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Preface

In many problems arising in engineering and science one requires approxima-
tion methods to reproduce physical reality as well as possible. Very schemati-
cally, if the input data represents a complicated discrete/continuous quantity
of information, of “shape” S (S could mean, for example, that we have a
“monotone/convex” collection of data), then one desires to represent it by
the less-complicated output information, that “approximates well” the input
data and, in addition, has the same “shape” S.

This kind of approximation is called “shape-preserving approximation”
and arises in computer-aided geometric design, robotics, chemistry, etc.

Typically, the input data is represented by a real or complex function (of
one or several variables), and the output data is chosen to be in one of the
classes polynomial, spline, or rational functions.

The present monograph deals in Chapters 1–4 with shape-preserving ap-
proximation by real or complex polynomials in one or several variables.
Chapter 5 is an exception and is devoted to some related important but non-
polynomial and nonspline approximations preserving shape. The spline case is
completely excluded in the present book, since on the one hand, many details
concerning shape-preserving properties of splines can be found, for example,
in the books of de Boor [49], Schumaker [344], Chui [69], DeVore–Lorentz [91],
Kvasov [218] and in the surveys of Leviatan [229], Kocić–Milovanović [196],
while on the other hand, we consider that shape-preserving approximation by
splines deserves a complete study in a separate book.

The topic of shape-preserving approximation by real polynomials has a
long history and probably begins with an earlier result of Pál [295] in 1925,
which states that any convex function on an interval [a, b] can be uniformly
approximated on that interval by a sequence of convex polynomials.

The first constructive answer to the Pál’s result seems to have been given
by T. Popoviciu [317] in 1937, who proved that if f is convex (strictly convex)
of order k on [0, 1] (in the sense defined in Section 1.1), then the Bernstein
polynomial Bn(f)(x) =

∑n
k=0

(
n
k

)
xk(1−x)n−kf( k

n ) is convex (strictly convex,
respectively) of order k on [0, 1], for all n ∈ N.
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Over time, much effort has been expended by many mathematicians to
contribute to this topic. As good examples of surveys concerning shape-
preserving approximation of univariate real functions by real polynomials, we
can mention those of Leviatan [229], [230] in 1996 and 2000, that of Kocić–
Milovanović [197] in 1997, and that of Hu–Yu [178] in 2000.

Also, a few aspects in the univariate real case are presented in the following
books:

Lorentz–v. Golitschek–Makozov [249] in 1996, see Chapter 2, Section 3,
titled Monotone Approximation (pp. 43–49), and page 82, with Problem 9.4
and Notes 10.1, 10.2,

Shevchuk [349] in 1992, referring to some results in monotone and convex
approximation of univariate real functions by real polynomials,

Lorentz [247](see p. 23) in 1986, DeVore–Lorentz [91] in 1993, (see Chapter
10, Section 3, from page 307 to page 309), concerning some shape-preserving
properties of real Bernstein polynomials, and

Gal [123] in 2005, concerning shape-preserving properties of classical
Hermite–Fejér and Grünwald interpolation polynomials.

For the situation in the case of one complex variable, it is worth noting
that two books concerning the study of complex polynomials have recently
been published. The first is that of Sheil–Small [346] in 2002, which studies
many geometric properties of complex polynomials and rational functions.
But except for two small sections on the complex convolution polynomials
through Cesàro and de la Vallée-Poussin trigonometric kernels (Sections 4.5
and 4.6, from page 156 to page 166), in fact that book does not deal with the
preservation of geometric properties of analytic functions by approximating
complex polynomials. The second book mentioned above is that of Rahman–
Schmeisser [320] in 2002, which refers to the critical points, zeros, and extremal
properties of complex polynomials, which are regarded as analytic functions
of a special kind. Although some of its results improve classical inequalities of
great importance in approximation theory (of Nikolskii, Bernstein, Markov,
etc.), this book again does not deal with the preservation of geometric prop-
erties of analytic functions by approximating complex polynomials.

In the cases of two/several real or complex variables, there are no books
at all treating the subject of shape-preserving approximation.

Therefore, we may conclude that despite the very large numbers of papers
in the literature, at present, none of the books has been dedicated entirely to
shape-preserving approximation by real and complex polynomials.

The present monograph seeks to fill this gap in the mathematical literature
and is, to the best of our knowledge, the first book entirely dedicated to this
topic. It attempts to assemble the main results from the great variety of
contributions spread across a large number of journals all over the world.

This monograph contains the work of the main researchers in this area,
as well as the research of the author over the past five years in these subjects
and many new contributions that have not previously been published.
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Chapter 1 mainly studies shape-preserving approximation and interpola-
tion of real functions of one real variable by real polynomials. The “shapes”
taken into consideration are convexity of order k (which includes the usual
positivity, monotonicity, and convexity), some variations of positivity as al-
most positivity, strongly/weakly almost positivity, copositivity (with its vari-
ations almost copositivity, strongly/weakly copositivity), comonotonicity, and
coconvexity. A variation of copositive approximation, called intertwining ap-
proximation (with its two variations almost and nearly intertwining), also is
presented.

Chapter 2 deals with shape-preserving approximation of real functions of
two/several real variables by bivariate/multivariate real polynomials. A main
characteristic of this chapter is that to one concept of shape in univariate case,
several concepts of shapes of a bivariate/multivariate function may be asso-
ciated. For example, monotonicity has as variations bivariate monotonicity,
axial monotonicity, strong monotonicity; convexity has the variations axial-
convexity, polyhedral convexity, strong convexity, and subharmonicity, and
so on.

In Chapter 3 we consider shape-preserving approximation of analytic func-
tions of one complex variable by complex polynomials in the unit disk. The
concepts of “shapes” preserved through approximation by polynomials are
those in geometric function theory: univalence, starlikeness, convexity, close-
to-convexity, spiralikeness, growth of coefficients, etc. The construction of such
polynomials is mainly based on the Shisha-type method and on the convolu-
tion method.

Chapter 4 contains extensions of some results in Chapter 3 to shape-
preserving approximation of analytic functions of several complex variables
on the unit ball or the unit polydisk by polynomials of several complex vari-
ables.

It is worth noting that three constructive methods are “red lines” of
the book, that is, they work for real univariate variables, real multivariate
variables, complex univariate variables, and complex multivariate variables.
These are the methods of Bernstein, producing Bernstein-type polynomials;
the Shisha-type method; and the convolution-type method. As a consequence,
Chapters 1–4 use these three methods. Also, although the error estimates pro-
duced by the tensor product method are not always the best possible, because
of its simplicity we use it intensively in order to extend the results from the
univariate to the bivariate/multivariate case.

Chapters 1–5 begin with an introductory section, in which we describe in
detail the corresponding chapter and introduce the main concepts.

The book ends with Chapter 5, which is an appendix containing some
related topics of great interest in shape-preserving approximation. Shape-
preserving approximation by splines is not included in this chapter for the
reasons mentioned at the beginning of this preface.

Let us mention that systematic results in Chapters 2–5 have been obtained
by the author of this monograph in a series of papers, singly or jointly written
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with other researchers (as can be seen in the bibliography), and many new
results appear for the first time here. Also, many open questions suggested at
the end of Chapters 1–5 might be of interest for future research.

The book is intended for use in the fields of approximation of functions,
mathematical analysis, numerical analysis, computer-aided geometric design,
data fitting, fluid mechanics, and engineering, robotics, and chemistry. It is
also suitable for graduate courses in the above domains.

Acknowledgments. I would like to thank Professor George Anastas-
siou, of the Department of Mathematical Sciences, University of Memphis,
TN, U.S.A., for support, Professor Michael Gan -zburg from the Department
of Mathematics, Hampton University, VA, U.S.A. and Professor Costică
Mustăţa, of the “Tiberiu Popoviciu” Institute of Numerical Analysis of the
Romanian Academy, Cluj-Napoca, Romania, for several useful discussions and
bibliographical references.

Also, I would like to thank Ann Kostant, executive editor at Birkhäuser,
for support, and my wife, Rodica, for typing most of the manuscript.

The research in this book was supported by the Romanian Ministry of
Education and Research, under CEEX grant, code 2-CEx 06-11-96.

Sorin G. Gal
Department of Mathematics
University of Oradea
Romania
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1

Shape-Preserving Approximation by Real
Univariate Polynomials

In this chapter we present the main results concerning shape-preserving
approximation by polynomials for real functions of one real variable, defined
on compact subintervals of the real axis. There is a very rich literature dedi-
cated to this topic that would suffice to write a separate book. Due to this fact,
it was impossible for me to avoid the more pronounced survey-like character of
this chapter. Also, for the proofs of some main results that are very technical
and long, we will present here only their most important ideas and steps.

1.1 Introduction

In this section we will introduce the history of the subject, followed by very
brief descriptions of the next sections in the chapter.

Probably one of the first results on the topic is an earlier result of Pál
[295] in 1925, which states that any convex function on an interval [a, b] can be
uniformly approximated on that interval by a sequence of convex polynomials.

The first constructive solution to Pál’s result seems to have been given by
T. Popoviciu [317] in 1937, who proved that if f is convex (strictly convex) of
order k on [0, 1] (in the sense defined below in this section), then the Bernstein
polynomial Bn(f)(x) =

∑n
k=0

(
n
k

)
xk(1−x)n−kf( k

n ) is convex (strictly convex,
respectively) of order k on [0, 1], for all n ∈ N.

In the intervening years, a great deal of work has been done on this topic
by many mathematicians. The aim of this chapter is to present this great
effort in detail.

The topic of Chapter 1 might be divided into five main directions.
The first direction deals with the shape-preserving properties of inter-

polation polynomials, and this is the subject of Section 1.2. We mention here
the contributions of (in alphabetical order) Deutch, Gal, Ivan, Kammerer,
Kopotun, Lorentz, Morris, Nikolcheva, Passow, Popoviciu, Raymon, Roulier,
Rubinstein, Szabados, Wolibner, Young, Zeller, and others.

S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, 1
DOI: 10.1007/978-0-8176-4703-2 1,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2008



2 1 Shape-Preserving Approximation by Real Univariate Polynomials

The second direction deals with the shape-preserving properties of the
so-called Bernstein-type polynomial operators, (thus called because their con-
structions were suggested by the form of Bernstein’s polynomials), represent-
ing the subjects of Section 1.3. We can mention here the contributions of
(in alphabetical order) Berens, Butzer, Carnicer, Dahmen, Derrienic, DeVore,
Gadzijev, Goodman, Ibikli, Ibragimov, Kocić, Lacković, Lupaş, Mastroianni,
Micchelli, Munoz-Delgado, Müller, Nessel, Păltănea, Peña, Phillips, Ramirez-
Gonzalez, Raşa, Sabloniére, Sauer, Stancu, Wood, and others.

Because of its close connection with the shape-preserving properties (see
Section 5.1), the variation-diminishing property too is presented in Section 1.3.

The third direction deals with the so-called Shisha-type results, and it
began with Shisha’s paper of 1965. The method is, in general, based on poly-
nomials of simultaneous approximation of a function and its derivatives, to
which are added suitable polynomials (uniformly convergent to zero) in such a
way that the new sum preserves some signs of the derivatives of the function.
We mention here the contributions of (in chronological order) Shisha, Roulier,
and Anastassiou–Shisha. It is contained in Section 1.4.

It is worth noting here the importance of Shisha’s method, taking into
account that because of its simplicity, it was extended to real functions of two
real variables in Chapter 2, to complex functions of one complex variable in
Chapter 3, and to complex functions of several complex variables in Chapter 4.

Note that the second direction of research produces rather weak degrees
of approximation in terms of ωk(f ; 1√

n
), k = 1, 2, while the third direction of

research, although essentially improving the estimates of the second direction,
has, however, the shortcoming that these estimates are given in terms of the
moduli of smoothness of the derivatives of the function.

In order to obtain better estimates, that is, with respect to the moduli of
smoothness (of various orders) of a function, one of the most used techniques
(introduced for the first time in DeVore-Yu [86]) can be described as follows:
first one approximates f by piecewise polynomials (splines) with the same
shape as f , and then one replaces the piecewise polynomials by polynomials
of the same shape. Estimates in terms of first- or higher-order moduli of
smoothness in all the Lp-spaces, 0 < p ≤ +∞, were found by (in alphabetical
order) Beatson, DeVore, Ditzian, Dzyubenko, Hu, Iliev, Ivanov, Kopotun,
Leviatan, Lorentz, Mhaskar, Newman, Operstein, Popov, Prymak, Shevchuk,
Shvedov, Szabados, Wu, Yu, Zeller, Zhou, and others.

The main results are included in Sections 1.5, 1.6, 1.7 and are represented
by the so-called positive and copositive (with their variations like, almost,
strongly/weakly, intertwining) approximation, monotone and comonotone
approximation (with the variation nearly comonotone approximation), and
convex and coconvex approximation (with the variation nearly coconvex ap-
proximation), respectively. The above-mentioned variations of classical pos-
itive/copositive, comonotone, and coconvex approximations were introduced
by the authors in order to improve the estimates, by requiring that the poly-
nomials preserve the corresponding “shapes” in a major part of the interval,
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except for small neighborhoods of the endpoints and of the points where the
approximated function changes the “shapes”.

The shape-preserving approximation results in Sections 1.5, 1.6, and 1.7
can also be classified with respect to the type of error estimate, as follows:

(i) approximation results with respect to the Lp-norm and in terms of best
approximation quantities En(f (i))p, i = 0, 1, 2, and 0 < p ≤ +∞.

(ii) approximation results with respect to the Lp-norm and in terms of the
Lp-Ditzian–Totik moduli of smoothness, 0 < p ≤ +∞.
Note that in both cases (i) and (ii), the uniform cases (i.e., p = +∞)
are richer in results than the cases 0 < p < +∞ and will be separately
treated.

(iii) pointwise approximation on [−1, 1] with DeVore-Telyakokovskii-
Gopengauz-type estimates, in terms of the usual moduli of smoothness
and with respect to the increments 1

n2 + 1
n (1 − x2)1/2 and 1

n (1 − x2)1/2.
(iv) approximation in terms of higher moduli of smoothness of higher deriv-

atives of functions.

Notice that while in monotone and convex approximation, the methods that
produces estimates in terms of second-order moduli of smoothness are linear,
the methods in convex approximation that produce the best possible order,
i.e., in terms of the third-order moduli of smoothness, together with those in
copositive, comonotone, and coconvex approximations, are nonlinear. It is not
known whether there exist corresponding linear methods of approximation for
these last three cases too.

Section 1.8 deals with the fifth direction of research, based on convolution-
type polynomials and on the Boolean-sum method. This method produces
good approximation errors of DeVore–Gopengauz type, but with respect to
the previous ones has the advantage that the constructed polynomials pre-
serve even higher-order convexities too. We mention here the contributions of
Jia-Ding Cao and Gonska.

Section 1.9 presents a constructive example of a nonconvolution, posi-
tive linear polynomial operator that reproduces the linear functions, gives an
error estimate of DeVore–Gopengauz-type in terms of second-order modulus
of smoothness and preserves convexities of higher-order of the approximated
function. The contributions belong to Jia-Ding Cao, Cottin, Gavrea, Gonska,
Kacsó, Lupaş and Zhou.

In what follows, we introduce well-known concepts of shapes (monotonici-
ties, convexities, etc.) necessary for the next sections of Chapter 1. Denote by
C[a, b] the space of all real functions defined and continuous on [a, b].

Definition 1.1.1. (i) f : [a, b] → R is called j-convex on [a, b] (or con-
vex of order j), if all the jth forward differences ∆j

hf(t), 0 ≤ h ≤
(b − a)/j, t ∈ [a, b − jh] are non-negative (i.e., ≥ 0). Here ∆j

hf(t) =
∑j

k=0(−1)j−k
(

j
k

)
f(t + kh), for all j = 0, 1, . . . . If there exists f (j) on

[a, b], a simple application of the mean value theorem shows that the
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condition f (j)(x) ≥ 0, for all x [a, b], implies that f is j-convex on [a, b].
Recall that the usual convexity (2-convexity in the above sense) can also
be defined by the inequality f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y), for
all λ ∈ [0, 1] and x, y ∈ [a, b].
Also, f is called j-concave on [a, b] if all the jth forward differences
∆j

hf(t), 0 ≤ h ≤ (b − a)/j, t ∈ [a, b − jh] are nonpositive (i.e., ≤ 0).
(ii) A function f : [0, 1] → R is called starshaped on [0, 1] if f(λx) ≤ λf(x),

for all λ ∈ [0, 1], x ∈ [0, 1]. If the above inequality is strict for all λ ∈ (0, 1)
then f is called strictly starshaped. Also, if there exists f ′(x) on [0, 1],
f(0) = 0, f(x) ≥ 0, x ∈ [0, 1], then the starshapedness (it is equivalent
to) can be expressed by the differential inequality xf ′(x) − f(x) ≥ 0, for
all x ∈ (0, 1] (see, e.g., L. Lupaş [254]);
A function f : [0, 1] → R is called α-star-convex on [0, 1], where α ∈ [0, 1],
if f(λx+(1−λ)αy) ≤ λf(x)+ (1−λ)αf(y), for all x, y ∈ [0, 1], λ ∈ [0, 1]
(see Toader [386]).

(iii) A function f : [a, b] → R, f(x) > 0, for all x ∈ [a, b], is called logarithmic-
convex on [a, b], if log[f(x)] is a 2-convex function on [a, b];

(iv) A function f : [a, b] → R is called quasiconvex on [a, b] if it satisfies the
inequality f(λx + (1 − λ)y) ≤ max{f(x), f(y)}, for all x, y ∈ [a, b] and
λ ∈ [0, 1]. It is known that f is quasiconvex on [a, b] if and only if for any
c ∈ R, {x ∈ [a, b]; f(x) ≤ c} is a convex set;
More generally, a function f : [a, b] → R is called j-quasiconvex on [a, b],
j ∈ N, if it satisfies the inequality

[x2, . . . , xj+1; f ] ≤ max{[x1, . . . , xj ; f ], [x3, . . . , xj+2; f ]},

for every system of distinct points x1 < · · · < xj+2 in [a, b]. Here

[x1, . . . , xj ; f ] =
j∑

k=1

f(xk)
uk(xk)

(
with uk(x) = Πj

i=1(x−xi)

x−xk

)
denotes the divided difference of f on the

points x1, . . . , xj , and j = 1, 2, . . . . Note that for j = 1 we obtain again
the usual quasi-convexity.

(v) Let f, u ∈ C[a, b], u(x) > 0, for all x ∈ [a, b]. We say that f is u-monotone
if u(x1)f(x2) − u(x2)f(x1) ≥ 0, for all a ≤ x1 < x2 ≤ b.

(vi) For (xk)n
k=0, 0 ≤ x0 < x1 < · · · < xn ≤ 1, let us denote by S[0,1][f ;

(xk)k] the number of changes of sign in the finite sequence
f(x0), f(x1), . . . , f(xn), where zeros are disregarded. Also, define
the number of changes of sign for f on [0, 1] by S[0,1][f ] =
sup{S[0,1][f ; (xk)k]; (xk)n

k=0, n ∈ N}. One says that the linear opera-
tor L : C[0, 1] → C[0, 1] is strongly variation-diminishing on [0, 1], if
S[0,1][L(f)] ≤ S[0,1][f ], for all f ∈ C[0, 1].
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Remarks. (1) The concept of j-quasiconvexity belongs to E. Popoviciu (see,
e.g., [311]) and the concept of u-monotonicity was introduced by Kocić–
Lacković [195].

(2) The j-convexity introduced in Definition 1.1.1 (i) is sometimes called
Jensen convexity of order j. A slightly more general concept of convexity,
called Popoviciu convexity of order j, was introduced by Popoviciu [315] (in
a slightly different denomination), as follows: one says that f : [a, b] → R is
Popoviciu convex of order j, if for all systems of distinct points (not necessarily
equidistant) a ≤ x0 < · · · < xj ≤ b, we have [x0, . . . , xj ; f ] ≥ 0. But, according
to a result stated without proof by Popoviciu [318] in 1959, and completely
proved in 1997 in, e.g., Ivan–Raşa [184], if f is continuous on [a, b], then for
any system of distinct points a ≤ x0 < · · · < xj ≤ b, there are the points
c, c + h, . . . , c + jh ∈ [a, b], h ≥ 0, such that [x0, . . . , xj ; f ] = 1

j!hj ∆j
hf(c).

This immediately implies that for continuous functions, the Jensen and
Popoviciu convexities coincide and because in approximation, most of the
time the functions considered are at least continuous, in those cases we will
simply refer to j-convexity.

(3) The concept of an α-star-convex function α ∈ [0, 1] is an intermediate
concept between the concept of usual convex and that of starshaped function.
Indeed, in Definition 1.1.1 (ii), for α = 1 we get the concept of usual convex
function, while for α = 0 we get the concept of starshaped function.

It is worthwhile to point out here the following main properties of an
α-star-convex function f : [0, 1] → R, with α ∈ (0, 1] (see Mocanu–Şerb–
Toader [274]): f is starshaped on [0, 1] (for f(0) ≤ 0), continuous on (0, α),
bounded on [0, 1], and Lipschitz in each compact subinterval of (0, α).

Also, we need the following.

Definition 1.1.2. (i) (see e.g. DeVore–Lorentz [91], p. 44) The modulus of
smoothness of f ∈ Lp[−1, 1], 0 < p ≤ +∞, denoted by ωk(f, t)p, k ∈
{0, 1, . . . , } is defined by ω0(f, t)p := ‖f‖Lp[a,b] := ‖f‖p and for k ≥ 1 by

ωk(f, t)p = sup
0≤h≤t

{‖∆k

hf(·)‖p},

where ∆
k

hf(x) = ∆k
hf(x) if x, x + kh ∈ [−1, 1], ∆

k

hf(x) = 0; otherwise,
∆k

hf(x) =
∑k

i=0(−1)k−i
(
k
i

)
f(x + ih). Here L∞[−1, 1] = C[−1, 1], the

space of all continuous functions on [−1, 1].
(ii) (see Ditzian–Totik [98]) Set ϕ(x) :=

√
1 − x2 and define the kth symmet-

ric difference

∆k
hϕf(x) :=

⎧
⎨

⎩

k∑

i=0

(−1)i
(
k
i

)
f(x + (i − k

2 )hϕ(x)), x ± k
2hϕ(x) ∈ [−1, 1],

0 otherwise,
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where ∆0
hϕf(x) := f(x). Then the Ditzian–Totik modulus of smoothness

of order k is given by

ωϕ
k (f, t)p := sup

0<h≤t
‖∆k

hϕf‖p.

(iii) (Sendov–Popov [345]) The kth averaged modulus of smoothness (called
τ -modulus too) defined for a measurable bounded real function defined
on [a, b] is given by

τk(f, t, [a, b])p = ‖ωk(f, ·, t)‖Lp[a,b],

where 1 ≤ p ≤ ∞, ∆k
h is the kth symmetric difference from the above

point (ii), and

ωk(f, x, t) = sup{|∆k
h|; y ± mh/2 ∈ [x − mt/2, x + mt/2] ∩ [a, b]}.

Remark. For p = ∞ one can modify these moduli by taking into account
not only the position of x in the interval when setting ∆k

hϕf , but also how far
the endpoints of the interval [x− k

2hϕ(x), x+ k
2hϕ(x)] are from the endpoints

of [−1, 1]. Thus, one can introduce the following.

Definition 1.1.3. (Shevchuk [349]) Let us define

ϕδ(x) :=

√

(1 − x − δ

2
ϕ(x))(1 + x − δ

2
ϕ(x)), x ± δ

2
ϕ(x) ∈ [−1, 1],

and by Cr
ϕ the set of functions f ∈ Cr(−1, 1) ∩ C[−1, 1], such that

limx→±1 ϕr(x)f (r)(x) = 0.
The modified Ditzian–Totik modulus of smoothness of order (k, r) is

given by

ωϕ
k,r(f

(r), t) := sup
0≤h≤t

sup
x

|ϕr
kh(x)∆k

hϕ(x)f
(r)(x)|, t ≥ 0,

where ∆k
hf(x) denotes the kth symmetric difference and the inner supremum

is taken over all x such that

x ± k

2
hϕ(x) ∈ (−1, 1).

Remarks. (1) For k = 0 we have

ωϕ
0,r(f

(r), t) = ‖ϕrf (r)‖∞,

while for r = 0 we have

ωϕ
k,0(f

(0), t) := ωϕ
k (f, t).
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The above condition guarantees that for k ≥ 1, it follows that
ωϕ

k,r(f
(r), t) → 0, as t → 0. Also, if f ∈ Cr

ϕ and 0 ≤ m < r, then

ωϕ
k+r−m,m(f (m), t) ≤ C(k, r)tr−mωϕ

k,r(f
(r), t), t ≥ 0.

Conversely, if f ∈ C[−1, 1], m < α < k, and ωϕ
k (f, t) ≤ tα, then f ∈ Cm

ϕ

and
ωϕ

k−m,m(f (m), t) ≤ C(α, k)tα−m, t ≥ 0.

(2) If f ∈ Cm
ϕ and ωϕ

r−m,m(f (m), t) ≤ tr−m, then

‖ϕrf (r)‖∞ ≤ C(r).

If we denote the class of all functions satisfying this last inequality by B
r,

then the converse is valid too, that is, if f ∈ B
r and 0 ≤ m < r, then

f ∈ Cm
ϕ and

ωϕ
r−m,m(f (m), t) ≤ C(r)tr−m‖ϕrf (r)‖∞, t ≥ 0.

1.2 Shape-Preserving Interpolation by Polynomials

The existence of interpolating polynomials that are monotone with the in-
terpolated data was established by Wolibner [399] and independently by
Kammerer [189] and Young [404], as follows.

Theorem 1.2.1. (see Wolibner [399], Young [404], Kammerer [189]) Let
(xi, yi), i = 1, . . . , n be a set of data such that x1 < x2 < · · · < xn and
yi 	= yi+1, i = 1, . . . , n − 1, then there exists an algebraic polynomial p with
the following properties:

p(xi) = yi, i = 1, . . . , n, sgn[p′(x)] = sgn[∆yi], x ∈ [xi, xi+1], i = 1, . . . , n−1,

where ∆yi = yi+1 − yi.

Proof. We follow here the ideas in the proof of Wolibner [399]. Denote by
φ(x) the continuous piecewise linear function defined on [x1, xn] and passing
through all the points (xk, yk). It is evident that we can define a twice dif-
ferentiable function f : [x1, xn] → R such that f(xk) = yk, k = 1, . . . , n, f is
comonotone with φ, (i.e., f(x) is of the same monotonicity with φ(x) on each
subinterval [xk, xk+1]), the monotonicity is given by the sign of the difference
f(xk+1)− f(xk)), and, in addition f is strictly monotonic on each subinterval
[xk, xk+1].

It follows that f ′ can have only simple zeros. Denote by cj , j = 1, . . . , m,
m ≤ n, the xj that are simple zeros. Then F (x) = f ′(x)

Πm
k=1(x−xk) cannot be zero

on [x1, xn], i.e., by the continuity of F (x), we get that F (x) > 0,∀x ∈ [x1, xn]
or F (x) < 0,∀x ∈ [x1, xn]. In both cases, for any positive ε > 0, there exists
an approximation polynomial P attached to F such that ‖F − P‖∞ < ε and
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P is strictly positive or strictly negative on [x1, xn], as is F . Here ‖·‖∞ denotes
the uniform norm on [x1, xn].

Defining Q(x) = f(x1)+
∫ x

x1
P (t)Πm

k=1(t−xk)dt, it is easily seen that Q(x)
imitates the monotonicity of f on each subinterval [xk, xk+1]. Also, we get

|Q(x) − f(x)| =
∣
∣
∣
∣

∫ x

x1

P (t)Πm
k=1(t − xk)dt − [f(x) − f(x1)]

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x

x1

P (t)Πm
k=1(t − xk)dt −

∫ x

x1

f ′(t)dt

∣
∣
∣
∣

≤ ε

∫ xn

x1

|Πm
k=1(t − xk)|dt ≤ (xn − x1)m+1ε,

for all x ∈ [x1, xn]. So for sufficiently small ε, we have that the Q(xk) are
sufficiently close to yk = f(xk), k = 1, . . . , n.

Now, for any ε > 0 and s = 2, 3, . . . , n, choose y
(s)
k−1,ε 	= y

(s)
k,ε, k = 1, . . . , n,

such that |y(s)
k,ε| < ε, k = 1, . . . , s − 1, |y(s)

k,ε − 1| < ε, k = s, . . . , n, the points
x1 < · · · < xn remaining the same. Also, the corresponding linear piecewise
function passing through all the points (xk, y

(s)
k,ε) is denoted by φ(s)(x).

According to the above reasonings there exist the polynomials Q
(s)
ε (x), s =

2, . . . , n, such that they are comonotone with φ(s)(x) and satisfy

|Q(s)
ε (xk)| < ε, k = 1, . . . , s − 1,

and
|Q(s)

ε (xk) − 1| < ε, k = s, . . . , n.

Also, by convention define Q
(1)
ε (x) = 1.

Denote by Aε the value of the determinant Q
(s)
ε (xk), k, s = 1, . . . , n, and

by B
(s)
ε the value of the determinant obtained from the above one by replacing

the sth column with y
(s)
k,ε, s = 1, . . . , n. Obviously, we have limε→0 Aε = 1 and

limε→0 B
(s)
ε = ys − ys−1, s = 2, . . . , n. Therefore, for an ε0 sufficiently small,

we have Aε0 > 0 and sign(B(s)
ε0 ) = sign(ys − ys−1), s = 2, . . . , n.

Then the polynomial W (x) =
∑n

s=1

B(s)
ε0

Aε0
Q

(s)
ε0 (x) will satisfy the conditions

in the statement. �

Remarks. (1) For generalizations of Wolibner’s result see, e.g., Ivan [183].
(2) A direct consequence of the above theorem is the following result in

Deutch–Morris [80], called SAIN (i.e., simultaneous approximation and
interpolation-preserving norm)-type result: if f ∈ C[a, b] and x0 < · · ·< xn

are distinct points in [a, b], then for any ε > 0, there exists a polynomial
p such that

p(xi) = f(xi), i = 0, . . . , n, ‖f − p‖∞ < ε, ‖p‖∞ = ‖f‖∞
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(here ‖·‖∞ denotes the uniform norm on C[a, b]). In some particular cases,
this result can also be considered to belong to the topic of approximation
and interpolation by polynomials preserving positivity or positive bounds.
Indeed, suppose 0 < f(x) ≤ ‖f‖∞, for all x ∈ [a, b] (obviously, the second
inequality is always valid). From the continuity of f , there exists c > 0
such that f(x) ≥ c > 0, for all x ∈ [a, b], and therefore for any sufficiently
small ε (more exactly for 0 < ε < c), the approximating and interpolating
polynomial p also satisfies 0 < p(x) ≤ ‖f‖∞, for all x ∈ [a, b].

(3) The Wolibner’s theorem does not provide any information about the de-
gree of the polynomial p. If we denote by s the smallest degree of p that still
satisfies Theorem 1.2.1, then the first result concerning s was obtained by
Rubinstein [330], but only for the particular case n = 2 and y0 < y1 < y2.
In Nikolcheva [285], for equidistant nodes in [0, 1] and for the hypothesis
∆yi ≥ cmα, one obtains the best estimate, s = O(α · log(n)). Similar
results were obtained in Passow–Raymon [300] and Passow [299].
Another direction of research concerning the shape–preserving interpo-

lation by polynomials was discovered by T. Popoviciu in a series of papers
published between 1960 and 1962, see [312], [313], [314], and can be described
as follows. First let us consider the following simple definition.

Definition 1.2.2. Let f ∈ C[a, b] and a ≤ x1 < x2 < · · · < xn ≤ b be fixed
nodes. A linear operator U : C[a, b] → C[a, b] is said to be of interpolation
type (on the nodes xi, i = 1, . . . , n) if for any f ∈ C[a, b] we have

U(f)(xi) = f(xi), ∀ i = 1, . . . , n.

Remark. Important particular cases of U are of the form

Un(f)(x) =
n∑

k=1

f(xk)Pk(x), n ∈ N,

where Pk ∈ C[a, b] satisfy Pk(xi) = 0 if k 	= i and Pk(xi) = 1 if k = i, and
contain the classical Lagrange interpolation polynomials and Hermite–Fejér
interpolation polynomials.

Now, if f ∈ C[a, b] is, for example, monotone (or convex) on [a, b], it is easy
to note that because of the interpolation conditions, in general U(f) cannot
be monotone (or convex) on [a, b].

However, it is a natural question whether U(f) remains monotone (or con-
vex) on neighborhoods of some points in [a, b]. In this sense, we can introduce
the following definition.

Definition 1.2.3. Let U : C[a, b] → C[a, b] be a linear operator of interpola-
tion type on the nodes a ≤ x1 < · · · < xn ≤ b.

Let y0 ∈ (a, b). If for any f ∈ C[a, b], nondecreasing on [a, b], there exists a
neighborhood of y0, Vf (y0) = (y0−εf , y0 +εf ) ⊂ [a, b], εf > 0 (i.e., depending
on f) such that U(f) is nondecreasing on Vf (y0), then y0 is called a point of
weak preservation of partial monotonicity and correspondingly, U is said to
have the property of weak preservation of partial monotonicity (about y0).
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If the above neighborhood V (y0) does not depend on f , then y0 is called
a point of strong preservation.

Similar definitions hold if monotonicity is replaced by, e.g., convexity (of
any order).

For example, we present the following two results below concerning the
Hermite–Fejér polynomials based on some special Jacobi nodes.

Theorem 1.2.4. (Gal–Szabados [139], Theorem 2.2; see also Gal [123], p. 46,
Theorem 2.2.2) For n ∈ N, let Hn(f)(x) =

∑n
i=1 hi,n(x)f(xi,n) be the classical

Hermite–Fejér polynomial based on the roots −1 < xn,n < xn−1,n < · · · <

x1,n < 1 of the Jacobi polynomials P
(α,β)
n (x), where α, β ∈ (−1, 0] and

hi,n(x) = l2i (x)
[

1 − l′′(xi,n)
l′(xi,n)

(x − xi,n)
]

,

li(x) = l(x)/[(x − xi,n)l′(xi,n)], l(x) =
n∏

i=1

(x − xi,n).

If f : [−1, 1] → R is monotone on [−1, 1], then for any root ξ of the poly-
nomial l′(x), there is a constant c > 0 (independent of n and of f) such that
Hn(f)(x) is of the same monotonicity with f in

(
ξ − cξ

n7+2γ
, ξ +

cξ

n7+2γ

)
⊂

(−1, 1), where cξ =
c

(1 − ξ2)5/2+δ
, γ = max{α, β}, and

δ =
{

α, if 0 ≤ ξ < 1,
β, if −1 < ξ ≤ 0.

Proof. Let us denote Hn(f)(x) =
n∑

i=1

hi,n(x)f(xi,n), where

hi,n(x) = l2i (x)
[

1 − l′′(xi,n)
l′(xi,n)

(x − xi,n)
]

,

li(x) = l(x)/[(x − xi,n)l′(xi,n)], l(x) =
n∏

i=1

(x − xi,n).

By, e.g., Popoviciu [312] we have

hi,n(0) = l2(0)[2 − (1 − λ)x2
i,n]/[l′(xi,n)2(1 − x2

i,n)x3
i,n],

for all i = 1, . . . , n, and

H ′
n(f)(x) =

n−1∑

i=1

[Qi(x)][f(xi,n) − f(xi+1,n)],

where Qi(x) =
i∑

j=1

h′
j,n(x), i = 1, . . . , n − 1.

Reasoning as in the proof of Lemma 3 in Popoviciu [314], we get

Qi(ξ) > min{h′
1,n(ξ),−h′

n,n(ξ)} > 0, for all i = 1, . . . , n − 1.
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Let an, bn ∈ (0, 1), an, bn ↘ 0 (when n → +∞) be such that |h′
1,n(ξ)| ≥

c1an, |h′
n,n(ξ)| ≥ c2bn, and sn = min{an, bn}.

It easily follows that Qi(ξ) ≥ c3sn, i = 1, . . . , n − 1. By Szegö [383],
Theorem 14.5, we have

n∑

j=1

hj,n(x) = 1, ∀ x ∈ [−1, 1],

where hj,n(x) ≥ 0, ∀ x ∈ [−1, 1], j = 1, . . . , n.
Applying the Bernstein’s inequality twice we obtain

Qi(ξ) ≤ c1|di − ξ|n2/(1 − ξ2), i = 1, . . . , n − 1,

where di is the nearest root of Qi(x) to ξ, and therefore

max
|x−ξ|≤aξ

sn
n2

Qi(x) > 0, i = 1, . . . , n − 1

with aξ = c2(1 − ξ2).
It remains to find a (lower) estimate for sn. First we have

|P (α,β)
n (ξ)| ≥ c3n

−1/2

(1 − ξ)δ/2+1/4
,

(see Theorem 8.21.8 in Szegö [383]).
By Popoviciu [314], p. 79, relation (27),

h′
1,n(ξ) =

l2(ξ)
(x1,n − ξ)3[l′x1,n)]2

[

2 + (x1,n − ξ)
l′′(x1,n)
l′(x1,n)

]

> 0,

h′
n,n(ξ) =

l2(ξ)
(xn,n − ξ)3[l′xn,n)]2

[

2 + (xn,n − ξ)
l′′(xn,n)
l′(xn,n)

]

< 0.

By Szegö [383], Theorem 14.5, 2+(xi,n−ξ)
l′′(xi,n)
l′(xi,n)

≥ 1 and by Szegö [383],

(7.32.11),

h′
1,n(ξ) ≥ l2(ξ)

(x1,n − ξ)3[l′(x1,n)]2
=

[P (α,β)
n (ξ)]2

(x1,n − ξ)3[P (α,β)′
n (x1,n)]2

≥ c4[P
(α,β)
n (ξ)]2

n2q(1 − ξ)3
,

(where q = max{2 + α, 2 + β}).
Also,

−h′
n,n(ξ) = |h′

n,n(ξ)| ≥ c5[P
(α,β)
n (ξ)]2

n2q(1 + ξ)3
.
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Thus we obtain

Qi(ξ) ≥
c8

n5+2γ(1 − ξ2)7/2+δ
, i = 1, . . . , n − 1.

Finally, taking sn =
c8

n5+2γ(1 − ξ2)7/2+δ
we easily obtain the theorem. �

For n ≥ 3 odd, let Hn(f)(x) be the Hermite–Fejér interpolation polynomial
based on the roots xi,n ∈ (−1, 1), i = 1, . . . , n, of λ-ultraspherical polynomials
of degree n, λ > −1, λ 	= 0. Also, consider the Côtes–Christoffel numbers of
the Gauss–Jacobi quadrature given by

λi,n := 22−λπ

[

Γ

(
λ

2

)]−2
Γ (n + λ)
Γ (n + 1)

(1−x2
i,n)−1[P (λ)′

n (xi,n)]−2, i = 1, . . . , n,

and define
∆2

hf(0) = f(h) − 2f(0) + f(−h).

We also have the following result:

Theorem 1.2.5. (Gal–Szabados [139], Theorem 2.3; see also Gal [123], p. 49,
Theorem 2.2.3) Let f ∈ C[−1, 1] satisfy

n∑

i=1

[λi,n∆2
xi,n

f(0)]/x2
i,n > 0

(if f is strictly convex on [−1, 1] then obviously it satisfies this condition).
Then Hn(f)(x) is strictly convex in [−|dn|, |dn|], with

|dn| ≥
c(λ)

n−1
2∑

i=1

[λi,n∆2
xi,n

f(0)]/x2
i,n

n2

[

ω1

(

f ;
1
n

)

+ ‖f − Hn(f)‖
]

I

,

where c(λ) > 0 is independent of f and n, I =
[
− 1

2 , 1
2

]
, ω1

(
f ; 1

n

)

[− 1
2 , 1

2 ]
is the

first-order modulus of continuity on
[
− 1

2 , 1
2

]
, and ‖ · ‖[− 1

2 , 1
2 ] is the uniform

norm on
[
− 1

2 , 1
2

]
.

Proof. Denote Hn(f)(x) =
n∑

i=1

hi,n(x)f(xi,n), where

h′′
i,n(x) = −4

l′′(xi,n)
l′(xi,n)

li(x)l′i(x) + 2[(l′i(x))2 + li(x)l′′i (x)]
[

1 − l′′(xi,n)
l′(xi,n)

(x − xi,n)
]

.
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But li(0) = 0 and l′i(0) = − l′(0)
xi,nl′(xi,n)

, for i 	= (n + 1)/2 and

1 + xi,n
l′′(xi,n)
l′(xi,n)

=
1 + λx2

i,n

1 − x2
i,n

, i = 1, . . . , n (see, e.g., Popoviciu [312]).

We obtain

h′′
i,n(0) =

2(l′(0))2

(l′(xi,n))2
· 1
x2

i,n

(
1 + λx2

i,n

1 − x2
i,n

)

> 0, ∀ i 	= (n + 1)/2.

Also, because xi,n = −xn+1−i,n, i = 1, . . . , n, l′(xi,n) = l′(xn+1−i,n) (since
n is odd) we easily get

h′′
i,n(0) = h′′

n+1−i,n(0).

But λi,n =
c1λΓ (n + λ)

Γ (n + 1)
· 1

(l′(xi,n))2
· 1

1 − x2
i,n

and (l′(0))2 ∼ nλ, which

together with the above inequality implies

h′′
i,n(0) ≥ c2λnλi,n/x2

i,n, for all i 	= (n + 1)/2.

Therefore

H ′′
n(f)(0) =

(n−1)/(2)∑

i=1

h′′
i,n(0)∆2

xi,n
f(0) ≥ c3λn

n∑

i=1

λi,n∆2
xi,n

f(0)/x2
i,n > 0.

By this last relationship it follows that Hn(f) is strictly convex in a neigh-
borhood of 0. Let dn be the nearest root of H ′′

n(f) to 0. We may assume that
|dn| ≤

c

n
(since otherwise there is nothing to prove, the interval of convexity

cannot be larger than
[
− c

n , c
n

]
). Then by the mean value theorem, Bernstein’s

inequality and Stechkin’s inequality (see, e.g., Szabados–Vértesi [381], p. 284)
we get

H ′′
n(f)(0) = |H ′′

n(f)(0) − H ′′
n(f)(dn)| = |dn| · |H ′′′

n (f)(y)|

≤ |dn|c4n
2‖H ′

n(f)‖J ≤ c5|dn|n3ω1

(

Hn(f);
1
n

)

I

≤ c5|dn|n3

[

ω1

(

f ;
1
n

)

+ ω1

(

Hn(f) − f ;
1
n

)]

I

≤ c5|dn|n3

[

ω1

(

f ;
1
n

)

+ ‖f − Hn(f)‖
]

I

,

where J =
[
− 1

4 , 1
4

]
, I =

[
− 1

2 , 1
2

]
.
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Combining the last inequality with the previous inequality satisfied by
H ′′

n(f)(0), the proof of the theorem is immediate. �

Remark. All the details concerning this direction of research can be found
in Chapter 2 of the recent monograph Gal [123], where a deep and exten-
sive study concerning shape-preserving interpolation by classical univariate
interpolation polynomials (of Lagrange, Grünwald, or Hermite–Fejér type)
is made.

For the error estimate in shape-preserving interpolation, we mention here
the following four results.

The first two results show the existence of such polynomials with good
approximation properties and can be stated as follows.

Theorem 1.2.6. (Ford–Roulier [120]) Let p ∈ N, 1 ≤ r1 < r2 < · · · < rs ≤ p
with ri, i = 1, . . . , s, natural numbers, εj = ±1, j = 1, . . . , s, and a ≤ x0 <
· · ·xm ≤ b interpolation nodes. For any f ∈ Cp[a, b] satisfying

εif
(ri)(x) > 0,∀x ∈ [a, b], i = 1, . . . , s,

there exists a sequence of polynomials (Pn(x))n, degree(Pn) ≤ n, such that
for sufficiently large n we have

εiP
(ri)
n (x) > 0,∀x ∈ [a, b], i = 1, . . . , s, with Pn(xj) = f(xj), j = 0, . . . ,m,

and the estimate

‖f − Pn‖∞ ≤ Cn−pω1(f (p); 1/n)∞

holds, where C > 0 is independent of f and n. Here ‖·‖∞ denotes the uniform
norm on C[a, b].

Proof. Let us sketch the proof. According to a result in the doctoral thesis
of Roulier [325], f can be extended to a function F ∈ Cp[a − 1, b + 1] such
that ω1(F (p);h)∞ ≤ ω1(f (p);h)∞, for all h ∈ [0, b − a]. Denote by Qn the
polynomial of best approximation of degree ≤ n attached to F on [a−1, b+1].
Jackson’s theorem implies

‖Qn − F‖C[a−1,b+1] ≤ Cn−pω1(F (p); 1/n)∞,

where ω1 is the uniform modulus of continuity on [a − 1, b + 1].
Now let Lm be the Lagrange’s interpolation polynomial of degree ≤ m

satisfying Lm(xi) = δi = F (xi) − Qn(xi), i = 0, . . . ,m.
Since |δi| ≤ Cn−pω1(F (p); 1/n)∞, for all i = 0, . . . , m, it is easy to derive

that |Lm(x)| ≤ C1n
−pω1(F (p); 1/n)∞ for all x ∈ [a − 1, b + 1], where C1

depends only on m and the points xi, i = 0, . . . , m.
Setting Pn(x) = Qn(x) + Lm(x), it is easy to see that Pn(xi) = F (xi) =

f(xi), i = 0, . . . ,m, and ‖Pn − f‖C[a−1,b+1] ≤ C2n
−pω1(f (p); 1/n)∞, by the
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above mentioned result in Roulier [325] (here ω1(f (p), 1/n)∞ denotes the uni-
form modulus of continuity on [a, b]).

Also, according to another result in Roulier [325], ‖Pn − f‖C[a−1,b+1] ≤
C2n

−pω1(f (p); 1/n)∞ implies ‖P (i)
n − f (i)‖C[a,b] ≤ C3n

i−pω1(f (p); 1/n)∞, i =
0, . . . , p.

This means that P
(ri)
n → f (ri), uniformly on [a, b], for all i = 1, . . . , s,

which because of the strict inequalities

εif
(ri)(x) > 0,∀x ∈ [a, b], i = 1, . . . , s,

immediately implies the conclusion in the statement. �

Remark. A similar result to that of Theorem 1.2.6, but in the more general
setting of nondifferentiable functions, has been considered by Szabados [379],
who obtained estimates in terms of ω1(f ; log n

n )∞.
Theorem 1.2.6 can be slightly refined by combining it with approximation

by monotone sequences of polynomials, as follows. For simplicity, we consider
the problem on [0, 1].

Theorem 1.2.7. (Gal [130]) Let p ∈ N, 1 ≤ r1 < r2 < · · · < rs ≤ p with
ri, i = 1, . . . , s natural numbers, εj = ±1, j = 1, . . . , s and 0 ≤ x1 < · · · <
xm ≤ 1 interpolation nodes. For any f ∈ Cp[0, 1] satisfying

εif
(ri)(x) > 0,∀x ∈ [0, 1], i = 1, . . . , s,

there exist sequences of polynomials (Pn(x))n, (Qn(x))n, degree(Pn) ≤ n,
degree(Qn) ≤ n, such that for sufficiently large n, we have

εiP
(ri)
n (x) > 0, εiQ

(ri)
n (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s,

Pn(xj) = Qn(xj) = f(xj), j = 0, . . . ,m,

the estimate
‖Pn − Qn‖∞ ≤ Cn−pω1(f (p); 1/n)∞

holds, where C > 0 is independent of f and n, and in addition,

Qn(x) ≤ Qn+1(x) ≤ f(x) ≤ Pn+1(x) ≤ Pn(x), ∀x ∈ [0, 1], n ∈ N.

Proof. From the proofs of the Theorem and Corollary 1 in Gal–Szabados
[140], we distinguish two steps.

Step 1. We start with the polynomial sequence (pk)k, degree(pk) ≤ k,
satisfying Theorem 1.2.6, i.e., for sufficiently large n we have

εip
(ri)
k (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s, where pk(xj) = f(xj), j = 0, . . . ,m,

and the estimate
‖f − pk‖∞ ≤ Ck−pω1(f (p); 1/k)∞

holds.
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Step 2. With the aid of (pk)k, one construct the polynomials Pn and Qn

satisfying the relationships (5) and (8), respectively, in Gal–Szabados [140]
(where Pn and Qn are defined as special arithmetic means of pk), replacing
there Ek(f)∞ by the expression Ck−pω1(f (k); 1/k)∞.

By the mentioned proof, for all n ≥ 4 we get

Qn(x) ≤ Qn+1(x) ≤ f(x) ≤ Pn+1(x) ≤ Pn(x), ∀x ∈ [0, 1], n ∈ N,

and
‖Pn − Qn‖∞ ≤ Cn−pω1(f (p); 1/n)∞.

Since the polynomials Pn and Qn are arithmetic means of pk, it is imme-
diate that

εiP
(ri)
n (x) > 0, εiQ

(ri)
n (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s.

Now, in order to get the interpolation conditions too, let us redefine Qn

and Pn by Qn := Qn + L
(1)
m , Pn := Pn + L

(2)
m , where L

(1)
m and L

(2)
m are the

Lagrange polynomials of degrees ≤ m satisfying the conditions L
(1)
m (xj) =

f(xj) − Qn(xj), L
(2)
m (xj) = f(xj) − Pn(xj), j = 0, . . . , m.

Reasoning as in the proof of Theorem 1.2.6, for the redefined Qn and Pn,
we get

Pn(xj) = Qn(xj) = f(xj), j = 0, . . . , m

and

‖Qn − f‖∞ ≤ Cn−pω1(f (p); 1/n)∞,

‖Pn − f‖∞ ≤ Cn−pω1(f (p); 1/n)∞,

which by ‖Qn − pn‖∞ ≤ ‖Qn − f‖∞ + ‖f − Pn‖∞, immediately implies

‖Pn − Qn‖∞ ≤ Cn−pω1(f (p); 1/n)∞.

Also, as in the proof of Theorem 1.2.6, we get the uniform convergence of
Q

(ri)
n and P

(ri)
n to f (ri), i = 0, . . . , s, which for sufficiently large n also implies

εiP
(ri)
n (x) > 0, εiQ

(ri)
n (x) > 0, ∀x ∈ [0, 1], i = 1, . . . , s.

Obviously, the monotonicity properties of the redefined sequences (Qn)n

and (Pn)n (with respect to n) become non-strict, because of interpolation
conditions. The theorem is proved. �

Remark. Two recent results in Kopotun [202], Kopotun [203], give the ap-
proximation estimates necessarily verified by interpolation j-convex polyno-
mials (interpolating a function which is not necessarily j-convex), in the case
that the interpolation nodes are not close to the endpoints. These results re-
maining valid for j-convex functions too, it is clear that they can be considered
to belong to the shape-preserving interpolation topic.
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Now, since by the alternating Chebyshev theorem, the best approximation
polynomial of degree ≤ n interpolates the function on at least n + 1 points,
in this section we also present three results concerning the preservation of
j-convexity by the best approximation polynomials.

Theorem 1.2.8. (Roulier [327]) Let m ∈ N, f ∈ C2m−1[−1, 1], 1 ≤ i1 < i2 <
· · · < iq < m be fixed integers and εj , j = 1, . . . , q be fixed signs. For any
n ∈ {0, 1, . . . , }, denote by Qn the best approximation polynomial of degree
≤ n of f on [−1, 1]. If εjf

(ij)(x) > 0, for all x ∈ [−1, 1] and all j = 1, . . . , q

and if
∑+∞

k=1
1
kω1(f (2m−1); 1

k )∞ < +∞, then for sufficiently large n, we have
εjQ

(ij)
n (x) > 0, for all x ∈ [−1, 1] and all j = 1, . . . , q.

Proof. We sketch here the proof using the ideas in Roulier [327]. In fact, it
is based on two lemmas. The first one is well known (see, e.g., G.G. Lorentz’s
monograph [248]) and can be stated as follows.

Lemma (A). (Lorentz [248], p. 74)There exist constants Mp > 0,
p = 1, 2, . . . , such that if w is any modulus of continuity for which∑+∞

k=1
1
kw(1/k) < +∞ and if for f ∈ C[−1, 1] and polynomials qn(x) of degree

≤ n we have the estimate

|f(x) − qn(x)| ≤ C[∆n(x)]pw(∆n(x)),

then f has continuous derivative f (p) and

|f (p)(x) − q(p)
n (x)| ≤ Mp

∑

k≥[(∆n(x))−1]

1
k

w(1/k),∀x ∈ [−1, 1].

Here ∆n(x) = max{n−1(1 − x2)1/2, n1/2}, ∆0(x) = 1.

Proof of Lemma A. Because of its importance in approximation theory,
let us sketch its proof below. It is easy to see that we can write f(x) =
qn(x) +

∑∞
j=1(q2jn(x) − q2j−1n(x)), where by the hypothesis it follows that

|q2jn(x) − q2j−1n(x)| ≤ 2[∆2j−1n(x)]pw(∆2j−1n(x)).

This implies the uniform convergence of the series (on [−1, 1]), that is, the
differentiated series (of any order) is also uniformly convergent and we get

f (p)(x) = q(p)
n (x) +

∞∑

j=1

(q(p)
2jn(x) − q

(p)
2j−1n(x)).

Taking into account the elementary inequalities 1
4∆n(y) ≤ ∆2n(y) ≤ 1

2∆n(y),
valid for all y ∈ [−1, 1] and applying a well known Markov-type inequality in
terms of the modulus of continuity (i.e., |qn(x)| ≤ [∆n(x)]rw(∆n(x)), |x| ≤ 1,
implies |q′n(x)| ≤ Mr[∆n(x)]r−1w(∆n(x)), |x| ≤ 1, for its proof see, e.g.,
Theorem 3 in Lorentz [248], p. 71) p-times, we obtain

|q(p)
2jn(x) − q

(p)
2j−1n(x)| ≤ Mpw(∆2jn(x)).
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Combining with Lemma 1 in Lorentz [248], pp. 58–59 and taking into account
that [∆n(x)]−1 ≥ n, this implies

|f (p)(x) − q(p)
n (x)|

≤ Mp

∞∑

j=1

w(∆2jn(x)) ≤ Mp

∑

k≥[(∆n(x))−1]

1
k

w(1/k),∀x ∈ [−1, 1],

and the existence of continuous f (p). �
From Lemma A, one deduces the following.

Lemma (B). (Roulier [327]) If f ∈ C2m−1[−1, 1] and

+∞∑

k=1

1
k

ω1

(

f (2m−1);
1
k

)

∞
< +∞,

then for the best-approximation polynomial Qn, there exists a constant Bm

such that

|f (i)(x) − Q(i)
n (x)| ≤ Bm

+∞∑

j=n

1
j
ω1

(

f (2m−1);
1
j

)

∞
,

for all x ∈ [−1, 1] and 1 ≤ i < m.

Proof of Lemma B. From the well known Jackson’s theorem we have

‖f − Qn‖∞ = En(f)∞ ≤ Cm

n2m−1
ω1

(

f (2m−1);
1
n

)

∞
,

with Cm > 0 depending only on m.
Now, since 1

n2 ≤ ∆n(x) ≤ 1
n , for any x ∈ [−1, 1] and k = 1, . . . , m − 1, by

simple calculation we get

1
n2m−1

ω1

(

f (2m−1);
1
n

)

∞
≤ (∆n(x))kω1(f (2m−1);∆n(x))∞,

which implies

|Qn(x) − f(x)| ≤ Cm(∆n(x))kω1(f (2m−1);∆n(x))∞.

Applying Lemma A, we get the desired inequality in Lemma B.
Now, since

∑+∞
j=n

1
j ω1(f (2m−1); 1

j )∞ → 0 as n → +∞, the proof of
Theorem 1.2.8 is immediate. �

As a negative-type result, we can mention the following.

Theorem 1.2.9. (see Passow–Roulier [301]) Suppose that f ∈ C[−1, 1] has
bounded rth-order divided differences and nonnegative (r + 1)th-order divided
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differences on [−1, 1]. Let Pn be the best approximation polynomial of f on
[−1, 1] of degree ≤ n and assume that there is no C > 0 for which

En(f)∞ ≤ C

(n + 1)r
, n = 0, 1, . . . .

Then there are infinitely many n for which we do not have P r+1
n (x) ≥ 0 on

[−1, 1].

For other negative-type results see Passow–Roulier [301].

Remarks. Generalized results concerning the best comonotone approxima-
tion in C[a, b] by elements from an n-dimensional extended Chebyshev sub-
space were obtained by Deutsch–Zhong [81].

1.3 Bernstein-Type Polynomials Preserving Shapes

Let f : [0, 1] → R. The Bernstein polynomial on the interval [0, 1] given by

Bn(f)(x) =
n∑

k=0

pn,k(x)f
(

k

n

)

, pn,k(x) =
(

n

k

)

xk(1 − x)n−k

is one of the most famous polynomials in approximation theory and was in-
troduced in 1912 by S.N. Bernstein [45] in order to give the first constructive
(and simple) proof to the Weierstrass approximation theorem. Note that the
Bernstein polynomial attached to a function f : [a, b] → R can be written by
the formula Bn(f ; [a, b])(x) = 1

(b−a)n

∑n
k=0

(
n
k

)
(x− a)k(b−x)n−kf(a+ k b−a

n ).
The first approximation error of these polynomials was established by

T. Popoviciu [316] in 1935, who proved the estimate

‖Bn(f) − f‖∞ ≤ 3
2
ω1

(

f ;
1√
n

)

∞
,

for all n ∈ N. The best constant in front of ω1(f ; 1
n )∞ was found in 1961 by

Sikkema [356], and it is 4306+837
√

6
5832 = 1, 089 . . . .

Many decades later, the best order of approximation by Bernstein poly-
nomials was found; namely Knoop–Zhou [194] and Totik [387] proved the
following equivalence (with absolute constants C1 and C2):

C1ω
ϕ
2

(

f ;
1√
n

)

∞
≤ ‖Bn(f) − f‖∞ ≤ C2ω

ϕ
2

(

f ;
1√
n

)

∞
,

where we recall that

ωϕ
2 (f ; δ)∞
= sup{sup{‖f(x + hϕ(x)) − 2f(x) + f(x − hϕ(x))‖;x ∈ I2,h}, h ∈ [0, δ]}

(with I2,h =
[
− 1−h2

1+h2 , 1−h2

1+h2

]
, ϕ(x) =

√
x(1 − x), δ ≤ 1) denotes the second-

order Ditzian–Totik modulus of smoothness.
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Let us mention that earlier, the following pointwise estimate was proved:

|Bn(f)(x) − f(x)| ≤ Cω2

(

f ;

√
x(1 − x)

n

)

∞

,

for all x ∈ [0, 1], n ∈ N, f ∈ C[0, 1]; see, e.g., Cao [54] (or Gonska–Meier [153]
for C = 5).

Although the above estimates are rather weak with respect to the Jackson-
type estimates attained by other approximation polynomials, the shape-
preserving properties of Bernstein polynomials make them very important,
with many applications in computer aided geometric design.

These properties can be summarized by the following theorem.

Theorem 1.3.1. Let f : [0, 1] → R.

(i) (Popoviciu [317]) If we suppose that f is convex (strictly convex) of or-
der k ∈ {0, 1, 2, . . . , } on [0, 1], then Bn(f) is convex (strictly convex,
respectively) of order k on [0, 1], for all n ∈ N;

(ii) (Păltănea [296]) If f is quasiconvex of order k ∈ {1, 2, . . . , } on [0, 1],
then Bn(f) is quasiconvex of order k on [0, 1], for all n ∈ R;

(iii) (L. Lupaş [254]) If f : [0, 1] → R satisfy f(0) = 0, f(x) ≥ 0, for all
x ∈ [0, 1] and f is starshaped on [0, 1], then Bn(f)(0) = 0, Bn(f)(x) ≥
0, x ∈ [0, 1], and Bn(f) is starshaped on [0, 1], for all n ∈ N.
(Mocanu–Şerb–Toader [274]) For f : [0, 1] → R starshaped on [0, 1], de-
fine its order of star–convexity by α∗(f) = sup{β; f is β-star–convex}.
If, in addition, f is strictly starshaped with f(0) < 0 or f is strictly
starshaped, f ∈ C2[0, 1], f(0) = 0, f ′′(0) 	= 0, then

lim
n→∞

α∗[Bn(f)] = α∗(f).

(iv) (Goodman [154]) If f is logarithmic convex on [0, 1], then Bn(f) is loga-
rithmic convex on [0, 1], for all n ∈ N;

(v) (Kocić–Lackcović [195]) If f is u-monotone, where u(x) = xλ, for all
x ∈ [0, 1] and λ ∈ (0, 1) is arbitrary and fixed, then Bn(f) is u-monotone
for all n ∈ N.

(vi) (Pólya–Schoenberg [308]) Bn(f)(x) are strongly variation-diminishing,
that is S[0,1][Bn(f)] ≤ S[0,1][f ], for all f ∈ C[0, 1], n ∈ N.

Proof. (i) We may easily prove by mathematical induction with respect to k
the formula,

B(k)
n (f)(x) = n(n − 1) · · · (n − k + 1)

n−k∑

j=0

∆k
1/nf(j/n)pn−k,j(x),

which immediately proves (i);
(ii) First we need two auxiliary results.
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Lemma (A). (Păltănea [296]) Let us define Σ = {σ = (x1 < · · · <
xm);x1, . . . , xm ∈ [0, 1]}, where m ≥ k + 1, k ∈ N. For such a σ ∈ Σ and
for f : [0, 1] → R, dj = [xj , . . . , xj+k; f ], 1 ≤ j ≤ m − k, and let µ(σ) be the
greatest index p, 1 ≤ j ≤ m−k, such that dp < 0. If there are no such indices,
then we put µ(σ) = 0.

If f : [0, 1] → R is k-quasiconvex (k ∈ N) on [0, 1], then the following
inequalities hold:

dj ≤ 0, 1 ≤ µ(σ) − 1, dµ(σ) < 0,

and
dj ≥ 0, µ(σ) + 1 ≤ j ≤ m − k − 1.

Proof of Lemma A. Obviously it is enough to prove that dj ≤ 0, for
all j = 1, . . . , µ(σ). For this purpose, suppose that there is an index i, the
case when we choose the greatest i satisfying 1 ≤ i ≤ µ(σ) − 1, such that
di > 0. Therefore, we would have dj ≤ 0 for all j satisfying i < j < µ(σ). We
will use the following properties of divided differences in Popoviciu [315]: for
every system of strictly ordered points x1 < · · · < xm, m ≥ 2, and for every
indice 1 = i1 < · · · < in = m, n ≥ 1, there exist real numbers aj ≥ 0, for all
1 ≤ j ≤ m − n + 1, a1 > 0, am−n+1 > 0, such that

[xi1 , . . . , xin
; f ] =

m−n+1∑

j=1

aj [xj , . . . , xj+n−1; f ] .

Applying this relationship, there exist the numbers aj ≥ 0, for all i + 1 ≤ j ≤
µ(σ), ai+1 > 0, aµ(σ) > 0, such that

[xi+1, . . . , xi+k+1, xµ(σ)+k+1; f ] =
µ(σ)∑

j=i+1

aj · dj ≤ aµ(σ) · dµ(σ) < 0,

a fact which obviously contradicts the k-quasiconvexity of f (on xi < xi+1 <
· · · < xi+k+1 < xµ(σ)+k+1) in Definition 1.1.1, (iv). This proves the lemma.

�

Lemma (B). (Păltănea [296]) If f : [0, 1] → R is a polynomial and if there
exist two subintervals [0, c] and [c, 1] such that f is j-concave on [0, c] and
j-convex on [c, 1], then f is j-quasiconvex on [0, 1]. Note that here c can be 0
or 1 too.

Proof of Lemma B. By the hypothesis we have f (k+1)(x) ≤ 0, for all
x ∈ [0, c] and f (k+1)(x) ≥ 0, for all x ∈ [c, 1]. First we claim that f (k+2)(c) ≥ 0
and there exists δ > 0 such that f (k+2)(x) ≥ 0, for all |x − c| < δ.

Indeed, the cases when the degree of f is not greater than k + 2 or
f (k+2)(c) > 0 are obvious. In the opposite case we have f (k+2)(x) > 0, for any
x with x 	= c, t1 < x < t2, where t1 is the greatest root of f (k+2), that is less
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than c (or t1 = −∞ if such a root does not exist), and t2 is the least root of
f (k+2), that is greater than c (or t2 = +∞ if such a root does not exist).

Now, let us consider the points 0 ≤ x1 < · · · < xk+3 ≤ 1. To prove
the k-quasiconvexity of f on [0, 1], it suffices to consider only the case when
x1 < c < xk+3. Let us choose the points 0 ≤ y1 < · · · < ym ≤ 1, with the
following properties: (1) there exist the indices 1 = i1 < · · · < ik+3 = m, such
that yip

= xp, 1 ≤ p ≤ k + 3 and (2) yj+1 − yj < δ/(k + 2), 1 ≤ j ≤ m− 1. We
will denote cj = [yj , . . . , yj+k; f ], 1 ≤ j ≤ m− k and let r ∈ {2, . . . , m} be the
least index such that yr ≥ c.

Also, in what follows will be useful the well-known mean-value theorem
for divided differences [t1, . . . , tp+1; g] = g(p)(ξ)/p!, with t1 < ξ < tp+1.

With the above notations, we will prove the inequalities

cj+1 ≤ max{cj , cj+2}, 1 ≤ j ≤ m − k − 2.

Indeed, first if 1 ≤ j ≤ r − k − 2, then [yj , . . . , yj+k+1; f ] ≤ 0, which implies
cj ≥ cj+1. If r − k − 1 ≤ j ≤ min{r − 1,m − k − 2}, then |yp − c| < δ,
j ≤ p ≤ j + k + 2, and by the first claimed property in the proof and by the
above mean-value theorem, it follows that [yj , . . . , yj+k+2; f ] ≥ 0. Therefore,
by the recurrence formula satisfied by the divided differences, it follows that
[yj+1, . . . , yj+k+2; f ] ≥ [yj , . . . , yj+k+1; f ] and

cj+1 ≤ p

p + q
· cj +

q

p + q
cj+2,

where p = yj+k+1 − yj > 0 and q = yj+k+2 − yj+1 > 0. This proves the
inequality cj+1 ≤ max{cj , cj+2} for these indices. Finally, if r ≤ r ≤ m−k−2,
then it follows that [yj+1, . . . , yj+k+2; f ] ≥ 0 and hence cj+1 ≤ cj+2 and
therefore again we get cj+1 ≤ max{cj , cj+2}.

Now, take an index 1 < i < m such that yi ∈ {x1, . . . , xk+3} and consider
the points zj , j = 1, . . . ,m − 1, defined by z1 = y1, . . . , zi−1 = yi−1, zi =
yi+1, . . . , zm−1 = ym. If we denote dj = [zj , . . . , zj+k; f ], 1 ≤ j ≤ m−k−1, by
again using the property of divided differences in Popoviciu [315] (stated in the
proof of Lemma A also), we obtain dj = λjcj + (1− λj)cj+1, with λj ∈ [0, 1],
for any 1 ≤ j ≤ m− k− 1. Now the following property in Popoviciu [319] will
be useful here: f is 0-quasiconvex in [0, 1], if and only if [0, 1] can be divided
into two consecutive subintervals, such that f is nonincreasing on the first
one and nondecreasing on the second one. Combining it with the inequality
cj+1 ≤ max{cj , cj+2}, it implies

dj+1 ≤ max{dj , dj+2}, 1 ≤ j ≤ m − k − 3.

Repeating this method of elimination of the points which differ from the
points x1, . . . , xk+3, finally after m − k − 3 steps it follows that f is k-
quasiconvex. �

Returning to the proof of Theorem 1.3.1, (ii), first we have the following
formula which can easily be derived from the above point (i) (see also, e.g.,
Popoviciu [317]):
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B(k)
n (f)(x) =

k!n!
(n − k)!nk

n−k∑

i=0

[
i

n
, . . . ,

i + k

n
; f
]

pn−k,i(x).

Setting

ai =
[

i

n
, . . . ,

i + k

n
; f
]

k!n!
(n − k)!nk

(
n − k

i

)

,

y = x
1−x , x ∈ [0, 1), we get

B(k)
n (f)(x) = (1 − x)n−k

n−k∑

i=0

aiy
i.

Because the theorem is obvious for n < k, let us suppose n ≥ k. By the
hypothesis on f and by Lemma A, we have only three possibilities: (1) ai ≤ 0,
for all i = 0, . . . , n − k; (2) ai ≥ 0, for all i = 0, . . . , n − k; (3) there is p,
0 < p < n−k, such that ai ≤ 0 for all 0 ≤ i ≤ p, min0≤i≤p ai < 0, and ai ≥ 0,
for all p + 1 ≤ i ≤ n − k, maxp+1≤i≤n−kai > 0.

By the well-known Descartes’s rule, the polynomial P (y) =
∑n−k

i=0 aiy
i

has at most a positive root, y0, and this is possible only in the case (3), when
because of limy→+∞ P (y) = +∞, we have P (y) < 0 for all 0 < y < y0 and
P (y) > 0 for all y0 < y.

As a consequence, we have only three possibilities: (1) B
(k)
n (f)(x) ≤ 0, for

all x ∈ [0, 1]; (2) B
(k)
n (f)(x) ≥ 0, for all x ∈ [0, 1]; (3) there is c ∈ (0, 1) such

that B
(k)
n (f)(x) ≤ 0 for all x ∈ [0, c] and B

(k)
n (f)(x) ≥ 0 for all x ∈ [c, 1],

which by Lemma B proves (ii).
(iii) First, it is obvious that Bn(f)(0) = f(0) = 0 and Bn(f)(x) ≥ 0,

for all x ∈ [0, 1]. According to Definition 1.1.1 (ii), it suffices to prove that
xB′

n(f)(x) − Bn(f)(x) ≥ 0, for all x ∈ (0, 1].
We have

B′
n(f)(x) =

n−1∑

k=0

(
n − 1

k

)

n [f((k + 1)/n) − f(k/n)] pn−1,k(x),

while
Bn(f)(x)

x
=

n−1∑

k=0

(
n − 1

k

)
n

k + 1
f((k + 1)/n)pn−1,k(x),

which implies

B′
n(f)(x) − Bn(f)(x)

x
=

n−1∑

k=0

pn−1,k(x)An,k(f),

where An,k(f) = k
k+1f((k + 1)/n) − f(k/n). Since f is starshaped, it follows

that An,k(f) ≥ f
(

k
k+1 · k+1

n

)
− f(k/n) = 0, and by pn−1,k(x) ≥ 0, for all

x ∈ (0, 1], we get the desired inequality.
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The proof of the second part in (iii) is more technical, and it was given in
Mocanu–Şerb–Toader [274];

(iv) According to Goodman [154], the proof was suggested by C.A.
Micchelli. Let us sketch it below. Since f is logarithmic convex on [0, 1],
writing yi = f( i

n ), it easily follows that the polygonal arc with vertices
( i

n , log[yi]), i = 0, . . . , n, is convex, i.e., we may write y2
i ≥ yi−1yi+1, i =

1, . . . , n − 1. We also can write Bn(f)(t) =
∑n+1

i=1 y
(n+1)
i

(
n+1

i

)
ti(1 − t)n+1−i,

where y
(n+1)
i = i

n+1yi−1 + n+1−i
n+1 yi.

But by simple calculations (see Goodman [154], p. 343) we obtain

(n + 1)
[
(y(n+1)

i )2 − y
(n+1)
i−1 y

(n+1)
i+1

]
≥ 0,

taking into account the hypothesis y2
i ≥ yi−1yi+1.

Repeating the reasoning, by induction one obtains that for all m ≥ n we
have Bn(f)(t) =

∑m
i=0 y

(m)
i

(
m
i

)
ti(1 − t)m−i, where (y(m)

i )2 ≥ y
(m)
i−1y

(m)
i+1 , i =

1, . . . ,m − 1.
From the uniform convergence on [0, 1] (as m → +∞) of the convex poly-

gon with vertices (i/m, log[y(m)
i ]), i = 0, . . . , m, to the curve (t, log[Bn(f)(t)]),

it follows that log[Bn(f)(t)] is convex too, which proves (iv).
(v) Suppose u(x) = xλ, with arbitrary fixed λ ∈ [0, 1]. From the u-

convexity, it easily follows that g(x) = f(x)
xλ is nondecreasing on (0, 1].

It suffices to prove that [Bn(f)(x)/xλ]′ ≥ 0, x ∈ (0, 1]. Simple calculations
(see Kocić–Lackcović [195], p. 3) give us

[
Bn(f)(x)/xλ

]′
=

n−1∑

k=0

nxλpn−1,k(x)Qn,k,

where Qn,k = f(k+1
n )(1 − λ

k+1 ) − f( k
n ). Therefore, it is enough to prove that

Qn,k ≥ 0.
But, the generalized Bernoulli’s inequality (1 + t)λ ≤ 1 + λt, ∀λ ∈ [0, 1],

t ≥ −1, for t = − 1
k+1 implies

(

1 − 1
k + 1

)λ

≤ 1 − λ

k + 1
.

It follows that

f(k/n) ≤ f [(k + 1)]/n](k/(k + 1))λ = f [(k + 1)/n]
(

1 − 1
k + 1

)λ

≤ f [(k + 1)/n]
(

1 − λ

k + 1

)

,

which means exactly that Qn,k ≥ 0 and ends the proof.
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(vi) Denote by Z(0,1)[Bn(f)(x)] the number of real zeros of Bn(f) in (0, 1).
Since it is evident that S[0,1][Bn(f)] ≤ Z(0,1)[Bn(f)], it remains to prove that
Z(0,1)[Bn(f)] ≤ S[0,1][f ].

We have

Bn(f)(x)/(1 − x) =
n∑

k=0

f(k/n)
(

n

k

)

zk,

where z = x/(1 − x). Recall the classical Descartes’s rule of signs (in 1637!):
if p(x) is a polynomial of the form

∑n
i=0 ai

(
n
i

)
xi, then the number of times it

changes sign on (0,+∞) is bounded by the number of changes of sign in the
sequence a0, . . . , an (the zeros are not counted). By Descartes’s rule of signs,
it follows that

Z(0,1)[Bn(f)(x)] = Z[Bn(f)(x)/(1 − x)n]

= Z0<z<∞

[
n∑

k=0

f(k/n)
(

n

k

)

zk

]

≤ S[0,1]

[

(f(k/n)
(

n

k

)

)k

]

≤ S[0,1] [(f(k/n))k] ≤ S[0,1][f ],

which proves (vi) too. �
Remarks. (1) According to Theorem 1.3.1 (i), the Bernstein polynomials
also represent a constructive answer to the earlier result of Pál [295] in 1925.

(2) Although it is not of interest in the preservation of shape, let us also
mention the property V[0,1](Bn(f)) ≤ V[0,1](f), for all n ∈ N, where V[0,1](f)
denotes the total variation of f (see Popoviciu [316] or Lorentz [247], p. 23).

The slow convergence of the Bernstein polynomials Bn(f) to f is in fact a
consequence of their shape-preserving properties, as is shown by the following.

Theorem 1.3.2. (Berens–DeVore [37]) Let us denote by Tn the class of all
operators Tn : C[0, 1] → C[0, 1] satisfying the following conditions: Tn(f) is a
polynomial of degree ≤ n, Tn(f) = f for f a linear function, and Tn(f)(j) ≥ 0
for f (j) ≥ 0, for all j = 0, 1, . . . , n.

For any Tn ∈ Tn we have

Tn

[
(· − x)2

]
(x) ≥ Bn

[
· − x)2

]
(x) =

x(1 − x)
n

,

with equality if and only if Tn = Bn.

Proof. Here we will present the main ideas of the proof in Berens–DeVore
[37]. The problem can be reformulated in terms of eigenvalues. Thus, if Tn ∈
Tn, then the shape-preserving properties imply that Tn[Πj ] = Πj , for all
j = 0, 1, . . . , n, where Πj denotes the set of all (real) polynomials of degree ≤ j.
This immediately implies that for each j, the operator Tn has an eigenfunction
Ej ∈ Πj of the form Ej(x) = xj + · · · . Denoting its corresponding eigenvalue
by λj(Tn), the preservation of linear functions easily implies that λ0(Tn) =
λ1(Tn) = 1, while the shape-preserving properties imply in an easy way the
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inequalities 1 ≥ λ2(Tn) ≥ · · · · ≥ λn(Tn) ≥ 0 (see Lemma in Berens–DeVore
[37]).

It is known that the eigenvalues of Bn are given by (see Călugăreanu [53])
λj(Bn) = 1, j = 0, 1, λj(Bn) = (1 − 1/2) · · · (1 − (j − 1)/n), j = 2, . . . , n.

The inequality in the conclusion of the statement is equivalent to

λ2(Tn) ≤ λ2(Bn) = 1 − 1/n,∀Tn ∈ Tn, n ∈ N.

More exactly, the statement of Theorem 1.3.2 can be reformulated as follows:
for any Tn ∈ Tn, we have λ2(Tn) ≤ λ2(Bn) = 1 − 1/n, or equivalently

Tn[(· − x)2](x) ≥ Bn[· − x)2](x) =
x(1 − x)

n
,

with equality in both kinds of inequalities, if and only if Tn = Bn.
The proof is based on a special representation of each operator Tn. Indeed,

since the polynomials (pn,k(x))k=0,...,n form a basis in Πn, we can write

Tn(f)(x) =
n∑

k=0

ak(f)pn,k(x), with ak(f) =
∫ 1

0

f · duk,

where duk is a Borel measure. Moreover, since 1 =
∑n

k=0 pn,k(x) and x =∑n
k=0 pn,k(x)k/n, it easily follows that

∫ 1

0

duk = 1,

∫ 1

0

tduk = k/n, k = 0, 1, . . . , n.

Also, it is proved that all the Borel measures are positive measures, (i.e.,
have the property that duk ≥ 0, for all k = 0, . . . , n), a fact which is used to
prove that equality holds if and only if Tn = Bn.

For details, the interested reader can consult Berens–DeVore [37]. �
Remark. It is known that the degree of approximation |f(x) − Ln(f)(x)|
of a sequence of positive linear operators (Ln)n is controlled by the quantity
Ln(· − x)2)(x) (see, e.g., DeVore [82]). Therefore, Theorem 1.3.2 says that
with respect to this quantity, the Bernstein polynomial Bn(f) has the best
rate of approximation among the operators in the class Tn.

The form of the Bernstein polynomials gives suggestions for construct-
ing many other approximation polynomials, called Bernstein-type polynom-
ials. In what follows we present some well-known examples of Bernstein-type
polynomials together with their approximation, shape-preserving, and strong
variation-diminishing properties.

(1) The Stancu [362] polynomials are defined by

Sn,α(f)(x) =
n∑

k=0

wα
n,k(x)f

(
k

n

)

,

where wα
n,k(x) =

(
n
k

)x(k,−α)(1−x)(n−k,−α)

1(n,−α) , x(k,a) = x[x − a] · · · [x − (k − 1)a],
α ≥ 0.
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(2) The Soardi [360] polynomials (also called Bernstein operators of the
second kind) are defined by

βn(f)(x) =
2−n−1

(n + 1)x

[n/2]∑

k=0

(
n + 1

k

)

bn,k(x)f
(

n − 2k

n

)

,

where bn,k(x) = (n + 1 − 2k)[(1 − x)k(1 + x)n+1−k − (1 − x)n+1−k(1 + x)k].
(3) The q-Bernstein polynomials introduced by Phillips [303] (see also the

book Phillips [304], p. 267) are defined by

Bn,q(f)(x) =
n∑

k=0

f

(
[k]
[n]

)

xk

[(
n

k

)] n−k−1∏

s=0

(1 − qsx),

where 0 < q ≤ 1, the empty product is equal to 1, [k] = (1−q)k

1−q if q 	= 1,
[k] = k if q = 1, the q-factorial [k]! is defined by [k]! = [k][k−1] · · · [1] if k ∈ N,
[0]! = 1, and the q-binomial coefficients are defined by

[(
n
k

)]
= [n]!

[k]![n−k]! .
(4) The Bernstein–Chlodowsky–Stancu polynomials introduced by Ibikli

[179] are defined by

Cn(f)(x) =
n∑

k=0

(
n

k

)(
x

bn

)k (

1 − x

bn

)n−k

f

(

bn
k + α

n + β

)

,

where 0 ≤ α ≤ β, bn → ∞, bn = o(n) for n → ∞, and 0 ≤ x ≤ bn.
(5) The Lupaş2 polynomials introduced by Lupaş–Lupaş [261] are de-

fined by

Ln,(an)n
(f)(x) =

n∑

k=0

sn,k(an;x)f
(

k

n

)

,

where an > 0, ∀n = 1, 2, . . . , sn,k(an;x) = 1
(an)n

(
n
k

)
(anx)k(an − anx)n−k,

(z)k = z(z + 1) · · · (z + k − 1), (z)0 = 1.
(6) The Durrmeyer polynomials introduced by Durrmeyer [100] and stud-

ied by Derriennic [76], [77], are defined by

Dn(f)(x) = (n + 1)
n∑

k=0

pn,k(x)
∫ 1

0

pn,k(t)f(t)dt,

for any integrable function on [0, 1], where pn,k(x) is the Bernstein basis.
(7) The Durrmeyer polynomials based on the ultraspherical weight

tα(1 − t)α, α > −1 (for α = 0 one recapture the original Durrmeyer poly-
nomials), introduced by Lupaş [255], are defined by

Dn,α(f)(x) =
n∑

k=0

pn,k(x)
(2α + 2)n

(α + 1)k(α + 1)n−k

∫ 1

0

tk+α(1 − t)n−k+α

B(α + 1, α + 1)
f(t)dt,

where B(α, α) denotes the beta function.
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(8) The Lazarević–Lupaş [221] polynomials are defined by

Un(f)(x) =
n∑

k=0

ln,k(x)
∫ 1

0

[
t

n + 1
, . . . ,

t + k

n + 1
; f
]

dt,

where [x0, . . . , xn; f ] denotes the divided difference and

ln,k(x) =
n!

nk(n − k)!

(

x − 1
2n + 2

)k

.

(9) The generalized Bernstein-type polynomials introduced by Munoz–
Delgado, Ramirez–González, and Sablonniére [278] are defined by

Gn,k(f)(x) = Qk−2(f)(x)

+
∫ x

x0

∫ tk−1

x1

· · ·
∫ t2

xk−2

Bn−k+1(f (k−1))(t1)dt1dt2 · · · dtk−1,

where Bn(f) represents the Bernstein polynomials, xj = (1 − εjεj+1)/2, j =
0, . . . , k − 2, εh = 1 or εh = −1 for all h ∈ N, and Qk−2(f)(x) is the
unique polynomial of degree ≤ k − 2 that satisfies the interpolation condi-
tions Q

(j)
k−2(f)(xk) = f (j)(xk), for all j = 0, . . . , k − 2.

(10) The modified Durrmeyer polynomials introduced by Păltănea [297]
and independently by Berens–Xu [38] are defined by

D<α,β>
n (f)(x) =

n∑

k=0

pn,k(x)

∫ 1

0
tk+α(1 − t)n−k+βf(t)dt

B(k + α + 1, n − k + β + 1)
, x ∈ [0, 1],

where B(a, b) =
∫ 1

0
ta−1(1 − t)b−1dt is the beta function.

(11) The Mache [264] polynomials defined by

Pn(f)(x) =
n∑

k=0

pn,k(x)

∫ 1

0
tck+a(1 − t)c(n−k)+bf(t)dt

B(ck + a + 1, c(n − k) + b + 1)
, x ∈ [0, 1],

where a, b > −1 and c := cn := [nα], α ≥ 0.
(12) The Stancu [363] polynomials defined by

L<α,β,γ>
m,p (f)(x) =

m+p∑

k=0

f

(
k + β

m + γ

)
Πk−1

µ=0(x + µα) · Πm+p−k−1
µ=0 (1 − x + µα)

Πm+p+1
µ=0 (1 + µα)

,

x ∈ [0, 1], where p is a natural number, m ≥ 1, α ≥ 0, 0 ≤ β ≤ γ, f ∈
C[0, 1 + p/m].

Concerning the above Bernstein-type polynomials, with respect to the ap-
proximation and shape-preserving properties, we can state the following.
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Theorem 1.3.3. (i) The Stancu polynomial Sn,α(f)(x) satisfies (see Finta
[117])

‖Sn,α(f) − f‖∞ ≤ Cωϕ
2 (f ;
√

(1 + nα)/[n(1 + α)])∞, ϕ2(x) = x(1 − x)

and preserves the convexities of any order of f (see Mastroianni [266]);
(ii) The Soardi polynomial βn(f)(x) satisfies (see Soardi [360])

‖βn(f) − f‖∞ ≤ Cω1

(

f ;
1√
n

)

∞
.

In addition, if f is increasing on [0, 1], then so is βn(f) and if f is simulta-
neously increasing and convex on [0, 1], then so is βn(f) (see Raşa [321]);

(iii) The q-Bernstein polynomial Bn,q(f)(x) satisfies (see Phillips [303])

‖Bn,q(f) − f‖∞ ≤ 3
2
ω1

(

f ;
1

[n]1/2

)

∞
,

and, in addition, if f is increasing (convex) on [0, 1], then Bn,q(f) is increas-
ing (convex, respectively) on [0, 1] (see Goodman–Phillips [159] and the book
Phillips [304], p. 287);

(iv) The Bernstein–Chlodowsky–Stancu Cn(f)(x) preserves the convexities
of any order of f on [0, bn] (see Ibikli [179]);

(v) The Lupaş2 polynomial Ln,(an)n
(f)(x) satisfies

‖Ln,(an)n
(f) − f‖∞ ≤ 3ω1(f ;

√
1/n + 1/(2an))∞

and preserves the convexities of any order of f (see L. Lupaş [260]);
(vi) The Durrmeyer polynomial Dn(f)(x) satisfies the estimate (see

Ditzian–Ivanov [96], Theorem 7.4)

‖Dn(f) − f‖p ≤ C[ωφ
2

(

f ;
1√
n

)

p

+ n−1‖f‖p]

(where ‖ · ‖p denotes the Lp[0, 1] norm, 1 ≤ p ≤ +∞), and preserves the
convexities of any order of f (see, e.g., Derriennic [76]);

(vii) The Durrmeyer polynomial Dn,α(f)(x) based on the ultraspherical
weight tα(1 − t)α, α > −1 (for α = 0 one recapture the original Durrmeyer
polynomials), preserves the convexities of any order of f (see Lupaş [255]);

(viii) The Lazarević–Lupaş polynomial Un(f)(x), n ≥ [1/2ε], satisfies

‖Un(f) − f‖∞ ≤ 19
16

ω1

(

f ;
1√

n + 1

)

∞

and for any ε ∈ (0, 1
2 ), if f is convex of order k on [0, 1], then Un(f) is convex

of order k on [ε, 1 − ε], for all n ≥ [1/2ε] (see Lazarević–Lupaş [221]);
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(ix) The generalized Bernstein polynomial Gn,k(f)(x) satisfies the follow-
ing properties: for any 2 ≤ k ≤ n, if f is polynomial of degree k, then so is
Gn,k(f) and for all i ≤ j and j ≥ k − 1

Gn,k(f)[C(i, j, ε)] ⊂ C(i, j, ε),

where ε = (εk)k, with εk = 1 or −1 and C(i, j, ε) := {f ∈ Cn[0, 1]; εkf (k) ≥
0, k = i, i + 1, . . . , j}, i ≤ j (see Munoz–Delgado, Ramirez–González and
Sablonniére [278]).

Proof. Excepting the case of q-Bernstein polynomials, the method of proof
for the shape-preserving properties of these polynomials is that in the case
of classical Bernstein polynomials, by representing their derivative of a given
order k as a sum of products between positive quantities and finite (or divided)
differences of the same order k of f . In what follows, for some of them we
will present the sketches of proofs for the shape-preserving properties only,
while the quantitative estimates can be found in the corresponding mentioned
papers.

(i) For the proof of shape-preserving properties see Mastroianni [266].
(ii) We can write

(βn(f))′(x) = x−22−n−1

[n/2]−1∑

k=0

rn,k(x)[f((n − 2k)/n) − f((n − 2k − 2)/n)],

where

rn,k(x) =
(

n

k

)

(1−x2)k[(1+x)n−2k((n−2k)x−1)+(1−x)n−2k((n−2k)x+1)].

Since it is easy to prove that rn,k(x) ≥ 0, for all x ∈ [0, 1], it is immediate
that βn(f)(x) preserves the monotonicity of f .

Then, denoting m = [n/2] − 1, we have

x32n+1[βn(f)]′′(x) =
m−1∑

k=0

[qn,k(x) − qn,k(−x)]

×
[

f

(
n − 2k

n

)

− 2f

(
n − 2k − 2

n

)

+ f

(
n − 2k − 4

n

)]

+ [qn,h(x) − qn,h(−x)]
(

f

(
n − 2h

n

)

−f

(
n − 2h − 2

n

))

,

where

qn,k(x) =
k∑

j=0

(
n

j

)

[(n − 2j)(1 − x)k(1 + x)n−k−1

×((n − 2k − 1)x2 − 2x) + 2(1 − x)j(1 + x)n−j ].
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Since qn,k(x) − qn,k(−x) ≥ 0, for all 0 ≤ k ≤ h, x ∈ [0, 1] (see the proof in
Raşa [321]), the conclusion is immediate.

(iii) First we prove that the operator Bn,q is strongly variation-diminishing
on [0, 1] (in the sense of Definition 1.1.1 (vi)). Indeed, for each 0 < q ≤ 1,
denoting Pn,k,q(x) = xkΠn−k−1

s=0 (1 − qsx), we can write

Bn,q(f)(x) =
n∑

k=0

f

(
[k]
[n]

)[(
n

k

)]

Pn,k,q(x)

= a0,qPn,0,q(x) + · · · + an,qPn,n,q(x).

Since each
[(

n
k

)]
is a polynomial in q with positive integer coefficients, i.e., is

positive, we immediately obtain that

S[0,1][Bn,q(f)] ≤ S[0,1][f ; ([k]/[n])k] ≤ S[0,1](f).

Since Bn,q reproduces any linear polynomial, this implies that for any p ∈ Π1,
we get

S[0,1][Bn,q(f) − p] = S[0,1][Bn,q(f − p)] ≤ S[0,1](f − p).

In particular, for any constant c we have S[0,1][Bn,q(f) − c] ≤ S[0,1](f − c).
Suppose that, for example, f is nondecreasing on [0, 1], it follows S[0,1](f −
c) ≤ 1, that is S[0,1][Bn,q(f) − c] ≤ 1, which combined with the properties
Bn,q(f)(0) = f(0) ≤ f(1) = Bn,q(f)(1), immediately implies that Bn,q(f)
must be nondecreasing on [0, 1].

Suppose now that f is convex on [0, 1], the graph of any p ∈ Π1 can
intersect that of f at no more than two points, which implies the S[0,1](f −
p) ≤ 2, and therefore S[0,1](Bn,q(f) − p) ≤ 2. Suppose that the graph of
p intersects that of Bn,q(f) at u and v with 0 < u < v < 1, that is p(u) =
Bn,q(f)(u), p(v) = Bn,q(f)(v). It easily follows that Bn,q(f)−p cannot change
its sign in (u, v). Varying u and v, it follows by a continuity argument that
the sign of Bn,q(f) − p remains the same. Since f is convex, for the limiting
case u = 0 and v = 1, we get 0 ≤ p(x) − f(x), for all x ∈ [0, 1], which implies
that

0 ≤ Bn,q(p − f)(x) = p(x) − Bn,q(f)(x),∀x ∈ [0, 1],

which is the convexity of Bn,q(f) on [0, 1].
(iv) The preservation of convexity of any order m on the interval [0, bn],

follows directly from the relationship (proved by mathematical induction)

[Cn(f)](m)(x) =
n(n − 1) · · · (n − m + 1)

bm
n

×
n−m∑

k=0

(n − m

k

)( x

bn

)k(

1 − x

bn

)n−m−k

∆m
bn/(n+β)f((k + α)bn/(n + β)).

(v) The proof is very similar to that for Bernstein polynomials, see
L. Lupaş [260].
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(vi) For the proof, see, e.g., Derriennic [76].
(vii) The proof in Lupaş [255] is too technical to be reproduced here. Note

that for α = 0, one recapture the original Durrmeyer polynomials, so that in
fact (vii) generalizes (vi).

(viii) The proof of the shape-preserving property is a direct consequence
of the formula proved by mathematical induction

[Un(f)](j)(x) =
(n + 1)n−j+1n!j!

nn(n − j)!

n−j∑

k=0

Ck,j(x)

×
∫ (k+1)/(n+1)

k/(n+1)

[

t, t +
1

n + 1
, . . . , t +

j

n + 1
; f
]

dt,

where

Ck,j(x) =
(

n − j

k

)(

x − 1
2n + 2

)k (2n + 1
2n + 2

− x

)n−j−k

.

(ix) Firstly, let j ≥ k−1. For C(j, j, ε) we get: if f (j) ≥ 0, then denoting g =
f (k−1), it follows that g(j−k+1) ≥ 0 and [Gn,k(f)](j) = [Bn−k+1(f)]j−k+1 ≥ 0.
The general case is proved by mathematical induction on i. �

Remarks. (1) The approximation and shape-preserving properties of the q
version of D<α,β>

n (f)(x) polynomials, were studied in Derriennic [79].
(2) In 1930, Kantorovitch [191] introduced the polynomials

Kn(f)(x) =
n∑

k=0

pn,k(x)(n + 1)
∫ (k+1)/(n+1)

k/(n+1)

f(t)dt,

whose shape-preserving properties are an immediate consequence of the re-
lationship Kn(f)(x) = B′

n+1(F )(x) (see, e.g., Lorentz [247], p. 30), where
Bn(F )(x) denotes the Bernstein polynomial attached to F (x) =

∫ x

0
f(t)dt.

Concerning the relationship between the shape-preserving property and
the strong variation-diminishing property, we present below the method of
proof for some Bernstein-type polynomials.

Theorem 1.3.4. (Gavrea–Gonska–Kacsó [146]) The modified Durrmeyer
polynomials D<α,β>

n (f)(x) (see Example 10 before Theorem 1.3.3) and Mache
polynomials Pn(f)(x) (see Example 11 before Theorem 1.3.3) preserve the con-
vexity of orders 0, 1, . . . , n, the Stancu operator L<α,β,γ>

m,p (f)(x) preserves the
convexity of orders 0, . . . ,m+p, and all have the strong variation-diminishing
property.

Proof. The proof follows the ideas in Gavrea–Gonska–Kacsó [146]. Thus, it
suffices to prove that all the polynomials in the statement have the strong
variation-diminishing property, which by Theorem 5.1.7 (ii) in Section 5.1
will imply the shape-preserving properties.
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If we consider the beta-type operator

B<α,β>
n (f)(x) =

∫ 1

0
tα+nx(1 − t)n−nx+βf(t)dt

B(nx + α + 1, n − nx + β + 1)
,

then D<α,β>
n (f)(x) = Bn[B<α,β>

n (f)](x), where Bn is the classical Bernstein
operator. We get

S[0,1][D<α,β>
n (f)] ≤ S[0,1][B<α,β>

n (f)]

= S[0,1]

[∫ 1

0

tnx(1 − t)n(t−x) · tα(1 − t)βf(t)dt

]

.

But S[0,1][
∫ 1

0
tnx(1 − t)n(t−x) · tα(1 − t)βf(t)dt] ≤ S[0,1][tα(1 − t)βf(t)] =

S[0,1](f), which would prove S[0,1][D<α,β>
n (f)] ≤ S[0,1][f ].

Indeed, if we use now the substitution u =
(

t
1−t

)n

, then the integral
∫ 1

0
tnx(1 − t)n(1−x)tα(1 − t)βf(t)dt becomes

1
n

∫ +∞

0

ux u1/n−1

(1 + u1/n)n+2

uα/n

(1 + u1/n)α+β
f

(
u1/n

1 + u1/n

)

du.

Evidently, the number of sign changes of f(t), t ∈ [0, 1], equals the number
of sign changes of the function g(u) = u1/n

1+u1/n , u ∈ [0,+∞). Applying now

Theorem 5.1.7 (iii) in Section 5.1 for A(g) =
∫ +∞
0

g(u)du and putting w(u) =
u1/n−1

(1+u1/n)n+2
uα/n

(1+u1/n)α+β , we get

S[0,1]

[ ∫ 1

0

tnx(1 − t)n(1−x)tα(1 − t)βf(t)dt ≤ S[0,1][tα(1 − t)βf(t)
]

= S[0,1][tα(1 − t)βf(t)] = S[0,1][f ],

which implies
S[0,1][D<α,β>

n (f)] ≤ S[0,1][f ].

For Mache’s polynomial, we have Pn(f) = Bn[B<a,b,c>
n (f)], where

B<a,b,c>
n (f)(x) =

∫ 1

0
tcnx+a(1 − t)cn(1−x)+bf(t)dt

B(cnx + a + 1, cn(1 − x) + b + 1)
.

Reasoning exactly as in the case of the modified Durrmeyer polynomials,
we arrive again at S[0,1][Pn(f)] ≤ S[0,1][f ].

In the case of Stancu’s polynomials, by the following known recurrence
formula for the beta function,

B(a + k, b + m + p − k)

=
a(a + 1) · · · (a + k − 1)b(b + 1) · · · (b + m + p − k − 1)

(a + b)(a + b + 1) · · · (a + b + m + p − 1)
B(a, b),
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we obtain

Πk−1
µ=0(x + µα) · Πm+p−k−1

µ=0 (1 − x + µα)

Πm+p−1
mu=0 (1 + µα)

=
B(x/α + k, (1 − x)/α + m + p − k)

B(x/α, (1 − x)α)
.

We therefore get

L<α,β,γ>
m,p (f)(x)

=
1

B(x/α, (1 − x)/α)

m+p∑

k=0

(m + p

k

)
B(x/α + k, (1 − x)/α + m + p − k)f

(
k + β

m + γ

)

=
1

B(x/α, (1 − x)/α)

×
∫ 1

0

[
m+p∑

k=0

(
m + p

k

)

tx/α+k+1(1 − t)(1−x)/α+m+p−k−1f

(
k + β

m + γ

)]

dt

=
1

B(x/α, (1 − x)/α)

∫ 1

0

tx/α−1(1 − t)(1−x)/α−1B<β,γ>
m,p (f)(t)dt,

where

B<β,γ>
m,p (f)(x) :=

m+p∑

k=0

pm+p,k(x)f
(

k + β

m + γ

)

.

Now, by Schoenberg [343], it is immediate that

S[0,1][L<α,β,γ>
m,p (f)] ≤ S[0,1+p/m][f ].

We get

S[0,1][L<α,β,γ>
m,p (f)] = S[0,1]

[∫ 1

0

tx/α−1(1 − t)(1−x)/α−1B<β,γ>
m,p (f)(t)dt

]

,

and by the substitution u =
(

t
1−t

)1/α

, the above integral becomes

α

∫ ∞

0

ux 1
u(1 + uα)1/α

B<β,γ>
m,p (f)

(
uα

1 + uα

)

du,

which by Theorem 5.1.7 (iii) in Section 5.1, implies

S[0,1][L<α,β,γ>
m,p (f)] ≤ S[0,1][B<β,γ>

m,p (f)] ≤ S[0,1+p/m][f ].

This proves the theorem. �
Remarks. As in the case of the modified Durrmeyer polynomials in Theorem
1.3.4, D<α,β>

n (f)(x), it can be proved that the classical Durrmeyer polyno-
mials Dn(f)(x) in Theorem 1.3.3 (vi), have the strong variation-diminishing
property, see Gavrea–Gonska–Kacsó [146].
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1.4 Shisha-Type Results

Although the sequences of Bernstein-type approximation polynomials consid-
ered in Section 1.3 have very nice shape-preserving properties, their rates of
approximation are rather weak, involving the quantities ωk(f ; 1√

n
)∞, k = 1, 2.

Interest in improving the estimates in shape-preserving approximation by
polynomials began with the papers of Shisha [351] in 1965 and Lorentz–Zeller
[250] in 1968.

Thus, Shisha [351] proved that if p ≥ 1 and k ∈ {1, . . . , p}, then for any
f ∈ Cp[a, b] satisfying f (k) ≥ 0 in [a, b] and any n > p, there is an algebraic
polynomial Pn of degree ≤ n satisfying P

(k)
n ≥ 0 in [a, b] and

‖f − Pn‖∞ ≤ Cp,k

np−k
ω1(f (p); 1/n)∞.

Although this is a weaker Jackson-type estimate than those in the next
sections of this chapter, since the idea of Shisha’s method is simple and can
easily be extended to real functions of two real variables and to complex
variables, we present it here together with some generalizations and their
proofs.

Instead of the proof of Shisha’s first result in 1965, we present the proof
of a generalization of it, as follows.
Theorem 1.4.1. (Anastassiou–Shisha [17]) Let f ∈ Cp[−1, 1], and let the
integers 0 ≤ h ≤ k ≤ p and the functions aj : [−1, 1] → R, bounded on
[−1, 1] for all j = h, . . . , k be such that ah ≥ c > 0, for all x ∈ [−1, 1] or
ah(x) ≤ d < 0 for all x ∈ [−1, 1]. Define the differential operator L(f)(x) =
∑k

j=h aj(x)f (j)(x), x ∈ [−1, 1], and suppose that L(f)(x) ≥ 0, for all x ∈
[−1, 1].

Then for every n ∈ N, there exists a real polynomial Pn(x) of degree ≤ n
such that

‖f − Pn‖∞ ≤ Cnk−pω1

(

f (p);
1
n

)

∞
, n ∈ N,

and in addition, L(Pn)(x) ≥ 0 for all x ∈ [−1, 1], n ∈ N. Here C is indepen-
dent of n and f and ‖ · ‖∞ denotes the uniform norm on C[−1, 1].

Proof. The method is based on the simultaneous approximation result of
Trigub [388]; namely, for any g ∈ Cp[−1, 1], there exists a polynomial pn(x)
of degree ≤ n with the property

‖g(j) − p(j)
n ‖∞ ≤ Rpn

j−pω1(g(p); 1/n)∞, j = 0, 1, . . . , p,

where Rp is independent of g and n.
Set Aj = ‖aj/ah‖∞ and ηn = Rpω1(f (p); 1/n)∞

∑k
j=h Ajn

j−p.
Let us first suppose that ah(x) ≥ c > 0, for all x ∈ [−1, 1]. Writing

g(x) = f(x)+ηnxh/(h!), let Pn(x) be the polynomial of degree ≤ n satisfying

‖g(j) − P (j)
n ‖∞ ≤ Rpn

j−pω1(g(p); 1/n)∞
= Rpn

j−pω1(f (p); 1/n)∞, j = 0, 1, . . . , p.
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We easily get

‖f − Pn‖∞ ≤ ηn(h!)−1 + Rpn
j−pω1(f (p); 1/n)∞

≤ Rp/(1 + (h!)−1
k∑

j=h

Aj)nk−pω1(f (p); 1/n)∞,

which implies the estimate in the theorem.
On the other hand, for all −1 ≤ x ≤ 1 we get

1
ah(x)

L(Pn)(x) =
1

ah(x)
L(f)(x) + ηn

+
k∑

j=h

1
ah(x)

aj(x)[Pn(x) − f(x) − xhηn/(h!)](j)

≥ ηn −
k∑

j=h

AjRpn
j−pω1(f (p); 1/n)∞ = 0,

which proves L(Pn)(x) ≥ 0 for all x ∈ [−1, 1].
Now let us suppose that ah(x) ≤ d < 0, for all x ∈ [−1, 1] and for g(x) =

f(x) − ηnxh/(h!), let Pn(x) satisfy

‖g(j) − P (j)
n ‖∞ ≤ Rpn

j−pω1(g(p); 1/n)∞
= Rpn

j−pω1(f (p); 1/n)∞, j = 0, 1, . . . , p.

From here the proof is similar to that of the first case, which proves the
theorem. �

Corollary 1.4.2. Under the hypothesis and notations of Theorem 1.4.1, if
p ≥ 0 and L(f)(x) ≥ 0, for all x ∈ [−1, 1], then for every n ∈ N, n ≥ p, there
exists a real polynomial Pn(x) of degree ≤ n such that

‖f − Pn‖∞ ≤ Cpn
k−pEn−p(f (p))∞,

and in addition, L(Pn)(x) ≥ 0 for all x ∈ [−1, 1], n ∈ N, n ≥ p.

Proof. Instead of the Trigub’s result, we use the following improvement due
to Leviatan [231], Theorem 2: for any p ≥ 0, g ∈ Cp[−1, 1] and n ≥ p, there
exists a polynomial pn(x) of degree ≤ n with the properties

‖g(j) − p(j)
n ‖∞ ≤ Rpn

j−pEn−p(f (p))∞, j = 0, 1, . . . , p,

where Rp is independent of g and n and Er(g)∞ = infp∈Πr
‖g − p‖∞. Then,

repeating word for word the reasonings in the proof of Theorem 1.4.1, we get
the corollary. �
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Remarks. (1) If in the statement of Theorem 1.4.1 one takes L(f)(x) =
f (k)(x), then one recovers the original result of Shisha [351]. Moreover, if in
addition, one supposes that all ah, . . . , ak are continuous on [−1, 1] and one
considers the condition L(f)(x) > 0 for all x ∈ [−1, 1], the conclusion of
Theorem 1.4.1 remains true for n sufficiently large (see Anastassiou–Shisha
[17]), recovering thus, in essence, for L(f)(x) = f (k)(x), the results in Roulier
[326] too.

(2) Let us suppose that in Theorem 1.4.1, in addition to its hypothesis, all
the functions aj , j = h, . . . , k, are continuous on [−1, 1] and that L(f)(x) >
0 for all x ∈ (−1, 1). By the continuity assumptions, it is immediate that
L(f)(x) ≥ 0 for all x ∈ [−1, 1], and from the proof of the theorem, the
conclusion L(Pn)(x) > 0 for all x ∈ (−1, 1), n ∈ N follows easily.

This kind of remark will be very useful in Sections 3.2 and 4.2, where
we will extend the method to complex functions of one or several complex
variables.

(3) In Theorem 1.4.1, the hypothesis ah ≥ c > 0 for all x ∈ [−1, 1] or
ah(x) ≤ d < 0 for all x ∈ [−1, 1] can be replaced, for example, by the hy-
pothesis that ah is continuous on [−1, 1], which leads to the following “partial
shape-preserving” approximation.

Corollary 1.4.3. Suppose we are under the hypothesis and notation of
Theorem 1.4.1, excepting that concerning ah, which is supposed to be only
continuous on [−1, 1]. Then for f ∈ Cp[−1, 1] with L(f)(x) ≥ 0,∀x ∈ [−1, 1],
and n ≥ 1, there exists a real polynomial Pn of degree ≤ n satisfying

‖f − Pn‖∞ ≤ Cpn
k−pω1(f (p); 1/n)∞

(or the better estimate ‖f − Pn‖∞ ≤ Cpn
k−pEn−p(f (p))∞) such that for any

x0 ∈ [−1, 1] with ah(x0) 	= 0, there exists a neighborhood of x0, denoted by
V (x0) and independent of f and n, such that L(Pn)(x) ≥ 0 for all x ∈ V (x0).

Proof. Since ah(x0) 	= 0, by continuity it follows that there exists a neigh-
borhood of x0, denoted by V (x0), such that ah(x) > 0 for all x ∈ V (x0), or
ah(x) < 0 for all x ∈ V (x0).

To make a choice, suppose that ah(x) > 0 for all x ∈ V (x0). There exists
c > 0, such that ah(x) ≥ c > 0, for all x ∈ V (x0). Repeating the reasoning
to that of the proof of Theorem 1.4.1 with Aj = sup{|aj(x)|/|ah(x)|;x ∈
V (x0)}, it easily follows that L(Pn)(x) ≥ 0 for all x ∈ V (x0). From the
proof of Theorem 1.4.1, we observe that the approximation property of Pn is
independent on the sign of ah.

In the case when ah(x) < 0 for all x ∈ V (x0), there exists d < 0 such
that ah(x) ≤ d < 0 for all x ∈ V (x0), and we again repeat the proof of
Theorem 1.4.1.

The case when instead of Trigub’s approximation result, we use the im-
provement due to Leviatan [231], Theorem 2 (as in the proof of Corollary
1.4.2), which is completely similar and which proves the corollary. �
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1.5 Positive and Copositive Polynomial Approximation

In this section we present the most important results in positive and copositive
polynomial approximation. Since their proofs are, in general, very technical,
we omit most of them.

For f ∈ Lp[−1, 1], let us define the unconstrained best approximation

En(f)p := inf
pn∈Πn

‖f − pn‖p.

Denote by ∆0 the set of all functions f : [−1, 1] → R such that f ≥ 0
in [−1, 1], and for f ∈ ∆0 ∩ Lp[−1, 1], the best positive approximation of f
in the Lp-norm, 1 ≤ p ≤ ∞, by algebraic polynomials of degree ≤ n will be
denoted by

E(0)
n (f)p := inf

pn∈Πn∩∆0
‖f − pn‖p.

We first consider the case of positive uniform approximation.
Let us suppose that f ∈ C[−1, 1], f ≥ 0. Then for n ≥ 0, there exists

Pn ∈ Πn such that,
‖f − Pn‖∞ = En(f)∞.

It follows that
Pn(x) − f(x) ≥ −En(f)∞,

which implies
Rn(x) := Pn(x) + En(f)∞ ≥ f(x) ≥ 0.

Therefore Rn is nonnegative, and we have

‖f − Rn‖∞ ≤ 2En(f)∞,

which implies
E(0)

n (f)∞ ≤ 2En(f)∞, n ≥ 0.

Therefore, the error estimate in the case of best positive uniform approx-
imation in fact is equivalent to the error estimate in the case of best uncon-
strained uniform approximation.

But as we will see in what follows, the situation is completely different
for pointwise estimates in approximation of nonnegative functions by non-
negative polynomials and for Lp-estimates of positive functions by positive
approximation polynomials.

1.5.1 Pointwise Positive Approximation

The pointwise estimates in polynomial approximation of a nonnegative f ∈
Cr[−1, 1] ∩ ∆0 are of two kinds:

Timan–Brudnyi-type estimates of the form

|f(x) − pn(x)| ≤ C(r, k)ρr
n(x)ωk(f (r), ρn(x))∞, −1 ≤ x ≤ 1, n ≥ N,
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where ρn(x) := 1
n2 + 1

nϕ(x), ϕ(x) = [1−x2]1/2, C(r, k) is a constant depending
only on r and k (independent of f and n);

Telyakovskii–Gopengauz (or interpolatory) type estimates of the form

|f(x) − pn(x)| ≤ C(r, k)δr
n(x)ωk(f (r), δn(x))∞, −1 ≤ x ≤ 1, n ≥ N,

where δn(x) := 1
nϕ(x).

Dzyubenko [103] proved that the above Timan–Brudnyi estimates are valid
for positive approximation for all n ≥ N := r + k − 1, while for the above
Telyakovskii–Gopengauz estimates, we have the following.

Theorem 1.5.1. (Gonska–Leviatan–Shevchuk–Wenz [152]) (i) Let either
r = 0 and k = 1, 2, or 1 ≤ k ≤ r. If f ∈ Cr[−1, 1] ∩ ∆0, then for any
n ≥ N := 2[(r + k + 1)/2], there exists a polynomial pn ∈ Πn ∩ ∆0 with the
property

|f(x) − pn(x)| ≤ C(r)δr
n(x)ωk(f (r), δn(x))∞, −1 ≤ x ≤ 1.

(ii) Let either r = 0 and k > 2, or k > r ≥ 1. Then for each n ≥ 1 and
constant A > 0, there is a function f = fk,r,n,A ∈ Cr[−1, 1] ∩ ∆0 such that
for any polynomial pn ∈ Πn ∩ ∆0, there exists a point x ∈ [−1, 1] such that

|f(x) − pn(x)| > A
(1 − x)r/2

nr
ωk

(

f (r),

√
1 − x

n

)

∞

holds.

Remarks. (1) The case r+k ≤ 2 in Theorem 1.5.1, (i), is due to DeVore–Yu
[92].

(2) Theorem 1.5.1, (i), may suggest the possibility to obtain some inter-
polatory estimates for copositive approximation. This question is completely
open.

1.5.2 Lp-Positive Approximation, 0 < p < ∞

The Lp-norm estimates for 0 < p < ∞ in positive polynomial approximation
are different from the case of positive uniform polynomial approximation.
Thus, denote by W r

p [−1, 1], 0 < p < ∞, the Sobolev space of functions f such
that f (r−1) is locally absolutely continuous in (−1, 1) and f (r) ∈ Lp[−1, 1].
First we present

Theorem 1.5.2. (Stojanova [372]) (i) For any f ∈W 1
p [−1, 1]∩∆0, 1≤p< ∞,

we have

E(0)
n (f)p ≤ C

n
En−1(f ′)p ≤ C(k)

n
ωϕ

k

(

f ′,
1
n

)

p

, n ≥ 1,

where the constant C(k) depends only on k and p;
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(ii) For any f ∈ ∆0 ∩ Lp[−1, 1], we have

E(0)
n (f)p ≤ C(k)τk

(

f,
1
n

)

p

, n ≥ 1,

where the τk(f, ·)p denotes Sendov’s averaged modulus of smoothness (see
Definition 1.1.2 (iii)).

On the other hand, we have the following result.

Theorem 1.5.3. (Hu–Kopotun–Yu [172], Ivanov [185] for 1 ≤ p < ∞) For
any f ∈ ∆0 ∩ Lp[−1, 1] 0 < p < ∞, there is a constant C such that

E(0)
n (f)p ≤ Cωϕ

1

(

f,
1
n

)

p

,

where C > 0 is an absolute constant if 1 ≤ p < ∞ and C = C(p) if 0 < p < 1.
Also for each A > 0, n ≥ 1 and 0 < p < ∞, there is a function f :=

fA,n,p ∈ ∆0 ∩ Lp[−1, 1], with the property

E(0)
n (f)p ≥ Aω2(f, 1)p.

Proof. Here we will sketch the constructions by following the ideas in Hu–
Kopotun–Yu [172], where the reader can find the complete proof. For the
proof of the estimate, we first approximate f by a piecewise constant function
Sn(f) given by the formula

Sn(f, x) := sn +
n−1∑

k=1

(sk − sk+1)χk(x),

where sk is the best Lp-approximation constant function to f on the interval
[xk, xk−1], with xk = cos(kπ

n ), k = 0, . . . , n and χk(x) = 0 if x ∈ [−1, xk),
χ(x) = 1 if x ∈ [xk, 1]. Obviously Sn(x) = sk on [xk, xk−1], Sn(x) ≥ 0 for all
x ∈ [−1, 1], and by, e.g., DeVore–Lorentz [91] we have

‖f − sk‖Lp[xk,xk−1] ≤ Cω1(f, hk, [xk, xk−1])p,

where hk = xk−1 − xk and ω1(f, hk, [xk, xk−1])p denotes the Lp-modulus of
continuity of f on the interval [xk, xk−1]. It follows that

‖f − Sn(f)‖p
p =

n∑

k=1

∫ xk−1

xk

|f(x) − sk|pdx

≤ Cp
n∑

k=1

ω1(f, hk, [xk, xk−1])p ≤ Cpωϕ
1

(

f,
1

n + 1

)p

p

.
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Now define the polynomials

Pn(f, x)

= sn +

n−1∑

k=1

(sk − sk+1)

(
sgn(sk − sk+1) + 1

2
Tk(x) +

1 − sgn(sk − sk+1)

2
Rk(x)

)

,

where Tk(x) and Rk(x) are suitable polynomials of degree ≤ k introduced in
Lemma 3.1 in Hu–Kopotun–Yu [172].

We have

Pn(f, x) ≥ sn +
n−1∑

k=1

(sk − sk+1)χk(x) = Sn(f, x) ≥ 0

for all x ∈ [−1, 1].
Also, the reasoning in Hu–Kopotun–Yu [172], pp. 330–331, imply

‖Pn − Sn(f)‖p
p ≤ Cp

n−1∑

k=1

‖sk − sk+1‖p
Lp[xk,xk−1]

≤ Cp
n∑

k=1

‖f − sk‖p
Lp([xk,xk−1]∪[xk−1,xk−2])

≤ Cp
n∑

k=1

ω1(f, hk, [xk, xk−1] ∪ [xk−1, xk−2])
p
p ≤ Cpωϕ

1

(

f,
1

n + 1

)p

p

.

Combining with the estimate for ‖f − Sn(f)‖p
p, the desired estimate for

E
(0)
n (f)p follows.

The counterexample function f := fA,n,p ∈ ∆0 ∩ Lp[−1, 1] is of the form
f(x) = b(1−x)− log(1−x+e−b)− log(b), where b ≥ eM , with suitably chosen
M := M(n, ε, p,A). �

1.5.3 Uniform and Pointwise Copositive Approximation

First we need some useful notation. For the integer s ≥ 0, let Ys be the set of
all collections Ys := {yi}s

i=1 of points such that ys+1 := −1 < ys < · · · < y1 <
1 =: y0, where for s = 0, Y0 = ∅. For Ys ∈ Ys we define

Π(x, Ys) :=
s∏

i=1

(x − yi),

where the empty product = 1.
Let ∆0(Ys) be the set of all functions f : [−1, 1] → R that change their sign

exactly at the points yi ∈ Ys and that are nonnegative in (y1, 1). Obviously,
f ∈ ∆0(Ys) is equivalent to

f(x)Π(x, Ys) ≥ 0, −1 < x < 1.
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If s = 0, then this means that Y0 = ∅, which implies f ≥ 0 in [−1, 1], and we
will write as in the above subsections f ∈ ∆0.

One says that f and g are copositive on [−1, 1] if f(x)g(x) ≥ 0 for all
x ∈ [−1, 1].

For f ∈ ∆0(Ys) ∩ Lp[−1, 1], we define

E(0)
n (f, Ys)p := inf

pn∈Πn∩∆0(Ys)
‖f − pn‖p,

the best copositive approximation of f by algebraic polynomials of degree ≤ n.
If Y0 = ∅, then we write as in the above subsections E

(0)
n (f)p =: E

(0)
n (f, ∅)p,

which represents the best positive approximation.
A natural extension of positive polynomial approximation is the so-called

copositive polynomial approximation, i.e., the case of approximation of a func-
tion f by polynomials (Pn)n, which changes their (same) signs with f at
Ys ∈ Ys, i.e., satisfying f(x)Pn(x) ≥ 0, for all x ∈ [−1, 1], n ∈ N.

Remark. Since in the copositivity case we have f(x)Π(x, Ys)≥ 0,−1< x < 1,
a first idea that might come to mind is that the results in positive approxima-
tion may be applicable to the positive function F (x) = f(x)/Π(x, Ys). But
of course, first some hypothesis of smoothness on f at the points yi would be
necessary in order to ensure that F is continuous at all the points yi, a fact
that unfortunately would drastically reduce the generality on f . Also, even
with the suitable smoothness hypothesis on f , if, for example, qn(F ) would be
the best positive approximation polynomial of degree ≤ n attached to F (i.e.,
satisfies ‖F −qn(F )‖∞ = inf{‖p−F‖∞; pn ∈ Πn, pn ≥ 0} := E

(0)
n (F )∞), then

although the polynomial defined by Pn(f)(x) = [qn(F )(x)+En(F )∞]Π(x, Ys)
would be copositive with f , from the inequality

‖f − Pn(f)‖∞ ≤ ‖qn(F )Π(·, Ys) − f‖∞ + CE(0)
n (F )∞,

a very bad estimate follows, very far from any Jackson-type estimate in terms
of the moduli of smoothness of f (since E

(0)
n (F )∞ and ‖qn(F )Π(·, Ys)− f‖∞

could be very bad with respect to En(f)∞ and E
(0)
n (f, Ys)∞).

For uniform and pointwise approximation, the results can be summarized
by the next theorem.

Theorem 1.5.4. (Kopotun [207]) There exists a constant C = C(Ys) such
that for any f ∈ C[−1, 1] ∩ ∆0(Ys) we have

E(0)
n (f, Ys)∞ ≤ C(Ys)ω

ϕ
3

(

f,
1
n

)

∞
, n ≥ 2.

Also, an immediate consequence of the above estimate and of the converse
theorems in Ditzian–Totik [98] is the following: if 0 < α < 3 and f ∈ C[−1, 1]∩
∆0(Ys), then

En(f)∞ = O(n−α) iff E(0)
n (f, Ys)∞ = O(n−α).
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(ii) (Hu–Kopotun–Yu [173]) There exists a constant C = C(Ys) such that for
any f ∈ C[−1, 1] ∩ ∆0(Ys), there exists a polynomial pn ∈ Πn ∩ ∆0(Ys)
satisfying

|f(x) − pn(x)| ≤ C(Ys)ω3(f, ρn(x))∞, n ≥ 2, x ∈ [−1, 1].

(iii) (Zhou [409]) Conversely, there is a function f ∈ C1[−1, 1]∩∆0({0}) such
that

lim sup
n→∞

E
(0)
n (f, {0})∞
ω4(f, 1

n )∞
= ∞.

(iv) (Hu–Kopotun–Yu [173]; see also Hu–Leviatan–Yu [176]) For any f ∈
C1[−1, 1] ∩ ∆0(Ys) we have

E(0)
n (f, Ys)∞ ≤ C(k, Ys)

n
ωk

(

f ′,
1
n

)

∞
, n ≥ k,

and there exists a polynomial pn ∈ Πn ∩ ∆0(Ys) such that

|f(x) − pn(x)| ≤ C(k, Ys)
n

ωk(f ′, ρn(x))∞, n ≥ k, x ∈ [−1, 1].

Proof. We will prove here the estimate for E
(0)
n (f, Ys)∞ in (iv). One reason

why we chosen it is that it can be more easily extended to functions of two
real variables, the extension proved in Section 2.6 (Theorem 2.6.6). The proof
follows the ideas in Hu–Leviatan–Yu [176], pp. 213–217.

First we need two lemmas.

Lemma (A). (Hu–Leviatan–Yu [176]) There exist absolute positive constants
A, B and an odd and increasing (on [−1, 1]) polynomial qn(u) of degree ≤ 2n,
such that

|qn(u)| ≤ 1, for |u| ≤ 1,

q′n(u) ≥ An, for |u| ≤ 1
n

, and q′n(u) ≤ B

nu2
, for

1
n

< |u| ≤ 1.

Proof of Lemma A. The polynomials are given by

qn(u) := cn

∫ u

−1

sin2((n/2) arccos(1 − t2/2))
sin2 1

2 arccos(1 − t2/2)
dt − 1

2
, −1 ≤ u ≤ 1,

where

c−1
n :=

∫ 1

−1

sin2((n/2) arccos(1 − t2/2))
sin2 1

2 arccos(1 − t2/2)
dt.

It is easy to see that cn ∼ n−1, qn is an odd and increasing (on [−1, 1])
polynomial of degree ≤ 2n, satisfying the first estimate in the statement, and

q′n(u) = cn
sin2((n/2) arccos(1 − u2/2))

sin2 1
2 arccos(1 − u2/2)

, −1 ≤ u ≤ 1.
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Now, for |u| ≤ 1/n, we get (n/2) arccos(1 − u2/2) ≤ π/2, which by the well-
known inequality 2t/π ≤ sin t, 0 ≤ t ≤ π/2, implies

sin2((n/2) arccos(1 − u2/2))
sin2 1

2 arccos(1 − u2/2)
≥
(

(2/π)(n/2) arccos(1 − u2/2)
1
2 arccos(1 − u2/2)

)2

=
4
π2

n2.

This shows that q′n(u) ≥ An.
For 1/n ≤ |u| ≤ 1, it follows that

sin2((n/2) arccos(1 − u2/2))
sin2 1

2 arccos(1 − u2/2)
≤ 1

((1/π) arccos(1 − u2/2))2
≤ B

′

u2
,

i.e.,

q′(u) ≤ B

nu2
,

which proves the lemma. �

Lemma (B). (see Hu–Leviatan–Yu [176]) Let f ∈ C1[−1, 1] and k ≥ 1. For
y0 := −1 < y1 < · · · < ys < 1 =: ys+1, let us set d = min0≤i≤s(yi+1 − yi). For
any n ≥ s, a polynomial rn of degree ≤ n exists such that

rn(yi) = f(yi), i = 1, 2, . . . , s,

and

‖f − rn‖∞ ≤ Cn−1ωk(f ′, 1/n)∞, ‖f ′ − r′n‖∞ ≤ Cωk(f ′, 1/n)∞,

where C depends on s, k, and d.

Proof of Lemma B. By f ∈ C1[−1, 1], a classical result of Gopengauz [161]
says that there exists a polynomial r̃n of degree ≤ n satisfying

‖f − r̃n‖∞ ≤ C2(k)n−1ωk(f ′, 1/n)∞, ‖f ′ − r̃′n‖∞ ≤ C2(k)ωk(f ′, 1/n)∞.

Then rn(x) := r̃n(x) + h̃s(x), where h̃s is the polynomial of degree s − 1
interpolating f(x) − r̃n(x) at yi, i = 1, 2, . . . , s, has the properties in the
statement with C > C2(k)[1 + s(2/d)s−1]. �

Proof of Theorem 1.5.4, (iv). Fix n > C1d
−1, where C1 is a constant that

will be prescribed later. We will prove that the polynomial pn of degree ≤ 2sn
given by

pn(u) := rn(u) + εDCn−1ωk(f ′, 1/n)∞Πs
i=1qn(u − yi),

where qn is given by Lemma A, ε = sgnf(u) for u ∈ (ys, 1) (C is the constant
in Lemma B and D is a positive constant to be determined later), is copositive
with f and satisfies the required estimate.

Note that the second term in the expression of pn(u) is copositive with f .
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Because qn is odd, increasing, and q′n(u) ≥ An for |u| ≤ 1/n, we get
|qn(u)| ≥ A, |u| > 1/n, and

|Πs
i=1qn(u − yi)| ≥ As, u 	∈

s⋃

i=1

[

yi −
1
n

, yi +
1
n

]

.

If we take D > A−s, then by the above estimate and by the estimate in
Lemma B, we easily obtain

f(u)pn(u) ≥ 0, u 	∈
s⋃

i=1

[

yi −
1
n

, yi +
1
n

]

. (1.0)

Then, from Lemma B it follows that pn(yi) = f(yi), i = 1, 2, . . . , s.
Next, we prove that for D > 2A−s, if f changes from − to + at yi, then

f ′(u) − p′n(u) ≤ 0, u ∈
[

yi −
1
n

, yi +
1
n

]

(1.1)

and if f changes from + to − at yi, then

f ′(u) − p′n(u) ≥ 0, u ∈
[

yi −
1
n

, yi +
1
n

]

. (1.2)

In this sense, we have

p′n(u) = r′n(u) + εDCn−1ωk(f ′, 1/n)∞
(
Πs

j=1qn(u − yj)
)′

and
(
Πs

j=1qn(u − yj)
)′ = q′n(u − yi)Πs

j=1,j 
=iqn(u − yj)

+ qn(u − yi) [Πs
j=1,j 
=iqn(u − yj)]

′

:= J1(u) + J2(u).

By the second estimate in Lemma A and by
∣
∣Πs−1

i=1 qn(u − yi)
∣
∣ ≥ As−1, it

follows that

|J1(u)| ≥ AnAs−1 = Asn, u ∈
[

yi −
1
n

, yi +
1
n

]

.

Also, by Lemma A, for u ∈ [yi − 1/n, yi + 1/n] and n > 3/d we obtain

|J2(u)| ≤
s∑

j=1,j 
=i

B

n(u − yj)2
≤ B(s − 1)

n(2d/3)2
≤ 9Bs

4nd2
.
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Defining C1 := max{3, 3
√

Bs/2As}, by n > C1d
−1 and by the above

estimates for |J1(u)| and |J2(u)|, we get

|J2(u)| ≤ 9Bs

4nC2
1n−2

≤ 1
2
Asn and |J1(u)| − |J2(u)| ≥ 1

2
Asn.

Therefore, if n > C1d
−1 and D > 2A−s, then the second term in the expression

of p′n(u), is in absolute value greater than Cωk(f ′, 1/n)∞. Thus by Lemma B,
it follows that the sign of f ′(u) − p′(u) is exactly the sign of

−εq′n(u − yi)Πs
j=1,j 
=iqn(u − yj).

By

q′n(u − yi) ≥ 0 and sgn
[
εΠs

j=1qn(u − yj)
]

= sgnf(u), u ∈ [−1, 1],

it follows that

sgn
[
−εq′n(u − yi)Πs

j=1,j 
=iqn(u − yj)
]

= sgn[−qn(u − yi)f(u)], u ∈ [−1, 1],

which implies (1.1) and (1.2).
Now, if f(u) ≤ 0 for u ∈ (yi − 1/n, yi) and f(u) ≥ 0 for u ∈ (yi, yi + 1/n),

then by the mean value theorem, there is a number ξ between u and yi such
that

f(u) − pn(u) = [f(u) − pn(u)] − [f(yi) − pn(yi)]
= (u − yi)[f ′(ξ) − p′n(ξ)], (1.3)

which implies

f(u) − pn(u) ≥ 0, u ∈
(

yi −
1
n

, yi

)

,

and

f(u) − pn(u) ≤ 0, u ∈
(

yi, yi +
1
n

)

.

Also, if f(u) ≥ 0 for u ∈ (yi − 1/n, yi) and f(u) ≤ 0 for u ∈ (yi, yi + 1/n),
then by (1.2) and (1.3), we have

f(u) − pn(u) ≤ 0, u ∈
(

yi −
1
n

, yi

)

,

and

f(u) − pn(u) ≥ 0, u ∈
(

yi, yi +
1
n

)

.

Hence, for u ∈ ∪s
i=1[yi − 1/n, yi + 1/n], we have either pn(u) ≥ f(u) ≥ 0 or

pn(u) ≤ f(u) ≤ 0.
As a conclusion,

f(u)pn(u) ≥ 0, u ∈ ∪s
i=1[yi − 1/n, yi + 1/n],

which combined with (1.0) proves that pn and f are copositive in [−1, 1]. �
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Remarks. (1) Theorem 1.5.4, (i) in terms of the nonweighted modulus
ω3(f, 1/n)∞ was proved by Hu–Yu [177].

(2) If in Theorem 1.5.4 (i) one replaces the third modulus of smoothness of
f by the (first-order) modulus of continuity, then Leviatan [227] proved that
the inequality holds with a constant C = C(s) (so C does not depend on the
points where the function changes sign, but depends on their number).

(3) The following result in trigonometric copositive approximation of 2π-
periodic continuous functions (i.e., in the class denoted by C2π) by trigono-
metric polynomials was proved in Pleshakov–Popov [305]: if f ∈ C2π changes
sign at Ys : yi ∈ [−π, π), i = 1, . . . , 2s, then for any r ∈ N, there exists a
trigonometric polynomial Tn of degree ≤ n that changes sign at the same
points yi, i = 1, . . . , 2s and satisfies ‖f − Tn‖∞ ≤ C(r,s)

nr ω1(f (r);π/n)∞,
for all n ≥ N(Ys, r), where ‖ · ‖∞ denotes the uniform norm in C2π.
Also, Pleshakov–Popov [306] proved the following zeros-preserving result: if
yi ∈ [−π, π), i = 1, . . . , 2s are distinct, then defining yi := yi+2s + 2π, i ∈ Z,
for any f ∈ C2π satisfying f(yi) = 0, for all i ∈ N, there exists a trigonometric
polynomial Tn of degree ≤ n, that has zeros at the points yi, i ∈ Z, and
satisfies

‖f − Tn‖∞ ≤ C(s)ω1(f ;π/n)∞ for all n ∈ N.

1.5.4 Lp-Copositive Approximation, 0 < p < ∞

For Lp-copositive polynomial approximation, 0 < p < ∞, we present the
following result.

Theorem 1.5.5. (Hu–Kopotun–Yu [172, 173]) Let 0 < p < ∞. For any f ∈
Lp[−1, 1] ∩ ∆0(Ys), we have

E(0)
n (f, Ys)p ≤ C(Ys)ω

ϕ
1

(

f,
1
n

)

p

, n ≥ 1,

where C depends on p too if 0 < p < 1.
If f ∈ W 1

p [−1, 1] ∩ ∆0(Ys), with 1 ≤ p < ∞, then

E(0)
n (f, Ys)p ≤ C(Ys)

n
ωϕ

2

(

f ′,
1
n

)

p

, n ≥ 1.

In addition, if f ∈ W 2
p [−1, 1] ∩ ∆0(Ys), then

E(0)
n (f, Ys)p ≤ C(k, Ys)

n2
ωϕ

k

(

f ′′,
1
n

)

p

, n ≥ k + 1.

Conversely, for every n ≥ 1, 0 < p < ∞, and any A > 0 and 0 < ε ≤ 1,
there exists a function f = fn,p,ε,A ∈ C∞[−1, 1], satisfying xf(x) ≥ 0, −1 ≤
x ≤ 1, such that for each pn ∈ Πn with pn(0) ≥ 0,

‖f − pn‖Lp[0,ε] > Aω2(f, 1)p.
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Moreover, there exists a strictly increasing function f = fn,p,ε,A ∈ C∞[−1, 1],
satisfying f(0) = 0, such that for each pn ∈ Πn with pn(0) = 0, and pn(x) ≥ 0,
0 ≤ x ≤ ε, we have

‖f − pn‖Lp[0,ε] > Aω3(f ′, 1)p.

Proof. We will sketch the proof of the first estimate in the statement. Since
for small n the theorem follows from the inequalities

‖f‖p ≤ Cωϕ
1 (f, 1)p ≤ Cω1

(

f,
1

n + 1

)

p

, n ≤ Cδ−1, f ∈ ∆0(Ys),

it suffices to prove it for sufficiently large n, let us say for n ≥ Cδ−1 (where
δ = mink=0,...,s{|yk − yk+1|}).

The proof is by induction on s, the number of sign changes, and follows
the ideas in Hu–Kopotun–Yu [172], where the interested reader can find all
the details. Thus, for s = 0 the result is true from Theorem 1.5.3. Assume
now that the estimate is valid for f ∈ Lp[−1, 1] ∩ ∆0(Ys−1), with Ys−1 =
{y1, . . . , ys−1}. From Lemma 3.5, p. 328 in Hu–Kopotun–Yu [172], there exists
a piecewise constant spline Rn(f) ∈ ∆0(Ys) satisfying the estimate ‖Rn(f)−
f‖p ≤ Cωϕ

1 (f, 1
n )p. If we define now Sn(f)(x) = Rn(f)(x)sgn(x − ys), then

Sn(f) ∈ Lp[−1, 1] ∩ ∆0(Ys−1), and by the induction assumption, there exists
a polynomial Qn(f) ∈ Πn ∩ ∆0(Ys−1) satisfying

‖Sn(f) − Qn(f)‖p ≤ Cωϕ
1

(

Sn(f),
1
n

)

p

.

The desired polynomials are defined by Pn(f)(x) = Qn(f)(x)Tn(ys)(x),
where Tn(ys)(x) is the suitable increasing polynomial copositive with sgn(x−
ys) given by Lemma 3.4, p. 327, in Hu–Kopotun–Yu [172]. In the rest of the
proof it is shown that ‖f − Pn(f)‖p ≤ Cωϕ

1 (f, 1
n )p, which proves the first

estimate in the statement. �

1.5.5 Copositive Approximation with Modified Weighted
Moduli of Smoothness

First we recall some notations For s ∈ N, let Ys be the set of all collections
Ys := {yi}s

i=1 of points, such that −1 < ys < · · · < y1 < 1. For Ys ∈ Ys we
define Π(x, Ys) :=

∏s
i=1(x − yi).

Let ∆0(Ys) be the set of all functions f : [−1, 1] → R that change sign
exactly at the points yi ∈ Ys and that are nonnegative in (y1, 1). Obviously,
f ∈ ∆0(Ys) is equivalent to f(x)Π(x, Ys) ≥ 0, −1 < x < 1.

Defining Y := ∪sYs, we say that a collection Y ∈ Y is s-admissible for
f if Y ∈ Ys and f ∈ ∆0(Y ). Denote the set of all s-admissible collections by
As(f), and if As(f) is nonempty, we write f ∈ ∆(0,s).
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For Y ∈ Y and f ∈ C([−1, 1]) we define

E(0)
n (f, Y )∞ := inf

pn∈Πn∩∆0(Y )
‖f − pn‖∞,

and for f ∈ ∆(0,s), we put

E(0,s)
n (f)∞ := sup{E(0)

n (f, Y );Y ∈ As(f)}.

Taking into account also the notation in Definition 1.1.3 and its Remarks
(1) and (2), we can state the main results as follows.

Theorem 1.5.6. (Smazhenko [359])

(i) If f ∈ ∆(0,s)∩B
r and (s, r) = (2, 3) or (s, r) = (1, 2), or r > 2s, or r = 1,

then

E(0,s)
n (f)∞ ≤ c(r, s)

‖ϕrf (r)‖∞
nr

, n ≥ r − 1;

(ii) If f ∈ ∆(0,s) ∩ Cr
ϕ and either r > 2s, or r + k = 2 and s = 1, or r = 0

and k = 1, then

E(0,s)
n (f)∞ ≤ c(r, s, k)ωϕ

k,r(f
(r); 1/n), n ≥ k + r − 1;

(iii) If ∆(0,s) ∩ B
r with r ≥ 1 and Y ∈ As(f), then

E(0)
n (f, Y )∞ ≤ c(r, Y )

‖ϕrf (r)‖∞
nr

, n ≥ r − 1,

and

E(0)
n (f, Y )∞ ≤ c(r, s)

‖ϕrf (r)‖∞
nr

, n ≥ N(r, Y );

(iv) If f ∈ ∆(0,s) ∩Cr
ϕ, Y ∈ As(f), and either r ≥ 1 or r = 0 and k ≤ 3, then

E(0)
n (f, Y )∞ ≤ c(r, k, Y )ωϕ

k,r(f
(r); 1/n), n ≥ k + r − 1,

and

E(0)
n (f, Y )∞ ≤ c(r, k, s)ωϕ

k,r(f
(r); 1/n), n ≥ N(k, r, Y );

(v) Writing e
(0,s)
n (f)∞ = inf{E(0)

n (f, Y )∞;Y ∈ As(f)}, for every A > 0,
s ≥ 2 and 2 ≤ r ≤ 2s (excepting the case (s, r) = (2, 3)), and any n ∈ N,
there exists f = fs,r,n,A ∈ ∆(0,s) ∩ B

r satisfying

E(0,s)
n (f)∞ ≥ e(0,s)(f)∞ ≥ A‖ϕrf (r)‖∞ > 0;

(vi) Supposing that k, s ≥ 1 and r ≤ 2s (excepting the cases r = 0, k = 1,
and r + k = 2, s = 1), for any A > 0 and n ∈ N, there is f = fs,r,k,n,A ∈
∆(0,s) ∩ Cr

ϕ satisfying

E(0,s)
n (f)∞ ≥ e(0,s)(f)∞ ≥ Aωϕ

k,r(f
(r); 1).
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1.5.6 Generalizations

In this subsection we present some interesting generalizations of the con-
cepts of positive and copositive polynomial approximation: almost pos-
itive, strong/weak almost positive, almost copositive, nearly copositive,
strong/weak almost copositive, and almost/nearly intertwining polynomial
approximation. Intertwining approximations are related to both copositive
approximation and one-sided approximation and were introduced and stud-
ied in Hu–Kopotun–Yu [173, 174]. The main idea is to relax the preservation of
the positivity/copositivity from the whole interval [−1, 1] to a major portion
of that interval, but excepting small neighborhoods of some points.

We first introduce the following notation and concepts. Set Ys = {yj , j =
1, . . . , s}, where ys+1 := −1 < ys < · · · < y1 < 1 := y0, ρn(x) = (1 −
x2)1/2/n + 1/n2, and for ε ≥ 0 , let Jj(n, ε) = [yj − ρn(yj)nε, yj + ρn(yj)nε]∩
[−1, 1], j = 0, 1, . . . , s+1, On(Ys, ε) = ∪s

j=1Jj(n, ε), O∗
n(Ys, ε) = ∪s+1

j=0Jj(n, ε).
If ε = 0 then we write Jj = Jj(n, 0), On(Ys) = On(Ys, 0), O∗

n(Ys) = O∗
n(Ys, 0).

The Lp-norm is defined by ‖f‖p =
(∫ 1

−1
|f(x)|pdx

)1/p

for 1 ≤ p < ∞, and
‖f‖∞ := ‖f‖ is the uniform norm. Also, denote by Πn the class of all real
polynomials of degree ≤ n.

Definition 1.5.7. (i) (Hu–Kopotun–Yu [173]) The best intertwining approx-
imation by polynomials of degree ≤ n, for f ∈ Lp[−1, 1], 1 ≤ p ≤ ∞, with
respect to the set Ys is given by

Ẽn(f, Ys)p = inf{‖P − Q‖p;P,Q ∈ Πn, P − f ∈ ∆0(Ys), f − Q ∈ ∆0(Ys)}.

We call (P,Q) an intertwining pair of polynomials for f with respect to Ys if
P − f and f − Q belong to ∆0(Ys).

For s = 0 we have Y0 = ∅, and Ẽn(f, Ys) becomes the best one-sided
approximation by polynomials of degree ≤ n for f given by

Ẽn(f)p = inf{‖P − Q‖p;P,Q ∈ Πn, P (x) ≥ f(x) ≥ Q(x),∀x ∈ [−1, 1]}.

(ii) (Hu–Kopotun–Yu [174]) With respect to Ys, the functions f and g are
called almost copositive on [−1, 1] if f(x)g(x) ≥ 0, for all x ∈ [−1, 1]\O∗

n(Ys);
strongly (weakly) almost copositive on [−1, 1] if f(x)g(x) ≥ 0 for all x ∈
[−1, 1] \ O∗

n(Ys, ε) with ε < 0 (ε > 0, respectively);
Note that for ε = −∞, the strongly copositive functions are exactly copos-

itive on [−1, 1];
Define the class of functions

(ε − alm ∆)0n(Ys) = {f ; (−1)kf(x) ≥ 0, x ∈ [−1, 1] \ O∗
n(Ys, ε), k = 0, . . . , s}.

For s = 0, it becomes

(ε − alm ∆)0n(Y0)
:= (ε − alm ∆)0n = {f ; f(x) ≥ 0, x ∈ [−1 + n−2+ε, 1 − n−2+ε]},
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and it is called the set of all strongly (weakly) almost nonnegative functions
on [−1, 1] if ε < 0 (ε > 0, respectively). If ε = 0, we omit the letter ε in the
notation and use (alm ∆)0n(Ys) and (alm ∆)0n. The latter is exactly the set of
almost nonnegative functions on [−1, 1], while for ε = −∞, strongly almost
nonnegative functions are exactly the nonnegative functions on [−1, 1].

The best almost positive approximation by polynomials of degree ≤ n, for
f ∈ Lp[−1, 1], 1 ≤ p ≤ ∞, is given by

E(0)
n (f, alm Y0)p = inf{‖f − P‖p;P ∈ Πn ∩ (alm ∆)0n}.

Similarly,

E(0)
n (f, ε − alm Y0)p = inf{‖f − P‖p;P ∈ Πn ∩ (ε − alm ∆)0n},

denotes the best strongly (weakly) almost positive approximation by polyno-
mials of degree ≤ n if ε < 0 (ε > 0, respectively).

The best almost copositive approximation by polynomials of degree ≤ n,
for f ∈ Lp[−1, 1] ∩ ∆0(Ys), 1 ≤ p ≤ ∞, is given by

E(0)
n (f, alm Ys)p = inf{‖f − P‖p;P ∈ Πn ∩ (alm ∆)0n(Ys)}.

Similarly,

E(0)
n (f, ε − alm Ys)p = inf{‖f − P‖p;P ∈ Πn ∩ (ε − alm ∆)0n(Ys)}

denotes the best strongly (weakly) almost copositive approximation by poly-
nomials of degree ≤ n if ε < 0 (ε > 0, respectively).

The best almost intertwining approximation by polynomials of degree ≤ n,
for f ∈ Lp[−1, 1], 1 ≤ p ≤ ∞, with respect to the set Ys is given by

Ẽn(f, alm Ys)p

= inf{‖P − f‖p + ‖f − Q‖p;P,Q ∈ Πn, (−1)j(P (x) − f(x)) ≥ 0 and
(−1)j(f(x) − Q(x)) ≥ 0 if x ∈ [yj+1, yj ] \ On(Ys), j = 0, . . . , s}.

We call (P,Q) an almost intertwining pair of polynomials for f with respect
to Ys if P and Q satisfy the restrictions in the above definition.

The best nearly intertwining approximation by polynomials of degree ≤ n,
for f ∈ Lp[−1, 1], 1 ≤ p ≤ ∞, with respect to the set Ys is given by

Ẽn(f, nearly Ys)p

= inf{‖P − Q‖p;P,Q ∈ Πn, P − f ∈ ∆0(Ỹs) and f − Q ∈ ∆0(Ỹs)},

where
Ỹs = {ỹs, . . . , ỹ1;−1 = ys+1 < ỹs < · · · < ỹ1 < y0 = 1,

and |ỹj − yj | ≤ ρn(yj), j = 1, . . . , s}.
We call (P,Q) a nearly intertwining pair of polynomials for f with respect

to Ys if P − f and f − Q belong to ∆0(Ỹs).
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Remark. Between the above best-approximation quantities the following re-
lationships hold:

Ẽn(f, alm Ys)p ≤ Ẽn(f, nearly Ys)p ≤ Ẽn(f, Ys)p,

and for f ∈ ∆0(Ys),

Ẽ(0)
n (f, alm Ys)p ≤ Ẽn(f, alm Ys)p,

Ẽ(0)
n (f, alm Ys)p ≤ Ẽ(0)

n (f, Ys)p.

All the constrained best-approximation quantities in Definition 1.5.7 can
be estimated in terms of various moduli of smoothness and for various ad-
ditional smoothness properties for f . The next theorem summarizes a few
results. For their proofs and for other estimates together with their proofs,
the interested reader can consult the paper of Hu–Kopotun–Yu [174] (see also
the survey Hu–Yu [178]).

Theorem 1.5.8. (i) (see Hu–Kopotun–Yu [173]) (Intertwining approxima-
tion) If f ∈ W 1

p = {f ; f is absolutely continuous and f ′ ∈ Lp[−1, 1]},
1 ≤ p < ∞, then Ẽn(f, Ys)p ≤ Cn−1τk(f ′, n−1)p;
If f ∈ C1[−1, 1] then Ẽn(f, Ys)∞ ≤ Cn−1ωϕ

k (f ′, n−1)∞;
(ii) (Hu–Kopotun–Yu [174]) (Almost positive approximation) If we suppose

f ∈ Lp[−1, 1] ∩ ∆0 and 1 ≤ p < ∞, then

E(0)
n (f, alm Y0)p ≤ Cωϕ

2 (f, n−1)p,

and ωϕ
2 cannot be replaced by ωϕ

3 ;
(iii) (Hu–Kopotun–Yu [174]) (Strongly almost positive approximation, i.e.,

ε < 0) If f ∈ Lp[−1, 1] ∩ ∆0 and 1 ≤ p < ∞, then

E(0)
n (f, ε − alm Y0)p ≤ Cωϕ

1 (f, n−1)p,

and ωϕ
1 (f, 1/n)p cannot be replaced by ω2(f, 1/n)p;

(iv) (Hu–Kopotun–Yu [174]) (Weakly almost positive approximation, i.e., 0 <
ε < 2) If f ∈ Lp[−1, 1] ∩ ∆0 and 1 ≤ p < ∞, then

E(0)
n (f, ε − alm Y0)p ≤ Cωϕ

2 (f, n−1)p,

and ωϕ
2 (f, 1/n)p cannot be replaced by ω3(f, 1/n)p;

(v) (Hu–Kopotun–Yu [174]) (Almost copositive approximation) If f ∈
Lp[−1, 1] ∩ ∆0(Ys) and 1 ≤ p < ∞, then

E(0)
n (f, alm Ys)p ≤ Cωϕ

2 (f, n−1)p,

and ωϕ
2 (f, 1/n)p cannot be replaced by ω3(f, 1/n)p if 1 < p < ∞ and by

ω4(f, 1/n)p if p = 1;
If f ∈ W 1

p ∩ ∆0(Ys) then

E(0)
n (f, alm Ys)∞ ≤ Cn−1ωϕ

k (f ′, n−1)∞;
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(vi) (Hu–Kopotun–Yu [174]) (Almost intertwining approximation) If f ∈
Lp[−1, 1], 1 ≤ p < ∞, then

Ẽn(f, alm Ys)p ≤ Cτk(f, n−1)p;

If f ∈ W 1
p then

Ẽn(f, alm Ys)∞ ≤ Cn−1ωϕ
k (f ′, n−1)∞;

(vii) (Hu–Kopotun–Yu [174]) (Nearly intertwining approximation) If f ∈ W 1
p ,

1 ≤ p < ∞, then Ẽn(f, nearly Ys)p ≤ Cn−1ωϕ
k (f ′, n−1)p.

Remark. From their proofs it follows that the above-presented methods in
polynomial copositive approximation are nonlinear, such that even if two con-
tinuous functions f, g ∈ C[−1, 1] have the same points where the signs change,
Ys, and both are of the same sign on each subinterval, the copositive approx-
imating polynomials Pn do not satisfy Pn(f + g) = Pn(f) + Pn(g).

It is easy to show that ∆0(Ys) is a convex cone, i.e., f, g ∈ ∆0(Ys) and
α ∈ R+ implies f + g ∈ ∆0(Ys) and αf ∈ ∆0(Ys).

Suggested by the proof of Theorem 1.2.1, we easily can construct a polyno-
mial copositive with f ∈ ∆0(Ys) that is an additive and positive homogeneous
operator on ∆0(Ys) ∩ C1[−1, 1]. In this sense we present our next result.

Theorem 1.5.9. If f ∈ ∆0(Ys) is continuously differentiable in the interval
[−1, 1], then a sequence of polynomials (Pn)n can be constructed such that
degree(Pn) ≤ n + s and for any ε > 0, there is n0 with the properties

‖f − Pn‖∞ < ε, Pn(x)f(x) ≥ 0, ∀n ≥ n0, x ∈ [−1, 1],

where Pn(αg+βh) = αPn(g)+βPn(h), for all n ∈ N, g, h ∈ ∆0(Ys)∩C1[−1, 1],
α, β ≥ 0.

Recalling the notation Π(x, Ys) = Πs
i=1(x − yi), the error estimate can be

expressed by

‖Pn(f) − f‖∞ ≤ C(Ys)ω2

(
f

Π(·, Ys)
;
1
n

)

∞
,

for all n ∈ N.

Proof. From the differentiability hypothesis, it easily follows that F (x) =
f(x)

Π(x,Ys) is continuous (by extension) on [−1, 1]. Also, by simple reasoning we
get that F (x) ≥ 0, for all x ∈ [−1, 1].

Now define Pn(f)(x) := Ln(F )(x) · Π(x, Ys), where Ln, n ∈ N, is a se-
quence of positive linear polynomial operators on C[−1, 1], satisfying degree
(Ln(f)) ≤ n and

‖Ln(f) − f‖∞ ≤ Cω2(f ; 1/n)∞, n = 1, 2, . . . .

The conclusions in the statement are immediate. �



54 1 Shape-Preserving Approximation by Real Univariate Polynomials

Remark. Obviously, the degree of Pn(f) can be chosen ≤ n, by considering
that the degree of Ln(f) is ≤ n − s. But the shortcoming of the method in
Theorem 1.5.9 is that it does not produce a Jackson-type estimate in terms of
at least ω1(f, 1/n)∞, or in terms of what we would expect, i.e., ω2(f, 1/n)∞.
The solution to this shortcoming remains an open question.

1.6 Monotone and Comonotone Polynomial
Approximation

This section contains the most important results in monotone and comonotone
polynomial approximation. As in the previous section, the proofs of the most
results are omitted as being too technical. However, to give the reader a better
look at the topic, for some proofs the main ideas will be given.

After Shisha’s result in 1965, in the evolution of this topic the following
result of Lorentz–Zeller in 1968 is an important step.

Theorem 1.6.1. (Lorentz–Zeller [250]) If f : [−1, 1] → R is increasing on
[−1, 1], then there exists a sequence of polynomials (Pn(x))n∈N such that degree
(Pn) ≤ n, Pn(x) is increasing on [−1, 1] for all n ∈ N, and

|f(x) − Pn(x)| ≤ Cω1(f ; ρn(x))∞, |x| ≤ 1, n ∈ N,

where C is independent of n, f , and x, and ρn(x) = (1 − x2)1/2/n + 1/n2.

To prove this theorem, first we need to prove the following trigonomet-
ric approximation lemma. Recall that a continuous 2π-periodic function on
[−π, π] is called bell-shaped if it is even and decreases on [0, π].

Lemma 1.6.2. (Lorentz–Zeller [250]) For any bell-shaped function f , there
exists a bell-shaped trigonometric polynomial Tn(f) such that

|f(x) − Tn(f)(x)| ≤ Cω1(f ; 1/n)∞,∀x ∈ R, n ∈ N.

Proof of Lemma 1.6.2. Let use denote the Jackson integral of f by

Jn(f)(x) =
∫ π

−π

Kn(x − t)f(t)dt,

where Kn(t) = λ−1
n

(
sin(nt/2)
sin(t/2)

)4
,
∫ π

−π
Kn(t)dt = 1.

Let us define L(f)(t) := L(t) = f
(

πk
n

)
:= cn for πk

n ≤ t < π(k+1)
n , k =

0, 1, . . . , n and L(f)(t)(t) = L(−t) for t ∈ [−π, 0]. Obviously L(f)(t) is a
piecewise constant function, L is even, and |f(t)−L(t)| ≤ ω1(f ;π/n). Writing
Tn(f)(t) = Jn(L)(t), obviously Tn(f) is even and from the inequalities

|f(t) − Tn(f)(t)| ≤ |f(t) − Jn(f)(t)| + |Jn(f)(t) − Jn(L)(t)|
≤ C1ω1(f ; 1/n)∞ + ‖f − L‖∞ ≤ C2ω1(f ; 1/n)∞,

it remains to show that Tn(f)(x) is decreasing on (0, π).
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Define bk, k = 0, 1, . . . n − 1 by the recurrent relations ck = bk + · · · +
bn−1, k = 0, . . . , n − 1. We have bk ≥ 0 and

Tn(f)(x) =
n−1∑

k=0

bk

∫ π(k+1)/n

−π(k+1)/n

Kn(x − t)dt

=
n∑

k=1

bk−1

∫ πk/n

−πk/n

Kn(t)dt.

Therefore, it suffices to prove that the functions

Ψk,n(x) =
∫ πk/n

−πk/n

Kn(x − t)dt =
∫ x+πk/n

x−πk/n

Kn(t)dt

are decreasing on (0, π).
We get

Ψ ′
k,n(x) = Kn

(

x +
πk

n

)

− Kn

(

x − πk

n

)

= λ−1
n sin4

(
πx + πk

2

)[
1

sin4((x + πk/n)/2)
− 1

sin4((x − πk/n)/2)

]

≤ 0,

which follows from the inequality sin(a+b) ≥ | sin(a−b)|, for all 0 ≤ a, b ≤ π/2,
which is a consequence of sin(a + b) − sin(a − b) = 2 sin(b) cos(a) ≥ 0, and
sin(a + b) + sin(a − b) = 2 sin(a) cos(b) ≥ 0.
Proof of Theorem 1.6.1. Defining F (t) = f(cos t), F is obviously bell-
shaped. By Lorentz [248], p. 68, we have

|f(cos t) − Jn(F )(t)| ≤ C1ω1(F ;αn(t))∞ ≤ ω1(f ;αn(t))∞,

where αn(t) = max{ | sin t|
n , 1

n2 } ≤ ρn(t). Set Tn(F )(t) = Jn(F )(t).
Now, if we take L(t) = L(F )(t), then as in the proof of Lemma 1.6.2 it

follows that Jn(L)(t) is bell-shaped and

|F (t) − L(t)| ≤ ω1(F ;h)∞ ≤ ω1(f ;h)∞, h = max | cos(t1) − cos(t)|,

where (if, for example, t > 0), t1 = πk/n, t1 ≤ t < t1 + π/n for some k.
Therefore,

h ≤ 2 sin
(

kπ

2n

)

sin
(

kπ

2n

)

≤ C
1
n

sin(t) ≤ Cαn(t).

Finally, collecting all the above estimates, we obtain

|f(cos t) − Tn(L)(t)| ≤ |f(cos t) − Jn(F )(t)| + |Jn(F )(t) − Jn(L)(t)|
≤ C1ω1(f ;αn(t))∞ + ‖F − L‖∞ ≤ C2ω1(f ;αn(t))∞.

Making now the substitution x = cos(t) and taking into account that
αn(t) ≤ ρn(t), we arrive at the desired estimate. �
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After the publication of the above theorem of Lorentz–Zeller, many
improvements between 1970 and 1980 have been made in monotone approxi-
mation first; for example, by Beatson, DeVore, Leviatan, Newman, Shvedov,
Yu, and then, by many other researchers. In what follows we present the most
important results in this topic.

As in the case of copositive approximation, first we need some useful no-
tation. Let Ys be the set of all collections Ys := {yi}s

i=1 of points, such that
ys+1 := −1 < ys < · · · < y1 < 1 =: y0, where for s = 0, Y0 = ∅. For Ys ∈ Ys

we define

Π(x, Ys) :=
s∏

i=1

(x − yi),

where the empty product is 1. Let ∆1(Ys) be the set of functions f that change
monotonicity at the points yi ∈ Ys and that are nondecreasing in (y1, 1) that
is, f is nondecreasing in the intervals (y2j+1, y2j) and it is nonincreasing in
(y2j , y2j−1). In particular, if s = 0, then f is nondecreasing in [−1, 1] and we
will write f ∈ ∆1. Moreover, if f is differentiable in (−1, 1), then

f ∈ ∆1(Ys) iff f ′(x)Π(x, Ys) ≥ 0, −1 < x < 1.

Now for f ∈ ∆1(Ys) ∩ Lp[−1, 1], we denote by

E(1)
n (f, Ys)p := inf

pn∈Πn∩∆1(Ys)
‖f − pn‖p

the best comonotone approximation of f by polynomials of degree ≤ n. If
Y0 = ∅, then we write E

(1)
n (f)p := E

(1)
n (f, ∅)p, and it will be called the best

monotone approximation.

Remark. Clearly, f can belong to ∆0(Y 0
s0

) ∩ ∆1(Y 1
s1

), with Y 0
s0

	= Y 1
s1

and
s0 	= s1. Thus, for such a function the quantity

e(ν,s)
n (f)p := inf E(ν)

n (f, Ys)p

is useful, where the infimum is taken over all sets Ys of s points in which f
changes its sign (corresponding to ν = 0) or its monotonicity (corresponding to
ν = 1), respectively. This quantity is useful in negative results in comonotone
approximation.

First let us make some simple observations on best monotone approxi-
mation. Supposing that f ∈ C

1[−1, 1] is nondecreasing, obviously f ′ ≥ 0.
By the considerations in the previous section, for any n ≥ 1, a nonnegative
pn−1 ∈ Πn−1 exists satisfying

‖f ′ − pn−1‖∞ ≤ 2En−1(f ′)∞.

Defining Pn(x) :=
∫ x

0
pn−1(t)dt + f(0), we get that Pn is nondecreasing and

‖f − Pn‖∞ ≤ 2En−1(f ′)∞.
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This implies
E(1)

n (f)∞ ≤ 2En−1(f ′)∞ n ≥ 1.

It is clear that in this estimate we have a loss of order n with respect to
the unconstrained approximation. Indeed, this follows by recalling that if f ∈
W 1

p [−1, 1], 1 ≤ p ≤ ∞, then in unconstrained approximation we have

En(f)p ≤ C

n
En−1(f ′)p, n ≥ 1,

where C = C(p) is an absolute constant and 1 ≤ p.
Some of this loss can be retrieved by proving Jackson-type estimates that

are analogous to those in unconstrained approximation. However, Shevchuk
[350] and Leviatan–Shevchuk [234] have proved that there exists a constant
C > 0 such that for any n ≥ 1, an f = fn ∈ C

1[−1, 1] ∩ ∆1 exists, satisfying

E(1)
n (f)∞ ≥ CEn−1(f ′)∞ > 0,

which shows that the inequality E
(1)
n (f)∞ ≤ 2En−1(f ′)∞ cannot be improved.

If 0 < p < ∞, the situation is even more pronounced, since in this case
Kopotun [208] proved that for any n ≥ 1 and A > 0, there exists a function
f = fp,n,A ∈ C∞[−1, 1] ∩ ∆1 satisfying

E(1)
n (f)p ≥ AEn−1(f ′)p.

1.6.1 Lp-Monotone Approximation, 0 < p ≤ ∞

The following Jackson-type estimate recovers the previously mentioned loss.

Theorem 1.6.3. (see Shvedov [355], Yu [407], Leviatan [228], DeVore–
Leviatan–Yu [90], DeVore–Leviatan [88]) If f ∈ Lp[−1, 1] ∩ ∆1, 0 < p ≤ ∞,
then for every n ≥ 1, we have

E(1)(f)p ≤ Cωϕ
2

(

f,
1
n

)

p

,

where C = C(p), the dependence on p being important only for p → 0.
Conversely, if k ≥ 3, then for every A > 0 and n ≥ 1, there is an f =

fp,n,A ∈ Lp[−1, 1] ∩ ∆1 satisfying

E(1)(f)p ≥ Aωk(f, 1)p > 0.

Proof. The sketch of proof for the first estimate will be presented in three
separated cases: 1) p = ∞; 2) 0 < p < 1; 3) 1 ≤ p < ∞.

Case 1. (Leviatan [228]). The proof is based on the ideas of constructions
in DeVore–Yu [86], i.e., first one approximates f by a piecewise linear function
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Sn(f) that interpolates f at a set of certain 2n+1 points −1 = ξ−n < ξ−n+1 <
· · · < ξn = 1, n ∈ N, with the modifications in Leviatan [228], in the sense
that one considers a subset of n + 1 points. Consider the Jackson kernel

Jn(t) = λn

(
sin nt/2
sin t/2

)8

,

∫ π

−π

Jn(t)dt = 1.

For tj = jπ/n, j = 0, . . . , n, and x = cos t, let us define

Tj(t)=
∫ t+tj

t−tj

Jn(u)du, τj(x) = Tn−j(t), Rj(x)=
∫ x

−1

τj(u)du, j = 0, . . . , n,

and the points ξj given by the equations 1 − ξj = Rj(1), j = 0, . . . , n.
Since Tn−j − Tn−(j+1) ≥ 0, we get τj − τj+1 ≥ 0 and that Rj − Rj+1 is

increasing for j = 0, 1, . . . , n − 1, which implies −1 = ξ0 < · · · < ξn = 1.
The piecewise linear interpolant Sn(f) is defined by

Sn(f)(x) = f(−1) + s0(1 + x) +
n−1∑

j=1

(sj − sj−1)ϕj(x),

where

sj =
f(ξj+1) − f(ξj)

ξj+1 − ξj
, j = 0, . . . , n − 1,

and ϕj(x) = (x − ξj)+.
In order to obtain the required polynomials, each ϕj(x) is replaced by a

sufficiently good approximation polynomial, i.e., by Rj(x), which gives

Pn(f)(x) = f(−1) + s0R0(x) +
n−1∑

j=1

(sj − sj−1)Rj(x)

= f(−1) +
n−1∑

j=0

sj(Rj(x) − Rj+1(x)).

Note that Pn(f) ∈ Π4n is a linear operator with respect to f . Since each
function Rj −Rj+1 is nondecreasing, it follows that Pn(f) is nondecreasing if
all sj ≥ 0, which is exactly the case when f is nondecreasing.

Also (reasoning as in the proof of Leviatan [232]), it follows that

‖f − Pn(f)‖∞ ≤ Cωϕ
2 (f, 1/n)∞.

Case 2. (DeVore–Leviatan–Yu [90], DeVore–Leviatan [88]). We sketch
here the proof in DeVore–Leviatan [88]. First we choose the partition points
ξj , j = 0, . . . , n, as in the above Case 1, starting now from the Jackson kernel

Jn(t) = λn

(
sin nt/2
sin t/2

)2r

,

∫ π

−π

Jn(t)dt = 1,
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where r is a sufficiently large fixed natural number. For x = cos t and tj :=
jπ/n, j = 0, . . . , n, let us define

Tj(t) =
∫ t+tj

t−tj

Jn(u)du, τj(x) := Tn−j(t), Rj(x) :=
∫ x

−1

τj(u)du, j = 0, . . . , n,

and the partition points ξj given by the equations 1−ξj = Rj(1), j = 0, . . . , n.
Obviously Rj is a polynomial of degree ≤ nr, and since Rj(x) − Rj+1(x) is
nondecreasing for all j = 0, 1, . . . , n − 1, we get −1 = ξ0 < ξ1 < · · · < ξn = 1.

Now we briefly describe the construction of a suitable piecewise linear
continuous function, Sn(f), attached to f and to the above partition. It is
given by Sn(f)(−1) = lj0(−1), Sn(f)(1) = lj1(1), and for j0 ≤ j ≤ j1,
Sn(f)(ξj) = f(ξj) = lj(ξj) and linear in between (i.e., Sn(f)(x) = lj(x), x ∈
[ξj−1, ξj ], j = j0, . . . , j1, represent the linear functions that interpolates f
at ξj−1 and ξj), where j0 and j1 are indices chosen as follows. Writing Ij =
[ξj−1, ξj ] and Ĩj the interval with the same center as Ij and twice its length, j0
will be the smallest index j such that Ĩj0 ⊆ [−1, 1], and j1 will be the largest
index j such that Ĩj1 ⊆ [−1, 1].

Without entering into details, we mention only that in DeVore–Leviatan
[88] it is proved that lj are near optimal Lp-approximation to f on the intervals
I∗j , where I∗j := Ĩj if j0 < j < j1, I∗j0 := Ĩj0 ∪ [−1, ξj0 ], and I∗j1 := Ĩj1 ∪ [ξj1 , 1].

We follow the ideas in the above case p = ∞ and take into account that
we can write

Sn(f)(x) = lj0(x) +
n−1∑

j=1

[aj − aj−1]ϕj(x)

= lj0(x) − a0(x + 1) +
n−1∑

j=0

aj [ϕj(x) − ϕj+1(x)],

where ϕj(x) = (x−ξj)+ and aj is the slope of lj(x). If f is nondecreasing then
aj ≥ 0 for all j, and therefore Sn(f) is nondecreasing on [−1, 1]. Replacing ϕj

by Rj , we get the nondecreasing polynomial

Pn(f)(x) = lj0(x) − a0(x + 1) +
n−1∑

j=0

aj [Rj(x) − Rj+1(x)],

since lj0(x)− a0(x + 1) is a constant and Rj(x)−Rj+1(x) are nondecreasing.
Finally, in DeVore–Leviatan [88] it is proved that for large r we get

‖f − Sn(f)‖p ≤ Cωϕ
2

(

f,
1
n

)

p

and

‖Sn(f) − Pn(f)‖p ≤ Cωϕ
2

(

f,
1
n

)

p

,

which proves the Case 2.
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Case 3. (Yu [407], Leviatan–Yu [244], see Shvedov [355] for estimates in
terms of ω2(f, 1

n )p). Here we sketch the proof using Yu [407], Leviatan–Yu
[244]. For that purpose, we keep the notation in the proof of Case 1 for Jn(t),
Tj(t), tj , τj(x), Rj(x), ξj , ϕj(x), and δj .

Let us set

f̄(ξj) =
1
ηj

∫ ηj/2

−ηj/2

f(ξj + t)dt,

where ηj = min{ξj − ξj−1, ξj+1 − ξj}, j = 1, . . . , n − 1,

S̄n(f) = f̄(−1) +
n∑

j=1

s̄j(ϕj−1 − ϕj)

is the piecewise linear function interpolating f̄(ξj) at the nodes ξj , j =
1, . . . , n − 1, and extending linearly to the endpoints of [−1, 1], where

s̄j =
f̄(ξj) − f̄(ξj−1)

ξj − ξj−1
, j = 2, . . . , n − 1,

s̄1 = s̄2, s̄n = s̄n−1,

and f̄(−1) = f̄(ξ1) − (1 + ξ1)s̄1, f̄(1) = f(ξn−1) + (1 − ξn−1)s̄n.
Defining

L̄n(f) = f̄(−1) +
n∑

j=1

s̄j(Rj−1 − Rj),

it is easy to see that L̄n(f) is a polynomial of degree ≤ 4n and is nondecreasing
in [−1, 1] whenever f is nondecreasing in [−1, 1].

Finally, in Leviatan–Yu [244] (omitting here the details) the estimate

‖f − L̄n(f)‖p ≤ Cωϕ
2

(

f,
1
n

)

p

.

is proved. �
Remark. The estimate in Theorem 1.6.3, case p = ∞, can be refined, in the
sense that for f ∈ ∆1 we can obtain polynomials Pn(x) ∈ Πn ∩ ∆1 satisfying
an estimate of the form (see Ditzian–Jiang–Leviatan [97])

|f(x) − Pn(f)(x)| ≤ C(λ)ωϕλ

2 (f, n−1ϕ(x)1−λ)∞, −1 ≤ x ≤ 1,

where λ ∈ [0, 1].
If 1 ≤ p ≤ ∞, then the estimate in Theorem 1.6.3 implies that for f ∈

W 1
p [−1, 1] ∩ ∆1, we have

E(1)(f)p ≤ C

n
ωϕ

1

(

f ′,
1
n

)

p

.

Thus, for smooth functions the question arises whether it would be possible to
obtain estimates involving the moduli of smoothness of the derivatives. This
is true for the uniform norm but not for the Lp-norms.
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Theorem 1.6.4. (i) (Shevchuk [347, 348]) Let f ∈ C1[−1, 1] ∩ ∆1. For each
k ≥ 1, there exists a constant C = C(k) with

E(1)(f)∞ ≤ C

n
ωk

(

f ′,
1
n

)

∞
.

(ii) (Kopotun [208]) Let 0 < p < ∞ and k ≥ 2. Then for any n ≥ 1, ε > 0,
and A > 0, there exists a function f = fp,k,n,ε,A ∈ C∞[−1, 1] ∩ ∆1 such that
for all pn ∈ Πn satisfying p′n(−1) ≥ 0, we have

‖f − pn‖Lp[−1,−1+ε] > Aωk(f ′, 1)p.

Note that if k ≥ 2, then in Theorem 1.6.4, (i), one cannot replace the
uniform norm by any of the Lp-norms, 0 < p < ∞.

Now it is natural to ask whether the estimate in Theorem 1.6.3 still holds
for ωϕ

3 if we relax the requirement on the constant, by allowing that such a
constant may depend on the function f (but not on n). Wu–Zhou [402] proved
that this is impossible for k = 4+[1/p]. On the other hand, the following result
closes the gap for monotonic continuous f .

Theorem 1.6.5. (Leviatan–Shevchuk [237]) For any f ∈ C[−1, 1]∩∆1, there
exists a constant C = C(f) such that

E(1)(f)∞ ≤ Cωϕ
3

(

f,
1
n

)

∞
, ∀n ≥ 2.

Proof. Here we sketch the proof in Leviatan–Shevchuk [237]. For n ≥ 3 and
xj = − cos(jπ/n), j = 0, . . . , n, denote by Sn the class of all continuous
quadratic piecewise polynomials with the nodes at xj , j = 0, . . . , n.

For f ∈ C[−1, 1] ∩ ∆(1) and n ≥ 3, let l1 and ln be the linear functions
interpolating f at the endpoints of the intervals I1 := [−1, x1] and In :=
[xn−1, 1], respectively. By Lemma 1 in Leviatan–Shevchuk [236], there exists a
piecewise quadratic polynomial qn ∈ Sn∩∆(1) such that qn(x) = l1(x), x ∈ I1,
qn(x) = ln(x), x ∈ In, and

‖f − qn‖[x1,xn−1] ≤ Cωϕ
3 (f, 1/n)∞.

The Burkill–Whitney inequality (see, e.g., (3.9) in Shevchuk [349]) implies

‖f − qn‖(I1)∞ = ‖f − l1‖(I1)∞ ≤ Cω2(f, 1/n2)∞,

‖f − qn‖(In)∞ ≤ Cω2(f, 1/n2)∞,

taking into account that |I1|, |I2| ≤ Cn−2 (where |I| denotes the length of the
interval I).
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On the other hand, by the proof of Marchaud’s inequality (see, e.g., (3.6)
in Shevchuk [349]), it follows that

ω2(f, δ)∞ ≤ Cδ2

∫ 1

δ

ω3(f, u)∞
u3

du + Cδ2ω2(f, 1)∞, δ ∈ (0, 1),

which by the inequalities (see Ditzian–Totik [98])

ω3(f, δ)∞ ≤ Cωϕ
3 (f,

√
δ)∞ ≤ Cn3δ3/2ωϕ

3 (f, 1/n)∞, δ ≥ 1
n2

,

implies

ω2(f, 1/n2)∞ ≤ Cωϕ
3 (f, 1/n)∞ +

C

n4
ω2(f, 1)∞

≤ Cωϕ
3 (f, 1/n)∞ +

C

n4
ωϕ

2 (f, 1)∞.

From the above inequalities, we obtain

‖f − qn‖∞ ≤ Cωϕ
3 (f, 1/n)∞ + Cn−4ωϕ

2 (f, 1)∞,

where

ωϕ
3 (qn, 1/n)∞ ≤ ωϕ

3 (f, 1/n)∞+8‖f−qn‖∞ ≤ Cωϕ
3 (f, 1/n)∞+Cn−4ωϕ

2 (f, 1)∞.

Hence, for n > C, since by Proposition 3 in Leviatan–Shevchuk [235], for
qn ∈ Sn ∩ ∆1, we have

E
(1)
Cn(qn)∞ ≤ Cωϕ

3 (sn, 1/n)∞,

the estimate in the statement follows. For n ≤ C the estimate is immediate.
�

1.6.2 Pointwise Monotone Approximation

Regarding pointwise estimates in monotone polynomial approximation,
Dzyubenko [102] proved that for f ∈ Cr[−1, 1] ∩∆1 and n ≥ r + k − 1, there
exists a polynomial pn ∈ ∆1 for which the pointwise estimates of Timan–
Brudnyi type are valid. However, as it was proved by DeVore–Yu [92], the
interpolatory estimates of Telyakovskii–Gopengauz type are valid only when
r + k ≤ 2.

Other positive and negative results can be summarized by the following.

Theorem 1.6.6. (Gonska–Leviatan–Shevchuk–Wenz [152])

(i) If r > 2, then for any n there is an f = fr,n ∈ W r
∞[−1, 1]∩∆1 such that

for any polynomial qn ∈ Πn ∩ ∆1, either
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lim sup
x→−1

|f(x) − qn(x)|
ϕr(x)

= ∞

or

lim sup
x→1

|f(x) − qn(x)|
ϕr(x)

= ∞.

(ii) Let r + k > 2. Then for any n, there is an f = fr,k,n ∈ Cr[−1, 1] ∩ ∆1,
such that for any polynomial qn ∈ Πn ∩ ∆1, either

lim sup
x→−1

|f(x) − qn(x)|
ϕr(x)ωk(f (r), ϕ(x))∞

= ∞,

or

lim sup
x→1

|f(x) − qn(x)|
ϕr(x)ωk(f (r), ϕ(x))∞

= ∞.

(iii) For interpolation at only one of the end points, we have the following
positive result. Suppose k ≤ max{r, 2} and f ∈ Cr[−1, 1] ∩ ∆1. For any
n ≥ N := k + r − 1, there exists a polynomial pn ∈ Πn ∩ ∆1 satisfying

|f(x) − pn(x)| ≤ C(r)ρr
n(x)ωk(f (r), ρn(x))∞, x ∈ [−1, 1],

and

|f(x) − pn(x)| ≤ C(r)
(1 − x)r/2

nr
ωk

(

f (r),

√
1 − x

n

)

∞
, x ∈ [−1, 1].

(iv) Suppose k > max{r, 2}. Then for each n ≥ 1 and every constant A > 0,
an f = fr,k,n,A ∈ Cr[−1, 1] ∩ ∆1 exists such that for every polynomial
pn ∈ Πn ∩ ∆1, there is a point x ∈ [−1, 1] for which

|f(x) − pn(x)| > A
(1 − x)r/2

nr
ωk

(

f (r),

√
1 − x

n

)

∞

holds.

Remarks. (1) Note that for f ∈ Cr[−1, 1]∩∆1, the first estimate in (iii), but
in the uniform norm, was obtained by DeVore [84], who proved the existence
of pn ∈ Πn ∩ ∆1 satisfying

‖f − pn‖∞ ≤ C(r)n−rω1(f (r), 1/n)∞,

where ‖ · ‖∞ denotes the uniform norm in C[−1, 1].
(2) Concerning simultaneous pointwise estimates in monotone approxima-

tion, in Kopotun [204] it is proved that for f ∈ C1[−1, 1] ∩ ∆1 and n ≥ 1,
there is a polynomial pn ∈ Πn ∩ ∆1, satisfying

|f (i)(x) − p(i)
n (x)| ≤ Cω2−i(f (i), ρn(x))∞, i = 0, 1, x ∈ [−1, 1].

(3) Pointwise estimates in monotone approximation by polynomials with
positive coefficients were obtained in Trigub [389].
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1.6.3 Lp-Comonotone Approximation, 0 < p ≤ ∞

A natural extension of monotone polynomial approximation is the comonotone
polynomial approximation, i.e., the approximation of a function f ∈
Lp[−1, 1], 0 < p ≤ ∞, by polynomials (Pn)n that change their (same)
monotonicity with f at Ys = {y1, . . . , ys} ∈ Ys, i.e., if, for example, in addition
to f ∈ C1[−1, 1], then f ′(x)P ′

n(x) ≥ 0 for all x ∈ [−1, 1], n ∈ N. Set

d(Ys) := min
0≤i≤s

(yi − yi+1).

Theorem 1.6.7. (i) (Beatson–Leviatan [34]) If f is continuously differen-
tiable in [−1, 1] and changes monotonicity s times, 1 ≤ s < ∞, then for each
n ≥ 1 there is a polynomial pn of degree ≤ n, comonotone with f on [−1, 1]
and satisfying

‖f − pn‖∞ ≤ C(s)
n

ω1(f ′, 1/n)∞,

where C(s) is a constant depending only on s.
(ii) (Kopotun–Leviatan [210]) If f ∈ Lp[−1, 1]∩∆1(Ys), 0 < p ≤ ∞, then

there is a constant C = C(s) such that for any n ≥ C/d(Ys), we have

E(1)
n (f, Ys)p ≤ Cωϕ

2

(

f,
1
n

)

p

.

Although it is weaker than the estimate in (ii), we present here only the
proof of Theorem 1.6.7 (i), by following the ideas in Beatson–Leviatan [34],
since they were very seminal for the next results and since it can more easily
be extended to real functions of two real variables (see Section 2.6, Corollary
2.6.11).

In the proof of this result, C will denote a positive constant independent
of f , n, and s but that can be different at each occurrence. Also, the method
used is based on the so-called “flipped” function denoted by fF and attached
to f , with the property that it has one change fewer in monotonicity than f .

First we need a lemma on this “flipped” function.

Lemma (A). (Beatson–Leviatan [34]) A constant C > 0 exists with the
following property: if f ∈ C[−1, 1] changes its monotonicity at s ≥ 1 points
at (−1, 1) including 0, where it is supposed f(0) = 0, defining the “flipped”
function

fF (x) = f(x), x ≥ 0,

fF (x) = −f(x), x < 0,

and supposing that for some n ≥ 1 and δ > ω1(f ′
F , 1/n)∞ there is a polynomial

pn ∈ Πn comonotone with fF such that

‖fF − pn‖∞ ≤ Cδ/n, ‖f ′
F − p′n‖∞ ≤ Cδ,
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then there is a polynomial P2n ∈ Π2n comonotone with f satisfying the esti-
mates

‖f − P2n‖∞ ≤ Cδ/n, ‖f ′ − P ′
2n‖∞ ≤ Cδ.

Proof of Lemma A. It is evident that fF has one change of monotonicity
fewer than f . Also for 0 < |x| < k/n, where k ≥ 1, we get

|f ′
F (x)| ≤ ω1(f ′

F , |x|)∞ ≤ kω1(f ′
F , 1/n)∞.

By fF (0) = 0 and by the mean value theorem, it follows that there is
ξ ∈ (0, 1) such that

|fF (x)| = |x| · |f ′
F (ξx)| ≤ k2

n
ω1(fF , 1/n)∞.

By DeVore [84], pp. 908–909, for each n ≥ 1 we can approximate sgn(x)
by the polynomials qn(x) = Cn

∫ x

0
(Tm(t)/t)4dt, where m is the largest odd

integer such that qn ∈ Πn and Cn is chosen such that qn(1) = 1. It is known
that qn is odd, monotone increasing, and

|sgn(x) − qn(x)| ≤ C|nx|−3, x ∈ [−1, 0) ∪ (0, 1],
|sgn(x) − qn(x)| ≤ 1, x ∈ [−1, 1].

Because fF (0) = 0 we can suppose pn(0) = 0, by replacing δ with 2δ in the
inequality ‖fF − pn‖∞ ≤ Cδ/n.

Let us define now P2n(x) =
∫ x

0
p′n(t)qn(t)dt. It is evident that P2n is

comonotone with f , and we get

f(x) − P2n(x) =
∫ x

0

[f ′
F (t) − p′n(t)]sgn(t)dt +

∫ x

0

p′n(t)[sgn(t) − qn(t)]dt

= (fF (x) − pn(x))sgn(x) +
∫ x

0

p′n(t)[sgn(t) − qn(t)]dt

:= J1(x) + J2(x).

Write β = sgn(x)/n. For 0 < |x| ≤ i/n, i ≥ 1, the above inequalities and
f ′

F (0) = 0 imply

|J2(x)| =
∣
∣
∣
∣

∫ x

0

p′n(t)[sgn(t) − qn(t)]dt

∣
∣
∣
∣ ≤

i−1∑

k=0

∣
∣
∣
∣
∣

∫ (k+1)β

kβ

p′n(t)[sgn(t) − qn(t)]dt

∣
∣
∣
∣
∣

≤ 1
n

[ω1(f ′
F , 1/n)∞ + δ]+

1
n

i−1∑

k=1

[(k+1)ω1(f ′
F , 1/n)∞+δ]Ck−3 ≤ Cδ/n.

The estimate for |J1(x)| is similar, which proves the estimate ‖f − P2n‖∞ ≤
Cδ/n.

The proof of the inequality ‖f ′ − P ′
2n‖∞ ≤ Cδ is similar. �
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Proof of Theorem 1.6.7 (i). If α ∈ (−1, 1) is a point where f changes its
monotonicity, then f ′(α) = 0.

For small values of n, let us say n < M(s), the theorem is immediate since
f ′(α) = 0 implies

|f(x) − f(α)| ≤ |x − α| · |f ′(η)| ≤ 2ω1(f ′, 2)∞ ≤ C(s)
n

ω1(f ′, 1/n)∞.

For large n, we prove the theorem by induction on the number of changes
of monotonicity, s.

The theorem in true for s = 0 by a construction in DeVore [83] (see
Beatson–Leviatan [34], pp. 222–223 for details).

Note that without loss of generality, if α ∈ (−1, 1) is a point where f
changes its monotonicity, then we may assume that f(α) = 0 (otherwise, we
subtract a constant from f and add it to the approximation polynomials).

Therefore, we have to prove the statement that there exist constants C(s)
and M(s) such that for any function f ∈ C1[−1, 1] with s ≥ 1 changes of
monotonicity (such that there is α ∈ (−1, 1) with f ′(α) = 0) and any n ≥
M(s), there is a pn ∈ Πn comonotone with f satisfying

‖f − pn‖∞ ≤ C(s)
1
n

ω1(f ′, 1/n)∞, ‖f ′ − p′n‖∞ ≤ C(s)ω1(f ′, 1/n)∞.

Let us assume that the above statement is true for s−1 and let f with s ≥ 1
changes of monotonicity. First we extend f linearly to [−3, 3], preserving the
modulus of continuity of f ′. Working with the interval I of length 4 centered
at α (obviously I ⊆ [−3, 3]) we deduce that a change of variable y = 1

2 (x−α)
defines a function g(y) = f(x) defined for −1 ≤ y ≤ 1 that satisfies g′(0) = 0
and ω1(g′, δ)∞ ≤ 4ω1(f ′, δ)∞.

Without loss of generality, we may assume that g(0) = 0. Then the
“flipped” function attached to g, i.e., gF , has s − 1 changes of monotonicity.
Using the above Lemma A and the inductive hypothesis, there is a sequence
{hn}∞n=2M(s−1) of comonotone approximation polynomials to g. Now, invert-
ing the change of variable, it follows that the sequence {pn(x)}, pn(x) = hn(y)
satisfies the statement for s, which proves the theorem. �

Remarks. (1) As a negative result to Theorem 1.6.7 (ii) Zhou [410] proved
that for any 0 < p ≤ ∞ and s ≥ 1, there is a Ys and an f ∈ Lp[−1, 1]∩∆1(Ys)
such that

lim sup
n→∞

E
(1)
n (f)p

ωk(f, 1/n)p
= ∞,

with k = 3 + [1/p]. Therefore, if p = ∞ then Theorem 1.6.7 (ii) is not valid
with any k ≥ 3, even with C = C(f) and N = N(f).

(2) Let us mention that the estimate in Theorem 1.6.7 (i) was at the
time (in 1983), an improvement with respect to the results in Iliev [181] and
Newmann [283], who obtained an estimate of order O(ω1(f, 1/n)∞).
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For p = ∞ we can say much more in comonotone approximation. The
results can be summarized by the following.

Theorem 1.6.8. (i) (Dzyubenko–Gilewicz–Shevchuk [106], Wu–Zhou [403])
If f ∈ Cr[−1, 1] ∩ ∆1(Ys), then the estimate

E(1)
n (f, Ys)∞ ≤ C

nr
ωk

(

f (r),
1
n

)

∞
, n ≥ N,

holds with C = C(k, r, s) and n = N(k, r, s) only when either k = 1 or r > s,
or in the case k = 2 and r = s. In addition, in these cases one can always
take N = k + r − 1. If k = 2 and 0 ≤ r < s, or k = 3 and 1 ≤ r ≤ s, or k > 3
and 2 ≤ r ≤ s, then the above estimate holds either with C = C(k, r, Ys) and
N = k + r, or with C = C(k, r, s) and N = N(k, r, Ys), and they fail to be
valid with C = C(k, r, s) and N = N(k, r, s). Also, if either r = 0 or r = 1,
then for every s ≥ 1, there exist a Ys ∈ Ys and an f ∈ Cr[−1, 1] ∩ ∆1(Ys)
such that

lim sup
n→∞

nrE
(1)
n (f, Ys)∞

ω3+r(f (r), 1/n)∞
= ∞,

that is, the estimate does not hold even with constants that depend on f .
In particular, if f ∈ W r

∞ then

E(1)
n (f, Ys)∞ ≤ C(r, s)

‖f (r)‖∞
nr

, n ≥ r − 1.

(ii) (Leviatan–Shevchuk [238]) For s ≥ 0 assume that f ∈B
r∩∆1(Ys), r≥1.

Then

E(1)
n (f, Ys)∞ ≤ C(r, Ys)

‖ϕrf (r)‖∞
nr

, n ≥ r − 1,

and

E(1)
n (f, Ys)∞ ≤ C(r, s)

‖ϕrf (r)‖∞
nr

, n ≥ N(r, Ys).

In addition, if f ∈ B
r ∩ ∆1(Ys), with either s = 0, r = 1, or r = 3, s = 1, or

r > 2s + 2, then

E(1)
n (f, Ys)∞ ≤ C(r)

‖ϕrf (r)‖∞
nr

, n ≥ r − 1.

(iii) (Leviatan–Shevchuk [235]) Given s ≥ 1, let A > 0 be arbitrary and
2 ≤ r ≤ 2s + 2, excluding the case r = 3, s = 1. Then for every n, there is an
f = fr,s,n ∈ B

r, that changes monotonicity s times in [−1, 1], such that

e(1,s)
n (f)∞ ≥ A‖ϕrf (r)‖∞.

Remark. Pointwise estimates in comonotone approximation have new prop-
erties, described as follows. If s = 1, then when either r ≥ 2 or in the three
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special cases the k = 1, r = 0, 1 and k = 2, r = 1, there is a polynomial
pn ∈ Πn ∩ ∆1 satisfying

|f(x) − pn(x)| ≤ C(r)ρr
n(x)ωk(f (r), ρn(x))∞, −1 ≤ x ≤ 1, n ≥ k + r − 1.

For two other pairs, k = 2, r = 0 and k = 3, r = 1, the above estimate holds
with C = C(Y1) = C(y1), while for the remaining pairs, i.e., r = 0, k ≥ 3 and
r = 1, k ≥ 4, we have no such estimate. Thus, the situation is exactly that in
Theorem 1.6.8 for s = 1.

On the other hand, if s > 1, then the situation for the above pointwise
estimate can briefly be described as follows: it does not hold for r = 0, k ≥ 3
and r = 1, k ≥ 4, while for the rest it follows with C = C(r, k, s) only for
n ≥ N = N(r, k, Ys) (for all these situations see, e.g., Leviatan [230]).

1.6.4 Comonotone Approximation with Modified Weighted
Moduli of Smoothness

It is of interest to consider estimates in comonotone polynomial approximation
with respect to the modified weighted moduli of smoothness, ωϕ

k,r, introduced
by Shevchuk [349] (see also Definition 1.1.3.). As a sample, we present the
following.

Theorem 1.6.9. (Leviatan–Shevchuk [238], Dzyubenko–Listopad–Shevchuk
[109] for s = 0) Let s ≥ 0. If f ∈ Cr

ϕ ∩ ∆1(Ys), with r > 2, then

E(1)
n (f, Ys)∞ ≤ C(k, r, Ys)

nr
ωϕ

k,r

(

f (r),
1
n

)

, n ≥ k + r − 1,

and

E(1)
n (f, Ys)∞ ≤ C(k, r, s)

nr
ωϕ

k,r

(

f (r),
1
n

)

, n ≥ N(k, r, Ys).

In addition, if f ∈ Cr
ϕ ∩ ∆1(Ys) with r > 2s + 2, then

E(1)
n (f, Ys)∞ ≤ C(k, r, s)

nr
ωϕ

k,r

(

f (r),
1
n

)

, n ≥ k + r − 1.

Remarks. (1) Concerning the dependence on the parameters of the constants
C and N for the answer with respect to the estimates in Theorem 1.6.9, case
s = 0, the following situations are possible (see Leviatan [230]):

If r ≥ 3, then both N and C depend on k, r, s;
Let r = 2. If k ≥ 3 then estimate holds, k = 2 is still an open question,

if k = 0, then both constants C and N depend on k, r, s, if k = 1, then the
first two estimates in Theorem 1.6.9 do not hold, but the third one holds with
C = C(f);

Let r = 1. If k = 0 or k = 1, then we have C = C(k, r, s) and N =
N(k, r, s), if k = 2, then the first two estimates in Theorem 1.6.9 do not hold
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but the third one holds with C = C(f), k = 3 is still an open question, if
k > 3, then no estimate holds.

Let r = 0. If k = 1 or k = 2, then C = C(k, r, s) and N = N(k, r, s), if
k = 3, then the first two estimates in Theorem 1.6.9 do not hold but the third
one holds with C = C(f), if k ≥ 4, then no estimate holds.

(2) Concerning the dependence on the parameters of the constants C and
N , for the complete answer with respect to the estimates in Theorem 1.6.9,
case s = 1, the following situations are possible (for all the cases see, e.g.,
Leviatan [230], except the cases where the references are specified):

If r ≥ 5, then C = C(k, r, s) and N = N(k, r, s);
If r = 4, then one of the constants C or N depends on k, r and Ys;
Let r = 3. If k = 0, then C = C(k, r, s) and N = N(k, r, s), if k ≥ 1, then

one of the constants C and N depends on k, r and Ys;
Let r = 2. If k = 0 or k = 1, then one of the constants C and N depends

on k, r and Ys, if k = 2, then the estimates in Theorem 1.6.9 do not hold
even for constants depending on the function (see Nesterenko–Petrova [282]),
if k ≥ 3, then no estimate holds.

Let r = 1. If k = 0, then C = C(k, r, s) and N = N(k, r, s), if k = 1 or
k = 2, then one of the constants C or N depends on k, r and Ys, if k = 3, then
the estimates in Theorem 1.6.9 do not hold even for constants depending on
the function (see Nesterenko–Petrova [282]), if k ≥ 4, then no estimate holds.

Let r = 0. If k = 1, then C = C(k, r, s) and N = N(k, r, s), if k = 2, then
one of the constants C or N depends on k, r and Ys, if k ≥ 3, then no estimate
holds.

(3) Concerning the dependence on the parameters of the constants C and
N , for the complete answer with respect to the estimates in Theorem 1.6.9,
case s > 1, the following situations are possible (for all the cases see, e.g.,
Leviatan [230], excepting the cases for which references) are specified:

If r ≥ 2s + 3, then C = C(k, r, s) and N = N(k, r, s);
If 3 ≤ r ≤ 2s + 2, then one of the constants C and N depends on k, r,

and Ys;
Let r = 2. If k = 0 or k = 1, then one of the constants C and N depends

on k, r and Ys, if k = 2, then the estimates in Theorem 1.6.9 do not hold
even for constants depending on the function (see Nesterenko–Petrova [282]),
if k ≥ 3, then no estimate holds.

Let r = 1. If k = 0, then C = C(k, r, s) and N = N(k, r, s), if k = 1
or k = 2, then one of the constants C and N depends on k, r and Ys, if
k = 3, then the estimates in Theorem 1.6.9 do not hold even for constants
depending on the function (see Nesterenko–Petrova [282]), if k ≥ 4, then no
estimate holds.

Let r = 0. If k = 1, then C = C(k, r, s) and N = N(k, r, s), if k = 2,
then one of the constants C and N depends on k, r and Ys, if k ≥ 3 then the
estimates in Theorem 1.6.9 do not hold.
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(4) When s = 0, we have Y0 = ∅ in the first two estimates and hence the
second estimate is just the third one. Also, in this case, the last estimate is
valid for 0 ≤ r + k ≤ 2.

(5) For other results in the comonotone approximation in terms of modified
Ditzian–Totik moduli of smoothness, see Note 1.10.2.

1.6.5 Nearly Comonotone Approximation

By relaxing the condition of comonotonicity from the whole interval [−1, 1]
to only a major portion of that interval, one obtains the so-called nearly
comonotone polynomial approximation.

This concept seems to appear for the first time in the paper of Newman–
Passow–Raymon [284], as follows. They say that f ∈ C[−1, 1] is piecewise
monotone on [−1, 1] if there exists Ys = {yj , j = 1, . . . , s}, with −1 :=
ys+1 < ys < · · · < y1 < 1 := y0, such that f is monotonic on each interval
(yi+1, yi), i = 0, . . . , s. In particular, f ∈ C[−1, 1] is called proper piecewise
monotone on [−1, 1] (with respect to Ys) if for any 0 < ε < 1

2 mini=0,...,s{(yi−
yi+1)}, there is δ > 0 such that |f(x) − f(y)|/|x − y| ≥ δ, for all x, y ∈
[yi+1 + ε, yi − ε], x 	= y.

A sequence of algebraic polynomials (Pn)n is called nearly comonotone
with f on [−1, 1] if for any 0 < ε < 1

2 mini=0,...,s{yi−yi+1}, there exists Nε ∈ N

such that for all n ≥ Nε, the polynomial Pn is of the same monotonicity as f
on the intervals (yi+1 + ε, yi − ε), i = 0, . . . , s.

The first result on nearly comonotone approximation belongs to Newman–
Passow–Raymon [284] and states that for any proper piecewise monotone
f ∈ C[−1, 1] ∩ Lip1M , there exists a nearly comonotone sequence (of alge-
braic polynomials) with f , (Pn)n, Pn ∈ Πn, such that ‖f − Pn‖∞ ≤ CM

n , for
all n ∈ N. Later on, the restriction “proper” was removed by DeVore [83].
Roulier [328] generalized the Newman–Passow–Raymon [284] result by prov-
ing that for any piecewise monotone function f ∈ C[−1, 1] and any sequence
of positive numbers dn → 0 that satisfies limn→∞

En(f)
dn

= 0, there exists a
nearly comonotone sequence of polynomials (Pn)n, Pn ∈ Πn, such that

‖f − Pn‖∞ ≤ ω1(f, dn)∞ + En(f)∞, n ∈ N.

where recall En(f)∞ = inf{‖f − qn‖∞; qn ∈ Πn}.
Myers [281] proved that if f ∈ C[−1, 1], then the above Roulier’s estimates

can be replaced by ‖f −Pn‖ ≤ Cω1(f, 1/n), and if, in addition, f ∈ C1[−1, 1],
then the estimate in nearly comonotone approximation can be improved to
‖f − Pn‖∞ ≤ C1n

−1ω1(f ′, 1/n)∞. (Here C and C1 are absolute positive con-
stants.)

All the above results can be improved. To be more precise, given the
“comonotonicity points” Ys = {y1, . . . , ys}, where −1 := ys+1 < ys < · · · <
y1 < 1 =: y0, similar to the copositive case let us write

O(n, Ys) = [−1, 1] ∩ {∪s
i=1(yi − ρn(yi), yi + ρn(yi))}
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and
O∗(n, Ys) = O(n, Ys) ∪ [−1,−1 + 1/n2] ∪ [1 − 1/n2, 1].

We have better results than those in comonotone approximation too, summa-
rized by the following.

Theorem 1.6.10. (i) (Leviatan–Shevchuk [240]) For any natural number M ,
there exists a constant C = C(s,M) for which if f ∈ C[−1, 1] ∩ ∆1(Ys),
then for every n ≥ 2, there exists a polynomial Pn ∈ Πn comonotone with
f on [−1, 1] \ O∗(Mn,Ys) such that ‖f − Pn‖∞ ≤ Cωϕ

3 (f, 1/n)∞.
Also, ω3 cannot be replaced by ω4.

(ii) (Leviatan–Shevchuk [240]) For each k and M natural numbers, there exists
a constant C = C(k, s,M) for which if f ∈ ∆1(Ys) ∩ C1[−1, 1], then
for every n ≥ k there is a polynomial Pn ∈ Πn comonotone with f on
[−1, 1] \ O(Mn,Ys) such that

‖f − Pn‖∞ ≤ C

n
ωϕ

k (f ′, 1/n)∞.

(iii) (Leviatan–Shevchuk [240]) For each k and M natural numbers, there
exists a constant C = C(k, s,M) for which if f ∈ ∆1(Ys) ∩ C1

ϕ, then
for every n ≥ k there is a polynomial Pn ∈ Πn comonotone with f on
[−1, 1] \ O∗(Mn,Ys), such that

‖f − Pn‖∞ ≤ C

n
ωϕ

k,1(f
′, 1/n),

where ωϕ
k,1 and C1

ϕ are defined in Definition 1.1.3.
(iv) (Leviatan–Shevchuk [236]) There exists a natural number M = M(s) and

a constant C(s) such that if f ∈ C1[−1, 1] ∩ ∆1(Ys), then there exists a
polynomial Pn ∈ Πn, comonotone with f on [−1, 1]\O∗(Mn,Ys) that for
all x ∈ [−1, 1] and n ≥ 2 satisfies

|f(x) − Pn(x)| ≤ C(s)ω3(f, ρn(x)).

(v) (Leviatan–Shevchuk [236]) There exists a natural number M = M(s, k)
and a constant C(s, k) such that if f ∈ C1[−1, 1] ∩ ∆1(Ys), then there
exists a polynomial Pn ∈ Πn comonotone with f on [−1, 1] \ O(Mn,Ys),
that for all x ∈ [−1, 1] and n ≥ k satisfies

|f(x) − Pn(x)| ≤ C(s, k)ρn(x)ωk(f ′, ρn(x)).

Many other details, including the proofs in Theorem 1.6.10, can be found
in the papers of Leviatan–Shevchuk [236, 240].

Remark. From their proofs it follows that the above-presented methods
in polynomial comonotone approximation are nonlinear, such that even if
two continuous functions f, g ∈ C[−1, 1] have the same points Ys where
the monotonicity changes and both are of the same monotonicity on each
subinterval, however the comonotone polynomials Pn do not satisfy Pn(f +
g) = Pn(f) + Pn(g).
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It is easy to show that ∆1(Ys) is a convex cone, i.e., f, g ∈ ∆1(Ys) and
α ∈ R+ implies f + g ∈ ∆1(Ys) and αf ∈ ∆1(Ys).

Suggested by the proof of Theorem 1.2.1, we easily can construct a poly-
nomial comonotone with f , that is an additive and positive homogeneous
operator on ∆1(Ys) ∩ C2[−1, 1]. In this sense, we present two very simple
results.

Theorem 1.6.11. If f ∈ ∆1(Ys) is twice continuously differentiable on
[−1, 1], then a sequence of polynomials (Pn)n can be constructed such that
degree(Pn) ≤ n + s + 1 and for any ε > 0, there is n0 with the properties

‖f − Pn‖∞ < ε, P ′
n(x)f ′(x) ≥ 0, ∀n ≥ n0, x ∈ [−1, 1],

and Pn(αh+βg) = αPn(h)+βPn(g), for all n ∈ N, h, g ∈ ∆1(Ys)∩C2[−1, 1],
α, β ≥ 0.

Recalling the notation Π(x, Ys) = Πs
i=1(x − yi), the error estimate can be

expressed by

‖Pn(f) − f‖∞ ≤ C(Ys)ω2

(
f ′

Π(·, Ys)
;
1
n

)

∞
,

for all n ∈ N.

Proof. From the differentiability hypothesis, it easily follows that F (x) =
f ′(x)

Π(x,Ys) is continuous (by extension) on [−1, 1]. Also, by simple reasoning we
get that F (x) ≥ 0, for all x ∈ [−1, 1]. Note that without loss of generality, we
may suppose f(−1) = 0.

Now define Pn(f)(x) :=
∫ x

−1
Ln(F )(t) · Π(t, Ys)dt, where Ln, n ∈ N,

is a sequence of positive linear polynomial operators on C[−1, 1] satisfying
degree(Ln(f)) ≤ n and

‖Ln(f) − f‖∞ ≤ Cω2(f ; 1/n)∞, n = 1, 2, . . . .

The conclusions in the statement are immediate. �

Remark. In the very particular case of a single point of change of monotonic-
ity in the particular interval (0, 1), i.e., Y1 = {y1}, where y1 ∈ (0, 1), we can
obtain a different estimate in Theorem 1.6.11. In this case, ∆1(Y1) represents
the space of all continuous functions on [0, 1], that are nonincreasing on [0, y1]
and nondecreasing on [y1, 1].

Theorem 1.6.12. If f ∈ ∆1(Y1) is continuously differentiable in [0, 1],
f ′(x) 	= 0, for all x 	= y1, then for any ε < y1, ε < 1 − y1, there is n0 ∈ N,
such that for all n ≥ n0, Pn(f)(x) = Bn(f)(x+xn−y1), with B′

n(f)(xn) = 0,
are polynomials comonotone with f on [ε, 1 − ε] (near comonotonicity) and

‖Pn(f) − f‖∞ ≤ C

n1/2
ωϕ

1 (f ; 1/n1/2)∞ + ‖f ′‖∞ · |xn − y1|.

Here Bn(f)(x) denotes the Bernstein polynomials on [0, 1].
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Proof. Firstly, the estimate is immediate by the approximation property of
Bernstein polynomials in e.g., Knoop–Zhou [194], Totik [387].

By E. Popoviciu [311], f ∈ ∆1(Y1) means that it is quasiconvex, which by
Theorem 1.3.1 (ii) implies that all the Bernstein polynomials Bn(f) are quasi-
convex on [0, 1]. Note that by hypothesis, it is easy to prove that for each fixed
n, xn is unique and that limn→∞ xn = y1, which implies the comonotonicity
of Pn(f) with f on [ε, 1 − ε], for sufficiently large n. �

Remark. An important shortcoming in Theorems 1.6.11 and 1.6.12 is that
with respect to the Jackson-type estimates (i.e., in terms of the moduli
ω1(f, 1/n)∞ or ω2(f, 1/n)∞), the approximation errors are weak. The solution
to this shortcoming remains an open question.

1.7 Convex and Coconvex Polynomial Approximation

This section contains the main results in convex and coconvex polynomial
approximation. Again, although we omit most of the proofs as being too
technical, to have a look at the constructions, we sketch the proofs for a few
of them.

It is worth noting that in recent years, the case of convex approximation
in the uniform norm was completely solved. More exactly, for each r times
differentiable convex function it is possible to say whether or not its degree of
convex polynomial approximation in the uniform norm may be estimated by
a Jackson-type estimate involving the weighted Ditzian–Totik kth modulus
of smoothness, and how the constants in this estimate behave. We will see
that for any pair (k, r), only one from the following three cases is possible: we
have an estimate with constants depending only on these parameters, or we
have an estimate but only with constants that depend on the function being
approximated, or a Jackson-type estimate is not possible.

First we need some useful notation. Let Ys be the set of all collections
Ys := {yi}s

i=1 of points such that ys+1 := −1 < ys < · · · < y1 < 1 =: y0,
where for s = 0, Y0 = ∅. For Ys ∈ Ys we define

Π(x, Ys) :=
s∏

i=1

(x − yi),

where the empty product is 1. Let ∆2(Ys) be the set of functions f that change
convexity at the points yi ∈ Ys and that are convex in (y1, 1), (again denoted
by ∆2 if Y0 = ∅), and for f ∈ ∆2(Ys) ∩ Lp[−1, 1], we denote by

E(2)
n (f, Ys)p := inf

pn∈Πn∩∆2(Ys)
‖f − pn‖p,

the best coconvex approximation of f by polynomials of degree ≤ n. If Y0 = ∅,
then we write E

(2)
n (f)p := E

(2)
n (f, ∅)p, which represents the best convex ap-

proximation.
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If f, g ∈ C2[−1, 1] are coconvex, then this can be expressed by the condi-
tion f ′′(x)g′′(x) ≥ 0, for all x ∈ [−1, 1].

Now, reasoning as for the monotone case, if f ∈ C2[−1, 1] is convex, i.e.,
f ′′ ≥ 0, then we get

E(2)
n (f)∞ ≤ En−2(f ′′)∞, n ≥ 2.

If f ∈ W 2
p [−1, 1], 1 ≤ p ≤ ∞, then it is known that for unconstrained

approximation we have

En(f)p ≤ C

n2
En−2(f ′′)p, n ≥ 2,

where C = C(p) is an absolute constant and En(f)p denotes the unconstrained
best approximation.

Thus, for convex approximation we have a loss of order n2. Some of this
loss can be recaptured by proving Jackson-type estimates. However, we point
out that Shevchuk [350] and Leviatan–Shevchuk [234] have proved that there
is a constant C > 0 such that for any n ≥ 2, an f ∈ C2[−1, 1] ∩ ∆2 exists
satisfying

E(2)
n (f)∞ ≥ CEn−2(f ′′)∞ > 0,

that is, the above estimate in convex approximation cannot be improved.
The situation is more pronounced for 0 < p < ∞. Kopotun [208] proved

that if 0 < p < ∞, then for each n ≥ 2 and constant A > 0, there is function
f = fp,n,A ∈ C∞[−1, 1] ∩ ∆2 such that

E(2)
n (f)p ≥ AEn−2(f ′′)p.

1.7.1 Linear Methods in Convex Approximation

Concerning Jackson-type estimates in convex approximation, the linear ap-
proximation methods give estimates involving second-order moduli of smooth-
ness of various types. First we present the following theorem.

Theorem 1.7.1. (see Shvedov [355], Leviatan [228], DeVore–Leviatan [88])
If f ∈ Lp[−1, 1] ∩ ∆2, 0 < p ≤ ∞, then for every n ≥ 1, we have

E(2)(f)p ≤ Cωϕ
2

(

f,
1
n

)

p

,

where C = C(p), the dependence on p being important only for p → 0.

Proof. The sketch of proof for the estimate will be presented in three distinct
cases: (1) p = ∞; (2) 0 < p < 1; (3) 1 ≤ p < ∞.

Case 1. (Leviatan [228]). We use the same construction of polynomials as
in the proof of Theorem 1.6.3, Case 1, i.e., (keeping the notation),
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Pn(f)(x) = f(−1) + s0R0(x) +
n−1∑

j=1

(sj − sj−1)Rj(x).

We have to show that Pn(f) is convex when f is convex. If f is convex, then
sj − sj−1 ≥ 0 for j = 1, . . . , n − 1, and since R0(x) = 1 + x, it follows by the
above form of Pn(f)(x) that for the convexity of Pn(f)(x), it suffices to have
R′′

j ≥ 0 for j = 1, . . . , n − 1. But for x = cos t, 0 < t < π, we get

R′′
j (x) = τ ′

j(x) =
dt

dx

d

dt

∫ t+tn−j

t−tn−j

Jn(u)du

=
−1
sin t

[

Jn

(

t +
(n − j)π

n

)

− Jn

(

t − (n − j)π
n

)]

=
−λn

sin t
sin8 nt + (n − j)π

2

×
[

1
sin8 1

2 (t + (n − j)π/n)
− 1

sin8 1
2 (t − (n − j)π/n)

]

≥ 0

due to the following inequality in Lorentz–Zeller [250] (see also the proof in
Leviatan [228]):

sin(α + β) ≥ | sin(α − β)|, for 0 ≤ α, β ≤ π/2.

Case 2. We follow here the ideas of proof in DeVore–Leviatan [88] and
we use the same construction as in Case 2 in proof of Theorem 1.6.3, i.e.,

Pn(f)(x) = lj0(x) − a0(x + 1) +
n−1∑

j=0

aj [Rj(x) − Rj+1(x)]

= lj0(x) +
n−1∑

j=1

(aj − aj−1)Rj(x).

Since the convexity of f implies aj − aj−1 ≥ 0 and since R′′
j (x) ≥ 0, j =

0, . . . , n, x ∈ [−1, 1], we immediately get that Pn(f)(x) is a convex polynomial.
Case 3. (Leviatan–Yu [244], see Shvedov [355] for estimates in terms of

ω2(f, 1
n )p). We follow here the ideas in Yu [407], Leviatan–Yu [244], i.e., we

use the same construction as in the proof of Theorem 1.6.3, Case 3,

L̄n(f) = f̄(−1) +
n∑

j=1

s̄j(Rj−1 − Rj),

which is convex when f is convex. �
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Remark. The estimate in Theorem 1.7.1, case p = ∞, can be refined, in the
sense that for f ∈ ∆2 we can obtain polynomials Pn(x) ∈ Πn ∩ ∆2 satisfying
an estimate of the form (see Ditzian–Jiang–Leviatan [97])

|f(x) − Pn(f)(x)| ≤ C(λ)ωϕλ

2 (f, n−1ϕ(x)1−λ)∞, x ∈ [−1, 1],

where λ ∈ [0, 1].
In what follows we show that the polynomials constructed in Theorem

1.6.3 (and Theorem 1.7.1), case p = ∞, have a new additional property,
closely related to that of starshapedness introduced by Definition 1.1.1 (ii).

First we need some simple auxiliary results.

Lemma 1.7.2. Let F,G : [a, b] → R be continuous on [a, b] such that F is
(usual) convex on [a, b] and

F (a) = G(a), F (b) = G(b), G(x) ≤ F (x), ∀x ∈ [a, b].

Let a0, a1 ∈ [a, b] with a0 < a1. Then the straight line passing through the
points (a0, F (a0)) and (a1, F (a1)) also cuts the graph of G in (at least) two
distinct points of [a, b].

Proof. The equation of the straight line is given by

Y (x) = F (a1) + (x − a1)
F (a1) − F (a0)

a1 − a0
, x ∈ [a, b].

By hypothesis it follows that Y (a0) = F (a0) ≥ G(a0), and since F is
convex on [a, b], we get

F (a1) − F (a)
a1 − a

≤ F (a1) − F (a0)
a1 − a0

and hence

F (a1) + (a − a1)
F (a1) − F (a0)

a1 − a0
≤ F (a) = G(a),

that is, Y (a) ≤ G(a).
Then since Y and G are continuous on [a, b], there exists a point ξ ∈ [a0, a]

such that Y (ξ) = G(ξ).
Analogously, by the relationships in the hypothesis, we have Y (a1) =

F (a1) ≥ G(a1), and since F is convex on [a, b], we get

F (a1) − F (a0)
a1 − a0

≤ F (b) − F (a1)
b − a1

.

This implies

Y (b) = F (a1) + (b − a1)
F (a1) − F (a0)

a1 − a0
≤ F (b) = G(b),

therefore there exists η ∈ [a, b] such that Y (η) = G(η), which proves the
lemma. �
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In what follows, keeping the notation and the constructions in the proof of
Theorem 1.6.3, Case 1 (i.e., p = ∞), let

Sn(x) = f(−1) + s0R0(x) +
n−1∑

j=1

(sj − sj−1)ϕj(x)

and

Pn(f)(x) = f(−1) + s0R0(x) +
n−1∑

j=1

(sj − sj−1)Rj(x)

= f(−1) +
n−1∑

j=0

sj(Rj(x) − Rj+1(x)).

Another auxiliary result is the following.

Lemma 1.7.3. If j = 0, 1, . . . , n then ϕj(x) ≤ Rj(x) for all x ∈ [−1, 1].

Proof. Since we have ϕ0(x) = R0(x) = 1 + x and ϕn(x) = Rn(x) = 0 for
all x ∈ [−1, 1], we may suppose that j ∈ {1, . . . , n − 1}. For such a j, by
ξj ∈ (−1, 1) we obtain

ϕj(x) = 0, x ∈ [−1, ξj ], ϕj(x) = x − ξj , x ∈ [ξj , 1].

On the other hand, we obviously have ϕj(±1) = Rj(±1),

ϕ′
j(−1) = 0 ≤

∫ π+tn−j

π−tn−j

Jn(u)du = R′
j(−1),

and

R′
j(1) = Tn−j(arccos1) = Tn−j(0)

=
∫ tn−j

−tn−j

Jn(u)du ≤
∫ π

−π

Jn(u)du = 1 = ϕ′
j(1).

Now, let suppose that there exists x0 ∈ (−1, 1) such that Rj(x0) < ϕj(x0).
We have two possibilities: (i) −1 < x0 ≤ ξj ; (ii) ξj < x0 < 1.

Case (i). The equation of the straight line passing through the points
(−1, 0) and (x0, Rj(x0)) is given by y = (x + 1)Rj(x0)

x0+1 , x ≥ −1, with slope

Rj(x0)
x0 + 1

<
ϕj(x0)
x0 + 1

= 0.

On the other hand, since Rj is convex on [−1, 1], we get

Rj(x) ≤ (x + 1)
Rj(x0)
x0 + 1

, ∀x ∈ [−1, 1],



78 1 Shape-Preserving Approximation by Real Univariate Polynomials

which implies

R′
j(−1) = lim

x↘−1

Rj(x) − Rj(−1)
x + 1

≤ Rj(x0)
x0 + 1

< 0,

thereby contradicting the condition proved above, R′
j(−1) ≥ 0.

Case (ii). The equation of the straight line passing through the points
(1, Rj(1)) and (x0, Rj(x0)) is given by y = Rj(1) + (x − 1)Rj(1)−Rj(x0)

1−x0
, with

slope
Rj(1) − Rj(x0)

1 − x0
>

ϕj(1) − ϕj(x0)
1 − x0

= 1.

On the other hand, since Rj is convex on [−1, 1], we get

Rj(x) ≤ Rj(1) + (x − 1)
Rj(1) − Rj(x0)

1 − x0
, ∀x ∈ [x0, 1].

Hence we obtain

R′
j(1) = lim

x↗1

Rj(x) − Rj(1)
x − 1

≥ Rj(1) − Rj(x0)
1 − x0

> 1 = ϕ′
j(1),

thereby contradicting the inequality R′(1) ≤ ϕ′
j(1) proved above. This proves

the lemma. �

An immediate consequence is the following.

Corollary 1.7.4. If f ∈ C[−1, 1] is convex on [−1, 1], then for the polynomi-
als defined above we have f(x) ≤ Pn(f)(x), for all x ∈ [−1, 1].

Proof. Since f is convex on [−1, 1], by simple geometric reasoning it obviously
follows that we have f(x) ≤ Sn(x) for all x ∈ [−1, 1].

On the other hand, since f is convex, we have sj − sj−1 ≥ 0 for all j =
1, . . . , n − 1, and then by Lemma 1.7.3, we get f(x) ≤ Sn(x) ≤ Pn(f)(x) for
all x ∈ [−1, 1], which proves the corollary. �

Now, following Popoviciu [315], it is obvious that a function f : [−1, 1] → R

is increasing on [−1, 1] if for any a0 < a1 in [−1, 1], the coefficient A of the
Lagrange interpolation polynomial Ax + B coinciding with f on the points
a0, a1 satisfies A ≥ 0.

By analogy, let us denote by ST [−1, 1] the class of all f ∈ C[−1, 1] such
that for all a0 < a1 in [−1, 1], the coefficient B in the above Lagrange inter-
polation polynomial satisfies B ≥ 0.

The first main result is the following.

Theorem 1.7.5. If f is convex on [−1, 1] and f ∈ ST [−1, 1], then Pn(f),
n ∈ N, are convex on [−1, 1] and Pn(f) ∈ ST [−1, 1] for all n ∈ N.
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Proof. The fact that Pn(f) is convex is proved in Leviatan [228] (see also
the proof of Theorem 1.6.3). Let us suppose in addition that f ∈ ST [−1, 1],
i.e., for any a0 < a1 in [−1, 1], the straight line passing through the points
(a0, f(a0)), and (a1, f(a1)), cuts the y-axis at a point ≥ 0. Then, by Corollary
1.7.4 and applying Lemma 1.7.2 for G(x) = f(x) and F (x) = Pn(f)(x) (since
f(±1) = Pn(f)(±1)), we easily obtain that Pn(f) ∈ ST [−1, 1]. �

Corollary 1.7.6. Let us suppose that f ∈ C1[−1, 1] is convex on [−1, 1] and
satisfies the differential inequality

f(x) − xf ′(x) ≥ 0, ∀x ∈ [−1, 1].

Then the polynomials Pn(f) are convex on [−1, 1] and, in addition, satisfy the
differential inequality

Pn(f)(x) − xP ′
n(f)(x) ≥ 0,∀x ∈ [−1, 1].

Proof. The fact that the Pn are convex follows from Leviatan [228]. Let
a0 < a1 in [−1, 1] and let Ax + B be the Lagrange interpolation polynomial
coinciding with f on a0 and a1. By Pompeiu [309], it follows that for 0 ≤ a0 <
a1 or a0 < a1 ≤ 0, there is ξ ∈ [a0, a1] such that B = f(ξ) − ξf ′(ξ), i.e., by
the differential inequality satisfied by f we have B ≥ 0.

Now, if a0 < 0 < a1, then as above, for the Lagrange interpolation poly-
nomials A1x + B1 and A2x + B2, coinciding with f at the points {a0, 0} and
{0, a1}, respectively, we have B1 ≥ 0 and B2 ≥ 0. But by simple geometric
reasoning, it is easy to see that we always have A1x + B1 ≤ Ax + B for all
x ∈ [a0, 0], and A2x + B2 ≤ Ax + B for all x ∈ [0, a1], which implies B ≥ 0 in
this case too.

As a conclusion, we get that f ∈ ST [−1, 1], which by Theorem 1.7.5 im-
plies Pn(f) ∈ ST [−1, 1] too. This means that for all a0 < a1 in [−1, 1], the
coefficient Bn of the Lagrange interpolation polynomial Anx + Bn coinciding
with Pn(f) on a0 and a1 satisfies Bn ≥ 0. On the other hand, for all a0 < a1

we have

Bn = Pn(f)(a0) − a0
Pn(f)(a1) − Pn(f)(a0)

a1 − a0
≥ 0.

Passing now to the limit with a0, a1 → x, with arbitrary x ∈ [−1, 1], we get
Pn(f)(x) − xP ′

n(f)(x) ≥ 0, which proves the theorem. �

Remark. Recall that by Definition 1.1.1 (ii) a function f : [0, a] → R+ is
called starshaped if f(0) = 0 and f(λx) ≤ λf(x) for all x ∈ [0, a] and λ ∈ [0, 1],
and if, in addition, it is continuously differentiable, then f is starshaped if and
only if satisfies the differential inequality xf ′(x) − f(x) ≥ 0 for all x ∈ (0, a].
Comparing it with the differential inequality in Corollary 1.7.6, we see that
f ∈ ST [−1, 1] implies that −f is starshaped on [0, 1]; therefore the class
ST [−1, 1] is obviously related to the class of starshaped functions.
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1.7.2 Nonlinear Methods in Convex Approximation

Concerning the Jackson-type estimates in convex approximation, recall that
as a negative result, Shvedov [355] proved that it is impossible to get an
estimate involving ω4(f, 1/n)p with an absolute constant (see also Wu–Zhou
[403] for related results).

During the years 1994–1996, the gap between the affirmative estimates (in
terms of ωϕ

2 (f, 1/n)p) and the negative ones was closed in a series of papers
by DeVore, Hu, Kopotun, Leviatan, and Yu, who proved, using nonlinear
methods, the following.

Theorem 1.7.7. (Hu–Leviatan–Yu [175], Kopotun [204], DeVore–Hu–
Leviatan [87]) Let f ∈ Lp[−1, 1]∩∆2, 0 < p ≤ ∞. Then there is an absolute
constant C = C(p), such that for each n ≥ 2 we have

E(2)
n (f)p ≤ Cωϕ

3

(

f,
1
n

)

p

.

Proof. Let f ∈ Lp[−1, 1] ∩ ∆2 and 0 < p ≤ ∞. We sketch the proof using
the nonlinear method in DeVore–Hu–Leviatan [87]: first one approximates f
by a convex continuous piecewise quadratic qn and then one approximates qn

by an algebraic polynomial.
Define xn,j := cos[π(n − j)/n], j = 0, . . . , n, xn,j := −1, j < 0, and

xn,j := 1, j > n and denote by qn the convex continuous piecewise quadratic
function for f and the points {xn,j}n

j=0. One can represent qn as a sum of the
truncated powers (x − xn,j)+ and (x − xn,j)2+, j = 1, . . . , n, as follows. First,
one can classify the nodes xn,j according to four types depending on the
second-order divided differences of qn:

an,j := [xn,j−1, xn,j , xn,j+1; qn], j = 1, . . . , n − 1.

Also, we take an,0 = an,n := ∞.
Let 1 ≤ j ≤ n − 1. Then xn,j are said to be of type I if

an,j+1 < an,j ≤ an,j−1,

xn,j are type II if
an,j−1 < an,j ≤ an,j+1,

xn,j are type III if
max{an,j−1, an,j+1} < an,j ;

all the other xn,j are said to be of type IV.
Let us define

An,j := an,j − an,j+1, j = 1, . . . , n − 2, Bn,j := −An,j−1, j = 2, . . . , n − 1,
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and
An,0 := [xn,0, xn,1; qn] − [xn,1, xn,2; qn] + [xn,0, xn,2; qn].

If xn,j is of type II or III, then An,j > 0.
We obtain the following representation of qn(x) for x ∈ [−1, 1] :

qn(x) = qn(−1) + An,0(x + 1) + an,1(x + 1)2

+
∑

xn,j∈I∪III

An,j((xn,j+1 − xn,j)(x − xn,j)+ − (x − xn,j)2+)

+
∑

xn,j∈II∪III

Bn,j((xn,j − xn,j−1)(x − xn,j)+ + (x − xn,j)2+).

Now, as a polynomial approximation to f , we take

Pn(x) := qn(−1) + An,0(x + 1) + an,1(x + 1)2

+
∑

xn,j∈I∪III

An,j((xn,j+1 − xn,j)σMn,Mj(x) − RMn,Mj(x))

+
∑

xn,j∈II∪III

Bn,j((xn,j − xn,j−1)σMn,Mj(x) + R̄Mn,Mj(x)),

where σn,j(x) is a good polynomial approximation to (x − xn,j)+ and
Rn,j(x), R̄n,j(x) are good polynomial approximations to (x − xn,j)2+. Then
Pn is a polynomial of degree at most 50Mnmax{1, 1/p} and satisfies

P ′′
n (x) ≥ q′′n(x) ≥ 0 for all x ∈ [−1, 1], x 	= xn,j , 1 ≤ i ≤ n − 1.

Thus Pn is convex on [−1, 1]. For the details, see DeVore–Hu–Leviatan [87].
�

Remark. However, notice that for p = ∞, surprisingly in Leviatan–Shevchuk
[243] it was proved that E

(2)
n (f)∞ ≤ Cωϕ

4 (f ; 1/n)∞, for n ≥ N(f) and C > 0
an absolute constant.

1.7.3 Pointwise Convex Approximation

Concerning pointwise convex polynomial approximation we mention the fol-
lowing result.

Theorem 1.7.8. (i) (Kopotun [204]) Let f ∈ Cr[−1, 1] ∩ ∆2, 0 < r ≤ 2. For
any n ≥ 2, there is a polynomial pn ∈ Πn ∩ ∆2 satisfying

|f (i)(x) − p(i)
n (x)| ≤ Cωr−i(f (i), ρn(x))∞, 0 ≤ i ≤ r, x ∈ [−1, 1].

(ii) (Manya; see Shevchuk [349], p. 148, Theorem 17.2) If f ∈ Cr[−1, 1]∩
∆2, r ≥ 2, then for any n ≥ r + k − 1, there is a polynomial pn ∈ Πn ∩ ∆2

satisfying
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|f(x) − pn(x)| ≤ Cρr
n(x)ωk(f (r), ρn(x))∞, x ∈ [−1, 1],

where C = C(r, k). In particular,

E(2)
n (f)∞ ≤ Cn−rωk(f (r), 1/n)∞, n ≥ r + k − 1.

Remark. By virtue of Shvedov [355], for f ∈ C[−1, 1] ∩ ∆2 one cannot,
in general, achieve the pointwise estimates in Theorem 1.7.8 (ii), when the
right-hand side is ω4(f, ρn(x))∞.

1.7.4 Convex Approximation with Modified Weighted
Moduli of Smoothness

In this subsection, for each r times differentiable convex function, one studies
whether or not its degree of convex polynomial approximation in the uniform
norm may be estimated by a Jackson-type estimate involving the modified
weighted moduli of smoothness of order (k, r) and how the constants in this
estimate behave. We have the following possibilities: for some pairs (k, r),
such an estimate with constants depending only on these parameters is valid.
For other pairs the estimate is valid, but only with constants that depend on
the approximated function, while there are pairs for which the Jackson-type
estimate is invalid.

The following estimates on the degree of convex polynomial approximation
of functions f ∈ B

r ∩∆2 were proved by Leviatan [228] (r = 1 and 2) and by
Kopotun [209] (r = 3 and r > 5):

E(2)
n (f)∞ ≤ c(r)

nr
‖ϕrf (r)‖∞, n ≥ r.

Here B
r was defined in Remark 2 after Definition 1.1.3.

Moreover, Kopotun [209] proved that the above estimate is invalid for
r = 4. More exactly, for every A > 0 and n ≥ 1, there is an f = fn,A ∈ B

4∩∆2

such that
E(2)

n (f)∞ > A‖ϕ4f (4)‖∞.

However, Leviatan and Shevchuk [243] have proved that for f ∈ B
4 ∩ ∆2, we

have

E(2)
n (f)∞ ≤ c

n4

(

‖ϕ4f (4)‖∞ +
1
n2

‖f‖∞
)

, n ≥ 1,

with an absolute constant c.
In fact, Leviatan [228] and Kopotun [205] have obtained more refined es-

timates, involving the Ditzian–Totik [98] moduli of smoothness and the mod-
ified Ditzian–Totik moduli of smoothness (introduced in Shevchuk [349]), see
Definition 1.1.3. In particular, the following result follows (see, e.g., Theorem
1.1 in Kopotun–Leviatan–Shevchuk [213]).
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Theorem 1.7.9. (Leviatan [228], Kopotun [209, 204, 205], Kopotun–
Listopad [216], Leviatan–Shevchuk [243] and Kopotun–Leviatan–Shevchuk
[213] (the case α = 4)). For f ∈ ∆2 and any α > 0, we have

En(f)∞ = O(n−α), n → ∞ ⇔ E(2)
n (f)∞ = O(n−α), n → ∞.

Proof. First, since obviously En(f)∞ ≤ E
(2)
n (f)∞, the implication from the

right-hand side to the left-hand side is immediate. Conversely, take for ex-
ample 0 < α < 4 and let us suppose that En(f)∞ = O(n−α). According to
a result of Ditzian–Totik in unconstrained approximation (see, e.g., Theorem
7.7, pp. 265 in DeVore–Lorentz [91]), this is equivalent to ωϕ

4 (f ; t)∞ = O(tα).
Then, by the remark after Theorem 1.7.7 we obtain E

(2)
n (f)∞ = O(n−α). The

case α ≥ 4 can be found in Kopotun–Leviatan–Shevchuk [213]. �
A problem of interest is to find the values of parameters k and r, for which

the statement

if f ∈ ∆2 ∩ C
r
ϕ, then

E
(2)
n (f)∞ ≤ C

nr ωϕ
k,r(f

(r), 1/n), n ≥ N,

(where C > 0 and N > 0 are constants) is valid, and for which it is invalid.
Here the class Cr

ϕ is defined by the Remark 2 of Definition 1.1.3.
As a sample concerning estimates in terms of these modified Ditzian–Totik

moduli (defined by Definition 1.1.3) we present the following.

Theorem 1.7.10. (Kopotun [205]) If r, k ≥ 0, then for any f ∈ Cr
ϕ ∩ ∆2 we

have

E(2)
n (f)∞ ≤ Cn−rωϕ

k,r

(

f (r),
1
n

)

, n ≥ r + k − 1,

with C = C(r, k), if and only if either 0 ≤ r + k ≤ 3 or r ≥ 5.

Remark. Notice that all the possibilities (concerning positive and negative
results and how the constants depend on the parameters and on the function)
in such of estimates, can be found in the paper Kopotun–Leviatan–Shevchuk
[213] (for a more detailed discussion see Note 1.10.3).

1.7.5 Uniform Coconvex Approximation

A natural extension of convex polynomial approximation is coconvex poly-
nomial approximation. In this subsection we present those coresponding to
uniform approximation.

Theorem 1.7.11. (Kopotun–Leviatan–Shevchuk [212]) If f ∈ C[−1, 1] ∩
∆2(Ys), then there is a constant C = C(s) such that for any n ≥ C

d(Ys) ,
we have

E(2)
n (f, Ys)∞ ≤ Cωϕ

3

(

f,
1
n

)

∞
,

where d(Ys) was defined in Section 1.6 (just before Theorem 1.6.7).
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Concerning simultaneous comonotone and coconvex approximation, we have
the following theorem.

Theorem 1.7.12. (Kopotun [206], Kopotun–Leviatan [211]) Suppose f ∈
Cr[−1, 1] ∩ ∆r(Ys), 1 ≤ r ≤ 2. Then there is a constant C = C(s) with
the property that for any n ≥ C

d(Ys) , there are polynomials Pn ∈ Πn ∩ ∆r(Ys)
such that if r = 1, we simultaneously have

‖f (i) − P (i)
n ‖∞ ≤ C

n1−i
ωϕ

1

(

f ′,
1
n

)

∞
, 0 ≤ i ≤ 1;

and if r = 2, we simultaneously have

‖f (i) − P (i)
n ‖∞ ≤ C

n2−i
ωϕ

1

(

f ′′,
1
n

)

∞
, 0 ≤ i ≤ 1,

and

‖f ′′ − P ′′
n ‖∞ ≤ C

d0
ωϕ

1

(

f ′′,
1
n

)

∞
,

where d0 is defined as in the result on simultaneous approximation in the Note
1.10.2.

Proof. We sketch here the proof for r = 2 using Kopotun [206]. It is done by
induction on s, the number of changes of convexity, using the so-called method
of “flipped” functions, introduced in the case of comonotone approximation
by Beatson–Leviatan [34] (see the proof of Theorem 1.6.7).

For s = 0, Theorem 1.7.12 becomes the result in convex approximation in
Kopotun [204].

Let s ≥ 1, f ∈ C2[−1, 1], changing its convexity at the points of Ys =
{ys < · · · < y1}, where −1 =: ys+1 < ys < · · · < y1 < 1 =: y0. Without loss of
generality, we may assume that f ′′(x) ≥ 0, for all x ∈ [−1, ys]. Let us denote
one fixed yj by α, to have a choice set ys = α. Evidently, we have f ′′(α) = 0,
and we may assume f(α) = f ′(α) = 0 too (otherwise, we subtract a linear
function from f without affecting the convexity).

Following the ideas in Beatson–Leviatan [34] (see the proof of Theorem
1.6.7 too), we define the “flipped” function

fF (x) :=

{
f(x) if x ≥ α,

−f(x) if x < α.

Then, it is easy to see that fF ∈ C2[−1, 1], fF (α) = f ′
F (α) = f ′′

F (α) = 0,
and fF has s− 1 points its convexity changes, at ys−1, . . . , y1, and as in, e.g.,
Leviatan [232], we have

ωϕ
1 (f ′′

F , t)∞ ≤ Cωϕ
1 (f ′′, t)∞, t > 0.

Define d(s) := min{ys + 1, . . . , ys−1 − ys, . . . , 1 − y1}.
By mathematical induction, there is a constant A(s− 1) such that for any

n > A(s − 1)/d(s) ≥ A(s − 1)/d(s − 1), there exists a polynomial qn ∈ Πn
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with f ′′
F (x)q′′n(x) ≥ 0, x ∈ [−1, 1] and the estimates in the statement (for

r = 2) hold for both fF and qn. Notice that since fF (α) = 0, if we increase
the constant in the estimate in the statement for r = 2 and i = 0, then we
can suppose that qn(α) = 0.

Take n > max{A(s − 1)/d(s), 50/(y2 − α), 50(α + 1)} and consider the
decomposition [−1, 1] = ∪n

j=1[xj , xj−1], where xj = cos(jπ/n). Defining j0
such that α ∈ [xj0 , xj0−1], it follows that xj0+3 ≥ −1 and xj0−4 ≤ ys−1,
that is, [−1, α] and [α, ys−1] contain at least three intervals [xj , xj−1] each.
Therefore ϕ(α) ≥ n−1 and 2ϕ(α) ≥ nδn(α), where δn(x) =

√
1 − x2/n+1/n2.

Define the algebraic polynomial Pn(x) :=
∫ x

α
P ′

n(y)dy such that it satisfies

P ′
n(x) = [q′n(x) − q′n(α)] · Qn(x) + q′n(α) · Rn(x),

where it remains to show that it is possible to choose the polynomials Qn(x)
and Rn(x) such that Pn is coconvex with f and the estimates in the statement
are satisfied.

In Kopotun [206] it is proved that the following properties of Qn and Rn

are sufficient for the coconvexity of Pn with f :

Qn(x)sgnα(x) ≥ 0, x ∈ [−1, 1], sgnα(x) = sgn(x − α)
[q′n(x) − q′n(α)]q′′n(x)Q′

n(x)sgnα(x) ≥ 0, x ∈ [−1, 1],
f ′′(x)R′

n(x)sgn(q′n(α)) ≥ 0, x ∈ [−1, 1].

Indeed, together with the inequality f ′′
F (x)q′′n(x) ≥ 0, these above inequalities

imply

sgn{P ′′
n (x)f ′′(x)} = sgn{(q′n(x) − q′n(α))Q′

n(x)f ′′(x) + q′′n(x)Qn(x)f ′′(x)
+q′n(α)R′

n(x)f ′′(x)}
≥ sgn{(q′n(x) − q′n(α))Q′

n(x)f ′′(x) + q′′n(x)Qn(x)f ′′(x)}
= sgn{(q′n(x) − q′n(α))Q′

n(x)q′′n(x)sgnα(x)
+(q′′n(x))2Qn(x)sgnα(x)} ≥ 0.

All the details can be found in Kopotun [206]. �
Remark. The following result in trigonometric coconvex approximation of 2π
periodic continuous functions (i.e., in the class denoted by C2π) by trigono-
metric polynomials was proved in Popov [310]: if yi, i = 1, . . . , 2s, are distinct
points in [−π, π), setting yi := yi+2s + 2π and Y = {yi}i∈Z, if f ∈ C2π

changes its convexity at the points of Y , then for any n ∈ N, there exists a
trigonometric polynomial Tn of degree ≤ n, coconvex with f , that satisfies
‖f − Tn‖∞ ≤ C(Y )ω2(f ;π/n)∞.

1.7.6 Coconvex Approximation with Modified Weighted
Moduli of Smoothness

Similar to the case of convex polynomial approximation, there exists a com-
plete characterization of the coconvex uniform polynomial approximation with
respect to the modified Ditzian–Totik moduli of smoothness.



86 1 Shape-Preserving Approximation by Real Univariate Polynomials

The first result presented is an analog in unconstrained polynomial ap-
proximation for coconvex polynomial approximation.

Theorem 1.7.13. (Kopotun–Leviatan–Shevchuk [214]) For every s ≥ 0,
Ys ∈ Ys, f ∈ ∆2(Ys), and α > 0, we have

En(f)∞ = O(n−α), n → ∞ ⇔ E(2)
n (f, Ys)∞ = O(n−α), n → ∞.

Proof. Since for any s ≥ 0, we have En(f)∞ ≤ E
(2)
n (f, Ys)∞, the implica-

tion from the right-hand side to the left-hand side is immediate. Conversely,
suppose first, for example, 0 < α < 3 and that En(f)∞ = O(n−α). By, e.g.,
Theorem 7.7, pp. 265 in DeVore–Lorentz [91], this is equivalent to ωϕ

3 (f ; t)∞ =
O(tα), which combined with Theorem 1.7.11, implies E

(2)
n (f, Ys)∞ = O(n−α).

The general case (α ≥ 3) follows from the Jackson-type estimates involving
the modified Ditzian–Totik moduli of smoothness and obtained in Kopotun–
Leviatan–Shevchuk [214]. �
As in the case of convex approximation, we are interested in finding for which
values of the parameters k, r and s the statement

if f ∈ ∆2(Ys) ∩ C
r
ϕ, then

E
(2)
n (f, Ys)∞ ≤ Cn−rωϕ

k,r(f
(r), 1/n), n ≥ N

(where C > 0 and N > 0 are constants), is valid, and for which it is invalid.
As a sample, we present here the following.

Theorem 1.7.14. (Kopotun–Leviatan–Shevchuk [214]) If k ≥ 1, r ≥ 5, s ≥
1, Ys ∈ Ys and f ∈ C

r
ϕ ∩ ∆2(Ys), then

E(2)
n (f, Ys)∞ ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ N(k, r, Ys),

where N(k, r, Ys) is a constant depending on k, r and Y (s).

Remark. A complete characterization (concerning positive and negative re-
sults and how the constants depend on the parameters and on the function)
for such estimates, can be found in the paper Kopotun–Leviatan–Shevchuk
[214] (for a more detailed discussion see Note 1.10.4).

1.7.7 Pointwise Coconvex Approximation

In this subsection we present results corresponding to pointwise approxima-
tion. They can be summarized by the following.

Theorem 1.7.15. (i) (Dzyubenko–Gilewicz–Shevchuk [107]) Suppose that
f ∈ C[−1, 1] changes its convexity at the finite set Ys of s distinct points
in (−1, 1). Then for each n > N(Ys), there is a polynomial of degree ≤ n,
coconvex with f , such that

|f(x) − Pn(x)| ≤ cω2(f ;
√

1 − x2/n), for all x ∈ [−1, 1],

where c > 0 is an absolute constant and if s = 1 then N(Ys) = 1;
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(ii) (Dzyubenko–Zalizko [110]) Suppose that f ∈ C[−1, 1] changes its convexity
at the finite set Ys of s > 1 distinct points in (−1, 1). Then for each n ≥ 2,
there is a polynomial of degree ≤ n, coconvex with f , such that

|f(x) − Pn(x)| ≤ c(Ys)ω3(f ; 1/n2 +
√

1 − x2/n), for all x ∈ [−1, 1],

where c(Ys) > 0 depends only on the points of Ys;
(iii) (Dzyubenko–Zalizko [111]) Denote by W r, r ∈ N, the set of functions

continuous on [−1, 1] having absolutely continuous the (r−1)th derivative
on [−1, 1] and satisfying |f (r)(x)| ≤ 1, for almost all x ∈ [−1, 1]. If r ∈ N,
s ≥ 2 and f ∈ W r changes its convexity at the finite set Ys of s distinct
points in (−1, 1), then for each n ≥ r− 1, there is a polynomial of degree
≤ n, coconvex with f , such that

|f(x) − Pn(x)| ≤ C(Ys, r)ρr
n(x), for all x ∈ [−1, 1],

where C(Ys, r) > 0 depends only on r and the points of Ys.

Remark. From the estimate (iii) in Theorem 1.7.15, obviously it follows that
for f ∈ W r ∩ ∆2(Ys) (where we recall that ∆2(Ys) denotes the set of all
functions that change their convexities on the points of Ys such that on the
last interval determined by the points of Ys they are convex), we have

E(2)(f, Ys) ≤ C(r, Ys)
‖f (r)‖∞

nr
, n ≥ r − 1.

On the other hand, in the comonotone case, from Theorem 1.6.8 and its
Remark, we get the estimate

E(1)
n (f ;Ys) ≤ C(r, s)

‖f (r)‖∞
nr

, n ≥ N(r, Ys),

and that for s ≥ 2, N(r, Ys) cannot be replaced by N(r, s). It is then nat-
ural to ask whether an analogue of the above estimate holds for coconvex
approximation too, that is, the question is whether for s ≥ 2 and f ∈
W r ∩ ∆2(Ys), then

E(2)
n (f ;Ys) ≤ C(r, s)

‖f (r)‖∞
nr

, n ≥ N(r, Ys),

holds. In the recent paper Dzyubenko–Gilewicz–Shevchuk [108] it was proved
(by counterexample) that this is impossible for r ≥ 3.

1.7.8 Nearly Coconvex Approximation

The first results on nearly coconvex polynomial approximation belong to
Myers [281] and are particular cases of general results on nearly coconvex
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approximation of order k ∈ N. Let us briefly recall these results. First, a func-
tion is called piecewise convex of order k on [a, b] if there exists Ys = {yj , j =
1, . . . , s}, with a := ys+1 < ys < · · · < y1 < y0 =: b such that f is k-convex or
k-concave on each interval (yj+1, yj), j = 0, . . . , s. Here recall that f is called
k-convex (concave) on an interval I, if ∆k

hf(x) =
∑k

j=0(−1)k−j
(
k
j

)
f(x+jh) ≥

0 (∆k
hf(x) ≤ 0, respectively) for all x ∈ I, h ∈ R with x + kh ∈ I. Similar

to the comonotone case, the algebraic polynomials (Pn)n are said to form a
nearly co-k-coconvex approximation sequence to the piecewise k-convex func-
tion f (with respect to Ys) if for any 0 < ε < 1

2 minj=0,...,s{yj − yj+1},
there exists Nε ∈ N such that for all n ≥ Nε, the polynomials Pn are of
the same k-convexity as f on the intervals (yj+1 + ε, yj − ε), j = 0, . . . , s.
Note that for k ≥ 2, the hypothesis that the piecewise convex function f ,
of order k, is continuous on [a, b] does not imply that f necessarily changes
its k-convexity at the points yj , j = 0, . . . , s. The main result in Myers [281]
states that if k ∈ N and f ∈ C[a, b] is piecewise k-convex, then there exists a
sequence of polynomials (Pn)n, Pn ∈ Πn, nearly co-k-convex to f , such that
‖f − Pn‖∞ ≤ Cω1(f, 1/n)∞. If, in addition, f ∈ C1[a, b], then the estimate
can be improved to ‖f−Pn‖∞ ≤ C1n

−1ω1(f ′, 1/n)∞. (Here C and C1 depend
only on k.) For k = 2 we get results for nearly coconvex approximation.

All of Myers’s results in [281] can be improved. To be more precise, take
[a, b] = [−1, 1]. Given the points Ys = {yj , j = 1, . . . , s}, where −1 := ys+1 <
ys < · · · < y1 < 1 := y0, let us define

O(n, c, Ys) = [−1, 1] ∩ {∪s
i=1(yi − cρn(yi), yi + cρn(yi))

and let ∆2
∗(Ys) be the class of all f ∈ C[−1, 1] that are convex on [yi+1, yi]

for i even and concave on [yi+1, yi] for i odd.

Theorem 1.7.16. (i) (Dzyubenko–Gilewicz [104] (resp. [105])) If f ∈ ∆2(Ys)
(resp. f ∈ ∆2

∗(Ys)), then for each n ≥ 1 (resp. n ≥ 3), there exists a polyno-
mial Pn(x) of degree ≤ n, coconvex with f on [−1, 1] \ O(n, c, Ys) (resp. on
[−1 + c2/n2, 1 − c2/n2] \ O(n, c, Ys)), such that for p = 3 (resp. p = 4), we
have

|f(x) − Pn(x)| ≤ C(s)ωp(f, ρn(x))∞, x ∈ [−1, 1].

(ii) (Leviatan–Shevchuk [242]) Let r = 0 and k ≤ 4, or r = 1 and k ≤ 3,
or r ≥ 2 and k ≥ 1. For any f ∈ ∆2(Ys) ∩Cr[−1, 1] and n ≥ k + r − 1, there
exists a polynomial Pn(x) of degree ≤ n such that

P ′′
n (x)Πs

i=1(x − yi) ≥ 0

for all x ∈ [−1, 1] \ O(r, k, c∗, Ys) and

‖f − Pn‖∞ ≤ C

nr
ωϕ

k (f (r); 1/n)∞.
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Here c∗ := c∗(k, r, s), C := C(k, r, s), and

O(r, k, c∗, Ys)

{
= ∪s+1

j=0(yj − c∗ρn(yj), yj + c∗ρn(yj)) if (r, k) = (0, 4) or (1, 3),
= ∪s

i=1(yi − c∗ρn(yi), yi + c∗ρn(yi)) otherwise.

Remarks. (1) In Nissim–Yushchenko [289], it is proved that the estimate in
Theorem 1.7.16 (ii) is invalid for r = 1 and k > 3, and for r = 0 and k > 4.

(2) From their proofs it follows that the methods in polynomial coconvex
approximation are nonlinear, such that even if two continuous functions f, g ∈
C[−1, 1] have the same points where the convexities change Ys = {yj , j =
1, . . . , s}, and both are of the same convexity on each subinterval, the coconvex
approximation polynomials Pn do not satisfy Pn(f + g) = Pn(f) + Pn(g).

It is easy to show that ∆2(Ys) is a convex cone, i.e., f, g ∈ ∆2(Ys) and
α ∈ R+ implies f + g ∈ ∆2(Ys) and αf ∈ ∆2(Ys).

Suggested by the proof of Theorem 1.2.1, we easily can construct a poly-
nomial coconvex with f that is additive and a positive homogeneous operator
on ∆2(Ys) ∩ C3[−1, 1]. In this sense, we present the following result.

Theorem 1.7.17. If f ∈ ∆2(Ys) is three times continuously differentiable in
[−1, 1], then for any n ∈ N, a sequence of polynomials (Pn)n can be constructed
such that degree(Pn) ≤ n + s + 2 and for any ε > 0, there is n0 with the
properties

‖f − Pn‖∞ < ε, P ′′
n (x)f ′′(x) ≥ 0, ∀n ≥ n0, x ∈ [−1, 1],

and Pn(αh+βg) = αPn(h)+βPn(g) for all n ∈ N, h, g ∈ ∆2(Ys)∩C3[−1, 1],
α, β ≥ 0.

Recalling the notation Π(x, Ys) = Πs
i=1(x − yi), the error estimate can be

expressed by

‖Pn(f) − f‖∞ ≤ C(Ys)ω2

(
f ′′

Π(·, Ys)
;
1
n

)

∞
for all n ∈ N.

Proof. From the differentiability hypothesis, it easily follows that F (x) =
f ′′(x)

Π(x,Ys) is continuous (by extension) on [−1, 1]. Also, by simple reasoning we
get that F (x) ≥ 0, for all x ∈ [−1, 1]. Note that without loss of generality, we
may suppose f(−1) = f ′(−1) = 0.

Now define Qn(f)(x) =
∫ x

−1
Ln(F )(t) · Π(t, Ys)dt and Pn(f)(x) =

∫ x

−1
Qn(f)(t)dt, where Ln, n ∈ N is a sequence of positive linear polynomial

operators on C[−1, 1] satisfying degree(Ln(f)) ≤ n and

‖Ln(f) − f‖∞ ≤ Cω2(f ; 1/n)∞, n = 1, 2, . . . .

The conclusions in the statement are immediate. �
Remark. An important shortcoming of the estimate in Theorem 1.7.17 is
that it is not satisfactory with respect to what we would expect, i.e., a Jackson-
type estimate in terms of ω2(f, 1/n)∞. The solution to this shortcoming re-
mains an open question.
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1.8 Shape-Preserving Approximation by Convolution
Polynomials

The convolution-type method used in this section is classical in approximation
theory. It allows one to construct polynomials, linear as a function of the
approximated function f , having good approximation properties in terms of
second-order modulus of smoothness, and with respect to the methods in
Sections 1.4–1.7 offering the advantage that in addition, they preserve higher
order convexities too. In essence, it uses the convolution (with θ = arccos x)

Gm(n)(f, x) =
1
π

∫ π

−π

f(cos t) · Sm(n)[arccos(cos(θ − t))]dt

=
1
π

∫ π

−π

f(cos t) · Sm(n)(arccos x − t)dt

=
1
π

∫ π

−π

f [cos(arccos x + t)] · Sm(n)(t)dt,

where Sm(n) is an even trigonometric kernel of the form

Sm(n)(υ) =
1
2

+
m(n)∑

k=1

ρk,m(n) · cos kυ,

Sm(n)(arccos z) =
1
2

+
m(n)∑

k=1

ρk,m(n) · Tk(z),

and Tk denotes the kth Chebyshev polynomial, Sm(n)(arccos z) is an element
of Πm(n), and for each f , Gm(n)(f, ·) is also in Πm(n).

Using the proof of the classical Jackson’s theorem, we obtain Sm(n) =

cn,2

(
sin(nµ/2)
sin(µ/2)

)4
. In this section the higher-order Jackson kernels (also called

Matsuoka kernels) given as follows (see, for example, DeVore [82], Matsuoka
[269]), are important:

Ssn−s(µ) := cn,s

(
sin(nµ/2)
sin(µ/2)

)2s

,

for s ∈ N, s > 2, where cn,s is chosen such that π−1
∫ π

−π
Ssn−s(µ)dµ = 1. Thus

we can write

Ssn−s(µ) =
1
2

+
sn−s∑

k=1

ρk,sn−s cos(kµ).

The first result presented here regarding shape-preserving approximation by
convolution polynomials is the following.

Theorem 1.8.1. (Beatson [31], Theorem 2) Let j be positive integer. There
exists a positive constant Mj such that for each f ∈ C[−1, 1] and n =
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0, 1, 2, . . . , there is a convolution type polynomial Pn ∈ Πn such that Pn is
i-convex for any i ∈ [0, 1, . . .} for which f is i-convex satisfying

|f(x) − Pn(x)| ≤ Mjω1(f,∆n(x))∞, |x| ≤ 1.

Here ∆0(x) := 1 and, for n ≥ 1,∆n(x) := max(
√

1 − x2/n, 1/n2).

Proof. Let us present the main lines of the proof. First we need two auxiliary
results.

Lemma (A). For the kernel k ∈ C[−1, 1], define the convolution operator

L(f)(x) = [f ∗ k](x) =
1
π

∫ π

−π

f(cos t)k(cos(θ − t))dt, x = cos(θ),

for all f ∈ C[−1, 1]. Then, the cone of j-convex functions is invariant under
L, if and only if k(x) is j-convex (in the sense of Definition 1.1.1, (i)).

Proof of Lemma A. First suppose that the cone of j-convex functions is
invariant under L. Take the de la Vallée Poussin kernel fn(x) = cn(1 + x)n,
with cn determined by the condition

∫ π

−π
fn[cos(θ)]dθ = π. Since each fn is

j-convex, by hypothesis it follows that fn ∗ k is too. Taking into account that
fn ∗ k = k ∗ fn and that k ∗ fn converges uniformly to k as n → ∞, it follows
that k is j-convex.

Conversely, supposing that k is j-convex, the key to the proof is a rela-
tionship between the convolution ∗ and the convolution structure of the ul-
traspherical polynomials (see the details in Beatson [31], proof of Theorem 1).
�

Lemma (B). Let (qn)n be a sequence of algebraic polynomials, such that each
qn is i-convex, for i = 0, 1, . . . ,m and

∫ π

0
qn[cos t]tidt ∼ n−i, i = 0, 1, . . . , 2k.

Then each hn+1(x) =
∫ x

−1
qn(s)ds, n ∈ N, represents a i-convex polynomial

for i = 0, 1, . . . ,m + 1 and
∫ π

0
hn(cos t)tidt ∼ n−i−2, i = 0, 1, . . . , 2k − 2.

Proof of Lemma B. It is immediate by integrating by parts and using the
inequality 2x/π ≤ sin(x) ≤ x, for all 0 ≤ x ≤ π/2. �
Proof of Theorem 1.8.1. From Lemma A and from well-known results in
Lorentz [248], pp. 65–68, it is enough to construct a kernel kn ∈ Πn, i-convex
for i ∈ {0, . . . , j}, such that

∫ π

−π
kn(cos t)dt = π and

∫ π

0
kn(cos t)t2dt ∼ n−2.

For this purpose, we start with a sequence of non-negative polynomials qn ∈
Πn, n = 0, 1, . . ., satisfying

∫ π

0
qn(cos t)tidt ∼ n−i, i = 0, 1, . . . , 2j + 2 (for

such sequences, see Lorentz [248], pp. 55–57). Then, applying j-times Lemma
B, the theorem follows. �

In what follows, one investigates this matter by the Boolean sum method,
systematically used by Jia-ding Cao and H.H. Gonska in a series of papers,
obtaining thus even better estimates, i.e., in terms of ω2

(
f,
√

1 − x2/n
)
∞.
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More exactly, first one constructs certain convolution operators Gn,s,j based
on modified Matsuoka kernels to generalize Beatson’s Theorem 1.8.1 (see
Theorem 1.8.2 below). Second, the Boolean sum modifications of Gn,s,j are
used in order to investigate the invariance of cones of j-convex functions in
Telyakovskii- and Gopengauz-type estimates (Theorems 1.8.2 and 1.8.3). As
special cases, the DeVore–Yu [92], Yu [406], and Leviatan [228] theorems are
obtained. Finally, a type of Boolean sum modification is presented.

The results in this section belong to Cao–Gonska [55].
First we present the concept of Boolean sum of certain positive linear

operators.
Let Lf be the linear function interpolating f at b, given by

L(f, x) =
f(b)(x − a) + f(a)(b − x)

b − a
, a ≤ x ≤ b.

For A : C[a, b] → C[a, b] linear, denote by A+ the Boolean sum of L and A
given by A+(f, x) := (L⊕A)(f, x) = L(f ;x)−(L◦A)(f ;x) = A(f, x)+{(x−a)
[f(b) − A(f, b)] + (b − x)[f(a) − A(f, a)]}/(b − a).

The main aim of this section is to construct the Boolean sums approxi-
mating f in terms of the second-order modulus of smoothness and preserving
the i-convexity of any order.

We first present the construction of certain useful kernels denoted by
Qn,s,j .

For ξ = cos(υ) one defines

Ssn−n(arccosξ)= Cn,s

(
sin(narccosξ/2)
sin(arccosξ/2)

)2s

=
1
2

+
sn−s∑

k=1

ρk,sn−s cos(karccosξ).

Obviously Ssn−s(arccosξ) ∈ Πsn−s.
For j ∈ N, let us define

Qn,s,j(z) :=
1

(j − 1)!

∫ z

−1

(z − ξ)j−1Ssn−s(arccosξ)dξ

to be a jth antiderivative of Ssn−s(arccosξ), which means that Qn,s,j ∈
Πsn−s+j and

Qn,s,j(z) = τ0,n,s,j + τ1,n,s,j · z + · · · + τsn−s+j,n,s,j · zsn−s+j ,

or

Qn,s,j(cosυ) = τ0,n,s,j + τ1,n,s,j cosυ + · · · + τsn−s+j,n,s,j(cosυ)sn−s+j .

Normalizing the kernel Q, we get

Qn,s,j(υ) :=
πQn,s,j(cos υ)
∫ π

−π
Qn,s,j(cos t)dt

,
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so that
1
π

∫ π

π

Qn,s,j(υ)dυ = 1.

In addition, we can write

Qn,s,j(υ) = λ0,n,s,j + λ1,n,s,j cosυ
+λ2,n,s,j cos 2υ + · · · + λsn−s+j,n,s,j cos(sn − s + j)υ.

The next theorem summarizes the main results.

Theorem 1.8.2. (Cao–Gonska [55])

(i) For j ∈ N and s ≥ j + 2, there is cj,s > 0 such that for each f ∈ C[−1, 1]
and n ≥ 1, the convolution polynomial Gn,s,j(f, ·) ∈ Πsn−s+j based on
the kernel Qn,s,j satisfies the inequality

|f(x) − Gn,s,j(f, x)| ≤ cj,sω1

(

f,

√
1 − x2

n
+

1
n2

)

∞

, |x| ≤ 1.

In addition, if the function f is i-convex, then so is Gn,s,j(f, ·), for all
i ∈ {0, 1, . . . , j}.

(ii) If j ∈ N and s ≥ j +2, then there exists a positive constant cj,s such that
for all f ∈ C[−1, 1], n ≥ 1, we have G+

n,s,j(f, ·) ∈ Πsn−s+j and

|f(x) − G+
n,s,j(f, x)| ≤ cj,sω1

(
f,
√

1 − x2/n
)

∞
.

In addition, if f is i-convex, then so is G+
n,s,j(f, ·) for all i = 1, . . . , j. Here

G+
n,s,j(f, ·) denotes the Boolean sum of Gn,s,j(f, ·) in (i), with L(f, ·).

(iii) If j ∈ N and s ≥ j +3, then there exists a positive constant cj,s such that
for each f ∈ C[−1, 1] and n ≥ 2 we have G+

n,s,j(f, ·) ∈ Πsn−s+j and

|f(x) − G+
n,s,j(f, x)| ≤ cj,sω2

(
f,
√

1 − x2/n
)

∞
, |x| ≤ 1.

Also, if f is i-convex, then G+
n,s,j(f, ·) is i-convex, for all i ∈ {1, . . . , j}.

(iv) Let j ∈ N and s ≥ j + 2. Denoting the modified Boolean sum G∗
n,s,j =

Gn,s,j

⊕
L = Gn,s,j(f ;x) + L(f ;x) − (Gn,s,j ◦ L)(f ;x) = Gn,s,j(f −

Lf, x) + L(f, x), there exists a positive constant cj,s such that for all
f ∈ C[−1, 1], n ≥ 1, we have G∗

n,s,j(f, ·) ∈ Πsn−s+j and

‖f − G∗
n,s,j(f, ·)‖∞ ≤ cj,sω2(f, 1/n)∞.

In addition, if f is i-convex, then so is G∗
n,s,j(f, ·) for any i ∈ {1, . . . , j}.

Remark. Note that above, (ii) is not a consequence of (iii). Details can be
found in Cao–Gonska [55, 56, 57].
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1.9 Positive Linear Polynomial Operators Preserving
Shape

In this very short section we briefly present a constructive example of a pos-
itive linear polynomial operator of nonconvolution type, denoted by Gm+2,
that reproduces the linear functions, produces DeVore–Gopengauz–type esti-
mates in approximation, and in addition, preserves the convexities of higher
order functions.

This polynomial operator was introduced by Gavrea in 1996, and it seems
to be the first example of a positive linear polynomial operator that pro-
duces the following pointwise estimate of DeVore–Gopengauz type (see Gavrea
[144]):

|(Gm+2f)(x) − f(x)| ≤ cω2

(

f ;

√
x(1 − x)

m

)

∞

.

In more detail, Gavrea [144] first introduced the sequence of operators
Hm : C[0, 1] → Πm, m ∈ N, given by

Hm(f)(x)

= f(0)(1 − x)m + xmf(1) + (m − 1)
m−1∑

k−1

pm,k(x)
∫ 1

0

pm−2,k−1(t)f(t)dt,

where pn,k(x) =
(
n
k

)
xk(1 − x)n−k is the Bernstein basis, and then he defined

Gm+2 : C[0, 1] → Πm+2 by

(Gm+2f)(x) =
m∑

k=0

ak

k + 1
(Hk+2f)(x),

where the coefficients ak are chosen so that the polynomial sequence Pm ∈
Πm,m ∈ N, Pm(x) =

∑m
k=0 akxk, attached to the above representation of

(Gm+2f),m ∈ N, and called the generator of (Gm+2f), m ∈ N, satisfies the
properties Pm(x) ≥ 0, P ′

m(x) ≥ 0 for all x ∈ [0, 1], m ∈ N, and
∫ 1

0
Pm(x)dx

= 1 for all m ∈ N.
Gavrea’s original approximants are in Π2m+1, but it was shown in, e.g.,

Gavrea–Gonska–Kacsó [145] that by a slight modification, their degree can be
reduced to m + 2.

The shape-preserving properties of Gm+2 are given by the following.

Theorem 1.9.1. (Cottin–Gavrea–Gonska–Kacsó–Zhou [72]) (i) The polyno-
mial Gm+2 preserves the monotonicity and the usual convexity (i.e., the
2-convexity in Definition 1.1.1, (i), in the introduction) of the function f .

(ii) If Pm(x) =
∑m

k=0 akxk,m ∈ N is the generator sequence for
Gm+2, m ∈ N, (i.e., satisfies the conditions Pm(x) ≥ 0, P ′

m(x) ≥ 0,∀x ∈ [0, 1],
∫ 1

0
Pm(x)dx = 1), and in addition, Pm is convex up to order r, then Gm+2

preserves the convexity up to order (r + 1).
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1.10 Notes

Note 1.10.1. Corollaries 1.4.2 and 1.4.3, Theorems 1.5.9, 1.6.11, 1.6.12,
Lemmas 1.7.2, 1.7.3, Corollary 1.7.4, Theorem 1.7.5, Corollary 1.7.6, and
Theorem 1.7.17 appear for the first time in this book.

Note 1.10.2. In comonotone approximation with respect to modified
weighted moduli of smoothness, in addition to the results in subsection 1.6.4,
we can present:

(Leviatan–Shevchuk [238]) For s ≥ 1, let 0 ≤ r ≤ 2s + 2, excluding the
three cases r + k ≤ 1. For any constant A > 0 and any n ≥ 1, there exists an
f := fk,r,s,n,A ∈ Cr

ϕ which changes monotonicity s times in [−1, 1], such that

e(1,s)
n (f)∞ > Aωϕ

k,r(f
(r), 1).

Here, e
(1,s)
n (f)∞ is defined in the remark after the proof of Theorem 1.6.1.

(Due to Leviatan–Shevchuk, see e.g., Leviatan [230].) Let f ∈ ∆1. Then
there are constants C = C(f), N = N(f), and an absolute constant c, such
that for all 0 ≤ k + r ≤ 3, we have

E(1)
n (f)∞ ≤ Cωϕ

k,r(f,
1
n

), n ≥ 2,

and
E(1)

n (f)∞ ≤ cωϕ
k,r(f,

1
n

), n ≥ N.

(Leviatan–Shevchuk [239]) For any s ≥ 0, there is a Ys ∈ Ys and an
f ∈ C2

ϕ ∩ ∆1(Ys), such that

lim sup
n→∞

n2E
(1)
n (f, Ys)∞

ωϕ
3,2(f ′′, 1/n)

= ∞.

Also, for simultaneous approximation in the comonotone case, with esti-
mates in terms of usual Ditzian–Totik moduli of smoothness, we can present
(Leviatan [232], Kopotun [206]) For f ∈ C1[−1, 1]∩∆1(Ys), there is a constant
C = C(s) such that for any n ≥ C

d(Ys) , there is a polynomial pn ∈ Πn∩∆1(Ys),
satisfying

‖f − pn‖∞ ≤ C

n
ωϕ

1 (f ′,
1
n

)∞,

and
‖f ′ − p′n‖∞ ≤ C

d0
ωϕ

1 (f ′,
1
n

)∞,

where d0 := min{
√

1 + ys,
√

1 − y1}. (See also Theorem 1.7.12).
Note 1.10.3. For convex approximation, in addition to the results pre-

sented in Subsection 1.7.4, in Kopotun–Leviatan–Shevchuk [213] the follow-
ing estimates are proved with respect to the modified weighted Ditzian–Totik
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moduli of smoothness: if f ∈ C
2
ϕ ∩∆2, then E

(2)
n (f)∞ ≤ c(n−2ωϕ

3,2(f
′′, 1/n)+

n−6‖f ′′‖[−1/2,1/2]), n ≥ N, where c and N are absolute constants (hence,
E

(2)
n (f)∞ ≤ cn−2ωϕ

3,2(f
′′, 1/n), n ≥ N(f)), while if 2 ≤ r ≤ 4, 1 ≤ k ≤ 5−r

and f ∈ C
r
ϕ ∩ ∆2, then

E(2)
n (f)∞ ≤ c

nr
ωϕ

k,r(f
(r), 1/n), n ≥ N(f).

As negative results, in the same paper mentioned, it is proved that there
exists an f ∈ C

4
ϕ ∩ ∆2, satisfying

lim sup
n→∞

n4E
(2)
n (f)∞

ωϕ
2,4(f (4), 1/n)

= ∞,

while if 0 ≤ r ≤ 4 and k ≥ 6− r, then there exists an f ∈ C
4
ϕ ∩∆2, satisfying

lim sup
n→∞

nrE
(2)
n (f)∞

ωϕ
k,r(f (r), 1/n)

= ∞.

Note 1.10.4. For coconvex approximation, in addition to the results pre-
sented in Subsection 1.7.6, in Kopotun–Leviatan–Shevchuk [214] the follow-
ing estimates are proved with respect to the modified weighted Ditzian–Totik
moduli of smoothness: if s ≥ 2, 2 ≤ r ≤ 4, 1 ≤ k ≤ 5 − r, Ys ∈ Ys and
f ∈ C

r
ϕ ∩ ∆2(Ys), then we have

E(2)
n (f, Ys)∞ ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ N(Ys);

if s = 1, 2 ≤ r ≤ 4, Y1 ∈ Y1 and f ∈ C
r
ϕ ∩ ∆2(Y1), then we have

E(2)
n (f, Y1)∞ ≤ cn−rωϕ

5−r,r(f
(r), 1/n), n ≥ N(f),

and for 1 ≤ k ≤ 4 − r,

E(2)
n (f, Y1)∞ ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ N(Y1);

if k ≥ 1, Y1 ∈ Y1 and f ∈ C
7
ϕ ∩ ∆2(Y1), then we have

E(2)
n (f, Y1)∞ ≤ cn−7ωϕ

k,7(f
(7), 1/n), n ≥ k + 7;

if k ≥ 1, r ≥ 7, Y1 ∈ Y1 and f ∈ C
r
ϕ ∩ ∆2(Y1), then

E(2)
n (f, Y1)∞ ≤ cn−rωϕ

k,r(f
(r), 1/n), n ≥ k + r.

Also, in Kopotun–Leviatan–Shevchuk [212] for r ≤ 3 and Kopotun–
Leviatan–Shevchuk [214] for r ≥ 4, it is proved that if r ≥ 1, s ≥ 1, Ys ∈ Ys

and f ∈ B
r ∩ ∆2(Ys), then
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E(2)
n (f, Ys)∞ ≤ cn−r‖ϕrf (r)‖∞, n ≥ N(r, Ys),

where N(r, Ys) is a constant which may depend only on r and Ys.
For s = 1, if r ≤ 2 (see Leviatan–Shevchuk [241]) or r ≥ 7 (see Kopotun–

Leviatan–Shevchuk [214]), the above estimate is valid with N = r.
The paper Kopotun–Leviatan–Shevchuk [214], also contains negative re-

sults which show that these results cannot be improved.
Note 1.10.5. Concerning approximation-preserving shapes of higher or-

der, we can present the following results. For q > 1 and f ∈ ∆q∩C[−1, 1] (i.e.,
f is continuous and q-convex on [−1, 1]), set E

(q)
n (f)∞ = inf{‖f − P‖∞;P ∈

Πn ∩ ∆q} and consider the estimate

E(q)
n (f)∞ ≤ c(r, q)

‖f (r)‖∞
nr

, n ≥ M.

It holds for r = 1, q > 1 (see Beatson [33]), for r = 2, q > 1 (see Shvedov
[355]), for r = 3, q = 3 (see Bondarenko [47]). It does not hold for q ≥ 4
with M = M(r), r > 2 (due to Konovalov–Leviatan [201]), and for q ≥ 4,
r ≥ 2 with M = M(f) and c = c(f) (see Bondarenko–Primak [48]). The
case q = 3 and r ≥ 4 remains an open question. For 1 ≤ p < ∞, the estimate
E

(3)
n (f)p ≤ cω3(f ; 1/n)p does not hold with c = c(f) (see Bondarenko–Primak

[48]).
In the case r = 3, q = 3, is proved the estimate E

(3)
n (f)∞ ≤

cω3
ϕ(f ; 1/n)∞, n > 1, with c > 0 an absolute constant in Bondarenko [47].
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Shape-Preserving Approximation by Real
Multivariate Polynomials

Extending the results in the univariate case, in this chapter we prove approxi-
mation results preserving multivariate shapes, by Bernstein-type, convolution-
type, and tensor-product-type polynomials. The multivariate shapes consid-
ered are Popoviciu convexity, Schur convexity, axial convexity, polyhedral
convexity, usual multivariate convexity, subharmonicity, and in general,
L-convexity, with L a bounded linear operator satisfying some suitable con-
ditions.

For simplicity, most of the results in this chapter are presented for the
bivariate case. However, in some cases, when the bivariate case is not repre-
sentative for the multivariate case, the results are presented in three or several
variables.

The approximation errors are given with respect to various bivariate mod-
uli of continuity/smoothness or K-functionals, presented in the next section.

2.1 Introduction

In order to extend the results in monotone and convex approximation from the
univariate case in Chapter 1 to the bivariate/multivariate case, we obviously
need suitable bivariate/multivariate concepts of shapes (i.e., of monotonicities,
convexities, harmonicity, subharmonicity), bivariate/multivariate moduli of
smoothness, and bivariate/multivariate suitable polynomials.

First we present a few concepts of shapes in the bivariate case, which are
natural extensions of the monotonicity and convexity in the univariate case,
and some of them are obtained using the “tensor product” method.

Definition 2.1.1. Let f : [−1, 1] × [−1, 1] → R.

(i) We say that f(x, y) is increasing (decreasing) with respect to x on [−1, 1]×
[−1, 1] if

f(x + h, y)− f(x, y) ≥ 0 (≤ 0), ∀ y ∈ [−1, 1], ∀ x, x + h ∈ [−1, 1], h ≥ 0.

S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, 99
DOI: 10.1007/978-0-8176-4703-2 2,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2008
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(ii) We say that f(x, y) is increasing (decreasing) with respect to y on [−1, 1]×
[−1, 1] if

f(x, y +k)−f(x, y) ≥ 0 (≤ 0), ∀ x ∈ [−1, 1], ∀ y, y +k ∈ [−1, 1], k ≥ 0.

(iii) We say that f(x, y) is upper (lower) bidimensional monotone on [−1, 1]×
[−1, 1] (see, e.g., Marcus [265], p. 33) if

∆2f(x, y) = f(x+h, y + k)− f(x, y + k)− f(x+h, y)+ f(x, y) ≥ 0 (≤ 0),

for all x, x + h ∈ [−1, 1], y, y + k ∈ [−1, 1], h ≥ 0, k ≥ 0.
(iv) We say that f(x, y) is totally upper (lower) monotone on [−1, 1]× [−1, 1]

(see Nicolescu [286] or R.C. Young [405]) if (i), (ii), and (iii) hold, with
all simultaneously ≥ 0 (or with all simultaneously ≤ 0).

(v) (Popoviciu [315], p. 78 ) The function f : [−1, 1] × [−1, 1] → R is called
convex of order (n,m) in the Popoviciu sense (where n,m ∈ {0, 1, . . .}) if
for any n+1 distinct points x1 < x2 < · · · < xn+1 and any m+1 distinct
points y1 < y2 < · · · < ym+1 in [−1, 1], we have

⎡

⎣
x1, x2, . . . , xn+1

; f
y1, y2, . . . , ym+1

⎤

⎦ ≥ 0,

where the symbol above represents the divided difference of a bivariate
functions and it is defined iteratively (by means of the divided difference
of univariate functions) as (see Popoviciu [315], pp. 64–65)

[x1, . . . , xn+1; [y1, . . . , ym+1; f(x, ·)]y]x
= [y1, . . . , ym+1; [x1, . . . , xm+1; f(·, y)]x]y.

Here

[x1, . . . , xp; g(·)] =
p∑

i=1

g(xi)
(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xp)

represents the usual divided difference of a univariate function g[g;x1] =
g(x1).
To be in accordance with the definition of j-convexity in the univariate
case (see Chapter 1, Definition 1.1.1 (i), and Remark (2) after it), note that
the denomination in Popoviciu’s original definition of the (n,m) convexity
was slightly modified (in the original definition, the divided differences are
taken on n + 2 and m + 2 points).

(vi) We also need to introduce the following concept, similar to that of total
upper monotony: f(x, y) will be called totally convex on [−1, 1] × [−1, 1]
in the Popoviciu sense if f(x, y) is simultaneously convex of orders
(0, 2), (2, 0), (1, 2), (2, 1), and (2, 2).
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Remarks. (1) The most natural bivariate monotonicity seems to be that in
Definition 2.1.1 (iv), because for such bivariate functions the set of disconti-
nuity points is at most countable (see Nicolescu [286]).

(2) In the case that f has partial derivatives, the conditions (i)–(iv) in
Definition 2.1.1 can be expressed as follows:

(i) by
∂f(x, y)

∂x
≥ 0 (≤ 0), ∀ x, y ∈ [−1, 1],

(ii) by
∂f(x, y)

∂y
≥ 0 (≤ 0), ∀ x, y ∈ [−1, 1],

(iii) by
∂2f(x, y)

∂x∂y
≥ 0 (≤ 0), ∀ x, y ∈ [−1, 1] (see Nicolescu [286]),

while (iv) is represented by all conditions (i)–(iii).
(3) It is obvious that convexities of orders (0, 1) and (1, 0) in the Popoviciu

sense mean in fact that f(x, y) is increasing on [−1, 1] with respect to y (for any
fixed x ∈ [−1, 1]) and increasing with respect to x (for any fixed y ∈ [−1, 1]),
respectively. Also, one reduces convexity of order (1, 1) in the Popoviciu sense
to upper bidimensional monotonicity introduced in Marcus [265], p. 33, si-
multaneous convexities of orders (0, 1), (1, 0), and (1, 1) mean the total upper
monotonicity in Nicolescu [286], convexity of order (0, 2) means in fact that
f(x, y) is convex on [−1, 1] with respect to y (for any fixed x), and so on.

(4) Suppose f is of class Cn+m on [−1, 1] × [−1, 1].
By the mean value theorem we get that if ∂n+mf(x,y)

∂xn∂ym ≥ 0, ∀(x, y) ∈
[−1, 1]× [−1, 1], then f(x, y) is convex of order (n,m) in the Popoviciu sense
on [−1, 1] × [−1, 1].

For the approximation errors, we will use the following kinds of bivari-
ate/multuvariate moduli of smoothness and K-functionals.

Definition 2.1.2. Let f : [−1, 1] × [−1, 1] → R.
(i) For δ, η > 0, we define

ω
(x)
1 (f ; δ)= sup

y∈[−1,1]

sup{|f(x + h, y) − f(x, y)|; x, x + h ∈ [−1, 1], 0 ≤ h ≤ δ};

ω
(y)
1 (f ; η)= sup

x∈[−1,1]

sup{|f(x, y + k) − f(x, y)|; y, y + k ∈ [−1, 1], 0 ≤ k ≤ η}

(i.e., the partial bivariate moduli of continuity; see, e.g., Timan [385]),

ω1(f ; δ, η) = sup{|f(x + h, y + k) − f(x, y)|; 0 ≤ h ≤ δ, 0 ≤ k ≤ η,

x, x + h ∈ [−1, 1], y, y + k ∈ [−1, 1]},

ω1(f ;α) = sup{|f(x + h, y + k) − f(x, y)|; h2 + k2 ≤ α2,

x, x + h ∈ [−1, 1], y, y + k ∈ [−1, 1]}
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(if f : [−1, 1]m → R then ω1(f ;h) = {|f(x) − f(y)|;x, y ∈ [−1, 1]m, ‖x −
y‖Rm ≤ h}),

ω(B)(f ; δ, η) = sup{|∆h,kf(x, y)|; 0 ≤ h ≤ δ, 0 ≤ k ≤ η,

x, x + h ∈ [−1, 1], y, y + k ∈ [−1, 1]}

(i.e., the Bögel modulus of continuity; see, e.g., Nicolescu [286]), where

∆h,kf(x, y) = f(x + h, y + k) − f(x + h, y) − f(x, y + k) + f(x, y).

By (Ditzian–Totik [98], Chapter 12) the (first order) Ditzian-Totik moduli
of continuity are defined by

ωϕ
1 (f ; δ1, δ2)
:= sup{|∆h1ϕ(x),h2ϕ(y)f(x, y)| : 0 ≤ hi ≤ δi, i = 1, 2, x, y ∈ [−1, 1]},

and for 0 < p < +∞,

ωϕ
1 (f ; δ1, δ2)p := sup0≤hi≤δi,i=1,2

(∫ 1

−1

∫ 1

−1

|∆h1ϕ(x),h2ϕ(y)f(x, y)|pdx dy

)1/p

,

where ϕ(t) =
√

1 − t2,

∆h1ϕ(x),h2ϕ(y)f(x, y) = f

(

x +
h1

2
ϕ(x), y +

h2

2
ϕ(y)
)

−f

(

x − h1

2
ϕ(x), y − h2

2
ϕ(y)
)

if (x ± h1
2 ϕ(x), y ± h2

2 ϕ(y)) ∈ [−1, 1] × [−1, 1], ∆h1ϕ(x),h2ϕ(y)f(x, y) = 0
elsewhere.

Also, the partial moduli of continuity are defined by

ωϕ
1,x(f ; δ1) := sup{|∆h1ϕ(x),0f(x, y)| : 0 ≤ h1 ≤ δ1, x, y ∈ [−1, 1]},

ωϕ
1,y(f ; δ2) := sup{|∆0,h2ϕ(y)f(x, y)| : 0 ≤ h2 ≤ δ2, x, y ∈ [−1, 1]},

and for 0 < p < +∞,

ωϕ
1,x(f ; δ1)p := sup0≤h1≤δ1

(∫ 1

−1

∫ 1

−1

|∆h1ϕ(x),0f(x, y)|pdx dy

)1/p

,

ωϕ
1,y(f ; δ2)p := sup0≤h2≤δ2

(∫ 1

−1

∫ 1

−1

|∆0,h2ϕ(y)f(x, y)|pdx dy

)1/p

.

(ii) (Ditzian–Totik [98], Chapter 12) Besides the above first-order modulus
ωϕ

1 , the most used modulus in this chapter is the second-order Ditzian–Totik
modulus of smoothness defined by
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ωϕ
2 (f ; δ1, δ2)

:= sup{|∆2
h1ϕ(x),h2ϕ(y)f(x, y)| : 0 ≤ hi ≤ δi, i = 1, 2, x, y ∈ [−1, 1]},

and for 0 < p < +∞,

ωϕ
2 (f ; δ1, δ2)p := sup0≤hi≤δi,i=1,2

(∫ 1

−1

∫ 1

−1

|∆2
h1ϕ(x),h2ϕ(y)f(x, y)|pdx dy

)1/p

,

where ϕ(t) =
√

1 − t2,

∆2
h1ϕ(x),h2ϕ(y)f(x, y) =

2∑

k=0

(
2
k

)

(−1)kf(x + (1− k)h1ϕ(x), y + (1− k)h2ϕ(y))

if (x ± h1ϕ(x), y ± h2ϕ(y)) ∈ [−1, 1] × [−1, 1], ∆2
h1ϕ(x),h2ϕ(y)f(x, y) = 0 else-

where.
(If f : [−1, 1]m → R, then the second-order Ditzian–Totik modulus of

smoothness is defined by

ωϕ
2 (f ; δ1, . . . , δm) = sup{|∆2

h1ϕ(x1),...,hmϕ(xm)f(x1, . . . , xm)|;

0 ≤ hi ≤ δi, i = 1,m, x1, . . . , xm ∈ [−1, 1]}.)
Also, the second-order Ditzian–Totik partial moduli of smoothness are

defined by

ωϕ
2,x(f ; δ1) := sup{|∆2

h1ϕ(x),0f(x, y)| : 0 ≤ h1 ≤ δ1, x, y ∈ [−1, 1]},

ωϕ
2,y(f ; δ2) := sup{|∆2

0,h2ϕ(y)f(x, y)| : 0 ≤ h2 ≤ δ2, x, y ∈ [−1, 1]},
and for 0 < p < +∞,

ωϕ
2,x(f ; δ1)p := sup0≤h1≤δ1

(∫ 1

−1

∫ 1

−1

|∆2
h1ϕ(x),0f(x, y)|pdx dy

)1/p

,

ωϕ
2,y(f ; δ2)p := sup0≤h2≤δ2

(∫ 1

−1

∫ 1

−1

|∆2
0,h2ϕ(y)f(x, y)|pdx dy

)1/p

.

Note that in general, the Ditzian–Totik modulus of smoothness of order
r ≥ 3 is defined by

ωϕ
r (f ; δ1, δ2)

:= sup{|∆r
h1ϕ(x),h2ϕ(y)f(x, y)| : 0 ≤ hi ≤ δi, i = 1, 2, x, y ∈ [−1, 1]},

and for 0 < p < +∞,

ωϕ
r (f ; δ1, δ2)p := sup0≤hi≤δi,i=1,2

(∫ 1

−1

∫ 1

−1

|∆r
h1ϕ(x),h2ϕ(y)f(x, y)|pdx dy

)1/p

,
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where ϕ(t) =
√

1 − t2,

∆r
h1ϕ(x),h2ϕ(y)f(x, y)

=
r∑

k=0

(
r

k

)

(−1)kf(x + (r/2 − k)h1ϕ(x), y + (r/2 − k)h2ϕ(y))

if (x±rh1ϕ(x)/2 , y±rh2ϕ(y)/2) ∈ [−1, 1]× [−1, 1], ∆r
h1ϕ(x),h2ϕ(y)f(x, y) = 0

elsewhere.
The Ditzian–Totik partial moduli of smoothness of order r are defined

accordingly.
Finally, another kind of (uniform) Ditzian–Totik modulus of smoothness

of order r ∈ N can be defined by

ωϕ
r (f ; δ)

:= sup{|∆r
h1ϕ(x),h2ϕ(y)f(x, y)| : 0 ≤ h1, 0 ≤ h2, h

2
1+h2

2 ≤ δ2, x, y ∈ [−1, 1]}.

(iii) For f ∈ C([a, b] × [c, d]) and r ∈ N, we can consider other rth moduli
of smoothness defined by

ωr(f ; δ1, δ2) = sup

{∣
∣
∣
∣
∣

r∑

i=0

(−1)r−i

(
r

i

)

f(x + ih1, y + ih2)

∣
∣
∣
∣
∣
; (x, y),

(x + rh1, y + rh2) ∈ [a, b] × [c, d], |h1| ≤ δ1, |h2| ≤ δ2

}

,

ωr(f ;α) = sup

{∣
∣
∣
∣
∣

r∑

i=0

(−1)r−i

(
r

i

)

f(x + ih1, y + ih2)

∣
∣
∣
∣
∣
; (x, y),

(x + rh1, y + rh2) ∈ [a, b] × [c, d], h2
1 + h2

2 ≤ α2

}

(if Ω ⊂ R
m and f : Ω → R, then for any τ ≥ 0, we can define

ωr(f ; τ) = sup‖t‖Rm≤τ

{∣
∣
∣
∣
∣

r∑

s=0

(−1)r−s

(
r

s

)

f(x + st)

∣
∣
∣
∣
∣
;x+st ∈ Ω, s = 0, . . . , r

}

,

where ‖t‖Rm =
√

(t21 + · · · + t2m), t = (t1, t2, . . . , tm)),

ω∗
r (f ; α) = sup

{∣
∣
∣
∣
∣

r∑

i=0

(−1)r−i

(
r

i

)

f(x + ih1, y + ih2)

∣
∣
∣
∣
∣
; (x, y), (x ± rh1, y ± rh2)

∈ [a, b] × [c, d], |h1| ≤ α, |h2| ≤ α

}

.
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(iv) A kind of K2-functional of two variables can be defined by

K2(f ; t, s)

= inf
{

‖f − g‖ + t2
∥
∥
∥
∥

∂2g

∂x2

∥
∥
∥
∥+ s2

∥
∥
∥
∥

∂2g

∂y2

∥
∥
∥
∥+ ts

[∥
∥
∥
∥

∂2g

∂x∂y

∥
∥
∥
∥+
∥
∥
∥
∥

∂2g

∂y∂x

∥
∥
∥
∥

]

;

g ∈ W 2([−1, 1] × [−1, 1])
}

.

Here g ∈ W 2([−1, 1] × [−1, 1]) means that g is twice differentiable with its
second-order partial derivatives bounded on [−1, 1]× [−1, 1], and ‖ · ‖ denotes
the uniform norm.

Now, defining the norm of g ∈ W 2([−1, 1] × [−1, 1]) by ‖g‖W 2 =
max{‖ ∂2g

∂x2 ‖, ‖∂2g
∂y2 ‖, ‖ ∂2g

∂x∂y‖, ‖
∂2g

∂y∂x‖}, one can define another K2-functional of
one variable only, by

K2(f ; t) = inf{‖f − g‖ + t‖g‖W 2 ; g ∈ W 2([−1, 1] × [−1, 1])}

(see Johnen-Scherer [187]), which obviously is equivalent to a third kind of
K2-functional, defined by

K2(f ; t)∗ = inf
{

‖f − g‖ + t

[∥
∥
∥
∥

∂2g

∂x2

∥
∥
∥
∥+
∥
∥
∥
∥

∂2g

∂y2

∥
∥
∥
∥+
∥
∥
∥
∥

∂2g

∂x∂y

∥
∥
∥
∥+
∥
∥
∥
∥

∂2g

∂y∂x

∥
∥
∥
∥

]

g ∈ W 2([−1, 1] × [−1, 1])
}

,

(see Dekel-Leviatan [75], DeVore [85]).
(v) The bivariate Kϕ

2 -functional is defined by

Kϕ
2 (f ; t, s) = inf

{

‖f − g‖ + t2
∥
∥
∥
∥ϕ

2
x

∂2g

∂x2

∥
∥
∥
∥+ s2

∥
∥
∥
∥ϕ

2
y

∂2g

∂y2

∥
∥
∥
∥

+ts

[∥
∥
∥
∥ϕxϕy

∂2g

∂x∂y

∥
∥
∥
∥+

∥
∥
∥
∥ϕxϕy

∂2g

∂y∂x

∥
∥
∥
∥

]

; g ∈ W 2,ϕ([−1, 1] × [−1, 1])

}

,

where g ∈ W 2,ϕ([−1, 1] × [−1, 1]) means that
∣
∣
∣
∣ϕ

2
x

∂2g

∂x2
(x, y)

∣
∣
∣
∣ ,

∣
∣
∣
∣ϕ

2
y

∂2g

∂y2
(x, y)

∣
∣
∣
∣ ,

∣
∣
∣
∣ϕxϕy

∂2g

∂x∂y
(x, y)

∣
∣
∣
∣ ,

∣
∣
∣
∣ϕxϕy

∂2g

∂y∂x
(x, y)

∣
∣
∣
∣

are all bounded on [−1, 1] × [−1, 1] and ϕu denotes
√

1 − u2.
Similarly, one can define

Kϕ
2 (f ; t)

= inf

{

‖f − g‖ + t

[∥
∥
∥
∥ϕ

2
x

∂2g

∂x2

∥
∥
∥
∥+

∥
∥
∥
∥ϕ

2
y

∂2g

∂y2

∥
∥
∥
∥+

∥
∥
∥
∥ϕxϕy

∂2g

∂x∂y

∥
∥
∥
∥+

∥
∥
∥
∥ϕxϕy

∂2g

∂y∂x

∥
∥
∥
∥

]

;

g ∈ W 2,ϕ([−1, 1] × [−1, 1])

}

.
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Some properties of these bivariate moduli of continuity/smoothness and
K2-functionals useful for the next results are given by the following.

Lemma 2.1.3. Let f : [−1, 1] × [−1, 1] → R.

(i) (see, e.g., Timan [385], pp. 111–114) ω1(f ; 0, 0) = 0, ω1(f ; δ, η) is nonde-
creasing with respect to δ and η,

ω1(f ; δ1 + δ2, η1 + η2) ≤ ω1(f ; δ1, η1) + ω1(f ; δ2, η2),

ω1(f ; δ, η) ≤ ω(x)(f ; δ) + ω(y)(f ; η) ≤ 2ω(f ; δ, η).

(ii) (see, e.g., Anastassiou–Gal [7], p. 81)

ω(B)(f ; δ, η) ≤ ω(x)(f ; δ) + ω(y)(f ; η).

(iii) (Johnen–Scherer [187]) K2(f ; t2) ∼ ω2(f ; t) for all t ∈ (0, 1).
(iv) K2(f ; t2)∗ ∼ K2(f ; t2) ∼ K2(f ; t, t).
(v) ω∗

r (f ; t) ∼ ωr(f ; t) ∼ ωr(f ; t, t) and ωϕ
r (f ; t) ∼ ωϕ

r (f ; t, t).
(vi) Kϕ

2 (f ; t, t) ∼ Kϕ
2 (f ; t2).

(Recall that a(t) ∼ b(t) means that there is t0 > 0 and M1, M2, indepen-
dent of t, such that M1a(t) ≤ b(t) ≤ M2a(t), for all t ∈ (0, t0).)

Proof. (i) The property that ω1(f ; 0, 0) = 0 and the property that ω1(f ; δ, η)
is nondecreasing with respect to δ and η, follows directly from Definition 2.1.2.
Also, the elementary inequalities:

|f(x + h1 + h2, y + k1 + k2) − f(x, y)| ≤ |f(x + h1 + h2, y + k1 + k2)
−f(x + h1, y + k1)|
+|f(x + h1, y + k1) − f(x, y)|,

|f(x+h, y+k)−f(x, y)| ≤ |f(x+h, y+k)−f(x+h, y)|+|f(x+h, y)−f(x, y)|,
immediately imply the other two inequalities in the statement of (i).

(ii) It is immediate by the inequality:

|∆h,kf(x, y)| = |f(x + h, y + k) − f(x + h, y) − f(x, y + k) + f(x, y)| ≤
|f(x + h, y + k) − f(x + h, y)| + |f(x, y + k) − f(x, y)|.

(iii), (iv), (v), and (vi) are immediate from the corresponding definitions
in Definition 2.1.2. �

In computer aided geometric Design (CAGD), the following concepts of
Bernstein polynomials and Bézier surfaces represented in barycentric coordi-
nates are important. First we present the case in R

2, which has a simple and
intuitive geometric interpretation, and then the general case in R

k, k > 2.
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Definition 2.1.4. (see Bézier [43], [44], Farin [113])
(i) Let P1, P2, P3 be three noncollinear points in the plane and denote

by T the interior together with the border of the triangle of vertices P1, P2,
and P3. In other words, T is the convex hull of the points P1, P2, and P3,
which means that for each point P ∈ T , there exist uniquely the numbers
u, v, w ≥ 0, u + v + w = 1, called barycentric coordinates of P , such that P =
uP1 + vP2 + wP3, and we write P = (u, v, w). Obviously P1 = (1, 0, 0), P2 =
(0, 1, 0), P3 = (0, 0, 1).

If in Cartesian coordinates we have P = (x, y), Pk = (xk, yk), k = 1, 2, 3,
then we easily get the relationships with the barycentric coordinates given by

x = ux1 + vx2 + wx3, y = uy1 + vy2 + wy3.

If f : T → R, then the Bernstein polynomial of degree n in barycentric
coordinates attached to f on the triangle T is defined by the formula

BT
n (f)(u, v, w) =

∑

i,j,k≥0,i+j+k=n

f(i/n, j/n, k/n)
n!

i!j!k!
uivjwk.

Here the expression f(i/n, j/n, k/n) depends on the triangle T (actu-
ally on its vertices) as follows: if f(x, y) is the function in Cartesian coor-
dinates, then x and y are connected with u, v, w by the above relationships
and f(i/n, j/n, k/n) denotes in fact

f

(

x1
i

n
+ x2

j

n
+ x3

k

n
, y1

i

n
+ y2

j

n
+ y3

k

n

)

.

The above Bernstein polynomial rewritten in Cartesian coordinates (x, y)
is called, in CAGD, a Bernstein–Bézier surface.

The Bézier net attached to BT
n (f) (and implicitly to f) is denoted by

f̂n and is defined as the function that satisfies the following conditions:
f̂n(i/n, j/n, k/n) = f(i/n, j/n, k/n), for all i + j + k = n, i, j, k ≥ 0, and
it is linear on each of the subtriangles {Ui,j,k, i+ j +k = n−1, i, j, k ≥ 0} and
{Wi,j,k, i + j + k = n− 2, i, j, k ≥ 0}, where Ui,j,k has vertices (in barycentric
coordinates)

(
i + 1

n
,
j

n
,
k

n

)

,

(
i

n
,
j + 1

n
,
k

n

)

,

(
i

n
,
j

n
,
k + 1

n

)

,

and Wi,j,k has vertices
(

i

n
,
j + 1

n
,
k + 1

n

)

,

(
i + 1

n
,
j

n
,
k + 1

n

)

,

(
i + 1

n
,
j + 1

n
,
k

n

)

.

Geometrically, Ui,j,k and Wi,j,k realize a division (triangulation) of the
triangle T by smaller subtriangles all having their sides parallel with the sides
of T , triangulation denoted by τn(T ).
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(ii) (see also Dinghas [93], Lorentz [247], p. 51) If ∆k = {(x1, . . . , xk) ∈
R

k;x1 + · · · + xk ≤ 1, xi ≥ 0, i = 1, . . . , k} is the unit k-dimensional simplex
and f : ∆k → R, then the Bernstein polynomial on the k-simplex ∆k in
Cartesian coordinates is defined by

B∆k
n (f)(x1, . . . , xk) =

∑

ij≥0,i1+···+ik≤n

f

(
i1
n1

, . . . ,
ik
nk

)

pn;i1,...,ik
(x1, . . . , xk),

where

pn;i1,...,ik
(x1, . . . , xk) =

(
n

i1, . . . , ik

)

xi1
1 . . . xik

k (1 − x1 − · · · − xk)n−i1−···−ik ,

(
n

i1, . . . , ik

)

=
n!

i1!...ik!(n − i1 − · · · − ik)!
.

To ∆k corresponds the barycentric standard simplex Sk =
{(u1, . . . , uk+1) ∈ R

k+1;uj ≥ 0, j = 1, . . . , k + 1,
∑k+1

j=1 uj = 1} and the
above Bernstein polynomial can be rewritten in barycentric coordinates by

BSk
n (f)(u) =

∑

|i|=n

f

(
i

n

)

Bn
i (u),∀u = (u1, . . . , uk+1) ∈ Sk,

where i = (i1, . . . , ik+1), |i| = i1 + · · · + ik+1,
i
n = ( i1

n , . . . , ik+1
n ), and

Bn
i (u) =

(
n

i

)

ui :=
n!

(i1)! · · · (ik+1)!
ui1

1 · · ·uik+1
k+1 .

Given k + 1 points P1, . . . , Pk+1 ∈ R
k in general position (but preferably

affine independent), any point P ∈ conv{P1, . . . , Pk+1} (where the simplex
D = conv{P1, . . . , Pk+1} denotes the convex hull of the corresponding points)
can be identified with its barycentric coordinates u = (u1, . . . , uk+1), given
by the relationships P =

∑k+1
j=1 ujPj ,

∑k+1
j=1 uj = 1. Due to this fact, any

simplex D = conv{P1, . . . , Pk+1} can be identified with the above barycentric
standard simplex Sk.

As a consequence, for any k-dimensional simplex D and f : D → R, the
Bernstein polynomial attached to f in barycentric coordinates is formally the
same as the above BSk

n (f) (excepting the values f
(

|i|
n

)
, which are recovered

by the above relationships with the Cartesian coordinates of P1, . . . , Pk+1).
Therefore, without loss of generality and for simplicity, when one has

to deal with functions and Bernstein polynomials defined on an arbitrary
k-dimensional simplex, it suffices to consider functions and Bernstein polyno-
mials defined on the barycentric standard simplex Sk.

(iii) The multivariate Bézier net (surface) f̂n : Sk → R, can be defined
as follows: f̂n(i/n) = f(i/n) for each multi-index i satisfying |i| = n, and
piecewise linear on each subtriangle of the canonical triangulation constructed
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with the aid of an affine linear bijective map by Dahmen–Micchelli [74] (see
also Sauer [339], p. 473). Note that because of the method of triangulation,
the multivariate case is different from the bivariate case.

Remark. We can mention two interesting generalizations of the planar
barycentric coordinates in Definition 2.1.4. One is the case of so-called
barycentric coordinates associated with arcs, which leads to a theory of
Bernstein–Bézier polynomials that parallels the familiar interval case and
has close connections to trigonometric polynomials, see, e.g., Alfeld–Neamtu-
Schumaker [3]. The other one is the case of barycentric coordinates on spheres
or spherelike surfaces, as for example the spherical triangles, which leads to
a theory of Bernstein–Bézier polynomials on spheres and spherelike surfaces,
see, e.g., Alfeld–Neamtu–Schumaker [4].

Other concepts of shapes different from those in Definition 2.1.1 (excepting
that in Definition 2.1.5 (i) below, which is an easy extension of the bivariate
concept in Definition 2.1.1 (v)), are given by the following.

Definition 2.1.5. (i) Following the ideas in Popovicu [315], p. 78, we can
say that the function f : [−1, 1]m → R, m ∈ N, is called convex of order
(n1, . . . , nm), in the Popoviciu sense, where ni ∈ {0, 1, 2, . . . }, i = 1,m if for
any ni + 1 distinct points in [−1, 1], x

(i)
1 < x

(i)
2 < · · · < x

(i)
ni+1, i = 1,m, we

have

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x
(1)
1 , x

(1)
2 , . . . , x

(1)
n1+1

x
(2)
1 , x

(2)
2 , . . . , x

(2)
n2+1

; f
...

x
(m)
1 , x

(m)
2 , . . . , x

(m)
nm+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

≥ 0,

where the above symbol [·; f ] means the divided difference of the function f
and it is defined (by means of the divided difference of univariate functions)
as [x(1)

1 , . . . , x
(1)
n1+1; [x(2)

1 , . . . , x
(2)
n2+1; . . . [x(m)

1 , . . . , x
(m)
nm+1; f ] . . . , ]], (here

each univariate divided difference [x(i)
1 , . . . , x

(i)
ni+1; ·] is considered with respect

to the xi variable, ∀i = 1,m).
(ii) f : Ω → R is called a convex function (on the convex set Ω ⊂ R

m) if
f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for all λ ∈ [0, 1], x, y ∈ Ω. Denote by
KO1(Ω) the class of all convex functions on Ω. The differential characteriza-
tion of f ∈ KO1(Ω) can be seen in Remark 3 after this definition.

(iii) It is a well-known concept that a twice-differentiable function f :
Ω → R (where Ω ⊂ R

m is a domain) is called a harmonic function on Ω if
it satisfies ∆(f)(x) = 0, for all x ∈ Ω, where ∆(f)(x) =

∑m
k=1

∂2f(x)
∂x2

k
denotes

the Laplacian of f .
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By Gauss (for necessity) and Levi [226] (for sufficiency), if, e.g., Ω ⊂ R
2,

then f is harmonic if and only if f is continuous in Ω and for all disks of
center (x0, y0) and radius r included in Ω, it satisfies

f(x0, y0) =
1
2π

∫ 2π

0

f [x0 + r cos(θ), y0 + r sin(θ)]dθ,

for all (x0, y0) ∈ int(Ω). Denote the class of all harmonic functions on Ω by
H1(Ω).

As a generalization, f is called a polyharmonic function of order p ∈ N

in Ω if it satisfies the iterated Laplace equation ∆p(f)(x) = 0 for all x ∈ Ω,
where ∆p(f) = ∆[∆p−1(f)]. Using some successive integral means (we do not
reproduce them here), the above result of Gauss–Levi (i.e., the case p = 1)
was extended by Nicolescu [287] to arbitrary p ∈ N. Denote by Hp(Ω) the
class of all polyharmonic functions of order p.

Also, it is well known that f : Ω → R (where Ω ⊂ R
m is a domain) is

called a subharmonic function on Ω if f is upper semicontinuous on Ω and for
any sphere B(x; r) ⊂ Ω, the value f(x) is less than or equal to the mean value
of f on the spherical surface ∂B(x; r). For example, in the case of functions
of two real variables, the inequality can be written as

f(x0, y0) ≤
1
2π

∫ 2π

0

f [x0 + r cos(θ), y0 + r sin(θ)]dθ,

for all (x0, y0) ∈ int(Ω) and all disks of center (x0, y0) and radius r included
in Ω. Denote by SH1(Ω) the class of all subharmonic functions on Ω.

In another paper, Nicolescu [288] introduced the concept of subharmonic
function of order p ∈ N, through the integral means used to represent a poly-
harmonic function of order p. Denote by SHp(Ω) the class of all subharmonic
functions of order p on Ω. For p = 1 one obtains the above concept of sub-
harmonic function.

The differential characterization of f ∈ SHp(Ω) can be seen in Remark 4
after this definition.

(iv) Let S = (si,k)i,k=1,...,m be a so-called double stochastic matrix, that
is, satisfying

si,k ≥ 0,
m∑

i=1

si,k =
m∑

k=1

si,k = 1,

for all i, k = 1, . . . , m.
D ⊂ R

m is called an admissible domain if it has the following two proper-
ties:

(1) For any x = (x1, . . . , xm) ∈ D, we have (xp(1), . . . , xp(m)) ∈ D for all
permutations p of the set {1, . . . , m}.

(2) For any double-stochastic matrix S = (si,k)i,k=1,...,m and any x =
(x1, . . . , xm) ∈ D, we have Sx ∈ D.
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Now, according to Ostrowski [293], a function f : D → R, m ≥ 2, D an
admissible domain, is called Schur convex if for any double-stochastic matrix
S, we have f(Sx) ≤ f(x) for all x ∈ D.

(v) (Schmid [342] for the bivariate case), (Sauer [339], see also Dahmen–
Micchelli [74], Dahmen [73] for the multivariate case) Let k ∈ N and f ∈
C(Sk) = {f : Sk → R; f continuous on Sk}. We say that f is axially convex if

f(λu + (1 − λ)v) ≤ λf(u) + (1 − λ)f(v), ∀λ ∈ [0, 1],

whenever u, v ∈ Sk lie on any line parallel to one of the edges/“axes” (sides
in the k = 2 case) of Sk, i.e., if there exist an appropriate c 	= 0 and 0 ≤ j < i
with u − v = c(ej − ei), where ej = (δj,s)k+1

s=1 , (δj,s the Kronecker’s symbol)
defines the jth coordinate vector in R

k+1.
(vi) (Lorente–Pardo, Sablonnière, Serrano–Perez [246]) Let T be a tri-

angle in the plane with vertices P1, P2, P3. One says that f : T → R is
w-subharmonic (weak subharmonic) if for all n ∈ N and α = (α1, α2, α2) with
|α| = n (αi positive integers) we have

0 ≤
3∑

i=1

αiαi+1δ
2
γi−1

[
f
(α

n

)]
,

where γ0 = γ3, γ4 = α1, γ1 =
−−−→
P2P3, γ2 =

−−−→
P3P1, γ3 =

−−−→
P1P2,

δ2
γi

[
f
(α

n

)]
= f

(
α − γi

n

)

− 2f
(α

n

)
+ f

(
α + γi

n

)

,

for α
n belonging to the interior of the triangle T , and δ2

γi
[f
(

α
n

)
] = 0 otherwise.

Here α−γi
n and α+γi

n denote the points of intersection of the line parallel
to the direction γi with the other two sides of the triangle T .

This is equivalent to a certain geometric property of all Bézier nets f̂n,
n ∈ N.

Note that w-subharmonicity implies the so-called weak axial convexity
introduced in Beśka [40].

(vii) (Sauer [339]; see also Dahmen–Micchelli [74], Dahmen [73]) A function
f : Sk → R, k ≥ 2, is said to be polyhedral convex if all its Bézier nets f̂n,
n ∈ N, are convex.

(viii) (see Goodman–Sharma [160] for the bivariate case and Goodman–
Peters [158] for the multivariate case) The continuous function f : ∆2 → R is
called strongly convex on ∆2 if it satisfies the following three inequalities

f(x, y) + f(x + h, y) ≤ f(x, y + h) + f(x + h, y − h),
f(x, y) + f(x, y + h) ≤ f(x + h, y) + f(x − h, y + h),

f(x, y) + f(x + h, y − h) ≤ f(x + h, y) + f(x, y − h),

for all the corresponding points belonging to ∆2.
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In the general case, given the affine independent k+1 points P1, . . . , Pk+1 ∈
R

k and denoting the simplex D by conv{P1, . . . , Pk+1}, the function f : D →
R is called strongly convex on D if for any h > 0 and 0 ≤ i < j ≤ k + 1, we
have

f(x + hPi + hPj−1) + f(x + hPi−1 + hPj)
≥ f(x + hPi−1 + hPj−1) + f(x + hPi + hPj)

for all x and h for which f is defined, where P−1 := Pk+1.
(ix) Let T be a triangle in the plane and f : T → R. One says that f is

monotonically increasing with respect to the nonnull vector d = (d1, d2) ∈ R
2

(or in the direction d) if for all x = (x1, x2) ∈ T and all t > 0 with x, x+td ∈ T ,
we have f(x + td) ≥ f(x).

The directional derivative (in the direction d) at a point x ∈ T is defined
as the limit (supposed to exist) Dd(f)(x) = limt→0

f(x+td)−f(x)
t .

If, in addition, f is differentiable on t, then it follows that Dd(f)(x) =
d1

∂f
∂x1

(x) + d2
∂f
∂x1

(x), and f is monotonically increasing in the direction d if
and only if Dd(f)(x) ≥ 0 for all x ∈ T .

(x) Recall some well-known facts in multivariate analysis. A direction d
in Sk is given by the difference of two points, i.e., d = u − v for u, v ∈ Sk.
Therefore, if d = (d1, . . . , dk+1), the directional (Gâteaux) derivative of f :
Sk → R with respect to d is defined by Dd(f)(u) = limt→0

f(u+td)−f(u)
t , and

if, in addition, f ∈ C1(Sk), then Dd(f)(u) =
∑k+1

i=1 di
∂

∂ui
f(u). The directional

derivatives of higher order are defined by recurrence, for example D2
d1d2

(f) =
Dd1 [Dd2(f)], and so on.

For êj = ej − e1, j = 1, . . . , k + 1 (where ej are the unit vectors in R
k+1

defined at the above point (v)), we write Di,j(f) = Dêiêj
(f).

Also, for bi ∈ R
k+1, where i is a multi-index, the multivariate forward

difference operator can be inductively defined by ∆0
êj

bi := bi,

∆r
êj

bi = ∆r−1
êj

bi+êj
− ∆r−1

êj
bi,

∆i,j = ∆êi
∆êj

,

where r = (r1, . . . , rk) is a multi-index.

Remarks. (1) For m = 2 in Definition 2.1.5 (i), we get the concept in
Popoviciu [315], p. 78.

(2) If f is of class Cn1+···+nm on [−1, 1]m, then by the mean value theorem
it follows that the condition

∂n1+···+nmf(x1, . . . , xm)
∂xn1

1 . . . ∂xnm
m

≥ 0 on [−1, 1]m

implies that f is convex of order (n1, . . . , nm).
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(3) If f is twice continuously differentiable on Ω, then it is a classical
result that f ∈ KO1(Ω) if and only if for every j = (j1, . . . , jm) ∈ R

m with
‖j‖Rm = 1, we have

Lj(f)(x) =
∑

1≤k,i≤m

∂2f(x)
∂xi∂xk

jijk ≥ 0, ∀x ∈ Ω.

(4) If f is twice differentiable on Ω, according to a classical result due
to Montel [276] (see also, e.g., Haymann–Kennedy [168], p. 41) we have f ∈
SH1(Ω) if and only if ∆(f)(x) =

∑m
k=1

∂2f(x)
∂x2

k
≥ 0,∀x ∈ Ω.

More generally, if f has all continuous partial derivatives of order 2p
in Ω, then f ∈ SHp(Ω) if and only if it satisfies the differential inequality
(−1)p∆p(f)(x) ≤ 0 for all x ∈ Ω (Nicolescu [288]).

(5) If f ∈ C2(Sk), then in Sauer [339], Proposition 2, it is proved that the
axial convexity of f can be expressed in terms of some inequalities satisfied by
the second-order directional derivatives (see also the proof of Theorem 2.2.3
(iii) below). For example, by taking for simplicity k = 2, if T = S2 is a triangle
in the plane with vertices P1, P2, P3, and setting γ1 =

−−−→
P2P3, γ2 =

−−−→
P3P1, γ3 =−−−→

P1P2, then f is axially convex if and only if we have D2
γi

(f)(u) ≥ 0 for all
u ∈ T and i = 1, 2, 3, where D2

γi
(f) = Dγi

(f)[Dγi
(f)] and the directional

derivatives are those in Definition 2.1.5 (ix), (x).
(6) Similar to the above Remark 5, if f ∈ C2(Sk), then by Sauer [339],

Proposition 10, the polyhedral convexity of f can be expressed in terms of
some inequalities satisfied by the second-order directional derivatives. For ex-
ample, keeping the notation in the bivariate case, f is polyhedral convex on
the triangle T if and only if D2

γiγj
(f)(u) ≥ 0 for all u ∈ T and i, j = 1, 2, 3.

(7) If D ⊂ R
m is an admissible domain (as defined by Definition 2.1.5 (iv)),

supposing D open and that f : D → R has continuous partial derivatives of
first order on D, then f is Schur convex on D if and only if

(xi − xj)
(

∂f

∂xi
(x) − ∂f

∂xj
(x)
)

≥ 0,

for all x = (x1, . . . , xm) ∈ D and i, j ∈ {1, . . . , m} (see, e.g., Lupaş [259]).
(8) For bivariate continuous functions on triangles, it is known Sauer [339]

that polyhedral convexity implies convexity, and convexity implies axial con-
vexity and subharmonicity.

(9) The relationship between axial convexity and subharmonicity can de-
pend on the geometry of the triangle. More specifically, we have (Lorente–
Pardo–Sablonnière–Serrano–Pérez [246]):

(i) If T is not obtuse, i.e., cos(θi) ≥ 0 for i = 1, 2, 3, then axial convexity
implies subharmonicity.

(ii) If T is obtuse (there exists i ∈ {1, 2, 3} with cos(θi) < 0), then there
is no relation, a priori, between axial convexity and subharmonicity. It is
enough to consider the functions u1 : T1 → R and u2 : T2 → R given by
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u1(x, y) = −y(x + y) and u2(x, y) = 4x2 − y2, respectively, where T1 is the
triangle with vertices A = (0, 0), B = (1, 0), and C1 = (−1, 1), and T2 is the
triangle with vertices A,B, and C2 = (−1,−3). Then u1 is axially convex but
is not subharmonic. However, u2 is subharmonic but is not axially convex.

(10) (Lorente–Pardo–Sablonnière–Serrano–Pérez [246]) Axial convexity
implies w-subharmonicity on triangular domains.

2.2 Bernstein-Type Polynomials Preserving Shapes

Other multivariate Bernstein-type polynomials we consider in this section are
given by the following.

Definition 2.2.1. (i) (Hildebrandt–Schoenberg [170]) If f : [0, 1]k → R, then
the tensor product Bernstein polynomial (on the k-cube [0, 1]k) is defined by

Bn1,...,nk
(f)(x1, . . . , xk)

=
n1∑

i1=0

. . .

nk∑

ik=0

[
Πk

j=1pnj ,ij
(xj)
]
f

(
i1
n1

, . . . ,
ik
nk

)

,

where pnj ,ij
(xj) =

(
nj

ij

)
x

ij

j (1 − xj)nj−ij for all j = 1, . . . , k.
(ii) (Goodman–Sharma [160]) For f : ∆k → R, k ∈ N, one defines the

Bernstein-type polynomial Un,k(f)(x) =
∑

|i|=n pn,i(x)
∫

Rk Ki(t)dt, n ∈ N,
x = (x1, . . . , xk) ∈ ∆k, where i = (i1, . . . , ik),

pn;i1,...,ik
(x1, . . . , xk) =

(
n

i1, . . . , ik

)

xi1
1 . . . xik

k (1 − x1 − · · · − xk)n−i1−···−ik ,

(
n

i1, . . . , ik

)

=
n!

i1! · · · ik!(n − i1 − · · · − ik)!
,

and
∫

Rk

Ki(t)dt

= (|i| − 1)!
∫

∆|i|−1

f

⎛

⎝
k∑

j=1

ej

ij∑

q=1

t(i1+···+ij−1)+q

⎞

⎠ dt1 · · · dt|i|.

Here ej = (0, . . . , 1, . . . , 0) ∈ R
k, with 1 in the jth position and i1+· · ·+ij−1 =

0 for j = 1.
By Sauer [338], it follows that Un,k(f) is exactly the Bernstein–Durrmeyer–

type polynomial that incorporates a particular Jacobi weight, which for k = 1
does not reduce to the usual multivariate Bernstein–Durrmeyer polynomial
introduced in Derriennic [78], but one reduces to the modified Bernstein–
Durrmeyer polynomial in Chen [68].
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Remarks. (1) By similar reasoning to that of Popoviciu [316] in the case of
one variable, we immediately obtain the estimate (for k = 2 see Feng [116])

|f(x1, . . . , xk) − Bn1,...,nk
(f)(x1, . . . , xk)| ≤ Cω1(f ; 1/

√
n1, . . . , 1/

√
nk)

for all xj ∈ [0, 1], j = 1, . . . , k, where C > 0 is independent of f , x1, . . . , xk,
n1, . . . , nk and

ω1(f ; δ1, . . . , δk)
= sup{|f(x1, . . . , xk) − f(y1, . . . , yk)|; |xj − yj | ≤ δj , j = 1, . . . , k}.

(2) For the Bernstein polynomials defined on a simplex ∆k, and f ∈
C(∆k) = {f : ∆k → R; f is continuous on ∆k}, we can recall the estimates

‖f − B∆k
n (f)‖C(∆k) ≤ C[KΦ(f ;n−1) + n−1‖f‖C(∆k)]

(see Ditzian [94]) and

‖f − B∆k
n (f)‖C(∆k) ≤ Cn−1

∑

1≤p≤√
n

Ep(f)

(see Ditzian [95]), where KΦ(f ; t) = infg∈A{‖f − g‖C(∆k) + tΦ(g)}, g ∈ A,
means that ∂g/∂xi ∈ ACloc with respect to any variable xj , ∂2g/∂xi∂xj are
continuous in the interior of ∆k, Φ(g) is a suitably defined seminorm, and
Ep(f) is the best approximation of f on ∆k (in the uniform norm ‖ · ‖C(∆k))
by polynomials (in the variables x1, . . . , xk) of total degree ≤ p.

(3) For the Bernstein–Durrmeyer-type polynomial Un,2(f), the following
approximation error is proved in Goodman–Sharma [160]:

‖f − Un,k(f)‖ ≤ C1ω1

(

f ;
1√
n

)

+
C2

n
‖f‖,

where ‖ · ‖ is the uniform norm on ∆k, ω1(f ; δ) = sup{|f(x) − f(y)|;x, y ∈
∆k, ‖x − y‖ ≤ δ}, ‖x‖ = x1 + · · · + xk, x = (x1, . . . , xk) ∈ ∆k.

(4) All the Bernstein-type polynomials in one variable introduced in
Section 1.3 (see the 12 examples after Theorem 1.3.2) can be extended to
several variables by the tensor product method or by the method used for
Bernstein polynomials on a simplex. We can mention, for example, several
bivariate/multivariate Bernstein–Stancu-type polynomials in Stancu [364]–
[369], Stancu–Vernescu [370], Vlaic [392]–[395], Moldovan [275], the modi-
fied Bernstein–Durrmeyer-type polynomial on a simplex in Goodman–Sharma
[160] (see also Sauer [338]), and the Bernstein–Durrmeyer polynomial on a
simplex in Derriennic [78].

The history of applications of shape-preserving properties of Bernstein
polynomials to computer aided geometric design begin with the pioneering
work of the engineer and mathematician Pierre Bézier, who applied them to
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automobile design at the Renault company (for a history on this subject see,
e.g., Laurent–Sablonnière [220]).

Concerning other types of Bernstein polynomials, an application of a cer-
tain Bernstein–Stancu-type base for defining generalized, more flexible (since
they depend on some parameters) Bézier curves and surfaces was done in
Gânsca–Coman–Ţâmbulea [147].

In Goodman–Sharma [160] (case k = 2), Goodman–Peters [158] (case
k > 2), it is proved that the polynomials Un,k(f) preserve the strong con-
vexity in Definition 2.1.4 (viii), while in Sauer [338], it is proved that Un,k(f)
has several shape-preserving properties on a simplex.

In this section we present the main shape-preserving properties of the two
classical Bernstein polynomials in Definition 2.1.4, (ii), Definition 2.2.1 (i),
and those of modified Bernstein–Durrmeyer polynomial on a simplex.

For simplicity and without loss of generality, some results will be consid-
ered in two real variables.

In the case of a bivariate tensor product Bernstein polynomial, we present
the following result.

Theorem 2.2.2. Let f : [0, 1] × [0, 1] → R and the tensor product Bernstein
polynomial on [0, 1] × [0, 1] be defined by

Bn,m(f)(x, y)

=
n∑

i=0

m∑

j=0

pn,i(x)pm,j(y)f
(

i

n
,

j

m

)

,

where pn,i(x) =
(
n
i

)
xi(1 − x)n−i for all i = 0, . . . , n, and pm,j(y) in a similar

manner is defined.
If f(x, y) is (r, s)-convex in the Popoviciu sense, then so is Bn,m(f)(x, y).

In addition, if f is continuous on [0, 1] × [0, 1], then the following estimate
holds:

‖Bn,m(f) − f‖ ≤ Cωϕ
2 (f ; 1/

√
n, 1/

√
m),

where C > 0 is an absolute constant, ‖ · ‖ denotes the uniform norm on
[0, 1]× [0, 1], ωϕ

2 (f ; 1/
√

n, 1/
√

m) is the Ditzian–Totik modulus of smoothness
in Definition 2.1.5 (i), and ϕ(x)2 = x(1 − x).

Proof. First we prove the estimate. It is known (see Knoop–Zhou [194] and
Totik [387]) that for univariate g : [0, 1] → R, we have

‖g − Bn(g)‖ ≤ Cωϕ
2 (g;

1√
n

)∞.

But ‖Bn(g)‖ ≤ ‖g‖, which implies ‖|Bn‖| ≤ 1,∀n ∈ N (here Bn(g) denotes the
univariate Bernstein polynomial).

Since Bn,m(f) is the tensor product of Bn and Bm, applying Theorem 5
in Haussmann–Pottinger [167], we immediately get
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‖f − Bn,m(f)‖ ≤ C

[

ωϕ
2,x

(

f ;
1√
n

)

+ ωϕ
2,y

(

f ;
1√
m

)]

,

where ωϕ
2,x and ωϕ

2,y are the partial moduli defined in Ditzian-Totik [98],
Chapter 2. Taking into account that obviously

ωϕ
2,x

(

f ;
1√
n

)

+ ωϕ
2,y

(

f ;
1√
m

)

≤ 2ωϕ
2

(

f ;
1√
n

,
1√
m

)

,

we obtain the required estimate.
On the other hand, by the proof of Theorem 1.3.1 (i), (see also, e.g.,

Popoviciu [317]), for g : [0, 1] → R, we have

B(r)
n (g)(x) =

r!n!
(n − r)!nr

n−r∑

i=0

[
i

n
, . . . ,

i + r

n
; g
]

pn−r,i(x).

This immediately implies

∂r+sBn,m(f)(x, y)
∂xr∂ys

=
r!n!

(n − r)!nr

s!m!
(m − s)!ms

n−r∑

i=0

m−s∑

j=0

pn−r,i(x)pm−s,j(y)

×
[

i

n
, . . . ,

i + r

n
;
[

j

m
, . . . ,

j + s

m
; f(x, y)

]

y

]

x

,

which by hypothesis on f implies ∂r+sBn,m(f)(x,y)
∂xr∂ys ≥ 0, ∀x, y ∈ [0, 1], and

proves the theorem. �

The Bernstein polynomials and the modified Bernstein–Durrmeyer polyno-
mials on a simplex have interesting shape-preserving properties, summarized
by the following.

Theorem 2.2.3. (i) (Lupaş [259]) If f : ∆2 → R is Schur convex on ∆2,
then so is B∆2

n (f) for all n ∈ N;
(ii) (Chang–Davis [64], Theorem 5) If f : ∆2 → R is strongly convex on ∆2,

then so is B∆2
n (f).

(Goodman-Peters [158]) If f : ∆k → R, k > 2, is strongly convex on ∆k,
then so is B∆k

n (f) too.
(iii) (Sauer [339]) If f : Sk → R is continuous and axially convex on Sk, then

BSk
n (f) is axially convex for all n ∈ R.

(iv) (Sauer [339]) If f : Sk → R is continuous and polyhedrally convex on Sk,
then BSk

n (f) is polyhedrally convex for all n ∈ R.
(v) (Goodman–Sharma [160]) If f : ∆2 → R is strongly convex on ∆2, then

so is the polynomial Un,2(f).
(vi) (Sauer [338]) For any n, k ∈ N with k ≥ 2, the polynomial Un,k(f)

preserves any polynomial of degree ≤ n, the axial convexity, the polyhedral
convexity, and the subharmonicity, but in general does not preserve the
convexity.
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Proof. (i) We follow the proof in Lupaş [259]. Notice together with Ostrowski
[293] that if f is Schur convex on ∆2 then it is symmetric too, i.e., f(x, y) =
f(y, x) for all (x, y) ∈ ∆2. Also, Lupaş [259] proved that the symmetry is
preserved by B∆2

n (f) for all n ∈ N. Indeed, this is an immediate conse-
quence of the general relationships

∑n
k=0

∑n−k
i=0 Ai,k =

∑n
k=0

∑n−k
i=0 Ak,i and

(
n
k

)(
n−k

i

)
=
(
n
i

)(
n−i

k

)
.

In order to prove the Schur convexity of B∆2
n (f), we will use Remark 7

of Definition 2.1.5. First we note that we can write B∆2
n (f)(x, y) =

∑n
k=0

∑n−k
i=0 pn,k,i(x, y)f(k/n, i/n), where pn,k,i(x, y) =

(
n
k

)(
n−k

i

)
xkyi(1−x−

y)n−k−i.
We have

∂B∆2
n (f)
∂x

= n

n−1∑

k=0

n−1−k∑

i=0

pn−1,k,i[f((k + 1)/n, i/n) − f(k/n, i/n)],

∂B∆2
n (f)
∂y

= n

n−1∑

k=0

n−1−k∑

i=0

pn−1,k,i[f(k/n, (i + 1)/n) − f(k/n, i/n)].

Write F [B∆2
n (f)](x, y) = 1

n (x − y)
(

∂B∆2
n (f)
∂x − ∂B∆2

n (f)
∂y

)
, E(f)(a, x, y) =

f(x, y) − f [ax + (1 − a)y, (1 − a)x + ay], and

qi,n(x, y) =
(

n − 1
i

)(
n − 1 − i

k − i

)

xiyk(1− x− y)n−k−1(x− y)(xk−2i − yk−2i).

It is easy to see that f is Schur convex on ∆2 if and only if E(f)(a, x, y) ≥ 0
for all (x, y) ∈ ∆2, a ∈ [0, 1] and that qi,n(x, y) ≥ 0,

(x − y)[pn−1,2k−i,i(x, y) − pn−1,i,2k−i(x, y)] = qi,2k(x, y),

for all i = 0, . . . , k − 1, k = 1, . . . , [(n − 1)/2],

(x − y)[pn−1,2k+1−i,i(x, y) − pn−1,i,2k+1−i(x, y)] = qi,2k+1(x, y),

for all i = 0, . . . , k, k = 0, 1, . . . , [(n − 2)/2].
By the general relationship

n−1∑

k=0

n−1−k∑

i=0

Ai,k =
[(n−1)/2]∑

i=0

Ai,i +
[(n−1)/2]∑

k=1

k−1∑

i=0

(Ai,2k−i + A2k−i,i)

+
[(n−2)/2]∑

k=0

k∑

i=0

(Ai,2k+1−i + A2k+1−i,i),



2.2 Bernstein-Type Polynomials Preserving Shapes 119

we obtain

F [B∆2
n (f)](x, y)

=
n−1∑

k=0

n−1−k∑

i=0

pn−1,k,i(x, y)[f((k + 1)/n, i/n) − f(k/n, (i + 1)/n)]

=
[(n−1)/2]∑

k=1

k−1∑

i=0

qi,2k(x, y)E(f)
(

2k − 2i

2k − 2i + 1
,
2k − i + 1

n
,

i

n

)

+
[(n−2)/2]∑

k=0

k∑

i=0

qi,2k+1(x, y)E(f)
(

2k − 2i + 1
2k − 2i + 2

,
2k − i + 2

n
,

i

n

)

.

As a conclusion,

F [B∆2
n (f)](x, y) =

n−1∑

k=1

[(k−1)/2]∑

i=0

qi,k(x, y)E(f)
(

k − 2i

k − 2i + 1
,
k − i + 1

n
,

i

n

)

,

which by the Schur convexity of f implies that of B∆2
n (f) too.

(ii) Since the proofs are rather technical, we omit them. We mention only
that for the case k > 2, the proof of (ii) is different from the case k = 2, is
much based on the results in the paper Dahmen–Micchelli [74], and can be
found in Goodman–Peters [158].

(iii) We sketch out the main lines of the proof. It is based on the following
two simple/standard auxiliary results.

Lemma A. (Sauer [339]) A continuous function f : Sk → R is axially convex
on Sk if and only if we have

∆p,p(f)(i/k) ≥ 0, (∆j,j + ∆p,p − 2∆j,p)f(i/k) ≥ 0,

for all |i| = k and 1 ≤ j ≤ p.
Proof of Lemma A. We know that for continuous functions, convexity in

one direction is in fact equivalent to the midpoint convexity in that direction.
Now, convexity in the direction ep − e1 is equivalent to

1
2
f

(
i + 2êp

k

)

+
1
2
f

(
i

k

)

≥ f

(
i + êp

k

)

,

which can easily be rewritten as the first inequality in statement.
Applying similar reasoning to the convexity in the direction ep−ej , we get

that it is equivalent to the second inequality in the statement, which proves
Lemma A.
Lemma B. (Sauer [339]) A C2-function f : Sk → R is axially convex on Sk

if and only if we have

Dp,p(f)(u) ≥ 0, (Dj,j + Dp,p − Dj,p)f(u) ≥ 0,

for all 1 ≤ j ≤ p and u ∈ Sk.
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Proof of Lemma B. Taking into account the integral representation
of multivariate finite forward differences of functions of C2-class in terms of
directional/partial derivatives, it is immediate that the inequalities in Lemma
A are equivalent to the inequalities in Lemma B.

Now, since we have

Dj,jB
Sk
n (f)(u) =

∑

|i|=n−2

∆j,jf

(
i + 2e1

n

)

Bn−2
i (u),

where Bn
i (u) is given by Definition 2.1.4 (ii), we easily get that Dj,jB

Sk
n (f)≥ 0.

In a similar manner we get (Dj,j +Dp,p−Dj,p)BSk
n (f)(u) ≥ 0, which combined

with Lemma B proves the statement in (iii).
(iv) A detailed proof can be found in Sauer [339], p. 475, Theorem 11.
(v) We follow the ideas of the proof in Goodman–Sharma [160]. Let f :

∆2 → R be strongly convex on ∆2. First let us suppose that f ∈ C2(∆k), i.e,
∂2f
∂x2 ≥ ∂2f

∂x∂y ≥ 0 and ∂2f
∂y2 ≥ ∂2f

∂x∂y ≥ 0. We have

∂2Un,2(f)(x, y)
∂x∂y

=
∑

i+j+k=n−2

pi,j,k(x, y)
∫

∆2

Bi+1,j+1,k+2(u, v)
∂2f

∂u∂v
(u, v)du dv ≥ 0,

by the hypothesis on f .
Similarly, from the hypothesis on f we can prove

∂

∂x

(
∂

∂x
− ∂

∂y

)

Un,2(f)(x, y) ≥ 0

and
∂

∂y

(
∂

∂y
− ∂

∂x

)

Un,2(f)(x, y) ≥ 0.

From Chang–Davis [64], Theorem 5, for an f ∈ C(∆2), it follows that
B∆2

m (f) is also strongly convex. Since B∆2
m (f) ∈ C2, we get that Un,2(B∆2

m (f))
is strongly convex with respect to ∆2. By B∆2

m (f) → f as m → ∞, we get
Un,2[B∆2

m (f)] → Un,2(f), as m → ∞. But the strong convexity means that
Un(B∆2

m (f)), n,m ∈ N, satisfy the three inequalities in Definition 2.1.5 (vii).
Passing to limit with m → ∞ in these inequalities and taking into account that
we easily have ‖Un,2(f)‖∆2 ≤ ‖f‖∆2 (where ‖ · ‖∆2 denotes the uniform norm
on ∆2), we get that limm→∞Un,2(B∆2

m (f)) = Un,2(f), which immediately
implies that Un,2(f) is strongly convex with respect to ∆2.

(vi) We omit the proofs, which are long and technical. �

Remark. In Schmid [342] and Chang–Davis [64], pp. 12–13 it is proved (are
given counterexamples) that if f : ∆2 → R is convex on ∆2 then B∆2

n (f) is not
necessarily convex on ∆2; therefore B∆2

n (f) does not preserve the convexity
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of f . Thus, in Schmid [342], it is shown that for the convex function f(x, y) =
|x−y| defined on the standard simplex ∆2 ⊂ R

2, all the Bernstein polynomials
B∆2

n (f), n ∈ N, are not convex on ∆2.
Another much-studied topic in CAGD concerns sufficient linear and non-

linear conditions for the (usual) convexity/monotonicity of bivariate/multi-
variate Bernstein polynomials.

The first sufficient conditions for convexity were derived for Bernstein poly-
nomials on a triangle/simplex. Chang and Davis [64] showed that a sufficient
condition for such a surface to be convex is that the Bézier net be convex
and proved other sufficient linear conditions for convexity too. A weaker suffi-
cient linear condition for convexity was found by Chang and Feng [66]. Also,
Chang and Feng [65] derived another weaker but nonlinear condition, while
Lai [219] derived a linear condition weaker than those in Chang–Davis [64]. In
Carnicer–Floater–Peña [61] linear conditions that are weaker than all linear
conditions mentioned above are introduced. These conditions have the advan-
tage that they are symmetric with respect to the barycentric coordinates and
moreover, can be interpreted geometrically.

On the other hand, sufficient conditions for convexity were derived for
bivariate tensor-product Bernstein polynomials (called Bernstein–Bézier sur-
faces) too. First, Cavaretta and Sharma [63] showed that when the (bilin-
ear) Bézier net of such a surface is convex, then so is the surface. Although
the conditions are linear, they are very restrictive, since they imply that the
Bernstein–Bézier surface S(x, y) equals f(x)+ g(y), for some univariate func-
tions f and g (in this case S is called translational). Then weaker but nonlinear
conditions were obtained by Floater [118].

Starting from these last conditions, in Carnicer–Floater–Peña [61] linear
conditions for convexity that do not require that S be translational were
found. Even though these conditions are stronger than those in Floater [118],
they have the advantage of being linear and moreover can be interpreted
geometrically, in a similar way to the triangular case.

Also, several sufficient conditions for monotonicity were proved in Floater–
Peña [119].

The next two theorems summarize the main results in this topic.
For Bernstein polynomials on a triangle/simplex, we present the following

result.

Theorem 2.2.4. Let us consider the Bernstein polynomial of degree n on the
simplex ∆2 = {x ≥ 0, y ≥ 0, x + y ≤ 1},

B∆2
n (f)(x, y) =

∑

i+j+k=n

pi,j,kBi,j,k(x, y),

where pi,j,k := f(i/n, j/n, k/n) and

Bi,j,k(x, y) :=
(i + j + k)!

i!j!k!
xiyj(1 − x − y)k.
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Also, let us define the following difference operators:

∆api,j,k := pi+2,j,k + pi,j+1,k+1 − pi+1,j+1,k − pi+1,j,k+1,

∆bpi,j,k := pi,j+2,k + pi+1,j,k+1 − pi+1,j+1,k − pi,j+1,k+1,

∆cpi,j,k := pi,j,k+2 + pi+1,j+1,k − pi+1,j,k+1 − pi,j+1,k+1,

for i + j + k = n − 2, with i, j, k ≥ 0.

(i) (Chang–Davis [64]) If the nth Bézier net (attached to B∆2
n (f)) is convex

on ∆2, then so is B∆2
n (f).

The result was extended to ∆k, k > 2, in Dahmen–Micchelli [74].
(ii) (Sauer [340]) If the Bézier net f̂α, |α| = n, is axially convex on Sk, then

so is BSk
n (f).

(iii) (Chang–Davis [64]) B∆2
n (f)(x, y) is convex, provided that

∆api,j,k ≥ 0, ∆bpi,j,k ≥ 0, ∆cpi,j,k ≥ 0,

for all i + j + k = n − 2, with i, j, k ≥ 0.
(iv) (Chang–Feng [66]) B∆2

n (f)(x, y) is convex, provided that the matrices

A =
(

(∆a + ∆c)pi,j,k ∆cpi,j,k

∆cpi,j,k (∆b + ∆c)pi,j,k

)

are positive semidefinite for all i, j, k ≥ 0 with i + j + k = n − 2.
(v) (Chang–Feng [65]) The nonlinear conditions

(∆a + ∆b)pi,j,k ≥ 0, (∆b + ∆c)pi,j,k ≥ 0, (∆c + ∆a)pi,j,k ≥ 0,

∆bpi,j,k∆cpi,j,k + ∆cpi,j,k∆api,j,k + ∆api,j,k∆bpi,j,k ≥ 0,

for all i, j, k ≥ 0, with i + j + k = n − 2, imply the convexity of
B∆2

n (f)(x, y).
(vi) (Lai [219]) The linear conditions

∆api,j,k ≥ 0, ∆bpi,j,k ≥ 0, ∆api,j,k + 2∆cpi,j,k ≥ 0,

∆bpi,j,k + 2∆cpi,j,k ≥ 0,

for all i + j + k = n − 2, with i, j, k ≥ 0, imply the convexity of
B∆2

n (f)(x, y).
(vii) (Carnicer–Floater–Peña [61]) The linear conditions

∆api,j,k + 2∆cpi,j,k ≥ 0, ∆bpi,j,k + 2∆cpi,j,k ≥ 0, ∆cpi,j,k + 2∆api,j,k ≥ 0,

∆cpi,j,k + 2∆bpi,j,k ≥ 0, ∆bpi,j,k + 2∆api,j,k ≥ 0, ∆api,j,k + 2∆bpi,j,k ≥ 0,

for all i, j, k ≥ 0, with i + j + k = n − 2, imply the convexity of
B∆2

n (f)(x, y).
(viii) (Floater–Peña [119]) If the nth Bézier net (attached to B∆2

n (f)) is
monotonically increasing with respect to all nonnull vectors d ∈ R

2,
then so is B∆2

n (f)(x, y).
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(ix) (Floater–Peña [119]) Let us denote by P1, P2, P3 the vertices of the tri-
angle ∆2. If the nth Bézier net is monotonically increasing with respect
to the vectors

−−−→
P2P1,

−−−→
P3P2,

−−−→
P1P3, then so is B∆2

n (f)(x, y).
(x) (Floater–Peña [119]) Let P1, P2, P3 be the vertices of triangle ∆2. The

condition Edcp ≥ 0, ∀|p| = n−1, implies that B∆2
n (f)(x, y) is monoton-

ically increasing in the direction d, where Edcp = α1cp+e1 + α2cp+e2 +
α3cp+e3 , with α1, α2, α3 solutions of the equations

α1P1 + α2P2 + α3P3 = d, α1 + α2 + α3 = 0,

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1), and, e.g., cp+e1 =

f
(

p1+1
n−1 , p2

n−1 , p3
n−1

)
, for p = (p1, p2, p3) (the others cp+e2 and cp+e3 are

analogously defined).

For the tensor-product Bernstein polynomial, we present the following
sufficient conditions for convexity.

Theorem 2.2.5. Let us consider the tensor-product Bernstein polynomial of
degree (m,n) given by

Bn,m(f)(x, y) =
n∑

i=0

m∑

j=0

pi,jBi,n(x)Bj,m(y),

where pi,j = f(i/n, j/m), Bi,n(x) =
(
n
i

)
xi(1 − x)n−i, i = 0, . . . , n, and we

assume that n ≥ 2, m ≥ 2.
Let us define the finite difference operator

∆k,ipi,j =
n∑

i=0

m∑

s=0

(−1)k+l−r−s

(
k

r

)(
l

s

)

pi+r,j+s.

By analogy with the Bézier net on triangles, a Bézier net (attached to the
above tensor-product Bernstein polynomial) can be defined by

f̂n,m(x, y) = pi,j(i + 1 − nx)(j + 1 − my) + pi+1,j(nx − i)(j + 1 − my)
+ pi,j+1(i + 1 − nx)(my − j) + pi+1,j+1(nx − i)(my − j),

for i
n ≤ x ≤ i+1

n , j
m ≤ y ≤ j+1

m , 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1.
(i) (Cavaretta–Sharma [63]) If we suppose that the Bézier net of the poly-

nomial Bn,m(f)(x, y) is convex, then so is Bn,m(f)(x, y).
(ii) (Floater [118]) If

∆2,0pi,j ≥ 0 for i = 0, . . . , n − 2, j = 0, . . . , m,

∆0,2pij ≥ 0 for i = 0, . . . , n, j = 0, . . . ,m − 2,
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and
∆2,0pi,j+l+s∆0,2pi+k+r,j − k(∆1,1pi+k,j+l)2 ≥ 0,

for all i = 0, . . . , n − 2, j = 0, . . . ,m − 2, and k, l, r, s ∈ {0, 1}, where k =
mn/(m − 1)(n − 1), then Bn,m(f)(x, y) is convex.

(iii) (Carnicer–Floater–Peña [61]) The linear conditions

∆2,0pi,j+s ≥ 2|∆1,1pi+k,j |

for all i = 0, . . . , n − 2, j = 0, . . . , m − 1, and k, s ∈ {0, 1},

∆0,2pi+r,j ≥ 2|∆1,1pi,j+l|,

for all i = 0, . . . , n − 1, j = 0, . . . , m − 2, and l, r ∈ {0, 1}, imply that
Bn,m(f)(x, y) is convex.

Remark. In the paper Jüttler [188], a general construction of linear sufficient
conditions for convexity of multivariate tensor-product Bernstein polynomials
is obtained. These conditions can be made as weak as desired, and the con-
ditions in Theorem 2.2.4 (iii) and Theorem 2.2.5 (iii) are special cases of this
general construction.

The connection between the shape-preserving properties and the strongly
variation diminishing property in the univariate case is well known (see
Chapter 5, Section 5.1, Theorem 5.1.7). At the end of this section, we briefly
present some concepts of total variation together with corresponding prop-
erties for bivariate Bernstein polynomials defined on triangles and show a
connection with the preservation of convexity.

Definition 2.2.6. (i) (Goodman [155]) For f : T → R, f ∈ C2(T ), where T
is a triangle in the plane, one defines two kinds of variations of f on T by

V (f ;T ) =
∫

T

[(
∂f(x, y))

∂x

)2

+
(

∂f(x, y)
∂y

)2
]1/2

dx dy,

and

V1(f ;T )=
∫

T

[(
∂2f(x, y)

∂x2

)2

+
(

∂2f(x, y)
∂x∂y

)2

+
(

∂2f(x, y)
∂y2

)2
]1/2

dx dy.

(ii) (Chang–Hoschek [67]) For f ∈ C2(T ), T a triangle in the plane, one
defines the variation of f on T by

V ∗
1 (f ;T ) =

∫

T

∣
∣
∣
∣
∂2f(x, y)

∂x2
+

∂2f(x, y)
∂y2

∣
∣
∣
∣ dx dy.

(iii) (Goodman [156]) For any f ∈ C2(T ), T a triangle in the plane, and S a
seminorm in R

3, one defines the generalized variation of f on T by

VS(f ;T ) =
∫

T

S

(
∂2f(x, y)

∂x2
,
∂2f(x, y)

∂x∂y
,
∂2f(x, y)

∂y2

)

dx dy.
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(iv) (Cavaretta-Sharma [63]) For f : [0, 1] × [0, 1] → R, one defines the
variation

V1([0, 1]2)(f)

=
∫ 1

0

∫ 1

0

[(
∂2f(x, y)

∂x2

)2

+
(

∂2f(x, y)
∂x∂y

)2

+
(

∂2f(x, y)
∂y2

)2
]1/2

dx dy.

We present without proof the following.

Theorem 2.2.7. (i) (Goodman [155]) Let f ∈ C2(T ) and denote by f̂n the
nth Bézier net attached to f . We have V1(BT

n (f);T ) ≤ V1(f̂n;T ) and
V1(BT

n (f);T ) ≤ C · V1(f ;T ), where BT
n (f) denotes the Bernstein polyno-

mial attached to f on the triangle T and C > 0 is a constant independent
of f and n, depends only on T , and can explicitly be given in terms of the
angles of T (for example, if T is equilateral, then C =

√
34
3 ). (Since f̂n is

not of C2(T )-class, a specific formula is given for V1(f̂n;T )).
Also,

V (BT
n (f);T ) ≤ 2n

n + 1
V (f̂n;T ), ∀n ∈ N, f ∈ C2(T ),

but there is no constant C > 0 independent of f such that V (BT
n (f);T ) ≤

CV (f ;T ), n ∈ N.
(ii) (Chang–Hoschek [67]) Let f ∈ C2(T ). We have

V ∗
1 (BT

n (f);T ) ≤ V ∗
1 (f̂n;T ) = V1(f̂n;T ), ∀n ∈ N,

with equality if and only if the Bézier net f̂n is either convex or concave
over T .

(iii) (Goodman [156]) For any f ∈ C2(T ), we have

VS(BT
n (f);T ) ≤ C(S, T )VS(f ;T ), ∀n ∈ N,

where the constant C(S, T ) can explicitly be calculated and depends only
on S and T , but is independent of f and n. The result generalizes (i) and
(ii).

(iv) (Cavaretta-Sharma [63]) Keeping the notation in Theorem 2.2.5 and
Definition 2.2.6 (iv), we have V1([0, 1]2)(Bn,m(f)) ≤ V1([0, 1]2)(f̂n,m),
where a specific formula is given for V1([0, 1]2)(f̂n,m) (since f̂n,m is not
twice differentiable).

Remarks. (1) Note that the concepts in Definition 2.2.6 (i) are naturally
suggested by the total variation in the univariate case (see Goodman [155],
pp. 111–112).

(2) The above equality property in (ii) connects, in the case of bivariate
Bernstein polynomials over triangles, the preservation of convexity with the
preservation of total variation. Indeed, if equality holds and f̂n is convex over
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the triangle ∆2, then according to Theorem 2.2.4 (i), the Bernstein polynomial
B∆2

n (f) is convex on ∆2.
(3) Since the approximation error in shape-preserving approximation by

bivariate Bernstein polynomials is rather weak, it is natural to search for
Jackson-type estimates in shape-preserving approximation by bivariate poly-
nomials. This question will be solved in the next sections of this chapter.

Mainly, the results will be obtained in using the following methods:
(a) the Shisha-type method in the univariate case adapted to the bivaria-

te/multivariate case and its generalization in vector spaces, called L-positive
approximation and introduced by Anastassiou–Ganzburg;

(b) the tensor-product method;
(c) the method consisting in approximating first f(x, y) by piecewise bi-

variate linear functions Ln(f)(x, y) with the same shape as f(x, y), and then
replacing Ln(f)(x, y) by suitable bivariate polynomials Pn(x, y).

2.3 Shisha-Type Methods and Generalizations

The ideas of Shisha and Anastassiou–Shisha’s methods used in the univariate
case for the proof of Theorem 1.4.1 were extended for the first time to the
bivariate case, by Anastassiou [5] in 1991. Unfortunately, since it is based
on the simultaneous approximation by bivariate Bernstein polynomials, the
estimate is rather weak, involving the modulus of continuity ω1(f ; 1√

n
, 1√

m
).

Using a different method, similar results were obtained by Xu-guang Lu
[251], [252] in 1988 and 1992, respectively. Note that in these cases too,
the error estimates are rather weak, in terms of ω1(f ; 1√

n
) = sup{|f(x, y) −

f(u, v)|;
√

(x − u)2 + (y − v)2 ≤ 1√
n
}.

2.3.1 Shisha-Type Approximation

In this subsection we present new essential improvements of the above-
mentioned estimates. For simplicity, only the bivariate case will be presented,
but the results can easily be extended to functions of several real variables.

The first main tool used in this sense is a recent result of Beutel–Gonska
[41], [42] concerning simultaneous approximation by tensor-product operators.

For f : [a, b]×[c, d] → R, let us write f (k,l) = D(k,l)f = ∂k+lf
∂xk∂yl , Cp,q([a, b]×

[c, d]) = {f : [a, b]× [c, d] → R;D(k,l)f is continuous on [a, b]× [c, d],∀(0, 0) ≤
(k, l) ≤ (p, q)}, where (0, 0) ≤ (k, l) ≤ (p, q) means 0 ≤ k ≤ p, 0 ≤ l ≤ q.

For f ∈ C0,0([a, b]× [c, d]) and r ≥ 1, consider the modulus of smoothness,
ωr(f ; δ1, δ2), defined by Definition 2.1.2 (iii).

Concerning the degree of simultaneous approximation by tensor product
operators, we recall here the following result, which will be used later in our
proofs.
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Theorem 2.3.1. (Beutel–Gonska [41], Theorem 1) Let L : Cp(I) → Cp′
(I ′),

M : Cq(J) → Cq′
(J ′) be two linear continuous operators, where for each g in

the space Cs(I) the norm is ‖g‖ := max{‖g(i)‖∞; i = 0, . . . , s}, ‖ · ‖∞ is the
uniform norm on C(I), I ′ ⊂ I, J ′ ⊂ J are compact subintervals of the real
axis, and (0, 0) ≤ (p′, q′) ≤ (p, q). Let us suppose that the operators L and M
satisfy the conditions

|[g − L(g)](k)(x)| ≤
∑

r∈T

Kr,k,L(x)ωr(g(p); γr,L(x))

for all 0 ≤ k ≤ p′ ≤ p, x ∈ I ′, g ∈ Cp(I), and

|[h − M(h)](l)(y)| ≤
∑

s∈S

Ks,l,M (y)ωs(h(q); γs,M (y)),

for all 0 ≤ l ≤ q′ ≤ q, y ∈ J ′, h ∈ Cq(J), where T, S are finite (nonempty)
subsets of N ∪ {0} and K, γ are bounded functions on their domains of defin-
ition.

Then, for all (x, y) ∈ I ′ × J ′, f ∈ Cp,q(I × J), (0, 0) ≤ (k, l) ≤ (p′, q′) ≤
(p, q), we have the estimates

|[f − (xL ◦y M)(f)]k,l(x, y)| ≤
∑

r∈T

Kr,k,L(x)ωr(f (p,l); γr,L(x), 0)

+‖|Dk ◦ L‖| · sup
0≤i≤p

∑

s∈S

Ks,l,M (y) · ωs(f (i,q); 0, γs,M (y))

and

|[f − (xL ◦y M)(f)]k,l(x, y)| ≤
∑

s∈S

Ks,l,M (y)ωs(f (k,q); 0, γs,M (x))

+‖|Dl ◦ M‖| · sup
0≤j≤q

∑

r∈T

Kr,k,L(y) · ωr(f (p,j); γr,L(x), 0),

where by definition,

‖|L‖| = sup{ max
0≤k≤p′

max
x∈J

|[L(f)](k)(x)|; f ∈ Cp(I), ‖f‖ ≤ 1}.

An application of Theorem 2.3.1 is a bivariate version of the Brudnyi–
Gopengauz pointwise-type result in the univariate case. We need only its
immediate uniform (i.e., in the ‖ · ‖∞-norm) consequence below.

Theorem 2.3.2. (Beutel–Gonska [42], Section 3.1, p. 10) For any f ∈
Cp,q([−1, 1]2) and for (0, 0) ≤ (k, l) ≤ (p′, q′), there exists a sequence of bi-
variate polynomials Qn,m(f)(x, y) of degree ≤ n in x and of degree ≤ m in y
for all n ≥ max{4(p + 1), p + r}, m ≥ max{4(q + 1), q + s}, such that
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‖[f − Qn,m](k,l)‖∞ ≤ cp,r

(
1
n

)p−k

· ωr

(

f (p,l);
1
n

, 0
)

+ cp,q,r,s

(
1
m

)q−l

· sup
0≤i≤p

ωs

(

f (i,q); 0,
1
m

)

.

Here p′ = min{p, p − r + 2} ≤ p and q′ = min{q − s + 2, q} ≤ q.

Based on Theorem 2.3.2, we can prove the following new bivariate
Anastassiou–Shisha-type result.

Theorem 2.3.3. Let h1, h2, p, q, r, s be positive integers, 0 ≤ h1 ≤ p′ ≤ p,
0 ≤ h2 ≤ q′ ≤ q, with p′ = min{p, p − r + 2} ≤ p and q′ = min{q −
s + 2, q} ≤ q, and let f ∈ Cp,q([−1, 1]2). Consider the bounded functions
αi,j : [−1, 1] × [−1, 1] → R, i = h1, . . . , p

′, j = h2, . . . , q
′, assume that ah1,h2

is either ≥ α > 0 or ≤ β < 0 on [−1, 1]2 and define the differential operator

L =
p′
∑

i=h1

q′
∑

j=h2

αi,j(x, y)
∂i+j

∂xi∂yj
.

Also, define

Mk,l
n,m(f) = cp,r

(
1
n

)p−k

· ωr

(

f (p,l);
1
n

, 0
)

+cp,q,r,s

(
1
m

)q−l

· sup
0≤i≤p

ωs

(

f (i,q); 0,
1
m

)

,

Pn,m(L; f) =
p′
∑

i=h1

q′
∑

j=h2

li,jM
i,j
n,m,

and li,j = supx,y∈[−1,1]{|α−1
h1,h2

(x, y) · αi,j(x, y)|} < ∞. (Here a−1 means 1
a .)

If L(f)(x, y) ≥ 0,∀x, y ∈ [−1, 1], then for all n,m integers with n ≥
max{4(p + 1), p + r}, m ≥ max{4(q + 1), q + s}, there exists a bivari-
ate polynomial Qn,m(f)(x, y) of degree ≤ n in x and ≤ m in y, satisfying
L[Qn,m](f)(x, y) ≥ 0,∀x, y ∈ [−1, 1] and

‖f − Qn,m‖∞ ≤ Pn,m(L; f)
(h1)!(h2)!

+ cp,r
1
np

ωr

(

f (p,0);
1
n

, 0
)

+cp,q,r,s
1

mq
sup

0≤i≤p
ωs

(

f (i,q);
1
m

)

.

Proof. Case 1. Assume first αh1,h2(x, y) ≥ α > 0 for all x, y ∈ [−1, 1]. From
Theorem 2.3.2 there exists the bivariate polynomial Qn,m(x, y) such that we
have ∥

∥
∥
∥
∥

[

f + Pn,m(L; f)
xh1

h1!
yh2

h2!

](k,l)

− Q(k,l)
n,m

∥
∥
∥
∥
∥
∞

≤ Mk,l
n,m,
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which implies

‖f (k,l) − Q(k,l)
n,m ‖∞ ≤ Pn,m(L; f)

(h1 − k)!(h2 − l)!
+ Mk,l

n,m(f),

for all (0, 0) ≤ (k, l) ≤ (h1, h2).
Taking now k = l = 0, it follows that

‖f − Qn,m‖∞ ≤ Pn,m(L; f)
(h1)!(h2)!

+ M0,0
n,m(f)

=
Pn,m(L; f)
(h1)!(h2)!

+ cp,r
1
np

ωr

(

f (p,0);
1
n

, 0
)

+cp,q,r,s
1

mq
sup

0≤i≤p
ωs

(

f (i,q);
1
m

)

.

On the other hand, we have

α−1
h1,h2

(x, y)L(Qn,m)(x, y) = α−1
h1,h2

(x, y)L(f)(x, y)

+Pn,m(L; f) +
p′
∑

i=h1

q′
∑

j=h2

α−1
h1,h2

(x, y)αi,j(x, y)

×
[

Qn,m(x, y) − f(x, y) − Pn,m(L; f)
xh1

h1!
yh2

h2!

](i,j)

≥ α−1
h1,h2

(x, y)L(f)(x, y) + Pn,m(L; f) −
p′
∑

i=h1

q′
∑

j=h2

li,jM
i,j
n,m

= α−1
h1,h2

(x, y)L(f)(x, y) ≥ 0,

by hypothesis.
The case αh1,h2 ≤ β < 0 is similar, which proves the theorem. �

Remarks. (1) Theorem 2.3.3 improves the estimates of Theorem 2 in
Anastassiou [5].

(2) Let us suppose in Theorem 2.3.3 that in addition to the present hypoth-
esis, all the functions ai,j(x, y), i = h1, . . . , p

′, j = h2, . . . , q
′ are continuous on

[−1, 1] × [−1, 1] and that L(f)(x, y) > 0, for all x, y ∈ (−1, 1). By the conti-
nuity assumptions, it is immediate that L(f)(x, y) ≥ 0, for all x, y ∈ [−1, 1],
and from the proof of theorem, the conclusion L(Qn,m)(x, y) > 0, for all
x, y ∈ (−1, 1), n,m ∈ N, n ≥ max{4(p + 1), p + r}, m ≥ max{4(q + 1), q + s}
follows easily.

2.3.2 L-Positive Approximation

A generalization of the above method was introduced in Anastassiou–
Ganzburg [16] and is called L-positive approximation. The main idea is that
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if a parametric family of linear bounded operators on a vector space (Lγ)γ∈Γ

satisfies some suitable conditions, then the quantity of best approximation
by elements in a finite-dimensional subspace, constrained by the positivity
through (Lγ)γ∈Γ (called L-positivity), can be estimated by a constant times
the best unconstrained approximation quantity.

Thus, the known estimates for unconstrained best approximation will be-
come estimates for the best L-positive approximation too.

In what follows, this generalization is presented in greater detail.
Everywhere in this subsection we use the general notation and hypothesis

in the following.

Definition 2.3.4. For (X, ‖ · ‖X) a normed space, S a linear subspace of X,
M ⊂ X with S∩M 	= ∅, and f ∈ X, the best approximations of f by elements
from S and from S ∩ M are defined by

ES(f : X) = inf
g∈S

{‖f − g‖X}

and
ES,M (f ;X) = inf

g∈S∩M
{‖f − g‖X},

respectively.

Remarks. (1) It is obvious that ES(f ;X) ≤ ES,M (f ;X), for all f ∈ X.
(2) If, in addition, S is finite-dimensional, then by a classical result in

functional analysis (see, e.g., Singer [357], p. 91, Corollary 2.2), it follows that
there exists g∗ ∈ S such that ES(f ;X) = ‖f − g∗‖X . On the other hand,
S∩M is obviously a finite-dimensional set, so it is closed, and since obviously
span{S∩M} ⊂ S, due to an old result of Ascoli [28] (see, e.g., Muntean [279],
p. 126), it follows that S∩M is proximinal, i.e., there exists g∗M ∈ S∩M such
that ES,M (f ;X) = ‖f − g∗M‖X .

Let us denote by L∞(Ω) = {f : Ω → R; esssupx∈Ω |f(x)| < +∞}, where
Ω ⊂ R

m, and let L : X → L∞(Ω) be a linear bounded operator, i.e., ‖|L‖| =
sup{‖L(x)‖L∞(Ω); ‖x‖X ≤ 1} < ∞. Also, let M(L) = {f ∈ X;L(f)(x) ≥
0, a.e. on Ω}.

The goal is under some conditions on L and S ⊂ X to obtain an estimate
of the form

ES,M(L)(f ;X) ≤ CES(f ;X),∀f ∈ X,

where C is a constant independent of f and S.
Obviously that the above kind of inequality is not always valid.
The first main result is the following.

Theorem 2.3.5. (Anastassiou–Ganzburg [16]) For (X, ‖·‖X) a normed space
and S ⊂ X a linear subspace, let us consider a family of linear bounded
operators Lj : X → L∞(Ωj), Ωj ⊂ R

m, j ∈ J (J an arbitrary set), satisfying
the conditions
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(i) supj∈J ‖|Lj‖| < ∞;
(ii) there is an element e ∈ S such that for any j ∈ J we have

Lj(e)(x) ≥ 1, a.e. on Ωj .

Then, for every f ∈ X and P ∈ S, there exist Qi ∈ S, i = 1, 2, such that

(−1)i+1Lj(Qi − f)(x) ≥ 0, x ∈ Ωj , j ∈ J,

and the estimate

‖f − Qi‖X ≤ (1 + ‖e‖X sup
j∈J

‖|Lj‖|) · ‖f − P‖X , i = 1, 2,

holds.

Proof. Setting Qi = P + (−1)i+1λe, where λ = supj∈J{‖|Lj‖|} · ‖f − P‖X

for any i = 1, 2, we obtain

(−1)i+1Lj(Qi − f)(x) = (−1)i+1Lj(P − f)(x) + λL(e)(x)
≥ λ − sup

j∈J
{‖|Lj‖| · ‖f − P‖X = 0.

In addition,

‖f −Qi‖X ≤ ‖f − P‖X + λ‖e‖X = (1 + ‖e‖X sup
j∈J

‖|Lj‖|)‖f − P‖X , i = 1, 2,

which proves the theorem. �

Also, we have the following.

Theorem 2.3.6. (Anastassiou–Ganzburg [16]) Let us consider a family of
linear bounded operators Lj : X → L∞(Ωj), Ωj ⊂ R

m, j ∈ J (J an arbitrary
set), satisfying conditions (i) and (ii) (with S a linear subspace of X) in the
statement of Theorem 2.3.5, and for j ∈ J let us define

M+(Lj) = {f ∈ X : Lj(f)(x) ≥ 0, a.e. on Ωj},
M−(Lj) = {f ∈ X : Lj(f)(x) ≤ 0, a.e. on Ωj},

M± =
⋂

j∈J

M±(Lj).

Then for any f ∈ M±, we have

ES,M±(f ;X) ≤ (1 + ‖e‖X sup
j∈J

‖|Lj‖|)ES(f ;X).

Proof. We prove the case f ∈ M+, since the case f ∈ M− is similar. By
Theorem 2.3.5, there exists Q1 ∈ S such that Lj(Q1)(x) ≥ Lj(f)(x) ≥ 0, a.e.
x ∈ Ωj , for all j ∈ J . Thus Q1 ∈ M+ and the conclusion immediately follows
from the estimate in Theorem 2.3.5. �
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Corollary 2.3.7. (Anastassiou–Ganzburg [16]) Let L : X → L∞(Ω), Ω ⊂
R

m, be a linear bounded operator such that these exists e ∈ S (S a linear
subspace of X) with L(e) ≥ 1, a.e. on Ω. If we set M(L) = {f ∈ X :
L(f)(x) ≥ 0, on Ω}, then for any f ∈ M(L) we have

ES,M(L)(f ;X) ≤ (1 + ‖|L‖| · ‖e‖X)ES(f ;X).

Proof. It is immediate by taking Lj = L, for all j ∈ J in Theorem 2.3.6. �

Remarks. (1) The constant (1 + ‖|L‖| · ‖e‖X) can obviously be improved by
replacing ‖e‖X with c = inf{‖e‖X ; e ∈ S,L(e)(x) ≥ 1, a.e. on Ω}.

(2) Among many applications of the above results for particular spaces X,
S, and Lj in Anastassiou–Ganzburg [16], some of them refer to convex and
monotone approximation, the univariate case. Since that topic in fact was
studied, by different methods but in detail, in Sections 1.6 and 1.7, we omit
them here. Other applications refer to multivariate convex and subharmonic
approximation and will be presented in the next section.

At the end of this subsection we present new results that are refinements
of Theorems 2.3.5, 2.3.6 and Corollary 2.3.7, in the sense that the L-positivity
(i.e. ≥ 0) can be replaced by strict L-positivity (i.e., > 0).

Corollary 2.3.8. In the hypothesis of Theorem 2.3.5, for every f ∈ X and
P ∈ S, P 	= f , there exist Qi ∈ S, i = 1, 2, such that

(−1)i+1Lj(Qi − f)(x) > 0, x ∈ Ωj , j ∈ J

and the estimate

‖f − Qi‖X ≤ (1 + ‖e‖X + ‖e‖X sup
j∈J

‖|Lj‖|) · ‖f − P‖X , i = 1, 2,

holds.

Proof. Indeed, this conclusion easily follows if in the proof of Theorem 2.3.5
we take λ = (1 + supj∈J ‖|Lj‖|) · ‖f − P‖X . �

Corollary 2.3.9. In the hypothesis of Theorem 2.3.6 but introducing the no-
tation

M+
0 (Lj) = {f ∈ X : Lj(f)(x) > 0, a.e. on Ωj},

M−
0 (Lj) = {f ∈ X : Lj(f)(x) < 0, a.e. on Ωj},

M±
0 =

⋂

j∈J

M±
0 (Lj),

for any f ∈ M±
0 , we have

ES,M±
0

(f ;X) ≤ (1 + ‖e‖X + ‖e‖X sup
j∈J

‖|Lj‖|)ES(f ;X).
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Proof. We prove the case f ∈ M+
0 , since the case f ∈ M−

0 is similar. By
Corollary 2.3.8, for any f ∈ X and P ∈ S, P 	= f , there exists Q1 ∈ S such
that Lj(Q1)(x) > Lj(f)(x) > 0, a.e. x ∈ Ωj , for all j ∈ J . Thus Q1 ∈ M+

0 ,
and from the estimate in Corollary 2.3.8 we get

‖f − Q1‖X ≤ (1 + ‖e‖X + ‖e‖X sup
j∈J

‖|Lj‖|) · ‖f − P‖X , i = 1, 2,

which immediately implies the estimate in Corollary 2.3.9. �

Corollary 2.3.10. In the hypothesis of Corollary 2.3.7, writing M0(L) =
{f ∈ X : L(f)(x) > 0, on Ω}, then for any f ∈ M0(L) we have

ES,M0(L)(f ;X) ≤ (1 + ‖e‖X + ‖|L‖| · ‖e‖X)ES(f ;X).

Proof. The proof is immediate by taking Lj = L for all j ∈ J in Corollary
2.3.9. �

Remark. Other slightly different variants of the above results hold. For ex-
ample, in Corollary 2.3.10 let us suppose that L : X → C(Ω), with Ω ⊂ R

m

compact, is a linear bounded operator such that these exists e ∈ S (S a lin-
ear subspace of X) with L(e) ≥ 1 on Ω. If we define M0(L) = {f ∈ X :
L(f)(x)>0, on int{Ω}}, then for any f ∈ M0(L) we have

ES,M0(L)(f ;X) ≤ (1 + ‖|L‖| · ‖e‖X)ES(f ;X).

The estimate is immediate from the proof of Corollary 2.3.7.
Note that by L(f) ∈ C(Ω), we easily get L(f)(x) ≥ 0 for all x ∈ Ω, i.e.,

actually f ∈ M(L) = {f ∈ X : L(f)(x) ≥ 0, on Ω}.

2.4 Approximation Preserving Three Classical Shapes

This section presents approximation by polynomials preserving three classical
“shapes” of functions of two or several variables: harmonicity, subharmonicity,
and convexity.

2.4.1 Harmonic Polynomial Approximation

The following Weierstrass-type result in approximation of harmonic functions
by harmonic polynomials is well known:

Theorem 2.4.1. (Walsh [397], see also Keldysh–Lavrent’ev [193]) If A ⊂ R
m

is simply connected and f : A → R is harmonic on A (i.e., f ∈ H1(A)
according to Definition 2.1.5 (iii)), then for any compact set E ⊂ A
and any ε > 0, there exists a polynomial P ∈ H1(Rm) such that ‖f −
P‖C(E;R) < ε, where ‖ · ‖C(E;R) denotes the uniform norm on C(E; R) =
{f : E→R; f is continuous on E}.
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Since it is well known that any harmonic function of two real variables on
a domain in R

2 is (excepting an additive constant) the real part of an analytic
(holomorphic) function of one complex variable, we immediately obtain the
following quantitative result for the unit disk.

Theorem 2.4.2. Denote by D ⊂ C the open unit disk and by S1 = {(x, y) ∈
R

2;x2+y2 < 1} its geometric image in the plane. If f : S1 → R is harmonic in
S1 (i.e. f ∈ H1(S1)), continuous in S1 and p ∈ N, then there exists a sequence
of harmonic polynomials (Hn(x, y))n∈N (i.e., Hn(x, y) ∈ H1(S1), n ∈ N) of
total degree (Hn(x, y)) ≤ n such that

‖f − Hn‖C(S1;R) ≤ Cp[ωp(f ; 1/n)∞,∂S1 + ωp(g; 1/n)∞,∂S1 ], n = 1, 2, . . . ,

where g is harmonic conjugate to f and

ωp(f ; 1/n)∞,∂S1 = sup{|∆p
uf(cos v, sin v)|; |u| ≤ 1/n, |v| ≤ π}.

Proof. Indeed, let

F ∈ A(D) = {h : D → C;h is analytic in D and continuous in D},

with Re[F ] = f in D.
By Gaier [121], p. 4 (see also Gaier [122], p. 53), there exists a sequence

of complex polynomials (Pn(z))n, degree(Pn) ≤ n, such that

‖F − Pn‖ ≤ C(p)ωp(F ; 1/n)∞,∂D, n = 1, 2, . . . ,

where ‖ · ‖ denotes the uniform norm in C(D; C) and

ωp(F ; δ)∞,∂D = sup{|∆p
uF (eiv)|; |v| ≤ π, |u| ≤ δ},

i2 = −1, ∆p
uF (eiv) =

∑p
j=0(−1)p−j

(
p
j

)
F (ei(v+ju)).

Writing Hn = Re[Pn], we have degree(Hn(x, y)) ≤ n, and it follows that

‖f − Hn‖C(S1;R) ≤ ‖F − Pn‖
≤ C(p)ωp(f + ig; 1/n)∞,∂D ≤ Cp[ωp(f ; 1/n)∞,∂S1 + ωp(g; 1/n)∞,∂S1 ].

�

Results concerning the approximation of harmonic functions (of two or
several variables) by harmonic polynomials on sets more general than the
unit disk were obtained by, e.g., Andrievskii [21, 22, 23, 24], Andrievskii–
Belyi–Dzjadyk [25], Chapter 5, Section 4, pp. 172–183, Bergman [39], Holmes
[171], Kamzolov [190], Lenkhorova [224], Lenkhorova–Maymeskul [225], Pa-
ramonov [298], Pavlov [302], and others.

For example, the following quantitative estimates were proved.
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Theorem 2.4.3. (i) (Andrievskii [23]) Let M be a bounded continuum in C

such that A := C \ M is simply connected and M is the closure of a
quasidisk. Denote by LR the level curve of the Green function for A, i.e.,
LR := {z;G(z) = log(R)}, R > 1, and ρR(z) := infu∈LR

{|u − z|}, z ∈ C.
If ω is a modulus of continuity, then for any f ∈ H1(int(M)) continuous
on M , with the property

|f(z1) − f(z2)| ≤ Cω(|z1 − z2|), ∀z1, z2 ∈ M,

and any n ∈ N, there exists a polynomial Hn ∈ H1(int(M)) of total degree
≤ n such that

|f(z) − Hn(z)| ≤ Cω(ρ1+1/n(z)), z ∈ ∂(M).

(ii) (Andrievskii [23]) Let f ∈ H1(int(M)) be continuous in the compact set
M ⊂ R

3 supposed to have the additional property that each point of the
set A := R

3 \ M is the vertex of a circular cone of fixed solid angle that
lies in A. Define γ(t) := sup0<s<t{ s

1−s log(t/s)}, t ∈ (0, 1). Then for any
ε > 0, there exists a sufficiently large constant C(ε) such that

EH
n (f) ≤ C(ε)ω1(f ;n−γ(sin α)+ε), n ∈ N,

where α is the solid angle of the cone and EH
n (f) denotes the best uniform

approximation of f on M by harmonic polynomials of total degree ≤ n,
i.e.,

EH
n (f) := inf{‖f − P‖M ;P ∈ H1(R3),degree(P ) ≤ n}.

Remark. Extensions of Theorems 2.4.1 and 2.4.3 to polyharmonic functions
of order r ∈ N, Hr(Ω), are not known yet, being the subject of Open Problem
2.7.5. However, because of the fact that polyharmonic functions can be con-
sidered a multivariate analogue to the univariate linear functions, we can
mention here the following result due to Kounchev [217] that generalizes in a
sense the Weierstrass-type Theorem 2.4.1: if f has all the partial derivatives
of orders 2r continuous on Ω (but f is not necessarily polyharmonic), then
for any s ≥ r + 1, there exists a polyharmonic function Ts(f) of order s, i.e.,
Ts(f) ∈ Hs(Ω), such that

|f(x) − Ts(f)(x)| ≤ C

s2r
ωH

1 (∆r(Fr); 1/s), x ∈ Ω,

where C > 0 depends only on Ω and r, Fr(x) := f(x) − h(f)(x), x ∈ Ω,
h(f)(x) is the solution of the boundary value problem

∆r+1(h)(x) = 0, x ∈ Ω, ∆j(h)(x) = ∆j(f)(x), j = 0, . . . , r, x ∈ ∂D,

∆j(f) denotes the jth iteration of the Laplace operator ∆(f), and ωH
1 (G; 1/s)

denotes the so-called harmonicity modulus of continuity of G defined in
Kounchev [217]. In other words, this result gives a quantitative estimate in
approximation of nonpolyharmonic functions by polyharmonic ones, with re-
spect to the orders of polyharmonic functions.
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2.4.2 Subharmonic Polynomial Approximation

First we recall the following Weierstrass-type result.

Theorem 2.4.4. (Shvedov [353]) If Ω is a simply connected subset of R
m

and f : Ω → R is a continuous subharmonic function, then for any compact
E ⊂ Ω and any ε > 0, there exists a subharmonic polynomial p on R

m such
that

‖f − p‖C(E;R) < ε,

where ‖f‖C(E;R) = sup{|f(x)|;x ∈ E}.

As a quantitative result we mention the following.

Theorem 2.4.5. (Lu [252]) Let Ω ⊂ R
m be a bounded domain. If f : Ω→R

is continuous on Ω and subharmonic on Ω (i.e., f ∈ SH1(Ω) accord-
ing to Definition 2.1.5 (iii)), then there exists a sequence of polynomials
Pn ∈ SH1(Ω), n ∈ N, with (total) degree(Pn) ≤ n such that

‖f − Pn‖C(Ω;R) ≤ Cω1(f ;n−1/2)∞,Ω , n ∈ N.

Here C > 0 is an absolute constant,

ω1(f ; δ)∞,Ω = sup{|f(x) − f(y)|;x, y ∈ Ω, ‖x − y‖ ≤ δ},

and ‖x‖ denotes the Euclidean norm in R
m.

Unfortunately, the above estimate is rather weak. However, by applying
the L-positive approximation results in Section 2.3.2, we will show that under
some additional differentiability conditions, it can essentially be improved. In
this sense, first we need the following definition.

Definition 2.4.6. For Ω ⊂ R
m compact, recall that the Sobolev space

W 2
∞(Ω) is the space of twice-differentiable functions on Ω, f : Ω → R,

with bounded partial derivatives, endowed with the norm ‖f‖W 2
∞(Ω) =∑

0≤|a|≤2 ‖Da(f)‖L∞(Ω) < ∞, where a = (a1, . . . , am), ai ≥ 0, i = 1, . . . , m,

|a| =
∑m

i=1 ai, Daf(x) = ∂|a|f(x)

∂x
a1
1 ...∂xam

m
, x = (x1, . . . , xm).

Denoting by Pm
n the class of algebraic polynomials in m variables and of

total degree ≤ n, we present the following result.

Theorem 2.4.7. (Anastassiou–Ganzburg [16]) If f ∈ SH1(Ω)∩W 2
∞(Ω) (see

Definition 2.1.5 (iii) and Remark 4 after Definition 2.1.5), then for any n ∈ N,
n ≥ 2, there exists Q∗

n ∈ Pm
n ∩ SH1(Ω) such that

‖f − Q∗
n‖W 2

∞
≤ C(m) · EPm

n
(f ;W 2

∞(Ω)),

where Cm > 0 is a constant independent of f and n.
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Proof. Since it requires some rather technical details, for the proof see
Anastassiou-Ganzburg [16], pp. 482–483, Corollary 3.4. �

Now, taking into account the Jackson-type results for simultaneous ap-
proximation by unconstrained polynomials in Anastassiou–Ganzburg [16],
Section 4, we immediately get the following.

Corollary 2.4.8. (Anastassiou–Ganzburg [16]) For any f ∈ SH1(Ω) ∩
W 2

∞(Ω), k ≥ 1, n > k + 2, there exists Q∗
n ∈ Pm

n ∩ SH1(Ω) such that

‖f − Q∗
n‖W 2

∞(Ω) ≤ Cmn−2 max
|b|=2

ωk(Db(f);Cn−1).

Here, Cm, C > 0 are constants independent of f and n and for any h ≥ 0,
ωk(f ;h) = sup{|

∑k
s=0(−1)k−s

(
k
s

)
f(x + st)| : x, . . . , x + kt ∈ Ω, ‖t‖Rm ≤ h}

is of the kind introduced by Definition 2.1.2 (iii).

Proof. It is an immediate consequence of Theorem 2.4.7 and of the follow-
ing Jackson-type estimates (see a particular case of Theorem 4.1, p. 485 in
Anastassiou–Ganzburg [16]): for any k ≥ 1, n > k + 2, f ∈ W 2

∞(Ω), there
exists a polynomial Rn ∈ Pm

n such that for every multi-index a = (a1, . . . , am)
with 0 ≤ |a| ≤ 2, we have

‖Da[f − Rn]‖L∞(Ω) ≤ C1n
|a|−2 max

|b|=2
ωk(Db(f);Cn−1),

where C1, C > 0 are constants independent of f and n.
Indeed, since by definition we have

‖f − Rn‖W 2
∞(Ω) =

∑

0≤|a|≤2

‖Da[f − Rn]‖L∞(Ω),

from the above Jackson-type estimate for |a| = 0, it easily follows that

‖f − Rn‖W 2
∞(Ω) ≤ Cmn−2 max

|b|=2
ωk(Db(f);Cn−1).

Since
EPm

n
(f ;W 2

∞(Ω)) ≤ ‖f − Rn‖W 2
∞(Ω),

combined with Theorem 2.4.7, we easily get the desired conclusion. �

Remarks. (1) For other Jackson-type results in the multivariate case that
are potentially applicable above, see, e.g., Ganzburg [142], [143].

(2) Despite its generality, the above L-positive method seems to have a
shortcoming, namely in the cases of subharmonic functions, it seems not to
be applicable to nondifferentiable functions. Indeed, the condition of the type
L(e)(x) ≥ 1, a.e. x ∈ Ω, for a suitable chosen subharmonic polynomial e is
too strong in the nondifferentiability case. For example, in the case m = 2,
the corresponding family of linear bounded operators would be Lr(f)(x, y) =
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1
2π

∫ 2π

0
f [x+r cos(θ), y+r sin(θ)]dθ−f(x, y), with 0 < r < r0 and r0 sufficiently

small. It is easy to show that for any f ∈ SH1(Ω), for r sufficiently small, the
quantity |Lr(f)(x, y)| can be made as small we want.

Theorem 2.4.7 and Corollary 2.4.8 can be extended to approximation of
subharmonic functions of order p ∈ N. Defining for Ω ⊂ R

m a bounded
domain the class W 2p

∞ (Ω) of all 2p-times-differentiable functions on Ω, f :
Ω→R, with bounded partial derivatives, endowed with the norm ‖f‖W 2p

∞ (Ω) =
∑

0≤|a|≤2p ‖Da(f)‖L∞(Ω) < ∞, where a = (a1, . . . , am), ai ≥ 0, i = 1, . . . , m,

|a| =
∑m

i=1 ai, Daf(x) = ∂|a|f(x)

∂x
a1
1 ···∂xam

m
, x = (x1, . . . , xm), we present

Theorem 2.4.9. Let f ∈ SHp(Ω) ∩ W 2p
∞ (Ω) (i.e., according to Remark 4

after Definition 2.1.5 we have (−1)p∆p(f)(x) ≤ 0, for all x ∈ Ω).
(i) For any n ∈ N, n ≥ 2p, there exists Q∗

n ∈ Pm
n ∩ SHp(Ω) such that

‖f − Q∗
n‖W 2p

∞
≤ C(m, p) · EPm

n
(f ;W 2p

∞ (Ω)),

where C(m, p) > 0 is a constant independent of f and n.
(ii) For any k ≥ 1, n > max{k + 2, 2p}, there exists Q∗

n ∈ Pm
n ∩ SHp(Ω)

such that

‖f − Q∗
n‖W 2p

∞ (Ω) ≤ Cm,pn
−2p max

|b|=2p
ωk(Db(f);Cn−1).

Here Cm,p, C > 0 are constants independent of f and n.

Proof. Denoting the differential operator by L(f)(x) = (−1)p+1∆p(f)(x),
obviously L is linear, bounded on W 2p

∞ , and is a sum of partial derivatives of f

up to order 2p. Also, the function ρ(x) = (p−2)!
m(2p!)

∑m
k=1 x2p

k , x = (x1, . . . , xm) ∈
Ω, satisfies L(ρ)(x) = 1 for all x ∈ Ω.

(i) It is easy to see that this L(f)(x) satisfies all the required conditions
in the proof of Corollary 3.1 (and Remark 3.1) in Anastassiou–Ganzburg [16],
pp. 480–481. Therefore our estimate is a direct consequence of Remark 3.1,
p. 481 in Anastassiou–Ganzburg [16].

(ii) It is an immediate consequence of the above point (i) and of the general
Jackson-type estimate in Anastassiou–Ganzburg [16], p. 485, Theorem 4.1. �

2.4.3 Convex Polynomial Approximation

We have the following Weierstrass-type result, which in fact is a consequence
of a quantitative-type (Jackson-type) result.

Theorem 2.4.10. (Shvedov [354], Theorem 2) If Ω ⊂ R
m is a compact con-

vex set and f is convex on Ω (i.e., f ∈ KO1(Ω)), then for any ε > 0, there
exists a convex polynomial p on R

m such that ‖f − p‖C(Ω;Rm) < ε.
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Proof. Let ε > 0 be arbitrary. Since ω1(f ; 1
n+1 ;Ω) → 0 as n → ∞, choose

n ∈ N with ω1(f ; 1
n+1 ;Ω) < ε/Cm and apply Theorem 1 in Shvedov [354]

(that is Theorem 2.4.11 below). �

In what follows we prove the Jackson-type result.

Theorem 2.4.11. (Shvedov [354], Theorem 1) If f : Ω → R is convex on
Ω ⊂ R

m, where Ω is supposed to be compact convex, then for any n ∈ N,
there exists a convex polynomial Pn ∈ Pm

n such that

‖f − Pn‖C(Ω;R) ≤ Cmω1

(

f ;
1

n + 1
;Ω
)

,

where Cm > 0 is independent of f and n (but depends on m and increases with
m), ω1(f ; δ;Ω) = {|f(x)−f(y)|;x, y ∈ Ω, |x−y|Ω ≤ δ}, |x|Ω := inf{µ≥0;x ∈
µΩ0} and Ω0 = Ω \ O(Ω)}, O(Ω) the center of gravity of Ω.

Proof. We follow the ideas of proof in Shvedov [354]. First we remark that
if, for example, m = 2 and Ω = [−1, 1] × [−1, 1], then the norm | · |Ω is given
by |M |Ω = max{|x|, |y|} for all M = (x, y) ∈ R

2. Also, since | · |Ω is equivalent
to the Euclidean norm on R

2, denoted by ‖ · ‖R2 , it follows that the modulus
of continuity in the statement is in fact equivalent to that in Definition 2.1.2
(i), given by ω1(f ; δ) = {|f(x) − f(y)|;x, y ∈ [−1, 1], ‖x − y‖R2 ≤ δ}.

In what follows we will describe the main steps in the proof.
Step 1. In Lemma 3 in Shvedov [354] one constructs a sequence (ga)a∈(0,1]

of uniformly continuous convex piecewise affine functions on R
m such that

‖f − ga‖C(Ω;R) ≤ C(m)ω1(f ; a;Ω),

and ω1(ga; a;Ω) ≤ Cmω1(f ; a;Ω).
For example, in the particular cases m = 1 and m = 2, this construction

has simple geometrical interpretations, if we suppose in addition that f is
differentiable.

Thus, for m = 1, if, for example, Ω = [−1, 1], then for any a ∈ (0, 1],
one takes a division −1 = x0 < x1 < · · · < xk−1 < xk = 1 such that
maxi=0,...,k−1{xi+1 − xi} ≤ a. Suppose f is differentiable and convex on
[−1, 1]. Then for each i, at the middle of the subinterval (xi, xi+1), i.e., at
mi = xi+xi+1

2 , one takes the tangent at the graphic of f (of the equation
y = Pi(f)(x)) and at the middle of the subinterval (xi+1, xi+2), i.e., at
mi+1 = xi+1+xi+2

2 one takes the tangent at the graphic of f (of equation
y = Pi+1(f)(x)). These two tangents intersect at a point between mi and
mi+1, and so on, finally, ga(x) will be the continuous polygonal line, denoted
by P (f)(x), circumscribed about the graphic of f and tangent to it at the
points mi, i = 0, . . . , k−1. Since f is convex on [−1, 1], this continuous polyg-
onal line, is in fact given by the formula P (f)(x) = maxi{Pi(f)(x)} for all
x ∈ [−1, 1].
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For m = 2, if for example Ω = [−1, 1]× [−1, 1], then for any a ∈ (0, 1], one
takes two divisions of [−1, 1]: one is on the OX-axis denoted by −1 = x0 <
x1 < · · · < xk−1 < xk = 1 and the other one is on the OY axis denoted by
−1 = y0 < y1 < · · · < ys−1 < ys = 1, such that maxi=0,...,k−1{xi+1 − xi} ≤ a
and maxj=0,...,s−1{yj+1 − yj} ≤ a. In this way, Ω = [−1, 1]× [−1, 1] is decom-
posed into k · s rectangles Ti,j , i = 1, . . . , k, j = 1, . . . , s. Take the “center”
Mi,j of each rectangle Ti,j , i.e., Mi,j is the intersection of diagonals of Ti,j . At
each point Mi,j , consider the tangent plane to the convex surface z = f(x, y)
and define as ga(x, y) the maximum (at (x, y)) of all these tangent planes. In
other words, ga(x, y) is the uniformly continuous affine convex function (on
R

2) circumscribed about the convex surface z = f(x, y) and tangent to it at
the points Mi,j .

Step 2. For any g a uniformly continuous convex function on R
m and

n ∈ N, by Lemma 5 in Shvedov [354] one constructs a polynomial of total
degree ≤ n, convex on 2Y , that satisfies the estimate

‖g − Pn‖C(Y ;R) ≤ C(m)ω1(f ; 1/(n + 1);Y )Rm ,

where Y = {x = (x1, . . . , xm) ∈ R
m; |xi| < ai/2, |i = 1, . . . ,m}, with fixed

ai > 0, |i = 1, . . . ,m and ω1(f ; δ;Y )Rm = {|f(x)−f(y)|;x, y ∈ R
m, |x−y|Ω ≤

δ}. This construction is given as follows.
First one considers a multivariate algebraic polynomial Jn−1(t), t =

(t1, . . . , tm), as
Jn−1(t) = Πm

i=1K
(i)
n−1(ti),

where K
(i)
n−1(ti) := 1

5ai
Kn−1( ti

5ai
), and Kn−1(u) is the even univariate alge-

braic polynomial of degree ≤ n− 1 introduced in Dzjadyk [101], pp. 136–138,
having the properties

Kn−1(u) ≥ 0, u ∈ [−2, 2],
∫ 1

−1

Kn−1(u)du = 1,

∫ 2

−2

ujKn−1(u)du ≤ A

nj
, j = 1, 2, 3.

Second, one defines h(x) = g(x′), where x′ is the point of 4Y closest to x
in the Euclidean distance (note that h(x) = g(x) for all x ∈ 4Y ). For n ≥ 2m
and δ = 1/n, define

fδ(x) =
1

δ2mψ2

∫

δY

∫

δY

h(x + u + v)du dv,

where ψ = Vm(Y ) represents the m-dimensional volume of the set Y . It is
proved that

‖fδ − h‖C(Rm;R) ≤ Aω1(h; δ;Y )Rm .
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Then one chooses the polynomial

πn(x) := Π(1)
n (x) + Π(2)

n (x) + λ(x),

where

Π(1)
n (x) =

∫

10Y \Y

fδ(x + t)Jn−1(t)dt,

Π(2)
n (x) =

∫

Y

fδ(x + t)Jn−1(t)dt,

and λ(x) is of the form

λ(x) = A0ω1(h, δ;Y )Rm

m∑

i=1

x2
i

a2
i

, x = (x1, . . . , xm).

The final result follows from the above Step 1 and Step 2. For all the
details, the interested reader can consult Shvedov [354]. �

Remark. A much weaker estimate, of order O(ω1(f ;n−1/2)), in approxima-
tion of convex bivariate functions by convex bivariate polynomials was ob-
tained in Lu [251]. Also, let us mention the following negative-type result due
to Lu [253]: if a sequence of multivariate linear and positive operators pre-
serves the usual convexity and the affine functions, then it is necessarily a
sequence of affine functions (i.e., trivial), a fact that is in contrast to what
happens in the univariate case.

By applying the L-positive approximation results in Section 2.3.2, we will
show that under some additional differentiability conditions, the estimate in
Theorem 2.4.11 can essentially be improved. Keeping the notation, we present
the following theorem.

Theorem 2.4.12. (Anastassiou–Ganzburg [16]) Let Ω ⊂ R
m be convex and

compact. If f ∈ KO1(Ω) ∩ W 2
∞(Ω) (see Definition 2.1.5 (ii) and Remark 3

after Definition 2.1.5) and n ≥ 2, then there exists P ∗
n ∈ Pm

n ∩ KO1(Ω) such
that

‖f − P ∗
n‖W 2

∞(Ω) ≤ C(m) · EPm
n

(f ;W 2
∞(Ω)).

Proof. Let J = {j = (j1, . . . , jm); ‖j‖Rm = 1},X = W 2
∞(Ω) and consider

Lj(f)(x) =
∑

1≤k,i≤m

∂2f(x)
∂xi∂xk

jijk, ∀x ∈ Ω, j ∈ J.

By Remark 3 after Definition 2.1.5, f ∈ KO1(Ω) ∩ W 2
∞(Ω) if and only if

Lj(f)(x) ≥ 0 for all j ∈ J , x ∈ Ω. It is immediate that supj∈J ‖|Lj‖| ≤ 1,
and choosing e(x) = 1

2

∑m
k=1 x2

k ∈ Pm
n ∩ KO1(Ω),∀n ≥ 2, we easily get

Lj(e)(x) = 1,∀j ∈ J , and the result is an immediate consequence of Theorem
2.3.6 and of Remark 2 after Definition 2.3.4. �
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Corollary 2.4.13. (Anastassiou–Ganzburg [16]) Let Ω ⊂ R
m be convex and

compact. For f ∈ KO1(Ω) ∩ W 2
∞(Ω), k ≥ 1, n > k + 2, there exists Q∗

n ∈
Pm

n ∩ KO1(Ω) such that

‖f − Q∗
n‖W 2

∞(Ω) ≤ Cmn−2 max
|b|=2

ωk(Db(f);Cn−1).

Here Cm, C > 0 are constants independent of f and n, and for any h ≥ 0,
ωk(f ;h) = sup{‖

∑k
s=0(−1)k−s

(
k
s

)
f(x + st)‖ : x, . . . , x + kt ∈ Ω, ‖t‖Rm ≤ h}

is of the kind introduced in Definition 2.1.2, (iii).

Proof. It is an immediate consequence of Theorem 2.4.12 and of the follow-
ing Jackson-type estimates (see a particular case of Theorem 4.1, p. 485 in
Anastassiou–Ganzburg [16]): for any k ≥ 1, n > k + 2, f ∈ W 2

∞(Ω), there
exists a polynomial Rn ∈ Pm

n such that for every multi-index a = (a1, . . . , am)
with 0 ≤ |a| ≤ 2, we have

‖Da[f − Rn]‖L∞(Ω) ≤ C1n
|a|−2 max

|b|=2
ωk(Db(f);Cn−1),

where C1, C > 0 are constants independent of f and n.
The details are those in the proof of Corollary 2.4.8. �

Remarks. (1) For other Jackson-type results in the multivariate case that
are potentially applicable above, see, e.g., Ganzburg [142], [143].

(2) Despite its generality, the above L-positive method seems to have
a shortcoming, namely in the cases of convex functions, it seems to be
not applicable to nondifferentiable functions. Indeed, the condition of the
type L(e)(x) ≥ 1, a.e. x ∈ Ω, for a suitable chosen convex polynomial
e is too strong in the nondifferentiability case. For example, in the case
m = 1, the corresponding family of linear bounded operators would be
Lj(f)(s, t) = jf(s) + (1 − j)f(t) − f [js + (1 − j)t], j ∈ (0, 1), s, t ∈ [a, b].
It is easy to show that if j → 0 or if s → t, s 	= t, then Lj(f)(s, t) tends to
zero, so it cannot be made ≥ 1 for any convex function f : [a, b] → R.

Theorem 2.4.12 and Corollary 2.4.13 can be extended to approximation of
the so-called classes of polyconvex functions of order p ∈ N defined in what
follows.

For Ω ⊂ R
m convex and compact, let W 2p

∞ (Ω) be the class defined before
the statement of Theorem 2.4.9.

Definition 2.4.14. Let f ∈ W 2p
∞ (Ω). By Remark 3 after Definition 2.1.5, the

class of convex functions (of order 1) is denoted by KO1(Ω) and consists of
all the functions that for every j = (j1, . . . , jm) ∈ R

m with ‖j‖Rm = 1, satisfy
the condition

Lj(f)(x) =
∑

1≤k,i≤m

∂2f(x)
∂xi∂xk

jijk ≥ 0,∀x ∈ Ω.
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The class of polyconvex functions of order p ∈ N is denoted by KOp(Ω)
and is the class of all functions that for every j = (j1, . . . , jm) ∈ R

m with
‖j‖Rm = 1, satisfy the condition

Lp
j (f)(x) ≥ 0, ∀x ∈ Ω,

where Lp
j (f) := Lj [L

p−1
j (f)], L0

j (f) = f .

Remark. Suppose, for example, that m = 2, i.e., Ω ⊂ R
2. Then it is easy to

show by induction that f ∈ KOp(Ω) if and only if we have (formally written)
(

α
∂

∂x
+ β

∂

∂y

)2p

(f)(x) ≥ 0

for all (x, y) ∈ Ω and α2 + β2 = 1.
For example, for the function f(x, y) = x2y2 it is easy to check that f ∈

KO2(Ω) but f 	∈ KO1(Ω).
For general m > 2, it is easy to show that f ∈ KOp(Ω) if and only if we

have (formally written)
[

m∑

i=1

γi
∂

∂xi

]2p

(f)(x) ≥ 0,

for all x = (x1, . . . , xm) ∈ Ω, γ = (γ1, . . . , γm) with ‖γ‖Rm = 1.
For simplicity we consider below the bivariate case.

Theorem 2.4.15. Let Ω ⊂ R
2 be compact convex and f ∈ KOp(Ω), p > 1.

(i) For any n ∈ N, n ≥ 2p, there exists Q∗
n ∈ P2

n ∩ KOp(Ω) such that

‖f − Q∗
n‖W 2p

∞
≤ C(p) · EP2

n
(f ;W 2p

∞ (Ω)),

where C(p) > 0 is a constant independent of f and n.
(ii) For any k ≥ 1, n > max{k + 2, 2p}, there exists Q∗

n ∈ P2
n ∩KOp(Ω) such

that
‖f − Q∗

n‖W 2p
∞ (Ω) ≤ Cpn

−2p max
|b|=2p

ωk(Db(f);Cn−1).

Here, Cp, C > 0 are constants independent of f and n.

Proof. Fix p > 1. Obviously, for each j, Lp
j (f) is a linear bounded operator on

the space KOp(Ω) endowed with the norm in W 2p
∞ (Ω). Also, from ‖|Lj‖| ≤ 1,

it follows that ‖|Lp
j‖| ≤ 1, for all j ∈ R

2 with ‖j‖ = 1.
On the other hand, for e(x, y) = 2p−1[x2p + y2p] we have

Lp
j (e)(x, y) ≥ 1,

for all (x, y) ∈ Ω and all j = (j1, j2) ∈ R
2 with ‖j‖ = 1. Indeed, by simple

calculation we get Lp
j (e)(x, y) = 2p−1(2p!)[j2p

1 +j2p
2 ], with j2

1 +j2
2 = 1. Making
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the substitutions j2
1 = u we get Lp

j (x, y) = 2p−1(2p!)[up + (1 − u)p], u ∈ [0, 1].
As a function of u, it is easy to show that it is a convex function attaining its
minimum value at u = 1/2, i.e., Lj(e)(x, y) ≥ 2p−1(2p!)/2p−1 = (2p!) ≥ 1 for
all (x, y) ∈ Ω.

(i) Taking into account the above considerations, it is an immediate con-
sequence of Theorems 2.3.5 and 2.3.6 and of Remark 2 after Definition 2.3.4.

(ii) It is an immediate consequence of the above point (i) and of the general
Jackson-type estimate in Anastassiou–Ganzburg [16], p. 485, Theorem 4.1. �

In what follows, for bivariate convex approximation we will obtain good
estimates of Jackson type in terms of ω2 moduli of smoothness and K2-
functionals, under the continuity hypothesis on f only (without differentiabil-
ity conditions on f).

Looking more closely into the proof of the above Shvedov’s Theorem 2.4.11
(which is Theorem 1 in [354]), we will show that it can be modified, such that
the estimate in Theorem 2.4.11 can be improved in terms of the ω2 moduli
of smoothness. Since the estimate in Theorem 1 in Shvedov [354] is a direct
consequence of the estimates (in terms of the ω1 modulus) in Lemmas 3 and 5
there, in what follows we will re-prove these lemmas, obtaining their estimates
in terms of the ω2 modulus of smoothness.

For simplicity, we consider below the case Ω = [−1, 1]× [−1, 1] and m = 2.
The proof for arbitrary m is similar. Thus first, the construction in Lemma 3
in Shvedov [354] will be replaced by the following one.

We divide the square [−1, 1] × [−1, 1] into rectangles, by the points −1 =
x0 < · · · < xn1 = 1 and −1 = y0 < · · · < yn2 = 1, then we take the diagonals
of the generated rectangles as follows:

• For the four rectangles with (1, 1), (−1,−1), (1,−1), (−1, 1) as one of their
vertices, the corresponding diagonals pass through these vertices.

• For all the other rectangles, the diagonals are taken in the same directions
with the diagonals of the two rectangles having (−1, 1) and (1,−1) as
vertices.

In this way, we get a division of the square [−1, 1] × [−1, 1] by triangles
(i.e., a triangulation of the square [−1, 1] × [−1, 1]).

Let f : [−1, 1] × [−1, 1] → R be continuous and convex, i.e., the surface
z = f(x, y) is convex. For each triangle of the above division we consider
the unique interpolatory bivariate linear piecewise function of the form Ax +
By + C that passes through the three vertices of the triangle. In this way, we
obtain a continuous bivariate linear spline, Sn1,n2(f)(x, y), inscribed in the
convex surface z = f(x, y). Simple geometric reasoning shows us that this
continuous bivariate linear spline is also a convex surface, and in addition,
f(x, y) ≤ Sn1,n2(f)(x, y), for all (x, y) ∈ [−1, 1] × [−1, 1]. Also, note that
while this construction is inscribed in the convex surface z = f(x, y), the
construction in Lemma 3 in Shvedov [354] is circumscribed about the same
surface.

For ‖f − Sn1,n2(f)‖, we can prove the following kinds of estimates.
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Theorem 2.4.16. (Gal [136]) Let f ∈ C([−1, 1] × [−1, 1]) and the distinct
nodes −1 = x0 < xi < xi+1 < xn1 = 1, i = 1, . . . , n1 − 2, −1 = y0 < yj <
yj+1 < yn2 = 1, j = 1, . . . , n2 − 2.

(i) If the nodes are equidistant, i.e., xi+1 − xi = 1
n1

, i = 0, . . . , n1 − 1 and
yj+1 − yj = 1

n2
; j = 0, . . . , n2 − 1, then we have the estimate

‖f − Sn1,n2(f)‖ ≤ 6K2

(

f ;
1
n1

,
1
n2

)

,

where the bivariate K2(f ; t, s)-functional is defined by Definition
2.1.2 (iv).

(ii) If the nodes x0, . . . , xn1 and y0, . . . , yn2 are chosen as in Leviatan [228],
p. 473, Lemma A, then

‖f − Sn1,n2(f)‖ ≤ CKϕ
2

(

f ;
1
n1

,
1
n2

)

,

where the bivariate Kϕ
2 (f ; t, s)-functional is defined in Definition 2.1.2 (v).

Proof. By construction, the interpolation operator Sn1,n2(f)(x, y) is defined
as follows.

Case (1). If (x, y) ∈ [xi, xi+1] × [yj , yj+1], with (xi+1, yj+1) 	= (1, 1) and
(xi, yj) 	= (−1,−1), then

Sn1,n2(f)(x, y) = f(xi, yj+1) + (x − xi)
f(xi+1, yj) − f(xi, yj)

xi+1 − xi

+ (y − yj+1)
f(xi, yj+1) − f(xi, yj)

yj+1 − yj

for all (x, y) ∈ [xi, xi+1] × [yj , yj+1] satisfying Fi,j(x, y) < 0, and

Sn1,n2(f)(x, y) = f(xi, yj+1) + (x − xi)
f(xi+1, yj+1) − f(xi, yj+1)

xi+1 − xi

+ (y − yj+1)
f(xi+1, yj) − f(xi+1, yj+1)

yj − yj+1

for all (x, y) ∈ [xi, xi+1] × [yj , yj+1] satisfying Fi,j(f)(x, y) ≥ 0, where
Fi,j(x, y) = (y − yi+1) − (x − xi)

yj−yj+1
xi+1−xi

.
Case (2). If (x, y) ∈ [−1, x1] × [−1, y1], then

Sn1,n2(f)(x, y) = f(−1,−1) + (x + 1)
f(x1,−1) − f(−1,−1)

x1 + 1

+ (y + 1)
f(x1, y1) − f(x1,−1)

y1 + 1
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for all (x, y) ∈ [−1, x1] × [−1, y1] satisfying F0,0(x, y) < 0, and

Sn1,n2(f)(x, y) = f(−1,−1) + (x + 1)
f(x1, y1) − f(−1, y1)

x1 + 1

+ (y + 1)
f(−1, y1) − f(−1,−1)

y1 + 1

for all (x, y) ∈ [−1, x1] × [−1, y1] satisfying F0,0(x, y) ≥ 0, where F0,0(x, y) =
(y + 1) − (x + 1) y1+1

x1+1 .
Case (3). If (x, y) ∈ [xn1−1, 1] × [yn2−1, 1], then

Sn1,n2(f)(x, y)

= f(xn1−1, yn2−1) + (x − xn1−1)
f(1, yn2−1) − f(xn1−1, yn2−1)

1 − xn1+1

+ (y − yn2−1)
f(1, 1) − f(1, yn2−1)

1 − yn2−1

for all (x, y) ∈ [xn1−1, 1] × [yn2−1, 1] satisfying Fn1−1,n2−1(x, y) < 0, and

Sn1,n2(f)(x, y) = f(xn1−1, yn2−1) + (x − xn1−1)
f(1, 1) − f(xn1−1, 1)

1 − xn1−1

+ (y − yn2−1)
f(xn1−1, 1) − f(xn1−1, yn2−1)

1 − yn1−1

for all (x, y) ∈ [xn1−1, 1] × [yn2−1, 1] satisfying Fn1−1,n2−1(x, y) ≥ 0, where
Fn1−1,n2−1(x, y) = (y − 1) − (x − 1) 1−yn2−1

1−xn1−1
.

(i) We will estimate the difference |g(x, y) − Sn1,n2(g)(x, y)| for g ∈
W 2([−1, 1] × [−1, 1]). If (x, y) ∈ [−1,+1] × [−1,+1], then there exist i and j
such that (x, y) ∈ [xi, xi+1]× [yj , yj+1]. To make a choice, let us suppose that
we are in Case (1) above, with Fi,j(x, y) < 0. (The proofs for all the other
cases are similar). By a simple calculation we have

g(x, y) − Sn1,n2(g)(x, y) = (y − yj+1)E + (x − xi)F,

where

E =
g(x, y) − g(x, yj+1)

y − yj+1
− g(xi, yj+1) − g(xi, yj)

yj+1 − yj
,

F =
g(x, yj+1) − g(xi, yj+1)

x − xi
− g(xi+1, yj) − g(xi, yj)

xi+1 − yi
.

Then, using the notation for the divided difference of bivariate functions in
Popoviciu [315], we easily can write

E = [y, yj+1; [x; g(·, y)]] − [yj , yj+1; [xi; g(·, y)]]
= [yj , y, yj+1; [x; g(·, y)]](yj+1 − yj) + [yj , y; [x, xi; g(·, y)]](x − xi)
− [yj+1, yj , y; [xi; g(·, y)]](yj+1 − y)
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and

F = [x, xi; [yj+1; g(x, ·)]] − [xi, xi+1; [yj ; g(x, ·)]]
= [xi+1, xi, x; [yj+1; g(x, ·)]](x − xi+1)+[xi, xi+1; [yj+1, y; g(x, ·)]](yj+1 − y)

+ [xi, xi+1; [y, yj ; g(x, ·)]](y − yj).

By the mean value theorem for divided differences (on distinct nodes), we have
|[a, b, c; [x; g(·, y)]]| ≤ ‖∂2g

∂y2 ‖, [a, b, c; [y; g(x, ·)]] ≤ ‖ ∂2g
∂x2 ‖, [a, b; [c, d; g(·, y)]] ≤

‖ ∂2g
∂y∂x‖, [a, b; [c, d; g(x, ·)]] ≤ ‖ ∂2g

∂x∂y‖, which implies

‖E‖ ≤
∥
∥
∥
∥

∂2g

∂y2

∥
∥
∥
∥

1
n2

+
∥
∥
∥
∥

∂2g

∂x∂y

∥
∥
∥
∥

1
n1

+
∥
∥
∥
∥

∂2g

∂y2

∥
∥
∥
∥

1
n2

,

‖F‖ ≤
∥
∥
∥
∥

∂2g

∂x2

∥
∥
∥
∥

1
n1

+
∥
∥
∥
∥

∂2g

∂y∂x

∥
∥
∥
∥

1
n2

+
∥
∥
∥
∥

∂2g

∂y∂x

∥
∥
∥
∥

1
n2

,

and

‖g − Sn1,n2(g)‖ ≤ 1
n2

‖E‖ +
1
n1

‖F‖

≤ 2
n2

2

‖∂2g

∂y2
‖ +

1
n2

1

‖∂2g

∂x2
‖ +

2
n1n2

[

‖ ∂2g

∂x∂y
‖ + ‖ ∂2g

∂y∂x
‖
]

≤ 2
[

1
n2

2

‖∂2g

∂y2
‖ +

1
n2

1

‖∂2g

∂x2
‖ +

1
n1n2

(

‖ ∂2g

∂x∂y
‖ + ‖ ∂2g

∂y∂x
‖
)]

.

By the linearity of Sn1,n2 , for any g ∈ W 2([−1, 1] × [−1, 1]) we obtain

‖f − Sn1,n2(f)‖ ≤ ‖f − g‖ + ‖g − Sn1,n2(g)‖ + ‖|Sn1,n2‖| · ‖f − g‖,

where ‖|Sn1,n2‖| := sup{‖Sn1,n2(f)‖; ‖f‖ ≤ 1}. But in Case (1), with
Fi,j(x, y) < 0, we have

|Sn1,n2(f)(x, y)| ≤ |f(xi, yj+1)| + |x − xi|
|f(xi+1, yj)| + |f(xi, yj)|

|xi+1 − xi|

+ |y − yj+1|
|f(xi, yj+1)| + |f(xi, yj)|

|yj+1 − yj |
≤ 5‖f‖,

which implies that ‖|Sn1,n2‖| ≤ 5. It is easy to see that this inequality is valid
in all the cases of (x, y) ∈ [−1,+1] × [−1,+1].

As a consequence, for any g ∈ W 2([−1, 1] × [−1, 1]) it follows that

‖f − Sn1,n2(f)‖ ≤ 6‖f − g‖

+ 2
[

1
n2

2

∥
∥
∥
∥

∂2g

∂y2

∥
∥
∥
∥+

1
n2

1

∥
∥
∥
∥

∂2g

∂x2

∥
∥
∥
∥+

1
n1n2

(∥
∥
∥
∥

∂2g

∂x∂y

∥
∥
∥
∥+
∥
∥
∥
∥

∂2g

∂y∂x

∥
∥
∥
∥

)]

,
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i.e., passing to the infimum with g,

‖f − Sn1,n2(f)‖ ≤ 6K2

(

f ;
1
n1

,
1
n2

)

,

which proves (i).
(ii) Let g ∈ W 2,ϕ([−1, 1]×[−1, 1]) and (a, b) ∈ [−1, 1]×[−1, 1] be arbitrary,

i.e., there exist i and j such that xi ≤ a ≤ xi+1, yj ≤ b ≤ yj+1. From the
estimates at the above point (ii), we easily get

g(a, b) − Sn1,n2(g)(a, b) = (b − yj+1)((b − yj)[yj , b, yj+1; g(a, y)]y
+ (b − yj+1)(a − xi)[yj , b; [a, xi; g(x, y)]x]y
+ (a − xi)(a − xi+1)[xi+1, xi, a; g(x, yj+1)]x
+ (a − xi)(yj+1 − b)[xi, xi+1; [yj+1, b; g(x, y)]y]x
+ (a − xi)(b − yj)[xi, xi+1; [b, yj ; g(x, y)]y]x

:= E1 + E2 + E3 + E4 + E5.

Now, reasoning exactly as in the paper Leviatan [232], at pages 7–8, we get

E2 = (b − yj+1)[yj , b;
∫ a

xi

∂g

∂x
(u, y)du]y

=
b − yj+1

b − yj

∫ b

yj

∫ a

xi

∂2g

∂x∂y
(u, v)dudv

=
1

b − yj

1
a − xi

∫ b

yj

∫ a

xi

(b − yj+1)(a − xi)
∂2g

∂x∂y
(u, v)dudv.

But by Lemma A (iii) in Leviatan [228], since xi ≤ u ≤ a ≤ xi+1 and yj ≤ v ≤
b ≤ yj+1, we get a−xi ≤ xi+1 −xi ≤ c

√
1−u2

n1
, yj+1 − b ≤ yj+1 −yj ≤ c

√
1−v2

n2
,

which implies

|E2| ≤
C

n1n2

1
b − yj

1
a − xi

∫ b

yj

∫ a

xi

ϕuϕv

∣
∣
∣
∣

∂2g

∂x∂y
(u, v)

∣
∣
∣
∣ dudv

≤ C

n1n2

∥
∥
∥
∥ϕuϕv

∂2g

∂x∂y
(u, v)

∥
∥
∥
∥ .

Similarly, we get

|E1| ≤
1

yj+1 − yj

∫ yj+1

yj

(v − yj)(yj+1 − v)
∣
∣
∣
∣
∂g2

∂y2
(a, v)

∣
∣
∣
∣ du

≤ C

n2
2

∥
∥
∥
∥ϕ

2
v

∂2g

y2
(u, v)

∥
∥
∥
∥ ,

|E3| ≤
1

xi+1 − xi

∫ xi+1

xi

(u − xi)(xi+1 − u)
∣
∣
∣
∣
∂g2

∂x2
(u, yj+1)

∣
∣
∣
∣

≤ C

n2
1

∥
∥
∥
∥ϕ

2
u

∂2g

x2
(u, v)

∥
∥
∥
∥ .
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Then

E4 = (a − xi)
[

xi, xi+1;
∫ yj+1

b

∂g

∂y
(x, v)dv

]

x

=
1

xi+1 − xi

1
yj+1 − b

∫ xi+1

xi

∫ yj+1

b

(a − xi)(yj+1 − b)
∂g2

∂y∂x
(u, v)du dv,

which by similar reasoning gives

|E4| ≤
C

n1n2

∥
∥
∥
∥ϕuϕv

∂2g

∂y∂x
(u, v)

∥
∥
∥
∥ .

Finally, by similar reasoning for E5, we obtain

|E5| ≤
C

n1n2

∥
∥
∥
∥ϕuϕv

∂2g

∂y∂x
(u, v)

∥
∥
∥
∥ .

Reasoning exactly as for the K2-functional from the above point (i), we easily
arrive at the desired estimate. The theorem is proved. �

Corollary 2.4.17. (Gal [136]) Let f ∈ C([−1, 1]× [−1, 1]) be continuous and
convex on [−1, 1] × [−1, 1] and a ∈ (0, 1].

(i) Denoting by z = Hi,j(x, y) the equations of the linear plane pieces (in-
scribed in the convex surface z = f(x, y)) corresponding to the (finite number
of) triangulations in the division of [−1, 1] × [−1, 1] in the proof of Theorem
2.4.16, we have Sn1,n2(f)(x, y) = maxi,j{Hi,j(x, y)}, for all x, y ∈ [−1, 1].
Moreover, prolonging Sn1,n2(f) to S∗

n1,n2
(f)(x, y) = maxi,j{Hi,j(x, y)} for all

(x, y) ∈ R
2, it follows that S∗

n1,n2
(f) is convex and uniformly continuous on

R
2.

(ii) For all 1
n1

≤ a, 1
n2

≤ a, we have

‖f − Sn1,n2(f)‖ ≤ Cω2(f ; a).

Also,
ω2(S∗

n1,n2
(f); a) ≤ Cω2(f ; a),

where ω2(f ; a) is given by Definition 2.1.2 (ii). Note that in this inequality,
ω2(S∗

n1,n2
(f); a) is considered on the whole space R

2, while ω2(f ; a) is consid-
ered on [−1, 1] × [−1, 1].

Proof. (i) First, since f is convex, it is immediate that Sn1,n2(f)(x, y) =
maxi,j{Hi,j(x, y)}, for all x, y ∈ [−1, 1]. Also, since each Hi,j(x, y) is of the
form Hi,j(x, y) = Ai,jx + Bi,jy + Ci,j for all (x, y) ∈ R

2 and since Hi,j , |Hi,j |
are uniformly continuous on R

2, we immediately get that S∗
n1,n2

(f)(x, y) is
uniformly continuous as a finite sum of uniformly continuous functions on R

2,
and it is convex as the maximum of convex functions on R

2.
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(ii) By Theorem 2.4.16 we get

‖f − Sn1,n2(f)‖ ≤ 6K2

(

f ;
1
n1

,
1
n2

)

≤ 6K2(f ; a, a),

which combined with Lemma 2.1.3 (iii), (iv), implies K2(f ; a, a) ∼ ω2(f ; a)
and proves the first estimate.

On the other hand,

|∆2
hS∗

n1,n2
(f)(M)| ≤ |∆2

hS∗
n1,n2

(f)(M) − ∆2
hf(M)| + |∆2

hf(M)|
≤ 2‖Sn1,n2(f) − f‖ + ω2(f ; a) ≤ Cω2(f ; a),

for all M,M ±h ∈ [−1, 1]× [−1, 1], with |h1| ≤ a, |h2| ≤ a, where M = (x, y),
h = (h1, h2) and ∆2

h(f)(M) = f(M + h) − 2f(M) + f(M − h), M = (x, y),
h = (h1, h2).

We prove that the function F (M,h) = ∆2
hS∗

n1,n2
(f)(M), M ∈ R

2, h =
(h1, h2) ∈ [−1, 1] × [−1, 1], is uniformly continuous on R

2 × [−1, 1]2.
We first have

|∆2
hS∗

n1,n2
(f)(M) − ∆2

h′S∗
n1,n2

(f)(M ′)|
≤ 2|S∗

n1,n2
(f)(M) − S∗

n1,n2
(f)(M ′)|

+ |S∗
n1,n2

(f)(M + h) − S∗
n1,n2

(f)(M ′ + h′)|
+ |S∗

n1,n2
(f)(M − h) − S∗

n1,n2
(f)(M ′ − h′)|

≤ ε

3
+ |S∗

n1,n2
(f)(M + h) − S∗

n1,n2
(f)(M ′ + h′)|

+ |S∗
n1,n2

(f)(M − h) − S∗
n1,n2

(f)(M ′ − h′)|,

for all M,M ′ ∈ R
2 and all h, h′ ∈ [−1, 1] × [−1, 1].

Now, let ε > 0 be arbitrary, fixed. Since S∗
n1,n2

(f) is uniformly continuous
on R

2, there exists δ > 0 such that for all M = (x, y), M ′ = (x′, y′) ∈ R
2 with

‖M − M ′‖R2 < δ, we have

|S∗
n1,n2

(f)(M) − S∗
n1,n2

(f)(M ′)| <
ε

6
.

Suppose now ‖M −M ′‖R2 < δ/2 and ‖h− h′‖R2 < δ/2. This immediately
implies ‖(M ±h)− (M ′±h′)‖R2 ≤ δ, and therefore by the uniform continuity
of S∗

n1,n2
(f), it follows that |S∗

n1,n2
(f)(M ± h) − S∗

n1,n2
(f)(M ′ ± h′)| < ε

6 ,
which finally leads to

|∆2
hS∗

n1,n2
(f)(M) − ∆2

h′S∗
n1,n2

(f)(M ′)| < ε.

As a conclusion, F (M,h) is uniformly continuous on R
2 × [−1, 1]2.

Let M − h,M,M + h ∈ R
2 be with h = (h1, h2), |h1| ≤ a, |h2| ≤ a, fixed,

where M does not necessarily belong to [−1, 1] × [−1, 1]. Obviously, there
exist i, j and a plane linear piece Ki,j of equation z = Hi,j(x, y) such that
M ∈ Ki,j .
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From the uniform continuity of F (M,h), for ε = ω2(f ; a), there exists
δ > 0 such that

|∆2
hS∗

n1,n2
(f)(M) − ∆2

h′S∗
n1,n2

(f)(M ′)| < ω2(f ; a),

for all ‖M − M ′‖R2 < δ and ‖h − h′‖R2 < δ.
But we can choose M ′ sufficiently close to M and h′ sufficiently small that

M ′,M ′−h′,M ′ +h′ ∈ Ki,j , which immediately implies ∆2
h′S∗

n1,n2
(f)(M ′)=0.

As a consequence, we get |∆2
hS∗

n1,n2
(f)(M) < ω2(f ; a), which implies

ω2(S∗
n1,n2

(f); a) ≤ Cω2(f ; a) and proves the corollary. �

Remark. According to Lemma 2.1.3 (v), the modulus ω2(f ; a) in Corollary
2.4.17 is equivalent to ω∗

2(f ; a) (introduced by Definition 2.1.2 (iii)), which, in
fact, represents the modulus used in the proof of Theorem 2.4.18 below (but
with a different notation).

We are now in position to present the main result.

Theorem 2.4.18. (Gal [136]) If f : [−1, 1]×[−1, 1] → R is convex on [−1, 1]×
[−1, 1], then for any n ∈ N, there exists a convex polynomial Pn ∈ P2

n such
that

‖f − Pn‖ ≤ Cω2

(

f ;
1

n + 1

)

,

where ω2(f ; δ) is that in Definition 2.1.2 (iii), and C > 0 is independent of f
and n.

Proof. Everywhere we will recall and use some notation in the paper of
Shvedov [354] (see also the notation in the proofs of Theorem 2.4.11 and
Theorem 2.4.16). The estimate in Theorem 1 in Shvedov [354] is a direct con-
sequence of the estimates (in terms of the ω1 modulus) in Lemmas 3 and 5
there. Since Lemma 3 there was already replaced by Corollary 2.4.17, in what
follows we show that the statement of Lemma 5 in Shvedov [354] is valid by
replacing ω1 with ω2 there.

For that, keeping the notation in the above-mentioned Lemma 5, we re-
mark that since (in general dimensions m) it is easy to see that

fδ(x) =
1

δ2mψ2

∫

δY

∫

δY

h(x+u+ v)du dv =
1

δ2mψ2

∫

δY

∫

δY

h(x−u− v)du dv

for all x ∈ R
m, we can rewrite fδ as

fδ(x) =
1

δ2mψ2

∫

δY

∫

δY

h(x + u + v) + h(x − u − v)
2

du dv,

which immediately implies

|fδ(x) − h(x)| ≤ 1
δ2mψ2

∫

δY

∫

δY

∣
∣
∣
∣
h(x + u + v) + h(x − u − v)

2
− h(x)

∣
∣
∣
∣ du dv

≤ Aω2(h; a;Y )Rm ,
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i.e., the estimate (16) in the proof of Lemma 5 in Shvedov [354] can be written
in terms of the ω2 modulus of smoothness too.

Here, according to the remark after the proof of Corollary 2.4.17,
ω2(h; a;Y )Rm denotes the second-order modulus of smoothness of h on R

2

denoted by ω∗
2(h; a), which is equivalent to ω2(h; a) (both of the form in

Definition 2.1.2 (iii), but for h defined on the whole space R
2 and not

only on the bidimensional interval [a, b] × [c, d]). Also, ω2(f ; a,M) (with
M = [−1, 1] × [−1, 1]) in the proof of Theorem 1 in Shvedov [354], p. 524,
denotes in fact ω∗

2(f ; a).
Then (16) implies (17) in terms of ω2 too (for (17) in terms of ω1 see

Shvedov [354], p. 521). Here (16) and (17) refer to formulas in Shvedov [354].
Taking into account the formula for ∂2fδ

∂x2
1

(x1, x2) in Shvedov [354], p. 521,
i.e. (considering here for simplicity m = 2),

∂2fδ

∂x2
1

(x1, x2)

=
1

δ4ψ2

∫ δa1/2

−δa1/2

∫ δa2/2

−δa2/2

[

h(x1 + δa1, x2 + u2 + v2)

− 2h(x1, x2 + u2 + v2)

+ h(x1 − δa1, x2 + u2 + v2)

]

du2 dv2,

it immediately follows that
∥
∥
∥
∥

∂2fδ

∂x2
1

∥
∥
∥
∥

C(R2;R)

≤ Aω2(h; a;Y )R2

δ2a2
1

.

A similar estimate in terms of ω2 satisfies ‖∂2fδ

∂x2
2
‖C(R2;R).

Then, by the formula in Shvedov [354], p. 521, we have

∂2fδ

∂x1∂x2
(x1, x2)

=
1

δ4ψ2

∫ δa1/2

−δa1/2

∫ δa2/2

−δa2/2

[

h(x1 + δa1/2 + v1, x2 + δa2/2 + v2)

− h(x1 + δa1/2 + v1, x2 − δa2/2 + v2)

]

+

[

− h(x1 − δa1/2 + v1, x2 + δa2/2 + v2)

+ h(x1 − δa1/2 + v1, x2 − δa2/2 + v2)

]

dv1 dv2.
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But it is easy to show that

h(x1 + δa1/2 + v1, x2 + δa2/2 + v2) − h(x1 + δa1/2 + v1, x2 − δa2/2 + v2)
− h(x1 − δa1/2 + v1, x2 + δa2/2 + v2) + h(x1 − δa1/2 + v1, x2 − δa2/2 + v2)

= ∆2
(δa1/2,δa2/2)f(x + v) − ∆2

(δa1/2,−δa2/2)f(x + v),

where x = (x1, x2), v = (v1, v2), ∆2
αf(x) = f(x + α) − 2f(x) + f(x − α).

This immediately implies
∥
∥
∥
∥

∂2fδ

∂x1∂x2
(x1, x2)

∥
∥
∥
∥

C(R2;R)

≤ Aω2(h; a;Y )R2

δ2a1a2
,

i.e., the estimates (18) in the proof of Lemma 5 in Shvedov [354], p. 521, hold
in terms of ω2 moduli of smoothness too.

Keeping the notation for the polynomials Π
(1)
n , Π

(2)
n in Shvedov [354], pp.

521–522 (see also the proof of Theorem 2.4.11 above) as a first immediate
consequence, it follows that estimate (19) there holds in terms of ω2 too.

Also, writing λ(x1, x2) = 2A0ω2(h; δ;Y )R2

[
x2
1

a2
1

+ x2
2

a2
2

]
, the polynomials in

Lemma 5 in Shvedov [354] are now given by πn(x) = Π
(1)
n (x)+Π

(2)
n (x)+λ(x),

with the new above form for λ(x).
Now, taking into account that the multivariate algebraic polynomial

Jn−1(t), t = (t1, . . . , tm) (introduced in Shvedov [354], p. 519) is even, we
immediately get

∫

10Y

fδ(x + t)Jn−1(t)dt =
∫

10Y

fδ(x − t)Jn−1(t)dt,

which implies

fδ(x) − Π(1)
n (x) − Π(2)

n (x) =
∫

10Y

[

fδ(x) − fδ(x + t) + fδ(x − t)
2

]

Jn−1(t)dt,

and therefore

‖fδ(x) − Π(1)
n (x) − Π(2)

n (x)‖C(Y ;R) ≤
∫

10Y

ω2(fδ; |t|Y , Y )RmJn−1(t)dt

≤ ω2(fδ; δ, Y )Rm

∫

10Y

[n|t|Y +1]2Jn−1(t)dt,

where |t|Y = max{ 2
a1
|t1|, . . . , 2

am
|tm|}, which by the estimates (13) in Shvedov

[354], p. 519 (see also the estimates satisfied by Kn−1(ti) written in the proof
of Theorem 2.4.11), immediately implies the estimate (21) in Shvedov [354],
p. 522, in terms of ω2, which is exactly the estimate in Lemma 5 in Shvedov
[354], in terms of ω2.

Finally, following the lines in the proof of Theorem 1 in Shvedov [354] at
page 524 and the above considerations, it is easily seen that its estimate holds
in terms of ω2 too.

The theorem is proved. �
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Remark. If in Theorem 2.4.18, f is of C2-class, then the estimate in the
statement of the theorem becomes ‖f − Pn‖ ≤ C/n2, and one reobtains the
result of Budnik [50].

2.5 Bivariate Monotone Approximation by Convolution
Polynomials

In this section, we construct bivariate polynomials of convolution type, at-
tached to a bivariate function, that approximate in the uniform and Lp norms
with Jackson-type rate (by using suitable bivariate moduli of smoothness) and
preserve some bivariate kinds of monotonicity of function.

Recalling that in the univariate case, the first Jackson-type estimate (with-
out using derivatives) presented for monotone approximation in the uniform
norm, was Theorem 1.6.1 in Section 1.6, a bivariate analogue of Theorem 1.6.1
is the following.

Theorem 2.5.1. (Gal [125]) If f : [−1, 1] × [−1, 1] → R is continuous
on [−1, 1] × [−1, 1], then there exists a sequence of bivariate polynomials
(Pn1,n2(f)(x, y))n1,n2∈N, of degree n1 with respect to x and n2 with respect
to y, such that

|f(x, y) − Pn1,n2(f)(x, y)| ≤ Cω1

(

f ;
1
n1

,
1
n2

)

,

∀ n1, n2 ∈ N, ∀ x, y ∈ [−1, 1], C > 0 independent of f , n1, n2, x, and y ( here
ω1(f ; t, s) is defined by Definition 2.1.2 (i)) satisfying moreover the following
shape-preserving properties (for their definitions see the introduction to this
chapter):

(i) If f(x, y) is increasing (decreasing) with respect to x on [−1, 1]× [−1, 1],
then so is Pn1,n2(f)(x, y);

(ii) If f(x, y) is increasing (decreasing) with respect to y on [−1, 1]× [−1, 1],
then so is Pn1,n2(f)(x, y);

(iii) If f(x, y) is upper (lower) bidimensional monotone on [−1, 1] × [−1, 1],
then so is Pn1,n2(f)(x, y);

(iv) If f(x, y) is totally upper (lower) monotone on [−1, 1] × [−1, 1], then so
is Pn1,n2(f)(x, y).

First we need the following lemma.

Lemma 2.5.2. (Gal [125]) Let f : [−1, 1] × [−1, 1] → R be continuous on
[−1, 1] × [−1, 1] and F (t, s) = f(cos t, cos s), t, s ∈ R.

(i) We have

ω1(F ;α, β) ≤ ω1(f ;α, β), ∀ α, β ≥ 0,
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where

ω1(F ;α, β)
= sup{|F (t1, s1)−F (t2, s2)|; t1, t2, s1, s2 ∈ R, |t1−t2| ≤ α, |s1−s2| ≤ β}.

(ii) If we define g(F )(t, s) : [−π, π] × [−π, π] → R by

g(F )(t, s) = F

(
πk

n1
,
πj

n2

)

:= ck,j ,

if t ∈
[
πk

n1
,
π(k + 1)

n1

)

and s ∈
[
πj

n2
,
π(j + 1)

n2

)

, k = 0, n1, j = 0, n2,

g(F )(t, s) := g(−t, s), if t ∈ [−π, 0] and s ∈ [0, π],
g(F )(t, s) := g(t,−s), if t ∈ [0, π] and s ∈ [−π, 0],

g(F )(−t,−s) := g(−t,−s), if t ∈ [−π, 0] and s ∈ [−π, 0],

then g(F )(·, s), g(F )(t, ·), g(F )(·, ·) are even and

|F (t, s) − g(F )(t, s)| ≤ ω1

(

F ;
π

n1
,

π

n2

)

, ∀(t, s) ∈ [−π, π] × [−π, π].

Proof. (i) Let |t1 − t2| ≤ α, |s1 − s2| ≤ β, t1, t2, s1, s2 ∈ R. We get

|F (t1, s1) − F (t2, s2)| = |f(cos t1, cos s1) − f(cos t2, cos s2)|
≤ ω1(f ; | cos t1 − cos t2|, | cos s1 − cos s2|) ≤ ω1(f ;α, β),

reasoning as in the univariate case.
(ii) Reasoning as in univariate case (see the proof of Lemma 1.6.2 in

Chapter 1), the conclusion is immediate. �

Proof of Theorem 2.5.1. For f : [−1, 1] × [−1, 1] → R define F and
g(F ) as in Lemma 2.5.2.

Let us consider the Jackson kernel with

m′ =
[m

2

]
+ 1, Km(t) = λ−1

m′

⎛

⎜
⎝

sin
m′t

2

sin
t

2

⎞

⎟
⎠

4

,

∫ π

−π

Km(t)dt = 1,

and the Jackson double integral

Jn1,n2(g(F ))(t, s) :=
∫ π

−π

∫ π

−π

Kn1(t − u)Kn2(s − v)g(F )(u, v)du dv.

Define

Pn1,n2(f)(x, y) := Jn1,n2(g(F ))(arccos x, arccos y), x, y ∈ [−1, 1].
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Obviously Pn1,n2(f)(x, y) is an algebraic polynomial of degree ≤ n1 + n2

(i.e., of degree ≤ n1 in x and of degree ≤ n2 in y).
First we will deduce the estimate in Theorem 2.5.1.
Using Lemma 2.5.2 (i), (ii), we get

|F (t, s) − Jn1,n2(g(F ))(t, s)| ≤ |F (t, s) − Jn1,n2(F )(t, s)|
+ |Jn1,n2(F )(t, s) − Jn1,n2(g(F ))(t, s)|

≤ |F (t, s) − Jn1,n2(F )(t, s)| + ‖F − g(F )‖

≤ |F (t, s) − Jn1,n2(F )(t, s)| + ω1

(

F ;
π

n1
,

π

n2

)

≤ |F (t, s) − Jn1,n2(F )(t, s)| + ω1

(

f ;
π

n1
,

π

n2

)

.

Here ‖G‖ := sup{|G(t, s)|; t, s ∈ [−π, π]}.
On the other hand, as in the univariate case (see Lemma 1.6.2 in Chap-

ter 1), we obtain

|F (t, s) − Jn1,n2(F )(t, s)|

≤
∫ π

−π

∫ π

−π

|F (t, s) − F (t + u, s + v)|Kn1(u)Kn2(v)du dv

≤ Cω1

(

F ;
π

n1
,

π

n2

)

≤ Cω1

(

f ;
π

n1
,

π

n2

)

.

So the conclusion is

|F (t, s) − Jn1,n2(g(F ))(t, s)| ≤ Cω1

(

f ;
π

n1
,

π

n2

)

,

and making the substitutions t = arccos x, s = arccos y, we have obtained the
desired estimate.

In what follows, we will prove the shape-preserving properties. Writing

Hn1,n2(t, s, u, v) = Kn1(t − u)Kn2(s − v)g(F )(u, v)

and using the above notation, we have

Jn1,n2(g(F ))(t, s) =
∫ 0

−π

∫ 0

−π

Hn1,n2(t, s, u, v)dudv

+
∫ 0

−π

∫ π

0

Hn1,n2(t, s, u, v)dudv

+
∫ π

0

∫ 0

−π

Hn1,n2(t, s, u, v)dudv

+
∫ π

0

∫ π

0

Hn1,n2(t, s, u, v)dudv = I1 + I2 + I3 + I4.
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Let us suppose, first, that f(x, y) is increasing on [−1, 1] as a function of
x, for any fixed y ∈ [−1, 1]. We have

I1 =

(
n1−1∑

k=0

∫ −πk/n1

−π(k+1)/n1

Kn1(t − u)du

)

Ak(s),

I3 =

(
n1−1∑

k=0

∫ π(k+1)/n1

πk/n1

Kn1(t − u)du

)

Ak(s),

I2 =

(
n1−1∑

k=0

∫ −πk/n1

−π(k+1)/n1

Kn1(t − u)du

)

Bk(s),

I4 =

(
n1−1∑

k=0

∫ π(k+1)/n1

πk/n1

Kn1(t − u)du

)

Bk(s),

where

Ak(s) =
n2−1∑

j=0

ck,j

∫ −πj/n2

−π(j+1)/n2

Kn2(s − v)dv,

Bk(s) =
n2−1∑

j=0

ck,j

∫ π(j+1)/n2

πj/n2

Kn2(s − v)dv.

We obtain (as in the univariate case, see the proof of Lemma 1.6.2 in
Chapter 1)

I1 + I3 =
n1∑

k=1

ak−1(s)
∫ πk/n1

−πk/n1

Kn1(t − u)du,

I2 + I4 =
n1∑

k=1

bk−1(s)
∫ πk/n1

−πk/n1

Kn1(t − u)du,

where ak(s) and bk(s) are defined by the relations

Ak(s) = ak(s) + ak+1(s) + · · · + an−1(s), i.e., ak(s) = Ak(s) − Ak+1(s)

and

Bk(s) = bk(s) + bk+1(s) + · · · + bn−1(s), i.e., bk(s) = Bk(s) − Bk+1(s).

But

ak(s) = Ak(s) − Ak+1(s) =
n2−1∑

j=0

(ck,j − ck+1,j)
∫ −πj/n2

−π(j+1)/n2

Kn2(s − v)dv ≥ 0,

because by hypothesis f is increasing with respect to x, that is F , is decreasing
with respect to x, that implies ck,j − ck+1,j ≥ 0, ∀ k = 0, n1 − 1.
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Similarly,

bk(s) = Bk(s) − Bk+1(s) =
n2−1∑

j=0

(ck,j − ck,j+1)
∫ π(j+1)/n2

πj/n2

Kn2(s − v)dv ≥ 0.

As a conclusion,

∂Jn1,n2(g(F ))(t, s)
∂t

=
∂

∂t
(I1 + I3) +

∂

∂t
(I2 + I4)

=
n1∑

k=1

ak−1(s)
∂

∂t

(∫ πk/n1

−πk/n1

Kn1(t − u)du

)

+
n1∑

k=1

bk−1(s)
∂

∂t

(∫ πk/n1

−πk/n1

Kn1(t − u)du

)

≤ 0,

taking into account the reasoning at the end of proof of Lemma 1.6.2.
This immediately implies that Pn1,n2(f)(x, y) is increasing with respect

to x.
Now, if we suppose that f(x, y) is increasing on [−1, 1] with respect to y,

we rewrite I1, I2, I3, I4 with Kn2 first and then we group similarly I1 + I3 and
I2 + I4.

Finally, let us suppose that f(x, y) is upper bidimensional monotone on
[−1, 1] × [−1, 1].

Applying successively two times the decomposition in the univariate case
in the proof of Lemma 1.6.2, we get

Jn1,n2(g(F ))(t, s)

=
n1∑

k=1

n2−1∑

j=0

(ck,j+1 − ck,j − ck−1,j+1 + ck−1,j)

×
∫ πk/n1

−πk/n1

Kn1(t − u)du

∫ π(j+1)/n2

−π(j+1)/n2

Kn2(s − v)dv.

Indeed,

Jn1,n2(g(F ))(t, s) =

n1∑

k=1

(ak−1(y) + bk−1(y))

∫ πk/n1

−πk/n1

Kn1(t − u)du

=

n1∑

k=1

[(Ak−1(y) − Ak(y)) + (Bk−1(y) − Bk(y))]

×
∫ πk/n1

−πk/n1

Kn1(t − u)du
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=

n1∑

k=1

(∫ πk/n1

−πk/n1

Kn1(t − u)du

){
n2−1∑

j=0

(ck−1,j − ck,j)

×
[∫ −πj/n2

−π(j+1)/n2

Kn2(s − v)dv +

∫ π(j+1)/n2

πj/n2

Kn2(s − v)dv

]}

=

n1∑

k=1

(∫ πk/n1

−πk/n1

Kn1(t − u)du

)

Dk,

where applying the reasoning in the proof Lemma 1.6.2, we get

Dk =
n2−1∑

j=0

[(ck−1,j − ck,j) − (ck−1,j+1 − ck,j+1)]
∫ π(j+1)/n2

−π(j+1)/n2

Kn2(s − v)dv.

As a consequence we obtain

∂2Jn1,n2(g(F ))(t, s)
∂t∂s

≥ 0
(

which implies
∂2Pn1,n2(f)(x, y)

∂x∂y
≥ 0
)

,

by the proof of Lemma 1.6.2 and by the inequalities

ck,j+1 − ck,j − ck−1,j+1 + ck−1,j ≥ 0, ∀ k = 1, n1, ∀ j = 0, n2 − 1.

The last inequalities (concerning ck,j) hold from the fact that f(x, y) up-
per bidimensional monotone on [−1, 1] × [−1, 1] implies that F (t, s) is upper
bidimensional monotone on [0, π] × [0, π].

Indeed, let us first suppose that f is of C2-class.
We easily get

∂2F (t, s)
∂t∂s

= sin t sin s
∂2f(cos t, cos s)

∂t∂s
≥ 0, ∀ t, s ∈ [0, π].

Now, if f is only continuous on [−1, 1] × [−1, 1], then by standard proce-
dures we easily get that the Bernstein polynomials

Bm,n(f)(x, y) =
m∑

i=0

n∑

j=0

(
m

i

)(
n

j

)

xi(1 − x)m−iyj(1 − y)n−j

are uniformly convergent to f(x, y) (with m,n → +∞) and are upper bidi-
mensional monotone on [−1, 1].

Because obviously Bm,n(f)(x, y) are of C2-class, reasoning as above it
follows that Bm,n(f)(cos t, cos s) is upper bidimensional monotone on [0, π]×
[0, π], that is, for all m,n ∈ N, all t, s ∈ [0, π], and all α, β ≥ 0 we get

Bm,n(f)(cos(t + α), cos(s + β)) − Bm,n(f)(cos(t + α), cos s)

−Bm,n(f)(cos t, cos(s + β)) + Bm,n(cos t, cos t) ≥ 0.

Passing to limit with m,n → +∞, we obtain that F (t, s) = f(cos t, cos s)
is upper bidimensional monotone on [0, π] × [0, π].

This completes the proof. �
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2.6 Tensor Product Polynomials Preserving Popoviciu’s
Convexities

In order to extend the results in the real univariate case to the real bivari-
ate/multivariate case, in this section we intensively use the tensor product
method. Although the error estimates obtained are not always the best pos-
sible, this method is very accessible because it allows us to use the results in
the univariate cases.

2.6.1 Bivariate/Multivariate Monotone and Convex
Approximation

The next result extends that in the univariate case of Leviatan [228], [232] and
improves, in most cases that in Theorem 2.5.1 (excepting the cases of usual
monotonicities with respect to each variable, when the other one is fixed, i.e.,
Theorem 2.5.1 (i) and (ii)).

Theorem 2.6.1. For any continuous function f : [−1, 1] × [−1, 1] → R, a
sequence of bivariate polynomials (Pn1,n2(f)(x, y))n1,n2∈N exists, with degree
(Pn1,n2(f)(x, y)) ≤ n1 + n2, such that (see Gal [126])

‖f − Pn1,n2‖ ≤ Cωϕ
2

(

f ;
1
n1

,
1
n2

)

, ∀n1, n2 ∈ N,

where C > 0 is independent of f , n1, and n2, (ωϕ
2 is in Definition 2.1.2 (ii)),

satisfying, in addition, the following shape-preserving properties :

(i) (Gal [126]) If f is convex of order (1, 1) on [−1, 1]×[−1, 1] (i.e., according
to Remark 3 of Definition 2.1.1, f is upper bidimensional monotone),
then so is Pn1,n2(f).

(ii) (Gal [126]) If f is simultaneously convex of orders (0, 1), (1, 0), and (1, 1)
(i.e., according to Remark 3 of Definition 2.1.1, f(x, y) is totally upper
monotone) then so is Pn1,n2(f).

(iii) (Gal [126]) if f is convex of order (2, 2) on [−1, 1] × [−1, 1], then so is
Pn1,n2(f).

(iv) (Gal [126]) if f is totally convex on [−1, 1]× [−1, 1], then so is Pn1,n2(f).
(v) Let us denote by L1,1(f)(x, y) the tensor product of the Lagrange inter-

polation polynomials on the nodes a0<a1, a0, a1 ∈ [−1, 1] and b0 < b1,
b0, b1 ∈ [−1, 1], respectively, i.e., we have L1,1(f)(x, y) = Axy + Bx +
Cy + D, where A,B,C,D are given by the interpolation conditions
L1,1(f)(ai, bj) = f(ai, bj), i = 0, 1, j = 0, 1 and

D =
a1b1f(a0, b0) − a1b0f(a0, b1) − a0b1f(a1, b0) + a0b0f(a1, b1)

(a1 − a0)(b1 − b0)
.
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Let us denote by ST ([−1, 1] × [−1, 1]) the class of all functions satisfying
the condition D ≥ 0 for all −1 ≤ a0 < a1 ≤ 1, −1 ≤ b0 < b1 ≤ 1.

If f is totally convex and f ∈ ST ([−1, 1]×[−1, 1]), then Pn1,n2(f) is totally
convex and satisfies the differential inequality

P (x, y) − x
∂P

∂x
(x, y) − y

∂P

∂y
(x, y) + xy

∂2P

∂x∂y
(x, y) ≥ 0

for all x, y ∈ [−1, 0] (see Open Problem 2.7.9).

Proof. For h : [−1, 1] → R, according to Leviatan [228], relation (5) (see also
the proof of Theorem 1.6.3, Case 1), the approximation polynomials are given
by

Pn(h)(x) = h(−1) +
n−1∑

j=0

sj,n(Rj,n(x) − (Rj+1,n(x)),

where sj,n = h(ξj+1,n)−h(ξj,n)
ξj+1,n−ξj,n

, {ξj,n, j = 0, n} are suitable nodes in [−1, 1],
and Rj,n(x) are suitable chosen polynomials of degree ≤ n.

Also, by Leviatan [228], Theorem 1 (see also the proof of Theorem 1.6.3,
Case 1), we have

‖h − Pn(h)‖ ≤ Cωϕ
2

(

h;
1
n

)

∞
,∀n ∈ N,

where ωϕ
2 (h; δ)∞ is the usual Ditzian–Totik uniform modulus of smoothness.

We will construct the polynomials Pn1,n2(f)(x, y) using the classical tensor
product method (see, e.g., Nürnberger [290], pp. 195–196).

We get

Pn1,n2(f)(x, y) = f(−1,−1)

+

n2−1∑

i=0

f(−1, ηi+1,n2) − f(−1, ηi,n2)

ηi+1,n2 − ηi,n2

[Ri,n2(y) − Ri+1,n2(y)]

+

n1−1∑

j=0

f(ξj+1,n1 ,−1) − f(ξj,n1 ,−1)

ξj+1,n1 − ξj,n1

[Rj,n1(x) − Rj+1,n1(x)]

+

n1−1∑

j=0

n2−1∑

i=0

S∗
i,j [Ri,n2(y) − Ri+1,n2(y)][Rj,n1(x) − Rj+1,n1(x)],

where
S∗

i,j

=
f(ξj+1,n1 , ηi+1,n2) − f(ξj,n1 , ηi+1,n2) − f(ξj+1,n1 , ηi,n2) + f(ξj,n1 , ηi,n2)

(ξj+1,n1 − ξj,n1)(ηi+1,n2 − ξi,n2)

=

⎡

⎣
ξj,n1 , ξj+1,n1

; f
ηi,n2 , ηi+1,n2

⎤

⎦ ,
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and {ξj,n1}, Rj,n1(x), j = 0, n1, {ηi,n2}, Ri,n2(y), i = 0, n2, are constructed as
in the univariate case in Leviatan [228] (see also the proof of Theorem 1.6.3,
Case 1).

Obviously, degree (Pn1,n2(f)) ≤ n1 + n2.
First we deduce the estimate in Theorem 2.6.1. Thus, for any univariate

function h, we have

‖Pn(h)‖ ≤ ‖h‖ + ‖Pn(h) − h‖ ≤ ‖h‖ + Cωϕ
2

(

h;
1
n

)

∞
≤ (1 + 4C)‖h‖,

that is, passing to sup with ‖h‖ ≤ 1, we obtain (for the linear operator Pn)

‖|Pn‖| ≤ (1 + 4C), ∀n ∈ N,

with C > 0 independent of n.
Then by Theorem 5 in Haussmann–Pottinger [167], we immediately obtain

‖f − Pn1,n2(f)‖ ≤ C

[

ωϕ
2,x

(

f ;
1
n1

)

+ ωϕ
2,y

(

f ;
1
n2

)]

,

where ωϕ
2,x and ωϕ

2,y are the partial moduli defined in Ditzian–Totik [98],
Chapter 12. Since obviously we have

ωϕ
2,x

(

f ;
1
n2

)

+ ωϕ
2,y

(

f ;
1
n2

)

≤ 2ωϕ
2

(

f ;
1
n1

,
1
n2

)

,

we obtain the desired estimate.
Now, we will prove the shape-preserving properties.
(i) Let f be convex of order (1, 1). We will prove that

∂2Pn1,n2(f)(x, y)
∂x∂y

≥ 0, ∀x, y ∈ [−1, 1].

Indeed, we get

∂2Pn1,n2(f)(x, y)
∂x∂y

=
n1−1∑

j=0

n2−1∑

i=0

S∗
i,j(R

′
i,n2

(y) − R′
i+1,n2

(y))(R′
j,n1

(x) − R′
j+1,n1

(x)) ≥ 0,

since from univariate case, each of (Ri,n2(y) − Ri+1,n2(y)) and (Rj,n1(x) −
Rj+1,n1(x) is increasing with respect to y and x, respectively, and S∗

i,j ≥ 0,

∀i = 0, n2, j = 0, n1.
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(ii) Let f be simultaneously convex of orders (0, 1), (1, 0), and (1, 1). This
implies

f(−1, ηi+1,n2) − f(−1, ηi,n2)
ηi+1,n2 − ηi,n2

≥ 0,

f(ξj+1,n1 ,−1) − f(ξj,n1 ,−1)
ξj+1,n2 − ξj,n2

≥ 0,

and S∗
i,j ≥ 0, ∀i = 0, n2, j = 0, n1.

Also, Rj,n1(−1) = Ri,n2(−1) = 0, ∀j = 0, n1, i = 0, n2,

Rj,n1(x) − Rj+1,n1(x) ≥ 0, Ri,n2(y) − Ri+1,n2(y) ≥ 0,

∀j = 0, n1,i = 0, n2.

Therefore, we get

∂Pn1,n2(f)(x, y)
∂x

=
n1−1∑

j=0

f(ξj+1,n1 ,−1) − f(ξj,n1 ,−1)
ξj+1,n1 − ξj,n1

(R′
j,n1

(x) − R′
j+1,n1

(x))

+
∑n1−1

j=0

∑n2−1
i=0

⎡

⎣
ξj+1,n1 , ξj,n1

; f
ηi+1,n2 , ηi,n2

⎤

⎦

×(R′
j,n1

(x) − R′
j+1,n1

(x))(Ri,n2(y) − Ri+1,n2(y))

≥ 0,∀x, y ∈ [−1, 1] × [−1, 1].

Similarly, one obtains

∂Pn1,n2(f)(x, y)
∂y

≥ 0, ∀x, y ∈ [−1, 1],

and finally from the previous point (i), we get

∂2Pn1,n2(f)(x, y)
∂x∂y

≥ 0, ∀x, y ∈ [−1, 1].

(iii) By relation (5) in Leviatan [228], p. 473 (see also the proof of Theorem
1.6.3, Case 1), we obtain the form
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Pn1,n2(f)(x, y) = f(−1,−1) +
f(−1, η1,n2) − f(−1,−1)

η1,n2 + 1
(1 + y)

+

n2−1∑

i=1

[
f(−1, ηi+1,n2) − f(−1, ηi,n2)

ηi+1,n2 − ηi,n2

−f(−1, ηi,n2) − f(−1, ηi−1,n2)

ηi,n2 − ηi−1,n2

]

Ri,n2(y)

+
f(ξ1,n1 ,−1) − f(−1,−1)

ξ1,n2 + 1
(1 + x)

+

n1−1∑

j=1

[
f(ξj+1,n1 ,−1) − f(ξj,n1 ,−1)

ξj+1,n1 − ξj,n1

−f(ξj,n1 ,−1) − f(ξj−1,n1 ,−1)

ξj,n1 − ξj−1,n1

]

Rj,n1(x)

+ (1 + x)(1 + y)S∗
0,0 + (1 + x)

n2−1∑

i=1

(S∗
i,0 − S∗

i−1,0)Ri,n2(y)

+ (1 + y)

n1−1∑

j=1

(S∗
0,j − S∗

0,j−1)Rj,n1(x)

+

n1−1∑

j=1

n2−1∑

i=1

(S∗
i,j − S∗

i,j−1 − S∗
i−1,j + S∗

i−1,j−1)Ri,n2(y)Rj,n1(x),

where

S∗
i,j =

f(ξj+1,n1 , ηi+1,n2) − f(ξj,n1 , ηi+1,n2) − f(ξj+1,n1 , ηi,n2) + f(ξj,n1 , ηi,n2)

(ξj+1,n1 − ξj,n1)(ηi+1,n2 − ηi,n2)
.

Note that

f(−1, ηi+1,n2) − f(−1, ηi,n2)
ηi+1,n2 − ηi,n2

− f(−1, ηi,n2) − f(−1, ηi−1,n2)
ηi,n2 − ηi−1,n2

= (ηi+1,n2 − ηi−1,n2)

⎡

⎣
−1

; f
ηi−1,n2 , ηi,n2 , ηi+1,n2

⎤

⎦ ;

f(ξj+1,n1 ,−1) − f(ξj,n1 ,−1)
ξj+1,n1 − ξj,n1

− f(ξj,n1 ,−1) − f(ξj−1,n1 − 1)
ξj,n1 − ξj−1,n1

= (ξj+1,n1 − ξj−1,n1)

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
−1

⎤

⎦ ;
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S∗
i,0 − S∗

i−1,0 =

⎡

⎣
−1, ξ1,n1

; f
ηi,n2 , ηi+1,n2

⎤

⎦−

⎡

⎣
−1, ξ1,n1

; f
ηi−1,n2 , ηi,n2

⎤

⎦

= (ηi+1,n2 − ηi−1,n2)

⎡

⎣
−1, ξ1,n1

; f
ηi−1,n2 , ηi,n2 , ηi+1,n2

⎤

⎦ ;

S∗
0,j − S∗

0,j−1 = (ξj+1,n1 − ξj−1,n1)

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
−1, η1,n2

⎤

⎦

S∗
i,j − S∗

i,j−1 − S∗
i−1,j + S∗

i−1,j−1 = S∗
i,j − S∗

i,j−1 − (S∗
i−1,j − S∗

i−1,j−1)
= (ξj+1,n1 − ξj,n1)(ηi+1,n2 − ηi,n2)

×

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
ηi−1,n2 , ηi,n2 , ηi+1,n2

⎤

⎦ .

By the hypothesis on f and by R′′
i,n2

(y) ≥ 0, R′′
j,n1

(x) ≥ 0, ∀x, y ∈ [−1, 1]
(see the proof of Theorem 1.7.1, Case 1), we get

∂4Pn1,n2(f)(x, y)
∂x2∂y2

=
n1−1∑

j=1

n2−1∑

i=1

(ξj+1,n1 − ξj,n1)(ηi+1,n2 − ηi,n2)

×

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
ηi−1,n2 , ηi+1,n2 , ηi,n2

⎤

⎦R′′
i,n2

(y)R′′
j,n1

(x) ≥ 0.

(iv) By construction we have (see Leviatan [228] or the proofs of Theorems
1.6.3 and 1.7.1, Case 1)

R′
j,n1

≥ 0, Rj,n1(x) ≥ 0, R′′
j,n1

(x) ≥ 0,∀x ∈ [−1, 1], j = 0, n1,

R′
i,n2

(y) ≥ 0, Ri,n2(y) ≥ 0, R′′
i,n2

(y) ≥ 0, ∀y ∈ [−1, 1], i = 0, n2.

These inequalities combined with the hypothesis on f immediately give

∂2Pn1,n2(f)(x, y)
∂x2

≥ 0,
∂3Pn1,n2(f)(x, y)

∂x2∂y
≥ 0,

∂4Pn1,n2(f)(x, y)
∂x2∂y2

≥ 0,

∂2Pn1,n2(f)(x, y)
∂y2

≥ 0,
∂3Pn1,n2(f)(x, y)

∂y2∂x
≥ 0,∀x, y ∈ [−1, 1].

(v) First we need to prove that the polynomials Rj(x), j = 0, 1, . . . , satisfy
the differential inequality

Rj(x) − xR′
j(x) ≥ 0, ∀x ∈ [−1, 0].
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Indeed, writing F (x) = Rj(x) − xR′
j(x) we have F ′(x) = −xR′′

j . Since
R′′

j (x) ≥ 0 for al x ∈ [−1, 1], we get that F is increasing on [−1, 0] and
decreasing on [0, 1].

Now, it suffices to prove that Fj(−1) ≥ 0. We have

Fj(−1) = Rj(−1) + R′
j(−1) = R′

j(−1) = Tn−j(arccos(−1)) = Tn−j(π) ≥ 0.

Note here that in order to have Rj(x) − xR′
j(x) ≥ 0, ∀x ∈ [−1, 1], (a fact

suggested by intuition), it would be necessary and sufficient to prove that
Fj(1) = Rj(1) − R′

j(1) = 1 − ξj − R′
j(1) ≥ 0. For those j with ξj ≤ 0, the

above condition is clearly satisfied, because we easily see that by definition we
have 0 ≤ R′

j(1) ≤ 1. But in the present proof, the cases of j satisfying ξj > 0
remain unsettled (see Open Problem 2.7.9).

Continuing the proof, the polynomials Pn1,n2(f)(x, y) can be written in
the form

Pn1,n2(f)(x, y) = f(−1,−1) + B(1 + y) +
n2−1∑

i=1

BiRi,n2(y)

+ A(1 + x) +
n1−1∑

j=1

AjRj,n1(x) + (1 + x)(1 + y)S∗
0,0

+ (1 + x)
n2−1∑

i=1

(S∗
i,0 − S∗

i−1,0)Ri,n2(y) + (1 + y)

×
n1−1∑

j=1

(S∗
0,j − S∗

0,j−1)Rj,n1(x)

+
n1−1∑

j=1

n2−1∑

i=1

(S∗
i,j − S∗

i,j−1 − S∗
i−1,j + S∗

i−1,j−1)Ri,n2(y)

× Rj,n1(x),

where

S∗
i,j =

⎡

⎣
ξj,n1 , ξj+1,n1

; f
ηi,n2 , ηi+1,n2

⎤

⎦ ,

A =

⎡

⎣
−1

; f
−1, η1,n2

⎤

⎦B =

⎡

⎣
−1, ξ1,n1

; f
−1

⎤

⎦ ,

Bi = (ηi+1,n2 − ηi−1,n2)

⎡

⎣
−1

; f
ηi−1,n2 , ηi,n2 , ηi,+1,n2

⎤

⎦ ,
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Aj = (ξj+1,n1 − ξj−1,n1)

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
−1

⎤

⎦ ,

S∗
i,0 − S∗

i−1,0 = (ηi+1,n2 − ηi−1,n2)

⎡

⎣
−1, ξ1,n1

; f
ηi−1,n2 , ηi,n2 , ηi+1,n2

⎤

⎦ ,

S∗
0,j − S∗

0,j−1 = (ξj+1,n1 − ξj−1,n1)

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
−1, η1,n2

⎤

⎦ ,

S∗
i,j − S∗

i,j−1 − S∗
i−1,j + S∗

i−1,j−1

=(ξj+1,n1−ξj,n1)(ηi+1,n2−ηi,n2)

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
ηi−1,n2 , ηi,n2 , ηi+1,n2

⎤

⎦ .

By a simple calculation we get

Pn1,n2(f)(x, y)−x
∂Pn1,n2(f)

∂x
(x, y)−y

∂Pn1,n2(f)
∂y

(x, y)+xy
∂2Pn1,n2(f)

∂x∂y
(x, y)

= f(−1,−1) + S∗
0,0

+

⎡

⎣
−1

; f
−1, η1,n2

⎤

⎦+

⎡

⎣
−1, ξ1,n1

; f
−1

⎤

⎦

+
n2−1∑

i=1

Bi[Ri,n2(y) − yR′
i,n2

(y)]

+
n1−1∑

j=1

Aj [Rj,n1(x) − xR′
j,n1

(x)]

+
n2−1∑

i=1

(S∗
i,0 − S∗

i−1,0)[Ri,n2(y) − yR′
i,n2

(y)]

+
n1−1∑

j=1

(S∗
0,j − S∗

0,j−1)[Rj,n1(x) − xR′
j,n1

(x)]

+
n1−1∑

j=1

n2−1∑

i=1

(S∗
i,j − S∗

i,j−1 − S∗
i−1,j + S∗

i−1,j−1)

×[Ri,n2(y) − yR′
i,n2

(y)][Rj,n1(x) − xR′
j,n1

(x)] ≥ 0,
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by the condition that f be totally convex and since f ∈ ST ([−1, 1]× [−1, 1]),
implies

f(−1,−1) + S∗
0,0 +

⎡

⎣
−1

; f

−1, η1,n2

⎤

⎦+

⎡

⎣
−1, ξ1,n1

; f

−1

⎤

⎦

=
ξ1,n1η1,n2f(−1,−1) + ξ1,n1f(−1, η1,n2) + η1,n2f(ξ1,n1 ,−1) + f(ξ1,n1 , η1,n2)

(ξ1,n1 + 1)(η1,n2 + 1)
,

an expression that is ≥ 0 by replacing a0 = b0 = −1 and a1 = ξ1,n1 , b1 = η1,n2

in the definition of the class ST ([−1, 1] × [−1, 1]). The theorem is proved. �

Remarks. (1) The polynomials constructed by Theorem 2.6.1 do not pre-
serve the usual monotonicity (as Theorem 2.5.1 (i), (ii) does), but still preserve
the total monotonicity, which seems to be the most natural concept of bivari-
ate monotonicity, because by Nicolescu [286], a totally monotone function has
at most a countable numbers of points of discontinuity.

(2) The bivariate differential operator on the left-hand side of the differ-
ential inequality in Theorem 2.6.1 (v) in fact represents the “tensor product”
of the univariate differential operator in Corollary 1.7.6. Indeed, applying it
first with respect to x, we get the expression F (x, y) = P (x, y) − x∂P

∂x and
then applying it to F with respect to y we obtain

P (x, y) − x
∂P

∂x
− y

∂P

∂y
+ xy

∂2P

∂x∂y
.

In what follows, we will restate Theorem 2.6.1 (i)–(iv) for the multivariate
case, with a proof for the case of functions of three real variables, because the
m = 2 case seems to be not representative for the general case m ∈ N (as,
for example, would be the m = 3 case). Also, we will see that the proof of
the general result requires much more intricate calculation than in the case of
Theorem 2.6.1.

Theorem 2.6.2. (Gal–Gal [137]) Suppose that the function f : [−1, 1]m→
R, m ≥ 2, is continuous. Then there exists a sequence of multivariate
polynomials {Pn1,...,nm

(f)(x1, . . . , xm));n1, . . . , nm ∈ N}, where degree
(Pn1,...,nm

(f)(x1, . . . , xm)) ≤ nk with respect to the kth variable, k = 1,m,
such that

‖f − Pn1,...,nm
(f)‖ ≤ Cmωϕ

2

(

f ;
1
n1

, . . . ,
1

nm

)

, ∀n1, . . . , nm ∈ N,

where Cm > 0 is independent of f and ni, i = 1,m (here ωϕ
2 (f ; δ1, . . . , δm)

is in Definition 2.1.2, (ii)) satisfying moreover the following shape-preserving
properties:

(i) if f is convex of order (1, . . . , 1) on [−1, 1]m, then so is Pn1,...,nm
(f).
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(ii) if f is simultaneously convex of orders (s1, . . . , sm) ∈
{(s1, . . . , sm); si ∈ {0, 1}, ∀i = 1,m, and ∃k with sk = 1}, then so is
Pn1,...,nm

(f).
(iii) if f is convex of order (2, . . . , 2) on [−1, 1]m then so is Pn1,...,nm

(f).
(iv) if f is simultaneously convex of orders (s1, . . . , sm) ∈

{(s1, . . . , sm); si ∈ {0, 1, 2}, ∀i = 1,m, and ∃k with sk = 2}, then so
is Pn1,...,nm

(f).

Proof. If h : [−1, 1] → R, then according to Leviatan [228], relation (5) (see
also the proof of Theorem 1.6.3, Case 1), the approximation polynomials are
given by

Pn(h)(x) = h(−1) +
n−1∑

j=0

sj,n(Rj,n(x) − Rj+1,n(x)),

where sj,n = h(ξj+1,n)−h(ξj,n)
ξj+1,n−ξj,n

, ξj,n, j = 0, n, are suitable nodes in [−1, 1] and
Rj,n(x) are suitable chosen polynomials of degree ≤ n.

According to Leviatan [228], Theorem 1 (see also the proof of Theorem
1.6.3, Case 1), we have

‖h − Pn(h)‖ ≤ Cωϕ
2

(

h;
1
n

)

∞
, ∀n ∈ N,

where C > 0 is independent of h and n.
We will construct the polynomials Pn1,...,nm

(f)(x1, . . . , xm) by applying
the tensor product method (see e.g. Nürnberger [290], p. 195–296). By math-
ematical induction we get

Pn1,...,nm
(f)(x1, . . . , xm)

= f(−1, . . . ,−1) +
m∑

k=1

{
nk−1∑

ik=0

[·; f ]k · [Rik,nk
(xk)(xk) − Rik+1,nk

(xk)]

}

+
m∑

k,j=1
k<j

⎧
⎨

⎩

nk−1∑

ik=0

nj−1∑

ij=0

[·; f ]j,k · [Rik,nk
(xk) − Rik+1,nk

(xk)]

×[Rij ,nj
(xj) − Rij+1,nj

(xj)]

⎫
⎬

⎭
+ · · ·

+
m∑

p1,...,pm−1=1
p1<···<pm−1

⎧
⎨

⎩

np1−1∑

ip1=0

· · ·
npm−1−1∑

ipm−1=0

[·; f ]p1,...,pm−1

×
m−1∏

s=1

[Rips ,nps
(xps

) − Rips+1,nps
(xps

)]

⎫
⎬

⎭

+
n1−1∑

i1=0

· · ·
nm−1∑

im=0

[·; f ]1,...,m ·
m∏

k=1

[Rik,nk
(xk) − Rik+1,nk

(xk)],



170 2 Shape-Preserving Approximation by Real Multivariate Polynomials

where ξ
(k)
ik,nk

, Rik,nk
(xk), ik = 0, nk, k = 1, 2, . . . ,m, are constructed as in the

univariate case in Leviatan [228] (see also the proof of Theorem 1.6.3, Case
1), the value of f at the point (−1, . . . ,−1) by definition can be written as a
divided difference by

f(−1, . . . ,−1) =

⎡

⎢
⎢
⎢
⎣

−1
; f

...
−1

⎤

⎥
⎥
⎥
⎦

,

where the notation in the right-hand side denotes the divided difference of
f with m lines (see Definition 2.1) with −1 on each line, then [·; f ]k denotes
the divided difference obtained from the above, by replacing the line k (which
has only one node, −1), with another one composed by the two nodes ξ

(k)
ik,nk

and ξ
(k)
ik+1,nk

(the rest of the lines remaining unchanged), then [·; f ]k,j , k 	= j
denotes the divided difference obtained (from the same divided difference that
represents f(−1, . . . ,−1)) by replacing the lines k and j (which have only
the node −1) with lines composed by the pairs of nodes ξ

(k)
ik,nk

, ξ
(k)
ik+1,nk

and

ξ
(j)
ij ,nj

, ξ
(j)
ij+1,nj

, respectively, and so on.
Note that finally,

[·; f ]1,...,m =

⎡

⎢
⎢
⎢
⎢
⎣

ξ
(1)
i1,n1

, ξ
(1)
i1+1,n1

; f
...

ξ
(m)
im,nm

, ξ
(m)
im+1,nm

⎤

⎥
⎥
⎥
⎥
⎦

,

i.e., it is a divided difference with m lines, having two nodes on each line.
Obviously, degree (Pn1,...,nm

(f)) ≤ nk with respect to the kth variable,
k = 1,m.

First we prove the estimate in the theorem. For any univariate function h,
we have (as in the proof of Theorem 2.6.1)

‖Pn(h)‖ ≤ ‖h‖ + ‖Pn(h) − h‖ ≤ ‖h‖ + Cωϕ
2

(

h;
1
n

)

∞
≤ (1 + 2C)‖h‖,

that is, passing to the supremum with ‖h‖ ≤ 1, for the linear operator Pn we
obtain

‖|Pn‖| ≤ (1 + 2C), ∀n ∈ N,

where c > 0 is independent of n.
Applying now Theorem 5 in Haussmann–Pottinger [167], we immedi-

ately get

‖f − Pn1,...,nm
(f)‖ ≤ C

m∑

i=1

ωϕ
2,xi

(

f ;
1
ni

)

,
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where ωϕ
2,xi

(f ; δi), i = 1,m, are the partial moduli of smoothness defined by

ωϕ
2,xi

(f ; δi) = sup{|∆2,xi

hiϕ(xi)
f(x1, . . . , xm)|; 0 ≤ hi ≤ δi, xi, . . . , xm ∈ [−1, 1]},

where ϕ(t) =
√

1 − t2,

∆2,xi

hiϕ(xi)
f(x1, . . . , xm)

=
2∑

k=0

(
2
k

)

(−1)kf(x1, . . . , xi−1, xi + (1 − k)hiϕ(xi), xi+1, . . . , xm)

if x1, . . . , xi−1, xi ± hiϕ(xi), xi+1, . . . , xm ∈ [−1, 1],

∆2,xi

hiϕ(xi)
f(x1, . . . , xm) = 0, elsewhere.

Taking into account that obviously

m∑

i=1

ωϕ
2,xi

(

f ;
1
ni

)

≤ mωϕ
2

(

f ;
1
n1

, . . . ,
1

nm

)

,

we obtain the desired estimate.
In what follows we will prove the shape-preserving properties.
(i) Suppose f is convex of order (1, . . . , 1). We have to prove that

∂mPn1,...,nm
(f)(x1, . . . , xm)

∂x1 . . . ∂xm
≥ 0 on [−1, 1]m.

We get

∂mPn1,...,nm
(f)(x1, . . . , xm)

∂x1 . . . ∂xm

=
n1−1∑

i1=0

· · ·
nm−1∑

im=0

[·; f ]1,...,m

m∏

k=1

[
∂Rik,nk

(xk)
∂xk

− ∂Rik+1,nk
(xk)

∂xk

]

≥ 0,

because [·; f ]1,...,m ≥ 0 (f is convex of order (0, . . . , 0)) and from the univariate
case each Rik,nk

(xk) − Rik+1,nk
(xk), k = 1,m is increasing as a function of

xk ∈ [−1, 1].
(ii) By the hypothesis on f , it follows that all the quantities

[·, f ]k, [·, f ]k,j , . . . , [·; f ]p1,...,pm−1 , [·; f ]1,...,m

in the expression of Pn1,...,nm
(f) are ≥ 0.

By Rik,nk
(−1) = 0, ∀ik = 0, nk, k = 1,m, we immediately get

Rik,nk
(xk) − Rik+1,nk

(xk) ≥ 0, ∀ik = 0, nk − 1, xk ∈ [−1, 1], k = 1,m.
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Also, from the univariate case, we have

R′
ik,nk

(xk) − R′
ik+1,nk

(xk) ≥ 0, ∀ik = 0, nk − 1, xk ∈ [−1, 1], k = 1,m.

Let (si, . . . , sm) ∈ {(s1, . . . , sm); si ∈ {0, 1}, ∀i=1,m, ∃ k with sk=1}.
The above hypothesis and simple calculations (similar to those in the bi-
variate case, see the proof of Theorem 2.6.1 (ii)), immediately implies that
Pn1,...,nm

(f)(x1, . . . , xm) is convex of order (s1, . . . , sm), which proves (ii).
(iii) We have to prove that

∂2mPn1,...,nm
(f)(x1, . . . , xm)

∂x2
1 . . . ∂x2

m

≥ 0.

Applying with respect to each variable the relation in the univariate case (see
relation (5) in Leviatan [228], p. 473, or also the proof of Theorem 1.6.3, Case
1), i.e.,

Pn(g)(x) = g(−1) +
n−1∑

j=0

sj,n(Rj,n(x) − Rj+1,n(x)),

where

sj,n =
g(ξj+1,n) − g(ξj,n)

ξj+1,n − ξj,n
,

we get

Pn1,...,nm(f)(x1, . . . , xm) = f(−1, . . . ,−1)

+

m∑

k=1

(1 + xk)Ck + F (x1, . . . , xm) + E(x1, . . . , xm)

+

n1−1∑

i1=1

· · ·
nm−1∑

im=1

(
ξ
(1)
i1+1,n1

−ξ
(1)
i1,n1

)
. . .
(
ξ
(m)
im+1,nm

−ξ
(m)
im,nm

)
(

m∏

k=1

Rik,nk
(xk)

)

.

×

⎡

⎢
⎢
⎢
⎢
⎣

ξ
(1)
i1−1,n1

, ξ
(1)
i1,n1

, ξ
(1)
i1+1,n1

; f
...

ξ
(m)
im−1,nm

, ξ
(m)
im,nm

, ξ
(m)
im+1,nm

⎤

⎥
⎥
⎥
⎥
⎦

,

where F (x1, . . . , xm) is a sum of several expressions of the form (1+xi1) · · · (1+
xik

)C with distinct indexes i1, . . . ik, k < m, C a real constant (which can be
different at each occurrence) and E(x1, . . . , xm) is a sum of several expressions,
each expression being a simple or multiple sum of terms, where each term is
represented by the product between:

(a) various Rik,nk
(xk), or product of distinct Rik,nk

(xk) (having at most m−1
terms in that product),
and
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(b) a divided difference of f on one, two, or three nodes with respect to each
variable xk, such that at least with respect to one variable the divided
difference is taken on three nodes,
and

(c) a positive quantity of the form:
(
ξ
(k)
ik+1,nk

− ξ
(k)
ik,nk

)
or
(
ξ
(k)
ik+1,nk

−

ξ
(k)
ik−1,nk

)
or product of such distinct quantities.

Moreover, the above mentioned expressions in E(x1, . . . , xm), which de-
pend on the variables xk, k = 1,m through Rik,nk

(xk), are of two kinds:
(d) expressions that do not depend on all variables xk, k = 1,m;
(e) expressions that depend on all variables xk, k = 1,m, but at least one

Rik,nk
(xk) = 1 + xk.

Let us exemplify the passing from m = 2 to m = 3. Therefore, let f be a
function of three variables, i.e., f = f(x1, x2, x3).

Applying the formula in the univariate case (specified at the beginning of
(iii)) with respect to the variables x1 and x2, by the formulas in Gal [126],
pp. 31–32 (see also the proof of Theorem 2.6.1), we immediately get

Pn1,n2(f)(x1, x2, x3) = f(−1,−1, x3)

+ (1 + x2)

⎡

⎣
−1

; f
ξ
(2)
1,n2

, ξ
(2)
0,n2

⎤

⎦

+ (1 + x1)

⎡

⎣
ξ
(1)
1,n1

, ξ
(1)
0,n1

; f
−1

⎤

⎦

+
n2−1∑

i2=1

(
ξ
(2)
i2+1,n2

− ξ
(2)
i2−1,n2

)
⎡

⎣
−1

; f
ξ
(2)
i2−1,n2

, ξ
(2)
i2,n2

, ξ
(2)
i2+1,n2

⎤

⎦Ri2,n2(x2)

+
n1−1∑

i1=1

(
ξ
(1)
i1+1,n1

− ξ
(1)
i1−1,n1

)
⎡

⎣
ξ
(1)
i1−1,n1

, ξ
(1)
i1,n1

, ξ
(1)
i1+1,n1

; f
−1

⎤

⎦Ri1,n1(x1)

(1 + x1)(1 + x2)S∗
0,0(f)(x3)

+ (1 + x1)
n2−1∑

i2=1

(
ξ
(2)
i2+1,n2

− ξ
(2)
i2−1,n2

)
⎡

⎢
⎣

−1, ξ
(1)
1,n1

; f
ξ
(2)
i2−1,n2

, ξ
(2)
i2,n2

, ξ
(2)
i2+1,n2

⎤

⎥
⎦Ri2,n2(x2)

+ (1 + x2)
n1−1∑

i1=1

(
ξ
(1)
i1+1,n1

− ξ
(1)
i1−1,n1

)
⎡

⎢
⎣

ξ
(1)
i1−1,n1

, ξ
(1)
i1,n1

, ξ
(1)
i1+1,n1

; f
−1, ξ

(2)
1,n2

⎤

⎥
⎦Ri1,n1(x1)
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+
n1−1∑

i1=1

n2−1∑

i2=1

(
ξ
(1)
i1+1,n1

−ξ
(1)
i1,n1

)(
ξ
(2)
i2+1,n2

−ξ
(2)
i2,n2

)
⎡

⎢
⎣

ξ
(1)
i1−1,n1

, ξ
(1)
i1,n1

, ξ
(1)
i1+1,n1

; f
ξ
(2)
i2−1,n2

, ξ
(2)
i2,n2

, ξ
(2)
i2+1,n2

⎤

⎥
⎦

× Ri1,n1(x1)Ri2,n2(x2),

where all the divided differences are considered with respect to the variables
x1, x2, and x3 is fixed, arbitrary. Also, recall that the formula for S∗

0,0(f)(x3)
is given by Gal [126], p. 31 (see also the proof of Theorem 2.6.1), and depends
on the values of f(., ., x3) on some nodes, where f is considered as a function
of the variables x1 and x2.

Now, applying the formula in the univariate case with respect to x3 to
Pn1,n2(f)(x1, x2, x3), i.e., to each term of it and taking into account the re-
currence formula satisfied by the divided differences, we immediately obtain
Pn1,n2,n3(f)(x1, x2, x3) of the claimed form.

As a conclusion, all these immediately imply

∂2mPn1,...,nm
(f)(x1, . . . , xm)

∂x2
1 . . . ∂x2

m

=
n1−1∑

i1=1

· · ·
nm−1∑

im=1

(
m∏

k=1

(
ξ
(k)
ik+1,nk

− ξ
(k)
ik,nk

)
)(

m∏

k=1

R′′
ik,nk

(xk)

)

×

⎡

⎢
⎢
⎢
⎢
⎣

ξ
(1)
i1−1,n1

, ξ
(1)
i1,n1

, ξ
(1)
i1+1,n1

; f
...

ξ
(m)
im−1,nm

, ξ
(m)
im,nm

, ξ
(m)
im+1,nm

⎤

⎥
⎥
⎥
⎥
⎦
≥ 0,

by the hypothesis on f and by the conditions R′′
ik,nk

(xk) ≥ 0, ∀ik =
0, nk, xk ∈ [−1, 1], k = 1,m (see Leviatan [228], or also the proof of
Theorem 1.7.1, Case 1).

(iv) First, let us recall that by construction we have (see Leviatan [228],
or also the proof of Theorem 1.7.1, Case 1)

Rik,nk
(xk) ≥ 0, R′

ik,nk
(xk) ≥, R′′

ik,nk
(xk) ≥ 0,

∀ik = 0, nk, xk ∈ [−1, 1], k = 1,m.

We have to check the inequalities

∂rPn1,...,nm
(f)(x1, . . . , xm)

∂xr1
i1

. . . ∂x
rp

ip

≥ 0 on [−1, 1]m,

for all r ∈ {2, . . . , m}, p ∈ {1, . . . , m}, ik 	= ij if i 	= j, r = r1 + . . . + rp,
where at least one rl is equal to 2 and rk ∈ {0, 1, 2}, k = 1, p.

By hypothesis, the divided differences of f that contains, at least on a
line, three distinct points all are ≥ 0. Then, taking into account the forms
of F (x1, . . . , xm) and E(x1, . . . , xm) described at the previous point (iii), we
immediately obtain the required conclusion. �
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Remarks. (1) For m = 2 we recapture Theorem 2.6.1 (see also Theorem 3.1
in Gal [126]).

(2) Since in the univariate case (i.e., m = 1), the property in Theorem 2.6.2
(i) reduces to the usual increasing monotonicity and in this case, according
to Shvedov [355] (see Theorem 1.6.3 in Chapter 1) we know that ωϕ

2 (f ; .)
cannot be replaced by higher-order moduli of smoothness ωϕ

k (f ; .) with k ≥ 3
(and with an universal constant), it follows that for arbitrary m ≥ 2 the
same phenomenon is expected, i.e., the estimate in Theorem 2.6.2 cannot be
improved by higher-order moduli of smoothness with a constant Cm depending
only on m.

With respect to the Lp-norm, 1 ≤ p < +∞, we can prove, for example,
the following.

Corollary 2.6.3. Let us denote by CP ([−1, 1] × [−1, 1]) the class of all
bounded functions f : [−1, 1] × [−1, 1] → R such that f is (partially) con-
tinuous on [−1, 1] with respect to each variable x and y. Obviously

CP ([−1, 1] × [−1, 1]) ⊂ Lp([−1, 1] × [−1, 1])

= {f ; ‖f‖p :=
(∫ +1

−1

∫ +1

−1

|f(x, y)|pdx dy

)1/p

< +∞}, 1 ≤ p < +∞

(here the letter P is only a notation and is not to be confused with the number
p). If f ∈ CP ([−1, 1] × [−1, 1]), then there exists a sequence of bivariate
polynomials (Pn1,n2(f)(x, y))n1,n2∈N, of degrees ≤ n1 with respect to x and
≤ n2 with respect to y such that

‖f − Pn1,n2(f)‖p ≤ Cωϕ
2

(

f ;
1
n1

,
1
n2

)

p

,

∀ n1, n2 ∈ N, C > 0 independent of f , n1 and n2 (here ωϕ
2 (f ; t, s)p is defined

by Definition 2.1.2, (ii)), preserving the convexity of order (1, 1) in the sense
of Popoviciu.

Proof. We will use the tensor product method for the construction in the
univariate case in Leviatan–Yu [244] (see also Yu [407]), related to that in
the uniform approximation case in the proof of Theorem 2.6.1. Keeping the
notation for ξk and Rk(x) in the univariate case in Leviatan [228] and for
g : [−1, 1] → R denoting

Sj(g) :=
g(ξj+1) − g(ξj)

ξj+1 − ξj
, j = 1, . . . , n − 2,

S0(g) := S1(g), Sn−1(g) := Sn−2(g),

g(ξj) :=
1
αj

∫ αj/2

−αj/2

g(ξj + t)dt, αj = min{ξj − ξj−1, ξj+1 − ξj},

j = 1, . . . , n − 1,

g(−1) := g(ξ1) − (1 + ξ1)S1(g), g(1) := g(ξn−1) + (1 − ξn−1)Sn−2(g),
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recall that the polynomials in Leviatan–Yu [244] are given by

Pn(g)(x) = g(−1) +
n−1∑

j=0

Sj(g)[Rj(x) − Rj+1(x)]

= g(−1) + S0(g)R0(x) +
n−1∑

j=1

[Sj(g) − Sj−1(g)]Rj(x)

= g(−1) + S0(g)R0(x) +
n−2∑

j=2

[Sj(g) − Sj−1(g)]Rj(x).

Also, recall that for all j, Rj(x) − Rj+1(x) are increasing, Rj ≥ 0, R′
j ≥ 0 on

[−1, 1], and R′′
j ≥ 0 on [−1, 1] (see Yu [407] and Leviatan [228]).

First let us consider that f ∈ CP ([−1, 1]× [−1, 1]) is convex of order (1, 1)
in the Popoviciu sense. For the construction of the bivariate tensor product
polynomial we use the first form of the above univariate polynomial Pn. Since
for the tensor product polynomial denoted by Pn1,n2(f)(x, y), we have to check

that ∂2Pn1,n2 (f)

∂x∂y ≥ 0 on [−1, 1]× [−1, 1], we see that for this purpose, the term
g(−1) in the univariate case can be omitted from the tensor product, so that
if {ξj,n1}, Rj,n1(x), j = 0, n1, {ηi,n2}, Ri,n2(y), i = 0, n2, are constructed
as in the univariate case in Leviatan [228], then reasoning as in the proof of
Theorem 2.6.1 (i), we get

∂2Pn1,n2(f)(x, y)
∂x∂y

=
n1−1∑

j=0

n2−1∑

i=0

Si,j [R′
i,n2

(y) − R′
i+1,n2

(y)][R′
j,n1

(x) − R′
j+1,n1

(x)],

where

Si,j=
f(ξj+1,n1 , ηi+1,n2)−f(ξj,n1 , ηi+1,n2) − f(ξj+1,n1 , ηi,n2) + f(ξj,n1 , ηi,n2)

(ξj+1,n1 − ξj,n1)(ηi+1,n2 − ηi,n2)
,

and

f(ξj,n1 , ηi,n2) =
1

αj,n1βi,n2

∫ αj,n1/2

−αj,n1/2

∫ βi,n2/2

−βi,n2/2

f(ξj,n1 + t, ηi,n2 + s)dt ds,

αj,n1 = min{ξj,n1 − ξj−1,n1 , ξj+1,n1 − ξj,n1}, j = 1, . . . , n1 − 1, βi,n2 =
min{ηi,n2−ηi−1,n2 , ηi+1,n2−ηi,n2}, i = 1, . . . , n2−1. Now suppose that for
the arbitrary intervals denoted by [A,B], [C,D], [a, b], [c, d], the intersections
[A,B] ∩ [a, b] and [C,D] ∩ [c, d] are empty or have at most one element. We
will prove the following auxiliary result : there exist ξM ∈ [A,B], ξm ∈ [a, b],
ηM ∈ [C,D], ηm ∈ [c, d], such that
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I :=
1

(B − A)(D − C)

∫ B

A

∫ D

C

f(x, y)dx dy

− 1
(b − a)(D − C)

∫ b

a

∫ D

C

f(x, y)dx dy

− 1
(B − A)(d − c)

∫ B

A

∫ d

c

f(x, y)dx dy

+
1

(b − a)(d − c)

∫ b

a

∫ d

c

f(x, y)dx dy

= f(ξM , ηM ) − f(ξm, ηM ) − f(ξM , ηm) + f(ξm, ηm).

Indeed, we can write

I =
1

D − C

∫ D

C

F (y)dy − 1
d − c

∫ d

c

F (y)dy = F (ηM ) − F (ηm),

where F (y) = 1
B−A

∫ B

A
f(x, y)dx− 1

b−a

∫ b

a
f(x, y)dx is continuous with respect

to y ∈ [−1, 1] and the points ηM ∈ [C,D], ηm ∈ [c, d] are given by the integral
mean value theorem.

Therefore, applying once again the integral mean value theorem for con-
tinuous functions (with respect to x), there exist ξM ∈ [A,B], ξm ∈ [a, b],
such that

I =

[
1

B − A

∫ B

A

f(x, ηM )dx − 1
b − a

∫ b

a

f(x, ηM )dx

]

−
[

1
B − A

∫ B

A

f(x, ηm)dx − 1
b − a

∫ b

a

f(x, ηm)dx

]

=
1

B − A

∫ B

A

[f(x, ηM ) − f(x, ηm)]dx − 1
b − a

∫ b

a

[f(x, ηM ) − f(x, ηm)]dx

= f(ξM , ηM ) − f(ξm, ηM ) − f(ξM , ηm) + f(ξm, ηm).

Applying now this auxiliary result to the numerator in the expression of
Si,j , there exist ξ′j,n1

< ξ′j+1,n1
, η′

i,n2
< η′

i+1,n1
such that

f(ξj+1,n1 , ηi+1,n2) − f(ξj,n1 , ηi+1,n2) − f(ξj+1,n1 , ηi,n2) + f(ξj,n1 , ηi,n2)
= f(ξ′j+1,n1

, η′
i+1,n2

) − f(ξ′j,n1
, η′

i+1,n2
) − f(ξ′j+1,n1

, η′
i,n2

) + f(ξ′j,n1
, η′

i,n2
)≥0,

from the hypothesis on f .
As a conclusion, it follows that ∂2Pn1,n2 (f)(x,y)

∂x∂y ≥ 0 on [−1, 1] × [−1, 1].
Taking into account the estimate in the univariate case in Leviatan–Yu

[244] and reasoning as in the proof of Theorem 2.6.1, i.e., applying Theorem
5 in Haussmann–Pottinger [167], we immediately get
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‖f − Pn1,n2(f)‖p ≤ C

[

ωϕ
2,x

(

f ;
1
n1

)

p

+ ωϕ
2,y

(

f ;
1
n2

)

p

]

,

where ωϕ
2,x(f ; δ)p and ωϕ

2,y(f ; δ)p are the partial moduli defined in Ditzian–
Totik [98], Chapter 12. Since we obviously have

ωϕ
2,x

(

f ;
1
n2

)

p

+ ωϕ
2,y

(

f ;
1
n2

)

p

≤ 2ωϕ
2

(

f ;
1
n1

,
1
n2

)

p

,

we obtain the desired estimate, which proves the corollary. �

Remarks. (1) The convexity of order (1, 1) of f does not necessarily imply
that we have f ∈ CP ([−1, 1] × [−1, 1]). Indeed, for example, according to
Definition 2.1.1 (v), the (1, 1) convexity is equivalent to

[x1, x2; [y1, y2; f ]y]x ≥ 0

for all −1 ≤ x1 < x2 ≤ 1, −1 ≤ y1 < y2 ≤ 1. It is easy to see that if we
define F (x, y) = f(x, y)+ϕ(x)+ψ(y), where the functions ϕ(x) and ψ(y) are
discontinuous at each point in [−1, 1], then F is discontinuous at each point
in [−1, 1] but

[x1, x2; [y1, y2;F ]y]x ≥ 0

for all −1 ≤ x1 < x2 ≤ 1, −1 ≤ y1 < y2 ≤ 1.
(2) Since in the univariate case, the property in Corollary 2.6.3 reduces

to the usual increasing monotonicity, and in this case according to Shvedov
[355] (see Theorem 1.6.3 in Chapter 1), we know that ωϕ

2 (f ; .)p cannot be
replaced by higher-order moduli of smoothness ωϕ

k (f ; .)p with k ≥ 3 (and
with a constant in front of ωϕ

k independent of f), then in Corollary 2.6.3 is
the same phenomenon expected.

2.6.2 Concepts in Bivariate Coshape Approximation

The tensor-product method can be applied in order to obtain new results
in bivariate copositive, comonotone, and coconvex approximations. For that
purpose, first we need suitable concepts of copositivity, comonotonicity, and
coconvexity on grids for bivariate functions, which can be defined as follows.

Definition 2.6.4. Let f, g : [a, b] × [c, d] → R.
(i) We say that f is bivariate copositive with g if f(x, y)g(x, y) ≥ 0 for all

(x, y) ∈ [a, b] × [c, d].
Let f ∈ C([a, b]× [c, d]), a < x1 < . . . < xk < b and c < y1 < . . . < ys < d.

One says that f changes sign on the proper rectangular grid in (a, b) × (c, d)
determined by the segments x = xi, i ∈ {1, . . . , k}, y = yj , j ∈ {1, . . . , s}, if

f(x, y) · Πk
i=1(x − xi) · Πs

j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d)
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or
f(x, y)Πk

i=1(x − xi)Πs
j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).

One says that f changes sign on the degenerated grid in (a, b) × (c, d),
determined by the segments parallel to the OY axis, x = xi, i = 1, . . . , k, if

f(x, y) · Πk
i=1(x − xi) ≥ 0,∀(x, y) ∈ (a, b) × (c, d)

or
f(x, y)Πk

i=1(x − xi) ≤ 0,∀(x, y) ∈ (a, b) × (c, d).

Also, one says that f changes its sign on the degenerated grid in
(a, b)×(c, d), determined by the segments parallel to the OX axis, y = yj , j =
1, . . . , s, if

f(x, y) · Πs
j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d)

or
f(x, y)Πs

j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d);

(ii) We say that f is upper bidimensional comonotone with g if for all
points a ≤ x1 < x2 ≤ b and c ≤ y1 < y2 ≤ d, we have

⎡

⎣
x1, x2

; f
y1, y2

⎤

⎦ ·

⎡

⎣
x1, x2

; g
y1, y2

⎤

⎦ ≥ 0.

Equivalently, if f and g are continuous, then we say that f is upper
bidimensional comonotone with g if ∆1,1

h,k(f)(x, y) · ∆1,1
h,k(g)(x, y) ≥ 0 for

all x, x + h ∈ [a, b], y, y + k ∈ [c, d], h, k ≥ 0, where ∆1,1
h,k(f)(x, y) =

f(x + h, y + k) − f(x + h, y) − f(x, y + k) + f(x, y).
If, in addition, f and g are twice continuously differentiable on [a, b]×[c, d],

then the upper bidimensional comonotonicity can be written by the condition
∂2f

∂x∂y (x, y) · ∂2g
∂x∂y (x, y) ≥ 0 for all (x, y) ∈ [a, b] × [c, d].

If f is twice continuously differentiable on [a, b]× [c, d], then we say that f
changes the upper bidimensional monotonicity on the proper rectangular grid
in (a, b) × (c, d) determined by the segments x = xi, i ∈ {1, . . . , k}, y=yj ,
j ∈ {1, . . . , s}, if

∂2f

∂x∂y
(x, y) · Πk

i=1(x − xi) · Πs
j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or

∂2f

∂x∂y
(x, y) · Πk

i=1(x − xi) · Πs
j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).

Also, if f is twice continuously differentiable on [a, b] × [c, d], then one
says that f changes the upper bidimensional monotonicity on the degenerate
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grid in (a, b) × (c, d) determined by the segments parallel to the OY axis
x = xi, i = 1, . . . , k (or determined by the segments parallel to the OX axis,
y = yj , j = 1, . . . , s, respectively) if

∂2f

∂x∂y
(x, y) · Πk

i=1(x − xi) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂2f

∂x∂y
(x, y) · Πk

i=1(x − xi) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d)

(or respectively

∂2f

∂x∂y
(x, y)Πs

j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂2f

∂x∂y
(x, y)Πs

j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d)).

(iii) We say that f is totally upper comonotone with g if for all points
a ≤ x1 < x2 ≤ b and c ≤ y1 < y2 ≤ d, we have

⎡

⎣
x1, x2

; f
y1, y2

⎤

⎦ ·

⎡

⎣
x1, x2

; g
y1, y2

⎤

⎦ ≥ 0,

⎡

⎣
x1

; f
y1, y2

⎤

⎦ ·

⎡

⎣
x1

; g
y1, y2

⎤

⎦ ≥ 0,

and
⎡

⎣
x1, x2

; f
y1

⎤

⎦ ·

⎡

⎣
x1, x2

; g
y1

⎤

⎦ ≥ 0.

If f and g are twice differentiable on [a, b] × [c, d], then the above conditions
can be replaced by

∂2f

∂x∂y
(x, y) · ∂2g

∂x∂y
(x, y) ≥ 0,

∂f

∂x

∂g

∂x
(x, y) ≥ 0,

∂f

∂y

∂g

∂y
(x, y) ≥ 0,

for all (x, y) ∈ [a, b] × [c, d].
(iv) We say that f is coconvex of order (2, 2) (in the Popoviciu sense) with

g if for all a ≤ x1 < x2 < x3 ≤ b and c ≤ y1 < y2 < y3 ≤ d, we have
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⎡

⎣
x1, x2, x3

; f
y1, y2, y3

⎤

⎦ ·

⎡

⎣
x1, x2, x3

; g
y1, y2, y3

⎤

⎦ ≥ 0.

Equivalently, for continuous f and g, one says that f is coconvex of order
(2, 2) with g if ∆1,1

h,k[∆1,1
h,k(f)(x, y)] · ∆1,1

h,k[∆1,1
h,k(g)(x, y)] ≥ 0, for all h, k ≥ 0

and (x, y) ∈][a, b] × [c, d] such that ∆1,1
h,k[∆1,1

h,k(f)(x, y)] is defined.
If f and g have all the partial derivatives of order 4, then the above con-

dition can be written by

∂4f

∂x2∂y2
(x, y) · ∂4g

∂x2∂y2
(x, y) ≥ 0

for all (x, y) ∈ [a, b] × [c, d].
Let f have all its partial derivatives of order 4 continuous on [a, b]× [c, d].
One says that f changes its convexity of order (2, 2) on the proper rec-

tangular grid in (a, b) × (c, d) determined by the segments x = xi, i ∈
{1, . . . , k}, y = yj , j ∈ {1, . . . , s} if

∂4f

∂x2∂y2
(x, y) · Πk

i=1(x − xi) · Πs
j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or

∂4f

∂x2∂y2
(x, y) · Πk

i=1(x − xi) · Πs
j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).

Also, one says that f changes its convexity of order (2, 2) on the degenerate
grid in (a, b) × (c, d) determined by the segments parallel to the OY axis,
x = xi, i = 1, . . . , k (or determined by the segments parallel to the OX axis,
y = yj , j = 1, . . . , s, respectively) if

∂4f

∂x2∂y2
(x, y) · Πk

i=1(x − xi) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂4f

∂x2∂y2
(x, y) · Πk

i=1(x − xi) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d)

(or respectively

∂4f

∂x2∂y2
(x, y) · Πs

j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂4f

∂x2∂y2
(x, y) · Πs

j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d)).
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(v) If f and g have all the partial derivatives of order 4, then we say that
f is totally coconvex of order (2, 2) with g if

∂4f

∂x2∂y2
(x, y) · ∂4g

∂x2∂y2
(x, y) ≥ 0,

∂3f

∂x2∂y
(x, y) · ∂3g

∂x2∂y
(x, y) ≥ 0,

∂3f

∂x∂y2
(x, y) · ∂3g

∂x∂y2
(x, y) ≥ 0,

∂2f

∂x2
(x, y) · ∂2g

∂x2
(x, y) ≥ 0,

∂2f

∂y2
(x, y) · ∂2g

∂y2
(x, y) ≥ 0,

for all (x, y) ∈ [a, b] × [c, d].
(vi) According to Popoviciu [315] (see p. 84, the expression above rela-

tionship (92)), it follows that f : [a, b] × [c, d] → R is usually convex if for all
points a ≤ x1 < x2 < x3 ≤ b and c ≤ y1 < y2 < y3 ≤ d, we have D(f) ≥ 0
and E(f) ≥ 0, where

D(f) =

⎡

⎣
x1, x2, x3

; f
y1

⎤

⎦

and

E(f) = 4 ·

⎡

⎣
x1, x2, x3

; f
y1

⎤

⎦ ·

⎡

⎣
x3

; f
y1, y2, y3

⎤

⎦

−

⎡

⎣
x2, x3

; f
y1, y2

⎤

⎦ ·

⎡

⎣
x2, x3

; f
y1, y2

⎤

⎦ .

Then f and g are called usually coconvex if D(f) · D(g) ≥ 0 and E(f) ≥ 0,
E(g) ≥ 0, for all points a ≤ x1 < x2 < x3 ≤ b and c ≤ y1 < y2 < y3 ≤ d.

In the presence of corresponding partial derivatives, the above conditions
can be replaced by F (f)(x, y)F (g)(x, y) ≥ 0 and G(f)(x, y) ≥ 0, G(g)(x, y)≥0
for all (x, y) ∈ [a, b] × [c, d], where

F (f)(x, y) =
∂2f

∂x2
(x, y)

and

G(f)(x, y) :=
∂2f

∂x2
(x, y) · ∂2f

∂y2
(x, y) −

(
∂2f

∂x∂y
(x, y)

)2

.

If f has all the partial derivatives of order two continuous on [a, b]× [c, d],
then one says that f changes its convexity on the proper rectangular grid in
(a, b) × (c, d) determined by the segments x = xi, i ∈ {1, . . . , k}, y = yj , j ∈
{1, . . . , s} if
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∂2f

∂x2
(x, y) · ∂2f

∂y2
(x, y) −

(
∂2f

∂x∂y
(x, y)

)2

≥ 0

for all (x, y) ∈ [a, b] × [c, d] and

∂2f

∂x2
(x, y) · Πk

i=1(x − xi) · Πs
j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or

∂2f

∂x2
(x, y) · Πk

i=1(x − xi) · Πs
j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).

Also, if
∂2f

∂x2
(x, y) · ∂2f

∂y2
(x, y) −

(
∂2f

∂x∂y
(x, y)

)2

≥ 0

for all (x, y) ∈ [a, b]× [c, d], then one says that f changes its convexity on the
degenerate grid in (a, b) × (c, d) determined by the segments parallel to the
OY axis, x = xi, i = 1, . . . , k (or determined by the segments parallel to the
OX axis, y = yj , j = 1, . . . , s, respectively) if

∂2f

∂x2
(x, y) · Πk

i=1(x − xi) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂2f

∂x2
(x, y) · Πk

i=1(x − xi) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d)

(or respectively

∂2f

∂x2
(x, y) · Πs

j=1(y − yj) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂2f

∂x2
(x, y) · Πs

j=1(y − yj) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d)).

(vii) Let f ∈ C([a, b] × [c, d]). The concepts in the above points (i)-(vi),
can easily be generalized by replacing the grids with finite systems of con-
tinuous arcs of curves or continuous closed curves of the Cartesian equations
gi(x, y)=0, i = 1, . . . , k, contained in the rectangle [a, b] × [c, d]. Let us first
consider the case (i), of change of sign.

We say that f changes sign on the system of continuous arcs (curves)
gi, i = 1, . . . , k, if

f(x, y) · Πk
i=1gi(x, y) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
f(x, y)Πk

i=1gi(x, y) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).
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For the other cases, we have the following concepts. Everywhere we suppose
that the corresponding partial derivatives of f exist and are continuous on
[a, b] × [c, d].

We say that f changes its upper bidimensional monotonicity on the system
of continuous arcs (curves) gii = 1, . . . , k, if

∂2f

∂x∂y
(x, y) · Πk

i=1gi(x, y) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂2f

∂x∂y
(x, y)Πk

i=1gi(x, y) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).

We say that f changes its convexity of order (2, 2) on the system of con-
tinuous arcs (curves) gii = 1, . . . , k, if

∂4f

∂x2∂y2
(x, y) · Πk

i=1gi(x, y) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂4f

∂x2∂y2
(x, y)Πk

i=1gi(x, y) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).

One says that f changes its usual convexity on the system of continuous
arcs (curves) gii = 1, . . . , k, if

∂2f

∂x2
(x, y) · ∂2f

∂y2
(x, y) −

(
∂2f

∂x∂y
(x, y)

)2

≥ 0

for all (x, y) ∈ [a, b] × [c, d] and

∂2f

∂x2
(x, y) · Πk

i=1gi(x, y) ≥ 0, ∀(x, y) ∈ (a, b) × (c, d),

or
∂2f

∂x2
(x, y) · Πk

i=1gi(x, y) ≤ 0, ∀(x, y) ∈ (a, b) × (c, d).

Remarks. (1) The continuity of f immediately implies that if f changes sign
on the proper rectangular grid in (a, b) × (c, d) determined by the segments
x=xi, i ∈ {1, . . . , k}, y = yj , j ∈ {1, . . . , s}, then we have f(xi, y) = f(x, yj) =
0 for all (x, y) ∈ [a, b] × [c, d], i = 1, . . . , k and j = 1, . . . , s.

Simple examples of such f are f(x, y) = Πk
i=1(x−xi) ·Πs

j=1(y− yj)g(x, y)
and f(x, y) = Πk

i=1(e
x−exi)·Πs

j=1(e
y−eyj )g(x, y), where g ≥ 0 on [a, b]×[c, d]

or g ≤ 0 on [a, b] × [c, d].
Also, if, for example, f changes sign on the degenerate grid in (a, b)×(c, d)

determined by the segments parallel to the OY axis, x = xi, i = 1, . . . , k (or
determined by the segments parallel to the OX axis, y = yj , j = 1, . . . , s,
respectively), then thecontinuity of f immediately implies f(xi, y) = 0 for
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all y ∈ (c, d), i = 1, . . . , k (or f(x, yj) = 0, for all x ∈ (a, b), j = 1, . . . , s,
respectively). Simple examples are f(x, y) = Πk

i=1(x − xi) · g(x, y), f(x, y) =
Πk

i=1(e
x−exi) ·g(x, y), where g ≥ 0 on [a, b]× [c, d] or g ≤ 0 on [a, b]× [c, d] (or

respectively f(x, y) = Πs
j=1(y − yj)g(x, y), f(x, y) = Πs

j=1(e
y − eyj )g(x, y),

where g ≥ 0 on [a, b] × [c, d] or g ≤ 0 on [a, b] × [c, d]).
(2) The continuity of the partial derivative ∂2f

∂x∂y (x, y) in Definition 2.6.4
(ii) implies that if f changes its upper bidimensional monotonicity on the
proper rectangular grid in (a, b) × (c, d) determined by the segments x =
xi, i ∈ {1, . . . , k}, y = yj , j ∈ {1, . . . , s}, then ∂2f

∂x∂y (xi, y) = ∂2f
∂x∂y (x, yj) = 0

for all (x, y) ∈ [a, b] × [c, d], i = 1, . . . , k and j = 1, . . . , s.
Simple examples of such f are given by

f(x, y) =
∫ x

a

∫ y

c

Πk
i=1(u − xi) · Πs

j=1(v − yj)g(u, v)du dv,

f(x, y) =
∫ x

a

∫ y

c

Πk
i=1(e

u − exi) · Πs
j=1(e

v − eyj )g(u, v)du dv,

with g continuous and satisfying g ≥ 0 on [a, b]× [c, d] or g ≤ 0 on [a, b]× [c, d].
If, for example, f changes its upper bidimensional monotonicity on the

degenerate grid in (a, b) × (c, d) determined by the segments parallel to the
OY axis, x = xi, i = 1, . . . , k, then ∂2f

∂x∂y (xi, y) = 0 for all y ∈ [c, d], i = 1, . . . , k
and simple examples are

f(x, y) =
∫ x

a

∫ y

c

Πk
i=1(u − xi)g(u, y)du,

f(x, y) =
∫ x

a

∫ y

c

Πk
i=1(e

u − exi)g(u, y)du,

with g continuous and satisfying g ≥ 0 on [a, b]× [c, d] or g ≤ 0 on [a, b]× [c, d].
(3) The continuity of the partial derivative ∂4f

∂x2∂y2 (x, y) in Definition 2.6.4
(iv) implies that if f changes its convexity of order (2, 2) on the proper
rectangular grid in (a, b) × (c, d) determined by the segments x = xi, i ∈
{1, . . . , k} y = yj , j ∈ {1, . . . , s}, then ∂4f

∂x2∂y2 (xi, y) = ∂4f
∂x2∂y2 (x, yj) = 0, for

all (x, y) ∈ [a, b] × [c, d], i = 1, . . . , k and j = 1, . . . , s.
Similarly, simple examples of such f are obtained by integrating Πk

i=1(u−
xi) · Πs

j=1(v − yj)g(u, v) or Πk
i=1(e

u − exi) · Πs
j=1(e

v − eyj )g(u, v) (where g
keeps the same sign), first twice with respect to u from a to x, and then twice
with respect to v from c to y.

(4) The continuity of the second-order partial derivatives of f in Defin-
ition 2.6.4 (vi) implies that if f changes its usual convexity on the proper
rectangular grid in (a, b) × (c, d) determined by the segments x = xi, i ∈
{1, . . . , k}, y = yj , j ∈ {1, . . . , s}, then ∂2f

∂x2 (xi, y) = ∂2f
∂x2 (x, yj) = 0, for all

(x, y) ∈ [a, b] × [c, d] and i = 1, . . . , k, j = 1, . . . , s.
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Again, simple examples are obtained by integrating from a to x the expres-
sion Πk

i=1(u−xi) ·Πs
j=1(v−yj)g(u, v) or Πk

i=1(e
u−exi) ·Πs

j=1(e
v −eyj )g(u, v)

(where g keeps the same sign), twice with respect to u.
(5) Let us suppose that f : [a, b]× [c, d] → R is continuous on [a, b]× [c, d]

and that f changes sign (or bidimensional monotonicity or convexity of order
(2, 2) or usual convexity, respectively) on the system of continuous curves
of implicit equations gi(x, y) = 0, i = 1, . . . , k, contained in the rectangle
[a, b]×[c, d], as in Definition 2.6.4 (vii). If, in addition, each equation gi(x, y) =
0 can be explicitly written as y = hi(x), then the continuity of f (or of the
corresponding partial derivatives of f , respectively) obviously implies that we
necessarily have f(x, hi(x)) = 0 (or ∂2f

∂x∂y (x, hi(x)) = 0, or ∂4f
∂x2∂y2 (x, hi(x)) =

0, or ∂2f
∂x2 (x, hi(x)) = 0, respectively) for all x ∈ (a, b) and i = 1, . . . , k.

For example, if f : [0, 1]× [0, 1] → R, g1(x, y) = x−y, g2(x, y) = x−y2 and
we suppose that f changes sign (or bidimensional monotonicity, or convexity
of order (2, 2), or usual convexity, respectively) on the first bisector in (0, 1)×
(0, 1) of equation g1(x, y) = 0 and on the arc of the parabola in (0, 1)× (0, 1)
of equation g2(x, y) = 0, then f necessarily satisfies f(u, u) = f(u2, u) = 0
(or ∂2f

∂x∂y (u, u) = ∂2f
∂x∂y (u2, u) = 0, or ∂4f

∂x2∂y2 (u, u) = ∂4f
∂x2∂y2 (u2, u) = 0, or

∂2f
∂x2 (u, u) = ∂2f

∂x2 (u2, u) = 0, respectively) for all u ∈ (0, 1).
Concrete simple functions f with respect to the above concrete system of

curves are:
(i) f(x, y) = (x− y)(x− y2)g(x, y), f(x, y) = (ex − ey)(x− y2)g(x, y) with

g ≥ 0 on [0, 1] × [0, 1] or g ≤ 0 on [0, 1] × [0, 1], change their signs in this
system;

(ii) f(x, y) =
∫ x

0

∫ y

0
(u−v)(eu2 −ev)g(u, v)dudv, with g ≥ 0 on [0, 1]× [0, 1]

or g ≤ 0 on [0, 1]×[0, 1] changes its bidimensional monotonicity in this system.

Similarly, having as models the above Remarks 3 and 4, we easily can
produce simple example of functions f that change their convexity of order
(2, 2) and usual convexity on the mentioned system of curves.

2.6.3 Bivariate Copositive Approximation

In this subsection, in order to obtain results in bivariate copositive approxima-
tion, we will use the results in the univariate case through the tensor product
method.

For this purpose, we need the following.

Corollary 2.6.5. (Beutel–Gonska [42]) For any f : [0, 1] × [0, 1] → R, with
∂2f

∂x∂y continuous on [0, 1]× [0, 1], n,m ≥ 8, there exists a sequence of bivariate
polynomials p̃n,m(x, y), of degrees ≤ n in x and ≤ m in y such that
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∥
∥
∥
∥p̃n,m − f

∥
∥
∥
∥ ≤ C

[
a

n
+

b

m

]

,

∣
∣
∣
∣

∣
∣
∣
∣
∂p̃n,m

∂x
− ∂f

∂x

∣
∣
∣
∣

∣
∣
∣
∣ ≤ C

[

a +
b

m

]

,

∣
∣
∣
∣

∣
∣
∣
∣
∂p̃n,m

∂y
− ∂f

∂y

∣
∣
∣
∣

∣
∣
∣
∣ ≤ C

[a

n
+ b
]
,

∣
∣
∣
∣

∣
∣
∣
∣
∂2p̃n,m

∂x∂y
− ∂2f

∂x∂y

∣
∣
∣
∣

∣
∣
∣
∣ ≤ C[a + b],

where C > 0 is independent of f , n, m, also ‖ · ‖ denotes the uniform norm
and

a = ω2(
∂f

∂x
;
1
n

, 0) + ω2

(
∂2f

∂x∂y
;
1
n

, 0
)

,

b = ω2(
∂f

∂y
; 0,

1
m

) + ω2

(
∂2f

∂x∂y
; 0,

1
m

)

.

Proof. If we take p = q = 1 and r = s = 2 in Theorem 2.3.2, then we get p′ =
q′ = min{1, 1} = 1 and taking all the possible values (0, 0), (0, 1), (1, 0) and
(1, 1) for (k, l), the estimates in Theorem 2.3.2 become exactly the estimates
in Corollary 2.6.5. �

We are in a position to prove (keeping the notation in Corollary 2.6.5) the
following result.

Theorem 2.6.6. (Gal [132]) If f : [0, 1]× [0, 1] → R has the partial derivative
∂2f

∂x∂y continuous on [0, 1] × [0, 1] and changes its sign on the proper rectan-
gular grid in (0, 1) × (0, 1), determined by the distinct segments x = xi, i ∈
{1, . . . , k}, y = yj , j ∈ {1, . . . , s}, then for all n ≥ n0 and m ≥ m0 (with
n0 and m0 depending only on k, s, α, β, where α = min0≤i≤k(xi+1 − xi), β =
min0≤j≤s(yj+1−yj), 0 = x0 = y0, 1 = xk+1 = ys+1), there exists a polynomial
Pn,m(x, y) of degrees ≤ n in x and ≤ m in y that satisfies

‖f − Pn,m‖ ≤ C

[
a

n
+

b

m

]

, where C = C(k, s, α, β) > 0,

and is copositive with f on [0, 1]2 \ {A ∪ B}, where

A = {(x, y) ∈ [0, 1]2;x ∈ ∪k
i=1[xi − 1/n, xi + 1/n],

y 	∈ ∪s
j=1[yj − 1/m, yj + 1/m],Πs

j=1(y − yj) < 0},
B = {(x, y) ∈ [0, 1]2; y ∈ ∪s

j=1[yj − 1/m, yj + 1/m],

x 	∈ ∪k
i=1[xi − 1/n, xi + 1/n],Πk

i=1(x − xi) < 0}.

Proof. By Remark 1 of Definition 2.6.4, we have f(xi, y) = f(x, yj) = 0, for
all (x, y) ∈ [0, 1] × [0, 1], i = 1, . . . , k and j = 1, . . . , s.

For p̃n,m in Corollary 2.6.5, let us define

pn,m(x, y) = p̃n,m(x, y) +
k∑

i=1

s∑

j=1

li(x)lj(y)[f(xi, yj) − p̃n,m(xi, yj)],
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where li(x) and lj(y) represent the fundamental Lagrange interpolation poly-
nomials based on the nodes x1 < · · · < xk and y1 < · · · < ys, respectively.

We define now

Qn,m(x, y) = pn,m(x, y) +
k∑

i=1

li(x)[f(xi, y) − pn,m(xi, y)]

+
s∑

j=1

lj(y)[f(x, yj) − pn,m(x, yj)].

Note that Qn,m(xi, y) = Qn,m(x, yj) = f(xi, y) = f(x, yj) = 0 for all x, y ∈
(0, 1), i = 1, . . . , k and j = 1, . . . , s. Also, Qn,m gives the same orders for the
approximation errors as pn,m, i.e., as p̃n,m, with a constant (independent of
f, n,m, x, y) that also will be denoted by C without loss of generality.

Let us consider

Pn,m(x, y) = Qn,m(x, y) + En,m(x, y),

where En,m(x, y) = εDC
[

a
n + b

m

]
Πk

i=1qn(x−xi)Πs
j=1qm(y−yj), qn(x), qm(y)

are the polynomials with the properties in Lemma 1 in Hu–Leviatan–Yu [176]
(see also the proof of Theorem 1.5.4 (iv) in the univariate case in Chapter
1), a, b are given by the statement of Corollary 2.6.5, ε = sgnf(x, y), (x, y) ∈
(xk, 1) × (ys, 1), C is as above, and D > 0 will be determined later.

It is easy to show that Pn,m(xi, y) = Pn,m(x, yj) = 0, for all x, y ∈
[0, 1], i = 1, . . . , k, j = 1, . . . , s, and that En,m(x, y)f(x, y) ≥ 0 for all
x, y ∈ [0, 1].

We have four possibilities :

(i) x 	∈ ∪k
i=1[xi − 1/n, xi + 1/n] and y 	∈ ∪r

j=1[yj − 1/m, yj + 1/m];
(ii) there is i such that x ∈ [xi − 1/n, xi + 1/n] and y 	∈ ∪r

j=1[yj − 1/m, yj +
1/m];

(iii) there is j such that y ∈ [yj − 1/m, yj + 1/m] and x 	∈ ∪k
i=1[xi − 1/n, xi +

1/n];
(iv) there is i such that x ∈ [xi − 1/n, xi + 1/n] and there is j such that

y ∈ [yj − 1/m, yj + 1/m].

Case (i). Reasoning as in the proof of the univariate case Theorem 1.5.4
(iv) (see also Theorem 2 in Hu–Leviatan–Yu [176]) and choosing D > A−(k+s),
we get |En,m(x, y)| > C

[
a
n + b

m

]
and f(x, y)Pn,m(x, y) ≥ 0.

Case (ii). Reasoning as in the univariate case (see Theorem 1.5.4, (iv)
in Chapter 1 or Hu–Leviatan–Yu [176]) we obtain sgn

[
∂f
∂x − ∂Pn,m

∂x

]
(x, y) =

sgn{−qn(x − xi)f(x, y)}, if Πs
j=1qm(y − yj) ≥ 0 (i.e., if Πs

j=1(y − yj) ≥ 0).
By the mean value theorem, we can write f(x, y)−Pn,m(x, y) = f(x, y)−

Pn,m(x, y)− [f(xi, y)−Pn,m(xi, y)] = (x−xi)
(

∂f
∂x − ∂Pn,m

∂x

)
(ξ, y), with ξ be-

tween x and xi. Reasoning now with respect to x (y fixed) as in the univariate
case, we similarly get f(x, y)Pn,m(x, y) ≥ 0, for all n ≥ n0 and m ≥ 8.
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Case (iii). Reasoning as in the univariate case (Theorem 1.5.4., (iv)) we
get sgn

[
∂f
∂y − ∂Pn,m

∂y

]
(x, y) = sgn{−qm(y − yj)f(x, y)} if Πk

i=1qn(x− xi) ≥ 0.
Using the mean value theorem, we can write f(x, y) − Pn,m(x, y) =

f(x, y) − Pn,m(x, y) − [f(x, yj) − Pn,m(x, yj)] = (y − yj)
(

∂f
∂y − ∂Pn,m

∂y

)
(x, η),

with η between y and yj . Reasoning now with respect to y (x fixed) as in the
univariate case, we again get f(x, y)Pn,m(x, y) ≥ 0, for all n ≥ 8 and m ≥ m0.

Case (iv). Reasoning as in the univariate case (Theorem 1.5.4 (iv)), it
follows that

sgn
[

∂2f

∂x∂y
− ∂2Pn,m

∂x∂y

]

(x, y) = sgn{−qn(x − xi)qm(y − yj)f(x, y)}.

We can write f(x, y) − Pn,m(x, y) = f(x, y) − Pn,m(x, y) − [f(xi, y) −
Pn,m(xi, y)] − [f(x, yj) − Pn,m(x, yj)] + [f(xi, yj) − Pn,m(xi, yj)] = F (x, y) −
F (xi, y)− F (x, yj) + F (xi, yj), with F (x, y) = f(x, y)− Pn,m(x, y). Applying
a known mean value theorem (see, e.g., Nicolescu [286]), there exists (ξ, η), ξ
between x and xi and η between y and yj , such that

f(x, y) − Pn,m(x, y) = F (x, y) − F (xi, y) − F (x, yj) + F (xi, yj)

= (x − xi)(y − yj)
∂2F

∂x∂y
(ξ, η).

Repeating now the type of reasoning in the univariate case with respect
to both x and y, similarly we obtain f(x, y)Pn,m(x, y) ≥ 0, for all n ≥ n0,
m ≥ m0. Finally, Pn,m(x, y) obviously gives the estimate in the statement.

Note that from the proof, it follows in fact that Pn,m(x, y) is of degrees
≤ 2kn in x and ≤ 2sm in y. But by a standard procedure, we may reduce it
to degrees ≤ n in x and ≤ m in y, which proves the theorem. �

Corollary 2.6.7. Let f : [0, 1] × [0, 1] → R be supposed to have the partial
derivative ∂2f

∂x∂y continuous on [0, 1] × [0, 1].
(i) (Gal [132]) If f changes sign on the degenerate grid in (0, 1) × (0, 1)

determined by the distinct segments parallel to the OY axis, x = xi, i =
1, . . . , k, then for all n ≥ n0 and m ≥ 8 (n0 depends only on k, α, where
α = min0≤i≤k(xi+1 − xi), 0 = x0, 1 = xk+1), there is a polynomial Pn,m(x, y)
of degrees ≤ n in x and ≤ m in y that is copositive with f on [0, 1]2 and
satisfies

‖f − Pn,m‖ ≤ C

[
1
n

(

ω2(
∂f

∂x
;
1
n

, 0) + ω2(
∂2f

∂x∂y
;
1
n

, 0)
)

+
1
m

(

ω2(
∂f

∂y
; 0,

1
m

) + ω2(
∂2f

∂x∂y
; 0,

1
m

)
)]

with C > 0 depending only on k, α.
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(ii) (Gal [132]) If f changes sign on the degenerate grid in (0, 1) × (0, 1)
determined by the distinct segments parallel to the OX axis, y = yj , j =
1, . . . , s, then for all n ≥ 8 and m ≥ m0 (with m0 depending only on s, β,
where β = min0≤j≤s(yj+1 − yj), 0 = y0, 1 = ys+1), there exists a polynomial
Pn,m(x, y) of degrees ≤ n in x and ≤ m in y that is copositive with f on [0, 1]2

and ‖f − Pn,m‖ satisfies the estimate from the above point (i), with C > 0
depending only on s, β.

(iii) If f changes sign on the first bisector in [0, 1] × [0, 1] of the equation
x− y = 0 (which necessarily implies f(u, u) = 0 for all u ∈ [0, 1]), then for all
0 < η < 1/2, n ≥ n0, and m ≥ 8 (with n0 = n0(η) independent of f), there
exists a polynomial Pn,m(x, y) of degrees ≤ n in x and ≤ max{n, [n/2] + m}
in y that is copositive with f on [0, 1]× [η, 1− η] and ‖f −Pn,m‖ satisfies the
estimate from the point (i), with C > 0 depending only on η.

(iv) If f changes its sign on the arc of the parabola in [0, 1] × [0, 1] of
equation x − y2 = 0 (which necessarily implies f(u2, u) = 0, for all u ∈
[0, 1]), then for all 0 < η < 1/2, n ≥ n0, and m ≥ 8 (with n0 = n0(η)
independent of f), there exists a polynomial Pn,m(x, y) of degrees ≤ n in x
and ≤ max{2n, n + m} in y that is copositive with f on [0, 1] × [η, 1 − η] and
‖f − Pn,m‖ satisfies the estimate from the above (i), with C > 0 depending
only on η.

(v) Let us suppose that f changes sign on the system of curves composed
by the first bisector and the arc of the parabola x − y2 = 0 in [0, 1] × [0, 1]
(which necessarily implies f(u, u) = 0 and f(u2, u) = 0, for all u ∈ [0, 1])
and let pn,m(x, y) be a bivariate polynomial of degree ≤ n in x and ≤ m

in y such that ‖f − pn,m‖ ≤ CΦ(f)n,m, ‖∂f
∂x − ∂pn,m

∂x ‖ ≤ CΨ(f)n,m, where
Ψ(f)n,m ≤ nΦ(f)n,m, for all n,m ∈ N, with C > 0 independent of f , n,m,
and pn,m(y, y) = pn,m(y2, y) = 0 for all y ∈ [0, 1]. For all 0 < η < 1/2,
n ≥ n0, m ∈ N (with n0 = n0(η) independent of f), there is a polynomial
Pn,m(x, y) of degrees ≤ 2n in x and ≤ max{3n,m} in y, copositive with f
on [0, 1] × [η, 1 − η] and ‖f − Pn,m‖ ≤ C1Φ(f)n,m, with C1 > 0 a absolute
constant.

Proof. (i) By Remark 1 of Definition 2.6.4, we have f(xi, y) = 0 for all
y ∈ (0, 1), i = 1, . . . , k.

For p̃n,m in Corollary 2.6.5, let us define

Qn,m(x, y) = p̃n,m(x, y) +
k∑

i=1

li(x)[f(xi, y) − p̃n,m(xi, y)],

where li(x), i = 1, . . . , k represent the fundamental Lagrange interpolation
polynomials based on the nodes x1 < · · · < xk.

It is easy to see that the approximation errors by Qn,m are the same
as those given by p̃n,m in Corollary 2.6.5, with a constant (independent of
f, n,m) that will also be denoted by C without loss of generality. Also, we
have Qn,m(xi, y) = f(xi, y) = 0 for all y ∈ (0, 1), i = 1, . . . , k.
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Let us define

Pn,m(x, y) = Qn,m(x, y) + En,m(x),

where En,m(x) = εDC
[

a
n + b

m

]
Πk

i=1qn(x − xi), qn(x) are the polynomials
with the properties in Lemma 1 in Hu–Leviatan–Yu [176] (see also the proof of
Theorem 1.5.4 (iv) in Chapter 1), a, b, are given by the statement of Corollary
2.6.5, ε = sgnf(x, y), (x, y) ∈ (xk, 1) × (0, 1), C > 0 is as above and D > 0
will be properly chosen later.

It is easy to show that Pn,m(xi, y) = 0, for all y ∈ [0, 1], i = 1, . . . , k, and
that En,m(x)f(x, y) ≥ 0, for all x, y ∈ [0, 1].

For arbitrary fixed y ∈ (0, 1), we have two possibilities:
(a) x 	∈ ∪k

i=1[xi − 1/n, xi + 1/n];
(b) there is i such that x ∈ [xi − 1/n, xi + 1/n];
Case (a). Reasoning as in the proof of the univariate case Theorem 1.5.4

(iv) (see also Theorem 2 in Hu–Leviatan–Yu [176]) and choosing D > A−k,
we get |En,m(x)| > C

[
a
n + b

m

]
and f(x, y)Pn,m(x, y) ≥ 0.

Case (b). Reasoning as in the univariate case (see Theorem 1.5.4 (iv) or
Hu–Leviatan–Yu [176]), we obtain sgn

[
∂f
∂x − ∂Pn,m

∂x

]
(x, y) = sgn{−qn(x −

xi)f(x, y)}.
By the mean value theorem, we can write f(x, y)−Pn,m(x, y) = f(x, y)−

Pn,m(x, y)− [f(xi, y)−Pn,m(xi, y)] = (x−xi)
(

∂f
∂x − ∂Pn,m

∂x

)
(ξ, y), with ξ be-

tween x and xi. Reasoning now with respect to x (y fixed) as in the univariate
case, we similarly get f(x, y)Pn,m(x, y) ≥ 0, for all n ≥ n0 and m ≥ 8. Finally,
Pn,m(x, y) obviously gives the estimate in the statement.

Note that from the proof, in fact it follows that Pn,m(x, y) is of degrees
≤ 2kn in x and ≤ m in y. But by a standard procedure we may reduce it to
the degrees ≤ n in x and ≤ m in y, which proves (i).

(ii) The proof is similar to that of (i).
(iii) Defining A1 = {(x, y) ∈ [0, 1]2;x − y < 0}, A2 = {(x, y) ∈ [0, 1]2;x −

y > 0}, and A3 = {(x, y) ∈ [0, 1]2;x − y = 0}, it is obvious that [0, 1]2 =
A1 ∪A2 ∪A3, Ai ∩Aj = ∅ for all i 	= j, and by hypothesis we get f(x, x) = 0
for all x ∈ [0, 1]. Fix y ∈ (η, 1 − η), arbitrary.

For p̃n,m in Corollary 2.6.5, let us define pn,m(x, y) = p̃n,m(x, y)+[f(y, y)−
p̃n,m(y, y)]. It is easy to see that the approximation errors by pn,m(x, y) (and
by ∂pn,m

∂x ) are the same as those given by p̃n,m(x, y) (and by ∂p̃n,m

∂x ), with
a constant (independent of f, n,m, y but depending on η) that will also be
denoted by C without loss of generality. Also, pn,m(y, y) = f(y, y) = 0.

Define now
Pn,m(x, y) = pn,m(x, y) + En,m(x, y),

where En,m(x, y) = εDC[a/n + b/m]qn(x − y), qn(u) is in Lemma 1 in Hu–
Leviatan–Yu [176], ε = sgn{f(x, y), (x, y) ∈ A2}, a, b are given by Corollary
2.6.5, C > 0 is as above and D > 0 will be determined below.

First, it is easy to check that f(x, y)En,m(x, y) ≥ 0, for all (x, y) ∈ [0, 1]2.
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Now fix y ∈ (η, 1− η) arbitrary and let x ∈ [0, 1] be variable. We have two
possibilities :

(1) |x − y| > 1
n

and
(2) |x − y| ≤ 1

n .
Case (1). Choosing D > A−1, we get

f(x, y)Pn,m(x, y) = f(x, y)[pn,m(x, y)−f(x, y)]+f2(x, y)+f(x, y)En,m(x, y),

and since

f(x, y)En,m(x, y) = |f(x, y)En,m(x, y)| ≥ |f(x, y)|C[a/n + b/m],

it follows that f(x, y)Pn,m(x, y) ≥ 0.
Case (2). First we easily get Pn,m(y, y) = pn,m(y, y) = 0 = f(y, y). Defin-

ing F (x) = f(x, y), x ∈ [0, 1], Rn,m(x) = Pn,m(x, y), we obtain F (y) =
Rn,m(y) = 0, and reasoning exactly as in the proof of Theorem 2 in the
univariate case in Hu–Leviatan–Yu [176], pp. 215-217 (since |x− y| ≤ 1

n ), for
D > 2A−1 we get F (x)Rn,m(x) ≥ 0 for all n ≥ n0 = n0(η) and m ≥ 8.

From the continuity of f and Pn,m(x, y), we obtain f(x, y)Pn,m(x, y) ≥ 0,
for all x ∈ [0, 1] and all y ∈ [η, 1 − η].

Finally, Pn,m(x, y) obviously gives the estimate in the statement. Note
that from the proof, it follows in fact that Pn,m(x, y) is of degrees ≤ 2n in x
and ≤ max{n + m, 2n} in y. But by a standard procedure we may reduce it
to the degrees ≤ n in x and ≤ max{[n/2] + m,n} in y, which proves (iii).

(iv) The proof is identical to that in (iii), using the constructions

pn,m(x, y) = p̃n,m(x, y) + [f(y2, y) − p̃n,m(y2, y)],
Pn,m(x, y) = pn,m(x, y) + En,m(x, y),

where En,m(x, y) = εDC[a/n + b/m]qn(x− y2), ε = sgn{f(x, y);x− y2 > 0}.
(v) Fix y ∈ (η, 1−η) and take x ∈ [0, 1] variable. Our required polynomials

will be defined by Pn,m(x, y) = pn,m(x, y) + En,m(x, y), where

En,m(x, y) = εDCΦ(f)n,mqn(x − y)qn(x − y2),

ε = sgn{f(x, y); (x, y) ∈ A3}, A3 = {(x, y) ∈ [0, 1]2 : y < x}, with D > 0 to
be chosen later. Setting A2 = {(x, y) ∈ [0, 1]2; y2 < x < y}, A1 = {(x, y) ∈
[0, 1]2;x ≤ y2}, we obviously have [0, 1]2 = A1∪A2∪A3, with the Aj ∩Ai = ∅
for j 	= i.

First we easily get f(x, y)En,m(x, y) ≥ 0 for all x, y ∈ [0, 1].
Since y ∈ (η, 1− η), we have y2 < y. In what follows, reasoning exactly as

in the proof of Theorem 2 in the univariate case in Hu–Leviatan–Yu [176], pp.
215–217 (with respect to x and n in the expression of f(x, y) and Pn,m(x, y)
and setting y1 = y2, y2 = y), we get f(x, y)Pn,m(x, y) ≥ 0, for all x ∈ [0, 1],
y ∈ (η, 1 − η), n ≥ n0 = n0(η), m ∈ N.
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From the continuity of f and Pn,m(x, y), again we immediately obtain that
f(x, y)Pn,m(x, y) ≥ 0 for all x ∈ [0, 1] and all y ∈ [η, 1 − η], n ≥ n0 = n0(η),
m ∈ N.

Note that from the proof, it follows in fact that Pn,m(x, y) is of degrees
≤ 4n in x and ≤ max{m, 6n} in y. But by a standard procedure we may
reduce it to the degrees ≤ 2n in x and ≤ max{m, 3n} in y. �

Corollary 2.6.8. (Gal [132]) In terms of the modulus of smoothness of the
second kind introduced in Definition 2.1.2 (iii), the estimate in Corollary 2.6.7
(i)–(iv), can be expressed by

‖f − Pn,m‖ ≤ C

[
1
n

(

ω2(
∂f

∂x
;
1
n

) + ω2(
∂2f

∂x∂y
;
1
n

)
)

+
1
m

(

ω2(
∂f

∂y
;

1
m

) + ω2(
∂2f

∂x∂y
;

1
m

)
)]

.

Proof. It is immediate by the obvious inequalities

ω2(f ; δ, 0) ≤ ω2(f ; δ), ω2(f ; 0, δ) ≤ ω2(f ; δ). �

Remarks. (1) Theorem 2.6.6 is in fact a result of “almost nearly” copos-
itive approximation and corrects Theorem 2.1 in Gal [132]. Also, although
the estimates in Theorem 2.6.6 and Corollaries 2.6.7, 2.6.8 are not the best
possible, at least they may be considered as the first Weierstrass-type results
in bivariate copositive approximation.

(2) If we consider the general concept in Definition 2.6.4 (vii), it is obvious
that if the system of arcs or curves on which f changes sign are not algebraic
curves, then the copositive approximation by bivariate polynomials might
no longer be possible. For example, suppose that the continuous function
f : [0, 1]× [0, 1] → R changes sign on the arc of the curve y = ex in [0, 1]. Then
we necessarily have f(x, ex) = 0 for all x ∈ [0, 1], and any bivariate polynomial
Pn,m(x, y) that is copositive with f necessarily satisfies Pn,m(x, ex) = 0 for
all x ∈ [0, 1], which is impossible.

(3) In the proof of Corollary 2.6.7 (v), we cannot use completely the
method in the univariate case, as we did in cases (i)–(iv), fact that has as
a consequence a different type of estimate. Indeed, the problem is starting
from a polynomial, let us say p̃n,m in Corollary 2.6.5, to define another poly-
nomial pn,m(x, y) having the same error approximation as p̃n,m has and satis-
fying, in addition, the interpolation conditions pn,m(y, y) = 0 (= f(y, y)) and
pn,m(y2, y) = 0(= f(y2, y)).

The standard Lagrange interpolation method produces

pn,m(x, y) = p̃n,m(x, y) +
x − y

y2 − y
[f(y2, y) − p̃n,m(y2, y)]

+
x − y2

y − y2
[f(y, y) − p̃n,m(y, y)],
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which unfortunately it is not a polynomial in x and y (it is a bivariate rational
function), although the approximation error by pn,m(x, y) is the same with
that given by p̃n,m(x, y), with a constant C > 0 (independent of f, n,m) and
pn,m(y, y) = f(y, y) = 0, pn,m(y2, y) = f(y2, y) = 0.

On the other hand, given f with the properties f(y, y) = f(y2, y) = 0 for all
y ∈ [0, 1], polynomials satisfying pn,m(y, y) = pn,m(y2, y) = 0 for all y ∈ [0, 1]
can easily be constructed in the form pn,m(x, y) = (x − y)(x − y2)g(x, y),
with g(x, y) an arbitrary bivariate polynomial. The problem is to find such of
pn,m(x, y) which, in addition, approximate well the function f . In this sense,
we may proceed as follows. For all n ≥ 2 and m ≥ 3, consider

Bn,m(f) = inf{‖f − p‖; p ∈ Pn,m ∩ G},

where Pn,m denotes the set of all bivariate polynomials of degrees ≤ n in x and
≤ m in y, G = {g; g(x, y) = (x − y)(x − y2)h(x, y);h(x, y) ≥ 0( or h(x, y) ≤
0),∀x, y ∈ [0, 1]}, and ‖ · ‖ is the uniform norm in C([0, 1]× [0, 1]). According
to Remark 2 after Definition 2.3.4, there exists pn,m ∈ Pn,m ∩ G such that
Bn,m(f) = ‖f − pn,m‖. Starting from this pn,m(x, y) and reasoning exactly as
in the proof of Corollary 2.6.7, (v), we get the polynomials Pn,m(x, y) which
are copositive with f on [0, 1] × [η, 1 − η] and satisfy the error estimate

‖f − Pn,m‖ ≤ C · Bn,m(f),

with the constant C > 0 independent of f, n,m. The question is to find good
estimates in terms of moduli of smoothness for the quantity Bn,m(f).

2.6.4 Bivariate Comonotone Approximation

We apply now some ideas in the univariate case to deduce a result in bivariate
comonotone approximation. This is possible because we use the concept of
change of bidimensional monotonicity on a proper grid.

For that purpose, we need the following.

Theorem 2.6.9. (Gal [126], Theorem 3.1) For any f ∈ C([−1, 1] × [−1, 1])
with the continuous partial derivative ∂2f

∂x∂y ≥ 0 on [−1, 1] × [−1, 1], there
exists a sequence of bivariate polynomials Pn,m(f)(x, y), of degrees ≤ n in x
and ≤ m in y, such that

‖Pn,m − f‖ ≤ Cωϕ
2

(

f ;
1
n

,
1
m

)

,

and ∂2Pn,m

∂x∂y ≥ 0 on [−1, 1] × [−1, 1], where C > 0 is independent of f , n, m,
and ‖ · ‖ denotes the uniform norm.

Proof. Since f has continuous partial derivative ∂2f
∂x∂y ≥ 0 on [−1, 1]× [−1, 1],

according to Remark 2 (iii) after Definition 2.1.1, f is upper bidimensional
monotone in [−1, 1] × [−1, 1]. Then Theorem 2.6.9 follows directly from
Theorem 2.6.1 (i). �
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We will extend Theorem 1.6.7 (i), to bivariate approximation. The first
main result is the following.

Theorem 2.6.10. If f : [−1, 1] × [−1, 1] → R has the partial derivative
g = ∂2f

∂x∂y continuous on [−1, 1] × [−1, 1] and changes its upper bidimensional
monotonicity on the proper rectangular grid in (−1, 1) × (−1, 1), determined
by the distinct segments x = xi, i ∈ {1, . . . , k}, y = yi, i ∈ {1, . . . , k}, then
for all n ≥ 1 and m ≥ 1, there exists a polynomial Pn,m(x, y) of degrees ≤ n
in x and ≤ m in y that is comonotone with f on [−1, 1]2 and satisfies

‖f − Pn,m‖ ≤ C(k)
[( n

m
+

m

n

)
ωϕ

1

(
∂2f

∂x∂y
;
1
n

,
1
m

)

+ ωϕ
2

(

f ;
1
n

,
1
m

)]

,

with C(k) > 0 depending only on k.

Before to prove it, let us consider the following important

Remark. It is evident that the estimates produced by Theorem 2.6.10 can
become very bad (tends to ∞ with n → ∞) and actually unuseful if, for
example, we take m = ns, with s ≥ 2 (a similar phenomenon can be found in
bivariate global smoothness preservation by interpolation, see Gal-Szabados
[141]). To completely eliminate this shortcoming, we will reformulate Theorem
2.6.10 in the following more suitable form in Corollary 2.6.11, such that the
error is expressed with respect to the global degree of the polynomials. Note
that although the estimate in the next corollary is not the best possible, at
least this corollary could be considered as the first Weierstrass-type result in
bivariate comonotone approximation with respect to the total degree of the
polynomials.

Corollary 2.6.11. (i) If f : [−1, 1] × [−1, 1] → R has the partial derivative
g = ∂2f

∂x∂y continuous on [−1, 1] × [−1, 1] and changes its upper bidimensional
monotonicity on the proper rectangular grid in (−1, 1) × (−1, 1) determined
by the distinct segments x = xi, i ∈ {1, . . . , k}, y = yi, i ∈ {1, . . . , k}, then
for any r ≥ 2, there exists a polynomial Pr(x, y) of total degree ≤ r, that is
comonotone with f on [−1, 1]2 and satisfies

‖f − Pr‖ ≤ C(k)
[

ωϕ
1

(
∂2f

∂x∂y
;
1
r
,
1
r

)

+ ωϕ
2

(

f ;
1
r
,
1
r

)]

,

with C(k) > 0 depending only on k.
(ii) In terms of the Ditzian–Totik moduli of smoothness introduced at the

end of Definition 2.1.2 (ii), the above estimate at the point (i) can be expressed
by

‖f − Pr‖ ≤ C(k)
[

ωϕ
1

(
∂2f

∂x∂y
;
1
r

)

+ ωϕ
2

(

f ;
1
r

)]

.
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Proof. (i) For even r, take m = n = r/2 in Theorem 2.6.10. There exists a
polynomial Pr/2(x, y) of degrees ≤ r/2 ≤ r in x and ≤ r/2 ≤ r in y, that is
comonotone with f and satisfies

‖f − Pn,m‖ ≤ C(k)
[

ωϕ
1

(
∂2f

∂x∂y
;
2
r
,
2
r

)

+ ωϕ
2

(

f ;
2
r
,
2
r

)]

,

with C(k) > 0 depending only on k, which proves the statement.
For odd r, take n = [r/2] ≤ r and m = [r/2] + 1 ≤ r in Theorem 2.6.10.

Since n/m + m/n ≤ 3, again we easily obtain the statement.
(ii) It is immediate by Lemma 2.1.3 (v). �
For the proof of Theorem 2.6.10 some auxiliary constructions and results

are necessary, as follows.
First we prove an additional approximation property of the polynomials

in Theorem 2.6.9.

Theorem 2.6.12. For any f ∈ C([0, 1] × [0, 1]) with the continuous partial
derivative ∂2f

∂x∂y ≥ 0 on [−1, 1] × [−1, 1], there exists a sequence of bivariate
polynomials Pn,m(f)(x, y), of degrees ≤ n in x and ≤ m in y, such that

‖Pn,m − f‖ ≤ Cωϕ
2

(

f ;
1
n

,
1
m

)

,

∥
∥
∥
∥

∂2Pn,m

∂x∂y
− ∂2f

∂x∂y

∥
∥
∥
∥ ≤ Cωϕ

1

(
∂2f

∂x∂y
;
1
n

,
1
m

)

,

and ∂2Pn,m

∂x∂y ≥ 0 on [−1, 1] × [−1, 1], where C > 0 is independent of f , n, m,
and ‖ · ‖ denotes the uniform norm.

Proof. Let us consider the nodes ξi,n, ηj,m in [−1, 1] and Ri,n(x), Rj,m(y)
defined as in the proof of Theorem 2.6.1 (see also Gal [126]), suggested by the
univariate case in Leviatan [228], and the tensor product of the polynomials
in the proof of Proposition 8, p. 11, in Leviatan [232] (with the corresponding
simplifications of nodes in Leviatan [228]), given by

Qn,m(f)(x, y) =
n−1∑

i=0

m−1∑

j=0

1
(ξi+1,n − ξi,n)(ηj+1,m − ηj,m)

×
∫ ξi+1,n

ξi,n

∫ ηj+1,m

ηj,m

f(u, v)du dv[R′
i,n(x) − R′

i+1,n(x)]

× [R′
j,m(y) − R′

j+1,m(y)].

By the estimate in the univariate case in Leviatan [232], Proposition 8,
and by Haussmann–Pottinger [167], Theorem 5, we immediately get

‖Qn,m(f) − f‖ ≤ C[ωϕ
1,x(f ; 1/n) + ωϕ

1,y(f ; 1/m)] ≤ 2Cωϕ
1 (f ; 1/n, 1/m).
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Replacing f by ∂2f
∂x∂y we obtain

∥
∥
∥
∥Qn,m

(
∂2f

∂x∂y

)

− ∂2f

∂x∂y

∥
∥
∥
∥ ≤ Cωϕ

1

(
∂2f

∂x∂y
; 1/n, 1/m

)

.

Let us define

Ln,m(f)(x, y) =
∫ x

−1

∫ y

−1

Qn,m

(
∂2f

∂u∂v

)

(w, z)dw dz

=
n−1∑

i=0

m−1∑

j=0

S∗
i,j [Ri,n(x) − Ri+1,n(x)][Rj,m(y) − Rj+1,m(y)],

where S∗
i,j has the meaning in the proof of Theorem 2.6.1.

Setting now

Pn,m(f)(x, y) = Ln,m(f)(x, y) + Gm,n(f)(x, y),

where

Gn,m(f)(x, y)

= f(−1,−1) +
m−1∑

j=0

f(−1, ηj+1,m) − f(−1, ηj,n)
ηj+1,m − ηj,m

[Rj,m(y) − Rj+1,m(y)]

+
n−1∑

i=0

f(ξi+1,n,−1) − f(ξi,n,−1)
ξi+1,n − ξi,n

[Ri,n(x) − Ri+1,n(x)],

it is easy to see that we reobtain exactly the polynomials in Theorem 2.6.1
(see also Gal [126], p. 29), i.e., we have

‖Pn,m(f) − f‖ ≤ Cωϕ
2 (f ; 1/n, 1/m) and

∂2Pn,m

∂x∂y
≥ 0 on [−1, 1] × [−1, 1].

On the other hand, since ∂2Pn,m

∂x∂y = ∂2Ln,m

∂x∂y = Qn,m( ∂2f
∂x∂y ), we get

∥
∥
∥
∥

∂2Pn,m

∂x∂y
− ∂2f

∂x∂y

∥
∥
∥
∥ ≤ Cωϕ

1

(
∂2f

∂x∂y
; 1/n, 1/m

)

. �

In what follows we need to define a certain suitable extension of func-
tions to larger bidimensional intervals and to introduce the so-called bivariate
“flipped” function.

Writing g(x, y) = ∂2f
∂x∂y (x, y), x, y ∈ [−1, 1], let us consider its exten-

sion G(g) := G to [−3, 3] × [−3, 3], as follows: G(x, y) = g(x, y) if x, y ∈
[−1, 1]; G(x, y) = g(1, y) if x ∈ [1, 3], y ∈ [−1, 1]; G(x, y) = g(−1, y) if
x ∈ [−3,−1], y ∈ [−1, 1]; G(x, y) = g(x, 1) if x ∈ [−1, 1], y ∈ [1, 3];
G(x, y) = g(x,−1) if x ∈ [−1, 1], y ∈ [−3,−1]; G(x, y) = g(1, 1) if x, y ∈ [1, 3];
G(x, y) = g(−1, 1) if x ∈ [−3,−1], y ∈ [1, 3]; G(x, y) = g(−1,−1) if
x, y ∈ [−3,−1]; G(x, y) = g(1,−1) if x ∈ [1, 3], y ∈ [−3,−1].

It is easy to prove the following.
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Lemma 2.6.13. (i) If g is continuous on [−1, 1]× [−1, 1] then so is G(g) on
[−3, 3] × [−3, 3] .

(ii) The functions g and G(g) change signs on the same proper rectangular
grid, i.e.,

if Πk
i=1(x − xi)(y − yi)g(x, y) ≥ 0, ∀x, y ∈ [−1, 1], or

Πk
i=1(x − xi)(y − yi)g(x, y) ≤ 0, ∀x, y ∈ [−1, 1],

then Πk
i=1(x − xi)(y − yi)G(g)(x, y) ≥ 0, ∀x, y ∈ [−3, 3], or

Πk
i=1(x − xi)(y − yi)G(g)(x, y) ≤ 0, ∀x, y ∈ [−3, 3].

(iii) If we set δ0 = mini=0,..,k{xi+1 − xi, yi+1 − yi} (where x0 = y0 =
−1, xk+1 = yk+1 = 1), then for all 0 ≤ δ ≤ δ0, 0 ≤ η ≤ δ0 we have
ωϕ

1 (g; δ, η)[−1,1]×[−1,1] = ωϕ
1 (G(g); δ, η)[−3,3]×[−3,3].

Proof. (i) By definition, we easily see that G(g) prolongs g by continuity,
from [−1, 1]2 to [−3, 3]2, which implies the continuity of G(g).

(ii) To make a choice, suppose for example that

Πk
i=1(x − xi)(y − yi)g(x, y) ≥ 0,∀x, y ∈ [−1, 1].

We have nine possibilities : (1) (x, y) ∈ [−1, 1] × [−1, 1]; (2) (x, y) ∈ [−1, 1] ×
[−3,−1]; (3) (x, y) ∈ [−1, 1]× [1, 3]; (4) (x, y) ∈ [−3,−1]× [−1, 1]; (5) (x, y) ∈
[1, 3] × [−1, 1]; (6) (x, y) ∈ [1, 3] × [−3,−1]; (7) (x, y) ∈ [1, 3] × [1, 3]; (8)
(x, y) ∈ [−3,−1] × [1, 3]; (9) (x, y) ∈ [−3,−1] × [−3,−1].

Case (1). Since G(g) = g, we get

Πk
i=1(x − xi)(y − yi)g(x, y) ≥ 0, ∀x, y ∈ [−1, 1].

Case (2). By definition we have G(g)(x, y) = g(x,−1), that is

Πk
i=1(x − xi)(y − yi)G(g)(x, y) = Πk

i=1(x − xi)(y − yi)g(x,−1)

=
Πk

i=1(y − yi)
Πk

i=1(−1 − yi)
Πk

i=1(x − xi)(−1 − yi)g(x,−1) ≥ 0.

Case (3). By definition we have G(g)(x, y) = g(x, 1), that is

Πk
i=1(x − xi)(y − yi)G(g)(x, y) = Πk

i=1(x − xi)(y − yi)g(x, 1)

=
Πk

i=1(y − yi)
Πk

i=1(1 − yi)
Πk

i=1(x − xi)(1 − yi)g(x, 1) ≥ 0.

The proofs for the other Cases (4)–(9), are similar.
(iii) The proof is very simple. First, because G(g) prolongs g, it is obvi-

ous the inequality ωϕ
1 (g; δ, η)[−1,1]2 ≤ ωϕ

1 (G(g); δ, η)[−3,3]2 . For the converse
inequality, we easily observe that any difference G(g)(u, v) − G(g)(x, y) with
u, v, x, y ∈ [−3, 3], can be expressed in terms of a similar difference of g, that
is there exist points a, b, c, d ∈ [−1, 1], such that G(g)(u, v) − G(g)(x, y) =
g(a, b) − g(c, d). �
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Definition 2.6.14. Let f : [−1, 1] × [−1, 1] → R be with partial derivative
g = ∂2f

∂x∂y continuous on [−1, 1]×[−1, 1] such that f changes its upper bidimen-
sional monotonicity on the proper rectangular grid in (−1, 1)× (−1, 1) deter-
mined by the distinct segments x = xi, i ∈ {1, . . . , k}, y = yi, i ∈ {1, . . . , k},
such that there exists j with xj = yj = 0.

Define the “flipped” function attached to f , denoted by F (f), as follows:
first define g̃(x, y) = g(x, y) if xy ≥ 0, g̃(x, y) = −g(x, y) if xy < 0 (which
remains continuous on [−1, 1]× [−1, 1] since by the Remark 2 after Definition
2.6.4, we necessarily have g(xi, y) = g(x, yi) = 0 for all x, y ∈ [−1, 1], i =
1, . . . , k). Then one takes F (f)(x, y) =

∫ x

0

∫ y

0
g̃(u, v)du dv for all x, y ∈ [−1, 1].

Remarks. (1) Obviously we have ∂2F (f)
∂x∂y = g̃, continuous on [−1, 1]× [−1, 1].

(2) Since by its definition, it easily follows that g̃ changes its sign on
the proper rectangular grid in (−1, 1) × (−1, 1) determined by the distinct
segments x = xi, i ∈ {1, . . . , k}\{j}, y = yi, i ∈ {1, . . . , k}\{j}, so on a proper
rectangular grid in (−1, 1)×(−1, 1), determined by a number of segments with
two fewer than that for g, it means that F (f) changes its upper bidimensional
monotonicity on a proper rectangular grid in (−1, 1)× (−1, 1), determined by
a number of segments two less than that for f .

(3) We have g̃(x, y) = sgn{xy}g(x, y), i.e., g̃(x, y) = sgn{xy} ∂2f
∂x∂y (x, y),

which immediately implies F (f)(x, y) = sgn{xy}[f(x, y) − f(x, 0) − f(0, y) +
f(0, 0)].

(4) In the next proofs, C > 0 denotes a constant that is independent of f ,
n, m, k and can be different at each occurrence.

We also need the following lemma.

Lemma 2.6.15. Let f : [−1, 1]×[−1, 1] → R be with continuous partial deriv-
ative g := ∂2f

∂x∂y continuous on [−1, 1] × [−1, 1] such that f changes its upper
bidimensional monotonicity on the proper rectangular grid in (−1, 1)×(−1, 1),
determined by the distinct segments x = xi, i ∈ {1, . . . , k}, y = yi, i ∈
{1, . . . , k} and there exists j with xj = yj = 0 and f(0, 0) = 0. Denoting
by F (f) the “flipped” function in Definition 2.6.14, let us suppose that for
some n,m ≥ 1 and some ε > ωϕ

1 (∂2F (f)
∂x∂y ; 1/n, 1/m) there exists a bivariate

polynomial pn,m(x, y) of degrees ≤ n in x and ≤ m in y, which is upper
bidimensional comonotone with F (f) on [−1, 1]2 and satisfies the estimates

‖F (f) − pn,m‖ ≤ ε
( n

m
+

m

n

)
+ C1ω

ϕ
2

(

f ;
1
n

,
1
m

)

,

∥
∥
∥
∥

∂2F (f)
∂x∂y

− ∂2pn,m

∂x∂y

∥
∥
∥
∥ ≤ ε,

where ‖ · ‖ denotes the uniform norm on C([−1, 1] × [−1, 1]) and C1 > 0 is
independent of f , n, and m.
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Then there exists a polynomial P2n,2m(x, y) of degrees ≤ 2n in x and ≤ 2m
in y, upper bidimensional comonotone with f on [−1, 1]2, satisfying

‖f − Pn,m‖ ≤ C

[

ε
( n

m
+

m

n

)
+ ωϕ

2

(

f ;
1
n

,
1
m

)]

,

∥
∥
∥
∥

∂2f

∂x∂y
− ∂2P2n,2m

∂x∂y

∥
∥
∥
∥ ≤ Cε,

with C > 0 independent of f , n, and m.

Proof. First we show that in essence, the polynomial pn,m(x, y) in the hy-
pothesis can be redefined to satisfy the conditions pn,m(0, 0) = 0, pn,m(x, 0) =
pn,m(0, y) = 0, for all x, y ∈ [−1, 1]. Indeed, writing pn,m(x, y) = pn,m(x, y)−
pn,m(x, 0) − pn,m(0, y) + pn,m(0, 0), we have pn,m(0, 0) = pn,m(x, 0) =
pn,m(0, y) = 0, and since we also have F (f)(0, 0) = F (f)(x, 0) = F (f)(0, y) =
0, it follows that ‖F (f) − pn,m‖ ≤ 4‖F (f) − pn,m‖, while pn,m(x, y) has the

same degrees as pn,m(x, y) and ∂2pn,m

∂x∂y = ∂2pn,m

∂x∂y .
By f(0, 0) = 0 we get

f(x, y) =
∫ x

0

∫ y

0

∂2f

∂u∂v
(u, v)du dv + f(x, 0) + f(0, y).

There exist (see, e.g., Ditzian–Totik [98]) rn(x) and sm(y) polynomials of
degrees ≤ n in x and ≤ m in y, respectively, such that

|f(u, 0) − rn(u)| ≤ Cωϕ
2 (f(·, 0), 1/n) ≤ Cωϕ

2,x(f ; 1/n), ∀u ∈ [−1, 1]

and

|f(0, v) − sm(v)| ≤ Cωϕ
2 (f(0, ·), 1/m) ≤ Cωϕ

2,y(f ; 1/m), ∀v ∈ [−1, 1].

Define

R2n,2m(x, y) =
∫ x

0

∫ y

0

∂2pn,m

∂u∂v
(u, v)qn(u)qm(v)du dv,

where qn(u) and qm(v) represent the–good approximation polynomials of
sgn(u) and sgn(v), of degrees ≤ n in u and ≤ m in v, respectively, given
as in the proof of the Lemma in Beatson–Leviatan [34], p. 221 (see also the
proof of Lemma A in the proof of Theorem 1.6.7). Therefore Rn,m(x, y) is a
polynomial of degrees ≤ 2n in x and ≤ 2m in y.

Note that R2n,2m(x, y) is upper bidimensional comonotone with respect to
F (f)(x, y)sgn{xy} = [f(x, y) − f(x, 0) − f(0, y)] (see Remark 3 after Defini-
tion 2.6.14). Since f(x, y)− f(x, 0)− f(0, y) is obviously upper bidimensional
comonotone with f(x, y), it follows that Rn,m(x, y) is upper bidimensional
comonotone with f(x, y).
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If we define now P2n,2m(x, y) = R2n,2m(x, y) + rn(x) + sm(y), then obvi-
ously that P2n,2m(x, y) remains upper bidimensional comonotone with f(x, y)
and it is of the same degrees as R2n,2m(x, y).

Also, we have

f(x, y) − P2n,2m(x, y)

=
[∫ x

0

∫ y

0

∂2f

∂u∂v
(u, v)dudv − R2n,2m(x, y)

]

+ [f(x, 0) − rn(x)]

+ [f(0, y) − sm(y)],

where
∫ x

0

∫ y

0

∂2f

∂u∂v
(u, v)du dv − R2n,2m(x, y)

=
∫ x

0

∫ y

0

g(u, v)du dv −
∫ x

0

∫ y

0

∂2pn,m

∂u∂v
(u, v)qn(u)qm(v)du dv

=
∫ x

0

∫ y

0

[g̃(u, v) − ∂2pn,m

∂u∂v
(u, v)]sgn{u}sgn{v}du dv

+
∫ x

0

∫ y

0

∂2pn,m

∂u∂v
(u, v)[sgn{u}sgn{v} − qn(u)qm(v)]du dv := I + J.

For the integral I, taking into account Remark 1 of Definition 2.6.14 and
the above possibility to choose pn,m, we easily get

I =
∫ x

0

∫ y

0

[g̃(u, v) − ∂2pn,m

∂u∂v
(u, v)]sgn{u}sgn{v}du dv

=
∫ x

0

∫ y

0

[
∂2F (f)
∂u∂v

(u, v) − ∂2pn,m

∂u∂v
(u, v)]sgn{u}sgn{v}du dv

= sgn{x}sgn{y}[F (f)(x, y) − pn,m(x, y)].

Therefore, ‖I‖ ≤ ‖F (f) − pn,m‖, which implies

|f(x, y) − P2n,2m(x, y)| ≤ ‖I‖ + ‖J‖ + Cωϕ
2,x(f ; 1/n) + Cωϕ

2,y(f ; 1/m)

≤ ‖F (f) − pn,m‖ + 2Cωϕ
2 (f ; 1/n, 1/m) + ‖J‖.

We used above the obvious inequality

ωϕ
2,x(f ; 1/n) + ωϕ

2,y(f ; 1/m) ≤ 2ωϕ
2 (f ; 1/n, 1/m).

In what follows we estimate the integral J . Setting η = sgn{x}/n, ξ =
sgn{y}/m, for 0 < |x| ≤ i/n, i = 1, . . . , n, and 0 < |y| ≤ j/m, j = 1, . . . , m,
we get
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|J | ≤
i−1∑

a=0

j−1∑

b=0

∫ (a+1)η

aη

∫ (b+1)ξ

bξ

∣
∣
∣
∣
∂2pn,m

∂u∂v
(u, v)

∣
∣
∣
∣ · |sgn{u}sgn{v} − qn(u)qm(v)|du dv

≤ 2

i−1∑

a=0

j−1∑

b=0

∫ (a+1)η

aη

∫ (b+1)ξ

bξ

∣
∣
∣
∣
∂2pn,m

∂u∂v
(u, v)

∣
∣
∣
∣ · |sgn{u} − qn(u)|du dv

+ 2

i−1∑

a=0

j−1∑

b=0

∫ (a+1)η

aη

∫ (b+1)ξ

bξ

∣
∣
∣
∣
∂2pn,m

∂u∂v
(u, v)

∣
∣
∣
∣ · |sgn{v} − qm(v)|du dv := J1 + J2.

We used above the easy-to prove inequality (taking into account that by
Beatson–Leviatan [34], formula (6), we have ‖qn‖ ≤ 2)

|sgn{u}sgn{v} − qn(u)qm(v)| ≤ 2|sgn{u} − qn(u)| + 2|sgn{v} − qm(v)|.

Now we estimate J1. First, keeping the notation in Definition 2.6.14, we
have ∣

∣
∣
∣
∂2pn,m

∂u∂v
(u, v)

∣
∣
∣
∣ ≤
∣
∣
∣
∣
∂2pn,m

∂u∂v
(u, v) − g̃(u, v)

∣
∣
∣
∣+ |g̃(u, v)|,

where recall that by Remark 1 after Definition 2.6.14, we have ∂2F (f)
∂x∂y = g̃,

the properties of g implies g̃(u, 0) = g̃(0, v) = g̃(0, 0) = 0, for all u, v ∈ [−1, 1],
and therefore, if |u| ≤ i/n and |v| ≤ j/m, then we get

|g̃(u, v)| ≤ |g̃(u, v) − g̃(u, 0)| + |g̃(0, v) − g̃(0, 0)|
≤ ωϕ

1,v(g̃; 2|v|) + ωϕ
1,u(g̃; 2|u|)

≤ Cjωϕ
1,v(g̃; 1/m) + Ciωϕ

1,u(g̃; 1/n) ≤ C(i + j)ωϕ
1 (g̃; 1/n, 1/m).

The above estimates easily follow from the fact that given, for example,
u ∈ [−1, 1], there are w ∈ [−1, 1] and h > 0, with h ≤ 2|u|, satisfying the
system w + h

2 ϕ(w) = u,w − h
2 ϕ(w) = 0, which implies that for any function

H we have

|H(u) − H(0)| =
∣
∣
∣
∣H

(

w +
h

2
ϕ(w)
)

− H

(

w − h

2
ϕ(w)
)∣
∣
∣
∣ ≤ ωϕ

1 (H;h).

Indeed, we choose w = u/2 which implies h given by the equation h2 = 4u2

4−u2 .
As a conclusion, we get

∣
∣
∣
∣
∂2pn,m

∂u∂v
(u, v)

∣
∣
∣
∣ ≤
∥
∥
∥
∥

∂2pn,m

∂u∂v
− g̃

∥
∥
∥
∥+ C(i + j)ωϕ

1 (g̃; 1/n, 1/m)

≤ ε + C(i + j)ωϕ
1 (g̃; 1/n, 1/m),

for all |u| ≤ i/n and |v| ≤ j/m
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We can write

J1 : =
i−1∑

a=0

j−1∑

b=0

ca,b

= 2
∫ η

0

∫ ξ

0

∣
∣
∣
∣
∂2pn,m

∂u∂v
(u, v)

∣
∣
∣
∣ · |sgn{u} − qn(u)|du dv +

j−1∑

b=1

c0,b +
i−1∑

a=1

ca,0

+
i−1∑

a=1

j−1∑

b=1

ca,b := S1 + S2 + S3 + S4.

Taking into account the above inequality, the properties of qn(x), qm(y), and
reasoning similar to the case of one real variable in Beatson-Leviatan [34],
proof of lemma, pp. 221–222 (see also Lemma A in the proof of Theorem
1.6.7), we get

S1 ≤ C

nm
[ωϕ

1 (g̃; 1/n, 1/m) + ε],

S2 ≤ C

nm

j−1∑

b=1

[ε + (b + 2)ωϕ
1 (g̃; 1/n, 1/m)] ≤ Cε

n
+ Cωϕ

1 (g̃; 1/n, 1/m)
m

n
,

S3 ≤ C

nm

i−1∑

a=1

a−3[(a + 2)ω1(g̃; 1/n, 1/m) + ε] ≤ Cε

mn
+ ωϕ

1 (g̃; 1/n, 1/m)
C

nm
,

S4 ≤ C

nm

i−1∑

a=1

j−1∑

b=1

a−3[(a + b + 2)ω1(g̃; 1/n, 1/m) + ε]

≤ Cε

n
+ Cωϕ

1 (g̃; 1/n, 1/m)
m

n
.

This implies

J1 = S1 + S2 + S3 + S4 ≤ Cε

n
+ Cωϕ

1 (g̃; 1/n, 1/m)
m

n
,

which for ε > ωϕ
1 (∂2F (f)

∂x∂y ; 1/n, 1/m), gives J1 ≤ Cεm
n .

Similarly, by symmetry it follows that J2 ≤ Cε n
m .

As a general conclusion, we obtain ‖J‖ ≤ Cε[m/n + n/m] and

‖f − P2n,2m‖ ≤ ‖F (f) − pn,m‖ + 2ωϕ
2 (f ; 1/n, 1/m) + ‖J‖

≤ C[ε(
m

n
+

n

m
) + ωϕ

2 (f ; 1/n, 1/m)].
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Reasoning as in the univariate case (see Beatson–Leviatan [34]), we get
∣
∣
∣
∣

∂2f

∂x∂y
(x, y) − ∂2P2n,2m

∂x∂y
(x, y)

∣
∣
∣
∣ =
∣
∣
∣
∣

∂2f

∂x∂y
(x, y) − ∂2pn,m

∂x∂y
(x, y)qn(x)qm(y)

∣
∣
∣
∣

=
∣
∣
∣
∣
∂2F (f)
∂x∂y

(x, y) − ∂2pn,m

∂x∂y
(x, y)sgn{x}qn(x)sgn{y}qm(y)

∣
∣
∣
∣

≤ C

∥
∥
∥
∥

∂2F (f)
∂x∂y

− ∂2pn,m

∂x∂y

∥
∥
∥
∥ ≤ Cε,

which proves the lemma. �

Remark. It is easy to see that the polynomials P2n,2m of degrees ≤ 2n in x
and ≤ 2m in y can in fact be modified to become of degrees ≤ n in x and
≤ m in y.

Proof of Theorem 2.6.10. Let (α, β) be a point such that the segments
(x = α, y ∈ (−1, 1)) and (y = β, x ∈ (−1, 1)) belong to the proper rectangular
grid of changes for the upper bivariate monotonicity of f in the statement of
Theorem 2.6.10, which obviously implies ∂2f

∂x∂y (α, β) = 0.
Let hi(x) and gj(y) be polynomials of degrees ≤ i in x and ≤ j in y,

respectively, such that

|f(x, β) − hi(x)| ≤ Cωϕ
1 (f(·, β); 1/i) ≤ Cωϕ

1,x(f ; 1/i, 0),∀x ∈ [−1, 1],

and

|f(α, y) − gj(y)| ≤ Cωϕ
1 (f(α, ·); 1/j) ≤ Cωϕ

1,y(f ; 0, 1/j),∀y ∈ [−1, 1].

For small n and m, e.g., n,m < N(k) the theorem is trivial. Indeed, we
obtain

|f(x, y) − hn(x) − gm(y) + f(α, β)|
≤ |f(x, y)−f(x, β)−f(α, y)+f(α, β)|+|f(x, β)−hn(x)|+|f(α, y)−gm(y)|

≤ |x − α| · |y − β|
∣
∣
∣
∣

∂2f

∂x∂y
(ξ, η)

∣
∣
∣
∣+ C[ωϕ

1,x(f ; 1/n, 0) + ωϕ
1,y(f ; 0, 1/m)]

≤ 2Cωϕ
1 (f ; 1/n, 1/m) + 2

∣
∣
∣
∣

∂2f

∂x∂y
(ξ, η) − ∂2f

∂x∂y
(α, β)

∣
∣
∣
∣

≤ Cωϕ
1 (f ; 1/n, 1/m) + 2Cωϕ

1 (
∂2f

∂x∂y
; 2, 2)

≤ Cωϕ
1 (f ; 1/n, 1/m) + C(k)ωϕ

2 (
∂2f

∂x∂y
; 1/n, 1/m)

≤ C(k)
[

(
n

m
+

m

n
)ωϕ

1 (
∂2f

∂x∂y
;
1
n

,
1
m

) + ωϕ
2 (f ;

1
n

,
1
m

)
]

.

Therefore, we will prove the theorem for large n and m, by induction on k,
with k representing the number of distinct segments parallel to the OY axis
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and also the number of distinct segments parallel to the OX axis, such that
on the grid determined by these segments, f changes its upper bidimensional
monotonicity.

The theorem is obviously valid for k = 0 by Theorem 2.6.12.
Assuming now that the theorem is true for k − 1 with k ≥ 1, we prove it

for k.
By Lemma 2.6.13 we can continuously extend g to G(g) on [−3, 3]×[−3, 3],

with G(g) having exactly the same proper grid of changes for upper bidimen-
sional monotonicity as g and preserving the modulus ωϕ

1 of g.
Without loss of generality, we can suppose that f(0, 0) = 0 (otherwise

subtract a constant from f and add it to approximation polynomials). Since∫ x

0

∫ y

0
g(u, v)dudv = f(x, y) − f(x, 0) − f(0, y) + f(0, 0) = f(x, y) − f(x, 0) −

f(0, y), let h1(x) and h2(y) be two continuously two-times differentiable ex-
tensions on [−3, 3] of f(x, 0) and f(0, y), respectively. Then the two-times
differentiable extension of f(x, y) to [−3, 3] × [−3, 3] will be

H(f)(x, y) =
∫ x

0

∫ y

0

G(g)(u, v)du dv + h1(x) + h2(y).

Also, it is evident that

ωϕ
1

(
∂2f

∂x∂y
; δ1, δ2

)

[−1,1]×[−1,1]

= ωϕ
1

(
∂2H(f)
∂x∂y

; δ1, δ2

)

[−3,3]×[−3,3]

,

and that H(f)(x, y) changes its upper bidimensional monotonicity exactly on
the same proper grid as f .

Let x = α, y = β with −1 < α < 1, −1 < β < 1 belonging to a proper
grid of changing for upper bidimensional monotonicity of f , i.e., according
to the Remark 2 of Definition 2.6.4, we have ∂2f

∂x∂y (α, β) = ∂2f
∂x∂y (α, y) =

∂2f
∂x∂y (x, β) = 0, for all x, y ∈ [−1, 1]. Let us consider the bidimensional in-
terval centered at (α, β), I = [α− 2, α + 2]× [β − 2, β + 2] ⊂ [−3, 3]× [−3, 3].
By the change of variables u = (x − α)/2, v = (y − β), the function
h(u, v) = H(f)(x, y) is defined for (u, v) ∈ [−1, 1] × [−1, 1], the segments
(x = 0, y ∈ (−1, 1)), (y = 0, x ∈ (−1, 1)), belong to a rectangular proper grid
such that h changes its upper bidimensional monotonicity on that grid and
ωϕ

1 ( ∂2h
∂x∂y ; δ1, δ2)[−1,1]×[−1,1] ≤ Cωϕ

1 (∂2H(f)
∂x∂y ; δ1, δ2)[−3,3]×[−3,3].

Now, without loss of generality, we may suppose that h(0, 0) = 0. Apply
Lemma 2.6.15 to the “flipped” function F (h). It follows that F (h) changes
its upper bidimensional monotonicity on a grid determined by k− 1 segments
parallel to the OY axis and by k − 1 segments parallel to the OX axis, and
moreover

ωϕ
1

(
∂2F (h)
∂x∂y

; δ1, δ2

)

[−1,1]×[−1,1]

≤ Cωϕ
1

(
∂2h

∂x∂y
; δ1, δ2

)

[−1,1]×[−1,1]

.

Using Lemma 2.6.15 and the inductive hypothesis, there exists a sequence
of polynomials hn,m(x, y), n,m ∈ N, upper bidimensional comonotone with h
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and satisfying the estimate in its statement. Then inverting the linear changes
of variables in this sequence, we get the desired approximation polynomial
sequence for f , which proves the theorem. �
Remark. It is a natural question to ask whether the L-positive approxima-
tion method presented in Section 2.3 could be used to obtain approximation
results in, e.g., bivariate copositive approximation, bivariate comonotone ap-
proximation, and bivariate coconvex of order (2, 2) approximation. The cor-
responding L linear bounded operators would be in these cases of the form
L(f)(x, y) = f(x, y)Πs

j=1(x − xj)(y − yj), L(f)(x, y) = ∂2f
∂x∂y (x, y)Πs

j=1(x −
xj)(y − yj) and L(f)(x, y) = ∂4f

∂x2∂y2 (x, y)Πs
j=1(x − xj)(y − yj), respectively,

where xj , yj , j = 1, . . . , s are fixed. Unfortunately, the answer is negative,
since no bivariate polynomial (actually no any function) e exists satisfying
L(e)(x, y) ≥ 1, for all x, y ∈ [−1, 1]. Indeed, we see that for x close to any
point xj or for y close to any point yj , these L(e)(x, y) become arbitrarily
close to zero.

However, in the case of bivariate bidimensional monotone approximation
or (2, 2)-convex approximation, as applications of the L-positive method, we
get the following.

Corollary 2.6.16. (i) Let f ∈ W 2
∞([−1, 1] × [−1, 1]), satisfying the relation

∂2f
∂x∂y (x, y) ≥ 0 for all x, y ∈ [−1, 1].

(i1) For any n ∈ N, n ≥ 2, there exists Q∗
n ∈ P2

n such that ∂2Q∗
n

∂x∂y (x, y) ≥ 0
for all x, y ∈ [−1, 1] and

‖f − Q∗
n‖W 2p

∞ ([−1,1]×[−1,1]) ≤ C · EP2
n
(f ;W 2

∞([−1, 1] × [−1, 1])),

where C > 0 is a constant independent of f and n.
(i2) Also, for any k ≥ 1, n > k + 2, there exists Q∗

n ∈ P2
n such that

∂2Q∗
n

∂x∂y (x, y) ≥ 0, for all x, y ∈ [−1, 1] and

‖f − Q∗
n‖W 2

∞(Ω) ≤ Cn−2 max
|b|=2

ωk(Db(f);Cn−1).

(ii) Let f ∈ W 4
∞([−1, 1] × [−1, 1]), satisfying ∂4f

∂x2∂y2 (x, y) ≥ 0, for all
x, y ∈ [−1, 1].

(ii1) For any n ∈ N, n ≥ 4, there exists Q∗
n ∈ P2

n such that ∂4Q∗
n

∂x2∂y2 (x, y) ≥
0, for all x, y ∈ [−1, 1] and

‖f − Q∗
n‖W 4

∞([−1,1]×[−1,1]) ≤ C · EP2
n
(f ;W 4

∞([−1, 1] × [−1, 1])),

where C > 0 is a constant independent of f and n.
(ii2) Also, for any k ≥ 1, n > max{k + 2, 4}, there exists Q∗

n ∈ P2
n such

that ∂4Q∗
n

∂x2∂y2 (x, y) ≥ 0, for all x, y ∈ [−1, 1] and

‖f − Q∗
n‖W 4

∞([−1,1]×[−1,1]) ≤ Cn−4 max
|b|=4

ωk(Db(f);Cn−1).
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Proof. (i) Defining L(f)(x, y) = ∂2f
∂x∂y (x, y), it is a bounded linear operator

on W 2
∞([−1, 1] × [−1, 1]) and e(x, y) = xy satisfies L(e)(x, y) = 1, for all

x, y ∈ [−1, 1]. Then, (i1) is a direct consequence of Corollary 3.1 (and Remark
3.1) in Anastassiou–Ganzburg [16], pp. 480–481 and (i2) is an immediate
consequence of (i1) and of the general Jackson-type estimate in Anastassiou–
Ganzburg [16], p. 485, Theorem 4.1.

(ii) Defining now L(f)(x, y) = ∂4f
∂x2∂y2 (x, y), it is a bounded linear operator

on W 4
∞([−1, 1]× [−1, 1]) and e(x, y) = x2y2

4 satisfies L(f)(e)(x, y) = 1, for all
x, y ∈ [−1, 1]. The proof is as above. �

2.6.5 Bivariate Shape-Preserving Interpolation

We present the following two results concerning the preservation of shape by
tensor product interpolation polynomials.

If g : [−1, 1] → R and −1 < xn,n < xn−1,n < · · · < x1,n < 1 are the roots of
Jacobi polynomials J

(α,β)
n (x), then it is well known that (see, e.g., Fejér [115]

or Popoviciu [314]) that the (univariate) Hermite–Fejér polynomials based on

the roots above are given by Fn(g)(x) =
n∑

i=1

hi,n(x)g(xi,n), where

hi,n(x) = �2i,n(x) ·
[

1 − �′′n(xi,n)
�′n(xi,n)

(x − xi,n)
]

,

�i,n(x) = �n(x)/[(x − xi,n)�′n(xi,n)], �n(x) =
n∏

i=1

(x − xi,n).

Now, if f : [−1, 1] × [−1, 1] → R, then according to, e.g., Shisha–Mond
[352], the tensor product bivariate Hermite–Fejér polynomial is defined by

Fn1,n2(f)(x, y) =
n1∑

i=1

n2∑

j=1

h
(1)
i,n1

(x)h(2)
j,n2

(y)f(x(1)
i,n1

, x
(2)
j,n2

),

where h
(1)
i,n1

(x), x
(1)
i,n1

, i = 1, n1 and h
(2)
j,n2

(y) and x
(2)
j,n2

, j = 1, n2, are defined
as in the univariate case above, n1, n2 ∈ N.

We easily see that

Fn1,n2(f)(x(1)
i,n1

, x
(2)
j,n2

) = f(x(1)
i,n1

, x
(2)
j,n2

), ∀i = 1, n1, j = 1, n2.

An extension of Theorem 1.2.4 to the bivariate case is the following.

Theorem 2.6.17. (Anastassiou-Gal [8], see also Gal [123], p. 94, Corollary
4.2.2) Let us consider Fn1,n2(f)(x, y) given as above, based on the roots of
Jacobi polynomials J

(α1,β1)
n1 , J

(α2,β2)
n2 , of degree n1 and n2, respectively, with

αi, βi ∈ (−1, 0], i = 1, 2. If ξ is any root of the polynomial �
(1)′

n1 (x) and η is
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any root of the polynomial �
(2)′

n2 (y) (here �
(1)
n1 (x) =

n1∏

i=1

(x − x
(1)
i,n1

), �
(2)
n2 (y) =

n2∏

j=1

(y − x
(2)
j,n2

)), then there exists a constant c > 0 (independent of n1, n2,

and f) such that if f is bidimensional monotone on [−1, 1] × [−1, 1], then
Fn1,n2(f)(x, y) is bidimensional monotone (of the same monotonicity) on
(

ξ − cξ

n7+2γ1
1

, ξ +
cξ

n7+2γ1
1

)

×
(

η − cη

n7+2γ2
2

, η +
cη

n7+2γ2
2

)

⊂(−1, 1) × (−1, 1),

where

cξ =
c

(1 − ξ2)5/2+δ1
, cη =

c

(1 − η2)5/2+δ2
, γi = max{αi, βi}, i = 1, 2,

and

δ1 =
{

α1, if 0 ≤ ξ < 1,
β1, if − 1 < ξ ≤ 0,

δ2 =
{

α2, if 0 ≤ η < 1,
β2, if − 1 < η ≤ 0.

In what follows we present an extension of Theorem 1.2.5 to the bivariate
case. In this sense, it is known that (see, e.g., Nicolescu [286]) f : [−1, 1] ×
[−1, 1] → R is strictly doubly convex on [−1, 1]× [−1, 1], if ∆2,y

h1
[∆2,x

h2
f(a, b)] >

0, for all h1, h2 > 0, (a, b) ∈ [−1, 1] × [−1, 1], with a ± h2, b ± h1 ∈ [−1, 1],
where

∆2,x
h2

f(α, β) = f(α + h2, β) − 2f(α, β) + f(α − h2, β)

and
∆2,y

h1
f(α, β) = f(α, β + h1) − 2f(α, β) + f(α, β − h1).

Remark. By the mean value theorem it is easy to see that from the inequali-
ty ∂4f(x,y)

∂x2∂y2 (x, y) > 0 for all (x, y) ∈ [−1, 1]2, it follows that f is strictly doubly
convex on [−1, 1]2. In fact, the doubly convex bivariate functions represent
the convex functions of order (2, 2) in the Popoviciu sense in Definition 2.1.1
(v).

Now let n1, n2 ≥ 3 be odd and let us consider as Fn1,n2(f)(x, y) the tensor
product Hermite–Fejér polynomial given as above, based on the roots x

(1)
i,n, i =

1, n1, and x
(2)
j,n2

, j = 1, n2, of the λ1-ultraspherical polynomials p
(λ1)
n1 of degree

n1 and λ2-ultraspherical polynomials P
(λ2)
n2 of degree n2, respectively, λ1, λ2 ∈

[0, 1], and the Côtes–Christoffel numbers of the Gauss–Jacobi quadrature
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λ
(1)
i,n1

:= 22−λ1π

[

Γ

(
λ1

2

)]−2
Γ (n1 + λ1)
Γ (n1 + 1)

[1 − (x(1)
i,n1

)2]−1 · [P (λ1)
′

n1
(x(1)

i,n1
)]−2,

i = 1, n1,

λ
(2)
j,n2

:= 22−λ2π

[

Γ

(
λ2

2

)]−2
Γ (n2 + λ2)
Γ (n2 + 1)

[1 − (x(2)
j,n2

)2]−1 · [P (λ2)
′

n2
(xj,n2)]

−2,

j = 1, n2.

Theorem 2.6.18. (Anastassiou–Gal [8], see also Gal [123], p. 95, Theorem
4.2.2) If f ∈ C([−1, 1] × [−1, 1]) satisfies

n1∑

i=1

n2∑

j=1

λ
(1)
i,n1

λ
(2)
j,n2

∆2,y

x
(2)
j,n2

[∆2,x

x
(1)
i,n1

f(0, 0)]/(x(1)
i,n1

x
(2)
j,n2

)2 > 0,

then Fn1,n2(f)(x, y) is strictly doubly convex in V (0, 0) = {(x, y); x2 + y2 <
d2

n1,n2
}, with

|dn1,n2 | ≥ cf,λ1,λ2

n1n2

n1−1
2∑

i=1

n2−1
2∑

j=1

λ
(1)
i,n1

λ
(2)
j,n2

∆2,y

x
(2)
j,n2

[∆2,x

x
(1)
i,n1

f(0, 0)]/(x(1)
i,n1

x
(2)
j,n2

)2

(n1 + n2)5
,

where cf1,λ1,λ2 > 0 is independent of n1 and n2.

Remark. For details in bivariate shape-preserving interpolation, the inter-
ested reader may consult Chapter 4 in the book Gal [123].

2.7 Bibliographical Notes and Open Problems

Theorems 2.2.2, 2.3.3, Corollaries 2.3.8–2.3.10, Theorem 2.4.2, Theorem 2.4.9,
Definition 2.4.14, Theorem 2.4.15, Theorem 2.6.1 (v), Corollary 2.6.3, Defini-
tion 2.6.4, Corollary 2.6.7 (iii–v), Theorem 2.6.10, Corollary 2.6.11, Theorem
2.6.12, Lemmas 2.6.13, 2.6.15, Corollary 2.6.16 are new results.

Open Problem 2.7.1. Find shape-preserving properties of the bivari-
ate/multivariate Bernstein–Stancu polynomials mentioned in Remark 4 after
Definition 2.2.1, with respect to convexity, axial convexity, polyhedral convex-
ity, subharmonicity, and w-subharmonicity.

Open Problem 2.7.2. For each concept of “shape” introduced in CAGD,
as for e.g. axial monotonicity, axial convexity, polyhedral convexity, and so on
(see Definition 2.1.5 (iv)–(x)), construct a sequence of bivariate polynomials
(Pn)n on a triangle, preserving that shape, but having better approximation
properties than those of the Bernstein polynomials (i.e., satisfying Jackson-
type estimates in terms of a suitable modulus of smoothness ωp

(
f ; 1

n

)
, with

p ≥ 1).
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Open Problem 2.7.3. It is an open question whether the estimate in
Theorem 2.4.18 could be obtained in terms of the Ditzian–Totik modulus ωϕ

2

and then in terms of ωϕ
3 .

Open Problem 2.7.4. For f ∈ CP ([−1, 1] × [−1, 1]) convex of or-
der (2, 2) and Pn1,n2(f)(x, y), the polynomials constructed in the proof
of Corollary 2.6.3 (which give the approximation order in terms of
ωϕ

2 (f ; 1/n1, 1/n2)p, 1 ≤ p < +∞), it is an open problem whether they
preserve the (2, 2) convexity of f . Below we present some possible hints to
solve this problem.

In fact, we have to check that ∂4Pn1,n2 (f)

∂x2∂y2 ≥ 0 on [−1, 1] × [−1, 1], which
from the last form of the univariate case mentioned in the proof of Corollary
2.6.3, implies that only the term Qn(g)(x) =

∑n−2
j=2 [Sj(g) − Sj−1(g)]Rj(x)

matters.
In other words, reasoning exactly as in the proof of Theorem 2.6.1 (iii),

the tensor product of the above univariate polynomials Qn(f)(x) will become

Qn1,n2(f)(x, y) =
n1−2∑

j=2

n2−2∑

i=2

(Si,j −Si,j−1−Si−1,j +Si−1,j−1)Ri,n2(y)Rj,n1(x),

where Si,j and f(ξj,n1 , ηi,n2) are defined as in the proof of Theorem 2.6.3.
But as in the proof of Theorem 2.6.1 (iii), we get

Si,j − Si,j−1 − Si−1,j + Si−1,j−1

= (ξj+1,n1 − ξj,n1)(ηi+1,n2 − ηi,n2)

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
ηi−1,n2 , ηi,n2 , ηi+1,n2

⎤

⎦ ,

which implies

∂4Pn1,n2(f)(x, y)
∂x2∂y2

=
∂4Qn1,n2(f)(x, y)

∂x2∂y2

=
n1−2∑

j=2

n2−2∑

i=2

(ξj+1,n1 − ξj,n1)(ηi+1,n2 − ηi,n2)

×

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
ηi−1,n2 , ηi+1,n2 , ηi,n2

⎤

⎦R′′
i,n2

(y)R′′
j,n1

(x).

Therefore, it remains to show that if f is convex of order (2, 2) then
⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
ηi−1,n2 , ηi+1,n2 , ηi,n2

⎤

⎦ ≥ 0,

for all the points ξj,n1 and ηi,n2 , where f is defined in the proof of Corollary
2.6.3.
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Probably it could be proved that there exist the points ξ′j−1,n1
< ξ′j,n1

<
ξ′j+1,n1

and ηi−1,n2 < ηi+1,n2 < ηi,n2 such that

⎡

⎣
ξj−1,n1 , ξj,n1 , ξj+1,n1

; f
ηi−1,n2 , ηi+1,n2 , ηi,n2

⎤

⎦ = Ci,j

⎡

⎣
ξ′j−1,n1

, ξ′j,n1
, ξ′j+1,n1

; f
η′

i−1,n2
, η′

i+1,n2
, η′

i,n2

⎤

⎦ ,

with Ci,j > 0 depending on the points ξ, η, ξ′, and η′.
On the other hand, in Kopotun [204] for uniform aproximation, i.e.,

p = +∞, and then in DeVore–Hu–Leviatan [87] for Lp approximation, 0 <
p < +∞ (see Theorem 1.7.7 in Chapter 1), for continuous univariate convex
functions on [−1, 1], a sequence (in essence the same for all p) of convex polyno-
mials (Pn(f))n of degree (Pn(f)) ≤ n is constructed such that ‖f−Pn(f)‖p ≤
Cpω

ϕ
3 (f ; 1/n)p. This sequence (Pn(f))n, is nonlinear with respect to f . Be-

cause of its definition, it seems to be difficult to define the tensor product of
this polynomial in the way we did in the proof of Theorem 2.6.1. Moreover,
the absence of linearity does not allow us to use the error estimate for tensor
products of linear approximation processes in Haussmann–Pottinger [167].

As a consequence, it remains an open question whether the error esti-
mates in terms of ωϕ

2 (f ; 1/n1, 1/n2) in Theorem 2.6.1 (iii) and (iv) (i.e., in
the cases of convexity of order (2, 2) and totally convexity of order (2, 2)) can
be reobtained in terms of ωϕ

3 (f ; 1/n1, 1/n2).
A similar open question arises in the case of Lp-approximation,

0 < p < +∞, for bivariate convexities of orders (1, 1) and (2, 2), i.e., whether
the error estimate can be obtained in terms of ωϕ

3 (f ; 1/n1, 1/n2)p.
Because of the difficult matter, however, it would be satisfactory to obtain

extensions of the whole of Theorem 2.6.1 to Lp-spaces, 0 < p < +∞, (note
that Corollary 2.6.3 extends only the case of bidimensional monotonicity and
1 ≤ p < +∞) i.e., to obtain error estimates in terms of only ωϕ

2 (f ; 1/n1, n2)p.
These last-mentioned problems would represent extensions to the bivariate

case of the results in the univariate case in Yu [407], [408], Leviatan–Yu [244],
DeVore–Leviatan–Yu [90] and DeVore–Leviatan [88].

Open Problem 2.7.5. Extend the results in Theorem 2.4.3 (i) and
(ii) to approximation of polyharmonic functions of arbitrary order p ∈ N

, f ∈ Hp(int(M)), by polyharmonic polynomials in Hp(int(M)), so as to
recapture Theorem 2.4.3 for p = 1.

Open Problem 2.7.6. Let f : [−1, 1] × [−1, 1] → R be together with
all partial derivatives of order 4 continuous, such that it changes the tensor
product convexity of Popoviciu type of order (2, 2) on a proper or degenerate
rectangular grid in [−1, 1] × [−1, 1] according to the Definition 2.6.4 (iv).
Construct a sequence of bivariate polynomials (Pn,m(x, y))n,m∈N of degrees
≤ n in x and ≤ m in y such that each Pn,m is coconvex of order (2, 2)
with f on [−1, 1] × [−1, 1] (as in the same Definition 2.6.4 (iv)), having good
approximation error expressed in terms of (at least) the moduli of smoothness
ω1( ∂4f

∂xi∂yj ; 1/n, 1/m) or ωϕ
1 ( ∂4f

∂xi∂yj ; 1/n, 1/m), with i + j = 4.
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A possible idea would be to consider the tensor product of the poly-
nomials in coconvex approximation in the univariate case (note that this
idea worked in bivariate copositive approximation and bivariate comonotone
approximation, see Theorem 2.6.6 and Corollary 2.6.11, respectively).

Open Problem 2.7.7. Let f : [−1, 1] × [−1, 1] → R be together with
all partial derivatives of order 2 continuous such that it changes the (usual)
convexity on a proper or degenerate rectangular grid in [−1, 1] × [−1, 1] ac-
cording to Definition 2.6.4 (vi). Construct a sequence of bivariate polynomials
(Pn,m(x, y))n,m∈N, of degrees ≤ n in x and ≤ m in y, such that each Pn,m is
coconvex with f on [−1, 1] × [−1, 1] as in Definition 2.6.4 (vi), having good
approximation error expressed in terms of (at least) the moduli of smoothness
ω1( ∂2f

∂xi∂yj ; 1/n, 1/m) or ωϕ
1 ( ∂2f

∂xi∂yj ; 1/n, 1/m), with i + j = 2.
A possible idea of proof would be by mathematical induction on the

number of segments that determine the grid, taking into account the results
in convex approximation obtained by Corollary 2.4.13 and Theorem 2.4.18.

Open Problem 2.7.8. Suppose that f : [−1, 1] × [−1, 1] → R changes
sign (or bidimensional monotonicity, or convexity of order (2, 2) or usual
convexity, respectively) on a finite general system of algebraic arcs and curves
(contained in [−1, 1] × [−1, 1] (see Definition 2.6.4 (vii), Remark 5 after this
definition, and Remark 3 after Corollary 2.6.8).

It is then an open question how to solve the problem of copositive (or up-
per bidimensional comonotone, or coconvex of order (2, 2), or usual coconvex,
respectively) approximation by algebraic bivariate polynomials in this more
general setting.

A way would be to start the study with some particular simpler algebraic
arcs and closed curves, as we did in the copositive case by Corollary 2.6.7,
(iii), (iv), (v).

For other examples, we may start with the hypothesis that f changes its
bidimensional monotonicity (or convexity of order (2, 2) or usual convexity,
respectively) on the first bisector of the equation x − y = 0 contained in
[−1, 1] × [−1, 1], or on the arc of the parabola in [−1, 1] × [−1, 1] of equa-
tion x − y2 = 0, or on the circle of equation x2 + y2 − 1

4 = 0, or on any
combination of these three curves. Then, the question would be how well we
can approximate the surface z = f(x, y) by a sequence of algebraic surfaces
z = Pn,m(x, y) (i.e., Pn,m(x, y) are polynomials of degree ≤ n in x and ≤ m
in y), that are upper bidimensional comonotone (or coconvex of order (2, 2),
or usually coconvex, respectively) with it.

Open Problem 2.7.9. In order to have Theorem 2.6.1 (v) as a natural
extension of the univariate results (in Theorem 1.7.5 and Corollary 1.7.6), the
bivariate differential inequality must be satisfied for all x, y ∈ [−1, 1], and not
only for all x, y ∈ [−1, 0]. According to the proof of Theorem 2.6.1 (v) and
keeping the notation as there, it would remain to prove that R′

j(1) ≤ Rj(1),
for all j = 1, . . . , n − 1.
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Open Problem 2.7.10. Since any real polynomial of one real variable
degree ≤ n, is obviously (n + 1)-convex (concave) in the sense of Definition
1.1.1 (i), an interesting subject in shape-preserving approximation is how the
Bernstein–Markov inequalities are preserved to higher order convex functions.
In this sense, the first results were found by Popoviciu [315], who proved that
if f is (n + 1)-convex (concave) on [−1, 1], then for all x ∈ (−1 + λ, 1 − λ),
|f ′(x)| < 4(2 +

√
3)n2‖f‖∞/[3(2−

√
3)] and |f ′(x)| < 2(2 +

√
3)n‖f‖∞/[(2−√

3)
√

1 − x2], where λ = 2(1 − cos(π/2n))/(1 + cos(π/2n)).
These results were extended by Mastroianni–Szabados [267] to the whole

interval (−1, 1), who proved, among others, that if f is (n + 1)-convex
(concave) on [−1, 1], then for all n ≥ 2, |x| < 1, 1 ≤ r ≤ n − 1 we have
|f (r)(x)| ≤ cr[n/

√
1 − x2 + 1/(1 − x2)]r‖f‖∞.

Popoviciu’s and Mastroianni–Szabados’ results were extended by Gal
[133] to bivariate convex functions of higher order, by proving e.g., that if the
bivariate function f is convex (concave) of order n in the sense of Popoviciu
[315], p. 84 (for n = 1 this means the usual convexity (concavity) in Definition
2.1.5, (ii)) then |grad(f)(x, y)|2 ≤ 4(2 +

√
3)n‖f‖/[(2 −

√
3)
√

1 − ϕ2
K(x, y)],

for all x, y ∈ (−1 + λ, 1 − λ), where | · |2 denotes the Euclidean norm in R
2

and ϕK(x, y) is the Minkowski functional attached to K = [−1, 1] × [−1, 1].
Also, similar results were obtained for convex (concave) functions of order
(n + 1,m + 1) in the sense of Definition 2.1.5 (i).

An interesting open question would be to extend the results in Gal [133]
to bivariate convex functions of higher order defined on more general subsets
K ⊂ R

2, e.g., on symmetric or nonsymmetric convex subsets.
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Shape-Preserving Approximation by Complex
Univariate Polynomials

In this chapter we present results concerning approximation of analytic func-
tions in the unit disk by univariate complex polynomials preserving properties
in geometric function theory.

3.1 Introduction

A central concept in geometric function theory is that of univalence. Also,
many sufficient conditions of geometric kind that imply univalence are
important, such as starlikeness, convexity, close-to-convexity, α-convexity, spi-
rallikeness, bounded turn, and so on.

All these geometric sufficient conditions for univalence are mainly studied
for analytic functions, because in this case they can easily be expressed by nice
(and simple) differential inequalities. Also, because of the Riemann mapping
theorem, in general it suffices to study these properties on the open unit disk.

First, let us recall some classical definitions in geometric function the-
ory. Everywhere in this chapter we denote the open unit disk by D = {z ∈
C; |z|< 1}.

Definition 3.1.1. (see, e.g., the monograph Mocanu–Bulboacă–Sălăgean
[273], Chapter 4, for (i) to (ix))

(i) A function f : E → C, where E ⊂ C is a domain, is called univalent in
E if for all u, v ∈ E with u 	= v, we have f(u) 	= f(v).

(ii) Let f : D → C be analytic in D with f(0) = 0. It is called starlike in D

with respect to the origin (or simply starlike) if it is univalent on D and f(D)
is a starlike domain (i.e., for any w ∈ f(D), the segment joining the origin
with w is entirely contained in f(D)).

If, in addition, f ′(0) 	= 0 (for example, if it is normalized, i.e., f(0) =
f ′(0) − 1 = 0), then it is well known that f is starlike in D if and only if
Re
[
z f ′(z)

f(z)

]
> 0 for all z ∈ D.

S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, 215
DOI: 10.1007/978-0-8176-4703-2 3,
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As a generalization, f is called starlike of order α ≥ 0 if f is normalized
and Re

[
z f ′(z)

f(z)

]
> α for all z ∈ D.

We set

S∗
α(D) =

{

f : D → C : f is analytic on D, f(0) = f ′(0) − 1 = 0,

Re
(

zf ′(z)
f(z)

)

> α, for all z ∈ D

}

,

and S∗
0 (D) by S∗(D).

(iii) The analytic function f : D → C is called convex in D if f is univalent
in D and f(D) is a convex domain, i.e., for any w1, w2 ∈ f(D), the segment
joining w1 and w2 is entirely contained in f(D).

If, in addition, f ′(0) 	= 0 (e.g., if it is normalized), then it is well known
that f is convex in D if and only if Re

[
zf ′′(z)
f ′(z)

]
+ 1 > 0 for all z ∈ D.

As a generalization, f is called convex of order α ≥ 0 if f is normalized
and Re

[
zf ′′(z)
f ′(z)

]
+ 1 > α for all z ∈ D.

We set

Kα(D) =
{

f : D → C : f is analytic on D, f(0) = f ′(0) − 1 = 0,

Re
(

zf ′′(z)
f ′(z)

)

> α, for all z ∈ D

}

,

and denote K0(D) by K(D).
(iv) The analytic function f : D → C is called close-to-convex in D (with

respect to ϕ) if there exists an analytic convex function ϕ in D such that
Re
[

f ′(z)
ϕ′(z)

]
> 0 for all z ∈ D.

Equivalently, an analytic normalized function f is close-to-convex if there
exists an analytic normalized starlike function h such that Re

[
zf ′(z)
h(z)

]
> 0 for

all z ∈ D.
It is well known that the close-to-convexity of f implies its univalence in D.
As a generalization, f is called close-to-convex of order α ≥ 0 and type β

if there exists a convex function of order α and β ∈ R such that

Re
[

eiβ f ′(z)
g′(z)

]

> 0, ∀z ∈ D.

(v) Let f : D → C be analytic in D with f(z)f ′(z)
z 	= 0 for all z ∈ D and

α ∈ R. Then f is called α-convex in D if

Re
[

(1 − α)
zf ′(z)
f(z)

+ α

(
zf ′′(z)
f ′(z)

+ 1
)]

> 0

for all z ∈ D.
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The α-convex functions have a natural geometrical interpretation and for
α ∈ [0, 1] realize a continuous connection between starlike and convex func-
tions (it is something in between).

Also, it is well known that for any α ∈ R, the class of normalized α-convex
functions is included in the class of starlike normalized functions and that in
fact, the condition f(z)f ′(z)

z 	= 0 for all z ∈ D is not necessary in the definition.
(vi) An analytic function f : D → C is called convex in the direction of

the imaginary axis if the intersection of any parallel to the imaginary axis
with f(D) is a segment or does not intersect it. Analytically, this property is
expressed by the differential inequality Re[(1 − z2)f ′(z)] > 0 for all z ∈ D.

(vii) The analytic function f : D → C with f(0) = 0 is called spirallike of
type γ (where |γ| < π

2 ) if f is univalent in D and f(D) is a spirallike domain of
type γ. We recall that a domain E that contains the origin is called spirallike
of type γ, with |γ| < π

2 , if for any point w0 ∈ E \ 0, the γ-spiral arc joining
w0 with the origin is entirely contained in E (the equation of the γ-spiral arc
is given by w(t) = w0e

−(cos γ+i sin γ)t, t ∈ R).
It is well known that if in addition, f ′(0) 	= 0 and f(z) 	= 0 for all z ∈ D,

then f is spirallike of type γ if and only if

Re
[

e−iγ zf ′(z)
f(z)

]

> 0

for all z ∈ D.
As a generalization, f is called spirallike of type γ and order α ≥ 0 if f is

normalized and

Re
[

e−iγ zf ′(z)
f(z)

]

> α

for all z ∈ D.
We set

Sα
γ (D) =

{

f : D → C : f is analytic on D, f(0) = f ′(0) − 1 = 0,

Re
(

eiγ zf ′(z)
f(z)

)

> α, for all z ∈ D

}

and denote S0
γ(D) by Sγ(D).

(viii) The analytic function f : D → C with f(0) = f ′(0) − 1 = 0 is called
of bounded turn if arg[f ′(z)] < π

2 for all z ∈ D.
It is well known that f is of bounded turn if and only if Re(f ′(z)) > 0 for

all z ∈ D.
(ix) If f , g are two analytic functions on D, recall that g is subordinated

to f (and we write g ≺ f) if there exists an analytic function Φ on D with
|Φ(z)| ≤ |z| and f = g ◦ Φ.

It is well known that if f is univalent on D, then g ≺ f if and only if
g(0) = f(0) and g(D) ⊂ f(D).
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(x) (Sălăgean [337]) A normalized analytic function f is called n-starlike in
the unit disk (n ∈ {0, 1, 2, . . . , }) if it satisfies Re

[
Dn+1(f)(z)
Dn(f)(z)

]
> 0 for all z ∈ D,

where D0(f)(z) = f(z),D(f)(z) := D1(f)(z) = zf ′(z), . . . , Dn+1(f)(z) =
D[Dn(f)](z). For n = 0 we recapture the starlike functions, while for n = 1
we get the convex functions.

It is proved in Sălăgean [337] that for any n ∈ {0, 1, 2, . . . , }, if f is n-
starlike then f is univalent in D.

(xi) (Padmanabhan [294]) The function f(z) = zq +
∑∞

n=q+1 anzn, 1 ≤
q ≤ p, with p, q ∈ N, analytic in D, is called p-valently starlike in |z| < 1 if
there exists ρ ∈ (0, 1) such that for all r ∈ (ρ, 1) we have

H(r, θ) = Re{reiθf ′(reiθ)/f(reiθ)} > 0, 0 ≤ θ ≤ 2π,

∫ 2π

0

H(r, θ)dθ = 2πp.

The function f(z) = zq +
∑∞

n=q+1 anzn, 1 ≤ q ≤ p, with p, q ∈ N, analytic
in D, is called p-valently convex in |z| < 1 if there exists ρ ∈ (0, 1) such that
for all r ∈ (ρ, 1) we have

G(r, θ) = Re{1+reiθf ′′(reiθ)/f ′(reiθ)} > 0, 0 ≤ θ ≤ 2π,

∫ 2π

0

G(r, θ)dθ = 2πp.

(xii) (Umezawa [391]) The function f(z) = zq +
∑∞

n=q+1 anzn, 1 ≤ q ≤ p,
with p, q ∈ N, analytic in D, is called p-valently close-to-convex in |z| < 1 with
respect to ϕ if there exists a p-valently convex function ϕ(z) in |z| < 1 such
that Re{f ′(z)/ϕ′(z)} > 0 for all |z| < 1.

Remark. There are many other sufficient conditions of univalence known in
geometric function theory. Some of them will be defined and used directly in
some theorems of the next sections.

Returning now to the topic of this chapter, the following problem is well
motivated: how well can an analytic function be approximated having a given
property in geometric function theory by polynomials keeping the same prop-
erty?

In what follows, first we will briefly review, without proofs, the history of
this problem. To the best of our knowledge, there are three main directions
of research:

(1) Approximation-preserving geometric properties by the partial sums of the
Taylor expansion;

(2) Approximation-preserving geometric properties by Cesàro means and con-
volution polynomials;

(3) Approximation of univalent functions by subordinate polynomials in the
unit disk.

First we review Direction 1.
Let f : D → C be an analytic function. This implies that we have the

expansion f(z) =
∑+∞

k=0 akzk, z ∈ D, where ak ∈ C. So the simplest way to
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approximate f by polynomials would be to consider the partial sums of this
expansion, i.e., Sn(f)(z) =

∑n
k=0 akzk, n = 1, 2, . . . .

Now, supposing in addition that f is univalent (or starlike or convex, and
so on), it is natural to ask whether Sn(f)(z), n ∈ N, keep this property.

In this sense, we mention the following results.

Theorem 3.1.2. (i) (Szegö [384]) If f is univalent on D, then all the partial
sums Sn(f)(z), n = 1, 2, . . . , are univalent in the disk D1/4 = {z ∈ D; |z|< 1

4}.
(ii) (Alexander [2]) Let f : D → C be an analytic function having the

expansion f(z) =
∑+∞

k=0 akzk, z ∈ D. If ak ∈ R, ak ≥ 0, ∀k ∈ N, and
the sequence (kak)k is decreasing, then f together with all its partial sums
Sn(f) are univalent in D. A concrete example is the univalent function f(z) =
log[ z

1−z ] =
∑∞

k=1
1
nzk.

(iii) (Szegö [384]) If f is a normalized (i.e., of the form f(z) = z +a2z
2 +

· · ·+) starlike function in D, then all the partial sums Sn(f), n ∈ N, are
starlike in D1/4. In both cases (i) and (iii), the radius 1

4 , in general, cannot
be improved. The function f(z) = z

1−z provides a counterexample. Similarly,
if instead of starlikeness we consider the convexity of f , then all the partial
sums Sn(f), n ∈ N, are convex in D1/4.

(iv) (Ruscheweyh [331], Ruscheweyh–Wirths [336]) If f is convex (close-
to-convex, respectively) in D, then the partial sum Sn(f), n ∈ N, is convex
(close-to-convex, respectively) in the disk Dr1 = {z; |z| < r1}, where r1 is the
radius of convexity of the particular polynomial Pn(z) = z + z2 + · · ·+ zn (the
radius of convexity is, by definition, the greatest value r for which Pn(z) is
convex in Dr). Also, if r2 is the radius of close-to-convexity of Pn(z), then
Sn(f)(z) is close-to-convex in Dr2 for every convex f . These results are sharp
and the values r1, r2 are computed.

(v) (Suffridge [373], p. 236) If we denote by S the class of all analytic
normalized univalent functions in D, then the family of univalent polynomials
of the form Tn(z) = z + a2z

2 + · · · + 1
nzn, n = 1, 2, . . . , is dense in the class

S (with respect to the uniform convergence on compact subsets in D).
(vi) (Suffridge [374]) For the convex function in D, f(z) = e1+z =

∑∞
k=0

(1+z)k

k! , z ∈ D, all its partial sums Sn(f)(z) =
∑n

k=0
(1+z)k

k! , n =
1, 2, . . . , are convex in D.

(vii) (MacGregor [263]) If f is univalent in D, then there exists a sequence
of polynomials (Pn)n such that Pn → f uniformly in any compact subset of D,
degree(Pn) = n, each Pn is univalent in D and P1 ≺ P2 ≺ · · · ≺ Pn ≺ · · · ≺ f ,
where ≺ means subordination and it was defined in Definition 3.1.1 (ix).

(viii) (Padmanabhan [294]) If f(z) = z2 +
∑∞

k=3 akzk is 2-valently starlike
in |z| < 1, then any partial sum Sn(z) = z2 +

∑n
k=3 akzk is 2-valently starlike

in |z| < 1/6 and the result is sharp.
If f(z) = z2 +

∑∞
k=3 akzk is 2-valently close-to-convex in |z| < 1 with

respect to ϕ(z) = z2 +
∑∞

k=3 Akzk, then for any n ≥ 3, the partial sum
Sn(z) = z2+

∑n
k=3 akzk is 2-valently close-to-convex in |z| < 1/6, with respect

to the partial sum Fn(z) = z2 +
∑n

k=3 akzk and the result is sharp.
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Remark. It is interesting to note that the univalence of polynomials in the
unit disk generates some nonnegative trigonometric sums and conversely, so
that the proof of univalence can be reduced to the proof of nonnegativity
of some trigonometric sums. Also, for example, the vertical-convexity can
be connected with the monotonicity of some trigonometric sums. For details
concerning these connections, see, e.g., Gluchoff–Hartmann [149] and the ref-
erences cited there and some sections in Chapter 4 in the book of Sheil–Small
[346].

In the case of Direction 2, we present the following.

Theorem 3.1.3. Let f : D → C be an analytic function on D having the
Taylor expansion f(z) =

∑+∞
k=1 akzk, z ∈ D, with ak ∈ C, k = 1, 2, . . . .

The nth Cesàro mean of order α ≥ 0 of f is defined by

Sα
n (f)(z) =

1
(
n+α−1

n−1

)
n∑

k=1

(
n + α − k

n − k

)

akzk,

and the de la Vallée Poussin mean of order n is defined by

Vn(f)(z) =
1
(
2n
n

)
n∑

k=1

(
2n

n + k

)

akzk.

(i) (Fejér [115]) If f is convex with respect to a direction parallel to the
imaginary axis (i.e., it is verticaly convex), then all S3

n(f), n = 1, 2, . . . , are
vertically convex.

(ii) (Robertson [322]) Denote by G the class of univalent functions on
D of the form (i.e., normalized) f(z) = z +

∑+∞
k=2 akzk, z ∈ D, with the

property that all the partial sums Sn(f)(z) = z +
∑n

k=2 akzk, n = 2, 3, . . . ,
are also univalent in D. For any f in the above class, also all the Cesàro
means S1

n(f)(z), n ∈ N, are univalent in D.
(iii) (Bustoz [51]) If f ∈ G (with G defined above) and k ∈ N, then all the

Cesàro means Sk
n(f)(z), n ∈ N, are univalent in D.

(iv) (Lewis [245]) If f is a normalized convex function in D, then for any
α ≥ 1, all the Cesàro means Sα

n (f)(z), n ∈ N, are close-to-convex in D.
(v) (Egerváry [112]) If f is a normalized convex function in D, then all

the Cesàro means S3
n(f)(z), n ∈ N, are convex in D.

(vi) (Ruscheweyh [332]) If f is a normalized convex function in D, then
for any α > 3, all the Cesàro means Sα

n (f)(z), n ∈ N, are convex in D.
(vii) (Ruscheweyh [333]) If f is a normalized convex function of order 1

2
in D, then all S0

n(f)(z), n ∈ N; are close-to-convex of order 1
2 .

(viii) (Pólya–Schoenberg [308]) If f is an analytic (normalized) function
in D, then f is convex (starlike, respectively) in D if and only if all the de
la Vallée-Poussin means Vn(f)(z), n ∈ N, are convex (starlike, respectively)
in D. (Note that the variation-diminishing property in the case of univariate



3.1 Introduction 221

real functions in Chapter 1, see Section in 1.1, Definition 1.1.1 (vi), is the
main tool in proving these results.)

(ix) (Ruscheweyh–Sheil–Small [335]) If the (normalized) analytic function
f is close-to-convex in D, then all Vn(f)(z), n = 1, 2, . . . , are close-to-convex
in D.

(x) (Gal [129]) If f is an analytic normalized m-starlike function in D

for a fixed m ∈ {0, 1, 2, . . . , }, then the de la Vallée Poussin means Vn(f) are
m-starlike for all n ∈ N.

Remark. Pólya–Schoenberg [308] observed that we can write

Vn(f)(z) =
1
2π

∫ π

−π

f(zeit)Ωn(t)dt,

where Ωn(t) = (n!)2

(2n)! (2 cos[t/2])2n is the trigonometric polynomial called the
de la Vallée Poussin kernel. (Because of their nice shape-preserving properties
in Theorem 3.1.3 (viii), the de la Vallée Poussin kernels can be considered as
the trigonometric counterpart of the algebraic Bernstein polynomials.) Also,
Ruscheweyh [332] remarked that we can write

Sα
n (f)(z) =

1
2π

∫ π

−π

f(zeit)Kα
n (t)dt,

where Kα
n (t) is the nth Cesàro kernel of order α and it is a trigonometric

polynomial given by

Kα
n (t) =

n∑

k=0

Aα−1
n−k

Aα
n

Dk(t),

with Dk(t) =
sin(k+ 1

2 )t

sin(t/2) . These integral-convolution forms are more useful in
approximation theory, because they easily allow one to deduce the rate of
approximation. Unfortunately, in the case of the de la Vallée Poussin polyno-
mials, the rate of approximation is rather weak (of order ω1(f ; 1√

n
)), while in

the case of the Cesàro’s kernel, the rate of approximation is even worse (see
Gal [127]).

This shortcoming stimulated the author of the present book to search in
a series of papers Gal [127, 128, 129] for convolution polynomials preserv-
ing properties in geometric function theory and having good approximation
properties too.

A very nice generalization of the Pólya–Schoenberg result [308], is due
to Ruscheweyh–Salinas [334]. For that purpose, first we need the following
definition.

Definition 3.1.4. (see Ruscheweyh–Salinas [334]) If f is a real 2π-periodic
function, then its cyclic variation is defined by

µc(f) = sup{µ(f(x1), . . . , f(xm), f(x1))},
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where µ(f(x1), . . . , f(xm), f(x1)) denotes the number of sign changes (0 is
disregarded) in the sequence f(x1), . . . , f(xm), f(x1) and the supremum is con-
sidered for all the finite sequences x1 < x2 < · · · < xm < x1 + 2π, m ∈ N.

The function f is called periodically monotone (we write f ∈ PM) if
µc(f − a) ≤ 2,∀a ∈ R (in other words, f increases in an interval (x1, x2) and
decreases in (x2, x1 + 2π)). We denote by PMb the functions f ∈ PM that
are bounded.

A 2π-periodic function g : R → R, with
∫ 2π

0
|g(x)|dx < +∞ (we write

g ∈ L), is called periodic monotonicity preserving (we write g ∈ PMP ) if
f �g ∈ PM for all f ∈ PMb, where (f �g)(x) = 1

2π

∫ 2π

0
f(y)g(x−y)dy,∀x ∈ R.

Theorem 3.1.5. (Ruscheweyh–Salinas [334]) If g ∈ L then g ∈ PMP if and
only if there exists h such that g = h a.e., where h ∈ PMb satisfies the
following conditions:

(i) h is continuous except for at most two points in a period. Also, if we
set S = sup{h(x);x ∈ R}, I = inf{h(x);x ∈ R} and h is not continuous at
t0, then |h(t0 + 0) − h(t0 − 0)| = S − I.

(ii) h is continuously differentiable in each interval where h neither as-
sumes nor approaches S or I. Furthermore, log |h′| is concave in those
intervals.

This result is very important, because Schoenberg [343] observed that the
PMP problem is identical to the characterization of integral “kernels” K that
preserve the convexity of f in the sense that if f : D → C is an analytic convex
function in D, then f �K is analytic convex in D. If we take as K := Kn some
trigonometric kernel and if Kn satisfies the conditions of g in Theorem 3.1.5,
then the convolution f �Kn will produce complex polynomials preserving the
convexity of f in D.

Remark. At the end of Direction 2 of research, let us briefly describe a
related result obtained by Goodman–Lee [157] for kernels K that are piecewise
smooth, 2π-periodic nonnegative functions.

For f, g two 2π-periodic piecewise smooth functions and the parametric
form γ(t) = (f(t), g(t)), t ∈ [0, 2π], of a closed curve in R

2, the convolution
transform

Γ (x) = (Γ1(x), Γ2(x)) =
(∫ 2π

0

K(x − t)f(t)dt,

∫ 2π

0

K(x − t)g(t)dt

)

also is a closed curve in R
2.

First recall that the curve γ is called convex if any straight line does not
intersect γ more than twice. Also, γ is called locally convex if its Wronskian
is ≥ 0 on [0, 2π], i.e.,

W (f ′, g′)(x) = f ′(x)g′′(x) − f ′′(x)g′(x) ≥ 0
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for all x ∈ [0, 2π]. Geometrically, local convexity means that the tangent to
the curve turns in the same direction as the point moves along the curve (in
the positive sense).

The main result is the following.

Theorem 3.1.6. (Goodman–Lee [157]) A necessary and sufficient condition
for the convolution transform Γ (x) to map a positively oriented convex curve γ
onto the positively oriented locally convex curve Γ is that the curve K∗(x) =
(K ′(x),K(x)), x ∈ [0, 2π], be positively oriented convex.

Remarks. (1) In fact, in Goodman–Lee [157] is proved only the sufficient con-
dition in Theorem 3.1.6, because the necessity part is attributed to Loewner
by Schoenberg [343].

(2) Considerations on the convolution polynomials through de la Vallée
Poussin and Cesàro means can also be found in Chapter 4 in the book of
Sheil–Small [346].

Let us now describe Direction 3 of research.

Definition 3.1.7. (i) (see, e.g., Córdova–Ruscheweyh [71]) Let Ω ⊂ C be a
simply connected domain, with 0 ∈ Ω. Denote by Pn, n ∈ N, the set of all
complex polynomials (with complex coeficients) of degree ≤ n, Pn(Ω) = {p ∈
Pn; p(0) = 0, p(D) ⊂ Ω}.

The set Ωn =
⋃

p∈Pn
p(D) is called the maximal range of these polynomi-

als.
(ii) (Andrievskii–Ruscheweyh [26]) For f : D → C and a parameter 0 <

s < 1, define fs(z) = f [(1 − s)z] for all z ∈ D.
The results contained in Direction 3 of research can be summarized by the

following.

Theorem 3.1.8. (i) (Andrievskii–Ruscheweyh [26]) A universal constant
c > 0 exists such that for any univalent function f : D → Ω with f(0) = 0,
for any n ≥ 2c, there exists a polynomial of degree n, Pn, univalent in D, with
Pn(0) = 0, such that

fc/n ≺ Pn ≺ f.

In particular,
f
[(

1 − c

n

)
D

]
⊂ Ωn ⊂ Ω.

(ii) (Greiner [163]) For the above constant c, we have π ≤ c < 73, where
π is sharp (attained for f(z) = z

(1−z)2 ).
(iii) (Greiner–Ruscheweyh [164]) If, in addition, f is convex in D, then

for any α ≥ 1, all the Cesàro means Sα
n (f)(z), n ∈ N, are univalent in D,

fn/(n+α+1) ≺ Sα
n (f) ≺ f,

and the universal constant is given by c = 2, for all convex functions f .
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(iv) (Greiner–Ruscheweyh [164]) If f is convex in D, then for any n ∈ N,
there exists a convex univalent polynomial Pn of degree ≤ n such hat

f1−4/n ≺ Pn ≺ f.

(v) (MacGregor [263]) If f is univalent in D, then there exists a sequence
of polynomials (Pn)n such that Pn → f uniformly in any compact subset of D,
degree(Pn) = n, each Pn is univalent in D, and P1 ≺ P2 ≺ · · · ≺ Pn ≺ · · · ≺ f ,
where ≺ means subordination and it was defined in Definition 3.1.1 (ix).

Remark. The main result is Theorem 3.1.8 (i) which and has a construc-
tive proof based on an approach due to Dzyadyk [101]. More exactly, in
Andrievskii–Ruscheweyh [26], the polynomial Pn is constructed by the formula

Pn(z) := Tm,6

[(
1 − c

m

)
z
]
,

where m = [n/7], n ≥ 14, and Tm,k(z) are algebraic polynomials of degree
≤ (k + 1)(m − 1) − 1, given by the formula

Tm,k(z)

=
1
2π

∫ π

−π

Jm,k(t)
1

2πi

∫

|ξ|=1−1/m

f(ξ)
ξ − z

[

1 −
(

1 − ξ − z

ξe−it − z

)k−1
]

dξ dt,

with the normalized kernel Jm,k(t) = am,k

(
sin(mt/2)
sin(t/2)

)2(k+1)

.

Briefly, the contents of the next sections in Chapter 3 can be described
as follows. In Section 3.2 we use an analogous method to that in Section 1.4
(in the proof of Theorem 1.4.1) and obtain Shisha-type results for complex
approximation. Then one generalize these results in an abstract setting to the
so-called Re[L]-positive approximation.

Section 3.3 presents the results in Gal [129], obtained in Direction 2 of
research, i.e., using convolution polynomials.

Section 3.4 deals with some geometric properties of the complex Bernstein
polynomials in the unit disk.

Section 3.5 refers to some bibliographical remarks and open questions.

3.2 Shisha-Type Methods and Generalizations

In this section we extend some methods in the real univariate case to the case
of one complex variable in the unit disk. The basic tool is represented by the
simultaneous approximation results expressed by Theorem 3.2.1 (i), (ii), (iii)
below, stated here for the particular case of the unit disk only.

Notice that Theorem 3.2.1 (i) below, in fact, was proved by Vorob’ev [396]
for the so-called domains of type A in the complex plane (including the unit
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disk), while Theorem 3.2.1 (ii) was proved by Andrievskii–Pritsker–Varga [27]
for general continua in the complex plane (also including the unit disk).

Unfortunately, the constants appearing in the estimates of Theorem 3.2.1
(i) and (ii) are claimed as independent of n and z only, without independence
of f being mentioned too. For this reason, in the case of the unit disk, in
Theorem 3.2.1 (iii) we present here a new simple proof that clearly shows
that the constant can be chosen independent of n, z, and f too.

Set A(D) = {f : D → C; f is analytic in D and continuous in D} and for
p ∈ N, Ap(D) denotes the space of p-times continuously differentiable functions
on D.

Theorem 3.2.1. (i) (Vorob’ev [396]) Let p ∈ N. For any f ∈ Ap(D) and
n ≥ p, there exists a polynomial Pn of degree ≤ n such that for all j = 0, . . . , p
we have

|f (j)(z) − P (j)
n (z)| ≤ Anj−pω1

(

f (p);
1
n

)

, ∀z ∈ ∂D,

where A is independent of n and z. Here ω1(g; δ) = sup{|f(u) − f(v)|;u, v ∈
D, |u − v| ≤ δ}.

(ii) (Andrievskii–Pritsker–Varga [27]) Let us suppose that p, q, r ∈ N, f ∈
Ap(D), and consider the distinct points |zl| = 1, l = 1, . . . , q. Then, for any
n ∈ N, n ≥ qp + r, there exists a polynomial Pn of degree ≤ n such that for
all j = 0, . . . , p we have

|f (j)(z) − P (j)
n (z)| ≤ cnj−pω∗

r

(

f (p);
1
n

)

, ∀z ∈ ∂D,

and
P (j)

n (zl) = f (j)(zl), l = 1, . . . , q,

where c is independent of n and z. Here

ω∗
r (g; δ) : = supz∈D

{Er−1(g; D ∩ B(z; δ))},
B(z; δ) = {ξ ∈ C; |ξ − z| ≤ δ},

Em(g;M) := inf{‖g − P‖M ;P complex polynomial of degree ≤ m},

and ‖ · ‖M is the uniform norm on the set M .
(iii) (Gal [131]) Let p ∈ N and f ∈ Ap(D). For any n ≥ p, a polynomial

Pn of degree ≤ n exists such that

‖f (k) − P (k)
n ‖ ≤ Cnk−pEn−p(f (p)), for all k = 0, . . . , p,

where C > 0 depends on p but it is independent of n and f . Here ‖ · ‖ denotes
the uniform norm in C(D) and

En(f (p)) = inf{‖f (p) − P‖;P is complex polynomial of degree ≤ n}.
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Proof. (iii) According to, e.g., Stechkin [371], p. 61, relation (0.3), the de
la Vallée Poussin sums attached to a continuous 2π-periodic function g are
defined by

σn,m(g)(x) =
1

m + 1

n∑

j=n−m

sj(g)(x),

where 0 ≤ m ≤ n, n = 0, 1, . . . , and sj(g)(x) denotes the jth Fourier partial
sum attached to g. We also have (see, e.g., Stechkin [371], p. 63)

σn,m(g)(x) =
1
π

∫ π

−π

g(x + t)Vn,m(t)dt,

where

Vn,m(t) =
1

m + 1

n∑

k=n−m

Dk(t),

and Dk(t) = 1
2 +
∑k

j=1 cos(jt) represents the Dirichlet kernel of order k.
For f ∈ Ap(D) and 0 ≤ m ≤ n, now let us define (using the same notation

σn,m)

σn,m(f)(z) =
1

m + 1

n∑

k=n−m

Tk(f)(z),

where Tk(f)(z) =
∑k

j=0
f(j)(0)

j! zj represents the kth Taylor partial sum of f .
Reasoning as in, e.g., the proof of Lemma 1, pp. 881–882 in Mujica [277],

we easily get the formula

σn,m(f)(z) =
1
π

∫ π

−π

f(zeit)Vn,m(t)dt for all z ∈ D.

Let us reproduce below the proof of this integral representation. Indeed, writ-
ing z = reit and f(z) = f(zeit) =

∑∞
k=0 ckrkeikt, we obtain

1
2π

∫ π

−π

f(reit)e−iktdt = ckrk for all k = 0, 1, . . . .

Now for any k = 1, 2, . . . , we get

ckrkeikθ =
eikθ

2π

∫ π

−π

f(reit)e−iktdt +
e−ikθ

2π

∫ π

−π

f(reit)eiktdt

=
1
2π

∫ π

−π

f(reit)[eik(θ−t) + eik(t−θ)]dt

=
1
π

∫ π

−π

f(reit) cos[k(t − θ)]dt =
1
π

∫ π

−π

f(rei(t+θ)) cos(kt)dt.
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This implies

Tn(f)(reiθ) =
1
π

∫ π

−π

f(rei(t+θ))

(

1 +
n∑

k=1

cos(kt)

)

dt

=
1
π

∫ π

−π

f(rei(t+θ))Dn(t)dt,

which gives the required integral representation.
It is evident that σ2n,n−p(f)(z) is a complex polynomial of degree ≤ 2n,

while from the obvious property T ′
k(f)(z) = Tk−1(f ′)(z), we easily get

σ
(k)
2n,n−p(f)(z) = σ2n−k,n−p(f (k))(z),

for all k = 0, . . . , p.
After a careful examination of the proof of Theorem 4, p. 69 in Stechkin

[371], concerning the approximation property of σn,m(f)(z), it is not difficult
to see that we get exactly the same kind of estimate as that for the trigono-
metric case, similar to relationship (2.1) in the statement of Theorem 4, p. 69
in Stechkin [371]), that is,

‖f − σn,m(f)‖ ≤ A
n∑

j=0

En−m+j(f)
m + j + 1

, for all 0 ≤ m ≤ n,

where ‖ · ‖ denotes the uniform norm in C(D) and A > 0 is an absolute
constant independent of f , n, and m.

Let us briefly describe how we can use the reasoning in the trigonomet-
ric case in Stechkin [371] for the complex setting too. Indeed, the proof of
Theorem 4 in Stechkin [371] is based on the previous Lemma 1, Lemma 2,
and Theorem 1 there. But Lemma 1 remains valid because one refers only
to the trigonometric kernels Vn,m(t). Also, for the proof of estimate (1.5) in
the statement of Lemma 2, by the maximum modulus principle we can take
|z| = 1, that is, z = eiα and f(eiα) = G[cos(α), sin(α)] + iH[cos(α), sin(α)].
Then, because any complex polynomial Pn−m(z) of degree ≤ n − m can be
written as Pn−m(z) = Sn−m(α) + iQn−m(α), where z = reiα and Sn−m(α),
Qn−m(α) are trigonometric polynomials of degrees ≤ n−m in α, we can apply
the same reasoning to get the inequality of Lemma 2 for the complex setting.
Furthermore, the proof of Theorem 1, pp. 66–68, is based on Lemma 2 and on
some inequalities obtained by standard reasoning and that remain valid in the
complex setting too. Finally, in the proof of Theorem 4, pp. 69–71, the con-
structions quoted in the relationships (2.2), (2.3), (2.4) obviously remain valid
in the complex setting too, and also, Theorem 1 and some standard metric
kind inequalities are used that remain valid in the complex setting too.
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Consequently, for all k = 0, . . . , p and n ≥ p, we get

‖f − σ2n−k,n−p(f)‖

≤ A

2n−k∑

j=0

En+p−k+j(f)
n − p + j + 1

≤ AEn+p−k(f)
2n−k∑

j=0

1
n − p + j + 1

≤ AEn+p−k(f)
2n − k + 1
n − p + 1

≤ AEn+p−k(f)
2n + 1

n − p + 1
= AEn+p−k(f)[2 + (2p − 1)/(n − p + 1)] ≤ A(2p + 1)En+p−k(f).

Let Pn(z) denote the best-approximation polynomial of degree ≤ n, that
is, En(f) = ‖f − Pn‖ (or any near-best approximation polynomial of degree
≤ n, that is, one that satisfies ‖f − Pn‖ ≤ CEn(f), with C > 0 independent
of n and f).

Taking into account the above estimate, Bernstein’s inequality for complex
polynomials, and the well known inequality En(f) ≤ Cn−pEn−p(f (p)) for any
n ≥ p and k = 0, . . . , p, we obtain (the constants Cp below can be different at
each occurrence, but are independent of f and n)

‖f (k) − P (k)
n ‖ ≤ ‖f (k) − σ

(k)
2n,n−p(f)‖ + ‖σ(k)

2n,n−p(f) − P (k)
n ‖

= ‖f (k) − σ2n−k,n−p(f (k))‖ + ‖σ(k)
2n,n−p(f) − P (k)

n ‖
≤ CpEn+p−k(f (k)) + ‖(σ2n,n−p(f) − Pn)(k)‖
≤ CpEn+p−k(f (k)) + (2n)k‖σ2n,n−p(f) − Pn‖
≤ CpEn+p−k(f (k)) + Cpn

k[‖σ2n,n−p(f) − f‖ + ‖f − Pn‖]
≤ CpEn+p−k(f (k)) + Cpn

k[En+p(f) + En(f)]

≤ CpEn+p−k(f (k)) + Cpn
kEn(f)

≤ CpEn+p−k(f (k)) + Cpn
kn−pEn−p(f (p))

≤ Cp(n + p − k)−p+kEn(f (p)) + Cpn
−p+kEn−p(f (p))

≤ Cpn
−p+kEn−p(f (p)),

which proves (iii). �

Remarks. (1) From the proof of Theorem 3.2.1 (iii), it easily follows that in
fact we have

‖f (k) − σ
(k)
2n,n−p(f)‖ = ‖f (k) − σ2n−k,n−p(f (k))‖ ≤ CpEn+p−k(f (k))

≤ Cp(n + p − k)−p+kEn(f (p)) ≤ Cpn
−p+kEn(f (p)),

for all k = 0, . . . , p and n ≥ p.
(2) It is natural to ask whether instead of the de la Vallée Poussin sums, we

could use directly the Taylor polynomials attached to f , defined by Tn(f)(z) =
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∑n
j=0

f(j)(0)
j! zj . Indeed, these polynomials reproduce any polynomial of degree

≤ n and satisfy T
(k)
n (f) = Tn−k(f (k)). Unfortunately, as linear operators

on A(D), the family {Tn, n ∈ N} is not uniformly bounded on A(D). This
shortcoming could be solved by imposing a stronger hypothesis on f , as for
example that f ∈ Ap(DR) with R > 1, where DR = {|z| < R}. In this
case, taking into account Cauchy’s estimates for the coefficients, for any fixed
1 < r < R we have |f(j)(0)|

j! ≤ ‖f‖r

rj , where ‖f‖r denotes the uniform norm in
C(Dr) (for simplicity, here ‖ · ‖1 is denoted simply by ‖ · ‖) and

‖Tn(f)‖ ≤ r

r − 1
‖f‖r, ∀n ∈ N,

which shows that Tn : A(Dr) → A(D), n ∈ N, is a family of bounded linear
operators. Reasoning now as in the proof of Theorem 3.2.1 (iii), let Pn be the
polynomial of best approximation of degree ≤ n of f and let Qn−k be the
polynomial of best approximation of degree ≤ n − k of f (k), both on Dr. We
obtain

‖f (k) − P (k)
n ‖ ≤ ‖f (k) − Tn−k(f (k))‖ + ‖T (k)

n (f) − P (k)
n ‖

≤ ‖f (k) − Qn−k‖ + ‖Qn−k − Tn−k(f (k))‖ + ‖[Tn(f) − Pn](k)‖
≤ En−k(f (k); Dr)+ ‖|Tn−k‖| · ‖f (k) −Qn−k‖r + nk‖Tn(f)−Pn‖

≤ En−k(f (k); Dr) +
r

r − 1
En−k(f (k); Dr) + nk‖Tn[f − Pn]‖

≤ Cr,p,kn−p+kEn−p(f (p); Dr) + ‖|Tn‖| · nk‖f − Pn‖r

≤ Cr,p,kn−p+kEn−p(f (p); Dr) + Cr,p,kn−p+kEn−p(f (p); Dr)

≤ Cr,p,k

np−k
En−p(f (p); Dr).

Thus, for any f ∈ Ap(DR), p ≥ 1 (with R > 1), any fixed 1 < r < R, and any
n > p, there is a sequence of polynomials Pn(f) of degree(Pn(f)) ≤ n, n ∈ N,
such that for any k = 0, 1, . . . , p, we have

‖f (k) − P (k)
n (f)‖ ≤ Cr,p

np−k
En−p(f (p); Dr), k = 0, 1, . . . , p,

where Cr,p > 0 is a constant independent of f and n. This inequality is very
similar to that in the statement of Theorem 3.2.1 (iii). Here En(F ; Dr) denotes
the best approximation of F on Dr by polynomials of degree ≤ n.

(3) Although it is not directly connected with the topic covered by the title
of this book, let us remark that the reasoning about the de la Vallée Poussin
sums in the proof of Theorem 3.2.1 (iii) suggests that two interesting trigono-
metric inequalities of Leindler [222] and Leindler–Meir [223], generalizing the
Steckin’s result in [371], might hold in the complex setting too. More exactly,
writing, for all nonnegative integers 0 ≤ m ≤ n and real p ≥ 1,
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Gn,m(f)(z) =
1

m + 1

n∑

k=n−m

|Tk(f)(z) − f(z)|

and

Gn,m,p(f)(z) =

(
1

m + 1

n∑

k=n−m

|Tk(f)(z) − f(z)|p
)1/p

,

we conjecture that for any f ∈ A(D), we have

‖Gn,m(f)‖ ≤ K

n∑

j=0

En−m+j(f)
m + j + 1

and

‖Gn,m,p(f)‖ ≤ C[log(n)]1−1/p

(
n∑

k=0

Ep
n−m+k(f)

m + k + 1

)1/p

,

where C > 0 is an absolute constant. The complete proofs of these two in-
equalities remain open questions.

3.2.1 Shisha-Type Approximation

The first main result is the following.

Theorem 3.2.2. (Gal [131]) Let us consider the integers h, k, p ∈ N, 0 ≤
h ≤ k ≤ p, the functions aj : D → C, continuous on D for all j = h, . . . , k
such that ah(z) = 1, for all z ∈ D, the distinct interpolation points |zi| ≤
1, i = 1, . . . , h (by convention, if h = 0, then we do not have any interpolation
point), and the complex differential operator on Ap(D) defined by L(f)(z) =
∑k

j=h aj(z)f (j)(z), z ∈ D.
For any f ∈ Ap(D) satisfying Re[L(f)(z)] ≥ 0 for all z ∈ D, and any

n ∈ N, n ≥ p, there exists a complex polynomial Pn(z) of degree ≤ n satisfying

‖f − Pn‖ ≤ Cnk−pEn−p(f (p))

(with C independent of n, f), Re[L(Pn)(z)] ≥ 0 for all z ∈ D and Pn(zi) =
f(zi), i = 1, . . . , h (if h = 0 then we don’t have interpolative conditions). Here
recall that ‖ · ‖ denotes the uniform norm in C(D).

Proof. By Theorem 3.2.1 (iii), for any F ∈ Ap(D) and n ≥ p, there exists a
polynomial pn(z) of degree ≤ n such that

‖F (j) − p(j)
n ‖ ≤ Cnj−pEn−p(F (p)),

j = 0, 1, . . . , p, with C > 0 independent of n and F .
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Defining qn(z) = pn(z)+Q(F −pn)(z), where Q(F −pn)(z) represents the
Lagrange interpolation polynomial attached to F −pn at the points z1, . . . , zh,
we easily obtain qn(zi) = F (zi), i = 1, . . . , h and

‖qn − F‖ ≤ ‖pn − F‖ + ‖Q(F − pn)‖ ≤ c1n
−pEn−p(F (p)),

with c1 independent of n and F .
From the continuity of each aj(z) on D, setting Aj = ‖aj‖, j = h, . . . , k,

we get Ah = 1 and there exists M > 0 with Aj ≤ M, j = h + 1, . . . , k. Since
c1En−p(f (p))

∑k
j=h Ajn

j−p ≤ c1 ·max{1,M}(k−h+1)nk−pEn−p(f (p)) =: ηn,
taking F (z) = f(z) + ηn[(z − z1) · · · (z − zh)]/(h!) (if h = 0 then F (z) =
f(z) + ηn), let Pn(z) be the polynomial of degree ≤ n satisfying Pn(zi) =
F (zi), i = 1, . . . , h and

‖F (j) − P (j)
n ‖ ≤ c1n

j−pEn−p(F (p)) = c1n
j−pEn−p(f (p)), j = 0, 1, . . . , p.

(Here c1 is independent of n and F , therefore independent of f too.)
First, it is clear that Pn(zi) = F (zi) = f(zi), i = 1, . . . , h.
Also, we obtain

‖f − Pn‖ ≤ 2hηn(h!)−1 + c1n
−pEn−p(f (p))

≤ Cnk−pEn−p(f (p)),

with C independent of n and f , which implies the estimate in the theorem.
On the other hand, if z ∈ D (keeping the convention in the h = 0 case), it

is easy to see that

L(Pn)(z) = L(f)(z) + ηn

+
k∑

j=h

aj(z){Pn(z) − f(z) − [(z − z1) · · · (z − zh)]ηn/(h!)}(j),

and we obtain

Re[L(Pn)(z)] = Re[L(f)(z)] + ηn

+ Re
{ k∑

j=h

aj(z){Pn(z) − f(z)

− [(z − z1) · · · (z − zh)]ηn/(h!)}(j)

}

.

Now, by
∣
∣
∣
∣Re
{ k∑

j=h

aj(z){Pn(z) − f(z) − [(z − z1) · · · (z − zh)]ηn/(h!)}(j)

}∣
∣
∣
∣

≤
∣
∣
∣
∣

k∑

j=h

aj(z){Pn(z) − f(z) − [(z − z1) · · · (z − zh)]ηn/(h!)}(j)

∣
∣
∣
∣

≤ max{1,M}c1 · (k − h + 1)nk−pEn−p(f (p)) = ηn,
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we get

ηn + Re
{ k∑

j=h

aj(z){Pn(z) − f(z) − [(z − z1) · · · (z − zh)]ηn/(h!)}(j)

}

≥ 0,

and since Re[L(f)(z)] ≥ 0, we finally obtain Re[L(Pn)(z)] ≥ 0 for all z ∈ D.
�

Remarks. (1) It is easy to see that the statement of Theorem 3.2.2 remains
valid if we replace the real part “Re” of the corresponding quantities with the
imaginary part “Im”.

(2) If in Theorem 3.2.2 we take Re[L(f)(z)] > 0 for all z ∈ D, then from
the proof it easily follows that Re[L(Pn)(z)] > 0 for all z ∈ D, n ≥ p.

Another consequence of Theorem 3.2.1 (iii) is the following.

Corollary 3.2.3. (Gal [131]) Let us consider the integers h, k, p ∈ N, 0 ≤ h ≤
k ≤ p, the functions aj : D → C continuous on D for all j = h, . . . , k such
that ah(z) = 1 for all z ∈ D, the point |z0| ≤ 1, and the complex differential
operator on Ap(D) defined by L(f)(z) =

∑k
j=h aj(z)f (j)(z), z ∈ D.

For any f ∈ Ap(D) satisfying Re[L(f)(z)] ≥ 0 for all z ∈ D, and for
every n ∈ N, n ≥ p, there exists a complex polynomial Pn(z) of degree, ≤ n,
satisfying

‖f − Pn‖ ≤ Cnk−pEn−p(f (p))

(with C independent of n, f), Re[L(Pn)(z)] ≥ 0 for all z ∈ D, and P
(i)
n (z0) =

f (i)(z0), i = 0, . . . , h.

Proof. As in the proof of Theorem 3.2.2, for any F ∈ Ap(D) and n ≥ p, there
exists a polynomial pn(z) of degree ≤ n such that

‖F (j) − p(j)
n ‖ ≤ cnj−pEn−p(F (p)),

j = 0, 1, . . . , p.
Define now qn(z) = pn(z) + Th(z), where Th(z) denotes the Taylor

polynomial of degree h attached to the point z0 and to F − pn, that is,
Th(z) =

∑h
j=0

(z−z0)
j

j! [F − pn](j)(z0).

We easily get q
(j)
n (z0) = F (j)(z0), j = 0, . . . , h, and

‖qn − F‖ ≤ c1

h∑

j=0

‖F (j) − p(j)
n ‖ ≤ c1n

k−pEn(F (p)),

with c1 > 0 independent of n and f , since h ≤ k.
Defining ηn = c1 max{1,M}(k − h + 1)nk−pEn−p(f (p)) (where M is given

in the proof of Theorem 3.2.2) and taking F (z) = f(z) + ηn(z − z0)h/(h!),



3.2 Shisha-Type Methods and Generalizations 233

let Pn(z) be the polynomial of degree ≤ n satisfying P
(i)
n (z0) = F (i)(z0), i =

0, . . . , h, and

‖F (j) − P (j)
n ‖ ≤ c1n

j−pEn−p(F (p))

= c1n
j−pEn−p(f (p)) ≤ Cnk−pEn−p(f (p)), j = 0, 1, . . . , k.

From here the proof is identical to that of Theorem 3.2.2. �
We present some applications of Corollary 3.2.3.

Theorem 3.2.4. (Gal [131]) (i) Let p ∈ N. For any f ∈ Ap(D) normalized
in D (that is, f(0) = f ′(0) − 1 = 0) satisfying Re[f ′(z)] > 0 for all z ∈ D

and any n ≥ p, there exists a polynomial Pn of degree ≤ n such that Pn(0) =
f(0), P ′

n(0) = f ′(0), Re[P ′
n(z)] > 0 for all z ∈ D, and

‖f − Pn‖ ≤ C
1

np−1
En−p(f (p)),

where C is independent of n and f .
(ii) Let p ∈ N, p ≥ 2. For any f ∈ Ap(D) normalized in D and any

n ∈ N, n ≥ p, there exists a polynomial Pn of degree ≤ n such that Pn(0) =
f(0), P ′

n(0) = f ′(0),

‖f − Pn‖ ≤ C
1

np−2
En−p(f (p)),

with C independent of n, f , that in addition has the following properties (the
choice of Pn(z) depends on the property):

(a) If Re[f ′(z) + zf ′′(z)] > 0 for all z ∈ D, then Re[P ′
n(z) + zP ′′

n (z)] > 0
∀z ∈ D.

(b) If Re[f ′(z)+ 1
2zf ′′(z)] > 0 for all z ∈ D, then Re[P ′

n(z)+ 1
2zP ′′

n (z)] > 0
for all z ∈ D.

(c) If Re[f ′(z) + 1
γ zf ′′(z)] > 0 for all z ∈ D, where −1 < γ ≤ γ0 =

1.869 . . ., then Re[P ′
n(z) + 1

γ zP ′′
n (z)] > 0 ∀z ∈ D.

(iii) Let p ∈ N, p ≥ 2. For any g ∈ Ap(D) satisfying g(0) = a, with
Re[a] > 0 and Re[g(z) + zg′(z) + z2g′′(z)] > 0 for all z ∈ D, and any n ∈ N,
n ≥ p, there exists a polynomial Pn of degree ≤ n such that Pn(0) = g(0),
Re[Pn(z) + zP ′

n(z) + z2P ′′
n (z)] > 0 for all z ∈ D, and

‖g − Pn‖ ≤ C
1

np−2
En−p(g(p)),

where C is independent of n and f .
(iv) Let p ∈ N. For any g ∈ Ap(D) satisfying g(0) = a, with Re[a] > 0 and

Re[g(z) + zB(z)g′(z)] > 0, with Re[B(z)] > 0 for all z ∈ D, and any n ∈ N,
n ≥ p, there exists a polynomial Pn of degree ≤ n such that Pn(0) = g(0),
Re[Pn(z) + zB(z)P ′

n(z)] > 0 for all z ∈ D, and

‖g − Pn‖ ≤ C
1

np−1
En−p(g(p)),

where C is independent of n and f .
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Proof. (i) Take L(f)(z) = f ′(z) and apply Remark 2 of Theorem 3.2.2 and
Corollary 3.2.3 for z0 = 0, h = k = 1.

(ii), (a), (b), and (c) Take L(f)(z) = f ′(z) + zf ′′(z) (or L(f)(z) = f ′(z) +
z
2f ′′(z), respectively) and apply Remark 2 of Theorem 3.2.2 and Corollary
3.2.3 for z0 = 0, h = 1, k = 2.

(iii) Apply Remark 2 of Theorem 3.2.2 and Corollary 3.2.3 for z0 = 0,
h = 0, and k = 2.

(iv) Apply Remark 2 of Theorem 3.2.2 and Corollary 3.2.3 for z0 = 0,
h = 0, and k = 1. �

Remarks. (1) By, e.g., Mocanu–Bulboacă–Sălăgean [273], p. 78, it is well
known that if f is normalized and satisfies the condition Re[f ′(z)] > 0 for all
z ∈ D, then f is univalent and of bounded turn in D (i.e., |arg[f ′(z)]| < π

2 ,
for all z ∈ D). Consequently, the approximation polynomials Pn, n ≥ p, are
univalent and of bounded turn on D.

(2) By, e.g., Singh–Singh [358], Mocanu [272], and Mocanu–Bulboacă–
Salagean [273], p. 358, respectively, the fact that f is normalized together
with any of the three conditions (a), (b), and (c) in Theorem 3.2.4 (ii) implies
the starlikeness of f (and as a consequence the starlikeness of Pn too) in D (for
the above sufficient conditions of starlikeness (a) and (b), see also Mocanu–
Bulboacă–Sălăgean [273], p. 363).

(3) By, e.g., Mocanu–Bulboacă–Sălăgean [273], Problem 9.6.5 (ii), p. 221,
the conditions satisfied by g in Theorem 3.2.4 (iii) imply Re[g(z)] > 0 for all
z ∈ D.

(4) By, e.g., Mocanu–Bulboacă–Sălăgean [273], p. 192, the conditions in
Theorem 3.2.4 (iv) imply Re[g(z)] > 0 for all z ∈ D.

Similar results are given by the following.

Theorem 3.2.5. (Gal [131]) (i) If f ∈ A(D) satisfies Re[f(z)] > 0 for all
z ∈ D and En(f) 	= 0 for all n ∈ N , then for each n ∈ N, there exists
Pn, a complex polynomial of degree ≤ n, satisfying ‖Pn − f‖ ≤ 2En(f) and
Re[Pn(z)] > 0 for all z ∈ D.

(ii) Let f ∈ A1(D) be such that there exists γ ∈ R, with Re[eiγf ′(z)] > 0
for all z ∈ D and suppose that En(f ′; 1/n) 	= 0 for all n ∈ N . Then for any
n ≥ 1, there exists a polynomial Qn(f)(z) of degree ≤ n satisfying
Re[eiγQ′

n(z)] > 0 for all z ∈ D and ‖Qn(f) − f‖ ≤ cEn−1(f ′), where c is
independent of n and f .

Proof. (i) Let P ∗
n be the polynomial of degree ≤ n satisfying ‖f − P ∗

n‖ =
En(f). Since |Re[P ∗

n(z)−f(z)]| ≤ ‖f−P ∗
n‖ = En(f) < 2En(f) and Re[Pn(z)−

f(z)] = Re[P ∗
n(z)− f(z)]+2En(f) > 0, it is easy to see that Pn(z) = P ∗

n(z)+
2En(f) satisfies the required conditions.

(ii) From Theorem 3.2.1 (iii), there exists Pn(z) satisfying ‖Pn − f‖ ≤
c 1

nEn−1(f ′) =: αn, and ‖P ′
n − f ′‖ ≤ cEn−1(f ′) =: βn.



3.2 Shisha-Type Methods and Generalizations 235

Setting Qn(z) = Pn(z) + z 2βn

cos(γ) , we get ‖Qn − f‖ ≤ ‖Pn − f‖ + 2βn ≤
αn + 2βn, which proves the approximation estimate.

Also,

Re[eiγ(Q′
n(z) − f ′(z))] = Re[eiγ(P ′

n(z) − f ′(z))] + 2βnRe
[

eiγ

cos(γ)

]

= Re[eiγ(P ′
n(z) − f ′(z))] + 2βn > 0,

since |Re[eiγ(P ′
n(z) − f ′(z))]| ≤ |eiγ [P ′

n(z) − f ′(z)]| ≤ ‖P ′
n − f ′‖ ≤ βn < 2βn,

which proves the theorem. �

Remark. It is well known that Re[eiγf ′(z)] > 0 for all z ∈ D is the Noshiro,
Warschawski, Wolff’s sufficient condition of univalence for f (see also, e.g.,
Mocanu–Bulboacă–Sălăgean [273], p. 78).

3.2.2 Re[L]-Positive Approximation

In this subsection we generalize the above Shisha-type methods and results to
an abstract setting by extending the abstract method of L-positive approxi-
mation in Section 2.3 to a complex variable.

Let (X, ‖ · ‖X) be a complex normed space, S a linear subspace of X,
M ⊂ X with S ∩ M 	= ∅, and f ∈ X. Then the best approximation of f by
elements from S or from S ∩ M are defined by

ES(f : X) = inf
g∈S

{‖f − g‖X}

and
ES,M (f ;X) = inf

g∈S∩M
{‖f − g‖X},

respectively.
We have ES(f ;X) ≤ ES,M (f ;X) for all f ∈ X, and if in addition, S is

finite-dimensional, we recall (see Section 2.3, Remark 2 after Definition 2.3.4)
that then there exist g∗ ∈ S and g∗M ∈ S∩M such that ES(f ;X) = ‖f−g∗‖X

and ES,M (f ;X) = ‖f − g∗M‖X .
For Ω ⊂ C let us denote by (F(Ω), ‖·‖F ) a normed space of complex-valued

functions defined on Ω and let L : X → F(Ω) be a linear bounded operator,
i.e., ‖|L‖| = sup{‖L(x)‖F ; ‖x‖X ≤ 1} < ∞. Also, set M [Re(L)] = {f ∈
X; Re[L(f)(z)] ≥ 0, for all z ∈ Ω} and M [Im(L)] = {f ∈ X; Im[L(f)(z)] ≥ 0,
for all z ∈ Ω}.

The goal is under some conditions on L and S ⊂ X to obtain estimates of
the form

ES,M [Re(L)](f ;X) ≤ CES(f ;X), ∀f ∈ X,
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and
ES,M [Im(L)](f ;X) ≤ CES(f ;X), ∀f ∈ X,

where C is a constant independent of f and S.
The first main result is the following.

Theorem 3.2.6. For (X, ‖ · ‖X) a complex normed space and S ⊂ X a lin-
ear subspace, let us consider a family of linear bounded operators Lj : X →
Fj(Ωj), Ωj ⊂ C, where (Fj(Ωj), ‖ · ‖Fj

) are normed spaces of complex-valued
functions defined on Ωj for all j ∈ J , respectively (J an arbitrary set), satis-
fying the following conditions:

(i) supj∈J ‖|Lj‖| < ∞;
(ii) there is an element e ∈ S such that for any j ∈ J we have

Re[Lj(e)(z)] ≥ 1, for all z ∈ Ωj .

Then, for every f ∈ X and P ∈ S, there exist Qi ∈ S, i = 1, 2, such that

(−1)i+1Re[Lj(Qi − f)(z)] ≥ 0, z ∈ Ωj , j ∈ J,

and the estimate

‖f − Qi‖X ≤ (1 + ‖e‖Xsupj∈J‖|Lj‖|) · ‖f − P‖X , i = 1, 2,

holds.

Proof. Writing Qi = P + (−1)i+1λe, where λ = supj∈J{‖|Lj‖| · ‖f − P‖X ,
for any i = 1, 2, we obtain

(−1)i+1Lj(Qi − f)(z) = (−1)i+1Lj(P − f)(z) + λL(e)(z).

Taking the real part, it follows, that

(−1)i+1Re[Lj(Qi − f)(z)] = (−1)i+1Re[Lj(P − f)(z)] + λRe[L(e)(z)]

≥ (−1)i+1Re[Lj(P − f)(z)] + λ ≥ 0,

since |(−1)i+1Re[Lj(P − f)(z)]| ≤ |Lj(P − f)(z)| ≤ ‖|Lj‖| · ‖P − f‖X ≤ λ.
In addition,

‖f−Qi‖X ≤ ‖f−P‖X +λ‖e‖X = (1+‖e‖X supj∈J ‖|Lj‖|)‖f−P‖X , i = 1, 2,

which proves the theorem. �

Replacing above the real part with the imaginary part, we immediately
get the following.

Corollary 3.2.7. For (X, ‖ · ‖X) a complex normed space and S ⊂ X a lin-
ear subspace, let us consider a family of linear bounded operators Lj : X →
Fj(Ωj), Ωj ⊂ C, j ∈ J (J an arbitrary set), satisfying the following condi-
tions:
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(i) supj∈J ‖|Lj‖| < ∞;
(ii) there is an element e ∈ S such that for any j ∈ J we have

Im[Lj(e)(z)] ≥ 1, for all z ∈ Ωj .

Then, for every f ∈ X and P ∈ S, there exist Qi ∈ S, i = 1, 2, such that

(−1)i+1Im[Lj(Qi − f)(z)] ≥ 0, z ∈ Ωj , j ∈ J,

and the estimate

‖f − Qi‖X ≤ (1 + ‖e‖X supj∈J ‖|Lj‖|) · ‖f − P‖X , i = 1, 2,

holds.

Another consequence of Theorem 3.2.6 is the next result.

Theorem 3.2.8. Let (X, ‖ · ‖X) be a complex normed space with S ⊂ X a
linear subspace. Let us consider a family of linear bounded operators Lj :
X → Fj(Ωj), Ωj ⊂ C, where (Fj(Ωj), ‖ · ‖Fj

) are normed spaces of complex-
valued functions defined on Ωj, for all j ∈ J , respectively (J an arbitrary set),
satisfying the conditions (i) and (ii) in the statement of Theorem 2.3.5, and
for j ∈ J let us define

M+(Re[Lj ]) = {f ∈ X : Re[Lj(f)(z)] ≥ 0, for all z ∈ Ωj},
M−(Re[Lj ]) = {f ∈ X : Re[Lj(f)(z)] ≤ 0, for all z ∈ Ωj},

M±[Re] =
⋂

j∈J

M±(Re[Lj ]).

Then, for any f ∈ M±[Re], we have

ES,M±[Re](f ;X) ≤ (1 + ‖e‖X supj∈J ‖|Lj‖|)ES(f ;X).

Proof. We prove the case f ∈ M+(Re[Lj ]), since the case f ∈ M−(Re[Lj ])
is similar. By Theorem 3.2.6, there exists Q1 ∈ S such that Re[Lj(Q1)(z)] ≥
Re[Lj(f)(z)] ≥ 0, for all z ∈ Ωj for all j ∈ J . Thus Q1 ∈ M+(Re[Lj ]) and
the conclusion immediately follows from the estimate in Theorem 3.2.6. �
Remark. Theorem 3.2.8 remains valid if in the statement we replace Re with
Im.

Corollary 3.2.9. For (X, ‖·‖X) a complex normed space and S ⊂ X a linear
subspace, let L : X → F(Ω), where Ω ⊂ C and (F(Ω), ‖ · ‖F ) is a cer-
tain normed space of complex-valued functions defined on Ω. If L is a linear
bounded operator such that there exists e ∈ S with Re[L(e)](z) ≥ 1 for all
z ∈ Ω, and if we set M(Re[L]) = {f ∈ X : Re[L(f)(z)] ≥ 0 for all z ∈ Ω},
then for any f ∈ M(Re[L]) we have

ES,M(Re[L])(f ;X) ≤ (1 + ‖|L‖| · ‖e‖X)ES(f ;X).

The proof is an immediate consequence of Theorem 3.2.8. �
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Remarks. (1) Corollary 3.2.9 remains valid by replacing Re with Im.
(2) The constant (1+‖|L‖| ·‖e‖X) can obviously be improved, by replacing

‖e‖X with c = inf{‖e‖X ; e ∈ S, Re[L(e)(z)] ≥ 1, for all z ∈ Ω}.

At the end of this section we present the following refinements of Theorems
3.2.6, 3.2.8 and Corollary 3.2.9, in the sense that the positivity condition
Re[L] ≥ 0 can be replaced by the strict positivity condition Re[L] > 0.

Corollary 3.2.10. In the hypothesis of Theorem 3.2.6, for every f ∈ X and
P ∈ S, P 	= f , there exist Qi ∈ S, i = 1, 2, such that

(−1)i+1Re[Lj(Qi − f)(z)] > 0, z ∈ Ωj , j ∈ J,

and the estimate

‖f − Qi‖X ≤ (1 + ‖e‖X + ‖e‖X supj∈J ‖|Lj‖|) · ‖f − P‖X i = 1, 2,

holds.

Proof. Indeed, this conclusion easily follows if in the proof of Theorem 3.2.6
we take λ = (1+supj∈J ‖|Lj‖|) · ‖f −P‖X and we follow the reasoning of that
proof. �

Corollary 3.2.11. In the hypothesis of Theorem 3.2.8 but introducing the
notations

M+
0 (Lj) ={f ∈ X : Re[Lj(f)(z)] > 0, a.e. on Ωj},

M−
0 (Lj) ={f ∈ X : Re[Lj(f)(z)] < 0, a.e. on Ωj},

M±
0 =
⋂

j∈J

M±
0 (Lj),

for any f ∈ M±
0 , we have

ES,M±
0

(f ;X) ≤ (1 + ‖e‖X + ‖e‖X supj∈J ‖|Lj‖|)ES(f ;X).

Proof. We prove the case f ∈ M+
0 , since the case f ∈ M−

0 is similar. By
Corollary 3.2.10, for any f ∈ X and P ∈ S, P 	= f , there exists Q1 ∈ S
such that Re[Lj(Q1)(z)] > Re[Lj(f)(z)] > 0, a.e. z ∈ Ωj , for all j ∈ J . Thus
Q1 ∈ M+

0 and from the estimate in Corollary 3.2.10, we get

‖f − Q1‖X ≤ (1 + ‖e‖X + ‖e‖X supj∈J ‖|Lj‖|) · ‖f − P‖X , i = 1, 2,

which immediately implies the estimate in Corollary 3.2.11. �

Corollary 3.2.12. In the hypothesis of Corollary 3.2.9, setting M0(L) = {f ∈
X : Re[L(f)(z)] > 0, on Ω}, then for any f ∈ M0(L) we have

ES,M0(L)(f ;X) ≤ (1 + ‖e‖X + ‖|L‖| · ‖e‖X)ES(f ;X).

The proof is an immediate consequence of Corollary 3.2.11. �
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Remarks. (1) Other slightly different variants of the above results hold. For
example, in Corollary 3.2.12 let us suppose that L : X → C(D), with D =
{z ∈ C; |z| < 1}, is a linear bounded operator such that there exists e ∈ S with
Re[L(e)(z)] ≥ 1 on D. If we set M0(L) = {f ∈ X : Re[L(f)(z)] > 0, on D},
then for any f ∈ M0(L) we have

ES,M0(L)(f ;X) ≤ (1 + ‖|L‖| · ‖e‖X)ES(f ;X).

The estimate is immediate from the proof of Theorem 3.2.8.

Note that by L(f) ∈ C(D), we easily get Re[L(f)(z)] ≥ 0 for all x ∈ D,
i.e., actually f ∈ M(L) = {f ∈ X : Re[L(f)(z)] ≥ 0, on D}.

(2) In order to get an application, let us particularize the spaces X, S, and
the operator L.

If we take X = A1(D), the space of continuously differentiable functions
f : D → C on the closed unit disk D (endowed with the norm ‖f‖A1 =
max{‖f‖, ‖f ′‖}, where ‖ · ‖ denotes the uniform norm on C(D)), and L :
A1(D) → C(D) defined by L(f)(z) = f ′(z), then obviously L is linear and
bounded. Also, e(z) = z,∀z ∈ D, satisfies Re[L(e)(z)] = 1 for all z ∈ D.
Therefore, by choosing as S the set of all complex polynomials of degree ≤ n
(for arbitrary fixed n ∈ N, that is, a finite-dimensional subset in C(D)), for
any f ∈ A1(D) satisfying Re[f ′(z)] > 0 for all z ∈ D, there exists a complex
polynomial Pn of degree ≤ n such that Re[P ′

n(z)] > 0 for all z ∈ D. Taking
into account the definition of the norm ‖f‖A1 and combining the estimate in
Corollary 3.2.9 with Theorem 3.2.1 (iii), we immediately get the estimate

‖f − Pn‖ ≤ cEn−1(f ′),

i.e., we recover a particular case (γ = 0) of Theorem 3.2.5, (ii).
Obviously many other choices for X, S, and L can be made.

3.3 Shape-Preserving Approximation by Convolution
Polynomials

Let D = {z ∈ C; |z| < 1} be the open unit disk and let us set A∗(D) = {f :
D → C; f is analytic on D, continuous on D, f(0) = 0, f ′(0) = 1}, i.e., A∗(D)
is the class of all normalized functions in A(D).

The aim of this section is to obtain approximation results through convo-
lution polynomials based on various trigonometric kernels (of Fejér, Jackson,
Beatson, Cesáro, de la Vallée Poussin mean), producing a Jackson-type ap-
proximation rate or best-approximation rate and preserving many properties
in geometric function theory such as the coefficients’ bounds, positivity of
real part, bounded turn, close-to-convexity, starlikeness, convexity, spirallike-
ness, α-convexity. In addition, some sufficient conditions for starlikeness and
univalence of analytic functions are preserved.
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3.3.1 Bell-Shaped Kernels and Complex Convolutions

First we consider approximation and geometric properties for complex convo-
lutions, based on the so-called Beatson trigonometric kernels and their gener-
alizations called iterated Beatson kernels.

With the aid of kernels Kn,r(t), defined by

Kn,r(s) =
(

sin ns
2

sin s
2

)2r

and with cn,r chosen so that 1
π

∫ π

−π
Kn,r(s)ds = cn,r, it is known that the

Beatson [32] kernels are defined by

Bn,r(t) =
n

2πcn,r

∫ t+π/n

t−π/n

Kn,r(s)ds.

The following lemma holds.

Lemma 3.3.1. (Gal [129]) For any n, r ∈ N, n, r ≥ 2 and k ∈{0, 1, · · ·, 2r−2}
it follows that ∫ π

0

tkBn,r+1(t)dt ≤ Cn−k.

Proof. If k = 0 then
∫ π

0

tkBn,r+1(t)dt =
∫ π

0

Bn,r+1(t)dt ≤
∫ 2π

0

Bn,r+1(t)dt = π.

Let k ∈ {1, 2, . . . , 2r − 2}. Integrating by parts, one obtains

∫ π

0

tkBn,r+1(t)dt

=
n

2πcn,r+1(k + 1)
πk+1

∫ π+π/n

π−π/n

Kn,r+1(u)du

− n

2πcn,r+1(k + 1)

∫ π

0

tk+1Kn,r+1(t + π/n)dt

+
n

2πcn,r+1(k + 1)

∫ π

0

tk+1Kn,r+1(t − π/n)dt =: I1 − I2 + I3.

In what follows we will estimate the integrals I1, I2, I3. For that, we will use
the following relations (see, e.g., Lorentz [248], p. 57):

cn,r ≈ n2r−1,

∫ π

0

tkKn,r(t)dt ≈ n2r−1−k.
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First we obtain

I3 ≤ Cn−2r

∫ π

0

tk+1Kn,r+1(t − π/n)dt

= Cn−2r

∫ π−π/n

−π/n

(v + π/n)k+1Kn,r+1(v)dv

= Cn−2r

∫ π−π/n

0

(v + π/n)k+1Kn,r+1(v)dv

+ Cn−2r

∫ 0

−π/n

(v + π/n)k+1Kn,r+1(v)dv

≤ 2Cn−2r

∫ π

0

(v + π/n)k+1Kn,r+1(v)dv ≤ Cn−2rn2(r+1)−1−(k+1) = Cn−k.

Second, we get

I2 ≤ Cn−2r

∫ π

0

tk+1Kn,r+1(t + π/n)dt

=Cn−2r

∫ π+π/n

π/n

(v − π/n)k+1Kn,r+1(v)dv

≤Cn−2r

∫ π+π/n

π/n

(v + π/n)k+1Kn,r+1(v)dv

=Cn−2r

∫ π

π/n

(v + π/n)k+1Kn,r+1(v)dv

+ Cn−2r

∫ π+π/n

π

(v + π/n)k+1Kn,r+1(v)dv

≤Cn−2r

∫ π

0

(v + π/n)k+1Kn,r+1(v)dv

+ Cn−2r

∫ π+π/n

π

vk+1Kn,r+1(v)dv ≤ Cn−k

+ Cn−2r

∫ π+π/n

π

vk+1Kn,r+1(v)dv.

If we set

J2 = Cn−2r

∫ π+π/n

π

vk+1Kn,r+1(v)dv,

then using the substitution nv/2 = t, one obtains

J2 = Cn−2r/n

∫ nπ/2+π/2

nπ/2

(2t/n)k+1(sin(t)/ sin(t/n))2(r+1)dt

= Cn−2r−k−2

∫ nπ/2+π/2

nπ/2

tk+1(sin(t)/ sin(t/n))2(r+1)dt.
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But if t ∈ [nπ/2, nπ/2 + π/2], then we get t/n ∈ [π/2, π/2 + π/(2n)] ⊂ [0, π],
for all n ≥ 2, which implies

sin(t/n) ≥ sin(π/2 + π/(2n)) = cos(π/(2n)) ≥ cos(π/4).

Since k ≤ 2r − 2 ≤ 2r + 1, it follows that

J2 ≤ Cn−2r−k−2

∫ nπ/2+π/2

nπ/2

tk+1dt ≤ Cn−2r−k−2(nπ/2 + π/2)k+1

≤ Cn−2r−k−2+k+1 = Cn−2r−1 ≤ Cn−k.

In conclusion, I2 ≤ Cn−k.
Now, by the substitution nu/2 = v, we get

I1 ≤ Cn−2r

∫ π+π/n

π−π/n

Kn,r+1(u)du

= Cn−2r−1

∫ nπ/2+π/2

nπ/2−π/2

(sin(v)/ sin(v/n))2(r+1)dv

= Cn−2r−1

∫ nπ/2

nπ/2−π/2

(sin(v)/ sin(v/n))2(r+1)dv

+ Cn−2r−1

∫ nπ/2+π/2

nπ/2

(sin(v)/ sin(v/n))2(r+1)dv =: J1 + L1.

Since v ∈ [nπ/2 − π/2, nπ/2] is equivalent to v/n ∈ [π/2 − π/(2n), π/2], we
have sin(v/n) ≥ C(v/n) and

J1 ≤ Cn−2r−1

∫ nπ/2

nπ/2−π/2

(sin(v)/(v/n))2(r+1)dv

= Cn

∫ nπ/2

nπ/2−π/2

(sin(v)/v)2(r+1)dv

≤ Cn

∫ nπ/2

nπ/2−π/2

(1/v)2(r+1)dv

≤ Cn(1/((n − 1)π/2)2(r+1) ≤ Cn−2r−1 ≤ Cn−k,

for all n ≥ 2.
Similarly, using the substitution v/n = t, since cos(π/(2n)) ≥ cos(π/4) for

all n ≥ 2, we obtain

L1 = Cn−2r

∫ π/2+π/(2n)

π/2

(sin(nt)/ sin(t))2(r+1)dt

≤ Cn−2r

∫ π/2+π/(2n)

π/2

(1/ sin(t))2(r+1)dt
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≤ Cn−2r(π/(2n))(1/ sin(π/2 + π/(2n)))2(r+1)

≤ Cn−2r−1(1/cos(π/(2n)))2(r+1) ≤ Cn−2r−1 ≤ Cn−k.

From all the estimates for I1, I2, and I3, it follows that I1−I2+I3 ≤ Cn−k,
which proves the lemma. �

Consequently, we get the following.

Corollary 3.3.2. (Gal [129]) If f ∈ A∗(D) then the convolution polynomials
given by

Pn(f)(z) =
1
π

∫ π

−π

f(reit)Bm,r(x − t)dt =
1
π

∫ π

−π

f(zeiu)Bm,r(u)du,

z = reix ∈ D, m = [n/r] + 1, satisfy degree Pn(f)(z) ≤ n, and for all r ≥ 3,
the estimate

|f(z) − Pn(f)(z)| ≤ Cω2

(

f ;
1
n

)

∂D

holds for all z ∈ D, n ∈ N, n ≥ 2, where
ωp(f ; δ)∂D = sup{|∆p

uf(eix)|; |x| ≤ π, |u| ≤ δ},

and ∆p
ug(x) =

∑p
k=0(−1)p−k

(
p
k

)
g(x + ku).

Proof. Let r ≥ 3 and n ≥ 2 be fixed. Because Bm,r(t) is even, as in the proof
of Theorem 2 in Lorentz [248], p. 56, we get

f(z) − Pn(f)(z) =
∫ π

0

[2f(z) − f(zeit) − f(ze−it)]Bm,r(t)dt.

Applying the maximum modulus principle, we may take |z| = 1 when we have

|f(z) − Pn(f)(z)| = |
∫ π

0

[2f(z) − f(zeit) − f(ze−it)]Bm,r(t)dt|

≤
∫ π

0

|2f(z) − f(zeit) − f(ze−it)|Bm,r(t)dt.

But

|2f(z) − f(zeit) − f(ze−it)| ≤ ω2 (f ; t)∂D
= ω2

(

f ;
nt

n

)

∂D

≤ C(nt + 1)2ω2

(

f ;
1
n

)

∂D

,

which together with Lemma 3.3.1 implies

|f(z) − Pn(f)(z)| ≤ ω2

(

f ;
1
n

)

∂D

∫ π

0

(nt + 1)2Bm,r(t)dt ≤ Cω2

(

f ;
1
n

)

∂D

.

�
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By Gal [128], we can define the iterated Beatson kernels by recurrence as
Bn,r,1(t) := Bn,r(t),

Bn,r,2(t) =
n

2π

∫ t+π/n

t−π/n

Bn,r,1(s)ds, . . . , Bn,r,p(t)

=
n

2π

∫ t+π/n

t−π/n

Bn,r,p−1(s)ds,

p = 2, 3.
The following generalization of Lemma 3.3.1 holds.

Lemma 3.3.3. (Gal [129]) For any n, r, p ∈ N with r ≥ 2, n ≥ p + 1, and
k ∈ {0, 1, . . . , 2r + 2p − 4}, we have

∫ π

0

tkBn,r+p,p(t)dt ≤ Cn−k.

Proof. The case p = 1 is Lemma 3.3.1. First, for simplicity we consider the
case p = 2. We get

Bn,r,2(t) =
n

2π

∫ t+π/n

t−π/n

Bn,r(s)ds =
n2

(2π)2cn,r

∫ t+π/n

t−π/n

∫ x+π/n

x−π/n

Kn,r(s)ds dx.

For k = 0 we have
∫ π

0

tkBn,r+2,2(t)dt ≤
∫ 2π

0

tkBn,r+2,2(t)dt ≤ π.

Let k = 1, 2, . . . , 2r. Integrating twice by parts, simple calculations imply
∫ π

0

tkBn,r+2,2(t)dt =Bn,r+2,2(π)
πk+1

k + 1
− B′

n,r+2,2(π)
πk+2

(k + 1)(k + 2)

+
1

(k + 1)(k + 2)

∫ π

0

tk+2B′′
n,r+2,2(t)dt

=
n2πk+1

(2π)2(k + 1)cn,r+2

∫ π+π/n

π−π/n

∫ x+π/n

x−π/n

Kn,r+2(s)ds dx

− n2πk+2

(2π)2(k + 1)(k + 2)cn,r+2

×
[∫ π+2π/n

π

Kn,r+2(s)ds −
∫ π

π−2π/n

Kn,r+2(s)ds

]

+
n2

(2π)2(k + 1))k + 2)cn,r+2

×
∫ π

0

tk+2[Kn,r+2(t + 2π/n) − 2Kn,r+2(t)

+ Kn,r+2(t − 2π/n)]dt := I1 − I2 + I3.
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By

cn,r ≈ n2r−1,

∫ π

0

tkKn,r(t)dt ≈ n2r−1−k,

we get
n2

cn,r+2
≈ 1/n2r+1,

∫ π

0

tk+2Kn,r+2(t)dt ≈ n2r+1−k.

Reasoning as for I2 and I3 in the proof of Lemma 3.3.1, the above relations
immediately imply I3 ≤ Cn−k.

Also, reasoning as for I1 in the proof of Lemma 3.3.1, we get I2 ≤ Cn−k.
It remains to estimate the integral

J =
∫ π+π/n

π−π/n

∫ x+π/n

x−π/n

Kn,r+2(s)ds dx.

By the mean value theorem, there is ξ ∈ [π − π/n, π + π/n] satisfying

J =
2π

n

∫ ξ+π/n

ξ−π/n

Kn,r+2(s)ds

=
2π

n

∫ ξ

ξ−π/n

Kn,r+2(s)ds +
2π

n

∫ ξ+π/n

ξ

Kn,r+2(s)ds

=
2π

n2

∫ nξ/2

nξ/2−π/2

[sin(t)/ sin(t/n)]2(r+2)dt

+
2π

n2

∫ nξ/2+π/2

nξ/2

[sin(t)/ sin(t/n)]2(r+2)dt := J1 + J2.

We obtain

J1 =
2π

n

∫ ξ/2

ξ/2−π/(2n)

[sin(nv)/ sin(v)]2(r+2)dv

and

J2 =
2π

n

∫ ξ/2+π/(2n)

ξ/2

[sin(nv)/ sin(v)]2(r+2)dv.

Since | sin(nv)| ≤ 1 and π−π/n ≤ ξ ≤ π+π/n, it follows that 0 ≤ π/2−π/n ≤
ξ/2−π/(2n) ≤ ξ/2 ≤ π/2+π/(2n) < π, 0 < π/2−π/n ≤ ξ/2 ≤ ξ/2+π/(2n) ≤
π/2 + π/n < π.

So, for n ≥ 3, |1/sin(v)| is bounded for both integrals J1 and J2, which
implies J1 ≤ Cn−2, J2 ≤ Cn−2.

On the other hand, because k ≤ 2r ≤ 2r + 3, it follows that

I1 =
n2

(2π)2
πk+1

(k + 1)cn,r+2
J ≤ Cn−2n−2r−1 = Cn−2r−3 ≤ Cn−k.
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All these prove the statement of Lemma 3.3.3 for the case p = 2. For
general p, reasoning by recurrence and integrating p times by parts the integral∫ π

0
tkBn,r+p,p(t)dt, the proof is similar. �
An immediate consequence is the following.

Corollary 3.3.4. (Gal [129]) If f ∈ A∗(D) and p ∈ N is fixed, then the con-
volution polynomials given by

Pn,r,p(f)(z) =
1
π

∫ π

−π

f(zeiu)Bm,r,p(u)du,

z ∈ D, m = [n/r] + 1, satisfy degree Pn,r,p(f)(z) ≤ n, and moreover, for all
m, r ≥ p + 2, z ∈ D, the estimate

|f(z) − Pn,r,p(f)(z)| ≤ Cω2

(

f ;
1
n

)

∂D

holds.

Proof. Taking into account Lemma 3.3.3 and the fact that Bm,r,p(u) are
even, the proof is similar to that of Corollary 3.3.2. �

Remarks. Beatson [32] observed (without proof; see Gonska–Cao [151] for a
proof) that Bn,r(t) is bell-shaped (recall that a continuous 2π-periodic func-
tion on [−π, π] is called bell-shaped if it decreases on [0, π] and is even).

In what follows, first we prove that the above iterated Beatson kernels also
are bell-shaped and that the convolution operators based on them transform
the convex functions into close-to-convex polynomials. Then, for convolution
polynomials based on various trigonometric kernels, we present approxima-
tions that preserve geometric properties of analytic functions, such as the co-
efficients’ bounds, real part positivity, bounded turn, close-to-convexity, star-
likeness, convexity, α-convexity, spiralikeness, and some sufficient conditions
for starlikeness and univalence. The rates of approximation are of Jackson
type or of best-approximation kind.

Lemma 3.3.5. (Gal [128]) The iterated Beatson kernels Bn,r,p, n, r, p ∈ N,
are bell-shaped.

Proof. We will reason by mathematical induction. Thus, by Gonska–Cao
[151], Bn,r,1(t) := Bn,r(t) is nonnegative and bell-shaped. Therefore, suppose
that Bn,r,p−1(t) is nonnegative and bell-shaped. First, by the substitution (s =
−u) in the integral defining Bn,r,p(t), we immediately get that Bn,r,p(t) ≥ 0
and Bn,r,p(−t) = Bn,r,p(t), for all t ∈ R.

Then, we obtain

B′
n,r,p(t) =

n

2π
[Bn,r,p−1(t + π/n) − Bn,r,p−1(t − π/n)] .
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Let t ∈ [0, π]. There are three cases: (i) t ∈ [π/n, π − π/n]; (ii) t ∈ [0, π/n];
(iii) t ∈ [π − π/n, π].

Case (i). Since Bn,r,p−1(t) decreases on [0, π], we obtain 0 ≤ t − π/n <
t + π/n ≤ π, and Bn,r,p−1(t + π/n) − Bn,r,p−1(t − π/n) ≤ 0.

Case (ii). Since 0 ≤ π/n − t ≤ π/n + t ≤ 2π/n ≤ π, (for n ≥ 2) and
Bn,r,p−1(t) is even and decreases on [0, π], it follows that

Bn,r,p−1(t + π/n) − Bn,r,p−1(t − π/n) = Bn,r,p−1(π/n + t)
−Bn,r,p−1(π/n − t) ≤ 0.

Case (iii). Since 0 ≤ π − 2π/n ≤ t − π/n ≤ 2π − t − π/n ≤ π (for n ≥ 2)
and Bn,r,p−1(t) is even, 2π-periodic and decreases on [0, π], it follows that

Bn,r,p−1(t + π/n) − Bn,r,p−1(t − π/n)
= Bn,r,p−1[−(t + π/n)] − Bn,r,p−1(t − π/n)
= Bn,r,p−1[2π − (t + π/n)] − Bn,r,p−1(t − π/n) ≤ 0.

�

Corollary 3.3.6. (Gal [128]) The convolution polynomials defined by

Pn,r,p(f)(z) =
1
π

∫ π

−π

f(zeiu)Bm,r,p(u)du,

z ∈ D, m = [n/r] + 1, satisfy degree Pn,r,p(f)(z) ≤ n and for all m, r ≥
p + 2, the approximation estimate in Corollary 3.3.4 holds. In addition, they
transform any convex function f ∈ A∗(D) into close-to-convex polynomials.

Proof. While the approximation property follows from Corollary 3.3.4,
the geometric property is a direct consequence of Suffridge [375], p. 799,
Theorem 3. �

3.3.2 Geometric and Approximation Properties of Various
Complex Convolutions

Concerning the coefficients of convolution polynomials based on various
trigonometric kernels, we present the following theorem.

Theorem 3.3.7. (Gal [129]) (i) Suppose that f(z) =
∑∞

k=0 akzk is a-
nalytic on D and On(t) = 1

2 +
∑mn

k=1 ρk,n cos(kt). Then for Pn(f)(z) =
1
π

∫ π

−π
f(zeit)On(t)dt, we have

Pn(f)(z) = a0 +
mn∑

k=1

akρk,nzk.
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If f(z) = z +
∑∞

k=0
ak

zk , 0 < |z| < 1 is meromorphic, then

Pn(f)(z) = ρ1,nz + a0 +
mn∑

p=1

apρp,n

zp
.

(ii) If On(f) = 1
2 +
∑mn

k=1 ρk,n cos(kt) ≥ 0, ∀t ∈ [0, π], and 1
π

∫ π

−π
On(t)dt

= 1, then
|ρk,n| ≤ 1, for all k ∈ {1, . . . mn}.

(iii) Let Fn(t) = 1
2n

(
sin nt

2
sin t

2

)2
denote the Fejér kernel, Vn(t) = 2F2n(t) −

Fn(t) the generalized de la Valléey Poussin kernel,

Jn(t) =
3

2n(2n2 + 1)

(
sin nt

2

sin t
2

)4

the Jackson kernel, and

Bn,2,1(t) : = Bn,2(t) =
n

2π

∫ t+π/n

t−π/n

Jn(t)dt,Bn,2,p(t)

=
n

2π

∫ t+π/n

t−π/n

Bn,2,p−1(t)dt,

p = 2, 3, . . . , the Beatson kernels. We get

Fn(t) =
1
2

+
n−1∑

k=1

n − k

n
cos(kt),

Vn(t) =
1
2

+
n∑

k=1

cos(kt) +
2n∑

k=n+1

2n − k

n
cos(kt),

Jn(t) =
1
2

+
2n−2∑

k=1

λk,n cos(kt), where

λk,n =
4n3 − 6k2n + 3k3 − 3k + 2n

2n(2n2 + 1)
, if 1 ≤ k ≤ n,

λk,n =
(k − 2n) − (k − 2n)3

2n(2n2 + 1)
, if n ≤ k ≤ 2n − 2,

and for p = 1, 2, . . . ,

Bn,2,p(t) =
1
2

+
2n−2∑

k=1

[ n

kπ
sin(kπ/n)

]p
· λk,n cos(kt),

where λk,n are the coefficients in Jn(t).
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Proof. (i) The analytic case is immediate, reasoning similar to the proof of
Theorem 1 (ii) in Gal [127].

In the meromorphic case, we have

f(zeit)On(t) =

[

zeit +
∞∑

k=0

ak

zk
· e−ikt

][
1
2

+
mn∑

p=1

ρp,ncos(pt)

]

=

[

zeit +
∞∑

k=0

ak

zk
e−ikt

]{
1
2

+
mn∑

p=1

ρp,n · 1
2
[eipt + e−ipt]

}

=

[

zeit +
∞∑

k=0

ak

zk
e−ikt

]{
1
2

+
1
2

mn∑

p=1

ρp,neipt +
1
2

mn∑

p=1

ρp,ne−ipt

}

=
z

2
eit +

z

2

mn∑

p=1

ρp,neit(p+1) +
z

2

mn∑

p=1

ρp,neit(1−p) +
1
2

∞∑

k=0

ak

zk
e−ikt

+
1
2

∞∑

k=0

mn∑

p=1

akρp,n

zk
eit(p−k) +

1
2

∞∑

k=0

mn∑

p=1

akρp,n

zk
e−it(k+p).

Integrating from −π to π and reasoning as in Gal [127], Theorem 1 (ii),
we obtain

1
π

∫ π

−π

f(zeit)On(t)dt = ρ1,nz +

[

a0 +
mn∑

p=1

apρp,n

zp

]

.

(ii) By

1
π

∫ π

−π

cos(jt)On(t)dt = ρj,n, for all j ∈ {1, . . . , mn},

we obtain

|ρj,n| =
1
π

∫ π

−π

cos(jt)On(t)dt ≤ 1
π

∫ π

−π

|cosjt|On(t)dt ≤ 1
π

∫ π

−π

On(t)dt = 1.

(iii) The form of Fn(t) is well known (see, e.g., DeVore–Lorentz [91],
p. 339).

Also,

Vn(t) = 2F2n(t) − Fn(t)

= 2

[
1
2

+
2n∑

k=1

2n − k

2n
cos(kt)

]

−
[

1
2

+
n∑

k=1

n − k

n
cos(kt)

]

=
1
2

+
n∑

k=1

[
2n − k

n
− n − k

n

]

cos(kt) +
2n∑

k=n+1

2n − k

n
cos(kt)

=
1
2

+
n∑

k=1

cos(kt) +
2n∑

k=n+1

2n − k

n
cos(kt).
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For the Jackson kernel Jn(t), by Matsuoka [269], Lemma 7, pp. 25–26, one
obtains

(3!)24−4−1

(
sin nt

2

sin t
2

)4

=
1
2
r0,n +

2n−2∑

k=1

rk,n cos(kt),

where

rk,n =
2∑

ν=1

(−1)ν+1

(
4

2 − ν

)

(k − νn + 1)(k − νn)(k − νn − 1)

if 0 ≤ k ≤ n, and

rk,n = −(k − 2n + 1)(k − 2n)(k − 2n − 1) if n ≤ k ≤ 2n − 2.

Since (k − νn + 1)(k − νn)(k − νn − 1) = (k − νn)3 − (k − νn), by simple
calculation one obtains

(
sin nt

2

sin t
n

)4

=
r0,n

6
+

2n−2∑

k=1

rk,n

3
cos(kt),

where r0,n = 2n(2n2+1), rk,n = 4(k−n)3−(k−2n)3−3k+2n = 4n3−6k2n+
3k3 − 3k +2n, if 1 ≤ k ≤ n, and rk,n = (k− 2n)− (k− 2n)3 if n ≤ k ≤ 2n− 2.

At the end, from Gonska–Cao [151], relation (3.2) and Lemma 3.3 (i),
we get

Bn,2,1(t) =
1
2

+
2n−2∑

k=1

[
n

2π
sin(

2π

n
)
]

λk,n cos(kt),

and by iteration,

Bn,2,p(t) =
1
2

+
2n−2∑

k=1

[
n

2π
sin

2π

n

]p
λk,n cos(kt).

The theorem is proved. �

Remark. The kernels Fn(t), Jn(t), and Bn,2,p(t) are ≥ 0, while the kernel
Vn(t) is not nonnegative on [0, π], but satisfies 1

π

∫ π

−π
Vn(k)dt = 1. However,

by Theorem 3.3.7 (iii), from the expression of Vn(t) = 1
2 +
∑2n

k=1 µk,ncos(kt),
we easily get that 0 ≤ µk,n ≤ 1.

Also, taking into account that

Bn,r,1(t) : = Bn,r(t) =
n

2π

∫ t+ π
n

t−π
n

cn,r

(
sin nt

2

sin t
2

)2r

dt,

Bn,r,p(t) =
n

2π

∫ t+ π
n

t−π
n

Bn,r,p−1(t)dt, where
1
π

∫ π

−π

cn

(
sin nt

2

sin t
2

)2r

dt = 1,
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we get Bn,r,p(t) = 1
2 +
∑nr−n

k=1 λ
(p)
k,n cos(kt) ≥ 0 and 1

π

∫ π

−π
Bn,r,p(t)dt = 1, that

is, by Theorem 3.3.7 (ii), it follows that |λ(p)
k,n| ≤ 1 for all k ∈ {0, . . . , nr −

n}, p ≥ 1.
Regarding the preservation of coefficients’ bounds, we have the following

theorem.

Theorem 3.3.8. (Gal [129]) Suppose that f(z) =
∑∞

k=0 ak(f)zk is analytic
in D.

(i) If On(t) = 1
2 +
∑mn

k=1 ρk,ncos(kt) ≥ 0 and 1
π

∫ π

−π
On(t)dt = 1, then for

Pn(f)(z) =
1
π

∫ π

−π

f(zeit)On(t)dt =
mn∑

k=0

ak(Pn(f))zk,

we have |ak(Pn(f))| ≤ |ak(f)|, for all n ∈ N, k ∈ {0, . . . , mn}.
(ii) If we set

Vn(f)(z) =
1
π

∫ π

−π

f(zeit)Vn(t)dt =
2n∑

k=0

ak(Vn(f))zk,

where Vn(t) is the kernel in the statement of Theorem 3.3.7 (iii), then we have

|ak(Vn(f))| ≤ |ak(f)| for all n ∈ N, k ∈ {0, . . . , 2n}.

Proof. It is straightforward from Theorem 3.3.7 (i), (ii), and the remark after
the proof of Theorem 3.3.7. �
Remark. According to Gal [127], for f ∈ A(D) we have

‖f − Vn(f)‖
D
≤ 4En(f), n = 1, 2, . . . ,

while for On(t) = Jn(t), n ∈ N, or On(t) = Bn,r,p(t), n, r ≥ p + 2, p ∈ N (see
Lemma 3.3.3) setting Pn(f)(z) = 1

π

∫ π

−π
f(zeit)On(t)dt, we obtain

‖f − Pn(f)‖
D
≤ Cω2

(

f ;
1
n

)

∂D

,

where C > 0 is an absolute constant.
In what follows, let us introduce the following classes of functions: S1 =

{f : D → C; f(z) = z + a2z
2 + . . . , analytic in D, satisfying

∑∞
k=2 k|ak| ≤ 1},

S2 = {f : D → C; f(z) = a1z + a2z
2 + . . . , analytic in D, satisfying

|a1| ≥
∑∞

k=2 |ak|}.
According to, e.g., Mocanu–Bulboacă–Sălăgean [273], p. 97, Exercise 4.9.1,

if f ∈ S1 then | zf ′(z)
f(z) − 1| < 1, z ∈ D, and therefore f is starlike (univalent)

on D.
Also, according to Alexander [2], p. 22, if f ∈ S2 then f is starlike (and

univalent) in D. As a consequence, both S1 and S2 are subsets of the class of
univalent starlike functions on D, denoted by S∗(D).

The classes S1 and S2 are preserved by some approximation convolution
polynomials, as follows.



252 3 Shape-Preserving Approximation by Complex Univariate Polynomials

Theorem 3.3.9. (Gal [129]) (i) If On(t) is Jn(t), n ∈ N, in Theorem
3.3.7 (iii), or Bn,r,p(t), n, r ≥ p + 2, p ∈ N, (see the Remark after the
proof of Theorem 3.3.7), then setting Pn(f)(z) =

∫ z

0
Qn(t)dt, Qn(z) =

1
π

∫ π

−π
f ′(zeit)On(t)dt, we get that f ∈ S1 implies Pn(f) ∈ S1. In addition, if

f ′ is continuous on D, then

‖f − Pn(f)‖
D
≤ Cω2

(

f ′;
1
n

)

∂D

,

where C > 0 is independent of f and n.
(ii) Define Vn(f)(z) = 1

π

∫ π

−π
f(zeit)Vn(t)dt, where Vn(t) is the kernel in

the statement of Theorem 3.3.7 (iii). Then f ∈ S1 implies Vn(f) ∈ S1 for all
n ∈ N, and if, in addition, f is continuous on D, then

‖f − Vn(f)‖
D
≤ 4En(f), n = 1, 2, . . . .

(iii) For the above Vn(f)(z), f ∈ S2 implies Vn(f) ∈ S2 for all n ∈ N.

(iv) Suppose that the meromorphic function f(z) = z +
∑∞

k=0
ak(f)

zk is
univalent on {|z| > 1}. Then for

Pn(f)(z) =
1
π

∫ π

−π

f(zeit)On(t)dt = ρ1,nz + a0 +
mn∑

p=1

ap(f)ρp,n

zp
,

where

On(t) =
1
2

+
mn∑

p=1

ρp,n cos(pt)

can be Jn(t), Vn(t), n ∈ N or Bn,r,p(t), n, r ≥ p + 2, p ∈ N, we have
∞∑

k=1

k · |ak(Pk(f))|2 ≤ 1, with ak(Pn(f)) = ak(f) · ρk,n.

Proof. (i) Evidently Pn(f)(0) = P ′
n(f)(0) − 1 = 0. Then by Gal [127], we

obtain (see also Lemma 3.3.3, for Bn,r,p(t))

|f(z) − Pn(f)(z)| =
∣
∣
∣
∣

∫ z

0

f ′(t)dt −
∫ z

0

Qn(t)dt

∣
∣
∣
∣

≤ |z| · ‖f ′ − Qn‖D
≤ ‖f ′ − Qn‖D

≤ Cω2

(

f ′;
1
n

)

∂D

.

Take On(t) = 1
2 +
∑mn

k=1 ρk,ncos(kt) and f(z) = z + a2z
2 + · · ·+, that

is f ′(z) = 1 + 2a2z + 3a3z
2 + . . . . By Theorem 3.3.7 we obtain Qn(f)(z) =

1 + 2a2ρ1,nz + 3a3ρ2,nz2 + . . . , which implies Pn(f)(z) =
∫ z

0
Qn(t)dt = z +

a2ρ1,nz2 + a3ρ2,nz3 + . . . , and ak(Pn(f)) = ak(f)ρk−1,n. Hence,
mn∑

k=2

k|ak(Pn(f))| =
mn∑

k=2

k · |ak(f)| · |ρk−1,n| ≤
∞∑

k=2

k|ak(f)| ≤ 1

(since |ρk−1,n| ≤ 1), which implies that Pn(f) ∈ S1.
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(ii) Evidently Vn(f)(0) = 0. Take f ∈ S1, f(z) = z + a2z
2 + . . . . By

Theorem 3.3.7 (i) and (iii), we obtain Vn(f)(z) = z+A2z
2+. . . , (here A2 = a2

if n ≥ 2), that is, V ′
n(f)(0) = 1.

By the remark after the proof of Theorem 3.3.7, we obtain

2n∑

k=2

k|ak(Vn(f)| ≤
∞∑

k=2

k|ak(f)| ≤ 1,

that is, Vn(f) ∈ S1.
Also, by Gal [127], for continuous f on D we obtain

‖f − Vn(f)‖
D
≤ 4En(f).

(iii) Suppose f ∈ S2, f(z) =
∑∞

k=1 ak(f)zk, with |a1(f)| ≥
∑∞

k=2 |ak(f)|.
From Theorem 3.3.7, it follows that

Vn(f)(z) = a1(f)z +
2n∑

k=2

ρk,nan(f) · zk, 0 ≤ ρk,n ≤ 1,

which implies

mn∑

k=2

|ak(Vn(f))| =
mn∑

k=2

|ak(f)| · |ρk,n| ≤
∞∑

k=2

|ak(f)| ≤ |a1(f)| = a1(Vn(f)),

and therefore Vn(f) ∈ S2.
(iv) By the area theorem (see, e.g., Gronwall [165]) we have the formula∑∞

k=1 k|ak(f)|2 ≤ 1.
Also,

mn∑

k=1

k · |ak(Pn(f))|2 =
mn∑

k=1

k · |ak(f)|2 · |ρk,n|2 ≤
∞∑

k=1

k · |ak(f)|2 ≤ 1,

which proves the theorem. �

Now let us introduce other classes of functions by P = {f : D → C;
f is analytic in D, f(0) = 1,Re[f(z)] > 0, z ∈ D}, S3 = {f : D →
C; f is analytic in D, f(0) = f ′(0) − 1 = 0, |f ′′(z)| ≤ 1, z ∈ D}, S4 = {f :
D → C; f is analytic in D, f(0) = f ′(0) − 1 = 0, |f ′′(z)| ≤ 1

2 , z ∈ D} and
R = {f : D → C; f is analytic in D, f(0) = f ′(0)− 1 = 0,Ref ′(z) > 0, z ∈ D}.

It is well known that P is the class of analytic functions with positive
real part while R is the class of functions with bounded turn (since f ∈ R is
equivalent to |argf ′(z)| < π

2 , z ∈ D). Also, it is known that f ∈ R implies the
univalency of f in D, while by Obradović [291], we get that f ∈ S3 implies f
is starlike, univalent in D, and f ∈ S4 implies f is convex univalent in D.

Concerning the classes P,R, S3 and S4, we present the following.
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Theorem 3.3.10. (Gal [129]) Let On(t) be Jn(t), n ∈ N, or Bn,r,p(t), n, r ≥
p + 2, p ∈ N.

(i) Writing

Pn(f)(z) =
∫ z

0

On(t)dt,Qn(z) =
1
π

∫ π

−π

f ′(zeit)On(t)dt,

we have Pn(R) ⊂ R , Pn(S3) ⊂ S3, Pn(S4) ⊂ S4, and if, in addition, f ′ is
continuous on D, then

‖f − Pn(f)‖
D
≤ Cω2

(

f ′;
1
n

)

∂D

,

where C > 0 is independent of f and n.
(ii) Define

Pn(f)(z) =
1
π

∫ π

−π

f(zeit)On(t)dt.

We have Pn(P) ⊂ P, and if, in addition, f is continuous on D, then

‖f − Pn(f)‖
D
≤ Cω2

(

f ;
1
n

)

∂D

,

where C > 0 is independent of f and n.

Proof. (i) The approximation estimate follows as in the proof of Theorem
3.3.9 (i). Also, it is easy to see that Pn(f)(0) = P ′

n(f)(0) − 1 = 0.
Let f(z) = F (rcost, rsint) + iG(rcost, rsint), z = reit ∈ D. By

f ′(z) = ∂F
∂x (rcost, rsint) + i∂G

∂x (rcost, rsint), from the hypothesis we get
∂F
∂x (rcost, rsint) > 0, for all z = reit ∈ D.

Since

P ′
n(f)(z) = Qn(f)(z) =

1
π

∫ π

−π

f ′(zeiu)On(u)du

=
1
π

∫ π

−π

∂F

∂x
(r cos(t + u), r sin(t + u))On(u)du

+ i
1
π

∫ π

−π

∂G

∂x
(r cos(t + u), r sin(t + u))On(u)du,

we obtain

Re[P ′
n(f)(z)] =

1
π

∫ π

−π

∂F

∂x
(r cos(t + u), r sin(t + u)) · On(u)du > 0,

taking into account that On(u) > 0 for all u ∈ [−π, π] excepting a finite
number of points.

Also, |P ′′
n (f)(z)| = 1

π |
∫ π

−π
eitf ′′(zeit)On(t)dt| ≤ 1

π

∫ π

−π
|f ′′(zeit)|On(t)dt

≤ 1, z ∈ D, for f ∈ S3.
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Analogously we get Pn(S4) ⊂ S4.
(ii) If f = F + iG, we easily obtain

Re[Pn(f)(z)] =
1
π

∫ π

−π

F (r cos(t + u), r sin(t + u))On(u)du, z = reit ∈ D,

which by F (r cosu, r sinu) > 0 for all z = reiu ∈ D implies Re[Pn(f)(z)] >
0, z ∈ D.

The estimate follows by Gal [127] for Jn(t) and by Lemma 3.3.3 for
Bn,r,p(t). �

Remarks. (1) The first inclusion in Theorem 3.3.10 (i) can be reformulated
in the following way: if |argf ′(z)| < π

2 , z ∈ D, then

|argP ′
n(f)(z)| <

π

2
, z ∈ D

(and Pn(f)(z) is univalent on D).
(2) Since Vn(t) is not nonnegative on [0, π], the convolution polynomials

Vn(f)(z) based on the kernel Vn(t) do not satisfy Theorem 3.3.10.
Now, for M > 1 let us set SM = {f : D → C; f is analytic on D, f(0) =

f ′(0) − 1 = 0, |f ′(z)| < M, z ∈ D}.
According to, e.g., Mocanu–Bulboacă–Sălăgean [273], p. 111, Exercise

5.4.1, f ∈ SM implies that f is univalent on D 1
M

= {z ∈ C; |z| < 1
M }.

Regarding the preservation of class SM , we have the following result.

Theorem 3.3.11. (Gal [129]) Let On(t) be Jn(t), n ∈ N, or Bn,r,p(t), n, r ≥
p + 2, p ∈ N.

Writing

Pn(f)(z) =
∫ z

0

Qn(t)dt,Qn(z) =
1
π

∫ π

−π

f ′(zeit)On(t)dt,

we have Pn(SM ) ⊂ SM , and if, in addition, f ′ is continuous on D, then

‖f − Pn(f)‖
D
≤ Cω2

(

f ′;
1
n

)

∂D

.

Proof. We have Pn(f)(0) = P ′
n(f)(0) − 1 = 0,

|P ′
n(f)(z)| =

1
π
|
∫ π

−π

f ′(zeit)On(t)dt| ≤ 1
π

∫ π

−π

|f ′(zeit)|On(t)dt < M,

z ∈ D, if |f ′(z)| < M, z ∈ D. �

The convergence of the derivatives of convolution polynomials is expressed by
the following.
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Theorem 3.3.12. (Gal [129]) For

On(t) =
1
2

+
mn∑

k=1

ρk,n cos(kt) ≥ 0, t ∈ [0, π],

1
π

∫ π

−π
On(t)dt = 1 set Pn(f)(z) = 1

π

∫ π

−π
f(zeit)On(t)dt. If f is analytic on D

with f ′ and f ′′ continuous on D, respectively, then

‖f ′ − P ′
n(f)‖

D
≤ Cω1(f ′; (1 − ρ1,n)1/2)

D
+ ‖f ′‖

D
· |1 − ρ1,n|, n ∈ N,

and

‖f ′′ − P ′′
n (f)‖

D
≤ Cω1(f ′′; (1 − ρ1,n)1/2)

D
+ ‖f ′′‖

D
· |1 − ρ2,n|, n ∈ N,

where C > 0 is a constant independent of f and n.

Proof. We can write

P ′
n(f)(z) =

1
π

∫ π

−π

f ′(zeit) · eitOn(t)dt,

where
1
π

∫ π

−π

eitOn(t)dt =
1
π

∫ π

−π

cos tOn(t)dt = ρ1,n

(as in the proof of Theorem 3.3.7 (ii)).
From the proof of Theorem 1 (i), in Gal [128], we obtain

|P ′
n(f)(z) − f ′(z)| = |P ′

n(f)(z) − ρ1,nf ′(z) + ρ1,nf ′(z) − f ′(z)|

= | 1
π

∫ π

−π

eitOn(t)[f ′(zeit) − f ′(z)]dt + f ′(z)[ρ1,n − 1]|

≤ 1
π

∫ π

−π

On(t)|f ′(zeit) − f ′(z)|dt + ‖f ′‖
D
· |1 − ρ1,n|

≤ Cω1(f ′; (1 − ρ1,n)1/2)
D

+ ‖f ′‖
D
· |1 − ρ1,n|, z ∈ D.

In addition, by

P ′′
n (f)(z) =

1
π

∫ π

−π

e2itOn(t) · f ′′(zeit)dt

and
1
π

∫ π

−π

e2itOn(t)dt =
1
π

∫ π

−π

cos(2t)On(t)dt = ρ2,n,

we get

P ′′
n (f)(z) − f ′′(z) = P ′′

n (f)(z) − ρ2,nf ′′(z) + ρ2,nf ′′(z) − f ′′(z),

and reasoning as above, it follows that

‖P ′′
n (f) − f ′′‖

D
≤ Cω1(f ′′; (1 − ρ1,n)1/2)

D
+ ‖f ′′‖

D
· |1 − ρ2,n|.

�
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Remarks. (1) For example, let On(t) be the Jackson kernel Jn(t). By
Theorem 3.3.7 (iii), we obtain

ρ1,n =
4n3 − 4n

2n(2n2 + 1)
=

2n2 − 2
2n2 + 1

, 1 − ρ1,n =
3

2n2 + 1
,

and

ρ2,n =
4n3 − 22n + 18

2n(2n2 + 1
, 1 − ρ2,n =

24n − 18
4n3 + 2n

=
12n − 9
2n3 + n

,

that is, the order of convergence to zero of |1 − ρ1,n| and |1 − ρ2,n| is 1
n2 .

Analogous estimates of |1−ρ1,n| and |1−ρ2,n| hold in the case of Beatson–
kernels, Bn,r,p(t), n, r ≥ p + 2 (see Gonska–Cao [151], Lemma 3.3).

(2) Evidently Pn(f)(0) = 0 and P ′
n(f)(0) = ρ1,n. Supposing ρ1,n 	= 0, the

polynomials defined by

Rn(f)(z) =
1

ρ1,n
· Pn(f)(z) =

1
ρ1,n

· 1
π

∫ π

−π

f(zeit)On(t)dt

have the property Rn(f)(0) = R′
n(f)(0)−1 = 0. Also, for z ∈ D and f ∈ A(D)

we get

|Rn(f)(z) − f(z)| =
∣
∣
∣
∣

1
ρ1,n

Pn(f) − 1
ρ1,n

f(z) +
1

ρ1,n
f(z) − f(z)

∣
∣
∣
∣

≤ 1
|ρ1,n|

· ‖Pn(f) − f‖
D

+ ‖f‖
D
·
∣
∣
∣
∣

1
ρ1,n

− 1
∣
∣
∣
∣ .

If On(t) is Jn(t), then we have

‖Rn(f) − f‖
D
≤ 2n2 + 1

2n2 − 2
· ‖f − Pn(f)‖

D
+ ‖f‖

D

∣
∣
∣
∣
2n2 + 1
2n2 − 2

− 1
∣
∣
∣
∣

≤ 9
6
· Cω2

(

f ;
1
n

)

∂D

+ ‖f‖
D
· 3
2n2 − 2

≤ C

[

ω2(f ;
1
n

)∂D + ‖f‖
D
· 1
n2

]

, n ≥ 2,

that is, ‖Rn(f)−f‖
D
≤ C[ω2(f ; 1

n )∂D+‖f‖
D
· 1

n2 ], where C > 0 is independent
of f and n.

When On(t) = Bn,r,p(t), for n, r ≥ p + 2, p ∈ N, a similar estimate holds.
(3) Note that since Vn(t) is not nonnegative, for On(t) = Vn(t), Theorem

3.3.12 does not hold.
In what follows, let us consider the classes of univalent functions introduced

by Definition 3.1.1, S∗(D), K(D), C(D), Mα(D), α ∈ R and Sγ(D), |γ| < π
2 ,

called the classes of normalized starlike, convex, close-to-convex, α-convex,
and γ-spirallike functions, respectively.

The next results deal with preservation by convolution polynomials of the
corresponding subclasses

S∗(D), K(D), C(D), Mα(D), and Sγ(D).
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Theorem 3.3.13. (Gal [129])LetOn(t)= 1
2+
∑mn

k=1 ρk,n cos(kt)beJn(t), n ∈ N,
or Bn,r,p(t), where n, r ≥ p + 2, p ∈ N.

(i) If f ∈ C(D) and

Pn(f)(z) =
1
π

∫ π

−π

f(zeit)On(t)dt,Rn(f)(z) =
1

ρ1,n
Pn(f)(z),

then

‖Rn(f) − f‖
D
≤ C

[

ω2

(

f ;
1
n

)

∂D

+ ‖f‖
D
· 1
n2

]

,

where C > 0 is independent of f and n and there exists n0 = n0(f) such that
Rn(f) ∈ C(D) for all n ≥ n0.

(ii) For f(z) = zh(z), let us define

Pn(f)(z) = z · 1
π

∫ π

−π

h(zeit)On(t)dt.

Then,

‖Pn(f) − f‖
D
≤ Cω1

(

f ;
1
n

)

D

+ ‖f‖
D
· 1
n

,

and there is n0 = n0(f) such that for all n ≥ n0 we have

Pn[S∗(D)] ⊂ S∗(D), Pn[K(D)] ⊂ K(D), Pn[Mα(D)] ⊂ Mα(D),
and Pn[Sγ(D)] ⊂ Sγ(D).

Proof. (i) Let f ∈ C(D). By Remark 2 of Theorem 3.3.12, we obtain
Rn(f)(0) = R′

n(f)(0) − 1 = 0 and the estimate of ‖f − Rn(f)‖
D
.

There is d ∈ S∗(D) that is univalent on D such that

Re

[
zf ′(z)
d(z)

]

> 0, ∀z ∈ D.

Write h(z) = z
d(z) . Since d(0) = 0 and d is univalent, it follows that d(z) 	= 0,

∀z ∈ D, z 	= 0, and h(z) is analytic on D (with h(z) 	= 0,∀z ∈ D).
Hence, h(z) is continuous on D, that is, there is M > 0 with |h(z)| ≤

M,∀z ∈ D.
By Theorem 3.3.12 and by ρ1,n → 1, we get R′

n(f) → f ′, uniformly on D,
that is, h(z) · R′

n(f)(z) → h(z)f ′(z) uniformly on D. Therefore

Re[h(z)R′
n(f)(z)] → Re[h(z)f ′(z)] > 0,

uniformly on D, that is, there exists n0 = n0(f) such that

Re[h(z)R′
n(f)(z)] > 0
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for all n ≥ n0, that is,
Rn(f)(z) ∈ C(D)

for all n ≥ n0.
(ii) Let f ∈ S∗(D). Since f(0) = 0 and f is univalent on D, we get f(z) 	= 0

for all z ∈ D, z 	= 0, that is, f(z) = z · h(z), z ∈ D, where h is analytic in D

and h(z) 	= 0 for all z ∈ D.
Write Qn(h)(z) = 1

π

∫ π

−π
h(zeit)On(t)dt and Pn(f)(z) = zQn(h)(z).

By Gal [128], Theorem 1, and by Rubel–Shields–Taylor [329], we obtain

|Pn(f)(z) − f(z)| = |zQn(h)(z) − zh(z)| ≤ |Qn(h)(z) − h(z)|

≤ Cω1(h; (1 − ρ1,n)1/2)
D
≤ Cω1

(

h;
1
n

)

∂D

= C sup
{∣
∣
∣
∣
f(z1)

z1
− f(z2)

z2

∣
∣
∣
∣ ; |z1 − z2| ≤

1
n

, |z1| = |z2| = 1
}

= C sup
{

|z2f(z1) − z1f(z2)|; |z1 − z2| ≤
1
n

, |z1| = |z2|= 1
}

≤ C sup{|z2| · |f(z1) − f(z2)| + |z1 − z2| · |f(z2)|;

|z1 − z2| ≤
1
n

, |z1| = |z2| = 1} ≤ Cω1

(

f ;
1
n

)

∂D

+‖f‖
D
· 1
n
≤ Cω1

(

f ;
1
n

)

D

+ ‖f‖
D
· 1
n

.

In addition, by Theorem 3.3.12, we have Q′
n(h) → h′ uniformly on D. Since

|h(z)| > 0, ∀z ∈ D, and Qn(h) → h uniformly on D, there are n1 = n1(h) and
m > 0 such that for all n ≥ n1 we have

|Qn(h)(z)| > m, ∀z ∈ D, and therefore Qn(h)(z) 	= 0, ∀n ≥ n1,∀z ∈ D.

Obviously P ′
n(f)(z) = zQ′

n(h)(z) + Qn(h)(z) → zh′(z) + h(z) = f ′(z),
uniformly on D, which implies

zP ′
n(f)(z)

Pn(f)(z)
=

z[zQ′
n(h)(z) + Qn(h)(z)]

zQn(h)(z)

=
zQ′

n(h)(z) + Qn(h)(z)
Qn(h)(z)

→ zh′(z) + h(z)
h(z)

=
f ′(z)
h(z)

=
zf ′(z)
f(z)

, uniformly on D.

As a consequence,

Re
[
zP ′

n(f)(z)
Pn(f)(z)

]

→ Re
[
zf ′(z)
f(z)

]

> 0,

uniformly on D, that is, there exists n0 = n0(f) > n1 such that for all n ≥ n0,
we have
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Re
[
zP ′

n(f)(z)
Pn(f)(z)

]

> 0, for all z ∈ D,

that is, since Pn(f)(0) = P ′
n(f)(0) − 1 = 0, it follows, that Pn(f) ∈ S∗(D).

If f ∈ Sγ(D), then by similar reasoning we get Pn(f) ∈ Sγ(D).
Now suppose f ∈ K(D) and again set f(z) = z ·h(z), where the univalence

of f on D implies h(z) 	= 0 for all z ∈ D, with h analytic on D.
Since f ∈ K(D) if and only if zf ′(z) ∈ S∗(D), it follows that f ′(z) 	= 0 for

all z ∈ D, that is |f ′(z)| > 0 for all z ∈ D.
By Theorem 3.3.12, we easily obtain P ′

n(f) → f ′ and P ′′
n (f) → f ′′, uni-

formly on D. Reasoning as above, we have

Re
[

zP ′′
n (f)

P ′
n(f)(z)

]

+ 1 → Re
[
zf ′′(z)
f ′(z)

]

+ 1,

uniformly on D. Therefore, there exists n0 = n0(f) such that for all n ≥ n0

we have

Re
[

zP ′′
n (f)

P ′
n(f)(z)

]

+ 1 > 0, ∀z ∈ D,

i.e., Pn(f) ∈ K(D).
The inclusion Pn[Mα(D)] ⊂ Mα(D) can be deduced in a similar way, which

proves the theorem. �

In what follows we will present some improvements of Theorem 3.3.13.

Theorem 3.3.14. Suppose α ∈ (0, 1) and γ ∈
(
−π

2 , π
2

)
.

(i) For any f ∈ S∗
α(D) ∩ A1(D) with f(z) 	= 0 for all |z| = 1, and any

β ∈ (0, α), there is n0 ≥ 1 (depending on f and β) such that for all n ≥ n0,
we have

σ2n,n−1(f) ∈ S∗
β(D) and ‖f − σ2n,n−1(f)‖ ≤ C

1
n

En(f ′),

where C > 0 is independent of f and n;
(ii) For any f ∈ Kα(D) ∩ A2(D) with f ′(z) 	= 0 for all |z| = 1, and any

β ∈ (0, α), there is n0 ≥ 2 (depending on f and β) such that for all n ≥ n0,
we have

σ2n,n−2(f) ∈ Kβ(D) and ‖f − σ2n,n−2(f)‖ ≤ C
1
n2

En(f ′′),

where C > 0 is independent of f and n;
(iii) For any f ∈ Sγ

α(D) ∩ A1(D) with f(z) 	= 0 for all |z| = 1, and any
β ∈ (0, α), there is n0 ≥ 1 (depending on f , γ, and β) such that for all n ≥ n0,
we have

σ2n,n−1(f) ∈ Sγ
β (D) and ‖f − σ2n,n−1(f)‖ ≤ C

1
n

En(f ′),

where C > 0 is independent of f and n.
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Proof. From Remark 1 after the proof of Theorem 3.2.1, the estimates in
Theorem 3.3.14 (i–iii), are immediate.

Also, because f(0) = f ′(0) − 1 = 0 and for any k we have Tk(f)(0) =
T ′

k(f)(0)−1 = 0, it follows that σ2n,n−p(f)(0) = f(0) = 0 and σ′
2n,n−p(f)(0)−

1 = f ′(0) − 1 = 0, for all p ∈ N and n ≥ p.
(i) The hypothesis implies |f(z)| > 0 for all z ∈ D with z 	= 0, which from

the univalence of f in D means that we can write f in the form f(z) = zh(z),
with h(z) 	= 0, for all z ∈ D, where h is analytic in D and continuous in D.

Setting σ2n,n−1(f)(z) = zQn(f)(z), it is clear that Qn(f)(z) is a polyno-
mial of degree ≤ 2n − 1.

For |z| = 1 we get

|f(z) − σ2n,n−1(f)(z)| = |z| · |h(z) − Qn(f)| = |h(z) − Qn(f)|.

Therefore, the uniform convergence on D of σ2n,n−1(f) to f , together with
the maximum modulus principle, implies the uniform convergence on D of
Qn(f)(z) to h(z).

Because h is continuous in D and |h(z)| > 0 for all z ∈ D, there exist an
index n0 ∈ N and a > 0 depending on h such that |Qn(f)(z)| > a > 0 for all
z ∈ D and all n ≥ n0.

Also, for all |z| = 1, we get

|f ′(z) − σ′
2n,n−1(f)(z)| = |z[h′(z) − Q′

n(f)(z)] + [h(z) − Qn(f)(z)]|
≥ ||z| · |h′(z) − Q′

n(f)(z)| − |h(z) − Qn(f)(z)||
= ||h′(z) − Q′

n(f)(z)| − |h(z) − Qn(f)(z)||,

which from maximum modulus principle, the uniform convergence of the se-
quences σ′

2n,n−1(f) to f ′ and of Qn(f) to h, evidently implies the uniform
convergence of the sequence Q′

n(f) to h′.
Again, for |z| = 1, we obtain

zσ′
2n,n−1(f)(z)
σ2n,n−1(f)

=
z[zQ′

n(f)(z) + Qn(f)(z)]
zQn(f)(z)

=
zQ′

n(f)(z) + Qn(f)(z)
Qn(f)(z)

→ zh′(z) + h(z)
h(z)

=
f ′′(z)
h(z)

=
zf ′(z)
f(z)

,

which by the maximum modulus principle implies

zσ′
2n,n−1(f)(z)
σ2n,n−1(f)

→ zf ′(z)
f(z)

, uniformly on D.

As a conclusion,

Re
[
zσ′

2n,n−1(f)(z)
σ2n,n−1(f)(z)

]

→ Re
[
zf ′(z)
f(z)

]

> α > 0
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uniformly on D, that is, for any 0 < β < α, there exists n0 such that for all
n ≥ n0 we have

Re
[
zσ′

2n,n−1(f)(z)
σ2n,n−1(f)(z)

]

> β, for all z ∈ D,

that is, σ2n,n−1(f) ∈ S∗
β(D).

In the case (iii), similarly we obtain

Re
[

eiγ
zσ′

2n,n−1(f)(z)
σ2n,n−1(f)(z)

]

→ Re
[

eiγ zf ′(z)
f(z)

]

> α > 0

uniformly on D, which immediately proves the required result.
(ii) Since f ∈ Kα(D) if and only if zf ′(z) ∈ S∗

α(D), by the reasoning at
the point (i), it follows that f ′(z) 	= 0 for all z ∈ D, that is, |f ′(z)| > 0 for all
z ∈ D. Also, by the same type of reasoning as at the above point (i), where f
is replaced by f ′, we get σ′

2n,n−2(f) → f ′ and σ′′
2n,n−2(f) → f ′′, uniformly on

D, and

Re

[
zσ′′

2n,n−2(f)(z)
σ′

2n,n−2(f)(z)

]

+ 1 → Re
[
zf ′′(z)
f ′(z)

]

+ 1 > α,

uniformly on D. Therefore, for any 0 < β < α, there exists n0 = n0(f, β) such
that for all n ≥ n0 we have

Re

[
zσ′′

2n,n−2(f)(z)
σ′

2n,n−2(f)(z)

]

+ 1 > β, ∀z ∈ D.

For the case α = 0, we have the following corollary.

Corollary 3.3.15. Suppose γ ∈
(
−π

2 , π
2

)
.

(i) For any f ∈ S∗(D), there is n0 ≥ 1 (depending on f) such that for all
n ≥ n0, we have

σ2n,n−1(f) ∈ S∗(D) and ‖f − σ2n,n−1(f)‖ ≤ C
1
n

En(f ′),

where C > 0 is independent of f and n.
(ii) For any f ∈ K(D), there is n0 ≥ 2 (depending on f) such that for all

n ≥ n0, we have

σ2n,n−2(f) ∈ K(D) and ‖f − σ2n,n−2(f)‖ ≤ C
1
n2

En(f ′′),

where C > 0 is independent of f and n;
(iii) For any f ∈ Sγ(D), there is n0 ≥ 1 (depending on f and γ) such that

for all n ≥ n0, we have

σ2n,n−1(f) ∈ Sγ(D) and ‖f − σ2n,n−1(f)‖ ≤ C
1
n

En(f ′),

where C > 0 is independent of f and n.
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Proof. Recall that f is called analytic on D if in fact f is analytic in an
open set (domain) containing D. This obviously implies that f ∈ Ap(D) for
all p ∈ N. The rest of the proof is similar to that of Theorem 3.3.14.

Remarks. (1) The degree of σ2n,n−p(f) is ≤ 2n, while its approximation rate
given by Theorem 3.3.14 and Corollary 3.3.15 is 1

np En(f (p)), p = 1, 2, which
could be essentially worse than the best expected, 1

(2n)p E2n−p(f (p)), p = 1, 2.
This is because in general, E2n−p(F ) can be essentially smaller than En(F ).
However, applying a well known result of Gaier (see [121] or, e.g., [122], p. 53,
that is, En(F ) ≤ Ckωk(F ; 1/n) for any arbitrary k ∈ N), we immediately get
that both quantities 1

np En(f (p)) and 1
(2n)p E2n−p(f (p)) in fact can be estimated

by the same expression Ck
1

np ωk(f (p); 1/n), p = 1, 2. In other words, expressed
in terms of moduli of smoothness, we can say that the estimates in Theorem
3.3.14 and Corollary 3.3.15 are near to the best approximation.

(2) The estimates in Corollary 3.3.15 essentially improve those in Theorem
3.3.13, where the orders of approximation are ω1(f ; 1/n) and ω2(f ; 1/n) only.

(3) The shortcoming of Theorem 3.3.14 and Corollary 3.3.15 is that the
index n0 depends on f . Therefore, it is natural to ask whether Theorem 3.3.14
and Corollary 3.3.15 would be valid for all n ≥ p (p = 1 or p = 2), or at least
for all n ≥ n0 with n0 independent of f .

(4) Note that because the differential inequalities that define the star-
likeness, convexity, and spirallikeness are nonlinear, Theorem 3.2.2 and its
Corollary 3.2.3 cannot be applied to these subclasses of functions.

3.4 Approximation and Geometric Properties
of Bernstein Polynomials

In this section, we first estimate the degrees of simultaneous uniform approxi-
mation of analytic functions by complex Bernstein polynomials in closed disks.
Then, we prove that the complex Bernstein polynomials attached to an an-
alytic function preserve the univalence, starlikeness, convexity, spirallikeness,
and other properties in geometric function theory.

Concerning the approximation properties, two approximation results due
to Bernstein and Kantorovich concerning the uniform approximation of
Bernstein polynomials in the unit disk and in an ellipse, respectively among
others, are well known. In addition, Theorem 3.4.1 (iii), (iv), (v) below, give
quantitative estimates. Note that an analogue to Theorem 3.4.1 (iii) (and in
essence to (iv) too), was obtained by a different method in Ostrovska [292].

All the above-mentioned approximation results can be summarized by the
following.

Theorem 3.4.1. (i) (Bernstein, see, e.g., [Lorentz [247], p. 88]) For the open
G ⊂ C such that D ⊂ G and f : G → C is analytic in G, the complex Bernstein
polynomials Bn(f)(z) =

∑n
k=0

(
n
k

)
zk(1 − z)n−kf(k/n) uniformly converge to

f in D.
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(ii) (Kantorovich, see, e.g., [Lorentz [247], p. 90]) If f is analytic in the
interior of an ellipse of foci 0 and 1, then Bn(f)(z) converges uniformly to
f(z) in any closed set contained in the interior of the ellipse.

Now let G ⊂ C be an open disk of radius R > 1 and center 0, and let
us suppose that f : G → C is analytic in G, that is, we can write f(z) =∑∞

k=0 ckzk for all z ∈ G.
(iii) Denoting by ‖·‖ the uniform norm in C(D), for the complex Bernstein

polynomials

Bn(f)(z) =
n∑

k=0

(
n

k

)

zk(1 − z)n−kf(k/n),

we have

‖Bn(f) − f‖ ≤ M2(f)
n

, for all n ∈ N,

where 0 < M2(f) = 3
∑∞

j=2 j(j − 1)|cj | < ∞.
(iv) Let 1 ≤ r < R be arbitrary fixed. For all |z| ≤ r and n ∈ N, we have

|Bn(f)(z) − f(z)| ≤ M2,r(f)
n

,

where 0 < M2,r(f) = r(1+r)(1+2r)
2

∑∞
j=2 j(j − 1)|cj |rj−2 < ∞.

(v) For the simultaneous approximation by complex Bernstein polynomials,
we have that if 1 ≤ r < r1 < R are arbitrary fixed, then for all |z| ≤ r and
n, p ∈ N,

|B(p)
n (f)(z) − f (p)(z)| ≤ M2,r1(f)p!r1

n(r1 − r)p+1

where M2,r1(f) is given in point (iii).

Proof. (iii) Writing ek(z) = zk, k = 0, 1, . . . , and πk,n(z) = Bn(ek)(z),
by the proof of, e.g., Theorem 4.1.1, p. 88 in Lorentz [247], we can write
Bn(f)(z) =

∑∞
k=0 ckπk,n(z), which immediately implies

|Bn(f)(z) − f(z)| ≤
∞∑

k=0

|ck| · |πk,n(z) − ek(z)|

for all z ∈ D.
First we observe that |πk,n(z)| ≤ 1 for all z ∈ D and all k = 1, 2, . . .. For

this purpose, the reasoning is similar to that in the proof of Theorem 1.4.1,
pp. 88–89 in Lorentz [247], by taking R1 = 1 there. Let us briefly recall here
this reasoning. Indeed, by the relationship (5) in the above-mentioned proof
(by taking a = 0 there), we get that the generating functions Φ(u, z) of the
polynomials πk,n(z) are

Φ(u, z) =
∞∑

k=0

1
k!

πk,n(z)uk

=
(

1 +
z

n
u + · · · + z

nk

uk

k!
+ · · ·+

)n

.
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Taking now |z| = 1, the coefficients of uk in the power series

1 +
z

n
u + · · · + z

nk

uk

k!
+ · · ·

are majorized by those of
∞∑

k=0

1
u!

(u

n

)k

= eu/n

if |z| = 1 and therefore if |z| ≤ 1. Finally, this proves that the moduli of
the coefficients of uk in Φ(u, z) =

∑∞
k=0

1
k!πk,n(z)uk do not exceed those in

(eu/n)n = eu, which proves the required inequality for |πk,n(z)|.
In what follows, we use the recurrence relationship proved for the real

variable case in Andrica [19],

πk+1,n(z) =
z(1 − z)

n
π′

k,n(z) + zπk,n(z)

for all n ∈ N, z ∈ C, and k = 0, 1, . . .. Indeed, since it is a simple algebraic
manipulation, the relationship in Andrica [19] proved for the real case is valid
for complex variables too. Taking into account that the paper Andrica [19] is
not very accessible, let us reproduce here the idea of the proof. It consists in
the simple algebraic relationship

S′
k,n(z) =

Sk+1,n(z)
z(1 − z)

− n
Sk,n(z)
1 − z

,

which is divided by nk, where

Sk,n(z) =
n∑

j=0

jk

(
n

j

)

zj(1 − z)n−j .

(Note that the cases z = 0 and z = 1 are trivial in the recurrence for πk,n(z).)
From this recurrence, we easily obtain that degree (πk,n(z)) = k. Also, by

replacing k with k − 1, we get

πk,n(z) − zk =
z(1 − z)

n
[πk−1,n(z) − zk−1]′

+
(k − 1)zk−1(1 − z)

n
+z[πk−1,n(z) − zk−1],

which by Bernstein’s inequality for complex polynomials gives

‖πk,n − ek‖ ≤ (k − 1)
2
n
‖πk−1,n − ek−1‖ +

2(k − 1)
n

+ ‖πk−1,n − ek−1‖

≤ (k − 1)
2
n
· [‖πk−1,n‖ + ‖ek−1‖] +

2(k − 1)
n

+ ‖πk−1,n − ek−1‖

≤ ‖πk−1,n − ek−1‖ + 6
k − 1

n
.
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(We used here that for all k and n we have ‖πk,n‖ ≤ 1 and ‖ek‖ ≤ 1.)
Now, by taking k = 1, 2, in the inequality

‖πk,n − ek‖ ≤ ‖πk−1,n − ek−1‖ + 6
k − 1

n
,

we finally obtain

‖πk,n − ek‖ ≤ 6
n

[(k − 1) + (k − 2) + · · · + 1] =
3
n

(k − 1)k.

In conclusion, we get

|Bn(f)(z) − f(z)| ≤
∞∑

k=0

|ck| · ‖πk,n − ek‖ ≤ 1
n

3
∞∑

k=2

k(k − 1)|ck|.

Note that since by hypothesis, f(z) =
∑∞

k ckzk is absolutely convergent in
|z| ≤ r for any 1 ≤ r < R, it follows that the power series obtained by
differentiating twice, i.e., f ′′(z) =

∑∞
k=2 k(k − 1)ckzk−2, also is absolutely

convergent for |z| ≤ 1, which implies
∑∞

k=2 k(k − 1)|ck| < +∞.
(iv) The relationship (4) in the proof of Theorem 4.1.1, p. 88 in Lorentz

[247], shows that |Bn(ek)(z)| ≤ rk if |z| ≤ r, with r > 1, for all k, n ∈ N.
We observe that the above inequality can be proved in a different way, as

follows. Indeed, by He [169] (see also Corollary 2.4 in Andrica [19]), we can
write

Bn(ek)(z) =
k∑

j=1

S(k, j)
n(n − 1) · · · [n − (j − 1)]

nk
ej(z),

where S(k, j) are the Stirling numbers of the second kind and recall that these
numbers satisfy S(k, j) ≥ 0 for all j, k ∈ N and

k∑

j=1

S(k, j)n(n − 1) · · · [n − (j − 1)] = nk for k, n ∈ N.

Now, since S(k, j)n(n−1) · · · [n−(j−1)] ≥ 0 for all k, n, j ∈ N with 1 ≤ j ≤ k,
this implies

|Bn(ek)(z)| ≤
k∑

j=1

S(k, j)
n(n − 1) · · · [n − (j − 1)]

nk
|ej(z)|

≤
k∑

j=1

S(k, j)
n(n − 1) · · · [n − (j − 1)]

nk
rj

≤
k∑

j=1

S(k, j)
n(n − 1) · · · [n − (j − 1)]

nk
rk = rk, for |z| ≤ r.
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Denoting by ‖ · ‖r the norm in C(Dr), where Dr = {z ∈ C; |z| ≤ r}, one
observes that by a linear transformation, Bernstein’s inequality in the closed
unit disk becomes |P ′

k(z)| ≤ k
r ‖Pk‖r ≤ k‖Pk‖r for all |z| ≤ r, r ≥ 1 (at this

point I would like to thank professors J. Szabados and T. Erdelyi, of the Alfred
Renyi Institute of Mathematics of the Hungarian Academy of Science and the
Department of Mathematics, Texas A & M University, College Station, USA,
respectively, for bibliographical reference).

Therefore, repeating the reasoning from the above point (iii), we get

|πk,n(z) − ek(z)| ≤ (k − 1)
r(1 + r)

n
‖πk−1,n − ek−1(z)‖r

+
rk−1(1 + r)(k − 1)

n
+ r|πk−1,n(z) − ek−1(z)|

≤ (k − 1)
r(1 + r)

n
· [‖πk−1,n‖r + ‖ek−1‖r]

+
rk−1(1 + r)(k − 1)

n
+ r|πk−1,n(z) − ek−1(z)|

≤ r|πk−1,n(z) − ek−1(z)| +
[
2r(1 + r)rk−1 + (1 + r)rk−1

]
k − 1

n
.

(We used here that for all k, n ∈ N and |z| ≤ r we have |πk,n(z)| ≤ rk and
|ek(z)| ≤ rk.)

Now, by taking k = 1, 2, . . . , in the inequality

|πk,n(z) − ek(z)| ≤ r|πk−1,n(z) − ek−1(z)| + (1 + r)(1 + 2r)rk−1 k − 1
n

,

by recurrence we easily obtain

|πk,n(z) − ek(z)| ≤ (1 + r)(1 + 2r)
n

[
rk−1 + 2rk−1 + · · · + (k − 1)rk−1

]

≤ (1 + r)(1 + 2r)
n

· k(k − 1)
2

rk−1

≤ r(1 + r)(1 + 2r)
2n

· k(k − 1)rk−2.

As a conclusion, for all |z| ≤ r and n ∈ N, we obtain

|Bn(f)(z) − f(z)| ≤
∞∑

k=0

|ck| · |πk,n(z) − ek(z)|

≤ r(1 + r)(1 + 2r)
2n

∞∑

k=2

k(k − 1)|ck|rk−2.

Note that since by hypothesis, f(z) =
∑∞

k ckzk is absolutely and uniformly
convergent in |z| ≤ r for any 1 ≤ r < R, it follows that the power series
obtained by differentiating twice, i.e., f ′′(z) =

∑∞
k=2 k(k − 1)ckzk−2, also is

absolutely convergent for |z| ≤ r, which implies
∑∞

k=2 k(k−1)|ck|rk−2 < +∞.
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(v) Denoting by γ the circle of radius r1 > 1 and center 0, since for any
|z| ≤ r and v ∈ γ, we have |v − z| ≥ r1 − r, by Cauchy’s formulas it follows
that for all |z| ≤ r and n ∈ N, we have

|B(p)
n (f)(z) − f (p)(z)| =

p!
2π

∣
∣
∣
∣

∫

γ

Bn(f)(v) − f(v)
(v − z)p+1

dv

∣
∣
∣
∣

≤ M2,r1(f)
n

p!
2π

2πr1

(r1 − r)p+1
=

M2,r1(f)
n

p!r1

(r1 − r)p+1
,

which proves the theorem. �

Remarks. (1) For r = 1, the estimate in Theorem 3.4.1 (iv) becomes the
estimate in Theorem 3.4.1 (iii) but obtained by a different method of proof.

2) By Theorem 4.1.1, p. 88 in Lorentz [247], in fact it follows that for
this R > 1, Bn(f) → f uniformly in any closed disk included in {|z| < R},
which by the well known Weierstrass theorem (see, e.g., Kohr–Mocanu [198],
p. 18., Theorem 1.1.6) implies that the sequences of the derivatives of any
order of complex Bernstein polynomials converge uniformly on compacts in G
(including the closed unit disk) to the corresponding derivatives of f . Theorem
3.4.1 (v) expresses in addition quantitative estimates for these convergence
processes.

The first geometric properties of the Bernstein polynomials are conse-
quences of Theorem 3.4.1 and can be expressed by the following.

Theorem 3.4.2. Let us suppose that G ⊂ C is open such that D ⊂ G and
f : G → C is analytic in G.

(i) If f is univalent in D, then there exists an index n0 depending on
f such that for all n ≥ n0, the complex Bernstein polynomials Bn(f)(z) =∑n

k=0

(
n
k

)
zk(1 − z)n−kf(k/n) are univalent in D.

(ii) If f(0) = f ′(0) − 1 = 0 and f is starlike in D, that is,

Re
(

zf ′(z)
f(z)

)

> 0 for all z ∈ D,

then there exists an index n0 depending on f such that for all n ≥ n0, the
complex Bernstein polynomials are starlike in D.

If f(0) = f ′(0) − 1 = 0 and f is starlike only in D, then for any disk
of radius 0 < r < 1 and center 0, denoted by Dr, there exists an index
n0 = n0(f, Dr) such that for all n ≥ n0, the complex Bernstein polynomi-
als Bn(f)(z) are starlike in Dr, that is,

Re
(

zB′
n(f)(z)

Bn(f)(z)

)

> 0 for all z ∈ Dr.

(iii) If f(0) = f ′(0) − 1 = 0 and f is convex in D, that is,

Re
(

zf ′′(z)
f ′(z)

)

+ 1 > 0 for all z ∈ D,
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then there exists an index n0 depending on f such that for all n ≥ n0, the
complex Bernstein polynomials are convex in D.

If f(0) = f ′(0)−1 = 0 and f is convex only in D, then for any disk of radius
0 < r < 1 and center 0, denoted by Dr, there exists an index n0 = n0(f, Dr)
such that for all n ≥ n0, the complex Bernstein polynomials Bn(f)(z) are
convex in Dr, that is,

Re
(

zB′′
n(f)(z)

B′
n(f)(z)

)

+ 1 > 0 for all z ∈ Dr.

(iv) If f(0) = f ′(0)−1 = 0, f(z) 	= 0, for all z ∈ D\{0} and f is spirallike
of type γ ∈ (−π/2, π/2) in D, that is,

Re
(

eiγ zf ′(z)
f(z)

)

> 0 for all z ∈ D,

then there exists an index n0 depending on f and γ such that for all n ≥ n0

we have Bn(f)(z) 	= 0 for all z ∈ D \ {0}, and Bn(f)(z) are spirallike of type
γ in D.

If f(0) = f ′(0) − 1 = 0, f(z) 	= 0 for all z ∈ D \ {0} and f is spirallike of
type γ only in D, then for any disk of radius 0 < r < 1 and center 0, denoted
by Dr, there exists an index n0 = n0(f, Dr, γ) such that for all n ≥ n0, the
Bernstein polynomials Bn(f)(z) are non-zero for all z ∈ Dr \ {0} and they
are spirallike of type γ in Dr, that is,

Re
(

eiγ zB′
n(f)(z)

Bn(f)(z)

)

> 0 for all z ∈ Dr.

Proof. (i) It is immediate from the uniform convergence in Theorem 3.4.1
and a well known result concerning sequences of analytic functions converging
locally uniformly to a univalent function (see, e.g., Kohr–Mocanu [198], p. 130,
Theorem 4.1.17 or Graham-Kohr [162], Theorem 6.1.18).

For the proof of the next points (ii), (iii) and (iv), let us make some general
useful remarks. By Remark 2 after the proof of Theorem 3.4.1, we get that for
n → ∞, we have Bn(f)(z) → f(z), B′

n(f)(z) → f ′(z) and B′′
n(f)(z) → f ′′(z),

uniformly in D. In all that follows, set Pn(f)(z) = Bn(f)(z)
nf(1/n) .

By f(0) = f ′(0) − 1 = 0 and the univalence of f , we get nf(1/n) 	= 0,
Pn(f)(0) = f(0)

nf(1/n) = 0, P ′(f)(0) = B′
n(f)(0)

nf(1/n) = 1, n ≥ 2, nf(1/n) =
f(1/n)−f(0)

1/n converges to f ′(0) = 1 as n → ∞, which means that for n → ∞, we
have Pn(f)(z) → f(z), P ′

n(f)(z) → f ′(z) and P ′′
n (f)(z) → f ′′(z), uniformly

in D.
(ii) By hypothesis we get |f(z)| > 0 for all z ∈ D with z 	= 0, which from

the univalence of f in D implies that we can write f(z) = zg(z), with g(z) 	= 0,
for all z ∈ D, where g is analytic in D and continuous in D.

Writing Pn(f)(z) in the form Pn(f)(z) = zQn(f)(z), obviously Qn(f)(z)
is a polynomial of degree ≤ n − 1.
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Let |z| = 1. We have

|f(z) − Pn(f)(z)| = |z| · |g(z) − Qn(f)(z)| = |g(z) − Qn(f)(z)|,

which by the uniform convergence in D of Pn(f) to f and by the maximum
modulus principle implies the uniform convergence in D of Qn(f)(z) to g(z).

Since g is continuous in D and |g(z)| > 0 for all z ∈ D, there exist an index
n1 ∈ N and a > 0 depending on g such that |Qn(f)(z)| > a > 0 for all z ∈ D

and all n ≥ n0.
Also, for all |z| = 1, we have

|f ′(z) − P ′
n(f)(z)| = |z[g′(z) − Q′

n(f)(z)] + [g(z) − Qn(f)(z)]|
≥ ||z| · |g′(z) − Q′

n(f)(z)| − |g(z) − Qn(f)(z)||
= ||g′(z) − Q′

n(f)(z)| − |g(z) − Qn(f)(z)||,

which from the maximum modulus principle and the uniform convergence of
P ′

n(f) to f ′ and of Qn(f) to g evidently implies the uniform convergence of
Q′

n(f) to g′.
Then, for |z| = 1, we get

zP ′
n(f)(z)
Pn(f)

=
z[zQ′

n(f)(z) + Qn(f)(z)]
zQn(f)(z)

=
zQ′

n(f)(z) + Qn(f)(z)
Qn(f)(z)

→ zg′(z) + g(z)
g(z)

=
f ′(z)
g(z)

=
zf ′(z)
f(z)

,

which again from the maximum modulus principle implies

zP ′
n(f)(z)
Pn(f)

→ zf ′(z)
f(z)

, uniformly in D.

Since Re
(

zf ′(z)
f(z)

)
is continuous in D, there exists α ∈ (0, 1) such that

Re
(

zf ′(z)
f(z)

)

≥ α for all z ∈ D.

Therefore

Re
[
zP ′

n(f)(z)
Pn(f)(z)

]

→ Re
[
zf ′(z)
f(z)

]

≥ α > 0

uniformly on D, i.e., for any 0 < β < α, there is n0 such that for all n ≥ n0

we have

Re
[
zP ′

n(f)(z)
Pn(f)(z)

]

> β > 0, for all z ∈ D.

Since Pn(f)(z) differs from Bn(f)(z) only by a constant, this proves the first
part in (ii).
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For the second part, the proof is identical to that of the first part, with
the only difference being that instead of D, we reason for Dr.

(iv) Obviously we have

Re
[

eiγ zP ′
n(f)(z)

Pn(f)(z)

]

→ Re
[

eiγ zf ′(z)
f(z)

]

,

uniformly in D. We also note that since f is univalent in D, by the above point
(i), there exists n1 such that Bn(f)(z) is univalent in D for all n ≥ n1 which
by Bn(f)(0) = 0 implies Bn(f)(z) 	= 0 for all z ∈ D \ {0}, n ≥ n1. For the
rest, the proof is identical to that from the above point (ii).

(iii) For the first part, by hypothesis there is α ∈ (0, 1) such that

Re
[
zf ′′(z)
f ′(z)

]

+ 1 ≥ α > 0,

uniformly in D. It is not difficult to show that this fact is equivalent to the
fact that for any β ∈ (0, α), the function zf ′(z) is starlike of order β in D (see,
e.g., Mocanu–Bulboaca–Salagean [271], p. 77), which implies f ′(z) 	= 0 for all
z ∈ D, i.e., |f ′(z)| > 0 for all z ∈ D. Also, by the same type of reasoning as
that from the above point (ii), we get

Re
[
zP ′′

n (f)(z)
P ′

n(f)(z)

]

+ 1 → Re
[
zf ′′(z)
f ′(z)

]

+ 1 ≥ α > 0,

uniformly in D. As a conclusion, for any 0 < β < α, there is n0 depending on
f such that for all n ≥ n0 we have

Re
[
zP ′′

n (f)(z)
P ′

n(f)(z)

]

+ 1 > β > 0 for all z ∈ D.

The proof of the second part in (iii) is similar, which proves the theorem. �

Remarks. (1) Let us recall that geometrically, the starlikeness/convexity of
f on Dr ⊂ D means that the image through f of any closed disk of center 0
included in Dr is a starlike/convex set in C (here starlikeness of a set means
with respect to the origin).

(2) The results in Theorem 3.4.2 state that the complex Bernstein poly-
nomials Bn(f)(z) preserve the univalence, starlikeness, convexity, and spiral-
likeness only for sufficiently large values of n, that is, only for n ≥ n0, where
the value n0 = n0(f) cannot be in general specified. Their shortcoming is
that they do not say anything about the cases of small values of n (that is
for n < n0) or for specified values of n. In what follows, we will present such
kinds of results. Also, the next results represent interesting and simple ways of
construction for particular polynomials that are univalent starlike or convex
in the unit disk.
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For this purpose, we introduce four subclasses of functions defined similarly
to S1 and S3, S4 and SM , considered in Section 3.3.2, just before Theorems
3.3.9, 3.3.10, and 3.3.11, respectively.

Thus, for M > 1, let us define

SM

= {f : D → C; f ∈ A1(D), f(0) = f ′(0) − 1 = 0, |f ′(z)| < M, for all z ∈ D},

then

S3

= {f : D → C; f ∈ A2(D), f(0) = f ′(0) − 1 = 0, |f ′′(z)| ≤ 1, for all z ∈ D},
S4

=
{

f : D → C; f ∈ A2(D), f(0) = f ′(0) − 1 = 0, |f ′′(z)| ≤ 1
2
, for all z ∈ D

}

,

and

S1

=

{

f : D → C; f(z) = z+
∞∑

k=2

akzk, analytic in D, satisfying
∞∑

k=2

k|ak| ≤ 1

}

.

It is evident that SM ⊂ SM , S3 ⊂ S3, S4 ⊂ S4, and S1 ⊂ S1, which shows
that f ∈ SM implies that f is univalent in {z ∈ C; |z| < 1

M }, f ∈ S3 implies
that f is starlike (and univalent) in D, f ∈ S4 implies that f is convex (and
univalent) in D, and f ∈ S1 implies that f is starlike (and univalent) in D.

Also, a key tool in our proofs will be the following.

Theorem 3.4.3. (see, e.g., Stancu [361], p. 258, Exercise 4.20) If f : E → C,
E ⊂ C, is of Cm-class on the compact convex set E, then for all distinct
points z0, . . . , zm ∈ E, there exists a point ξ ∈ conv{z0, . . . , zm} and λ ∈ C

with |λ| ≤ 1 such that

[z0, . . . , zm; f ] = λ
f (m)(ξ)

m!
,

where [z0, . . . , zm; f ] denotes the divided difference, and it is defined as in the
real case.

Theorem 3.4.4. Let f ∈ SM , M > 1. If n ∈ N satisfies

n|f(1/n)|
3n−1

≤ 1,

then Bn(f) is univalent in {z ∈ C; |z| < n|f(1/n)|
M3n−1 }.
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Proof. As in the case of the real Bernstein polynomials, we can write (see,
e.g., Lorentz [247], p. 12)

B′
n(f)(z) =

n−1∑

k=0

[k/n, (k + 1)/n; f ]
(

n − 1
k

)

zk(1 − z)n−1−k.

Passing to the modulus and taking into account Theorem 3.4.3 too, for all
z ∈ D we get

|B′
n(f)(z)|

≤ M
n−1∑

k=0

(
n − 1

k

)

|z|k(1 + |z|)n−1−k ≤ M2n−1
n−1∑

k=0

(
n − 1

k

)
1
2k

≤ 3n−1M,

since it is easy to show that

2n−1
n−1∑

k=0

(
n − 1

k

)
1
2k

= 2n−1

(
3
2

)n−1

= 3n−1.

Set Pn(f)(z) = Bn(f)(z)
nf(1/n) . Since f ∈ SM , we have f(0) = f ′(0) − 1 = 0,

which implies Pn(f)(0) = f(0)
nf(1/n) = 0 and P ′(f)(0) = B′

n(f)(0)
nf(1/n) = 1.

We get

|P ′
n(f)(z)| ≤ M3n−1

n|f(1/n)| ,

so the hypothesis implies M3n−1

n|f(1/n)| > 1, which proves that Pn(f) is univalent in

{z ∈ C; |z| < n|f(1/n)|
M3n−1 }. Since Pn(f) differs from Bn(f) by a nonzero constant,

this proves the theorem. �

Remark. The case n = 1 in Theorem 3.4.4 is trivial, since f(0) = 0 implies
B1(f)(z) = zf(1).

The second result is the following.

Theorem 3.4.5. Let f ∈ S3. If n ∈ N satisfies

1 ≤ 2n|f(1/n)|
(1 − 1/n)3n−2

,

then Bn(f) is starlike (and univalent) in D.

Proof. Suppose f ∈ S3. As in the real case, we can write (see, e.g., Lorentz
[247], p. 12)

B′′
n(f)(z)=

(

1 − 1
n

) n−2∑

k=0

[k/n, (k + 1)/n, (k + 2)/n; f ]
(

n − 2
k

)

zk(1 − z)n−2−k
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for all n ≥ 2. Applying Theorem 3.4.3 and the same reasoning as in the proof
of Theorem 3.4.4, we get

|B′′
n(f)(z)| ≤ (1 − 1

n
)
3n−2

2
,

which implies (by keeping the notation in the proof of Theorem 3.4.4) that

|P ′′
n (f)(z)| ≤

(

1 − 1
n

)
3n−2

2n|f(1/n)| ,

for all z ∈ D.
If n is as in the hypothesis, it follows that Pn(f) ∈ S3, which implies that

Pn(f) is starlike (and univalent) in D, and since it differs from Bn(f) by the
nonzero constant 1

nf(1/n) , we get that Bn(f) is starlike (and univalent) in D.
�

An immediate consequence of Theorem 3.4.5 is the following.

Corollary 3.4.6. For any m ≥ 2, the Bernstein polynomials of degree 3,
B3(fm)(z), attached to fm ∈ S3 and given by fm(z) = z+ zm

m(m−1) , are starlike
(and univalent) in D.

Proof. It is easy to see that fm ∈ S3 for all m ≥ 2. Also, for n = 3 in
Theorem 3.4.5, we easily get

2n|fm(1/n)|
(1 − 1/n)3n−2

= 1 +
1

m(m − 1)3m−1
> 1,

which proves the corollary. �

Concerning the class S4, we present the following.

Corollary 3.4.7. Let f ∈ S4.
(i) If n ∈ N satisfies

1 ≤ 2n|f(1/n)|
(1 − 1/n)3n−2

,

then Bn(f) is convex (and univalent) in D;
(ii) For any m ≥ 2, the Bernstein polynomials of degree 3, B3(gm)(z),

attached to gm ∈ S4 and given by gm(z) = z + zm

2m(m−1) , are convex (and
univalent) in D.

Proof. (i) Reasoning as in the proof of Theorem 3.4.5, we get

|P ′′
n (f)(z)| ≤

(

1 − 1
n

)
3n−2

4n|f(1/n)|

for all z ∈ D.
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Now, if (1 − 1
n ) 3n−2

4n|f(1/n)| ≤
1
2 , then according to Theorem 3 in Obradović

[291], it follows that Pn(f) is convex (and univalent) in D, which proves the
convexity of Bn(f) too.

(ii) It is easy to see that gm ∈ S4 for all m ≥ 2. Also, for n = 3 in the
above point (i), we easily get

2n|gm(1/n)|
(1 − 1/n)3n−2

= 1 +
1

2m(m − 1)3m−1
> 1,

which proves the corollary. �
The next result shows that for n ≥ 4, Theorem 3.4.5 and Corollaries 3.4.6–

3.4.7 in fact cannot hold.

Corollary 3.4.8. If f ∈ S3 or f ∈ S4, then the inequality (appearing in
Corollaries 3.4.6 and 3.4.7)

1 ≤ 2n|f(1/n)|
(1 − 1/n)3n−2

does not hold for n ≥ 4.

Proof. Set g(z) = f(z)−z. Since f ∈ S3 or f ∈ S4 implies f(0) = f ′(0)−1 =
0, we get g(0) = g′(0) = 0. Also, g′′(z) = f ′′(z) for all |z| ≤ 1.

By Theorem 3.4.3, we have

|g′(z)| = |g′(z) − g′(0)| ≤ |z| · |λ| · |g′′(ξ)|

and
|g(z)| = |g(z) − g(0)| ≤ |z| · |µ| · |g′(η)|,

where |λ| ≤ 1 and |µ| ≤ 1.
Suppose first f ∈ S3. It follows that |g′′(z)| ≤ 1, which combined with

the above two relationships immediately implies |g′(z)| ≤ 1 and |g(z)| ≤ |z|,
for all |z| ≤ 1. This implies |f(z)| = |z + g(z)| ≤ 2|z| for all |z| ≤ 1 and
n|f(1/n)| ≤ 2 for all n ∈ N. Then the inequality in the statement becomes
(1 − 1

n )3n−2 ≤ 4, which is true for n ≤ 3 but is false for n ≥ 4.
Similarly, if f ∈ S4, then by |f ′′(z)| ≤ 1

2 , for all |z| ≤ 1, we obtain |g′(z)|≤ 1
2

and |g(z)| ≤ |z|/2, for all |z| ≤ 1. This implies |f(z)| = |z+g(z)| ≤ 3
2 |z|, which

in the inequality in the statement leads to (1− 1
n )3n−2 ≤ 3, which again it is

true for n ≤ 3 but is false for n ≥ 4 and proves the corollary. �

Remark. From Corollary 3.4.8 it is natural to ask what happens with the
geometric properties of the Bernstein polynomials of degrees ≥ 4 with respect
to the classes S3, S4, and S1.

Positive results will be given using suitable subclasses of S3, S4, and S1.
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Theorem 3.4.9. Let n ≥ 2 and suppose that f ∈ An(D).
(i) If f(0) = f ′(0)−1 = 0, ‖f (k)‖ ≤ 1

e , for all k = 2, . . . , n and n|f(1/n)| ≥
1, then Bn(f) is starlike (univalent) in D. Here recall that ‖ · ‖ denotes the
uniform norm on C(D).

(ii) If f(0) = f ′(0) − 1 = 0, ‖f (k)‖ ≤ 1
2e , for all k = 2, . . . , n and

n|f(1/n)| ≥ 1, then Bn(f) is convex (univalent) in D.

Proof. We will use the following well known relationship (see, e.g., Lorentz
[247], p. 13):

Bn(f)(z) =
n∑

k=0

(
n

k

)

∆k
1/nf(0)zk =

n∑

k=0

(
n

k

)
k!
nk

[

0,
1
n

, . . . ,
k

n
; f
]

zk.

Set Pn(f)(z) = Bn(f)(z)
nf(1/n) .

(i) It is obvious that an f satisfying the conditions in the statement belongs
to S3.

Differentiating Bn(f)(z) twice, passing to the modulus, and taking into
account Theorem 3.4.3 and the hypothesis, we get

|P ′′
n (f)(z)| ≤ 1

n|f(1/n)|

n∑

k=2

(
n

k

)
k(k − 1)

nk
‖f (k)‖

≤ 1
e

n∑

k=2

(
n

k

)
k(k − 1)

nk
=

n − 1
n · e

n∑

k=2

(
n − 2
k − 2

)
1

nk−2

=
n − 1
n · e

n−2∑

j=0

(
n − 2

j

)
1
nj

=
(n − 1)(1 + 1/n)n

n · e(1 + 1/n)2
≤ 1

e
(1 + 1/n)n ≤ 1,

for all z ∈ D.
This implies that Pn(f) ∈ S3 and that Bn(f) is starlike (univalent) in D.
(ii) Obviously, an f satisfying the conditions in the statement belongs

to S4.
By similar reasoning to that in the above point (i), we obtain |P ′′

n (f)(z)| ≤
1
2 , for all |z| ≤ 1, that is Pn(f) ∈ S4, which immediately implies that Bn(f)
is convex (univalent) in D and proves the theorem. �

Remark. Simple examples of f satisfying Theorem 3.4.9 (i) and (ii) are given
by fn,m and gn,m below, defined respectively by

fn,m(z) = z +
n

e(n + 1)

(

z − 1
n

)
zm

m(m − 1) · · · (m − n + 1)Cn

and

gn,m(z) = z +
n

2e(n + 1)

(

z − 1
n

)
zm

m(m − 1) · · · (m − n + 1)Cn
,

for any m > n, where Cn ≥ n + 1 + 1/n.
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Indeed, it is easy to show that fn,m(0) = gn,m(0) = f ′
n,m(0)−1 = g′n,m(0)−

1 = 0, nfn,m(1/n) = ngn,m(1/n) = 1. Then for all k = 2, . . . , n, we have

f (k)
n,m(z) =

n

e(n + 1)

[(

z − 1
n

)
zm

m(m − 1) · · · (m − n + 1)Cn

](k)

=
n

e(n + 1)

[(

z − 1
n

)
zm−km(m − 1) · · · (m − k + 1)
m(m − 1) · · · (m − n + 1)Cn

+ k
zm−k+1m(m − 1) · · · (m − k + 2)

m(m − 1) · · · (m − n + 1)Cn

]

,

which immediately implies

|f (k)
n,m(z)| ≤ 1

e

[
1

Cn
+

n

Cn

]

≤ 1
e

for all |z| ≤ 1.
Similarly, we get |g(k)

n,m(z)| ≤ 1
2e , for all k = 2, . . . , n and |z| ≤ 1.

The class of functions for which the attached Bernstein polynomials of
degree n ≥ 3 are starlike in D can be enlarged, as can be seen by the following
result.

Theorem 3.4.10. Let n ≥ 2. If f ∈ An(D) satisfies f(0) = f ′(0) − 1 = 0,
‖f (k)‖ ≤ n−1

n(e−1) for all k = 2, . . . , n and n|f(1/n)| ≥ 1, then Bn(f) is starlike
(univalent) in D.

Proof. Integrating from 0 to x with respect to t the identity

n−2∑

j=0

(
n − 2

j

)

tj = (1 + t)n−2,

it follows that

x

n−2∑

j=0

(
n − 2

j

)

xj 1
j + 1

=
(1 + x)n−1 − 1

n − 1
,

and taking x = 1
n , we get

n−2∑

j=0

(
n − 2

j

)
1
nj

· 1
j + 1

=
n

n − 1

[(

1 +
1
n

)n−1

− 1

]

=
n

n − 1

[
n

n + 1

(

1 +
1
n

)n

− 1
]

≤ n(e − 1)
n − 1

.
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Writing Bn(f)(z) =
∑n

k=0 akzk with ak =
(
n
k

)
∆k

1/nf(0) and reasoning as
in the proof of Theorem 3.4.9 (i), we have

n∑

k=2

k|ak| =
n∑

k=2

k

(
n

k

)

|∆k
1/nf(0)|

=
n∑

k=2

k

(
n

k

)
k!
nk

|[0, 1/n, . . . , k/n; f ]| ≤
n∑

k=2

k

(
n

k

)
‖f (k)‖

nk

≤ n − 1
n(e − 1)

n−2∑

j=0

(
n − 2

j

)
1
nj

· 1
j + 1

≤ 1

for all |z| ≤ 1. This implies that Pn(f)(z) = Bn(f)(z)
n|f(1/n)| ∈ S1, that is, Bn(f) is

starlike in D. �

Remarks. (1) Since for any n ≥ 3 we obviously have 1
e < n−1

n(e−1) , it follows
that Theorem 3.4.10 is more general than Theorem 3.4.9 (i).

(2) The influence of critical points on the univalence of polynomials in the
unit disk (see, e.g., Robertson [323]), could be applied to Bernstein polyno-
mials too, at least for the simplest cases, e.g., n = 2, 3.

(3) If we consider f(z) =
∑∞

k=1 ckzk, with c1 = 1, z ∈ D, then by the proof
of Theorem 3.4.1 (iii), we have ‖πn,k‖ ≤ 1 and by the Bernstein’s inequality
we easily get for all |z| ≤ 1,

|B′
n(f)(z)| ≤

∞∑

k=1

|ck| · |π′
k,n(z)| ≤

∞∑

k=1

|ck|k, |B′′
n(f)(z)| ≤

∞∑

k=1

|ck|(k − 1)k.

Then, denoting by RM (with M > 1), R3 and R4, the sets of all functions
f as above, satisfying in addition

∑∞
k=1 |ck|k < M ,

∑∞
k=2 |ck|(k − 1)k ≤ 1

and
∑∞

k=2 |ck|(k − 1)k ≤ 1/2, respectively, we easily get RM ⊂ SM , R3 ⊂ S3,
R4 ⊂ S4 and Bn(U) ⊂ U , for any U = RM , U = R3, U = R4 and all n ∈ N.

(4) Another type of property preserved by the Bernstein polynomials
(related somehow to the variation-diminishng property) was pointed out in
Schmeisser [341] and can be briefly stated as follows: the sets (−∞, 0), (−∞, 0],
(1,+∞), [1,+∞), R \ (0, 1), R \ (0, 1], R \ [0, 1] are Bernstein invariant where
by definition, a set U ⊂ C is called Bernstein invariant if for any polyno-
mial P with complex coefficients having all its zeros in U , all the Bernstein
polynomials Bn(P ) of positive degree have their zeros in U .

At the end of this section, it is of interest to point out (without proof) the
following approximation properties of the complex Bernstein polynomials.

In this sense, for R ≥ 1, let us define by AR the space of all functions
defined and analytic in the open disk of center 0 and radius R denoted by
DR (obviously D1 = D). Setting rj = R − R−1

j , j ∈ N, and for f ∈ AR,
‖f‖j = max{|f(z)|; |z| ≤ rj}, since r1 = 1 and rj ↗ R, it is well known that
{‖ · ‖j , j ∈ N} is a countable family of increasing seminorms on AR and that
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AR becomes a metrizable complete locally convex space (Fréchet space) with
respect to the metric

d(f, g) =
∞∑

j=1

1
2j

· ‖f − g‖j

1 + ‖f − g‖j
, f, g ∈ AR.

It is well known that limn→∞d(fn, f) = 0 is equivalent to the fact that the
sequence (fn)n∈N converges to f uniformly on compacts in DR.

Theorem 3.4.11. (Gal [135]) Consider f ∈ AR, R > 1, that is f(z) =∑∞
k=0 ckzk, for all z ∈ DR.
Let the complex Bernstein polynomials be given by

Bn(f)(z) =
n∑

k=0

(
n

k

)

zk(1 − z)n−kf(k/n),

and let us define their iterates by B
(1)
n (f)(z) = Bn(f)(z) and B

(m)
n (f)(z) =

Bn[B(m−1)
n (f)](z), for any m ∈ N, m ≥ 2.

(i) The following Voronovskaya-type result in the compact unit disk holds:
∣
∣
∣
∣Bn(f)(z) − f(z) − z(1 − z)

2n
f ′′(z)

∣
∣
∣
∣ ≤

|z(1 − z)|
2n

· 10M(f)
n

for all n ∈ N, |z| ≤ 1, where 0 < M(f) =
∑∞

k=3 k(k − 1)(k − 2)2|ck| < ∞.
(ii) For any r ∈ [1, R), the following Voronovskaya-type result for compact

disks holds
∣
∣
∣
∣Bn(f)(z) − f(z) − z(1 − z)

2n
f ′′(z)

∣
∣
∣
∣ ≤

5(1 + r)2

2n
· Mr(f)

n

for all n ∈ N, |z| ≤ r, where Mr(f) =
∑∞

k=3 |ck|k(k − 1)(k − 2)2rk−2 < ∞.
(iii) For any fixed n ∈ N, we have

lim
m→∞

d[B(m)
n (f), B1(f)] = 0;

(iv) If limn→∞
mn

n = 0, then

lim
n→∞

d[B(mn)
n (f), f ] = 0.

Moreover, for any fixed q ∈ N, the following estimates hold:

‖B(m)
n (f) − f‖q ≤ m

n

∞∑

k=2

|ck|k(k − 1)rk
q
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and

d[B(m)
n (f), f ] ≤ m

n

∞∑

k=2

|ck|k(k − 1)rk
q +

1
2q

,

where
∑∞

k=2 |ck|k(k − 1)rk
q < ∞.

(v) If limn→∞
mn

n = ∞, then

lim
n→∞

d[B(mn)
n (f), B1(f)] = 0.

3.5 Bibliographical Notes and Open Problems

Theorem 3.2.6, Corollary 3.2.7, Theorem 3.2.8, Corollaries 3.2.9–3.2.12,
Theorem 3.3.14, Corollary 3.3.15, Theorems 3.4.1 (iv), (v), 3.4.2, 3.4.4, 3.4.5,
Corollaries 3.4.6–3.4.8, and Theorems 3.4.9, 3.4.10 appear for the first time
here.

Open Problem 3.5.1. Suggested by the real case (see Chapter 1), we
can formally define the concepts of costarlike and coconvex approximation
as follows. Given f ∈ A∗(D), find polynomials Pn and Qn of degree ≤ n
(n ∈ N) of good approximation for f such that

Re
[
zf ′(z)
f(z)

]

Re
[
zP ′

n(z)
Pn(z)

]

> 0, ∀z ∈ D,

and

Re
[
zf ′′(z)
f ′(z)

+ 1
]

Re
[
zP ′′

n (z)
P ′

n(z)
+ 1
]

> 0, ∀z ∈ D,

respectively.
Similarly, we can define the concept of cobound turn approximation as the

problem of finding polynomials Rn of degree ≤ n (n ∈ N) of good approxima-
tion to f such that Re[f ′(z)]Re[R′

n(z)] > 0 for all z ∈ D.
Open Problem 3.5.2. An open question is whether the inclusions in

Theorem 3.3.13 remain true by considering the open unit disk D instead of D.
Also, since a shortcoming of Theorem 3.3.13 is that the preservations of the

classes hold beginning with an index n0 = n0(f) (depending on f), it would
be interesting to find subclasses of functions f , such that to get preservation
results for all n ≥ n0, with a specified n0 independent of f .

Open Problem 3.5.3. It is an open question whether the approximation
polynomials considered by the theorems in Sections 3.2 and 3.3 preserve the
subordination and also, the distorsions of f(z).

Open Problem 3.5.4. It is also natural to consider the following problem
concerning improvements in starlike and convex approximation:

For f ∈ A(D) (or f ∈ A∗(D)), construct a sequence of complex polynomials
Pn(f)(z), n = 1, 2, . . . , with the degree of Pn(f)(z) ≤ n, of the convolution
form
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Pn(f)(z) =
1
2π

∫ π

−π

f(reit)Qn(x − t)dt =
1
2π

∫ π

−π

f(zeiu)Qn(u)du,

z = reix ∈ D (or of nonconvolution form) such that for some p ≥ 1,

|f(z) − Pn(f)(z)| ≤ Cωp

(

f ;
1
n

)

D

,

and moreover, if f is starlike (convex) on D, then all Pn(f)(z) are starlike
(convex, respectively) on D.

Open Problem 3.5.5. For functions f : D → C, analytic in D and
continuous in D, it is natural to attach other Bernstein-type polynomials too,
as follows:

Qn(f)(z) =
n∑

k=0

(
n

k

)

zk(1 − z)n−kf(e
2kπi

n ), z ∈ D,

or of the form

Pn(f)(z) =
n∑

k=0

(
n

k

)

zk(1 − z)n−kf(e
kπi
n ), z ∈ D.

It would be interesting to study the approximation and geometric proper-
ties of these complex polynomials too.

Open Problem 3.5.6. In the hypothesis of Theorem 3.4.1 (iii), it is
natural to ask the open question whether for f 	∈ P1, actually we have
‖Bn(f) − f‖ ∼ 1

n in the closed unit disk, with constants depending on f but
independent of n. This is suggested by the phenomenon in the real case, when
it is known that (see Knoop–Zhou [194] and Totik [387]) ‖Bn(f)−f‖∞,C[0,1] ∼
ωϕ

2 (f ; 1/
√

n)∞, with absolute constants.
Open Problem 3.5.7. Find geometric (and approximation) properties for

the complex versions (that is, simply replacing the real variable x by the com-
plex variable z) of the Bernstein-type polynomials introduced just before The-
orem 1.3.3, that is, for Stancu, Soardi, q-Bernstein, Bernstein–Chlodowsky–
Stancu, Lupas2, Durrmeyer, Lupas–Durrmeyer, Lazarevic–Lupas, Mache, and
Paltanea–Berens–Xu polynomials.

The methods in the proofs of Theorem 3.4.2 and Theorems 3.4.4–3.4.10
(in the case of shape preservation) and the considerations in Theorem 3.4.1
(in the case of approximation properties) could be useful for most of them.



4

Shape-Preserving Approximation by Complex
Multivariate Polynomials

In this shorter chapter we extend a few results in Chapter 3 to the case of
functions of several complex variables.

For simplicity and without loss of generality, sometimes we consider the
case of two complex variables.

4.1 Introduction

In this section we recall some well-known concepts and results in geometric
function theory in several complex variables.

Definition 4.1.1. (i) (see, e.g., Graham-Kohr [162], Chapter 6) Let C
n de-

note the space of n-complex variables z = (z1, . . . , zn), zj ∈ C, j = 1, . . . , n.

The open unit polydisk (of center 0 and radius 1) is defined by

P (0; 1) = {z = (z1, . . . , zn) ∈ C; |zj | < 1,∀j = 1, . . . , n} = {z ∈ C; ‖z‖∞ < 1},

where ‖z‖∞ is the norm on C
n given by ‖z‖∞ = max{|zj |; j = 1, . . . , n}.

The open unit Euclidean ball is defined by B(0; 1) = {z = (z1, . . . , zn) ∈
C

n; ‖z‖E < 1}, with ‖z‖E = 〈z, z〉1/2 =
√∑n

k=1 |zk|2, where ‖ · ‖E

is the Euclidean norm generated by the scalar product on C
n, 〈z, w〉 =∑n

j=1 zjwj , ∀z = (z1, . . . , zn), w = (w1, . . . , wn). Here wj denotes the conju-
gate of wj in C.

For 1 ≤ p ≤ +∞, the unit ball Bp(0; 1) is defined with respect to the

special norm ‖z‖p =
[∑n

j=1 |zj |p
]1/p

, |z = (z1, . . . , zn), i.e., Bp(0; 1) = {z =
(z1, ..., zn) ∈ C

n; ‖z‖p < 1}, where for p = +∞ we recapture the above norm
‖ · ‖∞ that defines the polydisk P (0; 1) = B∞(0; 1). Also, obviously we have
‖ · ‖E = ‖ · ‖2.

(ii) (see, e.g., Andreian Cazacu [18]) Let Ω be a domain in C
n and f : Ω →

C. We say that f is holomorphic on Ω if f is continuous on Ω and holomorphic
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in each variable separately (when the others are fixed). Equivalently, f is
holomorphic on Ω if for each point a = (a1, . . . , an) ∈ Ω, there exists a
neighborhood of a such that we have

f(z) =
∞∑

j1,...,jn=0

cj1,...,jn
(z − a1)j1 · · · (z − an)jn , ∀z ∈ Ω,

where the series converges absolutely and uniformly on each compact subset
of Ω.

Using the multi-index notation |j| = j1 + j2 + · · ·+ jn, zj = zj1
1 zj2

2 · · · zjn
n ,

j! = j1!j2! . . . jn!, for any j = (j1, . . . , jn), jk ∈ {0, 1, . . . , } it is well known
that for, e.g., a = 0, we can write cj1,...,jn

= ∂|j|f(0)

∂z
j1
1 ...∂zjn

n

1
j! := Djf(0)/j!, and

therefore we get the Taylor form f(z) =
∑∞

j1,··· ,jn=0
Djf(0)

j! zj .
(iii) (see, e.g., Graham–Kohr [162], Chapter 6) Let f : Ω → C

n, f =
(f1, . . . , fn), fj : Ω → C, |j = 1, . . . , n, where Ω is a domain in C

n. The map-
ping f is called holomorphic on Ω if all its components fj , |j = 1, . . . , n
are holomorphic on Ω (according the above point (ii)). In this case, the
differential Df(z) at z ∈ Ω is a complex linear mapping from C

n to C
n

that can be identified with the complex matrix Df(z) = (Ai,j)i,j=1,...,n,

with Ai,j = ∂fj

∂zi
(z) for all z = (z1, . . . , zn) ∈ Ω. In this case, the relation

f(z +h) = f(z)+Df(z)+ o(‖h‖E) holds in a sufficiently small neighborhood
of the origin in C

n.
Denote by L(Cn, Cn) the class of all bounded complex-linear operators

from C
n into C

n and the identity in L(Cn, Cn) by I. Also, we denote by
Hol(Ω) the class of all holomorphic mappings from Ω to C

n. If 0 ∈ Ω then
we say that f is normalized if f(0) = 0 and Df(0) = I, where I denotes
the unitary n × n matrix. If f ∈ Hol(Ω) and z ∈ Ω, then we say that f is
nonsingular at z if Df(z) is invertible. The mapping f is called nonsingular
on Ω if Df(z) is invertible at any z ∈ Ω.

(iv) (see, e.g., Graham–Kohr [162], Chapter 6) A function f ∈ Hol(Ω) is
called locally biholomorphic on Ω if Jf (z) := det[Df(z)] 	= 0 for all z ∈ Ω.
We say that f ∈ Hol(Ω) is biholomorphic on Ω if is a holomorphic mapping
from the domain Ω onto a domain Ω′ and has a holomorphic inverse defined
on Ω′. (In this case, Ω and Ω′ are called biholomorphically equivalent.)

Note that in fact, the concept of biholomorphic mapping on Ω ⊂ C
n is

equivalent to the concept of injective (univalent) holomorphic mapping on
Ω ⊂ C

n.
(v) (see, e.g., Graham–Kohr [162], Chapter 6) If f ∈ Hol(Ω), then for each

k = 1, 2, . . ., there exists a bounded symmetric k-linear mapping Dkf(z0) :
Πk

i=1C
n → C (i.e., of k variables, linear with respect to each one) called the

kth order Fréchet derivative of f at z0, such that we can write

f(z) =
∞∑

k=0

1
k!

Dkf(z0)[(z − z0)k]
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for all z in a neighborhood of z0. Here we have the notation D0f(z0)(h0) =
f(z0), and for k ≥ 1, Dkf(z0)(hk) = Dkf(z0)(h, h, ..., h), where h ∈ C

n is
taken ktimes. Also, D1 is denoted by D.

(vi) (see, e.g., Graham–Kohr [162], Chapter 6) We say that f ∈ Hol(Ω),
Ω ⊂ C

n, is starlike with respect to z0 ∈ Ω if f is biholomorphic on Ω and
f(Ω) is a starlike domain with respect to f(z0), i.e., for all t ∈ [0, 1], z ∈ Ω,
we have (1 − t)f(z0) + tf(z) ∈ f(Ω). If 0 ∈ Ω and f(0) = 0, then we simply
say that f is a starlike function on Ω.

(vii) (see, e.g., Graham–Kohr [162], Chapter 6) We say that f ∈ Hol(Ω),
Ω ⊂ C

n, is convex on Ω, if f is biholomorphic on Ω and f(Ω) is a convex
domain, i.e., for all t ∈ [0, 1], z, u ∈ Ω, we have (1 − t)f(z) + tf(u) ∈ f(Ω).

It is a well-known fact that there are results in the theory of functions of
one complex variable that can be extended to several complex variables, while
others cannot be so extended.

Thus, recall that in the theory of several complex variables, for example the
Cauchy formula, the maximum modulus theorem, and Schwarz’s lemma hold,
while the Riemann mapping theorem fails, due to Poincaré’s result [307], which
states that for n≥ 2, the unit ball B(0; 1) and the unit polydisk P (0; 1) are not
biholomorphic equivalent. Also, Bloch’s theorem for normalized holomorphic
mappings fails to exist in C

n, for n ≥ 2; see, e.g., Harris [166].
Concerning geometric function theory in several complex variables, there

are results in univalent function theory in one complex variable that cannot
be extended to higher dimensions (e.g., the univalent Bloch theorem, see, e.g.,
Harris [166]). However, as was conjectured by Cartan [62], many properties
of starlike and convex functions in one complex variable can be extended
to several complex variables. For example, Matsuno [268] proved that if f :
B(0; 1) → C

n is a locally biholomorphic mapping such that f(0) = 0, then f
is starlike on B(0; 1) if and only if

Re[〈[Df(z)]−1f(z), z〉] > 0,∀z ∈ B(0; 1), z 	= 0.

However, the theory presents some special characteristics in a sense that
depends much on the norm considered on C

n. As for examples, Alexander’s
result that connects the starlike functions with the convex functions is not true
in several complex variables if in C

n we consider the unit ball with respect to
the Euclidean norm ‖ · ‖E , but it is true with respect to the norms ‖ · ‖∞ and
‖ · ‖1.

Especially the theory of convex mappings is very dependent on the norm
considered in C

n. For example, Suffridge [377], [378], showed that a convex
function on the unit ball B1(0; 1) necessarily is linear.

A very detailed description of geometric function theory in several complex
variables can be found, for example, in Graham–Kohr [162].

In what follows, we present only a few facts that are used to extend some
results in Chapter 3 to higher dimensions.

Theorem 4.1.2. (i) (see, e.g., Graham–Kohr [162], Chapter 6, Problem
6.2.5) If f1, . . . , fn : D → C are normalized starlike functions on the unit
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disk D, then for any 1 ≤ p ≤ +∞, the function f : Bp(0; 1) → C
n defined by

f(z) = (f1(z1), . . . , fn(zn)) for all z = (z1, . . . , zn) ∈ Bp(0; 1) is starlike on
Bp(0; 1).

But if the above functions f1, . . . , fn are convex on D, then the function f
is not necessarily convex on B(0; 1).

(ii) (Suffridge [376]) Let f : P (0; 1) → C
n be a locally biholomorphic

mapping such that f(0) = 0. Then f is convex on P (0; 1) if and only if there
exist convex functions g1, . . . , gn on the unit disk D such that f is of the form

f(z) = M(g1(z1), . . . , gn(zn)), z = (z1, . . . , zn) ∈ P (0; 1),

where M ∈ L(Cn, Cn) is a nonsingular transformation.
(iii) (Roper–Suffridge [324]) Let f : B(0; 1) → C

n be a normalized holo-
morphic mapping on B(0; 1). If f satisfies the condition

∑+∞
k=2 k2 ‖Dkf(0)‖E

k! ≤
1, then f is convex.

Set Kn
1 = {f : B(0; 1) → C

n; f is holomorphic normalized on B(0; 1),
continuous on B(0; 1), and

∑+∞
k=2 k2 ‖Dkf(0)‖E

k! ≤ 1}.

4.2 Bernstein-Type Polynomials Preserving Univalence

By analogy with the real case, we can consider two kinds of Bernstein-type
polynomials of several complex variables z1, . . . , zp, as follows.

For R > 0, let us consider the open polydisk P (0;R) = {(z1, . . . , zp) ∈
C

p; |zk| < R, k = 1, . . . , p} and the closed polydisk P (0;R) = {(z1, . . . , zp) ∈
C

p; |zk| ≤ R, k = 1, . . . , p}. For simplicity, everywhere in this section we denote
P (0;R) by PR and P (0;R) by PR.

If f is an analytic complex-valued function in P1 and continuous in P 1,
we first consider the Bernstein polynomials attached to f by

Bn1,...,np
(f)(z1, . . . , zp)

=
n1∑

k1=0

· · ·
np∑

kp=0

(
n1

k1

)

· · ·
(

np

kp

)

zk1
1 (1 − z1)n1−k1 · · · zkp

p (1 − zp)np−kp

× f(k1/n1, . . . , kp/np)

for all |zj | ≤ 1, j = 1, ..., p.
Second, let us consider

Bn(f)(z1, . . . , zp) =
∑

ki≥0,k1+···+kp≤n

f(k1/n, . . . , kp/n)pk1,...,kp
(z1, . . . , zp),

where

pk1,...,kp
(z1, . . . , zp) =

(
n

k1, . . . , kp

)

zk1
1 · · · zkp

p (1 − z1 − · · · − zp)n−k1−···−kp ,
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and (
n

k1, . . . , kp

)

=
n!

k1! · · · kp!(n − k1 − · · · − kp)!
.

The main result is the following.

Theorem 4.2.1. Let us suppose that F : PR → C
p, with R > 1, is analytic

in PR and univalent in P 1, i.e., F = (f1, . . . , fp), with fk : PR → C analytic
in PR for all k = 1, . . . , p.

(i) There exists an index n0 ∈ N such that for all n1 > n0, . . . , np > n0,
the Bernstein polynomials

Bn1,...,np
(F )(z1, . . . , zp)

= (Bn1,...,np
(f1)(z1, . . . , zp), . . . , Bn1,...,np

(fp)(z1, . . . , zp))

are univalent in P 1.
(ii) There exists an index n0 ∈ N such that for all n > n0, the Bernstein

polynomials

Bn(F )(z1, . . . , zp) = (Bn(f1)(z1, . . . , zp), . . . , Bn(fp)(z1, . . . , zp))

are univalent in P 1.

Proof. For the simplicity of notation, we consider p = 2, but the proof for
p > 2 is absolutely similar. Let F = (f, g), where f, g : PR → C are analytic
in PR.

(i) In this case, the Bernstein polynomials can be written by the formula
Bm,n(F )(z1, z2) = (Bm,n(f)(z1, z2), Bm,n(g)(z1, z2)), where

Bm,n(f)(z1, z2) =
m∑

k=0

n∑

j=0

(
m

k

)(
n

j

)

zk
1 (1 − z1)m−kzj

2(1 − z2)n−jf(k/m, j/n),

(Bm,n(g)(z1, z2) can be defined similarly).
We will prove that

Bm,n(f)(z1, z2) → f(z1, z2) and Bm,n(g)(z1, z2) → g(z1, z2)

as m,n → ∞, uniformly in P 1 = {(z1, z2); |z1| ≤ 1, |z2| ≤ 1}. This will imply
that Bm,n(F ) → F , uniformly in P 1, which by the univalence of uniformly
convergent sequences to a univalent function, see, e.g., Theorem 6.1.18 in
Graham–Kohr [162], will imply that there exists n0 ∈ N such that for all
m,n ≥ n0, the Bernstein polynomials Bm,n(F ) are univalent in P 1.

We use the ideas of the proof in the case of the Bernstein polynomials of
one complex variable in Lorentz [247], pp. 88–89. Thus, since f is analytic
in PR, we can write f(z1, z2) =

∑∞
k,j=0 ck,jz

k
1zj

2 for all (z1, z2) ∈ PR, and
therefore there exists R1 > 1 such that

∑∞
k,j=0 |ck,j |Rk+j

1 is finite.
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Since it is well known that Bm,n(f)(z1, z2) converges uniformly to f(z1, z2)
in the square S = {(z1, z2); z1, z2 ∈ R, 0 ≤ z1 ≤ 1, 0 ≤ z2 ≤ 1} ⊂ P 1, by
Vitali’s convergence theorem (see, e.g., Graham–Kohr [162], Theorem 6.1.16),
it will be sufficient to prove that the polynomials Bm,n(f)(z1, z2) are bounded
in PR1 .

Set Φr,s(z1, z2) = Φr(z1) · Φs(z2), where Φr(z1) = zr
1 and Φs(z2) = zs

2 and

πr,s(z1, z2) = Bm,n(Φr,s)(z1, z2).

It is immediate that

Bm,n(Φr,s)(z1, z2) = Bm(Φr)(z1) · Bn(Φs)(z2),

where Bm and Bn are the Bernstein polynomials of one complex variable that
appear in the proof of Theorem 4.1.1, page 88 in Lorentz [247]. Since we also
can write

Bm,n(f)(z1, z2) =
∞∑

k,j=0

ck,jπk,j(z1, z2),

and since by the relation (4) in the proof of Theorem 4.1.1, page 88 in Lorentz
[247], we have |πr(z1)| ≤ Rr

1 and |πs(z2)| ≤ Rs
1 for all |z1| ≤ R1, |z2| ≤ R1, by

the analyticity of f in PR1 , it immediately follows that there exists M > 0
such that |Bm,n(f)(z1, z2)| ≤ M for all (z1, z2) ∈ PR1 and all m,n ∈ N.

The reasoning for Bm,n(g)(z1, z2) is similar.
(ii) In this case, the Bernstein polynomials can be written by the formula

Bn(F )(z1, z2) = (Bn(f)(z1, z2), Bn(g)(z1, z2)), where

Bn(f)(z1, z2) =
n∑

k=0

n−k∑

j=0

(
n

k

)(
n − k

j

)

zk
1zj

2(1 − z1 − z2)n−k−jf(k/n, j/n)

(Bm,n(g)(z1, z2) can be defined similarly).
We will prove that Bn(f)(z1, z2) → f(z1, z2) and Bn(g)(z1, z2) → g(z1, z2)

as n → ∞, uniformly in P 1 = {(z1, z2); |z1| ≤ 1, |z2| ≤ 1}. This will imply that
Bn(F ) → F , uniformly in P 1, which by the univalence of uniformly convergent
sequences to univalent function, see, e.g., Theorem 6.1.18 in Graham–Kohr
[162], will imply that there exists n0 ∈ N such that for all n ≥ n0, the Bernstein
polynomials Bn(F ) are univalent in P 1.

We use the ideas of proof in the case of the Bernstein polynomials of one
complex variable in Lorentz [247], pp. 88–89. Thus, since f is analytic in PR,
we can write f(z1, z2) =

∑∞
k,j=0 ck,jz

k
1zj

2 for all (z1, z2) ∈ PR, and therefore
there exists R1 > 1 such that

∑∞
k,j=0 |ck,j |Rk+j

1 is finite.
Since it is well known that Bn(f)(z1, z2) converges uniformly to f(z1, z2)

in the triangle T = {(z1, z2); z1, z2 ∈ R, 0 ≤ z1, 0 ≤ z2, z1 + z2 ≤ 1} ⊂ P 1 by
Vitali’s convergence theorem (see, e.g., Graham–Kohr [162], Theorem 6.1.16),
it will be sufficient to prove that the polynomials Bn(f)(z1, z2) are bounded
in PR1 .
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Set Φr,s(z1, z2) = zr
1 · zs

2 and

πr,s(z1, z2) = Bn(Φr,s)(z1, z2).

Since we can write

Bn(f)(z1, z2) =
∞∑

r,s=0

cr,sπr,s(z1, z2),

it will be sufficient to show that

|πr,s(z1, z2)| ≤ Rr+s
1 for all (z1, z2) ∈ PR1 .

Writing pn,k,j(z1, z2) =
(
n
k

)(
n−k

j

)
zk
1zj

2(1 − z1 − z2)n−k−j , let us consider
the generating function

Φ(u, v, z1, z2)

=
∞∑

r=0

∞∑

s=0

πr,s(z1, z2)
ur

r!
vs

s!

=
n∑

k=0

n−k∑

j=0

pn,k,j(z1, z2)
∞∑

r=0

∞∑

s=0

(
k

n

)r (
j

n

)s
ur

r!
vs

s!

=
n∑

k=0

n−k∑

j=0

pn,k,j(z1, z2)eku/nejv/n

=
n∑

k=0

n−k∑

j=0

(
n

k

)(
n − k

j

)(
z1e

u/n
)k (

z2e
v/n
)j

(1 − z1 − z2)n−k−j := S.

Writing z1e
u/n = A, z2e

v/n = B and 1 − z1 − z2 = C, we get

S =
n∑

k=0

n−k∑

j=0

(
n

k

)(
n − k

j

)

AkBjCn−k−j

=
n∑

k=0

n−k∑

j=0

(
n

k

)

AkCn−k

(
n − k

j

)(
B

C

)j

=
n∑

k=0

(
n

k

)

AkCn−k
n−k∑

j=0

(
n − k

j

)(
B

C

)j

=
n∑

k=0

(
n

k

)

AkCn−k

(

1 +
B

C

)n−k

= (A + B + C)n = [1 − z1 − z2 + z1e
u/n + z2e

v/n]n,

that is,

Φ(u, v, z1, z2) = [1 − z1 − z2 + z1e
u/n + z2e

v/n]n

=

(

1 +
∞∑

r=1

z1
ur

nrr!
+

∞∑

s=1

z2
vs

nss!

)n

.
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Since for |z1| ≥ 1, |z2| ≥ 1 we have |z1| ≤ |z1|k and |z2| ≤ |z2|k for all
k = 1, 2, . . ., it follows that the coefficients of ur and vs in the power series
1 +
∑∞

r=1 z1
ur

nrr! +
∑∞

s=1 z2
vs

nss! are majorized by those of

1 +
∞∑

r=1

(R1u)r

nrr!
+

∞∑

s=1

(R1v)s

nss!

if |z1| = |z2| = R1, and therefore if |z1| ≤ R1, |z2| ≤ R1.
But we observe that the series

1 +
∞∑

r=1

(R1u)r

nrr!
+

∞∑

s=1

(R1v)s

nss!
,

is a subpart of the series
(

1 +
∞∑

r=1

(
R1u

n

)r 1
r!

)(

1 +
∞∑

s=1

(
R1v

n

)s 1
s!

)

= eR1u/n · eR1v/n.

This implies that the moduli of the coefficients of urvs in Φ(u, v, z1, z2) =∑∞
r=0

∑∞
s=0 πr,s(z1, z2)ur

r!
vs

s! do not exceed those in

[eR1u/n · eR1v/n]n = eR1ueR1v,

which proves the theorem. �

Remarks. By the proofs of Theorem 4.2.1 and Theorem 3.4.1 (iii) for an
analytic function f : PR → C with R > 1, we easily can deduce the estimate

‖Bm,n(f) − f‖ ≤ M2(f)
[

1
m

+
1
n

]

for all m,n ∈ N,

where the constant M2(f) > 0 is independent of m,n and ‖ · ‖ denotes the
uniform norm in C(D × D).

4.3 Shape-Preserving Approximation by Other Types
of Polynomials

First we introduce the moduli of smoothness we need in the approximation
process.

For simplicity and without loss of generality, we consider the case of two
complex variables.

Definition 4.3.1. Let Bp(0; 1), P (0; 1) ⊂ C
2, 1 ≤ p ≤ ∞, where P (0; 1) =

B∞(0; 1).
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(i) If f : P (0; 1) → C, then the second-order partial moduli of smoothness
of f on the distinguished boundary ∂0P (0; 1) = {(z1, z2); |z1| = |z2| = 1}
(which is obviously different from the whole boundary ∂P (0; 1)) can be defined
by

ω
(z1)
2 (f ; δ)∂0P (0;1) = sup{|f(z1e

iu, z2) + f(z1e
−iu, z2) − 2f(z1, z2)|;

|z1| = |z2| = 1, |u| ≤ δ},
ω

(z2)
2 (f ; δ)∂0P (0;1) = sup{|f(z1, z2e

iv) + f(z1, z2e
−iv) − 2f(z1, z2)|;

|z1| = |z2| = 1, |v| ≤ δ},

for any δ ≥ 0.
(ii) If f : P (0; 1) → C, then a modulus of continuity of f on P (0; 1) can

be defined by

ω1(f ; δ, η)
P (0;1)

= sup{|f(z, w) − f(u, v)|; (z, w), (u, v) ∈ P (0; 1),

|z − u| ≤ δ, |w − v| ≤ η},

for any δ, η ≥ 0.
(iii) If f : Bp(0; 1) → C, then we can define another modulus of continuity

by

ω1(f ; δ)
Bp(0;1)

= sup{|f(A) − f(B)|;A = (z, w), B = (u, v) ∈ Bp(0; 1),

‖A − B‖p ≤ δ}.

If p = +∞, since B∞(0; 1) = P (0; 1), then it is easy to see that
ω1(f ; δ)

B∞(0;1)
= ω1(f ; δ, δ)

P (0;1)
.

(iv) If f : Bp(0; 1) → C, then

En,m(f) = inf{‖f − P‖
Bp(0;1)

;P is polynomial of degree ≤ n in z1

and of degree ≤ m in z2}

is called the best approximation of f by complex polynomials P (z1, z2) of
degree ≤ n with respect to z1 and of degree ≤ m with respect to z2. Here
‖f − P‖

Bp(0;1)
= sup{|f(A) − P (A)|;A ∈ Bp(0; 1)}.

A polynomial P ∗
n,m satisfying En,m(f) = ‖f − P ∗

n,m‖
Bp(0;1)

will be called
a polynomial of best approximation.

Note that since the class of complex polynomials of degree ≤ n in z1

and of degree ≤ m in z2 is finite-dimensional, by, e.g., Singer [357], p. 91,
Corollary 2.2, if f : Bp(0; 1) → C is continuous on Bp(0; 1), then for any
n,m ∈ {0, 1, . . . , } there exists a polynomial of best approximation P ∗

n,m.
A mapping f : Ω → C

n, where we suppose, that Ω ⊂ C
n and

f(z1, . . . , zn) = (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)), will be called a generalized
polynomial of degree dk in the variable zk, k = 1, . . . , n, if each fj , j = 1, . . . , n
is a polynomial with respect to the variables z1, . . . , zn. If we denote by
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mj,k the degree of the polynomial fj with respect to the variable zk, then
dk = maxj=1,...,n mj,k, for all k = 1, . . . , n.

Based on the results in Section 3.3 and on the above Theorem 4.1.2, we
present the following result.

Theorem 4.3.2. (i) Let f : Bp(0; 1) → C
n with 1 ≤ p ≤ +∞ be fixed, of the

form f(z) = (f1(z1), . . . , fn(zn)), where each fk : D → C, k = 1, . . . , n, is
analytic, normalized in D, and continuous in D.

Set Ωm(t) = (m!)2

2(2m)! [2 cos(t/2)]2m the de la Vallée Poussin kernel
and define the polynomial of degree ≤ mk in zk given by Pmk

(zk) =
1
π

∫ π

−π
fk(zkeit)Ωmk

(t)dt for all k = 1, . . . , n.
If all fk, k = 1, . . . , n are starlike on D, then for any m1, . . . ,mn ∈ N, the

mappings Pm1,...,mn
(f) : Bp(0; 1) → C

n defined by Pm1,...,mn
(f)(z1, . . . , zn) =

(Pm1(z1), . . . , Pmn
(zn)) are starlike (generalized polynomials) on Bp(0; 1) (of

degree ≤ mk, with respect to zk, k = 1, . . . , n), and the following estimate
holds:

‖f(z1, . . . , zn) − Pm1,...,mn
(f)(z1, . . . , zn)‖p ≤ 3

⎡

⎣
n∑

j=1

ω1(fj ; 1/
√

mj)D

⎤

⎦ ,

for all z = (z1, . . . , zn) ∈ Bp(0; 1).
Let us consider the subclasses of starlike functions S1, S2, and S3 as defined

in Section 3.3 and suppose that fk, k = 1, . . . , n belong all to some subclass
Sj0 , j0 ∈ {1, 3} (not necessarily the same j0 for all k). Then the generalized
polynomials defined by Pm1,...,mn

(f)(z1, . . . , zn) = (Pm1(z1), . . . , Pmn
(zn)),

where each Pmk
(zk) =

∫ zk

0
Qmk

(t)dt, with Qmk
(z) = 1

π

∫ π

−π
f ′

k(zkeit)Omk
(t)dt

and Omk
(t) the normalized Jackson or a generalized Beatson kernel, are star-

like on Bp(0; 1). In addition, if f ′
k, k = 1, . . . , n, are all continuous on D, then

the following estimate holds:

‖f(z1, . . . , zn) − Pm1,...,mn
(f)(z1, . . . , zn)‖p ≤ C

⎡

⎣
n∑

j=1

ω2(f ′
j ; 1/mj)∂D

⎤

⎦ ,

for all z = (z1, . . . , zn) ∈ Bp(0; 1), where C > 0 is independent of f and n.
If in the above construction we replace Omk

(t) by the generalized de la
Valleé Poussin kernel Vmk

(t) = 2F2mk
(t) − Fmk

(t), where Fmk
(t) is the nor-

malized Fejér kernel, and fk, k = 1, . . . , n all belong to some subclass Sj0 ,
j0 ∈ {1, 2} (not necessarily the same j0 for all k), then all Pm1,...,mn

(f) are
starlike on Bp(0; 1), and the following better estimate holds

‖f(z1, . . . , zn) − Pm1,...,mn
(f)(z1, . . . , zn)‖p ≤ 4

⎡

⎣
n∑

j=1

Emk
(fk)

⎤

⎦ ,
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for all z = (z1, . . . , zn) ∈ Bp(0; 1). Here Emk
(fk) denotes the best approxima-

tion of fk by polynomials of degree ≤ mk.
(ii) Suppose f : P (0; 1) → C

n is a locally biholomorphic mapping, contin-
uous on P (0; 1), f(0) = 0, and f is convex on P (0; 1), i.e., necessarily of the
form

f(z1, . . . , zn) = M(g1(z1), . . . , gn(zn)), (z1, . . . , zn) ∈ P (0; 1),

where M ∈ L(Cn, Cn), M = (ai,j)i,j=1,...,n is nonsingular, and all gk : D are
convex on D and continuous on D.

As at the above point (i), define Pmk
(zk) = 1

π

∫ π

−π
gk(zkeit)Ωmk

(t)dt for
all k = 1, . . . , n. Then the mappings Pm1,...,mn

(f) : P (0; 1) → C
n defined by

Pm1,...,mn
(f)(z1, . . . , zn) = M(Pm1(z1), . . . , Pmn

(zn)) are convex (generalized
polynomials) on P (0; 1) (of degree ≤ mk, with respect to zk, k = 1, . . . , n) and
the following estimate holds:

‖f(z1, . . . , zn) − Pm1,...,mn
(f)(z1, . . . , zn)‖∞ ≤ 3C

⎡

⎣
n∑

j=1

ω1(fj ; 1/
√

mj)D

⎤

⎦

for all z = (z1, . . . , zn) ∈ P (0; 1), where C = maxi,j=1,...,n |ai,j | > 0.
(iii) Let f be holomorphic normalized on B(0; 1), f = (G,H) with G,H :

B(0; 1) → C, f(z1, z2) = (G(z1, z2),H(z1, z2)).
Suppose that On(t) is the normalized Jackson kernel or a normalized gen-

eralized Beatson kernel. Define

Pn,m(f)(z1, z2) = (P1(z1, z2), P2(z1, z2)),

where

P1(z1, z2) =
1
π2

∫ π

−π

∫ π

−π

On(u)Om(v)G(z1e
iu, z2e

iv)du dv

and
P2(z1, z2) =

1
π2

∫ π

−π

∫ π

−π

On(u)Om(v)H(z1e
iu, z2e

iv)du dv.

Also, for the generalized de la Vallée Poussin kernel Vn(t) defined at the
above point (i), let us define

Rn,m(f)(z1, z2) = (R1(G)(z1, z2), R2(H)(z1, z2)),

where

R1(G)(z1, z2)

=
1
π2

∫ π

−π

∫ π

−π

[2F2n(u) − Fn(u)][2F2m(v) − Fm(v)]G(z1e
iu, z2e

iv)du dv,
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and

R2(H)(z1, z2)

=
1
π2

∫ π

−π

∫ π

−π

[2F2n(u) − Fn(u)][2F2m(v) − Fm(v)]H(z1e
iu, z2e

iv)du dv.

Then, the generalized polynomials Pn,m(f)(z1, z2), Rn,m(f)(z1, z2) ∈ K2
1

satisfy the estimates

‖f(z1, z2) − Pn,m(f)(z1, z2)‖2

≤ C[ω(z1)
2 (G; 1/n)∂0P (0;1) + ω

(z1)
2 (H; 1/n)∂0P (0;1)]

+ C[ω(z2)
2 (G; 1/n)∂0P (0;1)] + ω

(z2)
2 (H; 1/m)∂0P (0;1)]

and
‖f(z1, z2) − Rn,m(f)(z1, z2)‖2 ≤ 10[En,m(G) + En,m(H)]

for all (z1, z2) ∈ B(0; 1). Here ∂0P (0; 1) = {(z1, z2); |z1| = |z2| = 1} is the
distinguished boundary of P (0; 1) and En,m is given by Definition 4.3.1 (iv).

Proof. (i) By the inequality ‖(z1, ..., zn)‖p ≤
∑m

k=1 |zk|, it is an immediate
consequence of Theorem 4.1.2 (i) combined with Theorem 3.1.3 (viii) for the
de la Valleé Poussin kernel, with Theorem 3.3.9 (i),(ii), (iii), for the subclasses
S1 and S2, and with Theorem 3.3.10, (i), for the subclass S3. Also, we note that
Bp(0; 1) ⊂ P (0; 1), and in fact the estimates are valid for all z ∈ P (0; 1) = D

n
.

(ii) It is an immediate consequence of Theorem 4.1.2 (ii) combined with
Theorem 3.1.3 (viii).

(iii) Concerning the approximation error by Pn,m(f), we get

‖f(z1, z2) − Pn,m(f)(z1, z2)‖2 ≤ |G(z1, z2) − Pn,m(G)(z1, z2)|
+ |H(z1, z2) − Pn,m(H)(z1, z2)|.

But

G(z1, z2) − Pn,m(G)(z1, z2)

=
1
π2

∫ π

−π

On(u)Om(v)
[
G(z1, z2) − G(z1e

iu, z2e
iv)
]
du dv

=
1
π2

∫ π

−π

On(u)Om(v)

× [G(z1, z2) − G(z1, z2e
iv) + G(z1, z2e

iv) − G(z1e
iu, z2e

iv)]du dv

=
1
π

∫ π

−π

On(u)
[

1
π

∫ π

0

(2G(z1, z2) − G(z1, z2e
iv)

− G(z1, z2e
−iv))Om(v)dv

]

du +
1
π

∫ π

−π

Om(v)
[

1
π

∫ π

0

(2G(z1, z2e
iv)−G(z1e

iu, z2e
iv)−G(z1e

−iu, z2e
iv))On(u)du

]

dv.
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From the maximum modulus principle (see, e.g., Andreian Cazacu [18],
p. 69), the maximum is attained on the distinguished boundary of P (0; 1),
denoted by ∂0P (0; 1). Therefore, it suffices to prove the estimates for |z1| =
|z2| = 1 in order for them to be valid for all z1, z2 ∈ P (0; 1), and since
obviously B(0; 1) ⊂ P (0; 1), the estimate will be valid for all z1, z2 ∈ B(0; 1).

Therefore, from the above relationship, for |z1| = |z2| = 1 we immediately
get (reasoning as in the case if one complex variable)

|G(z1, z2) − Pn,m(G)(z1, z2)| ≤ C[ω2(G; 1/m)∂0P (0;1) + ω2(G; 1/n)∂0P (0;1)],

with C > 0 independent of f , n, and m.
By similar reasoning we have

|H(z1, z2) − Pn,m(H)(z1, z2)| ≤ C[ω2(H; 1/m)∂0P (0;1) + ω2(H; 1/n)∂0P (0;1)].

Concerning the approximation error by Rn,m(f)(z1, z2), first we prove that
if f = (pn,m, qn,m), where pn,m(z1, z2), qn,m(z1, z2) are polynomials of degree
≤ n in z1 and of degree ≤ m in z2, we have Rn,m(f)(z1, z2) = f(z1, z2). It
suffices to prove this for any f of the form f(z1, z2) = (zj

1z
k
2 , zs

1z
t
2), where

j, s ∈ {0, 1, . . . , n} and k, t ∈ {0, 1, . . . ,m}.
This is immediate from the case of one complex variable (see, e.g., Gal

[127], p. 425), which proves the first estimate in (iii).
Then, we have

[2F2n(u) − Fn(u)][2F2m(v) − Fm(v)] = 4F2n(u)F2m(u) − 2F2n(u)Fm(v)
− 2F2m(v)Fn(u) + Fn(u)Fm(u).

By the case of one complex variable (see Gal [127], p. 424), for all r, s ∈ N we
immediately get
∣
∣
∣
∣

1
π2

∫ π

−π

Fr(u)Fs(v)[A(z1e
iu, z2e

iv) − B(z1e
iu, z2e

iv)]du dv

∣
∣
∣
∣ ≤ ‖A − B‖

P (0;1)

for all z1, z2 ∈ P (0; 1), where A,B : P (0; 1) → C and ‖A − B‖
P (0;1)

=

sup{|A(z1, z2) − B(z1, z2)|; (z1, z2) ∈ P (0; 1)}.
This immediately implies |R1(A)(z1, z2)−R1(B)(z1, z2)| ≤ 9‖A−B‖

P (0;1)
,

i.e.,
‖R1(A) − R1(B)‖

P (0;1)
≤ 9‖A − B‖

P (0;1)
.

Therefore,

‖f(z1, z2) − Rn,m(f)(z1, z2)‖2 ≤ ‖G − R1(G)‖
P (0;1)

+ ‖H − R1(H)‖
P (0;1)

.

Denote by G∗
n,m the polynomial of best approximation of G of degree ≤ n

in z1 and by H∗
n,m the polynomial of best approximation of H.
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By the above conclusions, we get

‖G − R1(G)‖
P (0;1)

≤ ‖G − G∗
n,m‖

P (0;1)
+ ‖R1(G∗

n,m) − R1(G)‖
P (0;1)

≤ En,m(G) + 9‖G − G∗
n,m‖

P (0;1)
= 10En,m(G).

Similarly,
‖H − R1(H)‖

P (0;1)
≤ 10En,m(H),

which proves the estimate in (iii). �

Remark. It is easy to see that the results in Chapter 3, Theorem 3.2.6, Corol-
lary 3.2.7, Theorem 3.2.8, and Corollaries 3.2.9–3.2.12 remain valid without
any change if we consider there that Ω,Ωj ⊂ C

m. For example, corresponding
to Corollary 3.2.12, we get (by taking m = 2 for simplicity) the following.

Theorem 4.3.3. For (X, ‖ · ‖X) a complex normed space and S ⊂ X a linear
subspace, let L : X → F(D × D), where and (F(D × D), ‖ · ‖F ) is a certain
normed space of complex-valued functions defined on D × D. If L is a linear
bounded operator such that there exists e ∈ S with Re[L(e)(z)] ≥ 1 for all
z ∈ D × D and if we set M0(Re[L]) = {f ∈ X : Re[L(f)(z)] > 0, for all z ∈
D × D}, then for any f ∈ M0(Re[L]) we have

ES,M0(Re[L])(f ;X) ≤ (1 + ‖e‖X + ‖|L‖| · ‖e‖X)ES(f ;X).

Remark. In order to get an application of Theorem 4.3.3, let us particularize
the spaces X, S and the operator L.

For d ∈ {0, 1, . . .}, let us consider X = Ad(D × D), the space of d-
continuously differentiable functions f : D × D → C on the closed unit bidisk
D×D, endowed with the norm ‖f‖Ad(D×D) = max{‖f (k,s)‖; 0 ≤ k, s, k+s ≤ d},
where f (k,s)(z) = ∂k+sf

∂zk
1 ∂zs

2
(z), z = (z1, z2) and ‖ · ‖ denotes the uniform norm

on C(D × D).
Take L : Ad(D × D) → C(D × D), defined by L(f)(z) = ∂k0+s0f

∂z
k0
1 ∂z

s0
2

(z), z =

(z1, z2), where k0, s0 are fixed with k0+s0 ≤ d. Then obviously L is linear and
bounded, and e(z) = zk0

1 zs0
2 , ∀z = (z1, z2) ∈ D × D satisfies Re[L(e)(z)] = 1.

Choose as S the set of all complex polynomials of degree ≤ n in z1 and of
degree ≤ m in z2 (for arbitrary fixed n,m ∈ N, which is a finite-dimensional
set in C(D × D)).

As a consequence of Theorem 4.3.3, we get that for any f ∈ Ad(D × D)
satisfying Re[ ∂k0+s0f

∂z
k0
1 ∂z

s0
2

(z)] > 0, for all z = (z1, z2) ∈ D × D, there exists a

complex polynomial Pn,m of degree ≤ n in z1 and of degree ≤ m in z2 such

that Re[∂k0+s0Pn,m

∂z
k0
1 ∂z

s0
2

(z)] > 0 for all z ∈ D × D, and the estimate

‖f − Pn,m‖Ad(D×D) ≤ 3En,m(f)
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holds, where En,m(f) denotes the best (unrestricted) approximation of f by
complex polynomials of degree ≤ n in z1 and of degree ≤ m in z2 with respect
to the norm ‖ · ‖Ad(D×D).

For our purpose, instead of Ad(D×D), in what follows it will also be useful
to introduce the following notations.

We let Ap,q(D×D), p, q ∈ {0, 1, . . .}, denote the set of all functions f(z1, z2),
f : D × D → C such that all the partial derivatives exist: f (k,l)(z1, z2) =
D(k,l)(f)(z1, z2) = ∂k+lf

∂zk
1 ∂zl

2
(z1, z2), continuous on D × D, for all 0 ≤ k ≤ p,

0 ≤ l ≤ q (it is easy to see that Ap,q(D × D) coincides with Ad(D × D),
where d = p + q). The norm on Ap,q(D × D) is given by ‖f‖Ap,q(D×D) =
max{‖D(k,l)(f)‖; 0 ≤ k ≤ p, 0 ≤ l ≤ q}, where ‖ · ‖ denotes the uniform norm
on C(D × D).

On the other hand, for h ∈ A(D) and r ∈ N, we set

ωr(h; δ) = sup{|∆r
uh(eix)|; |x| ≤ π, |u| ≤ δ},

with ∆r
uh(x) =

∑r
k=0(−1)r−k

(
r
k

)
h(x + ku), while for g : D × D → C, g :=

g(z1, z2), we set
ωr(g; δ, 0) = sup

z2∈D

ωr(gz2 ; δ)

and
ωr(g; 0, δ) = sup

z1∈D

ωr(gz1 ; δ),

where for fixed z2, the function gz2 is defined by gz2(z1) = g(z1, z2) for all
z1 ∈ D, and similarly, for fixed z1, the function gz1 is defined by gz1(z2) =
g(z1, z2) for all z2 ∈ D.

Looking more closely at the proof of Theorem 1 in Beutel–Gonska [41] (see
Theorem 2.3.1 in Chapter 2), below we prove that it remains valid for tensor
product of complex linear continuous operators defined on Ad(D):

Theorem 4.3.4. Let us consider that Ap(D) is endowed with the norm

‖f‖Ap(D) := max{‖f (j)‖; j = 0, . . . , p},

where ‖g‖ denotes the uniform norm of g in C(D).
(i) If L : Ap(D) → A(D) is a linear and continuous operator, then for

f ∈ Ap,q(D × D), L[fz2 ] is q-times continuously differentiable with respect to
z2 ∈ D and it commutes as a tensor product with the partial differentiation of
f(z1, z2) ∈ Ap,q(D × D) with respect to z2, i.e.,

D(0,l) ◦z1 L =z1 L ◦ D(0,l), l = 0, . . . , q, z1 ∈ D.

Here [D(0,l) ◦z1 L](f) := ∂lL[fz2 ]

∂zl
2

, [z1L ◦ D(0,l)](f) = L

[(
∂lfz2
∂zl

2

)

z2

]

, fz2(z1) =

f(z1, z2).
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(ii) If M : Aq(D) → A(D) is a linear and continuous operator, then for
f ∈ Ap,q(D × D), L[fz1 ] is p-times continuously differentiable with respect to
z1 ∈ D and it commutes as tensor product with the partial differentiation of
f(z1, z2) ∈ Ap,q(D × D) with respect to z1, i.e.,

D(k,0) ◦z2 M =z2 M ◦ D(k,0), k = 0, ..., p, z2 ∈ D.

Here [D(k,0) ◦z2 M ](f) := ∂kM [fz1 ]

∂zk
1

, [z2M ◦ D(k,0)](f) = M

[(
∂kfz1
∂zk

1

)

z1

]

,

fz1(z2) = f(z1, z2).
(iii) Let L : Ap(D) → Aq(D) and M : Ap(D) → Aq(D) be linear operators

satisfying the estimates

|[g − L(g)](k)(z1)| ≤
m∑

r=1

αr,k(z1)ωr(g(p); ρ1(z1))

for all z1 ∈ D, 0 ≤ k ≤ p, and g ∈ Ap(D), where C1 ≥ αr,k(z1) ≥ 0,
c1 ≥ ρ1(z1) ≥ 0 for all 1 ≤ r ≤ m, 0 ≤ k ≤ p, z1 ∈ D,

and

|[h − M(h)](l)(z2)| ≤
t∑

s=1

βs,l(z)ωs(h(q); ρ2(z2))

for all z2 ∈ D, 0 ≤ l ≤ q, and h ∈ Aq(D), where C2 ≥ βs,l(z2) ≥ 0, c2 ≥
ρ2(z2)) ≥ 0 for all 1 ≤ s ≤ t, 0 ≤ l ≤ q, z2 ∈ D.

Then, for all z1, z2 ∈ D, f ∈ Ap,q(D × D), 0 ≤ k ≤ p, 0 ≤ l ≤ q, we have

|[f − (z1L ◦z2 M)(f)](k,l)(z1, z2)|

≤
m∑

r=1

αr,k(z1)ωr(f (p,l); ρ1(z1), 0)

+ ‖|D(k) ◦ L‖| sup
0≤i≤p

t∑

s=1

βs,l(z2)ωs(f (i,q); 0, ρ2(z2))

and

|[f − (z1L ◦z2 M)(f)](k,l)(z1, z2)|

≤
t∑

s=1

βr,k(z2)ω∗
s (f (k,q); 0, ρ1(z2))

+ ‖|D(l) ◦ M‖| sup
0≤j≤q

m∑

r=1

αr,k(z1)ωr(f (p,j); ρ1(z1), 0).

Proof. (i) and (ii) are immediate from the linearity and continuity of L
and M .

(iii) First we prove that the estimates satisfied by L and M imply their
continuity. We give the proof only for L, since the case of M is similar. The
proof here follows mainly the proof in the real case of the Theorem 1 in
Beutel–Gonska [41].
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Since, in general, we have

ωr(g(p); δ) ≤ 2r‖g(p)‖,
we get for all 0 ≤ k ≤ p,

‖[L(g)](k)‖ ≤ ‖[L(g) − g](k)‖ + ‖g(k)‖

≤
m∑

r=1

sup
z1∈D

ωr(g(p); sup
z1∈D

ρ1(z1)) + ‖g(k)‖

≤ C‖g(p)‖ + ‖g(k)‖ ≤ C‖g‖Ap(D),

which immediately implies ‖L(g)‖Ap(D) ≤ C‖g‖Ap(D), i.e., L is a continuous
operator.

As a consequence, by the above point (i) we obtain D(0,l) ◦z1 L =z1 L ◦
D(0,l), l = 0, . . . , q, which for f ∈ Ap,q(D × D) implies

|[f − (z1L ◦z2 M)(f)](k,l)(z1, z2)|
≤ |[D(k,l) ◦ (Id −z1 L) ◦ D(0,l)](f)(z1, z2)|

+ |[D(k,0) ◦z1 L ◦ D(0,l) ◦ (Id −z2 M)](f)(z1, z2)| := U + V.

By the estimate satisfied by L, we immediately obtain

U ≤
m∑

r=1

αr,k(z1)ωr(f (p,l); ρ1(z1), 0)

for all z1, z2 ∈ D, 0 ≤ k ≤ p, 0 ≤ l ≤ q, and f ∈ Ap,q(D × D).
Now let us set G = [D(0,l) ◦ (Id −z2 M)](f). By f ∈ Ap,q(D × D), we

get f −z2 M(f) ∈ Ap,q(D × D), D(0,l)[f −z2 M(f)] ∈ Ap,q−l(D × D), and
Gz2 ∈ Ap(D) for all z2 ∈ D, 0 ≤ l ≤ q. From this and from the properties of
M , denoting by ‖| · ‖| the operator norm, ‖ · ‖ the uniform norm and ‖ · ‖z1 the
uniform norm with respect to z1, we get

V ≤ ‖
(

dk

dzk
1

◦ L

)

(Gz2)‖ ≤ ‖| dk

dzk
1

◦ L‖| · ‖Gz2‖Ap(D)

= ‖|Dk ◦ L‖| · sup
0≤i≤p

‖ di

dzi
1

[D(0,l) ◦ (Id −z2 M)(f)]z2‖z1

= ‖|Dk ◦ L‖| · sup
0≤i≤p

‖D(0,l) ◦ (Id −z2 M)(f (i,0)(·, z2))‖z1

= ‖|Dk ◦ L‖| · sup
0≤i≤p

sup
z1∈D

|D(0,l) ◦ (Id −z2 M)(f (i,0))(z1, z2)|

≤ ‖|Dk ◦ L‖| · sup
0≤i≤p

sup
z1∈D

t∑

s=1

βs,l(z2)ωs((f (i,q))z1 ; ρ2(z2))

= ‖|Dk ◦ L‖| · sup
0≤i≤p

t∑

s=1

βs,l(z2)ωs(f (i,q); 0, ρ2(z2)),

which proves the first estimate.
The proof of second estimate is similar, which proves the theorem. �
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Remark. Recall that by Remark 1 after the proof of Theorem 3.2.1 (iii) in
Chapter 3, it easily follows that in fact, for univariate functions f , we have

‖f (k) − σ
(k)
2n,n−p(f)‖

= ‖f (k) − σ2n−k,n−p(f (k))‖
≤ CpEn+p−k(f (k)) ≤ Cp(n + p − k)−p+kEn(f (p)) ≤ Cpn

−p+kEn(f (p))

for all k = 0, . . . , p and n > p.

But obviously, the polynomial σ2n,n−p(f) is linear and continuous as a
function of f ∈ Ad(D). Combining this with the above Theorem 4.3.4 (since
writing L = σ2n,n−p we have ‖|Dk ◦ L‖| ≤ C) and with the well-known rela-
tionships E2n(f) ≤ Crωr

(
f ; 1

2n

)
(see Gaier [121] or Gaier [122], p. 53) and

ωr

(

f ;
1
2n

)

∼ ωr

(

f ;
1

2n + 1

)

∼ ωr

(

f ;
1
n

)

(equivalences with respect to constants depending only on r), we immediately
get the following result:

Theorem 4.3.5. For any f ∈ Ap,q(D × D) and for 0 ≤ k ≤ p, 0 ≤ l ≤ q,
there exists a sequence of bivariate polynomials Qn,m(f)(z1, z2) of degree ≤ n
in z1 and of degree ≤ m in z2 such that for all n > p, m > q, we have

‖[f − Qn,m](k,l)‖ ≤ cp,r

(
1
n

)p−k

· ωr

(

f (p,l);
1
n

, 0
)

+ cp,q,r,s

(
1
m

)q−l

· sup
0≤i≤p

ωs

(

f (i,q); 0,
1
m

)

.

Here cp,r > 0 and cp,q,r,s > 0 are constants independent of n, m, and f .

Theorem 4.3.5 allows us to prove a Shisha-type result for complex functions
of two complex variables, as follows.

Theorem 4.3.6. Let h1, h2, p, q, r, s be positive integers, 0 ≤ h1 ≤ p, 0 ≤
h2 ≤ q, and let f ∈ Ap,q(D × D). Consider the continuous functions αi,j :
D × D → R, i = h1, . . . , p, j = h2, . . . , q, assume ah1,h2(z1, z2) = 1 for all
z1, z2 ∈ D, and define the differential operator

L =
p∑

i=h1

q∑

j=h2

αi,j(z1, z2)
∂i+j

∂zi
1∂zj

2

.

Also, set

Mk,l
n,m(f) = cp,r

(
1
n

)p−k

· ωr

(

f (p,l);
1
n

, 0
)

+ cp,q,r,s

(
1
m

)q−l

· sup
0≤i≤p

ωs

(

f (i,q); 0,
1
m

)

,
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Pn,m(L; f) =
p∑

i=h1

q∑

j=h2

li,jM
i,j
n,m,

where cp,r, cp,q,r,s are the constants in Theorem 4.3.5 and we have the formula
li,j = supz1,z2∈D

{|αi,j(z1, z2)|} < ∞.

If Re[L(f)(z1, z2)] ≥ 0,∀z1, z2 ∈ D, then for all n,m integers with n > p,
m > q, there exists a bivariate polynomial Qn,m(f)(z1, z2), of degrees ≤ n in
z1 and ≤ m in z2, satisfying Re[L(Qn,m)(f)(z1, z2)] ≥ 0,∀z1, z2 ∈ D, and

‖f − Qn,m(f)‖ ≤ Pn,m(L; f)
(h1)!(h2)!

+ cp,r
1
np

ωr

(

f (p,0);
1
n

, 0
)

+ cp,q,r,s
1

mq
sup

0≤i≤p
ωs

(

f (i,q);
1
m

)

. (4.1)

Proof. From Theorem 4.3.5, there exists the polynomial Qn,m(f)(z1, z2) such
that we have

∥
∥
∥
∥
∥
∥

[

f + Pn,m(L; f)
zh1
1

h1!
zh2
2

h2!

](k,l)

− Q(k,l)
n,m (f)

∥
∥
∥
∥
∥
∥
≤ Mk,l

n,m,

which implies

‖f (k,l) − Q(k,l)
n,m (f)‖ ≤ Pn,m(L; f)

(h1 − k)!(h2 − l)!
+ Mk,l

n,m(f),

for all 0 ≤ k ≤ h1, 0 ≤ h2.
Taking now k = l = 0, it follows that

‖f − Qn,m(f)‖ ≤ Pn,m(L; f)
(h1)!(h2)!

+ M0,0
n,m(f)

=
Pn,m(L; f)
(h1)!(h2)!

+ cp,r
1
np

ωr

(

f (p,0);
1
n

, 0
)

+ cp,q,r,s
1

mq
sup

0≤i≤p
ωs

(

f (i,q); 0,
1
m

)

, (4.2)

which proves the estimate in the statement.
On the other hand, we have

L[Qn,m(f)](z1, z2) = L(f)(z1, z2) + Pn,m(L; f) +
p∑

i=h1

q∑

j=h2

αi,j(z1, z2)

×
[

Qn,m(z1, z2) − f(z1, z2) − Pn,m(L; f)
zh1
1

h1!
zh2
2

h2!

](i,j)

,

which implies the equality of the real parts of the left side and right side.
Reasoning in what follows exactly as in the proof of one complex variable

of Theorem 3.2.2, we arrive at the desired conclusion. �
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Remark. If Re[L(f)(z1, z2)] > 0,∀z1, z2 ∈ D, then for all n,m integers
with n > p, m > q, following the proof of Theorem 4.3.6, it is easy to
see that the approximation bivariate polynomial Qn,m(f)(z1, z2) also satis-
fies Re[L(Qn,m)(f)(z1, z2)] > 0, ∀z1, z2 ∈ D.

4.4 Bibliographical Notes and Open Problems

Theorems 4.2.1 and 4.3.2–4.3.6 are new.
Open Problem 4.4.1. By analogy with the other types of Bernstein

polynomials of one complex variable in Open Problem 3.5.6, we can consider
the Bernstein type polynomials of two complex variables

B∗
m,n(f)(z1, z2)

=
m∑

k=0

n∑

j=0

(
m

k

)(
n

j

)

zk
1 (1 − z1)m−kzj

2(1 − z2)n−jf(e
2kπi

m , e
2jπi

n ) (4.3)

and

B∗
n(f)(z1, z2)

=
n∑

k=0

n−k∑

j=0

(
n

k

)(
n − k

j

)

zk
1zj

2(1 − z1 − z2)n−k−jf(e
2kπi

n , e
2jπi

n ) (4.4)

(here i2 = −1).
The approximation and geometric properties of B∗

m,n(f)(z1, z2) and
B∗

n(f)(z1, z2) are open questions.
Open Problem 4.4.2. In the paper of Roper–Suffridge [324], it was

proved that if f : B(0; 1) → C
2 is a normalized holomorphic mapping

on B(0; 1) satisfying the condition
∑+∞

p=2 p2 ‖Dpf(0)‖
p! ≤ 1, then f is con-

vex. Here Dpf(0) is the Fréchet derivative, that is, a p-variable mapping
Dpf(0) : Πp

j=1C
2 → C

2, linear with respect to each variable and symmetric.
Taking into account the notation after Theorem 4.1.2, denote by K2

1 the
class of all normalized holomorphic mappings on B(0; 1) satisfying the above
condition.

Let Kn(t) be the de la Vallée Poussin trigonometric kernel given by
Kn(t) = Ωn(t) = (n!)2

(2n)! (2 cos[t/2])2n.
Writing f(z1, z2) = (F (z1, z2), G(z1, z2)), define the convolution general-

ized polynomials

Pn,m(f)(z1, z2) = (Rn,m(F )(z1, z2), Sn,m(G)(z1, z2)),
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where

Rn,m(F )(z1, z2) =
1
π2

∫ π

−π

∫ π

−π

Kn(u)Km(v)F (z1e
iu, z2e

iv)du dv

=
∞∑

i,j=0

An,m
i,j zi

1z
j
2

and

Sn,m(G)(z1, z2) =
1
π2

∫ π

−π

∫ π

−π

Kn(u)Km(v)G(z1e
iu, z2e

iv)du dv

=
∞∑

k,l=0

Bn,m
k,l zk

1zl
2.

An open question is whether the relationship

‖DpPn,m(f)(0)‖ ≤ ‖Dpf(0)‖, ∀p,

holds.
If the answer is positive, then f ∈ K2

1 would imply Pn,m(f) ∈ K2
1 , i.e.

this would allow that starting from a convex function one could construct
another convex function (generalized polynomial) in a simpler way than that
given by the so-called Roper–Suffridge operator in Roper–Suffridge [324]. For
example, first one may start with the particular case F (z1, z2) = g(z1)h(z2),
G(z1, z2) = p(z1)q(z2), when the Taylor expansion of F (z1, z2) becomes in fact
the product of the Taylor expansions of g(z1) and h(z2), the Taylor expansion
of G(z1, z2) becomes in fact the product of the Taylor expansions of p(z1)
and q(z2), and Rn,m(F )(z1, z2), Sn,m(G)(z1, z2) becomes the product of the
corresponding convolution polynomials attached to the univariate functions
g(z1), h(z2) and p(z1), q(z2), respectively.
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Appendix: Some Related Topics

In this chapter we present some topics concerning shape-preserving approxi-
mations not necessarily of polynomial or spline type, but of great importance
and very related to the previous chapters.

An important topic that is not included in this section is the shape-
preserving approximation by spline functions (for reasons explained in the
preface), but many details in that subject can be found, for example, in
the books of de Boor [49], Schumaker [344], Chui [69], DeVore–Lorentz [91],
Kvasov [218], and in the surveys of Leviatan [229] and Kocić–Milovanović
[197]. In Sections 5.1 and 5.2 we present some shape-preserving results for gen-
eral (positive) linear operators defined on C[a, b] and for some concrete (real
and complex) nonpolynomial operators, respectively. We can mention here the
contributions of (in alphabetical order) Andrica, Badea, Cottin, Gal, Gavrea,
Gonska, Kacsó, Karlin, Kocić, Lacković, Lupaş, Popoviciu, Tzimbalario, Zhou,
and others.

Because of its close connection with the shape-preserving properties, in
Sections 5.1 and 5.2 we also consider the variation-diminishing property.

In Section 5.3 Leviatan’s result in [228] and some shape-preserving proper-
ties of Bernstein polynomials are extended to monotone and convex functions
defined on [−1, 1], with values in an ordered vector space. The first contribu-
tion belongs to Anasstasiou–Gal [9], while the second one appears for the first
time here.

Section 5.4 contains some shape-preserving properties of the complex
singular integrals of Poisson–Cauchy and Gauss–Weierstrass integrals, with
applications to complex PDE.

5.1 Shape-Preserving Approximation by General Linear
Operators on C[a, b]

In this section we present some interesting results concerning the preservation
of monotonicity and convexity by general linear operators on the space C[a, b].

S.G. Gal, Shape-Preserving Approximation by Real and Complex Polynomials, 305
DOI: 10.1007/978-0-8176-4703-2 5,
c© Birkhäuser Boston, a part of Springer Science+Business Media, LLC 2008
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Let a ≤ x0 < x1 < · · · < xm ≤ b and Pj : [a, b] → R+, j = 0, 1, . . . ,m,
be continuous functions. The linear operator Fm(f)(x) =

∑m
j=0 Pj(x)f(xj) is

said to be of interpolation type.
The first result concerns interpolation-type operators.

Theorem 5.1.1. (see Popoviciu [313]) Considering the sequence of functions
defined by Φ0 =

∑m
k=0 Pk and Φ1 =

∑m
j=1 Pj, Φi =

∑m
i=j+2(xk−xi+1)Pk, i =

0, . . . ,m − 2, the operators (defined above) Fm preserve the (usual) convexity
of f if and only if the functions Φ0, Φ1 are polynomials of degree ≤ 1 on [a, b]
and Φi, i = 0, . . . , m − 2, are (usual) convex on [a, b]. Here usual convexity
means 1-convexity according to Definition 1.1.1 (i).

More generally, we have the following result.

Theorem 5.1.2. (see Tzimbalario [390]) Let L : C[a, b] → C[a, b] be a con-
tinuous linear operator. Denoting by Kr[a, b] the class of all convex functions
of order r on [a, b], necessary and sufficient conditions for the implication

f ∈ Kr[a, b] =⇒ L(f) ∈ Kr[a, b]

are as follows:

(i) If p is polynomial of degree ≤ r − 1, then so is L(f).
(ii) L(φr−1

c ) ∈ Kr[a, b] for every c ∈ [a, b] where φr
c(x) = 0 if x ∈ [a, c) and

φr
c(x) = (x − c)r if x ∈ [c, b].

Remark. Theorem 5.1.2 was proved in [390] in the more general setting of
convex functions with respect to a Chebyshev system.

In order to state another result related to Theorem 5.1.2, we need the
concept of one-sided strong local maximum (OSLM) for real functions.

Definition 5.1.3. (see Kocić–Lacković [196]) The function φ ∈ C[a, b] has
the OSLM property at the point x0 ∈ (a, b) if there exists h > 0 such that
for any x ∈ (x0 − h, x0 + h) ⊂ [a, b], we have φ(x) ≤ φ(x0) and φ(x) < φ(x0)
at least in one of the intervals (x0 − h, x0) and (x0, x0 + h). We denote by
C0[a, b] the class of all functions f ∈ C[a, b] having the (OSLM) property at
least at a point.

Theorem 5.1.4. (see Kocić–Lacković [196]) If (Aλ)λ is a family of continu-
ous linear operators Aλ : C[a, b] → S[c, d] (where S[c, d] is a normed subspace
of real-valued functions defined on [c, d]) satisfying the conditions

(i) every Aλ preserves the affine functions;
(ii) for every φ ∈ C0[a, b], there exist at least one λ0 and y0 ∈ [c, d] such that

Aλ0(φ)(y0) < 0;
(iii) Aλ(σc) ≥ 0 for all c ∈ [a, b] and all λ, where σc(x) = |x − c|, for all

x ∈ [a, b],

then Aλ(f) ≥ 0 for all λ ⇔ f is (usual) convex on [a, b].
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It is also worth mentioning the following interesting equivalence result that
connects the convex approximation by positive linear operators with other
classical results.

Theorem 5.1.5. (see Andrica–Badea [20]) The following statements are
equivalent:

(i) There is a sequence of positive linear polynomial operators reproducing
affine functions that preserve (usual) convexity;

(ii) Jensen’s inequality for (usual) convex functions;
(iii) Korovkin’s theorem on the space C[a, b];
(iv) Jensen’s inequality for positive linear functionals on C[a, b].

Other kinds of (positive) linear operators were considered by Karlin [192], of
the form T : C[a, b] → C[c, d], given by T (f)(x) =

∫ b

a
K(x, y)f(y)dy, x ∈ [c, d].

Theorem 5.1.6. (see Karlin [192]) If the kernel K : [c, d] × [a, b] → R is a
totally positive function of order 3 and satisfies the conditions

∫ b

a

K(x, y)dy = 1,

∫ b

a

yK(x, y)dy = Ax + B, A > 0,

then T preserves the (usual) convexity of f ∈ C[a, b].
Recall here that K(x, y) is called totally positive of order 3 if for all 1 ≤

m ≤ 3 and for all c ≤ x1 < · · · < xm ≤ d, a ≤ y1 < · · · < ym ≤ b, we have

∆K(x1, ..., xm; y1, ..., ym) ≥ 0,

where ∆K(x1, . . . , xm; y1, . . . , ym) denotes the determinant of the matrix given
by (K(xi, yj))i,j=1,...,m.

In what follows, we present some interesting relationships of the shape-
preserving property of positive linear operators with other properties, such
as the global smoothness preservation property and the variation-diminishing
property.

For the simplicity of presentation, we consider operators of the form T :
C[0, 1] → C[0, 1]. First, recall that T is said to have the global smoothness
preservation property (with respect to the first-order modulus of smoothness)
if

ω1(T (f); δ)∞ ≤ Cω1(f ; δ)∞, ∀f ∈ C[−1, 1], δ ≥ 0,

where ω1(f ; δ)∞ = sup{|f(x) − f(y)|; |x − y| ≤ δ} and C > 0 is independent
of f and δ.

Also, recall that the least concave majorant of ω1(f ; δ)∞, for f ∈ C[0, 1]
can be defined by (see, e.g., Anastassiou–Gal [7], p. 233)
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ω1(f ; t)∞ = sup
{

(t − x)ω1(f ; y)∞ + (y − t)ω1(f ;x)∞
y − x

; 0 ≤ x ≤ t ≤ y ≤ 1
}

,

ω1(f ; t)∞ = ω1(f, 1)∞, for t > 1.
It is evident by definition that ω1(f ; t)∞ ≤ ω1(f ; t)∞. By, e.g.,

Anastassiou-Cottin–Gonska [6] (see also Anastassiou–Gal [7], pp. 237–238,
Theorem 7.2.3) we have ω1(f ; t)∞ ≤ 2ω1(f ; t)∞, since f is defined on a com-
pact subinterval of R.

As a consequence, without loss of generality, the global smoothness preser-
vation property can be expressed in terms of ω1(f ; t)∞ too. Let us also men-
tion that for the Bernstein polynomials we have ω1(Bn(f); δ)∞ ≤ ω1(f ; δ)∞ ≤
2ω1(f ; δ)∞ for all f ∈ C[0, 1] and δ ≥ 0 (see Anastassiou–Cottin–Gonska [6]).

A first connection between the variation-diminishing property and the
shape-preserving property is given by the following result.

Theorem 5.1.7. (i) (Cottin–Gavrea–Gonska–Kacsó–Zhou [72]) If the linear
operator T : C[0, 1] → C[0, 1] is strongly variation-diminishing, then it pre-
serves the positivity and monotonicity of f ;

(ii) (Gavrea–Gonska–Kacsó [146]) Let Tn : C[a, b] → Πn be a positive
linear operator satisfying the following conditions: degree(Tn(ei)) = i, i =
0, 1, . . . , n. If Tn has the strong variation-diminishing property, then Tn pre-
serves all the convexities of order i = 0, 1, . . . , n.

(iii) (Gavrea–Gonska–Kacsó [146]) Let us consider I = (a, b) or I =
(a,+∞) with a ≥ 0, [α, β] ⊂ [0,+∞) and the continuous weight function
w : I → R+. If A : C(I) → R is a linear and positive definite functional
(i.e., if f ≥ 0 and A(f) = 0, then f = 0) with the property that there exists a
subspace C

[α,β]
w (I) ⊂ C(I) such that for any f ∈ C

[α,β]
w (I) ⊂ C(I), the value

L(f)(x) = At[txw(t)f(t)] is well-defined (here At means that the functional A
is evaluated with respect to t), then

Z(α,β)[L(f)] ≤ SI [f ]

for all f ∈ C
[α,β]
w (I). We recall that Z(α,β)[g] denotes the number of zeros of

g in (α, β), while SI [f ] is defined by Definition 1.1.1 (vi).

Let us establish the following notation:
M [0, 1] is the set of all monotone functions on [0, 1], M+[0, 1] is the set of

all increasing functions on [0, 1], M−[0, 1] is the set of all decreasing functions
on [0, 1], LipM [0, 1] = {f ∈ C[−1, 1]; |f(x) − f(y)| ≤ M |x − y|, x, y ∈ [0, 1]},
Lip[0, 1] =

⋃
M>0 LipM [0, 1], ‖f‖Lip = sup|x−y|>0

|f(x)−f(y)|
|x−y| .

The next three results present the relationships between the shape-
preserving property and global smoothness preservation.

Theorem 5.1.8. (Cottin–Gavrea–Gonska–Kacsó–Zhou [72]) Let us consider
T : C[0, 1] → C[0, 1], a positive linear operator that maps C1[0, 1] into
Lip[0, 1] and reproduces constant functions. If T (M+

⋂
C1[0, 1]) ⊂ M+ or
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T (M+
⋂

C1[0, 1]) ⊂ M−, then ω1(T (f); δ)∞ ≤ ω1(f ; cδ)∞, ∀δ ∈ [0, 1], f ∈
C[0, 1], and the best constant c is |T (e1)|, e1(x) = x.

Theorem 5.1.9. (Cottin–Gavrea–Gonska–Kacsó–Zhou [72]) Let us consider
T : C[0, 1] → C[0, 1], a positive linear operator that maps C1[0, 1] into Lip[0, 1]
and satisfies T (ei) = ei, i = 0, 1, where ei(x) = xi, x ∈ [0, 1]. Then

ω1(T (f); δ)∞ ≤ ω1(f ; δ)∞ ≤ 2ω1(f ; δ)∞, for all δ ∈ [0, 1], f ∈ C[0, 1],

if and only if
T (M+[0, 1] ∩ C1[0, 1]) ⊂ M+[0, 1].

Theorem 5.1.10. (Cottin–Gavrea–Gonska–Kacsó–Zhou [72]) Let us consi-
der T : C[0, 1] → C[0, 1], a positive linear operator that maps C1[0, 1] into
Lip[0, 1] and satisfies T (ei) = ei, i = 0, 1. If T (M [0, 1] ∩ C[0, 1]) ⊂ M [0, 1],
then

ω1(T (f); δ)∞ ≤ ω1(f ; δ)∞ ≤ 2ω1(f ; δ)∞, for all δ ∈ [0, 1], f ∈ C[0, 1].

Remark. The proofs of Theorems 5.1.7–5.1.10 can be found in the orig-
inal mentioned papers or in the book Anastassiou–Gal [7], Section 20.1,
pp. 485–491.

5.2 Some Real and Complex Nonpolynomial Operators
Preserving Shape

In this section, first we present a few of the best-known real nonpolynomial
approximation operators that preserve the convexity properties of the approx-
imated function and some of which are strongly variation-diminishing too, as
follows.

(1) The Gauss–Weierstrass operators (introduced and used by Weierstrass
[398] in order to prove his famous result on the approximation of continuous
functions by algebraic polynomials), attached to bounded f : R → R, given
by

Wn(f)(x) =
√

n

2π

∫ +∞

−∞
e−n(u−x)2/2f(u)du,

preserve the convexity of any order of f (see Butzer–Nessel [52]).
(2) The Favard–Szász–Mirakjan operators introduced by Mirakjan [271]

and studied by Favard [114] and Szász [382], attached to bounded f : [0,∞) →
R and defined by

Fn(f)(x) = e−nx
+∞∑

k=0

(nx)k

k!
f

(
k

n

)

,
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preserve the convexity of any order of f (see Lupaş [256]) and are strongly
variation-diminishing (see Lupaş [258]).

(3) The Baskakov [30] operators, attached to bounded f : [0,∞) → R and
defined by

Vn(f)(x) = (1 + x)−n
+∞∑

k=0

(
n + k − 1

k

)(
x

1 + x

)k

f

(
k

n

)

,

preserve the convexity of any order of f (see Lupaş [257] and Ibragimov–
Gadzijev [180]) and are strongly variation-diminishing (see Lupaş [258]).

(4) The Meyer–König–Zeller [270] operators, attached to bounded func-
tions f : [0, 1) → R and defined by

Zn(f)(x) =
+∞∑

k=0

(
n+ k

k

)

(1−x)n+1xkf

(
k

n+ k

)

, x ∈ [0, 1), Zn(f)(1) = f(1),

preserve the sign, monotonicity, and usual convexity of the approximated func-
tion (see Lupaş [256]) and are strongly variation-diminishing operators (see
Cimoca–Lupaş [70].

(5) Jakimovski–Leviatan [186] operators defined by

Pn(f)(x) =
e−nx

g(1)

+∞∑

k=0

pk(nx)f
(

k

n

)

, x ≥ 0,

where pk(x) are the so-called Appel polynomials given by the relationship
g(u)eux =

∑∞
k=0 pk(x)uk, with g analytic in a disk, g(1) 	= 1, preserve the

usual convexity of f (see Wood [401]).
(6) The gamma operators introduced by Lupaş–Müller [262] are defined

by

Gn(f)(x) =
xn+1

n!

∫ +∞

0

e−xttnf
(n

t

)
dt,

preserve the convexity of f and are strongly variation-diminishing (see Lupaş–
Müller [262]).

(7) The Bleimann–Butzer–Hahn operators introduced by Bleimann,
Butzer, and Hahn [46], attached to bounded f : [0,∞) → R, are defined
by

BBHn(f)(x) =
1

(1 + x)n

n∑

k=0

(
n

k

)

xkf

(
k

n + 1 − k

)

,

satisfy the rate of convergence

|BBHn(f)(x)−f(x)| ≤ (1+
√

3)ω1

(

f ;

√
x(1 + x)2

n + 2

)

∞

, x ∈ (0,+∞), n ∈ N,

and preserve the convexities of higher order of f (see Abel–Ivan [1]).
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The methods of proof for the shape-preserving properties and for the
strongly variation-diminishing property of these operators follow in general,
those in the case of classical Bernstein polynomials, i.e., by representing the
derivative of a given order as a sum of products between positive quantities
and finite (or divided) differences of the same order of f and Descarte’s rule
of signs, respectively.

A large number of other real nonpolynomial approximation operators pre-
serve the convexity properties of the approximated function, but because they
do not represent the main topic of this monograph, we close the list here.

At the end of this section, for the complex Favard–Szász–Mirakjan opera-
tor (obtained from the well-known real version of it, simply replacing the real
variable x by the complex one z), given by

Sn(f)(z) = e−nz
∞∑

j=0

(nz)j

j!
f(j/n),

we present some very recent results.
Note that the first result concerning the convergence of complex Sn(f)(z)

to the function f belonging to a class of analytic functions in a parabolic
domain of the complex plane satisfying a suitable exponential-type growth
condition was proved in Dressel–Gergen–Purcell [99], but without any esti-
mate of the approximation error and any shape-preserving properties.

The main results can be summarized by the following.

Theorem 5.2.1. (Gal [134]) Let G ⊂ C be the open disk of radius R > 1
and center 0. Let us suppose that f : G ∪ [R,+∞) → C is continuous on
G ∪ [R,+∞), analytic in G, i.e. f(z) =

∑∞
k=0 ckzk for all z ∈ G, and that

there exist M,C,B > 0 and A ∈ ( 1
R , 1) with the property |ck| ≤ M Ak

k! for all
k = 1, 2, . . . , (which implies |f(z)| ≤ MeA|z| for all z ∈ G) and |f(x)| ≤ CeBx

for all x ∈ [R,+∞).
(i) Let 1 ≤ r < 1

A be arbitrary fixed. For all |z| ≤ r and n ∈ N, we have

|Sn(f)(z) − f(z)| ≤ Cr,A

n
,

where Cr,A = M
2r

∑∞
k=2(k + 1)(rA)k < ∞.

(ii) For the simultaneous approximation we have that if 1 ≤ r < r1 < 1
A

are arbitrary fixed, then for all |z| ≤ r and n, p ∈ N,

|S(p)
n (f)(z) − f (p)(z)| ≤ p!r1Cr1,A

n(r1 − r)p+1
,

where Cr1,A is given at the above point (i).
(iii) Let 1 ≤ r < 1

A be arbitrary fixed. The following Voronovskaya-type
result holds:
∣
∣
∣Sn(f)(z) − f(z) − z

2n
f ′′(z)

∣
∣
∣ ≤ 3MA|z|

2r2n2

∞∑

k=2

k(rA)k−1, for all n ∈ N, |z| ≤ r.
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(iv) If f(0) = f ′(0) − 1 = 0 and f is starlike (convex, spirallike of type
γ ∈ (−π/2, π/2), respectively) in D, then there exists an index n0 depending
on f (and on γ for spirallikeness) such that for all n ≥ n0, the complex
Favard–Szász–Mirakjan operators Sn(f)(z), are starlike (convex, spirallike of
type γ, respectively) in D.

If f(0) = f ′(0) − 1 = 0 and f is starlike (convex, spirallike of type γ ∈
(−π/2, π/2), respectively) only in D, then for any disk of radius 0 < r < 1
and center 0, denoted by Dr, there exists an index n0 = n0(f, Dr) (n0 depends
on γ too in the case of spirallikeness) such that for all n ≥ n0, the complex
Favard–Szász–Mirakjan operators Sn(f)(z) are starlike (convex, spirallike of
type γ, respectively) in Dr.

Remark. For other complex operators, see Open Question 5.5.5 in Sec-
tion 5.5.

5.3 Shape-Preserving Polynomial Approximation
in Ordered Vector Spaces

In this section, some shape-preserving properties due to Leviatan in Sections
1.6, 1.7 and of Bernstein polynomials in Section 1.3, are extended to the
abstract setting, i.e., to functions with values in ordered vector spaces.

Similar to the case of real-valued functions, first we introduce the following
concepts.

Definition 5.3.1. (Gal [124]) (i) Let (X, ‖ · ‖) be a real normed space.
A generalized algebraic polynomial of degree ≤ n with coefficients in X is

an expression of the form Pn(x) =
∑n

k=0 ckxk, where ck ∈ X, k = 0, . . . , n,
and x ∈ [a, b].

(ii) The uniform kth Ditzian–Totik modulus of smoothness of f : [−1, 1] →
X is given by

ωφ
k (f ; δ)+∞ = sup

0≤h≤δ
‖∆k

hφ(x)f(x)‖+∞,

where φ2(x) = 1 − x2 and ∆
k

hf(x) =
∑k

j=0(−1)j
(
k
j

)
f(x + kh/2 − jh) if

x, x ± kh/2 ∈ [−1, 1], ∆
k

hf(x) = 0, otherwise. Here ‖f‖∞ = sup{‖f(x)‖;x ∈
[−1, 1]}.

(iii) The uniform kth modulus of smoothness of f : [−1, 1] → X is given
by

ωk(f ; δ)∞ = sup
0≤h≤δ

{sup{‖∆k
hf(x)‖;x, x + kh ∈ [−1, 1]}}.

Here ∆k
hf(x) =

∑n
j=0(−1)k−j

(
k
j

)
f(x + jh).

The main results contain some shape-preserving approximation properties
by generalized polynomials for f : [−1, 1] → X, where (X, ‖ · ‖,≤) is a vector
space endowed with the structure of an ordered linear space. We thus extend
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two classical results in the case of real functions of real variables in Sections
1.7 and 1.3.

The main tool used in our proofs is the following well-known result in
functional analysis.

Theorem 5.3.2. (see, e.g., Muntean [279], p. 183) Let (X, ‖ · ‖) be a normed
space over the real or complex numbers and denote by X∗ the conjugate space
of X. Then ‖x‖ = sup{|x∗(x)| : x∗ ∈ X∗, ‖|x∗‖| ≤ 1}, for all x ∈ X.

Let us suppose that (X, ‖ · ‖,≤X) is a normed space such that ≤X is an
order relation on X that satisfies the conditions

x ≤X y, 0 ≤ α, imply αx ≤X αy;

x ≤X y and u ≤X v imply x + u ≤X y + v.

The following concepts are well known.

Definition 5.3.3. Let f : [a, b] → X.
(i) f is said to be increasing on [a, b] if x ≤ y implies f(x) ≤X f(y).
(ii) f is called convex on [a, b] if

f(λx + (1 − λ)y) ≤X λf(x) + (1 − λ)f(y),∀x, y ∈ [a, b], λ ∈ [0, 1].

We present the first main result.

Theorem 5.3.4. (Anastassiou–Gal [9]) For any convex function f : [−1, 1] →
X and every n ∈ N, there is a convex generalized algebraic polynomial An(x),
of degree ≤ n, such that

‖f − An‖∞ ≤ Cωφ
2 (f ; 1/n)∞

and
|f(x) − An(x)| ≤ Cω2(f ;

√
1 − x2/n)∞, x ∈ [−1, 1].

If, in addition, f is increasing, then so is An. Here C > 0 is an absolute
constant.

Proof. As in the case of real-valued functions, we define the generalized al-
gebraic polynomial of degree ≤ n by

An(f)(x) = f(−1) +
n−1∑

j=0

sj [Rj(x) − Rj+1(x)],

where sj = f(ξj+1)−f(ξj)
ξj+1−ξj

, j = 0, . . . , n − 1, and −1 = ξ0 < · · · < ξj < · · · <

ξn = 1, Rj(x) are defined as in Leviatan [228], pp. 472–473.
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Simple calculation gives us

An(x) = f(−1) + s0R0(x) +
n−1∑

j=1

(sj − sj+1)Rj(x).

Writing Fj(x) = Rj(x)−Rj+1(x), in Leviatan [228] it is proved that Fj(x)
are increasing, while Rj(x) are convex, real-valued functions on [−1, 1].

Suppose x, y ∈ [−1, 1], x ≤ y, and f is increasing on [−1, 1]. We get
0X ≤ sj , which implies

An(f)(x) = f(−1) +
n−1∑

j=0

sjFj(x) ≤X f(−1) +
n−1∑

j=0

sjFj(y)

= An(f)(y),

that is, An(f) is increasing.
Suppose now that f is convex on [−1, 1]. By ξj−1 < ξj < ξj+1, we get

ξj = λξj−1 + (1 − λ)ξj+1, with suitable λ ∈ (0, 1). Then, by the relationship

sj − sj−1 =
1

λ(1 − λ)(ξj+1 − ξj)
×[(1 − λ)f(ξj+1) + λf(ξj−1) − f((1 − λ)ξj+1 + λξj−1)],

we obtain 0X ≤X sj − sj−1 and therefore

An(f)[λx + (1 − λ)y] = f(−1) + s0R0(λx + (1 − λ)y)

+
n−1∑

j=1

(sj − sj−1)Rj [λx + (1 − λ)y]

≤X f(−1) + s0[λR0(x) + (1 − λ)R0(y)]

+
n−1∑

j=1

(sj − sj−1)[λRj(x) + (1 − λ)Rj(y)]

= λAn(f)(x) + (1 − λ)An(f)(y),

that is, An(f) is convex on [−1, 1].
In order to prove the estimates in the statement, let x∗ ∈ B1 and set

g(x) = x∗[f(x)], x ∈ [−1, 1]. By Leviatan [228], we have

|g(x) − An(g)(x)| ≤ Cω2(g;
√

1 − x2/n)∞, x ∈ [−1, 1],

and
‖g − An(g)‖∞ ≤ Cωφ

2 (g; 1/n)∞.
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By |∆2
hg(x)| = |x∗[∆2

hf(x)]| and by

|g(x + hφ(x)) − 2g(x) + g(x − hφ(x))|
= |x∗[f(x + hφ(x)) − 2f(x) + f(x − hφ(x))]|
≤ ‖|x∗‖| · ‖f(x + fφ(x)) − 2f(x) + f(x + hφ(x))‖
≤ ‖f(x + hφ(x)) − 2f(x) + f(x + hφ(x))‖,

we obtain ω2(g;
√

1 − x2/n)∞ ≤ ω2(f ;
√

1 − x2/n)∞ and ωφ
2 (g; 1/n)∞ ≤

ωφ
2 (f ; 1/n)∞.

Also, we get

|x∗[f(x) − An(f)(x)]| ≤ Cω2(f ;
√

1 − x2/n)∞, x ∈ [−1, 1]

|x∗[f(x) − An(f)(x)]| ≤ Cωφ
2 (f ; 1/n)∞,∀x ∈ [−1, 1],

since An(g)(x) = x∗[An(f)(x)] from the linearity of x∗.
Passing to the supremum with x∗ ∈ B1, from Theorem 5.3.2 we obtain

the desired estimates. �

Remarks. 1) The x∗-method in this section was used to obtain error es-
timates in approximation of vector-valued functions for the first time for
Bernstein, Kantorovich, and Lagrange generalized polynomials in the paper
Gal [124] and in the book Gal [123], pp. 24–26. Also, very recently, this method
was used by Anastassiou–Gal [10] to obtain results on best-approximation
generalized polynomials.

2) If, on R, we define the new order x ≤ϕ y iff ϕ(x) ≤ ϕ(y), where ϕ :
R → R is any fixed discontinuous solution of the Cauchy functional equation
ϕ(x + y) = ϕ(x) + ϕ(y) for all x, y ∈ R, then by Theorem 5.3.4 we get
new results in shape-preserving approximation by polynomials, for real-valued
functions.

Finally, for the Bernstein operators, let us recall the estimates obtained
in the recent paper Gal [124] (see also the book Gal [123], pp. 24–25), for
f : [0, 1] → X, continuous on [0, 1]:

(i)

C1ω
φ
2

(

f ;
1√
n

)

∞
≤ ‖Bn(f) − f‖∞ ≤ C2ω

φ
2

(

f ;
1√
n

)

∞
,

where ‖f‖∞ = sup{‖f(x)‖;x ∈ [0, 1]} and C1, C2 > 0 are absolute constants.
(ii)

‖Bn(f)(x) − f(x)‖ ≤ M

[
x(1 − x)

n

]α/2

∀x ∈ [0, 1]

if and only if ω2(f ; δ)∞ = O(δα), where α ≤ 2. Here, the moduli of smooth-
ness are defined in Definition 5.3.1 (ii), (iii), and the Bernstein type operators
attached to f are given by Bn(f)(x) =

∑n
k=0 pn,k(x)f( k

n ).
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Similar to Theorem 1.3.1 (i) in Section 1.3, we have

Theorem 5.3.5. First, f : [0, 1] → X will be called k-convex if all the kth
forward differences ∆k

hf(t) ≥ 0X , 0 ≤ h ≤ (b − a)/k, t ∈ [a, b − kh]. (Here
∆k

hf(t) =
∑k

j=0(−1)k−j
(
k
j

)
f(t + jh), for all k = 0, 1, . . .).

If f is k convex on [0, 1], then so is Bn(f).

Proof. We have

∆k
hBn(f)(t) =

n∑

j=0

f

(
j

n

)

∆k
hpn,j(x),

where ∆k
hpn,j(x) =

(
n
j

)
∆k

h[xj(1 − x)n−j ]. Applying the mean value theorem
in real analysis, there exists ξ ∈ [0, 1], such that

∆k
h[xj(1 − x)n−j ] = hk[ξj(1 − ξ)n−j ](k),

and replacing back in the expression of Bn(f), we obtain (by similar reasoning
to that in the case of real-valued functions)

∆k
hBn(f)(x) = n(n − 1)(n − k + 1)

1
nk

n−k∑

j=0

∆k
1/nf(j/n)pn−k,j(ξ) ≥ 0X ,

since all ∆k
1/nf(j/n) ≥ 0X . �

5.4 Complex Nonpolynomial Convolutions Preserving
Shape

The main idea of this section belongs to a series of recent papers of
Anastassiou–Gal ([11]–[15]) and consists in the “complexification” of several
real convolution operators, a procedure that keeps the rate of approximation
in the real case but induces the preservation property of some conditions in
geometric function theory. More exactly, if K : R → R is a real integrable
“even kernel,” it is known that its convolution with an integrable function
f : R → R is given by

J(x) =
∫ +∞

−∞
K(t)f(x − t)dt =

∫ +∞

−∞
K(t)f(x + t)dt

(if the kernel K and f are 2π-periodic, then the above integral is replaced by∫ +π

−π
).
The “complexification” means to replace x + t by zeit = rei(x+t) under f

(where z = reix), which generates the complex convolution

P (z) =
∫ +∞

−∞
K(t)f(zeit)dt =

∫ +∞

−∞
K(t)f(ze−it)dt

(or P (z) =
∫ +π

−π
K(t)f(zeit)dt in the case of 2π-periodicity).
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The complex convolution integral P (z) has in general the same approxi-
mation properties as the real one J(x) has, but in addition, for many choices
of K, it preserves the analyticity of f and some geometric properties of f in
the unit disk.

The sections in Chapter 3 treated the case of convolution complex polyno-
mials. In this section, we will present some classical nonpolynomial complex
convolution operators. Interesting applications to complex PDE also will be
presented.

Recall that A∗(D) = {f ∈ A(D) : f(0) = f ′(0) − 1 = 0}.

Definition 5.4.1. (Anastassiou–Gal [13]) Let f ∈ A∗(D). For ξ > 0, the
complex singular integrals defined by

Pξ(f)(z) =
1
2ξ

∫ +∞

−∞
f(zeiu)e−|u|/ξ du, z ∈ D,

Qξ(f)(z) =
ξ

π

∫ π

−π

f(zeiu)
u2 + ξ2

du, z ∈ D,

Q∗
ξ(f)(z) =

ξ

π

∫ +∞

−∞

f(ze−iu)
u2 + ξ2

du, z ∈ D,

Rξ(f)(z) =
2ξ3

π

∫ +∞

−∞

f(zeiu)
(u2 + ξ2)2

du, z ∈ D,

Wξ(f)(z) =
1√
πξ

∫ π

−π

f(zeiu)e−u2/ξ du, z ∈ D,

W ∗
ξ (f)(z) =

1√
πξ

∫ +∞

−∞
f(ze−iu)e−u2/ξ du, z ∈ D,

are described as follows : Pξ(f) is of Picard type, Qξ(f), Q∗
ξ(f), and Rξ(f) are

of Poisson–Cauchy type and Wξ(f), W ∗
ξ (f) are of Gauss–Weierstrass type.

The approximation and some geometric properties of these operators can
be summarized by the next result. We keep the notation of Section 3.3
for the sets S1, S2, S3, S4, SM ,P,R,S∗(D),K(D). Also, for f ∈ A(D) we set
ω1(f ; δ)∞,D = sup{|f(u) − f(v)|;u, v ∈ D, |u − v| ≤ δ} and

ω2(f ; δ)∞,∂D = sup{|f(ze−iu) − 2f(z) + f(zeiu)|; |u| ≤ δ, |z| = 1}.

Theorem 5.4.2. (Anastassiou–Gal [13]) (1) For all z ∈ D and ξ > 0 we have

|Pξ(f)(z) − f(z)| ≤ Cω2(f ; ξ)∞,∂D,

Pξ(S2) ⊂ S2 and Pξ(P) ⊂ P,

(1 + ξ2)Pξ(S1) ⊂ S1, (1 + ξ2)Pξ(SM ) ⊂ SM(1+ξ2) and (1 + ξ2)Pξ(S∗
3,ξ) ⊂ S3,

where

S∗
3,ξ =

{

f ∈ S3; |f ′′(z)| ≤ 1
1 + ξ2

, ∀z ∈ D

}

⊂ S3.
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Also, Pξ

(
S∗

3,1

)
⊂ S3 and f ∈ SM implies that Pξ(f) is univalent in

{
z ∈ C;

|z| < 1
2M

}
for all ξ ∈ (0, 1].

(2)

|Qξ(f)(z) − f(z)| ≤ C
ω2(f ; ξ)∞,∂D

ξ
, ∀x ∈ D, ξ ∈ (0, 1],

|Q∗
ξ(f)(z) − f(z)| ≤ C

ω2(f ; ξ)∞,∂D

ξ
, ∀z ∈ D, ξ ∈ (0, 1],

|Rξ(f)(z) − f(z)| ≤ Cω1(f ; ξ)∞,D, ∀z ∈ D, ξ ∈ (0, 1];

Q∗
ξ(P) ⊂ P, Rξ(P) ⊂ P;

1
b1(ξ)

· Qξ(S3,b1(ξ)) ⊂ S3,
1

b∗1(ξ)
· Q∗

ξ(S3,b∗1(ξ)) ⊂ S3,

1
c1(ξ)

· Rξ(S3,c1(ξ)) ⊂ S3,
1

b1(ξ)
Qξ(SM ) ⊂ SM/|b1(ξ)|,

1
b∗1(ξ)

Q∗
ξ(SM ) ⊂ SM/|b∗1(ξ)|,

1
c1(ξ)

Rξ(SM ) ⊂ SM/|c1(ξ)|,

where S3,a = {f ∈ S3; |f ′′(z)| ≤ a}, b1(ξ) = 2ξ
π

∫ π

0
cos u

u2+ξ2 du, b∗1(ξ) =
2ξ
π

∫ +∞
0

cos u
u2+ξ2 du, and c1(ξ) = 4ξ3

π

∫∞
0

cos u
(u2+ξ2)2 du.

Also, if f ∈ S3, 1
e
, then Q∗

ξ(f) ∈ S3 for all ξ ∈ (0, 1], and if f ∈ SM

(M > 1), then Q∗
ξ(f) is univalent in

{
z ∈ C; |z| < 1

eM

}
, for all ξ ∈ (0, 1].

If f ∈ S3, 2
e
, then Rξ(f) ∈ S3 for all ξ ∈ (0, 1], and if f ∈ SM , then Rξ(f)

is univalent in
{
|z| < 2

eM

}
, for all ξ ∈ (0, 1].

(3)

|Wξ(f)(z) − f(z)| ≤ C
ω2(f ; ξ)∞,∂D

ξ
, z ∈ D, ξ ∈ (0, 1],

|W ∗
ξ (f)(z) − f(z)| ≤ Cω1(f ;

√
ξ)∞,D, z ∈ D, ξ ∈ (0, 1],

Wξ(K(D)) ⊂ K(D),Wξ(S∗(D)) ⊂ S∗(D),

W ∗
ξ (P) ⊂ P,

1
d1(ξ)

Wξ(S3,d1(ξ)) ⊂ S3,

1
d∗1(ξ)

W ∗
ξ (S3,d∗

1(ξ)) ⊂ S3,
1

d1(ξ)
Wξ(SM ) ⊂ SM/|d1(ξ)|,

1
d∗1(ξ)

W ∗
ξ (SM ) ⊂ SM/|d∗

1(ξ)|,

for any ξ > 0, where d1(ξ) = 1√
πξ

·
∫ π

−π
e−u2/ξ cos u du and d∗1(ξ) = e−ξ/4.

If f ∈ S3, 1
e1/4

then W ∗
ξ (f) ∈ S3 for all ξ ∈ (0, 1], and if f ∈ SM (M > 1),

then W ∗
ξ (f) is univalent in

{
z ∈ C; |z| < 1

Me1/4

}
, for all ξ ∈ (0, 1].
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(4) Let us define

S∗
4,ξ =

{

f ∈ S3; |f ′′(z)| ≤ 1
2(1 + ξ2)

, ∀z ∈ D

}

and

S4,a =
{

f ∈ S4; |f ′′(z)| ≤ |a|
2

,∀z ∈ D

}

.

We have
(1 + ξ2)Pξ(S∗

4,ξ) ⊂ S4 for all ξ > 0 and Pξ

(
S∗

4,1

)
⊂ S4 for all ξ ∈ (0, 1];

1
b1(ξ)

·Qξ(S4,b1(ξ)) ⊂ S4,
1

b∗1(ξ) ·Q∗
ξ(S4,b∗1(ξ)) ⊂ S4 and 1

c1(ξ)
·Rξ(S4,c1(ξ)) ⊂

S4 for all ξ > 0, and if f ∈ S4, 1
e
, then Q∗

ξ(f) ∈ S4; if f ∈ S4, 2
e
, then

Rξ(f) ∈ S4 for all ξ ∈ (0, 1];
Wξ(S4,d1(ξ)) ⊂ S4, 1

d∗
1(ξ)W

∗
ξ (S4,d∗

1(ξ)) ⊂ S4 for all ξ > 0, and if f ∈ S4, 1
e1/4

,

then W ∗
ξ (f) ∈ S4 for all ξ ∈ (0, 1].

Remarks. (1) The nice properties

Wξ(K(D)) ⊂ K(D), Wξ(S∗(D)) ⊂ S∗(D),

are direct consequences of Theorem 3.1.5, while the others are proved by some
calculations.

(2) Let us mention here, without details, that approximation and geometric
preservation properties of other nonpolynomial complex convolution operators
were studied recently, as follows: the Jackson-type generalized singular com-
plex integrals of those in Definition 5.4.1 in Anastassiou–Gal [11], the complex
Post–Widder operator in Anastassiou–Gal [12], the complex rotation-invariant
integral operators in Anastassiou–Gal [14] and a complex spline operator in
Anastassiou–Gal [15].

In what follows, we present two simple applications of the complex
Poisson–Cauchy and Gauss–Weierstrass convolution integrals to complex par-
tial differential equations. Let us recall the Cauchy problem for the following
two classical evolution equations in real variables:

(i) the one dimensional heat equation, given by

∂u

∂t
(t, x) =

1
2

∂2u

∂x2
(t, x), t ≥ 0, u(0, x) = f(x), x ∈ R,

where f ∈ BUC(R) the space of all bounded uniformly continuous func-
tions on R. It is well known that its unique bounded solution is given by
the semigroup of linear operators given by

T (t)(f)(x) =
1√
2πt

∫ +∞

−∞
f(x − y)e−y2/(2t)dy

(see, e.g., Goldstein [150], p. 23).
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(ii) the case of the Laplace equation, given by

∂2u

∂t2
(t, x) +

∂2u

∂x2
(t, x) = 0, t ≥ 0, u(0, x) = f(x), x ∈ R,

where f ∈ BUC(R) has its unique bounded solution given by the semigroup
of linear operators given by

S(t)(f)(x) =
t

π

∫ +∞

−∞

f(x − y)
t2 + y2

dy

(see, e.g., Goldstein [150], p. 23).
Recall that if (X, ‖ · ‖X) is a Banach space, then T (t) : X → X, t ≥ 0,

is said to be a strongly continuous semigroup of linear operators on X if it
satisfies the following conditions (see, e.g., Goldstein [150], p. 5):

(1) T (t + s)(f) = T (t)[T (s)(f)] for all t, s ≥ 0, f ∈ X.
(2) T (0)(f) = f (or more general, limt↘0 T (t)(f) = f) for all f ∈ X.
(3) For any fixed f ∈ X, as a function of t, T (t)(f) is continuous on R+.
(4) ‖|T (t)‖|X = sup‖f‖X≤1{‖T (t)(f)‖X} < +∞ for all t ≥ 0.
If ‖|T (t)‖|X ≤ 1, then we call it a strong contraction semigroup of linear

operators.
(5) The (infinitesimal) generator of T is the operator A defined by the

formula

A(f) = lim
t↘0

T (t)(f) − f

t

for all f ∈ X where this limit exists.
Now, it is natural to ask what happens if we “complexify” the correspond-

ing semigroups of operators for the heat and Laplace equations, i.e., what
partial differential equations correspond to the complexified semigroups of
operators?

First we complexify the semigroup (T (t), t ≥ 0) attached to the above real
heat equation, as follows. Let f ∈ A(D). We have f(z) =

∑∞
k=0 akzk for all

z ∈ D and also ‖f‖ = sup{|f(z)|; z ∈ D} is a norm. It is well known that
(A(D), ‖ · ‖) is a Banach space.

For t ∈ R, t > 0, let us consider the complex singular integral

W ∗
t (f)(z) =

1√
2πt

∫ +∞

−∞
f(ze−iu)e−u2/(2t) du, z ∈ D.

Evidently W ∗
t (f)(z) is the singular integral of Gauss–Weierstrass type in

Definition 5.4.1 (i).
The first aim is to show that the above-defined complex singular integral

defines a strong contraction semigroup on A(D), its infinitesimal generator is
calculated, and applications to some Cauchy problems are obtained.
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We present below without proofs the main results.

Theorem 5.4.3. (Gal–Gal–Goldstein [138]) (i)

|W ∗
t (f)(z) − W ∗

s (f)(z)| ≤ Cs|t − s|, ∀z ∈ D, t ∈ Vs ⊂ (0,+∞),

where Cs > 0 is a constant independent of z, t, and f , and Vs is a neighborhood
of s.

(ii)
‖W ∗

t (f)‖ ≤ ‖f‖,∀t > 0, f ∈ A(D).

(iii) W ∗
t+s(f)(z) = W ∗

t [W ∗
s (f)(z)] for all t, s > 0, f ∈ A(D), z ∈ D.

Remark. An immediate consequence is that (W ∗
t , t ≥ 0) is a contraction

strongly continuous semigroup of linear operators on A(D).
Concerning the generator, we have the following.

Theorem 5.4.4. (Gal–Gal–Goldstein [138]) The generator A of the semi-
group (W ∗

t , t ≥ 0) is given by

A(f)(z) =
1
2

∂2f

∂ϕ2
(z) =

1
2

[
∂2

∂ϕ2
[U(r cos ϕ, r sin ϕ)] + i

∂2

∂ϕ2
[V (r cos ϕ, r sinϕ)]

]

for any f ∈ A(D), f(z) = U(r cos ϕ, r sin ϕ) + iV (r cos ϕ, r sin ϕ), z = reiϕ ∈
D, z 	= 0, where ϕ is the principal value of the argument of z and A(f)(0) = 0.

An immediate consequence of Theorem 5.4.4 and of Theorem 5.4.2, point
(3), is the following.

Theorem 5.4.5. (Gal–Gal–Goldstein [138]) (i) The unique solution u(t, z)
(t ≥ 0, z ∈ D) in A(D) as a function of z of the Cauchy problem with complex
spatial variable

∂u

∂t
(t, z) =

1
2

∂2

∂ϕ2
[u(t, z)], z = reiϕ ∈ D, z 	= 0,

∂u

∂t
(t, 0) = 0,

u(0, z) = f(z), z ∈ D, f ∈ A(D),

is given by

u(t, z) = W ∗
t (f)(z) =

1√
2πt

∫ +∞

−∞
f(ze−iu)e−u2/(2t) du.

(ii) As a function of z, the above solution u(t, z) satisfies if f ∈ S3, 1
e1/4

,

then u(t, z) ∈ S3 for all t ∈ (0, 1], and if f ∈ SM (M > 1), then u(t, z) is
univalent in

{
z ∈ C; |z| < 1

Me1/4

}
for all t ∈ (0, 1].

(iii) As a function of z, the above solution u(t, z) satisfies if f ∈ S4, 1
e1/4

,

then u(t, z) ∈ S4 for all t ∈ (0, 1].
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Remarks. (1) Theorem 5.4.5 (ii) and (iii) says that for all t ∈ (0, 1], the
solution u(t, z) preserves as a function of z the properties of the boundary
function f(z) in some subclasses of starlike, univalent, or convex functions.

(2) In fact, supposing that f is analytic in an open set G including D, for
all t ∈ (0, tf ] with sufficiently small tf > 0 (depending on f), the solution
u(t, z) = W ∗

t (f)(z) in Theorem 5.4.5 preserves as a function of z the starlike-
ness, convexity, and spirallikeness of the boundary function f (exactly as do
the Bernstein polynomials in Theorem 3.4.2). This is immediate if we reason
exactly as in the proof of Theorem 3.4.2, by replacing there the Bernstein
polynomials Bn(f)(z) with W ∗

t (f)(z), taking into account that by Theorem
4.1 in Anastassiou–Gal [13] we have that S(f)(t, z) = et/4 ·W ∗

t (f)(z) satisfies
S(f)(t, 0) = f(0), S′(f)(t, 0) = f ′(0) and that by Theorem 5.4.2 (3), we ob-
viously have limt→0 W ∗

t (f)(z) = f(z), uniformly with respect to z ∈ D (note
that in fact one can easily prove that limt→0 W ∗

t (f)(z) = f(z), uniformly with
respect to z ∈ K, for any compact disk K ⊂ G).

In what follows we complexify the real semigroup of operators (S(t), t ≥ 0)
attached to the real Laplace equation. We obtain the complex operator

Q∗
t (f)(z) =

t

π

∫ +∞

−∞

f(ze−iu)
u2 + t2

du, z ∈ D,

called a singular integral complex operator of Poisson–Cauchy type.

Theorem 5.4.6. (Gal–Gal–Goldstein [138]) We have (i) Q∗
t+s(f)(z) =

Q∗
t [Q

∗
s(f)(z)], ∀t, s > 0, f ∈ A(D), z ∈ D.

(ii) |Q∗
t (f)(z) − Q∗

s(f)(z)| ≤ Cs|t − s|, ∀z ∈ D, t ∈ Vs ⊂ (0,+∞), where
Cs > 0 is a constant independent of z, t, and f , and Vs is a neighborhood of
(fixed) s.

(iii)
‖Q∗

t (f)‖ ≤ ‖f‖, ∀ t > 0, f ∈ A(D).

(iv) limt↘0 Q∗
t (f) = f , for any f ∈ A(D).

Remark. From this theorem it immediately follows that (Q∗
t , t ≥ 0) is a

contraction strongly continuous semigroup of linear operators on A(D).
We have the following application.

Theorem 5.4.7. (Gal–Gal–Goldstein [138]) (i) The unique solution, denoted
by v(t, z) (t ≥ 0, z ∈ D), in A(D) as a function of z of the Cauchy problem
with complex spatial variable

∂2

∂t2
[v(t, z)] +

∂2

∂ϕ2
[v(t, z)] = 0, z = reiϕ ∈ D, z 	= 0,

∂2u

∂t2
(t, 0) = 0,

v(0, z) = f(z), z ∈ D, f ∈ A(D),
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is given by

v(t, z) = Q∗
t (f)(z) =

t

π

∫ +∞

−∞
f(ze−iu)

du

t2 + u2
.

(ii) As a function of z, v(t, z) satisfies if f ∈ S3, 1
e
, then v(t, z) ∈ S3 for

all t ∈ (0, 1], and if f ∈ SM (M > 1), then v(t, z) is univalent in
{
z ∈ C;

|z| < 1
eM

}
for all t ∈ (0, 1].

(iii) As a function of z, the above solution v(t, z) satisfies if f ∈ S4, 1
e
, then

v(t, z) ∈ S4 for all t ∈ (0, 1].

Remarks. (1) The proofs of Theorems 5.4.3–5.4.7 and other details can be
found in Gal–Gal–Goldstein [138].

(2) Theorem 5.4.7 (ii) and (iii) says that for all t ∈ (0, 1), the solution
v(t, z) preserves as a function of z the properties of the boundary function
f(z) in some subclasses of starlike, univalent, or convex functions.

(3) In fact, supposing that f is analytic in an open set G including D for
all t ∈ (0, tf ] with sufficiently small tf > 0 (depending on f), the solution
v(t, z) = Q∗

t (f)(z) in Theorem 5.4.7 preserves as a function of z the starlike-
ness, convexity, and spirallikeness of the boundary function f (exactly as do
the Bernstein polynomials in Theorem 3.4.2). This is immediate if we reason
exactly as in the proof of Theorem 3.4.2, by replacing there the Bernstein
polynomials Bn(f)(z) with Q∗

t (f)(z), taking into account that by Theorem
3.1 in Anastassiou–Gal [13] we have that S(f)(t, z) = 1

b∗1(t)Q
∗
t (f)(z) satisfies

S(f)(t, 0) = f(0), S′(f)(t, 0) = f ′(0) and that by Theorem 5.4.2 (2), it follows
that limt→0 Q∗

t (f)(z) = f(z), uniformly with respect to z ∈ D, since there
we have ω2(f ; t)/t ≤ Ct‖f ′′‖

D
(note that in fact one can easily prove that

limt→0 Q∗
t (f)(z) = f(z), uniformly with respect to z ∈ K, for any compact

disk K ⊂ G).

5.5 Bibliographical Notes and Open Problems

Note 5.5.1. Theorem 5.3.5, Remark 2 after Theorem 5.4.5, and Remark 3
after Theorem 5.4.7 are new.

Note 5.5.2. An important concept in approximation theory is that of
width of a subset in a Banach space, introduced by Kolmogorov [199] (see,
e.g., for details, Lorentz [247], Chapter 9, pp. 132–149). In a series of papers,
Konovalov–Leviatan [200, 201] and Gilewicz–Konovalov–Leviatan [148] intro-
duce the concept of shape-preserving width of a weighted Sobolev space by

dn(∆s
+W r

p,α,∆s
+Lq)Lq

:= infMn∈Mn sup
x∈∆s

+Wp,α

infy∈Mn∩∆s
+Lq

‖x − y‖Lq
,

where Mn is the set of all linear manifolds Mn in Lq with dim(Mn) ≤ n
satisfying Mn ∩ ∆s

+Lq 	= ∅, W r
p,α denotes a class of Sobolev type on [−1, 1],
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∆s
+W r

p,α := {x ∈ W r
p,α;∆s

+x(t) ≥ 0}, and ∆s
+Lq := {x ∈ Lq[−1, 1];∆s

+x(t) ≥
0}, 1 ≤ p, q ≤ ∞, 0 ≤ α < ∞, r, n ∈ N, s ∈ N0.

Two-sided estimates (exact orders) of dn(∆s
+W r

p,α,∆s
+Lq)Lq

were obtained
in Konovalov–Leviatan [200] for s = 0, 1, 2, in Konovalov–Leviatan [201] for
3 ≤ s ≤ r + 1, and in Gilewicz–Konovalov–Leviatan [148] for s > r + 1.

Note 5.5.3. It is worth mentioning other interesting topics that refer
to (local) saturation of k-convex linear operators (that is, linear operators
preserving k-convexity); for details see, e.g., Cárdenas-Morales and Garrancho
[57–59], and to the shape-preserving properties of some linear Bernstein-type
operators that fix polynomials; see, e.g., Cárdenas-Morales, Muñoz-Delgado,
and Garrancho [60].

Open Problem 5.5.4. In what follows, we would like to bring attention a
possible interesting new direction in constructive approximation of functions
by operators. Thus, in two very recent papers (Bede–Nobuhara–Fodor–Hirota
[35] and Bede–Nobuhara–Dankova–Di Nola [36]), the authors consider a new
idea for construction of nonlinear nonpolynomial operators by replacing the
usual pair of operations (sum, product) by other pairs suggested in fuzzy set
theory and image processing. Then, they apply the idea to the Shepard-type
interpolation operator and give interesting concrete applications to image-
processing experiments. Let us briefly describe their theoretical results.

First, starting form the classical linear and positive Shepard operator at-
tached to a function f : [0, 1] → R and to equidistant nodes, given by

Sn,λ(f)(x) =
n∑

k=0

f(k/n) · |x − k/n|−λ

∑n
k=0 |x − k/n|−λ

,

where λ ≥ 1, n ∈ N, they replace “sum” by “max,” so that they obtain for
the pair (max, product), the following Shepard-type nonlinear operator (see
Bede–Nobuhara–Fodor–Hirota [35]):

S
(M)
n,λ (f)(x) =

max0≤k≤n{f(k/n) · |x − k/n|−λ}
max0≤k≤n{|x − k/n|−λ} .

In the same paper, for positive f , the authors prove the following Jackson-type
estimate:

|S(M)
n,λ (f)(x) − f(x)| ≤ 3

2
ω1(f ; 1/n)∞,

valid for all x ∈ [0, 1], n ∈ N.
Comparing with the estimates given by the classical Shepard operator

in Szabados [380], we note that for 1 ≤ λ ≤ 2, the operator S
(M)
n,λ (f) gives

essentially better estimates.
Second, in Bede–Nobuhara–Dañkova–Di Nola [36], replacing the usual

pair (sum, product) by the pair (max, min), the authors define the follow-
ing Shepard-type nonlinear operator:

S
(M−m)
n,λ (f)(x) = max

0≤k≤n

min{f(k/n), |x − k/n|−λ}
max0≤k≤n{|x − k/n|−λ} ,



5.5 Bibliographical Notes and Open Problems 325

for which they prove the estimate (much worse than that in the case of
S

(M)
n,λ (f)(x))

|S(M−m)
n,λ (f)(x) − f(x)| ≤ max{ω1(f ; 1/n)∞, 1/3λ},

valid for all f : [0, 1] → [0, 1], x ∈ [0, 1], n ∈ N.
It is then natural to ask how the above idea could be applied to other

linear and positive operators. In what follows, we sketch this for the first time
for some Bernstein-type operators.

Thus, if in the classical Bernstein polynomials Bn(f)(x) =
∑n

k=0 pn,k(x) ·
f(k/n), where pn,k(x) =

(
n
k

)
xk(1 − x)n−k, we use the pair (max, product),

then we get
Pn(f)(x) = max

0≤k≤n
{pn,k(x)f(k/n)},

while for the pair (max, min), we get

Qn(f)(x) = max
0≤k≤n

{min{pn,k(x), f(k/n)}}.

Unfortunately, the approximation properties of these two nonlinear operators
seem to be very bad, because it is easy to see that convergence does not hold
even for constant functions.

In order to get operators with better approximation potential, we write
the classical Bernstein polynomials in the form

Bn(f)(x) =
n∑

k=0

f(k/n) · pn,k(x)
∑n

k=0 pn,k(x)
.

Then, applying the pair (max, product), we get

B(M)
n (f)(x) =

max0≤k≤n{f(k/n) · pn,k(x)}
max0≤k≤n{pn,k(x)} ,

while for the pair (max, min), we obtain

B(M−m)
n (f)(x) = max

0≤k≤n

min{f(k/n), pn,k(x)}
max0≤k≤n{pn,k(x)} .

Note that each B
(M)
n (f)(x) is a piecewise rational function of degree ≤ n.

In the case of B
(M)
n (f)(x), with f positive, by taking into account the

inequality (valid for the positive numbers Ai, Bi, i = 0, . . . , n)

| max
0≤i≤n

{Ai} − max
0≤i≤n

{Bi}| ≤ max
0≤i≤n

{|Ai − Bi|}

and

|f(k/n) − f(x)|pn,k(x)
≤ pn,k(x)ω1(f ; |k/n − x|)∞ ≤ pn,k(x)[1 + |k/n − x|/δn]ω1(f ; δn)∞
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(valid for any δn > 0), we easily can deduce

|B(M)
n (f)(x) − f(x)|

≤ |max0≤k≤n{f(k/n) · pn,k(x)} − max0≤k≤n{f(x) · pn,k(x)}|
max0≤k≤n{pn,k(x)}

≤ max0≤k≤n{|f(k/n) − f(x)| · pn,k(x)}
max0≤k≤n{pn,k(x)}

≤
(

1 +
1
δn

· max0≤k≤n{pn,k(x)|k/n − x|}
max0≤k≤n{pn,k(x)}

)

ω1(f ; δn)∞.

Therefore, the convergence property of B
(M)
n (f)(x) is controlled by the ratio

rn(x) = max0≤k≤n{pn,k(x)|k/n − x|}/max0≤k≤n{pn,k(x)}.
It is left to the reader to see whether this ratio rn(x) is at least of order

O(1/
√

n) (as we would expect). Of course, a better order would imply an
essentially better approximation order of B

(M)
n (f)(x) than that given by the

classical Bernstein operator Bn(f)(x).
Also, we could consider shape-preserving properties for B

(M)
n (f)(x). In

this sense, first we would need some suitable concepts of shapes in accordance
with the operator’s form. For example, we could consider the max-convexity
property of f defined by the inequality (valid for all x, y ∈ [0, 1], α ∈ [0, 1])

f [max{αx, (1 − α)y}] ≤ max{αf(x), (1 − α)f(y)},

and as an open question we could ask whether the Bernstein-type operator
B

(M)
n (f)(x) keeps this property.

Replacing the pair of operations (sum, product) with (max, product) in
the definitions of classical operators in Section 5.2, Examples 2, 3, 4, and 7,
we can obtain the nonlinear variants of Favard–Szasz–Mirakjan, Baskakov,
Meyer–König–Zeller, and Bleimann–Butzer–Hahn operators, given by

F (M)
n (f)(x) =

supk∈N0
{f(k/n) · (nx)k/k!}

supk∈N0
{(nx)k/k!} ,

V (M)
n (f)(x) =

supk∈N0
{f(k/n) ·

(
n+k−1

k

)
xk/(1 + x)n+k}

supk∈N0
{
(
n+k−1

k

)
xk/(1 + x)n+k}

,

Z(M)
n (f)(x) =

supk∈N0
{
(
n+k

k

)
xkf [k/(n + k)]}

supk∈N0
{
(
n+k

k

)
xk}

,

BBH(M)
n (f)(x) =

sup0≤k≤n{f [k/(n + 1 − k)] · qn,k(x)}
sup0≤k≤n{qn,k(x)} ,

respectively, where N0 = N ∪ {0} and qn,k(x) =
(
n
k

)
xk.

Remaining as open questions are the approximation and shape-preserving
properties for these nonlinear operators too.
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Open Problem 5.5.5. Find geometric (and approximation) properties
for the complex versions (that is, simply replacing the real variable x by the
complex variable z) of the following classical nonpolynomial Bernstein-type
operators: Baskakov, Meyer–König–Zeller, Jakimovski–Leviatan, gamma,
Bleimann–Butzer–Hahn, Bernstein–Kantorovich, and so on.

The methods in the proofs of Theorem 3.4.2 and Theorems 3.4.4–3.4.10
(in the case of shape preservation) and the considerations in Theorem 3.4.1
(in the case of approximation properties) could be useful for most of them.

Note, for example, that in Wood [400] is proved the uniform convergence
of the complex form for the generalized Bernstein operator of Jakimovski–
Leviatan. However, the estimate of the approximation errors and the shape-
preserving properties for this complex operator still remain to be studied.

Open Problem 5.5.6. In the very recent book Ban–Gal [29], pp. 193–
200, for functions that are not monotone (or convex, respectively), the degree
(and its complementary concept, the defect) of monotonicity (or of convex-
ity, respectively) is introduced. Reasoning exactly as in Ban–Gal [29], Open
Question 5.2, pp. 208–209, it is natural to ask how the degree of monotonicity
(or convexity, respectively) of a function is preserved by the most important
Bernstein-type operators.

Open Problem 5.5.7. If f is univalent (starlike, convex) in D, then find
the radius of univalence (starlikeness, convexity, respectively) independent of
ξ > 0 and f for all Q∗

ξ(f)z) and W ∗
ξ (f)(z) in Definition 5.4.1 and their partial

sums.
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8. Anastassiou, G.A. and Gal, S.G. (2001) Partial shape-preserving approxima-
tion by bivariate Hermite-Fejér polynomials, Computers and Mathematics with
Applic., 42, 57–64.

9. Anastassiou, G.A. and Gal, S.G. (2005) Shape preserving approximation in
vector ordered spaces, Applied Math. Letters, 18, Issue 12, 1408–1411.

10. Anastassiou, G.A. and Gal, S.G. (2007) On the best approximation of vector
valued functions by polynomials with coefficients in vector spaces, Annali di
Matematica Pura ed Applicata, 186, No. 2, 251–265.

11. Anastassiou, G.A. and Gal, S.G. (2006) Geometric and approximation prop-
erties of generalized singular integrals in the unit disk, J. Korean Math. Soc.,
43, No. 2, 425–443.

12. Anastassiou, G.A. and Gal, S.G. (2006) Geometric and approximation proper-
ties of a complex Post-Widder operator in the unit disk, Appl. Math. Letters,
19, Issue 4, 303–402.

13. Anastassiou, G.A. and Gal, S.G. (2006) Geometric and approximation proper-
ties of some singular integrals in the unit disk, J. Ineq. Appl., Article ID 17231,
19 pages.



330 References

14. Anastassiou, G.A. and Gal, S.G. (2006) Geometric and approximation prop-
erties of some complex rotation-invariant integral operators in the unit disk,
J. Comp. Anal. Appl., 8, No. 4, 357–368.

15. Anastassiou, G.A. and Gal, S.G. (2008) Geometric and approximation proper-
ties of some complex Sikkema and spline operators in the unit disk, J. Concrete
And Applicable Mathematics, 6, 177–188.

16. Anastassiou, G.A. and Ganzburg, M.I. (1998) L-positive approximation, Rev.
Roum. Math. Pures Appl. (Bucharest), XLIII, No. 5–6, 475–494.

17. Anastassiou, G.A. and Shisha, O. (1985) Monotone approximation with linear
differential operators, J. Approx. Theory, 44, 391–393.

18. Andreian Cazacu, C. (1971) Theory of Functions of Several Complex Variables
(Romanian), Edit. Didact. Pedag., Bucharest.

19. Andrica, D. (1985) Powers by Bernstein’s operators and some combinatorial
properties, in: Itinerant Seminar on Functional Equations, Approximation and
Convexity, Cluj-Napoca, Preprint No. 6, pp. 5–9.

20. Andrica, D. and Badea, C. (1986) Jensen’s inequality, convexity preserving
and approximating polynomial operators and Korovkin’s theorem, Research
Seminars, Seminar on Mathematical Analysis, Preprint No. 4, Babes-Bolyai
University, Cluj-Napoca, pp. 7–16.

21. Andrievskii, V.V. (1989) Rate of harmonic approximation on compacta in R
3,

Ukr. Math. J., 41, No. 9, 1004–1007. (English translation from Ukr. Mat. Zh.,
41(1989), No. 9, 1165–1169.)

22. Andrievskii, V.V. (1993) Uniform harmonic approximation on compacta sets
in R

k, k ≥ 3, SIAM J. Math. Anal., 24, No. 1, 216–222.
23. Andrievskii, V.V. (1988) On approximation of functions by harmonic polyno-

mials, Izvestyia: Mathematics, 30, No. 1, 1–13. (English translation from Izv.
Akad. Nauk SSSR, Ser. Mat., 51(1987), No. 1, 3–15).

24. Andrievskii, V.V. (1993) Approximation of harmonic functions on compact
sets in C, Ukr. Math. J., 45, No. 11, 1649–1658. (English translation from
Ukr. Mat. Zh., 45, No. 11, 1467–1475.)

25. Andrievskii, V.V., Belyi, V.I. and Dzjadyk, V.K. (1995) Conformal Invariants
in Constructive Theory of Functions of Complex Variable, World Federation
Publishers, Atlanta, Georgia.

26. Andrievskii, V.V. and Ruscheweyh, S. (1994) Maximal polynomial subordina-
tion to univalent functions in the unit disk, Constr. Approx., 10, 131–144.

27. Andrievskii, V.V., Pritsker, I. and Varga, R. (2001) Simultaneous approxima-
tion and interpolation of functions on continua in the complex plane, J. Math.
Pures Appl., 80, 373–388.

28. Ascoli, G. (1932) On the linear metric spaces and their linear varieties II
(Italian), Ann. Mat. Pura Appl., iv, Ser. 10, 203–232.

29. Ban, A.I. and Gal, S.G. (2002) Defects of Properties in Mathematics. Quan-
titative Characterizations, World Scientific Publ. Co., New Jersey-London-
Singapore-Hong Kong.

30. Baskakov, V.A. (1957) An example of a sequence of linear positive operators
in the space of continuous functions (Russian) Dokl. Akad. Nauk SSSR, 113,
249–251.

31. Beatson, R.K. (1980) Joint approximation of a function and its derivatives, in:
Approximation Theory III, Proc. Int. Sympos. Austin, TX (Cheney, E.W. ed.),
Academic Press, New York, 199–206.



References 331

32. Beatson, R.K. (1978) Bell-shape preserving convolution operators, Techni-
cal Report, Department of Mathematics, University of Otago, Dunedin, New
Zealand.

33. Beatson, R.K. (1978) The degree of monotone approximation, Pacific J. Math.,
74, No. 1, 5–14.

34. Beatson, R.K. and Leviatan, D. (1983) On comonotone approximation, Canad.
Math. Bull., 26, No. 2, 220–224.

35. Bede, B., Nobuhara, H., Fodor, J. and Hirota K. (2006) Max-product Shepard
approximation operators, J. Adv. Comp. Intelligence and Intelligent Inform.,
10, 494–497.
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45. Bernstein, S.N. (1912–1913) Démonstration du théorème de Weierstrass fondée
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Geom. Design, 15, 27–38.
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and Surfaces, Academic Press, pp. 107–134.

74. Dahmen, W. and Micchelli, C.A. (1988) Convexity of multivariate Bernstein
polynomials and box splines, Studia Sci. Math. Hungar., 23, 265–287.

75. Dekel, S. and Leviatan, D. (2004) Whitney estimates for convex domains
with applications to multivariate polynomial approximation, Found. Comput.
Mathem., 4, No. 4, 345–368.

76. Derriennic, M.M. (1978) Sur l’approximation des fonctions d’une ou plusieurs
variables par des polynomes de Bernstein modifiés et application au problème
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Numér. Théor. Approx., 26, 95–98.

185. Ivanov, K.G. (1983) On a new characteristic of functions. II. Direct and con-
verse theorems for the best algebraic approximation in C[−1, 1] and Lp[−1, 1],
PLISKA Stud. math. Bulgar., 5, 151–163.

186. Jakimovski, A. and Leviatan, D. (1969) Generalized Szász operators for the
infinite interval, Mathematica (Cluj), 34, 97–103.

187. Johnen, H. and Scherer, K. (1976) On the equivalence of the K-functional
and moduli of continuity and some applications, in: Constructive Theory of
Functions of Several Variables, Lecture Notes in Math., Vol. 571, Springer
Verlag, pp. 119–140.

188. Jütller, B. (2000) Arbitrarily weak linear convexity conditions for multivariate
polynomials, Stud. Sci. Math. Hung., 36, No. 1–2, 165–183.

189. Kammerer, W.J. (1961) Polynomial approximations to finitely oscillating func-
tions, Math. Comput., 15, 115–119.

190. Kamzolov, A.I. (1984) On the approximation of functions on the sphere Sn,
Serdica, 10, 3–10.

191. Kantorovitch, L.V. (1930) Sur certains développements suivant les polynômes
de la forme de S. Bernstein, I, II, C.R. Acad. Sci. URSS, 563–568, 595–600.

192. Karlin, S. (1963) Total positivity and convexity preserving transformations, in:
Convexity, vol. VI, Proc. Sympos. Pure Math., Amer. Math. Soc., Providence,
R.I., pp. 329–347.

193. Keldysh, M.V. and Lavrent’ev, M.A. (1937) On convergent sequences of har-
monic polynomials, Tr. Tbilissk. Mat. Inst., 1, 165–184.

194. Knoop, H.B. and X.-L. Zhou, X.-L. (1994) The lower estimate for linear positive
operators,(II), Results in Math., 25, 315–330.
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Meinardus eds.), Birkhäuser, Basel, 187–203.

364. Stancu, D.D. (1986) On a new class of multivariate linear positive approximat-
ing operators, Studia Univ. “Babes-Bolyai,” ser. Math., 31, No. 4, 55–64.



References 347

365. Stancu, D.D. (1970) Probabilistic methods in the theory of approximation
of functions of several variables by linear positive operators, in: Approxima-
tion Theory, Proc. Sympos. Lancaster, 1969 (A. Talbot ed.), Academic Press,
pp. 329–342.

366. Stancu, D.D. (1970) Approximation of functions of two and several variables
by a class of polynomials of Bernstein-type (Romanian), Stud. Cerc. Math.
(Bucharest), 22, 335–345.

367. Stancu, D.D. (1978) Approximation of bivariate functions by means of some
Bernstein-type operators, in: Multivariate Approximation, Proc. Sympos. Univ.
Durham, 1977 (D.C. Handscomb ed.), Academic Press, pp. 189–208.

368. Stancu, D.D. (1985) Bivariate approximation by some Bernstein-type opera-
tors, in: Proc. Colloq. on Approx. and Optimiz., Cluj-Napoca, 1984, pp. 25–34.

369. Stancu, D.D. (1969) A new class of uniform approximating polynomials in
two and several variables, in: Proc. Conf. on Constructive Theory of Functions
(G. Alexis and S.B. Stechkin eds.), Akad. Kiadó, Budapest, pp. 443–455.
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almost copositive, 50
averaged modulus of smoothness, 6
axially convex, 111

Bögel modulus of continuity, 102
Bézier net, 107
barycentric coordinates, 107
barycentric standard simplex, 108
Beatson trigonometric kernels, 240
bell-shaped, 246
Bernstein polynomial, 19
Bernstein–Bézier surface, 107
best almost copositive approximation,

51
best almost intertwining approxima-

tion, 51
best almost positive approximation,

51
best–approximation polynomial,

17–19
best intertwining approximation, 50
best nearly intertwining approxima-

tion, 51
best one-sided approximation, 50
best strongly (weakly) almost

copositive approximation, 51
best strongly (weakly) almost positive

approximation, 51
bidimensional monotone, 208
bivariate Kϕ

2 -functional, 105
bivariate copositive, 178
bivariate flipped function, 197
Boolean sum, 92
bounded turn, 217

Côtes–Christoffel numbers, 12, 208
Cauchy problem with complex spatial

variable, 321, 322
Cesàro mean, 220
close-to-convex, 216
close-to-convex of order α ≥ 0, 216
cobound turn approximation, 280
coconvex of order (2, 2), 180
coconvex polynomial approximation,

83
comonotone polynomial approxima-

tion, 64
complex convolution integral, 317
complex operator of Poisson–Cauchy

type, 322
complex partial differential equations,

319
complex Poisson–Cauchy and

Gauss–Weierstrass convolution
integrals, 319

complexified semigroups of operators,
320

convex, 216, 285, 313
convex (strictly convex) of order, 20
convex in the direction of imaginary

axis, 217
convex of order (n, m), 100
convex of order (n1, . . . , nm), 109
convex of order α ≥ 0, 216
convolution-type method, 90
cyclic variation, 221

de la Vallée Poussin mean, 220
directional (Gâteaux) derivative, 112
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distinguished boundary, 291
distorsions, 280
Ditzian–Totik modulus of smoothness,

6
double-stochastic matrix, 110

generalized algebraic polynomial, 312
generalized Bernstein polynomial, 30
global smoothness preservation

property, 307

harmonic function, 109
Hermite–Fejér polynomial, 10
Hermite-Fejér polynomial, 208
holomorphic, 283

iterated Beatson kernels, 244

least concave majorant, 307
locally biholomorphic, 284
logarithmic-convex, 4

maximal range, 223
modified Ditzian–Totik modulus of

smoothness, 6
modulus of smoothness, 5

nearly coconvex polynomial approxi-
mation, 87

nearly comonotone polynomial
approximation, 70

nonsingular, 284

open unit Euclidean ball, 283
open unit polydisk, 283

partial bivariate moduli of continuity,
101

periodically monotone, 222
point of strong preservation of partial

monotony, 10
point of weak preservation, 9
pointwise convex polynomial

approximation, 81
polyconvex functions of order p ∈ N,

142
polyharmonic function, 110
polyhedral convex, 111

positive and copositive polynomial
approximation, 38

positive linear polynomial operator,
94

quasiconvex, 4, 20

SAIN, 8
Schur-convex, 111
simultaneous approximation in

comonotone case, 95
simultaneous pointwise estimates in

monotone approximation, 63
spirallike of type γ, 217
starlike, 215, 285
starlike of order α ≥ 0, 216
starshaped, 4, 20
strictly double convex, 208, 209
strongly (weakly) almost copositive,

50
strongly (weakly) almost nonnegative,

51
strongly convex, 111
subharmonic function, 110
subharmonic function of order p ∈ N,

110
subordination, 280

Telyakovskii–Gopengauz (or inter-
polatory) type estimates,
39

tensor product Bernstein polynomial,
114

Timan–Brudnyi type estimates, 38
totally coconvex, 182
totally convex, 100
totally upper (lower) monotone, 100
totally upper comonotone, 180

upper (lower) bidimensional
monotone, 100

upper bidimensional comonotone, 179
usually coconvex, 182

variation-diminishing, 20

weak subharmonic, 111
whole boundary, 291




