix — %2, Vax,ye[-1,1],

since arccosx € Lipﬂ/ﬁ(l/Z; [—1, 1]), (see, e.g., Cheney [22], Problem 5, p. 88),
which means that H,(f) € Lipcj,z(a/Z; [—1,1]), foralln € N.
2

If « = 1, in the same way we get

1/2
w1(Hn(f);h)§C|:hlogE:| , neN, he(,1).

As a conclusion, we can say that { H, ( f)}, has the property of partial preservation
of global smoothness of f.
However, by a direct method we will improve the above considerations about

{H(H}n-
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Theorem 1.2.1. For any f € C[—1,1], h > 0 and n € N we have

w1(Hy(f): h)

=min{@<hn2a)1 (f; ki2>> ,(’)(%Za)l (f; %) +a)1(f;h))},
k=1 k=1

where the constants in “O” are independent of f, n and h.

Proof. First we obtain an upper estimate for | H, () (x)|. Letx € [—1, 1] be fixed,
the index j defined by |x — x| = min{|x — x;|; 1 < k < n} and denote

A ( ) — (1 — )ﬂ
r(x) = XXk n2(x — xk)z'
We have
S T2(x) 2T, ()T (x)  2(1 — xxp) T2 (x)
(=G ey T T T T G

k=1,...,n, which implies (by 1 — xx; =1 —x2 + x(x —xg))

1 201 = xH|T ()| 2|T,(x)]
— x¢)? (x — xx)? Ix — xl

|AL ()] < o

2(1 — x?) 2
x —xl® 0 (x—xp)?

k=1,...,n.

For simplicity, all the constants (independent of f, n, and &) which appear will
be denoted by C. Since

Hy(f)(x) =Y f)AL ) =Y [f () — f01A ),

k=1 k=1
we obtain
, c . 3 2(1 — x| T, ()|
|Hn(f)()C)| S ﬁ;wl(fv |x_xk|)|:(x_xk)2 (X_Xk)z

k#j

2(1 —x2 2T/

a-xH 2 "(x)|}+Cw1(f; [x = x;DIAG GOl (1.5)

= x P — !

The following known relations (see, e.g., Szabados—Vértesi [100], p. 282) will be
frequently used:

Ci . 2 _ g2 .
oxl= L T~ emi~ P ks ae)

Now by (1.6) and by the combined Bernstein—-Markov inequality, we get



6 1 Global Smoothness Preservation, Univariate Case

Ao < _TIAL_cn?
/ nv/1—x2 +1 i’

and
; 2
, J n 1 2
w1 (filx —x;DIA; ()] = Coy f§n—2 TSCG)I f;ﬁ n-.

Also, by (1.6) we obtain (using also the inequality w1 (f; T)/T < 2w1(f;1t)/t,
forr <T)
Za)l(f§ X — D) _ Zwl(f lx — xil)

— 2 _
Py (x — xx) J oy |x — x|
4 w 2=k 4 n 2
Cn L\J> 772 Cn 1 k
R S T (- }
Ay Y I =
Zwl(f; Ix — xe)(1 — x2)|T) (x)] <Zw1(f; Ix — xknv/1 — x?
_ 2 — _ 2
Py (x — xx) oy (x — xx)

wl(f = xD) k2
<CZ C—x? T 42 ( )

) (f 12— k2|)L
Zwl(f; lx — x (1 —x*) <CZ n?
lx — xi |3 - [j2—k2P3
k] k] 0
1 1 j>  cn® 1Y j?
= ’”‘”(f n2>§|jz—k2| =) “”(f nz)n2
J
4 1
Scn w1 fa_z )
n
Zwl(f;lx Xkl)IT(x)l Zwl(f |x — xk|)
oy lx — xi| lx — xk|
J

i 1 K2
<Cn ijwl <f,n—2)

Collecting now all these estimates, by (1.5) we get

n 1 k2
HwI oY o (1:5).
k=1

Since



1.2 Lagrange, Hermite—Fejér and Shepard-Type Operators 7

n

2 l ( k2>~ w1(f; 12)
" k= 1k2 n/”” 2
Ry N s s

(we have used the equivalence between the Riemann integral sums and the integral
itself, and made the substitution = 1/u), the above estimate becomes

- 1
|H, (f)(0)| < Cn Yo <f; k—2> : (1.7)
k=1

On the other hand, for |x — y| < & and by, e.g., Szabados—Vértesi [100] , Theorem
5.1, p. 168, we get

[Hy (f)(x) = Ho (YD = [Ha () () = fFOI+[f () = fFODI+ ()

"1 k
—H, (/YW < 201Hu(f) — fll +o1(f3 h) < C;ﬁwl (f; ;) +w1(f; h).

But similarly to the above considerations,

= 1 k or(f;n 1 [" 1
> (113) b [ o ()

and therefore we get

a)l(Hn(f)§h):O|: Zan( ; >:|+a)1(f h). (1.8)

Now, on the other hand, using (1.7), we obtain for |x — y| < A,

" 1
|Hy, (f)(x) — Ho ()| < [H () (E)|h < Cnh Zwl <f; —> ,

2
k=1 k
ie.,
. 1
w1 (Hy(f); h) = O [/m Y (f; ﬁ)} ,
k=1
which together with (1.8) proves the theorem. ]

Corollary 1.2.1. If f € Lipy(a; [-1,1]), 0 < a < 1, then for all n € N and
0 < h < 1we have
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O(hm> if O<a<1/2 or 12 <a <1,

w1(Ha(f); h) = 201
O(ng%]ﬁ ),y‘a=1ﬂorL

Proof. The optimal choice in Theorem 1.2.1 is when & = v,,, where
2 ()
w] ey
k=l k
= - o
Yo (fig3)
k=1

When & < v,,, the minimum in Theorem 1.2.1 is the first term, and when & > v,
it is the second term. By simple calculations we have

Un

Om*=2), if0 <a < 1/2,
1 .

O <m) B ifa = 1/2,

Om™'7), if12<a<l,

0(““), ifo=1.

vy =

n2

Hence, by using Theorem 1.2.1 we arrive at the statement of the corollary. 0

Remarks. (1) Let 0 < o < 1. The obvious inequalities

171/3
o _ « . h'* > |hlog -
2 max2—o,1+ ) h

mean that the preservation property given by Corollary 1.2.1 is better than that given

for H,(f)(x) at the beginning of this section.

(2) It is an open question if the estimates of w(H,,(f); k) in Theorem 1.2.1 and
Corollary 1.2.1 are the best possible. However, if we choose, for example, fy(x) =
x € Lip;(1; [-1, 1]), then we can prove that w; (H, (fo); h) ~ Vh. Indeed, by

T, (x)T,—1(x) - — Top—1(x) + T1(x)

Hy(fo)(x) =x —
n 2n

(see, e.g., Anastassiou—Cottin—Gonska [5]) we get

> > Cn,
2n

gwgm+1‘ c
TV —x2

|H, (fo)(x)| = ‘1

forall x € [% 1] and

1 —xg
w) (Hn(fo); 5 )Z

1
Hy(fo)(1) — Hy(f) (%)‘
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1—x; I —x

= |H,(fo)(©)]- 7 zCnll—x)=C\/——,

as claimed. Now we will prove that in fact H,(fo) € Lip,,(1/2;[—1, 1]) for all
n € N. Evidently, it suffices to prove that Tz”g—r'l(x) € Lip,,(1/2; [—1, 1]), for all
n € N. But by Cheney [22], Problem 5, p. 88

|T2n—1(x) — Ton—1(y)| _ cos[(2n — 1) arccos x] — cos[(2n — 1) arccos y]|
2n n 2n

- (2n — 1)|sin&| - | arccos x — arccos y|
- 2n

< M| arccos x — arccos y|

M
< —1x —y|"?

V2

which was to be proved.

(3) It is well known (see, e.g., Szabados—Vértesi [101], relation (3.2)) that the
mean convergence of H,(f)(x) to f(x) is better than the uniform convergence, that
is, we have

1
||f_Hn(f)||p,w§pr] <f, ;), vneN,p>0,

where w; ( f; %) is the uniform modulus of continuity, w(x) = —L_and|| fllpw =

| V1-x2
1 ES
(Jo 1f@)IPdx)P.
This estimate suggests that by using a suitable chosen weighted L -modulus of
continuity, H, (f)(x) may have a better global smoothness preservation property. In
this sense, let us define

1
o1(fi e = Sup{/ w)|[f(x+1) = f(x —1)|dx;0 <1 < h},
—1+t

O0<h<l.
We present:

Theorem 1.2.2. Let H,,(f) be the Hermite—Fejér polynomial in Corollary 1.2.1.
If f € Lipy(a; [—1,1]),0 < @ < 1, then foralln € Nand 0 < h < 1, it follows

O[hﬁ],if0<a< %,
o1 (Hy(f); )10 = § O[(hlog '] ifa = 5
O[h%],if% <a<l.

Proof. We have

w()|[Hy(f)(x +1) = Hy(f)(x —1)]
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< ) D) A1) — F 4 D]+ w41 — = 1)
w(x +1)
w(x)
+— = O f (= 1) — Ha(f)(x — 1))
w(x —1t)

Integrating the inequality from —1 + ¢ to 1 — ¢ and applying to the first and third term
the Holder’s inequality, we get

1—t 1—¢ 172
/ w) | Hy(f)(x +1) — Hy(f)(x — )]dx < (f [wz(x)/w(x+t)]dx)
_ +t

1+1 —1

1—t 1/2
(/ w(x+t)|Hn(f)(x+t)—f(x+t)|2dx>

1+t

1—t
+/ W +1) — fx = Dldx

1+¢
1—t 1/2 1—t 12
+ (/ [w? () fw(x — t)]dx) (f W — O Hy(x — 1) — fx - t>|2dx)
—14¢ — 1+
1 1=t 1
< Chwi(f; ) +/ WO fGx+1) — f(x = Dldx + Ch(ton (f; —) ,
n — 141 n
where
1—¢ 172
n( = ( / [w? () /w(x +t>]dx) ,
1t
- 12
L) = ( / [w?(0)/wix — z)]dx) .
—14t

Passing to supremum with ¢ € [0, k] we get

1
w1(Hy(f); h)1,w < Coy <f; ) [sup{/1(z); t € [0, hl}

n
+sup{l2(2); t € [0, A]}] + w1 (f; P)1,w-
In what follows we show that sup{/;(t);¢t € [0,h]} < C,YO<h < 1,k =1,2,

where C > 0 is independent of A.
We have

1—x

/lt |: w2(x) :| dr = /0 1 — (x + l)2
_ X = 3 dx
- — 14t

1+ Lw(x +1)

=1 /1 — (x +1)2 0 dx
+ S —dx <
0 I—x 14t V1 —x2

0 V=2 =t q
+/ ;Cdx—i-/ a
14 L —x 0 ~1—x2
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0
=2t
§C1+/ ;dx+C2.
14 1 —x

Also,
0 /=2 V-
/ ;dx = \/_f x2
140 1 —x 1+t 1 —x

For x < 0 by some calculation we get

e 1 1—4-
T dx_arctg(«/—x)—i-—logﬁ__j

Therefore, we easily obtain

1+41
\/_/ dx < c\/_log(
140 1 — x2 -1 -
and since by the 1’Hopital’s rule it follows
I1+V1—t
lim v/t log ———— =0,
N0 ¢ 1—+/1—1¢

as a consequence we immediately obtain

N
\/2[/ T dx < €,V €0, 1],
141 L —x

and 11(t) < C,Vt € [0, 1].
Similarly, for ¢ € [0, 1] we have

1—t _ —_ )2
/ [w? () /w(x — )ldx = / i -n7,

— 14t 1+t l—x
1-t Y
+/ vI—(x )d </
0 1—x2 1 VI—x2
1—t 1—¢
+ —_— 4 —d
,[) V1 —x2 /0 1—x2
1—t
sc+@/
0

Reasoning as in the case of 71 (¢), we easily obtain I(¢) < C, for all ¢ € [0, 1].
As a first conclusion, we get the first estimate

o1 (Hy(f); 1w < Cor1(f; 1/n) + o1(f; h)1,w.

On the other hand, by the integral mean value theorem, for each fixed ¢, there
exists £ € (—1 4+ ¢, 1 — 1) such that
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1—t¢
/ WO Hn (F)x + 1) — Hy(f)(x — 1)ldx

141

1—t dx
141 /1 — x2
< Ct|H,(f)(m)| < Ct||H, ()l <

(by the proof of Theorem 1.2.1) < Cnt Y ;_, o1(f; 1/k?). Passing to supremum
with ¢ € [0, &], it follows that

= [Hy(f)(E +1) — Ho (/)€ — t)l/

o1 (Hy (f): )1 < Cnh Y o1(f:1/k2).

k=1

Let f € Lipy(a; [—1, 1]). The last relation becomes

Chn®>72 if 0 <« < 1,
w1 (Hy(f); W1w < { Chnlog(n),ife = 1

Chn,if} <a < 1.

Since f € Lipy(o; [—1, 1]) implies w1 (f; 1/n) < Mn=% and w1 (f; h)1,w <
h?, the first estimate becomes

w1 (Hy(f); 1/n)1,w < Cn™% + Ch*.

For the three cases 0 < o < 1/2, 0 = 1/2,1/2 < a < 1, by the standard technique,
the optimal choices for n are from the equations n2~2*h = n=%, hnlog(n) = n=1/?
and nh = n~%, respectively. Replacing in the last estimates we get the theorem. [J

Remark. Comparing Theorem 1.2.2 with Corollary 1.2.1, we see that for all
a € (0,1) we have the same global smoothness preservation property for both
moduli w1 (H,(f); h)1.w and w1 (H,(f); h), while for « = 1, Theorem 1.2.2 gives
a much better result than Corollary 1.2.1, since wi(H,(f); M1,w < Ch'/2, while
w1 (Ha(f); ) < C(hlog(z)/3.

Now, let us consider the Lagrange interpolation algebraic polynomial L, (f)
based on the Chebyshev nodes of second kind plus the endpoints £1. It is known
(Mastroianni—Szabados [72]) that

Lo(N)(x) =) fOm)lk(x),
k=1
k—

where x; = cost, iy = ;= 7,k =1,n,and

—

(=D* e, (x)
(1 + 81 + Skn)(n — 1) (x — xp)’

I(x) = k=1,n,

with w, (x) = sintsin(n — 1)t, x = cost and J;; is the Kronecker’s symbol.
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Theorem 1.2.3. For any f € C[—1,1], h > 0 and n € N we have

: . 1 1
w1(La(f); h) = C min {hnzcm (f; k_2> 1<f >10gn+w1(f h)}

k=1
where C > 0 is independent of f, n and h.

Proof. The method will follow the ideas in the proof of Theorem 1.2.1, taking
also into account that the relations (1.6) hold in this case too. Therefore, let x € [0, 1]
be fixed (the proof in the case x € [—1, 0] being similar), the index j defined by
|x — x| = min{|x — x¢|; 1 < k < n} and let us denote w,(x) = U, (x)(1 — x2),

where U, (x) = %, x = cost. By simple calculations we get

(—DF!
(1 + 81 + Skn)(n — D (x — x1)
X|:Ur/z(x)(1 —xY)  2xUn(x)  Up(0)(1 _x2)]

X — Xk X — X (x — xx)?

[ (x) =

which, as in the proof of Theorem 1.2.1, implies

[|U,;(x)|(1 —x%)

lx — x|

L)) < nlj > or(filx = xi)
k#j

21Uy (x)]  |Up(0)|(1 = x?)
lx — xil (x — xx)?

} +o1(f5 Ix = DI

Now, the Bernstein—-Markov inequality yields

2 2
n Cn
10| < ————I1;1 < —IIL;ll
/ avl—x24+1 "7 j
2
cn? 1 UL o Cn?
<—" : <—" n—-1=——.
j n—1 ,,1_2 j n—1 J
Therefore
J * o, 1
o1(f; |x =x;DI; )| S o1 | f 2 — < n'wi f’ﬁ

Now, we will use the obvious estimates

1Ux(0)1(1 —x%) < V1 —x2~ i U011 = x?) <2(n — 1).
n
Thus, we obtain
U, (X)I(l 22 o1(f; |x — xkl)

Xk
/ g |x — |x — x|
k#j k#j
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<anz—w1< —><CnZw1< )

— x|l lx — x|

ey =y

n 1
Scnzwl <f§ ﬁ)’
k=1

_ 2 o
;Za)l(f§ |x —xH)W Cj M

_ =2 Y]
oy lx — x| " (x — xx)
Zwl(f lx — xi|) Czan(f lx — xi|)
izl iz T

- 1
SC”ZG)I (f, ﬁ)
k=1

Collecting all these estimates, we obtain

- 1
1L, ()] <Cn Y o <f; ;72) :
k=1

which, by the same reasoning as in the proof of Theorem 1.2.1, yields

- 1
o1(La(f); h) < Cnh Y o <f; ﬁ) :
k=1

On the other hand, for |x — y| < h we get

ILn(f)(x) = Lo (DI = 2L (f) = fll + @1(f 1),

which implies

o1 (Ln(f); h) = 2ILa(f) = fll + @1 (f5 ).

|Un(x)| Z w1 (f5 |x —x])

(1.9)

Standard technique in interpolation theory (see Szabados—Vértesi [100]) gives

1
ILn(f) = fll = Can (f; ;) 1Anll,

where A, (x) = Zzzl llk(x)], x € [—1, 1], is the Lebesgue function of interpolation.

Here by (1.6)

n )
hn) =3 Un(x)(1 —x7)
k=

|Un ()(1 — x2)
(=D (x = xk) =2

& (= Dlx—x]

+ 11 ()]
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Z e +11; <X>|—C2|k2 A+
k#j k#j
< Clogn + |l;(x)|.
Now, ) 5
Un(x)(1 ) .
|1 (x )I—‘— = |U,(8)]
(n—Dx— "
Here, if j = 1 or n, then 1 — x> ~ n~2, and by Markov’s inequality U, (&)] <
n?|Uy, |l = n3, i.e., by (1.6)
1 2 <
U (©)] <n* =,
n
If2 < j <n—1,thenevidently I — x> ~ 1 — £2 and
U 1—x?) 1—-x?
|l](x)| — [Un(8)I( x°) < x2 —c,
1-£
whence in both cases |/;(x)| = O(1), and A, = O(logn). Thus
1
w1 (Ln(f); h) = Coy (f )logn+w1(f h), (1.10)

which together with (1.9) proves the theorem. ]

Corollary 1.2.2. (i) If f € Lipy,(a; [—1,1]), 0 < @ < 1, then for alln € N and
h € (0, 1) we have

ofie o)) ] yo<a <4,
o1 (L (f); h) =  O[h'Plog 1], ifa =

(9|:h1+a (1ogh)+l}, ify<a<l
(ii)lfa)l(f;h)=(’)(1 ﬁ,) B > 1, then

1
w1(Ln(f)ih) =0 (W) .

(All the constants in O are independent of n and h).

D=

Proof. (i) Let f € Lipy,(a; [—1,1]), 0 < & < 1. Then (1.9) and (1.10) yield
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On?2p), if0<a < %

w1 (Lu(f);h) = { O(nhlogn), ifa = § (1.11)
O(nh), ifl<a<l,
and |
a)l(Ln(f);h)ZO(%-‘rha), (1.12)

respectively. Now if n is smaller than

1

1
1 1\ 2=« 1 1\ T+
—log — . h2B [ —log— ,
(h 0gh) KO8 h

inthecases 0 < o < 1/2, ¢ = 1/2,1/2 < a < 1, respectively, then we use the
corresponding estimates in (1.11). Otherwise we use (1.12).
(i1) In this case we get from (1.9) and (1.10)

2
o (Lu(f)i ) = O ( nh )

logn

and

1 1
L,(f);h)=0 + .
w1 (Ln(f); h) |:10gﬁ] 0 log? %:|

As before, we use these estimates according as n is smaller or bigger than

1
\/Lﬁ (log %)2 ? O

Now, let us consider the case of the Shepard interpolation operator

n —A
DS/ fx =~
Sua () = = ——. izl neN,
e
Y-t

k=0

defined for an arbitrary f € C[0, 1]. Since by Szabados [98], Theorem 1 and Lemma
2, we have estimates for || S, » — f|| and ||S,/,, , I, by applying the above method we
immediately get

01 (Spx (f); 1)
1 . 1 .
§Cmin{hnH/ 215 ”dr,n”/ Wdt-l—a)l(f; h)}
1 1

mo /n

1

s

§Chk_1/ #d[, O<h<l<X, néeN,
h

where the constant C is independent of n. As an immediate consequence it follows
the following.
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Corollary 1.2.3. (i) For 1 <A <2, f € Lipy(e; [—1,1]), 0 <@ < 1, we get

Oh%), ifao<i—1,
01 (Sua(f)ih) = O (h*log 1), ife =1 — 1,
O 1, ifa—1<a.
(ii) If A > 2 then by

Yor(f;n 201(f; 1)
/h t* dt = h

1
/ 't < Ch' o (f; h),
h

we get the simpler relation
01(Spa(f);h) <Coi1(f;h), O0<h<l1l, A>2, neN.

Remark. The above results show thatif A > 2,or1 < A <2anda < A — 1,
then the Shepard operators completely preserve the global smoothness of f. Also,
the case A = 1 remains unsolved, since in this case Lemma 2 in Szabados [98] does
not give an estimate for ||Sl/1’k Il

In what follows we consider the so-called Shepard—Lagrange operator studied in
Coman-Trimbitas [26], defined here on the equidistant nodes x; = ;l— e [0,1],i =
0,1,....n,n e Nym € N[0}, m < n, 1 > 0, as follows:

SuiL ()X =Y Aia () L i (f)(x),

i=0
where .
lx — x|
Aipn(X) ==—————>
’ Yo ¥ — x|
and "
u;(x)
Lip,i(f)(x) = (Xitj),
m,i f jzz;) (x — xi+j)“;(xi+j)f i+j
where u; (x) = (x — x;) - (x — Xj4m) and x4, = x,, v = 1, ..., m. Obviously

the Shepard—Lagrange operator generalizes the classical Shepard operator, which is
obtained for m = 0.

With respect to the classical Shepard operator in Corollary 1.2.3 which has the
degree of exactness 0, the Shepard—Lagrange operator has the advantage that its degree
of exactness is m (recall that an operator O is said to have the degree of exactness m,
if O(P) = P, for any polynomial P of degree < m and there exists a polynomial Q
of degree m + 1, such that O(Q) # Q.)

Theorem 1.2.4. Let us suppose that f : [0, 1] - R, f € Lipra, where0 < o <
1. Then for all x € [0, 1], n € N, m € N|J{0} we have the estimates:
(1)
1Sna,L,, (f)(xX) = fxX)] < CuLES (n),
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where o
e A=1
EMny = p2m 2=t e <) <o 42,
=D og(n) if A =m + 2,
M mEDe i) s m 42,
(i)

1St 5.0 (H] < € max{nE} (n), ™),

for A > 2, even number.

Proof. Everywhere in the proof we can consider x # xi,k = 0, ..., n, since in
these cases S, a1, (f)(xk) = f(xx), k =0, ..., n and the estimates are trivial.
(i) We have

1Sna.L,, (FIX) = fO] = ZAi(x)|Lm,i(f)(x) — [l

i=0

n m
<L) A [Z e = i+ e = X — xi+m|/|u;<xi+u>|} :
i=0 v=0

It is easy to show that because of the equidistant nodes we have |u}(x;1,)| >

Sn Vi=0,1,....,n,v=0,1,...,mand from [x — x| < 1, ¥k it follows
= il 1= il = Xl S = = X[ = X
Therefore,
- [x — x| |x — x |
A — Ai4m
101 (F)(X) = FQ)] < CuLn™ D Ai(x) = —.
= e =2 P77 X = Xy

Taking into account the relations (11) and (12) in Coman—Trimbitas [26], pp. 476477
and denoting y (x, x;) = [x — Xj|...|x — Xj4m], it follows |)c—)1c;+/| < |2(j_})_1|r and

m -«
[1/y (e, xp))' ™% < [1/rm e [1/1"[ 2 =1 — 1|} <1/t

=0

taking into account that [ [}~ [2(j — 1) — 1| > 1.
From Theorem 4 in Coman-Trimbitas [26], for the equidistant nodes we have
there M < 3,r ~ % and reasoning as in the proof of the above mentioned Theorem

4, we get
1Su3.L, (F)X) = f(X)] < CpL[1/pymTmFDA=) iy

where €} (r) is given by the formula
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|log(r)|~!,if 2 =1,
ALl <A <m+2,
P~ Ylog(r)|,if A =m +2,

P > m 4 2.

e'(r)y =

All these prove (i).
(ii) We have

1051, (O = 1Y A @) L i ()]

i=0

+ ZAi(X)[Lm,i(f)(X)]’ =[E1(0)| + [E2(x)],

i=0
where A is considered even, i.e., A = 2p, p € N.
Since
n
- , D @ —xp
—2p(x — x;)~ P~ 2p(x — x;)~7P =
A;(x) _ Do i) D i) k=0

S S S '

where S := Y 1_,(x — xx) 2P, we get

n
D e —x 2!
P =0

19

b — x| — x| 72 2plx — x| 2
A(x)] <2
[A; ()| <2p S 3 3
For fixed x € [0, 1], let x; be the nearest point to x, i.e., |x — xg| := minf{|x —

xilii =0,1,...,n} < L Itfollows, forall i # d,

— x:|72p
AL < 2pn ]
S
and 5
_ —zp
1AL ()] < 2pn%

Since Yy Aj(x) = 0, we get

D AN L (H)x) =Y (L i (/)x) = f)],

i=0 i=0

which implies

|Ex()] < ) 1AT @ L i () () = f ()]

i=0
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n
< Cn Y AL (£)(x) = f(0)] < CnE} (n),
i=0
(for the last inequality see (i)).
On the other hand, [L,, ; (f)(x)]" < Cp,n™, which implies |Ez(x)| < Cpn™. As
a conclusion,
1Sy.5..1, ()X < C max{nE7' (n), n"},

where C depends on f but it is independent of x and . |

Remark. It is easy to see that the estimates in the expression of E}’(x) are not
“good” for all the values of n, o and A. For example, the worst situation seems to
be in the . = 1 case, when the estimate actually does not prove the convergence of

Sna Ly (F)(X) to f(x).

Corollary 1.2.4 Let us suppose that f : [0,1] - R, f € Lippo, where 0 <
o < 1 and let us denote by F|(n, h) and F,(n, h), the estimates of | |S;t,)»,Lm (H]l and
[|Sn.a,L, (f) — fll, respectively. We have:

@1(Sp L, (f); h) < Co, r max{hFi(n, h), F2(n, h) + o1(f; b},

where n is the unique solution of equation hFy(n, h) = F»(n, h). O

Proof. By the standard technique we obtain
@1 (Sn,n,L,, (f)3 1)

< G, max{hllS,, 5 1, (OO NSn a1, () = FEOI + w1 (f; )},

foralln € N, h € (0, 1). Combined with the estimates in Theorem 1.2.4, the standard
method gives the optimal choice for n, as solution of the equation hFy(n, h) =
Fr(n, h). O

Remark. Corollary 1.2.4 contains many global smoothness preservation proper-
ties, depending on the relations satisfied by A, m and «. In some cases they are “good,”
in other cases are “bad.” For example, let us suppose that A > m + 2, A is even and

-«
m> —<.
o

We get nE" (n) = pnmTDU=a) « pm and therefore we get the equation hn™ =
-1
n™~m+De which gives n = h@+he and

@1 (Spx,L, (f); h)

< Ch x (W0 yn = cplomtDa=ml/lentel vy e N O < h < 1.

For a “good” property in this case, it is necessary to have (m + l)a —m > 0,

e, m < ﬁ It follows the ﬁ > ITT“ condition which necessarily implies

0 < % < a < 1. As a conclusion, if ¢ < % then we don’t have a “good” global
smoothness preservation property.
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As a concrete example, take o = ‘5—‘. We obtain

01 (Sn,L, (f)3 1) = Chfr;iﬁt7

which for m < 4 and A > m + 2, A even, gives a “good” global smoothness preser-
vation property.

In what follows we consider a sort of Shepard operator on the semi-axis [0, 4+00),
introduced and studied by the papers Della Vecchia—Mastroianni—Szabados [36]-[38].

Let us denote C ([0, +00]) = {f : [0, +00) — R; there exists limy_, oo f(Xx) =
f(Hoo) € R}LIf f € C([0, +0oc]) then obviously the usual modulus of continuity
o(f;h) =sup{|f(x) — fO)];x,y =0, |x —y| < h} is finite and for the quantity
€r(x) = SUpy> ¢ | f(+00) — f(y)| it follows that limy_, 1 o € r(x) = 0.

Putting || f]| = sup{| f(x)]; x > 0}, let ®(f: 1) = supy_y<; || Ana(f)| be the

1
modulus of smoothness of f with step weight function ®(x) = x177, y > 1.
Also, for the knots x; = ”ky%, k=0,....,n,y >1,s >2and f € C([0, +o0]),
let us consider the so-called Baldzs—Shepard operator defined by

D b=l f ()
Sus(Hx) = = x> 0.

D=l
k=0

The following estimates are known.

Theorem 1.2.5. (See Della Vecchia—Mastroianni—Szabados [37]) Let us suppose
that

lim sup
T>0

< 400

T
/0 LF () — f(4+00)]/[(0)]dt

and

C
€r(x) < m,‘v’x > 0.

(i) (See [37], Theorem 2.2) If s > 2 and 0 < o < 1, then a)q’(f; h) < Ch®
implies ||Sy,s(f) — fI| < Cn™%/%;

(ii) (See [37], Theorem 2.4) Let s = 2.

If0 < a < 1, then ®®(f: h) < Ch® implies ||S,.s(f) — f|| < Cn=%/? and if
a = 1 then 0®(f; h) < Ch implies ||Sp.s(f) — fl] < c%

Theorem 1.2.6. (See Della Vecchia—Mastroianni—Szabados [37], Lemma 3.1, p.
446) If s > 1 then ||®S, (Il < C/nllf]l.

Corollary 1.2.5. Let us suppose that
T

limsup| | [f() — f(+00)]/P(t)dt| < 400
T>0 0
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and
. = ¢ Vx>0
GO = g =0
Q) Ifs >2and0 < a < 1, then w®(f; h) < Ch* implies
0®(Sp.s(f); h) < Ch*/ @D,

foralln € N,0 < h < 1, where C > 0 is a constant independent of n and h.
(i) If s =2 and a)(b(f; h) < Ch" then we have:

@® (S5 ()i h) < CR/CTVif0 < @ < 1
and
@®(Sns(f); h) < Clhlog(1/MN'? ifa = 1.
Both estimates take place for alln e N,0 < h < 1.

Proof. (i) From the general inequality w®(f; h) < Ch||®f’||, combined with
Theorem 1.2.6, it follows a)q>(S,,,S(f); h) < Ch/n||f||. Combined now with the
Theorem 1.2.5,(i), and by using the standard method, it immediately follows

a)q)(S,,,S(f); h) < C max{hn'/?,n=%* 4+ p*}.

From the equation in'/? = n=%/% we get n = h=%/@+1) which replaced above gives
the required estimate.

(i) Let s = 2. If 0 < a < 1 then the proof follows similarly from Theorem
1.5.2,(ii). If « = 1 then we get

log(n)
W (Sus(£): ) = € maxthn' /2, =3

+ h},

which conducts to the equation hn = log(n). This implies n = % lo g(%) and replacing
it above, we get the desired estimate. The proof is complete. |

Unlike the results of this chapter which refer to real functions of one real variable,
let us consider now the case of complex Hermite—Fejér interpolation polynomials on
the roots of unity , attached to a complex function defined on the closed unit disk
D={zeC;|z] <1}.

Letusdenote by AC={f : D — C; f isanalytic on {|z| < 1} and continuous on
D} and let z; = expz” ki/n k=1, ..., nbe the nthroots of unity. Then according to a
result of Cavaretta—Sharma—Varga [21], there exists a uniquely determined complex
polynomial L, (f)(z) of degree at most 2n — 1, such that L, (f)(zx) = f(zx), k =
I,...,nand L), (f)(zx) =0,k =1,...,n.

Denoting by w( f; h) = sup{| f (exp™) — f (exp'*T)|; x € [0,27],0 <t < h},
by Theorem 1 in Sharma—Szabados [89] the following estimate

L (f) = fIl=C [w (f 1) + Epen)(f) 10g(n)}

i
n
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holds, where || - || represents the uniform norm on D, C and ¢ are independent of f
and n and E, (f) denotes the error of best polynomial approximation.

Also, recall (see Rubel-Shields—Taylor [84]) that w(f; k) is equivalent to the
usual modulus of continuity on D defined by

o(f;h) =sup{|f(z1) — f(@)]; 21,22 € D, |21 — 22| = h}.

Therefore, we have the estimate

1
HLn(f) = fIl=C [a) (f; ;) + Efen)(f) 10g(n)]-

We present

Theorem 1.2.7. If f € AC and there exists 0 < o < 1 such that w(f;h) <
Ch*, Y0 < h < 1 then

1
o (Lp(f); h) < Crogh® 1+ 10g <E> , VneN, O<h<l1,

where the constant Cy, > 0 is independent of n and h.

Proof. By the above error estimate we immediately obtain

1 1
ILa(f) = fll < C [—a + M}
n n

Now, let us prove that the standard method in the real case, works in the complex
case too. Indeed, for z1, z2 € D, we obtain

[Ln(f)(z1) = La(F)(z2)] = [La(f)(z1) = fzD] + [f(z1) = f(z2)]
+1f(z2) = La(f)(22)],

which immediately implies

1
o(Ln(f)ih) < 20|La(f) = fll + 0(f h) < Cq [ Oi(”) + h} .

o

On the other hand, by the mean value theorem in the complex case, there exists &
on the segment [z, z2] and A € C with |[A| < 1, such that

La(f)(z1) = La(f)(z2) = & - L,(/)(E)(z1 — 22),
which implies
ILn(f)(z1) = La(F)(22)] < |L,(H)E)llz1 — 2al,

and therefore

Ly (f); ) < 1L, (DIl - h.
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But by, e.g., Corollary 1.3 in DeVore-Lorentz [41], p. 98, we have ||L),(f)|| <
Cn||L,(f)||. Combining it with relation (3.7), page 46 in Sharma—Szabados [89],
we obtain ||L;,(f)|| < Cnlog(n)|| f]l.

As a conclusion, it follows w (L, (f); h) < Cyhnlog(n).

The best choice for n follows from the equation An log(n) = k’rgl#, which implies
n = h=1/(1+®) and finally the estimate (L, (f); h) < Cyoh®/ 149 log(}),Vn €
N, 0 < h < 1. The theorem is proved. (|

At the end of this section, let us make some considerations on the interpolation
of normed spaces valued mappings, of real variable. More exactly, let (X, || - ||) be
a normed space over K, where K = Ror K = Cand f : [a,b] — X, [a,b] C R.
First let us recall that in the recent paper [54], for f : [0, 1] — X continuous on
[0, 1] the following estimates hold:

®

1 1
& r. L
Ciow, <f, ﬁ) = IBu(f) = fllu = Crw (f, ﬁ)
where || f ||, = sup{||f(x)||; x € [0, 1]} and C1, C2 > O are absolute constants.
(i1)

c [wi’ (f; %) +on <f; %)} < 11Kn(f) = 1l

<o [wg’ <f; %) o (f; %)} :

_ /2
1Bu(F)(0) — FOOl < M [M} Vx € [0, 1], if and only if
n

(iii)

w2 (f58) = 0(8Y),
where o < 2.
(iv)
w1(Bn(f); 8) < 2w1(f; ),

foralln e Nand all § < 1.

Here the usual first-order modulus of continuity w; (f; §), the usual second-order
modulus of smoothness and the second Ditzian—-Totik modulus of smoothness are
defined by w1 (f; §) = sup{||f(v) — f(w)||; v, w € [0, 1], [v — w| < §},

2 (f38) = sup{sup{[|f(x +h) =2f(x) + f(x =W)[l;x —h, x,x +h €[0, 1],
h € (0,61},

where § < % and

) (f;8) = sup{sup{|| f (x + hep(x)) = 2f (x) + f(x — hp(x))|]; x € Lan},
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h € [0, 8]},

respectively, with I j, = [ 1+ll§’ 11h2] ¢ (x) = /x(1 —x), 8 <1, the Bernstein
and Bernstein—Kantorovich type operators attached to f are defined by

- k
By(f)(x) =Y pui () f (;) :
k=0

and
(k+1)/(n+1)

Ki(/)x) = (n+1) Z Puk(x) / [y,

k=0 k/(n+1)

respectively, with p, x(x) = (})x*(1 — x)"~* and the integral fab f(t)dt is defined
as the limit for m — oo in the norm || - ||, of the all (classical defined) Riemann sums
Yoimoier — xi) f (&)

We want to show that these ideas can be used for interpolation too. Thus, for
f : [—1,1] — X we can attach to f the Lagrange polynomials L, (f) based on
the Chebyshev knots of second kind plus the endpoints —1, 4+1 given by L, (f) :
[—1,1] > X,

Lo(f)(x) =) fOn)lk(x),

k=1

where x; = costy, ty = (k 1)” ,k=1,...,nand

(=¥, (x) —
L(x) = . k=T.n
(14 8,1 + Sn) (n — D) (x — xg)

with w, (x) = sint sin(n — 1)t, x = cost and §;; is the Kronecker’s symbol.
We can prove the following.

Theorem 1.2.8. Let [ : [—1, 1] — X be continuous on [—1, 1]. We have:
()
1
HLn(f)(x) = fFOIl = Con <f; ;) logn,Vn e N, x e[-1,1];
G ifllf) — fw)]| < Mlv—w|% Vv,w € [—1, 1], where 0 < o < 1, then
w1(L,(f); h) satisfies the same estimates in the Corollary 1.2.2, (i).

Proof. For x* € X* = {x* : X — K;x™islinear and continuous } with
[llx*[I] < 1, define g : [—1, 1] = R by g(x) = x*[f(x)], x € [-1, 1].
(1) By the relation (1.10) we have

1
llg — Lu(@Il < Coy (g; ;) logn, VneN,

where ||g|| = sup{|g(x)|: x € [-1, 1]}.
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By the linearity of x* we get g(x) — L,(g)(x) = x*[f(x) — L,(f)(x)] and
therefore

1
IX*[f () = Ln (O] < Cooy (g; ;) logn, Vxe[-I1].

On the other hand, by [g(v) — g(w)| = [x*[f (v) — f)]I < [[IX*[I - |1/ (v) —

S| < [1f ) = f(w)]], we easily get that w; (g; 1) < w1(f; D).
Combined with the above inequality, we get

1
IX*[f () = Lp ()] < Coy (f; )10gna Vx e [—1,1].

n
For fixed x € [—1, 1], passing to supremum with |||x*||| < 1 and taking into
account the well-known classical equality

x| = sup{|lx*(x)[; x* € X*, JIIx*]]| = 1},  Vx € X,

it follows

1

Ln(F)(x) — fOIl < Cwi <f; r—l) logn, VneN, xel[-11];
(i) We have |g(v) — g(w)| = [x*[f(v) — f)]| < [[Ix*[[] - [|f (v) = fFw)]| <

M|v — w|%, for all v, w € [—1, 1]. Then by Corollary 1.2.2, (i), it follows that

w1 (Ly(g); h) < CE,(h,a), where C and E,, (h, a) obviously do not depend on x*.
Leth > 0and v, w € [—1, 1] with [v — w| < h, be fixed. We have

IX*[Ln () () = Ly (FH) )] = |Ln(8)(v) — La(g)(w)]

< wi(Ln(g);h) = CEy(h, ).

Passing to supremum with x* € X*, |||x*||| < 1 we get as at the above point (i),
[ILy(f)(w) — L,(f)(w)||] < CE,(h,«). Passing now to supremum with v, w €
[—1,1], [v — w| < h, we obtain wi(L,(f); h) < CE,(h,a), which proves the
theorem. O

1.3 Algebraic Projection Operators and the Global Smoothness
Preservation Property

Let IT,, be the set of algebraic polynomials of degree at most n. It is well known that
the algebraic projection operators L, : C[—1, 1] — I, are bounded linear operators
having the properties:

(1) f € C[—1, 1] implies L,(f) € I1,;

(i) f € I, implies L, (f) = f.

The following approximation result for L,, is known.
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Theorem 1.3.1. (See Szabados [97], Theorem 2.) If f©) € C[—1, 1], s € NU{0},
then
IF© = LY = Con~ o1 (fO 1/m) - NILPNIT. neN,

where || - || represents the uniform norm on [—1, 1] and
LN = suplILY (Ol fA =227 e Cl-1,1],

£ )1 — x5 = 1).

Remark. For s = 0 it is easy to see that
NLON = Lalll = sup{|La(Hll: e Cl=1.1], [fl=1}
and the above relation becomes

If = La(DOI = Cor(f5 1/n) - l[|Lalll, n €N,

where |||L,||| = Clogn. (See, e.g., Szabados—Vértesi [100], pp. 266 and 268).
First we need the following simple

Lemma 1.3.1. If f € LP[a,b], 1 < p < oo and {L,(f)}, is a sequence of
approximation operators such that L, (f) € LP[a,b], n € N, then for alln,r € N,
h e [0, b%a], we have

or (Ln(f); h)p = 2r”f - Ln(f)”p + or(f; h)p,
where w,(f; h)p represents the usual modulus of smoothness, || - ||, is the classical
LP-norm, L*®[a, b] = Cla, b], or(f; Yoo = @r(f; ).

Proof. Let first 1 < p < +o00. For x € [a, b — rt] we have

ALLy(f)(x) = Af[La(f) = f1(x) + A7 f(x)

r

= (;)(—1)r_k[Ln(f)(X+kt)—f(X+kt)]+A§f(X)-

k=0

This implies
1/p

b—rt
{/ |Aan(f)(X)|de}

b—rt r r p 1/p
< {/ [Z <k)|Ln(f)(x+kt)—f(x+kt)l+|A§f(x)l} dx}

(by Minkowski’s inequality)
1/p

b—rt
§2r||Ln(f)_f”p+{/ |A§f(X)I”dX}
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Passing now to supremum with 0 < ¢ < h we get the lemma.
For p = +00 the proof is obvious. ]

The first main result of this section is the following:
Theorem 1.3.2.If ) € C[—1, 1], s € NU{0}, then foralln € Nandh € (0, 1)
we have

w1 (LY (f): h)
< Cymin{h| £ - LSV, n o1 (f 5 1/n) - NILONF + o1 (95 b)),

where |[|Lyll| = sup [ L2PL; 0 £ £ e c-1,11).

Proof. By Lemma 1.3.1 written for p = 400, r = 1, f = f® and L,(f)(f), and
by Theorem 1.3.1 we get

DU LY ) < 2ALPS) = FOll+ o1 (15 )

< 2Cn w1 (f95 1/n) - LN + o1 (f9; ).

On the other hand, we obtain
o (LY () h) < A1 LSV,
which completes the proof. ]

Corollary 1.3.1. Let us assume that f) € Lip,,(a; [—1, 1]), s € N U {0}. Then
the best possible result concerning the partial preservation of global smoothness of
f by LE,S)(f) which can be derived by Theorem 1.3.2 is

, . 1\ i35
ol (LY(f);h) = O | k335 <log Z) , neN, he(,1),
attained if simultaneously we have
HLDN* = O@m*logn) and ||ILSTV||| = O@*SHD).

(All the constants in “O” are independent of n and h).

Proof. By Berman [18], the estimate
LY =0m™), s eN,
is the best possible, and by Szabados—Vértesi [100], Theorem 8.1, p. 266, the estimate
LI = O@* logn), s € NU{0},

is the best possible.
Replacing in Theorem 1.3.2, we get
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w1 (Lff)(f); h) < Csar min{hn?6+D n— logn + h%}, s e NU{0}.

By hn?6*D = =% logn, reasoning exactly as in the proof of Corollary 1.2.2,(i),

o
we choose n = (+log +)>¥*™ and we obtain

2542
. s 1)\ 2s+2+«
wl(Lfﬂ(f); h)y=0 |:h1—23+ﬁa <log 71) :|

2542

@ 1)\ 2s+2+«
=(9|:h2x+2+a (log E) :| ,

which proves the theorem. ]

Remark. In Szabados [97], Lagrange interpolation operators {L,(f)}, are con-
structed, such that |||L§,S)|||* = O(n’logn), s € N. But we do not know if simulta-
neously we have |[|LSTV || = O@m26+D).

Corollary 1.3.2. Let us denote
Gs={feCl-1,1]; f(x)(1 —x)™? e Cl-1,1], [f)A —xH 2| =1},

s € N.

If L,,(f)(x) represents the Lagrange interpolating polynomial based on the roots
of the polynomial 2,,(x) introduced in Szabados—Vértesi [99], then for all f € Gg41
with f®) € Lipy,(a; [—1, 1]), s € N U {0}, we have

« 1
o (LY (f);h) =0 <hs+1+a log Z) , O0<h<1,neN,

where the constant which appears in “O” is independent of n and h.

Proof. We have
ILO(F)(x) — L) = LSV E)] - 1x — yl

< [IILEFD]|*h,

forall |[x — y| < h and f € G441, which immediately implies
o1 (LY () h) < hIILFHVIF 0 <h <1, f € G,
Then, reasoning as in the proof of Theorem 1.3.2., we get
w1 (LY ()i h)

< Cminf[[[LSVNF, n o1 (FO5 1/n) - ILDN* 4+ o1 (O b},
By Theorem 1 in Szabados—Vértesi [99], we have
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NLPN* = O logn),  IILSFV]II* = O+ logn),
which replaced in the above inequality gives
o1 (LY (f); h) < C min{hn* T logn, n=*logn + h*}.

The equation hn*+1logn = n=%logn gives the best choice, h = n~*~1~%, and
the standard technique proves the corollary. (|

1.4 Global Smoothness Preservation by Jackson Trigonometric
Interpolation Polynomials

The goal of this section is to show that the sequence of Jackson interpolation trigono-
metric polynomials given by

2wk
n+1

’

2 n
IO == D f O =10, 1=
k=0

2
where f € Cor and ®(x) = ﬁ% have the property of (partial) global
smoothness preservation with respect to the uniform and average modulus of conti-
nuity.

First we need:

Definition 1.4.1. (Stechkin [94], pp. 219-220.) Let k € N. One says that the
function ¢ is of N¥-class if it satisfies the following conditions:

(i) ¢ is defined on [0, 7 ];

(ii) ¢ is nondecreasing on [0, 7 ];

(>iii) ¢(0) = 0 and lim;—.q ¢(t) = 0;

(iv) @(1) > C1h*, forall ¢ > 0.

(v) there exists a constant C» > O such that 0 < r < s < & implies skp(s) <

Cat* ().
For f € Ca, and ¢ € N* one says that f belongs to the H(¢) class if

wr(f;1) < C30(t), forallt € [0, ],

where wy (f; t) represents the usual uniform modulus of smoothness of order k of f.
Remark. An obvious example of ¢ € Nkis o) = wr(f; 1), withfixed f € Cyy .

Theorem 1.4.1. (Stechkin [94], Theorem 6, p. 230.) Let k € N, ¢ € N k and
f € Hi (). If {1} is a sequence of trigonometric polynomials with degree T, < n,
which satisfy
If —Tull < Cqp(1/n), foralln € N,

then
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wik(Ty; h) < Csp(h), forallh >0, n € N,

where || - || represents the uniform norm and Cy, Cs are absolute positive constants
(independent of f and n).
With respect to the uniform modulus of continuity, we present:

Theorem 1.4.2. Let f € Cor. If f € Lipyyo, 0 < @ < 1, (ie.,, w1(f; h) < Ch*)
then
w1 (J,(f); h) < Ch*, h>0,neN,

and if f € Lipy,1, then

1
w1(Jn(f); h) < Chlog Z, he(,1), neN.

Proof. By Szabados [95] the estimate

If = Ju(OI < Clor(f; 1/n) +w(f; 1/n)], neN,

holds, where f represents the trigonometric conjugate of f. Let f € Lip muo 0 <
a < 1. If @ < 1, then it is known (see, e.g., Bari—Stechkin [9], p. 485) that this
is equivalent to f € Lipg;a, which, by the above estimate and by Theorem 1.4.1
(applied to ¢(h) = h*) gives w1 (J,(f); h) < Ch*, h > 0,n € N. Also, if« = 1,
then by, e.g., Zygmund [110], p. 157 it follows that w;(f;h) < Mhlog 4, which
again with the above estimate and with Theorem 1.4.1 (applied to ¢(h) = hlog %)
yields

1
o(Jy(f); h) < Chlog W he(,1), neN. O

Now let us introduce the so-called average modulus of continuity by the following.

Definition 1.4.2. (Sendov [87]) The local modulus of continuity of a bounded
2m-periodic Riemann integrable function f(x) is given by

w1(f, x, ) = sup{| f(x") = fF(x"); &', x" € [x = h/2, x + h/2]},
while the average modulus of continuity in Lé’n is given by

t(fi e = llo(f.x, MllLr, 1 < p < oo.

Remark. These concepts are very useful in some approximation theoretical prob-
lems where the ordinary L”-modulus of continuity w1 (f, h)rr = sup{|| f(x +¢) —
fF(X)||Lr; [t] < h} is not applicable.

First we prove the following estimates.

Theorem 1.4.3. For the Jackson trigonometric interpolation polynomials
Jo (f)(x) defined above, it follows:
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()
" 1
(Dl <CY 7 (f; z)
k=1

L! ’
(ii)
. C - . 2 .
t(Sn(f) ) < ;;T (f» % +/’l> +t(fi .

L!

Proof. (i) Reasoning as in the proof of Theorem 1 in Popov—Szabados [78] we
easily get

C n
[T ()] < o D OIFw) = FOIP,(x — ).

k=0
But

, 1 . ((n+Du (n+ Du . u
CDn(M) = m |:(n + 1) Sin (T) Ccos (T) /SlI'l2 (E)

(3 (5 (3]

Denoting by x; the nearest node to x and taking into account that |x — x| ~

‘jn;kl, Vk # j, similar with the proof of Theorem 1 in Popov-Szabados [78] we
obtain

|®),(x — tx)| < Cln?|j —kI™> +n*|j — k|71 < Cn?|j — k|72,

and

n+1 1

n
|q>;,(u)|=|m2(n+1—k)sin(ku)| < 12(n+1—k)k§Cn2.
k=1 k=1

n—+ 1

It follows that
, c. 5 1
[, ()] < =[en“w| fox, —
n n

n

02 Y |j—kPo(fox. x — 4Dl < Cn Yk o(f.x. k/n).

=0,k k=1

Integrating and reasoning exactly as in the proof of Theorem 1 in Popov—Szabados
[78], we obtain

- k - 1
(Ol <Cn Y k2t (f; ;) = CY T(fs o
k=1 L k=1

(i) Let x’, x" € [x — %,x + %].We have
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[ () ) = T (H)XM] < [ (H ) = f(XN)]

I (") = FED]+ 1@ = f(x")
(see the proof of Theorem 1 in Popov—Szabados [78])

CY i %w(f.x i/m)+CY i Pw(f.x"i/n) +|f &) = fF&".
i=1 i=1

Passing to supremum after x’, x" € [x — %, x+ %], it follows that

©(n(f), . h) < cgr2 sup {w(f, iy x € [x _ g et g“

o N IR S
—i—C;l sup{w(f,x,l/n),x e|:x 2,x+2i|}+a)(f,x,h).

But

S h h
sup{a)(f,x,z/n),x IS |:x—5,x+§]}

’ / ;. ;. , h h
:sup{sup{|f(u)—f(u")|;u ,u" e [x —i/n,x +z/n]}};x € |}c——,x+—i|}

2
§w<f,x,—l+h).
n

Integrating on [0, 2], it follows that

(i =CY 7t (f; 2y h) +r(fibp <
n Ll

i=1
(reasoning as in the proof of Theorem 1 in Popov—Szabados [78])

C [? ) c [n/?
— u- t(f;u—i—h)leu—}—r(f;h)ng—/ t(f; 1/v+ h)dv
n Jomn n Ji

n

C 2
+T(fsp < =)t (f; =+ h) +T(fs L,
n 1 Ll

i=1

which proves the theorem. ]

Corollary 1.4.1. Let us suppose that t(f; h) ;1 < Mh®, forall0 < h < 1, where
a € (0, 1]. We have:

(L (f); W) <Ch*,Vhe (0,1),neN, if0<a <1

and
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1
t(Ju(f): )1 < Chlog (Z) Yhe O, 1),neN, ifa=l.

Proof. By Sendov-Popov [88], the property t(f; h)rr < Ch||f'||lLr, Vh €
(0, 1), holds. This and Theorem 1.4.3,(i), imply

n
T(a(f) g < CHILTL(OI < ChR Y 1/K < Chn' ™, Vh € (0, 1).
k=1

That is, T(Jy(f); h)p1 < Chn'=* for a € (0, 1) and ©(J,(f); h)p1 < Chlog(n),
for « = 1. Also, by Theorem 1.4.3,(ii), for € (0, 1) we get t(J,(f); h)p1 <
CIS0 ) & +nh®l+h® < Cn™® + Ch®, while for & = 1 we have 7(J,(f); h),1 <
C@ + Ch. The standard method gives the optimal choices of n = A~ from the
equations n~% = hn!~% and @ = hlog(n), corresponding to the cases 0 < o < 1
and o = 1, respectively. Replacing in the above estimates, we get the statement of
the theorem. U

1.5 Trigonometric Projection Operators and the Global
Smoothness Preservation Property

Let us denote by 7, the set of trigonometric polynomials of degree at most n. It is
well known that the trigonometric projection operators P, : Co; — T, are bounded
linear operators having the properties:

@) f € Car implies Py(f) € T,

@ii) f € T, implies P,(f) = f.

The following approximation result for P, is known.

Theorem 1.5.1 (Runck—Szabados—Vértesi [85], relation (19).) Let s € NU {0}. If
£ € Cyy then

IS — PO < Con™aor(fO5 1/n) - NIPDNIl, neN,

where || - || represents the uniform norm on R and
()
1P ()l
P11 = sup W 0# f€Coup.

Also, we need the following result.

Lemma 151 If f € LY , 1 < p < +oo, and {T,(f)}. is a sequence of
approximation operators such that T, (f) € Lgn, n € N, thenforalln,r e N, h > 0,

we have
or (Tu ()i 1) p < 27T (f) = fllp + o (fi h)p,
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where w, (f; h)p represents the periodic L?-modulus of smoothness of order r and
Il - Il p is the classical Lgﬂ-norm (LSS = Con, 0, (f oo = 0r(f5 ).

Proof. For 0 < ¢t and x € R, we have

AT (NIx) = AT () = f10) + Ap f(x)

=y (;)(—1)’—k[Tn(f)<x +kt) = f(xr D]+ AL ().
k=0

If 1 < p < +o00, then we obtain

2 1/p 2 T
{/0 |A§[Tn(f>](x>|f’dx} < { /0 [Z (,Z)m(f)(x +kt) = f(x + k)|
k=0

p I/p
+|AL f (x)|:| dx} < (by Minkowski’s inequality)

~ (T o 1/p
Skgo(k> {/0 |Tn(f)(x+kt)—f(_x+kt)|l7dx}

2 1/p e 27 +kt 1/p
+{/0 IA,’f(x)lpdx} =Z<k){/ ITn(f)(u)—f(u)Ipdu}

k=0 kt
27 1/p "/ 2 1/p
+{/0 |A§f(x)|de} =Z(k>{/0 ITn(f)(u)—f(u)l”du}
k=0

1/p

2 1/p 2
+{/0 IAﬁf(x)I”dX} =2r||Tn(f)—f||p+{/O IAff(x)I”dX}

Passing to supremum with 0 < ¢t < h we easily get the statement for 1 < p <
+00. For p = +o0 the proof is obvious. |

Now, concerning the (partial) global smoothness preservation by P,(f) we can
prove the following results.

Theorem 1.5.2. If f) € Ca;, s € NU{0}, then foralln € Nand h € (0, 1) we
have

w1 (P& (f); )
< Cyminfall £1 - [1PSTVNL n =51 (F9; 1/n) - [[IPO1]] 4+ 01 () h).

Proof. By Lemma 1.5.1, written for p = 400, 7 = 1, f = f® and T,,(f) =
P,fs)(f), and by Theorem 1.5.1, we get

o (PO (1) < 2BO () = fOl+w1(fO: )
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<2Cn w1 (5 1/n) - IIPON] + w1 (f©; h).
On the other hand, if |[x — y| < A, x, y € R, we have
PO X)) = PEHD < x =y IPEFVAHOI < b PEFD ()]
<hIFI- RS
Passing to supremum, we get
1P () ) < hIFI- PETVL.
Collecting the inequalities, we immediately obtain
o1(PY(f): h)
< Cyminf{h|| £l - 1BV n =501 (F95 1/0) - [P + w1 (£ b)),

which proves the theorem. (]

Corollary 1.5.1. Let us assume that ) € Lipy,a, s € NU{0},0 < a < 1. Then
the best possible result concerning the partial preservation of global smoothness of

f by Pn(s)(f) which can be derived by Theorem 1.5.2 is
— 1
w1(PO(f); h) < Mhi+i5a logz, 0O<h<1, neN,

attained if simultaneously we have

WP = 0@ logn) and ||IPI*V]|| = O’ logn).

Proof. By Berman [19], the estimates
PO = 0@ logn), 1PV = O@m* ™ logn)

are the best possible.
Replacing in Theorem 1.5.2, we obtain

o1 (P (f); h) < Cs o, minghn* ' logn, n=* logn + 1%},

forallm e N, h € (0, 1).

By the equation n%logn = hn*t1logn we get h = n=~17%_ This is the best
choice for 4, because when & < n~5~!=% the minimum in the above inequality is
hn**1logn, and when h > n™5717% itis n=% logn + h®.

1
As a conclusion, replacing n = h™ s¥1+« , we immediately obtain the corollary. ]
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1.6 Bibliographical Remarks and Open Problems

The Theorems 1.1.1, 1.2.1, 1.2.3, Corollaries 1.2.1, 1.2.2, Theorem 1.4.2 and Corol-
lary 1.2.3 are from Gal-Szabados [56]. Lemma 1.3.1, Theorem 1.3.2, Corollaries
1.3.1, 1.3.2, Lemma 1.5.1, Theorem 1.5.2 and Corollary 1.5.1 are from the book
Anastassiou—Gal [6]. Completely new are the following results: Theorems 1.2.2,1.2.4,
1.2.7, Corollaries 1.2.4, 1.2.5, Theorem 1.2.8, Theorem 1.4.3, and Corollary 1.4.1.

Also, below are described several open problems which might be of interest for
future research.

Open Problem 1.6.1. Construct a sequence of algebraic projection operators
for which in Corollary 1.3.1 we have [|[L{]||* = O@®* logn) and [||L$T]]] =
Om*6+tDy n e N.

Open Problem 1.6.2. Prove global smoothness preservation properties for the
Balasz—Shepard operator on an infinite interval (semi-axis) from Della Vecchia—
Mastroianni—Szabados [38], defined on the knots x; = n’;% k=0,1,...,n,y > 1,
with respect to the modulus of continuity w® (f; ),,.

We recall that in [38], the convergence behavior is considered with respect to
the weight w(x) = (14 x)™ and @® (f; 1)y = supgy< (W E)Lf (x + P (x)) —
S ()|} -the modulus of continuity of f with the step function ®(x) = x!=Vy,

Open Problem 1.6.3. Construct a sequence of trigonometric projection opera-
tors { P, (f)}, (for example, a sequence of interpolating trigonometric polynomials)
simultaneously satisfying

PO = 0@ logn), |[IPETV]]| = O@m* ' logn), n €N,

for a fixed s € N U {0}.
It is possible to be useful the results in the algebraic case in Szabados—Vértesi
[99].

Open Problem 1.6.4. Let us consider the so-called Griinwald interpolation
polynomials given by G,(f)(x) = Y i, I2(x) f(x;), where [;(x) = %
[(x) = ]_[le(x — Xi), xj = cos (2i — 1)z /[2n].

In Jiang Gongjian [64] the following estimate of convergence is proved: if f €
Lipx(0 < @ < 1), then

44/2
1Galf)(x) = f(x)] =< L(l +logn)|f(x)| + gn(x), (=1 <x < 1),
(1+x)n

) + — O<a <1
1+x l—« n ’

where

gn(x) <

and

4
gn(x) < m(l +logn), (x=1).
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Then proving an estimate for ||G),(f)|| and using the standard method in this
chapter, find the global smoothness preservation property with respect to the usual
uniform modulus of continuity, satisfied by the Griinwald interpolation polynomials.

More generally, let us consider the positive linear operators introduced by
Criscuolo—Mastroianni [31] of the form

m

12 mo 2
V(A3 ®; f; 2) = Zﬂﬂxm,w/z )

k=1 CI)rzn (xm,k) k=1 CD,zn(xm,k)

where A = (x, 1()21:1 is a triangular matrix of nodes, /,,;, x(x) are the corresponding
fundamental polynomials of Lagrange interpolation, and (@, (x))5_, is a sequence of
functions such that ® (x,, ;) # 0,i = 1, ..., m. Obviously V,,, are combined Shepard—
Griinwald operators.

The question is to find global smoothness preservation properties of these opera-
tors with respect to the usual uniform modulus of continuity.

Open Problem 1.6.5. Let X = (xk,n)zg be an interpolatory matrix on [a, b].
For any f € Cla, b] and x € [a, b], let us consider the Shepard operator

n+l

D F@rn)lx = xu ikl

k=0
Sn,s(X; fix) =

n+1

Z |x - xk,nl_s
k=0

Let ¢ (x) be a function defined on [a, b] such that ¢ ~ 1locally and ¢ (x) ~ (x —a)*,
x —> a+and ¢p(x) ~ (b — x)8, x - b—, where « and B are non-negative numbers.
The behavior of convergence in terms of the so-called Ditzian—Totik modulus of
continuity a)‘lp( [ h) is estimated by Della Vecchia—Mastroianni—Vértesi [40].

The question is to find global smoothness preservation properties of Sy, (X f; x)

with respect to the Ditzian—Totik modulus of continuity a)f (f; h).

Open Problem 1.6.6. Let f € Cy; and I,,(f) be the trigonometric Lagrange
interpolation polynomial of degree n on equidistant nodes in [0, 27). A classical
theorem of Marcinkiewicz and Zygmund (see, e.g., Zygmund [111]) shows that

1
11(f) = fllL, < Co (f; ;)

]

On the other hand, we can get

o(Ia(f); e, < ClL(F) = fllz, + o (f: b1,

and
oL (f): M1, < ChllL(llL,-

The problem is to find an estimate of ||/, (L, in terms of the w (f; %)oo mod-
ulus, or more generally in terms of the w (f; %) L, modulus, the fact of which would
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imply a global smoothness preservation property of I,,(f) with respect to the usual
L ,-modulus of continuity.

Open Problem 1.6.7. In Prestin—Xu [83] it is proved (see p. 118, Corollary 3.2
there) that if f € Wlp and m; > 1, then

_ 1
Fu(f) = fllL, < Cpn™ omy—1 (f'; ;) . 1<p<oo,
LP

where F),(f) represents the (0, m) trigonometric interpolation polynomials on the
nodes 2k /n,k =0,...,n— 1.

An estimate of ||F, (f)||L , in terms of the ([ %) L, modulus, would imply by
the standard method of this chapter a global smoothness preservation property of
F,(f), with respect to the usual L, modulus of continuity.

Open Problem 1.6.8. According to a result of Prasad and Varma (see, e.g., the
survey Szabados—Vértesi [101] and its references), for the Hermite—Fejér polynomial
H, (f) based on the knots of Chebysheyv of first kind, the estimate

1
Hn(f) = fllL,w = Co (f; ;)

holds, where w(x) = (1 — x2)~ /2 and

1/p

1
1 f 112w = (/ 1 w(x)lf(x)l”dx> . 0<p<oo.

Defining the modulus

1-t

a)(f7 h)L],lU:Sup {/

w(x)|f(x+t)—f(x—t)|dx;0§tfh}, 0<h<l,
—14¢

and possibly taking into account the estimate for ||H,, (f)|| in the proof of Theorem
1.2.1 (see relation (1.7) there), find a global smoothness preservation result for H,, (f)
through the above weighted modulus of continuity.

Similar problem for the mean convergence of Lagrange interpolation polynomials.

Open Problem 1.6.9. Let J,,(f)(x) be the Jackson interpolation trigonometric
polynomials considered by Section 1.4. Using the estimate of || f — J,(f)||Lr, | <
p < o0, in terms of the L?-average modulus of continuity t(f; &)r» in Theorem
2 in Popov—Szabados [78] and the standard method in this chapter, find the global
smoothness preservation properties of J, (f)(x) in terms of T(f; h)rr, p > 1. (The
case p = 1 was solved by Corollary 1.4.1.)

Open Problem 1.6.10. Let S, ; ;, (f)(x) be the Shepard—Lagrange operator
attached to f € C[—1, 1] and to the roots of the sequence of orthogonal polynomials
in Trimbitas [104]. Using the estimate of || f — S,,.1,1,, (f)|| in Theorem 2 in [104] and
the standard method in this chapter, find the global smoothness preservation properties
of S 1 (f)-



40 1 Global Smoothness Preservation, Univariate Case

Open Problem 1.6.11. Let the Shepard—Taylor operator, given by

Suaty (@) = Y Aia@) T (F)(),

i=—n

where
lx — x|
Aip(x) = —; ,
D=l
k=—n
and wG '
J . — x:)/
Ty = 3 LG =07
j=0 J!

defined on the special matrix of nodes in Della Vecchia—Mastroianni [33]. Using the
estimates of the approximation error in [33] and the standard method in this chapter,
find the global smoothness preservation properties of S, » 7, (f)(x).

Open Problem 1.6.12. Theorem 1.2.7 suggests the following problem: Find con-
vergence and global smoothness preservation properties on D, of the complex Shepard
operators on the roots of unity given by

Su2p(H)@) =Y Ar2p(@ ()0,

k=1
where

(z— )72
Ap2p(D) = 50—,

Z(z — 7))
j=1

p e Nz =exp? /" f e ACandi = /—1.

Open Problem 1.6.13. In order to reduce the large amount of computation re-
quired by the classical Shepard operator given by the formula

Sup(F)) =D st p () £ (),

k=1

where
(x —xp)™?
Sk,p(X) = ™

Z(x —x;)" 7
j=1

p € N, in, e.g., [50], [53], [106] is considered the so-called local variant of it, given
by the formula
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Wi p(£)() =Y wi p(x) f (x0),
k=1
where

By, p(x)
wi,p(x) = —2—

Z Bj p(x)
j=1

. R—|x—x;)?
with By ,(x) = %, R > 0 constant, p € N.

Also, replacing in the expression of W, ,(f)(x) the values f(xx) by the values
of some interpolation operators (like Lagrange or Taylor), in, e.g., [105] the local
variants of Shepard—Lagrange and Shepard—Taylor operators are considered.

Finally, an interesting problem would be to find global smoothness preservation
properties for all these local variants of Shepard operators, too.



2

Partial Shape Preservation, Univariate Case

In this chapter we present results concerning the shape-preserving property of some
classical interpolation operators.

2.1 Introduction

We begin with the following simple

Definition 2.1.1. Let C[a, b] = {f : [a, b] — R; f continuous on [a, b]} and
a <x1 < x3 <--- < x, < b, be fixed knots. A linear operator U : Cla, b] —
Cla, b] is called of interpolation-type (on the knots x;, i = 1,...,n) if for any
f € Cla, b] we have

Uf)xi)=f(x),Vi=1,...,n

Remark. Important particular cases of U are of the form

Un(f)(x) =Y fOx)Pe(x), neN,

k=1

where Py € Cla, b] satisfy Pr(x;) = 0if k # i, Pr(x;) = 1, if kK = i, and contain
the classical Lagrange interpolation polynomials and Hermite-Fejér interpolation
polynomials.

Now, if f € Cla, b] is, for example, monotone (or convex) on [a, b], it is easy to
note that because of the interpolation conditions, in general U ( ') cannot be monotone
(or convex) on [a, b]. However there is a natural question if U ( f) remains monotone
(or convex) on neighborhoods of some points in [a, b]. In this sense, let us introduce
the following

Definition 2.1.2. Let U : C[a, b] — Cla, b] be alinear operator of interpolation-
type on the knotsa < xy < --- < x, <b.

Let yo € (a, b). If for any f € C[a, b], nondecreasing on [a, b], there exists a
neighborhood of yo, V¢ (y0) = (yo — &f, yo + &) C la, bl, ey > 0 (i.e., depending
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on f) such that U (f) is nondecreasing on V¢ (o), then yj is called a point of weak
preservation of partial monotony and, correspondingly, U is said to have the property
of weak preservation of partial monotony (about yp).

If the above neighborhood V (yg) does not depend on f, then yy is called a point
of strong preservation of partial monotony.

Similar definitions hold if monotony is replaced by, e.g., convexity (of any order).

In connection with Definition 2.1.2, in a series of papers, T. Popoviciu proved the
following negative and positive results.

Theorem 2.1.1. (i) (Popoviciu [80], p. 328). Leta < xg < x1 < -+ <X < b
be fixed. If m > n + 3, (where n € {—1,0, 1, 2,3}), then there do not exist in
(a, b) points of strong preservation of partial convexity of order n, for the Lagrange

interpolation polynomial (of degree < m), Ly, (xo, ..., Xm; f)(x). Here convexity of
order n means that (the divided difference) [z1, ..., Zn+2; f1 = 0, for all distinct
zi € [a,bl,i = 1,...,n+ 2. The monotony corresponds to n = 0 and the usual

convexity ton = 1.

(i1) (Popoviciu [81], p. 81, Theorem VII). If we denote by F,,(f)(x), n € N, the
classical Hermite—Fejér polynomial based on the roots x; , € (—1,1), i =1,...,n,
of the Jacobi polynomials J,fa’ﬂ)(x) ofdegreen with —1 <o <1, —1 < B <1, then
each rootxl pi=1...,n=1 of the polynomiall’ (x), wherel(x) = H?:] (x—xin),
is a point of strong preservation of partial monotony for Fy,(f).

(>iii) (Popoviciu [81], p. 82, Theorem VIII.) There do not exist in (—1, 1) points of
strong preservation of partial (usual) convexity for F,(f), n € N.

(iv) (Popoviciu [81], p. 82, Theorem IX.) If, for example,

/ 2
Gu(f)() = Zf( )[ Sy )},

— x)l' (x;

n .
2i — DHrm )
l(x):lj[(x—x,-), xi:cosT, i=1,...,n,

are the Griinwald interpolation polynomials, then there do not exist in (—1, 1) points
of strong preservation of partial monotony for G,(f), n > 2.

In Section 2.2 first we obtain quantitative estimates of the lengths of neighbor-
hoods V(xlf,n), i =1,...,n—1,in Theorem 2.1.1 (ii). In contrast with Theorem
2.1.1(iii1), it is proved that in case when n > 3 is odd, O is a point of weak preserva-
tion of partial strict-convexity for F; (f). The Kryloff-Stayermann polynomials are
studied as well.

A related result for Griinwald polynomials is obtained and quantitative estimates
of the neighborhoods of shape preservation are proved. Also, taking into account the
relationship between the Hermite—Fejér polynomials F}, (f) based on the Chebyshev
nodes of first kind and the trigonometric Jackson interpolation polynomials J,, (f),
the shape preserving properties of J, (f) are deduced.

Finally, qualitative and quantitative results in partial monotony (or convexity)
preserving approximation by several Shepard-type operators are obtained.
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2.2 Hermite-Fejér and Griinwald-Type Polynomials

First we obtain a quantitative estimate for a particular case of Theorem 2.1.1,(ii) (the
qualitative version of the result is proved in Popoviciu [79]).

Theorem 2.2.1. Let n = 2m be even and let us denote by F,(x) the classical
Hermite—Fejér polynomial based on the roots x;, € (—1,1), i = 1,...,n, of A-
ultraspherical polynomials of degree n, with A > —1 (i.e., Jacobi polynomials of
degreen, witha = Bandr=a+p+1, -1 <a, g <1)

—l <xppn <  <Xntlemn <0 <Xpp<---<x1p<-—1

There exists a constant ¢ > 0 (independent of f and n) such thatif f : [—1, 1] —

R is monotone on [—1, 1], then F,,(f)(x) is monotone (of the same monotonicity) in
(—& &) L.

n?

Proof. Let us denote F,, (f)(x) = Y i hin(x) f (xi,n), where

l//(xi,n)
U'(xin)

Rin(x) = I3 (x) [1 — (x — x,-,,»] :

Li(x) =1x)/[(x = xi)l' (i)l 1(x) = n(x — Xin)-
i=1

By, e.g., Popoviciu [79] we have
hin(0) = F(O)[2 = (1 — W)x, /1 (xi)* (1 = x7,)x7,1, 2.1)
foralli =1,...,n,and
n—1
Fy(H)@) =Y [QiILf i) = f ig1a)],
i=1

where Q; (x) = P Wy, i=1,...,n—1.
First we will prove

Qi(O)Zh/]’n(O)>O, foralli=1,...,n—1. 2.2)
Indeed, by (2.1) we get
sign {h; ,(0)} = +1, foralli =1,...,m,
which immediately implies

Qi (0) > hi ,(0), foralli=1,...,m.
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Now let m + 1 < i < n. Then by (see, e.g., Popoviciu [79], p. 245) h;ﬁn(O) =

n+1 zn(o) i=1,...,n—1, we again get

i
Qi)=Y 1, 0)>h|,0), i=m+1....n—1
=1

which proves (2.2). On the other hand, simple calculations show

12(0) = % (c1 > 0, independent of n). (2.3)

From Szego [102], §14.6, we have maxmi% Z?:l [hjn(x)| < c2. Applying
Bernstein’s inequality, we obtain

max Zh]n(x) —max|Q(x)|<C3n i=1,....n—1

lel<% lx|<

and
max |Qj(¥)| < esn?, i=1,....n—1 (2.4)

lx|<g

Let d; be the nearest root of Q; (x) to zero. By (2.2), (2.3) and (2.4) it follows that
1
— <10:i(0)] = [Qi(d) — Qi(O)| = |d;| - |Q} ()| < cald;|n?,

ie.,
C
|di| > —, foralli=1,...,n—1,
n

which proves the theorem. |

Also, we can prove the following

Theorem 2.2.2. Let us denote by F,,(f)(x), n € N, the classical Hermite—Fejér
polynomial based on the roots —1 < Xp, < Xp—i1p < -+ < X1n < 1, of the
Jacobi polynomials P,fa’ﬂ)(x), witha, B € (—1, 0]. If € is any root of the polynomial
I'(x), then there exists a constant ¢ > 0 (independent of n and of f) such that if
f :[—1,1] — R is monotone on [—1, 1], then F,(f)(x) is monotone (of the same
monotony) in

c

%3
(1- 52)5/2+8 e

(é 7+2y E—i_ 7+2y) C (_11 1), where ce =

= max{a, B},

and
5 — o, if0<E& <1

Proof. Keeping the notations in the proof of Theorem 2.2.1, and reasoning as in
the proof of Lemma 3 in Popoviciu [81] we get
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Q;(&) > minf{h} (&), —h, ,(£)} > 0, foralli =1,....n— 1.

Let a,, b, € (0, 1), a,,b, \y 0 (when n — +00) be such that |h’1’n($)| >
Ciap, |h;,n(‘§)| > caby, and s, = min{ay,, by }.

It easily follows Q;(§) > ¢3s,, i =1,...,n — 1. By Szego [102], Theorem
14.5, we have

n
D hjn(x) =1, Vxel-11],
j=1
where hj,(x) >0, Vx e [-1,1], j=1,...,n.
Applying twice the Bernstein’s inequality and reasoning exactly as in the proof
of Theorem 2.2.1 (with & instead of 0), we obtain

Qi(§) <cild; —Eln*/(1 -8, i=1,....n—1,
where d; is the nearest root of Q;(x) to &, and therefore

max Q;(x)>0, i=1,...,n—1,
\X—§|§a5’%

with ag = c2(1 — £2).
It remains to find a (lower) estimate for s,,. First we have

—-1/2
(@B) c3n
PP O 2
(see Theorem 8.21.8 in Szego [102]).

By Popoviciu [81], p. 79, relation (27),

: 2) [ o]
= 2 n - ) O,
B T T R el i

) 3 12(5) l//(xn,n)
K i S T [2 = } =0

By Szegd [102], Theorem 14.5, 2 + (x;n — g)l,f((;‘j’:)) > 1 and by Szegd [102],
(7.32.11), '

e ) _ (PP &P
P G =M@, — PP (1P

_alpP@r
T onf(—§)3
(where ¢ = max{2 + «, 2 4+ B}).
Also,
os PP )1

—hn,n@) = |hn,n(5)| = n24(1 _|_;;:)3 ’
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Thus we obtain

Qi) =

&

n3t2y (1 — £2)7/2+5° i=1,...,n—1.

Finally, taking s, = IWZ_Z)MM we easily obtain the theorem. ]

Remarks. (1) If £ is near the endpoints, i.e., | — 52 ~ niz, then the interval of
preservation of the monotony is

¢ c
(é g s T n2+2(y_5)) c(=1L0.

For o = B € (—1,0), i.e., in the ultraspherical case, we obtain the best possible
interval

(s—%,un%) C (=1, 1).

(2) Letus consider, for example, the case = = —%,i.e.,xi,n = cos %n, i=
I,...,nand f(x) = e;(x) = x, Vx € [—1,1]. It is known that F,,(f)(x) =

X — —Tz'l—lzgl")”, x € [—1, 1], where T, _1(x) = cos[(2n — 1) arccos x]. We have

FylenN(x) =1~

! 1
w . Fen(=x) = Fylen (),

F/(en)(x) = =T3,_1(x)/@2n), F,/(0)=0.

It follows that the roots of F, (e;)(x) are symmetric in respect with O and the
equation Fj (e1)(x) = 0is equivalent with 7;, _,(x) = 2n — 1. This last one reduces
to

sin[(2n — 1)t] =sint, ¢ € (0, m),
where x = cost.

Because of symmetry, we are interested only in the positive roots, i.e., when
1e(0,3]

For n even, 0 is not a root of F, (e1)(x), while for n odd 0 is a double root.

Simple calculations show that the positive roots of F, (e;)(x) are given by

2k -1 2k +1
) z k 1,---,[—’1 :|, x,§2)=cos—( +)T[,

X, = cos , =
2 2n

—1
k=0,1,...,[” } n>2.
2

It is easy to show that for all &,

N

Because xfl) —x{z) ~ niz, near the endpoints we obtain the best possible estimates.

Now, if for example n is even, then [%] = % and for k = % we easily get



2.2 Hermite-Fejér and Griinwald-Type Polynomials 49

@ L
which means that near 0, the estimate for the interval of preservation of monotonicity
is much better than those given by Theorems 2.2.1 and 2.2.2.

Forn > 3 odd, let us denote by F;, (f)(x) the Hermite—Fejér interpolation polyno-
mial based on theroots x; , € (—1, 1), i =1, ..., n, of A-ultraspherical polynomials
of degree n, A > —1, A # 0. Also, let us consider the Cotes—Christoffel numbers of
the Gauss—Jacobi quadrature

-2
_ A 'n+X) B / .
b =2 [F (E)} T n T A @i =1

S

and denote

A2F(0) = f(h) —2£(0) + f(—=h).

In contrast to the negative result in Theorem 2.1.1,(iii), we have the following:
Theorem 2.2.3. If f € C[—1, 1] satisfies

" [hin A3, £(O)]

Y —=——>0, (2.5)

i=1 Xin

then F,(f)(x) is strictly convex in [—|d,|, |dy|], with

(n—1)/2
c) Y Dandl, FO/x,

i=1

n? [wl (f; %) oS- Fn<f>||}
1

where c(A) > 0 is independent of f and n, I = [—%, %] w1 (f; %)[

|dy| >

)

,} is the

g |

Bf—

N —

modulus of continuity on [—%, %] and || - It , 1] is the uniform norm on [—%,
—23

Proof. Denoting F, (f)(x) = > i hin(x) f(xi,n), we have

" - l”(xi,n) / ’ 2 1
hi,(x) =—4 I, )li () (x) + 2[; (%)) + L () ()]
l//(xi,n) )
[1 " T & x””)} |
But ;(0) = 0 and //(0) = _xl,<_gg) fori # (n + 1)/2 and

U(xin)  L+Ax7,
U'(xin) o1 —x2

i,n

i=1,...,n (see,e.g., Popoviciu [79]).

1 + Xin

‘We obtain
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200002 1 [1+ax?
W oy=-——" .| —22) >0, Vi n—+1)/2. 2.6
in(0) T Gm)? xzn 7 _xzn # ( )/ (2.6)
Also, because x; , = —Xpt1—in, I = 1,...,n, U'(x;n) = ' (xp41-in) (since n

is odd) we easily get
h;/,n(()) = hZ+1—i,n(O)-
But
ciA'(n+ 1) 1 1
T+ Cin)? 1-x7

i,n

Ain = and (I'(0))* ~ n*,

which together with (2.6) implies
h;in(O) > sz\n)»i,n/xiz,n, foralli # (n+1)/2.
Therefore

2 " hind3,, f(O0)
—_— >

F/(HO) = Y h,0)A2 f(0) > csin = 0. @7
i=1

i=1 Xin
By (2.7) it follows that F;,( f) is strictly convex in a neighborhood of 0. Let d,, be
the nearest root of F/(f) to 0. We may assume that |d,| < % (since otherwise there
is nothing to prove, the interval of convexity cannot be larger than [— < %]) Then by
the mean value theorem, Bernstein’s inequality and Stechkin’s inequality (see, e.g.,
Szabados—Vértesi [100], p. 284) we get

F/()(0) = |F/(/)O) — F/()da)] = ldnl - |F," (/)]

1
< |dylean® | FL(F)ly < esldpIn’n (Fn(fx ;)
1

< csldy|n® [wl (f; %) + wi (Fn(f) - f %)}
1

11 11
where s = [} 1)1 = [ 4. 4] .
Combining the last inequality with (2.7), the proof of the theorem is immediate.
O

Remarks. (1) It is obvious that if f is strictly convex on [—1, 1], then (2.5)
is satisfied (from A; , > 0, i = 1,..., n). Therefore, because the lower estimate
for |d,| depends on f, we can say that O is a point of weak preservation of partial
strict-convexity. Let us suppose that 0 would be point of strong preservation of partial
strict-convexity. For any & > 0, fi(x) = ex> 4+ x and f>(x) = ex? — x are strictly
convex on [—1, 1]. By hypothesis we obtain that there exists a neighborhood of 0,
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V,(0), independent of ¢ > 0 (here n > 3 is odd fixed), such that F,/(f1)(x) >
0, F/(f2)(x) > 0, V x € V,(0). Passing with ¢ \{ 0, we obtain F,/(e;)(x) > 0
and F)'(e1)(x) <0, Vx € V,(0), i.e., F/(e;) = 0, V x € V,(0), where e;(x) =
x, x € [—1, 1]. But this means that degree [F,(e1)(x)] < 1, x € V,,(0), which is a
contradiction, because F; (e1)(x) = x — W, T, (x) = cos[m arccos(x)].

As a conclusion, 0 cannot be a point of strong type for strict-convexity and F, (f).

Let us note that also the strict convexity of f on [—1, 1] can be replaced by the
weaker condition A% f(@©0) > 0, forall h € (0, 1].

(2) More explicit estimate for |d,| in Theorem 2.2.3 can be obtained in the fol-
lowing particular case.

Let us suppose that f is strongly convex on [—1, 1] (i.e., there exists y > 0
such that nf (x) + (1 — 9 f(¥) — f + (1 = m)y) = n(1 — Ny (x — y)?, for all
nel0,1], x,y € [—1,1]) and that f € Lip o, with0 < o« < 1.

It easily follows that A%, f(0)/x7, = 2y, foralli =1,..., (n —1)/2. Also, by
Szego [102], relation (15.3.10), we have

Ai ~ %/t foralli=1,...,n, (2.8)
which immediately implies
(n—1)/2
> hinze (2.9)
i=1

¢ > 0, constant independent of n.
For || f — F,(f)|l; we can use various estimates, (see, e.g., Szabados—Vértesi
[100])

n

k
If = Fa(Hllr <Y on <f; ;) K2 it > 0.

k=0
Taking into account all the above estimates, by the estimate in Theorem 2.2.3 we

obtain
1 i\
|du| = chy/ !nz [—a + (—) iH“ , if 2 >0,
n n
i=0

where the constant ¢ (with cA > 0) is independent of n but depends on f.
If for example 0 < A +a < 1,by > 1 j*T*=2 < ¢ we obtain

ch
|dn|22__7;7 c, A >0.
n

(3) Two open questions appear in a natural way:

(i) If n is odd then find other points of weak preservation of partial strict-convexity

for F, (f);

(i) What happens if n is even?

(4) The dependence of |d,| of f in Theorem 2.2.3 can be dropped in a simple way
for some subclasses of functions. Thus, let us define (for a € (0, 1])

B*[—a,al ={f :[-1,1] = R; f is strictly convex on [—a, a],
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fx) =0, x €[—a,al, f(0)=0}

Let n > 3 be odd. Because ;,(0) = h;,(0) = 0 and h;’n (0) > 0, for all
ief{l,....,n}\ {%}, obviously there exists &, > 0 such that

1
R (x) > 0, forall x € [—&,,,] and all i € {1, .. n}\{”Jr }

For all x € [—¢&,, &,] and all f € B*[—1, 1] we get

FUH@) =D b, f i) = > b0 f(xin)
i=1

i= ll#%

(n—1)/2
> Y KU @) + G-l > 500"

j=1

2f(0)_0

where /*(x) = min {47, (¥); i € {1, ....m}\ {251}} > 0, V¥ € [~an. el 2
being independent of f € B*[—1, 1].

On the other hand, it easily follows that /; ,(x) > O, for all x € [—&,, &,], i.e.,
Fo(f)(x) =30 hin(X) f(xin) = 0, forall x € [—&p, 4], f € B*[—1, 1] and as
a conclusion, Fy,(f) € B*[—e&y,, &,].

Now, let us consider the Hermite—Fejér type interpolation with quadruples nodes
introduced by Kryloff-Stayermann [68] (see also, e.g., Gonska [59]), given by
K,(fHHx) = ZZ 1 hie(x) f (x), where x; = cos 215 171 T,(x) = cos[n arccos x|
and Ay (x) = 29 T4 (x),

(x—x )4 n
1
Pr(x) = {(1 —xx)’ 4 — (x —x)[@n? = D1 = xxp) — 3]}

Itis known that K,, (f)(xi) = f(u), Ky (/)) =0,i = 1,2,3, k=1,....n
ZZ: | hi(x) = 1. Thisimplies ZZZI h;((x) = (O and reasoning exactly as in Popoviciu
[79], p. 242, by —1 < x,, < x4—1 < --- < x] < 1 we obtain

n—1

Ky (£)x) =Y [QiILf () — f(xign)],

i=1

where Q;(x) = Y5_, W, (x).

First we present two results of qualitative type.

Theorem 2.2.4. If n is even number (i.e., n = 2m), then there exists a neighbor-
hood of 0 where K, (f)(x) preserves the monotonicity of f.

Proof. We have 7, (0) = 0 and

T4
Pk (x) AT OT () + —2 ) T (x)

K= R (x —xp)’

— L [pr () (x — xp) — 4pr(0)],
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1
pr(x) = e { 2xe (1 —xx) + = (x—xk)[(4n — D1 —xx) — 3]

" (—x)@n? — 1)

(x — xp)? }
5 ,

1
hi(0) = x_5[417k(0) +xpp (0], k=1,n
k

1
pr(0) = [ + xk(n —1)}

' (0) L1 +4 (n® 1)+x’?(4 2. k
=—— [ 2x¢ + zxx(n” — —(4n” — , =1,n.
pk n4 k 3 k 6

BY Xpt1-k = —xk, k = 1,m, we get ppy1-£(0) = pr(0), p,_(0) = —p;(0)
and consequently &), (0) = —hj(0), k = 1,m.
By simple calculations

1
4pr(0) + x5 pj(0) = 6n—4[nz(8x,§ — 4xh) +24 — 2057 + x}1 > 0,

which implies /) (0) < O, if x; < 0 and A (0) > 0, if xx > 0, ie., h(0) > 0O if
k =1,_mandh;{(0) <0,iftk=m+1,2m.

Reasoning now exactly as in Popoviciu [79], p. 245, we get Q;(0) > 0, for all
i = 1,2m — 1. This implies that there exist neighborhoods of 0, V;(0), such that
Qi(x) >0, Vx € V;(0), i =1,2m — 1. Denoting V(0) = ﬂlz':"l_l Vi (0), we get
Qi(x) >0, Vx € V(0), i =1,2m — 1, which proves the theorem. O

Theorem 2.2.5. Let n > 3 be odd. Then there exists a neighborhood of 0 where
K, (f)(x) preserves the strict-convexity of f.
Proof. We can write

4T3 (x)T) (x)

4
R (x) = pi(x) oy F I WE),
Y T2OT, )1 5
h{(x) = 12pg(x) 2 4+ T () Ex (x),
(x — xp)*
/ 3
hy(x) = 24pk(x>w + T, (x) E3(x),
(x — xx)
[T, (x)1*

hP (x) = 24pi(x) + T, (x) E4(x).

(x — xp)*

Forn > 3 odd and k # ”'H we obtain

hi(0) = h},(0) = h}/(0) = h}(0) = 0 and 4" (0)
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24 2
1+ xk( —1|>0
xk 3

This implies h(il (0) = h(4) (0) and therefore

(n—1)/2
Y LFe) + fOr- IR 0)

j=1

KO (H0) =Y hP0) f(xi) =

i=1

(n—1)/2
FLORL O > FO) 37 2W(0) + Ok (0) =

j=1

ROPIHOEN

i=1

Because K,E’)(f)(O) =0, i =,1,2,3, it follows that 0 is minimum point for
K)/(f)(x)and K,/ (f) is strictly convex in a neighborhood of 0, V (0). As a conclusion,
K/(f)(x) > 0, Vx € V(0)\ {0}, which shows that K, (f) is strictly convex on V (0).

Obviously here V (0) depends on f (and of n of course). The theorem is proved

O
Remark. Theorem 2.2.5 remains valid if the strict-convexity of f on [—1, 1] is
replaced by the weaker condition
AL = f(W)+ f(=h) =2f(0) > 0, Vh e (0, 1].

The quantitative version of Theorem 2.2.4 is the following

Theorem 2.2.6. Let n be even. There exists a constant ¢ > 0 (independent of f
and n) such that if f : [—1, 1] — R is monotone on [—1, 1], then K,(f) is of the
same monotonicity in 4, 4> C (—1,1).

Proof. By the proof of Theorem 2.2.4 we easily get

Qi(0) >R (0)>0,Vi=1,n—1.

4 2
But h/l ) = 5126(,(:‘)‘ [n2(8x12 _ 4)6411) +24 — 20)612 + x?] > 4n? X

onixs = 3n2 (because
TH0) = 1, 8x — 4x! > 4x? and 24 — 20x? + x} > 0).

On the other hand, by 0 < hg(x), k = 1,1,y j_; hk(x) =1, Vx € [-1, 1] and
by Bernstein’s inequality we obtain (reasoning as in the proof of Theorem 2.2.1)

i
o[yn
k=1 .
max|Q )] <max ————<cn,i=1,n-1
lx|<} Ixl<i V1 —x2

and

max 10}(x)| <can®, i=T,n—1
<}

where c1, ¢c; > 0 are independent of n.
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Now, if d; is the nearest root of Q;(x) to zero, we get

32 = Qi) =12:0) =10:(0) - Qi(d)| = 1di| - 10(2)] < ealdyIn?,

ie., |di| = — for all i = 1,n — 1, which proves the theorem. 0

The quantitative version of Theorem 2.2.5 is the following.
Theorem 2.2.7. Let n > 3 be odd. If f : [—1, 1] — R satisfies

ALFO) = () + f(=h) = 2f(0) > 0, Y € (0, 1],
then K, (f)(x) is strictly convex in [—|dy|, |d,|], with

(n=1)/2
c Y ALfO)/x}

— 11
dn) = = ’ ’=[—7‘]
e o (D) + 1/ = KD, 2’2

Proof. By the proof of Theorem 2.2.5 we have

(n—1)/2
KOOy = > hP©0)a2 £(0),

i=1

where h§4)(0) —f} [1+ 2x2(n -] = n—z’ Le.,

(n=1)/2 A
K (£)(0) = n? Z = TAUN

xz

Let d,, be the nearest root of K, ,(,4)( fx) to 0.
Reasoning as in the proof of Theorem 2.2.3, we have

KM (H0) = KB (H)0) — KD ()| = dul - 1K (£

1
< |dulen* | Fy()ll; < c1ldnln’ oy (Kn<f); ;)

1
1
< cald, |’ [a)l <f; ;) +IIf = Kn(f)||i| )
1

11 11
where J = [—7. 7], 1 =[- 2 2]
Combining with the previous inequality, we obtain

(n—1)/2
c Y ALfO)/x}

o] = = 1=[-33):
n3 [an <f; ;) +11f - Kn(f)”:|
1
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where ¢ > 0 is independent of n and f and w(f; ‘)7, | - ||7 represents the corre-
sponding concepts on . ]

Remarks. (1) For upper estimates of || f — K, (f)| can be used, for example,
Gonska [59].

(2) Comparing Theorem 2.2.6 with Theorem 2.2.1, we see that although the poly-
nomials K, (f)(x) satisfy higher-order Hermite—Fejér conditions, still the obtained
estimate for the length of preservation of monotonicity is the same as that given by
the classical Hermite—Fejér polynomials.

(3) As was pointed out in the case of classical Hermite—Fejér polynomials, there
are also other points (different from 0) where the monotonicity of f is preserved.
Therefore it is natural to look for other points of this type in the case of the polynomials
K, (f)(x), too.

In contrast with the negative result in Theorem 2.1.1, (iv), in the case of convexity
we can prove a shape-preserving property of Griinwald interpolation polynomials
based on Chebyshev nodes of the first kind. In this sense, first we need the following
simple result.

Lemma 2.2.1./f x;, = cos =5 1(x)

(x—xp)1}, (xk)
fundamental Lagrange interpolatlon polynomzals (wherel(x) = (x—x1) - - - (x—xg)),

then

(2k l)n k=1..

,nandli(x) = are the

[ | <, vp =1,

and

n
| Y| e vo<p <1,
k=1

where C), is a positive constant depending only on p.

Proof. Let x € [—1, 1] be fixed and the index j defined by |x — x| := min{|x —
xr|; 1 < k < n}. By the relations in Szabados—Vértesi [100], p. 282 (see also the
relations (1.6) in the proof of Theorem 1.2.1), denoting x = cos(?), ty = @k—Dm k l)” and
T, (x) = cos(n arccos(x)), for all k # j we get

Lllsin@l 5 €

l — n
(o)l n|cos(t) —cos(ty)| — 5, Li=Kl *kzl =kl
AISO, lj(xj) = 1land
. Cj
|75, ()] sin(z;)| 1
|lj(x)|: . / <—C—:C.

n| cos(t) — cos(z;)| &
n

As a conclusion,

n n 1

Z|lk(x)|” <Cp Z W +Cp,

k=1 k=1,k#j
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which immediately proves the lemma. ]

Remark. In the case when p = 2 and the fundamental Lagrange interpola-
tion polynomials are based on the roots of «-ultraspherical Jacobi polynomials of
degree n, « € (—1,0), in Szegd [102], Problem 58, can be found the relation
1Y P < 77

‘We present:

Theorem 2.2.8. Let n > 3 be odd. IfA f©) > 0, Vh e (0,1], then the
Griinwald polynomials G,(f)(x) on the Chebyshev nodes of first kind (given by
Theorem 2.1.1 (iv)) are strictly convex on [—|d,|, |d,|], where for |d,| we can have
either of the following two lower estimates:

® (n—1)/2
n— 2
2(1 — x7)
Z x—zkAikf(O)
jdy] > C*=1 :
1l
(ii)
(n—1)/2 2
2(1 — x2)
. L2 A% F0)
\dy] > = ‘

c 1 :
noi(f: )+ 1Ga(f) = flllz

Proof. It is known that

2
=% L
X — Xk n

l(x) = (=D

Denoting hi(x) = [2(x), we get h,(0) = 21 (0)}(0), h/(0) = 2(I,(0)% +
201 (0)1}/(0). Now, for k # "'H we get xx # 0 and [ (0) = 0,

(—l)k /1 —x,% . T,f(x)(x —xx) — T, (x)

I =
) n (o — xp)? ’
— 52 2
/ 2 1 X / " 1—
Xk xk
because x; = —x;41—;.

Since Yy, h}(0) = 0, it follows

(n— 1)/2 2

hurnp(0) = —4 Z

and therefore
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n (n—1)/2 201 — x2)
GO =D O fx) = Y —Ff ) + f(Eng1-0)]
k=0 k=1 k

(n—1)/2 2
2(1 — x7)
+fOH,, 0= Yy ——*
: k=1 Yk
On the other hand, if we denote d, the nearest root to 0 of G, (f)(x), then by
reasonings similar to those in the proof of Theorem 2.2.3 and by the above Lemma
2.2.1, we get

A%, f(0).

G (F)(0) = [GL()O) — Gu(f)dn)] = |dulIGl ()]
< Cldu|n® (|G|l < Cldan|| f1].

It immediately follows the estimate in (i).
Also, by reasonings similar to those in the proof of Theorem 2.2.3 (but without to
use the Lemma 2.2.1), we get

G, (H0) =G, (H0) — G, () dn)] = Idnl| G ()]

1

< Clda|n*||GL 15 < Cldp|n01(Gu(f); ol
1 1

< Cldu|n’[w1 (f; )+ @1Ga(f) = f5 i

1
< Cldy|n’ [m (f; ;) +11Ga(f) = fll} :
I
where J = [—1/4,1/4],1 =[—1/2,1/2].
This proves the estimate (ii), too. ]

Remarks. (1) Theorem 2.2.8 shows that 0 is a point of weak preservation of partial
strict-convexity for the Griinwald polynomials. Because G, (e1)(x), n > 3 odd, is a
polynomial of degree > 1, (here e¢;(x) = x, x € [—1, 1]), reasoning exactly as in
Remark 1 of Theorem 2.2.3, we obtain that O cannot be point of strong preservation
of partial strict-convexity for G, (f).

(2) For the estimate in Theorem 2.2.8 (ii), might be useful the degree of approxi-
mation in, e.g., Jiang Gongjian [64] and Sheng—Cheng [90].

We end the section with some remarks on the shape-preserving properties of
trigonometric interpolation polynomials. They are based on the well-known rela-
tionship between the J,(f)(x) in Theorem 1.4.2 and the algebraic Hermite—Fejér
polynomials F; (f)(x) on the Chebyshev knots of the first kind, given by (see, e.g.,
Szabados [95])

Joan—1()(x) = Fr(g)(cos(x)), x € R,

where f(¢) = g(cos()).
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This relation allows us to extend the properties of F},(f) in Theorems 2.2.1,2.2.2
and 2.2.3, to Jo,—1(f). First we need the following concept.

Definition 2.2.1. Let f : R — R be 2z -periodic. f is called periodically mono-
tone if it is increasing in an interval (x1, x2) and decreasing in (x, x1 + 27).

A particular periodically monotone function is the so-called bell-shaped function,
which is 2 -periodic, even and decreasing on [0, ] (i.e., x; = 7 and x, = 27).

Remark. The most natural bell-shaped function f can be generated by an in-
creasing function g : [—1, 1] — R, defining f(x) = g(cos(x)), x € R. Actually itis
easy to show that g is increasing on [—1, 1] if and only if f is bell-shaped.

The shape-preserving properties of Jo,—1(f)(x) can be summarized by the fol-
lowing.

Theorem 2.2.9. Let F,(g)(x) be the Hermite—Fejér polynomials based on the
Chebyshev nodes of the first kind and let J,(f)(x) be the trigonometric Jackson
interpolation polynomials, where f(x) = g(cos(x)), g : [—1,1] > R.

(i) If f is bell-shaped and n is even, then Jo,_1( f) is increasing in a neighborhood
of %, of the form (% — n% 7+ n%).

(ii) Let us suppose that f is bell-shaped. If & is any root of the polynomial I’ (x)
(where [(x) is given by l(x) = ]_[l'-’zl(x — Xin), Xin = cos(2i — ) /[2n]), then
Jon—1(f) isincreasing in aneighborhood of n = arccos(&€) of the form (n—;—;, n+ n‘—;).

Proof. (i),(ii) It is immediate by taking « = g = —% (Chebyshev nodes of the
first kind) in Theorems 2.2.1 and 2.2.2 and then taking into account that the function
h(x) = arccos(x) € Lip%(l/Z). U

2.3 Shepard Operators

First, we present some results of qualitative type for a Shepard interpolation operator
of the form

Sup(H@ =Y ska) ), neN, f:[-1,11—R, (2.10)

k=—n
1 <x_,<xpp1<--<x1<---<x,=<1,

where s, (x) = (x — x) 727/ (X1, (x — x))7?P), p € N, fixed.

It is easy to see that S, ,(f)(x;)) = f(x;), i = —n,...,n, Sy p(f) is a pos-
itive linear operator, S,g{g,(f)(xi) =0,i =—-n,....,n,j =1,...,2p — 1 and
Y e Sk (X) = 1.

Because Zzz_n s,/( ,(x) = 0, reasoning exactly as in Popoviciu [81], p. 76, we

obtain
n—1

S, H@ == 5,0 | (f@ir) = f@). @.11)

i=—n Jj=—n

We also need the following basic result due to T. Popoviciu.



60 2 Partial Shape Preservation, Univariate Case

Lemma 2.3.1. (Popoviciu [811]) Let F,, (f)(x) = > j_; hi(x) f (x), x € [a, b],
a<x<:--<xp<b, f:la,b] > R hi € C'a, b], ZZ’ZI hi(x)=1,Vx e
[a, b] and xq € [a, D] be fixed.

If by (x0) < O, h), (x0) > 0 and the sequence

R\ (x0), By (x0), - -, hyy (x0)

has exactly one variation of sign, then there exists a neighborhood of xy, V (xp),
independent of f such that if f is monotone on la, b], then F,,(f) is of the same
monotonicity on V (xg).

We have the following:

Theorem 2.3.1. Let us denote [(x) = > ;__,(x — xi)"2P. Any solution & €

(X_n, Xp) of the equation I'(x) = 0 is a point of strong preservation of partial

monotony for S, ,(f)(x).
Proof. Obviously /'(§) = 0 means

n
l .
‘ZWZO, E#£xi,i=—n,...,n. (2.12)
I1=—n
We have -
—2p( —xj)" "
) = L
where [(§) > 0.
Then, -
—2p(& —x_p) 7P
/
= 0
s—n,n(g) l(%‘) <
and -
—2p(§ —x,)"P7
/
= 0.
sn,n(g) l(é) >
Also, sgn[s’; (§)] = sgn(x; — &), j = —n, ..., n, which implies that the sequence

U €5 SN (-5 FPPRAR S ) R A (!

has exactly one variation of sign.
Applying now Lemma 2.3.1 and (2.11), we obtain the theorem. g

Remarks. (1) It is easy to see that (2.12) is equivalent to the polynomial equation

" " 2p+1
FRe=Y | J] ¢-x =0.
k=—n | i=—ni#k
Because simple calculations show that Fy, (x;)F,(xj4+1) < 0, j = —n,—n +
I,...,n — 1, it follows that in each interval (x;, x;41) there exists a point & with

I'¢)=0.
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(2) An open question is what happens in the case when

n
Sjn(x) =[x —x;|"CPFYy [Z Ix — x,-|<2p+”] . peN.

i=—n

Concerning the convexity, we can prove the following:

Theorem 2.3.2. If S, , (f)(x) is of the form (2.10) with x_; = —xy, xo = 0, and
A%f(O) >0, Vh e (0,1], then S, ,(f)(x) is strictly convex in a neighborhood of
0 (depending on f).

Proof. We can write

2p(x — x3) 2P
Skon(x) = an: ) , k=—-n,—n+1,...,n,
1+ Z x2P(x — x;) 2P
i=—ni#k

and _ '
s0) = [P (x —xp) P10, Vi=0,....2p.

x=0°

But from simple calculations, for all £ # 0 we get

' 0, i=1,...2p—1
X2 (x — xk)_zl’]}(clio =1 2p)!

As a conclusion

@ o — 1 @p)
HOES NI k #0,
Sk, xzp ,i=2p, i
S, (O =S (HO) = =805 (H0)=0
and
n n 2 '
SO =3 52O fo) =3 f; [f () + f (—x0)]
k=—n k=1 Yk

+FO)s 20 > £©O) Y s 0) =0.

k=—n

It follows that for Sy, , (/) (x), Sy, (/)@). ... Si-h~ > (f)(x), 0 is a minimum point.

On the other hand, by S,(f,’,’)( £)(0) > 0, there exists a neighborhood V (0) of
0 (depending on f) such that S5 (f)(x) > 0, for all x € V/(0). It follows that
S,(lzg 2 (f)(x) is strictly convex on V (0), with S,(fg 2 (£)(0) = 0 and 0 minimum
point for S5-2~% (f)(x). This implies S\-2~ > (f)(x) > 0, ¥ x € V(0) \ {0}. Rea-
soning by recurrence, at the end we obtain S;,”p(f) (x) > 0, forall x € V(0) \ {0},
i.e., Sy, p(f)(x) is strictly convex in V (0), which proves the theorem. O
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Remarks. (1) Because for f(x) = x, S, ,(f)(x) obviously is not a polynomial
of degree < 1 in any neighborhood, it follows that there do not exist points of strong
preservation of partial convexity for S, ,(f)(x).

(2) Obviously Theorem 2.3.2 shows that O is a point of weak preservation of
partial strict-convexity for Sy ,(f)(x).

(3) Reasoning exactly as in Remark 1 of Theorem 2.2.3 and taking into account
the above Remark 1, it follows that 0 cannot be a point of strong preservation of partial
strict-convexity for S, ,(f)(x).

A quantitative version of Theorem 2.3.1 is the following (we use the notation of
Theorem 2.3.1)

Theorem 2.3.3. Let x; = % k=—n,...,n. If& € (x_,, x,) is any solution of
the equation I'(x) = 0, then there exists a constant ¢ > 0 (independent of f and n)
such that if f : [—1, 1] — R is monotone on [—1, 1] then S, ,(f)(x) is of the same

monotonicity in ($ - WLH,E + nzp%) C (-1, 1).
Proof. Reasoning exactly as in the proof of Lemma 3 in Popoviciu [81] and taking
into account the proof of Theorem 2.3.1, we get

Qi (&) < max{s’, (&), —s,’l’n(é)} <0, Vi=—-n,...,n—1,

. ) —X_p —2p—1
where Q;(x) = Y_ s, (), s, = ZEg g @) =
—2p—1
%, 1(§) > 0. We have two possibilities.

Xn+X_n
2

Case l: x_, <& < < Xxy. In this case,

max{s’, ,(€), —s, (&)} = —s, ,(&).
Let jo be such that |x;, — &| = min{|x; — &|; i = —n, n}. We obtain

2p 1 cl
(Xn _g)2p+1 T 1 ~ n2r

— v:|2p
i——n 1§ — xil

Spn(§) =

The last lower estimate is obtained by similar reasonings with those for |E(x)|
in the estimate of |s}’n(x)| below in the proof.

Xp+X_pn
2

Case2: x_, < < & < x,. In this case,

max{s’, , (&), =s, , (&)} = s_,, , (&)

_ . . .y . .
and for x j, as in Case 1, we again obtain |s7n’n(§ ) > i > 0. As a conclusion,

c .
3y = 1Qi®)|, YVi=—n,...,n—1.
On the other hand,
1
Sjn(x) = m . )
)2 -
1+ (x —x;)%P Z T~

k=—nk#j
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n
2p—1 Xk —Xj
ZP(X—-xj) P Z (X—Xk)2p+l
k=—nk#j

/ —
Sjn(X) = 2

n
1
14 (x —x;)2P Z

_ 2p
ke okt (x — xk)

and

n
- — x;)2P2 _ M T
2pap- Dt Y R
k=—n.k#j

” _
Sjn(X) = 2

n
1
14 (x —x;)%° Z

— 2p
k=t (x — xx)

n
— x)2p-l kT
2P+ D@ =) Y,
k=—n,k#j

n
1
I+ @ —xp?» Y

_ 2p
kSt & )

n
2p—1 Xk — Xj
4p(X—xj) P Z (X—Xk)2p+l
k=—nk#£j

n 1 2
I+ (x—x)2 Y

_ 2p
ke okt (x — xx)

n
— xi)2p-1 S
2p(x — x;) Z G — a2
k=—n,k#j

n
1
I+ @x—xp¥» Y

_ 2p
Pl (x — xx)

= E1(x) — E2(x) + E3(x) - E4(x),

2

+

where by E;(x), i = 1,4 we denote the expressions above in the order of their
occurrence.
Obviously

157, (| < 1ELCO)] + | E2(0)] + | E3 ()] - | Ea(x)].
Let us denote |x — x;| = min{|x — xk|; —n < k < n} ~ %

We have two cases.
Case 1: i = j. We obtain
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1 ! lk—il/n
< _ - 0
B0l cpomm D i
k=—nkzj (1L "X
n
n N n
2 |k —i] 2 1 2
= Cpn ————F = CpNn — < cpyn-.
p Z |k_l'|2p+1 p Z |i_k|2p =P
[ E—— k=—n.k#j

It is easy to see that the same kinds of estimates applied to E5(x), E3(x) and E4(x)
give us the estimates

n

1 lk —il/n 2
|E2(x)| < ¢ ———5,3 = cpn’,
pnz[)—l Z |l _ k| P

2p+2
k=—nk#j
n

n

1 lk —i|/n
|E3(x)| < Cp’m Z W < cpn,
k=—n,k#]j ( )
n

As a conclusion, in this case |s;.’ L] =< cpnz.

Case 2:i # j. We obtain

|E4(x)] < cpn.

-2 ¥ lk—jl/n
R D D Ll
k=—n,k#]
[E1(x)| <c1,p i
X—Xj
(x—x,-)
n .
< (X—xi)4p Z lk—jl/n
— ,p— T a1
(=22 w2
o e xPrlx — x|
=>C2,p |x_xj|2p+2
n=4r . lk — jl/n
+C3,p_|i_j| 2p+2 Z ik \2PH]
( P ) k=—n,k#i,k#j (T)
_ Intai—gym y kel
=C4p li— ] 2p+2 li — j|2p+l - i _k|2p+1
(T) k=—n,k#i,k#j
n? N n? " 1 N li — jl
=c >
4,p |i _ j|2p+1 |i _ j|2p+l ik |i _ k|2p |i _ k|2p+l



2.3 Shepard Operators 65

Following exactly the same kinds of estimates, we easily get

n
_ lk —jl/n
|x — x>~ Z

_ 2p+2
ke kot |x — x|

—x\4
(=)
(x — xi)* Z k=jl/n__ 5

<Cclp———— <cn
P — )2t lx — xp[2P+2 ’

|[E2(x)| <c1,p

k=—n,k#£j

n .
e —x; PPty K=l

— 2p+1
Py Y lx — x|

x—x; \*P
X—X;

(x — x;)*P Z lk — jl/n

|E3(x)| <ci,p

<cClp——5— —_
=< L \2ptl — o 2p+l =Y
(x —xj) [y lx — x|
w1 v lk—jl/n
lx —x;|7 > [x—xg |2PFT
k=—n k#j
[E4(x)| < c1,p 3
x—x_/
(=)
n .
“ e (x — x;)%P lk — jl/n
—Lp oy _ 2p+1
lx — x| ke ok lx — xl

lx; — x|

2,p
|x —x;j] - |x — xi

n=2p Xn: Ik —jl/n

+C3 2 . 2
) _ . p+1
|l Jl/n k=—n,k#j ki (ll;_kl)
(i — jl/n) n Z" lk — jl
< - -
=PV, T ‘ i — ke [ =

n

=—n.k#jk#i

As a conclusion, in this case too we have |s}/ 2O < cn?. Let d; be the nearest root
of Q;(x) to &. It follows

—Zj,, <10i@)|=10i(€) — Qi(d)| = |d; — &|-1Q;()]
n
<|di—&|-can®, Vi=1,...,n—1,

and therefore c

|di—‘§|anp—+3,

Vi=1,...,n—1,

which proves the theorem. g
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Remark. We would like to point out here an error appeared in the proof of Theorem
3.4 in the paper Gal-Szabados [57], where the estimate of the last line, page 241, and
its analogue on page 242, line 3 from above (i.e., s,/l’n(é) > c,and |s”, (&) = ©)
are wrong, having as a consequence a wrong estimate in Theorem 3.4. The correct
proof and estimate are given by Theorem 2.3.3.

A quantitative version of Theorem 2.3.2 is the following.

Theorem 2.3.4. If f satisfies Aﬁf(O) >0, forallh € (0, 1], then S, ,(f; x) of

the form (2.10) with x; = %, k= —n,...,nis strictly convex in [—|d,|, |d,|], with
n )
cp Y AL FO)]/x”
dp| > ,
anl = n2PH £

where c, is a constant depending only on p.
Proof. By the proof of Theorem 2.3.2 we easily get

L )
S (f:0) =Y sih OIAZ f(0)] = <2p>'Z f :

k=1 klxk

Let d,, be the nearest root of S,ff;( f; x) to 0. We have

Sip (f10) = IS55 (f10) = S0 ()| = 1Sy (f1 )]

< |dy| Z sl VN @Ol < 1dalll £ 1] Z Eranteol}

k=—n k=—n

Taking into account the proof of Theorem 2.1 in Della Vecchia—Mastroianni [33],
p. 149, we get

5P 0] < epsin () (1/m)"CPHD = ¢ iy (0P

It follows
YA FOV = S 0) < cpldalll 11>+,

which immediately implies the inequality in the statement of theorem. |

Remarks. (1) If f is strictly convex on [—1, 1], i.e., there exists ¥ > 0 such that

nf@) +A=mnfo) — fhx+ A=y >nl -y —y)? foraly € [0, 1]
and x, y € [—1, 1], then we easily get AZ, f(0)/x{ > 2y, which implies

dal = 2y Z[l/xz” /AP = 2p ¢, Y 1/KP 72111 f 110,

k=1 k=1
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which for p = 1 implies |d,| > 2ycp/[||f||n2] and for p > 2 implies |d,| >
2yep/lIf1In?].

(2) Replacing x; = k/n, we get x,%p = k?P/n?P and the estimate in Theorem
2.3.4 becomes

cp Y AL FO)/KP

k=1
nllf1l

(3) We don’t know if the estimate of d,, in Theorem 2.3.4 is the best possible.

Concerning the Baldsz—Shepard operator defined on the semi-axis and whose
global smoothness preservation properties were proved by Corollary 1.5.2, we have:

Theorem 2.3.5 For the knots x;, = nky% k=0,....,n,neN,y>1s5>2and

f € C([0, 400)), let us consider the so-called Baldzs—Shepard operator defined by

|dn| >

D b=l T f ()
Su2p(Hx) = =2 x> 0.

PR
k=0

Let us denote 1(x) = Z:’zo(x — x;))72P. Any solution & € (xq,x,) = (0,n"/?)
of the equation l'(x) = 0 is a point of strong preservation of partial monotony for

Sn,2p () ().
Proof. Similar to the proof of Theorem 2.3.1. ]

Remark. The Remarks 1 and 2 after the proof of Theorem 2.3.1 remain true in
this case, too.

At the end, we present some (negative) remarks on the shape preservation prop-
erties of the so-called Shepard—Lagrange operator, whose global smoothness preser-
vation properties were studied by Corollary 1.2.4. These operators are defined on the
equidistant nodes x; = £ € [-1,1],i = —n,...,0,...,n,n € N,m € NJ{0},
m < n, A > 0, as follows:

SuaLy ()X = D Ain (X)L (f)(x),

i=—n

where
lx — x|
Aip(x)= —/——,
D e —xl ™
k=—n
and "
Lii (@ =3 e,

= (x = xjqju; (xigj)
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where u; (x) = (x — x;)...(x — Xj4m) and x4y = xp, v =1,...,m.
Choose A = 2p even. Reasoning exactly as for the relation (2.11) in Section 2.3,
we obtain

Spat, (D@ =3 AL WL (HE) + Y Aia@)L,;()Hx) =

i=—n i=—n

Z ZAlx(x) Linis1(£)E) = Lui(H@1+ Y Ain@)Ly,  (£)(x).

i=—n i=—n

Suppose that f would be monotonically increasing on [—1, 1]. Unfortunately, by
Popoviciu [80] (see Theorem 2.2.1 (1)) it follows that for m > 3, L, ; (f)(x) do not
preserve the monotonicity (around certain points). Let us take the simplest case, i.e.,
m = 1. Then we get

n—1 i
nap iy (D@ =D | =Y A () | Lmit1 (F)(x) = Lin i (£)(x)]
i=—n j=0

n
+ > Aigpx)m;,

i=—n

where all m; = L/l,i (f)(x) are > O (since if f isincreasing on [—1, 1] then itis easily
seen that all the Lagrange polynomials of degree 1, L ;(f)(x), are increasing).
Now, while the second sum above is obviously positive, the differences
Ly iv1(f)(x)— Ly, (f)(x) cannot be positive for all i at some point§ € [—1, 1]. As
a conclusion, it seems that even in the simplest case m = 1, S, 2 1, (f)(x) cannot
preserve the monotonicity around some points.
For the study of convexity, from the proof of Theorem 2.3.2 we get

4,0, (O =0,Yk=1,....2p—1and

Syt 1, (F)O) = 3 AL O) L i ())(O)

i=—n

n

= Y B (DO + AT O L o(£)(O).

2p
i=—n,i#0 X
Unfortunately, even in the simplest case m = 1, from this relation we cannot deduce
any convexity-preserving property for S, 2, 1, (f)(x), as we did in the proof of
Theorem 2.3.2 for the usual Shepard operator.
Similar reasonings for the so-called Shepard—Taylor operator, given by

SuiTy (&) = Y Ain(0) T (£)(x),

i=—n
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where
Ix — x|~
Aip(x) = —; .
D=l
k=—n
and

m . :
FOG G = x)/
T (f)(x) = ) —————,
, J!
=0
even for the simplest case m = 1, show that it does not have the shape-preservation
property (around certain points).

2.4 Bibliographical Remarks and Open Problems

All the results in this chapter, except those where the authors are mentioned and
Lemma 2.2.1, Theorems 2.2.4-2.2.9, 2.3.3-2.3.5, which are new, are from Gal-
Szabados [57].

Open Problem 2.4.1. For the Kryloff-Stayermann polynomials, K, (f)(x), in
Theorems 2.2.4 and 2.2.6, find other points (different from 0) of preservation for the
monotonicity of f.

Open Problem 2.4.2. What happens if in the Theorems 2.2.1, 2.2.4, 2.2.6 n is
odd and if in the Theorems 2.2.3, 2.2.5, 2.2.7 and 2.2.8 n is even?

Open Problem 2.4.3. What happens if in the statements of Theorems 2.3.1 and
2.3.2, the Shepard operators are of the form

n
Dol —x T fx)

j=—n

n
D b= TerD

k=—n

Open Problem 2.4.4. For the Baldsz—Shepard operator defined on the semi-axis,
prove a quantitative version of Theorem 2.3.5.

Also, another question for this operator is if there exist points such that in some
neighborhoods of them, it preserves the strict-convexity of function.

Open Problem 2.4.5. For the general Shepard—Griinwald operators introduced by
Criscuolo—Mastroianni [31] (considered in Open Problem 1.6.4, too), prove shape-
preserving properties.

Open Problem 2.4.6. For the local variants of Shepard operators in Open Problem
1.6.13, prove shape-preserving properties.
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Global Smoothness Preservation, Bivariate Case

Extending the results in the univariate case, we prove in this chapter that the bivariate
interpolation polynomials of Hermite—Fejér based on the Chebyshev nodes of the
first kind, those of Lagrange based on the Chebyshev nodes of second kind and £1,
and those of bivariate Shepard operators, have the property of partial preservation of
global smoothness with respect to various bivariate moduli of continuity.

3.1 Introduction

It is the aim of this chapter to extend the results of Chapter 1, with respect to various
bivariate moduli of continuity.
In this sense, we will use the following kinds of bivariate moduli of continuity.
Let f : [—1,1] x [-1, 1] — R. For §, n > 0, we define

W™ (f;8) = sup sup{|f(x +h,y)— f(x, )] x,x +he[-1,1],
ye[—1,1]

0<h=é}

oM (fin) = sup l]sup{lf(x, y+k) — f, v,y +kel—1,1],
xel—1,

0<k=nl
(i.e., the partial bivariate moduli of continuity, see, e.g., Timan [103])
o(fi8,m =sup{|f(x+h,y+k) — fx., ) 0=h=<é 0<k=n,
x,x+hel[-1,1], y,y +k e[-1,1]},
P (f38,m) = sup{| A f(x. M 0<h <8, 0<k=<n,
x,x+hel[-1,1], y,y+k e[-1,1]},

(i.e., the Bogel modulus of continuity, see, e.g., Gonska—Jetter [61] or Nicolescu [76])
where
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Ah,kf(x»y):f(x+ha)’+k)_f(x‘l'hs)’)_f(x»y"‘k)‘i‘f(x,y)

The properties of these moduli of continuity useful in the next sections are given
by the following

Lemma 3.1.1. (see, e.g., Timan [103], p. 111-114). (i) w;1(f;0,0) = 0O,
w(f; 8, n) is nondecreasing with respect to § and n,

o(f; 814682, m +m2) < w(f; 81, m) +w(f;d2,n2),
o(f:8.1) <0 (f:8) + 0 (fi ) < 20(f; 8. 1).
(ii) (see, e.g., Anastassiou—Gal [6], p. 81)

B (f;8,m) < oW (f;8) + 0 (f ).

3.2 Bivariate Hermite—Fejér Polynomials

Let us define the bivariate Hermite—Fejér polynomial on the Chebyshev nodes of the
first kind by

nyp  np

Hnl,nz(f)(x’ y) = Z Zhi,nl(x)hj,nz(y)f(xi,np xj,nz)s

i=1 j=1
where f :[—1,1] x [—-1,1] = R,

2i — 171’ B (o) = T2(x)(1 — xX; )

Xin = COS , i=1,n.

n%(x — xin)?
It is well known that we have

n
Zhi’n(x) =1, hi,(x)>0, Vxel[-1,1], Vi=1,n.
i=1

Let us denote by H, (f, x) the univariate Hermite—Fejér polynomials based on
Chebyshev nodes of the first kind and

o 1 1
0(5“““‘2*%1*‘”), f0<a<—-or-—<a<l,
2 2

20+l
O||s1 e if _! 1
Og(s ,10{—201' s

Remark. In all subsequent results of this section, the constants involved in the
signs O, will depend only on the functions considered.

E(a,§) =
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The following result is known in the univariate case.
Theorem 3.2.1. (see Corollary 1.2.1). If f € Lipy,(a; [-1,1]), 0 < o < 1, then

w(Hy(f):8) = E(a, §).

We also need the following.

Lemma 3.2.1. Let a, b € (0, 1] be fixed. Then, o(f; 8, n) < C(8* + n) for all
8§, n > Oifandonlyifw(x)(f; 8) < Cs4, andw(y)(f; n) < Cnb,forall(S, n > 0. Here
C > 0 denotes an absolute constant, but which can be different at each occurrence.

Proof. Indeed, by hypothesis and Lemma 3.1.1 (i), we get o (f; 8, n) < C(6 +
).
Conversely, let us suppose that w(f; 8, 1) < C(6* + nb) for all §, » > 0. From
Lemma 3.1.1,(i) we get

0O (f18) + 0P (f;n) <2C8 +2Cn” forall 8,5 > 0.
Now with 7 = 0 this implies
w®(f:8) <2C8% forall §>0

and
oM (fim) <2y’ forall n >0,

respectively, which proves the lemma. U

The first main result is given by the following:
Theorem 3.2.2. Let a, b € (0, 1] be fixed. If w(f;8,n) < C(6% + nb) for all
8,n >0, then

(Huyny (f): 8,m) = E(a,8) + E(b,n) forall é,m=0.
Proof. For each fixed y € [—1, 1], let us denote
ny
Fuyy @) =Y hjuny (0 f (%, Xjuny).
Jj=1
By hypothesis and by Lemma 3.2.1 we get that ) ( f; §) < C8¢. This implies, for

all [x; —x2] < §andy,

ny
| Fag.y (¥1) = Fuy y )] < 1Y By OLF (1 Xjiny) — £ (2, X))
j=1

np n2
<Y G X ) = FG2. X)) D Ry (D0 (£:8) = 0™ (f:6)
j=1

j=1
< Cs,
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where C is independent of n, and y. As a conclusion,
W™ (Fy y(x); 8) < C8% forall ye[—1,1].
Now, it is easily seen that we can write

Hnl,nz(f)(xa y) = Hn1 [Fnz,y(x)](x)’

where the univariate H,, is applied to F, ,(x) as function of x (y is fixed arbitrary).
According to Theorem 3.2.1, we immediately get that for every fixed y we have

@™ (Hyy s ()3 8) = @) (Hy, [ Fpyy ()] 8) = E(a, §).
Similarly we obtain

@ (Hyy 0y (f); 1) = E(b, ).

Adding the last to relations we get the theorem. (|

In what follows we deal with global smoothness preservation properties for the
Hermite—Fejér polynomial through the Bogel modulus of continuity, but only for a
special class of functions. In this sense, for a, b € (0, 1], let us define

Dyp={G:[-1,1] x[-1,1] > R; G(x,y) = F[f(x)g(y)], where

o0
F :[—1,1] — R satisfies Z(iz/i!)|F(i)(0)| < 400
i=1
and
S € Lipy, (a5 [—1,1]), g € Lipyy, (b; [=1, 1D, [If11, I1g] < 1}
Remark. A simple example is G(x, y) = sin(xy) € Dy,1. Fora, b € (0, 1], let
us denote

Lip®(a, b; [-1, 1) = (G : [-1, 1] x [-1, 1] = R;  0®(G;a,b) < C89°).

Lemma 3.2.2. D, , C Lip®(a, b; [-1, 1]).
Proof. Let G € D, . Developing F in MacLaurin series, we get

Gx,y)=FO)+ Y flx)g mFP0)/il.

i=1

This immediately implies

MG, y) =) Apf () Arg' () F (0)/i.
i=1

On the other hand, by f € Lipy, (a, [—1, 1]) and || f]| < 1
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o+ = ffOl<iMih®, 18" v+ k) —g' I <Mk’ i=1,2,...,
which implies
o0
(G 8,m) <Y G*/iNFP )8y < CsnP.
i=1

These prove the lemma. ]

As a consequence we obtain
Corollary 3.2.1. If G € D, p then

0B (Hy, 1, (G); 8, 1) = E(a, 8)E(b, n).

Proof. We easily get

—+00
Hyy iy (G)(x,y) = F(0) + Y Huy (f)(x) Hyy (8 () F P (0) /.

i=1
Then, as in the proof of Lemma 3.2.2, we have

~+00
&P (Hpy y(G); 8,m) <Y 1 (Hny (f); O (Hyy (81 MFD (0) /i1,

i=1

But f_or f € Lipy(a;[—1,1]), for all i,n € N and all § > 0 we have
w1 (H,(f");§) = iE(a,d). Indeed, from the univariate case (see Theorem 1.2.1)
we get

n n
o(Hy(f):8) < Cimin{sn Y 1/ n~" Y 1/k* + 3‘1} ,
k=1 k=1

where C > 0 depends only on the Lipschitz constant M of f. Then reasoning exactly
as in the proof of Corollary 1.2.1, we get the required formula.
Taking now into account Theorem 3.2.1, we immediately obtain

—+00
B (Hy, 1, (G): 8.m) < E(a,§)E(b.m) Y _i*|FP0)|/i!,

i=1

which proves the corollary. ]

3.3 Bivariate Shepard Operators

Let us first consider the bivariate Shepard operator as a tensor product by
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ST ) =D sin(0)sj ) fGi/n, j/m), if (x,y) # (’; %) :

i=0 j=0

SV (), Ly = f(4, ), where 1 < A, wand f: [0, 1] x [0, 1] = R,

sip(x) = |x —i/n|™"/ [Z Jx — k/nrk] :

k=0

m
Sjn ) = |y — j/m| ™/ [Z ly - k/mw} :
k=0
Let S,..(f, x) denote the univariate Shepard operator (for univariate f) and let

us define
0 (8%, f0<a<i—1,

Ey(a,8) =14 0 (8%log),ifa =2 —1
o1, ifr-l<ac<l,
forl < A <2.
The following result is known.

Theorem 3.3.1 (see Corollary 1.2.3). WIf f € Lipy(;[0,1]), 0 < ¢ < 1,
1 <X <2, thenforall 5 > 0andn € N we have

@(Sp,2.(f); 8) = En(a, §).

(1) If » > 2 then for all § > 0 and n € N we have

@ (Spn(f):8) < Croo(f9).

We present:

Theorem 3.3.2. Ler f : [0, 1] x [0, 1] —> R.

(i) Suppose a, b € (0,11, 1 < A, u < 2 are fixed and o (f; 8, 1) < C[8% + n*],
forall 6,n > 0. Then forall §,n > 0 and n,m € N we have

o(SEI(f);8,1) = Ey(a, 8) + Ey(b, n).
@) If A, u > 2 then

o8& ()8, m) < Copo(fi8,1),

forall§,n > 0andn,m € N.
Proof. (i) The reasonings are similar to those in the proof of Theorem 3.2.2, taking
into account Theorem 3.3.1 (i) too.
(i) By Theorem 3.3.1 (ii) and reasoning exactly as in the proof of Theorem 3.2.2,
we get
o (S (£):8.1) < Crulo™ (f18) + 0 (f1 )],
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which combined with Lemma 3.1.1 (i) proves the statement. O

Remark. It is of interest to know the approximation order by the tensor product

Shepard operator S,(,%;,,“ ) (f)(x, y). Since by, e.g., Szabados [98], Theorem 1, we easily
obtain that for the univariate case we have

S0 (I = 1801 (8) — gll +1lgll = Cllgll,

then for bivariate functions f, the case A, u > 2, by Haussmann—Pottinger [63],
Theorem 5, it immediately follows that

IS () = fII < Coplo™ (f: 1/n) + 0™ (f: 1/m)],

which combined with the second relation in Lemma 3.1.1,(i) implies

IS (f) = fII < Crp(f3 1/n, 1/m).

Here ||.|| denotes the uniform norm.
For the case of Bogel modulus of continuity, firstly we need to define a new class
of bivariate functions (which includes D, ;) by

D*={G:[0,1]1x[0,1] = R; G(x,y) = F[f(x)g(y)], where
F : [0, 1] — R satisfies
o0
> @ /iNIFD0)] < +ooand [ £]1. [lgll < 1}.
i=1
Reasoning exactly as in the previous section, we get the following.

Corollary 3.3.1. (i) Suppose a, b € (0,1],1 < A, u < 2 are fixed. If G € Dy p,
G(x,y)=F(f(x)g(y)) then forall 5,n > 0 and n,m € N we have

o B(S)1(G); 8,n) = Ex(a, ) Ep(b, ).

) If2 < A, wand G € D*, G(x,y) = F(f(x)g(y)) then for all §,n > 0 and
n,m € N we have

0B (SEI(G); 8, 1) < Crpo(fi 8w (g:n).

Proof. As in the proofs of Lemma 3.2.2 and Corollary 3.2.1 we obtain

+00
P (SPIG):8.1m) <Y w(Sh(f): Ha(Sk(g: mIFD©)/il.

i=1

(1) The proof in this case follows the ideas of proof in Corollary 3.2.1, based on
the formulas in the univariate case from the end of Section 1.2.
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(ii) By mathematical induction we easily get w (f; 8) < iw(f; 8) andw(g'; n) <

iw(g:n).
Now, following the ideas in the proof of Corollary 3.2.1 and taking into account
the above Theorem 3.3.1 too, we easily get the desired conclusion. |

It is well known that the original bivariate operator introduced by Shepard in [91],
actually is not tensor product of the univariate case. More exactly, in [91] Shepard
defines the bivariate operators by

S ()@ y) =D s o y) £ (i i), B () # (i v,
i=0

Sn,/,b(f)(xis )71) zf(-xl" )’i), Where“ > OIS ﬁxed’f : D_) RvD CRZ? (xis )71) €
D,i=0,....,n,x0<X] <" <Xp, Yo <Yy <--< Y,

s y) = [ —x)? + (v — y)* T2 /109 (x, y),

" —1/2
ey = Y[ -2+ -]
i=0
This kind of Shepard operator is useful in computer-aided geometric design (see, e.g.,
Barnhill-Dube—Little [13]).

In what follows, we consider another variant of the bivariate Shepard operator
which is not a tensor product of the univariate case, has good approximation properties
and implicitly better global smoothness preservation properties than that introduced
in Shepard [91].

Thus, let us introduce

Tru,nz,p.(f; x,y)
T;ll,nz,ﬂ(l; X, y)

Sy na,u(fixi,¥)) = f(xi,y;), where u > Ois fixed, f : D — R, D = [0, 1] x
0,1, x; =i/ny,i=0,...,n1; y; = j/n2, j=0,1,...,n2 and

Snl,nz,u(f;x’y): > if(x’y)#(xi’yj)v

nyp np

f(xi’ )’)
Tonnnfi0:0 =33 g

i=0 j=0

The following result will be essential in establishing the smoothness-preserving
properties of this operator.
Theorem 3.3.3. For any f € C(D) and p > 3/2 we have

1 1
If = Suy (Ol < cw <f; .t —)

nz

and
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aSm,nz //,(f x,y) ”:|

|

max |:H aSnl,nz,/L(f; x,¥)
0x

1
<c(n +n)ow (f — —) .
na
Proof. Let x,, and y, denote the nodes closest to x and y, respectively, and let

K(x,y) ={{ NI0=i=n;,0=<j=n () # W v)}

We prove that

Z lx — Xi|)”
. [(x —x)2+ (v —y)?I
LJ)EK (x,
(i.j)eK (x y)T R < cn%v 2u— A’ A<20—2, (.1
ny,np,uls Ay
and
Z |y — yjl
- [(x —x)2 4 (y — yj)21
LJ)EK (x, ’
(i,j)eK (x y)T R < cn%v 2u— ,\’ A<w—2. (32)
ny,ng,u s Ay
Indeed,
Z |X—Xi|)~ nzu—kn2v2n| ii)»(n +n? ]2) v
)2 — v.)271v 1 2 i=1
(. )eR ey KX~ X+ (V= 3))7] 5 =
c
Tnl,ng,u(l;xy y) - "2
(nin2)? Y " (n3i* +nijH ™"
i=1j=1
ny flnai/ny] ny
Z Z n2—2vl~)\—2v+l~)\ Z nl—2vj—2v
2w=2p—h 2v-2p i=1\ j=1 j=ln2i/ni1+1

<cn -
=1 2 ny I[nai/nil

YD i)

i=1 j=I

ni
-1 _1- 2v§ :-1+)\72v
I’ll I’l2 4
20-2u—A

2v=2u—A_2v-2p i <cn
= 1

<cn] n,
n; 1]’12 MZ 12
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Equation (3.2) can be proved analogously. It is clear from the above argument that
in the case A > 2v — 2u the summations in (3.1)—(3.2) can be extended to 0 < i <
niy, 0<j<ns.

We shall also use the inequalities

1
If(xz',yj)—f(X»y)ISw(f — —)(2+n1|x—xll+n2|y—y1|) (3.3)

Toynp (15 x,y) > cnf“_lnz, 3.4
oy A
3 P; ail <oy, 0<h<20-2 (3.5)
()eR Gy HE X7+ (V= 3))7]
and
max H'aTnlnz /1.(1 x,y)/0x ’ aTm,nz,u(l;x-)’)/ay ”:| <cn +m). (3.6)
n1 no, p,(l x,y) Tnl,nz,u(l;xay)

Equation (3.3) easily follows from the properties of partial modulus of continuity.
Equations (3.4)—(3.5) can be proved similarly to (3.1)—(3.2). Equation (3.6) follows
from (3.1)-(3.2) withA =1, v = u + 1.

Next, using (3.1)-(3.2) withA =0or 1 and v = u > 3/2, as well as the second
relation in Lemma 3.1.1,(i) we obtain

1
If = Smnw(f)||<w<f — —)

ny

Yo 1P x—xiD) + o (5 |y — yiDIx = x)7 + (= ¥

(i, )€K (x,y)
Y ¥

Tnl,nz,p,(l;x’ )’)
Z 2+n1|x_xi|+”2|y_)’j|
[(x —xi)? + (v — ;)1

Sm( ;i7i> | 4 eKE)
ny np Toyng, (15, y)

1

In order to prove the second relation in the theorem, besides (3.1)—(3.5) we use that

for f = const. we have 8S"1‘g§6’“(f) = aS"l’gi,’“(f) = 0 for all (x, y) € D, and get

8Sn1,n2,u(f; X, y)
ox

1 1
<cw f;n_l’n_z

) 1
ox <[(x — )2+ (V= Y02V Ty o (1 x, y))'
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Z lx — xi| - | f (i, yj) — fx, )]
[(x —x) + (y — yj)2 !

Ty ng, (152, y)

(.))eK (x.y)
ey +

Z |f i yj) — Fe 0 Z |x — xil
[ =x)? + (v =y o L= x)? 4 (= )2t

Tnuﬂz,u(l;x’y)z
( 1 1)
<colf;—,—
ny np

1
x =l =2+ -y Y — 5
(.yeK ey (&~ X7+ =37

(i, ))EK(x,y)

|x — x;|
Ha—x)?+ -y D 5 GITES]
ek Gy L& 727+ =yt

Z |x — xi|[2 +n1lx — x| +n2ly — yjl]
[((x —x)% 4+ (y — yj)? !

Tnl,nz,u(h X, y)

(i, ))eK (x,y)
+lj X,y

Z 2+n1|x_xi|+n2|y_Yj| Z lx — x;]

[((x —x)2 4+ (v — yj)?I* [((x —x)%+ (y — yj)? !

(i, ))eK (x,y) (0, ))eK (x,y)
i i,j X,y L] X,y

Tnl,nz,u(l 3 X, )7)2

u—1 M
1 1 1 1 1 _ 1 1
ceo(rm ) [ ()t (o ) e
nponz/ | np\ny  ny ny  n;

n%ungu ni 1 1
+ ~ +np+ny | <clny +n)o f;n—,— .
1

2 2 2u—1
(ny +n)* n" " ny ny

O

Now we are in the position to state our preservation results, unfortunately only in
the special case n; = ny. The case n| # n, remains open.
Theorem 3.3.4. For u > 3/2, n € Nand h, k > 0, we have

@ Spapu(f)h k) <co(f;h+k, h+k).

Proof. We apply the standard technique. By the first estimate in Theorem 3.3.3
we get
@ (Spn,pu ()i by k) < 2[|Sp 0, (f) = fIl +@(f5 b, k)



82 3 Global Smoothness Preservation, Bivariate Case

fc[a)(f;%,%)—i-w(f;h,k)]

Then, by the bivariate mean value theorem and by the second estimate in Theorem
3.3.3 we get

8Sn,n,u(f; X, )’)
ox

O Snnu(f); by k) < h H

H_}_kHaSn,n,M(f;xay)H

dy

11
fcn(h—i—k)a)(f;;, )

n
Hence by considering the cases (h + k) < 1/n and (h 4+ k) > 1/n separately, we
obtain the theorem. O

Taking into account the form of S, ,, . (f)(x, ¥), it is more natural to consider the
so-called Euclidean bivariate modulus, defined by

OB (f;0) = supll f(x + 1,y +8) = fx, 0 0=k, 0 <k (W +KH!2 <o,

x,x+hel0,1], y,y+k €0, 1]},

(see, e.g., Anastassiou—Gal [6], p. 80, Definition 2.3.1).
With respect to this modulus we obtain the following:
Corollary 3.3.2. For u > 3/2, n € Nand o > 0, we have

@B (Spnn(f)i0) < co®(f; 0).

Proof. Taking 4 = k in Theorem 3.3.4, it follows that
@ (Spn,u(f)i b, h) < co(f;h, h).
But by, e.g., Anastassiou—Gal [6], p. 81, we have
o' (f10) < w(fi0.0) < 0P (f:v20) < 20P(f: 0).

which combined with the above inequality immediately proves the corollary. U

3.4 Bivariate Lagrange Polynomials
Let us define the bivariate Lagrange interpolation polynomials on the Chebyshev
nodes of the second kind plus the endpoints +1, by

nyp np

Ly my ()G 3) = D hiony (Vhjuny 0 f Ciny» Y

i=1 j=I

where
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i—1 —
Xjpn = COS , i=1,n
n—1
and
-1 i—1
hin(x) = (1) an &) ,  wp(x) =sintsin(n — 1)t.

(I+681+ 80— Dx —xi0)

Let us denote by L, (f, x) the univariate Lagrange polynomials based on Cheby-
shev nodes of the second kind plus the endpoints =1 and

0—3% In » = if 0 L
—a [ 1n - ,if0<a < —,
8 2
E(a,5) olsim? ifo =
a,8) = 3ln—|, ifa=—,
’ 7 2
r 1
v 1\ e 1
O|é6T (In— , if - <a<1.
5 2

We need the following result in univariate case.
Theorem 3.4.1. (See Corollary 1.2.2) If f € Lipy(oe; [=1,1]), 0 < o < 1, then

o(Ln(f);8) = E(, 8).

Firstly, we consider global smoothness preservation properties with respect to
w(f; 8, n). The proofs of our main result require the following three lemmas.
Lemma 3.4.1. For all (x,y) € [—1, 1] x [—1, 1] we have:

1
<emy Zw@‘)( , 2)

i=1

‘ iy (F) (x5 Y)
0x

‘ i (F) (X, y)
dy

1
< cn» Zw(w( _2)
J

Jj=1

Herec > 0isan absolute constant (independent of n1, n>, x, y and f).
Proof. Because ) ;| h] in (X) =0, we get

‘ n, nz(f)(x y)' th ") [th nl(x)f(xt'(l)’XJ('Z)):|

Zh} na (¥) {th nl(x)[f(xi(l)’xj(Z)) — f(x, x;z))]}
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ny

: Zh] ) Z 1y )Ny (F 2 1 =)

(reasoning as in the univariate case in the proof of Theorem 1.2.2)

<Zh1nz()’) [nclzw(x)( ,—>i|_cn121:w(w( £ >

0L, 1,12 (Hx.y)

The estimate for ‘ 5y is similar.

Lemma 3.4.2. We have the estimates:

oL
0 Ly (): 8) < B—(f)H 5, V520
X
and .
0O Ly s (1) 8) < a—(f)H 5 V820
y
where || - || represents the uniform norm on

Cl[-1,1] x [-1,1D) ={f : [-1, 1]2 — R; f continuous on [—1, 1]2}.

Proof. By the mean value theorem, we get

aL
|Lnyna (P +hy y) = Ly oy (f) (x5, 9) = |B] ‘

which immediately implies

O (L, 1y ([); 8) < 8 H aL—(f)” .
0x

The proof of second estimate is similar.

Lemma 3.4.3. We have the estimates:

@ Ly oy ()3 8) < 20 Luyny (f) = Il + 0P (3 8),

and
@ Ly (£):8) < 20\ Ly ns () = [l + 0 (f18). ¥ 62 0.

Proof. The first estimate is immediate by
|Ln|,n2(f)(x +h, y) - Lm,nz(f)(x’ y)| = |Ln|,n2(f)(x +h, y) - f(x +h, )’)|
Hfx+hy) = faDIH 1Y) = Loy ()X, Y1
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We have a similar proof for the second estimate. ]

We obtain the following consequences.
Corollary 3.4.1. Forany f € C([—1,1] x [—1,1]), any § > 0 and any n € N,

we have:
@) (Lpn(f); 8) < min {0 (an éw“‘) (f; l%)) :
0 <a)(x) <f; %) logn + o (f; %) log n) + o™ (f; 3)}
and

- 1
@ (L n(£): 8) smin{ 0l o (f; ,-‘2) ,

j=1
0] [a)(") (f; %) logn + o (f; %) logn] + oW (f; b‘)}-

Proof. It is immediate by Lemmas 3.4.1, 3.4.2, 3.4.3 for n1 = np = n and by the
fact that taking into account the technique in Shisha—Mond [92], p. 1275-1276 and
the estimate in the univariate case, we have

@) 1 o !
Ly () — fll Scl|lo fi—)logni +o fi—)logna|.
ni ny
0

Corollary 3.4.2. Let f : [—1, 1] x [—1, 1] = R be Lipschitz of order o € (0, 1]
with respect to x and y, respectively, i.e.,

[ f(x1,y) — fx2, M| < Lilxg — x2|%, Yx1,x2,y € [—1, 1],

and
|f(-x7 YI) - f(x7 Y2)| S L2|)’1 _YZ|O[, sz V1, Y2 € [_1’ 1]

Then, foralln € N, §,n € (0, 1) we have:

oLy n(f); 8, 1) < Clmin{dn, n"* logn + 8%}
1
+min{nn, n”%logn + n*}l, lfz <a<l;

o(Lnn(f);8,m) =C |:min {M logn, logn + \/g}
Jn

1 1
+min{nnlogn, % +ﬁ}:| ifa = z;

(L (f); 8,n) < Clmin{sn>~>* n~%logn + 5%}
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o

1
+min{nn® 2%, n"%logn + n*}], if0 < a < X

Proof. By Lemma 3.1.1,(i) we have
@ (L ny ()3 8,1) < @ (L, 1y ()3 8) + 0 Ly iy ()i )

(actually @ (Lpy .y (f); 8, 1) ~ [0 (L ny ()5 8) + @) (L, 1y (f): 7)1 which jus-
tifies the method).
Because in general we have

no Omn'~),if0<a <1
> — =1 0ogn), ifa=1
i=1 C>0, ifa>1
it follows |
n? 2 if0<a < -
69) . 1
n N ,— <C 1 Jifoa == ,
Z < ) nlogn, if o 5
n, if-<a<l
2

forz :=x,z:=y, f € Lipa with respect to x and y.
Takingnown = n; = n in Lemma 3.1.1, by Corollary 3.4.1 we get the statement
in corollary. U

Now, we are in position to prove the following global smoothness preservation
property.

Corollary 3.4.3. Let f : [—1, 1] x [—1, 1] — R be Lipschitz of order a € (0, 1]
with respect to x and y, respectively, which obviously is equivalent to

o(f;8,n) <C@*+n%), ¥8,n>0.
Foralln e N, §,n € (0, 1), we have:

©(Lnn(f):8,n) = E(, §) + E(a, 1).

Proof. By Corollary 3.4.2 and reasoning exactly as in the univariate (for example,
if 1/2 < a < 1, then we consider separately the cases én < n~“logn, én >
n~%logn, nn < n~%logn, nn > n~%logn), we immediately obtain

@(Lpn(f);8,m) = E(a,8) + E(a, n). O

Remark. The method applied for Hermite—Fejér interpolation polynomials in
Section 3.2, unfortunately does not work for Lagrange polynomials. As a consequence,
the case n1 # n» still remains open for Lagrange polynomials.

For the case of Bogel modulus of continuity, reasoning exactly as in the previous
Section 3.2, we immediately get the following.
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Corollary 3.4.4. If G € D, p, G(x,y) = F(f(x)g(y)) then

0B (Ly, 1, (G); 8, 1) = E(a, 8)E(b, ).

Remark. All the above results can easily be extended for m variables, m > 2.

3.5 Bibliographical Remarks and Open Problems

All the results in this chapter except those where the authors are mentioned belong to
Gal-Szabados [58].

Open Problem 3.5.1. Prove global smoothness preservation properties for the
Shepard operators Sy, ,,,.(f)(x, y) in Theorem 3.3.3 and for the Lagrange polyno-
mials L, »,(f)(x,y) in Lemmas 3.4.1-3.4.3, for the general case n; # n». (The
particular case n; = nj is solved by Theorem 3.3.4, Corollary 3.3.2 and Corollary
34.3)

Open Problem 3.5.2. For the bivariate tensor product Shepard operators on the
semi-axis, generated by the univariate case in Della Vecchia—Mastroianni—Szabados
[36], prove global smoothness preservation properties.

Open Problem 3.5.3. For the kinds of univariate Shepard operators considered
by Chapters 1 and 2, various bivariate combinations different from those considered
by Chapter 3 can be considered as follows.

We suppose that all the kinds of Shepard operators are defined on equidistant nodes
in the interval [—1, 1] x [—1, 1], i.e., are of the form x; = %, k=-n,...,0,...,n
and y; = %,j =-m,...,0,...,m.

Type 1. “Original Shepard—Lagrange operator,”

Sup L () Y) =Y Sinp(x, YL (£, ¥),

i=—n
where

[((x —x)2+ O —y)?7
Sl = x0)2 + (v — y)2P

si,n,p(xvy)= p>27p€N’

and L) (f)(x,y) is the polynomial defined as in, e.g., Coman-Trimbitas [27], on
page 43.
Type 2. “Tensor product Shepard—Lagrange operator”

Sn,m,Zp,Zq,nl Ry (I, y)

n

m
=3 $in2p ()8 j.m 2g DLl iy ()X, ¥), g = 2,

i=—n j=—m

where
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(x —x;)72P
Sim2p(X) = —p———,
Y r—x)
k=—n
=y~
Sjm2q () = — ! .
Y-y
k=—m

and o
Lyi ny ()2, )

X an u; (x) vi(y)
- Z . 7 (x ) I S i, Yip),
V=0 =0 (x — -xl+V)ui(xl+U) y— y]+u)vj(y]+ﬂ)

withu; (x) = (¥ = x;) -+ (X = Xign) ), V(W) = (Y =) -+ (Y = Vjmy) and x4y =
Xvs Yno+p = Yu-
Type 3. “Tensor product Shepard—Lagrange-Taylor operator”

Sn,m,Zp,Zq,nl Rp) (Hx,y)

n m
=Y > sin2p@)sjmag ML ()G, y),  pg =2,

i=—n j=—m
where o — xi)_zl’
si,n,Zp(x) = ,
Y —x)
k=—n
(y—yj)~
Sj,m,2q (x) = — / s
Y —wH
k=—m
and
ny np
i\ j u; (x) v =y " f(Xitv, ¥j)
LTy (f)(x,y) = ’ : =
e ; l;) O = xip)u; (Xign) () dyt

Obviously, if we change the place of x and y, then we get the “tensor product
Shepard-Taylor-Lagrange” type operator, which is similar.
Type 4. “Original Shepard-Taylor operator”

Sup T (@) =D st p (2, )T ()X, ),

i=—n

where
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p>2,peN,

)

[(x —x)>+ (v — y)?17P

Dol —x)* + (=177

k=—n

Si,n,p(X, y) =

and ( Y ( )T f( )
Trili(f)(x, y) _ Z X —r!x1 y S!yj 8){;;;;})1

r+s<m;

Type 5. “Tensor product Shepard—Taylor operator”
Sn,m,Zp,Zq,n,n,...,nn,m,m,...,mm (Hx,y)

n

m
=y $in2p ()8 jm 2g DT Tl ()6, ¥), prg =2,

i=—n j=—m

where
(x —x;)7%P
si,n,2p(x) = ,
Y r—x)
k=—n
-y
Sj.m,2q (x) =" / s
Y-
k=—m
and
—x)" (y — yp* 0V f(xi, y))

i B n;  Mj (x
TTn,',mj'(f)(-x’ Y) _ZZ (U)‘ (M)! axvayﬂ

v=0 u=0
Type 6. “Shepard—Gal-Szabados—Taylor operator”

Sn,m,p,n,n,...,nn,m,m,“.,mm (f) ()C, y)

Y3 M@ = x5 = ) TP T Ty (). Y)
i=—n j=—m

DD M —x) (=)

i=—n j=—-m

where
i o~ g ()" (0 = )" 8 f G )
TTn, (N0 = 3 30 S i P S e

v=0 u=0

It would be interesting to find global smoothness preservation properties (with
respect to various bivariate moduli of continuity) of the above six types of bivariate

Shepard operators.
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Open Problem 3.5.4. Starting from the local variants of Shepard operators in the
univariate case defined in Open Problem 1.6.13 (Chapter 1), local bivariate tensor
products can be defined as in the above Open Problem 3.5.3.

The problem is to find global smoothness preservation properties (with respect to
various bivariate moduli of continuity) of these local bivariate Shepard operators.



4

Partial Shape Preservation, Bivariate Case

In this chapter we extend the results of Chapter 2 to the bivariate case.

4.1 Introduction

As it was pointed out in Chapter 2, it is evident that because of the interpolation
conditions, the interpolating operators do not completely preserve the shape of an
univariate function f, on the whole interval that contains the points of interpolation.
A key result used in the univariate case for the proofs of qualitative-type results, is
the following simple one

Lemma 4.1.1. (Popoviciu [81]). Let f: [a,b] > Ra <x; <xy < -+ <x, <
b and F,(f)(x) = Y1 hi(x) f(x;), where h; € C'la,b] and Y '_; hi(x) = 1,
Vx € [a, b].

(i) We have

n—1

Fp(H@) =Y | =D R0 | Lf (i) = £O)].

i=1 j=1

(ii) If there exists xo € (a, b) such that h’1 (x0) < 0, h},(x0) > 0 and the sequence
h'y (x0), h%(x0), ..., h,(x0) has a unique variation of sign, then

i
—Zh/j(xo) >0, foralli=1,n-1,
j=0

and consequently by (i) there exists a neighborhood V (xo) of xo, where the mono-
tonicity of f assumed on the whole [a, b] is preserved.

In this chapter qualitative and quantitative results for bivariate Hermite—Fejér
polynomial and Shepard operators are obtained. New aspects appear because of var-
ious possible natural concepts for bivariate monotonicity and convexity. Also, three
different kinds of bivariate Shepard operators are studied.



92 4 Partial Shape Preservation, Bivariate Case

4.2 Bivariate Hermite—Fejér Polynomials

Ifg:[-1,1] > Rand —1 < X < Xy—1,0 < --- < X1, < 1 are the roots of Jacobi
polynomials Jn(“”6 )(x), then it is well known that (see, e.g., Fejér [43] or Popoviciu
[81]) the (univariate) Hermite—Fejér polynomials based on the roots above are given
by Fu(g)(x) = 3 [y hin(x)g(xin), where

_ ZZ(xi,n)

) — g2 .
hz,n(x) = g,,n(x) |:] E;,(xi,n)

(x — xi,n)i| ,
£y (x)

bin(x) = —— 22—
o (x — xi ), (Xin)

() = [ JOr = xin).
i=1

We have Y '_ | hjn(x) =1, forall x € [—1, 1].
Now, if f:[—1, 1] x [—1, 1] — R, then according to, e.g., Shisha—Mond [92],
the bivariate Hermite—Fejér polynomial is defined by

ny np
1 2 1 2

Fupns (D)@ 3) =Y 3 i) h) 0 f () x) .1

i=1 j=1

1 I — 2

where h{) (x),x{,) i =T.njandh'’) (y)andx

univariate case above, ni, ny € N.

We easily see that

@

o Jj = 1, ny are defined as in the

1 2 1 2 . - . e —
Fupny (D 62 ) = fef)) 62 ), Wi =Ton, j=Tom.

iny’ Jsn2

The key result of this section is
Theorem 4.2.1. With the notations above, we have

2Fy (Y Sy ey (R
s BN | POTHATY B DO DLt

i=1 L\ p=1 j=1 \g=1
1 @ O]
'(f(xi,nl’ xj,nz) - f(xi,nl’ xj-i-l,nz)

) 2 (D (2)
e x4 e x,-H,nz»”.

Proof. We observe

ny np
8Fn|,n2(f)(x’ )’) Zzh(l) (x)h(2) (y)f(-x(l) x(2) )

ax = i,ng J:n2 i,ny’ " jn2
i=1 j=1

ni

ny
= (Z WY () f iy, x ,-,,,2)> h'?) (v)(by Lemma 4.1.1 (i) )
j=1

i=1



4.2 Bivariate Hermite—Fejér Polynomials 93

ny Fnp—1 i
1) (€] 2) (€8] ) (2)
=Z[Z RO ) | (P xin ) = FO 0 x ,,12»] i ()
=1

j=1ti=1

i
N4 (2) M (2) (1) (2)
SO PIAE {thm(ﬂw )= 162l
p=1

i=
It follows that

ni—1

02 Fyy iy (F)(x, y) oy I
la;ay = Z[ S h0 @) .{;hjm(y)

i=1 p=1

/
(fa) ;2;2) f(xl.(_lk)l’nl,xfzz))” (by Lemma 4.1.1 (i))
y

— ny—1 J
1 2
Z Zhé)m(x) DI DILNCH
i=1 p=1 j=1 q=1
(1) (2) (1) (2) (1) 2 (D (2)
'(f(xi,nl Js nz) f(xi—i-l,nl Js nz) f( i,ny’ /+1,n2) + f(xz+l np’ /+1 nz))
which proves the theorem. ]

Also, we need the following:
Definition 4.2.1. (see, e.g., Marcus [71],p. 33). We say that f : [a, b]x[c,d] = R
is bidimensional or hyperbolical upper (lower) monotone on [a, b] X [c, d], if

A, yia. )= flx+o,y+p)—fx.y+ B - fx+a,y)+ fx,y) =0

(< 0, respectively), forall o, 8 > 0 and (x, y) € [a, b] X [c, d] such that (x + o, y +
B) € [a, b] x [c,d].

Remark. If f € C%([a, b] x [c, d]) and % > 0, for all (x, y) € [a, b] x

[c, d], then f is bidimensional upper monotone on [a, b] X [c, d] (see, e.g., Marcus
[71D.
Corollary 4.2.1. Let n1 = 2p1, np = 2pa be even numbers and let us consider

the bivariate Hermite—Fejér polynomials Fy, n,(f)(x, y) given by (4.1), based on the
(1)

roots x; .,

i = 1, ny of Ai-ultraspherical polynomials of degree ny with Ay > —1 (i.e.,

TP sith oy = B, =1+ 1+ 1, —1 <ap, f1 < 1)
, j = 1,ny of My-ultraspherical polynomials of degree n»,

the Jacobi polynomials
(2)
jna
Jrg‘zlz’m): A > —l(ie,ap =P, A =0a2+B2+1, —1 < oy, B2 < 1). There exists a
constant ¢ > 0 (independent of f andny, ny) suchthatif f: [—1, 11x[—1, 1] = Ris

bidimensional monotone on [—1, 1] x [—1, 1], then F,;, n, (f)(x, y) is bidimensional

monotone (of the same monotonicity) on (—n%, n%) X —n%, n% .

and on the roots x;

2 2
Proof. By the proof of Theorem 2.2.1 (see relation (2.2) and the last relation
there), we have
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i J
Do, @) >0, Y hB (>0, Vi=Tn —1j=Tn—1,
p=1 g=1

Vx € <) el
'x - ’_ b __’_ .
Pl A WA

Taking into account Theorem 4.2.1, we obtain

9*F, ,
el o o vy e (<5 5) < (-5 5).
xdy nini) "\ nd

which by the Remark after Definition 4.2.1 proves the theorem. |

Corollary 4.2.2. Let us consider Fy, n,(f)(x,y) given by (4.1), based on the
Jn(tlrl,ﬁl) J;gz,ﬂz)

AR

roots of Jacobi polynomials , of degree n1 and n», respectively, with

ai, Bi € (—1,0],i = 1, 2. If€ is any root of the polynomial Zgll)/(x) andn is any root of
. Q) 1 1 2 2

the polynomial ﬁf,z) (v) (here Zﬁ,l) () =TTL, x —xl.(’n)l), Eﬁ,z) ) = ]_[72:1 (y —x;‘)lz)),

then there exists a constant ¢ > 0 (independent of ni, ny and f) such that if f is

bidimensional monotone on [—1, 1] x [—1, 1], then F,,, n, (f)(x, y) is bidimensional

monotone (of the same monotonicity) on

Ce Ce Cy Cy 11 11
S_ 7+2V1’§+ T+2y1 X \n—= 7+2},2,77+ T+2v2 C(_’ )X(_a )7
ny ny i) )

where

Cc Cc .
Ce = (1 _52)5/2+31 » Cp = (1 _n2)5/2+821 Vi :Inax{a,', ,Bi}vl =1,2

and

5= Lon ifo<&<1
T AL if-1<g <0,

5, — 192 ifo<n<1
27 B if—1<p<o.

Proof. An immediate consequence of Theorem 4.2.1 above and of Theorem 2.2.2.
O

Remarks. (1) Because Z,(lll)/ and E,(,zz)/ haveexactlyn;—1andny—1rootsin(—1, 1),
respectively, it follows thatin (—1, 1) x (—1, 1) there exists a grid of (n] — 1)(np — 1)
points (&, ) from Corollary 4.2.2.

(2) From Remark 1, after Theorem 2.2.2, it follows that if & and » are near the
endpoints in the ultra-spherical case, for example, (i.e., o; = B; € (—1,0),i =
1, 2) then the best possible bidimensional interval of preservation of bidimensional
monotonicity is (§ — ?,E - é) x (n — n‘—%, n— n‘—%)
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In what follows we will extend the convexity problem from the univariate case.

In this sense, we need the following.

Definition 4.2.2. (see, e.g., Nicolescu [76]). We say that f: [—1, 1] x [—1, 1] —
R is strictly double convex on [—1, 1] x [—1, 1], if Ai’ly[Aﬁ’; f(a,b)] > 0, for all
hi,hy >0, (a,b) € [—1,1] x [—1, 1], witha £ hy, b+ h; € [—1, 1], where

Azxf(Ot B) = fla+ha, ) =2f(a,B) + fla —h2, B)

and

Af,}yf(% B) = fla,B+h1)—2f(a, B)+ f(e, B— hy).

Remark. By the mean value theorem it is easy to see that if ot 2(3‘ . ) (x,y) >0,

for all (x, y) € [—1, 1]2, then f is strictly double convex on [—1, 1]2.
Now, let ny, ny > 3 be odd and let us consider as Fy; »,(f)(x, y) the Hermite—

Fejér polynomial given by (4.1), based on the roots xl.(’ln),i =1,ng andx;?gz, j=1,n>

of the Aj-ultraspherical polynomials p( 2

A
P}’Ez 2)

of degree n| and Aj-ultraspherical poly-

nomials of degree nj, respectively, A1, Ao € [0, 1], and the Cbtes—Christoffel
numbers of the Gauss—Jacobi quadrature

T/ \17%T A
W0 = hig e (AL | TR A gy
I -\ 2 T + 1) i
P N2 i =T,
- 1-2
B A T(ny + A2) B
2) 2—A 2 2 2 2)
A =02 r{—= A i
@ d| (2) e

1P ()12, j=Tona.

Theorem 4.2.2. If f € C([—1, 1] x [—1, 1]) satisfies

o A% £(0,0)

YD kA, A% —i—— > 0 42)
i,n1”j, nz (2) (1) (2) 9 ’ '

i=1 j=1 ( ing j "2)

then Fy, n, (f)(x, y) is strictly double convexin V (0, 0) = {(x, W x24+y? <d? )

ni,nn
with
|y s |
n—1 np—l
2 2
M, 2, n_@
ming 3 3 A AL A (AT SO0/ G x5 )2
1= J= /”2 i,ny
Z Cf,)\l,)\z (nl +n2)5 )

where c f,3, 5, > 0 is independent of ny and n;.
Proof. We observe
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po Fyo ny nj
s = St (St sl o)

j=1 i=1

and reasoning as in the proof of Theorem 2.2.3 in (see relation (2.7) there) we obtain

9*Foy 0y (1)(0, 0)
ST Zh?iz«» thifl OA%, £0.57)
ni

n1—1

Denoting G(y) = 2 hl“,fl ) - A% 20 £0, ), we get
i=1 tnl

@
3 Fuy na (1)(0,0) & Q" ) @)
laxzz—ayz = Zhj WG 5) = Z h nz(O)A o GO)
j=1 j=1 i
np—1 ny—1
g ) 0" AZX
= > DAL O OA%S (A% £0,01.
j=1 i=1 / n2 t M
Therefore, again by relation (2.7) and by hypothesis we obtain
0* Fy.ny (/)(0.0) A RITUINCIN
1ax228y2 = c3hihonng Z Z)‘l ”1)\'] '12 <2)
i=1 j=I
2) (1
(A% O, 000/(x) xi,)* > 0. 43)
1 nl
Soitfollows that F;,, »,(f)(x, y) is strictly double convex in a neighborhood of (0, 0).
Let (&t .nys Bny.ny) be the nearest root of %220‘) to (0, 0), in the sense that the

distance dy, n, = /@2, ,, + B2, ,, is minimum for all the roots of %22(1‘) Then,

for all (x,y) € V(0,0) = {(x,y) € R?; V/x2 42 < dn,.n,} We necessarily have

9 Fuy ny () (x.,3)
9x29y2

9 Foy iy (£)(0,0)

9x29y2 B

> 0. By the mean value theorem for bivariate functions we get

8Fn1,n2(f)(07 0) . 84Fn1,n2(f)(an1,nzv ﬁnl,nz)
9x29y? 0x29y?

3 Fay o ()€, ) 3 Fay o ()€, )
dx39y?2 9x29y3

< Idnyn |- [ O Fuymy (NE M| [ Fayny (N)E. 1)

dx39y? 9x29y3
Because degree (F, 1, (f)) < 2n1 —1+2n2 — 1 = 2ny + 2n, — 2, we have degree

85 Fy 35 Fy .
(Wi;ﬁ) < 2n1 + 2ny — 7, degree (W;;f)) < 2n1 4+ 2ny — 7. As in the

=< |05n1,n2| :

+ |/3n1,n2| :

+
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proof of Theorem 2.2.3, we can assume that the interval of convexity cannot be larger
than [—fl—ll, :Tll] x [—%, %] Consequ;ntly, we may assume that |d, n, | < ]
Now, by the Bernstein theorem in Kro6-Révész [67], p. 136, relation (8), we

obtain

aanl,nz(f)(Ea n)

9x30y2 <cQ@ni +2ny —7)(2ny +2ny —6)2ny +2n, —95)

‘2ny +2n2 —4)(2n1 4+ 2np = 3) - | Fuy o llcq=1,11x1-1,17)
<c(ny +n)’- 1 Fny o lcq=1,11x[=1,17)-

But because by Fejér [43], the fundamental interpolation polynomials hﬁ,l,fl (x) and
h? (y)are > 0,Vi = T,n;,Vj = 1,n2, ¥(x,y) € [—1, 1] x [—1, 1], denoting

J-n2

My = | fllcq=1,11x[~1,1]), it follows that

1% Fayons (). )|

9 Fuyny (). 1)
| 9x30y?2 ‘

0x29y3

< c(n +n2)>My, <c(n +nm) My

and consequently

34 Fy, ., (£)(0, 0)

axzayz S Cf(nl + n2)5dnl,n27

where ¢y > 0 is independent of 71 and n; (but dependent on f).
Combining this estimate with (4.3), we easily get the lower estimate for |dy, n, |
in the statement of Theorem 4.2.2. ]

Remarks. (1) As in the univariate case, the neighborhood V (0, 0) of preservation
of strict convexity depends on f too.

(2) The estimate of |d,, n,| in the bivariate case seems to be weaker, in a sense,
than that of the univariate case, because it was not proved yet to be a Stechkin-type
inequality for bivariate polynomials. That would be useful for a better estimate.

B)If f: [—1,1] x [-1, 1] — R is strictly double convex on [—1, 1] x [—1, 1],
then the condition (4.2) is obviously satisfied and consequently Fy,, », (f)(x, y) pre-
serve the strictly double convexity in a disc centered at (0, 0), having forits ray |dy; »,|
the lower estimate of Theorem 4.2.2.

(4) Let Fy, n,(f)(x. y) be given by (4.1), based on the roots x{,) , i = T,
and x;?zz, Jj = 1, ny of the Aj-ultraspherical polynomials P,flm and X,-ultraspherical
polynomials Pn(zm , respectively, where A1, Ap € [0, 1]. Because by Fejér [43], the

polynomials h;l)l(x), hf’)u(y) >0,Vi =1,n,Vj = 1,n, V(x,y) € [-1,1] x

n

[—1, 1], by the formulas

aPF, : l 2 9Ph'? (y)
ninn ()X, ¥) :th @) Z 2 e @
i=1

9vP i,n JvP iny " jna’ |0
y =1 y
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p = 1, 2, from the univariate case in Section 2.2, the following results are immediate:
If f(x,y) is nondecreasing with respect to y € [—1, 1] (for all fixed x € [—1, 1]),
then for n1, n, € N and 7 root of Pn(;‘z) (»), Fny .0, (f)(x,y) is nondecreasing with
respect to

ve(n— -+ ot
n;+2yz ’ n;-ﬂyz ’
for all fixed x € [—1, 1] (here ¢, and y, are given by Corollary 4.2.2).

If f(x, y) is strictly convex with respectto y € [—1, 1] (forall fixed x € [—1, 1]),
then for all n; € N, arbitrary and ny € N, ny > 3, ny odd number, there exists a
neighborhood V (0) of 0, such that for all fixed x € [—1, 1], Fy,; ., (f)(x, y) is strictly

convex with respect to y € V (0).

P
Similar results hold if we consider W, p=12.

(5) All the results above can easily be extended for n variables, n > 2.

4.3 Bivariate Shepard Operators

For the three types of bivariate Shepard operators considered in Section 3 of Chapter
3, we prove here that preserve natural kinds of bivariate monotonicity and convexity
in the neighborhoods of some points and quantitative estimates of the lengths of these
neighborhoods are obtained.

Let us first consider the bivariate Shepard operator defined as a tensor product by

SEOSfix )= Y sia (s f @i, v, if (n, y) # (i ),

i=—n j=—m

Sff,\m“)(f;xi,yj) = f(xi,yj), where 1 < A, u, -1 < x_ < -+ < x, <1,
1<y pu<--<ypy<land f:[-1,1] x[-1,1] = R,

sia(x) = |x —xi| 7/ [ Yol —xw] :

k=—n

m
i) =1y —yil™"/ [ doly- }’k|_M:| .
k=—m

The global smoothness preservation properties and convergence properties of
these operators were studied in Section 3 of Chapter 3. In this section we consider
their properties of preservation of shape.

In this sense, a key result is the following.

Theorem 4.3.1. With the notations above, we have:

n—1 m—1 i

azsr(lk;nu) X, i / /
,3x(3j; =) Dol @] - D s

i=—n p=—n j=—m q=—m
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X(f(xiyyj) = f&xi, yj+1) — f&is1, yj) + f (it i)

Proof. We observe

S()“l/-)
M Z Z $i0. (085 () f (i, 3))

i=—n j=—m

> (Z s) (0 f (i, yj)) s;,u(y) (by Lemma 4.1.1)

j=—m

m n—1 i
=Y D= D0 s | (Fipn y) = f G y) | 5 ()
j=—m | i=—n p=-n
n—1 i
=Y |- s Z i) X (f (i1, y) = (i, 3)).
i=—n p=—n j=—m
It follows
28 (fix,y) e . L
T axdy 2o 2 @] X s

i=—n p=—n j=—m

X(f(xit1, ) — f(xin ¥j)),

which by the above Theorem 4.1.1, immediately implies the formula in the statement.
|

Corollary 4.3.1. Let f : [—-1,1] x [-1,1] - R, A =2p,u = 2q,p,q €N,
xi=i/ni €{—n,....n}, yj = j/m,j€{—m,....m} L ,(x) =37 __, (x—
x;))72P, Img(y) = Z'}L_m(y—yj)_zq. If& is any solution of the equation ln‘p(x) =0
and n is any solution of the equation l;n’ ¢(¥) = 0, then there exists a constant
¢ > 0 independent of n,m and f, such that if f(x,y) is bidimensional monotone
on[—1,1] x [—1, 1], then S,(l),”,’,l“)(f; x, y) is bidimensional monotone (of the same
monotonicity) on

(& —c/n*PP3 &+ c/n?PP3) x (n —¢/m* 3+ c/m*M ) C (=1, 1) x (=1, 1).

Proof. It is immediate by Theorem 4.3.1 and Theorem 2.3.3. (|

Remark. Because by Remark 1 after Theorem 2.3.1, each equation 11/1, p(x) =0,
l,/”’ q (y) = 0has 2n, respectively, 2m solutions, it follows that in Corollary 4.3.1 there
exists a grid of 4mn points (&, n).

In what follows, we will extend the convexity problem from the univariate case.
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Corollary 4.3.2. Let f : [—1,1] x [-1,1] = R, A =2p, u = 2¢q, p,q € N,
xi=i/ni€{-n,....,nLy;=j/m, j€ {—m,...,m}.IfAfl’y[Ai’xf(O, 0)] >0,
for all h,k € (0, 1] then S(A “)(f; x,y) is strictly double convex in a bivariate
neighborhood V (0, 0) of (0, 0).
Proof. We observe

m

345,(1)\,#) X " . "
W = Z 8. () Z $i ) f(xis yi) |-

j=—m i=—n

Reasoning as in the proof of univariate case of Theorem 2.3.2 , we obtain

r+s ()\9I'L) . mn
0 Sn,m (f’ 0’ y) — Z ](é;)/,(y) |:Z S(r)(())f(-xi’ y]):|

ax"ay’

j=—m i=—n

0 St (f12.0) _ . .
= T Z 55.(0) Z s @) f iy | =0,

j=—m i=—n

forallr e {1,...,2p—1},s €{l,...,2qg — 1}, (x,y) € [-1,1] x [—1, 1], and

9228010 (£10,00 Z s 0) [Z s O f (i y)) }

dx2ray2a

j=—m i=—n

— Z S(2q)(0)2 (217)(0)A2)Cf(0 y]) = A.

]——m
Denoting
G(y) = Zs‘z”)(om“f(o »)
we get
2o 29)
=y s (0>G(y,)—Zs 2(0)A3,G(0)
j=—m j=1
o 2 2 2
=3 s PO AT AL (0,00 > 0,
j=1i=1
by hypothesis.

As a conclusion,
92 +24 5110 (£10,0)
x2ry2a

which implies that there exists a neighborhood V (0, 0) of (0, 0) such that

> 0,

82p+2q S}g):;nﬂ) (f’ x, y)

0x2ry2a >0,
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for all (x, y) € V(0,0).

Denote by Vy the projection of V (0, 0) on the OY-axis and by V, the projection
of V(0, 0) on the O X-axis. Firstly let y € V), be fixed. Reasoning as in the univariate
case, from the above relations it follows that (0, y) is a minimum point for

2P 122551 (£ x, y)
3x2p—28y2q

s

82p+2q ZS()L ll)(f x ))
9x2r— 23y2‘1

and since by the last relation
follows that

is convex with respect to x € Vy, it

92225510 (f1 x. y)
3x2p723y2q
for all (x, y) € V(0,0), with x # 0.
Now, let x € Vi, x # 0, be fixed. Reasoning for
similarly we get

> 0,

922250000 (fox )
3x2p—23y2q

as above,

32p 242qg— 2S(A lt)(f x, y)
9x2r— 28y2q -2
for all (x,y) € V(0,0), withx # 0and y # 0.
Reasoning by induction, finally we arrive at

>0,

9SS (fx, )

9x29y? >0,

for all (x, y) € V(0,0), with x # 0 and y # 0, which proves the theorem. [

As an immediate consequence of the univariate result, for the bivariate tensor
product Shepard operator, we obtain the following quantitative version of Corollary
4.3.2.

Corollary 4.3.3. Let f : [—1,1] x [-1,1] = R, A = 2p u, =2q,p,q €N,

xi=i/niel=n,...,n)y;=j/m, je{-m, . .. m}If AT IAZF£(0,0)] > 0,
forall h, k € (0, 1] then S()” ”)(f; x,y) is strictly double convex in the bivariate
neighborhood of (0, 0), V(0,0) = {(x, y); x> + y* < d?,,}, with

Cpg Ty Yy ATTIAT £0.001/ (77 v}
[n2P T 1 m2q+11||f|| ’

dn,m >

where cp 4 is a constant depending only on p, q.
Proof. From the proof of Corollary 4.3.2 and from the univariate case we get

920205, (£5.0,0)
0x2P9y2q

j=1li=1

n m
> cpq D ALTIAY F0,001/05"y") > 0.

i=1 j=1
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9202050500 (f3x,)
Let (@n.m, Bn.m) be the nearest root to (0,0) of W’Z‘{)

that the distance dp,, = (a2, + BZ,)'/? is minimum for all the roots of

225 (fix,y)
x2P 3y

92020 5,750 (fix.y)
9x2P 9y

, in the sense

. Then for all (x,y) € {(x,y); (x2 + yz)l/2 < dy,m}, We neces-

sarily have > (. By the mean value theorem for bivariate functions,

we get

0242800 (£10,0) 9225500 (110,00 9228 (f: atnms Bum)
9x2ry2a N ax2ry2a 0x2r9y2a

2Pt ST (f1 5 )

922t S (f1 6 m)
< lotn,ml 8x217+18y2‘1

3x2pay2q+1
< |dn,m| |: :|

taking into account the proof of Theorem 2.1 in Della Vecchia—Mastroianni [33],
p- 149, too (see also the proof of Theorem 2.3.4). O

+ 1Bl

A,
9221 gt (g gy
ax2pay2q+l

Q2SI (f1 8 )
8x2p+lay2q

2p+1 2g+1
=< |dn,m|[n Pt +m at WA,

In what follows, let us consider the original bivariate Shepard operator introduced
in Shepard [91] by

Su2p (N, y) = D s (9 f @i o), i (6, y) # (i i),

i=1

Sn2p(f)(xis yi) = f(xi, yi), where p € Nisfixed, f : D - R, D = [a, b] x[c, d],
(xi,y)eD,i=1,....,n,x1 <+ <Xp, V1 < -+ < Yn,

PP y) = [ = x)% + (v = y) TP/ (e ),

n
BP0y =3 [a—w?+ o -] "
i=1

Convergence properties of this kind of operators can be found in, e.g., Gonska
[60], Farwig [42], Allasia [3], [4], while global smoothness preservation properties
have not yet been proved.

On the other hand, concerning the partial shape-preserving property we first can
prove the following qualitative results.

Theorem 4.3.2. If f : D — R, D = [a,b] X [c,d] is such that f(x,y) is
nondecreasing as a function of x (for each fixed y) and nondecreasing as a function
of y (for each fixed x ), then for any point (§, ) € (a, b) x (c, d) that is a solution of
the system of equations
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AP (x.y) A (x,y)
— O, — O,
ax ay

there exists a neighborhood V (€, 1) of it (depending on n and p but independent of
f) such that S, 2, (f)(x, y) is nondecreasing as a function of x and as a function of

yonV(,n).
Proof. By using Lemma 4.1.1, (i), we get

n— (2p)
08025 ()X, ) ‘ ds,, (x |
PT — E _ E

i=1
'[f(xi+]a }’i+l) - f(xi’ i)]7

n— (217)
0Su2p(H0.Y) | o 95 <x )
ay a ; Z
-[f(xz'+1, yi+1) = fxi, }’i)]~

By hypothesis,

S &g, yiv1) — f i, yi) = f i1, yie1) — Fxir, yi) + f K, vi)
—f(xi,y)) >0, foralli=1,n—1.

Let (¢, n) € (a, b) x (¢, d) be a solution of the system in the statement. Because
(2p) o
35,!71- (Hx,y) . —2p(x —xj)[(x — xj)2 4+ (y— yj)z] p-1
- 2
0x 677 (x, y)
ap(2P) R
P @ — ) 4+ 0 =y’

(e3P (x, y)I?

and

Isp (DY) =2p(y = yplx = x>+ (y = y)*T !
9y 6, y)

2p)
B i S O I
2
[e3? (x, y)]?

’

we immediately get

a5yt (8. m) s (€. )
_— <0, —————=>0,
0x 0x

a5, (€. 1)

sgn
g 0x

=sgn(x; —§)
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and
a5 (€. ) s (&, )
—ay <0, e >0,
A )
sgn oy =sgn(y; —n).

By Lemma 4.1.1,(ii), we easily obtain

as@”)(s m as@”)@ )

—Z —Z >0, Vi=T,n—1

and consequently

aSn,2p(f)(x7 y) -0 asn,Zp(f)(xv y)
dx ’ dy

>0, V(x,y)eV(E.n

which is a neighborhood of (&, ).
The theorem is proved. g

Remark. A natural question is whether or not the system in the statement has
solutions in (a, b) x (c, d). For some particular choices of the nodes xi, v, k = 1,n,
a positive answer can easily be derived.

Thus, let us first consider the case [a, b] = [c, d] and x; = yi, k = 1,n.

An easy calculation shows that it is equivalent to the system

n

Z X — Xk -0
=l =)+ (v — 2t

n

Z Y = Yk —0
— [(x —x0)2 + (v — y)? P!

Taking now x; = yx, k = 1, n and subtracting the equations, it necessarily follows
X =y.

Replacing in the firstequation of the above system, we obtain » W =
0, which is exactly equation (2.12) in the proof of Theorem 2.3.1. But according to
Remark 1 after the proof of Theorem 2.3.1, equation (2.12) has 2n solutions. So,
the above system has in this case 2n solutions of the form (&, &). Another particular
choice would be [a, b] = [c,d] =[—1, 1] and x} = —y, k = 1,n.

In this second case, by adding both equations we necessarily obtain x = —y, that
is, replacing in the first equation we easily obtain the equation

n

O T
T2 ol
k=1 (% +xp)pt!
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Denoting F(x) = > j_ 1@’
there exists £ € (x1, x,) with F (&) = 0, and as a conclusion, this (£, &) will be a
solution of the system in the statement. Finally, notice thatif » = 2 and p € N,
(xk, yx) € la, b] x [c,d], k = 1, n, then (&,n) with & = ’% and n = % is a
solution.

Now, let us discuss some properties of qualitative kind of S, 2, (f)(x, y) related
to the convexity. In this sense, we will consider f: [—1,1] x [—1,1] — R, the
equidistant interpolation knots x_; = —x;, y_; = —y;, i = 1,1, xo = yo = 0 and
the Shepard operator given by

we get F(x;) < 0 and F(x,) > 0, that is,

Sn2p(f)x.y) = Z sy PG ) f (e i), 4.4)

k=—n

where sf,f )(x, y) can be written in the form

2+ y2)P[(x —x)> + (v — y)2177P
L+ 2 2+ y)PI —x)? + (v = y)?17P
Jj=—n
Jj#0

(2” '(x,y) =

4.5)

We also need the following

Definition 4.3.1. The function f: [—1, 1] x[—1, 1] — Ris called strictly convex
on[—1, 1] x [—1, 1]if forany P; = (x1, y1), P2 = (x2, »2) € [—1, 1] x [—1, 1] and
any A € (0, 1), we have

JAPr+ (1 =2)Py) < Af(P1) + (1= 1) f(Pa),

where AP| + (1 —A) Py = Ax1+ (1 = AM)x2, Ay + (1 —A)y) € (—1,1) x (—1, 1).
Remark. It is well known (see, e.g., Fleming [44], p. 114]) that if f €
C?*([—1,1] x [—1, 1]) and

Sy Py R @) 9y <a2f<x, y))2
9x2 9y2 ’ x2 dy? 9xdy ’
V(x,y) € [-1, 1]x[—1, 1], then f is strictly convex on [—1, 1] x [—1, 1]. Moreover,
if the two strict inequalities above are valid for all (x, y) € [—1, 1] x[—1, 1]\ {(0, 0)}
and w = afg(; 0 _ 0, then f is strictly convex on [—1, 1] x [—1, 1] and (0, 0)
is its global minimum point.

We present the following:

Theorem 4.3.3. Let S, 2, (f)(x, y) be given by (4.4), (4.5), with p = 1.

If f:[—1,1] x [—1, 1] = R is strictly convex on [—1, 1] x [—1, 1], then there
exists a neighborhood of (0, 0), denoted by V (0, 0) (depending on f and n), such
that Sy 2, (f)(x,y) is strictly convex in V (0, 0).

Proof. By (4.5) and by simple calculations, for all k£ # 0 we get
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0, ifk=1,2p—1

ox! 9y’ P itk =2p.
(xk + yk)p

81 (217)(0 O) at (217)(0 O)

‘We have 5 (2)
928,2()(0,0) Z 9%s, 1(0,0)

9x2 8 2 f(xka yk)

k=—n
= Xn: %f(%yk) = i%[f(xk,kaf(—xk, -]
= G ? = (5 +)?
52 <2)( 0)
+£(0,0) - —2—=—— > £(0,0) - Z

k=—n

32 (2) (0 O)
8x2

taking into account that the strict convexity of f implies f (xx, i)+ f (—xk, —y—k) >

- en 825,70 (0,0
2£(0,0) and that the identity ) ;_ (x,y) =1, implies ) j__, —=>"— =

—nSnk 9x2
#%50.2(£)(0,0)

0. Similarly, 57 > 0. On the other hand, by simple calculations we get

92512(0,0 S
3x8(v = =0, Yk = —n, n, which implies

9%8,.2(f)(0, 0)
0x0dy

=0.

So, it easily follows

9%5,.2(£)(0,0) . 928,2(f)(0, 0) - <325n,2(f)(0, 0)) _0
9x2 9y? 9xdy o

As a conclusion, there exists a neighborhood of (0, 0), denoted by V (0, 0)
(obviously depending on f and n) such that for all (x,y) € V(0,0) we have
92802(f)(x,)

Py > 0, and
2
028u2(H)0, ) BS2(Hy) _ (82Su2(Hx, y)
dx2 dy? dxdy ’
thatis S, 2(f)(x, y) is strictly convex in V (0, 0). O

Remark. Let p > 2. According to the Remark after Definition 4.3.1, it will be
enough if we will prove that there exists a neighborhood V (0, 0) of (0, 0), such that

928,25 () (x, y) o 92802 (f)(x, ¥)
9x2 ' dy?

025020 y)  S02p(H) ) <azsn,zp<f><x, y)>2’ “n
dx2 dy? dxdy

Ov
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for all (x, y) € V(0,0) \ {(0, 0)} because by relations (4.6) we obviously have
98p,2p()(0,0)  98,2p(f)(0,0)

0.
ox dy
Because of the same relations (4.6) we have
9%Sn.2p(£)(0,0) _ 9%Sn.2p(£)(0,0) _0

9x2 dy?
the idea is to prove that the functions

. 3%Sn2p(f)(x,y)
- ax2

_ 3 8u0p (N, )

F(x,y) 2y2

. Gx,y)

and

828, 2, ()(x, y) )2
dxdy

are strictly convex on a neighborhood of (0, 0), having as global minimum point
(0, 0), which would imply the required relations (4.7).

In order to prove the “qualitative result,” Theorem 4.3.3, forall p € N, p > 2,
the following three lemmas are necessary.

Lemma4.3.1.[fpeN, p>2and f:[—1,1] x [-1, 1] — R is strictly convex
on[—1, 1] x [—1, 1], then there exists a neighborhood V (0, 0) of (0, 0), such that

32Su2p()(x, y) 328 2p(f)(x,¥)
0x2 ay?

H(xvY)=F(x,y)G(x’)’)—(

>0,

>0, V(x,y) € V(0,0) — {(0,0)},

where S, 2, (f)(x, y) is given by (4.4) and (4.5).
Proof. Denoting
— x)2 — v)21P
E(r.y) = [(x %)+@ ye)“] k20,
T+ @2+ 3 [((x—x)? 4+ —y)?P

j=—n

J#0

we have sf,f)(x, y) = P(x,y) - E(x, y), where

P
P(x,y) = (x2 + y2)p — Z <ll7> 2iy2p72i

i=0

=y2p+ p x2y2p—2+ p x4y2p—4+ p x6y2p—6
1 2 3
4.+ p x2p_4y4+ p x2l7—2y2+x2p’
p—2 p—1

and E (x, y) has at (0, 0) partial derivatives of any order. Denote
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821) 2 (ZP)(x y)

Ri(x,y) = 9322 , k#0.
Firstly, by (4.6) we get
02Ri(0,0) %5 (0,0) p)!
axz dx2p (xlf + y2)P

Then

PRx,y) 9 | X 2p— 2\ P(x, y) 0P TE(x,y)
e a5

9y? par i dxt dx2p—2-i

o= 2p 2\ 9 P(y) PP EGy)
9y — dxidy dx2p—2-i
+2p 2( )81P<x y) azP”E(x,y)}
) 2p—2—i
= ax! dx“P~==~19y
2p2 2p 2 32 9P, y)] 9P E(.y)
9xt 8x2p727i
l
+22”22 2p -2 9Py 0P TEG, y)
P i y ox! dx2P—2-i9y
P2 p NG P(x,y) 9P E(x, »
+ Z axi  9xZp—2-ipy2

i=

If we take x = y = 0 in these sums, then all the terms that contain x or (and) y
will become zero, so taking into account the form of polynomial P(x, y), we obtain

2R, (0,0 1 _ 2p@2p —2)!
k(2 ):2p<§p 2)(2 21 _ r2p—2)
ady p— (k+Y)p (xk+)’)p

Reasoning for Sy, 2, (f)(x, y) exactly as in the case p = 1 (see the proof of Theorem
4.3.3), we easily obtain

32 [82P728,2,(£)(0,00] 827 Su2,(f)(0,0)

- = > 0,
dx? ox2r—2 dx2r

32 [927728,0,(£)0,00]  9%7S,2,(f)(0,0)
—_— = > 0.
dy? ax2r—2 0x2P=29y2

So, there exists a neighborhood V1 (0, 0) of (0, 0), such that for all (x, y) € V{(0, 0)
we have
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9? [BZP‘ZSn,zp(f)(x,y)] -0 9? [32”_2Sn,2p(f)(x,y)} -0

ax2 dx2r—2 3y?2 dx2r—2

On the other hand, reasoning as above, we immediately get

9ydx dx2r—2 9x2r—19y

32 [azﬂsff)(o, 0)} B 825 (0,0) .,
P28, 2p () (x.Y)

As a first conclusion, 22

of (0, 0), and because

is strictly convex in a neighborhood Vi (0, 0)

020 285,2p(£)(0,0) _ 9'71S,5p(f)(0,0) _ 92P71S,2p()(0,0) _
9x2p—2 - dx2r—1 B 9x2P=29y B

Oy

2p—2
it follows that 2231200 vix vy € V4(0,0) \ {(0, 0)).

9x2r—2
By symmetry, we get

32728, 2 (F)(x, y)
ay2p72

>0, V(x,y) e V(0,0).

Now, if p = 2 then we exactly obtain the statement of the lemma.

. . . . 2p—4 n ,y
If p > 2, then by similar reasonings as above, we obtain that %

3P 4805 () (x.3)
3y2p—4
and as a conclusion

3PS, p (F) (X, y) 0
dx2r—4 ~

and are strictly convex on a neighborhood U (0, 0) of (0, 0), etc.,

P48, 0p (f)(x, y)
>
8y2p—4

V(x,y) € U(0,0)\ {(0,0)}.

O,

’

We can continue in this way until we arrive at

825n2p(f)(xvy)
ax2

3282p(f)(x,¥)

09
> 3y2

>0, V(x,y)eV(©,0\{00} O

Lemma 4.3.2. Let p € N, p > 2. Then we have:
=0, ifr <2porr >2p.
a"s, 0,0
%— =0, ifr =2pandbothi, j are odd
1oy >0, ifr =2pandbothi, j are even.

Proof. Let P(x, y) = (x2 + y2)P. Itis easy to check that

3" P(0, 0) =0, ifr <2porr >2p.
ai—a’jz =0, ifr =2pandbothi, j are odd
oy >0, ifr =2pandbothi, j are even.
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‘We have s,(f,f)(x, y) = P(x,y) - E(x,y),Vk # 0, where E(x, y) is given in the proof
of Lemma 4.3.1, and

) . i .
UGV B (j)azp(x,w 0/ 1E(x, y)
—_— Y = B . ._ .
ax'oy’ 0x! = q ay dyi—a
which combined with the above properties of ngi_(aoy’?) and with the method of proof

in Lemma 4.3.1 (because

<a’5n’p(f)(0,0)_ "3 sCP(0,0)

axioyi = Axiayi ACYS )’k)>

proves the lemma. ]
Lemma4.3.3. Let p € N, p > 2. We have

azsn,Zp(f)(x’ Y) . 82Sn,2p(f)(xa y) _ (azsn,Zp(f)(x’ y)>2 -0
0x2 dy? dxdy ’

forall (x,y) € V(0,0)\{(0, 0)}, where V (0, 0) is a neighborhood of (0, 0) (depend-
ing on f,n and p).
Proof. Denote

H(x,y) =

02502p (N, ) 92Su2p(N, ) <82Sn,z,,(f>(x, y)>2
dx2 dy? xdy '

According to the remark after the proof of Theorem 4.3.3, we have to prove that

32H(x,y) 0
ax2 =

3

2
PH(x,y) o PHEy) PHEY) (PHEY)
9y? ’ dx2 dy? dxdy

> 0,

forall (x, y) € V(0,0)\{(0, 0)}, and that 22@0 — 3HO.0 _ ( (pecause by Lemma
y ax dy y
4.3.2 we have H(0,0) = 0).

Now, by Lemma 4.3.2 we easily get that YHO.0)

oy 0 only if r = 2p and both
i, j are even, all the other partial derivatives of H at (0, 0) being 0, so we obtain

3%P H (0, 0) 3*P H(0, 0) 3*P H(0, 0)
> 0, > 0, =0,
ax2p dx2r—29y2 dx2r—19y
2p—2 _
thatis, W is strictly convex in a neighborhood of zero. Because % =
n2p— A2p—1
0and 2 ”Bx'zf,’ e z,fggf) = 0, it follows that (0, 0) is a global minimum point,
SO
O*P2H(x, y)

o=z >0 Y y) € Vi(0,0)\ {(0,0)}.
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Reasoning by symmetry, we get

3*P~2H(x,y)

557 >0, V(x,y) € V(0,0)\ {(0,0}.

Similarly, by Lemma 4.3.2 we obtain

9P H (x, y)

Seig = 0 Y0 € Va0,00\ (0,0))

and consequently

3% [(93°P*H(x,y) 3% [(9%P~*H(x,y)

— 77 )50, — [ ———=) >0,
9x2 dx2r—4 9y? dx2r—4
V(x,y) € V3(0,0)\ {(0,0)}.

Let us denote

Hi(x,y) =

0P 2H(x,y) 9P 2H(x,y) (0**2H(x,y)\
ax2r=2  gx2p49y2 U ax2r-39y '

By the same Lemma 4.3.2, we obtain

92 H, (0, 0) . 92 H,(0, 0) o 92H1(0,0)
dx2 ’ dy? ’ 9xdy

’

that is H; (x‘, y) is strictly convex in a neighborhood of (0, 0). But H;(0, 0) = 0 and
0.0 — AO0) _ o g0 it follows that H; (x, y) > 0,¥(x, y) € V4(0, 0)\{(0, 0)}.

ax ay
. . 2p—4
As a conclusion, it follows that %

of zero, and reasoning as above, we get

is strictly convex in a neighborhood

*P4H(x,y)

Py >0, V(x,y) e Vs5(0,0)\{0,0)}.

Continuing this process by recurrence, finally we will arrive at

9*H(x, y)
— s >

%) 0, V(x,y) € V7(0,0)\ {(0,0)},

and by reason of symmetry at

3*H(x,y)

02 0, V(x,y) e Vg(0,0)\ {(0,0)},

and then get that

PHx,y) PHx,y) (32H(x,y)

2
ax2 3y2 axay ) > 0’ V(.X, }’) € VQ(O’ 0) \ {(07 0)}7
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which proves the lemma. ]

Corollary 4.3.4. Let S;, 2, (f)(x, y) be given by (4.4), (4.5), with p € N, p > 2.
If f:[—1,1] x[—1, 1] = Ris strictly convex on [—1, 1] x [—1, 1], then there exists
aneighborhood V (0, 0) of (0, 0) (depending on f, n and p) such that Sy 2, (f)(x,y)
is strictly convex in V (0, 0).

Proof. Immediate by the Lemmas 4.3.1, 4.3.2 and 4.3.3. O

Remarks. (1) The idea of the proof of Corollary 4.3.4 is in fact that in the univariate
case.

(2) The results can be extended to n variables, n > 2.

In what follows we present some quantitative versions for the above results,
on the bidimensional interval [—1,1] x [—1,1] and for x; = y; = i/n,i =
-n,...,0,...,n,ie.,

Suap(HGy) = > sy fli/n.ifn),

i=—n

where ) ,
sV, y) = [0 —i/m? + (v — i/ P12 /1P (x, ),

n
WP =3 [e—imP+o—im?] "
I1=—n
Theorem4.34.1f f : [—1, 1] x[—1, 1] — Ris such that f(x, y) is nondecreas-
ing as a function of x (for each fixed y) and nondecreasing as a function of y (for
each fixed x), then for any point (§,&) € (—1, 1) x (—1, 1) which is solution of the
system of equations

2 2
@y o )

03
dx dy

there exists a constant ¢ > 0 (independent of f and n) such that S, 2,(f)(x,y)
is nondecreasing as a function of x and as a function of y in (§ — ¢/n*PT3 & +
C/n2p+3) X (€ — C/I’l2p+3, £+ C/}’l2p+3).

Proof. By the proof of Theorem 4.3.2 and by the hypothesis on the points (&, &),
we immediately get

2 2
ds,. €. 8) sl GO —pe —i/m)!
ax dy Y, E—k/m)7
which for i = —n and i = n give the same expressions (except the constant 1/2)

with those in the univariate case in the proof of Theorem 2.3.3. Then, combining the
ideas in the bivariate case in the proof of Theorem 4.3.2 with those in the univariate
case in the proof of Theorem 2.3.3, we immediately obtain

10, &) = c/n*P), |Pj(E,E) = c/n*P), j=—n,....,0,....n—1,
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where

7 95 (x, x) I 9sPP (y, y)
Qj(x,x) =Y —o—— P =) —

i=—n i=—n

(2p)

By taking x = y in the proof of Theorem 4.3.2, we immediately get that ( all
actually is 1/2 times the first derivative of the fundamental univariate rational func—
tions s , (x) in the proof of Theorem 2.3.3.

It follows thatour QO (x, x) is exactly 1/2 times the function Q ; (x) which appears
in univariate case, in the proof of Theorem 2.3.3.

Let o be the nearest root of Q;(x, x) to § and B; the nearest root of P;(y, y)
to &.

Reasoning exactly as in the proof of Theorem 2.3.3, we get

o) &1 = —s 1B — £ = =,
which proves the theorem. ]

For the convexity result, first we need the following bivariate analogous of the
estimate in univariate case in Della Vecchia—Mastroianni [33].
Lemma 4.3.4. Foralll, k > O with | + k = q and for

@p) [(x —i/n)? + (y —i/n)?]7P
n’i (x7 )’) = (2[7) )
I (x,y)
where .
. . -P
0 = (=it o—im?]
i=—n
we have .
3757 (x, y) 2
oyt | S Crtal @)
and

098 2p(f)(x, y)
dx!oyk
where || f| is the uniform norm.
Proof. First let us denote

< cni|ifll,

D= x) I —x) + (v — )T

Fk,p('x5 }’)Z n )
Yol —x)?+ (=)

i=—n
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and x,, (respectively, y,), the closest point x; (respectively, y;) to x (respectively, y).
We have
| FepCe, I < Ix = xal 7

Indeed, by |x — x,| < |x — x;|, for all i, we get
lx — x; [ lx — x;|F

_ ok ok
(G =2+ =2 = r—xp ol = b=l

Similarly, if we denote

=yl —x) (v — )P

Gk,p(xv Y) = P s
Yol —x)?+ -y

i=—n

we get
1Grp(x, I <1y =yl 75

Now, if we denote

D= x)f =y —x) + (v — y)P1 P

i=—n

Hip,p(x,y) = o
Dol —x)’+ (=)

i=—n

we have
| Hit p(x, )] < 1x — x| ¥y — yol ™k, 1 > 0.

Then

2p)
ds, (x,y) —2p(x — x;
mi 2V pix — %) s (e, y) +2psil

ax =X+ (y— ) (oD FLp ),

which immediately implies

2
a5 (x., y)

—1. 2
o < Clx — x| 1sr(l‘ip)(x, y) < Cnsr(lf’)(x, y).

Similarly,
2
Bs,(l, f ) (x,y)

@p)
o = Cns, ;" (x, ).

Then ..
2.p
9 sn,i ()C, y)

ax2
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2
@2p) 1 2(x —xi)
=-2ps 7 (x,y) |: —
" x=x)2+ G =y)? [ —x)?+ (= 3)*T
2 2
2pc—x) ey as ey
- 2 2 +2p Fl,p(X, y)
x—x)2+ 0O —w) ox dx
2 OF1 p(x,y)
+2ps ) (x, y)g—x,

where
ol —x) 4+ =)
aFl,p(xv y) _i=-n

ox n
Yol —x) + (=)

i=—n

—2(p+1DFp(x,y)

+2plF1p(x, )12
We immediately get

8% (x. )
— L < Ol — w2 (y) < O ().

9x2
Also .
2
%5, (1Y) Ap(—x) = ¥)  ep
= 2 2 an,i (-xv }’)
dxdy [ —x)*+ (y —yi)?]
2 2
2pc—x) ey as ey
- 2 2 +2p Fl,p(X, y)
(x —x)*+ (& —y) ay dy
2 oF p(x,y)
+2psr(l ip)(x, y)—p ,
s ay
where
OF1 p(x,y)

oy =-2(p+DH11,,(x,y) +2pF p(x, )G p(x, y).

It immediately follows that

2
0%t (x, )

< Cn2s(2.p) X, ¥).
9xdy - mi (%07

Reasoning in this way, we obtain

2
0t (x, )

2
S| = Ol ).
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3.2p)
Vspi (NN _ 32

“axtay | o ()

and so on .
p
aqsn,,. (x,y)

2
axl2ayk | = Cns, P (x, y),

which proves the first estimate in the lemma. The second one is immediate by

Suap(N@.y) = Y s @ y) fi/n.ifn). O

i=—n

Theorem 4.3.5. Let p = 1 and f : [—1, 1] x [—1, 1] = R be strictly convex on
[—1, 11x[—1, 1]. Then S, 2, (f) (x, y) is strictly convex in V (0, 0) = {x*>+y? < d2},
where

n 2
|dy| = ¢ [Z x,:“[A,%ka)]} /n,
k=1

with F(x) = f(x, x), forall x € [-1, 1] x [—1, 1].
Proof. Let us denote

Hn(x’ )’)

_ 82Sn,2p(f)(xa y) 82Sn,2p(f)(xa y) _ I:azsn,Zp(f)(x’ )’)T
N 9x2 dy?2 9xdy '

By the proof of Theorem 4.3.3 we have

n —4 2
H,(0,0) = [Z ka[AikF(O)]:| > 0.

k=1
Let (ay,, Br) be the nearest root to (0, 0) (in the sense of Euclidean distance in R2) of

Hy(x,y). Denoting d, = [a2 + 82]'/2, by the mean value theorem we get

0 < H,(0,0) = |Hn(0,0) — Hy(ctn, Bn)| =< lotn] ‘

oH, (&, 0H, (&,
slanH a(f n)‘+‘ 8(5 ")H.

By simple calculation and by the above Lemma 4.3.4 we immediately get

‘8Hn(é, T})' < cn5 aHn(Ss 77)
ox - dy

0H, (€, 77)'
0x

AG
gy | ED

5

)

<cn

for all (¢, n), which immediately implies

|d,| > ¢Hy(0,0)/n,
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and the proof is complete. ]

Remark. Because of the complicated proof of the qualitative result (see the proofs
of Lemmas 4.3.1, 4.3.2 and 4.3.3), a variant of the above Theorem 4.3.5 for p > 2
still remains an open question.

Now, let us consider the third kind of Shepard operator (which is not a tensor
product), defined by

Tnl,nz,u(f; X, y)

,if (e, y) # (X, y)),
Ty ng, (15 %, y) v

Snl,ﬂz,/t(.f;xv y) =
Suino,u(fixi,y;)) = f(xi,y;), where u > Ois fixed, f : D - R, D C R?,
D=[-1,1]x[-1,1],x; =i/n, i = —ny,...,n1; yj =j/na, j=—noy,...,n2
and

ny ny
. _ f&xisyj)
Tnv e (f5 0, y) = Z Z [((x —xi)2 4+ (v — yj)?*

i=—n| j=—n2

The global smoothness preservation properties and convergence properties of
these operators were studied in Section 3.3. In what follows we consider their prop-
erties of preservation of shape.

Remark. Let us note that with respect to preserving monotonicity, it is unfor-
tunate that this does not seem to be a useful method for dealing with this kind of
Shepard operator in the univariate case — as it had been in dealing with the orig-
inal Shepard operator (see the proof of Theorem 4.3.2) or with the tensor product
Shepard operator. This seems to happen since there is not a way to put the knots
(xi,y¥j),1 € {—=n1,...,n1},j € {—n2,...,n2} in a sort of “increasing” sequence.
That is why we consider here only some properties related to the usual bivariate
convexity.

For simplicity, first we consider this Shepard operator for u = 1.

Theorem 4.3.6. If f : [—1,1] x [—1, 1] — R is strictly convex on [—1, 1] x
[—1, 1], then there exists a neighborhood V (0, 0) of (0,0) (depending on f and
ni, ny) such that Sy, n, 1(f; x, y) is strictly convex in V (0, 0).

Proof. We observe that we can write

ni ny
Swimn(F12,9) =Y Y fCi yhijulx, ),

i=—ny j=—ny
with
2+ YH[(x — x>+ (v — y ) H
L3 Y G2y — xi)? + (v — y )

hiju(x,y) =

where )" 3" means that the index (i, j) of double sum is different from (0, 0).
By simple calculation, for © € N, i # 0 and j # 0 we get
0"hi, ju(0,0)  9%h;;,(0,0)

0, 4.8
o By’ (48)
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ifr,s=1,...,2u—1and

82'uhi,j,u(0a 0 32“hi,j,u(0’ 0)

T R T MRS 4.9)
2 2,

By (4.9) and by the obvious relation g thfé‘;(o’o) =2 thﬁé,;(o,()) =0, we get

3%Sn;.m0,1(f30,0) 2 9%h; 1(00)

nlni’)xZ Z Z lj — a2 Sy
i=—ny j=—n3

RN 8%h0,0,1(0,0)

=2 > @@/ )+ 0,05

i=—ny j=—ny
ny np *

= [2/(7 + YDILF (is yj) + f(=xi, =y) + f(=xi, y)) + f (xi, —y))]

i=0 j=0

9%h0,0,1(0,0) o~ 9%hi j,1(0,0)
+ (0, 0)— £(0,0) Z Z T -0,
i=—ny j=—ny
taking into account that the strict convexity of f implies f(x;, y;) + f(—x;, —y;) >
2£(0,0), f(=xi,y;) + f(xi,—y;j) > 2f(0,0) and that we have the identity
Zl:—nl Zj——l’lz lj l(-x y) — 1

8 Snl,nz,l(fyoso)

Similarly, > 0. On the other hand, by simple calculation we

3y?2
82h; ;.1(0,0 . . S
get %;) = 0, foralli = —ny,...,n1, j = —na,...,ny, which implies
3%Sn; iy 1 (£30,0) 0
axdy -

So it is immediate

2
328, 21 (f30,0) 828y, ny.1(£30,0) _ %S, m,1(f30,0)
0x2 9y? 0x0y '

As a conclusion, there exists a neighborhood V (0, 0) of (0, 0) (depending obviously
on f and n) such that

2
%S, 0 1 (F3%,9) 328, np 1 (f3 %, 9) _ %S, 01 (f3 %, )
0x2 9y? dxdy ’

for all (x, y) € V(0, 0), which proves the theorem. U

Remark. For the cases u € N, i > 2, it is enough if we prove that there exists a
neighborhood V (0, 0) of (0, 0), such that

82Sn1,n2,p,(f; X, Y) -0 azsnl,nz,u(f; x,y)
0x2 ’ 9y?

> 0,
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2
%Sy ny.pu (F3 X, 9) 82Spy g (f3 %, 9) . %Sm0 u (f3X,9) “.10)
dx2 9y? xdy ’ '

for all (x,y) € V(0,0) \ (0, 0), because by the relations (4.8)—(4.9) we obviously
have
98n; ny.u(f30,0)  08p; npu(f50,0)
ax ay
Taking into account that for i > 2 relations (4.8)—(4.9) imply

9% Sny (10,00 928y, 1y (£:0,0)
dx2 N dy?2 N

0.

O’

the idea of proof (for the u > 2 case) will be to prove that the functions

%S, o (f3 X, ¥) %S, o (f3 X, ¥)

, Gx,y)=

and

2
32Sn, o (f3 X, 9)
dx0dy

are strictly convex on a neighborhood of (0, 0), having as global minimum point
(0, 0), which would imply the required relations (4.10).

But the cases u > 2 also require the following three lemmas.

Lemmad4.3.5. Letp € N, u > 2. If f : [—1, 1] x [—1, 1] = R is strictly convex
on[—1, 1] x [—1, 1], then there exists a neighborhood V (0, 0) of (0, 0) such that

328, o (f3 X, 9) - 328, o (f3 X, 9) _
ax2 ’ dy?

H(x,y)=F(x,y)G(x.,y) — (

Oa

forall (x,y) € V(0,0)\ (0,0).
Proof. Denoting for (i, j) # (0, 0)

E(x,y) = [(x —x)2 4 (y — y)2TH
s 1+ Z?;—nl Z*;’_i_nz ()C2 + yz)ll-[(_x — xi)2 +(y— )’j)z]7" ,

we have h; ;. (x,y) = P(x, y)E(x, y), where

%
127 _
P(x,y) = 2+ yz)“ _ Z <k>x2ky2M 2% _ yzﬂ
k=0

+ H x2y2“*2k+ M x4y2”*4—|—-~-+ M xz;kzyz_l_xzul
1 2 uw—1

Let us denote S
F Rl h,-,j,u(x,y)
Rij(x,y) = Y

Firstly, by (4.8)-(4.9) we get
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PR (x.y) _ QW)

0.
9x [ 2

Then
Rij(x.y) 2“2‘:2 <2u —2> 92 |:8kP(x,y)i| 92127k E (x, y)

9y? = k dy? dxk dx2u—2-k

W =2\ 9 [oRP(x, y)] 021K E(x, y)
+2 Z a9y k 2u—2—k
part k ay dax dxH ay

2u—2

N Z <2u — 2) KP(x,y) 02 KE(x, y)
k=0

k axk  QxZn—2-kgy2”

If we take x = y = 0 in these sums, then all the terms that contain x or (and)
y will become zero, so taking into account the form of the polynomial P (x, y), we

obtain
9%R; ;(0,0) o, (2 Q=2
oyr T\ =2/ %+ y A

Reasoning for Sy, ,..(f; x, y) exactly asin the case u = 1 (see the proof of Theorem
4.3.6) we easily obtain

8_2 3211*25"1,’12#(]0; 0,00] azusnl»nz,u(f; 0.0) >
ax2 dx2m=2 - dx2m

Oa

> 0.

8_2 928y (f10,0) 028y, iy (f50,0)
dy? dx2n—2 - dx2n—29y2

Therefore, there exists a neighborhood V7 (0, 0) of (0, 0) such that for all (x, y) €
V1(0, 0), we have

3_2 3211«—25"1’"2’#(]"; x,y) -0 8_2 azu_zsnl,nz,u(f; x,y) -0
ax2 dx2n—2 T 9y? dx2n—2 '

On the other hand, reasoning as above we immediately get

3% [9%72h; ;,(0,0) _ 3% h; ; ,(0,0) —o
dxdy dx2n—2 dx2n—19y '

3211*25’111”2,“(}?;)"),)

As a first conclusion, =

V1(0, 0) and because

is strictly convex on the neighborhood

9280y (f30,0) 9%, 0y (f30,0)
dx2n—2 - dx2u—1
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_ azﬂ_lsm,nz,u(f; 0,0)
B dx21=29y

=0,

2u—2 .
it follows that \——>mn 589 o forall (x, y) € V1(0,0)\ (0, 0).

dx21=2

B PESumn 8D o ) V2(0,0) \ (0,0
y symmetry, we get ——l5E——— > 0, forall (x, y) € V2(0,0) \ (0, 0).
Now, if £ = 2 then we exactly obtain the statement of the lemma.

n 4S
If © > 2 then by similar reasonings as above, we obtain that Z)l;—ﬁﬁm
Sy (fix,y
T
a conclusion

Sy iy (f3 X, ¥) -0 02 Sy iy (f3 %, ¥)
9x2mn—4 ay2,u 4

and are strictly convex in a neighborhood U (0, 0) of (0, 0), and as

>0,

for all (x, y) € U(0,0) \ (0, 0).
We can continue in this way until we arrive at

82 n1 ny, M(f X, Y) azsm,nz,u(f;x: y)

07
0x2 9y?

> 0,

for all (x, y) € V(0,0) \ (0, 0), which proves the lemma. O

Lemma 4.3.6. Let u € N, > 2, and let us denote

arSnl‘nz,u(f; 0,0)
dxiay/ '

A=

We have: A = 0 ifr <2uorr >2u, A =0ifr =2u and both i, j are odd, and
A >0ifr =2uandboth i, j are even.

Proof. Let P(x,y) = (x> 4+ y?)*. Denoting B := %, it is easy to check
that we have B = 0ifr <2porr > 2u, B =0if r =2 and both i, j are odd, and
B > 0if r = 2p and both i, j are even. But &; j ., (x,y) = P(x, y)E(x, y), where
E(x, y) is given in the proof of Lemma 4.3.5 and

0" hiju (%, ¥) :X":(j> o [BZP(x ¥) 9 1E(x, y)}

dxidyl dxt dy? dyi—a
which combined with the above properties of > P,(ao ?) and with the method of proof

in Lemma 4.3.5, taking into account that

9" Sy (f:0,0) o~ 9hiju0,0)
axidy) Z 2 “axigys ) i

i=—ny j=—ny

proves the lemma. U
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Lemma 4.3.7. For un € N, u > 2, we have

2

02 Suinn (3% 9) PSnim o (F16.9) (2 Smman(Fi %0\ _
dx2 9y? dxdy ’

forall (x,y) € V(0,0)\ (0, 0), where V (0, 0) is a neighborhood of (0, 0) (depending

on f,ni,ny and ).
Proof. Denote

2
32Sn1,n2,;4(f§ x,y) 825n1,n2,/4(f§ x,y) _ aZSnl,nz,/L(f; x,y)
0x2 ay? dxady '

H(x,y) =

According to the Remark after the proof of Theorem 4.3.6, we have to prove that

02 H (x,
(x,y) -0

3*H(x,y)
0x2 =

07
9y?

’

02H(x,y) 2H(x,y) [(0*H(x.y)\ 0
_ -0,
dx2 9y? dxdy

for all (x, y) € V(0,0) \ (0, 0), and that %2’0) = %S’O) = 0 (because by Lemma
4.3.6 we have H(0,0) = 0).

Now, by Lemma 4.3.6 we easily get that %_(2}0)

i, j are even, all the other partial derivatives of H on (0, 0) being 0, so we get

> 0, only if r = 2 and both

924 H (0, 0) 324 H (0, 0) 924 H (0, 0)
_ >0, —F>0, — =0,
dx2m Ax2n=29y2 ax2r—1gy

.M ZH(xy) - . . .
thatis, ———=7*= is strictly convex in a neighborhood of zero. Because

0 and

9242H(0,0) _
dx21=2 -

9**='H(0,0)  9**'H(0,0) 0
dx2n—1 T x2u—2hy 7

it follows that (0, 0) is a global minimum point, so

3 2H(x,y)

xz 0

for all (x, y) € V1(0,0) \ (0, 0).
Reasoning by symmetry, we get

% 2H(x, y)

3y > 0,

for all (x, y) € V»(0,0) \ (0, 0).
Similarly, by Lemma 4.3.6, we obtain

2 =2H (x, y)

ax2H—45y2 >0,
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for all (x, y) € V3(0,0) \ (0, 0), and consequently
92 [92*=*H(x,y) 9% [(32*=*H(x,y)
——F ] >0, —F ] >0,

ax2 dx2n—4 3y? dxZn—4

for all (x, y) € V3(0,0) \ (0, 0).
Let us denote

H](x, )’) =

2 2H(x,y) 9% 2H(x,y) (0% 2H(x,y)\
dx2n—2 dx2n—49y2 B dx2n=39y ’

By Lemma 4.3.6 we obtain

32 H,(0, 0) o 92 H,(0, 0) o 92 H,(0, 0) _
0x2 ’ dy? ’ dxdy

’

that is, Hy(x, y) is strictly convex in a neighborhood of (0, 0). But H;(0,0) = 0
and HLO0 — OO — o o it follows that H(x,y) > 0, for all (x,y) €
V4(0,0)\ (0, 0).

As a conclusion, it follows that %
of zero, and reasoning as above we get

is strictly convex in a neighborhood

O *H(x,y)

P

for all (x, y) € V5(0,0) \ (0, 0).
n2 R
Continuing this process by recurrence, finally we arrive to % > 0, for all

(x,¥) € Vs(0,0) \ (0, 0), by reason of symmetry to %

V5(0,0) \ (0, 0), and then

> 0, for all (x,y) €

02H(x,y) 2H(x,y) [(0*H(x,y)\ 0
— > 0,
dx2 9y?2 0x0dy

for all (x, y) € Vg(0,0) \ (0, 0), which proves the lemma. O

Corollary4.3.5. Letn e N, u > 2. If f : [—1, 1]1x[—1, 1] — Risstrictly convex
on[—1, 1] x [—1, 1], then there exists a neighborhood V (0, 0) of (0, 0) (depending
on f, wandny, ny) such that Sy, n, ., (f; x,y) is strictly convex in V (0, 0).

Proof. Immediate by Lemmas 4.3.5-4.3.7.

Remark. For a quantitative estimate of the length of convexity neighborhood
V (0, 0) in Corollary 4.3.5, we need the following.

Lemma 4.3.8. Denoting n = max{ni, na} and

[(x —x)> 4+ —y)*17P
Tnl,nz,p(h x,y)

Ajj(x,y) =

)

we have
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09A; j(x,y)
dx!oyk

< CnlA; j(x,y).

Proof. Firstly, let us denote

ni no
Z Z (x — x) [0 — x)* + (y— }’j)z]_p_k

i=—ny j=—n

ni ny
YY M=)+ =y

i=—ny j=—n

Fk,p(xv y) =

and x,, (respectively, y,), the closest point x; (respectively, y;) to x (respectively, y).
We have
|Fip e, )| < 1 — x| 7.
Indeed, by |x — x,| < |x — x;|, for all i, we get
e = xi* e — xi*
[((x —x)? + (v =y~ (x —xp)*

Similarly, if we denote

Kk —k
=1/lx = x|” < e — x| ™

ni ny
YooY =y —x)P =y

i=—ny j=—n

ni ny
DY =)+ =y

i=—m j=—n>

Grplx,y) =

we get
1Gr.px, I <1y =yl 75

Now, if we denote
Hipp(x, y)
ny ny
DD =)=y =)+ (=)
i=—ny j=—n3

— ’

ny

ny
DD D (C ) R G 0 b I

i=—ny j=—n

then we have
|Hy g p(x, V)| < 1 = x| 5y = vl &, 1> 0.

Then

9A; j(x,y) —2p(x — x;)
dx (x —x)?+ (y —y))?

Aij(x,y) +2pA; j(x, ) F1 p(x, y),
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which immediately implies

3A',~(x,y) B
‘”T < Clx — xl lAi,j(x, y) < CnA; j(x,y).
Similarly,
0A; i(x,
‘M < Cndi ;2. 9).
dy
Then )
9x2
2pAi,j( )[ ! 2(x — x;)? ]
= — PR x’ _
4 L] y (_x - xi)z —+ (y — y])z [(x _ xi)z + (y _ y])2]2
2p(x — x;) dA; j(x,y) 9A;j(x,y)
B : +2p—L Fi o (x,
(—x)?+(y—y)?  ox P Fpx.y)
AF p(x,y)
F2p A xS
where

ni na

DY =)+ -y

8F1,p(x, y) _ i=—ny j=—ny
ox - n ny
YoY M=)+ =y
i=—ny j=—n

—2(p + DF, p(x, y) + 2p[F1 p(x, 1%

We immediately get

32A; i (x,y)

- < Clx — x| 2 A; j(x,y) < Cn?A; j(x, ).

Also
PAij(x,y)  Apx —x)(y — )
dxdy [(x —x)% + (v — y)*T?
B 2P§x — i) i 0406, y) 2p dAij(x,y)
(x —xi)”+(y—yj) dy dy

Aij(x,y)

Fl,p(xv y)

0F p(x,y)
+2pA; j(x, y)g—y,

where

0F ,(x,y)
T = 2 DHLL () + 2 Fip( 1) Gp(r ).

It immediately follows
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< Cn?A; j(x,y).

A j(x,y)
0xdy

Reasoning in this way, we obtain

'W < Cn*A;(x. ). '%S;y) < CnA;(x. ).
and so on 994, (x, v)
W <CnlA;;(x,y),
which proves the lemma. |

As an immediate consequence, we get
Corollary 4.3.6. For n = max{ny, no} and

ni ny
Swimp( )= Y > Ai @y (X, y)),

i=—ny j=-n

we have

‘M < cnt| £

dx!oyk
where || f|| is the uniform norm.
The quantitative estimate of convexity in Theorem 4.3.6 is given by the following.
Theorem 4.3.7. Let f : [—1, 1] x [—1, 1] — R supposed to be strictly convex
on[—1,1] x [=1, 1]. If n = max{ny, na} then Sy, n, 1(f)(x,y) is strictly convex in
V(0,0) = {x2+y% < d,%l’nz}, where

2
ny ny *

ldny ol = C | DD 12/0F + YDIEGi, y)) | /0,

i=0 j=0

with E(xi,y;) = [(f(xi,y;) + f(=xi, —y;) — 2f(0,0)) + (f(=xi,yj) +
fxi, —yj) —2£(0,0))] and the sum Z;io 272:0* means that the index (i, j) of
double sum is different from (0, 0).

Proof. From the proof of Theorem 4.3.6, we immediately obtain

82Sn1,n2,1(f; 0,0) . 82Sn1,n2,1(f; 0,0)

dx2 - 9y?
ny np *
=Y D2/ + yDIS (i ) + f(=xi, =y)) + F(=xi, y)) + f (i, —y))]
i=0 j=0
ny npy *

=) > 2/ +yDIE&i, y)) > 0,

i=0 j=0
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where E(xi,yj) = (f(xi,yj) + f(=xi,—y;) — 2f(0,0) + (f(=xi,yj) +
f(xi, —y;) —2£(0,0)) > 0, from the convexity of f.

% Sn) my.1(£30.00 _ 0

Also, we have B9y

Let us denote

azSnlvnzsl(f;x’ y) 82Sn1,n2,1(f;xv y) _ 32Sn1,n2,1(f;X, y)

HP@.») = 9x? ay? dxdy

We have H(f)(0,0) > 0. Let (an, ny» Bny.no) be the nearest root to (0,0) of
H(f)(x,y),inthe sense that the distance dy;, n, = ((at, 7,,2)2 + (B, ,nz)z)z) 172 is min-
imum for all the roots of H(f)(x, y). Then, forall (x, y) € {(x, y);: (x2+y*)1/2}, we
necessarily have H (f)(x, y) > 0. By the mean value theorem for bivariate functions,
we get

H(f)(0,0) =[H(f)(0,0)] = [H(f)(0,0) = H(f)(n;.n3+ Bny.nz)l

OH(f)(§, 77)) + ‘3H(f)(5, 1) H
dx dy ’

< e

But
H ()X, y) 9 Spny 1 (f1 %, ) 0280 mp 1 (f: %, Y)
dx ax3 dy?
Sy, 1 (F5 %, ) 2 Sp a1 (F5 %0 9) 93 Spy a1 (5 %, )
0y2ax 9x2 9x20y
which by Corollary 4.3.6 implies

]

azsnl,nz,l(f; X, y)
dy?

83Sn1,n2,1(f; X, }’)
9x3

‘SH(f)(x,y)‘ -
0x -

Sy a1 (3 x,y)
3x29y

BSSnl,nz,l(fQ x,y) azsnl,nz,l(fQ x,y)
9y2dx ax2

with C depending on f, but independent of n.

< Cns,

+

Analogously, %)y(x))‘ < Cn’. We get0 < H(f)(0,0) < Cldy, n,In°, ie.,
ny np * 2
lduyns| = C | DD 12/(F + yDIEG, yj) | /n’,
i=0 j=0
which proves the theorem. ]

Remark. A version of Theorem 4.3.7 for arbitrary p > 2, i.e. for
Suina,p(f)(x,y), still remains an open question, because of the complicated rea-
sonings in the proofs of Lemmas 4.3.5, 4.3.6 and 4.3.7.
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4.4 Bibliographical Remarks and Open Problems

Theorem 4.2.1, Corollaries 4.2.1, 4.2.2, Theorem 4.2.2 are in Anastassiou—Gal [7],
Theorems 4.3.2, 4.3.3, Lemmas 4.3.1-4.3.3 and Corollary 4.3.4 are in Anastassiou—
Gal [8]. All the other results of this chapter (except those where the authors are
mentioned), are from Gal-Gal [55].

Open Problem 4.4.1. Prove Theorems 4.3.5 and 4.3.7 for all p > 2.

Open Problem 4.4.2. For the bivariate tensor product operator generated by the
univariate Baldsz—Shepard operator defined on the semi-axis considered by Theorem
2.3.5, prove qualitative and quantitative shape-preserving properties.

Open Problem 4.4.3. For the bivariate tensor product operator generated by the
univariate Shepard—Griinwald operator introduced by Criscuolo-Mastroianni [31]
(see Open Problem 1.6.4, too), prove qualitative and quantitative shape-preserving
properties.

Open Problem 4.4.4. For the bivariate Shepard kind operator defined by

Tnl,nz,u(f; X, y)

i (e, ) # (X, y)),
P CE)) B

Supnan (f3%,y) =
Snt,non(fixi, ) = f(xi,yj), where u > Ois fixed, f : D — R, D C R2,
D =[-1,11x[-1,11,x; =i/ny, i = —ny,...,n1; yj = j/na, j=—ng,...,n2
and

SRS f@iyp)

Tovna (5 X, y) = —— ,

s 2 L Gonr o

i=—n| j=—ny

prove properties concerning the preservation of monotonicity of f, in neighborhoods
of some points.

Open Problem 4.4.5. For the local bivariate tensor products, Shepard opera-

tors mentioned in Open Problem 3.5.4 (previous chapter) prove the shape-preserving

properties.
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Appendix: Graphs of Shepard Surfaces

Due to the usefulness of their properties in approximation theory, data fitting, CAGD,
fluid dynamics, curves and surfaces, the Shepard operators (univariate and bivariate
variants) have been the object of much work. Let us mention here the following
papers: [11-[4], [7], [8], [10]-[17], [23]-{40], [42], [45]-53], [55]-[58], [60], [62],
[65], [69], [70]-[75], [77], [86], [911], [93], [96], [98], [104]-[109].

In this appendix we present some pictures for various kinds of bivariate Shepard
operators, which illustrate the shape-preserving property of them.

I thank very much Professor Radu Trimbitas from “Babes-Bolyai” University,
Faculty of Mathematics and Informatics, Cluj-Napoca, Romania, who made all the
graphs in this section.

Except type 4, when the original Shepard—Lagrange operator is defined on 100
random knots uniformly distributed into [—1, 1] x [—1, 1] (which were then sorted in
ascending order with respect to their relative distance), all the other types of bivariate
Shepard operators in this section are defined on equidistant knots in the bidimensional
interval [—1, 1] x [—1, 1], i.e., are of the form x; = ]ﬁ( k=-n,...,0,...,nand
yj = %,j =-m,...,0,...,m,withn =m =5.

Recall that by the previous sections, we have considered nine main types of
Shepard operators, given by the following formulas.

Type 1. Original Shepard operator:

n

Sup(H@ ) =Y sinpe, ¥)f (i yi),

i=—n
where
[ —x)® + & = y)*1 77
Yl —x)? + (v — )21
Type 2. Tensor product Shepard operator:

Sin,p(x,y) = p>2,peN

n

m
Sum2p2q(EY) =D Y Sin2p()sjm2gWfiny)).  p.g =2,

i=—n j=—m
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where )
512 (X) = (x —x;)~°P
nLn,zp ZZZ,n (x _ xk)72p
and ,
(y—y)—
Sj,m,2q(x) = ]

Z?:—m (y - yk)_Zq ‘
Type 3. Shepard—Gal-Szabados operator

n

DD M —x)?+ =y f i y))

i=—n j=—m

Sn,m,p(f)(x’ y) =

n m ’

Yo I —x)?+ (=)

i=—n j=—m

where p > 2, p € N.
Type 4. Original Shepard-Lagrange operator:

SupLn (PO ) =Y Sinp(x, DL (X, ¥),

i=—n

where
— )2 _ v)21-P
Simp (s y) = J& xi)"+ (y —yi)7l p>2.peN.
Dol —x)* + (v =y 17P

k=—n

and Li (f)(x, y)isthe Lagrange interpolation bivariate polynomial of degree m (i.e.,
of the form > jk<m 4, wx’ y*, where a ; ik €R), umquely defined by the conditions

Ly (f)Xitps Yidw) = [ Kipps Vidp)s k=1, —1,m = n+1)(n+2)/2,m <
1, (Xngpes Yatu) = (X, Yu) (see, e.g., Coman—Trimbitas [27], page 9).
Type S. Tensor product Shepard—Lagrange: operator

Sn,m,2p,2q,n1 Ry (I, y)

n

XjEZanuunmmﬂwuwxﬂuyanzz

i=—n j=—m

where
(x —x) 7P

Y x—x)

k=—n

Sin2p(x) =
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(y—y) ™
Sj,m,2q = m ] >
> (=
k=—m

and o
L)y () (x, )

=§:i s v S Kitvs Yjtu)
o = )] (i) (v = YV )T

with u; (x) = (x —x;) -+ (X = Xign)), ;) = (Y = ¥) - (Y = Yjna)-
Type 6. Tensor product Shepard—Lagrange—Taylor operator:
Sn,m,Zp,Zq,nl,nz (f)(-xv y)

n

m
=Y D sin2p®)8imag LT ny (), 3), prg = 2,

i=—n j=—m
where G — x,-)_21’
si,n,Zp(x) = ,
Y x—x)7
k=—n
(y—yj)~
Sjm,2q (x) = — / s
Y —wH
k=—m
and
ni ny
i u;(x) (v =y H f (Xiw, ¥j)
LTy (F)(x,y) = ’ ! :
B ; ;;) (x — XU (Xign) (! dyn

Remark. Evidently, by changing the variable x with y we get the “Tensor product
Shepard-Taylor-Lagrange” kind of operator.
Type 7. Original Shepard—Taylor operator:

Sn,p,Tm

—ns-

o (DG = i p G, )T (), ),

i=—n
where
[(x —x)? + (v — y)*177

Dol =)+ (=17

k=—n

Sin,p(x,y) = ., P>2,peN,
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and ( ) ( )" £( )
Trzf(f)(my): Z X r!xz Y s!)’j 8;;;;)71

r+s<m;

Type 8. Tensor product Shepard—Taylor operator:

Sn,m,2p,2q,n_n,..‘,nn,m_m,.‘.,mm (f)(x1 y)

n m
=> $in2p ()8 jm2g DT T, ()X, ¥), - prg =2,

i=—n j=—m

where
(x —x;)7%F

> —x)

k=—n

Si,n,2p x) =

(v — )~
m

Y-

k=—m

Sj.m,2q (x) =

and
L ni Mj (x — x;)" (y_y.)u aV-Hl«f(xi,y-)
e D P TR

v=0 u=0
Type 9. Shepard—Gal-Szabados—Taylor operator:

Snm.p(f)(x,y)

Y3 =)+ (v = AT Tyt (), )

i=—n j=—m

—X; -y P
DY e —x)?+ =y

i=—n j=—m

where

i RN A = x)Y (= R 8V f (i, y))
T, (NG ) =D O R T

v=0 u=0

The Shepard surfaces generated by the Shepard operators of the types 2, 3,4, 6, 7
and 8, will be illustrated for the following five examples of functions f(x, y), called

in the sequel “test functions.”
Example 1. Let f1(x,y) = xy, x,y € [—1, 1]. It is a bidimensional (upper)

monotone function, i.e., it satisfies the condition:
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92 f (x,
—g(; Y20, Vayel-11].
xdy

Another example of this kind is f4(x, y) = x3y3.
Example 2. Let f>(x, y) = x2y?. Itis a “strictly double convex” function, i.e., it
satisfies the condition:

I f(x,y)

02 >0, Vx,yel-1,1]

Example 3. Let f3(x,y) = x>y + x? 4 y2. It is an ordinary strictly convex
bivariate function, i.e., satisfies the conditions:

2f(x,y) 3 f(x,y)
— >0, — >

07
x2 ay?

0f ) Pfy) [azﬂx,y)]z
dx2 9y2 dxdy ’

Vx,y e (—1,1).

Exampled4.Let f5(x, y) = 9exp(x+y) —xy. Simple calculations show that fs is
simultaneously bidimensional (upper) monotone, strictly double convex and ordinary
strictly convex.

The graphs of the first four functions, f1, f>, f3, f4, are given in Figure A.1. Also,
Figures 5.2,5.3 and 5.4 contain the graphs of various Shepard operators corresponding
to these four test functions.

Figure A.2 shows the graphs for Shepard—Gal-Szabados operators, type 3, p = 3.

Figure A.3 gives the graphs for tensor product Shepard—Lagrange—Taylor opera-
tors (type 6), p = 2,q = 2.

In Figure A.4 appear the graphs for original Shepard—Taylor operators (type 7)
for p =4.

Finally, in Figure A.5 we give the graphs for Shepard operators of types 2, 4 and
8, corresponding to the function f5(x, y) = 9exp(x 4+ y) — xy. The graph of this
function is given in Figure A.5(a).
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© f3 @ fu

Fig. A.1. Graphs of the test functions, f1, f2, f3, fa
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Fig. A.2. Graphs for Shepard—Gal-Szabados operators, Type 3, p = 3
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() f3 (d) fa

Fig. A.3. Graphs for tensor product Shepard-Lagrange—Taylor operators, type 6, p = 2,q =2
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© f3 (@ 4

Fig. A.4. Graphs for original Shepard-Taylor operators, type 7, p = 4
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(c)Type 8, p=2,4 =2 (d)Type2.p=2.4=2

Fig. A.5. Graphs for f5 and Shepard operators of types 2, 4 and 8
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