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Preface

In many problems arising in engineering and science one requires approxima-
tion methods to reproduce physical reality as well as possible. Very schemati-
cally, if the input data represents a complicated discrete/continuous quantity
of information, of “shape” S (S could mean, for example, that we have a
“monotone/convex” collection of data), then one desires to represent it by
the less-complicated output information, that “approximates well” the input
data and, in addition, has the same “shape” S.

This kind of approximation is called “shape-preserving approximation”
and arises in computer-aided geometric design, robotics, chemistry, etc.

Typically, the input data is represented by a real or complex function (of
one or several variables), and the output data is chosen to be in one of the
classes polynomial, spline, or rational functions.

The present monograph deals in Chapters 1-4 with shape-preserving ap-
proximation by real or complex polynomials in one or several variables.
Chapter 5 is an exception and is devoted to some related important but non-
polynomial and nonspline approximations preserving shape. The spline case is
completely excluded in the present book, since on the one hand, many details
concerning shape-preserving properties of splines can be found, for example,
in the books of de Boor [49], Schumaker [344], Chui [69], DeVore-Lorentz [91],
Kvasov [218] and in the surveys of Leviatan [229], Koci¢-Milovanovié [196],
while on the other hand, we consider that shape-preserving approximation by
splines deserves a complete study in a separate book.

The topic of shape-preserving approximation by real polynomials has a
long history and probably begins with an earlier result of P&l [295] in 1925,
which states that any convex function on an interval [a,b] can be uniformly
approximated on that interval by a sequence of convex polynomials.

The first constructive answer to the Pal’s result seems to have been given
by T. Popoviciu [317] in 1937, who proved that if f is convex (strictly convex)
of order k on [0,1] (in the sense defined in Section 1.1), then the Bernstein
polynomial By, (f)(z) = > _, (7)x*¥(1—2)" 7 f(£) is convex (strictly convex,
respectively) of order k on [0, 1], for all n € N.
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Over time, much effort has been expended by many mathematicians to
contribute to this topic. As good examples of surveys concerning shape-
preserving approximation of univariate real functions by real polynomials, we
can mention those of Leviatan [229], [230] in 1996 and 2000, that of Kocié-
Milovanovié¢ [197] in 1997, and that of Hu—Yu [178] in 2000.

Also, a few aspects in the univariate real case are presented in the following
books:

Lorentz—v. Golitschek-Makozov [249] in 1996, see Chapter 2, Section 3,
titled Monotone Approximation (pp. 43-49), and page 82, with Problem 9.4
and Notes 10.1, 10.2,

Shevchuk [349] in 1992, referring to some results in monotone and convex
approximation of univariate real functions by real polynomials,

Lorentz [247](see p. 23) in 1986, DeVore—Lorentz [91] in 1993, (see Chapter
10, Section 3, from page 307 to page 309), concerning some shape-preserving
properties of real Bernstein polynomials, and

Gal [123] in 2005, concerning shape-preserving properties of classical
Hermite—Fejér and Griinwald interpolation polynomials.

For the situation in the case of one complex variable, it is worth noting
that two books concerning the study of complex polynomials have recently
been published. The first is that of Sheil-Small [346] in 2002, which studies
many geometric properties of complex polynomials and rational functions.
But except for two small sections on the complex convolution polynomials
through Cesaro and de la Vallée-Poussin trigonometric kernels (Sections 4.5
and 4.6, from page 156 to page 166), in fact that book does not deal with the
preservation of geometric properties of analytic functions by approximating
complex polynomials. The second book mentioned above is that of Rahman—
Schmeisser [320] in 2002, which refers to the critical points, zeros, and extremal
properties of complex polynomials, which are regarded as analytic functions
of a special kind. Although some of its results improve classical inequalities of
great importance in approximation theory (of Nikolskii, Bernstein, Markov,
etc.), this book again does not deal with the preservation of geometric prop-
erties of analytic functions by approximating complex polynomials.

In the cases of two/several real or complex variables, there are no books
at all treating the subject of shape-preserving approximation.

Therefore, we may conclude that despite the very large numbers of papers
in the literature, at present, none of the books has been dedicated entirely to
shape-preserving approximation by real and complex polynomials.

The present monograph seeks to fill this gap in the mathematical literature
and is, to the best of our knowledge, the first book entirely dedicated to this
topic. It attempts to assemble the main results from the great variety of
contributions spread across a large number of journals all over the world.

This monograph contains the work of the main researchers in this area,
as well as the research of the author over the past five years in these subjects
and many new contributions that have not previously been published.
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Chapter 1 mainly studies shape-preserving approximation and interpola-
tion of real functions of one real variable by real polynomials. The “shapes”
taken into consideration are convexity of order k (which includes the usual
positivity, monotonicity, and convexity), some variations of positivity as al-
most positivity, strongly /weakly almost positivity, copositivity (with its vari-
ations almost copositivity, strongly /weakly copositivity), comonotonicity, and
coconvexity. A variation of copositive approximation, called intertwining ap-
proximation (with its two variations almost and nearly intertwining), also is
presented.

Chapter 2 deals with shape-preserving approximation of real functions of
two/several real variables by bivariate/multivariate real polynomials. A main
characteristic of this chapter is that to one concept of shape in univariate case,
several concepts of shapes of a bivariate/multivariate function may be asso-
ciated. For example, monotonicity has as variations bivariate monotonicity,
axial monotonicity, strong monotonicity, convexity has the variations azial-
convezity, polyhedral convexity, strong convexity, and subharmonicity, and
SO on.

In Chapter 3 we consider shape-preserving approximation of analytic func-
tions of one complex variable by complex polynomials in the unit disk. The
concepts of “shapes” preserved through approximation by polynomials are
those in geometric function theory: univalence, starlikeness, convezity, close-
to-convexity, spiralikeness, growth of coefficients, etc. The construction of such
polynomials is mainly based on the Shisha-type method and on the convolu-
tion method.

Chapter 4 contains extensions of some results in Chapter 3 to shape-
preserving approximation of analytic functions of several complex variables
on the unit ball or the unit polydisk by polynomials of several complex vari-
ables.

It is worth noting that three constructive methods are “red lines” of
the book, that is, they work for real univariate variables, real multivariate
variables, complex univariate variables, and complex multivariate variables.
These are the methods of Bernstein, producing Bernstein-type polynomials;
the Shisha-type method; and the convolution-type method. As a consequence,
Chapters 1—4 use these three methods. Also, although the error estimates pro-
duced by the tensor product method are not always the best possible, because
of its simplicity we use it intensively in order to extend the results from the
univariate to the bivariate/multivariate case.

Chapters 1-5 begin with an introductory section, in which we describe in
detail the corresponding chapter and introduce the main concepts.

The book ends with Chapter 5, which is an appendix containing some
related topics of great interest in shape-preserving approximation. Shape-
preserving approximation by splines is not included in this chapter for the
reasons mentioned at the beginning of this preface.

Let us mention that systematic results in Chapters 2—-5 have been obtained
by the author of this monograph in a series of papers, singly or jointly written
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with other researchers (as can be seen in the bibliography), and many new
results appear for the first time here. Also, many open questions suggested at
the end of Chapters 1-5 might be of interest for future research.

The book is intended for use in the fields of approximation of functions,
mathematical analysis, numerical analysis, computer-aided geometric design,
data fitting, fluid mechanics, and engineering, robotics, and chemistry. It is
also suitable for graduate courses in the above domains.

Acknowledgments. I would like to thank Professor George Anastas-
siou, of the Department of Mathematical Sciences, University of Memphis,
TN, U.S.A., for support, Professor Michael Ganzburg from the Department
of Mathematics, Hampton University, VA, U.S.A. and Professor Costica
Mustata, of the “Tiberiu Popoviciu” Institute of Numerical Analysis of the
Romanian Academy, Cluj-Napoca, Romania, for several useful discussions and
bibliographical references.

Also, I would like to thank Ann Kostant, executive editor at Birkh&user,
for support, and my wife, Rodica, for typing most of the manuscript.

The research in this book was supported by the Romanian Ministry of
Education and Research, under CEEX grant, code 2-CEx 06-11-96.
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1

Shape-Preserving Approximation by Real
Univariate Polynomials

In this chapter we present the main results concerning shape-preserving
approximation by polynomials for real functions of one real variable, defined
on compact subintervals of the real axis. There is a very rich literature dedi-
cated to this topic that would suffice to write a separate book. Due to this fact,
it was impossible for me to avoid the more pronounced survey-like character of
this chapter. Also, for the proofs of some main results that are very technical
and long, we will present here only their most important ideas and steps.

1.1 Introduction

In this section we will introduce the history of the subject, followed by very
brief descriptions of the next sections in the chapter.

Probably one of the first results on the topic is an earlier result of P&l
[295] in 1925, which states that any convex function on an interval [a, b] can be
uniformly approximated on that interval by a sequence of convex polynomials.

The first constructive solution to Pal’s result seems to have been given by
T. Popoviciu [317] in 1937, who proved that if f is convex (strictly convex) of
order k on [0, 1] (in the sense defined below in this section), then the Bernstein
polynomial B, (f)(z) = > 1_, (1)zF(1—2)" = f(£) is convex (strictly convex,
respectively) of order k on [0,1], for all n € N.

In the intervening years, a great deal of work has been done on this topic
by many mathematicians. The aim of this chapter is to present this great
effort in detail.

The topic of Chapter 1 might be divided into five main directions.

The first direction deals with the shape-preserving properties of inter-
polation polynomials, and this is the subject of Section 1.2. We mention here
the contributions of (in alphabetical order) Deutch, Gal, Ivan, Kammerer,
Kopotun, Lorentz, Morris, Nikolcheva, Passow, Popoviciu, Raymon, Roulier,
Rubinstein, Szabados, Wolibner, Young, Zeller, and others.

S.G. Gal, Shape-Preserving Approzimation by Real and Complex Polynomials, 1
DOI: 10.1007/978-0-8176-4703-2_1,
(© Birkh&duser Boston, a part of Springer Science+Business Media, LLC 2008



2 1 Shape-Preserving Approximation by Real Univariate Polynomials

The second direction deals with the shape-preserving properties of the
so-called Bernstein-type polynomial operators, (thus called because their con-
structions were suggested by the form of Bernstein’s polynomials), represent-
ing the subjects of Section 1.3. We can mention here the contributions of
(in alphabetical order) Berens, Butzer, Carnicer, Dahmen, Derrienic, DeVore,
Gadzijev, Goodman, Ibikli, Ibragimov, Kocié¢, Lackovié¢, Lupas, Mastroianni,
Micchelli, Munoz-Delgado, Miiller, Nessel, Paltanea, Pena, Phillips, Ramirez-
Gonzalez, Rasga, Sabloniére, Sauer, Stancu, Wood, and others.

Because of its close connection with the shape-preserving properties (see
Section 5.1), the variation-diminishing property too is presented in Section 1.3.

The third direction deals with the so-called Shisha-type results, and it
began with Shisha’s paper of 1965. The method is, in general, based on poly-
nomials of simultaneous approximation of a function and its derivatives, to
which are added suitable polynomials (uniformly convergent to zero) in such a
way that the new sum preserves some signs of the derivatives of the function.
We mention here the contributions of (in chronological order) Shisha, Roulier,
and Anastassiou—Shisha. It is contained in Section 1.4.

It is worth noting here the importance of Shisha’s method, taking into
account that because of its simplicity, it was extended to real functions of two
real variables in Chapter 2, to complex functions of one complex variable in
Chapter 3, and to complex functions of several complex variables in Chapter 4.

Note that the second direction of research produces rather weak degrees
of approximation in terms of wy(f; ﬁ), k = 1,2, while the third direction of
research, although essentially improving the estimates of the second direction,
has, however, the shortcoming that these estimates are given in terms of the
moduli of smoothness of the derivatives of the function.

In order to obtain better estimates, that is, with respect to the moduli of
smoothness (of various orders) of a function, one of the most used techniques
(introduced for the first time in DeVore-Yu [86]) can be described as follows:
first one approximates f by piecewise polynomials (splines) with the same
shape as f, and then one replaces the piecewise polynomials by polynomials
of the same shape. Estimates in terms of first- or higher-order moduli of
smoothness in all the LP-spaces, 0 < p < 400, were found by (in alphabetical
order) Beatson, DeVore, Ditzian, Dzyubenko, Hu, Iliev, Ivanov, Kopotun,
Leviatan, Lorentz, Mhaskar, Newman, Operstein, Popov, Prymak, Shevchuk,
Shvedov, Szabados, Wu, Yu, Zeller, Zhou, and others.

The main results are included in Sections 1.5, 1.6, 1.7 and are represented
by the so-called positive and copositive (with their variations like, almost,
strongly/weakly, intertwining) approximation, monotone and comonotone
approximation (with the variation nearly comonotone approximation), and
convex and coconvexr approximation (with the variation nearly coconvex ap-
proximation), respectively. The above-mentioned variations of classical pos-
itive/copositive, comonotone, and coconvex approximations were introduced
by the authors in order to improve the estimates, by requiring that the poly-
nomials preserve the corresponding “shapes” in a major part of the interval,
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except for small neighborhoods of the endpoints and of the points where the
approximated function changes the “shapes”.

The shape-preserving approximation results in Sections 1.5, 1.6, and 1.7
can also be classified with respect to the type of error estimate, as follows:

(i) approximation results with respect to the LP-norm and in terms of best

approximation quantities F, (f(i))p, i=0,1,2, and 0 < p < 400.

(ii) approximation results with respect to the LP-norm and in terms of the
LP-Ditzian—Totik moduli of smoothness, 0 < p < +o0.
Note that in both cases (i) and (ii), the uniform cases (i.e., p = +00)
are richer in results than the cases 0 < p < +o00 and will be separately
treated.

(iii) pointwise approximation on [—1,1] with DeVore-Telyakokovskii-
Gopengauz-type estimates, in terms of the usual moduli of smoothness
and with respect to the increments % + (1 — 22)1/2 and (1 — 2%)/2.

(iv) approximation in terms of higher moduli of smoothness of higher deriv-
atives of functions.

Notice that while in monotone and convex approximation, the methods that
produces estimates in terms of second-order moduli of smoothness are linear,
the methods in convex approximation that produce the best possible order,
i.e., in terms of the third-order moduli of smoothness, together with those in
copositive, comonotone, and coconvex approximations, are nonlinear. It is not
known whether there exist corresponding linear methods of approximation for
these last three cases too.

Section 1.8 deals with the fifth direction of research, based on convolution-
type polynomials and on the Boolean-sum method. This method produces
good approximation errors of DeVore-Gopengauz type, but with respect to
the previous ones has the advantage that the constructed polynomials pre-
serve even higher-order convexities too. We mention here the contributions of
Jia-Ding Cao and Gonska.

Section 1.9 presents a constructive example of a nonconvolution, posi-
tive linear polynomial operator that reproduces the linear functions, gives an
error estimate of DeVore—Gopengauz-type in terms of second-order modulus
of smoothness and preserves convexities of higher-order of the approximated
function. The contributions belong to Jia-Ding Cao, Cottin, Gavrea, Gonska,
Kacso, Lupag and Zhou.

In what follows, we introduce well-known concepts of shapes (monotonici-
ties, convexities, etc.) necessary for the next sections of Chapter 1. Denote by
Cla, b] the space of all real functions defined and continuous on [a, b].

Definition 1.1.1. (i) f : [a,b] — R is called j-convex on [a,b] (or con-
vex of order j), if all the jth forward differences Aj f(¢),0 < h <

(b — a)/j,t € [a,b — jh] are non-negative (i.e., > 0). Here AJ f(t) =
i:O(—l)j_k(i)f(t + kh), for all j = 0,1,.... If there exists f) on

[a,b], a simple application of the mean value theorem shows that the
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condition fU)(x) > 0, for all x [a,b], implies that f is j-convex on [a, b].
Recall that the usual convexity (2-convexity in the above sense) can also
be defined by the inequality f(Az 4+ (1 —N)y) < Af(z) + (1 =) f(y), for
all A € [0,1] and z,y € [a, b].

Also, f is called j-concave on [a,b] if all the jth forward differences
A} f(t),0<h<(b—a)/j,t € [a,b— jh] are nonpositive (i.e., < 0).

(ii) A function f : [0,1] — R is called starshaped on [0,1] if f(Az) < Af(x),

for all A € [0, 1], = € [0, 1]. If the above inequality is strict for all A € (0,1)
then f is called strictly starshaped. Also, if there exists f/(z) on [0, 1],
f(0) =0, f(z) > 0,z € [0,1], then the starshapedness (it is equivalent
to) can be expressed by the differential inequality xf/(z) — f(z) > 0, for
all z € (0,1] (see, e.g., L. Lupag [254]);

A function f : [0, 1] — R is called a-star-convex on [0, 1], where a € [0,
if fOz+(1—=Nay) < Af(z)+ (1 —Naf(y), forall z,y € [0,1], A € |
(see Toader [386]).

1],
1]

(iii) A function f : [a,b] — R, f(x) > 0, for all z € [a, b], is called logarithmic-

convex on [a, b, if log[f(z)] is a 2-convex function on [a, b];

(iv) A function f : [a,b] — R is called quasiconvex on [a, b] if it satisfies the

inequality f(Az + (1 — Ny) < max{f(z), f(y)}, for all z,y € [a,b] and
A € [0, 1]. It is known that f is quasiconvex on [a, b] if and only if for any
ceR, {z €la,b]; f(x) < ¢} is a convex set;

More generally, a function f : [a,b] — R is called j-quasiconvex on [a, b],
j € N, if it satisfies the inequality

[x27"'7xj+1;f] < maX{[l’l,...,Ij;f},[xg,...7l'j+2;f]},

for every system of distinct points z1 < -+ < x;42 in [a,b]. Here

e L flaw)
[xl,...,mj,f}—; %)

uk(

(with ug(z) = M) denotes the divided difference of f on the

points x1,...,x;, and j = 1,2,.... Note that for j = 1 we obtain again
the usual quasi-convexity.

(v) Let f,u € Cla,b], u(z) > 0, for all z € [a,b]. We say that f is u-monotone

if w(z1) f(z2) — w(za) f(x1) >0, for all @ < 1 < 29 <b.

(vi) For (wx)f_g, 0 < @9 < 1 < --- < 2, < 1, let us denote by Sy 11[f;

(rg)r] the number of changes of sign in the finite sequence
f(xo), f(z1),..., f(z,), where zeros are disregarded. Also, define
the number of changes of sign for f on [0,1] by Sjylf] =
sup{Spo,11[f; (zr)r]; (zr)j—g:n € N}. One says that the linear opera-
tor L : C[0,1] — C]0,1] is strongly variation-diminishing on [0, 1], if
SolL()] < Solf], for all f € C[0,1].
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Remarks. (1) The concept of j-quasiconvexity belongs to E. Popoviciu (see,
e.g., [311]) and the concept of u-monotonicity was introduced by Kocié-
Lackovié [195].

(2) The j-convexity introduced in Definition 1.1.1 (i) is sometimes called
Jensen convexity of order j. A slightly more general concept of convexity,
called Popoviciu convexity of order j, was introduced by Popoviciu [315] (in
a slightly different denomination), as follows: one says that f : [a,b] — R is
Popoviciu convex of order j, if for all systems of distinct points (not necessarily
equidistant) a < zg < --- < x; < b, we have [z, ..., z;; f] > 0. But, according
to a result stated without proof by Popoviciu [318] in 1959, and completely
proved in 1997 in, e.g., Ivan—Rasa [184], if f is continuous on [a, b], then for
any system of distinct points a < zop < -+ < x; < b, there are the points
c,c+h,...,c+jh €la,b],h >0, such that [zg,...,z;; f] = ﬁAi (o).

This immediately implies that for continuous functions, the Jensen and
Popoviciu convexities coincide and because in approximation, most of the
time the functions considered are at least continuous, in those cases we will
simply refer to j-convexity.

(3) The concept of an a-star-convex function « € [0, 1] is an intermediate
concept between the concept of usual convex and that of starshaped function.
Indeed, in Definition 1.1.1 (ii), for o = 1 we get the concept of usual convex
function, while for « = 0 we get the concept of starshaped function.

It is worthwhile to point out here the following main properties of an
a-star-convex function f : [0,1] — R, with a € (0,1] (see Mocanu—Serb—
Toader [274]): f is starshaped on [0,1] (for f(0) < 0), continuous on (0, a),
bounded on [0, 1], and Lipschitz in each compact subinterval of (0, «).

Also, we need the following.

Definition 1.1.2. (i) (see e.g. DeVore-Lorentz [91], p. 44) The modulus of
smoothness of f € LP[—1,1], 0 < p < +o0, denoted by wi(f,t),, k €
{0,1,...,} is defined by wo(f,t)p := || fllzriap) := [|f]l, and for & > 1 by

wp(f,t)p = sup {24 fC)llp}s
0<h<t

where Z:f(x) = AFf(z) if z,2 + kh € [-1,1], Zﬁf(x) = 0; otherwise,
Ak f(z) = Zfzo(—l)k’i(i)f(x + ih). Here L>°[-1,1] = C[-1,1], the
space of all continuous functions on [—1,1].

(ii) (see Ditzian—Totik [98]) Set ¢(x) := /1 — 2 and define the kth symmet-
ric difference

(=1 () f(a+ (i = §)hp()), =+ §he(z) € [-1,1],

otherwise,

M=

A;CLgof('r) = 0
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where A(f)w f(z) := f(x). Then the Ditzian—-Totik modulus of smoothness
of order k is given by

wl(fit)p == sup AL, flp-
0<h<t

(iii) (Sendov—Popov [345]) The kth averaged modulus of smoothness (called
7-modulus too) defined for a measurable bounded real function defined
on [a,b] is given by

Tk(f’ t [a’7 b])p = ||w7€(f7 K t)||LP[a,b]7

where 1 < p < oo, AF is the kth symmetric difference from the above
point (ii), and

wi(f,x,t) = sup{|A¥|;y £ mh/2 € [x — mt/2,x +mt/2] N [a,b]}.

Remark. For p = oo one can modify these moduli by taking into account
not only the position of x in the interval when setting Afw f, but also how far

the endpoints of the interval [x — £ho(z), 2 + £hp(z)] are from the endpoints
of [—1,1]. Thus, one can introduce the following.

Definition 1.1.3. (Shevchuk [349]) Let us define

os(a) = [ =2 = Se@ (o - So@),  xt Do e 1

and by C7 the set of functions f € C7"(-1,1) N C[-1,1], such that
lim, 11 " (z) f) (x) = 0.

The modified Ditzian—Totik modulus of smoothness of order (k,r) is
given by

wi (F7, 1) := sup sup|hy, (@) Af o f T ()], >0,
0<h<t =

where AF f(x) denotes the kth symmetric difference and the inner supremum
is taken over all x such that

k
z+ §h<p(ac) € (-1,1).
Remarks. (1) For k = 0 we have

Wi (F,8) = 16" f D loos

while for » = 0 we have

w,ﬁo(f(o),t) =wi (f,t).
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The above condition guarantees that for k& > 1, it follows that
w,fyr(f(T%t) —0,ast— 0. Also, if f € CJ and 0 <m < r, then

O (P, 0) < Okt wf (f0 1), t>0.

Conversely, if f € C[-1,1], m < a <k, and wf(f,t) <t then f € C
and
O (F8) < Cla k), £ 0.

(2) If f € CP and wy_,,, ,,,(f(™, 1) <t"~™, then

le" e < O
If we denote the class of all functions satisfying this last inequality by B",
then the converse is valid too, that is, if f € B” and 0 < m < r, then
[ €y and
O (FT,8) < O™ f o, E20.

r—m,

1.2 Shape-Preserving Interpolation by Polynomials

The existence of interpolating polynomials that are monotone with the in-
terpolated data was established by Wolibner [399] and independently by
Kammerer [189] and Young [404], as follows.

Theorem 1.2.1. (see Wolibner [399], Young [404], Kammerer [189]) Let
(zi,yi),i = 1,...,n be a set of data such that x1 < x9 < -+ < x, and
Yi £ Yir1,% = 1,...,n — 1, then there exists an algebraic polynomial p with
the following properties:

p(‘r’t) = yhl = 17 N, Sgn[p/(x)] = Sgn[Ayi]a T e [xia'r’i+1]7 1= 17 e an_17
where Ay; = yir1 — ¥s.

Proof. We follow here the ideas in the proof of Wolibner [399]. Denote by
@(z) the continuous piecewise linear function defined on [z1,x,] and passing
through all the points (zk,yx). It is evident that we can define a twice dif-
ferentiable function f : [x1,z,] — R such that f(xx) = yx,k=1,...,n, fis
comonotone with ¢, (i.e., f(x) is of the same monotonicity with ¢(z) on each
subinterval [zy,Zk+1]), the monotonicity is given by the sign of the difference
f(xg+1) — f(xg)), and, in addition f is strictly monotonic on each subinterval
[Tk, Tht1]-

It follows that f’ can have only simple zeros. Denote by ¢;, j =1,...,m,
on [z1,xy], i.e., by the continuity of F'(x), we get that F(x) > 0,Vz € [z1, 2]
or F(z) < 0,Vx € [x1,x,]. In both cases, for any positive € > 0, there exists
an approximation polynomial P attached to F' such that ||F' — P||o < & and

m < n, the x; that are simple zeros. Then F(z) = cannot be zero
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P is strictly positive or strictly negative on [x1,x,], as is F'. Here ||-||o denotes
the uniform norm on [z, z,].

Defining Q(z) = f(x1) +f:1 P(t)II, (t —xp)dt, it is easily seen that Q(x)
imitates the monotonicity of f on each subinterval [z, zx11]. Also, we get

Q) |\/ O (t — w2)dt — [f() — fmn\

_ ’/ P(6)IT}y (= wy)dt — / fﬁ)dt’

Tn
< s/ [T (t — ) |dt < (2, — 21)™ e,
T

1

for all € [z1,2,]. So for suﬁiciently small €, we have that the Q(zy) are
sufficiently close to y = f(zk), k=1,.

Now, for any ¢ > 0 and s = 2,3,...,n, chooseyk 1e ;éyks, k=1,....,n
such that |y,(csi| <eg, k=1,...,5s—1, |yk}8 —1| < e,k =s,...,n, the points
r1 < -+- < x, remaining the same. Also, the corresponding linear piecewise
function passing through all the points (z, y,(f;) is denoted by ¢(S)(x).

According to the above reasonings there exist the polynomials QS) (), s =
2,...,n, such that they are comonotone with ¢(*)(z) and satisfy

QW (x)| <e, k=1,...,s—1,

and
QW (x) — 1] <e, k=s,...,n.

Also, by convention define le)(x) =1.
Denote by A. the value of the determinant Qé”(a:k), k,s=1,...,n, and
by Bés) the value of the determinant obtained from the above one by replacing

the sth column with y,(:i, s=1,...,n. Obviously, we have lim._,o A. = 1 and

lim. o B

=Ys — Ys—1,8 = 2,...,n. Therefore, for an gy sufficiently small,
we have A., > 0 and sign(Béf,)) = sign(ys — Ys—1),8 = 2,...,1n
()
Then the polynomial W(z) =Y, iso Qé‘;) (x) will satisfy the conditions
€0

in the statement. O

Remarks. (1) For generalizations of Wolibner’s result see, e.g., Ivan [183].

(2) A direct consequence of the above theorem is the following result in
Deutch—Morris [80], called SAIN (i.e., simultaneous approximation and
interpolation-preserving norm)-type result: if f € C[a,bl and xg <--- < x,,
are distinct points in [a, b], then for any € > 0, there exists a polynomial
p such that

p(xi) = f(2i), i =0, in, [|f = plloe <& [IPlloe = [Iflloo
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(here || ||co denotes the uniform norm on C|a, b]). In some particular cases,
this result can also be considered to belong to the topic of approximation
and interpolation by polynomials preserving positivity or positive bounds.
Indeed, suppose 0 < f(z) < ||f|loo, for all € [a, b] (obviously, the second
inequality is always valid). From the continuity of f, there exists ¢ > 0
such that f(z) > ¢ > 0, for all = € [a, b], and therefore for any sufficiently
small € (more exactly for 0 < & < ¢), the approximating and interpolating
polynomial p also satisfies 0 < p(z) < || f||co, for all z € [a, b].

(3) The Wolibner’s theorem does not provide any information about the de-
gree of the polynomial p. If we denote by s the smallest degree of p that still
satisfies Theorem 1.2.1, then the first result concerning s was obtained by
Rubinstein [330], but only for the particular case n = 2 and yg < y1 < ya.
In Nikolcheva [285], for equidistant nodes in [0, 1] and for the hypothesis
Ay; > em®, one obtains the best estimate, s = O(« - log(n)). Similar
results were obtained in Passow—Raymon [300] and Passow [299].
Another direction of research concerning the shape-preserving interpo-

lation by polynomials was discovered by T. Popoviciu in a series of papers

published between 1960 and 1962, see [312], [313], [314], and can be described
as follows. First let us consider the following simple definition.

Definition 1.2.2. Let f € Cla,b] and a < 21 < x2 < -+ < z, < b be fixed
nodes. A linear operator U : C[a,b] — Cl|a,b] is said to be of interpolation
type (on the nodes x;, i = 1,...,n) if for any f € C[a, b] we have

U(f)(xs) = fxy), Vi=1,...,n.

Remark. Important particular cases of U are of the form
Un(f)(x) =Y fax)Pe(x), neN,
k=1

where Py, € Cla,b] satisfy Py(x;) = 0if k # ¢ and Py(x;) = 1 if k = 4, and
contain the classical Lagrange interpolation polynomials and Hermite—Fejér
interpolation polynomials.

Now, if f € C|a, b] is, for example, monotone (or convex) on [a, b], it is easy
to note that because of the interpolation conditions, in general U(f) cannot
be monotone (or convex) on [a, b].

However, it is a natural question whether U(f) remains monotone (or con-
vex) on neighborhoods of some points in [a, b]. In this sense, we can introduce
the following definition.

Definition 1.2.3. Let U : C[a, b] — C|a,b] be a linear operator of interpola-
tion type on the nodes a < 1 < -+ < x, < b.

Let yo € (a,b). If for any f € C|a,b], nondecreasing on [a, b], there exists a
neighborhood of yo, V¢(yo) = (yo—€f,y0+¢€¢) C [a,b], e > 0 (i.e., depending
on f) such that U(f) is nondecreasing on Vi (yo), then yo is called a point of
weak preservation of partial monotonicity and correspondingly, U is said to
have the property of weak preservation of partial monotonicity (about yo).
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If the above neighborhood V' (yp) does not depend on f, then y, is called
a point of strong preservation.

Similar definitions hold if monotonicity is replaced by, e.g., convexity (of
any order).

For example, we present the following two results below concerning the
Hermite—Fejér polynomials based on some special Jacobi nodes.

Theorem 1.2.4. (Gal-Szabados [139], Theorem 2.2; see also Gal [123], p. 46,
Theorem 2.2.2) Forn € N, let H,(f)(z) = Y1y hin(x) f(2i,n) be the classical
Hermite—Fejér polynomial based on the roots —1 < Xy p < Tp_1p < -+ <

Z1,n < 1 of the Jacobi polynomials pld) (x), where o, 3 € (—1,0] and

hin(z) =12(z) |1 - ll///((;:;:))(x — xzn)} ,
Li(z) = U2)/[(z — zi)l (xin)],  U(z) = [](z = zim)-
i=1

If f: [-1,1] — R is monotone on [—1,1], then for any root & of the poly-
nomial I'(z), there is a constant ¢ > 0 (independent of n and of f) such that

H, (f)(x) is of the same monotonicity with f in <§ — n7c‘52“/’§+ e ) C
c
(1— €2)5/2+0”

5= o, if 0 <€ <1,
N 67Zf71<£§0

(—1,1), where c¢ = v = max{a, 8}, and

Proof. Let us denote H,(f)(x) = Z hin(z)f(z; ), where
i=1

B le(xi,n)
l/(l‘i,n)

li(z) = 1(2)/[(x = @il (i), Uz) =[] (@ = zin).

hin(x) = 12(x) {1 (z— mn)] ;

By, e.g., Popoviciu [312] we have
hin(0) = P(0)[2 — (1 = Na? ]/ (i) (1 — 27, )a7 ],

foralli=1,...,n, and

H, (f)(x) = Z[Qi(w)][f(xi,n) — f(@iy1n)l,

i
where Q;(z) = Zh’m(x), i=1,...,n—1.
j=1
Reasoning as in the proof of Lemma 3 in Popoviciu [314], we get

Qi(&) > min{h} ,,(£), —h;, ,(§)} >0, foralli=1,...,n— 1.
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Let an,bn € (0,1), an,bn \, 0 (when n — +00) be such that [hf ,,(§)] >
C1an; |hy, (&) > caby, and s, = min{an, b, }.

It easily follows that Q;(¢) > ecssn,i = 1,...,n — 1. By Szegd [383],
Theorem 14.5, we have

hjn(x)=1, Vze[-1,1],
1

J

n

where hj,(z) >0, Vo e [-1,1], j=1,...,n.
Applying the Bernstein’s inequality twice we obtain

Q1(€)§01‘d1—£|n2/(1_£2), izl?"'un_17
where d; is the nearest root of Q;(x) to &, and therefore

max Q;(z) >0, i=1,...,n—1
le—€|<a¢ %

with ag = co(1 — €2).
It remains to find a (lower) estimate for s,. First we have

—1/2

(a,8) Csm
‘Pn (6)‘ Z (1 _ 6)5/2+1/47

(see Theorem 8.21.8 in Szegd [383]).
By Popoviciu [314], p. 79, relation (27),

R R, S ML)
1n(§) = (10 — )3 [a10)]2 2+ (1, —§) U(21.0) > 0,
/ o 12(5) |: €T — l//(xn,"):|
hnyn(f) = ($n7n — 5)3[1/5571,71)]2 2+ (zpn — &) l/(l’n,n) < 0.
By Szegd [383], Theorem 14.5, 2+ (x;,, —&) ll/:((;:m)) > 1 and by Szeg6 [383],
(7.32.11), "’
T P R )

s

(@10 = W (@Ln)® (21, — B[P (21,0)]2
ca[PYP) (6))

> - N7

n24(1—¢)3 '

(where ¢ = max{2 + a,2 + (8}).
Also,
o5 [P (€))2
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Thus we obtain

Qz(f) > n5+27(1 6_852)7/2+6’

1=1,...,n—1.

Cs

Finally, taking s, = EE (1 g2)7/2 T8

we easily obtain the theorem. [

For n > 3 odd, let H,(f)(x) be the Hermite—Fejér interpolation polynomial
based on the roots z; ,, € (—1,1), i = 1,...,n, of A-ultraspherical polynomials
of degree n, A > —1, XA # 0. Also, consider the Cotes—Christoffel numbers of
the Gauss—Jacobi quadrature given by

M1 20+ ,
Mimi= 270 [F (z)] e 1) P =L,

and define
AR f(0) = f(h) = 2f(0) + f(=h).

We also have the following result:

Theorem 1.2.5. (Gal-Szabados [139], Theorem 2.3; see also Gal [123], p. 49,
Theorem 2.2.3) Let f € C[—1,1] satisfy

n

Zp‘l nAil nf(O)]/xfn >0

i=1

(if f is strictly convex on [—1,1] then obviously it satisfies this condition).
Then H,(f)(x) is strictly convex in [—|d,|, |dy|], with

Z /\z nA2 O ]/IzZ,n

: {m (f; L)l -]

where ¢(X\) > 0 is independent of f and n, I = [ 55 %] w1 (f; %)[_; 4 is the
272

|dn| >

first-order modulus of continuity on [—%,3], and || - ||[,; 1 is the uniform
272
norm on [—3,1].

n

Proof. Denote H,(f)(z) = Z hin(x) f(2in), where
i=1

L) = ~A5 )+ 200107 + L o)

1 o)

)
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(0
But /;(0) = 0 and 7;(0) = —#, for i # (n+1)/2 and
xi,nl (zi,n)
l”(xi,n) o 1+ )‘xzz,n
Vzin) 1—a2 "

,n

1=1

1+zin ,...,n  (see, e.g., Popoviciu [312]).

We obtain

P e A (U) N S (e 1 :
Ry, (0) = TP 2\ 122, >0, Vi#(n+1)/2.

Also, because z; p, = —Tp41—in, 1 =1,...,n, U'(z;n) = (xnt1-in) (since
n is odd) we easily get
h;/,n(o) = h;;%»lfi,n(o)‘

aAl(n+ A) 1 1 .
But A\, = . . d (I'(0))? ~ n*, which
WA TG Wl Toaz, O e e

together with the above inequality implies

hi 0 (0) 2 cxdndin /3 ,,, for all i # (n+1)/2.

Therefore
(n—1)/(2) n
H(£)0)= > b, (0042 f(0)>esdnd AinAZ f(0)/27, > 0.
=1 =1

By this last relationship it follows that H,(f) is strictly convex in a neigh-
borhood of 0. Let d,, be the nearest root of H)/(f) to 0. We may assume that

c
|dn| < — (since otherwise there is nothing to prove, the interval of convexity
n

(8] C

cannot be larger than [—5, 5] ). Then by the mean value theorem, Bernstein’s
inequality and Stechkin’s inequality (see, e.g., Szabados—Vértesi [381], p. 284)
we get

HI()(0) = [HI)O) ~ B )] = ldal - 1))
< dalesr (1) < el lon (H,(1)%)
I

< cldoli® o (152 ) o (H00) - 151 )|
I

< caldal [on (12 ) + 11 = 7)1

)
I

where J = [~1,1]. 1= [~1,3].
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Combining the last inequality with the previous inequality satisfied by
H/'(f)(0), the proof of the theorem is immediate. O

Remark. All the details concerning this direction of research can be found
in Chapter 2 of the recent monograph Gal [123], where a deep and exten-
sive study concerning shape-preserving interpolation by classical univariate
interpolation polynomials (of Lagrange, Griinwald, or Hermite-Fejér type)
is made.

For the error estimate in shape-preserving interpolation, we mention here
the following four results.

The first two results show the existence of such polynomials with good
approximation properties and can be stated as follows.

Theorem 1.2.6. (Ford-Roulier [120]) Letp e N, 1 <71y <1y <--- <rys <p
with r;,9 = 1,...,s, natural numbers, ¢; = £1,j =1,...,5, and a < zp <
-+ Ty < b interpolation nodes. For any f € CP[a,b] satisfying

Eif(”)(x) >0,Vx € [a,b], i=1,...,s,

there exists a sequence of polynomials (P,(x)),, degree(P,) < n, such that
for sufficiently large n we have

g P")(z) > 0,Vz € [a,b], i=1,...,s, with P,(z;) = f(z;), 7=0,...,m,
and the estimate
If = Pulloo < Cn_pwl(f(p)§ 1/n) oo

holds, where C > 0 is independent of f and n. Here ||- || denotes the uniform
norm on Cla,b].

Proof. Let us sketch the proof. According to a result in the doctoral thesis
of Roulier [325], f can be extended to a function F € CPla — 1,b + 1] such
that wi (F®;h)0 < wi(f®);h)0, for all h € [0,b — a]. Denote by Q,, the
polynomial of best approximation of degree < n attached to F' on [a—1,b+1].
Jackson’s theorem implies

||Qn - F|‘C[a71,b+1] < Cn_pwl(F(p)§ l/n)ooa

where w; is the uniform modulus of continuity on [a — 1,b + 1].
Now let L,, be the Lagrange’s interpolation polynomial of degree < m
satisfying Ly, (z;) = §; = F(z;) — Qn(z;),i =0,...,m.

Since |§;] < Cn~Pwi(F®);1/n)s, for all i = 0,...,m, it is easy to derive
that |L,,(z)] < Cin Pwi(F®):1/n)s for all z € [a — 1,b + 1], where C}
depends only on m and the points z;, i =0,...,m.

Setting P, (x) = Qn(x) + L (z), it is easy to see that P, (z;) = F(z;) =
f(zg), i =0,...,m, and || P, — fllcja—1,p4+1] < Con™Pwi (fP);1/n)0, by the
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above mentioned result in Roulier [325] (here wi(f(®),1/n)s denotes the uni-
form modulus of continuity on [a, b]).
Also, according to another result in Roulier [325], [Py, — fllcla—1,041 <

Con~Puw, (f(p); 1/n) oo implies ||P,(Li) — f(i)HC[a,b] < Cyn'~Puwy (f(p); 1/N)oo, @ =
0,...,p.

This means that P\ — £ uniformly on [a, 0], for all i = 1,...,s,
which because of the strict inequalities

eifU)(2) >0,z € [a,b], i=1,...,s,
immediately implies the conclusion in the statement. [

Remark. A similar result to that of Theorem 1.2.6, but in the more general
setting of nondifferentiable functions, has been considered by Szabados [379],
who obtained estimates in terms of wy (f; 1Og”)oo

Theorem 1.2.6 can be slightly refined by combining it with approximation
by monotone sequences of polynomials, as follows. For simplicity, we consider
the problem on [0, 1].

Theorem 1.2.7. (Gal [130]) Let p € N, 1 <1 < ro < -+ < rg < p with
ri,% = 1,...,8 natural numbers, e; = £1,7 =1,...,s and 0 < 21 < --- <
Tm < 1 interpolation nodes. For any f € CP[0,1] satisfying

Eif(ri)(x) >0,Vxel0,1],i=1,...,s,

there exist sequences of polynomials (Pp(2))n, (Qn(z))n, degree(P,) < n,
degree(Qn) < n, such that for sufficiently large n, we have

&P (z) > 0, &QU (z) >0, Ve € [0,1], i=1,...,s,
P.(z;) = Qunlzj) = f(z;), j=0,...,m,

the estimate
HPn - Qn”oo < Cn_pwl(f(p)5 1/n>00

holds, where C' > 0 is independent of f and n, and in addition,

Qn(‘r) < Qn+1($) < f(.l?) < Pn-‘rl(x) < Pn(x)v Vo € [07 1]7 neN.

Proof. From the proofs of the Theorem and Corollary 1 in Gal-Szabados
[140], we distinguish two steps.

Step 1. We start with the polynomial sequence (pg)r, degree(pr) < k,
satisfying Theorem 1.2.6, i.e., for sufficiently large n we have

zp,gcn)(x) > 0; Vo € [Oal]a i = 17“'737 where pk(xj) :f(‘rj)’ jZO""’m7

and the estimate
1f = prlloo € CEPwr(FP:1/k) 00

holds.



16 1 Shape-Preserving Approximation by Real Univariate Polynomials

Step 2. With the aid of (pg )k, one construct the polynomials P, and @,
satisfying the relationships (5) and (8), respectively, in Gal-Szabados [140]
(where P, and @, are defined as special arithmetic means of py), replacing
there Eg(f)oo by the expression Ck™Pwi(f*);1/k)q.

By the mentioned proof, for all n > 4 we get

Qn(l’) < Qn+1(x) < f(l’) < Pn+1(x) < Pn(x)> Vo € [07 1]) n e Na

and
1Py = Qnlloo < CnPwi(f%)51/n)cc.

Since the polynomials P, and @, are arithmetic means of py, it is imme-
diate that

P (x) >0, QU (x)>0, Vzel0,1,i=1,...,s.

Now, in order to get the interpolation conditions too, let us redefine @,
and P, by Q, = Qn + LY, P, := P, + L2, where L) and L{? are the
Lagrange polynomials of degrees < m satisfying the conditions L%) (x;) =
F(@5) = Qulay), LR (@5) = f(25) = Palw;), j=0,....m.

Reasoning as in the proof of Theorem 1.2.6, for the redefined @,, and P,,
we get

P(zj) = Qn(z;) = f(zj), 7=0,....m

and

1Qn — flloo < Cnipwl(f(p)Q 1/1)c,
”Pn - f”oc < Cn_pwl(f(p); 1/”)007

which by [|@Qrn — Prllee < |Qn — flloo + I|f — Pulloo, immediately implies
1Pn = Qnlloo < Cn7Pwr(F751/n)oc.

Also, as in the proof of Theorem 1.2.6, we get the uniform convergence of
Q%Ti) and P\ to fr) i=0,...,s, which for sufficiently large n also implies

g P (2) >0, QU (x)>0, Veel0,1], i=1,...,s.

Obviously, the monotonicity properties of the redefined sequences (@)
and (P,), (with respect to n) become non-strict, because of interpolation
conditions. The theorem is proved. [J

Remark. Two recent results in Kopotun [202], Kopotun [203], give the ap-
proximation estimates necessarily verified by interpolation j-convex polyno-
mials (interpolating a function which is not necessarily j-convex), in the case
that the interpolation nodes are not close to the endpoints. These results re-
maining valid for j-convex functions too, it is clear that they can be considered
to belong to the shape-preserving interpolation topic.
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Now, since by the alternating Chebyshev theorem, the best approximation
polynomial of degree < n interpolates the function on at least n + 1 points,
in this section we also present three results concerning the preservation of
j-convexity by the best approximation polynomials.

Theorem 1.2.8. (Roulier [327]) Let m € N, f € C?™~1-1,1], 1 < iy <iz <
- < ig < m be fived integers and €5,5 = 1,...,q be fized signs. For any
n € {0,1,...,}, denote by Q, the best approximation polynomial of degree
<mnof f on [ 1,1]. Ifsjf(ii () >0, forallz € [-1,1] and all j =1,...,q
and if Zk 1 w1 (M=, Hoo < +00, then for sufficiently large n, we have
€; (”)( )>0, forallz e [-1,1] and all j=1,...,q
Proof. We sketch here the proof using the ideas in Roulier [327]. In fact, it
is based on two lemmas. The first one is well known (see, e.g., G.G. Lorentz’s
monograph [248]) and can be stated as follows.

Lemma (A). (Lorentz [248], p. 74)There exist constants M, > 0,

= 1,2,..., such that if w is any modulus of continuity for which
Z;“{ iw(l/k) < 400 and if for f € C[—1,1] and polynomials q,(x) of degree
< n we have the estimate

[/ (x) = gn(2)] < C[An(2)]Pw(An (),
then f has continuous derivative fP) and
1
P (2) = P (@) <M, Zw(1/k),va € [-1,1].
k>[(An(z)~1]
Here A, (z) = max{n~'(1 — 2?)¥/2 n'/2}, Ay(z) =1.

Proof of Lemma A. Because of its importance in approximation theory,
let us sketch its proof below. It is easy to see that we can write f(z) =
qn(x) + Z;x;l(Qan(x) — @oi-1p(x)), where by the hypothesis it follows that

\%J‘n(ﬂ?) - Q2171n($)| < 2[A2J'*1n(x)]pw(A27*1n(I))'

This implies the uniform convergence of the series (on [—1,1]), that is, the
differentiated series (of any order) is also uniformly convergent and we get

F®)(x) +Z oP) () — ¢, (2)).

Taking into account the elementary inequalities 1 A,,(y) < Qs (y) < 1A, (y),
valid for all y € [—1, 1] and applying a well known Markov-type inequality in
terms of the modulus of continuity (i.e., |gn(z)| < [An(z)]"w(A,(2)), |z| < 1,
implies |¢/,(z)] < M,[A.(z)]" " 'w(A,(x)), || < 1, for its proof see, e.g.,
Theorem 3 in Lorentz [248], p. 71) p-times, we obtain

14 () — ¢, ()] < Mpw(Agsp(2)).
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Combining with Lemma 1 in Lorentz [248], pp. 5859 and taking into account
that [A, (z)]~! > n, this implies

f P (x) — ¢ ()]
<M, Z (Agin()) < S w(i/k),vee 1],

k>[(An(w))’1]

and the existence of continuous f®). [J
From Lemma A, one deduces the following.

Lemma (B). (Roulier [327]) If f € C?*™~1[—1,1] and
400
1 1
- (2m-1). —
kzzl kwl (f ’k)oo < +00,

then for the best-approximation polynomial Q) , there exists a constant By,
such that

D (2) = QO ()] < B Z Lo (f@m D, j)m

j= n
forallz e [-1,1] and 1 <i < m.

Proof of Lemma B. From the well known Jackson’s theorem we have

Chm . 1
1f = Qulloc = En(f)oo < le <f(2m 1)§> J

n

with C,, > 0 depending only on m.
Now, since # < Ay(x) < %, forany z € [-1,1] and k=1,...,m — 1, by
simple calculation we get

n

1 1 .
T (f@m 1);> < (An(2)Fwr (fO™ 15 A (@) oo,
which implies

|Qn() = f(@)] < Con(An(@) wr (FE™ D5 A (2)) o

Applying Lemma A, we get the desired inequality in Lemma B.
Now, since Z+°°} (f(2m71);%)00 — 0 as n — +o0, the proof of
Theorem 1.2.8 is immediate. [

As a negative-type result, we can mention the following.

Theorem 1.2.9. (see Passow-Roulier [301]) Suppose that f € C[—1,1] has
bounded rth-order divided differences and nonnegative (r 4+ 1)th-order divided
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differences on [—1,1]. Let P, be the best approzimation polynomial of f on
[—1,1] of degree < n and assume that there is no C > 0 for which

C
(n + 1)7.7

Then there are infinitely many n for which we do not have P'*1(x) > 0 on
[713 1]

For other negative-type results see Passow—Roulier [301].

En(f)so < n=0,1,....

Remarks. Generalized results concerning the best comonotone approxima-
tion in Cfa,b] by elements from an n-dimensional extended Chebyshev sub-
space were obtained by Deutsch-Zhong [81].

1.3 Bernstein-Type Polynomials Preserving Shapes

Let f:[0,1) — R. The Bernstein polynomial on the interval [0, 1] given by

Bn(f)(z) = épn,k(x)f (i) s Pnk(T) = (Z) a*(1— )"k

is one of the most famous polynomials in approximation theory and was in-
troduced in 1912 by S.N. Bernstein [45] in order to give the first constructive
(and simple) proof to the Weierstrass approximation theorem. Note that the
Bernstein polynomial attached to a function f : [a,b] — R can be written by
the formula B, (f;[a,b])(z) = ﬁ Sico (M@ —a)*(b—z)" 7 fla+ kE2).

The first approximation error of these polynomials was established by
T. Popoviciu [316] in 1935, who proved the estimate

3 1
18.(0) = fle < 5o (51 72)

for all n € N. The best constant in front of wy(f; 1) was found in 1961 by

Sikkema [356], and it is 43068376 — 1 0g9.. ..

Many decades later, the best order of approximation by Bernstein poly-
nomials was found; namely Knoop—Zhou [194] and Totik [387] proved the
following equivalence (with absolute constants C; and Cy):

Crf (f; < IBu(f) — Fllw < Cos? (f;

1 1
\/ﬁ o0 \/ﬁ o0 ’
where we recall that

w3 (f560) 00
= sup{sup{[|f(= + he(x)) — 2f(2) + f(z — ho(x))|;2 € L2}, h € [0,6]}

(with I ) = [*%, L‘_—Z;}, o(z) = y/z(l —x), 6 < 1) denotes the second-
order Ditzian—Totik modulus of smoothness.
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Let us mention that earlier, the following pointwise estimate was proved:

Bu()@) ()] < Con <f; “’“n>> ,
oo
for all x € [0,1], n € N, f € C[0,1]; see, e.g., Cao [54] (or Gonska—Meier [153]
for C' =5).

Although the above estimates are rather weak with respect to the Jackson-
type estimates attained by other approximation polynomials, the shape-
preserving properties of Bernstein polynomials make them very important,
with many applications in computer aided geometric design.

These properties can be summarized by the following theorem.

Theorem 1.3.1. Let f:[0,1] — R.

(i) (Popoviciu [317]) If we suppose that f is convex (strictly convex) of or-
der k € {0,1,2,...,} on [0,1], then B,(f) is convex (strictly convez,
respectively) of order k on [0,1], for all n € N;

(i1) (Paltanea [296]) If f is quasiconvex of order k € {1,2,...,} on [0,1],
then By (f) is quasiconvex of order k on [0,1], for all n € R;

(iti) (L. Lupas [254]) If f : [0,1] — R satisfy f(0) = 0, f(= ) > 0, for all
x € [0,1] and f is starshaped on [0,1], then B,(f)(0) =0, B,(f)(x) >
0,z € [0,1], and B, (f) is starshaped on [0,1], for all n € N
(Mocanu—Serb—Toader [274]) For f :[0,1] — R starshaped on [0,1], de-
fine its order of star—convezity by o*(f) = sup{B; f is O-star—convez}.
If, in addition, f is strictly starshaped with f(0) < 0 or f is strictly
starshaped, f € C2[0,1], f(0) =0, f”(0) # 0, then

lim o’ (B, (f)] = a"().

(iv) (Goodman [154]) If f is logarithmic convex on [0,1], then B, (f) is loga-
rithmic convez on [0,1], for all n € N;

(v) (Kocié-Lackcovié [195]) If f is u-monotone, where u(z) = x>, for all
x € [0,1] and X € (0,1) is arbitrary and fized, then By, (f) is u-monotone
for all m € N.

(vi) (Pdlya—Schoenberg [308]) By (f)(x) are strongly variation-diminishing,
that is Sjo,1)[Bn(f)] < Sjo,ylf], for all f € C[0,1],n € N.

Proof. (i) We may easily prove by mathematical induction with respect to k
the formula,

n—k

BE(f)(x) =n(n=1)---(n—=k+1) > A%, f(/n)pn-i;(2),

=0

which immediately proves (i);
(ii) First we need two auxiliary results.
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Lemma (A). (Paltinea [296]) Let us define ¥ = {0 = (z1 < -+ <
T ); Ty -y Ty € [0,1]}, where m > k+ 1, k € N. For such a 0 € X and
for f:[0,1] = R, d;j = [zj,...,xj4%; f],1 < j <m—k, and let u(o) be the
greatest index p, 1 < j < m—k, such that d, < 0. If there are no such indices,
then we put p(o) = 0.

If f :[0,1] — R is k-quasiconvex (k € N) on [0,1], then the following
inequalities hold:

dy <0, 1<pu(0) =1, dye) <0,

and
d; >0, plo)+1<j<m-—-k-1

Proof of Lemma A. Obviously it is enough to prove that d; < 0, for
all 7 = 1,...,u(c). For this purpose, suppose that there is an index 4, the
case when we choose the greatest ¢ satisfying 1 < i < u(o) — 1, such that
d; > 0. Therefore, we would have d; < 0 for all j satisfying ¢ < j < pu(o). We
will use the following properties of divided differences in Popoviciu [315]: for
every system of strictly ordered points z1 < -+ < x,,, m > 2, and for every
indice 1 =i; < -+ <ip, =m, n > 1, there exist real numbers a; > 0, for all
1<j<m-n+1,a; >0, apm_ns1 > 0, such that

m—n+1

[@iys ooy i f] = Z aj [T, Tjgn—1; f] .

Jj=1

Applying this relationship, there exist the numbers a; > 0, for all i +1 < j <
(o), aiy1 >0, a,e) > 0, such that

p(o)

[wi—i-lv sy Tit k415 Ty(o)+hk+15 f] = Z a; - dj < Au(o) - du(o) < 07
j=i+1

a fact which obviously contradicts the k-quasiconvexity of f (on z; < ;41 <
oo < Tigps1 < Ty(o)+k+1) in Definition 1.1.1, (iv). This proves the lemma.
a

Lemma (B). (Paltanea [296]) If f : [0,1] — R is a polynomial and if there
exist two subintervals [0,c] and [c,1] such that f is j-concave on [0,c] and
j-convez on [c, 1], then f is j-quasiconvezr on [0,1]. Note that here ¢ can be 0
or 1 too.

Proof of Lemma B. By the hypothesis we have f*+1(z) < 0, for all
x €[0,c and £ (z) >0, for all « € [, 1]. First we claim that f*+2)(c) > 0
and there exists § > 0 such that f*+2)(z) >0, for all |z — ¢| < 4.

Indeed, the cases when the degree of f is not greater than k + 2 or
f*+2)(¢) > 0 are obvious. In the opposite case we have f(*+2)(z) > 0, for any
x with z # ¢, t; < & < to, where t; is the greatest root of f*+2) that is less
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than ¢ (or t; = —oo if such a root does not exist), and ¢ is the least root of
f*+2) that is greater than ¢ (or to = 400 if such a root does not exist).

Now, let us consider the points 0 < z; < --- < zy3 < 1. To prove
the k-quasiconvexity of f on [0,1], it suffices to consider only the case when
21 < ¢ < zpys3. Let us choose the points 0 < y; < -+ <y, < 1, with the
following properties: (1) there exist the indices 1 =41 < -+ < i3 = m, such
that y;, = 2,1 <p<k+3and (2) yj11—y; <§/(k+2),1<j<m—1. We
will denote ¢; = [y;,...,yj4k; fl,1 < j<m—kandlet r € {2,...,m} be the
least index such that y, > c.

Also, in what follows will be useful the well-known mean-value theorem
for divided differences [t1,...,tp1159] = g (&) /p!, with t; < & < tpti-

With the above notations, we will prove the inequalities

cj+1 < max{cj,cjt2}, 1 <j<m—k—2.

Indeed, first if 1 < j <7 —k — 2, then [y;,...,y;j+r+1; f] <0, which implies
¢ > cjp1. Ifr—k—1<j <min{r —1,m — k — 2}, then |y, — ¢| < 4,
j<p<j+k+2, and by the first claimed property in the proof and by the

above mean-value theorem, it follows that [y;, ..., yj4kt2; f] > 0. Therefore,
by the recurrence formula satisfied by the divided differences, it follows that
[Wjt1s s Yirwr2i f1 2 W50 Yjrntrs f] and
q
Ciy1 & —— ¢+ ——Cjqa,
T Tp+q 7 pta?

where p = yjtr+1 —y; > 0 and ¢ = Yj1kt2 — Yj+1 > 0. This proves the
inequality ¢;j4+1 < max{c;, ¢j4o} for these indices. Finally, if r <r <m—k—2,
then it follows that [y;j41,...,Yj+k+2;f] > 0 and hence ¢j41 < ¢jy2 and
therefore again we get ¢; 11 < max{c;, cj12}.

Now, take an index 1 < i < m such that y; € {z1,...,2r4+3} and consider
the points z;,j = 1,...,m — 1, defined by z1 = y1,...,2-1 = Yi—1,2; =
Yitls -y Zm—1 = Ym. If we denote d; = [2;,...,2j4%; f,1 <j<m—k—1, by
again using the property of divided differences in Popoviciu [315] (stated in the
proof of Lemma A also), we obtain d; = Ajc; + (1 — Aj)cj41, with Aj € [0,1],
for any 1 < j < m —k —1. Now the following property in Popoviciu [319] will
be useful here: f is 0-quasiconvex in [0, 1], if and only if [0,1] can be divided
into two consecutive subintervals, such that f is nonincreasing on the first
one and nondecreasing on the second one. Combining it with the inequality
¢j+1 < max{c;, ¢jo}, it implies

dj+1 é max{dj,dj+2}, 1 S] é m—k — 3.

Repeating this method of elimination of the points which differ from the
points x1,...,Tgys, finally after m — k — 3 steps it follows that f is k-
quasiconvex. [J

Returning to the proof of Theorem 1.3.1, (ii), first we have the following
formula which can easily be derived from the above point (i) (see also, e.g.,
Popoviciu [317]):
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n—k

BO()e) = Z[ !

) i+kf k!n! n—k
Qi = | =5ty ; . )
n n (n—Fk)nk\ i

Y= 1%,z €[0,1), we get

Setting

n—=k
BP(f)(x) = (1—2)" " aiy’”.
=0

Because the theorem is obvious for n < k, let us suppose n > k. By the
hypothesis on f and by Lemma A, we have only three possibilities: (1) a; <0,
foralli =0,...,n—k; (2) a; > 0, for all i = 0,...,n — k; (3) there is p,
0 <p <n—k,such that a; <0 for all 0 < i < p, minp<;<pa; <0, and a; > 0,
forallp+1<i<n-—Ek, maxpy41<i<n—kd; > 0.

By the well-known Descartes’s rule, the polynomial P(y) = Z;:Ok a;y’t
has at most a positive root, yo, and this is possible only in the case (3), when
because of lim,_, 4., P(y) = +00, we have P(y) < 0 for all 0 < y < yo and
P(y) > 0 for all yo < y.

As a consequence, we have only three possibilities: (1) Bﬁ,k)(f)(m) <0, for
all x € [0,1]; (2) Bék)(f)(x) > 0, for all x € [0,1]; (3) there is ¢ € (0,1) such
that By(lk)(f)(x) < 0 for all z € [0,¢] and Bflk)(f)(m) > 0 for all z € [c,1],
which by Lemma B proves (ii).

(iii) First, it is obvious that B, (f)(0)

= f(0) = 0 and B,(f)(z) = 0,
for all z € [0,1]. According to Definition 1.1.1

(i), it suffices to prove that
2B (£)(2) — Bal(f)(x) > 0, for all z € (0,1].
We have
3 (” D)nlh (G 1)/m) = /0] s i)
=0

while

Bn(f)(x) _n_l n—1 n

P =S (") D)

which implies

By(P@) - P N @A),
k=0

where A, k(f) = ﬁf((k +1)/n) — f(k/n). Since f is starshaped, it follows

that A, x(f) > f (kil %) — f(k/n) = 0, and by pp_1x(z) > 0, for all

€ (0,1], we get the desired inequality.
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The proof of the second part in (iii) is more technical, and it was given in
Mocanu—Serb—Toader [274];

(iv) According to Goodman [154], the proof was suggested by C.A.
Micchelli. Let us sketch it below. Since f is logarithmic convex on [0, 1],

4

writing y; = f(;), it easily follows that the polygonal arc with vertices

(%,1og[yi]),i = 0,...,n, is convex, i.e., we may write y? > yi_1Yit1,1 =

1,...,n — 1. We also can write B, (f)(t) = S0 y{m ) ("PHE (L — g
1 , iy

where yz(?H_ )= i1+ n:—il-llyi'

But by simple calculations (see Goodman [154], p. 343) we obtain
(n+1) [ =y Py 2o,

taking into account the hypothesis y? > y;_1y;+1-

Repeating the reasoning, by induction one obtains that for all m > n we
have B, (f)(t) = X0 u™ (M)t (1 — £y, where (3™)2 > y"yl) i =
1,...,m—1.

From the uniform convergence on [0,1] (as m — 4o00) of the convex poly-
gon with vertices (i/m, 1og[y(m)]),i =0,...,m, to the curve (t,log[B,(f)(t)]),

it follows that log[By,(f)(t)] is comvex too, which proves (iv).

(v) Suppose u(z) = a2, with arbitrary fixed A € [0,1]. From the u-
convexity, it easily follows that g(z) = % is nondecreasing on (0, 1].

It suffices to prove that [B,(f)(z)/2*]' > 0, = € (0, 1]. Simple calculations

(see Kocié-Lackcovi¢ [195], p. 3) give us

[Bal£)@)/2"] = 3 1P 14(2) Qut
k=0

where @, = f(EE)(1 — 25) — f(£). Therefore, it is enough to prove that

n
Qn,k Z 0.

But, the generalized Bernoulli’s inequality (1 +)* < 1+ A, VA € [0,1],

t>—1, fort = —— implies

k+1
A
1 A
1-—) <1- -2,
( k+1>_ k+1

It follows that

A
F(k/n) < Fl(k+1))/n) (k) (k + 1) = Fl(k+1)/n] (1 - kil)

< sl (1- 127 ).

which means exactly that @, > 0 and ends the proof.
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(vi) Denote by Zg,1)[By(f)(x)] the number of real zeros of B, (f) in (0,1).
Since it is evident that Sjo 1)[Bn(f)] < Z0,1)[Bn(f)], it remains to prove that

Z0,1)[Bn(f)] < Spo.ylf]-
We have

BuD@)/(1 =)= 3 5tk ()
k=0

where z = /(1 — ). Recall the classical Descartes’s rule of signs (in 1637!):
if p(x) is a polynomial of the form >7 a;(’})a", then the number of times it
changes sign on (0, +00) is bounded by the number of changes of sign in the
sequence ao, . . ., ay (the zeros are not counted). By Descartes’s rule of signs,
it follows that

Zo.)[Ba(f)(@)] = Z[Bn(f)(x)/(1 = 2)"]

= Zncsco [Z f(k/n) (’,;‘) ’“]

k=0
< St [0 ()] = S0 (F00m01] < o]

which proves (vi) too. O

Remarks. (1) According to Theorem 1.3.1 (i), the Bernstein polynomials
also represent a constructive answer to the earlier result of P4l [295] in 1925.

(2) Although it is not of interest in the preservation of shape, let us also
mention the property Vio 1)(Bn(f)) < Vjo,1(f), for all n € N, where Vio 1;(f)
denotes the total variation of f (see Popoviciu [316] or Lorentz [247], p. 23).

The slow convergence of the Bernstein polynomials B,,(f) to f is in fact a
consequence of their shape-preserving properties, as is shown by the following.

Theorem 1.3.2. (Berens-DeVore [37]) Let us denote by 7T, the class of all
operators T,, : C[0,1] — C|0, 1] satisfying the following conditions: T,,(f) is a
polynomial of degree < n, Ty, (f) = f for f a linear function, and T, (f)¥) >0
for fU) >0, for all j =0,1,...,n.
For any T,, € 7,, we have
z(1—2)

T [ =)’ (@) 2 Bu [ - 2)%) (a) = =——,

with equality if and only if T,, = B,,.

Proof. Here we will present the main ideas of the proof in Berens—DeVore
[37]. The problem can be reformulated in terms of eigenvalues. Thus, if T,, €
7,, then the shape-preserving properties imply that T, [II;] = II;, for all
j=0,1,...,n, where II; denotes the set of all (real) polynomials of degree < j.
This immediately implies that for each j, the operator T, has an eigenfunction
E; € II; of the form Fj(x) = 27 + - - -. Denoting its corresponding eigenvalue
by A;(T,), the preservation of linear functions easily implies that Ao(T,) =
A1 (T,,) = 1, while the shape-preserving properties imply in an easy way the
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inequalities 1 > Xo(T},) > -+ > Ay (T},) > 0 (see Lemma in Berens—DeVore
37)).

It is known that the eigenvalues of B, are given by (see Calugdreanu [53])
Nj(Bp)=1,7=0,1, \j(B,)=(1-1/2)---(1=(j —1)/n),j =2,...,n.

The inequality in the conclusion of the statement is equivalent to

Ao(Ty) < Ao(Bp) =1 —1/n, VT, € Tp,n € N.

More exactly, the statement of Theorem 1.3.2 can be reformulated as follows:
for any T, € 7, we have A\o(T},) < Aa(Bp) =1 — 1/n, or equivalently
(1—=)

To[(- —2)°)(@) 2 Byl —2)’)(a) = =,

with equality in both kinds of inequalities, if and only if T, = B,,.
The proof is based on a special representation of each operator T,. Indeed,
since the polynomials (p, x(2))k=0,....n form a basis in II,,, we can write

-----
n

T.()@) = Y an(pao). with an(5) = [ dus,

k=0

where duy, is a Borel measure. Moreover, since 1 = >/ pnk(z) and x =
> oroPnk(z)k/n, it easily follows that

1 1
/ dukzl,/ tdug = k/n,k=0,1,...,n.
0 0

Also, it is proved that all the Borel measures are positive measures, (i.e.,
have the property that dux > 0, for all k = 0,...,n), a fact which is used to
prove that equality holds if and only if T,, = B,,.

For details, the interested reader can consult Berens-DeVore [37]. O

Remark. It is known that the degree of approximation |f(x) — L, (f)(x)]
of a sequence of positive linear operators (L), is controlled by the quantity
L,(- — 2)?)(x) (see, e.g., DeVore [82]). Therefore, Theorem 1.3.2 says that
with respect to this quantity, the Bernstein polynomial B, (f) has the best
rate of approximation among the operators in the class 7,,.

The form of the Bernstein polynomials gives suggestions for construct-
ing many other approximation polynomials, called Bernstein-type polynom-
ials. In what follows we present some well-known examples of Bernstein-type
polynomials together with their approximation, shape-preserving, and strong
variation-diminishing properties.

(1) The Stancu [362] polynomials are defined by

Snal /) = kznj_ows,m)f ().

n

where wyy ;. (z) = (}) x(k)ia)ﬁ;@:;%ﬁw, ™9 = gz —a]-- [z — (k — 1)a],
a > 0.
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(2) The Soardi [360] polynomials (also called Bernstein operators of the
second kind) are defined by

=S (" Ypartorr ("52)).

(n+ 1z = n

where b, ;(z) = (n+ 1 — 2k)[(1 — 2)*(1 + o)1=k — (1 — 2)" 1=k (1 + 2)k].
(3) The g-Bernstein polynomials introduced by Phillips [303] (see also the
book Phillips [304], p. 267) are defined by

=) (O] T

where 0 < ¢ < 1, the empty product is equal to 1, [k] = M if ¢ # 1,
[k] = k if ¢ = 1, the g-factorial [k]! is defined by [k]! = [k][k — 1] [ 1Jif k € N,
[0]! = 1, and the g-binomial coefficients are defined by [(Z)] = %

(4) The Bernstein—Chlodowsky—Stancu polynomials introduced by Ibikli
[179] are defined by

camm-E () (-2 s (w22)

where 0 < a < 3, b, — 00, b, = o(n) for n — 0o, and 0 < x < b,,.
(5) The Lupas? polynomials introduced by Lupas-Lupas [261] are de-

fined by
- k
Lo an), (H@) =Y snrlan;z) f <n> :
k=0

where a, > 0, Vn = 1,2,..., spr(ay;z) = (al)n (Z)(anx)k(an — ) p—k,

()r=z2(z41)-(z+k—=1),(2)0 = 1.
(6) The Durrmeyer polynomials introduced by Durrmeyer [100] and stud-
ied by Derriennic [76], [77], are defined by

Do) = (0 + 1Y pusrle) | puslt) (D,
k=0 0

for any integrable function on [0, 1], where p,, x(x) is the Bernstein basis.

(7) The Durrmeyer polynomials based on the ultraspherical weight
t*(1—t)*, @ > —1 (for @« = 0 one recapture the original Durrmeyer poly-
nomials), introduced by Lupag [255], are defined by

(2a +2), Lhta(] — gn—kta
an k

a+1) (@+Dnro Blatl,a+l) f(t)dt,

where B(a, ) denotes the beta function.
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(8) The Lazarevié-Lupag [221] polynomials are defined by

" Lo t+k
_kzzoln’k(x)/o [er,...,n ,f]dt

where [z, ..., Z,; f] denotes the divided difference and

I n! 1 F
nok(@) = nk(n —k)! (x B 2n+2) '

(9) The generalized Bernstein-type polynomials introduced by Munoz—
Delgado, Ramirez—Gonzdlez, and Sablonniére [278] are defined by

Gk (f)(@) = Qi

/ / / By (fED) () dtydty - - dtgy,

where B,,(f) represents the Bernstein polynomials, z; = (1 — ¢¢,41)/2, j =
0,....k =2, e, = 1oreg, = —1forall h €N, and Qr_o(f)(z) is the
unique polynomial of degree < k — 2 that satisfies the interpolation condi-
tions Q(]) (f)(xg) = fO) (zp), forall j =0,...,k —2.

(10) The modified Durrmeyer polynomials introduced by Paltdnea [297]
and independently by Berens—Xu [38] are defined by

j‘ tk-i—a 1— t)n—k+ﬂf( )

DyP>(f n, € [0,1],
" Zp Kl Blk+a+1ln—k+8+1) [0, 1]
where B(a,b) = fol to=1(1 — t)*~1dt is the beta function.
(11) The Mache [264] polynomials defined by
tekt+a(q — c(nfk)+bf dt
ank f (1-1) (0 o

B(ck+a+1,c(n—k)+b+1)’

where a,b > —1 and ¢ := ¢, := [n%], a > 0.
(12) The Stancu [363] polynomials defined by

b

plazg ( k+ 8 ) I (e + pe) - TP 11— 2+ pa)

Lt (@ =30 1
N ( )( ) kzzo m+'7 H;H;Bp+1(1+ﬂa)

x € [0,1], where p is a natural number, m > 1, « > 0,0 < g < v, f €
C[0,1+ p/m].

Concerning the above Bernstein-type polynomials, with respect to the ap-
proximation and shape-preserving properties, we can state the following.
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Theorem 1.3.3. (i) The Stancu polynomial S, o(f)(z) satisfies (see Finta

[117))
I1Sn,a(f) = fllos < Cwf (f; v/ (L +na)/[n(1 + a)])os, 9* () = 2(1 — 2)

and preserves the convezities of any order of f (see Mastroianni [266]);
(it) The Soardi polynomial B, (f)(x) satisfies (see Soardi [360])

1
_ < S )
I9u(7) = Fle < Con (£ =)
In addition, if f is increasing on [0,1], then so is Bp(f) and if f is simulta-
neously increasing and convezx on [0, 1], then so is B, (f) (see Rasa [321]);

(i11) The g-Bernstein polynomial B, o(f)(x) satisfies (see Phillips [303])

IBual9) = floe < 3o (1 772)

and, in addition, if f is increasing (convex) on [0,1], then By, 4(f) is increas-
ing (convez, respectively) on [0,1] (see Goodman—Phillips [159] and the book
Phillips [304], p. 287);

(iv) The Bernstein—Chlodowsky—Stancu Cy(f)(x) preserves the converities
of any order of f on [0,b,] (see Ibikli [179]);

(v) The Lupas® polynomial L, (4., (f)(x) satisfies

L, (an)n (F) = flloo < 3wi(f; v/ 1/n+1/(2an))o

and preserves the convexities of any order of f (see L. Lupas [260]);
(vi) The Durrmeyer polynomial D, (f)(x) satisfies the estimate (see
Ditzian—Ivanov [96], Theorem 7.4)

1Du(f) — fllp < Clut (f; ;ﬁ) a1

(where || - ||, denotes the LP[0,1] norm, 1 < p < 400), and preserves the
convezities of any order of f (see, e.g., Derriennic [76]);

(vii) The Durrmeyer polynomial D, o(f)(z) based on the ultraspherical
weight t*(1 — )¢, a > —1 (for a = 0 one recapture the original Durrmeyer
polynomials), preserves the convexities of any order of f (see Lupas [255]);

(viii) The Lazarevié—Lupag polynomial U, (f)(x), n > [1/2¢], satisfies

[Un(£) = Flloo < o (fv%)oo

and for any € € (0, %), if f is convex of order k on [0,1], then U, (f) is convex
of order k on [e,1 — €|, for all n > [1/2¢] (see Lazarevi¢-Lupas [221]);



30 1 Shape-Preserving Approximation by Real Univariate Polynomials

(iz) The generalized Bernstein polynomial G, 1 (f)(z) satisfies the follow-
ing properties: for any 2 < k < n, if f is polynomial of degree k, then so is
Gni(f) and for alli <j and j > k—1

Gn,k(f)[c(zajvs)] c C(ivja 5)7

where € = (e), with e, = 1 or —1 and C(i,j,¢) := {f € C*[0,1];e,f* >
0,k = 4,04+ 1,...,5}, © < j (see Munoz—Delgado, Ramirez—Gonzdlez and
Sablonniére [278]).

Proof. Excepting the case of g-Bernstein polynomials, the method of proof
for the shape-preserving properties of these polynomials is that in the case
of classical Bernstein polynomials, by representing their derivative of a given
order k as a sum of products between positive quantities and finite (or divided)
differences of the same order k of f. In what follows, for some of them we
will present the sketches of proofs for the shape-preserving properties only,
while the quantitative estimates can be found in the corresponding mentioned
papers.

(i) For the proof of shape-preserving properties see Mastroianni [266].

(ii) We can write

n/2]-1
Bu(f)(x) = 2722771 >~ r k(@) [f (0 — 2k)/n) — f((n — 2k — 2)/n)],
k=0

where

Fog(z) = (Z)(l—m2)k[(l+w)”2k((n—2k):ﬂ—1)+(1—x)"2k((n—2k)x+1)}.

Since it is easy to prove that r, ;(z) > 0, for all z € [0,1], it is immediate
that G, (f)(z) preserves the monotonicity of f.
Then, denoting m = [n/2] — 1, we have

—

3

w2 B (@) =

(]

[9n,1 (%) = gn i (=2)]

f<n—712k> _Qf(n—2nk—2>+f<n—2nk—4>]
() — ()] (1 (P22 - (P22,

i n
Gos(e) =3 ( j) [0 = 2)(1 — 2)*(1 4 2)n

—

™
I
=)

X
—

where

x((n — 2k — 1)a? — 2z) +2(1 — z) (1 + 2)" 7).
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Since gn k(x) — gnp(—z) >0, for all 0 < k < h, € [0,1] (see the proof in
Rasa [321]), the conclusion is immediate.

(iii) First we prove that the operator B, 4 is strongly variation-diminishing
on [0,1] (in the sense of Definition 1.1.1 (vi)). Indeed, for each 0 < ¢ < 1,
denoting P, y 4(z) = 2 IT"-F7 (1 — ¢°x), we can write

b= £ () [ vt
= a0,4P.0,() + -+ + an g Prng(2).

Since each [(Z)] is a polynomial in g with positive integer coefficients, i.e., is
positive, we immediately obtain that

S10,11[Bn.q(f)] < Spo.ylf; ([K]/[n])k] < Sjo,11(f)-

Since B,, 4 reproduces any linear polynomial, this implies that for any p € I1;,
we get
S10,11[Bn,q(f) = p] = Sjo,11[Bnq(f = P)] < Spo,1y(f = p)-

In particular, for any constant ¢ we have Sy 1][Bn,q(f) — c] < Spo11(f — ).
Suppose that, for example, f is nondecreasing on [0, 1], it follows Sjo 1)(f —
c) < 1, that is Sjo,1)[Bnq(f) — ¢] < 1, which combined with the properties
By4(f)(0) = f(0) < f(1) = By 4(f)(1), immediately implies that By, 4(f)
must be nondecreasing on [0, 1].

Suppose now that f is convex on [0,1], the graph of any p € II; can
intersect that of f at no more than two points, which implies the Sjo 1j(f —
p) < 2, and therefore Sjo1)(Bnq(f) —p) < 2. Suppose that the graph of
p intersects that of B, 4(f) at w and v with 0 < v < v < 1, that is p(u) =
By (f)(w),p(v) = By q(f)(v). It easily follows that B, 4(f)—p cannot change
its sign in (u,v). Varying u and v, it follows by a continuity argument that
the sign of By, 4(f) — p remains the same. Since f is convex, for the limiting
case u = 0 and v = 1, we get 0 < p(z) — f(x), for all z € [0,1], which implies
that

0< Bng(p— f)(@) = p(x) — Bng(f)(@), Vo € [0,1],

which is the convexity of B,, 4(f) on [0,1].
(iv) The preservation of convexity of any order m on the interval [0, b,],
follows directly from the relationship (proved by mathematical induction)

nn—1)---(n—m+1)

b

: Zi:i:(" ¥ ") <i>k <1 - i)n_m_zﬁ/(nw)ﬂ(k +a)bn/(n + B)).

[Cn(N™ (@) =

(v) The proof is very similar to that for Bernstein polynomials, see
L. Lupas [260].
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(vi) For the proof, see, e.g., Derriennic [76].

(vii) The proof in Lupas [255] is too technical to be reproduced here. Note
that for a = 0, one recapture the original Durrmeyer polynomials, so that in
fact (vii) generalizes (vi).

(viii) The proof of the shape-preserving property is a direct consequence
of the formula proved by mathematical induction

+ 1)+l
(n ) nj ch’j(x)

[Un (]9 () =

n —_ NI

wiln g 2
(k+1)/(n+1) 1 j

x/ [t,t—l—,...,t—l— ;f]dt,

where

. k n—j—k
‘ _(n—7] _ 1 2n+1_
C’W(I)_( k >(m 2n+2> (2n+2 x) '

(ix) Firstly, let j > k—1. For C(j, j, ¢) we get: if f) > 0, then denoting g =
FED, it follows that g0~ >0 and [Gp x(£)]9) = [By_ya1 ()5 > 0.
The general case is proved by mathematical induction on ¢. [

Remarks. (1) The approximation and shape-preserving properties of the ¢
version of DS%8>(f)(x) polynomials, were studied in Derriennic [79].
(2) In 1930, Kantorovitch [191] introduced the polynomials

(k+1)/(n+1)

KalF)@) = 3 pusa)(n+1) / F(tydt,
k=0 k

/(n+1)

whose shape-preserving properties are an immediate consequence of the re-
lationship K, (f)(z) = B, (F)(x) (see, e.g., Lorentz [247], p. 30), where
By, (F)(x) denotes the Bernstein polynomial attached to F(z) = [; f(t)dt.

Concerning the relationship between the shape-preserving property and
the strong variation-diminishing property, we present below the method of
proof for some Bernstein-type polynomials.

Theorem 1.3.4. (Gavrea—Gonska—Kacs6é [146]) The modified Durrmeyer
polynomials Ds%P>(f)(z) (see Ezample 10 before Theorem 1.3.3) and Mache
polynomials P, (f)(x) (see Example 11 before Theorem 1.3.3) preserve the con-

vezity of orders 0,1,...,n, the Stancu operator L;‘f‘z;ﬁ’7>(f)(x) preserves the
convexity of orders 0,...,m+p, and all have the strong variation-diminishing
property.

Proof. The proof follows the ideas in Gavrea—Gonska—Kacs6 [146]. Thus, it
suffices to prove that all the polynomials in the statement have the strong
variation-diminishing property, which by Theorem 5.1.7 (ii) in Section 5.1
will imply the shape-preserving properties.
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If we consider the beta-type operator

fOl ta—i—nﬂc(l _ t)n—nx+6f(t>dt

<o, =
B> (f)(x) = Bnz+a+1,n—nz+5+1)

then DsP>(f)(z) = Bn[Br®?> (f)](x), where B,, is the classical Bernstein
operator. We get

S [P (] < Siou B3 ()]
= Sjo,1] [/1 (1 — )"t (1 — t)ﬁf(t)dt} .
0

But Sjo.[fy (1 — £)"¢=) 2 (1 — )3 f(£)dt] < Spoy[t* (1 — 1)7 f(t)] =
Si0,1(f), which would prove Sjy 1 [DeB>(f)] < S[0,1] [f

Indeed, if we use now the substitution u = <%) then the integral

fol " (1 — t)"(=2)1>(1 — )P f(t)dt becomes

1 +o0 ul/n—l ua/n ul/n
7/ u” f du
n Jo (1+u1/n)n+2 (1+u1/n)a+ﬁ 1+u1/n

Evidently, the number of sign changes of f(¢),t € [0, 1], equals the number

of sign changes of the function g(u) = 5 +;/17;n, € [0,400). Applying now
Theorem 5.1.7 (iii) in Section 5.1 for A(g) = f0+ g(u)du and putting w(u) =

wl/m—1 we/m
(AFul/myn+2 (1ful/nyath

we get

1
S0,1] [/0 (1 — )" (1 — )P f(t)dt < Spo,[t* (1 — £ f(t)
= Sjo.[t*(1 =)’ F(t)] = Spo.ylf],

which implies
S0P ()] < Spylf]-
For Mache’s polynomial, we have P,(f) = B, [Br®">(f)], where

fol tcanra(]_ o t)cn(lfa:)erf(t)dt
B(enz+a+1,en(l—2)+b+1)"

Brobe> (f)(x) =

Reasoning exactly as in the case of the modified Durrmeyer polynomials,
we arrive again at Sy 11[P,(f)] < Spo,11[f]-

In the case of Stancu’s polynomials, by the following known recurrence
formula for the beta function,

Bla+kb+m+p—k)

B a(a+1)...(a—|—k—1)b(b+1)...(b+m+p_k_1)B(a .
= (a+b)(a—|—b+1)---(a+b+m+p_1) » V)
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we obtain
1184 (@ + pa) - T (1 — 2 4 pua)
o7+ pa)

mu=0
B(x/a+k,(1—z)/a+m+p—k)
B(z/a, (1 —z)a) '

We therefore get

L277 ()(x)

_ 1 W mtp k+8
= Bt = k B/t k@ =ayatmey—nr (117)
1
" B(z/a,(1 —x)/a)
1 [m+p
m+p z/a+k+1 (1—z)/a+m+p—k—1 < k+ ﬂ)
X t 1—t dt
/0 L;( k ) 4= My
1

1
= z/a—1/7 _ p\(1—z)/a—1 p<B,y>
B(x/a, (1—)/a) / e A=) B> (f)(t)dt,

where

m+p
k+p
B (0 = 3 pmias(@f (57 )
Now, by Schoenberg [343], it is immediate that
SoLsP 77 ()] < Sjo,14p/m Lf]-
We get

1
So,1] [Lﬁfz;ﬁ”>(f)} = Sjo,1] [/o /o1 — t)(l_$)/a_lBr§%7>(f)(t)dt} )

1/«
and by the substitution u = (ﬁ) , the above integral becomes

o 1 u®
x B<ﬁ,’y> d
o [ B (s )
which by Theorem 5.1.7 (iii) in Section 5.1, implies
SioL™ 7 ()] < S, [Bs”” (D] < Sto14p/mLf]-

This proves the theorem. [

Remarks. Asin the case of the modified Durrmeyer polynomials in Theorem
1.3.4, DB>(f)(x), it can be proved that the classical Durrmeyer polyno-
mials D, (f)(z) in Theorem 1.3.3 (vi), have the strong variation-diminishing
property, see Gavrea—Gonska—Kacsé [146).
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1.4 Shisha-Type Results

Although the sequences of Bernstein-type approximation polynomials consid-
ered in Section 1.3 have very nice shape-preserving properties, their rates of
approximation are rather weak, involving the quantities wg(f; ﬁ)oo, k=1,2.

Interest in improving the estimates in shape-preserving approximation by
polynomials began with the papers of Shisha [351] in 1965 and Lorentz—Zeller
[250] in 1968.

Thus, Shisha [351] proved that if p > 1 and k € {1,...,p}, then for any
f € CP[a,b] satisfying f*) > 0 in [a,b] and any n > p, there is an algebraic
polynomial P, of degree < n satisfying P¥ > 0in [a,b] and

C
1f = Palloo < —25wr(F751/n)cc.

Although this is a weaker Jackson-type estimate than those in the next
sections of this chapter, since the idea of Shisha’s method is simple and can
easily be extended to real functions of two real variables and to complex
variables, we present it here together with some generalizations and their
proofs.

Instead of the proof of Shisha’s first result in 1965, we present the proof

of a generalization of it, as follows.
Theorem 1.4.1. (Anastassiou—Shisha [17]) Let f € CP[-1,1], and let the
integers 0 < h < k < p and the functions a; : [—1,1] — R, bounded on
[—1,1] for all j = h,...,k be such that a, > ¢ > 0, for all x € [—1,1] or
ap(z) < d <0 for all x € [-1,1]. Define the differential operator L(f)(x) =
Z?:h a;j(2)f9(z), x € [~1,1], and suppose that L(f)(z) > 0, for all x €
[—1,1].

Then for every n € N, there exists a real polynomial P, (x) of degree <n
such that

1
”f_Pn”oo Scnkipwl <f(p)7n> ,n €N,

and in addition, L(P,)(x) > 0 for all x € [-1,1], n € N. Here C is indepen-
dent of n and [ and || - || denotes the uniform norm on C[—1,1].

Proof. The method is based on the simultaneous approximation result of
Trigub [388]; namely, for any g € CP[—1, 1], there exists a polynomial p, ()
of degree < n with the property
Hg(]) _pgzj)Hoo S anj_pwl(g(p); 1/”)007 .7 = 0; ]-7 By 2
where R, is independent of g and n.
k i

Set A;j = [la;/anlloc and 17, = Rypwr (FP)31/n)o0 o5y, Ajnd 7.

Let us first suppose that ap(z) > ¢ > 0, for all z € [-1,1]. Writing
g(z) = f(x) +n,2"/(Rh), let P,(z) be the polynomial of degree < n satisfying

Hg(j) - Pr(zj)Hoo < anj_pwl(g(p)§ 1/n)oo
:anjipwl(f(p);l/n)oov jzoalvap
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We easily get

1f = Palloe < 0a(h) ™! + Rpnd "Pin (FP51/n)
k

< Rp/(1+ (W)™ Ap)n* o (fP5 1/n)ec,

j=h

which implies the estimate in the theorem.
On the other hand, for all —1 <z <1 we get

ah(x)L(P”>($> = an(z) L(f)(x) +nn
k
+Z . a;(x)[Pu(z) — f(z) — xPn, /(A
= ap(x)
k
> Np — Z A]-anj—pwl(f(P); 1/n)se =0,
i=h

which proves L(P,)(z) > 0 for all x € [-1,1].
Now let us suppose that ap(z) < d <0, for all x € [—1,1] and for g(z) =
f(x) —nnah/(hY), let P, () satisfy
199 = PPl < Ry Pwi(9'?;1/n)
= anj_pwl(f(p); 1/n)os, 3=0,1,...,p.

From here the proof is similar to that of the first case, which proves the
theorem. ]

Corollary 1.4.2. Under the hypothesis and notations of Theorem 1.4.1, if
p >0 and L(f)(x) > 0, for all x € [-1,1], then for every n € N, n > p, there
exists a real polynomial P, (x) of degree < n such that

”f - Pn”oo < CpnkipEn_p(f(P))oo’
and in addition, L(P,)(x) > 0 for all z € [-1,1], n € N,n > p.

Proof. Instead of the Trigub’s result, we use the following improvement due
to Leviatan [231], Theorem 2: for any p > 0, g € C?[—1,1] and n > p, there
exists a polynomial p,(x) of degree < n with the properties

99 = P low < Ryn? By P)oes 5= 0,11,

where R, is independent of g and n and E,(9)sc = infpem, ||g — plloo- Then,
repeating word for word the reasonings in the proof of Theorem 1.4.1, we get
the corollary. [



1.4 Shisha-Type Results 37

Remarks. (1) If in the statement of Theorem 1.4.1 one takes L(f)(z) =
f®)(z), then one recovers the original result of Shisha [351]. Moreover, if in
addition, one supposes that all ap,...,a are continuous on [—1,1] and one
considers the condition L(f)(x) > 0 for all € [—1,1], the conclusion of
Theorem 1.4.1 remains true for n sufficiently large (see Anastassiou—Shisha
[17]), recovering thus, in essence, for L(f)(z) = f*)(z), the results in Roulier
[326] too.

(2) Let us suppose that in Theorem 1.4.1, in addition to its hypothesis, all
the functions aj, j = h,...,k, are continuous on [—1,1] and that L(f)(z) >
0 for all z € (—1,1). By the continuity assumptions, it is immediate that
L(f)(x) > 0 for all z € [-1,1], and from the proof of the theorem, the
conclusion L(P,)(z) > 0 for all z € (—1,1), n € N follows easily.

This kind of remark will be very useful in Sections 3.2 and 4.2, where
we will extend the method to complex functions of one or several complex
variables.

(3) In Theorem 1.4.1, the hypothesis ap, > ¢ > 0 for all z € [-1,1] or
ap(z) < d < 0 for all x € [—1,1] can be replaced, for example, by the hy-
pothesis that ay, is continuous on [—1, 1], which leads to the following “partial
shape-preserving” approximation.

Corollary 1.4.3. Suppose we are under the hypothesis and mnotation of
Theorem 1.4.1, excepting that concerning ay, which is supposed to be only
continuous on [—1,1]. Then for f € CP[-1,1] with L(f)(z) > 0,Vz € [-1,1],
and n > 1, there exists a real polynomial P, of degree < n satisfying

1f = Pallo < Cpnk_pwl(f(p)§ 1/n)eo

(or the better estimate ||f — Pylloo < Cpn* PE,_,(f®) ) such that for any
xg € [—1,1] with ap(z) # 0, there exists a neighborhood of xq, denoted by
V(zo) and independent of f and n, such that L(P,)(z) > 0 for all x € V(o).

Proof. Since ap(zg) # 0, by continuity it follows that there exists a neigh-
borhood of xg, denoted by V(zg), such that ay(z) > 0 for all z € V(z9), or
ap(x) <0 for all z € V(xg).

To make a choice, suppose that ap(z) > 0 for all x € V(zg). There exists
¢ > 0, such that ap(xz) > ¢ > 0, for all z € V(xy). Repeating the reasoning
to that of the proof of Theorem 1.4.1 with A; = sup{|a;(x)|/|an(z)|;z €
V (o)}, it easily follows that L(P,)(z) > 0 for all z € V(zg). From the
proof of Theorem 1.4.1, we observe that the approximation property of P, is
independent on the sign of ay.

In the case when ap(z) < 0 for all z € V(zg), there exists d < 0 such
that ap(z) < d < 0 for all z € V(xp), and we again repeat the proof of
Theorem 1.4.1.

The case when instead of Trigub’s approximation result, we use the im-
provement due to Leviatan [231], Theorem 2 (as in the proof of Corollary
1.4.2), which is completely similar and which proves the corollary. O
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1.5 Positive and Copositive Polynomial Approximation

In this section we present the most important results in positive and copositive
polynomial approximation. Since their proofs are, in general, very technical,
we omit most of them.

For f € LP[—1,1], let us define the unconstrained best approximation

En(f)p ::piglfj Hf_an:D'

Denote by A° the set of all functions f : [-1,1] — R such that f > 0
n [-1,1], and for f € A°N LP[—1,1], the best positive approximation of f
in the LP-norm, 1 < p < oo, by algebraic polynomials of degree < n will be
denoted by

ED(Dpi= dnf 1 = pally-

We first consider the case of positive uniform approximation.
Let us suppose that f € C[-1,1], f > 0. Then for n > 0, there exists
P, € II,, such that,
”f - PnHoo = En(f)oo
It follows that
Pn(x) - f(w) > _En(f)om

which implies
Ry () == Po(z) + En(f)eo > f(z) > 0.

Therefore R,, is nonnegative, and we have

If = Rnlloo < 2En(f)oo,

which implies
EP (f)oo < 2Ba(f)oes 12 0.

Therefore, the error estimate in the case of best positive uniform approx-
imation in fact is equivalent to the error estimate in the case of best uncon-
strained uniform approximation.

But as we will see in what follows, the situation is completely different
for pointwise estimates in approximation of nonnegative functions by non-
negative polynomials and for LP-estimates of positive functions by positive
approximation polynomials.

1.5.1 Pointwise Positive Approximation

The pointwise estimates in polynomial approximation of a nonnegative f €
C"[-1,1] N A? are of two kinds:
Timan—Brudnyi-type estimates of the form

£ (@) = pa(@)] < Clr, K)oy, (@)won(fT), pu(@))oe, —1<@ <1, n2N,
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where p,(z) == L +2p(z), p(z) = [1—2%]Y/2, C(r, k) is a constant depending

only on r and k (independent of f and n);
Telyakovskii-Gopengauz (or interpolatory) type estimates of the form

£ (@) = pu(@)] < Clr, k)0 (@)wi(f7, 60 (7))o, —1<@<1, nZ=N,

where 6, (z) = 2o(z).

Dzyubenko [103] proved that the above Timan—Brudnyi estimates are valid
for positive approximation for all n > N := r + k — 1, while for the above
Telyakovskii-Gopengauz estimates, we have the following.

Theorem 1.5.1. (Gonska—Leviatan—Shevchuk-Wenz [152]) (i) Let either
r=0and k = 1,2, or 1 < k < r. If f € C"[-1,1] N A%, then for any
n > N :=2[(r + k +1)/2], there ezists a polynomial p,, € II, N AY with the
property

£ (@) = pa(@)] < Cr)3, ()wr(f7, 6n (@), —1<a <1

(ii) Let either r =0 and k > 2, or k > r > 1. Then for each n > 1 and
constant A > 0, there is a function f = frrna € C"[=1,1] N A° such that
for any polynomial p, € II, N AY, there exists a point x € [—1,1] such that

po V1-2 )

— r/2
@) = pato)] > AT (10,

holds.

Remarks. (1) The case r+k < 2 in Theorem 1.5.1, (i), is due to DeVore-Yu
[92].

(2) Theorem 1.5.1, (i), may suggest the possibility to obtain some inter-
polatory estimates for copositive approximation. This question is completely
open.

1.5.2 LP-Positive Approximation, 0 < p < oo

The LP-norm estimates for 0 < p < oo in positive polynomial approximation
are different from the case of positive uniform polynomial approximation.
Thus, denote by W;[—l7 1],0 < p < oo, the Sobolev space of functions f such

that f("=1) is locally absolutely continuous in (—1,1) and f() € LP[-1,1].
First we present

Theorem 1.5.2. (Stojanova [372]) (i) For any f e W) [-1,1]NA%, 1<p< oo,
we have

EO (), < CE, (1), < CFur (f', 1) a1,
n n n p

where the constant C(k) depends only on k and p;
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(ii) For any f € A°N LP[—1,1], we have

Er(LO)(f)p S C(k)Tk (fa 7:’ll> 9 n Z ]-7

p

where the Ti(f,-)p, denotes Sendov’s averaged modulus of smoothness (see
Definition 1.1.2 (iii)).

On the other hand, we have the following result.

Theorem 1.5.3. (Hu-Kopotun—Yu [172], Ivanov [185] for 1 < p < oo) For
any f € A°NLP[—1,1] 0 < p < oo, there is a constant C such that

BV, < cuf(£1)

p

where C' > 0 is an absolute constant if 1 <p < oo and C = C(p) if 0 < p < 1.
Also for each A > 0, n > 1 and 0 < p < o0, there is a function f =
fanp € AN LP[—1,1], with the property

EP(f)p > Awa(f, 1)y

Proof. Here we will sketch the constructions by following the ideas in Hu—
Kopotun—Yu [172], where the reader can find the complete proof. For the
proof of the estimate, we first approximate f by a piecewise constant function
Sn(f) given by the formula

n—1

Sn(f,z) =85 + Z(sk — Sp41) Xk(),

k=1

where s is the best LP-approximation constant function to f on the interval
[2k, Tp—1], With z = cos(EZ),k = 0,...,n and xx(z) = 0 if 2 € [-1, 1),
x(z) = 1if x € [z, 1]. Obviously S, (z) = si on [zg, xk—1], Sn(z) > 0 for all
x € [-1,1], and by, e.g., DeVore-Lorentz [91] we have

If = skllrion,an 1] < Cwr(f, hi, [Tr, Tr—1])p,

where hy = xx_1 — zx and w1 (f, b, [Tk, Tk—1])p denotes the LP-modulus of
continuity of f on the interval [z, x—1]. It follows that

15 =Su(Plz =3 [ 1f@) — supda
k=1"Tk

- p
<Py wi(fy s [ ana))p < CPof <f7 1) ,

Pt n+1 »



1.5 Positive and Copositive Polynomial Approximation 41

Now define the polynomials
Pn (f7 x)

n—1
=5, + Z(Sk — Sk+1) (sgn(sk = Se41) + 1Tk(l’) + 1= sgn(si = skH)Rk(at)) )
k=1

2 2

where Ty, (z) and Ry (x) are suitable polynomials of degree < k introduced in
Lemma 3.1 in Hu—Kopotun—Yu [172].
We have

n—1

Po(f,2) 2 s+ Y (sk = ser)x(@) = Su(fo2) 20
k=1

for all z € [-1,1].
Also, the reasoning in Hu-Kopotun—Yu [172], pp. 330-331, imply

n—1

120 = Su(HIF < O llsk = su1llTnpuy oy o

k=1

<cr Z - Sk”TLP([?%ﬁck—l]U[wk—lﬁck—ﬂ)
k=1

1 p
<c® Zwl(f, hi, [Tk, Tr—1] U [2r—1, TR—2])h < CPwf (f: m) .
k=1 p

Combining with the estimate for ||f — Sp(f)]

EY) (f), follows.

The counterexample function f := fa,, € A°N LP[—1,1] is of the form
f(z) =b(1—2)—log(1—xz+e~?) —log(h), where b > eM with suitably chosen
M = M(n,e,p, A). O

P, the desired estimate for

1.5.3 Uniform and Pointwise Copositive Approximation

First we need some useful notation. For the integer s > 0, let Y, be the set of
all collections Y := {y;}{_; of points such that y,11 1= -1 <y, < - <y <
1 =: yp, where for s = 0,Yy = ). For Y, € Y, we define

S

I(z,Y.) = [[(= — ),

i=1

where the empty product = 1.

Let A%(Y;) be the set of all functions f : [—1,1] — R that change their sign
exactly at the points y; € Y and that are nonnegative in (y1,1). Obviously,
f € A%(Y,) is equivalent to

f(x)H(ans) Z 07 -I<z <1
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If s = 0, then this means that Yy = @), which implies f > 0 in [—1, 1], and we
will write as in the above subsections f € A°.

One says that f and g are copositive on [—1,1] if f(z)g(x) > 0 for all
x € [-1,1].

For f € A%(Y,) N LP[—1,1], we define

EO( Y= inf = vl
the best copositive approximation of f by algebraic polynomials of degree < n.
If Yy = (), then we write as in the above subsections E. (f)p =: Eﬁto)(f, 0)p,
which represents the best positive approximation.

A natural extension of positive polynomial approximation is the so-called
copositive polynomial approximation, i.e., the case of approximation of a func-
tion f by polynomials (P,),, which changes their (same) signs with f at
Ys € Y, i.e., satisfying f(z)P,(x) > 0, for all x € [-1,1], n € N.

Remark. Since in the copositivity case we have f(z)II(z,Y;) >0, -1 <z <1,
a first idea that might come to mind is that the results in positive approxima-
tion may be applicable to the positive function F(x) = f(x)/II(z,Ys). But
of course, first some hypothesis of smoothness on f at the points y; would be
necessary in order to ensure that F' is continuous at all the points y;, a fact
that unfortunately would drastically reduce the generality on f. Also, even
with the suitable smoothness hypothesis on f, if, for example, ¢, (F') would be
the best positive approximation polynomial of degree < n attached to F' (i.e.,

satisfies | F — gn (F)|loo = inf{|[p— Flloo; Pn € n,pn > 0} := B (F)so), then

although the polynomial defined by P, (f)(z) = [gn(F)(x)+ E, (F)oo] I (z,Ys)
would be copositive with f, from the inequality

1f = Pa(Hlle < lan(F) (- Ys) = flloo + CEQ (F)oc,

a very bad estimate follows, very far from any Jackson-type estimate in terms
of the moduli of smoothness of f (since E,(LO)(F)oo and ||gn (F)II(-,Ys) — flleo
could be very bad with respect to E,(f) and Eflo)(ﬂ Ys)oo)-

For uniform and pointwise approximation, the results can be summarized
by the next theorem.

Theorem 1.5.4. (Kopotun [207]) There exists a constant C = C(Y;) such
that for any f € C[—1,1] N A°(Y;) we have

EPUﬂwwgcwwg<ﬁl), n>2
n

oo

Also, an immediate consequence of the above estimate and of the converse
theorems in Ditzian—Totik [98] is the following: if 0 < a < 3 and f € C[-1,1]N
A%(Y,), then

En(f)se = 0™ ) iff B (f,Ys)oo = O(n ™).
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(i1) (Hu-Kopotun—Yu [173]) There exists a constant C = C(Yy) such that for
any f € C[-1,1] N A%(Y}), there exists a polynomial p, € II,, N A°(Yy)
satisfying

|f(x) _pn(x” < C(YS)WB(fv pn(m))oov n>2 xé€ [_17 1]'

(iii) (Zhou [409]) Conversely, there is a function f € C1[—1,1]NA°({0}) such
that ©
Ey ' (f,{0}) o
lim sup 7” {1 ) =
n—00 W4(f7 ;)oo
(iv) (Hu—Kopotun—Yu [173]; see also Hu-Leviatan—Yu [176]) For any f €
Cl-1,1] N A%(Y;) we have

EQ(f,Ys)o < @wk (f’, i) . n>k

and there exists a polynomial p,, € I, N A°(Yy) such that

C(k,Yy)

- We(f'spn(2)oo, n >k, ze[-1,1].

[f(x) = pn(2)] <
Proof. We will prove here the estimate for Er(LO)(f, Y5)oo in (iv). One reason
why we chosen it is that it can be more easily extended to functions of two
real variables, the extension proved in Section 2.6 (Theorem 2.6.6). The proof
follows the ideas in Hu-Leviatan—Yu [176], pp. 213-217.

First we need two lemmas.

Lemma (A). (HuLeviatan—Yu [176]) There exist absolute positive constants
A, B and an odd and increasing (on [—1,1]) polynomial g, (u) of degree < 2n,
such that

lgn(w)| <1, for |ul <1,
B

1 1
() = An,  for |ul <=, anddy() < —, for —<|ul<1.
n n

nu
Proof of Lemma A. The polynomials are given by

B N N

~1  sin® % arccos(1 — 2/2) 2’ -

where

" _1  sin® Larccos(1 — 2/2)

1. /1 sin?((n/2) arccos(1 —t2/2))dt

It is easy to see that ¢, ~ n~! g, is an odd and increasing (on [—1,1])
polynomial of degree < 2n, satisfying the first estimate in the statement, and

g (u) = Cnsin2((n{2) arccos(1 — u2/2))7 l<u<l.

sin® £ arccos(1 — u?/2)
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Now, for |u| < 1/n, we get (n/2)arccos(l —u?/2) < 7/2, which by the well-
known inequality 2¢t/7 < sint, 0 <t < /2, implies

sin?((n/2) arccos(1 — u?/2)) > ((2/7r)(n/2) arccos(1 —112/2))2 _ 4 2

sin? L arccos(1 — u2/2) 1 arccos(1 — u?/2) w2

n
2
3 s

This shows that ¢, (u) > An.
For 1/n < |u| <1, it follows that

sin?((n/2) arccos(1 — u?/2)) < 1 < 2/
sin? % arccos(1 —u2/2)  — ((1/m)arccos(l —u?/2))2 — u?’
ie.,
/
<
q¢(u) < —3,

which proves the lemma. [J

Lemma (B). (see Hu-Leviatan—Yu [176]) Let f € C'[-1,1] and k > 1. For
Yo:=—1<y < <ys <1=:ysi1, let us set d = ming<;<s(yiy1 —y;). For
any n > s, a polynomial r,, of degree < n exists such that

ra(yi) = flyi), i=1,2,...,s,

and

1f = rulloo < CnTlwn(f', 1/n)oo,  If" = 1hllo0 < Cwielf',1/n)sc,

where C depends on s, k, and d.

Proof of Lemma B. By f € C![-1,1], a classical result of Gopengauz [161]
says that there exists a polynomial 7, of degree < n satisfying

1f = Fulloo < Ca(k)n ™ wr(f',1/n)os |If =7 lloc < Colk)wr(f', 1/n)cc.

Then 7, (z) := 7n(x) + hs(z), where hy is the polynomial of degree s — 1
interpolating f(z) — 7n(z) at y;,4 = 1,2,...,s, has the properties in the
statement with C > Cy(k)[1 + s(2/d)*~!]. O

Proof of Theorem 1.5.4, (iv). Fix n > C1d~!, where C} is a constant that
will be prescribed later. We will prove that the polynomial p,, of degree < 2sn
given by

Pr(u) :=rp(u) + EDCn_lwk(f', 1/1) oo I qn(u — y;),

where ¢, is given by Lemma A, ¢ = sgnf(u) for u € (ys, 1) (C is the constant
in Lemma B and D is a positive constant to be determined later), is copositive
with f and satisfies the required estimate.

Note that the second term in the expression of p,(u) is copositive with f.
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Because ¢, is odd, increasing, and ¢, (u) > An for |u| < 1/n, we get
lgn(u)] > A, |u| > 1/n, and

1
W%%W—MHZN,U¢LWw—,% ]

If we take D > A~% then by the above estimate and by the estimate in
Lemma B, we easily obtain

F(wpa(u) >0, ugu[ b ot g (1.0)

n

Then, from Lemma B it follows that p,(y;) = f(y:), i=1,2,...,s.
Next, we prove that for D > 2A7% if f changes from — to + at y;, then

1 1
P =) S0 we pi-mot ] (11)
n n
and if f changes from + to — at y;, then
f(u)—pl(u) >0, we 1 -—|—l (1.2)
2 =Y, Yi nvyz al .
In this sense, we have

P (w) =1, (u) + DO (f',1/) o (51 (u — ;)

and
s ! s
(I3_yqn(u = y3)) = @ (u— yi) IT°j=1 jign (u — y;)
+ gn(u — i) [IT° =1 jiqn (u — y;)]
= Jl(u) + Jg(’u)
By the second estimate in Lemma A and by ‘ " Lan(u yl)‘ > AL it

follows that

1 1
mwnzmw*:Am,uep—n%+]

n

Also, by Lemma A, for u € [y; — 1/n,y; + 1/n] and n > 3/d we obtain
- B B(s—1) _ 9Bs
J: < < < .
J2(w)] < Z n(u—1y;)? ~ n(2d/3)? ~ 4nd?

j=1,j#i
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Defining C; := max{3,3,/Bs/2A4%}, by n > Ci;d~! and by the above
estimates for |J1(u)| and |J2(u)|, we get

9B 1 1
° < -A*n  and i(w)] = 2 (w)] > A,

J: <
T2(w)] < 4nC%n=2 — 2

Therefore, if n > C1d~! and D > 2A~%, then the second term in the expression
of p!,(u), is in absolute value greater than Cwy(f’,1/n)co. Thus by Lemma B,
it follows that the sign of f’(u) — p’(u) is exactly the sign of

—eqy (U = Yi) 1% j=1 jiqn (u — y5).
By
q¢,(u—y;) >0 and sgn [5H;:1qn(u - y])} =sgnf(u),u € [—1,1],
it follows that
sgn [—eqy, (u — yi) I}y j450n (v — y;)] = sgn[—gn(u — ) f(w)], v € [-1,1],

which implies (1.1) and (1.2).

Now, if f(u) <0 for u € (y; —1/n,y;) and f(u) > 0 for u € (y;,y; + 1/n),
then by the mean value theorem, there is a number £ between u and y; such
that

which implies

f(u) =pu(u) <0, we (yy + i) .

Also, if f(u) >0 for u € (y; — 1/n,y;) and f(u) <0 for v € (y;,y; +1/n),
then by (1.2) and (1.3), we have

f(u)_pn(u)goa U € (yi_:-bayi>a

f(u)—pn(u)ZO, u e (yi,yi—l-i).

Hence, for u € Ui_;[y; — 1/n,y; + 1/n], we have either p,(u) > f(u) > 0 or

pn(u) < f(u) <0.
As a conclusion,

fw)pp(u) >0, weU_q[yi—1/n,y; +1/n],

which combined with (1.0) proves that p, and f are copositive in [—1,1]. O
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Remarks. (1) Theorem 1.5.4, (i) in terms of the nonweighted modulus
ws(f,1/n)s was proved by Hu—Yu [177].

(2) If in Theorem 1.5.4 (i) one replaces the third modulus of smoothness of
f by the (first-order) modulus of continuity, then Leviatan [227] proved that
the inequality holds with a constant C' = C(s) (so C' does not depend on the
points where the function changes sign, but depends on their number).

(3) The following result in trigonometric copositive approximation of 27-
periodic continuous functions (i.e., in the class denoted by Cs,) by trigono-
metric polynomials was proved in Pleshakov—Popov [305]: if f € Ca, changes
sign at Ys : y; € [-m,7), i = 1,...,2s, then for any r € N, there exists a
trigonometric polynomial T,, of degree < n that changes sign at the same
points y;, @ = 1,...,2s and satisfies ||f — Thllco < %wl(f(r);w/n)oo,
for all n > N(Ys,r), where || - ||oo denotes the uniform norm in Cy,.
Also, Pleshakov—Popov [306] proved the following zeros-preserving result: if
y; € [-m,m), i =1,...,2s are distinct, then defining y; := y;12s + 27,7 € Z,
for any f € Ca, satisfying f(y;) = 0, for all i € N, there exists a trigonometric
polynomial 7;, of degree < n, that has zeros at the points y;, i € Z, and
satisfies

lf — Thlloo < C(s)wi(f;m/n)s for all n € N.

1.5.4 LP-Copositive Approximation, 0 < p < oo

For LP-copositive polynomial approximation, 0 < p < oo, we present the
following result.

Theorem 1.5.5. (Hu-Kopotun—Yu [172, 173]) Let 0 < p < oo. For any f €
LP[-1,1] N A%(Yy), we have

EO(f,Ys), < C(Ya)wf <f7 1) ., n>1,
p

n

where C' depends on p too if 0 < p < 1.
Iffe W]j[—l7 1] N A%(Yy), with 1 < p < oo, then

ET(LO)(fv Y?)p < C(Ys)wéﬂ <f/7 1) , n2=> 1.
n n
p

In addition, if f € W2[=1,1] N A%(Y), then

k,Y, 1
ESLO)(f’YS)p < 0(’2)wa< //’ > o> k41
n n »

Conversely, for everyn >1,0<p < oo, and any A >0 and 0 < e < 1,
there exists a function f = f, pea € C®[—1,1], satisfying xf(z) >0, —1 <
x <1, such that for each p,, € II,, with p,(0) >0,

”f - pn”LP[O,E] > AW2(fa 1)P'
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Moreover, there exists a strictly increasing function f = f,, .4 € C*[—1,1],
satisfying f(0) = 0, such that for each p,, € II,, with p,(0) =0, and p,(x) >0,
0 <z <€, we have

||f - pn”LP[O,e] > Aw3(f/7 1)1)'

Proof. We will sketch the proof of the first estimate in the statement. Since
for small n the theorem follows from the inequalities

1
Il < Cwf (1. 1)y < Con (57 ) <o, fe 2,
p

it suffices to prove it for sufficiently large n, let us say for n > C§~! (where
0 =ming—o,... {|Ur — Yrs1l})-

The proof is by induction on s, the number of sign changes, and follows
the ideas in Hu-Kopotun—Yu [172], where the interested reader can find all
the details. Thus, for s = 0 the result is true from Theorem 1.5.3. Assume
now that the estimate is valid for f € LP[—1,1] N A%(Y;_,), with Y,_; =
{y1,...,Ys—1} From Lemma 3.5, p. 328 in Hu—Kopotun—Yu [172], there exists
a piecewise constant spline R, (f) € A°(Y;) satisfying the estimate || R, (f) —
fllp < Cwf(f,2),. If we define now S, (f)(z) = Rn(f)(z)sgn(z — ys), then
Sn(f) € LP[-1,1] N A%(Y,_1), and by the induction assumption, there exists
a polynomial Q,,(f) € IT,, N A°(Y,_1) satisfying

152(F) = Qu(Dlly < Cw? (Sn(f% ;) .

The desired polynomials are defined by P,(f)(z) = Qn(f)(x)Th(ys)(x),
where T, (ys)(x) is the suitable increasing polynomial copositive with sgn(z —
ys) given by Lemma 3.4, p. 327, in Hu—Kopotun—Yu [172]. In the rest of the
proof it is shown that ||f — P,(f)|l, < Cw{(f,1),, which proves the first
estimate in the statement. [J

1.5.5 Copositive Approximation with Modified Weighted
Moduli of Smoothness

First we recall some notations For s € N, let Y be the set of all collections
Ys := {y;}5_, of points, such that -1 < ys < --- <y; < 1. For Y; € Y, we
define IT(z,Y;) :==[[;_,(x — v:)-

Let A°(Y,) be the set of all functions f : [-1,1] — R that change sign
exactly at the points y; € Y, and that are nonnegative in (y;,1). Obviously,
f € A%(Y;) is equivalent to f(z)II(z,Ys) >0, -1 <z < 1.

Defining Y := UsYs, we say that a collection Y € Y is s-admissible for
fif Y € Yy and f € A°(Y). Denote the set of all s-admissible collections by

Ay(f), and if A,(f) is nonempty, we write f € A=),
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For Y € Y and f € C([-1,1]) we define
EP(fY)oo: = inf = |f = pullo,

pneHnmAO(Y)
and for f € A% we put
B (f)oo := sup{ EQ (£, Y); Y € As(f)}-

Taking into account also the notation in Definition 1.1.3 and its Remarks
(1) and (2), we can state the main results as follows.

Theorem 1.5.6. (Smazhenko [359])

(i) If f € A AB" and (s,7) = (2,3) or (s,7) = (1,2), orr > 2s, orr =1,
then

Ey(mo’s)(f)oo < C(’I",S) ”90 f ”OO n>r— 1;

(i) If f € A(O’S)OC; and either r > 2s, 0r7“+k:2 and s =1, orr =0
and k =1, then

E)(f)oo < ey, k)wf (F751/n), n>k+r—1;

(i5i) If A NB" withr > 1 and Y € Ay(f), then

Eflo)(ﬂY)ooSc(r,Y)H(p{l ”"", n>r—1

and
EO(£,Y ) < e(r,5) 17 f ”°°, n>N(rY);
(i) If f € A=) NCyL, Y € As(f), and either v > 1 orr =0 and k < 3, then
EO(f,Y ) < clrok, Y, (f51/0), n> k7 -1,
and

EO(f,Y)so < c(r,k, s)wk (f £ i1/n), n>N(k,nY);

(v) Writing eﬁ?’s)(f)oo = inf{EﬁLO)(f, Y)oo; Y € As(f)}, for every A > 0,
s> 2 and 2 <r < 2s (excepting the case (s,r) =(2,3)), and any n € N,
there exists f = fsrn,a € AOS) NB” satisfying

EP) (£oo 2 e (foo 2 Allp" f]|o > 0

(vi) Supposing that k,s > 1 and r < 2s (excepting the casesr = 0, k = 1,
andr+k=2,s=1), forany A>0 andn € N, there is f = fsrkna €
A3 N C7, satisfying

EQ) (f)oo 2 €OV (floe = A (fT);1).
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1.5.6 Generalizations

In this subsection we present some interesting generalizations of the con-
cepts of positive and copositive polynomial approximation: almost pos-
itive, strong/weak almost positive, almost copositive, nearly copositive,
strong/weak almost copositive, and almost/nearly intertwining polynomial
approximation. Intertwining approximations are related to both copositive
approximation and one-sided approximation and were introduced and stud-
ied in Hu-Kopotun—Yu [173, 174]. The main idea is to relax the preservation of
the positivity /copositivity from the whole interval [—1,1] to a major portion
of that interval, but excepting small neighborhoods of some points.

We first introduce the following notation and concepts. Set Y = {y;,j =
1,...,8}, where ysy1 == =1 < ys < -+ < y1 < 1 := yo, pu(z) = (1 —
2212 /n+1/n2, and for e > 0, let Jj(n,e) = [y; — pn(y;)n%, y; + pn(y;)nc] N
[1,1], 5 =0,1,...,5+1, On(Ys,€) = Uiy Ji(n,€), O5(Ys,€) = Ui J5(n, ).
If ¢ = 0 then we write J; = J;(n,0), O, (Y;) = 0,(Y5,0), O} (Ys) = O} (Ys,0).

. 1 1/p
The LP-norm is defined by || f|, = (f_l |f(m)|pdx) for 1 < p < oo, and

lflloc := |If]l is the uniform norm. Also, denote by IT,, the class of all real
polynomials of degree < n.

Definition 1.5.7. (i) (Hu-Kopotun—Yu [173]) The best intertwining approx-
imation by polynomials of degree < n, for f € LP[-1,1], 1 < p < oo, with
respect to the set Y is given by

We call (P, @) an intertwining pair of polynomials for f with respect to Y if
P — f and f — Q belong to A°(Y5).

For s = 0 we have Yy = (), and E,(f,Y;) becomes the best one-sided
approximation by polynomials of degree < n for f given by

En(f)p = nf{|P = Qllp; P,Q € IIn, P(x) > f(z) > Q(x),Vx € [-1,1]}.

(ii) (Hu-Kopotun—Yu [174]) With respect to Y;, the functions f and g are
called almost copositive on [—1,1] if f(z)g(z) > 0, for all x € [—1,1]\ O% (Ys);
strongly (weakly) almost copositive on [—1,1] if f(z)g(z) > 0 for all x €
[—1,1]\ Ok (Y5, e) with € < 0 (e > 0, respectively);

Note that for ¢ = —oo, the strongly copositive functions are exactly copos-
itive on [—1,1];

Define the class of functions

(e —alm A)%(Ys) = {f; (=1)*f(2) > 0,z € [-1,1]\ O}(Ys, ),k =0,...,s}.
For s = 0, it becomes

(e — alm A)%(Yp)
= (e — alm A)y = {f; f(x) > 0,z € [-1 +n 2 1 —n 2]},
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and it is called the set of all strongly (weakly) almost nonnegative functions
on [-1,1] if ¢ < 0 (e > 0, respectively). If ¢ = 0, we omit the letter ¢ in the
notation and use (alm A)Y(Y;) and (alm A)?. The latter is exactly the set of
almost nonnegative functions on [—1,1], while for ¢ = —oo, strongly almost
nonnegative functions are exactly the nonnegative functions on [—1, 1].

The best almost positive approximation by polynomials of degree < n, for
ferr—1,1], 1 < p < oo, is given by

EO (f,alm Yy), = inf{||f — P||p; P € I, N (alm A)2}.
Similarly,
EO (f,e — alm Yy), = inf{||f — P||p; P € I, N (¢ — alm A)?},

denotes the best strongly (weakly) almost positive approximation by polyno-
mials of degree < n if e <0 (e > 0, respectively).

The best almost copositive approximation by polynomials of degree < n,
for f € LP[-1,1] N A%(Yy), 1 < p < o0, is given by

EO(f, alm Yy), = inf{[|f — P||,; P € IT,, N (alm A)°(Y)}.
Similarly,
EO(f,e — alm V), = inf{||f — P, P € II, N (e — alm A)"(Y,)}

denotes the best strongly (weakly) almost copositive approximation by poly-
nomials of degree < n if € < 0 (¢ > 0, respectively).
The best almost intertwining approximation by polynomials of degree < n,
for f € LP[—1,1], 1 < p < oo, with respect to the set Y; is given by
En (f? alm }/;)p
= f{||P = fll, + | f = Qllp; P,Q € I, (1)’ (P(x) — f(x)) > 0 and
(=17 (f(z) = Q(x)) 2 0if € [yj11,55] \ On(Ys),5 =0,..., s}
We call (P, Q) an almost intertwining pair of polynomials for f with respect
to Yy if P and @ satisfy the restrictions in the above definition.
The best nearly intertwining approximation by polynomials of degree < n,
for f € LP[—1,1], 1 < p < oo, with respect to the set Y; is given by
E,(f, nearly Ys)p
= inf{||P = Qlly; P,Q € I, P — f € A°(Y,) and f — Q € A°(Y,)},
where ~
Vo= A{fs, i1 =ysp1 <o <+ < <yo =1,
and |gj - yJ| < pn(y])7.7 =1,... 78}'

We call (P, Q) a nearly intertwining pair of polynomials for f with respect
to Y if P — f and f — @ belong to A%(Yj).
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Remark. Between the above best-approximation quantities the following re-
lationships hold:

En(fa alm Ys)p S En(f7 Ueaﬂy Ys)p S En(nyS)pv
and for f € A°(Yy),

Eflo)(f, alm Yj),
E’(O)(f, alm Y),

n

n(f, alm Yy)p,
20 (£, Ys)p-

All the constrained best-approximation quantities in Definition 1.5.7 can
be estimated in terms of various moduli of smoothness and for various ad-
ditional smoothness properties for f. The next theorem summarizes a few
results. For their proofs and for other estimates together with their proofs,
the interested reader can consult the paper of Hu-Kopotun—Yu [174] (see also
the survey Hu-Yu [178]).

<
<

Theorem 1.5.8. (i) (see Hu—Kopotun—Yu [173]) (Intertwining approxima-
tion) If f € Wy = {f; [ is absolutely continuous and f' € LP[-1,1]},
1 <p < oo, then En(f,Ys)p < Cn”'ri(f',n ),
If f € CY[—1,1] then Ep(f,Ys)oo < Cn ™ wf (f/,n ) sos

(i) (Hu-Kopotun—Yu [174]) (Almost positive approxzimation) If we suppose
feLP-1,1]NA° and 1 < p < oo, then

E’I(l())(f’ alm YO)p < Cw;(fv n_l)pa

and w3 cannot be replaced by wy ;
(i11) (Hu—Kopotun—Yu [174]) (Strongly almost positive approzimation, i.e.,
e<0)If feLP[-1,1]NAY and 1 < p < oo, then

E) (f.e —alm Yp), < Cwf (f,n "),

and w{ (f,1/n), cannot be replaced by wa(f,1/n)p,;
(iv) (Hu—Kopotun—Yu [174}]) (Weakly almost positive approximation, i.e., 0 <
e<2)If feLP[-1,1]N A% and 1 < p < oo, then

Eéo)(fag —alm Yp), < ng(f»nil)pv

and w3 (f,1/n), cannot be replaced by ws(f,1/n),;
(v) (Hu-Kopotun—Yu [174]) (Almost copositive approzimation) If f €
LP[—1,1] N A%(Y}) and 1 < p < oo, then

E’I(LO)(f7 alm YS)p < szw(f,n_l)pv

and w¥(f,1/n), cannot be replaced by ws(f,1/n), if 1 < p < oo and b
2 P Y p Y

w4(fa 1/”)1} ifp=1;
If f € Wy N AY(Y,) then

EO(f, alm Y3)se < Cn 'l (f/,n ) ne;
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(vi) (Hu-Kopotun—Yu [174]) (Almost intertwining approzimation) If f €
LP[-1,1], 1 < p < o0, then

En(f, alm Yy), < Crp(f,n 1Y)y
If f e V[/p1 then
En(f, alm Yy) oo < Cn7 wf (f', 0 Yoo

(vit) (Hu—Kopotun—Yu ~[1 74]) (Nearly intertwining approzimation) If f € W},
1 <p < oo, then E,(f, nearly Ys), < Cn~twl(f',n~1),.

Remark. From their proofs it follows that the above-presented methods in
polynomial copositive approximation are nonlinear, such that even if two con-
tinuous functions f, g € C[—1, 1] have the same points where the signs change,
Ys, and both are of the same sign on each subinterval, the copositive approx-
imating polynomials P, do not satisfy P,(f + g) = P.(f) + Pu(g).

It is easy to show that A°(Y}) is a convex cone, i.e., f,g € A%(Y}) and
a € Ry implies f + g € A%(Y;) and af € A(Yy).

Suggested by the proof of Theorem 1.2.1, we easily can construct a polyno-
mial copositive with f € A%(Y) that is an additive and positive homogeneous
operator on AY(Y,) N C'[—1,1]. In this sense we present our next result.

Theorem 1.5.9. If f € AY(Y,) is continuously differentiable in the interval
[-1,1], then a sequence of polynomials (Py), can be constructed such that
degree(P,) < n+ s and for any € > 0, there is ng with the properties

If = Pulloo <&, P,(z)f(x) >0, Yn>ngy, =z¢€][-1,1],

where P, (ag+Bh) = aPy,(9)+BP.(h), for alln € N, g,h € A°(Y,)NC[-1,1],
a, 3 >0.

Recalling the notation II(x,Ys) = IIf_ | (x — y;), the error estimate can be
expressed by

1P =l < O (i)

for all n € N.

Proof. From the differentiability hypothesis, it easily follows that F(z) =
H{iz}),  is continuous (by extension) on [—1,1]. Also, by simple reasoning we
get that F(x) > 0, for all x € [-1,1].

Now define P, (f)(x) := Ln(F)(x) - II(z,Ys), where L,, n € N, is a se-
quence of positive linear polynomial operators on C[—1,1], satisfying degree
(Ln(f)) < nand

1Ln(f) = flloo < Cwal(f;1/n)oo, n=1,2,....

The conclusions in the statement are immediate. [
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Remark. Obviously, the degree of P,(f) can be chosen < n, by considering
that the degree of L, (f) is < n — s. But the shortcoming of the method in
Theorem 1.5.9 is that it does not produce a Jackson-type estimate in terms of
at least wi(f,1/n)s0, or in terms of what we would expect, i.e., wa(f,1/n)x

The solution to this shortcoming remains an open question.

1.6 Monotone and Comonotone Polynomial
Approximation

This section contains the most important results in monotone and comonotone
polynomial approximation. As in the previous section, the proofs of the most
results are omitted as being too technical. However, to give the reader a better
look at the topic, for some proofs the main ideas will be given.

After Shisha’s result in 1965, in the evolution of this topic the following
result of Lorentz—Zeller in 1968 is an important step.

Theorem 1.6.1. (Lorentz—Zeller [250]) If f : [-1,1] — R is increasing on
[—1, 1], then there exists a sequence of polynomials (P, (x))nen such that degree
(Pn) <n, P,(x) is increasing on [—1,1] for alln € N, and

|f(@) = Pa(2)] < Cwr(fi pn(@))ocs |2| <1, n €N,
where C is independent of n, f, and z, and pp(z) = (1 — x2)Y/2/n +1/n2.
To prove this theorem, first we need to prove the following trigonomet-

ric approximation lemma. Recall that a continuous 2m-periodic function on
[—m, 7] is called bell-shaped if it is even and decreases on [0, 7).

Lemma 1.6.2. (Lorentz—Zeller [250]) For any bell-shaped function f, there
exists a bell-shaped trigonometric polynomial T,,(f) such that

[f(2) = To(f)(2)] < Cwr(f;1/n)oo, Vo € R,n € N
Proof of Lemma 1.6.2. Let use denote the Jackson integral of f by

s

In()(x) = [ Kn(z—1)f(t)dt,

—T

s 0= 35 (8" 7

Let us define L(f)(t) := L(t) = f (%k) = ¢, for ™ < ¢ < TEHD g
0,1,...,n and L(f)(t)(t) = L(-t) for t € [-m7,0]. Obv1oubly L(f)( ) is a
piecewise constant function, L is even, and |f(t) — L(t)| < wy(f;7/n). Writing
T.(f)(t) = Jn(L)(t), obviously T, (f) is even and from the inequalities

1f (@) = To (@] < [f(8) = Tn(H) O]+ [Tn(S)(E) = Tn(L) ()]

it remains to show that T,,(f)(x) is decreasing on (0, 7).
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Define bg,k = 0,1,...n — 1 by the recurrent relations ¢, = by + --- +
bn_1, k=0,...,n— 1. We have by > 0 and

(k+1)/n

Zbk/ K, (x — t)dt

—m(k+1)/n

n Tk/n

= Z bk—l/ K, (t)dt.
h—1 —nk/n
Therefore, it suffices to prove that the functions
wk/n z+7mk/n
() = / Koz — t)dt = / Ko (t)dt
x

—nk/n —mk/n

are decreasing on (0, ).
We get

n

= sin’ (m 5 Wk) Lm (R Yoyl ey R

which follows from the inequality sm(a b) > |sin(a—b)|, for all 0 < a,b < /2,
which is a consequence of sin(a + b) — sin(a — b) = 2sin(b) cos(a) > 0, and
sin(a + b) + sin(a — b) = 2sin(a) cos(b) > 0.

Proof of Theorem 1.6.1. Defining F(t) = f(cos t), F is obviously bell-
shaped. By Lorentz [248], p. 68, we have

|f(cos t) = Jn(F)(1)] < Cron(F an(t))oo < wi(f; an(t))oo

where a, (1) = max{ 2 LY < (). Set Ty, (F)(t) = Jo(F)().
Now, if we take L(t) = L(F')(t), then as in the proof of Lemma 1.6.2 it
follows that J,,(L)(¢) is bell-shaped and

|F(t) — L(t)| < wi1(F;h)oo < wi(f;h)oo, h = max|cos(t1) — cos(t)|,

where (if, for example, t > 0), t; = wk/n, t1 <t < t; + 7/n for some k.
Therefore,

km km 1
< i — ] si — | < (C—si < .
h < 2sin <2n> sin <2n> < Cn sin(t) < Cay,(t)

Finally, collecting all the above estimates, we obtain
|f(cost) = Tu(L)(t)| < [f(cos t) = Jn(F) ()] + | Jn(F)(t) — Ju(L)(t)]
< Cron(fian(t))oo + [[F' = Lifoo < Cowr(f; an(t))oo

Making now the substitution & = cos(t) and taking into account that
ap(t) < pp(t), we arrive at the desired estimate. [
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After the publication of the above theorem of Lorentz—Zeller, many
improvements between 1970 and 1980 have been made in monotone approxi-
mation first; for example, by Beatson, DeVore, Leviatan, Newman, Shvedov,
Yu, and then, by many other researchers. In what follows we present the most
important results in this topic.

As in the case of copositive approximation first we need some useful no-

tation. Let Yy be the set of all collections Yy := {y;}i_, of points, such that
Ysr1 = —1 <y, < <y1<1_.y0,wheref0r3—0Y0—(Z)ForYeY
we define

S
H(I’ YS) = H(QZ - yi)’
i=1
where the empty product is 1. Let A'(Y;) be the set of functions f that change
monotonicity at the points y; € Y and that are nondecreasing in (y1,1) that
is, f is nondecreasing in the intervals (y2;11,y2;) and it is nonincreasing in
(y2j,y2j—1). In particular, if s = 0, then f is nondecreasing in [—1, 1] and we
will write f € Al. Moreover, if f is differentiable in (—1,1), then

fe Ay, iff f(x)(z,Y,)>0, —l<z<l.
Now for f € AY(Y,) N LP[-1,1], we denote by

E(l) Y:q = i n
n (f7 )p pncil, ﬂAl(Y)Hf p ||p
the best comonotone approximation of f by polynomials of degree < n. If
Yo = 0, then we write E,Sl)(f)p = E,(ll)(f7 0)p, and it will be called the best

monotone approximation.

Remark. Clearly, f can belong to A°(Y?) N AYNY}), with Y # Y] and
89 # 81. Thus, for such a function the quantity

65,1”78)(f)17 .= inf E,,(Ly)(fa YS)p

is useful, where the infimum is taken over all sets Y; of s points in which f
changes its sign (corresponding to v = 0) or its monotonicity (corresponding to
v = 1), respectively. This quantity is useful in negative results in comonotone
approximation.

First let us make some simple observations on best monotone approxi-
mation. Supposing that f € C![—1,1] is nondecreasing, obviously f’ > 0.
By the considerations in the previous section, for any n > 1, a nonnegative
Pn—1 € II,,_1 exists satisfying

Hfl —Pn-1llec < 2En71(f/)oo
Defining P, ( fo pn—1(t)dt + f(0), we get that P, is nondecreasing and

Hf - Pn”oo < 2En—1(f/)oo
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This implies
ED(foo < 2Bn_1(f)oo n>1.

It is clear that in this estimate we have a loss of order n with respect to
the unconstrained approximation. Indeed, this follows by recalling that if f €
W;[fl, 1], 1 < p < o0, then in unconstrained approximation we have

Ea(f)p < CEar(f)y n> 1,

n
where C' = C(p) is an absolute constant and 1 < p.

Some of this loss can be retrieved by proving Jackson-type estimates that
are analogous to those in unconstrained approximation. However, Shevchuk
[350] and Leviatan—Shevchuk [234] have proved that there exists a constant
C > 0 such that for any n > 1, an f = f,, € C}[-1,1] N A! exists, satisfying

EV(f)ae > CEn_1(f')os > 0,

which shows that the inequality Y (oo <2E,_1(f")so cannot be improved.

If 0 < p < oo, the situation is even more pronounced, since in this case
Kopotun [208] proved that for any n > 1 and A > 0, there exists a function
= fom,a € C®[=1,1] N Al satisfying

Ev(zl)(f)p 2 AEn—l(f/)zr

1.6.1 LP-Monotone Approximation, 0 < p < oo
The following Jackson-type estimate recovers the previously mentioned loss.

Theorem 1.6.3. (see Shvedov [355], Yu [407], Leviatan [228], DeVore-
Leviatan—Yu [90], DeVore-Leviatan [88]) If f € LP[-1,1]N A, 0 < p < o0,
then for every n > 1, we have

B(f), < Cuf (£.3) |

P

where C = C(p), the dependence on p being important only for p — 0.
Conversely, if k > 3, then for every A > 0 and n > 1, there is an f =
Tpm.a € LP[—1,1]1 N A satisfying

EN(f)p > Awp(f,1), > 0.

Proof. The sketch of proof for the first estimate will be presented in three
separated cases: 1) p=00;2) 0<p<1;3) 1 <p<oo.

Case 1. (Leviatan [228]). The proof is based on the ideas of constructions
in DeVore-Yu [86], i.e., first one approximates f by a piecewise linear function
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Sn(f) that interpolates f at a set of certain 2n+1 points —1 =&_,, < &_,41 <
- < & =1, n €N, with the modifications in Leviatan [228], in the sense
that one considers a subset of n + 1 points. Consider the Jackson kernel

Tn(t) = An (Sm"t/2)8, /F Jn(t)dt = 1.

sin ¢/2 o
For t; = jm/n, j=0,...,n, and x = cost, let us define
t-‘rtj xT
T;(¢) :/ Jp(u)du, T1i(x) =Th—;(t), Rj(x) :/ Ti(uw)du, j=0,...,n,
t—t; -1

and the points §; given by the equations 1 —¢&; = R;(1), j =0,...,n.

Since Ty,—j — T, (j4+1) = 0, we get 7; — 7511 > 0 and that R; — R;1q is
increasing for j = 0,1,...,n — 1, which implies —1 =¢, < --- < ¢, = 1.

The piecewise linear interpolant S, (f) is defined by

n—1
Su(F)(@) = F(=1) + s0(1+2) + Y (55— 55-1);(x),
j=1
where
5 = F&in) = 1(&) i=0. . n-1,

i1 —&

and @;(z) = (x — &) +-
In order to obtain the required polynomials, each ¢;(x) is replaced by a
sufficiently good approximation polynomial, i.e., by R;(x), which gives

n—1

Po(f)(x) = f(=1) + soRo(x) + > _ (55 — 5j-1)R;(w)

Jj=1

—FE) 4 Y 5 (Ry (@) — Ry ().

=0

Note that P,(f) € Il4, is a linear operator with respect to f. Since each
function R; — Rj4+1 is nondecreasing, it follows that P,(f) is nondecreasing if
all s; > 0, which is exactly the case when f is nondecreasing.

Also (reasoning as in the proof of Leviatan [232]), it follows that

1f = Pu(f)lloc < CwF(f,1/n)oc-

Case 2. (DeVore-Leviatan—Yu [90], DeVore-Leviatan [88]). We sketch
here the proof in DeVore-Leviatan [88]. First we choose the partition points
&, j=0,...,n, as in the above Case 1, starting now from the Jackson kernel

sinnt/2\ " ’T
Jn(t>=An(Smt/2) , /Jn(ﬂdt:l,
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where r is a sufficiently large fixed natural number. For = cost and ¢; :=
jm/n,j =0,...,n, let us define

€T

t+t;
T;(t) = / In(w)du, 7j(z) :=Th—;(t), Rj(z):= / Ti(uw)du, 7 =0,...,n,
t—t; —1

and the partition points §; given by the equations 1-&; = R;(1),j =0,...,n.
Obviously R; is a polynomial of degree < nr, and since R;(x) — Rj41(x) is
nondecreasing for all j =0,1,...,n—1, weget —1=¢§ <& <2 <& = 1.

Now we briefly describe the construction of a suitable piecewise linear
continuous function, S, (f), attached to f and to the above partition. It is
given by Sn(f)(=1) = L (=1), Su(f)(1) = 1;(1), and for jo < j < ji,
Sn(f)(&) = f(&) = 1;(&;) and linear in between (i.e., S,(f)(z) = l;(x), = €
[€i-1,&5], § = Jo,---,J1, represent the linear functions that interpolates f
at £j_1 and §;), where jo and j; are indices chosen as follows. Writing I, =
[€;_1,&;] and I, the interval with the same center as I; and twice its length, jo
will be the smallest index j such that I;, C [~1,1], and j; will be the largest
index j such that I, C [~1,1].

Without entering into details, we mention only that in DeVore—Leviatan
[88] it is proved that [; are near optimal LP-approximation to f on the intervals
I;, where I]* = Ij lf]o < j <71, I;o = Ijo U [_]ngo]v and I]*1 = Ijl U [£j17 1]

We follow the ideas in the above case p = oo and take into account that
we can write

n—1
Su(f)(@) = Ly (z) + Y [a; — aj—1]p;(x)
j=1
— 5y (@) —ao(x + 1)+ 3 alps () — pir (@),
=0

where ¢, (x) = (x—¢&;)+ and a; is the slope of [;(z). If f is nondecreasing then
a; > 0 for all j, and therefore S, (f) is nondecreasing on [—1, 1]. Replacing ¢;
by R;, we get the nondecreasing polynomial

n—1

Po(f)() = Uy (2) —ao(x +1) + ) a;[R;(z) = Rj1a ()],

Jj=0

since [;, () — ag(x + 1) is a constant and R;(x) — Rj41(x) are nondecreasing.
Finally, in DeVore-Leviatan [88] it is proved that for large r we get

I = 5u0lly < o (£1)

P
and )
15,0 = POl < € (£1)
p
which proves the Case 2.



60 1 Shape-Preserving Approximation by Real Univariate Polynomials

Case 3. (Yu [407], Leviatan—Yu [244], see Shvedov [355] for estimates in
terms of wa(f,1),). Here we sketch the proof using Yu [407], Leviatan—Yu
[244]. For that purpose, we keep the notation in the proof of Case 1 for J,(¢),
Tj(ﬁ), tj, Tj(.l?), Rj(l‘), fj, (,Oj(l‘), and (5j.

Let us set

_ 1 n;/2
= [ r o
Ni J—n;/2
Where ’17]' = min{éj — fj*17£j+1 — fj}v j = ]., ey, — 1,

is the piecewise linear function interpolating f(gj) at the nodes ¢;,7 =
1,...,n — 1, and extending linearly to the endpoints of [—1, 1], where

_ f&) — f(&-)

5, = 2SI 9 n—1,

& —&i—1

1 =382, 8p=38n-1,

and f(=1) = f(&) — (1 +&1)51, f(1) = f(&n—1) + (1 = &n1)3n.
Defining

Il

n
Ln(f)=f(-1)+ Z gJ'(Rj—l - Rj)v
j=1
it is easy to see that L, (f) is a polynomial of degree < 4n and is nondecreasing
in [-1,1] whenever f is nondecreasing in [—1,1].
Finally, in Leviatan—Yu [244] (omitting here the details) the estimate

I = L)l < £ (1.5

p

is proved. [

Remark. The estimate in Theorem 1.6.3, case p = 0o, can be refined, in the
sense that for f € A we can obtain polynomials P, (z) € II,, N A! satisfying
an estimate of the form (see Ditzian—Jiang—Leviatan [97])

F(@) = Pu(H)(@)] < CO)wf ™ (frn p(@) Moo, —1 <z <1,

where X € [0, 1].
If 1 < p < oo, then the estimate in Theorem 1.6.3 implies that for f €
W,[—1,1] N A', we have

C , 1
E(l)(f)p = ;Wf <f ’n)p.

Thus, for smooth functions the question arises whether it would be possible to
obtain estimates involving the moduli of smoothness of the derivatives. This
is true for the uniform norm but not for the LP-norms.
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Theorem 1.6.4. (i) (Shevchuk [37, 348]) Let f € C1[-1,1] N AL, For each
k > 1, there exists a constant C' = C(k) with

1
E(l)(f)oo < ka(f/a > .
n n)
(i) (Kopotun [208]) Let 0 < p < oo and k > 2. Then for anyn > 1, € > 0,
and A > 0, there exists a function f = fypnea € C®[—1,11N A" such that
for all p,, € II,, satisfying p,,(—1) > 0, we have

If = ulloe—1,—14¢ > Awr(f',1)p.

Note that if k& > 2, then in Theorem 1.6.4, (i), one cannot replace the
uniform norm by any of the LP-norms, 0 < p < oo.

Now it is natural to ask whether the estimate in Theorem 1.6.3 still holds
for wf if we relax the requirement on the constant, by allowing that such a
constant may depend on the function f (but not on n). Wu—Zhou [402] proved
that this is impossible for k = 4+[1/p]. On the other hand, the following result
closes the gap for monotonic continuous f.

Theorem 1.6.5. (Leviatan—Shevchuk [237]) For any f € C[—1,1]N A%, there
exists a constant C = C(f) such that

EW(f)oo < CwS (f, 1) . VYn>2.
n

oo

Proof. Here we sketch the proof in Leviatan-Shevchuk [237]. For n > 3 and
xz; = —cos(jm/n), j = 0,...,n, denote by S, the class of all continuous
quadratic piecewise polynomials with the nodes at x;, j =0,...,n.

For f € C[-1,1] N A and n > 3, let I; and [,, be the linear functions
interpolating f at the endpoints of the intervals I; := [—1,z41] and I, :=
[€n—1, 1], respectively. By Lemma 1 in Leviatan—Shevchuk [236], there exists a
piecewise quadratic polynomial ¢, € S,,NAM such that g, (z) = l1(z), = € Iy,
qn(z) =1, (z), x € I, and

If = anllizs,e0 1) < Cw§ (f,1/7)c0.
The Burkill-Whitney inequality (see, e.g., (3.9) in Shevchuk [349]) implies

1f = anll(1)os = IIf = Lill(I1)oc < Cwa(f,1/n%)cc,
”f - QR”(IH)OO < Cw?(fa 1/n2)007

taking into account that |I1],|l2] < Cn~2 (where |I| denotes the length of the
interval I).
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On the other hand, by the proof of Marchaud’s inequality (see, e.g., (3.6)
in Shevchuk [349]), it follows that

1
wa(f,6) a0 < 052/5 %du—s—Cé%z(ﬁl)w 5 € (0,1),

which by the inequalities (see Ditzian—Totik [98])

ws(f20)e0 < CWS(f, Voo < OP6 05 (1 m)oe, 62 -

implies
a1 /%0 < CLE (£, 1/m)oe + el Do
< CWE (11 /m)oe + 5 (e

From the above inequalities, we obtain

”f - ‘M”oo < Cw:f(fa l/n)oo + Cn74w‘2p(f, 1)00;

where
Wy (Gn, 1/n) e < w§ (f,1/1)0ot8f—gnlloo < Cwi (f, 1/n)oo+Cn*4w‘2"(f, Doo-

Hence, for n > C, since by Proposition 3 in Leviatan—Shevchuk [235], for
qn € S, N A, we have

ES) (gn)oo < CwS (50, 1/0) oo

the estimate in the statement follows. For n < C the estimate is immediate.
O

1.6.2 Pointwise Monotone Approximation

Regarding pointwise estimates in monotone polynomial approximation,
Dzyubenko [102] proved that for f € C"[—1,1]N A and n > r + k — 1, there
exists a polynomial p, € A' for which the pointwise estimates of Timan—
Brudnyi type are valid. However, as it was proved by DeVore-Yu [92], the
interpolatory estimates of Telyakovskii-Gopengauz type are valid only when
r+k <2

Other positive and negative results can be summarized by the following.

Theorem 1.6.6. (Gonska-Leviatan—Shevchuk-Wenz [152])

(i) If r > 2, then for any n there is an f = f.,, € WI[-1,1] N A such that
for any polynomial q,, € IT,, N A', either
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|f(z) = gn(2)]

lim sup —————> =
z——1 ¢ ()
or
s L@ = @) _
z—1 ¢ (z)

(ii) Let r + k > 2. Then for any n, there is an f = fr ., € C"[-1,1] N AL,
such that for any polynomial q,, € II,, N Al, either

‘m ‘f(-r) _Qn(x)l —

B S @k T, o))
or

lim sup 7(w) = g.(c)] = oo

s—1 @7 (@)wr (F7), (7)) oo
(iii) For interpolation at only one of the end points, we have the following
positive result. Suppose k < max{r,2} and f € C"[-1,1]N Al. For any
n> N :=k+r—1, there exists a polynomial p,, € IT,, N A satisfying

/(@) = pa(@)] < Cr)ph(@)wn(f7), pu(@)e, @ € [-1,1],

and

)2 —
|f<x>—pn<x>|sc<r>“)wk(fm,l) . zel[-L1).

n" n

(iv) Suppose k > max{r,2}. Then for each n > 1 and every constant A > 0,
an f = frrma € CT[=1,1] N Al exists such that for every polynomial
pn € I, N AL, there is a point x € [—1,1] for which

— )"/ -
) =) > A8y (0, Y22

holds.

Remarks. (1) Note that for f € C"[—1,1]N AL, the first estimate in (iii), but
in the uniform norm, was obtained by DeVore [84], who proved the existence
of p,, € II,, N A satisfying

I1f = Pullee < Cr)n~"wi(f,1/n)c0,

where || - ||oo denotes the uniform norm in C[—1,1].

(2) Concerning simultaneous pointwise estimates in monotone approxima-
tion, in Kopotun [204] it is proved that for f € C*[-1,1]N A! and n > 1,
there is a polynomial p, € II,, N Al, satisfying

1FD(2) — pD(2)] < Cwai(fD, pp(a))oo, i=0,1, z € [-1,1].

(3) Pointwise estimates in monotone approximation by polynomials with
positive coefficients were obtained in Trigub [389].
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1.6.3 LP-Comonotone Approximation, 0 < p < oo

A natural extension of monotone polynomial approximation is the comonotone
polynomial approximation, i.e., the approximation of a function f €
L?[-1,1],0 < p < oo, by polynomials (P,), that change their (same)
monotonicity with f at Yy = {y1,...,ys} € Y, i.e., if, for example, in addition
to f € CY[—1,1], then f'(z)P.(x) >0 for all x € [-1,1], n € N. Set

d(Ys) = Ofg.igs(yi — Yit1)-

Theorem 1.6.7. (i) (Beatson—Leviatan [34]) If f is continuously differen-
tiable in [—1,1] and changes monotonicity s times, 1 < s < oo, then for each
n > 1 there is a polynomial p,, of degree < n, comonotone with f on [—1,1]
and satisfying
E (1 /)
n

where C(s) is a constant depending only on s.

(ii) (Kopotun—Leviatan [210]) If f € LP[-1,1]N AY(Y;), 0 < p < oo, then
there is a constant C = C(s) such that for any n > C/d(Ys), we have

”f _anoo S

Eﬁbl)(f’ Ys), < Cws <f, i) )

p

Although it is weaker than the estimate in (ii), we present here only the
proof of Theorem 1.6.7 (i), by following the ideas in Beatson-Leviatan [34],
since they were very seminal for the next results and since it can more easily
be extended to real functions of two real variables (see Section 2.6, Corollary
2.6.11).

In the proof of this result, C' will denote a positive constant independent
of f, n, and s but that can be different at each occurrence. Also, the method
used is based on the so-called “flipped” function denoted by fr and attached
to f, with the property that it has one change fewer in monotonicity than f.

First we need a lemma on this “flipped” function.

Lemma (A). (Beatson—Leviatan [34]) A constant C' > 0 exists with the
following property: if f € C[—1,1] changes its monotonicity at s > 1 points
at (—1,1) including 0, where it is supposed f(0) = 0, defining the “flipped”
function

fr(z) = f(x), z=>0,
fr(z) =—f(z), z=<0,

and supposing that for somen > 1 and 6 > wi(fp,1/n)o there is a polynomial
pn € I, comonotone with fr such that

IfF = Pullos < Co/n,  |Ifp — Phllee < C6,
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then there is a polynomial Ps, € Il3, comonotone with f satisfying the esti-
mates

||f_P2n||OO<C(S/n7 ||f/_P2/nHOO<C(S

Proof of Lemma A. It is evident that fr has one change of monotonicity
fewer than f. Also for 0 < |z| < k/n, where k > 1, we get

[fp(@)] < wr(fp, [2])se < kwr(fF, 1/n)o

By fr(0) = 0 and by the mean value theorem, it follows that there is
& € (0,1) such that

2

(@) = lel - |75 (60)] < enfr, 1/

By DeVore [84], pp. 908-909, for each n > 1 we can approximate sgn(x)
by the polynomials ¢, (z) = C, fo (t)/t)*dt, where m is the largest odd
integer such that ¢, € I1,, and C,, is chosen such that g, (1) = 1. It is known
that ¢, is odd, monotone increasing, and

Clnz|™®, 2 €[-1,0)U(0,1],
. xel[-1,1].

[sgn(z) — gn(2)
[sgn(x) — gn(z)

Because fr(0) = 0 we can suppose p,(0) = 0, by replacing § with 26 in the
inequality ||f7 — pnlloo < 05/n

Let us define now Py,(z) = fo Pl (t)qn (t)dt. Tt is evident that Pa, is
comonotone with f, and we get

F(&) = Pon(e) = / “LFi(t) — ol (6)lsan(t)de + / " (®)lsen(t) — ga(d)]dt
— (fr(e) - pula))sgnle) + / "l ()lsen(t) — g (6))de

= Jl(l‘) + JQ(ZE)

Write 8 = sgn(x)/n. For 0 < |z| < i/n, ¢ > 1, the above inequalities and
f7(0) = 0 imply

z il e(k+1)8
Ta(a)] = / p;<t>[sgn<t>—qn<t>1dt\<z /k L hOlE() gl
1—1
< 1[w1(fF,1/n +%Z k+1)wi(fr,1/n)00+0]CE™3 < C§/n.
k=1

The estimate for |.Jy(z)| is similar, which proves the estimate ||f — Papllco <
Co/n.
The proof of the inequality ||f" — Py, |lcc < C§ is similar. O
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Proof of Theorem 1.6.7 (i). If « € (—1,1) is a point where f changes its
monotonicity, then f’(a) = 0.

For small values of n, let us say n < M(s), the theorem is immediate since
f'(e) = 0 implies

C(s)

n

[f (@) = fla)] < |lv = af - [f'(n)] < 201(f',2)0c < wi(f,1/n)oc.

For large n, we prove the theorem by induction on the number of changes
of monotonicity, s.

The theorem in true for s = 0 by a construction in DeVore [83] (see
Beatson-Leviatan [34], pp. 222-223 for details).

Note that without loss of generality, if « € (—1,1) is a point where f
changes its monotonicity, then we may assume that f(a) = 0 (otherwise, we
subtract a constant from f and add it to the approximation polynomials).

Therefore, we have to prove the statement that there exist constants C(s)
and M (s) such that for any function f € C'[—1,1] with s > 1 changes of
monotonicity (such that there is « € (—1,1) with f/(a) = 0) and any n >
M (s), there is a p,, € II,, comonotone with f satisfying

1F = puloe < C)er(7 1 /m)s 17" = Bl < CsJen (7, 1/) e

Let us assume that the above statement is true for s—1 and let f with s > 1
changes of monotonicity. First we extend f linearly to [—3, 3], preserving the
modulus of continuity of f/. Working with the interval I of length 4 centered
at o (obviously I C [—3,3]) we deduce that a change of variable y = 1 (z — a)
defines a function g(y) = f(x) defined for —1 < y <1 that satisfies ¢’(0) =0
and w1(g’,0) 00 < 4w1(f’,6)00-

Without loss of generality, we may assume that g(0) = 0. Then the
“flipped” function attached to g, i.e., g, has s — 1 changes of monotonicity.
Using the above Lemma A and the inductive hypothesis, there is a sequence
{hn}o, M(s—1) of comonotone approximation polynomials to g. Now, invert-
ing the change of variable, it follows that the sequence {p, ()}, pn(z) = hn(y)
satisfies the statement for s, which proves the theorem. [J

Remarks. (1) As a negative result to Theorem 1.6.7 (ii) Zhou [410] proved
that for any 0 < p < oo and s > 1, thereis a Yy and an f € LP[—1,1]N A (Y})

such that W
En
lim sup 700)1’ = 00,
n—oo Wk (f,1/n)p
with & = 3 + [1/p]. Therefore, if p = co then Theorem 1.6.7 (ii) is not valid
with any k > 3, even with C' = C(f) and N = N(f).
(2) Let us mention that the estimate in Theorem 1.6.7 (i) was at the

time (in 1983), an improvement with respect to the results in Iliev [181] and
Newmann [283], who obtained an estimate of order O(w1(f,1/n)oo).
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For p = oo we can say much more in comonotone approximation. The
results can be summarized by the following.

Theorem 1.6.8. (i) (Dzyubenko—Gilewicz—Shevchuk [106], Wu—Zhou [{03])
If f € C"[-1,1] N AY(Yy), then the estimate

Eﬂ%nhsﬁwQW9>,nzM

n n)

holds with C = C(k,r,s) and n = N(k,r,s) only when either k =1 orr > s,
or in the case k = 2 and r = s. In addition, in these cases one can always
take N=k+r—1. Ifk=2and0<r<s,ork=3andl1 <r<s,ork>3
and 2 < r < s, then the above estimate holds either with C = C(k,r,Ys) and
N =k+r, orwith C = C(k,r,s) and N = N(k,r,Ys), and they fail to be
valid with C = C(k,r,s) and N = N(k,r,s). Also, if eitherr =0 orr =1,
then for every s > 1, there exist a Yy € Ys and an f € C"[-1,1] N AL(Yy)
such that

1. anT(LU (f7 YS)OO
im sup =
n—oo W34 (f(r), 1/”)00
that is, the estimate does not hold even with constants that depend on f.
In particular, if f € W then

)

(r)
EM(f,Y:)s < C(r, s)w, n>r—1.
n
(ii) (Leviatan—Shevchuk [238]) For s > 0 assume that f EB"NAY(Y;),r>1.
Then -
EO( Y < Oyl e sy
n'l"
and -
1 1" f " lloo
Er(z)(fa)/;)oo Sc(rvs)Ta TLZN(T,YS).

In addition, if f € B" N AY(Ys), with either s =0, 7 =1, orr=3,s5=1, or
r > 2s+ 2, then

rf(r)
Er(Ll)(f,Ys)ooSC(T)M» n>r—1.
n

(i1i) (Leviatan—Shevchuk [235]) Given s > 1, let A > 0 be arbitrary and
2 <r <2s+2, excluding the case r = 3, s = 1. Then for every n, there is an
f = frsn € B, that changes monotonicity s times in [—1,1], such that

e (Foo > Allg" FM oo

Remark. Pointwise estimates in comonotone approximation have new prop-
erties, described as follows. If s = 1, then when either r > 2 or in the three
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special cases the k = 1, r = 0,1 and &k = 2, r = 1, there is a polynomial
pn € IT, N Al satisfying

/(@) = pa(2)] < C(r)ph (@)wn(fT), pu(@))oos —1<@ <1, n2k+r—1

For two other pairs, k =2, r =0 and k£ = 3, »r = 1, the above estimate holds
with C' = C (Y1) = C(y1), while for the remaining pairs, i.e., r =0, k > 3 and
r =1, k > 4, we have no such estimate. Thus, the situation is exactly that in
Theorem 1.6.8 for s = 1.

On the other hand, if s > 1, then the situation for the above pointwise
estimate can briefly be described as follows: it does not hold for r =0, k > 3
and r = 1, k > 4, while for the rest it follows with C = C(r,k, s) only for
n >N = N(rk,Y;) (for all these situations see, e.g., Leviatan [230]).

1.6.4 Comonotone Approximation with Modified Weighted
Moduli of Smoothness

It is of interest to consider estimates in comonotone polynomial approximation
with respect to the modified weighted moduli of smoothness, wy ., introduced
by Shevchuk [349] (see also Definition 1.1.3.). As a sample, we present the
following.

Theorem 1.6.9. (Leviatan—Shevchuk [238], Dzyubenko-Listopad—Shevchuk
[109] for s = 0) Let s > 0. If f € C, N AN(Y,), with v > 2, then

C(k,rY5)

EW(f,Ys)oo <
n

1
w/f,r(f(r)vn)7 n2k+7’*1,

and

Er(Ll)(ﬂYS)OO < Mwlf,r (f(r))1>, n> N(k,r,Ys).

n" n

In addition, if f € CJ,N AYNYy) with r > 2s + 2, then

C(k,r,s)

nT‘

ED(f,Ys)oo < w,f,r(f@ i) n>ktr—1,
Remarks. (1) Concerning the dependence on the parameters of the constants
C and N for the answer with respect to the estimates in Theorem 1.6.9, case
s =0, the following situations are possible (see Leviatan [230]):

If r > 3, then both N and C' depend on k,7,s;

Let r = 2. If £ > 3 then estimate holds, £k = 2 is still an open question,
if K = 0, then both constants C' and N depend on k,r,s, if kK = 1, then the
first two estimates in Theorem 1.6.9 do not hold, but the third one holds with
C = C(f);

Let r = 1. If k = 0 or k = 1, then we have C = C(k,r,s) and N =
N(k,r,s), if k =2, then the first two estimates in Theorem 1.6.9 do not hold
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but the third one holds with C' = C(f), k = 3 is still an open question, if
k > 3, then no estimate holds.

Let r =0.If k =1or k =2, then C = C(k,r,s) and N = N(k,r,s), if
k = 3, then the first two estimates in Theorem 1.6.9 do not hold but the third
one holds with C' = C(f), if k > 4, then no estimate holds.

(2) Concerning the dependence on the parameters of the constants C' and
N, for the complete answer with respect to the estimates in Theorem 1.6.9,
case s = 1, the following situations are possible (for all the cases see, e.g.,
Leviatan [230], except the cases where the references are specified):

If r > 5, then C = C(k,r,s) and N = N(k,r, s);

If r = 4, then one of the constants C' or N depends on k,r and Yj;

Let r =3. If k =0, then C = C(k,r,s) and N = N(k,r,s), if k > 1, then
one of the constants C' and N depends on k,r and Yj;

Let r =2. If k =0 or kK = 1, then one of the constants C' and N depends
on k,r and Y, if £ = 2, then the estimates in Theorem 1.6.9 do not hold
even for constants depending on the function (see Nesterenko—Petrova [282]),
if k > 3, then no estimate holds.

Let r =1. If £k =0, then C = C(k,r,s) and N = N(k,r,s),if k=1 or
k = 2, then one of the constants C or N depends on k,r and Yy, if k = 3, then
the estimates in Theorem 1.6.9 do not hold even for constants depending on
the function (see Nesterenko—Petrova [282]), if k£ > 4, then no estimate holds.

Let r =0.If k =1, then C = C(k,r,s) and N = N(k,r,s), if k = 2, then
one of the constants C' or N depends on k,r and Y, if £ > 3, then no estimate
holds.

(3) Concerning the dependence on the parameters of the constants C' and
N, for the complete answer with respect to the estimates in Theorem 1.6.9,
case s > 1, the following situations are possible (for all the cases see, e.g.,
Leviatan [230], excepting the cases for which references) are specified:

If r > 2s+ 3, then C = C(k,r,s) and N = N(k,r,s);

If 3 <r < 2s+ 2, then one of the constants C' and N depends on k,r,
and Yy;

Let r=2. If k = 0 or k£ = 1, then one of the constants C' and N depends
on k,r and Yy, if £k = 2, then the estimates in Theorem 1.6.9 do not hold
even for constants depending on the function (see Nesterenko—Petrova [282]),
if k > 3, then no estimate holds.

Let r = 1. If Kk = 0, then C = C(k,r,s) and N = N(k,r,s), if &k =1
or k = 2, then one of the constants C' and N depends on k,r and Yj, if
k = 3, then the estimates in Theorem 1.6.9 do not hold even for constants
depending on the function (see Nesterenko—Petrova [282]), if k£ > 4, then no
estimate holds.

Let r = 0. If & = 1, then C = C(k,r,s) and N = N(k,r,s), if k = 2,
then one of the constants C' and N depends on k,r and Y5, if £ > 3 then the
estimates in Theorem 1.6.9 do not hold.
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(4) When s = 0, we have Yy = ) in the first two estimates and hence the
second estimate is just the third one. Also, in this case, the last estimate is
valid for 0 <r + k < 2.

(5) For other results in the comonotone approximation in terms of modified
Ditzian—Totik moduli of smoothness, see Note 1.10.2.

1.6.5 Nearly Comonotone Approximation

By relaxing the condition of comonotonicity from the whole interval [—1,1]
to only a major portion of that interval, one obtains the so-called nearly
comonotone polynomial approximation.

This concept seems to appear for the first time in the paper of Newman—
Passow—Raymon [284], as follows. They say that f € C[—1,1] is piecewise
monotone on [—1,1] if there exists Yy = {y;, j = 1,...,s}, with —1 :=
Ysp1 < Ys < -+ < y1 < 1:= yp, such that f is monotonic on each interval
(Yi+1,9:),7 = 0,...,s. In particular, f € C[—1,1] is called proper piecewise
monotone on [—1, 1] (with respect to Yy) if for any 0 < ¢ < % min;—o,.. s{(yi —
yitr1)}, there is § > 0 such that |f(z) — f(y)|/|z — y| > 6, for all z,y €
[Yit1 +&yi —€l, v #y.

A sequence of algebraic polynomials (P,), is called nearly comonotone
with f on [—1,1] if for any 0 < & < § min;—o,... s{yi—yi11}, there exists N. € N
such that for all n > N, the polynomial P, is of the same monotonicity as f
on the intervals (y;4+1 +e,v; —€),i=0,...,s.

The first result on nearly comonotone approximation belongs to Newman—
Passow—Raymon [284] and states that for any proper piecewise monotone
f € C[-1,1] N Lip; M, there exists a nearly comonotone sequence (of alge-
braic polynomials) with f, (Py)n, Py € II,, such that || f — Pyllec < €4 for
all n € N. Later on, the restriction “proper” was removed by DeVore [83].
Roulier [328] generalized the Newman—Passow—Raymon [284] result by prov-
ing that for any piecewise monotone function f € C[—1,1] and any sequence
of positive numbers d,, — 0 that satisfies lim,, .~ EZ—(f) = 0, there exists a
nearly comonotone sequence of polynomials (P, ), Pnne 11, such that

||f - PTLHOO < wl(fadn)oo +En(f)oc, n € N.

where recall E,(f)oo = inf{||f — anlloo; @n € I }.

Myers [281] proved that if f € C[—1, 1], then the above Roulier’s estimates
can be replaced by || f — P,|| < Cwi(f,1/n), and if, in addition, f € C*[-1,1],
then the estimate in nearly comonotone approximation can be improved to
If = Palloo < Cintw1(f,1/n)0e. (Here C and C; are absolute positive con-

stants.)
All the above results can be improved. To be more precise, given the
“comonotonicity points” Ys = {y1,...,ys}, where —1 := yo11 < ys < -+- <

y1 < 1 =:yo, similar to the copositive case let us write

O(na YS) = [*13 1] N {Ule(yi - pn(yi)ayi + p'ﬂ(yl))}
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and
O*(n,Ys) = O(n, Yo) U [1, =1+ 1/n*| U[1 — 1/n® 1].

We have better results than those in comonotone approximation too, summa-
rized by the following.

Theorem 1.6.10. (i) (Leviatan—Shevchuk [240]) For any natural number M,
there exists a constant C = C(s, M) for which if f € C[—1,1] N AL (Yy),
then for every n > 2, there exists a polynomial P, € II,, comonotone with
[ oon [-1,1]\ O*(Mn,Y;) such that || f — Ppllec < Cwi(f,1/n)s0
Also, ws cannot be replaced by wy.

(i) (Leviatan—Shevchuk [240]) For each k and M natural numbers, there exists
a constant C = C(k,s, M) for which if f € A (Ys) N C’l[ ,1], then
for every n > k there is a polynomial P, € II,, comonotone wzth f on
[—1,1]\ O(Mn,Ys) such that

C
”f _Pn“OC S gw]f(f/al/n)oo

(#ii) (Leviatan—Shevchuk [240]) For each k and M natural numbers, there
exists a constant C = C(k,s, M) for which if f € AL (Ys) N C’1 then

for every n > k there is a polynomial P, € II, comonotone wzth f on
[—1,1]\ O*(Mn,Ys), such that

C
1f = Pallo < *wlf,l(f/’ 1/n),

where wk 1 and 01 are defined in Definition 1.1.3.

(v) (Leviatan— Shevchuk [236]) There exists a natural number M = M (s) and
a constant C(s) such that if f € C1[—1,1] N AL(Y}), then there exists a
polynomial P,, € II,,, comonotone with f on [—1,1]\ O*(Mn,Ys) that for
all x € [—1,1] and n > 2 satisfies

[f(z) = Pu(2)] < C(s)ws(f, pn(2))-

(v) (Leviatan—Shevchuk [236]) There exists a natural number M = M (s, k)
and a constant C(s, k) such that if f € C'[—1,1] N AY(Y), then there
exists a polynomial P, € II,, comonotone with f on [—1,1]\ O(Mn,Y),
that for all x € [—1,1] and n > k satisfies

() = Pu(@)| < C(s, k)pn(@)wr(f', pn ().

Many other details, including the proofs in Theorem 1.6.10, can be found
in the papers of Leviatan—Shevchuk [236, 240].

Remark. From their proofs it follows that the above-presented methods
in polynomial comonotone approximation are nonlinear, such that even if
two continuous functions f,g € C[—1,1] have the same points Y, where
the monotonicity changes and both are of the same monotonicity on each
subinterval, however the comonotone polynomials P, do not satisfy P,(f +

9) = Pu(f) + Pu(9)-
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It is easy to show that A!(Y;) is a convex cone, i.e., f,g € A'(Y;) and
a € Ry implies f + g € AY(Y;) and af € AY(Ys).

Suggested by the proof of Theorem 1.2.1, we easily can construct a poly-
nomial comonotone with f, that is an additive and positive homogeneous
operator on A(Yy) N C?[—1,1]. In this sense, we present two very simple
results.

Theorem 1.6.11. If f € ANY,) is twice continuously differentiable on
[-1,1], then a sequence of polynomials (Py,), can be constructed such that
degree(Py,) < n+ s+ 1 and for any € > 0, there is ng with the properties

||f_Pn||oo <¢g, P;L(:c)f’(x) >0, Vn>ng, =wx€ [_lal]a

and P, (ah+Bg) = aP,(h)+BP.(g), for alln € N, h,g € AL(Y,)NC?[-1,1],
a,B>0.

Recalling the notation Il (x,Ys) = IIf_ | (x — y;), the error estimate can be
expressed by

1P Tl < O (it

for all n € N.

Proof. From the differentiability hypothesis, it easily follows that F(z) =
H)E/z(ﬁ)s) is continuous (by extension) on [—1,1]. Also, by simple reasoning we
get that F'(z) > 0, for all x € [—1,1]. Note that without loss of generality, we
may suppose f(— ) = O

Now define P, ( = [ Lu(F - II(t,Y,)dt, where L,,n € N,
is a sequence of posmwe hnear polynomlal operators on C[—1, 1] satisfying
degree(L,(f)) <n and

1Ln(f) = flloo < Cwa(f;1/n)oe, n=1,2,....

The conclusions in the statement are immediate. [

Remark. In the very particular case of a single point of change of monotonic-
ity in the particular interval (0,1), i.e., Y1 = {y1}, where y; € (0,1), we can
obtain a different estimate in Theorem 1.6.11. In this case, A(Y7) represents
the space of all continuous functions on [0, 1], that are nonincreasing on [0, y1]
and nondecreasing on [y1, 1].

Theorem 1.6.12. If f € AYYy) is continuously differentiable in [0,1],
f'(z) #0, for all © # y1, then for any € < y1,e < 1 —yp, there is ng € N,
such that for allm > ng, Pp(f)(z) = B, (f)(x+xn—11), with B, (f)(x,) =0,
are polynomials comonotone with f on [e,1 — g] (near comonotonicity) and

C
1Pa(f) = flloo < 1/2w1(f71/n1/2) 1 Moo - [2n = w1l

Here B, (f)(x) denotes the Bernstein polynomials on [0, 1].
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Proof. Firstly, the estimate is immediate by the approximation property of
Bernstein polynomials in e.g., Knoop—Zhou [194], Totik [387].

By E. Popoviciu [311], f € A'(Y7) means that it is quasiconvex, which by
Theorem 1.3.1 (ii) implies that all the Bernstein polynomials B, (f) are quasi-
convex on [0, 1]. Note that by hypothesis, it is easy to prove that for each fixed
n, T is unique and that lim,,_, . , = y1, which implies the comonotonicity
of P,(f) with f on [e,1 — ¢], for sufficiently large n. O

Remark. An important shortcoming in Theorems 1.6.11 and 1.6.12 is that
with respect to the Jackson-type estimates (i.e., in terms of the moduli
w1(f,1/n)s or wa(f,1/n)x), the approximation errors are weak. The solution
to this shortcoming remains an open question.

1.7 Convex and Coconvex Polynomial Approximation

This section contains the main results in convex and coconvex polynomial
approximation. Again, although we omit most of the proofs as being too
technical, to have a look at the constructions, we sketch the proofs for a few
of them.

It is worth noting that in recent years, the case of convex approximation
in the uniform norm was completely solved. More exactly, for each r times
differentiable convex function it is possible to say whether or not its degree of
convex polynomial approximation in the uniform norm may be estimated by
a Jackson-type estimate involving the weighted Ditzian—Totik kth modulus
of smoothness, and how the constants in this estimate behave. We will see
that for any pair (k,r), only one from the following three cases is possible: we
have an estimate with constants depending only on these parameters, or we
have an estimate but only with constants that depend on the function being
approximated, or a Jackson-type estimate is not possible.

First we need some useful notation. Let Y, be the set of all collections
Yy = {y:}7_, of points such that ys41 = -1 < ys < -+ < y1 < 1 =: gy,
where for s = 0,Yy = . For Y, € Y, we define

S

112,y o= [ = .
i=1
where the empty product is 1. Let A?(Y) be the set of functions f that change

convexity at the points y; € Yy and that are convex in (y1, 1), (again denoted
by A% if Yy = 0), and for f € A%(Y,) N LP[—1,1], we denote by

EW(f,Y,), = inf — D
. (f,Ys)p e 1f = pallp,
the best coconvex approximation of f by polynomials of degree < n. If Yy = (),
then we write E7(7,2)(f )p = E,(?)( f,0),, which represents the best convex ap-
proximation.
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If f,g € C%[—1,1] are coconvex, then this can be expressed by the condi-
tion f”(x)g"”(x) > 0, for all z € [—1,1].

Now, reasoning as for the monotone case, if f € C%[—1,1] is convex, i.e.,
f"” >0, then we get

E®(Foo < Ena(f")sey 1>2.

If f e Wg[fl, 1], 1 < p < o0, then it is known that for unconstrained
approximation we have

C "
En(f)p < ﬁEn—Z(f )p, n>2,

where C' = C(p) is an absolute constant and E,, (f), denotes the unconstrained
best approximation.

Thus, for convex approximation we have a loss of order n2. Some of this
loss can be recaptured by proving Jackson-type estimates. However, we point
out that Shevchuk [350] and Leviatan—Shevchuk [234] have proved that there
is a constant C' > 0 such that for any n > 2, an f € C?[—1,1] N A? exists
satisfying

E7(L2) (f)oo 2 CEn—Z(f//)oo > 07

that is, the above estimate in convex approximation cannot be improved.

The situation is more pronounced for 0 < p < oo. Kopotun [208] proved
that if 0 < p < oo, then for each n > 2 and constant A > 0, there is function
= fpna € C®[—1,1] N A% such that

Er(LQ)(f)p 2 AEnf2(f”)p-

1.7.1 Linear Methods in Convex Approximation

Concerning Jackson-type estimates in convex approximation, the linear ap-
proximation methods give estimates involving second-order moduli of smooth-
ness of various types. First we present the following theorem.

Theorem 1.7.1. (see Shvedov [355], Leviatan [228], DeVore-Leviatan [88])
If f € LP[-1,1]N A2, 0 < p < oo, then for every n > 1, we have

B2(1), <t (1) |

p

where C = C(p), the dependence on p being important only for p — 0.

Proof. The sketch of proof for the estimate will be presented in three distinct
cases: (1) p=100; (2) 0<p<1;(3)1<p< 0.

Case 1. (Leviatan [228]). We use the same construction of polynomials as
in the proof of Theorem 1.6.3, Case 1, i.e., (keeping the notation),
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n—1
Pu(f)(x) = f(=1) + soRo(z) + Y _(s; — sj-1)R; ().
j=1

We have to show that P,(f) is convex when f is convex. If f is convex, then
sj—sj—1>0for j=1,...,n—1, and since Ry(z) = 1+ z, it follows by the
above form of P,(f)(x) that for the convexity of B, (f)(z), it suffices to have
R;-’ >0for j=1,...,n—1. But for x = cost, 0 <t <7, we get

dt d [iTin-i
dx dt

S5 (-2

Y _
i n SinS nt + (n ])71'
sint 2

Rj(xz) = 7j(x) =

; In(u)du

1 1
8 LmS Lt + (n—j)njn)  smSi(t—(n j)w/n)] =0

due to the following inequality in Lorentz—Zeller [250] (see also the proof in
Leviatan [228]):

sin(a + ) > |sin(a — B)], for0<a,8<7/2.

Case 2. We follow here the ideas of proof in DeVore-Leviatan [88] and
we use the same construction as in Case 2 in proof of Theorem 1.6.3, i.e.,

Pr(f)(x) = Ly (x) — ao(z + 1) +Z% R ()]
= ljp (@) + i(%‘ —aj—1)R;(x).
j=1

Since the convexity of f implies a; —a;_1 > 0 and since R} (z) > 0, j =
0,...,n,x € [—1,1], we immediately get that P, (f)(z) is a convex polynomial.

Case 3. (Leviatan—Yu [244], see Shvedov [355] for estimates in terms of
wa(f,1),). We follow here the ideas in Yu [407], Leviatan-Yu [244], i.e., we
use the same construction as in the proof of Theorem 1.6.3, Case 3,

n

E( JFZJ J—=1 = )v

J=1

which is convex when f is convex. J
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Remark. The estimate in Theorem 1.7.1, case p = 0o, can be refined, in the
sense that for f € A% we can obtain polynomials P, (z) € II,, N A? satisfying
an estimate of the form (see Ditzian—Jiang—Leviatan [97])

|F(@) = Pa(D(@)] < CONwf (fn L) N)oe, @ € [-1,1],

where X € [0, 1].

In what follows we show that the polynomials constructed in Theorem
1.6.3 (and Theorem 1.7.1), case p = oo, have a new additional property,
closely related to that of starshapedness introduced by Definition 1.1.1 (ii).

First we need some simple auxiliary results.

Lemma 1.7.2. Let F,G : [a,b] — R be continuous on [a,b] such that F is
(usual) convex on [a,b] and

F(a) =G(a), F(b) =G((), G(z) < F(x), Yz € [a,b].

Let ag,a1 € [a,b] with ag < ay. Then the straight line passing through the
points (ag, F'(ag)) and (a1, F(a1)) also cuts the graph of G in (at least) two
distinct points of [a,b].

Proof. The equation of the straight line is given by

F - F
Y(J)) = F(al) J'_ (x — GI)M7 x € [a’b].
aj] — Qg
By hypothesis it follows that Y (ag) = F(ag) > G(ag), and since F is
convex on [a, b], we get
Far) = F(a) _ F(a1) = Ff(ao)
a; —a - a; — ag

and hence
F(a1) — F(ao)

F(a)+ (a—aq) p—

< F(a) = G(a),

that is, Y (a) < G(a).
Then since Y and G are continuous on [a, b], there exists a point £ € [ao, a]
such that Y (&) = G(§).
Analogously, by the relationships in the hypothesis, we have Y(a;) =
F(a1) > G(a1), and since F is convex on [a, b], we get
F(ar) = Flag) _ F(b) = F(a1)
ay — ap - b— aq '

This implies
Y (5) = Flay) + (b— al)F(al) — F(ao) <
a; — Qo

therefore there exists € [a,b] such that Y(n) = G(7n), which proves the
lemma. O
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In what follows, keeping the notation and the constructions in the proof of
Theorem 1.6.3, Case 1 (i.e., p = 00), let

5a(e) = F(-1) + s0Ro(e) + 3 (51 = s5-1)3(@)
and
PA(1)(&) = F(-1) + soRofa) + 3 (55 551y (2)
S DY s (Ry (@) - Ry ().
j=0

Another auxiliary result is the following.
Lemma 1.7.3. If j = 0,1,...,n then ¢;(z) < R;(z) for all x € [-1,1].

Proof. Since we have pg(x) = Ro(x) = 1+ 2 and ¢, (z) = R,(z) = 0 for
all x € [—1,1], we may suppose that j € {1,...,n — 1}. For such a j, by
& € (—1,1) we obtain

(,DJ(LL') = 07 T e [_17£j]7 on(x) = _é-jv HAS [6]71]

On the other hand, we obviously have ¢;(+1) = R;(£1),

T+tn—j
<p;(—1) =0< / In(u)du = R;-(—l),

—tn_j
and

R}(1) = T,,—j(arccosl) = T,,_;(0)

_ /t"" Tn(u)du < / Tn(w)du =1 = gj(1).

—T

tn—j

Now, let suppose that there exists zg € (—1,1) such that R;(z¢) < ¢;(zo).
We have two possibilities: (i) —1 < zg < &;; (ii) & < zo9 < L.
Case (i). The equation of the straight line passing through the points

(—1,0) and (zo, R;j(x0)) is given by y = (= + 1)11]6(1‘1), x > —1, with slope
Rj(wo) _ ¢ilzo) _

:L'o+]. $0+1_

On the other hand, since R; is convex on [—1, 1], we get

Ri(x) < (z + 1)1;2(?1), Vo € [-1,1],
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which implies

1) = i B0 =B Ry
z\,—1 .13+1 .130+1

<0,

thereby contradicting the condition proved above, R (—1) > 0.
Case (ii). The equation of the straight line passing through the points

(1, R;(1)) and (x, R; (o)) is given by y = R;(1) + (x — 1) ZH=1lo0) yigh

1—x
slope
Ri(1) — R;(z0) _ #i(1) = #j(@0)
1-— ZTo 1-— Zo

=1

On the other hand, since R; is convex on [—1, 1], we get

R;(1) — R;(zo)

R;(z) < Rj(1) + (w — 1)~2 , Y € [0, 1].

1-— o
Hence we obtain

Rj(x) - R;i(1) _ R;(1) = R (x0)

R(1) = lim

o
z /1 rx—1 >1_90](1)’

1-— )
thereby contradicting the inequality R'(1) < ¢’(1) proved above. This proves
the lemma. [J

An immediate consequence is the following.

Corollary 1.7.4. If f € C[—1,1] is convex on [—1,1], then for the polynomi-
als defined above we have f(x) < P,(f)(x), for all x € [-1,1].

Proof. Since f is convex on [—1, 1], by simple geometric reasoning it obviously
follows that we have f(z) < S,(x) for all z € [-1,1].

On the other hand, since f is convex, we have s; —s;_; > 0 for all j =
1,...,n —1, and then by Lemma 1.7.3, we get f(z) < Sp(z) < P,(f)(x) for
all € [—1, 1], which proves the corollary. O

Now, following Popoviciu [315], it is obvious that a function f : [-1,1] —» R
is increasing on [—1,1] if for any ag < a7 in [—1,1], the coefficient A of the
Lagrange interpolation polynomial Ax + B coinciding with f on the points
aop, a1 satisfies A > 0.

By analogy, let us denote by ST[—1,1] the class of all f € C[-1,1] such
that for all ag < ay in [—1, 1], the coefficient B in the above Lagrange inter-
polation polynomial satisfies B > 0.

The first main result is the following.

Theorem 1.7.5. If f is convex on [—1,1] and f € ST[-1,1], then P,(f),
n € N, are convezx on [—1,1] and P,(f) € ST[-1,1] for all n € N.
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Proof. The fact that P,(f) is convex is proved in Leviatan [228] (see also
the proof of Theorem 1.6.3). Let us suppose in addition that f € ST[-1,1],
i.e., for any ag < a; in [—1,1], the straight line passing through the points
(ao, f(ao)), and (a1, f(a1)), cuts the y-axis at a point > 0. Then, by Corollary
1.7.4 and applying Lemma 1.7.2 for G(z) = f(x) and F(z) = P,(f)(z) (since
f(£1) = P,(f)(£1)), we easily obtain that B, (f) € ST[-1,1]. O

Corollary 1.7.6. Let us suppose that f € C'[—1,1] is conver on [—1,1] and
satisfies the differential inequality

f(x)—zf'(x) >0, Vo € [-1,1].

Then the polynomials P,(f) are convex on [—1,1] and, in addition, satisfy the
differential inequality

Po(f)(@) — 2P, (f)(x) = 0,Vz € [-1,1].

Proof. The fact that the P, are convex follows from Leviatan [228]. Let
ap < ap in [—1,1] and let Az + B be the Lagrange interpolation polynomial
coinciding with f on ap and a;. By Pompeiu [309], it follows that for 0 < ag <
ay or ag < ay < 0, there is £ € [ag, a1] such that B = f(&) — £f/(€), i.e., by
the differential inequality satisfied by f we have B > 0.

Now, if ag < 0 < a1, then as above, for the Lagrange interpolation poly-
nomials Ajz + By and Asx + B, coinciding with f at the points {ag,0} and
{0, a1}, respectively, we have B; > 0 and B2 > 0. But by simple geometric
reasoning, it is easy to see that we always have Ayx + By < Az + B for all
x € [ap,0], and Asx 4+ By < Az + B for all z € [0, a1], which implies B > 0 in
this case too.

As a conclusion, we get that f € ST[—1,1], which by Theorem 1.7.5 im-
plies P, (f) € ST[—1,1] too. This means that for all ag < a1 in [-1,1], the
coefficient B,, of the Lagrange interpolation polynomial A,x + B,, coinciding
with P,(f) on ag and a; satisfies B,, > 0. On the other hand, for all ay < a1
we have

Ba(f)(@a1) = Pa(f)(a0)

aip — ao

Bn = Pn(f)(a()) — Qg 2 0
Passing now to the limit with ag,a; — x, with arbitrary « € [—1,1], we get
P,(f)(z) — xP),(f)(z) > 0, which proves the theorem. OJ

Remark. Recall that by Definition 1.1.1 (ii) a function f : [0,a] — Ry is
called starshaped if f(0) = 0 and f(Az) < Af(z) forall z € [0,a] and A € [0, 1],
and if, in addition, it is continuously differentiable, then f is starshaped if and
only if satisfies the differential inequality zf'(x) — f(z) > 0 for all z € (0, al.
Comparing it with the differential inequality in Corollary 1.7.6, we see that
f € ST[-1,1] implies that —f is starshaped on [0,1]; therefore the class
ST[—1,1] is obviously related to the class of starshaped functions.
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1.7.2 Nonlinear Methods in Convex Approximation

Concerning the Jackson-type estimates in convex approximation, recall that
as a negative result, Shvedov [355] proved that it is impossible to get an
estimate involving w4 (f,1/n), with an absolute constant (see also Wu-Zhou
[403] for related results).

During the years 1994-1996, the gap between the affirmative estimates (in
terms of w (f,1/n),) and the negative ones was closed in a series of papers
by DeVore, Hu, Kopotun, Leviatan, and Yu, who proved, using nonlinear
methods, the following.

Theorem 1.7.7. (Hu-Leviatan-Yu [175], Kopotun [204], DeVore-Hu-
Leviatan [87]) Let f € LP[-1,1]N A%, 0 < p < oo. Then there is an absolute
constant C' = C(p), such that for each n > 2 we have

B2, < ot (1.1 -

P

Proof. Let f € LP[-1,1] N A% and 0 < p < oo. We sketch the proof using

the nonlinear method in DeVore-Hu-Leviatan [87]: first one approximates f

by a convex continuous piecewise quadratic ¢, and then one approximates g,
by an algebraic polynomial.

Define z,, ; := cos[r(n — j)/n], j =0,...,n, z,; = —1, j <0, and
ZTn,j =1, j > nanddenote by ¢, the convex continuous piecewise quadratic
function for f and the points {z,, ; };L:O. One can represent ¢, as a sum of the
truncated powers (z — )+ and (z — 2,,;)%,j = 1,...,n, as follows. First,
one can classify the nodes z, ; according to four types depending on the
second-order divided differences of q,:

Unj = [Tn,j—1,Tnjs Tnjt1; dnl, j=1...,n—1

Also, we take a, 0 = ap,n = 00.
Let 1 <j <n—1. Then z, ; are said to be of type I if

An,j4+1 < Qnj < An,j—1,
Zn,; are type Il if
Onj—1 < Onj < Gnj+l,

Zp,; are type III if
max{an j—1,0n j+1} < Gn j;

all the other z,, ; are said to be of type IV.
Let us define

An,j = Ap,j — An j+1, ] = ].,. Lo, = 2, Bn,j = —An’jfl, j = 2, ey — ].7
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and
An,O = [xn,Oa Tn,13 Qn} - [xn,lv Tn,2; Qn] + [-Tn,07 Tn,2; qn]

If 2, ; is of type II or III, then A, ; > 0.
We obtain the following representation of g, (x) for = € [—1,1]:
0n(®) = gn(=1) + Ano(z +1) + ani (v +1)°

+ Z Apj(@nj+1 — Tng) (@ — Tn )y — (2 — xn,])?&-)
wn ;EIUIIT

+ Y Buj(@ng = znj1)(@ = 2n) g + (@ — 20)3).
@ €ITUITT

Now, as a polynomial approximation to f, we take

Po(z) = qn(—-1)+Apolz+1)+api(z+ 1)2

+ > Ani(@njs1 — Tng)onnri(t) — Ramoars ()
Ty, ETUITT

+ > Bu((@ng = Tnj-1)0mna(x) + Rasn i (2)),
T, ETTUITT

where o, j(r) is a good polynomial approximation to (z — ,;)+ and
R, j(x), R, j(x) are good polynomial approximations to (z — @, ;)%. Then
P, is a polynomial of degree at most 50Mn max{1,1/p} and satisfies

Pl(z) > ql(x) >0 forallz € [-1,1], x#wz,;, 1<i<n-1

Thus P, is convex on [—1,1]. For the details, see DeVore-Hu-Leviatan [87].
O

Remark. However, notice that for p = oo, surprisingly in Leviatan—Shevchuk

[243] it was proved that B (f)eo < Cwf(f:1/n)os, for n > N(f) and C > 0
an absolute constant.

1.7.3 Pointwise Convex Approximation

Concerning pointwise convex polynomial approximation we mention the fol-
lowing result.

Theorem 1.7.8. (i) (Kopotun [204]) Let f € CT[—1,1]N A2,0 < r < 2. For
any n > 2, there is a polynomial p,, € II,, N A? satisfying

[fD (@) = p (@) < Cwns(fP, pu(2))os, 0<i<r, we[-1,1].

(i) (Manya; see Shevchuk [349], p. 148, Theorem 17.2) If f € C"[-1,1]N
A2.r > 2, then for anyn > r + k — 1, there is a polynomial p,, € II,, N A2
satisfying
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|f (@) = pu(@)] < Cplp(@)wr (F7, pu())oe, @ € [-1,1],

where C = C(r, k). In particular,
EP (oo < Cn"wi(f71/n)oe, n>r+k—1.

Remark. By virtue of Shvedov [355], for f € C[—1,1] N A% one cannot,
in general, achieve the pointwise estimates in Theorem 1.7.8 (ii), when the
right-hand side is wy(f, prn(2))co-

1.7.4 Convex Approximation with Modified Weighted
Moduli of Smoothness

In this subsection, for each 7 times differentiable convex function, one studies
whether or not its degree of convex polynomial approximation in the uniform
norm may be estimated by a Jackson-type estimate involving the modified
weighted moduli of smoothness of order (k,r) and how the constants in this
estimate behave. We have the following possibilities: for some pairs (k,r),
such an estimate with constants depending only on these parameters is valid.
For other pairs the estimate is valid, but only with constants that depend on
the approximated function, while there are pairs for which the Jackson-type
estimate is invalid.

The following estimates on the degree of convex polynomial approximation
of functions f € B" N A? were proved by Leviatan [228] (r = 1 and 2) and by
Kopotun [209] (r = 3 and r > 5):
20D < W O, m2
Here B” was defined in Remark 2 after Definition 1.1.3.

Moreover, Kopotun [209] proved that the above estimate is invalid for
r = 4. More exactly, for every A > 0 and n > 1, thereisan f = f,, 4 € B*NA?
such that

ED (f)oe > Alp* £D] oo

However, Leviatan and Shevchuk [243] have proved that for f € B* N A2, we
have

c 1
B (f)oe < 5 (101 W 51l ) 21,

with an absolute constant c.

In fact, Leviatan [228] and Kopotun [205] have obtained more refined es-
timates, involving the Ditzian—Totik [98] moduli of smoothness and the mod-
ified Ditzian-Totik moduli of smoothness (introduced in Shevchuk [349]), see
Definition 1.1.3. In particular, the following result follows (see, e.g., Theorem
1.1 in Kopotun-Leviatan—Shevchuk [213]).
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Theorem 1.7.9. (Leviatan [228], Kopotun [209, 204, 205], Kopotun—
Listopad [216], Leviatan—Shevchuk [243] and Kopotun—Leviatan—Shevchuk
[213] (the case a = 4)). For f € A% and any a > 0, we have

E.(f)oo=0(n"%), n—ooo<s E,(f)(j")OO =0(n™ %), n— oo.

Proof. First, since obviously F,,(f)e < E,(f)(f)oo, the implication from the
right-hand side to the left-hand side is immediate. Conversely, take for ex-
ample 0 < a < 4 and let us suppose that E,(f)e = O(n™%). According to
a result of Ditzian—Totik in unconstrained approximation (see, e.g., Theorem
7.7, pp. 265 in DeVore-Lorentz [91]), this is equivalent to wy (f;t)e = O(t%).
Then, by the remark after Theorem 1.7.7 we obtain E,(Lz)(f)OO =0(n=%). The
case @ > 4 can be found in Kopotun-Leviatan—Shevchuk [213]. O

A problem of interest is to find the values of parameters k and r, for which
the statement

if f € A2NCY, then
EP (f)oe < Swf (F7),1/n), n>N,

(where C' > 0 and N > 0 are constants) is valid, and for which it is invalid.
Here the class C is defined by the Remark 2 of Definition 1.1.3.

As a sample concerning estimates in terms of these modified Ditzian—Totik
moduli (defined by Definition 1.1.3) we present the following.

Theorem 1.7.10. (Kopotun [205]) If r,k > 0, then for any f € Cj, N A? we
have

1
EP(f)o < Cnrw,fr(f(r)7), n>r+k—1,
’ n

with C' = C(r,k), if and only if either 0 <r+k <3 orr >5.

Remark. Notice that all the possibilities (concerning positive and negative
results and how the constants depend on the parameters and on the function)
in such of estimates, can be found in the paper Kopotun—Leviatan—Shevchuk
[213] (for a more detailed discussion see Note 1.10.3).

1.7.5 Uniform Coconvex Approximation

A natural extension of convex polynomial approximation is coconvex poly-
nomial approximation. In this subsection we present those coresponding to
uniform approximation.

Theorem 1.7.11. (Kopotun-Leviatan-Shevchuk [212]) If f € C[-1,1] N

A2%(Y,), then there is a constant C = C(s) such that for any n > d(%),

we have

E®(f,Y.)s0 < Cuf (f, 1) 7
n

o

where d(Ys) was defined in Section 1.6 (just before Theorem 1.6.7).
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Concerning simultaneous comonotone and coconvex approximation, we have
the following theorem.

Theorem 1.7.12. (Kopotun [206], Kopotun—Leviatan [211]) Suppose f €
CT[-1,1] N A"(Ys), 1 < r < 2. Then there is a constant C = C(s) with
the property that for any n > d(LYS), there are polynomials P, € IT, N A" (Y5)
such that if r = 1, we simultaneously have

) ) C 1
1FO — POl < 1_vwf<f’,> L 0<i<u
n+—* n)

and if r = 2, we simultaneously have

n2—i

. . C 1
179 = PPl < i (72) - 0sis

and

C 1
"_pr < —wf( =
197~ P2l < Tt (£7)

where dgy is defined as in the result on simultaneous approximation in the Note
1.10.2.

Proof. We sketch here the proof for r = 2 using Kopotun [206]. It is done by
induction on s, the number of changes of convexity, using the so-called method
of “flipped” functions, introduced in the case of comonotone approximation
by Beatson-Leviatan [34] (see the proof of Theorem 1.6.7).

For s = 0, Theorem 1.7.12 becomes the result in convex approximation in
Kopotun [204].

Let s > 1, f € C?[—1,1], changing its convexity at the points of Y, =
{ys <+ <wy1}, where =1 =: yo11 < ys < -+ <y < 1=:yo. Without loss of
generality, we may assume that f”(z) > 0, for all z € [—1, y,]. Let us denote
one fixed y; by «, to have a choice set y, = . Evidently, we have f”(a) =0,
and we may assume f(a) = f'(a) = 0 too (otherwise, we subtract a linear
function from f without affecting the convexity).

Following the ideas in Beatson-Leviatan [34] (see the proof of Theorem
1.6.7 too), we define the “flipped” function

fr(a) = {f(x) if z>a,

—f(z) if z<a.

Then, it is easy to see that fr € C%[—1,1], fr(a) = fr(a) = fi(a) = 0,
and fr has s — 1 points its convexity changes, at ys_1,...,%1, and as in, e.g.,
Leviatan [232], we have

Wi (fist)oo < CWOL(f" )00, t > 0.

Define d(s) :=min{ys + 1,...,ys—1 — Ys,---, 1 — Y1}
By mathematical induction, there is a constant A(s— 1) such that for any
n > A(s —1)/d(s) > A(s — 1)/d(s — 1), there exists a polynomial ¢, € II,
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with fi(z)q)(z) > 0, € [—1,1] and the estimates in the statement (for
r = 2) hold for both fr and g,. Notice that since fr(a) = 0, if we increase
the constant in the estimate in the statement for » = 2 and i = 0, then we
can suppose that ¢, (a) = 0.

Take n > max{A(s — 1)/d(s),50/(y2 — «),50(c + 1)} and consider the
decomposition [—1,1] = U}_;[x;,z;-1], where x; = cos(jm/n). Defining jo
such that a € [z, zj,—1], it follows that zj 43 > —1 and zj,—4 < ys_1,
that is, [—1,a] and [, ys—1] contain at least three intervals [x;,x;_1] each.
Therefore p(a) > n~! and 2p(a) > nd, ( ) Where(5 ( ) =+V1—22/n+1/n%

Define the algebraic polynomial P, ( f y)dy such that it satisfies

Py(x) = [gn(2) — g ()] - Qn (z) + qn(a) - R (),

where it remains to show that it is possible to choose the polynomials @, (x)
and R, (x) such that P, is coconvex with f and the estimates in the statement
are satisfied.

In Kopotun [206] it is proved that the following properties of @, and R,
are sufficient for the coconvexity of P, with f:

Qn(z)sgn, (z) = 0, z € [-1,1], sgn,(z) = sgn(z — a)
[gn (%) — g7 (a)]ay (2)Q (2)sgn, () > 0, z € [-1,1],
f" (@) Ry (x)sgn(gy,(a)) = 0, z € [-1,1]
Indeed, together with the inequality fi(x)q) (z) > 0, these above inequalities

imply
sgn{ Py ()" (2)} = sgn{(q, () — ¢,(@))Q;,
+, ()R n(x)f’(x
> sgn{(q,, () — 4,(2))Qy, (2) f" () + ¢ (2)@n () /" (2) }
= sgn{(q,(z) — ¢, ()@, (), ( )sgn,, ()
+(an(2))*Qu()sgng (2)} >
All the details can be found in Kopotun [206]. O

2) " (x) + g, (2)Qn (@) " ()

Remark. The following result in trigonometric coconvex approximation of 2w
periodic continuous functions (i.e., in the class denoted by Cs,) by trigono-
metric polynomials was proved in Popov [310]: if y;,4 = 1,...,2s, are distinct
points in [—m,7), setting y; = Yitos + 27 and Y = {y;}icz, if f € Cop
changes its convexity at the points of Y, then for any n € N, there exists a
trigonometric polynomial 7, of degree < n, coconvex with f, that satisfies

1f = Talloo < C(Y)wa(f;m/n)00

1.7.6 Coconvex Approximation with Modified Weighted
Moduli of Smoothness

Similar to the case of convex polynomial approximation, there exists a com-
plete characterization of the coconvex uniform polynomial approximation with
respect to the modified Ditzian—Totik moduli of smoothness.
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The first result presented is an analog in unconstrained polynomial ap-
proximation for coconvex polynomial approximation.

Theorem 1.7.13. (Kopotun-Leviatan-Shevchuk [214]) For every s > 0,
Y, €Y, f € A%(Y,), and o > 0, we have

En(floe =0(n™%), n =00 EF(f,Y.)e =O0(n™®), n— oc.

Proof. Since for any s > 0, we have E,(f)oo < EY(LZ)(f,YS)OO, the implica-
tion from the right-hand side to the left-hand side is immediate. Conversely,
suppose first, for example, 0 < o < 3 and that E,(f)sx = O(n™%). By, e.g.,
Theorem 7.7, pp. 265 in DeVore—Lorentz [91], this is equivalent to wf (f;t)s =
O(t*), which combined with Theorem 1.7.11, implies E}(f)(f, Yi)oo = O(n™%).
The general case (a > 3) follows from the Jackson-type estimates involving

the modified Ditzian—Totik moduli of smoothness and obtained in Kopotun—
Leviatan—Shevchuk [214]. O

As in the case of convex approximation, we are interested in finding for which
values of the parameters k,r and s the statement

if fe A%(Y,)NCI,then
EQ(f, Yo < Cn"wf (fD,1/n), n>N

(where C' > 0 and N > 0 are constants), is valid, and for which it is invalid.
As a sample, we present here the following.

Theorem 1.7.14. (Kopotun—Leviatan—Shevchuk [214]) If k > 1, r > 5, s >
1, Ys € Yg and f € C, N A%(Yy), then

EQ(f,Ys)oo < en”"wf (f,1/n), n > N(k, 1Y),
where N(k,r,Yy) is a constant depending on k,r and Y (s).

Remark. A complete characterization (concerning positive and negative re-
sults and how the constants depend on the parameters and on the function)
for such estimates, can be found in the paper Kopotun-Leviatan—Shevchuk
[214] (for a more detailed discussion see Note 1.10.4).

1.7.7 Pointwise Coconvex Approximation
In this subsection we present results corresponding to pointwise approxima-

tion. They can be summarized by the following.

Theorem 1.7.15. (i) (Dzyubenko—Gilewicz—Shevchuk [107]) Suppose that
f € C[—1,1] changes its convezity at the finite set Yy of s distinct points
n (—=1,1). Then for each n > N(Y;), there is a polynomial of degree < n,
coconvex with f, such that

|f(z) = Po(2)| < cwa(f; V1 —a2/n), forall z € [-1,1],
=1;

where ¢ > 0 is an absolute constant and if s =1 then N(Y;)
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(i) (Dzyubenko—Zalizko [110]) Suppose that f € C[—1, 1] changes its convexity
at the finite set Yy of s > 1 distinct points in (—1,1). Then for eachn > 2,
there is a polynomial of degree < n, coconver with f, such that

(@)~ Pa(@)] < e(Yo)ws(f: 1/n® + /I~ a2/n), for allw € [-1,1],

where c¢(Ys) > 0 depends only on the points of Ys;
(111) (Dzyubenko-Zalizko [111]) Denote by W", r € N, the set of functions
continuous on [—1,1] having absolutely continuous the (r—1)th derivative
n [—1,1] and satisfying | f) (z)| < 1, for almost all x € [-1,1]. Ifr € N,
s> 2 and f € W” changes its convezity at the finite set Yy of s distinct
points in (—1,1), then for each n > r —1, there is a polynomial of degree
<mn, coconvexr with f, such that

|f(£L’) - Pn(il,')‘ < C(Y;,T)p;(l‘), fm,. all x € [_1a 1]7
where C(Ys,r) > 0 depends only on r and the points of Ys.

Remark. From the estimate (iii) in Theorem 1.7.15, obviously it follows that
for f € W" N A%(Y,) (where we recall that A?(Y;) denotes the set of all
functions that change their convexities on the points of Yy such that on the
last interval determined by the points of Yy they are convex), we have

f o
n'f‘

EO (.Y < o vyl sy,

On the other hand, in the comonotone case, from Theorem 1.6.8 and its
Remark, we get the estimate

Eff)(f;lfs)ﬁc(r,s)||f lec .n > N(rY,),

and that for s > 2, N(r,Y;) cannot be replaced by N(r,s). It is then nat-
ural to ask whether an analogue of the above estimate holds for coconvex

approximation too, that is, the question is whether for s > 2 and f €
W™ N A%(Y), then

B (v < o ) M s v vy,
n

holds. In the recent paper Dzyubenko-Gilewicz—Shevchuk [108] it was proved
(by counterexample) that this is impossible for r > 3.

1.7.8 Nearly Coconvex Approximation

The first results on nearly coconvex polynomial approximation belong to
Myers [281] and are particular cases of general results on nearly coconvex
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approximation of order k € N. Let us briefly recall these results. First, a func-
tion is called piecewise convex of order k on [a, b] if there exists Y; = {y;,j =
1,...,8}, with @ := ysq41 < ys < -+ < y1 < yo =: b such that f is k-convex or

k-concave on each interval (y;41,y;), j =0,...,s. Here recall that f is called
k-convex (concave) on an interval I, if AF f(z) = E?ZO(—l)k_j (?)f(x—i—jh) >

0 (AFf(x) < 0, respectively) for all € I, h € R with # + kh € I. Similar
to the comonotone case, the algebraic polynomials (P,), are said to form a
nearly co-k-coconvex approximation sequence to the piecewise k-convex func-
tion f (with respect to Y) if for any 0 < e < 2minj—o . {y; — yj+1},
there exists N. € N such that for all n > N, the polynomials P, are of
the same k-convexity as f on the intervals (y;11 +¢,y; —¢€), j =0,...,s.
Note that for k& > 2, the hypothesis that the piecewise convex function f,
of order k, is continuous on [a,b] does not imply that f necessarily changes
its k-convexity at the points y;,j = 0,...,s. The main result in Myers [281]
states that if k € N and f € C[a, b| is piecewise k-convex, then there exists a
sequence of polynomials (P,),, P, € II,, nearly co-k-convex to f, such that
If = Pulloo < Cwi(f,1/n)so. If, in addition, f € C*[a,b], then the estimate
can be improved to || f — Py |loc < C1n *wi(f’,1/n)s0. (Here C and C; depend
only on k.) For k = 2 we get results for nearly coconvex approximation.

All of Myers’s results in [281] can be improved. To be more precise, take
[a,b] = [-1,1]. Given the points Y, = {y;,j7 =1,...,s}, where —1 := ys41 <
ys < - < yp < 1:=yjp, let us define

O(”v () }/S) = [_17 1] n {Ule(yi - Cpn(yi)’ Yi + Cpn(yi))

and let AZ(Y;) be the class of all f € C[—1,1] that are convex on [y;11, ;]
for ¢ even and concave on [y;41,y;] for ¢ odd.

Theorem 1.7.16. (i) (Dzyubenko—Gilewicz [104] (resp. [105])) If f € A%(Y)
(resp. f € A%(Yy)), then for each m > 1 (resp. n > 3), there exists a polyno-
mial P,(x) of degree < n, coconvex with f on [—1,1]\ O(n,c,Ys) (resp. on
[-1+c?/n% 1 — c?/n?]\ O(n,c,Yy)), such that for p = 3 (resp. p = 4), we
have
(@) = Pa(2)] < C(s)wp(f; pu(2))oos @ € [=1,1].

(i) (Leviatan—Shevchuk [242]) Let r =0 and k < 4, orr =1 and k < 3,
orr>2andk>1. For any f € A>(Y,)NC"[-1,1] andn >k +1 — 1, there
exists a polynomial P, (x) of degree < n such that

By (@) (z = yi) 2 0

for all x € [-1,1]\ O(r, k,c*,Ys) and

C
Ilf = Palloo < 7‘“-’;:(!]0“)51/”)00'

n”
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Here ¢* .= c¢*(k,r,s), C:=C(k,r,s), and

rk,c* =U‘(’f+1(y‘—6*pn(yy) yi +cpaly;)) if (r. k) = (0,4) or (1,3),
Ok, e %) { S_1 (Wi — < pn(Yi), yi + ¢ pn(yi)) otherwise.

Remarks. (1) In Nissim—Yushchenko [289], it is proved that the estimate in
Theorem 1.7.16 (ii) is invalid for » =1 and k > 3, and for r = 0 and k > 4.

(2) From their proofs it follows that the methods in polynomial coconvex
approximation are nonlinear, such that even if two continuous functions f, g €
C[—1,1] have the same points where the convexities change Yy = {y;,j =
1,..., s}, and both are of the same convexity on each subinterval, the coconvex
approximation polynomials P,, do not satisfy P,,(f + g) = P.(f) + Pn(9)-

It is easy to show that A%(Y;) is a convex cone, i.e., f,g € A%(Y;) and
a € Ry implies f + g € A%(Y;) and af € A%(Ys).

Suggested by the proof of Theorem 1.2.1, we easily can construct a poly-
nomial coconvex with f that is additive and a positive homogeneous operator
on A%(Y;) N C3[—1,1]. In this sense, we present the following result.

Theorem 1.7.17. If f € A%(Y,) is three times continuously differentiable in
[—1, 1], then for anyn € N, a sequence of polynomials (P,,),, can be constructed
such that degree(P,) < n + s+ 2 and for any € > 0, there is ng with the
properties

Ilf = Palloo <eé, Pl/(z)f"(xz) >0, VYn>ng, xz€l[-1,1],

and P, (ah+ Bg) = aP,(h)+ BP,(g) for alln €N, h,g € A%(Y,)NC3[-1,1],
a,B>0.
Recalling the notation II(x,Ys) = IIf_ | (x — y;), the error estimate can be

expressed by
f// . 1
1P(f) = flloo < C(Va)ws (H(Y> ”)oo

for all n € N.
Proof. From the differentiability hypothesis, it easily follows that F(z) =
Hf(;(’f,)s) is continuous (by extension) on [—1,1]. Also, by simple reasoning we
get that F'(z) > 0, for all € [—1,1]. Note that without loss of generality, we
may suppose f(—1) = f’(— ) =

Now deﬁne Qn(f f L( - I (t,Y,)dt and P,(f)(x) =
ffl Qn(f)(t)dt, where L,L,n € N is a sequence of positive linear polynomial

operators on C[—1, 1] satisfying degree(L,(f)) < n and
[Ln(f) = flloo < Cwa(f;1/n)oo, n=1,2,....

The conclusions in the statement are immediate. [

Remark. An important shortcoming of the estimate in Theorem 1.7.17 is
that it is not satisfactory with respect to what we would expect, i.e., a Jackson-
type estimate in terms of wo(f,1/n)s. The solution to this shortcoming re-
mains an open question.



90 1 Shape-Preserving Approximation by Real Univariate Polynomials

1.8 Shape-Preserving Approximation by Convolution
Polynomials

The convolution-type method used in this section is classical in approximation
theory. It allows one to construct polynomials, linear as a function of the
approximated function f, having good approximation properties in terms of
second-order modulus of smoothness, and with respect to the methods in
Sections 1.4-1.7 offering the advantage that in addition, they preserve higher
order convexities too. In essence, it uses the convolution (with § = arccos x)

1 ™
G (f,x) = - J(cos t) - Sy (mylarccos(cos(0 — t))]dt
= 1 f(cos t) - Sp(n)(arccos x — t)dt
™ —T
1 ™
=— fleos(arccos x +t)] - Sy (ny (t)dt,
7r

—T

where S, () is an even trigonometric kernel of the form

m(n)
1
SnL(n)( ) 5 + Z Pk,m(n) * COS kU
k=1
1 m(n)
Sp(n)(arccos z) = 5 Z Pkm(n) - Th(2),

and T} denotes the kth Chebyshev polynomial, S,,,)(arccos z) is an element
of Iy, (ny, and for each f, Gpy(ny(f,-) is also in I, (,).
Using the proof of the classical Jackson’s theorem, we obtain Sp,,) =

. 4
Cn.2 (%) . In this section the higher-order Jackson kernels (also called
Matsuoka kernels) given as follows (see, for example, DeVore [82], Matsuoka

[269]), are important:
sin(np/2)\ **
sin(u/2) )

for s € N, s > 2, where ¢, 5 is chosen such that 7! f:r Ssn—s(p)dp = 1. Thus
we can write

Ssn—s(,u) = Cn,s <

Sn—s

+ Z Pl sn—s cos(kp).

k=1

1
Ssn—s( ) 5

The first result presented here regarding shape-preserving approximation by

convolution polynomials is the following.

Theorem 1.8.1. (Beatson [31], Theorem 2) Let j be positive integer. There
exists a positive constant M; such that for each f € C[—1,1] and n =
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0,1,2,..., there is a convolution type polynomial P, € II,, such that P, is
i-convex for any i € [0,1,...} for which f is i-convex satisfying

[f(x) = Pa(2)] < Mjwr(f, An(2))oo, 2] < 1.
Here Ag(z) :=1 and, for n > 1, A, (z) := max(v/1 — 22/n,1/n?).

Proof. Let us present the main lines of the proof. First we need two auxiliary
results.

Lemma (A). For the kernel k € C[—1,1], define the convolution operator

s

L(f)(z) =[f xk](z) = % f(cos t)k(cos(0 — t))dt,x = cos(0),

—T

for all f € C|—1,1]. Then, the cone of j-convex functions is invariant under
L, if and only if k(x) is j-convex (in the sense of Definition 1.1.1, (i)).

Proof of Lemma A. First suppose that the cone of j-convex functions is
invariant under L. Take the de la Vallée Poussin kernel f,(z) = ¢, (1 4+ z)™,
with ¢, determined by the condition [”_ f,[cos(0)]d§ = . Since each f, is
j-convex, by hypothesis it follows that f, * k is too. Taking into account that
fnxk =k=x f, and that k x f,, converges uniformly to k as n — oo, it follows
that k is j-convex.

Conversely, supposing that k is j-convex, the key to the proof is a rela-
tionship between the convolution % and the convolution structure of the ul-
traspherical polynomials (see the details in Beatson [31], proof of Theorem 1).
O

Lemma (B). Let (gn)n be a sequence of algebmz'c polynomials, such that each
qn 1S i-conver, fori =0,1,...,m and foﬂ qncost]tidt ~n~% i =0,1,...,2k.
Then each hpy1(x f qn(s)ds, n € N, represents a i-convex polynomml
fori=0,1,.. m—|—1 andfo n(cost)tidt ~n=2 i=0,1,...,2k — 2.

Proof of Lemma B. It is immediate by integrating by parts and using the
inequality 2z /7 <sin(z) <z, for all 0 < z <« /2. O

Proof of Theorem 1.8.1. From Lemma A and from well-known results in
Lorentz [248], pp. 65—68, it is enough to construct a kernel k,, € II,,, i-convex
for i € {0,...,5}, such that ["_kn(cost)dt = w and [ kn(cost)t?dt ~ n~2.
For this purpose, we start Wlth a sequence of non- negatlve polynomials ¢,, €
II,, n = 0,1,..., satisfying [ qn(cost)t’dt ~ n~% i = 0,1,...,2j + 2 (for
such sequences, see Lorentz [248], pp. 55-57). Then, applying j-times Lemma
B, the theorem follows. [

In what follows, one investigates this matter by the Boolean sum method,
systematically used by Jia-ding Cao and H.H. Gonska in a series of papers,
obtaining thus even better estimates, i.e., in terms of wy (f, V1-— xz/n)oo
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More exactly, first one constructs certain convolution operators G, s ; based
on modified Matsuoka kernels to generalize Beatson’s Theorem 1.8.1 (see
Theorem 1.8.2 below). Second, the Boolean sum modifications of G, s ; are
used in order to investigate the invariance of cones of j-convex functions in
Telyakovskii- and Gopengauz-type estimates (Theorems 1.8.2 and 1.8.3). As
special cases, the DeVore-Yu [92], Yu [406], and Leviatan [228] theorems are
obtained. Finally, a type of Boolean sum modification is presented.

The results in this section belong to Cao—Gonska [55].

First we present the concept of Boolean sum of certain positive linear
operators.

Let Lf be the linear function interpolating f at b, given by

f)(x —a) + f(a)(b—x)

b , a<z<b.
—a

L(f’x) =

For A : Cla,b] — Cl[a,b] linear, denote by A* the Boolean sum of L and A
given by A*(f,2) i= (LOA)(f,2) = L(f;2)—(LoA)(f;2) = A(f,x)+1{(z—a)
[F(6) — A(F, )] + (b — 0)[F(a) — A(f,a)]}/ (b — a).

The main aim of this section is to construct the Boolean sums approxi-
mating f in terms of the second-order modulus of smoothness and preserving
the i-convexity of any order.

We first present the construction of certain useful kernels denoted by
Qn,s,j'

For £ = cos(v) one defines

sin(narccos¢ /2) ) o
2

Ssn—n(arccosf) =C, s ( Sin(arccost /2) =— kz Pk, sn—s Cos(karccosf).

Obviously Ss,_s(arccost) € s, —s.
For j € N; let us define

Qnoy(2) = — | [ (2= 7S (arccose) e

G- 1)

to be a jth antiderivative of Ss,_,(arccosf), which means that Qns; €
sy sy and

. — ) - . . o, 8n—st]
Qn,s5,j(2) = Ton,s,j + Tin,s,j - 2 + t Ton—stjn,sj 2 )

or

_ sn—s+7
Qn,s,j(COSU) = Ton,s,j + Tin,s,j COSU + -+ + Ton—stjn,s,j (COSV) ..
Normalizing the kernel @, we get

—  mQp,s j(cosv)
Qs (V) = IT Qnsj(cost)dt’
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so that Lo
7/ @ms’j(v)dv =1.

™

In addition, we can write

Q5,5 (V) = Aoyn,s,j + At n,s,j cOSU
FA2,n,5,j COS20 + -+ + Asp—spjin,s,5 COS(sT — 5 + j)v.

The next theorem summarizes the main results.

Theorem 1.8.2. (Cao—Gonska [55])

(i) For j € N and s > j+2, there is ¢j s > 0 such that for each f € C[—1,1]
and n > 1,7the convolution polynomial Gy s ;(f,-) € Ien—sy+; based on
the kernel @ satisfies the inequality

n,s,j
V1—22 1
|f(x)_Gn,s,j(f7x)| SCLSwl <f7n+712 ) ‘I| <1

In addition, if the function f is i-convex, then so is Gy s ;(f,-), for all
1€4{0,1,...,75}.

(11) If j € N and s > j+2, then there exists a positive constant ¢; s such that
for all f € C[—1,1], n > 1, we have GJr (i) € sp—stj and

(@) = Gy (o) < jwr (£, T=a%/n)

In addition, if f isi-convez, then so is Gn s ](f, Y foralli=1,... 5. Here

G} s](f, -) denotes the Boolean sum of Gn_ s ;(f,-) in (i), with L(f,-).
(iii) If] € N and s > j+ 3, then there exists a positive constant cj s such that
for each f € C[—1,1] and n > 2 we have G\ _ (f,") € Hyp_si; and
n,s,j +7J

(@) = Gy (f ) S cpuowa (FV/T=a?/m) el <1.

Also, if f is i-convex, then Gt s;(f") is i-convex, for alli € {1,. ..,j}
(iv) Let j € N and s > j + 2. Denoting the modified Boolean sum G,
n,s,j @L = Gn,s,j(fa ) + L(f, ) - (Gn,s,j o L)(fv ) = n,s,](f -
Lf,x) + L(f,x), there exists a positive constant c; s such that for all
feCl-1,1],n > 1, we have G}, , .(f,-) € Hs,—s4; and

n,8,J
1f = G i (f5 oo < €jswa2(f,1/n)o
In addition, if f is i-conver, then so is G, ; ;(f,*) for anyi € {1,...,j}.

Remark. Note that above, (ii) is not a consequence of (iii). Details can be
found in Cao—Gonska [55, 56, 57].
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1.9 Positive Linear Polynomial Operators Preserving
Shape

In this very short section we briefly present a constructive example of a pos-
itive linear polynomial operator of nonconvolution type, denoted by G412,
that reproduces the linear functions, produces DeVore-Gopengauz—type esti-
mates in approximation, and in addition, preserves the convexities of higher
order functions.

This polynomial operator was introduced by Gavrea in 1996, and it seems
to be the first example of a positive linear polynomial operator that pro-
duces the following pointwise estimate of DeVore-Gopengauz type (see Gavrea

[144)):
(Gms2)e) = @) < o (f; JT) .

In more detail, Gavrea [144] first introduced the sequence of operators
H,, :C[|0,1] — II,,, m € N, given by

Ho(f)(2)
m—1 1
— FO =) + 2 (1) + (- 1) Y ps(a) / Prnaer (8 F (),
k—

where py, (%) = (7)x*(1 — 2)" 7" is the Bernstein basis, and then he defined
Gm+2 . C[O, 1] — Hm+2 by

m

(Ggzf)) = 2

= 2 m(Hka)(x),

where the coefficients aj, are chosen so that the polynomial sequence P, €
H,,,m €N, P,(z) = Y|, apz", attached to the above representation of
(Gma2f),m € N, and called the generator of (G,,12f), m € N, satisfies the
properties P, (x) > 0, P/ (x) > 0 for all z € [0,1], m € N, and fol P, (z)dz
=1 for all m € N.

Gavrea’s original approximants are in Ils,,4+1, but it was shown in, e.g.,
Gavrea—Gonska—Kacsé [145] that by a slight modification, their degree can be
reduced to m + 2.

The shape-preserving properties of G, 12 are given by the following.

Theorem 1.9.1. (Cottin-Gavrea—Gonska-Kacs6-Zhou [72]) (i) The polyno-
mial Gp,4o preserves the monotonicity and the usual convexity (i.e., the
2-convezity in Definition 1.1.1, (i), in the introduction) of the function f.
(ii) If Pp(x) = Y, ,axz®,m € N is the generator sequence for
Gmi2, m €N, (i.e., satisfies the conditions Py, (x) > 0, P! (x) > 0,Vz € [0,1],
fl P, (x)dx = 1), and in addition, P, is convex up to order r, then Gyt

0
preserves the convexity up to order (r + 1).
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1.10 Notes

Note 1.10.1. Corollaries 1.4.2 and 1.4.3, Theorems 1.5.9, 1.6.11, 1.6.12,
Lemmas 1.7.2, 1.7.3, Corollary 1.7.4, Theorem 1.7.5, Corollary 1.7.6, and
Theorem 1.7.17 appear for the first time in this book.

Note 1.10.2. In comonotone approximation with respect to modified
weighted moduli of smoothness, in addition to the results in subsection 1.6.4,
we can present:

(Leviatan—Shevchuk [238]) For s > 1, let 0 < r < 2s + 2, excluding the
three cases r + k < 1. For any constant A > 0 and any n > 1, there exists an
[ = fkrsn.a € C, which changes monotonicity s times in [~1,1], such that

e (Foo > A, (F7),1).
Here, egll’s)(f)Oo is defined in the remark after the proof of Theorem 1.6.1.
(Due to Leviatan—Shevchuk, see e.g., Leviatan [230].) Let f € A'. Then
there are constants C = C(f), N = N(f), and an absolute constant ¢, such
that for all 0 < k +r < 3, we have

ED(foe < C? (£, 1), n>2,
’ n

and

1
Er(Ll)(f)OC Scw,fr(]ﬂf), ’I’LZN
’ n
(Leviatan—Shevchuk [239]) For any s > 0, there is a Y; € Y, and an
f e CZnAY(Y;), such that

lim sup —nZES)(f’YS)OO =00
n—co Who(f",1/n)

Also, for simultaneous approximation in the comonotone case, with esti-
mates in terms of usual Ditzian—Totik moduli of smoothness, we can present
(Leviatan [232], Kopotun [206]) For f € C1[-1,1]NA!(Y;), there is a constant
C = C(s) such that for any n > %, there is a polynomial p,, € IT,,NA(Y;),
satisfying c .

w gl
||f pn”oog nwl <f>n)om

and o )
r < L P (=
Hf pn”OO = dowl (f ’ n)om
where dp := min{y/T + ys, /1 — y1}. (See also Theorem 1.7.12).
Note 1.10.3. For convex approximation, in addition to the results pre-
sented in Subsection 1.7.4, in Kopotun—Leviatan—Shevchuk [213] the follow-

ing estimates are proved with respect to the modified weighted Ditzian—Totik
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moduli of smoothness: if f € C2 N A?, then E,@(f)oo <e(n™2wf,(f",1/n) +
n_6||f”||[,1/2 1/2]), m > N, where ¢ and N are absolute constants (hence,
E,(Lz)(f)OO <en2wl,(f",1/n), n>N(f)), whileif2<r<4,1<k<5-r
and f € C{N N A2, then

EP (oo < —wf, (F7,1/n),n = N(f).

As negative results, in the same paper mentioned, it is proved that there
exists an f € (C?(, N A2, satisfying

4E(2)(f)
lim nsg}go —w24( D 1/n) = o9,

while if 0 <r <4 and k > 6 — 7, then there exists an f € (Cé N A2, satisfying

nrE? -
lim sup A = o0

n—oo wk 7“( s 1/n>
Note 1.10.4. For coconvex approximation, in addition to the results pre-
sented in Subsection 1.7.6, in Kopotun—Leviatan—-Shevchuk [214] the follow-
ing estimates are proved with respect to the modified weighted Ditzian—Totik

moduli of smoothness: if s > 2,2 <r <4 1< k<5-—r Y, €Y, and
[ € C, N A*(Y,), then we have

EP(f.Ya)oo < en”"wf (f7,1/n), n2 N(Y);
ifs=1,2<r<4,Y,€Y;and f €C] N A%(Y7), then we have

EP (£ Y1) < en”"wE, (7, 1/n), n>N(f),

and for 1 <k <4-—r,

EP(f Y1)eo < en”"wf (f7,1/n), 0> N¥1);
ifk>1,Y1€Y;and f € (C; N A2(Y7), then we have

E®(f,Y1)eo < con”"wf (f(7 1/n), n>k+T,
ifk>1,7>7 Y €Yy and f € C,NA%(Y), then

E,(Lz)(f, Y1)oo < cn*’”w,f (f (T),l/n), n>k+r
Also, in Kopotun—Leviatan—Shevchuk [212] for » < 3 and Kopotun—

Leviatan—Shevchuk [214] for r > 4, it is proved that if r > 1, s > 1, Y, € Y,
and f € B" N A%(Y;), then



1.10 Notes 97
Er(z2)(f»Ys)oo < CnirHQPTf(T)”om n > N(r,Yy),

where N(r,Ys) is a constant which may depend only on r and Y.

For s =1, if r < 2 (see Leviatan—Shevchuk [241]) or r > 7 (see Kopotun—
Leviatan—Shevchuk [214]), the above estimate is valid with N = r.

The paper Kopotun—Leviatan—Shevchuk [214], also contains negative re-
sults which show that these results cannot be improved.

Note 1.10.5. Concerning approximation-preserving shapes of higher or-
der, we can present the following results. For ¢ > 1 and f € A?NC[-1,1] (i.e.,
f is continuous and g-convex on [—1,1]), set Ey(lq)(f)OO =inf{||f — Plle; P €
II,, N A7} and consider the estimate

ke s

E?(f)oo < e(r,q)
It holds for r = 1, ¢ > 1 (see Beatson [33]), for r = 2, ¢ > 1 (see Shvedov
[355]), for r = 3, ¢ = 3 (see Bondarenko [47]). It does not hold for ¢ > 4
with M = M(r), r > 2 (due to Konovalov—Leviatan [201]), and for ¢ > 4,
r > 2 with M = M(f) and ¢ = ¢(f) (see Bondarenko—Primak [48]). The
case ¢ = 3 and r > 4 remains an open question. For 1 < p < oo, the estimate
EY (f)p < cws(f;1/n), does not hold with ¢ = ¢(f) (see Bondarenko-Primak
[48]).
In the case r = 3, ¢ = 3, is proved the estimate E,(L:S)(f)OO <
cwf, (f;1/n)so, m > 1, with ¢ > 0 an absolute constant in Bondarenko [47].
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Shape-Preserving Approximation by Real
Multivariate Polynomials

Extending the results in the univariate case, in this chapter we prove approxi-
mation results preserving multivariate shapes, by Bernstein-type, convolution-
type, and tensor-product-type polynomials. The multivariate shapes consid-
ered are Popoviciu convexity, Schur convexity, axial convezity, polyhedral
convexity, usual multivariate convexity, subharmonicity, and in general,
L-convezity, with L a bounded linear operator satisfying some suitable con-
ditions.

For simplicity, most of the results in this chapter are presented for the
bivariate case. However, in some cases, when the bivariate case is not repre-
sentative for the multivariate case, the results are presented in three or several
variables.

The approximation errors are given with respect to various bivariate mod-
uli of continuity/smoothness or K-functionals, presented in the next section.

2.1 Introduction

In order to extend the results in monotone and convex approximation from the
univariate case in Chapter 1 to the bivariate/multivariate case, we obviously
need suitable bivariate/multivariate concepts of shapes (i.e., of monotonicities,
convexities, harmonicity, subharmonicity), bivariate/multivariate moduli of
smoothness, and bivariate/multivariate suitable polynomials.

First we present a few concepts of shapes in the bivariate case, which are
natural extensions of the monotonicity and convexity in the univariate case,
and some of them are obtained using the “tensor product” method.

Definition 2.1.1. Let f:[-1,1] x [-1,1] = R.
(i) We say that f(z,y) is increasing (decreasing) with respect to x on [—1, 1] x
[—1,1] if
f(x—i—h,y)—f(w,y) >0 (S O>7 Vy € [_171]a VIL‘,ZC—l-hE [_171]7 h > 0.

S.G. Gal, Shape-Preserving Approzimation by Real and Complex Polynomials, 99
DOI: 10.1007/978-0-8176-4703-2_2,
(© Birkh&duser Boston, a part of Springer Science+Business Media, LLC 2008



100 2 Shape-Preserving Approximation by Real Multivariate Polynomials

(ii) We say that f(x,y) is increasing (decreasing) with respect to y on [—1, 1] x
[—1,1] if

f(l’,y+k)*f(f£,y) ZO (S 0)7 Vze [7171]3 Vy7y+k€ [7131}7 kZO

(iil) We say that f(x,y) is upper (lower) bidimensional monotone on [—1, 1] x
[—1,1] (see, e.g., Marcus [265], p. 33) if

Agf(.’lﬁ,y) :f(m—l—h,y—i—k)—f(x,y—i—k:)—f(a?—i—h,y)—l—f(x,y) >0 (S O)?

forall z, 2 + h € [-1,1], y,y+ke[-1,1], h>0, k>0.

(iv) We say that f(x,y) is totally upper (lower) monotone on [—1,1] x [—1,1]
(see Nicolescu [286] or R.C. Young [405]) if (i), (ii), and (iii) hold, with
all simultaneously > 0 (or with all simultaneously < 0).

(v) (Popoviciu [315], p. 78 ) The function f : [-1,1] x [-1,1] — R is called
convex of order (n,m) in the Popoviciu sense (where n,m € {0,1,...}) if
for any n+ 1 distinct points 1 < 29 < -+ < x,,41 and any m + 1 distinct
points y1 < Yo < -+ < Ym41 in [—1, 1], we have

T1,T2y- -5 Tn41
f| =0,
Y1,92,- -y Ym+1
where the symbol above represents the divided difference of a bivariate

functions and it is defined iteratively (by means of the divided difference
of univariate functions) as (see Popoviciu [315], pp. 64-65)

[1, - @g1s Y1, - Yt F (@ )]yle
= [y1, < Ymt1; [5C17. .. »xm+1§f('7y)]z]y-
Here
p
g(ﬂﬁi)
T1yeeeyTpi g
[ P ; i —w1) e (@ — 1) (@ — i) - (2 — @)

represents the usual divided difference of a univariate function g[g; z1] =
g(@1).
To be in accordance with the definition of j-convexity in the univariate
case (see Chapter 1, Definition 1.1.1 (i), and Remark (2) after it), note that
the denomination in Popoviciu’s original definition of the (n, m) convexity
was slightly modified (in the original definition, the divided differences are
taken on n 4+ 2 and m + 2 points).

(vi) We also need to introduce the following concept, similar to that of total
upper monotony: f(z,y) will be called totally convex on [—1,1] x [—1,1]
in the Popoviciu sense if f(z,y) is simultaneously convex of orders

(0,2),(2,0),(1,2),(2,1), and (2,2).
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Remarks. (1) The most natural bivariate monotonicity seems to be that in
Definition 2.1.1 (iv), because for such bivariate functions the set of disconti-
nuity points is at most countable (see Nicolescu [286]).

(2) In the case that f has partial derivatives, the conditions (i)—(iv) in
Definition 2.1.1 can be expressed as follows:

of (x,y)

(i) oy 0 > 0 (20), Yy e -1,
2
(iii) by W >0 (<0), Va,y € [-1,1] (see Nicolescu [286]),
z0y

while (iv) is represented by all conditions (i)—(iii).

(3) Tt is obvious that convexities of orders (0, 1) and (1,0) in the Popoviciu
sense mean in fact that f(z,y) is increasing on [—1, 1] with respect to y (for any
fixed z € [—1,1]) and increasing with respect to x (for any fixed y € [—1,1]),
respectively. Also, one reduces convexity of order (1,1) in the Popoviciu sense
to upper bidimensional monotonicity introduced in Marcus [265], p. 33, si-
multaneous convexities of orders (0,1), (1,0), and (1,1) mean the total upper
monotonicity in Nicolescu [286], convexity of order (0,2) means in fact that
f(z,y) is convex on [—1, 1] with respect to y (for any fixed z), and so on.

(4) Suppose f is of class C"*™ on [—1,1] x [—1,1].

By the mean value theorem we get that if %g(y‘f,f”) > 0, VY(z,y) €
[—1,1] x [-1,1], then f(z,y) is convex of order (n,m) in the Popoviciu sense
on [—1,1] x [-1,1].

For the approximation errors, we will use the following kinds of bivari-
ate/multuvariate moduli of smoothness and K-functionals.

Definition 2.1.2. Let f: [-1,1] x [-1,1] = R.
(i) For 6,17 > 0, we define

W (f38)= sup sup{|f(z+h,y) — f(z,y); z,z+h € [-1,1], 0<h < d};
yE[fl,l]

o (fim)= es[ggl]sup{lf(x,yﬂtk)—f(x,y)l; y,y+kel[-11, 0<k<n}

(i.e., the partial bivariate moduli of continuity; see, e.g., Timan [385]),
wi(f;6,n) =sup{[f(z + h,y+ k) — f(z,y); 0<h <4, 0<k<n,
v,x+he|[-1,1], yy+ke|[-1,1]},
wi(f; @) = sup{|f(z + h,y + k) = f(z,9); B* +k <,
£,I‘+h€ [_171]a yay+k € [_171]}
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(f f o [=1,1]™ — R then wi(f;h) = {[f(z) - f(y)lz,y € [-1,1]", [l -
yHRm < h})7

WP (f;6,m) = sup{|Ap e f(z.y); 0<Sh <6, 0<k<n,
:E,Z‘+h € [7171]a yay+k € [7171]}

(i.e., the Bogel modulus of continuity; see, e.g., Nicolescu [286]), where
Appf(z,y) = fle+hy+k)— flz+hy) - flz,y+k) + fz,9).

By (Ditzian—Totik [98], Chapter 12) the (first order) Ditzian-Totik moduli
of continuity are defined by

wi (f;01,02)
= sup{|An, o), o) f (@, 9)] 1 0 < hy < 04,0 = 1,2,2,y € [-1,1]},

and for 0 < p < +00,

1,1 1/p
Wf(f§51a52)p ‘= SUPo<h,;<6;,i=1,2 (/ ) / . |Ahua(z),hzso(y)f(xvy)‘pdfc dy) )
where p(t) = V1 — 2,

h h
Bt netn (o) = £ (04 etay+ o)

~f (x - %so(w%y - h;@(y)>

if (LC + %(P("E), Yy =+ %@(y)) € [_171} X [_171}7 Ahlap(z),hyp(y)f(xvy) =0
elsewhere.
Also, the partial moduli of continuity are defined by

wfx(f761> = Sup{|Ah14p(x),Of(xay)| :0 < hl < 51,1:,y € [_17 1]}7

ny(f,éz) = SUP{|AO,h2¢(y)f(37»y)| :0< h2 < (527%11 € [_17 1]})
and for 0 < p < 400,

1 1 1/p
W (3 61)p = SUDocn, <o, ( / 1 / 1 Ahwu»of(x,y)wdxd@ ,

1 1 1/p
W (F:62)y = SUPgen,s, ( e dy) .
—1J-—-1

(ii) (Ditzian—Totik [98], Chapter 12) Besides the above first-order modulus
w{, the most used modulus in this chapter is the second-order Ditzian—Totik
modulus of smoothness defined by



2.1 Introduction 103

w (f;01,02)
= Sup{|Ai1§D($)v}l2<p(y)f($vy)| :0<h; < 627Z =1,2,z,y€ [_17 1]}a

and for 0 < p < +00,

1,1 1/p
wg (f501,02)p == SUPg<p, <5, i=1.2 (/ ) / ) A% ooy oot L (2, 9)[Pd dy) 7
where p(t) = V1 — 2,

2
2
Bt @) = 3 (1) DA+ (L= Wigla)y+ (1= Do)
k=0
if (x £ hip(x), y £ hap(y)) € [-1,1] x [-1,1], Aiw ) () (T:y) = 0 else-
where.

(If f:[-1,1]™ — R, then the second-order Ditzian-Totik modulus of
smoothness is defined by

w;;(f;élv"‘v ) _Sup{|Ah1<p(a:1) ,,,,, hmga(a:m)f($17"'7$m)|;

OShZS(SZ, i =1,m, $1,...,xm6[—1,1]}.)

Also, the second-order Ditzian—Totik partial moduli of smoothness are
defined by

w;x(fv(;l) = sup{|Aiw(x)70f(;l:,y)| :0 S h’l S 51axay € [717 1]}a
w;y(f762> = sup{|A%,hztp(y)f(m?y)| :0<hy < 62,$,y € [_17 1]})
and for 0 < p < +00,

1 e 1/p
wzx(f;él)l’ = SUPo<h; <5y (/ L / L |Ai2ncp(w),0f(xay)|pdx dy> )

11 1/p
wi,, (f302)p = SUPg<p, <s, (/1/1 1A 1o f (@, 9) [P dy) .

Note that in general, the Ditzian—Totik modulus of smoothness of order
r > 3 is defined by

Wf(f'51,52)
- Sup{|Ah1<p(:r hg(p(y)f(x7y)| :0 S hi S 6172 = 172,x,y S [_17 1]}7

and for 0 < p < 400,

11 1/p
wf (f501,02)p 1= SUPg<p, <5,,i=1,2 (/ ) / ) |A21¢(z),hw(y)f($vy)\pdﬂc dy) )
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where p(t) = V1 — 2,
hio(@), hzw(y)f (z,9)

—Z ( > flx+(r/2=Kk)hio(x),y+ (r/2 — k)hap(y))

if (x£rhip(z)/2, y£rhap(y)/2) € [-1,1] x [-1,1], Ahw,(x) hw(y)f(x7y) =0
elsewhere.

The Ditzian—Totik partial moduli of smoothness of order r are defined
accordingly.

Finally, another kind of (uniform) Ditzian—Totik modulus of smoothness
of order r € N can be defined by

“’(f‘ 9)
- Sup{|Ahup(m hgtp(y)f( )‘ :0<h,0< h27h%+h§ < 5275573/6 [_L 1]}
(iii) For f € C([a,b] x [c,d]) and r € N, we can consider other rth moduli
of smoothness defined by

s

(-1 (Z) f(a+ih1,y +ihs)

=0

i (),

wr(f;61,02) = sup {

(x 4+ rhy,y + rhe) € [a,b] X [¢,d], |h1] < b1, |he| < 52},

r

S (-1 (;)W +ihy,y + ihs)

=0

s (z,9),

-
(x 4+ rhy,y + rhe) € [a,b] X [c,dLh% +h§ < a2}

(if 2 CR™ and f: 2 — R, then for any 7 > 0, we can define

S () st o

s=0

wr(féT):SupummgT{ ;T+st € Q,S:O,...,r},

where ||t|gm = /(¢34 -+ +t2,),t = (t1,t2,. .-, tm)),

T

Y= 1<:>f(m+zh1,y+lh2)

1=0

i (@), (@ £rh,y £ rho)

wr(fr0) = Sup{

€ [a,b] % [e,d), [ha| < @, [hal < a} .
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(iv) A kind of Ks-functional of two variables can be defined by

K>(fit,s)
eoe |zl [l

—iut {I - gl +
Here g € W2([—1,1] x [~1,1]) means that g is twice differentiable with its
second-order partial derivatives bounded on [—1,1] x [—1,1], and || - || denotes
the uniform norm.
Now deﬁning the norm of g € W%([-1,1] x [-1,1]) by |lgllw= =

max{||2 521 |l 3y9 I, 1|2 Feog 1> |2 8y 91|}, one can define another Ks-functional of
one variable only, by

Ks(fit) = mt{|[f - gll + tllgllw=:9 € W ([~1,1] x [-1,1])}

(see Johnen-Scherer [187]), which obviously is equivalent to a third kind of
Ko-functional, defined by

g€ W([-1,1] x [m])},

Py

0z2

+52

0%g
Oyox

Oxdy
g€ W?([-1,1] x [—1,1])} .

°g

Ox?

axay

K (fit)" = iHf{”f —gll+t H dyox

ol o

(see Dekel-Leviatan [75], DeVore [85]).
(v) The bivariate K3 -functional is defined by

2 0%g

o 2 0%g
T ox2

oy

} g€ WHP([-1,1] x [—Lm},

2

K§(fits) = inf{llf*gl\ e s

+ts {

where g € W2¥([—1,1] x [—1,1]) means that

%g
@x@ym

d%g

0%g 02

2079 79 79
P gz (@ Y)| Ly (@, Y)|s |Papy 3y3x($7y)

0%g 0?
@f,ayg(x,y)'7 ’

are all bounded on [—1,1] x [-1,1] and ¢, denotes v1 — u?.
Similarly, one can define

K (f;t)
2

. ) 2
=1nf{|f—gll+tHs02 g

2 9% o ?
Y 9yox

+ Py ay2

T oz

]

g
Sﬁw@yaxayH + ’ @

|

geW>?([=1,1] x [-1, 1])}.
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Some properties of these bivariate moduli of continuity/smoothness and
K>-functionals useful for the next results are given by the following.
Lemma 2.1.3. Let f: [-1,1] x [-1,1] = R.

(i) (see, e.g., Timan [385], pp. 111-114) wy(f;0,0) =0, w1 (f;d,7n) is nonde-
creasing with respect to § and 1,
wi(f;01 + 62,m +m2) <wi(f;01,m) +wi(f;02,7m2),
wi(f38,m) < W (f;8) + W@ (fim) < 20(f;8,m).

(ii) (see, e.g., Anastassiou—-Gal [7], p. 81)
B (f;8,m) <@ (f30) + 0@ (fim).

(iii) (Johnen—Scherer [187]) Ko(f;t?) ~ wa(f;t) for all t € (0,1).
(iv) Ks(f;1%)* ~ Ko(f;1?) ~ Ka(f;t,1).
(v) wy (fit) ~wr(fit) ~ we(fit,t) and wf (fit) ~wf(f3t,1).
(vi) K5 (f5t,1) ~ K3 (f51%).
(Recall that a(t) ~ b(t) means that there is to > 0 and My, Ms, indepen-
dent of t, such that Mya(t) < b(t) < Maa(t), for all t € (0,t9).)

Proof. (i) The property that w(f;0,0) = 0 and the property that w (f;9,7)
is nondecreasing with respect to § and 7, follows directly from Definition 2.1.2.
Also, the elementary inequalities:

|f(z +hy+ hoyy + k4 ko) — f(z,y)] < [f(x+ h1 4 ho,y + k1 + ko)
—f(z+hi,y+ k1)
+\f($+h1,y+k1) _f(xay”a

|f@+hy+k)=f(z, ) < [f(@+hy+k)—f@+h,y)+|f@+hy)— (@),
immediately imply the other two inequalities in the statement of (i).

(ii) It is immediate by the inequality:

[f(@+hy+k) = fle+hy)l+|f(zy+k) - flz,y)

(iii), (iv), (v), and (vi) are immediate from the corresponding definitions
in Definition 2.1.2. [

In computer aided geometric Design (CAGD), the following concepts of
Bernstein polynomials and Bézier surfaces represented in barycentric coordi-
nates are important. First we present the case in R2, which has a simple and
intuitive geometric interpretation, and then the general case in R*, k > 2.
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Definition 2.1.4. (see Bézier [43], [44], Farin [113])

(i) Let Py, Py, P3 be three noncollinear points in the plane and denote
by T the interior together with the border of the triangle of vertices Py, P,
and P3. In other words, T is the convex hull of the points P;, P>, and Ps,
which means that for each point P € T, there exist uniquely the numbers
u,v,w > 0, u+v+w = 1, called barycentric coordinates of P, such that P =
uPy +vPs + wPs, and we write P = (u,v,w). Obviously P; = (1,0,0), P, =
(0,1,0), P3 = (0,0,1).

If in Cartesian coordinates we have P = (x,y), Py = (2, yx), k = 1,2, 3,
then we easily get the relationships with the barycentric coordinates given by

T =ur; +vr2 +wr3, Y= uyr +vy2 + wys.

If f:T — R, then the Bernstein polynomial of degree n in barycentric
coordinates attached to f on the triangle T is defined by the formula

Bg;(f)(u,v,w) = Z FGi/n,j/n, k/n) n! v wk

K]
i,4,k>0,i+j+k=n

Here the expression f(i/n,j/n,k/n) depends on the triangle T (actu-
ally on its vertices) as follows: if f(x,y) is the function in Cartesian coor-
dinates, then x and y are connected with u,v,w by the above relationships
and f(i/n,j/n,k/n) denotes in fact

i j koo j k
floi—Fae=+as—yi— +y2= +ys— | .
n n n’’n n n

The above Bernstein polynomial rewritten in Cartesian coordinates (z,y)
is called, in CAGD, a Bernstein—Bézier surface.

The Bézier net attached to BI(f) (and implicitly to f) is denoted by
fn and is defined as the function that satisfies the following conditions:
fuli/n,j/n.k/n) = f(i/n,j/n, k/n), for all i +j+k = n, i,5,k > 0, and
it is linear on each of the subtriangles {U; j x,i+j+k=n—1,4,5,k > 0} and
Wik i+j+k=n—2,i74k >0}, where U, ;  has vertices (in barycentric

coordinates)
1+1 i ﬁ 1 j+1 E 1 l k+1
n 'n'n) \n" n 'n)  \n'n n ’

and W; ;1 has vertices

i j+1 k+1 i+1 j k+1 t+1 j+1 k
n n’ n )’ n'n" n )’ n’' n 'n)’
Geometrically, U; j, and W; ; realize a division (triangulation) of the

triangle T' by smaller subtriangles all having their sides parallel with the sides
of T, triangulation denoted by 7, (T).
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(ii) (see also Dinghas [93], Lorentz [247], p. 51) If Ay = {(z1,...,25) €
Regy + 4, <12, >0,i=1,..., k} is the unit k-dimensional simplex
and f : Ap — R, then the Bernstein polynomial on the k-simplex Ay in
Cartesian coordinates is defined by

B'nAk(f)(‘r177xk): Z f(ha7Zk> pnﬂl,m,ik(irlv"ka)a

n n
i;>0,i14+ix<n 1 k

where

% % n—ip—-—=t
pn;il,...,ik($1,~-~,$k): (Z ik>w11...xk’“(1:c1~~xk) L k.
1.+

3

n!
<i1, . ,z‘,) T ligl(n— iy — o — i)l
To Aj corresponds the Dbarycentric standard simplex S =
{(ury..yupgr) € R¥FLw, > 0,5 = 1,...k + 1,2?;1%- = 1} and the
above Bernstein polynomial can be rewritten in barycentric coordinates by

i
B (fw) =3 1 (n) B (). Yu = (un, .. i) € Si.
|i|=n
where i = (i1,...,i511), |i| = i1+ +igpr, £ =(2,..., %) and
n\ n! ; i
B" — v 1, Zk+1.
Hw ()“ (i)l (i) e

Given k + 1 points Py,..., Py11 € R¥ in general position (but preferably
affine independent), any point P € conv{Py,..., Py+1} (where the simplex
D = conv{P,..., Pyy1} denotes the convex hull of the corresponding points)
can be identified with its barycentric coordinates u = (uq,...,uk+1), given
by the relationships P = Efill u; P;, Ef;l u; = 1. Due to this fact, any
simplex D = conv{P,..., Pyy1} can be identified with the above barycentric
standard simplex Sy.

As a consequence, for any k-dimensional simplex D and f : D — R, the

Bernstein polynomial attached to f in barycentric coordinates is formally the
Lil

p ), which are recovered

same as the above B*(f) (excepting the values f (

by the above relationships with the Cartesian coordinates of Py, ..., Pgi1).

Therefore, without loss of generality and for simplicity, when one has
to deal with functions and Bernstein polynomials defined on an arbitrary
k-dimensional simplex, it suffices to consider functions and Bernstein polyno-
mials defined on the barycentric standard simplex Sy.

(ili) The multivariate Bézier net (surface) f,, : Sy — R, can be defined
as follows: f,(i/n) = f(i/n) for each multi-index i satisfying |i| = n, and
piecewise linear on each subtriangle of the canonical triangulation constructed
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with the aid of an affine linear bijective map by Dahmen—Micchelli [74] (see
also Sauer [339], p. 473). Note that because of the method of triangulation,
the multivariate case is different from the bivariate case.

Remark. We can mention two interesting generalizations of the planar
barycentric coordinates in Definition 2.1.4. One is the case of so-called
barycentric coordinates associated with arcs, which leads to a theory of
Bernstein—Bézier polynomials that parallels the familiar interval case and
has close connections to trigonometric polynomials, see, e.g., Alfeld-Neamtu-
Schumaker [3]. The other one is the case of barycentric coordinates on spheres
or spherelike surfaces, as for example the spherical triangles, which leads to
a theory of Bernstein—Bézier polynomials on spheres and spherelike surfaces,
see, e.g., Alfeld-Neamtu—Schumaker [4].

Other concepts of shapes different from those in Definition 2.1.1 (excepting
that in Definition 2.1.5 (i) below, which is an easy extension of the bivariate
concept in Definition 2.1.1 (v)), are given by the following,.

Definition 2.1.5. (i) Following the ideas in Popovicu [315], p. 78, we can

say that the function f : [-1,1]™ — R, m € N, is called convex of order
(n1,...,Mm), in the Popoviciu sense, where n; € {0,1,2,...}, ¢ = 1,m if for
any n; + 1 distinct points in [—1,1], xgl) < xg) < e < J;Si)H, i =1,m, we
have
) @ 1
R N
2) (2 2
T L
i fl =0,
™ 2 acS:’)_H

where the above symbol [-; f] means the divided difference of the function f
and it is defined (by means of the divided difference of univariate functions)

1 1 2 2 m m
as [xg),...,x;fﬂ; [xg),...,x§L2)+1? [mg ),...,xshn)%_l; f1--.,]]s (here
each univariate divided difference [xgz), . ,xf;) 41 ] is considered with respect

to the z; variable, Vi = 1,m).

(ii) f : 2 — R is called a convex function (on the convex set 2 C R™) if
FOz + (1= Ny) < Af(x)+ (1= N)f(y) for all X € [0,1],2,y € 2. Denote by
KO1(2) the class of all convex functions on {2. The differential characteriza-
tion of f € KO;(f2) can be seen in Remark 3 after this definition.

(iii) Tt is a well-known concept that a twice-differentiable function f :
2 — R (where 2 C R™ is a domain) is called a harmonic function on (2 if

it satisfies A(f)(z) =0, for all z € £2, where A(f)(z) =Y ", azj;(f) denotes
k

the Laplacian of f.
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By Gauss (for necessity) and Levi [226] (for sufficiency), if, e.g., 2 C R?,
then f is harmonic if and only if f is continuous in {2 and for all disks of
center (zg,yo) and radius r included in (2, it satisfies

1 2m

f(xo,y0) = o ), flxo + rcos(), yo + rsin(0)]d,

for all (zo,yo) € int(£2). Denote the class of all harmonic functions on {2 by
Hy(02).

As a generalization, f is called a polyharmonic function of order p € N
in (2 if it satisfies the iterated Laplace equation AP(f)(x) = 0 for all x € £2,
where AP(f) = A[APL(f)]. Using some successive integral means (we do not
reproduce them here), the above result of Gauss-Levi (i.e., the case p = 1)
was extended by Nicolescu [287] to arbitrary p € N. Denote by H,({2) the
class of all polyharmonic functions of order p.

Also, it is well known that f : 2 — R (where 2 C R™ is a domain) is
called a subharmonic function on 2 if f is upper semicontinuous on {2 and for
any sphere B(x;r) C {2, the value f(z) is less than or equal to the mean value
of f on the spherical surface dB(x;r). For example, in the case of functions
of two real variables, the inequality can be written as

2

f(o,90) flzo + 7 cos(8),yo + rsin(6)]d6,

Si
2 0

for all (xg,y0) € int(£2) and all disks of center (xg,yo) and radius r included
in £2. Denote by SH;(f2) the class of all subharmonic functions on {2.

In another paper, Nicolescu [288] introduced the concept of subharmonic
function of order p € N, through the integral means used to represent a poly-
harmonic function of order p. Denote by SH,({2) the class of all subharmonic
functions of order p on 2. For p = 1 one obtains the above concept of sub-
harmonic function.

The differential characterization of f € SH,({2) can be seen in Remark 4
after this definition.

(iv) Let S = (8i,k)ik=1,....,m be a so-called double stochastic matrix, that

is, satisfying
m m
Sik =0, D sik= six=1
i=1 k=1
forall i,k =1,...,m.
D C R™ is called an admissible domain if it has the following two proper-
ties:

(1) For any = = (x1,...,7,) € D, we have (2px),...,Tpm)) € D for all
permutations p of the set {1,...,m}.

(2) For any double-stochastic matrix S = ($;%)ik=1,..m and any z =
(%1,...,2m) € D, we have Sz € D.
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Now, according to Ostrowski [293], a function f: D — R, m > 2, D an
admissible domain, is called Schur convex if for any double-stochastic matrix
S, we have f(Sz) < f(z) for all z € D.

(v) (Schmid [342] for the bivariate case), (Sauer [339], see also Dahmen—
Micchelli [74], Dahmen [73] for the multivariate case) Let ¥ € N and f €
C(Sk) ={f: Sk — R; f continuous on Si}. We say that f is axially convex if

fOu+ (1 =)o) <Af(u) + (1= A)f(v), VAe[0,1],

whenever u,v € Sy lie on any line parallel to one of the edges/“axes” (sides
in the k = 2 case) of Sk, i.e., if there exist an appropriate ¢ # 0 and 0 < j < i
with u — v = c(e/ — '), where ¢/ = (§;4)"1], (. the Kronecker’s symbol)
defines the jth coordinate vector in RF*1,

(vi) (Lorente-Pardo, Sablonniére, Serrano—Perez [246]) Let T be a tri-
angle in the plane with vertices P;, P>, P3. One says that f : T — R is
w-subharmonic (weak subharmonic) if for all n € N and o = (a1, 2, ag) with
|a] = n («; positive integers) we have

3

0< Zai@iﬂtﬁ,l [f (%)} )

i=1

where 79 = 73,74 = a1, 11 = PaP3,72 = P3sP1,y3 = P P,

()= () -2 () o (50).

for & belonging to the interior of the triangle 7', and 5?{1, [f (9)] = ( otherwise.

n

Here % and % denote the points of intersection of the line parallel
to the direction v; with the other two sides of the triangle T

This is equivalent to a certain geometric property of all Bézier nets fn,
n € N.

Note that w-subharmonicity implies the so-called weak axial convexity
introduced in Beska [40].

(vii) (Sauer [339]; see also Dahmen—Micchelli [74], Dahmen [73]) A function
f Sk — R, k> 2, is said to be polyhedral convex if all its Bézier nets fm
n € N, are convex.

(viii) (see Goodman—Sharma [160] for the bivariate case and Goodman—
Peters [158] for the multivariate case) The continuous function f: Ay — R is
called strongly convex on A, if it satisfies the following three inequalities

fley)+ fle+hy) < fle,y+h)+ fl@+hy—h),
f(a:,y)+f(x+h,y—h)Sf(x+h,y)+f(x,y—h),

for all the corresponding points belonging to As,.



112 2 Shape-Preserving Approximation by Real Multivariate Polynomials

In the general case, given the affine independent k+1 points Py, ..., Pry1 €
R* and denoting the simplex D by conv{Py,..., P.y1}, the function f : D —
R is called strongly convex on D if for any h > 0and 0 <i < j < k+1, we
have

f((E + hPl + th,l) + f((E + hPifl + hP])
> f(x + hpi_l + th—l) + f(l’ + hPZ + hPJ)

for all x and h for which f is defined, where P_; := Pr1.

(ix) Let T be a triangle in the plane and f : T — R. One says that f is
monotonically increasing with respect to the nonnull vector d = (dy, ds) € R?
(or in the direction d) if for all x = (z1,22) € T and allt > O with z, z+td € T,
we have f(z +td) > f(x).

The directional derivative (in the direction d) at a point x € T is defined
as the limit (supposed to exist) Dg(f)(z) = lim;—, M

If in addltlon f is differentiable on t, then 1t follows that Dy(f)(z) =
o OF (1) + dy 2L (), and f is monotonically increasing in the direction d if
and only if Dg( f]) >0forallzeT.

(x) Recall some Well—known facts in multivariate analysis. A direction d
in Sy is given by the difference of two points, i.e., d = u — v for u,v € S.
Therefore, if d = (di,...,dg41), the directional (Gateaux) derivative of f :
S — R with respect to d is defined by Dg(f)(u) = lim;_q L0HD=I0 "apng
if, in addition, f € C*(Sk), then Dy(f)(u) = Zkﬂ d; 3‘3 f(u). The directional
derivatives of higher order are defined by recurrence, for example Dfll o (f) =
Dy, [Dg,(f)], and so on.

For é; = e/ —e', j=1,...,k+ 1 (where ¢/ are the unit vectors in RF*!
defined at the above point (v ( ))7 we write D; ;(f) = De,é; (f)-

Also, for b; € R**! where i is a multi-index, the multivariate forward
difference operator can be inductively defined by A(é)j b; := by,

AL b= AL bive, — AL by,
Aij = A A,

where r = (r1,...,7k) is a multi-index.

Remarks. (1) For m = 2 in Definition 2.1.5 (i), we get the concept in
Popoviciu [315], p. 78.

(2) If f is of class C™ T +mm on [—1,1]™, then by the mean value theorem
it follows that the condition

outTnm f(py L T)
ozt ... 0z

>0 on[-1,1]™

)

implies that f is convex of order (ni,...,nm,).
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(3) If f is twice continuously differentiable on (2, then it is a classical
result that f € KO1(£2) if and only if for every j = (j1,...,Jm) € R™ with
l7]lrm = 1, we have

0 f(x
L= 3 T 20 weo

1<k, i<m

(4) If f is twice differentiable on {2, according to a classical result due
to Montel [276] (see also, e.g., Haymann—Kennedy [168], p. 41) we have f €

SH;(2) if and only if A(f)(x) = S5, ZLE > 0,va € 0.

More generally, if f has all continuous partial derivatives of order 2p
in 2, then f € SH,(£2) if and only if it satisfies the differential inequality
(=1)PAP(f)(x) <0 for all x € §2 (Nicolescu [288]).

(5) If f € C%(Sk), then in Sauer [339], Proposition 2, it is proved that the
axial convexity of f can be expressed in terms of some inequalities satisfied by
the second-order directional derivatives (see also the proof of Theorem 2.2.3

(iii) below). For example, by taking for simplicity k& = 2, if T = S5 is a triangle
—

in the plane with vertices P;, Py, Ps, and setting v; = P, Ps, 7o = F)gﬁ, V3 =
]TP;, then f is axially convex if and only if we have D2 (f)(u) > 0 for all
uw e T and i = 1,2,3, where D2 (f) = D,,(f)[D-,(f)] and the directional
derivatives are those in Definition 2.1.5 (ix), (x).

(6) Similar to the above Remark 5, if f € C?(Sy), then by Sauer [339],
Proposition 10, the polyhedral convexity of f can be expressed in terms of
some inequalities satisfied by the second-order directional derivatives. For ex-
ample, keeping the notation in the bivariate case, f is polyhedral convex on
the triangle T if and only if D'Zym(f)(u) >0forallueT and i,j =1,2,3.

(7) If D C R™ is an admissible domain (as defined by Definition 2.1.5 (iv)),
supposing D open and that f : D — R has continuous partial derivatives of
first order on D, then f is Schur convex on D if and only if

(5= (520) - 52@) 20,

for all x = (x1,...,2m) € D and 4,5 € {1,...,m} (see, e.g., Lupasg [259]).

(8) For bivariate continuous functions on triangles, it is known Sauer [339]
that polyhedral convexity implies convexity, and convexity implies axial con-
vexity and subharmonicity.

(9) The relationship between axial convexity and subharmonicity can de-
pend on the geometry of the triangle. More specifically, we have (Lorente—
Pardo—Sablonniere-Serrano—Pérez [246]):

(i) If T' is not obtuse, i.e., cos(f;) > 0 for ¢ = 1,2, 3, then axial convexity
implies subharmonicity.

(i) If T is obtuse (there exists i € {1,2,3} with cos(f;) < 0), then there
is no relation, a priori, between axial convexity and subharmonicity. It is
enough to consider the functions u; : 77 — R and uy : To — R given by
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uy(z,y) = —y(z +y) and us(z,y) = 422 — y?, respectively, where T} is the
triangle with vertices A = (0,0), B = (1,0), and Cy = (—1,1), and T is the
triangle with vertices A, B, and Cy = (—1,—3). Then w; is axially convex but
is not subharmonic. However, uy is subharmonic but is not axially convex.

(10) (Lorente-Pardo—Sablonniére-Serrano-Pérez [246]) Axial convexity
implies w-subharmonicity on triangular domains.

2.2 Bernstein-Type Polynomials Preserving Shapes

Other multivariate Bernstein-type polynomials we consider in this section are
given by the following.

Definition 2.2.1. (i) (Hildebrandt—Schoenberg [170]) If f : [0,1]* — R, then
the tensor product Bernstein polynomial (on the k-cube [0,1]¥) is defined by

Bnl nk(f)(x1,~~~7xk)

ni

_Z Z j 1anzJ x])]f(j]i?v%)v

n
7,10 sz k

where pp, i, (z;) = (?;)x;’(l — ;)% % forall j =1,...,k.
(ii) (Goodman-Sharma [160]) For f : A — R, k eN, one defines the

Bernstein-type polynomial U, ,(f)(z) = Z| |=n Dn,i(T ka t)dt, n € N,
x=(x1,...,2x) € Ay, where i = (i1,...,1),
n . . i s
Drsin,.vin (X1, - oy Tk) = ( . )xﬁl...xz’“(l—xl—---—xk)n e "k
11y---52

( n > n!
. . — = B B B 3
Tlyennsy g il eeaRl(n —iy — - —ig)!

/ K (t)dt
]Rk‘

k
= (|Z| - 1)' A f Ze] t(i1+~~+ij—1)+q dtl e dtM
li|—1

j=1 g¢=1

and

Here e/ = (0,...,1,...,0) € R¥ with 1 in the jth position and i1+ - -+i;_1 =
0 for j = 1.

By Sauer [338], it follows that U, i (f) is exactly the Bernstein—Durrmeyer—
type polynomial that incorporates a particular Jacobi weight, which for & = 1
does not reduce to the usual multivariate Bernstein-Durrmeyer polynomial
introduced in Derriennic [78], but one reduces to the modified Bernstein—
Durrmeyer polynomial in Chen [68].
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Remarks. (1) By similar reasoning to that of Popoviciu [316] in the case of
one variable, we immediately obtain the estimate (for k = 2 see Feng [116])

|f(z1,. ., 2k) = Boy,oon () (@1, . 2r)| < Cwn(f; 1/, ..., 1/ v/ng)

for all z; € [0,1], j = 1,...,k, where C > 0 is independent of f, x1,...,xk,
ny,...,n, and

wl(f;(slw")(sk)
:Sup{|f($17"'7xk)_f(yla"'vyk)|;|xj _yj| §5J’]:17’k}

(2) For the Bernstein polynomials defined on a simplex Ay, and f €
C(Ag) ={f: Ar — R; f is continuous on Ay}, we can recall the estimates

If = B*(Dlleay) < ClEs(fin™ ) +n I flocan)

(see Ditzian [94]) and

I1f =B (Nllcay <Cn™' > Ep(f)

1<p<vn

(see Ditzian [95]), where K¢ (f;t) = infyea{llf — gllcca,) +tP(9)}, 9 € A,
means that dg/0z; € ACj,. with respect to any variable x;, 8%g/0z;0x; are
continuous in the interior of Ay, @(g) is a suitably defined seminorm, and
E,(f) is the best approximation of f on A (in the uniform norm || - [[¢(a,))
by polynomials (in the variables z1,...,xzx) of total degree < p.

(3) For the Bernstein-Durrmeyer-type polynomial U, o(f), the following
approximation error is proved in Goodman—Sharma [160]:

=)+ 21

n n

where || - || is the uniform norm on Ag, wi(f;d) = sup{|f(z) — f(y)|;z,y €
A, |z =yl <0}, |zl =21 + - + 2k, = (T1,. .., 78) € Af.

(4) All the Bernstein-type polynomials in one variable introduced in
Section 1.3 (see the 12 examples after Theorem 1.3.2) can be extended to
several variables by the tensor product method or by the method used for
Bernstein polynomials on a simplex. We can mention, for example, several
bivariate/multivariate Bernstein—Stancu-type polynomials in Stancu [364]-
[369], Stancu—Vernescu [370], Vlaic [392]-[395], Moldovan [275], the modi-
fied Bernstein—-Durrmeyer-type polynomial on a simplex in Goodman—Sharma
[160] (see also Sauer [338]), and the Bernstein—Durrmeyer polynomial on a
simplex in Derriennic [78].

The history of applications of shape-preserving properties of Bernstein
polynomials to computer aided geometric design begin with the pioneering
work of the engineer and mathematician Pierre Bézier, who applied them to

1 = Unk(DI] < Cron (f;
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automobile design at the Renault company (for a history on this subject see,
e.g., Laurent—Sablonniére [220]).

Concerning other types of Bernstein polynomials, an application of a cer-
tain Bernstein—Stancu-type base for defining generalized, more flexible (since
they depend on some parameters) Bézier curves and surfaces was done in
Gansca—Coman—-Tambulea [147].

In Goodman—Sharma [160] (case k = 2), Goodman—Peters [158] (case
k > 2), it is proved that the polynomials U, x(f) preserve the strong con-
vexity in Definition 2.1.4 (viii), while in Sauer [338], it is proved that U, x(f)
has several shape-preserving properties on a simplex.

In this section we present the main shape-preserving properties of the two
classical Bernstein polynomials in Definition 2.1.4, (ii), Definition 2.2.1 (i),
and those of modified Bernstein—Durrmeyer polynomial on a simplex.

For simplicity and without loss of generality, some results will be consid-
ered in two real variables.

In the case of a bivariate tensor product Bernstein polynomial, we present
the following result.

Theorem 2.2.2. Let f : [0,1] x [0,1] — R and the tensor product Bernstein
polynomial on [0,1] x [0,1] be defined by

By (f)(,y)

= iipnﬂ(x)f?m,j(y)f (:l, Tjn> ;

i=0 j=0

where pyi(z) = (7)x'(1 —2)"~¢ for all i =0,...,n, and pm ;(y) in a similar
manner is defined.

If f(z,y) is (r,s)-convex in the Popoviciu sense, then so is By m(f)(x,y).
In addition, if f is continuous on [0,1] x [0,1], then the following estimate
holds:

”Bn,m(f) —flI< Ow;(f; 1/\/5’ 1/\/%),

where C' > 0 is an absolute constant, || - || denotes the uniform norm on
[0,1] x [0,1], w¥ (f;1/+/n,1/y/m) is the Ditzian—Totik modulus of smoothness
in Definition 2.1.5 (i), and o(z)* = z(1 — z).

Proof. First we prove the estimate. It is known (see Knoop—Zhou [194] and
Totik [387]) that for univariate g : [0,1] — R, we have

1
lg = Bn(g)ll < Cwi (g; %)oo.
But ||Bn(9)|l < |lgl|, which implies || B, || < 1,Vn € N (here B, (g) denotes the
univariate Bernstein polynomial).
Since B, m(f) is the tensor product of B, and B,,, applying Theorem 5
in Haussmann—Pottinger [167], we immediately get
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I = BunO < € o (1572 ) o, (1]

where wy, and wj, are the partial moduli defined in Ditzian-Totik [98],
Chapter 2. Taking into account that obviously

o5 (1 2=) ves, (5 =) <2 (10 ).

we obtain the required estimate.
On the other hand, by the proof of Theorem 1.3.1 (i), (see also, e.g.,
Popoviciu [317]), for g : [0,1] — R, we have

. In! iy 7 14+
B . Lo ) ().
D) = G 3 [ ] P
This immediately implies
By (f)(z,y)  rin! sl DTS
a7 dy* ~ =)' (m— s)lme DD Prri(@)Pmos(v)

=0 7=0

i t+r | g Jj+s
Xl?"'a a|: Yty 7f(xay):| ] )
n n m m vl .

which by hypothesis on f implies %{fw > 0, Va,y € [0,1], and

proves the theorem. [

The Bernstein polynomials and the modified Bernstein—Durrmeyer polyno-
mials on a simplex have interesting shape-preserving properties, summarized
by the following.

Theorem 2.2.3. (i) (Lupas [259]) If f : As — R is Schur convex on A,
then so is B22(f) for all n € N;

(#i) (Chang—Davis [64], Theorem 5) If f : As — R is strongly convex on As,
then so is B22(f).

(Goodman-Peters [158]) If f : A — R, k > 2, is strongly convex on Ay,
then so is B2k (f) too.

(i11) (Sauer [339]) If f : Sk, — R is continuous and azially convex on Sy, then
BJ*x(f) is axially convex for all n € R.

(iv) (Sauver [339]) If f : Sy, — R is continuous and polyhedrally convex on Sy,
then BSx(f) is polyhedrally convex for all n € R.

(v) (Goodman—Sharma [160]) If f : Ay — R is strongly convex on As, then
s0 1is the polynomial Uy 2(f).

(vi) (Sauer [338]) For any n,k € N with k > 2, the polynomial U, 1 (f)
preserves any polynomial of degree < n, the azial convexity, the polyhedral
convezity, and the subharmonicity, but in general does not preserve the
convezity.
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Proof. (i) We follow the proof in Lupag [259]. Notice together with Ostrowski
[293] that if f is Schur convex on Ay then it is symmetric too, i.e., f(z,y) =
f(y,z) for all (z,y) € As. Also, Lupag [259] proved that the symmetry is
preserved by B22(f) for all n € N. Indeed, this is an immediate conse-
quence of the general relationships S p_ S0 % Aip = Sr_ o S0 Ay, and
()07 = (0.

In order to prove the Schur convexity of B22(f), we will use Remark 7
of Deﬁnition 2.1.5. First we note that we can write B22(f)(v,y) =

S OZZ 0 pn;“(x y)f(k/n,i/n), where p, i (x,y) = (Z) (";k)xkyi(l—x—

y)
‘We have
Ao n—1n—1-k
aB——nZ > puctilf(06+ Vfnsifo) = ki)
A2 n—1n—1-k
%znz 3 puctdlfh/mn i+ ) = ki)

dy

Wiite F[B22(/)](z,y) = (o — y) (22528 — 25200)  B(f)(a,2,y) =

x Y

flz,y) — flax + (1 — a)y, (1 — a)x + ay], and

o) = (") (M LT ) e et ),

It is easy to see that f is Schur convex on A, if and only if E(f)(a,z,y) > 0
for all (z,y) € As, a € [0,1] and that ¢; ,(x,y) >0,

(@ = Y)[Pn—1,2k—i,i (%, ¥) = Prn—1,5,2k—i (%, Y)] = @i 2 (2, ¥),
foralli=0,....k—1,k=1,...,[(n—1)/2],
(v — y)[pn7172k+17i,i(xa Z/) - pn717i,2k+17i(‘73a y)] = C]i,2k+1($7y)a

foralli=0,...,k, k=0,1,...,[(n—2)/2].
By the general relationship

—ln—1— [(n—=1)/2] [(n=1)/2] k—1
Z Z Z AZZ+ Z Z 7,2k— 1+A2k 'Lz)
k=0 =0 i=0 i=

[(n—2)/2] &

+ YD (i + Askrri),
k=0 =0
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we obtain
F[BR2(f)](x,y)
n—1n—1—k
Z Z Pr-1k(@, ) [f((k +1)/n,i/n) = f(k/n, (i +1)/n)]
Sy o%h—2 W—i+1 i
Z Z 4izk(7, ) )<2k—2i+1’ n n)

k=1 1=0

n—2)/2] k . . .
2k—2i+1 2k—i+2 1
v z S a2 (G o)

As a conclusion,

n—1[(k—1)/2] , . .
k=2t k—14+1 4
FE (e =Y Y aulen)B0) (g ).
k=1 =0

which by the Schur convexity of f implies that of B22(f) too.

(ii) Since the proofs are rather technical, we omit them. We mention only
that for the case k > 2, the proof of (ii) is different from the case k = 2, is
much based on the results in the paper Dahmen—Micchelli [74], and can be
found in Goodman—Peters [158].

(iii) We sketch out the main lines of the proof. It is based on the following
two simple/standard auxiliary results.

Lemma A. (Sauer [339]) A continuous function f : S — R is azially convex
on Sy if and only if we have

Ap,p(f)(i/k) 20, (AjJ' + Ap,p - 2Aj,p)f(i/k) >0

forallli| =k and 1 < j < p.

Proof of Lemma A. We know that for continuous functions, convexity in
one direction is in fact equivalent to the midpoint convexity in that direction.
Now, convexity in the direction e? — e is equivalent to

14 2¢, 1 { i+ ¢
f( >+2f(k>2f< . )

which can easily be rewritten as the first inequality in statement.

Applying similar reasoning to the convexity in the direction e? —e7, we get
that it is equivalent to the second inequality in the statement, which proves
Lemma A.

Lemma B. (Sauer [339]) A C%-function f : S, — R is azially convex on Sk
if and only if we have

Dpp(f)(u) 20, (Djj+ Dpp— Djp)f(u) 20,
foralll <j<pandu€ Sy.
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Proof of Lemma B. Taking into account the integral representation
of multivariate finite forward differences of functions of C?-class in terms of
directional /partial derivatives, it is immediate that the inequalities in Lemma
A are equivalent to the inequalities in Lemma B.

Now, since we have

S i+261 n—2
DB = X A (25 ) B
li]=n—2

where B! (u) is given by Definition 2.1.4 (i), we easily get that D, ; B+ (f) > 0.
In a similar manner we get (D, j+ D, ,—D; ,)B3*(f)(u) > 0, which combined
with Lemma B proves the statement in (iii).
(iv) A detailed proof can be found in Sauer [339], p. 475, Theorem 11.
(v) We follow the ideas of the proof in Goodman—Sharma [160]. Let f :
Az — R be strongly convex on As. First let us suppose that f € C?(4Ay), i.e

8f>af>0and6f o°f > 0. We have

dz2 = Oz Bacd
azUn,2(f)(x7 y)
0xdy
0*f
= Z Pijk(®,y) Bi+1,j+1,k+2(uvU)ai(uav)du dv > 0,
o A udv
i+j+k=n—2 2

by the hypothesis on f.
Similarly, from the hypothesis on f we can prove

0 (6‘1 - gy) Una(f)(@) 2 0

=
and 5 /5 5
—(=-= > 0.
5 (5~ 52 ) UnaNea) 20

From Chang-Davis [64], Theorem 5, for an f € C(A3), it follows that
BA2(f) is also strongly convex. Since B42(f) € C2, we get that U, o(BA2(f))
is strongly convex with respect to As. By BA2(f) — f as m — oo, we get
Una2[BA2(f)] — Una(f), as m — oo. But the strong convexity means that
Un(B22(f)), n,m € N, satisfy the three inequalities in Definition 2.1.5 (vii).
Passing to limit with m — oo in these inequalities and taking into account that
we easily have || Uy, 2(f)]|a, < ||f]la, (where ||-]|a, denotes the uniform norm
on Ay), we get that lim,, ooU,2(Ba2(f)) = Una(f), which immediately
implies that Uy, 2(f) is strongly convex with respect to As.

(vi) We omit the proofs, which are long and technical. O

Remark. In Schmid [342] and Chang-Davis [64], pp. 12-13 it is proved (are
given counterexamples) that if f : Ay — R is convex on Ay then B2 (f) is not
necessarily convex on Ag; therefore B22(f) does not preserve the convexity
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of f. Thus, in Schmid [342], it is shown that for the convex function f(z,y) =
|z —y| defined on the standard simplex Ay C R?, all the Bernstein polynomials
BA2(f),n € N, are not convex on As.

Another much-studied topic in CAGD concerns sufficient linear and non-
linear conditions for the (usual) convexity/monotonicity of bivariate/multi-
variate Bernstein polynomials.

The first sufficient conditions for convexity were derived for Bernstein poly-
nomials on a triangle/simplex. Chang and Davis [64] showed that a sufficient
condition for such a surface to be convex is that the Bézier net be convex
and proved other sufficient linear conditions for convexity too. A weaker suffi-
cient linear condition for convexity was found by Chang and Feng [66]. Also,
Chang and Feng [65] derived another weaker but nonlinear condition, while
Lai [219] derived a linear condition weaker than those in Chang—Davis [64]. In
Carnicer—Floater—Pena [61] linear conditions that are weaker than all linear
conditions mentioned above are introduced. These conditions have the advan-
tage that they are symmetric with respect to the barycentric coordinates and
moreover, can be interpreted geometrically.

On the other hand, sufficient conditions for convexity were derived for
bivariate tensor-product Bernstein polynomials (called Bernstein—Bézier sur-
faces) too. First, Cavaretta and Sharma [63] showed that when the (bilin-
ear) Bézier net of such a surface is convex, then so is the surface. Although
the conditions are linear, they are very restrictive, since they imply that the
Bernstein-Bézier surface S(x,y) equals f(x)+ g(y), for some univariate func-
tions f and g (in this case S is called translational). Then weaker but nonlinear
conditions were obtained by Floater [118].

Starting from these last conditions, in Carnicer—Floater—Pena [61] linear
conditions for convexity that do not require that S be translational were
found. Even though these conditions are stronger than those in Floater [118§],
they have the advantage of being linear and moreover can be interpreted
geometrically, in a similar way to the triangular case.

Also, several sufficient conditions for monotonicity were proved in Floater—
Pena [119].

The next two theorems summarize the main results in this topic.

For Bernstein polynomials on a triangle/simplex, we present the following
result.

Theorem 2.2.4. Let us consider the Bernstein polynomial of degree n on the
simplex Ag = {x >0,y >0,z +y < 1},

B(f)(xy) = > pijxBijr(z,y),
i+j+k=n

where p; ;= f(i/n,j/n, k/n) and

i+j+k)!
Bk, y) = (Z']W)x Yy (1—x—y)-
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Also, let us define the following difference operators:

Aapi,j,k = Dit2,5,k T Dij+1,k+1 — Pi+1,j4+1,k — Pi+l,5,k+1)
Abpi,j,k 1= Pij+2,k T Ditl,5,k+1 — Ditlj+1,k — Pij+1,k+1,
Acpi,j,k = Pigk+2 T Pit1,j4+1,k — Pitl,5,k+1 — Dij+1,k+1,

fori+j+k=n—-2 withi,jk>0.

(i) (Chang-Davis [64]) If the nth Bézier net (attached to B22(f)) is convex
on Ay, then so is BA2(f).
The result was extended to Ay, k > 2, in Dahmen—Micchelli [74).
(i) (Sauer [340]) If the Bézier net fo, || = n, is azially convex on Sy, then
s0 is B3 (f).
(i4) (Chang-Dawis [64]) B22(f)(x,y) is convex, provided that

Aepi i >0, Apijre >0, Acpijr>0,

foralli+j+k=n—2, withi,j, k> 0.
(iv) (Chang-Feng [66]) B22(f)(x,y) is convex, provided that the matrices

A <(Aa + Ac)pijik Acpi,j,k>
Acpijre  (Ay+ Ac)pijk

are positive semidefinite for all i,j,k > 0 withi+j+k=n — 2.
(v) (Chang—Feng [65]) The nonlinear conditions

(Aa + Ap)pijie >0, (Ao + Ad)pijr >0, (Ac+ Adu)pijr >0,
Appi j kAcPi gk + Acbi gk AaPij i + Aapij kAepij ke > 0,

for all i,5,k > 0, with i +j + k = n — 2, imply the convexity of

B (f)(w,y).
(vi) (Lai [219]) The linear conditions

Aapijre >0, Appijr >0, Agpijr+ 24051 >0,

Appi gk + 24cpi gk > 0,

foralli+j+k = n—2, with i,j5,k > 0, imply the convexity of

B2 (f)(@,y).
(vii) (Carnicer—Floater—Penia [61]) The linear conditions

AaDi gk + 2Acpi gk >0, Apps i+ 2A0pi 5k > 0, Acpiji + 24605 5,1 >0,
Acpijr +20upi 5k >0, Appijr + 2A0api gk = 0, Aapijr + 2Aup4 5,1 >0,

for all i,5,k > 0, with i + j+ k = n — 2, imply the convexity of
B2:(f)(x,y).

(viii) (Floater—Penia [119]) If the nth Bézier net (attached to B22(f)) is
monotonically increasing with respect to all nonnull vectors d € R?,
then so is B22(f)(z,vy).
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(iz) (Floater—Pena [119]) Let us denote by Py, Pa, Py the vertices of the tri-
angle As. If the nth Bézier net is monotonically increasing with respect
to the vectors PoPy, P3Py, P P3, then so is B22(f)(z,vy).

(z) (Floater—Penia [119]) Let Py, Py, Ps be the vertices of triangle Ay. The
condition Egc, > 0, V|p| = n—1, implies that B22(f)(x,y) is monoton-
ically increasing in the direction d, where Eqc, = a1Cpiet + qaCpie2 +
Q3Cpye3, With oy, g, a3 solutions of the equations

Q1P1+OLQP2+053P3:CZ, a7 +a2+013:0,

et = (1,0,0),e* = (0,1,0),¢* = (0,0,1), and, e.g., cprer =
f (;2+11’ L2 Pa ), for p = (p1,p2,p3) (the others cpie> and cpies are

analogously defined).

For the tensor-product Bernstein polynomial, we present the following
sufficient conditions for convexity.

Theorem 2.2.5. Let us consider the tensor-product Bernstein polynomial of
degree (m,n) given by

Bn,m(f)('ra y) = Z Zpi,jBi,n(x)Bj,m(y)a

i=0 j=0

where p;; = f(i/n,j/m), Bin(z) = (})a'(1 —2)""% i = 0,...,n, and we
assume that n > 2, m > 2.
Let us define the finite difference operator

n m s k l
s 555 () o

=0 s=0

By analogy with the Bézier net on triangles, a Bézier net (attached to the
above tensor-product Bernstein polynomial) can be defined by

fom(@,y) = pi (i +1—n2)(j + 1 —my) + piprj(nz —i)(j + 1 — my)
+ pijr1(i + 1 —nz)(my — j) + piy1, 41 (ne — i) (my — j),

fori<ap <l L <y<itl 90<i<n—-1,0<j<m-1
(z) (Cavaretta Sharma [6’3/) If we suppose that the Bézier net of the poly-

nomial By, m (f)(x,y) is convez, then so is By m(f)(z,y).
(i1) (Floater [118]) If

Ag,opmZOforiZO,...7n—2, ].:O,...,TTL7
A072pij20fori:0,...,n, j:(),...,me,
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and
Ao 0pijtitsA02Ditkrrj — k(A1L1pisk+1)* >0,
foralli=10,....n—2,5=0,...,m—2, and k,l,r,s € {0,1}, where k =
mn/(m —1)(n — 1), then By n(f)(z,y) is convez.
(iii) (Carnicer—Floater—Pena [61]) The linear conditions

Ao 0pijts = 2|A11Ditk
foralli=0,....n—=2,7=0,...,m—1, and k, s € {0,1},
Ao,2Digr; = 2| A1 api 41,

foralli =0,....n—1,5 = 0,....m — 2, and l,r € {0,1}, imply that
Bym/(f)(x,y) is conver.

Remark. In the paper Jittler [188], a general construction of linear sufficient
conditions for convexity of multivariate tensor-product Bernstein polynomials
is obtained. These conditions can be made as weak as desired, and the con-
ditions in Theorem 2.2.4 (iii) and Theorem 2.2.5 (iii) are special cases of this
general construction.

The connection between the shape-preserving properties and the strongly
variation diminishing property in the univariate case is well known (see
Chapter 5, Section 5.1, Theorem 5.1.7). At the end of this section, we briefly
present some concepts of total variation together with corresponding prop-
erties for bivariate Bernstein polynomials defined on triangles and show a
connection with the preservation of convexity.

Definition 2.2.6. (i) (Goodman [155]) For f : T — R, f € C?*(T), where T
is a triangle in the plane, one defines two kinds of variations of f on T" by

o= [[(252) - (452)] e

1/2
Py, (Pfaw)) | Py
(ii) (Chang-Hoschek [67]) For f € C*(T), T a triangle in the plane, one
defines the variation of f on T" by

02 0?
v = [ |HE0 L S0 gy,

(iii) (Goodman [156]) For any f € C*(T), T a triangle in the plane, and S a
seminorm in R3, one defines the generalized variation of f on T by

T — *f(z,y) f(z,y) P*f(z,y)
VS(f’T)_/TS( 022 ' Ozdy | Oy

and

> dx dy.
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(iv) (Cavaretta-Sharma [63]) For f : [0,1] x [0,1] — R, one defines the

variation

Vi([0,11%)(f) .
[ () () (22|

We present without proof the following.

Theorem 2.2.7. (i) (Goodman [155]) Let f € C2(T) and denote by f, the
nth Bézier net attached to f. We have Vi(BT(f);T) < Vi(fu;T) and
Vi(BL(f);T) < C-Vi(f;T), where BI(f) denotes the Bernstein polyno-
mial attached to f on the triangle T and C > 0 is a constant independent
of f and n, depends only on T, and can explicitly be given in terms of the
angles of T' (for example, if T is equilateral, then C = @) (Since fo is
not of C*(T)-class, a specific formula is given for Vi (fn, T)).

Also,
2n

V(B (f);T) < mv(fn;T), vneN, feCHT),
but there is no constant C > 0 independent of f such that V(BL(f);T) <
CV(f;T),n €N.
(ii) (Chang—Hoschek [67]) Let f € C*(T). We have

VI(BL () T) < Vi (fa; T) = Vi(fus T), ¥n €N,

with equality if and only if the Bézier net fn is either convexr or concave
over T.
(iii) (Goodman [156]) For any f € C*(T), we have

Vs(B,, (f):T) < C(S,T)Vs(f;T), ¥n €N,

where the constant C(S,T) can explicitly be calculated and depends only
on S and T, but is independent of f and n. The result generalizes (i) and
i)

(iv) ?C)avaretta-Sharma [65]) Keeping the notation in Theorem 2.2.5 and
Definition 2.2.6 (iv), we have V1([0,1)2)(Bp.m(f)) < V1([0,1)2)(fr.m),
where a specific formula is given for Vi([0,1]2)(fum) (since fum is not
twice differentiable).

Remarks. (1) Note that the concepts in Definition 2.2.6 (i) are naturally
suggested by the total variation in the univariate case (see Goodman [155],
pp. 111-112).

(2) The above equality property in (ii) connects, in the case of bivariate
Bernstein polynomials over triangles, the preservation of convexity with the
preservation of total variation. Indeed, if equality holds and fn is convex over
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the triangle Ao, then according to Theorem 2.2.4 (i), the Bernstein polynomial
BA2(f) is convex on A,.

(3) Since the approximation error in shape-preserving approximation by
bivariate Bernstein polynomials is rather weak, it is natural to search for
Jackson-type estimates in shape-preserving approximation by bivariate poly-
nomials. This question will be solved in the next sections of this chapter.

Mainly, the results will be obtained in using the following methods:

(a) the Shisha-type method in the univariate case adapted to the bivaria-
te/multivariate case and its generalization in vector spaces, called L-positive
approximation and introduced by Anastassiou—Ganzburg;

(b) the tensor-product method;

(c) the method consisting in approximating first f(x,y) by piecewise bi-
variate linear functions L, (f)(z,y) with the same shape as f(z,y), and then
replacing L, (f)(z,y) by suitable bivariate polynomials P, (z,y).

2.3 Shisha-Type Methods and Generalizations

The ideas of Shisha and Anastassiou—Shisha’s methods used in the univariate
case for the proof of Theorem 1.4.1 were extended for the first time to the
bivariate case, by Anastassiou [5] in 1991. Unfortunately, since it is based
on the simultaneous approximation by bivariate Bernstein polynomials, the
estimate is rather weak, involving the modulus of continuity wy (f; ﬁ, \/%)

Using a different method, similar results were obtained by Xu-guang Lu
[251], [252] in 1988 and 1992, respectively. Note that in these cases too,
the error estimates are rather weak, in terms of wy(f; ﬁ) = sup{|f(z,y) —

Fu)s /P 0 < L)

2.3.1 Shisha-Type Approximation

In this subsection we present new essential improvements of the above-
mentioned estimates. For simplicity, only the bivariate case will be presented,
but the results can easily be extended to functions of several real variables.
The first main tool used in this sense is a recent result of Beutel-Gonska
[41], [42] concerning simultaneous approximation by tensor-product operators.

For f : [a,b] x[c,d] — R, let us write f(*) = DD f — 8‘?;;;51 , CP1([a, b] X
[e,d]) = {f : [a,b] x [¢,d] — R; D f is continuous on [a, b] x [c, d], V(0,0) <
(k,1) < (p.q)}, where (0,0) < (k,1) < (p,q) means 0 <k <p, 0 << g

For f € C%%([a,b] x [c,d]) and r > 1, consider the modulus of smoothness,
wr(f;01,02), defined by Definition 2.1.2 (iii).

Concerning the degree of simultaneous approximation by tensor product
operators, we recall here the following result, which will be used later in our

proofs.
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Theorem 2.3.1. (Beutel-Gonska [41], Theorem 1) Let L : CP(I) — C¥'(I'),
M : C4(J) — C7(J') be two linear continuous operators, where for each g in
the space C*(I) the norm is ||g|| ;= max{||g?||ec;i =0,...,5}, || - |lo is the
uniform norm on C(I), I' C I, J' C J are compact subintervals of the real
azis, and (0,0) < (p',¢') < (p,q). Let us suppose that the operators L and M
satisfy the conditions

19— L@ P @) < Y Krpon (@) (07 70,1, (2))
reT

forall0<k<p <p,zel, geCP(I), and

= MM D W) <> Ko @ws (B 7400 (1)),
seS

forall0 <1 <q <q,yeJ,heClJ), where T,S are finite (nonempty)
subsets of NU{0} and K,v are bounded functions on their domains of defin-
1tion.

Then, for oll (z,y) € I' x J', f € CP9(I x J), (0,0) < (k, 1) < (p',q¢") <
(p,q), we have the estimates

I1f = L oy MY (2, 9) <D Kk p(@)wr (£ 95, (x), 0)

reT

HIDF o Ll - sup > Kouar(y) - ws(FO750,74a0(y))
SiSPges

and

I1f = L oy MY () < D Ko (9)ws (F5950, 76,0 ()

ses

HID o M|+ sup D> Krgr(y) - @, (f P70 (2),0),
0<y< 4rer

where by definition,

LI = sup{ max max|[L(f PP @) f e CP), |1 f]l <1}

< /

An application of Theorem 2.3.1 is a bivariate version of the Brudnyi-
Gopengauz pointwise-type result in the univariate case. We need only its
immediate uniform (i.e., in the || - ||co-norm) consequence below.

Theorem 2.3.2. (Beutel-Gonska [42], Section 3.1, p. 10) For any f €
CP4([~1,1]) and for (0,0) < (k,1) < (p',q), there exists a sequence of bi-
variate polynomials Qn m (f)(z,y) of degree <n in x and of degree < m iny
for alln > max{4(p+1),p+r}, m > max{4(q + 1),q + s}, such that



128 2 Shape-Preserving Approximation by Real Multivariate Polynomials

(k) 1" v,
- n,m ’ [e%e] < r - P O
I = Qund Ol <6 (3] - (5705 7.0)
1\ , 1
+ Cpyg,rys () © Sup ws (f(z’q)é(l ) .
m 0<i<p m

Here p/ = min{p,p —r+2} <p and ¢ = min{q— s+ 2,q} < gq.

Based on Theorem 2.3.2, we can prove the following new bivariate
Anastassiou—Shisha-type result.

Theorem 2.3.3. Let hi, ha,p,q,7,5 be positive integers, 0 < hy < p’ < p,
0 < hy < ¢ < g, with p = min{p,p —r + 2} < p and ¢ = min{q —
s+ 2,q} < q, and let f € CP4([—1,1]%). Consider the bounded functions
a; ;L1 x[-1,1] = R, i = hy,...,p', j = he,....q, assume that ap, p,
is either > a >0 or < <0 on [—1,1)? and define the differential operator

oiti

v d
L= Z Z @ij(2,Y) dxidyl

i=h1 j=ha
O)

1\ . 1
+Cp.q,r,s <> © Sup Wws .f(ll'q); 0, ) )
m m

0<i<p

Pn,m(L;f) = Z Zl MZL mo

i=hy j=hs

Also, define

n,m

>
=
N~—
|
:@Q
B
/N
S|
N~~~
‘f
B
/—\
Kh
§
:\»—‘

and l; j = supI7yE[_171]{|a,;1’h2 (z,y) - a;j(2,y)|} < oo. (Here a™* means L.)

If L(f)(x,y) > 0,Yx,y € [-1,1], then for all n,m integers with n >
max{4(p + 1),p + r}, m > max{4(q¢ + 1),q + s}, there exists a bivari-
ate polynomial Qn m(f)(x,y) of degree < n in x and < m in y, satisfying
LIQn,m](f)(z,y) > 0,Yz,y € [-1,1] and

Pum(Ls f) | ooy, 1
Hf*Qn,mHoo = (h +Cprnpwr (fp vﬁvo

1)!(h2)!
).

1 _
Il (4,9).
+Cp7q7r7s md Obgljgpws (f )
Proof. Case 1. Assume first oy, p,(z,y) > o > 0 for all z,y € [-1,1]. From
Theorem 2.3.2 there exists the bivariate polynomial Q, m (x,y) such that we
have

3=

Mkl

n,m?

(kD)
Ty (k1)
Hf+&m@ﬂh”m] o

oo
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which implies

Pom(L; f) Y

kD) _ kD) <
||f Qn,m ||00 — (hl _ k)'(hg _ l)' n,m

(f)7

for all (0,0) < (k,1) < (hq, ha).
Taking now k =1 = 0, it follows that

P (L;
1f = Onmlloo < (hl),((h?{,) + MO0, (f)

P, (L 1 1
= m(Li f) + cpr—wr (f(p’0)§ n70>

npb

1 . 1
+Cp,q,r,sﬁ sup ws <f( ,Q); > )

0<i<p m

On the other hand, we have

Oy (T YL Q) (2,9) = 0, (@, 9) L(F) ()

p q
+ Pn,m(L; f) + Z Z a}:117h2 ('I?y)ai,j(xvy)

i=hy j=h2

p q
Z a’:117h2 (ZL’,y)L(f)(LB, y) + Pn,m(La f) - Z Z li,jM;L:jm

=ay ), (@ y)L(f) (2 y) >0,

by hypothesis.
The case o, .h, < B < 0 is similar, which proves the theorem.

Remarks. (1) Theorem 2.3.3 improves the estimates of Theorem 2 in
Anastassiou [5].

(2) Let us suppose in Theorem 2.3.3 that in addition to the present hypoth-
esis, all the functions a; j(z,y),% = h1,...,p’,j = he,...,q are continuous on
[-1,1] x [-1,1] and that L(f)(z,y) > 0, for all x,y € (—1,1). By the conti-
nuity assumptions, it is immediate that L(f)(z,y) > 0, for all z,y € [-1,1],
and from the proof of theorem, the conclusion L(Qy m)(x,y) > 0, for all
z,y € (=1,1),n,m € N, n >max{4d(p+1),p+r}, m > max{4(q + 1),q + s}
follows easily.

2.3.2 L-Positive Approximation

A generalization of the above method was introduced in Anastassiou—
Ganzburg [16] and is called L-positive approximation. The main idea is that
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if a parametric family of linear bounded operators on a vector space (L )~er
satisfies some suitable conditions, then the quantity of best approximation
by elements in a finite-dimensional subspace, constrained by the positivity
through (L. ),cr (called L-positivity), can be estimated by a constant times
the best unconstrained approximation quantity.

Thus, the known estimates for unconstrained best approximation will be-
come estimates for the best L-positive approximation too.

In what follows, this generalization is presented in greater detail.

Everywhere in this subsection we use the general notation and hypothesis
in the following.

Definition 2.3.4. For (X, | - ||x) a normed space, S a linear subspace of X,
M C X with SNM # 0, and f € X, the best approzimations of f by elements
from S and from SN M are defined by

Es(f:X)= gifelg{Hf—gﬂx}

and

Esa(f:X) = inf {17 =gllx},

respectively.

Remarks. (1) It is obvious that Eg(f; X) < Es m(f; X), for all f € X.

(2) If, in addition, S is finite-dimensional, then by a classical result in
functional analysis (see, e.g., Singer [357], p. 91, Corollary 2.2), it follows that
there exists g* € S such that Eg(f; X) = ||f — ¢*||x- On the other hand,
SN M is obviously a finite-dimensional set, so it is closed, and since obviously
span{SNM} C S, due to an old result of Ascoli [28] (see, e.g., Muntean [279],
p. 126), it follows that SN M is proximinal, i.e., there exists g3, € SN M such
that Esar(f; X) = If — g3 1x.

Let us denote by Loo(£2) = {f : 2 — R;esssup,cn|f(z)] < +oo}, where
2 CR™, and let L : X — Lo (£2) be a linear bounded operator, i.e., ||L]| =
sup{II(2)[1.(e; 7]l x < 1} < oo. Also, let M(L) = {f € X; L()(z) >
0, a.e. on {2}.

The goal is under some conditions on L and S C X to obtain an estimate
of the form

Esny(f; X) < CEs(f; X),Vf € X,

where C' is a constant independent of f and S.
Obviously that the above kind of inequality is not always valid.
The first main result is the following.

Theorem 2.3.5. (Anastassiou—Ganzburg [16]) For (X, ||||x) a normed space
and S C X a linear subspace, let us consider a family of linear bounded
operators L; : X — Loo(82;), £2; CR™, j € J (J an arbitrary set), satisfying
the conditions
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(1) supjc s [|Ls]] < oo;
(ii) there is an element e € S such that for any j € J we have

Li(e)(z) > 1, a.e. on {2;.
Then, for every f € X and P € S, there exist Q; € S, i = 1,2, such that
and the estimate

If = Qillx < (1+lellx sup L) - WS = Pllx, i = 1,2,
J

holds.
Proof. Setting Q; = P+ (—1)""'Xe, where A = sup;c Al L; I} - | f — Pllx

for any ¢ = 1,2, we obtain

()" Lj(Qi — f)(x) = (1)L (P — f)(z) + AL(e)(x)
> A= jlelg{HleHl |If = Pllx =0.

In addition,

If = Qillx <[If = Pllx + Allellx = (1 +[lellx sup L DI = Pllx,  i=1,2,
J

which proves the theorem. [J
Also, we have the following.

Theorem 2.3.6. (Anastassiou-Ganzburg [16]) Let us consider a family of
linear bounded operators L;j : X — Loo(825), £2; CR™, j € J (J an arbitrary
set), satisfying conditions (i) and (i) (with S a linear subspace of X ) in the
statement of Theorem 2.3.5, and for j € J let us define

MY (L;)={fe€X:Li(f)(z) >0, a.e. on 2;},

M~ (L) ={feX :Lij(f)(z) <0, a.e on 2},

M* = () M*(Ly).
j€d

Then for any f € M*, we have

Ega=(f; X) < (14 [lellx sup IIZ; 1) Es (f; X).
J

Proof. We prove the case f € M, since the case f € M~ is similar. By
Theorem 2.3.5, there exists Q1 € S such that L;(Q1)(z) > L;(f)(x) > 0, a.e.
x € (2, for all j € J. Thus @1 € M and the conclusion immediately follows
from the estimate in Theorem 2.3.5. [J
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Corollary 2.3.7. (Anastassiou-Ganzburg [16]) Let L : X — Loo(£2), £2 C
R™, be a linear bounded operator such that these exists e € S (S a linear
subspace of X) with L(e) > 1, a.e. on 2. If we set M(L) = {f € X :
L(f)(x) >0, on 2}, then for any f € M(L) we have

Esarwy(f; X) < (L4 [ILI] - [lellx) Es (f; X).
Proof. It is immediate by taking L; = L, for all j € J in Theorem 2.3.6. [

Remarks. (1) The constant (1+ ||L|| - |le]|x) can obviously be improved by
replacing ||e||x with ¢ = inf{|le|]|x;e € S, L(e)(z) > 1, a.e. on 2}.

(2) Among many applications of the above results for particular spaces X,
S, and L; in Anastassiou-Ganzburg [16], some of them refer to convex and
monotone approximation, the univariate case. Since that topic in fact was
studied, by different methods but in detail, in Sections 1.6 and 1.7, we omit
them here. Other applications refer to multivariate convex and subharmonic
approximation and will be presented in the next section.

At the end of this subsection we present new results that are refinements
of Theorems 2.3.5, 2.3.6 and Corollary 2.3.7, in the sense that the L-positivity
(i.e. > 0) can be replaced by strict L-positivity (i.e., > 0).

Corollary 2.3.8. In the hypothesis of Theorem 2.8.5, for every f € X and
PeS, P#f, there exist Q; € S, i = 1,2, such that

(_1)i+1Lj(Qi - f)(x) > 07 S ij ] eJ
and the estimate

If = Qillx < (1 +lellx + IISIIXSEE L5 - Lf = Pllx, i = 1,2,
J

holds.

Proof. Indeed, this conclusion easily follows if in the proof of Theorem 2.3.5
we take A = (14 sup;e; [[L;]1) - [If = Pllx- O

Corollary 2.3.9. In the hypothesis of Theorem 2.3.6 but introducing the no-
tation

M (L) ={f € X : Li(f)(x) >0, a.e. on £2;},
My (L) ={feX :Lj(f)(z) <0, a.e. on §2;},

Mg = () My (Ly),
JjEJ

forany f € Moi, we have

Eg pz(f;X) < (14 lleflx +llellx sup L5 Es (f; X).
J
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Proof. We prove the case f € MJF, since the case f € Mj is similar. By
Corollary 2.3.8, for any f € X and P € S, P # f, there exists @J; € S such
that L;j(Q1)(z) > L;(f)(z) > 0, a.e. z € 2;, for all j € J. Thus Q1 € M,
and from the estimate in Corollary 2.3.8 we get

If = Qullx < (1+lellx + H@HXSIEJIJ)|HLJ'|H) Af = Plix,i=1,2,
J

which immediately implies the estimate in Corollary 2.3.9. [

Corollary 2.3.10. In the hypothesis of Corollary 2.3.7, writing My(L) =
{feX:L(f)(x) >0, on 2}, then for any f € My(L) we have

Esauow)(f;X) < (L4 fleflx + L] - llell x) Es (f; X).

Proof. The proof is immediate by taking L; = L for all j € J in Corollary
2.39.0

Remark. Other slightly different variants of the above results hold. For ex-
ample, in Corollary 2.3.10 let us suppose that L : X — C(£2), with 2 C R™
compact, is a linear bounded operator such that these exists e € S (S a lin-
ear subspace of X) with L(e) > 1 on 2. If we define My(L) = {f € X :
L(f)(x)>0, on int{§2}}, then for any f € My(L) we have

Es o) (f; X) < UL+ [ILI] - llell x) Es (f; X).-

The estimate is immediate from the proof of Corollary 2.3.7.
Note that by L(f) € C(£2), we easily get L(f)(z) > 0 for all z € (2, i.e.,
actually f € M(L)={f € X : L(f)(x) > 0, on £2}.

2.4 Approximation Preserving Three Classical Shapes

This section presents approximation by polynomials preserving three classical
“shapes” of functions of two or several variables: harmonicity, subharmonicity,
and convexity.

2.4.1 Harmonic Polynomial Approximation

The following Weierstrass-type result in approximation of harmonic functions
by harmonic polynomials is well known:

Theorem 2.4.1. (Walsh [397], see also Keldysh—Lavrent’ev [193]) If A C R™
is simply connected and f : A — R is harmonic on A (i.e., f € Hi(A)
according to Definition 2.1.5 (iii)), then for any compact set E C A
and any € > 0, there exists a polynomial P € Hy(R™) such that ||f —
Plleer) < &, where || - |czr) denotes the uniform norm on C(E;R) =
{f : E-R; f is continuous on E}.
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Since it is well known that any harmonic function of two real variables on
a domain in R? is (excepting an additive constant) the real part of an analytic
(holomorphic) function of one complex variable, we immediately obtain the
following quantitative result for the unit disk.

Theorem 2.4.2. Denote by D C C the open unit disk and by S; = {(z,y) €
R%; 22 4+y? < 1} its geometric image in the plane. If f : S1 — R is harmonic in
Sy (i.e. f € H1(S1)), continuous in Sy and p € N, then there exists a sequence
of harmonic polynomials (Hy(x,y))nen (i-e., Hp(x,y) € H1(S1),n € N) of
total degree (Hy(x,y)) <mn such that

If = Hollo@rry < Colwp(fi1/n)oc,08, +wp(g:1/n)oc0s,], n=1,2,...,
where g is harmonic conjugate to f and
wp(f31/n)sc,08, = sup{|AY f(cosv,sinv)l; |u| < 1/n,v| < 7}
Proof. Indeed, let
F € A(D) = {h: D — C;h is analytic in D and continuous in D},

with Re[F] = f in D.
By Gaier [121], p. 4 (see also Gaier [122], p. 53), there exists a sequence
of complex polynomials (P, (z))n, degree(P,) < n, such that

|F — P,|| < C(p)wp(F;1/n)ocop, n=1,2,...,
where || - || denotes the uniform norm in C'(D;C) and
wp(F'50)o0,0p = sup{| ALF (e™)]; [v] < 7, |u] < 6},

=1, ALF(e™) = X0 _o(=1)P I () F(e'Hm).

Writing H,, = Re[P,], we have degree(H,(z,y)) < n, and it follows that

If = Hullogsrz) < IF = Pal
< C(p)wp(f + ig; ]-/n)oo,B]D) < Cp[wp(f; 1/”)00,851 + wp(g; 1/”)00,85'1]'

O

Results concerning the approximation of harmonic functions (of two or
several variables) by harmonic polynomials on sets more general than the
unit disk were obtained by, e.g., Andrievskii [21, 22, 23, 24], Andrievskii—
Belyi-Dzjadyk [25], Chapter 5, Section 4, pp. 172-183, Bergman [39], Holmes
[171], Kamzolov [190], Lenkhorova [224], Lenkhorova—Maymeskul [225], Pa-
ramonov [298], Pavlov [302], and others.

For example, the following quantitative estimates were proved.
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Theorem 2.4.3. (i) (Andrievskii [23]) Let M be a bounded continuum in C
such that A := C\ M is simply connected and M is the closure of a
quasidisk. Denote by Ly the level curve of the Green function for A, i.e.,
Lr:={zG(z) =log(R)}, R > 1, and pr(z) :=infycr,{|u — 2|}, z € C.
If w is a modulus of continuity, then for any f € Hy(int(M)) continuous
on M, with the property

|f(21) = f(z2)| < Cw(lz1 = 22]), V21,20 € M,

and any n € N, there exists a polynomial H,, € Hy(int(M)) of total degree
<n such that

£ (2) = Hn(2)] < Cw(pria/n(2)), 2 € O(M).

(i1) (Andrievskii [23]) Let f € Hq(int(M)) be continuous in the compact set
M C R? supposed to have the additional property that each point of the
set A :=R3\ M is the vertex of a circular cone of fived solid angle that
lies in A. Define y(t) := supg. {125 log(t/s)},t € (0,1). Then for any
e > 0, there exists a sufficiently large constant C(e) such that

EI(f) < C)w(f;n 70 ) neN,

where « is the solid angle of the cone and EX(f) denotes the best uniform
approximation of f on M by harmonic polynomials of total degree < n,
i.e.,

EH(f) :=inf{||f — P||ar; P € Hi(R?),degree(P) < n}.

Remark. Extensions of Theorems 2.4.1 and 2.4.3 to polyharmonic functions
of order r € N, H,.({2), are not known yet, being the subject of Open Problem
2.7.5. However, because of the fact that polyharmonic functions can be con-
sidered a multivariate analogue to the univariate linear functions, we can
mention here the following result due to Kounchev [217] that generalizes in a
sense the Weierstrass-type Theorem 2.4.1: if f has all the partial derivatives
of orders 2r continuous on 2 (but f is not necessarily polyharmonic), then
for any s > r + 1, there exists a polyharmonic function Ts(f) of order s, i.e.,
Ts(f) € Hs(£2), such that

|f (@) = To(f) (@) < Zrwi' (A7(F);1/s),2 € 2,
where C' > 0 depends only on 2 and r, F.(z) := f(z) — h(f)(z),z € 0,
h(f)(zx) is the solution of the boundary value problem

AN (R () =0, zen, Al(h)(z)=24(f)(z), j=0,....,r, x€dD,

AJ(f) denotes the jth iteration of the Laplace operator A(f), and wi (G;1/s)
denotes the so-called harmonicity modulus of continuity of G defined in
Kounchev [217]. In other words, this result gives a quantitative estimate in
approximation of nonpolyharmonic functions by polyharmonic ones, with re-
spect to the orders of polyharmonic functions.
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2.4.2 Subharmonic Polynomial Approximation
First we recall the following Weierstrass-type result.

Theorem 2.4.4. (Shvedov [353]) If (2 is a simply connected subset of R™
and f : 2 — R is a continuous subharmonic function, then for any compact
E C 2 and any € > 0, there exists a subharmonic polynomial p on R™ such
that

If = plleEr) <e,
where || fllc(er) = sup{|f(z);z € E}.

As a quantitative result we mention the following.

Theorem 2.4.5. (Lu [252]) Let £2 C R™ be a bounded domain. If f : 2—R
is continuous on {2 and subharmonic on 2 (i.e., f € SHy(f2) accord-

ing to Definition 2.1.5 (iii)), then there erists a sequence of polynomials
P, € SH{(2),n € N, with (total) degree(P,) < n such that

If = Pullegar < Con(fin™?) gneN.

Here C > 0 is an absolute constant,

wi(f50)o 5 = sup{lf(2) — fW)l 2,y € 2, [lz — yll < o},
and ||z|| denotes the Euclidean norm in R™.

Unfortunately, the above estimate is rather weak. However, by applying
the L-positive approximation results in Section 2.3.2, we will show that under
some additional differentiability conditions, it can essentially be improved. In
this sense, first we need the following definition.

Definition 2.4.6. For 2 C R™ compact, recall that the Sobolev space
W2 (02) is the space of twice-differentiable functions on 2, f : 2 — R,
with bounded partial derivatives, endowed with the norm |/f[lwz () =
2o0<jaj<2 1D ()L (2) < 00, where a = (a1,...,am),a; > 0,i =1,...,m,

alal
lof = Sy s, D f(2) = gfor Bt v = (a1, o).
Denoting by P the class of algebraic polynomials in m variables and of

total degree < n, we present the following result.

Theorem 2.4.7. (Anastassion-Ganzburg [16]) If f € SH1(2)NW2 (£2) (see
Definition 2.1.5 (iii) and Remark 4 after Definition 2.1.5), then for anyn € N,
n > 2, there exists Q;, € P* N SH(§2) such that

If = @ullwz < C(m) - Epy(f; W2 (12)),

where Cp, > 0 is a constant independent of f and n.
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Proof. Since it requires some rather technical details, for the proof see
Anastassiou-Ganzburg [16], pp. 482-483, Corollary 3.4. O

Now, taking into account the Jackson-type results for simultaneous ap-
proximation by unconstrained polynomials in Anastassiou-Ganzburg [16],
Section 4, we immediately get the following.

Corollary 2.4.8. (Anastassiou-Ganzburg [16]) For any f € SHi(£2) N
W2 (02), k>1,n>k+2, there exists QF, € P N SHy(§2) such that

If = Qullwz () < Cron™?2 gl‘igwk(Db(f);Cnfl).

Here, C,,,,C > 0 aze constants independent of f and n and for any h > 0,
wi(f; h) = sup{| ZSZO(—l)k_S(];)f(a: +st)|:x,...,x+ kt € 2,||t|gm < h}
is of the kind introduced by Definition 2.1.2 (iii).

Proof. It is an immediate consequence of Theorem 2.4.7 and of the follow-
ing Jackson-type estimates (see a particular case of Theorem 4.1, p. 485 in
Anastassiou-Ganzburg [16]): for any k > 1, n > k + 2, f € W2 (), there
exists a polynomial R,, € P such that for every multi-index a = (a1, ..., am)
with 0 < |a| < 2, we have

ID°[f = Bulllz. @) < Canl*! ™2 maxuo (D*(f); On ™),

where C1,C > 0 are constants independent of f and n.
Indeed, since by definition we have

If = Rullwz (o) = Z ID[f = Rulll 1o (225
0<a|<2

from the above Jackson-type estimate for |a| = 0, it easily follows that

If = Rallwz @) < Cran™ maxwi(D*(£); Cn ™).

Since
Epm(fiW2(2)) < |f — Rullwz (),

combined with Theorem 2.4.7, we easily get the desired conclusion. [

Remarks. (1) For other Jackson-type results in the multivariate case that
are potentially applicable above, see, e.g., Ganzburg [142], [143].

(2) Despite its generality, the above L-positive method seems to have a
shortcoming, namely in the cases of subharmonic functions, it seems not to
be applicable to nondifferentiable functions. Indeed, the condition of the type
L(e)(xz) > 1, a.e. € §2, for a suitable chosen subharmonic polynomial e is
too strong in the nondifferentiability case. For example, in the case m = 2,
the corresponding family of linear bounded operators would be L,.(f)(z,y) =
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= 027r flz+rcos(0), y+rsin(0)]di— f(z,y), with 0 < r < rg and rg sufficiently

small. Tt is easy to show that for any f € SH;(£2), for r sufficiently small, the
quantity |L,(f)(z,y)| can be made as small we want.

Theorem 2.4.7 and Corollary 2.4.8 can be extended to approximation of
subharmonic functions of order p € N. Defining for 2 C R™ a bounded
domain the class W2P(§2) of all 2p-times-differentiable functions on 2, f :
£2—R, with bounded partial derivatives, endowed with the norm || f||yy2 o) =

ZOS\@\S% I D*(f)llL () < oo, where a = (a1,...,am),a; > 0,i=1,...,m,
lal
la| =>"i", a;, Df(z) = 8211._7]_(8(2?@ = (x1,...,Tm), we present

Theorem 2.4.9. Let f € SH,(2) N W2(2) (i.e., according to Remark 4
after Definition 2.1.5 we have (—=1)PAP(f)(x) <0, for all z € 2).
(i) For any n € N, n > 2p, there exists Q) € P N SHy(£2) such that

If = Qullwze < Cm,p) - Epye (f; W (2)),

where C(m,p) > 0 is a constant independent of f and n.
(it) For any k > 1, n > max{k + 2, 2p}, there exists Q} € P* N SH,(12)
such that

(- Q;HWO{{J(Q) < Cm.,pn_2p max wi(D"(f); Cn~").

[b]=2p
Here C,, 5, C > 0 are constants independent of f and n.

Proof. Denoting the differential operator by L(f)(z) = (—1)PT1AP(f)(x),
obviously L is linear, bounded on W2P, and is a sum of partial derivatives of f
up to order 2p. Also, the function p(x) = % Yo, xip, r=(21,...,Tm) €
02, satisfies L(p)(xz) =1 for all z € 2.

(i) It is easy to see that this L(f)(x) satisfies all the required conditions
in the proof of Corollary 3.1 (and Remark 3.1) in Anastassiou-Ganzburg [16],
pp- 480-481. Therefore our estimate is a direct consequence of Remark 3.1,
p. 481 in Anastassiou-Ganzburg [16].

(ii) It is an immediate consequence of the above point (i) and of the general
Jackson-type estimate in Anastassiou—Ganzburg [16], p. 485, Theorem 4.1. O

2.4.3 Convex Polynomial Approximation

We have the following Weierstrass-type result, which in fact is a consequence
of a quantitative-type (Jackson-type) result.

Theorem 2.4.10. (Shvedov [354], Theorem 2) If 2 C R™ is a compact con-
vex set and f is conver on 2 (i.e., f € KO1(£2)), then for any ¢ > 0, there
exists a convex polynomial p on R™ such that ||f — pllc(orm) < ¢.
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Proof. Let € > 0 be arbitrary. Since w(f; n%‘_l; 2) - 0 as n — 00, choose

n € N with wy(f; n%‘_l; 2) < ¢/Cy, and apply Theorem 1 in Shvedov [354]
(that is Theorem 2.4.11 below). O

In what follows we prove the Jackson-type result.

Theorem 2.4.11. (Shvedov [354], Theorem 1) If f : £2 — R is convex on
2 C R™, where 2 is supposed to be compact convex, then for any n € N,
there exists a convex polynomial P, € P such that

1
- P, r) < Chy j———3 82,
If lo@mr) < Cnwt (f P )

where Cy, > 0 is independent of f andn (but depends on m and increases with
m), wi(f;6;2) ={|f(z) = f(Y)z,y € 2, [z —ylo < 6}, |2|o == nf{u=0;2 €
wi2o} and 20 = 2\ O(02)}, O(2) the center of gravity of §2.

Proof. We follow the ideas of proof in Shvedov [354]. First we remark that

if, for example, m = 2 and 2 = [—1,1] x [—1, 1], then the norm |- |, is given
by |[M|qo = max{|z|, |y|} for all M = (z,y) € R%. Also, since |- |, is equivalent
to the Euclidean norm on R?, denoted by || - ||g2, it follows that the modulus

of continuity in the statement is in fact equivalent to that in Definition 2.1.2
(i), given by wi(f;6) = {|f(z) = f(y)l;z,y € [-1,1], |z — yllr> < 0}

In what follows we will describe the main steps in the proof.

Step 1. In Lemma 3 in Shvedov [354] one constructs a sequence (ga)ac(0,1]
of uniformly continuous convex piecewise affine functions on R such that

If = gallcomry < C(m)wi(f;a;$2),

and w1 (ga; a; 2) < Crwi(f;a; £2).

For example, in the particular cases m = 1 and m = 2, this construction
has simple geometrical interpretations, if we suppose in addition that f is
differentiable.

Thus, for m = 1, if, for example, 2 = [—1,1], then for any a € (0,1],
one takes a division —1 = xp < 1 < .-+ < Tp_1 < xp = 1 such that
max;—o,... k—1{Zi+1 — ¥} < a. Suppose [ is differentiable and convex on

[-1,1]. Then for each i, at the middle of the subinterval (z;,2;11), i.e., at
m; = %, one takes the tangent at the graphic of f (of the equation
y = Py(f)(x)) and at the middle of the subinterval (z;y1,x;y2), ie., at
My, = S8TE2 one takes the tangent at the graphic of f (of equation
y = Piy1(f)(x)). These two tangents intersect at a point between m; and
m;4+1, and so on, finally, g,(z) will be the continuous polygonal line, denoted
by P(f)(x), circumscribed about the graphic of f and tangent to it at the
points m;,i = 0,...,k—1. Since f is convex on [—1, 1], this continuous polyg-
onal line, is in fact given by the formula P(f)(x) = max;{P;(f)(z)} for all
x € [-1,1].
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For m = 2, if for example 2 = [—1,1] x [-1, 1], then for any a € (0, 1], one
takes two divisions of [—1,1]: one is on the OX-axis denoted by —1 =z <
Ty < -+ < xkp_1 < xx = 1 and the other one is on the OY axis denoted by
—l=yo<y1 < <yYs—1 <Ys =1, such that max;—o_. k—1{zi+1 —z:} <a
and max;j—o,. . s—1{¥j+1 —¥;} < a. In this way, 2 = [-1,1] x [-1, 1] is decom-
posed into k - s rectangles T; ;, 1 = 1,...,k, j = 1,...,s. Take the “center”
M; ; of each rectangle T; ;, i.e., M; ; is the intersection of diagonals of T} ;. At
each point M; ;, consider the tangent plane to the convex surface z = f(z,y)
and define as g, (z,y) the maximum (at (z,y)) of all these tangent planes. In
other words, g,(z,y) is the uniformly continuous affine convex function (on
R?) circumscribed about the convex surface z = f(z,y) and tangent to it at
the points M, ;.

Step 2. For any ¢ a uniformly continuous convex function on R™ and
n € N, by Lemma 5 in Shvedov [354] one constructs a polynomial of total
degree < n, convex on 2Y, that satisfies the estimate

lg = Pallcorr) < Cm)wi(f;1/(n+1);Y )rm,

where YV = {z = (21,...,2m) € R™; 2| < a;/2,]i = 1,...,m}, with fixed
a; >0,[i=1,...,mand wi(f;6;Y)rm = {|f(z) = f(y)iz,y € R™, [z —y[o <
d}. This construction is given as follows.

First one considers a multivariate algebraic polynomial J,_1(t), ¢
(t1y. .. tm), as

Jn—l(t) = Hin:llell(ti)a

where Kﬁfll(ti) = LK, 1(&-), and K,_1(u) is the even univariate alge-

braic polynomial of degree < n — 1 introduced in Dzjadyk [101], pp. 136-138,
having the properties

1
Kpoi(u) >0, uel-22], / Koy (u)du = 1,
—1
2 A
/ WK, (u)du < —, j=1,2,3.
92 nJ

Second, one defines h(x) = g(z'), where ' is the point of 4Y closest to
in the Euclidean distance (note that h(z) = g(x) for all z € 4Y"). For n > 2m
and § = 1/n, define

1
f(;(x):m/éy/éyh(x—i—u—i—v)dudv,

where ¢ = V,,(Y) represents the m-dimensional volume of the set Y. It is
proved that
Hf§ - hHC(R?n;R) < Awl(h; (5; Y)]Rm.
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Then one chooses the polynomial
() = I (2) + P (2) + M),

where
I (z) = / fs(x +t)Ju 1 (t)dt,
10Y\Y
1O (2) = / Folx+ ) Ju 1 (D)dt,
Y

and A(z) is of the form

8
[CIERN)

Aa) = Agwi (h, 6 Y )zm »

i=1

a/'a wz(xlw";xm)'

)

The final result follows from the above Step 1 and Step 2. For all the
details, the interested reader can consult Shvedov [354]. OJ

Remark. A much weaker estimate, of order O(w; (f;n~'/?)), in approxima-
tion of convex bivariate functions by convex bivariate polynomials was ob-
tained in Lu [251]. Also, let us mention the following negative-type result due
to Lu [253]: if a sequence of multivariate linear and positive operators pre-
serves the usual convexity and the affine functions, then it is necessarily a
sequence of affine functions (i.e., trivial), a fact that is in contrast to what
happens in the univariate case.

By applying the L-positive approximation results in Section 2.3.2, we will
show that under some additional differentiability conditions, the estimate in
Theorem 2.4.11 can essentially be improved. Keeping the notation, we present
the following theorem.

Theorem 2.4.12. (Anastassiou-Ganzburg [16]) Let 2 C R™ be convexr and
compact. If f € KO1(2) N W2(82) (see Definition 2.1.5 (ii) and Remark 3
after Definition 2.1.5) and n > 2, then there exists PF € P™ N KO1(f2) such
that

If = Pillwz (@) < C(m) - Epyp(f; WE,(12)).
Proof. Let J = {j = (j1,--Jm); |lillzgm = 1}, X = W2 (£2) and consider
O flx) . . :
Linw= Y LW ven jeu

~  Qx;0x}
1<k,i<m

By Remark 3 after Definition 2.1.5, f € KO1(£2) N W2 () if and only if
Li(f)(z) > 0 for all j € J, x € (2. It is immediate that sup;c; [|L;]| < 1,
and choosing e(z) = 3> ,. x2 € Pl N KO1(2),Vn > 2, we easily get
L;(e)(z) =1,Vj € J, and the result is an immediate consequence of Theorem
2.3.6 and of Remark 2 after Definition 2.3.4. [J
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Corollary 2.4.13. (Anastassiou—Ganzburg [16]) Let 2 C R™ be convexr and
compact. For f € KO1(2)NW2(2), k > 1, n > k + 2, there exists Q}, €
PN KO1(£2) such that

If = Qullwz () < Cran ™2 gl‘gwk(Db(f);Cnfl).

Here Cp,,C > 0 are constants independent of f and n, and for any h > 0,

wi(fih) = sup{|| Zio (D = (5) (@ +s0)| : @, w + kt € 2, ||t gm < R}
is of the kind introduced in Definition 2.1.2, (iii).

Proof. It is an immediate consequence of Theorem 2.4.12 and of the follow-
ing Jackson-type estimates (see a particular case of Theorem 4.1, p. 485 in
Anastassiou-Ganzburg [16]): for any k > 1, n > k + 2, f € W2,(£2), there
exists a polynomial R,, € P, such that for every multi-index a = (a1, ..., am)
with 0 < |a| < 2, we have

ID[f = RulllL (o) < Canl?l™ 2ﬁa>§wk( b(f);CnY),

where C7,C > 0 are constants independent of f and n.
The details are those in the proof of Corollary 2.4.8. [

Remarks. (1) For other Jackson-type results in the multivariate case that
are potentially applicable above, see, e.g., Ganzburg [142], [143].

(2) Despite its generality, the above L-positive method seems to have
a shortcoming, namely in the cases of convex functions, it seems to be
not applicable to nondifferentiable functions. Indeed, the condition of the
type L(e)(z) > 1, a.e. © € 2, for a suitable chosen convex polynomial
e is too strong in the nondifferentiability case. For example, in the case
m = 1, the corresponding family of linear bounded operators would be
Lj(f)(sat) - ]f(s) + (1 - ])f(t) - f[]s + (1 - ])t}aj € (071)757t € [avb}'
It is easy to show that if j — 0 or if s — ¢, s # ¢, then L;(f)(s,t) tends to
zero, so it cannot be made > 1 for any convex function f : [a,b] — R.

Theorem 2.4.12 and Corollary 2.4.13 can be extended to approximation of
the so-called classes of polyconvex functions of order p € N defined in what
follows.

For £2 C R™ convex and compact, let W2P(§2) be the class defined before
the statement of Theorem 2.4.9.

Definition 2.4.14. Let f € W2P(£2). By Remark 3 after Definition 2.1.5, the
class of convex functions (of order 1) is denoted by KO;(f2) and consists of
all the functions that for every j = (j1,...,Jm) € R™ with ||j|jgm = 1, satisfy
the condition

>

1<k,i<m

8@
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The class of polyconvex functions of order p € N is denoted by KO,({2)
and is the class of all functions that for every j = (j1,...,Jm) € R™ with
l7]lrm = 1, satisfy the condition

L2(f)(x) > 0, Vo € 2,

where L(f) := Lj[Lg‘)il(f)]vL?(f) =TI

Remark. Suppose, for example, that m = 2, i.e., £2 C R2. Then it is easy to
show by induction that f € KO, (£2) if and only if we have (formally written)

(og+52) w20

for all (z,y) € 2 and o® + 3% = 1.

For example, for the function f(z,y) = x2y? it is easy to check that f €
KOy(£2) but f & KO+1(12).

For general m > 2, it is easy to show that f € KO,({2) if and only if we
have (formally written)

Zw(fm] (f)() >0,
i=1 ¢

forall x = (21, ..., Zm) € 2, 7y = (Y1, - -, Ym) With ||y
For simplicity we consider below the bivariate case.

g o= 1.

Theorem 2.4.15. Let 2 C R? be compact conver and f € KO,(£2), p > 1.
(i) For any n € N, n > 2p, there exists Q, € P2 N KO,($2) such that

I1f = Qhllwzr < C(p) - Epz(f; W (£2)),

where C(p) > 0 is a constant independent of [ and n.
(ii) For any k > 1, n > max{k + 2,2p}, there exists Q}, € P> N KO,(2) such
that

17~ Qilwazcey < Cn™ g we(D*(1); On ™)

Here, C,,C > 0 are constants independent of f and n.
Proof. Fix p > 1. Obviously, for each j, L%(f) is a linear bounded operator on
the space KO, (§2) endowed with the norm in W2P(£2). Also, from ||L;|| < 1,

it follows that [| L[| < 1, for all j € R?* with [|j]| = 1.
On the other hand, for e(z,y) = 2P~ [z?P + 4?P] we have

L2 (e)(z,y) > 1,

for all (z,y) € 2 and all j = (j1,j2) € R? with ||| = 1. Indeed, by simple
calculation we get L (e)(z,y) = 20=1(2p)) [537 + j5F], with j2 + 52 = 1. Making
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the substitutions j7 = u we get Lf(z,y) = 2071 (2p!)[u? 4+ (1 — u)?],u € [0,1].
As a function of u, it is easy to show that it is a convex function attaining its
minimum value at u = 1/2, i.e., L;(e)(z,y) > 2°~1(2p!)/2P~! = (2p!) > 1 for
all (z,y) € 0.

(i) Taking into account the above considerations, it is an immediate con-
sequence of Theorems 2.3.5 and 2.3.6 and of Remark 2 after Definition 2.3.4.

(ii) It is an immediate consequence of the above point (i) and of the general
Jackson-type estimate in Anastassiou—-Ganzburg [16], p. 485, Theorem 4.1. O

In what follows, for bivariate convex approximation we will obtain good
estimates of Jackson type in terms of ws moduli of smoothness and K-
functionals, under the continuity hypothesis on f only (without differentiabil-
ity conditions on f).

Looking more closely into the proof of the above Shvedov’s Theorem 2.4.11
(which is Theorem 1 in [354]), we will show that it can be modified, such that
the estimate in Theorem 2.4.11 can be improved in terms of the wy, moduli
of smoothness. Since the estimate in Theorem 1 in Shvedov [354] is a direct
consequence of the estimates (in terms of the wy modulus) in Lemmas 3 and 5
there, in what follows we will re-prove these lemmas, obtaining their estimates
in terms of the wy modulus of smoothness.

For simplicity, we consider below the case 2 = [—1,1] x [-1, 1] and m = 2.
The proof for arbitrary m is similar. Thus first, the construction in Lemma 3
in Shvedov [354] will be replaced by the following one.

We divide the square [—1,1] x [—1, 1] into rectangles, by the points —1 =
o< <Tp, =land =1 =yp < -+ < yYn, =1, then we take the diagonals
of the generated rectangles as follows:

e For the four rectangles with (1,1), (—1,—1), (1, —1), (—1, 1) as one of their
vertices, the corresponding diagonals pass through these vertices.

e For all the other rectangles, the diagonals are taken in the same directions
with the diagonals of the two rectangles having (—1,1) and (1,—1) as
vertices.

In this way, we get a division of the square [—1,1] x [—1, 1] by triangles
(i.e., a triangulation of the square [—1,1] x [—1,1]).

Let f:[—1,1] x [-1,1] — R be continuous and convex, i.e., the surface
z = f(x,y) is convex. For each triangle of the above division we consider
the unique interpolatory bivariate linear piecewise function of the form Az +
By + C that passes through the three vertices of the triangle. In this way, we
obtain a continuous bivariate linear spline, Sy, n,(f)(x,y), inscribed in the
convex surface z = f(x,y). Simple geometric reasoning shows us that this
continuous bivariate linear spline is also a convex surface, and in addition,
flz,y) < Spyn.(f)(z,y), for all (z,y) € [-1,1] x [-1,1]. Also, note that
while this construction is inscribed in the convex surface z = f(z,y), the
construction in Lemma 3 in Shvedov [354] is circumscribed about the same
surface.

For || f — Sn, n, (f)|l, we can prove the following kinds of estimates.
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Theorem 2.4.16. (Gal [136]) Let f € C([-1,1] x [-1,1]) and the distinct
nodes —1 =29 < T3 < Tig1 < Ty, = Lt =1,...,m1 —2, -1 =y < y; <
yj+1 <yn2 = 1,]2 1,...77’7,2—2.

(i) If the nodes are equidistant, i.e., x;11 — x; = 1=20,...,n1 — 1 and

7777
Yit1 — Y5 = n%; 7 =0,...,n9 — 1, then we have the estimate

1 = s s ()] < 6552 (f; < 1) 7

no
where the bivariate Ks(f;t,s)-functional is defined by Definition
2.1.2 ().

(i) If the nodes xq, ..., 2y, and Yo,...,Yn, are chosen as in Leviatan [228],
p. 478, Lemma A, then

1 1
1 = Suema(F)]| < OKS (f; < ) 7

n2
where the bivariate K3 (f;t, s)-functional is defined in Definition 2.1.2 (v).

Proof. By construction, the interpolation operator Sy, n,(f)(z,y) is defined
as follows.

Case (1). If (z,y) € [zs,zita] X [y5,yj+1], With (zit1,y541) # (1,1) and
(‘rlay]) # (71’ 71)7 then

Soma () @29) = F(iryyn) + (1 — ) L L1 00) = T (@0r5)

Tit1 — T4
)f($i7yj+l) - f(mzayj)

Yji+1 — Yj

Ty —yin
for all (z,y) € (s, xit1] X [y;,y;j+1] satisfying F; ;(z,y) < 0, and

)f(l'i+17 Yi+1) — f(@i,yj41)
Tit1 — X4

J(@iy1,95) = f(@ig1,Y541)

Yi — Yj+1

Sn17n2 (f)(a:,y) = f(xivyj-‘rl) + (x — Ty

+ (Y — Yj+1)

for all (z,y) € [zi,zit1] X [yj,y;41] satisfying F; ;(f)(z,y) > 0, where
Yi—Yi+1

Fij(z,y) = (y —yira) — (& — i) 220
Case (2). If (z,y) € [-1,z1] x [-1,y1], then

S’ﬂhnz (f)(S(}, y) = f(—l, —1) —+ (aj + 1)f($1, _1;:1_+f1(_17 _1)

f(xlayl) - f($1, *1)
y1+1

+(y+1)
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for all (x,y) € [—1,z1] x [—1, y1] satisfying Foo(z,y) <0, and
1)f($1a yi) — f(=1,y1)

Snl,nz (f)(x,y) = f(_la _1) + (l‘ +

I =+ ].
f(=Ly) — f(=1,-1)
1
+(y+1) o
for all (z,y) € [—1,f11] x [—1,y1] satisfying Fy o(z,y) > 0, where Fy o(z,y) =
W+ -+
Case (3). If (x,ly) € [#ny—1,1] X [Yny—1,1], then

f(lvynz—l) - f(zn1—17yn2—1)
1 — Tni+1

= f(xn1—17yn2—1) + (.’E - l‘nl—l)

f(]-v 1) — f(]-vyrmfl)
1- ynz—l

+ (y - ynzfl)

for all (z,y) € [Tn,—1,1] X [Yny—1, 1] satisfying F},, _1 n,—1(z,7) < 0, and
fL1) = f@n, -1, 1)

1 — Tpy—1
f($n1—1’ 1) - f(xnl—l? ynz—l)
1 _y’nlfl

Sﬂ17n2 (f)(x,y) = f(mnlflvynzfl) + (‘T - ‘T’fhfl)

+ (Y = Yny—1)

for all (z,y) € [®n,-1,1] X [Yny—1,1] satisfying F,, _1 n,—1(z,y) > 0, where
Fnlfl,nzfl(may) = (y - 1) - (m - 1)1:33%:

(i) We will estimate the difference |g(z,y) — Snyn,(9)(z,y)| for g €
W2([-1,1] x [-1,1]). If (z,y) € [-1,+1] x [-1,+1], then there exist i and j
such that (z,y) € [x;, zi+1] X [y;,Y;j+1]. To make a choice, let us suppose that
we are in Case (1) above, with F; j(z,y) < 0. (The proofs for all the other
cases are similar). By a simple calculation we have

9(@,y) = Snyna (9)(@,y) = (Y — yj11) B+ (2 — 23) F,

where
g 9@y —9(@yi) 9@ yi+) — 9(@i,y;)
Y= Yj+1 Yj+1 — Y5 7
F— 9(@, yj+1) — 9(xi, Yj1) _ 9(@it1,95) — 9(@i, y;)
L= Tit+1 — Yi

Then, using the notation for the divided difference of bivariate functions in
Popoviciu [315], we easily can write

E =1y, yj+1; [ 9C, I — W), vj+15 (26590, v)]]
= [yi v, yivns [ 9G] Wir — y5) + W5, v (2, 20 90, w)]) (@ — 25)
— Wir1, 5, u5 [5G w)]) (W1 — v)
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and

F = [z, 2 [yjr1:.9(2, )] = (25, 2iv1; [y53 9(2,)]]
= [$i+1, Ti, T, [yj+1§9(33a ')]](33 - $i+1)+[$i7$i+1; [l/j+17y§9(377 ')H(Z/jJrl )
+ [z, iy [y, v55 9(, )] (y — ;).

By the mean value theorem for divided differences (on distinct nodes), we have
2

lla,bc; [ g ()]l < 12811 lasbocs [y 9o )] < 19241, [a.bs e, ds g ()] <

Iyl [, b e ds g(, )] <||51 [l which implies

p<|2g| Ly | Lol L)% L
- 0x0y || ny Oy? || nag’
82 1 g || L d%g 1
i< |28
or Oyor 0yox
and
1 1
Iy S0 VP 071
2 0%g 0%g
< ZJ
< 2050+ 1S+ (1oL 1 2L

2 29 1 62
<ol =< =
<2 ng\|8y2||+n%||ax2u+w (st + 1221

By the linearity of Sy, n,, for any g € W2([—1,1] x [~1,1]) we obtain

1f = Snima (DI < = gl + 119 = Sy na (9 + 1Sns ma [l - 11 = gl

whete [[Sm mll == sup{lISusm (£ 1] < 1} But in Case (1), with
F, j(z,y) <0, we have

|Sn1n2(f)(xay)‘ S ‘f(xiayj+1)| + |1, _ 1| |f(mz+17yj)| + |f(xzvy])|
|xz+1 T ‘
+|y_yj+1||f(xiayj+1>|+‘f(xzay])| §5||f||7

\Z/j+1 - yj|

which implies that ||Sn, .|| < 5. It is easy to see that this inequality is valid
in all the cases of (z,y) € [-1,+1] x [-1,+1].
As a consequence, for any g € W2([—1,1] x [-1,1]) it follows that

1 = Snyma (NI < 6I1f = gll
2 2
-2 gz a5 |52t |+ )]
n2 ni1ng

87;2 022 0zxdy 0yox

il |
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i.e., passing to the infimum with g,

1 1
- Sn n S 6K. e
I = Suvna Ol < 052 (fi o)
which proves (i).

(ii) Let g € W2%([—1,1] x[~1,1]) and (a,b) € [~1,1]x[~1, 1] be arbitrary,
i.e., there exist ¢ and j such that x; < a < z;41, y; < b < yj41. From the
estimates at the above point (ii), we easily get

9(a,b) = Sny ny(9)(a;0) = (0 = y541)((b = y3)[y5, 0, 95415 9(a, y)ly
+ (b - yj-‘rl)(a/ - xl)[yj7 b7 [a/7 Ti; g(xa y)]m]y
+(a—x;)(a — zip1)[Tig1, i, a5 9(x, Yj11)] 2
+ (@ =) (i1 — b)[zi, Tiv; Y41, 05 9(2, y)]y
+ (a — ) (b — yj) @i, i3 [0, 955 9(2, y)]y o
=FE1 + Ey+ B3+ Ey + Es.

Now, reasoning exactly as in the paper Leviatan [232], at pages 7-8, we get

)
Ey = (b~ yj+1)[yj,b;/ afg(u,y)du]y

L
8:08 (u, v)dudv

b yj+1

)a g (u, v)dudv.
But by Lemma A (iii) in Leviatan [228] since xZ <u<a<zipandy; <w <

b<yjri,wegeta—x; <4 —; < cv ,yj_H —b<yjt1—y; < cv
which implies

bfyj v

)

2

c 1 1 bora g
E < u¥rv | 9 o ) d d
B2l < ning b—y; a —x; /yj /MSD 7 axay(“ v) | dudv
C 0%g
< u¥rv g o )
~ ning Pup axay(“ v)
Similarly, we get
1 Yi+1 892
E; Si/ v—Yi)(Yj+1 —v) |z (a,v)| du
| Ex | P (v =4;) (Yt —v) ayg( )
C’ , 0%g
= va u,v )
7 2 (u,0)
1 i1 892
|E5| < o= /I (u—2i)(Tit1 — u) W(%%#l)
C’ 5 0%g
<< |vaz 2 (w,v)
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Then
Yji+1 ag

Ey=(a—x;) |z;,x; ;/ —(z,v dv}
1= (=) e [ S

1 1 Ti+l  fYj+1 892
- — ;) (Y11 — b) =———(u,v)dudv,
Tit1 — T Yj+1 — b /z /b (@ — i) (yj+1 )Byax (u,v)dudv

which by similar reasoning gives

%9 (1 0)
QDMQO’U 8:[/8"1’; b

C
|Ea| < ‘
ning

Finally, by similar reasoning for Fs5, we obtain
79 (0,0
Pupy Oyox "’

|Es| <

ninz ‘

Reasoning exactly as for the Ks-functional from the above point (i), we easily
arrive at the desired estimate. The theorem is proved. [

Corollary 2.4.17. (Gal [136]) Let f € C([-1,1] x [-1,1]) be continuous and
convex on [—1,1] x [-1,1] and a € (0,1].

(i) Denoting by z = H; ;(x,y) the equations of the linear plane pieces (in-
scribed in the convex surface z = f(x,y)) corresponding to the (finite number
of ) triangulations in the division of [—1,1] x [—1,1] in the proof of Theorem
2.4.16, we have Sy, n,(f)(z,y) = max; ;{H, ;(x,y)}, for all z,y € [-1,1].
Moreover, prolonging Sp, n,(f) to Sy, .,(f)(x,y) = max; j{H; j(x,y)} for all

(z,y) € R?, it follows that S, . (f) is convex and uniformly continuous on
R2.

(i1) For all -<a L < @, we have

1
1f = Snpna (N < Cwa(f;a).

Also,
w2 (S5, ny (f)ia) < Cwa(f;a),

where wa(f;a) is given by Definition 2.1.2 (ii). Note that in this inequality,
wa (S, n,(f);a) is considered on the whole space R?, while wa(f;a) is consid-

ered on [—1,1] x [-1,1].

Proof. (i) First, since f is convex, it is immediate that Sy, »,(f)(z,y) =
max; j{H; ;(z,y)}, for all z,y € [—1,1]. Also, since each H; ;(x,y) is of the
form H; j(z,y) = A; jz + By jy + C;; for all (x,y) € R? and since H; j, |H; ;|
are uniformly continuous on R?, we immediately get that S} .. (f)(z,y) is
uniformly continuous as a finite sum of uniformly continuous functions on R?,
and it is convex as the maximum of convex functions on R2.
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(ii) By Theorem 2.4.16 we get

1 = S ma ()| < 6K (f; 1 1) < 6Ky (f:a,0),

ny no
which combined with Lemma 2.1.3 (iii), (iv), implies Ka(f;a,a) ~ wa(f;a)
and proves the first estimate.
On the other hand,

| A58 s (FYM)| < |ARSS, 1, (H(M) = AR f(M)] + | AR f(M)]
< 2[| Sy ny () = fll + w2(f; a) < Cwa(f;a),

for all M, M +h € [—1,1] x [-1,1], with |h1] < a, |h2| < a, where M = (z,y),
h = (i, o) and A2 (F)(M) = F(M + ) — 2£(M) + F(M — ), M = (a,1),
h = (hy, ha).

We prove that the function F(M,h) = ALS: . (f) (M), M € R?, h =
(h1,ha) € [=1,1] x [~1,1], is uniformly continuous on R? x [—1,1]2.

We first have

A2, (F) (M) — ,s:;I (P
< 2830, (M) = 87, (D)
1S e (F)(M + ) Syma (D 4 1)
18,y () = h) = S ()M — 1))
< S 185, (DM 4 1) = S5, (DO + 1)

+|n1n2(f)(M h) = Sy, (DM = 1)),

for all M, M’ € R? and all h,h' € [-1,1] x [-1,1].

Now, let € > 0 be arbitrary, fixed. Slnce Sy np (f) is uniformly continuous
on R?, there exists § > 0 such that for all M = ( y), M' = (2',y') € R? with
|M — M'||g2 < 6, we have

Sy s () = S5, (HOM)] < 2

Suppose now ||[M — M'||gz < §/2 and ||h — h/||gz < 6/2. This immediately
implies ||[(M +h) — (M’ £ h')||gz < §, and therefore by the uniform continuity
of Sy ,,(f), it follows that |S; . (f)(M £h) - S; no (F)(M" £ 1)] < &

which finally leads to

AR S5, s (F) (M) = A3, S5, (F)(MY)] <e.

As a conclusion, F(M, h) is uniformly continuous on R? x [—1,1]%.

Let M — h, M, M + h € R? be with h = (h1, ha), |h1| < a, |ha| < a, fixed,
where M does not necessarily belong to [—1,1] x [—1,1]. Obviously, there
exist ¢,j and a plane linear piece K; ; of equation z = H; ;j(z,y) such that
M e K.
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From the uniform continuity of F(M,h), for € = wa(f;a), there exists
0 > 0 such that

AR S, (F) (M) = AR Sy, (F)(M)] < wa(f3a),

for all ||M — M'||gz < 6 and ||h — R/||gz < 4.

But we can choose M’ sufficiently close to M and h’ sufficiently small that
M',M'—h',M'+ 1 € K; ;, which immediately implies A2, Sy . (f)(M")=0.
As a consequence, we get |[AZSy  (f)(M) < wa(f;a), which implies

wa(SE . (f);a) < Cwa(f;a) and proves the corollary. O

ni,n2

Remark. According to Lemma 2.1.3 (v), the modulus ws(f;a) in Corollary
2.4.17 is equivalent to w3 (f;a) (introduced by Definition 2.1.2 (iii)), which, in
fact, represents the modulus used in the proof of Theorem 2.4.18 below (but
with a different notation).

We are now in position to present the main result.

Theorem 2.4.18. (Gal [136]) If f : [-1,1]x[—1,1] — R is convex on [—1,1]x
[—1,1], then for any n € N, there exists a convex polynomial P, € P2 such
that

1
_ < -
Hf Pn||_Cw2(f;n+1>7

where wa(f;0) is that in Definition 2.1.2 (iii), and C > 0 is independent of f
and n.

Proof. Everywhere we will recall and use some notation in the paper of
Shvedov [354] (see also the notation in the proofs of Theorem 2.4.11 and
Theorem 2.4.16). The estimate in Theorem 1 in Shvedov [354] is a direct con-
sequence of the estimates (in terms of the w; modulus) in Lemmas 3 and 5
there. Since Lemma 3 there was already replaced by Corollary 2.4.17, in what
follows we show that the statement of Lemma 5 in Shvedov [354] is valid by
replacing w; with wy there.

For that, keeping the notation in the above-mentioned Lemma 5, we re-
mark that since (in general dimensions m) it is easy to see that

fs(x) 52m¢2/ / (x+u+v)dudv = 52m¢2/ / (x—u—v)du dv

for all x € R™, we can rewrite fs as

1 h h(x —u—
fa(x):752m¢2/5y/5y (x+u+v)—; (z —u U)dudv,

which immediately implies

1
|fs(z) = h(z)] < 52my2 /ay /W

< Aws(h;a;Y)gm,

hz+u+v)+h(z—u—wv)
2

— h(x)|du dv
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i.e., the estimate (16) in the proof of Lemma 5 in Shvedov [354] can be written
in terms of the wy modulus of smoothness too.

Here, according to the remark after the proof of Corollary 2.4.17,
wa(h;a;Y )grm denotes the second-order modulus of smoothness of A on R2
denoted by w3 (h;a), which is equivalent to wa(h;a) (both of the form in
Definition 2.1.2 (iii), but for h defined on the whole space R? and not
only on the bidimensional interval [a,b] X [c,d]). Also, wa(f;a, M) (with
M = [-1,1] x [-1,1]) in the proof of Theorem 1 in Shvedov [354], p. 524,
denotes in fact wj(f;a).

Then (16) implies (17) in terms of wy too (for (17) in terms of w; see
Shvedov [354] p. 521). Here (16) and (17) refer to formulas in Shvedov [354].
24 # (w1, 22) in Shvedov [354], p. 521,

i.e. (considering here for simplicity m = 2)

9% fs
ox?

(5E1,$2)

6@1/2 5@2/2
64¢ /5111/2 /6112/2

{E1 + daq, o + us +1)2)

— 2h(z1, T2 + U + V2)

+ h(z1 — day, x2 + ug + v2) | dus dug,

it immediately follows that

15
a2

Awz(h;a;Y g2
52a?

C(®?R)

A similar estimate in terms of wy satisfies ||%||C(R2;R).
2
Then, by the formula in Shvedov [354], p. 521, we have
fs
8x18x

6(11/2 5(12/2
54#’2/5@/2/5@/2

(z1,72)

33‘1 +5a1/2—|—v1,x2 +5a2/2—|—v2)

— h(z1 4+ da1/2 4+ vy, 29 — das/2 + vs)

—h((El —5&1/2+U1,1’2 +(5(12/2+’Ug)

+h(£171 7(5&1/24”0171‘2 76&2/2+U2) dl}l d’l)g.
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But it is easy to show that

h(z1 + da1/2 + vy, 29 + daz/2 + va) — h(x1 + da1 /2 4+ vy, x2 — daz/2 + vs)
— h(lL’l 75@1/24*1)1,1'2 +5a2/2+’02) +h($1 75&1/24”01,%2 75@2/24’1)2)

= A%§a1/275a2/2)f(x +v) — A?§a1/27—5a2/2)f(x +v),

where z = (x1,22), v = (v1,v2), A2 f(2) = f(z + @) = 2f(2) + f(z — ).
This immediately implies

‘ 0% fs

(91‘18172
i.e., the estimates (18) in the proof of Lemma 5 in Shvedov [354], p. 521, hold
in terms of ws moduli of smoothness too.
Keeping the notation for the polynomials H,(ll), ZL(LQ) in Shvedov [354], pp.
521-522 (see also the proof of Theorem 2.4.11 above) as a first immediate
consequence, it follows that estimate (19) there holds in terms of wa too.

Aws(h;a;Y )re

- 2
C(R2;R) 1) aia9

(z1,22)

Also, writing A(z1,x2) = 2Aowa(h; 0;Y )ge [% + %], the polynomials in
Lemma 5 in Shvedov [354] are now given by m,(z) = W (x) +11? (2)+A(z),
with the new above form for A(z).

Now, taking into account that the multivariate algebraic polynomial
Jn—1(t),t = (t1,...,tm) (introduced in Shvedov [354], p. 519) is even, we
immediately get

fs(x +t)Jp_1(t)dt = fs(x —t)J—1(t)dt,
10Y 10Y
which implies

fala) ~ 10 () - 1P () = [

10Y

st - LB O],

and therefore

If3(a) ~ 10 (@) ~ BP @)oo < [ walsltly ¥ )n Jua (O
10Y

< wa(f536,Y Jim / [ty 1127, (£)dt,
107

where |t|y = max{%|t1|, ..., 2= |tm|}, which by the estimates (13) in Shvedov

[354], p. 519 (see also the estimates satisfied by K, _1(t;) written in the proof

of Theorem 2.4.11), immediately implies the estimate (21) in Shvedov [354],

p- 522, in terms of wy, which is exactly the estimate in Lemma 5 in Shvedov

[354], in terms of ws.

Finally, following the lines in the proof of Theorem 1 in Shvedov [354] at
page 524 and the above considerations, it is easily seen that its estimate holds
in terms of ws too.

The theorem is proved. [J
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Remark. If in Theorem 2.4.18, f is of C?-class, then the estimate in the
statement of the theorem becomes ||f — P,|| < C/n?, and one reobtains the
result of Budnik [50].

2.5 Bivariate Monotone Approximation by Convolution
Polynomials

In this section, we construct bivariate polynomials of convolution type, at-
tached to a bivariate function, that approximate in the uniform and L? norms
with Jackson-type rate (by using suitable bivariate moduli of smoothness) and
preserve some bivariate kinds of monotonicity of function.

Recalling that in the univariate case, the first Jackson-type estimate (with-
out using derivatives) presented for monotone approximation in the uniform
norm, was Theorem 1.6.1 in Section 1.6, a bivariate analogue of Theorem 1.6.1
is the following.

Theorem 2.5.1. (Gal [125]) If f : [-1,1] x [-1,1] — R s continuous
on [—1,1] x [=1,1], then there exists a sequence of bivariate polynomials
(Poyns (F)(@,9)) 0y maen, of degree my with respect to x and ng with respect
to y, such that

|f(xay) - P’m,ng(f)(xay” < Cuwy <f7 i7 1) )
ny n2
Vny,ne €N, Va,ye[-1,1], C >0 independent of f, ni,ne,x, andy ( here
wi(f;t,s) is defined by Definition 2.1.2 (i)) satisfying moreover the following
shape-preserving properties (for their definitions see the introduction to this
chapter):

(i) If f(x,y) is increasing (decreasing) with respect to = on [—1,1] x [—1,1],
then so is P,y n, (f)(z,y);
(i) If f(x,y) is increasing (decreasing) with respect to y on [—1,1] x [—1,1],
then so is Py, o, (f)(z,y);
(iii) If f(x,y) is upper (lower) bidimensional monotone on [—1,1] x [—1,1],
then s0 is Pny ny (f)(,9);
(iv) If f(x,y) is totally upper (lower) monotone on [—1,1] x [—1,1], then so
is Py o (f)(2,9).

First we need the following lemma.

Lemma 2.5.2. (Gal [125]) Let f : [-1,1] x [-1,1] — R be continuous on
[-1,1] x [-1,1] and F(t,s) = f(cost,coss), t,s € R.
(i) We have

WI(F;aaﬁ) S wl(f;a7ﬁ)u V aaﬁ 2 07
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where

Wl(F;OZ,ﬂ)
= sup{|F(t1,s1)—F(t2, s2)|;t1,t2, 51,520 € R, [t1—t2] < @, [s1—52] < B}

(ii) If we define g(F)(t,s) : [-m, 7] X [-m, 7] = R by

Tk wj
F)t,s)=F(—, L) =cp,
g( )(75) <n15n2> Ck,j5

k k+1 ] 1 _ .
it e rﬂﬂ) and s € {WMUH) k=0, =0,
nq1 ni N2 n2

g(—t,s), if t € [-m,0] and s € [0, 7],
g(F)(t,s) :=g(t,—s), ift € [0,7] and s € [—7,0],
g(—t,—s), ift € [-7,0] and s € [—7,0],

then g(F)(-, 8),9(F)(t,),g(F)(-,-) are even and

IF(t,s) — g(F)(t,s)| < wi (F; nll ;) | Y(t,s) € [-m, 7] x [—m, 7).

Proof. (i) Let |t; — ta] < «, |51 — s2| < G, t1, 2, 1,52 € R. We get

|F(t1,s1) — F(te, s2)| = | f(costy, cossy) — f(costa,cos s2)|

< wi(f;|costy — costal|,| cos sy —cossa|) < wi(f;a,B),

reasoning as in the univariate case.
(ii) Reasoning as in univariate case (see the proof of Lemma 1.6.2 in
Chapter 1), the conclusion is immediate. [J

Proof of Theorem 2.5.1. For f : [-1,1] x [-1,1] — R define F and
g(F) as in Lemma 2.5.2.
Let us consider the Jackson kernel with

4
m't

sin T
m' = [%] +1, Kn(t)=X} 2 , K (t)dt =1,

sin — -7

and the Jackson double integral
T EN8) = [ [ Koyt = 0o (s = 0)g(F) (w,v)dude

Define

Pnl,TIQ (f)(:v,y) = Jmﬂw (g(F))(arCCOS‘Ta arccos y)a z,y € [717 1}
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Obviously P, n,(f)(x,y) is an algebraic polynomial of degree < ny + ng
(i.e., of degree < n; in z and of degree < ng in y).

First we will deduce the estimate in Theorem 2.5.1.

Using Lemma 2.5.2 (i), (ii), we get

[E(t,8) = Jnyna (9(F)) (8 8)| < |F (£ 8) = g oy (F)(E 5)]

+ 1T (F)(#58) = iy ny (9(F)) (28
SIE(t8) = Jny o (F)(E8)| + [[F = g(F)|
(

<IF(t,8) — Tua(F) (0, )] + 1 (F s ”)
ny n2

< F(t5) = Jupns (F)(6,5)| + 1 (f, z n) .

Here |G| := sup{|G(t,s)]; t,s € [-m,7]}.
On the other hand, as in the univariate case (see Lemma 1.6.2 in Chap-

ter 1), we obtain
[F'(t,8) = Jnyna (F)(2, 5)]|
/ / F(t,s) — F(t+u,s+v)| Ky, (u)K,,(v)dudv

< Cuwr (F — ) < Cwy <f;7r’7r>.
n1 no ny n2

So the conclusion is
F(t:5) = o alalE9)] < Con (£, ).

and making the substitutions ¢t = arccos x, s = arccos y, we have obtained the

desired estimate.
In what follows, we will prove the shape-preserving properties. Writing

Hn1,n2 (tv 5, U, U) = Ky, (t - U)an (5 - v)g(F)(u, U)

and using the above notation, we have
0 0
Torns@ENE8) = [ [ Hopo(to5,0.0)dudo

0 ™

—|—/ / Hp, 0, (t, 8,4, v)dudv
_71' 0

—|—/ / Hp, 0, (t, 8,4, v)dudv

0

—|—/ / Hy o, (ts,u,v)dudv = I + In + I3 + Iy
o Jo
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Let us suppose, first, that f(x,y) is increasing on [—1,1] as a function of
x, for any fixed y € [—1, 1]. We have

nmi—1 . _rk/n,
L= / Ko, (t — u)du | Ag(s),
<z_: (k1) /1
(

k=0
1 w(k+1)/n1
K, (t— u)du) Ag(
(%)
-1
(¥
(5

S

I3
—7k/nq
Iy

);

n
k 7k/n1
n

k‘+1)/’ﬂ1
n

s),
/ Ko, (t— u)du> Bu(s
/ g (s)

N u)du) By,

k}/’ﬂl
where

n2—1 —mj/n2

Z Ch.j / ny (8 —v)dv,
J+1)/n2

n2—1 7r(J-‘-l)/m

Z c;w/ (s —v)dv.

J/n2

We obtain (as in the univariate case, see the proof of Lemma 1.6.2 in
Chapter 1)

ni wk/n1

I +1I3= Zak_l(s) / Ky, (t — u)du,
k=1 —nk/ny
ni mk/n1

I+ 1= b a(s) / K, (t —u)du,
h—1 —mk/ny

where ay,(s) and by (s) are defined by the relations

Ai(s) = ar(s) + ar+1(s) + -+ + an—1(s), ie., ar(s) = Ar(s) — Arta(s)
and

By (8) = bi(s) + brg1(8) + -+ by_1(8), i.e., by(s) = By(s) — Brt1(s).

But

—mj/n2

n2—1
an(s) = Ap(s) — Apga(s) = Y _ (ory — Ck+1,j)/ Ky, (s —v)dv > 0,
=0

—7(j+1)/n2

because by hypothesis f is increasing with respect to x, that is F, is decreasing
with respect to x, that implies ¢y j — cx41,; >0, VE=0,n; — 1.
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Similarly,
na—1 m(j+1)/n2
bi(s) = Bi(s) = Brs1(s) = > (ckj— ck,jﬂ)/ K, (s —v)dv > 0.
=0 mwj/n2

As a conclusion,

aJn1,n2(g(F))(ta 5) _ Q(Il +I3) + 9(12 +I4)

ot ot ot
ni 9 mk/n1
= ar-1(s) 5 / Ko, (t = u)du
k:l at —Trk/nl
ni ) 9 mk/n1 % p
— ~ n t - S Oa
P ([ Kl

taking into account the reasoning at the end of proof of Lemma 1.6.2.

This immediately implies that P, n,(f)(z,y) is increasing with respect
to x.

Now, if we suppose that f(z,y) is increasing on [—1, 1] with respect to v,
we rewrite I, Is, I3, I, with K,,, first and then we group similarly I3 + I3 and
I + 1y.

Finally, let us suppose that f(z,y) is upper bidimensional monotone on
[-1,1] x [-1,1].

Applying successively two times the decomposition in the univariate case
in the proof of Lemma 1.6.2, we get

Jny s (9(F))(t, 5)

ni ’nzfl
=3 D (kg1 = Chy = G141+ o)

k=1 j=0
wk/n1 m(j+1)/n2

X / K, (t— u)du/ Ky, (s —v)dv.
—mk/n —m(j+1)/n2

Indeed,
n1 wk/ny
Dorna (G (E:5) = (@i (0) +ber () [ Ko (=

k=1 —7k/ny
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n1 wk/ny n2—1
=3 (/ Koy (t — u)du> { > (ek-15 = cry)

k=1 \Y —7k/n1 j=0

—mj/n2 m(3+1)/n2
X / Ky, (s —v)dv + / Ky, (s —v)dv
—m(§+1)/n2 mj/n2

1 mk/ny
= Z / Ky, (t —u)du | Dy,
—7nk/ny

k=1

where applying the reasoning in the proof Lemma 1.6.2, we get

ng—1 ﬂ(j+1)/n2
Dk = Z [(Ck—Lj - Ck,j) - (Ck—l,j-‘rl — Ck,j—‘,—l)]/ Kn2 (S o 'U)d’l}.
=0 —m(j+1)/n2

As a consequence we obtain

2 2
8 Jn17n2 (g(F))(t7S) 2 0 (Wthh lmphes a Pn17n2 (f)(x’y) 2 0) )

otos dxdy
by the proof of Lemma 1.6.2 and by the inequalities

Chkj+1 — Ckj — Chk—1,j+1 t k-1, =20, VE=1,n1, Vj=0,n2 — L

The last inequalities (concerning ¢y ;) hold from the fact that f(x,y) up-
per bidimensional monotone on [—1,1] x [—1,1] implies that F(¢,s) is upper
bidimensional monotone on [0, 7] x [0, 7].

Indeed, let us first suppose that f is of C-class.

We easily get

O*F(t o ¢
TS  intsins ZICPLO) 5 0y e o)

Now, if f is only continuous on [—1,1] x [—1, 1], then by standard proce-
dures we easily get that the Bernstein polynomials

BratDe =33 (1) (1) -y -

i=0 j=0

are uniformly convergent to f(x,y) (with m,n — +00) and are upper bidi-
mensional monotone on [—1,1].

Because obviously B, (f)(z,y) are of C?-class, reasoning as above it
follows that B, »(f)(cost,coss) is upper bidimensional monotone on [0, 7] x
[0, 7], that is, for all m,n € N, all t,s € [0, 7], and all o, 3 > 0 we get

B (f)(cos(t + ), cos(s + 3)) — Bpn(f)(cos(t + a), cos s)
—Bpn(f)(cost, cos(s + ) + Bmn(cost,cost) > 0.

Passing to limit with m,n — +o00, we obtain that F(¢,s) = f(cost,coss)
is upper bidimensional monotone on [0, 7] x [0, 7].
This completes the proof. [J
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2.6 Tensor Product Polynomials Preserving Popoviciu’s
Convexities

In order to extend the results in the real univariate case to the real bivari-
ate/multivariate case, in this section we intensively use the tensor product
method. Although the error estimates obtained are not always the best pos-
sible, this method is very accessible because it allows us to use the results in
the univariate cases.

2.6.1 Bivariate/Multivariate Monotone and Convex
Approximation

The next result extends that in the univariate case of Leviatan [228], [232] and
improves, in most cases that in Theorem 2.5.1 (excepting the cases of usual
monotonicities with respect to each variable, when the other one is fixed, i.e.,
Theorem 2.5.1 (i) and (ii)).

Theorem 2.6.1. For any continuous function f : [-1,1] x [-1,1] - R, a
sequence of bivariate polynomials (P ny (f)(T,Y))ny.meen €xists, with degree
(Poyns () (,y)) < nq + no, such that (see Gal [126])

1 1
||f_Pn1,n2|| S Cwép (fyna> B v"’L17’n'2 S N)
1

na2
where C' > 0 is independent of f, n1, and na, (W is in Definition 2.1.2 (ii)),
satisfying, in addition, the following shape-preserving properties :

(i) (Gal [126]) If f is convex of order (1,1) on [—1,1]x[—1,1] (i.e., according
to Remark 3 of Definition 2.1.1, f is upper bidimensional monotone),
then so is Py, n, (f).

(i1) (Gal [126]) If f is simultaneously convex of orders (0,1), (1,0), and (1,1)
(i.e., according to Remark 3 of Definition 2.1.1, f(x,y) is totally upper
monotone) then so is Py, n,(f).

(1ii) (Gal [126]) if f is convex of order (2,2) on [—1,1] x [—1,1], then so is
PTL1,7L2 (f)

() (Gal [126]) if f is totally convex on [—1,1] x [—1,1], then so is Py, n, (f).

(v) Let us denote by Ly 1(f)(x,y) the tensor product of the Lagrange inter-
polation polynomials on the nodes ap<ai, ag,a; € [—1,1] and by < by,
by, b1 € [—1,1], respectively, i.e., we have L11(f)(z,y) = Azy + Bz +
Cy + D, where A,B,C,D are given by the interpolation conditions
Ll,l(f)(aivbj) = f(ai7bj)f v = 07 17 Jj= 071 and

a1by f(ag, bo) — a1bo f(ao, b1) — aobi f(a1, bo) + aobo f(a1,b1)

b= (a1 — ao)(b1 — bo)
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Let us denote by ST([—1,1] x [—1,1]) the class of all functions satisfying
the condition D >0 for all —1 <ag<a; <1, =1 <by < by <1.

If f is totally convexr and f € ST([—1,1]x[—1,1]), then Py, n,(f) is totally
convez and satisfies the differential inequality

OP P 2P
P _ 2 _ g g >
(z,y) — = o (z,y) —y 99 (z,y) + ™ guay (z,9) >0

for all x,y € [-1,0] (see Open Problem 2.7.9).

Proof. For h: [-1,1] — R, according to Leviatan [228], relation (5) (see also
the proof of Theorem 1.6.3, Case 1), the approximation polynomials are given
by

Py (h)(z) )+ 237, jn(T) — (Rjt1n(2)),

h(&41.0)=(&)n)
Eit1.n—Ejn
and R, (x) are suitable chosen polynomials of degree < n.

Also, by Leviatan [228], Theorem 1 (see also the proof of Theorem 1.6.3,
Case 1), we have

where s;, = , {Ej,n,j = 0,n} are suitable nodes in [—1,1],

1
|h— Pu(h)|| < Cw§ (h; n) ,Vn e N,
where w (h; 0)so is the usual Ditzian-Totik uniform modulus of smoothness.
We will construct the polynomials Py, »,(f)(z,y) using the classical tensor
product method (see, e.g., Niirnberger [290], pp. 195-196).
We get

PTL17”2 (f)(m,y) = f(_l _1)

na—1
f(=1,m11 — f(=1,m;,
N Z it 1,n2) ( i) [Rin, (¥) — Rit1,ny(¥)]
P Ni+1,m2 — MNing

ny1—1 ; -
N Z fi+1,m—1) = f(€jny, —1) [Rjn, () = Rjt1,n, (2)]

§J+1 ni gj,m

ny— 1’I’L2 1

+ 3 SRy (8) = Rittn, )[Ry, () = Rjgam, (2),

j=0 i=0

where

*

_ S Eim Mivaing) = F(Enis it 1ing) = F(§ja1imns Miina) + £ (s Mims)
(§j+1,n1 - §j7n1)(ni+1,n2 - gi,nz)

gj,ru ) gj-‘rl,m
= Sl

Niynas Tit1,mo
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and {gj,nl}a Rj,n1 (l’), Jj= ma {771',712}7 Ri,nz (y)a i= 07727 are constructed as
in the univariate case in Leviatan [228] (see also the proof of Theorem 1.6.3,
Case 1).

Obviously, degree (P, n,(f)) < n1 + na.

First we deduce the estimate in Theorem 2.6.1. Thus, for any univariate
function h, we have

1
1Pu()]] < 0] + [ Pa(h) — hl] < |IA] + Cwt (h; n) < (14 40)|].

oo

that is, passing to sup with ||h|| < 1, we obtain (for the linear operator P,)
I1Pa]l < (1+4C), Vn €N,

with C' > 0 independent of n.
Then by Theorem 5 in Haussmann—Pottinger [167], we immediately obtain

|f = P, o ()] < C [w“ﬁx <f,nll> +w;y (f§ ;)} )
©

where wy, and wj, are the partial moduli defined in Ditzian-Totik [98],
Chapter 12. Since obviously we have

1 1 1 1
ot (rizg) vt (1) =28 (o)

we obtain the desired estimate.
Now, we will prove the shape-preserving properties.
(i) Let f be convex of order (1,1). We will prove that

82Pn1,n2 (f)(x, y) >0
Oxdy -7

Vz,y € [-1,1].

Indeed, we get

aQPnl,nz (f)(z,y)
0xdy

nlfl n271

= Z Z S’ZJ(R’IL,"ZQ (y) - ;-&-Lng (y))(R;,nl (.1?) - 3’—&-1,711 (Z‘)) > 07

j=0 =0

since from univariate case, each of (R n,(y) — Rit1.n,(y)) and (Rjn, (z) —
Rji1n, () is increasing with respect to y and x, respectively, and S;; =0,

Vi:O,TLQ, j:O,’I’Ll.
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(ii) Let f be simultaneously convex of orders (0, 1), (1,0), and (1, 1). This
implies
f(_lvni+1,n2) — f(_lvni,rm) >0
Ni+1,ne — Ni,no
f(£j+1,n17 _]-) — f(fj,n17 _1) >0

- b
Ei+1,ns — &jino

b

and S;j >0,Vi=0,n9, j=0,n1.
AlSO, Rj,nl(_l) = Ri,ng(_l) = O7 VJ = 07’017 7 = 0,77,2,

Rjﬂl (SL') - Rj+1,n1 (:L’) >0, Riﬂw (y) - Ri+1,n2 (y) >0,

Therefore, we get

0P, ny (f)(2,9)
or

€j+1n —fjn J?"ll(m)_ ;’+1,n1(1'))
T sn1

B AGTERTE i [P I
7=0

1 1 '5j+1,n1 ) fj,nl

ny— na— .

+ Zj:o i=0 ) f
Ni+1,m25 Ming

X (R, (@) = Rj iy, () (Rins (y) — Rik1na (y)
>0,Vx,y € [-1,1] x [-1,1].
Similarly, one obtains

P’n n )

8 1, 2(f)(l' y) 20, vx’ye [_171},
Ay

and finally from the previous point (i), we get

aQPm,nz (f)(z,y)
0xdy

>0, Vz,ye[-1,1].

(iii) By relation (5) in Leviatan [228], p. 473 (see also the proof of Theorem
1.6.3, Case 1), we obtain the form
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f _17771. _f _17_1
Pas () y) = f(—1, 1) 4 LELMna) ZIELZD
M,no +1
-1
+ nzz |:f(_17 77i+1,n2) - f(_lvni,nz)
P Ni+1,n2 — Mi,na
f _17 L, _f _17 i—1,
_ ( i nz) ( Mi—1,n,) Riny ()
Ming — Mi—1,n9
f(£1 ’n1’_1) - f(_17 _1)
+ : 1+2x
51,77,2 +1 ( )
—1
+7112 {f(fj—&-l,nlv_l) = f(&ni,—1)
= G+t — &G
) -1) — . -1
_ f(5]77L17 : ) — f(gj 1,n1> ):| Rj,nl (m)
§j7n1 5]—17711

712—1

+(1+2)1+)S50+ (1 +2) Y (So — Si-1.0)Rims, ()

i=1
77,171
+(1+y) > (S5 —86j-1)Rjn (x)
J=1
n1—1 112—1
+ Z Z (Sij = Sij—1—Si—1,; +Si—1,j—1) Riny () Rjn,y (2),
=1 i=1
where
S — f(£j+l,n1»77i+17n2) - f(fj,nlv'r]iJrl,nz) — f(ngrl,nuni,nz) + f(gjmumﬂm)
“ (&+1,m = &ina) Mit 1,0 = Nipns)
Note that

f<_1a 77i+1,n2) —

f(_lvniﬂw) N

f(_]-vni,nz) - f(_la 771'71,712)

Ni+1,m2 = Mino

Ni;ng — Mi—1,n9

—1
= (Nit1.ns — Mi-1,n5) if s
Ni—1,n95Mi,nas Ti+1,n9
1m0 =) = f(&m =) f(&ns—1) = f(§—1,n — 1)
§j+1,n1 - §j7n1 €j,n1 - gj—l,nl

= (&1 — Ej—1n1)

&-1m &Gma» Eit1m
5 ;

—1
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_lafl,nl _17§1,n1
* * . .
i,0 51‘71,0 = i fl - i f
Ninos MNit+1,m2 Ni—1,m95 Mi,no
-1, 617711 1
= (77i+1,n2 - 7]1‘71,@) ;f )

Ni—1,m25 Mi,nes Mit1,n0

&-1m15 Eoms i Ly

if
7177’1,77,2

505 = 50,5-1 = (&tt,m — &—1,n1)

S5 =St =S S =85 — St — (i — Sita 1)
= (&+1,n0 = &na) Mit 1,5 — Miny)
Ei—1m15 &y E+1,ms
X i f
Ni—1,n25 Things Tit1,n,
By the hypothesis on f and by R}, (y) >0, R?, (x) >0, Vz,y € [-1,1]

1,12 J,m1

(see the proof of Theorem 1.7.1, Case 1), we get

84Pn1 no () (T, y e
éxg(ay)g( ) _ Z Z (&1,m1 = Eina ) Wit 1,m0 — Mins)

j=1 i=1

fj—l,nlvgj,npfj-i-l,nl
x s f | R, ()RS, (2) 2 0.

,n2 Jn1
Ni—1,m25Thi+1,m25 Nino

(iv) By construction we have (see Leviatan [228] or the proofs of Theorems
1.6.3 and 1.7.1, Case 1)

RI' 2 O,Rj,nl (.’E) 2 O,R/'I (x) Z O,V.’E € [_171]7j = Oanla

jina §,n1
R;mz (y) > 0,R;n,(y) >0, R;:nz (y) >0,Vy € [-1,1],i =0, ns.

These inequalities combined with the hypothesis on f immediately give

0 Poy ny (f) (2, 9) 0 Py iny (f) (2, 9) 0" Py iny (F) (2, 9)
1,702 J > 1,702 ) > 1,702 Y >
2 20, 0x20y 20, dx20y? 20,
82Pn1,n2 (f)(.]?, y) > O 83P71177L2 (f)(.]?, y)
Oy? -7 Oy20x

>0,Vx,y € [-1,1].

(v) First we need to prove that the polynomials R;(z), j = 0,1,.. ., satisfy
the differential inequality

Rj(x) — zR}(z) > 0, Yo € [-1,0].
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Indeed, writing F'(z) = R;(z) — zR}(z) we have I'(r) = —xR]. Since
R}(z) > 0 for al € [~1,1], we get that F is increasing on [~1,0] and
decreasing on [0, 1].

Now, it suffices to prove that F;(—1) > 0. We have

Fj(—=1) = Rj(—=1) 4+ Rj(-1) = R} (—1) = T,,_j(arccos(—1)) = Tp,_;(m) > 0.

Note here that in order to have R;(z) — xR} (x) > 0, Vz € [-1,1], (a fact
suggested by intuition), it would be necessary and sufficient to prove that
Fi(1) = R;(1) — R;(1) = 1 = & — R;(1) > 0. For those j with §; < 0, the
above condition is clearly satisfied, because we easily see that by definition we
have 0 < R;(l) < 1. But in the present proof, the cases of j satisfying §; > 0
remain unsettled (see Open Problem 2.7.9).

Continuing the proof, the polynomials P,,, ,,(f)(x,y) can be written in
the form

’I’szl

Pn17n2 (f)(xay) = f(717 71) + B(l + y) + Z BiRi,";: (y)

’I’Llfl
+AQ+2)+ Y AR, (2) + (14 2)(1+y)S5
j=1
’ILQ—l
+(1+x) Z (Sfo—Si1.0)Rin,(y) +(1+y)

=1

n1—1

X Z (Sg,j - Sg,jfl)Rj’ﬂ1 (z)
j=1

nlfl ’nzfl

+ Z Z (S =552 =S, + 81 -1) Rins (y)

j=1 i=1

x Rj:”l (m)?

where

[ & &1
L "hinas Thi41,no
i -1 _Lglml
A= i f| B= s fs
L _lanl,n2 -1
-1
B; = (771'+1,n2 - 777271,77,2) o

Ni—1,m25Mings Ti,4+1,n0
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€i—1.m15 Eina> Ei1ma
Aj = (€j+1,n1 - gjflml) fl
-1
_1’517"1
i*,O - Sz‘*—l,o = (77i+1,n2 - T]i71,n2) SAR
771‘—1,712377i,n2777i+1,n2
&i—1.m15 Eina> §1ma
* *
S0, = 50.5-1 = (§+1,n1 — &i—1,n1) 1l
7177’1,77,2

* *
S ;= Sr o1 =S+ S,

&i—1m15 &m0 St
:(£j+17n1 _gj,n1)(77i+1,n2 _niﬂm) ;f
MNi—1,m25Mings Ni+1,n0

By a simple calculation we get

_ apnhnz(f) _ 8Pn17"2(f) aP
Py s (F)(2,9) P (z,9) Yoy (@,y) +ay—0p 5" , @

=f(=1,-1)+ S5,
-1 _1a£1,n1
+ if |+ i f
_15771,7@ -1

no—1

+ZB 1n2 szng( )]

TL11

+ Z A J7’ﬂ1 .IR; nl( )}

’ngfl

+ Z ( ;:0 — S;_Lo)[Ri,nz( ) sz ’I’Lz( )]

ni—1

+ ) (55— S5 D[R, () — 2R, ()]
j=1

ny—1lng—1

+ Z Z (S5; = Sij1—Sica; + 511

j=1 i=1
X[Riny (y) = YR, )[R, (2) — 2R, (2)] = 0,
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by the condition that f be totally convex and since f € ST([-1,1] x [-1,1]),
implies

-1 _1751,711
f(=1,-1) + S0 + sf |+ if
_17771,7L2 -1
_ 51,774771,7%2]((_17 _1) + 51,7741 f(_la'r]lﬂ’m) + 771,7l2f(£1,n17 _1) + f(é-l,n177717n2)
(517711 + 1)(771,712 +1) 7

an expression that is > 0 by replacing ag = by = —1 and a1 = &1, , b1 = N1.n,
in the definition of the class ST([—1, 1] x [—1,1]). The theorem is proved. OJ

Remarks. (1) The polynomials constructed by Theorem 2.6.1 do not pre-
serve the usual monotonicity (as Theorem 2.5.1 (i), (ii) does), but still preserve
the total monotonicity, which seems to be the most natural concept of bivari-
ate monotonicity, because by Nicolescu [286], a totally monotone function has
at most a countable numbers of points of discontinuity.

(2) The bivariate differential operator on the left-hand side of the differ-
ential inequality in Theorem 2.6.1 (v) in fact represents the “tensor product”
of the univariate differential operator in Corollary 1.7.6. Indeed, applying it
first with respect to x, we get the expression F(x,y) = P(x,y) — x%—i and
then applying it to F' with respect to y we obtain

P(x )—xa—P— aj—}—m &P
Y Ox Oy y@xay'

In what follows, we will restate Theorem 2.6.1 (i)—(iv) for the multivariate
case, with a proof for the case of functions of three real variables, because the
m = 2 case seems to be not representative for the general case m € N (as,
for example, would be the m = 3 case). Also, we will see that the proof of
the general result requires much more intricate calculation than in the case of
Theorem 2.6.1.

Theorem 2.6.2. (Gal-Gal [137]) Suppose that the function f : [-1,1]™—
R, m > 2, is continuous. Then there exists a sequence of multivariate
polynomials {Pn, . n, (f)(@1,...;&m));n1,...,Nm € N}, where degree
(P, oo, (M) (@15 oy 2m)) < ny with respect to the kth variable, k = 1,m,
such that

1 1
||f_Pn1,.‘.,n7,L(f)|| S meg (f”ﬂ,l’ )a vn17"'7nm S N7

) nm
where Cy, > 0 is independent of f and n;, i = 1,m (here wy (f;01,-..,0m)
is in Definition 2.1.2, (ii)) satisfying moreover the following shape-preserving

properties:
(1) if f is convex of order (1,...,1) on [—1,1], then so is Py, . n,.(f).
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(is) if f is simultaneously convexr of orders (si,...,8m) €
{(s1,---y8m); s € {0,1}, Vi = 1,m, and Ik with s = 1}, then so is
Parron ().

(111) if f is convex of order (2,...,2) on [—1,1]" then so is Py, . n,.(f)-

(iv) if f is simultaneously conver of orders (s1,...,8m) €

{(s1,---y8m); s; € {0,1,2}, Vi = 1,m, and Ik with s = 2}, then so

Proof. If h: [-1,1] — R, then according to Leviatan [228], relation (5) (see
also the proof of Theorem 1.6.3, Case 1), the approximation polynomials are
given by

Py (h)(z) )+ Z Sjm(Rjn(x) = Rjt1,n(x)),

h(€54+1.n)—h(&.n)
Eit1,n—Eim
R, ,,(x) are suitable chosen polynomials of degree < n.
According to Leviatan [228], Theorem 1 (see also the proof of Theorem

1.6.3, Case 1), we have

where s, = , fj}n, j = 0,n, are suitable nodes in [—1,1] and

1
| — Po(h)| < Cwf (h; n) , VneN,

where C' > 0 is independent of h and n.

We will construct the polynomials P, . . (f)(z1,...,2m) by applying
the tensor product method (see e.g. Niirnberger [290], p. 195-296). By math-
ematical induction we get

Pn1 ..... nm( )($1»'~~;$m)

= f( + Z { Z ’ [Rikynk (xk)(mk) - RikJrl,nk (‘rk)]}

k=1 Zk 0

m nr—1n;—1

Y 8D D i flik - [Rigne (@) = Riggrng (21)]

k,j=1 ix=0 i;=0

k<j
x [Rijv"j ('TJ) - Rij-i'lﬂlj ('TJ)] +ee
m Npy — Npyy —1— 1
+ Z Z Z p17 Pm—1
Plsrees Pm—1=1 11,1 =0 me 1=

P1<<Pm-1

m—
H 1ps7nps - Ril’s +17nPs (xpS)}

ni—1 Ny — 1

+ Z ... Z [-;fh7‘__’m . H[Rik’nk (l’k) - Rik—i-l,nk (J?k)],
k=1

11=0 i =0
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(k)

where ;" Riy n, (zk),i = 0,nk, k =1,2,...,m, are constructed as in the
univariate case in Leviatan [228] (see also the proof of Theorem 1.6.3, Case
1), the value of f at the point (—1,...,—1) by definition can be written as a
divided difference by
-1
i f
I
f(717 571): : )
-1

where the notation in the right-hand side denotes the divided difference of
f with m lines (see Definition 2.1) with —1 on each line, then [; f]; denotes

the divided difference obtained from the above, by replacing the line & (which
(k)

has only one node, —1), with another one composed by the two nodes ir s

and 52(511’% (the rest of the lines remaining unchanged), then [-; f]x ;. k # j
denotes the divided difference obtained (from the same divided difference that

represents f(—1,...,—1)) by replacing the lines k& and j (which have only
the node —1) with lines composed by the pairs of nodes fgf?nwfgfi_l,nk and
{l(j)n] , §gilmj, respectively, and so on.

Note that finally,

(1) (1)
Eihnl ’ £i1+17’ﬂ1 f
[';f]l,.“,m - . 5

£m) é(m)

Tm s Mem ! Sim+1,nm,

i.e., it is a divided difference with m lines, having two nodes on each line.
Obviously, degree (P, n,,(f)) < ng with respect to the kth variable,
k=1m.
First we prove the estimate in the theorem. For any univariate function h,
we have (as in the proof of Theorem 2.6.1)

1
P < 1]+ L) = 1 < Il + Cf (B3 ) < (1 20

that is, passing to the supremum with ||h]] < 1, for the linear operator P,, we

obtain
1Pl < (1+2C), VneN,

where ¢ > 0 is independent of n.
Applying now Theorem 5 in Haussmann—Pottinger [167], we immedi-
ately get

- 1
||f_Pn1,‘..,nm(f)|| S Czwiém (f’ n) ,
i=1 ?
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where wizi (f;9:), i =1, m, are the partial moduli of smoothness defined by
w§,, (f:0:) = sup{|Aifg(I (@ an)[[0 < hi < 65,2, @ € [<1,1]),
where p(t) = /1 — t2,

i“;(m @ am)

2
- Z (2) (=D)*f(zy,. . zimy,xi + (1= k)hio(x5), Tig1s - -+ Tn)
k=0

if T1yee 3 Ti—1,25 + hi@(mi)7$i+1,. -y Tm € [_1;1]a
ia;(x )f(wh...,x ) =0, elsewhere.

Taking into account that obviously
m
1 1 1
> i, (f; ) < mw§ (f; ) ,
i=1 ni ny T

we obtain the desired estimate.
In what follows we will prove the shape-preserving properties.
(i) Suppose f is convex of order (1,...,1). We have to prove that

O Py () (@1, Tm)

>0on [-1,1]™

oxy...0x,,
We get
O™ Py, () (@1, - - )
0x1...0Tm,
ni—1 N —1
= lz: Z [ f] H [aRZk o (Tk) aRik+1,nk (zk) >0
= = s J 11,0, 8.Tk 8$k =Y
because [; f]1,....m > 0 (f is convex of order (0, ..., 0)) and from the univariate
case each Ry, n, (k) — Rip+1.n,(Tk), k = 1,m is increasing as a function of

xp € [-1,1].
(ii) By the hypothesis on f, it follows that all the quantities

['v f]ka ['7 f]k,j7 cey ['; f]m,m,meu ['; f]l,--~7m

in the expression of P, ., (f) are > 0.
By Rij n,(—1) =0, Vi = 0,nk, k = 1, m, we immediately get

Rik,nk (f]@) — RikJank(xk) Z 0, Vik = O,Hk — 1, T € [—1, 1], k= l,m.
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Also, from the univariate case, we have

R;k,nk(xk) — R;k"!‘lfnk(xk) >0, Vi =0,n; — 1, 2z, € [-1,1], k=1, m.
Let (8iy...y8m) € {(s1,...,8m); si € {0,1}, Vi=1,m, I k with sp=1}.

The above hypothesis and simple calculations (similar to those in the bi-

variate case, see the proof of Theorem 2.6.1 (ii)), immediately implies that

Py (F)(1, ..., @) is convex of order (s1,..., S, ), which proves (ii).
(iii) We have to prove that

azmpnl,...,nm(f)(xla oo 71'm)
0z ...022,

> 0.

Applying with respect to each variable the relation in the univariate case (see
relation (5) in Leviatan [228], p. 473, or also the proof of Theorem 1.6.3, Case
1), i.e.,

n—1

Po(g)(x) = g(—1) + Z Sjn(Rjn(®) = Rjt1n(2)),
j=0

where

~9(&r1n) —9(Ein)

S =
o £j+1,n _gj,n

)

Poyyooon ()21, yzm) = f(—1,...,-1)

m
+3 (14 2)Ch + F(a1, ..., om) + B(z1,..., m)
k=1

ni—1 N —1 m
+ Z Z (gzgllil,rn _’Efll?nl) (Ez(:l—)&-l,nm_gz(::,)nm> (H Rik7nk; (xk)> .
i1=1 im=1 k=1
: 5(1) 75(1) 75(1)

t1—1,n10 5i1,n10 S +1,m
i f
X b
(m) (m) (m)
Eim_Ln'm ’ Einl M’ fim+17nm
where F(z1,...,2,,) is a sum of several expressions of the form (14+z;,)--- (1+
x;,)C with distinct indexes i1, ..., k < m, C a real constant (which can be
different at each occurrence) and E(z1, ..., T,) is a sum of several expressions,

each expression being a simple or multiple sum of terms, where each term is
represented by the product between:

(a) various R, n, (xr), or product of distinct R;, », (zx) (having at most m—1
terms in that product),
and



(b)

()
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a divided difference of f on one, two, or three nodes with respect to each
variable xj, such that at least with respect to one variable the divided
difference is taken on three nodes,

and

a positive quantity of the form: ({l(fll)nk - fz(f)nk) or (fz(filnk -
51(:)_1,%) or product of such distinct quantities.

Moreover, the above mentioned expressions in E(x1,...,x,,), which de-

pend on the variables zy, k = 1,m through R;, ,, (zx), are of two kinds:
expressions that do not depend on all variables xj, k = 1, m;

expressions that depend on all variables x3,k = 1,m, but at least one
Rik,nk (.%‘k) =1+ xg.

Let us exemplify the passing from m = 2 to m = 3. Therefore, let f be a

function of three variables, i.e., f = f(x1, 22, x3).

Applying the formula in the univariate case (specified at the beginning of

(iii)) with respect to the variables x; and 2, by the formulas in Gal [126],

pPp.

31-32 (see also the proof of Theorem 2.6.1), we immediately get

Pnl,nQ(f)(l'l,mQ;xB) = f(_17 —1,1’3)

+

+

-1
+ (14 x2) @ i f
gl n27£0,n2

1 1
5%,?11 ’ E((),??Ll

+ (1+21) i f
L _1 -
nog— 1 [ _1
Z ( 52211 ny 1(22) l,ng) @) @) @ af Rig,ng (1'2)
iz=1 L St G Sin 1m0
r (1) (1) (1)
ni—1 (1) 1) gil—l,nﬁle,nl?gzl—i—l,nl
Z (£i1+17n1 *gil—lm) i f | Rivna (1)
i1=1 L —1
(L4 21)(1 + 22)55 0 (f)(x3)
B 1
na—1 @ @) 71365,%1
) Y (600 62 ) S | Rizina(2)
= (2o @
i2—1,m27 Sig,no? Sig+1,ny
ni—1 ) 1) E»L(ll) 1 nlagz(ll? 1751(11-)5-17111
(Ut a) Y (600 &) | Rivns (22)
=1 -1 51 Mo
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ni—1nz—1 €7, 1,n ’51 n ’fz +1.n
(1) (1) ) @) e

+ Z Z <€i1+1,n1 751‘1,”1) (§i2+17n275127n2> @) ) 2) ;
a=1ix=1 512—17n2’£i2,n2’£i2+17n2

X Rihnl (xl)Riz,"lz (.732),

where all the divided differences are considered with respect to the variables
71,22, and 23 is fixed, arbitrary. Also, recall that the formula for S§ o(f)(w3)
is given by Gal [126], p. 31 (see also the proof of Theorem 2.6.1), and depends
on the values of f(.,.,23) on some nodes, where f is considered as a function
of the variables x1 and zs.

Now, applying the formula in the univariate case with respect to z3 to
P, n,(f)(z1,22,23), i.e., to each term of it and taking into account the re-
currence formula satisfied by the divided differences, we immediately obtain
Pp, nans (f) (21,22, x3) of the claimed form.

As a conclusion, all these immediately imply

0% P (F) (@15, Tm)

Ox3...0x2,
ni—1 N —1
k k
=SS (M e e (1T )
i1=1 Tm=1 k=1
gll 1 ”1’611 n1’£ll+1 ny
i f
X > ()

fszl Tm,? §zm,nm £Zm+1 T
by the hypothesis on f and by the conditions R} , (xp) > 0, Vi =

Uk Nk
0,ng, xr € [-1,1], k = 1,m (see Leviatan [228], or also the proof of
Theorem 1.7.1, Case 1).
(iv) First, let us recall that by construction we have (see Leviatan [228],

or also the proof of Theorem 1.7.1, Case 1)
Rik,nk (mk) >0, R; ( ) >, R

>
T, M T, N k) =

(zx) 20,
Vik:(),nk, Ty € [71,1], k=1m.

We have to check the inequalities
J"P, n1,.. ,nm(f)(xlv R 7xm)

T
Ozt ...0x,”
1 ip

>0on [-1,1]™

forallm e {2,...,m}, pe{l,....m}, ipx#iq;ifi#j r=ri+...+7rp,
where at least one 7 is equal to 2 and 7 € {0,1,2}, k=1,p.

By hypothesis, the divided differences of f that contains, at least on a
line, three distinct points all are > 0. Then, taking into account the forms
of F(x1,...,2m) and E(x1,...,x,,) described at the previous point (iii), we
immediately obtain the required conclusion. [J
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Remarks. (1) For m = 2 we recapture Theorem 2.6.1 (see also Theorem 3.1
in Gal [126]).

(2) Since in the univariate case (i.e., m = 1), the property in Theorem 2.6.2
(i) reduces to the usual increasing monotonicity and in this case, according
to Shvedov [355] (see Theorem 1.6.3 in Chapter 1) we know that w3 (f;.)
cannot be replaced by higher-order moduli of smoothness wy (f;.) with & > 3
(and with an universal constant), it follows that for arbitrary m > 2 the
same phenomenon is expected, i.e., the estimate in Theorem 2.6.2 cannot be
improved by higher-order moduli of smoothness with a constant C,, depending
only on m.

With respect to the LP-norm, 1 < p < +o00, we can prove, for example,
the following.

Corollary 2.6.3. Let us denote by CF([-1,1] x [-1,1]) the class of all
bounded functions f : [—-1,1] x [-1,1] — R such that f is (partially) con-
tinuous on [—1,1] with respect to each variable x and y. Obviously

CP([-1,1] x [-1,1]) € LP([-1,1] x [-1,1])

+1 41 1/p
-—wmﬂw—(/I/}|ﬂ%mwmw@ <too}, 1<p< oo

(here the letter P is only a notation and is not to be confused with the number
p). If f € CP([-1,1] x [=1,1]), then there exists a sequence of bivariate
polynomials (Ppy ny (F)(Z,Y))ny neen, of degrees < nq with respect to x and
< no with respect to y such that

1 1
- Pn n <C 4 YTy T ’
17 = POl < 0 (£ 7).
V ni,ng € N, C > 0 independent of f, n1 and ny (here w(f;t,s), is defined
by Definition 2.1.2, (ii)), preserving the convexity of order (1,1) in the sense
of Popoviciu.

Proof. We will use the tensor product method for the construction in the
univariate case in Leviatan—Yu [244] (see also Yu [407]), related to that in
the uniform approximation case in the proof of Theorem 2.6.1. Keeping the
notation for & and R (z) in the univariate case in Leviatan [228] and for
g :[—1,1] — R denoting

~g(&+1) — (&)

Sj(g) = =r——20, j=1,...,n—-2,
§j+1 é_j
g()(g) = §1(9)7 §nfl(g) = §n72(g)7
1 oy /2
9(§;) = ;/ 9(&; +t)dt, a; = min{§; — §5-1,&541 — &G}
JJ—aj;/2
=1, n—1,

g(=1) :=7g(&1) — (1+£)S1(9), (1) :=G(€n-1) + (1 = &n—1)Sn—2(9),
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recall that the polynomials in Leviatan—Yu [244] are given by

n—1
Pa(9)(@) =5(=1) + 3_ Si(9)[R) (@) = Rja ()]

=g(=1) + So(g)Ro(x) + Z[Fj(g) = Sj—1(9)|R; ().

Jj=2

Also, recall that for all j, Rj(z) — Rj11() are increasing, R; > 0, R} > 0 on
[~1,1], and R} >0 on [~1,1] (see Yu [407] and Leviatan [228]).

First let us consider that f € CP([-1,1] x [~1,1]) is convex of order (1,1)
in the Popoviciu sense. For the construction of the bivariate tensor product
polynomial we use the first form of the above univariate polynomial P,. Since
for the tensor product polynomial denoted by Py, »,(f)(x,y), we have to check

that 313517;2(]0) > 0on [—1,1] x [-1,1], we see that for this purpose, the term
g(—1) in the univariate case can be omitted from the tensor product, so that
if {&n,}, Rjma (@), § = 0,01, {Nin,}, Rin,(y), i = 0,n9, are constructed
as in the univariate case in Leviatan [228], then reasoning as in the proof of
Theorem 2.6.1 (i), we get

aQPnl,nz (f)(’r7 y)
0xdy

ni—1no—1

= gi N [R; KoP (y) - 2+1,n2( )] [R; nl( ) ;+1,n1 (’T)]’
j=0 =0

where

3. ':?(§j+1,n1 5 77i+1,n2)_?(§j,n1 ) ni+1,n2) — ?(§j+17n1 ) 77i>n2) + ?(Sj’nl s ni,nz)
7 (&+1,n1 = &on ) Mit 1,02 — Mins)

)

and

ajng /2 pBing/2
f(gj,m M) = / / f(&jny 1 1im, + s)dtds,
a] nlﬁ’l n2

Qj,ng /2 Bi, n2/2
Qjpy, = min{&n, — E-1nys St — &)y J = Looonn =1, Bin, =
min{n; n, —Mi—1ms> Mitlne —Minats & =1,...,n2—1. Now suppose that for

the arbitrary intervals denoted by [A, B], [C, D], [a, b], [c,d], the intersections
[A, Bl N a,b] and [C,D] N [c,d] are empty or have at most one element. We
will prove the following auxiliary result : there exist £y € [A, B, &m € [a, b,
Ny € [C, D), nm € [c,d], such that
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1
b—ad //fxydzdy

:f<£Ma771\/[)_f(gm?nM)_f(§M7nm)+f(§manm)

Indeed, we can write

D d
=55 | P diC/c Fly)dy = Flnsr) — Fln).

where F(y) = BlAff f(z,y)dr—
to y € [—1,1] and the points 1y €
mean Value theorem.

Therefore, applying once again the integral mean value theorem for con-
tinuous functions (with respect to x), there exist &y € [A, B], & € [a, b,
such that

BiA/AB f(x,ﬂM)dxb_la/abf(x,nM)dz]
B— A/ F (@ 1m) x—i/f , N )d 1

= [ Um0 — e~ [ — el
- f(van]W) _f(gmﬂ?M) _f(ngnm)"i_f(gmanm)'

y)dz is continuous with respect

by
= fa
[C, D], n [c d] are given by the integral

_ Applying now this auxiliary result to the numerator in the expression of
Sij, there exist & | < &0y 0 M, < Miy1,, such that

FErtmns Mit1,n2) = F(&jmas Mt 1,n2) = FEtrms Mina) + F(Ejnrs Miins)
= f(é.;‘-i-l,nl ’ ’r];—i-l,ng) - f(f;,nl ’ 77£+1,n2) - f(éé‘-‘,—l,nl ) 771/‘,7;2) + f(g_;,nl ) n;,ng)zoa

from the hypothesis on f.

As a conclusion, it follows that %(w >0on [-1,1] x [-1,1].
Taking into account the estimate in the univariate case in Leviatan—Yu
[244] and reasoning as in the proof of Theorem 2.6.1, i.e., applying Theorem

5 in Haussmann—Pottinger [167], we immediately get
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1 1
p p

where wy ,(f;6), and wg (f;0), are the partial moduli defined in Ditzian—
Totik [98], Chapter 12. Since we obviously have

1 1 1 1
(i), e () =2 (),
p p p

we obtain the desired estimate, which proves the corollary. [

Hf - Pm,ng(f)”p < C

Remarks. (1) The convexity of order (1,1) of f does not necessarily imply
that we have f € CP([-1,1] x [-1,1]). Indeed, for example, according to
Definition 2.1.1 (v), the (1,1) convexity is equivalent to

[z1, 22; [y1, y2; flyle > 0

forall -1 < x1 <29 <1, =1 <y < yo2 < 1. It is easy to see that if we
define F(z,y) = f(x,y) + v(z) + ¥(y), where the functions ¢(z) and ¥(y) are
discontinuous at each point in [—1, 1], then F' is discontinuous at each point
n [—1,1] but

[z1, 725 [y1, y2; Flyle > 0

forall -1 <z <z <1, -1<y; <ys <1.

(2) Since in the univariate case, the property in Corollary 2.6.3 reduces
to the usual increasing monotonicity, and in this case according to Shvedov
[355] (see Theorem 1.6.3 in Chapter 1), we know that ws(f;.), cannot be
replaced by higher-order moduli of smoothness w{(f;.), with & > 3 (and
with a constant in front of w; independent of f), then in Corollary 2.6.3 is
the same phenomenon expected.

2.6.2 Concepts in Bivariate Coshape Approximation

The tensor-product method can be applied in order to obtain new results
in bivariate copositive, comonotone, and coconvex approximations. For that
purpose, first we need suitable concepts of copositivity, comonotonicity, and
coconvexity on grids for bivariate functions, which can be defined as follows.

Definition 2.6.4. Let f,g : [a,b] X [¢,d] — R.

(i) We say that f is bivariate copositive with g if f(x,y)g(x,y) > 0 for all
(2,9) € a,8] X [c, d].

Let f € C([a,b] x [e,d]),a<z1 <...<zp<bandec<y; <...<ys <d.
One says that f changes sign on the proper rectangular grid in (a,b) x (¢, d)
determined by the segments x = z;, i € {1,...,k},y=y;, j€{1,...,s}, if

f(xay) : Hle(if - ‘rz) ! szl(y - yj) > 01 V(ac,y) € (avb) X (Cv d)
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fa,y)ITE (z — z) 71 (y —y;) <0, Y(z,y) € (a,b) x (c,d).

One says that f changes sign on the degenerated grid in (a,b) X (¢,d),
determined by the segments parallel to the OY axis, x = z;,i =1,... k, if

fla,y) Iy (x — a) 2 0,¥(z,y) € (a,b) x (c,d)

or
f(way)nikzl(x - xz) < O,V(x,y) € (a> b) X (Ca d)
Also, one says that f changes its sign on the degenerated grid in

(a,b) x (¢, d), determined by the segments parallel to the OX axis, y = y,;,j =
1,...,s,if

f($7y) 'H;=1(y - yj) >0, V(x,y) € (aab) X (Cvd)

or
f(xvy)njzl(y - yj) S Oa V(I,y) € (a7b) X (C, d)7

(ii) We say that f is upper bidimensional comonotone with ¢ if for all
points a < x7 < xo < band ¢ <y < y2 < d, we have

x1,T2 X1,T2
s f] e ;g >0.
Y1,Y2 Y1,Y2

Equivalently, if f and g are continuous, then we say that f is upper
bidimensional comonotone with ¢ if A,lli (NHlz,y) - A}L}C (9)(z,y) > 0 for
all z,x + h € [a,b], y,y + k € [e,d], h,k > 0, where A}L}C(f)(x,y) =
f(x+h,y+k) —f(x—i—h,y) —f(x,y+k)+f(x,y).

If, in addition, f and g are twice continuously differentiable on [a, b] X [c, d],
then the upper bidimensional comonotonicity can be written by the condition
;:gy (z,y) - 9Z2agy (xz,y) > 0 for all (x,y) € [a,b] x [¢,d].

If f is twice continuously differentiable on [a, b] X [¢, d], then we say that f
changes the upper bidimensional monotonicity on the proper rectangular grid
in (a,b) x (c,d) determined by the segments =z = z;, i € {1,...,k}, y=y;,
je{l,... s}, if

o f
0x0y

or

(:v,y) : Hik:1($ - {EZ) : szl(y - yj) >0, V(x,y) € (a»b) X (Cv d)v

0 f
0xdy

(@,y) - Iy (o = @3) - T3 (y = y5) <0, V(@) € (a,0) x (c,d).

Also, if f is twice continuously differentiable on [a,b] X [c¢,d], then one
says that f changes the upper bidimensional monotonicity on the degenerate
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grid in (a,b) x (¢,d) determined by the segments parallel to the OY axis
x =ux;1=1,...,k (or determined by the segments parallel to the OX axis,

y=1y;, j=1,...,s, respectively) if

>*f K
— T ) >
G @) Ts(a =) 2 0. Vi) € (a.0) % (e.d),
or
0% f
0xdy

(or respectively

(z,y) - IF (. —2;) <0, Y(z,y) € (a,b) x (c,d)

0% f
0x0y

(3373/)]];:1(9 —y;j) =20, VY(x,y) € (a,b) x (¢,d),
or
2f
0x0y

(iii) We say that f is totally upper comonotone with g if for all points
a<zi<zo<band c<y <ys <d, wehave

($7y)H;:1(y - yj) <0, V(m,y) € (avb) X (Ca d))

T1,To T1,T2
i f 9| =0,
L Y1, Y2 1 L Y1,Y2 ]
- o - e o -
i f 9| =0,
L Y1,Y2 1 L Y1,Y2 ]
and
[ Z1, T2 1T T1, T2 1
i f 91 =0
L hn 1 L hn ]

If f and g are twice differentiable on [a, b] X [¢, d], then the above conditions
can be replaced by

0% f
0xdy

0%g

. 9f o9 9f 99
0xdy

>
o ax(x,y) 20, 5, 8y(ﬂmy) >0,

(z,9)

(z,y) >0,

for all (z,y) € [a,b] x [¢,d].
(iv) We say that f is coconvex of order (2,2) (in the Popoviciu sense) with
gifforalla <z <zy <z3<bandc<y; <y <ys<d, we have
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XT1,T2,T3 T1,x2,T3

s f] e ;g >0.
Y1,Y2,Y3 Y1,Y2,Y3

Equivalently, for continuous f and g, one says that f is coconvex of order
(2,2) with g if ALLALL(F)(@,9)] - ALLIAY (9) (2, )] = 0, for all hyk > 0
and (z,y) €][a,b] x [c, d] such that Ay} [Ay (f)(z,y)] is defined.

If f and g have all the partial derivatives of order 4, then the above con-
dition can be written by

o*f g
. >
070 (z,y) 9270 (z,y) 20

for all (z,y) € [a,b] X [c,d].
Let f have all its partial derivatives of order 4 continuous on [a, ] X [c, d].
One says that f changes its convexity of order (2,2) on the proper rec-
tangular grid in (a,b) x (c,d) determined by the segments =z = xz;, i €
{17"'7k}7 Y=1Yj, JE {1335} if

o4 .
81’25;{2 (J?, y) ’ Hikzl (J} - .131) ’ H]:l(y - y]) > 0, \V,(JT,y) € (CL, b) X (C, d))
or
O 1t 113 <0, Vv b d
s ) T (2 =) T (3 =) <0, ¥(r9) € (0.b) % ().

Also, one says that f changes its convexity of order (2, 2) on the degenerate
grid in (a,b) X (¢,d) determined by the segments parallel to the OY axis,
x=uwz;, i=1,...,k (or determined by the segments parallel to the OX axis,
y=1y;, j=1,...,s, respectively) if

34

G @) Mo =20 2 0. Vo) € (@) x (cd),
or

o) .

W(x’y) : Hi:1($ - J;i) <0, v('7772/) € (a7b) X (Cv d)

(or respectively

o*f
0x20y>

(x7y) : H;:l(y *yj) > Oa V(Z’y) € (avb) X (Cv d)a

or
o*f

T Y Loy —y)) <0, ¥(wy) € (@) x (c,d)).
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(v) If f and g have all the partial derivatives of order 4, then we say that
f is totally coconvex of order (2,2) with g if

o f A 3f 03g

. > . >
0270 (z,9) 9270 (z,y) >0, 9220y (z,y) 9270y (z,y) >0,
o3 f 93g
axayQ (f,y) ’ W(I"y) 2 07
*f »g *f &g

@(a:,y)@(ac,y) >0, ayg (xvy)aiyg(l'vy) >0,
for all (z,y) € [a,b] X [c, d].

(vi) According to Popoviciu [315] (see p. 84, the expression above rela-
tionship (92)), it follows that f : [a,b] x [¢,d] — R is usually convex if for all
points a < 1 < 22 < xzz <band ¢ <y < y2 < y3 < d, we have D(f) >0
and E(f) > 0, where

Z1,T2,T3
D(f) =  f
Y1
and
[ T1,T2,T3 zs3
E(f)=4- fl- o f
L n Y1,92,Y3
[ T2,T3 T2,X3
- s f ] i f
Y1,Y2 Y1,Y2

Then f and g are called usually coconvex if D(f) - D(g) > 0 and E(f) > 0,
E(g) >0, for all points a < 1 < 29 <zz3 <band ¢ <y <ya2 <yz <d.

In the presence of corresponding partial derivatives, the above conditions
can be replaced by F(f)(z,y)F(g)(x,y) > 0and G(f)(x,y) > 0, G(g)(x,y)>0
for all (z,y) € [a,b] X [c,d], where

F(f)(e.9) = 55 )
and 5 5 5 )
61w = b Ghwn - (@)

If f has all the partial derivatives of order two continuous on [a, b] x [¢, d],
then one says that f changes its convexity on the proper rectangular grid in
(a,b) x (¢,d) determined by the segments z = z;, i € {1,...,k}, y=y,;, j €
{1,...,s}if
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92 52 9?2 2

for all (z,y) € [a,b] x [¢,d] and

O o) (o= 2 Iy — 1) 20, ¥(ay) € (@) x (e.d),
or

2f, :

O wg) - T =2 I, (= 3) 0. (o) € (@) x (e.d)
Also, if

0% f o2 f o2 f ?
@(m,y) : 37y2(957y) - (M(%y)) 20

for all (z,y) € [a,b] X [c,d], then one says that f changes its convexity on the
degenerate grid in (a,b) X (¢,d) determined by the segments parallel to the
OY axis, x = x;, i =1,...,k (or determined by the segments parallel to the
OX axis, y =y;, j =1,...,s, respectively) if

*f k
@(xvy) : Hi:l(x - zi) > 07 V(ZE,y) € (avb) X (C’ d)v

or
f
0x?

(or respectively

(z,y) ~Hf:1(x —2;) <0, VY(z,y) € (a,b) x (¢,d)

0*f s
@(z,y) : Hj:l(y - yj) >0, V(I,y) € (avb) X (Cv d)a

or
2
L ) i ly ) 0. ¥(w9) € (0) x (e, ).
(vii) Let f € C([a,b] X [¢,d]). The concepts in the above points (i)-(vi),
can easily be generalized by replacing the grids with finite systems of con-
tinuous arcs of curves or continuous closed curves of the Cartesian equations
gi(x,y)=0,i = 1,...,k, contained in the rectangle [a,b] X [c,d]. Let us first
consider the case (i), of change of sign.
We say that f changes sign on the system of continuous arcs (curves)
gi, i1=1,...,k, if

f(xay) : szzlgi(xvy) 2 O’ V(x,y) € (a'v b) X (C, d)v

or
f(xay)sz:Igi(xvy) <0, V(l‘,y) € (a7 b) X (C? d)
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For the other cases, we have the following concepts. Everywhere we suppose
that the corresponding partial derivatives of f exist and are continuous on
[a,b] x [c,d].

We say that f changes its upper bidimensional monotonicity on the system

of continuous arcs (curves) g;i = 1,...,k, if

azf(x ) ITF gi(z,y) >0, Y(z,y) € (a,b) x (c,d)

8$8y » Y i:lgl yY) =2 U, » Y ) 9 9
or

ﬁ(w VITE gi(x,y) <0, Y(z,y) € (a,b) x (c,d)

axay » Y i:lgl yY) > U, » Y ) ) .

We say that f changes its convexity of order (2,2) on the system of con-

tinuous arcs (curves) g;i = 1,...,k, if

orf K

aTayQ(x7y) . Hi:lgi(xay) > 07 V(l‘,y) € (a’7b) X (C7 d)a
or
o f

W(%y)ﬂfﬂgi(%y) <0, Y(x,y)€ (a,b) x (c,d).

One says that f changes its usual convexity on the system of continuous
arcs (curves) g;t =1,...,k, if
0% f

0a?

52 52 2
(@) G - (@) 20

for all (x,y) € [a,b] x [¢,d] and

82
L) Magile) >0, Vi) € (ab) x (e.d),

or
o f

5oz (@) L1giz,y) <0, ¥(z,y) € (a,b) x (¢, d),

Remarks. (1) The continuity of f immediately implies that if f changes sign
on the proper rectangular grid in (a,b) x (c,d) determined by the segments
r=wx;,i € {1,...,k},y =vy;, j €{1,..., s}, then we have f(z;,y) = f(z,y;) =
0 for all (x,y) € [a,b] X [e,d],i=1,....,kand j=1,...,s.

Simple examples of such f are f(x,y) = IIX | (x — ;) A5 (y —y5)9(z,y)
and f(z,y) = Hle(ezfezi)]];:l(ey—eyf)g(x, y), where g > 0 on [a, b] X [c, d]
or g <0 on [a,b] x [c,d].

Also, if, for example, f changes sign on the degenerate grid in (a,b) X (¢, d)
determined by the segments parallel to the OY axis, x = x;, i =1,...,k (or
determined by the segments parallel to the OX axis, y = y;, j =1,...,s,
respectively), then thecontinuity of f immediately implies f(z;,y) = 0 for
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all y € (¢,d), i =1,...,k (or f(z,y;) =0, for all x € (a,b), j =1,...,s,
respectively). Simple examples are f(z,y) = X, (x — x;) - g(,y), f(= ,y) =
IIf  (e* —e®)-g(x,y), where g > 0 on [a,b] X [¢,d] or g < 0 on [a,b] x [¢,d] (or
respectively f(z,y) = II5_,(y — y;)9(z,y), f(z,y) = I;_ (e¥ — e¥)g(z,y),
where g > 0 on [a,b] X [¢,d] or g <0 on [a,b] X [c d)).

(2) The continuity of the partial derivative aéfgy (z,y) in Definition 2.6.4
(ii) implies that if f changes its upper bidimensional monotonicity on the
proper rectangular grid in (a,b) X (¢,d) determined by the segments x =
xz;, i€ {1,....k},y =vy;,7 € {1,...,s}, then %(zi,y) = %(z,yj) =0
for all (z,y) € [a,b] X [¢,d], i = 1,...,k and j =1,.

Simple examples of such f are given by

Ty
fa) = [ [ My ) Ty (o - w)gtu,o)dude,
T ry
— [ i - e e - engtusv)dudo,

with g continuous and satisfying g > 0 on [a, b] X [¢,d] or g < 0 on [a, b] X [c, d].

If, for example, f changes its upper bidimensional monotonicity on the
degenerate grid in (a,b) X (¢,d) determined by the segments parallel to the
OY axis, x = x;,1 = 1,...,k,then%(m,y) =0forally € [c,d],i=1,...,k
and simple examples are

flaw) = [ [ 1 ag(u
//Hf1 v e g(u, y)du,

with g continuous and satisfying g > 0 on [a, b] X [¢,d] or g < 0 on [a, b] X [¢, d].

(3) The continuity of the partial derivative &?jigyz(x, y) in Definition 2.6.4
(iv) implies that if f changes its convexity of order (2,2) on the proper
rectangular grid in (a,b) x (c,d) determined by the segments z = z;, i €

{1,...,k}y = y;,7 € {1,...,s}, then Mzdfy (zi,y) = am#afyz(x,yj) = 0, for
all (z,y) € [a,b] x [¢,d], i = 1,...,k and j=1,...,s

Similarly, simple examples of such f are obtained by integrating ITE_ | (u—
2) - I, (v — y;)g(u,v) or IIE,(e* — e¥) - IT5_, (¢ — % )g(u,v) (where g
keeps the same sign), first twice with respect to u from a to x, and then twice
with respect to v from ¢ to y.

(4) The continuity of the second-order partial derivatives of f in Defin-
ition 2.6.4 (vi) implies that if f changes its usual convexity on the proper
rectangular grid in (a,b) x (c¢,d) determined by the segments T =2 1 €
{1,...,k}, y =vy;,5 € {1,...,s}, then %(azi,y) = gTJ;(x y;) = 0, for all
(z,y) € [a,b] X [e,d] and i =1,...,k, j=1,...,s
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Again, simple examples are obtained by integrating from a to z the expres-
sion 1T, (u—1) - IT5_ (v—y;)g(u, v) or ITE_, (€% — %) - IT5_, (" — e )g(u,v)
(where g keeps the same sign), twice with respect to u.

(5) Let us suppose that f : [a,b] x [¢,d] — R is continuous on [a, b] X [c, d]
and that f changes sign (or bidimensional monotonicity or convexity of order
(2,2) or usual convexity, respectively) on the system of continuous curves
of implicit equations g;(x,y) = 0, ¢ = 1,...,k, contained in the rectangle
[a, b] X [¢, d], as in Definition 2.6.4 (vii). If, in addition, each equation g;(x,y) =
0 can be explicitly written as y = h;(z), then the continuity of f (or of the
corresponding partial derivatives of f, rebpectively) obviously implies that we
necessarily have f(z, h;(x)) =0 (or m(x hi(x)) =0, or 852% (z,hi(x)) =
0, or %(m, hi(z)) = 0, respectively) for all z € (a,b) and i =1,... k.

For example, if f: [0,1] x[0,1] = R, g1(2,y) = 2 —vy, g2(z,y) = 2 —y* and
we suppose that f changes sign (or bidimensional monotonicity, or convexity
of order (2, 2), or usual convexity, respectively) on the first bisector in (0, 1) x
(0,1) of equation g;(z,y) = 0 and on the arc of the parabola in (0,1) x (0,1)
of equation gs(w,y) = 0, then f necessarily satisfies f(u,u) = f(u?,u) = 0
(or a‘fgy (u,u) = aaxgy(u u) = 0, or %(u u) = am#gyz(u{u) =0, or
%(u,u) o f(u u) = 0, respectively) for all u € (0,1).

Concrete S1rnple functions f with respect to the above concrete system of
curves are:

() f(@,y) = (= —y)(@—y*)g(z,y), f(z,y) = (" —e¥)(x —y?)g(w,y) with
g > 0on [0,1] x [0,1] or ¢ < 0 on [0,1] x [0,1], change their signs in this
system;

(i) f(z,y) = [y foy(u—v)(e“2 —e”)g(u,v)dudv, with g > 0 on [0, 1] x [0, 1]
or g < 0on [0,1] %[0, 1] changes its bidimensional monotonicity in this system.

Similarly, having as models the above Remarks 3 and 4, we easily can
produce simple example of functions f that change their convexity of order
(2,2) and usual convexity on the mentioned system of curves.

2.6.3 Bivariate Copositive Approximation

In this subsection, in order to obtain results in bivariate copositive approxima-
tion, we will use the results in the univariate case through the tensor product
method.

For this purpose, we need the following.

Corollary 2.6.5. (Beutel-Gonska [42]) For any f : [0,1] x [0,1] — R, with
i
Oxdy
polynomials pp m(z,y), of degrees <mn in x and < m iny such that

continuous on [0,1] X [0, 1], n,m > 8, there exists a sequence of bivariate
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ponal e liva] Ha""’”—H“[ il
OPn,m Ppom  O°f
o _ OF < C - b = — b],
H Oy H - n H 0xdy  Ox0y Cla+t
where C' > 0 is independent of f, n, m, also || - || denotes the uniform norm
and
. of 1 Pl
a—wg(%no)—k 2(aa 0>7
o of 1 ’f 1
b - (4)2(@,0, m) +w2 <5:c8y70’ m) .

Proof. If we take p = ¢ =1 and r = s = 2 in Theorem 2.3.2, then we get p’ =
¢’ = min{l,1} = 1 and taking all the possible values (0,0), (0,1),(1,0) and
(1,1) for (k,1), the estimates in Theorem 2.3.2 become exactly the estimates
in Corollary 2.6.5. OJ

We are in a position to prove (keeping the notation in Corollary 2.6.5) the
following result.

Theorem 2.6.6. (Gal [152]) If f : [0,1] x[0,1] — R has the partial derivative
08:8]; continuous on [0,1] x [0,1] and changes its sign on the proper rectan-
gular grid in (0,1) x (0,1), determined by the distinct segments x = x;,1 €
{1,....k}y = y;,j € {1,...,s}, then for all n > ng and m > mg (with
no and mg depending only on k, s, o, 8, where o = ming<;<g(zi41 — ), 5 =
ming<<s(Yj+1—Y;), 0 = zo = Yo, 1 = Tp11 = Ys+1), there exists a polynomial
P, (z,y) of degrees <n in x and < m iny that satisfies

lf = Puml <C [a + b} , where C = C(k,s,a,3) >0
n m

and is copositive with f on [0,1]*\ {AU B}, where

A= {(z,y) €[0,1%2 € U [z; — 1/n,z; + 1/n],
y & Uimily; — 1/myy; +1/m], 115, (y — y;) < 0},
B ={(z,y) € [0,1]%y € Us_y[y; — 1/m,y; + 1/m],
x g U [z — 1/n, 2 +1/n], I (z — ;) < 0}.
Proof. By Remark 1 of Definition 2.6.4, we have f(z;,y) = f(z,y;) =0, for

all (z,y) €[0,1] x[0,1],¢i=1,...,kand j=1,...,s
For py, ., in Corollary 2.6.5, let us define

pn,m(wa y) = ﬁn,m(x; y) + Z Z lz(x)l] (y)[f(zz, yj) - ﬁn,m(xia yj)]a
i=1 j—1
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where [;(x) and [;(y) represent the fundamental Lagrange interpolation poly-
nomials based on the nodes z; < --- < xj and y; < --- < ys, respectively.
We define now

k
Qn.m(T,Y) = Pnm (2, y) + Z Li(x)[f(zi,y) — Prm(Ti,9)]
=1
+Zl ZIZ y] pn,m(xayj)}'

Note that Qn,m(xiay) = Qn,m(xayj) = f(zs,y) = f(‘r?yj) =0forall z,y €
(0,1),¢=1,....,kand j=1,...,s. Also, Qn m gives the same orders for the
approximation errors as pp m, 1.e., s Pn,m, with a constant (independent of
fyn,m,x,y) that also will be denoted by C without loss of generality.

Let us consider

Py (2,9) = Qum(2,y) + Enm(z,y),

where Ep, (2, y) = eDC [% ] I gn(a— xZ)H;:Nm(y_yj)v an (), gm(y)
are the polynomials with the properties in Lemma 1 in Hu-Leviatan—Yu [176]
(see also the proof of Theorem 1.5.4 (iv) in the univariate case in Chapter
1), a,b are given by the statement of Corollary 2.6.5, ¢ = sgnf(x,y), (z,y) €
(zk,1) X (ys,1), C is as above, and D > 0 will be determined later.

It is easy to show that P, ,(z;,y) = Pym(z,y;) = 0, for all z,y €
0,1, ¢ = 1,...,k,j = 1,...,s, and that E, ,(z,y)f(z,y) > 0 for all
z,y €[0,1].

We have four possibilities :

() & & UE_y[os — 1/m, @i + 1/n] and y & Ur_y [y; — 1/m, s + 1/m];
(ii) there is i such that x € [z; — 1/n,2; +1/n] and y & Uj_[y; — 1/m,y; +
1/m];
(iii) there is j such that y € [y; —1/m,y; +1/m] and & ¢ UX_ [x; — 1/n,2; +
1/n
(iv) tléer}e is ¢ such that € [z; — 1/n,z; + 1/n] and there is j such that
y€ly; —1/m,y; +1/mj.

Case (i). Reasoning as in the proof of the univariate case Theorem 1.5.4
(iv) (see also Theorem 2 in Hu-Leviatan—Yu [176]) and choosing D > A~ (+s),
we get |Epm(z,9)| > C [2 + 2] and f(z,y)Pom(,y) > 0.

Case (ii). Reasoning as in the univariate case (see Theorem 1.5.4, (iv)

y) =

in Chapter 1 or Hu-Leviatan—Yu [176]) we obtain sgn {af 813;’" (z,y

sgn{—qn(z — i) f(z,y)}, if II5_1qm(y — y;) > 0 (ie., if II7_;(y —y;) > 0).
By the mean value theorem, we can write f(x,y) — Py m(z,y) = f(z,y) —
OPuim .
Pom(@,9) = [f(ziy) = Pam(@isy)] = (@ =) (3 — 232 ) (&), with € be-
tween z and x;. Reasoning now with respect to z (y ﬁxed) as in the univariate
case, we similarly get f(z,y)Pn.m(x,y) > 0, for all n > ng and m > 8.
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Case (iil). Reasoning as in the univariate case (Theorem 1.5.4., (iv)) we

OPn.m .
get sgn |3 — 25un] (@) = sgn{—am(y — ;) (2, 9)} i T g (2 — 2) = 0.

Using the mean value theorem, we can write f(z,y) — Ppn(z,y) =

F(@y) = Pam(@,9) = [£(2,95) = Pan(,93)] = (0 — 1) (3 = 22 ) (),

with 7 between y and y;. Reasoning now with respect to y (z fixed) as in the
univariate case, we again get f(z,y) P, m(x,y) > 0, for all n > 8 and m > my.

Case (iv). Reasoning as in the univariate case (Theorem 1.5.4 (iv)), it
follows that

son | 2L~ ZLan] (1) = snlaa (o = iy — ) o)

We can write f(amy) - Pn,m(m7y) = f(x7y) - Pn,m(xay) - [f(xwy) -
Pn,m(xwy)} - [f($7yj) - Pn,m(x7yj)] + [f(xzvy]) - an(xzayj)] = F(.’L‘,y) -
F(zi,y) — F(,y;) + F(zi, y5), with F(z,y) = f(2,y) — Pom(z,y). Applying
a known mean value theorem (see, e.g., Nicolescu [286]), there exists (£,7), &
between = and z; and 7 between y and y;, such that

f(xay) - Pn,m(x7y) = F(l‘,y) - F(‘riay) - F(xvyj) + F(xivyj)
0*F
= (& —z)(y - yj)aTay(é“m)-

Repeating now the type of reasoning in the univariate case with respect
to both = and y, similarly we obtain f(z,y)P,,m(x,y) > 0, for all n > ng,
m > myg. Finally, P, ,,(z,y) obviously gives the estimate in the statement.

Note that from the proof, it follows in fact that P, ,,(z,y) is of degrees
< 2kn in z and < 2sm in y. But by a standard procedure, we may reduce it
to degrees < n in x and < m in y, which proves the theorem. [

Corollary 2.6.7. Let f : [0,1] x [0,1] — R be supposed to have the partial
derivative aa%gy continuous on [0,1] x [0, 1].

(i) (Gal [132]) If f changes sign on the degenerate grid in (0,1) x (0,1)
determined by the distinct segments parallel to the OY axis, x = x;,i =
1,...,k, then for all n > ng and m > 8 (ng depends only on k,«, where
a = ming<i<k(®i+1 — x;), 0=z, 1 = xK11), there is a polynomial Py, m(x,y)
of degrees < n in x and < m in y that is copositive with f on [0,1)? and
satisfies

1 of 1 52 1
”f_Pn,m” <C |:’I?, (wg(a'i;n,()) _|_w2( mfy70)>

1 of 1 *f 1
+ % (w2(8y707 E) +w2(7y707 m)>:|

with C' > 0 depending only on k, «.
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(ii) (Gal [132]) If f changes sign on the degenerate grid in (0,1) x (0,1)
determined by the distinct segments parallel to the OX axzis, y = y;,j =
1,...,s, then for all n > 8 and m > mgy (with mqy depending only on s, (3,
where 3 = ming<<s(Yj+1 — ¥;), 0 = yo,1 = ys41), there exists a polynomial
Po.m(x,y) of degrees < n in x and < m in y that is copositive with f on [0, 1]?
and ||f — Py satisfies the estimate from the above point (i), with C > 0
depending only on s, 3.

(1ii) If f changes sign on the first bisector in [0,1] x [0,1] of the equation
x—y =0 (which necessarily implies f(u,u) =0 for all w € [0,1]), then for all
0<n<1/2, n>ng, and m > 8 (with ng = ng(n) independent of f), there
exists a polynomial Py, (x,y) of degrees < n in x and < max{n,[n/2] +m}
in y that is copositive with f on [0,1] X [n,1 —n] and || f — Pum|| satisfies the
estimate from the point (i), with C > 0 depending only on 7.

(iv) If f changes its sign on the arc of the parabola in [0,1] x [0,1] of
equation x — y* = 0 (which necessarily implies f(u?,u) = 0, for all u €
[0,1]), then for all 0 < n < 1/2, n > ng, and m > 8 (with ng = ny(n)
independent of f), there exists a polynomial Py, m(z,y) of degrees < n in x
and < max{2n,n +m} in y that is copositive with f on [0,1] x [n,1 —n] and
| f — Pnml satisfies the estimate from the above (i), with C > 0 depending
only on 7.

(v) Let us suppose that f changes sign on the system of curves composed
by the first bisector and the arc of the parabola x — y?> = 0 in [0,1] x [0,1]
(which necessarily implies f(u,u) = 0 and f(u?,u) = 0, for all u € [0,1])
and let pym(z,y) be a bivariate polynomial of degree < n in x and < m
in y such that || f — poml|l < CO(f)n.ms ||% — % < CU(f)n.m, where
U(fnm < nDP(f)nm, for all ny,m € N, with C > 0 independent of f, n,m,
and prom(Y,y) = Pnm(y>y) = 0 for all y € [0,1]. For all 0 < n < 1/2,
n > ng, m € N (with ng = no(n) independent of f), there is a polynomial
P, m(z,y) of degrees < 2n in x and < max{3n,m} in y, copositive with f
on [0,1] X 9,1 = n] and ||f — Ppm| < C19(f)n,m, with C1 > 0 a absolute
constant.

Proof. (i) By Remark 1 of Definition 2.6.4, we have f(z;,y) = 0 for all
ye(0,1),i=1,..., k.
For py, m in Corollary 2.6.5, let us define

k
Qn,m(xa y) = ﬁn,m(xv y) + Z lz(x)[f(xza y) - ﬁn,m(xiv y)]?
i=1
where I;(z), i = 1,...,k represent the fundamental Lagrange interpolation

polynomials based on the nodes 1 < --- < zy.

It is easy to see that the approximation errors by @, are the same
as those given by p, m in Corollary 2.6.5, with a constant (independent of
fym,m) that will also be denoted by C without loss of generality. Also, we
have Qun m(zi,y) = f(z;,y) =0forall y € (0,1),i=1,... k.
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Let us define

Pn,m(xa y) = Qn,m(xVy) + E"ym(x)’

where E, ,(z) = eDC [%+ L] IIF ¢, (z — 2;), ¢,(x) are the polynomials
with the properties in Lemma 1 in Hu-Leviatan—Yu [176] (see also the proof of
Theorem 1.5.4 (iv) in Chapter 1), a, b, are given by the statement of Corollary
2.6.5, ¢ = sgnf(z,y), (z,y) € (rx,1) x (0,1), C > 0 is as above and D > 0
will be properly chosen later.

It is easy to show that P, ., (x;,y) =0, for all y € [0,1], i =1,...,k, and
that E,, ,,(z)f(z,y) >0, for all z,y € [0, 1].

For arbitrary fixed y € (0,1), we have two possibilities:

(a) x ¢ UE_ [z — 1/n,2; + 1/n];

(b) there is ¢ such that « € [z; — 1/n,z; + 1/n];

Case (a). Reasoning as in the proof of the univariate case Theorem 1.5.4
(iv) (see also Theorem 2 in Hu-Leviatan—Yu [176]) and choosing D > A~*,
we get |Ep ()| > C [ + E] and f(z,y)Pn,m(x,y) > 0.

Case (b). Reasoning as in the univariate case (see Theorem 1.5.4 (iv) or

Hu-Leviatan—Yu [176]), we obtain sgn {W dem} (z,y) = sgn{—qn(z —

ox
zi)f(z,y)}
By the mean value theorem, we can write f(x,y) — Pym(z,y) = f(z,y) —

P @.9) ~ [F(@1.5) — Pan o) = (2 — ) (3 = 252m ) (€.9). with € be-
tween z and ;. Reasoning now with respect to z (y ﬁxed) as in the univariate
case, we similarly get f(x,y) P m(z,y) > 0, for all n > ng and m > 8. Finally,
P, m(z,y) obviously gives the estimate in the statement.

Note that from the proof, in fact it follows that P, ,,(z,y) is of degrees
< 2kn in z and < m in y. But by a standard procedure we may reduce it to
the degrees < n in z and < m in y, which proves (i).

(ii) The proof is similar to that of (i).

(iii) Defining A; = {(x,y) € [0,1)%;2 —y < 0}, Ay = {(z,y) € [0,1]%

y > 0}, and A3 = {(z,y) € [0,1]%);2 — y = 0}, it is obvious that [0, 1] =
AjUAUAs, A;nAj =0 for all i 7é j, and by hypothesis we get f(z,2) =0
for all z € [0,1]. Fix y € (n,1 — n), arbitrary.

For Py, m in Corollary 2.6.5, let us define py, 1 (%, ¥) = Drnm (2, y)+[f (v, y)—
Dn,m (Y, y)]. It is easy to see that the approximation errors by py, m(x,y) (and
b apa"m’m) are the same as those given by pn.m(z,y) (and by 22 Fem) - with
a constant (independent of f,n,m,y but depending on 7) that Wlll also be
denoted by C without loss of generality. Also, py, m(y,y) = f(y,y) = 0.

Define now

Pn.,m(ma y) - pn,m(x, y) + En.,m(ma y),

where E,, n,(z,y) = eDCla/n + b/m]q,(x — y), ¢n(u) is in Lemma 1 in Hu—
Leviatan—Yu [176], € = sgn{f(z,y), (z,y) € A2}, a,b are given by Corollary
2.6.5, C > 0 is as above and D > 0 will be determined below.

First, it is easy to check that f(z,y)En m(z,y) > 0, for all (z,y) € [0,1]2.
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Now fix y € (1,1 —n) arbitrary and let « € [0, 1] be variable. We have two
possibilities :

(1) |z —yl>
and
(2) |z —yl < .

Case (1). Choosing D > A™1, we get

F(@ ) Pom(@,y) = f(@,9) [pnm (@, y) = f(@,9)]+ (2, 9) + f(@,9) Enm(2,y),

and since

f@, ) En (2, y) = |f(2,9) En (2, 9)| = [f(2,9)|Cla/n + b/m],

it follows that f(z,y)Pn m(x,y) > 0.

Case (2). First we easily get Py m (Y, ¥) = Pnm(y,y) = 0= f(y,y). Defin-
ing F(z) = f(z,y),x € [0,1], Rym(x) = Pom(x,y), we obtain F(y) =
R,.m(y) = 0, and reasoning exactly as in the proof of Theorem 2 in the
univariate case in Hu-Leviatan—Yu [176], pp. 215-217 (since |z —y| < 1), for
D >2A7" we get F(z)Ry,m(z) > 0 for all n > ng = no(n) and m > 8.

From the continuity of f and P, ,,(z,y), we obtain f(z,y) Py m(z,y) > 0,
forall z € [0,1] and all y € [9,1 —7].

Finally, P, m(z,y) obviously gives the estimate in the statement. Note
that from the proof, it follows in fact that P, ., (x,y) is of degrees < 2n in x
and < max{n 4+ m,2n} in y. But by a standard procedure we may reduce it
to the degrees < n in z and < max{[n/2] +m,n} in y, which proves (iii).

(iv) The proof is identical to that in (iii), using the constructions

pn,m(xa y) = Dn,m (z, y) + [f(y27 y) — ﬁn,m(y27 y)]a
Pn,m(aj7 y) = pn,m(m y) + En,m(xa y)7

)

where E,, ,(z,y) = eDCla/n + b/m]q,(z — y?), ¢ = sgn{f(z,y);z — y* > 0}.
(v) Fix y € (n,1—n) and take z € [0, 1] variable. Our required polynomials
will be defined by Py, m(2,Y) = Pnm (2, ) + Epm(x,y), where

Enm(x,y) = eDCO(f)n,mqn(z — y)gn(x — y2)a

e = sgn{f(z,y); (z,y) € Az}, A3 = {(x,y) € [0,1]? : y < z}, with D > 0 to
be chosen later. Setting Ay = {(z,y) € [0,1)%¢y% < = < y}, A1 = {(z,y) €
[0,1]%; 2 < y?}, we obviously have [0,1]2 = A; U Ay U A3, with the A;NA; =0
for j # 1.

First we easily get f(x,y)En m(z,y) > 0 for all z,y € [0,1].

Since y € (1,1 —1n), we have y? < y. In what follows, reasoning exactly as
in the proof of Theorem 2 in the univariate case in Hu-Leviatan—Yu [176], pp.
215-217 (with respect to « and n in the expression of f(z,y) and P, . (z,y)
and setting y1 = y?, y2 = y), we get f(z,y)Pnm(z,y) > 0, for all x € [0,1],
y€(n,1-=mn),n>ns=ne(n), meN.
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From the continuity of f and P, ,,(x,y), again we immediately obtain that
f(z,y)Pom(z,y) >0 for all x € [0,1) and all y € [n,1 — 7], n > ng = ne(n),
m € N.

Note that from the proof, it follows in fact that P, ,,,(z,y) is of degrees
< 4n in z and < max{m,6n} in y. But by a standard procedure we may
reduce it to the degrees < 2n in z and < max{m,3n} in y. O

Corollary 2.6.8. (Gal [132]) In terms of the modulus of smoothness of the
second kind introduced in Definition 2.1.2 (iii), the estimate in Corollary 2.6.7
(i)—(iv), can be expressed by

0 0?
1= Ponll < €[ (anBi ) v T L D)

0zdy’ n
1 af 1 92f 1
o (“Z(ay )+w2(6 Ay m))] '

Proof. It is immediate by the obvious inequalities

wa(f30,0) <wa(f;9), wa(f;0,0) <ws(f;6). O

Remarks. (1) Theorem 2.6.6 is in fact a result of “almost nearly” copos-
itive approximation and corrects Theorem 2.1 in Gal [132]. Also, although
the estimates in Theorem 2.6.6 and Corollaries 2.6.7, 2.6.8 are not the best
possible, at least they may be considered as the first Weierstrass-type results
in bivariate copositive approximation.

(2) If we consider the general concept in Definition 2.6.4 (vii), it is obvious
that if the system of arcs or curves on which f changes sign are not algebraic
curves, then the copositive approximation by bivariate polynomials might
no longer be possible. For example, suppose that the continuous function
f:]0,1] x[0,1] — R changes sign on the arc of the curve y = e® in [0, 1]. Then
we necessarily have f(z,e”) = 0 for all z € [0, 1], and any bivariate polynomial
P, m(z,y) that is copositive with f necessarily satisfies P, ,,(x,e”) = 0 for
all z € [0, 1], which is impossible.

(3) In the proof of Corollary 2.6.7 (v), we cannot use completely the
method in the univariate case, as we did in cases (i)—(iv), fact that has as
a consequence a different type of estimate. Indeed, the problem is starting
from a polynomial, let us say p, », in Corollary 2.6.5, to define another poly-
nomial py, », (x,y) having the same error approximation as p,, ,, has and satis-
fying, in addition, the interpolation conditions p, m(y,y) =0 (= f(y,y)) and
Pom(y%,y) = 0(= (¥, 9))-

The standard Lagrange interpolation method produces

~ r—Yy ~
Prm(2,Y) = Pnm(@,y) + P —y [F (6%, 9) = Prm(¥*, )]

2

z—y? i
+ y— yg [f(ya y) pn,m(y, y)],
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which unfortunately it is not a polynomial in z and y (it is a bivariate rational
function), although the approximation error by p, m(z,y) is the same with
that given by pp m(z,y), with a constant C' > 0 (independent of f,n,m) and
Pam(Y,y) = [(4:9) = 0, Pum(y®,y) = f(y%y) = 0.

On the other hand, given f with the properties f(y,y) = f(y?,y) = 0 for all
y € [0,1], polynomials satisfying py.m(y,y) = pn.m(y%,y) = 0 for all y € [0,1]
can easily be constructed in the form p, ,(z,y) = (z — y)(z — ¥?)g(z,v),
with g(z,y) an arbitrary bivariate polynomial. The problem is to find such of
Dn,m (z,y) which, in addition, approximate well the function f. In this sense,
we may proceed as follows. For all n > 2 and m > 3, consider

Bn,m(f) = inf{Hf _pll;p € Pn,m N G}7

where P, ,,, denotes the set of all bivariate polynomials of degrees < n in x and
<miny, G={gg(z,y) = (r —y)(z - y*)h(z,y); h(z,y) > 0( or h(z,y) <
0),Vz,y € [0,1]}, and || - || is the uniform norm in C([0, 1] x [0,1]). According
to Remark 2 after Definition 2.3.4, there exists py,, m € Ppn,m N G such that
B (f) = I f = Pnm||- Starting from this py, (x,y) and reasoning exactly as
in the proof of Corollary 2.6.7, (v), we get the polynomials P, ,,(x,y) which
are copositive with f on [0,1] x [,1 — 1] and satisfy the error estimate

||f - Pn,m” < C- Bn,m(f)a

with the constant C' > 0 independent of f,n,m. The question is to find good
estimates in terms of moduli of smoothness for the quantity B, . (f).

2.6.4 Bivariate Comonotone Approximation

We apply now some ideas in the univariate case to deduce a result in bivariate
comonotone approximation. This is possible because we use the concept of
change of bidimensional monotonicity on a proper grid.

For that purpose, we need the following.

Theorem 2.6.9. (Gal [126], Theorem 3.1) For any f € C([-1,1] x [-1,1])
with the continuous partial derivative %@fy > 0 on [-1,1] x [-1,1], there
exists a sequence of bivariate polynomials Py, . (f)(x,y), of degrees < n in x
and < m in y, such that

1

m

1
||Pn,mf|§0w§p<f,na )7

and 8;})75;" >0 on [—1,1] x [-1,1], where C > 0 is independent of f, n, m,

x
and || - || denotes the uniform norm.

Proof. Since f has continuous partial derivative % >0on[-1,1]x[-1,1],
according to Remark 2 (iii) after Definition 2.1.1, f is upper bidimensional
monotone in [—1,1] x [-1,1]. Then Theorem 2.6.9 follows directly from
Theorem 2.6.1 (i). O
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We will extend Theorem 1.6.7 (i), to bivariate approximation. The first
main result is the following.

Theorem 2.6.10. If f : [—1,1] x [-1,1] — R has the partial derivative
g= a%y continuous on [—1,1] x [—1,1] and changes its upper bidimensional
monotonicity on the proper rectangular grid in (—1,1) x (=1,1), determined
by the distinct segments x = x;, 1 € {1,...,k}, y =y;, ¢ € {1,...,k}, then
for alln > 1 and m > 1, there exists a polynomial P, (x,y) of degrees <n
in x and < m in y that is comonotone with f on [—1,1]? and satisfies

o*f 11 11
17 =Pl = €0 | (5 ) o8 (g )+ (o) |

with C(k) > 0 depending only on k.

Before to prove it, let us consider the following important

Remark. It is evident that the estimates produced by Theorem 2.6.10 can
become very bad (tends to co with n — oo) and actually unuseful if, for
example, we take m = n®, with s > 2 (a similar phenomenon can be found in
bivariate global smoothness preservation by interpolation, see Gal-Szabados
[141]). To completely eliminate this shortcoming, we will reformulate Theorem
2.6.10 in the following more suitable form in Corollary 2.6.11, such that the
error is expressed with respect to the global degree of the polynomials. Note
that although the estimate in the next corollary is not the best possible, at
least this corollary could be considered as the first Weierstrass-type result in
bivariate comonotone approximation with respect to the total degree of the
polynomials.

Corollary 2.6.11. (i) If f : [-1,1] x [-1,1] — R has the partial derivative
g= a‘i% continuous on [—1,1] x [—1,1] and changes its upper bidimensional
monotonicity on the proper rectangular grid in (—1,1) x (=1,1) determined
by the distinct segments © = x;,4 € {1,...,k},y = y;, 1 € {1,...,k}, then
for any r > 2, there exists a polynomial P.(x,y) of total degree < r, that is
comonotone with f on [—1,1]? and satisfies

2
I = Pl < 0 [of (i ter )+ (£i2.7)]

with C(k) > 0 depending only on k.
(i) In terms of the Ditzian—Totik moduli of smoothness introduced at the
end of Definition 2.1.2 (ii), the above estimate at the point (i) can be expressed

by
82
If = Pl < C(k) [wf (&vafy’i> +ws (f; i)} .
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Proof. (i) For even r, take m = n = r/2 in Theorem 2.6.10. There exists a
polynomial P, 5(x,y) of degrees < /2 <7 in x and < r/2 <7 in y, that is
comonotone with f and satisfies

92f 2 2 2 2
_ < ¥ — ® R
Hf P",mH — C(k) |:w1 (axayv T" ’I“> +w2 <f7 ’I“’ ’I’>:| ’

with C'(k) > 0 depending only on k, which proves the statement.

For odd r, take n = [r/2] < r and m = [r/2] + 1 < r in Theorem 2.6.10.
Since n/m + m/n < 3, again we easily obtain the statement.

(ii) It is immediate by Lemma 2.1.3 (v). O

For the proof of Theorem 2.6.10 some auxiliary constructions and results
are necessary, as follows.

First we prove an additional approximation property of the polynomials
in Theorem 2.6.9.

Theorem 2.6.12. For any f € C([0,1] x [0, 1]) with the continuous partial
2

derivative ;Tgy >0 on [-1,1] x [-1,1], there exists a sequence of bivariate

polynomials Py, . (f)(x,y), of degrees <mn in x and < m in y, such that

1
HPWL,m_fHSCUJ;p (fana )7

1

m
2 2 2
*Pom  O°f < Cuf af;l,l 7
dxdy 0zdy dxdy’ n’ ' m

and a;ig’y’" >0 on [—1,1] x [-1,1], where C > 0 is independent of f, n, m,

and || - || denotes the uniform norm.

Proof. Let us consider the nodes &, 1;m in [—1,1] and R; ., (), Rjm(y)
defined as in the proof of Theorem 2.6.1 (see also Gal [126]), suggested by the
univariate case in Leviatan [228], and the tensor product of the polynomials
in the proof of Proposition 8, p. 11, in Leviatan [232] (with the corresponding
simplifications of nodes in Leviatan [228]), given by

Quon(Dlay) = Y ;

— (Sit1,n — &) (Mjs1m — Mjm)

i+1,n MNj+1,m
/ £, 0)dudv[RY, (x) — Rlyy ()]

i,m MNj,m

X [Rz,m(y) - R;—Q—l,m(y)]

By the estimate in the univariate case in Leviatan [232], Proposition 8,
and by Haussmann—Pottinger [167], Theorem 5, we immediately get

1@nm(f) = Il < Clwl o (fi1/n) + wi) (f;1/m)] < 2Cwf (f;1/n,1/m).
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m).

Replacing f by ;;gy we obtain

Q -0
mm 8m8y 0xdy 8 8 ’

Let us define

L (f //Qnm()(w,z)dwdz

1m—

Sf,j [Rin(7) = Rit1n(2)][Rjm(y) — Rj1m(y)],
i=0 j=0

where S}, has the meaning in the proof of Theorem 2.6.1.
Setting now

Pn,m(f)(xvy) = Ln,m(f)(xvy) + Gm,7l(f)('r7y)7

where

G (f)(2,y)

= pe -y S L ) 2T L) g )R
=0

Nj+1,m — Nj,m

n—1
f(£Z ) _1) - f(gi,n, —1)
! Z(:) - Eivin —&in [Rin(®) = Rit1n(2)],

it is easy to see that we reobtain exactly the polynomials in Theorem 2.6.1
(see also Gal [126], p. 29), i.e., we have

| P (f) = fll < Cwd(f;1/n,1/m) and O Fom ™ >0on [-1,1] x [-1,1].

ox 6
On the other hand, since aaP" mo— aaigy’” = Qnm( 58’;) we get
0Py 3 0% f
0zdy Jdxdy

In what follows we need to define a certain suitable extension of func-
tions to larger bidimensional intervals and to introduce the so-called bivariate
“flipped” function.

2
Writing g(z,y) = aigy (z,y),z,y € [—1,1], let us consider its exten-
sion G(g) := G to [-3,3] x [-3,3], as follows: G(z,y) = g(z,y) if z,y €
[ 1 Al G(:v y) = g(Ly) it v € L3y € [-L1); Gla,y) = g(-1.y) if

€ [-3,-1y € [-1,1]; G(z,y) = g(z,1) if = € [-1,1], y € [L,3];
( y) = gla,~1) ifa € [-1,1],y € [-3,~1]; G(z,y) = g(1,1) if 2,y € [1,3]:
( ) (11)1f$€[3,—1]y€[13} (7) (17_1)1f
2,y € [-3,~1); Glz.y) = g(1,—1) if v € [1,3], y € [~3.1].

It is easy to prove the following.
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Lemma 2.6.13. (i) If g is continuous on [—1,1] x [—1, 1] then so is G(g) on
i_373i X i_373i .

(ii) The functions g and G(g) change signs on the same proper rectangular
grid, i.e.,

Zszk:l(x - xl)(y - yl)g(xay) 2 07 Vx,y € i_17 1]7 or
Hf:l(x - xl)(y - yl)g<xay) S 07 vx7y € i_la 1ia
then I (x — z;)(y — )G (g)(z,y) > 0, Vz,y € [-3,3], or
I} (@ — ;) (y — y:)G(g) (z,y) <0, Va,y € [-3,3].

(1i1) If we set 6o = min;—o, k{®i+1 — i, Yit1 — Yi} (where zy = yo =
—1, %511 = Ype1 = 1), then for all 0 < § < §y, 0 < n < &g we have
Wip(g§ J, n)[fl,l]x[fl,l] = Wio(G(g); 9, n)[73,3]x[73,3]-

Proof. (i) By definition, we easily see that G(g) prolongs g by continuity,
from [—1,1]? to [—3, 3]?, which implies the continuity of G(g).
(ii) To make a choice, suppose for example that

Hikzl(m - xi)(y - yz)g(xvy) Z O,Vx,y € i_17 ]-i

We have nine possibilities (1) (z,y) € [-1 1] x [-1,1]; (2) (z,y) € [-1,1] x
i_37 _1ii (3) (‘T y [ i [1,3], (4) ('T E [ 3, — iX[ L, 1i’ (5) ($7y) €
[1,3] x [~1,1]; (6) (2,9) € [1.3] x [-3,~1); (7) (x.y) € [1.3] x [1,3) (8)
(;z:,y) € i_3’ _1i X [1,3]; 9 (:C’y) € i 37 i x i 3’ _li

Case (1). Since G(g) = g, we get
Iy (x — a3)(y — yi)g(x,y) 2 0, Yo,y € [-1,1].
Case (2). By definition we have G(g)(z,y) = g(x, —1), that is
Iy (x = 23)(y = 91)G(9) (@, y) = Iy (@ = 20)(y — yi)g(x, 1)
Iy —wi)
IF (-1 —y)
Case (3). By definition we have G(g)(z,y) = g(x,1), that is

IF (x = 2)(y — y:)Gg) (2, y) = Ty (v — 23) (y — yi)g(x, 1)

I (y —wi)
Hikzl(l —Yi)

The proofs for the other Cases (4)—(9), are similar.

(iii) The proof is very simple. First, because G(g) prolongs g, it is obvi-
ous the inequality w{(g;d,1m)—112 < w{(G(9);9,1)[—3,3)2- For the converse
inequality, we easily observe that any difference G(g)(u,v) — G(g)(z,y) with
u, v, x,y € [—3,3], can be expressed in terms of a similar difference of g, that
is there exist points a,b,¢,d € [—1,1], such that G(g)(u,v) — G(g9)(z,y) =
g(aa b) - g(C, d) U

I (¢ — @) (=1 — yi)g(, —1) > 0.

If (x = 2) (1 — yi)g(x, 1) > 0.
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Definition 2.6.14. Let f : [-1,1] x [-1,1] — R be with partial derivative

aa2g continuous on [—1, 1] x[—1, 1] such that f changes its upper bidimen-
sional monotonicity on the proper rectangular grid in (—1,1) x (=1, 1) deter-
mined by the distinct segments © = x;, i € {1,...,k}, y =y;, i € {1,...,k},
such that there exists j with z; = y; = 0.

Define the “flipped” function attached to f, denoted by F(f), as follows:
first define g(x,y) = g(x,y) if zy > 0, g(x,y) = —g(z,y) if 2y < 0 (which
remains continuous on [—1, 1] x [—1, 1] since by the Remark 2 after Definition
2.6.4, we necessarily have g(ml,y) = g(z,y;) = 0 for all z,y € [-1,1],7 =
1,...,k). Then one takes F(f =y J3 9(u,v)dudv for all z,y € [-1,1].

Remarks. (1) Obviously we have 8;58(5) = g, continuous on [—1,1] x [-1,1].

(2) Since by its definition, it easily follows that § changes its sign on
the proper rectangular grid in (—1,1) x (—1,1) determined by the distinct
segments ¢ = x;,1 € {1,...,k}\{j}, y=wi,t € {1,...,k}\{j}, so on a proper
rectangular grid in (—1, 1) x (=1, 1), determined by a number of segments with
two fewer than that for g, it means that F(f) changes its upper bidimensional
monotonicity on a proper rectangular grid in (—1,1) x (—1,1), determined by
a number of segments two less than that for f.

(3) We have j(z,y) = sgn{zy}g(z,y). ie., ja.y) = sen{oy} ok (v.y),
which immediately implies F(f)(z,y) = sgn{zy}[f(z,y) — f(z,0) — f(0,y) +
f(0,0)].

(4) In the next proofs, C' > 0 denotes a constant that is independent of f,
n, m, k and can be different at each occurrence.

We also need the following lemma.

Lemma 2.6.15. Let f : [-1,1]x[—1,1] — R be with continuous partial deriv-

ative g 1= 68;8]; continuous on [—1,1] x [—1,1] such that f changes its upper
bidimensional monotonicity on the proper rectangular grid in (—1,1)x (=1, 1),
determined by the distinct segments x = x;,1 € {1,....k},y = y;, @ €
{1,...,k} and there exists j with x; = y; = 0 and f(0,0) = 0. Denoting

by F(f) the “flipped” function in Deﬁnition 2.6.14, let us suppose that for

some n,m > 1 and some € > wf(aafay ;1/n,1/m) there exists a bivariate

polynomial pp m(x,y) of degrees < n in x and < m in y, which is upper
bidimensional comonotone with F(f) on [—1,1]? and satisfies the estimates

nom 1 1
HF(f) 7pn,m|| S € (a + g) +Clw;p <f;n7> )

m

2 2
OF(f) O pum] - _
0xdy oxdy || —

where || - || denotes the uniform norm on C([—1,1] x [-1,1]) and C; > 0 is
independent of f, n, and m.
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Then there ezists a polynomial Pay om (x,y) of degrees < 2n in x and < 2m
in y, upper bidimensional comonotone with f on [—1,1]?, satisfying

11
If = Pamll < C {5 (24 2) ug (f;n7m>} |

82f . 82P2n,2m
0zdy 0zdy

with C > 0 independent of f, n, and m.

H S Ce,

Proof. First we show that in essence, the polynomial p,, ,,,(z,y) in the hy-
pothesis can be redefined to satisfy the conditions py, ., (0,0) = 0, py m(z,0) =
Pnm(0,y) = 0, for all 2,y € [~1,1]. Indeed, writing B,, ,,,(%,y) = Pn.m(2,y) —
Prm(2,0) = Pnm(0,y) + Pnm(0,0), we have Tgn,m(ovo) = Pnm(z,0)
pn,m(O,y) = 0, and since we also have F(f)(0,0) = F(f)(z,0) = F(f)(0,y) =
0, it follows that ||F(f) — T)an <A F(f) = pnmll, while p, ,,,(z,y) has the

FPrim _ *Prm
same degrees as p, m(z,y) and 520y = et

By f(0,0) =0 we get

flz,y) //8u(‘9 (u,v)dudv + f(z,0) + f(0,y).

There exist (see, e.g., Ditzian—Totik [98]) r,(x) and s,,,(y) polynomials of
degrees < n in x and < m in y, respectively, such that

|f(u70) - Tn(u)| < C’wf(f(,O), ]./TL) < CW;I(]C, 1/TL), Vu e [_1’ 1]
and
70,0) = 50 (0)] < CL(£(0.),1/m) < Cufy(f:1/m), Vo € [-1,1]

Define

Ranan(on) = [ [ Gl 0 wan () dus,

where ¢,(u) and ¢,,(v) represent the-good approximation polynomials of
sgn(u) and sgn(v), of degrees < n in w and < m in v, respectively, given
as in the proof of the Lemma in Beatson-Leviatan [34], p. 221 (see also the
proof of Lemma A in the proof of Theorem 1.6.7). Therefore R, ,,,(x,y) is a
polynomial of degrees < 2n in z and < 2m in y.

Note that Ry, 2m (2, y) is upper bidimensional comonotone with respect to
F(f)(x,y)sgn{zy} = [f(z,y) — f(z,0) — f(0,y)] (see Remark 3 after Defini-
tion 2.6.14). Since f(z,y) — f(z,0) — £(0,y) is obviously upper bidimensional
comonotone with f(x,y), it follows that R, ., (x,y) is upper bidimensional
comonotone with f(z,y).
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If we define now Pay om(2,y) = Ranom (2, y) + 7o (x) + $m(y), then obvi-
ously that Py, om (2, y) remains upper bidimensional comonotone with f(z,y)
and it is of the same degrees as Rop 2m (T, y).

Also, we have

x,y) P2n2m(1' y)
[ 0 8u6v (u, v)dudv = Ron2m (2, y) | + [f(2,0) = 70 (2)]
y) = sm(y)],

where

//8u8 (u,v)dudv — Rop om(x,y)

Y a2pnm
/ / (u,v dudv—/ / Sudo (u, 0)qp (W) gm (v)du dv

:/0 /0 [G(u,v) — 6850”0 (u,v)]sgn{u}sgn{v}du dv

“ Y pnm -
+/O /0 Oudv (u U)[Sgn{u}sgn{v} - Qn( ) m(’U)]du dv:=1+J.

For the integral I, taking into account Remark 1 of Definition 2.6.14 and
the above possibility to choose p, ,,, We easily get

I= /m /y[é(u, v) — 32pg;1 (u, v)]sgn{u}sgn{v}du dv

/ / y 8aua ) - aai’é’"w v)Jsgn{u}sgn{v}du dv

= sgo{zfsgn{y}[F(f)(2,y) = pnm(2,y)]-

Therefore, ||I|| < ||F(f) — pn,m|l, which implies

|f (@, ) = P om (z,9)| < L] + ]| + Cwi,(f;1/n) + Cwf, (f;1/m)
<||F(f) = pamll +2Cwg (f;1/n,1/m) + ||J||.
We used above the obvious inequality
ws  (fi1/n) +wi (f;1/m) <205 (f;1/n,1/m).
In what follows we estimate the integral J. Setting n = sgn{z}/n, £ =

sgn{y}/m, for 0 < |z| < i/m,i=1,...,n,and 0 < |y| < j/m,j=1,...,m,
we get
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i—1j—1 (a+1)n (b+1)¢ (92
Pn,m
EED3S / / Gur ()] [sen{u}sgn{v} — gn(u)gm (v)|dudv
a=0 b=0
i—1j—1 (a+1)n (b+1)¢ 62
Pn,m
: 222/ / Oudv ;v)| - [sgn{u} — gn(u)|dudv
a=0 b=0
i—1j—1 (a+1)7 (b+1)¢ 82
Ly / / aia V)| - [sgn{v} — gm(v)|dudv == J1 + Jo.
a=0 b=0

We used above the easy-to prove inequality (taking into account that by
Beatson—Leviatan [34], formula (6), we have ||¢,| < 2)

Isgn{utsgn{v} — gn(u)gm(v)| < 2[sgn{u} — gn(u)| + 2Jsgn{v} — gm(v)|.

Now we estimate J;. First, keeping the notation in Definition 2.6.14, we
have

82 n,m 82 n,m ~ ~
\ a (u,w's‘ Prm (0, o) — ()| + 13(us )1,

Oudv Oudv

where recall that by Remark 1 after Definition 2.6.14, we have %ngy) g,
]

the properties of g implies g(u,0) = §(0,v) = §(0,0) = 0, for all u,v € [—1,1
and therefore, if |u| < i/n and |v| < j/m, then we get

|§(7.L,’U)| § |§(ua 1}) - g(ua0)| + \g(O,v) - §(0,0)\
< Wiy (3;2v]) +wf (9 2[ul)
< Cjwi,(g:1/m) + Ciwf ,(§;1/n) < C(i + j)wf (3:1/n,1/m).
The above estimates easily follow from the fact that given, for example,
€ [-1,1], there are w € [—1,1] and h > 0, with h < 2|ul, satisfying the

system w + %(p( ) =u,w— *(,0( ) = 0, which implies that for any function
H we have

() = HO) = |1 (w0 Gotw)) = 1 (- Getw)| < wf azin)

4u?

Indeed, we choose w = u/2 which implies h given by the equation h? = I

As a conclusion, we get

%P
Oudv

< e+ C(i+ jwi(g;1/n,1/m),

0%pnm
‘ Oudv (u )’

9 ‘ + O+ ) (G 1/n,1/m)

for all |u] <i/n and |v| < j/m
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We can write

i—17-—1

Jii=> Y cap

a=0 b=0

[

i—1j—1

—|—ZZCQ’Z, =51+ 52+ S5+ Sy.

a=1b=1

*Pr.m ()
Ooudv

j—1 i—1
- Isgn{u} — ¢n(u)|dudv + Z cop + Z Ca,0
b=1 a=1

Taking into account the above inequality, the properties of ¢, (z), ¢m(y), and
reasoning similar to the case of one real variable in Beatson-Leviatan [34],
proof of lemma, pp. 221-222 (see also Lemma A in the proof of Theorem
1.6.7), we get

C
< Y95
S1 < —[wf (5 1/n,1/m) + <],
C e Ce m
< — P < ©/~, m
0% Sl 0 207G 1/ 1) < 5+ Gt i1 /n1 )
C 3 Ce C
< — E - J; < ez,
Sz < v a=1a [(a+2)wi(g;1/n,1/m) +¢€] < — + W (971/n71/m)rml7
o izl
Si<—— 3" ¥ a (et bt 2wi(Fi1/n 1/m) +e]
a=1b=1
CE m
< =& ez, m
R (VIRVI:

This implies

J=81+85+5+85, < % +wa(§;1/n,1/m)%,

which for ¢ > wf(agfa(g);l/n, 1/m), gives J; < Ce™.
Similarly, by symmetry it follows that Jo < Ce ™.

As a general conclusion, we obtain ||.J|| < Ce[m/n + n/m] and

If = Ponamll < [F(f) = ol + 205 (f31/n,1/m) + || ]|

< CEC + )+ (f31/n1/m)].
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Reasoning as in the univariate case (see Beatson-Leviatan [34]), we get

a2f a2P2n,27n o 82f 82pn,m
%(%y) - m(x’y)’ = m(%y) - 9y (%y)Qn(x)Qm(y)‘

2 2
=B ) - o e )

0x0y
PE(f)  Ppam
< — ’ <
=0 H 02y dzdy ’ <G,

which proves the lemma. [J

Remark. It is easy to see that the polynomials Py, 2, of degrees < 2n in z
and < 2m in y can in fact be modified to become of degrees < n in z and
<miny.

Proof of Theorem 2.6.10. Let («, 3) be a point such that the segments
(r=a,y € (-1,1)) and (y = 8,2 € (—1,1)) belong to the proper rectangular
grid of changes for the upper bivariate monotonicity of f in the statement of
Theorem 2.6.10, which obviously implies Bfgy (o, B) = 0.

Let h;(z) and g;(y) be polynomials of degrees < ¢ in = and < j in y,
respectively, such that

and

[fey) = g;(y)] < Cwi(f(a,-);1/5) < Cuf,(£:0,1/5),Vy € [-1,1].

For small n and m, e.g., n,m < N(k) the theorem is trivial. Indeed, we
obtain

|f(z,y) = hn(z) — gm(y) + [, B)]
< If(l’,y)—f(a?,ﬁ)—f(a,y)+f(a,ﬁ)|+\f($,ﬁ)—hn($)|+|f(04,y)—gm(y)|

2

0
< fo = al -y = Bl (€] + Clof 31/ 0) +F, 30,1 /)

0? 0?
<20 (1 /n1fm) + 2| (e = 5 (e )
< CUp (3 1/m,1fm) + 200 (52,2
< CUp (s 1/m1fm) + Ot (i1 1 /m)

0%f 1 1 11
< O (2 + Mt (s )+ U )|

Therefore, we will prove the theorem for large n and m, by induction on k,
with k representing the number of distinct segments parallel to the OY axis
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and also the number of distinct segments parallel to the OX axis, such that
on the grid determined by these segments, f changes its upper bidimensional
monotonicity.

The theorem is obviously valid for £ = 0 by Theorem 2.6.12.

Assuming now that the theorem is true for £k — 1 with & > 1, we prove it
for k.

By Lemma 2.6.13 we can continuously extend g to G(g) on [—3, 3] x[-3, 3],
with G(g) having exactly the same proper grid of changes for upper bidimen-
sional monotonicity as g and preserving the modulus w{ of g.

Without loss of generality, we can suppose that f(0,0) = 0 (otherwise
subtract a constant from f and add it to approximation polynomials). Since
fo fo u, U dUdv - f(xay) - f(1'70) - f(oay) +f(0’0) = f(x’y) - f(x,O) -
f(0,y), let hi(x) and ha(y) be two continuously two-times differentiable ex-
tensions on [—3,3] of f(z,0) and f(0,y), respectively. Then the two-times
differentiable extension of f(x,y) to [—3,3] x [—3, 3] will be

(
H(f) () = / ' / " Gg) (u, v)du dv + b (&) + haly).

Also, it is evident that

0? 0?H
(8 g 51,52> wf( 3 a(f);51,52) ;
[—1,1]x[~1,1] roy [—3,3]x[—3,3]

and that H(f)(x,y) changes its upper bidimensional monotonicity exactly on
the same proper grid as f.

Let x = o, y = 0 with —1 < a < 1, =1 < 8 < 1 belonging to a proper
grid of changing for upper bidimensional monotonicity of f, i.e., according

to the Remark 2 of Definition 2.6.4, we have aajgy(a,ﬂ) = ;fgy(a,y) =

%afy(x,ﬁ) = 0, for all z,y € [—1,1]. Let us consider the bidimensional in-
terval centered at (o, 3), I = [a — 2, +2] x [3—2,8+2] C [-3,3] x [-3,3].
By the change of variables u = (z — «)/2, v = (y — ), the function
h(u,v) = H(f)(x,y) is defined for (u,v) € [-1,1] x [—1,1], the segments
(x =0,y € (-1,1)), (y =0,z € (—1,1)), belong to a rectangular proper grid
such that h changes its upper bidimensional monotonicity on that grid and

Wf(%ﬁlﬁz)[q,ux[fl,l] < Cwf (2 Bmay ,51,52) [—3,3]x[—3,3]-

Now, without loss of generality, we may suppose that h(0,0) = 0. Apply
Lemma 2.6.15 to the “flipped” function F'(h). It follows that F(h) changes
its upper bidimensional monotonicity on a grid determined by k — 1 segments
parallel to the OY axis and by k — 1 segments parallel to the OX axis, and
moreover

0?F(h 0%h
f(aé);(ﬁ,@) SCW}O<68 51752> .
Loy [—1,1]x[~1,1] L [=1,1]x[=1,1]

Using Lemma 2.6.15 and the inductive hypothesis, there exists a sequence
of polynomials h, m(z,y),n,m € N, upper bidimensional comonotone with h
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and satisfying the estimate in its statement. Then inverting the linear changes
of variables in this sequence, we get the desired approximation polynomial
sequence for f, which proves the theorem. [J

Remark. It is a natural question to ask whether the L-positive approxima-
tion method presented in Section 2.3 could be used to obtain approximation
results in, e.g., bivariate copositive approximation, bivariate comonotone ap-
proximation, and bivariate coconvex of order (2,2) approximation. The cor-
responding L linear bounded operators would be in these cases of the form

L(F)(w.y) = Fla )i, (@ — ) — v;). L) (@y) = 2k (@) T, (-

2;)(y — y;) and L(f)(2,) = gz (w.9) 5=, (x — ;)(y — y;), respectively,
where z;, y;, 7 = 1,...,s are fixed. Unfortunately, the answer is negative,
since no bivariate polynomial (actually no any function) e exists satisfying
L(e)(z,y) > 1, for all z,y € [-1,1]. Indeed, we see that for x close to any
point z; or for y close to any point y;, these L(e)(z,y) become arbitrarily
close to zero.

However, in the case of bivariate bidimensional monotone approximation
or (2,2)-convex approximation, as applications of the L-positive method, we
get the following.

Corollary 2.6.16. (i) Let f € W2 ([-1,1] x [-1,1]), satisfying the relation
2
L (w,y) 2 0 for all 2,y € [~1,1].
(ir) For any n € N, n > 2, there exists Qy, € Py, such that Zi%f} (z,9) 20
for all z,y € [-1,1] and
Hf - Q:||Wo2§([,171]><[7111]) S C’ . E,Pg(f’ Wozo([*]., 1] < [71’ 1])),

where C' > 0 is a constant independent of f and n.
(i2) Also, for any k > 1, n > k + 2, there exists QF, € P2 such that

82Q:1
oo (z,y) >0, for all z,y € [-1,1] and

If = Qullwz @) < On™* maxwi(D*(f); On ™).
(ii) Let f € Wi([-1,1] x [-1,1]), satisfying %(m,y) > 0, for all
z,y € [-1,1].
4 ) *
(ii1) For anyn € N, n > 4, there exists QF, € P> such that ;wgi%z’k(x,y) >
0, for all z,y € [-1,1] and

If = Qllwa (—11x(-1.1)) < C - Ep2 (f; Wa([-1,1] x [-1,1])),

where C' > 0 is a constant independent of f and n.

(iig) Also, for any k > 1, n > max{k + 2,4}, there exists QF € P2 such

that 85142%32 (z,y) >0, for all x,y € [-1,1] and

17 = @allwe -1ty < On~*maxaon (D*(1); On ™).
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Proof. (i) Defining L(f)(z,y) = aa;gy (z,y), it is a bounded linear operator

on W2 ([-1,1] x [-1,1]) and e(x,y) = xy satisfies L(e)(z,y) = 1, for all
x,y € [-1,1]. Then, (i) is a direct consequence of Corollary 3.1 (and Remark
3.1) in Anastassiou-Ganzburg [16], pp. 480481 and (i2) is an immediate
consequence of (1) and of the general Jackson-type estimate in Anastassiou—
Ganzburg [16], p. 485, Theorem 4.1.

ii) Defining now L(f)(x 9 (z it is a bounded linear operator
(i) g Y 2¥), p

8128y
on W2 ([-1,1] x [-1,1]) and e(z,y) = (He)(z,y) =1, for all

x,y € [—1,1]. The proof is as above. O

2.6.5 Bivariate Shape-Preserving Interpolation

We present the following two results concerning the preservation of shape by
tensor product interpolation polynomials.

Ifg: [-1,1] = Rand =1 < 2y < Tp—1,n < -+ < &1, < 1 are the roots of
Jacobi polynomials JT(La’ﬁ)(x), then it is well known that (see, e.g., Fejér [115]
or Popoviciu [314]) that the (univariate) Hermite—Fejér polynomials based on

the roots above are given by F,(g)(z) = Y hi n(x)g(z; ), where
i=1

i) = (o) 1= P00 ).
bin(x) = ln(2)/[(2 — xim)g;(xi,n)]a ln(z) = H(x — Tip)-

Now, if f: [-1,1] x [-1,1] — R, then according to, e.g., Shisha—Mond
[352], the tensor product bivariate Hermite-Fejér polynomial is defined by

na
1 2 1 2
Foyns (f zzwghn>ﬂm@@

=1 j=1

(y) and 22 j = 1,no, are defined

J,m2?

where hﬁzl(x), M i =T,y and B

1M1’ J,n2
as in the univariate case above, ni,ny € N.

We easily see that

Fuyny (N 2Py = ) 2 ), vi=Tnr, j =T, n.

i,my? Y j,na ln1’ J,m2

An extension of Theorem 1.2.4 to the bivariate case is the following.

Theorem 2.6.17. (Anastassiou-Gal [8], see also Gal [123], p. 94, Corollary
4.2.2) Let us consider Fy, »,(f)(z,y) given as above, based on the roots of

ay,P1) J(az’ﬁz

Jacobi polynomials Jn1 , of degree mq1 and ns, Tespectively, with

a;, B € (=1,0], i = 1,2. Iff is any root of the polynomial 65111)/(1‘) and n is
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. 2/ 1 = 1 2
any root of the polynomial K%Q) (y) (here E%l)(x) = Ul(x — xgﬂzl), E%Z) (y) =
n2
11y — xgzr)m)), then there exists a constant ¢ > 0 (independent of ni,ns,
j=1
and f) such that if f is bidimensional monotone on [—1,1] x [—1,1], then
Foyno (f)(z,y) is bidimensional monotone (of the same monotonicity) on

Ce Ce¢ Cnp Cnp
<€ - nz+2fyl >§+ nIJrQ»yl) X <77 - n;+2»yg )y 1 + n;+272> C(f]-v 1) X (*]-a 1)7

where

C C

g o = e = maxlan A =12

C§:

and

51— a1, Zf0§£<1,
YT B, if —1<€<0,

5o = g, ZfOSn<17
2T 627 Zf71<77§0

In what follows we present an extension of Theorem 1.2.5 to the bivariate
case. In this sense, it is known that (see, e.g., Nicolescu [286]) f: [—1,1] x
[~1,1] — R is strictly doubly convex on [—1,1] x [-1,1], if Ai’ly [A,Qb’zzf(a, b)] >
0, for all hy,hy > 0, (a,b) € [-1,1] x [-1,1], with a £ ho, b+ hy € [-1,1],
where

AR f(@,8) = f(a+ 2, B) = 2f (o, B) + f(a = ha, B)
and

AVY (e, B) = fla, B+ ha) = 2f (a, B) + fla, B — ).

Remark. By the mean value theorem it is easy to see that from the inequali-

ty a;;(g?ﬁ) (z,y) > 0 for all (x,y) € [—1,1]2, it follows that f is strictly doubly
convex on [—1,1]. In fact, the doubly convex bivariate functions represent
the convex functions of order (2,2) in the Popoviciu sense in Definition 2.1.1
(v).

Now let ny,m2 > 3 be odd and let us consider as F,, n,(f)(z,y) the tensor

product Hermite—Fejér polynomial given as above, based on the roots 1:5173, 1=
2

jne» J = 1,n2, of the Aj-ultraspherical polynomials pn)il) of degree

1,n1, and x

n1 and Ag-ultraspherical polynomials P,(LQZ) of degree no, respectively, A1, As €
[0,1], and the Cétes—Christoffel numbers of the Gauss—Jacobi quadrature
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)\ —2 F(Tll —+ )\1) 1 1
)\(1) = 227)\1 T AL 1— ( ) P()\1) (1) \1—2
1,Mn1 m 2 F(nl + 1) [ (:C’L,nl) ] [ ni ( 177,1)] Y
1=1,n1,
-2
(2) . 92X, A2 I'(ns + A2) (2) \21-1 (A2)’ -2
A= ()] @ P
J = 1,712

Theorem 2.6.18. (Anastassiou—Gal [8], see also Gal [123], p. 95, Theorem
4.2.2) If f € C([-1,1] x [-1,1]) satisfies

ny n2

2 a: 1) (2
Zz)‘z " §22A2£> [Ai,’(l) (070)}/(951(',7215”;,712)2 >0,

=1 j=1 i

then Foyny (F)(@,y) is strictly doubly convex in V(0,0) = {(x,y); 22 + 3> <
}, with

nl n2

771 17721

niny Y. z N AL AT [A%E) £(0,0)]/(2l) 25)?

=1 Tjng Ting

(n1 + ng)®

|d’n17n2 | 2 Cf,A1,22

where ¢y, a,.2, > 0 is independent of ny and ns.

Remark. For details in bivariate shape-preserving interpolation, the inter-
ested reader may consult Chapter 4 in the book Gal [123].

2.7 Bibliographical Notes and Open Problems

Theorems 2.2.2, 2.3.3, Corollaries 2.3.8-2.3.10, Theorem 2.4.2, Theorem 2.4.9,
Definition 2.4.14, Theorem 2.4.15, Theorem 2.6.1 (v), Corollary 2.6.3, Defini-
tion 2.6.4, Corollary 2.6.7 (iii-v), Theorem 2.6.10, Corollary 2.6.11, Theorem
2.6.12, Lemmas 2.6.13, 2.6.15, Corollary 2.6.16 are new results.

Open Problem 2.7.1. Find shape-preserving properties of the bivari-
ate/multivariate Bernstein—Stancu polynomials mentioned in Remark 4 after
Definition 2.2.1, with respect to convexity, axial convexity, polyhedral convex-
ity, subharmonicity, and w-subharmonicity.

Open Problem 2.7.2. For each concept of “shape” introduced in CAGD,
as for e.g. axial monotonicity, axial convexity, polyhedral convexity, and so on
(see Definition 2.1.5 (iv)—(x)), construct a sequence of bivariate polynomials
(P)n on a triangle, preserving that shape, but having better approximation
properties than those of the Bernstein polynomials (i.e., satisfying Jackson-
type estimates in terms of a suitable modulus of smoothness w,, ( f; %), with
p>1).



210 2 Shape-Preserving Approximation by Real Multivariate Polynomials

Open Problem 2.7.3. It is an open question whether the estimate in
Theorem 2.4.18 could be obtained in terms of the Ditzian—Totik modulus wg
and then in terms of wy.

Open Problem 2.7.4. For f € CP([-1,1] x [-1,1]) convex of or-
der (2,2) and Py, n,(f)(z,y), the polynomials constructed in the proof
of Corollary 2.6.3 (which give the approximation order in terms of
wy (f;1/n1,1/n2)p, 1 < p < +o00), it is an open problem whether they
preserve the (2,2) convexity of f. Below we present some possible hints to

solve this problem.

4
In fact, we have to check that %%22(1‘) >0 on [—1,1] x [-1,1], which

from the last form of the univariate case mentioned in the proof of Corollary

2.6.3, implies that only the term Q,(g)(z) = E;:;[S](g) - S;21(9)|R;(x)
matters.

In other words, reasoning exactly as in the proof of Theorem 2.6.1 (iii),
the tensor product of the above univariate polynomials Q,,(f)(x) will become

ny—2ns—2

Qny e (f)(@,y) = Z Z (Sij—Sij1=Sic1;+8i-1-1)Rin,(¥)Rjm, (2),

j=2 i=2

where S; ; and f(&j.n,,Nin,) are defined as in the proof of Theorem 2.6.3.
But as in the proof of Theorem 2.6.1 (iii), we get

Sij = Sij—1—Si—1,j + Si—1,j-1
fjfl,nl P Ej,nl 3 €j+1,n1 B
= (§j+1,n1 - fj,nl)(ﬂiﬂ,nz - niﬂm) ; f y
Ni—1,m25Minos Mi+1,n,
which implies

84Pn1,n2 (f)(x,y) _ 34Qn1,n2 (f)(x,y)
0x20y? 0x20y>
n172 71272

= Z Z (f.j+17ﬂ1 - Ej,nl)(ni-ﬁ-l,nz - 771',712)

j=2 i=2

Ei—1,m1 &G §j+1,ma
i 7 7
X 5 f Ri,nz (y)Rj,nl (gj)
Ni—1,n25MNi+1,n25 Ti,ns

Therefore, it remains to show that if f is convex of order (2,2) then

—1m15&im E+1my
i f] =0,
Ni—1,n95Mi+1,n25Ming

for all the points &; ,, and 7; ,,,, where f is defined in the proof of Corollary
2.6.3.
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Probably it could be proved that there exist the points £ _; , <&, <
§tn, ad 015, < Nit1,ny < 7in, sSuch that
é.j—l,nl ) fj,?’ll ) fj—‘rl,nl i _;‘—1717,1 ) gl‘ﬂ“ ) 6_;’-',—1,711
if | =0y ifs
/ / /
Ni—1,n25 Ti+1,n95 Mi,ng Ni—1,n2° Tit1,m2° Mins

with C; ; > 0 depending on the points £, n,&’, and 7.

On the other hand, in Kopotun [204] for uniform aproximation, i.e.,
p = 400, and then in DeVore-Hu-Leviatan [87] for LP approximation, 0 <
p < 400 (see Theorem 1.7.7 in Chapter 1), for continuous univariate convex
functions on [—1, 1], a sequence (in essence the same for all p) of convex polyno-
mials (P, (f)), of degree (P, (f)) < n is constructed such that || f — P, (f)|l, <
Cpw¥ (f;1/n),. This sequence (P, (f))n, is nonlinear with respect to f. Be-
cause of its definition, it seems to be difficult to define the tensor product of
this polynomial in the way we did in the proof of Theorem 2.6.1. Moreover,
the absence of linearity does not allow us to use the error estimate for tensor
products of linear approximation processes in Haussmann—Pottinger [167].

As a consequence, it remains an open question whether the error esti-
mates in terms of wy(f;1/n1,1/n2) in Theorem 2.6.1 (iii) and (iv) (i.e., in
the cases of convexity of order (2,2) and totally convexity of order (2,2)) can
be reobtained in terms of w¥ (f;1/n1,1/ns).

A similar open question arises in the case of LP-approximation,
0 < p < 400, for bivariate convexities of orders (1,1) and (2,2), i.e., whether
the error estimate can be obtained in terms of w¥ (f;1/n1,1/n2),.

Because of the difficult matter, however, it would be satisfactory to obtain
extensions of the whole of Theorem 2.6.1 to LP-spaces, 0 < p < +00, (note
that Corollary 2.6.3 extends only the case of bidimensional monotonicity and
1 < p < +00) i.e., to obtain error estimates in terms of only ws (f;1/n1,n2)p.

These last-mentioned problems would represent extensions to the bivariate
case of the results in the univariate case in Yu [407], [408], Leviatan—Yu [244],
DeVore-Leviatan—Yu [90] and DeVore—Leviatan [88].

Open Problem 2.7.5. Extend the results in Theorem 2.4.3 (i) and
(ii) to approximation of polyharmonic functions of arbitrary order p € N
, f € Hp(int(M)), by polyharmonic polynomials in H(int(M)), so as to
recapture Theorem 2.4.3 for p = 1.

Open Problem 2.7.6. Let f : [—1,1] x [-1,1] — R be together with
all partial derivatives of order 4 continuous, such that it changes the tensor
product convexity of Popoviciu type of order (2,2) on a proper or degenerate
rectangular grid in [—1,1] x [—1,1] according to the Definition 2.6.4 (iv).
Construct a sequence of bivariate polynomials (P, (2, y))n,men of degrees
< nin z and < m in y such that each P, ,, is coconvex of order (2,2)
with f on [—1,1] x [—1,1] (as in the same Definition 2.6.4 (iv)), having good
approximation error expressed in terms of (at least) the moduli of smoothness
wl(%; 1/n,1/m) or wf(ag;gw; 1/n,1/m), with i 4+ j = 4.
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A possible idea would be to consider the tensor product of the poly-
nomials in coconvex approximation in the univariate case (note that this
idea worked in bivariate copositive approximation and bivariate comonotone
approximation, see Theorem 2.6.6 and Corollary 2.6.11, respectively).

Open Problem 2.7.7. Let f : [-1,1] x [-1,1] — R be together with
all partial derivatives of order 2 continuous such that it changes the (usual)
convexity on a proper or degenerate rectangular grid in [—1,1] x [—1,1] ac-
cording to Definition 2.6.4 (vi). Construct a sequence of bivariate polynomials
(Pr,m (%, Y))n,men, of degrees < n in x and < m in y, such that each P, ,, is
coconvex with f on [—1,1] x [—1,1] as in Definition 2.6.4 (vi), having good
approximation error expressed in terms of (at least) the moduli of smoothness
wl(%; 1/n,1/m) or wf((%?i;g;j; 1/n,1/m), with i 4 j = 2.

A possible idea of proof would be by mathematical induction on the
number of segments that determine the grid, taking into account the results
in convex approximation obtained by Corollary 2.4.13 and Theorem 2.4.18.

Open Problem 2.7.8. Suppose that f : [—1,1] x [-1,1] — R changes
sign (or bidimensional monotonicity, or convexity of order (2,2) or usual
convexity, respectively) on a finite general system of algebraic arcs and curves
(contained in [—1,1] x [—1,1] (see Definition 2.6.4 (vii), Remark 5 after this
definition, and Remark 3 after Corollary 2.6.8).

It is then an open question how to solve the problem of copositive (or up-
per bidimensional comonotone, or coconvex of order (2, 2), or usual coconvex,
respectively) approximation by algebraic bivariate polynomials in this more
general setting.

A way would be to start the study with some particular simpler algebraic
arcs and closed curves, as we did in the copositive case by Corollary 2.6.7,
(iii), (iv), (v).

For other examples, we may start with the hypothesis that f changes its
bidimensional monotonicity (or convexity of order (2,2) or usual convexity,
respectively) on the first bisector of the equation z — y = 0 contained in
[-1,1] x [=1,1], or on the arc of the parabola in [-1,1] x [—1,1] of equa-
tion z — y®> = 0, or on the circle of equation z? + y*> — = 0, or on any
combination of these three curves. Then, the question would be how well we
can approximate the surface z = f(z,y) by a sequence of algebraic surfaces
z = Py m(z,y) (ie., Pym(z,y) are polynomials of degree < n in z and < m
in y), that are upper bidimensional comonotone (or coconvex of order (2, 2),
or usually coconvex, respectively) with it.

Open Problem 2.7.9. In order to have Theorem 2.6.1 (v) as a natural
extension of the univariate results (in Theorem 1.7.5 and Corollary 1.7.6), the
bivariate differential inequality must be satisfied for all z,y € [—1, 1], and not
only for all x,y € [—1,0]. According to the proof of Theorem 2.6.1 (v) and
keeping the notation as there, it would remain to prove that R}(1) < R;(1),
forall j=1,...,n—1.
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Open Problem 2.7.10. Since any real polynomial of one real variable
degree < n, is obviously (n + 1)-convex (concave) in the sense of Definition
1.1.1 (i), an interesting subject in shape-preserving approximation is how the
Bernstein—-Markov inequalities are preserved to higher order convex functions.
In this sense, the first results were found by Popoviciu [315], who proved that
if fis (n 4+ 1)-convex (concave) on [—1,1], then for all x € (—1+ A\, 1 — ),
/(@) < 42 + V30| flloo/ 32 = V3)] and | £/(2)] < 202+ V3)nl| oo /12 —
V3)V/1 — 22], where A = 2(1 — cos(7/2n))/(1 + cos(7/2n)).

These results were extended by Mastroianni-Szabados [267] to the whole
interval (—1,1), who proved, among others, that if f is (n + 1)-convex
(concave) on [—1,1], then for all n > 2, |z] < 1,1 < r < n — 1 we have
[f(@)] < erfn/vV1 =22 +1/(1 = 2®)]7|| floc-

Popoviciu’s and Mastroianni—Szabados’ results were extended by Gal
[133] to bivariate convex functions of higher order, by proving e.g., that if the
bivariate function f is convex (concave) of order n in the sense of Popoviciu
[315], p. 84 (for n = 1 this means the usual convexity (concavity) in Definition
2.1.5, (ii)) then |grad(f)(z, )|z < 4(2 + V3)nllf1/12 — V3V — Ple,9)],
for all z,y € (=1 + A, 1 — \), where | - | denotes the Euclidean norm in R?
and ¢k (z,y) is the Minkowski functional attached to K = [-1,1] x [—1,1].
Also, similar results were obtained for convex (concave) functions of order
(n+1,m + 1) in the sense of Definition 2.1.5 (i).

An interesting open question would be to extend the results in Gal [133]
to bivariate convex functions of higher order defined on more general subsets
K C R?, e.g., on symmetric or nonsymmetric convex subsets.
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Shape-Preserving Approximation by Complex
Univariate Polynomials

In this chapter we present results concerning approximation of analytic func-
tions in the unit disk by univariate complex polynomials preserving properties
in geometric function theory.

3.1 Introduction

A central concept in geometric function theory is that of univalence. Also,
many sufficient conditions of geometric kind that imply univalence are
important, such as starlikeness, convexity, close-to-convexity, a-convexity, spi-
rallikeness, bounded turn, and so on.

All these geometric sufficient conditions for univalence are mainly studied
for analytic functions, because in this case they can easily be expressed by nice
(and simple) differential inequalities. Also, because of the Riemann mapping
theorem, in general it suffices to study these properties on the open unit disk.

First, let us recall some classical definitions in geometric function the-
ory. Everywhere in this chapter we denote the open unit disk by D = {z €
C; 2| < 1}.

Definition 3.1.1. (see, e.g., the monograph Mocanu—Bulboaca—Saligean
[273], Chapter 4, for (i) to (ix))

(i) A function f: E — C, where E C C is a domain, is called univalent in
E if for all u,v € F with u # v, we have f(u) # f(v).

(ii) Let f : D — C be analytic in D with f(0) = 0. It is called starlike in D
with respect to the origin (or simply starlike) if it is univalent on D and f(D)
is a starlike domain (i.e., for any w € f(D), the segment joining the origin
with w is entirely contained in f(D)).

If, in addition, f'(0) # 0 (for example, if it is normalized, i.e., f(0) =
f(0) — 1 = 0), then it is well known that f is starlike in D if and only if

Re [z J;/((ZZ))} > 0 for all z € D.

S.G. Gal, Shape-Preserving Approzimation by Real and Complex Polynomials, 215
DOI: 10.1007/978-0-8176-4703-2_3,
(© Birkh&duser Boston, a part of Springer Science+Business Media, LLC 2008
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As a generalization, f is called starlike of order o > 0 if f is normalized

and Re [z J}l((:))] > o for all z € D.

We set

S*(D) = {f :D — C: f is analytic on D, f(0) = f(0) — 1 =0,

Re (z}{;i;;)) > q, for all z € ]D)},

and S (D) by S*(D).

(iii) The analytic function f : D — C is called convex in D if f is univalent
in D and f(D) is a convex domain, i.e., for any wy,wy € f(D), the segment
joining wy and ws is entirely contained in f(D).

If, in addition, f'(0) # 0 (e.g., if it is normalized), then it is well known

that f is convex in D if and only if Re [ZJ{,/;S)] +1>0forall 2z €D.

As a generalization, f is called convex of order o > 0 if f is normalized
and Re [Zf (z)] +1>aforall z€D.

f7(2)
We set

K,(D) = {f:]D)H(C:fis analytic on D, f(0) = f'(0) — 1 =0,

Re (Z£/£i§)> > q, forall z € ]D)},

and denote Ky(D) by K(D).
(iv) The analytic function f : D — C is called close-to-convex in D (with
respect to ) if there exists an analytic convex function ¢ in D such that

Re [ijg” > 0 for all z € D.

Equivalently, an analytic normalized function f is close-to-convex if there

exists an analytic normalized starlike function h such that Re [Z}{(/S)} > 0 for

all z € D.
It is well known that the close-to-convexity of f implies its univalence in .
As a generalization, f is called close-to-convex of order o« > 0 and type 3
if there exists a convex function of order o and 8 € R such that

Re {eiﬁ%} >0, Vz € D.

(v) Let f : D — C be analytic in D with w # 0 for all z € D and
a € R. Then f is called a-convex in D if

e[ e (g 1)) >

for all z € D.
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The a-convex functions have a natural geometrical interpretation and for
a € [0,1] realize a continuous connection between starlike and convex func-
tions (it is something in between).

Also, it is well known that for any a € R, the class of normalized a-convex
functions is included in the class of starlike normalized functions and that in
fact, the condition W # 0 for all z € D is not necessary in the definition.

(vi) An analytic function f : D — C is called convex in the direction of
the imaginary axis if the intersection of any parallel to the imaginary axis
with f(DD) is a segment or does not intersect it. Analytically, this property is
expressed by the differential inequality Re[(1 — 22)f/(2)] > 0 for all z € D.

(vii) The analytic function f: D — C with f(0) = 0 is called spirallike of
type v (where |y| < %) if f is univalent in D and f(ID) is a spirallike domain of
type v. We recall that a domain F that contains the origin is called spirallike
of type v, with |y| < %, if for any point wg € E'\ 0, the y-spiral arc joining
wq with the origin is entirely contained in F (the equation of the ~-spiral arc
is given by w(t) = woe~ (037Nt ¢ € R).

It is well known that if in addition, f/(0) # 0 and f(z) # 0 for all z € D,
then f is spirallike of type « if and only if

Re [e‘”szég)] >0

for all z € D.
As a generalization, f is called spirallike of type « and order o > 0 if f is

normalized and
/
Re [6_” 2l (2)] >

f(2)

for all z € D.
We set

S3(D) = {f :D — C: f is analytic on D, f(0) = f/(0) — 1 =0,

Re <eiAY Z;féi?) > q, for all z € ]D)}

and denote S9(D) by S, (D).

(viii) The analytic function f : D — C with f(0) = f/(0) — 1 = 0 is called
of bounded turn if arg[f’(z)] < & for all z € D.

It is well known that f is of bounded turn if and only if Re(f’(z)) > 0 for
all z € D.

(ix) If f, g are two analytic functions on D, recall that g is subordinated
to f (and we write g < f) if there exists an analytic function @ on D with
|P(2)] < |z| and f =go®.

It is well known that if f is univalent on D, then g < f if and only if
9(0) = (0) and g(D) C (D).
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(x) (Salagean [337]) A normalized analytic function f is called n-starlike in

the unit disk (n € {0,1,2,...,}) if it satisfies Re [%()f()z()z)} > 0forallz € D,

where DO(f)(2) = (2), D(f)(2) = D (f)(2) = 2f'(2), ... D™ (£)(2) =
DID™(f)](2). For n = 0 we recapture the starlike functions, while for n =1
we get the convex functions.

It is proved in Salagean [337] that for any n € {0,1,2,...,}, if f is n-
starlike then f is univalent in D.

(xi) (Padmanabhan [294]) The function f(z) = 29+ 327 an2",1 <
q < p, with p,¢q € N, analytic in D, is called p-valently starlike in |z] < 1 if
there exists p € (0,1) such that for all » € (p, 1) we have

2m
H(r,0) = Re{re f'(re®)/ f(re®)} >0, 0 < 0 < 2m, H(r,0)dd = 2mp.
0

The function f(z) = 2 +Zflo:q+1 a, 2", 1 <q < p,with p, ¢ € N, analytic
in D, is called p-valently convex in |z| < 1 if there exists p € (0,1) such that
for all r € (p, 1) we have

27
G(r,0) = Re{1+re f"(re?)/ f'(re®)} >0, 0 < 6 < 27, G(r,0)do = 2mp.
0

(xii) (Umezawa [391]) The function f(z) = 27+ Efzqﬂ anz™, 1< q<p,
with p, ¢ € N, analytic in D, is called p-valently close-to-convex in |z| < 1 with
respect to ¢ if there exists a p-valently convex function ¢(z) in |z| < 1 such
that Re{f'(2)/¢'(z)} > 0 for all || < 1.

Remark. There are many other sufficient conditions of univalence known in
geometric function theory. Some of them will be defined and used directly in
some theorems of the next sections.

Returning now to the topic of this chapter, the following problem is well
motivated: how well can an analytic function be approximated having a given
property in geometric function theory by polynomials keeping the same prop-
erty?

In what follows, first we will briefly review, without proofs, the history of
this problem. To the best of our knowledge, there are three main directions
of research:

(1) Approximation-preserving geometric properties by the partial sums of the
Taylor expansion;

(2) Approximation-preserving geometric properties by Cesaro means and con-
volution polynomials;

(3) Approximation of univalent functions by subordinate polynomials in the
unit disk.

First we review Direction 1.
Let f : D — C be an analytic function. This implies that we have the
expansion f(z) = Z;ﬁ% apz®, z € D, where aj € C. So the simplest way to
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approximate f by polynomials would be to consider the partial sums of this
expansion, i.e., S,(f)(2) =Y p_garz®, n=1,2,....

Now, supposing in addition that f is univalent (or starlike or convex, and
so on), it is natural to ask whether S, (f)(z), n € N, keep this property.

In this sense, we mention the following results.

Theorem 3.1.2. (i) (Szegé [384]) If f is univalent on D, then all the partial

sums Sn(f)(2), n=1,2,..., are univalent in the disk D; /4 = {z € D;|z] < 1}.
(ii) (Alexander [2]) Let f : D — C be an analytic function having the
expansion f(z) = ;:Cxaakzk, z €D. Ifap, € R, ap, > 0, VkE € N, and

the sequence (kay)y is decreasing, then f together with all its partial sums
Sn(f) are univalent inD. A concrete example is the univalent function f(z) =
logly%:] = 3200 52"

(iii) (Szegi [384]) If f is a normalized (i.e., of the form f(z) = 2z +azz? +
-+« +) starlike function in D, then all the partial sums S,(f), n € N, are
starlike in Dy /4. In both cases (i) and (iii), the radius i, in general, cannot
be improved. The function f(z) = 12 provides a counterevample. Similarly,
if instead of starlikeness we consider the convezity of f, then all the partial
sums Sy (f), n €N, are conver in Dy 4.

(iv) (Ruscheweyh [331], Ruscheweyh—Wirths [336]) If [ is convex (close-
to-convez, respectively) in D, then the partial sum S,(f), n € N, is convex
(close-to-convez, respectively) in the disk D, = {z;|z| < r1}, where r1 is the
radius of convexity of the particular polynomial P, (z) = z+ 22 +---+ 2" (the
radius of convexity is, by definition, the greatest value r for which P,(z) is
convex in D,.). Also, if ro is the radius of close-to-convezity of P,(z), then
Sn(f)(2) is close-to-convex in Dy, for every convex f. These results are sharp
and the values r1,ry are computed.

(v) (Suffridge [373], p. 236) If we denote by S the class of all analytic
normalized univalent functions in D, then the family of univalent polynomials
of the form Ty, (2) = z + agz® + - + %z”, n=1,2,..., is dense in the class
S (with respect to the uniform convergence on compact subsets in D).

(vi) (Suffridge [374]) For the convex function in D, f(z) = elt? =

oo (142)* . . _ n (1+42)* _
Yoheo w2 € D, all its partial sums Sn(f)(2) = Y p—g—f—> N =
1,2,..., are convex in D.

(vii) (MacGregor [263]) If f is univalent in D, then there exists a sequence
of polynomials (Py,),, such that P, — f uniformly in any compact subset of D,
degree(P,,) = n, each P, is univalent inD and Py < Py < -+ < P, <--- < f,
where < means subordination and it was defined in Definition 3.1.1 (ix).

(viii) (Padmanabhan [294]) If f(2) = 2%+ pes arz" is 2-valently starlike
in |z| < 1, then any partial sum S,(z) = 22+ ) _, arz* is 2-valently starlike
in |z| < 1/6 and the result is sharp.

If f(z) = 2% + Y725 axz® is 2-valently close-to-convex in |z| < 1 with
respect to p(z) = 2% + EZO::), Apz*, then for any n > 3, the partial sum
Sn(z) = 224315 apz® is 2-valently close-to-convex in |z| < 1/6, with respect
to the partial sum F,(z) = 22 + Y ;_, apz® and the result is sharp.
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Remark. It is interesting to note that the univalence of polynomials in the
unit disk generates some nonnegative trigonometric sums and conversely, so
that the proof of univalence can be reduced to the proof of nonnegativity
of some trigonometric sums. Also, for example, the vertical-convexity can
be connected with the monotonicity of some trigonometric sums. For details
concerning these connections, see, e.g., Gluchoff-Hartmann [149] and the ref-
erences cited there and some sections in Chapter 4 in the book of Sheil-Small
[346].

In the case of Direction 2, we present the following.

Theorem 3.1.3. Let f : D — C be an analytic function on D having the
Taylor expansion f(z) = Zi:l apz®, 2 €D, witha, €C, k=1,2,....
The nth Cesaro mean of order a > 0 of f is defined by

n

SN2 = (f) S et

n—1 k=1

and the de la Vallée Poussin mean of order n is defined by

n

Val£)(2) = (jn) ) (Tff k) o,

n k=1

(i) (Fejér [115]) If f is convexr with respect to a direction parallel to the
imaginary axis (i.e., it is verticaly convex), then all S2(f),n = 1,2,..., are
vertically convex.

(ii) (Robertson [322]) Denote by G the class of univalent functions on
D of the form (i.e., normalized) f(z) = z + Y. S arz®, 2 € D, with the
property that all the partial sums Sy (f)(2) = 2 + > p_parz®, n =2,3,...,
are also univalent in D. For any f in the above class, also all the Cesaro
means SL(f)(z), n € N, are univalent in D.

(i1i) (Bustoz [51]) If f € G (with G defined above) and k € N, then all the
Cesaro means SE(f)(2), n € N, are univalent in D.

(iv) (Lewis [245]) If f is a normalized convex function in D, then for any
a > 1, all the Cesaro means S2(f)(z),n € N, are close-to-convez in D.

(v) (Egervary [112]) If f is a normalized convex function in D, then all
the Cesaro means S2(f)(z), n € N, are convez in D.

(vi) (Ruscheweyh [332]) If f is a normalized convez function in D, then
for any a > 3, all the Cesaro means SS(f)(z),n € N, are convez in D.

(vii) (Ruscheweyh [333]) If f is a normalized convex function of order 3
in' D, then all SY(f)(z), n € N; are close-to-convez of order 3.

(viii) (Pdlya—Schoenberg [308]) If f is an analytic (normalized) function
in D, then f is convex (starlike, respectively) in D if and only if all the de
la Vallée-Poussin means V,,(f)(z), n € N, are convex (starlike, respectively)
in D. (Note that the variation-diminishing property in the case of univariate
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real functions in Chapter 1, see Section in 1.1, Definition 1.1.1 (vi), is the
main tool in proving these results.)

(iz) (Ruscheweyh—Sheil-Small [335]) If the (normalized) analytic function
f s close-to-convex in D, then all V,,(f)(2), n=1,2,..., are close-to-convex
n D.

(z) (Gal [129]) If f is an analytic normalized m-starlike function in D
for a fized m € {0,1,2,...,}, then the de la Vallée Poussin means V,(f) are
m-starlike for all n € N.

Remark. Pdlya—Schoenberg [308] observed that we can write

Vo (f)(2) L ﬂf(ze”)Qn(t)dt,

~ o -

where £2,,(t) = E;B; (2cost/2])*" is the trigonometric polynomial called the
de la Vallée Poussin kernel. (Because of their nice shape-preserving properties
in Theorem 3.1.3 (viii), the de la Vallée Poussin kernels can be considered as
the trigonometric counterpart of the algebraic Bernstein polynomials.) Also,

Ruscheweyh [332] remarked that we can write

SEUNE) = o [ Fae K,

2m
where K%(t) is the nth Cesaro kernel of order o and it is a trigonometric

polynomial given by
n

a—1
Ko =) 2k, o),

«
k=0 n

) sin(k+3)t
with Dy (t) = %

approximation theory, because they easily allow one to deduce the rate of
approximation. Unfortunately, in the case of the de la Vallée Poussin polyno-
mials, the rate of approximation is rather weak (of order wq(f; ﬁ))7 while in

. These integral-convolution forms are more useful in

the case of the Cesaro’s kernel, the rate of approximation is even worse (see
Gal [127]).

This shortcoming stimulated the author of the present book to search in
a series of papers Gal [127, 128, 129] for convolution polynomials preserv-
ing properties in geometric function theory and having good approximation
properties too.

A very nice generalization of the Pdlya—Schoenberg result [308], is due
to Ruscheweyh—Salinas [334]. For that purpose, first we need the following
definition.

Definition 3.1.4. (see Ruscheweyh—Salinas [334]) If [ is a real 2w-periodic
function, then its cyclic variation is defined by

pre(f) = sup{pu(f(21), -, f(@m), f(21))},
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where p(f(x1), ..., f(xm), f(z1)) denotes the number of sign changes (0 is
disregarded) in the sequence f(x1),..., f(zm), f(z1) and the supremum is con-
sidered for all the finite sequences x1 < To <+ < Ty, < 21 + 27, m € N.

The function f is called periodically monotone (we write f € PM) if
te(f —a) <2,Va € R (in other words, f increases in an interval (xy,z2) and
decreases in (z2, 1 + 27)). We denote by PM, the functions f € PM that
are bounded.

A 2m-periodic function g : R — R, with fo% lg(z)|dz < +o0 (we write
g € L), is called periodic monotonicity preserving (we write ¢ € PMP) if

fxg € PM for all f € PM,, where (fxg)(z) = % 0% f)g(z—y)dy,Vx € R.

Theorem 3.1.5. (Ruscheweyh—Salinas [334]) If g € L then g € PMP if and
only if there exists h such that g = h a.e., where h € PM), satisfies the
following conditions:

(i) h is continuous except for at most two points in a period. Also, if we
set S = sup{h(z);xz € R}, I = inf{h(z);x € R} and h is not continuous at
to, then ‘h(to + O) - h(to - O)| =5-1.

(ii) h is continuously differentiable in each interval where h neither as-
sumes nor approaches S or I. Furthermore, log|h'| is concave in those
intervals.

This result is very important, because Schoenberg [343] observed that the
PMP problem is identical to the characterization of integral “kernels” K that
preserve the convexity of f in the sense that if f : D — C is an analytic convex
function in D, then f« K is analytic convex in D. If we take as K := K, some
trigonometric kernel and if K,, satisfies the conditions of g in Theorem 3.1.5,
then the convolution f K, will produce complex polynomials preserving the
convexity of f in D.

Remark. At the end of Direction 2 of research, let us briefly describe a
related result obtained by Goodman—Lee [157] for kernels K that are piecewise
smooth, 27m-periodic nonnegative functions.

For f,g two 2m-periodic piecewise smooth functions and the parametric
form ~(t) = (f(t),9(t)), t € [0,27], of a closed curve in R?, the convolution
transform

2w 27

@) = (11 (2), Do(e)) = ( K- 0fwdt, [ K- t)g(t)dt)

0 0

also is a closed curve in R2.

First recall that the curve + is called convex if any straight line does not
intersect v more than twice. Also, «y is called locally convex if its Wronskian
is > 0 on [0, 27, i.e.,

W(f'g")(x) = f'(z)g"(x) - f(x)g'(x) = 0
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for all x € [0,27]. Geometrically, local convexity means that the tangent to
the curve turns in the same direction as the point moves along the curve (in
the positive sense).

The main result is the following.

Theorem 3.1.6. (Goodman-Lee [157]) A necessary and sufficient condition
for the convolution transform I'(x) to map a positively oriented convez curve y
onto the positively oriented locally convex curve I' is that the curve K*(x) =
(K'(z), K(x)),z € [0,27], be positively oriented convex.

Remarks. (1) In fact, in Goodman-Lee [157] is proved only the sufficient con-
dition in Theorem 3.1.6, because the necessity part is attributed to Loewner
by Schoenberg [343].

(2) Considerations on the convolution polynomials through de la Vallée
Poussin and Cesaro means can also be found in Chapter 4 in the book of
Sheil-Small [346].

Let us now describe Direction 3 of research.

Definition 3.1.7. (i) (see, e.g., Cérdova—Ruscheweyh [71]) Let £2 C C be a
simply connected domain, with 0 € {2. Denote by P,, n € N, the set of all
complex polynomials (with complex coeficients) of degree < n, P, (2) = {p €
Pr;p(0) = 0,p(D) C £2}.

The set $2,, = U,cp, p(D) is called the maximal range of these polynomi-
als.

(ii) (Andrievskii-Ruscheweyh [26]) For f : D — C and a parameter 0 <
s < 1, define fs(z) = f[(1 — s)z] for all z € D.

The results contained in Direction 3 of research can be summarized by the
following.

Theorem 3.1.8. (i) (Andrievskii—-Ruscheweyh [26]) A universal constant
¢ > 0 exists such that for any univalent function f : D — 2 with f(0) =0,
for any n > 2c¢, there exists a polynomial of degree n, P, , univalent in D, with
P,(0) =0, such that

fc/n'<Pn'<f'

In particular,

f[(l—%)ﬂ)]c()ncﬂ.

(ii) (Greiner [163]) For the above constant ¢, we have m < ¢ < 73, where
m is sharp (attained for f(z) = ﬁ)

(1ii) (Greiner—Ruscheweyh [164]) If, in addition, f is convex in D, then
for any a > 1, all the Cesaro means S2(f)(z), n € N, are univalent in D,

fn/(n+oz+1) = S’r?(f) = fv

and the universal constant is given by ¢ = 2, for all conver functions f.
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(iv) (Greiner—Ruscheweyh [164]) If f is convex in D, then for anyn € N,
there exists a convex univalent polynomial P, of degree < n such hat

Jimam < Po < f.

(v) (MacGregor [265]) If f is univalent in D, then there exists a sequence
of polynomials (P,,), such that P, — f uniformly in any compact subset of D,
degree(P,) = n, each P, is univalent inD, and Py < Py < -+ < P, <--- < f,
where < means subordination and it was defined in Definition 3.1.1 (iz).

Remark. The main result is Theorem 3.1.8 (i) which and has a construc-
tive proof based on an approach due to Dzyadyk [101]. More exactly, in
Andrievskii-Ruscheweyh [26], the polynomial P, is constructed by the formula

eyt (1 £).

where m = [n/7], n > 14, and T,, x(z) are algebraic polynomials of degree
< (k+1)(m —1) — 1, given by the formula

T,

k(2)
g 1 1) g-= \"'
o g [ﬂ mek(t)% /|f|_1—1/m, gi z [1 - <1 - genz) ] dé- dt’

. . sin(mt/2) 2(k+1)
with the normalized kernel J, x(t) = am (W) .

Briefly, the contents of the next sections in Chapter 3 can be described
as follows. In Section 3.2 we use an analogous method to that in Section 1.4
(in the proof of Theorem 1.4.1) and obtain Shisha-type results for complex
approximation. Then one generalize these results in an abstract setting to the
so-called Re[L]-positive approximation.

Section 3.3 presents the results in Gal [129], obtained in Direction 2 of
research, i.e., using convolution polynomials.

Section 3.4 deals with some geometric properties of the complex Bernstein
polynomials in the unit disk.

Section 3.5 refers to some bibliographical remarks and open questions.

3.2 Shisha-Type Methods and Generalizations

In this section we extend some methods in the real univariate case to the case
of one complex variable in the unit disk. The basic tool is represented by the
simultaneous approximation results expressed by Theorem 3.2.1 (i), (i), (iii)
below, stated here for the particular case of the unit disk only.

Notice that Theorem 3.2.1 (i) below, in fact, was proved by Vorob’ev [396]
for the so-called domains of type A in the complex plane (including the unit
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disk), while Theorem 3.2.1 (ii) was proved by Andrievskii-Pritsker—Varga [27]
for general continua in the complex plane (also including the unit disk).

Unfortunately, the constants appearing in the estimates of Theorem 3.2.1
(i) and (ii) are claimed as independent of n and z only, without independence
of f being mentioned too. For this reason, in the case of the unit disk, in
Theorem 3.2.1 (iii) we present here a new simple proof that clearly shows
that the constant can be chosen independent of n, z, and f too.

Set A(D) = {f : D — C; f is analytic in D and continuous in D} and for
p € N, AP(ID) denotes the space of p-times continuously differentiable functions
on D.

Theorem 3.2.1. (i) (Vorob’ev [396]) Let p € N. For any f € AP(D) and
n > p, there exists a polynomial P, of degree < n such that for all j =0,...,p
we have

FD(z) = PO(2)] < Ani 7y (f(”); 1) . Vae oD,
n

where A is independent of n and z. Here wy(g;0) = sup{|f(u) — f(v)|;u,v €
D, |u —v| < §}.

(ii) (Andrievskii—Pritsker—Varga [27]) Let us suppose that p,q,r € N, f €
AP(D), and consider the distinct points |z;| =1, | = 1,...,q. Then, for any
n € N, n > gp+ r, there exists a polynomial P, of degree < n such that for
all 7 =0,...,p we have

: : : 1
\f(J)(z) — P,(lﬂ)(z)\ < en7Pw; <f(”); n) , Vz € oD,
and _ .
P (z) = fD(z), 1=1,...,q,
where ¢ is independent of n and z. Here
wy(g;9) : = sup,p{Er—1(g; D N B(2;9))},
B(z;6) = {§ € C;|€ — 2| < 6},
E,.(g; M) :=inf{||g — P|lar; P complex polynomial of degree < m},

and || - ||ar is the uniform norm on the set M.
(i1i) (Gal [131]) Let p € N and f € AP(D). For any n > p, a polynomial
P, of degree < n exists such that

|f® — PO < Cnk=PE, _,(f®), for allk=0,...,p,

where C' > 0 depends on p but it is independent of n and f. Here || -|| denotes
the uniform norm in C(D) and

Eo(fP) =inf{||f® — P|; P is complex polynomial of degree < n}.
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Proof. (iii) According to, e.g., Stechkin [371], p. 61, relation (0.3), the de
la Vallée Poussin sums attached to a continuous 27-periodic function g are
defined by

1 n
Oun(@)@) = —= > 5(0)(a).

j=n—m

where 0 <m <n,n=0,1,..., and s;(g)(x) denotes the jth Fourier partial
sum attached to g. We also have (see, e.g., Stechkin [371], p. 63)

Tnn(@)e) =~ [ " g+ OV (),

T J-xm

where

Vn,m(t) == m7—|—]_ Dk(t),

k=n—m

and Dy, (t) = 3 + Z?zl cos(jt) represents the Dirichlet kernel of order k.
For f € A?(D) and 0 < m < n, now let us define (using the same notation

On,m)

Gam(E) = —= 3 ()

where Ty (f)(2) = Zf 0 f(;,(o) 29 represents the kth Taylor partial sum of f.

Reasoning as in, e.g., the proof of Lemma 1, pp. 881-882 in Mujica [277],
we easily get the formula

Tum(NE) == [ Wbt for all 2 B,

-7

Let us reproduce below the proof of this integral representation. Indeed, writ-
ing z = re and f(z) = f(ze') = 3 o, cxre’™, we obtain

1 [T o
— / f(rete*tat = ¢k for all k= 0,1,. ...

Now for any k =1,2,..., we get

R Flret)e i + e ' Flret)e*dt
crrte™ = o » re'')e o | re'')e

1 .
27 f(re )[ ik(0—t) +€zk(t76)]dt
T
1 it L[ i(t+6)
— f(re ) cos[k(t — 0)]dt = — flre ) cos(kt)dt.
T

—T —T
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This implies

T (f)(re”) Lr Freto)y (1 + icos(kt)) dt
k=1

"

1 [7 )
— [ fee'"TND,(t)dt,

s

—T

which gives the required integral representation.
It is evident that oo, n—p(f)(2) is a complex polynomial of degree < 2n,
while from the obvious property T} (f)(z) = Tr—1(f")(z), we easily get

o8 ()(2) = 020k (F®)(2),

forall k=0,...,p.

After a careful examination of the proof of Theorem 4, p. 69 in Stechkin
[371], concerning the approximation property of o, ., (f)(2), it is not difficult
to see that we get exactly the same kind of estimate as that for the trigono-
metric case, similar to relationship (2.1) in the statement of Theorem 4, p. 69
in Stechkin [371]), that is,

< n—m-+j f o< <
Ilf Umm(f)ll_AjE,O maii1 orall 0 <m < n,
where || - || denotes the uniform norm in C(D) and A > 0 is an absolute

constant independent of f, n, and m.

Let us briefly describe how we can use the reasoning in the trigonomet-
ric case in Stechkin [371] for the complex setting too. Indeed, the proof of
Theorem 4 in Stechkin [371] is based on the previous Lemma 1, Lemma 2,
and Theorem 1 there. But Lemma 1 remains valid because one refers only
to the trigonometric kernels V;, ,,,(t). Also, for the proof of estimate (1.5) in
the statement of Lemma 2, by the maximum modulus principle we can take
|z| = 1, that is, z = €!* and f(e!®) = G[cos(a),sin(a)] + iH[cos(a), sin(a)].
Then, because any complex polynomial P,_,,(z) of degree < n — m can be
written as Pn_m(2) = Sn_m (@) + iQn_mm(a), where 2z = re'® and S,,_m(a),
Qrn—m () are trigonometric polynomials of degrees < n—m in «, we can apply
the same reasoning to get the inequality of Lemma 2 for the complex setting.
Furthermore, the proof of Theorem 1, pp. 66-68, is based on Lemma 2 and on
some inequalities obtained by standard reasoning and that remain valid in the
complex setting too. Finally, in the proof of Theorem 4, pp. 69-71, the con-
structions quoted in the relationships (2.2), (2.3), (2.4) obviously remain valid
in the complex setting too, and also, Theorem 1 and some standard metric
kind inequalities are used that remain valid in the complex setting too.
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Consequently, for all k =0,...,p and n > p, we get

Hf_0'2n k,n— p(f)|

2n— k 2n—k
1
<A n+p— k+J ) < AE, -
Zon p+j+1 = T k(f)jgon—p-i-j-&-l
n—k+1 2n+1
< AE, 4, —— < AE, O SEE———
= +p k(f) n—p+1 = +p— k(f)n—p—i—l

— ABip (P24 (20— 1)/(n = p+ D] < A2p+ D Enrpi(f):

Let P,(z) denote the best-approximation polynomial of degree < n, that

is, En(f) = ||f — Pu|| (or any near-best approximation polynomial of degree
< n, that is, one that satisfies || f — P,|| < CE,(f), with C > 0 independent
of n and f).

Taking into account the above estimate, Bernstein’s inequality for complex
polynomials, and the well known inequality E,, (f) < Cn"PE,_,(f®) for any
n>pand k=0,...,p, we obtain (the constants C, below can be different at
each occurrence, but are independent of f and n)

1F® = PO < [1£5 = ol (O + oS (F) = PP
= £ = oonpmp(FEN | + l0E)_(F) = PD|
< CpEnipi(F ) + [ (0200—p(f) = P)®|
<C En+p k(f ) (2n)k||‘72nn p( )_PnH
< CpEnipi(FP) + CpnPllloznm—p(f) = FI + I = Pall
)
)
)

< C, En+p k(f +C n [ n+p(f)+En(f)]
< C Ener k(f(k) + C nkE (f)
< CpEnipk(f*) + ConFn P B, _,(f®)

< Cp(n +p—k)” p+kEn(f(p)) + Cpn_m—kEn*p(f(p))
< CpnierkEn—p(f(p))v

which proves (iii). O

Remarks. (1) From the proof of Theorem 3.2.1 (iii), it easily follows that in
fact we have

Hf(k) Jg:z)n p(f) = Hf(k) - J2nfk,nfp(f(k))” < CpEner*k(f(k))

< Cp(n+p—k)PTE,(fP) < Con PTRE, (£),

forall k=0,...,p and n > p.
(2) It is natural to ask whether instead of the de la Vallée Poussin sums, we
could use directly the Taylor polynomials attached to f, defined by T,,(f)(2) =
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Ziﬂﬂzw
< n and satisfy Ték)( f) = Tn_r(f%®). Unfortunately, as linear operators
on A(D), the family {T},,n € N} is not uniformly bounded on A(D). This
shortcoming could be solved by imposing a stronger hypothesis on f, as for
example that f € AP(Dg) with R > 1, where D = {|z| < R}. In this
case, taking into account Cauchy’s estimates for the coefficients, for any fixed

27, Indeed, these polynomials reproduce any polynomial of degree

@ . .
1 <r < R we have w < %, where || f|| denotes the uniform norm in

C(D,) (for simplicity, here | - ||; is denoted simply by || - ||) and

,
1T ()l <

[fllr, VR €N,

which shows that T}, : A(D,) — A(D), n € N, is a family of bounded linear
operators. Reasoning now as in the proof of Theorem 3.2.1 (iii), let P, be the
polynomial of best approximation of degree < n of f and let @, _, be the
polynomial of best approximation of degree < n — k of f*), both on D,. We
obtain

17O = PPN < 179 = Tk (PO + 1T () = PP
< UF% = Quoill + 1Qn—k = Tk (FO) | + L) = P}
< Bucte(F O3 D0) + T ill - 15% = Queille + 0PI T () = Pu
< Bt D)) + —= Buci(F4 D) + 0¥ T 1f — Pl

F:B,) + ITull - n¥lf = Pall:

f(p);]l)T,.) + C,-,p,kn_pJ’kEn_p(f(p);H)Tr)

En—p(f(p)ﬂDTr)-

—p+k
< Crpin pr En_p
—p+k
<Crpin P En_p

< C7‘7p7k:

Thus, for any f € AP(Dg), p > 1 (with R > 1), any fixed 1 < r < R, and any
n > p, there is a sequence of polynomials P, (f) of degree(P,(f)) <mn,n € N,
such that for any £ =0,1,...,p, we have

C, —
1F = PO < 5 By (P75 Dy), k=0.1,..p.

where (., > 0 is a constant independent of f and n. This inequality is very
similar to that in the statement of Theorem 3.2.1 (iii). Here E, (F;D,.) denotes
the best approximation of F' on D, by polynomials of degree < n.

(3) Although it is not directly connected with the topic covered by the title
of this book, let us remark that the reasoning about the de la Vallée Poussin
sums in the proof of Theorem 3.2.1 (iii) suggests that two interesting trigono-
metric inequalities of Leindler [222] and Leindler-Meir [223], generalizing the
Steckin’s result in [371], might hold in the complex setting too. More exactly,
writing, for all nonnegative integers 0 < m < mn and real p > 1,
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GG = —5 3 TN - 1)

k=n—m

and
n

1/p
Gn,m,p<f><z>=<m1+1 > ITk(f)(Z)—f(Z)p> ,

k=n—m

we conjecture that for any f € A(D), we have

n—m-+
(G () K3 Erzel]

and

1/p
Eﬁ: m+k(f)
m+k+1 ’

1Grmp (O < C[log(n)]lfl/P (Z

where C' > 0 is an absolute constant. The complete proofs of these two in-
equalities remain open questions.

3.2.1 Shisha-Type Approximation
The first main result is the following.

Theorem 3.2.2. (Gal [131]) Let us consider the integers h,k,p € N, 0 <
h < k < p, the functions a; : D — C, continuous on D for all j = h,...,k
such that ayn(z) = 1, for all z € D, the distinct interpolation points |z;| <
1, i =1,...,h (by convention, if h = 0, then we do not have any interpolation
point), and the complex differential operator on AP(D) defined by L(f)(z) =

S L a;(2)f9(z), z €D.
For any f € AP(D) satisfying Re[L(f)(z)] > 0 for all z € D, and any
n € N, n > p, there exists a complex polynomial P,(z) of degree < n satisfying

If = Pall < CnFPE,_,(f))

(with C independent of n, f), Re[L(P,)(z)] > 0 for all z € D and P,(z) =
f(zi), i=1,...,h (if h = 0 then we don’t have interpolative conditions). Here
recall that || - || denotes the uniform norm in C(D).

Proof. By Theorem 3.2.1 (iii), for any F' € AP(D) and n > p, there exists a
polynomial p,(z) of degree < n such that

IFD = p|| < O P B, (F®)),

j=0,1,...,p, with C' > 0 independent of n and F.
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Defining ¢, (z) = pn(z) + Q(F — p,,)(2), where Q(F — p,,)(2) represents the
Lagrange interpolation polynomial attached to F'—p,, at the points 21, ..., zn,
we easily obtain ¢, (z;) = F(z;), i=1,...,h and

lgn = FIl < llpn = Fll + |QUF = pa)|| < cxn P Epp(F)),
with ¢; independent of n and F. -

From the continuity of each a;(z) on D, setting A; = ||a;|l, j = h,...,k,
we get Ay, = 1 and there exists M > 0 with A; < M, j=h+1,...,k. Since
1 Enp(fP) Z?:h AnI™P < ¢y -max{1l, M}(k—h+1)n*PE,_,(f®) = n,,
taking F'(2) = f(2) + nul(z — z1) -+ (2 — zp)]/(R!) (if h = 0 then F(z) =
f(z) + mn), let P,(z) be the polynomial of degree < n satisfying P,(z;) =
F(z), i=1,...,h and

||F(j) _ péﬂH < cmj*pEn_p(F(p)) - ClnjipEn—p(f(p))a j=0,1,...,p.
(Here ¢, is independent of n and F, therefore independent of f too.)

First, it is clear that P,(z;) = F(2;) = f(2:), i=1,...,h.

Also, we obtain

If = Pall < 2" (R) ™" + cxn P By (FP)
< Cnt B, (FP),
with C independent of n and f, which implies the estimate in the theorem.

On the other hand, if z € D (keeping the convention in the h = 0 case), it
is easy to see that

L(Py)(2) = L(f)(2) + 1
k
+ 3 a;(){Palz) = f(2) = [(z = 21) -+ (z = zn)Ima/ (W)},
j=h

and we obtain

RelL(P,)(2)] = RelL(£)(2) +
k
#Re{ L0y P - 1)

j=h
e R 1)

Now, by

Re{
J

<

T R S zh>]nn/<h!>}<j>}\

k
a;j(2){Pn(2)
=h
k
Y (2 Pu(2) = f(2) = (= = z1) -+~ (= = z)]na/ (A1)}
j=h

<max{l,M}ec; - (k—h+ 1)nk7pEn—p(f(p)) = Tn,
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we get

k
i+ Re 0P — 1) = [ = 20) - (2 = sl (WD)} 2 0,

j=h

and since Re[L(f)(z)] > 0, we finally obtain Re[L(P,,)(z)] > 0 for all z € D.
O

Remarks. (1) It is easy to see that the statement of Theorem 3.2.2 remains
valid if we replace the real part “Re” of the corresponding quantities with the
imaginary part “Im”.

(2) If in Theorem 3.2.2 we take Re[L(f)(z)] > 0 for all z € D, then from
the proof it easily follows that Re[L(P,)(z)] > 0 for all z € D, n > p.

Another consequence of Theorem 3.2.1 (iii) is the following.

Corollary 3.2.3. (Gal [131]) Let us consider the integers h,k,p € N, 0 < h <
k < p, the functions a; : D — C continuous on D for all j = h,...,k such
that ap(z) = 1 for all z € D, the point |20| < 1, and the complex differential
operator on AP(D) defined by L(f)(z) = Z?:h a;(2)f9(2), z € D.

For any f € AP(D) satisfying Re[L(f)(z)] > 0 for all z € D, and for
every n € N, n > p, there exists a complex polynomial P,(z) of degree, < n,
satisfying

1f = Pall < an_pEn—p(f(p))

(with C' independent of n, f), Re[L(P,)(z)] > 0 for all z € D, and P,Si)(zo) =
f9(z), i=0,...,h.

Proof. Asin the proof of Theorem 3.2.2, for any F' € AP(D) and n > p, there
exists a polynomial p,(z) of degree < n such that

| FO) —pW|| < cnj*pEn,p(F(p)),

7=0,1,...,p.
Define now g¢,(z) = pn(z) + Trh(z), where Ty(z) denotes the Taylor
polynomial of degree h attached to the point zy and to F — p,, that is,

T(z) = Y=o G5 IF = pul ¥ (20)-
We easily get q,(lj)(zo) =FUY(z), j=0,...,h, and

h
lgn — Fl| < 1 Y |FD = piP|| < exn® PE, (FW),
=0

with ¢; > 0 independent of n and f, since h < k.
Defining 7,, = ¢; max{1, M}(k —h+ 1)n*PE,_,(f®) (where M is given
in the proof of Theorem 3.2.2) and taking F(z) = f(z) + n.(z — 20)"/(h!),
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let P,(z) be the polynomial of degree < n satisfying P,gi)(zo) = FO (%), i =
0,...,h, and

HF(j) _ p7(lj)|| < clnj_pEn_p(F(p))
= e PE, ) (fP) < CnFPE,_(fP)), j=0,1,...,k
From here the proof is identical to that of Theorem 3.2.2. O
We present some applications of Corollary 3.2.3.

Theorem 3.2.4. (Gal [131]) (i) Let p € N. For any f € AP(D) normalized
in D (that is, f(0) = f'(0) — 1 = 0) satisfying Re[f'(2)] > 0 for all z € D
and any n > p, there exists a polynomial P, of degree < n such that P,(0) =
f(0), P/.(0) = f'(0), Re[P.(2)] > 0 for all z € D, and

1
np~1

If = Pall < C——En_p(f?)),

where C' is independent of n and f.

(i) Let p € N, p > 2. For any f € AP(D) normalized in D and any

n € N, n > p, there exists a polynomial P, of degree < n such that P,(0) =
f(0), P,(0) = f'(0),

1

nP—2

I = Pall < C— 5 By (fP),

with C independent of n, f, that in addition has the following properties (the
choice of P, (z) depends on the property):

(a) If Re[f'(z) + zf"(2)] > 0 for all z € D, then Re[P)(z) + zP)(z)] > 0
Vz € D.

(b) If Re[f'(2)+ 32 f"(2)] > 0 for all z € D, then Re[P),(2)+ 2zP}/(z)] > 0
for all z € D.

(c) If Re[f'(z) + %zf”(z)] > 0 for all z € D, where —=1 < v < vy =
1.869..., then Re[P.(z) + %zP,’L’(z)] >0VzeD.

(iii) Let p € N, p > 2. For any g € AP(D) satisfying g(0) = a, with
Refa] > 0 and Re[g(z) + 2¢'(2) + 22¢"(2)] > 0 for all z € D, and any n € N,
n > p, there exists a polynomial P, of degree < n such that P, (0) = g(0),
Re[P,(2) + 2P (2) + 22P"(2)] > 0 for all z € D, and

1
-2 E”*P(g(p))a

lg — Pl <C

npP
where C' is independent of n and f.

(iv) Let p € N. For any g € AP(D) satisfying g(0) = a, with Rela] > 0 and
Relg(z) + 2B(z)¢'(2)] > 0, with Re[B(z)] > 0 for all z € D, and any n € N,
n > p, there exists a polynomial P, of degree < n such that P,,(0) = g(0),
Re[P,(z) + zB(z) P/ (2)] > 0 for all z € D, and

1
lg — Pall < CFEn,p(g(P)),

where C' is independent of n and f.
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Proof. (i) Take L(f)(z) = f'(z) and apply Remark 2 of Theorem 3.2.2 and
Corollary 3.2.3 for 2o =0, h =k = 1.

(ii), (a), (b), and (c) Take L(f)(2) = f'(z) + 2f"(2) (or L(f)(2z) = f'(2) +
5f"(2), respectively) and apply Remark 2 of Theorem 3.2.2 and Corollary
3.23for zg=0,h=1,k=2.

(iii) Apply Remark 2 of Theorem 3.2.2 and Corollary 3.2.3 for zgp = 0,
h=0,and k = 2.

(iv) Apply Remark 2 of Theorem 3.2.2 and Corollary 3.2.3 for zy =
h=0,and k=1.0

|
o

Remarks. (1) By, e.g., Mocanu—Bulboaci—Salagean [273], p. 78, it is well
known that if f is normalized and satisfies the condition Re[f’(z)] > 0 for all
z € D, then f is univalent and of bounded turn in D (i.e., |arg[f'(2)]| < 7,
for all z € D). Consequently, the approximation polynomials P,,, n > p, are
univalent and of bounded turn on D.

(2) By, e.g., Singh—Singh [358], Mocanu [272], and Mocanu-Bulboaci—
Salagean [273], p. 358, respectively, the fact that f is normalized together
with any of the three conditions (a), (b), and (c¢) in Theorem 3.2.4 (ii) implies
the starlikeness of f (and as a consequence the starlikeness of P, too) in D (for
the above sufficient conditions of starlikeness (a) and (b), see also Mocanu—
Bulboacé—-Saldgean [273], p. 363).

(3) By, e.g., Mocanu—Bulboaca—Salagean [273], Problem 9.6.5 (ii), p. 221,
the conditions satisfied by ¢ in Theorem 3.2.4 (iii) imply Re[g(2)] > 0 for all
z e D.

(4) By, e.g., Mocanu-Bulboaca—Salagean [273], p. 192, the conditions in
Theorem 3.2.4 (iv) imply Re[g(z)] > 0 for all z € D.

Similar results are given by the following.

Theorem 3.2.5. (Gal [131]) (i) If f € A(D) satisfies Re[f(z)] > 0 for all
z € D and E,(f) # 0 for all n € N, then for each n € N, there exists
P, a complex polynomial of degree < n, satisfying || P, — f|| < 2E,(f) and
Re[P,(z)] > 0 for all z € D.

(ii) Let f € AY(D) be such that there exists v € R, with Re[e? f'(2)] > 0
for all z € D and suppose that E,(f';1/n) # 0 for alln € N. Then for any
n > 1, there exists a polynomial Q,(f)(z) of degree < n satisfying
Re[eQ!,(2)] > 0 for all z € D and |Qn(f) — fl| < cEa_1(f"), where c is
independent of n and f.

Proof. (i) Let P! be the polynomial of degree < n satisfying ||f — P =
En(f)- Since [Re[P; (2)—f(2)]| < [[f =Pyl = En(f) < 2E.(f) and Re[P,.(2)—
f(2)] =Re[P(2) — f(2)]+2E,(f) > 0, it is easy to see that P, (z) = P*(z) +
2F,(f) satisfies the required conditions.

(ii) From Theorem 3.2.1 (iii), there exists P,(z) satisfying ||P, — f] <
LB, 1(f') = a, and [P — /| < cEu y(f') = Ba.
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Setting Q,(2) = P,(2) + z%@), we get |Qn — fIl < 1P — fll + 26, <
oy, + 20,, which proves the approximation estimate.
Also,

Rele™ (Ql,() — f'(2))] = Rele” (P, (2) — f'(2))] + 20, Re {m}

= Re[e" (P (2) — f'(2))] + 26, > 0,

since |Re[e’” (P (2) — f'(2))]| < [e7[Pr(2) = f/(2)]l < 1Py = f'll < Bn < 2Bn,
which proves the theorem. [J

Remark. It is well known that Re[e?” f/(2)] > 0 for all z € D is the Noshiro,
Warschawski, Wolff’s sufficient condition of univalence for f (see also, e.g.,
Mocanu-Bulboac&-Sélagean [273], p. 78).

3.2.2 Re[L]-Positive Approximation

In this subsection we generalize the above Shisha-type methods and results to
an abstract setting by extending the abstract method of L-positive approxi-
mation in Section 2.3 to a complex variable.

Let (X, - |lx) be a complex normed space, S a linear subspace of X,
M C X with SN M # (), and f € X. Then the best approximation of f by
elements from S or from S N M are defined by

Bs(f: X) = i {1/ — gllx}

and
Esm(f; X) = gelglrﬁM{Hf —gllx},

respectively.

We have Eg(f; X) < Esp(f;X) for all f € X, and if in addition, S is
finite-dimensional, we recall (see Section 2.3, Remark 2 after Definition 2.3.4)
that then there exist ¢* € S and g3, € SN M such that Es(f; X) = ||f—¢*|lx
and Ee.ur (5 X) = IIf - g3l

For 2 C Clet us denote by (F(£2), ||-||#) a normed space of complex-valued
functions defined on 2 and let L : X — F(2) be a linear bounded operator,
e, ILIl = sup{|L(x) llz]x < 1} < oo Also, set M[Re(L)] = {f €
X;Re[L(f)(2)] > 0, for all z € 2} and M[Im(L)] = {f € X;Im[L(f)(2)] > 0,
for all z € 2}.

The goal is under some conditions on L and S C X to obtain estimates of
the form

Es mren) (f; X) < CEs(f; X), Vf € X,
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and
Es mpmy (f; X) < CEs(f; X), Vf € X,

where C' is a constant independent of f and S.
The first main result is the following.

Theorem 3.2.6. For (X, | - ||x) a complex normed space and S C X a lin-
ear subspace, let us consider a family of linear bounded operators L; : X —
Fi(825), £2; € C, where (F;(82;), || - || 7;) are normed spaces of complex-valued
functions defined on (2; for all j € J, respectively (J an arbitrary set), satis-
fying the following conditions:

(i) supje 1Ll < oo

(ii) there is an element e € S such that for any j € J we have

Re[L;(e)(2)] > 1, for all z € £2;.
Then, for every f € X and P € S, there exist Q; € S, i = 1,2, such that
(—=1)"'Re[L;(Qi — f)(2)] 20, z € 25, j € J,
and the estimate
If = Qillx < (1 + llellxsupjesllLill) - IIf = Pllx, i =1,2,
holds.

Proof. Writing Q; = P + (—1)""'Xe, where A = sup, {1 L; - I/ — Pllx,
for any ¢ = 1,2, we obtain

(=D)L (Qi = )(2) = (=)' Li(P — f)(2) + AL(e) ().
Taking the real part, it follows, that
(1) Re[L;(Qi — f)(2)] = (1) Re[L; (P — f)(2)] + ARe[L(e)(2)]
> (—1)"* RelL;(P — f)(2)] + A = 0,

since | (—1) RelZ; (P — f)(2))| < |L;(P — N)(2)] < Ll [P~ fllx < A
In addition,

If=Qillx < If=Plix+Alellx = A+llellx sup,e s IL;IDIf = Pllx, i=1,2,
which proves the theorem. [J

Replacing above the real part with the imaginary part, we immediately
get the following.

Corollary 3.2.7. For (X, | - [|x) a complex normed space and S C X a lin-
ear subspace, let us consider a family of linear bounded operators L; : X —
Fi(12;), 2, C C, j € J (J an arbitrary set), satisfying the following condi-
tions:
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(1) supje s |1 L; | < oo;
(ii) there is an element e € S such that for any j € J we have
Im[L;(e)(2)] > 1, for all z € 2;.
Then, for every f € X and P € S, there exist Q; € S,1 = 1,2, such that
(=)™ Im[L;(Qi — f)(2)] 2 0,2 € 2,5 € J,
and the estimate
If = Qillx < (1+ llellx supje s [1L51]) - [If = Pllx, i = 1,2,
holds.
Another consequence of Theorem 3.2.6 is the next result.

Theorem 3.2.8. Let (X, | - ||x) be a complex normed space with S C X a
linear subspace. Let us consider a family of linear bounded operators Lj :
X — F;(92), 2; C C, where (.7-' (£25), 11 - [|7,) are normed spaces of complex-
valued functwns defined on £2;, for all j € J, respectively (J an arbitrary set),
satisfying the conditions (i) and (i) in the statement of Theorem 2.3.5, and
for j € J let us define

Mt (Re[L;]) = {f € X : Re[L;(f)(2)] >0, for all z € £2;},
M~ (Re[L ]) ={f e X :Re[L;(f)(2)] <0, forall z € £2;},
M*[Re] = () M*(Re[L;)).
j€J

Then, for any f € M*[Re], we have

Es iz re)(f; X) < (14 [lellx supje s 14511 Es (f; X).

Proof. We prove the case f € M*(Re[L;]), since the case f € M~ (Re[L,])
is similar. By Theorem 3.2.6, there exists Q1 € S such that Re[L;(Q1)(z)]
Re[L;(f)(2)] > 0, for all z € 2; for all j € J. Thus Q; € M+(Re[ ;1) a

the conclusion immediately follows from the estimate in Theorem 3.2.6. [J

>
nd

Remark. Theorem 3.2.8 remains valid if in the statement we replace Re with
Im.

Corollary 3.2.9. For (X, ||-||x) a complex normed space and S C X a linear
subspace, let L : X — F(£2), where 2 C C and (F(2),| - |l#) is a cer-
tain normed space of complex-valued functions defined on §2. If L is a linear
bounded operator such that there exists e € S with Re[L(e)](z) > 1 for all
z € 12, and if we set M(Re[L]) = {f € X : Re[L(f)(2)] > 0 for all z € 2},
then for any f € M(Re[L]) we have

Es nrer) (f; X) < (L+IL]] - llellx) Es(f; X)-

The proof is an immediate consequence of Theorem 3.2.8. J
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Remarks. (1) Corollary 3.2.9 remains valid by replacing Re with Im.
(2) The constant (14| L]|-|lellx) can obviously be improved, by replacing
llell x with ¢ = inf{|le||x;e € S, Re[L(e)(z)] > 1, for all z € 2}.

At the end of this section we present the following refinements of Theorems
3.2.6, 3.2.8 and Corollary 3.2.9, in the sense that the positivity condition
Re[L] > 0 can be replaced by the strict positivity condition Re[L] > 0.

Corollary 3.2.10. In the hypothesis of Theorem 3.2.6, for every f € X and
PeS, P#f, there exist Q; € S, i = 1,2, such that

()" Re[L;(Qi — f)(2)] > 0, z€ 825, j€ J,
and the estimate
1f = Qillx <@+ llellx + llellx supjes ILs1I) - [If = Pllx i=1,2,
holds.

Proof. Indeed, this conclusion easily follows if in the proof of Theorem 3.2.6
we take A = (1+sup;c; [|L;][) - [|f — Pllx and we follow the reasoning of that
proof. [J

Corollary 3.2.11. In the hypothesis of Theorem 3.2.8 but introducing the
notations

M (L) ={f € X : Re[L;(f)(2)] >0, a.e. on £2;},
My (Lj) ={f € X :Re[L;(f)(2)] <0, a.e. on £2;},

Mg =) My (L),
jeJ

forany f € Moi, we have
Eg pz (f; X) < (14 [lellx + llellx supje s [I1L; 1) Es (f; X).

Proof. We prove the case f € M, since the case f € M, is similar. By
Corollary 3.2.10, for any f € X and P € S, P # f, there exists @1 € S
such that Re[L;(Q1)(z)] > Re[L;(f)(2)] > 0, a.e. z € {2}, for all j € J. Thus
Q1 € MJ and from the estimate in Corollary 3.2.10, we get

If = @ullx < (L + llellx + llellx supje s I1L51D - 1f = Plix, i = 1,2,
which immediately implies the estimate in Corollary 3.2.11. [

Corollary 3.2.12. In the hypothesis of Corollary 3.2.9, setting Mo(L) = {f €
X :Re[L(f)(2)] > 0, on 2}, then for any f € My(L) we have

Es o) (f; X) < (L +[lellx + 1L - llellx) Es(f; X).-

The proof is an immediate consequence of Corollary 3.2.11. [J
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Remarks. (1) Other slightly different variants of the above results hold. For
example, in Corollary 3.2.12 let us suppose that L : X — C(D), with D =
{z € C;|z| < 1}, is a linear bounded operator such that there exists e € S with
Re[L(e)(2)] > 1 on D. If we set Mo(L) = {f € X : Re[L(f)(z)] > 0, on D},
then for any f € My(L) we have

Es ) (f; X) < A+ ILI] - llellx) Es (f; X).
The estimate is immediate from the proof of Theorem 3.2.8.

Note that by L(f) € C(D), we easily get Re[L(f)(z)] > 0 for all z € D,
i.e., actually f € M(L) = {f € X : Re[L(f)(2)] > 0, on D}.

(2) In order to get an application, let us particularize the spaces X, S, and
the operator L.

If we take X = A'(D), the space of continuously differentiable functions
f : D — C on the closed unit disk D (endowed with the norm ||f||41 =
max{|| f||, || f'I}, where || - || denotes the uniform norm on C(D)), and L :
AYD) — C(D) defined by L(f)(z) = f'(z), then obviously L is linear and
bounded. Also, e(z) = z,Vz € D, satisfies Re[L(e)(z)] = 1 for all z € D.
Therefore, by choosing as S the set of all complex polynomials of degree < n
(for arbitrary fixed n € N, that is, a finite-dimensional subset in C(D)), for
any f € Al(D) satisfying Re[f’(z)] > 0 for all 2 € D, there exists a complex
polynomial P, of degree < n such that Re[P/(z)] > 0 for all z € D. Taking
into account the definition of the norm || f|| 4: and combining the estimate in
Corollary 3.2.9 with Theorem 3.2.1 (iii), we immediately get the estimate

I f = Pull < CEn—l(f/)a

i.e., we recover a particular case (y = 0) of Theorem 3.2.5, (ii).
Obviously many other choices for X, S, and L can be made.

3.3 Shape-Preserving Approximation by Convolution
Polynomials

Let D = {z € C;|z| < 1} be the open unit disk and let us set A*(D) = {f :
D — GC; f is analytic on D, continuous on D, f(0) = 0, f/(0) = 1}, i.e., A*(D)
is the class of all normalized functions in A(D).

The aim of this section is to obtain approximation results through convo-
lution polynomials based on various trigonometric kernels (of Fejér, Jackson,
Beatson, Ceséro, de la Vallée Poussin mean), producing a Jackson-type ap-
proximation rate or best-approximation rate and preserving many properties
in geometric function theory such as the coefficients’ bounds, positivity of
real part, bounded turn, close-to-convexity, starlikeness, convexity, spirallike-
ness, a-convexity. In addition, some sufficient conditions for starlikeness and
univalence of analytic functions are preserved.
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3.3.1 Bell-Shaped Kernels and Complex Convolutions

First we consider approximation and geometric properties for complex convo-
lutions, based on the so-called Beatson trigonometric kernels and their gener-
alizations called iterated Beatson kernels.

With the aid of kernels K, ,.(¢), defined by

sns\ 2r
Ko o(s) = <s1n2)

Iin S
S111 2

and with ¢, , chosen so that %ffﬂ K,.»(s)ds = cup, it is known that the
Beatson [32] kernels are defined by

n t+7/n
By, (1) /t K, (s)ds.

B 2mCnr Ji—n/m
The following lemma holds.

Lemma 3.3.1. (Gal [129]) For anyn,r € N,n,r > 2 and k €{0,1,---,2r—2}
it follows that

/ t* B, 1 (t)dt < Cn7F.
0

Proof. If k =0 then

27

/thn,rH(t)dt:/ B s (t)dt < B,y (t)dt = .
0 0 0

Let k € {1,2,...,2r — 2}. Integrating by parts, one obtains

/ t" By, oy (t)dt
0

n . T+7/n
= K, d
omenrii(k+ 1) /,, rai(u)du

—m/n
n " e
- t Ky 1t + 7/n)dt
27T'Cn)7«+1(k+1)\/0 7-‘-1( / )
n

— | K, (- dt = I, — Iy + I.
+ 27T0n,r+1(k+1)/o rr1(t —m/n) 1— I+ 13

In what follows we will estimate the integrals I, Is, I3. For that, we will use
the following relations (see, e.g., Lorentz [248], p. 57):

s
Cnr R nQ’“*l,/ tka«(t)dt ~p?rlTR,
0
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First we obtain

I3 < On*”/ K g (t— 7 /n)dt
0

T—m/n
= Cn_Q’"/ (v +7/n)F K, 0 (v)do

—7/n
T—m/n
=Cn™?" / (v +7/n)F K, 0 (v)do
0

0
+Cn% / (v 4 7/n)* 1K, 4 (v)do

—7/n

< 20717%/ (4 7/n)* K, o (v)do < O~ 22D —1=FD) — oy =k,
0
Second, we get

I, < Cn—Q’”/ tFUK, a1 (7 /n)dt
0
T+w/n
=Cn~?" / (v —7/n)* K, o (v)do
T/n

7r+7'r/n
<Cn™% // (v +7/n) K, o (v)do
T/n

:C’nfzr/ (v+7/n)F K, o (v)do
T/n

47 /n
+COn~?" / (v +7/n) K, 0 (v)do
<Cn™%" / (v +7/n)F K, 4 (v)do
0
Tmw/n
+ C’n_QT/ vk+1Kn7T+1(v)dv <Cn7F

Tw/n
+Cn72r/ vk+1Kn7T+1(v)dv.

If we set

T+m/n
Jo = C’niZ’“/ v]”lKn,H_l(v)dv,

then using the substitution nv/2 = t, one obtains

Jo = Cn72r/n /mr/2+7r/2(2t/n)k+1(Sin(t)/Sin(t/n))Z(rJrl)dt

nw/2

nw/2+m/2
=Cn 22 / £+ (sin(t) / sin(t/n))*" Dt
nm/2
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But if ¢ € [n7/2,n7/2 4+ /2], then we get t/n € [7/2,7/2+ w/(2n)] C [0, ],
for all n > 2, which implies

sin(t/n) > sin(n/2 4+ 7/(2n)) = cos(w/(2n)) > cos(w/4).

Since k < 2r — 2 < 2r + 1, it follows that

nw/24m/2
JQ S On72r7k72‘/ tk+1dt S Cn72r7k72(n7r/2 +71'/2)k+1
nm/2

S Cn—Qr—k—2+k+1 — Cn—Qr—l S Cn_k.

In conclusion, I < Cn~F.
Now, by the substitution nu/2 = v, we get

47 /n
L < C’n_%/ K, r1(w)du

—m/n

nw/24+7/2
=Cn 21 / (sin(v)/sin(v/n))2"*+Ydy
nw/2—m/2

nm/2
=Cn %! / (sin(v)/sin(v/n))>" Y dy
nw/2—m/2

nw/24m/2
+ Cn~2r1 / (sin(v)/sin(v/n)) >0 Vdy =: J; + L.
nm/2
Since v € [n7/2 — 7/2,n7/2] is equivalent to v/n € [7/2 — 7 /(2n), /2], we
have sin(v/n) > C(v/n) and
nw/2

Jy <Cn~ 21 / (sin(v)/(v/n))>" TV dw
nw/2—m/2

nm/2
= C’n/ (sin(v)/v)2 D dy
nw/2—m/2

nw/2

< Cn/ (1/v)2r Yy
nw/2—m/2

< Cn(1/((n —1)m/2)20+) < cn=2=t < CnF,

for all n > 2.
Similarly, using the substitution v/n = t, since cos(w/(2n)) > cos(w/4) for
all n > 2, we obtain

w/2+4m/(2n)
Li=Cn / (sin(nt)/ sin(£))2 Dt
/2

7/247/(2n)
<Cn~?r / (1/ sin(t))2r+Vdt
/2
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< Cn~%(r/(2n))(1/ sin(r/2 + 7/ (2n)))2"+D
< Cn~¥ Y1 /cos(n/(2n)))2 Y < On~F Tt < On7k,

From all the estimates for I, I, and Is, it follows that I —Io+1I3 < Cn~*,
which proves the lemma. [
Consequently, we get the following.

Corollary 3.3.2. (Gal [129]) If f € A*(D) then the convolution polynomials
given by

Po(f)(z) = % ) F(re™) B, (x — t)dt = = ’ f(ze") By, (u)du,

—T —T

z=re® €D, m = [n/r] + 1, satisfy degree P,(f)(z) < n, and for all r > 3,
the estimate

1) = Puf)(a)| < Con (£

am
holds for all z € D, n € N, n > 2, where

wp(f30)an = sup{| AL f(e™)]; |z < 7, |u] < 6},
and AL g(x) = 320 _o(=1)P""(}) g(@ + ku).

Proof. Let r > 3 and n > 2 be fixed. Because By, (t) is even, as in the proof
of Theorem 2 in Lorentz [248], p. 56, we get

f(2) = Pa(f)(2) = /Oﬂ[Qf(Z) — f(ze") = f(ze™")| By (t)dt.

Applying the maximum modulus principle, we may take |z| = 1 when we have
1£(2) = Pu(f)(2)] = | /0 [2f(2) = f(ze") = f(ze™")] By, (t)dl]

</ " 127(2) - Fz6") — f(ze )| By (1)t
0
But

n

27(2) = f(z€") = F(ze™)] < w2 (fit)gp = w3 (f; m)aﬂ»

< C(nt+ 1)2w2 <f’711) ,

oD

which together with Lemma 3.3.1 implies

|f(2) = Pu(f)(2)] < w2 (f; i)BD /Oﬂ(nt +1)2By, (t)dt < Cuws (f; i)

O

oD



244 3 Shape-Preserving Approximation by Complex Univariate Polynomials

By Gal [128], we can define the iterated Beatson kernels by recurrence as
Bn,r,l(t) = Bn,r(t)v

n t+m/n
By ra(t) = — Bpr1(s)ds, ..., By rp(t)

27 t—m/n

n t+m/n
=5 o By,rp—1(8)ds,

p=2,3.
The following generalization of Lemma 3.3.1 holds.

Lemma 3.3.3. (Gal [129]) For any n,r,p € N withr > 2, n > p+ 1, and
ke{0,1,...,2r 4+ 2p — 4}, we have

/ t* By iy p(t)dt < Cn7F.
0

Proof. The case p = 1 is Lemma 3.3.1. First, for simplicity we consider the
case p = 2. We get

n t+7/n t+7/n z+7r/n
Bn,r,Q(t) = %\/t / Bn,r(s)d / / / / ds dx
—m/n t—m/n T—T/n

For k = 0 we have

™ 27
/ t* By py2o(t)dt < / th By pia(t)dt < 7.
0 0

Let £k =1,2,...,2r. Integrating twice by parts, simple calculations imply

,/TkJrl , ﬂ_k+2

thnr t)dt = By, - B (k+1)(k+2)
/0 ro2(t) ’ +2’2(7T)k+ 1 mrt2,2(T) (k+ 1)k +2)

1 k42 1
GG )(k+2)/ 2Bl o (t)dt

2 k+1 47 /n z+7/n
= K, ds dx
( ) k+1 CnT+2 [r T/n /x T/n +2 )

n27rlc+2

21)2(k 4+ 1)(k + 2)cnrvo

(
T+27/n T
X / Kn,r+2(8)d5 - / Kn,r+2(8)d8
™ T—27/n
+

n2
@2m)2(k+ 1)k + 2)cn rt2

X / 2Ky o (t 4 21 /n) — 2K, 42(t)
0

+ Kn,r+2(t — 27r/n)]dt = Il — IQ + Ig.
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By i
Cry & TL2T71, / tkKnyr(t)dt ~ n2r717k’
0
we get
2 T
n
~ 1/n2r+1’ / tk+2Kn7T+2(t)dt ~ n2r+1—k.
Cn,r+2 0

Reasoning as for I and I3 in the proof of Lemma 3.3.1, the above relations
immediately imply I3 < Cn~k

Also, reasoning as for I in the proof of Lemma 3.3.1, we get I, < Cn~F
It remains to estimate the integral

47 /n z+7/n
/ / K, r+2(s)ds dx.
m—n/n Jr—m/n

By the mean value theorem, there is £ € [1 — w/n, 7 + 7/n| satisfying

or [EtT/n
J=— ) K, r+2(s)ds

E—7/n
2 13 2 E+m/n
I Kn,r+2( )d5+ i Kn7r+2(8)d8
n Je—x/n ¢
or  [1E/2
=— [sin(t)/ sin(t/n)]z(r+2)dt

n= Jne/2—m/2
o [nE/2+m/2

[sin(t)/sin(t/n))2CT2dt == J; + J.

ﬁ n&/2
We obtain )
_2m ¢/ . . 2(r+2)
J1 = [sin(nv)/sin(v)] dv
§/2—m/(2n)
and &/24/(2n)
2 Uy n
Jo = il [sin(nw)/ sin(v)]2+) do.
£/2

Since |sin(nv)| < 1and 7—n/n < £ < w47 /n, it follows that 0 < 7/2—7/n <
&/2—7/(2n) < &/2 < 7/2+47/(2n) < 7,0 < w/2—7/n < &/2 < &/247/(2n) <
T/24w/n <.
So, for n > 3, |1/sin(v)| is bounded for both integrals J; and Ja, which
implies J; < Cn~2, Jo < Cn~2.
On the other hand, because k < 2r < 2r + 3, it follows that

n2 ﬂ_k-ﬁ-l

I, = J<C -2 —2r—1:C —27“—3<C —k:.
YT m2 it Deprge 0 " " =
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All these prove the statement of Lemma 3.3.3 for the case p = 2. For
general p, reasoning by recurrence and integrating p times by parts the integral
Jo t* B rqpp(t)dt, the proof is similar. [

An immediate consequence is the following.

Corollary 3.3.4. (Gal [129]) If f € A*(D) and p € N is fized, then the con-
volution polynomials given by

Porn(D)(2) = 2 [ F(26) By p (),

T J—m

z €D, m = [n/r] +1, satisfy degree P, ,,(f)(z) < n, and moreover, for all
m,r > p+2, z €D, the estimate

F(2) = Prrp(F)(2)] < Cun (f; 1)6]@

n
holds.

Proof. Taking into account Lemma 3.3.3 and the fact that B,,,,(u) are
even, the proof is similar to that of Corollary 3.3.2. [J

Remarks. Beatson [32] observed (without proof; see Gonska—Cao [151] for a
proof) that B, ,(t) is bell-shaped (recall that a continuous 2w-periodic func-
tion on [—, 7] is called bell-shaped if it decreases on [0, 7] and is even).

In what follows, first we prove that the above iterated Beatson kernels also
are bell-shaped and that the convolution operators based on them transform
the convex functions into close-to-convex polynomials. Then, for convolution
polynomials based on various trigonometric kernels, we present approxima-
tions that preserve geometric properties of analytic functions, such as the co-
efficients’ bounds, real part positivity, bounded turn, close-to-convexity, star-
likeness, convexity, a-convexity, spiralikeness, and some sufficient conditions
for starlikeness and univalence. The rates of approximation are of Jackson
type or of best-approximation kind.

Lemma 3.3.5. (Gal [128]) The iterated Beatson kernels By, p, n,7,p € N,
are bell-shaped.

Proof. We will reason by mathematical induction. Thus, by Gonska-Cao
[151], Bpr1(t) := By -(t) is nonnegative and bell-shaped. Therefore, suppose
that By, rp—1(t) is nonnegative and bell-shaped. First, by the substitution (s =
—u) in the integral defining B, , ,(t), we immediately get that By, ,,(t) > 0
and By, » p(—t) = By, p(t), for all ¢ € R.

Then, we obtain

n
By p(t) = 5 [Bup—1(t +7/n) = Burp—a (t = w/n)]
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Let t € [0,7]. There are three cases: (i) t € [1/n,m —«/n]; (ii) t € [0,7/n];
(iii) t € [7 — w/n, 7).

Case (i). Since By, p—1(t) decreases on [0, 7], we obtain 0 < ¢t — w/n <
t+m/n<m and By, p_1(t +7/n) — By rp_1(t —7/n) <O0.

Case (ii). Since 0 < w/n—t < w/n+t < 2n/n < 7w, (for n > 2) and
B, rp—1(t) is even and decreases on [0, 7], it follows that

B yrp-1(t+7/n) — By rp_1(t —7/n) = By pp_1(m/n+ 1)
=By p_1(m/n—1t) <O0.

Case (iii). Since 0 <7 —2n/n <t —7n/n <2x —t—w/n < (for n > 2)
and By, p—1(t) is even, 2m-periodic and decreases on [0, 7], it follows that

Brrp-1(t+7/n) = Bpyp-1(t —7/n)
= Bprp-1[—(t +7/n)] = By p-1(t —7/n)
= B”’T’pflpﬂ- - (t + W/n)] - Bn,r,pfl(t - 7T/n) <0.

O
Corollary 3.3.6. (Gal [128]) The convolution polynomials defined by

Porn(D)(2) = 2 [ F(26) By (),

T —T
z € D, m = [n/r] + 1, satisfy degree Py ,,(f)(2) < n and for all m,r >

p =+ 2, the approximation estimate in Corollary 3.3.4 holds. In addition, they
transform any convex function f € A*(D) into close-to-convex polynomials.

Proof. While the approximation property follows from Corollary 3.3.4,
the geometric property is a direct consequence of Suffridge [375], p. 799,
Theorem 3. O

3.3.2 Geometric and Approximation Properties of Various
Complex Convolutions

Concerning the coefficients of convolution polynomials based on various
trigonometric kernels, we present the following theorem.

Theorem 3.3.7. (Gal [129]) (i) Suppose that f(z) = Y pegarz® is a-
nalytic on D and O, (t) = 1 + Y1 pn cos(kt). Then for Po(f)(z) =
LT f(ze™)On(t)dt, we have

Pn(f)(z) =ao + Zakpk:,nzk~
k=1
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If f(2) = 2+ > p2o %, 0 <|z| <1 is meromorphic, then

Pn(f)( )*PlanraoJrZ Ppp, )

p=1
(it) If On(f) = 5 + Yoy P cos(kt) >0, Vt € [0,7], and £ [T O, (t)dt

=1, then
lpkn| <1, forallk € {1,...my}.

NN
(iii) Let Fo(t) = 55 (Sl.n ?) denote the Fejér kernel, V,,(t) = 2F5,(t) —
2

Sin

F, (t) the generalized de la Valléey Poussin kernel,

T = 3 sin 2t *
n()_Zn(2n2+1) sin §

the Jackson kernel, and

n t+m/n
Busalt): = Bualt) = o- / 0t By )
t—m/n
n t+7/n
S By o1 (t)dt,
2 t—m/n 2P 1()

p=2,3,..., the Beatson kernels. We get

Z

k=1
n 2n
Z cos(kt) + Z
k=1 k=n+1
1 2n—2
3 + Z Ak cos(kt), where
k=1
3 2 3
/\km:éln 6162:(;2111)31@’—#271’ iF1<k<n,
Ao = (k —2n) — (k —2n)3
" 2n(2n2% 4+ 1)

cos (kt),

—k cos(kt),

3
—
~
=
|

L ifn<k<2n-—2,

and forp=1,2,...,

)
3

—2

+ 1 {%sm(kzw/n)}p “ Ai,n cos(kt),

1
Bn,2,p(t) = b}

b
Il

where Ay, are the coefficients in Jy(t).
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Proof. (i) The analytic case is immediate, reasoning similar to the proof of
Theorem 1 (ii) in Gal [127].
In the meromorphic case, we have

it it Ak —ikt
On t = —_
f(ze")On(t) ze —l—kgOZk e

1 My
5t ; Ppncos(pt)

ak: _
_ Zezt+§ ikt

(105 s o)
_ Zezt+zak —ikt { += prnezpt+ %pp,nei }

_ ezt+ prme (p+1) +Z Zp nezt(l p) 4= Zak —ikt
4 ZZ akppn it(p—F) ZZ akppn o~ itk+p).

kOpl kOpl

Integrating from —7 to 7 and reasoning as in Gal [127], Theorem 1 (ii),
we obtain

Mn

w0 e

L7 pe)0utydt = proz +

—T

(i) By

1 ™
f/ cos(jt)On (t)dt = pjn, forall j € {1,...,m,},
™

—T

we obtain
1 ™ ) 1 ™ ) 1 ™
lpjnl = f/ cos(jt) Oy (t)dt < 7/ |cosjt|Oy, (t)dt < — O, (t)dt = 1.
TJ Z - TJ
(i) The form of F,(t) is well known (see, e.g., DeVore-Lorentz [91],
p. 339).
Also,
Vi (t) = 2F9,(t) — Fo(t)
2n n
1 2n—k 1 n—k
=2 3 + kZ:l o cos(lct)} - [2 + ; cos(kt)}

“2n—k n-k o —k
+ [ - } cos(kt) + Z - cos(kt)
k=1 k=n-+1

1 < 2n —k
=3 + Zcos(kt) + Z - cos(kt).
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For the Jackson kernel J,(t), by Matsuoka [269], Lemma 7, pp. 25-26, one
obtains

sin™\* 1 2
(312441 ( B ) = 5Tom + > ko cos(kt),

SIN. 5
St 5 k=1
where

Ty = Z(fl)”+1 (2 4 >(k —vn+1)(k—vn)(k—vn—1)

v=1 -
if 0 <k <n,and
Thn =—(k—2n+1)(k—2n)(k—2n—1)if n <k <2n—2.

Since (k —vn + 1)(k —vn)(k —vn — 1) = (k — vn)® — (k — vn), by simple
calculation one obtains

sin 2\ * e
- f cos (kt),
Sin "

where 79, = 2n(2n?+1), r, = 4(k—n)3 — (k—2n)3 —3k+2n = 4n3 —6k*n+
3k —3k+2n,if 1 <k <n,and ry, = (k—2n)—(k—2n)3if n <k < 2n-—2.

At the end, from Gonska—Cao [151], relation (3.2) and Lemma 3.3 (i),
we get

2n—2 r
1 n . 27
Buaa(t) =5 + ; _27Tsm(n)] Ak cos(kt),

and by iteration,

[\

1 2T 2
Brop(t) =5 ; _;Tsms] Ao cos(kt).

The theorem is proved. [J

Remark. The kernels F,(t), J,(t), and By 2,(t) are > 0, while the kernel
Vy(t) is not nonnegative on [0,7], but satisfies L [* V,,(k)dt = 1. However,
)=5+

by Theorem 3.3.7 (iii), from the expression of V,,(t Zk 1 Mk ncos(kt),

we easily get that 0 < pg, < 1.

Also, taking into account that

t+a sin 22\ %"
Bt (1) : = Buy(t) = o= / cn( 2) dt,

2 Ji_= sin %
e

n [tth 1 (7 sin 2\ >
B,y p(t) = —/ By, rp—1(t)dt, where ;/ Cn < f > dt =1,
t

—r sin 5

()
n
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we get Byrp(t) = 2+ 300" A ncos(kt) >0and L [T B, ,(t)dt =1, that
is, by Theorem 3.3.7 (ii), it follows that |)\§f7)1| <1 forall k € {0,...,nr —
n}, p>1.

Regarding the preservation of coeflicients’ bounds, we have the following
theorem.

Theorem 3.3.8. (Gal [129]) Suppose that f(z) = > pe ar(f)2* is analytic
in D.
(i) If Oy (t) = 5 + 310y prncos(kt) >0 and = [T O, (t)dt =1, then for

Pu(f)(z) = = f(ze Zak ,

we have |ak(Py(f))| < lar(f)|, for alln € N, k€ {0,...,my}.
(ii) If we set

Vi) = 2 [ gtV = 3 anVa(£)+,
- k=0

where V,,(t) is the kernel in the statement of Theorem 3.3.7 (iii), then we have
lak (Vi (P < lax(f)] for alln € N, k € {0,...,2n}.

Proof. Tt is straightforward from Theorem 3.3.7 (i), (ii), and the remark after
the proof of Theorem 3.3.7. OJ

Remark. According to Gal [127], for f € A(D) we have
If=Va(Hllg S4E.(f), n=1,2,...,

while for O, (t) = J,(t), n E N or O, ( )= Bnrp(t), n,r >p+2, pe N (see
Lemma 3.3.3) setting P,(f)(2) = 2 [ f(ze™)O,(t)dt, we obtain

I - Palils < Cn (11
n/ o
where C' > 0 is an absolute constant.

In what follows, let us introduce the following classes of functions: S; =
{f:D—C; f(z2) = z+azz® +..., analytic in D, satisfying > r, k|ag| < 1},

So = {f:D — C; f(2) = a1z + azz? + ..., analytic in D, satisfying
la1] > 32075 lax}.

According to, e.g., Mocanu—Bulboaci—Salagean [273], p. 97, Exercise 4.9.1,
if f € Sy then |Zf (2) _ 1] <1,z € D, and therefore f is starlike (univalent)
on D.

Also, according to Alexander [2], p. 22, if f € Sy then f is starlike (and
univalent) in . As a consequence, both S; and Sy are subsets of the class of
univalent starlike functions on I, denoted by S*(D).

The classes S; and S are preserved by some approximation convolution
polynomials, as follows.
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Theorem 3.3.9. (Gal [129]) (i) If O,(t) is Ju(t), n € N, in Theorem
3.3.7 (iii), or Bprp(t), n,r > p+2,p € N (see the Remark after the
proof of Theorem 3.3.7), then setting P,(f) = fo Qn(t)dt, Qn(z) =
LT f'(2e")O,(t)dt, we get that f € Sy zmplzes P.(f) € S1. In addition, if

f is continuous on D, then

I = Pl < Con (157)

where C' > 0 is z'ndependent of f and n.

(ii) Define V,,(f)(z) = L [T f(ze™)V, (t)dt, where V,,(t) is the kernel in
the statement of Theorem 3.8.7 (m) Then f €Sy implies V,,(f) € Sy for all
n € N, and if, in addition, f is continuous on D, then

”f_vn(f)”ﬁg 4En(f)’n: L2,....

(1it) For the above Vy,,(f)(2), f € So implies V,,(f) € Sa for alln € N.
ak (f)

1S

(iv) Suppose that the meromorphic function f(z) = z + Y poq
univalent on {|z| > 1}. Then for

1 & . Mn .
Palf)@) =2 [ Fe)0n(t)dt = praz +ao + Zl %
p=
where
1
On(t) = 3 + ,; Pp,n cos(pt)

can be J,(t),Vo(t), n € N or By, p(t),n, 7 > p+2, p € N, we have
Zk lar (Pe(f))1? < 1, with ap(Po(f)) = ax(f) - pin-

Proof. (i) Evidently P,(f)(0) = P,(f)(0) —1 = 0. Then by Gal [127], we
obtain (see also Lemma 3.3.3, for B, ;. ,(t))

|f(2) —‘/f dt—/ Qnl(t dt’

1
<l 17 - Qulp < I - Qulls < Cn (£53)
N/ o
Take O,(t) = 2 + 31" prncos(kt) and f(z) = z + azz® + -+ -+, that
is f(z) = 1+ 2asz + 3a3z® + .... By Theorem 3. 3 7 we obtain Q,(f)(z) =

1+ 2a2p1.n2 + 3azpa 2% + ..., which implies P, ( fo Qn(t)dt = z +
asp1nz? + agpanz® + ..., and ax(Po(f)) = ak(f)pk 1,n- Hence,

> klag(Pa()) =Y k- lax(£)] \pk1n|<zk|ak <1
k=2 k=2

(since |pg—1,n] < 1), which implies that P, (f) € S;.
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(ii) Evidently V,(f)(0) = 0. Take f € Si,f(2) = 2z + a22? +.... By
Theorem 3.3.7 (i) and (iii), we obtain V,,(f)(z) = 2+ A22%+. .., (here Ay = ay
if n > 2), that is, V!(f)(0) = 1.

By the remark after the proof of Theorem 3.3.7, we obtain

2n
> klar(Va( |<Zk|ak ) <1,
k=2

that is, V,,(f) € S1. -
Also, by Gal [127], for continuous f on D we obtain

(iif) Suppose f € Sz, f(2) = 3232, an(f)z", with [ai(f)] = 3272, |an(f)]-
From Theorem 3.3.7, it follows that

Val£)(2) =a1(£)z+ D prnan(f) 25, 0< pen <1,
which implies

S Ve = 3 lax(F)] |pkn|<2|ak ) < lar ()] = ar (Va(£),
k=2 k=2

and therefore V,,(f) € Ss.
(iv) By the area theorem (see, e.g., Gronwall [165]) we have the formula

> Klaw(f)]? < 1.
Also,

mMn

>k lak(Pa( Zk k() |pknl2<Zk ()P <1,
k=1

which proves the theorem. [J

Now let us introduce other classes of functions by P = {f : D — C;
f is analytic in D, f(0) = 1,Re[f(z)] > 0,z € D}, S3 = {f : D —
C; f is analytic in D, f(0) = f/(0) — 1 = 0,|f"(2)] < 1,z € ID)} Se=A{f:
D — C;f is analytic in D, f(0) = f/(0) — 1 = 0,|f"(» )\ < 1z € D} and
R = {f : D — C; fis analytic in D, f(0) = f/(0) — 1 = 0,Ref’(z) > 0, z € D}.

It is well known that P is the class of analytic functions with positive
real part while R is the class of functions with bounded turn (since f € R is
equivalent to |argf’(z)| < %, z € D). Also, it is known that f € R implies the
univalency of f in D, while by Obradovié [291], we get that f € S5 implies f
is starlike, univalent in D, and f € S; implies f is convex univalent in D.

Concerning the classes P, R, S3 and S4, we present the following.
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Theorem 3.3.10. (Gal [129]) Let O, (t) be J,(t), n € N, or By, ;. ,(t), n,r >
p+2,peN.
(i) Writing

_ / T Ont)dt, O (2) :% " P et)0n (),
0 -

we have P,(R) C R, Pn(S3) C S3, Pu(Ss) C Sa, and if, in addition, f' is

continuous on D, then

1 — Pu(P)llg < Cun (f’; 1) ,
oD

where C' > 0 is independent of f and n.
(ii) Define
P(f)(2) == [ f(ze")O,(t)dt.

We have P,(P) C P, and if, in addition, f is continuous on D, then
1

If = Pu(Hllg <Cw | f; =]

/oD

where C' > 0 is independent of f and n.

Proof. (i) The approximation estimate follows as in the proof of Theorem
3.3.9 (i). Also, it is easy to see that P,(f)(0) = P.(f)(0) —1=0.
Let f(z2) = F(rcost, Tblnt) + iG(rcost,rsint), z = ret € D. By

f'(2) = ZE(rcost,rsint) + i2% (rcost, rsint), from the hypothesis we get
9L (rcost, rsmt) > 0, for all z = re” e D.
Since
1 [ ;
Pu(N)) = Qu(N)z) = — | f'(ze")On(u)du
1 [™ OF :
= - /_7r a—m(r cos(t + u),rsin(t + u)) O, (u)du

+ zl / Z—G(r cos(t + u), rsin(t + u))Oyp, (u)du,

we obtain
, 1 [ OF ,
Re[P,(f)(2)] = ;/ %(T cos(t + u), rsin(t + u)) - O (u)du > 0,

taking into account that O, (u) > 0 for all u € [—m, 7] excepting a finite
number of points

Also, [P/(f)(2)] = 2| [T, e f"(ze")On(t)dt] < & [T |f"(2¢")|On(t)dt
<1,z€D, forfESg
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Analogously we get P,(Sy) C Sy.
(ii) If f = F +iG, we easily obtain
1 (7 )
Re[P.(f)(2)] = = F(rcos(t +u),rsin(t +u))Oy, (u)du, z =re* €D,

which by F(rcosu,rsinu) > 0 for all z = re® € D implies Re[P,(f)(z)] >
0,z € D.

The estimate follows by Gal [127] for J,(¢) and by Lemma 3.3.3 for
By, rp(t). O

Remarks. (1) The first inclusion in Theorem 3.3.10 (i) can be reformulated

in the following way: if |argf’(2)| < 5, z € D, then

jarg P, (£)()| < 5, z €D

(and P,(f)(z) is univalent on D).

(2) Since V,,(t) is not nonnegative on [0, 7], the convolution polynomials
Vo (f) (%) based on the kernel V,,(t) do not satisfy Theorem 3.3.10.

Now, for M > 1 let us set Syy = {f : D — C; f is analytic on D, f(0) =
f1(0)—=1=0,|f(2)] < M,z € D}.

According to, e.g., Mocanu-Bulboacd—Salagean [273], p. 111, Exercise
5.4.1, f € Sy implies that f is univalent on D, = {z € C;|2| < 7}

M

Regarding the preservation of class Sy, we have the following result.
Theorem 3.3.11. (Gal [129]) Let O,(t) be J,(t), n € N, or By, (1), n,r >

p+2,peN.
Writing
: 1 " ’ it
NG = [ @uinQu) =1 [ reeounan

we have P, (Syr) C Sar, and if, in addition, f' is continuous on D, then

1
I = Pl < Con (57)

Proof. We have P,(f)(0) = P,(f)(0) —1 =0,
PG =31 [ £eenomdl < - [ IfGenioand < M.
zeD,if |f(z)] <M, zeD. O

The convergence of the derivatives of convolution polynomials is expressed by
the following.
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Theorem 3.3.12. (Gal [129]) For

1 &
O,(t) = 3 + Zpk’” cos(kt) > 0, t € [0,7],
k=1

LT 0n(t)dt =1 set Po(f)(2) = L [T f(2e")On(t)dt. If [ is analytic on D

L

with f and f" continuous on D, respectively, then

1 = PLf)llg < Con(Fs (1= pra) /25 + 15 - 11— pral, meN,

and

1F" = Py (N)s < Con(f"5 (1= pra) )+ 1" ll5 - 11 = p2inl, neEN,
where C' > 0 is a constant independent of f and n.

Proof. We can write

1 [ ) .
PiNE) =— [ [(ze) - e On(t)dL,

—1T
where

1 (" . 1 (7
7/ €O, (t)dt = f/ costO,, (t)dt = p1,p,

T ) _n g -

(as in the proof of Theorem 3.3.7 (ii)).
From the proof of Theorem 1 (i), in Gal [128], we obtain

PUAE) = £ = IPUDE) = prand (2) + praf () = £(2)]
=12 [ oulf ) = £t + 7o~ 1)

—T

2 0w ) — £+ 11

—T

< Cor(f'; (1= p1)"?)5+ 1 I 11 = prm

IN

, z€D.

In addition, by

us

PUNE =1 [ 10,0) - (et

—T

and 1 /7 1 [
- / 62it0n(t)dt = 7/ COS(2t)On(t)dt = P2,n;

T J)_x T ) _

we get

Pr(H)(z) = £"(2) = P/(£)(2) = panf"(2) + p2n " (2) = 7 (2),

and reasoning as above, it follows that

12 () = f"ll5 < Con(f"; (1= prn) )5 + 1"l - 11 = p2n
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Remarks. (1) For example, let O,(t) be the Jackson kernel J,(t). By
Theorem 3.3.7 (iii), we obtain

4n® — 4n _2n2—2 3

= = 1— _
m(2n2 +1) 22 +1 Pl = on2 41

pl,n

and
4n® — 22n + 18 24n — 18 _ 12n — 9

2n(2n2+1 TP T 3 Yo T 23 4
that is, the order of convergence to zero of |1 — py | and |1 — pa 4| is %
Analogous estimates of |1 —p1 ,,| and |1—pg ,,| hold in the case of Beatson-
kernels, B, ,(t),n, 7 > p+ 2 (see Gonska—Cao [151], Lemma 3.3).
(2) Evidently P,(f)(0) =0 and P),(f)(0) = p1,,. Supposing p1,, # 0, the
polynomials defined by

P2,n =

RalD&) = Pulf)e) = o - [ fae)0u

Pl,n Pin T

have the property R, (f)(0) = R!,(f)(0)—1 = 0. Also, for 2 € D and f € A(D)
we get

1 1 1

RAA)E) ~ £ = |2 Palf) = = )+ =) = 112
< o IR - Sl + s |- -1
If O,,(1) is Jn(t), then we have
IBa) ~ 5 < S 1 = Pl + 1| g 1
<3-Co(3) +Ifls 5y
<Cloalsipon + 115+ 5| 22,

that is, || Rn (f) = fllg < Clw2(f; 2)on+ | fll5- 2], where C > 0 is independent
of f and n.

When O, (t) = By rp(t), for n,r > p+2, p € N, a similar estimate holds.

(3) Note that since V,,(t) is not nonnegative, for O, (t) = V,,(¢), Theorem
3.3.12 does not hold.

In what follows, let us consider the classes of univalent functions introduced
by Definition 3.1.1, $*(D), K(D), C(D), My(D), a € R and S, (D), || < 7,
called the classes of normalized starlike, convex, close-to-convex, a-convex,
and ~y-spirallike functions, respectively.

The next results deal with preservation by convolution polynomials of the
corresponding subclasses

S*@), KD), CD), Ma(D), and S, (D).
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Theorem 3.3.13. (Gal[129]) LetO,, (t)=5+ Y"1, pr.n cos(kt) beJ,(t),n € N,
or By rp(t), wheren,r >p+2, peN.
(i) If f € C(D) and
PN == [ FE0u0)dt Ra£)(2) = ——Pal)(2),

TJ-m Pl,n
then ) 1
1) = 1 < € [wn (1 n)g@ 1l )

where C > 0 is independent of f and n and there exists ng = no(f) such that
R,.(f) € C(D) for alln > ny.
(ii) For f(z) = zh(z), let us define

1 [™ )
Po(f)(z) =z —/ h(ze™)O,, (t)dt.
Then,
1 1
[Pn(f) = fllg < Cwn (f; ”>D+ 15—
and there is ng = no(f) such that for alln > ng we have

Py[S*(D)] € §7(D), Pu[KD)] C K(D), Pu[Ma(D)] C Ma(D),
and P,[S,(D)] C S, (D).
Proof. (i) Let f € C(D). By Remark 2 of Theorem 3.3.12, we obtain

R, (f)(0) = R}, (f)(0) — 1 =0 and the estimate of ||f — R, (f)5-
There is d € S*(D) that is univalent on D) such that

2f'(2) f
D.
Re[ ) } >0, Vze
Write h(z) = G- Since d(0) = 0 and d is univalent, it follows that d(z) # 0,

Vz €D, z# 0, and h(z) is analytic on D (with h(z) # 0,Vz € D).

Hence, h(z) is continuous on D, that is, there is M > 0 with |h(z)| <
M,Vz e D.

By Theorem 3.3.12 and by p1., — 1, we get R.,(f) — f’, uniformly on D,

that is, h(z) - R, (f)(z) — h(2)f'(z) uniformly on D. Therefore
Re[h(2) R, (f)(2)] — Re[h(2)f'(2)] > 0,
uniformly on D, that is, there exists ng = ng(f) such that

Re[h(2) R, (f)(2)] > 0
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for all n > ng, that is,
Rn(f)(2) € C(D)
for all n > ny.
(ii) Let f € S*(D). Since f(0) = 0 and f is univalent on D, we get f(2) # 0
for all z € D,z # 0, that is, f(z) = 2 - h(2), z € D, where h is analytic in D
and h(z )#Oforallzeﬁ

Write @y, (h)(2) = L [T h(ze")O,(t)dt and P, (f)(2) = 2Qy(h)(2).
By Gal [12§], Theorem 1 and by Rubel-Shields—Taylor [329], we obtain

PA(f)(2) = F(2)] = [2Qu(R)(=) - #h(=)] < [Qu(R)(=) - h(2)]
< Cwr(h; (1= p1n)'/?)g < Cun (h; 711)
— Csu f(z1) _ f(z2)
et

21

oD

1
e — 2] < =, || = |22] = 1}
n

= Csup{|22f(z1) — 21 f(z2)|i]z1 — 22| < %7|Zl| = |Z2|:1}
< Csup{|za| - |f(21) — f(22)] + |21 — 22| - | f(22);
z1 — 22| < %, |z1] = |22] = 1} < Cuwy (f§ :L)

oD
1 1
Al < Con (£i7)_+17l

In addition, by Theorem 3.3.12, we have @;,(h) — h’ uniformly on D. Since
|h(2)] > 0, Vz € D, and Q,(h) — h uniformly on D, there are ny = ny(h) and
m > 0 such that for all n > n; we have

|Qn(h)(2)| > m, ¥z € D, and therefore Q,(h)(z) # 0, ¥n > ny,Vz € D.
Obviously P (f)(z) = 2Q;,(h)(2) + Qu(h)(2) — 2h'(2) + h(z) = f'(2),

uniformly on D, which implies
2B, (f)(2) _ 2[2Qn(h)(2) + @n(h)(2)]
Pu(f)(2) 2Qn(h)(2)

= = uniformly on D.

hz)  f(2)

As a consequence,

e ] ]

uniformly on I, that is, there exists ng = ng(f) > n1 such that for all n > no,
we have
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2P, (f)(2) 7
Re [ Pu([)(2) } > 0, for all z € D,
that is, since P,(f)(0) = P.(f)(0) — 1 =0, it follows, that P,(f) € S*(D).

If f € S,(D), then by similar reasoning we get P, (f) € S,(D).

Now suppose f € K(D) and again set f(z) = z-h(z), where the univalence
of f on D implies h(z) # 0 for all z € D, with h analytic on D.

Since f € K(D) if and only if z2f’(z) € S*(D), it follows that f’(z) # 0 for
all z € D, that is |f’(z)| > 0 for all z € D.

By Theorem 3.3.12, we easily obtain P/(f) — f’ and P/(f) — f”, uni-
formly on . Reasoning as above, we have

bl R b i

uniformly on D. Therefore, there exists ng = no(f) such that for all n > ng

we have PI(f)
z _
Re[”} +1>0, VzeD,
PL(H)(z)
ie., P,(f) € K(D). B B
The inclusion P,[M,(D)] C M, (D) can be deduced in a similar way, which
proves the theorem. [

In what follows we will present some improvements of Theorem 3.3.13.

Theorem 3.3.14. Suppose a € (0,1) and ~ € (—g, g)

(i) For any f € S5(D) N AY(D) with f(2) # 0 for all |2| = 1, and any
B € (0,a), there is ng > 1 (depending on f and () such that for all n > ng,
we have

Tann-1(f) € SHD) and | ~ 721 ()] < O Bl

where C' > 0 is independent of f and n;
(ii) For any f € K,(D) N A%(D) with f'(2) # 0 for all |z| = 1, and any
B € (0,a), there is ng > 2 (depending on f and () such that for all n > ng,
we have
1

0'2n,n—2(f) € KB(]D)) and ||f - 0'2n7n—2(f)|| < CﬁEn(fH)a

where C' > 0 s independent of f and n;
(iii) For any f € S2(D) N AYD) with f(z) # 0 for all |z| = 1, and any

B € (0,a), there isng > 1 (depending on f, v, and 8) such that for alln > ng,
we have

Tann-1(f) € SYB) and | = o 1(] £ O Balf),

where C' > 0 s independent of f and n.
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Proof. From Remark 1 after the proof of Theorem 3.2.1, the estimates in
Theorem 3.3.14 (i-iii), are immediate.

Also, because f(0) = f/(0) — 1 = 0 and for any k we have Ty(f)(0) =
T7.(f)(0)—1 = 0, it follows that a5 n—p(f)(0) = f(0) = 0 and 03, ,,_,,(f)(0)—
1=f(0)—1=0, for all p € N and n > p.

(i) The hypothesis implies |f(z)| > 0 for all z € D with z # 0, which from
the univalence of f in D means that we can write f in the form f(z) = zh(z),
with h(z) # 0, for all z € D, where h is analytic in D and continuous in D.

Setting agnm_l(f)( ) = 2Qn(f)(2), it is clear that Q,(f)(z) is a polyno-
mial of degree < 2n — 1.

For |z| = 1 we get

£ (2) = o2n.n-1(F)(2)] = |2] - [h(2) = Qu(f)] = |h(2) = Qu(f)]

Therefore, the uniform convergence on D of o2, ,—1(f) to f, together with
the maximum modulus principle, implies the uniform convergence on I of

Qu() o h(z). ~ ~

Because h is continuous in D and |h(z)| > 0 for all z € D, there exist an
index ng € N and a > 0 depending on h such that |@,(f)(z)| > a > 0 for all
z €D and all n > ng.

Also, for all |z| =1, we get

11(2) = 0901 (F)(2)] = 21 (2) = Q. (£)(2)] + [1(2) = Qu(£)(2)]]
> |lz] - (2 ) Qn(N)(2)] = [h(= ) Qn (£l
= |1 (2) = Qu(N)(2)] = |h(z) = @u(N) (),

which from maximum modulus principle, the uniform convergence of the se-
quences 5, ,_1(f) to f" and of Q,(f) to h, evidently implies the uniform
convergence of the sequence @/, (f) to h'.

Again, for |z| = 1, we obtain

201 (NE) _ 22Q4(N)() + Qu()()]
a1 (f) 2Qu(N()
_2QUNE + Q) () +h() _f(e) _=f(2)
Q) M R )

which by the maximum modulus principle implies
Zgén,n—l(f)(z) N Zf/(Z)
o2n,n—1(f) f(z)
As a conclusion,

o] [

, uniformly on D.
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uniformly on D, that is, for any 0 < 3 < «, there exists ng such that for all
n > nog we have

ZOJQn,n—l (f)(Z)
O02n,n—1 (f)(Z)

that is, oonn—1(f) € S5(D).
In the case (iii), similarly we obtain

e[ s

uniformly on D, which immediately proves the required result.

(i) Since f € Ko(D) if and only if zf'(z) € S%(D), by the reasoning at
the point (i), it follows that f’(z) # 0 for all z € D, that is, |f’(z)| > 0 for all
z € D. Also, by the same type of reasoning as at the above point (i), where f
is replaced by f', we get 03, , o(f) — f’ and 03, ,_o(f) — f, uniformly on
D, and

Re[ ]>ﬂ,f0rallzeD,

]>0¢>0

Fna O] | [1O]
N | T Re{f’<2>]+l> ’

uniformly on D. Therefore, for any 0 < 3 < «, there exists ng = no(f, 3) such
that for all n > ng we have

Zo'l2ln,n—2(f)(z)
Jén,n72(f)(z)

For the case o = 0, we have the following corollary.

Re +1>p08, VzeD.

Corollary 3.3.15. Suppose v € (—g, g)

(i) For any f € S*(D), there is ng > 1 (depending on f) such that for all
n > ng, we have

Tann1(£) € §°(D) and |f ~ o a () < O B(f),

where C' > 0 1s independent of f and n.
(it) For any f € K(D), there is ng > 2 (depending on f) such that for all
n > ng, we have

Pann-2(f) € K(B) and |f = o2nn-2(1)]| < O Bul"),

where C' > 0 1is independent of f and n;
(1i1) For any f € Sy(D), there is ng > 1 (depending on f and vy) such that
for all n > ng, we have

Tan-1(f) € 54(B) nd | = omn-1 (1) < O BulF),

where C' > 0 s independent of f and n.
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Proof. Recall that f is called analytic on D if in fact f is analytic in an
open set (domain) containing D). This obviously implies that f € AP(D) for
all p € N. The rest of the proof is similar to that of Theorem 3.3.14.

Remarks. (1) The degree of o2y, n—p(f) is < 2n, while its approximation rate
given by Theorem 3.3.14 and Corollary 3.3.15 is #En(f(p)), p = 1,2, which
could be essentially worse than the best expected, WEQn_p(f(”)), p=1,2.
This is because in general, Fs,,_,(F) can be essentially smaller than E,, (F).
However, applying a well known result of Gaier (see [121] or, e.g., [122], p. 53,
that is, Fy,(F) < Crwi(F;1/n) for any arbitrary k € N), we immediately get
that both quantities n—lpEn(f(p)) and @#Egn_p(f(p)) in fact can be estimated

by the same expression C n%wk(f(p); 1/n), p = 1,2. In other words, expressed
in terms of moduli of smoothness, we can say that the estimates in Theorem
3.3.14 and Corollary 3.3.15 are near to the best approximation.

(2) The estimates in Corollary 3.3.15 essentially improve those in Theorem
3.3.13, where the orders of approximation are wy(f;1/n) and wa(f;1/n) only.

(3) The shortcoming of Theorem 3.3.14 and Corollary 3.3.15 is that the
index ng depends on f. Therefore, it is natural to ask whether Theorem 3.3.14
and Corollary 3.3.15 would be valid for alln > p (p =1 or p = 2), or at least
for all n > ng with ng independent of f.

(4) Note that because the differential inequalities that define the star-
likeness, convexity, and spirallikeness are nonlinear, Theorem 3.2.2 and its
Corollary 3.2.3 cannot be applied to these subclasses of functions.

3.4 Approximation and Geometric Properties
of Bernstein Polynomials

In this section, we first estimate the degrees of simultaneous uniform approxi-
mation of analytic functions by complex Bernstein polynomials in closed disks.
Then, we prove that the complex Bernstein polynomials attached to an an-
alytic function preserve the univalence, starlikeness, convexity, spirallikeness,
and other properties in geometric function theory.

Concerning the approximation properties, two approximation results due
to Bernstein and Kantorovich concerning the uniform approximation of
Bernstein polynomials in the unit disk and in an ellipse, respectively among
others, are well known. In addition, Theorem 3.4.1 (iii), (iv), (v) below, give
quantitative estimates. Note that an analogue to Theorem 3.4.1 (iii) (and in
essence to (iv) too), was obtained by a different method in Ostrovska [292].

All the above-mentioned approximation results can be summarized by the
following.

Theorem 3.4.1. (i) (Bernstein, see, e.g., [Lorentz [2{7], p. 88]) For the open
G C C such thatD C G and f : G — C is analytic in G, the complex Bernstein
polynomials By (f)(z) = > p_o (1)2"(1 — 2)" % f(k/n) uniformly converge to
f in D.
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(ii) (Kantorovich, see, e.g., [Lorentz [247], p. 90]) If f is analytic in the
interior of an ellipse of foci 0 and 1, then B, (f)(z) converges uniformly to
f(2) in any closed set contained in the interior of the ellipse.

Now let G C C be an open disk of radius R > 1 and center 0, and let
us suppose that f : G — C is analytic in G, that is, we can write f(z) =
Yoo ck2® forall z € G.

(#ii) Denoting by ||-|| the uniform norm in C(D), for the complex Bernstein

polynomials )
zz() )

we have

1Ba(H) — 11l < 2D for it e,

where 0 < Ma(f) = 33772, 7( — 1)|ej] < 0.
(iv) Let 1 <1 < R be arbitrary fized. For all |z| <r and n € N, we have
My (f
Bal(e) — S < 22t

n

where 0 < M ,.(f) = w Z?‘;zj(j —1)]¢j|r" 2% < 0.

(v) For the simultaneous approximation by complex Bernstein polynomials,
we have that if 1 < r < ry < R are arbitrary fized, then for all |z| < r and
n,p € N,

My, (f)pire
(p) _ ¢ 2 \J )P
B - 10 < 2l
where My, (f) is given in point (iii).
Proof. (iii) Writing ex(z) = 2%, k = 0,1,..., and mp,(2) = Bn(ex)(2),
by the proof of, e.g., Theorem 4.1.1, p. 88 in Lorentz [247], we can write
Bo(f)(2) = Y1 o ¢kTk,n(2), which immediately implies

| Bn(f)(= \<Z|0k| |7n (2) — ex(2)|

for all z € D.

First we observe that |m ()] <1 for all z € D and all k = 1,2,.... For
this purpose, the reasoning is similar to that in the proof of Theorem 1.4.1,
pp. 88-89 in Lorentz [247], by taking Ry = 1 there. Let us briefly recall here
this reasoning. Indeed, by the relationship (5) in the above-mentioned proof
(by taking a = 0 there), we get that the generating functions @(u, z) of the
polynomials 7y, ,(2) are

??“;—A

o
k=0
k

Lt Zuge s 20 )
— —U e - e .
n nk k!
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Taking now |z| = 1, the coefficients of u* in the power series

k

T Zugp =y
fuda 22
n nk k!

are majorized by those of

o0
1 k
Soo(z) e
= ul \n
if |z| = 1 and therefore if |z| < 1. Finally, this proves that the moduli of
the coefficients of u* in ®(u,z) = 37 #7kn(2)u” do not exceed those in
(/™)™ = e¥, which proves the required inequality for |7y, (2)].
In what follows, we use the recurrence relationship proved for the real
variable case in Andrica [19],
z(1—-2) ,

Terin(2) = S (2) + 2 (2)

foralln € N, z € C, and k£ = 0,1,.... Indeed, since it is a simple algebraic
manipulation, the relationship in Andrica [19] proved for the real case is valid
for complex variables too. Taking into account that the paper Andrica [19] is
not very accessible, let us reproduce here the idea of the proof. It consists in
the simple algebraic relationship

_ Skt1,0(2) Sk.n(2)

Skan(2) = 2(1—2) St

which is divided by n*, where

Skn(z) = i;jk (;‘) (1 — 2y,

(Note that the cases z = 0 and z = 1 are trivial in the recurrence for my, ,,(2).)
From this recurrence, we easily obtain that degree (7, (2)) = k. Also, by
replacing k with k — 1, we get

Thm(2) — 2% = @[ﬂ%—l,n(z) -z

. (k- 1)2’:1(1 —2) o[ in(2) — 2

)

kfl]

which by Bernstein’s inequality for complex polynomials gives

20k — 1)

2
17kn — exll < (k- 1)5\\7%—1,71 —ek—1ll + + [|Th—1,n — €x—1l

4 2= 1)

2
< (k=1 fllme—vnll + ller—1 Flmr-1,n = el

k—1
< ||Th—1,n — €r—1| + 67.
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(We used here that for all k& and n we have |7y | <1 and |lex|| < 1.)
Now, by taking £ = 1,2, in the inequality

k—1
17 = exll < [[mr—1,n = €l +6——,

we finally obtain

6 3

17k — ekl < [(k*1)+(k72)+~~+1]:E(k—l)k.

n

In conclusion, we get
(o) 1 o]
1Bu(f)(2) = F(2) <D lewl - mnn — el < 53216(’6 — Dlexl-
k=0 k=2

Note that since by hypothesis, f(z) = Y5 ckz¥ is absolutely convergent in
|z|] < r for any 1 < r < R, it follows that the power series obtained by
differentiating twice, i.e., f”(2) = Y oo, k(k — 1)ckz"2, also is absolutely
convergent for |z| <1, which implies > "2, k(k — 1)|cx| < 4oc.

(iv) The relationship (4) in the proof of Theorem 4.1.1, p. 88 in Lorentz
[247), shows that |B,,(ex)(z)| < r¥ if |2| < r, with r > 1, for all k,n € N.

We observe that the above inequality can be proved in a different way, as
follows. Indeed, by He [169] (see also Corollary 2.4 in Andrica [19]), we can
write

k .
Bulen)(z) = 308y "= U= )

where S(k, j) are the Stirling numbers of the second kind and recall that these
numbers satisfy S(k,j) > 0 for all j,k € N and

> Sk j)n(n—1)--[n—(j—1)]=n* for k,neN.

j=1

Now, since S(k,j)n(n—1)---[n—(j—1)] > 0forall k,n,j € Nwith 1 < j <k,
this implies

k .
Bulen)(e)] < Y stk )= U= Ul
k .
k .
st(k’j)n(n_1)”;1[;?_(]_1)]Tk:Tk’ for |2 < 7.

j=1
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Denoting by || - || the norm in C(D,.), where D, = {z € C;|z| < r}, one
observes that by a linear transformation, Bernstein’s inequality in the closed
unit disk becomes |P}(2)| < || Py, < k|| Pyl for all [z| <7, r > 1 (at this
point I would like to thank professors J. Szabados and T. Erdelyi, of the Alfred
Renyi Institute of Mathematics of the Hungarian Academy of Science and the
Department of Mathematics, Texas A & M University, College Station, USA,
respectively, for bibliographical reference).

Therefore, repeating the reasoning from the above point (iii), we get

min(2) — ex(2)] < (b= 1))

1Tk—1,n — ek—1(2)]lr

N rF=la +nr)(k -1 e in(2) — ex1(2)]
< (k= D™D Yl + e ]
L FOEZD | 1 n(2) — exa ()]
< i (2) — exor (4 [2r( L (R 2L

(We used here that for all k,n € N and |z| < 7 we have |y, (2)| < r¥ and
e(2)] < )
Now, by taking £k = 1,2, ..., in the inequality

[Thn(2) = ex(2)] < 7lme—1,n(2) — ex—1(2)| + (1 +7)(1 + 27‘)7“'“_1&’

by recurrence we easily obtain

(I+7)(1+2r)

|T,n(2) — ex(2)] < (PPt 2rk g (B — 1)

< (1+ r)7(11 +2r) k(k— 1)7A,€_1
- n 2
< %ﬁ?%) Ck(k—1)rk2,

As a conclusion, for all |z| <r and n € N, we obtain

1Bn(f)(z) = f(2) < D lek] - [mhn(2) — ex(2)]
k=0
% i k(k — 1)|cp|rt=
h=2

Note that since by hypothesis, f(z) = Y5~ cx2"* is absolutely and uniformly
convergent in |z] < r for any 1 < r < R, it follows that the power series
obtained by differentiating twice, i.e., f”(2) = Yoy k(k — 1)cxz"72, also is
absolutely convergent for |z| < 7, which implies Y-, k(k—1)|cg|rF 2 < +o0.
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(v) Denoting by ~ the circle of radius r; > 1 and center 0, since for any
|z] <7 and v € 7, we have |v — z| > r1 — r, by Cauchy’s formulas it follows
that for all |z| < r and n € N, we have

B - 1) = | [ PP

< M277'1 (f) E 27TT1 _ M277'1 (f) p!’l"l
- n 2w (rp —r)ptl n  (rp—r)ptt’

which proves the theorem. [J

Remarks. (1) For » = 1, the estimate in Theorem 3.4.1 (iv) becomes the
estimate in Theorem 3.4.1 (iii) but obtained by a different method of proof.

2) By Theorem 4.1.1, p. 83 in Lorentz [247], in fact it follows that for
this R > 1, B,(f) — f uniformly in any closed disk included in {|z| < R},
which by the well known Weierstrass theorem (see, e.g., Kohr—Mocanu [198],
p. 18., Theorem 1.1.6) implies that the sequences of the derivatives of any
order of complex Bernstein polynomials converge uniformly on compacts in G
(including the closed unit disk) to the corresponding derivatives of f. Theorem
3.4.1 (v) expresses in addition quantitative estimates for these convergence
processes.

The first geometric properties of the Bernstein polynomials are conse-
quences of Theorem 3.4.1 and can be expressed by the following.

Theorem 3.4.2. Let us suppose that G C C is open such that D C G and
f: G — C is analytic in G.

(i) If f is univalent in D, then there exists an indexr ng depending on
f such that for all n > ng, the complex Bernstein polynomials B, (f)(z) =
Sio ()21 —2)" "k f(k/n) are univalent in D.

(i3) If f(0) = f'(0) — 1 =0 and f is starlike in D, that s,

Re (Z;ES)) > 0 for all z € D,

then there exists an index ng depending on f such that for all n > ng, the
complex Bernstein polynomials are starlike in D.

If f(0) = f/(0) =1 = 0 and f is starlike only in D, then for any disk
of radius 0 < r < 1 and center 0, denoted by D,, there exists an index
ng = no(f, D) such that for all n > ng, the complex Bernstein polynomi-
als B, (f)(z) are starlike in D,, that is,

2B, (/)(2) el eT
Re(Bn(f)(z) ) >0 f llzeD,.

(ii) If f(0) = f'(0) — 1 =0 and f is convex in D, that is,

Re (?ﬁ?i?) +1>0 for all z €D,
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then there exists an index ng depending on f such that for all n > ng, the
complex Bernstein polynomials are convex in D.

If f(0) = f/(0)—1 = 0 and f is convex only in D, then for any disk of radius
0 <r <1 and center 0, denoted by D,., there exists an index ng = no(f,Dy)
such that for all n > ng, the complex Bernstein polynomials B, (f)(z) are
convez in D,., that is,

2Bi(f)(2)  dl1eD
Re(B;L(f)(z))+1>0f Il z € D,.

(iv) If £(0) = f'(0) =1 =0, f(2) #0, for all = € D\ {0} and f is spirallike
of type v € (—m/2,m/2) in D, that is,

Re (e” Z;;i?) > 0 for all z € D,

then there exists an index ng depending on f and vy such that for all n > ng
we have B, (f)(2) # 0 for all z € D\ {0}, and B, (f)(z) are spirallike of type
v in D.

If f(0) = f'(0) —1=0, f(2) #0 for all z € D\ {0} and f is spirallike of
type v only in D, then for any disk of radius 0 < r < 1 and center 0, denoted
by D,., there exists an index ng = no(f,D,,7y) such that for all n > ng, the
Bernstein polynomials By,(f)(z) are non-zero for all z € D, \ {0} and they
are spirallike of type v in D,, that is,

DBUNEN s
Re(e Bn(f)(z)>>0f Il zeD,.

Proof. (i) It is immediate from the uniform convergence in Theorem 3.4.1
and a well known result concerning sequences of analytic functions converging
locally uniformly to a univalent function (see, e.g., Kohr-Mocanu [198], p. 130,
Theorem 4.1.17 or Graham-Kohr [162], Theorem 6.1.18).

For the proof of the next points (ii), (iii) and (iv), let us make some general
useful remarks. By Remark 2 after the proof of Theorem 3.4.1, we get that for
n — 00, we have B (f)(2) — (), By(f)() — f(2) and BL(f)(z) — f(2),
uniformly in D. In all that follows, set P, (f)(z) = Bu(f)(z)

nf(l/n) "
By f(0) = f/(0) — 1 = 0 and the univalence of f, we get nf(1/n) # 0,
B.()(0
PH0) = L0 = 0, P(AO) = BDO 1 0 > 2, nf(/n)
%;f(o) converges to f'(0) = 1 as n — oo, which means that for n — oo, we

have Po(£)(2) — f(2), P4(f)(2) — f/(2) and P2(f)(z) — f"(2), uniformly
in D.

(ii) By hypothesis we get |f(2)| > 0 for all z € D with 2 # 0, which from
the univalence of f in D implies that we can write f(z) = zg(z), with g(z) # 0,
for all z € D, where g is analytic in I and continuous in D.

Writing P, (f)(z) in the form P,(f)(z) = 2Qn(f)(2), obviously Q,(f)(z)
is a polynomial of degree < n — 1.
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Let |z| = 1. We have

£ (2) = Pa(H)(2)| = 2] - |9(2) = @u(f)(2)] = l9(2) = @n(f)(2)],

which by the uniform convergence in D of P,(f) to f and by the maximum
modulus principle implies the uniform convergence in D of Q,,(f)(2) to g(2).
Since g is continuous in D and |g(z)| > 0 for all z € D, there exist an index
n1 € N and a > 0 depending on g such that |Q,(f)(z)| >a >0 for all z € D
and all n > ng.
Also, for all |z| =1, we have

['(2) = Po(£)(2)] = [2lg'(2) = @u()(2)] + [9(2) — ( )(2)]]
> [|z] - 19'(2) = @u(N)(2)] = lg(= ) Qn (£l
=l9'(2) = Qu(N(Z)] = l9(z) = @u (NI,

which from the maximum modulus principle and the uniform convergence of
P!/ (f) to f" and of Q,(f) to g evidently implies the uniform convergence of

Qn(f) to g
Then, for |z| = 1, we get

2P (f)(2) _ 2[2Qn(F)(2) + Qn(f)(2)]

P.(f) 2Qn(f)(2)
_ 2 (NE) +@n(H2) | 29'(2) +9(2) _ ['(2) _ 2f'(2)
Qn(f)(2) 9(2) g(z)  f(z)

which again from the maximum modulus principle implies

PG ()
AT R IE)

, uniformly in D.

Since Re ( f(())) is continuous in D, there exists o € (0,1) such that

Re (if;i?) > o for all z € D.

Therefore

P (f)(2) flz) |~

uniformly on D, i.e., for any 0 < 8 < «, there is ng such that for all n > ng
we have

M EACIC] BN EACI

L [2Paf)) rall e T
R [Pn(f)(z)]>ﬁ>0’f 1l zeD.

Since P, (f)(z) differs from B, (f)(z) only by a constant, this proves the first
part in (ii).
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For the second part, the proof is identical to that of the first part, with
the only difference being that instead of DD, we reason for D),..
(iv) Obviously we have

e[ e | el |

uniformly in D. We also note that since f is univalent in D, by the above point
(i), there exists ny such that B,(f)(z) is univalent in D for all n > n; which
by B,(f)(0) = 0 implies B, (f)(z) # 0 for all z € D\ {0}, n > n;. For the
rest, the proof is identical to that from the above point (ii).

(iii) For the first part, by hypothesis there is a € (0,1) such that

[

uniformly in D. It is not difficult to show that this fact is equivalent to the
fact that for any 3 € (0, ), the function zf’(z) is starlike of order 3 in D (see,
e.g., Mocanu-Bulboaca—Salagean [271], p. 77), which implies f’(z) # 0 for all
z €D, ie., [f(2)] >0 for all z € D. Also, by the same type of reasoning as
that from the above point (ii), we get

]+12a>0,

Re {m} +1- Re {Zf,/;(;))} +1>a>0,

uniformly in . As a conclusion, for any 0 < 3 < a, there is ny depending on
f such that for all n > ng we have

PY(f)(2)
fte { PL()(2)

The proof of the second part in (iii) is similar, which proves the theorem. O

}+1>ﬁ>0f0rallz€]D).

Remarks. (1) Let us recall that geometrically, the starlikeness/convexity of
f on D, C D means that the image through f of any closed disk of center 0
included in D, is a starlike/convex set in C (here starlikeness of a set means
with respect to the origin).

(2) The results in Theorem 3.4.2 state that the complex Bernstein poly-
nomials B,,(f)(z) preserve the univalence, starlikeness, convexity, and spiral-
likeness only for sufficiently large values of n, that is, only for n > ng, where
the value ng = no(f) cannot be in general specified. Their shortcoming is
that they do not say anything about the cases of small values of n (that is
for n < ng) or for specified values of n. In what follows, we will present such
kinds of results. Also, the next results represent interesting and simple ways of
construction for particular polynomials that are univalent starlike or convex
in the unit disk.
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For this purpose, we introduce four subclasses of functions defined similarly
to S1 and S3, S4 and Sy, considered in Section 3.3.2, just before Theorems
3.3.9, 3.3.10, and 3.3.11, respectively.

Thus, for M > 1, let us define

S
={f:D—C;feA(D),f(0)=f(0)—1=0,|f(2)] < M, for all z € D},

then

S3

={f:D—C;feA*D), f0)= f(0)—1=0,|f"(z)| <1, for all z € D},

Sy

{10 cir e )0 = 101017 ¢) <

%, for alleD},

and

Sh

= {f :D—C;f(z2) = Z+Z apz", analytic in D, satisfying Z klag| < 1} .
k=2 k=2

It is evident that Sar C Sar, S3 C S, S4 C Sy, and S; C S1, which shows
that f € Sy implies that f is univalent in {z € C;|z| < +;}, f € S3 implies
that f is starlike (and univalent) in D, f € S, implies that f is convex (and
univalent) in D, and f € S; implies that f is starlike (and univalent) in D.

Also, a key tool in our proofs will be the following.

Theorem 3.4.3. (see, e.g., Stancu [361], p. 258, Exercise 4.20) If f : E — C,
E C C, is of C™-class on the compact convexr set E, then for all distinct
points zo,...,zm € E, there exists a point & € conv{zg,...,zm} and A € C
with |\ <1 such that

(m)
[207"'7Zm;f}:)‘f '(g)a
m!
where [20, - .., 2m; f] denotes the divided difference, and it is defined as in the

real case.
Theorem 3.4.4. Let f € Sy, M > 1. If n € N satisfies
n|f(1/n)]

BEE

then By, (f) is univalent in {z € C;|z| < nz‘\ffz(;/ﬂ)‘ }.
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Proof. As in the case of the real Bernstein polynomials, we can write (see,
e.g., Lorentz [247], p. 12)

n—1

Bi(£)(z) = >/, (k+1)/n; f] <n ; 1) 21— )R

k=0

Passing to the modulus and taking into account Theorem 3.4.3 too, for all
z € D we get

1B, (f)(2)]
<<M§:< )p|1+pw11k<Am"1?%< v2k<3nww

since it is easy to show that

n—1 n—1
-1\ 1 3
2n71 <n )k _ 2n71 <> _ 3n71'
2;% k)2 2

Set Pp(f)(z) = ﬁ’}%{/n) Since f € Sy, we have f(0) = f/(0) — 1 = 0,

which fmplies P (£)(0) = /55 = 0 and P/(£)(0) = T3 = 1.
We get,

M3
nlf(1/n)|’
so the hypothesis implies JI\??{L /71)| > 1, which proves that P, (f) is univalent in

{zeClz] < n}l\;g{l/nl 1. Since P, (f) differs from B, (f) by a nonzero constant,

this proves the theorem. [J

1P (F)(2)] <

Remark. The case n = 1 in Theorem 3.4.4 is trivial, since f(0) = 0 implies

Bi(f)(z) = zf(1).

The second result is the following.

Theorem 3.4.5. Let f € S5. If n € N satisfies
Lo s/l

=1 - 1/n)3n—2

then B, (f) is starlike (and univalent) in D.

Proof. Suppose f € S3. As in the real case, we can write (see, e.g., Lorentz
[247], p. 12)

B (£)(2) <1>§:km,k+1ﬁ1w+2ynﬂ< k%ZW1@n2k

k=0
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for all n > 2. Applying Theorem 3.4.3 and the same reasoning as in the proof
of Theorem 3.4.4, we get

3n2

BI(A()] < (01— )

n’ 2’

which implies (by keeping the notation in the proof of Theorem 3.4.4) that

PN < (1= 1)

for all z € D.

If n is as in the hypothesis, it follows that P,(f) € S3, which implies that
P, (f) is starlike (and univalent) in D, and since it differs from B, (f) by the
nonzero constant m, we get that B, (f) is starlike (and univalent) in D.
U

An immediate consequence of Theorem 3.4.5 is the following.
Corollary 3.4.6. For any m > 2, the Bernstein polynomials of degree 3,
Bs(fm)(2), attached to fn, € S3 and given by fm(2) = z—&—%, are starlike
(and univalent) in D.

Proof. It is easy to see that f,, € S3 for all m > 2. Also, for n = 3 in
Theorem 3.4.5, we easily get

20 (1/m)| _ 1
A-t/m32 T mmonznt b

which proves the corollary. [J
Concerning the class Sy, we present the following.

Corollary 3.4.7. Let f € Sy.

(i) If n € N satisfies

Lo 2wl

~ (1-1/n)372
then By (f) is convex (and univalent) in D;

(ii) For any m > 2, the Bernstein polynomials of degree 3, B3(gm)(2),
attached to g, € S, and given by gnm(z) = z + STy @re convex (and
univalent) in D.

Proof. (i) Reasoning as in the proof of Theorem 3.4.5, we get

e < (1-7) wom

for all z € D.
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Now, if (1 — )m < 1, then according to Theorem 3 in Obradovié
[291], it follows that P,(f) is convex (and univalent) in D, which proves the
convexity of B, (f) too.
(ii) It is easy to see that g,, € Sy for all m > 2. Also, for n = 3 in the
above point (i), we easily get
Zlgn(/)] _ 1
(1-1/n)3n—2 2m(m — 1)3m—1
which proves the corollary. [J
The next result shows that for n > 4, Theorem 3.4.5 and Corollaries 3.4.6—
3.4.7 in fact cannot hold.

Corollary 3.4.8. If f € S3 or f € Sy, then the inequality (appearing in
Corollaries 3.4.6 and 3.4.7)

2n|f(1/n)|

IO

does not hold for n > 4.

Proof. Set g(z

0, we get g(0)
By Theore

) = f(2)—=z. Since f € Sz or f € S, implies f(0) = f'(0)—1 =
=¢/(0) = 0. Also, g"(2) = f"(z) for all |2] < 1.
m 3.4.3, we have

)

9'(2)] = 19'(2) = g"(O)] < [2] - [A] - 1g"(9)]

and
l9(2)] = lg(2) = g(0)] < |2 - [u] - 19" ()],

where |A] <1 and |p| < 1.

Suppose first f € S3. It follows that |¢”(z)| < 1, which combined with
the above two relationships immediately implies |¢'(z)] < 1 and |g(z)] < |z,
for all |z| < 1. This implies |f(z)| = |z + g(2)] < 2|z| for all |z] < 1 and
n|f(1/n)] < 2 for all n € N. Then the inequality in the statement becomes
(1 — 1)3"~2 < 4, which is true for n < 3 but is false for n > 4.

Similarly, if f € Sy, then by |f”(z)| < 3, for all |2 < 1, we obtaln 19 (2)|<3
and [g(z)] < |2]/2, for all |z] < 1. This implies | f(z)| = \z—|—g( )| < 2|2|, which
in the inequality in the statement leads to (1 — %)3"’2 <3, which again it is
true for n < 3 but is false for n > 4 and proves the corollary.

Remark. From Corollary 3.4.8 it is natural to ask what happens with the
geometric properties of the Bernstein polynomials of degrees > 4 with respect
to the classes S3, S4, and S;.

Positive results will be given using suitable subclasses of S3, Sy, and S;.
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Theorem 3.4.9. Let n > 2 and suppose that f € A™(D).

() 10) = P/(0)=1 =0, [f®] < L, forallk =2,....n andnl f(1/n)| >
1, then B, (f) is starlike (univalent) in ]D) Here recall that || - || denotes the
uniform norm on C(D).

(i) If f(0) = f/(0)—1 =0, |[fP| < &, forall k = 2,...,n and
n|f(1/n)| > 1, then B, (f) is convex (univalent) in D.

Proof. We will use the following well known relationship (see, e.g., Lorentz
[247], p. 13):

B0 =3 (5) a0 =3 (1) 5 o ko ]

k=0 k=0

Set Po(f)(2) = Z5ihs).

(i) It is obvious that an f satisfying the conditions in the statement belongs
to gg.

Differentiating B,,(f)(z) twice, passing to the modulus, and taking into
account Theorem 3.4.3 and the hypothesis, we get

) : )
PUNEIS sz 2 (1) S 1)

I~ /n\k(k—=1) n—-1</n-2\ 1
<= = —
elcz_;(k:) nk n-e ;(k—2>nk—2

=2

n-e = j Jnd n-e(l+1/n)?

for all z € D.

This implies that P,(f) € S3 and that B, (f) is starlike (univalent) in D.

(ii) Obviously, an f satisfying the conditions in the statement belongs
to §4.

By similar reasoning to that in the above point (i), we obtain |PY(f)(z)] <
3, for all |z < 1, that is P,(f) € S4, which immediately implies that B, (f)
is convex (univalent) in I and proves the theorem. O

Remark. Simple examples of f satisfying Theorem 3.4.9 (i) and (ii) are given
by fn,m and g, below, defined respectively by

n 1 z

fn,m(z)z+e(n+1)<zn) m(m—1)---(m—n+1)C,

m

and
n

1 z™
gnm(2) =2+ 5207 (Z_n> m(m—1)---(m—n+1)C,’

for any m > n, where C,, > n+1+1/n.
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Indeed, it is easy to show that fy, ;,,(0) = gn,m(0) = f, ,,,(0)=1 = g;,,,,(0)—

n,m

1=0, nfnm(l/n) =ngnm(l/n) =1. Then for all k = 2,...,n, we have

Fomle) = e(#rl) KZ - rlz) m(m—1)-- ~Z(:z s 1)Cn](k)

(-3 Tt

n

+ k

2kl (m —1) - (m — k+2)
m(m—1)---(m—n+1)C, }’

which immediately implies

for all |z| < 1.

Similarly, we get |g£Lk,)n(z)| <&, forallk=2,...,nand [z] < 1.

The class of functions for which the attached Bernstein polynomials of
degree n > 3 are starlike in D can be enlarged, as can be seen by the following
result.

Theorem 3.4.10. Let n > 2. If f € A™(D) satisfies f(0) = f/(0) —1 = 0,

| £ < n?eill) forallk=2,...,n and n|f(1/n)| > 1, then B,(f) is starlike

(univalent) in D.

Proof. Integrating from 0 to x with respect to ¢ the identity

n—2 n—29 ‘
5 oo
i=o N Y

it follows that

n—2 n—1
= 7 j+1 n—1

and taking x = *, we get

n’

"22 n-2Y1 1  n
=\ noj+1 n-1

Il

3
| S

—
| —

3
+ |3

—_
7 N
+
S|
~_
3

|
—_
| IS
IN
3
S
F
==
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Writing B, (f)(2) = >p_ axz”® with a = (")A'f/nf( ) and reasoning as
in the proof of Theorem 3.4.9 (i), we have

ész (7)1 700
—Zk() 0,1/, ... fns f]] < Zn: ()'f(k)

n—2
S"i—lz A T
n(e—l)j:O j Jni j+1

for all |z| < 1. This implies that P, (f)(z) = %)Ef))‘ € S1, that is, B, (f) is
starlike in D. O

Remarks. (1) Since for any n > 3 we obviously have 1 < -2=L_ it follows

e n(e—1)?
that Theorem 3.4.10 is more general than Theorem 3.4.9 (i). oy
(2) The influence of critical points on the univalence of polynomials in the
unit disk (see, e.g., Robertson [323]), could be applied to Bernstein polyno-
mials too, at least for the simplest cases, e.g., n = 2, 3.
(3) If we consider f(z) = > 5o, k2", with ¢; = 1, z € D, then by the proof
of Theorem 3.4.1 (iii), we have |7, x| < 1 and by the Bernstein’s inequality
we easily get for all |z| <1,

o0
1B, (/)(z)] < ZI%I T (2)] < Zl%lk IBR(N)(2)] < lexl(k —
k=1

Then, denoting by Rps (with M > 1), Rs and Ry, the sets of all functions
[ as above, satisfying in addition Y ;- [cklk < M, > pey lek|(k — 1)k < 1
and > po, |cx|(k — 1)k < 1/2, respectively, we easily get Ry C Sar, Rz C Ss,
Ry C Sy and B,(U) C U, for any U = Ry;, U = R3, U = Ry and all n € N.

(4) Another type of property preserved by the Bernstein polynomials
(related somehow to the variation-diminishng property) was pointed out in
Schmeisser [341] and can be briefly stated as follows: the sets (—o0, 0), (—o0, 0],
(1, 4+00), [1,400), R\ (0,1), R\ (0,1], R\ [0,1] are Bernstein invariant where
by definition, a set U C C is called Bernstein invariant if for any polyno-
mial P with complex coefficients having all its zeros in U, all the Bernstein
polynomials B, (P) of positive degree have their zeros in U.

At the end of this section, it is of interest to point out (without proof) the
following approximation properties of the complex Bernstein polynomials.

In this sense, for R > 1, let us define by Ar the space of all functions
defined and analytic in the open disk of center 0 and radius R denoted by
Dr (obviously Dy = D). Setting r; = R — %, j € N, and for f € Ag,
|l fll; = max{|f(2)];|z| < r;}, since 4 =1 and r; / R, it is well known that
{Il - l;,7 € N} is a countable family of increasing seminorms on Ag and that
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AR becomes a metrizable complete locally convex space (Fréchet space) with
respect to the metric

oo

L=l
d(f,g)*;g'm, f:9 € Ag.

It is well known that lim,_,..d(fn, f) = 0 is equivalent to the fact that the
sequence (fp)nen converges to f uniformly on compacts in Dg.

Theorem 3.4.11. (Gal [135]) Consider f € Ar, R > 1, that is f(z) =
S ckz®, for all z € Dpg.
Let the complex Bernstein polynomials be given by

B = 3 ()1 = 2 p (k)
k=0
and let us define their iterates by Bgl)(f)(z) = Bn(f)(2) and Bém)(f)(z) =

Bo[B{™ Y ()(2), for anym €N, m > 2.
(i) The following Voronouvskaya-type result in the compact unit disk holds:

z(1—2)
2n

(1= 2)| 10M())
2n n

’Bn(f)(Z) 1) - f"(z)\ <

for alln € N,|z| <1, where 0 < M(f) =Y pe s k(k —1)(k — 2)?|cx| < o0.

(i) For any r € [1, R), the following Voronovskaya-type result for compact
disks holds
5(1+71)? M.(f)

2n n

for alln € N, |z| < r, where M,(f) = > pes exlk(k — 1)(k — 2)*rF 72 < c0.
(i1i) For any fized n € N, we have

lim d[B{™(f), Bi(f)] = 0;

m—0o0

(iv) If limy oo == = 0, then
lim d[B;"™)(f), f] = 0.

n—oo

Moreover, for any fived q € N, the following estimates hold:

IBE () = Flla < = 3 lewlk(k = 1yr
k=2
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and

d[B™ (f) @Z|ck|k — 1)k +—
n

where Y27, |exlk(k — 1)rk < oo.
(v) If limg, oo 2 = 00, then

lim d[B{™)(f), Bi(f)] = 0.

n—oo

3.5 Bibliographical Notes and Open Problems

Theorem 3.2.6, Corollary 3.2.7, Theorem 3.2.8, Corollaries 3.2.9-3.2.12,
Theorem 3.3.14, Corollary 3.3.15, Theorems 3.4.1 (iv), (v), 3.4.2, 3.4.4, 3.4.5,
Corollaries 3.4.6-3.4.8, and Theorems 3.4.9, 3.4.10 appear for the first time
here.

Open Problem 3.5.1. Suggested by the real case (see Chapter 1), we
can formally define the concepts of costarlike and coconvex approximation
as follows. Given f € A*(D), find polynomials P, and Q, of degree < n
(n € N) of good approximation for f such that

Re [zfl(z)} Re [ZP’/L(Z)} >0, Vz €D,

f(z) P(z)
. 1(2) Py(:)
zP/l(z
Re[f(z) +1]R {P£(2)+1]>0,V26D,
respectively.

Similarly, we can define the concept of cobound turn approximation as the
problem of finding polynomials R,, of degree < n (n € N) of good approxima-
tion to f such that Re[f’(2)|Re[R],(%)] > 0 for all z € D.

Open Problem 3.5.2. An open question is whether the inclusions in
Theorem 3.3.13 remain true by considering the open unit disk I) instead of .

Also, since a shortcoming of Theorem 3.3.13 is that the preservations of the
classes hold beginning with an index ng = ng(f) (depending on f), it would
be interesting to find subclasses of functions f, such that to get preservation
results for all n > ng, with a specified ng independent of f.

Open Problem 3.5.3. It is an open question whether the approximation
polynomials considered by the theorems in Sections 3.2 and 3.3 preserve the
subordination and also, the distorsions of f(z).

Open Problem 3.5.4. It is also natural to consider the following problem
concerning improvements in starlike and convex approximation:

For f € A(D) (or f € A*(D)), construct a sequence of complex polynomials
P,(f)(2), n = 1,2,..., with the degree of P,(f)(z) < n, of the convolution
form
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1

PASE = o= [ 0eQuta =t = o [ fee)Quwidu,

z = e’ € D (or of nonconvolution form) such that for some p > 1,

1) = P < Cup (£11)

D

and moreover, if f is starlike (convex) on D, then all P,(f)(z) are starlike
(convex, respectively) on D.

Open Problem 3.5.5. For functions f : D — C, analytic in D and
continuous in D, it is natural to attach other Bernstein-type polynomials too,
as follows:

2N =3 (3 )+ - i), 2B

Pu(f)(z) =" (Z) K-z fE®), zeD.

k=0

It would be interesting to study the approximation and geometric proper-
ties of these complex polynomials too.

Open Problem 3.5.6. In the hypothesis of Theorem 3.4.1 (iii), it is
natural to ask the open question whether for f ¢ P;, actually we have
|Bn(f) — fll ~ % in the closed unit disk, with constants depending on f but
independent of n. This is suggested by the phenomenon in the real case, when
it is known that (see Knoop-Zhou [194] and Totik [387]) || By (f) — flls,c10.1] ~
ws (f;1/4/n) s, with absolute constants.

Open Problem 3.5.7. Find geometric (and approximation) properties for
the complex versions (that is, simply replacing the real variable « by the com-
plex variable z) of the Bernstein-type polynomials introduced just before The-
orem 1.3.3, that is, for Stancu, Soardi, ¢g-Bernstein, Bernstein—Chlodowsky—
Stancu, Lupas?, Durrmeyer, Lupas-Durrmeyer, Lazarevic-Lupas, Mache, and
Paltanea—Berens—Xu polynomials.

The methods in the proofs of Theorem 3.4.2 and Theorems 3.4.4-3.4.10
(in the case of shape preservation) and the considerations in Theorem 3.4.1
(in the case of approximation properties) could be useful for most of them.
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Shape-Preserving Approximation by Complex
Multivariate Polynomials

In this shorter chapter we extend a few results in Chapter 3 to the case of
functions of several complex variables.

For simplicity and without loss of generality, sometimes we consider the
case of two complex variables.

4.1 Introduction

In this section we recall some well-known concepts and results in geometric
function theory in several complex variables.

Definition 4.1.1. (i) (see, e.g., Graham-Kohr [162], Chapter 6) Let C™ de-
note the space of n-complex variables z = (21,...,2,), 2, €C, j=1,...,n.

The open unit polydisk (of center 0 and radius 1) is defined by
P0;1) ={z=(z1,...,2n) €C;|z;| < 1,Vj=1,....,n} ={z € C; ||2]|oc <1},

where ||z||oc is the norm on C™ given by ||z|lcc = max{|z;;j =1,...,n}.

The open unit Euclidean ball is defined by B(0;1) = {z = (21,...,2n) €
C%llzlle < 1}, with |zllz = (2,2)'/2 = /3 [zl?, where || - [|g
is the Euclidean norm generated by the scalar product on C", (z,w) =
2?21 zjw;, Yz = (21,...,2p), w= (w1,...,wy). Here w; denotes the conju-
gate of w; in C.

For 1 < p < 400, the unit ball B,(0;1) is defined with respect to the

1/p

special norm ||z||, = [Z?Zl |zj|p} Jz = (21,...,2n), Le, By(0;1) = {z =
(21, ..., 2n) € C™; ||2]|p < 1}, where for p = 400 we recapture the above norm
|| - |lo that defines the polydisk P(0;1) = By (0;1). Also, obviously we have
I-lle =112

(ii) (see, e.g., Andreian Cazacu [18]) Let {2 be a domain in C" and f : 2 —
C. We say that f is holomorphic on {2 if f is continuous on {2 and holomorphic

S.G. Gal, Shape-Preserving Approzimation by Real and Complex Polynomials, 283
DOI: 10.1007/978-0-8176-4703-2_4,
(© Birkh&duser Boston, a part of Springer Science+Business Media, LLC 2008
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in each variable separately (when the others are fixed). Equivalently, f is
holomorphic on (2 if for each point a = (a1,...,a,) € {2, there exists a
neighborhood of a such that we have

oo

&= Y g Ema) e (z—an)in, Vzen,

J1se-dn=0

where the series converges absolutely and uniformly on each compact subset
of 2.

Using the multi-index notation |j| = ji + jo + -+ + jn, 27 = 20" 25> - 2in,
gt =gilgal .. gnl, for any § = (j1,..-,4n),Jk € {0,1,...,} it is well known
that for, e.g., a = 0, we can write ¢j,, ., = %% := DI f(0)/4!, and

1023
therefore we get the Taylor form f(z) = Z;’f n=0 Dij!(O) 27,

(iii) (see, e.g., Graham—-Kohr [162], Chapter 6) Let f : 2 — C", f =
(fio.o oy fn), f;: 22— C,|j=1,...,n, where {2 is a domain in C". The map-
ping f is called holomorphic on (2 if all its components f;,|j = 1,...,n
are holomorphic on {2 (according the above point (ii)). In this case, the
differential Df(z) at z € (2 is a complex linear mapping from C" to C"
that can be identified with the complex matrix Df(z) = (4;;)
with A, ; = g—ﬁf(z) for all z = (z1,...,2,) € §2. In this case, the relation
f(z+h) = f(2)+Df(z)+o(]|h]|g) holds in a sufficiently small neighborhood
of the origin in C™.

Denote by L(C™,C™) the class of all bounded complex-linear operators
from C™ into C™ and the identity in L(C™,C") by I. Also, we denote by
Hol(£2) the class of all holomorphic mappings from (2 to C™. If 0 € {2 then
we say that f is normalized if f(0) = 0 and Df(0) = I, where I denotes
the unitary n x n matrix. If f € Hol({2) and z € {2, then we say that f is
nonsingular at z if Df(z) is invertible. The mapping f is called nonsingular
on 2 if Df(z) is invertible at any z € 2.

(iv) (see, e.g., Graham—Kohr [162], Chapter 6) A function f € Hol({2) is
called locally biholomorphic on 2 if J¢(2) := det[Df(z)] # 0 for all z € £2.
We say that f € Hol({2) is biholomorphic on {2 if is a holomorphic mapping
from the domain {2 onto a domain {2’ and has a holomorphic inverse defined
on {2'. (In this case, {2 and (2’ are called biholomorphically equivalent.)

Note that in fact, the concept of biholomorphic mapping on 2 C C" is
equivalent to the concept of injective (univalent) holomorphic mapping on
nccm

(v) (see, e.g., Graham-Kohr [162], Chapter 6) If f € Hol(§2), then for each
k = 1,2,..., there exists a bounded symmetric k-linear mapping D* f(zq) :
ITf ,C" — C (i.e., of k variables, linear with respect to each one) called the
kth order Fréchet derivative of f at zg, such that we can write

i,j=1,...n°

£2) = 32 D o)z — 20)"]

k=0
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for all z in a neighborhood of zy. Here we have the notation D°f(z)(h°) =
f(z0), and for k > 1, D¥ f(z0)(h*) = D*f(2)(h,h,...,h), where h € C" is
taken ktimes. Also, D! is denoted by D.

(vi) (see, e.g., Graham—Kohr [162], Chapter 6) We say that f € Hol({2),
2 C C7, is starlike with respect to zg € (2 if f is biholomorphic on {2 and
f(£2) is a starlike domain with respect to f(zp), i.e., for all ¢t € [0,1],z € (2,
we have (1 —t)f(z0) +tf(2) € f(£2). If 0 € 2 and f(0) = 0, then we simply
say that f is a starlike function on f2.

(vii) (see, e.g., Graham—Kohr [162], Chapter 6) We say that f € Hol({2),
2 C C™, is convex on (2, if f is biholomorphic on {2 and f({2) is a convex
domain, i.e., for all t € [0,1],z,u € £2, we have (1 — ) f(2) +tf(u) € f(£2).

It is a well-known fact that there are results in the theory of functions of
one complex variable that can be extended to several complex variables, while
others cannot be so extended.

Thus, recall that in the theory of several complex variables, for example the
Cauchy formula, the maximum modulus theorem, and Schwarz’s lemma hold,
while the Riemann mapping theorem fails, due to Poincaré’s result [307], which
states that for n > 2, the unit ball B(0;1) and the unit polydisk P(0; 1) are not
biholomorphic equivalent. Also, Bloch’s theorem for normalized holomorphic
mappings fails to exist in C", for n > 2; see, e.g., Harris [166].

Concerning geometric function theory in several complex variables, there
are results in univalent function theory in one complex variable that cannot
be extended to higher dimensions (e.g., the univalent Bloch theorem, see, e.g.,
Harris [166]). However, as was conjectured by Cartan [62], many properties
of starlike and convex functions in one complex variable can be extended
to several complex variables. For example, Matsuno [268] proved that if f :
B(0;1) — C™ is a locally biholomorphic mapping such that f(0) = 0, then f
is starlike on B(0;1) if and only if

Re[([Df(2)]7'f(2),2)] > 0,Vz € B(0;1), 2 # 0.

However, the theory presents some special characteristics in a sense that
depends much on the norm considered on C". As for examples, Alexander’s
result that connects the starlike functions with the convex functions is not true
in several complex variables if in C"™ we consider the unit ball with respect to
the Euclidean norm | - ||z, but it is true with respect to the norms || - | and
- .

Especially the theory of convex mappings is very dependent on the norm
considered in C". For example, Suffridge [377], [378], showed that a convex
function on the unit ball B;(0;1) necessarily is linear.

A very detailed description of geometric function theory in several complex
variables can be found, for example, in Graham-Kohr [162].

In what follows, we present only a few facts that are used to extend some
results in Chapter 3 to higher dimensions.

Theorem 4.1.2. (i) (see, e.g., Graham-Kohr [162], Chapter 6, Problem
6.2.5) If fi,...,fn : D — C are normalized starlike functions on the unit
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disk D, then for any 1 < p < 400, the function f : Bp(0;1) — C™ defined by
f(z) = (fi(z1),..., fa(zn)) for all z = (z1,...,2n) € Bp(0;1) is starlike on
B,(0;1).

But if the above functions f1,..., fn are convexr on D, then the function f
is not necessarily conver on B(0;1).

(i) (Suffridge [376]) Let f : P(0;1) — C™ be a locally biholomorphic
mapping such that f(0) = 0. Then f is convex on P(0;1) if and only if there
exist convex functions g1, ..., gn on the unit disk D such that f is of the form

f(z)=M@@g(z1)s---s9n(2n))s 2 = (21,...,2n) € P(0;1),
where M € L(C™,C™) is a nonsingular transformation.
(i1i) (Roper—Suffridge [324]) Let f : B(0;1) — C™ be a normalized holo-
k
morphic mapping on B(0;1). If f satisfies the condition Z;:QJ kQW <

1, then f is convex.

Set K* = {f : B(0;1) — C"; f is holomorphic normalized on B(0;1),
continuous on B(0;1), and 3% kQHDk’;w <1}

4.2 Bernstein-Type Polynomials Preserving Univalence

By analogy with the real case, we can consider two kinds of Bernstein-type
polynomials of several complex variables 21, ..., 2p, as follows.

For R > 0, let us consider the open polydisk P(0;R) = {(z1,...,2p) €
CP;lzk) < R,k =1,...,p} and the closed polydisk P(0; R) = {(z1,...,%p) €
CP;|zx| < R,k =1,...,p}. For simplicity, everywhere in this section we denote
P(0; R) by Pg and P(0; R) by Pg.

If f is an analytic complex-valued function in P; and continuous in Pq,
we first consider the Bernstein polynomials attached to f by

Bnl,.“,np (f)(zh ) Zp)

ni np ny n . n1—ky n, —
£ 5 () ()0

ki=0  kp=0
x f(ki/ma,.... kp/np)

for all |z;] <1,j=1,..,p.
Second, let us consider

Bn(f)(zla-"vzp) = Z f(kl/nv"'7kp/n)pk1,»--,kp(zla~-->Zp)a

ki>0,k1+---+kp<n

where

n k1 k n—ky——k
pkl,“.,kp(zla"-azp): (k k)zl "'pr(l_Z:[—"'—Zp) 1 P
1 s 'vp
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and

n B n!
ki, kp o kil--kpl(n—ky — - — k)l

The main result is the following.

Theorem 4.2.1. Let us suppose that F : Pp — CP, with R > 1, is analytic
in Pr and univalent in Py, i.e., F = (f1,...,fp), with fx : Pr — C analytic
in Pg forallk=1,...)p

(i) There exists an index ng € N such that for all ny > ng,...,n, > ng,
the Bernstein polynomials

Bnl ----- np(F)(Zh-"vZP)
= (Bp,.ny (f1) (21, -5 2p)s oy By ony, (Fp) (2155 2p))

are univalent in Py.
(ii) There exists an index ng € N such that for all n > ng, the Bernstein
polynomials

B, (F)(z1,---,2p) = (Bo(f1)(z1, -1 2p), -+, Bu(fp) (21, -, 2p))
are univalent in Py.

Proof. For the simplicity of notation, we consider p = 2, but the proof for
p > 2 is absolutely similar. Let F' = (f,g), where f,g: Pg — C are analytic
in PR.

(i) In this case, the Bernstein polynomials can be written by the formula
B (F) (21, 22) = (Bmn(f)(21, 22), Bi,n(9)(21, 22)), where

B (f)(21, 22) ZZ( )( ) (1= 20)™ %2 (1 — 2)" 9 f(k/m, j/n),

k=0 j=0

(Bm.,n(g)(#1,22) can be defined similarly).
We will prove that

Bpn(f)(21,22) = f(21,22)  and B n(g)(21,22) — g(21,22)

as m,n — oo, uniformly in Py = {(z1, 22); |21] < 1, |22| < 1}. This will imply
that By, n(F) — F, uniformly in Py, which by the univalence of uniformly
convergent sequences to a univalent function, see, e.g., Theorem 6.1.18 in
Graham-Kohr [162], will imply that there exists ng € N such that for all
m,n > ng, the Bernstein polynomials B, ,(F) are univalent in P;.

We use the ideas of the proof in the case of the Bernstein polynomials of
one complex variable in Lorentz [247], pp. 88-89. Thus, since f is analytic
in Pgr, we can write f(z1,22) = Z?j:o ck,jz{“zé for all (z1,22) € PR, and

therefore there exists R; > 1 such that Z?j:o |ck7j\le+j is finite.
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Since it is well known that B, ,(f)(z1, 22) converges uniformly to f(z1, z2)
in the square S = {(z1,22);21,220 € R,0 < 21 < 1,0 < 2 < 1} C Py, by
Vitali’s convergence theorem (see, e.g., Graham—Kohr [162], Theorem 6.1.16),
it will be sufficient to prove that the polynomials By, ,,(f)(z1, 22) are bounded
in FRl .

Set D, (21, 22) = Pr(21) - Ps(22), where P,.(z1) = 2] and P,(z2) = 25 and

7T’l",8(217 22) = Bm,n (@T‘,S)(Zlv Z2>-

It is immediate that

Bm,n(qsr,s)(zla 22) = Bm(qu)(Zl) : Bn(@‘i)(ZQ)7

where B,, and B,, are the Bernstein polynomials of one complex variable that
appear in the proof of Theorem 4.1.1, page 88 in Lorentz [247]. Since we also

can write
o0

Bn(f) (21, 22) = Z Ch,j Tk 5 (21, 22),

k,j=0

and since by the relation (4) in the proof of Theorem 4.1.1, page 88 in Lorentz
[247], we have |m(21)| < R} and |ms(22)| < RS for all |z1] < Ry, |22 < Ry, by
the analyticity of f in Pg,, it immediately follows that there exists M > 0
such that | B, ,,(f)(21, 22)| < M for all (21,22) € Pg, and all m,n € N.

The reasoning for B, »(g)(z1, 22) is similar.

(ii) In this case, the Bernstein polynomials can be written by the formula
B (F)(21,22) = (Bn(f)(21,22), Bn(9)(21, 22)), where

n n—

B =3 () ("7 ")ttt = o= st stasmim)

=0 j=

(Bm.n(9)(21,22) can be defined similarly).

We will prove that By (f)(21, 23) — f(21, 22) and Bu(g)(21,22) — 921, 22)
as n — oo, uniformly in Py = {(21, 22); |21] < 1, |22] < 1}. This will imply that
B,,(F) — F,uniformly in Py, which by the univalence of uniformly convergent
sequences to univalent function, see, e.g., Theorem 6.1.18 in Graham-Kohr
[162], will imply that there exists ng € N such that for all n > ng, the Bernstein
polynomials B,,(F) are univalent in P;.

We use the ideas of proof in the case of the Bernstein polynomials of one
complex variable in Lorentz [247], pp. 88-89. Thus, since f is analytic in Pk,
we can write f(21,22) = Y5 o k2125 for all (21,22) € Pr, and therefore
there exists Ry > 1 such that ZZZ:O |ck7j|R]f+j is finite.

Since it is well known that By, (f)(z1,22) converges uniformly to f(z1, z2)
in the triangle T = {(21, 22); 21,22 € R,0 < 21,0 < 29,21 + 20 < 1} C Py by
Vitali’s convergence theorem (see, e.g., Graham-Kohr [162], Theorem 6.1.16),
it will be sufficient to prove that the polynomials B, (f)(z1, 22) are bounded
in PR1 .
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Set @, 5(21,22) = 27 - z5 and
ﬂ—r,s(zh 22) = Bn(ér,s)(zla 22)'

Since we can write

Bn 2’1,22 g Cr,sTr,s 21732)

r,s=0
it will be sufficient to show that

|7 s (21, 22)| < R7£+‘9 for all (z1,22) € Pg,.

Writing py, (21, 22) = (Z) (”;k)zfzg(l — 21 — 22)""F7J, let us consider
the generating function

ds(uv U, 21, 22)

8
8

T S

u v

= E ﬂ-,s(zlazQ)ﬁg

r=0 s=0 t
n—k SUT v°
= E Pn,k,j 21,22 E § Py
r=0 s=0 res

3 <.
Il
> O

ku/n jv/n
Pk, (21, 22) e/ el

()55 o) ey am s =

Writing z1e%/" = A, z5¢?/" = Band 1 — 2, — 2o = C, we get

LR e

k=0 j=0

25 (e () (@)

k=0 j=0

S (e S () () 5 (e (108)

= (A+B+0O)"=[1—z — 20+ 21" + z¢"/"]",

3 .
Il
> O

Il
- I 17
]

=0

S
I

0

<.

that is,

D(u,v,21,29) =[1 — 21 — 20+ 21e/m 4 226”/”]”

n
/1}5
- < nss!> '
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Since for |z1] > 1, |22] > 1 we have |21] < |21]® and |23] < |22|® for all
k =1,2,..., it follows that the coefficients of u" and v® in the power series
L4+ 302 215 + Do z2-5 are majorized by those of

1 ey Gy
D

if |z1| = |22| = R1, and therefore if |21]| < Ry, |22] < Ry.
But we observe that the series

Rlu > (Rlv)s
1+Z T2 el

is a subpart of the series

s Rlu " 1 = Rl'U ° 1 _ _Riu/n Ryv/n

This implies that the moduh of the coeflicients of u"v® in ®(u,v,z1,22) =
Do Y oeeo Trs(21, 22) % 4 do not exceed those in

[6R1u/n . eRlv/n]n _ 6R1ueRle7

which proves the theorem. [

Remarks. By the proofs of Theorem 4.2.1 and Theorem 3.4.1 (iii) for an
analytic function f: PR — C with R > 1, we easily can deduce the estimate

IBn(9) = 11 < M) [+ 3| foratmm e

where the constant Ms(f) > 0 is independent of m,n and || - || denotes the
uniform norm in C(D x D).

4.3 Shape-Preserving Approximation by Other Types
of Polynomials

First we introduce the moduli of smoothness we need in the approximation
process.

For simplicity and without loss of generality, we consider the case of two
complex variables.

Definition 4.3.1. Let B,(0;1), P(0;1) C C?, 1 < p < oo, where P(0;1) =
B (0;1).
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(i) If f: P(0;1) — C, then the second-order partial moduli of smoothness
of f on the distinguished boundary 9yP(0;1) = {(z1,22);|z1] = |22| = 1}
(which is obviously different from the whole boundary 0P (0; 1)) can be defined
by

Wém(f; 8)aopP(0:1) = sup{|f(z1€™, 20) + f(z1e™ ™, 20) — 2f (21, 22)|;
|z1| = |z2| = 1, |u| < 6},

W§ (£ 8) a0 p(on) = sup{|f (21, 226™) + (21, 206 ) — 2f (21, 22)];
21| = |22] = 1,]0] < 8},

for any § > 0.
(ii) It f : P(0;1) — C, then a modulus of continuity of f on P(0;1) can
be defined by
(f 6 77) 0 1) - sup{|f(z w) f(’LL7’l})|; (Z7’LU), (U,’U) € P(071
|2 —uf <6, [w—v] <n},

~—

I

for any 6,n > 0.
(iii) If f : Bp(0;1) — C, then we can define another modulus of continuity
by

wi(f;0)5 oy = supllf(A) — f(B); A= (2,w), B = (u,v) € By(0; 1),
A= Bll, < 6}
If p = +oo, since By(0;1) = P(0;1), then it is easy to see that

wi(f;0) gy = wi1(f30,0) -
(iv)If f: B (O 1) — C, then

Enm(f) =f{|f - PHW; P is polynomial of degree < n in z
and of degree < m in 2o}

is called the best approximation of f by complex polynomials P(z1,22) of
degree < n with respect to z; and of degree < m with respect to z5. Here

If = Pllg;may = sup{lf(A) — P(A)|; A € By(0; 1)}
A polynomial P, satisfying E, ,,(f) = |l f —

Py oll5om g1y Will be called

a polynomial of best approximation.

Note that since the class of complex polynomials of degree < n in z;
and of degree < m in 29 is finite-dimensional, by, e.g., Singer [357], p. 91,
Corollary 2.2, if f : B,(0;1) — C is continuous on B,(0;1), then for any
n,m € {0,1,...,} there exists a polynomial of best approximation P ,,

A mapping f : 2 — C", where we suppose, that 2 C C™ and
fzy oo szn) = (fiz1y ooy 2n)s ooy fu(21, - -+, 20)), Will be called a generalized
polynomial of degree dj, in the variable 2, k =1,...,n,ifeach f;,i =1,...,n
is a polynomial with respect to the variables zi,...,z,. If we denote by
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m; 1 the degree of the polynomial f; with respect to the variable zj, then
di, = maxj—1,.. nmj, forallk=1,...,n

Based on the results in Section 3.3 and on the above Theorem 4.1.2, we
present the following result.

Theorem 4.3.2. (i) Let f : B,(0;1) — C" with 1 < p < 400 be fized, of the
form f(2) = (fi(21),- .., fu(zn)), where each fr, : D — C, k =1,...,n, is
analytic, normalized in D, and continuous in D.

Set 2, (t) = ((2171), [2cos(t/2)]?™ the de la Vallée Poussin kernel
and define the polynomial of degree < my in z, given by Pp, (zx) =
%fjﬁ fr(zee™) 2y, (t)dt for allk=1,...,n

If oll fr, k=1,...,n are starlike on D, then for any mq,...,m, € N, the
mappings Pry,...omo (f) : Bp(0:1) — C" defined by P, ..o (f) (21, > 20) =
(Pny(71)s- -y P, (2n)) are starlike (generalized polynomials) on B,(0;1) (of
degree < my, with respect to zx, k = 1,...,n), and the following estimate
holds:

1 f(z1,e 005 20) — Pml,---,mn(f)(zl, i 'azn)”p <3 Zwl(fj; 1/W)ﬁ
j=1

for all z = (z1,...,2,) € B,(0;1).
Let us consider the subclasses of starlike functions Sy, S2, and Ss as defined
in Section 3.3 and suppose that fi, k = 1,...,n belong all to some subclass

Sios Jo € {1,3} (not necessarily the same jo for all k). Then the generalized
polynomials defined by Py, . m, (f)(z1,... zn) = (Pn,(21)s- ., P, (20)),
where each P, (1) = [* Qm, (t)dt, with Qu, (z) = £ [T fi( zke“) L (t)dt
and On, (t) the normalized Jackson or a generalzzed Beatson kernel, are star-
like on By,(0;1). In addition, if fi, k =1,...,n, are all continuous on D, then
the following estimate holds:

”f(zlv"'ﬂzn)_thm’mn(f)(zh'"7Zn)HpSC sz(fj{;l/mj)am y

Jj=1

for all z = (z1,...,2,) € Bp(0;1), where C' > 0 is independent of f and n.

If in the above construction we replace Op,, (t) by the generalized de la
Valleé Poussin kernel Vi, (t) = 2Fom, (t) — Fin, (t), where Fp,, (1) is the nor-
malized Fejér kernel, and fi, k = 1,...,n all belong to some subclass Sj,,
Jo € {1,2} (not necessarily the same jo for all k), then all Py, ... m, (f) are
starlike on Bp(0;1), and the following better estimate holds

£ (21 20) = Py (D) 1zl <4 [ By (£2) ]

j=1
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forall z = (z1,...,2,) € By(0;1). Here Ey,, (f) denotes the best approzima-
tion of fr by polynomzals of degree < my,.

(i) Suppose f: P(0;1) — C" is a locally biholomorphic mapping, contin-
uous on P(0;1), f(0) =0, and f is convex on P(0;1), i.e., necessarily of the
form

fGi,o z0) = M(g1(21), -+ -5 9n(20)), (21, - - -, 2n) € P(0; 1),

where M € L(C",C"), M = (ai ;)i j=1...n is nonsingular, and all g, : D are
convex on D and continuous on D.

As at the above point (i), define P, (zx) = = [ gi(26€™) 2, (t)dt for
all k =1,...,n. Then the mappings Pn, ... m,(f): P(0;1) — C™ defined by
Py ()21, s 2n) = M(Po, (71) - -, P, (2n)) are convex (generalized
polynomials) on P(0;1) (of degree < my,, with respect to zx, k=1,...,n) and
the following estimate holds:

||f(217'~~a2n) _Pm1 ..... mn(f)(zlvazn)”oo é 3C Zwl(fjal/M)ﬁ
Jj=1

forall z = (z1,...,2,) € P(0;1), where C' = max; j=1,n|ai;| > 0.

(i1i) Let f be holomorphic normalized on B(0;1), f = (G, H) with G, H :
B(0;1) = C, f(z1,22) = (G(21, 22), H(21, 22)).

Suppose that O, (t) is the normalized Jackson kernel or a normalized gen-
eralized Beatson kernel. Define

P, (f)(21, 22) = (Pi(21, 22), Pa(21, 22)),

where
1 ™ us X i
Py(z1,22) = —2/ O (1) O (v)G(21€™, 22" )du dv
m —nJ—7
and
Py(z1, 29) / / )H(zlei“,@ei”)dudv.

Also, for the generalized de la Vallée Poussin kernel V,(t) defined at the
above point (i), let us define

R (f)(21, 22) = (B1(G) (21, 22), R2(H ) (21, 22)),

where
R (G 2’1,22

€ / / [2Fs (1) — Fo(w)][2Fom (0) — Fn ()]G (226, 226 ) ds,
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and
RQ(H) (21, z9
1

)
= /_7r /_N[QFM(U) — Fp(u)][2F2m (v) — Fr(v)]H (21€™, 22" )du dv.

Then, the generalized polynomials Py (f)(21,22), Rum(f)(21,22) € K?
satisfy the estimates

1f (21, 22) — Pom(f) (21, 22) 2
< Clw§™ (Gi1/n)ay (o) +ws™ (H; 1/n)a, p(on)]
+ Clws™ (G11/n)a, o) + w5 (H; 1/m) g, p(os1))

and

1 f(21,22) = Rnm(f) (21, 22)[l2 < 10[En, i (G) + Enm(H)]
for all (z1,22) € B(0;1). Here 0gP(0;1) = {(21,22); |21] = |22| = 1} is the
distinguished boundary of P(0;1) and E,, ., is given by Definition 4.3.1 (iv).

Proof. (i) By the inequality ||(z1,...,20)[lp < > peq |2k], it is an immediate
consequence of Theorem 4.1.2 (i) combined with Theorem 3.1.3 (viii) for the
de la Valleé Poussin kernel, with Theorem 3.3.9 (i),(ii), (iii), for the subclasses
S7 and Sy, and with Theorem 3.3.10, (i), for the subclass S3. Also, we note that
B,(0;1) C P(0;1), and in fact the estimates are valid for all z € P(0;1) = D".

(ii) It is an immediate consequence of Theorem 4.1.2 (ii) combined with
Theorem 3.1.3 (viii).

(ili) Concerning the approximation error by P, ., (f), we get

1 f(21,22) = Pom(f) (21, 22)[l2 < [G(21, 22) — P (G)(21, 22)|
+ |H(2’1, Z2) - Pn,m(H)(Zla Z2)|

But
G(z1,22) — Pom(G) (21, 22)

1 g ) )

== » O (1) Oy (v) [G(zl, z9) — G(z1™, zzew)] du dv
1 s

= ) . On (1) O (v)
X [G(z1,22) — G(z1, zgei”) + G(Zl,ZQCiU) — G(zlei“, zge“’)]du dv
1 [™ 1 [™ .

Lo [ / (2G(21, 2) — G20, 296™)
v - Vi 0

— G(zl,zge_w))Om(U)dU] du + % ' O (v)

—T

1 4 . . . . .
{/ (2G(z1,zgew)—G(zle’",zze“’)—G(zle_m,zze“’))On(u)du] dv.
0

s
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From the maximum modulus principle (see, e.g., Andreian Cazacu [18],
p. 69), the maximum is attained on the distinguished boundary of P(0;1),
denoted by 9yP(0;1). Therefore, it suffices to prove the estimates for |z1| =
|z2] = 1 in order for them to be valid for all z;,22 € P(0;1), and since
obviously B(0;1) C P(0;1), the estimate will be valid for all z1, 2z, € B(0;1).

Therefore, from the above relationship, for |z1| = |z2] = 1 we immediately
get (reasoning as in the case if one complex variable)

|G (21, 22) = Ppm(G) (21, 22)| < Clwa(G;1/m)a,p(o:1) +w2(G;1/n)a, pos)],

with C' > 0 independent of f, n, and m.
By similar reasoning we have

|H (21, 22) — Pom(H)(21, 22)| < Clwa2(H;1/m) g, po;1) + w2(H;1/1)a,p(051)]-

Concerning the approximation error by Ry, ., (f)(z1, 22), first we prove that
if f = (Pn.m>n,m), Where pp m (21, 22), Gn,m(#1, 22) are polynomials of degree
< min z; and of degree < m in 29, we have Ry, ,,(f)(21,22) = f(z1,22). It
suffices to prove this for any f of the form f(z1,22) = (2725, 252L), where
J,s €{0,1,...,n} and k,t € {0,1,...,m}.

This is immediate from the case of one complex variable (see, e.g., Gal
[127], p. 425), which proves the first estimate in (iii).

Then, we have

[2F2n(u) - Fn(u)][2F2m('U) - Fm(v)] = 4F2n(u)F2m( ) - 2F2n( )Fm(v)
= 285, (0) () + F (u) Fi (u).

By the case of one complex variable (see Gal [127], p. 424), for all ;s € N we
immediately get

1 T iu 2 U v
ﬁ/_ﬂFr(u)Fs(v)[A(zle ,20€") — B(z1€™, z0e"")]dudv| < ||A — BHPOl)

for all z1,22 € P(0;1), where A,B : P(0;1) — C and ||A — B||m =

sup{|A(z1, z2) — B(z1, 22)|; (21, 22) € P(0;1)}.
This immediately implies |R1(A) (21, 22) — R1(B)(21, 22)| < 9||A—B||m7

ie.,

HRl(A) - Rl(B)”p(o;l) < 9HA - B”P(o;l)'

Therefore,
1 (21, 22) = Rnm (F)(21, 22) 12 < |G = Ra(G) |5y + 1H — Ba(H) || 5513

Denote by G7, ,,, the polynomial of best approximation of G of degree < n
in 21 and by Hy, ,, the polynomial of best approximation of H.



296 4 Shape-Preserving Approximation by Complex Multivariate Polynomials
By the above conclusions, we get

1G = Ri(G)ll 5y < I1G = Gromllpway + 1B1(Ghm) — Bi(G)lp@ay

< Bu(@) +9)G - G, — 0B, ().

»m ||P(O;1)
Similarly,

|H = Ri(H) |5y < 10Enm(H),

which proves the estimate in (iii). O

Remark. It is easy to see that the results in Chapter 3, Theorem 3.2.6, Corol-
lary 3.2.7, Theorem 3.2.8, and Corollaries 3.2.9-3.2.12 remain valid without
any change if we consider there that {2, {2; C C™. For example, corresponding
to Corollary 3.2.12, we get (by taking m = 2 for simplicity) the following.

Theorem 4.3.3. For (X, || - ||x) a complex normed space and S C X a linear
subspace, let L : X — F(D x D), where and (F(D x D), || - ||#) is a certain
normed space of complez-valued functions defined on D x D. If L is a linear
bounded operator such that there exists e € S with Re[L(e)(z)] > 1 for all
z € D x D and if we set Mo(Re[L]) = {f € X : Re[L(f)(2)] > 0, for all z €
D x D}, then for any f € My(Re[L]) we have

Es o (reiz)) (3 X) < (1+ lellx +[IL] - lellx) Es (f; X).

Remark. In order to get an application of Theorem 4.3.3, let us particularize
the spaces X, S and the operator L.

For d € {0,1,...}, let us consider X = A%(D x D), the space of d-
continuously differentiable functions f : D x D — C on the closed unit bidisk
DxD, endowed with the norm || f|| 4a(pxpy = max{|| f**)]|;0 < k, s, k+s < d},

where f*:5)(z) = %(z),z = (z1,22) and || - || denotes the uniform norm
. . 1 2
on C(D x D).
Take L : A4D x D) — C(D x D), defined by L(f)(z) = g"jag (2), z =

(21, 22), where ko, so are fixed with kg+sg < d. Then obviously L is linear and
bounded, and e(z) = 2¥925°, Vz = (21, 22) € D x D satisfies Re[L(e)(z)] = 1.
Choose as S the set of all complex polynomials of degree < n in z; and of
degree < m in zy (for arbitrary fixed n,m € N, which is a finite-dimensional
set in C(D x D)).
As a consequence of Theorem 4.3.3, we get that for any f € A4D x D)
ALARCH (2)] > 0, for all z = (21,22) € D x D, there exists a

8zfof‘)z;0

complex polynomial P, ,, of degree < n in z; and of degree < m in zy such
ko+s

that Re[Z—mm ()] > 0 for all z € D x D, and the estimate

k0 5,50
0z,°0z,

satisfying Re|

”f - Pn,m”Ad(JD)xlD)) < 3En,m(f)
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holds, where E,, .., (f) denotes the best (unrestricted) approximation of f by
complex polynomials of degree < n in z; and of degree < m in zo with respect
to the norm || - || 44 (pxp)-

For our purpose, instead of A%(ID x D), in what follows it will also be useful
to introduce the following notations.

We let AP4(DxD), p,q € {0,1,...}, denote the set of all functions f(z1, 22),
f :DxD — C such that all the partial derivatives exist: f*! (21, 2) =

D®ED(f)(21,2) = %(21,22), continuous on D x D, for all 0 < k < p,
1 2

0 <1 < q (it is easy to see that AP9(D x D) coincides with A4(D x D),
where d = p + ¢). The norm on A”9(D x D) is given by || f|lar.axp) =
max{||D®D(f)]|;0 <k < p,0<1<q}, where || - || denotes the uniform norm
on C(D x D).

On the other hand, for h € A(D) and r € N, we set

wr(h; 6) = sup{| A" h(e™)|; |x| < 7, |u| < 6},

with ATh(z) = Yi_o(=1)""*(})h(z + ku), while for g : Dx D — C, g :=
g(z1, 22), we set
wr(g;9,0) = SHB‘UT(QQ; 5)
zo€D
and
wr(g;0,0) = sup wr(gs,;9),
z1€D
where for fixed zy, the function g,, is defined by g.,(z1) = g(z1,22) for all
21 € D, and similarly, for fixed z;, the function g., is defined by g.,(z2) =
g(z1, 22) for all 2o € D.
Looking more closely at the proof of Theorem 1 in Beutel-Gonska [41] (see
Theorem 2.3.1 in Chapter 2), below we prove that it remains valid for tensor
product of complex linear continuous operators defined on A4(D):

Theorem 4.3.4. Let us consider that AP(D) is endowed with the norm
1 ar @) = max{|[ fP];5=0,....p},

where ||g|| denotes the uniform norm of g in C(D).

(i) If L : AP(D) — A(D) is a linear and continuous operator, then for
f e APYD x D), L[f.,] is g-times continuously differentiable with respect to
2o € D and it commutes as a tensor product with the partial differentiation of
f(z1,20) € AP4(D x D) with respect to zs, i.e.,

DODo, L=, LoDOV 1=0,...,q =z eD.

Here [DIOD o, 1)(f) = 54 [, 1o DOD)(f) = L [(f’;ﬁf) ] foa (1) =
f(zla 22)'
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(i) If M : A1(D) — A(D) is a linear and continuous operator, then for
f € APYD x D), L[f.,] is p-times continuously differentiable with respect to
21 € D and it commutes as tensor product with the partial differentiation of
f(z1,22) € AP9(D x D) with respect to z1, i.e.,

D*ED o M=, MoD®O) k=0,.,p, zeDb.

o*M(f., 0" f-y
Here [D(k}o) Oz M](f) = Bz[{{ }’ [Z2M © D(k’o)](f) =M |:( Bi}' )z1]7
[ (22) = f(21,22).
(iti) Let L : AP(D) — A9(D) and M : AP(D) — AY(D) be linear operators
satisfying the estimates

llg = L9I® (z0) < D arrlzn)wn(g®; pr(21)

r=1

for all 1 € D, 0 < k < p, and g € AP(D), where C1 > arp(z1) > 0,
c12p1(z1) 20 foralll <r<m,0<k<p, z €D,
and

I[h — M(h ”zQ|<Zﬁéz ws(D; pa(22))

forall zg €D, 0<1<gq, and h € Aq( ), where Co > Bs1(22) > 0, c2 >
,02(22))ZOforalllgsét,Oglgq, zo € D.
Then, for all z1,22 €D, f € API(D xD), 0< k <p, 0<1<gq, we have

I[f = (i Loy MY(f)]®D (21, 22))

< Z ar,k(zl)wr (f(nl); 1 (Zl)v O)

r=1

+ID® o L] sup Zﬁsz 22)ws (f7;0, pa(22))

0<i< S

and

If - <21L 0z M)()]*V (21, 22)]
< Zm 22)wl (f59;0,p1(22))

+ 1D o M| JSup Zark 21)wr (fP7); p1(21),0).
s 9r=1
Proof. (i) and (ii) are immediate from the linearity and continuity of L
and M.

(iii) First we prove that the estimates satisfied by L and M imply their
continuity. We give the proof only for L, since the case of M is similar. The
proof here follows mainly the proof in the real case of the Theorem 1 in
Beutel-Gonska [41].
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Since, in general, we have
wn(gP);6) <279,
we get for all 0 < k < p,
L@ < IL(g) = g} + 1™

<Y sup wi(g®; sup pi(21)) + [lg® |
r=121€D z1 €D

< Clg® 1+ g™ < Cliglar (o),

which immediately implies ||L(g)[| a»r) < Cllgllar), i-e., L is a continuous
operator.

As a consequence, by the above point (i) we obtain DD o, L =, Lo
DOV 1 =0,...,q, which for f € AP9(D x D) implies

I1f = (a L oz MY(HI®D (21, 22)]
<D™ o (Id —, L) o DOV](f) (21, 22)]
+|[D%D o, LoD o (Id—., M)|(f)(21,22)] :=U + V.

By the estimate satisfied by L, we immediately obtain

U<Zark 21w f(p’ p1(z1),0)

for all 21,20 €D, 0<k <p, 0<1<gq, and f € A7¢(D x D).

Now let us set G = [D©V o (Id —,, M)](f). By f € AP4(D x D), we
get f —., M(f) € AP9(D x D), DOD[f —. M(f)] € AP*4(D x D), and
G., € AP(D) for all z5 € D, 0 <[ < q. From this and from the properties of
M, denoting by || - || the operator norm, || - || the uniform norm and || - ||, the
uniform norm with respect to z1, we get

dk
<| ( oL) (@I < 5z LIl G v

=[ID*o L]l - [D OV o (I1d —., M)(f)]-]-,
0<i<p 1

= [|ID* o L||- sup HD(O Vo (Id 2, M)(FUO (-, 29))2
0<i<p

= [|[D¥ o L||- sup sup DOV o (Id —., M)(f) (21, 2)]
0<i<p Zleﬁ

<||ID* o L| - sup sup Z/le (22)ws ((f9D).,: pa(22))

0<i<p 2, €D a—1

= [ID*o L] - sup Zﬁsl (z2)ws (£9930, pa(22)),

0<i< <P

which proves the first estimate.
The proof of second estimate is similar, which proves the theorem. [
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Remark. Recall that by Remark 1 after the proof of Theorem 3.2.1 (iii) in
Chapter 3, it easily follows that in fact, for univariate functions f, we have
||f(k 70—277,71 p( )”
= ||f(k) - ‘72n—k,n—p(f(k))H
< CpBpipii(f®) < Cpln+p — k) PHEE,(fP)) < Cpn P B, (fP))

forall k=0,...,p and n > p.

But obviously, the polynomial ¢, ,—p(f) is linear and continuous as a
function of f € A%(D). Combining this with the above Theorem 4.3.4 (since
writing L = 02, ,—p we have ||D¥ o L|| < C) and with the well-known rela-
tionships Ea, (f) < Crwy (f;55) (see Gaier [121] or Gaier [122], p. 53) and

1 1
wr(f;zn> (fa2 +1)Nwr<f;n>

(equivalences with respect to constants depending only on r), we immediately
get the following result:

Theorem 4.3.5. For any f € APY(D x D) and for 0 < k <p, 0 <1 <gq,
there exists a sequence of bivariate polynomials Qn m/(f)(21, 22) of degree <n
in z1 and of degree < m in zo such that for all n > p, m > q, we have

1 p—k 1
1 = Qo &0l < () o ( o0, L 0)
n n

1\ . 1
+ Cpgrs | - osup ws | f7;0,— ).
m 0<i<p m

Here ¢, > 0 and cp q.rs > 0 are constants independent of n, m, and f.

Theorem 4.3.5 allows us to prove a Shisha-type result for complex functions
of two complex variables, as follows.

Theorem 4.3.6. Let hq, ho,p,q,r, s be positive integers, 0 < hy < p, 0 <
he < gq, and let f € AP9(D x D). Consider the continuous functions «; ; :
DxD —R,i=hy,....,p, j = ho,...,q, assume ap, p,(21,22) = 1 for all
21,20 €D, and define the differential operator
p q 8i+j
L= ; (21, 22) ——.
pOPIPWENSFLSS
1=h1 J=n2

Also, set
1\** 1
ME =cpr | = - Wy (l) .0
n,m(f) Cp, (n) w (f )

1\ G 1
+ Cp,q,r,s © Sup Ws f 4 ;07 )
B m 0<i<p m
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Pom(L; f) = Z Z L M3,

i=hy1 j=ha

where cp r, Cp g.r,s are the constants in Theorem 4.3.5 and we have the formula
l 4,J SuPZl,ZQGD{‘a’L)] 21,22)|} < 00.

If Re[L(f)(z1,22)] > 0,Vz1, 29 € D, then for all n,m integers with n > p,
m > q, there exists a bivariate polynomial Qpn m(f) (21, 22), of degrees < n in
z1 and < m in za, satisfying Re[L(Qn.m)(f)(21,22)] > 0,Vz1, 20 € D, and

_ Pom(Ls f) 1, (o0, L )
”f Qn,m( )” — ( )(h2)' +Cpﬂ’np“‘)r <fp anao

1 - 1
. S ) (). — . 4.1
+ s S s (f ; m) (4.1)

Proof. From Theorem 4.3.5, there exists the polynomial @y, n,(f)(21, 22) such
that we have

h1 hy 7 (D
F 4 Pun(L: ) j},] QU < MEL,
2!
which implies
P (L;
1500 — QU < B e (),

(hy = k)!(he = 1)!

for all 0 S k S hl,O S hg.
Taking now k =1 = 0, it follows that

Pom(L; f)

_ Pun(Lif) (Lf) o oy, 1
) TP (f no)

1 ) 1
+ qu,r,s@ Sup ws (f(z,q);o’ m) 7 (4_2)

0<i<p

+ M9 (f)

which proves the estimate in the statement.
On the other hand, we have

L[Qn,m(f)](zleQ) = L(f)(zlaZQ) +Pﬂ,m(L; f) + Z Z ai,j(zlaz2)

i=hy j=hs

(4,9)
h1
z Z
Qnom(21,22) — f(21,22) = Poym (L3 f) hll h2 ] ’
1 2

which implies the equality of the real parts of the left side and right side.
Reasoning in what follows exactly as in the proof of one complex variable
of Theorem 3.2.2, we arrive at the desired conclusion. [
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Remark. If Re[L(f)(z1,22)] > 0,Vz1,22 € D, then for all n,m integers
with n > p, m > ¢, following the proof of Theorem 4.3.6, it is easy to
see that the approximation bivariate polynomial Q,, . (f)(z1, 22) also satis-

fies Re[L(Qn,m)(f) (21, 22)] > 0, Vz1, 22 € D.

4.4 Bibliographical Notes and Open Problems

Theorems 4.2.1 and 4.3.2-4.3.6 are new.

Open Problem 4.4.1. By analogy with the other types of Bernstein
polynomials of one complex variable in Open Problem 3.5.6, we can consider
the Bernstein type polynomials of two complex variables

:i ; (7:) (T‘)qu_zl)m Rl ) I fen e ) (4.3)

k=07 J
and
B} (f)(21,22)
R N (n—k k 2jmi
— : L 2kmi g
N <k>< j )Zfzé(l—zl—zz)” FfeT T eT) (44
k=0 j=0 J
(here i? = —1).

The approximation and geometric properties of By, ,(f)(z1,22) and
B (f)(z1,22) are open questions.

Open Problem 4.4.2. In the paper of Roper—Suffridge [324], it was
proved that if f : B(0;1) — C? is a normalized holomorphic mapping
on B(0;1) satisfying the condition Zzz p2w < 1, then f is con-
vex. Here DPf(0) is the Fréchet derivative, that is, a p-variable mapping
DPf(0): IT Jp:l(C2 — C?, linear with respect to each variable and symmetric.

Taking into account the notation after Theorem 4.1.2, denote by K? the
class of all normalized holomorphic mappings on B(0;1) satisfying the above
condition.

Let K,(t) be the de la Vallée Poussin trigonometric kernel given by

n!)?

K (t) = 2u(t) = (3257 (2cost/2))*"
Writing f(z1,22) = (F (Zl,ZQ),G(Zl,ZQ)), define the convolution general-

ized polynomials

Pn,,m(f)(ZM 22) = (Rn,m(F)(Zla 22)7 Sn,m,(G)(Zh 22)),



4.4 Bibliographical Notes and Open Problems 303

where

1 T T ) ]
Rym(F) (21, 22) = ﬁ/ K, (W) Ky (v)F(z1e™, z9e")du dv

_ n,m
—E AL 2122

ij=0
and
Snm(G) (21, 22) / K (u) K (0)G(21€™, 20 )du dv
= Z Bz k.
ke, 1=0

An open question is whether the relationship

1D Py () O)|| < IDP (O)II, Y,

holds.

If the answer is positive, then f € K7 would imply P, .(f) € K%, i.e.
this would allow that starting from a convex function one could construct
another convex function (generalized polynomial) in a simpler way than that
given by the so-called Roper—Suffridge operator in Roper—Suffridge [324]. For
example, first one may start with the particular case F'(z1,22) = g(z1)h(22),
G(z1, 22) = p(z1)q(22), when the Taylor expansion of F'(z1, z2) becomes in fact
the product of the Taylor expansions of g(z1) and h(zz), the Taylor expansion
of G(z1,22) becomes in fact the product of the Taylor expansions of p(z1)
and ¢(z2), and Ry, 1, (F) (21, 22), Sn,m(G)(21, 22) becomes the product of the
corresponding convolution polynomials attached to the univariate functions
9(z1), h(z2) and p(z1), q(z2), respectively.
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Appendix: Some Related Topics

In this chapter we present some topics concerning shape-preserving approxi-
mations not necessarily of polynomial or spline type, but of great importance
and very related to the previous chapters.

An important topic that is not included in this section is the shape-
preserving approximation by spline functions (for reasons explained in the
preface), but many details in that subject can be found, for example, in
the books of de Boor [49], Schumaker [344], Chui [69], DeVore-Lorentz [91],
Kvasov [218], and in the surveys of Leviatan [229] and Kocié-Milovanovié
[197]. In Sections 5.1 and 5.2 we present some shape-preserving results for gen-
eral (positive) linear operators defined on Cfa,b] and for some concrete (real
and complex) nonpolynomial operators, respectively. We can mention here the
contributions of (in alphabetical order) Andrica, Badea, Cottin, Gal, Gavrea,
Gonska, Kacso, Karlin, Kocié¢, Lackovié¢, Lupas, Popoviciu, Tzimbalario, Zhou,
and others.

Because of its close connection with the shape-preserving properties, in
Sections 5.1 and 5.2 we also consider the variation-diminishing property.

In Section 5.3 Leviatan’s result in [228] and some shape-preserving proper-
ties of Bernstein polynomials are extended to monotone and convex functions
defined on [—1, 1], with values in an ordered vector space. The first contribu-
tion belongs to Anasstasiou—Gal [9], while the second one appears for the first
time here.

Section 5.4 contains some shape-preserving properties of the complex
singular integrals of Poisson—Cauchy and Gauss—Weierstrass integrals, with
applications to complex PDE.

5.1 Shape-Preserving Approximation by General Linear
Operators on C|a, b]

In this section we present some interesting results concerning the preservation
of monotonicity and convexity by general linear operators on the space C|[a, b].

S.G. Gal, Shape-Preserving Approzimation by Real and Complex Polynomials, 305
DOI: 10.1007/978-0-8176-4703-2_5,
(© Birkh&duser Boston, a part of Springer Science+Business Media, LLC 2008
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Let a <xo <21 < -+ <xp <band P : [a,
be continuous functions. The linear operator F,,(
said to be of interpolation type.

The first result concerns interpolation-type operators.

Theorem 5.1.1. (see Popoviciu [313]) Considering the sequence of functions
defined by & = > 1", Py and &1 = Z;”:l P, &, = Z?;jJrz(xk —Zip1) P, i =

0,...,m — 2, the operators (defined above) F,, preserve the (usual) convezity
of f if and only if the functions ®o, D1 are polynomials of degree <1 on [a,b]
and ®;,i = 0,...,m — 2, are (usual) conver on [a,b]. Here usual convexity

means 1-convezity according to Definition 1.1.1 (i).
More generally, we have the following result.

Theorem 5.1.2. (see Tzimbalario [390]) Let L : C[a,b] — Cla,b] be a con-
tinuous linear operator. Denoting by K"[a,b] the class of all convex functions
of order r on [a,b], necessary and sufficient conditions for the implication

f€K"a,b = L(f) € K"[a,b]

are as follows:

(i) If p is polynomial of degree < r — 1, then so is L(f).
(ii) L(¢7 1) € K"[a,b] for every c € [a,b] where ¢"(x) = 0 if x € [a,c) and
or(x) = (x— )" ifx € [c,b].

Remark. Theorem 5.1.2 was proved in [390] in the more general setting of
convex functions with respect to a Chebyshev system.

In order to state another result related to Theorem 5.1.2, we need the
concept of one-sided strong local maximum (OSLM) for real functions.

Definition 5.1.3. (see Koci¢-Lackovi¢ [196]) The function ¢ € Cla,b] has
the OSLM property at the point zo € (a,b) if there exists h > 0 such that
for any © € (xo — h,x0 + h) C [a,b], we have ¢(z) < ¢(xp) and ¢(z) < ¢(xo)
at least in one of the intervals (xg — h,xzo) and (zg,zo + h). We denote by
Cola, b] the class of all functions f € Cfa,b] having the (OSLM) property at
least at a point.

Theorem 5.1.4. (see Kocié-Lackovié¢ [196]) If (Ax)x is a family of continu-
ous linear operators Ay : Cla,b] — Slc,d] (where S|c,d] is a normed subspace
of real-valued functions defined on [c,d]) satisfying the conditions

(i) every Ay preserves the affine functions;
(1) for every ¢ € Cola,b], there exist at least one Ao and yo € [c,d] such that
Ao () (o) < 0;
(i1i) Ax(oc) > 0 for all ¢ € [a,b] and all \, where o.(x) = |z — ¢|, for all
x € [a,b],

then Ax(f) >0 for all X < f is (usual) convex on [a,b].
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It is also worth mentioning the following interesting equivalence result that
connects the convex approximation by positive linear operators with other
classical results.

Theorem 5.1.5. (see Andrica—Badea [20]) The following statements are
equivalent:

(i) There is a sequence of positive linear polynomial operators reproducing
affine functions that preserve (usual) convexity;
(ii) Jensen’s inequality for (usual) convex functions;
(#i1) Korovkin’s theorem on the space Cla,b];
(iv) Jensen’s inequality for positive linear functionals on Cla,b].

Other kinds of (positive) linear operators were considered by Karlin [192], of
the form T : Cla,b] — Cle, d], given by T(f)(z) = ffK(x,y)f(y)dyw € [e,d].

Theorem 5.1.6. (see Karlin [192]) If the kernel K : [c,d] X [a,b] — R is a
totally positive function of order 3 and satisfies the conditions

b b
/ K(w,y)dy=1,/ yK(z,y)dy = Ax + B, A >0,

then T preserves the (usual) convexity of f € Cla,].
Recall here that K(x,y) is called totally positive of order 3 if for all 1 <
m<3and forallc< a1 < - <xp <d,a<y; < - <yYm < b, we have

AK(J:17 ey Ty Y1, "'ay’m) 2 07

where Ag (1, ...y Tm; Y1, - .-, Ym) denotes the determinant of the matriz given
by (K(xivyj))i,jzl,...,m-

In what follows, we present some interesting relationships of the shape-
preserving property of positive linear operators with other properties, such
as the global smoothness preservation property and the variation-diminishing
property.

For the simplicity of presentation, we consider operators of the form T :
C[0,1] — C[0,1]. First, recall that T is said to have the global smoothness
preservation property (with respect to the first-order modulus of smoothness)
if

wi(T(f);6)oc < Cwi(f;0)o0, Vf € C[-1,1],6 20,
where w1 (f;0)e0 = sup{|f(z) — f(y)]; | —y| < ¢} and C > 0 is independent
of f and §.

Also, recall that the least concave majorant of wy(f;0)e, for f € C[0,1]
can be defined by (see, e.g., Anastassiou-Gal [7], p. 233)



308 5 Appendix: Some Related Topics

(t —2)wi1(f; Yoo + (y — i (f3 )
y—

w1(f;t)oo=SIlp{ OO;OSxStSySl},
W1(f;t)oo = wi(f;1)oo, for ¢ > 1.

It is evident by definition that wi(f;t)ee < wi(f;t)e- By, e.g.,
Anastassiou-Cottin-Gonska [6] (see also Anastassiou—Gal [7], pp. 237238,
Theorem 7.2.3) we have @1 (f;t)oo < 2w1(f;t)oo, since f is defined on a com-
pact subinterval of R.

As a consequence, without loss of generality, the global smoothness preser-
vation property can be expressed in terms of @y (f;¢)s too. Let us also men-
tion that for the Bernstein polynomials we have w1 (B (f);0)oo < @1(f;0)00 <
2w (f;9)eo for all f € C[0,1] and § > 0 (see Anastassiou—Cottin—Gonska [6]).

A first connection between the variation-diminishing property and the
shape-preserving property is given by the following result.

Theorem 5.1.7. (i) (Cottin-Gavrea—Gonska—Kacsé—Zhou [72]) If the linear
operator T : C[0,1] — C[0,1] is strongly variation-diminishing, then it pre-
serves the positivity and monotonicity of f;

(i1) (Gavrea—Gonska—Kacsé [146]) Let T,, : Cla,b] — II, be a positive
linear operator satisfying the following conditions: degree(T,(e;)) = i, i =
0,1,...,n. If T,, has the strong variation-diminishing property, then T, pre-
serves all the convexities of order i =0,1,...,n.

(iti) (Gavrea—Gonska—Kacsé [146]) Let us consider I = (a,b) or I =
(a,+00) with a > 0, [a, 5] C [0,400) and the continuous weight function
w:I — Ry If A: C(I) — R is a linear and positive definite functional
(i.e., if f >0 and A(f) =0, then f =0) with the property that there exists a
subspace Cly"! (I) € C(I) such that for any f € clop) (I) c C(I), the value
L(f)(x) = A[t*w(t) f(t)] is well-defined (here Ay means that the functional A
is evaluated with respect to t), then

Z(a,) [L(f)] < Si[f]

for all f € cloP! (I). We recall that Z, g)[g] denotes the number of zeros of
g in (o, B), while Sy[f] is defined by Definition 1.1.1 (vi).

Let us establish the following notation:

M|0,1] is the set of all monotone functions on [0, 1], M [0, 1] is the set of
all increasing functions on [0, 1], M [0, 1] is the set of all decreasing functions
on [0,1], Lipy/[0,1] = {f € C[=1,1];|f(z) — f(y)| < M|z —y|,z,y € [0,1]},
Lip[o, 1] = UM>O LipM[07 1}> ”fHLiP = SUP|z—y|>0 w

The next three results present the relationships between the shape-
preserving property and global smoothness preservation.

Theorem 5.1.8. (Cottin-Gavrea—Gonska—Kacs6—Zhou [72]) Let us consider
T : C[0,1] — C[0,1], a positive linear operator that maps C*[0,1] into
Lip[0,1] and reproduces constant functions. If T(M* (N C0,1]) € M™T or



5.2 Some Real and Complex Nonpolynomial Operators Preserving Shape 309

T(M+TNCH0,1]) € M—, then wi(T(f);6)ee < @W1(f;¢0)00, V0 € [0,1], f €
C10,1], and the best constant ¢ is |T(e1)], e1(z) = .

Theorem 5.1.9. (Cottin-Gavrea-Gonska—Kacs6-Zhou [72]) Let us consider
T : C[0,1] — C[0,1], a positive linear operator that maps C*[0,1] into Lip|0, 1]
and satisfies T(e;) = e;, i = 0,1, where e;(x) = 2, x € [0,1]. Then

wi(T'(f);0)o0 <W1(f316)00 < 2w1(f36)oc, for all 6 €[0,1], f € C[0,1],

if and only if
T(M*[0,1]nCt0,1]) € M+][0,1].

Theorem 5.1.10. (Cottin—Gavrea—Gonska—Kacsé—Zhou [72]) Let us consi-
der T : C[0,1] — C0,1], a positive linear operator that maps C*[0,1] into
Lip[0,1] and satisfies T'(e;) = e;, i = 0,1. If T(M][0,1] N C[0,1]) € M]0,1],
then

Wi (T(f);0)00 CD1([f50)00 < 2w1(f;0)00, for all§ €[0,1], f € C[0,1].

Remark. The proofs of Theorems 5.1.7-5.1.10 can be found in the orig-
inal mentioned papers or in the book Anastassiou-Gal [7], Section 20.1,
pp. 485-491.

5.2 Some Real and Complex Nonpolynomial Operators
Preserving Shape

In this section, first we present a few of the best-known real nonpolynomial
approximation operators that preserve the convexity properties of the approx-
imated function and some of which are strongly variation-diminishing too, as
follows.

(1) The Gauss—Weierstrass operators (introduced and used by Weierstrass
[398] in order to prove his famous result on the approximation of continuous
functions by algebraic polynomials), attached to bounded f : R — R, given

by
Wi (f)(x) = \/Z/j_ e—n(u—x)2/2f(u>du’

preserve the convexity of any order of f (see Butzer—Nessel [52]).

(2) The Favard-Szdsz—Mirakjan operators introduced by Mirakjan [271]
and studied by Favard [114] and Szdsz [382], attached to bounded f : [0, 00) —
R and defined by

“+o0

R =ers By (1),

k=

(=)



310 5 Appendix: Some Related Topics

preserve the convexity of any order of f (see Lupas [256]) and are strongly
variation-diminishing (see Lupag [258]).

(3) The Baskakov [30] operators, attached to bounded f : [0,00) — R and
defined by

o =00 (Y () 5 (B)),

k=0

preserve the convexity of any order of f (see Lupag [257] and Ibragimov—
Gadzijev [180]) and are strongly variation-diminishing (see Lupag [258]).

(4) The Meyer-Konig—Zeller [270] operators, attached to bounded func-
tions f:[0,1) — R and defined by

+oo
20 =3 (" Y amayiaty () ez = ),

k=0

preserve the sign, monotonicity, and usual convexity of the approximated func-
tion (see Lupag [256]) and are strongly variation-diminishing operators (see
Cimoca-Lupas [70].

(5) Jakimovski-Leviatan [186] operators defined by

—ng +°
P =SS mno)f (). w20,
k=0

where pi(x) are the so-called Appel polynomials given by the relationship
g(u)e"® = 377 pr(z)uf, with g analytic in a disk, g(1) # 1, preserve the
usual convexity of f (see Wood [401]).

(6) The gamma operators introduced by Lupag—Miiller [262] are defined

by +1  ptoo
Gy =T [ ey ()

n!

preserve the convexity of f and are strongly variation-diminishing (see Lupasg—
Miiller [262]).

(7) The Bleimann—Butzer-Hahn operators introduced by Bleimann,
Butzer, and Hahn [46], attached to bounded f : [0,00) — R, are defined

by
BB = 5 (o) i),

satisfy the rate of convergence

(14 x)?

[BBH,(f)(@)= ()| < (1+V3)er <f; T

) , ¢ € (0,4+00),n €N,

and preserve the convexities of higher order of f (see Abel-Ivan [1]).
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The methods of proof for the shape-preserving properties and for the
strongly variation-diminishing property of these operators follow in general,
those in the case of classical Bernstein polynomials, i.e., by representing the
derivative of a given order as a sum of products between positive quantities
and finite (or divided) differences of the same order of f and Descarte’s rule
of signs, respectively.

A large number of other real nonpolynomial approximation operators pre-
serve the convexity properties of the approximated function, but because they
do not represent the main topic of this monograph, we close the list here.

At the end of this section, for the complex Favard—Szdsz—Mirakjan opera-
tor (obtained from the well-known real version of it, simply replacing the real
variable = by the complex one z), given by

Su(f)(z) = ey (”j)j /),

=0

we present some very recent results.

Note that the first result concerning the convergence of complex S, (f)(z)
to the function f belonging to a class of analytic functions in a parabolic
domain of the complex plane satisfying a suitable exponential-type growth
condition was proved in Dressel-Gergen—Purcell [99], but without any esti-
mate of the approximation error and any shape-preserving properties.

The main results can be summarized by the following.

Theorem 5.2.1. (Gal [134]) Let G C C be the open disk of radius R > 1
and center 0. Let us suppose that f : G U [R,+00) — C is continuous on
G U [R,400), analytic in G, i.e. f(2) =Y poyckz® for all z € G, and that
there exist M,C,B > 0 and A € (%, 1) with the property |cx| < MAk—]: for all
k=1,2,..., (which implies |f(z)] < MeA?! for all z € G) and |f(2)] < CeB*
for all x € [R, 4+00).
(i) Let 1 < r < % be arbitrary fived. For all |2| <r and n € N, we have
Cr,A
150 (f)(2) = ()] < :

n

where Cpa = 2570, (k+ 1)(rA)*
(ii) For the simultaneous approzimation we have that if 1 <r <r < %
are arbitrary fized, then for all |z| <r and n,p € N,

ISP (£)(2) — £ (2)] < LT1Cna

= n(ry —r)ptt’

where Cy, 4 is given at the above point ().

(iti) Let 1 < r < % be arbitrary fized. The following Voronovskaya-type

result holds:

z

Sn(H)(z) — f(z) — %f”(z ‘ < SMAM Zk =1 foralln €N, |z| <.

2r2p2
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(i) If £(0) = f'(0) — 1 =0 and f is starlike (convez, spirallike of type
v € (—m/2,m/2), respectively) in D, then there exists an index ng depending
on f (and on ~y for spirallikeness) such that for all n > ng, the complex
Favard-Szasz—Mirakjan operators S, (f)(z), are starlike (convez, spirallike of
type vy, respectively) in D.

If f(0) = f'(0) — 1 = 0 and f is starlike (convex, spirallike of type v €
(=m/2,m/2), respectively) only in D, then for any disk of radius 0 < r < 1
and center 0, denoted by D,., there exists an index ng = no(f, D) (no depends
on 7 too in the case of spirallikeness) such that for all n > ng, the complex
Favard-Szasz—Mirakjan operators Sy, (f)(z) are starlike (convez, spirallike of
type v, respectively) in D,.

Remark. For other complex operators, see Open Question 5.5.5 in Sec-
tion 5.5.

5.3 Shape-Preserving Polynomial Approximation
in Ordered Vector Spaces

In this section, some shape-preserving properties due to Leviatan in Sections
1.6, 1.7 and of Bernstein polynomials in Section 1.3, are extended to the
abstract setting, i.e., to functions with values in ordered vector spaces.

Similar to the case of real-valued functions, first we introduce the following
concepts.

Definition 5.3.1. (Gal [124]) (i) Let (X, || - ||) be a real normed space.

A generalized algebraic polynomial of degree < n with coefficients in X is
an expression of the form P,(z) = >} _, cxa®, where ¢y € X, k=0,...,n,
and = € [a, b].

(ii) The uniform kth Ditzian-Totik modulus of smoothness of f : [-1,1] —
X is given by

—k
S F30) o0 = 5D (Do) f(2) L 4oc,

where ¢*(z) = 1 — a2 and A, f(x) = Y o(~1)7 (%) f(a + kh/2 — jh) if

z, vt kh/2 € [-1,1], ZZf(x) = 0, otherwise. Here || f|lc = sup{||f(2)|;x €
[_17 1]}
(iii) The uniform kth modulus of smoothness of f : [-1,1] — X is given
by
Wi (f;0)oo = sup {sup{||A}f(z)[;2, = +kh € [-1,1]}}.
0<h<6

—45(k .
Here A f(z) = Z?:o(_l)k J (])f(x + jh).
The main results contain some shape-preserving approximation properties
by generalized polynomials for f: [—1,1] — X, where (X, || - ||, <) is a vector
space endowed with the structure of an ordered linear space. We thus extend
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two classical results in the case of real functions of real variables in Sections
1.7 and 1.3.

The main tool used in our proofs is the following well-known result in
functional analysis.

Theorem 5.3.2. (see, e.g., Muntean [279], p. 183) Let (X,| - ||) be a normed
space over the real or complex numbers and denote by X* the conjugate space
of X. Then ||z|| = sup{|z* ()| : * € X*,||z*|| < 1}, for all x € X.

Let us suppose that (X, | - ||, <x) is a normed space such that <x is an
order relation on X that satisfies the conditions

r<xy, 0<a, imply ax <x ay;

r<xyand u <x vimply z+u <x y + v.
The following concepts are well known.
Definition 5.3.3. Let f : [a,b] — X.

(i) f is said to be increasing on [a,b] if < y implies f(z) <x f(y).
(ii) f is called convex on [a,b] if

We present the first main result.

Theorem 5.3.4. (Anastassiou—Gal [9]) For any conver function f : [—1,1] —
X and every n € N, there is a convex generalized algebraic polynomial A, (x),
of degree < m, such that

1f = Anlls < Owg)(f; 1/n)s
and
|f(2) = An(2)] < Cwa(f; V1= 2% /n)es, @€ [-1,1].
If, in addition, f is increasing, then so is A,. Here C' > 0 is an absolute

constant.

Proof. As in the case of real-valued functions, we define the generalized al-
gebraic polynomial of degree < n by

n—1

An(f)(@) = f(=1) + Y sj[R;(2) = Rja(@)],

=0

where s; = %, j=0,...,n—1Land -1 =& <--- <& <--- <

&, =1, R;j(x) are defined as in Leviatan [228], pp. 472-473.
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Simple calculation gives us

n—1

An() = F-1) + s0Bo(w) + (s~ 551) Ry0).

Writing Fj(z) = R;j(z) — Rj+1(z), in Leviatan [228] it is proved that F}(x)
are increasing, while R] (x) are convex, real-valued functions on [—1,1].
Suppose z,y € [-1,1], z < y, and f is increasing on [—1,1]. We get

Ox < s;, which implies

An(f) (@) Zsj z) <x f(- ng

that is, A, (f) is increasing.
Suppose now that f is convex on [—1,1]. By §;_1 < & < 41, we get
& = A1+ (1 — A 41, with suitable A € (0,1). Then, by the relationship
1
S;—8i_ 1=
T AN - &)
X[(X =) f(&§41) + Af(&-1) — F(1 = A& + A&-1)],

we obtain Ox <x s; — s;_1 and therefore

An(f)Pe+ (1 =Nyl = f(=1) +s0Ro(Ax + (1= N)y)

n—1

+ (Sj — Sj—l)Rj [AI + (1 — )\)y]

<.
Il
—

<x f(=1) + so[ARo(z) + (1 — A)Ro(y)]

+> (55— s5-1)AR;(2) + (1 = MR, ()]

that is, A4, (f) is convex on [—1,1].
In order to prove the estimates in the statement, let x* € B; and set
g(x) = a*[f(z)],z € [-1,1]. By Leviatan [228], we have

l9(z) — An(9)(2)| < Cwa(g; V1= 2%/n)oe, @ €[-1,1],

and
lg = An(9)]loe < Cwd(g;1/n)o
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By [Ajg(x)| = [¢*[A} f(2)]| and by

l9(z + ho(x)) — 29(x) + g(x — ho(x))]
= [&"[f(z + ho(x)) — 2f () + f(x — ho())]|
<zl 1f (x + fo(x) — 2 (2) + f(z + ho(x))]]
< |[f (@ + ho(z)) — 2f(2) + f(z + ho(x))]],

we obtain wy(g; VI —22/n)se < walfiVI—22/n)oe and wf(g:1/n)e <
w3 (f31/1) 0o
Also, we get

[ [f(2) = An(£)(@)]] < Coon(f5 V1 =22 /n)oc, @ € [-1,1]
j2*[f () = An(f)(@)]] € Cwf (f51/n)oc,Va € [~1,1],

since A,(g)(x) = *[An(f)(2)] from the linearity of z*.
Passing to the supremum with x* € Bj, from Theorem 5.3.2 we obtain
the desired estimates. [J

Remarks. 1) The z*-method in this section was used to obtain error es-
timates in approximation of vector-valued functions for the first time for
Bernstein, Kantorovich, and Lagrange generalized polynomials in the paper
Gal [124] and in the book Gal [123], pp. 24—-26. Also, very recently, this method
was used by Anastassiou—Gal [10] to obtain results on best-approximation
generalized polynomials.

2) If, on R, we define the new order z <, y iff p(z) < ¢(y), where ¢ :
R — R is any fixed discontinuous solution of the Cauchy functional equation
ol@+y) = o(x) + ¢(y) for all z,y € R, then by Theorem 5.3.4 we get
new results in shape-preserving approximation by polynomials, for real-valued
functions.

Finally, for the Bernstein operators, let us recall the estimates obtained
in the recent paper Gal [124] (see also the book Gal [123], pp. 24-25), for
f:]0,1] = X, continuous on [0, 1]:

(i)

Cusf (i) < 1B.D e 0o (i)

[z €[0,1]} and C1,Cs > 0 are absolute constants.

1
7).
wher'e' | flloc = sup{||f(x)

(i)

(1 —z)]%?
1B, - fa)] < 01 |22 va e o

if and only if wa(f;0)e = O(d%), where o < 2. Here, the moduli of smooth-
ness are defined in Definition 5.3.1 (ii), (iii), and the Bernstein type operators

attached to f are given by B,,(f)(z) = > j_q pak(2)f(£).
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Similar to Theorem 1.3.1 (i) in Section 1.3, we have

Theorem 5.3.5. First, : [0,1] — X will be called k-convez if all the kth
forward diﬁerences A ft)>0x, 0<h<(b—a)lk, t € [a,b—kh]. (Here
A’,fbf()—zj 0 ('I;)f(t—l—jh forallk=0,1,...).

If f is k convex on [0,1], then so is By (f).

Proof. We have
=3 1(2) Ao
j=0

where AFp, j(z) = (?) Ak[29(1 — 2)"7J]. Applying the mean value theorem
in real analysis, there exists & € [0, 1], such that

Af[27 (1 — 2)" 7] = hFg (1 = &I P),

and replacing back in the expression of B,,(f), we obtain (by similar reasoning
to that in the case of real-valued functions)

AEBA(f)(2) = nln = 1)(n — b+ 1) 57 AL, FG/m)pa-4(€) 2 Ox,
j=0

since all A’f/nf(j/n) >0x. O

5.4 Complex Nonpolynomial Convolutions Preserving
Shape

The main idea of this section belongs to a series of recent papers of
Anastassiou—-Gal ([11]-[15]) and consists in the “complexification” of several
real convolution operators, a procedure that keeps the rate of approximation
in the real case but induces the preservation property of some conditions in
geometric function theory. More exactly, if K : R — R is a real integrable
“even kernel,” it is known that its convolution with an integrable function
f:R — R is given by
+o0 +oo
J(x) = K(t)f(x—t)dt = K(t)f(x+t)dt

— 0o — 0o

(1f the kernel K and f are 2m-periodic, then the above integral is replaced by
The “complexification” means to replace = + t by ze'* = re’(*+tt) under f
(where z = rei®), which generates the complex convolution
—+o0 +oo

P(z) = K(t)f(ze™)dt = K(t)f(ze~™)dt

— 00 — 00

(or P(z f+7r K (t)f(ze)dt in the case of 2mr-periodicity).
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The complex convolution integral P(z) has in general the same approxi-
mation properties as the real one J(z) has, but in addition, for many choices
of K, it preserves the analyticity of f and some geometric properties of f in
the unit disk.

The sections in Chapter 3 treated the case of convolution complex polyno-
mials. In this section, we will present some classical nonpolynomial complex
convolution operators. Interesting applications to complex PDE also will be
presented.

Recall that A*(D) = {f € A(D) : f(0) = f/(0) —1 =0}.

Definition 5.4.1. (Anastassiou-Gal [13]) Let f € A*(D). For & > 0, the
complex singular integrals defined by

+OO . P
PeI) = 5 / flze)e e qu, 2 e D,

z
§ T fze™)

Qe = [ wy 52 du, z€D,
* f +oo 7zu o
/ u2 T 52 du, zeD,

2¢3 —
Rf<f)<z)=§/_m L i, zeD.
L f(ze™)e —u/e du, z¢€D,

T -
W, +OO e~ 7“2/5du zeD
(N = = [ e e,

are described as follows : P¢(f) is of Picard type, Q¢(f), Qf(f), and Re(f) are
of Poisson-Cauchy type and We(f), Wi (f) are of Gauss—Weierstrass type.

The approximation and some geometric properties of these operators can
be summarized by the next result. We keep the notation of Section 3.3
for the sets S1,S52,53, 54, Sm, P, R,S*(D), (D). Also, for f € A(D) we set
w1(£6) 5 = Sup{ £ (1) - £(0)i,0 € D, Ju — o] < 8} and

wa(f30)c0,0p = sup{|f(ze™™) — 2f(2) + f(ze™)[; lu] < §,]2] = 1}.
Theorem 5.4.2. (Anastassiou—Gal [13]) (1) For all 2 € D and £ > 0 we have

[Pe(f)(2) = [(2)] < Cwa(f; €)oo ,om;
Pg(SQ) C Sy and Pg('P) Cc P,

(14 &3 Pe(S1) C S1, (1+EH)P:(Sm) C Sni(1+¢2) and (1 + 52)13&(5;,5) C Ss,
where )

1+

S3e= {f € Ss; |f"(2)] < Vz € D} C Ss.
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Also, P (S;l) C S3 and f € Sy implies that Pe(f) is univalent in {z e G,
2| < 537} for all € € (0,1].

(2)
QelN)(=) - f(2)] < c“’(f?’” veeD, ¢ € (0,1],
QI - f(2)] < cW vzeD, £ (0,1,

Re(f)(2) — F(2)] < Con(f:€) s V2 €D, €€ (0,1];
Q:(P) C P, Re(P) C P;

bl%f) QelSa(e) € 5. b;g) - Qe(S3.6:(5)) C 53,
Cl:(lg) He(Sra0) © 5 @Qg(sm S IAGIE
%QE(SM) C S/ )l clitg)Rﬁ(SM) C Sat/ier )
where S50 = {f € Sy[f"(2)l < ah, bi(€) = % [ Bt du, b](€) =

2 [0 o du, and o1(6) = % [ <u§‘f¥>2 .
Also, if f € Sy 1, then Qg(f) € S for all &€ € (0,1], and if f € Sn
(M > 1), then Q{(f) is univalent in {z €C;|z] < 37}, for all € € (0,1].
If f €832, then Re(f) € Sz for all € € (0,1], and if f € Sn, then Re(f)
is univalent in {|z| < 2}, for all & € (0,1].

(3)

We(£)(2) — £(2)] < cw(f?“"’

W (£)(2) = £(2)] < Can(fi Vo 2 €D, €€(0,1],
We(K(D)) C K(D), W (5*(D)) < 5*(D),

zeD, ¢€€(0,1],

We(P) C P, We(S3.4,(¢)) C Sa,

1
di(§)
1, 1
@Ws (S3,45(¢)) C S3, mWs(SM) C Smyjai (o)
1
di (&)

for any € > 0, where di(§) = = - [ e~ /¢ cosudu and di £) = e ¢/4
NG ™ 1
If f e SS,ﬁ then W¢(f) € Ss for all § € (0,1], and if f € Sy (M > 1),

then Wg(f) s univalent in {z eC; |z < ﬁ}, for all € € (0,1].

We(Su) C Suyjas e
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(4) Let us define

Sic= {f € Su: |7"(2) vz e D}

< ey
and

St,a = {f e Sulf"(2)] < lal | Yz € ]D)}

We have
(1 +&%)Pe(S; ) C Sy for all £>0 and P¢(S;,) C Sy for all € € (0,1];
i Qe(Sapie) C 81 grg Qé(Sapi(e)) € Sa and gy - Re(Saci(e) C

Sy for all € > 0, and if f € 5'47?, then Q¢(f) € 54, sz € Sy2, then

R;;:(f) €85y forall € € (0 1];

We(Sa,d,(¢)) C Sa, d*(g)Wg (Sa,ar(¢)) C Sa forall§ >0, and if f € S,

then Wi (f) € Sy for all § € (0,1].

’ 1/4

Remarks. (1) The nice properties
We(K(D)) C K(D), We(5"(D)) € §°(D),

are direct consequences of Theorem 3.1.5, while the others are proved by some
calculations.

(2) Let us mention here, without details, that approximation and geometric
preservation properties of other nonpolynomial complex convolution operators
were studied recently, as follows: the Jackson-type generalized singular com-
plex integrals of those in Definition 5.4.1 in Anastassiou—Gal [11], the complex
Post—Widder operator in Anastassiou—Gal [12], the complex rotation-invariant
integral operators in Anastassiou—Gal [14] and a complex spline operator in
Anastassiou—Gal [15].

In what follows, we present two simple applications of the complex
Poisson—Cauchy and Gauss—Weierstrass convolution integrals to complex par-
tial differential equations. Let us recall the Cauchy problem for the following
two classical evolution equations in real variables:

(i) the one dimensional heat equation, given by

ou 19%u

ﬁ(t’) 262( x),t >0, u(0,2) = f(r), * € R,

where f € BUC(R) the space of all bounded uniformly continuous func-
tions on R. It is well known that its unique bounded solution is given by
the semigroup of linear operators given by

+oo
— / e gy

(see, e.g., Goldstein [150], p. 23).

T(t)(f)(x) =
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(ii) the case of the Laplace equation, given by

0%u 0%u

ﬁ(t,x) + ﬁ(tvx) = Ovt > 07 U(O,(E) = f(x)v T € R,

where f € BUC(R) has its unique bounded solution given by the semigroup
of linear operators given by

+o0 T —
s =+ [ o=y,

) 2y

(see, e.g., Goldstein [150], p. 23).

Recall that if (X, || - ||x) is a Banach space, then T'(t) : X — X, t > 0,
is said to be a strongly continuous semigroup of linear operators on X if it
satisfies the following conditions (see, e.g., Goldstein [150], p. 5):

(D) T+ s)(f)=T@)[T(s)(f)] for all t,s >0, f € X.

(2) T(0)(f) = f (or more general, limy\ o T'(¢)(f) = f) for all f € X.

(3) For any fixed f € X, as a function of ¢, T'(¢)(f) is continuous on Ry.

(1) [I70)1x = suby gy <1 LT x} < oo for all £> 0,

If |T(t)||x <1, then we call it a strong contraction semigroup of linear
operators.

(5) The (infinitesimal) generator of T' is the operator A defined by the

formula TG - f
) = iy TP

for all f € X where this limit exists.

Now, it is natural to ask what happens if we “complexify” the correspond-
ing semigroups of operators for the heat and Laplace equations, i.e., what
partial differential equations correspond to the complexified semigroups of
operators?

First we complexify the semigroup (T'(t),t > 0) attached to the above real
heat equation, as follows. Let f € A(D). We have f(z) = > o, arz" for all
z € D and also ||f|| = sup{|f(2)];z € D} is a norm. It is well known that
(A(D), || - ||) is a Banach space.

For t € R, t > 0, let us consider the complex singular integral

Wi ()(2) zem ) e /2D gy 2 e D,

:@/_:of(

Evidently W (f)(z) is the singular integral of Gauss—Weierstrass type in
Definition 5.4.1 (i).

The first aim is to show that the above-defined complex singular integral
defines a strong contraction semigroup on A(D), its infinitesimal generator is
calculated, and applications to some Cauchy problems are obtained.
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We present below without proofs the main results.

Theorem 5.4.3. (Gal-Gal-Goldstein [138]) (7)
(Wi (£)(2) = W) ()| < Cslt — s, Yz € D, t €V, C (0,400),

where Cg > 0 is a constant independent of z, t, and f, and Vs is a neighborhood
of s.
(ii)
IWEOI < ILfILvE> 0, f € A(D).
(iii) W ()(2) = WEWE())()] for all t,5 >0, f € AD), = € D.

Remark. An immediate consequence is that (W, ¢t > 0) is a contraction
strongly continuous semigroup of linear operators on A(D).
Concerning the generator, we have the following.

Theorem 5.4.4. (Gal-Gal-Goldstein [138]) The generator A of the semi-
group (Wi, t > 0) is given by

19%f

1] 02 0?
20y 2 | 0p

[U(r cos p,rsin )] + i—— [V (r cos ¢, rsin ¢))

AD) 50

for any f € A(D), f(z) = U(rcos p,rsing) + iV (rcosp,rsing), z = re'¥ €
D, z # 0, where v is the principal value of the argument of z and A(f)(0) = 0.

An immediate consequence of Theorem 5.4.4 and of Theorem 5.4.2, point
(3), is the following.

Theorem 5.4.5. (Gal-Gal-Goldstein [138]) (i) The unique solution u(t, z)
(t>0,2€D)in A(D) as a function of z of the Cauchy problem with complex
spatial variable

ou y 1 0?
a( 7Z) = 58702
u(0,2) = f(2), z€D, fe AD),

du

[u(t,2)], z=re¥ €D, z#0, 5

(t7 O) =0,

18 given by

ult, z) = Wi (f)(z) = 1/+°O Flae—it)e=u/C0) gy
) t \/ﬁ . .

(ii) As a function of z, the above solution u(t, z) satisfies if f € Sy
then u(t,z) € Ss for allt € (0,1], and if f € Sn
univalent in {z € C; |z| < 5727z } for all t € (0,1].

(1i1) As a function of z, the above solution u(t,z) satisfies if f € Sy _1_,

V174

1
’
V174

(M > 1), then u(t, z) is

then u(t, z) € Sy for all t € (0,1].
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Remarks. (1) Theorem 5.4.5 (ii) and (iii) says that for all ¢ € (0,1], the
solution u(t, z) preserves as a function of z the properties of the boundary
function f(z) in some subclasses of starlike, univalent, or convex functions.

(2) In fact, supposing that f is analytic in an open set G including D, for
all t € (0,¢y] with sufficiently small ¢t; > 0 (depending on f), the solution
u(t,z) = Wi (f)(z) in Theorem 5.4.5 preserves as a function of z the starlike-
ness, convexity, and spirallikeness of the boundary function f (exactly as do
the Bernstein polynomials in Theorem 3.4.2). This is immediate if we reason
exactly as in the proof of Theorem 3.4.2, by replacing there the Bernstein
polynomials B, (f)(z) with W;*(f)(z), taking into account that by Theorem
4.1 in Anastassiou-Gal [13] we have that S(f)(t, z) = e//*- W (f)(z) satisfies
S(f)(,0) = f(0), S'(f)(t,0) = f'(0) and that by Theorem 5.4.2 (3), we ob-
viously have lim;_o Wy (f)(2) = f(2), uniformly with respect to z € D (note
that in fact one can easily prove that lim;_.o W;*(f)(z) = f(z), uniformly with
respect to z € K, for any compact disk K C G).

In what follows we complexify the real semigroup of operators (S(t),t > 0)
attached to the real Laplace equation. We obtain the complex operator

+oo se—tu o
Q:<f><z>:f/ Fee™) b L e,

) uZ4t?
called a singular integral complex operator of Poisson—Cauchy type.

Theorem 5.4.6. (Gal-Gal-Goldstein [138]) We have (i) Qi (f)(z) =
Q:Q:(f)(2)], Yt,5s >0, fe AD), » €D.

(i) Q7 (f)(2) = Qs(f)(2)] < Cslt — 5|, V2 €D, t € Vi C (0,+00), where
Cs > 0 is a constant independent of z, t, and f, and Vy is a neighborhood of
(fized) s.

(iii)

QNI <IN, V>0, feAD).
(iv) limpn o Q7 (f) = [, for any f € A(D).

Remark. From this theorem it immediately follows that (Qf,¢t > 0) is a
contraction strongly continuous semigroup of linear operators on A(DD).
We have the following application.

Theorem 5.4.7. (Gal-Gal-Goldstein [138]) (i) The unique solution, denoted
by v(t,z) (t > 0,z € D), in A(D) as a function of z of the Cauchy problem
with complex spatial variable

82 2 2

— Wt 2)] + s5[vt,2)] =0, z=re? €D, z#£0, gu

o2 D2 oz (10) =0,

v(0,2) = f(2), z€ D, fe AD),
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s given by

+o0
o2 = QA = - [ e g
(ii) As a function of z, v(t,z) satisfies if [ € Sg)%, then v(t,z) € Sy for
all t € (0,1], and if f € Sy (M > 1), then v(t,z) is univalent in {z € C;
|z| < =57} for allt € (0,1].
(i4) As a function of z, the above solution v(t, z) satisfies if f € Sy 1, then
v(t,z) € Sy for allt € (0,1]. ’

Remarks. (1) The proofs of Theorems 5.4.3-5.4.7 and other details can be
found in Gal-Gal-Goldstein [138].

(2) Theorem 5.4.7 (ii) and (iii) says that for all ¢ € (0,1), the solution
v(t, z) preserves as a function of z the properties of the boundary function
f(2) in some subclasses of starlike, univalent, or convex functions.

(3) In fact, supposing that f is analytic in an open set G including D for
all t € (0,ty] with sufficiently small t; > 0 (depending on f), the solution
v(t,z) = Q5 (f)(2) in Theorem 5.4.7 preserves as a function of z the starlike-
ness, convexity, and spirallikeness of the boundary function f (exactly as do
the Bernstein polynomials in Theorem 3.4.2). This is immediate if we reason
exactly as in the proof of Theorem 3.4.2, by replacing there the Bernstein
polynomials B, (f)(z) with Q7 (f)(z), taking into account that by Theorem
3.1 in Anastassiou—Gal [13] we have that S(f)(¢,2) = ﬁ@? (f)(z) satisfies

S(f)(t,0) = £(0), S"(f)(t,0) = f'(0) and that by Theorem 5.4.2 (2), it follows

that lim;—o Q; (f)(z) = f(z), uniformly with respect to z € D, since there

we have wy(f;t)/t < Ct||f"||5 (note that in fact one can easily prove that
f(2),

lim; 0 QF (f)(2) = uniformly with respect to z € K, for any compact
disk K C G).

(2

5.5 Bibliographical Notes and Open Problems

Note 5.5.1. Theorem 5.3.5, Remark 2 after Theorem 5.4.5, and Remark 3
after Theorem 5.4.7 are new.

Note 5.5.2. An important concept in approximation theory is that of
width of a subset in a Banach space, introduced by Kolmogorov [199] (see,
e.g., for details, Lorentz [247], Chapter 9, pp. 132-149). In a series of papers,
Konovalov-Leviatan [200, 201] and Gilewicz—Konovalov-Leviatan [148] intro-
duce the concept of shape-preserving width of a weighted Sobolev space by

d (AS W;a’ Aj_Lq)Lq = ianW"EM" sup infyej\[nmAiLq ||1‘ — yHLq,
IGAin,a

where M™ is the set of all linear manifolds M™ in L, with dim(M™) < n
satisfying M™ N A% L, # 0, W, , denotes a class of Sobolev type on [~1,1],
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AWy, i=H{z € Wy s A% x(t) > 0}, and A L, := {z € Ly[-1,1]; Ajz(t) >
0}, 1<p,g<o0,0<a<o0,m,neN,seN.

Two-sided estimates (exact orders) of d,, (A3 W ,, A5 Ly) 1, were obtained
in Konovalov-Leviatan [200] for s = 0,1, 2, in Konovalov—Leviatan [201] for
3<s<r+1,andin Gilewicszonovalovaeviatan [148] for s > r + 1.

Note 5.5.3. It is worth mentioning other interesting topics that refer
to (local) saturation of k-convex linear operators (that is, linear operators
preserving k-convexity); for details see, e.g., Cardenas-Morales and Garrancho
[67-59], and to the shape-preserving properties of some linear Bernstein-type
operators that fix polynomials; see, e.g., Cardenas-Morales, Munoz-Delgado,
and Garrancho [60].

Open Problem 5.5.4. In what follows, we would like to bring attention a
possible interesting new direction in constructive approximation of functions
by operators. Thus, in two very recent papers (Bede-Nobuhara—Fodor-Hirota
[35] and Bede-Nobuhara—Dankova-Di Nola [36]), the authors consider a new
idea for construction of nonlinear nonpolynomial operators by replacing the
usual pair of operations (sum, product) by other pairs suggested in fuzzy set
theory and image processing. Then, they apply the idea to the Shepard-type
interpolation operator and give interesting concrete applications to image-
processing experiments. Let us briefly describe their theoretical results.

First, starting form the classical linear and positive Shepard operator at-
tached to a function f : [0,1] — R and to equidistant nodes, given by

|z — k/n|
2 I T kY
where A > 1, n € N, they replace “sum” by “max,” so that they obtain for

the pair (max, product), the following Shepard-type nonlinear operator (see
Bede-Nobuhara-Fodor-Hirota [35]):

maxo<p<n{f(k/n) |z —k/n|~*}
maxo<p<nf|r —k/n|=*} .

SN () () =

In the same paper, for positive f, the authors prove the following Jackson-type
estimate:

SO @) — F@)] < serf1/n)

valid for all z € [0,1], n € N.

Comparing with the estimates given by the classical Shepard operator
in Szabados [380], we note that for 1 < A < 2, the operator Sffi)(f) gives
essentially better estimates. 7

Second, in Bede-Nobuhara—Daiikova—Di Nola [36], replacing the usual
pair (sum, product) by the pair (max, min), the authors define the follow-
ing Shepard-type nonlinear operator:

(M=m) _ min{f(k/n), [z — k/n|"*}
S () = Orgnlca%(n maxo<k<n{|z — k/n|=*}’
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for which they prove the estimate (much worse than that in the case of

SOV () (@)

ST () (@) = F(@)] < mascwr (£ 1/0)00, 1/3},

valid for all f:[0,1] — [0,1], z € [0,1], n € N.

It is then natural to ask how the above idea could be applied to other
linear and positive operators. In what follows, we sketch this for the first time
for some Bernstein-type operators.

Thus, if in the classical Bernstein polynomials B, (f)(z) = Y j_o Pn.k(z) -
f(k/n), where pp(z) = (7)x"(1 — 2)"*, we use the pair (max, product),
then we get

Po(f)(x) = max {pnx(x)f(k/n)},

0<k<n

while for the pair (max, min), we get

Qn(f)(x) = max {min{py (z), f(k/n)}}-

0<k<n

Unfortunately, the approximation properties of these two nonlinear operators
seem to be very bad, because it is easy to see that convergence does not hold
even for constant functions.

In order to get operators with better approximation potential, we write
the classical Bernstein polynomials in the form

f k/n pnk )
Z Zk Opnk( ) .

Then, applying the pair (max, product), we get

maXnggn{f<k/n) : pn,k(m)}
InaXogkgn{an(x)}

BM(f)(z) =

)

while for the pair (max, min), we obtain

. min{f(k/n). pa(x)}

0<k<n maxo<k<n{pnr()}

BM=(f)(x) =

Note that each BT(LM)( f)(z) is a piecewise rational function of degree < n.

In the case of B7(IM)(f)(x)7 with f positive, by taking into account the
inequality (valid for the positive numbers A;, B;,i =0,...,n)

| max {A}— Jnax {B H < (nax. {|4; — Bi|}

0<i<n
and

[f(k/n) = f(2)|pn.k(z)
< pog(@)wi(fi|k/n — 2|)oo < prp(@)[1 + |[k/n — 2| /0n]wi (f;6n)oo
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(valid for any §,, > 0), we easily can deduce

IBM(f)(z) — f(x)]
< | maxo<k<n{f(k/n) - Pni(z)} — maxo<k<n{f () - Pni(z)}|
B maxo<k<n{Pnk ()}
maxo<k<n{|f(k/n) — f(z)| - pri(z)}
maxo<r<n{Pnk(z)}
L maxo<k<n{pnk(@)|k/n — 2|} ,
(145 oz en (P (2] )eatson

<

Therefore, the convergence property of B,(LM)( f)(z) is controlled by the ratio
() = maxo<k<n{pn,k(@)|k/n — 2|}/ maxo<p<n{pnk(z)}-

It is left to the reader to see whether this ratio r,(x) is at least of order
O(1/+y/n) (as we would expect). Of course, a better order would imply an
essentially better approximation order of BT(LM)( f)(x) than that given by the
classical Bernstein operator B, (f)(z).

Also, we could consider shape-preserving properties for BSLM)( f)x). In
this sense, first we would need some suitable concepts of shapes in accordance
with the operator’s form. For example, we could consider the max-convexity
property of f defined by the inequality (valid for all z,y € [0,1], a € [0,1])

fimax{az, (1 = a)y}] < max{af(z),(1 - a)f(y)},

and as an open question we could ask whether the Bernstein-type operator
B,(LM)( f)(z) keeps this property.

Replacing the pair of operations (sum, product) with (max, product) in
the definitions of classical operators in Section 5.2, Examples 2, 3, 4, and 7,
we can obtain the nonlinear variants of Favard—Szasz—Mirakjan, Baskakov,
Meyer—Konig—Zeller, and Bleimann—-Butzer—-Hahn operators, given by

supyen, {f(k/n) - (nz)* /k!}
SUPkeNO{(”@k/k!} ’

suppen, L (k/n) - ("1 )2k /(1 + @) thY

V,EM)(f)(x) = ksjpkeNo{(nJr:(l)l;k/)(l + x)n—O—k} ’

supgery, { ("4")2* fIk/(n + )]}

FM () (x) =

Zr(LM)(f)(x) = SupkeNO{(":k)xk} 5
BBHM)(f)(x) = supp<p<n{f1k/(n+1—k)]- Qn,k(l’)}’

SUPogkgn{Qn,k(ﬂf)}

respectively, where No = N U {0} and ¢, x(z) = (})z".

Remaining as open questions are the approximation and shape-preserving
properties for these nonlinear operators too.
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Open Problem 5.5.5. Find geometric (and approximation) properties
for the complex versions (that is, simply replacing the real variable by the
complex variable z) of the following classical nonpolynomial Bernstein-type
operators: Baskakov, Meyer—Konig—Zeller, Jakimovski-Leviatan, gamma,
Bleimann—Butzer-Hahn, Bernstein—Kantorovich, and so on.

The methods in the proofs of Theorem 3.4.2 and Theorems 3.4.4-3.4.10
(in the case of shape preservation) and the considerations in Theorem 3.4.1
(in the case of approximation properties) could be useful for most of them.

Note, for example, that in Wood [400] is proved the uniform convergence
of the complex form for the generalized Bernstein operator of Jakimovski-
Leviatan. However, the estimate of the approximation errors and the shape-
preserving properties for this complex operator still remain to be studied.

Open Problem 5.5.6. In the very recent book Ban—Gal [29], pp. 193—
200, for functions that are not monotone (or convex, respectively), the degree
(and its complementary concept, the defect) of monotonicity (or of convex-
ity, respectively) is introduced. Reasoning exactly as in Ban—Gal [29], Open
Question 5.2, pp. 208-209, it is natural to ask how the degree of monotonicity
(or convexity, respectively) of a function is preserved by the most important
Bernstein-type operators.

Open Problem 5.5.7. If f is univalent (starlike, convex) in D, then find
the radius of univalence (starlikeness, convexity, respectively) independent of
§>0and f for all Q¢(f)z) and W (f)(z) in Definition 5.4.1 and their partial

sums.
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almost copositive, 50
averaged modulus of smoothness, 6
axially convex, 111

Boégel modulus of continuity, 102

Bézier net, 107

barycentric coordinates, 107

barycentric standard simplex, 108

Beatson trigonometric kernels, 240

bell-shaped, 246

Bernstein polynomial, 19

Bernstein—Bézier surface, 107

best almost copositive approximation,
51

best almost intertwining approxima-
tion, 51

best almost positive approximation,
51

best—approximation polynomial,
17-19

best intertwining approximation, 50

best nearly intertwining approxima-
tion, 51

best one-sided approximation, 50

best strongly (weakly) almost
copositive approximation, 51

best strongly (weakly) almost positive
approximation, 51

bidimensional monotone, 208

bivariate K3 -functional, 105

bivariate copositive, 178

bivariate flipped function, 197

Boolean sum, 92

bounded turn, 217

Cotes—Christoffel numbers, 12, 208

Cauchy problem with complex spatial
variable, 321, 322

Cesaro mean, 220

close-to-convex, 216

close-to-convex of order a > 0, 216

cobound turn approximation, 280

coconvex of order (2,2), 180

coconvex polynomial approximation,
83

comonotone polynomial approxima-
tion, 64

complex convolution integral, 317

complex operator of Poisson—Cauchy
type, 322

complex partial differential equations,
319

complex Poisson—Cauchy and
Gauss—Weierstrass convolution
integrals, 319

complexified semigroups of operators,
320

convex, 216, 285, 313

convex (strictly convex) of order, 20

convex in the direction of imaginary
axis, 217

convex of order (n,m), 100

convex of order (n1,...,nm), 109

convex of order a > 0, 216

convolution-type method, 90

cyclic variation, 221

de la Vallée Poussin mean, 220
directional (Géteaux) derivative, 112
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distinguished boundary, 291

distorsions, 280

Ditzian—Totik modulus of smoothness,
6

double-stochastic matrix, 110

generalized algebraic polynomial, 312

generalized Bernstein polynomial, 30

global smoothness preservation
property, 307

harmonic function, 109
Hermite—Fejér polynomial, 10
Hermite-Fejér polynomial, 208
holomorphic, 283

iterated Beatson kernels, 244

least concave majorant, 307
locally biholomorphic, 284
logarithmic-convex, 4

maximal range, 223

modified Ditzian—Totik modulus of
smoothness, 6

modulus of smoothness, 5

nearly coconvex polynomial approxi-
mation, 87

nearly comonotone polynomial
approximation, 70

nonsingular, 284

open unit Euclidean ball, 283
open unit polydisk, 283

partial bivariate moduli of continuity,
101

periodically monotone, 222

point of strong preservation of partial
monotony, 10

point of weak preservation, 9

pointwise convex polynomial
approximation, 81

polyconvex functions of order p € N,
142

polyharmonic function, 110

polyhedral convex, 111

positive and copositive polynomial
approximation, 38

positive linear polynomial operator,
94

quasiconvex, 4, 20

SAIN, 8

Schur-convex, 111

simultaneous approximation in
comonotone case, 95

simultaneous pointwise estimates in
monotone approximation, 63

spirallike of type ~, 217

starlike, 215, 285

starlike of order o > 0, 216

starshaped, 4, 20

strictly double convex, 208, 209

strongly (weakly) almost copositive,
50

strongly (weakly) almost nonnegative,
51

strongly convex, 111

subharmonic function, 110

subharmonic function of order p € N,
110

subordination, 280

Telyakovskii-Gopengauz (or inter-
polatory) type estimates,
39

tensor product Bernstein polynomial,
114

Timan—Brudnyi type estimates, 38

totally coconvex, 182

totally convex, 100

totally upper (lower) monotone, 100

totally upper comonotone, 180

upper (lower) bidimensional
monotone, 100

upper bidimensional comonotone, 179

usually coconvex, 182

variation-diminishing, 20

weak subharmonic, 111
whole boundary, 291





